-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
44 lines (34 loc) · 1.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
from model.model_functional import YOLOv3
def read_lines(annotation_path):
with open(annotation_path) as f:
annot_lines = f.readlines()
return annot_lines
def load_img_bboxes_pairs(annotation_path):
"""
Load annotations
Customize this function as per your dataset
:return:
list of pairs of image path and corresponding bounding boxes
example:
[['.../00_Datasets/PASCAL_VOC/images/000007.jpg', [[0.639, 0.567, 0.718, 0.840, 6.0],
[0.529, 0.856, 0.125, 0.435, 4.0]]]
['.../00_Datasets/PASCAL_VOC/images/000008.jpg', [[0.369, 0.657, 0.871, 0.480, 3.0]]]]
"""""
img_bboxes_pairs = []
for annot_path in annotation_path:
lines = read_lines(annot_path)
i_b_pairs = [[annot_path.rsplit('/', 1)[0] + '/' + line.split()[0],
np.array([list(map(int, box.split(','))) for box in line.split()[1:]])]
for line in lines]
img_bboxes_pairs.extend(i_b_pairs)
return img_bboxes_pairs
if __name__ == "__main__":
DIR_DATA = ["data/fruits/", "data/demo/"]
DIR_TRAIN = [d + "train/" for d in DIR_DATA]
DIR_VALID = [d + "val/" for d in DIR_DATA]
DIR_TEST = [d + "test/" for d in DIR_DATA]
PATH_CLASSES = DIR_TRAIN[0] + "demo_classes.txt"
TRAIN_ANNOT_PATH = [d + "train_annotations.txt" for d in DIR_TRAIN]
pairs = load_img_bboxes_pairs(TRAIN_ANNOT_PATH)
x = 0