forked from kysucix/fusibile
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfusibile.cu
442 lines (386 loc) · 16.1 KB
/
fusibile.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
/* vim: ft=cpp
* */
//#include <helper_math.h>
#ifdef _WIN32
#include <windows.h>
#endif
#include <stdio.h>
#include "globalstate.h"
#include "algorithmparameters.h"
#include "cameraparameters.h"
#include "linestate.h"
#include "imageinfo.h"
#include "config.h"
#include <vector_types.h> // float4
#include <math.h>
#include <cuda.h>
#include <curand_kernel.h>
#include "vector_operations.h"
#include "point_cloud_list.h"
#define SAVE_TEXTURE
//#define SMOOTHNESS
#define FORCEINLINE __forceinline__
//#define FORCEINLINE
__device__ float K[16];
__device__ float K_inv[16];
/*__device__ FORCEINLINE __constant__ float4 camerasK[32];*/
/* compute depth value from disparity or disparity value from depth
* Input: f - focal length in pixel
* baseline - baseline between cameras (in meters)
* d - either disparity or depth value
* Output: either depth or disparity value
*/
__device__ FORCEINLINE float disparityDepthConversion_cu ( const float &f, const float &baseline, const float &d ) {
return f * baseline / d;
}
/* compute depth value from disparity or disparity value from depth
* Input: f - focal length in pixel
* baseline - baseline between cameras (in meters)
* d - either disparity or depth value
* Output: either depth or disparity value
*/
__device__ FORCEINLINE float disparityDepthConversion_cu2 ( const float &f, const Camera_cu &cam_ref, const Camera_cu &cam, const float &d ) {
float baseline = l2_float4(cam_ref.C4 - cam.C4);
return f * baseline / d;
}
__device__ FORCEINLINE void get3Dpoint_cu ( float4 * __restrict__ ptX, const Camera_cu &cam, const int2 &p, const float &depth ) {
// in case camera matrix is not normalized: see page 162, then depth might not be the real depth but w and depth needs to be computed from that first
const float4 pt = make_float4 (
depth * (float)p.x - cam.P_col34.x,
depth * (float)p.y - cam.P_col34.y,
depth - cam.P_col34.z,
0);
matvecmul4 (cam.M_inv, pt, ptX);
}
__device__ FORCEINLINE void get3Dpoint_cu1 ( float4 * __restrict__ ptX, const Camera_cu &cam, const int2 &p) {
// in case camera matrix is not normalized: see page 162, then depth might not be the real depth but w and depth needs to be computed from that first
float4 pt;
pt.x = (float)p.x - cam.P_col34.x;
pt.y = (float)p.y - cam.P_col34.y;
pt.z = 1.0f - cam.P_col34.z;
matvecmul4 (cam.M_inv, pt, ptX);
}
//get d parameter of plane pi = [nT, d]T, which is the distance of the plane to the camera center
__device__ FORCEINLINE float getPlaneDistance_cu ( const float4 &normal, const float4 &X ) {
return -(dot4(normal,X));
}
__device__ FORCEINLINE void normalize_cu (float4 * __restrict__ v)
{
const float normSquared = pow2(v->x) + pow2(v->y) + pow2(v->z);
const float inverse_sqrt = rsqrtf (normSquared);
v->x *= inverse_sqrt;
v->y *= inverse_sqrt;
v->z *= inverse_sqrt;
}
__device__ FORCEINLINE void getViewVector_cu (float4 * __restrict__ v, const Camera_cu &camera, const int2 &p)
{
get3Dpoint_cu1 (v, camera, p);
sub((*v), camera.C4);
normalize_cu(v);
//v->x=0;
//v->y=0;
//v->z=1;
}
__device__ FORCEINLINE float l1_norm(float f) {
return fabsf(f);
}
__device__ FORCEINLINE float l1_norm(float4 f) {
return ( fabsf (f.x) +
fabsf (f.y) +
fabsf (f.z))*0.3333333f;
}
__device__ FORCEINLINE float l1_norm2(float4 f) {
return ( fabsf (f.x) +
fabsf (f.y) +
fabsf (f.z));
}
/* get angle between two vectors in 3D
* Input: v1,v2 - vectors
* Output: angle in radian
*/
__device__ FORCEINLINE float getAngle_cu ( const float4 &v1, const float4 &v2 ) {
float angle = acosf ( dot4(v1, v2));
//if angle is not a number the dot product was 1 and thus the two vectors should be identical --> return 0
if ( angle != angle )
return 0.0f;
//if ( acosf ( v1.dot ( v2 ) ) != acosf ( v1.dot ( v2 ) ) )
//cout << acosf ( v1.dot ( v2 ) ) << " / " << v1.dot ( v2 )<< " / " << v1<< " / " << v2 << endl;
return angle;
}
__device__ FORCEINLINE void project_on_camera (const float4 &X, const Camera_cu &cam, float2 *pt, float *depth) {
float4 tmp = make_float4 (0, 0, 0, 0);
matvecmul4P (cam.P, X, (&tmp));
pt->x = tmp.x / tmp.z;
pt->y = tmp.y / tmp.z;
*depth = tmp.z;
}
/*
* Simple and fast depth math fusion based on depth map and normal consensus
*/
__global__ void fusibile (GlobalState &gs, int ref_camera)
{
int2 p = make_int2 ( blockIdx.x * blockDim.x + threadIdx.x, blockIdx.y * blockDim.y + threadIdx.y );
//printf("p is %d %d\n", p.x, p.y);
const int cols = gs.cameras->cols;
const int rows = gs.cameras->rows;
if (p.x>=cols)
return;
if (p.y>=rows)
return;
const int center = p.y*cols+p.x;
const CameraParameters_cu &camParams = *(gs.cameras);
if (gs.lines[ref_camera].used_pixels[center]==1)
return;
//printf("ref_camera is %d\n", ref_camera);
const float4 normal = tex2D<float4> (gs.normals_depths[ref_camera], p.x+0.5f, p.y+0.5f);
//printf("Normal is %f %f %f\nDepth is %f\n", normal.x, normal.y, normal.z, normal.w);
/*
* For each point of the reference camera compute the 3d position corresponding to the corresponding depth.
* Create a point only if the following conditions are fulfilled:
* - Projected depths of other cameras does not differ more than gs.params.depthThresh
* - Angle of normal does not differ more than gs.params.normalThresh
*/
float depth = normal.w;
float4 X;
get3Dpoint_cu (&X, camParams.cameras[ref_camera], p, depth);
//if (p.x<100 && p.y ==100)
//printf("3d Point is %f %f %f\n", X.x, X.y, X.z);
float4 consistent_X = X;
float4 consistent_normal = normal;
float consistent_texture = tex2D<float> (gs.imgs[ref_camera], p.x+0.5f, p.y+0.5f);
int number_consistent = 0;
//int2 used_list[camParams.viewSelectionSubsetNumber];
int2 used_list[MAX_IMAGES];
for ( int i = 0; i < camParams.viewSelectionSubsetNumber; i++ ) {
int idxCurr = camParams.viewSelectionSubset[i];
used_list[idxCurr].x=-1;
used_list[idxCurr].y=-1;
if (idxCurr == ref_camera)
continue;
// Project 3d point X on camera idxCurr
float2 tmp_pt;
project_on_camera (X, camParams.cameras[idxCurr], &tmp_pt, &depth);
//printf("P for camera %d is \n", i);
//print_matrix (camParams.cameras[idxCurr].P, "camera ");
//printf("2d point for camera %d is %f %f\n", idxCurr, tmp_pt.x, tmp_pt.y);
// Boundary check
if (tmp_pt.x >=0 &&
tmp_pt.x < cols &&
tmp_pt.y >=0 &&
tmp_pt.y < rows) {
//printf("Boundary check passed\n");
// Compute interpolated depth and normal for tmp_pt w.r.t. camera ref_camera
float4 tmp_normal_and_depth; // first 3 components normal, fourth depth
tmp_normal_and_depth = tex2D<float4> (gs.normals_depths[idxCurr], tmp_pt.x+0.5f, tmp_pt.y+0.5f);
//printf("New depth is %f vs %f\n", tmp_normal_and_depth.w, depth);
const float depth_disp = disparityDepthConversion_cu2 ( camParams.cameras[ref_camera].f, camParams.cameras[ref_camera], camParams.cameras[idxCurr], depth );
const float tmp_normal_and_depth_disp = disparityDepthConversion_cu2 ( camParams.cameras[ref_camera].f, camParams.cameras[ref_camera], camParams.cameras[idxCurr], tmp_normal_and_depth.w );
// First consistency check on depth
if (fabsf(depth_disp - tmp_normal_and_depth_disp) < gs.params->depthThresh) {
//printf("\tFirst consistency test passed!\n");
float angle = getAngle_cu (tmp_normal_and_depth, normal); // extract normal
if (angle < gs.params->normalThresh)
{
//printf("\tSecond consistency test passed!\n");
/// All conditions met:
// - average 3d points and normals
// - save resulting point and normal
// - (optional) average texture (not done yet)
float4 tmp_X; // 3d point of consistent point on other view
int2 tmp_p = make_int2 ((int) tmp_pt.x, (int) tmp_pt.y);
get3Dpoint_cu (&tmp_X, camParams.cameras[idxCurr], tmp_p, tmp_normal_and_depth.w);
consistent_X = consistent_X + tmp_X;
//consistent_X = tmp_X;
consistent_normal = consistent_normal + tmp_normal_and_depth;
if (gs.params->saveTexture)
consistent_texture = consistent_texture + tex2D<float> (gs.imgs[idxCurr], tmp_pt.x+0.5f, tmp_pt.y+0.5f);
// Save the point for later check
//printf ("Saved point on camera %d is %d %d\n", idxCurr, (int)tmp_pt.x, (int)tmp_pt.y);
used_list[idxCurr].x=(int)tmp_pt.x;
used_list[idxCurr].y=(int)tmp_pt.y;
number_consistent++;
}
}
}
else
continue;
}
// Average normals and points
consistent_X = consistent_X / ((float) number_consistent + 1.0f);
consistent_normal = consistent_normal / ((float) number_consistent + 1.0f);
consistent_texture = consistent_texture / ((float) number_consistent + 1.0f);
// If at least numConsistentThresh point agree:
// Create point
// Save normal
// (optional) save texture
if (number_consistent >= gs.params->numConsistentThresh) {
//printf("\tEnough consistent points!\nSaving point %f %f %f", consistent_X.x, consistent_X.y, consistent_X.z);
if (!gs.params->remove_black_background || consistent_texture>15) // hardcoded for middlebury TODO FIX
{
gs.pc->points[center].coord = consistent_X;
gs.pc->points[center].normal = consistent_normal;
#ifdef SAVE_TEXTURE
if (gs.params->saveTexture)
gs.pc->points[center].texture = consistent_texture;
#endif
//// Mark corresponding point on other views as "used"
for ( int i = 0; i < camParams.viewSelectionSubsetNumber; i++ ) {
int idxCurr = camParams.viewSelectionSubset[i];
if (used_list[idxCurr].x==-1)
continue;
//printf("Used list point on camera %d is %d %d\n", idxCurr, used_list[idxCurr].x, used_list[idxCurr].y);
gs.lines[idxCurr].used_pixels [used_list[idxCurr].x + used_list[idxCurr].y*cols] = 1;
}
}
}
return;
}
/* Copy point cloud to global memory */
//template< typename T >
void copy_point_cloud_to_host(GlobalState &gs, int cam, PointCloudList &pc_list)
{
printf("Processing camera %d\n", cam);
unsigned int count = pc_list.size;
for (int y=0; y<gs.pc->rows; y++) {
for (int x=0; x<gs.pc->cols; x++) {
Point_cu &p = gs.pc->points[x+y*gs.pc->cols];
const float4 X = p.coord;
const float4 normal = p.normal;
float texture = 127.0f;
#ifdef SAVE_TEXTURE
if (gs.params->saveTexture)
texture = p.texture;
#endif
if (count==pc_list.maximum) {
printf("Not enough space to save points :'(\n... allocating more! :)");
pc_list.increase_size(pc_list.maximum*2);
}
if (X.x != 0 && X.y != 0 && X.z != 0) {
pc_list.points[count].coord = X;
pc_list.points[count].normal = normal;
#ifdef SAVE_TEXTURE
pc_list.points[count].texture = texture;
#endif
count++;
}
p.coord = make_float4(0,0,0,0);
}
}
printf("Found %.2f million points\n", count/1000000.0f);
pc_list.size = count;
}
template< typename T >
void fusibile_cu(GlobalState &gs, PointCloudList &pc_list, int num_views)
{
#ifdef SHARED
cudaDeviceSetCacheConfig(cudaFuncCachePreferShared);
#endif
int rows = gs.cameras->rows;
int cols = gs.cameras->cols;
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
printf("Run gipuma\n");
/*curandState* devStates;*/
//cudaMalloc ( &gs.cs, rows*cols*sizeof( curandState ) );
int count = 0;
int i = 0;
cudaGetDeviceCount(&count);
if(count == 0) {
fprintf(stderr, "There is no device.\n");
return ;
}
for(i = 0; i < count; i++) {
cudaDeviceProp prop;
if(cudaGetDeviceProperties(&prop, i) == cudaSuccess) {
if(prop.major >= 1) {
break;
}
}
}
if(i == count) {
fprintf(stderr, "There is no device supporting CUDA.\n");
return ;
}
//float mind = gs.params.min_disparity;
//float maxd = gs.params.max_disparity;
//srand(0);
//for(int x = 0; x < gs.cameras.cols; x++) {
//for(int y = 0; y < gs.cameras.rows; y++) {
//gs.lines.disp[y*gs.cameras.cols+x] = (float)rand()/(float)RAND_MAX * (maxd-mind) + mind;
//[>printf("%f\n", gs.lines.disp[y*256+x]);<]
//}
//}
/*printf("MAX DISP is %f\n", gs.params.max_disparity);*/
/*printf("MIN DISP is %f\n", gs.params.min_disparity);*/
cudaSetDevice(i);
cudaDeviceSetLimit(cudaLimitPrintfFifoSize, 1024*128);
dim3 grid_size;
grid_size.x=(cols+BLOCK_W-1)/BLOCK_W;
grid_size.y=((rows/2)+BLOCK_H-1)/BLOCK_H;
dim3 block_size;
block_size.x=BLOCK_W;
block_size.y=BLOCK_H;
dim3 grid_size_initrand;
grid_size_initrand.x=(cols+32-1)/32;
grid_size_initrand.y=(rows+32-1)/32;
dim3 block_size_initrand;
block_size_initrand.x=32;
block_size_initrand.y=32;
/* printf("Launching kernel with grid of size %d %d and block of size %d %d and shared size %d %d\nBlock %d %d and radius %d %d and tile %d %d\n",
grid_size.x,
grid_size.y,
block_size.x,
block_size.y,
SHARED_SIZE_W,
SHARED_SIZE_H,
BLOCK_W,
BLOCK_H,
WIN_RADIUS_W,
WIN_RADIUS_H,
TILE_W,
TILE_H
);
*/ printf("Grid size initrand is grid: %d-%d block: %d-%d\n", grid_size_initrand.x, grid_size_initrand.y, block_size_initrand.x, block_size_initrand.y);
size_t avail;
size_t total;
cudaMemGetInfo( &avail, &total );
size_t used = total - avail;
printf("Device memory used: %fMB\n", used/1000000.0f);
printf("Number of iterations is %d\n", gs.params->iterations);
printf("Blocksize is %dx%d\n", gs.params->box_hsize,gs.params->box_vsize);
printf("Disparity threshold is \t%f\n", gs.params->depthThresh);
printf("Normal threshold is \t%f\n", gs.params->normalThresh);
printf("Number of consistent points is \t%d\n", gs.params->numConsistentThresh);
printf("Cam scale is \t%f\n", gs.params->cam_scale);
//int shared_memory_size = sizeof(float) * SHARED_SIZE ;
printf("Fusing points\n");
cudaEventRecord(start);
//printf("Computing final disparity\n");
//for (int cam=0; cam<10; cam++) {
for (int cam=0; cam<num_views; cam++) {
fusibile<<< grid_size_initrand, block_size_initrand, cam>>>(gs, cam);
cudaDeviceSynchronize();
copy_point_cloud_to_host(gs, cam, pc_list); // slower but saves memory
cudaDeviceSynchronize();
}
cudaEventRecord(stop);
cudaEventSynchronize(stop);
float milliseconds = 0;
cudaEventElapsedTime(&milliseconds, start, stop);
printf("\t\tELAPSED %f seconds\n", milliseconds/1000.f);
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
printf("Error: %s\n", cudaGetErrorString(err));
// print results to file
}
int runcuda(GlobalState &gs, PointCloudList &pc_list, int num_views)
{
printf("Run cuda\n");
/*GlobalState *gs = new GlobalState;*/
if(gs.params->color_processing)
fusibile_cu<float4>(gs, pc_list, num_views);
else
fusibile_cu<float>(gs, pc_list, num_views);
return 0;
}