-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathmodel.py
97 lines (89 loc) · 3.46 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Importing all packages
import numpy as np
import matplotlib.pyplot as plt
from torch.utils import data
import torch
from torch import nn
from torch import optim
import torchvision
import torch.nn.functional as F
from torchvision import datasets, transforms, models
import torchvision.models as models
from PIL import Image, ImageFile
import json
from torch.optim import lr_scheduler
import random
import os
import sys
print('Imported packages')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = models.resnet152(pretrained=False)
num_ftrs = model.fc.in_features
out_ftrs = 5
model.fc = nn.Sequential(nn.Linear(num_ftrs, 512),nn.ReLU(),nn.Linear(512,out_ftrs),nn.LogSoftmax(dim=1))
criterion = nn.NLLLoss()
optimizer = torch.optim.Adam(filter(lambda p:p.requires_grad,model.parameters()) , lr = 0.00001)
scheduler = lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
model.to(device);
# to unfreeze more layers
for name,child in model.named_children():
if name in ['layer2','layer3','layer4','fc']:
#print(name + 'is unfrozen')
for param in child.parameters():
param.requires_grad = True
else:
#print(name + 'is frozen')
for param in child.parameters():
param.requires_grad = False
optimizer = torch.optim.Adam(filter(lambda p:p.requires_grad,model.parameters()) , lr = 0.000001)
scheduler = lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
def load_model(path):
checkpoint = torch.load(path,map_location='cpu')
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
return model
def inference(model, file, transform, classes):
file = Image.open(file).convert('RGB')
img = transform(file).unsqueeze(0)
print('Transforming your image...')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.eval()
with torch.no_grad():
print('Passing your image to the model....')
out = model(img.to(device))
ps = torch.exp(out)
top_p, top_class = ps.topk(1, dim=1)
value = top_class.item()
print("Predicted Severity Value: ", value)
print("class is: ", classes[value])
print('Your image is printed:')
return value, classes[value]
# plt.imshow(np.array(file))
# plt.show()
model = load_model('../Desktop/classifier.pt')
print("Model loaded Succesfully")
classes = ['No DR', 'Mild', 'Moderate', 'Severe', 'Proliferative DR']
test_transforms = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.RandomHorizontalFlip(p=0.5),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
])
def main(path):
x, y = inference(model, path, test_transforms, classes)
return x, y
# if __name__ == '__model__':
# # test_dir = '../Desktop/eye'
# # folders = os.listdir(test_dir)
# # for num in range(len(folders)):
# # path = test_dir+"/"+folders[num]
# # print(path)
# # inference(model, path, test_transforms, classes)
# l = sys.argv
# if(len(l)>1):
# for i in range(1, len(l)):
# print(l[i])
# path = l[i]
# inference(model, path, test_transforms, classes)
# else:
# print('please provide the exact path of image !')