-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp_glue.py
executable file
·660 lines (567 loc) · 31.7 KB
/
exp_glue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
from __future__ import absolute_import, division, print_function
import pickle
import argparse
import glob
from pathlib import Path
import logging
import scipy
import os
import random
import numpy as np
import torch
import pandas as pd
from pandas import json_normalize
import torch.nn.functional as F
from torch.utils.data import (
DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from models_weak import *
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm, trange
from utils_data import TensorDatasetFilter, load_and_cache_examples
from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
BertForSequenceClassification,
BertTokenizer,
RobertaConfig,
RobertaForSequenceClassification,
RobertaTokenizer,
XLMConfig, XLMForSequenceClassification,
XLMTokenizer, XLNetConfig,
XLNetForSequenceClassification,
XLNetTokenizer)
from pytorch_transformers import AdamW, WarmupLinearSchedule
from utils_glue import (compute_metrics,
auc_binary_precison_recall_curve,
f1_score,
ProportionDataset,
convert_examples_to_features_base,
convert_examples_to_features_bert,
output_modes, processors, RandomPairedSampler, PairedDataset)
logger = logging.getLogger(__name__)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, RobertaConfig)), ())
MODEL_CLASSES = {
'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
'baseline': (BaselineConfig, BaselineModel, BaselineTokenizer),
'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer)
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def to_pandas(results):
"""Assumes results is a nested dict with {'task': {'metric': value}}
"""
return pd.DataFrame(json_normalize(results))
def train(args, train_dataset, model, tokenizer, eval_dataset=None, eval_features=None):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter(log_dir=args.output_dir, flush_secs=60)
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = (len(train_dataloader) // args.gradient_accumulation_steps) * args.num_train_epochs
args.warmup_steps = args.warmup_proportion * t_total
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, betas=(args.adam_beta0, 0.999), lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total if args.decay_learning_rate else 1e10)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
# Shall we compute forgetting for this run
compute_forgetting = \
args.model_type in ['bert', 'xlnet', 'baseline'] and \
(args.hard_examples is None and not args.training_examples_ids)
if compute_forgetting:
shape = (len(train_dataset), int(args.num_train_epochs))
example_stats = dict(
accuracy=np.zeros(shape) - 1.,
loss=np.zeros(shape) - 1.,
margin=np.zeros(shape) - 1.,
probs=np.zeros(shape) - 1.)
print('Initializing forgetting', shape)
with open(Path(args.output_dir) / 'example_stats.pkl', 'wb') as f:
pickle.dump(example_stats, f)
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), mininterval=10,
desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
def do_eval_and_save(output_dir):
## initial eval
eval_results = evaluate(
args, model, tokenizer,
stress_subtask=args.stress_subtask,
eval_task_names=args.eval_tasks,
eval_output_dir=output_dir,
aux_dataset=eval_dataset, aux_features=eval_features)
# Save model checkpoint at the end of the epoch
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, Path(output_dir) / 'training_args.bin')
tokenizer.save_pretrained(output_dir)
logger.info("Saving model checkpoint to %s", output_dir)
return eval_results
results_init = do_eval_and_save(Path(args.output_dir) / f'checkpoint-epoch--1')
all_results = [results_init]
print(to_pandas(all_results))
for epoch in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", mininterval=10,
disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
#######################################
# Standard BERT / Baseline finetuning #
#######################################
batch = tuple(t.to(args.device) for t in batch)
if args.model_type in ['baseline']:
inputs = {
'input_ids_a': batch[0],
'input_ids_b': batch[1],
'input_mask_a': batch[2],
'input_mask_b': batch[3],
'labels': batch[4]
}
else:
inputs = {
'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM and RoBERTa don't use segment_ids
'labels': batch[3]
}
outputs = model(**inputs, reduction='mean')
loss = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss.float(), optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
accuracy = (outputs[1].max(1)[1].detach().cpu() == inputs['labels'].detach().cpu()).float().mean()
tb_writer.add_scalar('lr', scheduler.get_last_lr()[0], global_step)
tb_writer.add_scalar('loss', loss.item(), global_step)
tb_writer.add_scalar('acc', accuracy.item(), global_step)
epoch_iterator.set_description_str(
'Loss: %.3f, Acc: %.3f' % (loss.item(), accuracy.item()),
refresh=False)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step()
model.zero_grad()
global_step += 1
######################
# Compute forgetting #
######################
if compute_forgetting:
labels = batch[-2].cpu()
logits = outputs[1].cpu()
acc = (torch.max(logits, 1)[1] == labels)
log_probs = F.log_softmax(logits, 1)
for j, guid in enumerate(batch[-1].cpu()):
example_nll = -log_probs[j, labels[j].item()] # output for correct class
class_prob = torch.exp(log_probs[j, labels[j].item()]) # output for correct class
output_correct_class = logits[j, labels[j].item()] # output for correct class
sorted_output, _ = torch.sort(logits.data[j, :])
if acc[j]:
# Example classified correctly, highest incorrect class is 2nd largest output
output_highest_incorrect_class = sorted_output[-2]
else:
# Example misclassified, highest incorrect class is max output
output_highest_incorrect_class = sorted_output[-1]
margin = output_correct_class.item() - output_highest_incorrect_class.item()
# Add the statistics of the current training example to dictionary
assert example_stats["accuracy"][guid, epoch] == -1
assert example_stats["loss"][guid, epoch] == -1
assert example_stats["margin"][guid, epoch] == -1
assert example_stats["probs"][guid, epoch] == -1
example_stats["accuracy"][guid, epoch] = acc[j].sum().item()
example_stats["margin"][guid, epoch] = margin
example_stats["loss"][guid, epoch] = example_nll.item()
example_stats["probs"][guid, epoch] = class_prob.item()
##################
# End forgetting #
##################
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer, stress_subtask=args.stress_subtask, aux_dataset=eval_dataset, aux_features=eval_features)
for key, value in results.items():
tb_writer.add_scalar('dev/{}'.format(key), value, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
pass
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
# dump forgetting if any
if compute_forgetting:
with open(Path(args.output_dir) / 'example_stats.pkl', 'wb') as f:
pickle.dump(example_stats, f)
output_dir = Path(args.output_dir) / f'checkpoint-epoch-{epoch}'
if epoch == int(args.num_train_epochs) - 1:
output_dir = Path(args.output_dir) / f'checkpoint-last'
eval_results = do_eval_and_save(output_dir)
for task, task_results in eval_results.items():
logger.info(f"***** Eval results {task} *****")
if "stress" in task:
output_eval_file = \
Path(output_dir) / f"eval_results_{task}-{args.stress_subtask}.txt"
else:
output_eval_file = \
Path(output_dir) / f"eval_results_{task}.txt"
writer = open(output_eval_file, "w")
for key, value in task_results.items():
logger.info("%s/%s = %s", task, key, str(value))
writer.write("%s = %s\n" % (key, str(value)))
tb_writer.add_scalar('dev/{}/{}'.format(task, key), value, global_step)
all_results.append(eval_results)
results = to_pandas(all_results)
results.to_csv(Path(args.output_dir) / 'all_results.csv')
print(results)
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(
args, model, tokenizer,
stress_subtask="",
eval_task_names=None, eval_output_dir=None,
aux_features=None, aux_dataset=None
):
if not eval_task_names:
eval_task_names = ("mnli",) if args.task_name == "mnli" else (args.task_name,)
eval_outputs_dirs = tuple(
args.output_dir if eval_output_dir is None else eval_output_dir
for _ in range(len(eval_task_names)))
# this tests on an optional auxiliary dataset of our choice
if aux_features is not None:
eval_task_names = eval_task_names + ("aux",)
eval_outputs_dirs = eval_outputs_dirs + (eval_outputs_dirs[0],)
results = {}
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
if eval_task == "aux":
eval_features = aux_features
eval_dataset = aux_dataset
else:
eval_features, eval_dataset = \
load_and_cache_examples(
args.data_dir, args.model_name_or_path, args.model_type,
args.max_seq_length, eval_task, tokenizer, evaluate=True,
test=args.test)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(
eval_dataset, sampler=eval_sampler,
batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation {} *****".format(eval_task))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc="Evaluating", mininterval=60):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
batch = tuple(t.to(args.device) for t in batch)
if args.model_type in ['baseline']:
inputs = {
'input_ids_a': batch[0],
'input_ids_b': batch[1],
'input_mask_a': batch[2],
'input_mask_b': batch[3],
'labels': batch[4]
}
else:
inputs = {
'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM and RoBERTa don't use segment_ids
'labels': batch[3]}
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs['labels'].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
logits = preds.copy()
probas_pred = scipy.special.softmax(logits, axis=1)[:, 1]
if args.output_mode == "classification":
preds = np.argmax(preds, axis=1)
elif args.output_mode == "regression":
preds = np.squeeze(preds)
if eval_task == "hans":
preds[preds == 2] = 0
result = compute_metrics(eval_task, preds, out_label_ids, probs=probas_pred)
results[eval_task] = dict()
results[eval_task].update(result)
if eval_task in ["qqp-wang", "paws-qqp", "paws-wiki", "paws-qqp-all-val", "qqp-wang-test"]:
if args.output_mode == "classification":
# TODO: probabilities should be calculated exactly as is done in the model.
auc_pr = auc_binary_precison_recall_curve(probas_pred, out_label_ids, positive_label=1)
logger.info(f" AUC = {auc_pr}\t(specific to {eval_task})")
calculated_f1 = f1_score(out_label_ids, preds, average=None)
logger.info(f" 0f1 = {calculated_f1[0]}")
logger.info(f" 1f1 = {calculated_f1[1]}")
if eval_task == "hans":
output_pred_file = Path(eval_output_dir) / "hans_preds.txt"
with open(output_pred_file, "w") as f:
for i, (pred, out_label) in enumerate(zip(preds, out_label_ids)):
f.write("ex%d,%s\n" % (i, "entailment" if pred == 1 else "non-entailment"))
if eval_task == "mnli-hard":
output_pred_file = Path(eval_output_dir) / "hard_preds.txt"
with open(output_pred_file, "w") as f:
f.write('pairID,gold_label\n')
for i, (pred, out_label) in enumerate(zip(preds, out_label_ids)):
f.write("%s,%s\n" % (eval_features[i].guid, "entailment" if pred == 1 else "contradiction" if pred == 0 else "neutral"))
return results
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--training_examples_ids", default=None, type=str)
parser.add_argument("--hard_examples", default=None, type=str)
parser.add_argument("--hard_type", default=None, type=str)
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--do_lower_case", type=str,
help="Set this flag if you are using an uncased model.",
required=True)
## Loading options
parser.add_argument("--avg_models", type=str, required=False,
help="Path to avg model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--load_model", type=str, required=False,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
##
parser.add_argument("--proportion", default=0., type=float)
parser.add_argument("--adam_beta0", default=0.9, type=float)
parser.add_argument("--task_name", default=None, type=str, required=True,
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
parser.add_argument("--stress_subtask", default=None, type=str, required=False,
help="The name of the stress test")
parser.add_argument("--output_dir", default=None, type=str, required=False,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Rul evaluation during training at each logging step.")
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--decay_learning_rate", default="True", type=str)
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_proportion", default=0., type=float,
help="Linear warmup over warmup_steps.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=500,
help="Save checkpoint every X updates steps.")
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument("--eval_tasks", default=['mnli', 'hans'], nargs='+', required=False,
help="The name of the tasks to evaluate during training selected in the list: " + ", ".join(processors.keys()))
parser.add_argument("--test", action='store_true',
help="use test set to evaluate")
args = parser.parse_args()
args.do_lower_case = eval(args.do_lower_case)
args.decay_learning_rate = eval(args.decay_learning_rate)
if args.output_dir and \
os.path.exists(args.output_dir) and \
os.listdir(args.output_dir) and \
args.do_train and \
not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists. Use --overwrite_output_dir.".format(
args.output_dir))
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
set_seed(args)
# Setup logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args)
# Prepare GLUE task
args.task_name = args.task_name.lower()
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
args.output_mode = output_modes[args.task_name]
label_list = processor.get_labels()
num_labels = len(label_list)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
if args.load_model:
# Load model from checkpoint here
config = config_class.from_pretrained(
args.load_model, num_labels=num_labels, finetuning_task=args.task_name)
tokenizer = tokenizer_class.from_pretrained(args.load_model, do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.load_model, from_tf=False, config=config)
else:
config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels, finetuning_task=args.task_name)
tokenizer_kwargs = dict(vocab_file=config.vocab_file) if args.model_type == 'baseline' else dict()
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case,
**tokenizer_kwargs)
model = model_class.from_pretrained(args.model_name_or_path, from_tf=False, config=config)
if args.local_rank == 0:
torch.distributed.barrier()
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Prepare training
if args.do_train:
_, train_dataset = load_and_cache_examples(args.data_dir, args.model_name_or_path, args.model_type,
args.max_seq_length, args.task_name, tokenizer, evaluate=False)
hard_examples_ids = None
if args.hard_examples:
# filter training dataset with hard examples ids
with open(args.hard_examples, 'rb') as f:
hard_examples_stats = pickle.load(f)
hard_examples_ids = hard_examples_stats[args.hard_type]
elif args.training_examples_ids:
# other format of training examples ids
with open(args.training_examples_ids, 'r') as f:
hard_examples_ids = np.array(f.read().strip().split(','), dtype='int64')
train_dataset = TensorDatasetFilter(train_dataset, hard_examples_ids)
if hard_examples_ids is not None:
logger.info("Filtering dataset using hard examples: %s", len(train_dataset))
train(args, train_dataset, model, tokenizer)
else:
eval_results = evaluate(
args, model, tokenizer,
stress_subtask=args.stress_subtask,
eval_task_names=args.eval_tasks,
eval_output_dir=args.load_model,)
all_results = [eval_results]
print(to_pandas(all_results))
return
if __name__ == "__main__":
main()