-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathsession_encdec.py
605 lines (517 loc) · 27.8 KB
/
session_encdec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
"""
Query suggestion hierarchical encoder-decoder code.
The code is inspired from nmt encdec code in groundhog
but we do not rely on groundhog infrastructure.
"""
__docformat__ = 'restructedtext en'
__authors__ = ("Alessandro Sordoni")
__contact__ = "Alessandro Sordoni <[email protected]>"
import theano
import theano.tensor as T
import numpy as np
import cPickle
import logging
logger = logging.getLogger(__name__)
from theano.sandbox.rng_mrg import MRG_RandomStreams
from theano.tensor.nnet.conv3d2d import *
from collections import OrderedDict
from model import *
from utils import *
import operator
# Theano speed-up
theano.config.scan.allow_gc = False
def add_to_params(params, new_param):
params.append(new_param)
return new_param
class EncoderDecoderBase():
def __init__(self, state, rng, parent):
self.rng = rng
self.parent = parent
self.state = state
self.__dict__.update(state)
self.session_rec_activation = eval(self.session_rec_activation)
self.query_rec_activation = eval(self.query_rec_activation)
self.params = []
class Encoder(EncoderDecoderBase):
def init_params(self):
""" sent weights """
self.W_emb = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.idim, self.rankdim), name='W_emb'))
self.W_in = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.rankdim, self.qdim), name='W_in'))
self.W_hh = add_to_params(self.params, theano.shared(value=OrthogonalInit(self.rng, (self.qdim, self.qdim)), name='W_hh'))
self.b_hh = add_to_params(self.params, theano.shared(value=np.zeros((self.qdim,), dtype='float32'), name='b_hh'))
if self.query_step_type == "gated":
self.W_in_r = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.rankdim, self.qdim), name='W_in_r'))
self.W_in_z = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.rankdim, self.qdim), name='W_in_z'))
self.W_hh_r = add_to_params(self.params, theano.shared(value=OrthogonalInit(self.rng, (self.qdim, self.qdim)), name='W_hh_r'))
self.W_hh_z = add_to_params(self.params, theano.shared(value=OrthogonalInit(self.rng, (self.qdim, self.qdim)), name='W_hh_z'))
self.b_z = add_to_params(self.params, theano.shared(value=np.zeros((self.qdim,), dtype='float32'), name='b_z'))
self.b_r = add_to_params(self.params, theano.shared(value=np.zeros((self.qdim,), dtype='float32'), name='b_r'))
""" Context weights """
self.Ws_in = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.qdim, self.sdim), name='Ws_in'))
self.Ws_hh = add_to_params(self.params, theano.shared(value=OrthogonalInit(self.rng, (self.sdim, self.sdim)), name='Ws_hh'))
self.bs_hh = add_to_params(self.params, theano.shared(value=np.zeros((self.sdim,), dtype='float32'), name='bs_hh'))
if self.session_step_type == "gated":
self.Ws_in_r = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.qdim, self.sdim), name='Ws_in_r'))
self.Ws_in_z = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.qdim, self.sdim), name='Ws_in_z'))
self.Ws_hh_r = add_to_params(self.params, theano.shared(value=OrthogonalInit(self.rng, (self.sdim, self.sdim)), name='Ws_hh_r'))
self.Ws_hh_z = add_to_params(self.params, theano.shared(value=OrthogonalInit(self.rng, (self.sdim, self.sdim)), name='Ws_hh_z'))
self.bs_z = add_to_params(self.params, theano.shared(value=np.zeros((self.sdim,), dtype='float32'), name='bs_z'))
self.bs_r = add_to_params(self.params, theano.shared(value=np.zeros((self.sdim,), dtype='float32'), name='bs_r'))
def plain_query_step(self, x_t, m_t, h_tm1, hr_tm1):
if m_t.ndim >= 1:
m_t = m_t.dimshuffle(0, 'x')
h_t = self.query_rec_activation(T.dot(x_t, self.W_in) + T.dot(hr_tm1, self.W_hh) + self.b_hh)
hr_t = m_t * h_t
return h_t, hr_t,
def gated_query_step(self, x_t, m_t, h_tm1, hr_tm1):
if m_t.ndim >= 1:
m_t = m_t.dimshuffle(0, 'x')
r_t = T.nnet.sigmoid(T.dot(x_t, self.W_in_r) + T.dot(hr_tm1, self.W_hh_r) + self.b_r)
z_t = T.nnet.sigmoid(T.dot(x_t, self.W_in_z) + T.dot(hr_tm1, self.W_hh_z) + self.b_z)
h_tilde = self.query_rec_activation(T.dot(x_t, self.W_in) + T.dot(r_t * hr_tm1, self.W_hh) + self.b_hh)
h_t = (np.float32(1.0) - z_t) * hr_tm1 + z_t * h_tilde
hr_t = m_t * h_t
# return both reset state and non-reset state
return h_t, hr_t, r_t, z_t, h_tilde
def plain_session_step(self, h_t, m_t, hs_tm1):
if m_t.ndim >= 1:
m_t = m_t.dimshuffle(0, 'x')
hs_update = self.session_rec_activation(T.dot(h_t, self.Ws_in) + T.dot(hs_tm1, self.Ws_hh) + self.bs_hh)
hs_t = (m_t) * hs_tm1 + (1 - m_t) * hs_update
return hs_t,
def gated_session_step(self, h_t, m_t, hs_tm1):
rs_t = T.nnet.sigmoid(T.dot(h_t, self.Ws_in_r) + T.dot(hs_tm1, self.Ws_hh_r) + self.bs_r)
zs_t = T.nnet.sigmoid(T.dot(h_t, self.Ws_in_z) + T.dot(hs_tm1, self.Ws_hh_z) + self.bs_z)
hs_tilde = self.session_rec_activation(T.dot(h_t, self.Ws_in) + T.dot(rs_t * hs_tm1, self.Ws_hh) + self.bs_hh)
hs_update = (np.float32(1.) - zs_t) * hs_tm1 + zs_t * hs_tilde
if m_t.ndim >= 1:
m_t = m_t.dimshuffle(0, 'x')
hs_t = (m_t) * hs_tm1 + (1 - m_t) * hs_update
return hs_t, hs_tilde, rs_t, zs_t
def approx_embedder(self, x):
return self.W_emb[x]
def build_encoder(self, x, xmask=None, **kwargs):
one_step = False
if len(kwargs):
one_step = True
# if x.ndim == 2 then
# x = (n_steps, batch_size)
if x.ndim == 2:
batch_size = x.shape[1]
# else x = (word_1, word_2, word_3, ...)
# or x = (last_word_1, last_word_2, last_word_3, ..)
# in this case batch_size is
else:
batch_size = 1
# if it is not one_step then we initialize everything to 0
if not one_step:
h_0 = T.alloc(np.float32(0), batch_size, self.qdim)
hr_0 = T.alloc(np.float32(0), batch_size, self.qdim)
hs_0 = T.alloc(np.float32(0), batch_size, self.sdim)
# in sampling mode (i.e. one step) we require
else:
# in this case x.ndim != 2
assert x.ndim != 2
assert 'prev_h' in kwargs
assert 'prev_hr' in kwargs
assert 'prev_hs' in kwargs
h_0 = kwargs['prev_h']
hr_0 = kwargs['prev_hr']
hs_0 = kwargs['prev_hs']
xe = self.approx_embedder(x)
if xmask == None:
xmask = T.neq(x, self.eoq_sym)
# Gated Encoder
if self.query_step_type == "gated":
f_enc = self.gated_query_step
o_enc_info = [h_0, hr_0, None, None, None]
else:
f_enc = self.plain_query_step
o_enc_info = [h_0, hr_0]
if self.session_step_type == "gated":
f_hier = self.gated_session_step
o_hier_info = [hs_0, None, None, None]
else:
f_hier = self.plain_session_step
o_hier_info = [hs_0]
# Run through all the sentence (encode everything)
if not one_step:
_res, _ = theano.scan(
f_enc, sequences=[xe, xmask], outputs_info=o_enc_info)
# Make just one step further
else:
_res = f_enc(xe, xmask, h_0, hr_0)
# Get the hidden state sequence
h = _res[0]
hr = _res[1]
# All hierarchical sentence
# The hs sequence is based on the original mask
if not one_step:
_res, _ = theano.scan(
f_hier, sequences=[h, xmask], outputs_info=o_hier_info)
# Just one step further
else:
_res = f_hier(h, xmask, hs_0)
if isinstance(_res, list) or isinstance(_res, tuple):
hs = _res[0]
else:
hs = _res
return (h, hr), hs, (_res[2], _res[3])
def __init__(self, state, rng, parent):
EncoderDecoderBase.__init__(self, state, rng, parent)
self.init_params()
class Decoder(EncoderDecoderBase):
EVALUATION = 0
BEAM_SEARCH = 1
def __init__(self, state, rng, parent, encoder):
EncoderDecoderBase.__init__(self, state, rng, parent)
# Take as input the encoder instance for the embeddings..
# To modify in the future
self.encoder = encoder
self.trng = MRG_RandomStreams(self.seed)
self.init_params()
def init_params(self):
""" Decoder weights """
self.Wd_emb = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.idim, self.rankdim), name='Wd_emb'))
self.Wd_hh = add_to_params(self.params, theano.shared(value=OrthogonalInit(self.rng, (self.qdim, self.qdim)), name='Wd_hh'))
self.Wd_in = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.rankdim, self.qdim), name='Wd_in'))
self.bd_hh = add_to_params(self.params, theano.shared(value=np.zeros((self.qdim,), dtype='float32'), name='bd_hh'))
self.Wd_s_0 = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.sdim, self.qdim), name='Wd_s_0'))
self.bd_s_0 = add_to_params(self.params, theano.shared(value=np.zeros((self.qdim,), dtype='float32'), name='bd_s_0'))
if self.decoder_bias_type == 'all':
self.Wd_s_q = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.sdim, self.qdim), name='Wd_s_q'))
if self.query_step_type == "gated":
self.Wd_in_r = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.rankdim, self.qdim), name='Wd_in_r'))
self.Wd_in_z = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.rankdim, self.qdim), name='Wd_in_z'))
self.Wd_hh_r = add_to_params(self.params, theano.shared(value=OrthogonalInit(self.rng, (self.qdim, self.qdim)), name='Wd_hh_r'))
self.Wd_hh_z = add_to_params(self.params, theano.shared(value=OrthogonalInit(self.rng, (self.qdim, self.qdim)), name='Wd_hh_z'))
self.bd_r = add_to_params(self.params, theano.shared(value=np.zeros((self.qdim,), dtype='float32'), name='bd_r'))
self.bd_z = add_to_params(self.params, theano.shared(value=np.zeros((self.qdim,), dtype='float32'), name='bd_z'))
if self.decoder_bias_type == 'all':
self.Wd_s_z = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.sdim, self.qdim), name='Wd_s_z'))
self.Wd_s_r = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.sdim, self.qdim), name='Wd_s_r'))
out_target_dim = self.qdim
if not self.maxout_out:
out_target_dim = self.rankdim
self.Wd_out = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.qdim, out_target_dim), name='Wd_out'))
self.bd_out = add_to_params(self.params, theano.shared(value=np.zeros((self.idim,), dtype='float32'), name='bd_out'))
# Set up deep output
if self.deep_out:
self.Wd_e_out = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.rankdim, out_target_dim), name='Wd_e_out'))
self.bd_e_out = add_to_params(self.params, theano.shared(value=np.zeros((out_target_dim,), dtype='float32'), name='bd_e_out'))
if self.decoder_bias_type != 'first':
self.Wd_s_out = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.sdim, out_target_dim), name='Wd_s_out'))
""" Rank """
if hasattr(self, 'train_rank'):
self.Wr_out = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.sdim, 1), name='Wr_out'))
self.br_out = add_to_params(self.params, theano.shared(value=np.zeros((1,), dtype='float32'), name='br_out'))
def build_rank_layer(self, hs):
return T.dot(hs, self.Wr_out) + self.br_out
def build_output_layer(self, hs, xd, hd):
pre_activ = T.dot(hd, self.Wd_out)
if self.deep_out:
pre_activ += T.dot(xd, self.Wd_e_out) + self.bd_e_out
if self.decoder_bias_type != 'first':
pre_activ += T.dot(hs, self.Wd_s_out)
# ^ if bias all, bias the deep output
if self.maxout_out:
pre_activ = Maxout(2)(pre_activ)
return pre_activ
def build_next_probs_predictor(self, hs, x, prev_hd):
"""
Return output probabilities given prev_words x, hierarchical pass hs, and previous hd
hs should always be the same (and should not be updated).
"""
return self.build_decoder(hs, x, mode=Decoder.BEAM_SEARCH, prev_hd=prev_hd)
def approx_embedder(self, x):
# Here we use the same embeddings learnt in the encoder !!!
return self.encoder.approx_embedder(x)
def output_softmax(self, pre_activ):
# returns a (timestep, bs, idim) matrix (huge)
return SoftMax(T.dot(pre_activ, self.Wd_emb.T) + self.bd_out)
def build_decoder(self, hs, x, xmask=None, y=None, y_neg=None, mode=EVALUATION, prev_hd=None, step_num=None):
# Check parameter consistency
if mode == Decoder.EVALUATION:
assert not prev_hd
assert y
else:
assert not y
assert prev_hd
# if mode == EVALUATION
# xd = (timesteps, batch_size, qdim)
#
# if mode != EVALUATION
# xd = (n_samples, dim)
xd = self.approx_embedder(x)
if not xmask:
xmask = T.neq(x, self.eoq_sym)
# we must zero out the </s> embedding
# i.e. the embedding x_{-1} is the 0 vector
# as well as hd_{-1} which will be reseted in the scan functions
if xd.ndim != 3:
assert mode != Decoder.EVALUATION
xd = (xd.dimshuffle((1, 0)) * xmask).dimshuffle((1, 0))
else:
assert mode == Decoder.EVALUATION
xd = (xd.dimshuffle((2,0,1)) * xmask).dimshuffle((1,2,0))
# Run the decoder
if mode == Decoder.EVALUATION:
hd_init = T.alloc(np.float32(0), x.shape[1], self.qdim)
else:
hd_init = prev_hd
if self.query_step_type == "gated":
f_dec = self.gated_step
o_dec_info = [hd_init, None, None, None]
else:
f_dec = self.plain_step
o_dec_info = [hd_init]
# If the mode of the decoder is EVALUATION
# then we evaluate by default all the sentence
# xd - i.e. xd.ndim == 3, xd = (timesteps, batch_size, qdim)
if mode == Decoder.EVALUATION:
_res, _ = theano.scan(f_dec,
sequences=[xd, xmask, hs],\
outputs_info=o_dec_info)
# else we evaluate only one step of the recurrence using the
# previous hidden states and the previous computed hierarchical
# states.
else:
_res = f_dec(xd, xmask, hs, prev_hd)
if isinstance(_res, list) or isinstance(_res, tuple):
hd = _res[0]
else:
hd = _res
pre_activ = self.build_output_layer(hs, xd, hd)
# EVALUATION : Return target_probs + all the predicted ranks
# target_probs.ndim == 3
if mode == Decoder.EVALUATION:
target_probs = GrabProbs(self.output_softmax(pre_activ), y)
return target_probs, hd, _res
# BEAM_SEARCH : Return output (the softmax layer) + the new hidden states
elif mode == Decoder.BEAM_SEARCH:
return self.output_softmax(pre_activ), hd
def gated_step(self, xd_t, m_t, hs_t, hd_tm1):
if m_t.ndim >= 1:
m_t = m_t.dimshuffle(0, 'x')
hd_tm1 = (m_t) * hd_tm1 + (1 - m_t) * self.query_rec_activation(T.dot(hs_t, self.Wd_s_0) + self.bd_s_0)
# hd_{t - 1} = tanh(W_s_0 hs_t + bd_s_0) else hd_{t - 1} is left unchanged (m_t = 1)
# In the 'all' decoder bias type each hidden state of the decoder
# RNN receives the hs_t vector as bias without modification
if self.decoder_bias_type == 'all':
rd_t = T.nnet.sigmoid(T.dot(xd_t, self.Wd_in_r) + T.dot(hd_tm1, self.Wd_hh_r) + T.dot(hs_t, self.Wd_s_r) + self.bd_r)
zd_t = T.nnet.sigmoid(T.dot(xd_t, self.Wd_in_z) + T.dot(hd_tm1, self.Wd_hh_z) + T.dot(hs_t, self.Wd_s_z) + self.bd_z)
hd_tilde = self.query_rec_activation(T.dot(xd_t, self.Wd_in)
+ T.dot(rd_t * hd_tm1, self.Wd_hh)
+ T.dot(hs_t, self.Wd_s_q)
+ self.bd_hh)
hd_t = (np.float32(1.) - zd_t) * hd_tm1 + zd_t * hd_tilde
output = (hd_t, rd_t, zd_t, hd_tilde)
else:
# Do not bias all the decoder (force to store very useful information in the first state)
rd_t = T.nnet.sigmoid(T.dot(xd_t, self.Wd_in_r) + T.dot(hd_tm1, self.Wd_hh_r) + self.bd_r)
zd_t = T.nnet.sigmoid(T.dot(xd_t, self.Wd_in_z) + T.dot(hd_tm1, self.Wd_hh_z) + self.bd_z)
hd_tilde = self.query_rec_activation(T.dot(xd_t, self.Wd_in)
+ T.dot(rd_t * hd_tm1, self.Wd_hh)
+ self.bd_hh)
hd_t = (np.float32(1.) - zd_t) * hd_tm1 + zd_t * hd_tilde
output = (hd_t, rd_t, zd_t, hd_tilde)
return output
def plain_step(self, xd_t, m_t, hs_t, hd_tm1):
if m_t.ndim >= 1:
m_t = m_t.dimshuffle(0, 'x')
# We already assume that xd are zeroed out
hd_tm1 = (m_t) * hd_tm1 + (1 - m_t) * self.query_rec_activation(T.dot(hs_t, self.Wd_s_0) + self.bd_s_0)
# ^ iff x_{t - 1} = </s> (m_t = 0) then x_{t-1} = 0
# and hd_{t - 1} = 0 else hd_{t - 1} is left unchanged (m_t = 1)
if self.decoder_bias_type == 'first':
# Do not bias all the decoder (force to store very useful information in the first state)
hd_t = self.query_rec_activation( T.dot(xd_t, self.Wd_in)
+ T.dot(hd_tm1, self.Wd_hh)
+ self.bd_hh )
output = (hd_t,)
elif self.decoder_bias_type == 'all':
hd_t = self.query_rec_activation( T.dot(xd_t, self.Wd_in)
+ T.dot(hd_tm1, self.Wd_hh)
+ T.dot(hs_t, self.Wd_s_q)
+ self.bd_hh )
output = (hd_t,)
return output
####
class SessionEncoderDecoder(Model):
def indices_to_words(self, seq, exclude_start_end=False):
"""
Converts a list of words to a list
of word ids. Use unk_sym if a word is not
known.
"""
def convert():
for word_index in seq:
if word_index > len(self.idx_to_str):
raise ValueError('Word index is too large for the model vocabulary!')
if word_index == self.eos_sym:
break
if not exclude_start_end or (word_index != self.eoq_sym and word_index != self.soq_sym):
yield self.idx_to_str[word_index]
return list(convert())
def words_to_indices(self, seq):
"""
Converts a list of words to a list
of word ids. Use unk_sym if a word is not
known.
"""
return [self.str_to_idx.get(word, self.unk_sym) for word in seq]
def compute_updates(self, training_cost, params):
updates = []
grads = T.grad(training_cost, params)
grads = OrderedDict(zip(params, grads))
# Clip stuff
c = numpy.float32(self.cutoff)
clip_grads = []
norm_gs = T.sqrt(sum(T.sum(g ** 2) for p, g in grads.items()))
normalization = T.switch(T.ge(norm_gs, c), c / norm_gs, np.float32(1.))
notfinite = T.or_(T.isnan(norm_gs), T.isinf(norm_gs))
for p, g in grads.items():
clip_grads.append((p, T.switch(notfinite, numpy.float32(.1) * p, g * normalization)))
grads = OrderedDict(clip_grads)
if self.updater == 'adagrad':
updates = Adagrad(grads, self.lr)
elif self.updater == 'sgd':
raise Exception("Sgd not implemented!")
elif self.updater == 'adadelta':
updates = Adadelta(grads)
elif self.updater == 'rmsprop':
updates = RMSProp(grads, self.lr)
elif self.updater == 'adam':
updates = Adam(grads)
else:
raise Exception("Updater not understood!")
return updates
def build_train_function(self):
if not hasattr(self, 'train_fn'):
# Compile functions
logger.debug("Building train function")
self.train_fn = theano.function(
inputs=[self.x_data, self.x_ranks, self.x_max_length, self.x_cost_mask],
outputs=self.training_cost, updates=self.updates, name="train_fn")
return self.train_fn
def build_eval_function(self):
if not hasattr(self, 'eval_fn'):
# Compile functions
logger.debug("Building evaluation function")
self.eval_fn = theano.function(inputs=[self.x_data, self.x_ranks, self.x_max_length, self.x_cost_mask],
outputs=self.training_cost, name="eval_fn")
return self.eval_fn
def build_score_function(self):
if not hasattr(self, 'score_fn'):
self.score_fn = theano.function(
inputs=[self.x_data, self.x_max_length],
outputs=[self.per_example_cost],
name="score_fn")
return self.score_fn
def build_rank_prediction_function(self):
if not hasattr(self, 'rank_fn'):
(h, hr), hs, _ = self.encoder.build_encoder(self.aug_x_data)
ranks = self.decoder.build_rank_layer(hs)
self.rank_fn = theano.function(
inputs=[self.x_data],
outputs=[ranks],
name="rank_fn")
return self.rank_fn
def build_get_states_function(self):
if not hasattr(self, 'get_states_fn'):
# Compile functions
logger.debug("Get states of the network")
outputs = [self.h, self.hs, self.hd, self.rs, self.us] + [x for x in self.decoder_states]
self.get_states_fn = theano.function(inputs=[self.x_data, self.x_max_length],
outputs=outputs, name="get_states_fn")
return self.get_states_fn
def build_next_probs_function(self):
if not hasattr(self, 'next_probs_fn'):
outputs, hd = self.decoder.build_next_probs_predictor(
self.beam_hs, self.beam_source, prev_hd=self.beam_hd)
self.next_probs_fn = theano.function(
inputs=[self.beam_hs, self.beam_source, self.beam_hd],
outputs=[outputs, hd],
name="next_probs_fn")
return self.next_probs_fn
def build_first_vector(self):
if not hasattr(self, 'first_vec_fn'):
(h, hr), hs, _ = self.encoder.build_encoder(self.aug_x_data)
hd0 = self.decoder.query_rec_activation(T.dot(hs, self.decoder.Wd_s_0) + self.decoder.bd_s_0)
self.first_vec_fn = theano.function(inputs=[self.x_data],
outputs=[h, hs, hd0], name="first_vec_fn")
return self.first_vec_fn
def build_encoder_function(self):
if not hasattr(self, 'encoder_fn'):
(h, hr), hs, _ = self.encoder.build_encoder(self.aug_x_data)
self.encoder_fn = theano.function(inputs=[self.x_data],
outputs=[h, hr, hs], name="encoder_fn")
return self.encoder_fn
def __init__(self, state):
Model.__init__(self)
self.state = state
# Compatibility towards older models
self.__dict__.update(state)
self.rng = numpy.random.RandomState(state['seed'])
# Load dictionary
raw_dict = cPickle.load(open(self.dictionary, 'r'))
# Probabilities for each term in the corpus
self.noise_probs = [x[2] for x in sorted(raw_dict, key=operator.itemgetter(1))]
self.noise_probs = numpy.array(self.noise_probs, dtype='float64')
self.noise_probs /= numpy.sum(self.noise_probs)
self.noise_probs = self.noise_probs ** 0.75
self.noise_probs /= numpy.sum(self.noise_probs)
self.t_noise_probs = theano.shared(self.noise_probs.astype('float32'), 't_noise_probs')
# Dictionaries to convert str to idx and vice-versa
self.str_to_idx = dict([(tok, tok_id) for tok, tok_id, _ in raw_dict])
self.idx_to_str = dict([(tok_id, tok) for tok, tok_id, freq in raw_dict])
if '</q>' not in self.str_to_idx \
or '</s>' not in self.str_to_idx:
raise Exception("Error, malformed dictionary!")
# Number of words in the dictionary
self.idim = len(self.str_to_idx)
self.state['idim'] = self.idim
logger.debug("Initializing encoder")
self.encoder = Encoder(self.state, self.rng, self)
logger.debug("Initializing decoder")
self.decoder = Decoder(self.state, self.rng, self, self.encoder)
# Init params
self.params = self.encoder.params + self.decoder.params
assert len(set(self.params)) == (len(self.encoder.params) + len(self.decoder.params))
self.y_neg = T.itensor3('y_neg')
self.x_data = T.imatrix('x_data')
self.x_ranks = T.imatrix('x_ranks')
self.x_cost_mask = T.matrix('cost_mask')
self.x_max_length = T.iscalar('x_max_length')
# The training is done with a trick. We append a special </q> at the beginning of the dialog
# so that we can predict also the first sent in the dialog starting from the dialog beginning token (</q>).
self.aug_x_data = T.concatenate([T.alloc(np.int32(self.eoq_sym), 1, self.x_data.shape[1]), self.x_data])
training_x = self.aug_x_data[:self.x_max_length]
training_y = self.aug_x_data[1:self.x_max_length+1]
training_ranks = self.x_ranks[:self.x_max_length-1].flatten()
training_ranks_mask = T.neq(training_ranks, 0).flatten()
# Here we find the end-of-sentence tokens in the minibatch.
training_hs_mask = T.neq(training_x, self.eoq_sym)
training_x_cost_mask = self.x_cost_mask[:self.x_max_length].flatten()
# Backward compatibility
if 'decoder_bias_type' in self.state:
logger.debug("Decoder bias type {}".format(self.decoder_bias_type))
logger.info("Build encoder")
(self.h, _), self.hs, (self.rs, self.us) = \
self.encoder.build_encoder(training_x, xmask=training_hs_mask)
logger.info("Build decoder (EVAL)")
target_probs, self.hd, self.decoder_states = \
self.decoder.build_decoder(self.hs, training_x, xmask=training_hs_mask, \
y=training_y, mode=Decoder.EVALUATION)
logger.info("Build rank predictor")
self.predicted_ranks = self.decoder.build_rank_layer(self.hs)
# Prediction cost and rank cost
self.per_example_cost = -T.log2(target_probs).reshape((self.x_max_length, self.x_data.shape[1]))
self.rank_cost = T.sum(((self.predicted_ranks[1:].flatten() - training_ranks) ** 2) * (training_ranks_mask)) / T.sum(training_ranks_mask)
self.training_cost = T.sum(-T.log2(target_probs) * training_x_cost_mask) + np.float32(self.lambda_rank) * self.rank_cost
self.updates = self.compute_updates(self.training_cost / training_x.shape[1], self.params)
# Beam-search variables
self.beam_source = T.lvector("beam_source")
self.beam_hs = T.matrix("beam_hs")
self.beam_step_num = T.lscalar("beam_step_num")
self.beam_hd = T.matrix("beam_hd")