-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathpreprocess.py
72 lines (53 loc) · 1.71 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from __future__ import unicode_literals
import collections
import io
import re
import numpy
import progressbar
split_pattern = re.compile(r'([.,!?"\':;)(])')
digit_pattern = re.compile(r'\d')
def split_sentence(s):
s = s.lower()
s = s.replace('\u2019', "'")
s = digit_pattern.sub('0', s)
words = []
for word in s.strip().split():
words.extend(split_pattern.split(word))
words = [w for w in words if w]
return words
def open_file(path):
return io.open(path, encoding='utf-8', errors='ignore')
def count_lines(path):
with open_file(path) as f:
return sum([1 for _ in f])
def read_file(path):
n_lines = count_lines(path)
bar = progressbar.ProgressBar()
with open_file(path) as f:
for line in bar(f, max_value=n_lines):
words = split_sentence(line)
yield words
def count_words(path, max_vocab_size=40000):
counts = collections.Counter()
for words in read_file(path):
for word in words:
counts[word] += 1
vocab = [word for (word, _) in counts.most_common(max_vocab_size)]
return vocab
def make_dataset(path, vocab):
word_id = {word: index for index, word in enumerate(vocab)}
dataset = []
token_count = 0
unknown_count = 0
for words in read_file(path):
array = make_array(word_id, words)
dataset.append(array)
token_count += array.size
unknown_count += (array == 1).sum()
print('# of tokens: %d' % token_count)
print('# of unknown: %d (%.2f %%)'
% (unknown_count, 100. * unknown_count / token_count))
return dataset
def make_array(word_id, words):
ids = [word_id.get(word, 1) for word in words]
return numpy.array(ids, 'i')