diff --git a/book/_config.yml b/book/_config.yml index 1fec8fd..068337b 100644 --- a/book/_config.yml +++ b/book/_config.yml @@ -32,7 +32,7 @@ execute: # NOTE: 'cache' to use jupyter-cache, or 'force' to run all execute_notebooks: 'force' exclude_patterns: - - "**/geospatial-advanced.ipynb" + - "**/aviris-ng-data.ipynb" allow_errors: false # Per-cell notebook execution limit (seconds) timeout: 300 diff --git a/book/_toc.yml b/book/_toc.yml index 1edd86b..e83e9e7 100644 --- a/book/_toc.yml +++ b/book/_toc.yml @@ -21,6 +21,10 @@ parts: - file: tutorials/index sections: - file: tutorials/example/tutorial-notebook + - file: tutorials/albedo/index + title: Albedo + sections: + - file: tutorials/albedo/aviris-ng-data - caption: Projects chapters: - file: projects/list_of_projects diff --git a/book/tutorials/albedo/aviris-ng-data.ipynb b/book/tutorials/albedo/aviris-ng-data.ipynb new file mode 100644 index 0000000..6a7d9a8 --- /dev/null +++ b/book/tutorials/albedo/aviris-ng-data.ipynb @@ -0,0 +1,385 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "suffering-union", + "metadata": {}, + "source": [ + "# AVIRIS-NG Surface Spectral Reflectance\n", + "Lessons learned working with the NSIDC dataset. \n", + "__Dataset__: SnowEx 2021; Senator Beck Basin and Grand Mesa \n", + "__Tutorial Author__: [Brent Wilder](https://github.com/brentwilder)\n", + "\n", + "```{admonition} Learning Objectives\n", + "- Understand how this data is structured\n", + "- Understand where to find necessary terrain and illumination data\n", + "- Learn about the `spectral` python package and apply it to this dataset\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "649d863c-5ad1-4b9f-9fa0-416ff04396a4", + "metadata": {}, + "source": [ + "## Computing environment\n", + "\n", + "We'll be using the following open source Python libraries in this notebook:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "2a5720d5-d805-4c24-a92e-a2238805cdbf", + "metadata": {}, + "outputs": [], + "source": [ + "from spectral import *\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "d73344a2-f797-4218-a99f-a9db0338f002", + "metadata": {}, + "source": [ + "## SnowEx21 Spectral Reflectance Dataset\n", + "\n", + "The data were collected using an airborne imaging spectrometer, AVIRIS-NG can be downloaded from here, https://nsidc.org/data/snex21_ssr/versions/1.\n", + "- Reflectance is provided at 5 nm spectral resolution with a range of 380-2500 nm\n", + "\n", + "- For this dataset, the pixel resolution is 4 m\n", + "\n", + "- Data span from 19 March 2021 to 29 April 2021, and were collected in two snow-covered environments in Colorado: Senator Beck Basin and Grand Mesa\n", + "\n", + "- Each file will have a \"__.img__\" and \"__.hdr__\". You need to have both of these in the same directory to open data.\n", + "\n", + "
\n", + " \n", + "
\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "0a9952e7", + "metadata": {}, + "source": [ + "## Downloading necessary terrain and illumination data\n", + "\n", + "The NSIDC repository does not contain the terrain/illumination information.\n", + "\n", + "However, you can obtain it for the matching flightline (by its timestamp) at the following URL, https://search.earthdata.nasa.gov/ ,\n", + "\n", + "and searching for __\"AVIRIS-NG L1B Calibrated Radiance, Facility Instrument Collection, V1\"__ \n", + "\n", + "\n", + "- You only need to download the \"*obs_ort*\" files for the flight of interest. Please note these are different than \"*obs*\" files (ort means orthorectified).\n", + "\n", + "\n", + "- In the Granule ID search, you can use wildcars \"*\" on either end of \"obs_ort\" to reduce your search.\n", + "\n", + "- You may also want to use this bounding box to reduce your search: \n", + "\n", + "\n", + " - SW: 37.55725,-108.58887\n", + "\n", + "\n", + " - NE: 39.78206,-106.16309\n" + ] + }, + { + "cell_type": "markdown", + "id": "5b99d916-deb8-4af0-9fce-1e38e5c18d87", + "metadata": {}, + "source": [ + "## Using python package, `spectral`, to open data\n", + "\n", + "```{important}\n", + "Update the paths below to your local environment\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "equipped-qualification", + "metadata": {}, + "outputs": [], + "source": [ + "# INSERT YOUR PATHS HERE\n", + "path_to_aviris = '/data/Albedo/AVIRIS/ang20210429t191025_rfl_v2z1'\n", + "path_to_aviris_hdr = '/data/Albedo/AVIRIS/ang20210429t191025_rfl_v2z1.hdr'\n", + "path_to_terrain = '/data/Albedo/AVIRIS/ang20210429t191025_rfl_v2z1_obs_ort'\n", + "path_to_terrain_hdr = '/data/Albedo/AVIRIS/ang20210429t191025_rfl_v2z1_obs_ort.hdr'" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "23b1489b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1848, 699, 425)" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Open a test image\n", + "aviris = envi.open(path_to_aviris_hdr)\n", + "\n", + "# Save to an array in memory\n", + "rfl_array = aviris.open_memmap(writeable=True)\n", + "\n", + "# print shape. You can see here we have 425 spectral bands for a grid of 1848x699 pixels\n", + "rfl_array.shape\n" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "ed222d1f", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 377.071821, 382.081821, 387.091821, 392.101821, 397.101821,\n", + " 402.111821, 407.121821, 412.131821, 417.141821, 422.151821,\n", + " 427.161821, 432.171821, 437.171821, 442.181821, 447.191821,\n", + " 452.201821, 457.211821, 462.221821, 467.231821, 472.231821,\n", + " 477.241821, 482.251821, 487.261821, 492.271821, 497.281821,\n", + " 502.291821, 507.301821, 512.301821, 517.311821, 522.321821,\n", + " 527.331821, 532.341821, 537.351821, 542.361821, 547.361821,\n", + " 552.371821, 557.381821, 562.391821, 567.401821, 572.411821,\n", + " 577.421821, 582.431821, 587.431821, 592.441821, 597.451821,\n", + " 602.461821, 607.471821, 612.481821, 617.491821, 622.491821,\n", + " 627.501821, 632.511821, 637.521821, 642.531821, 647.541821,\n", + " 652.551821, 657.561821, 662.561821, 667.571821, 672.581821,\n", + " 677.591821, 682.601821, 687.611821, 692.621821, 697.621821,\n", + " 702.631821, 707.641821, 712.651821, 717.661821, 722.671821,\n", + " 727.681821, 732.691821, 737.691821, 742.701821, 747.711821,\n", + " 752.721821, 757.731821, 762.741821, 767.751821, 772.751821,\n", + " 777.761821, 782.771821, 787.781821, 792.791821, 797.801821,\n", + " 802.811821, 807.821821, 812.821821, 817.831821, 822.841821,\n", + " 827.851821, 832.861821, 837.871821, 842.881821, 847.881821,\n", + " 852.891821, 857.901821, 862.911821, 867.921821, 872.931821,\n", + " 877.941821, 882.951821, 887.951821, 892.961821, 897.971821,\n", + " 902.981821, 907.991821, 913.001821, 918.011821, 923.021821,\n", + " 928.021821, 933.031821, 938.041821, 943.051821, 948.061821,\n", + " 953.071821, 958.081821, 963.081821, 968.091821, 973.101821,\n", + " 978.111821, 983.121821, 988.131821, 993.141821, 998.151821,\n", + " 1003.151821, 1008.161821, 1013.171821, 1018.181821, 1023.191821,\n", + " 1028.201821, 1033.211821, 1038.211821, 1043.221821, 1048.231821,\n", + " 1053.241821, 1058.251821, 1063.261821, 1068.271821, 1073.281821,\n", + " 1078.281821, 1083.291821, 1088.301821, 1093.311821, 1098.321821,\n", + " 1103.331821, 1108.341821, 1113.341821, 1118.351821, 1123.361821,\n", + " 1128.371821, 1133.381821, 1138.391821, 1143.401821, 1148.411821,\n", + " 1153.411821, 1158.421821, 1163.431821, 1168.441821, 1173.451821,\n", + " 1178.461821, 1183.471821, 1188.471821, 1193.481821, 1198.491821,\n", + " 1203.501821, 1208.511821, 1213.521821, 1218.531821, 1223.541821,\n", + " 1228.541821, 1233.551821, 1238.561821, 1243.571821, 1248.581821,\n", + " 1253.591821, 1258.601821, 1263.601821, 1268.611821, 1273.621821,\n", + " 1278.631821, 1283.641821, 1288.651821, 1293.661821, 1298.671821,\n", + " 1303.671821, 1308.681821, 1313.691821, 1318.701821, 1323.711821,\n", + " 1328.721821, 1333.731821, 1338.731821, 1343.741821, 1348.751821,\n", + " 1353.761821, 1358.771821, 1363.781821, 1368.791821, 1373.801821,\n", + " 1378.801821, 1383.811821, 1388.821821, 1393.831821, 1398.841821,\n", + " 1403.851821, 1408.861821, 1413.861821, 1418.871821, 1423.881821,\n", + " 1428.891821, 1433.901821, 1438.911821, 1443.921821, 1448.931821,\n", + " 1453.931821, 1458.941821, 1463.951821, 1468.961821, 1473.971821,\n", + " 1478.981821, 1483.991821, 1488.991821, 1494.001821, 1499.011821,\n", + " 1504.021821, 1509.031821, 1514.041821, 1519.051821, 1524.061821,\n", + " 1529.061821, 1534.071821, 1539.081821, 1544.091821, 1549.101821,\n", + " 1554.111821, 1559.121821, 1564.121821, 1569.131821, 1574.141821,\n", + " 1579.151821, 1584.161821, 1589.171821, 1594.181821, 1599.191821,\n", + " 1604.191821, 1609.201821, 1614.211821, 1619.221821, 1624.231821,\n", + " 1629.241821, 1634.251821, 1639.251821, 1644.261821, 1649.271821,\n", + " 1654.281821, 1659.291821, 1664.301821, 1669.311821, 1674.321821,\n", + " 1679.321821, 1684.331821, 1689.341821, 1694.351821, 1699.361821,\n", + " 1704.371821, 1709.381821, 1714.381821, 1719.391821, 1724.401821,\n", + " 1729.411821, 1734.421821, 1739.431821, 1744.441821, 1749.451821,\n", + " 1754.451821, 1759.461821, 1764.471821, 1769.481821, 1774.491821,\n", + " 1779.501821, 1784.511821, 1789.511821, 1794.521821, 1799.531821,\n", + " 1804.541821, 1809.551821, 1814.561821, 1819.571821, 1824.581821,\n", + " 1829.581821, 1834.591821, 1839.601821, 1844.611821, 1849.621821,\n", + " 1854.631821, 1859.641821, 1864.651821, 1869.651821, 1874.661821,\n", + " 1879.671821, 1884.681821, 1889.691821, 1894.701821, 1899.711821,\n", + " 1904.711821, 1909.721821, 1914.731821, 1919.741821, 1924.751821,\n", + " 1929.761821, 1934.771821, 1939.781821, 1944.781821, 1949.791821,\n", + " 1954.801821, 1959.811821, 1964.821821, 1969.831821, 1974.841821,\n", + " 1979.841821, 1984.851821, 1989.861821, 1994.871821, 1999.881821,\n", + " 2004.891821, 2009.901821, 2014.911821, 2019.911821, 2024.921821,\n", + " 2029.931821, 2034.941821, 2039.951821, 2044.961821, 2049.971821,\n", + " 2054.971821, 2059.981821, 2064.991821, 2070.001821, 2075.011821,\n", + " 2080.021821, 2085.031821, 2090.041821, 2095.041821, 2100.051821,\n", + " 2105.061821, 2110.071821, 2115.081821, 2120.091821, 2125.101821,\n", + " 2130.101821, 2135.111821, 2140.121821, 2145.131821, 2150.141821,\n", + " 2155.151821, 2160.161821, 2165.171821, 2170.171821, 2175.181821,\n", + " 2180.191821, 2185.201821, 2190.211821, 2195.221821, 2200.231821,\n", + " 2205.231821, 2210.241821, 2215.251821, 2220.261821, 2225.271821,\n", + " 2230.281821, 2235.291821, 2240.301821, 2245.301821, 2250.311821,\n", + " 2255.321821, 2260.331821, 2265.341821, 2270.351821, 2275.361821,\n", + " 2280.361821, 2285.371821, 2290.381821, 2295.391821, 2300.401821,\n", + " 2305.411821, 2310.421821, 2315.431821, 2320.431821, 2325.441821,\n", + " 2330.451821, 2335.461821, 2340.471821, 2345.481821, 2350.491821,\n", + " 2355.491821, 2360.501821, 2365.511821, 2370.521821, 2375.531821,\n", + " 2380.541821, 2385.551821, 2390.561821, 2395.561821, 2400.571821,\n", + " 2405.581821, 2410.591821, 2415.601821, 2420.611821, 2425.621821,\n", + " 2430.621821, 2435.631821, 2440.641821, 2445.651821, 2450.661821,\n", + " 2455.671821, 2460.681821, 2465.691821, 2470.691821, 2475.701821,\n", + " 2480.711821, 2485.721821, 2490.731821, 2495.741821, 2500.751821])" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# You can create an array of the bands centers like this\n", + "bands = np.array(aviris.bands.centers)\n", + "bands" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "id": "12a02e71", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAHUCAYAAABLdNsnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3RklEQVR4nO3dd3xUZfr///ckgZCQQihSBAEpUcpKFWkiEiCwH8UuRBTLgh8/6s91Ub/qKmJZUdHVVdfVtbNqUFAXVqlBUIpKE1FhHVpYBGGFhFRakvP74zjDhEzN9JnX8/HIw3Du+5xzB07Guea+7+uyGIZhCAAAAAAQMRLCPQAAAAAAQG0EagAAAAAQYQjUAAAAACDCEKgBAAAAQIQhUAMAAACACEOgBgAAAAARhkANAAAAACIMgRoAAAAARJikcA8g1tXU1Gjfvn1KT0+XxWIJ93AAAAAAhIlhGCorK1ObNm2UkOB+zoxALcj27dundu3ahXsYAAAAACLEnj171LZtW7d9CNSCLD09XZL5j5GRkRHm0QAAAAAIl9LSUrVr184eI7hDoBZktuWOGRkZBGoAAAAAvNoSRTIRAAAAAIgwBGoAAAAAEGEI1AAAAAAgwhCoAQAAAECEIVADAAAAgAhDoAYAAAAAEYZADQAAAAAiDIEaAAAAAEQYAjUAAAAAiDAEagAAAAAQYZLCPQAAACKd1Srt2CF17ix16RLu0QAA4gEzagAAuFBUJOXmStnZ0tixUteu5p+Li8M9MgBArCNQAwDAhbw8qaCg9rGCAmnChPCMBwAQPwjUAABwYvFi86u6uvbx6mrz+LZt4RkXACA+EKgBAODAttwxN9d9v+3bQzMeAEB8IlADAMCBs+WOznTuHPyxAADiF1kfAQD4ldVqLmt0JzFRyskh+yMAILiYUQMA4Fc7dnjuk5Mj5ecHfywAgPjGjBoAAL/q1Ml9+5Il0siRoRkLACC+Rd2MWllZmaZPn66ePXsqLS1NmZmZ6t+/v5555hkdP37cr2vPnTtXF110kdq0aaOGDRuqcePGys7O1uTJk7Vp06bA/AAAgIjVtas0erS5vNFRYqJ5nCANABAqFsMwjHAPwlu7d+/WBRdcoMLCQklSamqqqqurdezYMUlS7969tWzZMmVlZfl03WPHjunKK6/Uv/71L/uxtLQ0HT9+3B78JSQk6Omnn9add97p07VLS0uVmZmpkpISZWRk+HQuACD0iovNOmmOe9VGjzaXO/r4vxcAAGrxJTaImhm16upqXXTRRSosLFTr1q21dOlSVVRUqLKyUrNnz1Z6erq++eYbXXPNNT5f+/HHH7cHaf/3f/+nn376SWVlZTpy5IjWr1+vIUOGqKamRlOnTtX69esD/aMBACJIVpa0aJGZWGTBAvO/ixYRpAEAQitqZtRef/11/e53v5MkrVmzRgMHDqzVnp+fr7y8PElSQUGBRowY4fW1O3bsqMLCQg0bNkwrVqyo015SUqK2bduqvLxc9957r2bMmOH1tZlRA4DIYLWayUI6dyZjIwAgPGJyRu3tt9+WJA0fPrxOkCZJ48ePV8eOHSVJs2bN8unaP//8sySpX79+TtszMzPVtWtXSVJ5eblP1wYAhJetgHV2tjR2rLkPLTfXXOIIAECkiopArbKyUqtXr5YkjRkzxmkfi8Wi3NxcSdKSJUt8uv6ZZ54pSdqwYYPT9pKSElmtVkmugzkAQGRyVsC6oMDchwYAQKSKikBt69atqqmpkST16NHDZT9b2/79+1VUVOT19W+55RZJ0ooVK3Trrbdq7969kiTDMLRx40b9z//8j8rLy3XeeefVaw8cACA8bAWsq6trH6+uNo9v2xaecQEA4ElUBGr79u2zf3/66ae77OfY5niOJ7feeqvuueceJSQk6KWXXlLbtm2Vnp6uRo0aqW/fvtq+fbvuvfdeffbZZ0pKcl967tixYyotLa31BQAID08FrLdvD804AADwVVQEamVlZfbvU1NTXfZzbHM8x5OEhATNmDFDb7zxhtLS0iSZe9FsqfmPHj2qkpISVVRUeLzWjBkzlJmZaf9q166d1+MAAASWpwLWnTuHZhwAAPgqKgK1YDt48KBGjBih66+/XgMHDtSqVat0+PBh/fzzz/roo4/UokUL/e1vf9OAAQPsyyJdue+++1RSUmL/2rNnT4h+CgDAqTwVsCb7IwAgUkVFoJaenm7/vrKy0mU/xzbHczyZNGmSVqxYoWHDhmnx4sUaPHiwMjMz1apVK1166aVatWqVmjdvrp07d+ree+91e63k5GRlZGTU+gIAhE9+vpSTU/tYTo55HACASBUVgVqbNm3s37ub0XJsczzHna1bt2rBggWSpKlTp8pisdTpc9ppp+m6666TJH300UeKktJzAABRwBoAEJ2iIlA7++yzlZBgDvX777932c/W1qpVKzVt2tSra2/ZssX+fSc3mxm6/Lo+prKyUv/973+9ujYAIHJ06SKNGcNyRwBAdIiKQC01NVWDBw+WJC1atMhpH8MwtHjxYknSqFGjvL62LQCUpN27d7vsd+DAAfv3toQjAAAAABAMURGoSeY+Mklavny5vv766zrtc+bM0c6dOyXJvkzRG3369LF//7e//c1pn4qKCs2aNUuS9Jvf/EaNGzf2+voAAAAA4KuoCtR69uwpwzB0+eWXa9myZZKkmpoazZkzR5MnT5YkjRkzRiNGjKh17vTp02WxWGSxWFRYWFirrX379rroooskSf/617907bXXaseOHTIMQydOnNCaNWt0wQUX2IPAqVOnBvknBQAAABDv3FdvjiBJSUmaP3++hg8frsLCQuXk5Cg1NVU1NTU6evSoJKl379569913fb72G2+8odzcXG3YsEHvvPOO3nnnHaWmpur48eOqqqqy97vrrrt8mq0DAAAAgPqImhk1SerQoYM2b96sadOmqUePHrJYLGrQoIH69u2rp59+Wl999ZWy6pHGq3nz5vrqq6/02muvafTo0WrZsqVOnDihpKQknXnmmZo4caJWrlypmTNnBuGnAgAAAIDaLAa55oOqtLRUmZmZKikpoaYaAAAAEMd8iQ2iakYNAAAAAOIBgRoAAAAARBgCNQAAAACIMARqAAAAABBhCNQAAAAAIMIQqAEAAABAhCFQAwAAAIAIQ6AGAAAAABGGQA0AAAAAIgyBGgAAAABEmKRwDwAAgGhitUo7dkidO0tduoR7NACAWMWMGgAAXigqknJzpexsaexYqWtXqW9faf36cI8MABCLCNQAAPBCXp5UUFD72MaNUv/+ZgBXXByecQEAYhNLH4EAsFqlzz+XLBZp2DCWQwGxxmqVFi923V5QIE2YIC1aFLoxAQBiG4Ea4CVn+1LWrpUmT5Y2b67d98ILpblzpaws19dJTJSqq9nnAkSDHTvct1dXm4Hctm38PgMAAoNADXDCMShr1sxc8uT4aXp2tjl79u9/Oz//s8+kkSOlRx81r2EY0qZN0osvSitX1u3fp4/0yitSRgZJCoBI1KmTd/22b+d3FwAQGBbDMIxwDyKWlZaWKjMzUyUlJcrIyAj3cOCG1eo8mGrcWDpyRKqpCe14bMFbv36hvS8A53JzpaVL3b8WWK0EagAA13yJDZhRQ1xy3FPWpIk0Y4aZFMCZioqQDs3OlqRg9GgpP9/5MkoAoZOfL118sbRqVd22xEQpJ4cgDQAQOARqiCtFRdIVV0jLl4d7JN4jSQEQfkVF5hJoZ0GaZAZp+fmhHRMAILaRnh9xZdy46ArSpNpJCgCEh7PU/AkJ5hJlq9X8IIVZbwBAIBGoIS6sXSt17+760/BosH17uEcAxCdbav7q6trHa2pcL5kGAMBfBGqIaUVFZgKAAQOkLVuCe6/Gjc1P2IPlyJHgXRuAa55S8/MhCgAgGAjUENPy8swsbcF0zjnSunXSnj1mSv5gufxyM+gsLg7ePQDU5Sk1f+fOoRkHACC+kEwEMcdWA+3nn2vXPguECy+UnnzSTOMvScOG1c7ytmiRuZfsm2+kmTOl9etPtmVkSKWlJ/88erR04oSZffLUJVWuLF1qZp1zVosNQHB07Wr+vhYU1P5dJdMjACCYqKMWZNRRC52iIjNZSKD2oY0eLT32mOugzBvbtpnLomwFrE/9c3GxmdHR14By6FBp3jySFwCh4ux3ldIZAABf+RIbEKgFGYFaaKxday47dJyx8sRikc4+W3ruOamq6uTyJcdAKlRsAVxiovnmzxt9+pj136qrQz9eIF6d+mELAAC+IFCLIARqwbV2rXTLLfXLvBapn4bn5ppLHGtqfDsvUn8eAAAAmHyJDUgmgqjkmM2xPkHac89Fbt2j/Pz6JSVZutRcmgUAAIDoR6CGqORvNsexYwM3lkDLyjKDyHXrpG7dvD+vpsbcP/Phh9LChRTIBgAAiGYEaog6tuKzvi4NlE7uAYuGvSX9+kk//GAW6vbFFVeYgWjXrqTzBwAAiFYEaog6norPupOTYy4tjCZvvln/c23LIa1WZtkAAACiCXXUEHWaNfOuX9++0j33mEsJbVkdo2Em7VT9+zuv4eQN23LI7OyTx0g6AgAAEPkI1BB1pk51396nj/TKK+bSwViRn1+/emvOFBSY11q0yP9rAQAAIDhY+oioUVRkFnp2V9D6ww+lDRtiK0iTTiYYsVqlBQukJUvMgNRi8f1a1dVmwOdPMhYAAAAEF4EaIprj3qpx46TVq933T0kJzbjCpUsXacwYM31/QYE0eHD9rzVqFMlGAAAAIhWBGiKSrU5advbJDIarVkmeyrN37hya8UWCrCxp5UpzljGhnr/JtmWQAAAAiCwEaohIeXlmEOGthIToSbsfaPPm1a9AtnRyGSTZIAEAACILgRoizuLF5pcvGQ4HD46+tPuB4rh/7f33zRk2X40fzxJIAACASEKghohRVCRdeKG55NFbFos0ZIj0xRekm+/SRbrqKvPvYt06M9mIt779liWQAAAAkYRADRFj3Dhp+XLfzhkyRJo/PzjjiWb9+pnZL71N588SSAAAgMhCHTWEXVGRGaS5S7vvTLdu5uwRXBs1yrdi2W+9ZQa/7oqDW63Sjh3O+9jaEhPN+0VrkXEAAIBwsxiGpzx68EdpaakyMzNVUlKijIyMcA8nIuXmmjW9amp8O2/dutirlxYMxcX1K5bdt690zz1S795msFVUZCZ5cbyOrbj4mWfWbbOxzXrG+9JUAAAAX2IDArUgI1Bzz2o1U/D7IiHBzHK4aFFwxhSrtm2Ttm+XHnzQXBbpiyFDpIYNpc8/dz4z16SJVFrqOthu1sy8P8EaAACIZ77EBix9RFjt2OH7OSNHxm+GR3906WJ+lZVJV1/t27melqUePuy+/dAh89/t0UdZDgkAAOANkokgbIqKpMcf99zvwgvNZY4LFpgzcIsWMTPjj169wnPfDRtOFi/PzaUcAAAAgDvMqCFs8vKkL7903maxSGefLf3zn8y+BFrXrmaCkfrsCwyUggJz3xzLVwEAAJxjRg1hYbW6L2o9ZIi53I4gLTjy882liOFCOQAAAAD3CNQQFgsWuG+/7z6WNwZTVpY5m+VrYexA2749fPcGAACIZARqCKmiInN/0p13uu/XuXNoxhPvbIWxrVbp/fcDV+6gYUPv+vHvDAAA4ByBGkJq3DhpyRL3fYYOZcljqHXpIl11lTnDFoig7b33PPdp1kxq3rz+9wAAAIhlBGoIiaIi843/qlWSp8p9t90WmjHBOcegzdnSyD59zOOjR0uJibXbEhLM45df7rzd0eHDZkIRG6tVWriQfWsAAAASgRpCoKjIzDTobZHl3r2DOx54z3FppK08woYN5vH8fCknp3Z/xxp3ztod2RKKrFtnLofNziZ9PwAAgI3FMDzNb8AfvlQfj1VDh3oumCyZsy85OaRsjzbbtplJQVwVsn7tNWnyZNfnZ2RIFRW1M4DyLAAAgFjkS2xAHTUEldXqXZAmmW/MbbMxiB5durjfU3j++e7PLy2te8wxfT/7FQEAQDxi6SOCascOz326dzeXvy1aREr+WGQrsJ1Qj1cb0vcDAIB4RaCGoCkqkh5/3H2ffv2k778PXFp4RKb8fKlXL9/PmzGDvWoAACA+EaghaPLypC+/dN3erJnnVP2IDVlZ9VvWunp17cyQAAAA8YJADUFhtZp7jBwTRDjq18/cf8RSx/hhWwLpLmX/qWpqzOdo/frgjQsAACASEaghKDZtct/+yCMEafEoP18aOND3826+OfBjAQAAiGQEagiKp55y3965c2jGgciSlSXdf7/v523cSCFsAAAQXwjUEFBFRWbdNHfFrYcOJeV6POvUqX7nkQESAADEEwI1BNS4cWYCCHduuy00Y0Fk6tpVGjLE9/Puvpu9agAAIH4QqCEgbDNpq1ZJhuG+b+/eoRkTItftt/t+zg8/SP37S7m5pOxHcFmt0sKFLLcFAIQXgRoCIi9PWrPGfZ+EBDPrH8seUZ+aajZLl5KyH8FRVGR+EJCdLY0da87+8sEAACBcCNTgt7VrzRTqNTXu+w0eXL9aWog9rlL1JyZKffq4P5eU/QiWvDypoKD2sYICPhgAAIQHgRr8dsst7tstFnNP0hdfkJIfJ+XnSzk5tY/l5Egvv+zd+ZMmBX5MiF+uaj9WV5vHWQYJAAi1qAvUysrKNH36dPXs2VNpaWnKzMxU//799cwzz+j48eN+X3///v168MEH1bdvXzVt2lQpKSlq3769cnNz9cQTT+jEiRMB+Clih9Vqpk53Z8gQaf780IwH0SMrS1q0yHyGFiww/7tokbkPbfRoc6msO1u2mMto//IX3kTDfzt2uG8n6ygAINQshuEp9UPk2L17ty644AIVFhZKklJTU1VdXa1jx45Jknr37q1ly5Ypq57TNu+//76mTJmi0tJSSVLDhg2VkpKikpISe5/i4mI1adLE62uWlpYqMzNTJSUlysjIqNe4IlVRkTRypPtArVs3MwkE4IviYnO52eLF3p9z4YXS3LnM2qJ+rFZzb5q7dvbXAgD85UtsEDUzatXV1broootUWFio1q1ba+nSpaqoqFBlZaVmz56t9PR0ffPNN7rmmmvqdf05c+YoLy9PpaWluvrqq/XNN9/o2LFjOnz4sMrKyrRy5UrdeeedatCgQYB/suiVlydt2uS+z9tvh2QoiDG22ba5c70/Z/ly9hKh/tztmyQJEgAgHKJmRu3111/X7373O0nSmjVrNHDgwFrt+fn5ysvLkyQVFBRoxIgRXl/7559/Vvfu3VVcXKw777xTf/7znwM27lidUfP06XNCgjnbtmhR6MaE2JSba2Z69JSsxoaZD9SXs5nc0aPN/ZTM1AIAAiEmZ9Te/nVqZvjw4XWCNEkaP368OnbsKEmaNWuWT9d+/vnnVVxcrLZt2+qJJ57wf7BxwNN+jl69yPCIwMjPlwYN8r7/mDFkhET9uNo3SZAGAAiHqAjUKisrtXr1aknSmDFjnPaxWCzKzc2VJC1ZssSn69sCu4kTJ6phw4Z+jDQ+FBVJDz7ovs/s2by5QWBkZUkrV5oF1S0Wz/137DATkgwdSv0r1E+XLmbAz8wsACCcoiJQ27p1q2p+XffUo0cPl/1sbfv371dRUZFX1961a5f27dsnSRo2bJi++eYbXX311WrVqpWSk5PVrl07jR8/Xl9++aWfP0VsKCoy93Js2OC8nf0cCJZ586RRo7zvv2qV+RwSrAEAgGgUFYGaLZCSpNNPP91lP8c2x3PcsVqt9u/Xrl2rAQMG6IMPPlBJSYlSUlL0008/6f3339fgwYM1Y8YMj9c7duyYSktLa33FknHjpEOHXLcPGsSSRwSHbVnaunXSb37j3TmHDvkW3AEAAESKqAjUysrK7N+npqa67OfY5niOO8UOH7c//PDDatmypRYtWqSKigodPnxYW7du1YgRI2QYhu6//37985//dHu9GTNmKDMz0/7Vrl07r8YRDaxWc5bCnfvuY8kjgqtfP+nbb71P3b9+vXT++cysAQCA6BIVgVow1TikkqupqdGcOXM0evRoJfxabfess87SvHnz1KZNG0nS9OnT3V7vvvvuU0lJif1rz549QRt7qHlKICJJnTsHfxyAZM6UeVMYW5JWryZ1PwAAiC5REailp6fbv6+srHTZz7HN8Rxvrz1kyBCdd955dfo0btxY//d//ydJ+vbbb3XgwAGX10tOTlZGRkatr1iwdq10113u+wwdyt40hFZ+vlkGwpOaGnMGbtu24I8JAAAgEKIiULPNZknS3r17XfZzbHM8xx3HfW1nn322y36Obbt37/bq2rGgqMisYzVggLRli+t+zZqZyR6AUHLct+bNZyLjx7MEEgAARIeoCNTOPvts+1LE77//3mU/W1urVq3UtGlTr67drVs3JSYmSjJT/LviWBfcXb9Yk5dnFht2p18/c6aCvWkIl379pMJCqW9f9/2+/ZYlkAAAIDpERaCWmpqqwYMHS5IWLVrktI9hGFr8a3aBUT6keWvUqJHOP/98SdIWN1NGW7dulWQGaR06dPD6+tHMajWXizls43PqkUcI0hB+WVlm4hB39daqq1kCCQAAokNUBGqSNGnSJEnS8uXL9fXXX9dpnzNnjnbu3ClJuu6663y69g033CBJWrVqldN6aZWVlfrb3/4mSRowYIBatGjh0/Wj1eefe9ePBCKIJPPmSb17u+/zzTehGQsAAEB9RVWg1rNnTxmGocsvv1zLli2TdDJT4+TJkyVJY8aM0YgRI2qdO336dFksFlksFhUWFta59jXXXKNzzz1XknT11Vdr8eLF9myQ//73v3XxxRdr3759SkhI0J/+9Kcg/pSRwbYvbcoU9/0obo1IlJXluZbfzJmhGQsAAEB9JYV7AN5KSkrS/PnzNXz4cBUWFionJ0epqamqqanR0aNHJUm9e/fWu+++6/O1ExISNG/ePI0YMUJbtmxRbm6uUlJS1LBhQ5WUlEiSGjRooL/+9a+68MILA/pzRaJx46Q1azz3y8mhuDUiU9eu0pAhruv+2WqrzZvHsl0AABCZAjqjtnnzZs2cOVO33XabbrrpplptJ06c0L59+/Tzzz/X+/odOnTQ5s2bNW3aNPXo0UMWi0UNGjRQ37599fTTT+urr75SVj3fdbVq1UobN27U008/rf79+6thw4Y6cuSIOnTooBtvvFEbN260z9rFIqtV+uADMynDqlWe96V9+KGZbY83uYhUt9/uvn3VKunii0MzFgAAAF9ZDMd0hvVUUlKiG2+8Uf/85z8lmYk9LBaLqqur7X0qKyvVvn17FRcXy2q16swzz/T3tlGhtLRUmZmZKikpCXtNNavVLFrdufPJ5YpFRWZmx1/zsHhtwQJpzJjAjxEIFKtVys723G/oUGbW4o2z10IAAELBl9jA7xm1qqoqjR07Vv/85z+Vmpqq3/72t2rUqFGdfqmpqbrxxhtVU1NjD+gQGrY9Z9nZ0tix5rKw3FyznlRenlRQ4Ps1SSCCSNe1q7mHMsHDq9zq1aTsjxfuXgsBAIg0fgdqr7/+ur788kudeeaZ+vHHHzV//nxlZmY67Xv55ZdLkhYuXOjvbeEDZ8FYQYG57GvxYjNlubdIIIJokp8vDRrkvk9NDSn744Wr10ICdQBAJPI7UHvvvfdksVj07LPPqk2bNm779u7dWwkJCW7rlSGwbLXQTg3GqqtdJ1pwhwQiiCZZWdLKle5rq9ls3x6aMSE83L0WEqgDACKR34Had999J4vF4lWR6QYNGigzM1OHDh3y97bw0o4d/l+jRw9zT5rVSgIRRKd586TBg933iZPyiHHL02shgToAINL4HahVVFQoPT1dDRs29Kr/8ePHlZQUNVUBol6nTv5f48EHzcQhLHdEtHKcWXPGYpEeeCC0Y0JoeXotZN8tACDS+B2oNW/eXKWlpaqoqPDYd9u2baqoqFDr1q39vS28ZEuokJhY/2v07h248QDh9Mwzzo8bBsvfYp2r18KEBPbdAgAik9+BWv/+/SVJn376qce+zz77rCRpsKc1SAio/Hxzb5mvSByCWHPwoPt2lr/Ftvx8s9C5o5oa6cQJMj8CACKP34Ha9ddfL8MwNG3aNO3fv99lv5kzZ+rll1+WxWLRjTfe6O9t4YOsLHNvmTcJFRyROASxxtPytxkzeMMey7KypIYN686qff45mR8BAJEnIAWvL7roIn366adq06aNJk6cqFdeeUWlpaWaPXu2vvvuO82ZM0dWq1WGYWjChAl69913AzH2qBApBa+9Lf4rSa++Kg0bxkwaYlNurpmS3VlZisRE8wOKRYtCPy4En6fXQauV1z0AQHD5EhsEJFCrqKjQxIkTNW/ePFmcTNnYbnHppZfq3XffdVoQO1ZFSqC2cKFZ4NUd3qQiHhQXmzUE3ZWn4A17bPL0OrhggZk4CQCAYPElNvB76aMkNW7cWB9//LH+9a9/6eKLL1azZs1kGIYMw1BGRobGjh2rf/7zn/rwww/jKkiLJN5kf2SpI+JBVpZ0//3u+7BXLTaR+REAEE0CMqPmTFVVlaqrq5WcnByMy0eNSJlRk5wv+UpIkHr1kmbPZgYB8YMlcPHL2esgqwkAAKES8hk1Z5KSkuI+SIs0zrI/jhxpvmnhTSniibtU7UOG8PsQy5y9DrKaAAAQiYI2owZTJM2o2WzbZi7t6tyZN6SIX8XFZqa/xYvrto0ebb5xz8oK/bgQGrwOAgDCIaQzakuXLlXTpk2Vl5fnse9ll12mpk2bavny5f7eFn7o0sXcMM+bE8Qzx7IVCae8EhYUkK491vE6CACIdH4HarNnz1ZJSYkmePGu5uqrr9bhw4c1e/Zsf28LAH6zWqWVK82ix46qq82Ztm3bwjMuAAAAvwO1r776SpI0cOBAj31HjBghSfryyy/9vS0A+G3HDvftZH8EAADhkuTvBX766SelpqaqefPmHvs2b95cqamp2rt3r7+3BQC/eUrX3qJFaMYBIH5ZreaHRuyXBHAqv2fUqqurnRa5dnnDhAQdOXLE39sCgN9s2R+dsVikBx4I7XgQnaxWs5g2S2Xhi6Iis1xEdrZZiL1rV/PPxcXhHhmASOF3oNa6dWtVVFRouxdrhLZv367y8nK1bNnS39sCQEA8+qjz44bBPjW4xxtt+CMvz0xc5IhERgAc+R2oDRkyRJL01FNPeez75JNPymKxaOjQof7eFgAC4uBB9+3sU4MrvNFGfVmt5gdBjoXXJRIZAajN70DtlltukWEYev3113X//ffr+PHjdfocP35c9913n15//XX7OQAQCTztU+vcOTTjQHThjTb8QSIjAN7wO5nIueeeq9tvv10vvPCCnnzySb322msaOXKk2rdvL4vFosLCQi1dulSHDh2SJN16661eZYgEgFCw7VMrKKj9pjshQRo0iM39cM6bN9o8O3CFD4gAeMNiGIbh70Vqamp033336ZlnnlFNTU2d5CKGYSgxMVF33323HnvsMSWcWl02hvlSfRxAeBQXm8vVFi+u2zZ6tJSfbxbIDjbH7G+GYX6fmGgGkGSEiyxWq7k3zV07/15wJze37gdEiYlSTo60aFH4xgUguHyJDQISqNls27ZNb7/9ttasWaP9+/dLMpONDBo0SNdff706efoIKQYRqAHR4/zzpdWraxfADsUbp6Iic7+Ts0DRUbdu0pQpZuIKgoDw4402/OHsA6JQfjAEIDzCFqihLgI1IDqEc4bE2Rt+Ty68UJo7lzd04cQbbQTCtm3mUllmzYH44Ets4PceNQCIBeHac2RLSuGrzz6TLr5YWrky8GOCd7KyzJkz3mjDH1268NwAcC5+NosBgBvh2NxfVCRdemn9z1+1ylyuSd2u8OrSRRozhjfbAIDACtiMWllZmT755BNt3rxZRUVFOnHihMu+FovFnqofACKBq+yPNrffHtglbUVF5j1/TYhbb6tXm8vv2BMFAEBsCcgetbfeekt33HGHysvL7cecXdZiscgwDFksFlX7shkjirFHDYge7rI/BjpJRL9+0oYNgbmWRJZBAACiQUj3qC1evFg33XSTDMNQo0aNNHDgQLVp00ZJSWx/AxBdsrKk5593nlTEsZCxPwFRUZE0blxggzRJGj/enA0kiQUAALHB72jqqaeekmEYGjhwoObNm6fmzZsHYlwAEBbBTiqSlyetWeN9/3POkaqqpB9+cN9v0yaWQAIAEEv8TiayYcMGWSwWvfXWWwRpAKJeMJOK2DI8OtZpc6ZfP2nBArP/pk3S99+b33fvLlkszs+pqTGvvX59/ccHAAAih9+BWlVVldLS0tSFzREAYoAtqUiCk1fHZs0kfz6P8jRbZ7vHkiV1swh26WKm4u/d2/35kybVf3wAACBy+B2oderUSceOHYub5CAAYp+r7I6HD5vLC+vL02xdv37mHjhX+8yyssyxubNli9SjBzNrAABEO78DtYkTJ+rEiRNauHBhIMYDAGH3yy/O0+Y7JhTxVVGR9P/9f87bEhKkIUOkdes8JwPp2lXq08d9nx9+kPr3l4YOpcYaAADRyu9A7fe//7369++v//u//9O2+rx7AYAI401CEV/l5ZlZGZ0ZOVKaP9/7a738snf9Vq2S2rdndg0AgGjkdx21WbNmqaysTNOmTdORI0d0xRVXaMCAAUpPT3d73nXXXefPbaMGddSA6GO1Ok/RbzN0qDRvnvep8D1drz410HJzpaVLPScmsRk9OrAFuwEAgO98iQ38DtQSEhJk+TUNma2YtScWi0VVVVX+3DZqEKgB0Sk315wBc7b91tfi1889J915p+v2BQvM5CG+KC6WLr7YnDXzRqALdgMAAN+FNFDr0KGDV8HZqXbt2uXPbaMGgRoQnbwJhDzNhBUVmUseFy92f6/6zKjZnH++OUZvX8n9uRcAAPCPL7GB3wWvCwsL/b0EAEScrCzp/vulsWNd9xk/3px1c7WcMC/PXJ7oztCh/gVO8+aZmSg9BYM233xDoAYAQDTwO5kIAMQqT+n0N21yna7f2+LWt91Wr6HZZWWZyxnXrZO8mbR/8UX/7gcAAEKDQA0AXHBX/Foyg7DFi51nVfSmuLXkuYC1t/r1kwoLzRk6d1aurF95AQAAEFoEagDgRn6+1KuX+z4331z7z0VF0oMPuj8nMdEMAgO5DDErS/riCzN5iTv1KS8AAABCy+9kIo7WrFmjVatW6aefflJFRYVcXdpisej1118P1G0jGslEgOjnKb2+ZM6sVVdLFRXSTTdJpaXu+wczXX6gywsAAIDACGnWR0natm2b8vLytHHjxlrHnaXrtx2rdpbzOgYRqAGxoW9f6ZSXuHrp3l166y1zqWIwBbK8AAAACAxfYgO/lz4eOnRIF154oTZs2KDTTjtNV155pQzDUKNGjTRx4kSNGDFCaWlpMgxDzZo106RJk+Km2DWA2PHyy4G5zsyZwQ/SJHO2buBA523V1eYMIHvVAACIXH4Has8995z27t2rAQMGaMeOHZo9e7YkKTMzU7NmzdKSJUu0b98+3X333Tp48KBSUlL05ptv+j1wAAil/v3dJxbxVufOgRmPJ7byAu6wVw0AgMjld6D26aefymKx6PHHH1dqaqrTPo0bN9aTTz6pO+64Q6+88ormzJnj720BIOS8SSzijr8103zlqbzAjBlmYW8AABB5/A7UduzYIYvFoqGn5IQ+fvx4nb733nuvJOnvf/+7v7cFgJDLyjKDtfpo1sxM4BFKtvICiYnO29escV0HDgAAhJffgdqJEyeUmZmppKQk+7HU1FSVlZXV6duyZUtlZmZq8+bN/t4WAMLCU201Z4YMMfeDhSPLInvVAACITn4Ham3atFFJSYmqqqrsx1q2bKmqqirt3LmzVt8TJ06otLRUJSUl/t4WAMImP18aOdJzvz59pHXrzCLT4UqFz141AACik9+BWseOHWUYhvbs2WM/1r9/f0nSO++8U6vvW2+9pZqaGp1++un+3hYAwiYry0xtv26dGYw56ttXev99s5bZhg2hyfDoiae9ai1ahGYcAADAe34HaqNGjZIkLXIoyHPttdfKMAw99thjuvXWW/Xqq6/qtttu02233SaLxaJLLrnE39sCQNj162cGY1artGCB+d/166Wrrgpt0hBPbMs1nbFYpAceCO14AACAZ34XvLZarRo1apQGDRqk9957z348Ly9Ps2fPrlXw2jAMnX322VqzZo0yMzP9uW3UoOA1gEiwbp107rmu263WyAouAQCIRb7EBkluW73QtWtXFRYW1jn+7rvvavjw4Xr//fe1Z88eZWZmKjc3V1OnTo2bIA0AIsXBg+7bt28nUAMAIJL4PaMG95hRAxAJrFYpO9t9O4EaAADB5Uts4PceNQBA5HNVUy0x0TxOkAYAQGTxO1BLSEjwKYtjx44da9VcAwCERn6+lJNT+9g550iPPRae8QAAANcCMqPm6+pJVlsCQOjZygqsXXuyrMDGjVL//lJurlRcHN7xAQCAk0K+9PH48eNKSGDFJQCEy4MPSt9+W/tYQYE0YUJ4xgMAAOoKacR0+PBh/fe//1WTJk1CeVsAwK+sVmnxYqm6uvbx6mrz+LZt4RkXAACozefNYps3b9amTZtqHTty5IhmzZrl8hzDMHT48GHNnTtXNTU16mNbcwMACKkdO9y3k6YfAIDI4HOg9vHHH+uRRx6pday0tFQ33HCDx3MNw5DFYtEf/vAHX28LAAiATp3ct3fuHJpxAAAA93wO1Jo0aaIzzjjD/ufdu3crISFBbdu2dXlOQkKCMjIy1KNHD02ZMkVDhw6t32gBAH6xpekvKKi7/FGSbr/dzA6ZlRX6sQEAgJP8LnidkJCgVq1aad++fYEaU0yh4DWASFNcbCYOWby4bltiopnCf9Gi0I8rElmt5nLRzp1ZEgoA8F9IC14/9NBDmjp1qr+X8VpZWZmmT5+unj17Ki0tTZmZmerfv7+eeeYZHT9+PKD3+t///V9ZLBZZLBZ16NAhoNcGgHDJypKef955G0lFTEVFZsmC7Gxp7FhzJpISBgCAUPJ7Ri2Udu/erQsuuECFhYWSpNTUVFVXV+vYsWOSpN69e2vZsmXKCsCanRUrVujCCy+013xr3769/b6+YEYNQCRauNAMQFxZsEAaMyZ044k0ubl1l4cy2wgA8FdIZ9TKyso0f/58LV++3GPfzz77TPPnz1d5ebnP96murtZFF12kwsJCtW7dWkuXLlVFRYUqKys1e/Zspaen65tvvtE111xTnx+jlsrKSv3ud79TUlKS+vXr5/f1ACDSkFTENUoYAAAigd+B2nvvvadLL71UCxcu9Nh3zpw5uvTSS/X+++/7fJ+33npL3333nSTpww8/VE5OjiRzj9zVV1+tV155RZK0cOFCLVu2zOfrO/rjH/+oHTt26J577lH37t39uhYARCJbUpHExNrHExPN4/G8H8ubEgYAAASb34Haxx9/LEkaP368x77XX3+9DMPQhx9+6PN93n77bUnS8OHDNXDgwDrt48ePV8eOHSXJbU03T7766is9//zz6tq1qx544IF6XwcAIl1+vrmUz9HAgebxeMZsIwAgEvgdqP3444+SpG7dunns+5vf/KbWOd6qrKzU6tWrJUljXGyasFgsys3NlSQtWbLEp+vbHDt2TDfeeKMMw9Arr7yiRo0a1es6ABANsrKk996THCumrFplZoSM56QZzDYCACKB34Ha/v371aRJE6+CmpSUFGVlZWn//v0+3WPr1q2qqamRJPXo0cNlP1vb/v37VVRU5NM9JOmRRx7R1q1bddNNN+mCCy7w+XwAiDZ5edKaNbWPFRSYwVo8czbbmJPDbCMAIHR8Lnh9qtTUVJWXl6u6ulqJp378eIqqqiqVl5crNTXVp3s41mg7/fTTXfZzbNu3b5+aNm3q9T2++eYbPfXUU2rZsqWeeuopn8bn6NixY/YslJKZ2QUAIpEtacapHJNmxOvsUVaWmd1x2zZzTxp11AAAoeb3jFqXLl1UVVXlVQKPZcuW6cSJE+rkaQPAKcrKyuzfuwvyHNscz/GkqqpKN954o6qqqvT888/7ld5/xowZyszMtH+1a9eu3tcCgGAiaYZnXbqYZQoI0gAAoeZ3oDZ27FgZhqG7777bbXBUXl6uu+++WxaLRWPdFe8JgyeeeEKbNm3S//zP/+iqq67y61r33XefSkpK7F979uwJ0CgBILBImgEAQOTyO1C77bbblJWVpe+//179+/fXxx9/rCNHjtjbjxw5oo8++kj9+vXT999/r8zMTN1xxx0+3SM9Pd3+fWVlpct+jm2O57izZcsWPfroo0pLS9NLL73k07icSU5OVkZGRq0vAIhErpJmJCRIQ4YwiwQAQDj5Hag1bdpU+fn5Sk5OltVq1RVXXKHMzEy1adNGp59+ujIzM3XllVfKarWqUaNG+uCDD9SsWTOf7tGmTRv793v37nXZz7HN8Rx3br31Vh0/flx//OMflZWVpfLy8lpfVVVVkiTDMOzHTpw44dP4ASBSOUuaUVNjZn/MzY3v7I8AAIST34GaJI0aNUqrV6/W4MGDZRiGqqqqtH//fv3888+qqqqSYRg6//zz9eWXX9oLVfvi7LPPVkKCOdTvv//eZT9bW6tWrbxOJLJr1y5J5pLF9PT0Ol/vvvuuJOk///mP/dhf//pXn38GAIhEtqQZQ4eaM2mOyP4IAED4+J310aZ3795auXKltm/frjVr1thT8Ldu3VqDBg3yOYGIo9TUVA0ePFgrV67UokWLdPfdd9fpYxiGFv+avmzUqFH1vhcAxBurVVq5su5xsj8CABA+AQvUbDp37qzOQdiBPmnSJK1cuVLLly/X119/rQEDBtRqnzNnjnbu3ClJuu6667y+bmFhodv266+/Xm+//bbat2/vsS8ARCNvsj8SqAEAEFoBWfoYCpMmTVLPnj1lGIYuv/xyezmAmpoazZkzR5MnT5YkjRkzRiNGjKh17vTp02WxWGSxWAi2AOAUZH8EACDyBHRGbf78+Vq8eLF2796tI0eO1KqtVlFRoW+//VYWi0UDBw70faBJSZo/f76GDx+uwsJC5eTkKDU1VTU1NTp69Kgkc/mlbU8ZAMA7tuyPBQXmcsdT3X67mXTEjxKTAADARwEJ1Pbs2aPLLrtMGzdulGTuF7NYLLX6JCcna8KECfrpp5+0adMm9ezZ0+f7dOjQQZs3b9bTTz+tjz76SLt27VKDBg3UvXt3TZgwQbfffrsaNmwYiB8JAOJKfr6ZOOTXrb612JKKLFoU+nEBABCvLIZhGP5coLKyUn379tWPP/6otm3b6pJLLtGbb76pyspKVZ/y0eyjjz6qhx56SI888ogeeOABvwYeLUpLS5WZmamSkhJqqgGIaFarlJ3tvp29agAA1J8vsYHfe9T++te/6scff1SfPn20detWPf/880pLS3Pad9y4cZKkJUuW+HtbAECAeZNUBAAAhIbfgdrcuXNlsVj05z//WY0bN3bbt0ePHkpKSpLVavX3tgCAACOpCAAAkcPvQO3HH39UYmKiBg8e7PlmCQnKzMxUcXGxv7cFAASYLalIYmLt4wkJ5nGWPQIAEDp+B2rHjh1TSkqKEk/9P7sLFRUVSk5O9ve2AIAgyM+Xzj+/9rGaGunECYnP2AAACB2/A7XTTjtN5eXlOnz4sMe+3377rY4ePaq2bdv6e1sAQBBkZUkNG9adVfv8czPzIwAACA2/A7VBgwZJkj744AOPff/0pz/JYrFo2LBh/t4WABAEVquZov/UemrV1ebxbdvCMy4AAOKN34Ha//7v/8owDE2fPl1btmxx2qeyslK33nqr5s6daz8HABB5yPwIAEBk8Lvg9bBhw3TTTTfp9ddf14ABA/Tb3/5WFRUVkqSZM2fqu+++06effmpfGvn73/9e55xzjr+3BQAEAZkfAQCIDH4XvJak6upqTZ06VS+88IJsl7NYLPZ2wzBksVh05513aubMmbXaYh0FrwFEm9xcqaCg7vJHycz+mJ9v7mUDAAC+8SU2CEigZvPDDz/otdde0+rVq7Vv3z5VV1erVatWGjx4sCZPnhyXM2kEagCiTXGxmThk8eK6bYmJUk6OtGhR6McFAEC0C1ughroI1ABEI6tVys52305dNSA8rFZzP2nnzvweAtHGl9jA72QiAIDYQ1IRIPIUFZlLk7OzpbFjzSL1ubnUOARiFYEaAKAOT0lFZszgzSEQanl55v5RRwUF1DgEYpVPSx+/+OKLgN34/PPPD9i1IhlLHwFEK3dJRdirVhtL0RBsLEcGYoMvsYFP6fkvuOCCgGRstFgsqqqq8vs6AIDgyc+XLr5YWrWqbptjAex4fnNYVGTOcjgmXiEzJoLBm+XI8fy7CMQin5c+Gobh91dNTU0wfhYAQABlZUn33+++zzffhGYskYqlaAgVahwC8cenQK2mpiZgXwCAyOfpzeGLL4ZmHJHIajVn0k5dGuo42wgESteu5mxtYmLt44mJ5nFm04DY41OgVlpaqvLy8mCNBQAQYbp2lYYMcd2+cmX8BiRkxkSo5eebe0Md5eSYxwHEHp8CtSZNmij7lJ2sjzzyiP785z8HdFAAgMhx++3u2+M1IGEpGkItK8tM4GO1SgsWmP9dtIj9kECs8inrY0JCglq1aqV9+/a5PYaTyPoIINp5yjY3dKg0b158vll0lhmTjJgAAFeCVvC6YcOGqqio8GtwAIDo4mpvjM2aNfGbPIOlaACAYPEpUGvbtq3Ky8v15ZdfBms8AIAIlJ8vDRzovC2ek2ewFA0AECw+1VEbO3asXnzxRQ0fPly/+c1vlJaWJkkqKirShRde6PV1LBaLli1b5ttIAQBhY0vVP3as6z7jx5vLAOMxSOnShax7AIDA8mmPWnFxsS688EJ9++23/t3UYlH1qfmMYxR71ADECk971RISpJEj2ZsFAIArvsQGPs2oZWVlacOGDVq6dKm+++47VVZWavr06UpLS9PUqVP9GjQAILLZ9qotXSo5K4dZU2MugfzoI+myywJ3X6tV+vxzyWKRzjjDXGqZmGj+t3PnyJrJslrNtP2RNi4AQPTxaUbNGbI+useMGoBYUlxsJsvYuNF9vz59pFdekfr1q/+9ioqkK66Qli9332/0aHMPnasll+6Cp0AFVkVFUl6eGah6Oy7AEwJ/IPYELeujM9ddd52uuuoqfy8DAIgCWVneZTTcuFHq398M1D74oH6JRsaN8xykSea+OFvWSatVWrjQvF9RkVk6IDvb3FvXtauZTr+42GzLzXXeVh95eeY4XI0L8IW759PxGQcQ2/yeUYN7zKgBiEV9+3qeVTtVt27SlCnmG09XswO27Il//avvhbR79JC+//7knxs0kE6cqN3HVuNMClz9M09796xWZkPgG2f1+RISzA9KDh06eYxZWyD6+BIbBDRQq6mp0YYNG7R7925VVlbquuuuC9SloxaBGoBYtG6ddO659T//wguluXNPvsH0dpljKPgaWC1c6D4b5oIF0pgx/o8L8cFT4O+I4upA9Anp0kebF154Qa1bt9Z5552nq6++WjfccEOt9uLiYvXo0UNnnXWWioqKAnVbAEAY9O9vfpqfUM//i3z2mXTxxSf/7O0yx1DwdSavUyf37Z07138siD87dnjfN55rGALxICCB2m233abf//73+uWXX5Seni6LxVKnT1ZWlvr27att27bpk08+CcRtAQBhlJ9vpuOvr1WrpLPOknr1Mr+PFL4GVrZsmImJtY8nJprHWfYIX3gK/J3x9cMFANHB70Bt8eLFeumll5SWlqaPP/5Yhw8fVosWLZz2zcvLk2EYmj9/vr+3BQCEWVaWueRq3Tozy2N9/Pij5GdpTp8NHRr4wCo//+TeN5ucHO8SrwCOXAX+7jBrC8QmvwO1l19+WRaLRY888ojGjRvntu/AgQMlSZs2bfL3tgCACNGvn7RhgxmwBWsrrsViJiN54w3/rtOsmTRvXuADK1vQakuGYrWafybJA+rD2fPZrFnd4C0hof4fkgCIfH4nE2ndurX++9//6vDhw0pPT691rNoxXdGvmjRpohMnTqiiosKf20YNkokAiCfFxeZ+s5UrA3tdx+x2zjLieaNbN3OJpWPwtG2buWyMOlWIRI7PZ/PmZrkHx1p9jsgACUSHkGZ9TE5OVuPGjWslCHEXqDVt2lSVlZU6evSoP7eNGgRqAOKR7Q3mkSPSww9LmzfX7zrnnCO99lrtwtnFxe7fsLpCmnzEgm3bpPHjzSXDgSgvASC0fIkNkvy9WUZGhoqLi3XixAk1aNDAbd+DBw/q8OHDatOmjb+3BQBEsC5dTgZFl11mvrm89FJpyxbJm48Hu3WT/vlP54GVbZmhLRhMSpKqqsz/3nuv6zewBGmIBYbhvIahYwZInnUgNvi9R6179+4yDEPr1q3z2Pcf//iHJKlv377+3hYAEEW6dDGXQ44a5bnv0KHmEkVPbza7dDHrk40cefK/BQUk9UBs85S+nwyQQOzwO1C77LLLZBiGpk+frpqaGpf91qxZo2nTpsliseiqq67y97YAgCjjmCXS2WqPhARpyBDpiy/qv8+GpB6IddTtA+KH34HazTffrM6dO2vZsmXKzc3VokWL7AHbwYMH9dlnn2nKlCkaPny4KioqdM4552jChAl+DxwAEJ369ZMKC82ZM0cjR0qBqt5im21jCRhiDXX7gPjhdzIRSdq2bZtGjRql3bt3Oy12LUmGYahTp04qKChQ+/bt/b1l1CCZCAC4RtZFwGS1mssavfldcJZQh6yPQHQIadZHm5KSEj322GN68803a2WAlMyEIzfeeKMefPBBZcXZKwiBGgAAcKWoSMrLq1/QxQcdQPQJS6DmaMuWLdq3b5+qq6vVqlUr9ejRQ4m/ztGfOHFCr7zyim677bZA3zYiEagBAABXnNUFJNU+ELvCHqg5U11drddff11/+tOftHfvXlVVVYXitmFHoAYAAJyxWqXsbPftzJQBsSVkddQqKyu1bds2VVdXq2PHjk6XNRqGobfffluPPvqoCgsLZRiGy31sAAAA8cKbVPsEakD8qlfWx5KSEk2aNEnNmjVTnz591L9/f7Vo0UKXXXaZfv75Z3u/FStWqGfPnrrpppu0a9cuSdK4ceP09ddfB2b0AAAAEc5qlRYuNPeUOSLVPgB3fA7UqqqqNHLkSL3zzjs6duyYDMOQYRiqqanRvHnzNHLkSB0/flxPP/20cnJytGXLFiUkJCgvL0+bN2/Wxx9/rH79+gXjZwEAAIgYRUXmHrTsbGnsWDO1fm6umbVRItU+APd8Xvr49ttva/369ZKkESNGaPTo0TIMQ4sXL9Znn32mrVu36uabb9bbb78ti8Wi6667TtOmTdOZZ54Z8MEDABCJfEm1jtiVl2cmCnFUUGCm1rclCsnPr5tqPyfHPA4gvvmcTCQ3N1dLly7V5MmT9fLLL9dqmzJlil577TVZLBY1adJEH330kYYNGxbQAUcbkokAQPzwJ9U6YouviUJItQ/EB19iA5+XPn733XeSpAceeKBO24MPPmj//oknnoj7IA0AEF/czaAgvniTKMRRly7SmDEEaQBO8jlQO3TokFJTU9W2bds6be3atVNqaqok6eKLL/Z/dAAARAmr1ZxJc6yHJZl/Xry4biIJxDYShQDwl8+B2vHjx5Wenu6y3dbWsmXL+o8KAIAo4+sMCmIbiUIA+Kte6fkBAEBtzKDgVPn5ZmIQRyQKAeAtvwpeAwAAk20GpaCg9vLHxETzzTkzKPEnK8vM7kiiEAD1Ua9A7cCBA0o8dS7/FO7aLRaLqqqq6nNrAAAiFqnW4UyXLgRoAHxXr0DNx4z+AADEBWZQAACB4nOg9tBDDwVjHAAAxAxmUOAPCqYDkOpR8Bq+oeA1AADxy5egi4LpQOwLasFrAAAAuFdUJOXmStnZ0tixZrKZoUOlDz5wXVOPgukAHDGjFmTMqAEAEH9yc+tmAHV06kyZ1WoGda5YrSyDBGIBM2oAAABhYrWayxddBWlS3ZkyCqYDOBWBGgAAQAB5CrokM4hbvPjkMkgKpgM4FYEaAABAAHkKuhzZZspsBdNPLUObmGgeZ9kjEH8I1AAAAALIVdDljONMWX6+WSDdEQXTgfhVr4LXAAAAcC0/39yD5phq31FiohmEOc6UUTAdgCMCNQAAgABzDLq++UZ68UVp5cqT7e5myiiYDkAiUAMAAAgaW9B11VX1mynzpWA2gNgSdXvUysrKNH36dPXs2VNpaWnKzMxU//799cwzz+j48eP1uubevXv10ksv6corr1Tnzp2VkpKilJQUdezYURMmTNBnn30W4J8CAADEmy5dpDFjvAu4nBXMzs2ViouDP04AkSGqCl7v3r1bF1xwgQoLCyVJqampqq6u1rFjxyRJvXv31rJly5Rlqx7phT179qh9+/Zy/GtITU2VYRg6cuSI/diNN96ov//970r0ZmewAwpeAwAAXzkrmG3b17ZoUfjGBcA/MVnwurq6WhdddJEKCwvVunVrLV26VBUVFaqsrNTs2bOVnp6ub775Rtdcc43P1zUMQyNGjNDbb7+tvXv3qqKiQuXl5frhhx80btw4SdIbb7yh6dOnB+EnAwAA8cRqlRYuPFlDzVm7s4LZp9ZeAxDboiZQe+utt/Tdd99Jkj788EPl/Jq/NiEhQVdffbVeeeUVSdLChQu1bNkyr6+blZWlDRs2qKCgQNddd53atGljv263bt308ccfKzc3V5L03HPP6ejRo4H8sQAAQJzwdjmjp4LZttprAGJb1ARqb7/9tiRp+PDhGjhwYJ328ePHq2PHjpKkWbNmeX3dzMxM9enTx2W7xWLRjTfeKEkqLy/X1q1bfRk2AACAJCkvz1zO6KigwEzj78hTwWzH2msAYldUBGqVlZVavXq1JGnMmDFO+1gsFvvM15IlSwJ6/0aNGtm/rz51HQIAAIAHvixndFUwOzHRPE72RyA+REWgtnXrVtXU1EiSevTo4bKfrW3//v0qKioK2P1XrFghSWrYsKG6du0asOsCAID44Otyxvx8M3GII3e11wDEnqioo7Zv3z7796effrrLfo5t+/btU9OmTf2+965du/Tyyy9Lkq6++mqP2VmOHTtmz0IpmZldAABAfPN1OaNjwWxfa68BiA1RMaNWVlZm/z41NdVlP8c2x3Pq68iRI7ryyitVWVmpZs2aacaMGR7PmTFjhjIzM+1f7dq183scAAAgupya2bG+yxm9qb3mKYskgOgUFYFaOFRVVSkvL08bNmxQgwYN9N5777mdzbO57777VFJSYv/as2dPCEYLAAAigbvMjoFezkhRbCC2RcXSx/T0dPv3lZWVLvs5tjme46vq6mpNnDhR//znP5WUlKT33ntPo0aN8urc5ORkJScn1/veAIDYYLWa+5JYshZf3GV2XLQosMsZPd0LQHSLihk1W20zSdq7d6/Lfo5tjuf4whakvf/++0pMTNQ777yjK664ol7XAgDEH2Y54pe3mR29Wc4YqHsBiF5REaidffbZSkgwh/r999+77Gdra9WqVb0SiVRXV+uaa67R7Nmz7UHa1VdfXb9BAwDikre1shB7QlmomqLYQOyLikAtNTVVgwcPliQtcjGXbxiGFi9eLEleL1N0ZAvSHGfSxo8fX/9BAwDiDrMc8auoSHr8cfd9AlmomqLYQOyLikBNkiZNmiRJWr58ub7++us67XPmzNHOnTslSdddd51P166urlZeXp7ef/99JSUl6d133yVIAwD4jFmO+JWXJ335pfO2YBSqpig2EPuiKlDr2bOnDMPQ5ZdfrmXLlkmSampqNGfOHE2ePFmSNGbMGI0YMaLWudOnT5fFYpHFYlFhYWGtturqal177bX64IMP7IlDWO4IAKgPZjni09q1zmdSbQYNCk6haopiA7EtKrI+SlJSUpLmz5+v4cOHq7CwUDk5OUpNTVVNTY2OHj0qSerdu7feffddn667evVq5f/6imaxWHT77bfr9ttvd9n/L3/5C4EcAMAp2yxHQUHtN+2JieYbaGY5YtMtt7hvv+8+s4B1oFEUG4htUROoSVKHDh20efNmPf300/roo4+0a9cuNWjQQN27d9eECRN0++23q2HDhj5ds6amxv79iRMndODAAbf9jxw5Uq+xAwDiQ36+mTjk123TkpjliGVWq7Rxo/s+wZ5J7dKFAA2IRRbDMIxwDyKWlZaWKjMzUyUlJcrIyAj3cAAAIcIsR3xYuNAsw+BKnz7Shg2hGw+AyOZLbBBVM2oAAEQLZjnig6d9ia+8EppxAIg9UZNMBAAAINK4yr6YkGAe79cvNOOwWs3ZPUpAALGDQA0AAMAPzrIvjhwZmn2JRUVSbq6UnW0uweza1fxzcXHw7w0guNijFmTsUQMAID6EY19ibq7rLKOLFoVmDAC850tsQKAWZARqAAAgGKxWcybNXTv7JIHI4ktswNJHAACAKLRjh/v27dtDMw4AwUGgBgAAEIU8ZZwMdv02AMFFoAYAQBCRjQ/B4irjZGKieZxlj0B0I1ADACAIyMaHUHCWcTInJzQZJwEEF8lEgoxkIgAQ+axWc79PILP1kY0PoRSOjJMAfEfWxwhCoAYAkauoSMrLkxYvPnls9GhzNiIrq/7XJRsfAMAZsj4CAOCFvDxz1stRQYE0YYJ/1yUbHwKNvY5A/CFQAwDEJavVnElzXJoomX9evNi/N8Rk40OgsNcRiF8EagCAuBTMWS+y8SFQgjXrCyDyEagBAOJSsGe9yMYHfwVz1hdA5EsK9wAAAAgH26yXq8yM/s56ZWWZ2R1t2fgSE837HDzoX6ISxA9vZn2ZnQViFzNqAIC4FYpZr2bNpL/8xQwK2WMEX7DXEYhvBGoAgLhlm/WyWqUFC8z/LloU2BkvZ3uMli5ljxE8Y68jEN+ooxZk1FEDgPjlqZ7aunVSv36hGw8Cx1YkPTFR2r1bslikYcP8C56cFV4vLjaD+kDX+gMQHr7EBuxRAwAgSDztMbr5ZmnDhtCMBf6zzby+9pr0ww/O+1x4oTR3rm9BlKfC6457HR2DOFdjtAWQ1dWe+wOIXMyoBRkzagAQvzzNqNn68EY6MtmCnooK6dFHpc2bPZ9jsUijRpnBlbdyc10ntfH2Os6CPRtm4IDI4UtsQKAWZARqABDf+vaVNm503b5ggTRmTOjGA+dLDB3bNm2SnnrKv9lObwNwT8G8t9dxFuzZ+Br0AQgelj4CABAhXn5ZOvdc1+1k7gudoiJp3Dhp1aqTx/r0ke6/X9qzx/2SRl95mzo/ECn4bfXWXHGsu8bsLRA9CNQAAAii/v2DW68N3ikqMrMoHjpU+/jGjdIVVwT+ft4G4IFIwe8p2LOh7hoQXUjPDwBAkIWiXhucs1qlhQul88+vG6QFg8XiW+r8QKTg9xTs2TB7C0QXZtQAAAgyXzP3wX/OljmGwvDhvgfg+fl1U/D7Esjbgj1Pe9R45oDoQjKRICOZCAAAobV2rTRypFRaGtz7nHOONG2aGRRK/tdR8yeQd1ZvzYasj0DkIJkIAACIO2vXSrfc4j7Lpr+6dZOmTJHGjg38DFWXLvW/5qmztklJUlUVs7dANCNQAwAAUS3Yyxz79pXuuUfq3Tvygx5/gj0AkYVADQAARB3HYtQ33RTYZY62JY0pKcxIAQgfAjUAAOS+CDIiRyBmzxISpEGDpDfeOLlMcPdus83ffWaRiGcbiE4EagCAuFZUJOXl1U7CQPKFyBSoJCEjR5789w1X4BKK4IlnG4hu1FEDAMS1vDwzrbmjggIzgx4iw9q15j6xAQPqH6T17Su9/74ZIC1aFL5ApahIys2VsrPNhCRdu5p/Li4O/L3GjZOWLq19jGc7Mtnq/W3bVvt7xDfS8wcZ6fkBIHJZreYbZnftLBULn0Asc+zTR3rlFalfv8CNyx+5uXXrndnqnC1aFJh7ePP3xrMdGTxlKrVlGT37bPOZYflq9CM9PwAAXtixw3379u3BeVPEniHP/F3mmJ4uffZZ5ARokvnv7qzOWXW1eXzbtsA8D3l50po17vsE69mGd7wtJbFli/T739c+FswSEYgsLH0EAMStTp3ct3fuHNj7hXLZW7QKxDLHIUPM5CCRFKRJ3n0w4C9bMFhT475foJ9teGa1Sh98YD6XAwbUv96fLXjr2lXq1Utavz6Qo0QkIVADAMStrl3N5AqJibWPJyaaxwP9aTX74VwrKpKGDvXvDWyfPtK6ddLKlZGZLCMUHwx4CgYTEoLzbMM124cP2dnS1VdLGzYE7trffiv1788HPrGKQA0AENfy8839QY5ycszjgWSb6XDcmyTVXvYWr9aulTp2rN9eNMckIRs2RN4smqNQfDDgKRgcPDjwzzacs82g+/Phg7eWLpUuvji490DoEagBAOJaVpaZxMFqlRYsCF5WwFAse4smVqv03HNSjx71W+Zomz1bv1666qromSEK9gcDroLBhARzSegXX0TmbGMsysurm3UzWGpqzA86+vdnZi2WkPUxyMj6CACQyDBps3atNHmytHlz/c6PxCQh9bFtmxmcByOhTHGxuZyW+mnhM3eudOWV4bl3s2bm88W/dWTyJTYgUAsyAjUAgE0oUrNHItts5WuvST/8UP/rDBkizZ/PG1BvBTMYhHPeZnP0JD1dKiur//n9+pkzzog8BGoRhEANAGATbzMd/s6e2URaLTTgVP7U/LPNEmdm1g6st22TPv/c7NO0qfTww779LnXvLr31Fr83kYZALYIQqAEAThWLMx222nCJiWb6cH9nz6TYWeYYKajfFxz+1PzzdZZ42zZzdvrFF73f1xrLHwZFIwK1CEKgBgCIZYFa6nUqljkGTlGRmdgiXmZyQ6W+z/4LL5jZOf0NmPv18y7Vf0KCGUjG8vLqaEKgFkEI1AAArkTzDIc/S73cYZlj4MXr3shgqe+zH+iAqbjYfN04dMi7/h9+KF12WWDujfrzJTYgPT8AACFmq6+UnS2NHWumVI+mgrVFReaYAxmknXOOmfwg0muhRRvq9wWWPzX/Ro4MbA27rCzz369vX+/6X3652Xf9+sCNAcFFoAYAQIjl5ZkzHI4KCsxEI9Fg1CjvP8V3p1s3s5aa1Spt2kSAFgzU7wuMtWvNIMefmn/BqM+YlWUGXkOHShaL5/4bN5q11qLpg6F4RqAGAEAIRfMMx9q1ZiY5b/bFuGObPfvhB+mOO6Jv2Wc06dTJfXvnzqEZR7SyzX4PGOD7XrT09NDNEs+bZ36A4q2lS6Png6F4RqAGAEAIReMMR1GR+Yn9gAFmRsf6YPYsPLp2NROHJCbWPp6YaB4nSHbNajWXKy5Z4vu5Q4ZIu3eH7jnPyjJn7ObO9a5/TY35wdBHHwV3XPAPgRoAACHkaYajRYvQjMNb/uzJkZg9iwT5+WbiEEc5OYHdLxVLHPeQbtwo+ZJ2z7bMceXK8GTUvPxyMwBP8PIdPvvWIhtZH4OMrI8AgFPl5tZOlW5jsZjLlyIhE199Uo+np5sFdouKzD8PG0ZgFklisX5fMAwdKq1ZY846eSuSav4VF5vLGp29xrhDSYzQID1/BCFQAwCcat066dxzXbdbreF7I13f1OP9+plLxHiTh2hVVGR+UOLrHsxIDXDWr5duvtn3D1siJeCMVaTnBwAggh086L49XPvU6rPMMSHBfKO6bl3kvVFFXVartHBhZCetCQfbs+9LkBbuZY6e2Apie7tvTZLKysyskCyHjAwEagAAhFikZeLzJ/X4yJHmbAIiW7TX7gsWx6yOvjz7H34YPTX/fN23Jp1M4z90KM9IOBGoAQAQYq4y8dncfnto3hw5ZnOsb+rxYNSGQuBFe+2+YBk3zresjgkJ5u/uZZcFb0zBkJ9vfqjiq1WrpPbtzcCUmdjQY49akLFHDQDgjLsN/wkJ5puqYCQVsVrNEgEVFdJNN/k+gyZF7p4cOGe1mjNp7trjLblIffejjR5tBj3R+uzXZ9/aqfr2le65R2rSxKz/SHIa35BMJIIQqAEAXPH0BnrdusAtrapvkhBHffpIr7wSHcu9cNLCheZyR1cWLJDGjAndeMJt7VrzgxBvP6To0UN66qnYCkjWr5dGjKjfBzXO8OGN93yJDZJCNCYAAHAKT8Wvb77Z90/8HQVi9kwiE1y0i7Q9keFSVGQuAfUlbX2zZtIXX8ReANKvn1RYaH54s3Kl/9ezLZF8803z79likc44w5xxS0wM38yb7TUwWoNsZtSCjBk1AIArnmbUbH28eYNhe0OSmCgdPmzOAPgT5NnwSXlsyM0196RVV588lphoFr6OhLp9oZCbKy1d6n19tHh59gOxHNJbjssmd+82A7pg1Ft0FpRHyrJVlj5GEAI1AIA7ffu6f4PUrp00daq5dM32ZsbxU+Jmzfxf0ugMyxxji7M9kaNHS48+apaLiNYZB2/NnStdeaV3fbt3Nwu3x9uzH+jlkL445xzpwQdPzsbZgjerVfr889ozdJ07S4bhfqbMWdHySPlggkAtghCoAQDc8VT82lH37lKDBtKmTSeP2ZYVBQrLHGPbtm1mnb6KCmnGjNofEkTKjEMgrV0r3XKL97NF/fqZv5Pxqrg4cMsh/ZWWJpWXe+5n+1ApI8N8bXzkEemHH1z3D3fyHAK1CEKgBgDwxNclWcESL0u94pm7fVqRMuMQCPVJntOsmRnI8vyHdjlkqPXpYy4DDte/sy+xAXXUAAAIs/x8qVev8N2/Tx9zFmHlSt6kxrq8PPNDAWeqq80ALlprZVmtZobLuXOljh19C9KGDCFIc9Svn7nH1WqV3n8/tmbYv/02euoHMqMWZMyoAQC84U1ikUCyberv3Tu29ybhJG+fsWhL1+9v6YkPP4y+AtbhYFs2m5RkLpGcOdOceYtW4VoCSXp+AACiTNeu5h6hYC+BJElI/PJUDsImGtL1B6L0hK2wPEGad7p0qR3YXHVVdC+R3L498j+kIlADACBC5OfXzcwXCMyeQfJcT81iMZ+RSGW1mskiAlV6YuRI83cO9WdbIuk427Z7t9nWvn1kz7xFwwcSUbf0saysTM8884w+/PBD7dq1S4mJieratavGjx+v22+/XQ0bNqz3tQ8cOKCnnnpKn3zyif7zn/8oJSVF3bt316RJk3TTTTfJYrH4fE2WPgIAfLV+vTlLsHmz7+fagrKsLKmqKvbTrsM3zuqpOWPLAPnLLyfr89W3aLGnosOONQBttbUciyVv2SK99pr7TH6+YFY59BwDuaoq879btkivvhq4f1dvhTtpTsxmfdy9e7cuuOACFRYWSpJSU1NVXV2tY8eOSZJ69+6tZcuWKaseO0E3bNig0aNH69ChQ5KktLQ0HT16VFVVVZKkUaNGaf78+UpOTvbpugRqAID62rbN3C/kzZsZ3nzCG87qqbnSuLG5tPBUzooWOwZWtmNNmtQtAeB4bqADME8oPRGZHIM4Z8Fbt27SlClmTck//cm3ZZbnnSelppr/7jbhLkMRk4FadXW1evfure+++06tW7fWrFmzlJOTo5qaGs2ZM0eTJ09WWVmZxowZowULFvh07ZKSEp111lnav3+/zjrrLP3jH/9Qv379dPz4cb366qu68847deLECd1yyy166aWXfLo2gRoAIBBO/UTatmxn+3ZmzeC7JUvMN6zxgtIT0cX2eufstc3W1qKF9Ic/1K751qeP9Mc/Sikptc91d71Qi8lA7fXXX9fvfvc7SdKaNWs0cODAWu35+fnKy8uTJBUUFGjEiBFeX/vBBx/UY489ppSUFP3www/q2LFjrfYZM2bo/vvvV2JiorZs2aKuXbt6fW0CNQAAEGkWLpTGjg33KIKPmebYF0lBmDdiso7a22+/LUkaPnx4nSBNksaPH28PsGbNmuXTtW39Ha/h6Pbbb1daWpqqq6v17rvv+jp0AACAiOIpsUg069vXrP1ltZqJLgjSYluXLmY5iWgI0nwVFYFaZWWlVq9eLUka46Kwh8ViUW5uriRpyZIlXl/7xx9/1H/+8x+3105LS9PQoUN9vjYAAEAkspWDSEwM90gCx1a4ff16M3V8LL5xR3yJikBt69atqvm1qEyPHj1c9rO17d+/X0VFRV5d+/vvv69zvrtrb9myxavrAgAARLL8fDP7XTRj9gyxLCrqqO3bt8/+/emnn+6yn2Pbvn371LRp04Bfu7S0VOXl5UpLS/N4bQAAgEiVlWWmKLft8Zk2LTLrXTk65xxznKcmiwBiUVQEamVlZfbvU1NTXfZzbHM8JxjXdhWoHTt2zF4uQDIDOwAAgEjVpYv5dd550hVX1E5lLkndu0sNGpjFpoPFFoDZFkS1b3+y3patgPKwYQRmiC9REahFkxkzZujhhx8O9zAAAAB8kpUlLVtmzrB9/rl5zDE4cla02BZEOQusbMccS0k4O5cADHAuKgK19PR0+/eVlZUu+zm2OZ7jy7Vdpcn09tr33Xef/vCHP9j/XFpaqnbt2nk1FgAAgHCzzbB5e9yX6wLwXlQkE2nTpo39+71797rs59jmeE4gr52RkeF2f1pycrIyMjJqfQEAAACAL6IiUDv77LOVkGAO1TFL46lsba1atfIqkYhUO9OjN9fu1q2bV9cFAAAAgPqKikAtNTVVgwcPliQtWrTIaR/DMLR48WJJ0qhRo7y+dnZ2ts444wy3166oqNDKlSt9vjYAAAAA1EdUBGqSNGnSJEnS8uXL9fXXX9dpnzNnjnbu3ClJuu6663y6tq3/7NmzVVhYWKf9r3/9q8rLy5WYmKhrrrnGx5EDAAAAgG+iKlDr2bOnDMPQ5ZdfrmXLlkmSampqNGfOHE2ePFmSNGbMGI0YMaLWudOnT5fFYpHFYnEaiN11111q1aqVKisr9dvf/lYbNmyQJB0/flx/+9vf9OCDD0qSpkyZoq5duwbxpwQAAACAKMn6KElJSUmaP3++hg8frsLCQuXk5Cg1NVU1NTU6evSoJKl379569913fb52ZmamPvnkE40ePVpbtmxRv379lJ6erqNHj+rEiROSzCWPzz77bEB/JgAAAABwJmpm1CSpQ4cO2rx5s6ZNm6YePXrIYrGoQYMG6tu3r55++ml99dVXysrKqte1+/btqx9++EF33nmnunTpohMnTqhx48YaMmSIXn31VS1cuFDJyckB/okAAAAAoC6LYRhGuAcRy0pLS5WZmamSkhJS9QMAAABxzJfYIKpm1AAAAAAgHhCoAQAAAECEIVADAAAAgAgTNVkfo5VtC2BpaWmYRwIAAAAgnGwxgTdpQgjUgqysrEyS1K5duzCPBAAAAEAkKCsrU2Zmpts+ZH0MspqaGu3bt0/p6emyWCzhHk7EKy0tVbt27bRnzx6yZCJi8FwiEvFcIhLxXCISRdJzaRiGysrK1KZNGyUkuN+FxoxakCUkJKht27bhHkbUycjICPsvEnAqnktEIp5LRCKeS0SiSHkuPc2k2ZBMBAAAAAAiDIEaAAAAAEQYAjVElOTkZD300ENKTk4O91AAO55LRCKeS0QinktEomh9LkkmAgAAAAARhhk1AAAAAIgwBGoAAAAAEGEI1AAAAAAgwhCoAQAAAECEIVCDX9566y1ZLBaPXwUFBS6vceDAAU2dOlXZ2dlKSUlR06ZNNXToUL322mvyJtfNjh07dPPNN6tjx45q1KiRTjvtNI0ePVoffvhhIH9URJDKykotXLhQjz32mC677DK1b9/e/qxNnz7dq2uE+7nbuHGjJk6cqLZt2yo5OVmtW7fWpZdeqs8++8yr8xF5/Hkup0+f7tVr6fbt291eh+cSpzp06JDefPNNTZw4Ud26dVPjxo2VnJystm3b6pJLLtHHH3/s8Rq8XiLQ/Hku4+r10gD88OabbxqSjISEBKNly5Yuv7744gun569fv95o1qyZIcmQZKSlpRlJSUn2P48aNco4evSoy/t/+umnRmpqqr1/RkaGkZCQYP/zDTfcYNTU1ATrx0eYLF++3P5vfOrXQw895PH8cD93r776aq37ZWZmGhaLxaefAZHHn+fyoYceMiQZDRo0cPtaumvXLpfX4LmEM47/ppKMRo0aGY0bN651bMyYMUZFRYXT83m9RDD481zG0+slgRr8YgvU2rdv7/O5hw8fNlq1amVIMs466yxj3bp1hmEYxrFjx4wXX3zRaNCggSHJuOWWW5yev3PnTvsv9eDBg40ff/zRMAzDKCsrM6ZNm2b/ZXnyySfr/fMhMi1fvtzIysoyRowYYdx9991Gfn6+/Vny9OIY7uduzZo1RmJioiHJuOSSS4w9e/YYhmEYBw8eNG6++Wb7+e+//349/3YQLv48l7Y3HsOGDavXvXku4Yok49xzzzVeeuklY8eOHfbju3btMm666Sb7v+3EiRPrnMvrJYLFn+cynl4vCdTgF38CtQceeMCQZKSkpBg7d+6s0/74448bkozExET7L5GjiRMnGpKMVq1aGcXFxXXap0yZYv+UpKioyOfxIXJVVVXVOda+fXuv3hCH+7kbMmSIIcno2bOncfz48Trto0ePtv9OOfs5Ebn8eS79fePBcwlXPvvsM7ftjm8s//Of/9Rq4/USweLPcxlPr5cEavCLP4HaGWecYZ9edqasrMxIS0szJBnTpk2r1VZeXm6kpKQYkoyHH37Y6fm7du2y/5K/8cYbPo8P0cXbN8ThfO527Nhhb3v77bednr9ixQp7H0//I0PkC0WgxnMJf6xdu9b+b/vRRx/VauP1EuHi7rmMp9dLkokgLH788Uf95z//kSSNGTPGaZ+0tDQNHTpUkrRkyZJabatWrdKRI0fcnt+hQwedffbZTs9HfAr3c7d06VL797m5uU7PHzJkiNLT052eDzjDcwl/NGrUyP59dXW1/XteLxFOrp5Lf0Xbc0mghoD45Zdf1LdvX6WlpSklJUVnnnmmJk6cqBUrVjjt//3339u/79Gjh8vr2tq2bNni8vzu3bt7PP+HH37w+DMg9oX7ubOdf9ppp+m0005zem5iYqLOOussp+cj9v3www/q0aOHUlJSlJaWpuzsbE2ePFnffPONy3N4LuEPx/9P9+zZ0/49r5cIJ1fPpaN4eL0kUENAVFZWauPGjWrYsKFqamq0a9cuvfvuuxo+fLhuvPFGVVVV1eq/b98++/enn366y+va2kpLS1VeXl7n/KysLKWmpno83/F+iF/hfu5sf3Z3b3fnI/YdPHhQW7duVWpqqo4dOyar1arXXntNffv21QMPPOD0HJ5L1Nfhw4c1Y8YMSdLQoUOVnZ1tb+P1EuHi7rl0FA+vlwRq8EubNm300EMP6dtvv9XRo0dVVFSkyspKrV69Wjk5OZKkN998U3feeWet88rKyuzfu/tFcWxzPMf2vbtzHdsdz0X8Cvdzx3MLV7p06aKnnnpKP/74o44ePapDhw6poqJCixcvVt++fWUYhv70pz/pmWeeqXMuzyXqo6amRtdee61+/vlnJScn64UXXqjVzuslwsHTcynF1+slgRr8MmrUKE2fPl2/+c1vlJycLMmc8h00aJAWL16scePGSZJeeuklbdu2LZxDBYCIdc011+juu+9W165d1aBBA0lSw4YNNWrUKK1atUr9+/eXZBZ6LSkpCedQESPuuOMOffLJJ5LM/0efc845YR4R4N1zGU+vlwRqCJqEhAQ9/fTTksxPSP71r3/Z22ybLCVz2aQrjm2O59i+d3euY7vjuYhf4X7ueG5RH40aNdLjjz8uSSovL9eyZctqtfNcwld33XWXXnzxRUnSs88+qxtvvLFOH14vEWrePJeexNrrJYEagqpz585q3ry5JGnnzp32423atLF/v3fvXpfn29oyMjKUlpZW5/zi4mK3vyy28x3vh/gV7ufO9md393Z3PuLXwIED7d87vpZKPJfwzT333GNfEjZz5kz9/ve/d9qP10uEkrfPpTdi6fWSQA1h4ZhByjEDz6lsbd26dXN5vruMOrbz3WX2QfwI93NnO/+///2vfvnlF6fnVldX69///rfT8wFneC7hrbvvvlszZ86UJD311FO66667XPbl9RKh4stz6a9oey4J1BBUO3bs0MGDByVJHTt2tB/Pzs7WGWecIUlatGiR03MrKiq0cuVKSeZeOEdDhgxRSkqK2/N3796trVu3Oj0f8Sncz93IkSPt37s6f/Xq1fbNxzy3sPnqq6/s3zu+lko8l/DOXXfdZd+O8NRTT+nuu+9225/XS4SCr8+lN2Lq9dKvctmIazU1NR7bL730UkOSkZCQYPz73/+u1f7AAw8YkozU1FRj165ddc5/8sknDUlGYmKi8eOPP9ZpnzhxoiHJaN26tXH48OE67bfccoshyUhPTzeKiop8++EQddq3b29IMh566CG3/cL93A0ZMsSQZJxzzjnG8ePH67SPGTPGkGS0b9/eqKqqcvuzIPJ581x6ei09evSoMWDAAEOS0bhxY6O4uLhOH55LuDN16lRDkiHJePrpp70+j9dLBFN9nst4e70kUEO97dq1y+jfv7/x8ssvGzt27LD/8lRXVxtffvmlMXr0aPsv4C233FLn/MOHDxutWrUyJBndunUz1q9fbxiGYRw7dsx46aWXjIYNG7o81zAMY+fOnUbjxo0NScbQoUMNq9VqGIZhlJeXGw8//LBhsVgMScaTTz4ZpL8BhFNRUZHxyy+/2L/atWtnSDLuvvvuWsfLyspqnRfu527NmjVGYmKiIcm47LLLjJ9++skwDMM4dOiQ/X8Okoz3338/UH9VCKH6PJcrVqwwRowYYfzjH/8w9uzZYz9+/Phxo6CgwOjfv7/9uXD1XPFcwpV77rnH/u/35z//2adzeb1EsNT3uYy310sCNdTbrl277A+jJCM5Odlo3ry5kZycXOv4DTfcYJw4ccLpNdavX280a9bM3jc9Pd1o0KCB/c+jRo0yjh496nIMn376qZGammrvn5mZaf/lkWRcf/31Hj99QXSyzVR4+po0aVKdc8P93L366qtGUlKSvX+TJk3s/2PwZlYQkas+z+Xy5ctrtaWkpBjNmzev9UwmJCQY999/v9t781ziVLt37671DLVs2dLt18yZM+tcg9dLBJo/z2W8vV4SqKHeKisrjRdeeMHIy8szunXrZrRo0cJISkoy0tLSjLPOOsu48cYbjVWrVnm8zv79+40777zT6NKli9GoUSOjSZMmxpAhQ4xXX33VqK6u9nj+9u3bjcmTJxsdOnQwGjZsaDRr1swYOXKkMXfu3ED8mIhQ/gRqhhH+527Dhg1GXl6ecfrppxsNGzY0WrZsaVxyySXGsmXLfPlrQISpz3N58OBB4+mnnzYuv/xyo2vXrkbTpk2NpKQkIyMjwzjnnHOM2267zdi8ebNX9+e5hKNTP1D19OXqzSWvlwgkf57LeHu9tBiGYQgAAAAAEDHI+ggAAAAAEYZADQAAAAAiDIEaAAAAAEQYAjUAAAAAiDAEagAAAAAQYQjUAAAAACDCEKgBAAAAQIQhUAMAAACACEOgBgAAAAARhkANABBzLBaLLBaLVqxYEe6hhFxhYaH95y8sLAz49d966y379W1fvXr1Cvh9gu3w4cN1fo5g/Z0BQH0QqAFAlCopKVFSUpIsFoueeeYZl/22bt1qfxPasWNHt9ccPXq0LBaLBg0aFOjhIgCee+45TZ8+XZs2bQr3UJSQkKCWLVuqZcuWat68ebiH47NoHz+A2EegBgBRKjMzU71795YkLV++3GU/x1mlwsJClzMGVVVVWrNmjSRp+PDhARsnAue5557Tww8/HBGBWrt27bR//37t379fBQUF4R6OzzIyMuzjX7duXbiHAwB1EKgBQBSzBVQrV65UdXW10z62QK1Vq1a1/nyqdevWqby8vNZ1AQBAeBCoAUAUswVUpaWl2rhxo9M+n3/+uSTp7rvvluR69s12vGHDhix9BAAgzAjUACCKDR06VElJSZKcz5Rt3bpVBw4cUHZ2tsaPH++yn+PxAQMGKDU1VZJ05MgRzZ8/X5MnT1avXr3UokULJScnq02bNrrkkku0cOFCp9e6+OKLZbFYdNlll7kd/44dO+z751atWlWnvaSkRH/60580YMAAZWVlKTk5We3atdOECRP01Vdfub22JytWrNCECRN0xhlnqFGjRsrMzNS5556rp556ShUVFU7Puf7662WxWHT99ddLkubOnasLLrhATZs2VWpqqnr16qW//OUvqqmpcXlfwzD05ptvauDAgUpPT1dmZqYGDBigv//97zIMo849JGn69OmyWCzavXu3JOmGG26okwTDlQMHDuiOO+5Qx44d1ahRI7Vs2VLjx4/Xv//9b9//0nxgG/MFF1wgSVq2bJl++9vfqkWLFmrUqJHOPvtsPfzwwzp69KjT80/9e3jrrbc0cOBAZWZmqmnTpsrJydEXX3xh719VVaUXXnhBffv2VUZGhjIzMzV27FiXH2AAQMQzAABR7bzzzjMkGWPHjq3T9tJLLxmSjClTphiGYRidO3c2JBk7d+6s1e/48eNG48aNDUnGtGnT7MfffPNNQ5L9KyUlxUhNTa11bOrUqXXuO2fOHEOS0bBhQ+PQoUMuxz59+nRDktGxY0ejpqamVttXX31ltGzZ0n6fxMREIz093f5ni8ViPP74406va+uzfPnyOm0nTpwwfve739X6GdLS0ozExET7n7Ozs43CwsI6506aNMmQZEyaNMm49dZbDUlGQkKC0aRJk1rXu+6665yOq6qqyrj66qtr/QxZWVlGQkKCIcmYMGFCrXvYzJw502jZsqW9X0ZGhtGyZctaXza7du2yX/+TTz4xTjvtNEOSkZqaaiQnJ9vbMjIyjE2bNrn8t3HF9ky0b9/ebb+HHnrIkGQMGzbMeOqppwyLxWJYLBajSZMmhsVisY9j+PDhRlVVldu/a9v3SUlJtZ6BpKQk41//+pdx9OhRY9SoUfZnzvYs237u9evXux2r49/Zrl27fP47AYBgIFADgCh33333GZKM9PT0Om94r7rqKkOS8d577xmGYRg33XSTIcl4/fXXa/VbtWqV0+Dm448/NqZMmWIsX77cOHjwoP34vn37jIcfftho0KCBIcmYN29eresdPXrUyMrKMiQZf/vb31yO3RY4OgaHhmG+cbYFP1dccYWxYcMG48SJE4ZhGMaBAweMBx980EhKSjIkGR9//HGd67oL1O644w5DktGyZUvjpZdesgeSx48fN5YvX2707t3bkGT06dPHqK6urnWuLWDIysoyGjZsaPz5z382SkpKDMMwjIMHD9YKAJctW1bn3jNmzLC3/+EPf7D/nZaUlBiPP/64PXA7NVCzad++vSHJePPNN13+nToGHVlZWcbgwYONdevWGYZhBqlLly41WrdubUgyhg4d6vI6rvgaqDVp0sRISEgw7rvvPuOXX36x/7zTpk2zj/PU59EwTv5dN2nSxEhJSTFeeeUVo7Ky0jAMw/j3v/9t9O3b15BkdOjQwbjtttuMpk2bGh988IFx/Phxo6amxli/fr3RqVMnQ5IxePBgt2MlUAMQiQjUACDKLVmyxP4m8+uvv67VZpuR2rt3r2EYhjFr1ixDknHttdfW6vfYY48ZkoxGjRoZR48e9freM2fONCQZI0aMqNN28803G5KMgQMHOj13zZo19nFv27atVtsVV1zhdJyO/vznPxuSjHPOOadOm6tA7bvvvjMsFouRmppqbN682el1S0tLjbZt2zoNAm3Bg7tgyRZA/O53v6t1vKKiwsjIyDAkGTfddJPTc23BTaACtbPOOsse3DiaP3++vc+ePXtcXssZXwM1ScZDDz3ktM9ll11mSDJycnLqtDn+Xb/zzjt12nfs2FFrZm7lypV1+ixbtsyrn5NADUAkYo8aAES5wYMHq0GDBpJqJwrZsmWLDhw4oC5duqhNmzaSpGHDhtXp5/jngQMHKjk52et7//a3v5Ukffnll3WyTl577bX2tu3bt9c59x//+If9np07d7YfLyoq0kcffSRJuvfee13e+7rrrpMkffvttzpw4IBX43399ddlGIZ++9vfqmfPnk77pKen65JLLpEkLV682Gmfdu3a2e9/qosvvliStHnz5lrHFy9erNLSUknSH//4R6fnTp061b4/MBCmTp2qlJSUOsfHjBmjhg0bSpK+++67gN3PmeTkZN11111O28aNGyep7t+VozPOOEN5eXl1jp955pnq1KmTJHOv5pAhQ+r0GTZsmP15dncPAIhEBGoAEOVSU1N17rnnSqqdKMT2vS04k8w3vR06dNBPP/2kHTt2SJKOHz+uL7/8UpJ04YUX1rn+gQMH9NBDD2ngwIFq1qyZvci2xWJRt27dJEmVlZUqLi6udd7gwYPtb6TfeeedWm3Hjx/X+++/L0l1Ap4vv/zSnozjwgsvVKtWrZx+de/e3X6OLcmGJ7aEJQsXLnR53VatWunNN990e93+/fsrIcH5/0JtQXFRUVGt47akFmeccYbLwuPp6enq27evVz+LNwYMGOD0eFJSklq0aOF0nIHWvXt3paWlOW1z9XflqF+/fi6TpbRs2VKS+e/hTGJior2Y9anPJwBEuqRwDwAA4L/hw4dr9erVWrVqlaqqqpSUlGQP1GxZ92yGDRumwsJCrVixQp06ddLatWtVWVlpv46jL7/8UmPHjtXhw4ftx9LS0pSamiqLxaLq6modPHhQklRRUWF/U2xz7bXXavr06frHP/6h6dOn248vWLBARUVFSk5O1tVXX13rnH379tm/93amzDZ+T2zXLi8vt9eMq89109PTXZ5jy8J54sSJWsd/+eUXSSeDE1dOP/10j+PyVn3GGWjejKGqqsqv8yPh5wSAQGNGDQBigC3AKi8v1/r16yWdrJ/mOKPm+Gfbckfbfx1n5iTzzfOECRN0+PBh9erVSwsWLFBpaanKysp04MAB7d+/v1aKfMMw6ozLtvxx586dWr16tf24bdnj//zP/ygrK6vWObYllCkpKTLMvdQev04NRl2xXfuJJ57w6rquShnUh+3vx10qfcd+AID4RqAGADFg0KBB9r04K1as0JYtW/Tf//5XnTp1Utu2bWv1tQVqtiDE9t8hQ4bY97pJ5mza7t27lZiYqE8++URjxoypM3Oxf/9+t+M688wzNXjwYEkng7Pi4mJ9+umnkk4Gco5atWolyazh5mxvmz9s1w72vixnTjvtNEm1Zwyd8dQOAIgPBGoAEAMaNWqk8847T5I5Q+Zsf5rNmWeeqbZt22rv3r364Ycf7PvTTl32uGfPHklSixYtXC7HKygo8Dg22x60Dz74QMeOHbP/t3nz5ho7dmyd/oMGDbLPOs2ePdvj9X1hCxo//fRTr5Y+BlKfPn0kmfveCgsLnfYpLy/Xhg0bXF7Dti+OWTcAiH0EagAQI2yB1urVq7V06VJJdfen2dgCuCeeeEJHjhypdb5NZmamJHOfmLO9Yj/99JOef/55j+O66qqrlJycrOLiYn3yySf2mbXx48fXmsGzOe200+zZAGfOnCmr1er2+r4kw5g8ebIsFosOHz6su+++223fEydOBDSYGzVqlDIyMiRJjz/+uNM+zz77rNv9drbzHfcMAgBiE4EaAMQIW6BVUVGhf/3rX5Kcz6g5Hs/Pz5fkPNvgkCFD1LhxYxmGoauuusoeMFVXV2vx4sW64IILPO63kqQmTZrooosukiTNmDHDvlfN2bJHm2eeeUbNmjVTaWmphgwZojfeeEMlJSX29oMHD+qjjz7SZZddpgkTJngcg02vXr30+9//XpL08ssv68orr9SmTZvsM1TV1dX69ttv9eijj6pTp07atGmT19f2pHHjxvp//+//SZJeffVV3XPPPfYgs6ysTE8++aSmT59eZ8+eox49ekiS5s6dSxZDAIhxBGoAECPOO+88e82s6upqdezYUWeccYbTvrZAzZZcY+jQofbseDaZmZl6+umnJUlffPGFsrOzlZ6errS0NOXm5qqkpMSext4T2/JH27K+7OzsWolLTnXmmWdq6dKl6tChg3755RfddNNNysrKUtOmTZWenq4WLVro8ssv18cff2xP5e+tmTNn2oO1uXPnqnfv3kpNTVXz5s3VqFEj9erVS9OmTdOePXu8CkR9cc899+iKK66wj6NFixZq2rSpsrKydO+99+qaa66xB7WNGjWqc/6UKVNksVi0Zs0atWjRQm3atFGHDh3UoUOHgI4TABB+BGoAECMaNmyoQYMG2f/sajZNkrp27WpPrCHVXfZo87//+7/69NNPdcEFFygtLU1VVVU6/fTTdfvtt+vbb791WTT6VGPGjLHX7ZLq1k5zpnfv3tqyZYtefPFF5eTkqHnz5iorK1NNTY26dOmivLw8zZ49214c21uJiYl69tlntXHjRk2ZMkXZ2dlKTExUSUmJsrKyNHjwYE2fPl2bNm2y72kLlKSkJH3wwQd67bXXdO655yolJUVVVVXq16+fXnvtNc2aNcu+rLFJkyZ1zj///PP16aefKicnR5mZmTpw4IB2797tdR05AED0sBjsSAYAICIYhqEzzjhDP/30k2bNmuV2eWi4vPXWW7rhhhvUvn17l0lRok1hYaG9CPmuXbuYoQQQEZhRAwAgQvzjH//QTz/9pKSkJI0YMSLcwwEAhBGBGgAAITRhwgTNnTtXBw8etB87cOCAnnjiCU2ePFmSuTS0TZs24RqiV3bv3i2LxSKLxaJevXqFezg+O3z4sH38ttk0AIgkSZ67AACAQFm4cKG9PlxqaqoaNGhQK6Pl0KFD9eyzz4ZreB6lpKSoZcuWtY41b948TKOpv4SEhDo/h2TuYQSASMAeNQAAQmjWrFlauHChvvnmG/33v/9VeXm5mjRpol69emn8+PG69tprndaXAwDEFwI1AAAAAIgw7FEDAAAAgAhDoAYAAAAAEYZADQAAAAAiDIEaAAAAAEQYAjUAAAAAiDAEagAAAAAQYQjUAAAAACDCEKgBAAAAQIQhUAMAAACACPP/A+ZYzs/mNLnuAAAAAElFTkSuQmCC", + "text/plain": [ + "