-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·221 lines (185 loc) · 7.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import time
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import argparse
from model import SSD300, MultiBoxLoss
from datasets import (
create_train_dataset,
create_train_loader,
)
from utils import (
adjust_learning_rate,
AverageMeter,
save_checkpoint,
clip_gradient,
label_map,
voc_labels as classes
)
parser = argparse.ArgumentParser()
parser.add_argument(
'-b', '--batch-size', dest='batch_size', default=8,
type=int, help='batch size for training and validation'
)
parser.add_argument(
'-i', '--iterations', default=120000, type=int,
help='iterations to train for'
)
parser.add_argument(
'-j', '--workers', default=4, type=int,
help='number of parallel workers'
)
parser.add_argument(
'-pf', '--print-frequency', dest='print_frequency', default=200,
type=int, help='iteration interval for terminal log'
)
parser.add_argument(
'-lr', '--learning-rate', dest='learning_rate', default=1e-3,
type=float, help='default learning rate'
)
parser.add_argument(
'-ckpt', '--checkpoint', default=None, type=str,
help='path to trained checkpoint (trained on Pascal VOC)'
)
parser.add_argument(
'-d', '-data-dir', dest='data_dir', default='VOCdevkit',
help='path to the VOCdevkit directory'
)
args = vars(parser.parse_args())
# Data parameters
data_folder = args['data_dir'] # folder with data files
keep_difficult = True # use objects considered difficult to detect?
# Model parameters
# Not too many here since the SSD300 has a very specific structure
n_classes = len(label_map) # number of different types of objects
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Learning parameters
checkpoint = None # path to model checkpoint, None if none
batch_size = args['batch_size'] # batch size
iterations = args['iterations'] # number of iterations to train
workers = args['workers'] # number of workers for loading data in the DataLoader
print_freq = args['print_frequency'] # print training status every __ batches
lr = args['learning_rate'] # learning rate
decay_lr_at = [80000, 100000] # decay learning rate after these many iterations
decay_lr_to = 0.1 # decay learning rate to this fraction of the existing learning rate
momentum = 0.9 # momentum
weight_decay = 5e-4 # weight decay
grad_clip = None # clip if gradients are exploding, which may happen at larger batch sizes (sometimes at 32) - you will recognize it by a sorting error in the MuliBox loss calculation
cudnn.benchmark = True
def main():
"""
Training.
"""
global start_epoch, label_map, epoch, checkpoint, decay_lr_at
# Initialize model or load checkpoint
if checkpoint is None:
start_epoch = 0
model = SSD300(n_classes=n_classes)
print(model)
# Total parameters and trainable parameters.
total_params = sum(p.numel() for p in model.parameters())
print(f"{total_params:,} total parameters.")
total_trainable_params = sum(
p.numel() for p in model.parameters() if p.requires_grad)
print(f"{total_trainable_params:,} training parameters.")
# Initialize the optimizer, with twice the default learning rate for biases, as in the original Caffe repo
biases = list()
not_biases = list()
for param_name, param in model.named_parameters():
if param.requires_grad:
if param_name.endswith('.bias'):
biases.append(param)
else:
not_biases.append(param)
optimizer = torch.optim.SGD(params=[{'params': biases, 'lr': 2 * lr}, {'params': not_biases}],
lr=lr, momentum=momentum, weight_decay=weight_decay)
else:
checkpoint = torch.load(checkpoint)
start_epoch = checkpoint['epoch'] + 1
print('\nLoaded checkpoint from epoch %d.\n' % start_epoch)
model = checkpoint['model']
optimizer = checkpoint['optimizer']
# Move to default device
model = model.to(device)
criterion = MultiBoxLoss(priors_cxcy=model.priors_cxcy).to(device)
# Custom dataloaders
train_dataset = create_train_dataset(
data_folder=data_folder,
train=True,
keep_difficult=keep_difficult,
resize_width=300,
resize_height=300,
use_train_aug=False,
classes=list(classes)
)
train_loader = create_train_loader(
train_dataset=train_dataset,
batch_size=batch_size,
num_workers=workers,
)
# Calculate total number of epochs to train and the epochs to decay learning rate at (i.e. convert iterations to epochs).
# To convert iterations to epochs, divide iterations by the number of iterations per epoch.
# The paper trains for 120,000 iterations with a batch size of 32, decays after 80,000 and 100,000 iterations.
epochs = iterations // (len(train_dataset) // 32)
decay_lr_at = [it // (len(train_dataset) // 32) for it in decay_lr_at]
print(f"Training for {epochs} epochs")
# Epochs
for epoch in range(start_epoch, epochs):
# Decay learning rate at particular epochs
if epoch in decay_lr_at:
adjust_learning_rate(optimizer, decay_lr_to)
# One epoch's training
train(train_loader=train_loader,
model=model,
criterion=criterion,
optimizer=optimizer,
epoch=epoch)
# Save checkpoint
save_checkpoint(epoch, model, optimizer)
def train(train_loader, model, criterion, optimizer, epoch):
"""
One epoch's training.
:param train_loader: DataLoader for training data
:param model: model
:param criterion: MultiBox loss
:param optimizer: optimizer
:param epoch: epoch number
"""
model.train() # training mode enables dropout
batch_time = AverageMeter() # forward prop. + back prop. time
data_time = AverageMeter() # data loading time
losses = AverageMeter() # loss
start = time.time()
# Batches
for i, (images, boxes, labels, _) in enumerate(train_loader):
data_time.update(time.time() - start)
# Move to default device
images = images.to(device) # (batch_size (N), 3, 300, 300)
boxes = [b.to(device) for b in boxes]
labels = [l.to(device) for l in labels]
# Forward prop.
predicted_locs, predicted_scores = model(images) # (N, 8732, 4), (N, 8732, n_classes)
# Loss
loss = criterion(predicted_locs, predicted_scores, boxes, labels) # scalar
# Backward prop.
optimizer.zero_grad()
loss.backward()
# Clip gradients, if necessary
if grad_clip is not None:
clip_gradient(optimizer, grad_clip)
# Update model
optimizer.step()
losses.update(loss.item(), images.size(0))
batch_time.update(time.time() - start)
start = time.time()
# Print status
if i % print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data Time {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(epoch, i, len(train_loader),
batch_time=batch_time,
data_time=data_time, loss=losses))
del predicted_locs, predicted_scores, images, boxes, labels # free some memory since their histories may be stored
if __name__ == '__main__':
main()