-
-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathAst_to_Mir.ml
1002 lines (962 loc) · 38.7 KB
/
Ast_to_Mir.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
open Core
open Core.Poly
open Middle
let trans_fn_kind kind name =
let fname = Utils.stdlib_distribution_name name in
match kind with
| Ast.StanLib suffix -> Fun_kind.StanLib (fname, suffix, AoS)
| UserDefined suffix -> UserDefined (fname, suffix)
let without_underscores = String.filter ~f:(( <> ) '_')
let drop_leading_zeros s =
match String.lfindi ~f:(fun _ c -> c <> '0') s with
| Some p when p > 0 -> (
match s.[p] with
| 'e' | 'E' | '.' -> String.drop_prefix s (p - 1)
| _ -> String.drop_prefix s p)
| Some _ -> s
| None -> "0"
let format_number s = s |> without_underscores |> drop_leading_zeros
let%expect_test "format_number0" =
format_number "0_000." |> print_endline;
[%expect "0."]
let%expect_test "format_number1" =
format_number ".123_456" |> print_endline;
[%expect ".123456"]
let rec op_to_funapp op args type_ =
let loc = Ast.expr_loc_lub args in
let adlevel =
Ast.expr_ad_lub args |> Option.value_exn
(* correctness inherited from typechecking *) in
Expr.
{ Fixed.pattern=
FunApp (StanLib (Operator.to_string op, FnPlain, AoS), trans_exprs args)
; meta= Expr.Typed.Meta.create ~type_ ~adlevel ~loc () }
and trans_expr {Ast.expr; Ast.emeta} =
let ewrap pattern =
Expr.
{ Fixed.pattern
; meta=
Typed.Meta.
{type_= emeta.Ast.type_; adlevel= emeta.ad_level; loc= emeta.loc} }
in
match expr with
| Ast.Paren x -> trans_expr x
| BinOp (lhs, And, rhs) -> EAnd (trans_expr lhs, trans_expr rhs) |> ewrap
| BinOp (lhs, Or, rhs) -> EOr (trans_expr lhs, trans_expr rhs) |> ewrap
| BinOp (lhs, op, rhs) -> op_to_funapp op [lhs; rhs] emeta.type_
| PrefixOp (op, e) | Ast.PostfixOp (e, op) -> op_to_funapp op [e] emeta.type_
| Ast.TernaryIf (cond, ifb, elseb) ->
Expr.Fixed.Pattern.TernaryIf
(trans_expr cond, trans_expr ifb, trans_expr elseb)
|> ewrap
| Variable {name; _} -> Var name |> ewrap
| IntNumeral x -> Lit (Int, format_number x) |> ewrap
| RealNumeral x -> Lit (Real, format_number x) |> ewrap
| ImagNumeral x -> Lit (Imaginary, format_number x) |> ewrap
| FunApp (fn_kind, {name; _}, args) | CondDistApp (fn_kind, {name; _}, args)
->
FunApp (trans_fn_kind fn_kind name, trans_exprs args) |> ewrap
| GetTarget -> FunApp (StanLib ("target", FnTarget, AoS), []) |> ewrap
| ArrayExpr eles ->
FunApp (CompilerInternal FnMakeArray, trans_exprs eles) |> ewrap
| RowVectorExpr eles ->
FunApp (CompilerInternal FnMakeRowVec, trans_exprs eles) |> ewrap
| Indexed (lhs, indices) ->
Indexed (trans_expr lhs, List.map ~f:trans_idx indices) |> ewrap
| TupleProjection (lhs, i) -> TupleProjection (trans_expr lhs, i) |> ewrap
| TupleExpr eles ->
FunApp (CompilerInternal FnMakeTuple, trans_exprs eles) |> ewrap
| Promotion (e, ty, ad) -> Promotion (trans_expr e, ty, ad) |> ewrap
and trans_idx = function
| Ast.All -> All
| Ast.Upfrom e -> Upfrom (trans_expr e)
| Ast.Downfrom e -> Between (Expr.Helpers.loop_bottom, trans_expr e)
| Ast.Between (lb, ub) -> Between (trans_expr lb, trans_expr ub)
| Ast.Single e -> (
match e.emeta.type_ with
| UInt -> Single (trans_expr e)
| UArray _ -> MultiIndex (trans_expr e)
| _ ->
Common.ICE.internal_compiler_error
[%message "Expecting int or array" (e.emeta.type_ : UnsizedType.t)])
and trans_exprs exprs = List.map ~f:trans_expr exprs
let trans_sizedtype = SizedType.map trans_expr
let neg_inf =
Expr.
{ Fixed.pattern= FunApp (CompilerInternal FnNegInf, [])
; meta=
Typed.Meta.{type_= UReal; loc= Location_span.empty; adlevel= DataOnly}
}
let trans_arg (adtype, ut, ident) = (adtype, ident.Ast.name, ut)
let truncate_dist ud_dists (id : Ast.identifier)
(ast_obs : Ast.typed_expression) ast_args t =
let cdf_suffix = "_lcdf" in
let ccdf_suffix = "_lccdf" in
let find_function_info sfx =
let name = id.name ^ sfx in
match List.find ~f:(fun (n, _) -> String.equal name n) ud_dists with
| Some (name, tp) -> (Ast.UserDefined FnPlain, name, tp)
| None ->
( Ast.StanLib FnPlain
, name
, if Stan_math_signatures.is_stan_math_function_name (id.name ^ "_lpmf")
then UnsizedType.UInt
else UnsizedType.UReal (* close enough *) ) in
let targetme loc e =
{ Stmt.Fixed.meta= loc
; pattern= TargetPE (Expr.Helpers.unary_op Operator.PMinus e) } in
let trunc cond_op extrema (x : Expr.Typed.t) y =
let smeta = x.meta.loc in
let ast_obs =
if UnsizedType.is_container ast_obs.Ast.emeta.type_ then
Ast.mk_typed_expression
~expr:
(FunApp
( Ast.StanLib FnPlain
, Ast.{name= extrema; id_loc= smeta}
, [ast_obs] ))
~loc:smeta ~type_:UnsizedType.UReal ~ad_level:ast_obs.emeta.ad_level
else ast_obs in
{ Stmt.Fixed.meta= smeta
; pattern=
IfElse
( Expr.Helpers.binop (trans_expr ast_obs) cond_op x
, {Stmt.Fixed.meta= smeta; pattern= TargetPE neg_inf}
, Some y ) } in
let funapp meta kind name args =
Expr.{Fixed.pattern= FunApp (trans_fn_kind kind name, args); meta} in
let maybe_promote_to_real tp lb : Expr.Typed.t =
match (tp, Expr.Typed.type_of lb) with
| UnsizedType.UInt, _ -> lb
| _, UInt ->
{ pattern= Promotion (lb, UReal, lb.meta.adlevel)
; meta= {lb.meta with type_= UReal} }
| _ -> lb in
let inclusive_bound tp (lb : Expr.Typed.t) =
if UnsizedType.is_int_type tp then
Expr.Helpers.binop lb Minus Expr.Helpers.one
else maybe_promote_to_real tp lb in
let size_adjust e =
if
(not (UnsizedType.is_container ast_obs.Ast.emeta.type_))
|| List.exists
~f:(fun (i : Ast.typed_expression) ->
UnsizedType.is_container i.emeta.type_)
ast_args
then e
else
(* Container y but scalar args - need to multiply by size(y) *)
let trans_ast_obs = trans_expr ast_obs in
let type_ = {trans_ast_obs.meta with type_= UnsizedType.UReal} in
Expr.Helpers.binop e Times
(Expr.Helpers.internal_funapp FnLength [trans_ast_obs] type_) in
match t with
| Ast.NoTruncate -> []
| TruncateUpFrom lb ->
let fk, fn, tp = find_function_info ccdf_suffix in
let lb = trans_expr lb in
[ trunc Less "min" lb
(targetme lb.meta.loc
(size_adjust
(funapp lb.meta fk fn
(inclusive_bound tp lb :: trans_exprs ast_args)))) ]
| TruncateDownFrom ub ->
let fk, fn, tp = find_function_info cdf_suffix in
let ub = trans_expr ub in
[ trunc Greater "max" ub
(targetme ub.meta.loc
(size_adjust
(funapp ub.meta fk fn
(maybe_promote_to_real tp ub :: trans_exprs ast_args)))) ]
| TruncateBetween (lb, ub) ->
let fk, fn, tp = find_function_info cdf_suffix in
let lb, ub = (trans_expr lb, trans_expr ub) in
let expr args =
funapp ub.meta (Ast.StanLib FnPlain) "log_diff_exp"
[ funapp ub.meta fk fn (maybe_promote_to_real tp ub :: args)
; funapp ub.meta fk fn (inclusive_bound tp lb :: args) ] in
let statement =
match
List.findi
~f:(fun (_ : int) (e : Ast.typed_expression) ->
UnsizedType.is_container e.emeta.type_)
ast_args
with
(* If any of the arguments (besides the data) are vectors, need to generate a loop
This can go away if https://github.com/stan-dev/stan/issues/1154 is implemented
*)
| Some (i, _) ->
let ast_args = trans_exprs ast_args in
(* avoid recomputing in each iteration of the loop *)
let temp_decls, ast_args, symbol_reset =
Stmt.Helpers.temp_vars ast_args in
let bound =
let e = List.nth_exn ast_args i in
Expr.Helpers.internal_funapp FnLength [e]
{e.meta with type_= UnsizedType.UInt} in
let bodyfn (idx : Expr.Typed.t) =
let args =
List.map
~f:(fun (e : Expr.Typed.t) ->
if UnsizedType.is_container e.meta.type_ then
Expr.Helpers.add_int_index e (Index.Single idx)
else e)
ast_args in
targetme ub.meta.loc (size_adjust (expr args)) in
let loop = Stmt.Helpers.mk_for bound bodyfn ub.meta.loc in
symbol_reset ();
Stmt.{Fixed.pattern= Block (temp_decls @ [loop]); meta= loop.meta}
| None ->
targetme ub.meta.loc (size_adjust (expr (trans_exprs ast_args)))
in
[trunc Less "min" lb (trunc Greater "max" ub statement)]
let unquote s =
if s.[0] = '"' && s.[String.length s - 1] = '"' then
String.drop_suffix (String.drop_prefix s 1) 1
else s
let trans_printables mloc (ps : Ast.typed_expression Ast.printable list) =
List.map
~f:(function
| Ast.PString s ->
{ (Expr.Helpers.str (unquote s)) with
meta=
Expr.Typed.Meta.create ~type_:UReal ~loc:mloc ~adlevel:DataOnly ()
}
| Ast.PExpr e -> trans_expr e)
ps
(** These types signal the context for a declaration during statement translation.
They are only interpreted by trans_decl.*)
type transform_action = Check | Constrain | IgnoreTransform [@@deriving sexp]
type decl_context =
{transform_action: transform_action; dadlevel: UnsizedType.autodifftype}
let same_shape decl_id decl_var id var meta =
if UnsizedType.is_scalar_type (Expr.Typed.type_of var) then []
else
[ Stmt.
{ Fixed.pattern=
NRFunApp
( StanLib ("check_matching_dims", FnPlain, AoS)
, Expr.Helpers.
[str "constraint"; str decl_id; decl_var; str id; var] )
; meta } ]
let check_transform_shape decl_id decl_var meta = function
| Transformation.Offset e -> same_shape decl_id decl_var "offset" e meta
| Multiplier e -> same_shape decl_id decl_var "multiplier" e meta
| Lower e -> same_shape decl_id decl_var "lower" e meta
| Upper e -> same_shape decl_id decl_var "upper" e meta
| OffsetMultiplier (e1, e2) ->
same_shape decl_id decl_var "offset" e1 meta
@ same_shape decl_id decl_var "multiplier" e2 meta
| LowerUpper (e1, e2) ->
same_shape decl_id decl_var "lower" e1 meta
@ same_shape decl_id decl_var "upper" e2 meta
| Covariance | Correlation | CholeskyCov | CholeskyCorr | Ordered
|PositiveOrdered | Simplex | UnitVector | SumToZero | Identity
|TupleTransformation _ | StochasticRow | StochasticColumn ->
[]
let copy_indices indexed (var : Expr.Typed.t) =
if UnsizedType.is_scalar_type var.meta.type_ then var
else
match Expr.Helpers.collect_indices indexed with
| [] -> var
| indices ->
Expr.Fixed.
{ pattern= Indexed (var, indices)
; meta=
{ var.meta with
type_= Expr.Helpers.infer_type_of_indexed var.meta.type_ indices
} }
let extract_transform_args var = function
| Transformation.Lower a | Upper a -> [copy_indices var a]
| Offset a -> [copy_indices var a; {a with Expr.Fixed.pattern= Lit (Int, "1")}]
| Multiplier a -> [{a with pattern= Lit (Int, "0")}; copy_indices var a]
| LowerUpper (a1, a2) | OffsetMultiplier (a1, a2) ->
[copy_indices var a1; copy_indices var a2]
| Covariance | Correlation | CholeskyCov | CholeskyCorr | Ordered
|PositiveOrdered | Simplex | UnitVector | SumToZero | Identity
|TupleTransformation _ | StochasticRow | StochasticColumn ->
[]
let rec param_size transform sizedtype =
let rec shrink_eigen f st =
match st with
| SizedType.SArray (t, d) -> SizedType.SArray (shrink_eigen f t, d)
| SVector (mem_pattern, d) | SMatrix (mem_pattern, d, _) ->
SVector (mem_pattern, f d)
| SInt | SReal | SComplex | SRowVector _ | STuple _ | SComplexRowVector _
|SComplexVector _ | SComplexMatrix _ ->
Common.ICE.internal_compiler_error
[%message
"Expecting SVector or SMatrix, got " (st : Expr.Typed.t SizedType.t)]
in
let rec shrink_eigen_mat f st =
match st with
| SizedType.SArray (t, d) -> SizedType.SArray (shrink_eigen_mat f t, d)
| SMatrix (mem_pattern, d1, d2) -> SVector (mem_pattern, f d1 d2)
| SInt | SReal | SComplex | SRowVector _ | SVector _ | STuple _
|SComplexRowVector _ | SComplexVector _ | SComplexMatrix _ ->
Common.ICE.internal_compiler_error
[%message "Expecting SMatrix, got " (st : Expr.Typed.t SizedType.t)]
in
let k_choose_2 k =
Expr.Helpers.(binop (binop k Times (binop k Minus (int 1))) Divide (int 2))
in
let rec stoch_size f1 f2 st =
match st with
| SizedType.SMatrix (mem_pattern, d1, d2) ->
SizedType.SMatrix (mem_pattern, f1 d1, f2 d2)
| SArray (t, d) -> SizedType.SArray (stoch_size f1 f2 t, d)
| SInt | SReal | SComplex | SRowVector _ | SVector _ | STuple _
|SComplexRowVector _ | SComplexVector _ | SComplexMatrix _ ->
Common.ICE.internal_compiler_error
[%message "Expecting SMatrix, got " (st : Expr.Typed.t SizedType.t)]
in
let min_one d = Expr.Helpers.(binop d Minus (int 1)) in
match transform with
| Transformation.Identity | Lower _ | Upper _
|LowerUpper (_, _)
|Offset _ | Multiplier _
|OffsetMultiplier (_, _)
|Ordered | PositiveOrdered | UnitVector ->
sizedtype
| TupleTransformation tms ->
let _, dims = SizedType.get_array_dims sizedtype in
let subtypes_transforms = Utils.zip_stuple_trans_exn sizedtype tms in
(* NB: [build_sarray] is a no-op if this was not originally an array *)
SizedType.build_sarray dims
(SizedType.STuple
(List.map subtypes_transforms ~f:(fun (st, trans) ->
param_size trans st)))
| Simplex | SumToZero ->
shrink_eigen (fun d -> Expr.Helpers.(binop d Minus (int 1))) sizedtype
| CholeskyCorr | Correlation -> shrink_eigen k_choose_2 sizedtype
| StochasticRow -> stoch_size Fn.id min_one sizedtype
| StochasticColumn -> stoch_size min_one Fn.id sizedtype
| CholeskyCov ->
(* (N * (N + 1)) / 2 + (M - N) * N *)
shrink_eigen_mat
(fun m n ->
Expr.Helpers.(
binop
(binop (k_choose_2 n) Plus n)
Plus
(binop (binop m Minus n) Times n)))
sizedtype
| Covariance ->
shrink_eigen
(fun k -> Expr.Helpers.(binop k Plus (k_choose_2 k)))
sizedtype
let rec check_decl var decl_type' decl_trans smeta adlevel =
let check_tuple var trans_subtypes =
List.concat_mapi
~f:(fun i (decl_type', decl_trans) ->
let var = Expr.Helpers.add_tuple_index var (i + 1) in
check_decl var decl_type' decl_trans smeta adlevel)
trans_subtypes in
match decl_trans with
| Transformation.LowerUpper (lb, ub) ->
check_decl var decl_type' (Lower lb) smeta adlevel
@ check_decl var decl_type' (Upper ub) smeta adlevel
| TupleTransformation transforms when Transformation.has_check decl_trans ->
let _, dims = SizedType.get_array_dims decl_type' in
let subtypes_transforms =
Utils.zip_stuple_trans_exn decl_type' transforms in
if List.is_empty dims then check_tuple var subtypes_transforms
else
[ Stmt.Helpers.mk_nested_for (List.rev dims)
(fun loopvars ->
let var =
List.fold ~f:Expr.Helpers.add_int_index ~init:var
(List.map ~f:(fun e -> Index.Single e) (List.rev loopvars))
in
Stmt.Fixed.
{ meta= smeta
; pattern= Block (check_tuple var subtypes_transforms) })
smeta ]
| _ when Transformation.has_check decl_trans ->
let check_id id =
let var_name = Fmt.str "%a" Expr.Typed.pp id in
let args = extract_transform_args id decl_trans in
Stmt.Helpers.internal_nrfunapp
(FnCheck {trans= decl_trans; var_name; var= id})
args smeta in
[check_id var]
| _ -> []
let check_sizedtype name st =
let check x = function
| {Expr.Fixed.pattern= Lit (Int, i); _} when float_of_string i >= 0. -> []
| n ->
[ Stmt.Helpers.internal_nrfunapp FnValidateSize
Expr.Helpers.
[ str name
; str (Fmt.str "%a" Pretty_printing.pp_typed_expression x); n ]
n.meta.loc ] in
let rec sizedtype = function
| SizedType.(SInt | SReal | SComplex) as t -> ([], t)
| SVector (mem_pattern, s) ->
let e = trans_expr s in
(check s e, SizedType.SVector (mem_pattern, e))
| SRowVector (mem_pattern, s) ->
let e = trans_expr s in
(check s e, SizedType.SRowVector (mem_pattern, e))
| SMatrix (mem_pattern, r, c) ->
let er = trans_expr r in
let ec = trans_expr c in
(check r er @ check c ec, SizedType.SMatrix (mem_pattern, er, ec))
| SComplexVector s ->
let e = trans_expr s in
(check s e, SizedType.SComplexVector e)
| SComplexRowVector s ->
let e = trans_expr s in
(check s e, SizedType.SComplexRowVector e)
| SComplexMatrix (r, c) ->
let er = trans_expr r in
let ec = trans_expr c in
(check r er @ check c ec, SizedType.SComplexMatrix (er, ec))
| SArray (t, s) ->
let e = trans_expr s in
let ll, t = sizedtype t in
(check s e @ ll, SizedType.SArray (t, e))
| STuple subtypes ->
let checks, subtypes = List.unzip (List.map ~f:sizedtype subtypes) in
(List.concat checks, STuple subtypes) in
let ll, st = sizedtype st in
(ll, Type.Sized st)
(* The statements that constrain and check a variable, given its context *)
let var_constrain_check_stmts dconstrain loc adlevel decl_id decl_var trans
type_ =
match (dconstrain, type_) with
| Some Constrain, Type.Sized _ ->
check_transform_shape decl_id decl_var loc trans
| Some Check, Type.Sized st ->
check_transform_shape decl_id decl_var loc trans
@ check_decl decl_var st trans loc adlevel
| _ -> []
let create_decl_with_assign decl_id declc decl_type initial_value transform
smeta =
let rhs = Option.map ~f:trans_expr initial_value in
let decl_adtype =
UnsizedType.fill_adtype_for_type declc.dadlevel (Type.to_unsized decl_type)
in
let decl_var =
Expr.
{ Fixed.pattern= Var decl_id
; meta=
Typed.Meta.create ~adlevel:decl_adtype ~loc:smeta
~type_:(Type.to_unsized decl_type)
() } in
let decl =
Stmt.
{ Fixed.pattern=
Decl {decl_adtype; decl_id; decl_type; initialize= Default}
; meta= smeta } in
let rhs_assignment =
Option.map
~f:(fun (e : Expr.Typed.t) ->
Stmt.Fixed.
{ pattern= Assignment (Stmt.Helpers.lvariable decl_id, e.meta.type_, e)
; meta= smeta })
rhs
|> Option.to_list in
if Utils.is_user_ident decl_id then
(decl :: rhs_assignment)
@ var_constrain_check_stmts (Some declc.transform_action) smeta decl_adtype
decl_id decl_var transform decl_type
else decl :: rhs_assignment
let unwrap_block_or_skip = function
| [({Stmt.Fixed.pattern= Block _; _} as b)] -> Some b
| [{pattern= Skip; _}] -> None
| x ->
Common.ICE.internal_compiler_error
[%message "Expecting a block or skip, not" (x : Stmt.Located.t list)]
let index_tuple (e : Ast.typed_expression) i =
let emeta =
match (e.emeta.type_, e.emeta.ad_level) with
| UnsizedType.UTuple ts, UnsizedType.TupleAD ads ->
Ast.
{ type_= List.nth_exn ts i
; ad_level= List.nth_exn ads i
; loc= e.emeta.loc }
| _ ->
Common.ICE.internal_compiler_error
[%message
"Attempted to index into a non-tuple during lowering"
(e : Ast.typed_expression)] in
Ast.{expr= TupleProjection (e, i + 1); emeta}
let rec trans_stmt ud_dists (declc : decl_context) (ts : Ast.typed_statement) =
let stmt_typed = ts.stmt and smeta = ts.smeta.loc in
let trans_stmt =
trans_stmt ud_dists {declc with transform_action= IgnoreTransform} in
let trans_single_stmt s =
match trans_stmt s with
| [s] -> s
| s -> Stmt.Fixed.{pattern= SList s; meta= smeta} in
let swrap pattern = [Stmt.Fixed.{meta= smeta; pattern}] in
let mloc = smeta in
match stmt_typed with
| Ast.Assignment {assign_lhs= LTuplePack {lvals; _}; assign_rhs; assign_op} ->
trans_packed_assign smeta trans_stmt lvals assign_rhs assign_op
| Ast.Assignment {assign_lhs= LValue lhs; assign_rhs; assign_op} ->
trans_single_assignment smeta lhs assign_rhs assign_op
| Ast.NRFunApp (fn_kind, {name; _}, args) ->
NRFunApp (trans_fn_kind fn_kind name, trans_exprs args) |> swrap
| Ast.TargetPE e -> TargetPE (trans_expr e) |> swrap
| Ast.JacobianPE e -> JacobianPE (trans_expr e) |> swrap
| Ast.Tilde {arg; distribution; args; truncation; kind} ->
let sfx =
match kind with
| UserDefined (FnLpdf _) | StanLib (FnLpdf _) -> "_lpdf"
| UserDefined (FnLpmf _) | StanLib (FnLpmf _) -> "_lpmf"
| _ ->
Common.ICE.internal_compiler_error
[%message
"Impossible: tilde with non-distribution after typechecking"
(distribution : Ast.identifier)
(kind : Ast.fun_kind)] in
let name = distribution.name ^ sfx in
let add_dist =
let adlevel =
if
UnsizedType.any_autodiff
(List.map ~f:(fun x -> x.emeta.ad_level) (arg :: args))
then UnsizedType.AutoDiffable
else DataOnly in
Stmt.Fixed.Pattern.TargetPE
Expr.
{ Fixed.pattern=
FunApp (trans_fn_kind kind name, trans_exprs (arg :: args))
; meta= Typed.Meta.create ~type_:UReal ~loc:mloc ~adlevel () } in
swrap add_dist @ truncate_dist ud_dists distribution arg args truncation
| Ast.Print ps ->
NRFunApp (CompilerInternal FnPrint, trans_printables smeta ps) |> swrap
| Ast.Reject ps ->
NRFunApp (CompilerInternal FnReject, trans_printables smeta ps) |> swrap
| Ast.FatalError ps ->
NRFunApp (CompilerInternal FnFatalError, trans_printables smeta ps)
|> swrap
| Ast.IfThenElse (cond, ifb, elseb) ->
IfElse
( trans_expr cond
, trans_single_stmt ifb
, Option.map ~f:trans_single_stmt elseb )
|> swrap
| Ast.While (cond, body) ->
While (trans_expr cond, trans_single_stmt body) |> swrap
| Ast.For {loop_variable; lower_bound; upper_bound; loop_body} ->
let body =
match trans_single_stmt loop_body with
| {pattern= Block _; _} as b -> b
| x -> {x with pattern= Block [x]} in
For
{ loopvar= loop_variable.Ast.name
; lower= trans_expr lower_bound
; upper= trans_expr upper_bound
; body }
|> swrap
| Ast.ForEach (loopvar, iteratee, body) ->
let iteratee' = trans_expr iteratee in
let body_stmts =
match trans_single_stmt body with
| {pattern= Block body_stmts; _} -> body_stmts
| b -> [b] in
let decl_type =
match Expr.Typed.type_of iteratee' with
| UMatrix -> UnsizedType.UReal
| t -> Expr.Helpers.(infer_type_of_indexed t [Index.Single loop_bottom])
in
let decl_loopvar =
Stmt.Fixed.
{ meta= smeta
; pattern=
Decl
{ decl_adtype= Expr.Typed.adlevel_of iteratee'
; decl_id= loopvar.name
; decl_type= Unsized decl_type
; initialize= Default } } in
let assignment var =
Stmt.Fixed.
{ pattern=
Assignment (Stmt.Helpers.lvariable loopvar.name, decl_type, var)
; meta= smeta } in
let bodyfn var =
Stmt.Fixed.
{ pattern= Block (decl_loopvar :: assignment var :: body_stmts)
; meta= smeta } in
Stmt.Helpers.[ensure_var (for_each bodyfn) iteratee' smeta]
| Ast.FunDef _ ->
Common.ICE.internal_compiler_error
[%message
"Found function definition statement outside of function block"]
| Ast.VarDecl {decl_type; transformation; variables; is_global= _} ->
List.concat_map
~f:(fun {identifier; initial_value} ->
let transform = Transformation.map trans_expr transformation in
let decl_id = identifier.Ast.name in
let size_checks, dt = check_sizedtype decl_id decl_type in
size_checks
@ create_decl_with_assign decl_id declc dt initial_value transform
smeta)
variables
| Ast.Block stmts -> Block (List.concat_map ~f:trans_stmt stmts) |> swrap
| Ast.Profile (name, stmts) ->
Profile (name, List.concat_map ~f:trans_stmt stmts) |> swrap
| Ast.Return e -> Return (Some (trans_expr e)) |> swrap
| Ast.ReturnVoid -> Return None |> swrap
| Ast.Break -> Break |> swrap
| Ast.Continue -> Continue |> swrap
| Ast.Skip -> Skip |> swrap
and trans_packed_assign loc trans_stmt lvals rhs assign_op =
(* TODO tuple-unpacking: could be more efficient in case where rhs is a tuple expr and
names don't overlap *)
let smeta = Ast.{loc; return_type= Incomplete} in
let sym, reset = Common.Gensym.enter () in
let rhs_type = rhs.emeta.type_ in
let temp =
{ Stmt.Fixed.pattern=
Decl
{ decl_adtype= rhs.emeta.ad_level
; decl_id= sym
; decl_type= Unsized rhs_type
; initialize= Uninit }
; meta= rhs.emeta.loc } in
let assign =
{ temp with
pattern= Assignment ((LVariable sym, []), rhs_type, trans_expr rhs) }
in
let temp_expr =
Ast.{rhs with expr= Variable {name= sym; id_loc= Location_span.empty}} in
let assigns =
List.mapi lvals ~f:(fun i lval ->
trans_stmt
Ast.
{ stmt=
Assignment
{ assign_lhs= lval
; assign_op
; assign_rhs= index_tuple temp_expr i }
; smeta })
|> List.concat in
reset ();
[Stmt.Fixed.{pattern= Block (temp :: assign :: assigns); meta= loc}]
and trans_single_assignment smeta assign_lhs assign_rhs assign_op =
let rec group_lvalue carry_idcs lv =
(* Group up non-tuple indices
e.g. x[1][2].1[3] -> x[1,2].1[3]
Done by passing current stack of indices down until it hits a non-indexed
*)
match lv.Ast.lval with
| LVariable _ ->
if List.is_empty carry_idcs then lv
else {lv with lval= LIndexed (lv, carry_idcs)}
| LTupleProjection (lv', ix) ->
let lv'' = {lv with lval= LTupleProjection (group_lvalue [] lv', ix)} in
if List.is_empty carry_idcs then lv''
else {lv with lval= LIndexed (lv'', carry_idcs)}
| LIndexed (lv', idcs) ->
(* When we group indices,
the metadata of group-indexed LHS equals the metadata of the outermost indexed LHS *)
{lv with Ast.lval= (group_lvalue (idcs @ carry_idcs) lv').lval} in
let grouped_lhs = group_lvalue [] assign_lhs in
let rec trans_lvalue lv =
match lv.Ast.lval with
| LVariable v -> Stmt.Helpers.lvariable v.name
| LTupleProjection (lv, ix) ->
(Stmt.Fixed.Pattern.LTupleProjection (trans_lvalue lv, ix), [])
| LIndexed (lv, idcs) ->
let lbase, idxs = trans_lvalue lv in
(lbase, idxs @ List.map ~f:trans_idx idcs) in
let lhs = trans_lvalue grouped_lhs in
(* The type of the assignee if it weren't indexed
e.g. in x[1,2] it's type(x), and in y.2 it's type(y.2)
*)
let unindexed_type =
match grouped_lhs.Ast.lval with
| LVariable _ | LTupleProjection _ -> grouped_lhs.Ast.lmeta.type_
| LIndexed (lv, _) -> lv.Ast.lmeta.type_ in
let rhs =
match assign_op with
| Ast.Assign -> trans_expr assign_rhs
| Ast.OperatorAssign op ->
let assignee = Ast.expr_of_lvalue grouped_lhs in
op_to_funapp op [assignee; assign_rhs] assignee.emeta.type_ in
[{pattern= Assignment (lhs, unindexed_type, rhs); meta= smeta}]
let trans_fun_def ud_dists (ts : Ast.typed_statement) =
match ts.stmt with
| Ast.FunDef {returntype; funname; arguments; body} ->
[ Program.
{ fdrt= returntype
; fdname= funname.name
; fdsuffix= Fun_kind.(suffix_from_name funname.name |> without_propto)
; fdargs= List.map ~f:trans_arg arguments
; fdbody=
trans_stmt ud_dists
{transform_action= IgnoreTransform; dadlevel= AutoDiffable}
body
|> unwrap_block_or_skip
; fdloc= ts.smeta.loc } ]
| _ ->
Common.ICE.internal_compiler_error
[%message "Found non-function definition statement in function block"]
let get_block block prog =
match block with
| Program.Parameters -> prog.Ast.parametersblock
| TransformedParameters -> prog.transformedparametersblock
| GeneratedQuantities -> prog.generatedquantitiesblock
let rec trans_sizedtype_decl declc tr name st =
let check fn x n =
Stmt.Helpers.internal_nrfunapp fn
Expr.Helpers.
[str name; str (Fmt.str "%a" Pretty_printing.pp_typed_expression x); n]
n.meta.loc in
let grab_size fn n = function
| Ast.{expr= IntNumeral i; _} as s when float_of_string i >= 2. ->
([], trans_expr s)
| Ast.({expr= IntNumeral _; _} | {expr= Variable _; _}) as s ->
let e = trans_expr s in
([check fn s e], e)
| s ->
let e = trans_expr s in
let decl_name =
name
|> String.substr_replace_all ~pattern:"[]" ~with_:"_brack"
|> String.substr_replace_all ~pattern:"." ~with_:"_dot" in
let decl_id = Fmt.str "%s_%ddim__" decl_name n in
let decl =
{ Stmt.Fixed.pattern=
Decl
{ decl_type= Sized SInt
; decl_id
; decl_adtype= DataOnly
; initialize= Default }
; meta= e.meta.loc } in
let assign =
{ Stmt.Fixed.pattern=
Assignment (Stmt.Helpers.lvariable decl_id, UInt, e)
; meta= e.meta.loc } in
let var =
Expr.
{ Fixed.pattern= Var decl_id
; meta=
Typed.Meta.
{ type_= s.Ast.emeta.Ast.type_
; adlevel= s.emeta.ad_level
; loc= s.emeta.loc } } in
([decl; assign; check fn s var], var) in
let rec go n = function
| SizedType.(SInt | SReal | SComplex) as t -> ([], t)
| SVector (mem_pattern, s) ->
let fn =
match (declc.transform_action, tr) with
| Constrain, Transformation.Simplex ->
Internal_fun.FnValidateSizeSimplex
| Constrain, UnitVector -> FnValidateSizeUnitVector
| _ -> FnValidateSize in
let l, s = grab_size fn n s in
(l, SizedType.SVector (mem_pattern, s))
| SRowVector (mem_pattern, s) ->
let l, s = grab_size FnValidateSize n s in
(l, SizedType.SRowVector (mem_pattern, s))
| SComplexRowVector s ->
let l, s = grab_size FnValidateSize n s in
(l, SizedType.SComplexRowVector s)
| SComplexVector s ->
let l, s = grab_size FnValidateSize n s in
(l, SizedType.SComplexVector s)
| SMatrix (mem_pattern, r, c) ->
let l1, r = grab_size FnValidateSize n r in
let l2, c = grab_size FnValidateSize (n + 1) c in
let cf_cov =
match (declc.transform_action, tr) with
| Constrain, CholeskyCov ->
[ { Stmt.Fixed.pattern=
NRFunApp
( StanLib ("check_greater_or_equal", FnPlain, AoS)
, Expr.Helpers.
[ str ("cholesky_factor_cov " ^ name)
; str
"num rows (must be greater or equal to num cols)"
; r; c ] )
; meta= r.Expr.Fixed.meta.Expr.Typed.Meta.loc } ]
| _ -> [] in
(l1 @ l2 @ cf_cov, SizedType.SMatrix (mem_pattern, r, c))
| SComplexMatrix (r, c) ->
let l1, r = grab_size FnValidateSize n r in
let l2, c = grab_size FnValidateSize (n + 1) c in
(l1 @ l2, SizedType.SComplexMatrix (r, c))
| SArray (t, s) ->
let l, s = grab_size FnValidateSize n s in
let ll, t = go (n + 1) t in
(l @ ll, SizedType.SArray (t, s))
| STuple subtypes ->
let former_array_indices =
String.concat (List.init (n - 1) ~f:(fun _ -> "[]")) in
let stmts, subtypes' =
List.unzip
(List.mapi
(List.zip_exn subtypes Utils.(tuple_trans_exn tr))
~f:(fun ix (st, trans) ->
trans_sizedtype_decl declc trans
(name ^ former_array_indices ^ "." ^ string_of_int (ix + 1))
st)) in
(List.concat stmts, SizedType.STuple subtypes') in
go 1 st
let trans_block ud_dists declc block prog =
let f stmt (accum1, accum2, accum3) =
match stmt with
| { Ast.stmt=
VarDecl {decl_type= type_; variables; transformation; is_global= true}
; smeta } ->
let outvars, sizes, stmts =
List.unzip3
@@ List.map
~f:(fun {identifier; initial_value} ->
let decl_id = identifier.Ast.name in
let transform = Transformation.map trans_expr transformation in
let size, type_ =
trans_sizedtype_decl declc transform identifier.name type_
in
let outvar =
( decl_id
, smeta.Ast.loc
, Program.
{ out_constrained_st= type_
; out_unconstrained_st= param_size transform type_
; out_block= block
; out_trans= transform } ) in
let stmts =
create_decl_with_assign decl_id declc (Sized type_)
initial_value transform smeta.loc in
(outvar, size, stmts))
variables in
( outvars @ accum1
, List.concat sizes @ accum2
, List.concat stmts @ accum3 )
| stmt -> (accum1, accum2, trans_stmt ud_dists declc stmt @ accum3) in
Ast.get_stmts (get_block block prog) |> List.fold_right ~f ~init:([], [], [])
let stmt_contains_check stmt =
let is_check = function
| Fun_kind.CompilerInternal (Internal_fun.FnCheck _) -> true
| _ -> false in
Stmt.Helpers.contains_fn_kind is_check stmt
let migrate_checks_to_end_of_block stmts =
let checks, not_checks = List.partition_tf ~f:stmt_contains_check stmts in
not_checks @ checks
let gather_declarations (b : Ast.typed_statement Ast.block option) =
let data = Ast.get_stmts b in
List.concat_map data ~f:(function
| {stmt= VarDecl {decl_type= sizedtype; transformation; variables; _}; _} ->
List.map
~f:(fun {identifier; _} ->
( SizedType.map trans_expr sizedtype
, Transformation.map trans_expr transformation
, identifier.name ))
variables
| _ -> [])
let trans_prog filename (p : Ast.typed_program) : Program.Typed.t =
let {Ast.functionblock; datablock; transformeddatablock; modelblock; _} =
Deprecation_analysis.remove_unneeded_forward_decls p in
let map f list_op =
Option.value_map ~default:[]
~f:(fun {Ast.stmts; _} -> List.concat_map ~f stmts)
list_op in
let grab_fundef_names_and_types = function
| {Ast.stmt= Ast.FunDef {funname; arguments= (_, type_, _) :: _; _}; _} ->
[(funname.name, type_)]
| _ -> [] in
let ud_dists = map grab_fundef_names_and_types functionblock in
let trans_stmt = trans_stmt ud_dists in
let get_name_size (s : Ast.typed_statement) =
match s.Ast.stmt with
| Ast.VarDecl {decl_type= st; variables; transformation; _} ->
List.map
~f:(fun {identifier; _} ->
( identifier.name
, trans_sizedtype st
, transformation
, s.Ast.smeta.loc ))
variables
| _ -> [] in
let input_vars =
map get_name_size datablock
|> List.map ~f:(fun (n, st, _, loc) -> (n, loc, st)) in
let declc = {transform_action= IgnoreTransform; dadlevel= DataOnly} in
let datab = map (trans_stmt {declc with transform_action= Check}) datablock in
let _, _, param =
trans_block ud_dists
{transform_action= Constrain; dadlevel= AutoDiffable}
Parameters p in
(* Backends will add to transform_inits and unconstrain_array as needed *)
let transform_inits = [] in
let unconstrain_array = [] in
let out_param, paramsizes, param_gq =
trans_block ud_dists {declc with transform_action= Constrain} Parameters p
in
let _, _, txparam =
trans_block ud_dists
{transform_action= Check; dadlevel= AutoDiffable}
TransformedParameters p in
let out_tparam, tparamsizes, txparam_gq =
trans_block ud_dists
{declc with transform_action= Check}
TransformedParameters p in
let out_gq, gq_sizes, gq_stmts =
trans_block ud_dists
{declc with transform_action= Check}
GeneratedQuantities p in
let output_vars = out_param @ out_tparam @ out_gq in
let prepare_data =
datab
@ (map
(trans_stmt {declc with transform_action= Check})
transformeddatablock
|> migrate_checks_to_end_of_block)
@ paramsizes @ tparamsizes @ gq_sizes in
let modelb = map (trans_stmt {declc with dadlevel= AutoDiffable}) modelblock in
let log_prob =
param
@ (txparam |> migrate_checks_to_end_of_block)
@
match modelb with
| [] -> []
| hd :: _ -> [{pattern= Block modelb; meta= hd.meta}] in
let txparam_decls, txparam_checks, txparam_stmts =
txparam_gq
|> List.partition3_map ~f:(function
| {pattern= Decl _; _} as d -> `Fst d
| s when stmt_contains_check s -> `Snd s
| s -> `Trd s) in
let compiler_if_return cond =
Stmt.Fixed.
{ pattern=
IfElse (cond, {pattern= Return None; meta= Location_span.empty}, None)
; meta= Location_span.empty } in
let iexpr pattern = Expr.{pattern; Fixed.meta= Typed.Meta.empty} in
let fnot e =
FunApp (StanLib (Operator.to_string PNot, FnPlain, AoS), [e]) |> iexpr in
let tparam_early_return =
let to_var fv = iexpr (Var (Flag_vars.to_string fv)) in
let v1 = to_var EmitTransformedParameters in
let v2 = to_var EmitGeneratedQuantities in
[compiler_if_return (fnot (EOr (v1, v2) |> iexpr))] in
let gq_early_return =
[ compiler_if_return
(fnot (Var (Flag_vars.to_string EmitGeneratedQuantities) |> iexpr)) ]
in
let generate_quantities =
param_gq @ txparam_decls @ tparam_early_return @ txparam_stmts
@ txparam_checks @ gq_early_return
@ migrate_checks_to_end_of_block gq_stmts in
let normalize_prog_name prog_name =
if String.length prog_name > 0 && not (Char.is_alpha prog_name.[0]) then
"_" ^ prog_name
else prog_name in
{ functions_block= map (trans_fun_def ud_dists) functionblock
; input_vars
; prepare_data
; log_prob
; reverse_mode_log_prob= []
; generate_quantities
; transform_inits
; unconstrain_array
; output_vars