From aad51c693921db1f87e3855ce5087fc8180076ff Mon Sep 17 00:00:00 2001 From: Micah Sandusky Date: Mon, 17 Jun 2024 15:48:16 -0600 Subject: [PATCH 01/21] add database tutorial --- .../1_getting_started_example.ipynb | 236 +++++++++++++++ .../2_database_structure.ipynb | 201 +++++++++++++ .../snowex_database/3_forming_queries.ipynb | 233 ++++++++++++++ .../4_get_spiral_example.ipynb | 194 ++++++++++++ .../5_plot_raster_example.ipynb | 284 ++++++++++++++++++ .../snowex_database/6_exporting_data.ipynb | 129 ++++++++ .../snowex_database/7_bonus_challenge.ipynb | 222 ++++++++++++++ .../tutorials/snowex_database/8_wrap_up.ipynb | 56 ++++ book/tutorials/snowex_database/index.md | 4 + 9 files changed, 1559 insertions(+) create mode 100644 book/tutorials/snowex_database/1_getting_started_example.ipynb create mode 100644 book/tutorials/snowex_database/2_database_structure.ipynb create mode 100644 book/tutorials/snowex_database/3_forming_queries.ipynb create mode 100644 book/tutorials/snowex_database/4_get_spiral_example.ipynb create mode 100644 book/tutorials/snowex_database/5_plot_raster_example.ipynb create mode 100644 book/tutorials/snowex_database/6_exporting_data.ipynb create mode 100644 book/tutorials/snowex_database/7_bonus_challenge.ipynb create mode 100644 book/tutorials/snowex_database/8_wrap_up.ipynb create mode 100644 book/tutorials/snowex_database/index.md diff --git a/book/tutorials/snowex_database/1_getting_started_example.ipynb b/book/tutorials/snowex_database/1_getting_started_example.ipynb new file mode 100644 index 0000000..fe2ecb9 --- /dev/null +++ b/book/tutorials/snowex_database/1_getting_started_example.ipynb @@ -0,0 +1,236 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Introduction to the SnowEx Database " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## What we're gonna attempt to cover\n", + "* Introduction \n", + "* Database Structure/ Contents \n", + "* Forming Useful Queries \n", + "* Examples \n", + "* Exporting Data \n", + "* QGIS setup \n", + "\n", + "## Why a database?\n", + "> *\"Dude, I am into pits not bits. What gives?!\"*\n", + "\n", + "- Standardizing diverse datasets\n", + "- Cross referencing data\n", + "- Enables GIS functionality\n", + "- Ready for use in your code\n", + "- Provenance!\n", + "- Ready for use in a GIS software like ArcGIS or QGIS!\n", + "\n", + "### TL;DR Do less wrangling, do more crunching. \n", + "\n", + "\n", + "## What is it exactly?\n", + "\n", + "* PostgreSQL database\n", + "* PostGIS extension\n", + "* Supports vector and raster data\n", + "* And a host of GIS operations\n", + "\n", + "## What's in it?\n", + "\n", + "**note:**`Data extent is limited to Grand Mesa and in EPSG:26912 for Hackweek!`\n", + "\n", + "* Snow pits - Density, hardness profiles, grain types + sizes\n", + "* Manual snow depths - TONS of depths, Can you say spirals?\n", + "* Snow Micropenetrometer profiles - (Subsampled to every 100th)\n", + "* Snow depth + SWE rasters from ASO inc\n", + "* GPR\n", + "* Pit site notes\n", + "* Camera Derived snow depths\n", + "* Snow off DEM from USGS 3DEP \n", + "* And almost all the associated metadata\n", + "\n", + "**All this and more is easily indexed, cross referencable, and put into GIS ready formats!**\n", + "\n", + "![](https://snowexsql.readthedocs.io/en/latest/_images/gallery_overview_example_12_0.png)\n", + "\n", + "\n", + "## How do I get at this magical box of data?\n", + "\n", + "* [SQL](https://www.postgresql.org/docs/13/tutorial-sql.html) \n", + "* [snowexsql](https://github.com/SnowEx/snowexsql/) **←**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import the connection function from the snowexsql library\n", + "from snowexsql.db import get_db\n", + "\n", + "# This is what you will use for all of hackweek to access the db\n", + "db_name = 'snow:hackweek@db.snowexdata.org/snowex'\n", + "\n", + "# Using the function get_db, we receive 2 ways to interact with the database\n", + "engine, session = get_db(db_name)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1. Using the Engine Object\n", + "The `engine` object returned from the `get_db` function is not used much in the snowexsql library. It does allow you to use typical SQL \n", + "strings to interact with the database. \n", + "\n", + "**Note**: Users who have used python + SQL before will likely be more familiar with this approach. Additionally those who don't know python but know SQL will also be more comfortable here.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Form a typical SQL query and use python to populate the table name\n", + "qry = \"SELECT DISTINCT site_id FROM sites\"\n", + "\n", + "# Then we execute the sql command and collect the results\n", + "results = engine.execute(qry)\n", + "\n", + "# Create a nice readable string to print the site names using python \n", + "out = ', '.join((row['site_id'] for row in results))\n", + "\n", + "# Print it with a line return for readability\n", + "print(out + '\\n')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2. Using the Session Object\n", + "The session object allows a user to interact with the database in a pure python form. This approach is called Object Relational Mapping (ORM)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import the table classes from our data module which is where our ORM classes are defined \n", + "from snowexsql.data import SiteData\n", + "\n", + "# Form the query to receive all the site_id from the sites table\n", + "qry = session.query(SiteData.site_id).distinct()\n", + "\n", + "# Execute the query and collect the results\n", + "results = qry.all()\n", + "\n", + "# Print it with a line return for readability\n", + "print(', '.join([row[0] for row in list(results)]))\n", + "\n", + "# Close your session to avoid hanging transactions\n", + "session.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Crash Course in Object Relational Mapping (ORM)\n", + "\n", + "**Question**: How is a database used in pure python?!...Are you down with the O.O.P? The answer is as a Class where each column is mapped to that class as an attribute e.g. obj.attribute AND... in the correct type for python!\n", + "\n", + "Consider the following table:\n", + "\n", + "\n", + "| id | site_id | ground_roughness |\n", + "| ----|---------| -----------------|\n", + "| 0 | GML | rough | \n", + "| 1 | 2S27 | smooth | \n", + "| 2 | 3S52 | smooth | \n", + "\n", + "\n", + "In our python repo we have a made up class `SiteData` defined to map to this table.\n", + "\n", + "``` python \n", + " \n", + " from snowexsql.data import SiteData\n", + " \n", + "``` \n", + "\n", + "| id | site_id | ground_roughness |\n", + "| -------------|------------------| --------------------------|\n", + "| SiteData.id | SiteData.site_id | SiteData.ground_roughness | \n", + "| SiteData.id | SiteData.site_id | SiteData.ground_roughness | \n", + "| SiteData.id | SiteData.site_id | SiteData.ground_roughness | \n", + "\n", + "\n", + "If we queried the whole table above using the session object we would get back 3 Sitedata objects in a list. 1 for each row. \n", + "\n", + "``` console\n", + "[, , ]\n", + "```\n", + "\n", + "\n", + "This at first doesn't seem useful until you start to use the objects.\n", + "\n", + "``` python \n", + "\n", + "print(my_queried_data[0].ground_roughness)\n", + "```\n", + "\n", + "``` console\n", + "rough\n", + "```\n", + "\n", + "**Question**\n", + "\n", + "* How would you access from our list the `site_id` of the 2nd row?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Recap\n", + "\n", + "You just:\n", + "\n", + "* Accessed a geodatabase using python \n", + "* Saw two methods for interacting with the db using the snowexsql library\n", + "* Pulled all the unique pit site id numbers from the db \n", + "* Had a high level intro to ORM" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/book/tutorials/snowex_database/2_database_structure.ipynb b/book/tutorials/snowex_database/2_database_structure.ipynb new file mode 100644 index 0000000..48d5420 --- /dev/null +++ b/book/tutorials/snowex_database/2_database_structure.ipynb @@ -0,0 +1,201 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "dangerous-decrease", + "metadata": {}, + "source": [ + "# How is the Database Structured?\n", + "\n", + "The goal of the database is to hold as much of the SnowEx data in one place and make it easier to \n", + "do research with. With that in mind follow the steps below to see how the the data base is structured.\n", + "\n", + "\n", + "## What were about to do\n", + "\n", + "1. Access the database using the snowexsql python library \n", + "2. Query the database to see the underlying tables\n", + "3. Query each table to see what columns are available\n", + "4. Query to see what datasets are available\n", + "\n", + "## Process\n", + "\n", + "### Step 1: Get a database session" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "artistic-thought", + "metadata": {}, + "outputs": [], + "source": [ + "# Import the connection function from the snowexsql library\n", + "from snowexsql.db import get_db\n", + "\n", + "# This is what you will use for all of hackweek to access the db\n", + "db_name = 'snow:hackweek@db.snowexdata.org/snowex'\n", + "\n", + "# Using the function get_db, we receive 2 ways to interact with the database\n", + "engine, session = get_db(db_name)" + ] + }, + { + "cell_type": "markdown", + "id": "intensive-tracy", + "metadata": {}, + "source": [ + "### Step 2: Query the DB to see what tables are available" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "random-healthcare", + "metadata": {}, + "outputs": [], + "source": [ + "# Output the list of tables in the database \n", + "engine.table_names()" + ] + }, + { + "cell_type": "markdown", + "id": "varying-anime", + "metadata": {}, + "source": [ + "We can also import classes that reflect these tables in python!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "imposed-thomson", + "metadata": {}, + "outputs": [], + "source": [ + "from snowexsql.data import LayerData, PointData, ImageData, SiteData" + ] + }, + { + "cell_type": "markdown", + "id": "liberal-binary", + "metadata": {}, + "source": [ + "### Step 3: Query a Table to see what columns you can use!\n", + "\n", + "In our python library [snowexsql](https://github.com/SnowEx/snowexsql/) there are classes that reflect the database tables. This makes it easier to use in python.\n", + "For google purposes this is also called Object Relational Mapping (ORM). \n", + "\n", + "Import the table class from [`snowexsql.data`](https://snowexsql.readthedocs.io/en/latest/snowexsql.html#module-snowexsql.data) and [`snowexsql.db.get_table_attributes`](https://snowexsql.readthedocs.io/en/latest/snowexsql.html#snowexsql.db.get_table_attributes). The use `get_table_attributes` to see what\n", + "columns are in each table!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "operational-province", + "metadata": {}, + "outputs": [], + "source": [ + "# Import the class reflecting the points table in the db\n", + "from snowexsql.data import PointData\n", + "\n", + "# Import the function to investigate a table\n", + "from snowexsql.db import get_table_attributes\n", + "\n", + "# Use the function to see what columns are available to use. \n", + "db_columns = get_table_attributes(PointData)\n", + "\n", + "# Print out the results nicely\n", + "print(\"These are the available columns in the table:\\n \\n* {}\\n\".format('\\n* '.join(db_columns)))\n" + ] + }, + { + "cell_type": "markdown", + "id": "fatal-collection", + "metadata": {}, + "source": [ + "**Try this:** Using what we just did, use `get_table_attributes` to look at the other tables.\n", + "\n", + "**Hint**: You have to change the table class name in two places in the above code block.\n", + "\n", + "## Discussion: What's the difference in these tables?\n", + "\n", + "If working by yourself checkout the readthedocs page on [database structure](https://snowexsql.readthedocs.io/en/latest/database_structure.html) to see how data gets categorized. \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "92bfaa6c-d489-4abc-a485-757cb914358a", + "metadata": {}, + "outputs": [], + "source": [ + "# Close out the session to avoid hanging transactions\n", + "session.close()" + ] + }, + { + "cell_type": "markdown", + "id": "immune-symphony", + "metadata": {}, + "source": [ + "## Bonus Step: Learning to help yourself\n", + "[snowexsql](https://github.com/SnowEx/snowexsql/) has a host of resources for you to help your self. First when you are looking for something be sure to check the snowexsql's docs.\n", + "There you will find notes on the database structure. datasets, and of course our API! \n", + "\n", + "### Database Usage/Examples\n", + "* [snowexsql Code](https://github.com/SnowEx/snowexsql/) \n", + "* [snowexsql Documentation](https://snowexsql.readthedocs.io/en/latest/) \n", + "\n", + "### Database Building/Notes\n", + "* [snowex_db Code](https://github.com/SnowEx/snowex_db/) \n", + "* [snowex_db Documentation](https://snowex_db.readthedocs.io/en/latest/) \n", + "\n", + "### Extra Resources\n", + "* [PostGIS Functions](https://postgis.net/docs/manual-3.0/PostGIS_Special_Functions_Index.html) - POSTGIS is the extension that make postgres have GIS capabilities. This is here as a resource but it will be discussed in more detail later.\n", + "* [GeoAlchemy2](https://geoalchemy-2.readthedocs.io/en/0.8.4/) - geoalchemy is library that allows us to leverage postgis and other gis functions\n", + "* [SqlAlchemy](https://docs.sqlalchemy.org/en/14/) - sqlalchemy is the underlying library that lets us map python to databases\n", + "* [Hackweek DB Cheat Sheet](https://snowexsql.readthedocs.io/en/latest/cheat_sheet.html) - This is a cheat sheet we put together to help you use the database.\n" + ] + }, + { + "cell_type": "markdown", + "id": "aging-volunteer", + "metadata": {}, + "source": [ + "## Recap \n", + "You just explored the database structure and discussed how they differ.\n", + "\n", + "**You should know:**\n", + "* Which tables matter to a snowex scientist\n", + "* What columns you can work with (or how to get the available columns)\n", + "* Some resources to begin helping yourself.\n", + "\n", + "If you don't feel comfortable with these, you are probably not alone, let's discuss it!" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/book/tutorials/snowex_database/3_forming_queries.ipynb b/book/tutorials/snowex_database/3_forming_queries.ipynb new file mode 100644 index 0000000..7eb5f14 --- /dev/null +++ b/book/tutorials/snowex_database/3_forming_queries.ipynb @@ -0,0 +1,233 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Forming Queries\n", + "\n", + "Get Familiar with querying the database. BUT don't forget your [cheat sheets](https://snowexsql.readthedocs.io/en/latest/cheat_sheet.html)! \n", + "\n", + "## Process\n", + "### Getting Connected\n", + "Getting connected to the database is easiest done using the snowexsql library function [`get_db`](https://snowexsql.readthedocs.io/en/latest/snowexsql.html#snowexsql.db.get_db)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import the function to get connect to the db\n", + "from snowexsql.db import get_db\n", + "\n", + "# This is what you will use for all of hackweek to access the db\n", + "db_name = 'snow:hackweek@db.snowexdata.org/snowex'\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Importing the tables classes\n", + "These are critical for build queries. You will need at least one of these every query since they reflect the data were interested in.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from snowexsql.data import SiteData, PointData, LayerData, ImageData" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Query Time!\n", + "We build queries in python using `session.query()`. Whatever we put inside of the query parentheses is what we will get back in the results!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# This is what you will use for all of hackweek to access the db\n", + "engine, session = get_db(db_name)\n", + "\n", + "# Lets grab a single row from the points table\n", + "qry = session.query(PointData).limit(1)\n", + "\n", + "# Execute that query!\n", + "result = qry.all()\n", + "\n", + "session.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pause for moment and consider what is in `result`....\n", + "\n", + "\n", + "Is it:\n", + "\n", + " A. a single value\n", + " B. a bunch of values\n", + " C. an object\n", + " D. a row of values\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# uncomment the line below and print out the results \n", + "print(result)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This feels soooo *limited* :)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [ + "nbsphinx-gallery", + "nbsphinx-thumbnail" + ] + }, + "source": [ + "**Questions**\n", + "* What happens if we changed the number in the limit? What will we get back?\n", + "* Where are our column names?\n", + "* What if I only wanted a single column and not a whole row?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Filtering\n", + "The database had a silly number of records, and asking for all of them will crash your computer. \n", + "\n", + "So let talk about using `.filter()`\n", + "\n", + "All queries can be reduced by applying `session.query(__).filter(__)` and a lot can go into the parentheses. This is where your cheat sheet will come in handy." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# This is what you will use for all of hackweek to access the db\n", + "engine, session = get_db(db_name)\n", + "\n", + "# Its convenient to store a query like the following \n", + "qry = session.query(LayerData)\n", + "\n", + "# Then filter on it to just density profiles\n", + "qry = qry.filter(LayerData.type == 'density')\n", + "\n", + "# protect ourselves from a lot of data\n", + "qry = qry.limit(5)\n", + "\n", + "result = qry.all()\n", + "print(result)\n", + "\n", + "session.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Questions**\n", + "* What happens if I filter on a qry that's been filtered?\n", + "* What happens if I just want a single column/attribute back? How do I do that?\n", + "\n", + "### How do I know what to filter on?\n", + "Queries and `.distinct()`!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# This is what you will use for all of hackweek to access the db\n", + "engine, session = get_db(db_name)\n", + "\n", + "# Get the unique datanames in the table\n", + "results = session.query(LayerData.type).distinct().all()\n", + "print('Available types = {}'.format(', '.join([r[0] for r in results])))\n", + "\n", + "# Get the unique instrument in the table\n", + "results = session.query(LayerData.instrument).distinct().all()\n", + "print('\\nAvailable Instruments = {}'.format(', '.join([str(r[0]) for r in results])))\n", + "\n", + "# Get the unique dates in the table\n", + "results = session.query(LayerData.date).distinct().all()\n", + "print('\\nAvailable Dates = {}'.format(', '.join([str(r[0]) for r in results])))\n", + "\n", + "# Get the unique surveyors in the table\n", + "results = session.query(LayerData.observers).distinct().all()\n", + "print('\\nAvailable surveyors = {}'.format(', '.join([str(r[0]) for r in results])))\n", + "\n", + "session.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Recap \n", + "You just explored using the session object to form queries and compounding filters results with it\n", + "\n", + "**You should know:**\n", + "* How to build queries using filtering\n", + "* How to isolate column data \n", + "* Determine what values to filter on\n", + "\n", + "If you don't feel comfortable with these, you are probably not alone, let's discuss it!" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/book/tutorials/snowex_database/4_get_spiral_example.ipynb b/book/tutorials/snowex_database/4_get_spiral_example.ipynb new file mode 100644 index 0000000..a8711cb --- /dev/null +++ b/book/tutorials/snowex_database/4_get_spiral_example.ipynb @@ -0,0 +1,194 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Forming Queries: Example Visualizng Depths\n", + "\n", + "During the SnowEx campaigns a TON of manual snow depths were collected, surveys for hackweek showed an overhelming interest in the manual \n", + "snow depths dataset. This tutorial shows how easy it is to get at that data in the database while learning how to build queries\n", + "\n", + "Don't forget your [cheat sheets](https://snowexsql.readthedocs.io/en/latest/cheat_sheet.html)! \n", + "\n", + "**Goal**: Visualize a small subset of snow depths \n", + "\n", + "**Approach**: \n", + "\n", + "1. Connect to the DB\n", + "2. Build a query filtering by dataset and date\n", + "3. Convert to a GeoDataFrame and plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Process\n", + "### Step 1: Get connected" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import the function to get connect to the db\n", + "from snowexsql.db import get_db\n", + "\n", + "# Import our class for the points table\n", + "from snowexsql.data import PointData\n", + "\n", + "# Import a useful function to format that data into a dataframe\n", + "from snowexsql.conversions import query_to_geopandas\n", + "\n", + "# Import some tools to build dates \n", + "from datetime import date\n", + "\n", + "# This is what you will use for all of hackweek to access the db\n", + "db_name = 'snow:hackweek@db.snowexdata.org/snowex'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 2: Build a query " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Pick a dataset\n", + "dataset = 'depth'\n", + "\n", + "# Pick a date\n", + "collection_date = date(2020, 2, 7)\n", + "\n", + "# Site name\n", + "site_name = \"Grand Mesa\"\n", + "\n", + "# Get a session\n", + "engine, session = get_db(db_name)\n", + "\n", + "# The part inside the query function is what we want back, in this case all columns for the point data\n", + "qry = session.query(PointData)\n", + "\n", + "# Filter by site\n", + "qry = qry.filter(PointData.site_name == site_name)\n", + "\n", + "# We then want to filter by the selected the data type depth.\n", + "qry = qry.filter(PointData.type == dataset)\n", + "\n", + "# Filter by a date\n", + "qry = qry.filter(PointData.date == collection_date)\n", + "\n", + "# Limit it to a couple hundred - just for exploration\n", + "qry = qry.limit(200)\n", + "\n", + "# Execute the query and convert to geopandas in one handy function\n", + "df = query_to_geopandas(qry, engine)\n", + "\n", + "# how many did we retrieve?\n", + "print(f'{len(df.index)} records returned!')\n", + "\n", + "session.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 3: Plot it!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "nbsphinx-gallery", + "nbsphinx-thumbnail" + ] + }, + "outputs": [], + "source": [ + "# Get the Matplotlib Axes object from the dataframe object, color the points by snow depth value\n", + "ax = df.plot(column='value', legend=True, cmap='PuBu')\n", + "\n", + "# Use non-scientific notation for x and y ticks\n", + "ax.ticklabel_format(style='plain', useOffset=False)\n", + "\n", + "# Set the various plots x/y labels and title.\n", + "ax.set_title(f'{len(df.index)} {dataset.title()}s collected on {collection_date.strftime(\"%Y-%m-%d\")}')\n", + "ax.set_xlabel('Easting [m]')\n", + "ax.set_ylabel('Northing [m]')\n", + "\n", + "# Close the session to avoid hanging transactions\n", + "session.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lets try to filter to get the data to show only a depth spiral." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Let see what instruments are available \n", + "result = session.query(PointData.instrument).filter(PointData.type == 'depth').distinct().all()\n", + "print(result)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Try This:**\n", + "Go back and add a filter to reduce to just one spiral. Do you know what instrument was used to make depth spirals?\n", + "\n", + "\n", + "## Recap \n", + "You just plotted snow depths and reduce the scope of the data by compounding filters on it\n", + "\n", + "**You should know:**\n", + "* How to build queries using filtering\n", + "* Where a useful tools like [`query_to_geopandas`](https://snowexsql.readthedocs.io/en/latest/snowexsql.html#snowexsql.conversions.query_to_geopandas) live in the snowexsql library\n", + "\n", + "\n", + "If you don't feel comfortable with these, you are probably not alone, let's discuss it!\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/book/tutorials/snowex_database/5_plot_raster_example.ipynb b/book/tutorials/snowex_database/5_plot_raster_example.ipynb new file mode 100644 index 0000000..2836bed --- /dev/null +++ b/book/tutorials/snowex_database/5_plot_raster_example.ipynb @@ -0,0 +1,284 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Forming Queries: PostGIS Functions\n", + "\n", + "PostGIS offer a host of functions that we can access through python using special functions to utilize them \n", + "\n", + "Don't forget your [cheat sheets](https://snowexsql.readthedocs.io/en/latest/cheat_sheet.html)! \n", + "\n", + "\n", + "In general they follow the convention\n", + "``` sql\n", + "ST_\n", + "```\n", + "\n", + "They also tend to fall into (generally) 2 categories, points and rasters. \n", + "\n", + "\n", + "## Process \n", + "### Get Connected" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import the function to get connect to the db\n", + "from snowexsql.db import get_db\n", + "\n", + "# This is what you will use for all of hackweek to access the db\n", + "db_name = 'snow:hackweek@db.snowexdata.org/snowex'\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Let's get a single raster tile\n", + "\n", + "Checkout the documentation for [`ST_AsTiff`](https://postgis.net/docs/RT_ST_AsTIFF.html)\n", + "\n", + "Raster data in the database is stored in Well Known binary format so to make it useful to us we convert to geotiff format. \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from snowexsql.data import ImageData\n", + "\n", + "# Grab a session\n", + "engine, session = get_db(db_name)\n", + "\n", + "# What will this return?\n", + "result = session.query(ImageData.raster).limit(1).all()\n", + "\n", + "print(type(result[0][0]))\n", + "\n", + "session.close()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# import this to use define sql functions (e.g. postgis!)\n", + "from sqlalchemy.sql import func \n", + "\n", + "# Import this to convert to a rasterio object for easy plotting\n", + "from snowexsql.conversions import raster_to_rasterio \n", + "\n", + "# Import a convenient function to plot with \n", + "from rasterio.plot import show" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Grab a session\n", + "engine, session = get_db(db_name)\n", + "\n", + "# Remember in the query parentheses is what we get back, in this case were asking for the raster data as a geotiff\n", + "result = session.query(func.ST_AsTiff(ImageData.raster)).filter(ImageData.type == 'depth').limit(1).all()\n", + "\n", + "# Now make it more available as a python object \n", + "datasets = raster_to_rasterio(session, result)\n", + "\n", + "# Plot the georeferenced image \n", + "show(datasets[0], vmax=1.2, vmin=0, cmap='winter')\n", + "\n", + "# Close the dataset\n", + "datasets[0].close()\n", + "session.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Lets use a few more. \n", + "\n", + "Lets try to get a raster tile on a pit!\n", + "\n", + "Checkout the documentation for \n", + "\n", + "* [`ST_Union`](https://postgis.net/docs/RT_ST_Union.html)\n", + "* [`ST_Intersects`](https://postgis.net/docs/RT_ST_Intersects.html)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# import our pits metadata table class\n", + "from snowexsql.data import SiteData\n", + "from geoalchemy2.types import Raster\n", + "import geoalchemy2.functions as gfunc\n", + "\n", + "# Grab a session\n", + "engine, session = get_db(db_name)\n", + "\n", + "# session.rollback()\n", + "\n", + "# 1. Lets choose a site we want to grab a raster tile\n", + "site_id = '5S31'\n", + "\n", + "# 2. Get the location of the pit, POSTGIS functions like to work in the text format of things so convert the point geom to text which is also in binary in the db \n", + "point = session.query(SiteData.geom).filter(SiteData.site_id == site_id).distinct().all()[0][0]\n", + "\n", + "# 3. Merge all the tiles together, note gfunc vs func. This is because ST_Union exists in two places in postgis for geom and rasters!\n", + "base = gfunc.ST_Union(ImageData.raster, _type=Raster)\n", + "\n", + "# 4. Get the merged result as a geotiff! \n", + "base = func.ST_AsTiff(base)\n", + "\n", + "# 5. Filter by uavsar interferogram data\n", + "qry = session.query(base).filter(ImageData.type == 'insar interferogram real')\n", + "\n", + "# 6. Filter by a polarization in the description \n", + "qry = qry.filter(ImageData.description.contains('Polarization = HH'))\n", + "\n", + "# 7. Isolate tiles touching the pit location\n", + "qry = qry.filter(func.ST_Intersects(ImageData.raster, point))\n", + "\n", + "print(qry.count())\n", + "\n", + "# 8. Execute, convert and plot! \n", + "result = qry.all()\n", + "datasets = raster_to_rasterio(session, result)\n", + "show(datasets[0], vmin=-0.02, vmax=0.02, cmap='Purples')\n", + "\n", + "session.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Discussion**\n", + "\n", + "* What is a fundamental difference do you see in using `ST_Union` vs `ST_Intersects`\n", + "* Did you notice `ST_Union` used `gfunc.` instead of `func.` ? How many `ST_Union`'s exist? \n", + "\n", + "\n", + "* [`RT_ST_Union`](https://postgis.net/docs/RT_ST_Union.html)\n", + "* [`ST_Union`](https://postgis.net/docs/ST_Union.html)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Lets work with some points and Postgis\n", + "These functions are critical to rasters use with the database. But there are plenty of very useful functions for non-raster data too! A common use is to grab points in a certain geometry of a locations like a pit.\n", + "\n", + "Lets pick a pit and grab data with a certain radius of that pit using postgis functions.\n", + "\n", + "Checkout the documentation on:\n", + "\n", + "[`ST_Buffer`](https://postgis.net/docs/ST_Buffer.html)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from snowexsql.data import PointData\n", + "from snowexsql.conversions import query_to_geopandas\n", + "import matplotlib.pyplot as plt \n", + "\n", + "\n", + "# Pick a pit ID\n", + "site_id = '1N3'\n", + "\n", + "# Pick a distance around the pit to collect data in meters\n", + "buffer_dist = 50\n", + "\n", + "# Grab a session\n", + "engine, session = get_db(db_name)\n", + "\n", + "# Grab our pit location by provided site id from the site details table\n", + "qry = session.query(SiteData.geom).filter(SiteData.site_id == site_id)\n", + "\n", + "# convert qry to df for easy plotting \n", + "site_df = query_to_geopandas(qry, engine)\n", + "\n", + "# Also execute it for the normal db usage\n", + "site_geom = qry.all()[0][0]\n", + "\n", + "# Create a polygon buffered by our distance centered on the pit\n", + "qry = session.query(func.ST_Buffer(site_geom, buffer_dist))\n", + "\n", + "# Execute for other querying\n", + "buffered_pit = qry.all()[0][0]\n", + "\n", + "# Filter by the dataset type depth\n", + "qry = session.query(PointData).filter(PointData.type == 'depth').filter(PointData.instrument.in_(['magnaprobe','mesa']))\n", + "\n", + "# Grab all the point data in the buffer\n", + "qry = qry.filter(func.ST_Within(PointData.geom, buffered_pit))\n", + "df = query_to_geopandas(qry, engine)\n", + "\n", + "session.close()\n", + "\n", + "# plot it with style!\n", + "fig, ax = plt.subplots(figsize=(8,8))\n", + "ax = df.plot(ax=ax, column='value', cmap='cool')\n", + "site_df.plot(ax=ax, marker='^', markersize=100, color='green')\n", + "ax.legend([\"Depth\", \"Pit\"])\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Recap\n", + "\n", + "Postgis functions are awesome but can be finicky. So go slow with them.\n", + "\n", + "**You should know**\n", + "* Where to find PostGIS functions \n", + "* When to use geoalchemy2 over sqlachemy functions call \n", + "* How to chain together commands " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/book/tutorials/snowex_database/6_exporting_data.ipynb b/book/tutorials/snowex_database/6_exporting_data.ipynb new file mode 100644 index 0000000..7c4c116 --- /dev/null +++ b/book/tutorials/snowex_database/6_exporting_data.ipynb @@ -0,0 +1,129 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "female-farming", + "metadata": {}, + "source": [ + "# Exporting Data \n", + "You may want to export your queried data from the database. In this section we talk about how!\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "painted-mountain", + "metadata": {}, + "outputs": [], + "source": [ + "# Import the function to get connect to the db\n", + "from snowexsql.db import get_db\n", + "from snowexsql.data import SiteData, PointData, LayerData, ImageData\n", + "\n", + "# This is what you will use for all of hackweek to access the db\n", + "db_name = 'snow:hackweek@db.snowexdata.org/snowex'" + ] + }, + { + "cell_type": "markdown", + "id": "metallic-underground", + "metadata": {}, + "source": [ + "## Shapefiles and CSVs\n", + "The following can be done with ANY SiteData, PointData, or LayerData query. \n", + "\n", + "**Note**: Shapefiles do not support datetime object so they must be converted to strings before writing." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "pleasant-liabilities", + "metadata": {}, + "outputs": [], + "source": [ + "# import the hand method for converting queries to dataframes\n", + "from snowexsql.conversions import query_to_geopandas\n", + "\n", + "# Grab a session\n", + "engine, session = get_db(db_name)\n", + "\n", + "qry = session.query(SiteData.geom).limit(10)\n", + "\n", + "df = query_to_geopandas(qry, engine)\n", + "\n", + "# Write to shapefile\n", + "df.to_file('site_data.shp')\n", + "\n", + "# Write to a csv\n", + "df.to_csv('site_data.csv')\n", + "\n", + "session.close()" + ] + }, + { + "cell_type": "markdown", + "id": "contemporary-composer", + "metadata": {}, + "source": [ + "## Rasters" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "thrown-coverage", + "metadata": {}, + "outputs": [], + "source": [ + "# import the handy function to convert raster db results to rasterio\n", + "from snowexsql.conversions import raster_to_rasterio\n", + "\n", + "# Import the SQL function to access PostGIS functions\n", + "from sqlalchemy.sql import func\n", + "\n", + "# Import rasterio for Writing\n", + "import rasterio \n", + "\n", + "# Grab a session\n", + "engine, session = get_db(db_name)\n", + "\n", + "# Query 1 raster tile and convert it to a geotiff\n", + "result = session.query(func.ST_AsTiff(ImageData.raster)).limit(1).all()\n", + "\n", + "# Convert the dataset to a rasterio dataset\n", + "dataset = raster_to_rasterio(session, result)\n", + "\n", + "# Copy the profile/tiff metadata (not to be confused with the database metadata)\n", + "profile = dataset[0].profile\n", + "\n", + "# Write to a file \n", + "with rasterio.open('raster.tif', 'w', **profile) as dst:\n", + " dst.write(dataset[0].read(1), 1)\n", + "\n", + "session.close()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/book/tutorials/snowex_database/7_bonus_challenge.ipynb b/book/tutorials/snowex_database/7_bonus_challenge.ipynb new file mode 100644 index 0000000..9d0b5b7 --- /dev/null +++ b/book/tutorials/snowex_database/7_bonus_challenge.ipynb @@ -0,0 +1,222 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Bonus Challenge: Analyzing Pits\n", + "\n", + "LayerData, like pits, have some nuance. This challenge will give us some chance to explore the data and get some practice querying and plotting. \n", + "This can be done as a small group exercise.\n", + "\n", + "Don't forget your [cheat sheets](https://snowexsql.readthedocs.io/en/latest/cheat_sheet.html)! \n", + "\n", + "**Goal**: Get more familiar with LayerData and create a vertical profile plot of density\n", + "\n", + "**Approach**: \n", + "\n", + "1. Connect to the DB\n", + "2. Explore the data\n", + "2. Build a query filtering to the dataset you want\n", + "3. Convert to a GeoDataFrame and plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Process\n", + "### Step 1: Get connected" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import the function to get connect to the db\n", + "from snowexsql.db import get_db\n", + "\n", + "# Import our class for the layer data\n", + "from snowexsql.data import LayerData\n", + "\n", + "# Import a useful function to format that data into a dataframe\n", + "from snowexsql.conversions import query_to_geopandas\n", + "\n", + "# Import some tools to build dates \n", + "from datetime import date\n", + "\n", + "# This is what you will use for all of hackweek to access the db\n", + "db_name = 'snow:hackweek@db.snowexdata.org/snowex'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 2: Explore the data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from snowexsql.db import get_table_attributes\n", + "\n", + "# print the columns available\n", + "db_columns = get_table_attributes(LayerData)\n", + "print(\"These are the available columns in the table:\\n \\n* {}\\n\".format('\\n* '.join(db_columns)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Find the site names and site ids" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Connect\n", + "engine, session = get_db(db_name)\n", + "\n", + "# Find the distinct site names\n", + "result = session.query(LayerData.site_name).filter(LayerData.type == 'density').distinct().all()\n", + "site_names = [r[0] for r in result]\n", + "\n", + "# Find the distinct site_names for the site\n", + "print(site_names)\n", + "\n", + "# Close session\n", + "session.close()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Connect\n", + "engine, session = get_db(db_name)\n", + "\n", + "# We can filter to a site_name, change this to whichever value you want as the site name order may not be consistent\n", + "site_name = site_names[0]\n", + "\n", + "# Find the distinct site ids for a site_name\n", + "result = session.query(LayerData.site_id)\n", + "result = result.filter(LayerData.type == 'density')\n", + "result = result.filter(LayerData.site_name == site_name)\n", + "\n", + "result = result.distinct().all()\n", + "site_ids = [r[0] for r in result]\n", + "\n", + "# Find the distinct site_ids for the site\n", + "print(site_ids)\n", + "\n", + "# Close session\n", + "session.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 3: Build a query to get the values for 1 pit\n", + "\n", + "A few things to keep in mind\n", + "\n", + "* You will need to filter to one site_id and one unique date OR one pit_id\n", + "* You will need the density and depth columns to create a vertical profile" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here\n", + "pass" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 4: Convert to a GeoDataFrame and plot" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "nbsphinx-gallery", + "nbsphinx-thumbnail" + ] + }, + "outputs": [], + "source": [ + "# Use the query you built to build a GeoDataFrame and plot the data\n", + "# Your code here\n", + "pass" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Extra: Can you get the bulk density of the snowpack?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here\n", + "pass" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# a block for closing errant sessions\n", + "session.close()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/book/tutorials/snowex_database/8_wrap_up.ipynb b/book/tutorials/snowex_database/8_wrap_up.ipynb new file mode 100644 index 0000000..291c394 --- /dev/null +++ b/book/tutorials/snowex_database/8_wrap_up.ipynb @@ -0,0 +1,56 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "approximate-selling", + "metadata": {}, + "source": [ + "# Wrap up\n", + "\n", + "## QGIS \n", + "\n", + "You can use the database with QGIS or ArcGIS. There are some [examples in QGIS](https://snowexsql.readthedocs.io/en/latest/qgis.html) in the documentation on that on Read the docs for the snowexsql\n", + "\n", + "\n", + "## Community Software\n", + "\n", + "* Open Source software means you can participate! Checkout [contributing on RTD](https://snowexsql.readthedocs.io/en/latest/contributing.html)\n", + "* Can I work locally? Yep! Checkout the [python installation on RTD](https://snowexsql.readthedocs.io/en/latest/installation.html#python) If you are just doing python development you do not need to install the database.\n" + ] + }, + { + "cell_type": "markdown", + "id": "compact-mills", + "metadata": {}, + "source": [ + "\n", + "## Acknowlegdments\n", + "\n", + "Big thanks to all the dedicated scientists who went out and collected these invaluable datasets. \n", + "\n", + "A huge thanks to HP Marshall who gave me the opportunity to build this a couple years ago and continues to fund it. Buy him a beer or better yet volunteer for field work to hang out with him! " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/book/tutorials/snowex_database/index.md b/book/tutorials/snowex_database/index.md new file mode 100644 index 0000000..b28875c --- /dev/null +++ b/book/tutorials/snowex_database/index.md @@ -0,0 +1,4 @@ +# SnowEx Database + +```{tableofcontents} +``` From 8baf7c5be08a17232bd9380b0337f92d04b0d3bc Mon Sep 17 00:00:00 2001 From: Micah Sandusky Date: Mon, 17 Jun 2024 15:59:56 -0600 Subject: [PATCH 02/21] add api examples --- .../snowex_database/api_intro_example.ipynb | 1474 ++++++++ .../api_plot_pit_density_example.ipynb | 3023 +++++++++++++++++ 2 files changed, 4497 insertions(+) create mode 100644 book/tutorials/snowex_database/api_intro_example.ipynb create mode 100644 book/tutorials/snowex_database/api_plot_pit_density_example.ipynb diff --git a/book/tutorials/snowex_database/api_intro_example.ipynb b/book/tutorials/snowex_database/api_intro_example.ipynb new file mode 100644 index 0000000..79cf441 --- /dev/null +++ b/book/tutorials/snowex_database/api_intro_example.ipynb @@ -0,0 +1,1474 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Welcome to the API!\n", + "\n", + "**Goal**: Easy programmatic access to the database with **no user SQL**\n", + "\n", + "\n", + "## Notes\n", + "\n", + " * This is not a REST API, more of an SDK\n", + " * Current access is for *point* and *layer* data\n", + " * Funtions return **lists** or **Geopandas Dataframes**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 1. Import the classes, explore them" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# imports\n", + "from datetime import date\n", + "import geopandas as gpd\n", + "from snowexsql.api import PointMeasurements, LayerMeasurements" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
site_namedatetime_createdtime_updatediddoidate_accessedinstrumenttypeunits...northingeastingelevationutm_zonegeomtimesite_idversion_numberequipmentvalue
0Grand Mesa2020-05-282022-06-30 22:58:59.800562+00:00None42443None2022-06-30cameradepthcm...4.321444e+06743766.479497None12POINT (743766.479 4321444.155)18:00:00+00:00NoneNonecamera id = W1B-2.99924
1Grand Mesa2020-05-282022-06-30 22:58:59.800562+00:00None42444None2022-06-30cameradepthcm...4.321444e+06743766.479497None12POINT (743766.479 4321444.155)19:00:00+00:00NoneNonecamera id = W1B1.50148
2Grand Mesa2020-05-282022-06-30 22:58:59.800562+00:00None43187None2022-06-30cameradepthcm...4.331951e+06249164.808618None13POINT (249164.809 4331951.003)18:00:00+00:00NoneNonecamera id = E9B-1.15255
3Grand Mesa2020-05-282022-06-30 22:58:59.800562+00:00None43188None2022-06-30cameradepthcm...4.331951e+06249164.808618None13POINT (249164.809 4331951.003)19:00:00+00:00NoneNonecamera id = E9B1.16381
4Grand Mesa2020-05-282022-06-30 22:58:59.800562+00:00None43189None2022-06-30cameradepthcm...4.331951e+06249164.808618None13POINT (249164.809 4331951.003)20:00:00+00:00NoneNonecamera id = E9B-2.31073
\n", + "

5 rows × 23 columns

\n", + "
" + ], + "text/plain": [ + " site_name date time_created time_updated \\\n", + "0 Grand Mesa 2020-05-28 2022-06-30 22:58:59.800562+00:00 None \n", + "1 Grand Mesa 2020-05-28 2022-06-30 22:58:59.800562+00:00 None \n", + "2 Grand Mesa 2020-05-28 2022-06-30 22:58:59.800562+00:00 None \n", + "3 Grand Mesa 2020-05-28 2022-06-30 22:58:59.800562+00:00 None \n", + "4 Grand Mesa 2020-05-28 2022-06-30 22:58:59.800562+00:00 None \n", + "\n", + " id doi date_accessed instrument type units ... northing \\\n", + "0 42443 None 2022-06-30 camera depth cm ... 4.321444e+06 \n", + "1 42444 None 2022-06-30 camera depth cm ... 4.321444e+06 \n", + "2 43187 None 2022-06-30 camera depth cm ... 4.331951e+06 \n", + "3 43188 None 2022-06-30 camera depth cm ... 4.331951e+06 \n", + "4 43189 None 2022-06-30 camera depth cm ... 4.331951e+06 \n", + "\n", + " easting elevation utm_zone geom \\\n", + "0 743766.479497 None 12 POINT (743766.479 4321444.155) \n", + "1 743766.479497 None 12 POINT (743766.479 4321444.155) \n", + "2 249164.808618 None 13 POINT (249164.809 4331951.003) \n", + "3 249164.808618 None 13 POINT (249164.809 4331951.003) \n", + "4 249164.808618 None 13 POINT (249164.809 4331951.003) \n", + "\n", + " time site_id version_number equipment value \n", + "0 18:00:00+00:00 None None camera id = W1B -2.99924 \n", + "1 19:00:00+00:00 None None camera id = W1B 1.50148 \n", + "2 18:00:00+00:00 None None camera id = E9B -1.15255 \n", + "3 19:00:00+00:00 None None camera id = E9B 1.16381 \n", + "4 20:00:00+00:00 None None camera id = E9B -2.31073 \n", + "\n", + "[5 rows x 23 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# The main functions we will use are `from_area` and `from_filter` like this\n", + "df = PointMeasurements.from_filter(\n", + " date=date(2020, 5, 28), instrument='camera'\n", + ")\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Notice:\n", + " * We did not need to manage SQL\n", + " * We got a geopandas array\n", + " * We filtered on specific attributes known to be in the database" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### How do I know what to filter by?" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['site_name', 'site_id', 'date', 'instrument', 'observers', 'type', 'utm_zone']\n", + "['site_name', 'site_id', 'date', 'instrument', 'observers', 'type', 'utm_zone', 'pit_id']\n" + ] + } + ], + "source": [ + "# Find what you can filter by\n", + "print(PointMeasurements.ALLOWED_QRY_KWARGS)\n", + "print(LayerMeasurements.ALLOWED_QRY_KWARGS)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### How do I know what values work for filtering?" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[('Catherine Breen, Cassie Lumbrazo',), (None,), ('Ryan Webb',), ('Randall Bonnell',), ('Tate Meehan',)]\n" + ] + } + ], + "source": [ + "print(PointMeasurements().all_observers)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Try it out\n", + "\n", + "* What instrument could you filter by for PointData?\n", + "* What site names could you filter by for LayerData?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice we instantiate the class \n", + "`PointMeasurements()`\n", + "Before calling the property `.all_observers`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# " + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Make this Notebook Trusted to load map: File -> Trust Notebook
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Explore the points\n", + "df.crs\n", + "df.to_crs(\"EPSG:4326\").loc[:,[\"id\", \"value\", \"type\", \"geom\", \"instrument\"]].explore()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### What if I have a point or a shapefile\n", + "\n", + "Both the PointMeasurement and LayerMeasurement class have a function called `from_area`\n", + "that takes either a `shapely` polygon or a `shapely` point and a radius as well as the same\n", + "filter kwargs available in `.from_filter`\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Make this Notebook Trusted to load map: File -> Trust Notebook
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Set up a fake shapefile\n", + "gdf = gpd.GeoDataFrame(\n", + " geometry=gpd.points_from_xy(\n", + " [743766.4794971556], [4321444.154620216], crs=\"epsg:26912\"\n", + " ).buffer(2000.0)\n", + ").set_crs(\"epsg:26912\")\n", + "\n", + "# This is the area we will filter to\n", + "gdf.explore()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Make this Notebook Trusted to load map: File -> Trust Notebook
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Get density near the point\n", + "df = LayerMeasurements.from_area(\n", + " type=\"density\",\n", + " shp=gdf.iloc[0].geometry,\n", + ")\n", + "\n", + "df.to_crs(\"EPSG:4326\").loc[:,[\"id\", \"depth\", \"value\", \"type\", \"geom\"]].explore()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How much filtering is enough? " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I got a `LargeQueryCheckException`\n", + "\n", + "GIVE ME THE DATA PLEASE" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "tags": [ + "nbsphinx-gallery", + "nbsphinx-thumbnail" + ] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Failed query for PointData\n" + ] + }, + { + "ename": "LargeQueryCheckException", + "evalue": "Query will return 33364 number of records, but we have a default max of 1000. If you want to proceed, set the 'limit' filter to the desired number of records.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mLargeQueryCheckException\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/var/folders/jh/tvv3prb117d22jyn0vmbjn880000gn/T/ipykernel_51325/2889856166.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# This query will fail\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m df = PointMeasurements.from_filter(\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0minstrument\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"magnaprobe\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m )\n", + "\u001b[0;32m~/projects/m3works/snowexsql/snowexsql/api.py\u001b[0m in \u001b[0;36mfrom_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[0msession\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[0mLOG\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0merror\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Failed query for PointData\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 188\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 189\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 190\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/projects/m3works/snowexsql/snowexsql/api.py\u001b[0m in \u001b[0;36mfrom_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 181\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 182\u001b[0m \u001b[0mqry\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msession\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mquery\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mMODEL\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 183\u001b[0;31m \u001b[0mqry\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextend_qry\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mqry\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 184\u001b[0m \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mquery_to_geopandas\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mqry\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/projects/m3works/snowexsql/snowexsql/api.py\u001b[0m in \u001b[0;36mextend_qry\u001b[0;34m(cls, qry, check_size, **kwargs)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcheck_size\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 113\u001b[0;31m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_check_size\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mqry\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 114\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mqry\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/projects/m3works/snowexsql/snowexsql/api.py\u001b[0m in \u001b[0;36m_check_size\u001b[0;34m(cls, qry, kwargs)\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[0mcount\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mqry\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcount\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcount\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mMAX_RECORD_COUNT\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;34m\"limit\"\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 71\u001b[0;31m raise LargeQueryCheckException(\n\u001b[0m\u001b[1;32m 72\u001b[0m \u001b[0;34mf\"Query will return {count} number of records,\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0;34mf\" but we have a default max of {cls.MAX_RECORD_COUNT}.\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mLargeQueryCheckException\u001b[0m: Query will return 33364 number of records, but we have a default max of 1000. If you want to proceed, set the 'limit' filter to the desired number of records." + ] + } + ], + "source": [ + "# This query will fail\n", + "df = PointMeasurements.from_filter(\n", + " instrument=\"magnaprobe\",\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
site_namedatetime_createdtime_updatediddoidate_accessedinstrumenttypeunits...northingeastingelevationutm_zonegeomtimesite_idversion_numberequipmentvalue
0Grand Mesa2020-01-292022-06-30 22:56:52.635035+00:00None8713https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.322865e+06741881.1024663037.812POINT (741881.102 4322865.037)14:56:00+00:00None1CRREL_C85.0
1Grand Mesa2020-01-292022-06-30 22:56:52.635035+00:00None8714https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.322859e+06741878.6753803038.012POINT (741878.675 4322859.408)14:57:00+00:00None1CRREL_C72.0
2Grand Mesa2020-01-292022-06-30 22:56:52.635035+00:00None8715https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.322855e+06741877.0800583037.112POINT (741877.080 4322854.914)14:57:00+00:00None1CRREL_C84.0
3Grand Mesa2020-01-292022-06-30 22:56:52.635035+00:00None8716https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.322850e+06741875.4847333035.512POINT (741875.485 4322850.421)14:57:00+00:00None1CRREL_C84.0
4Grand Mesa2020-01-292022-06-30 22:56:52.635035+00:00None8717https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.322845e+06741873.9235123034.612POINT (741873.924 4322844.818)14:57:00+00:00None1CRREL_C78.0
\n", + "

5 rows × 23 columns

\n", + "
" + ], + "text/plain": [ + " site_name date time_created time_updated id \\\n", + "0 Grand Mesa 2020-01-29 2022-06-30 22:56:52.635035+00:00 None 8713 \n", + "1 Grand Mesa 2020-01-29 2022-06-30 22:56:52.635035+00:00 None 8714 \n", + "2 Grand Mesa 2020-01-29 2022-06-30 22:56:52.635035+00:00 None 8715 \n", + "3 Grand Mesa 2020-01-29 2022-06-30 22:56:52.635035+00:00 None 8716 \n", + "4 Grand Mesa 2020-01-29 2022-06-30 22:56:52.635035+00:00 None 8717 \n", + "\n", + " doi date_accessed instrument type \\\n", + "0 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "1 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "2 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "3 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "4 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "\n", + " units ... northing easting elevation utm_zone \\\n", + "0 cm ... 4.322865e+06 741881.102466 3037.8 12 \n", + "1 cm ... 4.322859e+06 741878.675380 3038.0 12 \n", + "2 cm ... 4.322855e+06 741877.080058 3037.1 12 \n", + "3 cm ... 4.322850e+06 741875.484733 3035.5 12 \n", + "4 cm ... 4.322845e+06 741873.923512 3034.6 12 \n", + "\n", + " geom time site_id version_number \\\n", + "0 POINT (741881.102 4322865.037) 14:56:00+00:00 None 1 \n", + "1 POINT (741878.675 4322859.408) 14:57:00+00:00 None 1 \n", + "2 POINT (741877.080 4322854.914) 14:57:00+00:00 None 1 \n", + "3 POINT (741875.485 4322850.421) 14:57:00+00:00 None 1 \n", + "4 POINT (741873.924 4322844.818) 14:57:00+00:00 None 1 \n", + "\n", + " equipment value \n", + "0 CRREL_C 85.0 \n", + "1 CRREL_C 72.0 \n", + "2 CRREL_C 84.0 \n", + "3 CRREL_C 84.0 \n", + "4 CRREL_C 78.0 \n", + "\n", + "[5 rows x 23 columns]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Th queries will pass\n", + "df = PointMeasurements.from_filter(\n", + " instrument=\"magnaprobe\",\n", + " limit=100\n", + ")\n", + "\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### DANGER ZONE\n", + "If you need more than 1000 points returned, you can specify so with the `limit`\n", + "\n", + "The intention is to be aware of how much data will be returned" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
site_namedatetime_createdtime_updatediddoidate_accessedinstrumenttypeunits...northingeastingelevationutm_zonegeomtimesite_idversion_numberequipmentvalue
0Grand Mesa2020-01-282022-06-30 22:56:52.635035+00:00None4663https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.323938e+06747760.1274173143.912POINT (747760.127 4323937.874)20:22:00+00:00None1CRREL_B64.0
1Grand Mesa2020-01-282022-06-30 22:56:52.635035+00:00None4102https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.324060e+06747975.5332293151.812POINT (747975.533 4324060.214)18:48:00+00:00None1CRREL_B106.0
2Grand Mesa2020-01-282022-06-30 22:56:52.635035+00:00None4103https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.324058e+06747973.0058693153.812POINT (747973.006 4324057.912)18:48:00+00:00None1CRREL_B110.0
3Grand Mesa2020-01-282022-06-30 22:56:52.635035+00:00None4104https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.324057e+06747973.0408483153.512POINT (747973.041 4324056.802)18:48:00+00:00None1CRREL_B106.0
4Grand Mesa2020-01-282022-06-30 22:56:52.635035+00:00None4105https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.324055e+06747972.2450323154.012POINT (747972.245 4324054.555)18:48:00+00:00None1CRREL_B107.0
\n", + "

5 rows × 23 columns

\n", + "
" + ], + "text/plain": [ + " site_name date time_created time_updated id \\\n", + "0 Grand Mesa 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4663 \n", + "1 Grand Mesa 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4102 \n", + "2 Grand Mesa 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4103 \n", + "3 Grand Mesa 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4104 \n", + "4 Grand Mesa 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4105 \n", + "\n", + " doi date_accessed instrument type \\\n", + "0 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "1 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "2 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "3 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "4 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "\n", + " units ... northing easting elevation utm_zone \\\n", + "0 cm ... 4.323938e+06 747760.127417 3143.9 12 \n", + "1 cm ... 4.324060e+06 747975.533229 3151.8 12 \n", + "2 cm ... 4.324058e+06 747973.005869 3153.8 12 \n", + "3 cm ... 4.324057e+06 747973.040848 3153.5 12 \n", + "4 cm ... 4.324055e+06 747972.245032 3154.0 12 \n", + "\n", + " geom time site_id version_number \\\n", + "0 POINT (747760.127 4323937.874) 20:22:00+00:00 None 1 \n", + "1 POINT (747975.533 4324060.214) 18:48:00+00:00 None 1 \n", + "2 POINT (747973.006 4324057.912) 18:48:00+00:00 None 1 \n", + "3 POINT (747973.041 4324056.802) 18:48:00+00:00 None 1 \n", + "4 POINT (747972.245 4324054.555) 18:48:00+00:00 None 1 \n", + "\n", + " equipment value \n", + "0 CRREL_B 64.0 \n", + "1 CRREL_B 106.0 \n", + "2 CRREL_B 110.0 \n", + "3 CRREL_B 106.0 \n", + "4 CRREL_B 107.0 \n", + "\n", + "[5 rows x 23 columns]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# DANGER ZONE\n", + "# If you need more than 1000 points returned, you can specify so with the limit\n", + "df = PointMeasurements.from_filter(\n", + " date=date(2020, 1, 28),\n", + " instrument=\"magnaprobe\",\n", + " limit=3000\n", + ")\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# THE END\n", + "\n", + "### Go forth and explore" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/book/tutorials/snowex_database/api_plot_pit_density_example.ipynb b/book/tutorials/snowex_database/api_plot_pit_density_example.ipynb new file mode 100644 index 0000000..86647af --- /dev/null +++ b/book/tutorials/snowex_database/api_plot_pit_density_example.ipynb @@ -0,0 +1,3023 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Welcome to the API PT2!\n", + "\n", + "## Data Edition\n", + "\n", + "#### Goal - Filter down to the pit density we want and plot it" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 1. Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# imports\n", + "from datetime import date\n", + "import geopandas as gpd\n", + "import matplotlib.pyplot as plt\n", + "from snowexsql.api import PointMeasurements, LayerMeasurements" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 2. Find the pits in the Boise River Basin" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[('Cameron Pass',), ('Sagehen Creek',), ('Fraser Experimental Forest',), ('Mammoth Lakes',), ('Niwot Ridge',), ('Boise River Basin',), ('Little Cottonwood Canyon',), ('East River',), ('American River Basin',), ('Senator Beck',), ('Jemez River',), ('Grand Mesa',)]\n" + ] + } + ], + "source": [ + "# Find site names we can use\n", + "print(LayerMeasurements().all_site_names)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Make this Notebook Trusted to load map: File -> Trust Notebook
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Get the first 1000 measurements from the Boise River Basin Site\n", + "df = LayerMeasurements.from_filter(\n", + " type=\"density\",\n", + " site_name=\"Boise River Basin\",\n", + " limit=1000\n", + ")\n", + "\n", + "# Explore the pits so we can find an interesting site\n", + "df.loc[:, [\"site_id\", \"geom\"]].drop_duplicates().explore()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 3. Pick a point of interest" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [ + "nbsphinx-gallery", + "nbsphinx-thumbnail" + ] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Make this Notebook Trusted to load map: File -> Trust Notebook
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# We noticed there are a lot of pits (timeseries pits) for Banner Open\n", + "# Filter down to ONE timeseries\n", + "site_id = \"Banner Open\"\n", + "df = LayerMeasurements.from_filter(\n", + " type=\"density\",\n", + " site_id=site_id\n", + ").set_crs(\"epsg:26911\")\n", + "\n", + "df.loc[:, [\"site_id\", \"geom\"]].drop_duplicates().explore()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idlatitudelongitudenorthingeastingutm_zonedepthbottom_depthvalue
date
2019-12-1822609.544.30464-115.236034.907222e+06640699.66612111.026.00000016.000000279.000000
2020-01-0922670.044.30463-115.236014.907221e+06640701.28528911.051.00000041.000000156.777778
2020-01-2322746.044.30461-115.235984.907219e+06640703.72598811.061.72727351.727273254.166667
2020-01-3022830.544.30461-115.235984.907219e+06640703.72598811.072.00000062.000000236.000000
2020-02-0622910.044.30458-115.235944.907216e+06640706.98822211.072.00000062.000000254.141026
\n", + "
" + ], + "text/plain": [ + " id latitude longitude northing easting \\\n", + "date \n", + "2019-12-18 22609.5 44.30464 -115.23603 4.907222e+06 640699.666121 \n", + "2020-01-09 22670.0 44.30463 -115.23601 4.907221e+06 640701.285289 \n", + "2020-01-23 22746.0 44.30461 -115.23598 4.907219e+06 640703.725988 \n", + "2020-01-30 22830.5 44.30461 -115.23598 4.907219e+06 640703.725988 \n", + "2020-02-06 22910.0 44.30458 -115.23594 4.907216e+06 640706.988222 \n", + "\n", + " utm_zone depth bottom_depth value \n", + "date \n", + "2019-12-18 11.0 26.000000 16.000000 279.000000 \n", + "2020-01-09 11.0 51.000000 41.000000 156.777778 \n", + "2020-01-23 11.0 61.727273 51.727273 254.166667 \n", + "2020-01-30 11.0 72.000000 62.000000 236.000000 \n", + "2020-02-06 11.0 72.000000 62.000000 254.141026 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Get the mean of each date sampled\n", + "df[\"value\"] = df[\"value\"].astype(float)\n", + "df.set_index(\"date\", inplace=True)\n", + "mean_values = df.groupby(df.index).mean()\n", + "mean_values.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Notes on this mean\n", + "\n", + "Taking this `mean` as bulk density **could be flawed** if layers are overlapping or layers vary in thickness" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# !pip install plotly\n", + "import plotly.express as px\n", + "# For rendering in readthedocs\n", + "import plotly.offline as py\n", + "py.init_notebook_mode(connected=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "hovertemplate": "Date=%{x}
Density=%{y}", + "legendgroup": "", + "line": { + "color": "#636efa", + "dash": "solid" + }, + "marker": { + "symbol": "circle" + }, + "mode": "lines", + "name": "", + "orientation": "v", + "showlegend": false, + "type": "scatter", + "x": [ + "2019-12-18", + "2020-01-09", + "2020-01-23", + "2020-01-30", + "2020-02-06", + "2020-02-13", + "2020-02-19", + "2020-02-27", + "2020-03-05", + "2020-03-12" + ], + "xaxis": "x", + "y": [ + 279, + 156.77777777777777, + 254.16666666666669, + 236, + 254.14102564102566, + 276.1666666666667, + 274.76388888888886, + 295.04545454545456, + 319.93939393939394, + 323.95454545454544 + ], + "yaxis": "y" + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#f2f5fa" + }, + "error_y": { + "color": "#f2f5fa" + }, + "marker": { + "line": { + "color": "rgb(17,17,17)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "rgb(17,17,17)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#A2B1C6", + "gridcolor": "#506784", + "linecolor": "#506784", + "minorgridcolor": "#506784", + "startlinecolor": "#A2B1C6" + }, + "baxis": { + "endlinecolor": "#A2B1C6", + "gridcolor": "#506784", + "linecolor": "#506784", + "minorgridcolor": "#506784", + "startlinecolor": "#A2B1C6" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "line": { + "color": "#283442" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "line": { + "color": "#283442" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#506784" + }, + "line": { + "color": "rgb(17,17,17)" + } + }, + "header": { + "fill": { + "color": "#2a3f5f" + }, + "line": { + "color": "rgb(17,17,17)" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#f2f5fa", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#f2f5fa" + }, + "geo": { + "bgcolor": "rgb(17,17,17)", + "lakecolor": "rgb(17,17,17)", + "landcolor": "rgb(17,17,17)", + "showlakes": true, + "showland": true, + "subunitcolor": "#506784" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "dark" + }, + "paper_bgcolor": "rgb(17,17,17)", + "plot_bgcolor": "rgb(17,17,17)", + "polar": { + "angularaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "bgcolor": "rgb(17,17,17)", + "radialaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + }, + "yaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + }, + "zaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + } + }, + "shapedefaults": { + "line": { + "color": "#f2f5fa" + } + }, + "sliderdefaults": { + "bgcolor": "#C8D4E3", + "bordercolor": "rgb(17,17,17)", + "borderwidth": 1, + "tickwidth": 0 + }, + "ternary": { + "aaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "baxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "bgcolor": "rgb(17,17,17)", + "caxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "updatemenudefaults": { + "bgcolor": "#506784", + "borderwidth": 0 + }, + "xaxis": { + "automargin": true, + "gridcolor": "#283442", + "linecolor": "#506784", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "#283442", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "#283442", + "linecolor": "#506784", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "#283442", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Mean Density Banner Open" + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 1 + ], + "title": { + "text": "Date" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "Density" + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the timeseries of mean density\n", + "fig = px.line(\n", + " mean_values, x=mean_values.index, y='value',\n", + " title=f'Mean Density - {site_id}',\n", + " labels={'value': 'Density', 'date': 'Date'}\n", + ")\n", + "\n", + "fig.update_layout(\n", + " template='plotly_dark'\n", + ")\n", + "\n", + "# Show the plot\n", + "fig.show()\n", + "\n", + "# alternative matplotlib code\n", + "# mean_values[\"value\"].plot()\n", + "# plt.title('Mean Density by Date')\n", + "# plt.xlabel('Date')\n", + "# plt.ylabel('Mean Density')\n", + "# plt.gcf().autofmt_xdate()\n", + "# plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "alignmentgroup": "True", + "hoverinfo": "y+name", + "hovertemplate": "date=%{x}
value=%{y}", + "legendgroup": "", + "marker": { + "color": "#636efa" + }, + "name": "", + "notched": true, + "offsetgroup": "", + "orientation": "v", + "showlegend": false, + "type": "box", + "x": [ + "2019-12-18", + "2019-12-18", + "2019-12-18", + "2019-12-18", + "2019-12-18", + "2019-12-18", + "2019-12-18", + "2019-12-18", + "2020-01-09", + "2020-01-09", + "2020-01-09", + "2020-01-09", + "2020-01-09", + "2020-01-09", + "2020-01-09", + "2020-01-09", + "2020-01-09", + "2020-01-09", + "2020-01-09", + "2020-01-09", + "2020-01-09", + "2020-01-09", + "2020-01-09", + "2020-01-09", + "2020-01-09", + "2020-01-09", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-23", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-01-30", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-06", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-13", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-19", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-02-27", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-05", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12", + "2020-03-12" + ], + "x0": " ", + "xaxis": "x", + "y": [ + 268, + 377, + 228, + 243, + 268, + 377, + 228, + 243, + 60, + 65, + 116, + 133, + 198, + 138, + 163, + 273, + 265, + 60, + 65, + 116, + 133, + 198, + 138, + 163, + 273, + 265, + 121, + 175.5, + 204.66666666666666, + 221, + 254.5, + 282.5, + 312, + 299.5, + 315.5, + 317.6666666666667, + 292, + 121, + 175.5, + 204.66666666666663, + 221, + 254.5, + 282.5, + 312, + 299.5, + 315.5, + 317.6666666666667, + 292, + 130, + 138.5, + 133, + 157, + 202.5, + 262.5, + 222.5, + 315, + 336, + 330, + 302.5, + 302.5, + 130, + 138.5, + 133, + 157, + 202.5, + 262.5, + 222.5, + 315, + 336, + 330, + 302.5, + 302.5, + 89, + 118, + 175.33333333333334, + 189.5, + 213, + 264.5, + 293.5, + 316, + 339.5, + 342.5, + 322, + 311, + 330, + 89, + 118, + 175.33333333333334, + 189.5, + 213, + 264.5, + 293.5, + 316, + 339.5, + 342.5, + 322, + 311, + 330, + 146.5, + 152, + 207, + 239.5, + 253.5, + 298, + 329, + 346.5, + 346.5, + 344.5, + 332.5, + 318.5, + null, + 146.5, + 152, + 207, + 239.5, + 253.5, + 298, + 329, + 346.5, + 346.5, + 344.5, + 332.5, + 318.5, + null, + 114.66666666666667, + 161, + 191.5, + 230.5, + 257.5, + 274, + 316, + 350.5, + 362, + 370, + 336, + 333.5, + null, + 114.66666666666669, + 161, + 191.5, + 230.5, + 257.5, + 274, + 316, + 350.5, + 362, + 370, + 336, + 333.5, + null, + 158, + 192, + 233.5, + 267, + 284, + 328, + 356.5, + 368.5, + 373.5, + 344.5, + 340, + null, + 158, + 192, + 233.5, + 267, + 284, + 328, + 356.5, + 368.5, + 373.5, + 344.5, + 340, + null, + 233.5, + 227.5, + 274, + 296, + 327, + 353, + 369.5, + 379, + 378.5, + 338, + 343.3333333333333, + 233.5, + 227.5, + 274, + 296, + 327, + 353, + 369.5, + 379, + 378.5, + 338, + 343.3333333333333, + 204.5, + 271, + 265, + 313.5, + 312, + 347, + 374.5, + 394, + 381.5, + 352.5, + 348, + 204.5, + 271, + 265, + 313.5, + 312, + 347, + 374.5, + 394, + 381.5, + 352.5, + 348 + ], + "y0": " ", + "yaxis": "y" + } + ], + "layout": { + "boxmode": "group", + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#f2f5fa" + }, + "error_y": { + "color": "#f2f5fa" + }, + "marker": { + "line": { + "color": "rgb(17,17,17)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "rgb(17,17,17)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#A2B1C6", + "gridcolor": "#506784", + "linecolor": "#506784", + "minorgridcolor": "#506784", + "startlinecolor": "#A2B1C6" + }, + "baxis": { + "endlinecolor": "#A2B1C6", + "gridcolor": "#506784", + "linecolor": "#506784", + "minorgridcolor": "#506784", + "startlinecolor": "#A2B1C6" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "line": { + "color": "#283442" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "line": { + "color": "#283442" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#506784" + }, + "line": { + "color": "rgb(17,17,17)" + } + }, + "header": { + "fill": { + "color": "#2a3f5f" + }, + "line": { + "color": "rgb(17,17,17)" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#f2f5fa", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#f2f5fa" + }, + "geo": { + "bgcolor": "rgb(17,17,17)", + "lakecolor": "rgb(17,17,17)", + "landcolor": "rgb(17,17,17)", + "showlakes": true, + "showland": true, + "subunitcolor": "#506784" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "dark" + }, + "paper_bgcolor": "rgb(17,17,17)", + "plot_bgcolor": "rgb(17,17,17)", + "polar": { + "angularaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "bgcolor": "rgb(17,17,17)", + "radialaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + }, + "yaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + }, + "zaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + } + }, + "shapedefaults": { + "line": { + "color": "#f2f5fa" + } + }, + "sliderdefaults": { + "bgcolor": "#C8D4E3", + "bordercolor": "rgb(17,17,17)", + "borderwidth": 1, + "tickwidth": 0 + }, + "ternary": { + "aaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "baxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "bgcolor": "rgb(17,17,17)", + "caxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "updatemenudefaults": { + "bgcolor": "#506784", + "borderwidth": 0 + }, + "xaxis": { + "automargin": true, + "gridcolor": "#283442", + "linecolor": "#506784", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "#283442", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "#283442", + "linecolor": "#506784", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "#283442", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Pit Density by Date" + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 1 + ], + "title": { + "text": "date" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "value" + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Show more detail by using a box plot\n", + "# make sure values are floats\n", + "df[\"value\"] = df[\"value\"].astype(float)\n", + "\n", + "# make Make a box plot\n", + "fig = px.box(df, x='date', y='value', notched=True, title='Pit Density by Date')\n", + "fig.update_traces(hoverinfo='y+name')\n", + "fig.update_layout(template='plotly_dark')\n", + "\n", + "# alternative matplotlib code\n", + "# df.boxplot(by='date', column='value')\n", + "# plt.title('Density Distribution for Banner by Date')\n", + "# plt.suptitle('') # Suppress the automatic title\n", + "# plt.xlabel('Date')\n", + "# plt.ylabel('Value')\n", + "# plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From 2eee3fff28a38ff44584d471278f73019d3de1aa Mon Sep 17 00:00:00 2001 From: Micah Sandusky Date: Mon, 17 Jun 2024 16:15:43 -0600 Subject: [PATCH 03/21] add toc entries --- book/_toc.yml | 11 +++++++++++ 1 file changed, 11 insertions(+) diff --git a/book/_toc.yml b/book/_toc.yml index 1edd86b..af9fde9 100644 --- a/book/_toc.yml +++ b/book/_toc.yml @@ -21,6 +21,17 @@ parts: - file: tutorials/index sections: - file: tutorials/example/tutorial-notebook + - file: tutorials/snowex_database/index + title: Introduction to the SnowEx Database + sections: + - file: tutorials/snowex_database/1_getting_started_example + - file: tutorials/snowex_database/2_database_structure + - file: tutorials/snowex_database/3_forming_queries + - file: tutorials/snowex_database/4_get_spiral_example + - file: tutorials/snowex_database/5_plot_raster_example + - file: tutorials/snowex_database/6_exporting_data + - file: tutorials/snowex_database/7_bonus_challenge + - file: tutorials/snowex_database/8_wrap_up - caption: Projects chapters: - file: projects/list_of_projects From 014c08d0cc3f126ea01b1ab8897c7ae320f6bfcc Mon Sep 17 00:00:00 2001 From: Micah Sandusky Date: Tue, 18 Jun 2024 10:55:56 -0600 Subject: [PATCH 04/21] Add snowexsql dependency --- conda/environment.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/conda/environment.yml b/conda/environment.yml index b35b149..d97432f 100644 --- a/conda/environment.yml +++ b/conda/environment.yml @@ -24,6 +24,7 @@ dependencies: - pymdown-extensions>=7.1 - pip: - jinja-markdown==1.210911 + - snowexsql==0.4.1 platforms: - linux-64 - osx-64 From 3d83eb4c1c093b72046c4f2423116eb89a7456f2 Mon Sep 17 00:00:00 2001 From: Micah Sandusky Date: Tue, 18 Jun 2024 14:18:05 -0600 Subject: [PATCH 05/21] clear cell outputs --- .../1_getting_started_example.ipynb | 2 +- .../2_database_structure.ipynb | 2 +- .../snowex_database/3_forming_queries.ipynb | 2 +- .../4_get_spiral_example.ipynb | 2 +- .../5_plot_raster_example.ipynb | 2 +- .../snowex_database/6_exporting_data.ipynb | 2 +- .../snowex_database/7_bonus_challenge.ipynb | 2 +- .../tutorials/snowex_database/8_wrap_up.ipynb | 2 +- .../snowex_database/api_intro_example.ipynb | 1225 +------ .../api_plot_pit_density_example.ipynb | 2839 +---------------- 10 files changed, 43 insertions(+), 4037 deletions(-) diff --git a/book/tutorials/snowex_database/1_getting_started_example.ipynb b/book/tutorials/snowex_database/1_getting_started_example.ipynb index fe2ecb9..4f57c0c 100644 --- a/book/tutorials/snowex_database/1_getting_started_example.ipynb +++ b/book/tutorials/snowex_database/1_getting_started_example.ipynb @@ -228,7 +228,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.12.4" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/2_database_structure.ipynb b/book/tutorials/snowex_database/2_database_structure.ipynb index 48d5420..42d7fa5 100644 --- a/book/tutorials/snowex_database/2_database_structure.ipynb +++ b/book/tutorials/snowex_database/2_database_structure.ipynb @@ -193,7 +193,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.12.4" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/3_forming_queries.ipynb b/book/tutorials/snowex_database/3_forming_queries.ipynb index 7eb5f14..b0dba69 100644 --- a/book/tutorials/snowex_database/3_forming_queries.ipynb +++ b/book/tutorials/snowex_database/3_forming_queries.ipynb @@ -225,7 +225,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.12.4" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/4_get_spiral_example.ipynb b/book/tutorials/snowex_database/4_get_spiral_example.ipynb index a8711cb..1fc1e03 100644 --- a/book/tutorials/snowex_database/4_get_spiral_example.ipynb +++ b/book/tutorials/snowex_database/4_get_spiral_example.ipynb @@ -186,7 +186,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.12.4" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/5_plot_raster_example.ipynb b/book/tutorials/snowex_database/5_plot_raster_example.ipynb index 2836bed..a73be11 100644 --- a/book/tutorials/snowex_database/5_plot_raster_example.ipynb +++ b/book/tutorials/snowex_database/5_plot_raster_example.ipynb @@ -276,7 +276,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.12.4" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/6_exporting_data.ipynb b/book/tutorials/snowex_database/6_exporting_data.ipynb index 7c4c116..dc74c95 100644 --- a/book/tutorials/snowex_database/6_exporting_data.ipynb +++ b/book/tutorials/snowex_database/6_exporting_data.ipynb @@ -121,7 +121,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.12.4" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/7_bonus_challenge.ipynb b/book/tutorials/snowex_database/7_bonus_challenge.ipynb index 9d0b5b7..c6de56c 100644 --- a/book/tutorials/snowex_database/7_bonus_challenge.ipynb +++ b/book/tutorials/snowex_database/7_bonus_challenge.ipynb @@ -214,7 +214,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.12.4" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/8_wrap_up.ipynb b/book/tutorials/snowex_database/8_wrap_up.ipynb index 291c394..a66f049 100644 --- a/book/tutorials/snowex_database/8_wrap_up.ipynb +++ b/book/tutorials/snowex_database/8_wrap_up.ipynb @@ -48,7 +48,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.12.4" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/api_intro_example.ipynb b/book/tutorials/snowex_database/api_intro_example.ipynb index 79cf441..ceca8d3 100644 --- a/book/tutorials/snowex_database/api_intro_example.ipynb +++ b/book/tutorials/snowex_database/api_intro_example.ipynb @@ -25,7 +25,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -37,216 +37,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
site_namedatetime_createdtime_updatediddoidate_accessedinstrumenttypeunits...northingeastingelevationutm_zonegeomtimesite_idversion_numberequipmentvalue
0Grand Mesa2020-05-282022-06-30 22:58:59.800562+00:00None42443None2022-06-30cameradepthcm...4.321444e+06743766.479497None12POINT (743766.479 4321444.155)18:00:00+00:00NoneNonecamera id = W1B-2.99924
1Grand Mesa2020-05-282022-06-30 22:58:59.800562+00:00None42444None2022-06-30cameradepthcm...4.321444e+06743766.479497None12POINT (743766.479 4321444.155)19:00:00+00:00NoneNonecamera id = W1B1.50148
2Grand Mesa2020-05-282022-06-30 22:58:59.800562+00:00None43187None2022-06-30cameradepthcm...4.331951e+06249164.808618None13POINT (249164.809 4331951.003)18:00:00+00:00NoneNonecamera id = E9B-1.15255
3Grand Mesa2020-05-282022-06-30 22:58:59.800562+00:00None43188None2022-06-30cameradepthcm...4.331951e+06249164.808618None13POINT (249164.809 4331951.003)19:00:00+00:00NoneNonecamera id = E9B1.16381
4Grand Mesa2020-05-282022-06-30 22:58:59.800562+00:00None43189None2022-06-30cameradepthcm...4.331951e+06249164.808618None13POINT (249164.809 4331951.003)20:00:00+00:00NoneNonecamera id = E9B-2.31073
\n", - "

5 rows × 23 columns

\n", - "
" - ], - "text/plain": [ - " site_name date time_created time_updated \\\n", - "0 Grand Mesa 2020-05-28 2022-06-30 22:58:59.800562+00:00 None \n", - "1 Grand Mesa 2020-05-28 2022-06-30 22:58:59.800562+00:00 None \n", - "2 Grand Mesa 2020-05-28 2022-06-30 22:58:59.800562+00:00 None \n", - "3 Grand Mesa 2020-05-28 2022-06-30 22:58:59.800562+00:00 None \n", - "4 Grand Mesa 2020-05-28 2022-06-30 22:58:59.800562+00:00 None \n", - "\n", - " id doi date_accessed instrument type units ... northing \\\n", - "0 42443 None 2022-06-30 camera depth cm ... 4.321444e+06 \n", - "1 42444 None 2022-06-30 camera depth cm ... 4.321444e+06 \n", - "2 43187 None 2022-06-30 camera depth cm ... 4.331951e+06 \n", - "3 43188 None 2022-06-30 camera depth cm ... 4.331951e+06 \n", - "4 43189 None 2022-06-30 camera depth cm ... 4.331951e+06 \n", - "\n", - " easting elevation utm_zone geom \\\n", - "0 743766.479497 None 12 POINT (743766.479 4321444.155) \n", - "1 743766.479497 None 12 POINT (743766.479 4321444.155) \n", - "2 249164.808618 None 13 POINT (249164.809 4331951.003) \n", - "3 249164.808618 None 13 POINT (249164.809 4331951.003) \n", - "4 249164.808618 None 13 POINT (249164.809 4331951.003) \n", - "\n", - " time site_id version_number equipment value \n", - "0 18:00:00+00:00 None None camera id = W1B -2.99924 \n", - "1 19:00:00+00:00 None None camera id = W1B 1.50148 \n", - "2 18:00:00+00:00 None None camera id = E9B -1.15255 \n", - "3 19:00:00+00:00 None None camera id = E9B 1.16381 \n", - "4 20:00:00+00:00 None None camera id = E9B -2.31073 \n", - "\n", - "[5 rows x 23 columns]" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# The main functions we will use are `from_area` and `from_filter` like this\n", "df = PointMeasurements.from_filter(\n", @@ -274,18 +67,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['site_name', 'site_id', 'date', 'instrument', 'observers', 'type', 'utm_zone']\n", - "['site_name', 'site_id', 'date', 'instrument', 'observers', 'type', 'utm_zone', 'pit_id']\n" - ] - } - ], + "outputs": [], "source": [ "# Find what you can filter by\n", "print(PointMeasurements.ALLOWED_QRY_KWARGS)\n", @@ -301,17 +85,9 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[('Catherine Breen, Cassie Lumbrazo',), (None,), ('Ryan Webb',), ('Randall Bonnell',), ('Tate Meehan',)]\n" - ] - } - ], + "outputs": [], "source": [ "print(PointMeasurements().all_observers)" ] @@ -346,184 +122,9 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
Make this Notebook Trusted to load map: File -> Trust Notebook
" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 63, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Explore the points\n", "df.crs\n", @@ -543,169 +144,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
Make this Notebook Trusted to load map: File -> Trust Notebook
" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Set up a fake shapefile\n", "gdf = gpd.GeoDataFrame(\n", @@ -720,184 +161,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
Make this Notebook Trusted to load map: File -> Trust Notebook
" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Get density near the point\n", "df = LayerMeasurements.from_area(\n", @@ -926,37 +192,14 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": { "tags": [ "nbsphinx-gallery", "nbsphinx-thumbnail" ] }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Failed query for PointData\n" - ] - }, - { - "ename": "LargeQueryCheckException", - "evalue": "Query will return 33364 number of records, but we have a default max of 1000. If you want to proceed, set the 'limit' filter to the desired number of records.", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mLargeQueryCheckException\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/var/folders/jh/tvv3prb117d22jyn0vmbjn880000gn/T/ipykernel_51325/2889856166.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# This query will fail\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m df = PointMeasurements.from_filter(\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0minstrument\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"magnaprobe\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m )\n", - "\u001b[0;32m~/projects/m3works/snowexsql/snowexsql/api.py\u001b[0m in \u001b[0;36mfrom_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[0msession\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[0mLOG\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0merror\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Failed query for PointData\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 188\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 189\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 190\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/projects/m3works/snowexsql/snowexsql/api.py\u001b[0m in \u001b[0;36mfrom_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 181\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 182\u001b[0m \u001b[0mqry\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msession\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mquery\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mMODEL\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 183\u001b[0;31m \u001b[0mqry\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextend_qry\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mqry\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 184\u001b[0m \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mquery_to_geopandas\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mqry\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/projects/m3works/snowexsql/snowexsql/api.py\u001b[0m in \u001b[0;36mextend_qry\u001b[0;34m(cls, qry, check_size, **kwargs)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcheck_size\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 113\u001b[0;31m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_check_size\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mqry\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 114\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mqry\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/projects/m3works/snowexsql/snowexsql/api.py\u001b[0m in \u001b[0;36m_check_size\u001b[0;34m(cls, qry, kwargs)\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[0mcount\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mqry\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcount\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcount\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mMAX_RECORD_COUNT\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;34m\"limit\"\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 71\u001b[0;31m raise LargeQueryCheckException(\n\u001b[0m\u001b[1;32m 72\u001b[0m \u001b[0;34mf\"Query will return {count} number of records,\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0;34mf\" but we have a default max of {cls.MAX_RECORD_COUNT}.\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mLargeQueryCheckException\u001b[0m: Query will return 33364 number of records, but we have a default max of 1000. If you want to proceed, set the 'limit' filter to the desired number of records." - ] - } - ], + "outputs": [], "source": [ "# This query will fail\n", "df = PointMeasurements.from_filter(\n", @@ -966,223 +209,9 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
site_namedatetime_createdtime_updatediddoidate_accessedinstrumenttypeunits...northingeastingelevationutm_zonegeomtimesite_idversion_numberequipmentvalue
0Grand Mesa2020-01-292022-06-30 22:56:52.635035+00:00None8713https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.322865e+06741881.1024663037.812POINT (741881.102 4322865.037)14:56:00+00:00None1CRREL_C85.0
1Grand Mesa2020-01-292022-06-30 22:56:52.635035+00:00None8714https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.322859e+06741878.6753803038.012POINT (741878.675 4322859.408)14:57:00+00:00None1CRREL_C72.0
2Grand Mesa2020-01-292022-06-30 22:56:52.635035+00:00None8715https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.322855e+06741877.0800583037.112POINT (741877.080 4322854.914)14:57:00+00:00None1CRREL_C84.0
3Grand Mesa2020-01-292022-06-30 22:56:52.635035+00:00None8716https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.322850e+06741875.4847333035.512POINT (741875.485 4322850.421)14:57:00+00:00None1CRREL_C84.0
4Grand Mesa2020-01-292022-06-30 22:56:52.635035+00:00None8717https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.322845e+06741873.9235123034.612POINT (741873.924 4322844.818)14:57:00+00:00None1CRREL_C78.0
\n", - "

5 rows × 23 columns

\n", - "
" - ], - "text/plain": [ - " site_name date time_created time_updated id \\\n", - "0 Grand Mesa 2020-01-29 2022-06-30 22:56:52.635035+00:00 None 8713 \n", - "1 Grand Mesa 2020-01-29 2022-06-30 22:56:52.635035+00:00 None 8714 \n", - "2 Grand Mesa 2020-01-29 2022-06-30 22:56:52.635035+00:00 None 8715 \n", - "3 Grand Mesa 2020-01-29 2022-06-30 22:56:52.635035+00:00 None 8716 \n", - "4 Grand Mesa 2020-01-29 2022-06-30 22:56:52.635035+00:00 None 8717 \n", - "\n", - " doi date_accessed instrument type \\\n", - "0 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "1 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "2 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "3 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "4 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "\n", - " units ... northing easting elevation utm_zone \\\n", - "0 cm ... 4.322865e+06 741881.102466 3037.8 12 \n", - "1 cm ... 4.322859e+06 741878.675380 3038.0 12 \n", - "2 cm ... 4.322855e+06 741877.080058 3037.1 12 \n", - "3 cm ... 4.322850e+06 741875.484733 3035.5 12 \n", - "4 cm ... 4.322845e+06 741873.923512 3034.6 12 \n", - "\n", - " geom time site_id version_number \\\n", - "0 POINT (741881.102 4322865.037) 14:56:00+00:00 None 1 \n", - "1 POINT (741878.675 4322859.408) 14:57:00+00:00 None 1 \n", - "2 POINT (741877.080 4322854.914) 14:57:00+00:00 None 1 \n", - "3 POINT (741875.485 4322850.421) 14:57:00+00:00 None 1 \n", - "4 POINT (741873.924 4322844.818) 14:57:00+00:00 None 1 \n", - "\n", - " equipment value \n", - "0 CRREL_C 85.0 \n", - "1 CRREL_C 72.0 \n", - "2 CRREL_C 84.0 \n", - "3 CRREL_C 84.0 \n", - "4 CRREL_C 78.0 \n", - "\n", - "[5 rows x 23 columns]" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Th queries will pass\n", "df = PointMeasurements.from_filter(\n", @@ -1205,223 +234,9 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
site_namedatetime_createdtime_updatediddoidate_accessedinstrumenttypeunits...northingeastingelevationutm_zonegeomtimesite_idversion_numberequipmentvalue
0Grand Mesa2020-01-282022-06-30 22:56:52.635035+00:00None4663https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.323938e+06747760.1274173143.912POINT (747760.127 4323937.874)20:22:00+00:00None1CRREL_B64.0
1Grand Mesa2020-01-282022-06-30 22:56:52.635035+00:00None4102https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.324060e+06747975.5332293151.812POINT (747975.533 4324060.214)18:48:00+00:00None1CRREL_B106.0
2Grand Mesa2020-01-282022-06-30 22:56:52.635035+00:00None4103https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.324058e+06747973.0058693153.812POINT (747973.006 4324057.912)18:48:00+00:00None1CRREL_B110.0
3Grand Mesa2020-01-282022-06-30 22:56:52.635035+00:00None4104https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.324057e+06747973.0408483153.512POINT (747973.041 4324056.802)18:48:00+00:00None1CRREL_B106.0
4Grand Mesa2020-01-282022-06-30 22:56:52.635035+00:00None4105https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcm...4.324055e+06747972.2450323154.012POINT (747972.245 4324054.555)18:48:00+00:00None1CRREL_B107.0
\n", - "

5 rows × 23 columns

\n", - "
" - ], - "text/plain": [ - " site_name date time_created time_updated id \\\n", - "0 Grand Mesa 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4663 \n", - "1 Grand Mesa 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4102 \n", - "2 Grand Mesa 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4103 \n", - "3 Grand Mesa 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4104 \n", - "4 Grand Mesa 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4105 \n", - "\n", - " doi date_accessed instrument type \\\n", - "0 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "1 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "2 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "3 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "4 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "\n", - " units ... northing easting elevation utm_zone \\\n", - "0 cm ... 4.323938e+06 747760.127417 3143.9 12 \n", - "1 cm ... 4.324060e+06 747975.533229 3151.8 12 \n", - "2 cm ... 4.324058e+06 747973.005869 3153.8 12 \n", - "3 cm ... 4.324057e+06 747973.040848 3153.5 12 \n", - "4 cm ... 4.324055e+06 747972.245032 3154.0 12 \n", - "\n", - " geom time site_id version_number \\\n", - "0 POINT (747760.127 4323937.874) 20:22:00+00:00 None 1 \n", - "1 POINT (747975.533 4324060.214) 18:48:00+00:00 None 1 \n", - "2 POINT (747973.006 4324057.912) 18:48:00+00:00 None 1 \n", - "3 POINT (747973.041 4324056.802) 18:48:00+00:00 None 1 \n", - "4 POINT (747972.245 4324054.555) 18:48:00+00:00 None 1 \n", - "\n", - " equipment value \n", - "0 CRREL_B 64.0 \n", - "1 CRREL_B 106.0 \n", - "2 CRREL_B 110.0 \n", - "3 CRREL_B 106.0 \n", - "4 CRREL_B 107.0 \n", - "\n", - "[5 rows x 23 columns]" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# DANGER ZONE\n", "# If you need more than 1000 points returned, you can specify so with the limit\n", @@ -1466,7 +281,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.12.4" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/api_plot_pit_density_example.ipynb b/book/tutorials/snowex_database/api_plot_pit_density_example.ipynb index 86647af..88b669b 100644 --- a/book/tutorials/snowex_database/api_plot_pit_density_example.ipynb +++ b/book/tutorials/snowex_database/api_plot_pit_density_example.ipynb @@ -20,7 +20,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -40,17 +40,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[('Cameron Pass',), ('Sagehen Creek',), ('Fraser Experimental Forest',), ('Mammoth Lakes',), ('Niwot Ridge',), ('Boise River Basin',), ('Little Cottonwood Canyon',), ('East River',), ('American River Basin',), ('Senator Beck',), ('Jemez River',), ('Grand Mesa',)]\n" - ] - } - ], + "outputs": [], "source": [ "# Find site names we can use\n", "print(LayerMeasurements().all_site_names)" @@ -58,184 +50,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
Make this Notebook Trusted to load map: File -> Trust Notebook
" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Get the first 1000 measurements from the Boise River Basin Site\n", "df = LayerMeasurements.from_filter(\n", @@ -257,189 +74,14 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": { "tags": [ "nbsphinx-gallery", "nbsphinx-thumbnail" ] }, - "outputs": [ - { - "data": { - "text/html": [ - "
Make this Notebook Trusted to load map: File -> Trust Notebook
" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# We noticed there are a lot of pits (timeseries pits) for Banner Open\n", "# Filter down to ONE timeseries\n", @@ -454,141 +96,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idlatitudelongitudenorthingeastingutm_zonedepthbottom_depthvalue
date
2019-12-1822609.544.30464-115.236034.907222e+06640699.66612111.026.00000016.000000279.000000
2020-01-0922670.044.30463-115.236014.907221e+06640701.28528911.051.00000041.000000156.777778
2020-01-2322746.044.30461-115.235984.907219e+06640703.72598811.061.72727351.727273254.166667
2020-01-3022830.544.30461-115.235984.907219e+06640703.72598811.072.00000062.000000236.000000
2020-02-0622910.044.30458-115.235944.907216e+06640706.98822211.072.00000062.000000254.141026
\n", - "
" - ], - "text/plain": [ - " id latitude longitude northing easting \\\n", - "date \n", - "2019-12-18 22609.5 44.30464 -115.23603 4.907222e+06 640699.666121 \n", - "2020-01-09 22670.0 44.30463 -115.23601 4.907221e+06 640701.285289 \n", - "2020-01-23 22746.0 44.30461 -115.23598 4.907219e+06 640703.725988 \n", - "2020-01-30 22830.5 44.30461 -115.23598 4.907219e+06 640703.725988 \n", - "2020-02-06 22910.0 44.30458 -115.23594 4.907216e+06 640706.988222 \n", - "\n", - " utm_zone depth bottom_depth value \n", - "date \n", - "2019-12-18 11.0 26.000000 16.000000 279.000000 \n", - "2020-01-09 11.0 51.000000 41.000000 156.777778 \n", - "2020-01-23 11.0 61.727273 51.727273 254.166667 \n", - "2020-01-30 11.0 72.000000 62.000000 236.000000 \n", - "2020-02-06 11.0 72.000000 62.000000 254.141026 " - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Get the mean of each date sampled\n", "df[\"value\"] = df[\"value\"].astype(float)\n", @@ -608,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -621,945 +131,9 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Date=%{x}
Density=%{y}", - "legendgroup": "", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "", - "orientation": "v", - "showlegend": false, - "type": "scatter", - "x": [ - "2019-12-18", - "2020-01-09", - "2020-01-23", - "2020-01-30", - "2020-02-06", - "2020-02-13", - "2020-02-19", - "2020-02-27", - "2020-03-05", - "2020-03-12" - ], - "xaxis": "x", - "y": [ - 279, - 156.77777777777777, - 254.16666666666669, - 236, - 254.14102564102566, - 276.1666666666667, - 274.76388888888886, - 295.04545454545456, - 319.93939393939394, - 323.95454545454544 - ], - "yaxis": "y" - } - ], - "layout": { - "legend": { - "tracegroupgap": 0 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#f2f5fa" - }, - "error_y": { - "color": "#f2f5fa" - }, - "marker": { - "line": { - "color": "rgb(17,17,17)", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "rgb(17,17,17)", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" - }, - "baxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "line": { - "color": "#283442" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "line": { - "color": "#283442" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#506784" - }, - "line": { - "color": "rgb(17,17,17)" - } - }, - "header": { - "fill": { - "color": "#2a3f5f" - }, - "line": { - "color": "rgb(17,17,17)" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#f2f5fa", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#f2f5fa" - }, - "geo": { - "bgcolor": "rgb(17,17,17)", - "lakecolor": "rgb(17,17,17)", - "landcolor": "rgb(17,17,17)", - "showlakes": true, - "showland": true, - "subunitcolor": "#506784" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "dark" - }, - "paper_bgcolor": "rgb(17,17,17)", - "plot_bgcolor": "rgb(17,17,17)", - "polar": { - "angularaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", - "ticks": "" - }, - "bgcolor": "rgb(17,17,17)", - "radialaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", - "gridwidth": 2, - "linecolor": "#506784", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#C8D4E3" - }, - "yaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", - "gridwidth": 2, - "linecolor": "#506784", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#C8D4E3" - }, - "zaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", - "gridwidth": 2, - "linecolor": "#506784", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#C8D4E3" - } - }, - "shapedefaults": { - "line": { - "color": "#f2f5fa" - } - }, - "sliderdefaults": { - "bgcolor": "#C8D4E3", - "bordercolor": "rgb(17,17,17)", - "borderwidth": 1, - "tickwidth": 0 - }, - "ternary": { - "aaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", - "ticks": "" - }, - "baxis": { - "gridcolor": "#506784", - "linecolor": "#506784", - "ticks": "" - }, - "bgcolor": "rgb(17,17,17)", - "caxis": { - "gridcolor": "#506784", - "linecolor": "#506784", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "updatemenudefaults": { - "bgcolor": "#506784", - "borderwidth": 0 - }, - "xaxis": { - "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "#283442", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "#283442", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Mean Density Banner Open" - }, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Date" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Density" - } - } - } - }, - "text/html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Plot the timeseries of mean density\n", "fig = px.line(\n", @@ -1586,1392 +160,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - " \n", - " " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "alignmentgroup": "True", - "hoverinfo": "y+name", - "hovertemplate": "date=%{x}
value=%{y}", - "legendgroup": "", - "marker": { - "color": "#636efa" - }, - "name": "", - "notched": true, - "offsetgroup": "", - "orientation": "v", - "showlegend": false, - "type": "box", - "x": [ - "2019-12-18", - "2019-12-18", - "2019-12-18", - "2019-12-18", - "2019-12-18", - "2019-12-18", - "2019-12-18", - "2019-12-18", - "2020-01-09", - "2020-01-09", - "2020-01-09", - "2020-01-09", - "2020-01-09", - "2020-01-09", - "2020-01-09", - "2020-01-09", - "2020-01-09", - "2020-01-09", - "2020-01-09", - "2020-01-09", - "2020-01-09", - "2020-01-09", - "2020-01-09", - "2020-01-09", - "2020-01-09", - "2020-01-09", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-23", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-01-30", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-06", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-13", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-19", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-02-27", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-05", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12", - "2020-03-12" - ], - "x0": " ", - "xaxis": "x", - "y": [ - 268, - 377, - 228, - 243, - 268, - 377, - 228, - 243, - 60, - 65, - 116, - 133, - 198, - 138, - 163, - 273, - 265, - 60, - 65, - 116, - 133, - 198, - 138, - 163, - 273, - 265, - 121, - 175.5, - 204.66666666666666, - 221, - 254.5, - 282.5, - 312, - 299.5, - 315.5, - 317.6666666666667, - 292, - 121, - 175.5, - 204.66666666666663, - 221, - 254.5, - 282.5, - 312, - 299.5, - 315.5, - 317.6666666666667, - 292, - 130, - 138.5, - 133, - 157, - 202.5, - 262.5, - 222.5, - 315, - 336, - 330, - 302.5, - 302.5, - 130, - 138.5, - 133, - 157, - 202.5, - 262.5, - 222.5, - 315, - 336, - 330, - 302.5, - 302.5, - 89, - 118, - 175.33333333333334, - 189.5, - 213, - 264.5, - 293.5, - 316, - 339.5, - 342.5, - 322, - 311, - 330, - 89, - 118, - 175.33333333333334, - 189.5, - 213, - 264.5, - 293.5, - 316, - 339.5, - 342.5, - 322, - 311, - 330, - 146.5, - 152, - 207, - 239.5, - 253.5, - 298, - 329, - 346.5, - 346.5, - 344.5, - 332.5, - 318.5, - null, - 146.5, - 152, - 207, - 239.5, - 253.5, - 298, - 329, - 346.5, - 346.5, - 344.5, - 332.5, - 318.5, - null, - 114.66666666666667, - 161, - 191.5, - 230.5, - 257.5, - 274, - 316, - 350.5, - 362, - 370, - 336, - 333.5, - null, - 114.66666666666669, - 161, - 191.5, - 230.5, - 257.5, - 274, - 316, - 350.5, - 362, - 370, - 336, - 333.5, - null, - 158, - 192, - 233.5, - 267, - 284, - 328, - 356.5, - 368.5, - 373.5, - 344.5, - 340, - null, - 158, - 192, - 233.5, - 267, - 284, - 328, - 356.5, - 368.5, - 373.5, - 344.5, - 340, - null, - 233.5, - 227.5, - 274, - 296, - 327, - 353, - 369.5, - 379, - 378.5, - 338, - 343.3333333333333, - 233.5, - 227.5, - 274, - 296, - 327, - 353, - 369.5, - 379, - 378.5, - 338, - 343.3333333333333, - 204.5, - 271, - 265, - 313.5, - 312, - 347, - 374.5, - 394, - 381.5, - 352.5, - 348, - 204.5, - 271, - 265, - 313.5, - 312, - 347, - 374.5, - 394, - 381.5, - 352.5, - 348 - ], - "y0": " ", - "yaxis": "y" - } - ], - "layout": { - "boxmode": "group", - "legend": { - "tracegroupgap": 0 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#f2f5fa" - }, - "error_y": { - "color": "#f2f5fa" - }, - "marker": { - "line": { - "color": "rgb(17,17,17)", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "rgb(17,17,17)", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" - }, - "baxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "line": { - "color": "#283442" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "line": { - "color": "#283442" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#506784" - }, - "line": { - "color": "rgb(17,17,17)" - } - }, - "header": { - "fill": { - "color": "#2a3f5f" - }, - "line": { - "color": "rgb(17,17,17)" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#f2f5fa", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#f2f5fa" - }, - "geo": { - "bgcolor": "rgb(17,17,17)", - "lakecolor": "rgb(17,17,17)", - "landcolor": "rgb(17,17,17)", - "showlakes": true, - "showland": true, - "subunitcolor": "#506784" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "dark" - }, - "paper_bgcolor": "rgb(17,17,17)", - "plot_bgcolor": "rgb(17,17,17)", - "polar": { - "angularaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", - "ticks": "" - }, - "bgcolor": "rgb(17,17,17)", - "radialaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", - "gridwidth": 2, - "linecolor": "#506784", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#C8D4E3" - }, - "yaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", - "gridwidth": 2, - "linecolor": "#506784", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#C8D4E3" - }, - "zaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", - "gridwidth": 2, - "linecolor": "#506784", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#C8D4E3" - } - }, - "shapedefaults": { - "line": { - "color": "#f2f5fa" - } - }, - "sliderdefaults": { - "bgcolor": "#C8D4E3", - "bordercolor": "rgb(17,17,17)", - "borderwidth": 1, - "tickwidth": 0 - }, - "ternary": { - "aaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", - "ticks": "" - }, - "baxis": { - "gridcolor": "#506784", - "linecolor": "#506784", - "ticks": "" - }, - "bgcolor": "rgb(17,17,17)", - "caxis": { - "gridcolor": "#506784", - "linecolor": "#506784", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "updatemenudefaults": { - "bgcolor": "#506784", - "borderwidth": 0 - }, - "xaxis": { - "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "#283442", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "#283442", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Pit Density by Date" - }, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "date" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "value" - } - } - } - }, - "text/html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Show more detail by using a box plot\n", "# make sure values are floats\n", @@ -3015,7 +206,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.12.4" } }, "nbformat": 4, From ab899202badab6bde40496f1b8f05b3164df88f6 Mon Sep 17 00:00:00 2001 From: micah johnson Date: Tue, 30 Jul 2024 13:46:32 -0600 Subject: [PATCH 06/21] First pass at introduction --- .../1_getting_started_example.ipynb | 602 +++++++++++++----- .../snowex_database/images/data_examples.png | Bin 0 -> 412370 bytes .../snowex_database/images/pits_not_bits.jpg | Bin 0 -> 887062 bytes 3 files changed, 441 insertions(+), 161 deletions(-) create mode 100644 book/tutorials/snowex_database/images/data_examples.png create mode 100644 book/tutorials/snowex_database/images/pits_not_bits.jpg diff --git a/book/tutorials/snowex_database/1_getting_started_example.ipynb b/book/tutorials/snowex_database/1_getting_started_example.ipynb index 4f57c0c..2f1e4cb 100644 --- a/book/tutorials/snowex_database/1_getting_started_example.ipynb +++ b/book/tutorials/snowex_database/1_getting_started_example.ipynb @@ -4,46 +4,30 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Introduction to the SnowEx Database " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## What we're gonna attempt to cover\n", - "* Introduction \n", - "* Database Structure/ Contents \n", - "* Forming Useful Queries \n", - "* Examples \n", - "* Exporting Data \n", - "* QGIS setup \n", + "# SnowEx Database Introduction\n", "\n", - "## Why a database?\n", - "> *\"Dude, I am into pits not bits. What gives?!\"*\n", + "SnowEx has introduced a a unique opportunity to study SWE in a way thats unprecendented, but with more data comes new challenges. \n", "\n", - "- Standardizing diverse datasets\n", - "- Cross referencing data\n", - "- Enables GIS functionality\n", - "- Ready for use in your code\n", - "- Provenance!\n", - "- Ready for use in a GIS software like ArcGIS or QGIS!\n", "\n", - "### TL;DR Do less wrangling, do more crunching. \n", + "\"Grand\n", "\n", + "**The SnowEx database is a resource that shortcuts the time it takes to ask cross dataset questions**\n", "\n", - "## What is it exactly?\n", + " \n", + "- Standardizing diverse data\n", + "- Cross referencing data\n", + "- Provenance!\n", + "- Added GIS functionality\n", + "- Connect w/ ArcGIS or QGIS!\n", + "- **CITABLE** \n", "\n", - "* PostgreSQL database\n", - "* PostGIS extension\n", - "* Supports vector and raster data\n", - "* And a host of GIS operations\n", + " * *2022- Estimating snow accumulation and ablation with L-band interferometric synthetic aperture radar (InSAR)*\n", + " * *2024 - Thermal infrared shadow-hiding in GOES-R ABI imagery: snow and forest temperature observations from the SnowEx 2020 Grand Mesa field campaign* \n", + " \n", + " \n", "\n", "## What's in it?\n", "\n", - "**note:**`Data extent is limited to Grand Mesa and in EPSG:26912 for Hackweek!`\n", - "\n", "* Snow pits - Density, hardness profiles, grain types + sizes\n", "* Manual snow depths - TONS of depths, Can you say spirals?\n", "* Snow Micropenetrometer profiles - (Subsampled to every 100th)\n", @@ -54,161 +38,457 @@ "* Snow off DEM from USGS 3DEP \n", "* And almost all the associated metadata\n", "\n", - "**All this and more is easily indexed, cross referencable, and put into GIS ready formats!**\n", + "\"snowex\n", "\n", - "![](https://snowexsql.readthedocs.io/en/latest/_images/gallery_overview_example_12_0.png)\n", + "## Technically, what is it?\n", "\n", + "* PostgreSQL database\n", + "* PostGIS extension\n", + "* Supports vector and raster data\n", + "* And a host of GIS operations\n", + "* AND NOW WITH API!\n", "\n", - "## How do I get at this magical box of data?\n", "\n", - "* [SQL](https://www.postgresql.org/docs/13/tutorial-sql.html) \n", - "* [snowexsql](https://github.com/SnowEx/snowexsql/) **←**" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import the connection function from the snowexsql library\n", - "from snowexsql.db import get_db\n", + "### So whats the catch?\n", + "\n", "\n", - "# This is what you will use for all of hackweek to access the db\n", - "db_name = 'snow:hackweek@db.snowexdata.org/snowex'\n", "\n", - "# Using the function get_db, we receive 2 ways to interact with the database\n", - "engine, session = get_db(db_name)\n" + "### TL;DR Do less wrangling, do more crunching. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 1. Using the Engine Object\n", - "The `engine` object returned from the `get_db` function is not used much in the snowexsql library. It does allow you to use typical SQL \n", - "strings to interact with the database. \n", - "\n", - "**Note**: Users who have used python + SQL before will likely be more familiar with this approach. Additionally those who don't know python but know SQL will also be more comfortable here.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Form a typical SQL query and use python to populate the table name\n", - "qry = \"SELECT DISTINCT site_id FROM sites\"\n", - "\n", - "# Then we execute the sql command and collect the results\n", - "results = engine.execute(qry)\n", + "## How do I get at this magical box of data ?\n", + "* [SQL](https://www.postgresql.org/docs/13/tutorial-sql.html) \n", + "* [snowexsql](https://github.com/SnowEx/snowexsql/) **← 😎**\n", "\n", - "# Create a nice readable string to print the site names using python \n", - "out = ', '.join((row['site_id'] for row in results))\n", "\n", - "# Print it with a line return for readability\n", - "print(out + '\\n')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Using the Session Object\n", - "The session object allows a user to interact with the database in a pure python form. This approach is called Object Relational Mapping (ORM)." + "### Welcome to API Land" ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import the table classes from our data module which is where our ORM classes are defined \n", - "from snowexsql.data import SiteData\n", - "\n", - "# Form the query to receive all the site_id from the sites table\n", - "qry = session.query(SiteData.site_id).distinct()\n", - "\n", - "# Execute the query and collect the results\n", - "results = qry.all()\n", - "\n", - "# Print it with a line return for readability\n", - "print(', '.join([row[0] for row in list(results)]))\n", - "\n", - "# Close your session to avoid hanging transactions\n", - "session.close()" - ] - }, - { - "cell_type": "markdown", + "execution_count": 16, "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
version_numberequipmentvaluelatitudelongitudenorthingeastingelevationutm_zonegeom...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
01CRREL_B109.039.02857-108.140744.323838e+06747510.2159813122.612POINT (747510.216 4323837.789)...2020-01-282022-06-30 22:56:52.635035+00:00None5026https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
11CRREL_B113.039.02858-108.140704.323839e+06747513.6442473122.712POINT (747513.644 4323839.007)...2020-01-282022-06-30 22:56:52.635035+00:00None5027https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
21CRREL_B122.039.02858-108.140674.323839e+06747516.2416303123.612POINT (747516.242 4323839.089)...2020-01-282022-06-30 22:56:52.635035+00:00None5028https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
31CRREL_B121.039.02858-108.140674.323839e+06747516.2416303123.512POINT (747516.242 4323839.089)...2020-01-282022-06-30 22:56:52.635035+00:00None5029https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
41CRREL_B118.039.02860-108.140654.323841e+06747517.9033943123.112POINT (747517.903 4323841.364)...2020-01-282022-06-30 22:56:52.635035+00:00None5030https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
..................................................................
1951CRREL_B102.039.02910-108.142994.323890e+06747313.5634763121.912POINT (747313.563 4323890.494)...2020-01-282022-06-30 22:56:52.635035+00:00None5221https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
1961CRREL_B103.039.02911-108.142954.323892e+06747316.9917423121.712POINT (747316.992 4323891.713)...2020-01-282022-06-30 22:56:52.635035+00:00None5222https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
1971CRREL_B102.039.02912-108.142924.323893e+06747319.5542193121.612POINT (747319.554 4323892.905)...2020-01-282022-06-30 22:56:52.635035+00:00None5223https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
1981CRREL_B106.039.02912-108.142904.323893e+06747321.2857943122.012POINT (747321.286 4323892.959)...2020-01-282022-06-30 22:56:52.635035+00:00None5224https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
1991CRREL_B106.039.02914-108.142874.323895e+06747323.8133863122.512POINT (747323.813 4323895.261)...2020-01-282022-06-30 22:56:52.635035+00:00None5225https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
\n", + "

200 rows × 23 columns

\n", + "
" + ], + "text/plain": [ + " version_number equipment value latitude longitude northing \\\n", + "0 1 CRREL_B 109.0 39.02857 -108.14074 4.323838e+06 \n", + "1 1 CRREL_B 113.0 39.02858 -108.14070 4.323839e+06 \n", + "2 1 CRREL_B 122.0 39.02858 -108.14067 4.323839e+06 \n", + "3 1 CRREL_B 121.0 39.02858 -108.14067 4.323839e+06 \n", + "4 1 CRREL_B 118.0 39.02860 -108.14065 4.323841e+06 \n", + ".. ... ... ... ... ... ... \n", + "195 1 CRREL_B 102.0 39.02910 -108.14299 4.323890e+06 \n", + "196 1 CRREL_B 103.0 39.02911 -108.14295 4.323892e+06 \n", + "197 1 CRREL_B 102.0 39.02912 -108.14292 4.323893e+06 \n", + "198 1 CRREL_B 106.0 39.02912 -108.14290 4.323893e+06 \n", + "199 1 CRREL_B 106.0 39.02914 -108.14287 4.323895e+06 \n", + "\n", + " easting elevation utm_zone geom ... \\\n", + "0 747510.215981 3122.6 12 POINT (747510.216 4323837.789) ... \n", + "1 747513.644247 3122.7 12 POINT (747513.644 4323839.007) ... \n", + "2 747516.241630 3123.6 12 POINT (747516.242 4323839.089) ... \n", + "3 747516.241630 3123.5 12 POINT (747516.242 4323839.089) ... \n", + "4 747517.903394 3123.1 12 POINT (747517.903 4323841.364) ... \n", + ".. ... ... ... ... ... \n", + "195 747313.563476 3121.9 12 POINT (747313.563 4323890.494) ... \n", + "196 747316.991742 3121.7 12 POINT (747316.992 4323891.713) ... \n", + "197 747319.554219 3121.6 12 POINT (747319.554 4323892.905) ... \n", + "198 747321.285794 3122.0 12 POINT (747321.286 4323892.959) ... \n", + "199 747323.813386 3122.5 12 POINT (747323.813 4323895.261) ... \n", + "\n", + " date time_created time_updated id \\\n", + "0 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5026 \n", + "1 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5027 \n", + "2 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5028 \n", + "3 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5029 \n", + "4 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5030 \n", + ".. ... ... ... ... \n", + "195 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5221 \n", + "196 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5222 \n", + "197 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5223 \n", + "198 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5224 \n", + "199 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5225 \n", + "\n", + " doi date_accessed instrument type \\\n", + "0 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "1 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "2 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "3 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "4 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + ".. ... ... ... ... \n", + "195 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "196 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "197 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "198 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "199 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "\n", + " units observers \n", + "0 cm None \n", + "1 cm None \n", + "2 cm None \n", + "3 cm None \n", + "4 cm None \n", + ".. ... ... \n", + "195 cm None \n", + "196 cm None \n", + "197 cm None \n", + "198 cm None \n", + "199 cm None \n", + "\n", + "[200 rows x 23 columns]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAADSCAYAAACxZoAXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df5RcdZnn8feTTgHVMNIBokJDDCoGCYG0RMzKgIiuQX72gj+YkbPqjiKKOyZiNBk4kHhwwImszoy7elBmHBfFBIi9/NKEAYbjMidxErpDiBABwUAFIUIqrKQIle5n/6h7m9uVqlu3u35Xf17n9Omqe29V329X91Pfer7f+3zN3RERkc4ypdknICIitafgLiLSgRTcRUQ6kIK7iEgHUnAXEelACu4iIh2orYK7mV1uZm5mh5XY9xYze8jMhsxsi5ldGmzvNrO7zOyxYPt1kcdcamabg8f8XzM7LsE5zDCztWb2qJn9xsxm1rKNIiK1YK02z93MTgc+5e6fKtp+FPBD4FjgJHf/Y9H+/Si0Z4+ZHQQ8ArwXyALvcff7g2PuBf7W3X9hZm9w95eDx58HfMHdz6xwfv8GfMPd7wl+zoi776664SIiNdROPfdvA18FSr4buftr7r4nuLs/Qdvcfbe73x8eAzwEHBncfznyFAeGz21mXWa2wsz+w8weNrPPBduPA6a6+z3B4/+kwC4irWhqs08gCTM7H8i4+yYzizvuKOAu4O3AYnffXrS/BzgX+PvItsuALwP7AWcEm/8K2OXu7zaz/YEHzWwt8A4ga2argaOBfwWWuPtwbVoqIlIbLZOWMbP1FHrcBwGHANuCXVcDfwN8yN13mdnTwLzitEzRcx0BDADnuvvzwbapwB3AGnf/TonH/CWwwN0/aWa3AicAYa/8YOBzwBuAG4G+4PxWAne7+43VtF1EpNZaJi3j7u9x97nAZ4Db3X1ucP93FHrJm4LAfiTwkJm9Oea5tlPIuZ8a2XwD8HipwB74GdAf3Dbgv4fn4O5Hu/ta4FlgyN1/5+57KbyBvGuibRYRqZeWCe7luPtmd3+ju89095kUAuy73P0P0ePM7EgzSwe3pwF/DmwN7l9Dofe9sOgxx0Tung08HtxeA3zezFLBce8wswOB/wB6zGx6cNwZwG9q1lgRkRppi5x7OWY2D7jU3T8DvBO43sycQs/7W+6+2cyOBK4AHqPQ4wf4rrv/EPiimX0QyAM7gU8GT/1DYGZwvAE7gH53HzazrwD3Bts3Aj9oUHNFRBJrmZy7iIjUTsunZUREZPxaIi1z2GGH+cyZM5t9GiIibWXjxo1/dPfppfa1RHCfOXMmGzZsaPZpiIi0FTP7fbl9SsuIiHQgBXcRkQ6k4C4i0oFaIucuIp1hYDDDijVb2Z7NcURPmvcfO537H9sxen/xgln09/U2+zQnBQV3EanawGCG5XdsYefu/Oi2TDbHTeu2jbm/dPVmAAX4BlBwF5EJCXvpmWwOo0wt7iK5/DDL79ii4N4AyrmLyLgNDGZYunozmWwOSBbYQzt355m7fC0Dg5n6nJwALVJ+YN68ea557iLNF82Z93SncIdduTw93Sn25IfZnR8BSNxTj5PqMg7cbyq7cnnl4yfIzDa6+7yS+xTcRSa3iaRX6qUnnWLZebMV5BOKC+5Ky4hMYtWkVyrpSadIp8YXYrK5PItWDnHlwOYansnkpOAuMomtWLOVXL42q0SGC2D29qT5zsfnMnT1h7j2ghNIp7rG9TwO3LRumwJ8lTRbRmQSiqZiqtFlxoh72Zx5eL94mmQSP1m3jXlvOUQpmglScBeZZMJUTLU99tQUY8VHT6wYfPv7eunv691nsPZPr+4lP1I+EeQUPlkouE+MgrvIJFMpFRMOqk6LmS0zkYHPMMiHSl34VGx7lZ8sJjMFd5EOV1wSIC4V09vAKYlhsL9yYPOYK1mjerpTdT+PTqXgLtLBilMwcdMde3vSPLjkjIaeH8A1/XO4beOz5IJPBVEtMFO7bSm4i3SguAHTcAX5aNxMp7pYvGBWo05vH6+WCOxQmBopE5MouJvZl4DPUvib+IG7f8fMVgLhX0MPkHX3uWY2E3gU2BrsW+ful9b0rEVkH1cObObm9c8wnKC76xR66q1SrTEuXTR3+Vpd2DQBFYO7mR1PIbCfDLwG/NLM7nT3j0eOuR7YFXnYk+4+t9YnKyL7GhjMcMXPN/PKa8lnvzQrBVPO4gWzWLRyqGS6KJvLs3T1Zjb8/iWVDx6HJBcxvRNY7+673X0v8ABwQbjTzAz4GHBzfU5RREoZGMzQ9/W1LFw5NK7A3uwUTCn9fb2xV8fm8sPctG4bmWwOpzB2sGjlEDOX3MUp192nImQlJAnujwCnmtmhZtYNnAUcFdl/KvC8uz8e2Xa0mQ2a2QNmdmqpJzWzS8xsg5lt2LFjx4QbIDIZhQOl470wqLcnzbUXzGnJHm9vT3pcx4dvBplsjsW3bmLu8rUcrWA/KlHhMDP7K+ALwCvAFmCPuy8M9n0PeMLdrw/u7w8c5O4vmtlJwAAw291fLvf8KhwmMj6nXHffuK4uTae6Wjaoh2p1cRW8PmDcyKmdzVB14TB3v9HdT3L304CdwG+DJ55KIUWzMnLsHnd/Mbi9EXgSeEd1TRCRqPFc3NPKvfWo/r5err1gDtNqMLc92qtfunrzpOzJJ+25v9HdXzCzGcBaYL67Z83sTGCpu78vcux04CV3HzaztwK/Aua4+0vlnl89d5HxqdRzN+AT82dwTf+cxp1UDdWq9k2xTuvJV13P3cx+BRwK5IEvu/u9wfYfUZjq+P3IsRcCXw+OHQGudvc74p5fwV1kfMqlMDqtHnotUzWhTkrZaLEOkQ5UXFag3QNVOaXaCYyrCFmcdn5DVHAXkY5W7WpS7TDgXEpccFf5ARFpe9GKkwODGS5ftSnRlbqhXH6448oLK7iLNEm0t9llxrB7R+SBmy383Y03V99p5YUV3EWaoHigMOxlhlP3AAX4KoS/u+I3z7iUTaeVF1ZwF2mCuAUzOjFF0AzFi4NA4U110aqhkqWEW2D4saa0QLZIE1RKAXRaiqBV9Pf1lu267+qw8sIK7iJNcESFOiqV9svElfvddtrvXMFdpAkWL5hFOtVVcl8rVm3sJKV+9534O1dwF2mCsI5KWAmxywxonzow7Sz6uzcKC4HvP3UKi1YOdVRFSV3EJCKTVqnyBu10QVPVVSFFRDpRqVlL4WyldqfgLiKTVrlZSbWuRtkMCu4iMmnFzZBp99y7gruITFpxM2QWrRpq62X7FNxFZNKKGzR1Z3Qx7nZczUnBXUSkgnYcZE0U3M3sS2b2iJltMbNwYexlZpYxs6Hg66zI8UvN7Akz22pmC+p18iIi1epJJysY1m6DrBWDu5kdD3wWOBk4ETjHzN4e7P62u88Nvu4Ojj8OuAiYDZwJ/C8zK30pnohIky07bzapKZbo2HbKwSfpub8TWO/uu919L/AAcEHM8ecDP3P3Pe7+FPAEhTcGEZGW09/Xy4qPnjh6xWqcdsrBJwnujwCnmtmhZtYNnAUcFez7opk9bGb/ZGbTgm29wDORxz8bbBvDzC4xsw1mtmHHjh1VNEFEpDr9fb08uOQMnrru7NGSEHFy+WEuX7WppQN8xeDu7o8C3wTWAr8EhoBh4HvA24C5wHPA9eP5we5+g7vPc/d506dPH+95i4jURVxRt6hhdxbf2roBPtGAqrvf6O4nuftpwE7gt+7+vLsPu/sI8ANeT71keL1nD3BksE1EpOUVFxYLi7qVkh92lt+xpXEnNw6JVmIysze6+wtmNoNCvn2+mR3u7s8Fh/wXCukbgNuBn5rZ/wCOAI4Bfl3j8xYRqZviBbfj1mPdubs1F/lIuszebWZ2KJAHLnP3rJn9o5nNpTDG8DTwOQB332Jmq4DfAHuD45OvUisi0kLCIL9w5VCTz2R8VPJXRCSBucvXko1Ziq8nnWLZebMbWipYJX9FRKpUaT58Npdn8S2tM8Cq4C4ikkB0Pnw5+RFnYYus6KTgLiKSUDgfvtLFTplsjkUrh7hyYHNDzqsUBXcRkXGKqwMfcuAn67Y1rQev4C4iMk6LF8wi1VW5Ho1D0+bBK7iLiIxTf18vKz5yItO6K1eU3Lk735Tee9J57iIiElF8odOilUOUm1i+Ys3Whk6RBPXcRUSq1t/Xyyfmzyi7v9xC3PWknnvEwGCGFWu2sj2bo6c7xZ78MLvzIwB0p6aw39QuduXyHNGTZvGCWQ1/JxaR1nVN/xzu3PRcyQudkgzA1pp67oGwfkQmm8Mp5MnCwA6wOz9CNpcfree8aOUQM9uocL+I1N+y82bvU1HSgPcf2/jKtwrugRVrtpYtDFRKmFtrl8L9IlJ//X29XHhS75h58A7ctjHT8Bgx6YP7wGCGU667r6r1EXP54ZYt+ykijXX/Yzv2GVhtxuIekzrnXqmU53js3J1n5pK76FU+XmRSKzd4OuzO0tWFK1YbER8mZc897K0vXDlUk8Ae1QqXHYtI88QNnubyw6xYs7Uh5zFpeu7hTJhMNodB2fmooWllZsvElfwMOXDTum3ctG6bevIik8ziBbNiMwLVpIDHY1IE9+L0S6XA3tuT5sElZ5TdX6muc1Q44AqN+SgmIs0V/p9fvmoTwyXWyzAKMane8WBSLNYxnmAMkE5N4dX8CEf0pHn/sdO5/7EdbM/mRue3A+PO1Vd6wxCRzhJ31Wqt4kHVi3WY2ZfM7BEz22JmC4NtK8zsMTN72Mx+bmY9wfaZZpYzs6Hg6/tVt6AKA4OZcQV2gFx+ZHQ++03rto3Ofc9kcyy+dRPLbt9CLj8cu3BusUw2pznxIpNIf19v2SxBI65YrRjczex44LPAycCJwDlm9nbgHuB4dz8B+C2wNPKwJ919bvB1aR3OO7FaD17kh330zSL8yJVKOCytOfEik0u5hT0accVqkrD0TmC9u+92973AA8AF7r42uA+wDjiyXic5XuFsmKOX3NWQwYv8CKSm2GiFuLj+vObEi0we5a5MbcQVq0mC+yPAqWZ2qJl1A2cBRxUd89+AX0TuH21mg2b2gJmdWupJzewSM9tgZht27NgxoZMvpbiMQKPkR5ydu/P09qT5xPwZsUtxNasEqIg01v2PlY5t5bbXUsXg7u6PAt8E1gK/BIaA0ZFEM7sC2Av8JNj0HDDD3fuALwM/NbM3lHjeG9x9nrvPmz69+nexes5dH49MNsdtGzMsXjArNsA3aq6riDRPudx6IzIKibLF7n6ju5/k7qcBOynk2DGzTwHnAJ/wYNqNu+9x9xeD2xuBJ4F31OHcR0V769Wa1p2iJ53CKOTLLg564Rbsi1v9PBReqBDOrCmlGSVARaSx4nLrc5evresn+ETz3M3sje7+gpnNAC4A5pvZmcBXgfe5++7IsdOBl9x92MzeChwD/K4O5z4qnL0yUeO50GhgMMPyO7awc3f8DJxMNkd/Xy9/s/rhMdUlQz0JVnARkfa2eMGsstMhs7l8Xa+BSVp+4DYz+w1wB3CZu2eB7wJ/BtxTNOXxNOBhMxsCbgUudfeXan3ioSRTHSv1tR9cckbiX25/Xy+DV32I73x8bmzaJZwmud/UrpL7s8q7i3S8uOmQUPiUf8XP61OqJFHP3d33GRR197eXOfY24LYqzyuxZbfHzzypVGogyRqIpYRLbM1cclfJ/eE0yV1l3ngcdOWqyCTQ25OOTRm/8towVw5s5pr+OTX9uW1dOKxSr70nnYoN7Kku4+pzZ1d1DnG99ysHNrdMESERaY7FC2bts4BHsZvXP1Pzn9vWwT2u1z6tOxUb+Ht70qz4yIlV95oXL5hVNu3zk3XbeP+x02NfWA2sinS2/r5err1gTmyWoFQNmmq1bXCv1Gs/+4TDywbdsK5DLdIhcTk1pzCf9doL5pQtVaCBVZHOF47VlYtJCSbhjVvbBve4dMa07lTJ1VCgkIOPm6I4EXGpmXDWzPUfO5FU176v4J9e3auBVZFJ4hPzZ5Te4dQ8DrRtcI8boLj63Nll0x3OvgOYA4MZ+r6+lplL7mLmkrvGPf807s0i7LH39/Vy4H77jl/nR1x5d5FJ4pr+OaRLFKMaofYXNrZtcC+X5phihUB6cLp0uqOnaPvAYIYvrxoaM289m8uz+Jbk6x3GpXeiubRyaaRGFe8XkeZ7tcR1L1D78be2De7lBiBGgs3lqvEWb192+5bRx0SNt0cdV/43fJMol1erR75NRFpTuRl0ta4U2bbBvVyeO9yeLXMFafH2uEHZ8byTxo12h28Spd5E4raLSOcpNTXSqH2lyLYN7pVKaZZLy5TbXu2xcYOqmu4oIqH+vl4uPKl3zMwZB27bmKnpoGrbBvdKpTSTpmXi5p6+tjd5vZq4+e7hx63ifH+o3HYR6UylZvPV+qLGtg3u5QYhw+1J0zJxV6juzo9UfCcNSw0vWjnEASVGwdOprtHZNOeceHjJ5yi3XUQ6U6X4VQttG9zLDWCG28ulVIoDcH9fb2zvPe4q2OKFQXL5kdEVmcKSwddeMGd0Nk0zC/eLSOuoFL9qIVHhsFZUbgBz2J2BwUzZtEwu6I1Hpy9efe5sFq4cKnl8Npen7+trye7Oc0RRaeAVa7buU2o4P+J07zeVwas+NGb7wGCm7LuycvIik0tc/KqVtg3ucZXWlq7eHFvffcWarWOCe39fb2yN9nB7uMD1ht+/xP2P7Uj00WpgMMOy27fEzsppxGK5ItIaws5nqTg+0Sq1pbRtWiau0louPxz78aZUUE5aHTKXH+amddtic2Phzw7TNnGBPZqTF5HOFsaEch30WtYPa9vgHlZaK2fYvezsFWPfOg6Vcu/jEaaGLl+1qeIKUdGcvIh0tlKp3Khy6z9MRKLgbmZfMrNHzGyLmS0Mth1iZveY2ePB92nBdjOzfzCzJ8zsYTN7V83Otkh/X2/s9MJyRXqc0gOlV587u2Ld5SR60imWrt5cMX/W25NWYBeZRCrNhqllirZicDez44HPAicDJwLnmNnbgSXAve5+DHBvcB/gwxTWTT0GuAT4Xs3OtuT5ld8et7JJNrfvMnfhp4FqRqwNyA+PVOyxKx0jMrlUmlZd65iQZED1ncD6cBFsM3uAwiLZ5wOnB8f8C/BvwNeC7T92dwfWmVmPmR3u7s/V7Kwjys1n3xmsURo38Lpw5RCXr9rEsPs+i2RXGpQtxyksmxVnWneKq8+drV67yCSy/I74xYVqHROSBPdHgG+Y2aFADjgL2AC8KRKw/wC8KbjdC0TXjHo22DYmuJvZJRR69syYUabGcQJHVJg1c+FJvdy0blvZx4epk3AmDDBmquP2bI6D0yleeW0v+eHqRju6zLj+Y9Wv/iQi7afcbDxgn6nTtVAxLePujwLfBNYCvwSGgOGiY5z4dahLPe8N7j7P3edNnz7xgjmVZs3cuem5xAOl4eW/A4OZMYHdDPLD5Qdok1JgF5FGSTSg6u43uvtJ7n4asBP4LfC8mR0OEHx/ITg8AxwVefiRwba6qDRrJpvLc/YJhyceKM1kcyxaOTR61Wk2lx99x62m396TTo0G9rBkwdFL7uKU6+7TSkwik0Cja0slnS3zxuD7DAr59p8CtwOfDA75JPB/gtu3A/81mDUzH9hVr3x7qL+vN7Yq483rn+HCk+KPiap1Bd50qotl5xXm0ReXLAjTQQrwIp1t2XmzSRUt3pCaYqOxodaSznO/zcx+A9wBXObuWeA64D+b2ePAB4P7AHcDvwOeAH4AfKG2p1xa3CjzsDs3rdvG7tf2cvH8GTWZ7phUTzrFAakpLFw5xNuW3s3ClUP7DNTWuhqciLSmA/d/fZhzWneKFR+tX6o2UfkBdz+1xLYXgQ+U2O7AZdWf2vhUKiEAhQGN2zZmuPCk3tHyAV1mNa3nEDrlbYewZfv/G3N1atzPUX0Zkc4VfmKPduzKLbdXK217hWopSS5CCssH/GHXqwC8+eADqsp5daem0B2pNDmtO8XF82fw0LZdsWUHiqm+jEjnKnVlar0/sXdUcB/PRUjRKZDZXH6fX0T4DD3p1Ohsm+jTplNTmNadIpcfYdqB+3Px/Bn09qTJ7s5z8/pnxjVHXhc0iXS2cp/M6/mJvW2rQpYz0YuQoh+QwoptXWZkc3l60ilSXTZmnnsuP0Iu+FiVyebGzKUfT5qn+OIpEek85a7Hqecn9o4L7vB6gK9UarecMDaHQXoiz1FJOtWlomEiHS68ZiaTzWGMnYlX70/sHRncoRDg+/t6x/xym22KwYirty4yGRQPojqMBvhGxICODe6haJCfaL2YieoyY8R9nxWcRKTzlRpEDQP7g0vOqPvP7/jgHorWi2lEL15pF5HJrRmDqFGTJrjD6714iM+FlZKaYhx0wNTRtVRnHprm3598aczjGvmRS0RaW093quR1Nz01XEovzqQK7lGlAn20UNjO3fnRC5zKBevo45R6EZGoRiylF2fSBveoaKBvxONEpPOVm2VXj9l3pXTURUwiIq0i7mLKRhQKVHAXEamDuIsZG1EoUMFdRKQO4kqMN2LGjIK7iEgdxF192ogZMwruIiJ10N/XSzpVOsQ2YsaMgruISJ3kytRsb8SMmaTL7C0ysy1m9oiZ3WxmB5jZr8xsKPjabmYDwbGnm9muyL6r6tsEEZHWVG7GTJKy5NWqOM/dzHqBvwaOc/ecma0CLoquzmRmt/H6GqoAv3L3c2p+tiIibaTcjJl6rP5WLGlaZiqQNrOpQDewPdxhZm8AzgAGan96IiLtaWAwQ7n+edxMmlqpGNzdPQN8C9gGPAfscve1kUP6gXvd/eXItv9kZpvM7BdmVnJpbzO7xMw2mNmGHTt2VNEEEZHWs2LN1pI1q4z4mTS1UjG4m9k04HzgaOAI4EAzuzhyyF8AN0fuPwS8xd1PBP6RMj16d7/B3ee5+7zp06dP9PxFRFpSueqzDg0pW5IkLfNB4Cl33+HueWA18F4AMzsMOBm4KzzY3V929z8Ft+8GUsFxIiKTQrNTMpAsuG8D5ptZt5kZ8AHg0WDfR4A73f3V8GAze3NwHGZ2cvAzXqztaYuItK7ld2xpakoGEsyWcff1ZnYrhXTLXmAQuCHYfRFwXdFDPgJ83sz2AjkKM2saVORSRKS5BgYzJeu4Q+NSMpCw5K+7Xw1cXWL76SW2fRf4btVnJiLShpbfsaXsvkalZEBXqIqI1Excrx0al5IBBXcRkZoYGMxw+apNZff3pFMNXdxHwV1EpEoDgxmWrt4ce+XpsvNKXvJTNwruIiJVWrFmK7n8cNn9je61g4K7iEjV4hbfSKe6Gt5rBwV3EZGqDAxmmBJT/fHaC+Y0vNcOCu4iIhMWl2tPp7q4/mMnNiWwQ8J57iIiUjAwmGHFmq1sz+aYYlYysDezxx5ScBcRSSjsqYeDp+Vmx4y4NzWwg9IyIiKJVZoVEzqigVeilqPgLiKSUNysmFA61dXQK1HLUVpGRKSCMM9e7hKlKQbuhR774gWzmp6SAQV3EZFYxXn2Ut5wQIqhqz/UwLOqTMFdRKSMsF5MpQWtd+XKFwtrFgV3EZFAdJrjwekUr7y2t2Jgh9YYQC2m4C4iwr7pl2zC3nirDKAWU3AXESH5NEcoLJfnFBbfaJUB1GKJgruZLQI+Q6E9m4FPA98H3gfsCg77lLsPBeun/j1wFrA72P5QrU9cRKQWwlRMJsE0RyhcfdrMsgJJVQzuZtYL/DVwnLvnzGwVhbVTARa7+61FD/kwcEzw9R7ge8F3EZGmKs6pv7Z3mN35kcSPT6e6ml5WIKmkaZmpQNrM8kA3sD3m2POBHweLYq8zsx4zO9zdn6vyXEVExm1gMMOy27fsk0NPklNPTTEOOmAq2d35lprDnkTF4O7uGTP7FrANyAFr3X2tmf0l8A0zuwq4F1ji7nuAXuCZyFM8G2wbE9zN7BLgEoAZM2bUoi0iImMMDGZYfMsm8iOVZ7wUa+V8ehIVyw+Y2TQKvfGjgSOAA83sYmApcCzwbuAQ4Gvj+cHufoO7z3P3edOnTx/3iYuIVLJizdYJB/YHl5zRtoEdkqVlPgg85e47AMxsNfBed78p2L/HzP4Z+EpwPwMcFXn8kcE2EZG6i+bVxx/WW3dq43glCe7bgPlm1k0hLfMBYEOYRw9mx/QDjwTH3w580cx+RmEgdZfy7SJSjeKBUDPG5MGB0Rkv4TTFiZjWneLqc2e3dY89lCTnvt7MbgUeAvYCg8ANwC/MbDqFKZ9DwKXBQ+6mMA3yCQpTIT9dh/MWkQ4WDeYHpKaQi8xoiQ6EZrI5Fq4cGvPYpIG9OzWF/VNdbTlYmoR5gktr623evHm+YcOGZp+GiLSAJIW6qtFJvXMz2+ju80rt0xWqItJ0SZauq0Y4QDqZKLiLSFMlXbpuojplgHS8FNxFpKHi8um10g61X+pNwV1E6i5avyU6m2Wigf3A/bp45bXhkjNjOimnXg0FdxGpq+K0S9KkS5cZI+4lpz6GgTv6KaATZ7xUQ8FdROpqPKV0Q0kLdPX39SqYl1Gx/ICISDW2JyylG9UulRdbmYK7iNTVeJegu3j+DAX2GlBwF5G6WrxgFulU15htFnxPp6YwJbjTZcbF82dwTf+cxp5gh1LOXUTqKuyFa+CzsRTcRaTuNPDZeErLiIh0IAV3EZEOpOAuItKBWqLkr5ntAH7f7PMo4TDgj80+iRrolHaA2tKKOqUd0H5teYu7l1yntCWCe6sysw3laiW3k05pB6gtrahT2gGd1RalZUREOpCCu4hIB1Jwj3dDs0+gRjqlHaC2tKJOaQd0UFuUcxcR6UDquYuIdCAFdxGRDtSRwd3MZpnZUOTrZTNbGNl/uZm5mR0W3F8cOfYRMxs2s0PM7AAz+7WZbTKzLWa2PPIcR5vZejN7wsxWmtl+wfb9g/tPBPtntng7fmRmT0UeNzfYbmb2D0E7Hjazd020HbVsS+T4LjMbNLM7I9vq/po0sC11f11q2Q4ze9rMNgf7NkSe4xAzu8fMHg++T6t1OxrYlmVmlok87qzIvqVBW7aa2YJq2lIz7t7RX0AX8AcKk/0BjgLWULho6rASx58L3BfcNuCg4HYKWA/MD+6vAi4Kbn8f+Hxw+wvA9zarzGkAAAOzSURBVIPbFwErW7wdPwI+UuLxZwG/CB47H1jfCq9JZNuXgZ8Cd0a2NfQ1qXNbGvq6VNsO4Okyx/0dsCS4vQT4Zqv/fcW0ZRnwlRLbjwM2AfsDRwNPAl21as9Evzqy517kA8CT7h5eAftt4KuUX8rxL4CbAbzgT8H2VPDlZmbAGcCtwb5/AfqD2+cH9wn2fyA4vuXaUeHnnQ/8OHjsOqDHzA6vpgERE24LgJkdCZwN/DCyrRmvCdShLRXU63Wpqh0xor/74tekJf++JuB84GfuvsfdnwKeAE6u4vlqYjIE94sIXjgzOx/IuPumUgeaWTdwJnBbZFuXmQ0BLwD3uPt64FAg6+57g8OeBcJ6pr3AMwDB/l3B8a3YjtA3go/G3zaz/YvbEYi2saltAb5D4Z91JLKtGa8J1KctoUa+LtW2w4G1ZrbRzC6JbH+Tuz8X3P4D8Kbgdiv/fZVrC8AXg9fkn8IUE/Vty4R1dHC3Qs71POCW4EX8G+CqmIecCzzo7i+FG9x92N3nAkcCJ5vZ8fU851Lq3I6lwLHAu4FDgK/VoQmjqm2LmZ0DvODuG+t5nknUuS0Ne11q8fcF/Lm7vwv4MHCZmZ1W/CAv5DDqOve6zm35HvA2YC7wHHB9rc+/ljo6uFN4cR5y9+cpvChHA5vM7GkKQe4hM3tz5PjRd/xi7p4F7qfwLv8ihY+R4WInRwKZ4HaGQo6PYP/BwfGt2A7c/bngo/Ee4J95/ePkaDtKtLGZbTkFOC84/mfAGWZ2E41/TerZlka/LlX/fbl7Jvj+AvDzyPk+H6Zbgu8v1LEddW2Luz8fdJJGgB9Q//+V6jQ76V/PLwr/MJ8us+9pIoMmFP7hXwIOjGybDvQEt9PAr4Bzgvu3MHbw7gvB7csYO3i3qsXbcXjw3SikCK4L7p/N2AGvX7fCa1J0/OmMHYRs2GvSgLY07HWpwd/XgcCfRW7/O3BmcH8FYwdU/66V/74qtOXwyHGLKOTZAWYzdkD1d7TAgGpTf3hdG1Z4YV4EDk74Qn8qfLEi204ABoGHgUeAqyL73gr8msLgyS3A/sH2A4L7TwT739ri7bgP2Bxsv4nXZ9UY8D8pjPxvBua1wmtSdPzpjA2IDXlNGtSWhrwuNfr7eiuF4LYJ2AJcEdl3KHAv8Djwr8Ahrfz3VaEt/zs414eB2xkb7K8I2rIV+HC1banFl8oPiIh0oE7PuYuITEoK7iIiHUjBXUSkAym4i4h0IAV3EZEOpOAuItKBFNxFRDrQ/wdYPUWaoWkguAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ - "#### Crash Course in Object Relational Mapping (ORM)\n", - "\n", - "**Question**: How is a database used in pure python?!...Are you down with the O.O.P? The answer is as a Class where each column is mapped to that class as an attribute e.g. obj.attribute AND... in the correct type for python!\n", - "\n", - "Consider the following table:\n", - "\n", - "\n", - "| id | site_id | ground_roughness |\n", - "| ----|---------| -----------------|\n", - "| 0 | GML | rough | \n", - "| 1 | 2S27 | smooth | \n", - "| 2 | 3S52 | smooth | \n", - "\n", - "\n", - "In our python repo we have a made up class `SiteData` defined to map to this table.\n", - "\n", - "``` python \n", - " \n", - " from snowexsql.data import SiteData\n", - " \n", - "``` \n", - "\n", - "| id | site_id | ground_roughness |\n", - "| -------------|------------------| --------------------------|\n", - "| SiteData.id | SiteData.site_id | SiteData.ground_roughness | \n", - "| SiteData.id | SiteData.site_id | SiteData.ground_roughness | \n", - "| SiteData.id | SiteData.site_id | SiteData.ground_roughness | \n", - "\n", - "\n", - "If we queried the whole table above using the session object we would get back 3 Sitedata objects in a list. 1 for each row. \n", - "\n", - "``` console\n", - "[, , ]\n", - "```\n", - "\n", - "\n", - "This at first doesn't seem useful until you start to use the objects.\n", - "\n", - "``` python \n", - "\n", - "print(my_queried_data[0].ground_roughness)\n", - "```\n", - "\n", - "``` console\n", - "rough\n", - "```\n", - "\n", - "**Question**\n", - "\n", - "* How would you access from our list the `site_id` of the 2nd row?\n" + "from snowexsql.api import PointMeasurements\n", + "df = PointMeasurements.from_filter(type=\"depth\", instrument=\"magnaprobe\", limit=200)\n", + "df.plot()\n", + "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Recap\n", - "\n", - "You just:\n", - "\n", - "* Accessed a geodatabase using python \n", - "* Saw two methods for interacting with the db using the snowexsql library\n", - "* Pulled all the unique pit site id numbers from the db \n", - "* Had a high level intro to ORM" + "### Old Ways \n", + "See previous presentations\n", + "Engine objects, session objects, and a crash course in ORM, oh my! \n", + "* [Hackweek 2021](https://snowex-2021.hackweek.io/tutorials/database/index.html)\n", + "* [Hackweek 2022](https://snowex-2022.hackweek.io/tutorials/database/index.html)" ] } ], @@ -228,7 +508,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.4" + "version": "3.8.10" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/images/data_examples.png b/book/tutorials/snowex_database/images/data_examples.png new file mode 100644 index 0000000000000000000000000000000000000000..97e11f4dd3d5c9c22d38f1bf9cd3c1e0b23d70b0 GIT binary patch literal 412370 zcmZ6yWmsF^6D=GF?(R~cI23m+?oM$pkRrvMLMSf9og%?qiWYa5KyeC1ibHX?H~jwh z{c!K6mi4g@sbaj;%j&nE(+_Kd zRL7qJKb8LtQhHelBcRZuGQXt>Nv1E9l){sG(;)fAT$luf{jQ6rfIHLc?U-Ckyie{) zpYRNb*N%t!>AJ*=>Mne7HZWq&Jd!TaMo|>EiXK&FhF$S(e*N1>g)sUNnak8t$C3U- zOJ$$~pk z<%|uV>iu_X%rEyQACD18({*zE^x-9VcY|_y?bb_H$!-UJAOyIabvq%kovtAHdRYXm zg(Q11Ux~GUy%#S*curs3x*een++)g>KbKE=#4Yx39ijF=#|mmMs67@NZX-Ca4r@pM z>ZS4Kv>F3pZJ+O|r%j&iG?pORL*0JmCedrSsiVQM%W)-X<@)&aGc|&^WH&PItt5~- zW*tc6uMv#x-(*GW-%?1Sz5#sauTf0VxX~xP-Gbc*1_V!F^J^}~ypIn)h<7d5Wl9Vx zldi*&RpNh-oA={>l;ItEw*wWOx6QB2)QCA({#DIcc`h2+7z8@U^0)DycuG_u2uhA} z^uu=eY;cBIPN@HuFO|&~ZLGeI3T9Ee%+?b^iNuWH9H;-^H)70UZK$9H-zMPl{r&Xe z5*qA%7~HYp6fd}`Gt1q!Ew|1jk#+*W2gL*<{kmytTD z4ZV<7uq9E9FQUT9w0JXvKvd#K`kgXJV0^V(9g*Oc*#qU#RUgrFRIz=|+ z<-q`a~)oYiIxc0MKqxOHf6hXh*u_O_UdeX_N2RSSRBGljqP%8eQ*x7`^M54 zSPav>xYeiJJ*?coCaq&h@H-vc(g1m`$J0bg|s>@GmldroA2j0fRQGZyM#`gFA zifwUffhA5b1HViu-G>aieG`xy7Enqi^yc}e_1^wFsU$ct;?XGrG5hS4T-$sfU_h4E z*pynP08=g+2{d_%5Ce4EC*&a}4G!~SJ*`Gw6YFW?^cFxqLEBi}{yxjYo}InFr0woG zdw~HZ?M1^NEBAgwsJc8+J6;(iW{ZvSeyBUooiM%1jp?+{h3YmkA1R=`D#+}O-+CIM z?-g}JVM*3>Y_4(K>%mNtV4if6NVi#o7-d0mBxK^yHl&7CXp+O<^h$^Y*)+MY(l-i( zzqKvA4MyOcf3%l$ZiSDc53seKNRUakmDrL%sTO!%7yJS}AYCi@lbf?q5NqUHTvU&I zB|5f`fs1StFaH~(ZGuYQudrLc5F10InTNL{NWdH~h+5EOy=0o^RM{N!u~#*&a6{nW z$f7|W<2YveA9-f#^l7XMUKj({{jLq@RuY4{^5hp(ja-O6oD#B%9roi{q+>*jwR5-DqoGNfmWsZfUwzv~#-Ujw@@)ZV< zY;Co>?X7n+;>q&*Ds_8w$dyCMMeqWTKY>fJ?fHv>=#jv zqHoSqsIB@8sT2kVWqHW=Y0}~pdx1XRdL;f_X>-0A#MHgQ`sepZoo$Lp0mGL;xsqDz zjDM(Z>9Yz8H<~AA--^}81mwY1##;qpWRdL?krbBx#Y47s_UsSKTIY@6^I(47A{0jf zUW61yQZgI74v5(Fu#1`O-Y5INwE*9L{7!<*5>t^on4`9U{~I<-Dq)dw`Wa2e(E^W$^a+&0++=Me>b0S?;H7%F_UClS(`Lt0QSQD(O~ z2lJ^i521>*6W;ANnJ*>pPX@ztVX4T#<=aG_*}q51%j7-rQT5cxN!W+0ju{BqGiRFRu}NQJ`m<*&DVg|qPq@^rvm*K) zvIU3)RhySLglHiQb{-{Ro+cqVVX(b0NofPbZeV-4f>94+ku90zul*$~5cd8n(I%k+ z$)3GMSS9+}Fua?&gMFKR`3zpE2*dZddluVH5yQacT*mjBB%3ByqXRw&i3mFgf|^?Q zZYQ-io6ZlwO`&T3B7}N0T!w5@krkxJH`k2~{j|Ij{F= zPlpVJLb3@U7BEu&v;gi5l-4E_`c6s~Hc^P7ioJ)5`NT;8agp@PdlWT!Ehu#Fd^~xb zG%g(wdABLCfxe$#H`z`X?ByvzCpNXyTOYoMfj+1zaAUL|Q`H|v?tH>p32`9IF|`e9 z##hfh>?X%93PcN{K950O8;*pRAmk0o)zVr|>%+UG>%Bmm=!E)#7{9{iH*%$&g^Ym(+7Bjd=+Q!%&#Hs{`ysX(Mcax9kL>Xd*!W_Bqj# zm{Y~VXqc>NpxDCb_dF+2MX+NXc#-S@g5$|~=PEBZMJ3($J&!}m2vZE5T*#Oh0wZs2 z=2s4Lxx3RtUAEnv3#_N_NhQd9yPT+$^!D3Wp+TYwc@@2#t>RFkROBR0nKL&z%`zo3ymT6}*AU&c254XF^mOzz=ZpV^OEiR!9E-{I|kFf$hp0!kt>DU6~_=oeD) zytp}PW~=_D{fwDT{EDjmSrH;qR$Dlntus@yC|mx$IOO|*Vj;np*_d76(sG;;S~->$ zX7eDVA2fYYZpMG}Oj!BN8}zrtaugzNg3ScII9XaW6}e@>Mh*aBzd0S_-S5sN6R>!vu38BA0AhbM2-b)A2-#h|HHkmKKfGd;$;s`Eg zl@Q@~62-46?yQGh)rJ#D9mviz{gX7mzT?;f^E&X%i{rswlitH*+#GgoF8e{A{Uwr* zL0{@#Ycm@%q2FAWg=9j-KT(cb6M|t(i_mbfgBjn&1-60xeB zA=?;_?=$1K%tF+HA_gBc#S*z=+E!);daDD)Id$=jR8Vm$o8OFR3aqU=;X!gG0=YMR zfk%bD+mG26I+6nH{o9UvN0yVO?O>!RsbnZ6>mlVc_g4G(PKVP4*!5T=n zEe&rNNJ|{ag7ET8QgfNXM4>X1yFTh9vHfYRR~L9};2O)`kP+j!H}9=h7}vp`$2Q+5 zWx5+XD(WJ!43T%Ni5EZMeb4s0`L~+;--%ht4MAtDud|I3k?QF=4&Ur$4s{DfqNfBdJjhodF^w4o$~-e3@YgwQi#0sKviYi);sXS2P>X4zMF}$ z(dH@{9LkknUEU53M?=(sg;dc0{ZH#4bfyUQKb9LsRdHe$N zPRl>;Zkzvb7lHm;j6^9I=^2Q@KESvMhEuhI6~r(=7h@z7Vgh?EKK1^p=5 z#v&2S=Su-w30i;jC2|W6ZbiOj;T2yyUteWfZr01e{aw}v?<+6odLG%ePS>70?<#t4iHaStz;lVGA?JS*YVEvOkF#u^PJkXA27d5Xx|ww(eRGJO~t zpF-QZ8RM5$N{a}9@ubVDn`^b!bY=Pbw@fDkW zN7z^gcM7+m7E#FfCr**+p|F-t>eL2ieLODF@(7WQo3-S|sijK#cp?fO;}xA$erPbl zo*GM@kESM?hk}BOokD_ei$?acF##@dhs#*;+2KOjkihHtjeDD0SxTyxyasJ0q-1{h zJzRq=hFI2rdo>Peg7f`)&V#gvpbo#R9F+bmmv?|RfThs*CM}9YhWQi=E$OPk)vI$a z&z6=NDA#p5o3qx{zLAgs+iw$pVvk1X&YX7(>_Pn;e%OP`15X2(94PYl*AXEXMLXtg|~^a zvSN+p2Y+rFpI3~E;`Bn$|I(INo0x0R&~nw^VH#%;yr{opQQt-}T51<3I&UYoMKnr} z9WH3ul&TgaO&}Be>KiLak#NwGj~DwkgZ1dj@+5s~xqow)28~8eUzdc|!Gf-j%{`RZ zmR{L>eN;x+%yi^T4A9O0untDJ z|LPNhsh~M*QuyGUmPd^FJub-$>jYf&8osC80tyzh>66EFdy^L#(}-RI6z@g9bwSOT z38RzOAnI{MPXWAhtb@5m)qW1DYq`;1W#RX3BAQNdBO@njc1Qbf1K}lYoo}Tb0>o+c zXlL;F=a&=4Qj%R{LMb%q$xX(IKrNeiv9&R*_~*&4I;m03&VMa61_6{4gqQX4zOlSG zDLbyWlr8o`(5J~ExYgkuINApqS4=(qDWU`1Q1}#Ux7!H{O*~rV{%PZHjh@551RpK< zYe*6*G(J%^k@gbEiD;L#w(DnKOYMMpJU3VS1TVu7NP*pjG6(0=|8BU2AR_OZANG>JNR~TjVdRp7 z`Hg}=QhgeVt%#e60J=Y~_h6?&;JwzCF!2BVi@oeZ%fEjlGVt@lxbpRfd`sOA#d`yM zrnOm)27d9cr(y zf{v69E_j%>ZW71Y%@in41|H=D?^9@E%roU<$OE=R4XahAaCx0&a7#y{k%`v5>SZ;P zj{0nR`=2yeq5W|vCciT7>3Rn~N}}U$UWuhNny50Wf4TXG9H>4#hgRU<-iRBi>O-1M zxXqWM!t+0>A*lwK$j)4hlle~axvIF~W?Jr*5kQ#3Jei~YC?5_~%6E0{j&1PD<@mMMnprp?KXe&ll#GSANk?P9FC`Vd=0LZ2z=0zVbF`zBr-+3!Oz6dR|Iq_K>u1s1uMIf~YVwfk``l#R zJr6tvfFgwzSG21um=|yEI@`QX{=M8+ByXxXHgj3!3I9$fN=>-ktS~A=7XFW;PA}6b z@+_pa;f|aB$5ST2<@jdQFQUu6b7ekU#;&vNtAj%`J(}U|- z4>gQsnsH@E0{zl~!-P8g9qp+q)b9$<3!|HNlljI5!%c>bvi{NrfCD)pG&KvIM3N_C z4TfbisH%_)oSgSC`Pr5>`IDB`in1kUrq>_8o5^gEt%VvVpF3I2JSB=_@(-!Sj;s|9 zysIrP!M>GN|Mfg^SS)#P2qWNXyCV4IFR=1b3pnAL_=-)Kfw)I)Kmf8D}~^=_oxMyNWs)zSD!-mDqW-mwraO-#lNe zRkxh@NpjRajNIXsjb_;@_*m+0Sh1rXp*WQ(RDMKFUVFX}aed*e%u3s2{V-zf5258e z;9ymL{-c1#Iv7_H?N`jOza&G=yrIY867Ox1tU@?E;3w7Y%_3fIJWSa51L_(37NC3X z!xDl871c=?-N3BX;L%GQBaHQ?nV=Yva?~jY_XaSh`=ozxy%T+r_R*JtYXNxS!G2oYX4BnBK9ZUKu zg|2;`$=Y=C+vQ<08yJpNOzOsKVx7@fTsZiMqWXB9?X=qAm*(4I6&5}iC-LlkIM04M z)Zup%Apt88b2ngVLF2;W#F|%P3A%}b;*%}&<-yd|UwR=q$q-vBnD*Wfea^ElA%+Y} zaT=~Ko-L^d$_C-8dlWtK4Vl?wu}N(dfOyY5+fR?eYo_RIPj(~%XK&gB#;9we*8Rq0 zTmLf7>pq_+%?FAvUv=FGygc{~4wcjS&<1Jct?$}XuNXd5+^D{Inapboo0aL)4F3|n zw!EtGntdGN-wO0(^b2MED=18S8qC8t;9=;&Jw4si7m&e7(%l+wP~+zk#;$EN>_I`J z@d*JH>X1X5Gj?Kg5o2t?t%vegZ;B|7Nv0&6t4#vQcsb(?`MR@LD1)Q{w1_q0Kp~mb8-1>?O@u zFjAJ?W<;N}WQEXI&tl}vkzfo$=;D6cK0wvoWf87}>cahx9SL+M1i>WGV?IKtv60Cz ztzj!Wd!gFI@9x_I?bS#=$c)-V$5J{#Q~sFIPaHz^FMT7@U((H{{$S?<{Zldfdzu>%WFZF)W8K6IluxRE*zK~fv+5vV)G zAy#bb`iFr}x zhZ6<0xlbcsG>RfhbRcM!2g2gl%~~<#AY0JRc`~|&&s$Gv0}@&@FiT{wXiEw;3%2~< zApL@RsYsLRUcKnKVaGpW`ucIx$$e0{q;q zAI-f__v);Y?N5Gp{AzD8Susr&bBGln{py;8LATSNd35a5CCdi*{Jd|Q>*?tw)*L{| zQ}l+1>fd{8kQE&vEORo^_I^T#xs;=!)tF+4lG+$z`!GF6ZEQ+|Z`lo;^Cn`^sQf(j zVUf;goju;Ko*~fnz1{{g(*D8Ngeq!+#rVe&m2?#v9myL5^=-$6`U&V?e$a2|lRee3 zp&Xn$SdH2wnaDJiNGJX%jgYuB(zMQQ8@oARvE!zo1<&Lf&u!3L)!+Jqw9!Sjh*zn+ zs7(t6xXX6xTMGYtp%+Qxagh(^V8KvqVhv&wmU1**XZJ^}EU1R=pt;9&#LwD>+xaRZ z^B}R@W7Vp0MSG69cPx&34)ms9vjm*Dv#G|tZ^N`DfwXN%m&ur7Jg*wSx+*JZJZ3E*L;NLq33Ac-`s^ic7o=5Zd+{<#( z`tfUkt26Ny97;O2_qemrzqO9Gizlx>G%Y|vk6yxTYCip#+z5J1TwDpk z9#6O(TwY@b;Y%+s6_aP4uVw zt=*~0i*}Vzv4plSy7@XbuK&!p85eue& zQVp}S#4IPN_)AFL)Uw58P03**Ur9JH4_})R!0Q0({=}^J!s`>Ps)-<|l1cq4$J@1V z%SrXlEwRLb?=`&bJk>lbG{qE5gM?^=^eWMU(>}t)D~vEKXb8k{0@~Eevrin-LEuAgZhT0zqd{Cy;M0Rq>W5D@oLe*`FbM=b5zeF| z0u83(s3JBb$;FPmvfL`)<;N%}_9T>wNlJulnO#!714R{{*I;V)oag$c0gghu%^xRf zx#cIHzp*Kzk1C(@^bciV+(nnK{keJ$_Y>biW~Pf-4jF9!=w_;I#LAPAeduyBuhik`k$Bdqs zpL`$yCZ`h8f9KA~-{2>^_wb*mTL=-u1|dsNslaOY*X}>AMKhr3Q7jv513T;^Y=phJ z57J4#dCW0LU@Fg}AWwu#7|>u*3F{kbLv+GRSE4+gbTtP)$yyJbw7G!6bty`584Ll z`%3B9oXPwtKRDe@a0*6P7}YX%EYt6c1o39QIo z{&cq#yZ`Ah=yi+VBY=6z&XOx+d6a63AdxgQHCqhmHPxPNB}}C>(ZHDH6BmCT&05Jv z=QE%yZunflLa<_H=pi#b8dB*>OOzDwO8uNXE}FC-v`nRF?s3!Rd+x1#Q1{oB~cx zPMSR%4~g_Xa&XyV&D|Ht)_tKjptHewlKdu2cRZTHnq~UC^7HT%75^cz9${t-c(wR? z@KVj{x>oU*mT0T*-L#ebVI~<_CV3o{gj@%Y|L<0h!|^4aU5@X_&4_`-y2(K+Htbx% zBA9c7_$dxB@Op>kD+xSreZ}i1N%B|e(r(W{CnO9*j653JgvNWREyaY9m%(Wvg=K=c z90_68b~Xn$T}mdwQD$1dvHNaz^uo=}d~HBzmP$fkJL`pY1)qETaDH*LDatEJWROsO z$Wn7)C+d>O)nED#ezH2PXc$zZ+@}UlnN8IjRb}IGF_=0VyRYRC&k)iw@&D?(d z4oo8wUeEp?-m6{XIm`&xc7F|lPIcYVzU2!`AAD!O*zjgnqLG)?51K5dUs3Z;(1!2w zc%_-cq*bQVEPn>W^o_KOxC;!}I&y_K&$q{#24F?(PrmQ)WH=cZd(0%6M6lr)+u8)H z4}`GRGe_z*l6@uBi%`A+$sW+(NoaF_sdwhI=>4cB6CZCUF_^3)u^j!{czvI~{I!S+ zHoXUFzwl(-@k>6~HOP=QI^8+zxR62XIrViNSYG}S@b~q>a4AfWJ(}qkJjwyG{pEx; zN7p^~Rm)90)@g%ro9FTB&7YO$`RjTs+emb$)y~G3iYFtpfVud8`>T-N=QFD#+|)HPI0_&4MuVw%+YEpjoJ?e^Xqp~I+S8&y%S+IZ>V&Ngy@)S!>yNmA9$ zN>kNsbs|fkhXxbHX>M@0SBY2Bqub}x&R4zW4kfXFVue6ab}_mq#knQa6a&KO@ouPO z(aM@HT_ZPRwJ6;$3fz^RWjwDtE-tl zZ;fCkI?EmkERcp7BqDCt4nEqB=63FekroT#Z9VjU5-Sw~JBX!p%4FrKHKv3{WsD3} zz&8OGRmba89z{a;oh+v_AR>$Ubxk!};IrFQr@DOVx6Yqd4~%{{dn^~0V^;?U-!Y9i z{gcvQW}D3&tXF5`h3TV{7-HGqC@#S{F4Aq9A;l!VJ203uf7!x-{~B zsg%?cTW&*(?lY!n8aYx3qgp=QTlaM!MS(_ryt=);wKWT%GAjjs22OkF%{L0*(vL?I zb6jKH&;@bJx<>GdcS|r^!a#6#YpqZ4wYIsrQ182#T~Z!jyosugg3#0LPUb4JkB<+o zWY#0uyNyM^GwE#Dx!e8fUWd+?FgUo3PRxPFC<(XKKZ5^!z;wiHVu<}YF(J+4Ntj<^ z^&7cBr^prMt&P;97S5yJ)$*K^y1(Dn4yLoku0~A_!;AoXt9|Ls^6hPzc1g0!`~G$h zbL9{;#l|w5lagF5e!}0B`i_c(^U9b_n7>U*`Tvd1vHpF{Lj!RJfV=7n!mCvT^IW(t zrGF2<$KEr5sTly6Gqnr{{rIj#gfkP47oS08PYMW9zRQ@0_RCNlvcsXf!xRg#g612^ z@Q-A$dgx-mbLw$Z>I;w6Bj#Da^4>wKVg8Jdo~~CSE@3e>Qn+r}}NJ2E6mF4fH?&ho_BjYPA5bbLfUs zwMm=YyL;0v7rK&i!7na|Ej~*2XX`V#D~-;M=`A7aSJPWVu~Z^a6G-2@B<#_6Jf7y( zskX>ni4XF5knOa}-L3<6%=dCnzfCc}tG$%wsJc;(ZRx+1=CM-y76}K_ENlxCg5hDN zTqd(rn{G(42tJL;UB-WVXM$Wyaxk#KpeonT-JFsLHl4>#5etrGXM?-GfB0w8v%GlQ z`aR_L46l8!lTHN<%hNFr$L1wrLF-|fc&ZCXY@~Liio&m;d4@+y0nLlP9$EW#N zyRDE@#k`)4J&dF+P1L>$F_u&xoo@7XkJ|HBD_4%j3Xt>i`P8(ZEyMc%YO}5YZ0e@Q zpn(X3<5%=3tmbCo`cc(&_!x>Vu_5z(-5=@b)c(A*`|!PyIoR649vB#SHkTIKI0z0w zQ8Wf)ousNAa`QLwCY>aZw0Q=`>*NsHPAZmiu~CrAt6Owp^2)<6V-@Zk1t+aBuvA2Mo$#{{VI@wzDW?y`k3>;zHuzQ6{G zz!-Zi`7_aJ@2ZWv2KC5M0ac%wm8wPpVVEGJdI=*!OiK11#F5su(d6sIzbt(hSve)I zH>kz^?ne`w{2#MyA)Tygo8OO{L{fF@8#ODJkE4wh*p%W3&-ljPupFQ~`A0!P`Mh4R z`X^hMufhFo8>iEDE8oIkP0-b&^Wps1is=L^Yo)y-{6c`&LECb%Z`WyF<=5{VUCY?> zrxOW%``bV324iLqe(yFrLA8_|A`4`%SqOS2M##)8FN&Sg~XzqmK9aj<^C`A1o;db_t3hx-2C!={^VJcocr zu?lJmJrZKcpo8C*$AODeEcPiUHpQc13WeP#J}Tan4`h+$?A~}0VK(HFK?YObg@DhL zT>%|d&UH;yyne%l_N?TFT)w;ivX7lk6u5S6u(Rs#?Ri+y&h1BM+F~+*d@getG%g8d z)Q_z*#;Og>z_Re-p|~wuwV$w9he6bE76NwV?bBmxcT7v@r-T8I6ykTrEdfuyW1F$g z(ylU}N23}mA}~AsZrJ~8s zcH0z^b4St{Otvi~(fbe5?+h$NsWSw*4whnYI+ak^`?OL2_8uimh?$)odZ~1+X$}CA*&4YdY&5SlM4t*I*GV$lRX$7mXt`EBG>SVEmr^fmGI|r~L24Gc(`{OX1i_ z&-$5fK%RnRZ!Ytu?YOZkpyI%bl{tFFdaS;Mn@y>+eB~T%D$nk?t3SbS`U5Kq%oEft&u{K zLgWl3oTpzA%GcK^ld=w_SmP%8@ip}N2O?6nacp_sah*)WsCLU&EPmnP%`}%H@zknB zd?UX8%>~!OpxaOsb=;tcgIaVSObVB`<$u9xVI>IU9}t^z2kb4P@p0(UI+IRy&~ZL7 zd(tdV5*5LGv;%fYYhVA0?&9ixs$@=5OI9N4;;FQ_xJ zUG}zgynE-S9y)OAM&HK|9%+!nIYHUWA#8!@S@jfe<%zIvyb=FK8P5y1w-azK3I#wP zu>Di4*kYK}rzk2F?O9nJtA(DPZuA?k4(9mCbMO(%2$*Tk|C(D{I(vS4{^_<`I@BQ~ z0uaEa5^iw4D&Ma7AY)y270d_Y*UZ$!D{=u1;(^1qlfYWms<$FiY5EJ(k8=yimX~&8 z1e4Om$rP(g^|loUb~D6jR%tQm?Q@W+Q4N@&=NypORPxwm5NOh6@g=A(y#=*}&dlSL zLxquvg9!(Bi#x6+SE{Fy11@$Zto~3TbIfnEru9_R?}xGie0`)f){a2BN46hFBw(qB687~7oLh}ku+y;KG2`ZsT#ceEW5>aWS%0?&eb=&qc-~Sl3A$* zwl|RanJXc{o=jexOylqG(>cSqz7+d?$Piyp9H9)3dON@6)RuVr`MGNOWikHgqbFxz zkPa2q-K?8+mr>SLA=ll=M(;~A%}E#LGhT@AiN2uZ6vcZ1a;Ua`|HjP^pGM;{G+jBj z(CEc>o2J_23FKuSmqN50?pW5nj|JZ-5@K1WUFjnu{Nc)@HqqJ)KW7|P#*6-oKAUBYV$ok4fkmtAel$dzxz@twlrqq#OjQt z#g)EXVH2(U!<@4WQfyxKg#BNIZRlWdEmvps!4e2rK79WRG0XJT#Lfl z{IVW&D_Ye>vnIe}m_tGU`4;%)A?p--eP<7VeL4nwz}%ThF7BNT>qYotXK3*uk;V}; zus3JVyL-{*e&=fEl3FxTP?2BNM%UabSWq*{X;@-ptU0aW_H=(Woie6HLYoCHnCS>D+n~4Q=hYhX3FGttl-ASxK9+Y(nrX<#vK0KKz(cMbH z_h9t^Op?wP!Jej-&EHw$hZx15rADX^^Km_9wpKEqT`FIQAIe`eC>aRQJ2d~;BFDUV zdaehWl0S!61iu^_|KSj?dX%;{iGy8?~MK7#19 z{|EH6>w4$8jvni*m^sK#8OH!u-h5L5UV|{L1U4m5A(%*_lM`ve6eXErtdldb(Ofs6 z$pmPq&0$x0pX{*iC+d*HlE~^{iO!8fA6|miJv%Jmx@}3&#uCrUT@MGxMeldk-ht}^ z{O~u`%?Hqu$la9polbX#@WXZ~Z!R6vwo;I_kGa*NDAHGo=j?t!*ETF43aVs`arp{)tk7pzJ32NK|Rg#=d^qbkLV1v%&=0A6>5;737%Y)Qt5dy=B3$eE0X%U!Sh3J( zTuHz#UF5R}OnX<@#=(I7?h=gDvr}I`iK?0t5zN_eEW<)1xl&Shp*$7AG&s3lbyzXW zPsDEYbMyLmWou#RPryxfgK>wKQhHN~XoJjF0hYiAy_r$h*x0kPv&l{>RliTyiNa6j zstyp(g@4$SIbsieRn#bv&k?z>Ood3NahM@3i@P4}NqMvsO;{}^Ykz;~32*Zl6gBgZ z=^VMef&`o2)$b14Et5TI7xePrNmgf5k_^bJLXCiC;=hJCY9FkmEQ|I;h z9r`Z0Q5MYVtR;+{N3>=HSOlj4BB*cg?bkgP{^)itz7(~JlDFIKf6;}NiY02f3}(?2 zv_Ec=o;P|hvjq4(8yG%(93bUkF`9t2cWxbqFb$`85CL56nA;6ip+g>kYQr@IL&QFW zcv3_02_aRsv<*y4pYHCcMFr83&4@_vE)9QmQ61k6^&P*Qdn|CMdAwXaSO-pG5?qwo z*8*D2L^uqK%uxxZBLkPU&gHd3G?)_JUA~XvjjI`b(UxtIq`kbxV)6WziydC(OX_wJN~L=joH&I%I8}HOW-hG=fxP2@;6h zZgq`Or|Gz;Puy@IKOAE7GU>1e-|2w3B%?QRD&bdqcXnN^#Y-*W%H!8@V*2gp=#32k zv||<*#PtY55ntnKhH}vfn3&}L_5+cb96nwg2x>{_AQhSp;ll5q=c&?eh9W-(nP+3P zd&UYu!4GP2q96N)h(IqOp+hh z830g&2&D*?pe$uU@Gt;6qeZm)?XFT_w_d;x;$a*~{j8%e006p+XZ;z*9fHhAVa-D~ z!&$aVMd6IH-Xv5<2ZwtN%+|@G-WG?^Vx5@x}+!L0b}PgLf? z$Oa1d$ZcNygZ7$~=zO$FwPl?V$+tV}QvhFISW%uoD&M9j+M2$%Sxc4)+Hg+CgpK~> zhtf$13ugj&@kmLNb1?uV)a9y`6U^)!B2Q2I0&8nIrbeX(I-5zjDQkL=!-^Tc)b{5c za_poIPRW}aoLxkO!Edb7Up&@XSAgw)C;x(i%?`&dq%TqL%fH6m{QJotz+Ul#v!fY4 zUEd_P>nwBvP^MRHD)xMQ=HgEqo9pamHdNvxe)Y6JC_Aw{KXU73!B6i_}Uno*Nlq##og^dv@!0j(Am^+*+rs`61-0=jiKQ4 z;m=2jxj~@>slWrj6JphT)ltaEWy=Q=yr>+LA2VKKBq=_ zU-1w9x_2)0jSiJkN8irK^r;U4WtJEALSKSlE-dH4oFp-&bz?#>oJ0@ZqZ#}`2blOnW|L_6dr83}yG zwf zlfQD}-x1HCWZJ}^plSdQ`sKMut}O64f@AyatC#czYPEu{_AOIp6^x6lDHO5HX+J#a z;!MmpfIkBQwny9R(CTWb4*$iElxBUzHn$eMPI@1JsaGu7QAa)Jg1|>nN0ty?z>O*Q z5k1d9bX!Wsvj4DuqZF+Ny|uf>AVL%&q5NmQp%!8*m=#;DaKyN78Vz*Hbn2s~gC?WZ zzoF*_*HeeNo*xA|nm!w=JJuO-k+foe7r};=P^_X8RBem?3)csMR=JmRVoE;QIER+x z<km5SfMG#vVcV$nZz+z+(==ADqqp6J-QDL z>P-&o!H67)u*ma@GLvUxxdWv|B~%ElM&ScPh)SG+A2;OK=T}$sQa-czKTQaHS2YxE z9*nycb*~T*O*4(xwX1&I9OJ;I7P}uktm$~Txfxz%*5?^qG;j+!l__wO1k3U9yN$&;z?bv|U3wXN0HUC$3(sW^8yCldgH@U9Rr<2B5S zfO%x}#TCkYdu%4O1s*h+`pzZE+nK&k zohp4N8qu67xRyyeo=ylGzf76H0*7J39>a5+gG$uX@;>={^2&n9^UiqiweAJj0`bAu z`q;dB3~EZZ7pbE!-W88GV`u>npPy<>IlffVem`LkDhh>b{qQn0Jzl~MAF7n`o#UNTV%{idbG0o}kXavl`gHv@^s6XwDFg|)$yJionsCD)kMKMmA^Je62k@;HRiPjZK zjQx;d#cC8E1-tsC@hEH4|k@MFcxE<>O_}&8>o!N$3 z1=+xZZGsV~5O#3WOddEWoQ<7{?@eC+`nSK>|NSleNdro1%_4`$2eMrb zlnXh6d?_o`H#^cAKObRIuBp!!pQ^OQbuDv!7eiO)Bg{wd&h+~C`wo}7=^6RWD&gS= z#&k^5r@2p6^ssJ(-%AVN3wvUNoueyRD~D1$F~^=o#PeuT-5dQpnxpG2mQk$+^>IZs zR&<=G|6hfdVGYwy8|X%6g|jKgU+BC}stvmsdOi-5l&XDVwmbL?Oarrvx@?9Va&W?m z$=GQI12t(uL*gRUcJF;W7ef8Jj5;2eZ$U;ud3Uf5S1Wbi_v$4~ITOD=)@d&(!gE;& zcv{E!@*)e0f~>+{vaw1f1t=*P1$nYb;MZPLi+TG=GkjsWmoDX$8 z6TFmM(K#5vPLYYXwRVx{q-SY~Qnf4qriMVERDYh=ICq4w)WrFhis?hkxjdZtkN{4ia zATc0alG0t$4Ks8|cQ;4~14ws+pwb=Z{r%5b=QE47VCH@1x$nKNz2`LUpC#-gq6}Ub zAzKSuamHrdew>_KH(p|zvzMv;DOE`O*+tz<6E8}@iM+`YuzUAy-5ByG_}85Fb>wIF zcA&n@Y{x`qFP25IVfT*z&b9xF;}sZLloNLuR7#}_QqAroL66sw{$i&3+63v0<@ysA z$bG>z21W&P$ezGKB{YjD6%;}MuE^++=(u)>;`BPsHa&L^PAIDZ_%WYe#)|Mz?G z;%J?^4)bd#Kr@x3H>c>O*R0oG&sfDM2J~n8K0kWPbV+W%VUHbCo+Rh7iOZ-*RTIFr z4qQ84s5u}aDQYAN!Ms8gh#rJ8bSW&@PQ2!|&59PZugi(uAC99)A-`xkI|I&!fzF5a z?Y6m32a^t8kHX4wQs5JEZoYgxw)}rU+0!$#)x&Q<;1@wp4!R!g&1GuGpno`$AR)6( zcbAV|cw!TXX4FtWg8!mlo&aVIvn2VC-JC`6sSm#vg94^((|-w`S=~@3P+U3?jPhib z{1o7e1842|W^=5aFNhS4K%f6xDL_<6N?`#M$DxGM_(w*EZl?03v2GuT20YD1jJ~BvvKRDd=EUjE?ydinnc0R6Iuo161 z!&g+4XdAr@xNdn|dDu7WF?@b_-K3w?V@{vKOGrMV^=!OAL&t5p|MFX~fKJVq-C6M2RzfntjLJM*jzg!e^|DjCGJGQO6 z&8PG!%sl>MuMaGf9=)#{k=ddx_yh45?3j+6FhS=*m_bN%WAsmNH;H2+zg#v$h&T!R zceGxc5#w+TpS768+-JpaAH3Q`(+8;g{(VOOkdeOqxMys=f@h~S{%M43i^JSS-NAmh9BAWX`St@@c);mrcu;>Z`Xp!k2h#QYB^EP9MAMJC#s=>QkXkC z(ZAUMmDPQBae6CN1+jjc_r8LF;+(d18OK0GPm#-eBa0bep^ zY_3utEFLw23A&%_Lkuf9FN-Z&ZXQl9?M6(`e|~-dsWle=vlukdjL#*10`_*@{jA2< z^k?)k#iA)BG%c#+;`TEK6oJ_rt99bELL8iLJ>0KcT_Y~5R$BU+K4Jrgbj;`iK+Ew) z*flv614q&ItT7>%;@FfoBP(}(exdCs?B~a=C$m4Lep_HO#Mn52`@FH(Jms!(XUQYQ zeWNbPTwi)nIXbY&F0GyWo@oO!uzG*c&NdEO?n*Ns7u49is-TArvV9{)Hv5 zHVh+7`=s#OdFZv30Yb41VjNI zwb?U|^rNj{koz&*&K^jz2a8-K(KjTu(5%v0v zxMmKZ=hG-ItwC9XKvsuj(U3R9H0va(VOtt0SR23Yya-}2dPKbBSSy<|Rc$E2ra@Qy zpB&)hRSnWBOxwN2!e~;T!ke$8b^<3GLF8C2CXf1N0Ui(6f5!DWoxHD#zacc4H*&hw zGS$o6e2=bqhoNN4btW`8BD8yNH58r>c~wzAzH*H7)h*KJGJ6P77_gdU_vPb`kPRKW zOn-_y@MN<1e0u(?A%UO|ERbBd-Q|g(Rs$3}wJYoG-Nk0m7sQfA3EbUm6c1qc3+$9+TR~44e~Wn?UgPq12Kz zlv5<8^xqB6l%)d1UDx-5+wq|8DBx*ZdpP>g6H6MrZ)-YSl4eb^j;z1d>P^7yGdgBP z{{Cx{h`w>|&GhS&*raAFiO0i%)5nw(M(b1VIgYTdkf)T0Q9zO1bOyO6StI_)UUn_0~x8$1RcULtC8z)`MFwGK3Q*uCoH_>?V$U!_8!y3|g zZI8%r&^iQ$ciSF;96){xHD()k&mFY)p|Q_)4y8PGa%RR(j(_bibrk7>&WlR?yj|ZJ zl!sIQ?V^z=s;c~ivvfR@IzGI=9Gi#n{dZ@Xz584}fD@Q>x<@g?5iGubxz`C4Ty~A` z?OWb&)-(P?Y=W6)((dXlZRoObD)r7Tw$JCf?-%7-)8~a=gaa;<#oO()>h-)e>VS8b zLLmX^HKs&K$-9*ahIkb2o0~yjo}WMH=+!ff2~`$s{+KR&yRk-=ksH{;zEH}^>Ua!6 zRY2Y6tYj4u67&n$$1)fNIHVaBH(r#AtB|I%y?b2Ge<)LT0Lp5ritoQSmWpPI;ED2& z(HeRYd~R_*MJx$WRP~y&VyYgWrw^lx-MZdHkm1fk5y+XpVL{%HApO5fdLLU&KNM&) z=s<>O5W&_^fRYcjg`q7Zc=Jo6xsL)^+#f#_+4l2=%2+?*W4ZoM6K3_?m=8I}D^sC@ z{6xTV=o3~PgP4s0;I0<`@t}3yP+Jg{u_l&*=h1mFc6J`FY9!i((zjt`uMt$CFD+Yq zMW&MOx7qjAY0ypvE@~}^3#(w4k)ola$0*DRr!CLYAq@*O8xnyVRy1O``BpPqUr$a| z2DQ2!u!#XO%xSf=&2C^h(!@i`+N8StlK-fPLCA3(LVYsboQ}ZrW^OM!I3+9o)kn>r z1xbHl9}w#08c?CXsVaYHp}EdDGL}5 zn->?)8$GL@hjm}-KX<}SOe5UdHl%_!`b1#ykgFWAC)0rfrcY{n57Z|J=_zyisK?tD z7c(CMVxCjJfi7un>jvqEpe9KgDEzm+UVAg}9EMZwaq`cT@p04Dp}>}z2!Ih%Kuyyd zeqbTc`1!xnBo9%P?ZAb6!G79|0V-gCvkj0x^- z56KU$>8>)|Ed|zIRCX0xE-l8e(6Ub$pT~O^U-nKE7uzro8Y(aVpi`>yh|20orMB(c z$Yk7HlhBBD31QZ_Ve+y!DBtMKaoM%s4gBoN53uGY{vG4? z!TZw+KmZVXG!vA9QE!Os-#wld;s*2!f$SIOJ}-Q|-HLdINt^16c&`8JTZV+(Zx6-% zdOMtM*0j}jdp_~*laIFHzN6p0*f|0aHVR2U3Bmo+bA8_o{H|YH{_>mujHO@BnD86h zLl%(FKK4&S*dKX_sMN~K#R1xXf%#T4JLGmZGQqm=CwEqOn-04T9RsL~xKg*}5}+ef zjp1EIk_83>m|FLT1%bQ`X&D|=djfy3TO8NuZax03cg=3(|1}o;4u}e7Civg7Ni&jZ zqOM4g$}f>oR$^@%obfFZmm}u!3b4?-IzG>fr?2V+ax@fi zwoAGFs2itbf3IhbRM>NQD*zVY=E$-~z{R2O^1 z-=cudZ1p*pefgz^u9;PUy=vt@Mt&)U`Qr}|IWd@ytuFBd1 zDlWn;0#|%41s~xazQfXYrJJEkdnzA0#;K$fi?%Y1n zgx7ENRz9NKo$e$=SH@;l*CQV#2A?8h76eb`OPbBusXK6uk_$3sxuK?EwQ&B8WIh;>6uK;bQNr0`>7MJfGBVU zOG?&t42_=vz^zRF@azmpmfXeF>C{Qxa0|F8eqaJtKOZlRRJt)pO==0{zv2Ow|8(&q zFwnU$_3^(v)-fH>m@%sr8V<@;Mc~)_f1u_)9GvCHNi-Iv6G@G~?K2GOLdmWfz=yx` zNDA=u%USxiYEt$N4JR6FrPb;JxI7#Vi0i1(K?{jL>pMTa|oxDpFIa}3o8)~0Qa9v1Z05K|5L4{GRl`XRs# z2RU)XoE{oEur>SoXD(av(fR0nk6tmsgrdhYz1jfN(e-iA#a~x?vR1?wUR22ez*uR4 zyUa>CJhpDW-!>OFM+U^~5^-fX{k>6gS3kr7PaHeb8*rzI-Yq{rn6NNd;( zPrmxOw~5}OCj3P3?EGQl%v#!8>Am7H$-~V+WJ?@yNn7d?Sy1rV&+8og2Q;1c2aZpZ z{XSt#lQ@c{L-aB!G6wJ}KE6YcsRk}&>OVzzDg{OzOvnGn&+|QpjHJvfzP3kuj|N1j zxIi2gKr6lu*95P%O*lf%+jO|4lGSC=F2y>Zr@`b>k%U8}3~V?J4*AurBj*ds@tvu9cQ^23GBHc%aylFPGbqyDym8 zW7B^Ol?**QbAj##Si_?!A(Y!xd0Xz_8}K~ZzVpRZXptE!rO*gxIMcb;5MgJIS7 z1Ec9rA4QMRt2=BCwV-7KKZH1P(^8kCbF0mLsXsQ8Isd^_ZWQxF^B)h;QNPAj{c`g6 zu5{3CE`0)c)qLP@u&8YaJw{A z3H$CzHe@#rwZ_R-t=LRKHB>7bGO>ELu3mzjMb=>6ioh>FMSyTGP3ofndb(hjdHccw z!-l7vH~f)_$s?2EGY6U>e58`6ie(-n@gxXnZx;{_gKT&&90JoyDrSvURyy8ln*2*#O>igMv^-M{C9ijelu~Z=r14woyGbd8-6i)vp&kg z#{QkvwCBj%R2ST=>%jQ&0su*q>c4`lK7GO#{I{;@;FDfgjGDds_l?PK-JjN`Eqmwp z@x(^+{~r9P7wr+?Q6AnDE%x;sD9@y(O=9I^ct!>Ip*~K2<`;3<28ifDB4=j+9cs)G zDEI|v5`2w%sY>S4OaeRls(h%9zl;pcC4t$39oXcPL4QX1@OjPqcg=yo0%nys+*9f; zK$m_9eQglKv5yAfXB{)9(p%Q_zdcOsxHXh#21IOZ&NlCh{pvMpxe`V^hrz7L`cTS0 zWPaD%h5~`YeLKIYe*dE&6Lvm5uDdv>XT{`ws07I3D~{roFP+GeqJay!|9Y}D6VYFj zJF^-*fB)pm-#U84w{ftLB2Q$e&5Fg<-AVM>vCYTBYp+a0xz))ow5_YWu1lBv9{{YU z3RuL~j4eOU8|Q!R=Bi?n^!j(o+fci}N0rWGS&DY!(VlZLAX5;D zlWm4;pHW>?zijV1tpeQgss~U6(FGJp&Nw&JrVS>JeAot*zde+O{v`rpPR6oB{Qv96 z5yoypSZn%a2N`+qojfHMdE^~J1+T)HT~zv|1Y84=ba6(d-at49pr+S`Vo0J!nRCEd zq=Bh_WW}{o+r#cNkbiT3k_8Gl-BD1z2sbF7tv`A}M(d}OH~haG&sX`I`E}C>ta3*a zg*TwsRjLW3Z2ZRG8UC65c74rI$53x!`S#B!LCT27({Nn#Uv+;c-Thi6NlhyKZ=U-n zhP8RXH1YiRvK&Ch0*=>O3RPy`zf~Tr`D6$#G zc9vY^BJUFgQWHA%6=*ZV3`CZl56`~6Pef`=r|qPte0lthEqFBu2CdCa(z9C8rt5mE zzvlK&L{LAk-!HQb4c9jvFT^DztZ-7l{W7URklHmED~?ECa-OA(0-wlW3_*cg#RCr& za5MQ1!e1nP|ADE7>i+mj*0ikO_#dy`Om-dIE{+H?k$+O1-_1#N!zmmUQBE!7Hv?YMM*WxY^6 zf_f;K0L!<=6V(*&7{QQ1o!q|dl0JMc4qdP6G`F~pIHHk4CDPH9WyO=4@^2)gt&em* z6%0j_YT*c0Uc*L$w7>hNR~9>MGXkkEJA>ido-G+EseK**Vnq?C5Rmr+F14zzY-xm& zHZMcxRJiHVbqa9k>yqDK72|k21&^LZ>RMK>)UNN=UAWJ*UzY$s z?&@(+Nm4>O?8}wawAl))jJ%A$5HgEsC@d| zP|ydnb7RTQU8Ou)>-YkWBw0vHE?gQ!^6aGXpDcK7X+`Tr!0c2usu%Ow=y>YpKmoTo z;pQuy$AK~{M?J=8f5nC`f9P8|u&I77aXKi#SZA3ZE)Pp(X}#dV*C`GLf#FAY34E8- zz^mO4*T8`0=hL`v7Kio-p;3`SQMviG!#?3j$#xLlgZOhusgMq#!5Cxu&mPbRPr4J0 zEy(XPFeKjr?QNQL3>qSsUxY2DFJ>>D;&7>s-8{HjQ(<7J9hljc z_`{_Eu08)nV&=uF;&$<~a-rv9px1P)FCqVAg`SJw@@-Rv#c|fv=P&+^+4|7bU(183 zddX~N)^jY`7;_GeRt{gkOyvM0!lB9hiNzBkQ+x&`hU0hW1kE(7(Saw^Xv3^PKhg2L zNt;h`b(7ZND1PfDiiU*#;02Stvln_grzwKT!`xBLD1Fr^ zMgDWNLKEmICHDIg;qvHOthib14=%usd28vL6sJM{7pp4Qw9 zSOB=laLu6IF6xGcou&Rz!ieAuO5!XcGehG&#r&zUzv~?xACKrhC~>}eL)_-(8E^^) z9b*6MNjHU}xasf{8z^J?Y&~vfw>TZ;5_`D8N`6+A)jIeDH2l--67q=)3se-(Qcq|f zV&P}5G3{w~-0AQVWeJTe|NK2+^9`*nEi_>=#TU@gxHJM7wUtLy{rMPTV>Le3A)U$L zIQ$KMoh$7$*5G%xm;QkJ`W;UsOnD;rwM&=?i?~3cCbEJizlct=Nm2M_p8o^gp6w51 zxufr$1v9T0j2{1FI?Z{?x>jqZ)U4F`mey282F-HBi#b)er!dc@C-wcP9@BOymY@5b zq+`%dGWoPMa2IWlcP0*M0@3oWqmyeLuThie}pX1@M^f72Q5-Qu- zw>hqaVao0kiK!uezx%Vqca8C-K>C|wqJU@9TDKdjv!#}NIpHL&UQ-)y?2K##ZcyGE z^;|3>rmLaAmDOt*)FiGm6|=s$&vq&s)ofXw8YK#Td%uYk+Y}AVlNMGQC|T`f$_mOs z%e$ScV!qF-DhFJ1#Brcj3~fRCWi*=GnPQbC1re`eF#Ux|`;B1F4W>49;62)^=9kvF zKYvxLeq?)Ye=hC5*S4P>KDs-yUP{s(_s5(ACVc_JEaXKh950e6_vqs;uqQIE5j?M6 z97Re}2sQ}ZwCp}c z-t$yUVh(rR^kDFNs%Qqre*k+Glg2sfYL~*Hc?1bkdzw3%?R|NQz$v?Ml^2PYuS}zZ z`n^2+TU8UIt02l_YCEpBo*@bh%VX*3 zz=QLZ%f%y0OSlpZ0AI<^19B=)V6P*=aIo!?$s9E~hjqxWq`w+(n z?21z=Y+i?Nd91PwThh6mj-zCf5eap1ei_ueQF)6e^3ue5P?bX}+M4ObWXSQlVT^Y; zS86~k^POZwv<-x3(3-FttTu0vi6!>yT|XZqsWu|UMle%mU94tnVxW!nr_nix-`i+| zK$zk-Y$bA_LAx$R8y?A&@)2@&OFQ~nZBuR&;ti2u!!QdeL36PeqfLpmv75g2rfto` zTNNV&DAv*52A+^fc_d0abEP6E8cdaH88B+3I+i%b6w}V3C>D(3HNh*4 zg(xO+7kl;~s+dC2=}=EX7`g0dzw`?_6#eA%YmMDBA%1)ug}bSomzYY>u znhzbFtVF{m{{?l1EhN=|*=7!zWM0EW({&xp z`-gbMN#uW|)PI2F!Bi&|^+`Km#uSgIYwP%_l`1Zn7T9?b>!#%0pR4E_MrkqeXZ?B&V6~c{=vBo759OZMEGK|&f6*AUzTXL}Td@Ec%5;iUi2aOa6cdP(q(b@0GxpP8Nrf z0{;zD)b#&5CpZ+LuaV$*;t$_xyB`2kdt+9|vZtxZuOK_x$P=b>Oc!us5Hk#tf6IJcUsM-d(*9kQk z@nmJoEW7MigIA*p%r#y-w92&mvM;a+_{}F^A64)5`;yf zM8YyHu<8ipe~f5fk!oXSX+~Pr(yB8Gz|Q1JE5O#r80_MNQ|iH+shZ(1NUdeyv>K_= zBD4||h9_)KDNc{aH?6kD!5Aas(|% zAG216fc$(g&Z_qGLN~ds94UTV}_mkmU>s$Lr3m(Afc!gs;LPMIfrhz!Oge2cII~g(0eI>ynw z&gm{XPF-7UKEnk=jfG9} z?Y@7q)N%9ozMe_g{qS^ayMAW*zWv{1z|H2?z^qw-skR<@Ch7S8a9C6lAR$8!+T)oF zn{?MUCtfGJ*#73>5`Eyk{PI4bB=%ionoZ;6QK#o0BXj)5Sy(&O*kEL`wf$lv&vbl5N7Yvyds@k&;I z%xhq_>GX6z?!9ykTnhQKU1B3@$GsFFm<|nnVfqWd2{#a zf`FNjm0tYMpSv)w*A=%9ddIE7mUJ;Q5inW?J&Wa)Tm{e`68WZ%=qNL_kOrU9HYQxo z6GGT7ceDJrzK4p%-@BQCA#oI}DZhiKTF*lf^K#7WEcMbXmK0Ab6K8#tp*GZ88DP(? z3Lnypvcw4=#K2bcP5ER5l4=O2{iv?9or1Gd=EIq%Y9%LU;bAzdTh1H;S#8dIInX|S zXo2@DySLnz zT<7a7jxQ>Vv}Z+iN{U-IIZwz9tNGs0b05E_#?hLI6&-uC&pNe{p!dAsxw05+`6_n; zCLfp?zqn0WSFt(t#K^^^sXD&P&BLG|Gqc-<%=Mbt|E%i~pY4004LSmtzcqgoJyAHt z`Mb(nyDCRz_S85=ms9sF?uVaOj4wAPJ1@__#Ot}!;+g7f&4oMce(e{e3yFR(wDR_^ z+G(0=BN&3Qv&W@nUSD?xli&tNSW(z$&}k)-cJ>HUQvQr*+Lcb!!D$UAl4b9Q&$zh5 z4Wi98(I_$USVoepEtth9WkYC1U}$WF`NZatagchnk(5vG0`rp3DA|K@L+OQ}kuy@X z2K+&}k%cKRbR*`$aTIprV5Z>X@NF`0hzU`kx>!W)0Ulb=5m{uk4e2yUBa=bcu3CoR z^E4r6JZu230^B5fP|xeUE6N`gfh*sac%+Ku!kLBTCmW)V9O*tv1WCd}ZNs3<2c{zF=}g=|fXFv^P>;IH>`1-PSgf{LJ^Clh5tb zjbuMXIcNrCY^b`4T^T7Q=p51q~=2!pu5W zelQr}`ES2>kYU(ndGnI)2YqDg1>eF2!P#<0W=#R&3S|!8n}3LLZ+e8SoR^YzP2Sh- zES~Lj?*ta2;!x{&#V+f$G!I#EaIAiD?wNO(Zf@JVx>gN2SyQ8^xw-xdh;eDkNSuSC z>J#4bM-;x-b0K60sx`LXy_@A#h=urtN?iHw=kGj-A~2JH>Vi(Ik>(t+_l|i-hX?tz zTISq|3D)Y+tI*ud8x*Gb9V9S1$hf`5Wc> zd7h)7zyyxtw=dFU-0Xyj0t>mG-~dS-0QYYn){{Nh$1D7K4fK>vdf#J(ch3WAr_S;R z-{UJtY6UX!CMA_ja6XQlEx$Y%-fiIOJmt>{ytK`UNfW3s-X_3N;T-klN0fSKsfX~m zteQMJtYRCh&b9CUg`pI5;~A^AWFo+gioIzjES)ND-t91GGH2-_M$3{j2CeIV#neKf z=&59Vx(!E;1}fy8$hVmpgqP!rwPNdeFkP9-=%A7IQh_K)5dC;VYjWfM+(dfHo?p*C zl^}wlg0j#Z5@Q8{=+dM5^*jfP>B5|};R2f?jf#bMwsC;wR&(Tu%c;rALP0hWiPgl) zkiVz_^K)S6=Du}J^l|kRP93n+WVUC|lsDJj`DCNB8^8EXay~UyBaTkKjuiN!E4CbX zN!~}bp&#{3lXYFRSU%5 z$~$b?ssyg@HIbuv{t25oP$59^w?tYIuFB??%kdc?^??;iSVs1Q!%P$%yaA1TdEvBm zWcZ||b`z9Op>)%sBFpHU&nt0l^eYW#b!W4mv1`7lz#{fEV@<7n-eY!U-kKqh6F++5 z3zG`VOa$?gMRKx>V=J;r5twK)XAuS2yaP!Uve@E<(}~NTd6f{#fC%nr91+Jta2*Z$nyB)emt@a2PlmgSDogoaI$ z(V-)`5Mg#G2hFIX%|Yx$fjj}hSZ$z-p}ChHdAvy+U9|HzM2Og1Y}uR;rZ<_eOu6%r-+TBTfe%Z|G-QW5ksXp~|l9#*uS zNJtot7*^F+`_4;GIFAMRWPtBpN}|E9zJk_zf@`_J5FYaY(e~0f0ODn^=nKoeog4`_X}iDV4PSv zZm`mA3P52^N(MN4s-H#0Mp3lP6WIhb!r6NW2={1Gi<~yP0bseP;k^6|UyYs(rI4?H z+S&v{rYn*gnU-oiWCg4}%Ax$J#zi|FR~}Vry*ADxY2QuKI1k1rmep38K^lKIdZwmy z%QgogckI6JeK8NO`$njh*HDz&38XBmMoQoF`Z{_!w zReK8~3=1oY2>)#tr;WV;E`ib>v^P+WDP7XhaQ*ntHrd#(qt`xhhs>Vg_D; z%Fyuik{pTv4>4O!T*jKARMobnvwc*;qT4fAoQOo;2G;kd zAQ9`lE(Y64$-o|>4ac^eUD}QHiWNhy+EYJi>}=K%G9*;`ksNod*TaEj13i)}w3u+E z@3pAcJGD;#tER?}sPe{^VJD3ohQ=SSkPy|cl%zG*SiZNc#m2E??~+n`_-$+zKgN<7 zC+cT>?;<0Caw|k@ImPqhn8T2PJ(G+|vP(g-eX9k;Pe+)UmI)UA`ke%dnX;3Wk{r9K zF#6`eQneD^C1Do(%Cfr&ex{smDe7gwIh3J$tyMfqC=(cvb@(1F=aN1APCNLMd@sl} z8U}t>C7X;*iUxiEP)ACqLRn0y#vFJ?0&*A0vhVxG3MI7bt-+HDk+2uzBT}3ioSt=w zeJ3n|4QhWC_Qj$M8B#zc%NYjF0(})Z`wkJ~11p;_HA5rGDKSsk@_LnnHKqo6UOBTz z<0fsRo$#|4BPf5it~U>?9@Ny`G~qWy-%G|Dk_EX7qEIp#@}%(cv!JS!%WYxQY9hGf zW9Ub~%4&5mvue4KoCaiiIN)nc&XGuh_|{)`XPAZYf#s*M*N|FP9pY7D+GU3jWjVVCos8pr4!~0;3 zf4c;9ug%*Vkd&*E=w;LE9HA?~YNaG?T&DOe4*`pwaH;}NHv>3#mW=yfgdC7A{!^FE zD(pE-7G!2m?Cc%IeE;S!D@Og=&}?b*63zUV)rpGxdcv5$2N(KQJd@b_y|GHTX%wij zb@2A@Fg8fFuPLp{D3M`Q2LH4~|Cg*Hw1=;&VrYn$7PURPw@dB7?Q^#EoWLBlh!5fB zIS|AeoTOCiKz+9__@BAjABIWkD0WT`a_QkY003MO!Q>JGaxk-2mIqKro9``I|G8^H zzb2s6cRdGKsBhQR=1UP<-vo4pLBo851F04{~9J)RT^7SiE;&j-Ba1Q<0n zG=M->GKA)Ghl|m#UmAi0eSj^IKv5Z7#gqbvHOcDgW^Kq6s~cm>@zqWmyXt3d!v*4H zj;Fq#YJmd(YH1LMX|<6#A=>%92^fri3;>4b8@2EjOLHv#D5}?dU3!wu(Gf@EK}@`% z1w7fx&(G#tpV_|C>n(rCul#CEq7pVMZ;-hvM3OPmp3LlZ>ly^gq9S`+Xv9~Yl@MR# zrb$?!CQ|a|z(Gx{TJuaH+1*H#Lj5%CJ&Ci9kM(kq;Kk>Ei;CYTe67ALNj4j;>qPMM zPLCiRl5vy0&q%o}I%2HgiBZEl<{O34>S)K?pU@2$Z+BBdaH8aA(AG^p`Z}nsN2cC! z1!&%H8$B^75%w|p7n+KQyiJM9ssF_7xhb| z^p>_r-TiD_{OUJ?x2R;mOf(o~RSVPPrwkf~zjDFCkIxHxAPPiD;TquKb-vW0Bn)bn z4YKjXO3O;16@)rh%5Y;&r?k?_Y(~n^M9`j~Jp1+rq;X3vSY*Jw+DR2jBzXcA^zeLI zXhV~Q5D+h4F)NGXL60n8^-Y=|lFdGt#htLnEw6P0KhV(=s;mlJ-tSc)B( zl6oO9%h@I)gw0r*P{t&^&a_O0C_6mhoZS4oZ^UYKzwU7J;E0Q-TWB_Y`whGD-)hI( zfTe9D56=|#HNl3{^VD(B6EMu*?kPCv*L@$>Ti5&(lk|@DowU4G5j%(Uz_DTb>0{VM zgJ@RYQC;-Japo98s^I^Pac-!)P82PTxy;u{3noXfq7KACf#sV6 z&Mol>P53iG2wVchaXE95j|n#rP0bcCZ+kM!K3DJnW>cff8I*B~W;r@k97Nn-pg@Ib zboHknujeei`G*Us1Qg#Yy;3TzJ@u~O5zkW6rVgz3LxQVzJDHTQ88yVeWYZ+RhcK_u?-O1-kLO#Bq7179$XQw7?x5oBB*T5z$=V~ z%>}5Ui9}RFU4k~M4VDVL*-Ds0!UBcFH{eSz;29l9X`_aYif(0_wxf@|LxU0(oW;aB zkr$xbZMDkJyUYudhe;D(Fijx0{J?};ph002GP}^o?~6q&RQn4Qd_VA{MkdSP@l`Jk zAaceDug~#T?$QX@-UgJ!xyoeqhZwJ?wk<|eAq8Y3AN!{vdel;~-d&pQd{}T6FSHLk z&UoVKfgA5yOG%(R(A0nvQp#c+dCfkSA94sOEPcZb23~?>5<+BSK}=)L&^IZZ+u@%U z?IC_f7=x{p#Cdvwbi}t5N z43?B@2&M6ZJ7k`O)x?;^q|*Or4YUPP{%!{(M=bQphayWb3j1uHUf_Y&nh=Z>ft#M} zRbu-9N9CwndirX|mnlp*sB?XzF79U>fnHXquC;ff?NoQybHJG&megWA?w2s@LF@EG zd4YMaLK>~KtLYKyyBl9tl*KcE=LQjc8ay(|bszbgD|uB)xY70HUpC*y*RPKT|FFwy zscK`K>!al=bLM8eyfss(au$6HZva2v%-^59_8c(cDY7UQx;t<>xmUa09@d{8;{I?% z`=B<8d#RWw(RB=eSQD(U=9YTl-jO+2G!(IT`aVDGUdcYqkhbWaH)CO&imm+1(ak2y z5^!gfgvO!o-1K>-sztmGX`DA#8f>iRbt_`qi!1d5QIRMmE|2ho)KWj(`Jo zdHDg&L46O)fg~_XG7=M=x!*d?qVl518BnwQ|7>Jqnm|q}H272&3=!c!tr@^3HU{BA zA@Brj_*X1(EUA|~n#*Jpq{;yZANjWZF> zUIypfO1*)$(O41k9eq0k-^@VWP(+(txZomuK=i?evD>dX7z<-8Zi z*tAur6p?UL$h~X&5=#K^c(WqHrLL+8&m5+dj47ia%}5+P-7w9jIpGTVNM)QiQM~Ja zx#R5!3oIZxWQ5TQyq@yw!oHM%dRxk~y;CYgs^BqRY8CcgJL%1rm6s+vv_QSk_r;y) z7pjHhye=#*v_#?f6yKdl3(<|v7K!c(bCrrR-t}(KZvcNEGr}4!{0IHVkqHQQPrI@J z2S;$(W=|Wp)1cGOASO*RRUEBR>YfRS3f^4MUk6qGc4s`Pn@H~R(f6X?YdoW15sc$m zCQNy0L)KEZ=!4vZ0%??K$~Gf(EYk*JYy_Nrda=cCHVv`FvO`gK$GD~Uc*|IXnGKiX zX?38sbzYHqHU(%Nq^u+(7TZfYV%Z4tSxO#|B=Qlgu#Z{rC?>1R9r_f!jr{9pZxWC@)W>_`C?FUlwK4 z8c0xT2N*9JH1YHT4pQ5*8reU$J<=lMefBjLlJvX910VkDd3hcXr;b2R;x+l5;@4(b zQeM(M*^(5J57vC^ysO#CtFp8|<4&yf*Mb{8Ev0s9aJK}S9 zZuM_Ef0L5vU&0Ob>PG!1N%XNjtX@YINw<7qjAi>;OQ37ETh3Jkx_Hq@;80k(Q;S|e z7gAYod0hR6LeNR{Zm7H{pp{giS+D);g+kFe`so%>Y6BE< zoDs`_k-j&PmCl|i6-)ro_3Cj|4S2-J`b(r+YCJD)>o+dTkchI$Ddbk%YPQd{9jwuP zRHq^W5NTgQK@b%ALtu6IEorbd5;T8YF8=?103_hTd+5=CJlpbHy#ENg zF4KC7q-z=tL)7TtH;C)mBIEE`8fmzYCMvkmVpnnR#oKZ}hMM^40`Z1Tg+IBtZgAok z3&*~GORL%P(N}K~XPRhr8a|l3mq?A1Yft0&#SGJmfj&l%QmK`dYEJgcx%y3yp0Szl z!qvIx4iW=GT%lIjDtZj&^PS6ROb1n=UA@b9&_k4SBzuAS<8VcPdQjy`P7NnqRa+CBLJ9 zMZt5T7-I4b-o!JF8|v&Y5I4=J(SUfe7jxncks8tE5rh|t zOouLgt869aS4yyYwe|cJgq`Zw$Hz}9^L87g0}qjo@ZF}#V-kQVDGNW5w^3rP?q1`m zV#>|=bFeVbY5IadfgmM0X&nQLw-_q~!MT_moWS=EFBu>>gI3uf6HA)i7=}0`5wA~P zxG_L*I5BGwh#Ynh2&(c&f>S06o8+)Naccg0``sfCpm*s&*m!OmeNRQCp7xwvf)OM& zW7Q5B0>WgypEpwm@?X=+bMs8QH#2K#J61cA;SnCH~Qo%cW)|e#HxPzgc89HWFatgKGZ)AVz=D2#q-COgTGcDn7A-azdZY5T1odFBpPBijh1-TROPeRu{VK z43CTRB0~2~C00_7W*CZ?hSchB;w7rbL@_w;xO5s=uxAI+qh#?Ws#(Cd3(!`D{jB*} zvVPKBlei$JW8%IEo^9iSAIb4%W8F+dGZx7u?a=?=fw^OZ4Owc@FS+vyV`gD83dSna zx^P=EWy`9^^_9v?->^#LV089tlETafV-5U#`0-r@a{7zv>!3U-ls_$S7V(fgUz@P; zp_pL)CY!XxNluTYYgnXI7K@0dp~{*-5MmW4W{VubAn1L=A9ky0$DB>x2SbecD4P$X zbR|qiE)AUBhI#kl#^7*pgbf!Bhr9hm(a2T)5wgy_>AucQNl&DQ5uX_PNuhU$k^7Xj z7m1P&ALCU6y0bbmqPm%a55my4Az^DSAXCd6@LFu9N!RfEV+1Yi%FBG>-98Qc0sHMr zs~IHX8LF|P*--|Ct-i8W?m-+Cw&u@Mlc5}F*#39`Gu83qLgmm1EeUCaf(8i;rcc>> zn@A<5U0Cyo&=dA|ICc#f^3a#Nbg<`o24t(5HVt7CQH+~^=f_VHvF;Skfx@jm~>@}jOW4x+4CtL0n)y1z*(jdDaB+3NXEfkC@+zG^Fz&{l-* zi`o&8%LW-bF4YOBPs#T8*8lFjA4Wl9?wg+Z?dmKF{cuXgq4ddZ=YIae zY^fHaP8{_vy7BmGZ`OyqeZwr$<#MX86az{p3nnz)%fJXxR;3au^mH@vZ4?Z&>U4fE zq^I!#9TqCN`v?6k8UV>>@ZO>!?#iw_zYGo|9yf98xwmBPN^7JBKSZ3Z@#nXh#G)b~ z`QBd}AsX+5quVmnY-q3y^F?zivM_@AZ}h*k_S_i`cAUe?(5`G{I`H~_w3A&YMFl)`qlH1I4qZ? zHwvpf8`Ic!{JX(Y&R!JM`F@qOW2F6Xc|^+Q_TcLFvqdzjkZK)+SYL6w;*_ z*!f3|C*5{NXo9t^J4ANMx#WjanDl_C?p7&T-23O=1A$I!;PzBnR&_k9R5LuYKPp-& z@>)qG@D7y;Vf3)CPsf6^^uqEA;H5vHPnC(2a>+~P^)>Uy7Ul2WA9r+k9WURD)JMK& zt5*Bzed+47C)PO)h-P(H;U|i2pP7Eg&qtnx?SosWhjKXV_QR`Jg1$o% zXq1fsK-7*Udoop4y?a6D>WIkAo+&pgl1@g;!j>iJ*!zTT%ZG>A9mz1%nEa&9=nZc$_6$qcCZ_`HJ(f_6zp#EUH*^GlU69B&!zGLZzJcK!b$X87Be zaV#yTJZ86d5x??PePt3kRD%8r5@!JREv`m>=9&B=+9?%Y2BVo`8_#4_D?n_{!!A+` ztGuBdiDqj4)^=X}x^)uh5$kKjO6D!U6w9lnio zx%kaVsL9=6n^BYR7C-{>I>uo&40!Ge#k=-5RM#_}&~12zcX|6H7fv8W&+WT*og5y{ z`E7(v$Co*Vld6_3Ebg&&d94IAxNo^u%Z#l4ez|!T4XZKXQ2BmFQG_z`Lm(}NaV7Y41`)#a;vBY+uW#@rpp}|BnaUgoC*I z79F-^9PCJr4i7s0Z<1M~5O&7Dt4<-jAd<2fD>cOx8Ns`44`<{(a`Z*g-bfAUaeiPRQVk*xmWOL zCo{aUd3y^O{dy7$0gPkat_Tn=kz&55Hmi{AsB&8&d<{bQl6M=8RO`sSK9W)z9- z*w&8j-nx3#ppRsn2Ju=j#CKSSrHAAHi1%JY|E_HGW{HaWW7Ms56*1!o0VBGj?pqsQ zml|a_e9rfHS`wiS@v@0O)3~X7ZF{WNzK60>o7Es1+!Q<5pHCjE2JQy~?i!(dy#{j94=ugW5{T8!iDKS1LiPmQ<>d=n(BzCQaW=#h! z8wXm>$OO{_76T^6jO|+UoLggD*ew7kkoi3#mC~(}$Mfa}3K8YAq7$jZcp3^P5-Ra0 z-@HLDTbMz=kxf=Xllpdg6dkkOj+GBpYAS3opIewEnPBWQlJDyB8ko8ttwY&%Zezws9jg%R}ih%dNTVYim9__5I(Q9mW>YZa8UCGb5h+ zm-u|!7MQ)cL)n6cKB6%OKrjIT~P2ByLLLdP#qXei&-UfGFSY%$0>9LS6ZkYSC)ztbjIeiO7$`d*`ph3*X-cSy>O{D^1%OVQdzNyD0wAxSOfyvX&)W-5 zzkKwep{e{S^eP)mawu@OgTJ`#MhU6x7Dew`tVu(ycT%!XSJy(1ZryHC=E1e#s!5-{ zGbX1R1>oLx$N@dL63D;l`d3XJ{XzkC&4pWXFE1G4$NPVUTaz9Ib+`Q?8Uz%QnaDMS z^j}*F)?3yj2ZD=&))DvJ1yR7d4vicQz7JrHXXq$PW+HhqE3am9d}@zZG6@PY^aG$k zch*W$uq{_5l#A9nUIQJ**S2lzxn- z78V_6oB$4(Z!(v{2tjXgt*e;N&PY%=HsTRd@J85`Rm-0yn}cmYx0F;#OmE;|O|rM{ zKG*CSTR&{hQEk%dJ$Ahx96!_AGNPZlBHnNSxK9F5C}6jC9p6VtuijT02qo8IDTS7{ z_+GNr#0rnE0ZEG#Y^Emd9y--vokNsex}dw$&60%dGc)Uwozil|;Eb0Cp;|gfKMF1s1y4GbKdhMiijZPw#%wwzP`6 z5pZ0*!Qcn^0D+|k#^6|!%raZI2s?*4{w+YV8WyRCXgK0V_Tv*qT{#p+>~l4<;(xfZ z_lol59H1b-LuLAyyRV(nop+sFj08AFKZ*Ia2>mf#uA_-;TxoaPnJppm!~Kgidzf(* zy!qaw-F2%oHA89r+E?@?&6pcAWVA8ajZ$J8nQ-#k za%y~-0a?51!W(+TtR$2#s`@!}-v?gn4hJu{f*zM{j}0xQtA#{OlPE6YT5$ZXQAR?Z zP}r3Ho9ZeV``MIhDb8fb{&lLz^_y#IXaF`fBJcZN!i|zp; zYr-JT5f@}wXw}-f z`^ZEsxa{_={adB~ZE|aoxB=m}az}-xBt#bK%a;HoA-QC0S-Tqg#$zr59Ruq(lYZQZ z<^nsy92xcP&tuE6WZWjMH@ii~T+awxAFhF|7!XS~cdWDxWU&>RwG@wYl!Mu`3KNPD z?cq4vb{Tuf0mvj)X?)iJvlHit=s#jNI=lu*ZJlrf*jJMuf#(Xqjb|T4j36w?wYfXc z2Qk@-87|6zGH^fM3Bo}JM0H?ZzJzQVDWwQ}I}$WJnzy?Y{@{VAl<{YTt?lMRWTKxO+Hc~HYiMlfbojYQ0BX(CmL@E5>!k5+xgQ~g|WrM z=^r|vYkBUCfA{7SbO)4)BxO4Dn17>^Ie|~X9rtd#ZmxzG+IZOsiw$gdTj*Ww{D}#0 z+g_;ooz5z6n<+Z@q2Yvv(m_PCO!<(%O1DKp4LVfU_fvWrkXbz;{`ndbP~)UhO2DPG zw6;dN_d^ZLnvplm=?uL-TtVY<|ND!#X%Ob%7Me@!I8h`UyWA19LS=91apZ2pqLh9STPR>E}}b1bdYKdK_i3 zDd-LbGU^b81OmSsEel74mO|*uegGCd#;xxCRDq}_S4S({stVl&CEaYb#q-?)>@iv7 zm78;OZaeOzNJ5;M$t1(8y;l3ZD}nbFK}AK508en3n@y9SjMX4((JVk$VQ4YiCxy!d z)w$JstHwP`kWY48w1uXm5F7f_dXCYiNpE3WZAOT)Wg&164O+oT*6$DM%P1j1(tq6B z$#Gn1!r{5Q5HOhmPg;`g(C<-WG$Gnzqbana+IqYiQnlIHpHIJT05(E?I(Z1d12^I* z1-B@QR@Ruw#+`p}qk9o|%rux>I7cEEK7=@x#}pN?gXpiUefBMK?1R5f#2+fvXYWxK z^$afK?1GWe$NdYNjv*_a&%mAuW2n@EL;`4KPu;gbraNkFPUuyu-u+*p*ry#-(EKhM zJo=dn*y5l;CBmLU0eJ!x|1QG9I zp@b>y&O4KDh7jS{FwEQ?;5bt#(0o*v3R9%9UUgHvaFreToU8G=GXhYjTNM2XV;={U zi53~3h{$d)XH4#|{hCobPsg_ug>J1ne|}_htK(Nxb<~^^!n9KmaPrGZsS2~zs}r1> zy7D-f2^|4e+ld)qN{fUzZ88(?4!{e7`-Go&!Si@^r)+{6Gmg)?tEM-HPNd$y_v{hv z>fePMb-?lCuxJXdY83#At-irG?rbH>=9lsX>+@$>tA;g_7xbGKq7DZ5FtsR9*vumy zGo0EHHjwZno;HbsNB*c#Kkp{QHr=w(w93Wp!2N5yVvpS`jao=YRQ3(@W{t`PsJ>Z# zT-C79EYZi*s^GHx{=KzwfV-B$kZFNlQOYbjS?q59h1hhX>wQq?V;{7`2?y8h*kRjcL2T%DP*}0u2;+Bz;UnHBDk#$en98 z7m1HS>=cgA`D&kyD4x`$-*JcmL zuf+ss>hWMzMs_(9D2;k!njlslj$+Bowx98}FcXMKHz5JXvm9}n*OTQnTBX;QkLoj$zcmcl= zs|2soi^(+Cb1WLF<%KWEzFlgaS-`F88YCKL8UcJ3v$m;4X|JaO+EeEFnXl($z@bH1;fkti#Mv+M*`T0PDIrWF7* z8}Ya;T3s(AyBr4V`rhF#0p_LLCQUWoy)|derCD@GSK1{=QhH*zHd#s&T8VqpT*lRt z+!LsV%2`gT{3H+*De3{7j1{ESqXh=&^Y+#Gxv9evk{hgzV3%D#Ci54{^$~n%P{eYf)6bJ$yxY~h(j}DNGJ3Cb(-Yrw^R%1-^7Y+{E=O_ zxvCa(37LAk<+_^HR-4Q-iVOEY=fKP9pQbTb+^PO75Jsp`$7_Szl`fMRViYjJ_TKO1 zJ_r6{-WfdEt19PdwfV}T5fSPqj_?`(?VfiSrBwObgbQ6}8b|EjF>2_8Au%p#JED?O zPpyz(Glr78*=`&%F3ISsxeX(A0zb49_R&}Q;sAuhrr{ zz+A)pc3vx@hC{*EB9UKFJ%imO$dfZP zovv?6O1f3l;l7TUURWrrrMOFNTuP`UK!l)ethD+Ng@86AgB_0-n~;iqum8}UaSV`i z>ZBIU-F7)1J3J5=ccaTFYMtEGyl#%vWTsIEA@8APmXw#MH#EZB_dUJhBhi!*&~asC zTzNWKQqgZ*Psa;>$0SpixonBpwHDm@<8%gC21JiJqFB&jOFU;#onfIqBFS|;p7`t9 z>3GR>D6J{duMV<*29d#dy5Sx1rE5sTj#Y>R=NsW^;j!SIQEK|tL(rpss?Uwwxw+cw za@j=e!PxlAFZhC2`*`ZF%bzr(#b15>f&Fdshkx!Z1}D=4-Q&dr5O>}CtI3kch@w%B zUtC3;SAu4g`SuziUlFU9Y~asSR8heXJqGaG5YG$hElo*5Au$3=g0?q*uJ#Kb;yB0U zlZg#o1*Z#w0%Yf++}>%pjav=XJlSQKZw_fPW)XhSeH|5_L~PcV?zp8?IZAUH}0D0-)1QhvAlsd25v#slT`p&!u`kfZ=6-yi+bmCX2>kvYDzeF`-9nGv)9$%1uXn4fVK5{l94kWdue-G zAE&|eo?_Y1YT+pB!Cy%xS7CR2R1f?d8Y`i`L-k8W>$=-#+1E{?C(h~Q7SLV-Bjrzz zovRnJ64I~PAsfId{M=f&_Gf(B<PmI4uI9mTOI?>C! zBc=1(Q}b;`*?MjLDN(E;bk$4XKCKm(-t(x%?YP{e!Qs!92rz^;dtjYhuP$kQymGQc z7Y<$VImrMS7jzzPF75oLT$rD@b9k+DA#v&RJfV(^;!ChkgD+hfwn_Fj@YgT76Y?>0 z)L1&ICJ6(^y$Qfj%f$?8wXl)yNbFT{?ot(5A{wrxfnVO2`x8>1yaTke8g>ay$MPW zWvQ}>X7(e@iPLThMoGJp5AL=E@!X6 zy3FkN-QcpGEmDEm&6zk)O61IFba2pPBO}piq`JMii~lzuw3d?kLd}Di-HjRjHfc}B z>s6suwH}m^PuNkWVr>e~`e`P7grL?tRTnjiBm@PQqo%#S@T4F%(nP;JePHW{>N|dr zX|4TV;cJO2;%B=!TTF?sA(ZYU^u!@Vq2C9qH7R1$gPDbSE_eXK=X+jcT&zEEsW_V& z@HfZliyLlvB!7+&Cp8cm_8IvOE22VBq`tTTWpF(i6GOC%szZTW4( z@#37{hYq(w**u-X;v3NCjjtcwQ}lHmBb60(TU;J_cn1NFyur5T%Y76KD;IlQ?lM&) zRpX0?PdNcNFeJj=vrs?CXb#Q2;nr&mF`?45`d;=F<0elntBJCOC6ED0G|FoIBzWqe zJj^GG47Aa4GrDoRBKxnKi|2-{Kbs7z z!N0gC_&E&?=`b-%sbwkz;T%C1v%T?x^PSP-y}dNFg~grDuU3k-9lR5@g&39-`TI7Q zOJGafms<1;;fZ%3b?*W!`X*0Z8&o;|y5R60c@+6|mMu_3Kmj>@T+XJH!Y<1k2m@a} zoY>@bruRBS66c-A={pVY_@GEld)+(zFBI!9@!$|$#Hd(?pRkhxa((J-oI((&nLPR!LL>@s0u}lGZS8jqfK6uJj&umfmx(w~ z2IM=EPPUDW0WVSxD)C5@-m;Sa$;o7roybC^cK$EMGV&U1HSLQmSk` z*zFE$$wux`wrBjV85V+0AfGsJV(?Q~sjwmyB9E6^X5e#-Rn<20uqO|PXdp8qF)^bv zwloZ}ICAm!++`j6CC0l2y_Zw3{%wNvByJK%Kmz!%rfy5kHzItCwhFGgYSMesIgE?I zn1j8+Opk^3)2J7-?YGk!J$Y_*lf0UfEMYm32SABIp4Df9K8uI_%0>{QlL!?zj$CZ&@7X;O{5Z&0k{rqkM;}Kn#Um?}? zXi-Qb&S?4rnmH!>uu@h_Zoj;E(L_V!7A=HA@iQ=^=u%MGK&7siCL{y9w8Pd!zap~iImx7|LR3Q$bxg%Q%n?%&(`PCdFq~Dh+0`j zAL5*58(pBy60N~(^^PktWS?G=P$opaA8XzOOgW|T5Q?rYt_qu7>y&OgTju8%<4Z9w za#o>@D4F-e*+$8&99m&6(|MyI0Zz-!NgC^upr-m1=swNfNM>o6zNHesYI)^cT6|%s zTWpr#5v2*+n-Z#dgDUS!_RxkTJDoBHo`O<(g6-E17Tt_AL!=qAcuxkp|v zFE95SV?CL6Uu4*5x?*-Wu+@@5p4VA%xr4R6<$MJpFQhPXNFYSy*rwxXZihhzX^+~q zTRC=^&&{IeD|-HHDdNf@dE6i^*V1)6&yP}Ad>!@IgpI?HY!gwYY{$+Z6`ZS?s5YYT64*X@x z9w!Luf!tN#SEO|x!I9YiffotMrpu6Y?hk!mI0*$dTogAV31Z=s~!TVrqgs%6GbXHuVGiOG+30f!e;9vzUFTE#M$p3JG#8WWAIE={pgOv zzLW)5q3Y!&gnYj;1kJ~Go6CNEr4h8M@KUDNe;)b(qYrtDwR(G>jvU&ZYgM|EX8PE` z8Iy>A-LH8sQCR%@UGsgZENFL>P|ul>Mfi#UG;AJrr&Z9-J9rZ({FSuN)LEBU85X}T)ZmXjxC3s98)+W3_~d)OfE zai@74y-c^HVYjk-AQEu(UdL+&FBBU*hf;XFaXok z)z|wTF(?0aJh*w^qUuwz zS?`}@R(*>HS&#JC3W9RevC+qEy3X}K{@N)|ck>@R{Pk{9k|>TX-=V247C*9s(up!o zy5i%Xg?OKy?YZyHbv_5_#a$`~iZZ22r7#5vzPUf9G7QqodA_!3Rv~5>`o=>C;$@$=Qn{j zX-|n@M3FCjuh;q=`W8KZ$qTyDf{7xi_EC2^7{e9JGEVX-0)G)=!+7tJGPr|1y(GSa z#K!zclBDru@s*A4ax}z1VslimSN;9#>UP2Og0Hl+CUm_@&c{_8eNNBmuYf5#mM+d> z54(cPC`v;=j<#G8Tt~8R=W4fa7edxX)WO>9bD(Wx_kxqFF{r7XG=-P_GR!YtMCEb} zK^H59D`r$XcY?o&xM(Ex4UrHK+LL6btpv5Zzgk65;W+ySv#67AyAE!De!4GB_6=c> z&MY;q4P2@e^ZO;#=Nh4kU9!~ZwX)1`*s)i}o%ZknTuu=$A6?1-TAG?7VNis;_z~?O zt$)z-#o>Kb4Q(R=CD-K0$jJ7#74WXFIb$nDVocO(eAPc_nw4RSd@?APgp;8_SF+$Q zWL+95?&Lx9Vu>d}dyoC~0o9fKy>Lpm*(Ya;_jF^Uc+qm!C}?U#FXY!*UG4Ehl@I9b zcIi4z-S*Z*XL~NCgzJSCA^P6*36U4b=Y8*Gp!CsyHdh1O?azxjeC=PV{btF37fO)u zf;HEkKW^X!U+Nk|;wGzwiXdT9*9-WZWJn!8Zq&Q2TQ#9phjlILA znj?~X>4GHRSKo0DeHS#aw)F?QR^k&564V`oL;&&v0Ztq2iAVPi!M9WZGD?F8&;Rrb z>Jcx#RO2$3(isJf-FpF|)O9W?$o zZ|r95SE}2ps#MZUgR6j>F+IDgV%l)7rjL6hGf3CyZyPxPBjw4-$<3zl*~6<`d0tar z&qy^pQL=^NPn*xAWzPmr(BQ!L0F6DE{}u$D<3olbvp+65@5xFs3drmSUZqNW4*$-` z|MK+PM4QB&+P7Mnv%fo@U+8!y&re!K{aP1s=VdhVV1JdV3Gpk{Et3lh3sKNMU$aPA zh2sA5p`e^!n>#*UJ{q^k%Il1iFxf&F{f9P+!LaytKZl~hg9wsHv zf1BXHzrzB8e1sS@y!Y!pn}(LW&Z%eVTMOQ zP+U8h^-8&R$P(u(c8CCeoruu<%ekL^WU6OdWjf!Oy2dVh0LQSazjFZCrhoSD@MV%4 z0=$+(vZd-G)PGVNdk4yBQ?w?kt%JfNyC<*GG&<&i0Y@cTop~#%{qStRfC{2MhoQ(^aGWgV8#X zbvU>H3chU|@~-f{4D;9#;WFH9bUwI(<=S(9gUyn0d7gMMZv1-N^9j*ni?}VU>OEy@ z^9a-QK+$lfnyz}QW6zzR#A4|7exo~qatMy#HNejE_fQYg?fsQE)SAiNU{7jgr|MK% ztyjA}WPI1_s#nkZ%E*$vpGrrgpmKosJ;!82GvXF+oKnPaJW3+G0#_dLZ zo7R$1lZR0S?ybzX&Rz1*o5{V2ndTPd zY;lzG=ZRGw!uM6>v>!mxd)IJt&^$2Ke9sf4#e(BmhyDiLVQ}kBRt& zU7OMmxZl>-1|geDK=5cKXMx9efsIPXf{n6kkwKGPe!VoP7mEysj1JCJCT^v9T>9jh zDK<(YV;7YSPwf<5HmCH;gdC%gXkHC9)iRvj1fplFLVu*I8_n%%4v(LKeKlcL<-_pJ zNu7Bz4x@)!vW=&|G3BYeLCWz;L2jLDB{OFv%aEIVKP_#Y7f(8|IUxjxOC$Q0r3l61b zYC_is%-8J|j7kpAnXrtZ?pNrYdF6qbjquFWs-1pw9~XkxQQC2ZWNC?Wy|)Z`Kb;(D<=pv69#ErK<2eY`?f zd2qa-JvGn%JNk2$z@4LElPgNr>tl86o!PKbh@=IKjkcXkKJI6u@81(2As*9i5aq-% zBOR#X1OwhKoEsqR^6&>F2H2WBRYCzY(Suz};6M(+8v;cucb($HmU__Cf@Ssqsl3Fq zGziCUBuhd^-ykiqNJn5ZQlUarx*VPdO`ol~J>U%B9>m5|T^V6dvF5%JRiNhPRGE0Q zWmoEIFC9}0BnGxP8^@XQ)RQ3g+EP+yrm80Ouz8YK6f^!i<`@{rD51-5kD`!)!1YiOik-4+TC0ju^ii}2*8R>#bGew~@W@45KVdS!j7 zaW%1s3Ik1nH^?ha01}i;e+Gn+iR8+DUH1k<@X~Q8k)T67JwpqqNOcDcknb#O_)V+>83vH}TCAU!ThBf^E1CV^XW)`$qDrA)Qq*nre>HBjpUv*O`*`-5 zWb)x6jnAyDHHhShG^MY&HSkdwJkrc95IO#)i%l|5Z$$A6k1{Jy@SB#`nL@k7gGNS1 zQp}xUsI7;j^ZA_<(L@HA>j?{PSw@L#miEr-B!Qf^?AB!Cjb?QdqUvj9t9>6^nFJZ zEe3q=1=7VAHEJmkWx-AtNQ@^D|9@ZHA5?cuOii@3G|CECHGBJkeCMQsD>LqNgHgF2 zu3C^NJ~yecnSN2AXRBtlt$9&Fm}{h?em{BDG$C@b1Qi4oBqQvJ zp!F4Z*|*THmV%|sN1j_S{~VxEt|;zziQ#N|HdF47-V?wFX6!(+TU2PYO7PVbh8Ra= z4;h4=C-^ru-w>@+Eb^|;<39&40nC48lHU>|-ijQ8#MP7V^IGOO1PP5FFl6={Jwk~h zO|8)&a-A$~Hk2=UGn80fIT~G^FQ|Y8ROvStw6`_r%e2Z_LPqKauU@mA{U&XA?>IqX z$u{^}iR9{5kqqH%x!uire=$uxMbFSojkIuBkEg1+i54dh{zkBTq#S95h9_l{mHo9x zk`PXU{?THa-=3?rmSPs$uHm-KHkG~%nuydW|2cZofz`&=)EjHBBa3&2`u~(t~5H4a*qs^)ZhN~Dq-C1buCa5 zTl7*3BBoz{W?M(vs?I0pl2Bx>==&hgxMfLExnBbexPks9EkZ%=vEw3MPt@P)`m=$~ zwWMtUb$P{yEwD7-<~90t)Ox0Y-(k6a>)|ujyt~G;y%!PITc+w5#7}l{8qCBmbxCAn zX^UZOcEM%BA~|E1|M?)B1Y_g3%`&3_lrPyA@W(u0)Wuz zL_=R66a1iSfqY^Mg*LiwDX6H7e!?Ikb&uHG`0hoCzrT#8kwOrUOJ+-(O<9uCV=(b=Zw>!y$ai zC%WwG>lc$PxIDGwad73}z3qd@AMCw)T0X!7s~)=}O$kyB_BSN;mMa+|pHU4BTf}C2 z#A1bpR904|z!-yc#n^+x1_L*KM_bk20)ghB576cCEP=;gR#}OP_l;YXhG%_iFogj}Fh{_N)=&|O2Zk)?Nk;|y z0$VTKju$sgA#SskRaMVtgWPRC7cAEb^0YoCktfx)wSf7d)o}Xe=H{AM6_Anfnlk#^ z29VnW@4`?GJKgvrwU!Hl3#z)#8n=4$){zr~^lhd}wE!dVxdtb?MC5eD{i9RVBB>V; zqgDKycNpX&>8~v@U)}>^>`tnef-dXG{<*TTv<|LV`s9ZpVa%UVL%=6_XG>lyk{a(b z1y2D&bvP~!V)zN}5A#2`CqUGZl`}d^cLTuSIOu;2@e{3+J?XiqBdmL9_BdGI*jQsn z9lb_NxRawKfDt&-;{JmwXtFNYNV`usCLqo(5GCIbk00~}Vx2XC6EX}<2A@&Gx$z!g zles6O!6;nQesq#Mk}{DQ2)=GFd?jIN$ZX%o#+R1&h1COa7)y8C8SN3fPFkn(76bx$ z^wPh_)|PDECeNKqR5>|}Pl*Op<3JqxSm#G9n`6d+=9CGHR%4ZzRdq)|TB&rSwww;nw-61ez#HH)>xfAtGhB><1|E zHtZuv8h3ulPSJ%5-&7+Zga#GgoE#9PYrZ731l%vH5qxs7)6&vb z5p0Fsw%^k`aiw6%;S|saI8x__paSm^%U^B|j!*m{XAAcHD$aek=Q|tg>-zfoq#U~6 zGBU6@Q7_6>S@~N~UI7W27%=Re?m;O@NrYDE&OkZT6_iATPGJd&pr?mhxB_6ZiBLGR z=e|m${rIe=aPz?JaWe<{oBa1=}z9=?jKZ?g1@W2a>x<4oJh&wa(AZ|3bfxN8$@XL^Yw!* z#pDRb85rXik&V~Gb7ZvqGnC(_ztI2o@KO{+DURqA(Q8J}_sad35hOieL z8nUqZcBvz%!;lNjYyt`fP7B~ePPwXMZocs^|C<`P{ZngDF1+@L zFprQaR{%u7;7azYWC^20oS&T~a~WZNMs7de-+$}3J61lXg94RT(SVR z8&o7PlaP?5y-X^bWRev$6>c~)FK9V^;o>p1v2VA{mFjgnkfif1TMSVlID8`DntBuv z>Jtb>H^3P~zqK%Hd_!DDmv=_!~?XIuzl}XxOz#?%AI9%(%oNxj{oosyGcr^0! zG_bc}O9;GfZ<8xp3e5pJ==IS`i}f+B_qOEuG6OgwEJ=eLleR$(b3&Oz-(YAa| z@s05TWfF-Mc^}abDHwHA+L%6;E=BHTr)OvTi34JeX}(cYqnw2y^I4A!jgHEGmn>AtiII5)5kf%j zqVndajD{lu7iyiblNZu%;oar>KW!I-gPU?6mc`)E0|ZQ@+-?*14q2ef*63FNgnQ0> zgqNRZkXZ5R@Q9I&X@doGvk=yE89Q5`jr{qa#?NjaI1TC{1uz7$Ow4{zOzzUE<@eTB z>S7vOUej*m;2S2ztm^{c zA_Qh1{rgkru)|WbM?paWbb1vTol5xvi~|1G?NQn0gBB3JhSgV8RtCnmsD9PIKM8q* z4D%32nAc&c(;@x?#P}RV(jvlL{|{nI@}tAt0AxqgfdGmwUyYXeXMjqJhBf|r zhRNy^yC3B9E-JWQ$~5)AN{pKFjOt_@<&sWSF-f&?v!@;^k`M%L|a=uCA&NSj!lE_dQ; zNS3W4o*IUCwk!sy9G;0tCK> zbx?wo!GF04^si6m0301+xHFuA251QuvCBoNVIiR}Uc3O{w~3k>!Y-=29e+m1GCcJ| zA36*_6JXYO0oV|d_XCFsK~&lg7DCW<2!Qh`+czJ?GC#^Ffy~|t0B8=thZO*8-xa~>gdmlKZTFVWcbv!XJ=ZzEx%e~B-g~WeuR9RruFr(2KiJzd zH-Wm)C1E9Bfq@+MbU+Lynk1UsOrpmPP1_cz;@xkYe}Hr`Kp5m$9EcondYmjQAzjoM z+=5NLQ?_C0pq^wzGkWUxkU-#oGUQyt-73o3i)rW_tu{}{+$0mPn{6(_<_+q@WfwhC zaTI`_-}j9I&@TX8LYWiwNg?O_wg$)ov7@v)k(2}f263kz(8J|x9``pY2vhss1~DuY zJY4}y7u+>3opezE8Zb*kCxL-{>?0*`Rd!c}y1(`C(R%6_=>$RZ=4gZI`x3CsBnAKy z{rWPVBvQQSNyojD3fl#Eul*Fw3%5AM>WO7#&LENA2_IG z8xrtRhA|V;Vna*ofu18|^fHs;=VUvH`TL;f#qN;3L$sRTOo^8}(vE?eC3?7a`oE?3 zU;3|@zw)ax5)acxl7??VFo$mm-4i29cA61b%;Kte9#Fq(4 zGpu+&-4o>I<_G5vi(2eDOKBh04`O}`v_3lJ>V>lieV+E_oX&8}aNRI913-Qujsdnf zEGmFjk!4}2hv3;w#WcDf<4a#SY>L*30iC7_&hfo6#MZb%C z2+>DAgFA+^K_tF@aza2RcAd}^0UUgYJdh$IQ2|&OAL%0Uc@y5?<{x4&4O=cVf4tI& zlmmMa(E)cT;{fAHBVsQ(2CM$7H&`MMIi~Qrux}H4lQ_XNY6?r>ga7I3qDo9 zcZBB^%$H=lWl}#8^q|ZqQN+BWL*i9*7Rxt^Db7K0W=zc@k}n~8NJG@d{rSw&?#q}o zG??~QDIBa!{+4P6nXWM34;@z}u6*e(?a&QoGem7yOUW4_-$=yGpDodmp#d(E0EKTd z|0@RE{#z^vb$H?@>PB8q}UIF7gLydUdeV>J2DjE|+KTahTNk4$rx4ICGI3 z<9@@9n1G+HWGT{iN|uLIjA!bv2zdn6F-j$WRpWdUm7V%=>b^+2ak6CnWh#-VTjHg4 z0e~&e;93E9_SsqY>jS+X^0$LEa0VFrEuEcY9)``1dS+&n^pZ^aA&r}(u;EA!&>uDn zNp^q8ok3?ApFa<>tes#pw$T+{JvHVYfa&_*3TN}@p-Et$AyO4;*I|f<+<@POSk7)u zpWP+~lxk@7tcy$8e-0@(OG++x)O<6BSu5-t0mxK;5l8uk#Y2RXDJe>j6=q5OT2k&e zA0MC}-~$H~J`f{-BYm*OV5`Dju&`@3XHG_<9L>DZDCj}iu;0R>a!)D)AbE92E^Pcd zV>lEi=n6Cpcko#Dk6`14Ej)F_JqK^-ndDi@6*2gR0@z>e;}i*XfsFp*L8vep0$V`G zGmISzRPEtI+?+fL&xK+sL#3E%aPnK4E;+4xHa&*r4?~Qk84RQ~G3cAnN5AEy?Uw#> z^bHd1Xg0py#fq!AqRXzE%f5D1Zh10-z6;pHm-$Z}ALq}KpD8byE`{jd@rKm)&r=9p z=mu+7=EnHR%5x_2PZfXy^1utogqQH)VEj>PQujY^f(Q76 zEin=i`>UmVIvvcWuhnXVe{14hH&ie(mbM_=jv!JB3C?{ z`$48qEa>yvOc-!d!EQp5f~v0z7ub+bwX)ITm!hQpIzxY!;P4qaO@%#<_Mb}8oN^A9 zKdh&lrhcn#_-kx3C++le;U)(q0f&|5Jy*W4590$h|E{h5f#-EiEqzo^TZ8CqHL?!! zWa8vPXr88AphuPCVuwKfo8Y&rRJB#jWJ@Y~4Ltm`D!2rW_*DnTO<52*6{5jGvg5qN z#~!S8PVdv7^Fs9u>a6LRM$J?AS`I8cE6R@iNt8sBX``?jxvOyz2qTJ(LbKEW*|iUk z7rP8;1{qQy3(opi(OaBXfGkfmZr7Q7F{hs-g*`_BM0fn$U5O!{}S137I*RPh;D#-++9Q~34ibW}JMpTRqu&h#!>F zRJbFHL7bzwEswL0;H!+1Kh5NhVr?drQVCPV2)%H}N6IJpgSd}OD~6|$hTU$B%M^mG z8Ch(N4Nw&_V97=72KYjifWVyj$YOk%##C5$Ys$P_MP%Y6 zx=v)(H!BK<|IU&Cu*|J4;6;a|Yy!{@h66V^s4Vm*WLLU#9!Na(*|Jpdd<u=^|Gvh`QDE2MF6Mo(aA7ynPqN*&=DAhw+T&7^VlYybG~@muc;p};N? zZkAD%Vu8bD#1RE3LZOy}b|Sm5CIJ(R3R=bxg^2qT(>JLQiS|e2EsEchD|}GdH|1g+ zOcRDiZO6G3NLZirmzT($lu%~T!akw^+=zU3d1kfs)?lg;s74V|FO8&x8=WlxyaI>i zFa+r20;IR~-`SU6sCeoJdUUs;*u+(-K>vB^+l0J&QcN zL~|Kb{evTq6Ksd=Ys_^kPr6xG_DeRwW7rMqS1;_NPAYusp7figDe0PTatF-i!&CSN zu$b(6#Z4uY`@*~0ES_c zKE3RlIoZx#jfbL_7BMPp9Bi}vMz&DxraJ~q4&3%fEgCN^FP1Lh?9T#$Mv02Md*LDx z?N!cSRPuFzIq{Vk8GM5R4YLiSM2Dgb7L*OTz=L;j_Pr90!VuRK-ifp5UAulgp_36x zwzgL8KuwVdfb6bV|gZd5Z{?bD0 zfsR{{xNNz~BQ3XL)ZjhY*#MIhje zcC;IhZ!$o2p z=#@!-F{SbHr9|DZ%W@^-tG?I=ObuE$1c-@HPdpBhbhNeBcIaL91%0_xk-q)BDnaw_ z+n~;w%ehbhz(eOteh)B!k_E4T7h7%2ivaP!Ezo4@rs2txaXT>N_*TdG|EqHEXPxZ ze?Mrb2UwYo7wDILs=%~7A8Xx+7a_Vgaf)tNfoVZfEiG70uU_iEp%v86}!Pxi#k z)wB+3TtkE8a-7EF;TU>xa{IL3*AOn+Gi-dQ-dd}|f8{158l@%7+Q@lO1m7@SDq2(K zj;Ri6v7TS~;y%3FB!k3QClbeOAVYEA=C9xOgQk9Cle_`KQ8aY0vw2}_uocGXxWm?1 zfJZW72!odQNa(^q6mBhs#I`qE3>Pv>0zranipmGzper{1KbB|Ca12yp{!J}~(}ucr z=Ho@N=NS<;!#};9-*-936jKLZTvb-KpgXEkYv4?zoX5-_;U`=GNMGw3ToS$zIQKcu*u5 zDyk>evY~R_RhN(wJ7PZqqj+7O3=xv-Z)HwYNg<0ZD zE56UQb~H_?zhWC@uHA&=ncw4^BrFH`=P)*-Y7?Z`@(8?PF6ABMul&JZ8J$l|NE7pT z(;0SK@0Muc9|WLWY;0@=C$EoLX2|_27Xa5eA4k&Z6X^eMMQ7{>?9ib>_>@eRs_nba z(lj)TH)*!>j}bA}hzW6*0wjFG(RFKQg*-W=V-{yZs*GWSyEt)EuX$e{LReBql1SIg zA0KHCqjJpU1CJ_bcSe_pm35hEG;XI=4<9R2yigJHHdQ!Y^DJHrD88FF{zwOL!nl1I zM#mu2$#_Xx$xK?H+02|uBEf`O4dL9;4*pF0SfCh2LNi;S{{8vqAhEq8aW>f~YHT4i z?D^N)I7>L#(gd6{mPpM@F61GQPpPntGu8#djnXLT{AC4WrDPHtz=}nlO{N0L*k&dP ze<9g_S`+&&iaQ@mw|u8VAnOXsCQ~mV+8QHJw0k3h=pO2<5~IqNZv-x9N)?)w^^cKo zAkW7Us=nqPJZjJR0KS2j#Dd-L{|DZ;aseSy^NOKpn?OFc(^BoTE&%zR$hck zgh&*G)Qbg;th;@5K-cHs$aRBNiiA?!;`;iqe6|EfpIPiP^YZCu&q|8%!Q9dh7|0?< zyA&x*#7rFSXmF2P(1#CP-fRAcesEVwKU5|rzV0FY; z#}QB&7ulzrQ!Q3Xw8+;*Do7MZj!1ssc$ElHetoj(f8WFI>r&;|#GJ*c_F~@g+>CJ_ zT=4mPgs66z&{#qnfoG6*RJXLJr*`w(p=t11@~wQFrK;#>3=?(8d~-uEhc}ImH+xf0 z0ihhuNMfy0z$cm6g2cs_;629|yYjW*r1M7&WxlLQ#^>Ayvezoj{=(dqtI(D^-!}hH3hI@EiH>-c>A# z!Gcs}bDi-JdTS5+??U7pD`HF7pj6;~>Y+{=wMZ9Ik$1s_WpIZYE#9$ikY5V60 zCVWm-W7Kg)o5(dFNGBw2TOEMIS@_qg_%GP%F=(hf^axIPKT<1@v-@@@*E)`!yvlwS zGWDkZ<7Md_wu72nt^duCvl7`~1SOOB|9er9pds{(d|4CbJZ<=dV)3Kq_p#BE7({(r z2wJj%U9^Z?3h~L#e{4xHSuDRL>4y#~dT z_R?o&6VfO`BBk_UY}u^^YR26DvP-&6Ix~VeozZQAz#{5!%CS-fc%<;U6<=lQ{1H@4 z%;?Q}W?jw;F#b#5U-Keh_!+4> z05719O}PeDTTwMaan9hFhaJ`0}MM3 zN(k~liVHR$(&e7`L0k*tzDipCv3I(5-pV&Z+t9fOkn{r40qgMgL3yU|J&fyPJj9z`!2(mZ!^aq z_?1w|!zX02>uq&hBMiS;HAqw0h9~n_zQC!}Qu76&A6=1O(BIILvDgH6M;?#2$@ zph)pb5;c}7Kd2B$Os7dgRFR0pn3-PsHr7<+_Nd3>_#oTUP9slz@ze7Ifci_T#dhJI zljIg(U=`M<4#-?f=d+p#zxh(Yg2l(^bl}m>Q>d0^#59#fI{`)G_?}srHvPWsOr^7w z%d8_y?+AGrMJ7RMGqXHih4amPM4<)CIS|bBDzHV%l>m^nt`_{gK^&AgkWUKkcgSIs zC_vpVDiD+G)g1X9j%^Yts4x85Fn<3)e_dfsNfvd4WjC6wyJX_-!5i@+t&a@=ZgcYR z``$jcm)PK&p%3UV_WuC5&&K}@;*OM;#k#vwlrGgvWnhhaF&(on6v!JZbw8;&Bib z;!u-RAT%9=7N?p4YvDvn5t?3tlEySlQqu4peT;!s41wEpc^fqvD^?=|t#Kj8KdN?x z#e*0gb@r}o)yZ@@|7jqMT!i!EWR4({S*k3$4eU2SxGQSI&K2=`Jxw9ewznKG4BU#c z@})~ydoft(pl~4--tajU+?6v43FOf(EJzQA6ot;hgSarHsZJ8n8Rwz1BFwD`nO7uL z7VG>{;0cFs(#-!713HEd_{pq_fL7t4X++O<^Q!2O_pr}@%vw+PLMlH~wJkS-`bWR{ zIJXiA9Yx$f_N;CE{22gbR|CxOUnE_9G$jSXRz~TD>~&7stb9LMX2TUTdlp$ZRPesq zq}i!{Y4zPo&z|==S^EUIWF3kvZ+U3~v;F)1{WkyO)h{Ari6@84Gd?E!0GJbDo8-FI zp*O#ZT~HZ6p%p=rmKrx{L!!gC2BR$qy&(&9&h?uHHev>=feQUs-90zLor3?JE9i!44mAuTdH3p3r z0OdntduxXfATs3}&A>qB|BV`7pk~0d0n@P&2-CE^i10sBXt@@{AgIG71Ph#hf(F^5 zLxgfgfZ`5G$pFFhyBagG7Dp3zKZlQ>Tv`V6)10`zR%`B+=NO^!H@6ptGB+<$k1sKm zel=cY0{CBtBMD^t55YuSrpj7u($@o;GTO=V;3V@P`B9|rmd85?1rh zg)=mt!)GR}X4bnKL>p^Y9I^~RSL~Y6i3OrC`pY#xTVdLg$R!XXwuU2ze+ncsuCvAo zCI9wR!reea|zOouzd^mDhczk*)bMcf3;n#^4lf{FtLQa{+!L? zjRJg#ATg(Zu7UgvnQ6Ef(d?|e%WnjK0TwV~fIRRw3>B~r{LAdUV$yExItQmr8B{j18;)&^#A7F=6pd(ti$l21#53QIIm!R{{Q%HAIRXLHv@&B`# zS`{Et1?=ktG@LQiqhn_@;Y)`Yt*d++h&=<8;?+njGAhW(!xag$X9QH;W+N;L{Vl51 zvbD3v@f9NXab+;Zpu*I%0D(j`Qna!UzapAJ!JSrzfhB`P)TY`wFcauMq#R~}^39X@@^rJOI%Gx5T4EPuhk4W6nmd6oW|r22mnH70(cXD*-HlyWTpj zlb34I`D7`~$B>gqXc83Y+QYB!e76E&<9$K2CTxF4q=!vTjl9$>owgH4{dwRUnd6hvH%%4rJq zipgN8@ZBN~;5oJsvDlT4Mpi#M5k*}TB+UF5eSC=`C{i>W#Ihx7$8B`u8znc0A(IMTq*#j z$;}rfa$!&r664bBH{pp0=urMQqxXfjeY>EM?YFoMq zWxGL_jyEm>pE!pj5w~K<;y_k{k^r5mpI*LE!eSc^S9+{oRMO7YLx?j=K5>`yXKXk^ zna{I0Yz4w}WU;DNc-0#PJv*%QVbz>B_W&C-=mD(c0KEpFdGRtis&K6SjZC-gv7l*g5yHbNCbyiY5o4||ummuIFvM0=B!0ba z8Tl;l*1SL8rp?+`6w){SY^-S*3iI!r=Su@Hi(V$q|Gqqgdw&Zg7ATDQKb`;|m3&48 z<$97RD8Wkt3vNG(Pci_8pS}#!P4bG<_&tLR8sYLt&fA4Y`uQJjrr_sfai^@5-8Nx$U3E=T)4W!O-(539b)Zv8R z@7=DL05$5_{gU13=nwp|8_U9pKI}+fGga$eD%L$it=!hw$R|xsY7&`#7N0PPYH64)}Zz+JCvj-~!8s3U+{bqiU)%-d%I6N*SWR?xbOui?W9;Qi1m{zZBs8+5#Z4+Md~DeK zb?>RMhi9>0>-64bqvI~l1~)8~6c71|i?!K9`|g1K66oEi&|Cn^{6Zz^Y-jH~^psqr@w69i8Ks(3)Ig$3d#1&Q%WVzHM4r{rHjaFGF4LSaxcpxXcg zK&j_DE70>O5&z@34wIfY9~+CbQ3@y7=NNTvqHKKqpL1S;O)OMxdQ zz75+*I=Z7Dru{Agx=!|7-|zTvaz^9j|MxvTvmXG_AKiQExR9hHCss|nI%zBK8*5!w|4is}N^E<%acV4AIvq3Kn#&?eFpF#iUES3`exp2oJ^_6?ebFedy*Yln z*nX-z+W)(}Q~jtbz~d5&srTvpPg#Mw>(l)o#JWzVUSZ$u$z`T*Aub{-*HhUi^UJQ5 zw*?!fGn9~78{|*00LlYgw;E}f)jfM@c*v{DKN%0efW2%P1zqWSVRrWayLiA4tw7Xt z37FCjA<9L|Q;*HdmzRTX97r#5o8|@;FmJD~`8z-QZj&&Ix&|vRoFEw!0gS;su1x5{dCa}P+(+*^&J@D2RHyV9BZqLq za5SqkK5JbmH;Cvv$N6t2od@-ze`{wQlC>O{XMQTprXBz2P}`|io@HHyU34#kC3($lY*Ly_QH zZM{>~QGyQBFXFe9q@2GmI?i(r$n8_9%}S`PSPc!gUG;?ODM-8|1=?36#uW+p+ta=;j#japu~e8vgFLeLQVqU=BoUB z<*faE#MW&m@Y7c`;vDROx*vQ!B7ysWq6tvB0}h7T)}*jjbnulI;5KSU6Kpq&WO?dJ z#U$l4c>`Ik$~pQ*kKu!i4NB2Ez@e!cR-udkuh^@``t{>J-y3%?>WHB|Vn+OE6&<>2 zOPdU}_XSLvj7)5$r(5Dcx|nYB+m78p$z%A&BmbG}LOHL0%_K9cR0`DQU9DNSk*=wQ ztDD0CxhAMrlT-!7Vy=(qe@E2e$Rs-_FWEpn@VF z4Ko4d$x+Yxb99fjCZOP-`OMC3ZIs1BlX}5lA<{)mPew4RP98iIV>eTvWAu?<3b`q% zfia39#+oVoSi;wwelx)EIsoQsv8U7UviEtic{i^x!|W_$2i@C4YnTI4-UjREkI z0rGhNDfsT|aA5pVI}i(rBqj1-R>>fr%|XvmxcsNhwN5q}1V#J;=JoY8ng-_PO2r2C zg*9nEIX{{S2VN-#`4vj0(l;>^=)JMTR}dGEV~K?@L>@4;>3;OC6=h`RVU_!qBldb} z`sm#{lLf1ovpczdw^P=1G>M%+Ei6M=twKy8d(Yj6MV-o#piYuo>pF(9#P}32Ig0bd z%$oEzR_2W=JBU6)rj2@a`DZH@${&zdzR;(JXcC})<%D%hX+jZr!Wjd`1UU3baxI|cV-O<5AsV-BBFPvfIDGvDv zG_-NrMLN2z3k4#}WT1DXrB>1UH{TLcgtG&I7_sR%uT~K_a5w^I(Y>X;?_p7@Rc#F zG<~mfcB!EQWYS9_z@!o6AKO=}&dMuS5*reU_r>4VBiz}9QM0W``0>N5Kb+*-U$mj{ zqH-oCiNXW)u@moLuA*2G&fi$m^;agTrp3lig~S@j`9*Thci9ehC`?u&>HmI`LxX^> zO1Se`F~3u>Z?~%E`*!a=C=wk^84C&qHnUJ?J=55zN=myW3yT}z>lhjPZE2654nWV? zIss-GpwfB(UhKb8!7#u8sWr!Mmj7Xv(00JaRZ_>k{f^q=V+x7P;RyPT{5O$0*qlGpGzTx5}ESmpSgeM7b-NUPtcwF z%1c}UL3I#Yz%bLw<)!D8*mSRi+w;t);(Q!by7 zD_D&Hj8{MSepeulQR9i07{^cceKtIU9elnlDG1T{RX5b6`HFfdVS6Y+;2CVlne>J> zCQTBOiyUu{OT@c_lkH9JkSa0j@`qPcEPrS?&5s>-KE8b6K5cZ%-jO!y1qvsa*{8_B zO^4WtL0#VjpA#`wCjM(2jfOV?J`(x`Cx0@5W-hM#;`=BcToeHo07?x+!d?yjucs{f zH&y>y1mcZm;g7p^4r}7MIT_wS0ac~zSb}QCwl54?CI_OoL%~~te){s^C|M&0$yjzJ zdelmCLw>FZDh`e6+HZ?lSMJ}f`)uxiOe)qS6OxrwP4H-NZrQQmQW)8Kw6!g;)+ky< z|6&7hc0V~zDUWSp!u#Wybu4W(FAnujUsa59SoJ2d`+wb@6?hQT7ipu(5Rb$lM>g~` z%q}iAJKfe=r-d>lVd##keAi}imx|4CwkGU?wTgZtwS4dpFN2ysTGgP6vn`ZQ8_5!D ztx_~#Srko!UI^H$PbV$L9!K1J5>0V^B{hC0<~?!qEtj!*&I(u!djKyXpxo&a1?b^_ zLp5X6dI6Pj5@<-LT;uR!j-KJ&$8Ip(aCLjN9&oRTbOHr|ukmtJKi&fzI+?F3 z$90rKPZV8p>4Ndgi+@NN`=&z|EFV7`ztPulPPYBK*uDhBKmXeAgsJfYBw$P=SNHTF zjOZ@+-y;t5Wi@8qq>}enf9EkUFy_}ff}S6$^u7Wbmeti&;33^RzNrU24~MAB?~Gs_ zO%!<^yxTq31i!3I1bG2W*nP9T!wOT+7tfEBNT2y8;GpJIe`=Jo>T3Mv$HORQ%p2rX zdlfY>p>ASVS6A!?b>`D~Zx5Gh!X_A1Sp)9+{K@}86E`@BV(5@Z00b40d~8(WTvV8r zwPgOBUh@LYSKNNsKi}bjRg$ax_Q~|h=xaLmcLqDM_3Vmg)iG)4Qo(mRc()iB6VZ&l zJ@r$Ct*wf)6tqVaUCKn*09bcjO1>Yx0~hZaJyhB8)@F7_gGCvx*Jxofj+Fl1fMP1i zt9adY9oZpQl3FaHq6dWcKMVAOVUoYNrAL*E{*w6hgk51HTdYQUXKd|dA*{p zhbdrBn}z}1n&#T_H@0~UQA5>uHJqcwW>B4ztJCqpNj~qV9R8UKhe@~_1bK7;e>|Mv$&tHjLc#PiOSC*Py*2DJ@#;v0bVO19wXDg*Ob(}Bn^pFLN ztuxps=N-r{`L8kMwTXFB5!R`7f-+4up~|DS`0*SoEuNz+v8nQ&q=7mCls7hFhj55H%&>%C zWBD*iLP60J5WQuz=Cf&BX*P@>IlAZAJT)z;7r5}xxKE+^qswd0X~N@j_lNk6w@l@K z=$Qbnx%V%Oid#%pFo=ep1|F8aFn0d{xBJ!>?u6llV6^*oJ>Ybtd#L`)5BK$7scPKF zBIE8JC*2ZL=M?Dm%{Qx_Ts0ixPCUydq$>-C$b0w4wHo=N^ z_LFdsBhxDxG859f;-72~Z6~$DvUNlmB0atJl9hS$z>BB*%ehtMPsM2BX!N*@#*L?E zFhaA2Fbu~%VJw7JWgN@8dvh%vQjYo~)%T5GG9qHK9T=`N?6~r7f4*D0Q2~*TIIpa% z06ICHGS#;MH|!uNpqK@HW@7~`@z#tC41BNlXVr4w=;`Y}_E7c75NA7Y^mJELR7ij$ zJ%~<3c_xLqf336By*c)_c<=i%mzE!Jkg=yB(I(;l=Vk95k(MnRlR^0>i@&nA5RQqc zRsDF6Z>TjtMT0jM*O!rhoI3ZCLkh{r0aHs34h-S(ytkeJ!|8X4#B0AllH_C3_8A`H z8kOX&>gahtOils~pLB$k5xUHGJk9f>S+z161YYvAh0jte{FqBFPu5Pe8$`q-^r%qR z-+f9QJm=_)5ps(9nAt9mzBQNg4y#&~qO1_^1w%VhAvVv=$u14y%btqlV!C_#PTS4M zB8e{_o(eu6zBmP+Z)Dm9J0vjDk4MgYfA&&3*=uxueH!7dQ%+2TG%At@CO*XN(zGgnr5d|T8i5euNC5l^ewJwIQLW&~|zohofULtnCr7Cf8uI6Gx#P88!R zcax?lQkYc*bjXt5FxD#d+?k3EF8#7D-4eeLBxBXpj*U7KJDh52pNgqsxAmjP2}b6( zTQxHJa0G37cmBc2v4teeGh#Oqr2IZr@)l%I?^}!|X$KE_kN~2`?h0K4@mO-wOwx$T z638Zo=6#O{ob=a@It;aqr4rB+##IE=STl*rb!=d9KdZ-WAx5P}M#S67hnK$FtvAwI()Ij%V6!h*u3o^X(BLP`g55h*GtsaMO6x!V)gFMfe!Q5nsc*iIVJtXh z+C?q6p`NrAQ98_^w>yTaX7bU*Q7Q9l?Vo|2xS)3Ij>8_fN4*xWN@FZR*dG`~3A1dg zWom&>H3cQ)n&bU+QO-8^=sZ-UG{S-r*~E*`^$V$+#J@B7;sG7@_o>dUi+W~ldwt>? z(_8>LvP87wkV6h0W)bk)nQ9hvT?d!_0Fv6@WvFO5tF!Yjd-1>T^@9sE>#?=*kC4&I zD;yIP&~TagxN?P|E`&3ruVUGZ`mq^7Tu80C`S)QZ5NXurb$@X~@pC3mQXM0{LbT{-{#(@u3Ydj+Z)VEx_*sGRM8 zy0+dTLCu$`L=z}_KP7+kOSVz(S#w(uXyFo+xP3aVd_3LgkO zSk;_Jm0J3sxO4bbzrfMJ$98TB&F;hViB&%My5T)06v_j*5zyeH0vK{{#*Ct-MG=NRn@WF0{(?rTyzwvD&nTh#1u|*Yl(FJhKfk z#&RbjJjB!iE>q~Go!ZJE(bpuK1jZgAswz2HfZ_4-&6J|TMP21vIK~qAVeb8u?XAXR zsu{s}-e_sjRVlv7K@ZusHaF)E%YE{_(JyahMCX!qX@H?VE)Bh4@8NMS-XimkXJ-V) zvk~d1RkRoDmzmKjdOF6RFYSGz+WnH`=I1hwysynd0d;hkrE0`)=srk#(ngL_eBVx5KNA4MOjQ2;oKtdc~*Ht)kUv+C2Cf5Jv~L zSESJ^(d8!lcu9n8@iTKG7=@v_;)xU?rMltf)Ez=IhqNKOuiF* z?w}=S#>C9H0X5YAmZ(iOtv}Z6x^ce{R*ZcEk=GLoBes6fe9A*-hHOB501qgnt)HN0 z;fHo2$zTf5{%f1mSMRk0+>&US#qDrhK5l*uHkPlIfe%-IL*>wvW($A+2-i#?UV$s^ zr>xAJHszL(=O`aR16lI~=D1s?^kH+cal?|tRaY+finAoD#G@6n(URawamO)F2)Zp4 z@u-q>yJKSz*=gtq{D@wMqWMdQ7j}c}MW#!KWuYlztuT<$&aGu+PgoYt_zdzXUHK6G zBm7x6ZEh2M<~-yx)BFqrXV+~0t(UOJWml74k7L%p^9U6pDpCLa!Cw@Bxb*j3pjDu+ zKP)pH*CSxMb-FL{t;->QEAzufJKu-dC!y|ChNM3gmLcrd#|S9*jMk}lF~R1cl$|zv zZ?qcXW#+f>OGzxP=2p=5o_Gbl&H<#qa_*x=W&Ngww1d3%yHy~g^_lSH7Q@wL zv14%s1EB+$YR5B7cY$OdTyi8z4##TMuZ`u+ZK;=hncqzRc1l5xyOC~NHNG^NuWV1~ zf4eK<-K=rx^j6K9n{7WJlRVHnT*~?S<-p(Au~{y=2Cr;*un*CkR5+%%$Za=oWx4~m zl+CoDpwVHJaHB|OBkbsMuN(9U(0Vi*eF7?Kv(s{BMh3_Go_}9Sv!|%Y5^xrHlZ%lj z;qfPWVkeXfwc-r8;Xo4u*Tl-n8H6Oc;s0bJ;RIyJRdLmP!9V=-CaRi9viIz%bVBSb zHel@S^4ag&StQf`PSYP8oO7_{ea?-EEgXHBwG;2Xo!8gdfLh&td3Qfp4nBSMt^$8@ zd)xtGJQFIHm6l44f-lk-)hweKfURoHA~-j|j7gBSfu3>x1{?mBfb+^Yk9)KD!+;QOM*ee-L_sZC+Ss7sV%X0n zIvrnrW#$g{%SOL4E#6=d1-fQj>24u%seLT*gyK-L3o<8N{PYGO%bIVYSR;T1B-L6HNpKfplNC$<{D zU;*YO2m}Tx$x7*3+2gVgCl2V-EKC2Q-Xc~;uf&f)f^Rk7ZxRne#D{*+d#MOc|d`zLFi2e{`-8&MZ$1YlYO6tz>IE#b~IZ$6=O_M5X=q zooycvz03O2>7(}SFJC6cB__znq9B+VQmlM$mF?Td)ew&4M*iL!)__WGP;$r3v_)AK zJK~{;MfKr&dF$GC+^D}U z;3)ZL-gZi}E&ib;a8o+Qm`N#mI``?Z zh;ERaP2PAnL#Sy+H27Em?s@1E3uG_37oq;bZ|58(v$~zUERz2ACQmE#Ugn66o54xu z@XdsX_c+rD@621@j)|F964)D&6)q(E_rYM!1t=6`iqL^ANOQg?VE}?Eb@;$}6)5em zTR=a+T{+#u?Jr;VUTfag5Si{Okfqa?F6& zq`Nb3rmfT#8??!dUNhW!P;)Sa#gP!(n;_P_uc6De4n>F%O+`fk&k<_vPK_uG!J?4> zJ$r(@05Zy=CmI2l4WE6IE;NGZq%Qm&^ z2l@NF#O-ADFXD@72pdk{xlvKM&Xvdm^KaDTyPgRotwIqdiWA;hoK?t0ooLQ%csAb3s5wnK%TlEZ$WX7PLnU_ZBKw} zITn@Jzo18eCvPB9IBq|2ko9)w&tILl!-)$AqVM~>{DaJNjK9{@8|d#r-x(X*sdojz ztzccOfiRL@0rRXR^0yurf5rjJ94XKKxMGDQvz|Z_fC=d!D8jb1;E%>YzTwCtj<@dtK=nLzjJ0Y#DN;RvO7%*8?^C22% zUYn>1tu|KK-=8014**ndMcjJNmsHh0a80kwiNLiB zf_bR%BB!E+RO-6_IwQ%{_`Hi=wTxwQ^5W~h3!PNN9n^45SO%>n3p1LES1p~bL~i%a zyh&8v+Tw5kYNR|PtYq5Q!va@%mi+$R2au5}wI2~aE!%6C)8iBDReZISoFzQO4+Jgi zKLzc3z(c~iK?#?{Na}*|H!xm}{_*Kk=w(~Snmtrt`7Ibf_xUiM1m+?%L#}8SDVoAb za&psnn>y@xTa*+(`yvvR&vYO)ZmVnq(cFYm8%T^gKSEX;zTfAVQBODDGE_K#x&w@r z(sgMvXT!{?ND;Zj@inqK#dS?4^dn&-a<*R#XOY|R8tPOzF{8;@7XK|RC_Wj&b(e%&p({B0;N7XlTg-aVw z3JoTd`Dg{~(9!y{!Iv8iA=#BSHvC2lFI(ztw#tjs9z|aZqYCt?F+ZQIXCSgyai?)T5F?6ccd2uZ)!0A(tMQfIW9B~!Y* zWyv#6OjeH8g~I}L}ibiJQ#`(PI8vWp+(+a1?3E4Owk z4a0eh`Ugyxn`ix1jBWZIL&Ku1@nQHYTHnf1 zUUB1OvB|OGSqHBm*=Qfc2M)0MHjamGSUGVoZ+Myvf|S})FsFJj9-P`AOOn|Is6A~4 z(e{^+#1U<0<|48LAgYKAoOpw1^~Z8Qkli$n@m+DWFgqQrA$~NM%>12@Jb9)`IPDK^ zev(LS{LrrM*uqBYf@w=FNMP9)L&?!6C6TTyu7bcp6usx(sEIx>O>`h=Fj$JutjAyObbP6` zjZPH>y%PK(Ih&E-@aF}C>$5#+A#0GXthOH^XDUfPC(^=F zOGgNfmRFGhO|G!#gU@>Kt;`g#Sl&@7jv$G-3U^a$#G{&meJEj)Eus0g5_`ekXKyWX zn2HYhxmCeqA>E%kZ3B?~#Qcx4I5r4eqwN?J;QW~MY>N^2*Wj_*q;R7WiY%IbuZ@-L z4$%f_A0>VfDG>eZBhwc5nUle~f-iWS&e&`(w z#$}GIot9$4qdK3zCHh|PKD}@Kjti*;RgRLnJ1DJzD9wSWO(Fq}56wzCdVOAD7*fkr z9lmY(E(wiZ<&9qH4+m;`V{EExE+%WEeJ%Z&%VX2`SvupdtvOa*KKHzk|NSZ4!-QWz z%c~?pA91s{s3?;G{i~&pAv9z&WJBmRWcX}ktUX7*`8ftDr?7{bC=}9Hdo9Bs+DQT| zKZiC$KBc4y7@R+Q#Jud7aU1ZMT*)D@wvhyYm8iA%Qlj|%SJFSO_-_72OXZ93w4n+W zV2~<@ghFJU$HmUQRny*mG%VZ<$-NEgKBcA$fauMpxBCi~odvaao=t_%O9&!AIu`k+ zIiZL|aN&P1{Sf`G=D`N$CGXnOav@9%F$p!c`b;fC0Xa#BUt5m4ffJa86=*BEm4&Cx z6&o|ajKSR3f~G48hk}xvOQS*;6=*WdTv(1~YGwGTcKcUmfEoIg4Mwd4TG{u2BCOyq zUkT;-5YbjcdK$>)w$qixppu1!6I_*St5J=qa>KPWVH@0eKLMA}6p)kpoIyUh2I8jz zMu!ew{aL6yLCC&Xz)oK36mWZN;7!a)b02GB#r3F3OkwoQXlDg9_sE&GP>lRedAfV$ zj-ZiQgXW}Vr_7rrG?7N$QUNP5vBW`8^HmP3=o_rD30Fljb*R*a#xr?OQhKU4 znut@9sTpM!>bdUDo~ERy&v@N^K7u~vrYCX)?X#E!Du)qtQT`HSXAA94a@ef{@v&(o z{t-V-FfAa#OGsxhWv<`dZHMMg7W}SB_w79b0R!Cr%5dQW!5e`tjNKVwvtn1BKPg>HT})+uBr+ah}}-Y9}b#V zHvB$%6mbz2c~7CB>X%>b0?t|C-@fAk8~FDJ)X8vxFG9|jY~NDkjg-=$VJR|2jh^Ax zJyfC6(7|6r>a4^tqWZqb2IIk}h){ZBZiQfMhotUOSNxVVSJ9$|Bv337y9(#yDOk9t z?uNz*k;aiURxz23bRbPZ(I^(Xk<#U1P3;0Jmq9W_OytiTs^x()2!mvzkf*@;Y|MDg z0exnwFh=1}9vHl-gK&ss5@E{HVjQa?YFyvRP?V!2Irn_-8ytVndgCrCdHP5=x@Gh8 z@U^VO7*>n?@>NOYBaDg;cKd6^CBc@=&^;}#3A>W9&ag;OM%Tr%{r6UrF6d-z0fMSW zm^k?>m{gg>foDrTL?G{q4kfnxfwH7`Q_F^s3|2M_KbXs45!UHfh)H?}rtqUZi7cwk;V6G&9j=|Ty07S}s#LaWY^PWn z>8Tm`O(3hiaPO9rXf>w!oAXy^@%|u$ex4L-h`B>0<~!6o_k}%u92>?40KqF;B)^mU zGb?8c{ED=qm^sNL zp69Pm?{<|dxm^te3+`tt&ZoN(z+=FnXvsdyW8{zoKrp`t-2B5d>5|ti-toN|g*Lpe zeUBnBYj)hD9q0zMN+cKYZ%&smi4qJ(Cad}Uy-uGzGNLpOq&Sv{-UjXJdDYGljNV#O z=g(>?c{f}5DeybVY{4DADX*_2WQG@i1yOR}BputZVb_4aq|Cq-hfs-|!OI4;WiVy? z)KFJ-2d?kL*>^Yoi|f%z`Oh%fbK)(dV^dZV1osrZp#69D<1Z&+3p6`*HK@_F}ZBC zaW}(E{;aZqnp#B{kC}lkSQ4TNhDE{JF*3_a$VsThCMlc}6;(DCeXppHop&zAO}i}s zz>sHTSe@&D2eN92<3~CX=(iZN#_<#Z4?=jpk_UwAwm4xa8o^K(>DEZR7`miZl4!ES z4kA)C`4$(-Rur?r6eek~mNdpchHspokE2J_BiP`RT-E7`FjL{eXuYnAhUF~>OI21`{l!X)*OPvod4_6zC>spJqt903vvEO!_Rm44ri7smd9rys_ z@RCWM^rIBZQ8^*#Z9f8&Sl~Km|Fb~KIQEE9IOKy=^3_)HqocC-{n^=i%WKMF!^wi| zz=EZW)AaE5F=gXw+Z>D{vXCHQr~Ah{>U&Rv_p&TG``y;`@-SiCSq3|8xB5nq8$eLrXdWZ+9uvRx z-NbeLenn}&eSIqTzC^N+Ype7LH>0skbv=R`s6~$*kB?P&jG)&wO8aMj)e#kSuc!U@ z0&s|G#OL_dzYfL_puSc}AOlkZ6~fYAneZJrFCY#Vp4&msA3ilSbb;J^BTMuCRZc!U zs)8!LC0_1STk$aEVnKRka>diV&zaatLLVAKf0>G5gy1c8^Sbt(#QG#Y)xf)mLu(5~)s(k+=Bg`Y)OQIbU%qo} z=3IpoYqo~sGlI}Q&4R^iNJrtPeS*rTs;EZ@2YTX)j6oqZDt;>BIJ^|0)rsIVRhd7u z)W&wDJRCKAs&j@>&L?0rW#EmYMmv}`B0V(HhL@y}DI1DnWa-ywu;!?^p+5@BvF5CB z$M%wv`}UVbe3&evJ*_Y?xP=4tQ898SA6m`Kl>y_kZgTg643_y_;gPChjsWuF8tzLA zGSB+%=NVIu$~G>dR{$B-m{%9{x-E6*uKr1o@y|B?pt$U~5*!h7jZr6;1h*5jzPGNq zP+27=kB}})0S>*st^K8xAX3EV^_sfj8tIF?n$2U9-b`b#k!)|th-OiAdJXPs+%3`gJSW9apqU<&D`(Edteead; zr~89h4?{V~6xC!i`Aq(^Sk9$EAhZVPdeBtS5-HLN>4jZFn2{o9I~U$%+~| zDnGbORfsIN9#+>pK(Z}Hkr)s)`Q)g!9wEw74fD`$*tKmFPg`?dJRD0-Z{a3L}hXCP*p%2h(e!-;7M{+XcDR^TPj%hBCQ@9}*k)&amsmjni z8yo3^0g%s~GJYWZG(SIr+zoBvL#V@sY6vfF3sCL{llSGNkxVE~7rLR;M)pMbzDf_? z5W8nr8KEnk5Yt!KrBEfq1Sl7$U_Rwy4E;+N3=di!&VDv{={zB{+RG^$i3Fw8_`w88 zl|DX@*%$lBXhp?v!=k?66EnK6xcwy{=7J|RSEyQfwpo%<@%_f10g_WpgOq`ZQHj3WI~gCj5&rQ}8Cht3*$ZK|4ywiF&rq!B3|nU!S| zgAN5GS195hPeq6HAy8sf;>B`1c3vuHrbG?jMk?#6`PF1|(FoW-n|PaW{Y0XLsGt-= z&>?Hj@+ld>6{Z6~H~@PTPm0e&)<^xAA>cCHqZJbXCwbjEsZTfG9K4u_bvfE5!!z_r zGLRef!N(F_aE`I6O$)fHwCSa&#aB{KKn`0_is5H2S&ZlSJ{5eZdf{gZp|;b~)qK^dWogv$_I_CRMUoOb+uE;Bj#9c}mA_jtL1h|JOJ_&txXz zZvyKPnU`hn=98vz+ozz~vlE3m+tbv}8y^&`+1%R1^48CFI&wwDElKjiic5z=-Mz z9RS<0a;Fpa8%c!1Be6sVhixl|8cO(w5GN`bhekn$BhJ;HaM}SKip=byk}*3WKl%t8 zxVWOp85I;O21z4DKiEwJxWpOMsrH*H017CZ&E$uTxsyz#_=a+q@P2b$IB9G?ooaSQ zBjCn<$HR~1tY?p^Qvo&w-7L0sTL(34{pMr;Z0v|$w-uAxgl_-KpOpJqJl@Op(m88~ zEn3PR-;w@F zWxc$rm3Bw0mnEw4L#xj7ZCsDnxtzZR2RFdU*zb9IZsSpeeUssyaP^>yj$@JKfG*n~ zh~D3z=kvG(<#Kax(77H>N7=UCU--Via@Q*=+cp=2BcmHAaf+Aayzeh=YUtV!72H~H z%Lf#K0d3{l#@GD54M*7L)(Zm$eh)oXUq%e5GwmbUUB1C-?$ug{Of!Z2%H0HSO9Q3* zqmTo}gVkPKE*OK(ZZpHZve?D%VQu~KleU^wA5y=zR(#N_;32`a)>G=?8GYfOv8PAdk!bftHnL334r5 z?ja86fM;-h8CVY2Vd>!~3uwn=X@*DX+zGkeZm$vtR@^V>%D*A!VTNJ`-kv?d7wuoV zJX!LDCZom1m_~mIQ|i$qXteXX-jz1eVpbT8t|iOcr_{awxxPI@}s(yilSwXP?RKPUT-~y4Y@NGHufk5nT{uILA(oc61OlN zB&+n`9M~vibV}`ZGhS5nqyi%)HXH48A1Q-DLw;eEh@R~f8~5+IW?`d3r3So15+!0x zVbpxX6gmU9``2b(_j92-An)9;=T>^^2e&*iLv7hy3?Om*T|6{2Gi16y8(Z{js$KEsh#H+0Xod3S9U6>GUNIX0(H~xeLkQOt@xcG#` zcLshvADCPk$0Y>c(EU;8cwXUE0 z=|H8dN=f(|0vT%(hf3|H4l+DI47>zSyEO$@@-Mr&^)^|U%R|B+bR zj&5ni06?O2{*Dq)@fyoIIbrbH^swC?>S{r5%c~@A{b{Acvv+btXj;-sL*yVEegQ@$vMmGu`LsvxO(nlJgT-@=V^h;;-MXWGOTYG?U<@Alh20XL-I z^(_1(&Eyd#l|s(4=kxMBt9z`jx5vxXP1pR!N9>#O{{%`CJU#lLx9>c$AfZoKNSqkpHtM;6U6c?A=LE~ zP;x09Pr#0F<*+(Fjy&m#$Wfa~YRRrunhYE?X+z4SeR#bjP4tZ7sIlm_PpBs>^_j~$#Z^; zD$JP;qvy?czMU7Jfelr-jnvT5{zdnzcC#0|eB`bIY&NWMvX={)^jBqg<0=_K>xEww zZQb2u5YHyIKLSpDt!JUQTvyYqxhKk57*)_U@NVhN?cmrOfv6q|@k4Kl*)A)U0sm7nZ zlFRuP{&l*WnyXZ;z&0)Y)9HyX8sWvv3=PIGr4=&|bU4p{dKt`-OHPBJ6%p&Q7W}|I?`F)H$DOMJGp)a%T4Rz8;!vIm4T zmO-!M_4Y`$DP9(^82a3n;s!kXp6h#J&i(Yhtat15-kz1#ke3dYNd8r%)$-#B;15xV zd3Nn8C)s)KDzk4@R=Nwq47?W5-Jo11vf%1!>oz(DtLro_pe--2mQWe(`TaUxdfLT5 zRY6D}j0;B7Y7f;lj5>fTT&EOUC9<87{SV&@8HLEKI9EyR9pgb+-sfV6n18v7J#5u( zIFwKBgCkn6aR?a>`M!5t7b;@gt2H01oq+2I6xWu$_V1H9mtD8?7Yh6aq##bLI{_Vf z)b=4GQj0-=#3A?pP4tgr+}slS6JU<(L$R^Ey>bXyz=EEk2-r4*0K#akgQzI^X+JcE zC?u_M^`iZ|vR(ux%TgJ0d|Cvw@*y6j07r`z-kT zR!}pCL2pqa+d;d$(>y9Dw!^Q1U5)d% zZr4YU%6{v45O-Ls4qh6{R6{3I<_ZmsNCx*v1*BmC0FlH^sc4X-Q$s>Mj)jxFzJ7dN zelyNU(YHTNDnD*S*tfq>8tv@M^OuWmcwuS6pvW7_Ot50k6#gSQ68iD=(ePlFd4A1eba>M_AB3X;(5M z5krPG!P<#p|2I_F+lBjM;saTg{SPKKQeoU;Y4I(ur{t`ajtfDJHPz~;Mf`ES#%qEG zUb1gw%yZ_;9Tp4D7v#^3{vC#R`|c<9rB6V&1l2@li_=?qTqPhzHLq}eb|M0sQZZ^R z9j&~B8HFr9fS@>AMt`5X$EBzpPGVQ$4hDkG2z%=?cWND?Yqv0$P%`s0R-2&2mYERV zbA0D&KrAK*&=q6+9&Mufb_=&EA)=~hGS)P+|8R~@5XQ;_TXF-{yF;v>5p-&kbvi>f z{)RkA`J~vcr8y0fZDH-gt6mv*}jkqIi}pD5>#cQ6Xv%yv$DSh({Ut zE!EX#$2Z-WW}JH5Xt8Sg6$DZfrZOFxACE{6^T@MQH_G$oxA&gLXl7 zu(q{;G6M8H9{Y-qg*5_y;E!#E|Ec{a;lrPM?AUxsn%h%=*6JE^rtq`s+c~Y@*>XcT zc}?43p_SVgklrTrXerjgU>kk^TVIsn9$7*{ysw`Gul z4=iJ|`Oa|(x2%@`nyKp7$Xbl({;B9j?W{R{UNvB%*0Fj45`F2jn$W|At6bAWa z3p8c(U{$v`Gobt@3JK^DbHtNJ7gofIHQUyx)JGP(JG?3Y*h(P3P}&4Yq!$9jF{ zhlEX-3P1n&u$Y3B`@YIP2^*Ov1V2<)!$!R0T#+7{8+hGYEqCotSps-9jF4bL;5NYy z#K6x8Et;tWa&C}|tDd}z8w*YBh)k?`-<33TX5ls67jyLj-@(+aS|4%=(w8;T z6*G1Z|H}hpIpl&<{-Z&@M6Iexz)?g^Ucr!M8H>?)kEgFF&9A}abc7CVjDzVi{8Jb4 zV1ZtjgY&G8H)NUeF)sy~=(fd*is2Y$a=WE1|Ko?A{wOBPJX$pT{ZcWlMn1#m^$;(- zRhvu!cnM12VHVdi2e?qQHupT@d!R_`J}nWmZaTsF4v`1$0!dEHic_AdSEVHc&35^qfB2(yV#{5L1fb3}Xx;Dra-oqiWjho2@406O+{ z_=f7y6U^UZG{Ll(#b5M~ckccbT1Sgf+BS*pq>qs<%eQ%{1kj#Kcz^GngUB7)J2_G( zK(0g4ZN0ES!er{a|MWi!_Fr$VH{`9(5!Wlo#Tb+eg+QH~bBFl95AR-H@B#X8$r=*$ zW`vA?08|YH?s6IMu!`#Z{5r#C(cK283K`g+82Q^w%a-VDB3n=+eYRqk8pJD+?||n= zC`8O1J0gVcdb8&DDS@A z2M?6JV1zLz20PGaEqOeww`ZIAz}}V(Pt!(@bv*-uQkR6?Z9w4CO2MY)_ES$Qy{KY1 zc2ur@mv5*LQ{uPVW?_N#-t z+fpVy>GCH(8@H6#+HC(6u^3o!Y7g^EDiB|oA8M>Goy%$f6ss3ZTgbcf(RERIV<`C_ zfw>>)0v6_azP=CcgCtOsDHpyPv!0n+?N+~voPV1MTvp9~XP)}HblwBS{1D>@SQ}iz z5Id*Dmp1d=tQ(@V&ZN%ZhXq(-ZPsxX8bt#wOR#1;RQFW}#vfz#u4DD~xj&_lbktnU z(&unwb+kWhzfn!ReL9A&sP<(FNWMp%e9z}v2k;l9wNJSlg*$Nno3*!g?Wnmaov?@J zk1=)u*_{la$<8p}mtCE9e#|8+dlh9F@$o*Z#JC*3_+J_3x8{!Dy+%RZz@$J(lmuRf zNGH>b1V6)xtp!BYb9M!q6z=ud*9GMBDT4 zeN>owz=>Q|>>dIg%+ftD#bFC-=J6TB0n90tVwTE^Qi)TVFU@g+ZZYx- z$KB{D!~uYlx$Q61;m~XO)FGCkp#ZIf%WB3mY&^e4zuh%nCofws#7B=SdAxyhMK+b zQeFMSULiop3Vd%{dqWvb9sSVc7Y!<*B8X^?+eNmY!V*fyIBT&O{dr}LuoDGh#epb z>;Cqs?oNlp%JwtQAI}^!>-!pUo9ti04*EjqP`Q@kBV#{7#e{G&=q$jCBwIr`d0@l3N--u2A{mN;Bp}M;y*t`gwR>_-DmMa z*Wz(}X;KU5LBs6$HBLNVYjCn!ux?ox66 zOK|A@{9?r{9BVD2Nrk$qk{-gv{SS-7oT}>{kAGk1t0J7OtT6mUy+=&!=XbLk-FBW& z@lp9>Nem33w?A!1GY$W{ICA$-3{jGu>Rb- zM=$TpD?o_5jb`S58;_mfEZ(!QU+rk-RlpbUJrplE+l1N>p83^irP z6_+$ZolY9KIh_G?(KmNP*(R`$4Q+YaIwoPnMYgU3_zA1TivK;Gph&s2ROD zUQ~k;bvryOtuGDg$=uT@O(M_v&j0*wC0sxfLD@|o5Fra(pJ}ryhGLrt<1DU5=LcR6 zI=O1$Zm%0~-Vf)Z5@~bzJ2qA#0^TTJ+Cj^|9{wi)0jQGzNQA?U$rp&_l&&hO|Jx3i zaX^RuGn;Y4VET+onDL(BX#kYc>vS|Z;>H=ZHgh?`vacEX%w&aX6?)`kqPNd)FLL)&FQVdG}w2NId2s9Nh zMS)xFT=$x6xde#pGAl8Jr6ZW106SwxvrZ0#opzKiU~Qt?_%bR3X`y0$%@S#oQl)>c zRZ&93d z276Q`rwJf@cIJ*?0it1x!*?KWxp)Y3y8PGb^bpKv#7?c}%PG-Ao2)+_jyMOL^$kE> z8u)s~Dzi^j2JZEEqn|nqZpQZRO$OqGTZLI6MapXLPQ{F5^oSLyV6@*3HYYG? zYXM0YXh7GMFkO_gKePiS@0_|YqA7#JUVE{bYd#e#os^}ij#01qv~?S3yq=cx^1+hb zo;q1Ugf8~TT0)~ri8V4D!Z7u>&;0ci$N0`3h!qWA66Qok;UBSnGnY;hX!m&dG+Zj$ zpR-KCb!7>OAe5PfK~#=Du>1AsIKldQv5YwqX>86~Bac-sb&-;(@8*`p!Eidd>^})< zBpGJpOgs`E#lA8do3>C0!B167_^o@92cW%*OqF~Ho13Nnb@XtJF|fr;-dhm0g~Lo~ z=J2P9v6Jdnm1`QMkh(!<;EPl8E)`DNoh<;_e>O#Tf8P#iZ)BmdFPHw)*n>Qb5Dh%^ ztF4Qv&|}ke76Sh7d?U7V|5|>!?DZd2G+kbY9%Gg$-f_Mmxoz*li!0zG!5hA!#aETu zRdu>|xNYFB&a-|(XR_Zr%6V-K&YxnQoWgzv=^*DR~|X>U5XtDRP}}b zzHnFOjZ>>`uZw>2>DTw9iu)PuE6wVawRj>OyrB2beoTw4vo^2T`7V;z{X)n>r^U%r z!6dI^si?9}qmfhB6LS{Au-)oqJ~A{NK5^yW+2Yjf>@1)r9e}!xN~uQC^DRy5h|}%J z)~k!q=uFeAb1Z$!0L~Nv2+dDg7J#-Vq|qzjC`&+g0JQ6*nuZ_nepf{WVzbbAI2cm0kBqQmL6 z3x-PUZ>s}Hei?&a>>PH_`|2guC5PGD1D4}EzU+e&==T>JI zHMf0cV#WsounV!(20g5R_yHL*NmoF!_VNI2B&*LXK}M3XGp`sojev(rvZ+EE&mI*c zeWhM!c4F}948%ag&f4(t>XZwTBoRS;Jf4w4R}FQ(>1STq^!(xw0ZDcNDSU^ZfuiGlJxi^J^lht zOgx!jHHnb2zMb$Urpy42UpNmb)b|5y8g0Hyw?&oom0Mm~#-7Rfbk4w{IcK@h*b;*o zMeW!oztSkA*yL~}k|0iUFwKGy5*<8Pd{qhTV4H=5`Nk!YeJEp6EI;u4Dgbv(aYWFI zv4mr_ZhOK}&0oy?AE8+OoaZu(UiU}isj7>DVGisVWs-`!tf)lq-1DCA`5|;#&|f*& zNJY_&6f(IVPO`Pufkl;;^*=chrpzc`JNfGGFJp6ZIS;PYHg;0QD2d4_p}YG~lqe|? zu|yx9dRYeEua7mAlh{>>!k$$k^{xkQKsSY<(pD)$t1D`^E*Izk6?) zj?TpTlH>V#&znX~c9C|5cQ&hW2kUAHj6$~vm48qo!sIIQq$0on#!iooTl_K+OM>gL z;Yh9fP~_=9$mi+zF{y=e<#YAJ{01Y}j3?yv`pLU+Xk?vj%2TQIwpJaXl~%@EV#zno ze}ZtiZ{m)(dXkSELY?y@kdtENqzvTrk!UgngT_JXB9Mu*B}n0YXkz)bd&1JX-?rLM zWet@@9VwqQMX}-~UY|VR;%TsAesG|cYUIMO-Jk53I{kRH%)siUcql6&2~mXe1qiQ3N$KG6|=HtbZ9g{#mR(dpM6aQ(3{*w73VS^A`1^!j8 z^!NiyI?jx#?UOW@1Zk*RWY0ogcp4thiVj|!i45~DBvuEpc)iHX&aaIA&9o`aNKE-s zN%YNQW-bociG8E8SYmzb+%k0i>P0SXO8l#GEO~_`l<`jM}ZTs?F}Y#YCnvZa%*2AD4w zrNCSqM&vN;nM~)2U!gQWY?YBp_-JE8VAz>SmZFA z*amA1nK2dL>!&DOucRY0pagfuv$lvqFH@Gv)e?}4oN*$ut3mdrx@K_NEj7RGS5|ct z!sUzuo;D7fOd*4qF)w=(@F1p_yNccSXuRWifR;q}`uOSmzEv`66&INryip%1K zJ;*C=7l+5HUtbYSQe6q=dqJDLjGs4}Je_xn<(YgSAJ(s!NV~tP^4>O}kmHojAyfOm z&PJSHS3eIyRVq<-=#5p^ZTz=h3%tGdkI1^`*a*5?JZ+s^RT8M(2kt41f1`4aiRxGq z7dRn)2UH@s*`2o$krE>L7cGJ>;GwjAthwAt2VwWc*O!isiovya zLig=!Zx^;7o&o2~@MoWLwL z`&DoRiis|!#8B3R)5$462Uvwp!OOv_1ya;1i*bbZiC`{udlYg|2Ysy-ZL8km%I*nP zCwlRR{gJ9Vfk`i=4RiAP|;tnX4-|GD26%Z^TccmkMlIF(xuh zg-%!%W;vx`!Ij)ftArXXnwlDPqwbXG6xewU8K-~u30aS?+ ztgX|_cotZC#{^j#J}q5*BxSY3*L%LF8AG*p_V+Z0?=&E^i6i890{XFDP|r_TV!A@6 znrVbaLAhO7a%NasJp^N2-(*H4t zjMrIA)Dn6=bC4?lbVeV18aaGQBIWnrX0XmfWM!qmu4V~Mg9ie<3b2~EybS@frtm40 z=%cCZ&QHVG%h!D3jC4Q zqN$-$$cp|Y78abqw1uSg(})g}6NwW?lcQn1yke9xqW4jG%h>t)vKs7yk~K#n6lDBC zIFtatCw`>TehuJ+Yc9O*>#K0KK22H>gcCBc*-Xs^R6;p?o(bsKuwx>!;hUu$ z^YSgJ$)-ppeNc5`KM$KU_8?DN%e}efQ?{AcXP>|rdinfYa@PXAjqDuVES+^FUx4P( z?{CQoKbXjYlDKWDn)uI4x~h_uo>N9YoW)^3KUP(h&5Q@YIWFu;FC6ppI0v@t&39?; zCl~MER-FxVN@@sy1PRX$BU_^oaqG^1FS-6MV13o5FH9-$(BjYUf8{e5414%fTaq&K zM91!sb_O$-fPkR2Q`8uHI_J;J-F*fGe)_@jTS+oZSZ_w-HGZRE)IxOKIDA9wfwoSM zZH#&AUA?s_qsw`jMz$dT!|Pqd0m;Q2)B_dZESl#z+C#Z>7!e8B|9X#oTOKo2x$^R@ z*tOMY{wM3d*XV+G-jxfu$@c=T^@iBL{s9vEdHz%Z<|aeYe@mw-!Hl%nU*YqW$Bqne zhX2xGh*Y)z00qRR#NgTE|A?Yg-T=8U{S-ggWJwH@n|N_4yQ>>oRtD;F@I&3KKH1Q{ z-yF4kT&VR+W~_a@E;ES?l!PLPM8@P)GCrs7qX zpiBtjnxVQyIjR_i^Lm;pAjQj>$7?p7?rvp!AjJ)DN^y)`i| zlXLi@$L-=YZh?3M8?6ze9y~SWoB05bMi^#tRWr*6tv`f7hZ$#q$W$1K)&~4}w^Lb0 zfekb{_`TS13_36dqhL z(d0cMe z@|mXs3%fV~0z9SiE9sPp9fuND&QhH%IUx$AQtWHgn1`uWx~Vwk^j{Z@*z7|qb>h(B zkmLgRW<31Q1L6G%M1w3G6h2D4Z_k*=@&OE=@pBJexPYi{uPYoup^pw&(c8_fp!J)B z0GJmBgV2lA0mbahPM53E=5?Sz-U2I?qPZngWgx}-p;W$wOR>r(fr;{0gdzh|IetYM zww5MJ&~L0YX4~Oq*ONn*s@iqZKSNL=Zw`-C>wKfdW&O(6Vz~|h^s4&B3yS!bsJN0* z%n0oCQjoSkWC*{|8M3{aS`>pcsalbxDmbz2*}O<2aIF|=+x&LCw9J|dx%e4aVS0-p zjU<1-m@*^wlaf`t1}?HWTA795=0aS!P(nqJU}rE)HMHhqwVBa=5AL6g|Le|Tr$laq z0fX7qWo;04)CHcQQvJInvu**g!yC5H?jifwX7MwnKtck;Q(2CJal`5+2IrsG*pKu8 zahw`Z{8Y^>fQvn}I&^*c*Z40)cAGzb->J#m>|{2!`=k%FI?R`t&p`r8XNXZ`FIUJq zfATE!2E<=pb~vm_1$MO}j0v_aFto`?4v0tm?o}o-7ADR!fTncgJ3*VHc1e8+XDc#M zxXO*ofVaZ4$l0*^pW8ii-&QKh`WdFTo27^I_N3D-i4>0SN5?jyv5=+o?M#9*>DE6S zJZLo*r%{PSjThg-n{M0qTy`Ctbw;9>SYH@A)0KtDjFuhtSC{@{I=o{m^htRADk=+n zk8iCeVVdgn1FFi(jy{mKM#P{9uB=c0fo|JNHt2XgimV5k8!Ow>a!ArQwJ-Fr-$&ar zEh^W}k$8{NU1r#AnD{@UK^5&^c{^M`COFSOd{4aqbGTfH9;SsYsZMb$Q+4pO#Ki#p{}=??XF}>)TYFy}zEp`_9=0)TF4lV;ey(zwA^etI$lo)>ktv zl2bZQ`+~cj{@90moR2r>oxUl2jn@&u5hZHG)huYxdBxLV?XK`{p9UwwIPd z7?zllIWsershQo@Gz3ldEAwFd*FCG=Wp&}9sV2U=!DcP8a?`}h$avW`e*?o*Is~e3 z{X2$`O3C=CUq3HoAtJ-YdbZNS5lgD(!H*Fu!gIvJm&*4i&<~a~Nyk!HVYq)ZVRB$YuN9MLGWy(2?2pPl{Y@7>oiNTs=#PU3EYSd*Xl_ooa5;tP*YJtl zEj;pxa{t1x%`?1jzW@7I|9}gSAOs+Ed@Vme%-r}r3*c{^4Qq0Jxh0DC4~PchqKy*! zT)v7iFtsyaxJoSGm8xUNUf=9us~{T1+MBJjrkSB@`Fmmi>TFraoEnXamo_PhGL{2w zU<=Y>JmaQ+e~b)r0Bj+^upyi^b3LBUm2tQ;+t-ud~LeGDa6nvR)m!wzB;5_(~;SXr#bC~)vm zS5c%-0x`B16t2Op$u{Q3BKTuzcuyZzyWKBlH0x{SFglm3@;ASe+41SfTGKG%@##kH zv`FaCOxYACQ1?%Fh}w9(FLpus>x32waDsA#gwH#YaUWpt1P(fta%ycbbPRO*?nxG( z^|%dWhOlsL+TS3uh%8lq?Vq8P>T_zev`$79;nGuwmMqb|h7;zw5{VSNEsosh!zRA7kLS|$levAxTIy8!)E1mcA%Hw{PYPC7vOfbV)iy~9ym&}wQ^mLDZGMTscCk?p`BpFxwKK%IA?WjdR>Z4lD;swYb!&O! zly8>4zMpA#VBi=-C^uw}IeDY{urb~O&T@?rJVrXLrCPB~gUtvsOglPh+>-AUDP2S& z{cg8afBs|1X+CG^#p2W*)>3}I734+D7|RL4b3+6=dwP0-V8c{|2cmr3@dq?9rf}9S zt-#D$HW(3uaG%wBe}RbP3@1si(sx01w`mJ{MKt*EOHaK!W_~>y@K8pS5T#z zYF5Vd&YoYRw_6Z&YIGJ1XCQSsmg^8JnG)R3SEZT1p=UxK9(|LUE?h*+qDu__O(>e; zti((%N0^jIg^OJj5jkT?b2=Ej7};|CR}&nbdzEOlD5aNB$c0QKYCiNhvQW|Xu{kGE zkGtXH44i{z*5Bz2>W1~TnNY9;j8q}g3+luDnUv9_V z1NxfMpLrBQe`k~g%oN-WO`4ZN!)G3_Y+~a5M9=H$AkSUV94?#^X3xP|L*zOcnPd#I z&rbWxc%^FB#z7%7l*8i+*2ys7xn_}%4n_sad6@Rn`G&ip8tDgFzkBrB$t zWGvAg|H%zZ4ncV(69EJr?6`iN)!L@buArB8(?!?&>9>+XCi)_#_S*KX=P`l~nB1U@ zM*AU#`m$>|=M=i8J?V#RKZzE(T~rPjDl{_k$2Cf1c~lole(`fOOs zZCyq37Tsdf`N2C#`15W1OJ}F!$6fr%8*LSOif)dcLyW)${>%yf%1*jRR|KrBn-bQ1 ze#E}G$(XEfBCemgjx6~?d4R!@zWd3|7xM87$L_gNt1)x9D>;hf*7Nn@X_!-?^)G}%}RIcE4bt}K*4qj2a+%>o63_(47Rg&h`#uvgA0 zGi`FfjXx`%q-uVDxU#VhL)3j6WiGcj9W*jJEC2X(P^R5GFm5CHyLTYu;2?t^^Vk4C zaNYBlh@*}AVjG*UuNuW|f93XreKx)#X8wZvegp7@0z8k`kIkBeH>}hX57amo@$2Rq z?G(J^v+8;S_gG;&u48G)SZI02Vl#B&g2D=Ah^Ug3Bf<)$%AH*=82b}N*dxGanyf}m zwt7R`@1Ae=cH3m^GC4Tq5qrkeu1)4Cg*-u%*EUMrqyu~CL{z`QwU*e|V8hTvQk-l@ zD2iA~IYq%2WVgko##lYE-GX_Q7p>H}*0in3B&~B(w0EROCZ@xbZq<;m-Rh&Vs|_0M z-Q-n$Gn5IlzeaFUh}Pf0?Krv#Ia*of$={vq&-TpEY|k!_iWyKKVHtnYyp`9c+sj{i zp*miU739-@ODBJ(0E?hhK{p-4FAqR_gG2Xjwt7LAAVXLck`E(~(7K@woVQeX!U0({ zwr83&!?lf$CWRI|!wiRA;?jc}m`=RndtLD!&xOkyH*95!IKiZOCbIY1W||FvX?!m!Rf+M2wRrhm%JxmvjKSWtWi>JPSNDa z47+i~W}W`87Y32US9&;Gb+YT7OZ3uD1}pa;e+wnkIkW9n0!w^#ui8wPx^FBQ?`uCX zKp$zjFyQx}s+Rx8!P4ZUF(b2+K4)*&(cE5l=rcdH(m1FRh$P67z;Z;vU2%zyW>B(| zIT^{bP>11ZCaQ4b_%-1gUIoud%LEQyTb8OjIz&0#k!>^@zA>K`jhl*C zF~Jme5q34cUO5;%CIuE-5yu3U1L&Pc5yHt06CuQ?O8QL-E>ui+vNDndxLEg+5k%dQR-jCsr3i@=WH%&``o zGAb1HEm2#{P?Quiy^*(&RAgeJ#ms=M1R}zxHqGTvX0)HV#+#CZ;x~zfUh9P7cDj3R zigf4yF7?{ozf#JM$2y5oTHmhnXNjwCtX^O5^#22=|65@~G0@|Ax|;Ed>=8+IvXII} z_|@+o#GXVnIwkiDoEe#xrws_&BGIrd`@_j;p9}=U>U{svLdPPLt*53A&DGr9lga0C zTHJ6wS6B z%VroOHVr48EoBFf6OMtaQus7$@(X0eX2OX{P5QLXgiJsUVq`(iwkE8OAiws)C|dih z?P2EOfX~h+W})9>LqM4h6Hmv&umvaFK$yu@*1}IA?4^v&7v-NC@Glm(3WSr5>Lo+l z{jOwON^H0vg4zKgYQAHoBBw>UyDD5r2AYf%X(B+cV^M=<1;3^*g@vmS-rb3{a%GG; zY5*5)$`dJ%g|hHw*j0#XaR;SXdY)<;TeEP>aN>s*=MK$LN__+)GJHjsV=oqNss{ozHw&mg+Ba zN})NS2B~;VuiaeHP=gN7TJMWfV1fS4sX~p4{U?#v4f30Unw7}z0M7$1XHp8KZnN=6 z*nIIqY6ysz7(+5j8pCwCK{;V44dEOC=WE*wuPE_)DP$OkMngG85v_jPRYU?4~ZmWZWGXryPK&rIvq^$;}m*(mjA`gp`-@w@L2)B;gXM7ZBQm*dGy zhK=42K-rG(&Fk1AJys@?byQV@hKE7p*>zZckmf+{K^EbaC6QZU;19Ptaozb9*N4|e zu)$4>nXL3?2O@s&=lzo`;F$9B^Y(49Jo$hV8$UgxP3G<$E8=pq9RUWc0!0|bTLEw$ zHUGrOWfCgqI1Nz$#D7x=d96nzvOl) zzq*`Hx$^e=r}pRoah%)1?MIyRwzu+;1&R_PrLNIpA;sjB5HS-&3U?l0xZ!m zp+M)@(;(3%$Xsj~(_$~ZayI4#Pli?s$VML6Mh0BA4|N=aUzv|*idDH_Z9id*zX4uH ze?O!d*``;pR}U6kJWy}lA-;6mse zDz-Y5GfK&>`@p<7zPigtkb_A2Vr#%0!vblNr70K{Ol6^To9!w~%L~O=K#ij!*!okw zcYVsU6kc8m!Lb)*Upp5(;OytKe0`)Dpm~$Qd*~SDEk{~SYr$}-oG`zGZ#(~}BAg`4 zH=zk@9rIKs3sA5q7;tgH+K~Zi2?qkaq?GFmooL|+u5zAM)}r|0?{!YBDqId*@E?JU zjuhbFOyH=5+qlzt7Cg5vc@$2{X|?4u3;My&yws90C-DfrR2zmPf)A#^dZ!d4W>Uq-_zC<)ye zF&)q8(e%I<{TT_+DFgD+MI-~s`a$i+@UByq8~AD7=g+m7?e6-gXFfNR5u{t-*TwNo zI{Lq~4b8zGJKguFzZBY}wIfpZOq$+%UcqQN% ze(H+Y5uk5@eYRc+yU*L?f~YLMQM{fWmS_Be!mJW#uc zayp5Lx~YXiLsdpub|`pL6>`v4(8Qps(^CFZTf@WXII zm8o)6SGb+{8EMm`D81jk;at7Bg(rlqF_h=DL?C}jmy%Z^Jxie{O(zrWT}t9Qlv6@S`j+v*2{dT{P7>K2??y%Fqg zjPQ|3sR$wmoNPoN%XKwT1l;dX_M{6Q^nEAr0PHw+vSH zVE5Q8#u5s9`1f^d@)8V0)WF}I8~!Dkdv*|hNFUpdQC=|xp_#W1RycbYS%0i5GbUUJ zcuK?&%kTfVon(Wtssb=O&Q8^9hfCRdqCnAiHY%Zk|G$o(Fgv;+-Zj7kUjPsp-q&C5 zfLj~4@8JYc0RHN$(h1>qaH{TMhbKv$Y-XeBpyl!QXcxo-pm<2H$qyR6$|Q94H0WX} zmG&UfWi*n??Q6m-hPJ1b&`j|HcQSH}g?qu4Q6&6cZ(8D>A&a=oxzfa?>#S7NSbYK# z@G$U3dg|u}e}rl*T4A+CzGgHqLsROd_6Y5oQheFrrU`B;%_QKoU+%Pgs+c}%a&4S8 zV2+{Rce%qlr6ORV)!8t6XhTR4W00>GAT?YO@WppE?k|c0gLM5u6jM_jjw8|sw!)^$ zeO=xHiQD!&78h=k3c)m1eJ!oS3L;)yPs=QPj#`=0377LCAuRjDbYXZ8HlR07?3nc( z&H{Wu>o7iP9JtTlUeD(LJyG3Nftu@!bo2tJ*2OnPrTc#8g^fkd(N$4(nl*gW!#8ye zIh7%hV45gq^$fc7M9wcLd++_i3ZR(N7wl!2>5Un|*ek|39uNc1N$n=v8qw1OEY;`D z2^rG=vQ(CTbNbRjlw7Tys%@=_ZMJF??lYD3Vz2aTrsJgE!i>E&ZhKu79-|)9r)zVo zd!obZEcqTkveL!7uJ*rnue+5M7yo2de99_4 zwpHSuSC5XYTA4pPJ$w5mDn~W1hy$Ga`>Vl@L#Mkk>-I7Vd`P4g8Z~EX`Re@m3ccxD z$MVM}3j!&@Z60j-o`8y!>5ZShJLHBW!2D49=3vODoSvEZfb1P5&ok69;X#tC**{r* ziy1hyyhPb_C3uGN`HuZ23g+EIcCQPja~BHUK&={fM2%{2jJlJ(MMD^#D2(B!^7}}S z`?tuh?U!5P6Q-EkL`kpj5`GUn&7UpJ*X1(&Ze16@uNp;uR2@{V_`JLQQZ{BtqHE@7 zW20v!dn~5%ip4p2dAWmmi$T$fe@cF*X;GOso9|S9IyU;v_&5-{ODYbYc)Hla}a3qJ&I0iTg58Z@WwD(Z}oUuNX?2! zVG{6pMD$loE#z{?ksf26sZ~=$3`;1UX>46ynY%G2&C6?W{GQ=c;r1CUk3&t=#(T27 zBK?*Uor?9CGSl-#?z=d)k-c+3TvEt3D|r$d8p(a{h$4u_y7UHv_D`Jf9vyyJ_j21y zeq6Q;J=!Nce+o}r;85_6NbBeBDhFA+fljIbGzn;=q(V|EB9SoP zz9~VB1p%9>!{;hXtooXQHj(eES3PsaAu?ku<48k zau(ZSgVt%-d|Zmih?8m*HT5dSWuOlzRFp8XIPnUtUq(Qj4Tx45wti14Vc*I${nU)6D`G-mj>yJ>6Nf`1tNmI6_rzwY>Lhbz z#$tMNK5$)RZDq6G!6(ITvvzS#&&0|dAD>8kQhgE0ZRM-@t2+fl1G8bh`I5U;y2rmJ zm+8w$bejy}jI?6iZa3A>5GgD5wFU*#O8vFdV7PR4O-(Jmg-^U&$)ekThwUkn)%;pM z=ib9jE*XEB0dlEfpb?=DNDrK1 z{y8`h9>ZLsV6U3OP<$aY*B7naOlv-tnheQWMJhhy%(CB@Yk#XwhbL9QO^#ine2D*Sb-m<;^ zT4y%MsxF>YwODHBWCdRrL&(?WcSohK-IY6QUFP9Far}tw^L(A_F=M0#6pP1xXLEKw zFdp&aXzJQ9Kc*`vs-s3#-jk63j;HPB<2>yl%=NlQ`3<3Coz0l(LV#5;D}b3RqE9Ae z=3w1XeYa*bKZpz#Q`)v5B<6@&1a_HnJlUYrJ!+%?94cIP?qIQXR)SP8xyZ%|^z|e? z)4Vas;26@c(!rr9VkN##PFvm}k&$+Y;uVq28XfB{W?E2wddd|CXHMK{Mghc^v-u?X z1Jee*9RKU82Fy4GJ~4N4W@>mil{`g0-22E(uw&09Ap0&`h4ahjkFm@3Kn)&A?Qr+7 zJLYy!Ij~~U(@rXJegP9D8_e*8%kGWZ(dBToR+i?ymoiAHwsX0?0IE*GzF2fe^z9AD zG}~?srNE0b=9i2N#JcRX$!At>MmY&`LE>%Ztvc7PjVL+NnrH+vv_9e3k_5|WRBC^1 z#Ls__?h_$Lg#9L4YdnrKZ2+^vy*QumZZ0yMOI`+Tbp<$g0qDXDK=C!TIQ zpWM6v{D&I5y{>mJKi+^`C!gm%bNruc`C-IA+O6MZ8XkV{wd7G%d+7{EaglF55Xg;| z;oCesxYJmlGAfLzmB{f@cxQ&LYD=IQX48$&sk1LV7;vN12O{{UJd*G`zOJWID`r1( z9S%m|B+0wA@ut_7qvAOxOsH>Pej?UtF*q39Ev=w*L+5lpZj6(7SAC+sp6FL;!^z8_ZRv1RC4cxgx8*jUL*T|vluY1sb>PuXXHz7 z1{)r}HS^NUE9XExcVeMiuqBaqu(`a^PRMZxQO6?_#+paafWFVgc(lTbpZ!Ce%~_28 zxAiBG;3ss`o1*Qfvp?}_gz2$wuqYV&Z67eLWRNKpv@lzU;70wzr=tlq^!uPbSpvJy zTjGO#1M|Mr0p8dykMDzbhf|!^=A1PMHB!!9-jl11n}};5_7LP|A?l4zkC^-pnl(%RtvlgbB>e@1^`CS%hli(5;xnIBiLggbTlqGX)&k$Bh+0_ zi#bgkE{sa?OKu76dCLT*h{*u%kDig(8w$Tf3QaDzsmR^Bx$SFa@l5TF$Y-s5(~%hp z3V1hXRR3^}BA+68|-I*3;$d!W7~UZ4q+}fU{D_yl^t}4pj6zA+XAwq=N^?^V(d=uhsW~yE5@qFJQsS9iuGS?0p%S0I z3hi!jg9WEvqp#RH}}!90|pipT+Kx*)dgKKDoX!n zCa~jZ+RW3jcd_&k#=Y(3`?RK^Gp?$q?C0y*{Rtn?OOB+-F8*I(uTND2EV}Rj~j{ba`xOb`$(^vZvez&6GCq0MMH4po% zjpnE0TGJ?^uS4FUwdGP<+Bwc<3|ei=I))iK@wALG2$~cS=qno*l)x+#{5|w&zBQXlGIfK{C*ERn|B@-mtCj^ z&A!aMPc{W!lw+(Z#wUo)4fGY_#d;Vp^YwsT_}YDXTf0KDdC89M2JEem~u%gODTvIc^#saTf5jjSyP5aTZst7&{+5WC&(nHTj4_K_p2O zUpFKpiXz0jPbryibhwSjWL;$;;4lIC+qQZicote2m1I&nX~|&~33*)2Pvz0=0$+m- zgk#E>ybw6D8$F9W@yZeo49}gqv<^oO6avL;u|ctuga8|!R%iTgA%rBvg;=QkaGh|0 zB~C3uLZTqUoQs=3LME6|DOBbs!DZgEwrzhHj~t!NZ(8f5F(*RvLrd`)_{;HYa0z6i zCSyy|DsnrnXa7jY=?GqzH}IyE?#GES$Pr>`X{cooqsxcOCjfK9iZ*R;obl+dAz0Ek zVAt@~d_65{5DVj8#)ZG;%HbKO*j;1y--ffmx))hH1=S?0AE9$k@EH2RkS~B>nVSU{rJxawX+57c<#nQ*;iFg^MzNoH^PB@LwLjL+3 zOmvMt!rRB^4FG?9^SUjluD${yEY}8pxA&u2)sKzx7a1=v>jH02oXzY{KSSPcKo^ZT zTb=7(hwhJo{n`k~Cl(||aS!v_pQX%MznKyDA{<0kmn}W< zdvY>6j%EM-M+v%+ofd_-S27^Hf zz)Hp8SIXv%b4$_L;vMaMewg)_hzHHClwSo_QFji17~R+8{ASiCh-VVjiwCn*rnF^9 z$2LXp6%HW-1Eust!0t&((Yv7AeQ#sW`a?*BsQ`jSHrkG}`^^~CLXk-og`#<5#?iVv zhgipKK}ZUFoJt#>9f_P*R3rII?)MxeFnkK-ofFa;-TdyUMZ}}lOTsNx>~q5PWQ0IQ zM<)*?59>K_wDz|K-GrH8awG|)22V9>|FzTlc`?*j4OA3OjAOSV%0X#rS%F8x6j_e7 z%!Zg5=guyx7uYwI-^%%FGWO5(x*W7?z-OdoWro31_Yp$qL{NCxy4=?7yWsrvJGvy= zivQ+K#iriK5kdu{2J0UkPL|A}rhnZ2EX#~sR#s9aGojHF1?no6UDkECzl-{Jvu6YH zeZD3oBzb@DU({_|oloER&E(v!YtNF!`$qSIkm!)Hnzgyl*@$&aH(AbE<$GT5i@Irr zl=-ztf;ywb!Q&)j1sDSG*Ev8>4H7uJ7xR}II`d5zo2~X6-m+aB;3UL6akOUC%?lhP zJkAX{U3zOqchJZwX$wA&ABlp83n!|DUpcN9%(1l}eLofvVm4Y`jsWSpSRwPf{XY+I zcJ$iImFD4UK^iTmABlEIWM^qR$sB-R<7R!N@t|>Kkd3HAJ^FWb#&LR;;#O1oHO!MC z5SjKHb`=Xrf*GXZ4?O)c?N+)M0T3^fC5x?*i26nog4Q69)pd73kL(v}@ zMK}UrZBP^oKL0Y9Rey>7NY|+-8OeNm>3B%zq?4^{tW=PX2ujZyli8`Ar(}^pQynE> z^M0>GV}r@Rv+?gjyD@Bd67>9OYo#RPWwF|TE? z)RoJkV8wJ|xOQq#9vO`*wP9Gj{h?c`n`C1Kzq?ys5I+~$GLZ<(7#yT!b+vzEQ%Du( zY3lE*PUA&~qY({UpvEff9pokwAxeui%tTG4Mp^g^JsN)bupfZGW)kA8zEf7w1PrH|R2_!V**+^oAw?S1StZl^ zL}5BE8TqmM@aw#XV{t>pb!Xf6DN!)p6cdZoeiw_TX?7g$zQG&EcJqUk!!+=c$@=Pt zwX`WJyGHG`(-{sv_;fm-=?4)Q#SC6;Jxx-8&EJ+SDEiOHKP0Z@<=6{YsuD|mM8~<_ zcF(P*AA7}Y?7HJC7QNH!$Fn;6@!SXS7LM>A79N`Y^!zUUu5!;vn)OKx-J(ENf(L1? zBX}K4VH>*?ip_WWP3)mxH!Q{*R_i93GT76REK@mRXTO$Hw{wXtI9PIAMB4d@-h6Fm zXX`H0@+k8bMY+B&Y`@w}eI>E&CJ`!rR{%xL{J+7#u$UBtf9&<;|4N_GKr>zd$nFl} z{+lr~LrS%Q-MOuN^MOJp+uo)CMJWtnFcU5=?{llunnfjtXnd)4D$Bv&O5J(OX-u3V zuZ_3_hP213DX8%jDfT)cUOzIbg2(*6-sAJdi_zlI{!!DLfPn%UjW%4k9tIQnB9o*C zZ1wyk2W1!&(ZD{qS!hxvhGbDmlTo~QO7qkOHBNbaCI)t}#?ae77AJPMdZPX!Xl6%l zWEWOAJ0_?9ntIdPe5NlQmHC-z5)%{6nbrAA@V0&QtWcBXRTs$6e(hMo;!(?}PU$f} zsccaKqqahH*aEB=6qN|OyiTep_7JFB)rAvCNGF(w*x_hAaRV&-M* zkAu1;OViJQ>MlV~K$Vl6f%ZJ@=;|w9szN&~QAbLa$^>QiP&kpZ5_$axhTn=lu>oQ) zW2MftHg|h2W@cy+#j@J1ev=8s-^_RX(t9&cGiE2He#Zed$KP)~H8@B~O|Eb6fOCIz zHaBuq@Eae6mS}?ek5;z)u`HeBRGoP3RTY;DH*Nq(dUcq%+9(ezRE}TamO071aVy}o zm&~*+X05I9-AO{Ai2*{vv>U8{Q`JqDxMIUPC=(p?Hu+vm36gv5k7qq$ob&U{qWdcR~$kH4k|C!I{4 zstgcW46EPjqa?>RP6OUClQ15n1GmIagJ0Fh%}w|kxt@Xid)AeGD%UeY7)u%Fy& z|9pcX@i@9#|Gew_SSr5k7I6O9%R1{{t5URY2?3Kcbc|ZLK>S$m&AR#xGwI@Z$lKyV zxNeOs+)Um&Rb`~Z3$5o}69O@__7_kvVCmMSD%Qa%KHk?17kWRX-o8Q3@B)2nbU^=j z`D^tBj8*sh?b!zCLlri<8E85%`EMJ8wo;$pEGch3(ai|q^;tSU=?a3V&i?k(@8vY9 z{>X=f{|9W4*Y=EX>PEqpqm6FH=t;O}D2l+N8M^R%KX~c$b@$vQbOw>!G)US-!gc$` zELoa6ECebXE5%HS!s!?n9$m-tdsyA(`^|`A>&uuUB@?GSAto^|nU$>)B-pfhG!jze z0=$38GAL!V!st7VXkXDdH}FQ>2RCK@s#dzhVAxq#T|I5EA3g`WtX;}tok!7Z%+CUe zB}#QoE(sm;={jds_lJ^BAz>LQBIWCez)$3Bo6Edu)l6$Z&|A2z;BGbg+rfk0&Jsyd zY9snrW+zVxt|J7;kxXMynUNkW`{kTdDb9WbBrwiOrXIww{k7V`CL>^fuNw1gvk zW%Lntid!y-oTV1Ma=oacDDJAMyU(L`ikw~sYDNySK7685tveWgH8W4=(N$LmwvI7* z$vA9vRZeooJu5T&57|@T>Sbtn-cGJ>PiG0F*FU?MhH0NnRa{ziyeAKy0BKnbj=v@+ z#w_5-*Y@86``@hYqAPhNv304(=$eQH1({)X_NW!zFV;5Z7Q2jIOpf>b)$d67X_bNb zw0pS=YfO!6;fR&>Nn!O`er6F2Wi%p(eq1oU(71%cqW{c)KIB(FN*pZ0Y2&URGT zJTItl6!U7FK-(}^w9w)8WfB-`qbjf>FZ0A`^e!*4iD~h#062|?e-34oc$Ho-HRI;NHXyHY`6LK##vZ@#`9i5VbT zZtYZp&oHoW1)kYp|H12_E^X4rFj_X-#0`q`;&Eu)Fi8+;3hZ$6bLkm&RrvnI|=o@rO}r z=;=B?G555r$v*s4r&%;-;_)xR7(P>7GGq{@jaGvymR>sxJZw{j9UzpW`C`R!o$m+c zE4OLyVvPl#Z2K{g$CA_CXUl&P8hBfc`n8664a12X3~U=#G~X!ruCXX&cYjIXyZWNmu7i)e{SoEK*sgItHHR z$QjCqd6wiIE2%YXr8AopIX5J;?0(&zys-&>)9TDEb~jZVPp;>i-uzeZ`{iFc*z2VD zaWhy0HGaeYWQOK5AYbPTBgEv_88m}16T$fg_S*a(JKn;s-+jw)6|is)42-dvU&RT35a}41>+x@-Pcbv|C;q`q zI_C_ABZCXuIo5&?R}d192mkX-kwW|(ngRJ};K##503Z$n++y2{SGU5&1D>XLxaFQ$ zD>CiKmcW8Ua}g#p4lg-#kp^Md_4mjS8LzsAct5D zh6aeWtWdw3x#FohDKcYmNm=M{Ds|ki{`G)}M0KuO4b0o3Gn4ydFidw#0$hKnt8OHf zYZ`R5_H=lSTj*PNdB|%bVidmALl=L8G+-*PWM?OZbU0-^EFOnxVg1}*A>nCJzh+!( za%pc}DEtrA)^#DA*duw9Xsdt0RiR)xg7 z;Z0NFsER@QmI_O&Y_5}1v3#PHZU<@V%&t<7VI2$(hX|&c#;$Y@zyVn=ikp!fN-B|7 zal4o{-xQs>zh**N&IDCFwP2r4{G8#WX4G`IzHqZ1@UH{sV&gbCMniT2`-q{N^)3K-9$zD^pz9H& z2&g}BY|f0#^j-^61t0 z7PFKrswmCB>8A4oJwK%w?eS9jV(hbLp(^;d+;7`C5Scp!q%x_w}Z%b=>9bf0NSx)o&KB{tJRA&Oce=B-bHVx#h zo-(&x%dLxC4!eN2IPy}@!Hl5yHUFaxbdx^-l35%G>2Z6dIg@WH%B6z9+5m1{ z&s@{NE#93M&X89Wg;&&D4@0hDq zWV(}1U=99-?`nj$OXb7Od;{Zcu_Es}N63(jT(w&y@K!MJ@jQL)&pL}i-SBjMZJhGA z4tJijR}D*LX_iQU`&DBW*D?bMwSe?D1AKf?HpO$d0I(QtohUe; z+z<|pbtym~e~`48u-bB?jg*lH&Bb5@U}5&ST+v@z#Vwa%^-OjK#1}QhRI;$a z!MQy26^oRw-OIwVkyMU<%>3BHFnZ;7n8k1GRQVj%J8tGIrEw*$A}Z76|JoXaM5Y(V zF7AVa&8zIS4ke}{93i(3I@SP+`MkcN#KEx8l7F}HfYNNiiHoIx=d;oE$xJod(G;g^ z1ExmOx1Pf0zd90 z2#+~zmTowwqbB|QI%mWn#xw!ROh2^xO?2s>ODsE z#$GPYpuyR{tS*=+*z z;Y%jBN4Yj;WT!Q|rg8$iIz+qgP1w?M%lZuTqdK+T2S8-S*cNO7yGkqmtd1QJ%P$3N z=$WMItU!Bmsu6A%jA@B%jO-(4nn<|8N37R+RLZz)Vc}6T@H4fEG`=cIVp_o=-vWXI zgZ2ylENgKMJ@e4UB!Po z-}0zCS^z+yKGWHJPOq3o0A!(3RfE3bEP859aLPLqKNl|xiS-uhgaV` zLCg0CD5ADk1hzg;7fCDgCGp%82yGf5wooHzfa%W^a-R{B%%oe-${{;G`y0P~)xM*! z_*$VAfLi6|hsI=aLq9F8*>ZFLmk>Gx_f1EjsK-_4z&m^y7{&17fMSLV&}DKfbXaeC zDYf)!*{ag-7WDmRYg21;c;r&0*Y5qgaB^6%n$^<@WE_!mj#7l1n<5R8abr>GF$Ri@ zi}uf!>{eh~Q0)Hj_-N=5#dn})l>`&M+&+|N@%w^DWw83BG3ZiDYaac%`)_~%gtgiq z*Y|5k!`0L4i@Gd7^DFD9nj7ef8|b=wHcn$3mQ}x>%RKWe^{(sd8qSNixbBhHjVktf#GKK^K5?gXc}w!*WeF zL#<61O3^iyBuV3?1y4GhmhvZF4rBNirNmG%yoy}ejFb$B2&NckP7 zG%4shtHl|Yb24cAkCFl8R+TWB0M}Z+E4a3seV{fJl$4WP9K)}4%K4^NW+%0tGqH3X zwG8Y^#kq!MtOpDB2!^KP0H*F2_Z-dsSZJa5hd5DyFR4*uB&VX?ei1>=A({YLW7oqQ~x4QC3t{4U69v;%JCs7JmP9wJR zI7qcS-sI(X#1_h9W2fPUL-rg?ndcQQdzDsC z7ETB5>N{18i)r(^Mecfc+!6h6C3RK2m4g^0-a2qgiQd~I!iIH_W?QWuToXC$Ue@(E zlkGe-p0Mn2&=*5d1Tn+{flJKXE@_rr!HL<~jy);4hR_@QoPMDe1$qMs4EnXUXH^$~ z6793UG7X>fqt@KTT{NJp-|n0-ei?D?=`!$)QMZx5y|=PtG$FA7!7LBZ&3>W@iSl*% zy!3Nzb>A;WTp55DKW_feYq@PH@Nw|mXp+8sz{ofQ&nOSPh!{;Sr5I-~Dy$zU`gV@k zb&d}_`|$TDm!ICJ|JIZ(xBaLsVldj*!k!k9EtmNve*{cw8L{=Yo^YPw-l=RK&OSC` z@WZu@FJ-N}-a=d1Oi!9>65qdB+;4iHPcMDQo}+*tgCPpQ=5!){PziO**#od? z;`ReU=Lh{uzImUf(oS(zo7qNg*Qm!1li{bV&)lGmE|>ItEQ0p%`%L?ub+KHd!w#OC z+X4_3u~Ay?Hq~mQf9pU&iC8;TYY)f>Nls5m#ms%Jw8BwAqHMqz6aRoi{sADYe!gD! z0@GWCPCIYfG_pCH)JPi#m7p$urDC$i0hw3*OPmv))RY~NK#6$AvoI-0o}NmUIDtyT zhG7>JnT(M?SR02w)x~eVTz20-j*B#jn6V?|^g^Udo49@^6t!~6=+1;MT zHBa?Roc60FUnhMV!)ll-eWoJcf;iFs{hr7n#^g{xJ-ukdE(UCs4kv*yD5#;ane854 zc`o~7bk2Hi=721Z$E@*R_hP4qV%7Zjv1y$S=ap^DgKys4?aj?k&tZGb_8Y6MrYYPS z@d8wKAAf#zVmunAyS`5Z`yxoVMhNZ?OSlwIrFq>Q%F}#qJdN=0!=Ma^${v2zEvPM$ zb$MU|n|Ig(2Yo-WVp~`>J}fF>s}~RZ$R_OQHIura|&59?jq;Ez_NP#;IUB1Le z9o;YpUe)v@x4IfPJb#pV01+{YxrF6EbCD)Q!xC5{0~gk*th33cgTbOO+IVg`LJsZ>W;(}r;B4)x&A)vG$@==CO!AZ4TgwqMjxj1_ z>A=O=oWCCai=Z(1W~ak6VCxQOLnT>>z*#R8-xHw%vJZtxJTsB7984np)bM1K5`$Tt zJ{`tyn}m@b=})x0PPf5TUxsIPBsf*^gZ)oJEHo`@8?R(Y^qNa63p?8CS~?Pk;3bD+ z)uS}5g#LVqr;4JE&_XoUd#X6;$?wj{+QHkbv$F|Q30^On0yhs5FG(WeetrO&rl4oC zs(XzN)wu5~6|4#tQk&eC+^^h6!Q2newHpOQ=gmTOE3BLN=)P5S-qc#LkwR|Kw8V^1`&)%M%nzK@`CfL}Xya2k^;@Ua9b%Cb018Fe2h&MGw zte?nnCl_rvmbfy5mQqE|Z+!;X$3Un-_e#yqZeR3CaiQv|bxt;~>L=&H1mDLM%j|^x zMy~9;mCqQ4yt@b$1h(7?tV;T7eG=!a@jdDoE;rjzdOEGfBCJT%DShsr|K^}1)ew(= zF!QP$r1wHaO{$1f5Ak%1`jPrWkLa}eqAD1(jJ*PmqQm}M^BOSePz^T-fA=LOdJalk zt^{K3&)b35Eyc>8#3ZdZW3PrN6+hRkEMSo|+Wd&+4JBun_$(@JUZJ>s6GHuR+x<@1 z`|-^rU<8{n{;1RhsW+n#9tb2e3M4jN4h*h+>x7*C+2SYc@27}4Y~xQ%FnE&=*1(4a zaZ@bJ&_Du_k0Hka3ha;i3UMy+MY6s~bF5n$X%Isa%dwwT$rC?Xj54-F3!KQ>(grds zgmTVNj4n%T5aWb~upcZDmXOG1>o@tFka5ih(RdGPsX-Tw+d85hcQV*A&bZL7H6-sU z!<$K%N!m!dT(FJB7bisatZ3-=9`%5rITlaozD*E&05r+(5Ed!wud$QAsaV#xWsajY zb~YPM`=bVxo~3M4`7FBl+8~905A>j31?2t)m616@Q;q=83+AaA6e7$Y8p?Z6Ie?lqH(9GK}> z4pw=~#gYmn4ybe*#w3$AwyGmMQ4Z=!i}geR*Y)p_o>gNFAr2-BiyJVb=t2#!cYadJ zwZ?rzL&Mdmfi07xkQV;`t6T*o9{s zO(8bNq(6@sf}(a2e7UVZf%I^16VWn{R!C7CoC^3qG+l#VoqyOq*|u%FRxNAUt+woC zyOV9(wOXw$o69<3*)7|y_xZi==lvJX=RDv0y6;Oy86=lUhG3@7fpJc<4c)E5}P6Iw@St(JVb zo$zq$RtH1D%|RJuba7boT*FKE7z#miU1G-4kc1d4iy z$i%#8!eG9iO?$?pY+({++Kk#=G5=^0@AkUAGU#_4hyeGI2{#e(P<_o_%C>Y5 zhL-G%_fq|IYBWLTj?YU5hq40A> zVO9mujzSnrFU(2&>(<8FvKem0qWA3griZ~rPdjU99{x5uigQj_$K=UZi)b98nvw~D zWl7XBO}B4kIO`jk{KfT6KIWdLt{^K%jH-jG1JW<<2czXU3uNowd-JdF9U>&>3*Cs~ z?~&7D!s0v->1fB{apK2}u*}4YruBr<(Z@NUO zS()?3JY8Uu8A}sLr6?S(3cIg1VWD5uJm;A2_Qp3i%GS)Hy<(I@b!0z3-k)7YXeX?<>h7LU}-C z-OzV4t5WDpIVlX2WjKXhT-2KeYUR z^Aa`KmiHt?4)|XvHAOHGfq0`CrLZ&;FU)yx;H}|dl(}hsVJ2^f74dMIqhaU7)5?}e zCjx4Hm2z-L6tzPhq))D5j_a9PA1I97_{ieS;57I&ku-~hB_H!R_6`Q^Q^}L zdsb3eC&NeW7at0uvSG_OrDDk7%mS5b^4u^|C=xg|h}A?gMP}j?s3PISA$|KaB1(7Z zElXDIoe)}^a78Z2kaxd$4zT0PiOrvf^O74s%SBw}Zf@ZyN- z!reGb{{0iutaO%;7$L~1&a6c3^S@q zz}8ArP+IUPQ;RPiP#!fe3N?gc`i1J6MzO2m5u_9)&WUe!*L@%nmO@(3mXR`(Jgg@o zH=?n;x$pNT>1owk_^Xliw#ccoUGW(eSj#y$P7-9xTD=7@#A%CQ8-{?)A*Y+dpAg+>c=G9+#y=@ zNYK<-Yf*+_o>cPMG@TuExa=Yqz9h6^NIW)FyV-=nLF&7y;c=uJ|5@b<313kC!5Brw zz%c4|-nrZvI{$D0SaCo^E77i@m7`VVZDYC|!bsSD*)Gg6(qZu6j$&?2746HvMc*cU z*bUoKlQE#K;6o64hEQ}^$@3y%tgq+eIVHwXsi9ZpH|b5R7=!07vEWTmX<2N(w|Ts> zEqfdRO3kNLUa!Y9*@pyj1^(Ad9RCsy zyvgG6QTfY>FWz}xRdMgPlBWb|Uz*jJ6;cIlI(Hq>UOs=ii$(rh>N7p=rOHiX?2+{} zo2Fn?!JzbG-mlG2V1zi{Of4#@HxhSJcPy@eHEBGa)^~D1v(t~0`fg69y!))qPbY~} zk!+XzSP>D;Z7NNPX{!Z6?EpaV%w`|~%lTFU=wMpt1SDST40SWb0a0IY{F0FB0&47;4c(PB zP30IWw>4PtxL;p$C79gkaK~{wFJsAwgF6gXs^Qf&TA54yoQ$!_^jnaRO4Q~pxjcCp znR$!?M>2 z{epgM)mLfC9z{nr4MV}33EuAOmqVxc=<*K`qycvv=(X*RJksgGO`{7QKfp<6!J_*I z1t$qr(7RxvkGo=z$-Ffu5YRX6iWB9z}Oxy_qc+wqD zSMhPl@)I$p)`Fd7FbmvE&llUb^M?>gfer%Sp?HdJzsIWwT8K)}6lzNg;Ejf*`9A%C z7>N;(j&Hxw_w!Od3#xPKtG6I^3K`MCf!w z!svH(Q<;2(Yz99!-$jm^RaI4$yFu0cQC#f#ZFlm`U>NXzXY#9XHFT$aRcQ`r=$>y3 zBZ_WkTfCGYqd3c$7h4B^G_t?@!S!1TwX6g~V4_Z;=?1d*-}rXfmK_=)`5MxHPwo%# zzbYsRlmIt%KRkl6gUUA3UTTSPjdC*2EJp}Xb~mg;kj%FuCdGZ#E=Gb!u6H*^p(D-P zA`C@Z75KkyO5wUPG?yxIhhjS6c8FZEsEOl&t?Ik=i?dQE{-|4fVeKE&-{LZo$_@7a z#-~*^Z@RjEL9y&H#%x!t2$0d?>0DO+RMkF44 zl?f_DlP@NXTA)H2@c^Uy^DM=J6$lKFa&5?MSciHQwys}@E4!{vBt zkubww#OU$M<8fmaC^D7~pl=}K*O6i1Mt`Fe$d+@ENix%) zhWY^X9sZ~+U|^kB+%JP_iJC`jyYt}q-1xY(i~MWD_2WPKUX&s<9l0a2QQC6dtDQ8U0GI5I&KWq4W1?k>`o}AJ#;fC z9B*byEs|0+On-P5F6~SKZ%X7%93o(ccm#R^@>U;%d>)T>oAUBTgvu!$aINt|2xJuz zsbrqNjko1A8`jR;r?k1;ep1oKTKJw=R_3rYE#y;^!j*k73-wWYpb@W_TJ%6w#lhwA zC7UZE;OgH<+BaPQ@O)`17GmMBx?Sdrr$Yh=6SWVuGXng)RH`tA8%9J@yRfsTm0i7F z;RWUEb*?LCKYs#&tZ*^epqBHKWqU>?RbH03$EL1XhWnFal~K+Iq+&t+k@>HA@wb`* zzoxwR`BKL|u_YtN&`P!2zGh!tx$Jum*J40847-S1F2!eEaPu1N>)zPF&8z zV3*;$9tWEq#0ki<`yP2d~fr1i7o?)Y59(z8(|+p;5$#DyJ#w(-vT`EEAd0B!2GDjlI#R%Z{?kUMm6xLM>aA}OUVOEM+6 zB-*IpEfka&OdS$Dgc3tZj5iS| z{vsxr(q@S?(XqcjKUhIqr=S!DvWxmZxjB#39cY<+{~%$lal7mmM#g4U1^&_q#%&C;k6LSjQ!F1cNe@O+okH~os`zSf%f0L(SsMNCoCv$?~TZF|NJ;Um?e%<8$i{U-;@Y#N5F;9-*Qsn?@5ZfDxi z9YLT_ojQ`N-R9D<2|vrnI5ik3y1bH}52qrA#| zh#B<0*kkER<@%l45!3&*U0rM32YPZbC_cXE`M|gF`6-$x;-wSq)TMwnfSr2BbuNi` zJsa&C!?>(~;bw>$f31c(RFIBB71i(0{%6~d_kOVAk2G=#ylg-dmsvXv))2;p3$xP) zE8zapZ2dMcmND2*$JpdI!CXUQ-U@*<*dAV-ZdtITGw3e9Se#@kl{K)VHLP;*v#JrN z=oP03nE$b;!cO^P3gjZ0B&B7!w_>U?>=PV{FGPKcqeJ^^Obg_YKrS^I*bQ569!3&+ z84Q{{7_T?&sOo%3W*J9oS(%ubU4Zra3H16JqZ`4oW-))3XX4*kcu%PMw=tX~I(D#> z9p&u%z$xj?>9sQtgrho;G?@NYU+tOgz#m_!S(Mo)gQ$B}Y1P_NE5~#;Zicr+^|68B+yP>S%C*n>_QUiZ$apj%I{Y9kb zfF42~g7?|!dljYjN8Bu3=i(X%_cL?Oaia3UO5OU2R-pKbh#O!DvPFNoGgbrgKd>`` zU_odZZuf;UC7b&w7S?S%8hsNXL3hTRB7}}&J@@$HH0z;Gw5EiF7(SfY#$iy)NwOgl zbwhUMG*KoO)%>Ec%8cU1eCU~ji7APCB+0{)no`rafxe;eSW*gg83}SJc4r50XXHc| zJK^MfXV$+5R@_9)+U0^K}lYpp{c{ACBf5y3s}pRKivMxfgrEc*ErQaCa62tKH{ zws5*cCeUiTH=Hj55j)a0BV7D4U&6WTX&p6(_N0GAlj0n3#N;bT2JG^aDGy>%cka0S z{kI6tGS`x3{q}k6N@gsBo>At_8LNmXD%slx-2M8`PQ0y41D|S?L7q%C_O2gx_VCTH zmn%t-;*+@7#mfN7{q2dc^U+-Lp2Y-9`Z@4lR+Jk8ib%*syg-Oo08Fjc<7Xe|S*1jr zy@d2?d9P3~n7F;2hv#l_a9aoBy{%fuw}k5|qA*a`%pJznp#9DT#KQz+7R5I3b| zo1vgQZziwb+Qlw;1+~BXFXI|Uts9ZUYyxw$h%OYI4P{aSQ@I&d{gKSDhi-<1Qn;D% zuPQ#73GQ~EXusy;v<CZKuvFEX>+ru!9IXEF&OH9fd4T^zdS0brxEp- zHYo3rP)w>L5wIG$?94}~ScZ&QjWmr^RbOzgUC(4jhvK|etk<7U{#+ZpVs#EOOt-Q& zY`o8jYeR8g_xaf5b`>$Iay*>s zh+l5;pga(c##+N;$t<_w4sxcGNH}T&Tj2bgCY09g%I$eHJ@gS1)v;_Dk$(3(Cl;|n z)W{1t5N^E=zo|XZSsxSs?Gr`u$j@%RwmV(P-*68&t|UR=h!^xf8SPwgDi>ZLSo`zz z6?8)qPL2U7(b0Oe04<}*S;0;)VfyFcg~Uc@>QuZi=foAISmW$f|AM)hdn#qhn*MGK z7Q}26=D8%gqLf!gA;q}g2%WX~NE_o5C z`iiQjR_Gfg)9TM?$i$W=UuK|!k!lVfTsBQO@76LpKySJnH zf%m}iCjR4Ut1rQF&L0(BP}dg0QNy9^#r)5+wI^Ozb?w72MFOZb*&{glz^gADxy_M> zG|}1pJ;4jVmlRG=;gWV2+AR4tzk)v(It|^~BgqQYN@wU5moS7wg`;Z?X>LRJrXxOI ztvR5whLDVoC=VjcPCdyXz?;K#{*7>{4ZF?1fvcy5}wMcIdOnybk2gDboo|Lm5~LdrKw z{YWf?b7Az0o@#~_dIF|}wVG4i6vi3La8n%oBF=@(0><9kDZm^_cZvBiMuIp)T) zB&k0f6@|lKhb=aCLL)tUbVPrTTos_W~XM?T+33WbX4^Yz>ea2-=# zq!L@)-#Nd}dqhf*(HChHUd zK0{WC-Y=tb#_Jm{{qq1cp@(Z&&Xa!hz-=JCX__mJ(xBg4NDYPxFI}W{90o}xeW%Um z)Mgr8xKz9~mali|&*plplE~pOY87#m2pKHJvB8~={v+=#>7aet^(tDDag{DlJNdPz z%&6667f5^&uv_F55%GI@xGYo5XliZ_IW>-Kaae1^W6>cMaxr&v?0Av~!~3rLzWBZN zx*qFroMu;?R43l14v~$~-so{Yvsp(Z80?8OzIl(QUMn6`I7${ca?KtotMiwz&eCEL z&QhbwV1-NetZKT~lWAEQ zLf=)$uKYa#+M4s}^zblCz|rvAw_|{ug~kaCU5tWy5;cL;LOs;^Hi@uxAJYlfWhf`-cS(U40C3D;}ff*KzG8HcA* zyI~T)#{wO2OX(!y z70E{`CNJfb59kv#6{A%awyn9IOb902f8ReJi8hdo!{uPppV~%!M%}XRo720zJw=%$oIg=oLQ}&xrQp`lFC7z+O@rlK> z&rL)kD*w;T?Usy}i)0o)7b8*Ct}G#JD5H^jnvl{E!vpYu-$9|iDnLSmYz~$ox5oy; z!Xp8w`hJ{oB*+I8V9M|5y(m)fiN8(q5gmiABs1F?)>)`fapYxuuvYyM=UNJ#ykEA{ zEfCNtMCLt7W6?mEFoM1hYyChopfCl#i0@rBB$>8~H{=c_+O6^WxY_Plek24N^(vM1 z8VH0ZySJKp%Macz9zCjhDTd}Ny*7(zopl1|Kvjl7!80v>Q$R7E7Z&rD-GNh4L$_)5 z)(^;{qEc?P@f~XK6BEx-7UEY38@TMCRINRr@OwQVe-NL@*(hXg4z5p}*EiGrGo<>O zi4T*y7itiN`+*ley+61Lr7 zI{Q*(x*Oo^h9>oTEay%CtD6z%w9tT)c4h6;= z9PU_F$h3YlwA8Vb*0EH#eO|isho95-h&{#PCXeS20e((EIJ@-Hg0iC}E zYX1`#VzpYRi0#i0J}TVbellbCBK2r)Et!TRgb|X5rgE>9Zhe>Mz$Tx%piBvVoqj>| zR1i$wm7>Mo^qbP-W}*eLMT$FxOy{a;HBbZrJv4~86ciX2U(xi_Fe9&vI`VboG-&$% z=)`g5kxfd+i46%1_P7GJg6z~t>Pz)fSY9DiDH`xu9|RhbO2{jOuZ+}WHS#MWj5E^7 zP^gL~Ft;8XH~cK7T)McD7sIQ)9U&yPNVZtv3vLubEWI-XS4{9GSfW>r2J%mkH!G~% z$BZyOoN7}L&6YFUvLGP*)Uu!l{dY#JME{iV_UYek&IaS>!9@X*Q=1b*5^y^KX`W=@ z)MMLA?b&aTXaL#yH0V^RcMEhde+pogGPt(my_y^aczeH}#BbL=Wm&ap3mn$Cctq0L z_|9d37ZME>{badau3AT_e*#TqPl*2wKntx@H1JXu6tJX;*;q8UoaBR&xG`Ue5X z{LW6%XY?~MSBHxr|Hm@|M>*oy`O4V}Q};X8>1!VEvhdg!JC$TLEnC=5hRR?NN3i9| zV!fhf@}Pod7?V(Jrm>+!bOIytp=$hy#^{kfpkPqW-U6~B&OiKl{_9zsV5Jdx!oqhI z?f!YdTflLh)L@uhEl_vLP`imsDTnY!Mz!9G&-t7GkijO8ww~eDPThKRbNa2vp9#50 zQ>&zDt}JFbA}6dY`lQ7~SRXsLy9C|4vdKVjNkn(IyYIt6)Xu9F!r59xij$bv!{%h3 zaC`&9k30!%gV~i%i)dh5ukZD7lPSdN6R`7W0rpq zA2oWHMWw$GO0jc3+oPb`4A7r3yMie9xay}9Y66$+dpUSzGGm#`rhE9zy$%Q_XPU?7 zn#UovxkW~BN=imQjN0TH-MUSeOm>bwem{kE8krCJ=1CEfv)wqv4=IbfRR^J+4YCMy|Xy0|n#s4hdlYOmlmGhl&YK)I7X$G~&Ws7+@xHW7| z4F0akKHdtujEz&bv~?Ry1Q&WvG8_&Z@-le8uyfU&@)h*@OmHv=n3Z;QGyePtZL|CCz3YO`LA9JePoP#;z*%KuG7C_$ zUwzxVZ!>v9LLX-QeM%KzK?2M4R>U%_P;zL8se7r~$Mb-F$Zow)*1JeOwKl_|oLtZi z^A`|jNzx#j$Hu{uPN0f$2gewDK~n_HlwuWltXD{~NRtXB#!7gG23j-1!m&>Y3WU;5 zDS0)U!F$1#kw!%!=!@iy2~NfdPT6_1a9ZD%mT&ZY@8aV1czwD(U1_e>pJkr?QJEAF zG)m}T!pugMNxE}R6OXLnT6#Ux62|n#-9)$Iad=e*;DQd)w82Rt>&utt{T(64j{oip zZSgs9a@>eDBL*LY`v#niQ8zPpwTUz*3&b!uziOBS&0Z71KFCvW8iUXZU4l7#c|BD{ z1QbxcUPXxx);Yx2t57>jkv~!ks2X&a+Wb2^meCkQL3LEQD{wepoLg&mJQ%z^-}sjW zU*UH!Y+_%;H(wrE&s5Kh(u?QW)%b17;j2vfuesq*DZxPqEl)}@i>i|y;{}-H6pE@on))Nz;2@Z^UGszzR4ay%gM!)LN%nO zr{7V5&{TFtt_k)dx`q8;dn=2c<=8jY{I-3(_r(XFQkvWuQVim`qdkSn6Dtnpr*E&b zCwfKk$2o772*ClCuh&RpCv28SpIm!1To0&S^-_dPgP7{3|JZTL{LLvoR+?6{Kk-kC zI!#kxv7OP+CUGD0O-ZMi{wV@a*yeCARB?Qozv18Y`T!Xzdgl1L;g0j)cwI#@UghKD z1PvM^hXv!}KLYc$78c@Y_|gG-WyvNd{m`!V_*rq(N>SUW>^CGJ73pgCHTmxDA~pt_ z*qa(D>gVdg+%=b~&1+ zEATdhbAGuwQP@6ax7z9U?ob<1!8NDB+?UC~Mdx{X3ek z{)U1tEu5^R_^n#aXBh~=+RggVWH>Is)Z6~->#JRk`{_G|;_%4$RJ^h#;%MyZ3vQB* zP~c(TqauE}zH%&L;Q0fmOJZ{kr`39Jc-R<0!3WnTx4`c4%v`<9qmdZIh3m50CS&_P zR&IStysvG3OWxB^q9oV$FTC!t65AXm&M})7Jx~WJrqGbyh8EJs=Ey9)+)<9du5nlS zFwc3gj~FPV#EA!^?mtK}cu&RVP!PG>tHsp{VIname_96k2Pja{_3->=#EV7C#7DAL z4OLH6%fv3iaVmY88Fc{_mdvX8Rrd^;0HxBV^&ccBf2ZxC=L$c+r9ht>wz&On3&^MA zu?OPrJ?XSMV5$rT~b4grR3=W3#uj8y_EEZL&Ae)STTOi19pG zOv=e=_q})MG(3M<8D@E&dx(f|icQ+Fkp!A`a#XCE3b5HeMvkvOeSnv04u}sBT1ouD zRqpor*L{&{SIFCuU-?DaEyh$$;M3%j?qj|xJ%F`ul*xW zvgx-xvlZ@zc_{Rtk#+bJuF=I@mF~K=rdtNbk6uqV&z|TiZ)X2Z1!N3#^!yL*wx`RD zm6eqZjQgE;CLmE~+#yDAfb!J)Bxr(C4QUJNpoLPYl!H`&duukjyR>r^3Ce2<5t{~) zZ`x&-z5Rvb2m{Xg;j&j9)aj7`kT3pg?VcPXxyU`b8Zbzsaq@xOaU_!a;ZL7FU-Ivw z-Y2WSYm?~haVp_;_n;%KP{5JDCUr+Dyz;`^*-*j;(c7gubTeroFGTCY4As!6{bPgm0Jnj} z{Lx)wIjKP+Wi~#=$p{8R-3#C~luqYZP8d%^`9W-}dRqYh@)WTCiYW@vl{0B$6$q27 zq+PcujY0M7m9<*wQdhP=XjQv^n$aA13>g%{NH~VLLcO9rxC7Sq0gJMgCQpZrR;jPX zQ2n$Z2$Jk$c)T*(HysPyf2@YBb{8+LS8cX3S#V#Boc0mN71laMSquymN5?!oPo4W% zzE7yLZC?35`;Pu#)~#`{|5C?UhH4n7u3^e*TTLn`;B|PE#$$!xu-=B`gUxFxBL1yW ze?JP03}CAc%Zco}ySo?y4i9(t8ol49Yi;hJq+Y?QvNDU?qrc!%xj?EO-F-81YSJ14 z4x?M6K+4Z9j15&eIxVwooo02SuRN07xRpl1GaS7K1k*R}%pqNUxMCZ)tpk$6cFuu_ zulD1iH|?n4XY3p8aCK}O#uwST-yJl|a1xq;9OcXafl{amRoN00`e1;9uDK={HPZ znY+!R)6}1BEkOCNm$FG0`7&lzz=_?@N!74OD)<=Q92s>*UoJlAWYf_>^>sZHs{pXP zIoQ8$!`X!hYURksAYGY8VAA-#{Ifgk;B5iNo*V1z-~1~XN&vB~wZG5rfH_W~@JgBm zZ?<<)z;nPsZuPen!+Hv|wVs|$^ptx0w8#u=af4=(uD)qL5L__-%jTYm3+PqutWfPu)8i*-2D%fKZc1x(nyIrwgb5_sx_$ zl`6Vrx%?@9vSyznxBK}n8vI_`BLO8qD&*s4<9fZG@2}!Q#^Ge0^qGw{q9iU1kDd_& z-G%VF5~`qf&;li8%>L@r4^B;kX0L$baDGJxAKP&6=lnbj^1eh-5fM~tk}r^s8ETuQ zws^mPfD>&z|i)$=Daa3)7| z`o}2vOI>fTUJ-nI@F|a(=HP8BU%({NeYIw|M zc#5wInrLTrijSAVzlXA3*0vsffF;9uD!awlFLErEjiI@}_7ZOKPJSJzZkU)Ui{NFG zW3%@MZgj2CLjU_eS``9{DO;Vk`haD>=NL2SV2Gl+0H;uf9qh4Wks&sT1H&uwDuP@H zta9qWkbY(Z=XVbRlR7?MG;qGdhi<3}_B%n<*3*dDiGm+baN`#N$BrBV2Xq*c?7mwp zIjmy8)ea<{NJLO|C4R_o;-A0rdmKi70006mrS13bQ1Z92C|IdPj~3z9Ipd0$y}y}t zstx(bW8R^leqzf@Up=|?1im2){?g0LA+E*xtr4aa^GBB$t-=-k{tESapB9Or*0#&* zaOQW{PB<&0PI9KEh7&-DPR+!6BCX~EpD?TacjRqZ8RF2@?K#Gn(4HG41@m2PTr1q& zQMaSMqdHfDsX*Mp*U}H3=bWh)(41-e#Pbd|fe&lP-n(4HU81?U7T9Syn_|Sc$D<^+ z4rtwmKA3)WPtVWyZl{N$5ElN*M>;2VG4-;g7@`)7Z$o8c89&j`L<8!LuG#f$Zr_y>$2Jr%6Pj(@hofq_^QHx2bcbF$VaKNs-ndgbV%zmNA?)0xC zhl1pG3b@>#rIW3U?rHz!Fzn%D48^kq^_rI# zbjK>kVdO{WjctYv?9$3)5B#wfb9Ba?$;eF43aEO&DUW9hu|nuAgCf{HoUH)(u#U&1 z_z}B+%8!vmO&0r2&yFr1Us9k?S66@2tydvx4TP7{ezL9Uz$W7wwcj)_&q@$Zl}qg8%<^e!(>*POx7Uo4>pouvK(Pyw*mejw$IjD zkIppSG9SFs+eSqqqHS!xKCXFgDC=zjZ>UcKsjXgzvCK+Up05WKF8*?g&4nUb*!3vO zk01Zw=;hL}fwtwSi@2#z!Ox|WgBq6)l`iGf62@9TH`9>r)!?$f;&AYo*S0#Ulm~< zisy)x!6{2nLv#13Zn;7pyX%`15j|Fpq8$O}Bd{60WdcuRpqqpgfUf%QF?p9z1vpQb z!aUHaeD5WEA(<-X2Pk4(C#aiRMu;!qer@#y>eGGieb8?$@pmmV{_W!vNFTs{2O%fz z-m`h2(}$kXnbYHzh8{o8wNTcu!xb8QiIz6~Yrem)^;gTN%jI$Y!l^@__D6)2uqo?I zll!-!@h<=@?r5oWMKPi`C6>MlM|H%SO}dL8M3RM1>|CS*^0xdU|~sjVBl@m?l-yTrIDW<5r+4 z_iN$B?hoB%VSc*L?!SqXX3Ak81$h}HwfI*tx5>mme$DknUQ`Uh`vyTFafoD+{B`|x zFB*xFXc2h+Ru_GB6zbM!q0v&H_cJ=HwG4cR<(P@%Zd8w$=8(+Rc}PFutvzJf;OFc{ znQZ!f`!BBR$Gx~O`A2`N_jX?WZeK8dXD^_R_z%dOHvzn-J6u3S_-UKhVe-eJ=nMJ> z`Ohh9<^C}_$847H-*9@m*NeYrMG6H|=Y5|+Js~2YX6G*5`wSeby>9+Ef2F4tplxny z?qs07r@%Kp_<8nIoPE}adKmjb$5;C8|TD<1OJ>iNFjD;1H>ZUld!USMN#C=>gK)45Sb&*n<^*XypGX{jn_ zMCDimDAn)gK|R1C>iZm!oNHt`XCajZClu|%av;!?;THle&eqZ_VbuBZfQaL?;?MqW-GN4f`BoIPfQ1S*v>}&%;fhM8t?a|&1fiUV?yExOPKCT`kemX#Gg&S zReq{_M?5Gd|2xeQ2sZf(7z91emKsg9$Le+`jMd!i58OG&58na|+`Ah7(6ZE9*N+$D zmN5tmh7xqzu4U)+H@9Kjl;T-37~GOHIdnN+@0I<~y`%WxbToeWjIqf_V5F2<+m8eZ z2?J9x2wO>=a!5J%r#?{CW zUD(4hNi@2xaO(VCc+Mx*n^R2QL#Ue(lw*n^m>bRG0)!$Pz_{}YiG9U)iwJ94l3Xz_ zf^lr%Bz0)!)RF8}SfZ0i^OgM3rsw`F9fKZ?-=EGdr1h)py@a6aUHogG0of&P$-^K?dx12VPGo@+GSrcte32+cU><(2Nq z-w#8kRC3+7=8xEgjsHSwBK09@cZg+vK)i1LZ_Oq#R1fsU>xHnOz{S*0AnhHgwAeAJ ze$^idQ4IS-WV%}7HcfnV(`e*$Kno^3-%Np-_TcBOeKJ5m&WsRH%vDi*05Hz)|CFIU z#N40U^d<0BsnRV=k?S?-4w)L{-xrn25+a$ZntHC!Y>=hW8@>NVhsdFSC2QN0hj4kl zeF?C)>CiVHRoz%=-$=AfU+B5s?g=VBxQkcz#v1_f0*m|xdF!<;sZN&>xC4ViY`Lwd zrrmR6c&%9ni-H5(7p@eUl7w5ngH`g1gWLehhS7FTk~L8Z=N2EFWS>OPTWvC_8P0`m zQ_n7`HJaC2(#!c`inm)HKDuqHA@dn8Y@fprQ~^K8JnHgeha53^K=v@SqgczNRUNT1 zA^!wMiVU)^Tl>{riKn}+|I!x|zv0wt;}UqY^Thy@W|`u^z`*2rV(Q%7?=msj+K+^V zfxo7ty1gEcUM@T@1GU@b0rn8{48Ne(suA#Jv?{k~Inh85@Ixi2vK{gvST~QUX(nTseU~-Itd?f6AvMt9<;u z-ifRuyBVe=Loj8@eUWRK2o=a?`z!o5HEPdkE6^~hMw01>Tf-B)0Yp9Ki!>fDk%&^z zAsDpZ@F3q@09B^kF7+aXzcav?C!n;!l2wErX*?@(VRa z2zO6m>_e{4$i$L)+-iN6wBg>NT!}%23XG0WDZOad*qkH3gTO_A6)6}wrDd>>Hwtvt z?u|pMzq`3qzgbRXurq|X>Q2CJC_fSQ@K|a743_wU5>+*x3Hp@k?@#oBfmWOl4bS`z zBiGy7Xc!XJXWS#;w|@t45kL+P*k@V55qtjtWZgGCs21HAoexW4RosFV3FKyi+|lCsn>}=@T<+mHO7FLmB-omliw0GuH(aAa3e`gCyS_%NY{cTaQvVVp{9GC>2 z)U%_Y`{8ii^)Mok3mm>v1T4=6SwU2fkWQGxbqNoIwv(&#(T^vB`~SFXMh(?de@L7VNKm(EdNQn3%dy zr_{s>B71rkBS9Ws;!0j>cA;w2*rT+hPy&=6SXrs`^Q&#`>`2?+r%Hjg5i3iJ-)5$L zI7`mN>K!^K1bC8n!M#!y5C z-9JY6BVCaSZL0LkT;0uG-ip}~6r8NAZ1rPSuw>r%Wo#RK@0iSw#or%rqqxYnv+-Uu zLQ3JIo0&(b){(r4<-YK-(GTkq(p7_JJ!$dFp2n5}Oy|Sxb0|c8fI*gB#z~`xPm-TX zsiN*oS=K_FJXcPaoeG?|5cYko%+1|bvX|SI0q;zL0-J!W=<_|vD344TJp_*n|MO|z z6Ck5w(0v&Nz5aWQVPp6iq3fxM;^Ae{w3h{YJYje|zP>VU4ju@BG>kzqJPTEg;$xN` z)}P+<_1{rnVDADG#0#2oM9XBaao0ZdY#R{?XdrvQ>Uux{_Hwz2m7$;KNx*1Y7xLP9 zd;Ty~hA}+_51FQbhnNupOVK-aehAdf$%N_eT>rCVMfTQzGmbwpGc$1*RD+E!kxG1r z4gl?zfWvAFj|+lcS~(63*kOEg@7q3`ZHMPMxz_@hzpzL1y)96%x~!4&i_}u>r*`8v zqYPJaV&2Mjs{*QpQPreb8W<3QFm*nX`o{y1ZHGo;S^>+biZks*WO%7JG&iDI zZ1UA$Hn8aaX(&a^1LK~a55zz$GqZJnS{weR?k*P0rPv`M(c$YpyXnbtCnIss!uQ8- zu)mLw*bs&NW!T=rRXJYu9o!H$&nDb#f4Vx~6tI@n3+3dYS|EBV>Sa8!++;SC5OjUI zx}K#48})^e=Q5)tnujWM{ ztsfUfo9F=f^Pu|QxfFM}*H*vZ_B{>l&%fV~KUEw<2>46JmAmbd^YQ_m(KnC$wZOOd zSp@dg!*-wZ<+Y)Wb{(0=irZ%x>&$%Mi*4sNLl0NEMt1XP`R^A`R_sRL6A%!VWFqaI zHw!Fdz-C->{UyM+f?bQhr-N4@B>bz@^@k9{TCUkjAmA9L=Axgg!<(3qEUBJ^rxcVN zGOBkLwI07d@1`Im)oV8C6L1u+y zQCU`p`mD0Mw)Go6_4ni`XSus8-yr|64g%#W0^w@`t(R_&>6LQumlDj>io;`4g}e%> zoRYm$xIZFy#_X?3Ph?OH|4KmFJAnIV#FaC4$(neArDtjDe}8KBS8`sU6;aspOvLBL z+6{E0iu`h6MApXdRAe3V31gC z#d`|ra+=*sarLA^PmHxYhVwsh&};I=#P-Sg>`-@@)~B2#fGiQ+tANS@R%^pAorOQ| zFC;QM3dAVdK5BjJ*0GyKwjZ&${cAOq2b4W*0ahE{EP53cZa#Lzp5|gK^lRhFM}V0} zuv+uHlGbs@+NgrZ%{MY+ZLpC}+dFWB6ZfESPR*bUPNUy7r?*JkLvce6C{p>rp{(UF zTEz$giF&=Q&S;OZkbD#NJQd_|vb@n)?Z#$`yz*r*)w1b`m1kBL0 zKcdK#c|QpYuZnSI%3ER%y8#^AYbG}4zk69P%Ny2wSbn3YWoY9i)}j}=7+f*p7lPES z=!>nSF2{caBT6K6If~uUl!(!>rW&szK}c@gG{Xxlte|+Fcq9x|lqUTeGtY<5a7PJ> zn~>K|vY}hEu$h-mMz`!QR025@C5rm2_&TULdpks=Q>d{~#<0)HL|Xaa+G$%}CjFGJ zK!;5sdH46k#85_kaI=_j?DiOFH)NZ-cPWU#u;}e0R#1Fg(U){pb4tH^%RY z$mpjs7|19pxEHAKAv-OHhlk8*qmTAq3=D*MdEMRtZ3FGiqS2w}*yFFS%3o_r7Z1E} zIi!iY?eFg}3PRx#PDNcfYdeN@GCTdJe!7#)6QtwPS%N5t#HK5~MNF_=R-c|wpe?GaJb3s}{rm>7OW%nTfSy5Of5bD@`VuXBAeMlC#Z6`;M(|-yqQ{1^KCPBy=?-G$xsI zZE-pYH9iPXyQtbCs5JS>*kP$Wb6$F^TEHuYS8M^e4;5trfCl^xy6)ESt=qS6U%h(u z*9T}ow1+Q^ddGgP|>qW9}lSA-i!q~n3rEQ;nrq4oBsGfe#4#$&dcU^MHC6`?KEwp&? zV&}JUMMcGh3l~O4MgVAjNF?-lZQ8O~T40dX+2jow%p_jjg2q*=TTh)n_3Zhxu|+4+ zGkXs2n>TMRXkM%-O^dfGeZ?$6xlvYcV`nG=5+Vf}*|OCwTX%G7^Pxa#429{(6vY?T zmhI}^lRvLaSz-|t>h*=T4ubP)S=%bkNC{CVgo%#F*7iL+tDEYRiY#6UVF~%KpFZRn6kz+_-X30xoLi9M*hppvB&fyPckf)de5o*9 z8)XtFLaL41J03oSS0I1&CJ!{=-CrM|A3uMwvF|!_-rniZW=Gh@SGu+!eObMU)nX1j z4}J3#`t$gpXJ_!nW9xrkg1*{o#_TW?wwcLW%(RVW#(J|?o7tzq6cwf~o}}L})w~Ir zxiz$^JHBy$(()s=btey98hP;&44*#wR&i;Je%}BsO8zi_jv7yX1MzAXCT`3V}pJ;}~v^X5itCBr@1Y#S!h>u?(;g56V#}WHJ?trz5aq5B*!& z5x+4LL8dZ(1ZW(QGWHw&_n?uHTh}feJ$mZq$k=yW`h_)eYv}U6uKhP$J^!m{`1<9; z2ao+M_xZ@k@W9cYV`qoPzTwjESfc^Dw6t_!U;rTOC@_L6Td_suIB^CW+%m`Csi)2yL|NuVD5!0 zmP&H<3AviMG-YO4{=WS^w{8zNuWkv9jiiS9RL`%we)DzWk>3`e0mxpv`*_RA8>;0; zFxlJCS=&&VTangvSp7nZzMf~Wm6*6o&7sT8A+2V=b~6J|a<>ILXqox~PGk39&#iyD z4gLMNWzIeeW{(B8!$RC@p=>tO+RdI-rdUsXt-G-WpS9VucxQCoKH1Vk%I3qGmZQZT zXBzjMU)poYH5L6&>X!m&h5my8`t2x=-vpo;7$U_tbY`t$N)gA68!^2~^<`!Z8o;vq zxEf%97EP`d%}DSi;fYjWEP;-~(>;jf@X(p%%1H%rDBm{#jius+>}eIsNek7Js)aLT zL3lEOfgq4#m@`1hM){W&lCO(+vxNRc5``EWHM3MPX>sxw3lv}3qLD#V8e-hhe-k?a z`u}I|y`$Pn@_pa6?pyc1zupP=o;fo;XQrp)^n{-7c007Qu>srUoHIf~i70_`AZJ9* zIhvfKh!Qyp1PB2Fkpz-J25fA%yWRat$fmJuZ0O+j+{4$ur6q6G{#Dg)*WUY6MeW)u zY8v|izj*oD{-s>DxiL4^*Vxd|)ZE%LIJPQ1^sX-3lnOY^$oMo@rCEHr&xL zFteuo!vV=;n~Sq!Esga+4UJ7bW3x}UZ%SvoD~R-X-rDM&`0%D79&ezvV`To&0)gx{ zrQ`iQ(~Amv02Cdh{n++lWoj%`@unPY-V=#kFJQN z3*2suD{1!71G^{Lrij-a7n3@%a{N-rt31`y&s78z)Mt96cYJO|Db>C}{M+j5W>O{HrEBceVp};=R9vpmx{u?66>c9&+kNUoelzYL_`FS z#}kXiijmqM0nlI<0JyV)xuKC^J5M-3Qe-k65l`_84;mXE1KGWZfZy%u;1&STP@Jn% z6ak&?=NRdI#au(p(a@9v*GJj(4i5m%0LYu1o=WzmFr?W*|AA(YHns?R_e&uDCiaJ=lJN+BY?T!^V_}0B^MVLJ%h>6Xd*y%V*=C) z4aq3TY3*o_PfiSFL@?W0E9$GGQ{v0(suq`*z+N5fPC{G&B;4CR1cMEx@aJasJ--y7 zu~_U6)jPh92+#^Wc>L|~qO5dyC82%JDSJ>Yvhz>4+7EG6s`%t!5-f&f3uri%WS&hj zDkSSwlW$E^|NeybuZne`0Yl%V{a!--qnP^c8uh(Z>ia9y50p_TsIYV3R2-oNdn|1R74 zGjny7b1!%R08NJfDbMXgviWISy>qs@=XGwVe04$niwie2bv}zgzaMJ-44^NlscU~p zhke9={*~(RNs{|}iO_#osa;dk{yfU#4<+s&2RQsC5%c>R+

m3kJHMN4fnm&*je~ z>rZ{4fT}-*YF<76b__zx0s8EXzdsMq7Y+clbbYxr+#TXUi;9ZyqY@Z-&8zF;W#RnX zoM1^L2e;+L1%Y6Gc})zcOE}e?nOD0i0pKcLoEHcdgliJ{%^m!A3G5=67tZrisqmW78D4j3tce|YVtuVHKfPmQygCL)N@|=H z2-Xe(Aj$e_ZjeWCeuo@3H^gI2sVGvy&=5O4w_5tFRG?66V(G^E>e9;Erc5STTUlO{ z02*0aU0OY?h%(u-V3O$K(m(T*@HRIjAPjSJ^UESJ=p-yItpbdZZAzAwmL;1q>H6vd z$Y)_m3NqM`E-!-U%`L93Kksy3GRgXUBGt{C>>Cjokyg;KCnn?by^SETOkRd{p*+`lMSFNrpds;kDqWC7j!1s2#H)f359gvT-iExi z;1E5n%Z6kPv^G$9;XEG?v#;(Nom*Iz$y=!++45d8d20c!ZEjv3aOIr#v>{!qWOz8Z z(V`d;J|r9?zeOb75G@OzMoE6`HddAvk}1P_IL1SGKu2#)Mm2M3wi+-EOS+mdBXcAloO_X7b!@(v4Vu~Rk9E`d|aGDRBzVG@CcEtyaBF!e3s zY$zJW?A*elB1$KEdvy??!^6WTCnwj}*YDrIf2`*SmGtDv6RA|{;EhtO4~fX??*K791BrL`p`Ew#I+TLHKdsf3Xdr(th=3udB)vb0^K!)#OmvQ`0(M%>MFv^6%egUx*sad*UA$%JT?l>8j#n< z=0+!*m6VcFQ(Fs4_0mcKCN8h7f>7M#k1CSf+gKeVoYBCfNS7F@OQH`Zgu?3WS{I8I zuPXriNk7g9|POwQ9$(@_L1HlKTS5{W-}!U<=aw+Yes8 zeE5lusDB=Se){>d1GL&jm5c7s4>MdprkbCkqu$MR{TOF(>H1aGmySTw(Er7x{if3E zPw8&&r@MTDHMpSiQh+|MentH}+~QM;?WY90Ptv@9U*_>=SFKAHmLKP0-U~LpctiCf z-2S6%j}NFu7mN))O~w9KA^I<_#;2W(PCMvc&{Vl`=7rpU6?+EIS5;JB4$xweFxA@( z5prjEWT3t{Le~t_(OyULaPbQa&Tr_O=&B&&@DwVQ7Mw696!AwYF!)%(qOiRrnN0Pi z(Wv2B^%Ci7XIUx%PxKFrsA%a3hTS%VlcVA?xQC2W0!V7iB`@_^OvoRx z*3xdDTvYsbd2T!_CdijcqJ<=l3^o$Tk>iUJ(PRsa#u%KL&5sH2@%5t+iG{6WvycY8aAA#jS?2PbE% zQ$t8}zlf-W0l~{z7Dy^y$t9UP`sELg4z*OqXdAe+HdhS|B5(qi?`o z^>ZYi&d8`*U7pU14ZxFVWD*rbRV-bvh$DM=lY?S%rdM9xOWBaDX5mbo0t$vl2AhgQ zwasx8Gc$GhN&bE`JUO71voJkS?@J~HhJ@w;NN%%7RJa2@H>sYQ|wZWD=OZ8z62aTxw1#u=`+bTH@R&ExAkE2(v1zNWO*n@ zRU0)b5DnC4Q>Z?^bc%mM$>QotRMlsM#AB*vfJaZy&J2$X*Vffe@pu^p*_bFFB!h$s z#xq%M06o*PGtJx~x1G(5@J^Zz#@ToBvB4BeGSZTY@`(ywT3PNN=tuZ@DOTjL3-XLj zO9WU9vWrVkLPW}!oP))Ywe3y4=tMNplN#!uoRx-;@k; zlor%RbRqq zVu@HL`T7IuZSqOL)R6#MiJ^a8fIf3YMMvk02#-IMd%eei{59G8opQ_v zc>T*)FRQ)i0RS`=`EC*B{Q#RU;Krw&jm{aWUy~0NzW~suF5J*H_$(OpK{D#&NW=$4 zq~FzIKl0SM;ArgV0$e00q7L0ku52)uBI&3-_;1_*Ho3EYYc5^@9632VqhG7)5`1X%7Zb`!2C{5 zcb1VkVW^wwYGsTM3il^@>gdCI#yWA%u;_x?wszL=*ia}!4;x?A(>Js%IdI1~AUXA> zdtbb2K%@KkhsL%IPxh2D98k2%`UZf4Iu=CE@)F%%Ke4VepKfnQ$>{3o6Rf_R1?BTk zhUyU(mUnstvjcU`miD!rg+XSvww2f7M4PLPnWs-^FxA7@3|8AxZfOo@4srsKnmRVL zLEe~$wRz>>oU%uSUI1v3aJn)tIWmN5X=Iky)P^)SzthPbE)TbM3F~ReG1Ry43kmc0 zax`;|=xndh)3d5$wheL*aV{T$o=c#)V+i#4^uoUJnK@n$+DxC|8yxIM)HQ*z2H8Y& zb$WhB@4(Q^Xo-fJML|7#Xnd+J&D)-sv(kUZK;JQ^rYVm>bnswI&G#a$Y!dS;8|$)6 z^{ngILw-<0x1ji{#KW4F}-fF564NyS^ya=Ikq z#bhrFN=|ogO}xD`p}L_dGa9c44Ot#4w=hL?&MwnzZ_|?s8mbE*R`PM;42pv-Hl(Dw zX-fEVq6OLzFV)0)T6(9@kgQ~Q8(9$&8|$l* zgWb(gVKWOtR^6T0sBpBkF*U1&RT64shR7_c>>HitwkN1-BWhc_MkaWbpc8@aM?}m~ z|MHmjzm))bhxXel^6fa1O$^C4nq#h&8=(aE~%cA zKkc{oXy6L~{pF?0ZqWDhJU=2DpEuGzO+mb$@Ak2W&P7Mt5Ar-d#Oo>m`mgaW9|3?? zyLL@S^D9TAFVW`z@P&Pl;r0>P%q6VMKgDM{A*lF`O-wZf-|`XY48m;_&+3}my2iF~{!B%bs{^e7Tvf;GlTGbN`v6_&2k}Vi z+zd7P+@hNuY*_2qF6En0NN7E@65Y>?ItNAE;cHZ?i0)!pQJdMMdTE? zI@!VPA=$;5*7msZ#Y52Ld4S&Bko4E2VR4iwhQFD{t;B}$G^!JpQJ5cqB&9U<6;MuJ zHxG@8i;W2MVPvz~%5+W8i|dkClv*a+5KIm=)s&^j2ctcG>zWGG&Rp>gi;9hA5UF8( zBVA-m&GdeWY*V^2QD$g>8l2ydO4dQI!=9ME+*e>^?lB--=QGod&9S{B#TweMKE7ym zvByr&qM?7fAuk5N7TG7XYijkd5&(eC#u=zudNN{S;}a4qT8Ae4nv8Vh0G&p#qGYqg zdjL(&VpYexS>Q9olJ)MID1AqN1wePqu8?iC(^@%eD|22}I$6!bJvG^MDuqb)sp;h( zHX{MldUl}3(#Wo+t;x&QBCmUhQ{D766$OiQQ5zF$o!4FdjOq|(N(v>`Vw6=ZX0JaM|s0c zD%L9^I>y6N+nG@@JKg0eLEi8L z3M`gn=Ly$`T0$8F`P}FP>Q!@1hY0xs7pPQU42@7yRtopULSu-CWSSXO{utuu7-t&L{{P zz#st7`Nf4c2*`e54Q`9&E~DQlv0Fc?1>+akPdPVAIW2A_8tpZ_Jk;1s^_G~v#zz;bwU6EdaQHJ$06 z(SpkCbSW4v9$XULeJH#C_3qcNDanbBtN-o*ed?mBn(pUe@Q(wnPFtA#HP!W_Aj@-V zS8tqs*%V|sKs$es2>aAR{kmdFjc2BMTkDHR*FPn}{$ZJwNi)xnyeo=RB`>BQ4IWsa`}wJ}AJxPcu4ipmhdk_jhlTbNaW>J6r!b z6Z5AK%X8|Ab@VQ2T~s%|rmA!HSK{fT0CcLCDLklfWQ;pKJ1<&WA85?fwIglFHdkjy zd>st@3)?wE>`=5BE~S~%lVxO%@9U_szO5dZS>DWKHn;W6j5I<`%@XT+`TXf=-grF5 z6r0dI&7WRAWR-!vDI6pNSnwo|$D5v>nVsz@2rzLZwGVJucOs2!o{m5#)w3(Zk+ziV z2|i!AdI;&t2}UyBQD|yp=45LXUp)w5cMqVw<~a>ES{ju2JIod)v$Jn$RaDCGFtRXr z_eo6;aau*;>}t6H7%vTU_m6Q#TB}mD)b+C~$}Ln? z0+K;dTUt8%=I1#<4x02kgM2=3ZnEC+mU&edm&c#k8-bPsw6TTf(6U6x$~88_^zvGa zZ|dbX_Kyu#7;Bg{4bO82yBe#DX$W&#c9&E+>!*^BKoiXzd~%1!#(6V>HL-MVsM+|o zVdt!{Bp7CmPvUTg!_h{R?5?(aUp*T_|JX!jIz_|o2Y{y7=%lxgiPx6Nb~+i&BmA*} zmWHZ0k`vVb&dQxQ`%4NNApqmMICmt5`W~pi; zyZU=!8dr$%1x?JB#?~(3iXhq3*dwuZpebEV2QtK+Y%fjJ(6Adnl>nNbzH2~p(a|6rnU%(xi<`+NCm%I`@5Mq zTG@NT9dT$Zjo?IagM@oS7wZZz4S}%OjGCilrhMr1+eaN!}ESh6QPK z-EA!W(8v@zG=^mFg|xvqYr)M`9SpP~W{H`pb{=p@gnS8SREiJAhrnX9BhupBVrVW2 zKJKApc7G4x{_o^ZLvBsa@+bLIVyOf~sRdacF+MH{bW|vzqOry=G8h(y2lVV1 zi3?6-42=v|)l_F>XLfaW;b=rNnC*UGjm%7xgK``l5um}*lI%S4tDV$~?|Of4=Eg_3 zs+;&kA0n!jtgbZb{Dk(e%hV4UBnJ}F-G&hO5w23P@}0uK?w|WK-DGs$Vz4x$+1fE| z?O3)^LbqGtD4~2Dm`}}Qb@*xx*~RbHI^tgyoYTJ4hRd5qKh<>cQsk>9EI_%qhS0V$GhdE z-&J8g^3b`gdh3k8%O9F4@04KwSWfzFJ??#~(FM(0XNk`5l@s5oBK*FF`1?ZFzo2!l zT-YP{Gq)YATq#cWj#po{F7+F**8;R;eYrRs6JFe>pacK}W2{mnj=OGa?BDl8=9I5p$rcG#2UN6%ZEN zKl5_x-H?hqNa*U~zSB*cYOwgAAHk zm5Am!@quI_iR|MaSk*Pf8)`zh`>h`K%$Zy=$;w1ZsK0!im`orCB@ItbSEPm#KsN?b;)d%FE4PIHl(7maF5`E9;tMFxTVn5oz~D& zN%r)hQfU}CG`O&h!>$b3D={%NYiwe`#|@4n`=(X0IPJxB5-0*SC^nlrD`-w8(XzV_ zuaNwFVHJmB!%8j?5T#LX!7SMWt(f0RSs|;?%X0XKNd#-N8BeizfrU< z>c|UrCMC31CSAF5)0a*q5{RMc)vq`TC;HX(1^^mpcXxMHB$7xZfK4+Ca-94y7F3iS z8C_XllT(;)?g6p(cZEh1%6gIek%tsTR>V6h}Kg7Y;CEfrhc8}|A) zZ1o}&Vn9Fc-o1OYP=9!o{9!&+s*eK>H8eVsS(pR!#~NVdYdl-KK&fE?%=T9QupmeP z27om*nrMxM8^Nq0VO{{!Aq-q-VpLH{v1<@f@w}srzgtpHIw&Wo{?s(Dp|Npne0=wT z{He#K%6lGEPHQ$Ueu5rM#Sd{zn+i>8GKHn+FNWG1;qP!SO%OduKJ;%o}F*$*rN ziBOKnadbq02HJl3xQery)w2-ZG<_kcRgS{An$K`W7^2qz<*b1E$-xomd(_`@D5tt8 z7n4YqpW%xR0`wk3*M3N-lN+(_Z`4Np_%6rH0k^`D*w&e(j=9Y4g+ZZAIr|g+1ic}E zR$}P43ZO4uzoL8lvih|fmsKws-M)15+Dj&HJoRw-y0*r7liQcCy)Z-i%S$&@Z(guB zKILKYImYCyk@~gEDp!nkPovFFA&gE#4A0o=T)3rj?PU{}>WK)-d_1mo$)aC3IL^tO&b%cl`@hq!akp7;YS zwKO*{JhAs*nPhEoxUZYV?iw89v01I&XtT4IbY}#MtHPPSE;iUcG9>`FdGOzX9`N7p ziMi$VrCIQ`t9L-S_7Z-RN~P6RRd`Q?sgbd%si~QnIl>Ju*^mgPINdB(XD4fLj4#>P zm>e0HTV9ijgaaV+?!MWjmoH}~7K_8e!UFt!+~M|iP*4}m4VXmT7{XOhX zR@ca+U{k&%oN%zWN3goFzAWhL?pr>5k|?;8XJ@55m>Zawm{?d?hB6X_^Rt7%Rc9wC z%*@>U_)te6$~v&PS1Mo6K{`J@*3D+Iy1ID_qV-i_|KON>)rCU@B2ZSG@9bb}VQyw& zY3+(7j&e96P}FWvRQBkUK)Sgp5>A86y8B0#)+GF~0TzojIL=>~<&I1UHbnD-L*r{3 zGU=*daEL3CN_v~i3JY=*!Z4b~E`9vf$&p?V#_qo1#kH4@f^Tka_V@QuZZMjg>|DxtT8)ZgnVw7JaoOh`ISxZ-*WTwvb3{rm$00=&>r50dYubbWekh|L0F83OHMMKIaL z0*$eUJ0ldYEDR2E#PWsDh5ZAghy9^oLn;jmq}w^beC0g-_ySDxWCSd1LRZT;PIN((n-vi7b{N=%@0fR|e!vAu`2```h%6cfUH zpbP?V;uJ*)ijSO|o9paix#O{LPZz4ckNnZbSTZ7sW+TNfAi%2qi@Dnwn*h%=bRx}&JaAi&poBak>JawTvQr|{+9M{BIre+p4^9w@dpN}kXK}=6iw|^!F2L}%i59LHh7P#v;J3H@t1A@ch zv$IbZmj2NKTn?_A3WpE~Br8k)f&hi&i&YOaMTCdNrx#5vz8vdcEf9f(goOP9!(g!f z{(j{|N7jaPttN{R926KF8j@4Re#J80`vQE~+SB+E-IdpNi9eDRA0~(F z$k_V6Ll!OhB?S)g!J;}jIhB`}D<^thpn^;$^Wa`kD0F6KMmgQjA#gN73ptpVLM|>Y z%1Mte(ARQzcR%PBRDXPYTsfU$ta_lH5Sa3kKI@6zKD{x3-WPED;NgSqot;OI9)a%y zfdCUsM#NE2X}5V=bZ5|T0#ginr!3+F(yErV$?Dl@$BMha(vzWE@owVP%MQbOyCZ^)bRbg~UdJ4)cCs-^`0t z_O<)LHVqg@>LO8$AA#|@!njH z_X%~Ue4B5CcK}lj@6e6yiek>NW+Y?FTPNK73+b%^XgNdw`T+gQo2rif7eVMh^aZE`il35-{J_O5VgKNF=&qo#j z4lbA5c|biqJ<5rWEI_)TJO{mj|AMQYa=K#*6cU_N3WqEfYhq$z|0k(bvLcx3?&;;u z2&D&hIl6%Jv9YoJ0t5d-p-?%|Q3Vdm`qXHD7n|KPFtV_+uKfGU1h7m#igQ4q3@;5D zNV&Em93ALkv%7}IrdHP_$|-(%fkUiRRKWVmiJsTdEBMm|jwVa~mlI`mb#*BxJ-&eR z?(Xh`Zb4ql%gf5?_Npve5{!&Z{kS%HqBpGU?Ckxk@tXnYg94b_(%OP0cpKW9yOFT< ztxb2g?t*-aN{XC=ysZP=ZaJHt)4A@3$2j8Ah#B6muRYMq7OEdIy^oKJm=))p(04A6d%CBT4+lXs0}&DH#joP2xjdV?)_{I zG%+kX5*F8#o=w8;o zu80_lzO$8y7X-dHMsA3Ax@2XF6yuH1ZYknLZ7ohJw`X-}m z0TA$K^rpX%8{Wg!p2O!BleOfie*=ORgtpW=%FK);8t{TsFM zj6YLhDq-z`bv(}U-6_!yZ|$k^*LT*o9xCU3q93cb7@*~!|Mvm3+7;Eyrg~=_1Cc@| z004jhNkl772dmRHj0{hpIzC`ti3<0O02K3L}|({kZNw?Y&6Fln|CmGVi0D`w53 zVE}#qL?=4YiB9xuC_g`c|7!e(0eWX=2TAsnuLGUx3)q(!KpPqvo|v4FNF}nnviyo7 z2o7!O4z)!?oycysWVETPLs)F2HQYf5ZKasbVHf0K;cPD-pGHE>ykQEiwW6WR>Z^9{ z?QCsr<&+jW;?P!}u*^HT>tZo?f{XI=Ho`k;Ak9^5bTzCEZ4r>0W;(Wk9sq(7$#f(Y zS%b~PVcIvmIlf~ z%hgKFPG8&6%p7KW@utd6eXae#B2g&i${$C^1?caetp=USn!mXBDB*{=DouP`7TKts za^;%?0R1iP-xjGK-682Z5PVd3iEe9hlxVc|+=-j*ju;zDrOVI%*e8KG9t-D~0R4S!J1i&KkkSM$c-0Zrk zmYtuw1sw%=TFucA0D5L&E;Yah9U~vf2L9C@4Nt3Ivh+oR?_i68hy7)Jbu|YAbthwh z&H$RN1Kn)`-OuaZxM-lR12qpzh)U1NLi=D%2{04qA6DUTb9Ym&{BiUn02=7Q<8PUh z>+W|(4P)Cc;WH5g3Y&6qobvfy>hJg0;sCZw`%Nub-INgaQf@X$>Y-M0LmGLVe96{> z#|Lfu;p0c&oXm&**>nQXC-y2k0q7I`(`jdChtKCvO-*rsG4Xgjkw~PR@rh3KM)WHJ z^pht~%4#a1G!G+;qopVGrj@=!2*x>1{y{o^pia)z5@USY#o^ti=h$d!Tx4$ z5T__SGR4O>*i+p^`=*7S3DVBa1!nCDGxBsa#X6}N+&08IYP(r$yISkI+0Y^aQ?k>Y z$sTHU1{V#~%xOrluYCw6EIGQRvu%>k6H6qSIoa?4Z@W;8h06~wQo-SH`{nr&`f&jL z&6DrAD_btPeQu!%b!4@E%DHvwpYBrMc|iLQ1wemG`?nqHZ~2tJ`4bW6@VQF#{2s3M zAM_@4!ARNga?6x>_3p`Z=U-MQ0DWSwvJ-$l(La|SK76>ozRuxr0OL-*QUE*J+uO^^ z${HIR$H&K&e}1Ka^Rclp<-AXHqSpzu&-=T(4}RL8FWx*rD_%;XaK5#@J;)iZWj1zn zv8>#nKY%jDdqKDW(g60&D=Bmi^s@4Cv8A|_)m3fpYy%GhfxzA!e$7G)05mGi*ExY= z$PvG#XUw==Z%b%n+d z9RfYcAwGG<1s&b&$oObP7{NXqYeayWp&i;-9UwS>(d(KUsv2s27(q~+OK4*B)XX%< zR6**E%}uVMB-;>A3$){YVBhd6913ke{3fYm_O?%cAz2Tw^8S$X6WYJsr~cTkEH zzmrhk6;M6_cSCA29j^px>w+ z2G9?WpxxcwyYdyXUN4YRdFQuG4<0e!r)!72X2D%k!&Ir;1LCIK2aTv=U>OHHB$ z`86<`cJA$fEr4!8^8-lDNRESr;+&!gHok6oWkq+l?kdW#DU+`ootBp+U*T?Z1EdF> z3Q#gRC*2C?tZJ`+-BRb8sivlrsT~>Z9z^Qw>w2*FI&P3`h%*u%8x;@{GCVp0_AMwc z_6Q}z1H6I~A}4uMt*mxeU!19{1Jny`fV6R9-~mhnh^K`4@uqp8NZoxsHXg8RR@zt0 zHSAqrWPchx#J{GYR z?{~lcW<|0&+1H$(6p%o&mQw$?PtOl%|ItFZMkTrsh#uZV43_BSLBt^maxp ziLX;iN=kQkH@NyMyLf8^$b>UF8<|l-ip(QM=8(hFDdA~Hwsf!yiILC9Clam9QYfViJU~AQ?{2G}w_J}#9?g+d|Ns925~Yy^qLVlk+xVt0@d zP!vd`oX3fNZS6jIFfuit-#8Rk)*DgW7g;jEC>>&y4u;<83n}QzsUPegpWWV(PpLn; z-XuV8ZEb}lGF)S5sCXJWgwVoj-zVM8&CR9dB>=eoks-y^@Xpe%)D&RF!_)(B8leU=TTT$0%|H;TAbqZruft3Fh6*-{9P(`{_b(4;FgZHT8i9i{JL;}nbqu3SS&Ojg_d-TR6Ga&QurR+LA_#jv}(0Om@hQorB; zO$TE`$PcStrv1BO+Qxm_ zf0mOq06M!82!NXr1d0=ZeiNVc{`0R;Ipy1&*fH126F+<`?-(d&bE02BCjfn7ud*Kv z(BMKgH8n*f5_@`j`VJS1#RAtUa1UU!*@_3V-Zp_7z_Lh8X5=~r6gl`8qv>%`$=Pvf zc}KM95rW6%`c$C_D`*f{kOG0si#(&|uHdKo@`d=|;{--|Wo9{QNv%WkA&cCID@(tgHZ( z0jC=%m2w_$u^v3QCm8UaX4xOz_-x4522a`1TP&$;tFCK2s-!QhXdt3=IJ$ByvV1(a zghS68^h)b>iSNWDclzgbRdkH6No2}9AFekE(Bs^3C$gL3rGt(U-oeok^6uQCFf1_| z;)Nyz(YpG&S5{ZR)jP8w2NUCij-??(@KsHK4 zERl#rB3G&xEb7_Ah;}A^K>;PDrD2f~h%f>w#Yetk1{UH)AwcLJ@C5k-g4TYn>4iBP zo11`Ifb*{(Kb~8dk4%n3;XTZub_Ng&Go(E|GysKlhck%iG(R&cLf69<8ZCbfpi zBPDKCwEF#CmmoPm(<6rN8c(+;yO=uL8rxgkveMT?n42Q(_5*8YZ?7DS(wGU%#wQ}oB05vAD_HD<(Jn9K%dyF>@a|S@H&C3Ik>EoNF;E%e|)&Wwam-Q zD>*qiGBOhIv|`-i_1e8J5lu`FXYxm0wCtrBCP<;Y%a4`3Con5CbO}R5x46c&hQwu0 zOils3I-*TZ@q%KrP%%tIOshGDF*YT~+!qBZUR+!p8xvDok&z#*_JXPB$K1+~)yR+4 z%#YPBOf+d|sBhd8py9HzG6I2+l9B@WN!jlU0s)VRh{(ywQS5$nfs8UTGQa`N&CLZj zKV`p%X?J&hVYVTPoQKdXvb#`XeY(i@e4g{|`bgq3Z(KR?0c~&Z)VB7*$T61qL`Qry zdtgjC#UTR63&7=T0h-BV0)Pf_0QWh-qi4^a1&t7V0cc`qXb5_J&CSi=%J>SB1^}&` z_b~-Pq^k=san~ewV0vnpH#r1snm3~O4nFt3$iMTSZJeAK80YkEZpz=Xu2>Ib|BF~G z1{kfJ#}Nefk{n+kUu8$f)b9PQk;+fUs^6Jw|I1N~-||s!{=aOj%Kz5?Pa)ae?eca` zP<~Hj*=T&tL~J!T;LZpsdjOl-O-OFX#J8d2SuTlPu8Ax{8mpjbcujKD!w0&u`&Z*% z8lXXU)WsKv*aK+$5Nuk0_QvK$bXq(zk_3$=!Wabqn9#NLwe9U~6d41JlCQ6fOs0GJ zkrsqPP@aseOf-XnO7#WX4c+ZKd)be^e)Rp`0Cr({G1S-7!UwJ8W_`_4%ZiLbh7(C4kU9&^IwT8Ic&{Nhf3#=B|iV#S(E{Lp_Y_ zZWrX?6ot2@pj_~tP>P$iud5-(QQy@T6v-vs-#*YYvp7$>u>rCM7YC1EvV7`xy1#Xx z+fAs+C8L{~Xe)K7v7VjTeqfEP%#>qs9335?zuTL?F|oQ`F|vXy8~cz@_Y{b66{`3Y zX9AT+`TPEKj=lNN|0<%s7f-VO3@3ko%D%maul(+37K_Ek z#KZsu6bJ->AeFrz5Fo9fpdbK<>yo=qJsizuh0@ykHbCl8QBi=QmzI{4UB9T^UCD~D zHXN64eXhmsRJYTYebCe3v(^4oq0Lw2K1lJRKzWxvZSU-qHL#pWv6iGvJHKLmWFUZP zCK)izc|t7yEZCd}+B{TuSPb|+AfDL%R`*7lxob61GDJ0vA9b7gf^ zurOa-Ri0ju-9Iw8w7e9S5`&B+I!BWbq4?6eO2F<}*;$rYm{Sx1fV+X0qbnX$Qc;?b zpPgTNC+kiwg5qiF>fj#}Hp%A!+!-0;5PblDL4dxf1}Ixdlzj5EO|XX^#$MmcLB1w5 z+EUBhU_Y=X_Lk2_;&?hbK!3lt0`#2Zo?GGQjqvt^O#C6P%7hRmqyE=Hfc}p5uUpi2 z>d5M9_@w=m9}w!!_%jU?y0ImkkOp2gXZ67eK>zYO0q7HZmAwIg222Kc6x{m(tN;oG z-1*vZ===A!XGXH78dZ0>I!Y$$)#|Q6Z*8t@-(5e7?e4zjj`boyFE1}QH#f(;PH}N@ z4Gj&-06qRHfUYPn-QDP!EcqYH?Vn2fRUb@49?c>i$_*~J8DOx@VXcYs-%JX3Cl|k# zoA6QJ*a{AZ193}BOG{5r2W9Y&+DIZ7C(E(aZODiKILjllNu3YKt>;(6Fa5en*fB$#T6&V~H zjEsylH#bjBO$CAN@9$S~^3wqt9CVO10Ahf}D@**N*n(ii79YhVQt9I2;xYaTaflQEz1;Wdw_?4c*sk#A9zb_0J9_&BqB_nO`eb#4mvIv7 zCWDGbz0><#lez#ayCrm1wvIo3{LTH{M+rr}E(!8M=sjcOQ#<-N{8yh-3cX2y{(f)m z=eY#|mp7?cYz|z~V^R~~5%PDbID~r##)gAd0nVMKHl{PxLmO%7fJb-sbUoZ#SOXL+ zFh0W2)lT2VmXR7ST3_2QA@Gxxp9AspRCO@03UCA7_NHw(=9d?DcC$ftn=;wAds4h$ z1;EPW)RZ&XLmgst!(Ly<%^FK5(n9>LJz%$?raJC68c1_>CnH0YZE9|YV16Dn(Y5vU z*?Ga_^c48=_2aK6c~gGL5zgUwLvP4!xam!(@lBYimA{*%uM3KTam8V59DbO>p>3r9 zTojI}V*&J&@4lDpJSrPrN$i-j&*(oFzy$WCZ}Xptwd(k!Cd!R2%7u2yl@7{f8TI#j z4E--#w0Ek=w*yJe0VHQ%5)wl6`;^vrC8SL|hHa40ZJXXtC?BU*P0*?){AwqI8+gF; z^!ko+#wYq|`X>bFJ^Q~Bpif^`(bPC^t9M@O`t{Q<{Cb$3x^zSJ)_EJE%-@aR=-kY?Z zs{GB}dtYzee**08y>A7JYj`{!^gy^=ZcnvjjJ6LQ6TA)E?KTl-%W-z)C3YotaI{`O818DhNj@V+BWJ9Lx?ghOufCg7@;1--0-|annr`QNC&cY>OdSSLJ84H+r zdX}$P!WmpDX9Tl7gZavQq-WNfL50YV@LN%|R|5+LOrvUWC#KaK+I%aSB z0f0Ynx$*My0=ERkBXNi6Fn|X3a8hTrM?*Yl^jcf%HyWukSeU9)_Wr!~09tSmpaDHJ zH8n-OPM}it_4Pjnpv(T>$MYWdrmQ7>*8oXB7J5Dp&^ElP-+cGoH;Mp)%d}W526zWB z2msmm_;^}c8VDvpotF+}9R%nxfqXKelECp|v)P~<1N?v@H8eDU+kj#Ts=mHH0MLr* zw*CG6QG0Va78e(l^LQoz$4R!=>#RRhqG!b*beqGeDC4ttrQ-eccel378re>y7)w%y zLr{e=Ce|xBeRN`Gd*@ZXDJ2~S(4a*P4i17IT47-!=l}qK*4EYrb$ls610n(6!Iqmh zZ-S5lR@T(iWU*KW9sYEHmP)1l{e3?Mpf@*uMt}zG8SD$%4>*)}Un$Vb1+fLWEdBxj z{mq)rRO9cb8s2%SO*Xv4t^Log?Ek^3yF9_vd1@^N_qKj&F@AP|(~c)tqNKG%R*W$! z#=X<~_7NEvI)ROiZwt!o@XzXUOWYrRerjHcOb+kR-tWHN3_uGP7h_TruykT-Zl+{I z3Os}UZBb>Zw=XFuCakNsduDbqew{sR;D{A6C?r${OG_fuj|}2wls^1 zk4a8Xac5AG$#is@p9Kz{TT%!B+5&1v@TIs@ylu#6Q@HJZU`-sX_UrW{bXhiv5E;M$i}uBaWu=LOYE*Du?e{Vmbs zPbtvPEYz-_zVJetJv((??bf-g*fSTxPhSW=eUWhXs@b_4=U+&6Aib*InJW&buUvi} zps!!LvimySyLay>01d8;0N2_MsJXeBMx${!9A%FObno64{{TRLGp+lWcWiq&smpD+ zEtseR-hcrpSI%Zn;Br6yJU|1~7#J9+c%3RMD*`4irpDdG}EE9Km z_R;~>`#ihX0<^ccH{imuva*trlIZAYz|$ES8SCro%GvC#%>7z`25^Z&q0%zao0!ej zwKZw!=|e+9;7S3YnL?qI?g?ZU7#K(-5&=Ui=kZM2vW*l6)mp26ycD2Y?N3FUotH_T z7IIT|x3=}!%#DyLW6v1x;IskG)cw8XjgKyn9&{d*0D5L-roFu#jYfm=`}_O5xw)mJ zr0D4AfX`O|G$3YUV`Fgt2BfR5uHM+#c+e*RXyv?*DaFKP&WIeKmlvmxV)Juc&S>}M z=7!?I!F_?l%IEVzHI?%?f&f4(W^sV~{d2GDctH;zK9tio0O-XFGmLMyn(8kqXD35@co?5byJcvDos8o1i1<|6LaJHo855uf-$eN40eVO%%jp#=EW1aT(KVmOo=;^7LK=9Q z(X3C%4f46pxav=EdHpLY^e;5?b6RTWaL`YPX6Mvi9LK$&dR6^A z((>sM8-UB9k!<;sn-7v%VR_VSI(S5>ZD zQvv_3UAun%(yN&G)a6U=u=nm@KK9U-4%jTdYx3=1?ve4itCt}*ALn{}Kr_C0@uJ#`S;!rpS2H<#Df-K^v8OK* z&s+>UeIek?6{D|I&zx63eO~RtSE^UPQoa0@+PS@y=gx!ws<{6D?7atg6iJrv`|j?{ z-F^G^yR$QUXLf84bkhwD-53c;$a^FtA@42nQpx-BCGWi#GRPnaA>+z<)ox##U?%g7Kf4tIAcua7yu1dWOa45tgI{`Ffc18 zdt`j9x~3*PB4TiG5F7%a=TH@&oRx4lJt`{7+1Z&fjn~@RSkH1byDRr~=RSb$Fk;D2 zxtMIPv9-Pidv0!RXBXG$VS`lh@j4z^a@HXTJ#TGoGdev;P!%E1P;;Od4+LnaPEe_! z>cR)8mR??73JMAU(2Pce$+YMX+T$saBq#(we);3u~LO&t7@cFe7O|@wSE2$v+R*Af$-U*7Vm8J`=2e!Ay#ikLyr|W)@=hvHUE-;Ibswt1VYJ_(jF9I_P{AVSf6y z>6gxG%yPoq(vnO#-LnCxGXVx?J#@bIHaLq{V!gqQ;Ig2wZQcSLWb=4g=cjP3k=PjIBFW#{}s8f;QCE)%ExQ{iye5QwGm?mGDfR$UE6|?e&SO z>yx!I(+x^P6^bpzb{p#l45}Rn(Bqx`KGovIO-s1kVj;!UYOr>{PawDdzk9yS;ND_p`QZ=f_@J6gwIfnv9YnpZVe3$>gwv?{6hfx z5w*-8zg|>=emihOLw)^W01fEe&`{mjP(vQ-reXA901cX-pFiS(_At=^dTxGxVsdht zO45hg^fc@zJJ0j<;%<|WD#j7$h&un2 zGVnm}aKC;8fQEM1#sz0cU8Y3G*Df?R5~}O%_*i3qtVy)9VHm;G(Qa~P3X&@*dFT-A zY7$5=^~EJ;rEP9)B8Ow#h{hq5$?w2}w!O)~@E~k-3-&SeMe7G+b^INKb>$3kR!!|K zdwY8eiwi}?Mfnd4Y8&g_f_wzz#l=iiVIN?3L2Vg%jDe7@+$|qlWQq@YeRZOnv#x`w zoUM+Eok37^cz$6)S5J3pdYX=b9*+>ew!W?{0b^)uF06QyM@bAh5E%NVhWsrv108FW zog-GoOh?Dp9=02V;Ca;~)C_OQs4IxbO3(^cUP*zmP~JuF3eXFiPhx7vyo-k13kFP* z+xdMf+1$%$uzSHF-2#igjaLC^PQyz+z)R%fuXhnH(?U3&l72f(IG={Q>4($t#2L8a zj2*G2c34|+Ob8!3`at8y#E25&#E5rfoD*bS5~W=3iuo4bt{wxF|3I5wd-UD2e~MYC z|B(RN_9p>o0bx-VoXOuxh=0toJ{@EG#|qM)?-*QC6yjsq=K-;6*IArVpGWFlR1~1R z>c`B*r>gXIl+|Z3CTBei&LrBL3esYd=I1rkIh9BFW1PV^w(93YEKWu0f2$$P$8tz; z1)JEVQ0u?nzI9dL^$r|DZ1#GeCs~~i(EHlc=<^u!Gei|86Sc1+txkuTo=&v-d%W>E zZ`7$cle0#m{0NtG-eB@EJ9S(4$_;M8{YhMY4bXl}*9cd6m05Xgu5vhDBeBZ{z-%g=ho_n?bK0GctG-Ccmi0|6R%ad2=DSsVn}^7QFb z;A2Ne$Bpf+A@Z<`iwiB-@%i(YeG}hJEbKwg4FJuU2Ax(HW~=T5#3{36tA1Of!_=gI zwN~d!p4!EDRo3DV$CddR*atv4HLvofk-L`5eR=B;d+)gBj(#Y1Mqh`Eegqm0+z-&u z#)XB2adUG+oqS1sJb-Nf;SYZZ4Gn!sjamWvgkBse2l(~{Rj@HXKOf2g2p9nR;lqb? z{7eC8#(W$iB$fvGOTQhsysxhp0cb#E2Ai4~Xlkq}DJf}ctm|lR8YTBmO$-7+cXrgR zuCCBUCchHYNjPzO|Hl;2FaY%O%F5#Lv`k$VkxcF%8|eXq%=dIP&PJ%yuf*Eq{I<5r6r_ z4g8Btk(unMW*$)+Kn3Wdm7JVRYmGkL}BpK$XV2lPJpp#!#kzHpW@Qp3kYuewb(Kh0%1k(sH&4Pl#S#U4c?Ea~HH}%Gv_+q^y1M`atRCP6#a7G#)R;tdX9P-zN_2jvf zZfJU10gLO0;DnTJre{8AXlZZnOsYO1-KiyA9233ISZ33AF_=Tj2rRuENlF^7i%U4I8{Yvb&^+&f7Lidt`0B9v48 zQC}i__WZ^A?sv=Edy8972Isd*2Nn|>C#6E`I6TXlT}r;iJTS%JLU9@Z&~1dPE5yHj zNBZ4!>NU2|*-2WQ#8`vYY}u zf``q6!2r-~yquPLr|+1ZHJ9Y(7h=O1pN=;Y8U(s zzXVJ-R{!$0*%$Vbya+(Ei!ghdor=-BEY5Q%Kr6CvhBL8510^%F2Qsr0phVaNC8@*G zXcm4RHUR||E+=LV3l@G}HX$}PJ{0pc&nxUVnYab%LO4V@xByvzRG|N0U;>(c9Dsg0 zC^=Dey}w8hNP7PZg~zn-1|<87Z;-q0F(yM5bcfx8qXd<0 zLsF-5a6e>VbZl&PcJ{5DQH9(l0QU?x3v3@78|`cdfbQB4&|m}o9c5)DK&!ny-3|3M zogGcXgPpMdet@P#gHT29|2Tr;0)R#$o5zo*`Gp0@(#XiGOiqsX_jWhUOph_T{vlBT z`pgFc^v3E>3DC&z9&qX3+PJfmS>9$HS%pt*p&wedjjDBuDxaKPqeL&gX0hAb{ELRuMF8J2-0;|R*@eaa37`nIOx>he4S!fY2fM9+v``s1Z@pPj$L%MK*X zuPJ%mKv7UjIxYJFcpDrV^a}~J!=dlqOX=?ESy){32=+Ddqf7{miXfRe+UFGHnGx*7 zj8z0~N%Klwzbe8dkI~l+a8SS-UgTqC65--e6^E~E9kI0y^^q~RrR3kt1N|eEYtCZxn9<2{7(Xo5G7_iSNnqL^_q^Y>Nq7N~-uX6KA zNL=x?{9A_IDSw@>Bklf_Vf}@J6c^7SQ4p6I0a}Qij~#7z>bB7Z4Pk*RoZQAbU)(V} zXClsJr2ToaNd#elhGVfEJXH`8Le_a}O0ZUM?Xf zc0o>FK3)M%EtT_usB^Ze-}vZ%<*&i4r}kBp+2;PzzSGm;K1e94gy_nfitb$jr3Eg1j#xiqQQvh1{$~Ari=4ai*Iw8LH?3+AO@rE;z?KCfheQ z=a}Xln{6AE3kMz(pm&xVnv#AsStl{mAiXtU_zIw(A56>)`VfGI?yaz}(97HF{(}dx zv9XjTrdwM>LPJ~I+W?>khKDRIEupb^mC&&PnxdVZwZ-|-j)tz%tk%4g&XP=WYwha7 z9Q_#c^6FY`OZUU7=AOZk&9`ynI0803VgwpAJUm=cQGr6CG&D4j#{j6G(6_-80<8p& z5R@kXbWTnVy-ylIudJ-xPk+$X);2UWl$??Ry(WF$AU})LvFH6a3mn+m+S1uxJ2HGQ zK#!00*Va}7tpcM@O-*)nb=22a*VUFUE-vf`Xk;=CdjD{TLele8LF)9Qq%_e08va4K ztsJT4l)3wf0UFM?va&Lts?yR@gfBn3kdkK@frcV& z>>9QXFSUwlcso3!HsXHc<0sz%ou(9apaRQvJ#)@o=1|o&71y*;LPr}1mz#%{l{fXh zN#GEDQh*+t7*9w_j89B}nhdS?^VhT2rDoo@33fCIAsG3f@1!MdY*IosAi28c26I=m zl$nNxy>U*_s};OoQg1P&aA3>#)K?5Mva-zl@CG3`!!Uw`iE2@0DYW*m{ccJ!ve*hx zxP+NH51+95SE~2U#dcq)9=Xuc|8-r-mk)IQs=>v?Cu^mn?PssB% z;<6698t#_D`f}ph^6CcK!m{Eb(r-dIB;t1m4jIr(1&79U{y0Gh+W@Km%h0?=G2T?#;>!~mdAr&xVqCBX{-t*!o5wAoj- zQd}H|05pr}EnunAe+e+aOIPjPNy|vU(cjs3_B|PME zfwdm(9}S?Pn;aV-_wn`V=N4^1_lKINxz*t$`JJ<>MMf`+aUvWb+tzT z^wh*)Z%->c%)m*32S8XjmFDI~xDarT;Fg}DDRInivpbXqWC_j}$Q}Uez_O(WXz)Py zHtzx2MdCe<2hjAXL&o;w`zHlx;I@K-0z0bG)6?OW%P4A zgP8_bRyC7>t9Bke@rWsRj;k>Xt>l$8^z!mfN=ehV#9ddnG4)6s9G#+fb)Y^SKm$Fy zg!`HX63jwK&cR;Ov(v~e50}r1gf%IZaW#FEl0*ik*^*ZXl|q;rKh6rhc=6K(e$#G zw9=$ZhZo~4tS5g-@R~SEMb1G_LQRfVu(E2342APf`VfGA_Wg_PC(ppK_82Uo-Si0MJ)BDDU3+ z8hz=Z&a9&Fb+pA9Pc>Fy9)ZJxl`k^_v@k0#w~5Z@Nmic|6xgICu6UV$7H@n(OPJe8 z=TtWCFMevQ(qb%l|BFHdxg{X79-yvVg%^-H3Xnrj{(rtG5^|~ z$J|@Uw%nn97(l;xzPGd5wmOx$I+;PU<%x{mp5prEsyT9spR39k`G7J!44^?kNWdJo zV{VU6PIUM6_74p%t}Ks?k3~cTh51{gM4Nbf;s*u>ULG5up$;?-G}iRg9Ap^ zap#X-i(&f_0)z#cJYobI1UXMlO}%;ZW^{D)yFv!|6c7-|&d#QHNCW7lrKN<##M;`r z?(XiG*jPZ!w{u6?0r|^tQjpuJsmUV%8f<*Duez!dj(tKE84O1G;{cIOV_Xz$bgSxXkaq(B6o}rglvw9j7o%{3ohyENb_PicDn`=% zR4cqg@a=GDIv@{a6&3cuE(U?r1-Bh-21kYw)b8!?bMSY*8Y?>-bY% z1l07j7By15AeAZ@7eRZkrm6dPK$e;CMg|? zQ4IpVRmy>d*}>MeB;IlYZxw;7gTS;&`qNX=@Ai*FKOz0!Is$tnPBjjv=#SIkMaLXK z&**|LafQ;Mbp<^ORm00*)x*mTqpQP<+hfbS3^u;9OIda0{j1e4S^w++4X7$2b;()h zytyQ&gxvWc{qvR*uLg7vGhk*XUjZ}|r@&3AOFrg*%S8W~Vm6;UDzaVY;WN-a zl}r46w(Y3|+rQ+YKMT2aMTTGCu(;~W9K5$Q&!jqh=B<29kU9x8D<7Ah`q?{nf5}4s zB@_LZWV5rDGOT(k7XpmW*{FQurT>*50JQ4aNNNl;6T1+%Fe}#ZREouymN&WCUXOD# z@ygy%x70SYkP??>p#rob3uh$L)l??75N5UrrfaTOxn(I+*YO)%EBWoG|xnf3YK%)-IP$qkJrbjd3#E4$RbYQF%ldwP1_8=!#?7(LQy zYik_v z0Npjnm;hBYfZkbdXu13AnMRrU7KNQ5)PVr~;`!6%vE;sD!Oon^UHL3s`E1<<*9IzN zyNd+Nv($6bE!uOg6yE-8U$yDx+B8E#aN!OEXlU^P&XQA-?#lYqe|;Ta5(IuUtb>r(1;)j0H)#L zVQ9PIE`#hr9)_u+_m2pw7V=zim=J&lEFK#lp9G>m(qJD*?m&QM^h*`;%K+n6sfC($ugJ#|0?=#JIXxM^nwnhHUGa<(5b8R#jg8O_xVX3gB14TmEa#sNpp#QmOak$*R@JuAscEW50=M9+mX0={ zUMXXB1Ds_=T@`W@!SNW z3v((;u!{?G%89Wni0}wsXIHt&c2kg7M2wkacveTi3s+lv zoUDY*RmzC6FfSXw1`D?t3pa{|TbGsZCYvA|bsA|NHhyIm9s?F0ZB{;U>P94E*I4bi+lRaF520Z;+Fyu7lqvXHQcx4j-98bEJRUnM*cpplgb z{r&wpI5>ueh8Rx#2tk?D*49c$NHF-M0W_qD{D=?P*bh=W)G^~-YQ!_cxxhmLct2tZS2;aFNa zjv=#f9220A5CYH>b!T5q?L2w?K!AQWFS!!IGG(Sa=SEz-8@Jq4ze*ljn;Ku6o>(0p zS?TFsDlVG$^P9!vN95!f)1aOp*^Svnt1ejrEbWZtrKOW8CaPzqlKO6!0=#6 zX^E*178OZC-FCc%Ht8Gcr}YAm`P}?GZ$F=svQjvs&c?VJ3*Y47_t1f@X zEPXq;pPrFH=!jFk*Uqp>n5Y^>5RD^ATuP!s+A_+HCTgzc{AxGdgMIGaOEGbCKpd*O zS$xaKDu>q755XCP;>8S<^leO}wUw0#D0O#BWk(c?1RtA}0H1~=lOU(SIYFN?fvwLO2>coR4t;X=nkfZD?(7>uBrfYVYcyx39UHdP)TT2jxu4~)D%25g@lB-xVXR_0ZGt%{&WBhxI8mATiaA$ z*U~t*Fppq8y%>^!|9Xc87*Uo!aRyGscsb3?&O)1+Rg`D#gfS!7=9fI&-g&doT~B22+UY4^4fJuAC|h$qcU$0iqev2EMHM27PgO#N zgffmK%Ghbk*y$(|j6{uAzjEt1S02jeODkBks4Xqq@1bJ?^xm`Y>qb@_bNldF zy|}DiY-W#9QriV$5&f9)C5L->tVICsRvccjiNN}TZuUC({D}DbdE%*Q;uj;tb3oO7 zgp2gnL14O#Q~3scpWfjaY~gkPYGO`bO7m24|3c%~>cqvVT|ia& zYd`%9I{hZ&GJJ1-o?$H}-*%MDI3U3FuO)-4?#KGFRL z9>)#?Xk@exc{OMIAbmJMGkT=c*5=w^TU_Gz5e%qgYfB))O4L#dpQwYGN$ob za3Wp(Zvfgnyc*|yyQQ_YsItL1C=tvfEV;XHaCv!|8YcQiP&j>k{W!0;Mxa|d2N)Be ziU!bIiw!lg|Jql;Hc-U5(y4hcK!3N{kofOF$%|um$6M{lb=oui{@*>_TAj%sX)+mU zG@cuZ7;kfEy7&8u?jVMQAXi5NG`;rr_BuM+jSY3ABm|9gBy#Seh8pmFwS-_F^MHtC z^7IY@&+1so0>s3`0ML(#8c@THjEsVVgBiR5Kr`m!5Fxk8Ds?&n`t49j;4~*EMvk_L z336|5S95bSGDuG^peHcK`I1^U;d)Aj0Rw_#u??f$z`Ywd}E#{;HPp_{m ztuM?k<>iva#Tk?M#6kj8;1V!?@md=joBbnG_e$EG?o?Wamz#xEnS@oDhE;>Xqqt>w z1u3rLPHuy(Jtj9dm!aYTn?m(SOG~q~v_zp$Gcz+Zx6oG5TH}uk&@ZXv_Z?OAuAmv8 znx1O!?3iCzU}(|@hlf1E{4}f#>^und&5h82zj*m#b89m_E5pRj(w2m&sjq!RUB?@8 zXy=MI2*8*`JEI~=wl27l(NVzkqKcBF^wh?-mZs)rcV5Sl^9P4;Jh?PO_`*)Z(nLQ5 ztL45Ij5M^Zj3u-cc~vDey{v()HQcSV*tDz8=1gDc3gh#m73_}#&`+LzU(&yz8{euK z+pK|DOp{vlD^t1MC>B(6f%x!ihYSf!@IAcb5b?tP7YAQb7g8Y;zRtjlrQ)R0@Hf-( z5)bg=@WBtKqls}l>ySwg&@_zZ@vZ>>3Xu(j?B2z#S1SOV==eGT=uc!qJc3+OB3wtz z=JDxGA<3(U%>MC%b{Ie-zm+3DSik8m=mh=BhX6EGN=A=#+T2_lXpJjN zwZ2&O_|fdM7vJxFx4yO7y1CrAx!g3- zj&8p9KOYFtFR2YgWo4x)N;f%Dcd4JWPIg%uaBVKZdbn6-6r2t*<)D+}Prc(w-#N=!&d2##WK zb$ozEZWAPX^jcb4YHe*@Sy@^A0j)q!TvJm6dos{7;A~S{A?e=^0chsAJJIXQi>qC2 zi;+PKzOG=4cjHzDde`P>S6Z9bmKIj~ddNzOj0yZG+J9x~wYj-9Gr!c@JDO9~bvwJ! zKefg^snRdCIx4F%qoT8^XLNFAp{%UT#>VE!>otrJ0S&_wk&}~?j*bongPEP3rTP5S z0L|b8{!>$5hxK09-u&z{aNF4Q&FcXV|^Q6R?-4-b<CU#=5}a!us+u_Bz}u;=F1%h4tibT54Dk>`m+~jr=f1;Y9sltgw!(3eNbJ zgNe4ep*r3~FA%NeVeKCsTHn-QWp5*-CWWj}C~BZ+^|e{gx$3!ZdVhR?e*WUc%FbTr z^hW#C`dc=+UOKR7nA9fdS9K2m@U%lNA38b{e`AbzmVN}9X5W*33ts^)^P{7A(J}B> z0DT({x#Vzcyne;_%iFrlHL)z#Gv4Gng7cJSZh z12m$e0eWO)1ing4OjK7_N2Ad@uji~iOwXS`@9pj77)YQ-h<^qf_&9i_7a9l-FLNCRkZnH8(fYDjwh$)D1N?we<9KsA&TO14wuh zqE7_SaO~jFU_w%2R!%llIhre|X*RAneSfrJ7{NG{;1%Kr&wjL{fPjn2OD&x-`WW-b zgqX#pML6(5W`?mB8WrUTgsOxwNXyQEY{T}F$}*I*owTKv7TV-tMG54&wY?1==3x>{ zFbyU;2YWq8&2Zww)t@V5VCdoVP1awSvR&ek)>DzO&=S#8ILCJBn`>9tB?RQr`hda) zAvjZig7G@#khg!ZnP#Wa1w39AnH{sEOFLuBJM){5pFI73@7eRGCjlJq zr4xWYv7_uC7NGlE;z|=acDg0@WAX8At4p#WPk&`;j4=T^{m1~lx!6z<^)Jn7U$#Ct zPko6{ak${~y}hSCkkdrPhZ zUN`?x2uJ7W9=+QmY-wdZCgyg^ZG+W8(#DAM>agp4uWQkL8wVQ$8*6KZBxrh9fNpAP zl97=CjDY__pY87MjsWywVL}J$Xn-E2E~-*nTkGfNCn6$}laoVxN9sTUkwD|9si_GB z!{Fz`0U9nk_+foz=V`Jmg)YKqVjA^`!HaFKh+G^Xh&oo`w9_4?_hWTbZzFDlTSYKJ1a4;K@5uSFzt`79BjFBe-JVsQMN0gKn zt18wO=0;6Wj81!N z(?nGXXQ+uc%_zvp%*(Oz#;XueQZ~25P1VFuDhgNwZFg%?J$Vs*1sfM^XHU0BppS&U z61R#NzosOwvN#hbo5|nxyU$e}4bX7DP!8GI+0abEZJ3vr_u#>Uj*bp^et^ayIXO8u zH+PHf&5HL1=x5JgOs+mkZ=3OYICvwl<}~^Z{xYFc0&%x!01dWB`tLE~*%mxYHJkVbw4yS7!bKsXq|a#r{%p)pW>m7lY!?C(7OUObT{+!^Ki361AbHI4aA-R^e@v6 z185}J^aw$h(B0krApp(jkxm;MtG$hpwP{>iT@sJ_ZoZ%G_DGCZ-DoYvZEjHJv_4F5 zBAxpHy1BU}A-z!AkR)Y5QZjRGXze;CKsR?%)_mTtwbuZ>v)s_0^6RB`)s;@IM`W|j z9;LpV(>-Im-Q(ZUtc$!{m+uw` zfB&$suqGxZ>R5kZ7JZ?xwY5c}7Gz-=*o6e>t(R^Xx>0~ZTd0*&nxXkgJ8A2U1t=NG z5RZk4n;Y&JVG|J%sTI-NQ0_plslI-DTbrL{6H3n8I}_*p{K_gVgTTo7DRzBRvqtf4 z=koM(E&HysmHyl<+pITTUQtg+pQ5k{`bZ3mPF9^tVzirpxA&jU%&DqRDkJ0aN=r1?EPsXVKiTEE1BSSZ&@W$QE9pNxu2tg5cs z-q6y~+`Y6p=gP^y#NH<>Au0Y_N{bT=sk6KzO-8d!7Oxy51^YlxN`;!8hVC0F;Tm1w z1$gAXOezN5w3$31E(DUiu!jeCgc!hfsHm+)frkfALq-`BXLRrTb}UP>J3;Xl3(=3|lrbdwE5oSiTHbGHvQU`U+T-Cj?526PMzSSree zYAwJtZMyCS!NynRr{aHQA5*E2dg@&^t5)>fQ!@Ljl5IAn@8sRqwhP>X(epq1uJa4R zF~&*=FHL1Z9)X|q{w;hMc}C`7Csn^;;?(h>Sw1fRAzmGI9Yk@Hf!!N!AIqM5$>Q%U z*cf?K3*4^Q;+kVgd`T%~!5&Q{wvFRk$A!_!_G;tGfyalTHNi{#_)&0f=zn!_;o0;Q zxP6SW*7$F!J8}Zg4<%_1E38_%G?}#Yk;PfRLcAO(D`u_mOS(~J#Fp4EC^ZQj(BN`Hrz<4mOk@m1SN5gg7XW&=(W16 ztgNB}JT%k`3ALgjvEhXC2i`RqWZt-FcHhuw>+Rh3)$|Jr%t`gsL;1&Qd5?v}c?6#8 zB3?6_flgK~c2TJ3j2N4_xd@Zq6Fh?&Spu21KJ=jG==BET~txQT?O7e_ByAmsU*VgI={ z6}&-481qbP?dlNu?3@}J3eLu!qsDMpKE)dEYHPS)c1h$l)cSiOB`awy=KL!)*G*jQ z2-!t?;3EKpZ%<}=bu5(_Tl#HoVQn3b{6|H(MfsPcL?&+jRXs4(^`%b~JP>PgP0jh;SB(ebKs5p);pNcCLIx&}KeN0GYP7{7LP7%j&OYdA|(Q#qOQw9_qyRi~h0M(HbKavn^)L9BfP{144SGItM+#2gN@T zl%cAk;^^dLZf3SS*HKh7)ZY)959vf-XP6M%Vbt&QOVB}Y>9R(7es`LXb5&mYflU~- zV{8z{=jtqitZ$Ox4vib&EAev4b!$VWaD}WuidBjcq53dz>a~y9ccY15=e+6bFA&3E z=)~wWaY=`-d6A}_tGTAPQCv0G{i@jb{5ZPA3u0T8v*`O_Y@7$r?|$R2p`W0>rU3Sm zYWWFpo7&s!nKn4rQ+Xdj65L&aewI1EflC9bMT}86GYoX$V~GixR2D8)j}3UbE=^6= z_?41OuCA}FrKP5)rYCA&_m!M=Bk?2(zJ>{zcH!ao@@NP$VjL@_&=Q^tBo8%pUISA+ zD6fmTMMd_>Pk zDE!2a9bl5hdk27?{e5)LTtOT0;q>%$WLGRBfsD$a;2u0L*)QC(s%nARv~bpJERI6V z;6nIe_?coEt3zu{X)aYU|7@K+{kIEP*n}vYr2yS?Fgz1Kzn-dUqqLq#-1Irh2^Sa= zIMX*q#@4#J_~c~%sz?z7*vss^JVSeX#)I4c?v*woGIEVlshWg7DEOHA*+2e%aS_8C znkRq|*r>8Puf|#N6(LZCkO^?_wkf?@e{EfSBJ$jTxRjHUgqZ?3OjURGJ!*jn7# zaP&Sux4p8deTM~;#|_r!?^91Ld3*OvPsggP1R6GVb4v3sUtVhT&INobjwczz*cY)U zWS0M!jSyaV34CVF9n457+2=Rl;^2TehJ=O=Jjg33NEFT~r2~N2<;8`JtSo2wml%5= zJpWLLFv+pUZ3=E{!mnOIvu)Jcu%ohPopw6kCwA7hjKTqT#d}K)gE;eW!I79WjlZa| z1xFw$o(qLvYT<=iX@%*WEkzv{KuA@#UiPo@j6v96?YTZS?}Z|sFJ8Q!9bhS-slw~+ zdN|j>cciV0uE6*G{cGnZXTi0NAg7&;ji4`xagp(}YWpjR=%VFPT2_hRd==-`3#>$3 z|2psu>8rBlzN%rumILMs3#v`GW{D{o7mh0-%_cy0Ds))bCWKEkxPC~X?n;t|3(EpR z-&lBs=G)e41OfosT6cKlfxVY9oe>3 zV0RM#JjHbT#&ugMzHgp1#Aw8eY;76V+&oku&&>4$u^&}*ag-;Wr{gskawj%IPCAli zQo3SVv4%m)j-h8oOUJ#pg{s3ft6xQ@WK5RVf89{kI<6%*E7-eh?iPe+2VaKi>+9;z-4BF6c7>Y!WPG&_{!aAokpV{nEJ|7$ z&f`fBhUm?+P}Zzc$G1_(t|zwp;N!DsN3mP6^uEa*?Br$0fOF?n)Mx**M)uiY>gnTn z?r~MAS;l9eclqm^?2idQcFND(mm_i@x1((j%>2 zP@j+>0B>4FLiI36;^NQ_ zY5Qw9jnvZ(Wm)-{%7vr_W#w*cM%T|v`{>b+D#-WBmKF{sK+*WjxTy*U2RDl|a1X-yqR<5l{W#Fd>XNXtY2nrZ;K zmNSLwLtw?|B3#J&`uc9=6PU&9!gVgA{q;9Heo&^CpDuUP;jb0N->2k%?mG^h|Cub~ zg&g0Zs{rfFffFgZDv0=du)Phmfp+fw@@uJHFNK#{m;GGxa05BiUOdtqe9A0h3U7#b zq_QpPws~p8Gcw&%Qhm}+UBaI~PF)VH96FWviwiD^2G7(-4EeS(Td$e`O2rvflQD}I z-l#h6-HT!suueRg1L9Sk93AuEg~id83YOS;{Gqu7Kqm&#!1J9cNO2OKZylyi`9bJ% zJe@r|tF#Ly5hqyw2Rl`}6PosHW8!R`_DqNFTqoADj`abEeXR)y88(&Zbq?G{YqM*r zjn{RyY{>9y&<3;V3bbyMbGLC$BifP}F!R-v#u>KcXVTkMVRAYSJzNcQPNNa?TV$v3FBwtlP{1DCJlz+ zdPH^!>se&zv*j2*d&>n39)Ph~I5;rT(M^txjm^%^{%x+>PKk(+HZ~?ZNcawHNJ`#M zp|T(mV+=XTtcsL~`CJDcM@A&_7&^9gv?eEIug%ZT|92@)>*`{6-b&6JXF}Q8kFRzh zqV;hv42bYFi7pJPD$^ZYE`Jz-2Clf>VsBS-lL3=~L43Zkxt6|a_!!bf(Xw=DY3Z@Z zZ<&jn$d=W&l90gu)j&^%cH+W^5J}gzx(k*)#^pZg9F*1}@r>8LrsclJ0^eYnFdKhz zv8n66X`2`(t1is2IWNV5m6}4YI}6?aiv+$~C|Xf$_iX^2Y4rDnjh(Wvv8Rldi@23U zMq#P7*yiQj?N18{o6Vb-030L~IyfhnEijlxTPhmB>4VBC2rSwNOnq=(2(P$=I2ic& zx!YDM&rS(3@eEJn=S4d!Pi4}JEBW+0I$jz}={i!c)* z7bP{VT)&78k#*i5D~6idU?;ce$T+p0Vg~BJX8n3J;@s;Iy+xsILU4n6>S}6G4v2_A zPmh#qM84?;&=qFWeos%&Kl@XcpBq0Tn(e0H$c1O!{iS=FA=< ze(I)ekbV(iGt;x_@FWPdYYqrYhKqV0CH?p8<4hFJUm5&|jj-!*7xWmW@rkG2o6@*R~#_keLz43Pd6(x6=mx z?(12hLJ=ft=$6GWV{)o+xHQ#P)JjXsJ|G}c*H+~<-RNYZI5u1aX2%5Gl!0X#$emog z>HaiL2lYp4NXuzzD8!*tT~e2QD?Bx|l}Ilc3{h0u&w%VrDQ%XHZY+s1{jQQ#T;1#+ z$kkaDUlmlN3@I!KX?+>nnftGgc_5Po!G)uUSPf1=~eAE4F_qz{6j-BUK z%SZx6l7%^q>cdbIM(+)YB|oOJhqQM8L^&-p1~N+%kRXF3hnNcIkltX0=u(DXgS;7f zAM%L?^6ZUYE1ZPEJ~*f93!Di31pyze8#Gmq<5eY(uF#Uuw=C1fBmWj?G=GA}|QG0F|nb`v)ab=~ojZJid$CIUnMH%4L8dk9##Ky%n=8mYgOW>c(e3`4@ zPd=Od34WSh5i>koe0KJ)s_NhG-~TQyh7-|+&Wc}NhASpQ-n=J9s_38V)^}#y4`&R< zAV~T7?R{nZeeX{aXr@P~f1&5u;GG*s*Jq?JterGXg0;YiNbvvC7*&|XG{!|ojf8mOy#7$L zc~JZ9BF1i7Oy7Jj>L7t8hQv$m#7n28rv}IB0ws#1-G7FUJDd8u^9;BTx-rF<-F*#4 z0JYhyoDh)ddcysp;qCc~nf-I@kI3lo!C`5*xmiT6J^H5@#F2T?&cF!Az>+$+ENeh< zMBlPd8??HjVeMB3FwP(~w6+P@u2aZyHmajn23kW)3{{`q5_K$_ECOOXpIZJ3PaE4O z-Vwg{#xs7fjFO<^fdAg$#Q%a^eDw?d@_&6nU3J?{DhKc;oNVSxAW%qht`x!oY`>`r zM&ioVN}(i!qH(e6zWP!_a4qO~V%^F~u_~jmyrj^>Q0{r+4E`@>k=;=wGkm}5Ho|>N zlvKEuj!xmfUx9DH{-1@~<5*>4uaH!-v`RcSahF_%n?xN=t6LwsXKVHD4W zlbxIYK-khFJt?!XCFv_mAH7*cMNwgiQCao%0ZG`L#t^>c>-y<4Z+K?KI8GTJSDK|3 zj)k%OuiKGbT&4{5I^cLUsk)>1i1~-gzB~g#3^{z_Hs`ksd&7iJfgqz#t98J6`gH-Piue8ur`K<<#UvDGU*{0AyL|{I0~ohA9D>YBp5_y2#%?D~tRhpn3Pd^S)NLx!O|KQ?@tHdeRM zlL&IP(s((TKknBmX@dXr=+Rd-{bN#VlOJ{WlZKY=k{AcL8n;BQ7VT z#zI1db0ETWKNyZfTfvhFQX3?lSJx)3PndHvcCP=kF5n8R$UK^Q+8Pk64FP44MY`XA z|BC+hw$sFUYx|CA_Ofa6GF)iKMh(W&*p>cci0GAg7#o8#0Sb>gA|YPzLP3u(?EP=p z*~Jz3PZk+IPLa2cRCi|NT3DF*f-FndoEs(blJP7fxWr^jEQ+CfL~us zP!gCBfN(r-77$XE>cBb>5tA#Fi;-V&kd)BV!lU5a3s4d0Z_Dr zm^C-+w`jWh;zl2HH**&Nh}Vsq7%JOP0GoAraM_;g4;4V}YnyO=0mOxl9P8TK9KTu- zn=!W_x?Pye_D5(b#dLHC)`zewgE>1a^YbrdLB`xLdeTTCvnSyZ<~XpfAh8xv9SS{q2Ela%qpSx4zzhi@jeJhiZMtI+1R6{ zx}{AeMd&5LH*xv2WBU@Yg=tdVT;u}PHk`I9{?9%w&km{s4~iEbn)}=^+g^l6kjQjryzp z+CcCJD39%wSrs0G7@KabnC7`f5E4zkcxvHy$wl}Zu z@YDR7|DZr-zUQ-brt)+9*5h%TiPvcGkc7H`B#@d`LX0UMk^*MjnG$APIl?#=hlwuI zs@25Dglg-UUjL zgxF$n*hR;d)QurymIH zsOs1$+Mu1zDw|;JlC%BiV%U(ZIMaAiMs8I3OnafeK{PdPm8h-m0t(`8Rs36D+l$;8 z;(t1u)6MtLx&BU{o;=Y3-xT}PE}(Vk z@d5u2La$M7^JP6|C2iF*YSr?g=317%QIc)9-AcuSFWm}Ja|8Fo(gZqPCqDv2Q%p?Z z(?qkDdQ1AUwUl}bl)AOCI`{ev+~WjCb)D13o&-rS#;8}QP2Em|@zgTmRl3Jd4O((p z2asfam`b243{Uk&yOFhxh=YrfJMO82vZsYJ~n(@hXv~^W}{7viCP{bIzvDmkcjDhQqB+16cM*maW z%S(^q5TM@a9TM%j<7E@2Dh4Kkv3ZqBT>gEypX5T6!p9RR3p*B$L@)Emi$|P>q2*J+QA}@cJ_~Av z^mACt#oO~9`$m)OPqizLdEVg_<}tqWUGSSw=Kb4n>)9OcKGL+;cwFBkPjRo^JpkEE$#Tj5e_jnj2( z!Qmf|__HiR_N!fYjX#*L2~eJmbECF;x{0&pUYzP%n>(XyPx=)d^of&)-uBKCPzJG} zPnOPChKPKx#SR4v+*Y}HYX?HRylD3e^QO+L|D*@IZr9H<^sjGQFG2I-mqO63{L!qA z&};Vv`0l9Ion^_cVsx2>QJ|)~7d2!!^_KGGM>`JuJb(iwQZtI5`OsHUSVI>b&1XtP4M)z=Tz=MOdK4;7aWm6uYL-Od#?hhp+Sm+Aup3v}hQWe7M( zVX(gk^L~%Mqw9Oo*zF?PB?M)F@+8CkAo0mQJp7+yW1sa=jMO+7Rw0tYdekkNL<+m# zz^-zh6Uz!mYJN$abI6Be&VU47!Xuy#0iF95Hb5iG5p9Gt|VqY(V z;_<0DCRtBJxBvE`PJ9P4s=cIy8AVb!U#>Oy;_|$8ryK>=bcZL2Z!=~P8|IDPwPiOc zk!kVygirQ~c64UQk0NBR`{ST#+$?Cz%3KG36!n}Pci9zYuW|~SDiaBr<9x76<5-gs zdKO=!TDCx%^=P8H5}LI^TeYzeY+6S#flv~7V!FT#H26sd+py6@@8{~GA!Wn z>J&Ft9xM+%SW`0m6eerRFK%cd>LLpc5{4a_QGU;qCLBFgh6<#dc3Xv3F_>1(C_B$ z7i^-1awl|RW2fZqNBHvR;=0APb~5tYW9DY7T5c6%b;as=_w}ot-HgH=cyGC{fPW}2 zANQ*+57+n{UfLORsAqJINOTEaF`XpN1ZjnLoeqmba)ooP#k=+VLtIjgce1yyx#LfG zjsoQ4adK};s*mot=bB-xxf$tCWC|plE$KQR)5;jL7k?WsNy@ePh2;j;%TPLw)3fdc zt7#8)mzn1Hg~d-Kb1VjkdkGz?ja7e?X{wJ?n+pR5iqAdcdqJ|6>PGR~m1P0?8yGOp z>Ov%jd&VU+KgGLuKBLc4T+-_taQ|%%L7~D&%m$owB74&)z0VCeH0BW3ALe)*V;x=S}R}w?Y6B3aRZ>+JuM3gS$Vbucd>FB6Jjpm~4DW*~{MDd$PA4g9nvO;PY z+cdHW9hMsqGOp~D&RNNx#SP2}PyGi~|_(!4pqEi*C-u+elhw46zC*xAn;#XSqH z2*qX32?(U!l)Sc%Qc?PMefcXTkS@s=o^Q?1v2nR6H74J?GoPgs@5aPDM92Cfl1$O`K zZA2zZgL%3Y=QuSoMl)5{+_QXcQ-E?4fmfE!5=*0Xd{sNh^rs)4Hnc_Q)JE@bWUpS@ zd(o~H^P#@p<G?m4${Fg?siqrU=`eOm^5f!n}+B~!@*&5YK&`WVmx4&K05PXVA9Dky&iVT?JnKm$=L4m^J>*C+d45o z3p{Kya(4XNoRO82gU1;yA3eyQWIt6X(mCh>Nfw?q(!dqy!BpR6Ohb; zM^t1}<~ttxya%OhPrmF_=i=w}vi{u}wod&4AD%DC%-sG=gttcEXVB$-d$Gp)yy1SS zy{c^TPfSd&!(3&y8pf^E;BpeQN|=)nOkY$Z`!p3<&Z8D)haA&G&()e$_~XY{m(e$s z!WFOUo2i%}NYb^FUq$$wnFaGnfiiXR3PQeQlu2z{GZ3@5*^bE4u~(!|^J~AY-7<)p z1w9tG!HIbQ^nFw!U^1Y3FzN=a*>aD)oB?#z{uOGgdkd4Q((T2ANKX8*5#q@<|8<64 zzsvpKywN_|43nVhFz{FQ{k;U=eZ{5IVa^gC-GSW z+DIIwza+`R1}PUqHI!%~vIfo3l67`}OYE>oP71sdeca7RmDv zUDeLb_xn#z{}vZ6_g&&(~2*0b!hycz!N=ncEyFtY}0c6H5ey4J@g zVkXDzv6c1t*F*>(iz}w@>n_%!ZvtFs|Mo;=xs-Iw4^ZuGGwr(VQrC#^?!fOgDzh~< zxHf7eg1U7F66)rSqNYOGD+zSO6Lm7wmD{MZ)7+S9ZFqxjRBk+C4~T#JNPlS1A$ z58*5Aq|lwEvGHF!e7d&i;{?V#hLpps651s}?{i`DLg?ZW#T8Ci8qJq?EcPdj<((bH z(uH!tgcC&QCMhhfE~FPIFg(0L2V-v~W{xVJuT6pR`tb`ZJDi-inXPu>7`p?NsvvXz zq@e3&wn2H}ZX9|uiiQB_hWK?(-jGd0ZE&U(JC-YJ-QwHraq11)bH_MU z4iVB15l#$35eySj8Wy$~PXy#2vrEcds_#ckm78l6Z9<2}a!Fn%BF8Cwnkh2qLZ3Vk z#IxY3rOW4k=b>ymF~T?KKST>IeO1Q1}}Bt)r`0N&1RJt#)t! z^O8}rXjigrXmfX14A5D+XjU$@FQ2y*f_0ls(vIpqPV?Gc==Nw|8aGa#_w^teYih|T zfoQ5~IQ{|36SG%Ol-6$Ca-*+vUT>{7$VhjLQ*hIN*Y;z(3@kc_f69KhnZ2zNDi|Hn zt3BCq8B7^7tYzD&e%0gf1^B}pwv9G(25_@VWC`#gWJ6;6;_?)zJ!}b5(K%|oW}E%k zJP<%;EqW9wTD>NVn>HSpHuY{(YqP71YrIz{H+_ZX*x^r0bY@vfqf9wkv)gtItimMe z>s1E$!^?>?|xTm8DG5GHD9W%k?j?`je_&x}bA^HQO_Z3C|NWZrG3) zDIp>8+vj-c{{ENTgeuL~prA~nbY~zV225H^_`45Yvo5_!K1B3h0ymzx>(|gv2+p8~ zr*r?buf__w`dd4tAs7_Kc7C}MwQ3RK7xi;SlUcsMO3ck5Rh9}FQe-#{;aF}lr!nV=@c}9!5T)&YzWl9>c+3>=t{*p<#=B1V zPMbV=)Hq@eJqzE#<|Kj+ACeL=J@@=$<>IE7)ix`eM!1g{R*E>!$kWGUr*F55G$j&jkb4`gyDMEPdK(eF?H^{8h(ie zQ#haKdHOwF#JARl?&SEEko*Q5=24!{j%4Im=_2oQbFl73E9&;*rj#TxuLv^?ewPIZl{L%ZNGX4Jbv=kVVm=OPW=nf2dj zWN5#F_-(tA_&6E}dN_%0e~6pW7LfRCcriekt;}Ar)lSBF?mvAN%#HIqHr^+m5r5}* zJEjI`1v+QOl=u3&p=Ge|H z0mf+0W0e73^Mem(?yK%92)b4-l8sd#)84H$)_G2@5!=xmwOTMw%)c*rwl&RLpiCsX zXohq3YLrI(By&@zKXjGn2Gx9a&6J);p5`V-p^fJMpuIF7;LsHSgR6zgJAUG=MJaQ?s>XQHIa%KviF=qX;@$r>*y?%k8mFkgT zn|0A;;R&qUt1`?q>O%&sUk)o%rVs&AC(9(vH<;32nrEg zybPjxu>q5Mf39N%L*1r5Y!VN&X1%5%KPcTIFVAGf5vk4Et(5xN@nxcR(}2Y?)s;GF z>ir^WmjStz*5nHmz{U|kYNlSf4%N0_-ga3IoM@A!wmdmI2EW~o!;K9v2~1--@Y3)b zx0{%`LjPpO2`1ZnD8bjL)eD&nvkpTD+l7}s0dFKG)7%z=)UU}~H zqU9BxnKfo$aaiFpe74S-mrShf{TD+3-GewgCQKWPZ~M;Q)A!;V$p3sqs?qu2ioaad zy3>0sTeTyZ4k9*#^8WSns1B|xp(v|n*QY<#q_1v}T%wph z2HcsKS?_$V;+LCs)`fRK5$dE-B9zpZjfx1SO@YpA ziP0WkxKeS?W1FiVmvhU(#6*G-p-Io--8^RMX(dDUry&jC|LE}%!GtT7s>&7{Go;EF zDwln4&>cw)*CbGn^OsDJUL{a()s%v9PLXcYMHa%)>N~bzgU?50(ymgbd-i5{LnKj+ zipD}?s+TDS?}3@npiVw1cYcR}aM;@gN95;@pcfEk=i-9Asam$^Bk8-j30EoKzk|Yy zF*A0Yr(aruRQrnQgu$}6YnZG374zm40^%JQe;~}j;W^WL6dAD^lHqU1#^Mz!_wOuj zw2FTTktyks4~hmsc!J^t*jCNc7c#9Kt}BxhEH4 zdK~Dg=pX5O7n~fDJgqicEk8zMfoQeP&Q33PcLFYlKEP*jW@ct*N06GD8n6K7<0E4N z|B-D7JzIpmaZAX=)%5$oMHq9-b3iM>1bKFcDO)jREoZc#*J`n7kK7-U*y&La+tsxg- z3DZvLHt8voJRV+RK!ZiVdoO6L`i&iJ|BuJcz42P>jUymwKD@C><2+~l z1L^QN)NCTc-Od)Z(V3Xr%gK7Z#OoR9WO}x*X9_Y*5)x*2mkRP#eL&m)2hkoYXzvT@ z-Ve0BA8>o3xVOac`#TgvDE(1#n&TwiPz)#iblwA{x&y~H1K7J#lvQUeS7V@M`MOim zst!d5_@Sb8O3o^2ySh=1Rm15Iq=kEdKO9!X=vP;jR{}eg;GIJ1JI4=#pVb6tKoJwn zwQX2CIU-CVOik-ra2cg5dr!By>)1luTg@7)n|+AY`SbkYp851uM28n<66-w~jEq~C z;fA@dScqit^nSK79mZc>zjEmo3cOhxqJIp7Hd_X*0av@-M5^|3p)6Rp=Cab{;8Oo+(i(BHQmhrUy?KgWQr{;&8n}bvhEBUCJcs%PT8$78(&y((nn^jRier zjLfAe3obawpi&tmZ`Dlee=X1rL{r|h*+dmEFks{b?ESjYAeqH&Hy{%)N$Dq)K%?}B zcEf=iJNygaZG8shI^>f*%{U0;ej2|=q9Tgu{{gK-Uzj(t}tL@heseKnWc3uO71+}xQ**8}gaJE)eS zlPb8$Ofsw@GC07Ufe2iZ292$;$fr zpEO|K)E>Agoc-jy$4hcib2};c+vl9`0J|c9Q15yj?B%CbC$2cHAMj? z(fYE8=(mL*yUY6}{3gks`}wb*@}FdZ1X|w1Ig2@Q5i_&l>RfuRm!eW#&CP&a!@ucl z-j!N|Ugy*Ka@Eqjx36Enu5oiKr(Iye89Qn2h>MtYep5AwEGZ2Q=1-i&k#}mj@SHw8 z@i+Bvm5_zBD3?f0PU>tsBAC*6L}GwwY9}dQThoG0O4rW7&%(k^it3HZ;(h*0*zZxi zWXT$b8H{-#I(d`Ou4zJiqH&B7nD;qk$|&rFN& zwKtMHr-85F_hiM2YN3$d%=YaO2bZv%OYKWWP95j+&Yu5yERKEeW?MYEt_?>H)qbvZ z7e+!DziuSIGn+s$S7$>FEwiADUy+~TcPVg&HU7n8C13De7YA;EVkRB3WZ2;kqX6SAml!S*0uDQNLAW57+8)#`@Fw}cw0mkGpFI}uu{$<%9pKvajXbkc|VkP z(jBK+Ib?B@`vA#Zf#jxz*>53`ZhgMp`ViiB3+#77 z47trF6Acat_G>`g`XLVOWZFbO!w8+-J!e0-$3eesCq46*-r60*+96qnxfbUGMhRaYHE8*BK?DU6FxZp&W8F~8a2wDbO&+Oat1s=865^e~><6RVs4*nL zLh?~2DHJA_{~}69gjFF)j%3GE^Xs)6!>LlNB_gr!A1stMHxSe_vMxw)z9H}uyA_k_;DiX1|amlOHbBS4s~ zV8+}57KJ^^coUKUk-7FYStxZP0A6e>zpSuuP=r*G;*X+SbT85AsI|%BOGIC;Nsjdo_|I6(2N}oTY|5i4l;Ul>8xh% z5Dk(b9sz+5z)HkFQ8Jd`->Bfn&!?-czkmM%Zy_ZG1sI)TuK>L;2(JKmPlc)gFK=Q< zi`knp($4&al)Mi_!4K~3U7^I(oNMhji99?)*6-Qv-Nt_H2mw8GK{2(3%oSPC*&ME%qn-AFpwpuR9!=Ev6-BB{9OGWobN*&WAYsA zGdVHWV+ylm#49xdknkTiK;J00*RyEv|sOq}J-M|V#%JO-tm9Z93v z6M6|9NiU1O?^C(n3&V_ORuh1z;U0R&OxcB zDiKP33#73;4g^GaIM73vFrLeZ$R{w+_r~@9!xvB|O=G4%)4}ir`X0bx7ETa_aH%ul z^3V#@Dg)An(IfEEsntMos+P`WkT}}@aKR$bL2!T%=5g+^C^~WQP`Wo!_S6|Ji(OTH z{KzO0I8n@Kz7SK02n~9KJY>XTnjB@aj6vM(%mkAFGaF0G7%j%^^H7mc#b0T9?zv}+ z5qI%-QSzVdRH|ng_3YI~!ze*_b`s{xD9Ae7M?eYC&G~t|KWx2Hqu1@(+|u$mVa4-(k^lT_Kb`StVtJBY??>kqt`kOg{?gr zwx}(rq&y0DKBMy*h}Im3^%MAdkzRN4bjZ{Z!-kztceSN<7(&Ei-H^Hj)4UaSJ{H$M z9D}&BdI==@$<#M9RBlS*DFG=3r>AJRdd?tL8r~=86A3@J`Zw3PA=C!wKU8Sz$Z`y{ zu!hWkwWMTWEQpB>T9gXTh*chu1Wr$&{h?DCSdd)u8`>s;-Dr-0kIa}1QY}fo*T`iQ zGHQ4Tmi4DRq{bu*r7z594RINf!G3yiGB= zb0~KWYtIrC2_4j#uAYdW7Ix8srV{wAf@bCPVOLGdg|C8dxJ`xLG>Z-cz6rBwr zPAWg#Dl}E7LuJAV($jwj=9qb!wv;wg@xq@%>Rke?#XS{hlLK`A_Tq`ozAJT4=(n?I zQGCk%H~zx}a84-&g#ujo;O?!#Ng?K**V#?AZX98>@BFddecKv>-Rf=ZTi|>(QT=uKQ3)%1Nf=lUZOQiEBVRa!ZRO( zA|9`Gu`q?murzW8+a(MgFDW;kzdTH~tq)ZfpSRc$wprhCv3I}rYr{dzbjER@AjhyU zwPQQZ@Nn=mHPeyhSuL(mm2wBFvV$m&>XFNiN@$Mw1Mg@5r z8)H_XBBj9nrB4a&7NtyLOQ+9QnqPv4{Q{~m|MMfT39i4z46X)-j7K+4o56ym?SK`G z9%hE1rm6~zmje*?FcI^AMigwUyw9U9NPlpnF^b+ZVD`n#BQyE%(D?8svQdz9_^&I< zOv0{5>peQKWW&M|Z(`!`Uzt-xj!Qf17W{uczdfqLV~)DMiPe1jCng#OqhjUc#L_m3 z&v;%KFUTA4&VQ$KWx3HE5HOV^aP^;{|LZb84!_UffCz5{tP!I@m+eJ+Lg4YTZZD-~ z^Z5Gid(gKOtSBkUB+dVRC~IoM$M*(%*a?b|RaR60y&l`g+Q#C-lU?umRB8t)I5Mj3 zF_W6{vH0}R3?iy~g%v|?C-C?NXj}qcIys8Fs5@mL7J{`X{|ed7UUAdo;^H187FJdw z8Lgj1z(DXXqf7Mp7OFw5N?~gJ7yeUAfNepvs1%r>1s|1Et&FUvLynu9FitDXA=;lM z5N@{f_R3$Jagd5{kZVu+{aQsYSDzYFr3~Bh;ILq4{Ol}*Dn72rh|~LGISCJ4CDNAc zC<7ZiE;3TFcm8+v(uv#QD{ApM*}uVqB;R`D9t2o?*;u4b7|YlG$ZK$@OwZ^JhZW*6 zccdDW6F$AUigKodd5nX*Ees1dE6JOihZcs!rR4f+hHOx{Nw8HiayGIH)eh<4_P?Bg)`c4}yNuK8$|;FLMMY*yxs`$} zK|#uEa)Grg`&c>Oy-UieJMFEdknL10N!6KSIc%SH{&!Mk6NRR@2}|=;mbuIa?AKZN9zAe2fzvsvWBm-Vqr=KhA6d5zPL+uvE%&%?>mD z1=k_)+Vl5j4kKeY{bv^jXDwYv#NiA0K?V*OQ8HcDyJw`(UqgG)%e@0o!i9VAk0^1| z{b1|(#lY6(};qb8h1ZfJyL>VO8C}GNp2_xnYJrelc z1f;2wg%W;bMATnQ-?V=hBMQ8lIsFO&L6!5O8ytrV9Hyvwk>>NG2b{?;{rS&#b$Agw z)zZQB{f(30Crl1ys(!=>&x&XFsRr`5^W}vYlh_c+CjB;2BD_j|-$%z$ZX?9c?MD4! zzkd@p*af>+6&DYTjoG|BoCC97$ZGl*JyLYgo_5O=9Rhu#H0c|lt7ttlkhYWpqA*Zs z29f>6g?ZNw|A{anDoXpSROZk5^JP4K%~WDJz}68FOx~HvI#>zq4F?@_aZ3MdYn+5+ z{`;5Hr(6tR!0Q2KZeWn4!2b+n#x2!+efdwINPvEjX*Yw^>m$oZP!$Prq07@VM!zVi ziVY6(g~$L7(n^qv=WuLGS6GJnu-Rz`AxAlj2n0)Jf z8X-%8$&DeWV$8uO7Ma}he7;v@4bgV{Q+=^6!}JD+slB-x)T0(vVr} z3VcvoH=|4$GHEfJaBPuXVo-?b{3E&g69}?-!C0jc?Vc+Kwv4DqzNOx`Cy1S0Dm}kk z0+XD&S_|ePOWXa0T!IPou5Br71$@uvY`lGZmgy@3rJkHX3dJ*8!#%1+r}1IE-A;6;R0`wjBgEW#b#0H?Ts&x3UENN#rSO z+DaQp6t{ArmFT)74Kv!eL~1~l1vqk7y&5~eTLJGb>TrvJ(@R!s1Vm z)Q^{k$8NpldbU{3PLhL@v#q5iT|01~Q9RHeHTnn|;$?@Qrz{dYJuJ3nhDQ?KM8_D8 zuJ#kLniS@MN8?Js5fs8b|++Un%;cZGN z!v5vU3@2RvBsBuJx6rwtzZ;U$Cd=KnF8{sWoz~2BUe08gOQRC_89OcR1XC0lhK{_? zkdggezA_g5fhhR(+m5mha#H^;f~Oz!Td2Aj=m5BN-eF~UhN37~tt1xerhRQ4zwIcA z6jUBDst)uyPIfRmR2abKb^E^uR}g;N+}^FO>kTw3oSgfo=6*qc>BwN$Jmz&rw!@fk zK_!!hRp)g6lVbzs3+%N6-0nvV`UkW8E7mf?b^MiE@Z$^3?ngG+`;zKx07062hx;-T zUP}@poy~O)jz-8#ky?H;(uc?6iC@45@#NQHG8&bB`dBP&Jt!%8YsWBUdP z7cN+{6FlarmFMLr%M_zn*XZ^fYtn)9K4W5ZHjiAS59vQm)501I zm$DrL?*U?!un7xjcc%^7-$K`4AT#87)_c(*NFd8R3)6nS^RYC9ok|s&!UP`*kv z%RML*&Sdl*lR6ld#PqSfLe)u1=U}v+MU_bGXP!{qk#LZFlRPE#WY}m1U$jFt&E7Z* z1#%=%Uj+WzKR|$zij{=5xA&DSdH_NIk!lji;FLVOBnkW#gWrn*>%);y!N5}1&3Ry>f)DVjH$~hm>Rr2S0uTvkCNQq_vj+0OOjZOP@0!Q~BW%3C zk`hI}QUoQeul(0U(B!xd^)_PNkC^_Qp3c0yp1U94zl{C2bZUff=jV)!3LWz_^QsETy{)^;#Q|hE92mN~$ z;h!tQi!0zIDtxp|UcIpd$djhUxWbNy*e9eoCPGibC8TS^4=Tck(C7Wt;A!L)7~Fma zLa|@5JTHqefLWl0`!|f3@wTCad^xjXq3%@Rh+V)0vs!SLx4Auvbe=hASn;4DC{%bH zlRt7dZr=NU%UUZ7Fv`y7JbwA)xHb(W{0c^589sCxNFV>hUq#H50NWPQ{_nEUqai*n zmO;&28ipXi(wuDkD;|=5m7U#1kiO3^DA70!v@~NOj~@p(m+{p;n^-Q8_ayT&_J#!K zl-T&qRuZ&2UzfdgKl%GMAs(I;)>5vS8mQ^5jz#NKYNNrhZ-N^jvp7X1>-RMoCMLay@n>3b#;-;kJz^2bVlbe$NyA| zKKK-#FSTX^zyd;SjOXcmWN*QDe2&evM@0ef?FxA!wl-B&qn&wKI*4mrk>v#+Ea}^9uy@M51 znUv>mg&4cTQo-IUIQ5|*0#ZC)e%Hbk8nz&0&^O*nB%&hGNP4U36IaVi1Uys}D$FQ| zT1A4w(&%5|Desiv{=8p&Ys1;+$(#BOQ~KQZvr zHud&gU1+1i0fpwLueSCv%ky!MzEA1E3~2q$k1hnHiQ(Y49mRX7cdf^q<0Q zZuHu=a|&8aj<01wLsgx>Cq%S3JX$i2sB<1&cFd}}v=rjH%FnSG2?m)3_5H4c#&*uc zey*bLI_YiY^#=Zj@-!1n_iO9`IQx?ZmnQQ(0cZwrtrQ>U1}clxl&h2jx*QNY$j!(= zgoH_k)16#g07ahO3^TAWTA&P|2$_MUL;R~&ow0j2nXU(To%nP+teBV)=NqLG0Xp6TzVA zz`SNRr(Sdf(CXdiP6Z$`1U;Q)_SghDTd4;EEom^8mJjh7I7EV(j?_$oq~A)OP5tb( zz=C{Lb;r+;q)FJ@()p?~X016RBJI0x4;1hh5%+qXYb!*! z*c!3_`D~^+wltRZyV`PZpG{vS{Gbie@OF2{*$6E>d>s+HHWHKyHpbeM|NK&eFkP0H zqu;?Qd{Wa5JZk@LJ(eu}#iT4irxUw)sJznDTrg4ddQsj716T_sYmKqGw$TOQ_b>&I zFa-C=`6L5qDSZF?*7ad5nDZ_IjdO%0*cr9ujo*C!)qaR)y_)TDqxAX$)ia*g^u#;h z^Sj}<&333uRr>~8-C;QSiT0757l+8v?*QZzO4)xz4}}xDl{gX@N~im6$JvHhzp-`etr&;2N27Kz-$Kr6muFP zJmH7kKxWnqm>vR%R_O0SQ8>=VVdJ}$>6zeGCR!M4+}g|bkCF17e4{+mM5XbAD^OvE zyoLi)=)@sN-lNIwSNjNSx$WkiNJ26mkC&3UyfY?*WM%66FzZnCwNr@NIIKq%&IdkSU+nD>C+`O}YF5G(hV9B)@A6{DXC6=y%uZhH*y~;! zm3xaYn#5};xGoCphz&;{JwaP}W?{%ywzjWl^;3Cse=JM$9N;>*y>5!?>s^3oDz6o4 z-L^7z^Z<_4Bprf$zLMa_tBdQ%{cdm+EhD3Ty*X-9q%B{IxX2rYCcl;p!E-Y63!?v_ z+^eIsNSgM`o8b-B{7)lsDSJ%49_y_75;a`&ml{E$miK$5xg~NghUt}ANqbRd(le)P znHBZ_cKr{^qT=~?<*?Mq`ORtfxRm?VG|0dbbaBe7=7`^m;7xOT?h58AXau>hO8lV8xF_ryaW!a zlLA?p{2}z)?G$ZEirGlTU{&$smb2l_+Ax{fiX=i_@O}c%8%67U~ z*^gF1E^gKtH-ccRLRQ_9Hm3w$z?nWmJclns2=h<+JW7zB!JdvDBZ zuC7iQjF#ac@zrStR?ev`SsjG%CmKd}?>`!XjLUVKS&E3{-^M0*-MpE)_KaR2f?I*!w$^J!}NOqzSK8Q%V z`95^`o8SH2e&twaxsR=Gln0Su}k>wSM}iQ`-U8@ma+X2mOeWipG*hmzK(i@EiI5Q}#Fl8$zukny(ht==y-HLoKg zcAYTox5~zZl0XGM*jxYRj;&%uGcyw{j{)j6&)+K$&Qj3*439qvBw1BeB?t4Cs|%>Y z0T$wlmgsQda8|C~q>Q{Rgz@x8)UuP*Zimyhw`!YpJ>7>(SyH37IG9V++t{%lw>x)0!bl&z1)?p$%STFy zD9hKlT>=M#@I~U)r>H0-)d5OMO8)?`Lv=G@-qFJR+>wI3-i4k0%0Sk+n@oJ=E-_Jb zt0vA_Mu)AOdqmoZHtmROC~+4>-UUG4?(Y4G>NCg%1{)Q(&tVt1ns*I&f?Iv~B-gd3|>Ax<86vG#IYxPEZYC zX@6Idd`tQJ%qQs937ALD+M!a-V`@mGVl7_jAX&^Au8z(RD~gT=|2I>5C*oV?u`|X` z?Kp!A^W)j?Bd`W}^f;pjjFgg%1*cuQCBGdyfwB{ik0w94rp{pdV`}m8BfK_)gzF*m zoN!gyV;8VtlCk|K=O@;Mb7jN+?!5c-DGv|s5rRNrfSoRDr4n_Z1LzN6PU2hD$%r8~ z5#LY8L=FsF-y!%Wna}i*@xrL5B*)GgI~zj3CXA2$OZ3Qlr$&hss#aq-@mqc>ODvR! zE0*vb-F$)eHKOf1nS^Okz7cO7ta36~RDT!n>&Ha0eZ#d2Ul zfgl_Ps1X(4po+a}a6exKo~E=o)oNgjF1ETa0jlfq@yhx-$}*V3F6U4*xE+KxYw+=` zX-UWMrjNTmS5Q#E)b$9JeWc&UzS^abz6A1S2$M6Dqwjw+&HRl=1UYH|iJh+9TD(+i z2j6sXI=hH^OS*CCJ#9ahX|T5Th_#DPAWu6Kk$|V$cIpe|YU1<=mw>7TP81{iq;zQ`zV6Ic7H z2R&ut`PkBCzL7u4v9EuM3cgb9NB-1}Od$XK=K$DDhSiYpX~7BurM1*{T$k%@KK};$ z+cilxTG!`2DGQ6n;ggQzWfc1cvwPb)cJ!)unn5^QeGZryf^cE}W(bP^Fh0Igz3WN7 z!dnB@DL9z`V)8dI2SN|aq>2ZoZ7(l^%_^eJ>Xpsfm3x(EJC$cUPKO_|{|0o23GC$9 zXVoTDot-4DG_3%h7jcur$Vz;w>XO_RxYQZP4byM9_A*Zmmto>%etcg)9-dUkPJRUc z-(N@&fyB#ymupNl0YiimJDI0sB~K|wjhPRMlBG|*^3>&RUGj8}A_M_$!#SV!n7j4O zg#}nJwrolUO>gL=Vcx4XW1eJP#FUY;xM-aCxS!SVZ9ebz zL@mW=al;OlX`#TIyACKO;@ldQN(Dy1%t*+YF_a$@htj{4-|LUZ>1g2Bh`vvqD!nZ! zkH-Zalw~YfBm&FGtR!Mlew1Pbw>sNjmcN7Hd)=Dw->n6)T*!@m&F$D9fdu2DBq!zr zXU}7-wCUZSg;WeoYt&^iy*r7YXqULkZ9QC_K-IzI;)9^WU{()TSLx!}R&_2bT_&HW z8?&S|mGbpkBj|)!GchwtPdH$(2Jjl-Re*;WSZbi?Oe}K3THJOhKNnuvq}TrD>1dhb zEg2f){^$!dWz*xdE4eWg?IhOy{gcX6+fOYV5SDv0=3S&lPM({qxK}6!-QoUp&aWqT z(eUu+8{<^5#fa5F6}Fq)TZDGRdUwEg7w{_UUo=Em%Q;QypzozjP}6TFSZKKoJ6GZ$ zOC}}u;qW^gImd=OH3ur;JjP`pRf+n^q~7F)X8dUY?*Hf zFL&b&!qkCbc(fLYzk2jc9De{&@;3j=5_z&*zvsL8;(DXj5r3(@PU*zBmu8|-F^^0+ z57(_Wx;{R@m2Y|30C8Dj6tMRCt(1;5><_W@)x{yc;fVR-ZMn~;Il1L`CtNu9onVVL ztdx#}iLM1b=w`Uh^axTf28kv_Uwjc%-@UyU{x_bqKFv; zok{+48#Ys2dIlvX zROrrR(p)iVai}tVR@`5o7Hn?6m-C5+p~egG85ai9KL!-)u84x{GJ~2xmclF`OPuJ5 zBjoYeUeiRH`J4+z!K8}RsKA_;d0FD5IQmThG{|D#MJ7SP#)aK36?>$Vj;w9bDo=@t z7(^)*7OwP#m{^Ubm|ik1Vak;Cn4U6ZXm8qbesc0Vbx~x#a!lAeTmiJc7${Vilf4CR zV3H1GldNEH(QRZTY1KGP$RFPi9e8m938PLee@)n4ZRO7yY@q?u8aijF^%Rk-PF`s- zVzC})%MOf%PU1jGRec}gWDF4jd)uOD`IzK;?G->V&7m|DlOREy@8hltrKUVIHgSGp zbNG~Uco*wm%i8e&4q*CIuz?j|uOl6&^za7i5f$q%WZ3vmb%~_;;g6K$Q7bImp3=nZ z0(BW79&$!kU;Pn4Ea^2oJg>`}3Ip}5UljpxVZVnJi(KCu83~C{E$`c5&maQ%&np~a zS60&DN6P-{p2EW z18%P6U64R4gzaezVg~|hTy(hQK09;fR$iV$=fK$u_#ODlb8_;N*FD(w_iU4Dr+Y=i z>?DdD&QmGc}PACm5w1G+e2hvfV)#lVHCa?SwGPyD## z*Vt(siIBRS1)I6K1(}~G3d-Pl*mMlL_wZ9AK!-z+Qt5lZJTfYVx0$|w~1&6c&eO} zL313|`(YGy9`81t$klR2Gq=iyGveF%&Pi2|wJ-Jp_SS8Et-@zjijZo>v;P#Ws}#J| zvK`BrpVhv5+DS@d2*lojq&O2?)T4> zznNs9_%wg{mZQvhaq0!sI6fN9T!}sEa0mYYFGKo${}S)VlDT7#Uy&|dT|vYxHkS56 zQr#M0-kd>p-=~1ztHv0RPI&1e-wV6F#sp3I=Yh=&EyD`P;|<}0hE=@VfCsTgD3CTI z&a5{tIM1gY*aJSne9;nid7*U#lz)}Ic8|k2-m1|ST-NA`5>`BHg4p$qjfM4BrOJg& zXm*55e{57B)|et2YLDq`Ck2v1Zq%2Byc> z!o&d%qmHp*wKk`P_E40tYr22D9ujHu8@Q&wOMOZW1QMK|@@9NltHHwLmE2H&rnap8 zyy~#_`n}ttRPzn@$p(Q5L&@b)AcIwMC85dU=HN@ZT#6TwsGfwB6tIkCGP#SxzMY05 z;{tR-0e*f?`*q0KS%>$%^`nlux>@QnfAF>Bc}kr6&mhG}g8)(AcOEBmov^%+@j4U> zY<^gPo%n+u=j1no$rjmG>x^IjdS+V|@icMSbHV|&3#=DnQ6?3(l}mif;r_rBAf+5m zWTgh_FAXmvXi0ai_{}8?KJS=MO=xJGZVv}5hPF};O5Vl5&(bZ+Jgu~@$E;c!n8@jD zW~^R~HIF&C>ak5l&=$lIY@X$3vTt(tpRO(Uvcbh6W$y~!zps0@%e9WBxG-RPsRqK$ z#pBIG_fzVOVt)FcBfs+-=q(!q3#>jPPaJ!@#a>cl<{l5LFZ~F3*o3B!BR_rVyt!TX>HgQg)n#+ZyY|Oai|0qs z??Q2GQi=qS1bRfwusj8__@wfF%rMWo?D~bu1OJ=TC~2K4d4bk+6=qVPPI0YGVos7n;%O+7 z<^ht$0H;NrR=9x6zTRy_S8qe$>0Zz%t*7t<2EQ#BmlFv7qmHSLa`AM#{ zk!8Qc`P1apWWLcBV@#EhtHhB1rrMooImhg7RuC{s81&N&~`=TrfNk)#(UH?f^xJ{WxuKf%WWXO%d#QS02?St7X zwi6!m&pW#b8ged~w^JZ_Ts%2BQAZ{E9WDvjX!zN=rAzNWp-oeUXLM%UK{`X+&h4t| z>m9%~Xfp<*i5MUV*+W3`M=f}|Kcus;->+Y+LByQNFR!$|u(c97qiwWzT5%?FX1G3y zmzS1~4jwL{*|aLlLd2rlvWKmxlvZAZnqJWB(yDG&BgzOX|y%!W$tdum_*q zgzsu@9Aj2MGQWD1*IRHp1vHU834f1 z1Zj##bz~Hj4ws|vfGk?NRmI81=WwXwmj3E%Vts>bKP&2LzBdLAw;u#}Hvn~)Ad7%T z4BPoDK5jTU1$wqhcEM<&Sd{3njHxdaF(&jaRI>>r9Fk`C*{k@VEGH)i&^Br@EaFf@ z+`)xdmC(;$-AO;PA=!Ik@)Wzf*N>jQ#_C_uIgjj_z7X!dm*ms$?nO4F&EVhl z`?`ykBQvfpQ?5tg#s3?*S19}LD&r!86xE-IDRYoLEPuzv6_bOHA}KE)L-G7IrJKa?xRkv-B~x&PSg^8rUA zJ71_bz88kPpR`e=ax|n8CSW13UQ~e{cXSXsWnF*sdwn0AbZm*`pfEb8}Kt*>Hgo(d{dYkTmdJ;qh`#x z@GLm+wev{RENj#0(tlEo(urr!-Q%%}LTbXYz#B!GAf zEa3f&_31C0mv{zk0fgU+>cRGy>VZV4@#7KWNfqwckyYedq~j;SB*ak~7_%Nr$KA-K z)*u&+-Y43<*JLMf#a}~pm54CaM~-HQ&E~PQ{sC)OW0*|#lfYbIbiDae&ZK~6+uhYr z%8-zg<^6R%mC)PGS=v#}($q)22U!=qB@K<1{@5w}E9yTu{0mg}SH{1Nx%F_(zlvaT z)5}&{u|BoE=&`q|QxxgDw=jaO{8JJZZjU!8}qdcnvUK z%OVw4Qavf&UdvQmNBnR>#=nY?yKy?SIHu@sK+paAjTi&j-iXgWF{=afm+vfR&*{L=4Gpuj&x3}x+_&(YA#%i_v&fn*58^GJGsiK2(6r3U!NVh52+S2U z=L|#>s1vC7SA5Ug;2WkHE-q?sPtT$Nkk{zYSy*q)@fCVudwqWH;v^o#xV*WvvEmO@ z&-I7~^jDbuU;|x4J-E@d-vb?s)9|{aka0uim*3ZX=@7WKK&1JK8!w2S-;6w-E0r%(W;Bf35xRK;*WO(b?bY>T*Pc1P7&NZTt4Gb)567vvpfs?YvdSWnVg z^_*P3{mL>x(efVUa)@tt^quxL9G(u#@1M4+5OCa_(xsIyl?mydcs8t0ly%F}r5!V1 zI4Hb0Hw{rz9ZZy`xKrYHVdg@}T_zt8&<)5|v9S|p z>$b9PqgCjBq~=HLX%Vy1hvSC-q~m=K^@h}_3`Gi+3RB;49ySa(Bi#M`1bT|As?L#~ zXA9C$N&9&gR@i4z(C5BQa8!}`8C(7N(>zKufv;j~Y&Y?ByyPfxX!|uv;78UmJ^skI zH}38yC{g!`?xijrwSA4He77&6+61+fz467#(RqoTt1aRn52r80l5 z1*AzD(H3s9_VhV-BMnbFhu}Cgk+n3({&+`$Ku3lIM~-wyp5J+iGRe850Ylfe?FMH; zf5XbSHUlFpgF0Lid@XOki~LezkZH-JP!YkTqm&)MnxtEKx@==a=}MV4`n7JB zIct`)_{Ms%W~$^nhR+gPs58$@u)*9{-S7|@c`)>Q#>?a-9^MihiF^`{>6DARavsC7 zfn|2B9y_)rJAp<(ji}q{NzrpxY2DntxN^ponzS6J+WK=~VLlFKTq3p4m4=WsRREVg!3I zidZoElQ4>~=_AJU85FaX{#2i;_%;0e&Y6Z%EOGE1ag?sS)m!ICeEpNt^lfAJv9+hZ zqO6*-+Tdf8zG zvL147>O8OLf97uYhT?~YhJdgwJUo1U*pGm~`t);DR%qdWD&-L54qR}iPdUIdbb={) zdEOa9(MB2@?V;P$h&wl-uM{-^|@4$)SX#jd$KX6MT&dfor|TWtFF_Ex9!B|zAr zctHOHJh`^I8fYViBx=9K)}3{{lX33W&9Zk~Pm)H=2#*cpZR*u#)^Zw-r{=C{&v5h^ z&Y*aEdmD@DdvbDe#|^)hzFt$zpTFO>d#f~?JQ%7j(r~AOxQ!Ob$Do(>sDv$y-Gg14 z)6RNNZp8I&#LLInnvR5pvM03jH+}dMALe9x_kWzYb=xo=S8uQI4Ow{F?;jm?gUb79 z8!&L=n7_~M*8ar#0i1JDZOtMV7pB-c>MKH+zqpNu^ZFab)>U3@i_f`$ z-t@;%NwTp2nL#27962?0#OLLJ%Ol}#TOpwUmVevF+pl8o_us2Rmp-knmpamRCZT8B zK=!>p2OQB(E)Y8C$YC1)LhF_dmmGf495(2D^@VWFsJ_H!NxvTdttW$F@ac$b(c5QS z3tmFF@@DEnM|dgoiyYplh~Am-z9ynS4&Gf2>Nsch$wqz_@&7D;_=@(s&h!7DDE>0A z2Uwq0rR;OD5)#o>c|6$ro=+XmvC=+2qBh1QR1+dKJhG0x2JSq7CYTs4^V|6rO+W0u z89mlf;+@5D2^P`OO*T%DHc;oL!!`%9HAhggLNWM78ED67%IE4la>my}QtKbKd2bQTG_a&^&VPGAT~wL5=!V!H?n~mf`vU^5?joVoyR8^ z`LoXu+r=%R>CH{BrWZ&=IM#pO+uIxD3y`&HkLMlCmJ#lHKtzwu{{4nd#=gI0i-C!I zV)A=EP?R(ix+#m$y@JOJ-74x|CXZ{~&5QE-#}34f>R)SwuZ?PVb_Tec^2f&~jrSU_ z_)rl9czGqyi<>x`-I_d{=U{Y>Y{Q+D`2~Hm}3wvICRpR0qbeU~TFbqD}Cpav1rwFD@7`OxU#?aq44@Kz24Z zd;oZtg$3-3gM|f6v*mlMU}R(jq@0tJv29_WVZxgJ{0ZLsWa#()>IKx`bAL8U8y_Dx zfVH%oSpF;TsnML{5FQ3U@U@76ryJiNJ0&@JJ31jb`M1G}NY|1%_Hv;y_J8Gea7UOR zS4aO^JwnE|uasT1VBy5gWuLp zW-iJMjUj#Mxm)`@Aj@cKN^oBTWe1$1}Q zC+*aun{>&`J7rcgTM$?p?m{>i{Ts)pPx7VE;c*Lr9sz0!aUqh8u3q?rs6YFMi0}#L z%o-H??<7G%K}T0$XxrV}%g^dvy)&%r)j|Ta6(waQ5@;-uYV4Ua1 z`uGWP%Mcsm%})&K68ffd=6ByBq`bXxdk4jwI#Cs zl#i=_KzA!sQ*AT?ku)QX_ilmRKjel6hgj?Doo}2=EzAw2sN3?&m>C3!zJr#RgxH6t z(?E~*zEj5qq2IOK2JXi1p7)PqMSIb(@6i3|DPLUjJ_*o`r}W~Z z2a?G|5A}q3r&Gy(SJeE6MEY$=4nfU3#?s7)K*LeC-bxviBO9)LH395GIGb!h;(c@>(Kx@iDAe zWbDbVZ8W>(8rH?QsVK;385zFOk}+DAwDS$zZ9jk*7^r*Wm$p8a1ne(r8Sz;8vz=cW zD|||)jd1El%2T|Sv${rj&fdK}!2Iiie0n1*9Re>%LnBDTBIqP$@9%N31O~1~Wj;m` z9b#p5{gFA}UAT3q3*Ekxnn|X9x)P`3UzLSj&E=UvyT@`Wn6$p4NY1n{f1G~TBnlmu zly0c^sY@^z8F?YX+N|m1f9G=4RAY#(@mkq(?W%T640yq?l(5p8q2LVktz zZE=1c)ZV{`G$U+B(O+vHdG(m~X z0%XOL&795DlGNwe=3>Xkpf(_d5nyg^cmG*zIDw=9UQi2q+y>I&!W*)(CWlWzh=)&r zM}!X~RfD_44L(3gJV4W7q=Mqn6&njrq`HIo;kkK5$Kc{3af2(`PYPVvZ`g2yxZ)Pc zij(6eS$X+bs`YglDd20^yy>Fd#S1WY-o_eR7ty7YHo=%Lv%!aF=(DHYcCYTn?DAVA zacT9si39TV;^LxJ8CVh|%$6|@)XK!9ge;kUTO1f||N|@06*&{$`io zi=nEuH2^=ptbw{ivlLOCt0$V@d7c!Z^>a1CIELBm4%iwVme!X!|84Sx%jv?WZ`7$0 zL&Dfk%7cUxib$J~mz|5hiCM6_38edSmX-^)lfoT*rhK`+e&hl}NT&Ps^mGDr7k?}i zOC4McqXu}JYOL+xbDS z3fyOy(9fZDmw$+a#S|NX{jjX4A;7YztGqa`wye6#-_&&9uKV!vzs`E#LxH%^Au)YX zvzaAuwq4>*R*^G$zeT87>8nIo<;O+>FPDU-n=9Fyo7*0}mRk~>qmZ`|9#HRm!XCAF zFm`8u9UdO#>n)%*K9G6Dc3he37mXL_whTfE_(;Oy`v6jq%w}Q`(FQO!DmVL$Q2JA( z88WR38|cawL^5%P|J4sSTwPeZy@`#v1V58d3)k@br>+SQEwPWP*zQ>x9*{EM-9y~; zqU}4;S6zSVI!|-nB3*n!bQmRL-TVu7IE&%B`ljnZDvi5)X98*rv2ZB z#DiR=*wZ5s!iT|2K-ojQwP#JTH_Xe9@t|GCU52VDHouz?I!KEnl!O( zZkLrL@AEPuN8oL~eh$R>wM~w97RAiF?Rnp_P;4^!+`b1SCV-B}*#hC7b*Sp~zGwcg z8tcJ~>wUZ(zk(qe_JWaIAWICsjeYhB z?!C|I^MCI(aF98RI+4OOJ0qj~(r_r;I1bK`N+YHl-gufvRA|dEtWVSM_}ssLpFz(4 zmMC_l1S$47Z4YqVX^qhXbRi?7L;;Lf=*H%T26tE29tV{9{JJ`flaPs#FulN1A8+s4 zj4lWJ`e6YtHCs?efFWo!TXM5ILY^KR1?%9->s)GR;bWoaMienCwo}INUtE0b96X+Y zo&eS!f_t|udT}-5J{T5l+NzMeuy7b67=j3?ZD?p|XbGHz(UO$hqN0Qk4+F1QH3&wG z@6XTg&SH+C(R;YMH+r}lD=xlt+FE&;8GF0?BF)^CveAcQ!x&1Pe?jB#Q4&+KT3X1aXiHy^2KRxWEC$~kH=Io zOw^1kOtP$cSM1rtZ5G9-)CT)|#jShX&P@r4h|r;Fg7bp*cz{#pcLQh|-5TQjcVGZ4 z>~gqV%i#(`5X{!fj#$j^dxIVfm+y18XF~1a?zSkjMFPt7!+pfz_j^tjH~>HUg**Iv zi;1bo|)DtXGl@NmJENC-JJvz z=!)3V<&Tt@{77CI0)p$lFtP~^jeJyt+pHl$V~iu=$c@ok8#;pAc}Cj~E*6AU-ArUO z*G=6aMlB&mKMUIq6r?6ICBJl_SC6Ga3& zf(4uH@v{#)MBi^R-lRT+Erg)en-e{0rHuh0+5S;Sc+=g}1@-rf{u*H%4Ze?KXy1kU zU)u^l#tE``zym=t$2`mWXP&K9HcPu-pM|^Q5prbk&Qtp46S$cWSoG^T2qsI9nBa9+ z^uNDcun@=o5cjl}J2gej`>xnEoV?*>{m*1Bh^v6WTcEQ=n0M|e?&>AM zbQ_gvi#%=NDbZMM?ZtcQ1IbxH=W!X^HxE2@(}4x{9Wn`jjBox%65zrP%dj(ixm{7YNAgHXVNO7{@M@^X zZ+>r$>Wz6#shn}CqUP32RfUa(`AtR%EW=%h^&I;GYkR`~dSK?**j#zD7ng*1IpIRubl$>+5#k4Y>9V0eWtJff!uQehcGC(rR!@Er#*{(6=LR zTgO;~TY$^vfo34i;n`tW1vw-;T=%;^KK*L|y|%W%?C6g+8p(GUD+`?MsaTp|tgUQz zz1CJ&7=ztce6BdAID*@N{D6tY2`H$czX4W#a(t|!t*oM~*gS4AsA_zCd`e16YHDh7 za&l&7CTETfTU}c%ZY$Oa(7Bs&*Dud6vMln^(??H#dYajk2?cp(c|u4z02+??%K#16 znXIg=_{2nH#&ZMme$yqkp5(uW{R;s!hru;AJTdx`#m%#Zn$7_pgCoNjUlx}X8@kyU zgd$JL(6l$QBI7hIboBxVu&V8Cb0@$HF8D+bC%uhVb{mi^d;6%7QBh_=jwVsaE5TLF zuHv1@#-0S=X~=VlXpo+ty@I}VoI;}xFd6WR^YZZXKmOwZ`lp|tcaE*N7Z11=_H&4o zO;rwR;2_$q=$t2R7wJyWODCQM6z(RSe1Xo>fX^T8|IYRf6y%jCpoiqoKx^bL#>xBI zN!&Fgkrbk`uwC@ao>|(9FOv7Kv&o>?qH@Tk6;o&5om2chK(FhRn1HR(&NS15w`3)_ zSn00<=#v7{{34Qq!cr(ABU3mC2D?LV9la(aE+i_fe|>L^$-!4n;W)`Bsmm?k#U-qP zAhNVHuPBZiXjn`dtKO>s`Xs+JKc6%|KlZ2%bP5MIFt?Z-pOhfKgdWd!Q#fP@v$95kfP-Ay@4{$4cB7?zzoIp!mU0v1H)xb{}C}U&K6bc1a zf%scmT7XbFOWMXzfS&2-?CPOVut#vLVD|VRtQ2@S2u$>I6E`j*4$QCT?dpr zHa5lrU&uK!Jkr$ATwhb))X;=Y{NOOi3^dTy-GdH1)1X~b)6>fu7FdYz)YSCw z$OsU8FO>#i!TK8j(16#R#r#=@0d!m1=Lk2Cqz+W6E{$cZOcnQ)%gzr*&kaVmXY6?^ zfPST6eJYMb=r~zeSe!k377oFaCr^k(BJgy3dpk$Ax3Z<>m8gu`6NDw!2sAfoDK4{m zX?ZCyFHp-%3!w9w-!(wYCqF%zU!6A$HH4JQK9{fhUVUSLUL*#W9VTP`QGh0|g{E!- zv{|^BmN!xmurh$=FE4)S9O{Hsq#*Ch*L<)2`Uv#e+8n)wnc+OunzK0EySBUtNn5r* zSR0%i)b!E>hv4>x{|(wW?dRt|r_`me3bKr{WZ#9|*3g>;Sq5K!&Kw(t0W=f@KCk** zHH|P`eYpDY=|lGncUD2a3ea%oS5{WW#l=BC3OeooW&_VG`_~0%sNUkzVmGa~ozgWm zGtHU+P3i5m^s+YyCIK8@C7VPg#+o|X>IV{G_4*x)_>2_zT22iMZ)e&-|Ig@C@Bm?7iO!h)rvdbX zr_WN_COk{%m;jWoN4M=G6n%#;Jb=#=$H%G@{5IsPhV#CJyL%aT=LXLC7LII!$6MlU z?C=&Oyr~1;*o|;2ov64({`wdD51*qmo*&tNT1OHpB1(r5G`$JhUId-H1l>D?TP_3x zN4$|e-q;>*g2@40HpAPUvP(HYEar7B=f6`Se78!*w^qil4nAf5YA=K~S)}!(wNDiF z&Vm4)%lqe;b3eR0r}%q-#w0DJbTry#XYe&H8DV5V7o}tgQ3-x){ckcY_E{?ni;76{ zAotZti=E~-y?V%A>(m7)37}*?aUpZv-SKAotW<>LWO(e2b|n}ezA1y=L?|G`Ev6(S zr6M3IcM9QYDNSyHpi=^NJQA{e5?6VI+_(g9^Gb*VBJ)X!^NCw<@q2R#UE!1BM`lYS zWr_2O8*&R9ua8nAw;Nh<3Ak{JsPRck@rmKM`0sLyoW%fIP>xqZMOaFSPgv$8{~12f z%a=9oI2whx==(Vv$428)eQ)B!~V4m&<42162Kpj zYi(^U;4-bRZ!?`rYisZLZ2%4UJAv3FyTLjDB1bB$K?>xD<%Wg^)}SLe!N#6@P~xwv zs~Z>?*jmoEwuS;U@@~b}Heh97=>7p@#1~U9l?tc|0)PhAnVgvH?Ll6o($>;8$Q*=f zKygEZL#@rN0M>xlLqo%_9Q=k-n1h4h2O;$y3Un5LKj1fGbaV`m8WypU*I|~1hlhrT z2ZumIu;T!oK|_Z8dpbHg!38*JZEJ&lIg9zT3;=qh+ovhvzdExHbmbiB%s%vZmG*eG zzdP?lXVyMgZA$vfU>lKhx8K9yC_w*>mzNjNIX5>KNczBm1I5L~ocZ3y;OO)*Mos)% z`0eP&?WP2A^xJ_g%%QR6)#b?INB}_$I$hFSRv)bn%?{}X>SBq&pfx=;obFy_@YTpH zY2~sV!Umy_ke{6<_trL3u&n^lHZeBq1^HZ#E{_JTt)^CEDInb--HF*>?=P*)PXjuy z&QHS;;@pM;^zhU$06OLq=)bYQ@!2oW!ivMN6d-s)Jb`n!w>JQ2=vM$JV{VZN+=~-S zKP-`x$gE(-l*O>`!U520$j!3!wDk1qnwo#hfoGN_BqXq|#>yI+XK&s*Z(?@I(niY$ zciE2c#=>ta+yAj_FyXeB9s8=Lm94UovDEb&;#aOJ=;>cHw^TJYlfJGEtFkxs)Nfl} zwzh*j=S^-a=^LIiGS#rKh7^#RnYprok+PwY`fUp>E1QeAEmRDRAqCQ570dG~*|JO1 z()yB_`FR5))yr2{fmOZu@A)e4mB&AYR1e)s=+KSpxD?UMf2Z=eW9boc35cJZ>1uCY zYA;i4FI#9YUtq5QDsqr7b&x3`Nmdd?>q&wwB;HOES1 zj%)Z$_o$0L`KNtqL1%nxRYMw$le#=g27JmG_v%NAsI$ei*-}s+`bnEDq0N@{&0#Y- zK>afhp8WKuM*AHGXyoA=e-=OsiQc^NUE1ya7H37dkrZhmNkP5Khx|=;7CU`Nar?N) zX1C{+Q>s#u0Ku|KCxUH1&o$p~BrnD*aQc*xgsSQ>U(;`rEq2A2f0JtYt(zu~9Qqi$ zlOkuOE*f9ayM0dSJTE$24Fqh>#UIGU@5v?L#U()I7FFewlH?WF;}&w|;*UAWopF*k zh)c+bR{|qu1s-9)le_`kqDp8zdH5tXc!Zs~1U$F|?r`yYAvxEdg?CCq{p@v%>pBK9 z(h30UCk5mM#V<&o)|5G;si16w(+_sNZX++IEG2*2LNCJCG~%vtxR-IDjfRPgxUz(- z$!*+VDVPi6x9O>xl@G9~KlD9T&sP)Ya%a09>v-^RR_V)IsrY0JVHb0L%814;iad8oT zq=&GEuv085EPZ-;QQ#vSU;_w)=Q%zq5@J=x+x4g1MnJx#_1ikRrG}#Jv|gk zFSW0)e}Im5Jdo#_Fpy>BF9Ug(IA%=bp&!VIJYoRq>yP$B#^9Mu$cp4{-aC|1P7leZrB%>7s6*I)A?kbUf&T#bw7j$oLJT5GB7Adw z0X=~NulZiHPqL?v(K&r>W256!zNsBrcRQ6_Xgc2Q@r9I`S!A*h*z(G9Vr3$5IUp>^ z{GNGyRlGxr1BRR0{@Q*ye)EgJ!{MHppYhD}#26Y1a!PfAg3Kb!uvPtF{j}ON&V7E9 z^^Nr5Pz_&P&(o#P&ie?N-D*x5$z~$=T#p;l`sxW#{P+5XUkQWh$x4;o@ zlL;pNglnM$El>zS3uWTVA%x2@1hozl7r^xTD+%p)F4=#*jJ~G(f&J&`TU0)Mgz5qL z3kLacB}uG`BvwrlsUeBfk%a5Xh|0*))+F3sd=Y3LzUTn4=rFnDFbem)t`+kB^@;)Y z=Rz8_B3m>uMKr^*UVOVrau~iCX#RbTQj7%dXN~m2ha<(QoYMjS-6q%AC$tQk;N5q^*Sf5AiET0rF|7l_5 zInct^+(I~1w%j5&cqPP9&*&!6tGtpT8&wtHlRVEWYQiII!6R~oS5j;}{S3c?j*gv& zwWXE(nX~BV^`^K))D#uQa&wbpsitl`wHo%s-CQb61TvalY)v8GP>6; zk#1jcFjO}?cScP>2%W#dFDD|ct)XhJDt+!W+X%Fjlp^O9eZzoGk(=7K8a5Z1Gj+o_ zUHrKQxHE;k426MBEPiuaMPJVMdIP{>n1g%v)5s#o5^zdwJm;`tWbgOmA;+i09@PC#GiSktckw&#swWm@R56iYt$cDv63N zjZUgcN~lbTDvbica&uqv((=+)H`^Lia%6nEse7obnbAfWnwnmxXJpgb>fpp+PE!sP z0R_dB#iUfHunJADO{We~f2TICPzEWfHK|BJrBP4>6cke$gB6YT%v3?Q9hHXkU>-g z6%bF4lJ~Ja!wz|j9XhoGd6FH+6YCbqJ1L|S-K3M9B(8Q6Pb-PHiNxPP5-24~TH>ua zra=Qq13mMh5_YfBiEWRl9geKy)V=!Ql(vbPwWpko{3Gq%1ZY%$CP4ooI>UGR@)dJ8 zOKUr21tkus{kb||I5aUk@#gf*vQ_jB(O2@~ z%>2yDrGTd9rhZ411Xq)@lP{M7g5JW*75mM$xV$(qGx2gM5X|3YH2vSh-UIaSYyX)5 z{nO9SyT(_%N*Q|b9oR#ZL56Y7{_*KeiO!g+V;#coS~?PpT?ht|#7kvF2|(UQ_MiS_ z|F<9Q|NazxFZUDV1>K*(DhDXD?k1cg@4}vBH%;C%Mcy+({*FfazJ?@RMG`G1iUTwk z6QzK^^N45CiDz%)ZMV=fp-3&PDWQ2Rv1L4|Wjw8YqJ3=n;g3H*dX=91^k+YeiWyleTA;Qtec>tSG134T|20zDRy3s71%SX=Q)w*ZS0)|=;tq90D#Utc-lYnz$Sxo z%Bl3AU6!C-tdLy{NZKyU32z9Pi_OGfX_371q5WqZeEhP2m;tHR(D~4yW%5@YByM}W zu{GWbWQDi3#M@ZlZOrkupxbym3nHHEOm=W}xO3O}uBXc#&pQSl_k`RlF$ud@DFrqZ zQD=aRpFTtMXac(3F%_;blD+?~jrUpX7Nd z#Y4pYkp-K~h&zn!cIcWP)4I+Itnft*PULwTduIW9?a8y)#!=f0ia}y0 zw@djx+nn<_pLF8cJfciKQKpC}-Ay|AGy1^h-yqm=l)SHoC{j%nsUnJ&5hWrC7q8-6 z)p4F`IL`|>uZuVjC7jB8Ha2$j}mgEJ<8;KD%C^luS7QAif?l(>}Q{tk<>aq zyzp>#?I~#f!H-b+AD;dU7|q$Lf0F%40L@O%|1kjl@1X4fnsw{idwXy1?Y+IXKhr`( z!&q12V>$*1k~;hE@C@JK8@0nPW`}<)@`)&VQ@&f}6SXPtds`K`DX)kvf+AS*VAI{O z4TZ8P1d%&S!HC>m(w!i7ec&3nDVKn)^52v*COm>0h9MDWRJ<~1AEU8 zh<87*bN#@abnLn=E3m?vS2&U9ZR{NfXnYpcHlx=ny$5%{Gd3gpVYbDKY{P%#7+`vl zZLpSnv(-nf!Ckr4U7^cerrS-5az~PKM}p!i-s&LKND^ow@i&wBTF_T{x0AR#NZjaz zX6|y5cq&mjm8b+zo=udyPgG1Go`dCTL}TanKOwq^KaPXt#DXyyi1%GPD@&&q@O#8%f!Y3;0Q?Ld5PZbkO3ZRvn? zWG|$+4s3Nj8(INK0bzS#rDJtQmJy$bTdWAIK4?Mf3s|ABd(DR1hK)p4>oDh-Ppr=H z*|gCRmfJ=&fJigZ0Is*U4T&W9scdYoXlN_0X$Eg_IBJ^P%j#N-s+y{sJ1U#nu{waD z^s1)zipDm`U*6D$H5RK376ewf*bf|5rOnu~9hdd6Y(y1nHP&8MOt2LAgo?FnR36zK z3T^4Y&I;IZJy6ZazF5Uz8R}ov)B&|^*l>%TJgj4lctbsaf9#~fnoxr_ytJ;htf8%} zzO}5br5g1Ht{@#-X2k?65rh`kUQ*jyTH6ZcqRm8tj2#iyv8de$8thV3QD0D6Q&>_` zT3%LJT~%3KSzb|5T2@+KQC?MDRa0A2TUQIJs;P$blG2i*l43-~Md(6FaS57ITvUh( zONWJmqV*I`ZB0kA6~SjAmcO{Pq@=v8yt2H!vZAb_thfwu4vC1$kQ#zY%1S{0kMh-#D94Oq6(xe_(1Yh!Ybmq1Y&_WFDr+L zfTObYCZp{wDnXkG?ZzsAmdh{^j|LAD%v2eX>PMkA7m#J?xoSWvPE+VPSG`b&}4~%H+V*5Vf(jrM98Iwyr8I zH_s_7-YGQJIW)#TDC(wjfF{me7w4#lv)9Lwjc`O$9L^kXV}-Y}!&?yWW@NmH3*I1t zpwUd?2c!lKkdClMwP9g~ynCFycZ9ruh+9Q7IKw z1mTjbUGOgSt%OJIOO891ihEWYC3VI%j&@J1V(OcI038F)_W$wr9-!arb=nS~Isd2l z-q>t;dAYr-r=oWpl-)6$)jpKbK9mXS7*1&!OloG{ZySV^`|U$%ZLm6+-Zq%mHB!_) zcE4>XwRJG1g_+dCjA@`Jw=kpX>G4gB=mth;%|Jk9e?%=kvW_0t$V_ZPG9)x3IUz$_ zBO{@S8QnmSYhv81r^5oaBkYyhG6+6l6_%sWO)0H|@EO|(evlm@9orPsz=*}tn;0S0 zNO4dWD7sDssh z*b8z(2517T23PmH7gN2<`n=0%=vF$ULn4&xU(pZQzyq`hd_uTVTOndYDXq-p=E2wo z24qfbW*)|r*aXoi?j9}f9?NbY&TL15oYp!BuJBpi`f)9~5p^+jjPl;`uf_Uq16MyXp^B8&|Yu|jSX9GG7_AKx`8{zRL>F`ct~z$rXWX+ z=>w%y^%r!FA}2}5aCXN?dfO2AaV_da999oNHJl45j`k;+WBOA2u zHK==)*=BSRa=P(ZU6$z`4p2}&@L6ZK4?35Mw;IMkzv4Lx?4i^D4{}Geq~e*_iUj{&Y~BL&+FW>B;!o%EUy{rDr=}- z*1Kx!hML|sQjHvu+ zki=OTDHVBG6_S+{m6wJEam6!Ys9;r8;k2-v6nrA93a3Tnqy%LoARQKv{0gUKFDR*L zU)DC&*RwRfW}>Hj^^%mTg8U`bvzOJBuUu5qxpG10^117pD%UP4YF#*cS^eBK4Y^C_ z&ZsF#Ur>6_{rS?HTu8yno#*E7{KwK26ISQ=ZKUb?QSsHS{Q^TLHI7cc8wzj@mLqH$V90VJb( zR`!Cjw6Z+3{meN+Z2?Dz+{z9sT`Q+48b37|2hDT-aGgnp#Nn3Cj<2S{5*|HrS$Y*qS2_3 zvWh+@Yjk9UmEKF~85%@hn8Gpu=+@5eO8Qc9-$HWNR7~4MLdRr$$7E#d_`TNg@Mh#Q zuwg8)aV)5D%(r$Vq-iXwbt0%?EUalPxN$6^W!%4h)UR$dsB!d8<&b;TkXzNTSM3O? zm`N;VI+hLk)sKcXL(b8FhEd--WOvvr9NB9muwm4%e#E1CIJ|i*v}w${W+bd>+^Ysj z@va4pxRwt=dO-bXPy_f!c7#p-b%-C>>Qg)7Sv~ApIYcTMw9Kd57SPEhOy}|;t9-g; z-hf$lzj@vOu8`qSI*2b~LT1+rqFJwR-@BlT3wm=*p8W66?mT_n% znrFnVa>%=8I0UUcL=3_k+cuF;olotWj&4Ol4Q+?~?p4E1WrK$IX%<A%U zv-mu^LSUnLQj2Cx7paH|HGv321NG9V&^pc7uFLV=7I}22!`+%;zq%1WG^D|3S>QGr zJ(RKS6LIL#3~e5Rtv+=~+o6r%4LqC7~~>`ZQg)U22DAw_p6_o6r7x*JrTse|CQIUtj+1|NHvmzkKuQUw3~Ff(2Lw z{jV=Rf~}AZK4JC$`RuQ-30D92SAU1qPxgOvNbr=Pf|TTW1(9>IheWtPJF@5N69>LI zbqKUy@Z@)V-|yi)wwM1ntbY0ZzHfPs!sjPPc7M44%P&rRw}=1e$umOVOYj{NY9scf%gS)>yws-IG179E9_06GgcOCt1_p!YPxR3Ej3Z1*Od9T|sQ)^`G7El$? zIiqSvR?UX0HE)YB+p5&EO+i`gN-jZ#;W#E1kz>Me91|OqZ{_k2 z;_|jAHg{7oIh%^k-cS~zC`_4%?qSMUS0pA3$1!0z&JxPv!O0)^$9-@&^q7%3E3m@X zbvTjdZS0>8(9d7Im{@+|U%|A`rLhD6tsd5Nl8{Lt+ZH+~=G!ag+AC%f74M@04$dUX zqbMwwi_&mD@eBsU#Y8D!Vo(`TqKYU=Cmnft0`$vzYX33h>?Cnx52~vt300Fsz%B6i zDcj_ewkgMLQ@^)OJ8GML43{D1l5ZH(U=rVC9N!E*c7ym<{rEP$_;$Vc4v=9|=bgfV zxTeu~^oblCN^hT}POWi<;E%W86`&2@2%y>N`8`0tT0SHdLA7qEiSC9t$|G~EzLF6RTX6=Oa_CsF9y&xjO7aY z^8KC}faAFK3E(^+Euak_6w81Gfms1z0YiQ3M^F$!Xbg}Guo!?000o0EAXF5RMjcBB z0Xl(SArbNeK!XS1UGRVqXYGhb%`ghe2)~A-YzOJU<*+;C2}VH>5FDHXjst~51|UuZ z#Op_4M>O*&;-?z%V_iT8ZZpa1w<%y4X7(9m_UWZl_0nl3+5LdL zpq&b+IiO)Uiq64JNNurz0CWQJ->m{L9f8V2qaeb0y>m$&)6iSE*D`_a0&Rp%&@^aK zeEVch?;JpOcF(*^2~#b!5kT3wYzXQAkpzc?Vg`V|d2T;YDR4i;9F772BHB4Yx+_@c zC#HP@=o#od9>Mf+AY;gb^-rMJ0nK+p`V2@f0%#H(LZBSWn0{s59#zBlnkI^93q^ek z`BbRMTpsc{pV%?wS&f_(9#tc-FH|0uZS(0jQ>lbPhF|TdYxy9cGepcHx8ERx=2|fb z6^LpbhZaHSAq*u~s0^G2Va?;2l-bOlne^`Itlqig&S~@P{)D!voX%13V_(9A2-_7f zuE%wpz!w~{%-wHO{5`4cq(kLNa>ahD!u{4o-xJFvy&E*+y0jCzy{kt&Duyq{bVzvB zYQ}XdhPK^I?bS}{1%SSi*kh4908w&7`W}NGNYP`#4aoU+JEz|!pANMJ^fyZBI-(Qy z7e4bZ1g;(yk=Vy`;-lSP>^X5rQR~8GqnlSv^t23hBvj<~aUTO}1eyeV{L9y$eEi+l zUmp4nLF$9MKRvJu*cU(N*@*H+j;UJ2q^jUqu&8N@8UX)@ie4-didKfj_v*I$hTh}-}lk}uRcEf z&1XlyJ$YJ?M^5yF1fQV1xU4#0vGRrMm(;Fb0)RfJp?dDpIVCj(dDSxt=g%mq%c*E8 zDQh4)d-1H4@@Z)m83AeGLp;a!a~%e8iSvmo$v}?+Kp6lU(D~DS-~1iA3cEi4>o=dl zCnN$r16c3+e*a;C6Q@LY_I$tZ>jS&K{eIs8?juJ9PVz~MC|=ln+S)NQ8)T+LT;7iK ziXGXtJ96rF9Lik-7LP&;F*?pJOK%3^5~vda*yLpC}Jz6sgb$Tu5j zzdZPzRP;e&;ieJ_wg~W=rFFv2UDrBf=O9{#>}*7D$l1WwVQI){v}eRIV@p?KNFx|y!glJ}gDw@=D*z~$5+&+LLaiho3hBfE>Bu1Y&?tHTBzeyQdFKQ2 z=jc=FIQjTBdSU<9U+h1eA@6p=8*1X*FX24Ya9*l79~GRRyj>8FT>|Stb$f7y+%Dx8 zLYweey=|k*y;EziRNu^lxd%T!d;a2==P#gd@ITk@@-UD00R3LC({=#ek{zsV;WLc_ z^vd$mD77UuAucIBmohlf*IHHGNkq?UnlS&)9XBU>n=$+YVi3v$* zZT%x1HAM;W@%dG)GmGyWi7zZHq^Bm2j10H7G-YMn&(F)r&CX0sNdh?T?(Qlq$PEn& zC@m>!Xs8eL^8tdcsi|V^3wc^Px=Z>Na(n0F+opg&=6lru0Du5VL_t(a0lA{v096sl z0AllR81bn?m^B38tZ590)4g)Yw{`?54cHOT#I_JYOaNaHI=+hlGys-U#gJ_Q!!mCG zQos*z9>%gjY#_&Sg!}+20iZF$1~3JlLx~U>frhg1Mf5wB$S5g5PXt;kfI?UfMMtc$ zv0g|ABn5aSAxuoS%BP#<3|QvVO>_F8Xh39eNJ7AO5OCbCh+&#D0J6xVo9EI2Nuf%x z39uV>B%|C0iG*TgxR+GQ1ZcL-r@K@jpb5JpuwF9^CHv9Cx~3sL zgE9jPaqW|U;IXY!UKI?h460N4AXFP7W|Gk>;Z>&)&~%JgcG|mM(6xGxMd5cAg}~E? z@nuKwrTlkl>dN1~m-*jcehjQEAS)pU#Cb*i>}54BNg;Ho z^;;ljK*|5})yMz6^HTuIok#b5eRS_vNB4fbZznd`3<4kqIK~E*F*3$h0igfa7azg$ zM|-|xp*G})RcseX0fzqa$ajYXPwf{txtISqYrOfhBYSpp9|4#Kl7?kWz|fx_-u=zV zgP$DQ_4fl`|84(QT&IO3FUX53pB7e>JbhkHLg}=Os=SKUd5xQwFWt~Muc@k}uBdoH z1_1i3n(SG1`Eyz-YS%8PURIS$4`oI3!D)VmXi=wkd`~A#JUqw0X2%BBN+$?R5UZcva-qf$dG{?C0OEA63)7wra`2ZN2 zC3cwR;OTXe&O@|0V*Of}-sI_*U^+4b8Hx^0`oL=|K;O{iM4q>?KNFyT`uTYSW6nAx zbvR68GVH=s*!k(O^D~H4XTwzI!p?!_!&DZ+ltGJON=xC07Q@a?14$w?D+b*V$R3UFm_$&leImXcnUj#vIf)Eswj*#BjZhjg z^CY}^JOCXO2TlS4gZcod-KiKt8dZ(}BB=zOk5P;aJfr`+N1z!UV+P6xo*sZtN0hU1 z#S8=`(Q#;~4EO;j&@^vkh66f+TY*dk32PpQ2n08c0;fVXKo|jI(@p@6J7(Y6DVFH^}06_q1cS7c?j3aX!dS|oILD?+IY)spvOF2@ySM3N?2I>&h zfB-S1Yz%2bK?p+wNy7p-`df9+I%580$n+P%aRwEt4ToDVooblThjpCrh4fqLG~Lu*gAAH|Dbi$!PbfN(1`Y)BAA{y`$1)~l zMu*`CO)_YwtTO+8+VQ_m=>FGUk&pHr`u4=3L;NRCiVK{Q5ZrzI;D@_D2af#a*nYrh z0OqEQu9N*6+At<7F`mn$$=sW;7W9SU6 zhRy@ld~8^HKhH5jItu@YW(W}%}&q13qZ5e zGY3Gw`Dpb2&)$1SRh4D!-eY|I{c+#UUD+%uNS2&)&N)d&MHCUtWDpTCO9shVP_pD8 zIp=i9Ig47^%GGzywGb)HRb5r~duxw5cI~sz4r{M-q<(9jXFc;7fc^f#jaE zJk)M^Xwyjb(1A$7&`o|4NgjHuk?5fhkw7Be!+=JdharZ$VXV7R%t{zXuY^g|lZbRT z339jE>w1xnFbZ;cW%zb@3vAUZLkd0Qzl>*8%8<50-js z?_TlqKH*>?r|(ppn_yz%&^|sKeA>n@xib8uj*OPs>C-0-RppKaXXOVSxAICD9vSMZ z&9u-n^bSgB=o-5Ja1}n^mIVMhJ}xFZE2F!stG=!-I_hRzO!O*1*Hl+kl$V`8dHnRr zV}%9z{e69F0s6tihc(UZmyl&KKYEF%ETWsIVw$NMVG=NrDmsD*F^ARzy^R64!Mgxz z5d;>`myfy^Vd56Zl1dQ(<|yZpgzgaR$0Tks>K}Z|a2sv}8|N!VopKleZEl6Ad_9uc z4^ZovJ+SXq4`2;oAHXYI5N-tM3=9o?8BY`@(872kQ2;(m?U)5#Om4%s03YFaco2As zi}z5_3@yJzbQ*rBFj>)=Kr;ZaT#+3Sk)Z(qZLmI_KLk8Y(&|J06=T3vMA$HLwF>d~ z214qJZUolA>w!eo9n}n7gh~k*c-(A4tpe$#@e3$`UP(MtElODZRBHPy92r4y9|9N` zFb>)YLkqa$ozD64fd`dCk9%M z%~LS0fR2JL3L$R=)K2(Si~+*JE#MhklIN&9>x;s z9Vi5fBLIzZ=Z@Lvrm5>yv<#7II42pmX)F^1knzL~V7**?FP>0D6yS3BT_>PLER7 zGX>)QRr`}V0nOnoJTa_EJ*eI|w#_uY!y%(zEvNxn2m>VeCcscFfQ(z<+XCGM;}dTb z_6)-ZZIjw9;&+exROU{L@W1lg{h8C?AG^5zwSD79ySH!V*!AAd&A^M>xOW3h?&9Zs zcgH50gocgHoXkvo?10W6u`vNj!+KSc@!a?)(*}TSntO(AfN84epxabJjhSqw4FJ|~ zL%JsdTKHn3Njk<0MKd%8k)x1s`_f0MjD!iYMO>B0MIJBO6rDc+IzKhO?5Q)YOCn0 zi78653Ucn`*}a9GX$$)fE(t*~RXJ`+p`CmjGzm?`8-LsUJ^(a4J9N$#PG&Yy9szk# zqkVfV4_h1A?A5h2)Uz@IfEHDfmQzz&{cHRafX=RYGk{)8&+7nsEj_<6Kofd?K0v>4 zI^*jC^iwUzGXVWmGyNifCiMKj4xnNAk%*rE{o@axJ^toy*G$;G;n#>Eh;WR-$a{?J z%7*r;+}Y~5f7e`v_@U<77u6vTs&77AiHJuemMg>CGq3udJ?ZXt%mc#-!qd%>##uK9 zz}Y!3CaU6iNdRO&_IeKxe93F;jMvTyFXjm^mN74uQP15Yo~%Q}nuFoV+3(5K<|zQQ z4WN9}eQ$)jX}G&tsJnTHyG002L$m~R4s^G^=yp)w^%~GKt4EQ2a(mzGr}LjYen~8R z`qigj{Rdn--dcdBwi|x{^zR(62IxnR=EnLipE!6WIypJ^vbyf!=C-Db_IoeJBp*F+ zw4i6$=IE zoUDx6n(DIBlAP?!o}TVifG#gD4Gj*6j*3i6O$oSurKz!D9YEK%vW|RRdGZC0dIyAZ9A&rioij`V#H(Wg=7dEgJz?Kaq#>4`?llgUhgm zaM&esI(;<2-;0%F&=_CxE^Jen4kzl~$R_NiDAbc+1l3MnuSTMUK|)B~WOUOsbW1?Z zM0^V!1I$D;OhJF%Bm!l?&Fh4=Q5@VbRnU9Cgz>;Jv+oMgE5rVqnChOyG;=ND_$7+( z1j=FKCQ*;XwxHA)Cn>g0!!6P}=E!hj@@n;%Z#i%?bpDVB5p%-^88Be>{aEe*yo5&v zxCC^zz1?^4b{}Bq?auiEl7!CdS<3HS%I;nSECwLH(=~s)Yd)c6*1vo-ux0`pcC&H% zTIINZ`B(y(4hV=$63=sKopZS;`9OIF404iMXW`upIJb4?(4Ah_fa{}}Z&Xh>=MDImjp3|BXk^~tzO){L*mj+$Hv6>hlL@s-E~$SJKKU=TOaIgfe$VLU z2IH{z)h_UQ6bk!SvAGlpov-9}D>jK~JCfB852AdvQu;!f%+*?*n=Qt1?dI|AM)4h| zatE)X>;yB@(Bbg4p|XDHPx$Cz9HkfCCVQ<;CAd*Hv`*|~%Dal*|HEPOKik*<7OCp@ z{ass_1-N)+L^;I;fTV#P0VpvG%e)1+c{3L?;4A>{CeB@}a|G#}LI|qRpnE75Qzi7j zc5H-g*hAlfmt->H2e1c%@-*!KVE48y+$=1@dpINnc;&=+WJT$X0NequH?Zy4$icLg zYu66m-OT*#JW_(vnhI*hS}Fz_3fjs_x~j^0Y6@CPQYtdSvZ6}bidshM+Qw=c2Fgl0 z3MzWan#LNagf`Vt)>9Rd6=mjQ1AyMnwQJ+u;0|KN~?6BWW#D1wHf6Mq$r91wv*fTOwcgs&z zLDj}RYHV&kFU-~4?o@Qrt+dR$U5ue80R3=oxHJ3Ct($=tw6rbCdnVVg>szrbFE3}_ zNiQzUFD@!9DJ}v;?&@gIxRV9|-P_xfop~oK^A50eb92+}^jpOR`EbDMxhUai?Ev-y z7@`VMAVQ!_z&qf=kUHw2fr4YI>mW*rao|Ou!&uC`BHG5a;OT(T7b=i7f$C@g|M`@z z%+CXWKAtxStOhU76SIp;Wd0ujq93Y?$3jqPFm{y~O2E5-p7c_%1^}gG3^bpJ&461^ zV-VE@>V2s~8u4+4=4An$0XHvJj$T3m3Arp$I8c2B+!wYnLyVInQF1_ALgg0z#F7FY zGl--r0hDRV98=Mi<3QUkIQwuE@C$B4W)Na78JYp(3WR$g`_|c;By*3M&X$?j<{2V) zMp&T=NV7FqH*IpNr^BkT{;WMd#8#<-Gr)SZzW4af-IKjh zC+J%t>{kWEY?IQxH?~zfyh-R>`SClwCUG5m!C}@RKiiKly3LJLHauhjP$6O z2f$q^xKaK_z4Vn@%jB-3X`O~wi{F(v^?%q6|H8!i*G=zH$?q0UW_D3Nph+O? zuuXXyjsarc!Oy`hEi9>}B&IIUCd$hq#J!!D4JekGj~&pNQ;dgQn43$SPe@)&PFo4M z8R!{8UQ0 z^JZ4zJuqO{Ewl$7c?T~$3?b+wLI^5ff!>hPRFZ=m8E6>Vm{=UPvOH{KU~Q~wq`5~z zU^^F!h>YawU*lH*^h?su|4D#;YX#6R0cb+cuLsayef3pSQ&WC^KA=)tTU$;}PAXY| zgaE8>-n^NWm38aZtsj1PS|RUu1n6IH`SHhpfARHq^B;dTvHZpOlNet5tbOWH%f!Rl z;pN!6iQtN1&&-Y^u~j~CIU(_hA@K=e@$nJyu~G5SG4WCHaS^xT0+YkeUp;^7oSXec zciRAW>qvK#Qcsy4&pm^l>;TR4UQ7?XHh=E*;n!a8e((Ly@4WvBFDXw`q#pCyJ?h0e zg26WI#Wv){KIp|h;KecE#mVsE96HNA=F2ne%h&HK)OAj*^_*nGIoTQ?#d06j0w1ju zAJcu_SJ}Oah5X7z{VP-gY7D{~Xc*sYJe=Hi@^;s{ICTfZC9@}{cKq=-KlwD@2%urC zH8eC-R8$1tmb|-KVH`~Uv+1gy2&CQ!_+qPXBzj?p;cjnBQbLRY>=eqApAOGqFMMz2WjM1(BEhMkN z_v9Jx?2rOy@Ko=fs9&tdu?ijb8vr!lSu#|A*oTHn^%o!B$H+IOZpzYFhP;0ZvZK9G zMn~szpfZga&lgzNZ3IAldwDIVzsma@>_9L&cv;Q(*fj98@%Qg6%j+z^B|86)C5{;k zefj%$rSXWf!95=z>*mW1G~wP z9D=7*^bwUPtscfaq%`Hprt(w1arXhe`j4F$S27aiGtOO(lX))gY<%%X zwnoPZKq7P)dD(zCyNn{_^ia~9jXdHc8x%{cXx#vXRMZn$K4R8JxXu@o99TO*EGm`i zrG27Iq;YUN&?P9`n;@1N5W{@Zvq?#Aaf$Mq5s&Bhn6Pk-$Un9P$nKk-?-Y22GRvH+ z6u(sF^WULsbtq)k#DZAk)*{<8*Ev%+1J}yFy8IQ8Lw`_J)PA4V!F2!#|JWrILeJvD z(+catP|||+Mxh=IP>TfJugAiBLb?8m*z?=bJGKt1^xu|93RaBnSB&~)FBd*C0Jy$xx(6K{dbhsr=H56I0t05|q{df?zWn<=W6P9cXO`G*tVc;7S1z#pQq z4YxYbSiRo8Nn`(l4$~Cda(ug50mgdi*M)Mzd85=-Kboo`s-ije>i6kv!K+>4&q!8S zTp`o@-j?1f$7^q_$g%H9w1tNe*@y7iIy)1^@Y#>eKFld7>3YK-!UyX)JWn59CBufz zwotz7qXWH+v`{qg;FtmM;2O}~js?h=gn;UX1|7zuJsUl7TK|v=#1&2_66OMg>;Mqv zt}$rv40<2wzV{Jjr1)FFnz!t{TzzxsA&)RM;X@_J$!ci{{RwJ^s;R^+2_^}{6)K@& zZbM7Wtt^eNECofwrNW`wLUKWh(Vvz|SB%J%50eNZI>XB#j+V-npVF0{(U+alLJC*l zm0IJL+2GpHos{*mR{qQa|GdBMcFP@DMDd5eJ#L)R8En zNu9_S>(IqP?-Uqb^B36{Ym-qGJ})h$Mr3rY)0LA(3Hbq;M`_He0&7vjrH~IxX&(l-hkT?>Wz&JGcz-b zso#E?Kzz`1g+rI&%X!6095E`RKWA;NU?{d=wt?1*v(x?9K*H2vn1$r4Gu-N;^KLfF(PHr`kZPy5w)7h`N6aIV>kmr#=CegaY(+$Mltgs{M9yHC2u*}=t?@g|xjIa?Da<-0 zOedv8G9t&`qSi{PR@7{!io7TYjHObh{2v(=46f@Xzw9s+fp~n}>&F z4tB4Xn&(u=`@AiJTrUYMucZrg<$cTnt>({_ZOW3pg#5ED@5uz4-IeCw0tb|uo{t+x zAs98or>gWfkslNqs6MSO6Mv_mEm`4DUhn20K}j7Qetz$LnBU~?=7PF2-=ljH{)Fb= zPj^RA>oI%8GWyCF<4!8ZvVxm2!-lZ0gtW4tEi3JJ#!rF!s*sS7a0nZvFv?*RK*K3gKwjK^PGmGWzXC$*0JgjgWo9&!3nrK?|*ib{S$nl$_?= z87hdoH~*G4+0Z7bca$G-P8vNP7fmi}pRpNAue8Hf+vdP?SgTw)%W`7K8tFnjro@8` z@MF*1(T(l3%ow4{KnwPlUrv%6;4Hw#!t8+&|Qx+~vXY1&@kJk{WalIo@P z>WI3o?Op^7rFB!S9AgYRi)_6w7pFs73E=NA;u|ZZUNs#oxUa80JnTH z@)R<-bQ>L-2&as@>-l=5G3vWCrv^{P3eEd`T=T7;^GUgFaDH9}Ji0H@7-66@oS8)ni*#0D7XiwZ=n|05j|BcDE^e zcc+gSLOxnyRm)STpgeWgWEx=`e4A4I@(SG2F>4xt*PS#1%iSM4qm|Z#82C%*b)*7lT%JlK z-0)z?#p`p7Q-ssv7nKazp9s4MyrZ+H&KRS!U>#xa?Jgl%yS$Iqz;F5;E#UDg4#fSG zoDg`4_n8543?7Cn{sW1}_o_if zKACB#H@X74z#jwa*ZTVQ7{Sqz{%<#PLtC+%pZxWH*xd<|U)~Owi64hg1d?X#Qs>=C z@{&XKMeC(RM;iObYy0OzO>@4hJOyO5UhSD?rsLj~N3}u=WlghsHLo2i6? zw5Bq*+&#A|YG!L=Yin-m_{^AP6;F&YdWLGyll({iZ&vN0v~pv4&8Ml&vmE*}!%AE& zh%X2NPkpw=PsvMGBfi5l&hM zab&auq98fM?D5o^?|h*)F-7SBQ$0bWY0bgCXW+2c%BE{Bh3M7Q)|6u5d4T;u{oMA^ z`)fV7Pe0gERF{y}!q#!_0@M*PaA9Pw)+Z8d*;3c_d{vY*L;UgYA`}04jRBQNu+qkA z=*{U43C+<6Sqa~qtE?fl*z*KG_uH>Rf6VyVc!;EtUxK1*P?CRSp>I_QX?Fr=QS#$s z$x*P<#%%leZTLsjhtTOFDOS!b$p!&5LxyjB*BK&(&Ipr%Vunp4QR2+#B9?rFek;== zS1{>caiwMd=#kdhstIBCogiYBg2OlA(z|iw_j`f;O%M~$+q{gb!Sgd9o?x0Lct`Rk zi1uFX`ER)R!Z}|(@`E_2w6hUI0l5N^GYhe3{JRY7aScG#f$8C4$=#dvaG7IiHbbFobAJ<2b^-WvKYNJ;*2Fg&{0?7hukG)Kb5*&=(o zDtr_V6GuFS$DOu`_~lZQ6`?XZ*7N>af=?qJb2)lq}DEuiJCFJ0Z!|jR4H3swewR@uGH?Llt3$Ij^3e*j`~nB7!pah=B072)C38=|L zkbg4Z#RACAa?=-v3Jw_s_*Luu-90$q`1TE4a_If<_F#Q|y|A$G|3RG12L}fMn5!^~ zI$B!b61V%iyVnlD%MkJB`vKP$qyGz5e{YE)GLtX12G6Nyh3cU!WsU=0mqR+pp)A*d zwd*@+oK$R~RAhrq^e@EFI=N?==5I2W-eyE>97MbI27H|l{zo!zQG=SB;Q#Bw{{D;o z^_Q}{FI6{RYHokEACanGlIpu@`17j0-g)*-?ZpU2aeXlK?AMFW#i^nq9qQZAE8<(x zo*ZACou6GDpE+FpXm~&tZg@m)inlx_puNbZKh>wXFtp9_W&gK5Ru*PB$?wgNc*8nK z7*XN^6zVB?y{~WxD9aq2(%*#3-O;@Vmq98hDjpskt*x!e5#S2EYues=13FTEZxMkG zv65A1b~|@!=NxL{$$*x*7OLcv1X5g@FP|NcNcBPG=TY3rhI)hDpl{F1DZ13n14LUH z{?@NpF8;_?|Bk-aSN4AktAfc1{$2b#>?lvzB8eP91u$x@6N*!vGZH0$ ze&Rv%{MHjCg^WroZ6!;)LM(vh-$y&UCHQtaliA5hBq{6t(-i4i545QMO=l{)Vyr+) z?hdRgs2@Y!9Id={sGF7v21zBv92XM?(OJlI&bgi|kby!yjK4~-O|T~*afdUPT|hdS zC|ZlvL-#rkPs@nM0kaU+gyWqka1e*qFZ)l-XbZ8ws+) zxLM;RWjqKX>8q8`$wiOgR4SP=*iWn%xVLE=U{@pR?=7tou?vk;dr1Kdm7h{s&orH| zn2tl@d?)!V`BY(>peTTfA!Q@#yY%JVxc)r_%+K*FUAkUb%HtZO?@*=Q)wauRrnvY4 z9Wc3gE*EOpqC?*t5!LeI^?YbZebij%_f*B8l0@Siaaw*(RM}@AbKdRSZ_O%~Q@~UH zbwAG6N>mecZJT2Mb2fdkSufECsO#ZKNd ze#aHP{RV&0h&q z=0fC$?s(QmDVP>Yp%%}AIeNHzCipb2a$gFFHO~ZF4L9}b?RD9VKZUVX%x4}t4-=^ z?s%%N%LBa^UegatjQ0c%8C{D>vY?OONYC88DHtD`W1^rTSYEC&w@UCVNlv=#yiv=% zhl=B-gVN>3#=FmRi}IW5YNNw*f5rc*V<#YP1O1xbd^cZwd~Hy0Q@>wmd^{~Du(HZL zp*^9Kqn85+SDet6|zq`Qh15sf<4xpAo2AB-k$;QaSVNxwY1U_641e&c=wo6DaXghFE1~fo15Uy^rFJT z;IJ?-^`rVDY)cdJ{T)>Z!eemhyQk@sr@4oZncHu9yObN|UH7R&HyI9>2M;$sFx|U< z;C^43*$2(lX6mugMkLD~$-l454;>hH)Sh@$FuTrpf;4MnvG^C@8QSFb$vrk%pCCXu++8AdugWw zJ_3!wm0ast+1c3{8TjbvdA8>N?hS7Oz6sNZk49wiw2)5*KD5N9{cOm}E&W;eGp&QC zt(ns1cqC?J$bGE~H&>!?Aa0FqfUk~lDMd*G8hSW8h+Yc<_)KOa&#SyRwDp;gnbHyI z8C}1hg?C?lrwhx2BrLK&hz_*V-mD)s!NbJy--S`kg!BX()q=gsGjeFd zlJbQaP}~f$X{?yYFvX(4)V*+0m{Tqt77HZ#=tn!#!<8zW?3(VwRwXA}a2@~%_BV3fY_Dx%66ieNQ-*wPR_lfhP$??~0;_M{J(j?BVG(q!Ak z_-8C89XRrYTOjYUVJOtIZ~=Qr+x>hrXAjSh^c1ZeFSB1 zJu?4=F9~8YoY{(!#HP&4w$|=1aXBokjbLe?h0oqFY?GIjj*r zK}u}*oYx*KR_H_SDw?`U@!JmWVeXtA)%`>(BY zsPcGPK^$*@vb+ihqjI9LWGRl_aC%T_ci_hNeYW#&36n87;Io$ROWgQhs6DGfz)jvv|N7KDr_I#vWW^ft5=$EA+&&WN&znJYTWgex^M$CX~) zBbT5#k)-!x=ZxD#+1=4q1TdkkGl&nGw1%;^4z&hMvzli=5 zxOY8Klzj;WfXwn86&wEjdjoD`*7iKGwjfJD+y4bMqiwtXXoGm zuRts>n*G4r#U%*Kd4bPXzyvjuooPR|i?z#(Q!z=~#%~|!`+c*4BGWHe6bGgf*|yDF z&Zd5>;3IG(vgPY4wo`bYqN=EbNWaro>~le7?CC7T6wp#an{=f9jjZR*b8!zclWfM_tF3bekl&B<*Lhfuy;aqLta!=Uu9ENbwN}^CH=do;nH^H zQ=W~~LnTH34KH}zi42|mF#bGLXP(DI*bfK6%9XZFrC@;p)h__DUkW$f6@?a_g$q>U zKg2IjN4Fy%UT+aM5sFq_kv2}q6bFi)q#yH^_Tw$I9^;4{k|aWLHhu_emHfS6Ve?9m z=7<-h70ky78qY6KLok)8--zfx-Jwd52~POJHVO&WGeKp*azXDxp>;)s+JtWaTGAG) zvct*4C>tjvIgEoa!~eo2yB7FC(Te}{He;icwj9Xf9ql1twTiL#TW}2}E@xoEjFx0& zKN0Y>-rlaK>{AOw_JHr7jV=J>;{3@#LZDExG2ruRbLly_oStDAG-EqpwUl^_3Bm^L zk@UVSMY!&>In4#7=IzgEqbsTz%Yoi%vB&ircIv_M{A@1Vg>V!n_~TpFB*poQ`5+#^ z15eVl{!)cwy9mW9+%(SUkm3Qd_ZQ?X>ztrs7(v=p+&T6=xp{nZ8U5H5r12-Nyx*|i zNP?E!03Eoa#FJz#*FnL8C5pT`mg+u|rVWNMQ^2iLKs~h-a~( zgV7mPFK)8Pm*zFkMLO)+XA|id-~Nxv!!^eEq7X*u#3%{m)|#> zxqrlI{#BM=+u`#AuLCs7Hk!bbeCN?9%f_WPKSZuCd;Jz^{S-+tay1g5gSlggtcXC6 zIrUAXvOt^N6mza&gJ$~*!d+J!Ie5XXu<_UPem@|$j5Da5!zgnSz0g;lzECOR8x-K) zPkI%F1n5?%Z=fBLJ0FS}?5NlK|W@t8-+=nFcj zfhc}N!k_K;cMb(x&vB6VQ`o}f!dqUH!k^IxTwnp7p|4A$tMs=PjXPQY+eS>)B{OPY zuafq(k`DI?qt!I49-G(1r9~O$Lk84FD35n>j}BAR4T4L~Q6^)R>YEoF75xI2j@?V| zp)I#Kde`t8H+d_*^i3!Js=MV3Q0i|UzX3nQxUTn)vn&5+a|Pe`ji(&HhYg(ToKJPy zLrn%SJ937tzs4arZ3Dy?{^thp4*4AbK915e5b@Hhf_D(bmf^&Pr|+$Bjl%H>=(Ub3 zv~g)N@aWRcDzx!vGVr5jJ&>P9wT^AH@J7?l-$x>F@9T=mB&iTmV9GT@BM%3i%_SpK zU`{n8>wIzuYgbv2Tr5F_31yX}q4_%olwzv1>+lytQt_;RH9!YxLd9XhozG|7vzps;x_65h5}3l3twEaIHxWKk=7|5@XW{ zGpmZDxpYx$5Tr0RXKYxC3~mfhuR_W)anYLf&0$%gwKN%VupF%T!BAsUySg(gTYi>) z6K6Id3gm@3Lovy~e#WSEkf0DY??tE6Px$wu8O?k21KKv1Ql;IFJ%0R1%$fpL3PVvp zS!R0fN9K$U3R&Y1ro5Q_k_bg!2z9dI2}i#2bF@3?bW*Q)oEpe`&ZLxJU7KnwkdHGSL>M=5rBoclZ@ zNc?ln*vDC6f59T|1qVYN=I#o^0ZTLvmYxcrK*1pt2bO91t{GcW;yvdkeZ1D~OyNo3 zy}{a=AMEU_?VL}QiVuHOXy9u><~1$o^;@gspn>4XcB0~MnBTEhzk%(ckJJgQsGwVQ zhK1NZ_|syDZUuSeX?iq4r@4Nn7HDRKPRrtID(8*M4o)s5XYz{L45Aub~*-Vtx zQjGmvl-)Ol^ZC{lGT$a77+iNNf$kxbqtT{IxqY`uKIgV6s=s5b6~v(y*ZM!BmMtE6 z%)VtIhWd_49#7%B{x(ybG9gXLFbsa}RWODNBu|mOSL0EX?`PJ?UDPm28qVtX4+0Z;-nZkfR&- zN&09QtY7^lhQ9-NKjzH!8X_Ew&|^Rh$TRs8%i5(qWkvA7Y;`oD(nNQdqN0Pq_q=>8 zFOm@mKBhFLzx*<$j%V+_k+PL<7##hy^@V-xg9)*X++deec;^D;as9b66?Nf7;S{mg z@Mj{iqN?7|U3Q1ya@d^cXX>v{Fng6ev}0%|T+e?qhpi&ikIjA*bX$LaRz4~SQzT?t zv8c4F%yY{U?n(^YkORC-Ku>?Z1K#`Mgan`8 zG8ZGHxGIL^$qBUeT^jTut6Q$F9{0VPh97Y@iP!JqBcE8powy=hx6ZEYOHMFa`Y3az zn$?&qi4?h_?AhY%dDE6tmRWfGKcoIwm>kaR4Sh~gq#6Egp8&i=Wg9|I2QYMPnt)%H zmZjhh)QXC>R#jzXC-9_YJ=PZ%=Z#CAF0nwlFo785kiE9yfJ?Eoqp|6`{U`_OKzA&B_rID?Y+jjwq^ufE^o_*gCgkDoD1C z-`E{RRwNnE0nfVE-^tPBY8+gW0D_;8+5>uevnzW53RMODVhU&9BTFgT=Tc5+q%!UO^UR z_vwZI`oi5qG6Ynq&k547B;Uu?O-5j!{X6i5s7kVccl%8B`_AEjXMcz)NkUa-BHSis>wP9}quH<#wGaEVbrOjX2F4mV1Dp=0ch-IyOw0;0-Oo zUkwh)E{c;vd^v2VYvFg-Aw9yymppanL1SDrWucG-`a75oxlrJiSon8$&-eL1Nn%?>tkZUNtkRUAwFD1Rn9; zL;qZWmO^K$di~XJfygN7e)b`K4Z|o6ccKGnHa+qBDrfd$!|@xV0i1;l zJ$>Z|$A1O~iubqIW3G=N!28(O+)qv5{gI(x>LRZl=8_5eMxkp*#t3E32G3sM+6nsi zCJW#T*n$NR6S`jY-Le^LUwQ;<-Kf_m&mAY%4zs#8cml#~dYGCa%)v=wW6A$E?#{06 zhi=Dju>tpy@b~y&aODpz>{4AO{ycPh#@NLtJT<}Wtsm#nh3_)ToL^dJ^}gnC@DuMi z1%+;*duvx&HY%O7a#MkNvGXg)mx@%gdCt7C;e};PWLeuj(i;?2mm-N1S{vk88(T_M3BrV;rEx?GH4s7I z#VRXpVL5SS9}9h)I<5nnA^$41+MllygOKd#DDhwAqCbaK$Ga7BDEvwSRUJG`ve9!@ zESnr?>&VYxsRX6CZ}By9M3C8)NF*#&G+>5cTv>$u_-j#iJCt(;;KqL0PlRKi=?VZU zHzoR(=&5%zEw)cCT_GqJfhW1t*C_~#%fHmfLqTA!S`wQ}iJCboewNF%v! zRU&Vk*@G@c!{D z?sEU%C@GCEi}N`smbkg;_zQW>Fn1|ki3lO=kjQJoQ?(yBH<86tgn?25`siU^CDq=I4#MLr!6L1b5PgRP0C0W?H6A%HJq zs7yHK;KIapuQ`zj5h{16-xdS*dbt_Ce3INbojN&>3?* z>n{*WoM1Necl*x=1r|(*IlxU{UGkZJPCo6H?12i`@z|{{tloU4(o)LY&>DK z(O0q2)x7gSOa5INKf#d@sU*A85}>K?*NP-GTS`j6PMx?^Aajz8nIJ-A5BO5@Xq{GJ zEI_OuQ!7bW4}3Wc=2Q_x(|=UT0ZgaN)x)iMD0%QnkrEJh0f~hgfHF9(h%+fPVxkdy zM0hZjX>R>Z+j;`R-$CY{*177S6SzbTSl_8LeI%-2SU&<0w#(EAXd;PyM6Fb(dl=e0 zQPmk!pEovTQJ-X_Hf)qWi+xpI{3U)LG7Dk){DDJk@4;+F{7xMnBDHULS^_)DENL?l z5o?7S^0=y>E$r)Bg|ksEMFrG%Ftv5wH`4N$tFGN7z%*Qz8`}{$B~R{j1|_~5H49~-?5+E#29>x1zh+Q#(BE8^b2fcQs*Y@FKTI5n7^}nL zOz+brx!`|y*2}!FZ#~-yZ7+Gpg}^I$LcXGiP?k;TjjPoHwUExh!X(nBn_AK7Y<5(I z3-0Y-sM^hQCqeU#kboEPealtL#(L+(;&gSG`~_PxC1FMlLpdHJB^6CIF+nLISwnN0 zWl_NOw6x>yPZ0I_#T22NtDCbkpZo0Vz0*{Z)Fk)02fvZMMWEBLb4^wH0{WR>ENo@$ zGVThlP3DQohKQYnm76vXBQ!E5Bb>H^7aYJ6j+7@spPwO%Y~5ruF%stV&3X4czkOXr z6f{h@`^NW=#~snh!PMdfgY4cO>dUbJ|cK6&}w2xAHgF|bSGBlzv#|p+fRhP8hXU9H{ zjI_(SqxJ<7zRHc4TYq5Sc+Evwq9F3)r!! zv#s}&+wGm8(7~6M=i`R8W{AFCOx47%>&$%KdYwt>C{BFjjHI;He-Dr`X2-_H5D^i( z*D;eY_b~Us?H-tzdvkMhPgl&q${L}UR7Sw`f97bJ5zFtc%DCKMKeOk)9t)HbL@q$> zBF-@=q;e`b#w3Ja#gPCILggxUHnWdgf`lO;iFOkdWh+{9;7NubtIg`#H{!LAtMWG< zj?*5af^S?56a8CpOvEZ_#`DUI%gDW;tI41%Gc95GB$4<{*1Y2QZMaSbRpLx#2AUm4 zPmQZdI&3OJWe>O{jfLfaQALzFMBYL^k5YQo+$8*g$o7Xs_vS#GpPUDrg{q-7-E8hE z#wrpW3Mu{pmIpuGW;i(p`Y~QBOmwI@fE6+*e-&zVh2N#jWWX|R+@1oOM8>QKKxW>e zSf1N=H(Pm!#pZ|h*cX#~m+cG#F#gK+s%)>!>0Rcl#n>{#|HsBqwmD$M(tOE;lGi&?Ru&7OY#WWMY^=#zkh&S!5*!tBnC^Y!-m<^vS=$lYduOB%pTzohvNC zmN{+mvMjwDV0Kx%*gcclL$_%6oOk?rQ65SyPO1PAHd@_Lku=v!juT3EaVS2halLRIBgzLoZnaA zQeu9De&6~U?9ZLRwJk9YWsKy==75I6{k<~>hkg)4r?!yCwbS7Sjf3%qiKtG_9z5Xl zx|S@_REr&2GosZ$7g^s#sYi++)8#3g?o1?V+L%F}N-$|4>X)*8KX3PS0N0`~^8{SG z3L@mjnLqF)UWYhQeZaB6@Kq(X75d(K=xn@2btiPWSigJ0t~y;0M_z6p8SVbq>i>%f z!hQDSV_s7PD!M!Qd)mZB!?hQlSOYAV0p**m7F>k#GWd@GF-YNn{?Uf0RKIU)C}3#e zgrzMZ;AVv^!D@yF)MgdoaWaEcP~|(@Gnhn^+K457;`i&ln`e!~l+w?ZN6jEu#f9X` zT+s$wUw(2xod-7-bu>=QykDpME&^_|f$GA4rX~K4j10`kudZuv%1=uS4vze?c%Op4 zNX${yIY7Dr&S@(|izqfSq_RPK435c|M`Z^R+7MRoiI(N_$1S=;OWp+RbnC|G< zK)cAkAkrl3sFrwmbo+7dK0rOFrm>+LaF_vIi%a8c?;p!Ly|t_rP*a!RP}$Pn-mq)n zWu`8nu1;BLOpxDJa@G@c@No3`GsHX>eJR|j&WCh0B`;k}5TZc}y_FtN(epCDA#x-N zWmA)A4ESn|fF9c@$MPO+Vt79%+~FWju6P(_uPuW#guX#Xh^BC{BQ2Zuvc4n7yAfYV zVKwM&7DHK+5K-0&`i&da5aSJ*k0p{Cjl28ptH}Aqwi)hCMX234Q!}Xq5VH?@PZw}c ztr^u-NyP!|!CYeje`_IzOGks^INIFsr2z@NqOUyNIZDB$v-k~!r4LaFWIjCnOjH4@ zG=Dw;GL(4kNc(0{WDl(NMwAQ%DY9pnb2uIQjj%C%IyPQ|Nl&289m#IH2sZ}!jMay= z=6Sn{0cW4doi!?6G|62l*yTJil_$e8J7&UtfRZ)-l|L~e=}l$rFc&i0iZUZZ2AA|XCDs!QS>#7G#`m~yR#kL? z$Y2`znjvLmx@uyCTz;iSf7goV5Fg!fvJblbd!el2PotH3)p!EObO}#XmV59T zQh2Z%?01>g7FXAh)lJt_jMfeZzpE%vSZB2iIplC?QY?Ys^m%CqHm7i>19K(56zw;t zo3bYZa*Z<$CDk@rLCf- zuH%psQM3nC^|9el{fdq?veB!@_pH@?VZ1rq`R;e9K(O4TTyP9_GJ?gF=b#jqt59TP ztB8_-7(?ps>4S8HFMMtU`jmxC|Y(Xi$e}h41!Tnvrh5Lq2T-djjHaMP|6Wg z7p-tj(NPZcbcM_@7>(ILI{l-S-+TN9Kz4j11Noz~*F@m}8>;4#Jb~d{{F%w3CHlxb?J7rCz$jMlH+-oMiyKZ`*_rJTa1w+B`SL=T-OJg5~0xd5C zee2(eSpifdZQv}0?<}%450sg%L#Id@lKfg3h8`cM;P!>A)SM)5dLA-1c9!Rtss_{W z!e8P(OHnA7sYZN!TrT$hFeojW|9t;T2g4__wJfbDWniwMsVJ+mx3{Wxuq~}DD=ROv zvbMs*CB!8lAoxn~l?d3=;VaHnTFVaE zf_Fxu1a%x7>*11ZtycK+9?XFx%)+J!=vV+=a!ZUO*p@Geh8vN`>7$z4tiXU8j3}f^ zkTd`v7BxoIX`gk62{cJtXn;gwuKei-S_)3l{`Ap8Ll3{^r4>b)iY)@3&6HeObKKJz zU~aa`j<)5_h+jM-t3be9qBvT4lziuEouDaS;jh~fT}ivBy2MQPYv#iSuR4L*%$m_( z<jwf->zAn>a+Z#9}QGi$AZ#mpCwB#UEpnG06o;WV@_n6?A zdep#r%|#Ym$6;|;ONL`DWN8FcZscV@BGrw;PLkF!Mhf<+maVT){sQSMXX@NY>~U!Rw#NQ26h4&|CJvlLE^lKUnc?d*{kwP2Lx z;(-?W>&R;KuMu3W?v7;kd$s}Cb=mTo{zm#5Ex1s7C_prz%UJLsb^M(3cYJfDpwn&Y z@}k|A9knAQ6WX8`2JAqNt1K-{Nla^PkFR4dDI}?V;494FB7_|3W37d$Eq0EL(@NKZ zYSDuJ`_EKdBDpXyjg(?xKd>+aivn1TY%Bj@C-24(J&tl!FX-KE*;V$lx~@DSG{2h7 zmgclfwrr#v&*oGIUu$_SZB-i}lewG$G|ePrfo>0N-fzGf_(eIOUMT)$fV6PltcYX3 zrQZ|EG=vgf9g#kA?1UDPHUg0*{8Wn|gYSIJV>f<;RF0C|O+99xAcfyi_8y}y0C#JNeAEzVgH-uKJ@Pi9FV3z;eq!7JYc-^?r~SJ z0WBg0xnT#fUPaowJ`pK!fZg6yC3+XP`T4y5+Q<1l@C#}-oX4D!M-=@fEQ20%CB!{Z zPGUjXSIYOOm>;Mlyd^>(_Z33Z{~A+1VL(lO8Ur`{AcGh~xal+8jJn$z;PiLAmsH?A zZ|Dae;Qd#gAz+$$LRjeKd1m*03_GUVzWm<=H`f95IFeORbBS zzftY2xx-Iok1Uje`D9RPcQUfS&3TwF}4zMPDmd|YkK;L~2QN(Wz_+VEECW$8TH9(Qtdm&ho{TZRVUNco=Q zV@tDxj+8}nZm0J~|3!!;E6a=aIgV5rhQ8W$nKgzgEN42@fGwerff(3!xlq3`RuRwi zF9njpcESM>XeviMiG^8ZtGFbzozMxt4wL)B?IiThagSz zAd_ZzVjWdmxSc$x05Jw`aMKjfe5q?e2*HHApJ;7Ao%%0dB1DKPnbo$@AlwZqL|I{y z?P1aKq}4DvQLD3r#h0}Ue*g=_&ZaZS!zpSZ!$pIrnjob$^-8<7Gv`|`*+x7>!!VzC z+1EiFu7dGdUZO`KyT&!`{<+QMcz$6HPlN1}#SIhLBLw^@6ScBE{pAx?M0bTuh*=m* zki_{uJ@JPB;FPRHh-H(2z7?TF8Ylu3919k=GX$nQkbsQ+5=5n|Kfk_PrwV5>|BBnR zO&dMVnmX+V0`6s0&dwjoowW8?JEFi&-@Y?y{X3Y**VLL{G2&d~o?no%M}9p2ie4^$ z$fExmLH5@R_eXzX^zB78&+%z)>kT)rQ&My>m@Y@@-aYx6_E{W^{O((X0E;2q2kK>s zhqM&Tm~b2hLm#B&gqe+*^FT4Y+8m&?-!0Sjd9KR`TJD96{K6CAIw;L(klkT-j5I@U6!U4{HulhUO_@!X^_-jGtm?WSfC&LPm{Y3r0V z+UkxLFZ4SU=ByW_#z?jXt^T#PFsg2!B=71YEfi{wIWNxJq;ON8UY=+0IX=TgC z;76ilN=IoQvF|+p26-5%9Eo{l=s2A|8yHUu+ufz!WM7MkoP!o zUDeeUig&Zjw@OBy&dA=*@?IA&<+7^Ig<_;mthcEnl?kdZa34Q-iDqIc~kJi;E zV8EeK`YLNdQ(XoD4?-!LjGta07%Km-ApgO>%NRfg+x--bW&W;KObOtf9Ugq%EQ#DX zz)zpyy-WbTzlsUL<}Oj@1)vBs3wh4-vgog_&d(dI$jGx}7bss|1XzB9C7`0=srXt>!i z0@w+K1Ox;)1s`)T#4tgZ(&R#AkVwYZO@1lkH#%h~e%Tt3R^l-E<2W197~!68USAP& zm1v;)gHvmhNN!yzSPuZ^$kd)O4viB^1bjNESr~Ukqcd_(gWCqKM8<4o>0#6Ilr#G( zGvb^IbxY40{MrS!sTB1y)oEz%NVK9vQkF<)*vIjTm{3%)r0}*-hC1n4<8M(EUYDNE z+MZnL^I#&11e@^gZ^tn&5{m*B6-AhAC;~+n%6&kSD@EEbj~j3t)oD!M_|rYIiNyZ^ zQ9-W0j3ru#?;bQSsci<>6e7A23jszEmy*@&JJ#YR#Z%y|D^+7xt5NGr<<9=ZPw;#> ziXUJw<5LFX8HVfKflxAC5B7KzBhtAQ;+#L1f+1i^_ab1&A(wpo^#E}5MDBn`(eRZ@ zoMcHy6u`K|hi<-n;6W*4`A+9TdgnagavqiwUjTpxXkMY`-bLsE;C^@nLjQ|7-HU+f zK-+LYb~g?!h(q%NJX&1yj7?(ajmq)3=IOG52RMhaX(q6G!X&2cTJ?B%BaU03uM)_- zK>UfInHIdnj>V4~dl&~c(DSsgc}fRLqH(TX!O+3my>@rdD%<*24{QJs12NlYGU)nn zMnBo;2f}tDdT!T(A=g6G9UVyPr3b@s;(XZ{^nVcf=^(0M>P#-fDzVcbs`Xe7!>f4s zbl!koRIAk0I$t<5dnGzEQSC+ z2CxQb?t(^ghC(2!J<;}qou zw$?J!)wMLxG}Y0!Hc~ax0D9&W-NPfv4DjdXT9 z(dH@8>M79Y$@PWz2hWN(zVd#r)>F*Y?YOFIC=C_YFbS7fCg(ivvn4mmhQI#qhxIr3 zV|mr`mIE}27XtJXdVUt5SA`s_==>}|ugylUO+v4Uw-=z-G4!tj(1f911<>fz+&>ta zQg}Z6wqJO{_2_`aROh=Xy6M-Ha>I1;q7{q&FMID9R@Jq>{eC#-+d1$1-!;|50@8c$ zO{I6mf`~LlL=myjL9rlBL5k9q-g{R-6ahhcM-WRaNlbR{N%py)F(^w!V#>}=-jjKa zYh|vv=9+WNF{k7=o^?O>lVenH&N%<1VQ#crOO(?<^7C`AU28(Ctg3cA z5Rh9?d^9BDSZG8^NwI%`Z%s{AMC7^D)Rd)Po?otAyH;6QnUENN>GGw+0jCaz#-2$k zI2D_5Dl*n~hs!>{2%obl2ZEvkPlV;?=QTCqM6}?G?d|O|Gcy7(yv*|Hr=Pa9-R$n^ zdGO!?&Vs*^OLpJ@%~6k%y6%!812agbx*?e?YRE;sS$8STj%2A!oy=S~NEdPO)`K`! z`a6vvcus4P#?;T3NbtaX+}K7Qd%n!#*7yh*%4E0{(!SjBfEUc;nSVGt6Iu{&U7^!~ ztyu(`B@0scnb`L+(2Wuk8Kz%h;*A{UItMPqcCcLqtG>Y#775pws^k(&1dM4TH3cW# zM3PfeSw1qYV>Wa7{T~6oIqjw1p|5bkH^7(IX93?xUC+_rsd*QRKdxrV7kmWUg`7=R_v0<_2vz^4VsxOG5*(;ceJ8;PPZ>{nWYU z>G0;6lh>w0nMVqiX@+gVW22I zwCf@L3^M#2pQ8VJi>WjWAk{u=0Iz6{xr1(n!)`?*;ORX@BWT#irC zZ0un97`D3>P(^O$@i(5>P9-FdS5G9e2QsR8`e4b3Vf0O#*j7w4Kk>1vbmN6gpHNea$?vYZvo;sAifSL*Re9P*kxy8ZwvSqRh0#Z1Ea;& z6mfSmHAG{;B>O&bJaW%4w{`I=|*U3w$8R-G{4NQ#|{~Es` zK(9d0D+Bb`ho67S`i%vEPRRZ#0`w<;{QJ53aUtKzjeeIy0}h4+cqIq!_jM6U(wH?dY9yx~&NF0B(~W*2Xj_k9F_{{K-4!S8AL&jPd{JueT?izd)712kvo z?+DPZ4MGb7v|u!P9-y5BHonTu%L4QghW>hJ7Hk3ly;Q~V8e(1w%}bgfKriGD3ZnB0 z(9GH)-U4Wc{jb$Pzj*Ni-06Mzh@tsrolWLi8_YEf%=9;HGBZ>%)swZ@plEI&Wnn03 zrYmKpFK2G7Z~F#|jg5`2o{pKB8GmbOWhJAiZfa((sbip}YhYnvp{=83ZEa<+!NADa z=;g02E;tB|fPL_)uC1@BZ>(o%uCAr0qoX4tA}X(}p=n^Is%xaCsbyqjXk}%I{rMN| z?d<~t1KZl#UPj`V7VvRzZ(mZZ;$k56k{#MvDQ^aRRO~vc^*)zGvm85e zNGM=(2$p9?vV;sqJV`9*3uKIE)l%Xa0A;WMFpnr__B_6Li}b;%^NE9uo*BO~5k(v; zUq{9r6dEMu1D%(tkQuy^4kVq0hdF=aAYdSFN1e)q&MBP)WT19X5l>tzA9`NOE!+B^ zV7+YU8Qy}+d3Gb!IP4@V42md|7MWztiOg*p`w-%@gtmN^Vn_jR7Te~UjYOtb<{5tI zIY2pukv9PGTV3^M}(F-I{I4{m|S zix(cM7(ajGe%ZkDlD=mbZ#+o2`2dLAGWmilG)kD@yL8}L(>Qr|uxRx2{9f`Q!5HQ< z1LkZpT6qw6lZw>Dw#^pzlUf>3o_qI6(ya$YeNRs`PFY{-Ryp0OcJ@YC_2h|~$=zw) z?l}V?wUf-1wbY3qFJ5^}!qB@8r1J5vAzO@ss1w%V?h?}=v z?YBw0YnjqxorZSTF0;=*djL$lD|gT#XTTw6aA)>_W8NU%qHVj=E?dksXZYqSa$c!#y~PJ2&RgUx1uT`_fez%c;&H|sy(iVgs@l(w>pkuE;s4Lprk z05o=cPf`f4U~72;4aJRGz-Rz8pd4r}p{e+;#5x>AQcDS60UW<2{K2o+y!%_>58f78 z{eh&gjFz&7u|Cz-R+CrIQ&-xcwN_S4L|IB@lcuia#*LeeP3^6A>~l2QX0B$WC8;61 zPF_UOKuyzB7h4SNObzYKG|hAkY&U_M9S%6{I_PA-f7fQ$tvZ$l*odZUWuRfIEukU3 zPGP->iiC`gqMDJeoUYm$I*W`vJEOj-;o@K81%L*~3Ig(Ah z{iWpYWBIVAwZ7G2zGc#WMK1nfvmqj1h5pY1I{z#5m%k5r_eIG2pM-qyB4pK{Lf-yU z$Xi{(Drte+!h#O!pQ*A+Xg^jwkkLLn`{|#Tp5y0b#pOo<(2Snv0Q#jMGzaLpEw2M; z_WCM7ucYGGPi?6lTADUP;YLR3gXWUYkA8gY@ek`iK4Z@h?zibzOE@O4Q^$#p`)5)zW@ zMMTl?cD=}YY!}7(#9w<%2?=q21ne)oUQ}2_e7&f|+I2#!SFir?!w=W46~bF=#77d6 zlH%fGXxJ0`%gD&6sj0cSx!u2iUyz9f7hL%0=xF%4b9k+&sL0OF{^XNS1b1Kn-OHk( z6a~y+N=*+nph|F{vWD(61_^whd6{-+Uj=%FB z9W}!rS2B9$ZW82qJn)QGm}4E6S#vdW%6#1uUK@pHs^J>hF)0&~%@Ei}EWwcy7FqSX zxOv}ZT4?j72uzkH0w!diJN%k26$tubINnr6}pRNAd8n%JDsUg9l1R50#EZwagUuk@Nz?RW$IVmdTyVhn_Vu|7HL*<{_YG z3`hpM%Q((KhKayXkm9-P(_Xp#4MQKbjX!G{c~Ud-@tN!Q4wQ~rCHH7X-ZYH8ZJXR} zdAWOQMsENsRC$4g`4@gV04QHz70V-U%;2sSvEK@CcQROENKB%RR*~a}WA31L#i(b= zh-c}DSJ~*%$}zv{i36o0dkTlZ&}f@8dbeHevq`_ZC9@ZtjV;!xcX#Csxa19Bi)CsL zV0u^1pnLJCbHUK=ydn4E5%k})lr$U1t0y9w$tWA*&w%eXe=hI;BV4 zw_fyEok8qvFtnI&gW`!Mr`$n|r&sxyV^+V$nbz%B`&{z|x25%LjP3BL7{l!7SoH)= zY?{e89rG5$6~ISzR?S>-!Qy|7+E6f4Sz} zU$1-rH|yR9$f|78VJ^-JQkqH%`WoVD^6Ql)B{bxuweb}tRU<81mu+@?>@9ZLsu*gn zl^4NAIksKhL}$ZhW5cax7Q3v$&CZA2TzvL8dO2_3x6^2wslLrdbrUTK4H-#ISy^2i zN>Ooxs)nhqzO|92=>{=XIqqa9t);AEv|;hD@wWiz?s0kfMEyi$!$eZ+^u3S&xb!qXFDouT9)SM8 z_xZdTK(F9r_l5vXaQsRTT9BtXKrdjl;M=(adVT|dUc%5z>G>6g{uThel%anJfCe>Q zy?RwaPEKn5di+mHQb<@_SXf+iJCo`t0yKVmWZcWDeqp!g~W@g%ubG%CW*T_o5Juk{?=?>?-NSeV=|0PBB8km zboSlHRQ7Mdla75IB$qNDa^~B?pkPNHf#xFMOeRWBWsz)pWhQq3Wh$BtdS=$kjGhVB zlgS`&&QBWsVTGe9Vtu)TLb;q=fq<;&3F$z%rA84u6y8$z=HtGXDcg@}vggIPNi4>U zeK_=|kt4)hQ5Z7%=%lbWC=hfN)k>ALx$85peHhKf8!V=Ng$Yh*a9Ak4V(3{BIW9lR z?|pKpe2gkxGu;A>17m0&a^?WdQwd{O?e23eGu%Bes&y7KgrxR|F|GG;vB0u3B@h#{J14&0r@yI@l)Zo+I*uo6^H7KETuVD6s6VYmFDlMVN>d#KJLFuG&r zcg$t)S?R#D)Q(4Z1rwiayoc+(c$3QIkY8KXxMOy|bI!n#%5jgPA-z*g{>4M-ZTF89 z4@R_*bDVeO_}-!s=iDL3Z0s`@SUc%kGjWztJ_e1nJ*0^zx4v_&GbdPN{nT|5ku#}1 z4F!K%C=W7k5MQTLW8T$1O9cyWKgjAP$8kJ?NqkD^nH>daR z$m$1V**?)QxjVamTV~(M zrh6yqCyip;g?wsM!mi5(H;Vb8)oYw>^`nH^Nw3mTXV{*2Z`R5Cfop zCGmP3&#afYBOe8?X63UA*m@Rsw#z7#SLosNKQ{#%Uq8H8#}GG?zMM4vUm3(*WF&Ow$64&+su?VsjZb; zFQP1=v_VzPP*c@VQ_D;r0IhDME3P8DUQuGLtf-K@xbCX}eWmgxfL?)~R|e=6!p}b< z{l;PKXB9$@}Jq1|Ap-k$M~=^fYAc^N`hl z2z`e~pn3Y>i;z_upvQux`h(?1Ppkbc(`KOZV(0XyPk#5;r@#LjZ_oemx4->dckml7 zKO8^{((`Kp+Wqh=0L{?(4FQ_Jz80XD3qmhlUyh;qcV7nRxh5zV5sZQ_X$w*lw7E-| zZ;La81?`H@OKqQETMX9=sK{9p99+S1Ur?j-c91tef#yHgym$+sc8Iq?+KvOd9eNd@ zpFe+o>eMM|F)`4y)Vg(2Yu8GyTLWSSH&YWAmK38VA+nAbT4aqRgX0wzP%^MsYAHZV ztrK1kbQW4KA}q2VI{=_X!Rh#~mqM{1`t)QR~6%{4O#DWWO`TqUck3aqxQ;3Da_`A67pDpmQ)ZKcOK^TGO_aA#~Cd74=BllwVBMYs@3?{Q6^kyJH9o7y-)ToDW6E-ee(d z#^rP$yFWsI&}U$-Pt^o20W|4dF&^1^A6-pqe{iAYe)ITeCH>EEBf^@dfzIb!@B7wF zQY5wMUOW@HXLdcx?0THn{Up8fadgW}aQTQyT!&q9w{>dIp^99Ur#jN!&@LMt_W8FTn1ZHA@S-7bhu)WeoP?K z?(WA$ELe^S60aYL>DgZ9Lx*QCrQ>06{gi+01X*jh&ZID9Jo+4deR^Nfux)y;eOA8{ zqvvf*MZJTB)C1-V;2^n#3W`5r~X3MZR&Bim$x8>NG#^9-)^ zaK)%oPXCU?2It_@oA({kaXet`>}2J%ebZJ;P%@wye9Y?+a)9QZ&^#IqIOYHi!UkAl zUEV;$%wdbscI%CH7FrgYB(;=qkaxt_z9qUEU%{s;n{-4~WPiQx{oe|I@Yebdf3^0# z_c8TWl2$X)14GN|sDh!DHfX6C>nLte2S9%yy-r+RW|N)i*1bC&4mjgg+rj|c42G7~ zRpS11fNU`pDH$yVEmJ*Pr>)kGo5{q(Wt+uL8`X^(t0dR1R}fP&P}4BdQ8&`oHr3a+ z+@z?lCL|}iN_@?`A|GJI(86T#ukkkp=oRRBWq|(1`i<9ypO*sk_paYq9-x;KKy!e; zT<}u?=r5S@b5QxPWqi9vc(aUe;jw_Dt-;!Ve%X0rUiVB9=s$mr%(R+r{912r@t?0FaG?GpJDng zbOiyLhnDAIddWJyT@Ij^Z7Tru>!5ittS;DA0O;31^O6De6l^a?{$B!U0cf5h=2xH@ z&3nG#Qyg&5A?ck<0s7gqXTd>1z+Nd)Q7IuIsWoe))~uEkS|cGMB*D;`HSn|$7+OM9 z7+AXixXUiUSqT{#6XOjM;)?(+MZsoq5m7PFv#_Wzg_6ZZ#U#W;#6_i5)O6M5qy>&3 zxPYO>NSh(fR=~|ba8V%wx*$s{IkC3oab^5RHj z8#y|s-8$KaF2%p80CoN7CpmYYq;+8cNuj|+-V|a_?*_8ZV&^NQ z-X_@$x)DRVYPtnDwJ$4|%~Tvy0riuBTAYF`@EB*4H3t($pKYEwb$$9Q~-y=C=$guaC~Oo1BX+a6R6eSEd&BOLrl)p$}n z<|NNrrar40`lPh~d3Mi}a%RENH1?u#^iwp#pXqKlTUUD(L!EcT*8F1i+yCps-?Ex1Yu=L(`qjGkezX3A--@he ziGz~wNm3!h|GoNcYy>Oo*_c>6?=aoD84U=oW}**<20DYh!O$WqvZ{u<@_Op;ime4b zzazQ^uOMkKw1m0>*jmHH01U05ud%__M9cS2}bsuP-?7MpMSg>NDG$&e&cHGp!CXstelK5M*#INUt?WyCYZ)&^#3^ zJ{>H2FIa3cL;?*YJrgGT=QN9dmwS9s>GiPUWLa6k>5`7)C4&nsuzdK+?b(k$|LfAz z|Gd1se9r(46nqnaUgW@U573;U-x#15R2+f~y-b@&XXp8l^Y;$W%QN&h2k50y=Wh+e4-u>dznr| zsb*<&DhtBj4Cc8(I)`@B2h;EDOkfaua~2ecvu7}?X7Cd?3E?2lauDh3oTpDVP6gIe zjXGZa1caBsG!Nh~9!oyMqPg69`81{RO%Xk_k}R>dZ9)af}bX;$A!gKtvCz(m2ywqoEH`toAtRVYk4v?<%SPN?i6Waq+eC5~3=ytE7Y}axAp!ZLzg$vCwZybL9iRd?eY5>ibzy0gWv8R7%9DR1VWjw9A?PPj!Y-)Pe1>dkh&#-{~rvmn$ z4)BN$bS(_BycML;7pyQEB0U`<`Y=TJxp;1IJ4@-8S$1=W^N~9 zBtse&ntWK3+tr@Yr+-*_;-8n7mmfbs&!h9g3J1{F1)=%tG620K2raD6A6qT?+NnTD? zbK}N>>}XY4z^<5-jI5lTtdt~)E3m8=7t^(NIUOAxe)>e{iO|DN=G*3mo`K>U}+%7UN)RV%2{$`f9r1SFlptd6TV zl%C0U<_hNM8#5RRUM%`-^Gtfzqu~0f1H3p$)db5Xobs)mINx$FuxEg8KI*#pt6 z>^#PS2dDAq?zr0LkTd93G`u~lA01v|jUMgGb>ICTX}ACmN@4Pxmu}YK-&g zYxjWBXRh6I&+2qey?&u#)aS}g!_&ozJ{g-rv(!CfRrZ95T6?V4+WfA@7OBm9-a;YAC)hA@u8Y?}MR#vHG3WGNP)6x>{x%l{RR}>#J#)>T6qU zkkXQu)RZ&ZX$@|6@p0eg?%?R2<$c`_}({|5sq>HPXTW;oIZqyW4k;X?#`fB_w2pjvzXewwJ=>W2=w{2ehYkcU~O8{NYYN;$s z&npA;3iP}r{QTY02bTi$e^=Yyuv=fC^8l=s&y|3QFWLUhXj^h+LguK+Z`r654h zhoavEpgBV?kn~Fc%^BL0+LCCr;M*n8?0jIp{lo!!d4^^Hy=)Nr%>i0kMn&5qGBZ2G z)4|Hj#LU>(P*Vn2ZS8hEJpAmL@UzEUtW@M=l=ZEB!?5A>nb4zFx=H|DTX+BPbKz&s zMxG1yur%LTm>Z*|ET?I@!E4tu4*X%*~BAXxaxy zHx|U7IU62v!rNF&#bWQ#_?R;x#}ArnD_XnxvSXe-?q;p3AZxgD@A;UB(`O@MV#32t zo;)299q4YQEGw;Suq80;bXZu}*&t7SW!diwpt*zt3<~rt?0dqBV^ahd7{mp{RPC>u z^w3wy5SpANvY51kLX4dhHfA_THAMIi_f)jGgW|Q^r{WUxUFKruwS<{$fG&8)T@_vk%DLoOWii0OIVf1AdERSG*ZD^Mmd{Zez5=j%u z&GnXopbz4>N|-8iQ0(?B!(Y-dv%Ec?_{HiWEm%aed3;W1WBL3C`pe^Vl<3 zIk0Xjx#Ll2Q(610w3I{iWK=$VB;i_>QmSysh z>m0E4K-s7dnaYhg5|odjGl^6Ro_?LEVg(>E*9xeebi)2w{o&VVcscYMR$sk#gtQzb z1J9yb@8{A?=@E!LpmyR=*(my!)Iscig_2MoVbbMUGIF?L{L*cTE+4O%#0`yQsj>Tu zhn@3=a7EYwXW3IYgh>&5sHpRJ-i}v~+a}-9j=Ck`TfhErweXSJx7~`?dRMRUC|+}* zT;y1tcEnAmto}pgV=h^}`*M0!LK_U@Zo3x_V(9`-C9*;7C~eXM$t-zLmn{A$MC z3x#n!wlu@0{!p%z;8uGm`evGF!*E5~hm zR>sm=%5Saz@Rw`e{htrt#)_D#obpC(>>#6~tYDy~VyG#nr>wX^&3L}e1`W_N_*mIMUE5TDgS8QFrrRv_ zEH>g(?4xC(hb<;sEvy_iZ?@mM_}BQ&0eS^`{zd@()6j1$2hgwTH-3Tu{jV>-8hHFW z`;<=ku%^|%H4?rhM+1&M3=v+Ue*RO)+vCBK*+I7Yeksy^MKS>;#*y`fwkd+8Y4$k{~p#3o!Ak49x`|^wA0cEpXUZ z8Tt*Oc?H47*8=n#Li5)Hv>-7rQEmiLJIoq3;s|>We?36U$Z1&|tf;(fr6Z4bvI;6% zTB`CIR&iI-j(a%ncJ)d~iQ8gou;bW;%V)hE9i5JaCqy0HuBf#+AuIiuhm+%;(87ZA z_BI;|a$>YK4GuI_0|6)=J;N=0awg?|w%|*MkYkaa&C_w;em3AA8KvbzgFMRfP8* z$Gri$S&?S?I=h3Da}vS=f={Lw6#CexaK*@X2k6f}`|Ng4AAo~Zv3{DuqPARJz{Sm1 zSmg^47*=?gnW}+wleZo4sG#o&xi#N;$hhQD5}`9ss+-g7#*tt0oaY8tJagSbJQH;= zAGiDX7MF1Fyg=;FXnQUz5g^E6J&7qj$Zn6hFB5Z99v-1#R4buvG9?I7IYPBdfj^YfzQbHrp1NG#DrM$QTBqIlI3 zeCt>Z`N{!3!Hc=QRH(1G|7i@%p)4PK7Jp+lrGq5h`F#|4W(-YIT?*4OG519_2sjkg z=3tegDJQR%gbjOnp%B&%S5hf;a*e1T1uKJPLA`jzIw_B-8)T!#0?Z`K#_-}Yab$vi zrl#O>?Ie~-naJcQ*a2TTT0@6AP)54m;QA@B?4inW&$3aR5$$04m}?=`A~{||k?){} zNemi>5q!yiVMr(O3;}B#QWE8WwDpmxse!j#ytNS>c!3r7fD;agj z9@u)N?`YL{G^=^eeevj*0lJm+{9L^C;8YXE>Cdx#O-wV~3WogVdNqX!1Lh=wG@g^# z2OYpQhSpEorS`}KH3@lDu02%!o_pDco)vF9<-WhS7(Bhkt5WI2b(@qP_o9)Y`l;=i zcde7V?J|0|XZE`04>{!yI%M}_J8o!r3n_y9sGvFt&~dKaIsIPcqZsgmrK6UY?`WL9 zu6FX8WA=c>yB!_V4g;1Uj4Sutc+T+-&Qz&2X!kq=wuFl55`*dT*`F zdJQ8T05O`eow=O05*S+DP}^vWnf0zMw!635x$M|vYoc$t$!xoog}n`S!xje*r|nKV z7ylXy0yH>S5TM^Y{JaF9SD@z~Ed2b#=r@)Ew9mr8{%8UEumAj_dhm(yg`3hR8UfJ4 zz7<>jqh>=y7U=nl&|f?WSz8ulnjWUV2bw(H34i^qIjy&(0`Rv*6|F-m? zKQG^E`GEjhkouMbXwWmau@eO7Z*Ih~fYA#8Ef|F60KFjO;0(REE&$LkK{H!_9WgI~ zX6ng&TLGZwqR#W}8#!#eAwVw=&8#hvY6!Mv06JhffVTSGD*!DmBd=rWQ&)9yle(<5 zjGVfaTgZunipB@Z3eQ_=$tkPpoxWP?x_isf_~Hnc4f2XArXFWA6MdCT4^$&BYCOB@{RFHdKccX1=Y2%d$U%!Bmi1X3*dJ+I=SskbHx-@ewF)?v!>m|jv_=Y9> zS}Lk&ABf72J!I+@l^W-+Ei0>_Wb9d56l<+bCk@LiaocIM-S13#pq;XYPUzLrAiE99 z8a7wTvbS2AgR`;`r_W-O0~>5uL`YDtJmCX*0U00`^q~zThg_jnVcbM=C;#Bv_Ld6b71EpOTKyS z2hldGesY1r&m@56QV`0kyMFHkvy2F8m^#rkb+P?^GV{u~$U?b1!VPE!_u$~bAfRwG zG1=^;+jMH+xNq$w4@h6R^SGK3Uh%+Fihp;Kf;^EMw6Qq}hAX#^#NX&lTsy&i5|cjj z$p-t~pW?wl$z#=|%>dP%Xu1d3a?Be9bb@P-R)M|7y(-2*mUul}N$Ly#I zd_E08=Wzrwhi1}boP`%&nI8xApK2(EG~V;CqgvlM;MwaWUyf~?jbh4aur;80Z}A8| z!bvet0Ivf9(WP@tGaes*{B5bY0w-ubqmA^9PB<8|7mdJ&XXR7Date&)=B! zWp37vxr5BhxgP+%Gkahkg}sTYaXB>C>U`*1GkJnljR8gn)=kCVqD)7i^Of$8@MzH^ z(fKHs&Eha<4mpD^`9r{B%uK++Da?)|j@3?2XTNOV&SIj1hYfwkmEwy&l^D#ih?Z$w zGS)Hpj-&}zooM%&EIc3N+C-R|VQXQ!u=jq}!xTTIYE)qv?OZaWNY zjpTHcR!a#9$%z7&H#=?Hv3Hk^qn)yWIuA&1v@tf{VGV}HM#IgfrrRvB0(u5UZ*{eI z^mMV?wSDog@f!m4o73~k0R5i}KmS+s8>z)VIe`A--~N?yb4E0%9`ua1#JOGb9&p6nKXjXaq?v!bbx_j5nDkSZub#b}c`^OUowmBEnVG(apa1Fa|5|$V zpOw?frLeVcVw17N%u?aG?VAT2GVtYe?Uc%7-34mV0(BBN8mt$x_ zfaVPS#sCe1R@K{_SX6q_bK6D(eT#iznVDgVx(?Z;SKYU4+-UBQoR_o9*4XXzm9!AY zjT;R2gr%gO-lJ^bQdD`x#d_lgYoF5cM5nFBMJ36mMwX$ORas~D@7%s^$2J=cifBvA zsceeOEe-dv*V9&0*VfU~Ro&`$I_0>foTB=kGr1Ri0MIG1do-n`WfgSoua;!(-?C|= z`OZsuIlFCi0nljyn-x?w{nLtqHtQ=Wo1~TGZZ$JJ5L;RjchqsmwjJBIXe&trpt<|U z_W{s-`F&JvB!lJc0XWjTNyw4aGpB3@j>J-&n9864jIxlm8~3(Eb3>c9G$1JcDK&jf*|7F^O4l@QNxajFOX?`hvrHB8#4qrh>(N zLH1Phk5yN>%y{}L!*r?`!Xl=Cqy%WCMHDy+-KLuU$ou(ymsW1g=vEyb9DBv#R^VD?0%$b z+>Zro&oLuvsvgojcjRcM8;ND4p2B4AU_{&(j8)m-)AB*8)l%61l-RvtD!6VcsCH^+ z)&Nj)PvNk0!7wgof9V+Bo@Qmzsn3A*))^9}U!xxlg6k#$k^72<_ZN@sEgU+BS;39_ zmpUE+wf7Z|Vw!<&v&kN5c*td?ox~VCixCe1ZY9knn2erT`_1er!VF;)sBy?XAJ)$5=iv(Ob56f&!O-UPUQ9OZv-)>u^&Kf6#Wk`kA}2)ri#S*|YL(Js zmed6h$NdVf8S==w>5$xN7+#|mP^=SD;22lrn_A*`Irms%j^Vx|Dt0^NZFgCEc<$W4 zcjIPLfU>E*mAQk>Hg|`udv^kwLCo{@Q*7<_*jqVn*l*+G1vGXO34i05o3#RpZl5wkG(<)W%}*ukivv17rmO`g;yP|5(!pzoUNR zCkW7g{pS}ABhMVt?igNZ6Y{SGK&$v=X9R7%6|8YPSiL(~c`#URI9R4VSmQ>pc5|@K z^@PI>0^^vr&?^yoh?-(>kd0ouvqKMBw)s|>$zZ!L>7EH}2 zm_EXx+~J)>BSFYma|;ROGqva}i<3Ty)ix zbgf;_Mny)P3y+EjbFtEqQ_}T1bs;9|+}Wt~hKhvk76xaN(hh7lGIu_D;X?Gev!_D5 zcPg>`J{egBi`_nFBe0x3b1KBg+0yndc28d>bFRo_08LqLcd06MDkEUhE!-ycFh^u6_sz_VuQDk!Xepc-5+||jv?Rv6 z$y9!YVt%O!7xxLz<3eo|S zwMEPHMJi1~+;+Tn@^}q}c>QW7g6bz@nCHg%Hj0SH+@P>7*a+|!)_AXO_~X`z7tzi4 zBbuj~HwZZvQ#D7H&_;g7cWGwAhXSL-B^J>PIzd!tn^|0(8H~i;oK5d~oZRsc*MgOx z`YABw(W-IxqG5oPbN{_V+>&PU%0(k-Mxjj$3%f}*HW|G<;0woWz;5x_S_0kZ9C|JKZ2)5~|ZW%l8b&SXw9c*ya*1u*=@^k#p_h*^AxOiCW-0aXiu(grL$+=gak0(Ul&V z*Uy!TJE$3Is=#aD_25`t4K?z%E)Lc=ot$ZQdth5 zzcoF-7NA!MKmTC*4Mxx3uYN-ipd*ui5&-?>S6_Ypmw)s;_`I_J$${KH-N;t$@J1cK z^ez4|cK%WJ{^#}w1eFGv{wwrXUy&G^^w6v=Xrtfi3|0*fbe9RO3n&}xxopZ6qRz)(YM#D}Z3Tc{hM4EuGSJM3c}e?*04*gYEw8L$WNx*Y78{dITGG-o zDq0&Xt!-^>EDbc3Wbj^IWuvL(W?LHzV*_P*8DO#b4!6Dg_8&Q&R(U1FP)&Y=snsTJ zB^<}Z(q{8!TT5fz`Q$!nIYqUNrWTvG;Mi8i`s!+W8;y09rDbF_H<%gfC~0goHq?}( z{n$w@*hx2NDa*>psOoMo(NmF;mD4pb*H^(=6-_M6R1{=n6jTk(t#KA>vkhd}F~58t z0Nu;w8JwYc4eE4OkdKFcXv$W%Z+eD^#j%1bjc(Nc6r(}Sv zpfm0~LN_ill>!%RT)0W+;(`t8KSNRqlQS!5&f=6&*F4QYkW|0e6W;~j_!Bxa9<3o4 zxd7%>jB7;Sz{lkS%ck#%v%CY!cvpk$%#CnC5tE`}RRxiy- z_yD4lkxaCWR~85-f4cZvr0NC$ow_!CvWXNOr$}1;2&jkk#P$a#8}B*ilZ%C8?tnwi zz^WHhLOB+{CUW zhv0e|CI4Ddci_mOEDMv{q{QC3k6UwX{L`A@Pp*x9S~l=3t@H7fJ5K`ZD3cG@QZe)# zfE!$Y4_g4o_%1LVC)!^|A$A}jt|Gi;n&i<<(-$yZxd0zQ;J!Wsnn$+*nxOd|SNpum zMo%Q#&8wynBm=LmQ?Jmye-KQ8(y5;*ra~OI3bA!+20}5F8WF52i!=i$`{3 z^@CrxU7@mtJFfNvaCc_)JLL`>s~ShIk{PG+ST81ccw%wM08_`TKIOow_x6^2aG>G? zPipIYYK4!~Ncq)oIDZ>=!M%9oaQUcxX5Y4qULQ8i;HD+GvzO-`$MN)@XXb;rae!mL z>Tw^Y!^U%-MqV!Tq;ZQCjDTfI_uhgbm)t>@yg?ANA5B-tu$()rV~U0Qg?Yv9tbXht z&3>!F9dXVdbj%(wO6bB0ZWHqcA$<-;$+L6}7kjK?D57aJykRu3pygmjt;?k<$G8%M z15t`D;lf)_YV1C$wAo$JVzJ_DnrHRQET^)2jetaoiO+inGP z=K2k6F}5?8*HK<2zUH0vtMID1L1*!=F$d_(ith)Ym#61%8-D(-`i&LR2fq*f#!nNV zvHatUFK0jfbJxsg;dSF$=UPh7ohXoEwb{ej^3eRVPPjugnDc@R9L~)`3GD8&}Yt^S<1z4 zypWAuPj52wj00SzcN0eQ7+xaPmnPcd#EdP#&66yg22SD@#rPldnd|qsDuZOrB`gEe}6)sRMSn(*3w<_<6_7?;6HF!AWtheMKWSDR+T2p2Z`9wG$V}lHy@O zKLIr8xv2jsFZPk!OZFq+F!Y35*YUVGM&KNkIH3$ho}-C#VQeE?W-hTvD!#&jK9cnT zBz>HP!}k^qIb;t|sp|Y8*TP}1vN7@@t|nFVzLJrc*4d0Zk8#)&jniO0rV^oQIJ{~J zvxbM2T13h&nYl>1mV3d-d31We5GdZ`RJR=7!7aL(?- zg|MVd`WJezbQIGG+avWQAd9mi)fR_11?atq;jsyQ4VGbH{Ps%3a96vAV7ch?|*;t z$G^v2pK`s@qaW1@VqWW8CGVGS?tgKsfAoof17`yFr3CJH_6k7%GxS%3!Ey%!0v1qP z$iLR`LR(hHgTMX^(BEqLF9Y;ELoNmAjev7Om;km8wlkLMbag-G9% z)UHRMD2hGv0)cEFbeov9?S3>1=_N5PNnqk&?0=q>4+I{S3_PnCdVZNvJ9-ON15e;e zeQPH|8p+)Z-7D&QdTsm#a4@g;8FS)$7}YxMnlo^)WF-0aLkiNj&!)3LeqJB1GD9V1 z$_AgI@q9`?g}}I-XWffr#Z7>@A&fOa+hj1(J{#ULlghlesq|ydBVY}fkKm8$MAE2U zCQm&w8$MVzcDRyo_CnkJw9ZEuUa#_T^35n2^{29n(Z!6cpAS%+m>c2M zO?s2z#+Y;d5SQ5Q1d(6q-?6QolxN9$LN3$|l&}~=r36V6 zf`OvhR6WVBLmH^m3r+zb2G=Ivew5ku(Z!n&0_*MpmoK$H@~s{}R62s$0`7ZY-6Zyj zYMD7!GwG5)?2tQv`M|znveM%*@4dyNZiOSbB9BtaM9jYXQT6c0<%76W4{^o=WyIO; z#Uq#l00jMNCev6P`ZTl0#;gPEi)j_+Fy%wfvdP(l9zx6NPJeXkj2HP;54jW$qbC>;vfj(3vMFb;Pp2|fH%;U)Exb8vpVlLOpy;>uneVxm zyzQL7{z%Q5L)GAE;Ul%O!PoWAw{Ok3>zp^_oJYBmyK!lGgBVO-R(i&}V$3ObfHG5? zr*Tr80_#}8zrG~;p@!s7{O29|SJpBeb{!*6-L^}+s~dC6jf%04oo$|pZY8Hk>;}*e zX_(xd)vtEuhH-qSV^-f;R@VmSqV!M}J4a94@&|(&sCEpdI-qCz`J!+bkHP6{(-^c1 zlyyp4d=lyu3|S_2nZ(_;Na|7wYr)KFQ*66!Lfh8(R+|g;_VJaw5~_B@SDBnHHauOt ztaWgl)&7H~j`p$}^xl`1`sLcyzgYdgvXy>5FCTvPm+4Rbw9uxW|FL80*@=Q%HYYPT`dv2hOW5ikbuQ4o zIasG7SnWl~Dztkc;^QGw(;;HKJvbrphe+8kFDm^mUau(D#~}I!Z>Dj#&en}R`~Ba( z`q|FzTP@!Wpxqb$6|Vr$f>^j5Ky!Lt&_J&Y(60$X3j*{aNxveAURV)i=()EG>jIoT z_gx-!7Sw5c-%;ne(Gk>XyxiU}>bwM+Uy3@#3Wmp%B85^mk5-L)mX2P& z{jjj_DR>k}I(|h!)zXqi);>b7N1sis}jXB2pLwSgHT{!#wZ|l6GS&`&cX-Baqtl zIJS)v0Wow(S;XC)Ae#cl9wnpP$pp_Tj>!YY32X%bo!*5B#!Muu#Ez>7te@PKLsAWl zc3$sC7jDeD<_{&cKg2k=kYDwXL(bs#tNokPdo5CWwq*1kshXhtRF+nVuj7WEY@FJ6 z<&LsXp+Z32ySp;i`&3E#H;5ju7dleA*1K9Vph@v$i%!%nlY}nwq&t|O?4XJ*LkFoK zB2CZS3WttXjd>Ig;||(og0KfMX$h()u~2XWsk9SV=4;%|`?z=Ln@ir{{^AjI$t>v( zCI+6RWX|nTJaUS;D}tW=YbGzW+;_tUt^ zL6*sZJJJHTRsGW(13jB&A%bR)M3kpbmg)5%36b4q1qra|iG_PJW$fFV!?4h80|7J1|D!a{`mC@TIQiu}qoMxq`7lhF`1(>N~=sD0CBm|N!9e9RQfE|4* z$H36U?l*~0nP}u;`QWqKk&kokl1c>RoqdN6ElbkUilt>rWIp zPEc%;T(@bg9-t3kvTaxUz01eIg1d4C9rH*S4S*&REgUAwDH`^zrKqP*)x`eNu>)Me zTuJh7KPF~Cmq-qNlgbK`M+8gpOrrYO^s@kIj@xJ+g?q#e4Qa~JO=TlfSuyr_HtoTM z$1|^$aMHw6oYlL6PPDI-Pp+V$S$%BNa{kJhdB zs$O@v1^_J^a$Ul|Q8}yy810ldxa~^cW>!}modls`s2y_#9CG@>vS+T782?xRz6VN24p)xh`SdIq*z1tgQPw*Go;xm8Iv=m)+v&Fkno1 z`aWAT``n93f6v_paeUlv@V)8fZo4ae&UrLFI9Ax}nccZJG-~m$@wW!(H=^esJpBCT z`i&LB&u^~Z_>lwj7hm;0{M_u~E%Bf_F~3p`zbi)rj&%g9eG>A)A4A{yQ|Q~ZL7NT+ z1b76U@H%tB@m$vCb46PsOWYD`PnY)=-+kPE@6(>y&mVsFmyiGW_rLz*i=RRHdtbgk zfOhx~0W=Rn&!e+o5PBi#%h%^fdOkwDz`nHp3PaCfG~dFxc_Grww+KMPIdqyM!n?`U^HyCqI`%zDIrimNcK^e%n2Ll^y-(o1c=yF{K^e zXc|s_+AaZjRc3FM9F7X?_8)0W`mD6uU)k-1`mq$P$m=TSJNY#(+mz0CsK$2UbzzHE zTt{b5uYiQ34**2COja9OBa$WIU1SEjR11*R771mFNhUL$0Mi7q;?m^W%VLnH zuHjR%F+Rt<(r`3vB#~vqRQ#>k3k=GMvv1L_;gnj(fSb!F2;W(e6ueDiIf%RtA^-?0 ze1H6JKBVzpKpp)U4Q}I>b39CYfr&jLSh66~Z4>07&j7Mx)nvp=3W~N_Oc-+eJ|c6B zZqiQV-hBdc0t$m^us^o&(kB2fPAM zuV0{0`UB82*tc@{dF9Y^d=U_gBg8Y$KEiG$P7S5bPmyl8n!J`Vj9_$}jui-`EXG0> zd*)PhvXQEble-)J+A{Ou7{eAE_J%N!w@j18zLaNZ7C|cW_76 z06@o+Ic9iOj8hR4ZWYHYM~>A@fI%s-lFe1P2%Zby!RQ&xkA(%!>AK>{2%O^Uz-WwK z4kbsDJsgifW1YU+PIDXF7Ye2_WXFko=n0{Me4)%M@KD)Ues?8DJ43gRTPX94TXR5ElY6+mY3eb<7GdVl0%-Bj}{Prr3Ek1@bXlz(W{RH%aWy zY~4;Z(cCGORYs)WJ(!7MCfN%T@fY+zSrGXEz7JPWVAU>@+^M%@^zP0Z2(F)GZ~IP? zCWMuqshR*a;&!C686BR7jIKvf&C~nx`c+R}Q$5up+ueBC^pwqjzrsRcXCs6Rf%$Y79hqxTk#Y`xOAJ8ua02))869j=^kJAG;KudyINgM$SDdIfrZ zQ-FT+@bk+6{R4-ezqNjY1N5c*A16S6`PEm`pZv-0QioztnNPs+>>%685Q)Er{`T{b z_n(KXz84~PG1x`t-1WnS1L^JeOL`xpmG^ygWAc+Hzx(Sy{`KY3!~MK`-^&jT(2D^1 zjR5-9AoSc03+ODs&~vam&(L!aED%UuSSO5LSYLo<{#Fp0zf0742{gYNb!P3r@%i?8 zXnt+fd5M?vvQiDfs55IzqRxxZywFb4D?Y+8Ujb;j=nme%j>^$DmBOznooy6sS`m#| z)y-4$%jDG5=;-M1@bJj^L}XsW;-07L6%WSCo4YF8?DI;fjw!qAomj18vrpb~kAlbf zCCB^$nsWGcT#n-T&V>tnwaLeH>SYW^UYjzB?^@WX9=imfd+|Tu7zWT$q}iCO))sw( z73yP!rb$A;b_i!EOuz85NEM~QF+boFtOz!DOgqW`Zw*8UZlIDGQB3A>h86QmV#V+x znfpXS`&@m&i;OS94RLdYMJNPL(dGGa&@6&T=*)|la8)$A8dyjC7sn#j9QQA>Zj%ay zsk(7|uo@2HQ8Kcxn20KjVSPOFdj=6+reDctBU|qKQ&GD6#biJCv~Kj1s^O0tM?b9? zdX_`H$n2bZ9%tTp#Ddn3BPi8xDyD6QmzU#uQ=BoKEJrB(TmgC>{um6M*ZU;Bi-b9_11n9Y*gvDOvBtO`dGq|^K7`p*XV{Y6>PtZNUF~}Py1yX~t@D{Jr+&JV9D?e7fO4?DpCX!M z(1AM`&u;ET9{6X|rz<4dW|Nj4UU86AC70Q~V2Nw2(hVzNlSIPtxdM$eQvyKOPvQ7} zd~#JY0b;{!hud`EEpEht(h**0Cj0J3G-bL;KWL;;QJyEMosV#7Sv?<}zj1$0(Xf5? z0I&YNGrNCZ5$TfA+%ZEaA3In+?omp99bojMl!G|oQZVFOJ&q&z*G}MDXkO)Gfh?~P zoupY`;}o}E!NB6Wa3A?I!{V|m|FU@4Jh|Hs(z7k4TO*=PI=E>=Y=``bW}(A1s}EKP9jO&L zTB~xpbyHl2Q_g^U;n2adQJgNYjsz7v|MfhR>60Gj#*BGF=l1lwTT^;4l9YjPYc{lD z(kSMJNqnbS(j82S^e^1jh`8y@oboV#!_}owGQeZUoWbKPy1XlUz%;Q72icb1>zqFb z_QjsuUIzE#Ff$Qnwj?xR!_*E3!JWdq&YQ-QY*lzBXbf|ljBJ?+s3keaF;@hyx9+%p{__EqTr{(I=J`+^m!gAC&X9S;SE zdZsjXjm|v%-CsWc^FMwz)A)gx{|G=YMpR!1(DO0buLo$t(*=NLJiQQvUL^pkLPjl-2EhU(7Fm|NGxtT3XJZKmV7%{w=9S08b-t$#}#`YFfw{ zY&mhIx#aePQ&(HCE~#T9?H0M@m@4tT!8ab~cFmf_(-9QTcWo`4Oz3)2(DyX<+LUoZ zr(*1#E&1c;Z-12E_w-WReb=kKN-;}2rW)VlTz)UL=PACGbYt2oVI@{xw#lFGvZ;75 z^UM)Uff1{Muyz5>wr-}ZS1K#XgNJ^_gIKW6rWems-9a|Zx^>e`&~EhQH+3p^&DC9Opq%lS)WqTV>>Bu%;t zRtyCImqT8>WTgyf17eas_zo35qlH`H7-)oPP2M!9) z9GDAjrB4Kr02WCFQ8sK*N)>eg<-n$~QzBB8aJGKhgn<%dykF>#U8Hoa)I@ho6^IwG zXdbmA_$fXPJW7pA$WK}Y^dZv^lD|{KLLnBSy|J(%fjT}CK$H15b?qiiOEQ;oo@8ha zW7P^apu9C-Ay@}+7+A`*cnFM({gX`xn{C@wQs?udlqXiibWBxnUv7?A=8C11t*=p@ z&Ee<;F9tM@?&I#bTCyz@~A$*B}=G06Ad`JdKdRjvJ|9852m*JcpBh zjOz<6%Z3nd9H-EZ0z3~&`jUqR6|IWsegY;h+@Qeg_zJkhhk~KEB=k8~sWba$aq5rP zX|PS91fkR{eofq|s&e>ffzrN$v?39092(V+0O#$@@{=+Y|d=_GtW- zea)}ztA1!&`aPq<@9Cuck3-cP{%spVI(8)X<17efFSuyESvzi+Ej^MgGsu+uC9wVP zVO?*BbRY!sX&4c11R3Yabu%Q``NxUoli=D0rdViiIW#26rK1aFA(jD2EP{u)0; zfPVVv=QRNRM9K%hlz!ux1nBz@KD~VN?$E;JQpsFE&G2)MmH%U(@8o1L zJ9>F={A_&pOl0%uM<;te%2t<;UFsS+lh!|9Gj^$4y>KYLS9>QfhxQm$O?S;+sg^CI z^v6`|x-q}Taff2Xn_=BA zh4yUCRGny?h?8EpeBq*AQs0)+nJc&N_NiueM0YO(^ttor+eHK5!mx)u@SJXeVU90kP!(K!Pyw)bP|Wn88`gmY;f zv+2@cOFQy-&K{i0;I4j@FYF_+GN31eu_l6@G=!8h_&cbD`d8y~!N+0r?RX-4;c+sR zqzG|cQ{D~4Pl0Ux0m2BTrrab>NaZ9eHa;aHH;+oi=~~s<#^G~?(gon7U?>(r^5vx- z;I5o~cW1+9zWqId7sIGO+;pCJPDnfh2l4e3cZ?I#^T0}~+pC~lsR#>7 z6Pp54()(w98mPM=LKmT|5Znf;2BrW>4f6mc7$o~4HB;T)yJ@;wBhj*z9&<5(X(Rxq0s67f4#Arhn1rak9A zZ7YVcZn*>VpyyiU*<#u949^rw7Jt;pksiEq<8oCsNTd1|lDUQmrSdl_9 z6+RZ6Ci{xved*$@3H|s)uy`^X!eC1*GGEekDiKZja#@~TIjOpZJ0AFSY>92iJ)?2d zwoG*-U-4md?<*&oU-fQ&&a&b;%km!?<$l*N?>URIpIVkb?^wMdxZNaIb|g=R%Sq@K zsh=&~8Yg-?sQvwuJ+J$>z3SbvHKEU|VdNyow>YQHm1 z(>xhJ=tSYpg3AY z)t`uP4rEHPE6c$6mA}SI0A0Kapq~Ief79vbuSdUu5tsW+0W<*k!u30;U6ZC+1Mh~l zz7^Q~oPGIU9Fl8XHr#Xn7oiyn82X&s_gh`xsCLjZwY3%cqAIuM`c;1(hqd zWDUpl&KD@oiAEO* zH|~s|xg1_1>FuNAT?S|_>7xX*kdXx)g5;LO6&+N27eW4Oq{P7gT_7U~XBnIDAJ?Di zw8*FdKNWZAest_L$(@C;m99l*n9XLRc z^wt3AieW$`cm+gqm>L1ffymBPnzVi@SWN7}v=Lv;g06s=UiG9k&+4BC!B;8Il*bK~EEzH{R)LtYb3Y=~A>#stQzca^ zVr}u!2$MKxKPxm&$Dti9RO*s19-$s^*0ov_*i69{j!V#RQ`)#|GKgJbz=gqVxsA`& z%_5&Tcec33i@1<*g#@yq3E$#;;V1%|#!L%HT#gguR!z;uDbnBz1`CLb8NVi$B`Sj~ z$%c@QpPA6SRrTfrS0Lpwi+>9s8%5|%xvb?j(?5}dj{v43as!1lNvqdfBBu;#2V6@#{q1F3PT zuq_=$diE9S!@2Tf1#&R-#)$6Md|EaHcbMi%eHumtUuwsSVTaP8oe3g*s70~Tvu?z- zTFqfF-7mtLAWl2MGLMr~BuXOw&^8iM<8u+t*^~5zR60lUmHRWum>eevPY^rl=gA$& zBz|-)Ku4rL1%Q5r)6eVcH~yjY^9n$xK05$?>BgOcff=VF+3UWIzjUeor9;US^-L*tDHIPcT)BAt+qQyV>*HAg=p#!2ZK0in z)&gj)-1Exw$4H_DTz>SqHczjmWZ~O~+pO$xH8cwe=C71>UQ-&VHOw3y4sEr@SI;`H z3(b#YomUdi%+2->hwWnl`uBkyzjdzwI)C>=lV4h;z7Wv%C_rDjbV*lN*Tu!f#KgqU z&+q2Vn~wl=w|?4SdXqY-R`H?9iI?Bq_o1<8YSTzY`{dCa`N|H1yWdPucAmRcD;jrb zU6?s{$vJEAl`xS}#dw-{v1<5SQUA1I+F<0+_0ieW+rmkvydg>6a`tY0xB4}$o%}go z(SG)(XkZkd`&OJJOtj#VC)R6Nyn6AHWtMD9!hl}+WVPme^Z1pEH?Di-$~^inj8C7n zEg7zzyH(daVpuhI?$Q;vBBgcP>B|=`g0L+*&n_-r%pbZSQ_l|!h?gZCoqdA|J=0V^ z*gl@zG3<9L!!9!3uWWcwJV`W_#CbkJypc>Tl=*dTWGKj0sgqwn8TuAV7XYT9 z8GM^8BKS^V%oXm%3wnt-Zf8gUEt*N_rDo1iR2aA9F@hO7R1TBZZ;s3`hyKUMv9E>j zah&#^%@@zdc2e;oOMwaQ1#e@@*Va%j*@M#0)K{EDw8ZFCMVCVf@>yVOwSq(-WE9ON zB*Zb5Y8$S;0%sh|l7TY-cAj;kpu@;^lCppx9V^u*>PE1Ke93%L&osWWwqYT&e>S3> zm<-@*}xY?yYKCf=SrpqnK%DNwl9s6k_3BWig=t|pZJBw}9b zl|vUp5E~Z?rh$Ik5k|l)tWRhwxohKts9uc>A4s-gT&OhWX5*M7fWBeqT#fQf!_e7U zsM8$IQyj>UfaDMf0Avw?Ac`oKE@BSkBhfkzn#6?tsSP_hw~!dUmg?Sc z7I0x;8L>T1s2{6q5Ca@#-AiaIHIV_nW2s%qpl~9sZw4@Zf-h#XB7#n!vv4~FCl~ZD zm}cxt6Ppz)u_dl3?}ia`fJKjqlqS*}Wm8eM4~jj>JBLT$vM_(%{zz8{jPt z6=dH*Re&`_y12-#i$BRr0l?FMo{psT4H6sVp#arV0b|m(j z6)JGNM+@WzSyB!iNqr=!vk)`;a{P(E0M5cCT|VScr8eef^7yKkvt*vVH(g>t*4+w3 zAXxds-m8lU*8ubrpy#KPeqIC6&qDfn4L~3L<^lRsX6RdY?@MPcZVGGrg>%)*4%vy$ zpWJZ&cLAU;x_w9N`eLHXlI(gGBmHM3)I48 zB4({j^9nSdpyBXv;C1ZK)c*N{`YR`USpyx|`9B^Nzjnxb!G9G!3jkfwA;#sEo16Rc z%P+tA=9?;&3Kz{9fPOKsbK{9(9mnuPP7z1^GAx5KEuzXzv!y24@{i&NmN$DjwD(Z$ z+@;(1)N_|QrmtSSd8f8Z^T&{$_mjli(_{`U^JC|)CRHolL>H#dU2@MAzY*DIP%){# zawnr!u9boAdM#R#KYe3z>h!MozV}b5+RxrjtCa(wFP}UANp$b)CkNt(uXZZuJQ`+a zZr%(mkbCr97#>^Log&T{z0ocnH>q8?eC3Ko+TgCLIRLa_irBU9{Mh)SP3460{0)g% zvYdhL5DkKcgIdOHie$bCiLS@3?OZJ)+D60KpdgYNk?ziO+wHJ6N`{5A-Bnl{Rp12^ zUC{pMdW{R{=YDL~fo%}GpsD~QvFn0OyZyI&2 zR)Z?cidDx7m0`@>f_F8D88ZQg35^3|xHb`Q5yA#`Fd&=WfEGeG%x#(AGnwA-1OQzu zTS)7l#kv8zsp6`9mc|g+`usEf6=6LO>OQpt(sBR*>Z4$3zw;BDU zCjmg47b~qYTkK1eW`#3`mQFPDW{aSzHRQF~;+mB3(e`ZzjEBl(~T^oL4QT`*-l3zR2 z{KdcRFsmaBbLB_!V6U-6pvtf`ec`KyjPyVfc@NRx1piM7ZitUXH6gVTU zZ1#-f@?voj=$X_eWrX1FRcgyZ#j9RTe+p=OE2I;jqC@s3gTB<^QnQmAkGoZ?0sV(E zB^$yzz1g`^xNF2KLox7)I$qmis@=3=DUra<2Q#JnGo*%G=y@PhdWelU%&5iB#E~@` zXl;NlWGB1F(eoDtXl;7_TGG#J0Q%{b53T{|_`GKjpl{s1*E@bbvT5W+&$=JkSG?hn zEOUL~uKT|V4Fzwy|GUWbl^mDNdX6VHI3@lipy@=pvUBt-M$g!}(bHGIRdIZ6k0%e% z0L#w-=!Z&&&j)A#>nes81_QJOvsjDON7d`VNA7&00YA*IoUT7Y< z&^2|rRXMjmUi6~YtN`K$m6IJampjKUv`<`~xpF(PO12EpuSNDpDX)w!UalFwICtfm zcb-fD=v~R;^pWdrgJav$hU%uTc8{HJow>HScuqG(;xE0ZQqS&46nl5f_75&)palsB zwE`|wSmg}ZdU-fG8+-b@$8=F6m5|nzrh`;?*Gf|3=q~cd2x+1J<@m~6wPdWp4f!ag z3X~C4vw{pDvU8Gbp~)75a2Yh5$hZv70C|8E1$&41hiPeU^+%Q$k%B=4byp$92=*^L ziRRk1Q=G|8pvH&fc}M8X&doqu^2_56EO^WDT2dnr2ec8v3#EZ!t)Q_HVAhf&9+fN4Agqmb7~0)VXBWdF0l66*T%bki8cN34%(54uK*8wrvLc7E2ea6sN(v zA+40%w69cC&*WTklK`pgNFLal&~KO{1L?+gQLDvZc3j4U{TfFFG7IHWHoPl{O&$ap zG(9`-+I1z^t|v!)*3E^TLtWz&T8rMzfdCU{^X~zE0AZY*)CAm`v^{HzenJ{1`e$C`Y>`xMKD#$xQ z?km(`2Umqx{ZjK3K?_UXEF^JW$QhuVI-&ydbEqe?VFywblk^!!RIfVQrnvyV4+6** ztGqbDPlDP?H9oFVaR&5XNF5w!F)Ut!wiR%9_HvlnKiFC|e6nDjR zBIKjcF|c{eq(Ffaw?AEsW5MN=)IJsbYVsrI)nb-%E!{-J5fkIl+{Xj=M9 zyXx1yn(fPnoU4Y7@|A|{ljzB90wY+MM0Ry;;~&S1Hb!*4;?;~@{n4}OW6mfa=OP4r zoN1xrNUrQKTmIRyaELlkQvXPeewOs_5#4VFckJUH<9kxY2tu%D936O_6&mAKr7El~ z;tFrRHXPahC5HX=yf`KlTDu=%Lugz!2D#*3hl`w>+9=3*Fhi=FBST>0(=cZ2`;P+j z7pLcEC;j~N$_G~fI*S0>|Cs=2(m-FkozgjBnmM>5rfX|d$0o1bB9~1f*H;y;zq{rB zzi+z#Z>j6=yIo)FaD6?)b%(xB{LZMBPhz_;_9ym)H)w9(`_{njYkGWR0R50iKMSBA zNkR*_EF^>1W9a24+RXhZG%x>Xo$Uo^76wo8$!DF{h30Q6>-;D*KOBx2{8Q}E%;9+* zEr8yv4bbb4KZbV2R`rNfqdkg|vZjuzwjPmk6yJ8rM~>%d0e3+A?~cX(cH{ovZ_=|% zYD#Jz_o-0-A#|-X#%odi=2c^sIpSA?yIu>lUc{s#ndQq#q(V&N( z%^<>H7GT71B^lU`?ts@5_64&$M>zMWW55M`Oh&d79EY$>HjLYs_%>48lw{FVDzh>m zRRHJ|Ze@ZUf?0D0=hFvfg|fd4rdU!Pbdz0LEcXy$^{t?mW)^1%QL-suG%F>!X@ zuC|_z)}BuGUe5MjE^e_2{$=f)7pK603@CcY8zfIMS0baPgSA6vGq}x)Ezu;|$?Z-P zZ{u!uA1C%7$ds5DDZ^UFaa{4;Q~qQ z>=WFUF)*7uNKFlKMA!fz8`&|5C*~zo3kY_!EE_t;U=8R52ZI##vSoB!od4dLGH949 z)5#FO7uEAdVEemKJvODdGKu-HnC^8N0G~NI>nU`yWFN+furh!uUn?Vl%)fb@R@WVxJ&*y4}%@D}T(aQ2B8}KbH4kn)uzwo~>~rgKU|54LLb_aqDbc z1BST@oEq+JP6Maazj@TDa@f6U_&`$MwwRthN&OqcyMFId1C0KOMfuOHE1$Eh_^EZ( z&#bH73+>nu(~DRO2abt(u!S>z5fDV-GRPjB^{Ug@m#Oxq47}vt@S;cKAH19Ovt=yU z7_#AZGmaHQM&wu`N7!(rKw-n~hsWzki?5R@-JaOLBWYkmXy;o&?T0d?NAu-?>0K#< zdf8G}3MT3P3?c{Y3i$3`OBWSb z{5XLA(phKiy1*}DrUjvu5m0>UlRx3!no#UpP_of_>KS9db5?w||^4uqn3xrPbbZF9vtL6E_ghJmKFk zcD!cPqh{2remtmo!l!=BuW=%{WinXnN1kKlqVf(?mcceS}y27`+$!Z^Y|k zzK!(6vu4!0cBJp22KwCj^KHEYR2|hk<^<+T>pPL(W|H3R*EA}4&xP<1?neuH1{O3= z`m;_Tgmb8zU8bxv+gXrs`6PABru5rMO0_QaNfEd?g)-1HWFp2)3?d{Z7?{f$oC8Vc zi04lAQ7i0R@m!gl>@12Ti>E|0$=vZIMKlw|-MLS)10D7N!cOj?8n1YEhXDP=vL1t) z9kQo~;E)i(*bO8qkj&Sq&X&thGeS-3WJmy5_{UGC$VDRam>iR+OmlB9YgbDfClf0> zed~t<&uyGd9sNBcYI;cL&Ag6jQ>mY9p-4KP+Bb{Y`Zke`#$g6N{T%LTmqy%XQXmJ2 z#B)VsA}7~VMKh`W(@`ChY*Im$c0dyx7wK4fXEOWefMU+vayg3KPK3lfDXsfwa6}GO zYS4*sp%TDK#a=a(!L=+KwyPLETByQ@?qXiV^%m7W$wqGqY9p5?$ML=&-TOhT=s<=P zT;*Cr;s<~BVsl`dGb(m0qW;)M1qwGJb<%Hyb4C{DF`$W}DV$kc0H9|~e#t+$bcnN( zO74RwcdH)3$--t}QxGs#2K4MvOWxHsWy7AeqpoaAf(c;$N2wnnwdb%brOtvubcK(& zR%w!Zrt`(~Cp#wf$u?vtq-8=cM+OuYx^UZ941x7`og%yIJ!ukbgEhf^wga702Ee#B zWt3LeW0(d#J68?ck%XH3I+8>rB1-9{zLKPp@0dKn>09#EX7xxKnY~PU)R840)&XA~ zD%64{Vrc95;avGU5#1#4s3K9aQ7#$nQPca@ajX~!8{7=?HZ4*L>I(+zksx*?qzf2N z>NF?nG*%_bO#yYAgWG;=UiNdFir-K|y8fqDmA|yB{*`Uj>t4+t$Mxa3NZwP2n2I{T zWDZhwDSl-riff-V&zBoyO5Ta+!j!WJ7wU5=$?1U1yAJNKyPuY)sPmYo{UQH z)w+}b8eomzeO$fHbT!h&bF@flT~6*CYzVCaXCL*8Tls6e4A5CMPXeI7!SwSNC?9;{ z>1P7yoM#Q7LBJ!Yug0{DMl@(Fa>RcPZ2q-F(E&#vU*{vGF7KUn`@wxiXSM5Z-%*I&67nwMc{Jd%e8{_2Dh?1kJX3mNvQ=cp|)FX{+z(>mF9w0Rl^9qrDs!Zxl-A!MMk3N5H8DoHzt3 zMPfDDsV@c)77$E@hGKH!!vJ4FpuWs8u!aaKfT6Y(YH%><2Wu#7lTDqjrv=w)K~+*9 zUdUl=%9l`Ya3C6$h*fKrdR|bO7fH0K!+AY*EwLvsRhSp6Fr~1z2{Ud+Xj?9{jZ~Wz zE2)Muj}nvE55N)VL!EBwaT$<~`Bd)=h>c9>s?~z!NHE__V8d+EZ;$|*8*MmphZGN% zJ3Cit*xy6k7S|=*}q&!NM8De6&bK&erTehv$HM^U@)_-L#mb z$w!!3kJo7Mc6^p$E@i0`x@RzX&pJAAAEr7=rX~-7r*$%Az%@(mHEmU@a;YAUdf5Fj zx?_^`IW-z8D(%LyPbBt`;b0;+f=T5jCedu9jcs%?B|y*cw(-mX@~uO(aEOXNDLZSL zEyIP1WAUjcs}pcDe(F#;3})5Ml;B`l*fS}3C*#C{SxJk`wUt8KKS2$J&EJ|PWXnfAH;s++hzqYG-?L^~i?lqgj+7G3P9m|J; zo5qs4n-43ID1(j*%(+sH&(hD9{XL@l-N2k5T? z&1*y&k7MOWarw(-oxdzJ3sQ|W(2U``G@O0tN4B2-WbXX@A;XoEy?L8r;p*2plnYmf zPG8d=%7x3~$#crZwXc6uL$z>uP^*Yg$Uw8F1nDA3sZ6%Mes3#~T zLP=XpY0*&j=m=>eC`o26N`b=XF)o=000FXgDmkC zh=Ug~@En`va2~o!d8R~0yi59N?4Nyn!4RN_^gimeLM9&6LWSI#1=(&OJ3|Y455d8J zGrQC2-0P%%=xnR{LXGlF-r#&}vobI>$I->y&ep)zR^P@}-`e(J;`t#!i@vO;hcdE=lCazsywMV3+PkuZ+5NK zfc%0fOqvL7XD@I@Z4YipDYS;6po@hZg4weTH}S@v3nkRj9PH@C`EoK6DI|a#BR34}@N^6} zC&%1&rVMU6+2c_$j8lM9CR7&ULveth`lC>}Z6W9%ew&KAKSGtpz(K3)xWZ<{*h_ve;efg*P*Qc+?(`M z^U@dH8(wj)+!WGwI9qC4Hss%k*mWYF`yd8!M{e8lp#$k+-7FabBv-1iR3FTgnina7 z!tY0QW1)PTMsZbOHLx-`O*n+Zc?yuRX@SDMT5Xvx*GV1x_+{m8D3;axit`i|x+?8}D$<*ewS!0bqlY}ctl-7M+W*xv1NBHJ<* z_Gwc#bjb7M%3osvpp%PM0rY3n^J4+}*-k${@$$iS0NQeSVZT9ue(>Pai`Vb8s?StN z=cAfNoQvgp39ZLmTo&AZe4kCAAGrUoJMRB_$?ZD>t}lmqn6#X7`?NdyfjIN_jc>g; zzShSR253X`&jaXHn7ST7FRM6K0rWCMucl#oZoNJzuk)ja-!4P*nxPHNOT%_)nAok1 zqxLJ~3j*|KXPwt^asJBCtWC_?A`Q}MaI$%MtOL*w8T#=6z4lu8nja7DU%fDsk(T@H z*k0nVq(rg;(A-FcOfw=nD7l;1LuuN`_N5kmtk9*b6-j=%t26kRb7`c?h+^LZ(zdd| zAiaMkk>$vOc7n6lL@h%8m2gwKP%K-hRGiKe&w-CC6sO6oO-5J=k```}=P+TDbsfR+ zOd-8x5$H+Yz5SHB26jYK6GY+8M{=YJRMQq=^5nX>SpC&qi=7mXJeyhZKG#pvy^XMPD0}=0NUQ^2!^$tfxWM% zV8#bTPVAoA8{hk3cqcHzyhvr7r#MkJl08UibsPf16094RC0{&WDqj@J0YPktOaRuI z^n6S&hb#*sd5H=nbg-btd`@Yz7YE^TI(1~6#la?XWg$2lQ9(lYOiJ%eAlrjjlu-KC zu}b4k_xh)RtypC6t0&2RNX{Ni>H^L2dg>i z79@csJn|FTeRHc6UpC($dZxT1eIj9WHHe%t-$G8>vTPV{wBwS#h&FPdGXWnLQ~PLB zPCVneJ*TdX3KR#kWI9VTqH`8 z60iCZzWYINFUW;cdBN=}sHrvL1m{W(b(zVP1H{RgqLDn#5%^JK7w(60tccRy2Qnmv zxw24_`b@`klO-Y+{BWN9K!)_=#QwuMGJ`a+BZx3lqMs#otx*HtkK}>fhp9ZEl{77g zQpop>v^Q7~HQ%wJ-v#`d;3NjOkb628+D^pw2z%1_naEs zk<`B{g>>Y5QU=}%Z2yB#%j^EFe+%n;@p$8FzOC;?cE1uNwaVK!2gEGmo`dXJPo!aPg%d*`2^7pAtadzHvD-*ztt7 zUtn-ZOiF=f@ygmQ)_Xj7aPQ2N#8BUS_To+9g}b+|j?2430wNUim)C5J$Gtl@`zjOM z0y8e&eZU)Es?Uk@_wx%12`}#$zIE^Jg&9?D(#gO8|G?nzyqfOw*993FZP}O?AHZ9d zwkpn^n~aG}IDO^zrw{Jkm>GDWM?7JGcfv8AHi!ZD~!Qjl=|YP+=6plG8gd0uzjq+TUFgz~Hs;zCMGa|02)A_${%_*(#X`T+F}!KcJ^5kP}iDEUp?Fd5B! z97UdYQz5Mr@qDMAEjVZZ`;vPp9gE2eI_x^t*_{4)pZq2lZ+8b<17|x!CtE{1D?J;l zLtyA-!G=K37S@L_@C5Yi;A~`VZ|LB6B7y4v2xpJis5hOca4A)R)jVoOFmjomaZm-) zd8{Oe8IePwWFD_j*T5F)^hQ$>O_#_P$kL%w4e$cAWev=gaHs%8#>QmWC-nE`#vFiA zd<9Jcra?adQ2PqX@Y$358|87$N>ujLu0`!qrNIh>w@m;X@d}U^XVag$G?T!?U-0cF zb2{>G#`6d&h+MM#6SC3%O=RU}T}FBg2igP4f`iy04xsE-OKr)4XylJp!71l*H3Koh zv?DwBfvp|5^P-TDHZ9^d<3(fzEhL_~r8&KBT`~kL<`O_^TZm&hlCPlRxgwQQr8>En zy3AmG_N7a9r4H(5$=Hf`L@@SdH9VoP(7uPTxRvT$Lbu*>r zB`R!#b74`e!YT>Y9MmAQi`w-G(Iac3sJpw+wh)uVKI6M5aV)Xi0EilYw$rq|9yayF z_V^K}u}8e>H2Y&a{_NfO1LJ}po0a~?srCmZ#s8_F_e0ZC0QB!%8}_6OZV2z%7}>og zPIM?!3Q)$$^=l*xj+0!hNh*1=z*8e;*q<)O0osz@U4z5d%_dPbkUf#B2r{`U5nr(f z@U(q7y~Vs(X_8Nl;|DV&x*3u!u_Aoj8-eYwo@jc-tNHEF&cB6sz3kb9iM{06_-1hX z`_aAcMD=_SBLbkC7Am$S4Lt8yBM|@JO#@c`8b1oqPo18>0zj`%&);17Spev00ia`6 z1GN5{|07@O@k9XnQ)cM13o|vrx?;DN@3{Zl1NVQv|F9q7MYr$PxNOLF*^=Y3rO114 zYgx*b>$ldv|J%pYd^|;f)~4t60D4UY;UfUOCJ9Y^tPRjw46O~y+LSDOyZnkaG_OiC zKm1mkm?`Tlj7PK14y(rF0QyU3oq4Rd(LGscUXyj^eDhM)`5`(x`Oy&2c@;o=J~e=T zaP7)zi|rdiQwuB03O&qqgNq06-a6NimlhkBP|`GT_2%t!qoU-v*yxzJoQjSsckbW6 zdvj9Oo*W+&8tl7qi~jTl0_gkq?oP`Z0=>OI{%Cu{@ag+^?+kZWR`-l7l_Ed5fBoFB z_tAZy?9?rmo&$Ven`uAv$-&snlIrTJZt3Kei*u*Et=vKqO3KQMa??EQEMqDq{6=iq zVX#{#I-?j{c8bU5rv~?bqBnZ>`lt8rURIRvKV&Ojyc}ZqflXvuLwy~7k(L3vgIjsW zv2AlyCkS}zWC#7@$BUtyffl^y;@R*xn%fh4)sL`K!AuNoPtpib3uh>aXv4U7i2$!; zpwUgDPwIy(CdF``gt|`yrU8qk^2KubX^;y27Z;PJGroH&O++pIau}(>)8xg$=$ys> z=0Ql*L9lI{gai##>FB{SU(6wv3_yrT$cC(ADP@iqF=x!2QsW(?IsH>DgN8TCYw&FEcd0+SnV|IUcsO)wB2YjOrj{_pVdxW{CaEZi$LmLr*U{1m_TJHa_rRaE5CKcl7kVyuv4xS1$rz#nuppox^ABtV`j1d*nH!P^ zw~#%yEkCy;3{~5ftMRQP6%>-P8B}e}nhMLZ;bX-^0AjOZDla3{u2ys2loSQI0}CWz z$X8%LU_NXE@Wmk<&Q}=a%Olz+3ndGf!(Q(8Vp}$ZMR2QC2ewe}5>IYtgC!D5_hP9v zCYeP51dZ|)`!l3KK=*2mSuyp=!`MrG@}z+EHDF4>v}5Hk7Kh3@yC#ow42hYL6L~iUbvVC>`Y-`p#$@)_ zNY^Jei{-9EIKLbjk^_t&M;5}BKz6wyi<_=VKz4F3-71M{8$X&O`K@i)_Y8BMcd7rr zanXP1<>Kq#g4;JnbZtxQ|8qdwFKsHHcdmWix8>a^YEO71Uyhi{m%1uafP@o@MaCJo zDOKSB5hr+XP-Im~jaqPRU~Y&-F&_l0CDKLw_F)3JRNTn$Zsd3^A~8C-NAu)P6~m4= z%LNLV9ok z{i0j_R=d!ZzsARGRsnPYJJ~&so*xU)UyFF-u>k$W)6Y+|d=T{f%meg|+xIF5#&@|! z*gIJlx_nUWvZ2rQm22+*34lK9_JeR|oj*IIyy29#KdhutHu0_f#@GD#<^lR)1)(-T zuS!C%(q=4Wqt|4YwV+v>nCaVxAGr#e`P=0j^HSDXd%6NN+w%C@vd(J+8y+h|=(fE) z{t%JMS);ml=Tcu& zU0GqaqnTBmYF1GkaL^(kFF)PG!YH$Q?#yJLtA%+&W`0^+;M*TA0rZ0h_ph9t>h0<> z-nFG}==8lix5afC*$oQekIDTzHA zkk^I!NRLqw8{fDGOXX8eniMSAoR$VDvc1U!_|=WLhw1{|C@nfnM#bgeHqv0kQjZwQ zcaq0N^ElAiAWxys%`6P_6lNu=qeUv+Z23V>G#;-VAz?<>lwdL#$iyjl5(iV}o=zDR z2(nqBe-l|;3n5StHFc-^29$Vi8H?h=&489MAhH=tEI`blH0%d_%m6(EXf`h;1+x_! zoN91wjHq*D!g~*9NS&+H2;MMx zrz%PnN3wncd<=F+1Z7n=L^|fy3GRSM*Bd4u-8prvh-aJ;V}5IkLa_H1CWPxmFA#B5GEj$Cc?+speAD zG3v|1^{Jr$NV>qrQn_h7UO^D$&koZ#(SFUObulTRj4Vz8eni)5-N?xf!K{W7=b&ey z(`PKlpCN7J?h-~_ibg_OCK9@*^wS3Z;@kX!OWjY7Wc|Rn@E6t<`%Vq)O&vrq@J>Y6 z&#Wtcbgc9z7UjRNseJi((_2C9yOIY5yA`0b2cKv`Ebh)XJ)9^Eqn?Gv`SShg60UI^ zLCjVtnMbgf!MAq=!8$_FBz9QG%tKnpZX8Dx+A>$tS>VXPs9=vv$^bRpR*}Iy?K*SVCuv0Q!p8 z?Y%(x&mTIxaP5E|ffs;qN-Y+(1+{hBk^2%x0^Xe$7;@4i3pFm(tG3DTBubchD%t~dQt zr~V+Eawe7YNzN`OaXt*Bo52pv0>OYGh~#>x?KWOtE|UTcoMijwpjP7MAnvsRE(Bo% z$l|%O@Fe#ROcpIUH>Xj_8Y!F2Gy2o}W)j;cOjAYp|DD`B6WTfsye6*23XnLO2@+bkdS!BSA1(~ap0)UVejG&&sxp9zO{dI zE;LK-z~qa2)UBHH4MXQDnae~jC&mHJ0^?50!ysTaM zuznUfIvZz8qFX1zS|^U=$^Y!%`eso3=GfjN*|L!4aa@qcNv%PZl;IpJ;wwTXcBG+8 z4oie<5BO-ycL1!(QABmLfVzrUm#DG^NXU-!ayXA_@1og9oGw=~jUh2o1pAbG)M>1^ z2O%zRKyVzHg^xN{4j;{y=p}U@Ozhne(|sUy5X`zaRlFmy|3%l@mptl!Ze95!v(lfK zmxH8#>rnG%K-=b6(sgi{K{;}|+t5LUzhHDf%1cZ+p-}XAkL9ZDVeA^R17;;ldhd^BNQo3 z3ltXkiV($5%Z1}J0QyVO^Z&)^=g-h@tN`?>XAqz-UcVDvD~$;CR(QQGaeHal?SC-F z+SACt1>~Zva$ualu!OiL2lg;Wgmv25RMM3|MJf0*#>wGRiuSyVqNq}Bq z==GYLtOe-R(7gQ05-#&tV&yeiXKiR^hW^~F^V-DoV|t)`p{%pEU}H_z*>hzGjRTj* zssh2s1N8b?XC6yg=ZA@BS78LuSGwBWa4=s^@$D`mKdA(VpGf0R8DQK!3`jj=S8A z>B0TG3q$q$KHBUa7|@Z9^Aiq?efBurn4e?kB)tFN6oGeceRY1yLbQo z?VFct6P-63g;3W-em`wFJ_ih%kapDx$bvkf;<4%`MqTbjzK$lSO1Y0cZ{Ji zQ%;ftH0J`j%bjbDhMK2v3K{QW<-kNT+h|~i*fUrym2P~`8mA5vO6E(Yi(ySvRs{eR z{;6m5&){IL;cCc+0oF( z!O+55$JBhkrPU!@TYU_BdqZ0rJzHyCds_p*G+qHf+d3GMRO6v?1K(m$?%Cpik?CHm zfFQ5BVb?0PPC|D;jViTgiuyGcwY86406I4goomxvs8pQB{A-kFFz5KL>FoZwpk~T3 zgHQplSZxFbAuX68wZ_0P#&u7FM8Q0mQQg<}2jnpN(y@m_Cy@T)}%2sq6Th;DPPcK)h~KHXKSu zB_!Km6#=F+mm{7}XUmj4y1!35L4brA8j-R>sh>kO8oJrkzT`*&^)D3KX9(^Y`!giF z)5PFr&?F{IZBX)vBiT?{X<16?XM3_;!{Ll(_Rp5d7O{T-F;zNZP1>h?8^_FwseUoG zYl?kK7I2y2f(ho%IG7=s?s3~c(%<)zcVR#?HO|DPi)-vu-;4n}Lf{kkq>3$zRY211 z$pd%=01ax~mo5=}qk*{?2Q#FbV7TEqyMAr)r z6|Wqx|FIb*p}%iZ`~%a{f7i+Ssb%>KZVhjTcIsqE9I3M-X>t;Kro9{K$tl(g;anqz zIY1WCVoX&pn{2jS*pASxMibL9U9CKWvoG|e$5(_~b`^B0HEo|k0zm4=bN>mc`ZN-(5yYQ=Cs7hk7S*fq50UdX5-PUv(u{a#Invj z)@^|Dk7b?LK=V3T=ViI`a@IM3(HSFCeK(EO_Z(n;Y{DY4N*Djwv`oSOUeZt~n zqFk(wI)vp9R78Gq@K{)6xbd#dQFTKP0s6Wq*~T!aer~+a&CJ+4Br-I}bJK3~xuqgP zdMpF<-8;9s3L~RS`tS#XssIz6k9wuchtxwVc}s4nj`4BD@L){D$+*~4j z*}{`2Y@Iy9qoTuuylw29vRj5Y0e$brf-EiyTgHZXTI!hjDW~Srd@RfzJtHE*oGpyK zk{d2uy+RU>)}foXZfm=6wDk^za4SKgTh?q)hPanZbA6h|QbbdUbTgM;jO2DIf-o9r zn8sKW$@PK(T<8|o&SqzPC*6-7FaYJ`+Qzqo6WO{8Fqc9mbW07rnRv*{Iih7erDvvI zbuNhh-%kNeatBG>AqWW)Sb>fI>i{yHOv$lArES>|iA{S*pN*LSwzAnR4%-74l6$Gv zFrjP0FE!KF(a6$X&)iP;n2nC^k?s2qeR$Yp7yHxc+1MG_*pl;xoxK5I+6Dmq&~sy1 z2`xMab{m=QIqYojRM6#Ar6#>>-6%eq^K;{lCF0nw>84=<=sMNeGC7e)p=1%9y(eB| zmMe3lN;NX60A$#e54+b8xgM|8B(je+01NB_9tAd$%UhlT8{>$4Nmel))i#N@gtbux zp)Z#J9jWDJNoYa!fn&tg5=(r(iY@>EfB;EEK~%QHOKn`7 zt2DUqaEvAtMJVv2JPF~u5F>@Lwpd8ny4R9!N64>-ali()#zmFZH-iwxD4#sA5wti} zs)Jj`LR!X-6)7-z(m-btFFI8Y3s%_(2K2I}`_sf&`K|GyzlV2jP3Qwa8|KLow*Z2{ z;y^1EmVNo59i5+8bQz65xp$g4y;4! z;E_BzPF8CF45odG^-JOG_z~PP4vIC-m+zyt*z&j@iV0)+S5ojz$FD$i`-ESaGO2Ac zxM9pBOZ-k~$1iLuer{RzoJH9$?W(?WxZpX!v~kg|9cy0pXn51RVRuUZ!3+u30U-yL z#ghfu5gk-Qppz-xl{$#S1kmH!W9aBvm7j{flT09E{+H!zWrX!~lB{ znUty`+b7cdW@9=h!O(QbMJmS%s$8^U-4RZ=W!bRFqZ#O=!p{Nd_38QR5^p>fpr2^^ z`HKMbn)Gv=0MMDw2teP*yDr`ctyeo2$(@UrhC`uDKc#2;iPTJ&tqm@J#b|VWtKapN ztM31G*Zp75yMI5=<)b8*UCFMytAq8x{-y;ckkTkuPu?yUtHJ5E}m7$LY_F09U&5W$jbtRO7_p)J89-~4XF<=Eiqj>Wx6ACG z1Na`vmKw0TuzRh>xkdxX*q0`@s~D!6>GfEmN#HL5blr$;`S8&K#Q~;LJO@z$Z4pHj zOBYFT+f98I16oKm>rzdrJ|Hz-ER-x%DNg50=5ZoSi&X$eN4E9wZKR^Kbnd7}(rQjH zQ>4Ty4hnnPCW5&Z6B~PTyTK5aLqt97H%VF%@qB@J9$*K?+E0mFlGuWA5gR1;%o?%$ z+M-wmdfuBR25UxjOchEgr%pAagH$kDtvHS6$Jite0|Z8GQ;JmxB!a0=Asw~g%Ry3* zBI;bSfK) z@0zkfl+`hj**{CR)>RsEVW2sMG(dK&8`j*K+9)b@c;+UB%EP(TiqfupD5`@DZOFtURjivO z4WbsFV>p$mbZdp~tKciPajw?H6EV-=Ij$Cm%3(SpR!dXMcP42(r?SqPk;Lv9To?dc z&l=5^=ym}g`KVo&?_IgZr1r>;(00GyjrTUD(ftab+gXe(EOFN&Z`p79{*%_oX3;M zI%`Ao`dMc|wy~Ub=Hd2mxCGEXt=*p2)jHWvECWq{Wo}-(eCg7q%a^ZQzj+Js_k#!b zZd|*Hm#$m^9^b!r`{s>XcOQKEKzM?;+`oJK>XplQT)T1Wf!19q+ST>zcj-pegFClw z2pbaw-?)D3F3CCgySvw~U%zwr?)7W5iz`>J-C?B%ZFcke6@KORot3|Lv^{NkiMHgO zJh;!(<4?zI@u|0NT&H{e*u7SD!X!E7l22ExB>w;Huq1O0aoY8eeK@AS(k2+uC?3ia~|_xB6;_X+j& z4DxdJ^>B{}^Uuf+h>NzeH88f=r(?W*kHO|$dLMkeZ{r6$|N8OXjk|R}JY=*(|L88T zwS|L$m4l&`gT9r$zP0_5d!4zJj?vNG21j-nAKR;cOn0MQXe8Qs9)oF zaPtIUlo~F|7O`BQ4FC;D>u{dJFjsELt@W^gk?n*#z!4wnoiWZ0M20|Vp7kVIPN2Se z^T6ozzFFt05l{~2u;qXuoIWbM?3nOr7@-^Ye1hmSHIopQx~Mdc@(p)20P#cvoj9y~ zP%D+433M(LiQ2HQb5Qema1%A`0QBQP5b7lN%tW?LI#dk1R;&FQMkBbBB6)ZZvU8u5 zQnNTTY7H~E5Y{qblCRKX`Nxrb>fJ3^tr=4b6{>{#*boL3|R97l!ROo(4-wYYBbWFKbYYt^djIyP`yTiG%H1dxl3da-75XX+o z60<6nl80bS7m1q%b8D=pYYiFy;T##}$pyKBX`uoq0`s)3AeTMCbp-T`p8|QQRzV@i(tAtD;SK=+-7#nak`h}ZI z)}=#UJQH&DCSz}nP@%gwRs6{*(vj~>8AM=%V+n2^OYWY*PjNW7kjTZQam=DnNnOW_ zRQTPG>zc-8?^!>BaOHCV`q8mIK(C?a{|C~~YXCa#nFHu`ALp*#_Nq|5AJ+DqW94t` z3ywKC#W?RPbopS??dLb#{~Z8*-~E5xcKO zg8xr=tO002!T}WHbQk4}6MLorfBE8hAu~;e7;N(__|RnyQnzhvCOB_^9Z9*-P9ju% z3kVZL9fEmWbSK_E36cwKqkd^%I1IO1`rqtPtMOuJ3vL~YBlBs(vW$L`VK{TI2S0Xg z1IYnF1Y0hET2zZBxU|KmpurZAMXC!hr9l^dC!KOI-B+zZareT-`vT-!pYFwLEqd? z*Tj6kq0vtL!`pQYKHjhM;obwA49xU&f>L+HbhuXzg|v`(0P{)WvOKVYKs?bTGMNT9 z_fK5upS;{Zaj8u?hbP_R7f+FO-B_t?v0XLWsyQFiH67423c>(-`qYhvHIF-041+I0 za!!>5si6$qb``_aoH<8sPv}OqSpXWW6&4Lt2MpbxCibcuP31}fz1h_Sn;owo!AYS8D?O8f zx*8{fKwr8T-!)BDXmz9MeRH+Svla5wl;`fFgeWyVq4wsCv*gV(3#LZ^fQi+r&fs#w z(U}#gFnPl~g=HC~JlSemWl~55h=*7WvYYkCAhY0>vGBGDkbMAmit(>qLokA*Pc$(PVRM1|-E3A$2WClVdw+ ziSQ8!A#mW%%#PGxWyztBoI|XaoJI(#%}R!B+25Kh;mSz+D^%R3vQ!BZSv%rdG34Jcs+%U>883R#spgj!rLTI_|H-H2Zvo9OI9G3u6;a#s zgudT6)&1V1@im{8w*uPU@N3y}vdgtfZCf^^pDiUCZX7i$R+*PjZ77~2X2aZo+WXVR z`!gilk_L993}9n?D7A9rUNiWW*GU`L9xwVRs{6x}Js-sM>Sjm`vZS9R_Tk%iBD!|F zMy~udUIWni>}2=(^!ym{#y6IJ{sP|5Pb2+I0G<7e1N6;1_Zn1-A4RtR!m(_tW0=DA zcgu}bK4o+UH-|XuVR$+peZ%q8^X@gSe?CAz0?lg#8;>Jqg61ccb$&SPJ$ZcPtn(VF#^V5bg`tCJxIY}Ofdu8& z?oT5FedE?0kJy^m4~DHfHX23GpIN6X%Cq@c7odf7FBz6~lTIU5MCsL&)S6^6igREf z#asqx{Nqn1dKN67sRJA}hhv5o^27o_CyA)%Hb4_(9L*kcKrzpHPI1*}@P8WoVUjPm zEL8#T0HbLPTZ}lff!y6AsFiy!cTGmNlL#TGc{HN5DJUVq&DYJv$Hl?C<)!Bob8*uTqs@iZ5*>IRUNO=B(#r# zI1wSZRFS?JsCOh+ZkQ$8lRD^DO&Q|ko~Z(I=OE4_0d(W&;XF##0wSYXuN=W?NJs9U zr$<_3wQmEJg;A$N$x^4obkS^d2f6uTN?hwncEx}~AYCAv)_HSfC-!MmK5R)gaP*2$ z*oQ5#e=p`p|K?FdQxWasps14_lQ{2)sp?c`u>ykC9VS_=JPT+BiQ;RagsT05n#Y8? zQk+DJxCZA^iSOq?+c=`!fqBeaCrhTsIr2lq^JXHl_#06;Tr|in5IJQ#!?Mn{c(;N9IL2V4A#oEmIO0L3kCZT1#llo z{r|J~7GQFf*}DJ#KL2yi896hIGQ+?CgF6I=2qXkT2#|!hbjRA#?p^KfZb`b+?(XjH zE>+d;9U);3GJ_>>-?hG^)9F-4AjZAav!8ydtE+Z>``cf2{npy=dY2XH6G-!5M=}Qb zj9^rrmGlw7RI_gkDWGgQRzyrFBAk3SW=ZF^nwY>~Dt{zHYryM%PP!xJiDAnT;r1BK z5_as_w}#3LFdoDhm@5%%V0jp2$&7QT&kNoK$A$NGFCRV-*Y&n{&1;V3%biNs`PV#S znzc5#X=ilju9(i394lV1FMr0S^hKx2r>#mJ(@Xo%uhuM2#-bW3{!>lvHO`gojOh}l z(Kt-ZfHAk!QBCf_AQ9I&@+rUxB1gZP(G4NZtNk1H#dd<2mwD8@cer_LMEgpQnh%4? zGi0aDB{p`80rchR`D(=*Hv*u4aQb-xK>xV(^Bh3?Uk;$Z`R1G9;bEZC)YR13vuE+^ z*w`5U;eYz+rvT;8KmWY5vvX)@=(~BBM6V-2e{<$+^XRD!!F7*W;Vap)UdGg<0nt56}x3dOkoe zVCaiv8w(ivib-e&=yMFsa*i7Y&|m!f>%I0Vzj)n3;dbXc4r4Q)EPT!Fdb?D@L8XD! zqxd?fOfWffjr&!T(1NrUjbuL;)=U5m771sa^dZtElh1~5-Z(^GrBuizWYBKZ>Vj+v z@XQ$QAwn44FoADqi-JMNGAhO*Oer3+B|xFC?ZEo+l^OX(Nj98wL|0Jb~W{_8k*a2M^kgBw$5(el=iD``Dpu^ z)f-o=+PLDK?W^D3_SULRVCXmB-L`7Y=9Q~AE?d9*9aa5Zpl1UMRXr*++`nJ#qxaV@ zTl3y4`&2)24fYQ&sLAS>$fC~JCv&Ln3nf_*R2-o$&13$g1t*?%DIYP)kpl{MMt1Ct z>d;Q=G0*JtEN55Xk|9J3O0ivgVmnQ;$?M=iQjYak<@TKb3u2rYZ5BwHFp;F>mh3F% zSW0A!$+s>hdtlpQqH3@p2#K5UkqQ}+3_YiG2&WI+?8Z_Y-^?@FK{_Z0oWj>DFfh^eM)ZTkgMoE4IZmvO06S`?k-^-yXmYyP7EO|X?a`gW za!xC)-x3E~F=CNV;@Ut`%#V9iP)Q>9Iw2qE1IfK0MI0BV0_#fnV1zeOS!5a+0+L=R zx_R0pN47So@nwhdO(882T+4{nD`KF=qnJ(bwvl!;6^Mkoxz zsY_+oY)02{DtJXO&@hQ(1Ox+2g)cbHJ|-CqeYBa&ZAGnZ%cNWRuu>eEdtk#zlz8?I zvU?z=7a!YDE-j$;hs8tcQEhtyt3C*HN7n0{UW&`DPV&|iGAPk&*GqC!gf!=i_luluRa@ zd&zYH=r6wdHm7SQxN_LFP_{9+{vnI}XU&ofEKDn{m!Gx0L!_T;tzQRKuabnmAqjiZ zEENF#4@v$@PNn-JTO#VlKL6=l#r-MXt_h&O{PN3|mX@5H9ITxB`uYzK%z3F%-fpTNMY-54d#yM!7 zC)-${+_HYHndc$=B=r6z7>zwtAHyssj zcdqjooBik9lM(lijEo#QbjaP^Jvuu2v(IiX)A&mP+K(+bMDo~=E6lJ3)l*Lg;mZ*z ztl}Cb*zSO{p?DfWGd&acDGANGXD~E~jazb%&Vej4S_xn95F z%raN*UQEUdAckxvGqO*n-fz=jue7dXct<=K(Kun1SZic&X>4{t-)OI<-Yylb?MkYf zx9<7yqh0T<-|_B;+up&pMd^dBN*`=jUcYni#$9_i?o?jCY5RNYHodiK!y9jGd~@ZN z)vLCwUb%VITboy{-t^|m^~>M<;PsD`-qSGLV_>0XXrXE#IbbMJ)zsO!d(Zp3_k3XQ z>6q5gU)XmtzwbmQi4dqgN+u;c>GJv^7OsGFxwdb@vx*A)fHGSmI^I3h^tOM)uINtv zOetxdxs8Qhrc@)PS1Y|=KU)TF*2<6?aTe1!cYvhN8B)L>ju&%i#=-_+Dgpw-#=_!b z!h!>Pi*KI+vpScN)r_xAjrlYa-=RB@~S4cV;p0V^y4zw#{lSzu44@7^hPaygRm2DXwc%MEeewYJk`bvZSWDa>Q?9 z0mQUT$FQb3nhjVGXc=b9Jh&+%#wJp{o>e0niQNaHJN#?Nq!|N9>6*dJV6g$gCAo6l z^#1J;?OP+-LmMVQ%%VqNOv|)m$uPn;t+ZaXWKt@7u&ap^XXUYBsNxQ036YO0d2S5q zWy{prr%#o7gZJ)B>^07jA&l{_p%&<|)Yx+75Y=l=2|>2FCcypeDI9VuA5CH`21a8Q zVH&B)PA`RI8GP1=n7Q#J2G5rf=n?DzMD9%vgTsfY)|Mh$Oc#6bb?%NMbVk5NQE1Vi z#d#A9N!|cHl61YIcHFIG$h}DBgOeWH@bcauC7)u~vSFR{zTMFsYy9e8a;kjNvg9$- z!beOB9x%v#%sBrI_v#%{9cqc)Ue%+R7PI^TL(04NYx1U-MXnm4{C$Z%!l7?}VvlNK z_xp#M-tehkVq5mOr08X*iWh84U$HNF-MxCHbM`Wq%GJJg@94~Hc;@|u}{C;8`<)RRpFzS1&zSa6kol~Fu>zgxFt@HEkM%=CmpuhR%o5{(^ z@$qpmw4a~fy1n}^e2NzX=nIH@2|&-M=ZgSZQ4;zhfToSh2NwhA1<<@;yF5TIgyxIg zoi7K?*DLGHo5b<__M@}T=NvZX8$2rl=nD*e2|yd&Fo1T;|Ha#$3b#8q1dJW~pSdRs zfX08W%*;$>W##Vf?s!NkR)AYR2yuw4DRj_+zS-9Qrw+Fp}4!dODOJc#ogWAU5gY6?oeEd z-@M=b$sclZ;Mtv>ot=5kID~Qvxym2Jg&OGNr9hofYrtwS*Y4GacU$^1ek?pjW;D|7 zJgS-~%U4$!gqK!Dbdb2d+Ud+yodj`5U{Vce^Hq92rb&xx%&-1+AvTf&5ims#s$7iPWEcZ0{oOu1I@_99E0iap~9|svYKg zV20*sOz1r<$x6=>zwzzBA+kZ{leN4OxBlr=TX5JinH{0>d3rUFk93PCNDW7Y)4#~x z*+YRooUPmhUmj(WvCbXHP?a?YA>K^=ndvi4-3|9q1(#>*mnhJOLQL7H5j`JhzkQ=d z|I}tb(CLio;aGr0Olp@kRTO)-82%n^NuZ2H?bK^2Kt7I5mwU?Iuy8@K#GR`4sr60% zXyP~U^ie64rM;Uz5u!`19oQLl!6&D%pYA5J)6${J7dlckYV2mJv9U2lkP5+(NH*YW zBl<1oO23O!#S2UGoWZf)&*!8oeL7;7q%9_QkS@|&!5&a|@AI57 z;7za)Tazd}`r{S?bo!2y=#{-aJprMRnsR*)JHW%sJ4yg`v8QZiW+p2uYxtKOX0Ej7 z-x^ink-zMwxcMr%+^b8~A1>ns(HmXor&A( z_&c><@a++6z&O9p^r+&>NNjTdjq6UnS#A7RXDpNeBGM8P$;ru8>YF}0YQ7L8#^6x} z$Ro;xntO&+NEB2-jO<#(x!Z^*XFxUEUtf0d4**ENZ|)Y#8%lf@;lHwC1GT0GC1Sve zgaBA;+$Z?^6W89u9*I=IUlc}>j>N$K>7+C_HYUan+)~}z>am$)|8}kl!mrQ}Ve6^5 zjzJl?ttinJp`3!mn$j1N(e|U6f+zsQ0lPz-qKQAa$MKFy(t2E_srV0~Yj@gs8WPcL za_X3fzANX`4T^mOxI_8KUg_nmG~TLItIMSYJTZt=*L|283+O!}ScKEK8s4|biKWSV z7YAMo6~mC%fSZgDd|101p4;hDh2Do6=yUbj_n($nKl=r&l8|ibzV}D+3hUNezhzeP zR(bmjRxJJf(R06(>EPGqyyOkI(~%d}tjEpjcB0K`KYJ@?t?|8hI#90Os+ZC;kOiCe z_GCoXhjduBh-IryEyef-ZA^qNbjGGlDjz*&I05gNLGd29D-%jH4|u(dgblEfj@fq7>NwQAOTy_s7dO(kxVrH5tY5c&<2 zFa{!UW{L+v{J$yT>P0D<$B5{uV^bLu21kNn7bH=&$=L0<48QImN)s2bp?`x7jcFa! zGLIN&pZ}5&CPfqPIWrwZTpnJ+_ODWTDP2xA4sMqn|9kpAy5`}eqN?}SZTSZF`mq+r zS#V781Lb{^HDmWBJa2m{S{SdJw^9L!gj0AR-9LieKdpz znD&X;F6W;1v*T44dn^1rdq6Ehz%QC@8cRA;3s#FW%+7)9MDrlquoQ<{LzWMQY_86$bX$nzGa~Df!y2c@zhk< zRQF$2M;lF*l0x_H#Su+yK9vzyL%M z1IW}x_>0x-xN`bSWB;ugz*`ji{~4A_F35BQ8JTvUq)6`SJ@c+D-(rdQra zO!Im-j&z#uZFNl zQdZ6oHo+L?ub&Mg?a2>;Lv_jY16?6z?P5UZwcg~7?!-P471ADY;g$I*Cp3DvZ3fra zG3RuO4sMpsgN>Sk6hiVj6L3!9Y*FF(Yx;^w%Ad?N$d#}i59llT*au&O)v4uMk;_h= zw`P50%S|VF&%=C!G`ZJ<1IE|e*3O)NlYa8=*T)b8(B|EYAIm)*XF+DQ-O5NO#eek; z-rwhWL5qJ=tMlwmZXVNEU<4Ot586JSeQJB|{@l*idOoM9%eOEDIL;Zy#a{bE>=SWN z+^CTj7+v*1veSwS};Cd1D{p zgs_=-70Jw^65~V1fA%C1Dkxpb=EskKi4NnbgBdf$!r_;7(|ArbIf_O}ThPjEke+1H z<3rPR0M4^^*$NGDeSzuw6A!eiOlX-@&J8dUk*Q4ol6b)+f6ebQO($LFU(O@pL*!tS z0AGeqz(fo6^gT8P#;o-MkJ`#qOsLo&uuE9zs`S~ma8YJOFN9 zcwx^Kd$60)+iGqX4%g;r57^c<#6FV?&6*h760b6K&Mz;d+;O`7DQcphQ6)_b#Z48= zW})RSaqDWims~uioQ5XJt88`;jIzvt&ECtq;w-R2zD8QwbFQ3;4@Ck}hw~?X>4=lP zfp-M8NbYNf1yU+Of*Sq9ZHi;#^3ibqG5tXm651)~M!)Z*gi^PpZXbZVRiM&c9Zm6F z>=GiRP1YkZ$_u1F8R}+cw_Dk$do8+e-~xtn3FhDk|ARj{ad zqalrlsyxvVaIz*L)J3albKTqxCWF6QxJ4Chph-N2-9N)x_KrcI$h;!EAS;z$&zI{F z47lUW#Q&;Gnyjz^;CO5ja*m)@s;j4GXJ;1`6-7@+cU3DyK>_eZEy~Hxj){nfh>MF0 z54W_mO!q-zdmgpS>wS5D!O8VMNTy#3w*v#eHxJI+%pG0_tiETo3iLL;EqEO1@y)Ef z`%fJ952kk7GP~NcxCxS?zWM>9_pFISm9t;Zm~2ahK29wJVo6*(=|JzhQLLEWC#R?8 zrlxm~j{$842Lq-5phZYNQGn$aW|skTk?O!Gnw$Va5rY+6^Xy@FBz9KN;ol6m!|C;i z*1rjEIa?$lEs}s|Xz?vv(EBME28z3PlepZm(?MnEYu z(`J(rqPJg+caj%+`F1z%Mw=1bl5!G{HZ!poa0kqO4ZgZ?r}Pk zz!u$+&&dk3Hp{)}pm%Uk@7tbV@B95$fZNetK=)(F3%Tc0K7Fci{eCs=Z13A^)MeMd zc>&g*n;H4quD9Jv$Y^6XJ=u24VaM9t@_+}rx3STO5@gl7zO!-Yt#euUn{e!plcMHlLh7FC8y|I9L&JwCB^vXxqV&+Pvt)^u%b=v|0nduTN zQIi%f>aOAR4SZ90bpL`MGflBDQVNTxJ`{8cC64u`)SOhr4v=4ku`|pX3QKILNy((< zuCd5FjbL~WxqE@se`ocnng)r}0 z`xR1IqX%bCg)VfsTX^%q9gY;ilkV(Di*Y4tno_E4)H|Mo9gbHrZ>AJ4g(galxOZAM znf0t>1Cy;1iEZl?jRv&!(u_G^@lh5V9gT184ub0#`(0O5L*V3#6y z`*MXL;A@PVr5@MzVDX?*akvg>&n{CTue_1lEMG{NraxBGILTMGY$kTQ@b^=agE!l$4>{pR<@#4Z(7&;pKyYE zbDG~as;1w{HOOJLK2;|M3mK5I@AIeK2ln3{-ao5v7=}N1UkFA zbm@}pR5C2ksxb487#>wYIVO9P&`nf$qglXx$WMa@@@(G zpDHJJ_t?nD)02~o)>54S$fjs#I@C3PU6pWa9c$fiw$~lkAcjX$oXpncue6qUM-{8w z>T6p>Ht%oL-!%U4f4+ece^+T?Z2&O?hagk6?NA76Kc zKW@lB{5~M9=Q#KMZYB5QbtU)G`?TgIr}r{pnas=gWKWqTV7Hw&*URbtb|uH)Y2Ae> z$KU#7Z?@X=G^I5sz-lRx0OIUK{S!}1H>=Uzb_Fb8jF30YP(VLeiFC6viA zb4Rl@RmDoI7B2@5zE+H4YnMyKcsm`T@ueo}<1aFueUyR8!^juIgUy=Bm<{_3`fJS> zrN!l{6FG}Lk=VxagFihf+#*D~Fw#aNVEvFm9`hu85nkg%3XeXNn(%BO)?>d!z=4@T zUsB7J0pKIf7XEZ4-bWpC2c~9iEYs;ilVgA@f+c&0fs4e5ifUcH4@${H+F8M!`s6 zo-NR+`}_RY zDf5T;QvfW{*obesMTHX$UgY;|GkVBnD4~>Dj`C+Jx^*LPLI|ckGsD1ZsVi{M62@jU zuQ$v?lOYjkpQr_g0LfqYr2$9g#{A}w?>8}fF5aY4H2}CJ0PN22!^r?7} zgKYL(Fk!)ksx~c|=NrqS{!o7K@e=^7SJ}`5_fm8bYW0@q!c4Z_zqiijj9B_21Cz02 z=!_Y*9Ukp$+UK2LhA+%=b6|f4j>+h+K(xw}Vhg145{_+y-s|^9EVtl|qe5QMohX}b zBOhotwyp|_7-$&kyZVERXOZAklYn8Q?uzeHZwC@p7r`|B#}Se`csF z!1gTKSXG=TgM(rMa4o*SvHyDnn9E(;#4~I6%AnablRbm*Cm6quYVRr*l}}yA(|BUC zo>v3*=>D5z2-fkh1AB1uW^rnvK|-_RC{Wr7ktRye&Ssz-jOk_gIg~^Q^#NgDy(vXl zslb{|$`iB`F;9_4C#^^{)d8=N!xV;(4t%uE7#? z-gPreG7^BaXGQRA(Agq@=NNDU%?%dpX9k##7Q#f29d8jh$vu!@E%fVUPZVYSb-Iwys#_+s%n@ ze%Y?!-Spepr2n|7>{mCy?7t4y?DE?eSfbs*n0W9C4BeN`}I1lGq>mEo!}zC z_ryeAL-6rcM?OdA>1<&#*Y|E1fz0P5kajZ1(`+g6;Iga9e2@gPL25#MAY1(LXHo6X z{8nK|uJ?qu)Ju#4WOx++OLVcsrLlaA?8uVRX^1^`<`u8ge_xJ8D9b(nyaJyd2^O)+ zOC7XzAn5CcI5)WTkyBv;1#s%V^U7N%%FEczgkl&HCy?>X2rO?Y36liS+MolnV1f|m zROpkAGo~0cyFs}F>OsT-jvU~~gJl5sf#;1DI7uY4P7~jc7x2eC`Hr?|fzJD4Ss~53 zSRO4SzaF8lo8dF;I?6YJ#|BCxUa7I34d*k2CS=eca{o8Ac8iy29C=n|AEVV*gcz*^?zRmX;0NT8sN%#I~tIkhRCvbj+FVCFcRH9E!Ata!#tKS#&^)qR}5b7jzbF34d$)EN&t3}g2QjAjs%KRE?G*10=`Mz z)xfrz7*VuKFZItJwfct|Z{f1@$4;C_Fwdq#YNte^p{0?wN%LLuwBQ!_{ec9$<)O{GYI-4f^w#yK_fY13 zY^9u4$#+E0IiP3bA9xz(m z$gIUNL`H%T$Ft!@A-VIA=YBXeN&tBFaSwcocE}BQ=f}Tz72dc3`+|i0o?S^_M99rq zb$&a=Z*bC4XO8EhFhe6>SJGxdX9FwfXVC)S?eml2V4zB`U{B$uOAK}6xYxcsSS|Hg z-Cxm-?m|&MU{+x4JOCW8&CkPxc?E{jcsB`NahH|w4f9fsPe%0*3YCV%J%3_OKL3at zS(bIHLgitq_H(;;c@%VcWX;I`_*?t&^5gOK=7-0}P3%j+ZCKdHRjKs5=WdlGYY$n;>$Y`yV2DvS=iPyAr#;DQeMIUq|vQuh7c$shX& z5>yMV-l)N+gJ`T@`7M;^33x0pbKqwVOf3zQnP5V|1i3a#P$gK5b}AfzHHIJPAfeKR zvG|`&WjAqZ8~<>qxraGd+U>o`Z(G;f<7s+Fs#p=`V3O-yN)vagzmXd9#ViT|xF~I`)sePvp+7&?_=H>paH$r_v(n7 zgGU3xiuAP}+>`*Yz-}S#)OouxcI8v-8+PDgMOpP^p?)a~L??21ang}+c*a%H4diuW z$X^>8OmTjU{QZyT3#@M}q>oQrZwNrlaOG*r-`ZSO5etaXRBu#(y9SVDjnP1)03?b< z$#)5^EXItL806D{36zN`clk`pGnq0BD*YR7i8Yq6(w+Kw4d5PE=OnNR4HeL6G)?KSA{01=c@=4o%t=Kt5<$=T89SpSTzSl zK{dUhLDFHv|MXg!GOUv=&1Q5F<~bZ?ih)LW+54ckvJ>|Cq$r{s=Gamnb~DK+j>n(I zM0l!i4|s@n)@Od1F1YR091P}3sUTW{`Z~N9X@BUiJl31_WUYC)1UL}b2Zg=V;K9y8 zxxwy+k&Iq{HeCQiWl=5v+>a#!1UlgHCwx0XdB7W~EQ_o(VlJp#%=Krzv_5@MJ3iWd z$UF~gmAgDID<1VX+f45D?-hS}%R##GcMSUaz`>V7&rSdMeq=sS@PRrllgOBPHv=p=d!_i9O48f<&ZmN2P;!VY(DD>Q3mz zgJe|-bu7dyq+rRKc}U>Dt4s7%KVG9^KxM79~@ zRwbI0)WDoa`umE~hZFM&--=OV?UMTM5~bsOS7tBFGjtm0+uWs(e9$z%9VF{G%*Vsd z!mvmbKT~~-)p&G*v`w6OA{*6M9S#T&~|yT~v$hf^Al1l7aLObTy} z*tL|o+$pWKSTzyr3{+%2U=#x+J&JLh`VEyT7ovMubfB#V$GvxOZZ0L~}p zqk_>@l}uJr;ew?2RS~S0If4Ue9k;O-EzkW>5Sna0l+eIUO z2*&ZzSL3Y5Jkg761l5Z#@t&7~E4>WTtb*IFJH7RQkOm-$&2 zz_~{!;Lc+!AmBNwHtu`eS)8rbx!(Oxlkq}xq6&O>zdy>5&BcZVPXJMaf7kTkf%Wpe zXb*bmH@v_D@o)Dgv~QyUB}bV7oq+(s(bhERJ0P9`oCuSu(^Q1m=l=ws&m3AuDC$8` zqKzvx@V^Lt3mUkbZ$C{BWVA}U&MwpVwcKa5vg8CqutWNVvt- z$oRiMCrwHdSvv`HBS^kF^e&y|xsl&2`gC_d9!tmhYxRY0;t$teI&R<7dLD0*Y6V|Q z5ib7?zV$v$Z~0%3BKW_&ynMWPJieV`V7wkWC~rQk*kG_~-A^S=lKB~qZ_M^QY@fQZ zp0B^;O!O;yOZnWzJX)PxtkrhNT3tSG_z0~-T6^y)kDfed?%n*{E?w_oe@9-6g zi=8YTIKplVWgQnH9E{cdb6kW!-EIsi)4IE$kVw?x&D_vw2Lji&zhmZL5GWcu(B0+X z-gQxjYNJBrOT5N)wMulqX&$yko%h)@sczu=_x4Hj6n`NzlQ0))He{yPF~l>CxLOC(ekhF z#alhr+|e$Vce&!m4F8jz={36%EjrE}P$4!LalVWMJr*$`h^;g4xAUGWu<(kFf2;sY z=Yf2PvmQs|Iq?fn*G7lySdH6S%-oA+^NNm<)9Ozg4KfJncJEW4wzoUyay%%UZnp$Mw zmb1VAA478jIthDad%hc3nXKOD?D zAL+PsUPE@0Zg_w@FEI_&xybK87qR$EwEqggALu)b8qzK~2pRYvcz<@v{$LyX(I#l3 z|JChz3&p^ta}yt$%OWpG)7de-o1pB;;MSDJV}69!6~OO{#fDVuV8|k?9p~)gQ1kW+ zUY(q3*#bN9i_0F@snt~9xt`+kLjPyoAikfhddfUrb<=75_~^fmCheliHbU)o^7OTH zzlB1AGgk_2`PxnBx@~yk*o@&{*e6Ld{#Z6b-h00Z zE_|+5J3n6gNPAyiSU+AIKJGI+KmN8txV_rAcdX;riB8t82J`V-hp#=}8&MN4Tg!{9 zHHE#CW3IV5`3=8D@Bw$5Fy!ZIt3?$(isJICtd(E8BIX@HY+<`l#bbXSVJZwY3{HK>Dqr{$EfLq_h@oeSkts5t2AG0R%~Bg^@SjtjJmBa93A<5fZ_bBj;1 zf}RkuGrenNNxTjsADM)`TE_cYLpup4drt+dCGjmF=rnx z?tg$}hp5w)Vf^3GzhU}RuAQq<%ke#e;cb3$I3ZHJ1V0c36KOi|eUV`7H2H$DqtVe{>5$fkPA~S74D46 zeKpS@gZA%Eh>MjuYbeYuMrcTL#dz@om!?!tx+wY=B9F@3pi9yrTn9sx~`Qe!Ua+VzG37U#obVDO<>jDPaZ(1pru6Q0EAXNy*sHW;dx0E{YHxD3P{>{!A6wVT;PacNoV0Jv*Vtm8Y~}*e{$V!}I@{BAJPY;oL_3n^RL%IB9#FO8HQo-8e&#>s%H-Is^Murjm^fX|sSgood4_Av0>8~pLZ!PDwNX3KP*A;pf;;xbfdiTWRDj z&=W4)$_3|}5QoStN9nD6oq@W;q~+7nx1GtO>zZel*yIfW5q4OPCEN3OXLI%YcA9v*R%c&~D3SS1nUXj|usqBoZe%7BddRO>im*Q%r8 z&2_lSvNub!DTg;jzH1__1WA2SKZMd@|MAQA7(RALuJ9YTGL-`MCMy{p9F;PWq5 z;-z7rs)nOu3D=1==_`=MG+b*;^o{~dyz$pWSrzxhF)nre*!~cn1rR*9{F{wVa z_*N=KqH!3$AQ6(%&H?Pi%Vuq-*O?1faOV?PQ9(&Z_w^kMQ;MF>SOX?rlV3Or>7e)U z(*2HIkIkF`9;WUM&&T!8(Kf^_bjpUDedD%{E|=+dmBpH(_|*4vXC@(t&pn!_^vKib zL-s2x+lyiYZ=||Uz6t}jvon) zd4K{`j$qIgMCM2UXkyz{5t%)L^8V)C1DnUHJo^LIa`?_SvpAO(`gmIhea@n{aG)P_ zLzz7kOF$~0+r;SI_w@s*kxLDwaF6FP8-n7Oc>?(CTpoj`#r^)wn(9cBL}85e4|C-yT?#6@0g zk_2(CWL!`gQ;cy%zlAmTeZLfW&g{P0XRp&%hF&B^6C`u_>7fTsurUOh0b%Q+ze)s= zF3P}p1Nuu)=7xNjEl%bJlN4ebxCBG(#opNR$LXOWEB};+y)RqyHf<-N-NtPyUdQ3262hq-{unriPV}45~#dVJ5A5Q@~d+_ zZ8I_X)i$prn-4ag3#ISeX%%T_a%n5cJ-e#SbY-$JQ@_htQ9}t7@C>N|D3}#ea+eQd z?f~QxI2;sac>bL-y%iX6rS)Qut0q@QqbVJZx;M7iDb#O0Ng2L%nRpR2dp0sk+9>_wKOr#QDMOA;S9UuHs4QwG%!^H7IYXIpBJxuJ&2MqAnb zLgE8-w_V^{oSjP#L+zS>tYY>X@UXDmj^#@irP*$n9`Q%-AS z@n5#Nr&wo!3c?&^c6{n5#XGdY+f+PJ4w+EKBWkzFR(rOqIc*o!J9ZF@iOp-970)KL zp)RHd$Ud(CcZmK4r}L5CHR(h4Iv(+A%%#H#*iXVgUZ+o`nZ#5vZZ%^TIV13mT^1|)<} zHy~d@n}>n8{Gs^ox)e!ZC|<&h<$=PK#+8hyU$TUJA!H$jGh}S8+Lb2nmlB#fBA0?; ze0Wu}=f31R5D91E%}Gi>}YmQjHi37ud>Z^RcqD{j#6&rdJXyzH?V-;n;f!F1DQT5Xl9O(_p^H&z znc}RxU?Z56QrWus#vH+nk2QP~fE1P&4tcppkaXIAKoM54S>f-`5b1AiWKONp|5)^p zyDkP11ID-L^Eo@%xvhHtLc7-_=hcYgQ1)8mrxEe{I601#DLw0|H2;xL==FX!FE6sA zrC}yb^c|mOU(ec|qU?E*^H^;m?H`C?!2Q3eTUH!0buWJ#c0$j?qs=FPzH_T0&ANQ^ zb+Ja6bwKYqN}OBCKS6Wa0f@-YKj+jls9e(!#+(O7;a^R|>2!7TG`D^bOi!GAm{>YlpQF@? zpC@tKYV2^yN;p9j0u(tw^mJ51Aw}U~@n4LuSHC-eHNHt*>GHkqnfI%;hUa1xhW$_u z6oZK7DZ9Rux-RT5T{i@YKGKCL{iA(V7#%h4^K1mJR)@9wiwd{eo}TCSv>!r^ciBf< z+P!y$f|rct4qwZFJU2&+|OZd&}J=AKL-E_ysaoLom(cs~9mv}}%~G2(P$dUvUO z#y?hWshqn1%Mk_d2MD?LwjSUi#dR4hV$Jj7gD+|Aa6>?|?RLii z>|ygj)(`07V+(i4MJgEygDnT1B~azU-jQ-{uAjj(sqhvW2p0d~tlmm*UW2UyHc`ll z0>$J~eu|3Duk_j>!EsXBmddO?E0l{^RA5@t&V?TO@eJk%>pF2DXQ10UT1W zI&s>#bC&gnjw*{Pp+#58vm-!bSwpc{$3jO_dcMt#-F=xZ4OXitfXfIugHM-Xmk;YDqFWjvMBF!`Le0eUcCK+4<{Ly?3 z&xU4Vj33mZ!%2A{lAsn+r)flT$WXXwqY^Pl$f>3AgY?(hm>dE{;Vska5%r>6R)Fi! zIbiPA;p6#P!Txb7bh|^EMk{lw8*&5r7B{U&Z}+}w`=;7_e*=HS-Hc=}PCaPR)7_0) z{+`>hVF(gZZimd-Ur8W$+IZ!Bhx-&!(068ubHea>wW7mLq@;NST*_LIkBkc3Fatb~ ztgO7fWO8a`ys`3WFszICaDKd&L%S-vbi%0pqW3YAXi_L~oq=6UFtKM_Hizov=!}C& zgG%Os3ravsl6)ioftK|-Ef=0A5DCPpkC(hQlzprrCr@G_S1oJ*dsNcoPI5*A38FPJ zJpp{~_h=U!3r))2&If7VD3w&(Pjy-k(dc-ywMz>|%yHJ`6j9XREs~03#<4I4jXwf9 z2OeA9SUa$H zk0q3e67r?lL{@u%s}ILYkmYU4zCL6V6CWz8f+ec6lNZ3k=(PGPjeIBeQ^^rd@IZ|c z-$Gz;)hZ&itwgrXL}@tUODVHViq|`4qY1s@xO3Ivv2S#GrUd}_}BE{l8K5s8c-V!W~ zJZl)2YAnqdxg2vXNGNmV#lCb}_eL7*=g(Z-xJbula%c@j3DZfMFyp9m+uN@~pNwcE zrRfLih$J*1H$g(kHa@~dZs$9PkLazos19J<%^F-VEi`slE!%$ocN0M0bDnoc+YTd1E{4mUVM%NJ!!y*5tp6^w9c;2<7*qtu1EXx7pTA=T0JkALK|F4p1#K ze4UgaYTy9UNDqED0{Gp_9z)1+KXIrvI-Q3|o0I{&6y=R6<iLTzaT_j2DbSCp{9U zr(%kNi9Vt}ZQ^>*utMf)L4+Efk2}^OmT8o3;wPnY)4#zC50clsCi%$iwD2 zayKNgbtf!RO42XNBXnmXp#&!-=3n7|s=423jK)x+;N^}kO$41-TFVH9s!>#3fbP?A z&XCn2IYTIo2-ESSR})D7p2;46%db#unEPW+VCSnpwh$!DhrZaDWJ-b`VhZ@F5}bUn zK8zWdq3X-Kl9p-yc&=Q;p<>S_tL^e@f6@OlW${0>xU$>eOM+>v)mI(bc8suIrWTZ3 z(L&pDpC`nD0aWV|A^9J8pQOZ2$9<{e2&9M+X8C*@bu)}KdYxLn3&cc9V?7<4-TBlh zFod71mRc`TBvH|3ao-?)W7t7d%wkbFQv%LAD=b1oAW1)wW zw6$wei0&)u%K!nbla|J1PE-4%JXqM@)jWg6Q;=+Z}cgR1%7VXVECHaY%U6Lrz}70vktUE%>N2%Ht6!j0uuZ1!X3qCoFP6Hl zaOJb)IWvP$+6R7}46y5?yTjsx2{1s|uVas(m9*sSr9u(pZiNhuj>Xg(AvH2wWg*O^ z0^(Iv>+3vsmhX=Ezr_GC4#p0rN@7SG0Q(|iWvTX{g1{D90&vFdfh}gKvu>;3PM&mz zE-zO=E=2Ag@hhSHSLE}br`#OKHwKnc5yqiPX!q0=i~;B}~cvT}pG4$LT3! zh71?< ziW(=%CsFF|AsQ+uU?&zWv=47c^B3H2OKCQ%h$3hdw1-3OzALGc%$~%AO0KJH+s=Y) zmG-H)!Ys%Pd!IR?(iyr6>%0Lk&J$j1jn1wP#u(xFc?xfeU*bZz6@$4HK;Sd2Iw<3r z3&9+)4^@8lnvKOhPY*isFbb)m9>%li!NM^-XpBXLVuLujpYgvs$e$inI zAFw6cCTIA!d*9`5;IpXba>#8AV|f(mTy*-w%?lKIwZFuDF5XWZ*^$6#Lz@%{Gs6?H za5S>qGX?nE(l$+lG~hlb{mazV4Of#a+7Z#)EjKV{sLayxkk??#f}yj2*ikzi#)(Sv z{PCL~?{t6gj4kLM*#9%D8)>6+uj66F9h$3|qr8$o9U}}WlxMuyw1S0qm5vu1f+LAk zL+B8IvSaA(4irXHzs=`)N7+>o7Nen}Fq{>RHDp7N38f4L--_g!d}E-awy1KSTWyLG zW42?{l@dH5N56F?0ITHS!*B-VNBKeJjfC&@_nuWX205)tW67+4WPXc~@p; z>#9_LtC!No77t$|m(s=Oa>%iWeu~5v>$uN)#}&(E#lMn>e4O0b*V`?N01b()Dli(9 z^z}D(r!TTP24H$(WD)Wyl z#wPQjoY3i0GIh!hV1YW^Bk@~iZ5Q@As$###h?;9?G@l9Yf5TI~$N2W~6bi4{VDg&5_->ecg zFp;&e5H}puEM8q=!KvcqSw##5QopbxMTVerM;ke_k)%$Az-yU0#T2?Tk`(liB_E|~NAPTi1WBJ_kxXr~ zN!r+x*L2{ln$>=i`wL&U>Ox_V)@NS`X22o;*}A6^_NrgO0L8ka;01WGHLOmA4xD@u znWxbE8r%9%LD+0o-!H1|13L%O{^j!L4;XUq@THjK==W;>ww^qrsQnKG#bHt}8h`FR zX_6Dyy|V1Y&*_*wbCG!0FB%Nz`^6#$OR>AD`)lIg$E+d5j6Tx#nZ>@CqrWtvQ^EK_%K>F=R#;n_vkA?UD4+GpGubL`?@s|oX5W})s1 zc4Pi3&O#&-2Me=lrAH*`{^s5q>Hc(}*j_X!@9lpU2nE^(&Yyk83bu_Jr??ZvweeH+ z{>aa)y3oy_E!M z?&wJaN+h>*mkH*-cghcX*BZVa1U&yroP(X?tw?!H+sbldA=4&Z`9A;?LF~S$a9bbJ za_lDy&=rks+8O=$?hK(0-cu#AkE`UTD`ckCxOS^#{Z>+j{mj%Abx#0HoESAp>2IDMPdbKJjX%s5-75!d#Q zEk5^c@!1yAsFu4XUT~?vL(>XrA;S z7ci=R3$Gv7jcHJFkI;2=)Hm9%tG`#zV4s2EK2wte5>pk4sVe9h_YDm9>gp+J>+CW# zRdXzo;ur(T{){xW?5sRaGG%V+hC{}9aEur~%S%Y+A-I{;(oOWLP=17Xu9YAgf5J;b z+0X+p2cl9-0mO6xSwvkRH=iTS5~^ZuJxEzYwG_IDua!>Z3Z&B~gd#gROduE0E-HIIPp)>OZ8|B=})MWHlicX%25(AvrdDy zT+*N)ZkX_{qLMN^BD!xJNFtp8Hqf4OJYY*2!0!bn4&}a;ICdw7={(lUVh%}%Q%iYh zO2^iXC3aAY!BFODn#m?|X}}pY$d-$wtO)q?ZIRu#hz)ZAoHFPkJ8W_j}XHcGK)bRUa3-})z#%R{j@ zfFqC*jBCKAeuyYEDPN1D?m3v&hd073iEfb^X?+w7uvg>J=1Jdb3N|Q2X`Do$h2e>1 z58M>8A`D)i@7os-k;12jib}DlJoz#U4t8g37h(zFyBEd|){;B`E~#0}@(7*DfF)0E zn0;<-Na((7S1c_dd<=0!U|9?%sgr(ULr{cAaEfEwurN;Gar}&Hok19Y_y=pxu7oW4 zgl~o!1)}oc+HvgGr)n&NWjyI!R8ETXi{asoM1ER5mHNGhHclpW(0gI_K*_P~w8AlF z#5pXLJ{id&WlASiqk^GvpNbBP2JtDt6j}LSY-2|NoqP_UljZ<=5%I=i^n3|GFQn&7 z0s5Ng`3H(Ot|k4fn4T}2ex3tp-`fbFar@+pul-5~UUw;d-ZJ$AbN_6sHSN|foUpmC z-}>n;>*qRbUhH*VQSPn0%`fm6mYO}1IRb|pjL6%w1)jeE03nS>d2W6otHQMJyO*>W+Tb>Vm1&-vC+RelP82ZynZv}5t0SH*}VyML#D=~KJ?-uJCs?Ns=h zPLzI9r!cYrZ{cT9J?W|)ONUMJ$o^I>wNEEgMtX^c39qUVuZq#o+VQHv)9GDQ_9Pl0 zW4F7bnoJU_ZG(agZH$dfRE&%dm>83OL(nsR8XNBiLsJIYRP9jB5NR;Lpv_b!7{t0~ zAyanaD!mZCU`>u3O(YlyZ5rqLLQ=BMwVn}*g6I}<&KA4EbI6#YcFekvCIMtDuCN0` z!4_0o$yrA2OsP&5;qpOFf>JSADrJ1hjUh{hm;o#WAj5p($w$a4n4~p03!(MY(FSmX z@Fu8k3|!?X(@yI%&6Np3FxBlf(EL!Aof}ogwowKe8|Y2Awgqur z=@IT=5=~S$FxZ zdQ@OkbV-M*3+gDy3F0Nhb*L1j0Pzt#D8+Ser(T=g`xARrQu;(wN&J667#YFu8_xa1 zUCT$Tc~l7DVn|g_`Dv^!On4BtM#sV8^Juvcpu^4qbiy1!-)efk-NYM<}#M{jQ=sE6H1kmT`Spc-&6#!bXisJ^!pcSb&uDhAt z)hD5^2+&ubguZP6+PiY(!=tSVx9w3KKV5*PBEoVi_OdG)^r;+8X`Vb>F{~2a>{uiR zX@O3tScio}`A%~AgcYw6T8RUzs#r|#@=S%Cj z9Uz`VkPQMBYH5oCs>;ggIf1u!sTk2t>v!b5J{fX1Phz@o$hu&id~#|7n_3mpDG=?N zF^wY8nA>|Is%085q|N3J)FFlYa$^q`Y~>cmoj7m^m}%m%4cxCNQ^Y$D`2odooywInb!Y~(-yRbzgG55HT_e68Ez?imk z>WkD)YM2tyMBU5r@u6zP@=>ZQ<+Gy{N50EAF8nou)anGO0-*7eB={5;kpKhHT4wig zd=L`bsdSID7OY)K;L=9?HI|=`Qxn-rw(cULFsH^wQVoh{`op-%sA0BrTXZKyO&L_J zsFF-RjE1DkrwU8VY8ArEzO%jKl+8UcR-2wOOL@>D|D!|o(%DZJzWC?cO}|}#fL1qH6rkrA_}Tzk zQ4;!MfL4@*zCi%}|CEa30zfZl<$Zks`m1lx`d5!_j%Zi7DaUo4`1~gf&>n2qOePqO zlMWf(j#=H*kGGm~z@$HB(WlTcn{(@F>MoHZGtHxXr#oM>b}Ahr%|@sZ6M)lHy#K9R?5A6X@WG@J3hzA_xKG;T&NBM6ulm-WT|V z$8D&v>>RvC3oS&`gh$1w72AX0s6lw53142zUC$Y~%+ecMzv0oh`D0KjW&`3W9Q&G%${Qzd0<l`{NN~D$`Rm= zT2PZ01X?tEJ7PLP(iZsxLEM)4lAOa%@B>&L5-m>ciqRZWR!#9-Y1kUky3+y_wv3Am4i zidmv6g6dI|9C>uhG)`Y0m3Sh?7(*C?IDtw?GpT`gV9l6izC56245tGVi)Utb9|NXS zlRwG?6G`LDW^n+S$xQ@fso)i7VTO#c>&H{s5nM>85?E0qr2J9bgT}sia8r2u2cfOo zqB^)Jmg3vpv0dAuI+fXedrv|SqB2i5!0}+IH|uJsK@a9xh4t~4ek~wDuQipc$Y;<^Y^IOEbyC8_7+=RX;X z_yqu6+1O^nKDZ!*{N58`wWBUYB$L4RrG4=b=mel<$30eDnPaHPDOc`TI_yDdS8_H0 z(Acvpvv7(q$|0=LV?zV?iqRB&!FQ9yBDePhzT@#l9@jdJFI}L9NY*lfj7Kz+wS`r_ zd`D#a_Gl_{!uv*3|GaVM(vhQ$li`h1fz{(~B|{E5GPU@wEupRZiZt@p3Ytpr&hia;wy8iK7Jpv?&3!pl5S)byG7{BNJ8o$Ru!#GrN2^ms8;yk!bla z0Z`poAX|$F0P?9O00I-ZmQ#OnGK^zn6dksOzn(qMk{@TUW7{bOi{rwi0cwpXIm#Yn zDSdm%yo^$J2a@<)IYXf@@c zdQEdlc~8*EV+IP7)~IsSG*9MSMiCw9e5xpu&4TH33U#~|?19sR=@eJd_O-B|u`E$A&3(1!==(Y^# zc;6WA*NA|@knA%0XsNW$gfvk0*M+Y$AWk4TM{1u_=?F#`!IGz7?f@!U4<4$gcrS_q z5|V|0$OV*R=a_KZ4{e;p)FI|{EExtmBYFvAZ)}`R%tLs~|6%XFqvJ@kE6=lg^ta56 zMjGwxu6DGNW_P5c8O_M<*;z>|v#oAP-L38}%PM+;o`mXa08wNWK!PLYiGu@^85!|KB;xnIxbNOA5kD5ptWM=koXnd5Mq>_u zV-&{|dj?=_!@9eX+Wlgk?9>c)8UGe=)~Q5v%vCOwP;q10QwN=c`ra8OwWfa-Z<*=GnP07&}qj3pdU!S*y!T@$Y%2^ zv2B0ql>N4|-(8RYS)~tt==pD2-Txxf{ngr#Q;Ri$n!btlsg1>ZAMReu%g3{N94$aU zp?+f@fPSgs*q5Qd5ul&E2z>xR?=bY&0Q&HwyaCYQiIXBp+`C*V(Z9F=-90!O(J^OF z_gPc%*gCGhK8-4pny?5Ipd&#G?|_F$gdT{{OL7ENxCzL{PBQkCv;*9HK^$iH#-~uCyhgbcY zXZ)IGqB<7hdlsEF<~OsoRzlbT^om~KEpi%`vHVOKhPZZkG>~I%mg}s8Lg>HoC_p=1 zaKz$r$tA7WwVs++?4axp(`3NAs>G=3(2>L-R+@t)P%uac+h1IYBY8ug1@Bu7t5Y5n zEZ_3hIqQWiien6c6rfe0GyBy_^&pZ{1w3c2mKn}Sh0nUucq)Iw3M5^kKfR67ppzS7 zX$Ly-7r){3!R5+H-X+IWB(;CZu4aq0oETv^rIHRYjF?UU!frJ)bp`K*0SD?;NKPS` z2}GMUxN?=nZ>Dm9w*qJnGAn(VbjAQL2DP*A6X;0=^C%5Bl*I@4NJ`X6Qg+2uAy9H; zl$Wy~3;zT=fLh5o>*6szG{#QsU8>h_s7MzI$NQE*?JA@L8+J>Q5wmD}x0Kk=e$6mZ zT64_BmJaU{hBs>GFk)_iVZqylihM%d2M{w8ATRq_fuSi9A_y9e?qT;HMGxEI8m`<`T6v92G3?ODlSPzDg%-U#iub&Q=yGCH&3q?A+DpPb9 z_KRX092d6#is>X?2$To)-mEaj4J8M@z7gORbsRghe{*G9CUu;Q81v zD~gc}nC2<7JgX8Nexte_tgB7*q877i-zH1h_`3Jke4uv#x_S$spPZie0Q7Ej{ziI! zM&gYp1n6&3em-6RtsY-Kc(8QuBge9dfA3iH*G@^p?tiqC;H{P~Jbzj5`G>Fi=lnRX zH>}D0;ipgi7B3%%@;GFGK6~x40R2t+jU9mAPsOnX&@WXS`!VzZ0R7}e=mP-SHQ?v~ zI(1pzqzgH!z~Dn!K$nY(v{ANcCx=xE53av;rY{i!j5Vby*R0 zbk2Ei2MVf^vt12CH(cuIV(Z&H!`8G4w#wl$Trsg8-!>cGYVoW$+Z2w!p4flBU=r&O zYM)gR(8P}6W#uP8O{Y|CfvtWm7SN<^i9V=dI(=XnOZL!;OU=~vGN!3HGH;JePlOe- zIhM!7G?QEzq%mDiu6A}h@8Wm?+`O{@pq*W>xTcp}EjM6;!Hdd5AzTXWz#3IZ zX5CRlx&d?|V-Y$??B1|`H^FXt21`J<+}fr?GcZN5rrH;~>ZyyR2G!h#v2vFv8Q@Mr z?;=1pq>X;q!EG~v?CSz<&UrV?P%2%*NeEs@C%Xm<9i3Zv4;`<Pkwthv@OfZt3qGAV%Vf)oF73L$w ziq`~dy3q`nq^JYfhhK8uBBgqg<-iiK-j}J=Q<0LSqY|y7x)#DZ=G_}uB*toin3==; zC5D%CD*c@XNg6+DG##(JQFOArv)?gXD*3W zBuciyQZya(Mkz!Fe+P-H9Y#Jt$R3B!PP8aE+@MmcV%@D~3y}2nY%O+;7JdjuDV)R%jYWFN0Zr`XG&N5Y%=oZi z<8gj6Dx7yMsGq_1V+Zpoo5oZJQ`rRyrUlT?=Z{}Z8+5DVdhpQzRfEn?ap@p)?7&pk6K0+gF=t?9gQK)=c6u4_rQ+R^!vS4Oc)1@|UEvk{|d;`%C1ty=Dr4SUkR_0J?CDh2+%!B^&|(w~Gj@(?!)FjgOpuWD2gi z3F!0o0{aoo_zmdXQ*;!-Zq>Bsq@jg24tJQyV3eR4dj#eVl)Af8(crYn99p4wVfO-7 zg56J`_JG`+)VEkB=6Xa@>D!}(rj2R=cKERyZw?b1rU|yqVZ<=VA=22&$(uwB22t`c zmpRC)zp9Rd{{YOnwXf$qC>u$#}mXdE2#|A-4(i;pL_*yY}8`~cz!H}tgOG*TfGY8y%}HsHj@hf6hI(u72s2NL?` z(S9<(iV% zzoq5CW@8xn862hYAGQ#mO*}JOwAywRdhbf3BO`C9V8LmCO}$)dz^uu&Zb~&@;Ywg5VB2cVytp7#OhUG%&cpuZ(OKSsRq*z)tC z)AJ+c=SKnB|F{73$De(nnOOUM&xYS~EOBwM9(VuG3ZUQj{I{8IKRxf_eZoD=DlFGJ zf4E+^KDGY-OXrQ}^*BO+-sanV0D6atp8%luQ*j&@8T5V({p|qy$&1ii0R6;8=x+zm zilL7hpuhMsXJqYWm1*Av1bOen&vw7&xIT6P^w97~*O;MadK27+>v2NQVnEZ3Uy~)M zb>${)Ug zIYx>8&1~&Y(?(v;8oOBu{9-I~sQ7FE4w9v@DS1m@OL|rdQ$pHieH+b=HKuFj22cW! z0-F&+D=wB2RXJRx2C}P6Oz0BC%bBI(b`m5Js&>R>y8`Xxcpi%aXnRL1&-6mk-O^Rs zSL}zQyIEzIf*he4fEX?^+;H(;P-W&Msl_JKpqhczd==QeXCX@h3zeXjdf&c<%cbPt zlX;V8i*)Yw)2vX61XiP?aWV)}#nx0#vO=tawN*oyORd?zdB(SC=30fxx@yX$j?#0N zdQMkxzFjIa0J-cnoJe5bRmuzn(;9lWVG7|UU=4D@aluFyiOrmS=xKy3@pu$e;FQ2FOT_v-=vgB7 zmV!iVlPACp+{c-QLxa~UbjA_EnT&k_G&h?z+otX{8aMC_Tl6qL99ao!LxPo!Up7(qU@9WDMiQ08uG|FxuD=k46jTNT&-XU&$DKHEWEz|KVk~ zItr#aXcWV&sdN=gTybziI3-}jJ&sg7vly2$hnDD12TX6VFwdo$?FZpfIIq=j;B>+{ zY+G%*S#Bg5Gwfy#<0Ee3t4h_AEE*N8JYBrK@eK|rP8Hu43(j-wh;5}Ys%7{2}9$F3E+-*nXcnNxPJ+n?_!H|}`+uU0Nzf8^WjTs~Powqja)|MQor zgU|JG)BwH1y88k2HX-j1(EF=6wpa8xfPSgsIJgM?R4R@gfVT5GB7iQ?u5SfT>{)Py zyZ^!h^x()?{peg_V^=}%RD+SYP%*xaYb`E*xHNhzW{ zJ>RG>(%))?@a!I|{Q5eR6m zEWc512|;3_7u-%`4XIGl1~{sV>eyhp-H)|J%8&8l(W@ks5> zmW`b-GyvMx{+wM%sAmH;24MOi(Ul4)^IkUA6D;-`*iLLDg(b8%rjG;*<9 zObod(0^mF>IGWf^z!0!0zIV}`EKVP2Fc6p$*q1lLS~&1GN%CJ*V`X?J73ygcRpTLw z9XFA$*i@TXU}nddS#^)$?ea%gu{Ho@#^4J0$w{;&cniPk;V{aY=^3ZyKPrDj!5lUi z!vc)P)&kA(1lDeuL^$K$MyM|4 z3u+ESm&5+W2+n!tvHc+FL{T$?5i{x4O;}WIjyY6itYW^0k#96^Hk47Yi3nFm)SE`c(si;#X+ z^)-vP4wmA3SmwV{s=rxb#3@uYc?Yk;Cp1c?5NcwXAX+1(LSgg3;9}Ci)<+M!mL#_5 zSeugjpUfG*QKFCPV5}pa6GoBxyjK%vXxI{!0U1VHNqRqHzT_wIN&Gm=tp>Zj0G+r4 z&|<{#9qD;5KtEQz@nq8HV+5Kri3_=tiOT554Mt;1r{C|AWswf8`_3 zU!C*#-CDQ5{gGS3+v$UrJ3oI}bUqG`!vyHJtR4%{JKVb$pm%7Q0DVpY^nNOi9r4Fw z0eZh8^Z@|F>!_7+CFMt@lBp@w8B2Hp>|98Pd;xG~g zV$|L9@UAW7^`|`oAumXz#xZiU7&H(qJ%w@`U6s~Y3RU; z2;L0`Qj3dolxU!7yubo5+xuMW%>m6OkJxxtoduw|2teD|p1x##!K2O)MA0f!pu@I9 z=AySfp#jiJ8jE*NmgtSl;boN|4e%-%U(X#`$rXoPECpk{GhQfF!>plYpmsp>jD7W# zZIua2WaoU1{!X)LvwY$<REWc##nEb z6_vNi&B`gz^O+*u)pDbsI0u6}L9{~83wg|BR$XpenblYu08tf>f!f)_vroq$dCII#~LaN<3teFDV8PXj{ z+05uFM!Rf+avB^0pmT@$UW@5&y5o-B!sQipDv!N)LVkU28!78S9zZRpnlI&=r1>$U*;8PW4|6>l6$ z`8huCxB>K6BH`$(sNnEy)$?3fB3@a z8~;0g905Szd^|vJGw?nDO>BM~K<`(CJ}xSb!!xsc@*?yhsyGfVLLV_efA+g7hYU|9vsm&Os<~v$vkt@v2X63TKxv-8P`RyBM2B!BBenZAb{lD8hC+EAEeuB z5Dnc}M5O4mi)Fb;al;5`3sOS7IMAtQMs!$wQZfO}4qsmY z&=;?s@T=D;ZVn@k3xdn400%g%pp9_Jl#UU%5M^zaKSo7w**L+gj5R{u$}iNes0<4% zRl3_16SslaRg(UraU=wdrO91>oE5pFJTc;W z7VT4HgoOkyOJrbGg9Fg?I;9K;%WO0exKRodKr7t{x z`L@Szmb-ob2QKk{=HCj2j%t}6n7jAECokIvpXcMK0Q%|m8~XwD{zd4QDvs|~ggyYE z_cHX+0`voo@eVIM`z@e~cRzk%0eX0}u5a>f=OFjM(Eho1(*~%N1;jYlO)HHl5ZQ|f z8gn40q&^mg3#D{dIYCU!9bS#>m@gPx!=H-A)(S-x>fd5HnK^39h-TU*cr^0HeS|o{ z1qfP&NCHc+H0MQa-_Te3-N*r91E4K`l-|97-Fp2-gON`wn^=qJn7dG-r{Gvp1L+-BYOoShXM54loGH}Zs5F9L zKvY0F@M}WvA_j!194uqA>MUJ@tGOe*?;qL4B<=LUC2P>9c=v|WYnhq~HZ^M3D1Gjw z{?%T*J3xn6Er`~BTaADnmqB2?Jd4_uC4llpvGM?}VT$EaH|$m}Re z3gK7@-U}O#r@2apqFoJ{8*6r{B@|I%cMmO5xs-(t=%=P=wtW`$4!lpr0Y*e{&Y)cG*hXH`uVa026CVaI`tz(g#; zZF9=w92<$j_ivd6H%C)@J?GwN@dgmrnwf@!$xNwH4G}gwrfVT%U>PSr#=LZ59VaUG z-Mfj-bO6mT-anyXNEY2Q=5f5jrNt1Sj3X=cU`AoH6H&_pbfH*xB6q^Qo}P5#u04&@ zFKviQAgLau zEF0frONh=x?2^QXMe=u69K%x|{x{wQ(D^$6eHiq-7oeY3`g|P38wZr1zXs4TUkB(j zyZ_5S&Es1G^nCZsHyt&<*WMwEOihAJ6b{cmVz8V*&cf^c%YX`kAOW4gl!g4E>_1IG(%+eE>kK-y9`CH<~x1 zyXW>@68je3dvV-(_So2s74(??@$|)%y57FocW`OE)oiiXFiKGFR-5B`779l}8+Tev zcflNhr^KGc?4jjStq|nIZJ+~al6Sp37p@lTE*DLn$Q=Ev(C(k6j-1LLe>HOqnB^$e z8A=ICS+m@x5AEa?UGR>zXK{hpGF^_4i@gf4i0j*`G}GEbie4bC;4O=cZNp~e<16h@ zQDST-m265~)4L4LUN`pw^j00(!OF?k)h8j*FF857afs??`i`kgZ*EnznAs&rZ=#Si z`|wmRVA(hgG=TMKV&;&-Fg9juS4t*at^N+ir)}zPn`i@?sIT2@ow|!zM_?bD`foCA;;j`AWslGg1jC*&xUA9LDIQz%YUG+v=1=0_VzpQsfGo6KtcWFM z@^ZP+wuX{xYtij^FamJudW8Y771lXlqTLcaR7kF5O!orlmd}*huov^{7(9+|l&HhK z!GhTrC>+nRt~Pm!ql+9t(}-0$OIL%J$gDjY*oEoZz=?rNJ=;w2&BYRfRS5%e&dW^zFgFf&v*|7) ztmzVXJC*lI7Nf)@8!M5%Np|DmB*9)|Sa@HBcWl^Ph?Du21RsLqm1^Qjss3jfW6nU; zS~HHaO*KPdcy9MoL=+`}i-pRfK6dzF!D)asTvhid%6Ry25HZC%Q#i@frdaPQ_kyTX zYM-^MHo4ZD-RfxD!h1EMO-dW2v3Er0oNJx=O3|cUl`&K{FT8`MF_>Dso<06rwiX{` z=4h7aB1M=-eHEe#Z2CNYdxWi8me#(BDnG zp_W($(5c4(pdUQ=>h8}!&Fr23`^c`}^Jw@lPWiE}CqU2ddj3Y5+pGWN9Q7YvYkm;j z?N~M$-7?)iwejwYbCdSJ%g12@^wq}$^f%}?wgGy77033=9tY4bRU8Kc^ph8%pCLeh z{^f&K%O2HZJMwPc$YNZ1jid8!ZgvnEw6n`aJNvU(oLsLsx?a7Nm=s;t z8@a84juj}6-j;>P9dk;w3G4mfY05m3#Et{pgSXBeSqA@=5};}3P;b}(Gy|QLxE4#h zV04$|e(uOB7@GZsx#Q>ZCo%?C8jYKEh7B57j4VquH(3O`rsUUvFhJWC$=^OFIW_q4 za;YA~1_%byT`D!;5U9Av2Ezv45i1dW0=vY3JK4ib)gXDInU7 zN=}ooJt_;(UNp^MN*ovOrWs{;ccDawvjTrDm*RT<7&o}lxFH>iYyP0v`e~qfIBzo0 z6$D$Q3bdd)M-An|;Jn1%rOd$mPzL9KqtH1x7|$sYzmW_vM$DCNPMp1XK29EN zXC37+>)~DVK20-9sqfuLqV*Qs_muC!==4dHg14L4oGT>>vol4~W20sr^=7A9!ZC)u zY+?dFxU?jc6MJbNA7L4XRjdu?Oqe1*iBIVm+u`0#n%6LuW@@ETK#(pDv{O!Dn zOQm|{SE#&G9K~A@3-(v$66~tPlmnQKGwNsQqd!Uu zVXh)~jr^&sku z9N)1BeE>i|VG;W10lIVcZid(u?_Kgnmw*1^{EyfL(EURrRfCp_!I|i0V@jF=#bu|#JZZ*^90@qi7sjBR%8_L0AO%NiLX>c>H#F5*5fuT}?mf|#P zz?i6{iq)M;bHH=dE&iw;Nzd+Kh(@%sf)*>f#Qw#c;l-GeN{;|%2d8s;0a`IM=-J*u z{q=&g$4&PjFZZ|vkHY3#G!x+ZRex3b&{E1EQ9e#Wm9ZI0YJ$Hei9T2o`>154ct8rA z0NLJ|ceBEnf`}Ky+s>wT;oPfi?H?L)mVUG$&Da>UG$uP~NvqgcB zAk(uP!7_{t0Q!6p3!jR5&lOAnpz#f`36NSgejD!yvTT&ujx;RZEzqulW6~M;%yKNY z5Cj}0Vsub7;ky*@t*1g`aETpt`eDM*KPL^n zo<3?*X>_im(TDhl&|)u2MDSTd98wHylWDVJg6E`0cSl*sxi?rsv9*mB5PT}Do;2#t zU`*f|W+Rw9)av<6K!3p)J+{Hz7&Osgyp4j5M(pO2!cnX`jQ)6QiMo_yKK9luV_NX~|EVE-)+b5WhlfErt}6D5aIh zF?}Ov9G}D=r;g(5)pFis@NT9Pj!YFS*hi&=#`dJK<#ZXFjrCww;DXsmx$&QphfidW zT`HP9nKp{A0A&x}Mlhc%ob+m##wQEs51t%`>1#Jz1u!@i+fa;7(?B2kw{U~;33b@3 zflk-~XffhAke>Ge=%=9PLzg~(H}S@IEI)4nbk;EeXgogp?2F!+%{Nj8e$Tnw&c*&q z&tLk)^IzAy{q^rV76YKa7unTg+1&k_myhT4I68pd;oJQHdYg*B8K9q|isK-F-meIK z06;%^5&8gt-oFU_cz}L#702U>(D)vII!b`LmG4O&)w+4m=w$21e07Mk6aM?^2Euv?FGL;*YEJp}8Q_ex#IO!?m z^ZCnA5oM+fECMJKr8Q6qKSF4T#$sNS*!@OI_%m;gOZ7UjZ$74~$<5Ef!TH?201a+d z%dQ`-9WLDTa#1c_vcZ&xrb@jqQBv-NhY0bJH2t7CF6{`!F%27u$pCggp?493)?%Wo z12DR0`u@P|yMuG@0+julXCpf1*^WkWvjGrkTV+h?Ujkp!99p|trDMi*aNC?)Jt3@U zY!%#w5ySJ{MbrWK#)Ra}^bs&60NTE03Mh#qCfH@olC6z^91?&cIgYu7kNX`a8h5lmQmh!OEDH;I+)qp#k$8fK?@3C-o8Xush)6 zaJJ3SxPzL6o`nh#7Q2YH1c(MGuh!jen_?Lr2+Krn>2mWDw+ibDF(mZA^y8Xe;aGGzo9s;-%#OXYqDt~^IfZF)zVS}$%n5;?-n73TP zq^N1ezM9!XSIXG?>smjppjmWNoO9xU;sd2VS$HFy50p#wEL<+p1H1n^s_(6w@$bhD zTrJUO53gYNu?EbeB0J~8Iyg=8r+p-LkRJhjBL#BqBZk7Wfj2AE-1uuYb^z#*9e}Rg z2cVCFo)2C6e8}RBCoVrf3ebMX0-zr}_-gf?kFMsA{(*C;x673Wp1*kCg)a zCBNfZ_gYea_w-AEJ}!?#1?UU=0Q5KOH}(Sb{zd4QDvo^t`Uq4UI}CmF06nm9zeoZI z_Acd<>mPjbbpLvu<6}2Kk7z4J)e3Bilk_rhbM7#$4E*Y+eQJzvMt8g!tof5`ng0+! z_=Cuv?|WDMO=!pWBD#N?(D%=Ay?+(l8CXB9>Yz8POx|*9K2nsCN}cSeneu6}__wid zDM~U*RKZxTyDYpZ0uB?qI)&6q2^~V?XSxlD1eUlE-9tqOphT@9V%zx+oUNRsm7kY@ z^?Y>KOh9^uqsw_L4oRDw+-1R6n^D zjyF}19Z0DI+vdQ{zzBN{d)=HgQ_hvfvzcQzi*(T)^ML83?!~x{g&SptH?p;73npx; zOh7A}Dn@+UR+)gIEdsA)5=y3JFnVYue`FQIOGQUBD~p&pV1DIP3jn1=7+-KyFoj1Bdj;Gjz-KaUk6gQWO zPdN?&s164RIE%eV5dS!wBw?cTzz${(uA~kyR#0>%t6*rng;(`hKpWN76lT;=gYi&~ z-#H6VzEoy7C%R$KKh@hcCa~$HQsWgV^W#`>k~zGbBXS+3hR+|RTSbQ0Ryax65LSpS z&m3aMEv6QrXGYizGWx`u_TF<@G}q(Y49Ai3=pi=9D&H6tpN`e04=&-LyGUu@pHVFI zxWKTaNCXVltjr3-B*$KLb7DDLsCy+-i`ff5&bF z1##{H!6|^D0DT^NdbUW1S&eJ$lyi;Qzj-!)Y|TruFoDi8S*2{+Tguqj7azhm#o4sh z>7q16l4orIZ-}oUwSMCGQ-$>7U0s0xx^K%hz>|1^&K<6AQfd1@@FZ*Wh z{zY)xA3Nn1y8Y8vp1=5Wk6$lv`_XIeQTSz6@BD|KKHUmmK925j_yB$3@c@0GenSED z^~VGBQ>r))0O-RhLjMa;aVUVsTO18QfAQsmk;QkELD=4r=olLbIfFv?7|I>QE-DYR`iplQal+VqDurT@*L=(U)(leyy_8k1|K4#3CyV!82J zx$#8SSU?k#(yo>p9Yn7QLeja3Wk*NP~_ZeobVH740}wO**D$F1%6e?&sv_d`=dEvV&+g)Us21 z1~IGO<41gNZF|Np(BHGPi*0aXWlcD4Bp-uyJS5uMLBobQm2mFWM1u&>r$dd&rJkAF zm_?i}U>@5~Qb+zWqWAA(2VTt>y;wMTp@sxnG2L0UIvodRvNFD(}DZ#^idoyAQTQBtt)98lblg*+EscgvT6P#V@mvRZJe|c?03wbZjy1L| zxo;_BfCC=ez2Mnkxhg$*pz0(s?WS0HfXW9TEKW9Xa~6?$C7n(e^YJ~4Tb6<}PF}%? zm1@@mTW6!Yah_8joGf`RIQmJ99H&(XcE_GUl2aHE9NehRd8|KQG~5xQg$SYcX@SPi z?XzTY9@Aw^w}8BbV{55{OE`-tqbi{&=w#jm4p0Vd)OoOQrqKbgj$OPMULS_k@IYXY z^F@e)IlzGw(efHLdWqRP1oJ}<45hX?Ed`M_w9=W51Gd4bqpAiiOvv&?c0dIPz|KlD113^ByL4UCe z_dWOjE3CUB@^UbR?NWA@P91JK*m1ZFbIYC>LDx7q&NWS^a+pjs^tER!~qU{DNb zmU2c3-g_K4{&6>tG(~q45Uc-7P9tWKX;ruNr1JpdYE^zsV|u$XxKV8lIgwK@E)i)d zdgBa(?Z{e2VVLHLx|N}V&X^;-1ua+S{X-qSF_id;;tjE#Td1uIMy1PT4g?jB;+lPu zViZZy2k+A%>TWz8nJpgt2dA#nV`R>n`vsDEiW9@}HQ{0x+g(u{et=b{5l*B+LplQ zc@U-mJ$aWG%BX$R_|9A3EiOMJ_ z;p$_+BV64RoMv$q0oL_gXQK0)s0j=P*b5AM^3XKKZTQ5114F9y{>RK3Sn{1W7WsUX zoU(<6F$ zat8Y>vB5F%FmgAZXrTe1>MNl4z7pp*%~2fN%yWwlH&(Tc)Q_Auk~xmC+1?_jVLd`m zH*3#B$~JT-$$Uk>PaeppNI;bsoz}0KBH`#B7tOPk{9 zl^81`e&VbB-l*i8*>KMT`N0_+pIf_dKM#} zu6fU@KoR^WyyaJQJWfRaFP-qn(}1j;(dF(e4tE-@3l+Ac)rL?STmYk;HID|~ABZ9q zB=n>oZMr=$a($z^V38=5&&?S3cctB%f8S`i(k}|DAdjn>BwVn1(<_GKYr!)TWP4!Q z@oM<%=Q6GrSp}$HoJMKi4ndDC1vrul1GugVr@C{I`l7Ac=~JJMqVA#gW@Y{woTaR1HzXv+NnKNF0!Y@vvOf(8OJ2x&fb^VlmTi{E zDB(@V9>zP6n5C{S+m!r=gw9X!0|6zfxG^Le1f2wvPJ+6rbk00j{5|T26cT23I42Fk z3B-Tu?>PAH!RWC@9kP$CgxX4{QN&R7dMTb03*LD`=oze_Yh%3)7z394<5IR~{+B$O zZ^zGxMwVa0DbQpYkMRl$YTw--Mhv_WdrXPiPe@zQA*)N(vXOSaE4fO*XflJm#AU=$ z9q*U8BKoZPpHi-^Qf6a(<`HAqJo%4)^QO5iMEEYmRQq4q0r8w~VE7oH=YXq)aImNP zXY)1~H|7v;QKH=Tod5IV8jO{^aRVMsj0ABqw?6bz76qS$AcX^VU+s7t zg#MyL9|c^l=(E*5P5;j6`geCiVC4^C-a2(g?IoxeexxGZH)? zA5<#-8#7C&MTxTiNBJv(O9*gQ2|f+?@_>ydS0@h-TaIVx-OqPcM%VsR&VHBfdpOI- zG4&2woOOom^~cpLBd(0Q?cE86U{>f1>06Y!_|hvBr!0~A&v6~LM~}JB8cLL+N2UW_ zysEcMm}ImylV*rT>6BD!B2>{JStOG}X4g{vMd0jVjNx{@Qmm+1Vk_flQ;yC~D}O~i z8xEe<1r!!#3+)s_AG$aY0vW&)ELTl}pCP=Og|(9^O*PVh{8W;aHQmN-ZC?l1vGO zcPjcIHlZr&8fJx=&Mg-#ComKq01MoVAfGy-Vi1mY7z6C#&qb!B)4n6_hw)OJ9pmrS z`;kBQpp)KY$z>Z~@}ZjR8^a2eD=lPF1*f1)Z86mm2>o}gS1Xsdis8gPv%>hVCjaz` z%XyzQ2X*48TEU~Fc;804xaI0+I}QRzd}U<+UK*JT=bkZkL+DKmuSi_-E0z0AON;#AsIU(bXUNeIUKAfm>t# za3PMCh^V+avL;EPw$~`%poF~LgT!$BgzBD>#re^klaFp{)!s_B!kKuI8&ZSxtqCC$ zCuD+Mg=JN}j^=)9(^=k{CBSS=FOlJ85sLXDWA>6lDw8zL5KpwiJ0OU<+?mvX(c)ki z%<_X_lxeK9Z8SuFd1g;xiW0W+3@)trA`(m{^%mvAJrk?~Y~da}Us6kbyOM42f7$dR zjRm=5776}y$S&C2XZnu0SDDjS5@8`00U@@td$Wm|j?-88@tMgxu+q8*o&MwZoJ;@Di4itm0%&1$ z2XK?jb;jimcuOtgc4vFw`oB_K2%J{hXb^PZfHO+(g5#ZbP zmJh?$FUJu#qiI})%fj&9;>}ZawqV3ISiLhK1yW3HwK;jV(4OOju+|)j^l8#VT@Tz@ zdnR8tS7*8shMwBIQu11ejt$wtQ*DsUl?&Gq!Qa4N;R;EjV$Kb!rqW5#;%KCl_$2w8 z#(wQF*9d9z%}K1%4OZpiZ`u&@`1vAI_1dh6!7~!z#n?%lXz7I0fLsFuxY>?%Soqm! zJ;I=s>YP^3BZZhoUl|_~Ua7DrUY*E$^%3p4Rod?32wh^M`O8EN2!9MDT}S3w!!Nz% zy34iLGHBTZldas#i;#t*LXAZ;R8 zgk50L2`F(pXT(}6Ts7&2EuY5A7l%Un9i;_|@Vm1~_ovgtUuybF&GkvBqu;{(P?&Au z*~#H9&XEA!yui*|6aeoVQUYh2ZZH0}vgF%nuO2Lf zQpF>-O8icrVr383fIlU;;8NG7j>!|dldQY=3&U%R!y|s_^|m(Fgcfr)j#I!Lb6;N* z?eeeAe=IhqRh?nzZ3o&7n2>4@%S+&dFs?7=N+&WwV5sCWxe;aG*sG#?@Hh=@kz}s! z+K=EtJSfdeu}pt+IT_ru6QPX(xJFC%!=c1ww*cR0PG4(_{u8!WHT?bIW@$#C{+C>y zZU5GC3HjSkvov&M*|zcAbRE#Td&k#x9gw~IcAPN{6mmv>rz=U^ahd;6&>orH>|!!Z z&db?3fCK;JBR=s7IKC_jH$xE<`u<-{AgDbAR-bbOeL;W!^!-ZXBSN0+?6_g&f8M5I zq8DEAK>nbTn!4%6d=4;D=+I?9lcgw%jsktJaT1YJ)Bv-x}Y56a$KF)#DQv&J+;#8{YA~9%S z?TFOB)8#72$J|`>x1h*NhACi z;{CT{^=D3Dlp*~x@M}%Vx#0|fpP2B86wLsY%W&0T&wi7<_vc^o?}uOD!yBs75mJO5 zCxvU{+>m~>={c?rV(m*U@s*maBK*)Rr+l4&S^EpV)@{%pocVsUMp?!#p$MD3oY1#x z2xwR<&_rP$2@2OGbl!tYq0eaSvoQ9~Ox)AB(+F-WwdE?s0Ks)K&Q}9V0HMg~Wzun0 zyPKuT#aLt$0Ow~I7%WrOJ;p?&{s>eh%p%g;?|IU^;^a^WN^*_z6=UeXzhw_Ny4BuSzriG#Nt5gBhBiraX5d-XNmw4c;}?ef6|SOH^mR6-`gVX zICVWw@+O<(DSdUl1T!ITxKFO8!=dN^*rA_iF`aS%YLDuy{tvJk_264)jmE}n|83f- z^L%}UeRczorBVk*_zUh^3Qm55wKMSDZ~o+fcstks-~|jW8*RPsE)-6$C7k{GS7JBy zoVic8)&1OipVIyCapWd*&*=1?*A=nl$fxlyPbtBt$id}kYpcTZ)l>67M*#gD;vwOj z>k07imp1we^9p$S88N$qoEy^?ez1m_cf=(HKl=lp2$=Y6FpRbRet3_K4mP>%&ItVl z++M)y%fA?@qn(j2`WhUaXk9+Pa8vYRi9pBtdxb9lG_Vam{+gD3(;B%TjfWBY_hWqY zNcER3ttr>iR}BJUX=Mn7;CG#fp&0Ssdq+5T_L|S9nBU4c%d}-HikOrEbSmakjjK2}n)+?g#BGkg#9tkw{X z;L3n*Wn0#o0Px#{3^V#*tD(>=(i;<=n;ypih#N7QGWkp?@^wPV zOOB_cdj~-Umhv`gp+mRg$n0S8`cSvQg)EkgK~(lBL-G}VR|!xX#gq|EGyP35KM=qW+*sEQ=U~VB-CggxCH0ykgVRnMrn}&9 z+Qw8fbZS_OM!M$Zc9&HcYS&s#z(Q||-4T>ne%Zd1mSy{5$VE~3HGnijHmEg#4pID7%v!*T<#I~o&HiLUf%*j+KHVJ&!S!Y5=$Cu9(o&l+M(zy3&98QqL zH)5046J>JR8*#}&YmV2;$ff8Fk(}o~`+E&@v>ad;(te!KNhq~(q z%@uAJWtz}NIQb6n;`Bu&RoH)jOG9EbVd_6c7_qI363^NQTO#xyTr2u0q-orxX(>JY zip$!gif5hq3SCe!XMi~7C#M~_aSWknb$4wt8K~1&+acG4A9=CVI}o*o!Fdou{CDhQ z3=AZfAmWM!5sAz@o+#}P_CghiqPd$6Y769kKaR4O5P95mM3>$L8NOSt@>> zqT|h_Pe&E}9*z)kws{28ndQhR_wdRW&SmNW;7tJdU1$RyN^$~tT3$t3EZFMIj)lCIKYJ8qsvH9D z%1(Ngy*^XcXW7y*X8!Kawx{m{qNcUXkQ`ZK7`J!2!c$_b9=TmXe}fUZz%eP|^%gjT zY5af_?ooHXGyyM7c!P_Wl|r6H%pi(l=A%($=O=u&+k!BMtJNt7T`)fj8yP;i;dORd9E1>U@X z0#7-NHy-vy3o8S@gOS`szc!Y2bekSzKiPcuqtpD09NB_T)ry+a)7S)AOsjmEO$|b3Cr&V@m;2sxW3T-FHdX;| z?T=-H?gn_RIh8%JJdHsbG|wBo#ZWxNkcnG< zQ3Ei*kS+RFoB@TQQcr1SFU9QmVf5_Jcy-SXhSA(E=uZb#*enKeyJ;?H4>r6S|GYSl zkB)u7_tItcmwVCIaw;R@K<}QGlDw>=TH|=Y%HE^eAu=mBT`S&9@`3S{=`$ZUm~$?0 zskToMP%X}!h{W3&esXYYa?ejr1?>nW*o>O#Hd_k?&UkQUIq59P4jBLx+Y`7OItuIV z38cJ+8SKI((Yj-6!=t4?`+b~CY}X7BikaqA_hLyk9l&+!OH_j8g~94l39u;xc)Ibc zfMD|&yy+kn(3pN*&h5(V9dYOI`&H2WXMYTg-1VsJ@GdJQ%H*(J&OqNdf&N}pDDqRG zDdn#n3|kwd{9>82cugFtKx3kDd~Hvx?_9yuK!yhH7C$_z>Xw3h9*Ei$>tKYA;O| zBZB2uHl;QoMC1NDd)-uX(cE5QL#zIV7WzJmV7Ziy zg^uoIO7E-{g4;_tS@en}ShEd@5k~u-lv3M7oBIxhIddR1f%BOLmvYdK%|hc+!F8ad zoupCsZ2_KduEr?7jd2+LH%EO08y6ab2c+=)%6OC~eD{9q4q9AN0KUMD zL%pPfDsS~fk@pENp6Eg4KrbyDL3;GUusK3T978yU{n%7FO=K^0PtfmwQSh@eK0t3S zULvgjmL=RM&iDY{jJ*Y2?}o92t-wC0qYx};n8W$#uT(eQK-y#;qKty!x8^ekp$zAL zLNHtZ26t9iiVZh}8tPpB{fZI%{D@#8Dn06xgC4o}@udO@dhG3$cw!3+b@?BFX_Feb zF10m(df|W;(g!Z^(O2>Rndbm0%n`;AuxHRS{NHC7@hq6F{r1`&;eT|J)13sA z-eaMlhxrI@OgMC+aVv*hxNWvq=5xkHWNgn1oGw4cpwGtH4`=?a_1)!2zzETf5YtDpj9}(CQTzpv$QUbgmf$1BQD#)bQ-RE5i=B7=qCM_RNE4^SY|hj+-hFK_W&Rt#>OEUoUVG$A!MKgon$ zt@hb2bAPjKyOX3q)$H%`!rr%q{t2HEelvr8VQ?`?Ka9fa15K7Yw*@w4!Y*`_@x#8G zt+|1Ob(oI5wM%PGP0aLNu_47pC8`TDS8h21B8%QiuX#X(%ek!oGVMxgG-6kN4l%}m z?rlxB!Mc~odX(7iD>j{q@lHMa6sN@*I&}~TWY6(eK&MkcY&3gQ}kx`x{44_6{l^@jgqMOK@hYxjOQ zmH$-3l$WbiipCKwnfQ`i*j*&Y3c``G$D~XXzMT~5PC@&6Kv>XT`bW$A6fUsoNHq;; z>`j|f<>Lt6m&Is|PGUFzn&8lM3_&@kJoNMAV9>p+X!N{^{^|Ua+wJf-%>cHX>nf<; zIb>y5!DtF^0KI=`D#U@@EpgLRW;rGj=D_kafqFqAla@YeC5>sKii(q8J?-`mmcne{ zL)U9TSdrYe6hhZh{{`wGNmYOo=O1Z41uKp0$JQP0Ag6I`LB}!S;Wy~$vyE+M@UdqE z4mH8k<=z7L%nKm1y_|) zFxJu_C(_Fa1|RI(YOCQ7V}*1;RLzs36(N5WS;auvdIKcf{UU;F7I{$dv3NY91&rvIUp1TT9vCWpRmZruI-XRhvU6-@DxP?w z`)k&y(ZJ8yYruOxROQd_Y#_xC4$1K%7J744zHbsftcq@;LD@?NZk6Gr$GVzLpQ{0! z5na8$G?L-bFLNSh$9^BhXA>6t=gKgD3KStnp+h4RJML5Q%DBhSu4s$DMyUd>nRhA* z(oMIjLnKZQ|58Ls&f&1>r$@18PUGp0;pxj<7sNCLOjKHPGRv6pQ4;Q-nsj1OR?n>3 z;m_&u*-jcpv8~Wie{o59uz|=t{mKjn29c-nG&foPlzX-GjgHEf3xZE1^jt-Q^NZ=G zV{oriNnV@O9{jRBRB7_W0r4gWTr;Z(Q{_R7Veq=k8B3~ed*7VwKqV9hwfhE zefIxk8FccJ^!>jg!%(!?Lh{T`?W_c-4YPR`J;`fe?&X$l74<$@Pk~^M7SG3Qqcl$m zn@}hOHGw@+)f}6ldSK&3?LEb`9ZTPCDm(-1RFwK4#}VGUELRzyI_)~?cj7Z-e@R|| zMh6^$_iR~BVW3+TdaxJ3qYmue2VM<^5fT%r^5df85I|%~FDG4^ z2xt|KkR$w_7n>GH(my3}I6XHXjg7_g6|?x!wg&_A1?_V|b$rM1a)amayUb2g}ai+Xg1X)PL9=bhBb+Ui&^p{6JNhzLAJIh{}Aq zY$g2s9}LxRqRCKjvEk*$D*bX)W)QO$W4zJW{n05-AF@Uww`FnAvftwe@|HAVX4r+DAzSQTN}KJB19e6!4YBbdRp?fQ|6T@AXKO!y=R@ zkuAnLDsN0Wpvn?WD95NI<3!TI8;DWGnrp>yS8%{zSux6sE%#-GR=zHBO^*@JfDXSz zxJcOr%Eq6+J$%RbD;`o~q61ds@JFB6F=X#P3}jbDL=zHZO=j!C4zEvvI?a3=75F_5)ea;ORt|Tj5JBumTvMk>IHQY{Cc3u`2}Jvl> zrB;OO_jry9^qJuYA4*&Fsh3l1R}d)ze45Fm>4gaiw4ynk?j?B7tjKlZbl(vC5(qc(Q@uV3j3uKzu%3wytw{(0*l>S5Lz z48V;c16ucA8G`=8d=B>kx{SbCBjyOW{O$o~kKiQ$+VWpFHz^UgP@n@uik?ek&IZL$a^xbOUUti5T`&j z7_(DaSm8{~;DqU>1;%_uWSfjftbcstY=f`WVRQTV76*3mNmHpFOa8EnYP5%n_n&xS zY)}b6V1@#1g++m;QXVvN-^SW{!)wCbR)pb~1ps|y7=j4c&5QCwNjO%q|7N%$=vHI! z@p%67Ckjf^y~e~=#NwXWjSMxu@q_}|!y!EM~cJe!{Ah>+Bou#pJ^E`$ZLh}N=t6-xb1 zHoBYZg{pC~S7>Kg+Yj^WV}bDf$8PqpG|3|GW__Q(GwUS179GYgLI8=c!*CbNqpCAf z38J`P*0B$;KB1q6%|@ES5*8B7HjLuG#<9&*Pm5>v&Xe|N6TcZ=l$kj5?d5Gj2SfoI zlQ)SjD;*IPI=1kN9hH{~gw&YJEJL^>oZuiftVyGPpjALi=8R@}a;UxQ7B81u{{gR- z!Z)Rf>gxT|?lU>?Z+HWsU<{5ZW+JnRz=hcS{Wp-m;rEwbFLf zw~tQz<}d6s|6habk(p|VW6P)M9$^oQe-!-DXt^z~?nIz%sh&F=kUxt$!8_)EObL~i zGl9eZ$p4(Y7_9$w1qUZNQ#+rYI~I4_R5<~Jxk7KJ1;fMOXJA*;)6-D|Uv}q&1fEC0 zpcgKlT!F*SK=n3Md3YvZV88X>)+-rUjAO0a#`*YT<`GYp`UHx-({CZHyY&d}>g&qA zqyUE!PfEOtBKEzW%eW+{J0Hs^9hW(6F3cP7PK64%uReSlvC&vMYyw#1smj3_FLK|w zmv^OA6&7@(I0VGJ?Cy$d7Tv0(78hl>cwRL=6 z1IJgrmA>bl7LfZxON=T6#cemLQN?;|tG35*=q&0T=G`yL64GNjV{+O-$*tnZiY=`8 zX&OJ7j2)t{;C!ku=*+&@OzvuHdhF4-;h6u@t#@g*49uFZaMCPrG2i#*alj!;szW1p zyAZ~L3tKNoCM5r}Y}|I@peNSD$&cH4y2X5DwB$&Z?ByBlZG;vu6WF@7Rfch5sX|+` zca%!pwv?83BISG7Vf@?|I5phS=zpOHrM#au9%WuKgK`=1*ptTQ-|eKDPcTGK;K&kV zNl8}*IoUL*`VeThpnv&+4TD4g4$hI|@eA0`^7aZ@pxM5} zB`-a36mzxkp?ZPB-N5re%0%gSZB5<}B1+?zTrYO{4KP<%Q%L{Uwa>iLw|ld20|<#j zs^nC|RY8a?_myFGvuOEn!MaVwLAfDROTPfDbz^}j39q3~PlUnqpr7l*hxXktqql#g zrN%)3VR0th&L=7VkMfv{_t_p5r z=nKxB^XBP=1lRk8S{$;0pQNReeT=h+1h9;?n70CY#B1y?3U9rtV8--q*CkKdsP-3o zVFs~))|tZrRIjaH27UemvlrKtd8jXRt`VnyhjRF5D)(OEDB76X_NZ*rwfpsLc|gOF z?b+bPnpx_<)(A3$1Ux=$=EYpY5LWje{l&hgqC+)=deB%_#t2&|Uz#;2u-fdOu#?3mC%1o`9I9}ifp!6ya@z_b9TVnC3Sl4qW(7{ zw*DU#LR1}opa&MWfx-cgOYb?pZLfVN?~EQoFCP<91m1$LhY5v+I!)qq1NS~qGKvU9}+Y)=pWz;GMLOP z(i*FXZGtS3T&lzEu+NaiC7aQyzuvB5l}Sl+DqA9QcSqbaqSZ7g=fDHQlX^^LsUiEE zaCe8T;ue(4uUSNil&4Atl^I;C6Pv$EXCc{Pi_R=Z@U{$^K4NdQv}q9U$mXg?09`kA zs+E+$6DHR_wH8;B%Q!q-N27|4tw#qt&pjU=f}at`Z8g3KBCW@04#G*#RYJpZXv zYG8(Mhw>d=;&5OLU>Je^%hbU++u4qJV=49HY)%pvO#vrKy7)WH34;KZk9JkeX{Ov+ z3HG-WAxPTv43k})7O<&Ki3Z=5DZD=r%p>VS za`L&>u8oY&4aU7p6YU zDBGVe5q>Gpf`9+aWgo-{{e4-k(zCI#$?!gE#3=8Rs}0gwmUke ztE-1*wHc^@hHq<~Nm~8qP2An6*{S7IEyTbDY^Cy{EVjNc>!WWb#;}BI)F8@!O0<_y zO4?9-y$W7p^g$Bw@N|3G2-HZ#b(m9bnq1S*N%Od$(8ekbjI`Rw^|920XEYp;OZHy`qt=1)gk+>4zniX!_=PaxG4gTx8_%>8sASX{*nwa21_Pl@!lV zH>#Z7%bXH<5>*)DeYRI>jnjaZFO%JfoAmfbO4mAXD)#?kOkwS5BOOnob0+Z~?Nghp z*)vBi;P!_|t2D~`%2UIpRzG#OB(wYz&c5-W*A&Ner&WEboZpsxz^8a)>RA_m>++(M z4?!L%JtQzbN+07BuC_cdXyc|_1u8!)0G z8eYBV?x@gS>#;pm=$$D8*nM@L1g z-=aZuxrVv-<)zb*Uc{5caypO$bsk-8jwXSNidV0eFAucpS^b}nn7XM zPK7>g)d2~1*8}i&{LN0PF9lK8Oy3Xmo&wBk-%nbip+AR9IP<*B_tbJ6XRLix0iU1G z%Zw1S_lZ7C!aD^!;D@cS$@7R5hU##{n1Hhr(xOaiLwA+&vvPokd8E%o;G3MgLHg@u z#E|2PgYOXO-?zsLAP{J1XsBIJLqqc$g{b?!1+$i6Qn^+f>ES!CU=k9h5~28 zVc-DNW__HR79E9VjpfCDU+-yYyR*d!yvF5Ruu(%PM+do z%#yNvV6aRK*Ip)EMdZFxt-hi+R+iHTftSsS{`OE)f>-@aEI88Dn7Y^ro&3AOCaf%Y zGbuy#EC1z!%I0PvSr%^R5xI?u4;Hp6^<=)7ZB1EduXN@(Y$A((Bu@M&+2T*>zZqMF zcO}F&yP|J#54ElRQGi-s@?VMr_Ho4T$~q$HR!;LQ*~Mw{m;w%!53G?k_%o*vk_{pS zIYD0&>35E{ey;JYiAt&r#dVXu4A-@W&+0SgvJpmz6(4GeBSJ(sCJw7`BiKSt17;4NF;!V&$p${15!ge*T>*d0WjIta5R(YX1xU+)l)+{>fSErI3jw zkA$(EBGv$1yLi1CPN)NeE%FN4HcSSpwLe(*yb3vVh@h5jlMX8M@gUcug{(;#w`>b4yF*CvkBm0bd=SWg{Z~)3P zZDVz?v4lDz%N`%Jrp&90m%4MOIwKi1Rpt-;G_#T5P;&qV4t{I4sLeX`Z(qOxj9esG zm(_8t1od$zJ70N4JP^(7P{`hSm~q?;TU+;JS@il|kI(aIA%Pr3X7JTIfU`uD=k^ir z^oTmsp;^Stp=dK-q-+Aw=|8!3n2BA!b7q(iPRI#xlk%U^y(N4VdCK*c6}&B5qg|%+ zagoPaRmn_r!E4^dxkJyXWH@`{xYLb95aKF1`y8S|jS~xXDLU+dTOTzRu%BWkcGu0B z-{fvz_!Pvo-n{`EH%Mo%;O7EDvu^+oey6WCp zE}zP#11uL^D_8#>!ncfqzUe*Jo0S_`?DU@q>}1b91p&PW@&TX9Z&AO2r$h0xN_sn4o8U%bVbn#G9~m}$8Ab6CjXAdBrG{D$8CPM^Tgm_2^W_?+g(2Q zfBsy*9W?AKipx^FB<5~PVQ z&%^e-$$xGrMhBu+`L%1+$m|-6qp+*UZ9sV%O%E79Ml|d%E{~p7&|VWmn?Z?lQL%fxA4i{)&(_R}Y%%KlvY^p~UWa zRox;h5H1+4?r-`sxz;ENm=>_LQr@$9dJc)1LJ_s3s^2#2WG!%kzE zZx@-jGvy$nIJ-r&m}bykj!-eF29+ot*~i1iN84rf0$H(4u^rxi6K^XQ`Q!BH0u)`= z`qad^IrsC5KhT|j#47j273FuX$wWwXE~}7IOqR1+sBr|Ot(QGim%-_@M^>&{fwdHK z_*C8;U0IC4LMhA1Oh+?wL^6WTnwr**+w?H)J}5Z_5-cyv6<5&>D43eSG)Q}ZVgO1l zO~-&azQ?X&G7u47=*%glvOvYP_^)yH9ZpBSYe1&F#$>lXnWE`#*&g~*<>O}JIwbkf z{R-8E6Oj^eTljBYOL%fWeOq&{CXq(E?H?8e+Um~pNYa>v`|xlo%(`xb@FPi!EHYWH z@W00oowIFvUYs^29tnJx4+l(#J9-G0!sZ-iW;--%_to6s`h8v(k?Yk|7vKcpQq#WB z2wb2w5+BE?weQ3%>N2-Ig`O4!UbE+{jHiIgrq4aR66Sy7-Dh+;0saRn?(e=n^&1Po zQ@>}})Aw^O@T15iVnRHaBLh@pq%Lu^x3zNaZyfNSj}Q-6X-tk=-8Wa)U;f1~ z8g(N%C`wC@PEPU%{Qc1S`%&5A69FeOyuF_VesVURT_cp8S49YZVG%8s267cH7KL^k z$&Q4*Lfk&66YFqKDUY0qh>le2QPs4k*TL2ou`CEO^d;gxL{^FR)Y(|duHA|H+^sw} zB^knc4)B#ai{cqcbuC9K0wlompqi`4(4mxpjGg{j_?`PHWF*Y4Dd?L8(mq+e4GdEJ zti_rsgHN9_99@%ztQ*7cF_1d(i{h3MO>q8GiTbQK>4v!bWg}0c_7cMS4pmBhk<9aOpd|jzbOc&;Qjlf1YAOsR?*TJ~%R%G4bddsz5ve)- z{eVt?O@l6SaT<+<%Jd)t&^d?IgI~d0pxo@lHOxR>mdZy)Qnrkg30pmkFypY9g>7yg z2F?oM0!k{}1d8i+kj5|cy^mg5q2u&mV`y{ zm1@|Irm-?w-?-Bw+9^O)jfLe_eyEiFbTS(Y`0|MVEgs;WHYGqOWQK-zgasil{ME1w z`&&KzwZ%!CE$0|y<>ja;*O@}u)+MyTCO&x-(p~(gm!#I1_JP6@gK%~K`&@RK;}vPY zh2z~XHT`}x0bF?yyO&Ct>1=jCDoqynUIf{{fO}~z5G*9o6!|Orv&dH&*tlLr%NuD; zQV|^5lyjI-raB~_{gq_^9yOq%vwrtI_XlRyIzKhx8Kl-8C5<_0nY6--{JP(wO3@eE zc*`K)S%vy(D%;d*7a5!S)!G)b&u#3M>~EGVvDjkhk% zyAJu^H&N@#b0s-mpR>f>j5)I%h7C1}Jm#N%8=S%jIdXJ}U z1U&g9O%=$ZUA~B9Ni}g@Qq@}!P_2}gYH@V&>8{H8aNm6yL=Be9urq|Q`F6xFEyQ09 zGz=sb*pTs&Fl0=fsNX;g)Wc@8ti_%{g>9Zc)MGIQk?4OWP4FoD}>0hox@8F}K5u-w4#L z52&XhNVRQS@n3I5y(Z`kp`8qDgRj~E>^p9ibxMind{H;#z=RRsxxbT=Gx)4DX(~ex$UnHUr2hch`3yg&l3OGW%HqHFGrxjSuZvukzxlignkvz zhRLVi<$Kn_r##bDJ{rVGaCQ$00j@Fx9gZB4MucI}W`gsrvil5S*=_ZhuXT;;4jo}U z5OOzWZT(~sm+B_y$MMA%EYG93(=+h3IouqXdiSeQotx&7Bp*6$-_aA-p1 zsKmW;StMAQSdW(zDh()vL*uw_I%_3cjcRjA-P(*+YoXJDKYd%OslZ9Br~?hT-0}mqIU7+s6 z6LEA-DxHt6bmuK55J?L>uU4<8X3qTX?k*%W)NZrQ;8$j3WMpM!PkvlRUwV|6|Bl)Q`WTp}n4>{SR;j{c zek}uuqAz~i3GkClcDtCE7{kNGm6e@tpZ7<^%p>d#9YELdKR{QK@4*kC?&z#k83&e> zP%R1O2)fLFQ!Dm=(1|bv3phMY{4LMys)xb*jNK39HM#eiHV%O0R^KVIMCjo!@>%?AY1DC6TXdoq<7hB zKdh=vBN(hgWJV8da+j8tl{yzE#)=rCvR*P_O?#PxR-pmID89l2mh^OZL9sazV6OS) zDpzV{@s_gUqZyaPJ<`-B*`E1QuAp@Ooh`T`1I3PzTEo8N)nwS7I16>OlTu^0q0G)L zCLYhwUiv#@74ay`)dZU@#%HA?7a7ktQHT+Zp4I8@Uk-%y`^plw2&)4lk3WkhxKtY5$CUb{|Y<8lw_V-<<_M?FRE z|7j~#ge--EWL!y3b}`misKrTdW9viIuRtEkip!mv;3i` zKCXl0*E0V*`Lt`bzxv%nOu%lYXo@9(RpK`t9sYJ55_`#sYH&*z@m&26-FHEu zl{1dZcLz}2Wt$DCRXsTb%#wTSw(nuaV#CZopVMY$l zx&{y4FnQO)GsyG=+BFXz{_cTq{~0-)09|IjhS$(1Rx34N@v%g_aBrM`|Ge$(?aj@p zeZk9b?RK`e`F{OcURruQTdKTgO!rU*4!0fz%k^+5nEoRcYy727$ZvAbGJDVV&QDkO zIz=~)>!FhfuXp3^<+|YrhL^9VufJPwG{X1!u&`70sqb6Q0D01J>H)f(A=Xn5DZmKg z0rU6OLBlR6;$SavRtoIlpqvAX=>ZMU#VX8*otJ8QG6HQ5sZRF1c4K!~Q#vIrn`>cy zX>GX@liTk821>z|GO{(hu{B$aP?lV;?;O~&u(a}Zxw~4QZ6;m@aj`hv&##@rtJN|> zp19iBK3gpPZqGYr#bK84gbHnqqCwZF)wEQJofls%bBu_vk`w2PvREIEN0H#C(~K^m zf$0bsVS47FJPaXMm~*eA%I&x-MYl|{x)qV01&H^Ht)p|nR%v0e;Fj1*Q%78J7Wuar zhG(Ov|Dnlq@;CQj`9pbM{5{L&n^s}F+IMx^Roe`#3QS^^S@2xLi*T~Lwv zf@7!mYePr(jKGP*?;9syF`jX?KnAmrtU1774{4gU*!b>x{k zex*VT%6X#myQ79WB^MYRRTf=2EuZdOY&IYd|D7@WtV7+Z8<@*EpA895`6pUFOoCf{ zi^ZrKFqd*;_?x%6U!nS76`va2JhCkC=Lu~_mb>^fda|y{&+m2?!cGBq5B@hL%-GO8 zRjb02A?-r)U_2`H-Tb*U>I5`Mi3Qu*c#=0lA_k01TNPml(fBzeD!>6)3=0w&g@3E{ zhN>v0mZhlB)UIkeUeus`y%3?gwNn3BRElagP``@VWE9bP`1{R8(v$y@24mW9*S~Mp zxK8xf8}TNqiAD%XF-%1BSInBy);DTEfouen*@4tY7Pyb)gm-0sUD5`c&M6_ajB)HC)=8TH(zVerkXFls7W|TD z+ZhI{xidstnG28jiXE+HxJ*Wkj^%I_^Rbwjdf#kcb?hfBPbWTgqmII~lQ@#>)@gX* znKcj5iMP0}blKVzB#HRNFSydo;1cey81Slfhz#8R;qM^M_U=FdJ`wYdM;Hmbm2X9R z)xg%ru6+T~h+nITiHVUB5uizWd2unF#ksJ)ZfRu|DYk!bAeYN`d33bAv%{zdN59gy zBIx1K9vC=426%Xt>w&Gh^1C)(n6aKmi|v8}cAG!j=ylj+7T`rGsbO{RzCK;Fn1DT` z_Rmr#egpVCU96?5c5(Ntf(VikQUI@9r&LL958Ny~?wcTO42XuDP<7xjMSHU-;~?Vv z)@4q!*N`~t1n}u~Z3jeu;fWUB?r%bu5D*YtoSX=}Y;SCEe>LH=+hL_FbvGJZYeo*N zEv?gTDXXfi{IL;Rw&qQWSMyx?N92^*?(yku5p<4vU39-f#PY>^Kh#V&(Dimo$KLyu z>&JD{ZRTZd^92qR)+L z=0Ut^v+J@X5%Oc7ZzR!a!@#5EgtQP)^chzX*3nX{K*+Zw4c@5Y)?)15?Xy4o!*7oQ zAlziis7dcPhkr10^pZVx&Ye!o#nrLKK^o`O?v*7T@0kpF>Lq6hPNO;&sT4q8)(i)V zY<^!g)}m>oS&idy7Dw;H_aF6u_m4uo)`#9+v$PUDcsRuvd!Wn>Q7uZ6kwdft1K z>W$}nr2BjhJaQ}G_SXQ{ePc+FCohqjae8G>$EVn8-NSxreMo{AR0-A?ok5Wh> z$uw52y?Wg`CJ5;_>4%f)0oY+Brq?6Rk(}BU7DGN_cdt-cl+0%d28m$r}T9AiP-UV7r)88T=i1Jwe1?Ad_ zG_kbn4r0957i@z_2M%2kwmdUwLabLYp&5N=0(c^2>?)?+?5qD?IUNw15M1$plxC;l z>8pQmAaW8PqgrSFNjiY=oeAJ`IG&u8gt7axdlWGH!jJ6O(9$wJF(D--1%d40;ju?| zEhRzZUn(Uj30M{=J_LVARTSay++&$hyq~#*oz+|Y3Lkz7-5})6hC|5RaWBBlJKi|3 znSe5{LcBp%g#xd`zJ{3%+5i=2{(Fn&H1$Oh;O~quy8WNDK*#^B3sQhTo&4bw@OBw| zzMq5m#a1VO#D>38t2g3@>*e*1&u+VkIIFkWhMJr5F30$>7uw^=&eQR|(t?$~a!;(s z^EvdZo0gpNu;vqVLfYwb;Wm%Z&wY<nPfk+ANK;vDK0H#q06ESV}0 zLADs!6o?3!s#@pXm;`U*pv{{P6pwHr2{RgVP`{NyYCi%@eAq7CT6fYnetU?MpkjYR zeS~obdg3svLI{DD7@q|H_uzRjNOfo|i6z-1N$B;8(N4NZLSkTSl6>k@psKKYa+XMc zkTV4Lm`9|%I%eGKVm<1XgMw5?M0}Q_=V-C(Swi2NdkLDOKEgcHwKNy*;ZT1%mT!M}sTNwbm*`zjMy3%8dC z-}l=i#}HC@xN;_G(AopWTfjTI$oI^|kl7ZV5a$0*TSJVZ-2=MS)?-O-j|P10J7E=` zj?zJWN9D-qe}0jl^T}Rq=aiRzbLjRc)sBbZ)WB+N4+&g+T}xrAwA9+fUSqw|UH&p~ z7IU6xGxr@9!fS`N*QU|@RalZcTveB8mR0UXGztkS8cmZcojdXvEiT|M35KS0Hz?EY zlXn9D2R%$^q}a0}cqW!TB!sjF8Ay#P`ksq7oPUXZo=lbnhn^BgY^5j>q0Z?=9fI0x zvPO!ft_KpIV+arW@CM)oSHn1MYd9JGsU)zXL4zlguK_iG(r0JpYj>gnsJd4QLJ5wW9CWw|NOduk#wC z0)1&8y#0XxGEQE{By!EbxNNcVc;$Y8&4N@qNP>>`_TZqP6X!qZRI(V@*ny>mg@u`! znY=ta6%`d(Sy@T!7~R*sDs8nZ=Q=t%#9$!Vu;XngUU~~Yg_*Zyr^oiI6!RBjmwv8A z>W0&0yVsWFdJ5ER-m%m1^x@yX*4v#Ll}p_p|2{OeF!GLHT;m_^8^AmT(LB>>V?yQr zL&6{>kp}2nAaOzg@U#fgW&QSf1CR;nhR@^Ig`Hig(Xq0!qKmI?Xh1_<+Oql$#+tIy z+Y31H@brA!a@&cHh)|5(d2HIK{=-)q=Ulq$EcP`BF->*(i53%T+!kVzZE40@+mfEH zl{(x35lg();&R@S?Nu1bs#cRjCwI5g<#ONRql(-7X2ov1{|ziAw8eVcadoW6>S6wI z<_Fu6DA8uHnmU0q0-Mako6Xx)PgOl($IF_&SNPOFLM-m5tT5WPoAwX>jP%!!ac2!h zKu-62ov>@*Y2-Qfop6lZR)fd8?!;n6j#X~1>_gMqAB%;Q>|YWzg8Xk2Umpu<{B@3q zEYa+r8@V4lJ6^ZZ)mYqGT3R5$gy4V%pe}W8kVOguEYq;(KvYOd@#sE68yuKv!{DFp zaqdk`X8BvoMrbsQ*U@(9c|VJZ8wsTxN;nwAu~q|6R>K?mCE$Aga&_RA1=SiKmgd)q zQVi42KLXlpG=`^6-+Vku;!5U>r$mq{pG%l4z(3Os=dyr~H||ww%p122&3hm;9gK~W z6Q~?$Pr3Oo5E$rZ#uBInT#eQ^i5!9Crw4{UN?xTmn;-^j;D_->uyNWK?!5CBIr0F{8 zZ?mFANE8I~5@N4(TJVpCHtLv(z@h9oH~TlBvm{~6EG#n7sBn@AiG-9PQCMs%gu~S| zv(1G5@sMz*tAS%eP3Y-5jdX{L1hH;6|4h`XwG}is4Jn30;`FhkBQOqNpS#MbP{fbE zJg6Utmk{9(!3kZZNXOHju;t3c;%;>@-foDpNAZN5HKc6BlqMm-z$eHmV~0B;q$miR z$KT`t8R$%XiEW0UdoGU}K;{+u{62mNOZ-}%C5oe!Qg4hxOgD%xxiR&FcHSI?O0x;8 z6RVzTqlryN?z0uc2mH!mUPEM+b)SJ2PjgBcu`G%Wc2yDWuOeZY2D(^>Egj`V`wOc1 z9z+a|%44bn^<^W?)mGN}Cv%R{DD)3noZ-&P8J6nsIgZF>*wSzEG0g7bMQ7y2m1#2& zx_h8i!%hz&@4EPy`{V=T!~^6RfaaY6dw@874HwV7hBnVFD+a^UGk9r$hlLG`ih>ka zSy`bXCod{3MMgy2i$wlNN>5ME%|#aabIyH^$~J4s?e+N9_fUgPZ`9oK^`7!ce0t$~ z0}l$YjCbS1U+93mLC#uO0!9>3F)_nKL*J|V(L8NFLtcj{0bL%bz#Ox!_u|}Z`2Vnk zf-*sDW{@s;9`?_N6&1-B<;2+uFmrmsXwid{6ZeOcxy8lBiBv{Lbvo0=*ZrYLucr%; z1yDjtN~_rtQ*{O$*zMzGs(&WwdSI`qbL~nugYEm(mqKQHTKeXgDJE@{dX&TFbg+HUd6VKL^d>zVo2VHKZL)U({g*!ectoGgS1Aecex!vtk8;n2s zxgYd;?nkaKT*GDPh;l6d4dwnj#@^mCu&S?UEvd571qpV|E-Fv#FV~2hjJ=6oOM;6uYP(^-AP&078fAPjVgCf*Pf+5EOpa# zZ9+j(vNO_GrErjJSjWxn|5o4v(`*nmN| z*@uj7p4!1H9NYCOUW)~~NvKMT{hhLKQR3zU#Cc=ZXx;r-sJiCBrV_FwU`)+taf&|QZ>|J2ejwZEd}|61Cs~LeXY!)NXjP;^>V1fXt_7jn**5EG>y0$cFf1q}I?A0z*2-Y4M=+7Z za(r2K{SAZR8!3IHJau*=3ph+~d89Jp&md$sYj{C=Aga zx!NckgQ6^54u)Ydk0q=RQ4N0^0<(g@n-%AzvYe9@m+9^Y9Tfg>#(1WU6o{pDwHo>B zm$uprx{?ST;7%b!gc`74LWvGW%h$+3?JZ;^B5bI)-b$6J6j6B7=f8qLMk}8}nL{dy zjADk5%?ySBuqj=+Se-p&{_}ao^+31MKEyVX;3tE4exQTo!x3{5PV}(G$_E^%)|k;XH6NbqwfA0C5(q zDTB>cD|NIbB_%*nyB|&U=)mnxY5{)ro?C(cDQwoDlQR_gso*D675nag$shIspQ94y z9)I}&(Mv!-0+99)HZ(Fke1+8AlQki5;5YT}^BuJGybt5s?OK2qH0?D1ZeAli-c;o| zbhQHB6M}~~F)w6J80?nl6suC`68?0b`N>Nwv&oU|ud&GU7&m7&yZ5axZ=2__kGQR! zw@|%QbLmTuE5G;ZYpCN?LZ4@DTXlw4(ydn2w<$z?RYZGZcwc(DdC46q6=0%RoO*v0jEaU73l>7ItSv0r9rrV z%IUW-IEZqk&#cOkpPYbF3bba>-XU-^`Q@u^`?F(+sdZvV$Q4aHr`}Q zU~`#hNVF0n{xT3SDkoS!N{6+ig~)H^<`wS&o1BxXGhL)UrZdNdgP;g@tJxVC7fiZx z3D&YiCrxM2)?w0IM&ObcnmeRIyfk55W>d1lr({f6BnuNB_iZ_$Yux;Bp>&&~*~MT? zEDvi*Wh4&j9;!+9>nGt}ggsE}P`v)Sfe8un_!Tn_*M0TLpD%EizJ5eA|(^xrRc;!Sw81;CpAWC*Ht z{EW!gDOyHLD5}l>V~+&b!FxdR9 zh=lV;aiVuxQ*o5JDL(d}3x`YQq<-4|u_0Us^aFn6@T%UD?Ri^t`yNVJ_->flj=Q(v zJlgNQEXd(_W_~p^wa2V{E$YXH%$&YeZEijdR|iS96GAL;gn?iJ_sS{rFUV#n2b)Rr z(MEl>3R4Fo4P4qNFe#59dmVZac9%-GgH-2{ea@+yAOn6v$BNX~6Yp9Y+!L)Erk)V9 z3c>aPt}Dnjwgo_Zf+F2X%{iWZJeg)?K=`l=%xn>H zebNKE99HfCZ`0hoARpQI{{Ypq$%z=q83Q$|H~tkS$N!1Z_dLm)YY8>}qM@hvH7~{3 z^?H;U_UDK=*Ka*KlRdHmZ)d}_(KR*D&Rao1QpU2~^kTDg0h_<)?KMm4V{-BsJA{Y* z^X|Q89VM6G{YmcYsF~MbiRNkN^$OWX2|hvY;$>Q|Cr)$cZ~N;Zai?LtN?PM}b#7Rw)6C>z#_uNf{E6#Q<9(n1^Q5c90r23)e?ybm?qXEOc`)Sn z@$_TIJG+mEZR=xR?_-5G{xP>%%*~|ssU(S{_DE@-nW|f&><@5zVj1=JjWBqQp981~K*aZLVzs_2oj6^v? z2eaz0?fr1X(h*R^BhV+W${r9>4L2Fu@PI_oWjik)s2R4eOWd$1ZqDL#=06|vLwX&~ zb1C7c&yX{H?Ync$CiQ5_rc?Ys>EKiCKc<=uA<_ik=E{Hd8F^)_C0D=tQ^aLxp+YYw z3TOLO)`^FkDzQ!o__x)Po1x^frPSgQ=OcnGd`G^!5Bh{m=&K5+ivvYytODyJ?h%6|_uRcpRB{PvoMmR!!v~wQ!`uIxvhwqpEHh5K)YJ1#7gG zG!eGQFgtd%1q72sCWMk<;f3Qpe(IvnLrC%$zvS}XD$OD) z`at5(jr@zcso1DkT9oVNw( zwOh<^e-%GoOqO61O|P%3Bd&Jk9b20ZoOpeos?9F*Vz0UkOq0#J67~=k@x&1ZfUhXQ zR<<#H6y?Gzy<f!peru_*tK39?X4V?EL1`J&%m9Lj}7zR z*TUzw7L;M>o*_@?ZA+u_~i0bv+)D{a!w=Te(G}v$$*NqIDm~ zYj1n$YP;}NXZbh_oHn|ys@+y<-j-tjo!I#)aWk!>_V)jX>wVoFu57!% z2Qs)0Pw07%5jF@D@N6RHwre=_*JTz}P?2u+x+7uCdcu+8F`EI@;&i2U4$f|B^D zXuulWF9W(c8E+^HllFvZcL2Cm>}7ycW{?q84n>`1DPz~vF7}rfgFmeh?Hv6TK<;Y1 zuotMymqdWv7HG7qF9Lr}7u!BrLsO2I1zw?=ITNVS$0hhk2ICn0 zQr_S>=B?!5Y%!y$;j%Y%)5wzy~j2W#AE6Z)E9dstJE~YL)LQpCn zWMDPjRHh_~tqaxDj5SA=c5e{!E)Kd?6S4_6zz~))Omj>6dmzG)3n+@gvWqkPTmxA` zV85ID&vV7pK^`+VT4gxIJGX1)7I`sLT~?1iEjeiJE2My#caSaA(RGb9^aeHVQhJ(H z&=mRPr4^v8AYqDoCYw%*92Yvf=Y7L_Ja1%Jrn%=()?d%AhB2@BDOPDH)LA^*&}YBP z;&pqR^Q_ayO#29%*|T_~9-~GI#07^m3iWC@?Kf4MPo15fAannzi@!V=AskSig{{kJ zLFKbw`>j*<=amL;6Yszcs`<~6FpH6@pD82@&)g|fErehM5W@BD{X@=jnC*tQe@|qc z&en$=iX_>E&=JOhjd)_3+O9S-g(;%kbD}6+<62@R{sLc>OsGm`} zq`Sjkz`&Tt`=^&Kgu&z6XV`0};S&5?5Bj11!;9$KZcY;Ub4k+`I~mt@>_R8{R{Jm6 zj_(?w=uMo_-(lo&#Hx#EXoGv0n~$ePV-O|QKP7ZB_nW^wJKw~RlD$|SuI4oe8&hfD z%Cc-D%E2kvuGm1;VM~1-K6#h|5Qrd7*N(=sJ8)W$k#`5|L@e+BFBtM~-o&@Vl29j= zD|V)A=`otbZPs5qe9d3?)*~v*W2LNx_Zh>-8!t^SorogCM}~{lAX{ z$Rz=aS&2w}%auWUn*)1$y4*N8I8ahjdZC(MSz%{lVscse_0ukA|;LA^mF6 zgqD{aC-68BiQ+k28P>j^nnfvLcog0Nf)f|cQ`ZLs1uUzEO0-fC4g;-sons+g&Xv$> zWt%w(VZd}WE-K}J92x_VoHFO+D-(v@ISZ>EWs3tgl9$^Q-}s52+VhmTs)EZUlO0u& z%y$t0Shmu#>jMW&?*LIR)k?`CJB-85NzQTusm&GvOT`6S!x?od8YJUQG-6IZzJ+aRa zgOq&EIqs8i%bt9rjr5g*!;|R3l(`h~V#=BvfKBJ{*-G0Z&9^_H{A>t#6=ZB2v^O}; zIp|J7w4Le}0Wx-j2<9<`=sp||Or;Ryr#8Zs@``?tv@#t!vf46Gv2psf)*!wt^(D;6 zq~ykN1jk2#7P_VAl)cnZh0bCStGsvs=VpOasfQtOb*ez+yNfP*FZ{U%PTt*#Z(eQf9%6pq8&oaGHD|qcDJzd(BN!Z+-M5G;Qz* z9E0v!CyUQG0X|_LJ_d_tB62{~s@P64NV~n`eja1{x>!da`IX!H<@aObvsJw{J9xc5 zc*d){8hCjMXmY;SHGT6y%1h1PcV8ucU>6;#-%pqYpA{p9%1d_HDvh*JcXH#uoIjL< z4iSY39r@vVw?+lZP`Z8|@p{HF+U<0fFh;MnxJ(Qq;_?+$n(pjcc@)7QXUNG)f+YPH9mA zFfHwM(FOk-zBk0|WMoAvxmkE#x5@AxXcsJ&Ssfhg-=x4tdzOVG&0vL|~Uy zh(IxJ#wqD%y0Rek>8T8G*c|m2Ag}R{Ec#FohYDvlx6I&+mHL9ZI2n2b&doN#!aoAC zJYyB*k&2V)XCpQNErQ5wj*RjKF`zXF~eC$BmN39FU(v58ld;tiUI7mpdS<%Mi~- zZTXr$ICeY{Y!wbcg%*||vUoI%;U{&?3$?_vEGr^GS~i0L9Dh;xIz$wl*G;N*rJ{AH zxC&{=rHWYQ8Tx$5bWKnf1T*q3Pjc4qhQT+?2YJlIYVN7S#j%T$@f=Z!)N7_Oc5ZPm z3}8o(JdLcj;t2UPnXGDtt0ht7!74`_hLsHHYDw5f*aHpZcJOTlxQq@He|#0X$+7*- zK9OtOcP_dvI6`IG)!Wb&iHMUshpIL^EzwxTN0A%CksA`(&5%V~&oj(fT;bQLJsD;e z;OUeFYoOA-06UJLncOmLgX=i%iM2o*()}Fm&vwMgYFd?W=bJ&nRrJl%vmtBCkPpz^8`{Ra zX!NIH7C1q0g;Vd`UR!sD|28+w>}eyw2PPXEgz%kx#s8bga{tR+F614Drhxdz92oQ1 zWboP58r=?E4Xs4G_YS#>FK|HiZhhnQODEW#={}0+5{K%lP>YlrhV9o*A(>0HXl$XsfErqji4 z@E-bafCFtUSAb~)MGCOyB=v!7JJyb8%1vdVm;#BigLVCOHF~XSyfaV711y*VfxiJ6 ztHR&Y?+9>eTuvN)___I49(2l>6g>N;_tq^|#sxPL_-gT7iy&eECIVxt_*za@R0|y? zb*-Q`CIBhW2%9%{IJVz_z0h9?5`aPXqcZxWW{58C#l9F(B+6ie{jCJJBsoMVD@Ds# z2P60>_+|3?e0ou~@%$XC3ka}Y3KXyN)D3=O$ppkQFY;`i8uBi5VTwN84&OLBFJK6q z&m2hzi}kV|q44Z|FVH1X4swQr<*GTF1cvYu)q*Js!&t**g&z?z{yyE?Lk3 z#8t;~Joz`=aRaMSzcAKisz$-Q%(`YYmlvr8J}`pk>Kd;C`42CA!z!*ybgn^BD0Q61s7U7n% zz@wyxk9^o+m%EW`Mc0)virvmz{t0*>;_G1d`*VK*o6)Hpf8_h<2ri&T&qdtVL%YWA?}m#6uX;K z2ekH%kS^4*b(z8Vnx3o-TJ40Lxby#6D2%ucD1=XeKCs5o5I#g(Mpi}QlTY!D2Z@R^ z;Le-$0wdE94+#awW^$m(*M;Dj191W~e?K6etHva-^T$PtpQB}Bjtmrs$zA{QXurn~ zA6f$KmQH*3Id(IiUT}aeFOW9^_H!6y)dz)|(P(4rK&HYyFpvwuR~ndOa>5DRw!60m z^E|YJ2mC1()*?~+7)V#9gfu&srCOMbq2aBUAX3oD2&BN5St}09x4@enM5r;26boDx zjMmUizN-G2Yqk=#4NoGqYie^HOgf;U3KKD8Ept7DF@>Q|U2cS?{C7&0LYWpKjR~h$ zDgGb*m01{+iy;gHHb8~s6y(xJ`_woGzpp{~T<2hTr&4<$PBG-rJB69X0w&W-KVT7? z)L|E6M|b{3-2aAI*(Q&aDI85DgxV=E9B%kaD3p5)cD}AX0~(bi6DJ&<=_TxlnIO{H zhDXbSD^?KXYQd5a2bzNo#Ml;Z_X@Kjbh``)up`h55?ldy-60>m>wqrSPxJljxMg5) z7*G>6^q*&G(=z)X`rnj`gBxFAud(P=kOCKEg!YSIlHEq){2z&I;}6x2 z@8#!Y83=e!hd5bu@BT-&$$`tk(!V=YZ*^XlF(;h@!|M@>jF1W`F_p?AiFkCGDF*K? z+;n>J1bctD7L)`O#F*A}B`PL{rX!oB9D3Bl!f4LZf(^cym?TgvH zE3_t@@jZAVHP1h4i}0OHAw?R_G~60)np*@nkWd_f+|McuHqEn%;NU5-q`ZYKarP?d zD|HoDeAMCa!3htO z1m$vSA8(Af4HX-)o+I013&}ALeOreoXcq50j*<;MIJ4yqq-ygp>XJHjb2^kkS zK5_KqECv1=dhptwcuGm|pDw&1WLN!+cz}9#5FxSXWHfAVE#O)KU3PV_(wq?s*V*;T z(nxpBVEJiWLDWk%G4BQ@00Vkc4?F^l5;JbIuNn)Ww5IR>DQ8|_>)ejN!9aQB^u9(l zH;N{2^Fz<&D{iyPo^$tpmVA%DoWiwDmlj|TJZpT;Z?B-#OI$wj?;!^{v^RW3$u?j< zF;O0IZhkJrgJTO6U~9b`$`Q;-kO3g+?PpehC#~2bG}d-&=>m`9!I8xz10IRN3o@~y z|Dl2^#N2_5gvH$1$s2ajxurDW& zUI~aT7nYC9VBo|5O^=lY_+=0T?3Y~NBzYXh*z#h|h)r|>kReRwcYcZcTiE^bvTT!5 zN|2{z6-S6qV58ERllNdPiZ9Xm-v2f^+H%Jp3KokM!q9pU3u55DhHx`$y^FIMrY<;e zd{#CUcluog$vX0KGq;>S!D=%#zjd7DQhJ43$_zKcIA{Rno`gtWeD)_CxG%qI2d|P} z7+dxQM8GX~czaId!;8IXrs&UyaJ&$TFlz5L{9rYrx`Bgv^ka8U^i^1*IzP>I6$FA& z7K7Xhu#tS8LYw+mcaK~h8bneIZcQbIDegOO$r=@dVy7X1EH9SM6sA$K-(9_)w@e1jm4Vs}eKd7wUKXeC)jL_+ja)H09j&A>(bqxE0bWdRSKf-NXFSwIb7;)_(Q=U$2d`mm%QussP~Q_c;tMq>CiLsDDCLy08Af zv>14ZE*$7|1o=ZEl=;sGP#2cTKVyEF6R%b;mf1;-Cq=#ZH8zU%eFy%tgx6+71Vo!7 z7fa7S;q>bBlZA6O(uVbIao~o!nMfAKmT}oiXC4%U0E6TuBZr1P7%ei{q)aKq|)hyDBT`b^`0rpj6I{f}BkIb5~q9z>FMafs1H^Z^MYQ zCA(OMej@V{brgiugt(VxdS&Vyn_q>JrPaR4oUdlblPVvyga5J50`n&{G~$n+jM()r z*B&!`3zuWDhYP9~gIiB}BFQ20p6s~i0=mKpgWDf8yW>$zyi!`|a+Ec^?<vWSvV*{MYh}p4}C$>j@4jeG&Pa=)S_GF6DHrZtvavr>;lLF9v^!Oa-zR z@A1g&O&RG6_EL~sWaC8Csf}0w({@>wg0$m*uq3fLYxhBVO8jA$4(bG)s5?;hDd^i( zkR#dcDe&s+O~VNVBsovUD^p8t*3nItMjK}kD$9*Kb_ZvtOc@lsjXGI7#GCTgWQr68DqO2L`a7#lZh zwHJeCLLj#%0x3Y_!yw@6Ye=+7u6D^VJpX<_g@b9k(by)rlnhfPdh_5qXLm9BQ+_1D z1V9Wi(pqxPUhLc<4o@Vf(77r;L(&OJ3}e+(3*L0T1z->*KrR76DqYV1Qf9;%ImGH5 zZ9xwne4m~DfVZQ|^nWaBTanSVL~=BZug^}deutKgpE5I>K}Yd3xzD${1{;acCzp|+ z0*{9eeV}eggi$^D1B5f&sKpphIV zv4nw(QHA>*%|J5xcOxnZY;jG|K@0cDi>~oIzF@SShl;z}BM9g{>Ogv8)$PG{*asH* z>pD}8Aux(5ME+6P-9IFTkOp<7P;6RngYF)qm;o(0KW)@PjL(wyg1f@! zKR}n72ztBf;qkY~>?!yS%F*(67l970CIU@9?$g&hT36lRHwY-1>Po>--6 z1cNe}7D-Kd^Fx9V{ZwbLs;cIcW739Y={V230{aB9f79|8ccq+1c*J_l)(>@x7Cwaz zt`a9L&zTa8tsLo3t3HOWtBn_yXD*lbV!Z|Yy-Te5zZwoK0xa6bJ3&3F5sl0hMnhfr z2`+8bkt={ZBnd`mWCyZ*>Glj3Tb@FxjBiEKa{%>r*gLz^?* zQbYqxA4l;5Vszz}h*?0sVQ*Ml(XPOc2su=w@4mg>Z)1meR1QN=hgMXI%^;3((p&bmmq;`F#LWa(B%x0Ui&4jjY5Ecu zx>XV`D2b7L8UNpzA~WEwh4ze>27Wsg3P7eV4yKrYuEO$HUGSJ&#KC>AyXpFq<1#c{ zr}CgFtQ!>YTA@1a?b|5&<(#-0t{z4~OgXNQrD)%cGJG*sY%03WJDibEp_l*apD3hYEq#|rAG;qnw3%xXm0m(9POZX?{k)38!f{ zzW}50NqaV^dhNfYhC0n2oD8S{Y6k4>`+wWrY7N+L6K9!n=q-{1NP`m+hq*hYE}p-X zgfL=->(tx5=&~(Q?#m53IrG|gs0v!(7&o-NeYS7B_?vXlu0<#Pc%mw zT|@qE-*}%D3ws(4tzYCrk{zP`S2bR_NO*G!tilPJj9xq^Pc%9ZDb*HR!4SBsB*n&X zA|oMK#ALh7iU-i4Fc4^d^(JiIG6OugbYWXfV%tM7`M(R}iB*e0teA}<;g|{l0 zVhWL5IH@_!%Md(PbOKd3luQKvft6)6r*AM>w&wz2V!=17Q8`t1O4q0Zf<0-E`Z3q9 zKAr`Co;WP08!!jc=Ipk61w(9(Z&ct26>#Xu$|OQr zb7))|dEt2!GQwguddp-_M6`LSxUlnGA;TU&3_TJ1U2862f-cbo{~t@=*cfNqwL7tG z+qP}nwr!(9W81dfxN#aMjoCEG#B7W`_w()_F!Sxa*0ByP?qK%8bfKQ=6Ys$z6cr-uH=1Ih&GwdK1++zdd_jp5l*V< z`a2mI0+7hi2vIF4$OOfZJgH(B0(R!ORPZj%T;6|F`HN|nYr=)_D{v6^{7r~IsDNwK zp}ykNLR!;$|0XqOZ8dYZjbCNVYb3=NNi$Ji>4da7*d)=+ zNIc7`?f(yBiQR;ZgKc#%4v?0nUHyxPL$RbWk)I3c2K(5 znN5zw7(hrj9`zsblMY>xjh9)fjTHD7HxT6L0Z|USV8G~dkej*h4)|ZK8mAD8&TBpJ zg#mEch7Qo*L@f+nCaYaP*1@^>Y@K^NnR8a=8W-4Yn(xYJ6H*J^ZHE<|Z@c;czN7#^ zDTx2}qvu%#@!tEU|Gl38Fnl2Po}2`K32LVpn4WYTgVguzi`Up0PR(58R%M0uMYIM+ zh6fxcx9soa=H;qM`sy`H8un|=`Z@1XIf1eX$Kutx2q}J#N<6`k& ztO3j!AD!Vla~G|197je1-5{#YrSVpXEdmUbM_vogo{ZHh<^ZQru&b~$*i6b%^XTB% z>L#loxQBa?!L9sBpx1Jdjz>C+nS`CQwhq1f;-VOeoC{?e>M|qv-+0>N{r}sNghCOP z5XiYkfc=?eGWR$M2>KYmOud@g(~q`u`g*eKy>{+$du6>?+3%@CD0&Js0NYA~v2DEq zwc~s}+y{aAgGqpXjgY#)(42llmb!p~@?SlaM`$qi7CB&cE~Jl;grz@)!nSo-Fq5A9 zF0<0j@=vCoW~xlo5Gc%=Kj%G#T;+gEXV{wBhe6vQ3UZ^a(%6O^?L9baPLw!)lPKvK zb!{y9GQS@>(!Y;vPo#STUq1WpJ#_o(J3DVwYl2|ETUfkPw0rMtd+q=>OEPZ12k#QH z(RAA-HY+MoXa0znB8mT^i-Zm`Jz1NXOb1r1Nn<4Jx*}kJ#GPPBAaBa$9j<|I7y&Nk z95ucq+k%`dg-5J7S-BP;Bt3tq1}U7Nd#f8JXWD{tgHvPsb){ea`n{D`!Q7IvjSre! z*f-~;m>XR-IK&%BaV4YRKj z^*NSB_%(bOJqQ}lbL5PC#$uL|-Qc@gtvUg2soH<=j!zw4mSrNa-#p@b+Yn_C6ipp) z#9W6mHO2sQIJ)n)C3q}*xs4*Uj~?p;47+zq+*BV+tK}rJ@PUY>C`2hb;;^Nr>(FKc6YU#g%q&tMSJbGeb^>WjZX1ZSFI~v38o5OfT4>q&d7fL`)`#! zKQ80rkK#JoMX3l`GW-QH=$XyYaB;21EL!AQIq`Wj@(si+Y04p}z@w1#@&K;(%dW85 zrl|H!%n5b^c24O7B68jRES)wD5@7Pa(b6J*bZNnT}%}VWh#E`VgAZ!yVw< zY|V~A#RiPfFMH^Z3c#F#;n@)UiVaUSvvXe(i#sc1@V|8K;N7Km6|uIvW{uhn)Ryo^ zbAFF(Ugm{L|G}_>(NtW2>Nba3)evk} zBWFP!P_2_lnx9|LWJz|vk!>AK*5`7&#)i@IzDsB%4KL{aLON~Xh8$77ECPiD1|AzF zkKHJe4TLp9uE~|# zH1^O#vz-s!z%dWQv9GHL()2oB>j>G{&DP02x(*u|?)wGPCZ@jZA?RcCFu~Lp%q*Rg$fI25-Q&`kQRV$y< zzHc}rH68qcRvfE>hkl;g#NxmY4LH{0V8C`MT!P1DvC2$bYINyV(YPK&nNR$)R?;TQsSPuxDM z62H93V!uVvSqZR3yyXgN*MLkn2Y-}M0+n$DG@>3h*+UVSz{*Z5Alv8cT*?2^@sC9? zwlx%nvhxbDg@gZdZKIT*z+fYTmL9Y=fYa>-*z4+LPGgIL%MU9+G0SGq)`aucRrcly zI549}2()FjfpDJ2e>e|xk}_Kk7_H+bsPZ4zFtG)CxA!>A`SzEiStPPqdMDieX|s8b z<+jus$ML=~g-Zk3LfV`f#bC$Ic{vjq5zGOob7#!7-z}*PT6lx~Wgn4Es!6CkKgjAo zF25&s{oK-t?BYv*a8fuI&Yr+$8Oxo^_;~j6a9=B&DI~&sh0uIur-N05WQP3C1G^xv zC(s)Qre}+hwpS9q2du$YuOSd;H*IfWEWp^&dd?1RKQu}z@ggJzv7zHDTC0Iy%#R1f_$Ja42 zkX~bp+E?vp(;GpG4)Cz3-WSOzgA!LuA;*o?KqVb3h6F;>4N!*OnMQKS_{uO-pl(#$ zUCWki)MmfvH{(>|lO}Qy*UO_wX(!@&qeFqxIa}9eC2^kHhk^Q3w5v zv4`BKycKnEp3EYfbId!@1nG~_p|x(R0<(q#-`r1sc}G}}Ls~JcGPc$)qFQi=solBV3WBtAayNUkpCu_Wlt3dubV`7|=U8i8$Lc(+*^xPW(*lfmmh)nc zO%GPo0{rO&&2r2$X&irv*8`H{kTN)g)ScjLj&H6EU63^V&#kG_@s&`NMQI)qSgjZ8t&0W-x_?ys zwf}`E(x`VDRYu* zTRL}eXgM5*S~4xR;P0k9#i&CtD??fQ1AW6hTkQUzc7olwtL-d@cKWk_m~rg@G==>D z9FxEFD6vJ)psbhyv^C+FF(6?4jT-g5#!PkPdjZVv93hW$$Bz%EcL>675`FTVEvcmC zg_4#VWIw+Ludv?qvkKbWYG`Oerrx8Le@A^XEQWwCCI*9&=8pU4#X)ALk~!RA4ge$= z1nrIe*hP?fZ5w;#h*a0m1yLH)fnW=Pyn7ewyC(HEC6*bdg5q)X_b=U@F%Uh}gf7{d zFtx0q+l>9_QcvRh$j+2p;XxUDtgQUag*ht}P{&MmJJ^VPiZi!9H%DX%Wvk)=rXQr* zDod=m6i-<9rbj_hGzu0{#-gI-<>fdYVhC+xsdF@`^lRKQEiM+|g+f-q51g&2#ndlU zbjdgy);U<+dsdCfdase?d`*Xb{mSC4JppPLHFSKOTNAWysflmztu?_@2DaQWAzZ>vgk?3~v z>++~(<9akCor*~8YWTcAKOI01(?_=>mc9jXH%>uM?~Mru zsz?iJ+tvuIR|;^)#d4It)B|}wglo=i8y6c=1NK=Z1HPpt`WX-;4W4xpqV)V9A2$d7 z0AWcG2YM*{Asj%E=Z-{n{t5g6{6A;V6UZ54dIZ{bOo-y_TR%i>E(Y56R=p(@&+ic* zrnd{pMOipLK>49xs%|rEAo&LrB>b;40krafEj(EOspR2`tk7TU5I+cuNh}Pi!)~^VNq_RRzX3By>4aN^|1TQ1l~9_M2fBkHceu{ZhZ_ico1{f2YsMp?31*6)hI? zR3>PntEtCVw@=RaaI3rewKqTMrsxehtgC1!qvdHD^;OuSO^7?|TEQBO8)*Bs;Y6untjgYGvi(URP4a`lSdjbY!4l z9mu6B!+px<49bVh)VogRI*Hnv33m81OA4SBNiasZH23K$W9Ini7DN@Eg25y3~hg`7-$DUN)rtuvBuwo0=!Y-+YiG<}51~k6 zS(!r}Ix(s(F2)g}4p1T%QZ@h@pU9t)*T>N&RnAKNBQ*w!Dk02&E{eC=H-Hm+mFSWA zKrt3_J)!dJyqwVk-LaD!o~O(+_RJ+Yq3W@?99vgYB|jp0Y))K2#xRr*usVZpx@%)#bDvS4fyVU z`T{2!g5aO{Yd0FO!{2g@nSV3+nsjXt^3~3Cqd2@D4Fl+B>B2!-Ffk6^g52oE;c3QPCQnsfKNp z(&ww?JzkjoRs=2&EscZJh=Yh;wsG2IEM4ZsJ$C(YHI^K1?^Cpl!%XZp=y{Pk;f6Ag zfg`BA`KMIw(LO0IgGGisCp&{%<1chJ{t=rJ-)l4RKH0?ND*q9;3FWi~b8BXWIX#e4 z-%Fd+!uFS;_(^JoGxg`O`uWOX?rk&@21?ju*U7F!mq?<6$xR=dSDz{8>FV9hG)xe} zwN8StY+naZoj)N-K@VYTE7LEL7pP zx~No|xix1Vc^n*h$+97cOw}l0UJPe*M^`| zh#;g(p=`d|n}5R;%o73i%)q+wGqAr%s+b<`-n(QeJRWg5FkKa(jzEfca- zGc0~*W4t)9FeXi2YY5**SRJJ0`sD|mrC3m7?*E8a!+!Hu{qiA_z!K;okK>buM{tvmmw zNmxdQlsRT0YH`2PF01(g^lFOu`!PhXW#F+x2;NlH@+}bk#X7|)(*4I|CQ3UUcCODKl!i|r zx=on>Z;PkADq=20R_&W{;5S0LlGBVunf(FAD(?4o{|m4ZL;q03%jx$cXbNLB7K=pt zmNAK^X=(18Nes~mAN7h*7(kpo7;1<_kxDhz!o{iI(n4F-6J2WiKXLa7N>xTf^;1+o zA4ye$*(-^dP$Hvm^)P$J)9K3mQ5lC&r{!=Sbn#R)LKAzX)ug(e&HzTyo0fA5ktuv% z1{dCHH|Aa&t{xA%UK^@%ySaY%yUX{3wI;+**84`4Sja(vnCyQUAgJ;H-mQ}K!aTVaYJ=X8T32xLx$J3rk4>4SdB zO%~L{t+!p+`LPp%wKV+>)i=TlaziUUv2X}PKw7<)Ri&KJTh*heb$pwT?3tfF=0C*s ztv}8#%^Gwm8KJpmf9R+jjD7F)yTO}t!S5%%z^S9A>LKH?Ft@OrMk7t`hc&J*N}+%} z5^cTEjUSMU?&v)AaecghwX2BtQoFt3Uq#0}YhSVjRnV?n!jcLo=PW*!FGl1M&jhna zXJ$>7vWbk7!%R46<3mbr=)lD6v+e)#(Z0WKG`TVpCDmp(W4gzw)kW{5+o7&^8eU~R zr^Q9+z9nowYdswtZd3d^jda{V0N>MC8Ji5jt)A#EUwULljUC-S+4E_pT(7a)v$=s7s7ZDfCR)M0)#zJF)2ZYJ_Y zRax_a^EKWQIObQvUFrFraS^6K9~)3Jzho4ac+yN!KL88s!Jl0u+H1cN z4ZeUnor5A4A2vsyBFs!ZujeLT_HS>Jhs=8LmY* zCI6;Dug5H)6TBg`-zTpM2%`uC9MH;?(gS+Y;*oEjpi?ytG589J-Pk~4L2uIX0d2^A zwjK_-$6zuMInc*$w8Q(@70KZ~HEkZ5O)d@QFD>ffZq+K}GXnyE0@gop+agwaK$k!) zQhrf$bO2JhuA2iDCfd&gGP7Y(TxeWKXk6Q>*5n`-p3e>r@r@0mRS+vY!=!%=QIq0( zrxrW+U~>I76M^%*R}ILATyW#e)s;^_9_5TxQzqR*2}6?uDvtfF(}_YpSsp*n*dFe> zk5a*meT;g~;u5a?6%y}w75&!2?k zKn+4Ye_U;pRz&I-I(wZ9#9{Z&G))ptl2LWx`1v?pWKA$q{h_&A2A!2G*m5VIb#jFc zQ3miJJMi?=qC34NUSngyh%!Oh44-15F+|ilK1NMP@>aucANoVl&i*%i9DgxOQ;q zewC^6&MvW4mlJUtyU`{SUDh#H@Jj>#6eVG*@Ml|EioMrp{=f+@!pbVL5sU^_##$=o z#nEH@gYi6Ge{NX8uVR?m&NjQLW81W#>Wv2kwYy?U{1i!Zj$0h1kD&^!}#>3PYn@{itiU&RcfnmA0^3tM5fdz8FeOryD7?Y^pvo z+s9ODjE9!SMck#)u!@oV1cm+y^Hcr4W?>Vq4;`Km+Iu_n>%%pq3z#Pz+DqQ@JqPfe zKxMwg08r2x0(c!s5^*AKh6yNo?YVpkwtL$VJ|C=CzJ0wJ8Ql3C_;zXKGEY#f5`An!mUqB+Hm;7PZ0M5h~&Hozk(Shr)0_aDOAOSoWcU|HGKgDijcAiJZr)0)P z&a>!PjDM;15q{Q3on7^qqWwzp9RxAzpE5%;B#IKr_fUlG#AhZWoEyA5xPuY z9%=e18D^pihF!)JQo^!}3wdWF4WS~9(NphCpSIt;b{rI0qP#1u?uaOyz0^H?cHPO? znu#sP-;!AEeEfPC;AuiCYBVh+K<0~%!fiiL$g<2)fSvB_Pl|le@`wY7l=g`!S+pRg>y5Wg0PW*}+m#R4M@cucn1j;;NVt~!a=AL>ycyH- z67lvXvRCE}S;*5nE0Hw2*6gz4G$xwbMIVkE&qswvqXq~M0mn(t%8yp|QzgV)QpP-U zhX27v+Y8I7?1~h=5OsOQ!>%RFf$u6wm%0xw<|M?ymWs-yF6_wAFa)(NW8RFC)qPBQ zg4gJ{LEO;Rg6gj7?3`YwT{_^o$C^h4P|f<1f4h_MsfjZaSZN15fyOVB(BJ;hkeGo> z=oJ{5ec6s&ywu9oa}Lc$-^nCm#+#`OH`6Q^NP3D8pCrhJ*S2KM8pt=@2{CB&O5eoWN2;L zpw8QTpf32BMdyQTgvYNZS%He};(Tzb^2rknz5u22-(>j&7jh}R=P5p+0ru_v51i!| zc8wB%o=^+u3Ej_sU46chMCv?%7q2yZmCxLfutZ5}a&?8gPtk1c`8W4pT!Lhz#R7mo z0YnItsEY+~2jG7{QmDXiz{4yaf)x5mj8!7>Rj4xw8a7s2R}iz5;!!VH$SqK)rnw@` znH%TD{2DiHT(>AyS4#IN&34FT7aa+Dvw*l~15<=rmSz$x)t7T$p|)tQh6Qbzc|zPx z*<^|I4z$|t3rYVlG?j#Y{qRzx1QOZGSE!tIcN|aI7}sud!&0z4ul`lwcZI^Lct;2n ziTM@x(5j&PcMI{BF48j$>*wIe!E$*1LvD&`FpsJ5N!`dXSrO5AZYr~z>P3}hGRXrX zeT5ltR3@Z0?8gM9qNdX9f4XS1{yWnX^V*93tLhf`3xY6~kdpF({HMbLZ-TlRprd@r z(7CChnvaZ)rj%}}w#($-=FAz%Tg@7Sh6mMZ&2ym5H@T!*2eh}W!r$e}ODh5Rp~RJd zEX*>~RVMIyk7mG7AsDCd9ZjZV7Hh%?=u8Qpu!6o#sUKtS6JaIQ)EU$$LkiKoFxTV$ z@y0&2F|;q0F%LO9-qx^2)C-*1`?TYkQ|E`7yE1kHe~scf1J54{s4`-n>Z{^&gx zI7Eq!T5XbFFkugD^2|m|XmTsyAbZazQ+gki-ZvczthEW`C#%S*w{>z(@8dJ7~ z6B?6+Nm^9C0b5q~XQ_ffk>+2i0*ps0+7c_gbkQn(Tugnp3>SI3CLwn>F!`-Y&;U?-yqa z1b!pDIBU>Ae`jSAbDS()Geq-pa{`aCbeEp*`v*+JaL6PR?rKJ%-I}alM?`i16F~Hww7lJb_=HBd>2V{Sco<4@z$zCXOL{!<{Id zIB*Ll<=aL8|Fj$=(d!b}ege^Jv9a5PxP@N8gAVJ1azn)4H&9LcrqDj1c+ee$!7gbd z#b4_ zAD)b~ZbjCXwsb(r#~IBa#H(yL=WllJNLY4ZD~LG$Q|0!1@`QLe;Ra_R6@YVpz&`#D z7)1h-ONT+4I*T8l$(^g~{qn<1beD&&m{kO0Ld*PxaHmM+^xjA@t`%af1cVS+h}s2F zd2jOzniaA7-n2p1@$#*DTvX?*K}9hX^oAvjG)y}|gxW$rn*j$sDQxx8oT8 z9!iBl9;84#ll*U=8~MyWUQ1>$PYcpgmk&qDEx}9@owqesqoKWcVtVE!D+DLoEk&bL zRBVA5H9XwGj7fZvUUZKN`>`CYbFz8m@^H$JJZo^^g@P%#GyWQ;AmVCX(nws)QdhP| z3ZPG?8}2>**- zj93KRW{*A+8tK{jV3Xp5AbXrLn+irc@phkmWPMIc=?^L^fiHpe`cQr^W6>#wj>K}z z^x~V}1LXk}Ts$-0k2Tg8)HX5%*TTKl10+=MOhJ_!G5d|b=umN@jRill-26zG2tDZX z1dRm~J*M-pb}AR${Q7fw~2Fd9=Un?I-N3Q$y3&WzRqmaB6|Y0v3vfN7m*&=(zYrI5CA^Y3h5 zicS+ESg{Ib0$8L65%Wb|w|PR1H$MfF-o?aNOdQPDD620a>@i_h0vv_nsX4DQcW;=E z`Q~xU^v_&WTjbR7zx$N_D+`75CBLl?^6fED-wFIEM5ghd&Gh&3dL%@qh@aga0a0M} zHn3Lb+Z4efoJbt!v5J!}u!_4{S|ExG24NRi>R|g3M6c%-dchu^+F^qL z3jsTYP(VT{i8`@lC<_4m`t9b<@79!r&KjT1N)jGrVf$QvO_5vH=nw~;(oLN3JR1wk zCB%UqVbLxDQ`&|FO*Q4Lf4IC5zWAH`G6wAi5!UZi<0N;ozrRtGOJp42^qxx=-G5GZ zVMMY}E3g(YCs2n11S3@7Dro)aegutY=AWG&L56w{dd>)Tvc8tSu@&760W;lPjaP|Y zeR0o)axgSPO7}ag<5mX^fXATI>p?PDbOl8;h$%`rV8bWy8Jr5Xge%8NtYk?pMRGYxnEqQ_y04ss4HC`Q+D5 z`A~?&*C;Mjdg>$nb|cYYQyiniAJFh&k{g&q%@iC`+!W&)RME%8eLYDU`Cc|qF5`lS zlA-H2dMp3vmjsQj@Sg3OF$H)P0ow6D=s_7GWGd2|{pr|=PvP2X2nTrZ$~HLC1GBM@unvPK(L9!i3?6l@K1(~xW-4Y`L$c!{IOd+>W4?SM!so@GYHN3J#ceH|xAj)Iyu`RAaz$)r zY`n=ue-S^U({~5wF23xp_R(rvV%B`Wb+{epz_$bVy%36h7zM9$3PJDWnoj5%urR;i z;kb$ew&~?yZh|cu^15+ySeKL(VXb8FbtAELt^NA>ViK{(3jluf2!(`FpF4ls63Qql zf(GK4MC=AI9Jq+0`4dQ7BQ6NAKTwMn-SPo|J6)h!7p31a8VH=Rk>SG~xwkMNsx)lQ z3j<~I5>yXDjRdJO9er&w*lR4@Cl(ifknn3dVT1+WB3gIMrkT1HG0|6#e3Ulzn>^g( z-xP|nm9!HBl}Ou&2)xij*(JEJc(xV!cOtr+P>qFq~|$RLy>wNXA%cVoMBp84z_Vcd%_Okje<$bV(=gxv+0^im z>s?w)nnh%X?G3R}h1Sxz-jJ|H#6=~gqcg?LMZ0SK&(eQN5?`a9nO`laXZv>S3Q&Dy z(r0lI%4eHIJb3(ww(e7q(ogke6a*ZlO-auR5EzT&J?#C?CE_=L939)mu>ev4@V)oE z+msb98+(R$z)JduBy|n_xW!2!{GZ##vhsB~uRV*g^jX7d>&IQt{1)B#ZIn*crbb@# zs*u1A#M_@dEuDg1qv893B9WJv`J#)xV#8F6dZ^oK$(trGCgMVreU2d@5*YOGukV0I zs~$@F5G-_DHn9%xwt8SG_lNmiGw+ry)6m8Wo6eH@h?2g|p?FXsA0r_s%NU4tG$-xk zSc;v5l|Vv=55Y-5Bar33IaNT9ci)(kXnV495N{Ei>daKYh#z#gnGB-sThgvBs79U| ze|3&+YYxXg*^5B@rRZoqGRm5(pp6Nxxs^T6Lj2K!N^3Vmt?EU5%00-z#h~+ue0|fcb1NsX} z28|dF#L!+rxM}B+Q*`kD+0ACpw9o$y(2eyrMGZ6;TuhMy4fz!*dSVxm7Va;5 zp8SvZ&h!1cJRXe#5tH(Zi=LAvQ)&)97PS4=t4HcUpb5SZ`Sdp*h99obtGZx>ldbxxFnbnVp^ zx4flDF1pIy9hh_t4c4J)bWibC%u@W{+vwaQRBy8xz*NzKC5x=R%)lqofZko1!?x($ zp4JMK1tD39o0wh?Y6l54yt=zu#W)jv{5XE-Eg_2OMUbr2m3eVt(sQBL8j;?8ww$-t zxYCPZMpQm>4Z&%@QeENfXj@FnA1zy*RsT*c@Jlb*5C%s8nX)#Hk@sw)KYQ)4VN#bm z9G$Yqx&Y21e(h%KnBB`35$dRcsKE#nI>q}dRL3Q(h4>t&!6R4d zk@w-CyfXW7?r1H_c|!dF7UFJ0AbYqTFb>Zrlh*3AvN@YBiC^QHJKFvJ_x3JV5&xUR zTGZ`-QlG(^%p6;TD|FRvoAv8&1_{%1ipa8EuVvi(v06G7Z*}D&W|F7cim>)m1kaS6 zXa_zzJj-kCIe;rpMt{O@qJlfugqm8UJLnpM06RdtA*@XrKaLxjnq{~It}cpw_Q&E; zuZuAOe>x9i%5OneyeybRov$A`on=kurnbypo5w=5$ zoU$R-J~(fud|yNpuYj>Wz8PheJZ^(~C3>+)lo>?*EK}s+unO42R2A5dQLqI8?7}B5 zp%6Y%5fcAhNTAch3}yyXXyPUc07=z2=qU@QanEmrp?&XeqHa~>JDgzF*2>dC)8K9} za_6;az#JgR79@;}_nSZzcdIMaFd}elb zf-U`~8aF+NGboU%J*%l@g&L*?lv+OTcJykd0#b+6Q|(bLHOf1b`WqyH0_|g_v1T8L z!sNX!d~HFL4V6p--J2rZGb~GcG%Lph7(~C>V+OCL*i(k~d|l1jVdp1_ZwM(Z35(gd zRjH-$e`>IM@*rKH|G*ua2(Oc`ErIkYZr-U%#3Kw=cQmQD-plYf?M_24-$_?RDr9v; zEA`|-h--4(gs?Oqc<$vK09L+lazcSGvbLbD5PJB9k{w`Et@f^i~LWRENI`Pta%q3?uA82p&l%=NMwYakHfMCGXQ*ch~% zOHWg}#dWlaIL0l>;P-;pAzyEo@jnK$M{m~TrLc)=o(=bprQhalh+jFi+A?qFXE_p; znXn>&f_R{3CMu~0NF-eCmokW*^W5<73%5lZrIP+@V>cQ30i^&tRE=WMwc#5*GU27m z?x|AYKwV-gOUC4}!S6~T%A5H?`P{EORNm?WZza0|D^hQ2--pdHp2;W< zK7Sdqf)!j5gz2eL6!>QKTQ!BcorjmZZR4W3Z_bP7dG2L`a|OPu$Z67LJs~+WL7T_? z7DW+b5W1+eO<3Y2Smz{Y>&b?k&SMr89GVDBk0%)rb_bEUYlzmkvbD%k)4eT^yu(F_ z135h5IBaA#b(L&b-Qu`geBHiV>*| z1QqdiFrf}04~jfuuf#*&z+PpzH3)i08H>ul3R>-$YiW^FwZ9;;(sBN6!}9f=Su@k$ zL(PK@++KH0KIsDrUjK$zz=+zUse;yN+4P%pCw`ZWtg}l*82I-m0AaK zXyPSB$w^P|;0Bm#mZv_d-!c|3zfkL=g)W};!lT_vE+8ZY64n(T_x1ke8!|b)=?@%7 zqM!T`*UUg;Ewjtjj8e43`ciHFH`xCP{!jt=ggj(OsT>YlGz0+X>^*TiW}VF zU3GiwDI)|cao|#BY~S^9oG^m@cFcf-5$%Q)5PE3B?4i=8y!K4X(ew<4{S6%x z?J^weJame1XF{3jhrJNnNHBEYr)Z=vx|0{#vvY=xXfahu@U6CHto%kC0@(KW&Dk^w zq=pPwCP>tU?uIGDSRiD3+wh*k zgX<)8rRFdZFyoGP*eBea7=->k`r1m?mBmd21?)T;GUmADeMoCskkpK)VyR!Zz5b9L z;>ZFK45_Ufk@Xo@kNi(8c-0?pSEf8ywJIWC%q*qQIbP;pzKs|+aeYB>VG75ZBX@yC| zN;FPA;Y_H`vzrObIG@L2%ydO(qggy7<nQSd)TFR^ZG8WdXR`4br~K>7kCC$9EzsgE z??2s8NG0@hLm4D~2#J8%!f+rI7a5@WH#J1egV-x6pb_Bpob4f)N&I?dfehqsnQ)Q` zW#$S$PC>e1`=mU1Y#MiZbk7k#wi>ftCO&^uKUmN|{9AThBZE~&@S>Qr%c_bisc#;Z z8Tn(2(-fP#C2lU1V!^(y6pj#vpe4jPv~#%_n~P%U689aAZvJ#;7i&l_5r7}D!~Zci zdphBDh_Z21DSKjzl`;F_^NwBkZ3!`h8vet=652fWPkN*(#?MX5+=cCx@>6!QA|yK0 zba6(!C^d@by3!a5aNFE+lvSu-zTdWb=ZHfb!WKegPO+3Q`Sz28@Uus%xCP*u;(HBC zvC&stCXXo8BoYRu2!NzaeRwVq!nM>tw1r#4IKqW!?3hv-Wkmv&)B(QbXMe0U1-+S| z#SN?*{(1M2%qQgdShMH|OA~)Hqm-XOm)$eTbaXSsm9~5X$K@2QiYKzJZH|&1a_SR~ zC+etKwHR87#OOHvW8=6vB*$EFxOj;=Y-u|=iMklrPE=+Qb6wvSq zNG}~=nRRYG>@BU|2=P_~&u7L57AGIa1RLO4#T&QFzaAa(-O6aqSKz)I3I_iO{5c-H zY*)vOVkqbfk$9`imLM?H)Ln}1+%nHzNYtfiN-#T~_d>|=Z`p6;>bJ(QyX@be$E)Bh zsh=I_ct#f5AYz?(+9v2VpB!bL&Ku1|IM55|dFmU=IK(DJXVk|xvW4uVtHX+N#Cq!Y zZ1W!jMluY3sCgQ}ZlW8^jlEKc&Us$DANIE5@z{siVVl-C9$o3>@sRKQ#~i&*$z+G~ z*&J$f7Hok|1>yl@+X4r^!10GnJoLdW>=hQmE#x4Fc7psU)|t}_`CU&ND2`vnLr*Xv z2O&(gQ=h|4$o0ifYmeZ7O{*rr$Jiamq#uaX{U5da<&9Yaf?XZ}U=<$!-)leU|K!3> zCqU52RWjXG=LX4|k|03(TVWj58w@l%+P3<6D}HWiI4z*m`a&!R7A2%p$qMtq?yUZ~ z&hgCqnIb`CcL+#HHGYJ0gZ!+WXVi+AU4z0lO7S!E9>0y7T#vi}YM8Q`0Zrt`=3wr2 zhdNu};K*mU``>|?D7mfyB=0b~f;=QcI6p!r(8`2!@ zWJ~wCx47S#zdZNc-7Z&H48z+bYH-;85Y$?~TJ1^x{R@Ng-z0nU)G8}MKpKZ*B3dta zD)r(_p7S!J{;yAPTuCY)0kPyR1b^9eX^v#3H24|C@N6v9VyA*uL@7aSDcLt1AA$utA zG|MoZGPOq@g|HIZ&W~QSh&D!o{oD40I?zI^ii6>RSXH?yog~(Trxel_3@%Sz#Vb}{ zXi(S~m7=dYX=Ilvc%_Pm%nHg!Mx8*XuJGcG1J>PozUKKb6}i$K@^w9yuYVD|Lfec#$RRg%GNxi-}3@=SN1mNm%@I ze!dpPHpPpUZE3iEyhJ~`>GfB*kq{A419Ow#M;h)R7V-q+qNs*BBMn5&`hJ`xrw|ww zmq)x1G`ZfrfD>et1HFDF2`Zi8xnwN;)d878J2Oo;7aS zkQeeco(O#n={i7DG_nSpb-d+t}2w(tgB-! zXl9D0lCA0b8ScmQMZcIQBL>moI9uZ2xAk7D+rbyMao%7RtJM0>X>t_am#l$lWsrVT z+!SdFmA$bMo_bE~n5%%hP)zpv4gAPkP6DCe((;N<&h^_WA+`L1bvfF3^>(g;f1I@q z_)hVfYf%|ezb!Y?iMf#NJ4_|FPE*U0udOIyDq)n56z+4&RMF$*KS5Wa$zyQw<5dU1 zfwwjj2ZS77_Lsrx;xx{=vs5*V_KElbfaHqZN?bsj5r4ZH|IhXN(&2y?i1XiNPYg2L zH~gk6ydE@8*bN$#{&VU15^s8*O}X&)`L{03GVP0;tQsvdXgqY$#XZ-TW1^9T&E$=g zvLnN~!GKq>Fm@Urd7gF zMHmGM@Bk8-_F2%XaQDhpn;DWS;9DMAYqBX*{f0yV)@t*shbm5)PSbOr^FXpFdGnvV+yxFpzwRYb3ae#Fx5x~du#~NDRAFO=OZ&WYi4B`+W-4PnBkIEF(c@PKy z8?^|bfFUd0Ol$4?I!M)scR)~wr|)2={iFhS!g{2fVuO{Ckgs3{lQE2p2)k>bDPSDr zH*$dk2?SVTT^f!rOR!-TBylNZDX8Mht79u^=c}lqt7_zHv{(AGmp&VA#C8Sahq-{5 zl()quM62d|U@H~jbT0SW-v^42{tnYf1``fP8%OokH1_5Us~s^$`!EBKL@vh+$QK;! z9V5rey84rRy69DAMM1vja;tgkfmo1?L48Wzj0=;`A5|{=eCl)5#0aP*L>|s;-SRJm z6sp`)xy6Nk7303fh2`S38x*x0b8*E}&LGkBKINo!4+7#imBf9WunCopFadqE`tv5h zTGwscfD%~uiwc2?4WG4Rr~O-r;V3A3l=ga{jP?4Gz9YP0HddYT1G@ZeQf=9mL#NN> zt46VzG4J-&$TEx_UusM+oLF!g-f3KRB;V)RD(#rH!D1JGC#LhWZ>IYNB85_AtUYTk z#ltkwQ%aY6(8NIxtaLvpmT_3If((OPg7sK0O+$9bLB6o_P9=6X zy@m8wtG=FP?nl`v<(~M|Bv5F#!lKGnLh6WtzCfs=EOv37lqH_X}%p>FkVgPv|5 zNWoE{Lqq*!);(N5+m};ZLOKKPktjYxbteybVNY5KM);~B**W)E8sPyp1W&}+#UNpU)>7Ki z*=oaPQ>8{Jk@@BQq+rJS+3M3w!&5VUJZ|XUv{pQwLNy`BgHS{>e(XyIJx^!VBnEdC zCx%R6GlBHL2-WXR^}wt44E9&712j_sW&J;N#-s3)_Ln1;zI#K=G2NsqyNBVd|hR^`o^u@fhX_ zIguV2WQ21QN6~L_A@$-#Cci zWm-?GpaAhnh$khS9J2j=y^RD5{Q39>kM(aX$pI{}{u2xD-pEDYot~R6^tQ8Dp9J+%myxa-a7ql~1+{pw07CIlC;N)Ej0=$oGgR2?J z_9U^)Wr!1FNHJ(Akw~`z@}${rbLb&K z3cTJ+1&3_1on+jX)uL_KHSBpHB$#cA^Hyp9#243FY7#jOfD&}X29I5DS>8)80~dr< z{Lu~?4jhw}^hL9fO~crYK9l0`)_KwT`|d=1!H7>me?L3Gaj1&2B1THk0ZYj(rspFa9EOu1bc84A)*jd;qa;c9i4&&L` ztLW3N|ew8?GI2=fub_m z-g?CsEYwiYV96SdrH%*Sjf^>nf+)yMXzpSY#%V7gh1mCts5PdwBMd!H(xxd7ktlp;?}= z2m2cTvGEv^2OTgs^JWJ^|IPK+&!D^%ggeKf{L(6v3;dUfvUcTw|Kb~3fo5jR&U`xDp= zmsy)Qdz>^rIxJY_Wyjt)KK~uEtt3jpOt7~q-6JTT?r zrlc{bukkECHa?J*(=?IpSt+gCHm(Q(b;>hHemkaefl(?Xnb%;$W0W^)=x*3wKVK=rqAuVNzEvpEzSCM|2Es_%e=d_@UpA znxe+1A=-{UEm0W>K^Sqc(gMcS#I!hCH9ZT7Ld}P<|9I(ViARVDC(wPG9QE49iTfesfpFaa`k@704@dpxwP7MaK>&j?P{h!mCA-i933Ol91-caM! z&PVf?A3z^iD$Iye8P*7w*p1lRzbZMV-)@;4jheZsL1V=fR)*;QFcxmd3qRC%9OQyg z5oXl9fe?oK^fnv*Vn5bt@UVovRi_a}n&?esbxC)hGz~Fya=(nYvKpvDlD+0k%WHId zwUsT?8W_4EnTdysf(yD?6c<2!K3*^As5h;*A&B_@rFh>-wp$BI359B}`dU}0(h*06 z$-b&eF(iV)cIU3Tqyq)HY7yF6`z#%!fqdZ8J81DZgTX)#m!A1IZNs#BD3p>AfeArb zKPy|-!$2fYiMxIT&1zK$?KkaD`MKRh)&b=y=>F95)8xZ#!vsrEd4&*iB%65B<$Atg zU+6dLS$s}z-Ze@gWSH+@5E20J+jl|T4CV%O-b}E}2<*Ls)!s{U%FlHJYbUP;Yr}9B z&jT+O#i%zs7r%ZMJr|!;hVYDWxljlD`eFZ!i~3)~)&%~c@oT@WxWK4H?QL58y}mQ^ zPm6PNte17(N7=nSzCa?4vk|6XhmVpHQE>1_!-m0|`0>ar{joX??H!0NziQ4gA}|m* zpLMe?Nrj%X>b(UXFE^vY6)_lyg(qOGYt^wyXac)t;^{7(;fihS`+64V{m3PRBowl`*{s=OQ4nm!jr=1;pB+GmmBGOS~&--k2>nGfr*~)J@$+j^2J1CP6~gC+mCdRi#MGGd;1*MA%vgkP0{ zpkZMM?4xXz+n+-F1CpK_PUbmjKArIqj(ThA_YJK?0(qhnkx+I@xCyH=Y-uI1BXXp+ z{8~+s=O^QPfjl*;%`S(aMv^`iFPBg~>l6i}7C&mkP`cOtNZ!~q@`fxJEfm zS8p5`|LaYJ$%FX~X#J_sF75M%ya;lH7jlHYNuA<=;_rh3&%Hu}yWVyhfK9o}6@x~j z2agi+t6ldBZ!Nd?KbYQMYF}zWT$53?U0ts@5Y42q12*U_;i>`fR80is1F0gAS7phA zY&|55Utshg^nbfA2gvU0^g$wVC4O0X21c;nSNj`?5I$D;>DFcpX}LCF`@`$QQ*$zSV_Lm(-+pSSH?1b@{08k4;T=R#_vg5j;_7X zgtAR&U%1exMx!*0aZguE!}a0L{tnP(&F%RzmoGVaW7*k}H9eld-OU_1633N?dl$!W z9Ba2UtZMF(t`?4U9r2Li<2%*lHC7u;wLmM|c*$)x7w_rW6c_AT)n6)iKv-KSlTsq6 zl6IiMex@nFbg}!P{OhPLniiXY<^=9#Qoedw94QM*VN5r%Xd+TZVo0#>l*>>|ekSoQ zre*L4g=FaBKAK;P#QQXHSBdZN5<(eP6ie7OYleMSRTf9tkitFCcQ2Zb$JnUeX|h4pvR3=2KVEuv8Frn0d}#Z628#y^e~s=*e|%uHV9?RTK16u(-&-X zyxf?4`u*?scrND0ALuhM5`5u_Z<5LyNK(%UXz@sYIy!gyEn@K4GbTcC_jZ5(nR$0xzS@@S6z@@*TgzhUheMR=}o)Yrnj`u zn%U^a+rMh^iYg>+#Sh^3>H_?$C)~|1XNMs@>-S}krNlgM3mhyX`v(YfflkX;H1D}q zOYc}-g*#_Qck6r$U#IU30XN)duL)Pz5V5iP9|jzVCqeQ#zYFU>*A)*8_`LJ^ti$)7 zSR?=kU?}8~3qr3aP7H)@JGdxq^z)*4XO0}#?f4?GZ3p<#R#B^Zlb6Q}6)14IkBu5E zlAH2`_x=RjxIuMkxR({Y=wII=w01|ja29;Y^?A@W5Sv^hrtxc6dV1p3^~=7T9UL5< zIo_d~{FL){7SH1l&Y&P5&bBe75N^51m3@Zy(wED4`~$kU-{MyF1=Bmx-RQ!z*;5E~HO)PAS;gS}Q4u2*Gq zS-)tkLP`yF4{k|O4q5Xn-}iw0BNJg203HuAIa>sbgmw+34`28|Z;G2T<8pKb_HW;E z*={ygq(;ps6^L2(mUSwUEirK7VigH!i?464GViLgBMx=?zx%hE_BMbf7ULiv;NjY{ zt4wGqnhKsg+NQf|i;$#Y$;*ifcADa6W052BmVjGQ_T0R{PZW;0sHcWzgGGi_IU|RL zx0>RLqMw?*kE}O`ys4p=IDEAt5qPYB%rqppTT$)ph45sPwCKgjm?1a#e??#P@|pui zT(n1>)-m`E6hYNiqj4PmN#C}f3s1kIXR8s&kLE}np;2>WF|i5v#Mk^N-0QWC%RH!r z%U84U#F3ncOVg%p!`-_q@RspOJ?m~puUDJJXTU<}aXk${B#rHd{qHei$-7RSx~?hM zho~)?2QS&v*VLjSij(kpefJ+k-;WX}9VR=s)!95sj1QDUGT%lLrmP;fJ*(cm2A&XF zghgTy-IU9_1YF-kVTc9;7QP~iI)*MoEGLnP|5~*FCYg(8gRnIan1wJe6dmBhvaAL7 z)Dw!(Z4Gc6IFKs&(!C`)ozFO_0EQQUc74(+$30^swn9gaXCS0YSv3=C{Dkg-d1UZK zvaPE&F?VFr3)+WT^jX;CfQIt)*!0@@?ox0Va-R#pNi5ts@pY}V8=NDoL}o(=Djc_t zEWBkMS=HF4TpbRmLj8_j@g7^gU4N420|i?`fBTEg+3cR|^{}jmR;8G`!-}poG)cBd ziwplEo2=n?Gvs1lLe)+EfrR)tD7jNpL8;Xmm)1sM*E*hz%<*^Y$IG@JWDD5RkT<5= zBu>C0Tdu*co2frgb&8ZTd3Fn78MM%Xuk9@-`II>8IjQNP z#lhdDRPul_u8=FJDqGu#V0MNvHcQ5eui;G}+1Nhb6TtGaR??TK6LTdQ=$r2o(l+p+ zH$%Qx!53l|&Ab~#ON&Lx7Q-cLV5b!?J?K(IrnFV6mCyvcOr`)@ZvzwSm~w0ZH;?-N#dMZH%dp9q)tfW)9I zS30lAcTU_kFWW=$%>^US>f8EDM(jSuXY)y)psjRrX@h568AAakY1~d=;e+HWGmfHuly&dU4~) zU^{1YmB&Zjppuln!9`_AHlRoS6K1x*e-f+A4lfSs^yVXg`{ckA%f?RTpGlqG~#UDzg3NTpUQHUkQDJ*@ZO+64-lF;+edv^h;%7Uy9r09grY^Z1U)(xD|Lz=tDJhd@a*k<^tmLJv|^0)sg7IX9}#QG}3ve?Q**m9Wmr~MxrHJg0=49US&gzC(G(w zB)fv7U4vb7_SbXl1n+XEAD`ONG-Ldslg2BMN<-mYk&y;{#+nbI$dy0GW+!k&Xpf`L zVQ^D(O;=2QE+WFRzTyveYqwr0wj*@)YPXIekA@f@QKVl9tbqGj0c&mD;-er(ItFMz zGmHg}0HVTwPyuZq?B_Ez{$Prc&V~%vaOa%8AF-4}3fxfSp*f0Y_frLIeqi0Lha~mI zuuOJ1|08$XG8=3L(9&i29x{+?EQ^llUDoHlEBfT+K0@f7e`_w6W|fcnleO!8w=`(E zd3u3@*3*?aJj2R4ru!H^Z?WYkS6bg%jGA4fII_R>2PRor@w>$L=v=r17GJ^036}rX z1M>O%)mPWpqBLhbK_Ga!wTDM(+3K11+VkYf&cJK=5vs=#}B0{uc=b@*M zFq}G`vHzcmfoT4Ya;2Uo5F_vt&mY8BXgs}ILck62?^39z%WcnR_#ci-Br`GE)D9(k z2x_n$7Q+K`Ns@`JNn(lu=;4|AH7|eF=qzCB7J8i)Ajf-K|)qf%m zewdr*>YjI(Z|@Nnx5@i+!dr!nBg#R{tyS` z5o*s?5WQt-ob@u56g=I8cn7_Q-?qDD(nA zc~52;a$St70m=ox#z({^vgt2)&povSG}wMxY2?{ralDH8ZoD~dWj6v??NEc9Lw&84 z*2XXrSB_awQ$F<6_+}`1fbJMs6$A2EILs*d59-LQ9Xg>c#eJcrVYDDlOm(Psm_H^i zPEzdWRn6KQtQfvStrEG1qK{IcblLKB6Yv6{HBSDG0a(2zCo+>FQoM@qX7Hkabekv6 zSz!irLSgWF#-)*^k`2YF8iTK9*b}bHvV{voKaIrOo|5YMWx36o)mVJOsVKd`;*9d< zrFs5LXp^y0?;N!Eg_2=ejh!IF-MBT$hW*Zx_%uCu6{m9XuQg#4%SzsSeLHW70Ry!S zmkxgb&<8o_Ol!g$w7a7)g?LNwpjEJgR|N|R>v5vmXr9nk?DViWm{j)(j9Ytu;Y)V4YS5VRdts z45U2l0?>rl(6YOta=JSIpLGSn2jZYFM-LM2j0HS3Oo{~FM8?XsmcAFhYeL8vvC;Rd z;PrF&@Hff#+aPHIhUIntx{j!SqW{EAJ6ax(4J0uPGUVLLfAB%c>wq+8_x71#g@MM+ zzGodF`R+l~vt{Im2HZOzIBh(p`o7g1HubKrzCgK{Bkz7fMKt$^9AdA6wOY$jY)>HA z@#J5a9ABSDLPZO@yBDSkvV_Y}7z=OcYz1UQqlDMq(^b|s%%%bqrO}Pr7r6lE`KQ?p zOyry;?&9Rga}i>8ve{Lm8E@k1F>t`mWm=oU9(_p(PDpzK5ne0?5IL@KNvby-TCZ{N3Xy)+_lCoobTMZBTxo4 z2vpua{U^gIl1hh9bY_zhs6L(4IZHXaK}GAyYxl**(Bun6eo{$XQQtBhb^aAX?k5TQp6Nq94bd7OxkEYmCq{&t%2` z0A82fjin$O&bVnN9-58SspxRIPdlJM@Q~HANp%gSFk+CC^kdg|v!33*TxQ1;mp;~- z+uF^f&A1l)6GJ$tTrz#-tlA3Y9<@0zBMiErTy*rH4uS9ZIU2M`ntrGrN+FaMDj+Z2ID(k@2L+Elqr}n!%O7R`wa* zxs^M~fCph!L1u@N*tHh=l-$*b?IgdA2B)orCdB@a=-a73L%w0h)zl`@q|plYNGG9l z@DN8L6UHnu(GothL1T^8QIb?qHQXl7I@Bn|;@)cmA1z z&ETO5N$^Z?3Q`H~nuNZAv|*4aygzX{x$xGb0Z<2!$cS^{rw8@t*ZWFe5c{_MqOb_j z@0Y2v^)6fmpTd@W7nj{lvAlcX#T*XNE^ikMK!@w&BH*UH)-dc1AJE|#`7a#r{d0ck z!wgK&THkNYU{GL2EQ!b&0q(aPAM;=J!;Sf*oI&~J?v`34(dH$kglVF?GNSkp_2?-%6u>KZWAT&@NkfZZuOc?zdEilqH=(I6+AUT3Q^EA{8 zQ26SHwD=cd?6qG0e(=;LwNh2m_?X0;5_}D4^PD5ch3Vl$Fs71%!!B1-%d=^hPc)Mn zz7R70)guic$pkq7t0M1JET&ql#fPAJUL@la>7=Ill#Y%@>qiH0AuGOKy?wi;nUsw3 zGLPvO3(!@y+52yJ-?Fi;g4y+yvWyO}*6*1e!zEp>IW|s#6gxQ&jAB7E=H~Bg?!-;# zPJFfS!jC=i6=scnh`QuKWe|8=x1WD!wPt`5&bpLN3%@F>EX4EI(Rz8SyKxdYV%jyb zC^ex?$B~)1HGBXb!B2fJ=!%&8)`rjqlOggZ0JK?WKAJ!A%%z$JRR)c$kB|2ShkAY2 z{3t>fg(u8jVP@fH$%&AZm3HXl$r%?aET2Bxp&q9j(3J4NqsZyAN@O~!bw!EOIJ_~)OTOjP`pR`FGZKsD-u1@DBIpLh(c@2*~fpUCL)DCiap8Lq} zUGF5cziy~}u6vn$%l@e)y1yl>W>Pv*imnAd|EdrPjN5>utg0ILp^I4gg9r|w`7hA* zn`4Gmy0E&{eKIYcXq1UDo34-tNhz*KLPgj&v`RnXXr(^=PT#N7CIklXLcX@uA?mfc z_0*@j`?#e|Q;i?hwzl+?jxqc&m1r#mD5>s;-$4NDcb$-p20#bJe}l`X|C?Hj#Qu%^ zE{ExW?9O$-Q{tp>Zu5Pom5HN--|W)K^p71&HTp+dcKjP$!ZAoPsCyye zx0Epec38!+6SytYC6UAZz1xmoKCUuKaD$!bTk@=5X0!v4$Xv`=8g#lC$7)0o#Eowq zcnuKMHw+%#FjKd?YiNC1R(jT7z38`ex1h|2vW~3yTVRDC`rHg})JfgK^qwNULP<`! zqSwlHm*;iy75N!o`{OQs91S9f!tg@`BkOvB8E565e-Q(cl2=fkRTbK_PulM?Ar&VD z0+vG^_E}{cOhE&FsN4*?{Vm`|if$D%VEkdO!DkvVL_%*bp$)rFe^|#R#D#ALxMB;- znnXvy(yp}kc|<>i{DB}c?XJ@ZFDTc=+xI_Y^( z%q$U&Sr+u3Ssl(2(kMS5Y{^zxcCnLFZBDPM?^+uCV=z98mZAgK7pcmdnC*e3(EaZn z3AVh+@OiI89)w8PWDhD)e1=lNWYyQ?d;<4iAOIhvN0o0&R_fSfvSsp51SPJUtH|`y zVQ-B0x0*FCFS^WuDa020rOMfz(>G-JxgU4I&TZkd=yu*gs49oQ9+IEVBd^@aEyrM* zpD@;>CLV!iG*#}fAVSl&zCrY&f2Gc?^VqnnfvSd5c5O!E-^JBRKGg^Jp!(RTqYHx? zZ$_`s%+(tw=FI*gHp${FYOvO7VRx6VhldMMThu7~?Ona>BZ!V8JC&GSugAeT#_2B{ z%rWm8M{*Xqpvl}H;R$)M(1#JIq2d_!94+RTIt0Jt@&mj=#6cJIzCOyd`|St@l>Ke1 zMz{QWsy)ckK3ci?3}SPizK%I~K|A!;p1QvOo>Rz92q0>NG+d!Z{t2^97lB@TzxCe6 zGj6+TFkXUhze&6lKj8*&Q)R4us)qkcex+=PV39u+!N4Cc2jkRXYJ0EjJM_FV z5-W@s-RW!*#n$V@EU~&Jo8NiSL?Z+NT%H#?n`I954O?E##<1tG{vmqp=7ss6Mb&&m zl){k9ZVrCNEyG{X7WfAzOS*h42FBYRYE3Qp|1+p+ka|e!N-Nh z{Y`d+U{rhoHP)lypK)}A?oQWL8bhPh>q>hLe$eKFyuh$)$E_vOqUf)9sH`j$9h;uP zQ&Pe98Jl%(NJ*8>IsyVHKzzIGfKu-SS!M_y2#NiII0GTfM!0U~s=SVZ=^Z3Kq;68< zNy@c@Qvbk)m0AA@SqiOX3r!g9?$f|FFV|Yr*ioM`YcZ*rff9ViI8(gB2uI2_f|j%M z*43!yI+NweG+LWH-S;VJWE(G2%D)ectrN2imW&0vkSI)~0ZuYLRRz_-;g7#ji3bWX zHH2)YlGADCyT-;fJXkCf1j3etTf3daS;~4ofC>MyW-dw~c($CV$}8Smx7NnxI7@od zR}o0>NG4)exUpXEMVU=Dmo+PE=B*|tnBgOL$n4k!_J3}ng`J|iDW~kUg7T4eTl*vw z=>Mv=i~4&DaX> zX#nbG0<{AP?2rTTf<6Ch*t!_hgD2YB(4QjgjD|GBeqH)@dU(!KE(aH(gr{jFH0c^~ zaw!FAe;=_)?-->QVcET9?%%gWK*&M65h2*(Ra?%k}Ui6y``#cBisP%^mES>R9Q9#O)I4yjF zJ}}^}SLGJxqYJ_ay!w>XjZ^9u&AK`tljx4K@Lg-pQ@i1r?%cALOun@J))5nSJ!C5M zpI)fz5uK2U5U*j1F;oBJ_J>L`m$v%5RxcvKCs*CN{jeY-ML2##6NU|$O7_z_gu+3U z^u#Aab;dzoNVf;c7m3A*fv$*=H}GvWg(SU$k3**d1 zhk^vfhumR0nMDf}7;*F4OoU1pJ?i_Vnel@=e_^?2+#0pGx1gH&a8xm(7Ihkbl~B-g zi38eQ^k<1}bsdsw(}oO^!Ux*fyk4;!i_gy$+hFk?n9VUxQs@RzLtb0b2ea>HjvG31 zv;h}o7S1?BUcihgpS2s6Oo%&$37c~5+b7QPNR!jQoRt>Q(LX*PGi>mOz75mR!El~!EEu5?YVbcMcf@)@qbusA=GD)9a=QRVp><_Er1FJ+gm zfJA#n;RWuFfR$YlfQUU^h_M-m=1g?z2X^DMa*mGy;8Y14_5}-f4lWd3m+od*xHxX4~B zCS#xM-=7!3%?;lrNc`I~5Abr~>U9w*OjERI%7M@beD)WJHz~OgH1empUBZwpT%|Q&R^!3%CT8lX*+(BvzS4(*c=Up743qIZ9%{Dap`d zT+}?|+_c5MG=B9*_z~?`p*-_DW-3}Srt3VZDC|%cVpC!7s0@^bvx|eM`jD6E5!)0& zPDpYbgESAl^!dK=`w4VW4bLUFGlyo$L^nmdsoLvDa~AujyE63i!dd*vi4I0Vt9zh^ z|W*Reav%!pFYZmm%UrBUgRS|NGwiS|gs2*;9a`PMh zJSf*K@Ls3NyH*pT|b zr)-^8psCh&C{ykDD3{j?CZC1epDXJ^nN|17wnV8Azz>b78}F91r8xLStI!w6{gF~? zS8D<_K8Sjb5z5bjK4eRX?4u0qaFSv^Snh9SHeab_C#7V%6DpG{F}?h!zf1cpqq77w zY_fw`MTGqTkmizq8j6e%jFOnaAo;c~pPFc**QQ*Nor|r5rh1mZPbw7IIgY%d*vIMWRNK_SaPQ1f?|Fv`1Mc5B0=_at zbNu4%A&tb+6+hnx=@J^hR2N^xKl6aj7#3c#kEWh&{@^VVkzrs`wDjP^H{j=o4KesWz5sR)ej_(Slmz&MM6> ztl^NmiFoLZLYi{vU~eHon>@0Fl){E!n`;Ja8||?K7M;g^ZjbtUMa=h)_KF5&#+FWa zX;O$!u9cdfNnR7PdPuwnL>||@Q1XIHyNwV;&woxBNliksFChMalk9&fVhoT3%4{QS zA!&%YrZ)ia58<>kKNS12wCge2_4W6wr^yE~IHE%T$XJo(rk9s?0RFT0dB?qvkI&Qd z^Qp%(O|D=4D-l8_w-bluvjFr#M{+J4INSsF;N11U~d2U;JF{~!F5y8P&SKk+k_14Swdok=_ocOA>?|LR3ll^iz zwH>&<^Fq(MWa>Hi(>^xhk{pVTTqsoB!(J{knNo#Jd)H+KGlU=v(pHr%E()9uvX`- z2hEWYO*A#HoNn?%{GY$mI2F{&smeiOY)W-`(LXSD3@Lc;G;Q%kF_Q=>_|S$lTk%sY zvvC#0Uy&wa#55IHu;Bw3qg_p4Hu{X!=w|kLsit&gn+JsXI0SoE= z;FlzDSW3xqYOpt}QYwD5a5TjL2TnDB&enPLS-U@aoj!zeKW{@kixhOSI~l?6^##_B zy;Ru3_$ZWuJqra%g%LDR(GB@buIZ}`vVT(QMxc4N+rw$eRx~2nT%{qA5-?drY8jNlW(~s_^5vL@cuq+Wu%A4vl8)vv4Rx&?fS}{ST~;)( z0H zychV`tY2(FN3y7nvlCb0g{zbNM3J*LEnIUD8i0ni`eVi^PKmmn+_DrO^rG~}ANE5qOZXcVg)wj&=mPbQtUexu)SLd=C3V@aA0D5DMj76; zM`0Y6XCPlOCnZORk}#DtIHL_#KsWk1H{ELl{K+`&2vRho$@9Z3inmbzy3QHdpu+Bk zF^@Wjc<@r%kjt6 z!4_Mp%h|fQQD}vCr`|pa!uhPCAS4C~u*&&ZX0kQ4o0I&YFaJPV!@q?4W)%-q2&>X| z()-k!(oB75%*Eg4iG|Yp0u|*!kv#n&V{22UTHIbiM&){?MJ^|@Xo4#82_NWiS<|#F zy)cZ&B$G7)Ih?A5b>RB9;9}?P{iNgGm2ffp6ptc6p!i6;xP#`_pD%fisssJhH%{w5WI@#tNQ}sO0== z?3lGfp9)Gpb4Ly8rx9i+7sptk*hJJvIN-dx)N)&c5^~h{dP}(RL&*Mj398_FrpOBV z=8!9B&Tjzlx@h!1$L0N)9TbVSWL0zUcE8dMBP7wM-_^KU4+YMBzdh%u{Ig8Wd~SZ4 z)ynR>%d8wbDg0bjTDt#mxh*Lv$<58()YNo(db&TE8yg!-f```=PDDf`D=UkHgp>zL zNJto8ek;}MWDn{LeDo&DyZ;3?DkN|8t49C}=$ye@E0I^R)p{s=t!1k&x!Ve~7=?=n z96ixjNYoJ^cP9~mmn}oc-t`)i7((m$lU0oNx?~Q%mU4I*Wzg~Sm zeHM8TdB50FCL+YZ%fbx_JTzkaC=$w>|;RZdoYGNg5fU( zliL|Rpr`0M^f;Gkyi|lM7Yz#W1UKz%%QvQM@?YZ>gq8Wj`2K)Pi+f~l_7Ky1Stgp{ zXm9Ng+kRAdm)0?2c`8dR*|o_>>UVnWjr#^BmW(@IrRVGS`ML zeoNjuXF*9f(NA?0+l&#S9ke|o4ijzbn-Un*edwi`LVO+?I1Uot$GbTe`#*Mo zo80&9S}u@9Z9;r@l^E6@|Mke;6E~o>vhuhvR+!)a>1L`>I`~I%adCQjIx{n~x3~B1 z?(Wpo6n->lb{0#+(9p2MX6D^s^b@Rg-I-PCJq4IaYqI+lMDH)YI|xGpHN% z6ehsx+$sX&aaQXZhkv#6i(J!V{gbk`w+KUS^h)qRq#G8gL?|x%GdA*%lweOQfdf!+ zq2@rD*=C)z*UzFqoqqyfGeusOyWVcP{Lg9LZ*v150{!nx z-_cNCS1Ltb`v|&T#v?`E23+5t&bwaDy526j-cE4Vg)BSP4b2AVe(2eDJmZVj?tW+` zh7%PKAi8RcgLy(V$wKDpj88a3bAVTo`sqL>r_qj-@L2{xq%(4)53681D*Z|&!%~s{ z<{53KJtECqe9Ptt*ER5dlZC5ouGU!kw;&IXE_>ofBui$Q@1VwooZn!^n?SiMBt@t$ zGUdRgP#%sIsFq`j;0jHidtQ1|CsS^WqX7Q~qB$7*cKvPpKoeDdM2b0Io?}5nt`bYa z3;^Q;8ZmdYTyYW^nI+4a`DCLKefJzemH}-MUyxuVLBJQToG&s^l^kWQ>higc&YHk# zkS}mH>*{;Mb;^k?CvJaLBcAaL#BG?>nRIsuC?h;8YM#jdsYH$L6CwG7WVCe~ci{^c z5MQo{VSf|M`XcucnWxaMvocvCqs*x(YpUmG_^It4^r{4)9;oh#6{oKyZ9h|&H2_yHMrKRDyQUXM-W|* zJ>b1<&X!#?+kiO2{g+bQxqRmGtLf1%DLWp6{&q>42G$Nq+K<$xWJV_bZuM7;o=I^y z)pi9%L?`dn%!K)#fTzYW3ct@jYrijEs1ChTJ=~RZbFf681L=a^MvdOs`T4(b;s>h} zkO)JIzCVfxvmD_I?383qzuh~;lAOiTuRldUGiK6*12a4Q+PqJ$l;-Y+XVYhw^#QH5 zwaT^g`iv=m|Nf1NLPbCbe|UH>8;mI~Dndm^C+2sfWo2chr0k!VaBy*PnJIa1NvVa; z`@}aEf&$*)W;M8e`1Zc@KQw(~Sfp>*_hj3) zZQHhOyEc2Xy|rPowY8a>Jz?8wbDM3~Gyms(-mmjvjydjQuKPT%A3YzBf)4-f|FD=H z5ceHK3AxM;&pw#^f(3Xg>fGt?EUPR2&$c8Mk0*Je0p zbgO}+ORm+wqpevHJ+3aBcJr3W6c-c27)O#kw-#4j=CoJCSDU2Wzp;4rKU z9r4bkh_YmtyOLDukx4z7K0D<|CEJXT{URv2{{XT7yj~QKN)w}QmF~__wG0YRZl+SC z#u~yVQj~Zb$&t!>{%Of5nY|k%eWF<+k-ZyU-$SVF3o*9$*H)_=Pcsl#lBhzvHC|;i z)~Ap|TwU40wy8GkMS+b0_7q=#Ca+cL_?rnuF*;PVdh?Sz^MQ9eJ6Le|qf=4XgTDC0 zuv2O{c8l@?(HNsEN;|oh!J`c(f8mh4>4>@yOHpc9|JRZ@nukkit`(kv+1tT^2k6LF zR>Sfh?^4n@lOAJh$}C3Oy?xr;+?_m9fcesdSUoRQ-$NC8*lMT@RY`q=TU0DlrKxS| zTr7XhUz<`-RGx%CRRJf-a{vGrIB5`e43qGu3*&X{z^OmIB!qc`_rSf#iZ}{&7)LnG z?QUP@A3c20l`1Zlh|lY@j+)@X7q10Js$ggOEDMLCqv=@&DjKg$eTs+8j-dTFX`Hh8 zWH33WOygCrqc~MpsRQ-aE#uP=;zfSPaWG4TZ?H?rqpztRB1ss_agGZwO zMR?}@3({Wu}_VL;0p{u zz$x38&Y+LyL)#Vs1_lH+cG9ccTO?FeRu&c%G_=O5Dt%*PZx4^bza=Gh1m_F6*Uv>M4{@7xG+uTHsv??CE;4{UApw2OhRvJNX>^o)%sEo0iL{ zTsW`Mx7lWDIwsN_@YlY#uKw)d^X579eZJ-MEwbqI@$>%l^5gDN>}f zu>bGl?V(xV!DHj+8`{88PRPwKraAsD;-!`GqGwa{cue zlo?hPM-sKuVl;1Bt!{{)@r4Auq-p|i8wK-ijC=d*;Wnwz@(BbScc^*>~NHvB{z=>@fCcF!Ltu={0|O~kD4vqu9RS(jFRG%;k(+2%l001ZrONPx+(6l zQnViXKY5HaSehw7V;6#LArz26LQXH0ddFF2j=89PLH9D#Ph%0IJTm+5H6~^p>{x=I zRHB5Rcbzi2^Um?Bk~gp4bw{i#RaE+r^eyB429HlnMfFr6^*wE;&a|P$tVU!J= zbgs+F5rtwC#G=#Qu0s$WjBoV8M}YI*W6H{>-zJzAWqk4rh^8J9D~H!XUlMv(BDcRE z`Ew%-ReC8u6#v-LqwUvB>HDJNHBY8|M`H?V<;hpV_UGA5C z!ec{y0=l4#TOK#^A09jegp^d~z@e7ep|`zoj)~m_Ns%gG++Ew4-+?o;dkBEOGIM`R zZud$Lg^u3D12!jTQgRCaK)jd+psoRq#^s>w-<-(s@bok_AyXmEY7)Cn|1>^6KI-Y{ z_y+`BpaVZ29{bgp%@*@jnHJt$m0!hByZuG+mYY0p*^K(zH*PurhChRXf`}X4w)!^y z{NWQ6G}O}K;^d4N1fX&V3-@$&b^Z8Z$&TOV`c~xdj0kwK*gxzBlaDg?KOf;Z@7e(G zDD;wIJ``iPVWw6`K4EQN`jCKTK{ltoS4AP6ct9oOyRf0qXA6|Y@Sj?TLWhBsjRbgZ zkJFp*Se%s2@q=ou>1HYmCS;Y=VOwX^rCBn42w5w6bthAp zFIHFNhVF#9JL}PeT&I25}+3&+ff?fW!q4orOD9-X+-L|@C zVL~<5fvW2f8G?scLf;4q*Hs=x6zH)Z(I9-!cs+yXoMNyXQ;KK5lXXXC8Q;~|^ zVN7*mJtODA&ZO3VS6JCp{+E5_?%}IDYY!AB2TEbUjH#AfUtw_x1#yM34{ss?^$<$+ z^&^?dT3E_(4W@~!Vr(Hg92l!CIOV11LO6XmjTbD~tAHhjcVh!TrE;T(42H-9@pcIb z(&}q=4)`(9bom&Hi$OinZN425^Yx2;JQ;Rthwi=U_MSh&Y{SB`h=7NMpEz2cYd4r7xN=ptfKRN`|rg2fPEqd$kuFLe=m{!2|BGb zL(IAtT%Bf4?2ExtG(sQAKn+mwMF4%N{M4pF2)5Xo)^lUjci5b*FYx**+Xw5HiIm1D>P_3rB`j^`42weyb}Uc z{dKRPfSPZf*%9ki)I*?Qk{` zwO3t0AUOxe{LG9?4B-8dt*;~CRZMe@mM0EIpgAu^?GL{-in4Ln&-=i?EGbC9$7~W- zHE7`0%c2ROcd%WENenDwGR1f~)%v;#byUFm7t%X!2b{#}X}hKAj6~C4-J7t%#V4C1 z#-rcht7hg<)T3+Bqs`xA?9zoC-GDvlIuBB;-oXT7bs(6QN$5vW+Yg@Umgq}R~b7`~$Sp*}mamB+KG*O2=YqJDpu zt;Uq1C(z(EP^e>darV|VOjirxC##(BdP*Ri-wRBjKb*f1Omqiq6tu~>wNGaOkBK>V zB{JeV`bfYn5LpOVVx@Zzq-OWvHANCSr(gJhV9>U1txcH;dlAN@$KM9MK)C7 zxOL&2_zgfYA_H(QE0Z}dw)sL>H9F<&UkjbE2ev)`;^yH8)1gi#%2OBI9!Xd>hFe9& z!H}Xt*isT`6-uBXHu=a?^^XRWO-pDCq8A8uX;Z$RuH1gzqs;Kxgy(9PxsXh2wrBS% zXH=onIz3NN?z-{#o{!P4>6QFsQRG^rk~V(v#5*|%C6kQYv#bb=LnLXMmIdSUT6LMkqHzkdz53oiiNsZPz2AG$yUG{V0R$Ai%9jzq#X zkAJ`bg#uq{Rcd(-bac#NIjry5Xnkh&zOfSFiIJG~iL`kKTJN+ipjg%OdA)4ps^-bF zN0g;}fDQ#&KHks*C38%VclJsi+kAY)YHkIJZ^it7oo9&ky`MFjeq4KjcgbhIqTro^ zt=`tpXS~gqbF!_cd!)wCm;K;=|GoOdt>Dk{6tpuT|C_LuMGUm0BvYqSuNFx0Km?H% z$a<0DKLtx;G%vIjve~WD*=@4e?a&9{bI%=<)e0A%Vie}b1|82JO*~U*aIs%{rMPdW z+$(`C1+BwPZZ;f$PGXvWn%BL;)fiNI3!4K_>x5F`m&i&AN-HFN^DH~l!igKCfAMML zV5{bVJa9%z408YmZ31BNr_!C|AxCQ}Uakq+ThU+Rvf^nM=@~P(h)c0brK6BTMi4{d zo$P`&{!wCA4J+)aC7{T+W|HcN13ep|{#u}U)O*VzxELeRi4DQMbFF#KULmDBL=5;6 z^F>9E5ksvkh9pNL50Ly;!p=Z{k+>rEl%DdSQItKIv4n|TL`Y|_ISV(uX-)aMa4gd~ zm>cWkRPAG`lTQ+hrI(HRPZdM6mIAJC+t9gn>H?N0Vy@0pmfNOu=Uxkc&ipBD%}RpE zIDSTBsTMuiV+T+@!2e?SFA<=C7GKN3KHnYBalB$tMeo%l5CVBgTs9j}xqngI4i8z5WwHdWA4>RS;NMh3C@1FSl6RiMjbK8H zgkk(DTFAw9rHWBUU>h5Wf;ycyuA_2Xt}c~V%vXwg$}H2o+u84O;Eo!9!1scA1(S=P%~0ri-&z0UHfk%<8?KI*Bkt`-H#4d1=?PXgq8Yd* zv4jc=hql%d5*tE@w=lbO1T}bxc7)u>2V72kO)m{eGemPzb2F-+ zLtq+1GxPuSo$LLWzIA)ML38_f8SxEyT@dOIyskeq4LNOpefSLdgkvM+e~SKj|H?XB z#~SG9EW9Bxr|J1ctm4u8E(!iN8TnC-330j_fu0Pxia0ry-38I~l;1-I!!C8Y6w)h9 zF$?S))=+DQIyoXjr`(2r`$Z@Ed#}sWtB(4XAyJgdboQ|OV9(G#BxkuhOcluF#g_&@ zP*#;=iD28Io;KZ)G5h?)8;~`u#J!z%w&SbyVwGpdD9g&1Y|6r8{Htxgz7Dk}<}6)e zJfI#?Yj_6?=K@w&cr|y&ni)*{dRk2iHt+0H7Tv0p% zVvqHI(bQ(*g4i8_Z5o}W`c99k+kCzPwLMqweJ4JO4mfp3<(M*PC3BP|=b@(bNUpfQ zM;1@bdOdK6r&<1ml$D*A^+8&S5(6sdgG#5#SW*u}l*LZ5W6EVi?KdHC}fw*on<@2BFj8rL*ppYKfN|V&ph6$6~)%W~w zv1s57T-CGod4x7h{Uded!Db!S@&!45UiKGlHEjYmEAGG_v2=mP*vtWlEX%(>xp$B7 zXdPltBwrik{_o)}O6M;7(<5|ORr!=W4s^(vsi54^^?CSy@Q8XlqX4Ng zCi=iIr^Q_li{MsDVLOYko6?*RwuqbB-09KV(viT?9ie!joG_vIr^&*rqoZTkyk4W} z26#fC0_T^0|Neb^d^|EDqoWwgj5LZ58@bamC;Im#fvr!y>tyDF#w=ve0LbLJ-qC!G zfGQ#;*6#xKrNi9Fcs+@rL=D_mrV)Z077}U{w#g(Z)&&0!O<*Xx3Ux%n{0Qj{Zd2(n zPABV|2QGBD>Y_>$VWtbg(tzRS9yCx)ruSb>3}qw>0sa<20` zA*~TB8j`r|)E@gTS@im_vP7TEs^pGk0+W$7VRqFgE1_!GIM*Guk{0W;=BK1A=(<)c zPM3s?&x+hq&-?}8l$1u>W)qlMzEH}mf9YCeB z&ahY5)>=qwDexvqQ}_N*bYNde*F9l+8!1Es9MaI(k<*%*e+{#Z%|(C#5a#B}Em|rF zmd(cuWH$sY^+*4iZAj(99{fR8iAE|tfD(^KY zNLc>7OSZ#^L?;9m+ldC6V}z2!L{8;e){G0}{l*FbXEyG2K_%CFCMDC9;y-UcjJhPY z!*QX2IZb~krH)l$nasonbvo3<(azdmT;?LuwrY$DiAD7DCW_N5589`#R>jBe*${Y3 z_0EY{vNmg!FSlR6x$JfD8`SYW2O);5p(fzN!g=CaIdI4M?B8gVUujG*D5@tHDP9gj z`}h}U-Eehfdg(Y-?+?(3`mu?_xxgO96odT-{(pbn&Vp+$(F1e==Xkf{fZ+c9@9>~@ z*9}HiR#g=h7G`E=2ZupdFj9i@tuN$V&|IT;^wYH{^h4m|`;e1(%?t5LZ)+>GdSB2p zXJ43>E*UEu+n!XyNJPj$&b+*H)LgUOnYE40h&AW)^Ro-7-?mo}+3VJmbU}e2v|(&P zsYvY)@JF#!yF&3F&7sanrbPt>@3%#tiS727s2gi*@wC;j+pqS#gl+R@NmdY<^GQ$W ze=TeKCnH3ZRaC;$o9nys)Np|a?T?UmQj>FkA?_j*Ku+Lxb2dpanCK92XFHx$;5AYp zpf_^gGz^vl50&czl{yK>Evk~u?v9z(*KoFVE)rF!qJhx1vGrTrnt!B{@;H&PD}Jw` ziy;e7oi>qPZQ`^ALc@3AG%n|Y&Bhs$D-|YRWR$?efho6-Bd0OJ z&1T!LiG5M@vs)$jf4Uus*~A^1>+iI*w8KA_dbOQn!feZw&y2>pe*&%CVN;h%r-Rt7 z#;eD%+0y8*C7YQ|z{P7JyHfc)3_Vu3VlqogHjsWY;b)z*03#4(zFQE(#VW91KJ`n;St^|{0wz61=v(9;SEe&b3L%UEboVfn@o|{@{Z@* zG}KdYo^^TmU|CY!Dg~qz(MGy8JT;3sNoMrwwvNOpWoZU1 zy$ceS!XVV#s2@n@IJUpj-5?)fol(?8-4!heg@!X^B{=2*E1bDy!SW$WhGOP2A6o5& z%4V{jk;MI%k4l<8-J-gx*t!ICYD-OK=neFyPKQZ9;C_$V_I6x6%>|+`ShO zS!3f)8kSYes61Xe)7BQDo}7??CAKwz|E2nDVIEEUq||s*@G$ZOM1jp+i zTun0oH-ETmw%Qt-3Nat=;v_yzX(SpaU&uma>dJI-;QL_!L`6r3L2$y$t3gpT)WV^KTEwc)6#OiOTiHLHi z(*9GiGh*gELLYMQKLN|bI2j3sk0C&J3K z72fMtr>=Bn0z<=t7as9NyC!KmH{Bs-rd-E{dlpmprF8Qv&TS7OG{HzQ$vG; zkFV0y_sf?Ev+nNhsmV!3CMJkMu&M?;kijAwFsZMjqw^Gp1=j>Q9KPq{1_Ttik(q{UB7@9|DDQBiKO7T4W=W}5 z|3_qw3{BZ^FX}Vnc#noYlt(Lpm+S^L4TC(S`{R~lAOozO)((k7Qb!sXn((AbeJbr}i-`Tg1t`?(PlQ@1JL_cTML zd%2ST1e(7Fj&7`p@UJY3-Kkj!kQFd`jb9)(@BD z3cTz&icNNF1oA(e9vn-?0#ezO8il@tb8zCl+!#YV}r zs=IX@wOM`rUJBDK6RA{CtCVWn-G@4jVm2K zr7}i5KkPo@h-k^a;mv@2EV_KRac@z%fUi2WUuO4HdI=TmjLBd?iq3APK$<|A#!@KL zA{xQ0p-v%riDSeARg>=5UP%%JqSrxqIhy8aAsjY0tIzoR;UgqMGEoui%9GUBSeAG- zQGm{^DWFK^d<|58&ekXdu0*oHpmB%Lj^-Ce5BJ`PRlKMl3IrxvT#x@-19Hj^ z>(}3O7QM{Z|9dCAtm5TNn|+)5(weLn>f!Hw8v^(d9v%*cng$043kwTvTb{QEBN>Cy z2To2;zo(|Eo0*~6v(nQK9HOG4s;H=d^>&XB53p*XSA%eXnbcHtpq-^9<%7D3$@$(M z)WIm})n{pMZ?Ls>S$}_MP>^t#epZ(UJPhcFo}Kj}g{`ctEX*b=@!wqN2N(V7+8QBq zve`~-Lqo%pq?A--MuwKO^w+hWC?q@(ru*&qIJ_w^s=2wDpO}zKRP3ColP zUvF^T%KWgtu;1L72C2G`#)$e zo^`4!fdTB6CLwo&ENvMij)EnHExtEgA-HRGk#!EZ3x!i7!1^IFGX%s2!RMf6Zlhro zMH3vKq7XPv$Uu)9=Lyuja%VaT@PqGxL>K6;h@nMgoTN^gsADr5z0uIZV1%>*x@i7c zH}J^9wScOhIhn4-p~?wXf_ulpw3;107E$watZ#LV;nP)flWP<&@U3c8+l>MRybzDI zvJ*?&Xg(>xE9LviOq~fP6PL&|*E@4imJ^b!50pll{gzfRXWFFI{4P{XOCHS)YM<59 zC*IOKK|)55v`(kgEw|GBpt!5WZMULXD39_wfBG19CC~BMj5QgIl^el-K`cm|$|KKU zfRd@iSQsy@WH*oESX;4BheB$egw;2auxY7XQXKT^AVwWYe6gzTUYe%IWl$?o8rr|x z`+LA{3i+q-G9L~1kFYbQ<{TW7cit3V#Lf*|&Jwl)F{H6;mJnpfeXYf00KX1R-PvwO zhd#n?Zm+GprVs`dVPa1>4NYO%;7XACySDqr(zS4;R5JoG`0skp{11gyhG*u<-H^KW zRj|6Hge=*X$Qdyavd^mR?i61GB4lzNO%E{?k_J|=dQVjNH?I*jA>DQdAr#<01f+)^ z!!`&(3Z03;%(P{`idgOB+t|E_zRy9bcr_1wgd6bW#gYw>H%k}7$)m+aKwkroawk_* z^*7zB6E?ZSuPC9Mydp>DIYg)wugY<<(eAMuRka41}yTm)cb15B3!^Q+< z7I0Q0UKVk>VV5-a4_=sXIg4xzvr_$Tw)cK#SaJ)Uj0bmIBoXpopMn=NI z0PMBh-GNFJllLO_u9?^ybZcFloxQ!hy8UlyNQV8mOC9%nkC04xBhR3F-zr zsV$D&JTL;1z>Q2V-xk5pxnE~HqzQLVU2D&z9aJNcY$G5x(9RXC7e3AFL*<6%&LPN# zJ#h6=HgPKIS!NHw*}BZ_TxI4$a+MM=9Yr8aRgjvAEgwE$L+ z(sX`PmWw+pubd{DIH9g$oL9PMiRIs>EY2*X@-hp;BBmH~am+mLJ|_{*rcj0!o0XCM zSXHOBP98ubVD`-lfnA*%<=PT9q7*cTs=dT5qjap>B~eRv zV-E|DX$J3BCPko1T|Nfss&tkQl@x`r3WWlZxqaqt7>X`ybNh2JY?|CSkcdhVt(7b` zoAL(vP5II&)-i7(dogQO$DF=L;f`^-v7$JpMi(}Ih$K*Ra&tS+etJ~7D^hMzQ9ENA`Rl0wfCP$~ z9NFtO3~ANP$tB7I4VkZnwNKp!`-%CfvCfa2`H)CM!ljV2_S%wmZ$AIf7JAC#q2&8U z65fh!jN$V;d@f?8Frw(iH8q6LH9aD3^uyFJg(t_F1QQ}8e|s0i&or|H%>u$kN6Lpg zT`^r2bu@PNC{L_?0|L|uQdF;M2*;8TY*~8+>+o$W=g3cnBBoM788Cpgais$A( z)YIZ>t4l0A>ArH2XW(*NV3w6|&JBXbZrHWA!|j{(9KU2qbt^uvtMuaPj=Jx5_yy=6 zeow|z{|KKkk;XsQ77R%FYDEIH;)4P=0o=A7y}6Vh&H&C2K9k^%`oZ-ZL{{3k zRsId2;U6so-#m1vXYe3FD`Xo zR#uuA8#l$EG>>6H9QmSc!hpIN#F)ZFTT#SA-{V1#?00`k;otoT{?kCVI71vYY=*Z@ zIQ6#h1==<8;U6fXOo1;GiZXXA` zFV^>V6=OHTUPBA;yJKkrG82f%Zlk-UDf=j?`Px%4u3$X!Ozd%>!$I1S$O`9ZW*7|28|t?UBdRJ;2dbaSBG8L@@l}ToN>Z1)F5=o z<~_kI#oz+lw5@0jO>@dbhq-oW5A{b;sO@&+Yr3&vEVJ2J1um|-Wrmn1WvH}+9aSez znM?7}>JQ>%2>qOf$GU3sE;b2d;V`=UIc|g&BpwJx`dXLvkSS zNSvn_MP~qw&NsUAX41S782i@Qdj*}YM_ojfP~>spqSkL4+Dnt{Ffn>{OHu(B+rqF8 z;1g(U)hwLytFq?5i%V$B}8kEZITlLX5I&QxMiy5D516K8i39hdIv%#?IkaUh*v z{2C)J&rB*=JpsmNUB`_Xp65~_azB;XS6?qz40uPF(MC)y!YbCFJ~`(}R{;pg!A}sB z54LkByZT7Y}dGYhXW>nKlFAF0Ro+Dsm72fC+}oyMBLo_~I_m*5$D$Yi35a zLiiU_?eOpr3^sUqc|r7jue^TWXA6ZuDMcYF0szBjfh*vR!JOkGMy3}0&DSbFhrpuA zGj#OCKjxMIZs4*#H!mMwDTMf!GZZ3AtRS+c+71FUaV@uvt|+sO9{*dU+uzlRL(eXe)6Tb#vBF9s-^>MZUM9~OnY zTAW@294l$6oR?U8=Nj$VDH=;0%_~ALXrBVzFKicAe&>hNup8G1!;PIHZDfCaShXBN z^b=8uuk*0ng8c@CQiSQm-lRvF)iFsD;lmTu@B@^Yfd@|P@Q3BkS`uiaPYs#t&EKPu zV4vdG)#mb<7RPl@v}&G^3u4!Iw)IH9@L5uBpDR2rOEJQ{Qf2HAydJ#AghM9#K|59J zT7K{pk7{)4D+~Z#$Z^jWRpA-w*1ux-&S{rWZMm8S+NMv&of0E;% zt0^PR@L|$F70R%2P&WHY$YhrKOZZ5e&a#wxe^(!=`ZZd;_|-GpL`s@)hb>R9968xW z<_qjyzEDRdS5vI0T&U&ej!F=)5gxM&n>s6ygV!QM+n>Ksc4^u;5!d5Om^^2MjMX{a zy#owL@vN3!MF%t_P(vZ*G$OXr{{@q(sKlbnb4+TOX-ahvWgN^9Jgk(mQH#1%U zzY4pwdFP4H%;=4JAN#rb<38S2tv|bpgE8WlF(o;cL^z;XRlJ)Bw!T;3uypCiakY zQEzG|{f!cd$q=J6?2+eWqi4@}Is~JCOeGRIik+HqK)T-@@Jz7UyfCtC^PW{ZWVQ2- z%oMEKKo>lZ!>fN}@Jy?|G#HRT5ng~`l=~b0(Q_K&TsQELgwR#k|37Mg2+UijcytE8 z^6F#Z_uk{Bv;s0EZo}5<`=3s-=^#OFA%1w`mp|TmApUPn1}EQJG5;?F|00R{><%87 zO<>c&ra*x!!}*86`{7!}CMxSId)FXc3s?D+rj;oS3coE{cZIh!&I5D~VNLYmtDP%1 zvT9j7vL2CMfUQ9|uf8kV%*Ihs@2Y@*uf>_-!+>S{w(7+;WmT8Qnd96v%I!iWcohE# zz`ZZ0jj5w(^xQjc6S(r27zbO0JXOVxk|qx_FFMQe8os{WtgQcN%D?eC&%dGJ#m2@= z4Tnx}P+}%nGmmN^(Z-XOSK)4P)8K}sHg|c(4?ZR2r&FeZVRTDE;v{2DF!0Sz=*{NW zNP}!zy0v$!{$O0k?q%~pkFnLJ$ml(+rgJ3+RmJHp1!pHgGKilH`d|&(^cE62xwp{K zuO0&+*3PdEeoK8NCVU*~0-PJk6wNvbUNPy_s35pK{J5LFy1$zLPbig#R%^6)OLEq5RwLb#;vtXvD5+11Cl0 zUp)ga)xfTa)7-9w-rMX$8mT9FT3M23J1~RK7H%viPw+%-^`urE3C9_IMonRi zLh8PJVaYLgoC29ym`=3Iq$Mn|kX-WFJj-<=BZ0vbuw3csV3HjnFbRFj#d~eYC-KXZ+C9;oNVW_)iuR>FjG90xPhE0#d7n z?~N+%2YcKY*zX#^uG9G9M?gU36fT0Cl2PDF=hEX@zSvcwk9@;YIj>Nq&-;t?l2Ays z-K61=Vt|R2W=#z9e!h|L%Vk@BeFf)}}c)$kOV~Dv! z;x>^>tn=oV*BsJ~j>Z+VC?cmW+r_1;445|WwhSVgts2HQCoDnAASwAJ6_?*RYvS3V z&?*V~Ds!Dih(pI-ZgiRqHYW zGG67~7MNwTd6_s8FXmb#f4V7eS)Jms90Hw1&ZKblFQ1h1kK(XY@_?VyTzCe*R+FC> z>%H2dDk5{ayKE!)A|>S)+F)A6MYFB=^GD7wjRZUDXOQkP^yR!ELAo{dR+G^(W70UI zXA{f{YZO*u%0sLal!3acD@wF&D&Z4x5pZ0Fl*QDxS<&)JXFoUw+NG|mBJE?E$l7l- zRJ$|lBm$dFM@@2829?g(5H{_F+a$l^Sns_OGQ2Zt3ECycBi-wRNdfV)L?|Aa*e-KO0zNuNL1FT2BBHni-dOn zuSL5-ym9&WAA`SSLiS$rSYFGt?2Iix7&<#%zRu1uvC?o1Vz+}6Bi$0_+O3rn_~rx(6<(*K4ea%&@nBucSqc&<@!@y*n2ucjH5`4p~u z9Lt?bU7S<&=r8)PL9iC7WxdS3-7BFc6oCl!1VK|28df)c_KuDKDSh)OdHvVq+$B+@ zZ^$u77)bB~-a%u`JZLJ5;t+5i127Qz^wf_>H0%WOY2+|^sSV$JQdMC1$0NQ(jiRxk z_FykwXgUiPa-9_!gieb+csrh~E-f`J&KHu7@nvum5VCR0`4H9ukD3-|PAQ_a71ejp z85u3qojZslAdh?=(eiJOd9$nb9DvR6VYA0(>6{P7fTHopm=%_AOJ&*LU*&1(x3eMH zRjErnUbLBdneEp={0OWmPD7pUh(O3AevDAL)cVREr>e&hqas4lQ#~upk;e;4_=i$2 zc$pnb;b}zyRSIdzsooKP6~mvrFk038LDJNKfaPp1l(G6H$>g9i;pxucc$@Po@$De#ob>rC+3cMHnI(!5lk4iL3LThDK?MChaXKW1 zIro2GM?8eOyuPi2OO^+I4j_=u5C~-209K(A6dLw>ato+8)pT42_Z6>zYwjhfHV)1S z%@DKlqm8Y|kJ?%PwSZ(in#oq2E$Y|&ug=B)L$Altli$HfCJ;k^Z(CANoB z-B!ta7YE)_SIg>sn9L+m^l3W^OUGsacg&&mj!Q!B_$kN!*UUCmBo?ZM{l-j9599B^ z32td*3G7EN)5;|e-83q^ zicr;6VC@)AAp(jSNUd+=6u|(ux{3ZvH0ZWH8e{s09yU7r2v%QBWg~hU$=TV;1grXZ zNd_$EPUqj%98@LbGK^%=Bo#PBm2akDbZv*FzhtM6@-|k{Gx_=!RgJfvWLHgFZVhXj zTmZ+SURopGUSb}yQj3Sq(s^*gO@)&|z=H;;)}_VlW;j(!62Vp#ZM z4jOz^Kn#r`cZ!3c8-s~|OvK+Fkry09lKqbAgztF;L(f-jZv|-IROEP6#(qvm^PopB zeU-dg%!>;j=M%V8ISASDaVF}8zk+ecsV6P#K$3=c$`kx8izA)8qpAC8nK}K25UrWHBCmBzBL;vt6;P6t03-AUl=S^8t#P4c^G(&YDV&(aur(xp9X7#_(@NW@_TY#k5_t>0eMKsqhB8h(jP|O04&x0pnsi@0*j7=uWq6^EkYlg!bTb6&#dodRcO-Z}e{DEs@j!7>ZvzU1c zqrX@r?f*>kWwz+pd;?DiO;?p__pUPNuEg-EfSuz`9dcKH-Wh;C&!u>$+?l{Fq}~VY z%Cj-dt*K)EE5A^J{aC$E%}eIrcgb)}sw)8dY6+Vcc2z=cOsgLOyZDNm(Z%nC-mda6 zK$-k&N`n_ML|0PvK-6C^Cg6O%#Zr}fv@r( zCZf{X=9SH29ZhpmUxrdR7>~AeLWHwHt!TA7jcj zbyVH5;Nu>kGFRR+!!CP%ivj1Ba!lLfFW1Z@kCZ-)U~AituzW`oDGN#nh7`|*(YGFj z8L_`L{zI%YyP$ec4Ewz$pIMezQO;YqXepW3JZ2~9PR4_QlWc}p|8V|ssGx5R`R8?N zzLL)mP0>TrOmb)!bK#^!ub>eMXua?hGwG1X&AmsZYAsKCP8d)6k$xUG4ue0j6B~Kk zmFYhm=p1GIB3O5={Eke+P*;#aDMbJ2c^^G*rRM#OR!8@W4}H8haYWo;?e+TISj9ij z-9n*$@AMbe22N#|f#!%>5Q^}{FB{%^V1WJcly{K?FSU%4TPejw(f?050EYhx`@(lR zPoH^`Bs7XeEg(FOSJN1dJyxUcBem{DsPN($OVelDkiW&B8nx7ZkHF0M#cEqPJ3dk8 zxB&Mo_yXfUYDa60=U-TR#fCpw<4}7_#&pR}ox}H>m12C~)f#W8( zIE(Voi|7f@($Ir7&|6a9>i4YCDTM;B9hF79waRxb&JFGuZc;fPQ@V)R%KXbb2BJ=F z?p8?32{L2FQxkxr*;zAypyd^Ba6K)bwu-u?%$i0LaLlL=jqazLSm0_kk1Y=LdrWMl zsQ-h>NC>!ssQP8%j2MPGdt+Xp2sJ2LR|BuoV^7V`NYeI8g_yp6E`77xy&{;k$&nf8 zDctd8fufeK)s_<6Q$Gn1w?M%PU(GVzOa|E36}rmZUC8zD=$c;0^$I7$;ruMQwpb!a zIb|Aqvo0(u8Yf*5o_CHNfh(#RUVQH61%L7yC1pILK%v3FR16g|Hh}4fyMgXamtrtLxC? z%fB4CKa7V@Tcq4Hf8|}?JJyHebj=&pkC6Hax!5ec=W#vy1*=^`r|Tgd8T+nS=izGX zSjvs=F*KjUJ3Vc$Dfr<^C7KUBz>ZQ_|rUfKoxfmx8CpX zF%93mO#YMmNUzL$9hR5V8)H*Ap7tu zCGoCjh#^ufwvZ2CNY(}eEP9rOXf^!kY8TFe8N&I!lY#>jBNxx`A%af{pS{xeg0u0tKcv4w6JhF{P-IoG;gPBF8J=H!}gxG=kr#i@4cZ}P43 zau(?Q$u`tC{xh$&y0E(9G+te&z*LVID`v#UPmpD@i-EJZQ;DJ$n=oA`jIM>1rFDp@ zmpp@X`qy(U5iISByk!>iRoPO9Jo@_OpjQW<%}3Sb@>>rtzwctllf&sS4{WDGdcK`S zPHp3;jF4am$7W?(wf`#*}l zO67Va47HFKWOs%rI@+}AYIWa<6pKkG?vXD=KwVeV5DW_So? zbkh&P5{HL6mQrnO@#ViDzx||Xb-PTZ@X?3l2c5Rhfo=a$5qH>$k;8P$rET;W`b^f-(S+Pw!ACr9V~pa&xax1{_VFWHEs(UAt-m7dK^ zHDIsA*1lwAK>xGzh?qJ4$Nrv+X9Hj2g)g1wkWTpncY3D!cowGf@ukM(gQWPfP8Q&l zf%1TIkdl1oHe;fOMz$+@9*PMSd$le}#PUJNC1W_cd>*F8F4VsWZt0qV_1_$2d;J_f zUUUZxtz%f+T5MiZjhan*QzHlbphsUW^s80NLr zBra#msZUj!9H-ksDGI$Q3(1GxVRmIK&neRJ#hT^5F!gvXt9pPy8+RM;iuq=MJ&eq!i*L?bwY(g6%X zCdiRFT~HmRfCz*)SvpYMM^jft)$E)x4r6uQ3>D4K{H_&;#w9m=9XSO1i1CQ8d5=Ro zd&@v^Ra<9yePwrf1#4>?W$Vd3D;Z~RKOYM_olXi8HVW#yhMcav$QnmI8J&AC7jMPQ zIjeMIK%h&RrH(vFw|>9OytL&nC+g7=fuv-G>@H*LJOo zY?Wf^8u&DBIqb}^?o6t*TrpPO6E({R#xxua1}SJBy)gKofi;eDo2Fa6S)1mzsm2)4 zoazbkB_#tj;EBaLnIZ{j3Xq(Pbr>OE7vAVzZi^eLz9nlns!!;%Yfni2EC~hNs&b{j z!Lz$wh_sO>1F)NfUKj0Mql;s|m2r=>doF898L&^zVmJon+<-N6km2whkv9>Ol1G0Z zjZe$9cT_Gx+qTh`PUm5>uRW_;Wv(gzG&c8Ft8Oqro2NXmuGU=VQic(}>Kl z#1+>E5oC0C1+hGL9j11$1_gAbg3PxUR!V7(%|((M%}l` zpEcFo?=lCUZpA!>M8>uGG9-GAD6kyhDH(O>m|-CW-aB(tO%Pg0a}A>L0^Lp z{m%@@M*JzJV6c#`;MXLbMpsz5)iJ&B*#y)_duLQF(e~gqOC}Xk@Al^&T4*OhbB5+N zt#XTCVsDb9jfY0K&Uq=$$+e|DTudur;U4Z7o}JsMCH$DMtG8+9IDJvLZn1nMd*X3u zv%g&Px*eUf{A?){%@EIMap%x!R)-}^XK{SnCkLU_7c7K3{jLC^6-?9pUVF~^M5OtKclFi z1@Y)lp&Pe#h&g?J{=(DV@#B#IRUKn#1#|lvZ-BjD%SyZ2(o&wPHYZzP(|r4!O{T*& zXA5$s&4zD`&ABPsER+~jDK^&eYFijN<)|69bqNW9djfcJKb-a}1NeT2Jt_Oh@y=b@ z44~|59Y6HGO=qOO?3unf&hVe{A5S(lDzD6lQl zIqUb|HE1V{(j`0+MVQAjVx?xvm2>UJuhBVwIOdzBBdDD$EB8th`(LpJfozFVK*#pF5=Yw-=k>%)J_@p| z5D(HY!ug0%ip9Q3Z4(n2A>*7=XggxH31BDNzo1#Z{uoJ+PTGQ}Odx%e9nKSF@9+yq z;Y_H(qBbsAtL3B&QV7?O_esmH8go2wQp;4qnMstJMM<;g6aH`gOR&%scu5fC(S=Z0;Cp{%x%0V~^?7q+=kI9m ze>(Hl)VBM1*W1QX>*(U2cadlic)x29a3xvaQ?w&s=WlxPwz2UxsA(`7z_GIvxb3<7 zxa==DpkUw!&G^&WU%yt+=eQ-%_s;y%<`BKEp3lwS{{F2b!|;7y7Icps+tA?s==i<1 zUcl>f9`r_FpqKI0l`OBe;kw7?J_6&v%^SlPW}Z{wi^+dq6SlM6Un5T!w(qTmhJlA| z^*z1LP22jx8WKOcX#W#+yky4C>EifMf_+ZYhzM#ENB-~3$5xHPuFht_YWEJcR0t34C3a7)&$*s1#a~-jm)Vk|GjvRbFk&MzWFXd;K5C0qFz1X3S*MUY!8hPfy0FN$ zR*3l*>CN5}3;ptmQ=q_)T)cA7o6dsNqi|7HEJ2xE-qrD=@=4s`6{Rk@QWa*^zqVy0`6phDKJ}h|1mQ#` zR1)05BWyv;3H%%#Tx<+}YPaycvz@6J`8@V<0!vaAf{;r{SR1 zZ%ko;imiZUQr@Q^TwhhtI>lkb%$2OHKD2o&O#1N%3?T80E_KLc3_95%i7v;@ZLgpf zXM7s*5|L&r4U7unGU!TUF2{$}nUsPReWs^yn=g+E{otzK zl;w{weF#$DWsr&|5!rE~?kd3A&c-;OrYKW~sW#v@7;I}EtD{K7Ha%TZLvILC^Vw2i zpZw;^1M)mfX%(5bt5)Hf`EhODN|y`MqJ!s=m!Ujds!i2{m!nu9(++bO)NG+Qt4@ci zwOH0>ngWNAAO-!aDH=q7AVA4&qfRSQI4z5qtDL}9Q*&K9o01W$YNi}Hg7?ICu@z@I zthbBm$yD(@q1HA@DXn}E-f5IUniM#6Cma?brQPLfaO@n=SIUg3R1*qj3Rs1YU}OtO z<9q$nL%IH;=gC`OIfL>AFBnB7{|t(F=^wE=r!K z>@14t>8R8!Z!XKr+JA%Qg3x04Ay8uUn%;L(Rk!z#h`g3SSnMLt z$vIsxJj1pBY?Gitv!|q_u)4grroOeQ-tjLQu%jK&(OlI+MP1(u(*nttV^4miDZuPglp2?!|Mm zwSHM1yfR<5lAP7ZpcV%jl~?0pZm7>EEIi4@^Ix za!l1jQn@-~8xmqm!lHhGDTN~muhD(R=)1AizHtR`iEbS+5ow$+soNp zpk5;|{-YHgo#(s=K`z+cR)Uu6bF04$c!HZXz!h&{M0saF%pvWgYXO|Rxt|4!4pnH6F^Q@xZtw$7m*Ty7HPeRJ48JL@(D%`O*n zYl=u(lXeaLz%8L&)q{W^ER8zAOcFlcWuO}p`z;2Pr4!0&@xnG;)Rye@59MDzP{6cn1!i}-1 zbjpY)0Mls#pBpDTyaHWi0(L|C?7&Yy&;19;3{iY`z^v+TZ`xl2pZ5Uq3ER3)zbab& zJV__;(|keFhvxsJ4=4=(-|i1eiIV@{>ni;*!2g*3^TaZhb<|gv3k;Q$Gn4bRb+XiT zc6ivF&qZPcNcc+po4qe(ym!rXtRK&o;uf)0b6_QMA}T;Z?;!bb4MFZXn{Fos11NUa z;)(HT+Q5;G8I7;apX}=Z`bKE>HdZ@+u*v9n1$Bb9)&-HMXlET?V)8LTcyVvZ<$Wmq zU_ZSvS+?b5c_rHR@nrdJzNUpjh5f2nz6RGHA#4np*~lRWQ~F^+VjkNJY~Z%u{FpsK zIh>6c1`Pc0gEsQ#sjZWgEsZ#SDf=*4*{c1b3KB)q8T+PQ*iu&Hkj(exO?9N|>C zD(iA^F)`-gbyX=%ib%`*Gb%2~n6XVg8#M={4w z6X4RxMEsF!W(>~AdQaw6TXaXyhRx+2!*9JU*;{A7$+M_py2|t*Sl#6Gi)FPLIP3xb zNQoB_kjKXMX$NSTKw=hjq$&>%SIHB_@I&=0y`+^}RLBO`(3zr7IvRgy-CJt4DBR{{ zpZMAfNX}EW$eC?gREr5@4^rrcoa6nUWmM1B2ho3drQNPRJNs$0yv&6|(K-p_w8Pm-mE&~uv^1*^DTU4L0yd+-bY)QSTs zC+8A1$B4n=^FV65!C$`MJQdxI<*tRjHG(CjboIq7wM2qF4Gq<cAxPD&M-sBja747tbSUT+0AaLYE8NVE2>Hgh3>irVOl10+0oUO%^X`#Z z5DRZ)TO6iI>CVE)R2-dHeGiN4T6rr1^&1U^c(EF2MXUkY8KU6tmbRL8AMhG)rPZ#5 z%{o}0!|h?@Tvj=Pe5YDOQ_0q9FK;Zz=9mq02Pw+>jtw7~0h&Vq7D#kKe`cd^HmMbu zOA+z#RbFUqmZX^5`%bFg@VDg{jOiQ9X8b#nKKvS-V%5IpZ=D)}Fk9`$IR6z~M`&)zCM#}`smjL}G!2Ie< z&hn3~=-;ii`?>cs7ekHnSetua&*lkZ8D#CNHr3HuKu#&eWY?XM-1tGmL0W_%hu-*E z`V_ZvK$&U1Js#YmuA#yy9m#K=Paggqt)>ngocT#8A%h3tyKa@lweEcKqhdM>EDbzm zYR1|(y2XE8wM28NXOQ}lpJO;!iCT(1H`(G>^ajaF{i9-7W^@(9+zrAEPgFk zMBVG&Yh;CM`bX(*bWUb0HWun@97+Hy{SNE&8;bz-vDQJ0mBP}4>TMGgDM^QOrpvrk$y71Ep5v*@Rg-N z=7FV@Lg%kK@NLYl6Bz^T$0)i)c;5Ee87hwmvp}NTn7 zF&-2+Gx~L-{PxM& z-;tBzx0Q1T(E!y|(9StxKWpGuFvXysjIgtqpPY}f^8KEcgumh7t=(~-T;8io&#Q~U zuAbhs5NN}jey8&JZ+AzRzb(t*qPL=RwZP?CA#c*Z$x&lDxVi;f?s~lmcR)_z2dnFp z$5=G_=+qP)F1aoYfNqkEmF$fBxp!xl)gX&(6TmySZ9B|PLq18^O-S|DbLcz5dYPlY zlI{`O6kx={Mt!~Y*yLc(m~b55lKn1`^jx4*OnFTx|kA7%zQ)VopvgW;>fdPj|e~IlMO<@je|Fx z5g8mRdM~hb*~Qua1DoUOi@7WFZz$i%Oz$5Iz7s6| zs2GH$wD;ORqFBrWmgSzoGaH8%w}LKz3}FP8ngW4nd>YL5d~vbHhB@Y%kqQcD3WLAg z^&^XPE}aNMZl@J0!y#1~VyL&wJYNv+cgy8wSS1|12!By6^E8i z4^_A*hzMP=Y}HDKb1^C3w=c0E;+o|eaYGf_#Wr->B2#qFRobp>$)m~t;0gSgJdMa% zxW*rhvMY1pN&iW=ly`VQVXH?XV_ZhDlO{>U$M9%IB%J-7JZASk99}gLPtc1PwX7I+CHU}x+?djJe*voT>UeR+XThDbI%^0wS z9r(VFbocuFeo+74C*Kd6KJPLdL804!b`t8569lVXTns<%5N=)ucN1cE1A7?*o>%?v z2x$a1@e9624f*bFXud9^12+l(RUat6A11yZ1b!GBeoW@?)&Ds~po@tAw|}qr?}L4D zmiH~bARUy+^JOC_M3@)$WCHZe5Bs7zdigdt`gI2ZR32>i4yb7@kz}>W&eX;)&|bue zJEkWvjs|orBhB(4+LsR(2l%evswwLRD(QJ?I4Fc_cv6ByepW7KPwt8Su2yg9E4^>c zMK#7l^JY4jZBRBp`&PuaO9DR*4F7cbzt5DMC+Q&ch8}KINR)HRvC>AYYrbWz`p?uh z0)|xvRbtJ1d|W!*?BM!z?3}Q1*XW^{)Yt(KYQrpRd!fQQ=wML6s$dhof0N$Acl7x? zAPnem+!r<5134VM7;2jt*noaox8YG#e@eR{cvhtE3}aZ1Ojd0vTfxBSS?H>_IJCgy zCJ~#z@wsHZ<_8v8p75q#=~&2)O1)}97nYM@;cjT}Sz8dIo~x8;Z_EQ0kom}J79A7V z1Mx_#<6gSVA3IoDjMC0Z9azYjpa<*l48f~T|C%DeSp3DXq57xKBTXxw+^aO;%|UTFEMu&g9nrT zccY9?!-TDdAFnlmZx?MMvlVciy=SKcEB>l)>j;I4Y5$e(ZUEYwJ?@(&95=ENFcHju zi|~eIz*yhEt+iLTgguku#PFh=)0eV*0zW6EQROcU?dGT+UTl~9fj>kkp=$mqq4zY zcP)pYBZoe=1*X%z4-?%liT!7qd96qdE>#c9HJODOddpnsHRKUxFo)SAfMpBqSxRjd z=yxGBfOv_6PmgpW+&>>%n;W^;H5Pmo3-C5WJdrClXz73(1ak3rj3#bF^P-_oDhHcv51NH zx8TX3qLl{X<50y)n5NM}Nu6?(%aU)7>WDh;5S3qyt!Lq3^Oss52#0JvRp$)$Hfa3% z+YZc9NY8byc2hUw!A)B+n@u@=R9-Umf+CYiM4dkeqrd`CxDZEjVC0Ha%5@uo1fF`| zp7?bw`1EC-+4fwz`K~qb%zcicqi~)4ni5((!BZ~e(<8wWOTCFlei7w|8d0au#9fq5 zfieD+{mCY+gQkKouMjRx^$x+Zjyp=%LaIzQZ>adv4Vfa;bVw6_^*}B9PA==trUkPh zliFd|J(U&-J+{wqD<+G?V079kJO;VA$tKoc(&mc<*de?!bOxXDCfGefuwbNT&r!eM z`kS?GL<-t0Yzcw}&?rX}HDkPxrC7yV>GYjfu=T61$>gZd`SLol7;Y+@iN+5KUecPs z?wVY^JsO`*(*ceyRowf5tz1{DJ=^62lZh{+aF;GbWuzJ21Y$5p&ZW|0qIijh-$ zC0gbpIw6#evz(NFdA9-b8JG?8AfhMqhtZ!&&6Qe0R>d0tZd zA@fi*-Q0%;)AT=(>HAuPfiqmV6+vZG>HwY+bQzHf@2#Vs`W;-x`#Yb!dFYwu?nKwb zsq#9T8-93s8-6%h2kJc}+&qtZVm}SHos!RZAK;G!bL)?2(kS>I$YNIT-G#>xK98cj zA2_}r-rtblzWIJ(;`cvcZh>wywv9inot@eT1>}%5V~hU7mJxAeeVCU9aPqERx8}6eR@VefaGUGdtlZ-HKNDkR^RckokP|EgChhTBt;$<@ z?C>EM8QEKxN51X`%Iknjr2(Uz0X7}7oXMK1hP#5*?6XKb8k2|%q)t`_tSztItA6AE zPEG{_@^w~JSS~xYc(fh$Jm~(JX@3=n)@eSLt5?nHR^{p0Gu3)*aspzpCV6NPGCIxI6 z`^fg)7LzM`kFzU*W@+FJ9Ll2!G3}dhB|y3a3rtLhj9_D*!dR9>MiP=*&^B>({u6l8 z@o=l^g>(xYRTDw5hXXxfS2TcegOSN7T6|d@zcepPi>dq zTY~`&;hI_b2WDDgCZ1wzp|@BpX>(Q`g38WlJZsrB&A2y9Qh#P9z78)pD{@@X$_exm6D^!P}F9U!6 zxtTg-Z^}!Kl!zIkrgCDnal~AJH$Ni7-e()(R;+v!j}2XN$-GYC;<|;{PWwF*W1j_- zBD~1;{rf*$=`ItdbDNNFtYWRPHHordaj}???ae#u-_KIU8l{x!!WtK08RIkk7PFuZ zyY(G;DW{bfqL21$;*aZGtSopj&vF(?w9h4eO&p(X*?47cq~rZE;p+{UI%ryKKPo!x z)Uw9@{ZY$%7FG*2mok>21{mWOIzOG1uU^0alOOKxWEQIlMSl#dV`L+jOZH=uh?SPT z`$k!rjy{y`I(ULsKf~GT+lhT5v z&yc+qJ{4D?{RKcqjg-h$FX^6?$6OziLx!DHFfjkT^Be28~`3 zL+O0tNDi_YD0+auF}Vd;KKK#w{Gq=4s426=1OryOofHMn?~fNm5T{VZNrYXB6;p1pqMr`{zX2eeU~-@Bf?-r4IV zl&$ko_U)_4xVes%{n`W!UeL4_0YhT!%{HP5%2k}%N(y><88NDE!bsdlFh@8_{w-Eb z#_5Z753Nc6p-I`2o}rm}SkSptx!F;>`ML90yyH0IHMWvr`aFLRSePZUWc=k~yI;sC#D2N;d!>5YFMN6~9tghW>dKd^??r{A1XJTVgJrLCncCeAkBNL$ z@;Zjmn28m6O@S|Erj-#Bh!3ubAHTQ&jPE+~#onc)I8|Bm^i-o7-94_N;P~1MopC)mzhTQsU6@`&cwd1s>9A1>d zQgOLYoxZ}lZf7$lc{MaN5B;MaP3PNh)@3|Ke&L4h^ZZQtzxn-AKT#H>v~YK}EuV$Y zgzC)AwYuFHX9@BLUz)5eMh`lOl))lflKU1)CD3(!NwCO?K(1?2HJL3$>&`o&+{ar1 z3bMaL1&>jFTf4F-sZ6a4dpg8+kTZwsCvMJirmhi5#MwGeJr`zIc!gM&h?b4>%_~+q z;!Aj%vd0R2f7B0Yaag%_>SsL4HqfXJqcKju&jdaothMtQG=Rf1gP9lqW;-s*-yzIL zrZ}fDLWCxbln@7@Hny*fd`^s z3TrSHfZdA0OLsyg$Jtdzu{L>f_YSa$B9qlxC++Iz%BpXvJPLvvr{iu?YD?YMOL)rS zu3h=Z5%7foFoz{DRMQvPK@l14bGzV_U&vO)5RolK6J=sk4cw$?fA|1IrRCo=g?~12 zvGzS&%@|obf%JO4VumN_e* ztQmBi6OWW7o$o3-ZTs79^pX9BhVv|XO!xB$vfqtFh$qPRB&oF3`z`J3T{x7o%iA`1!P2(tIi18QO7-67-4=yXiH(c4sqQ3A^-EyD^X#c;NWD4^uN{7gt03`PF5_lxm_@v)EGtMt)w67& zU(a5*gq!t?!A$lFI*HAzP2FW7T9#b%%1zs+5WlO+65OjBpY ztQ=a*6~;S1Mw}K*YhhYasq&%2a}Vu4PUg%gO^pB}|8@qb)I@J{Ut{Aew2hRU5k6*a znZbc^UrvNM4QI42qm*_~*OscV5yD3sZyfO`ZA<=DtUY7Jp6@AorW+`+DO@ut6a1s zA?w*LCJE#Dj4DPn0q%Y1#9#^>h&4Z~ZAhg=5d>^jLbEqf;%`*3c zS!1HyIe!E~LvPVHj8 z=#s@;XgwtG2JmZ;1%7BzOou?a1r8-?RRQ9@hU&~WuwCo@D2ulhI^7> zcq9iijB8<~D#v|A35$Z~%$mM2i}J7Aw|_41tBS%H0xX^?PY@5#C_<2Oiy%o1;HnrY2>;GwSw?A^5K=~ zg?;zVz9^%^L-9oD`Ww#cC3<U$j z_Lkmyx>G8U@*W3Qx>tI6uB4vBYKqGaJ;ap6baa$Nww^U-PdVJI zebsl%tO>H`AOb5^?rSb)^}ntI9A+Bqivo;(7yI67zbnyNyEl#Rb>gGHt}X`pZke97 z)g!K9=}cX0RAu13uiQS+TIV;elUaDAAJQHlP8wnO;nE6r{p9^>)?w}yvm-E5ygB6= zpyjo;&8oStZ+l&BDq*=r{++dP80V)9=d%M2oZE{9tm8hnAUjb?)%3S-49-MNIh@24 z5D1|Mg*@Aq$u)Sn!68N(2U&={O?49mfyt##!(jRC8L)Lmp$e>a*ivKwrfqBxsr32_ zm}c|Viq))>O7@#O$c-Ol=pT$G9LrvN#-NH^+?@@wZb0@YZ$PcbQwLY6`3STBcw z(Ji(e$d#)!{}K^<$}A!7@69`TA`)Ibi8z_pI*o|bQy@xR<+-=!xTO4!Jl9RiLC{7v zFszLd8!YA+tvpVk-B%xcc26iv;Y`=w*iP$2x(_eW%ERP8Ag{&PB)KF0*>nuEQ`0^g zf^ScpiL<1|*zj3&7kMz=WL`e0ZgGiS_=8qFIP+;pdQmv{KJCgP$;Jor;g8~~>x@%z z*-`Q$B)pDSyvooKDlH6$%2@D4{@U??)odCrqq;Ukwq5gi>gcz^(@FK*+`Xec7qFJ# znThY;oACUyna=2O${^oNbtG7ter7%`;TM{MO7uUv3T^gAyVaS9|GoG=_~9~ihOz{7 zt$9c4c?jU;qgeNr$@e(|YMmNpnrw}=nA~b?E>gcXIF&!2Xp-BCPW6MHgtJS)-%jW5 zIfNY1H(-lFZ|zVl^gMiUfB>h32H2-@>fERq(39%uwzKjkvnY}Bh>Jm#5N7Vr^U3JH zzk?Kx^+y1q*34;#z<;@m?G@`Xg3eN!;<&+GS3vO_v+2Z%U_ zrr(^|S-uQLH`nWY1o#f8(MFKO(sO5FGiQ>Yu0*oXbJ`nc?E}>y*co-DGJsHIyqfwK zz5$fA?2_Z&GyB>&)lhjflL!kpw~WqK4XNd+!zoN(d*YtN1_Oy)v?DY|ieH?WaY&d*TenVrGjg)U?a+MW}4Y1#N^ZZQa1Z(_`Wkxfc6=KBB4;feX zaBw`t0ufK-`K!$51EOTKlCbYYZY=mOsII2cOSO#M5PJa9Yv9vH=DZw}D#J6@0LK#W z;TF6TD?oUS30JMts|9`d4A+xTa{4X>n{NH87J!%O;T8T~6Z){trq=sFCq8ed%2b$m zhIPlf$xcmyE|O#O&kTN#hH;FY2Ne6pYzBIE{VEH&UrV-#O?VS{NH;SJu2fpeC>b;5 zy7x*yoDi%dVp+A~cXZrr_nG zS4L8GYOpLNB;(?(91pHi2<6+MPR;cJ7^B`x`;`x{xO)EM6mZ{9EhGpEkYEwW%ufuS ziCnnPnR{jO5n#IW^YalX2fk`5%=UtPvI5t!3wH_m-yxc@L63)Mpf`454{#l}aF>|> z2I65JRA|38WoI4JJaU8bcQxNY_m&9@1u2S9pn&MC&6;RFIYm7VccHjG_=SvHZ{Ox5 z|9Q!Bxs|worf$Q$-#*j?jAmObtZ&r&&d;qF=Q_4IxM^wNOXLniwhruDe<#KPc$io_ z*))mSUg8wkb27BxmcRX$?fFH%{V-{K>LYHunpzyPqkMQjAv2v>=I&M8>{;5pt5)m! zASY*t@b};T2llLQ-1H%9-bq8L*oE^`0oG>$KD|!_|c+Z zahg$06?O(DX4gJE`0{?yCHFWwmDnlRI|ZeH(r+{ir2>g8Xv~tTuR1my5m*rT_L|jn zL}y$l1ln>~B+J3p#rg^90m022sU;ep(1T>UxHKKQ6q)4Hx%4Z;jFkmNm3VPwdIAm4 zICp1cT1jr$cxH;dUa31#I|!L||m z`Vov-(;g+`S`5ZxvgvtH_dtqhQywVQ;C5J&Cth(c(;{x3S1+B2NiEt8QFz0)0U!wa zdUatXdT04k>%ZOw1JYgDwR$|gGA(npH@o+$$3bFPg@1X#2ZQKygLP~hkAh<%9O~-X+ zm*9uH$D1{^Tdj^b+W`J0#`* zL+i5x12oLd_XOXF%@0Jq8wuQaxHkxTk`eJ`esE-h`*gtFxESGyE80~V6OPz{oHP7) z3&L?PcMw*eK(9aURo(K7f{$ogRjzdx1lQNh?{iB$V4dSrH{yN-8uE?9a6~0GCf-&) zHO_W*)?0a-oSPQ9gl-P*Yb&~RHG_52*~GTqzMhc*f4$xFMvTsK8lJOHWjiB-_gX|( z?m6qeCjWdszibUeZZCpx+_GYw0DdlKmm&U1z&XIt#8Vyp;dJ2HA;+CSPESC>nEAHZ z#;-%^W@c&OE5rjA<7LJe91+fR(9=UWLxA)~+#*0&Bj;3%6oVzaVF(1Fw63Grer1<-b_d4%p&iykkSAD_w-4uMH{Z5;Wh%q>Qz$Tg96W@h zzxA%vD(w=h=XYfmtm2z8H{cB)H_2G4Gn!%so_7O?Zj*@tv=$$N@UEy zNtIz4T0+yzX)WQvrqNMFO{I@{DlX5}qKQ$IWa-L%TJo}Vm=TE$DJB@MRbdCdVQwNN zo6mwVSpOl~=>rqncRV*6D3wAk4L3{|jF$Nn_?ep#!j~ZvLi0m2WqpkS!i{e`O?xD%&F_~QJjF^jB}CL=dTl+Ianu73 zG}^z3OFPG%|K>HUN4ku>{A8YHr~g+@~+@WrO$WO9mCb~c*mGzDhi z1H)vZH|sL}C+ul}A;0E>ZNsj8Ljf(PbP3jGkAr4J#7a!Sf;3d9oDqInRgeVl_SX6D zwu@S?U_)C9jcUp>zEIsZgM57>3Ad^R#E385owZ|``wkWlD$2?afw1JMz<1t1=r1G{-q6B68YR%u}Dd!D8RMkkBTG)KZSPKE=4`k-8crybiC zrd0UOWjXtUu0QibSZLd=E!p$oyyg)mgC>dgwaYSX7Sl@-J;vo~oZEcNn|x+=D-Y?* ztDfibkD?=;cV#I>)PKU#W_w?@+fIAmS&B&N7H;j<^h*t)5^VEc&bNU%KI>*Dy$uNQ zrU;1eI5fDremr~ybNg~v`N&j+Gb>Yj@(n{e<&_V+1P~|+d`L@A!AC=RD^|~xw zW0WlH66|4z&&|!Q?{lGgLU>YDrod7K|E&Ny**qN|CWs|)sdfUk30AAQ0#9-^=8D0H zIU^fsf~NBLI}+SWy9(MpyWI=Kg1Ko%%pLiUD3!))I`{o=NE;38V9g@N%jum%4KGQr z7Me0QYzAgBlFmW0zqODBaWZ}R*a8EM6k5u=BvFuPsK9ubO@flPIbmDNiAr60l$T~F z+zx^>ucgy>+}c^RZHv^!%h_U4Wg}m6i@cA^Gqx3X**q4oSWgH(25>~o^(hjw0-he~ zWK+{x(Lg5wNXP2jkgKM2Rl8BCnQEs9spt!>@jA4teqqk5cr0+FuMIP#pcZo@V{l;N zTO_gR@6>68@=`}eT^9m$m}=?A?qq_Bh*ni99BC_~^BM-bQYsG_m_=G<&&p&Z|UHqC=AKas=`AXu#h zs#Zoz=)rmlO<7GQvU&6^O#7Do=0IL_qE?N8LSCMcy zr^HW_7+GEZLzyn~p21GyUum?7Ft1qy6(=b?eKDiiF zTkF_)D8-hJ4qsBUH%Xwndb9HRVmgQy1%DGeh&Pmcdo}VAAo{$7o|B|3O2l&Ut0a3U zLj3%%q(FV>`H+4ehrsqbKseUBC-B^Scj=e$^>VxI^4`XeJb&osGTJ8VmdVzt9B-tV zKFxqG_dJ5`+6(iy@NNO!j+ym~wcj~fK3dwVbB@5q+F-X~lrZQ6D$;vNlJO8_ zScHJh}(07^ve5+{GDjKMZHmq1I- z+~(p$D-Ado%uLhimI`U}=4?w6@?1WwGpWv_3`cOw^W}$6Wnz}wO9_?{tsg{DUeaDc zmJySXVw6u^%CKCs)dri$FG#up=F-uN_G zN!eBjhkh^$Be#sIBN~d@!oGAW=aJ*PWpSZkz%j9`zCO!4wTsAr#!<1phQsthl-$e6 z3;wsc9Ptv_ElqsaQ{`ebtg{3Jt{S<626>PDI+g-z_5*Rf(dGiL^RmaO2ARgybXG1+ zDjcLjx#Wp4qwx?^WT%!5v{8nL`%EtO=x1&Lv2apZA_XwdC>kdWW%p*c-*L(N(6S7I zQgpW>W!lnFT4UkOw`LQ+L+`)m?yz;VJnwecfQadd22IWDs;*?hQC zjCrg$I;^;MfKTHC-4Nof#KKQPD=;^sEy{Uc@Hf%oduHJ4;21}M>;LIOC}2R*|KO2e z45tFk&WqF8sc97FQ$;}=_?vyo9ASQu;{U4YtOD8!lr0(@ibHWL?(R_B-6>w&r8q?c z6lw9|1lQv3uE8a^TZtI8dsYILEcEdUTPxmA3(Zv}p7Fixp(bjQjqZ&fwmWSN zJ$t^wKjrqrpM|-+cKdXHMYGEA7LDKX#aCM_vv%2Y*XpUys%DkiCZASbS&n))Iu{07 z*VsU&7$TCuaEX6A9RcQcW=Dl>Q-MSw?k z+C?f#E*S+7h=3d;mNKU$@ICzlfP7Urdl>vXt-~BzjX5PjVKz!(_9N4PnbezcR&TAO zYVWNGLi7Alu9OjhU(VF;GIF^w7Fh@O>Dj7WPSJ$}WR0J@4K4sK}xZEa|AaO#~0hYT%7`NP1L5w_CPxD-Uj6+^m$+ba2Qy z(cCl-y3LGIqR|`Ji&v?mC%etZY+-=6PS!4NXb>@MGg{zuEOgXMd*Qi z!0T^^u0S|({HWHM5U|M$r%K>?QBN^nf2PVikK8#0r-;;OR?}co+hV?@C)^V2;3)d* zxf15xWcNp8_`HeN0})Ic7+j5}oq9Zri8$N*E4ccFyADZ56=s~{A=^DIj7fO+DdSr& zT<5=`Z=x!AlYR>P1RDK%X|Bw>+C;?aqIP8-K&4WINoRKPhrenqFAMBp%f0N`s03w6 z>o@w@V|EBSA)WYFh8vBX*Wh!373I6YNS#%NKwX${LLv3H&Fb3g9E@bGI%^G%q@tK~~c{<zdtmG6vszv>+cxirl@qGzA{##P9&0`YH+ee;3Ho+IYV0=v9@UW_4qDmlHiRh1Ule_R&jMVa&TJ*cU2@OxdY$0%I;F|CG z1T;+F#~kPE311B<8Oy%1>#LLV@86&kVoS=k&vhyNww*0~NUXK0Z1mwqfo?3cj<*<1 zI8E2mM*N(J+c!|~GoL;m!X-^bnl2N2<}hkP#YQouvd(DF_e$ITym$NTM!j>C93~Ar zs(vv>AMQ!waWhU*8BQ)ui=Bc7Z>q^Z&WW`A)UJ6?`Yv!AFB38Ts5GPB;!hQ7 zO4!8cnGP;HTEG}$qZax*0^D+rs0G=Ia;zu5VllPClpieEZrLl&nNsxsAb51@Z$ygL zbA;T|E7-OP<3E=3pr~jln`QYZI3}Q5IW;!4;>!D#QI;*Zw?jNi*5G?)&iS76Ud~=R zo|@jgXOCM-XJJUIU`V^v8aDkl*vq1Q43uv%?C-+0+wY8arUFjC%Qy!#aq{(M=7wmB{!Ek;!V2xeoOLU<`v?>-_uDUq2LA9HL^0Zm%*94JDmuRNJ3ho_+Y++4 z|BNm9Vy7(q((#3y(e9O&?4sJHk$#$V$~kG4?^!!;lv3boL9QaoWYC*C?WDXqzG6$&!z_4l@AKqJX;y!suLaD&I6Wj7H$X zTx|s?(jLUCqiq??+!Tb})Dn>qQejQXqZa{Wc^>TE$gfx-y-ii475>J7sAN~S!b=e` zXZX|TeuLQoQU2LvW;$Y=oHV+$!%?MGxDV_BBQ;l&;;hh8&;8#d)he z&4>yunmPR`wQuripR_2IJd@eZOmrXKZXpW6$H>_16R}L$DXS5&mVfIpvg$Xf9PWyo z(GqsDNblP);PD+b$F#5x&HEl5y0}qspKvdE51;=7M#&p4FZ+K2jj@ zE?2U*O>s@gnM=oD?&;<+^FA3^zBjggQ%&}g&P&wT!LIQWc?8@TdoAhvOQ_7}ko8E? zqhJ7@4_sQfmMt_WA?t6GZ{-U|%5;i81y(prhFpgp1ron%X~8P~f29szFkYuJa2c#x zf)D>Qpe5%90buJ)FpO1FodM&!J&w%3G7?W|$+J;huK;4JwS6tw`4q+({m&I!`&#Ti zEE!mm!wYWy_Md(9S(xJGy((zTRuwSV%1{S@R>hiL8i_XBnBIe2zH-#86T=sg}iYik*>9%xCepq^4QyKZOk>w$;rB)N2_UQg{K)E*finNy$6Po7JzC zQ!}RYVy8!nOG?G3&L~=2HQG8bY~wtgy#6k(oSr1DF2lr!*m{j!!chchX030yxC%y0 zUs6=}w1SP^F7=0jFpdZmGYs@LAZmN3F~jXhG)DJcUZNLA_0H-1bY*I?1-r9rlop&9 z<=0C&OE9$DuIS&x@sMizS88}BP2#FQ23>inVvRggiF~{|%Nnws*|d?ABtc$5(-gTA z^D~FDZQ-^Q=2-sHDicnL&_)X_>4dgWL!r37q(BeezYS373*^(VVo&75#^L46g)Iq{ zP!#5DrfiyyU1H?`(>`XPI?DrT!^tEuaFQFS zU%w{=#}jj6oksMamNw$8HOW11jlh-8c12(#Tm2T2+bsJ~@K=RC(%z+925>8|E|XQx zu5YYTTG>=q(*8Yyi7z3!Lu|N53GxQl0F83E*IL#gHHxBKL_#hvbm}oZcoKeUfvHtf zqMDD=Q5=W1Tl%piHNR_yuH!cX9)#y6+F`*adp!foRl-o0Ci`#{kv6*}sA?vFXXw%0 zK1NqW0Dg%%xUcy~rU@L=wv9kKq4$SMHkhu}`n!tQGtx&to5aC|!|1c}icWwjkuu{< zin>`1&wQM^BMmH^*q~7pqH`QQcvzm;G3GMION9FNHvzD;xe+fN?143yB3#}PbL@HF z@negL=B&>_iwFs%hEsdQM14b?B#Qz}P>IWv5X@%f4fS?($giET`STp@77v`6kQ2avy2W85$1T{OR6I zis9sUf4#%;7snN$ipj-Rec!9FI?@k4otmOLz6*j}b4Uiv!Aw*tSk1tem!rE`==B`* z5u_vm3%Pe8(5l;cc5YS_hnOl= zPZMHm$a=JpFzHOt0zJw;@qXGjKmufyd#8FO43*M@%NVzp+srUjExdD1^zvNBI-tG} z<1akzFBTaOU(bGFI4l42Gw<=Y%&dOHs1E@t$jH=0BAdlx^pN9v!Q@`LCTu1uVvByF zWU8%R9f)s@{ZHreOQSeg7b(qw`vv^^@u4u==ut-y8sH9LU=9A2V;6fc z$#UM`X7QKcBns&0Zo6Fe%Bq@rZ*H^8w(`M(Rftoqq`JZ&nC@i8(0h28X>2%lUtt;|w=4g`?G4e5XR< z*FMWn{VvNOYgkISuB7vut3FvLAgM!!#bV(WE+QWiKxs{fyZ0oN#DfqfRbruy6`fT1 z%c`aGq<*X=iqiorNMlr7*55u#u{);$Q_BPOmt>UhC${B^@@AnAu9jmIrj>RyNIgYs zZ6}N}UR2nr75yMf@4$8l`P}b55`=Pu&Wi=(#wOl2jf#qJi+V$Q+o`&&QKunAH4i1Cz$`yXWrMUpIW1;rahxkQp=R zW6U=}EH#N3y&jZDg2ha(3e zzgygH*7V;P`DaC{x*RN`5X8+?kYz2igS z-mo;I^67RI2;KkCK@QrCp9(&lpae4<2Y&a$8h7Te^)(RS@h^om=!7FohlBKxvoOvE z$9v%X)jRXF#muKE3LCGUdRFZQ&&y;MD$Q2? zHDh*{vn|4Sb`0)u{h{+fqpotZ@Pfu6W)i>4z%K+}glSxZ+2Sy+Z}?jEE3h^Bx8Rz@ z%0y8f+O2P92%{BHe9|R45?MXq*(8zba6IGdL}Px7Fn8yl@UG|Jd_9UND@o=i^y5;b zXd$(($jB12E+VYpM6Eg-+6FR!94{$ogH)MZ&vTLG=CnKVR4SCE9?>mT@c2Emy}s$E zu+h858+$Kt!P$>9imWiwN4B_AKG@MSnm^@Pm*b;?=atR#-(ToD7c*MT8UubdTh# z|7fmwonoK0$}n3?$+(oc#+y7XJVRbuB(w#Ca2644%J}o^IORB5sK{BL{T;D@m#k%u z7WUdaj4BW+#)v&zg84m;z2miN24cr)VCeAIf2cE!fYvo0&TPLGrBG%&9wmq(QXObR ztcXSYB(9P)lX9P7XmxbH-B>Or?1knJcWtsI@rn zlj^4W^eV#aAvUtTn~6AL&bHuxN37KmssDD1SH0^!%(=XbwC(!GD zXcu;V$h31>TX1UJH2kRsMIkD^ z^=}$q3*%;Q-p6?%5tVu#k`EP6LupP{=8laM=JTBbktW7246UyIMe_|?@Av#nj26oU z1#ZaRID%XwkXlbB>DR_Ay8}ksFJZVp)ZOB9tGd-TqNG!)zzHMMVqbczbvt1Uc!M69 z0eDiFU3rN=xqtO z%1GWpSeKF%fH@MRdWPZ&`RrdIyO3AM!HVvEjopsB93CpXGgkyh6QC_vO`zLCCh9N5 z1vVotlo+u**1m|g`Qf&NR~mYy>OA3-g7u|tSoLsW6WQ1RMB5hedl&UmMPJ*tPPgs{ zgMrNtcV?{8iKrE1gb8iB#hh98>QPYnUYnLv93d96_*PYOgQ_M_Gz=5I{=FS-0UzE0 zNc!ibk5#sTn40#n0gv{=yK#f5-YwF10u^PlW>ff3 zvCOKP%=i6x+lHmYI{M>Cir%7Cr6sUiP3!RYXxkc$45<>pZxJ5ao?b>3e$^S?C+X(> z*X&u|%`scYL!i~e^v>J_OPHPV@R;teSDbHoqu@{ z!KFl;-5Lr+73=-rB_8{~o9Uq0J2BYcB=RD1bO!(i`@ZfRj0A4v$}_!amm?2~61`6T z;<8-@b$2hfWt@LuEkfz&qsi!Q>KE~pf&_Kx5Cdv38O+|N4Ml?4kle3Ym!^ciSUtqm z)Qx)*SYZ6?*yUwmLh6w9U4yn0hDd8gN2H1|pPb86d$Y?T#oDEC3--cH7lTr#S!h9M z*I-S$QA~iBt56meU2NvKCVL z(y;II4J^ivBK%gK5^+=AOB!zG2?q7kZ7}}Rgs$mc*Z9~sv zlNU;2HB2bAJh>U*sSdUl#cIZ>f5SYr{k|mXS+*9)0=wb}q0G*bXn42T_(2&=NCm}D z(z_xCOa*)MP|`E#`;e$gv$CbJNc!_OiV2B{@C@x_o~g*rg-S5T#DXCkqMZrq5bU92 zk{9J&Qlxn{#1!8JvpTh#PanTGtGC=z=4#;i4g8)YiHSBWujDO`JPozZs_zSbZpUEX z)`hYa%Oy9D3LLN{m-r`G0t)QjSj!3FvOkIAIp~7DJY+>LjT&-IcpCFM6>-Q!$3S>7 z^i#rT+xE$bT&=2q2;vZt6B(xZq#$G3veCW^@GBlEfcgRdY;H$JQfFTz$$i9w6jV|5 zj+!AQQi5ob6;=LEM?MJ|IMQWJYlNQm?)g?Py&%;HBRzcQ{6A;@mhK&qQ3=&|f`4jh zhzdLqbkb*S0}78M`&QHGGk-Jc`vaH1aD1qFFVbhKC8o5EM$ne73|?s`rOF;i8V1xm z>StP2-O614B>EhwBZprW!ze>vt6JS|ztlLiC~CMW5HpqSNQgf+uF|0p6@4#kLYj&Y z!+n4{w`d-U=&)1`5RuCgb*1G=hT=llBYuI_X$Z3ug?x5xjlDm2?W8<2cS*P#4%(aU zIpjy5nfD6eJVt49CaaPYZL&|D+{*3@YK!;8!X$Qt^Pi7ezAf+BnF&Mjj~<=d(aP>U zFl}br5Zl6*@&4UQUZB|L*9mgx!P*6Z7*+H%W1-zguV7>UE&0Qju-Ce{ctu?9zx<~} z3J+oCqG_~Xu-X0RC>Gd_(F494IbgQ;iVjMR5!948$cpw<5JA5FpS9fPC>-Xbye=9& zfNE>JW?GI^&%)50p9OGjq$pvIqy6R82U1os(-5m{3a+UXUwcs06l^b#n|TRxelAmA zM_wAR>|U~|w(6d5*bui2G26s==en@Eju~&Z|9EKED;9F?@$hE|IQ&#qTH+blvVGUE z+H_S2y92agYtEni`Ro8&^zSo2h%BoF+RZ<&wrSJwKhF$lwg)<+Aex?^2Pe`wBevPl(#Nv)OZ^Rc2IyO z!N%O_2CV#S1aS>iffgWFLMAN7iB;Ul;z!%?eO7s_eE0r9N!?}6GX~`pH8tVnS!c6b`w0(Ejbkb z@Tz7tT~b?YlU!lB%b8Qa-*Z-qD$}8y8u{W^eU;>(ZIi)9>B%jvlFw(ZLkzkTK3`a; z(Pc1DQ5!YIWr|W6Af8Y_|52hCnuTXN^o^Jn6d#~V#1+L-Xf`g;fwro&cR?Kyo+56w z1`OdHLQOEjx&%k#GFrX)1UgM;Rr4iv-aX|%Qr(o3!4|Q42%U0finBn_&~tdl+Z?BQ zZw5;RctI9j`KO%v%duH*2LwUo$Kc*CD&hqSMKe48b<{eE zZ}Dr?5lo3bI5DP6rBx&(uyhQ&d<_X82W9M+r?IxuA)&K$>)MFxIa;6eD0|lNUF(#6 z5aUz){@CHzLCH`v;~^~c{p}=GAGs$dEa5Y&?Y@wymc)Bu> zoN%}zSO%TIO6Ate+QH8KfK%US`hyXN?p_3m;MwtyZVvKw04AQAFvcqn_EF^WF)24h zT+9st`jG!$nRhVe6$V35QJ00$mqA=&R5V*cd{2RRmm}_Q_u;T(TDbex)GyC^Xu?~Q zvt~+1E|KEWqoKW)jj$q7lR!}vQmsV&^|WDchTqT4x-tZbXJ*2cck=?J^Dog){q(Z1 za?;WXnBTcY^jmHh-&?cit6joj(?4M#BvWPO-;cS&G-V%5gPZ6Y;miB546!o4QJGc@ z$^z+_6oZUN>T0osKK{1*$QvanY+OhZvLU`Ez-R06V&!#S26w36XoG1y_|JEDR2ogx zyt5>7#?;Pa_(5-fg4_Fkz2I4}HqdkbYB_khN2jf;^~U^DpP{tppNLJ=_LQvjsM<$9 z%$UdAcSZE0-wHd^r!cES8hZz^^88PtXije7h3I7gc^4I#PgYBdq-6bo6*twQR5acQKzHC z+HrL!oQc8Ta`76Q3C$7#2vJn87{?njFoGiIlJg!bui3L=NBN2TN&>mpWhmn8%Su;| z6lFgHKC}3$TU!gPrE*XZ;#)h73u%nW)iuxBf^QuC@ft;D!%rv6w(uKq^>oXe`G8%- zsSTbz40=wM>flU3$)f2zKtGXN?MMim4~g7dK9*4YDjZLvmgOA&XF3fuojyN)=8#_ivCY2IZ*r4!|oQ27|lu^(A+|*^t*Zd=@5If$&Bm*{hcFuu;U_Q!egpO+z20_q^cjS@ssP!gVdf zK)rvN@Az~4LPOl`pX0Jke`pWq+cFH(4(UV`;);LjBW$y5;G-R?rJkAu!(M0rdne%{ zDS8_CJqk)CqA5Q>{AhjtVHA^(te@LLXJW35t8ckYpIY((8qHpMeqNh3B7M5Q0Vx29ez3P=o)Y`1*Qs zO1^}IJfFTix57edF1q)(H7H*$qpZMG+vL5X>W{}$mk&kzGmJ43&$TTRg(C$NC?psZP z&zD?4aY~VZ`D;H~#hLP7`*!w-;wsnwL-tdz|OlW4pxb Z7i98ACJFMM)&KzPqa>#;TO(~A_J6V(ld=E+ literal 0 HcmV?d00001 diff --git a/book/tutorials/snowex_database/images/pits_not_bits.jpg b/book/tutorials/snowex_database/images/pits_not_bits.jpg new file mode 100644 index 0000000000000000000000000000000000000000..41ee436d79267b0d2900c11a6a91f985dda3260a GIT binary patch literal 887062 zcmbTdby%Cv_Aibh2FW5Ob z*+DV?j=~hKg!m8kgkxarzjc6rqlrWNmrs#!IYQjO`}zjQpnv4)f7||pbKw~2ADvP- z2FLx64=DfOzb>Hu7e@O>zXq-!5(fql!s}b$81VfcKRMXhf#3gUR1v=adsL}#;6D6= z@!%De>3vGmCf%V!?l5ct$*49pnpgGuQdPw4bK0O=fXvQ?f!@U z-?N0v)Rd21z>I^N*NmUn7>@rx1o%6%f&U(nzs7<8;61oG1o+$q!AouU3+SJD{MRSs z|H3c+!GHCD2>-TY2!Dg{54IPFSHKD7U)P`izWe?L1Ml(AB0vIwf{YACMnVCD!KkPx zXcz>T80hF2#CZ7F1mq-?6yzjiWK^_l^i(t~5Hd0bK1LRH4sLF4N_qhieokRFE^f}h zMu4cOs2J!NM3|UFoYZ90od3u4rvreC0@wq>gQWo=-~vIoz&||zcz%IMf7c2i+}VE< zd|D$SA%js+(a_-vwK#uA3WR_NLPA1>=LqQcciJQ3BH>YUh$G`G8-Zz@2si^{vr!;# zt2$q(Oq|hj89N7|q7l9%A||1GMbE&<#LdIY$1fl#@lH}oT1NK$M^!a-4NWa=6H_yD z3rj0&7gslT4^J=e;Ll$|LcfNE$Hjk3NK8sjN&S(No0nfuSX5m7v!=GLzM-+HtGlPS z57s|0I5{;vGduTdeqnuMb8CBNcW?jT{NnQJ`sViT{^4(2f8+cQ{cq#Kg~x?}hzLRi z|BVZX-~ne4E+P^&2Qr?xGT6uopN2CKh2U*$c2y@TgiGb@g|YJl8X+zBI^Fr-(Eb(K z|G&V3{;wkYUxEEkTnhjU5D=a`5H3Irut}WyaN!oIOa55L>3rhXL5tm0uT{#*+O4H9 z=V8qkM(0lP(QrKo3*_3lwfk86#m-#c!zPsdZMdd91&X3kf1fOf%&mlrN!qfWmEzWU z2uA}AdC9lOC;r!FwDspfE0PI4F70;<{`F2?jIVbVzivQP@1=+H!UhJEWVVh)L#ncC zTB;`SuIcb39mV{A;(l`*mEyzm+~o%sv?{Kf{1DAyT9I(F+sTfs`S6}<*BzC1Ym@9u zpuB7M-9$(fTl@E4qwnlJKy2%zSbUM`=W|o-*5x7YtTs0>2mTawY4WWXDjN{ecLvU) zAiQ*+Eo=!GLd)a(y4i%>y4vcbAptFj%x%>gg+`V`8aYgO>Zqceb&?K~Yf*^%YoC-s zdhj>}r_60Jy((X7up%j`T+m^iW^&;h1uhkG`A2ev4UtzTU8f3Gc3WvCJ-b7+P)=+m zr#a{^5huOV&=%$V#eo9LoRRt%%m}i^e%nneS_B0}T@9dcmPtcx(19}dR%rN%2DMfv z1cM_>p{@OkG+lYERoUV}(&U?C^s>Ra?QWX2HIq3sz*A9yp@m(A)|knLh=j%z8C`FV zB&2V5J5_+I1^3A7>2U1&{u=v*HLgKkSfn&U!9#~QAU;NctMkR8uICru$FK@pI@~ck zx=JZECkTZq0xCJb@a?hY3d31XBB7vvPHt7*qXOt{`5P_o08{~D#PjD70n`^Qkc|jt zHF-+SpjjP4A>V-{=W<0r5JzPE*koOc&AJ|+bS+6;mTigsR_-|Sx;P{RTu5FiViP$j z{LyXwv4~7lOWrvzEYVUzu)h4H*4lt{%%!N8QI@(^?9eV%Z@eDT z7Fr=WnwDRiQ;NVC_eN7jT)-t$b*I+eEdraYll!5pw>2@xR%~Kh72>`7*(gqtzWzhJ zazq5?C(SgK>4Mb0QT}lmFw+qydoI>z7ihb8t((v(NXrYi+d(*1Fy`lCrMnhzQ$PUG zkka>dCz+f#)U8n4N~vYeSjX#ya?c=QtZd9@M=#yrv8h_SLw({1O{W{Loa&UV%U9pt zl@1FPjeVLb+T|G#i)6L0srV_4)H+g4p!G_fnSpA{UJ9^TK^1$tP=73JWKz7$laThl z9C=)iw=@9j`!$HXL70RsVAEH_LG1HurDeS(ed3s2%iV2F2y7J4IR+*oI@Ddx|9(k- z6Ov^0B5%7TqH*opwm70=fdFFGr>>?y0FpZkmD%HvA9KvyU6Q2YJ&s+@f^M{A=?@kQ zrF;H>NsX?On*lusvM>tCwfr~KiVcT%6Ndc173I&7Rx${4JRF4cM*ZI?f>{*C`46xu z@|%t=bV%wyn@%kBd2Z>rUIs@JrTcamZWijdAHOc@Sz&A>u?T>~e`w&6irT)1N)VEU z$HxX9>wDSxIaTONk{@q{=yg!rzxmkNu_xjmFzF4fXW8e9|*qsxlYN?r4 ze-;?mrB)6h4d!@Ly5)wrMv=0c%7P?TdC`Umbc6P zhp84dQD~Bl6$Ob3*-yNqU8pn>nU6}7c#&wfmr1FvM3Ep}NH!t{f@0uK6W?;@8gBn6 zr?a&WB1V)nOuK{T-`1f^dC^3)Am08QKYclx# zzSPAOl=Is+kUjd$?uK4{bwy<}YYCcM*ziK@)7VygEykeEj|2s7PNl1r1WxJ#A%khj z$8Wpih>8YaM5kGbWnR!&8+#t}M_b<8%28VR__uj{hK}00jvV6;b2*B_=Eo+8T!UZ4 z$?&I$DO%VoXd|?OSmkp=NSz$hQ`py&$wE5bI87tSj9{3vPUkbU^{YOe2#*^uEILa& z93HCgd|uMdsSN4@ln~Rfk&+`j%lfy5_@tWNT=s<{Qb#WyMF-W9lMhaB?2rE9+tG7Dik)L_HQL+i;9YEm%lcxP7>R7&0%WNmrH#ytP?)@^AgRo4kx=^jGL&0U&`+<$j7#qCRQcjcLUaOK-Ah1s7a$w-Occ`6lPcCL7@6%L4g z>v0kESol$uVd8E)(8Pl|9wNzqo9$r#@BIB2Cvapybq5TxF)8 z@n+4u&?b{3SY@i9x^A5N&~r<;#gda<92~%IlRwVW|0Hd7L%Phrc&dxadhr>WLdhmL zt+9%E^qFe$5M=+vEXpwllqIu2K0Q{{53ummzVWG*oK_e3k_MxxiGAu~JxnJvh0foW z50s{gP?wDlI5->sGMA$IelJb7jpCl%$tcmr-`Ip6*KVOK8_h(Uy%7Qio@ z$vm7JzNuC_y(Gx-*{d`g$VTuq(p<-tYditF*S|+ z(f5(c%!{6XpkqHlWQ^>1JN+d|&4NN4p+$cJM&}Sbhhi z73(5`o!=WPr`LQK`M6NG)MBwv^>a<}VIUFFTG*=Ak}TCSA}$X0LtUTO6}^bS1MZ=0 z3D8HoEm~!kO&wjwO~dweT;o_a#nW!2`q%iL<2<^A$1$GItGskdi)Svk(Nxjp(jQa_ zQ$_M39hb;eQFXRsBq(kocjE-c$XrfW+vV;2eDZB5OwxQFwWhr~-}m4X5hMM=c*M^X z@=yn*M<2J5HYq$3rVz)dZyi1TATDSiI z{DrH_QTSox2R*Yl9v)oQm7XcN%~)TR4F?q1v6Zlkgh2yDBOfcze)qgxRhvpO>+Qzf zE{%$f?bldCaJiMe+SO!b)*kIP0lsW+45yynimP!U9I)%-98?v-FXyn zAHh*sw~M(V!yCG-#C96p0*R&wQ<%oSqBC@-z z<*+)Sjhj_t_O&!+ErKT8)rIDypCy7g#_L6QQ>UicOavLCoep~R5&k>o;M#?*?wm53m75xKHS$@+=1$rh^ooV6oFf)3wJe$Sh zG}_!f#DM#1JrlMq+H(m_C^&oW>sFb;%JV`r%;k{9vjxgsl8OrAH*v12U|U~hXzSRd zY1!J#q>{#7lHmvRVC-gohAJvB-OJc+wUKGV3RY6s@D_w3YLSsbkxYSdgdZ27%f(_} z38$>Rzw|tq${ZuSyG3+KCp`QEfJT2Wm+rAD^>p8uB{ny)Z|5oN;u|4Wt|@mp5*w9t zqo6!zRGLf8XwM+uvLWwOzCh|jXBQ!WwubmIiuR<`%~3$wf16PYMkOnz2N96TwJ~(MVk?rU<|6-O%<--f7 zM;LQ(Aj}uK@x8sVzLAl9v=fnGkq`;3w;w(6`Y}g1^*Z7Y0NIMeDt~eS!-J^b*@KH> z>)B6A$Q!7y^D2z{p=zp+Pz|widG*O!??j_{@bQ~nE%Voiyhcea{2>AHAZ*=Ts3T+S z%1YT}KRri(^-) zJRTriK7M0C@>~SbgyJlmRh3%aXO~VPjIfkS@#8)LiY0Z`Cf3vNYvS!@nd6E{>g^i2 z$3~ek7H6;H%ygfRINAp!A$g{$lH*)m4eaj~OheQyY;Xu>9gICW-G|pDStc2`Zr?$d9=jYjS>kYY@F`%jeGNJ_{cl+u*n#bunN4T7= z#fA+_5PLZb@bs04pd%8!Q&PF`Zx6)~hC%6kh|Gmx9O)@L(0en4ym1uCS=%pR%R9bj zPG9oJD4|qLEZ!ID#^a1$rxX9$X-^+zA&>Wn;Tpp-#u9OZTn#4q>`se2z0PJmw?RHO zHlddFC_7MboF!*DJhc#M{T!m3f(G*GHf}s!y@i#s=(yM)iO?-UnPKc@eh~aqPDI3J zxHhekvfS$_>1}w!mt+zEXK$GV5mt# zko3v2d62aj!OYxvMF&epN%VeK*pZXdE4z|3NADn2_n0ulg|4|#4ei2AD@;lCMi)y# z+Mz3LqwJM~zYxI)(z_JN|7&j%RcU_)C!W}o=l$%#1-;fViNBWZP{z-A_P z1^G=b;e+4h{=!V|oQJ*1Cw7joB=8QAzf(;l1(+fs*v^YCq-D5V9a$}sUpJ$HR0iC* zAowt+T)JQX(t{9NG{r~I7Eyok{RkC^we@E@nW3|g(?Tjp@L>U+(}DZGZ7xrw1Id8p zmqdqsihkCn&e+B$Olxh|IgcB3@~cuB(z08;oV!4f<>^%Vvs+aDVa$H4yt&IL%t-m^$7GB zY~)bHP+G>$#~i58=4C5Iu-S%M+yP7pI;3=;t~12z0u=!77*xH)Cy55-?SF}Sb;N)oce9B^ zq$#eOUqX3wqS)-{jx6~zLYHOMHUzBMZ6HD7} zop})n?;gs2dVLcwj`ga(No7MeHn=8jbc3iu*g`bpal)Z+Upw+#Pl0Y~fk$%(m&2rn z{k|T6a>Ui&c~io!i(Zsp*NE<7eL}$}QM(aSxXm?+Q^U>`J=FfBym3F?gl&v=_Uaa(T-*vb)s-Nq z2Q|zV_YWXi)%h-#CmLENfxD)G7PgH$!{NZNb4d`b^(r_S4B10WXo2m ze!pvb;$#IP<*Y~ZpijG2*I*Gpu4C1jFaaHGEC zfvG$I>E}@FT2wcLtO(zaM!YfSRttrEY`?Uq?S^6Piu#!e11ZSg>84K{=<70hhFaJo zPlk~D`(Z@nK2y0rBi>EtJvzkF1}!T|r*99w79cYr-W8rPe`Wcq4lk}?E2bEuZW{vt z`d#=3z~u3wRAbsuCq)}Z6$y90g5uSkp4 z@R>=TRy=fSqoVzfCSEbRl5DzSmHYr74dwN+*Ij&qiN6IeuH@>ypzA<2(MA9;_%vL` zBJ1ErX|E|a@w_ySnoc~P$fy$xZA31;^S5$%-TS3=W|B6TLVI|qIXcaOe^kUpFDZ(< zuU>e5N5)ZIh5#v6!ExJ9S^y#fRvz)Xw}P}J+nZ)`)sSVZMJsO0?sc4QOkCez?In)s zr!MHkU!aG2-UbeUgT!|W4}-4@X`u(S$j=+2=vo^RcEW3k3 zSu$0!HFj$DnDdtD-MIaRZ;TaQNbqWE z9XF1eQ2~b1sczIEeK=0S2); zaJnu6LFD69ab?N3td05A;t~5uMSi^?5}=3vb_w6})oz;FA74I5x;eIEptIW~m4i>o zj>liSStq}(%bN)^taxftS+_KBbVJ^SuZ58Sq5@zJ5Pl4Cbd4CrOQ-rSFmg|rNVBPiVrlJi*>e(787zTa zBZ3o>Ye&7F=A=Y~KME#e_;GUi;p{ptgKt=;{bwnqg+N$(0;0?>s`wajkicevcJH}e zRBv5YK5v1qX$&K7g7X^z#7qSlP-LVlMU8EU(m8Jsi?Bp)C1>&2cJ4`7KsDhm(H=HG znd?o7phY;37#hsM!Nc;F@PrfU@p@UQBRw+D*hlZE7n>PFByv^xH^n=s-PL zkWo_rFpvtWzj z=49E}VGa|n3QRv9Oy5HIQDfXzKj*NOc)?&FSy>pS$yuad%84cAZ;Nf8Zr+H$A>zbD5*?d#Ixw^8chL2GsvYNSd@b<0 zHRXM&t+%`qXNvbiH(5)r&~A{QXw*>_(L0Dq@%1a>!~@MO&meO6-UZRN_-T5kh>Hwv zZ1Mc!@*&g}U7FCkk4_D1USC1MSxVB%)0r?@Z^{gpbKs^hDQUorKKtr{aDFw1KLe=vg`$If51<`KQPg;9BFP?)Viad#5MI1cG4-Vold*?lJTsY0jlfjZ3 z_V}w#h!McyMm(11)s|8&o3k)Pz(gAh?Tf1Hcgoz%6fz7{t*E$G=8sltZ(VdlA+q|l zW)aXW3>8$_cj{pMT)~B;oM;|-jNuFz^%8k-e;9xKYBWtPuc_;o;QJ#`P4ET$=Ze1I z?4Utgl_iPgi&<fKD*m)&7#0sFqr-LY9xsnY31Xv z5MLq{=-zFNQu(^%p**;7A8P~LsHwli(nrTHGOvI|%u+Q9yUkw} z;{D=~2EcEoc8PO>-uI6i;Jk`26Y|SBPW1`gPCxbx*fgOA5p8W=bJq~}?`!}5onK|e z+B;mYEcMpTot9wD;|8{^hdasr8rSCLI3Kl4xYxvy*T|S^lL%6@OC;=etP|^*)Oo&4 z*R5Tgo5R_=g@B5<79@aqcO}B<@?rX!>Yn7YhBnjN!l6rt=umsX^sU>qFHe@&prn>F zXays03}Gg1+E&848Px@N1j-M(c+tL&N!i;3ekgfqNry4nOH;q1n+_GsYQA@?kem>f z^eFB`mnA?sLf%nw&rIo{r+TDRsGY(OJXDQ2O4)E&`vbs}{{D5@!FL8?%QQj-$?kjx z)<=?MqU0|;iOjyGmP}oKL5e=QA+zbYSU+vDx|n4n4Q5`V2rZ*eRYU)<&rlS@1f`9K!b+nDD34w_Ja8R_(g4;Lg4-iyP8v z3_|_!HTl(>yhQ*K<`|XfV{CYB$-eiZ?&1MSje1!DQ>lthZs}qmM65eL4hU2HW;*i+ zfa}@ZjW>_NHl(}66f{KCff>Y+x%8mQ+r~eBtphREm&p@jx*x_mwSyIW8Y>f3XU>V6 zv1fD5P(Re1Dm^cdAw(rySD0H)U$dZf>U2?#cloez#qCU4wz z5SgnYK5*F+<*5nPIP3kLR}@u6+_;nj)RJ<_+=8yED89cmK(yW%<&9!B3o?94> zz9<(2JK018261E+m9Hw!Zq|Kq5H7+scesksFC!)FyQa8DN@{cFbZPeYD!mqZ6*g}c zq#PVPo5h5QO*ZueDLGg$${Zv**>GctOM0_7&^dZUk=Y2QsI`9`l1cAVInK>1D#r-b zq8~8t9E$qBwmVn<;*gN{#@kn(JXemS3Ni4AotP&E z&tIQ?&;N45TMpGoj(%nn_$PXUUwBHFK(-A;E2UEqr1(+ASKI z$xqYj=}Fmbgz(7>R^trx==1ZQNq%C^en*X(x440ye9`#JC6ntz8l|9T_~ZdG-ou6r zM(4~8RmXh<8E}u+pBSN@+W`A_{w$G2Dm(+;x$cwP!47odWEfjPK3m>S`(k*)e5Ssb zMRHa)WG=K3&b{7M%OUiuNKhM-4*Xu9H9Z($mcW(#y-xX6C5>YMjvJ=?B)wQm2~bkxO(10p5~JJfyIgU*rX8G^EnWxFGJ zsY^Z#a~kE^UugZ+N&HNbU3ljsJM)8M^;fT8Y;?M_XlUURL#5`0h_{d)V@>i-^6CdI znUvA4^Ie95hxmO}Io_WFsf-Kw1jYLRdotvHB66_9ht%r z6vNn$sWS@baRi@?u7DM?v=yilLxb+bBx`0*Q_%w+dAItD9Yg7ZoH|d$D&AkojR7oe za^(pWeCIyKXSF!ND0Q9mc5mn^eshmafBHf_ZYR^X|B2(7U|I#8Yq*7V1ANxjvhXT@ z)lw?fI7p^X7j)}^wOJ?aeXV&isfyA1NRpdLJTau5%Cl#1nNMh( zqV@>7CLoq6h)^Yu5;{76@UMXtWf8FtZfhp+cZhZ0J$wqQ5WP#;n4MxxlBAfe!VvZ#<*Vo@+1XdM))A`|5{XwwwAUc7KnHC38=(?c&pQ4sdd?W;%^} z=E~)MK%#RL+$}0&MSnw5zMsoh`5Khfs-q1J%+*>1a(S7a5rLi#i8aEL7;D(4zIoMg z3zL@*@igzpjX~H+j|VRk$yIluUa-v(<+HQ6DcxojF1A^w<_32}GB;vG^Tw@5>Cjq! zHe3qH!w~4{z2rDwz~z7mGPW0 zZ=lwuQP3Az_`##tcHZ;4hW6k1rWB zkRpnKw84<6)P|TJuEe7GxgB}E9KYT(TIRC<2xkD+C`+<491=1Y?bXk+PHuoBE>)Pn z+;RBQpViJpIMJ0&Y))t*h$+qNzu5Lixa5uwr=Xumvxc$lPy10aN8e#&@%oq%RXh(f`&ZVokKe^hHc&DNB!V4^?Lp^E z%q|3|NCd{=5`^I&R5k+87=8rcwa9I@0AJUXd;z=03i4&6iBmq{R@j%@!1P~+_GXeM z_U_2gN#XT!T}cri9tT-vb9>r)zq_zc$hC&6xSD!JByO__#tH`S7sy z@v87kUd4^iQm5l=PhWM{y)57)H$Y}o%4wnMb#DBzuO!6qZ1@q!Pv|+JllH#U``Z#3 zzMfp_aU_?eGZZo(iWzzJ2XLsNbvCxa8=JT1Xern%XT^=N_Tk_?SrtG3wo|$*tkt=1 zUq0PY*RZ5g{h7MH=y*T1)@MC}+<0*1>}80Wa%)bXp40eld#i&a4|>}!7N?bJ^^wm^ z#_!B*l+@7!(ywDuVcpo1r5d9e&m=R#f@iCHak>fw$ey=mu*~p&e^3W?<1k5j)(VN7MJ<;$li%oE+0Z9 zGf}oBzPVxKdLWu-$rwplS@r_xxmzYA0fu)!O|@0|syS4vn?km$mY5@>XX}eY>TT=2 z$*OV1poEXg+6?023PNTy+ZY9;A^0H0%|6NCCtat;0cav+d8K$)3B zhK_7AdyaN3Lqne1c)ge788UvtWs39Kry-uhdeMURb-mdnu>`{~nz%0@i^-O@Nz&F& z%5rjU_uB&QB7hUc?-k0XhOvtPLXOBfFIzQ@Z>&TTrl#LccKO_4Lv9}K@1tK2(F3Y4 zL=(CXL|;w2>UomWJlK51up#}Lh1M(Ew?2L*t*mz>gwC#^Lf{BS)QGjoo-=5>6ucjn z65)dFhj%d@HIxkQPEca`Q@xHjrmJgFjrdrnG>RX{! znBl4=eq$*uDR%K^xAAW758naELdG%E@hr?FZrp}fdHwt1Z zcSy{LaO2V5RKw||z4!nLp?eMC1)w3zj^#6Dj0`g0n+8HTbmyXKK^AMR@&hcb^5vSDI^9L6Oq z6xjCIj?ExVb0SJt_tzy3QENQP{q*yx`Z6oaXPVZDU%fjitft$W^ddgd5)xnYNDrVx zJrAF5>O)o5UwrA&q*nBw*-7&pm13T&c|6q9ku`&Qt}>3}CXd-dm%=Yu)qk=5q;)bx zRoEu4_VM@1Bj+ZdbaGvGKa>uatipxSrgQi5@rodOg3gMt!`8(t zZ8l_%ng+dj|K5a}6#h6h(V<>n*bjXJ%L$Q$(kTfHV8-UhJ}C=4FAyX~*y_ z?P_`E!Rj!((r=|Ui58I4$9O%qBv(~0$*ShaK;!~m7%K-Id1rml(AsBSfhpSYyIeY2|GF+t ztV2c?TH-(M)!P?uaj=t8nULi8LZC7ZPVgkPk2=@rSrA*+y5z*pu~+^B@a_M^bgg}{ z><5iLuXxvj8%TbDGT+`ZjNvKvfw4lRza&fQ!`pC9h9_pu@Qc!(r>I_a%WZ+>tic+m zRNg6kDPO0xt<>I@z#r!yQ~>U}Is{^;jAIw&1;!6(Zv!H6VR;DKoY`L)$^3czh*eF9 ziU<+OUlNp|RrWbueaEX(mo<)xz;jVGYt%~-0HoIP#_!5CjCT5Q$o-DCS7mOA6pH#a zf?)MCd1)?5a@7pqvR%efyCarbd(j5=f!n8AeF{RK zfZ3M3o&GS)qXb;{Bej| zH_vMSKKR73`w!raScbPLzNCvC**UxAmeO8#1B7ah@thNOyn@u$&;9q z;AA>Y-ik35t`qsG(}RElfm?|sD77x#?gtRsnzfGd7Z}$FA;cwy1309)Ym`7%sJ%k1 z)WqMB<7HD-KHq+)0|>~27XlgxzAJ%jhJ5`>?!Nj;pWTMm*x6n6!*>yzOHtW~2zN2B zV9NS=`ts*kbDH&c8S5iHisPrXLOw*K!#bJ+TZu$tA1+gkQGF#g{s4fUFuBTeiXy`L z9P4TnnnuDyjF`4Jdu>Ntan6E7x*JXzuN`jLovqGzvB=V8&?dJ6%dv*z< zfC2L6tbUgfW2<=2h%PZ4U%kTKwd0Q;!=Ja?MklD%_|2(KI@fj!e>`Za&+baD84%g5 zo~2s*qn*F2yVd@Z?r*CRQ)s~9|1k&v64I0DAjfji^^e%du+eIpMb18FBS+C*5oYfe zX<^X=3J1vuyPoPf1o|?TFL@rSo{xpG(o{A!M-K+|QhG^t1!x9OGXYQI9Qj}LdHTp_ zy=#L%AXXQr(FAH;d_N8@TGPNS^p$!Z3bGk$ zN4*OX5q!yXE49oH;9suyKW>FT_OmE@9QBj*%zZcCX7}fhyENsqokpuN%QlAAb9`d7 z(K)s{A5S7BQp{B}f?$~VMBriSA3zT|es>c^N~vzjPSvy?A+g;!8M0ny8m*zpfnN!o zKighW@lgJci}>^&CBlNKG~k5r|{bRw4~*PptB zi_3}^HP0f1w#Sq4QaNk$HuT!HGUIBGdj~2POU#k8;fvr6x_rIE0Lnd!hPwU%yd3hg zL&`gjI*veUsBMif4NG6!q#u8rUJ+~xf^}-=jf~9vF6HRU+nM^svd4$rAPW+U{xHY4 z_M2Ym=UvGr^J5z0Moklk7rr1)oJslAO5HQvuVrfktm`x(W-m52v#@tg@A6Wh*Lz4* z404;tFS{~v&t{gNQor3SL~_t-;C=COs#3Uzo-_#1TC~dNJiVXdaUiG&-I{XK6TDF6 z)cM`EIB+?Q;QT%P3QSBMr!4Ch+zUz$!ieH@>;zXwEWd3g?m}}eDQbsnwC6%Z zIc)^zo*=gmAsNNu1WqI7fj2lfS(7OunLpRYBE0LvkiYnq>^J2#NZN^V(8jXQ z$4E(mhaRHeG6t^PY4ko=M6%E|PPOcAMjU7eN857F)cdq z=J)Gd^pMHMSwW}Rvp9ZEZPk??EMak8F zTKxf(Q7VH-Y0s1}8e5nZ?e1M!oxXpVmz=sqebN2&WRdSh5YTg$)GMNL+b6i4_ncIr zr1yI(quvb zbuz4(QA>_PQG&ai4K0han;Z{|GQD@>%M0HvH}ys?1;zjlyX`L$Hd;BckL}ENrOw8p zT#wDQOnYaOE*6($P#2Cv9!tIW0T({w;A%~MObPgbiza=5BGD%%*LfOKSFRhD0_xHi3I8Gwg2qDz{C>9qVrDU%nM!MKs)4^9uGf8J(yNpm?4+ zdM2uztNAUe*&ytIgqBRnMqqe>I@U_XwrZnop5kF)R1ZS}_;xYx4N!yrO&462d3u;J`dGI`V8v>S2;@L0l%n*P~B=24BM-4bVL! zRD#uNXQ-^o${}@{A3pGrH;}if2n=kIU4O@VhUrXRGp7ytFh6?jRQn|{k_H*s#)e#N z>s;`-3*f0Ola^Ezr-z@nqASnUE@p)#5~hA>O`lEjp-Qp+G59^suCwxcBU8hWY2$TLD&OoaG)H+P;Cg-teZom{-(N9To#%)~(=1z4JhC)(@e0r-W1P2vkKLDChVkivvE$*3=PUJ2MitTy;2xA3mabe) zSYE_{?$%QeKoi3qW(~MMAXpmTE*r<89PmwAe zeoK~_2B&(K>ugYl)18F|zvl6=jMMqXOve1m{lpkqv2ts(jd|2pvf}C8S;c2=d8t!_ z`c!$To!9IU{IfEA)DFzq>J)c~xYNOJDB5`&^A-zt5{6cK9kvH!eyrZ_|`}zI3qAI=lE$m??I#$0g`3 zu)#kokas<0;d>+OO;1h=2)X78*&L-q6);YG4-54H_86(i{zM7-__Lr?M!k>U~q zYjth2#)kHm`q}`uI4=Z-C)r*v!p2QK!@EuO$&)9Om!H>a9qVET@=7<>1%9u)?`I8N z@GKt0>?O5f)yxXZl9xA;J^x37PsRI!G=?~N+)gQF#A(#oo)F&|_TJ1vYi zw~FstLFCs$RawgmpWYWg+iAoz<~M&^d~m-lZwg0rCd@=8grA+dIS|VF(nTx%B+Q>0 z=$rW3=V6g`?Z>gY&^U9aQKo4%*Mt?lFGD8T35;3x z#4+V22K;rWJ$azRe?)FppJnN?gE?9dv6$+lq6VJIreikE* ze&HFaO9KD%;45@VIU}^b0thXFS2y2|P0Nn}{#Eol3{M};bNQ?KjcuO&;d~ClFIoam*4en&jn1>~`987Z_ltd5{4#e7zb<@&^!M zS5_)4u_44*n*HtlmY=iR)ipnj?d@K0vV{^M zZkZ5?L~AeoNJiIpItQ=6(-)kx5C_-Uz3jXZ6tR( z)UzW1!aTD&MmCr~VZY-6I{c1xBHOwbYFQ3&nl|A-98qsOqxhbM^XgnbthCocWC;Pi zaJTj{WSqcE)F}9~!O&UxK{#N&h3;(6)B3PyQn6U%!6rI!m2gfxg)4ECD2uBctnlp* z0OSeze<*tws3xxN;hWZ0>*KA8ih{wmD%8rQfDi%%YrP`3s#OF6$TdnJ7(xgM7u%{R z0zp85kPEE{hy)MI=tjx?_ zXU?8XPR^RybN1f9x%e*B%4PI?X5}~T+1<2(f4O|0D1W}+WUGQ84XV3lKnAv2hj09? z)iW{9=j*3iam~VAf)g#%Dl>f^9JCyCYhu?7wBg1G$EqucYuof+Z5pU`OHO%E-jSA1?Qb>RnB)dv$9zOnitDtwDMN6? zmsvY%^5=aK?^`cQ#x7-vQElIR#IN00Y1nw#U;IfgJC@WrB8YMfo_@`s14<%7SzOuNx( zeNYi})gA5G+XF}{~3-I_~0e}c}u z{j*dvP*pPWh!AXkHUA4U+wI=M&!( z+q1WyJz;iW`&qxwO)ey}|G88>ylZyGUL|;ozG0B%r zvKuz#+COrcN!}iPCDMen_=IMX?UGF=Xp-OlQy=vodGa3_{%`r;kd5uhKc72h`fb}y z^OqaBqB}6|Mb#-s z?l&!a%ubp4nE9LiWcHO=lo`hCs#$_*_}ZJcNK*~k?3`);kN*dK%YWPjN4{ry9TdC zCP)7JdrZ_0vrpqp6r9-_GqX*>W@hHEO{9^~|MZ(_-#`1!DrIJ7Kb!i>PiSUFEH^W= zft!vE`#=2df1o-4Z@>Lt+x%Dm{hI~y=|AO@e^zTupEYYgTVpEgOl*y{U#wgI#TVgY}~YY^Onu)H+;GE%gtL&^5%cDKun7NXnpqCy3OmqSZ}KR z|5^V2XtwqLOHwiW`-KS)vi9A&Kh}I=B4hk7JP63tY5(v+{^^|mDxa+V^s~>`eX(Y} ziLzn!zX%)u-Qd6IA%FiDs^ZHvCJ@ahIVhDC=o)P0vV$!SIKLHH)~2tO*}Z4+JkjGK zl|!Ir*un#2i*yNso-LtESHi@k!+#{IlJwG3H3^QuxF=3(y zT%7f!$;N=ed;}N!_Ad~X8OwevKC+sE!%HhMAFl`c;hVtcBC7t~ zE(Fdhmvjn7>B)|vOQd=tRveC?))*takvv0BdINRwl7gOW%p=!orn1YJ{j9FK@8;{5 zTp6pop8Q^39&I(?ip?9V&Txf3?Ttj|+|%`d8rnrAB}5E2EJs$N;WT6J^|H#DsY?bi z^>@I2x{(Pu_816CkA0HPt@VlP`*^-=%rf&L*-LD>oWthq7nqj3a%|`&Q~W ztB?naKcO%WpGjffg9oltuo#TG(=A8b(91ShDS7`ZJx#!u5`h=L3aWNSxPMqkvppt$n!u z0Xy*{^Hz5~nsQYviDul2sGgF>K~#*K_{nF*b83fC=QcFrr9?IJ>pK-*5$$L<_UKuxuPWX*C|tXq9eT8PtVC3;vxzlCG#u~ zZS+L{fbA4cUE>jzlo_lOF}ngts&GWJBl#qzU>BkAP@w}(pXL{c7eWM$*$Fm!K|+G? zL%)T;hBieY1HC2&!oZ9I?EX}PCMxS=8@<(w+F(iW;kJH;0Jv_oLH)$ocut7K) zDZIlHeNR=0NHT>#e=f8(y>1^%z1gD-rTWzfg~G7c{iZ(VEc#!`3QLm+>$=5H2g?J`P|X^AcH+Kkjr>ybix{??a;(@3K9h5rq_dY-hf8hoxERC1Mu zBCdJV>>nFjrLO3BoyJ0Bk4d&VG!Xjx2a(={BB{anjN%=5k);zvsRjb@`gPP27GN!n zg)QSTYFmXuuC|x?)=3I+@xxxD4Y-QxYUJ`EX=a>0lO zs7o{+6;8hz+d@tkgdFOYbk_v$kT3HN1@S_?{4;A)+NNizCJVUTj)hk9;Yw_18|D0F(&acaNuV(;^IRrqXb9|r<^7t0WT!c7a~Sk3$1 zEH*0tHmi`F%DN^TjU-s=+yg`mL<-ljeP_j2%ckzk%vK@=#o_jI*2rJ27<<0<}r zy|=i{N(s!^ny7@9X}tuNZ!Q61HUliK%n)Ua^!>1;NJ(`>A{xEZ)wEOA_Yz?RFu&@! zroHtzK!pv-n@S9#?|`G7rAAq^ragX1(#Bx}+`O>(Q*?n4qOM3>V_X@TYwIWZjV;5E zbZqubIDI3$UMj52icN?u>YedzU35aEWn+FE8lTTEU`jyDo=M3EkN6`tb$q|lEH^^= z*xRk^7$9^edpe7$3Uk_5&TUg$z9FYi?Da58M7Hd?k|rAkQHeGbZk$=Bu8ex%qC$-c z)|t*>Gn{lF7SY0;P+LfmyUN{GWx%VDbyZqllSqCHAe?8Wo?L45j{ zL!I`eUxIZRKX`o}8ed9KXE{i-MByQtS_f8Ajdv^EujvUcz4fz~Ta($#BBRQ8U~E>7 zTfy)v#cH`&P+Yx39vNlip67-L5TH}TR<>8|%Xg>wmY+x)ZTKc#&vxRdGZb`cA-e{) z`la3rLzrYLC^q|oKzZX47U@~_UklC2UW)}A4g8>KU%zl+vLvl!qEXVpETSZ72@a4P&ER>KAJ}R=?oa~GW=7^v(e+$jyx|qWVNN;)l{%OaRzFPYsPVNF~6MozA61}CsgY9=fMnoYM>UuQ# zDs8a!LeU1YwkmsD-dmAtg`o_IjlD_Fn0?#-eVZ!5mHlyP&LRPssdwzbBhD%izr9zW zldapwr)Jmy2dCB3J>vW+=%F&iHm+RI*f<_%33Vo-EUp7L^Q z4rLhh{^Kn?aDw;&u|s?=GxWPZ2brawa$s^(%8c0G!pet|PWTCy-qu)I(ykMy`JJ-s z^FKcOFfKp-ELtiN_b?~w1+!D%KQ6XfbRTy-&h$n5FEy2PMKxto&V*pL zc(WCQ4@;`Ne?(G%OuQ{_2!;I>6a?C@uJFtYE0{d92X_br{@cvwTaRt}ug296u$||S z*tO7|WWd}AVDImx)~04p4EOfXqdBf$y+8}s7s=E31Hs&l7>l|*!+-=q*Yre$DdPWf z^2Xq1_P^|$cuw(h&1|mTu%krqQx23qBrs4-Mxj$(jxiNjOErxpBzLua6gO=SnYeCC zuYzXGf?ViNc(2BYUH9OT@%)Cdz4jL3J%-LNGaWFr`gSzPVvl69xBA>i*(r1!Q|`?i z#3|%&qRri$b#@Uk-Rg6LZntYZ%qimz8FO(^^A6X|#wjE?*%#fa4*`C1>Epzd1r%Bd z4(-Csz;20;&ujK;AP7&Mq239-pG2+1T0hWS914F)&wH+~eo=+m{8AYjC8=8E23h_rV5S~Eikr3$&gKWCH_W}$ z)!q&_7j}DSZCZjrvw<6r&2#7GqSvv}1lKV|r)NifE?Z>B(^IAV_;bEHcT`_Ybh$;3 z4|uvn@w~r-ClBp}qXH6c%1-Dhx00V#j1R=#5?6SamhL`Okv=X!>|_EM8QB7S$d$?@ zCW$MX>STy1zY`)pJ95>fKZMtqv}3=+TbHogwTvXvNlSxpJX>I<815h~D=Ww&SXXdv zs|dBl@M1JPBWayz>cl;HJ!@Wo76teRh|a)}qyS_@UKFD&b80thK|><2sY@dT@C0h> zTxgBmZv$x2GOxjZzQRugFR=CWPCQR7Vt-dF+TZE7cCmp8L!xe$*Cg3-3WDgM7KUtXR-@~X!)8eE8=8>HadF+@pQu=Qdh>Ng6@=<``tTg{cAR*Yq{romV*AD$ zpjdBXi>KQ2KG>>nm;P}Ri8H(C)tdE7DsWx?<;V11dLiX7e4Pt!dGt`)qFR?*gFwya zmb5bLBb^Vofrz2|WgxJ;x_ds#g*@RMwnWdZT7}>>uP)K8@#ECC!JQsat@-fKJ|&3~ z-!ts2na__VIRQ=}((Y?pe}}X*+Qqa=hU-c2o#9!Y6C35JdMk>+6_t~ z#=u>1V9rY3Y8owN{097kxo0xbu^q}QM8SDq+j99*lXr1pn!Ss(Cp+N(&c%@H54?aYVW zrb9vKC8dDC=7;K|f47qtt?qZ%bI{^*a4Yjx(W1W9VAtcb81Tvo^(IDi@zC6qu#p3tuDoX3m+DKsr>$y?7;xC>Uam>*& zwd+4;Si;mlsjRfH3BVqDwgD|k6B;9zk==E1hrFb-&S}Iv3m7~-I1c~gdo>0-Yjor6 z0>uNK6%#x~J#aM@GSD*IDi7`-246LN-yz=G-QdEdPGP2*!?C>|Xr4E77D%`2BH~V= zuorZN$}z5W$GAX!^o|s%w)Yrq&Cye>KvVO1{=LP{{fw_O(}E=KKTb@r2fauYjUZ^A zd?J#biEQ4b8q(GKvJkBSQ z;CkFgWU?W)CmfC&U>6HAB;oD6_Y=T0==)1^uRPR|a{y%gZ7T~)35HB4x*cJFYtQC> z257EkW2aHlxZKj=@hmrD6z)XYP&Xxan}slB5GWi}M@;%zeZN^mHRLsTBoLmO40}6B zgjg1d<^8G8ufa#U9BhBrU(Bmv#Egyxi-UG)(TiSDHK9-VUAB*4)e)r2;*;xOU$-7o zs3_*1`2*PKT2SwEKO=DDxYS4cK^m$+gDFdhEdpEvSlYX)zA~VgqNl$#T>U}}?H9e7 zB9HWNe@@IV9PDj3NLSmZIHstskZ$Bq`O1TVjGx5dFbo>t464%67U$#BCot5dN#Vp~ zcLSw|HySJnH-_&Vfj|&Kc}Dz|UhNT1lKresMTc+{e$rOO2__;hL;f6o*7G}73vs@A zXc)93h%`ki1$?|D5?o>R2Q&afW^(?7Zp7M0vf9EEwM(No`0pfLM4;bBVMB5LH+c@& zk_;J*lUAU2UKe&$+keJ?A9JU4A5%2m`OqT>#u4jI;Sk%p5?2JNWvc>qd@%0$GTbpY zN@&FkrB2Uqt`7@L!7q!s#eaAlsy~E$N6hxSx`ejyEQUJLIXSd=Y7i_mJK{$Kf2XVyU|arqTBzHg{BU^fwD?Dnfv2 z#lW9Vl^^79FG#qeP)9}t#z@SGGd?TDeI%Bpl1ko6w(cgTmg(|+)XV7=&$b{xCa&)i zmo+A@p{(p;dX4zl)f*^2%lb0_C3pLyL=SC}1teZt% zqE%%$dd@FrdC?VXQAtiFFmcfS-g{hew0!5dl|f9OT9U&D(OF zwyVxk4E>so_w#f+AXIro#2;0BJw`>ypf*FO+v}frDffdOl~%hZh@8Inc;YNc|5VR$ zjS7Q2H&U)buH>bR-$vfn@y<%NZW3a<#KF?Wu67NKA$fF*8IC*IH1r*Aj`ydERXo58 zZ1fT>ymCFxEqdoy&Na%skGJ9O!#&!n3T z@sSnGu2hlvjj)%+R}}aMzV~1k9}$pexkN%*bLUn;wN=JqX#?7=)QS|PPV_T2>@U4R z`#>0%=Z$rxQ!EQDxUi)yV7y5=UXy;7=Z}bon z2vpPCfLnZ8mto1?#WD!|OQKY2mo2d0It6yt>InZtK*kXl=m- z+?;qYjk0!Gr|vsIdE4pWaHSE}=}fxPUpi$eWvn$8NHGzcmXo;)aS0EAovYizX(i+l zG2AfT)!CA0@a~ zFK)&(8tZrewY($gL8thT0l$Xp9j4xyy42c2Z_EhKo|4r&dTtO|76#kyzaBgv<%9fJ zYbv@cV_ChFH=H1tcvhR`3McfB6d44SD>HQs4GRl-ozA>Rn~u>N%lF`>#onzyQ&$J$ zbAXGM@P^ESv_E4X*p&NY1;@~Ov^Z$;{ng{TglLTYq;QUZbxtF0*N4MzrG=ttv{Aiq zXs3a|oA!vJX(P^l2+L0!_pO^}5%0|?@I8x8o~0gK9P=cU#fIVbx!SGVValFTu~Q&h}`PQB&Lxi$URDB)~urB`-_)b7wGOs+YVFs5@<%6SXdZ zH9qtKyFK8*nFO|LwS95=kxOkUbrk_n^)-m<99rZbBDd7>wq7inq`LRu%C^Kszfsp- zY{0S1w>lnI2$rKGaGuea!{EfpJpxhMjOrSx&1))OC?uU!o@3^v+=GW_p507te5AB4 z@CMa3cuYzmYX}QckgpE-E=4-i{b8%On*}pO7W=g4FX;Y-wmz*g_-Agc&_pt_DI_-W zw4`!%CVo)-i9BeSSOJ0qh6?d< zDin9rj{RhtR$je)aw!9wyC-S8bhcj=qWmEHW>)MrIyV292Tm_-)sW)^p>`F!#**iI5#E$Ji{CUe z2QrDsvex3Wo?4{G^|V|8eR&$qj`v$;xxk`=tc!j?bM4jj60W6Z39FHjb$6;~hn*C# z7FoG$6Nc!vYvn`Hi&3(Q&)+FRD*_Y5S8APWFM?fx$BghyqV6TOZLSp34$)4(`<1qd z-3j4m?(2T){HI2LGqmz^>HDiKm78)fm|q+<6MB0O|I?~olvI`3+rA)Gm0n)tahQGH zaczJtIBON3un{HkTJB=Sb(fdle-}10P(Iq$qql%I-PK4oq2V>9KKpp+G@Z7D^L}pK zbq9%V2&St5xair`fi!(xN3uTrLz^rd%dkLa>EoO6?WDQ*ygVV4_E*9ii)}#o9kza~ zpWQH_qwyN*_=oQHzFd{ zjOF|DqHY;9O5Z1+jdEX*?#V2+;+a#+0@#&Mhyu7+R~Q_VK-A9ZMV{a~S(AqcICZK6 zLNz5`$5OsmtRy}Xi%|8#Baaw25~3|Fs;BUpV4p&OxaH6-mBufjH=fI(d#cyIlrYMZ zB+$j{0WPW!3@dUH6q0L2Wn_zY9kC`}KZ!qkVEKykwGQ}X+3u&>Da31*S7pzws?4IBGX-fzF9u05eDPh_Hvd`GTj@Q)r|G^I zx|z)Vk|Esh)3<@g2v z_LbTozfPNIOJRk>C8n%$QT9ngT1T2d)MA`x=_8Yo(`lWCa900`vJ!0ii%IX$Uyv|g zL+za@N61sz=fNqxr5pICt0G2y(K&`ntLQ;793DIu zJgzMpcSYjBr#=d(_UL7_ObO{rQz*-i(c0_YOi|{e(v#>mGDawB?;0k@#3=$Z{>{wO!l9KHeRh}n?i#;yF_47Qo^~xW#GvoX z%KC4JnTuYNf14fKs{?-F`{pgo;50-%7Ib715Gb11RyU`Gt)jy(iytm0?GPs;i^C(J z)#-_eFrQz<-+shCHWH%v5r-NpDQWz9LR#s`cZPzl1&1xcj^D_`Qcd?ND!W= zp`XT+-%bJmId1Gt#^N1qn+dSE9B(l$V~egAXS|DDem7w8Xjb*dv@q#xE#c_M15}nC zVo0?gL5pG6wc}0gvfxM}IzR4k(cIHK`Q#OKEKz#s+@hBj{}OmZ>*8&j*aDPyLO0l@ zzRR_D*)y$}5>#cX(xqeA>X0P=_l#E`miVls4Q!1EJW3l3q;F{Ouxhj~*p00WLF`84 zWPzWwa?Oo~-7mT^{2CAKRT|FYecTWW(QpwvY-I@gA(?L%`>(pmB-eV=WBd;;kGb@n zGnr3dPdk7gQ^1wND);5+(6a7aN!FrKufjj2Qf|3C%3*9e#fozlHWaZF5%(*0-)1NvwZt~d(xDnov)J}9+>vz+v4GjCM7&lFR zm}rWt^e8b5zcD4(w!G9lvwk|5Hm#t8ggw3_*Q&S!9ey@i$g>00&R}X1r8iCtHO0lIJ01 z%DT-i6@jP28Ia!lI|qTxk@XH!;o9q$CNk9*{1TLdQhJQ^Q^eO!0&{|* z`P;cG&%Es|i|qIrOSdyQ>$kYQ@0u|P;hnY?Li$Gcm~P0`TM8NYvKz zQuqNtALOr`*CbLxjM5}%4AzZP?MaAM+N4*t^^Ze^oyZ2Y{A}{QgQ5$0{O>$#6J_QV z#|OjEuMtH)$59mp)qenuAoz=3?F@Z6rLSnpS^;j;E+a0?4)3N!vtL3mzbs9Kc^q8| z28X)p1u|IM-U@Hz%(@H_%H$1Af$!$n^(|K485x(C^B!MY>=@o0vgY|h+_qzrJz?67bGtB>L6k~++Vy-3ki0Drron4m0P!)DzKJ0M$g)hkVV296Sy(xG z{7BGO(asL%5-}$kmKy%gta(FYHUq6uh0VBgzpH046-xB=dcErWusd1A*`h1*cSO2u z;CX!+0Aa?1(YYxnFGdZ8dR}RZAY_$ZvbyH>c6UmTW{QJZmoP=TBl)T8?FBL&67(jo zSQ5NAkPAN?hv-eZ=e00w(Mem>m}t==R#=mc+%%#eqUIUNl&^>J#^BQ4<6m%551n*U zHfhVQcm3JcSc-^Rr^lbb=8`$vd(NmXzsF@#Jl4?R#OlfF> zwNp?Van_K0Y!*lW00%wXGvSx?_n#9`ytaV9YERav|KD(GjLZgYG|j% z|5^H_U#ddhb=!@CP<2c3=Nr%<>eTk=*WE78B@AU z?*(bV5@J1X5Riu>)!$f_QQ~*gqOg>we;L~eRp7JZz7Hf6!~ zI#g>xt-DO5BoA<}pX{5;t8OyWfa4fmQ^}y7ADT>1h_={8;lNdEIDQDv{$4#!fQJUQPHP zo=YyDNE0S(mY%1bj^0aLCvu^T?e)B4K-;YSD1++c_ZNUbVUj>{hY6Pps&wIs_bAabQk`d^i~aP? zK|9?(#q{}`Ce(^Ae%Mp|h0Yo9*ud!zL3{+I4%Z0j9CPA_$)Md^7>6shvo%q-+tmjAIE*2kiN=j2c^CKjbo`>0 zeyS;-a`s~BVZc{Uso1kgm!QC*;H*@Low2lIOU!R`9l+Pi8j~IIKtkWwMJ5$vdP`yR z>=T&0Cp`f-rbgeuGA)mQoLw%pIqrP_H1D=w3J~Gi=4q%O4XlpF4%S1d85%)DD^RA# zd5VV7!&bxI0fpX=O}7MOuOEM}+f8H2ThP*b;L#0b>|*FKm_oWHAkYPcpzl$akQA=U`yXpE+fL+l3S5tdNyI*`msifq} zz^t7eN>9RWBVoPUCl^F%AMZt)#hywpV*6+&RHq9v-Vr-D_pqRJ~tUx-GTQGFb-l0rz6M{cgn}=tKDzLKQ6U zG0GlYx}%-+KM>~VGJ^;N-AUnD`EFu);(k3DX z)Q$TrORRt9;&2>n9S><04~V zG%i^BXX(Yg?u0qg{oIo$-Le|iB(2Xsk#@9w8CWi!(r%M(sR%a(mNM?lMkd^F?d68Q z5kWdr`Gq4%Nhuw})!&w9i^z+@wt0&H?;#Do&ZWE2_nS?<^X@WXd!v2tpcD_A2AC=1 z<8NFWSlT)dK0ST#9s^c3ZJ!9JJh}L~#yyYN`Q0}~m4o`bz5EnSM`LD=*kc1(l9i1u ziC!)B8}?Ti&qRM>QGeRQ=Wq#V=540?m1leFew@`=#A?Ie&eui#5M9rkjRSmTdoCIi zDO#M~{!zy>huS&!07NCuIHr(GSLu1Fq}(Txkb!caCUK>w8W~<5EgT>JSl0IzX!DFV zCm&10SK|2_s+Tw^?F40ps$fugbDSQZxy8zA*?v#5xPjziVy zXx!_aQ6D_-D5f1lRtOkI!MWqTSPfP$IyXO5+<;9Z1QUn=G8FIzH4{+z2WwjZ4SPs5 zNbInCHP)-XBpBJDl<)QBKVfr8-j=z>l1!UW-}ke*FkP2NEXG;zIcQ*w4~U0}#OZNj zs`zF3%C3}BU@Pa+PFHw$q`1K|zYvjip#dKS>?$0&r8`vD{&LGh-o&h<#JW_W^z5*m z3-cN2rDyKr609mh9?q9(5o_ZtE@jN}lByR5p8MQsAGGQ{Z+{jU3I#t$pd-;&23|S& zmE}g~qlWEIda=s1M?2t_@cDG0sx2xMA03r z*EO7laDv5;%+DX8GPz*~VC_@GsqTD488z{>TcVy;T`lD0rqP}EHXb>}cT}IH>GwK_ z5Kr-QMS4P0bn%R9fj6=2w+q_Kr`;c&(_&FF&&ckKyG@6dj-YeDb)z~fm5 z{;k$X)_6aT$~b+hFw-G9e!|DWXaoOoAX$+AD-~iV-`%n0NX_r78Hazvch`Jaby}e| zojV`Yjop=qoQ;k%hA)&q^XQ$^sh~`>ZSLTA!|NH1grm_v!P9z;N{++BvKNNx<@%)i zH!i(Rm)2^iY5agm-FLc*HG9hXx<$jj!MPigLf|0b<a4nMoy%br$mY^#aJ zh-}m`*1@`y^UW@hVG0o7vKySMbCmqSzTIz?qD?G!3^JboT zQ!{Al+g{ks%^hX@H=?Te%Yi|(^tcOeiv1zBM`l(bWZp;9JfA=z31VsUC1Lm4X z$L{(t^4t-hC;NHx&0~L#POqJ1mANxr@cakq2bjMicI=OUXm&e&ShPrDq?ReJIQU~< zAY63~A6AX^>+)aFo}Fn&B-@_BbS*0DxR=l6<=}4GejvI&L@~Mk4jg%r;qKmaqD2%8ho0Q8P~v=J zG#TkmrBuuAHIM!_gT>Lqy*MBzNp}M@*hGMTJNlQSyLpzS@&o^Tie`Oz|B~(jZv|X; zIVl^AbuawlFRt67FeW@xfD`P6^{q~C>z%+{PnfnJ1T{@Yl(S0+3Tzf&##QFIEUjn0#IY#Ws2$IzWFV7Gbu zd`7aun@k^<{`uUMjMToRC?jOC0EPuc^bVng)S9aH)%wHLeifbv;fQ(Qn+fH|hC()m zq%PQ%Hpc1jC`qEm8`cwwyx-;d1xg=V_tR%LXVA9g zr&uY&>H4=I_S@CdfsmTCVhRK*aA>;c`oj= z-`+7Zuse>v|5RZjlOm15>28cI2*QF9t%Sy$lT{~%UEcutamj;Ax-X@vGRDo};3ngu zcGBe3ot>Iq$m~05OgWsiY8(p)n`e}0j6?_5(n%o}Fb(P7IjSW%bK2kIA`n=aji6SN zhJBozm@Rs6dgJyb`T&=Gq8*P*>LM4!S<-g>QMbL~(e)$eKF9SFvmZ?dmiz%S;_5zO z_QWOlzX}n2Sd9!zi)GCgtFKLa=RNAuYTq@Zxj!w?a7nMqmQ8+EE%2BH2O$qU(H<;W zJpaOLYC8OFxhn0H&uk2q>i4oQJfO&Nug`VQn+xd5H-}aARAgrD7QfYvI%nsM>QUlI z$Fjjc0Iy9I!pU3&#$ai?F|0)%C51q@{Y(NY`62I@U*HA~nI@36xe35P?Pt2p{hfnl zw5W6+boDnw_U{@!YSFN1U&zp)PpcSO-KhesN z>QJZTU}ho+U6`5_h_Dh@TcUv^k~}Kltv4C&O*ofl=!I_E*Q0E*l}8I~hC`vK)=*C< zGUa7Qmh*P?9`b`1e6PibdFjZcKFruoTT2E6mMdae*fm)*(KG@lNM2hK;|(690MwZ- z_&G0N>#)l>^Nv#bIXl0@LEi&}!$F&9D(vY?1i05CpbxBQq{h}{$gg4~(5v$MSlGgb zhF6sRQ^%Y#u=y60S(!Z?-NWu)TdqmMBw#7s=5WedVKRE?94Jg4bnl<*BMm*!>z_jEc$E{rgPTZGk)B|(d!>en|7Ayxz< zdGg6bZGJB1WYZfJ0cBH9|5gQVWk1lQYR zc8o*?Q*BF7RzgY%2aDljm&HGYXRPMG$M6n8Sfp9r;;8^g0NHie@#H=$o^dX5Z_u5x z2MhgA-ZPJF+dL=LaUC6S_A_;QXXi^gNf@em1zzf^(@U``ywc+THWTW4=QP!<@9|6p7Z1RQ%d!k zMrP8*cT$IxS%<;F@&^YPp5=UhPl@-A!n?uG1VX3uh6%;Hfs0xkoaei=UzeHdAor|& znx0IZ(|y}{AZQc10W0k`)<``lxW@LiGbAjEn5@F6A-q$2Iy_G6W2JSpHq4+h z8;>rGSP`3~Y-HuuCa~ZJtltg??F|xf>=djR}4&^++2(d9LZA^Yy@#FnM_HPw-2VA#sQ1Nai6A(J>3 zzH=eWNSiyk6vG;}Q(Xe;tu)P>{X}!DOAEFw1Ff3Yc`*`?Kf_2p!3$5x(eLQONm;z5 zT*!dSmi0Y7AlHtqVT~BOu2Le_9ul;l8V^|I4?Yn4kj`3@7r+}4q;K^$&J*D>=x~9* z-t^8}7yXNH|Ch;cDU)|o1~Sl3U0iL9SRHTHl=s6rRZfUF$p-c>5ka_FrEws0FdZZF z4s}Bi-|MSaU5-XO1$gKiNc|a#K|qnzXbP~%q&!E@?`LD|40jt2YiH64+(BTEju`hy zUV6I5;jKUfl~t7b{MBqXN1E+!NVjNox7hqNw2lg$^_n*{pst^C$eT-p{K7)S0q4V1 zarAwp=zzc%7i8|ef|SYg|mb34nUsh2Y*ll|=P?_5m(anver$`Fnzbv$|G{+$!INDozy zrLL~x5=Tfhs$P7cdo(64d6%;23^*U1I$&Qt=$+i7SU^vfmCuzV=EE7{LlUStH+c$q zQrR;YaL;elrvc?R&4WL;JG6x|Y1arfFIY;tf&gu$mS5l5;A|-lTPY)o1O20y5Eii? z-wb-I!jr`yN%y%ilf>({bpe@ud!P+1Q)lxmRoo zr+suU1{H(GibI;EnLW71y4{tH7@ghdG5MZ1RAxi!?!Gi1mkuSz>%%-hMVV4?mE-x2 z!|`GYv7#BrO~`<6!%6?rdd3`}#cSrNe@-#4!+NKkae6G~OPS-bVf)OIT5&+~m@ox7 z4ot@FmtNo1Ww=n&oEFoR>B7yPhvVgSqhSqRi{emyaCi4F;zXB*P&fFG$-0fIX)rdT zQhb)+FG7JGI{lA#(VF(Yi1DG>j3QZ{u_vNut9EhT{RXWg<)cebQ)upc?~E}#U<%PcB749g!VLQoBF^cY2dj`B0#8!i z5W)S@yl(FQVd&f+lD-%JzkT~`ovqs`S7u&1%S&r{nGzx>wyleqx0RJww7fuyVhV`h zrL$Fb@m84^MDUb~nTjbYqKI26qzIH3P(hp_AR>|inz#1lKY0K0e!pL@=jHKq$!gu- zm_^1M<*y00y^hWJ6uQ*NJUO+?FqkmZDXc2wY?N0O@BI(M3%3#0yb%Jd&mk);jO%nu z`!(kyM0hWm)M&Fmll*Xg_G^`7pD^{c|C_l5SjM!%Og$wJ6?@FEo%!V-hlC!C9)RfA zM4a=^Yv#n{5Iiy1^2)j4G09;m%;7dW&OOlDJ_07W)%7&3JU~WIu=`e)E$CdqTbF^(p4;AIR)^esrnQ}iiAH+#{xc7FT^M`?;#ic}+UC;)y6t!qRdt zVcu%2zm!n^9}3)Y*@0#A;& zYl=rktO&cB@V;v&zU_&HfqJ{}dPrxGGog51NU=G)a*MB=O4sC*f102aA9$n8-u1cY z;(%V&gr0vZz&*Uvai;Mc6$*N(jfoSwkbRkkqA~KzhLYUnGA`I>UnH-?nBsj!R|ulI zMyTLsbreMtrR3OvGa%_b_V3>WLD|P43K5|6^+%kD5_Dx|lAD~p&p9@{7Arn^k3SyS z{-wIY?lIo;Z05>6V=@e)Peagdl@taNEXyvW6Jo5VtAVm-wcy zf+Yf-6GW##SK1UK!Mw)IW+$8wXgU_+o66BU`0?HQMWrEN%IZ~%mpplfOQ5@5ze!;; zt6A&yB!2)GmZm8%%JhyWEe#$|hGo$MV}a<2`RoqmR0_Xg@4t5DSmtbCht;-u-dVL! z_;X=hgXgk9XIFZpbJG!9cuoFt=iZiTm!ZIIGscFiHTp$HEGD)w1)6?-na{#6kr#ZX z63U#j^u~`dUug60!J{oYe`+E`6eIEe6Q}?Sb|!?^>=pHCviaz_=H0)#iQLy0#+f8$ z>9Dpz7_eeE$K+w2Fivn*nB1Zl8xYLSI)0mBjcJe$$g`$ZL${LhywVYZMwN^f# zR2}A4TX6AC5f_HzQvj(=nLOrZz)?!3KJ+c7%Y{F~tGam&ujsLmLBWCDX+>$W#+4-> z_`I&t41$AVOBK|(-s+fimCdZWb=l4NCra4F=X%E4d&KCs3w(4ro1Hxg(JyM=V_UIx z_+Q}bJ{)aTdd3X*m_`5XFt(O?^z2begJL9<+qU|fnj|ig)Q)Xs2m9qWxH?|wi7F?w zw3gNb#D|ucf#Gfb!7Ac}kdJ4f#}P=5+9KY@yPgZix`p|WpJ>aFpU@21jo zsCdkPAg{bXOPk5(Zd*OKp=5Rw)MWn`la1FBL6r+qiTC0AD^dh|c0%m40cgdk{?IFS zR8(mQ0O(J}&kuMK1*Hjh)RnpGe|caE_0y%J{>LhWwd37x02}suBD3X<%=hajS>aQq zwcL~7Y1P78LxuCMx2_q1KQi6la2o~q zwuNjCFUrcW$;@jwzy@4KrWws`K3A_==beLQx%vDMRsKwn?3d>lG5SvRy7+2CxgV+PUDKf!RMcJF|h}x(V{XoF!f^%$*~qITW;&I zYHub{MFSnI8V^=`Pi%YhO;$cRiWXby;@VT+-MWc4Sf)!oxsbL+}N1j zp37o5FyG>0w;k>%8f&hzw(VhYt^8Wj4~tKx(<-~ngq3v>?>-lLzL|_vQ<<`G=A#u2 zeT!u}3VhQ)X$_=rgB3;Qp&UYTfPMmc9F#l>gP)1inw8LjF5q}B6<7E=+p(h>hF5h# z8k%hmu55Js)Xr1#zYg7YE32Xa@-FNRuY#hja1X_0#HB?N&^4?i$g5go! zy2U|>8H0NUMze6KyfUbv92WumSDQL*E5h=Jy>-tsOTKnFVlXuryh{@*BUmVzYdEDG z0iII2RVe-tskV&Ys~wrBpD!As4Ja=a3?8S|_jBRL6Om?O^YS*) zl3{uHmf)#Ea^!NxxcLDVdN`4@fq9EQ+fkwCRfeYl$nSx9#U);A zK`XK`gQ<0p^Nl#VmWuuFM~p~TZxS@iJjtV#%Qv1p9xGXA^DFevL{c zMKol3UE4tJKtC<}rXwbCn#8lEWd=uf6jc{~n-Z()NWbNzvVj2;io~bS8V4${clDoA zI{K%@jQxeU+5%l$12u)--MCcndLlJiC<+0Od}iGsbQrF~JNOD~nR~F8u8`8&r)QC} zZ_jvEXY|vpD@MEsX-d5I;sZuOM5NFmZe5);o=crIrsc<^XaoStZ&B9FwVa}FoRt6z z0WxAzqOSKy4eMrPJdoWw9wCktu#D)ji@F1_;~nTgLgt9by*DZ%1+ScxeJ^av=Z^`} zRmgy)WN8&VRS?pk4=V11lwwIXs^`k)y)oodT=%}^7{95-(`TE(lh(BVeoRJdbfeIS zB`$#8jS-}nrzhm#mC;A>&Q5Gx!Hm^Tm`K=2v|i9vMNzZ`3{jwYsMNv!X$1cUgdf`3 z3=~ZW9+JImx#QU@mWoX0NLr%>qLY5Lqr!sYWD9;vz$2~-}y&5V4`mc^K zk$U`%q`Ac%ZkNf*i_to|wBu?x4-`P*zPLK-|HOZEax|VXkxAzOP53EO<&@V6}(eK(ScA&@u<-AFR8-loGSho+_^rD!yKRivVrgR z;3EyEQ*6wR{9(1sWuGiv%C+g1tmS+xC15DE2i#!Fk!X`+LjnoMDQyg!)uiZ!xTM!* zdz}8rR5iEp-F33h+1MtnV{9PjIHfvVT79Bsc(1Z_%k(y_24S(N*y5p=rK`MzlmnU{ zuk-2EHESX#hou*rVZ}Fc`TVP`e4zNbXPSfz{zxIH2b+EuUdmn>9_-oxJ>6PYq?eIA zzeOHOK7GC!h0&GeY!RY1!G^l-yZg#6_&7`Q-pduc)B9ECUW6ro)mgOm4|I_h%XEDT zE+jTZ&^niLrYM?!hY9`ZOvms`qy~ISblQ_?qTGe~Zq0jj{%+ofw}347DvWvxcepTZkC4SdlJ&eR@wv7e z!=o-)zQ_HOq64PsW;Uf?fk^dNWkr1P)(AUvY@_GW3}s&<6Ga1AH~y@T2ZU0$?8n>^ zZLV$R>tlMX`J18HPdCGSA`M^O5JG}+R7hl65T+mitt)Pvp}1K)QMTFA{HHBDV_?AM%=uR*$?G85=Bu?8RfirCa`rIm+O1wcGcicXyx2aE4rH$rza;|S+kX6v4bU+OEL zM?yF}4LKrAafN!V!^i)egIDTEEcs7}Do#b46j$Bapwmp+G;ib=!9q%qOV}$EK@0p* z_GyidcJ5a4O6Rtho59#+j&|E7CF+xrn?NJP;S`F!P<`bFCbx4A$`nPP7T2R~VPJS$ zFYjQg14(^53Zq1w$jge@ia|>vc6Hbt7P_s-#udE4^n|FWX8|v`elG>*!(nM|H@%uK_)X^jfBD z7d1}A=!GWx6Z>#Q0Kh+9p$B$SaQ(l!Gom75sF}J4A|~%Xn2qmKZebD` zv9WAokLNAG&5`nm<~nQUNHkp+55%0w0Q;y=K`6$m{~==&4dpgCJguQ>eQE3ZTFGqB z9kKPvQ8x#$*yCN~whf+iR$Sb6ukkC@qnMzkA$`4+!;@ixgxgk@{Drq0pZzl#yuYNd zT2rbnT%k_xKo^O&e^fZ{^ZGH*I_PA!{M{fr5}4B7e$|vOI1S`S!?l5(qn7RQpwZ|g zYAs&nHQMOD-oxvVs$SLwhMv4N<-ZK!9Uk#=9@3)q)E4=}nfL>J>*;Scz?ik#VJl+~ zGvG_1`?m9p^wMjnh3cO#j<&k+JbIQ5)1|s2bU9FiiO(DaODlQlFcD2u9_JVE;YyK)< zrNcU9tPRyDh_>;oz4D(g?8;FIQ337UwTyCiLNR!EkSTKCk;EMCCQ39Y2LEL1 z6|ps4-4xSqpZ9}Y5Gz=)&dmCkNMFSt1U)=~Jb}81JlHt9l)~ERN#TwQlG&&9!@Z${ zI?rhIuW7Q9*_i|5CCpsU)9*Phc=hg8vB#L+Dt;TU1fn()6B-jfgW@!~x0^~~Nle#L zeEV*0VAwig!WvY%Va3!?>|2qW4qw0NmW0b~W!kd5EpqBqae=9K7`YA>UXJb9kGO1B zdo_>AZIN#Fn@4V)+^Oi&DL&K9l-q}P%zsYLUijo%85Dpn(jDH>&-~+Jd+!y!zch~N zh}?f8_EGgH#3*V-VxGVnoJQ1-O1D$b1HwLv&pwMFs_aKFEF&pOV$6@eySuS2Eu+)d#DAr zP5z_>=Lzy;iQs>DdH)t+D#f~h?dlZa?P%S91n8U%fWeX<-sph`k6Lj$M5%i@CQwsD z{r`&r3t!l6SsZ8;U)>8zdEEHd<_A@F4cw!X;@sNHWHb%apZJu>l;@} zYQ8Qu1{UkN_o`Yki~S+Jf|<6q=iGAZ#YXPJrOSI6sT+WoV1P{$hpPAJ41o95_K3E2 zr@O5TUIT=n4BYb@UMteow<%!yF&RZpbCGw>K=FX`fTCy7;4;+0xDer%b%D~J*YQgU zhk6j8%~(x=edJ-0d$ViUfh~K<$1DWzT3tuZ2JMN_;Rp3nammQ`=1k0|IYo7PCH?YT zUD&RJOTi7ti7&#qx9!8%rQ+eyTn>)lwIGhGP` zC#Su` zD|0D10~$)kEDwdGb#_fo$_G22m?y!Qx$(TX8^g%#)X}2Tv5j{;?%ZOSM)-6wTQjuQ zwH)-(#VrO+mmj`xnWlW09cO@kP`-S4&A#!5aipzn>?2VxsL9gLHk=T3%tUU2(ED?k zzen~tw3Jg?Vr?)@9mpS^;`0k3nr*lb2{=xK|GMmcUcC867`89!HJQ8nL5;&xgdT0wQcyQ6}BC#GKv$<)9;dPcQ0w>=ls5%9R+zTI>lZK zkT2Kgq~_Z#m1i&PX#9{|rg>K7wg4#oIg6}7u;cMlm20?ep+c&sW$RJa!p28PmzjTm z_RA!ux3^$K{X0wHVWLG%WnI7=V|0eX+!aYbJRF`FV#j~r{Qkipx+iu@s(!WA16*_D z;tuHx#-4sy=jEyMzBBgOjqkr*uW^p0nUX2bKj}FZTeSS0ftf|`3lKPl5wb6Bgm+di z7Z)z~+!Nfm)v9PbWVxrCqD=aF= zu1bzjbAs>I=M@F{cj4h@WsQ;Hz)aWjnUkoTq6k1Sb>Gh98j%)XXH(@;7k%gn~8| z`YY#AtqvD4eAO0ZWwD;e1aHTe)uf&o+o|w>cNGOfsv$~Bx`X&Bv)Rw>aQ|oI z6=SQdMbli(#1@lp0%MtZ3d6`K3tp)^az6+ycBM_SNh>OD9Hw|L1B*g7PB;MCXhw$$ zX2E^jy-I9OQgYA3KK8l{9HoC8Z%G>P#W}5+a2Y?O-&f$jq|t!wt1il|1NgWN`49)+`K)kearbQ+#s_G{v1WNYT^ck+ci zo%tt?yig+SC1qhgp6`~w)mJhLSM!5{0^~(jt7?)wg*lv_sf(J_&{$B%`vHDStq0B@ z_uNKMn6fJhrZ?!B$khIfFLbR#mutH_WJL?2is4`t=1s=tVo`{5{st=zofR+8>ztG$ zAtp#k*dBrNY<R&2KSNzU)x~;CIM4qF8Z-L0Vb=4MD%Y`fI zSm5Go*{9*KSZnjuE z=N$dN8zOg!wL{XhdN@-CCuHCj&UzMnE`DS2m2v0K&(4GNaauJ{F! z${>ehSV!lkh2NA6^ld;#_GWPS(a5rU(`>Vz3;i=8IzBBs3if}beFuO|JSN{sv_KJ?68-+`2 z=|(}7Tg1Ajwzpa(jrJ+L@m?Mc_F6Ac9d<5@U(yx6&rp`E5WITWH#v^K_h?3Mn}+~t?Zl)aL6qGGRg`&l;5 z`w|}5x}LaS;t5C8wF|h}n4?7J3V~5QJJ7kEgUV6dG_`D`h}{CHo5+;5hwW60f6#Lz zLD_(QC~@<(&S&^0YvhYVvvAgf)(A zxAn5fn!Arz;Z_D8?>jl*(y4Gd&hkWOA*h9#0#W*mrgzkb+4a_~R`hY+n_!6ljh=WyT7M}@-J+&)_7F7N&mH2&06!i>RiWH z7M}FSwysClH{0-xpa`d=nm1fcE<#_=y2RUPEn&@l^F zi|J=G-IfPp^ch2@Lq-0Q^HK!Xc12Zw=pKKy$bzN3r>_;>Ed%4H zQq}vrbJvZG&J%o)g3MTr&>2j915Oy5wddwasAGRhHzr|P!5+`M?a z7!?3=ctU2JJGbW54@RBF?voCWH5@n^SHWne%qwTD7gx}$eFq)DajB|X&BeHB& zoo_TMZMO_A`1?RSme{X8r532JS&X_iANQ^D?j(X_Ew-9+uAOIcvOtlM2s~mEk8AOz zqu@RMFvjJ-8D67*h1T+BuS6th!!pTC&A?|oLI=J!r^~6VnPE6r>I8pdh1NrxXU{&x z$^japw7(bqRUvDZCr(zz^jK}^aZkKt1C~RO zgF|zkp@E*)RRIcd-!U!1gVW1KrOG-^qX^%Od=K%DCkqIrn8m%B)7Dud)^2$9VG@b@ z4LKDMP*%Z^bP@{==F+*atJsS$!~v_=lc1DPFIoPIv30g_trr{=VnJQ&aQNOr_^)M> z6EM9yHtvaoSU-K5O~%jnd^LKn6j9ntX^3m2dDWKVIYK+Zx-P+vy?m zIccXy6%(^MY{{5_ALV=E<-mA>3CO&1a-o#KxeWi86yW)%zlz$L{0lwJ2KW?#9 zs$y^EfI1GDkEvuX45m{Ei?Vv3$UXubC%6v(U`A;p{SG)hZj^GbMHeRWm%BP1LS{!# z6aSx@X)g;Yg-e-#Ll*Wia_y%@>oG9bX0uE3TKn4ZRcBBbFFqQYEa1nkuu)r8xzDsjO0pzh#O%L7@nQ^}+$nl_ey%d94L z-`6Ps=in3OTWg(Ou%7Cpi=4tmiUA`G^n6l83QcCgx_gj~(;w{ zoLWK(!5>eQ4b4DaG^boB>hZMH`V!oE9l4t}7Y?=*^VEqXSq|kC2H=sfGmIhq?}& z$lq&>Ka_{9Xh~x-ozuRTIUR?hi!}wmi`|m-&BLlCo6f+AoV@b?O^jR-&BQ{4kN}kf z_I_AC5=`ufA0;HujgKh4;y>fF=i3l1Yc$mCC{K8O&3jUC&UMa~1P!m@OPmy%9WrMK<^fu(=0ntdKdP#`HmH0*pxd@r zS8rMKJ~D#A*#~^WO{RM+3PXwuj7gR=W`q9~okI2Sg_$bINf?1-F<+k#pyotw3p{II zTyQaG_#;2-qC9896<@2E4piF^lip?h0gW26F#4vr3qNAsZlF%S7w&9mOwwfQr4fQ> z3UTzxxTk!#pyqSXSu}g~YpUF^GF4`iG+tla6-J5WurMEkzU?1Q^h&vI3Ii!syD>&X z`#)ch-ZwLaNb>zr%9`v}*79)W=7iruc;frK%c{7l$Z1V#o4B0ceKpav07iXvt~&qs zlG5J<$pENR>P~smQcaJeFnL@|<}`bKNMP@w6B~^$Ln0=p;eLR=BM)h}~^6`Fj10j>WrA|rWDP=Msu=eCqdenn)L;nP-u^BS$t z?dz@`b)KfeT&tQj2(sC>79WtxedM$Xm2d|W(LNB`jw2So$>iY*-!JN47kM*wjppmK zj5%Fettw2Pv^%uaXfFAw{AzECZ2{jIvS#W!3My6XGcvNYh3EjDJ@UkFKj}{ao^rrt zURoMkjl<3Om8RYYyEg>Vp zadmjFe-!E;A{J-e*m$b1&~q2H80B6vj~VRP2tNP z_iSPhJT>f8yxXTGe0)7U227G)HK^{R`(#_j`4vsozB)5u6TVg3wU6r6QkbObEE!wz zZ%y>~YR|gN^Pg5bss#DAQ=Mc9OA=atf-VeOqsu~^FZya3o!wE&ee|+8tbnU!!7pFS zI8(Tx3@DaVrX~KQ{twHTYZuLHNI_j?rdU4=Y;`W)#Yz;UC)knd9OFt5tT$M7AW@XP zwbk5rDXC_Pu>*J37E+jK5MO(~qPo;1Oz78VRdGUJtA=zj(Icu+I#0d==Of!vowI%`B$|n z5rTew9B|2GkOAsX9*h4;T9zMs$W5CvpB@w@^bYWney6q(*`mDmhNvx8LZHJxlCDkevrSgXrg8VVX`O zAkBZ1hvj7UX%m?3TMwfB3Yp!Alf_*B(ykc-V21o@y0yr508`}rlvmjsiF{TeMOp_u z=h5!2t{Xx3n~H4MmB!B)3jd8aWN$q(@FJ5Qr524#$S@@yuu3HoWvx z6X8-^9$?&+b2QzzV9p`^eq;ca=v>=D>)>>>`Y_!*WSmvRf8wX8AHEvWn-+oJ$qMvU z(77#5k}zl4fRsU=!T*LJtnrKNVgy#OIX_}0os}Dq*>a)No%&7)%#!q=d;l&}l#kDE zDE(@|8?Y1@W@^|Z>qWr>HUrZ12{SvZBU4xqxb)*Y0SiZZv34Lnk0NsDK}As4U{6jo z?Hd@&PQBk0LVWH4yCX=@1vaIx<~Ne?qJA{O0t2n}Ro4Tt) zzG({3vhkxF%xTDJZ6*%6W zjqC9I0PM>e95O8FygthE^umjb)-Zb$#2QCb3#nh0_f;P!XKmXqMSWPHg^-T)UHiGn zl2n*p=KF;ls}+s@U1IuIZ!Vcp{W3Tb{8T*Fk!f63#XH`>x>=T%`dmJTYjj>c^hrmd z1iJM+G)XeaE|kh%+N0@lS5pKt7oLv%3`pv_v1F~-C0O_K&P$+_ilG6iuUvat)MVEh zIeDB}SuMnSR$cikO=r48;s~m`Oc;{grt#jNXzKDg1iL5v)!f}0436}2XqIq{Oul#S zsv?`Uu9$^Ck~7=KNX=f}o%3<;KB?6OtCmL^#N4nnUEazPWPI`_lWNO+8i|o?AE{89 z6P4`D@Zd(8<-TXbkZ7!+^63z?xPLi86bycRHQ4>ofF-RbY|X+p&#$3;NY8;`g|Cu& z5R>H8V@jEKREyAG+RgM|IFk7PE;&c+4%u~3>{}KYlPP~rSQ%fd3>M1pG5^jaZj?)Iw13tUrFR~-wvgTXsadahSF6h>-W}NR6X;+-2dbW*S|zWVG`GeYCEJK zM>fHeRyCuq&Y5;6jQmyAa}UgTl>3fR3R@@m5>PM%>^p+UPBON~J_O6-8@o$Q#P|tz z_ptT}YR8+Kjd&y9u>GBsr)`K;t(83SygliD@MhA|FMZ)Eu5I?>2g7)GLcX3QI3ZAl zUd*;~j}&-Ty+Dkd!B60zLW@5(0P&L2DIO&QBl}!vDWQIHQLPpG|LLGZXSF>;xQYIA zgcP&-M&A<1+BiAg2lHPDgnnchEwyf;u_(rID??dx{)h~`yx}5B2B#EV@1x+k`cpN- zHmn;W{;Sa`zl7|7W@VR(ar$KAD&UbbT)Xz@MDx#BGH%8JC^YkQv&(jRbiLWyQds7S zUM29CHuGI_!c6LqcXXhQVF(_f@^e##O^n=77w#Mm3M~t%=$)R^R?Kd zWMLFYQ?v7)*a{L4h>6r^CpARm8l2!DJj<>Jg=8GYIhVF~qF?S!y6uraEio@4YMcS( zcgHE(@ub46<)%O!`P{uwk^AvT$B4$Z#3dX0d{V&kNTncu&18ufHvk&3v&>7Z@0!b+ zUd)!_#C28f%Yq4YW3ForgJt&IW?1mAKM=b%A%1mMg1P3frw}Q^%TG0}+mpVtE_jJ3 zniPJU(T1DxC$Q*haIbZBR5C^gS8JfyhVfZ%fbYk=Z=GsEA=UieF8?uYE*vq)`y3Ql z*Wb7H*KyYPn(q%a-TSu=x)ginDNp6P8&N8X)m}aa~XP$YTNh-9H1`9{)D*Hs<7BLxFK;LQug=whRP`aF|L%CON+5J+ zwF4ZEL~`g;&>C3!A?j^EWY*yUIi*rX$r4iS)H+9c#zZ!Y;sy0cHoSoEqL6$|!u!HH zuuYntsCdR6ziX19s^9Yb4RFhbcWy)-yGXKduIiykvgMHG^Oo^SYYwr0Rr~sr%3MAz$n<^68x=x@my&lc z0PyF#lp^GmDnURD@jT`cYhMix7uiirhyVF3#myTuIOy~_=0GV2pWA$#veL!D!~o+O|WTb%gB z_PbADt=u9TrXZMrn>8u>j5jl~Ctb#ws!=d!mGsxKv<2Rz^SE9Kl7RpD!pBPHc_C~2 z18J;?jf-MU`IKc<`QfNUy@~gHO{$!5kJ*Tjeu9Tm(q|kuGo%}ex2;Q+d|fk?8z?<8 z6)+(v>>=zdxW6o=hu*<&2d@IMYu*<|_{Nsd8KE2C*)<% zs$lY6lMlT|$K6la`d}|Z{HCGysw+c^BVrb^C1&2lKhT=Dq2ugiowo<{xoc)UV7yyzBOWBy2_w|Nz!+IgehIk&TBw;Yd7+`z@|GLL{(t(nHqSLfO(Sg+#=w}aVVGTzC}IFQVFJ=Tf{d5 zrf&`B6>hl92!jlIF*g*|<78)Sg*G7t0d+i&rKo~z%B9cD3Ibq~{L_ZYIyHfBRf(~a zSysK+1K9-3b5^y&;8<3L?jZ5M#NOinT$fwPeC-(^ahUJRF+oQcH_Wzg&-jn}XnV~} z(8;PmCU-y>iVjVjLgqYG0GvlHu?R%YLQ+iXAl%RMt-HVDd!KE^oDMcX5P$V5N$iCFh1jeryp<#agm6kjZQBVh{p( z+yi6gmHWQ2-l9y5)V2O|TwUcIv}Q_1$;fPX+Bn!|xqm=%khM|&v3=EdrXlNzkk+rq2-eqm(8Kf5 z&w*6t+%1WT_vTeCTd)vjaSQQ#Vc%ObHC{`T?qARSAViu)d=KXI2s7s?`|bKnS^UG< z-QA#QdCfOs3tA@E;?6quusSu{{A4ER5tA))Gd>bUyF1=y^z>r9v55R9?@4hPu1nVCW=Oi_knB0M_R`zQi3Ynn|GxFHxqIwUN1x$ zZhDTQ5(z6wA%RVX)Ldkh<1N{aya-vFa(Ys0R~7JFA{15V$l{RBxsrrYRlf#^;V@t5iPyYppz^X6S_5jDgSGj%e?2|Nm=x#=ob>)4y zX#341mC^KcU^CdoTQQCQ8IO6qTyEn0wFfcf{s0GcW7(;rb=5oA?xZrGnyABS6e`}_ zW;Y&cetD7Oe!QA1U~Mk(@y90&ZztD{Y@!urP4J)3q*Hpn{&+z8aG~b=(npB<;1nU$ z^JwHNj{P)VK}fvHE_0RJPyKAC929LT4V?{ajdqX+ zJQ+#r=-SZtH-wy+IkH38ot*N#X*`3|$NTxr$aziBZc|9^ayDXDOHEuh0I)C|zq2PD zRPo`du$4lX$V&Y|L%XSo3!%uKb&jyQJ{dKIVwY^?*bq+#)R4kwT`WzU#ib>Uqw4Vt z^af?x)kB-~@mbigHRL8Jd4>z|q0KS7i}_+IloH9m=xjs*-dHu^HEv>0Bo7}*^p@dy zY@UV%0wzspPJ3q0YmqH~QiIC&H3foe~B zSwxve2x?>*W=)Sp$PDmBKP;u!zgiL6SHc#zQ%5ZV(5|#+OBWz$ZmJp-OL7`)kF}7Z zf(l9ds;{9r=2iZpbusG~Lb&a5p{Lm{L08xGd}l-2!Fs-j2?-k&hYmH=?+pQkhB=|O zk9~+W6TNMAe%+I{4WOtWwu=%Y8Zq~k13#KPeQq}Q0&4c7*+X*tU1OwP zB$^x6RpP2(?POFDJkA>55B#9oYx7VA!_b;OL$VfzTlO*1p`N5tL3cQWRuBecs6R&5BEpzFpmNM)*tfPCAl}M7ry*IQN&X>)jqidrZ@a*e0WWDn}FY(zRK^j5_>rU?oH;D!8Sh0CX%0WjHCcT0U%(^9d!TZi6e^|5N7w0R~Fw!18XWp1D{P%zBg(f|#9d zLnm{iD|3?l@Q6JP`GSq^nF3ucp7s0CnXEO}d2-8C6c@DhdBeOkbvGXp5Z19T=x1he zRJP~HIG6Co@OvU&MVpoj3cKHTN9im)AzuoElp2Y;P**|!^KC-$(3yvik^QZS=YSs+ zDLDKL|0Rszu&xN9EGn8J>JDhwOZvCgErEQ+oD9c+u1zgIdVAwd*k3#r0YOPFp-zh?VWf+sglgXDoWcc-z*^rtD>}-oXWb5V!vabSh2jEN~#6!5cP>FJGHTt zdNeWY8U0&^03!=aqE+gnDtYa8K()O9^n-|nW~alxpZf(KKkYgS#VP7}(u!pvKe^iF zZdqx^K~&MTzo%3Gtrl1-2g;xWR2?Li;W>fA4tljGiNXYWXnIFxz~;KGb0`#sB*%Q> zRqDh)jrIj|B0^9fHI*HD&L`C3ba{CJP;;c{$ZF)u-(IrvyR)&T1--KA#bzIybiF~+ zHO@sv-sVOHGEulBU0Ec7`6uLfSmmZ%^V~xUBbvbMY@Vlvw_`N_S(j?`=@!&gUrRwF z+U=@A&o|{~R@A?jKSd>3X|DP{6y4(KqQa9a5j&nC6V8rD(O~whBN75AxUTQjH)tsHdobWez-8+>$HNqL;atic53#3tVQ#?Q=4(@75^dFaN@b? zhDk_?{?S_F14s@ZNV(iFw1J37!Fl%QGyzd7C5lJInUj`uC*k<5;h?&cdqZAY0c{!^ zvQo3bx_p8gv&yRr`xY)m3)&5uS6;<|E8@!pZ0i~a-sN)Hg+f3Vg=S0BqWvf`12RdM zzY|boqBO>^j5%We4DGYloHmwGY^`ze&rRo(WtV5D)~Ts+k3z4de5rCx>X=Rs)HSM~ zyNXNkb7Sd{GpA4Mfpw>f$o0P?3*jSlV#Gf~k)N362J%=8=&y{=e{OO<hjID z&{PFEYWpu6)|PdTsa+w>RRLj+jOQK%kAJ=x>_LkyoMJ~oc1T%%TgMZrbI>FYt-ybw=cXC_FZ4tk0SP+bV0Q! zgU)Yu)QnLXs_%+%@Bed1DwRskq=cM9VooU$IiJszVL46AX>&*?l2gcen{o^@F>@Zh z!{o3nr^z`jW)@-&q5Aw@eILL5L zy#|CSINkqz(9@cxfigO@u<#M=htHcc3n}e=FrP|L^@Frdl2wa#3R->RE6~kTb;N%c;ihvEwYtM`s@YwnvNck)7 zk89iT5c=Zc?frH8g%Z63m>2$ROu5rAk>>5GQw$FeHAwrt#b`Zx^2cz8{lt)KWE(CX z(D7&Uheer^?-mT;a`KKvQEc+e6-Mndnpki`wg%RX9UKC+Wiwyq3;MxJ6l*)8aQk;d z&1m)^x<7$vIXP6C+)-dV372CImg;I>iiM)mtO_(^ZZ`t zCD3qe}%Fn0X@1&)7?UPq0VR9-`89Af26n3&?Q8EVTY?6OLmd(0$%2!pfM;(_z5WHk@3ZlQISgBZ>R{091x8i>kqRwR>~6zbE4*U4p;Ff}}@LPEvqsO_A} z;_)Slpdy3px?mX!0AunkH;8%NUJBRK57l|KY_dbq7`q;ud#4bQ4$)DEnSN1+@og;N z?JfShIvpI)8QNFl(n=;$Hg{u!w1QqQ)wYxA#)b#%oxW|oJ(SlH*wT5(>4MB|<-qI; ztcad)w=II|^L>W|M*D>Z)}HViFL1xU922ZkIQ|#b5XCqoJ>8j0X0XCE7H2f(JDdOX zCzq6a^YOi}t&2wfNXFQ^{B2JTc;5!?ad&A*@zo%(!4_T~duBX{8BA_^Jy>RXxWnl* zfGbsd~EZ;cb%F1Je2h z6(@bO`4-HI>#i2LSCzU=vC#e%3x8%#w3O)AEmw4*wx*d0b02-e=>|yF+~qxwR7y~W z%ST2`db?bu)Na84Kn8_=*rohqDxYZg##LP++wDSE@|`b1#Mk<9x?n=1rOm-7`t{9= z4C0er&jY>KD#YwDbuxL7=;z;t1;rp0wGO*-w)-z+K^IVNg8oj+Vyw>EUsZu^}ZgMP;5{%Z~g2V7A3; zca8p6Zx-!i8aZT0$+F7WYR%d>CqL;$22M{6R9K;ky&mlY3&YRe>F7C!x<^QR>ra`U z)YdJx$!oZ_y#=5v7N*U@+UV*ZMSR4FP+zv{@y6ZZPgbos)W+_tJ8MKjdoE%a=RTf7 z4zoU0>=~yLp;D-%qWwlJ#$xV1Lg;n@X?aM<6&72mQW=j2Ld21g_1|Bzsg5jrBq-=rw`$GBTD5CIan}Vf+|RX?q)Qtyo-V!(Nh5`pUu``MrRqI(JGk z{wD8x6iNj3ZDzTZb$LI-{Pe&7#@6^9L3zgAv-e4 zh{}%(m#zy=A66>0y3MU^C{-C`d!cqq%qrS;rVMbl77;C*GcdQ79jl7HhjShbj+pj- zjq1}OOX9M^B*m6s755X=p_9{-gYD0^yCm2xc!V5|ST}TLm0~W{+Y>5CGiAdXIwdPF zF_beJt1)Ynyis@w+C^Q;(&fTQeXX~@{~k8c3^H^T^Q~2)?``BAP71GY3Q)$8_{4G*4e+E>`Jvr4uv)++syH)oUeO zpBOuRXActxZ;$I#=|-zoiJELN^tM?cT0F~T>Chn;j2MOm_G~)s=@!;LgxXTTCb8a_EO%BjV4?-Vq9fF$3VZqV~;t*Lr>B$jh#=PKrgAkroZHDQUAU`f8}di8?DH z#tJ)W0A>v7f8EHSR$0f!6}qC^BjpmJ-CQ>G#;7)u`YqCN9Vo}jJs?F$|K?Enw{|!D zsW^A^2SQz2n{N8i!5`_(xos!+Ba?Jie%RJ?@1+)BcFW4JSdT^)oV;`Hcc6RZxaWFD zk8?P^I!sRo=5VVa{7e3^`*ptIKj(e_qDXEZ=`jgoSjgS|z4PDuk(X$CK3JA2HA-J2 zQfV({)(dw|C3g9dV6*y)$(AIF(lS_oBi=jHaebdL+k8RsEm3Fqej6gZpQVFG=C3+e zc3met@S?G`1Y6PcX$@D?YfqU9q_mmqcL(QNe{?0XN}kitb}lLf=P~$tD5v_{oykX7 zX~Pt_ew2Sp_rcHFD&ctqa~65Ybv!jL;*mkui3Z$NJeXB&u%m|8Ei8|blMFG0w+U|Y zFqNBH)nrL5otY}_zwjY^xoDINv3pW%AQbkSP$CFho~@ZPMTPXgev~TK^4ep`D{HlV ze5;MA3Y8FB-U#WryG*(}&33CXrJN1=*eIMgW~cNeq2O=Zf&?C0-UFwZMfC@852qof z;v$$CWA~97c{n(uPOiUF4$L0kOre5P&C{)wRu6?90MIC!#{<<@NY-m9f_L;`!sp$~thX7_sn3?*&o3+b=1rc~SJ^A}|GCTf(V8cxu~gXT z*EDu6uYb(TRc3kBs`bT&$0Yqgax%R`|0rvzE%Mr(Vl+vY32STUN$_0vwiXd=z~aGl zoh-UnZe45i+%)O^^o7(#id!VQfo7&EVVp7hoN9u9IZK9*_s9J3Dxi0{{dfOm(JS+3 zw79gFK7OShXyVDV2ObO8zw<5Zk?1?n$s|NErUH&oY>S)BJRwX9(P8up2~nn_dpEiw zztar6%}y4dI~9bEe~%}3&ylvmAm~`V98$-D6LF}j5r~kw5gBJ0MehV9#Dh3 zkWj?N1Aq47`-T)!>+KGP>FykvGCXa+@$30<%E66hf8xI9hMQ6P_+Lbof4ye$U{MIRqQwH|+wVHe z(&@(h;ZvF4J#?4#ki~zQvnN`N2lRdS)-tEWw4$T-bp5bFUbAc88}gMp0)sqvZl5D9 z6Wzk9d(n4h@~g|iv(_b@$##(=oc_|!BrUuuD3v!m;`Z=4G8&m{)JIVfoDp5MOz zc!5+pbvaHYcFZHIuwd0&FxP~Jch?nR^^G9bo-&7yQ4xRqeb!Dc8wQubLfV%ii zid;q)-1g608PPaY3+W4vm^-KUKag*IUX(yy2j%6)M1)|3BZC`tXf(c@fQoc3M(%D1 zwDz@KHxY7~n`;Of@@G}ny64<0bOU#fClTTGf0Va#`#8-wx{rwu9&V{bY5=zJL20b-D-Z zRyOH139g|EPEF=jT7y5$%?S#3bkWNQJzk;Za?VFb*E8%wdrD61Fmosok<8p-w9lHv zerZ;<#)2fmT?sEHT&JwE4hyXe7lBlk%_)Bi3Dq3hmz01f{b1_epHm~B*ce>e?D(ulbLot(!-2KdC7uS^oiO{OwHpZGh@Qt;n19B|Ixxs z71?qPC$007HKqrOi*L;2P3I2(C+I9 zCHo|t_Fm?}?=2oAv|GQSOYbptEU16%!Wv_GQfGFajhlQGDERh*!PexF;XHUU*DN){)%s(z8npjD#l)kok-?Ovs zKp|M1h;TZtjIkfY)~s*3_BPANOH)`QXN4sp7mXPe~`6 z$=nVqVPYD66uVZ(NbD@mChvv9)L}*c!2+yY%aTJJsTio|Rb0yey)(!wB<1`3ov{?! za^;X51})#^G4pl)!%mP*w8g2~?fr{NaA*mk8439{*HY(q$e#67+i2rr)IFg}GHf&4 z3wHWQpH*UUFpV+cw7JKTLi9MT5=3Z2n_dHDYDVvKM$QfDwROhf^?sg%ZODw>jr0{t zy!x>lmf6tdR2w+3Oz07#9=YFUrQ1kq{k{XD;~1d_{j1m@+EaS>**AA+r0C;9(tx z!{)~GxrOVnIm>3sL&w$17e~$;U*oInS9Y?K4{9(v|MYHcmP_wvP~y0OdDzl}f_Q(= z$|JQB18Vn^;{A!TLZa<79|Wdz?@JuMfhfK`OnOBNMjYsz$oK4t`)#x`8G8R?ysu!; zLdJult$NPpy6jDb+FNtAiZI{7fz?*l!vnNDeWE2_Eg|)^ldAYnTwWAin$l=%`=Z`% z-l83L>IJQVi@n|1J2m41p!Z1V9LDW77s{>_GH{3`0E(d&y16E@K_`*E&R=bx2Rc?G znEKfob$2vmTugrU%^=W&vG5P!S`+hZnHVBJpdGfWW}G(4PNBU03GTTbEaFBD*>x z@^eNex`zE#uiTLjT}UEONM;(3$5ooFf@9Mh{o<&~N0r z>re$z1G>>=StFy+T3I9VUE!WUpJ8trf*`Q6X!9hIe9KA7mj9ZR8XsuinlTKi)H@)f z)BOWCDpeviJlsN^X`NwXA+13_BA%mR=<}CF!)WbG!V8{nskljKGO`&X4j+NmzNUwF zu2rai#knggejXBKhQe2Jji=`YQ@ixo9Q4*x9km^5ljO7HKIdo6bb_R@4|$;P@5WPf zlB|&vOF19G+KUNw{fyRzp$WdUuh87q1IYfI=pr=TUgz!s^x+AYU2&>%OD{e`88k7w$*9+xd%g#>doMA&1QDqMr8aRH!jDL|8ZV$lnPmNkv|HP&{{va;PtXP$R(y`j-#pK0A8`7%8eedOg3UcO(C3?PMDC@SBnl@< z8TjpQYO!R{h^6v8XpDZ)>oB!}1hQj*^6syF$XH4zv0_#^VwhCd*_3n;OAfA#FjCvE zHE8=uCjVqUl8yOL_*90Us29B5BNV+@Rbz)4aqyLX(}_$DrwO^U3o@b@`EA?HG;iOG zh*mV`_gCdJqC*Fo$yDX&l)L*%A9A5?l^!bi8>|=O9Wc`}%K}pQBMe@Iw#$S|{tt8= z#olI#M@%897vMn#QP{}LpnwwDC`J9q1%9Hmo^Ll!MnVU%$V$Gk%v8OBxS?#W6PAPI zKdio>XB8b?5=+sGW>8@B1z+@)lD69>q>==Vf4Hy6?ZBO;+}Ds3QY}>jDn(^DD04LW z7M+T0%OWA!U%*UwodPIaA-SOvC~TrudOqAd-?{0sMAg%|ttLw(jK;I`(DCiczJrrj zq31dv8eP=FZd#P2W)^T!%rIP{j5NGFTq-eM{#D;_nO68x)&zsTLN>2Lfl5qfk2Dtw5zsSYJl|RGK;xiPs z_xh}gs@+YE#>!^WUhOZs*Ef2!!k7Zlult5HoRva;&6I5Uz*o_#TjDCWPdi&R_iJ%_ z)@@_t5BMt{C&v!rc;>CUJ<&>$i}z(caB_qfAB~xckG|SA)HmsAtT(4AspE$Up^ha) zeN^9~AvI#tg3@$?j;Q&$pBeMlv5)9G^=i=`#QlI5)N8Rc6ZIBkD8LtHA;6R>f4IXK z&#|9sI4S(*gj#UW07VV`W2oA1{1&`dLn<9S7)aHs(#L>r7)3<1TIB~jaDM3};jN0$ z;RLKo)OUjAgMDf$!smQQIAGJ)_k>KUpjtD!3wm28mtjqS2f4Fv?1l*;PD25zrVHZa zlI%4)XN<_kbo$3@R)BYyUCq`tpsd7kn=4Net3Zhnpbwznm$_-TOcFm>s`2r}{ai{{ z!`O+1xzViQGAPROMU^bU??_+!Q`Dk;jmIiGwS3fgpX(Em1g#f(t<`Zs0PF$`t~EU@ zq)TY1i^V!o)WY}5FD*ZDa>1PSRDqOOQop)xU~={v!xlV&IIo;V;ExTcLChBH!sJyF zqYdNMzEuwoKO?myo#bs{kRCo2vpwujd|#_hcWaX$bjE(Y*5a)Toi6TikCoH?+s?#kCIzd2%&_qPE<5CR$7xZ0&xYB-M+)?o@ zk01%OMfDGrqp(x`d|O2{Wj1y>jIcfBDA}95#~jH|>o!NLr&cx07_n{`q7{ZCjvXdgw!(T6X z8~?^E%MdN=+>PlnE+TfW1NhGK+msi(v*9om)Mh6^wJ&SKy|!LLQHNb+P)zlB8+lGo zwlOS`6dr?_ZmaUB@!Nc%+3OrC693Jw&SY%t*!hB#_^~6ksQGB2N3y7;RVv*cz3dm+ zBv&dogL$$@jSscyxHMAnYXKG&hS-jVg;PdAMxA9+Lrgmx6TM+={C7>gJgseJBm)?BRa5f7`4`xB>Q(HznTqZG~nm@7^c0|tc=%4*XZ9yQt1 zjXj<_WBlpFUG-f4$L69hUgr9aE6O)af4Ed*lU?oUsNnY8N|-tO-qz!JBJVxUBlnsf zvty~Mu1pC!*I0hnW(Ax%(V0^?pc|kJ@nH$4ZMV>TLcCuyqo7ldm9HPTUYi7KlIoUd z_tC+J=^kxL8~3-sSO20A;k4$WPl5L>A{t|QOzt?{tZwhbp3Xz=_3I<+Y#)wO0%_3t z7F2hF$jMOapKDYPts*?9DU#K!nRdfUFQ2hN*r~`MN{=PIf_nH>bnZ^N*0|oDt7s8n zzyKs#Ymboqb=`?kuT0q&jFrKbv`}b}*md^Em-$7K9~!ni|7LgVhL|{eMu5OfnWLKR zGU%P&44`dMyjs+%lI1|G=c{Wy5TRltL=z)t2yW{{)+YPDnIw-|13Oe-bpN}pucC`7NuSsnyho+SUniMhY{dLXeO{~_KCdC9!jf9+YU!4Nazwz`=wjd}6jA&rR_i3y^cBg00 z8R9HW$2qxqvKWT@>-lX`hu|!7jfH!$f`U{@;Tk4Y_VWHRPo1$Cxi9eKcxerfV0EAg z$Gwa~Gh3G=%^J5-Lak%jtLAdh(ITmueg(Vl$3ckEw+2yc_V8Ysagfp{0cJeyoK4x`XU`rK1MU-KwCZQO$ zuy{EpZn;uvQ5Js=ykG^>ASS!(#_gXTnm)pq|5%vjToMd;kSFHENZC|ZiGpE`c;&AA zNp!QXdr7?rW6qW2U8UsgieYNaWp(92R1{qnkn?6hfuu>%#cQX*q`c>gnRvO#D69=1 zH)Q>OVQ)$`XLF({tl`Zj4%_~KGbIUX#$JquW04V4h(@o%m*!f{$_tqWFznaXU3wW&rBle*fKYB!#E zQncdogC_xL+*fZud40;}lvsa~7VKR|zaK=Tvb1Pow_qP8oHOUAQ6P7x4T8Q~f5S_^ z#ksih@m^R4%*{1Sq#5EIEvC@ueTKS zRq4VSGffT@k!iClD)t`z7{at$Q4tlKBDqPP{evzBBKpfC;>&qk2j3+SF|Hk2=4mpm z8PS$>!t>#7w}QFdelNE*>hW+o`BL;;+`8$6SdqzARi;IEi5Hl)gt)IFPuY-d5Tk)p z=J)6K5BuO|@morGW=XvIRKfXvnI?*nC}FJ#=jSNZF}dGtmc5ee>AQT{)7{-;YnQQu zed;O}B~};sbb3%i=l6arqDWxz+>@`YJlA*GBHvVP@R zu~e7veubaR#)Cj}P3+<3Z2T{#N?O9fH^eRpnsGxMCqkN=1yT?dWTu<*>#@b_2rVal z0hRxX>HAS6wT9i+mJ|ft5x$l|S$FmSJ4@4>S!ZyJLQQFS{7!mC`{FwucG2R3g~yJn zSFF5Z%V&gkB=g;Qq%xlt&0fCjnW>B^L3 zY!m*HgyVbl*yVA$Lp;ZQ~1wp zH@59H&jkpE-L;SqEf*xP@mz?nn?t4>u{R`|DRt-%`5L#43sQW7Zd@W&F=0Am>(}PnnPnaU!8v07O+Pw1Z%DSQ? zf}(=6vKdRu-Z?9**49y``j~hP>73yQK!zaht04Xl`vZ#&8D9#bmOguGyz!+WIylM3 zS`i)guG6u-8d|X$xKmlQZ<`<5icbpxy()hLo$TRkS_RFQhfI%LGW}H1)qxB$$brwK zJr(U2>%sggjxEuT#?67tFZ`!4f6voxud?pipaxtclTx=_U%sof7cXi)ZyNa6N-dGra zK$oH>9Ry0O-ie8TvDa|AiW0km2cLFo|ES`d?bHBfJU+tT@G{_%$>%|Z4tD2G`EaU6 zzSd;@&mCIGdZ<$&1P*4OQEj}ZbCIac?hg*s!)~gzO_aB#o32Monf{m%T*iepyjI2b zK+E$HP2^$HZ;PmSb;+P(X;oe#U>uZD_XvZ*drkYdhkcn;cNMJf`jM}xPcLs{g2pH9ZcOX5}Qy%7v7F;r%#5y5u{UXY1+=_5Pqxz`~>v)CNZ>nEi9K599 z@a`QTKzZR0Mj#Hp)5TsPMtg%7I=$B#*Xg^xo0Nb$pia!}5ttb;WM*DG-UCfYCGH^% zwD$6Ka>gHDai{ftPYnE|6_3YKJmH!{KW>JsSX#OUSBY=H3z}x7-ALG$57U`1? zp~5&+S(n%JVP=g?@sz>F(e7Gu6(YzTGIk$zKU=IAGrm&deJWwGBlCu33T(6}v7A*= z@GVqjdSGV~O)u4;9{avl3--T2eVDGKc?{-X&kjUYor*cR%F^wR3Kq_Qx;w)KW+Au; zy5KRXc^#912`f!vR;*VO^DYQZ)%ONy*!#&^SGevKt#LHPP+!=6@oZo8wa%i|Y9jcMU{HTa@lY8!0CZ^oAv!S#j zC``hi)8zz^XTPIj{s+>j*^Ydkvmk>(yZ65idKO;=-fPp_(AAeL?5!_HMHFkIX*3uU zBRZ@JG_N6j1}j(^r+cc_bp%OBi$|t)%uco#9>nQH=hxc&zR{LX^?H2RjZQu^a3U*2sYJKV>-o~}xnVpxWxBk4Kv6>_XyM#GMNoDv1xPdPRDwrtpBb~l+10Fr&;ctC z;qq1B?**HkO|^OTzFb?zbmHAV8G=9;)LQ8`MvnLGOfX?nQ|oaPsK8I{Kyn#DtEpF{ z?gH9BoU}`=(uaK-pC(tCo%cSYVuNnUO#NP_Ri-FaY{$5uM#;V2!GWHonC+TF$~C1;j&@FY1W~M`M>wM=?pKib_LfJF=M9y)IwNZH@LEa< zOdS1v_rve5;vai61`D~YZi6RFH2(=yjwI@*Xgge`aED>a9uCc5d+bDx(p8k(+}8G> zzEek|$}(_lY2BrOh=zI~3D077IkE)_@k8z}yG?auJt~pb~S(+tP-ZZ%K263g7+wGkh1HOa+oQ!^RU1Uv!b10gOrX+1Y zTt4X!w0aUJytKe=zAV}!x7G@G-Yp$;$IG7~s{~y|XwWsoly$nYnl&(WgXgI&89L#j z(_UWAj+I7OmVVG}dLE3uklnbx{LNDt>8R1EL1|vxb1_rF7SF*C-A{Woult_eE^w$- z-|t}6ZY`G5c>ihqUQUUlt?n7<-3VIvz zhU}%4+LV!UMYQwEbFy$@4=6OeUpLhA{0d_LpK#=)Sw^x-<1||KOv=sr@3bLEG5<$( zmY-IBTZ!iT?{n(#`poBlbzvKKJn5@_C;YGz%3JU6K(S3Pn)FrP+LL?RmauJ6TLYff zO>675!?TWz^Yh?t>MEY`ju!ce<%ISBf6kWH?*}*#K+Gh=cFc1**hhr)y-i**LH$s1&96&Yi>u7c_-O;2w!#iXO-Ie~mMwRA^#c#_ zrJ*)@#Xjuny~xoe^ho3vebwgu6^m=$r#`oK^~7vsv{JA?2X%v0#&ogwY4*5>r%;<> z^mlE@p9tDe-)wV`-o|OQj3olK!c41ktI=ftO}s`rEA9FG4J8&TZ2AGwd=k^Q4S%&h zKe+U-?@ki_WTv=V!MEaYk3pBS%WAO~Dx;iTb3Mkq#zH)>&exHQB_X)8_R5;W%cAnP z`Qb}%w)`pt5wm0OitZh;^>>?v=UaI!>GZyF$9`OJ3e$MdP;VA@W+GszdQDM}5DxBt zf}N#6TBQ9iMnUw2o4pbaI^wn|$ij(UjL7`|KpV?hbe*SV4>#c8G@OWLJAjgSsP41a z9ju=B9k-l!|t}9Ipd=0TD)G(9p(ijy;eWq|NqX;|fFi_W5+%Twwo6vL|d0PUYcvyx-1eI-q3PiHcz~!@=_li!ASuEb3*Eh zac93-OZP{8^HUg-#hhd;hZi$KQb*co6Zt4jAJl;fK3sUB1Iw<@44rq0UC^q%f+`pG zm1T?i%XY#l&DR2(%N^vU8xpw;r|yD!)41zyKj3^~_;Be8=ynYWeAfJxnciPHf~wl>Six~pFs@Y*eF|zP$ zmm>>qjLC8!XhjzS^_G&(ZNzBU*;ZC&EGiPgNGGc9&=j?gfhH2efQ3zJ z29#h5kLrCoL>!z)pD(@`fg`_SEQLwbX~g<%BBecAp&o?SbFY2b-L+%R(RU@AdIwH9 zR17|L)V-Fe@=y?0v=VPoIdNuLV~ByxmMy;P=ZUazK&WE!fa;oC{yR~s*U3u_V->Lv z`$IFHvIA45Rign1){a^#RoHkw%HveqH~*h1`G5RS5zx>J+U2?>jgv}$wMI3>P9S2A@b<`}{Jn#`J^Hop+Bb?a$jDxqL6puEUhy@TLXa_=@~@&@t|JPETKh zjtjgulzI4$_nwrnAQF>qL%w^aEhDYQkF5>CT2ferEl<#Je+t%6vWBF zu&6SzaaLc?*1To%B(eOO(+kkp@H<-v#5IqpiOSH|ZAKE+8Ro%d0qGR%kH+SL_wP^c zx8=k)GfHr=u6a=P!}yv%!(;QGuCXpMP+ja~X<4N&W>K$Y@LqRnem$`xM?1JOy%2e9 zuYo|jiLS~}#q70{-hsR1C=pC8+%GCe>!faN(&OCo=B^GE&mGZ%{5uM{HI3yQHJ{TG zHhVlf-ONio5+aRTq5+^je7*R>?dJBnqGfznXu_kVKk`RQCJVP>^%&L$g$>*L?=cGk z@EJC}E3~MW*g3+bfVJZaaI{n4aCsw~c;)etdmvuU7r@o! zVj{3VgL*}^9ejbSDF25OA%+6nrh~Z(zONgeyp+DJ2%IJo5?GR!?use_|*8>I}z+Ho4cQH^Sdb~-?em~%)Brgak^x370%JH88Y%q6`)tSKPNJwcx~1c;5l@;&EGfoX5q_XQ-_31oVLCrn$tzjhv1}c(flnl4>ybhL`J>rjdzV8u#(> zo4{ouw>04Cm3yG$S2#s^L7*#%oG(GQRTC04nO}<#2KByy#Lu8JiI<#8ML6DFDLu}0 z1&C(^Uh*X)?dpV!f-3|BGEUrmAXR$uVk4I!@4ZCMle|*puP3jB4)srC&Q+SQGZ{`> zhj~X7v$kS)p&$QT?jf%XB9IIB*ZV|sEf*q~){aR|{#^CiE!~X3jfS6Ue@i5y4GKN+ zgaz*CBC1KE&HvkVoTsEd7 ziZ-{DzI?O3GyL&aSJh|z=|~rW^gJ1(!*XN1%+TWpK}ak7`}1#aV?jKefHM0@ zfu1A+GgcHo4(K@Wi-7$Tjt9mzi9DR=xste)39mq+AP&$?V{vV7`A_JR6* zs3lE@)RjCu{>b~AOB5S8GlE-Y&~C&!ofp*^PVYcGQfD=RBllU}Bjv~W3_07vUjmE< z0o=Hfc%@Vvko!}^quE^jHiiN=Af6PCrjtdtua>?JH`ovRlLXHo{jGyy|0{F7SM8D* zOep6U2Iis30Ro&<=W9SWg^PGDHa-q?NV~6K3;`-W+29+=p=JAfpOhZDB#D$JUKLJK z7WVyMsK&?5sUQy$1|>;>Kn>5{fj~#B_(6^`H!oE@0KN7Pk_cOL)>FN0`ZMT)Y7y#S z{q*AlhOX$DApp!VA(KSA z;r?~M%^7B77d!aJWYRi5;5(MTs%V@8B$arLj~nzv@b%Z%9DLmAhW`Y2{K^v$MtH<$1;2PxncHvEs}q3Jp?`_zhLhNEWcfF^qLa8DJePB%l*nY{-G zHqs9j>-)2;Yp11bsOE3|AUP=GMwJNkv=gLfTlM$+loIVmRk3aSBg%h&^T~UVt1bH_ zuI%aEl_XiifHXkq{(U%Za~SKr>IFQ+Bu;)lhs775dz`|cCok3Sfz%gluRKw^cAi(n zPuiB_O11Enti#M4V$7^rh}Ogx)^v{Lk!pJ-LoR;M2VlK8q~GSZ;RihsP6YXI^Srw+ zW2edgnX_O_mkoDnTg$xBT^(W3;aSfA&#(Z`@Rjp`xBy)NhQTS!$9)wrJnFB6d9OS* zkxH~+pAJ9Y$M@~)^`LGw zEt1H15k}L~Tf862-+>ITf{qxznF4Vb^SlrM0V2JaX2gBwgN`A$mdCIBvBiR43H2ea zHuhz*z((Q&IuFn^;iGV`g&e~<2I#?)x#iWeQ6vVT=3YQ zU%>n^aUNJFMQ^fB*KTbZbaQ9s*NQN9hyOw+XA(~P{b{8XCQm)z=((6$!oW7KEo;$> z;3n~pR7)P2@5dT+65+*I>bvO5A+(ABi1RIQ+yMq5oaiSFup5v8AaM|g54do@1|oLC zphVD#cwdm1q0~Dd?EzQ?e2+t^eY(~Q>NP0ao?)C67kd;@Q%o!<+qc=11?(AD47G~~VDZEBo`{en=- zz3?^Ugy{Y7<^ts4AltmH{W;2IZ}Y(o!Y1S|740`hjmN~3BPU?Fj0(Hgz%ZWy1_n5@ z{FCiJgRaJBeCyxzc|knD#+2wIEI2&`s3M1cRBX4!nyBK zK)?p<^nyR&1u)!y1`yB_9!`!l5KlT!q91ps_Y8wcd1S;)2(5cE!40^Vr1<%Gj>s5a zV}49JA`L8MfHd&xi-{i$r8p9kE6l0jECgUlE7&n{K55wN(l5mrDe{^~Q<_AYHe_z2EZB1=-W9abHf?e)EQJ&4bsf zyr`2^VLJATNw`?^GV9*kIc|iZ-D}WsbvT0Od^IVgk%hbZU9 z7}VeVeR|X*Y{R$3otm_S_JBH0WxJ=2(((P-TB+#}IX}2p784sA80!=CKTsK4bAk5j zA#A~bE*?~{hg!#{_jM6%yZv{GFxhPW-ZucHe-Z(Rfs!u0Iyazg( z)c9{ASKe>}8~WqC`#<(I$DXup7O!T+A4Uc6LjKtyL(mapY5otuY5;a2;LHDvAfOet zWgS14Ws%+ks|ym+Wtz1h(A^OE7gFMY(MY_fp8fXUvN3$}7LYF|K=Gaw|3B+_*==+G zzpkr-n`C!QnXTCN8($MJ8~HWWf#&+ubEEFJm4`MG>ZX8FBi~Th9Suv5O+>`WSH(JB4HxZfCMKCTOI6r(^Qgal7~b=JJ2UN>Tg(qq#tw z*>C=h95A7YOe4+(S70_*#Z38~q<}*?|4jqe2zGC~GSsqVsD89_^_7EKA~0p(X!q|u zpvR)JHNaHoCco$r&hpv=Cm^HjKRCKv=hi%Xk;{d;ax8LK!9wY`mHPA!9@E36mzHc%#aH# z+kga@P?fF!NxjePio!*;&qA5Mt)dSfp;ineEhBNSB-X1{p3tXgc8F<*?xcaT!Vdvs$1dAc32pfRtCFJ~z+U zvKe0S=O%*Z&GSR+W*L=zk|m6N7mYP!i?LTo*2un$ecvkkuCinuOH7u`t1M#)F@ucd^}W5` zpWpGD~SprwnT*OS4FcRwcX`N)xtK_WW2I~oIC8z`UC zD@WJ(Bt#;aV9|;!Aj{c+UxG6gsrkHSyT#l_%XVtJ!SOJ=sUygKruPSiG=)Rg`!zOo zTt4fzNwOevNY!5yiM3b^2;{&9F52>=8#Mo#yd)pC$x?#523w71W_R*ib|x$`Y9_HA!hS!$(x>1&kj$XVXB|ItiPlHvgg<^*3-!9wT@z-0jFWDROE zda96@5m3V<64Ip$0e8gw1`w&Ns<+6CJ%PfDS+gE%WYX#5Xqahk1RXe^R9xjW=g$^^ z{6|C0ID#xJ3l*kEsK205;<1eb=@qp_=}_J8cL2Y>dy*OS!D;?zeW^(Y>fwq8IOSx4 zK&*rKK)wbsK=Io`M(>;H_f1>%2BhO`jew4p_1?C2F)crVq{g)JN3A)Q9kSJ$qeh1m zvw4$qW^eyAwfhZhkI&|t#8G6aDTl&whN8-d(9z1a}3h6L2-wTw@_fPMNy5 zFl9ys<&%X9=X!JD!pdA`koV5esW`zl;y|^^ngHWO86&t6mT>y95o!fmbx_`bK=(?l zTwh<93d#wm&wWXX3(o34Y_A>*GHIVXNtgf@(C9;@EDB<@p%o{{Ap|@E0QRYQ`9LT^ z0-ylmB`>E$%J90a$qzFPf$hL70x4*)=F9SpV(O|7B;)6{S$`kbh)V8Y42GL*fLUFn-fH&&>0` zKnZ85v|qpn=})0ECTC?W3MJn|bRn<^8sU(5fbTJRx1tN+}BD zEmDu{Rjb$oBV$9b3P@_mfrgPTTwy7)G!krsPH-q-5y-p$%QWD>gT#lTlAJfcub~#} zBR;NC+!`3^9qV*AF+tKu8X`Fw*FZf-?vs!+)F0PotyfCH?Pyt{ct#M|Dg7#(EN~kt5WKq}(Jv-8bRk!Ga}bfp z^Ceu-5b|rbfb>?R3p%5zkrEU)&ol;*5Yz>-!d*x~Co<&!tNtOD7s+`ArBq4ZvSeEE zg7YK_MWW~`D0D+0UaCZh28z`Y!*HHxgIy<~mYxpehW~a3fIXZ%cT?DZ4Zrpr{Y%gZ z2%cC7@)>Dr*%?2Z_6pC>aVU--+y1;aU#xAin(&OQexHo{d!+9^X+sgs|a}9rd zDp%h2udKk|&8dy*H^1ZSp4U4+vZEq}dk;@$c}@!I8SnMp->lUr&WoyOV35!{y!P22 z<2&nI_5C2bbQu@C0%G5P@tYGwZ*XjGB2Tb_H2~gS)YM;ebZMAq*Z|1+c-GN0Qsr*E zF+276Yk9JXJto>uu3=s-V&p;{4K+CXRBVWFknq7qvF0vdrY|S~d6(*@EuCUw#9B7* z&NfTloou?+r`@wXKKH`K{l{kPE(^PCW>LH+*fx1dzJ6{b zLioqUFRaTuWCr|EFw*~c6+pL6h=%Iq(*AD~gQo{hI~UaDyT%;>bs;AHmoU(E4|Pb1 zdTxAPi#=H!H>>;uA1>OD3wE-V6qInMDVn4H=`r!>^$Y_exu$HbK)qn^ArL`7s^Pl1On=R*c5=MlZyZ!dL%$2jBo|Jyxx>B zOhC!M5W~G`3Jad#DO%kFWR&E??1r`C%y_KHse%5ePKF|}cpR%#`kB_kRr*0uWBJL{ErV4KOMrqAD+$2bX69zRD3 z*h4#pY!-ab(F+R0vh>B#wVQsS1+^hyg8-D#1yB+M(^UhfT^Dey;LJ0e1*sRJdjWFe zSsE>_I7x)d#8t_F@9V=cX0d_(HADFPDh;+MosehBQX+Y8dHL0KbQRw4At5b@yY-Vn ze_7#8eI1B9_laIOSLDlb$%~^)qnWb7>ZBJBjp1Tom!jB3(s?7{V$T#2fV~9|B|gtE z2X1`=K)_YdpH$3eoH1Lk*cP;g(@HZiPC>dQP zrHeNXn%!a}{nI9A)^1VA;f6l^q3c#H*Fqs=?;TxRD*6}7IgDl)Uw?b7x3Mmdqb&UH z7x*(ow!4>h1})1GgJHo$t0ZUOUaKVcGzbxcSEj=M4d$l3;x(@ig^vI=+j<*O~YqkoHKeF>$17HIQX1$`%7({B8?OG1f#+O@Mk%5 z0FglzlEy{{5I>EQA?L|I14#Jfh*B-8GhSKxSuNlHdSA{q(-vD@S=VMcb!s*Ec8P3y zSdjgWfA4n3hra#53DI?ID!OR%`=6TAD?bB?*+T9zcHKiYDd>nKq%?L(db*0T`wHODRlFt1|JNp@tS0VSXATksq3n5YDFvo7Mgd*tMCm}grp zh&*h@XgD#{$|3YQc@)yVB=bM~OhVJBF70n)Jw-(J< za~L&SDF`+Wn-8)Q`bWE!!2cF_xDP0MqjNr#2|ur3+2@mfOYRN4nkUrANh-3Yy?$ON z5+RmTQp^{J%7vGJHDGnAh!F!T2GNx;ffVBaN4We`HD~FwR(;Py=HSS6zC*LCjt>@c z9jWBN7!GP-U5J)O7$8~zqZvQND?@a`oaqDA87a*~^xwcNrLk|+it0`|5OkpqfM6kgBn zcE1LHIWm<0=V(3mPf(9DZnJB*=SuM%0>^}HrGI^;&8EEU{?;*$-F7v=u>ri}g;na{ zTH1u=wXp;L*1fEN6#17&_22h3TEP&4+ot&w8C3m)%&D_$3^Q~))_%4k72k1jOM|WQ zSqs4<$NxfLc8UeRS$N`dA0StERy$6w>${1hxs=@a^L z@bO>hR6EhHcJ6w5Z}OH;N^;{bKg{m~+pFs&tq$dV*^Ir8YgP9HONujo_XiP(?!oe_ zM0r|@OI@#o%+6+ClKGO4NrcVk`OD+R0j;hwJFWr=kK+b=G3{s$w>N{?{(IW~d%ULx-|4F=?Sl3Dd_iFt{+S!wdqFT5wa2b@ia#wnaig~~J(5>xwBARJMm2#YSTrsh?D zd%njqoBetpIq21#*YsyNPr-d!B&5LbfOWvIZHfQcw%u8i4c0invbzSJ{3E^CtV<+kH^bZVrH54#SQt6TpLTLi{mhHmFUg(Sf7j5Uy@vAjGyh#iEQ9fcl^1Z8ynq(TT3PDSf*q5(m0 z8sjzjThjZ(%?(2X8r~<4>xaphAX$GX1~$_#`_jLBKN#hfHx7eC2Of$+>;$*D^mi zUI?BdbNa9I4DX$ile>yh0vd3;q4u79OswrxdC=vV&|}Y?y=-YhHp%-dX~%rNaxQf8 z;>2P%{#86BH#UelkFWTxMiCnr!M!JJ~?3IU+8O4%aee%4J(Okp|D6B(|9e6 z$9h^Wow`0hObVYObHEmd&xYMmNG*N%~bUbFQI3wHW zedF`*4F-Jg-(NxIATWG_W-6Nh@hPC#1Mm;T$WE}&kr37B=MX5=p1Ae8_s}3aU0wEH z$cpthMR;Q_;!@qntgw&dPk-CfmDbIqDXaH~hSJOXdB&TS$5zYFz}vRSjhjj2k6119 z`BBf-RGap=SfjlT(GMMZe`f^`DWH<8>+);(*}4G!sMNq>ARGtU$hGTRGbMtv2YwHo z;jHg5F52FB(AVI7bFOxtIq~%!17cD2S`jzMMf1u3$8AM+~G zr-VvZ3{(?tdK>sD3;#-;iFTQP>$KtRVOUrHiI)XGLWVKZ15WhPH2r&BmT&-ABAh_U zI~HH2`}U`{>O1U_%Q5M65w28e+o=_)l7$P+?}c z5-62T1}wD)R~eG_rzG6!5-9SISiMs=$Ft_DT1fjP!@^SWRhhpGZRHwXdmMk+x_5QI zS90U*{DJPj(7Qbw!sQLDwu}GI)Lq~DjurXKTnAQ&o8twdzk-sv7ASkc+C<|m@{=Rb zm?^ri{mnK=d-R7~(3O;-C6e8vI!C}P;gUW5y*W)q&#q1iinI@Qo3CC@Q9Wp%kY08c zFVtOQidHR3X(Em{t^Z(MM;X>J+5N42jMg8UgOkBq939@i7Lpz|U-6e38PZt&F3e2N zKgI_Va}VuJPK?uy5>SGl9AF@S!QqUOuc|pX$+o>F^(2a1(X;jUthPuOkQ9L0N3Fm% zmILtNeXsDZ2!6(X-ItA2r7Ag3I@K5-WlFkrBpdvqTy<>GQLl@)bY{M<_@uTjg1ZFl zN(ky#`Cl;)))nOCa8R+s?rSU@-){mc?3Uk9Y z;Wb|`%Ul^Jcf8pq?;l3XXUzB$$ur{a0c-ewdUr{`#8+Ph2;o)atR_EENLdHj=jv_2 zQiGRc$nKWTw@vhh|J>g9+zEKRDp?w7j~CIc!uEM`_)QdGUl(~M+ov>Snf*SX`)HtA zfGa>j{6`8vkWzaeoYK*vVc7*t50 zDk;2fh!TFG_Ve@Amx%70>Xp1A2-8Be6vSP^6~T=wmJ?c=|L}8jBZHPnm6yKw!F|SB zh(i;w_4I%q0XvgxEQb>;Ashq@ML3eilf#l{KRYg+5;XDJGIhp7<$A@E(dcpzM_`uZ zOkdo$SKjkg-fbq!d%uM$w|(N~4%-@v`>t&t&B}Ril7l!@$4MSCd$!xha}|H(E93TM zEw8yP5Q7L`wn&ug9oU2KgcS0m6l+F#+&jPh*8P@e%3-SFL+IP-ej`KozF!FVcs^{f zttLrU_8+-8kN4{3oc7^cVWka1d(a>a6;kt>U!pK=l7w26W znj(2W&SA2?RE|dD>}vzEH^t(?Bwt>HhJ1(>MRsv&hqHpWM#qE zB_gT9ncrlo!>z^$&_lA~kp+3{*R{>tiWGmXQnX80)&+;lwME8=4DF`>LNXO#+RM&L zWMs&HsW}L z(4)+idP1DGAV<2W8e+poH6uk~|8QiG_@(Hnc)F`wvQaE{%EBymnxbJMf|}K`nTp+H z)0_JJjj}`it!jbSfTQ9-jf-Q9a$9FDFdK{QQxT54^~kPP>X`xb=7iwQlbaP0Wg3pVTvJ#Mw(=oa4}B({9~ zjum%q1c`41{Ys71i7JN$kOqMLp?P_8Ne~;vy(i!*gYl-ko?rhcN|)MMfCy1y664X2 zE;R1C?}5)7GliVxCj9jtx>ZSW!P9a|r07X*2WOV3$%Y*_{|A}Fs3%E17 zVwmbss6=XI*AjeOR>0gHT!!VYFFEZ|dS8{GmWF$Fub&_0pNo2@Z(-(ClX|`4kH3#v zv^clkNGfO#Lwzucx5Qe>~byU zMukVM8bQmWqhXn~D(Vd1ne>8kUY~bF@~QsA!vSJI0%?n&DKthI>nNq15!ibRM$HUb z)Nl8rCQ?Iv?d2}0OSHZ6xs6jFo5-74Zt~i7o3MCE5vs(xdy0+z;7#|gmMLRh6^Q{f zCpE;&2eI@c=|JpKtN1XxFR?+grDzLEuDD%mX>|uNPZ$ap28vTj0b22bm^%N1Xv_!% zXgdgsjMVus#8<|625H3ZO!)L-+y9_i-IOW}VgzzIC;S=rdz22u6RE=P~q1q2URY%gwRQdVvES7nz!b`(?m zf#kfiaoc2gZs~NUSBl3>aZEie=JRCzkI5jf;pS1XiYlw;ZT;$DUJrFHpZ!*cdao{8 zhSTBY8HIp{*DKpVz_z=y@9czW3)Tvt>zN5&pb zK9~qZQ&3@Z5~`>=J#t`?rK;vND}PqCh4R~K<~CAG@({qB1;8_rUr9^{Ev^N>DKgWi z?k6yv`+bp_UJWWs+)4-|O@gsM1d(2b=hfonW>}jQT)ZdtEopzz94(99d9Xh(@55pL zCHbhV<$9K%>QpK*6Ie=a~3sOY**5GN54_MPzW)=*euYSO)RLtVOit zk4AhjNHY21hrMS?v}E<&G&I$HiHm*`D}izSr2np@kBTQF^M+h=qT zu+b!CsjoN7#f?j2P^bzU7G|`%G&92PL&S*=7XnN^A-wDd`0f&6KWC1%*a}nXK4(Ek zS^!I6G?yeDFGXlZsq666C4|cqb~ul1elKx=Z#U(-nEd%*SJ2?OHRoV|jRQ3|<>MVW z8RYrHxwN7OLoSvVxN~Q)$Hc6fU30_F`O2FXopbx4wq|Fr_OpAQRdJrC&q*r+6zlX| z!^mzY^~l1aZ#;XMM^m#GrCx3f6_)EHB(kCJ=`(8@JTwoDbeL0V^Z4Uf=&+%F-m^uT zcqp5-9n70HzesB7bvCT`S22?=A{h=G7q1+(5zvnD6V2%#>^ba>20tVW*WYT^NSUgB zIxtx}a=~0Y=*Qp$b$W~7rnZTbzFxj6O&uKJ#d>1c0|@t|(qm={i4QmLUj6w6yD5SF z;JiRSQrhyX*O`bYW4a4-h)=SsWMsHm5?@jvj41ocSk?$3RH$JncEI-2BlS$9f-FSG z`#u~JRDZvIeBB8hJ1>7N*@_1~L8tnVjc9N$;{khzl<2NQ^aM+qKkDaKs z@>XxM(~oRf_U;&>jhWq#+x4V@tL(wp_6xNG!-1y*;tgWEnZF99H=}N) zj*tC(m_focsP-Lp)eLOkVc+&m?e8)BoiPlKXk&>nOu5h?*Hf0T>e*qR3K< z0sB~($%JmDH_H+XJk9>`txf7~EuDFlK39|~+~&PPp(v5Vg`c@!!=YZ)K2qm%3I%mV}oB47mPFx%1GrZ0zxtuD0Z`&2S%aoZ?62_&ujcnavrKy@xb&xdN!X( z#7S3RR(mx|!`2<|ipTMKWS$m;au|fZYRt@R5`TT2m$=wb! zqn2g0%0cmk4^K&;$vf)Kl6$4^!_)@xtS41v^&3Lsru!!GX1hn}jaeds4Hs&|xxGwp>@nvDZ|+pN)htYf18cL)4V1RunpQ zeZ5eJX8PF)aq>~6^Hl)8zKfc7bOD0f@-ijM3V&t$bAUO@iXYEaQao+w1xK>o=Y&n% zGrRfjoWZ$FOmBFuzOWO~{&wWFqltIFP8eL)j6@`?P4F@fEnH)J)0thW)!(sQYs75UrD}qRVp|CDY5dz)3R}r&t8?h zQrdjrzP5=rP%zc;Wva%$F@K|>1|S2dDS;yZwzy1eY!Ci4{Vyaz@;&CT$GVzd&L2Ow zxzR^_oovKPyfgnrIQDsZo#sRmX4q;aaQ=5t%JmlE43Z}M;FH0c#~f$sb^^Cs$~5Y$ zj0m^AeFXX`EAB1_h8{~6)jwd>l?Kf82qbXc0+(_4iRTJfH$Op!s0(ZXxLu66QE^JR z-|y<%4Xf8u#J=~}n3m~3)Xx)8H!RS)rvo~Y9QFFb^d7N8B3ZzIORLTYgQ)>*GrC}` z{&sdjkRZoP-1U)JB|B@}xs@m!(y8`t&~V2260bw|;PUn!(}bwlGX6`zhmGg=Cn}Si zq`C+9?X%vAr}4KAU{uyLE?!30b7ToT#b+7Tan#%H$(d{xhr{g*?mWS1*p|kmID3%D zx8+z3N0$bjGo#j@45o`FFAkVb?})h`%r|?DQON!#%lGZyDC?=&&;qpx+#RhV8v?G7 z+_m39?H!QaPk1DEe@F@|QB=Eg#6P$-U^|>%KluHy$;Qsf?w71-u88#J;@-cInU!|H zfZq3>B5~${f^^ISbphQ)4u>90^6!~^nVl&A z86*hw|@$09~X#ELrcI87%rqq?MrNy!V_R%l}T zUZ{J3I$qRpf|&XHO|R2Rb;kHRy{Z7p^*G5Q$(HMtk9RU}Kl1qPESl14qgjZT+Vteb z5F4t`wq5Y+Ml+T0&??a8fHj3+I@H{eOx=1{GJXX~`ON>_vYaa)w9$>d+o9TU(MN=I zI5QV;tYhRm&>SZDN!x*KRp4;q9a})udTti1{|4xn%NkOQ5n&-RYNz zr_sQ(361#Xh8mIfN7y}#$@tvb7*JhgY8~Fvg+LGx7l8g5UFgKi0;Qomt;&Z!w;$gl zS;_^gj&CyL+b`)$I&g$Uh63y2g9=DdB~-GANpX~(3I-TR5I7+4Bk_WwS~s_IWkeqa zA({m|eJ8mYK zwy$VJYj9{_(%;>_yd~7YRq3||UXk*x?VYqV0Tn-x;!4mQT3PW)X%iG}js)z0ee%ct z2bDU&yr7TL7m1Gm>M|8ed^)iqW$9WA&Z=x?o8TUh?W6na+d!njG%&$JB3Jex$;7hOu5;d@qL4cot7u8uFQbatmFh>@br(c5rnm1nhE7`QW<+2RLpWg{*zV0R@ z&1dznY!q7)lt!qS@QWOH(A!wpRJI!KGS=-rkRYV@9bI87u%j)4<1XQstr0dIzW4Ph zfzJ8)x0D-MES_wW_3NB{g+>yr89s6@>Dv`DMb#h1#U`CJj0aXfNm;lprL{K_wXNER zfAc@UhV{AQ!ZKGJ$4i0LnBImZ{-xhbOl=4Pov<$_xAXU3D6XNa$7x^a!+iM-VowF> ztMdKf=f*o2qk20PX2Ub?eimTAVnM4!fS+4-X8e~q+4*tNA8FW%S4Eqn_QvGCDi{2i zZ4YZgOIyoOi+RJ_wm{$zLSL7uOXhR{1u{U9bSFw7&{hA`EL4yEnQtC&wUDy^^m|j# z%PtqtTs^eh?6msv%yu~+7ACW>8V~gKn2~pZpM$ZBiVp_8{l-}@(9T{{EvP-Pv1ZxQ zU^jHfjV)!&N{7cRdf8OqW2@t&4DR_6srve)^H_ggQ-^8QfPQ_WW|Q-sji(ho9IQ{s zZE=2e0-8^TR$S{peiKQowVToFvCVJ`a-67joDlg|${&guyWOs|@ zVNro3z6s-!#d{-D4#l#^7_VGKIrC84U;2Eo50rvu}kdz-rr# z7N1)U|Gh7O+L*uJXN$dER3o!*>$m%Qhti@qw0-ne0gVLoKsb}K2k-3&gQ6OjD)YF2Ml46{z})&%2L8CaG9PnF8ms*~ZfK7A zYq(1pNtll$I&-AyuUOWY{DZkUm{?YQCBt5tiS)8862aFqAT!Tt)}WxS(?I*t_LkfC z{h#<&@oMI3z2QrKmjx5`#YwNx${5ts0E``G`>BbWXmx<|&AN>SBgrc7#_*e!%~$Zh zAG>(6wwvFTmA#SXb4PiDK}GM~XuirT-uf?&HWr%G-qY!f2;YpEU&nH)3x6k>9sT_6 zFDLk}E_iZsbmZ5|1Zf;|mFAVl%KA80Am+VP`jgr&MImX9N4jGzS);bbhhoV_tj-BK*G+ zo%u8kGe2XeO-4w;jj-Mw3-y=)=D55p_%q-E z6tnGvgW41gkMe35ACT0rtcfDLPhEJ^n_OH!qI5lE!DG z$xd(iG*(G6RnDdeQuTwnNf+a-NkaqO2dVoqIK+q6bx|j6rmuBN-KFbT?Bp+^v~0V> zW}{hoF;nat2RoK+=)_m{xF2;g- z*nZCH9kdhpWa1zzX39k^m%nBzJ2*Hd4yB_n;zGdwFq-McxAGzJ5K0@`{2El&1I?&Ml+&pn2Ysae=3TyEsQBg90Ig3V_B9Wk|yt7yiO=k3;`WZ z4`?XGN6*OaKdlPqNlpVpD-=)C!8$8jZW+WT#>|tXaKKpxVH88Xg8h`gj1)qFEGeG3f?DVMEC`T6a1gs-?6EZZMK`o+62h#9mlCY z4vhP*KN7*b{Nc{H{v*?-o|_mm=XX&NWNpk1wzM@u{_Xbt5gj^CSTvF=f`*STiZ7n3 z(E5f0;NxL{eE~%-98$}-e7;D!yc$5+G_&N0{rTtls+?gN@V#_G%9^bck00q5Qc;y~ zUWzEcAq^KWWYkcr$jzqiD|gPmB(ov&v}h?j3p;LPvf|F4JmWjo9(S&&R}!Bw)gmsl zVsF`JIj4*e_#(IH?4EUCA5{JfU+9-KplG%xXHwt1a7$Y@Fnz1Su5rfFa=g%F;Tk=DaW3x9K4j@JDJ(J%7E zKV~+YzzCt_>b>VB*v4jNymX|65iI@I(3F4)3R*o$ld}XRa+}%u!KVJux9{6(o0#Ed zT^En?(`@6ST7?A_4n4IwwM87Zsl;@dU)3^ndv71!vS0`#l}<$iO~@7+iL{0o&$aHH zhV*l~V(8w2)}5FO?{$DNC^7fak?6Mb>fx;24qALXTZk}c?sZ-F0o@tk4-D^nFv3$- zTEzGdf|lO&0(S<_KpNyc)6sFx#rN$MT>}UGV3s-wLN4}Q&R__i=_Wg>7GHsOG zZfvB)G@l#z<^zLie<_)^TbnnVOeYJgCUu71$$6MLC#1J!v^o!HNbsNaXu+8pmfsN+ z&`B9yl9ZIp zVoIDrW##7S&B?3P8s$ZGv1h)%~8~Cd77LrMBE&1z@5I$aP7e!#m$Spj89+I;2eVC9*2AZ6+^be6JN}B(>DTP@4z0vv*1@y8^iViQ5G6wfEm4> z_~9m659vUs62(UsU8)1Ru2G4`i%X?M!sRNz)zSydqelj&oyd+Kh>A4AFIc>fEW$Dx<_vr4W zyP}dd3mwe^TC+k04N<4ZmkO7s3kpc1Je6@4>gr)kS~{aQ)t1p>Jh;+@I$bm-gA{vR zlGNQy4qKZv&=Xg|gI0(aJ`_oMOtpKD`@-M)BCg*9B+|UJ-?nGAlfT@?@=jnnC=J4> zUgy$qF{xG9I`G3rku;cYBxvg{p#vC9HA%gPYgqvbrG|w`(K2=F!*Y{OWh>IBLXn}- zN(u$sAK*4@P=zAPC^xUA6B*+hyoMoIUcx>iXapIJPdDZX^PiC2HY`s*CvoyI{z`o~ zUoj;dt6ZUvPtZj(i7>}WImMxh%2fH27t6Zzxx+DLhOf#LDHJ&p};TRjiV1=~=?5Rbs;p9(eurppCn>Vs_-=A$*+H%Gc)X%T%>9!}1AOwtr{sjNyt2}O)eI_xRvplpxIlT?|mQ#{9v2-8!Mw?opdmD1SccY z8{Ti+rDZ+Tc_F<0pv|fWn0OH?+#f<{nP_-G?^WIlB*auuL_JVg#v4u_GEQ@zM zkgX`tKXD7m80ul(tpM`Mo6{7Bac+PaVym|*bENWiF~ z&Q?~mEXm0ayxKnugTkg$G86rRkEzFndQCF87pUM_f*b_Omox|UwVyAoLRA9Qs4W$ z!C*J_b5xSdpMR3;3lO zKfR^#b(7}}>h1eN5p^N%khA;u_TsMcUaex)5>ABabiZT1uYiR90jWN(|IXG0|2juu zdrJx4(@v(|Oi2S~1_EdgrcOFuuf5`dBGS#dV3k9{tt1q`gI!a#rqjy!_d8DfA3_V0 zI81PFh^1Os1I-@M`@KVcmv6VFu4M+Kpo4F|DE&S)t| zUSi(ly9LD=q;)g=CVr04a*2E-be7Eb9-VkEM7=-Nc`ef~&BB&uTEW3-w@;7JaaO@e zJ19T`_vKIvFL+*Cbwn`mvW>sI5&_#$yJ!Q%HtUoAE9frpQ7Qt=&H^z-fTjw#HTQ>Q zWqqcQ9;%mVY6=kjc2g0;PuGh<5?Kd^AW(CP0Wz8jEE?87gdqWrn3vMh<&?u|PZJ0wz8_@M0VODj6VCevBd+sXO{1w*$hR(v>2 zA7}oaY7>6Qp1Li=%-e=ZsWeK;kUMAoVLMpp%yz(mYjgFzz54@wk$B_Y{Hd6= z)sO3|pDA*gJ{^?~di{IsTUoL&9rJMsv&$*j8I~87L#pBv-d!3^*Gs6Ekmx@wG8!V~ zwzY@N4i@9ngY>(&wTFS|yAL{K%U7EySP0wG5hUXn4Fz zpqIQKqs~9np}mhV08X{=8`hvv?4+Zc`i}d^50j96tQd;9ZI1FR=JngS=L~fq=@?nx3b3-Z%8C3(E4(q+thsPqf)q2`t&v+>;#EE-Fl$M0t7Jmj<+d zoUg;3P2GxlOp=!_I}GOTnf5N1UCo@G#MnwqO5$guhXalqhpF+qcV&+bG?tE0`~*Tp zQ1PmJV4I7&%}YD8FGOo;zkr6ZTn+)9hEkhpou{+I(nj+^dcp&JVT6{Z_UyHLn^qbs zM(^~+)smtObnZ4{)%wYg5y?neMz}TeqlY}R&`Adr zOCkWo7YYjiD&}PQdG6)g)0|f^zyR9OSJn2n+Y|3_=oYNMofo-ndtS}qXD4t4fk^|x zKr-eDQ_CxT5bebCQvW`)`c0`9YW<3|YrIhlw$}Tii3`U*6N3tiw3*45RcW8BD(a&Kd|Pl>7La)xS~*vPse) zPR8moYx`W_(S51PwP|Sq} zNnndH!)?LJ>2tvmNE>AU;6Ubsdbs16nE~kxL9aFQXo~tBfOC=B5e_LU{wJAm#c`Jw zQPI>92dRGBz@00t&s_kC6Lfl%#=@XZC4~MzP>ABl1#xSX&Hx*p zm&2=~20E!b_N>Le-dLe0JJA=8Nkc&-4qsMiS3&e635#3KVy{ zRfRJwDfuy9x%rNtqdVP16ED8<7=2DF#)WkJsA0c@!NPlIcGl7!hW5$uB&El>jk@^R z3oo{M_DI=z;%LW5nRbp+tws)>H*acat9!~4CHG$a^WC|yE=yOE_i(XL(--%vlL-hgv_*^N(NII*XL9kkKx|ZKHkrj}g zzjJNTkGGC_0hmLYub4hHm#DCsm-@ZV*M`)qIu#^JF0u%-7uEyJ>&kQhZQ&Bn!G7h-}uQslVLF+!sy*U zYr}Ibf$X~C?!rMmD333ejahpwnNiOlQH);)H-mi)x&?W zSLTNQ9Q)Ib zPy+UKYkf!u_*+jth{#Y*FqFYFA%A{%t(O~NfIcFFdDY= z$|(3~2__F>)iX!}cE(Fcdg$UH%*42hJ138q5x!-^8t`4Zm*tDu$F+OB!dDg-qYgXX zT-rX&WU%<`cW`xLkci2gVO@zd{=8XN_d_>>*n=~i35tlzU+IO z{W)}wHQ%**J^xGEYh2!H2ZI@t93Nk7QQ6T?kmqSQ`Ue+0LjDxW6)rhFar!9NgAf){|}j)a|`cdyt? zz}-h5-0Q1yk2+`RkUjLbks#DxTVqL){l4zi?!KFl)IRK1)8FPQ**+O#w?*t-`_TTr zT6>~?b0x-4E+y_!mF_K++anp<_TaOduNTyhEcUBsC}*?1Cw*byf!H*AbZk=&3_;Y7gSGxxLSy$8yDVl-5sIbI2U zJ%egZGwzZF9nwfv)R4Fqf{*Wsslmx$gf5X11&^dkp0h~k%AFi43(P9%aQx`h;Ld9I ze)DtU7fPGz;*@?KvH-0``%vwZLeeLQmJu+lCm%2t>cmDd|{Vu9~LAuLBg52 zwfreIvN#n@uE|HGzXj7Fs908X7?qV+m?BEhH-Sr<>+xwP9YhF(#{crJ5}u*Z$WVo%cfF90)QeA5H}LhNeALqzO@F@ldgZawV?uXmR$x zRd+rcFnTKEl<>OflFgG|`^?+Kpdi_w`%FXNHM!NQBfVamiI}Zs;7Rw!nq+RZ4?9N5 z?nLbFElKXL`%xYrca+-_CL-6?$T385a^YmtX{17qEiC=wW!HhM^*-W5)0+i0jGY$} zOHuDxUPjo$K${>8jIIOEhbp23f#iu)&Vyh%(VTqgC3MtzFt{@Mo~|vgg940ShlUz7 z*)TKFqpv^6HPk>N4Y{~g0`Ld&qE<)MSL3qBKLlxyQ66tMkNE*ZmQ1NpkpV4}BFj(E zXm+vSq$*xsOD$Z`yCG!BG>IfBG!H-QMzb zF1SY6{cv=Y+D6ec>yT|vu?+ia@HX!~)%y$LUWyPeD9VAQ6Brd)UaN!bdR~ndJki%k zB>c4D8ya;UDs%`l#H?hh0tSE4-Q_)VK@Zul9tvJ?)JgO58z&g`fHXja!00u@ZeI$F z%NQj14@Cai?b~nbFluKgzn*3=@%XKtn!Ap!3i7`j{=aXuOiYPM$~s{773{=j+65d| z5EYF38&se~mC97Bj4O-nivQ><+J>@$DLX@BYTJr>BnH>5jLl|w#?ei!b> zVJ{y_xwF*uGTPb&#SbjaPzUpoH*7V>%C@tbtig{EbUq|JiU3bTDx{wTh2K&(l03MVnIV(f9D?M?xxlEnw8}Z z{`Iv>V~9@37F>WxF2tmB(hVn^m;}n12cQB1_o^(xQ)O5i4VL?ZiG~^#i!t|U^Gi|? zBBWfZtd}2Rgclg{GctoKqHxWQ&MNVxh&!CC5{fg#<>|C8++Ne_qr@h_A? z`EhMg7<8V|@Uy4`nf?F&P(^Yoj({;~5H%;nlLzN1Q-AR0LL{?DB+>@-(DD{Zm1yD( zi28}&^$hR-NsY4~sQj?lwN3JTJ#^THmkXL2`hQ&g2V7HI(>4yToj?dk2^f?rp(({e zR}gbT?-(F}A}CcrY#?^J3T2~BBgKspG5V8Ip5et7bPx zDwN+GR)@4@2!|A6RQiD=J3+fy0E)%~W-HE=q$V<)$^BBOJe5gQr;zMT!kjK@tC|*{ zCd#>PD8QA@J6BMseHy^=prtNrUCKa+1ri;_B>SETinX~fBtqZgKS5A^NI zTY6DFzjT`Q8p1XuP^qs5bQk;6Yd*9Ewdr`gr-8vlOR%^im{S}@eOj0yOaYH2yp3?a zD8Q9P>0y>^H|r|Lgc{pdhi??imK`6D30s5&-j!|T)`O1Ux-PD(-n;YO#`Q;sAItO~ z=>2%@pW-p!OBe5KtR9#>Hytzp-2+OBZWC&vw==X=(p3@|lW0K8z(r($qao{_B0*>Ey7p|=Y{A`;42mFMVQ~TpQcM$KRjFX=@f3Fg4(F2~HUgXQ?~~(i z50p)|yu9Q0DspS#Kg!SIs({xFlI3_=TL^{|Ug4sxia(e-f=Curk~Pc4)~Sx#$SGn= z68K@osKei7T{HcK;j~g^S}N(0k1I=_|6n{YwMa=>(;9XB$FY5oVzkR~v)8_hwWB|} zx7W_hB%h$4DYAR{ph*6HUh+Fjm<3>q0ZWzyv~tMR^S7SF$i-Rt=NLK=l3o1RcMlt^ zifF`_f5E&Cf4IjjlO{7@J-6or>#FM}Q_~h!CNO} z_8X^x7%rMmBB#JaYJ{Ovv`13WqTYG};{7rM?X0rYv@=4~AUT-y6vLP}16ZUa<4rY? zteT13;DYhp9ZS_IzAtudocXE!WAKi5;ChcDlPd`YsgghzsEwE6B$u7u8h)AykRHm< zA-1#2%Ttw6w9IKEbx9gS1{jZ=-A*JT8&e&&xHaa)w6$XrWMb6|nlinlu`s7~&ZlW) z{yI-f-Ned4{kNU1cj-qqZu;D!`DCo6x;$`jCerku8bY)r1+sDBOa~L`Oa+Py0M0QS zF{vhCJeY!KS=`0}J7mW&5oDLRbXiHNms>OPod-%^_lSEIR4l_Rm?Fh)$3xTrf3Vf$ zC1pakRe&lF#Y#w}DSLbwpFjFV;qs@M>c7RV-}+nobHj%7Y4u^$NyT{hgqc)%4ky&p zbtfx<5n!gV%3A2OV?2{fv^B|4%qY{e2s%sQ%J@oeD@gdPA#UBwjHVHyFt>f-c1&UG zGEq<Z1^)3XK^pD<|ZgK{>0o4k@Fv29F zG$0=o)WR^afc$qj?8mZz1}P(B*x{^mwo+_SltjNi^?FygMcA#fB0t-*%)0EtgJp61 z?3goy=V)=IW#V?OJbxsQ^@Ut2WXaE{R(Tg1cIhf9);LuMrIm_p`W}l@7PzlBg-j{5lb6NZr(pStArQ8`a_f^1kKTcj5pXC z7hrRSyjH|Z>HMu!D~roA?M#`iN##$A3O$ne%WORBh0ElHCRl|Q?yh#uGU%ADlWm=u zh6fAS2CTWzB0!G71=ud+7V-M$%I3ibA>Ema_kcY^dG_bZ#hnR~(JZ{#MKt(q#?@`) zf=mjoQIMZer0gMd2JjLyl;Q;GQRDzq=oSnB#ED5EUVaO5g4}$_|1edD z^N;;gm-0*@3snmilPFOqAnBl;2+<}-GE5k&gs%|_qDo6i+Ng;~7T!>PNlrrclq4=fnU3J^&iNb`N|Y3$d*rz(i63U{ZyDwqd4lUIs;Mx9;Hw_5Xm?@v!q!vO4%CGcV{yy zg)9{_sZrJlsj>7cy(vOcPPT*ujBgK(RmZ_{o%^*!5S0P}E*GVm*RmTEAhgS@4LvS0 zQ>RjdiI!?+#gLW*)E49bpL`)GwB%!ffLev>l**Cj2U`=;_Z0DFu&A4P+7BTP;k>nl z8JvoZw<9?HW@`FNBq;M}SKzkrA7k72-JZMiMS=MA@ISjQe`$+2Rdx6EP%(~1fU}LG zs#6Jv21<}w>^jTB1lu4^DaTZU$JZtCjK$&z!$wXJB9PSwlr&7tt#Mk86^C15TPqY! z)WA*EdlP{(sMngtLHweynhRmT5%Qy$#cGoo&{Ar~r5MU1=nDadR+8s`*Ng&Jj5fS0 z0f*rcqT$F)2&v(7xB2%7YN*SyVm8(4^cd{Fu=cjg5T8;Zsr2+JqDrwR!=q5k*XG`3 zePA;A!> zvVRE$`P6tnnfMWJ(5*W_bxB$x!$y{LmLlK@_C_1K$q6kGW#J zkGTv57&u_kz%OTFu86NP>QK8;!OFC;?&q5*U91N#p=pQCp(FD9m&7?`r`AuBi8Jzt z?-BH`{3UmYBX(n{TkhwBlIimn+UAR zQATKJ&0(Ag_r}uHfUg9e;3xHnL8Pg1Xov%AiKYfR1LoSe%0%BW#jup2n3ukx^ELxM zaPeYbPfpOlhR37%C{n5FW}&XfnijbpvAU%#Qsrsax5Ff_D_%I9T5wH>PuonJ%nWlACG;Jiu z>#C`FB&n}83jC&b(dPC$1?-e_!=`A-!fPKxX6V~%w!p}}u>N0Na!H?!8)T~4-idU-eAja{5V0}AxY4=Z|Ai*XB`fPC0`BNnY;cT ziALYoqQs4qt9ry?Xh+G?Qf&;&HsLx9VnI34#Hy_oEj6BC9p7ZDZyKBU-N#+4%A%ZE zS=t-;KVtzdzgqnXAN#v@ZBn=?g8b0N1R|}_#}QCDAvIo-Vzf{=j%XaQ6(;eJSHW+k z($ZPR$z3zzV7o7DSV6}x$9qFcoslj6?M?^Z!JnG?KO%f_vFmY-0JIjAX#`IaE7;1Wm?}N%*D(2M3w!ug+(6S}1I}Vot?7Uq%XE?O>Q# z`(ZMobVshhi<4V|95fY_cjNTtXWiGMuf(Z}PH!GvR13O>kjk3pbEAu2Jx@yYAk{bh zW{2@urCJWGdp;K`S6N{bGfZgL(=p!(y?8gocrF^PK)~uP>s=`j`HaQxQX*lb$`Z@_sWGJ8efwr%D%( zBZb`+J}eSli!0FQ?2AZksu0nG#FSraVV~pwiIxJ2tJcu@QwECb)E&HQdN!(m9=H5G zRuW1^h~$4UrxJ;oz1x1Bi_{bNCR`V92)HTOt5sQcOudru)j??gqqpaCe!=ZQ0qq&= z$?2<^bJOM^wCnPA%_B@2LZCe^;$jU;-K8=KbcO?pOt@MU$ZsWVE8lhW;T*Hq8z{3< zZZ3r;M!dt%=hABQkH^!?F0RlfTbRiMUpKPQwg%@6FhdzBGN_0lLos166fg165@|bY zy>g2+s{fTK6X$pZh55r;^4E7U)Gx2pfe}h>7|B{)zcp#GN8tHB8&W~~)TINO4g$;& z1)H_4o%N*;6~uMWQofh8$1hl72%$(7qiOgeru$lrH$FJ6raexw%Kof=Y>JE2U~67I zQ(;%g!Jdeu4x6ZJ-IbC#)hV}4P^ZGSw?Xdhm35ose|kN#Me^e2QLP>G2SqFBS@9Eo zQ`6Xj(j9|3&j?Ne<9kT4cb`P4%AtZY!P}pb+d6g#-M5%5V$AB!kTNeD)=ttkVqb_1 zupwn6cycxT!uIK33iN=Ua%sQ!xBo8TYkQ<~=Fs5DXT?b}Fl56my$#D^jtzE<-j4V} ze>IaGeRZzKe{>kmd5Pf+1XQEZml&idmNUj6F>r6lypu)($+dAr54UnwVOW@b#Pb}% z+Q`Cw2b4s&-aTU>+EtyOq40b3(zvq_X{Fz;r)0>j%r?^KhMlR#{N+n3!wLbmv5}&<3bJnJH zVEzPgkAiQwcLb|lN?@pA#MKFO_X^_lBNi`J85lxdM77l>;v;4J#~1H z+OMB?S#}bAKfb-+X5M+HGjq0X$<;wK|8U*|IS%oy>;5^Sf;18+gPl?b-1o;UCJdb`OCY^W)i)b zO6jRrrrz<^qGg!+{9aKg&d#qp9v(uYKg!*Cj=s-I*;c`F|4GqY)8JvcsRJMTduWj# zacs8}jb8ukb0LAi)>{kf5=vB-jSBdkmVD^+h$7$T_0i=2jgRndc1pVVZX{6C)6)BN zuNJh7k`SxagM{%OVZ1;{jZA|&61Z>_zGA6e1IwtO^!`^_1ufW0%C#wI(TH!?9k3N+ zAKycxM{ghL*U;M=k%d=&zgX12X|XU2m-mQVFV%Seh?PuKCVeDZi4fs~=v}#de^6`V z?pTh%v*o97`BDuM276KrO!p)5yKs6_=~`2SJ(4J%p@D)BUVFK$)WR%Ns7^} zB@dQGvg)QR#*yrWwdUwsBZ|CeK;~u0Ahas5kx6_j{s43>aUDG(is-KpP=^*3&ZiQm zCyz+}+4;6<{>_Ydn(T-#>3f~E9~)Yn#6~0+OmTIoCIMxu&MeWZ)y1qUFk(aU+jrSV zi+}2YfjV=wG-G(aVCR+$dhGD<7nZV2gjH81S{mHZm|fyGv6lb!mwEe#*3@LOWo&hN z5B4<#;=oLC3oE|CW!$3!3Rr={yn~U$fOchN@(2|r_3ry+NR{XFhKS82=wL* zv2dX-@s8L8_{EIwEa?I>7A76w2edx{nF!4f0z~XroQp?6R)e@l$mPPkv9Go)J};sxVrj2CCT zUG!LCjHG9WKPz2{R$3|4HD_}bF&wv_7u}xtUVr47%G^%33)#LT=2p>+s+x)#JQfl4 z6GJK3LO}%_&%F<=JrtCjYP5%)ea+BA-}JS``l-!Ib!8o-8}YXjbS=A$p51&x!ywqx z1d$RU3IKt6q>y4En$ageU0#D}wj%b}Xbk|;>JZ7jr(XhbxMq}Q;g}4Tnjd90=Qv9# z6_`mV{QQo$i^ zgt*H5OU^Uiz~)B$lN*z)@9H#6$oyDN?D+RK+xbIkKkD4M9pMU__did>9MwuR0Q5j zOpU_@B3tY%a*LP56KWB-MEHo{pM<3d%>i5=E|4doKm@(RJ4#8@iE(5@vJK=ncp@}C!>s1MkqbZXiub(t zC)Pn(Oaf}9;J!5;G>HM>D-5AphLHf!Fq`s7-}toD!RbiS5@OEuI8zGpfwU72wrU(9 zOM!Fxi0q?jyQd&?54nue?w0@iGonVyllTL51OvRp~eaj95D!(FbiIWnYM9MlPegBg||2+MziHN`AXG+q3aK@z8O-N zH33Ex2&S8VxOA;Hj7Jo}Ou?I=ZT5dF*}4HR4cnt^@w{92&2+gNaW zD*RQ52AiM$-cUVK^X3Z-_{AssfflxcS%nb_vk&5I)E=tCyd%c((xol#fsgm*Ga~c) zU~ADv2;5ds5rW&4%GQa^^CnOPC74jIZ4^K;LYCE&zDycDRX*%2HZ2n3Mw5!Bl%Bzy z98+k7Jm6qzw^U?`^BXSJ=lMBrJ5c}9uaH=MDHJC!5o|3njx>QHiMSw|pLWAa0pcn` z5o}VR4)YVDTCMehUZtc@MH6RhdinJVIRCqUNb!XV2+_LLiM` z!l5^k2&~U^eE7`p7UEbHlSA*Exz-G| zsSpmvAep3_;WxEcz*)g@!5dbL1oL=-^gFj6#IKlX5YcrZ6D^q^Ze+#lIkDWsrx67w zsK*(pLG5V@z=De8UaK}3X?g3&jZg0;9R6gcc1&S+XB;e(jL`(!7DpVWO}fw<*on#B z+Jpog{IAX0W|EkQ5H%%3oP#e_g&R7?*@NUB+}`-=sL4x?QbAfiN|Hbad^z;3IecQ} zZ-90a_lJ)0OLnKur4f%Q>;UmVXmMCB7#o%Rr(eo%Omrs_c)mr|`{3xowE{aYTZfl^ zE6Y$5yMAJ?3HTG5!M99C3>FGYjOfH?ZI_NSpoK`0s;V|PU=nX4D4Ek?ln_-b7)Ge~ zyjA5M?22L$p;ZIYNfEN(r9$FX^vmiFiTm|Z^5*KW&-4Z(d5v#H8OCDQU9UBfJDP~&c+(C$)u8G0Feuuf`$w7|Zfbg_lJ(Z*M52X&5K4YWD_J9ViGgOX`(nMMH&5fI z;@=d==rH!W9Lt?XZyrt3WVuT(IM5@34OUOoL|#T7=rR04cWP$c(z5C|nrRTrG(2=m z!LFiG{jy}(Y3$1(>xeLOi=~ zdORb^&Cljycy@0c7xg)Hq*iw<-{hE7dsuLK&zM{|`7?VlKeydhe)_0&d&pRx8TY$> z*)=x5^@wi(67jf($jt67{!&fOESmH~=YOB%KW!^=Ta9#QPG5Al^{6ld?ujHEY_FN0 zxxYFE71n?g0@35;b7&gsQgYOTx8&7=<_r)kQf4#X|L6md&>mPw)2ELdju`4lgJBvy zGgwYDoV)MLI6!=R1a5%Dh3~6jCn6vA(GL0_EIcsw?Tv0-$n?JB3Y4%$?8}K8{JOk# zvsviYFLkt9U?@rDRSu)s~G+Y$5K^GNFUV)=a%jZq8g}v{@ z6?D5;#2Jx`p@Azp=Es=t=O4rgtiG(reS3XIw4Y;;YD<{vm531L;~z@)b1rq#(-J~C|QACwH@G?_KxY_QKq4#D+=M-eEzsZiiw9L>WOJ8|+{`&F@Z|WNIxLCanMgDyFt61vm z_*Yj>b49wsrHdU;5*EI%b?heo)}aGyx?NndkU^Oe@w&r6$>X)Dw?*IUm>c&@s4dl) zOBST0^~m!@dWt{9asS^N7;#vO6sAdry`-?B**Rezn(cW(9;Xk%G4^ zuB1lwk$MgD2Dk#f*RPpJbQ?0o3f&GrPQ80yqkgwTcb!#fN`}>6QJe;2EqcoqCK!I5uMG|@-F=SeB{DFToB zQf(981kB11t%X`&h$nqb`G#9-WwLcvMYwcDT|RU;cRar6m7rN@$)M4f z3r`j`f+?GybxlYAll}=bS(z8b6;TsCjI-n<4&IWbe3#l84^Zx_&96SVG<{>D$iXd5 z5ga|Tf@{|qbk!r`5dPL>1`9*SSLItUu8b`RcwM%h=D_TWB)gGT7XDEjaA|KMoLHKs(JSPaxtc-N3*y3|m-}vf8pp?6-n^1Gjoe}^ zb{Yx1I5es`@gs;rued0R{4~d6y}7Nqf zS98MNQ{kZA9r~)tWO}tb%}NVfaJ;iVDH{=oXWO+@(OT9d@+EBZp`TmR*g+snB-sNF}2w?wiF^ z&e&k!Q{9B_OPolt%|@x8)+@c*@1mkD<9Utv_UC?~MY9WkVIQ`Nu=mf-w&&q|hY};I z2?rw&mqi*!Ma`Q}%zKv%U$x}Len+Doiej*+kgMHVh8DnR2mSAAs~z2P@vXPOqrA5g z0;BSQ1`$^~-?)kuG+azfv}=|4F^<1%c@{2~{uZRMGTb23KaPgQiwbS>6rJ2W!56wX zA1|6pFaBdj)EpG}uN8p|hZeb}3?vdC`L`~=cSM5Hnw~u~zikPTLkiNbbgd4#cYhlV z9K1)IX!f9eXqZrokNP5d(0^hkhd>Xo(!drDzQZo-Cc6-4qz7rt2tS%-#CPwA z6n!irvQj1d%Ilg$-Yn9uJ^Oj}BshQULG|mt_1Z6l##+a|iQe0sK|%t{-DR4mx0V>i zldd`oA@H{85E3x3vxuh(1%~e#NXb1`*uXLJ zUrH)E`|m%RemzTHcSNVo|JoEsycP0b+R%|6@JHm#cm+HoZg%9Lk47Ix_#zH>xMB<8 z?c6Cr$vQ{_qxc$vhLzW&bJPk1+ntxCmeNLqVb1L;o#@e&SQtngV{z4 zOJ*Fj7MB9dj1>dy#~2!@pzuXg)r|XHDq|p)PB@U??vccqL)%~8AkyWg##r=MZw;?x z`At!Kth=i=ZeI1`)C1+(gs6qC22MGBXI`toes>?&HUYPmy^xZzq+2l#3od+RSW#P~ zxknVAKSGpl_5@R`aw$E-7qT`?HQa>!xoh2!GvbGneDbmj;J%x>es3=+!mzWcH1a`z z*P86P0~;;XJSFCoc3=%DR|6g=Y|1`$3LynQ5snc=XC1U@eC2Pa<8R)XYXNIP`IL6DVHdy`$mo};}O^@ z|Dw%fcXDvz*bOl9yMnLbQ)-KmSf4B<*Xtc^v+cTpgft!?tBR+Lb>fc0Lk_+ewGne_6%jeF! z9?!dh=q<9wtXCB5Vc@c;=jL*gJ%CxeB(Vje{^g+WRVSko=^=7m9=L+v*-xM39)q5E z^gy(^hj>|eQib#{{bmqPk6@)&#uw1u^mkRi6_F8&48Ho7fqmMc##Gq7FywuR8gU<= zNuQ<1813JcIoHG$%{CATT`O>K@NZ`gLy1j7O0Pibdu#!|Nl+H(Qk%NM&AV)>nLVC~ zFIjn=P+QCj%Tlm$yaNFqEgfv){jPC!PPuq>cU}oS9tmeZYk~6biyLLA2z>>VcU@5r z`PHr0+eBYg{VEbx6aQq#J3PJh;dgE)RL&OUrp2o{dvKt*>HKXtVwW;V=%H|z^caWM zlGS#5T8lqPCfXjmXz;lfNBk8U;dSjgJIGlVOf|50VL=5A-RAItsp~4m|E_27negcx z(L!rmAMWLAZ7_C-U?kGoBKM6elW?gqb@nb+1I`;AH5!*>o(Tks+6=y)TM)8vEJ}C1 zxgWVfSEV*JzFEddE3VTZ(_2_d`VpNdZX>5ngS7^lB#z-`R1?ddr|Sh&;Y$NMMhIHI zu{QQxet|?&hIwggLI&oTDw5>v{p6v(!D&yN%6?Kmj92K`?rTqrw=mTr@d>}Cp;jRc z3El(w&JxN>P@VPenxIFta3;U-Qjl*{UJHadOf@o}S_yUAB0JaGOs>O3o3E!f1yZzLiV2#C3 z_84e?vHlA2ABv|Dm7&I`VO9)}7B&$QQjEj70IpB~<~w5nCsA4^DTwMU95s#1ik;}lElimV9 zXbGAC^`h}+8<;&D7*Aq1`GkgVqkzxU;HOH(;APNxjpK(?l;vRtJh!1R69;YX? zj3eX=!IXuiNQ`8X2tDLuJ+8-@VDVtxkC=0kkT z?QG`?A?TgUv!Ef;6$)mHCTxcRp*R=Ant`McsMyNEAs+)yw|}nRLkKd$t84)k=M-^> z>Vz7pa0?QX7>zke2E}2h-3K*e7Lag?kP>d|lt}7>gnFnlNWfef{K^=CRS7qPJ7KHr z6M7N22jTIUY{Ok7hSoN6sxs>TUW29FtmEun{bKUgdo$2y41Nn$Q{drdAQOfO1OD*m;yDkXqw&1Kh7&qGhWC52S*ujAH8~WP zG$bzvz3$;n4Q7qVK?6`n4f+n?Jf>@ng!c?YF=3Dp700I9rFg}@Ac9;H?f_+;ym7U% z^GHaYk7!XUwC7fFhPEUg2hNRnZ{8yy#+@J)1pY@}HQQL2WgLM|+n=Z4{?7%I2+V{q zq40Lz8HJ=p#jH&-RsAHXkI@X2;)LJvKH!T89QYzW^rXY{v_0Q$ali4OvZ%Q2aFm#1an_*-cjZHTzA};SOX1o`;U}zv9-kI5{ zgpdYAh6>@p=)emKlsT?*HB4(oUBdPAOcqTO16OssEm+u8CdLQrR3Ouc*eav%CTU;K z1uXzabUD!w;Foxg26Wea76~pYNase}!qnQDFcBZtPNIK?8di;`O!hI09L~oL7#4 zcbP!s%l}+WyiJw?DP0iSj`L;_CK;mhNkla$a0vdDKW{SwfE{KKK{Pf#z=4%o3ORpJ z(H5<+a0>G%tSkz4%T(3y=xt2^=K?P)sEOdg=7-64Vpx%aeM+MRiwV6GT!t0~P9V_x zFfr6Ek~(Y-8{TD+C>jg7AZ5 z7v&(k0ATQTOYLP4du^$OI5Y}+Y>UGJ;wcESUqK?yyW{^{|Eu#tpre4H8Z6L4kOPQo z$H<@&fZK&91zeu#0%HKf2KEumwl8Q~XcG!h(vY^sg`|s$g=>WQc#wEAa@NKmlNffs zXc$^Gj#;!MQJfj42+7ybkKfi0Xax^YxX^B}m;R_NXiyXU|6dm@NeDZSXMo1!(*g!w zk|O+(w>Sae|E)L)f3{v6Zb0^hxP4wCEZA{oY8ZGsyletkBGQg^HlC0n1MO6X{Z1Q4 zu`I=C94E_=a5ZV@hZ#7r5zk(O_QJ|=mIQ$Yr7CU1#E}o*|DPlIzik6?0>uXuA|%95 z(~^oMf~|m@!JvWt0r!S#6re)ky-?H?7}DSyCZysB^C@w_zWYxT+5#fNhY<-xeiDg5 z02_u##0Y%+BqS~&u$)3wlvL8*XtH7@O<9YnqNA(F@HQ}2)hDk$XtsvU`OgRXIYzHD{dO>*;k6tQ0ML%{TjW3Lh`;()2UBU2wu+>kl z>x2BRgi+BQ!8L=UqmwJ8e)8W;&m+IjFHcX`2t2;ZZEwN-+!E&>ZSTehOf)M@{FIuS zrBa?}JDoo%s(5JLux-!tglArha-kE(ZLUMPWpA49oZEf!*1GDuEiaqLBb%(}^B-mi zYCDiRA~oy!#3gPVlHDb@Ze7~lK8t-WtIw29o@`ScQz^P&J;ZsGwPS5s!^?HQ4hNol zI%559TgPu;uYdi-k;(pd z2UKFm%aaer=VkuLdPH64t6ML#-Ony#Y)ksc^6{EHh# zjlTk{_UF!2IU3$mVor6;UTW|$cq;A`9B5sCSLpUS<;?oySA^UfxRFCOiSw4Tr+)3A zEQYYRw^vmLP{muXUrRsC{&~4U?}%S#bj^WB3H@y<=XN|Yx$dbzuDD9~G&FOXx;aO4 zsoQGqZz#UnC3@Y4tx?Rk4Q)DO2yo=h=iaV@a$N zg^RD1c3o6zR|&hM>9_t~y^7>`o2u-pd6lUdQ8o8I>o@xwkHlMr9c{7sSLCeUVBGnL zC^c&(v-lepXOl|%@nK$Hx zX7lfMDRX+hdb6r=*nDsO(4%b+1yp67a~{9jZ)m4_s_B`HTqb?0dCLU%A)1{OezvwzSw@v()mnFzZa85?pay zwK>f>@A<}ClCiVzPD;)9uJ>^@Ij3YYz@F=9{}!@FA#VrKS0^NBay(VgHFx~Aao%Tt z+l%aB2Rv76|A~)n$IpKFF!1`e`szD!r#&O0qhCrm(>}E)#@4PVPy0Kodrsi*@eduo zH;I1K8sw?RpXZY7WQ-Ol(xrX`TdMOS!2Y#wVq|4QmUv}AF=rs~Q88n(xUMr`0 z?5J1Yd5g&S*>x}Ow0?LZsbn?lq#DV2{6Mp0eW1baG*#nmT~b0nS5a*w-cJ`jXH)-u zu_<%N!fb2Wh|J;B{m)n2=nA*mzN54Df^d9ma*~|$+DdGrY3P`wnNIMzosNw{5E7Y9^5FBN_2`m~Rdey{9YN9&as z`S6TXwQ(!KaLE@PGsWeG-}+}_8}=UdkxMZVnN3XmU|yZPI&h15rLNBxj|SJwky?FW?Q4&Tss`$Usd$_GY~xUKYJkgT`3tMjm@P>^#g}z3 zWa&)evq87M(XG|}jcYDEI{0m+RLlo=LdSD4VSA4m2Q@d5O(LPl3(9ue@SLu$Sttu57 zhSZwXjd784jds>%B zlrnW0Jd$?YT`F~X)7d#lHeTb$$*lyCNZ zmXxpWl~-MN(C+Y>ExJ1b`zx|)9B=6LMVV}nxXvHq?lb?~;mAy|@O2J$l_ERa(9!Z@ z=JHpm=FRdq4()yASkbn;_uJkq_NUD3k!pMqH8(XXpNML@xp`myfziMA?R;@_A}@Vh z_(P0_O1GgGwKZq?K=+$k?Y8HxpQY>5y|t=jNSBruSHJ10Wj&X6%FG;$3RBOCtu8om zL9|1&<-nPOkA;e)4EO!%mWwLhp`!)**V;m)wq9%XHLpK&p*i4-U-Cwkmc8Y~FZ+^N z{lR;~o+L1aA6`=Kvr>G0DY_>%Lt0rc-uJ!btoX@$CM|{AW#uDWH^u5nkY|6y{c6h` zyEvtDuI-_+B*n?gYnOzV?E_iz;L$t#&KI+9%)cJX^iT1#iloHoC$8|jy^a!eIl=km z!=mVv2m4otwq?{C9ID*jejt-QXzlwxu~qFrVFkVCwq<_}dw$#P@)yc|X-h@eHo4jy z4fAClxgSdmCEb%7&d5LMNNpng2kCq$D;+_vHdTc*C%BnnHYLA=F zqqRvVHxz#m9!m4;P^jZfrOgH_`m62RvBJDU|Ged8a)~qD97=AnFDM471>%QHABQ;h zZyU?d(HDB$({3oE=Kf$ZyXdrdW7G}xfsI*qu0sb;gl+Syc|6v7_)4_@o79)C57UEG z*_wPC&S&~~XZhc|C|3M=>_odRzvi&pQgzFOBiGl!cjvY>8GSpG2VDQI+qX~i)x)%Q zqs36hsv*_;TiFH8s@B(coCp}W?=-a4_r_G)&9e$Bxs#pVLORc_Jr6&;uzW>*ZTj+( zvDYt7PKz-pLC>dT_fMW=ht4p_%?!@%6Qa_mdN&%^L8UL z2e-w^E~^kyw2qRxnHn0%A6paAX0`{kQ+-%ClytepsO+LC{|=110Lfi0aq|3Rf&Bdr?l zrcAZlJqVP$IS`XA(|ff~G&U&jeI#AnmW|Ew~w*_29vfvuxkB#vY>`QlhJe zwcC}fa)l4%N!}( zX5OC(HXB{|=Sa@BGeN~x8%q^`NlKNR9J!)VzNZGy@DqKb5N_8#V}E|>qmgx3WJcLy z{6FRgs^{*tRdXl@5(hs$`!Lbpi|%E-Sk)#v7NtD;#hB#!dH0y=ej5#;{_QP!f;tbW z(jqE$G28LbiFG?762EF5ysa2tx6|dgj&{n1ZQh~E?lGx9#9Ysxm6q{NT(L4|^~l#F zt=dv+?x+MY*Li8&*SEK`zIOHPRD!3$oiK8>cWv%ieaOsHQ#-j^1{E3pSo)h1x~If& zEA`}C@(QJ!X@iXV#G_yJ2CHs=IDhPgNRMD&G~?RGgtV7WLyFu|mKLlk&h8xg(B^HI zbjhvZ6jNI9*1eE|LH|#Im;7I2ve{Or)6CiwuNx{~=qQ*w(6T-9_-db8fA&57Ge($t zMTvo&$IAQby;AM(mJNI{aX%t)JxaLsiR4+nZy#mZ$2L`sN0XaIKK#62Gg?!Zwc9jb zm3w4=mdb}`k7avPD$^@;Ne#7nv|9(Cw2ANyB*SBvW*=yNi zEpq1_%`wy$r#aQ|es zuS@5YuhOk*D=bA}rJ=#jmo+oVc4~=-n7c$iKd3l-qia^x)cpMLhQ!n751$)VdT?jj z@1ALH7+=Y?TvpT1gK z(H580ou1;bHQlEtaPU#gYCSp4Yqwtd9#yzXRn|J;{e3zOlNNmGaQ^7|`At7&Gg>Q^ z{aiWqDIVlL74xL^Qo-K%>gKYa`8p-iQ4sDS{(fy^>la(oBU^X56VBYK-Z^%p_ozhK zDnkaqxyE&?w|E7L8teZ1S?czz^`u3PbP#_Id$Y(`g6XXWzi(nIZ+x+I>OK~xGtxT0 ze_rs2^g6d46Az!KvKMA+Pb5wqRr=)nc2(F$8e3e?fc=d6`E`@OTHV+6x2Jb#+?STK zf>PhlXNzi93}hXSY1%EL^Py7gSgumlgSSj{Q)KgblUpCUHV1E6aVyP4XKM6DhmaGY zvFWmbURdJR%WTSL&&jqv=DAX4=IiW9XOnSFq5q(XcbdFDSl?|9;XEv8shrdJhTllh`7TwR zmmDA(h|R4Yblq-xE-_&;<5;XreNWz0uEVRvtXDgYgO%^Qn!JlFTpZ|%vP%7xU%7i2kw3CXz8?L3sk+8_ykV7qyVQ#G(CjtTgXjM}>RPkAf%~Zb zZ1#)I^0#i^sJWXibi67-xtZM*c5R%gu!=UEwcS!zEp6T8y@*t^FBSp*9|jH+Y_+}h zzUpTl9&hx$^B*Mj(JRcdsN>B06M{|}p_OMkM_6gp;?r$+h6t2&?UO-D#>d51H@!+p zuC$i@w`a80$58&(k&j7Z)wPw%-K3`dU%mwwX2+fNT(fRQNo-Zy7EXwuQlyWYzm!x) z)wcbLe($lGEu9Ow^EV|P&rUu!Xw#l=a1%M{{@#A~x)6M*MBJy;{kBr=p@K+(>6+PP zIsvf~gB{g)SmXB%J}WRrWm-?ltxH~OJuUMG-cD6~^pQv?|Nj6@K(fE)EsCbwDkkG! zRn??;)A4C=ykJ^?fK~+_>QkpyiTowEONTQ=Wre58rhW6 zFK1W8jIrwKX??R5mo5ZshP03%92IUWDln+xmF!C`B1Pw%3I0pBzMiWlYi~1%z2yl7)NfSa!NRe8JN~l4vpCrw2OR2l`FU=`fUNs&hf zO)*=aZeyQAxjQze1c`AA9CUH{p*RHjR3LV#RQ&u)st)i`XuJQY9TI!ZWdd!5; zR~^aQ1xWEucvwi$<4uris?f;lOrI+z<_l`p$J!2rD6)+rP}v~1hOT(0gy(#+N%JzG zS~y}ZR+J( z%cP9R5|4aLU?OCgSj>ekJ1qraQysj+SW?XD6>EFe_*|Ao>A8Cr6qM5+A{pm*uaX33 zW*%UPA&+a=r*C~dB>iO#Ob=zwmTUDSIa{NKF}#BQXEeRBIqg@C=!J_V8DmjzPAno< zw@XIoYBtqGbaK(5oRaF+3+p1f9w693l@3KJ!;Lng>bpS{hwFAQQNeFEOvu+Y>}*3G zC}XyQH+0 zFEt<~mZ&pYDUgpxlUG@P8aWR~wpz6;X=?6uE)x2H^5@TDxfUHf0^8-VhZ?f6 zUc5WwQ;*(9MeoJ2s|9@wv?HgrJ#lD^jYB->E9r&&>g=z|#+8s**x(p!ZOgu( z(9N3y%pi$LjMufV!4g6NyEa z43wm_??!#ZSh}5DER2$z3aiMI7QA*!NzxD9i5bW94ypuO5m(mCrlhtoq{fq27DACS zE4pd#kV0y?4%PN$R~F+Nruxst!ydb12}g!n2CkB#Eb9$sbiZhE*we)-tWj$i$pWJw z0dXdxFShSxn6Tp>OIuRLkJ&bGud(TMVN`0O>u*F&BUP<>iK$hHWLFi~_0j5Ykh*N1 zCt(r#?lolf8mo*_r*1hJDYewLSq!={)Ld3&7qF|6V5G{9U=MVXVwzjyImn|%ySMp` zj_1kkxN;nTc+qzwQNk=>d6Kp{qvEi!da07%3i6VzwpN=)t1L^3c|LB2kl=}v;U2W| zrLq-V;@C*IiC+>7d66Tob1(pCoRJDyw6++`sqaLml*ZHH@N5NnWFkq*BBQ0nE4{}%XLsJ!wzL!) zj5s2NMO;YHX>wZo*)zqCkS7jokjco<3~6TU6uRzd&)MqrU32vr6|U}Wq?BR`WVv$_AH6&&*AOwOaH2va#xp3jtsSeM zCip^fn~22wKVcA2-WEC>lO@@MGBnteEh(Z&%`&NRPeYRA6;u%*3Nzc>bn=os9ICI* zboRbPtNAIiIAmpRLt-fn1;zdRw^~kYC^c_nT$nc4bP0CWRF+mulz0%Sq1QS$7@8yb z6hnH)mpJnbsy!ATZfH=WJLJ8NWr5;bM5!CF^Av2GDb^L%4k3>5ga(MPCB-X>QifjZ zqfIHGqWZa4ix+)YS<0-Oe1|QaN;U1Yj_$Y}k2U6#v=Oyy>CH`A*G74!Qox}U>uZ@4 zB2JK!CcE?LbI~96lg;f#DVAS?}XoKxTa(K?`aZ2hR{x% z87gyl0;06Z-!Cr-Al$NjWqna&t5CLbB)Z`hyVJBz$KY3Faxzd*QPXQGx-Tkhc4e#! zNkl8gyjoq>HYFj_I$AqP6@+L=&qvAmKB#J#Q)Olw=FGaN+YtYQjB!`O+lUByv- zBn9S&jm>=HWmct^d5qS!Tv-DnN)bG*U7m_@N$B3`&NpdqDn%tL(~iwuHR{yKVv;o2 z2LU2A>&Ja?_pStU1U44E!Z^fG{U+C69-d7`>NvtDFWf~S9TLqFxbpy4B zHC)R>DjG=w^^mx&ta_+)&WB51AzUnH937o1#1hs;Rj6dLiKxd6kuJo?P!1gG^rM{G z4B?)3O4vpmJy|PCT$GO{3z6Y*e$36ruV7NnI7tDlXL_Ek_9dX3Ur6t4QfhM2do@3V zRZeYpBO(c7>yn^f>PDcsntbL{Fr_s4Gm9=mjK`|PxrrVy<;Wy~6bmGSaYq(Jg+$$3 z>ZqvGV>EUIx}4b*@I@jyt;dW}*kV&~e7-nB#~jU<+Xg%ZvZIAb?D=xx60+jLSV&cd zgh!0cUo29$jD}RQic{k^o2lzf?98OjFR^6SO0S6^ysJ+dLzjKje)HqXWJfu46Dw8( zlMVHT{{ZY#$jC30tvrs?byr4{AV|n7U;=gg+YL_IF=N}zk3b>1M42P(E6K%}LlAv4 zd$>oB#@gccU?Jhu`->OHrI;NSCP>9m5f3Hsg3eB* zt7OAiK}5&uZ2hA}nlRAu^B213Cbv}AG+hjBaZ3uu8veHc+JVugsns&1Od59RPKm@|!yB|OQlkADI~q{|4PQpF--msZ`{ z`7;^zQhLbeo5Hck-%}EOb}LmTGqsUrv6jkhq`OtgYQ<#s%jjMFD6kKvSmo(lz9DyQDsj>0*bK0X`=78h$!c6=&Y$8ONhmfgIF3i zU7R(mkict6Yb6YZ*&N(5dyS7U>_QtMh{+7iYsUWow{^S8yE!tuO9xDa5x&91Z{svz zh{v`M4%?A`EmLJH8c6Z%LO}PJ-FI{oa@5FUv!bM$l@_d+BgJFUb-L{s$`{xG5iVH} z)YlF$k7H<$4X!T(+SvmR-q47SLLb)7+;Jhv$-8iDvYB>3q=Ep#970TsEvzJ>yyc)E z#)VEQ#M7JaaMu;mXiRY#9f)Wr1A;BR@TwP6&aaM+V@MmPf`vCzRaSdUwAj5RBX2J5 zEG`nft|l*yI^!drCS&=Nz1q0Ozu_-VcMB~Ud$34dNwbL$B$b-iMPy3(xjS+kX1MT5!@Q2!ALy=c z^0`-#-KQ#UN0-aTx3!Ly`NJ40{GzJOnJ!NHYYM!9mbP!KuCR|c0;rzr+(ne9SpAtz zR07A7*|mXi3Dwn5WCq79g)++!k|_`^SiIcUs*n|ikogMwnbbi9%6OGkHRn<;h^#bw zc(N4SbF;7ZWcWBHLvavYLF4ywrq8ayHwb z;~C(ujDIadQp&t~`xkAryGqLvN4Cf8E2KmbWy`ARoU=Nrs;;5~x9v!7?UG*7WOI($ zOWYE?s!}3%9@g=Y$Bnv~?BWi{AqC+Pu7AJAqJ~n|M3~jC9O-Q^tioMxx>eI%vS#@6 zvCGQK6V_a1dllewT4Iqm)Ki)f$tF{r)~5S#)C-o!l=3*U72lTv!Ni}GO9Ya_d~al2 zcAanWYd3iv=smq*S$Zmx|)Uy`2JD$SwW;I4g9kJuoLj#;1_b6?c|5F)SyBzQ(;>+oU3+nbZ)x zxI{BDMJ%~Zi&2P$^Glbb!uijLvaw;?1`KHAk%7d^DOa@&i!Ql?Nvyz?f~$^&CR zeq}RIa6ukicY8G&bzlJp6S}*7wk!&(`?@HwEk+`0J%C}2E(bcc&eD`mn~*Y2FlX`u z3Zv6cAdjq%DCMN4VY6#USmUTEC({=@EFsO1r2NOu2s9}X{Di3C}Q z&78ow>Kt~!ig-?F!tX0mw@&iac|=bbDcHo=GZ0_ z5Fwps(OE?4LbvpD8ZT&IOxPzK7A0`B-S=|dFAR-k|Xr1Wy)Rr*v z!A4sEo+IOFJvH&tF3I(3qgbB0R_u*)#U}d5R_BLdI<`y<>PVojdw6(dQpu3tf)8Xj zmuPC;DX46Y&McPX_MQCHg0RD*yJFVk!nvlZqpyvkf+d_D>UP!pqViVvQHvn53i_E5 zB)hODx?FphQ)b$l6l(caS1+%~uIWt|F1n8f24`r-UR)Z_4#7@1(6NGqxXpVxP`qdR&V$sc|Z~YZx%=qe}eeK~bz_{zJD`pcv*pX(V1bRY~w`3F+KM zv}RsF9LWH^lnFU)Pi)o{)nu8IaMK&xPHV1Qni2mUB~AaTw>(&S`pl25;W^8 zL(1$*X`C|1a@84yk&jJ+q*f3Y86c(OKB%K(&UI&Cl3H*`INUeOo>K?hdxpm=+v-*# zZurXR_E1}1-W*h0ca)x8VN0{0YV3C~vx#ScFi;3IJeNIbqgoRar-32@?cZL z4VeypqPdC}Y?{Yyr_|1f#{%Qs9XF4~o`k_m$wBqy}+98jIy zKFokT&mh3p<;R&K*DR)}i(fKM778*id~g-LgUI(~FfN7dg6WlV{ghFvH;R)(RtrsQ zQMh!P=vf`^OgCdqS#5<0#*JVovu-bOoNW&`H5kJU&Qc)U#x$IG@!W{1yG)2v7k9GB zuueBn%5NV-F$|St|NBvPkJ<8P+)@O7>e&2d^6>z68ce zq9X)Rm?cj{#&7KB-hJp0-DtA{33*=KS*GC@rREp2#K zNs(24OK6uDITK#ws>mYMP+D6D>`<)^d_NFY794T4jbeMbeQB(4`WD5oubUWvV*2S5 zZ7OLMci+($T$h(El~a(^YUU=s3(I8gDmf%Q!l~?~oG7^bd1nF&&0Xsf=!uNDYSQA% zB@LO1-oG?se2qdBFVUr>Q33q*ncfnTR4a>xi&J|liqGxYoFVlhlvZ{5O?{cCM8j@} zZ__YItw>XAFCfO5B1$kTS}BsCS5(=@ENrwEO~k{U-#9Sy$VQr(MQpeiCnc;)GEA36 z$VD}dAyUXzk-ObQB?)C-nk;zK`KeCqHzLL(!lXF6GjQ6m+UMDAi){030+1Hr956CT z&)Cwx^4#xr#P@mbr1#nas3kj!Y5OWn0!Xe_x-^bn=f$X-D(SnqX4}YiJ5>pj)Gja` zPaPrS4)oV?HOpM|uJnp-!9`#;g}mgJePgSyj8`~O+-69pno7wNh)Fjk+g`gY7B>@7 z9MdAQd{Y9s(x*nX6$&0q`#B^Jl$}vqM_~dEE+c~F7@15MEVPY9RtrpmE)5!1Rdb9j zE$_0`q#&Lrz?CYvp+V?f(dnZGMFU?XpRq2gX*F?3o$KW}J>Bt^gJvhFPEEIO6$~Z}AM>2Gb zUG9H&o~q93)~l!0k(@rvXvj_6ntNJcho`ux=Q9_^2H9AqGbtwY#;BpR#4NpUpmHb*rJVWH*z9ZV!xV1)gEfcNR!U zuagE)?IO!7D}-HF4n#b+BS#W8$c}4wbJ~q=`fIq8cfK=3=e)}+&pX*tCV(q0=Gww) z=#dB_6Wt|r*H+A}y%F6W!ONz_YFp2&iDoN`Lebge!Qu*9nb(;jK^1f5hV#`#LQ z^Gl9JS}lh5@$~xr5qQ1t=DpV|02KV`=)1@>aX z&OACRjFhq#w$3`1_Q>l;10#!N2QR2hgBN3!QP1B^cFt0xnnyX$BMt{sURYMhk9ALY z%X}*4qC`1p^qfbIG-Z(3(6U<^sduw$G8kw++oMewO^VN`l6a!Hy|4{bn+WDeGVx0z z5A9?`dtzC8kR-!pp{}A4{Vk1GB<95-I;T-!IzakR(ybJ^y@61f^MLnyyos?2yAZr| z!no{+h&;8+r|L)Y}Kx#~(M~62o5+rl? z;VQ1DwPZUQb_YPZeu~EwN}V9 zw<=avNtYz}MRk3iZHW$Sj50Yxb>!?k?d~~WOLGu#<4Qdp%@zE3HK1;B+8qnST{jz? z(6)3sh^{s@Dyce^IUvi=?JNSXBaJnz6I|AE41l|5^C_S>%0>;`j!ybO1+240ETW!M z_4QwjAIxMk?>0z5ApGKlM(+c~?8+h&4v>$QqcF!^xnrLx{xq@vj0FcTk{e|S5H zarO}=-GtB-+=S*kV)E~ZZ&V|==p%9tB<{?ssZW)VN4u9+3h9uhQIU;ddV3keq(^M+ z^l*+uI~Z`Ou5Ak9UA1<79cZ2(EV0ing=9qJt#oUGv8M03vCm#;_i|PD_t1sSyj<8Q zRbhi>NiJIGL9B~D&L!00o=V+~y_c^&f6!)gO*sDG2p$Lm1wb3TVg4T!w+lW{4)8o{T z`D@@xCee)=bxA__&9;o#$5dT?RZ&-pIi0OJn`_fc{OZjv+!IOaH+rIJu3a6w3zss( zsj`%L6;P=0pEPm-{{YU{_hy;pdm~Jf5!Bgfkn&@4p5#<}cHe@dSP~ab5fQsNx~0t} z)ww!}P`NHsB9!+tqomqGNN}_ma;(IXWVUCRh#5zP36_;I&rOly_G%lFn1NZHlVFr^ z?a7M@VaJ@^NEtDj=}NTLY2Cx2!}7R3Mj2q#I>OS65Cf^YUv-ei6k5owhl#m;Ub-oh zoQX*qOuU_79CvJXcJx#`-J|TH%|tJ1ZKQU-sNNb^Zoa#-W(K7rlO~>*@y=Tb#|aI^ zxb2b_hQ=O4GNzjpySEeTr#49-nfeV?qQM{}i0U#m5v#5*+2nqa+p6!dOh#!p*`n?( zEp>Fb6|$===*p5lz|9r3*{HB6?IdM2v8d=G3gP$4k?^+q+A*8kWL0ylBOwJItH`Jw zJmPMesE(+%XspkVBzy|FpMiy?9<=@itl4j077-5D|a3;6Iz z%(|)LjdN5`K4>2e#0pJ~Ziv`6Vv(j7-CelIkS{V9w}jfd`x$lBRWx9?w~jdSvmgY~ zGAL8)Cd-p$TV+~y&8WGBV-DobuA3N=-E0|5FHwhLI~v?_AcazOBIXvE9D`IEW8YQH z9aIS(RF6LM$NWqWBz--mV-hWx;{%^?rDQ~}ff=|hq_T<&SDU#g^+RV0zgE&&VmUWc zNruLN^4AnZ9dQxLM+}J8#gJD>jA0<(urb3^dD6ayCO$%phpsy#T-n-|d6-uUWYz{= zH-QA_zZTpZw;g1(jK0R6(u~7snB&{I6_!FA$nyBM{jiGDC?6OBQsbwE9z)W$84}j2 zRYahOhjd7X1UU=35shm`*Cd3J5ZBX66|7N79Dzq*WLx|g)%X0jHo~)%_%SjGA-g9& za+)^6u$LZb9c9XK=;XQ+Ugx{llqy)>(~v*^*~V7@12F3SCrUWn@Y#>|%jiWE~n$VG{5kVR`{*hn*ZvxAH+#88o65Z+h1#C&I?Br%?T zrfof>Sc&ivUdIWL3r0M3t%58rT*^^nRwk6z6jI_aDv_JKe0mrDD+4CkCEZzzn6|gs za_y?Z>>{=-9FlAb@X|@08aW$tA~~=qP-3nbi_EWd44j|+N!IB^LaHrWP6Cj15npIi z3_zXOl^hiq`D7J$BiB-2vlQ$MJF9m(g%099%JHm8zH+|O)DQt@ofTa!T$%EI8b5;b?2$LWRlZ*dxTu!M^i&O?rKI4Fw}Nh2U*`P#?=nc9E#+XxqCsW0=1pzPCCt-a(7#;Ge|j-KS-VP$Egdd%(4$n@-0oPRn%jN@4>? zlJcq>cGbE_G#K{CYbtqAfS#dx`fj=xn|umN@YQ3$evqD={Wa9eBu!Mw3~MuvG|Q5-n zLja11zf^OP?t7IfiT?nMA|o&S!Cgi}b`OtDo_O_S9NNH{9c1O!T@qA`4uNAel7!Da zA!L=FR$5m$N{#^nJ6RH7B`*GhuzNH~oRjqWlvQ)EeIH%;DB zQo)mDksb)7SQ6gQskWj+m1|{9gi=)qK#AF#jpOz$9sxlX!W~U480}Gw9V52SFp`Iq zV^Xo(r5^yolKA#D*F)hOA)%25x?Bahlq!?;e#;efHVI1V;7P}E{CcKY<60!E_&G-*|SBG2!HelC}AK2#}pW9F>Z#wCHcI%BKymuOcBuDa5iR z=WeLkB}5@hzhs=Zr_-d^&3palYH}4)Z{^3x3RJ2_anRhYJ!IQT`Bt~mE=q#_6+Oqt z5KA&jLmr>7-o#_w9H06c69#r%UO<6Q&wdK_JqpDhD}#_z*0$bz1kb(j-KQ2$!U+d>J+O z(iV!kk5jE8+~f6C%!yTH6VB0&R8dj57xp#CIV=};tL)ueu}6?{JhJ(*$oM9a547eH z8SB~Y#n~C8k6)rh7&MC4wgY+FRxfJa;I-kjiWdh`POo)Msp`z>GgBhLSUJ{t93j~B z$kD2!RLKL|jHGfotfW^wkdhSQjRwSHm7vM);fk9uN6l@Wdg+oi9!nQljy)EyCGEI! zOa&IBy?~S%C#j!pA(s6-bDW7wWG^RcC*&|-VOc}2;PoJ^Bk8et zHYCh(hEWAq<3=IZ7r5rbA4MyO_1HfzpsQy zmI9N8O$P+VDCT5R980rNtW9=b zUK-I?M=Z9u&}=MhFXBy(;l)?H^IZ4xBY3&$o3&BORE?m@8x0>WEIU~l4TRP6^{vs& z62u}RCOUGaQrEG;8}!$;bj8wb#?}z*C^(P=M?J4{FLEQoIkc8E9$xVwdv6*iZcOJC zcC5X7%@W~~(xYfJ>S3BGyRSVMnvfGn@bcH7%aM=4!y{ybc;2tSx;Mmue%M)zL7PzqAu%>7q)vBIkyM0 zlU;i>@nyrsyzE^=GXhBw2_eB(=zrA9XV}(f?zEWTrS+plBF4&4-12c?oL41Olvxl- z4s+P%jBZWqiyTCg620!1SV)@k>gV>HiWz4bKFI3!Mw@6_n#wqgQulQ#s)o=*!7+w8 zjf(^fKcgR|C!@-|`<{qIM3EsBf;)G~F6(AvCIW!ogVGtAXyTdFV;^7=g>`O>g!_pK*p_&94|9Eg?EgJv|e_Y7`h=GC3F}N$tI1`q&>wb zSi)(+7}bxMSr4Bv%3f|DoZ!2sG0;6TE0r7qD~4w(2Gs8svX_x;+D%hbn)fKmp_T}a z)J0_f052PgqIZ2B<$k#75mj2wDNO~|xpdmu19f$?Y;^>x`uHI8J!_gI74mQn@oa1k(i+^!ed`O;*ZFz82NHO7fqkG4TCV`SA3BSxKZWv}yjiX;&900H> zVXz}H$R!q@&Dt3b8DL3@%HpuXj_xl?RIgiU89ch#SvE$?TiXeSG>9Q2hgw^iDkbIe zxwj#oB8sYpQR+U)SCTX6tSCUpkt`_Q*UQER!6KtHqS)NBZAWpsUqg48j(vOJSHTl!+}uF&mPGYLYuZLyL7j-c z)uRubI9M~IVYt!>q$iatr#!GrAV)G**Em)Xs$k5SjM<8U(Ae{F(iCQECLI-I}ydIVZF?U zWRx&NA@iCT*ojx{Wu@8zbcHh|pi;>!t$~hXq#6ybZ=+LAYVk(!brCnYyXEFAk3OZZ>4$d8%%KIuP%mDE#v_ zEbs}5l-IbXyNTpJ(AT5qgxv#ADM{RvRB^}W^WhwhMHLo0~DAYAI7fB9Hco2 zN4-7wJ9S?~+udqvzHgBuqpxqY25czNjF+W_B!K=|m9KCOdS^a+t85uc<>FXY3oH;+)ZJg6BFDGHAX_$* zDzyOc{DyRiQsmsaMN%=tX3RZhbc*=aRx*Jie#opu+0I1m#(xsZ1A{G_HOOWpcqWA= zM9A@F7TTgsR1NuDdP=fEJseQ zskgnem}>jp4aKiUxTTCI*g(Pn3EeI)FS?i(_Ep_Hu$x@^iGOE&j2jp+12$}a^pciH zN!(bK=bNc7b2aTL`eR&J17Z=6mQ`;zM_C0@jiq+U?=|CkJ}G4P3>K0NeQ2LmHku;X zI!&Y&Pk%Dg<@uY_;i)I>= zPAs4o_+Y=$9q5nQa|*ZE;`K4Ake47FQvC$b7C9peQ=&8?jSfoT(D9iWAs>z9P;9Y` zA~{eKonKuLDDpj(i2w;?)%zWlS~@RH=p)I4jZnj5;sg${$%Zn%9l57uFO7YJV{diF z2a`^!i;Ys}aVs&uwDHANmng{UEQHkZZ9(0}J8tsI-SnP|+4oADC3BoRJ7XCryB@J*U0s#o7hq@EieXydeYwK3`K!5^^nJi5@xd>qoElEwJ) zQQ02Z3!QoXcVZqOL2JXxLjg&!Mh z^W!Q^B#LlL%>27!RZH2!%GFC}i~`DYABWgTw+Bq=n<^!JB{ro@EVA3H8nWEck^c6T zs*c%rUD09UStO@i(b(3`i)kV-_AG*9B(WA~aw#No(rbMp@21Q=Sd@27x?qUC%(6sB z^&h&s3Om)Ne&j~-G=LN#OkO{by{z_R?R--RqQlE{1$L(kxNAFbR zGK)t#nP)ksYzVxZ6=YDqS3t6u~UTs8oUo2gL#fq$qbT) zN45U|@>N#7*tSPit0O3;!KbTBEQ!}Fmk8eUnhBvwY_Ko5ucWUe?Rj8{xjk@e?wIq) zahcn4JCh@j;?w>8A_R#p5#mKfq zsvrWFAQR4Mcwk){56vPTK5d3}Nr+3Ut#y*Zn^`4A9F@>8>DF{7#wNhOsjaM#b3Ba6 z2i#TmTeQ+h6OFU9ik-q0tcYzvh$$jvSqBsOjK~uYVD&I08gx>@_MDzrn7y@sPma@h z?`Vda*tr~u81pj9iwa5HhB7s-cO+eQ5y{%)pgZ&5%Sgv*>}NXLlL3_Wo^=N2DBAsR zr)|c}lW?r^c2tvNnanwx`9u>Vo+So6QcyO=A+dR5m0gq4+{e78l63R=AmL7kjqMt| zO6^wMl9p?7+pq~3dB!+;TkZlazw{UlW_LCi!;d& zHfTaCgWGGDgBovT(!G))!t6zjiTMIZ!UJAZ!{i0Ef-)YW%nIdJly3aUk1JNB!G2I4 z*vamYcTkpI1od}3UI^yFml>nTRBqdcycQz5Wz;uo{zwPRaXJ{3nvWY`v6ljX(7$VYj6rnvq5zIAb8 z=k=jH$qn$YiQo*@N5f^R4&{B;n-R#+ErmRBGxdRoW;PG|G!8BrRB#ptOi8tkNzTa2-TfPGQk>=WnSz{ zG5+@$e6hu|%13WsV=ltZsX{d#Ln^{um1WJZYG7pfNY*<V=gsGyNc{wqhedo8F3i8c2Znk)vB)zqs zclTJFo?j~skmD0+CYbdEa6Rz@4g+bL)pnk~q~EqFGg%`OzDp`be=dmcbEv3~#=DN- zj?>)UIGs7A@|X`1#K4i!^vq{0d{Z4SsKttLNYU$YfG z;0id~-Ck0o@p6%)`DRaSaA(hz}isyPX}yNKs@eN$v7{{YrI$`d4B@Ob;< zPAQAZTQr+(3I3n$Djmt4i8y+IN1h8!`Zmm_Qqa56=J!ku8(D$(ZmKRE_O?#;J~?b?Kqz5NmpyRrGD)r(Ylh* zn0N26jgl+-rI4-$683R#{i`CDen(G`M7koP>cU%+_jTNoT-M7x9_O?djJrE-GH=Be zciI_p6}IJjp-GV_4?La%n__z!NKvD6M znXGHiKRH}Db9$j43&i0xCLG&T-?pq_qh&omnOUrQRJnQ4al=x1FzVn(db8WQ>0p}ChE@g+X9Qjfx=Rv;` z6a-Zh*y=$Uutex!mzTm~SxAvLTQ2)-t?=z4#vr{b>MSgxmjk!io}E%vH0m4 zipRhBo}xX@NB;n3zX;JEA!}jCI?jIbz9$n35DPJ%uA) zFv=SNaTN$7vN6KDt%)LUBM(dkNWO;#Iy( zODm}ZE-b`v1}CIbm8l;kz7e5LvzHmBB!TghKFF1DX7u20;5@1eC91K#y_E><^ohDB zBv{2(OEAQyXxF~h?IOMssjccuDGn#c)ll7GEE21ir)EMzi;kp*PtU}2blQQ8xW%%z zL^}flzOnP9GwnR*M3xn7hGa2gx;zv(AD(CDRHgz#S+SgEK)7V_VT_?{i@<;o>i5#= z$?q@4f2rR5*Gp;^MDYzR?juB-d23%{(V3i-<$O<9A8*d-tOQf!b(O`3Wq2C=YCYt+ z7RSjZjP_Xtg^B)@6&vxulH}&bXi%CPlnrKM6@PA9E`Zkz0&5sHq+t zk_grnHH{aSdXlCQWtwoM#xsQGYnQz1S^dXka@|h3P0=G3(34*tQzJAnY3Y+^YRC9 zdVhK=W418iJGI}CBs0jHEmeDL2?|l_GimR)n6azpEgT4#^0LYmU@RRRdWdES^kHI< zr;I#}1aV9xb?!Kf8xm1Dd7eXSTt|0b$e+9VM&_>d zp6jxobjtD!jkE~kS3E4PtT7Kl*Lw2SQ7AQ%bHf0{FE3-Wo8J=_9bHElkm@A8NoS~V z<;sdQaKj^Qd^DRkNh!jAnj?)vFokuKTr1h{DoyygT$=hP!)I}7?7vO@9qX;UHuY6q zC&9_4e^u?-gFDz!P3^UjQ^=T25hFuWqLZ*#lB8IS7{#=eTAP7aNQq%zdLHBq&ddR! zzjRPk<&#+0cAyjG9nnDA*FWBuT9KkFT8>vaT8{TcC8AopD7vj8SiTtA+j!XRJ2HFe z5W@(8vz?5Y|_#O=0490_?GI=a{v?q5{(T{%4ri^*TMrYpr1`8}nTs@cjMuF3~k?h#u_ zTQ(E}0>cQcYktMgBx1)bS$Le=FkrH#*h#XmLN-rz;cKkr8LcqaK(&zyJjsujITdvG zwM1F-2^g;A0h99v{xG3kiD8~RCbXsQ>#$BP8(I(P=&{sAg)U?pcjN{31mFrSz?k#Q zvc>P~X<=n33~ae=)VID4VKSDB61I_a=c80M;*n_^iaJ~{SX4lzivm=t$~gGdoir%- zHk~=PVm}<1nE~*OraBfA#=Og+om?d;8?WL@=DJv%lPnRuitRWr8I&&atMT}zywbKm zJ+#?w;pyUw=)srE1|@u~7N%Qlv7`&-bgJqITLLw~8qhvV7AY1$?dscD(orp)9Sv=5 zOsUDFYGA&@VEMo(hFG$sIWn)?f zL4)Tj?dk7H628z=WYo_ua(c6I?Db?aMrfnqc`SxV>CL=Y6?o87E;&aQWSIJ}B$)Or znvp_Q_hTylU#^WNVe09!*v!VW@-Vjb^Aa4{b^?)Sjdz=fucnlq@K=*EOnx>+LP4Gl zjas-@q*d=gV(okm_@+0EtwUC+082o$zi~UB<~S<=nd3J$INXPhj`-UQ4Ex+_&BFfzLsL zu{Bot3zR#WND#}B=a!J4B1L1#9j3N00bdc8w=sOwgHvU)!&LduWJ^KLeQrX;HZ6`i z9Ew;w$Dzg|ie^Bo?(*AQwaZU-%^UYrUDxPFZj)H>>cU$AOo1Pql-DGVo!6|}RbBK^ z?l~ewja?z%XX2WQ!cFwn8rdvgUqvXdks;}`w3{ZmBXqwOs`K03cIc_^w4!@n#d-v0 zR_U>b@$92m)-of;+=J5$#%XR4ky1eh?)iK4%Te~SJQ}#N+xg@zUp(>*sI*O7iT&`} zo^gqmTed`-NpiCgfn$f&TV-GEjCOWEX)9PQO`x@w+xGDuo!67u+0ImuYF<+vJylVP z&;kjHGYNu_t@8($O9C}$F`32G>~g^@B-BmvURaHBhOBpwZ$o0ZjtiK(dd834l13fT z%6CMUgG%ntrLv4H8hchPZEW<4K**6D)s_*YiH`SYOOaR_jDV9Y>Bk$`S#6`NG6Z^R zG;>LnBDz!&S6{vo$H=6|OQW>bjcWH82R>6PyQG2&sB0M*NbVKkU*=G3SAXZRTI#7` zx0veKm^eI@YZvpPa%WN*AXBnzoz~2V33E#=F3@NTXh3{`hEz#yYicT(KRNskjbULP zJfonr0lCiVWJD^#xmM^8`XD={cGF0jOHY-W2Rld)%p)~v=1il%JX2Uzk^M(F2jH0Z>W zEzIrdf0eG}*E#Pm)Qo3m7n9z>-zf(2PVP>QWR!*5B{Vdh1umQ4yCqZ zl^OBp?&NSKmLz)16IbNoAd4G=oFy5DCGiY+T{nVgvvNsmI?+A>?TqtD2_wPC>H&lz zuWeOT%j(x}vhJ(dUEr!moqMyfsRMhUdh%a_dg?QIX+-BaMC1%nf#d{stcjhEXm7rN zMu>ZC?X+!`JyFWv6wuwXA<8(>FYJ}k@>vBNY>MTEL%t{+A|j(m_oEWcl|dD)#tzrc zu!Un&HO_BxJ5l;Q8p^K^XvUWmv8MbL!}r3%6_xW@6swR|*+8I`30xAQrE1Nmxu26j zeotzxOy)|)ekVm@YW+fkZc17pk}Z(HHsu6rO2)6>W?SeZeNkh=RqHKC`%zt`T|42) zcilFbkk?n_qd1(1?exD118GN;M^@#+iuX!9VELSGU$OAGa#<=glOQ5VX7LJUdvZ+j zL`Qcu%~f2hr|q&Pz6-wYPef}u>U>Cpj4&y+%V!L1J4g}>K#f}-k^H@!wv7xnvG3E{ z<7WwJFmb{xfWu=WxJCb|<^ zEQ-%GSmI2A>QpGU6>|hA(t^+CN%fAF7~v4>Zn}I)z_Eoso@G=aNrvLN(JQX(VZiP@ zvz`|eaKirpKlZJ}8||c!esacQ+D!xNRp|c!53dcKt-aCmc8D|@4f>4UCV%ldg!j;7 zueyZ!Ryhcsj}w$sH$a6VJ7beWD)D2vGdQAkGEm<8E)= zZT~UPd19 z%$!_g^J?M5l?D)U8PV!w%_*c|5}en~mQ^+EAdi(N!KVakY` zX|DH1F6f?{rVlUw0IS`Gf0=c^qUm&=ilamdIXjOca}Z4G_|{GgguOwKSw``za#73E?BpzO;??c| z-8jvUDjmm7Yh(yjRx$5j#q-q{v=5TVumNjXG65^5k_?LJ;i7GmA6Fh#B^`VG?o*Ez zr1<@tt+BqzNp48de1=T|6bop}%8w3_S}cxm-5z6QOk8rQ#Xd*vao0y}tFF48To|_a zJX4X?xWt8-ggZ;8>0G+7ut3Km#k|O=rZLWI{aU-D_e8s^_N00IuHfzV^4(UK05?XKs!S&De$UU5%009&wb<88&u2pWg{KZCg+v}~p@kW1b8y)n-BOF16MOh)tuf-{b z^V-R-?+?ivxxkE^we1_q$34~a<=0Dxc_kSRXr#7WP}yVc$ITxZNihPIIIdAF((nwV za(O@6Rq<|nazs$R9i)oe8cfc>*%nJuIT<)Gi%}l$8ZC4%FFi1uX)T`6$Gs$Lrdf$& zM{&Z+<$vD{xkY_C8NYokXT1XUL<#vU$6028*j4$oIQHN>hBz>$K4ZP^_m_5~#M?!8 z{qI`(cq)j2_I={N|-o+jjILdn%Q=~&!wp5b`9t3Fd zWv2=CkjXgRw|9Q6X`bqsQYzMKnK-gxF@V9YRB+MHX1V@eLag>y%jSpY8#+ARR@L)_ z_u9p6t^i7Tz<|jUL;%VF#cN#NM3at7X!iWYPkV1o6Z&iKAd$VIl#SD# z!ms-Bil~Oy5er;o= zUmo7pKTsyeez69akT4OC?b=957Dqsd zWLL)*S+Z$Qc1MTVL4l(JwpFzpNeRiH0_c_GO!ZBCSL}25{c-gAbny&OY%r?ZjwOgFx1snT=hDm0a#x`FvEpj3~&rP+q zn%&yI?xX?H$G(w$SBeiCjUU*zG=a3Pw1a0uZ6dw$*SENuHPvHYOot{(Ey5LzYr!YU zO~&NGkpZg2M0zfs^lI3`Wax!!fb^dVUNCn74^tr3$yqHbEvB^@W!`&9T{Ms`*wB)` zA=I@gvsfif)x3sQwkc7_Qu#gfr>RM-qOUb#YeV#nV|I@tj-O)i};5_maMyVAikzm0vbAmL4=&YP7wiw7HIJ zMPpee-U`6TIPS>FFdD1Q3L;$PkP{uo2#>_+@p@`YuJVz{^=`5n@Rs-6mDK5yWccOP zd1C<52MkRsWk`KL+HB5vk5iDxAnGQ(5~In34$IgvY1Dn}a-!J{j#J$-Rpn#U-ABo7 zp~tR=%kMidnI@|pigT=+nBW9|YDUyJZpkw2#wte0YX)KpyV=8$>8OF0lKin%?y8r~ zmXO`y$6VG}$0np^VZ?kr`7!Q5lRFNMxpgv8K{^C@H?~pT z7F1{knXFp(*k-(z$5B`cT)Se~y0!GVjSZ?Z`HH^l+^upERS4xoyRl^a*vsnV_xsBl zObn!wG7OxZt0Mv`)>1Dvn{ni`+}}Fp`s|6QMwJfK_SWnzW>!|M?W@Z8n07%eBw-m4 z0!Y$gOa}=wpHC&V&#jv3$+5xg7!qtoIi6DJL#efqD0s2~()^@oYOLA5q)&C^622Ro zrit!yb3;bRY}ohNfyHffA2N=a8DPtjM(12;MHX2uyC0^=t8FAIr)Askb(vQ-{ zYFSNI>yDVh6IG`-XcN))6T=dGDtvnSR!rWO(v6pNRv69ZC`e(-@^GrvSh2A#xq4$$ z#~k(f517d($@XXyAc*206FKfJoQ@Mkkg-m5%a}Tb4kIfRZo_ zdfRO=c3$FY`eH|e8pICMT&gujkWMUeLCNu{0_rv^Pdc9>xTbM%uOV7zSVUM>-c&Xe zhI#C+9vA5qNM{I30j*9^SaL>zY8g?YT}1N*iwt#AFQ&`4ww76Et-L{wvein~nMSu1 z5O07?fH5OXm`i%+`aZuLyPQY#{`{b;z+?GmN`wgPv4ZDCl7*7uaV}eGI9L@#PvBwM zW9dFTc&R=v9Z2l}9dhS1z!-ud?6mm9_Q$jOqNoOJ%B}X(?$#Vs>3BpHpUPB125G#fpajl5?4+%iS zv6^|)%ED`<5gZ1^vn6rWUiP|N`BD&UB%__Ej^ev<^!3|9V~HimSkFVf+Kqc>8V9!Q zH+{^t(8)5+M4VeE3`|ocl$J3HM+YpBp3$#YI!$`8a$RT#Mvi8`MX0YlyNWvw1c;I# z&c>yCM$WYEyz|yk>O^kiu3hdqt#+t#Yr0)gWf3lA%4PQ|+fV>ECa#$@a_V0Kpmc~~SJMO)?xV6MqT+TEWX6wK z0&#;a?@2QuzGT7AwP|56(xw5l#dm%zh~rFZs&AEOBKg2alWPzLgDOEhtP#jMF(wQ7 zoQt^JP72jcK?9CsQpxN#KIssC&#nx~%U=(+Pz(yz@7qat^-vIYhnV$^Cc>&&udoX` ztgfoio#!z@CEMOo(%u5!2%iP8=FD_jn;F>rnn`i2Cou@p=OhDNhZT=@NgdGop${>H z>RN=5YI``WOE@oWo*`ReAatJAA$t~5P&g|+$h+y!_f_hN-R8YOYoC_YcF^+5M^293 zRam8pi#GJDU8WU1Q{pzNlaetYSH(3W=m3*^r*aTsEZqb#;6RL3KCQy}Rg%2D7ETNJ zjmok~vFBW>_yB~DIz^d@bspv^?|2S;Wi+>!6sW5l=xJ1vvacvX zHkL^w)d|~)#bD7KsI#r>>qBRft;~o{B;7?ci0&Hq6y2x6e^9ESvSxllq};}IlP*Cq zK(=n~!n&CXOq&K4V5bd`17T7lvUNm>1Y{KjSu1OLY}(mOwgby5wIx;5)0J!ISxkdu z`LZKLO+$HOENRAMP{@9X4!0^(L5opsQ6i<*e$j~rG@PmkUEWQpd3YY;FjV@x&-TLSh$ zd`C%kOWQt{#Fnyz1UUU$m=RIqeMh+eO&Q#at-mQ=jUFM08f}~?kst$;(Q=$V1@t=nuu!qNCn?!n@u9L~ zyfqQ7Cbk|ge(8FRHaXD?wvGlFBlaN^V2%xcOL+^<~cpL|NxR#m1QKU({oUl8Ungy-1*c-F?yRnwz3=y_U%(g@@z_o=qW+Pi)Nb)Rfs}T-C z3NxjS=2P7s&MsqOv+bT1PmNp(PzgO6>q@c?P7#ls1py_(9gaw3 zmD3a_axcXS2N8v`^3feTA3ZIK5N&Kce#&b_MMnZAT$RrsCFIn35~>p{ttEy$ zYjq=7%BykxmXCiDU8r8xrZry z^Z*2x1X3W#r3GfLAt^E1o4EM>U4CloJJct*q(pS05fQIrHJAZs^!k3ry?mkh>9N6K zXPLGfE9(nLkBQ|4BOZ#;F!XfRxdZH@PKQtCQ&F0mN1jNrq#T7Q+@4|XcXB%;y3Mtu zjXfSFR}!zgROmPNoa zMFZ;X>&GB0?UC&ZVMugIwiXYyn8BkAuSH_*!m6{{lAp+CBqeT}5RGjGJZFMEbaTre zEt%oJr&FnWQxzII*h#o@Vhv%5qj=G#g(^Nz8?v)TqY0Wo%#YrV43e5mW?0t6$7k5X znn}kjQev@gvRlC7_{fr7HBkd|gxl7>F-W%ZCG)EI)dK7ayhQ0~!myDhjO1D!^hf$;@r!3=PiH=feal^}63gUKn3)L!*xm25~S zWllk39>HwU6SR&_E_25CnRv(mbL`vJnlY*J< zdC9vpi@u@_&oDw*)rWBW>pfh>-REPuaBEQ>L|U67O~>VBO9)-bG7QL$FkfC^KV(OdQj80(yVxJWFscebZY4tVPB~4vyqR*QcugGGw63GfeNsiR?YWi=l zt%MNS(98mik;dc&@t5sfDGd#^u!gnNl46d+YRQd{*4)Z4$+3BS=!Z zsY%3dE1EC(K zU~KyukCH4)mtQhj)RZ(qRbs7BVV%+`2qlTYld%Os{XVduzeO z+3$Hag38&JSMX*+%2##PDNz#3BYnkO3t3sM6nPS?V&qXOa7lBmQmUpk3RdL!B&gSP znY}!Sr^b4S`HL*%dzegj7m;Q`(b7Q`_7wubt6U!B91*@+(-FqblVDlXLMa$Rucn$s z(yo}@-1Oq^`8=42tX3hWrvCI(HZh1w;F_xV?GT6y%v2W=M?IF{1c1nIk_p=Vd4{t` zDEMbK9#+Cg3+EBVNb(^>B`0!UcD{5rFJOSRuv7(VJ&aHYw)mT8b7h;Fp7EFt10 z?}}@~{9LKU@_g4_rx!>fvrHj2u1TJ1*<{KbNN8~&rFmH~Y-_26HgYiw9gro3fq6ti zxj!;78k1#~GQMP$nG{XbIWj9PU1B8;KFJbp#NFOQ#gJK&$5_fXnr2v07@1SCU|m6( zjak;}zM8^3nPx}bM^gJjSzOCXt3y>vGXZ%g*f)=tP81`sZL6cp@CY3)fGswodc{$thPhBc$H%)*1(LGarZmF+|F1>V$?GjXy zw{+7Q?FvT;#HwMQ(UX#) zkXb~&O*AZ~>aQutvME;bC~N0BPIr&1G+N2tW0a0>W7zN~=35nxmf{SE(<0$D@_-DF z8Ayqbmy07g-corkMn18{v4=NHC8}3$;aHvWOR6!%lDszJZiqfVu z3}xiz8588X4`X)dNIC4d|Itv7KRKn zeZt*40!H#~D$eeAKd%6%|s>3u0vW z%z4$g{f(5{dx(`Yfm@6V+m3Ts6U}q(2P~Rz_Y>zbJ#-AZx7w1kiiq=^?wMOi`v-{5 ziFt!vQN$Cwg56QPmD<~6MD+}Z#E`D_k0Gsb;gx}hI!qMCte}?OU4&Cj^HKwC7cm5! zG}e#Ctg;(}tOwd21}83A=g+N|yRv!c=q&VJ;yqi+J(%uU=V!IcL0%-4K6O2?Mu=b!)mVa_u0=mTN!1^aX2jNK{7O0HdbPt1WyB1 zoyMf)kt~h;rpR-+q1=p*UU{0ARFL2S?Lw=$%tt6vr19Zmq!}fWbmXhmrKN=D(sr43 zkye^Lj0BX){%f}?b)jU|JgQlfBrJltRnFT%+4`>>srHzp3mFz{^m9LzKbbvU@YM2f zp;q?M9*&JA>Psz`c#h=MR}JLId(aM1$dX9t$gOw12ErssBs>#SRK<^F)2vpglyN1K zh^z{Xsh?#cSZg9OY{`+23gRLz$|oyao`lz`D}EeRx=qP4ra4$LR80-Zgyfv(yjoZC z(1PhQW|;=dI;Xc3^0FA^idJY%kKEl8Oipilrxxi~W!p>Oh^mc5(_5r&`d>s<{KeUI zwv{xAzJ%1&cSt3BnI0RKTM291Bv;KN!EIYMQ>$q#4B>>z)Aa@eCtwharPsM0fb3Kt z9kU+Bs^EDkT+FhPMQ%k5DuQi$YymxECLf8MZMM0V)r>Nj}IAoog#0HN>@UF=aMVWqr6<ZIt3OHVAWi^q%5YKR7o!aZE! z)#G*(D&|{MWIfurr(}__iM5hTNK>azp9U*rc5P)6K0S(~- ztIidJVxyHEp|1mt>aH>{h%&fO6|AOX_4c6vl~9;PW(a zC}(3cD*c_5+O=C3{7t*1}$7IB-g=l35 zvIQPJb4_WKhLh~|BwV<@(#d79^U1$-JE%Rc6>;R0C5j1RAtjMHb7SessKHa$I^M{s z*&wQ{e1qe`zalND$swzEKT)i(|pJR#r&|A2N<#|b`?}v9aTGdvT6u=}J z+Y16$VJw%TbncEot|{zs`#Nqub|zOgsI(asUAjqon%uqbiHDC-N}{o_mm1R&i?SS> zHKbiN9P(9T*0+`kg5+p;eLpcF0hsLsD_Jj0nS7>_zs{CqSrMK#HFdvai8RW0PLt-l zijR3YkDt2q^%^d_zVp4|{4}jzKUMgr!4uwRq9)s`o6C!J$(*~aaF=Z{o2rTE%EjLw zdK7a10GVLq4UbbOzGSQ;)D5(>WEwn*Y&fEpD=IdAP^3k3v1rg@zCPZrYOs|Kb0pk9 z+L)DOj^anU3=zee%PM*qEr*q5MUZ@+#)@Ta86J%!v5LwVt!Z)WUfGu=w8rAcr>3^B z482!U$!02*4;FV49kuCgsi59s^_A=Gs~B6$d{;+EQ7YRe%F2t_XGg4x{7*KFIGr_{ zDQR$+uwjn8th^~CfYM}`i0W7{@vMc$x#`^`@Z;v4L%orP29DkFrR1d9s+w^h!V>am z=Nt|Mu}ZU>D8iGnX?0%W68kQUfQPrHH&Y_-CdfySNujTqCmXb|c&#Q@#*1RMH__4U zL`@>1IU1)^4a1V}cGnLep&agGif*zOGPi_5H|_XjOw#z_x(aB0P}fW`H_ z$l=f?OK)9mGMd%Q#^+6y?X%4)blg|gvEsd6Z8eC;iC#G6DV?B5c!vgj9u1JMlU&mF z9>r?F?l7+G$%~WVZK`}()%7}^D3h!`bdGm7aXc7(wUBXbC0p+M+cBqn00aM>uRXkjzh~bbC@aIdYj%*$M>T}^LNlN8VF&v z>D4p!WsP1@NC8q)ph7gJHlm&*Lw#25Q&2*elVlO)wu2gi{{Uju&m?@0BED=~XAdEy zVUARKxjS0!dSqVq6&;Utoh-n&KF=|x4nzs9EYn5|?G^z7D!UKhC{ib!lHkXc0KCV2 zTq~?vxs2?pv6HK#O02z@*2#WsWiCqgkp!;T&?T!7V(i(f`|nj!k=!5cf&fLc$O|dt zSq_|a1bHCx;UMC6p66-VETfF2rzG>1u(uOr0WKB(ywiSKYWgq1uJqgUL+-C^WO;jS zYO~%%-B(GnC$5p?Yk}q8E%j0mj^nP{?5%Px-r&qZta)UP<2^`K-&<>r=+xQW&vpSf zI?e51HQ@7icJq|EJXvv{dwW$|F7j}k=`ka!C2Xq;Dw);nufC^*+qc_Rz>EkRbDExD zmNt`TUH)-2Rt%OD_LTKnx3Tu@ium;Q*)2^xX$oQ2$I~7w+@;fDqUAC~LYl89fmI+A z>&mZ``FP!VC75Jn+>+FhDl!4)v6+s*vSp2Zc@x-n?~W)J?DF=w>>r_`n7GNYN6q=ya$%2wza-NFd1SJB11=X zy4kM#DQy72$dwm#c?L(LP_9*S_MD8YxU{6OgVdV<%(=Fib$%nc+hcUrp zOMhC4g4W-b*0Iq?D+jv8CC8_WO*YP%$R$0LYa6+>u9FVnb*dXbY*<6FZbLM<-?lKF zAs!%&?ofHxj7&KV5KnWKPp+fJ?tqcV-BUnYD?1Xn1_XFAt!(3xWLWW|&Y+1@u_IV^ zBGyXC`7CV2vD;0PRogo&xg=a&Il63yZCA^Vgib8!?Qv%1j7D!{b^>sM{qn3%JBbEF zta})hCPcDuMO=E$+!nG0Chl9%F)Hq6&mE=KL|L%#R{=V1M*2;Y*sF(-w#e3(ZLqA0 z)pdqBx7#IiU97r-HZ^E_zb5y4gnBOR^wWdycHWAfn)t72+ptCMyL5eZpOS3JB9}MUySp^yX1CHgQNwoO zR<%i04*2#K7>MMKE)4~vPM_C4G`^cywn6ZmsCqqB++87Aw=c{3qxN&VZg%`#0E8W^ z+c(G^5ZW>@U~)78^6)I#2@|@?)4`6H6%_@Yca$BHdVmtjg$UUtWUB4PH3|iaxroRqg8F>y#kXORgi$anxi5Ux<71U? za{H&J#w3q39##t&&|+eCgMcoZR6Ld)GpCVRBEH7D$ad41k|g&fK~c{{8ZdWK6!TiH zF~ExXl_gJLN4l6$o~F>mu!-cP5r{WEj~XwcLXIPZ5!h|doCHzRS+IOFs zLngLh;8H-4KeJBMgLhgYwYroJZ2*dZpN!;D1_Ywtp!c~Ff57-!bVC_Z0tHDVi1?~RdEbvOG~(%UU0FKFpIBaWR0GP$;!snW3!`J zRAdZBTSRJiafc&vHYzGw*9PMmai!IkrhH^Drn&lLn9hYS0IQj)l=fKa#<`TqWEZtM zk6va+k}@}rTesLT2;R^?^SU8qDb>B`@)6oN(N%Y2o~Yy)EH517WMGSf&h%B&KzETG zF)_qK6shSPUAPV h&Tym+SS20g@J}%J(;I3V{ zY~YGRqtei@nJDTa_Spt#2;sGLy6>cVZ`>xP!-YMvuzG22wy2j$diJj->(O-2b^ANH zE-Z%N8*(|H+An=om9|rB&MCt{(_}VrD&DO47W$0k2HtCJ>v zLs?@QRlKKaC_L5GNRqpw40L)i*$7jr4j$o>5%ZZTj;i(`<;6QkKN zUp8HvfMWS6J)T4nJ$s^>@dixfchZgMKUMz=5jXxl$ zsb*Dmj9$!TSSobU4v5w1X$q<@@~n$1ao58*uraM_XAmzUBrj>v$y81s!E&ViE5l8MD-Tw=sYIM;^3V%%1xc1=KkaWI(rL(dhWg!*1KLOf4+s z*uaYPlO)i>lO&cjNY4ckNXL%Gj>F3?7cyt@|Rp3#Ep>I#C$xUg_T}n zt0c~dNf{MPj9)1XpD8kVyE#=&Nz>QZ%dutO#e07qjF-(~)fpYU_WT^45Lpg}$kc*|?!;*>ydx`$UqHom_e$TBQgRg;Bp zX9q8qd04g;Pfd-(w~>>_Gy~)^fomf=IV=Z?tYo;mv#IPJt{bSantYD2#F|GM&Nk|L zf3Z~Tzt6p;TQyWpqM0T4*GcmRYV!`vsM7{X^l8(AqNr#z1BM!W1BvE8=h2Bv*6_h1~dZVbrt6v+xUP@-g zwxp=Et7DZ1@mQlFh-RQkRb?8+of*t`rAq1kQayxfv5+*kg?KVnPni;B43#FNwMB5Z zW`h#9wIfb@Wz*Wx$f2=SWN3WfsZ!BiD~T#674M50JI|>>kjDxzyxYe_$k1vTZDU(o zTT%(~WKzo_Jol0|R_<2+0L+->*=67tNyjH>*szb~*Br*N{{U&) zx+vcRot*3V@a4qUVS%)3fB^yIf7w{3S}eIu|WaTCrpWi0~EyKik&$@3vPB*+@3$-A&?4d0Ir$|_%G5d;k5*P63id&Bfw{{Vj;hW7|H zbKd}g^6m`!IFoAUb7nH3);B3+?K;7}6#l97{LZGOozaYug;O&8&6f=E1(Umukaf2r`5p9V#xIzKQBpZvtag z&@~ zTI991l~-Jq><|wop_RUD3~7s#nj~Bn^1u@@+ZW(SkvrB{`zh)xv2@1cPaIr+q%q{yMRW;uNg=h;8%G#&hHBJzx)Lj!x;U9VWN4Ws zoiJGuVYOgS|s)1=CW!OaJ+@y1a{^uP8n=z`I>Kq2T zxd>tD?%!UDkf)?|sFY$?&W+!yVU#AUvRe!4+L$zTuJ}LWE+ko_zr!Vz_|^+LGFH`B zQ;A%@3Y+N@WWU59T*i-CA|34KLJhmxsiVSHM~4)$%2B-w&wVQx<{+G-99I;v;7B~R zi~-%u0VAG*dBl;V^{rK`0<=%u6#aWy=j+mPwQoM0<{)G?=6FQWIW$W@u_)Tg8`;+rk<&X9pG9 zAd6{;%V|K|R)0D4h@xAJfECGGK@4G~n)oN1VK`O^ zm=ZMb7Q$S}r(#G;7MRb-?lNOb%i?6ks>k`ecv0b-Cuop%G9kAn47$sT+Q3DfHpu~F zQe0xX9hOz)I%_J$oj$81yqX;xd{)M73AJ@IBADrNVEH+5PAFUYG3fn70E>{yGZt-Q zh|x*5gCdH+FIc}=6GdH)j?|F`ImSgHKQ*;BXT|1G)-O-u$&(BuBi*lp1~+}DK_sT9 zsRzYz#aL6H-UXHvQ98>dfj+~mP@oPG+SFmPiq?Ytk8lrh=KZ3s_fg2I*YSKPLX|cZ zG)Qf9A#D;;vnI>QVONC)QKr}d7^7Rou17+b_K2W{_@85BW4!JAiwE(B330J2^gF7qi)@)7)}K zvxE%>SW3iQ^iju|0{;LXu%=)^Q+Wo)1uRU2Q*wHlljlN{a|bPw7(>b76_6$ZTX`o5 z;~D8Lv1vmcKwlRhnP^(Rp;E@Iv#xWC4*Rm#*w{loeE6e?>gcg;aoYa?v~|}m_DpQM z75gcX>MY^9xJ@UPrGn?rE8#x#wvulpLkxNLBMT)&a9cXQ-ZVT@xk;EFgA=czuFJ0= z*2j-y3PEBG@lSjI04dcB&m))Rl(FHy8lqTWlqCi68tYr7-(->)6%CIr=67wZ0r)*^ zY6jUB6X(MRv{TB%l4lm?wDajIY*{K*wk3608(U~@M!l|96%I1!?na61a*k;iXx|fD zB|fI)P+5y(mfqOMhWBeNf|i{-jcV^C98JhI}IM{iqmO(tD%X`x1k9j-;tOy-LkTCmNLQy+*;62#_No= zS(9cGn#5BF0%$IBdmHN!tLy_VlyrfLuE?e1a%=JgsK@Fd*To%Gw+8uSx+5ybm@DVn zWN{5$V=jH>GT9TGN*GFF#yyQ~vCSf7qezGr%#xZR$o(M(;!3Gx zfnW(GEOlnujY^(PQCRmbq5$(HQqa>t45_zsuM*G{)!b3qR_vel89*TM)P%Jciiyr@PG+b(Ti&Q<w=i*rTGF z9wi#=l%=bgVLsODR&?Zx5b?@6mG^S1s>_l4Qy(;bC*k}!+=yw6bE~9QxHZtxwpfz2 z;b|TjSdQvZSdWglF1B83&qVY_cF`WFi_hL``G?@VIXq&JGbyEaM$(EHY<61PCq1O%*Wlue?Z8ydWWVdbo*s+ACR zqsOA;wbAS{Vai6_WX&~>K*)^@c~%6IRT=T)#)mnOI(6q^>CR&t72VB1k3Qnw_M$Be z$kySTb!72LxPIi(xy6X{qYkYevjo8Sw>W;`|rH@X2 znCneH1aw0HWxp#ffm*Uih9@??T-ik7HD<4y8F^|$1gQl}+C^Rcn95$R44h+LRg$kF z0CGT$zvHi{-NnkTJxW20;d0|S8y`f*Ec~fyiXl#pRf2^@(y<6N8yl}QMMlY#r}8J)mVXGC@sD5R zWe(X@tvlQ4#k%b?L|yc|AyMh3xNLYIUEOpTtyqyFjo=+%Mzs|Tm39|`1Xqk9JSA)( z4a6W~rlLrcg%srq<@k{7qsDs_{f4B-ig-Bfl9gF=ZC9l1kJkE10+)sFNd+8h#YhaTf$RPr{0p#kUUy+=HpKE_j1QM@qEUY2LqOLKq z3#+fQnF}3ZXQQ>_iphp+6vS?;C@pVfPO6zpWMx+BgC4cWB-~ZOfn?CV^5+P^pB1RO zXuD*8CoEd2wz`)^ds>+DkhxqOa?Z;jwut7*H*?yRJwCFO=um}DmUEz=UE@WXlhS%6 zWq~A-5NGu6H5F5bB|yJJ3tt3^<fku)JDst}**+?8ZfLK`vI%tsYb<A0j$JQ!(NEhcz_R_ZMYw zz$B94?1UST^^nJ7T`itm;*e+(D{~hO@GT=AADA08cxuvOr>qyYCe^VcG@O8`v1GB# zT~tneZc{G0K0^l|w@TaTB|Nz$%gqBRueyRzQQN+&sq@CxXHm@O``1Lb8CvJ+3NOnpR>Sr}4?8c45XTrpV;6NdQN z2d3D%y1JJtLP)IAYa80f4dShLPwyWNvDLCHMJ}PPvGWq5vMh*1ma`ojAtT;Vykdn% z9tvCIQvInKqX@8@Vg?ahx3%dnLRP$26!C8^eCE;=y9;YM4OP4F# zy196b{`W0!>!tM4u9Z_tzLTtC)Dp%Zz;C}e zzaOUloYRP8J*^zB5@T4qk9s?s0_~8YNT3s+CJbm%_l~+PbdrKSQRJPWFvDLlTukF0 zNF{0e;Fn;vQ0(Ioz>h89lzg-$!K<>GWe#I$Rb_)ykTEAMnbS#O&O7U!J1&P9(_=?} zk)@?OBHmkML%gIhjQFwRH6wOuCEmJNB0Q&(2sJqcyX|tw^8hNbl+~h~BUs8b1KO}s zB^)I%A`BC4tfHDen50lQOKFcVlpkg7B8s*Ax=Y_v~_m8#bdelcr2!{MpE z%>Hy?3@hG|Uo1fv=4#GtjEcp1HPLEqqGIhtNPvX0ardVn{X_?n7Y{^4S2v4akCf?@ zH)gAND6BB(&XXz}n%fXZmo{9?XCSJDOESogj{2fe!HCx5)0pI(56Lef?n8G^24L&s zeT;=~k7Kq?yTT@`(uR_GO%CRo!fpEz<2z&_1kK*npDWohtl1+S#}MQ|NQ^A+BCqyt zXP_C#Du9wh85l>MVdcE^IZlRWa(#q&vI;Y^xLvgkjZ;bOmml2mrYxj%crDt}C9vel zyQM7^-)$8k%AEj`i%olv4or^RD6wXWU}jZJI2eg$84+bhv1uzLKtRPsP8j{!Xfi7@ z0%hE3WSv8jM=LI?tqldKVvcNS-ey&ST~n7rxP0wcinj7BYS4~3>Y8gmu(x_SkS(XC zl|LSm^F+0Kj6nBXFu+%YastBYI3{_>(!wN(HdJ?FRv>-WTZtaRV6p2FO)*sDC3?=s z_Se?~lnB|*Ll4>crU}?4b25_F2t{cHm7^0KUfgs7ocbDZjnZYH$6jaa2C|4c>F^?0 z!>p&U$09?TGm3cKGKz-8&V<5iH>UGYo3iQbR7VZzr9|yxg5N1BY>-!QTMxO5;-AFg z8C?Usyi%AFqg>rNMPXpd0~=)-#IEj%WlS#$CNWX?M6?cTc`~(?wfP~TmKI3{Wo32L zDOoCMuuwnGNMP3-|h}Qfzh+5YbvJ&^w7Y1_BpL( zhB=R1uvj$|SkY*z;6%E{!COHQ5yBm{j2v3KFqZb#6waYnN*I|}AH61l^cMShc+n%W zC@N5v(#%-TkXB7F1&m(`qsRpoHKrx)TMT-hO62w( zImgReDlKWIWA-sI+suycthoRIGHrcLY+3fiw4}%I>YJrprz9hy0#Gb1@*50(TtLcm zwTEMD#_{~BtdJ~g?ERyJ%a0e?@3Gzs-R~!hRTLcDjiJd_qVozPqyoMs(&0s%e7fZA zYjPZNx~NLUEt9Els$t{(MTP7R+x*pJuP@=2^pypQ5!z z%SgNGWLVZU)O8iKRpWPXc}+@V{X|%Z>NZvkk>+xZclmldw+f9>(BiDih{7CTNq^Yx zqV2?z1Ldp|_CLyHBC8tbk5TO;MPV5CT3nObaS_YSvKrE)f~ji= zL~t4hnj|2)Z1_Zhbx(%XSJh-Rwox*#vJ%zv@ymE_^77+CGu~;6CnE-m?FrGm$?EM3 zOn`faHaLi=qvr|dF+Xo<3}Kb zz_slvY0=}hX%$@9;_T{6n3~0oGv?M70;|VtuIw#s@!QsyO&6CYO9R>2j-kkWOHAYq zb=(PFM)1cAtE5#W>LM8Rtgp3^4k_+clHEExgCWL^UP8dl?6LsYS4qCGeMN2Lc+v-P z71lj~du#Jp7i{>sO?WG^Fv~`Tr$!0>ufZ1}s&mAs&Vd|ZO||vk)743PeJIxS z^e|{+7BGx4*cPKaksyOQPb{lQhvlP*g2|4~&A|I(l6Q>H#$|>URC7Zk;>=#f(u>>C zfHE0CA-=*)5=k)x=R0m+PeoMQQPkaB{Fk!-5RAeK;K2w9#!H``u7k<_@?&>sr^eOPR1Zs7+{BVV9T8{5y` zbDP5Id;;PCbd{^fspaIj6x?EM9mYQ}lB=P!&00wBlc+W&@=_KnlE&I%MI3`hL}^!vtD@eY#DD0rq^=rsj2HC^)1Q?a$iqbXPBC7!K|6An{Fi~20?K= z(kA+HRMy@jMO5``YMKagV#b|aI^)}uF99OLc6&`n8y%0F(wf^HrDE2?$MPsv;r1;? zQI+M`v}#7em&+o#j*XsFMwvY{j@iIFK{@{bWu_t*ou)sM*T{^7N4*@Wro9(m9Wd&_ zX0g)Zj*7RmGlmsDBah-zvS|hBL3Yl8B1#NxG+^2&KeY2g<3F0n;KpXcdz|<*JfPgvl~oj5UI^ zcmx!%&stRT85LOXFzjO}R3wjlIi@oXEKc5mA)qsh#%nmqi3&%vm^&yFCeN;c3^Jmb zA@NqZQ4!ejx!5sOB6pHCNNa0qsVxq(GA0?(%Q|!HMeib2D*ctAf*ZT+mIRt+h`+?w zyZ9swcrr@D5=`Rpa5)OGBoOJ#S9D>Ep~xskF|)dh{4{|qfye#`a%O~x=?_gsv;)H^ z$obe=5jus`BD?HLs%e||#6?VNH;B{H{WUr3WztQ(F!_sNgg_(TkYs~&af)O)6mlmY z&DPjfkk-}_sG-@<_NCNUBEY}_9(Ek*Q7i2iy!T^vMJ2^ukzPe}NVyeUBS)~01|{rx znDL!5k)66%qjI=49@n#b+CgP+;)=$%Q>7Mdmwe8Is=8~oZ^ux9<}7T_#C&~NCEs?i zXuH3c6!qp4L+(YE3AMjP^LfgxFKn$nmn4BA(sZk zqc>3Pn&wPV3$T)2)`;(EWf-QE3n?L`P2H$)q|TDuT!e*T1tPWD_@~oNcdJ)*g~zkM zlC_rxIT&D;G57WOrk6?a8mcNUAs6!qa5RxszN*eI_Z*CI+T%U)Cc_XE)-~>fIVU+O z&nOcst6n)Z;hkv&b=i%RW>3rKS?JSdNjy`KGwab7eT|)@49=G-luZ{B?b#LtidfMh zmJqGy*gYh{ixPCmf_!$xMVk&BIjtM&AyQ*!t2tZUiFGI1)#t{1xwR$n<-~O@OYWmu z*VT&B;>I3FQw!Rb`2|&Ys#9IgDzna_*&Ir`YMHdkYN!>sg_L2;`&^dywKjFlkld#e zffU7OZo+UQ!LZ1sNuC*%dnWEZ|#2ToZW zSahSdJN6PCB9EiBupG= z*7M_gTRxn=#gk#=R#9$p;X>)X#9&=unJrkN6Zpb4T=n!$@-P_mfw~K;L%D0gXv!#a ztEw}GLWhkL8$0VE$EjE`VoHyh*~-6-l(RT3Zapf@GcU30V@m@&QY+jR*GQFEgTo`t@d3yNJ8!kA6zDA)+e4Q zESOXqBP|3z3nBXj%14xutJ?^Qp6fG~3d&L$jpAKw#{Ldq!OMC;>2}c2Ja(Na6 zJ%Ho3%BDaa8pBw>@s&SZ3dJJio^`P-Y^DIT_@ku0Acq=Iq+<1z83tNdUU|#OSVd_t z4lwWxx691Q;#Ap~Q{1&x^?77NS_VK@M=vc+FPXJ={9@K#f(1>4cV$p)V-6r$?^~JE zGUZXWJ6J-Mqg8sfsULLHJqr#p$7GZDrHy$zgS@}0xfhO?lCP?@H{;XE&yAA*04ky@ zn{#72^CzgKgF{}c=;hH`gw{ghdolis1?|XW_@2e9^9yZqG-!;WSZ!}5?Up8*yoSa# z6hnC=4<-a^ziY`tNR;v&eNnCDr;S?m^wNA&`GGOPP;D+c#z`@)Dx_JKMGd56TIqwF zwdMAKLP41}-YXU4ksXno$ig&Nl?64?NSc2Ica~(3gyjoh%p6&afK^GvmJ_-Gk-y0z zzF=YGGI9BKHZtN$gC(xnQHtbmyJH7t%gNrU)CR~WZVq{65O6YNw5`eCT{j->*iC|G zk-GClJjHud>jE$}A~T*zc9U%DizUq&BnXvtcizgWeX`4|ZR5(b=0lmOR`3jDvn71_ z5~NRi!sKUR>Zt-!5)-MzS0dnr4}GpztJgw}A@S+$5rH3W3rZQAm;;*I4t*ZrD47`Wf zUd&T@Y@;u;j46hLv>NwbS>eFO?C9|u2JCO5rkUxd6h6utwWTt!OIvPg+Zy|rHZ}3A zW0>evL9#GJ3_e#C*4QrVONIU2T&oaVa+qlWh4f#Mln&&-4JT2r=b}luKT#rs|pW_dr~YrCr1o~y{ey4 zcKN4cn1dPCQ64rm3#JZ84-X-`W~7bBu*k;PQ|a*7miUF1Gecbr!49H%Cbl5XX~D9n z@1fZArhEci$dr$8E>IQi;O7q>?$?*N^1aCCS6V(K%Qg?r*8c#-3wV@yjXi+Q8(4B; z--04XrZJi~LzH1x#P)z|0qrXEt%X|#Cn}vJNNga{j(J{KvE-Q+wS**t3ce8aEm-Y( zDmBVIIzhMQ*Mq0`E|FW2V>EMy8!E;dv_>s4l|`P`pf2@_&GI?MNejqkkR1i zq?aZdVKc`jOD-W*Tdb&8G<8*e*|f=M(zNaLZZby0==68Ey2L>Ec)~8?&9L$*Ywb-I z7_$2Tx>TjNn=&h7nP<#(R8BtEjNy#WUrd*@j-ZDgLQuPK8ma`<_7xDZ=GRquNy4J7 z(ah;ErB%Kwz2UtiuG^}jyG?rTP`M+ycGYW|mo?d4WS8anFJ`iuo;?;k?Q+tuqxMZ- zG?EEx6$5kYx+?O5_X^6~ecFswAxOw?apTtKbFu8G0O#6eMjdZ-I$teXS;-Q`3QpF( zyL*V`O*pPyJ4n@bm8zQEbO}Zq>n)gIMT|1)WJDxe+VlV(s>z0oLpFH(M+4m1H;)-0 z2(A&HLM+JrmJhr@%G+x~M2$K#;wQ4ApUB7!x}{{Sf6MCRF-qJUiNzy{B+W z83?XKW4p3qZ``?oB6fGP+WPoW>`x{goh8%(*ITp9kPdvV=wsDRE~Mfalqogw+GCPI z3MLD$7dPC4;h2`GxqIbP>BOnJ1tNeb9;oUcg(k19lh z5hp9?IztA6SnK9h!xlkTLn=I+MV^1DuD6SMHEHVV$=M!1oXL~rMvX*c=R-p16`W+NQvfy0g4K{2=;)=n&QL1hn3t+vUW$5SL(MQ zb%m5G7_OrnDA(5Ai4IV)uh5{K&IKck>gpxPg$b5a@vdk` zbp?$-W%SnKir^JB9t5Y>$YU509!x@4-U8ih@#qhmG8y7b6COy_U-65_L?xapeoDDn zY^d2DMIExC)?PWsuEm*P=1#DMRY~W2OCH^>C*A~IItuq)8bHi~az^d;>W3I&)WmtM z7$-HP3J`m7R}XCpAL2peW!$J9;|j;$H{@JJA(TT zC1jg>xp>(tffyqkn3gZ9uf*b>MQxEQgB1`$p4&+;!otUJp#+H4gCgwbeqLFIk~7-o zxoYRKArIY^VImp8WeJ9`?qyD~dHu|dgk{+8rlad!C%+lf3#Oe$FE=O-lJP9*r|d77 z?pK$S%$sxgBlOkuhFMKyz^ElRxyVS~c(tVjFe9AgbF{8aJ?q|0-K!m)Wq#KR<;xdk zDk%VJ&dEpJs;*UK+=aB5@6P3SSzT#sb)1}bZ^#-`dE8*?I=p5^pNP%kwUXgQG@uYM zoJ!9^2xBVB1LIBj>MWB+brrh|qAHYDL`4kQvVPLQxvp(}(W08=uF|+o}t0n=y=}GvZcN(z?SbGo;;Y$j9Ci>B(=HPy4924*t!iH1phTMByoHf4ksVwL`2*!yT~GC52wgIa`2 z%BglJ&@@xym$?LHZ*g=z`Q71lH&49AZZYSEPh`Grl64|T-3(=MX*oGHJWD!&fiMmc zBjq+uK^6*6ZIVZh>9bo~0I()dW3uM66R9+59X*WT!RgJa$bU^Q1|oF(CRpaHu&Xsz zI{ELlja)%B85LbH%O%HvGX_d~H4fhLs=dx#og&4NwR31W6;rI)I;|CV<)kxJu^xt? z<=U_|Pjb3T8-jrbS85$#?5D}AJy6aSjUid@$Jj3(M{56iBtgbKavk+k@yn?8V6+Obw?YA>kV?g01km{L?u|f4G11%L)kJkU#Vpn} zUgB4+oe|g=*$p*=!zLoDjt4QpjPm2z`wZ7wiXtO!(C3`spngM6KhbP4p&=aO|yCZdO_t_AzH&I*yUq1(ep~lrrrx`)jx~_|7{{ zNm*mYLDoEitjAvoTTwQD{&m4vM|y4;Z&%SVit9$lofgEFu=;;TL5~7dTNkL|-qn$6 zFT`mBl|U(d9>g&fC;&+jJmCc%Q`MQzQZltGyN5 z>5KVQmJ*-P$W>AMwtmi9hI=WMWpjxk-mQxD8=TJL#js;iiq6h$t}~g*ZEia%>QkZ= zGgd5Btm2H*o}yY?NbZMYZU)vztUHvWIH(|Vg^Sch2h zx-B3>1j@O24NMvLPXwNj4U8E*jY{5o_fYQoZRK4^c7E2u&jKbeA_> zJ!%I5$!=Ei;<~#Zwbbl_m>RCKp{{823K)_Sc&u-s#H^27SWtbol@7S&yR4axWU;aq z6Il?qg&I7Q%(bd*M0pKFce32IBbD22F~;!Ov~jF$B8V0ONKzuU0>mU^EUa?MKp|3IvNlySu^#u&>B`iO^71R(XBC2PaaAlL>1*EQ)MfWGddJPicHMD_j*lL|9jU4O)YAx{#feA?84~+ZLH3SP zf(T=!olP4pF99ANRT{={%y{<8cS>t$gp5|o4`_oc7tvg(uHtC&F<9`XU1AZXR;^1~ zkec!0==SMsVni|EK)%QQ;5r47r&`HScX7E8<_aW)Yo|k0x`7Q{GB{C;-`wt^D>r+t zaym*;$Emfsxs6pCyqQcAK16XV%O&gFftF8$juO(z_Eq=R@uthm*n126W?0GkHTxtA zX4+Nu$O&)XSoXxmta!GW|ClKG5d32Si**W>m^HD~Lo>s|d?;%dfBbL7AIdzlEhaWDdxoT^Y@MGMK zt`9R)Jy##@sMjFIam$fI3z=)}mPg46d2RNO9-e@+v4tia`fRRL5<;*9n%<*@#mu3` z3nP$CWVU0M)1Y6#8q=1rNsJx*osQ$?znn~1wO3^Tn+8X5WVOA-b31D3D(Vf_QB5v1 zwnVMT;wT6+4*okS7UBuDjODOfbKDEHdpfozESUtGJ3AA+f;@$JnxyPSA~tcNqh&>w z_DZ9rnOqtZp|QgUymRfxKlX_h`sdi4ImfzxD)$tV(s#6%c+Bj5q7o~j7ELs$mT;#> zO|{3-!}n%EuAVH93|i>P>e27d4}s^gAR01T#Dy;RD?d+RI~y<$9(M)gFrt`Y*`tVA z*R>U~spwd|bs{rl>mw9OOt~Ek+Ezx#q(D^AqoYYkfhD<2^4sJx2^$|A)$*9#falZ) zx&-o2&s$X>&K^l>u*+d6$G`y)B(29Knzhz671#A<31iF|iZ@6rr07u-u^y4q#oe-? zvZ~6*AYzdUeQc-&t+S-0laOTh`3Py!6NemahZ;puqezP~u_bbekO{T-AQ8wTAe^#~ z&OTRj7_u@6R(QweHMP?jA}xp^)!qx4Z01n9Oe}friKTB1M7;KS1ymbb2@s)q$Tf9U z^!?uB1lEcL@(gHJ4g}UTj;43KK*f6<>8Wy9?Rq(l-$-=XoXSUVK#j#=2L@Dv1}sR6 z&8O1AKNr^&FtG$kH~EG@+URvxjg27QRRvsLTA0R?4Cs%6ZAxSgLuv0D>sT)Su#yZn zKtYY@yROQb&Up(B?wp85{#`ihulj6|Je0@+ELl;>Ddrorsmbn63g3N}JH)WeB3GAH zPkAsz*%s72@k)&%hG8D(>b^gatFSBNJ~@pJ#)~46D3NAEFdHGd7bi5bhSp2TtK)?% z@|>c5UL{Fbbo5NZu^j@=aAwz`IO$c+E1Rz>{{SX6;At&u#s2_C`{<2QJ^|&xwVxn% z3nX2u9B7T&;ySW+Hzi-w>qx51Als_D)nk=dIMY?2g)$)oKsv zx0#PwM3_1YQbsH}QAmy1u48*!Y)o2bnM&(OCbqb)s4hzQ;#dhFs4_G%hkw)R>w~(B zAjXefk+D)0m`fV1I3;V^%50MTDrl~6&w6!1)zbHftXFeb#b~5U10~|To8QK=Pi58& zQ7&uk!U~NZAD)e0kVtznDAo*s%S#Jnmr-UobrJY{1IK2L&lIqzytAU8 zR;Y^h7$p+HIZ-sJVg z$C|1b&3jR_cH*naz(ICVQC3ul@at|Zrq=Y~O%@!?V5ND1Ohga)~!8;7W{p&Ee@U7?t@fGmYG*<&yhg?$QIeVwngt|m8- zwe<`*ahqum71CJu+YUlWoaA2AxNVz;KY=Y^$tSWXgGl>3x><3j`*1o|fP))iqn`|B zasVtVKqjN3$5K44=7eMPv$!?Zk`-AtaU7wskd?mCgOFv#c{6{GurV@Jaj3&R`}Xtb z2+IM#wrRA3b$o#+jY9No^;sju>J!bzY+|8w(tEk19$uG=XIF6Dn8n*EZmcJEt+5;b z06jY9e3%v3^w~C8`g{+~G$hpDE>>HLR9u@IYnG|)Ui9`6D;+gYP!PD2Y>YkGUIE5- z`&Ep@BpD=(!ra|TWO|JLYw~CTqn#VfPm5g{_0@0x@f@FGh}qjZGM2<{Za3>$B;f(=Rd$3MN;b&EjR<9Ua}L#*zZqC1;*4A!zFC zk80D$ZZD5ceEyu&nfDmh?s;XOJ9#rE6{A&jHmMX%7|5a_ z<4LKMaNLsdK@>N%F)AZmRGUC6T*P~{(k}_v{Vkd$Ev;-OjkV8V+Zq;6KhN4hg&MlH zM0QV_TyDt`8sN#06^!_{l44Z+5Ne3=SQHfwl%F))oHQpqOlTXh1BS0rZZ_%8Z@UkkfHghHJu!oqCXknU^i>xGfa9h94k335|)ek(}Z{G&9+n?o+Drq0FH zws)BRNgJu*O+Tpg26x(AaJBgfg>yC@Lr-T$TL>+FSl8R-4<8XL8i@9zg^geEP@=A~ z41^W0ublw2ljJ@i?Clxnt@d@Zd7*Lmi9e`L^)ssj)RU$83kV&T*xGkX1%sg zdt}&H5ANMrpcUYden{vNoF|k*9-OqDGzT4yVi70sKD z7rfT4{FOIjJslchnzeZhN7ZBwX_;+XXk1uf-lDio45U=@c6KeS)b_FVuKxgs*4VUF z_|1tcu-?*ZzZ}3uDj?nYtLjcq=K)S@8DoqC)u@YQX6T`}lP)_Oz$Ai-y{+8V<N9A&(j2*6GR|vO>F&mL$2mxy=*(G8+cg0yMFZIWPQT;>m7jVzL!2ikw$&O>P%t zdce?J*J#wyY@i0I@ufYn292H|%YCf19yJ5m*r3Rp-{V#JH9VM?Se{E$mAZ5vwt|n7 z#h58^RRVRB0xbM~Fxlq`?jO8lZRrSX48z!p#c6hXlM(NN9IC=Z$n3&7^~!NXiQkMy z#*-o8vmZM27kVY-ldLL@yUS2SWa~Gyw=Ix@Tt^&ntBDQ?17(YW@Nc3zmd*jo=O;|_ z2xNDe-MWnS?(vbD$DzJf80=s!hYspZ9q`Q%dW$8+22EZ&j9{=V7)aKImW~pVThCQU z0VftG^LE7cmAlAmRWv%IO2*UCH&oSRin(y(+nNr6km3!Cb?u4h?j&Y>5=G3}R;98m(IANPAtzTC4$33kMd}0>Osg?i=Z#46NHUPnS~kd| zlp=)I6_))$x~POpIGK#9ycv_+u-V6CZq9ce92}Zmxi6{{cEQGIJ&}OsFnyuY$Ib2I z*!_!bZ)f9mmsx#|8IG_ig;zQ#t6WUhqaOQFKHI0|trW_ZR?lsM*5Qc3u0PE8G7^QWWm*@KImvFN3rl2k#L7F=oY^18v!&gNIzRh@@T za}%QCbLR@SR!F&w<7U5$KHg>O^Sst8C#)rpa)>G#h{wsOG)B+0oM0t2T!u zW`DRkB@DSUA{r&Mh(r(wn=h`KM{{~LTS%^b1Pe&@c$Vn#yxq$djEN5`SF%rk&R0v0 z=Fo?KI_D5U_Ql4#$b~DJ+U2u1^=p-MH%V+T43e!2hk0?>&;gkvseG(*oseTozJO^D zmkfcdffCmOb{Ys4=4*&Xb73porH0`FQsxp@<&{zh*pr^82d?#eBw^M{;Y;?#d+ICZ zwnc9>Vq_z9Os2`g4!rb9YIwfp%7ax`2Nb+ZoN?XqSqfIxn-`Eozhvlz*1a`$u%6!k1QsQKCA^#Grzl$QiCJLp7+6k&JNXG z-Gn@Ls#s4?G=!d+Gyp=a^>cXdrpV>eS&OlE};h+Lt5Ev(MA@dKZlp*5%FMKO{SZ7amu=@D2ZD| z5?o2J2;SX;RZ;GDHRkci$MTK=mgmluUn<;JWtise^dl-O6GH%DzjAR~Urn zuESjT(&pE`9$PW`BxYn&!jEv=1W4}Ps{ukdIjp30gdgJV??M>%yp@IwrmSZXU8EP~ z$By$@S+()(82&OVc}orCC;J$D-tOU^B=uUuBnQ{zWnd=V+sdbV(OjcKswd^mzqpZH z{Hl&Q+hZA6EV7PO)>n;tW`dq|ql+fHqO^FclZ-D`4O4D_;mnV`%A<(zW~ z8f=!shY&?YMQNA^AeF3XYGd%A$_VczNn$8gvk3~rBr6xo1{ueP$w#@5^#6d1FUR z25~0U${*$sdVa`CVr~Ubf2i=7%V;HVN&3~W^8)Qo*aH5E3;pP`_x8b zy{##U#{M8h(^PZNB6$=^Iq^s-#%`)|LdBl~*1E!TJ;db4J%#l}*CwJ?wqsy0ui$8r zB$La7gCId3vaCrg@!EUf9AbPcjTH`h>h*~shpvrTc26Z9s4|n<26MaW?_KnbU6Yct zZaP)Xwf7%l=t=ZKuCv6Mlhb^w3{O|i|KcdRb){vVA$g}Fv1&*9;!@R zI-JXA^$)bDILuQNnEwEn(#6^z<+UTSN!Gz0Gc>MxZ1JpdBG-1D-9(spmX(&V<)o=~ zPGLNi9z87WjUKjaOE?++EO>Ww>miOB`nd)C5^Umjd8E2I0HgN>sH@#Ey&ubUX4>1h zE|)}4wq*W>e%Q{_!0QQC*vgQSW{s?|l*v~kpL#&a%~yf2^Na3o}2TGLj<_xglnX{$E46^_ED6&Z#8RG+N+P<5!~MY0Ku(u z8yVh@b2b~=)znE6eVA&uG%&30D_lz_PAQUWV6|S>i@)Bg$e}WhM7KuG9c?GMVOL3z z$Dczku0%;r8SLDPZ&q?FNz4IlF}T2WZcaDIJHU+7pCOS%e*Hu#17R-liq9?~jb{*? z$-&Jpl$WPD+#0BwbGZv;)Cj8Qjj`P;AQ!J-hTn@Mlx)SL4hiMCl@vwC?A>dBHOxUuFtldGo5g(fCQMKy#~LoX26hcLK^ zd+RdZ*)(olD*kg*cRtcOV*daQY>Td+T?BFD9k{Pirif{8rs>|Hs*+e2vjwNBrm^331OVm*@n($3=-G#0_ln6{C! z3Zux8Vm{4fgI@)vWAu;PNbTB-q}Ex8K(ZA$i&2nGxbrt`lWRj{OQTDKsImsjV&AN?gF}ROPtYeC;?HOavqk~y0FB8Zknk9w`c`uJmM+U;m zOM8C1$0uy>e|JFx%;@zt8k1i#B#Z*YmAy)mWRDijvZwXrJXCqj<7x5iO2H#6fh0?I zDl)eQrt($uacU{^+YHGP#NGHOn?2x)027>+qP1iEOmA=$NYI$OK%Yh>?m*2f&XjbDwticKqYt@lT=Y4Mdy&Arz-`y;n# z$}L5iV-{RF5*w=n8f|apL!3THeq4(stR$sPnx2adjU0R8!I5dlW`ENkab?)fge%Np zEGD?fpPa#H;{a*GtX1r|nkWX!@Whbw85~rPUTHFG;juJP236>4BewQn86P3$7t^q+ z(L|LQ(W9L42Wui^_v7NYnHe~2da!wCRY2sfg63PhwINZR{Wdx9vZ4*&Eyh$nS-6G;`Z14H#Iv z6&UX>l4VAP3_&ExH8NTeMnxHi*jWv4nQIjsS0iDrm*d#(H1;!Q)sx+Ghq|+VPHWqz zdN5KH^e%4kWe}pPiHH_;OzP=%mQ1jGQJQO{YZEa8KICNXkv;5A$DUFoP94GXCQNuyvHL)^;iN~jqevCL*Sc!Q?5poMV`vmP}a2xLRAnGWsXr=Mn3)2<4yWd7!Z zS_#r6!X%gxA_20F#iDlt#22x%gv7b(u7-Z zL`ZEQ>=`idPZuzhNR^ovo|rei+TYQR_1!f#pw!tFII5wJ+Z=~|ju0h{I1g(90P#;2 zcW2rT-*&32f>yDDS0QG~dFQziQ(Rn)Uy3H6obW6>!>sfvEo?faNfG50BWP!57QaZk z-&Pg1_S9(_!xqgWnWRt`S-v(J+hW^Hm>1Ue(Gmk>zV16Q+=kjsgxAPNg;9HH%ars@ z+U-yfUufk2R8-edLGRNM|Y@*%z^ zyDF?{3EYdwCP?m5*w>b8>#2n&4IrKZt4j7fENmXnyybGcwBGb_FCzBBbTNT7`6Q#> z<Ym7%sgV{jHdT_%4c)16UCs!X ziF4?S6R6SEdnF6|N&Q$vb75|-C2$PPffMpv7QH3ISGq{JSPh%%Kw}C!+q(T)it!^f zNT}-OD(M>4QHACJYm|hqkL0M;`=x^vw9MuL$DblOio`3@Dt7TWL}gUCu55cK&IBcg&^I;#rHZ3cY&e&WtVLt&7{($un97>9eF zM=GYApOl3t%@-o4ES9=D!EqD4Ms|++{kuYn{{YIbtes;R@JSi+TeBPdv5{CIuFhXT zF;l(E*P3a{owg%=oxe81s+VIXzK0~IG-(KtL1Z}wVK;KS+_$8Kkx>RTx~#Pj(B;go zrpUE(MPW%Iw;HmS7TUgi026f3^s1?*Ie4|Na=IJqv?$Gz$q~j%0twBK)~X}bS5y{l ztG}Ii0go7(S=ioXF~&T+hQev9WIM}{dA08bQ-j&W0>~r;)N0I8$vfBgyt|j4O1dFXp93qqXnp5aPXwa6JcKw&@uhd zsW4}ZPV3Q;oPoQgMtnMpTR!)tI z5I?e_B;kaR@&|d}ZcWqo?ulN6uoznOdbL4ja43ZW(Zz3ItZN*uuQb!LI)S8=;VYiP zY7|FFlH&>-mM?M{Te6)$Em1tpYnRF*{%=yD^QNjaWUny>(!Dsz1HuYv9$agUd3hNW zc;Y-G0qsLZ{L83}b3zw2RgqG-i?VILnaMOgo2bx>JZTD3q|)Mr0gGQ(X;}XNGX_h< z_SHMlX3E?|MmStons3`;y}GSWFOPXHNoP^nhUN4T9~{uE${do0z>;*`Cb#u?f>E0g zrq#U(r(@$B*W=&{#WUH(&-BvqS8uWt*GitdZ>B0E;Yet2?3%vIjHnmH$e@IGmQjyT z@+lsgV)2HIReb2Zm zTarWe9sPA)Ulukccsm@5hD>Z{7KsiFD~l(QuP)+b;-T*d0uWK8+Qzb~l}%$FT7uH< zMR{30ty`=3^-#gSx8$n4n2E6*9iU6Gmnk;XXatlCI>T1lD?2T#k7a7Mm6nj=O9)}U zv_%R+F|Soc5t& zKEll97}#njP3^v?DZs3=;~_id-Clhh8%A;b48UL0H^-|x4P%67{U;!nyI{(B5Rq&(&MA!-Bitw zKg&&dk{qcMaH`uX+6Jem(|=B0yQdv4{BJP&+qPO(*-_dNbh|FMO)@bJsgRO9&*XQ< zO&h$!m%B>lt0uX2UTkw!s@*G*6Mu28R_P8SneE2H%E{_>atm#3NyR$+{P9qo+SdTKnC#*?<)Km z%`^?9f&J*^Nf638AHo~Y?Wl;;gE4}fcts28hxv zq||oh#jhmEgvK%fzwE{E;-on~X@lBqO6eAFnO`(>*-a&uo@7F?xwV;Pf90Jz80A+0 zc_risxRXZ6`gHe3M@lS_U^78K9Fs^SqOFs0iBFKQrC)iHg8l4$g`OE?v0{$GAs*D` zx9%Wntd9=j8RSBz%5809*;z%Px}3P?H!hj;Ci@~~WFgyJ%Yf)cfjh`#QDp{DIWq<C_rk87ypX@Nkk#p|O$a+P78~XRpEggnbRPEkllE zyqO#uABgQ_4OqSBwmaThoJp=$$BcFMoXe9E>IPpZR`=*D%zM4=HF+b5Cb^5gkWI;!WZ{js?CbC5oEr@JI%}g3_zcj1v$xnK$j_;ml-OX8T=3t_{5#aZif&xWN^oom^86?}ADLugo=yD5-RzPxQ8KjQ&8oOUeF&#Z0 zPkQ`2$-b8`hiu9BceQoa)UxSoozhHnV0E0e9Gxo@wJ3Z zScp}b1;hte<&~nxW@l9qD+idqT_ui9E?k@mUQ9iUzLQT)(Z*=b$D_Xl=n(9yvOI8@ z)w;LU2IY80sU4#eG*sNINAML;BvC{WnGR|rY@{O${wg=3wax4)w4-t|Fx0Y84)S4+ zhGByC7$#5#I91J5Zpx{rH{RjJ+pAvx09R{uU2MAZ1|$_lX>s{#nu0_ubVSl4c}k%i z8(f#M7Bcc!!%>K;HX-E6dFx)z3g6~LU8`&X4A!=BBw^@?s-jgNrs@2l-LkA=?;0es z!Jm%XvQ|D)px6_kHPp`6*bxE5e~>VaArPlFIb&Zs(Boynm_$ViQkRKu~zTCLmTt0)mIU?d;28BR<}a_CVN&@ub>S6EZp#kI%AM00Oy(x)^O zVa%_$nUC9Hg{AT&>RY8nplBmY6`|O-)E?&oFVR$o# z&90%wC4geOWKo_hfHj(>k>!WqFa+)h=mb?!U&)6`Y=YOy#1CeM^~kV!xgQ$3T)@Gl zB2ZjO^VjSjb})uX5+y}+X}hW`NTOD`y2mMG-DGCQXb%QV7`U|iCgaD2R~eR3%a6ix zS7UTxBB07F&YczgMJeGYUeqQLsu4ERclOW=X1NEjCOl&3*Os! z;53=g9`v%WXXis;ohXA*kO1yI9L8#|wwTAaTdR85HdU84By(-2SWeP8#8;~ktLvn9 zxdzPUuXKR+)_RO$Y|9H7w6dhb+5TE95NzrBTzVOzsv~FK9PndfjJ35Al#(7N zC!)7aMzrdx<^bCt3!1Sqp{g#o*DV#Ja<{h8E7M3_HQVWRXJ)Rppa8@D|SfZ?w8BM9i^EYM1AY~FnxyEC~sCF`o3)!kmX|=Oh^qlt3v!S?9 zJ-@v*BZVpTUHyKNGNjwGa$QFk8IrP-=eenu+7hY=OsXrm>Bcj2xIp^w{9 zZOcga4_vp=8t%@|L9~wMRePTvSwj|@MTu$2H`$uSaMnwt%<BBfQjqrn4$iTH`#3k{(ka2%dvg80zgUDbAy;$?YX! ztcdh*LvmDMgl&^Ste++*<(>ZkyW9C~XH2df!E}}qFW7qG3+(-NrInzy${iH5#WhMpSll`?^#~J1u1**b&Q<~Yz3oS7&0Q1J zZ1hCzNNy+W)@2OSo~Vf}yQ%cU`=olS7n6s5Y>KX9fz6Vv8s9O;y3)i^ zN$u?HYD3*~de7oHazcd~h}BIriq%=slr3vbuF7aZpV+F%CB(2H3pljU74ha&vQ|pG zmr+DFEnr}jO4#w{9xF#OL?i@1swarHO;y;Iy7V(cCZ4j^H2BSTyL8UxEF7jg!7ARq z!X6)w3<4+zA|WFr+KYG*t1ROXCbO`MHVwJq5*uYiP#bP5$I%Av4Q~f9sIkof>oKeE zkRbeKv?H$apqB66Cc-7Ht|i5RoN76D_Ub5(Hr) zPaGQ=WwWK52Fn$k)~RQJQY~aw8XZhuEgDG=D%u@&m}C~_(p@Mlw#Lahu@XeNGiFPk z0AlhdHbiHlIXF2Q_WnwGiVTSIAjyr}tDPPYqf|nZacbyjEn!la?C~j$XVjHr8rvF} z7PU8+Xyk3POX?*;RXMdWSMVhsH@Eq4*&QW8YD(dq0A2yFa|V=aC|X>v;%nNq4{RK9}YwZ71lYr@a& zYMKG;$tEjmG1Kd_d^7G>@i`avFvFaw33u8%?PJs&~nG(kPk|63n%bJCX)mJxk zbGCb3?jbm>EtBhWFrB81VwA6oW*a<`21NRIR7hm1+lyvaKOD#bd6sf(bl2{hl-^p& z>)R7N-FP{kW~GE=Xx0%ct>V|>%~nLkz14qcQcCYQz>cbYi|u&m_B0j*5LVMOqPzJ(K?)qy6SW|vugh9Bamb1T~3FI zV-P6chGXAqU4lYpd|XQzuEH@(GseTKE}}-Owad-k^HZc5z4Fbif`z)W3J%Fph|hur z>lE=M9Yu^Drg$;QEUL3&S!eemj~+BmEJV+-#jee;%OKrgK2jdes;MT6jpODSacpqs zE)R*F#Ob~!_b*KGr5n0iQK9tBpo;#M%|gV)Eh6Gf!tyBA7L++l0WP|93ANH70xfit zM>WMDE>QK-$!8teOsThFl>wEljtAFPmh-5YG}BA9^7B>$DXpYSrRmk_T??mp)I!Fu zuZ9iPHOczjc<#FT{*K-sPuE%YUeHs^e3v`(PeWn|ouV*mHyG{5G6iv&DTjegCeRb{ z%6jUBj|wE2b0zixH@y_`zvm8`hCmTb%qU>MV*g#!BN zCFSIwa%zhiGLrdGYRy_$ z$UTi=AWg27K{(Bl(#Dy-+7UKj23SJ)-zdL@!+__|Q=+dJuI#(gOXH_P0bjKUhI&FzDQ>U1d zHTQjqENQhcB=y7WrZcf>Y8@z8-9jB8z-!PTMBqJoCXvgn-LG9_mvUNq%GlJ@&ydEX zyT{Lo7IR@qM{TYBJr_<}P$s0nt-ng$ftl3W3d4)(59lauT745QqKKzp*mIvjqWn(q-j|?qXk{r?$L5>J30O5}wz|VPSV>!fm8ZbFW zFtsoW$06Fs)Jklfb{?$iPd0T9=Q@lyvtCnJG21jsuF^AfaMyOVc=>j;N;N?2oLlJP zwKVUBw_R?#cV4KQ4YHoqN1vT{^FDA~^0rZ;(_^xq8Z1Yau5r_2e=e7jX}fZM+}r5q zyOOa#F@6dMwI2}C^yE}~I3fZ<$CTNFd>2et(yVnr<2eeJrncZxBErjg8yxexp5P0m=u}+u6X`9me zJ>p`N(DZzMrbuOBIO7EDOCBXPB`~Ao@T+0Mu5EpL9D)*Q5vaQ+w_R?!-FNW#C+o

s?uA; zd~iRT9;|MoIfN9FAmSA}G3+J=HL5)Fak=oD1E{$f#(=4VHkYVufU&bH9DX&WkD$4`k)IRzTc?57Fd`J5$xa zjzfEptX@&TuaH3DB7|uNt(_vbBBhlc%3Ll?k^5DRA>m}Wq=>`FU6F>jImhl9D)@FV zt+IPKmPeB{ws5r5zp)f(bILqnuu~9YG_C@QgY8Rh#*Fbe^;wmjEQ+j?9lnWcn$e8q z%0b_Yp4r0G9;-}4*guun0M?AOLXh}QbK%A1kfYO^k>?btFUOCise`oA+Bv= zmNPM&fE09*a)AiWG`zyz&XR3y?3p~}L932Rt15%RVtSoN@680o0GRh_Tlr#WLg^1< z$h$7T?ZNGfw!}}1_ue-jGH10I@)65fylQ}uN0`w{9ZJej*FEUvYvQ{_?E5v_YwFi~ zo}81=#bP644NGcwZbpr-kV`N^y6>S07N*X@PmIl@hl8tUV)tX6L6IMktZZVV0EoTE z?B?vPD_rI&EtWJ2KV&*x^p885uFOw)%OMkuO!C0J44AjIuK}UUD^a?xw3QDPcvd+7 z0GX)N($Fi1BGPxaFg zS}b1Dz7A4srVLwq42#T$4Ta=##mVLKk8%UYjB%N$-PNsB)x87@sNgiloy>jh#&}Ki zck+$gNRr;9uURs!E=p2NhcaAS8!1I4?363Y4j^I(Nv6dks`+|y)JWc98QOr;N$(;1 zudU|%sLSt#pPOpc`&CS_U3}W=*mbYBY_?)E7PqOLMT;I@FBgi_*jp`yce&dVy~*4_e^^p!A&5@t&7pEyOa ztFo^w+FEm4WYOh)tQY0Js$6-H7|50k9WZ04!Zjm!angJz*G9C7Ic;&tSiRd%YBsU( z#u0=vV8xdjFv>7Jyn|{;^_q38Lb@E(lrK2Jx)r&jwYTt>QS2hicc!=2`uaXV7>tr4 zAM^~)dexKgHb|5>7=y2UW6xl7I4R@gKa6pK|q&3JS!I{{U68gp=wq zTW3kG(ge38WWHIU5x&*DWA@>4mNb4IFl+;+Y;T`nrifI3D+8i`v2#rwon876^ShZRg`I2C~>W9+ai+G zC^~xfRm8Q#t7Bv%ta!-Xo`|TUS8yinbDZ=tnGRY6<&u$AbsPHfAKkM?ruR1%PNJbB z1xYF4mln1x%bU+78If)AIONopD32C+4_A`zJHm=QxHYjvduvMHWsWn7Qjkp!o#@EW z20}iP#=63FOvhG98{HYfT_W*cj-n0C0UgRi9^K|NO*6Tv9@e1Ol4`0)mdY;#jt4S` zRV0$3r!NAU#$3xhe=o-+k1)mJ*+h>wA;+S)S&elJKxdTpPs{zGWHPjM09UtF_iv8) zwqZ0-6{cey#XG*NB5>c_pD`lUTj10d>sB1znnN>^!VGN77Mhc@8i>S_?8NocaCgYA zvZsAD^l4TQ-yrg1*`$dKTKO!KDn3avlF#op`AZu-$mYcb?s%v3cBPCK+!4`ZC=>Ky z`>y<7P99CoRCx5~BUr~YjFU1nL6+jeX&H;xK3Jt$w#nPYQ6P9jdd-Nnj}`k%x1V)++dioN>)aLK|PHF zl&81W>#U9n$*PPh>k83~!oA97`Rwe2Q8_=Tg7Bj{gAWJjgJf zve{_|h+`3Avc9VinjGSgldf}llGG+4PV1saj?3Cfl}XQ?jdP=p3tQThyDG1}<{aiD zzcE6aN3A+kr}Det$7%%6&6f;vVmUavs%v44HnY!FK6`9W5?MnbweFdHA;c|wOBmHU zpA3Yb-R=~MjjMX{Py0l#EQ$_%wb*NgQA#@_K8C)aWZQIJ(Al=zddevzJZ$WA`jEu) z3iwr#0&eRFHaRj{mPxCPDSV-LO@?UAZn4~6!zP~|mYSZn;!)z`)zXI+J%$BUD3sW= zc`|RD#lo?x32?=nR(UMhSglUZgd#pkQNh$|iwWnEOn3&kcv8SGF~;#YM36nHf@xFa#^J&$o3y7s)4xAg0ZiqhI$rHq8JNi7UZO3Hia_t>0@AhHZb zYD5yTknCl`Ffy}^^`~sA>nY=b9=_5v*1i3>-gHXW-G-AOYhN<0FHr|7gBZ4G@OnTv z*%Y{S6I+MDh8 zN@oek=DEHP{EV0B_`Z$-08mT`)?C<-_tm6)t&UOI;9=jZfjex7PaK!+me9 z_4U^O0E2yRt@XaQ*8c#hxA?f^Vc4EtVmZ<-Gg!8m)clIV(->;1>x!dQ%Garp;;w`3 zD|t8-hzx-a;6^4 z>_&xXIm^wFg@42Kq^1iNy?VY0tB zHbrSS?wRBT3_3}c(q!Rx5%nY!AxQ~4_^_vW1D^DTpN^b%IP=b;a9)IsmDKwh?~-z< zt(B2wp%iNBbX9!Y`>2vM*GGemQbtiijsF0SvAYUL!^sKOy%4#`ACgc%x!&fQrVjRP z2efXg@yqAQx5AqR-cF7dLfG+ND=MO{i_*wsvHLc3k|M@CCgN@$?g`~os#iuFiNY$L zvggUtTU^Vwm0x${D5TH8T;l3nbVRt0BQSSid)vzo?Z zak!Q;@{598Q{vUObE^zH*sqx$OelE^@|6)E0Z3hMl;9mZf;P)t&xoG8L@BMHK9;&@dMQ-PGvL-xw*ha9iQs}-Hd_97%}VmD$n&DQ)|x;Is^ z+UpWS1%_Q^TRyJhHG7E^(WW*AAz>m*ZR+A%s@`AGY6ZMII9cr+I%}$%YfL)suI9e# ztGTXv=dN1iu3Fz*wZ6C4Eppc_a@P9a@$dLHT_S65@={fJ$#qJ0+(v@7Vp02v@g#D!Uf-p}tk44%~GDDQaL6eZ8k#!n$QOXx>wAPGkFBe}8HFSxzPy0nx zY7~%z_BuAtO0)zFCM^CL zoaT@+NaamTIim|1nO+RIiNvzvhGc7ML%?b(ad)V3`-;QiHaU|~D>HTqEuKS<a<%gxB!hpR ze{Cc_MQpAS>>RA^wc6j^U*;TwHNbjG8SJiGTRn;^20e7bqZRE0=s|_&tEgv|L4hUl zZDv;)ZN@epa~bOen|az1WR7+@Yf9*47CSZUGhC7EDEwzZJ= z1Gf6p%4?ny?%7>Y z;sr(iM=LP9mlm!kNmgB>@%ZJtc{9U0CsIi6Rs43=>bl{`EsrNC!5=nti7I9q<{@i4 z7LgW9Wz4LVjZUr2sH~$T#9HrV2y=5wIQHE)Agk{%xmEYrO~yT!SKr6w>W}p0t@X=X zwZ6C3`rljlZ>|3T2J85KoOQ?i#UWZ)c{)@He=2C2DJE?)x@E#wI-XS7bdn-iNsCbu&$2=P0NKgvpUlsFZQwq- z+BqC2K(3hSHL$6vQo?KJg|dd4ND<2EY&2O2?ko9D8!N008{XM{G$x{+HG5Bn0>GyQ z4G`w$l1{R1Q8y*ed&&dLck8d)Jm#=q7?Q?lGr{EUp@b#_#x!z;M4S4md&*M2rFM@7 z)=LEn%4v@Jhk-Fnjp{@Z-5s#4`!1Av`)yd_@YwLloozMk_qX3dYK{!GAg>@~*7IL& zE_IAaSo}e1Oqublq2CC2)Dn$NV)U`Ju96e7;lIU*J@$a)36dOnxb(Q_DrSg4o=6qd z_J3zfBJ@JaBTc)Zffh8lzEaLG3YKO-q4r~nMfX~$p>nE|b>@%s-*Y+2f@1Hcw|#Nb zhKZ$JhuwHkRuPWrQGi;bZWV08jqxmbB#6zmi4Ebt#cF3A!$!KY(nJ;&@fAxPB50fX zQ!63QBVyWtQcat5>sJl_)l%q@?ItvIb?uSxZ{Tt#2=DAgIv9iMaaJZ9g}LGBwvJxd zL_X6z8~kMJ1vI#r_$i5@p~<&^hv30~sqo1k90 zVVcu9(>N~~9WPETvoCa5iOq|il4dkD*vW0n&za92eXffxyVp1LPsN`B#)x^jN zJ15A1Lp=_hQ5AVBz5Gtlq==j=I+0^i+Dwt8A)zXA(@DW@sew%?DEphUe^YHDD(M-mzs`Y9p31i<#UmYy8_dnD z#_k1}WB&kW>+5Ap47Q%R^=Jq}w2~OZnO%b2T^!h51uhwb*sMI5dBjo7e7k(|(yS1w zsn?wDBVXiWxV`h{ zJf7CEab(DJsjYH1PBEXSuORW={1=Q;3AZ^Fqo1oAiPjYgBz?Q0lA|%PIE`ZPcgDvr za=O^j>?o!7F=s>U*fpgPfId^DAJC0QYOn-cLLE@!#+Ig>Nw?7?L2Z=BTF$g7W7%20 zT)a?>W?^^~?8TGWP9T#BtUY9iQyD5pmhaa=JM0uO#>}uh=hZSBRu8em&f<-*?+FgN zO*}Y2b`dG8O9W~Ss_$KwbWL&D=$?)Tx`^gzWOJ07*_&2E^YVKQ0V7y2QF1oHB>w=4 z)tnJ5DnBUxNYU~)3%?!`w#uoTUmQVboBG?Xw^jWGUtUPIfYG+(MgcZGYskS3 zja5H{*N~>--K0T}B@Wj4d6m9vAH8~n6Xua9Q5q<%kc%9Wp41QKNO=($j(glzqa(R= zKXlD|+QOr?6#|Vp7)=FV%giH0*{JeGo!FHY&9Vhp=pw>k%a80w)XiR{-^H)TuzX8s zoiB)Z)LBZAO4e?TR&JGdmXwW^A1c3vT70J>#s16M29h2(7Gw&mX&%r`oY>MyjZT|T z$&@tKKG34NG@NUxaL6MKuU6|S#6q#L%-QwO2bR;kLL*ERT{q)iMI%2;Z6MWjj6~8W z>=EQkjZJ01@e!mOqRf{JrMj@ahuIux$L)pmxTTHgDRH_gG1}x6@a1J0Eo``IQ%A72 zxRW}2?(9byGOUTU)H#K`x|Rj(zP^}9C1aG#RN3E6QpOzT6N(4pq zVuH=haOa#vxHoAhEOQ|&3X)fDO{;U`tCmhgf)GWVVHu9mTlTR zxWCKUR_l*4TQ}Nuvt!lP;xZ>a^_Iq;8 z-%dn(R;5OG=drAvkUQF+{F9j~JT?Gtl)Qh5(d0HbV8(Q4z8_fz?bqMr4lb5)&f<}b zK`Inx9?1-DY8CBPG5j3$bCu0*-@pq(*2nW@HG|sXuafWBL2lLTgK&jzfDypg$*1x$z#nDy3Wedzo$@wf@DBJ%WSO? zIJ`4-9@Sz>?gauP@*qweF$VzPhJ{?TQ=9JTnanCCUoDyGe) zhZ){#z>|V_5DPKV?!B8O^kFa`J!|VN6er1%9CdScLMDU0r15k@%51vFe^jMxO2s0P z&HRAKIvh}IEo}|v&T7^9GRT!(R*KAt+m%2YD) zG?Gss*Q1!MM+K?g#U|6r7@8IYp{RXU1n7x2iuO}wQMgSLC&mof6pv6)PidrENO~oV zmp~lb6=JJuNhY>H-Wdx1-lsKXR(@kn)n_BcZ*nXHj{ydx7PaKTkCyt*81Ib>#kbgTdud)ElLX|#6BkaY>uh3XM?)BN22M^Yg-5< zEWZWQjm0v%&=v`c%4&#hlwH)Z{n4M*qjwkuYVYvVTAV%Cy&A87Y>m^J;GrG-Qi-k$ zxwM0GlSD@}tZSX5e-}WtbW0eh+2WN>lH=IM?cq>7`K>nEmmy-)QUl84xu!qu z2v}xLwz0hwlcy6AlT{co@$bNzZzt&hs@4E(R76Dmk{vy!Q)phEWpTwWzEmpcCuE5= zvhnH`*Iw4zhW9R-mtNSo6qz{$xtO@%B%w3-NHMWm`FQQ_An2^w!;u4za5+>n@|**5dSz)nKWq0m>x7mKSm@j!1b` z6HOVjfL1u9-@5eEH{3(>ByhOLLHp9GCR;^sP4c1?Jub6+X#F^*WO%S*K!Coj*585Y zx>$D`5~8p%*<&fu>*TS(h1*?vw@q>>XqeT6`q-XE-l#H*PZ~h5my@#yMn;NB*h7|D z$sMLiUg@)J{GDi_NR(%h1Ey>V$BIBQ+P+1`PcAH&(rHWPdVgTv-N6_0<4RcQi5#-a zTCuIl!$g!av2@cOF&}MHIwggCkw_Vu2u!YpGhMR_T%E3d_tC1mudbqrsQ50ojUi(O z&rz#qz)+Ev5$4ha!igd86Lv0xIQu!w6z7AlG7_gEKv1Z)CA|mWY3PeX# zSw(!yD+Hvky#wf?&x&NqsKFL(4nTaS6lhRj#r8DHwXC%jm2(=d(nc!jv0J(ciTh1E z7Z|{6N|$p?fpkOk?-@MIn+dYVMluj`Ng$7RJtLPv_oTd^!_{PNt*|b8E84RzqS(Y! zSGFD@5ul1uf@Jr{!1CE5iPG7;>F|nrSYsg{ z9XDNI;$4x;zx{|+V*&3*{ACh7gHGEB4>C-Yas_gTg31}fOWiclp%|=Rv6*SjtIbv76Ad7WK@BjPlms} ziQY9^b1j=NEkZ<$CvJIyw8m~L8E1wFo2cIAq;yhg(qpq6EJRV7Ib%E>(8k#q@@$BR zPTYP>J&bhrTxI8~D{j@t9`wk2M_$S`%~e+@g!R_?I7WEU(1HbwLMCTj+i7y@Sk1vs z2^G>SBNEoS&au_=>uzqUtf+HPTQMXDv^nVaAyI!CuG-|Er}gn)!SwJ~A|di66Pt23 z4%$hNX67_{fAt&gh>Oh1{#tN(8Y+wjkzkSuzU%IG#Bq$D!M~u7^1PN z#H^S={1vOFdh2gV&?DMa)6JL}DBYKBY`VxN7A7vwNYW~5r96}sZPcu0?mkId3#bop zYuwN>3^7VXL{HlCTM3CXv0`{FHctUBa;dQ_X>Vd(<5%_WrplE@*K9NmCM`Q9enpN} zRD%bsjVz9ZP*8%C8;L2h#9`;KQl>Pj*NY5`Cb~rv0b=Td45PBMUN}2kuOpXrYJP4# z#r2iBlufR(+Vfw#%exS*$emwaEYe&@12?CWUv)mNO|^Wvu3>PQ^K}oUm8^6eKNo=3 zuwfsnx9KtM1te|O4(i=v4BHPx)RU^n?XW^bMyHPcyZG;=Ur79Yy_Q6eCm}Qv#V&?z`IWX-(+m=IM_s zXQXm@$%947M8Wy$nJBe614`F((2_@bqBWd|E%eZxv(THnmbq(vZ>{~+`0lBuKiBkE z^f&P@^tcJJGh)Gn2iOth+3%8OdJG-Nt%hxLQR(GXH+7ChRo|A{YCrzT(;LY za$()EAIOdMAsptcb9<+6s&0>@u~_#bFwd(f?3ImUsOu~+!bsK#yK8=0I28j(e>aN} ztIGASfsj{AY}hQ@L(*$~U01r!rl!r7v^#I6fREDDsfH@FYBmIY+7U5R(_dfPr?m?Q z8p+jqbptG~pIKhZ42;uHV~FE$gJpX%gA|EY+x!YBq)o|cAXdw=9f&|If+hr=K$el$ zItA3w4iCFHiY5YK4pY!--^?Q&XL!xWGMB};m;L_@x0 z1ddo5idxwh^Y951?IHB83sS!j#_JV5*8F^b>#wd~A(8rcBw{hG+gNa>0~%Mfda8=? zHC_Jzk>Bv|_+s%%`C~;E?=}e;l3F!gZtq8=b1`Yg)7;h9EITOfz~y0h@}49b#pL#!N;g8Sv#>mN zBVi|_o21e%x7RIit^GFE+WPOVTHnKcZ~8u~OqQW(XU$Z=;9KFK3VZ~P? zUQIpftf}OoAFovTNiRP+=!!LqA+a~jDA~9F%cR^^Tjjk zF+wGSgsxyj-pk*)u{qBPm3LW@2Q~x{iY;)yB2Byl5amWzIb9ZlwiTO3#{TR=Dm|7_ zf++S7ImeM$vaT{{lcmDS+Xg&r;(Ti9_cnHr1}8br5gaI{lNu$oX(Py8TPP0lX{b<5Y5x7RHzwcK61n(lgY(h*s# zk_@?4Sv+X(ps?(c;zUOc=zq!}N9RB9rtc$d`?ujHOyO=X>cg29*F zEI88$OA2ZJ#iqKkS{nP>ixPKU#pCF#cX71w*-k3hz%zv2`u7Q@k7ptxY2LcuZF607 zT_XDL>&w;JcKZ0~>8bFYCPbPfNyD$<8`$!!W%O{i(iml)^^k4q~n&}s9a^%-|Z|J&BC&7L?O)i_K zE|Gmd{!y$9#VkfkuBDpl`=mrx*hCE4scn}QOm*WI%@E~~otp}K2(fZiEVVp(o71_N z#iN7_T^XiQ*EL!;5BINST1%^_rX-ruVYWuFWj<31U$ZXc9JsDi-EJ+F?3m_I=EHUtNagl-6?VU2xYG*A>?l*9BDK?QwT54%cnl@LjJlyL%jxcTVTZ zG%PD2^HFPKLDv^@;O#<&a7k7!k&f4C+U>txw{6;8c9%-UO>kY6tEEq0dv)DgWkFA8 zskj_7MzE^5rm?F!k<=8gt$~)vjykBbE5l1L@yP}dV{c_O;3Xs>kEas^I5o0f;a$kN z6#54eAD3AhNRsmkXPRljC9()EUSkJAnw~VWRw|SWSDp&w`#KAqW zfRmuP_{UY}($?4ktiQ(t6Dy!TnKl8P!R_$juY&q6zPeo_b;s2c(S9FYwa3?noXtF2 z>B99LYoshVLWv!$^yBJ@>EXYx;ZMi5l{_}|@Y~1h^zh%&eKb;_#hf&Ty<&b)hUAcD zagbJ{QQPe8`@5!{;GYi>Mk!Os6Lwaa?)FlvUl@aPgy!q&p9R+1MMcwBXT>^*&Kpx$ zq|~#nb}`K4>Ge_Meb!^W=JdxFLi=_8_HvRY4TkGD|?$+wM-P+{3RaMun zy?;-uQCr#4w@AUcG1JTEGTDBW!7nF>QzM+ zARA#EJQe>Sw6@P9r8*8=U@e!FDXY1?+4uFJRW zKW@_Qf!A+ct#*@LwAX1h+HWq>Yqpy0w_UdDgEmGtp9bq>*2$?6gC;I>#wJX>IH9)C zH(M(Kuu{=|9q~_!>+8Og)j_MR>N zv2P#EVv*5W*EiK#itdw1M$G-wAsQ1C$XJ_n#O)SU{)g13ia1IHZki)LWRgF3d)nJ& zRYi%v7jo2i{pZFCsD%;y5<5_6HXzZcjdvx|1+GL*nn9+XJv?c_(b3vGB9+nrqCU6M zd{K16Do5$Hx(X_MKh^d}YTiGyvsG2n{{S`vC(HF^f1CF?BSThL1G`0pk`a#E+4XT7C%+TV0tF}#Tm8wL5AbYn7{ug2qqw=+-`C@)k=>}V-{xb5 z6G)52!(AeJ`t0S>uki9pyoebG($+{q4k1|f0TrzW6k~WTlq55b6%mni-&d+}K%%|< zJhynu@&5o=>ZC4Fxo@vciOEBcOiB13?wJr(GP`t9N2!v@xUc#OwH%YGMm=0a@)mAJ zy1ZI56TwqVV!V(-?jsU**w(OQFv8c&M>ulY=Oew>FTB6gk=sX2uxJ|R9qeC874Rj> zYb<9(Jb6NtGKqULl)ZU4TW$9?ti3yFORK78?ozZU)f$SDyRErM4M7oFv`P#$1U0s5 z9*df%nhBDks068brV^1FLd`;nA&8Ll+xPQ(-tRq*@B8O{|Jx4PJ6G0T*IMgZ>s;p& zDGJlNInvrB(+1&RPcV7;7xgS1YgBlMOjqEa@RU@V&%K+ytm1l9YBnZN`9c+gCmW>T z+_zgmu4`(~HO;Q=7dG`P^A{zBWWsHRwGw7-EoUg^5#r-uoP9~W5gXBvgcJNoslKDF zEJJC@9g8K$x}0`*4)J0i2wPGIf6OMLomF7q-5c@jn*jfBmH8uk9yU-Q%C1 z1ABd4q>`mOb^ox~PVct<+KP?v*~5`RG%QuU;7eJ=Gl9z9oQT+3$@TfKHI0vxc#!_& z?^KUYv1iFbZ9|F$`AI)*>_SS*SbhHHe0Xi~c~1eQ?#zl(=#GX@17Wr4`_%Uf6wrqc zv5g7bbJRa9rc*w%Cq&>E+|87$W%wW1txJ}nHs78y8*ZP0XUBSP8b?-uR-YU<-AsNd zpC(C2Bx=xrsVVg*Un6W}{F6P}A~aK7 z%gd;Jqvpj^9UZ8JZ6cj(UUou>qiZxs2oXa%5q0<`iIKv~qwFLCFTVRE_Qc-tVwJ|L z90{+us~hjjzmxy4^e)pkkdsoD3I-CTNt3g-g1YCEc@X{D0y3;7w!?!;(mhjJ(T5>x z46`Uy)i|?+hmjrEze@r!aBWvW#>@35loM8j8K>dN!!Fi$9?!9w1WEdt*9+R65n(s> zJ;j^Q(ni=PRL^WL#m+2~BJgE2H zP=E+SZa7vfRO8_^gdgZIkCAb885we|RZrBk9G&$156j)V->T*-3OL?MAUvp4sIr2y zg5v!iDP3zO140rZVB3@o+%{5evN#iw+OX+;#7U$1YmMb^#a>9!lT%(qO7lKr4}A9h z4~xN?wU*Y}T~uW{?#9<}=N|baKofIrBpEo!@7r7i-y(!;`!div{Nh~2T;=^aU5gbB zDGLd_6>60j^U>*aE6Ohh6+5V{7N=ZtBSKdyVxfgYjc@}0Didkv6oykBHMd%`6Rp%{ zb2Kr+&~6@E@$CxS5C_gTZ;@H%;>{fgyX?eFk@dlpZ+&}+vX)O3#`fpe9*enaXI^$; z4gXu19AqAWD%UvRo>!F5>JkrlTqfL9Y1HwNlzCn|X$|mVg>X*6-62o%z?_Xpf{W+Z z8ZLzf;N9qC*Ql8eA6z;NgBi)^6L$Wvq;)qXEbmLhAzCs?5UV*g%haEg8}e^H%S3LS z-wxJ{`#j3Ug$5_kXRW`+`y&)Mtyb>_Xn#m_mC(CACe`SE^W!Vwk{IdiVV_TO$5tuNkJh8wAWKc}!cs*CRSXurmHR z+B=0q=wEXd`@x^0cAs0f%wN8>TyxJ}`SR<_>>6J;lih~kk=L%guwFJyTa3_!&T$4Q z>20VTIghSAOHKMA$6~YWJYuFGAB~m}Pcsm6s_Hp(day>Q-n;tl-CVxqvgVg+L%jsM z9qOzpQa+sDp@&ZpdgWA~+)IMx$?-adgjn1cl|(GMlJYC<0%rwmn=vBoHoEz27_8qP z9Uf9B(;rbC<}u^l{b2pEH~tp?qPDzpjo2YNf~+oeT=HsTgRG-i+uoChDK?!>#GO8h z!Q@4rVlxVlx05|tGr5HB6}jR6s@CkOU9n&4Deal?nYe>`s%O9yLbNyP*^_=vtNRa4 zXRS6WW5%w&Eto6W`XDxX8wbudSEwk(+RbZ<)`6&rD3cfa=rA<&(cO-(_CMYM1XyII z0_`Xxd>~XuO(|(=C}gxs`Z@&S@OJv>fY9bL7!|Jdv(map9Lsd43FH_%25V(nID#g6 zhwciOcQrI>;LUY5z9vj)52TS>#*iYYo>5sOY^*FnE){qVTQ0vdz*6jfUe0N)3KDS%px3wLcJ!nOAt|W?xrVhOt zAw7;U*kvd&20NTye7bm~8lCw?rHvWAUX?C~?0N6*_|i+6OW`rciHFX%_tXn}y+kOh ziTGUdb>*Ai$BQz%td~8_5k-SpPD*%Nw8C2_j_IcRuNOo`>dW$98l2KKcy0O;ehKY? zx~}D0HVSWz)3m>SFDW7_i~0{`bw$KU0PXaxx`oXEtzJz~PR1m}Jlqz|yKMI{|F6?q zvkYOSm^u|Zv7hW2katqwjJMp70SFw}P&~jy=OAJoQ(9>m8s!Z7gOwti=>6IftYinlcA(p3l zr=EU}{v7(~%8jC`N)?Sg?sgUW9~OdlR??b|f!1kkKZ5kFaJ4-^XI?o=*CzJG=8~&) zV0`Ig?W`+nnu+#LRidN&FFyO?c!44EnqMTh?YG`M8v1kQlfE64Ne-4ctKP_&#rIZ9 z321u$hd#4Nu%Jp+4!9&8D|wbJIb(R%`2cA%rW?*<< zC!XxfZ1XiOiy9=gF<)f*++Dpeg``=PO*?Hr=}X^FI`U94KAmV@c?E3+t3ps{i1PQL zdW?mVTA~-U_7;aXb876%yM5jYj=K*PUkN9qV;;Q%07$!+%SeKy_Zrr64#dlX)zZct z?tq4Ynp?=kPE_^#F_b9|h2&KJq4EhUJfWUnogruJI>nbJsFFrjyUqB+vi@oLUAgf= ztXluf&BY}Vvv1!ze>b2*J=JJAHJ-eC`fv?x&-0Wzp#*cKXwc@;)DwnUi|@qMERP^! zQ-HfyNndqL?+*tZEi%^=(TMi4g<_43(|!%A4d58A*42q7%W6A;)&<+H8INY;CtUH# zIi&l7xF>NNzD3$ih`DQBt)>2j{hH&Rq@f;_XqlYL($^;;e^~Njk0jSCMz8Yj z`kFOWHggs~DOJ0`zb&!R^xE{BYh!Efy^rzSl*3?;pOOlys9D!0=SNaDno|~GHXFx9 zw}e*7qE}Q?AKz4ER}O4`muXuPg5Fk`e0GXI^14tDx31{u;;f!QIyyU}cg*-fXZ3ru zp42m;XQQ17YM+LGUX6*7XPWstg&B0ZdzhzXf1$1*D!57JM@u%++P{}lyM)|a6BNAP zcROSk-fPUQ*;uyK4L-LaLKec9*noRn<#I|f5><>3N?d*pKzG$2)7C&m+(`@i{9ZQiNf+^d-j^>=N6T2aAdt z-*vAiF6lbg{8$W#GPERlzxo=tlP%Y8=5%SZDs9_?0qJK*-j9er>#ZT+*Kn8XJrALa zJ|OAi!5A~JJ#(yCu$n+r4nNrv;f+NPIl?i#~#SjrdS`2#YPtEJQU$OO9_D8tcSO{ zV7{%YeJ!--@z}OHTX;UA@ik#v<1byG&AY)bpCzR=Jk>kE)OnoOIfxnk7RRcj#Wii| ziqHEP-BnB#3D`8%L`Dwi^Ig*NGBLX{dsmCpP#?5s^D~b@O5FKCIfr`vVcE^(@TsEH#9Q-jHL_{eAzRZRVSY zwY(Ohyn!5-Cy z&e@1REc()3B?{*6NBzL2!B!sE!S3_<;qshmV&S(xBe$UvzepiEv4=PJ8}%TYHSpHP z;}B>N$YD(%B%6=;y(Cj4+-JqMYLVZx{8`)7g6WWu3B;xVip`(?s_yO5u#{;{M_1Q9 zK3s8T<hq*Ysr%77$ zc_*V+H8Jh$m9^Y7P~gwT?W*HN>$AH{GWVsG&ADY^K&9MLm&74B*%;Iu#Gnb5j!;%w z%zi!pSi@+5Qv+pQleJKdbz95P!d`LQQB#9b{^H6=L3GBV~xI4L^O+L)#zsDeh zvR;r>B`))ml&zB%x+#}loZeq2h28L#>^bltKs`to<;T+2V7`K*Gxu{8 zFQeab+o=ZKQhXTSDGGFQHmBwf&KD~1_xZUN$P8=A4ZIYcK4ztv=zi9HpbPgg+Vmg= z$)lGjUItBMUGlWE0*+JnI)tKnIoSU3$L7%)3d7uOL5L_-JBAi z>D(`HJoWIXL{dD;HPF0+)9kaIwy}J|sG9eq`l3a|a$;IW_vh9)&!SHQ$Q3NVWAtwW z+2Xu&2eUhZBQe1@fU*mfT(bLOTJ=?vVD-Nl0#D=`Lq%KgZFix%rCKhA~MB^q~vTpy!BjC+G$|?5+vx; zih`T861=N4&z|cKi;a3He|_JFQ8Bj!(OjDPw_KxVW+w8FcAYnTjV6OzRpL%>y7p1* z`DFOXNm=8~0&w2!3+V+xaPrguM|5&fAm=v2Y8%#j&&V?7;4=91p5}zSuS>Z7*pj&_ zl$69;Kq*k`6?J)m4ZF^gL(ML2#K|IL=jj0cf=ILq?%EreD;D}(#AR7zXrW)GwbuWK zMQPKP%~nox?80(cty9U{>Bk4rS590J%SAO*iw&4Lu{`G5{-(*wSEQ+_VPJKlhI+%C z{cEdTdA@K(l8Lsns~SdcTiX?=Zo%o4h9>fb)e=uK6g%HtGjgAN<*Li%Gx;i0=O)X| z`AuQt?fFsq)!E)I66Y^UoDb6qn}H5dkTL7p4TK4_JRoVOu7E07Af68r0KW3AV_}&?K4EdpR>QYUmhCtgLz4{+?gKJ0arO`T3s8 z_>osOi7sw`Wqmi#_Wpu>3;csP&bg8PS88 zm?FRX$7xv8XGp7pvwc3F* zVfvn)BX{`klU4)eHMCush=PEE=`X@4dmCB5>ql>%t~?Y2_S~>rLCWqO2hc=Hf5=td zs*aB&)IEu_r?`qnKa;cF>`E#C1$k+|u3R;D*-Bb9Q%!k-zCInZC1_z+2W>-2XRv3-fao=(elX+a~6z;NF7-{nUfZ#$tPAVRT_-Zr>1T z%4Iv`dVWI`i8{nFi4#T9jiOAFI{>&yzx0|r7q>4G0qz3efXQQ$9@k350 zAysCKYn4s*$g^|7Iin|yS$XD_Qbwm6J##RLk2hOv?z-HMm^ite-H(ZM_13EApq!gz zt@(7L74er~@|e@agEP*-S}AtSa5YK25KzCi_@I=sJB2$~vi0~an-|1e!JvzxuwlS; zpUhg4y15I%HxS$Uv8jonI;ja0r_l%?-M5VsPw5E?;xKtqeCz}O+QA9-953J|S#M@{ z<&=Z95wS;E&Yd>}W+>T`-%Zs*4q+w4+oB9##_he2Pd) zYvpn6$rWb{>(9xA$4((nT#X^sxlMW9kKjwMjl6DNbn-kvs7lu0UZz7o^|>Yugt#Hy zw0+{>i~)eJb-kp%*7J7whpbwMCPuqkCHnV}KkOG~J>*Ae*(OytB%kjcw(t4w)a_&Eyi(L71AU( z0t8hJz>gA}`1}Z0ez0pWZs1Std^~vSyf*07 zD-l7T-Eu?kG1$JMCosXX)lj~4u#KU!ztqUx zh%Y`X3p|iIvy4D{eQiZo7_3_$vSx|NoVkIM~{t z9+0(3Zi33vXpf`3=d#ByuxRo`6ELl2VP|hK3o=e$D)I6mDeNt+CK5p!BJR^9=&g9X zgM!7gThsPA%c2nPxCzL#NnQ>^nLK5Cn)!+xEU1C~-R9H3A+mO(wmtpKbLly4_93Mc z7d-`tAvpas(8H4orxdgt1XO=%!eB8`X6X+netQO6zw?BD0{2Q?bp*53H~yNkHMs6~ zZ|^^yK}Xnv^R3nkX2zWnyGRPBa_%t9@&Fb@9a%oB16%XIG(w|a}8$6T$3^~ckm|*w>IKbt;noh$Bi1q4ud_@?O8Y@Q6_rD-=+Qf zsSOv5H^TP8y@LlIZwCHd{OH3e-}GT@JDu_`0v87qC>yD>)-7-So9LVC=&W6-TAisU zw|zZ)y`I#aB6v*>rHsnQZZ>(Nz0$vhnc_gcFjv>gft%Ef#R~0Q*ODy*%};(NlCt*0 z3AF(z&XXGR4`u7Z*6l#GMk&d*T!O)4o?Q_@u10678+h7Ztd0`U{?~phwfF9X~hD=#Gnd_m=$+p!*xKATg zZAzl@YxHKc(vLIo?zfeFH6^ZYmVWAu^BE}KGdn`hTG1QFa&?<_n{13YZi53mO7U!tug4`v-@ko`>?&@JK-{|Lh-}z15cxN+CD0tPflo^( z>aOP3l=UdYd_iZUki1g8aJ3NczXO!KgqOf**)32VmTcWX3yHYQWxW2z!QUG&F(vSPTHscntauB+Lz!e(Sx^^t@=9eYg%F= z!>jkOG0aP4w6W3ba%NP*o|kv@s$)%@vb9%q*4*0X#oW}*JAzRtrVss|mA~X`80v#I znyYx6E`dM^p9X_N6W`%66a`;9nmf``^9QLRYtd8nF^xjrd)0W*1Phr^&jrU+WE6Q* zHJtv}vFm zuuk^0ek+3TU@A+vuDU)j9ZDAS=O8vUx1wq8}m#OUZ5(*0c=> zVwo2EHv+@QPa$PT_GAUpyln!4dFHuQYwGR_03|@(a0a^X;3Yh80b(Hz!+2 zcebfpORJTIpc!o^TJl>ZIO)wJO#XEephq)m+^5bxhnaAVC^Zb-awoY|W7K^@|anDVid z3-gQuDwp&7)6^f(RievX|N1O92Ij}-+eMtTz))d1KgNTn&S)t=&|U-e*eJW-fn_Un zX-{HT8ErcC_{taf2aSMzP4^wt_uH_iG0mg!)mAp}H4OgcViy(Gpe;ieY=K7}Js&LcMY zWnBYPc-E-Ev!ee~ubNU?BK%z?^ zx)ddL&o6tA0OER`ia(Wo4rw^4V7;P5U?KIZtMDJe0|KU$dBipakQ#iYn|lW0>&0LL zkBeh9znWB|gQu)qi+9(7CEAnjlGBam6Ol95!L0wH`l7Gx z`j?@v6`ehj(A~hrtjd?yc2O) z>lCYh$zgnZLQa7%Ap*VgSW$)R>kZ#%%G|#0W#stdF{&BD$vSFGWOEPj?HEx~YisNI z@~jCXn-Mq%AG5@ws5FFV)IwWv80s{)RM8R)i{KJKF~& zElH#`Yf>?Zhxs2~f=?id7DWy~T@~Ed+`sga`euGzkB8hpDqAR3YPd4+o7|mp|BL-w zokS=h$eWa|LrN#3-S@Wk-uUimQo&F)AAF1V9~R#>@7c9?In=IMoj)vwHaRVG+Yhz|Ll_W6z4$uvY$60VC7YvGu#e+qXtJD4Q2m z8x57x283*(2RIZ^TqGt_T9YQ1kTw{~ujuNp(d&(g_%3)O5b(lWC7t?^GZ=p@nIjhj zh8)DPUV0pStFgJFgsK6RZC3Jkvc^Qmd+jL0KLe?ZgxBaWzO7tT$pmVE>$|?h)AZ zMUiKTjU*D{r@OS=C7Xd@q?4(~0u4kDPCYQhe;tk^Pf-S9%g(X%A~_?}@A<9+mK@xj zWqWE1{C#XXTRfH1%CFGLdkKfJVx9(TOSDiu$-_iO69U$BxVi`hCG@SAkmOOv*qFh4 z*X{fItf+LRl8Ebz)1v~i~0#C8V>|&MTW@VegAooFurN-U24a9g^?KKWpI?&Otfx+3?MBbRG`1C z#XEW}x|rrRISn^g@z>gIOw-^cdjk}Rao^N z)whif{=PS5MR%g#BF#=&x2!Z>wOV!Btj}JL=xZ!(AgN@^?xx!U+c4($I1`XD%MIPA z*UDi(q;C-#e%+br5e~*PWFP@v8!0d~2}Dz~Fi_|jZai57lpZ*&7kYky3^KYrKOemL z*}eX9Vi?AMq0HRtS==vaz|ddcu=L*Ls~by5nN`%>=LmXS#4;MaWtqO!dpZ8HoQnb8 zCMqf)s^4DjBKu-N{_+JBDiMiYryIlO^sha9`YCM#VxUIu#C^YVy7T%|MZ|G%HR022 z6K|A7?Lw86gc5!o*BA4kD`aG;#M8;PM1%}&1%f=lD+}+>qo-`LNQ%xhi4RO(p3$Eu zag4=#Rp=AizYPm}16Gm<@g(#@b$vsMP8PTwdwR_IxKg7U`{Xn$Bz{$&@bpT=Pb(Df1PuSj4I;r#ra;CsLpoNbej z{)L8GoVbDe$1^#rf@xkU=3J1frbrZ|j>95Rmwe}n0YI$=RMb0~mRsf*qzJTExR=4) zp_1z%+I|6j)zfH0SQ!v!*O!B3*=qgaxamFV+_d`&06$3_&@5kfb0dOY0gjS*|laX99X zQ}mPcvGbEZ3Gx6x{+`PDdt&p=-1DM09lK?N%c#u!a^wVL9gQg5A^8HEf)0Zd8O@x( zDv?$&INm(S=U{wNV|=DOOJjU;N{^%vJq=S;^11L+**v=efK(m0r2u6^@95IfBsKZ` z=pgTk^@axElUA}HsIk>lv~4IED{LrLD@t?~z)1O;-?J*+fKHQKiCU=QMYDuysqGu2zTaH{V}R5Ra|Pl3fEGs`2%n<{XGL zRpB!1JCbA`?5%}~sb8yhhYz1w@6rs@f7YS^BsLuI8AOG)DMM|MLRjLjS>3q?Ou%}? zq{b9L$U&dd$#S1>v5PDxikRD{8YlaRZjDba6obFV7Tccsm#u>-OQ$RVE@a9TiwNWj z^2Hre8=`_$ypjerG<_zuR)Z6qfgBvgA9gEN=#{d>)v)C!Jyi>Az00a09oRJy zr;u~{tGhgAY7K$u-4`ReYP_2Gs>0^mB*Utl6&8RH!FgknyK;Sf32LoLPE@|^43m1y z>`K*mMpAb!BJ?#RK`L=|k_#bAG7Wp;N3OMG3n~%$Z9Sr4LOu&xPaU6Ot;SxP9Jcz| zr=Ju4K6QzlPf%AEh6efIBv5nz@{N$oRR8UzCCb7n2RRH+U|@8QAr*(Q{<=rH!5h#* zRMnr2wV1itIhD{qhI4wLEOYScZ58)R+a;GI?c_d-MQ!Prx7(BD<&?6uvaXOzxQ2&M z_s=gz(xjl>BBLGN~RM*y>@po#wa zdW^cbXwafG)!}X%(W(xB#&Hr0v(L((e#>ro_71^rD+q+i9^*6TS}XoTeYOrbD_aN- ziOB;hgxVNlh$#Sm@0`*B2MMk^23w5^tTevlMrPMKp|v&_UnONN)XKJzG1U&I6f1A@ zt>}~ZuX7<5Azo3je{=NT;tFt@_ap9c+Oqj*IoKwoe?R?nxK7k&MvfWU}d&(;z!EK$YlR$1z`tyuyEjl&}+i|m`0=zkimIrYX2 zTv5P?Rv;7a1W#tY^seobh^bw~YyZZEzJU(+_WUAjY3j@xR*zz1Rhe7j+tQFSY6A8x zIQT_!uRBNaZCY=oUvaH&#GhTSg)xV=JjnvN0~yYl0Y9t7*RqzIfsg{?E1rre$gE3k z{<`*^#J8Hf8^<@%=9O77)kI>?+QCjFO+8gcdsNRq;8v0E89Cq5o{^+Q z2mwMR%q}oOoNXsmO86t5&LNsVJZvhpSPJ#gD*=9t`;V!hn|p13KyYdW3-Tb{M>b5g zagyec7bgu20((0;7CMK7#-MMew#!x#G)eOCp80y(r@W{oPgqDm2;7@O-dI~2C9Rfk zJ~TMzgyAhVa4)8nbp)w}+)EqySmrtET}3t9C`CqWsI?}WM8}abxPTsnXOB(9(;=yO z*7r^(2H@?2uR;S&wkRb`aGMRp>94Z7hztzMaNidUu-ee`xm)l(vdZiR{)o90UZv9f z<)9EvcmrMQcW%oY>T5BFD{5~F|;_)qTNLjF*Ie4>&z1^ z7OzpTuNYU+H(lS~C83R&BcD2SX=koGg1L0$u8#!*a~Gh4wg+t3Gn2n!Vy;ns8XO57 z*b@rvxjV=WtwImrUEY)!a`5@q1gLV5b!$9L#GlsqixRrg8}>Tvd{fF_iqWH4h^m|3 zY9WLvx7I9eC+jScqZ#xB#5H~T4x>j(9y>(!_m5^)VnRLEiTa+KBX3cLH)1wo7DrP| zBFeQT=G=EheJ+MGuRuNKBFR)bEW~%KLw$ko{@Rz=Rk;G$0ed8ep<|=a}qUzermEF`%s!luvN0IW7k39FZu9kmRefm$DM~O?P zdvaRz?*(L}<&D28?H_bT3ZVaCZRK~b)eLKmo6%YRjrm>Zx$V1ii6p5yt+cCWX!I5PE@WKWZQ{1!#4`%` z!_;wrUnfcITq&NB#Z=)XX{+&8rLYahVj`% zcfqf};x{KMP@ym~-S~PO<$+nO9!X7p(PkdDI>a$;VG?ZJHTwkZY(YrlTS7Xc7B-`& z;lQBwZ%rlyOli~xJ|VM$6+mfgMAzifL|s=J=1SZ}TAK53WoxJ!6;I)}Q11lW?N5<> zrtR8d7ZIR|{aL6{)V@QuPXx*zt@_FA^3bwVh})EvpX<@R>;Yqzxzu18cZ8C`tE8x` zyuH_>5Hr|55m^%Zan!s`4Nl$Dt_c#Fv3x@eS>(w@msOg3d$)A6TQxihTB7-NGh3Oz zx{*me##YDj`J1XX&t<3(GfHE^4BNyt-XB|AKSyfU?jDEq*;1LMT`Q55Ns}TXYREVE zbE(Vpmq(>D{6PNp=&vNjkCX);+cN-fd2C&k!*xhLE+Z$p5v`$pqoyfR6XzFXiE$D{ zgM#r>=*B}vfS#?1L@*}ktHa_*L@S!AQB?G`S6VLTq${$@V_i?biy~#P@BfRM40ApG zBGFFCT=5T!&rih9!S>h1cD!c|H^{K{2L+C`0`|BpVVG6GBqE?bZ1hSZ5Fk7CFC6CO zMjn~>8W8%I$lk+CmsS}dU|~%`psv}r;47hV$n8&-$qN41(_K%08?0 zn|crfyn#;?3T6yOa9GEQCrzhrK%BCQ-i%taKG3SkE3f5=OI@uJ0UG|H-phZN!XL?7 zd~BoQvwBcxDqEBT1A{Y#xWEA?9;>CXUtBlp?C^x0BLvC!iCftD{k46Z!YChn{3unp z?-^!3e~cWLenFnjWMUV4&juwvI(Od2(2Z0wWe0KUxP$KD4WJ;$n&F4tcHdC;Ru$4KY=TApG=EsxJvRPIVOw0^o6>0qg}v0hrwsTy zbAWoR+fa8dK9TTgXFBIaX$^0DYz}gY$+e{k!5pfd;d01U&L zcksBD1`bth%#l3Lamk40Gd^2``kl?pCw^~x@d3tC^WtmsG?nx+{;lLT44cFac6{TU zpCvY>dmK(0F~yq`5^<_Q!ZYXHh~d+ni_{F#C@8g$@^tLVkxWmGWz{PX-9O|5@J;;d z3u8Z_#}c73F+Z~|iKz?T5~I#Ce1bIIqV87}KFOon6OO|U={sj#rS8f zF>11*!0p2YzlyW4(z{v;~4Pc9U-?Riu_-BV6FgI zh&MmCd&*ET3(r$EQ&i6)6HVK_PWl57iqireEFWYQyuNB}6w?Yzr&c$nRq0*H<1C%p z0z->G@5DR$>RSDd12eXY9<@KMdV7(5?q*ml-U-G2gjv$Kj&QGRR&b%<&!lf$@Mry0 zvf1b;cTVX;Li%WbUhHb2rxP4oky$qhRL~5(yYv3urj*fFh{sgg(q|p0p%i>uU**Z; zF)^k))c`x^&2h7P#zA*R94n)O8|U78mb_5AuEesEC%43UPf( zM39jOoP?M^EXMbMd{wKM*h7LWihk`6OC^<&NTxD`%6ja#z@beLZ`r|=m|k5$5RmE@ zMy<PWersjv(N%j2srLF82 z_@vD*_nW*&Kf05@=2@guj)IAMy&jTPAC+jQ z>cj~o!Cb5B8xv;H4qH8!D!>|A1VS;*&t*SS(RQctSoIG}8Tx^5?(Y{`YiI%p&p7Ko zi_Yh+%k<@wTX2-_mAkyPa|eszJc!5Iy6?AOgV$Un@&$b>og6Nk?SBcK{B35QO+Glx zhPnS?xkC@`%IMh@RCv{O@oz2Na2OPsqq`E#%*P*x02s!Qc;Kj*p~EMHjZD8^eD%gd zOxg*t?OiNt^j32H3eto-=-vHuaexc&Rrv-u5F?-bp zdOZDQ*hwb=V%fqijdQck9`XM^XTOY>IGN*U`#+CW*e~NDPF6V@$vR04GK7I={&yW~ z^55!S1W)8I?rvL~P*Nm_v*O^Y3+3F(hK@)2nMN-j0c(YA7|H?5=mu`#1O9w%KBle3 zqY3U9doYZ@A`9GrYJHFoRU6#6+x~~8crRrMI|s{Y*X+N0QxmZ^qs`_q^V$9o06eoB z?22|2<;y(ql1;Ty5Z*Q{(%9Hzi5@W1i3V+jYD9H~XT5x?U^Fgu;!2`;X>VchMbuK{ zsyAxo(%e+nEN+{e-Upsi8Q59rD4LbW+JZ)0x2;kCT{AL&Ns-q~iK%4Ls>{62Gdf~2 z_5e{rLm5kYUZL%wjuP2pLOkZuruquVEB{%se!d0D1cg$0&x{-grOg&>SqoQ0#9rqT z7!k-`){fLxxAt4Mm28Hwc5tp)LH4TRcG0V9u^~UAW%T(kUMjc89`o7`T>3$_9TxuK zOKtXlxnsT$MlGyCxsVUT857I&qq?CzybDP5^GJwo6;>`#<=!8b(}3Ztm<2fB9&*1V z=Q%%#Y88CiEqhlq=)a%G9oy{+Dn%Lx>-l-_t|(DLYuWk*fTlnF;%Yf|s}BgNA_joZYQ( zpd7dMq0BU6S(nbvOi$Dg)(ej9zb=2MuFQiPuHjgxa9-R5h|%NA>k16ck`4N|(Yuik zI);IfIQr2GN|N2{2@immes9i#IHAn|m96%rU%P7J_$?5gm}QroM^soi7JPXaJ2#q7 zlU>O6FtH3Dd9$_pY+uOr5xTsVVOSRUY1`f4PO2~|kE4QgvvaYlzvhCpF|oa{ckJ-K zUPtF~knZ8FIs8b@Y}Af@7ps@GzRFQ&hicK#w#eG;F8yWZ0`(Ybf9O6JAK0^O9&a472LbEWZXzzk}vCOUPu_Ys{HlTCI<k&1!ge=#WVMxskTTE zfivv4t<|yvzBTjVkuIY@EYhQTce?xOHFtJO^wU+$e}#XvFiA^*b4C*`@_=Zjb3BUzHJp0J4_p~Z6io( zO;8tlIKS+d8SJGVqqcj{;ZYC2Gk5RA2Q9zgI~r_PILHih&f2g18_78Phvi96DM$?T zxC$%F!3Di^xo?H60?Sqw#0L`Mzm$JPfFdrXr1K7r8Vzl&DGevGUaNEX!8}jiai-jz zM%b7qG0&(i$OyjOk1WF$jN7K$2nrn*&5eW8ZMf2QEBa_}E*$*WzSm5sk-EVzqk|~?I=?gHY1A({bk(Z=7(Uq2 z$f_#cMosSU7M)l8-r1W-M32+0(+hV6tj-_fh250$Y0nj9>d3N@My=j{b~I{Swroi^ zxm@bEb7gg9t#in8M;k7}j;p&|j(9d-b;=d#-rPssr{iBS1+Qfws~GIHftan;gCSwy z0=@m6?#f#K*SRq1p3~L6P7p5CR#8U7eTQ$KbIlJN!`3UjAr?%hIlMktxK|F0(U-9G z@iU};t7cadea2X)_@~U_r`eiB=giE_IFR2Jd~K9F5~^p zsOVNuRqgzxIkfv>DdoZ6j}_v_bUMNz$odekxl!;Y{AK8T!@=8z3o&Ef*p7>+NZ8mc zMq1R?$3p7^KJLzyJp!>3T~|;qEYf<>a?<@|lr~$BevOsc{3n_2FO>h0Iv*f)|CsX4 zI-2(jETgF7KlTxuE(F-ee7<}dD$+vT(a$><>1&*U(ZTr%`n7G7Rei|UYO!g;1*52R z&}RzSkJ__XwmO)91}(5zF@J|@ScfmoAFnBDJyOVU0GjOX0y@t%LT>zz)eY}a0miF~d%_=e!W*=S9;m~((l#-ACG^Kbd0omUCTI#Gp1kIXwewNG2y4}y-3u^x^SRK$uhEVE@PR?T$BBLi#6V$Y| z2JQp1=LIew3))9)!!NaeKpZG=CD8}|*^3>kQhfFT80~)Hz#aJ?J^WW90_Eeg;Qdmk zxluoq&I~VTFrPjCxM_Qkp<=RNn&Xkk{^fXNYxNJyAXA75WNKk|zqp#~2l{()Y^x~$ ztBwh3_~}PJX8~1!ZH}BH0yY_ic_3;!2C-oH{%8{U;sO7XaW%vx@8=mRtX-Ao{;5c#Pg6|7Aon-5%oaK`?og`a!@y zyS7$|$NW7Y30P6<)xk$Eft)vR_M&u@7JI1NqS14Az}p1-^z@fqDn@)Kn5=W-*v$tj zw*V3SFBkf2L=K3$9HLgDm9{R1v979QC*iX~nb;dWSa14zRsQW`ITVoT_)w9lL#`1P z${DK$>owo|aU=MPpSPVA^zp*j+hCKTRyJ7PKbPvyc2wEkJ62KK1#Q9YB?XRT&)pe% z;dTD+&-itzL)(SuV-&+Y0h9RO#6TbpQejVgDM^{r`#vkjVe+&i`HrOf3^5*me>-s`7zw0!V3} z*&gbeAxnhu3K?$zfy<>(%U&0N)~#%`83kkvg-wEWX^o{BdWpab`+iGW(PAJg)Y|#u);G2Q9$i%0cXT1pjhr(*w zTBQuhve*9qgjF=9w6!{zgj86NxwC9K5NF|&C#a4UJTPp&huQw&O=-W+Dj5{`kobeC zUV8km-4A(O9Ww0)82d!_f=ifD)WvH$^Lt)Y_4IFWwqstS*()QahDOV?7&s8=zU%#` z@5m&@X+lwJ@xg~aP`rWuI%e90H#*jisrF9~^dt4?SL@Zcd76oADqSf>uJpuItFCSG zwfi(etD4A;r& z#{n>^URk}o);g{U`@c3FZ6`yvmOK*Xl_nOUHZ~YMS%2swE%z$O_$q=T^na&j|Kkn* zt7fqs)t7U=1l~gaUcEgveleH-peF@(p*cP2m*v{9Jnb!aI2R*N8GfOP;1+$aif}vn zql4Mo+q02+a%DeX+7^sal7pq0iK}qbQ9gV09~O_fkL~cZ3%_Ej1BEJ=-h5{4IMCbt zBjG74d~4ODdU3GH__Gf>YQ~-73Yo#u8rCRoXNMr;LL~CKkjeVx&?BL;;Ei!G5U3}3 z&oikRoA)4bgkYfp>hG{*pdir|_Wa5YZ{g+l+&#b+{lmiZkJH_n;FOUpi#ylHA+)6s zAXIt`RLt_3AFw40c;V#yf-#qW{vWp9JTA$s{U2|3E0;vX1(y*wQk2mY%XLP;C2d?v zg>o5D)KW7`4NdErQV(8`o_lEsBAu`;o;&@4)((9}$=`QG*Pd_Ldb z_x1Y+;TFz)&UMbY&innouKS#OyL_H<(&fwFtR7ZCq+08&;bq{K^RF{(A3S;<(tcgg z5O*xsyYKm8LBZ&=waYJ2{y*4$_->E_mv(FbwxWHi*{6#Cp7rqs`CUMjEtt72_$wJ7sQez!YBx0)527gZCKZ60v>$I4CL;!ZW53m+MBKmOlZ z0i`!L-}<1Jo&|DFP|G7q#8(qQ{Gw}$Rd}-2g&Fdz_xqZuit9GAwwK_|9*l$ ztox0l)$OzUdDdCioJ-z4#sBMpDkti(LC9OZL;a2K!8Nl59)Aq(S^wcKfMP%Pzj+e( zZr?wfNI*I#vwt1dT;}uSW5XptV#@%ote^j9)5rIKm~v*%mDWGwzL5B$)TqRM_7cG5 z0hjV0YTwYSXElhn1U72^#Pm;xnITn|*7iDHYMlebgiq?hJr4~C0RQiv?4KL%;}p4l z`5{M2bvJkkO!ChJd+pngPei94uI}z@{QrEzeExaVQQmYz0Wj&;pA9clvz=GgTjKus z^<>P4-$ux%`hpwc@@u_YZTM2?!kwPq6X-yy5OAUIy>r2DH?Up9JK~JOe*j(kLiU^H z%|hFL$o_5K3ZReFd_eaDC9b;4PX0%qIAs0UwXj|GaJfhL)?e6o%CSGOYq;fL_$ge< z&$HQ_yqEPvfj@RW1A`vhyXyVRsg`FdJ~^aMb@ShOm6W{NA2;b<|F%_lq2H!I z2v`n2VSnbB?aD{Xk57aEba&ryKd_j*ywYe>(0-u|;mGidJk`|E8PE1nGndF%5N`m7Hf)>j@A^<(<+yPJ>^$3Vb&#{A!E zj9y_KeNPFA=?6mMQYYNUN5FFEEAuYbD(fR|#RkOuHgq~IwZ#Q* z;TbLPeM(dFTXog{qhbu=&gYe^ggD1`Fo0q)$5LDHaqezo$I<^Km)5p;C7&M+UH$>uZ_8-FdDWLEd12S_ zbP~Y`DF@WCPc31;>c9F{M>g!v!ulO7h#fu~pB?oR^wQeM$GM0b+4mz8?uGDk{huTO z3WjCijtzk9%Svs*t%Lp2rowX$R~q$tWsUOr!M996*0IW7INf zBI>+bF4oKwYSv{7Th4H>sl6XO+)kMYQh?}}R_AVpg&kOR)_iL=80f=&JAL7mBzn(| z%efW%3Svj(EsqaY*PXflh_IXY_mA1<#)pTFAdX!GgM(LXDN%O6{NSZlUNZY*VdxY9 zFKb5Lyv@7+VUYYy<$(C$;lrx-*MgHboTbCLduCZl3z@qg9ykGQ%@7_q=zad-54RJD zu4}K34~GoOn5!3O=i}a)8AA5zfg7)0YdD@eL;Lg8p0|Ss-2Q5KxXN5V2~ez!0z-h4 zr(W8{Q?>OQg!COHE&D&~r|kKdeUh=Eb12?Sw+Uo@Hqf#*qOA*eGO367&7JI1mydYX zM7hdX+S7p-Z!~KCdl2{Rq~V{Z_&xubOV?gO6-%<)Q9csd>l~l5yHk>0NxnOKF=}CH zwgm(l{KQUIJCOf2XWu)!aXwj{AlEN(J$2815^uIwA!`SWfb&jS&B~aY?hyt}H>s76 z`?uVWsyYDSL;DgNfU&+qN@B|7>dB zhzT6}uHc@Jc4<_fTZrdT^Y_3;*Vc=@8`Ga4$Sfn?E!U%h!~A>BaE}BLqKO(^HVszy zTxI&x_v5AAeQHV1i4$dm>y^hfD=tQLtKzoIZ;ptnblcP?>b!jYftTYasWUmsy>5P> zee>|^OMR-h1)mhnm(@O*OyKeB&vSBir^EEGB4y)h;te;!Ae-b@no_aQ%6?|}EA>M^ zkkWnacB^glQt#_KZuje>U!}Hh5!l-HG=D1jT{3IF8MoZ$#RT@&K5*vp8<&(P?qF?goK(6@pNrpveOUs!lp&jH{Cd1C-Su@@ zM4Qktrr>Tt?9v;jT2^$t-1NJ+BCJFGa{J@zjP_o{6I{tR)sfkj3oov3nXUJVi1HAc zz06*|=av;(FR0Mz5kDg>rG6r_=74AbeSf@_CW|JFZ^B(Qmi!&b+?84;RKJQDypnfO z@vrd{I?elEK|;HyAusG3F6ZUGyS8i!`-2XyM-EIQ9$XC1Z24$vHDUtw(HuCT>Z!k+ zcgZc+H963!h3Bp6sK2np0+rf(pB*Md6Rv-^1(5IWp8RfK>appjrZQ5(PSq{e_A}aE z**+!vevrJ1BYT<3enP&@10)Et+wR~qt`v~xmK$*sXnHD{@U%r?*>_A z%bU3=;)|~BNvBFWO<(Cy{L=M*Q2_E_eXObDd)Kv?)Q_`5aAOX-UQ%LM>e5n@9GVI2 zKIyAgiYw}MF#kaj**-6#C_yKKSD%kYWwC@8axLM=C69NzfE!M|0{>i`NG1E8I+ZXi2*sEWHRX6jOB)XLc=p@x68Uq??| zMz*=|GODfP)kVr~xIFG(q}^wYu3UA3e2;E%9*sK&3V43+)yvDbq&VVa=10!W&h{?K z%=5-`#f)U;-Iju%3!0dkCrtRm8JXNe{f2|U=@#LQ-KI(Rj=1kRV|>=&{f$q?Yz#9F zz9yV0B+x>NGB%FI96%mxH8X`!yL`;LFsYY3-S=95bsyj}U+_cw_$Pm8YDgQL^Y%(9 zeh|Kzb@oOdH>KeriMf7C`{Ks@XOv-7hIQwR^kF0Z*;IJ2Tv2Y5QSF;%)<$%?vUkGx zpyL^D{i;(`Tv4%~r~dO$_{5O<)Hwc;a$V>e%vRgl4;!pn7=bufv3gEm(lLz~z{+u_b_(gb2 zNXu2H*32n;j9VxA|DQeq$IW`?-Rl3KC%gb}ozT)-&(HKWuK|d`|FDPh_0(f zKb(eLS4kFOZmO#xm#*Yww<=_D9~vmQz9>=_<@vRj+20BBh85$4u6o$Q{MItSEddc7 zVBI?TdEI(&rtSgL_F}g7@yoqm-%reJq7e@t&-}Zs<&ewKTl|(beLp9K>t$(!>?Lz} zPh$5Y%?7ifpFAn%ZVC!2rl4A{;@WnhXWk8bYT_Hd+`CVjxc1W8fsy@S=GEU0^=BJ^ zYdr;w>2F%&J{cUq!+_H8$>1mcV{jZ>5c4zOy3b%sSC{L=<_8ty8YOPw`R?ag+5Zdf zNm(>8EZcIBy8>VL(Jm3?<`r>HWy~P|-f%zP0PLSE0I+_l`a0vs7f*3jv|;6nOZXn; z^{{J`%gwto6yrwBvb*~KZ2GDoeC-E5;2<7edu-FQBks{qzPl{u{nTLl)?YFd2ei_T z+Bh}p{J%!-z2p~gpX_86eAoCz4M^CUN%PUZVnhc#+h-&1{b$p{XD9TrCh|w%*>pga zykFmLGWEEoV2@gP=YL1~{2({0mo7BE<=GAd88_Vb1pTf32WhVK$v2ly8fJU%IC$5b zKPl;xCK#_foK00-b!z|ekq$z@V^KSscct;y{AmIA`sjW!iIWb`9nG~%_K-UJANJh; zaEF3D)x7|i;)WV{BDf^=^1YJImoJL2|E^1`Fc~?-KUAM+)v{HM z)c$kpwfp_rwMkd1vJO@yYqp`Ca{Iq|!IEq6i}ybUMltTjMhEtd z;5qb7AvR-{8wrOx!_Jb8Gd>lB6vM;VsWs9})L~E!$t6 zXwR#9y7A8@Gsd~oKU+x_URkx2^wkP9IrZ_~K<7t~i@YXCb}`go*z?=))BaOw6~CW72+IHI z-+q33%Zt&P8QT24f-9#eTi%C#?xZuYK!;Sb1taIQGQ(r%gBvstm{wE}WsPLhoG+M7 zJ#XzHjaog@UU|2Fsi$oy!!Fz4vOGWYB5twZ!g4aA!Yq1tugayk?WC69nl_7+{a-xY zfNxztH^`hQ*Ws)G*|b&TYzG@&ygAm(;P)<{o8^G)4{*@`>6rPM+HB~8YJK30Q@>>C z24O_MCf8vCZM|Ssa!ttTU-uFq=e;_MDly---vnmOgV~)}8%Q#BSj<25*TnT_H~y$) z2K`@i#dUFBo$XyA_X=JRAFN*YK4f`dHg^w@2xD-gsh;^P7A$WL^hGVx;eHjZ@Ap28 zXAyJKR@*~P9wlXe^TNafx@8vqDknjAFBk7?;eHdKzV9a9-Su?$!UWv==#~1hADAmE zr|ADf+W*@Nv;XY{MSR?riAMO#mt9&kHjuwdFKSX*HU~!R7`*Ibz2Tnmwsq+(5Cc7!RWqpb``_Ld zKWeV^%Wv#oczNSg=h`o;&LQXeK9Mc$KQ}I@U%HJx(Uj^?tHYwhrb4Gy6_0oF`l==j zc~61hO#8<>gB~yYui41M58N{!1UjRA?ApcOa|6q>`WF8X>3&_XFCnU?d0;I=&lHI> zD*+IYAM2k@tMC4^K!5Iv@QSGdw*}>#t;Q*eh2-+$p?rGt`|pe*^i5Y`1GPI>9lt9V z-4?i0;=Jm^H(qniP=$~KB0`|*GUgiG}r;%UD&IwvMVDvzqmJoXR z@_dwdQsVOBLp6{RbHMQK{s|p*$i>T7jMn1Fwf}6&!d=WVbrkx(TH8%){^{A{THy~K&@SYT7POvSjwdzZ*72HZs%Hm`pTE9zJTJb)`Jf2vHjxF z3oX7z7IueT6n$w!OJ!Dv^{TW;JAZqOqp+zo#!4i4C9pTR=-7NeLXHFq{&Z8{ORaw% zf4a}#U@FbE~#9klGsmoG_FO9utSJ(64BrE}^Nc?hTtnf!5 z$o1Bd{p=m-MbyEyVa>DD^8`KgO1t6IsZb}4uW#kmAT1~g+8ESo)DQK&+q&PU4EU+F zn{W3ngojQgqE<_+w}JsU{h{-xm(QZxrZW5&fA*~RxFx=*sKwnQ*~G@6Uq;5+N0>s} zzWOopugieW_<{4`)L($E3V^w|xRv&cYaxILJCOtY<7B}p1K|CX$#>&d_V<5$@sDWJ zPr94F{`#wLzyA8`Z-6(SUN?R9weGfWKtEdiq)@)PjHi0~Sqe*OhJQBldfbjQh0f%VeI5O{+qa=3^V|&TKxVqS zdUuVc5eYEQX^8pOtBzYIKOF7M>=uMY*VE77@F6;dG1^gdqz1vT%=ff0XQBH^(ktlo zWUhDA&9)IZ7jHWo-AaFvlEQ_brH-w-6*@Uf^+=teG20SUQ&Hba#pdYJXVQG5#6+CP zlQ*ZREYJ`{8u-oJ9YJb_tGWVsFyIk^AwF)($}3}12 zc!+>KYVL&5#Om8By295NQ?`N#Rf~o_#X6gb zboiq{E+Pz0uhPsnuos{DoePs1G#u;-yGUXBk^)Mfkb*C6uO(O}y4D~TIcq(`&r&S|3Eis0ZLsrq?>@`>*BIctqcq`2VlB3Y>`Z4T#ZvBCOiB?-4o!hgXq?wa8<=wj2g(8-N@!0hWS+s;$jtio zD2UDAivl%{)R>VbrH@R4a()C8Q5i~Dok@LD2Z_Q33miwoK zBTpxoT!OyQCx-Ig)ZnIUwrA}!AeJQaFzm`O9Ga?4U2(Qn@ZE@7P(NGo3gbq#-M05R zz+@SeLuB0~T*|(kmH6DLNQkvAfnQ7F&>R`Uk@oMZ1Iw<>W^kn2=w{}f<9e2I%Lm`p zDZ2aBG92j|G0S;TmXBbsKV3)F)Ai}*RunQ$O@j+8R@0K7=x~acoMuMl=wu$kf(MDq zFQ~%W3!KU4Xej8Op}x%^jQ>1nDGk)vyi)3i$#K|#4t0Z$ zUJ*O3SSY$|oN30RGyJs#1lrhA7uG?8FO3SD^XzF}&qXEbBCz!TY(6CH;G3J#?+cE+_m4V-@u!pUt~e&A^5REsaS4tG%|L(K3$PtPtC-fH-K0O z3Rv97*!oO9ll$O%v7__yh_bQ*&bf3ph`-Qvq0ZzeRTpd49ktawjhz*MJ*G^WK~y7n z$0>9q>VUX9Hrxc$>h=_upk#hew>KC(LiHY0uDiUV%DUevmhf4-wnU8vJSr$N_UB%c zcQtZl);G&=aVmAm(6%dg{b@r;XcrJb3JrNt-1FJy2MN2(E#7H=Y z?!`oTI#I#i^kB5H(eh14HwwWx8X=hM5K-g7>Bq@Zr2eR)GVMq2EiusAUYfZ+%kAi+ z69ZU%x|?PUOqFWxFaMh$o-W{*DPwpm3q-l8N758LKOA*-DRjoyQh9ho7wRS8@4!qp zjf$&Jz&T`Q5I8alUwUJaQ-<3Ys!WL`i>)kHaQ9ieQJbS`iH?$PmySCe1h1Iud7sX0 znTg>`k?$!ECQmZ3==tmCb+Gbe>@Pb3H+xI*vg49yfSLQdKjI^$aF zJyiZ|4fbZ}J}c$n0Iw^Uiy9Tzklkc@a%=!MRQ9bWKACq}&#QR+F2k6fDpictL%Lr> zXQLZyJ@Eml2CUiqXNb^hIEQAEwiJis?wp)K|Fek)&GZG18yS^zI%Wq%(x(#!Y2~J6 zL|oO@q6Ka<)f*gXuY(B7$qEOpqY1 z;)(CW#jp}4|GHIJKrW|9tVIamc#{V&1@Co$xWHLk#MS%fu0R9#Z$IC0ZWU$AGXECe z{g@26jirEC9ugBrSiwh0Q)H3WLHYv=XffD%o<4vEfy_H)z0kBej%BI=)k8PyFqoUn zZ3^Jxb=Uvd$J5 zJGzoB4+b;KTxmi}*!>wPVg-{lLqk>;-F!|xSTf^qpFk{2NHCPTOJ*~P3aPf}0$n(d zz$y^j$qA_42mvPuo%NgZKWecBwdCSIwm^*UBS&o&4s07i^h&1R^Xv_90=DyE^<)v$ zD_%3@SGswkUjc{^+@}B0dKxK+gbosQW8O|hnfH~*-hg)x8OU-1RuHaaB^4pCM?DW$ zQmn~{u^BkkLge4Kwdw_5f~#lLkZ>f9y!W&MOQb_^3Zm1+qH33&^=uErLaC?-fw$y2 zFZP;*;MfZQ{>Ujgw`Nl4O3f+y3WKf2V+m_e5~*#gmM*#}OFfaHa~chEmJ$UP3QjL* zn^Yjf5qKU};)mYkSmezm)b=&a)O&n7E$vGJIc#)%A?`)CqM+cOS5;2SX_uUQ)4xw3LwOvkt*osQ;LiH0n1MDJpzcFE7 zHXXSop^W%k0?cT{3F~pVzW@hJ(JoA_iWB3!t4-81Q#egc_b<=OmZGsu8f zEm;_A$$WDL8hrK$|7{|hK=)5|&6I5--Q~DIVrzCPISqCOXjt#) z%wXNN)fgQHaVVHCMF?cd&dgr3QDA=kC_`ZyWu$e;VG&)Gse9KLZ6@%D)eA|l5y~DnC}R?r>Ouh(0*I#w9ERNt4yA)B zR)d9yn`0FA#+-9aW9z!ADLmxSpJCno1jxC^9tbrGJX4*1KR9r;^SwHwa zo=JP!wo&QLryKL_x?vLBDlE2$j=-gs3+G5znM81u*Fa7L%dgvNk8T3E*UH9I-n$tO zU|yQNCR*3#0Dotn1Hbnv-3+PepBtQ(P8~<)=&2sXuv!ieHBQ7OHytoY>;YxZvX_Sm zOm-4YOoA8a@Gw)1mY3(RKk%P677h~pn+h0XB|Kbk?O}1Py~WpMxIT%aq{a@PN<;i@ zTCc|S8PKf?z)?21ZrSAd#K~UM;tY1L-9`pHC3f(Y6j>p#5u+Hl{fVH6!aD@a>Vxm| z+&~37TTxP@0xkO3pqY4{hK4^J1zQxKq$kb1#lobsMEtcgU?yRirpR(!$U+^qvc97X z;z*^6{IV7+DT35@XxJjpEuL$YhrrY>)Aa-vtP?OYuG&gEI5|{4M<6QrtMYV6+!oY= zV64nCb2>r`dcv+c&WnQ<(K#TrSbt!s)sDj8K&`ej@bmhEDNpk(?Htwe#0;(as(}UU z78OA#uErB5rSAEuMP0Vtp;oQPo659cqNa-1DW3wz#HF}=FFT{|Uh(r$;mClw2O!Q3;t~9j&=Lf5X-G5 zDN|$@8(<|b&k36s+RD;*9E0*;l$)p+`m~i3j+eqdOXF0Sr0SCqOYV5|%rGCx0erjG z4DAl)63@aMTk>mhzp28J$%mIcm^R1&{P7*)=FnB|6arM$6%p(NRiKLk}_Nim85<07{cO+7pMR#Me1n&j?M9mJj}~K4k5=vj%!T{ zG&6sUS{+l)d+cU|2&7cLYIZP~rP1Gk_rDKm0gm22{PwOgKun~SJN3@D-3RHkB9R~-<8Bkspe(3~^BFiRk z_z)G9QDCyO>5j}dTiH@x4zOXBaTh#vLKhomp~VB`r$x`}H>8~`Oq-cM3q+%92|#9T zN^@k&n~D)pA3Jz6T$1j_|e@7N`M}@TVlwVK+VpF z*2al?*6xn7ale^CI(sF3w4CtllHx6|4Dfnp@cbz~RsYvm(%MY9f~eSxw;t$_VdFJV zqspn#vAQRB=|ZK(V0XBGTU4EWITS(aJcNn|hjp>J82%fG9ja1_bY(5T>WqmAsx=Rj z7CKL}&8<+{r?pwHg;g{;W2vgphmGE|O#rBA$A}&Oyxr*alrS$)((54xUO(U-D8b4` zET(JWea$s21WyRkL7p8t(i*LJU_fimL3l=HY`8IbNBCZPr46}!>6|hg%3BQ5IrFU0 z|JUJPIOIEtz&Y6@r0ZzSh}3UJ;tW4T_hJyF)_AOb-7^|iS9ugc+-#Yts>B*Q7T&er zs-HAK0i9#HZ8?KsJ-HcRC%h~=g2aJyQI?Z3tg|(PF{ha_h3OmOiG7mpQQ2&} z0e<&{QEumC4K4v>V5n7%lP3^sMwhV6LWa0XLYd{d()C6X-k|VAM)ir&RXfqR`S&Ba zf)AVP?AIzVe>&Gw%@`B7`9VT{9Dl)rAoZGCadJm)me~?@&FzF~oztmR)w@>kJw;Bv z{>cO$6=bO=>xEzyJRG?iraUZp+m#T&b=i@r@{=vZln0j>Et73&vp8i+iQ(k<$WwBx zIk&qPe%gS|;Lsr3B*mO)F0<|Ep3>#PW)}=E;0hU^{Ghf806RCMks37tk1$h_gn+fD zqQQZV8>Mvtj~sXikI?8`%zUC^6C|T5`Pyld(?Swcxc+DTVQckklr~a!}0>1 z=#X$na?W<`06HQ`aR{p7+PITaipOO5OcU$??>H0t(3@@=zl5KFgl`9X+RA~9Jjzp| z#vu{SD(vfF&5*4KHW3!Um-)`gES!>M#PgIAwNx3iYEOSEC(Po4liMIM40{8PB*GaJ zg}Je?@-v5qo7bch66@#a(DX9&b9r}2=c{1=q-3(IOj|}9*+Hb9ZK#-@U zM!`{f?|-m|7~wGInqv>$L6bu0Gh<~p;>?qYbnkAC#M9HiiU}~7E>}XtQvwL7vlX%Y zv@b{pA+Sv0xYiU_7@*(PNI7p+F3Bkp!*2YFS-puGM3#^Kz zkJf`@p!DrwFfp!O4}l)7DF)gQLkAzg*3kX^6ogI^f8pJLi}RWg0>UWQCG!LY)MB{Y#3kShgM(p&{Gn(BI`*vDqSM+xdP|)QJwATKIg1mx~g*Jx}EH5 z;h>{fj^lK`Bk!1}@LQTzQBmF$y@Obi*KD7?W|JSfI)xi)5+)0T_UK7wWW>20C+#7z z01=#vzAHAZ47Ue|iZSIp%R?Y9h#MX0ReVK!BvwMTJts;F7yivU(tT}kY_i8sk>j}r zE0`G-&z0g^2gIf`cH+jwt~!(bu$~vEp7Qx4+s1t(2M4Ug0~1E(iAA;GUqB?fsIYjD z&E-p_-i3_onA-2(KQKn{1Qz{TnF$`mtOAAem{in*NFi*SAVlE<9#-Byx2C5j#O4|+ z8IyEojc#;n|F z%t+WK+TD#^@)RJP`UNLKR4->*UJW^XhJOTxyX6>?bV=1TcE7sMhT`5YmqQkzC;sSHaP9k%GT zEFS8+eNKe9I1sa$H)WBNZ~It}=`VGQ>TLGbf7-S$&lKz`UMV=jDa6}gNTh%aC-g|} zN&$h6AfA_05v0m>am{qf?#a@{DY1+o)+aBJT4AjNAI^^?$<&Vyhd{C4WDw8`?BX_O zL?4exU5#@$*{lo8^X}$>qx5g~7$iyZOh)(oG9uTlw4Qb>9(qLGA@^1ChPQedp9TqW zIBu*1ICQL(9G6Roo(V3@GeLx=%G4ju&*V=96ugg2Y11d6bKAGv;YbH_c9~8?j1t5Q zU35xr@t|snAqqT;Hj1fA%fzE|Qz8SYNyo8XkM{VSW^5|&@t|G*N zIys@|Em<=xW{xd5ig;)#2qA#+y4K;`4;lrS)$)&`6TiRx<4$y(+s(|!^w~82s`tLg zRLv6OK^|L+dVV#BNjy%oz}%RXCCgXburoF8vuN<{kpxvLc<;fU?$QQIv~DNoxVo~Rtht*6Cm z!W%eZxyamgkg*rBIN;bl)got74yW9v6#b_c+Km;MCH+8qxdH zCLI>fgLFw1+pb3adtapY`1rx2j9( zJaSG|(0BgIGiveHdS2vd{yT*&q&*f1wc@TW}Rhw+qh`9h5IbvD&I?^Q)gj&Gma-Aij_l^+U zGkpGe4>6H*fw)5;&pHfs6h%~8)1Ix$VztjbO$Q-2m$}0a0Rs9|x_)D3Hy?5Dqo}|P z5Ua5@RD;Q~06}=d(jF=y(V9|xHYJQ`P&d1T699XxdY#=<%qeWCsY#i>i;io2KbkB! z)G-AG)5Xs%2e71P7y*oIv4A6pH^*~mql7_wx188W$jM<-8vdmMlI2}A9Y?;N&JQcc z0DQPB^Eo9t^|bnMLcZQ8ILbp>vNz>Pl1kv@$-`$ADVr^{#@0PxK1mNvwwGSEqFVyw z&2vv(hHJ@SA`zVvWm`l?7HI@$KyV{4r{W+4do_&?HPWUY@^Bd0ITdD2pc_D+F3MtE zizt9@j!v2-0UCkSi=`!q-1gX$=NX~h(%H!`yrlW7ysItcN;NsObj0fjj(3(X4(5jW zZr38xA8f_9=?K_t&nputDGap=Hx-7}=+hsd*@;^ET6L|kV6_|)K!*-=9VX&;76+F< z^0TvENZ*XVhScOQE)a}>z!Jh!hRX!$606^6k<4PfDGx0t!tJ;I)h{Hz$RwEQ35D=R zRjMY3s_`owIXzE)%w(osudohrNLip1t|q`RpoAAV9`|hamZxO zHB&5<0+UFvxcj-G3kmi&t>u#)VzO9)w&I4NCLl5Tb@0Y*i817ew*lh4Y4To_dsWaMs%f6Tee?HBylsu|@grjcmoh8-;tnA<|<%mIEpq!1M$%U?| z&vV$8B;6T)|Esx6JGtYjPW)`t#gJY6z-)yU|Kfoe>E)?^=0S*{7LOeBRguP`%Rj zW$nR7D2~EU7FAy!jW5b&Wz5ivRA^Q4I3vQ2an_uvv2Nr0u}2x%*Cr$B$vP)-IxrdLH-*p zuyx^%%!4ylRF3UFmvm)gI>EAdV!t)Wp(<%auTh!mb^h%Y{y889vKfR;=HV!03IzK+ zM;(!R~94Le3}>w#g!g53*9v%+#M38=D=E=c{N< zuwic|->Q~alYk{i)dCmfH)1f#f?A)+3E;j)bRLE3A$1s4BdcM=IXNV2@vZ+#I6~lP zR=sUfswY&3&ZNT=f&+`uiS@-Q-Vj~*4htdhHgM#xTNif$nBZn_0!3 zzC#Eo=g3-AG$q$U=d@7FqjTe+jz#vycwa;T#QFM4#=L$Vim}By5(y3fLi(2M8DLOq z=J1v=ZoI~VDk;BY-NI5&NO9p8gsTc`miWtrRR%d}D6&2d_0618dD*8RrUX6P82 z7h(b@C+!|2jx6}@3oH|{ER`fq;cAqXC?G$DLlcAZpnYZ|uwEn8QsG--PNccJIhHyT z!;UGZ`10E!1xL8Ck;Y;c56{z?fCHR}h9D>sNC79WJ9e{0F{b*_DO`)y=-q9=mS~4z zQmAB{Ow&bJz3+;EApivg3#oweJU!X=#`c0Xs#7N)5gpTz7zq{FPEI2s`^|LsIXQ7d zMX_lKw@g9DZz}AJu7LJw00$w77du<*j@)ur#$=9D?$HkV!KhEo*cd4 z>4pm~ck9PenFdVY2$kqA6R@a_l*^O@arV{uYvzJn&Gu-g+MLz@TS1X;INfMEhW_ZFZp3Nz= zv)8Cb;L3D|ErO7f*VzzYoP%A$PJWkTq2SRlqN3m>OV!CmY91(6M`o0?1~Cga_<LUk4cKjg zloi??WwdqLp50>vELBCiEBp0SSvDuEq1)#OgLQWr-)M3=i8EwJW`65-=x)v+R-dH{ zpIO&e+)qfU+Nx8pe_k>)S4~kyn{x}89I2VnWMk5JOXAKQygZ=?ffl^}0(%54BtCm)Afioq!37WBFBOt214bVOJL&ZIAa6s6Ju|QCm)a^G(UJNdY846XjmM3Q+6pi||(q z!+eGNL}7Sf+;5g$SGR4SFx&RQJRw)$SjfD5N!$iMSywP9}YIUk;M!6YhMxMXfOsyiIU-<8HeVRONUOUvQQ1%&o zbW@O~3R@Wj@+;U<0h1L>NAj?yS~-DBHrvB;s3*h(sVL7k!Pm-hd*$m9qzfWZm&MY)i~)}r_mFwbUSEepW-0g8fWv)coA z6jdWFt;8IwPEfBAjO~Tdc4Cu>Fl_R{*dJJ<$JR#7?FN=mwiCKzvL_C=(o55MPJL=6 z2NQ=WrOa!^gB?3n4~43bl2;~gB#*axDR}Yj?z7P?(I~3UW>D64n}{l3F~Pc+&4!^3 zLUc|al8ip8Htci+w0e!`Z3~VgmPK#G*F=wNruPc5Tj?*bIk5MLcD(`N?dLgBZj&`o zG0-dSUOGa5Hea5ka1!A2b$g4{Jb{xFjEpC;_#*>@(?-|&p?{aL6`GkmEa$qM2)o|A z3(62TU}mg+iL72XD6gxW?feod^)ODFu-aJ}2;SXMV>NhF$F*qkK4I~k{3Ha&!wDX2 zc}`dI)pDYOu2ZyX$fwMaN*o%GtYiElQ`)t3Tz&JSh*3~8IEPRM<5wL$P)@9s#lozFu+yg1x@zIsa(GLO|-mHK(I0cgnV$Q*?2Z<&WSDa7md=Hi0|? z>jc`LplgF4YbgW!5d5d(*nF?P?3+h&`*Z*`1!BlcNyv&dC_45iuAJNeM#WSY%q(CD zw5L=nm;@Vt#qXKp9qbHWCMPm^mPD|lOB58~H78JP(G*sHz!w7I4QiEOOILQ+Dmi4U zur3Y_$ex39cO2;zGFZQg)NdohuJ9~GoDNx6^g{zoKhIEQo_qBGwmOa+#LG7S#(>RN z1t*}per{uOk^YmlE2wmSYyBcH9yQUv!sm-Ub1CK9O3Q5N9O=T}aE>6VnmMRHK!@Wc!Yf8C z<_wiz#8qF|ZoJxBTiwTRD^fOu=rICg^pJUXw+P2I4c z92wk)FDO-=q`ZOdZi;dTpr=!qV@;I;H=`s?rK4C{7s7JaKvqR#05oyMRKt((f8vIr z{qFwuM>iMmi}hzCJ{sj& z*3HOu*WqOeyyYT_a+y9LMDZ|7aa%YQM!6}${W@|h*TQrob1`?U-Ie8iC+LhZNT><~ zLS5ce=MI`0w|XgzXp=<`(Ws&$(uzF$Mj(K!!fn$CV9%6c!L}IQsoDO89m*+3B*fWL z*8;q=YGT`Z@-^BZH!?8}NFFjsfMl?Mu#TkoBN8~j7Xpk~0U})efI)IMx4vCZ_aYfv z$W+PuY-I!zk;x}VfhCdx4H8dIthQbCr$2vU6UrE7)3-Vs*hJdX5$voJPj9T&g8B_5 zF#3o;NAhN4g!Y_rvrk06{m`oDl=389g*F1G&qEGl>6-l2X{h)}h5k@8ua_6VUjQ}= zYLj}sC7ypvtc>(t$ibqH zy0JZd1icU$$1W=%?l>ZrcO7Z$iZ#h3QWsTxRi|7ZEsggzx>( z9R#+V_KK0RP13wbj~cM+a|{zo0D;?`ODf&o0R#l)qhI32;ru=zWU@;|3StRNYAm&B zm|kC41H&irpUU^m%fa@QoGJYS=^lr2Lpei9C$Y``dGe1*i?$hng5{%B-%TazxOV`Bc%|$_)0g_ zsNUp12&M9BQJ^TbwdRd<$j#FM2f zI@+^{=%$75E@;3sxi;f;Wu2Y6@r?MAJ?P~&xAuOuG9HMD?v9fVOVz&G#gLPM7K>8! zr$=|xyig0Vp1DA8Y@Rte?m8(+=Sxcwle{T{38huf?X1GMBuiK0`cdud)?!>6r0lQm zRFCa~1;&&s!I*kS{o85U(c>JALiMcw612?{UP$Bpl|cqA_&ICE6i)Brot5C7Yw{tn(<~`PYd(1nLIskA0|9zn2mHVRXG@TetXUjefq_M!Y|Cjx;)J?Jto@k1XkK>UE<+K z>3HUhcLu7;D&6>Q_e^Jy=zH=wi_LSy^*U7am-`fsM5OG)y_nQ9z^nb_VKADNwjVvG z8hG{PC2!AT5xFL0gi;GGP(O_~m6|ng^V_k!b8G?pgvVm%zEEVbx0yLDAD<4B#*pnwBFusD;~dZ_|HjyaVrc+r4T-qC%UWQl(bq_mz%12U|_cT~?5gZ@4+ ztK_yPgEus93CelvOWueyn;B+)+LWxjXW@=e%0Lr;p^&Usv*FlUtLY2U+yEU7xW|KQ zncPDEh>}2rKhHz`u0DQ1ZG?vjmuNSjh_{0@#^p7NKwS*=JX{H}Fu#5uuLIQ7)h8`S8KBYZ;dq97sm zC?sA(`!E+86E7Jk!^e2e_EDK*f~z~7;gq9RqdJlkewo%UFDFBr(7^m2xlHmo=3^Ry zNe9DJkvp8>xcvctfVjBVnWlXUsc*MW%TD8(|S@gHsm570v2fuOC=`-iZxvJ%mw!M3)+2M`32C2g3 zQ2#Tu&p}^HWz_IN*x`c%KibTDyYZL09_)$i-akrv{MVPcx+=Wkk5hZquXCGkq2qI3 zAp?d(4-$t1p4o+kU&M9{J+ztk?Y^x&j#ZGn)1up8fRdDOL zcQ&DRTMHo81Xqgz&5!4+emi&P^LBIL9Q|fNcG$q0y&YCAoB1^b6)xM~U=~;TuPb~g zQ8xLniq;A{Ad($v@%lRPw{wc+(uRsv`rligJT99&*GsHv*|r`QvcJvW_U9A!DK-3W zt~8YdT+21Sb6ijuRz0LS>rDQ~7UiN-TEn@DC+cUPp+^Cw%E$u$LB_xS5Kbp}?i`tp zIKS=242hu}P8~i7AAIxfAzJ_J^RcWb=dQqd@+NZ*3jhlemOF4rALKadhh?|@!_H}+ncu@0LSwwR#IzbQrV4Y zZ0u6|H(<+vcx(1S^)jAXG4PU#>!GHRfB(qW5;(fgHFxJsWqZ-rTa!G~@2-7Ittv`u zc)Fau$t4`A;0#^-*WX*Nx2CxjxS@t0*0g*@SuW`r9o#-AfCtHPqyFCV>$T6me{Weh zUUGG-ck`?E*wj6rgXPF`)N`DkzqgRmhu*X}QNk3AqFAWQ$;>4+(syOgEP1V|>3J5R zamoxRW4Y}sI)#1ilk)<>dKme0e0Xzvm40#a#7AV1wnN)HHjDEf8X3J3#krX#?Qz-- zfzG6-8zsQq;*FqZ4FWAt`TPd!?MVou2s}=@6brhiGbSh7$Y>tV-uQQT%AT2x3vbEG zt+5Ims@KhUdH;i^&>NVaH@VJDVZM0CQG0u|@!55X!y(b=FZ2(tx({c*d)orp8!D%@ z($j0MrDAXN-yTTfjE_zZ`GpbxH6oPXMXwzmGL@c7q#AY0`*pPPVT*%Go55tm`G(y- zb1h8D2G?mw2R7stc?A$}7RgHLOC^3JNkCu+j5 z)D(VAu~9GNF7@8EYFwFKdfM{q9~J)+?TYKdovLW@rqDmQ)Tf9xpLIBQVmYglIYiFO z=l%~wX!1tM-WO|!_o`@rZ^3@H5@w`N7XA>zxWq1E1mTRA4oy*f%e=%N@zyOEp|U{wQ1?8IJ3HOwf6bd9r&`%hmmKdm5VIp zm~mBis(t3~Eq^?Ia6!6op#`9eE-YGtr!f(BaQ~=%YtGw`k6o|N4$;OU%E>zUC-m%% zOkvE*(l>@NQF`VY<4NG9ky%G2`2%d+|1Ng*m1pl;k0%XIPGm;=?D1s3BX1?{^MZV- zT)uI8ttl3y4YTk6Fblp6N8J5uS$)grgEo^htMhHcWewK4(9*H?vw;y~2it~s@mph+ zslui|=vRM^c|2ZNlKnpXaxGlzko!#cZ`tbh)-BsT{MK--pr9mlFE#duzi6L??X&mE{rt`7Q1Y)W2B8i(a$}czT3vegzHkbp zzVusu*Hm0UqFC$Q3P__PS=z^j#-{U{KVtdv+e%of=93|rGX%yK=?&<=O1cbBpBC5p zb)?GQI5{0)Wj}ZMq>Mx#+CR95d`Psv#758_A5cR3j{lb-cB3$D)-iD|%P9Qo+@ZGN zfZ@nsU#mZ|vnkdbX_T@nvm=nWy4TBBxtDtex!1Vz%6%=f@#ozKVwJ-)Ph^K@!(9je z-cm#95R@j~7!LY(lxSfyq(Ih1){MXU94FDq*PjWiembOzty@r@)Gf|X7QM>fZ+JF( zYhqto^?Kas(L{V)?JUzA|E?oSFS$w+(xODTI9+DX4^OzarBmpiiIq2h^y~SKJg|EI zK~u3#w4sP7Lv4Gy+LZ0&{nvd%aa(3>?n={+{rbB2ld4-y&u$*FPi#Nrby6?cL91B> zwYo6(@ewB*y_2)J(YIXLYwxU&T{=S^I(ye*w`FJXP=WfHV=82+ z$92h5(_Ak@_VZ#p2xX%^;T^G?C+}@WZrqA5L*;@Z_Npv+&-4bow}X@2`mSzV$SQ6y zoM#3XX0uGBc-89de;CJvrbVS!#gG=K0CgbD8=g4p;)1j(t7nu=ruGIdISvO5)!+Tn zZpu2}Mw+^!O1a^`xiz!P{~SW@L=4+`v(zpPmbzn@Z1ZF~2b{uFmeGki%c|=mpg!E~ z>TMM4=l*m}_*N*osq+k<`+U&T22Gxs$fZQ@dELD?XQ<@|tvB#=*{ptTSnso$bCMKj zOyG;2O&~<=yX{||c9af3aHa}A?A+SI`e9|*2|c}$UFx)P(B4TkhG=ZsFONJfOFp7g z7WZgM!Ze0{kMk@0F(C~V^FQu-W&dZdYYKnqLrRU9w3!)CarHEQtmykd=k64qLY&MQ z{b>8%f;JuMfjCd!hVAk=e-+G*OS$ajjUkXRNnb!|y_aGU;7xQmChfvWLF7rsd|x{; z!n87B_m`XHgvC|snIGQ|q@+*sad)R^OfJY%@VytS-}{s`JV~*#nfr_?ZXv%++~H{R zwR)ljVU8`J#oI8B@ z7t!Ba?#L$QKK_&fS{1%!oz!dtT9Rz_q2x2doAL3_Qb3Av*-P<1cl7n4gQ8P*c29Md zMxMuS^rK?`l`I2rj-}PNNY0?oY(}jF+cm%ETWKV(E2_#h&p#YWNU8VL4zS+w&7j6- z!*U99PfkFTW}tok$El^Bq{naUn#L{}{|LM=__LE!vgEtzBI1#TRfI2UL-r1uQj;c7 zY6I>0@XG#0Pru=gy+>!`yC)+&-SM-xJ3|=TZXT$)G{Grtw9>@J%Jr7OZzRZkS>EiddmxxMire=BAs<|@{ zAWFyH|6w+s#N`Jj;S`0=d|Zk6D-pI~P{G{m4JGb|yw|4vdGzzl;aS2#C-f#hzJPmB ztGpQ7L>{;j@wjnrngk{|3%wBJl-W{KbGZh9RW{838)qI?^S3jV+9m&VQa-)M96%($ zW<6Q`-^YM9HS67a{J1u*(3=6mi_>uvyP|W#aG%K7vYFULbB0x~+kQN;Y~bA2gG%iX zgxza75m0%(hZ;D6Aek-fspT&9q-|Opj67bbH|=K_%TE&db}>0l>BD{{p-E^DGNZ)N zV+4^lHCIk@cj_Iyo6%yDIs$LUN}B6$W!1p3P<;`bCl5oMwTa+we69a*rn9b26eB0= zw~e`a4fjuJ7=I3b-5Fkf%VxMp9&59bEodP+Pt2X!E3%p3t>}O0MrpO$Kb1q+v>8?& z<40(}?gj|h#_)ST-HRF#dya*vWGO%lL+i7V~V&Ydf$9__Wb zK|DDe*6R^uB1qWw-sijhH!r~!DWhY~Fe3<>Sogyge9A7-$1mRWV3?4;qqE2N-`?$H zlbGZ8SC=yzm$E3yCvnf&Q)o4u7n_L`ould(deQNrKL-Z$Shqji_M``m8WmIo;#U!;DIMTj?N~ zsT?gB!Y|449_-G``u#4>g|^htbX=D4(Tf`S?|swda$)}yakkmi@m^^e>`1AdPra?| zk66hHE*6eApTvSkW(O*bS07~{rp>;@{PP@hhG3h{Q0J`=i`9H!g1>6!kYrPUpcaJ8=G4!d$M1ozv}Omw%2;{MfYL%m}e7;_Cqex=XQ3xuTj%&T*0afVS&K% z`)gM;m6wsr@ouHE!!y|j>AO8!C%$i}fbL}+S>3KsKsLZMhWWaZTVua8aZzYir(Qg2 zBUr)KCrw|tpb2wA&Fu4Y?g~Tv5*+XRb4F{SvrG1yVKd=~;8$_`p`9_hmD;*@Rx5Gb z+Y1vNvG}M2R!I?kKR>u-Ggu?uD5=}OQLxD^>mLRq7U7d<-QqcnY#*a7;Y3U^;ju$_ z3tV%PAq0T`a~dvxVFFAgR-F5YntNq`)uDmiWuau;5j}U*nC!z>)$yXyY z=ZPY^Y(gpBj~L6tu4A8PE!GIU2YboiO$-Q;OxNY`d;bPqJ-c*%G>AlN^x!rVD*dzG+?P=?`lwh>gvc zI_=y(*|n5d8!ZtDE@4~GtcD*y3xRqsfV9K;RO{cQG@cXJdlA_a`&*f@R(U;x9s3Jq z>&$K9Sz4*r$Yywxq0IfOp9Zr&M8)K1%x3?zXU342+bV9t`vElJ6>W zF|71DW%W*83!qeiE?O$*O`9W}p-wmlE?YDsHPBtG@o4ynD}M=sFqa5^1pZJ{}C#4z_+L9(Zx=+1$+d?>4)C*%)$E;?*+PX)% z^UfgTEnONzHRu}kL5O9ya zn|5!ywtX(U(@!V!{tv6{v5DJOHTtf`M0#a-eo)4ZxdvvixdDm;yssV&S3Vvc{AbQ3 z+bm7{DUz9_Q1*ij2F3$PjyKPb2yfl@XzogmJdBdImVEcQj8$3( z>QaU{1M~Nm$X2R{W-6V3^kvvTKi4#XL7e$AX{v$u&4K%V56m1Fe|{2KHkp6ju6cNS zQ|ax5Fro+M-iqL|+}5>hADn6CO1gDY8hu znO*1TziYOSkknG-f?0cS34}U)B)Jrv1!ZpXLhLj`_Jb|R8oy%9f=t98g@&PJ@#7? zXOZAlKOs(#aH$@4Fxl)|(sHz(P{B=n7oP&dqcp{znYGk?-am#NNQYcovo)LtOe98} z{3rdk|A5L6pYNA()^Ba7Z}>y}v%#pL&v#A7r!hWd@^>-KH8YsP%iK)#Ci>l{k_PGf}m%N65;b)7}33$I3brpgWnW8Vk)ax@Y zU7-L(cieA{QP`VyIz~M3qf_7aHy559(*+ITXa^;cej&tk?BmjA-OoSeJ{DMszFhzC z4py*u?ZC%%m_S+vwV2$5`kzA!rI8YZ>O#fjOoi?zbT$$4<;457o895zmp<3lIbUl% zzOk#9xalw*eTah6>$dt#LnZrce?q8w&t=NV0{H$(!~30XO)UtR)5B+j8(GH3EC1oX z`9%Q7Dxos{RbyK3e6dqEOLPBoi##-liz+URjwlY-4Ja*|%GUmIShr94!Y(GYmvz&f zhpmq!*4uelU4b-gf_3BJH;lxCVSjJQHJxyVt&B|X7hKD}{c2W_V2n6VZv`kw*>R7* zxBPP+Z4^q)09vv{h&NIX{JrJ9Co|8XQ}d%@FXQhmFMa>xBBf>zm9L|!{@&8<#F|LR z?imhx#SHKLB-WtbwCsM_vbmIbJ3|t)(hJaMn@j23(0zW^1hAHc{SJRb4E|9g(~!2V z&P)Xe;Rnw1e{Wg(v>#B7eE&-|`v3p@^RUu zcxRoRMq2}|&cH*5gO1`5H?m%6xUaYgAbQ`t&hP&JBxr!nE~9#UOt(||&zv)%r& z4%s-6L8_EbWBj9iFg|C_pI*#pat^DRcYPIJ?y{fD#J+{&2MAI9AG$m)2L*gJ?ej7lIq>7f@CmgCjOrLt!JB z6A+z7xtPx8%S3aH+}xQ#tHmcAPiqirvPrBj#(4b<)iS3beZz%}6j7U;^|8uGEdGU0 zmvPDReAz`!{@qGc%uV-pS}ZOfWCFr8#cznB(xl!$Z@BH@G%#2bfI@L+q2g&>lGOt< zFXvN!NZ3O>t%e81Xq4*{s(uQj-m768olzKoL6ceoi>4ES?o+9*fU9>&lLU=V^S(ontDNoO`a zgpi;p9hE{D1tboDBk~9fQ#u{@SlJfCAj1ZCH}m_zz3z37Yt!voK9U9F&YMTXbeQsATlK62yBfRSUj@S?y`7m7f5>63u5?u5qsE*L#jlG(o|N5znKs=(X zlK6U9EVqkX8+e8fkb+D0lL|%Im(yApPI=I03dJ{+Q|On8%?Nt%_V?Q_^Wha<9exXo z5RD!{m|l@9#!kqLssEj3`=Yen(Rzn=oiXE(E0m|6TYvb5QEE5Y8LiHxfGaRL$(a&3 zkmNsQgu8@J=QC3p)xgh{nAdt$lY|gf?Jf}O(!|4sMeK-(<-lh>E^1nqdocX4LH}Ka zFlLsnd=zuy^<}*BMg#WYzm^^~nJMn8P)(CCdya8D}C1 z2CqOaH&aYO8v(RWjRaq^-m+T$_ZHiMu81zO0tJ{958WT(@^Y+Ym5$zKGDNB(C6rO= zDsF-h8#U9(K@Al=rF)lOq$R#EPDOilj#%Ig{&n6M#-iMXg zJyi3t%sH+#KE06ZyH9<&JmL~cRm!*KG^s6Y$jD=sy8cIgI9jt>e}+bQNS0G6DXo=c z9B>`>bkZ5rD0kIOUyqD1zi9l4PYPqSne1Ud7fJpMU{9(f*f3osf6AvZ9S%90*P+LT zf*LA|1GC1lIoo|ZT7n6e;*s}(e8uDgOGZL~d+2tFGD_tVS2YIYQ6-(mSM0U-wm^orgwq)hJ!~X4{9sni zg}NXIKs>4ezS$6BZoVVJ1L4|OfoD8_vs}ud(~5&Jskx=Iai6yr(B%G?Vv6k@NATbA z-~d2oRav#W1<0pnh&z-0<@a$wudb}j4^~7dj!kpTyIF1Tv5aeeWOHsT^qcz;f@`?n zqw(Gd)WW(C`p03%J6%_Ab6>yNNorxRmFg;S69`{lfi_HcdCoZ;`hv#59O1%!GRp^O za;09Ak24+FmQIt*Z_5k19FB@8M!RU*ggTRl4K;EfO5uY1bdzam>0zz}gRk6Kni`6w z;3K4!lsDTAb@~EYIcwDLIw19w)QYFmaR&%o^>)Yd{^ejqAfr!|z7o`A7mC0v z(j?Q#45x6fu~zbCRk{BHCU4h8i6s;y47)8;Pc~wLc%EiT zM!E@E{04^$l9-A>h!gWIX66|Ftv-&w!IeeK`OoDBF~396jUW?uLtI*3Wv}`ft(dr>z%3n}KScRC-F6r3Ro4!=uhHYU2kYlqD&3M7qW z<}r(TM8JW9B{T1pyv*xh9%CtOu*q^qJlY%5^i49S`^Sq~n~LgWTz99Ng%SUrp|)&S zMNGZcdS3o}%c^}ZEf4rld40oBXd!6_nlr=8pmK8pxyNwC(KTNImluAK0QgSVP@y?? z56RH$UBRgS5HwptHcMwq3YWiC_+{54vvh6+DXU>0tLiD#V%U2^1{Fm3yy4*OS560K zYadlJ0QY$f7TNJU0{Nk0QrmTjyS=M|bsq}+J>gVjSK#j-8>#T9zWJn|%fY6VyO*AQ@A+zOMHwctPAV z>{Hu8-hS;>c!vi70J#q!M5>P$?p9%Nk zt+RtmKD-M2RnWpK`K`f?ZUu}R?iX)h#l`csHmA%Q6MHBWVwylE-4dPsk;bG-@Bsg`K$|cF3>skHf zVbmLkxuJ?vaB6Vei*`edB1F&p#GWIg#b*%LCJl%}V3wo_`apSROX@kJU5;G3-wrCe+lwbI4re~x(XV|*9=B|OnJ&i`H&+SY_ zP@SS2lh7FM1OB*G#na`Yn$8b{Q0+JE4EAiWkB7rf%n{$m!In364fRcsUq~zwX$jhX z9<9xIibiV}!3?#a3-ciF=Hm@(ldazdZ*TOfc7}rc!{3r-Pd;Gmr9WrTB*ZB0DGNx# zUdcxSk#Bvb<+u?<2*6>K4=>k_pbZ^S(T+oo(3ptX6a}z2MKH86#UpFVH%+SC6x>|^ zkBV3-@j<}e;0d;+xbAT(mZT>(B3pw2i9-~`)1^DZ_(9{P?Hp-r%)$MH<$wT`BE=DR zGiWC&hSZp9kBc$IJ>`Q30j9P?MeE7PR66xEZB*N*{lxi8Pb?L%PT@&sNb_bg+akqd z7j|cm!&me8=Z>6ryuCs7c{JH*bAPJc!*`Y$7d}8TV~b+lEZ|hE=pQ@~V1TrXH0>8= zm%4CN(B|NaosGPQZ=YVKD_l+o?Qq=<|#P_~WZsWoPq6F;#xG*)N&DEqSMryfzVJZ7=Xg6RoO(A*u^aeeM7oC+P$F=!{6)w%~z z*h{LKht0z$(5iqT7)!5%9fUB=ZswMhS8Zi6Mzsjnop^y0Y3}vH6$j2;TC=0~O{E(3 zh`{Ldu$n%Nm8)u@qutdiqo{x3QukRG($s%{PW6sE3-?u7xL0JIg0V&~wc?_(MH#WE zAnp##*IV;Ed_C9%2D^Ja9wmknu%yPoMLN4aH;VJXyxT{BpvmR($@^qSveI0Nj-Khx zTgjS-BtHyA1xX|_5<;iRopqJ8Z-CiGQLVz)$`Nr2e#D_F1xo>^_Zc2(t_!Ac2>116 z)R_FowJ3R>^ZyWt9i%-K0*dA^tep^6(HXkEdGrD7F}&QEjGZaxwvyR1(tG^i9i&EY zc73^O?W#n=%KcO|KeZ11y*T3dor+32M!nZz1n@^V;&IY@FI975!ao})-!RsHTDZni zeqiU2EiNB%h|Er(zttEydbKEZM4IunfiPUac-Z%!aa_aXc=^q3CQn3Jt#GM!i4`Bb zlho+vQtMEW+XVn-tn(4KERJQ-2&(cWg*S=uh)%#KAnPgWZOV1Z%$OUzGAbY(9{03X zfOA89o2B%S7Mu;@$5h|ZheecgYs3hbeBGx;(D*z;_o33FweLuol@&HmLo{dmtQKaf zAR^IDek*TMM6z^;+)FS%hbQl-kFuvBNd?k~ znh~X?vbVjbyOI7KcI_PVO2+Sq6sW$1E zdl9xI${^L-e*s6Ac3m4`9$RzJXb$=sl>6-L961Q>vTZ~3U}6C zRtt5ZCS3ov<1B*^j7V{~1?u z^_;O5gF+3#9@;|JUa{AmHUx#&4tw7c>*w}}7+Kv%s$C%x5iJ&xdhB9xi1ZoK4hvX= zECx2s;Z8X<+1{z!b0cRIlzt#G4if*4FkHNi$U&X{;Vj_@0x?m^{yDR=j z(L#JG0s~LRBEgz}Rlsd%q_|ORc~oR=#)V4nlnXWE*mn9l8nQk_Vi5W~XfG2Bc@LqE zeDAyBsw{w>toEw{s9``J^o@wT9OYQ$Or*8)F(f)2&(1MV9kR!GN+Z^t!qo;EyV{wj zr{_5E?ZYaQQ~4Q~{2uW$Q!t0Vgf`-nY$WfXRu`Fd8HJCWDI|yRs;3;{eJz6{UcfH9 zogt*SKiW1$z$as~T0Lv=P<;|sN(?uhY6tevbnxMvaxWTr5L)x%axA%LLWh!{Ml{EV z0!q<&7D1c2XjNR`+iLt z%DlFZIv|NS4A){b_p?S93ql)WZ7MNgRuz*vBs=B)Yg&bc9{l3r`^~25hiMtyQfbaubovhn=X4=PHI`P-rYnlN7`fUyOJBg(w!u$?&157D*ett@Ug6`@UCrPm7-@9&Tey0UcAl7}%va*#L#H(N z{YE7*d7aq$xH0MeXR?WBJt8aLdra0*~avu~AQ{j+@m5DSbxN|@p;MqYmOZ!4H^pLuc zf>f(6+DrZb^n${LoIaoIq%g@#&G33)yoa)*Z|c}`1!Os{lGb{NbRUMCb)I$TAPIG6 zA9@Gm!*IEW9Xe8vNkDmUiZ(k2Z@*%3&T9lL>>SNz`}V&_(g!X34U z|MYUxx;z^+KJXwtKFw^1@cRQO1APgn?AO{u$k0mp@g9)DPPfUVmESgx6ohd=8w4C6 zS(8-;S~smFYS&;FYOrRYhA*qRqkI%`8L%H?p&9$0Ry&7vCPu^P84dNN1#5N+oQ?+C z=RiiS<4~V163VdFW4qiW$5e4y^3jVa&b+{?3c*we;Lf5aH?nztp=Y=Bo@Y^@C?Cd-zn-SRM&>Flf!7tBa4{7@j*MD%Pow;a!;KFE~^|X3I z!|S`^pc)Ki?rGG(v~TEb_g*+?A0k9JRF&f!)0(SMs5sM8i^3s$xscr4*<~TaPE!-ZE!VN34SwP0#Vu4=8C1_V1%2+^jcbu-&r-c zK1kSq+99flT^*+7#I6*k<@7m%xG43IZZ|kSSeK9r zQ4g`*hDhIsCNx;4D_wQ7jVjy&E`;+Jc{OgM%9X*+s4$*WE=t!a9h_UWP6?tI)V zO@pd}85KPoX{A=Zt;@c9(P3*7EZBx!ME?ul%=PJh*FrA^FUgtiyIB%>H=WJy-b1I6 zMK|C$IW7=i%PwNcCNi`H04$8F(PB!cD;#{QoeQY`()FU$kh57jXU1q(zNDU-_Aou8 zDdfUpZ)4Z!I4;==R23k-v2&5e;$iT0&Yn=Hbl94YqCIl2053$|5H;}Ec*V{mmvBA& zTjz_~jpfyZ8hw_s3psae&3bwyQ^$CSCSbIP%8iajEY5@;oyar=3o zf#eNAmSd{)9&h|z8wrg?-k zXs)ut_yFOO>c}`=E}yRS!v!tNm;n@g7}r5uNUF`T!?rc%2RjU)FU;}U1LmzHTEEG(@zEMsDj&v{_Fjr^%pNSgO#?Nu~naopnBIA?Mo%z$_n!(_t!%WYk)> zYgJ{nZ;&9D%UEd)s+}OJ7k{ZQHdMMk7WoF{z>Cq!DkDW_P;_^n@)U(t8KqTiwZ*8B zwoW=beO}&5tu!3c4)1W@cBl%enJc9anpwc}#_h4w2P~||dBecP=8ZTDKjaEQRlCBt z0K&svro^P9{Cqo6etE8cZyEgz4;=eI4R?icE-a@2{m7hQ)3vm>=Gg!w({^;R%7{E2bI@7ZcDO&P{W;3JO{c`OJhw}z`j4yXt<9N zL4;PIXLXjQE-VrXJm<_1T#6eNsWTCXHj;I%!>j?KQ1|+=%M&6f-7cz@F)Mu#-Kc^Ftb^lpZP0?s(-FyJp&p z{yYuO!vWQYi$d9Tk9KHB=cTsH^FILYYu?Y>=p+Fs@)L^59&ZZrp)t$ZlD+l`!I#u@ z(w-WSS;WO;DOgtlP(OfUn5`y>h3Rx4yr@w+<8+j{Ok+C0l14-NGA?WsE87YGC#BHN zSCcO1PM25dIP~7{+ZuFru#i(=Uqz4t*O`}CQJ>bQTQ0J$Nk)ZG=#dUlZS@xoJ-^4q z^jwb0F_$nXP-sLh{!=BFxOf8x=9gM#V}H5mOXYe#=gFH*F$)EZav-c}jOM2{EVV643KA?30UF z(V_tGxd30MJAj_9{?vt2`1v4G0b-Okd6A)Nl*h7JIX-sU-0weC@zop_$+0U0Y*@C5 zp&cPMW81_+1;WL}%|R489csvty*11!U%ciLS<(x46xjJ~%=a>eTCB5{mTP{Gg-LTV z_Tu!R?fo55l@U?>*V9o?v-F0!bSPHBpX{R0Q>%Dt4m%f+oDvyv>Iy7hYQoS_|X@9 zi|y!%!qc634=<4>yOccUPE8wmqcPRim}UkWccP8}BNNpYXt+4qT98EUKi1AZdf{Jj z9d3xq6f;d(&9@3}yuw$(NY6r%tHEQf5G}{dVkoEJ(H^q1XrxfL+h$x*1jJK?#k|?} zDQQ4tKx*+(#+;w* zTv*^aXMN%0UNzo{RQMD-?#?_odI=GFOw~5BgJ)CyXzMgso05)8Ny?45@sJET`ybJJ z86iQfFo@{0`N5gIaol-a-stoYqb{}orMJwMsWXLFZH*kSl8S*w1P>L&;~t0=QPRjI zzf!AD?VqD^EW~4rsz_M@wc;rNr%>$-Dg(%8w#-I=Puy4ouMHgCd5Sfj43H*}~C;zP`SMNO7(lljm4XpI!K1lyOx&myW=g zx!V=nkI})kQAYZmmYjX3D292rwv!#CiVTfL=PpTg1hQRwtTdw98SWl*El9z4o8tQr zk5un-wI6!;_m;ya9MX^~R(_q0{8~OOx7(|MH?)E+hF5g@Y7w~yk2N$Ngd~Tl?!Jsk zU26q9g@$?rjUf9ULLqJV^LFu8y|0Ry0zNT=p5+^J-sEPJA9Yi< zt5|Z^m}F-dr)Ii17;-Va5f#Z|EuXq;Nwh@-1eOP&2Rqs0T*;(?5)&tB^^2GVFt!_S zUpQ3g&$^KHCZDNe{8QW7Zqbj%J=lPr{iefr-L)~1TyNkji%M@l$mIEjDEEQovZT02 z0aXZ2m~gbgw*%#Ao`o7=nmIfRrahRcS(lGiYT=Ix^GmI>bc}ua{MwSR0Z)C4N}&ku5yr zZBcJbtxPP?ddQq2Y7e!Oz`=XttqQ5CPfe6av6AWgQ7EvuQDKoj-x@kyOy^BDcH!g! zsU8o+k6*HGFp&lmv1@lHMa}zKQitc%?ba!M3jI98#_5`P++8m6VMcnid5h9K7FI{Z zgfm2gI|;VTscj}dw>rV)6u$YgvnI~5!qYO#KAry!muyL-y@Zkh`leE&d40Y2V>dG1 zRuk`8n39_eq_&i+)d`ixgO~a0kJDj|A!JztG?zLly8nij8*{P(X?E3mY_I)6c$GX9 zk;;;GrA5P((Ikg+{!LIl(pPU}br~+0xG0|oyssg@PKN-E{k2*zc@26;rp2+FK|E*p zZ8K7%Z-fM3_Q~^CadgGOmbqZ3Su!f#xzihe3U-a$kByu5+lLRTcDCljLBb(8*e*yK zp;tQIF%70nV_V}%P;QdDkR3yyeOKSF{pJ%NyPVIy&D}00@vlzF7lST;4ZU-r%a`{% z59QC7=A%#4aGnA>1sS5s3$+Nqayhi)eDB+y2rcg9`m3nl%SkOnH4eGq5S3A1hem47 zqJHK`1_)_%YK-Zvl4XSH)l zhqxse*wP-OP0XWX&Q${Rmw^gFXr4H?!jYR zRwBRv+B~H3Jsbh5E!`&ZeSnMCBaAxZNDIM*msO1dr_his`*arMFVG)%**&DEFU4I2 z?QE%srCS}z?8e*HBwMu}53ZmsHur~JGfN}!N-AjQqjiNKKGz#sTjStS!E zXccfOJ$+K;HDV6r3}-Q(aKtNlMY@j;F1FPWY+y;u;)&Q)Mo zH=zW4b@*=O_x*SIO{K4Oii`Ys7YXiD41?iD2kN7Q z3_JLa-It%iV9p-E#_|KB!ki+J@$Ff&u1(fvdrtW5gCMt&wwq5R8Sk_!IE20ob)iQQ zK*<_N1{y1ms$f|NT)Xb~+-i*qcrDbHlPyuU{j*2xQ02(D*_w@t0NtTn9YGW~{0u$`;h#u4a5(YMM>71*J5kPX| zXeT@49U!yc@4E5QCYs65s$Z0cPMv8RxjGkZNz860b-VZ`eY2lX5T26swn{8?8RqJ2 zGBjuHJ3WH*o4!`J8Y(&6scEW(rgbODM+vIt&%8Ey3_V5xrmX)TN9P^SR{Q>OefqRY zsl7Fd*i`Kmw1^mO?Y(NmR;17$7qtj1bQu0zAFF%EM;OTugCfoub^6(P5IDX9*VlX!QfRg*jOE&~ zU>I6EHR+>JvuL1&n!0&yd>T)-e71TDs4Ei)BHrqr2_QB)c24bShX!dINht+XfQ3NC ztASXJye1h3W0iDEIwvQaR6Rxw3r8#ZpM_3o6iftr*AV9DFsdm1ev7uW7($m8Cc!)* z`d1$~g&Bw-U2i`I7E~cD!uwf?G6?0AG^7%vMzg6=zj;k{rQZdEwRXrRd?kh+81!z? z0A}b9fshHA#Coo1s!t}>$r^O|f)M9C&5}4CJRmvg2FM?j^OHqC>@ioh&?}_ z7WIO4aKfB8?w%Yk%3Y?cwFXs3$LBrN_RJP`{Lzs$sIFKBa4-Pjb__FsALVF@tIY^E z0VxxZfObi&;5S(S7n4E<2SD^ij{{;7C_dRVcsFdsVPlvG=8j(`Mosak^a&OmwzT!$ zfpcoCrQ&!ehcOXxe~`j(05xkRiak_ky`od+(yaMU3|{G8IU)@6PbDi%9#>KumVD++=B>Tra|QXB?W)Ie+Qi;Kld z9>wzXVGD;!v=3U3L>s(G{2Hgrn}D}&m2JKX3&p}`siR$2c+nPPS@>3 z=#hDa1ssXet+(gVB1&_IimIL3VX3KU?y_%T9pFfMyITvwY8;bA7QNKTDqWRn=`mR% zGH@ve8_^~OI@UfQlQAFeV`t+u^=z4P(i{q0L>v)ex z;h`#k(}PPOiAiJjo&^t6x!DWq2?gMqIgiSmC~ocr`x+_EYFTBp)^ID(SHzgVWBe$e zmw7D4jSUg>Y|V*j&_@Sq!6~R(+7inge@2FYTniDyr~!L;qPj{KHps@aWx@=8WPv<1 z75@`Po0b|gV#jL6%ypYG4@yf9AX*u<($Jn- zXizevDL2$pwy&goi@Z<<%6#r|! z+60aVK-o+)o@pcz6D!&x{?5Cwzr(SEUPNY!>EpQ|vBHLa)4ci}fDDw0?O=}FW;jbK z)+i3dYNgiM@^tmH_V)uMBq9`);ZGoT4?3VD#D+kC3)4;bxKScAZ8Bt>zqk;JnUje3RD#+YHWiK6{9*v-x6E##|$r$GiN?L{yIDwUx{z@FP8R$Ws?|>tU z!;&m28uu(B{&5iWWfvC_RTpjh40V2r-TDJ2I0CXTe<1fS(Nq*%Ov}QSIx;Xw_x1I2 zD6lvPVsxpZ*;#9fh9d6Ui_ya-voVGkDFqtM1n6WdHHD{E7<1s{C;6>KK(EToGe$20 zW0o<0x+E$=m5e>71>`f4x`Z%04;EOgO0=i})URy<*7#8}gtvAL3W@=go3$FR?QYsI zJLop!?3qZ|5Z-9{WF%u)S|L1E#)ZxS&}ptfXTStL7e*Yz@JXt{`rSKj0012akF#k_ z1(;Du#fb&^jyhdYD0X(X8$Ct}wj2ZTGz zg2(a+2^478$qFGt7)1|p^y|X|HASczgW&@Hi1-|fE)165yVb9tzz+kYi3m6%LIjN8 zN}!E~R3)+Cx{^W64#+nIt#ej1j@l0^afF&|dJ3g*_2tyacea3M6i)RSa3uj>NclJi zQLL_cO+Qxvq)b|JZxYqP&JJMjc(%g3xhWQs!9D$sY5?NSjeG14z^g(D9!29FfPWf; zdKN~Enh~tu1>irnP~b!E#UP@n6w2iv6z465w|}A--X<;9#QZxbNJIfOPKzpZI#Q`` zAR|>Gy-C54vziNvaG4*x0;u2A5(v+>Ll`8%LvCEXUmnfc9R;^vmWoGGrHGD;u#7QV z^fDt67VzZsp&*P-VhtTQZ7l%0l{o|P#VOHuI+#XJ^KLCVMA`4ssHLsK5%9GV1F(_C z%e}>#=#NZ^So=aG)V{#=6-M-x0zEnuQ5IB-hBBdWfaLKW1&V_AT^CUo?+~m0t|KyY zxOD-CWQ=HFG{iTKphOz3Rog!X17kgr0Ou%{>VkHzOXt9n(N!H9IxZ}*g$85+OnW5? z%$|lo)k9NDyFuArs|{(tx}^q>kC%D}4K6yRcqUeL^ z*1TzC1yBG4U2<(nAWV>GNxSH(A7CV?o$4#kd5=f1@Ewj3Wl>FRhx)exGBgyls+`JK zIB5*f8tGyNrtJQM=M91*tU$>wZDS*mwO!CVjyu=LQBEtEpl+C^k!vLmuj8{ zB2KgX2pKDD5kbGxHwE>xyL+gOh|}Q#`n@6=1+dAc$;>%%3A6}P2J{$%=t=Kc{$HnW zF-0va$TjsjPiYqYQ2Q@z=u;clWM2BrI$Ke|!D9JHoi-C!QM#|K1Q^g2gf|^P@3u0Y zkK2mVEM*j2&~d>gF+om&2I6Y4Du8Hnm+EuOwfun%GDQB;M?0YtGuX&4wwm{D>I*v_6C;Z3!YVaATc2pp0>L?am z(ZsL>mI0cn^dgMXV$31CaD=+7C?ED5(1O8i*1@;L9uWV)^8Z}n5 zx;nF1IwUNfS>wD9Kyk`XN$<6$3#b8BF^M%_4@2mL^p`9gMVxf5Zl2QFFavdRdUj^y z9il16wo@zZT9Ht*c+wY6w8E~2t;lNoSn+s&-+-D(V@CsM)U>#?@e* zk{zJlqQ?fncILxKI7DH87<6YwN+4?bdH7=)@jS*rJ>HNriZ`hgdq%T=w+BcykxqH~ zpNXQ?Bi{ifT{NPck@8^-&+ziEH7!TGo8ztpm}yy0BGlm^Fl_TU4K;uWN>-KxHA9qH z;Ea%m12n^XQR%=0vTZ*br*=Hx&Zy1|+`plkqYEc@S8!*i=u+3#A)dRxtP}V;|6=H1 z1E{9F0l^RV+I6}6f%!+#V=?Lm^9ze0OwEu3>xA2#iig!|8QZ^bG%R5r#iHL|eqg2C(Uw_JCt5mjnH{m4baL zUu1MNiUo53PZ!cZ)*)OQp%*8QrW7Cc`or!cO@S&5P>3U*LwstZ?oI(fMgtd?i4m3d ztYdMzTNGUTui6tXFs@Th79kt4XRKYg3#KvW{#_oC73{*p+TgCRRp7Xc1$2nu3ZhD) z^bp%JT6QZo#U;|SMFo+eGsLa6q@z9s^>;EstFzO~19nKv_;Fz9QVnXzzR_lqjud9V z2H1%)iogF$W(aT?`La9Ka1KsUGJ6*ym2uCTBz9nvtq3?1sSSuc7$6p!Pqt{;N`D08 z?lt|qi8U%nnvw}!Fdzb}r~#2o4e-?kNT!%N@s){=Xu0XXWN!zBn8rf&Fza^J=GE`d z^$#T*#8GYhsxBq!5lU-chodDnnWDd@yCTKIviifs%Qa{t+c>r(3Q?Vbf$c zV;Hf05!0-?&{8B56N$G7le>rn>@fDyS+{H9lwHxVd0UuxmJ1!srTAbRSTscv_FH8< zyG*|vHo=0aS_W8k2Lx(>6H3>mpcIcMFoUHgf(9ZEy(?Ht@ zF*XZa$^uEOc3)%%-XK53d=9PYPMcoxVe^(W;oEwKu--!_0;rtv9{C&UM>mrw?1;rT0se?v_bKbwSBp zPKQW2=ENb+HB#UC{L#b(+$pKOKso|_#N zr?-3E?A<+Q=h&6gI?!Vj^z;>B=H>xO3MYWkf=@8M1+Jv0M)i@=VSmYp+BJ3r1DnvF z`(7x~xLb=lyx^|{M)j#1eTn;+aHGqj(m=z)P7x@;^aP$l17i}Qp}x85(jcpbTTHst zXwfJzuc0y|2;Fl`OEtpfQ6T4!$uG<=?$d`{Bl0a2VfnpJm(*mR2qH00Qy{qvu10(< zEn0gv=#fsl(=2iIlPfxjW^ol4t$nXlHEm#|lz(VHf64O|f1k2_IxwORL)hwQzD zzqY?Zim#z90lZ>jPcX;i?A;z5Prm{Umjkz~!Rw%br5 z=StI%y#l4qj-Ofu|LLGOHKU_2xJ1tO$vDmyr(Z}vO*5csU?0zb4Pu9chbUNhpIg%6 zFO0+J#n1T;_mg)Sg}_48h3H-?4;mG&b5#y}e|NZEEaF)Fh@l_nSJ2UWx)zH8y#$Bm zv=`&Wk1Jvcvf}Fuu#_gzh6K-A&k`kB-_FBu(U&lydK}H5E6~^apV6LqlMV!_79H3U zPn*GaB?M2qFi*Kok)Kk%pPWb@m1>J9jLIjnAZ(>0;u*ApQoRVLDq>0TfkQtTkof(YFJ_0u>Cx>Lc2s%~Vy0Y-RRYZM2PEwK-jOTzN9%( zD~L}+xWHT6f6;uF8V;viAKl^uET9<)mJF&q6{K?Xog!=jroBkxP|~g*DJ>o`3>W5; zn$mCxhIn5Mbsq-N^k^Lf_6j>^$=B3s_I13Yp*y|4>k`w2Q80u=>`DQoBl6`PjpjL5 z%-2K+4gD9ozhpU6aHcCZXDyH8B)+watNpGb9Sc;=XHSw?K5{Kbujk#8B_wG|O&Gr@ zFNN$fkf$R7&zT?pN1mWy1)+tUlk!u7@INtB zl{8@(xE|pG>JR&3w5B~}Hfs?C9$VIlZI;@#h_;lX=g(RMYaTJ`6x47y_ziU?Yb^B1 z>QHc{G4xd4lSv(faYF)sdBYa3RcE;WZ3t?~(fU1`$A_bQ#+AKXW81A#XKGqQT51T? zZzI2=yMsZ76F`Ke;r5_)kaoI=XQT!S#8fbK+NNzm+_x4)pQ-R)(IW-1Wg?;|M$b#T zt}!&}b5}U@PM$@7uOcjg(}1C0g${CUYY4`3A3~2?RMlZ9rPIxGdS*el>+wS!#jCAc zo>z^DjQ@UCXN|NV=Cg6dFB=(Kafa)1uSdY`OV5Fc;+3Q!u0)pt2`V_n zf(&z@DsNmO3;MZ0jZW`rH7tdsC%*VCpP1BQ_%e};*qfht`Xz(~so@XHi@5$w5-bL| zDPI<2ggo=lyDmS@u!;W(aTsAaoJ6MU9%K2|4*z%kmpwrLQQMx%vqb=rAAiQ_*E5L2 z{z!)1(XxwQboon$Wb8RLHYn2VzteSa4He^D8sb7(^4@}WljrYyF=PlJU3Tw8Ff#uo zEA29Ow5x+QXov4uYGm+(dFN>Nagjm>3zub(h!kekp2WXo;Feyr+g2p;_1nui>7aIg zRanYCoLk}PWdw7Dfk|!eava^tW%dXk|6VUs)c%hM>WB3ge*6&K<8p%PY)>U3NL{_J zuggU+`9M3dUs`=1g0TB2^_Q$aTXjHo=orn#08s&}f>v=vg_?HY$uc*!@J`J0^qTW4W z=v#MK+mE`W@C>p6c>;rRu0(IT6H*XlgFIs>Ji#lzhKke|xyy2~BxDO#ofdaIlxd%` z(*YsxV47t4MIjij{{jOm#)VcA_$USF9us{<77ornr{+ZSC1Ry;OAoK5Rj1Xd^0#SQ z=~=d!*}(cqdod_wT2pO%BG(U~&1@i_qa&aC|Hbk)UC5j}K}h!8^u>Bo@M-z+Fg-iJ z>a+#lg~`a*{d1W542TXIyHXw9{?5^LKPY*4CZ%uFCE9NI0nZR$_&B)T_}mQM0>K^^ z4%gta#aUvnsFU}>$g`P;Bs+4HagWkz#`cSKlzFOV`7xUBys2X+W&$yGPwmYF0dOT2 zzkBGd(bCIskg{*f1H3zxFI#)SwC#=fpN$Hv!y^xF`U+Eg^h+(lQfU>T9@j@#~?UeJM}372%!&KyVwD z`gyPYh~sL5d&>kir8?cU&mE2*zPfw{7)}+L*%fHn4F$tKZrKhwBD>;TJzM5~{K?q8 zgb_6GyT^#kHcFAQ(}{iYC0Eyqd0qTC&tJ0K;~-EXFH2jx?h>glN(4%Hb1?+MVzlW` zE;O|7{%QYh=4ZjfvxB=d4l33{TX;SVEWz&;cAarT_e9OMFvpK;3<4gbPw&=?txdP288rC#;hbR#ZtBU7AN65B&aXGl1 zcM_IP&SfrHYpm3+!Xoa+QxBt9^mqtFzy6Iut<)Grmos;se10HTFzXa6ymYlZleWB$ zB?73e+WvFlO=xH=(XP|(?iF|p835$i26m9X1b}rX%(tYFpb`6uK>VO~mVYG9!9Wm9 zQNPMkiM|%NWSR=kjb|D=7x+TAZ^)Gyu89YP`d~a)A&#hf!Kj=h9YiNSRS*nrS8KEA zM_xOq_z3~wnUA|FZoi-xxv-G*wg4L87(2CisO6z?bzO2TpM3QuckPu!3h%OOOitoQ z32oIyX!7QY-DadH&We|7>+7+aPNFMXHKGnFJ`w&H7@#eXMV#F^gGyhBXAhr@>kywS z2|_7o6OWya)g2FIduQI9$DT11G+#;WOsyVs(+DDpa7!#n&ky{BEFwDhD`Qpo+P98s zJHdP|488QWf63e;I;;Ow#}4c^bz-$hXKpBK?D9T=n1+p@>8Gzax|XYvB=pue zrT-->e3&toF~3XGjL&*_QQ#Mo4rDj#4Lvn9Hf;$Z40?;nb$WVq$Lbdv|MFoBAo)jE zvVX~9S6FJAMOETp2{uJ?fHM8`65SvzP>bKZ&`{2k{;1IkGM_jszlLR@=6@oTk@Kdi z4t%P|kZ`r#Kd>ZpIV8Nj4oX-E28NFc2VnC@A*WW53kHTW1A1kEy96=-@7WM$#8C#Od~!+vh_UA!llk5nX?a>8LH+i^ zi8YJU{mDEe2#T?rSR$=}lG;>j33PNUdQKQUd_mwWnqEK!(+KtWLxG*lvfRcdL+a!YZkI2v5@Xv@~};x+)VT z_4PZda!1%7NXW(V9E5ox&AWRTHQGPolXj+adZYUo_gvl0?RP0E)IK>Yu|eH z9(_%3%YGk&8>#tdZa05DM4n;{mGpq+k$+ME?Jy*C+zgV6El!(qw9hoNFbYxxX2*(yL`(t z-|78@xcW=BqZ$W@babz1dPg1(54WGtbo=w-uZLCn`2hIXZ-?V>Nc-r)7FzrY=a!FD z205+m8(Z+VpNMybaK02+6+VdAiHOHY68@5rXn^DHUozl;GyyQeW7!Ccm+7tf88ZLN zV|Gwp^a1m$XLYn?Et&$O+e<~ZV>U8jN9Zd*;Qo(fM;=_CHv>b&3|tG zd+QeE9ZK@s|J=Rt&rPy_>FBv{F-Y({F|em)1$7o%_YCh-E!tJ=w{-Bs16VWSPNx+#wAC0r-3z5T7`EuX!nslDW%zPBqe zZ*;H(Pk%#s7fThnoi)}`;gGfa{Ci1D%Dum2HmZzy(hFe6?3Y?Ewh!C-5a zko{mG&{Xhkk%huFH_V2{W4pjh8ZPhf@O=lQBwz7+V`JuTp9B7H(aOKaKP~SynVCi1 zTp0B$aeZJmdew5#T|9OtOO`F({7}YM8UJY3ZN0qsS*H_rOe9>aIMMH%q&6)d|8t+q zg`Ik%GnQ0dRR7J4+RM36LFIPwd*0Z$$`yJG29@m&xZanB7X_DY7}#}K0$U?4Wa^8_ z0!kZv0`A^$_i!Us(hMl{kPiJT6H*opkhIU}Y=7W&-amiQ&=@lAABA`7`ft!q`!Xr$A|{^eEeDSMv<`sS@?5Z(biHg(u`Ei{TE6(OlGU7o z&~Q2qe5baZ3;)iL7^IFy%MCl9U5N_N}vJyNWZ!W4Ra(8RAVZ`l%hF%O)3>9 zJ2vfie2{Ik!T8)055C4i*{A8ta?g(rN;AwPKyQTSZT!YGe`dtlz%gFRxy@htnnhd9 z<R!=g^Q3zJvdSVc^_xPfKe@Wh@7`|xcr3sDWzB7emdvF7 zfle(kDZ%*j<@b>UxdFd|g~!z`g4!JDlTXg>SH@^_!`i{=2Y%=z1M-!GV6ob&WF%vpZr!C+R#&WG4Z2f^Kcjhmd zl}Xp7+J4pDji*KxZxo&>e^IQc#>3Gnp`2K-LrRQ{hjNr-Br|*K_IheHF7VbFqiH;jvo2|ks_Vo zP+yx)PcL1LL)*NBf!m;y0N4CyxC%uR{te$&=V>}W34&F2?SI*MDJA-VHuLN!WMhulEx+yjHYDnGKCkU}KUBuRwcrcmWSZ`j zx72PMbzdakeX`dXr3n&p-DmpPoE|BnIA_7M#ln~zE=C$-Z+@;9<@fLD*l%{JpqC{c zj%RA$U_u>QV52Fnbz=`I!LPmURRMTcBi3k5DHQ52Sri@BRM+X*K>Uv{PT0F{BH@x0 zNcxZ2PYSPvsaUnW?sL2~a#BEg$76NdM6sbR3^g&^XP)+r@kMmVGyEkd(z@ zl~tzgEZQ6E!xRYdCiM7?lk^|8vLRxt^|rr#`o)1^_VNsl<&+H!NV2MwD&})(cy#62 z`j=(a$IqpIRgPXaOV_@pd9)<7&-AKAMOiLj^Jjt=`|E^_1dBv*Wqeby)Tb0ZZDH0~ z(D)U|#rxkz>#J>i_)W-RA6^O*vs-SaC!!UrUJpH|mR7U?Q_@XjQ%Bo7S4A z`g4sU+SL1nnEonkcVCc8_x0dRLlN&qX>FQWzUI7~$7$C(e2c2cindhni#iw(&bQ+=lAn1sIXv2C!+Pz;W_7O!`wveb)x#w zXp*n4Mw7WFU%Kqb*{Po@=KHvmBzhMn>1uy*UHz=MtdkPT{&vGi0rw&RmUjF7xW(w@ zawUU%)Vs5>shf+B#V1;YKVR;~Lm!0UZ8kIgqi)U)x>_92`L+Zfmr7o2HaZQH3h8oj z9gWU>HqfZMb24y7Q(qcKPncKBfG!JpZGFQtefNG4;mK9RZ zbi(=G>dQ2>_y&6I-_t(^M=D}COpD3!la+w;gffpjzL(xrxteW0gV!d~w3GNw9_zKO zbuq*GQW|v3$ZIoGNyXrb+%arrlj%yj;4dSEk>-;uc!-rpAgj0ZlH!$G*4*6s`1aL4 zm|bd5=H|c~E;`fo(lX;WCr!LW7Mc>V3oVF9v~NhZTr&UU&t^oMj5pIq(=;B)6oYTk z@WVISio|3q$$yZK@GZs$lCTGM?12gtwXF%^DZ`Alu-&v?QY99r1Zw)+?;YjO@n-aw z7DFD(J%cw@Qe8*46wK95@713`-8>QSrbdfJ?$+58M*l^xhR>p$`#Y3*R@DZ-g+oFn zZ8?hO9(M+>r26;H)IJL>pK?<$ADdPl>*QYVZ!l4HDQeDnz>#%?&ZTK``PEr9;oR6_ z-5?dWZB^EA56YXwa!**c8(H|GQ|4c6zF8nbIpJK+=s)IV>%#n->h11B%8|}NN|X`8 zbyfeF#8DNFM^0lDeg}?Ud3cvKR8Ypfai}}8%pzn5mW)b0d!uqfCEIi2dUE1rYy4=` z46(Nvf<5y^1qD9)ox^W*ITNDwmkcNtmVDe1Q+_!dq3SlnWxlENWb7P2rm6O7)%Tr| z#asx>wHr`%di6o*Uxrp)&ta_f23amJ@0?2abwkSPi=E=?G_c?j9gQ4KI70f}Ja@!4a6Qf#VZ@u4P3&{kX z|90G{s*@spet6ei3w(^s4>TF*xji=r+mhJ(^3CVFMgH^G<#nash8IqroqF2j#w?PL ze35oE71}G`-NAf=w$M_L^S~55U7EQ{zUjE(Yi{1}c%KvIPjmNcV)pA-=Nd5>W8b-( zLeMe(>bxVWUz$=Z-;~PcdVZ_JJ8=u?j|W;Z*Ufw_1{j$Orj&!#cP@oKr657#J~OHw z;Hy-AY`ZRphJ0*J6IOk9tUiM&=F%OC(KuyCd!7~#)K~wEpSM++Hay`xGVh2{VrSEL z8r;rm_;@=T3rb$Q${?>)cTw@e1Rjb9H_RT1Qf}DZ7G{G`Tlac*-rDTlD$2Yuc_7nA zWI4W+3?<&V&V9ADoA%2uY4HJ<@G|6jM$hTfn)@8_?r$5dH}8{F24kE{SVlY=TqkZ= zxi>UvOHXT^hvL9kw=9Y`;QM9gqmfM?@~0dWDM#sE#5YOi2aXqx)NlM(H4)`0v8pF} zM}a`L@!#%S_mOkiv4J?wbJ@f2K4QQRzruD|NFX~a$M{iReO_98Ja6qS>z&|{Au!J! zjoi|^wUn1sc@|Sols&W*NR^uz%loQkr7|d%oErPFqO1uI5j8-`;Z~Y7AaT}RSo7$- zb;=8xUl`_}H=a*W51oh#xcYQZ-X`vet6XL;iQ6p#)-~<3{uHvfHzR4^6Xq^v{qKG| zD1Xjm?`h(d(tz(SKFcaIHD!Cgb#&-|_#!S*F*fp5s{^%iy7P(P8^?~c!W#|0&2$WY z2RxX#{|6h4Yf1jy_~n-Ef8^Dcf8?SHpRgSTMI0UJYs?N#Dmi0dhGHe%Eqf^H zP1VECfB7sL=EEOt2)c74cJCj_vHU@C6O~;W2kGrpq`m$_|lrWYFCOZG1qstTU}`-pg4@Cwbp$d8IuQmoz&& z$FylC89OVM=8{-P4eP4NU=du*W#1lnVxY%1#))Ek1`$@0h{IM_6DCH6`**m8Lp_i_ z91W(#e|W|Ray;;wr(EPuF28+vRJ}^DYhIa* zvm@4A7&;{}OJaH*_HwQ=$eYcz)F{rOR=Gt&sNs!d%qVL*osHeWSd#PnNKMjn2$^57GU-0ivh9vlqVhH z^r~S$e#yK(J&ay&{`B^b@g+}xlvwLeuIHjI+h4|E61t3`cpFuzVm-cse6-N^Yx9#| zMV^;qGyP1zMBPlh!m0nNyymA-2SNhzny1UqXCM&C1Oh=0nF&}r8I#9&R zg%PBndC_pRv91W?0QEQOxbmSL^{1bRiea4hT)xQLjtpg79-Qk829|qZQeRJIfvM|@oG5O z_R!Ik`dMaouCv0Ylqz?Yy6-7tMc2+YePMoU?<_bz!v{U;Ajg%DQbsV}!gPYkXe{YJ zaZwwS^t>2&P5*rjd#J=OJEKa;$1QiWrSc#BZbHJavfKL|se1Rj=y^?E+6PB7mA=Zd zJDZBj!wnL9c>noY6jSsT=VV9iItZ=sR{iNGVBZ6zRrpla|OCy!F zG!M_UCNR{zzi>V`Q)A7^`(pR&KRy^`QH5)Fc+*zAkziswE2;Vh-*L*~tfJ*gHntw}T8M;#=>2rZS6S z)4!QAE$S}h*gF%<-Yo)(J2{uWD(o(9S$Gl{!MHg!1wKV(#LRKmH^tO~z0Yy-{+*YC zUEr=e%Af2FZZyo6p%$JO?$)3V-%=S!wJdUgA-ce>r zV9$E=XUm1UfjF|t@uH+hie_L2Bm9T^OD@0p-&;RTQo1klrLnj0#RPX%lbdPj*QOQ4 zPvlwUzlcg@O8pc!eMOwaJPGJ+a)OK(&MWfkY;_Hh`4^2pKCoKYe0g%U#@$A@_NDM@ zlpV`0%bZ<&B-n=9I<+;VJI- zcPj0V-M|UjybG2uS0!nBw&I4}c=Vj{>Cd2GtTqLj%AKR2Qj&Csd*1c-zRK(v zf%KB^Bc%(Tu|a~FnZV`yI&LIau^EAr8KN6#s`&UTC&1l}hrz}jG^lKTchx5ELrIwc zPZ6}yk@GQy(^yp8*@PfzrXloz(JF4O)QY3Kt@dv9vl(i4VOaau0Mm{B=`RaGphx?g z;e&?)tHpgG1lIG!csrlTZQk0|7?BDWfBBx%;q>G6`hyz=RQ3j`{?uv{@AnRryKJ(v z9Yy_>ukRa(q}9;^d!s$1ej2@7SS)#o;uyA*Y#)@&$NKl&aThZTB{tv z7Pk-4^Y!-6rAC7lC&c`g2XEKDd%{7_CUEu_4=xKT>YFIm z{t7-SQ6qea8-88Wu&DaLy^2dfDx(;Y^kLM1mw=kCaIRa>4E)m@^hagXr1DGrdt`mH zR!GpNGvyE&r)2v=*zq@|l35SLRNKJ?N&iavc5UL#CymnLm29GcSq;YMy2AfPhFatV zXBUg1V0ZuOHUL~X8eZDD!=J{%J?2|d#A%7o;Eo{W3K@r9r*YQw_%HhJRFveLPPmGG zIa8PR{^oIB+?_XSH_)r+@LN)Q7vvBA@&1trbb_Y&{gVlk@1Hvyv>A6&9^N@G+l|KG z4AJh#^WUJz+i+ddtqPD!GZUPLvpF{|pSJ{uIL?8jgIw-(-cDq0&p^XjyLhwPLfshW zJA;1C$#dP9`Qy$}9;+~66m_>y*#ohc_uGxJXJ^M#Z(i?v!r&Zc3?DeCxmw1Pr(V8wWOD0Z?){XY zW~%Myc5}06NqhR=q%lS_dZ|_RgINQM?1mthlqnA{qFuZ?MQU$Cm1Wirzy4axN3Mhm z=cv{a=6&1C0JBBA!-*?`F7BHd{l{<7+RNxERT|0=kWhv7<${O{W2`sNZ}Wksz%Lac z)%sQ~y<>Otld>@P!DXk>e(u7LT{K+RRiwSk_2e=9yPkka+&sw=yEsG$OdvId;6z z&IxF{4Hjkb$&$Wa+DaJoc6xzj-$~b=C>e?~e7B<3{>;1Ou2C0bZg$esu}&HYP*dv* zTUY*NB#rJ~=Xg<*Hxy;9K8PCM;abVO7^7&fGm@^1%}h9BJZX_Ay#r_8&iSW|CQupb zj4@7@-&bClc_vLFA(ors+>@zRuNZWUkvH~=6@7~vZ(|`&I*TF+8$pYiJ15t?n+U*RUoM41XdS&1{b=9Hoh~{&rCvRaJu?W8dOyr>!0B zADpx?J_;bOyf1`QwYj%l&gUWji&RxVl@3+@$;Ege<=wwa!iX4Cq@Jz*XISG;t>t8{ zCfMEo;dnGX`M-UffZ7Lcnq1Zg-;Al=L`_t8l&s=JCs^*cW)w@v)`+$mujFx5-IAH- z^Iw);J?kHWdgri5ztER@$#cu zZZ{DwQl!z;Q~aLdl0MYPtXN4o6y{&ezE^zTIAkn8E95g&#kM!`&Ck!DbU$rf-I>c! z{(8OX;{M;Jxxg^Be@Xa2J5yZ9-KdSw#56_g3l(nH-{1AeNJ(+@67}-&YKc;o4{tZ9 z${*tNZoKR@Dh>Xs?PP4L#U|k18Z*J0B*876@E*+_>3)AhB5Nf?HM&XheqjWEl|>4r zk*=4)(A_%vQkZ(&gyO!f$EuQ&X1{To*5mp*@zQp%!fVm!b?#I4X4-GRul)To zZqnTvjcb=oUlEc1-jw;zLI2`YQzC1if0h62gOM*lv#e6%QRWXd8NvSF^`aT+n3n=R zz8)@Yy#|RvEkb$MYCmWsol|D5-%zHnbpM{((@Kb<{9rt(41Lt8`N}7*RZuF4du83{ z`8{EyuAS}eg%p~8hLdm;R(U^+Yaz#Z)3sFJw_-w0h1~0n7kF~56T_nSghPB@u7@?E zVm{k?kRwPY*1tp5Woz9oQVXDDb_=v!!sBIUPF7mpt!I(jXN`P=?%S-}6u4O$`(-G1U2ZI#+}W^{6-u}? z_+%gUyP8F{L6DG-Zz;3-{P0#+ z#Ng+M2@91tO5R_B0@SmB>^fM|!`2MMR#oTt9}mK0Xu^_@RlW!Go`j8049>a)*N?)6 z{6CSN-q*|1Dg-AM_>PtDwo?(YKSKKMiasMmL4|7?^7{WRZb{fQ?sy#J*iq#G?Revm zVf89oOBe$A;yBL8yg6%I&o}zAaHZTu+DCddcs_Wg`o$4>M;zq&^NFA6VEtqv8N97+ z+@W-f;lw1KH=Kc%L@IfIK@W*}DsjT4D4QHkdv{6ht@7CYj{nZp+(et{63!D=c-UA2 zcLd$Su4R%tHRZ%czJ;huCix4FyiQb1_NWq&sqhVm%gMD+@jD6S- zTuI%bo)Z1IUUbB!=b(2qrQX${57yk9LLa7=eLMk^Yl4`R?;_4h_XL*0r0%|ym;hlnao z$F_YgkvC*ny#c$)*c-Sl@y&L+_SpRx|L#ZCvXfp%LO=WJ_qMV|ERjby8+vIyzFjWA zo_Ago*U4ASTA!wK{u8dvwoO^HM522+BL9jZ^i2Ql)3!Rrju|=p?Siyi9%rA{>fB|s zfW{sNJ@XFNd1c|1pC0KHj@k-{$f&`YtO>TUIT8Ie7{)5r|Mp+9nDz>*E1NL^t_7MB zrPvn}%zwOA`p-<9hrg%GKK^z#ZzI#vgow=9KE>un*^urgm6P9p39r4k&C9Av*9tia zZJuKRpFe55t-wu=?@s@z(WrY{x;Oqnm*IXL+*kiL_p(cOih(-g<9;r9rg4p=Jk-D4+DIZhNd(H&1Ttc60Ii|X{JR+OJi)ho|+1Pc9d!j<}GLWI{TDAJuh=j zDpaWSZ1UAp9<~vDRglldBs^o`4*40E^{#I7dul-8PPz1Vs&0dA#kfD}v6;Q< z$Kx8M)ot!w)AQoAC|CdQL*LwW*_={mVpeAMPlS(Tu9n)voLV$neKB!Bg-r%;@>EvQDK6myl z(KeyjY@t6L`bcuVYFV=+A_b>;_^ z844_qXi_rX>P1u=zc~de^>I17n$PM^$EzPkzfV!4_8k6DQ|sKoG&|DljV2XxXjJ~0 zy^afM^LN5pvWkCVx4}1UT7Kcn{MtzGzLK~y6c3|5c^DY+u`RweC2osjF#a#uEs4qB zwa%_%A(BSQUH41RzU`JbA2u!pSLHb?{rJ37X!C-zCU9&N{f$BAU!T%IbOQNiwLL3~ z(m#3!3GPCM;V{OPTQh|Wvnbj9=*%BN7LP&e1HKQ+oa>HqqQd$b33z|7JNef-{eaza z22UA93IF*a-}80mX^MwMVojQDtKCI;ey-m$ha)fQeIUkO1|0{i;}m|4c{DmHF-VP2 z`rjXfOAm(rxGSCUSa{Pb-&qcu{{B5NxIGHslLp`4*1#4pO4MzS3RB*FeRF1$jlFs8>wTc^p=_xR8i$Ca z-0FYcr(~t?zT&##R%M-(xzgRqHsEYtm<6#Pd1BCtk$yNZ9jlzBFqaBicxNN&TMuL0 zzhUpAC$-Pfo$l&nVGwN+qm%c09w89bih;P)F9}ZrwoAqdjDlIw`_A7gLV+XQ%^3tf z%*JY7_td1#r9Pz@bUW(D)@uK*`@z&0&th>!mgqJOvTgu6d zQ8i3vQ{~iadjoLV$b$+Ol_=C{`0W|F?xL(|bNGics$)dKCM`tikNbUBCvQ}DWqEh) zybqW50F4_ziZRqgI{~$vyCk=zOQ+y0&4Q`70Z=%9OI_dFFE96r?cAZtu3ye%qjTQ z@%^;Sq�pPy&t@aC%VnTZdEM3EUbM*8|kF=FBXCG$3apXVG!bQHk+Gi*BsA< zM|WtxrP|STZ1HB2+FLm-F2;8si=94@u3#Ahed$ZQWFK%7jQImgXT%|Okbg0HnNmEO zk}eH0aLs%AyvwQ=_#Wy*dufS>LYu8@*aKmj&v&G&45`|mg-dvSTIDs`%cFH3A5~b` zK_HWsJ8T6Ot9#2nBDS|u4%}`!3WJC6_=Hf#y+>9)CYsu7lov7&WWD*M;v7aRds(d8 zQ`}p=Nm{y>hVt%kp39s)+J@imhSD>86KIa@W5A%7c55^X+ecH=&bYnIcM@FKt>IW0 z<5=;ld+TZLA-(AAWY?{Jy2Wyta2MStztKELx7ovkUv&QfbL5|3@*8~p2HaN$;yg8@ zhlmKnWUkVTZVg;;g+m7rxO7{HO5>KFIkQV=3hIVE?c5&JEIL%YKZq}@@kCrSQVpg2 zp;!0T6F{&uy18d>&ZzjB-+GurRNEX9MOoi1$2GOLD?sk^t~DgGD=oNgY-~N_-BH@N z502#HvCBPM&bW7}NgVglTCz_F=()%4u4HziDC8Zi?OkO507O%|M$QQ9iZjT#4O+Lr z?xenXq2#jmR6lBl4zb=EmQgT-W8OyTQRthRLiNogiz94$maP%;<14TvW|xWajv$(h zSV-;LN83Uxd-+tu-?1j9gNfdAtz9z_(Yn$ZE~1vrjunt$=`XmY>s}^utI>YSNO)DE zLnK4-i?&53tDjekS82Q|4n)^2AlgY&v#5E2QqN(3brSOnqR9Hb+FN(w(JP?K+{q?a zA5~gLv%wN4ZQH1s17@Ux?%GRf(BYCqAc_YBE1V%CV_F!7Bf_mY zlgko0)0opyt|7#@UmHlhSe7u|FI)}j?yc-4n%X1VV7LQ56>mHoF5=!qIwza?vT8f# zvzcw!pJ)@aifg?v^2WualfIhOc!UukI$4^SOF6uT-drOt->RU_M`zGT?CsWwL4;)Y z$*2@aC*m`+6*@m(g-a(FOGb(__&kxZ48QZIm7tYvN4qQZHMdVH3mFQ>VW{9zo3)J; zfr$gZ-A{1Owb>4P`zogq%-WJ8;V&DmXPg|Yn6=2;!jEfS-@WM zwVmD{KKkq~f%Iu6h^%s<)`WP}H-=#h!F{xBdRDtRx#+Ej+Oj%)i~Bp?)Dl8QDQ3KI z{m9tsS8F0H`bV~e_0!@iBW*W2%4N!(St@>wZTfv3JsVcz(kmNj_|}$^FfonK=rwb3 zXA0kN*|xc{JL&UU<}J^x*kcfxJ^23sB-M=b86F98pdw^v&bXb+l)1d(8Dk&LhJ5ou`*OSx{y<5t! z>T=(EN5@iEzPR1b3yn)#x|`k`kOjux`kxxQ;=HDUH$n<9++wW|10yRq)J}HQR}wB` zu;MsA_Cn43GeKl*GjtiK;ytcpeUdlnS3Ev8D>ck~)bL*7e^n){YuR3`esS^ix1vSi zmhrvDk)~UQ_G|T3*Bj#(CyL*Nz{++({Dq@^cE#>ov5X&?p5aZas+=+LG?E|1#&UB~ za!K`n4;soHdF!`I!Jsp>IY?IF-)>)dqjz~5SxQ?(QH{shSDZ@zXExSLmqK)=uL{*} zyqMk2g$JOb`?&8N=B=$!bv*NE-?(?v@c7-YR@DU3?bIHX1=P18gk)-mA4q2vG={+6 zaQP!H8CO|W&q_BI3+j`kI`oIxi0+_%-$tYLQoY5iX+1Wp$R-bQ97LEAkGbVnmzS}L z8Qi>z4&MP>*z7rXAnPHz$60386Une2Hm-PF7MXnoxrlMtp`p7SH?DYJXPjoSQRd#L>)7`kG z=^XKn+Ofqzl5*VKuE?Yv>D6{j;d9~W)8FA@u}Tgx~&-|2@bqFeBZCaj}=Ht*-U$SMsR$76_y%?Dru&8?5&-2#Cy-i zkE!vsm9=Nu$KUl+#Vwh+kE=;;ax1V)I6JAP_n7xmf^mc2TsGzynWJ>}xf^Pz=Z7&r zQRi5nv64Gp6ru+=Hi0)Uzv--$?0kI;vM!_}aZxfx?QGwTldmrn_mINL!`1W|{*RqJ zMY}-uTgH}nTMRm{jY9>zTCN>E(@i%t8;Gtousuaw&unpRdW)9>+>*JmGRJ(alZ}MC zbToK(7`2kt{sJ_skV=2Z)b=1eKpe!x(T+^A_pWK8xtE)42S(hAc;vTR?h)M^p3>A} z(}|eFjPhq}f%Vb3mI!!_j=#p*$-4YSdb$Y~Y-|rhLfw^?Onn`zw0EuR?t6+L{8a4> zzna3XOkD(?HK!WOYyx#Oe)!xOZk{pOJtG~!R}l3(khhuT>IZerMeS~f8$|qbuAp1S zlZHbmyEnj=Rc*eyz2eshLq-1p!@@NJzBTvngK-tOH!IHdb{lWLGf~>yae={ZZO<-1 zgfSx>4L1(A;=Z>Wv+Hw_*%;pdS1XqH7Ln{)J4D0}MN?N?pIGHWBh zPlW~pVlz`|)2*;gS=>oo0t zBUvI{P|kLAK1QE|J;lEih2SbD&K-WP`gvrwj^xR zj?Oj}9mfw%Z}eE;($6BaW9a8P2yYu%iFRDuUML47MMg)fG`)%t!<~eOX(xG z3mwD}>Nxm{n&SHVkuN~+^VIm7m+o?2H*XIJP3+_#YA3@v>rurGz`eG3!C41!@T*(p zBnYI-5#d%}bev8LNh};Usav~rC!;r>-=?`2incb4J85t3{Bu)%&v338Z+&X9vPn9> zWFOyFJSJWml0x^pMAVs|2=;kOaEFx+a^z2mJ(I~@-k z#A)yy)Npf5$9z?>ia{Y&?jNF-M)|oi$&3@_NiFr5w&2$L<5oi&g;GCI;86BshfWNi zlxk(+Qpqv0XH!W3TdTtZGDn34!`BV+F$$*jv5k~bxoV{ze9MQ;R` zb3RCpA(ARPS>To#nX!piO&7Pj<;tHpZC7*2ERwUP0S9136`Lb1shXT{`ITX3$yQy7 zr{gxy%Aa1T!2WP&aZt>Iu_6Z<9zLE4K5@>0;?JJMR1Rk`oOZPDQ3%nlIW44iyG$#a zD3xv)>5AOObvt=g?Y|MWXt<5p=OF61&vkIVC1w&M$i$Jaoo?9`t`n(9!y_GyI9?uQ zcH2aGYS(aH%HA*=melqaax2D?_EefMT3aE>7}PpZNaR=bom0-DA+n@)PJJ6z{b|>~7^u04u13o8YFX@D+q8po)Z@ar zx>@^sninS4SG9G|F;^f{U&gVUT?O)6dI#qC*RH3wweLMK=)lf<$Axsqr^=26ERaY> zK5lk2d9Zq`N`0oEcjH_#30g_xR4!iF`-jG%<2*l&E#!Q~5+r2DD9^&UgbC|6d@^tY zwBT$!s!K4vsT&-={Nuu)jx5A2+eFdGxNiz{j#C>UcVafqHmhvLriA#g!fF;Aw2HZCyBw0CPl} zmL1Ra)K)etqIiy}rS3)l0G&qq=8p0^Rz9<@-We34WLAf#tSfA2GRPQsiV+Ri{Tg-8 zo;@6}Ncc80Pjkeg)i$2mqjq-bidb8-ESYf_>lpAf`6pLeW?b^eTE$>(;%l=*G`fzI z&%g9);z+*_;{3kQ#-dM^CkDE?XyPr-k`!H-w@`d~(lk+X0qo;DijsK&mQcF6Vx!|p zZf3oC%0(LWbDz~n*AfQecfQi*Tx>|_DiI;p@=K~lZ#pPl?V``v zf^F8c+;I6Bf5sx~rj4y<*WK(*VYM>n8zI`38#{?((fs54p9(|7l{qu}lSKWOtBB$$ zsnC&=Tq;)VGuepb2j}=ucPd{{Zwzl!M*@3IIacYYcZy4AiA>lmdpqw!5IZNLflRUu zEIO@Z99F3$XKZ7%eI9hI7gqa&(9%g}c`7<_e57}ISKwE&3CGTT!%&(F;P)8bJs4e85V^9FH1B_TNufT0!fim==IZ|d zRWQ8b*Aq+zuV;nDagV+Cvm|igU}=7N@A|4}S+z85Mto>_*OftUb0b9ry@KP;uef{3 z>rHQhBngbE@vMS=H67-jeU>pgcc+~t-L1c`a0!4iCY@ZrF-v#BgCB9+vf@z8||%fKrHUmc5Y$p zk@2ML3%SggH$^>|6{}D=@T+@yXZA4+B98hCD`BG@YSzLZbvZs-Q@5Iu-s&!7GA+jsH zi9KhP7T-6%xQJE_Zop~y*C-vq*^;BmytA&&o{dW-osuSjw%VPCg-UOCEZc3;yJI8c zM?nO68VWwjLNTKqrNumU)3k8EzaDlq1nD2Q>7OcynM%$!c;sEhWXcDAPSwh|oJLQ& zTVUT^aUK?qbJZFqYtB6PgTH7%EQ1L!>_rAf0t!K3P=}k4s zYldda9PVlxe%uz#_|q$66f*~@U8iJRa`yiKN}{*m7hn6e;r4})5hYwjJ|4xpK|$=o z-Q(d`H@3?RLpuF|?F@MM(6!(QCyXw2NN^B&)6G8+Ye`)(HzW?-7%c7mS)s=BqkT;3%LTCAJ$2Ie0chG-RCXN-pgc(%Fi;ACzIOhpK9XF|D@nlDX|$cEk3Czh0@^4Su~LgW|t>ri89ShWBZeP+X#*^JZhh=ln=Sa;g@mB5>8NDFP7EoT(uG7 z2_|#(Vx*MBv9bB8y^~hY4-sG@Y{vt8qNmp_zo^NTl*ieVPscTH!#G8YTdZSQXm`|n z>z?znu6I6kL(J1Ja=GbI-DB0PSpGTJZTu=LNF7KAw!^749mzSemAO|7ov?fHNuvym zGORo5RM&|Lc4^Z2%y%)&`932()#?d#B3PEx_#6BvTEx7oWgBn$O&%Ks>Gf!aB;}uY z_-3DmMQkUX(<};SQK&`K2HCcfqvoT{?G>F5ObX+=RjqAXw``;7R65^JDReez6v!e+ z{9LHn6d{nx({~8FS*Et)cCg#5a^)EQH|?$?X>$k>$Jw{Q+3Gam(WqBC^^U7hLQgYD zI*IPjT94Jn6m6QvXRyTYS%G;kJ{t>I*YPPxJ)4{`K(}s&s z*!*a;9LuTM`G6CS$BjZQkKvDe&xQGmTFy>-H8udisd_e*&h^8Bc9YfDe@_j+Da0`Q`*e}zHDc*8?1yrIa2H|2lMxzI}-Ttd=9(Uv~?_lkJ|z zb+1c97IHExhWd{Li7k~mPkB3b93LvYu+<&hmaHxs&N6X4N9g|QZYjd$Prb7q)Je97 zJw_>(6PS-!+j{2UXl{fYX*7v4N6rHplzY^v?vv295PH^{SoH)aywOM8gSex~ipU^0 zN>A0kx{kr@nJ1eHWBMb<;Z~DPb?VU-!$7|4w{>yJNnt#9((}*K9#s|M5|#sIQ{7y0 z7;x}<^O({4X*CSIN^5&-WgVmqx$wnUaaUI1+#Q#dCvOt4euU$t80}-iG09?e6ZO{z zIU_O18FPR|BvF>P({i}SokWyIm275xJxMpIQ<&8(7sibbmSr`vGR*;Qd z^>cqdd2t~-4z+W8G$kaNw2fWV==d0K8W97r`3h-D``!7ZxP>(D+R@%B3!6zaUgHlI zH_dX;dq(Qj6!P8=z84vYN8U5gQhMU@?Cj@}ZMtRH_tmUmX5Jp$=g+uQ5r#adt{Iy( zw$xjpqk?xk=AQCL0iy>-d}*$3F*VJ?8KsSea9H%Io$VtFE~b4VxLnqpJ*Tj?kFX&* z-1RuEaq!<#$-{FWP6vHj+gV1k*dl<*uO>75s!c(){K1W?CYAk8<}=z>tGlPuBQt1U zAzaUJQW85rVC~n=h@LinweQm!bzIT_#nobcCmq`{-vYqzsp)8is z4j09(#B&8-#m(H+Bn;ZLWpnVMD@n_2bj5QdUt#q0?M|w2d_`KVo}X0_C_p|Hy<^6( z%dLDHaYd$X(AuE2wQ#D-ndHYr@cQcd-pdhO%NCg1=eNWd+rFR>{Mh?@b@W@x z<4{AKcM6Y)%*`>o0x58vl7MZ!I80Vb2wWb@ z73{F6P0Rv0Q^KaRoO@oj@?+d?>R33OVdut)uyKr180FOu&JDiQPoeFuP)%y2sFlv-cKe{Y`1ku<$S!x|q~xE}G^?fSF1eo7`hOKTQkx|TjsAB1#I#~lUI%jVx);*@b#-Zp%M%E9>j~$`oLi>hB zQI);1)9+Qh5pd&cbnHE^ER`ad&v$QPlg6Ov$!rdyrFbL6@i!@f_wuJ1pux8t-ZX|d zwXZmSF~1fG-|DU<7Y_nIXRk;Z52t;q(PCa*o7qR}uETf1_i0r}WDSRfUs+0jj1euO zmiN3ssIOy$O?)KmscwR=tgm=&#|`y_3b+|T;&WU-gu|mJciXk5w7iQKF?1`I#+plx zB{$zbAs1vSu0mDYaIpL~8slB))Je;1ZUyVQN=+pA% z8oV_0sCArak4H>Wtc1pM)Kh5f@7XI@J7dCt&P5BT9L3qvJLEi_7i4DFg! znpX-=tOL@LIW9e9NV_=xZM*YVKCF3(&OEhVhkdGRjx}c2H@4A+iah08>aJn7^)4QS za^M|B2SqA?bge!;XmGwKFiuzTd6@Mc73%^}@yNJR4}C_RB3VwY`sSKQe;7Af^>H+C zTgDGOCsSJDP!)FpdbLda_G@mkXglf^tZHQl5m?rY;2rB@QYG+Yr$p8e|>E&X&iQ>npER#%1xYM0Z5F{9HumO-k9%arjXW*|tw{ zd}}SX^&~--FwgGix|+j;ah+T@m#SBkYY_Pk`ZE|Gj&V+nad`R1?x|N&J;y7QoS$(4 zsV^X&7;P<|5_7iI;6+k2T`1@xY(DWv3y^~bADcCS}h{Y{(NZ`%5*;_`c$eO_U@!rC-eg@qmy z(fa*$f5YVMBvOzMms$#^>IQ%d-&obAv_^8mxuXq}TA4%PkJ@~E`mOK*WVz*zz8Kd8)O10rmrU>NrsjKI$TyV)Dttxq5RyeM2+lzVm=PzD)m z)oxYclR1h--|MO5n&w-Z*@!PbaD1^%YS)a++lh$nDelEw!z}4?M>1Jo7}cDbM4B~t zo&v{hj(S(!HwcT1GzksK?IMj${{XI)!w9vGVzVPlEaa9VuWcQ2j}gG|t2v-%h0H@) ziTmq@%5KffMT%lTGt!Lj79x)4vd8Cd*1LU^-%ERZp2~Z)j@5j-&+DybPIj)@KN^(* z)f5CXAIm+|`5An6YR=MAixP7oi@kx`n->nHj^|ZsbEwiLFp6s)j8>fOQmi}Z0Jp-i z8Rc)*ae-OpB6fFp&U0S>05ix^UI@W!ea5}_t83rB&avE1UzR=H=*4yTWEaddW8V+^ zsT7_1pD#w$=T>|Y6Ro+R&)=k1sYig0oVAlX?cGIrjUt*wjr8xfMNW_(S(m03jl}XY zwlEZQpnA}eG1~6MbliAWS%5mQwRIE8>gyWiT-27fpo`e!)TbSmsje@0gm!ypLauat zO>?Z~x4+vu4`81h5< z6kvr}ZNwT(zIAtWV$3_m8y=dewc*Gl9C=jCnD%L`k1E@2ii*(8x~;AT&F?M^Y;r2q zZgR0}>)?B+o2fN#**-OnqOn;A28S1mwPyQVuh9Ie_7aH`PIIbw5YyoI9C%iJ8~RGg<4aVFaFsh*Fd8Yf~uNJoKx+8+B(R!)$RGQ-mkFq4no5+Ofp1AI$hvvv3G+_@@=s zm?Uhfb^3)h%$zl4Kr+G!10S-QH5g_0f!MAoQ$QoRs%u#|MZA$@>6%|Y`k33x%k5}m zuOL;m+TR=axq4l6Y`%2S^E83gaZFZN*yo@%rSpi# zwI4fq0_ixWfXkxZZ^n61hlhIyakbBW{uJJ?av^zB4J^Mq#F0yG7&Mv7yHPR0B-#$; z6F9Fw3JI%AnwKz%2_HLp*mXI@4YnKgtw|=6*CM36xB}ti*|l#;bQ&n4ErJfhgPBKY z?ciwZag1+C-*+s=N=4V|K@lY;^fj!FbbI z-fK9WYURbt%Y83nT&sXqwjqJ=ts|(f3INtU@>(Iv#N8I7j@-!%eBRo|)g-a~&@{}dQKD5EfBfs0W`JMVCo%`o z@71-~7|Q998>$})_0|D(VmUU>r8F5fQa8tcqk7F@pGJG>noBukx6aZc0!OvK^y@+Xo-47&}*Gw|3Uj73!df`a6(vk|OBIRq4XS)@9Zt-$# z_>QTq{vh?HXFC;MhJ;1;BO4yH>mwX15rbVSTL~ZATR&%inrXu}l^d3&SniPOJ)YNE z(Q?KjJa?sAC?&X)y`&lue%iRXAV#j+1bWmHRKZRwhuX(1a;rnGRp{E9w8pCnnMv4h zQiP9Fzq2)W`lc`Hk8rq2T zwt>>7k&j|6nB$?SdT427cYfgpI5v)4Gi-dno3W#R>8zi}L$owaz^;PY}$o%__( z_VZh##_^G^Gy5xr@cCrdb3bP-vj~%}e^ot0)&r(S z3lJT8^{o;}aKB4>OHLud;J=1U>STuuwERNAO?hoJdt2(xkG8#+3TsQfKKx^1Y2$P$ zGQOQJu@wv6@kBRGf?cHqDXkY=ayev}?ISqfJ=Jg=O#D4qEG!i1m(Mk0#JHWiG?><~ zyM37y5fny?&@R=nq`h5SJBVksBwZvP1XM4nB6!C~Y$2fpl0g#ttp&WAnepLVMsHIv z@aa=UyfUw}&Q4g@soZkRakpoe-aP5<7BJkw)b~>O(Pu6jyTYO}Nu-}T?(nW&tcKk0 zLqoIuRPx4$ofm5&iMw+pw<}Nt_)!Nkb z`opeC%?7td^@iExllD_d8PywfI;fKA8Su|qB)Tew-z~iW(g|&TlK4~cE!yhpP_ZfQ zUX^ezZKJr5wj&bzx@up&*0I4lzI~J68o0DBV!2WHr|JidMZ*0>n&3)ubA`rw(AI}h z-+C<@ly4d>-g?)SDUW7T){*9uTQzUfy03UVhqPN<8St;Y@nz#b#*Tf_;q}pzq)CNU z6?-++(#~y{M0SNS%lxeO*A%kRh~T+l81T;j0Je*{0yw1_cJA>t41?Tg#w$(%sM+*8 zM&)j?O;F2lBjX;`N?e8>pi8Qby-M1L;tCTuQ)o z9u=#tZRy-(P#t_Lu`6vr!+vl-o0T;wqP#-ilPKu%7}! zf>!=968``>=kcz>JGv$t#89`6A7>*rv7BdohW#}yiWH7sYVz2f#`QIo>X_~$JLkX7 zg3(f&isV}2N%5O?4+f0TuC4+~<6rLe^RC8{rCt%?1no-RyJ-wMaPvshJ7thlS zmrEsqWy!%ikEqqyxVd>Io=w9?qb8w%d+LW-*Y0-;Ov=2o?wx&VTYEWl+BEF0Q1z(9 zPmL!|k~gU$$VZ8N=N{!;UCB2!q?l`NRsd1mSB$DTVoeBqg=p}u$n(|xnZafR8xAQvpf989VsGV%F}GRfF1M-w|4c@wMUB2 zrwaXxc?Y~a>Nc`bXB!RUh+}%lnB%=$r2yxa$Ly@^SGa@dAgEM2y;#N%ofO8@t{Jkv?*8pVB)3m2eKfhL)Z6Qi=8V(yx1C1uG2i1uexn;2 z;!x^V0_Df)sbRFWp6=C$x*;b9j8ewX&b?!Ck3mN6J#^LW<xMZF@>0g_pCWULDx(c-99!#{CcDlKuQ*)+)7f2Cdecz2sZ^bSe_n0;w>aW74;dk%<0KGVS za-`4mi`@SJSgjb}&Z8Q_7KrbjwLQF&Ae#qED|VFE4!XFwmh*?D((@nuUJuTrDlh=_ zZsSl*%EQ}StcfRuT3lpyp#++i>5B-|cx_x)h~1Gg!T2?&GsCMl)=%iG8BZ=7QgASL zCa$4^aUIpneZ96d#qaDmm6g1#yrL#Ov!}w6Z@L~NFD6L?Lk#XQzjZ4utUNmEFhfLx zzL7Y5s{)rBla2f;8%`%|Y`DV}m2a)SYoGmmEBQ?y`T~kVx_qdy6axFzEVmM4lsihj zNTBxJak!x`FPIx-(bqL?B$iFWtv{ZY;jqj+K&b4kc$ci(OvBoI=zb=WE*pE#LY=mm zvNKwrVMCc_mvQuUWBRJjYiQxI;ZaPgnTrm5Ym*{0hC_%P9f!uBhrPIvrUWu6_bKvo zp7C9ikFJR3Gk@Bn1Q&+dY<3Q;3WgpvG!sY6Jj7?uGN)@U1!;cqb~GxeU@8s~_p&69 znW_^UL$W~csD;cZE#W$qLhNh6eyZ(uhmCs~0s89=Qd``_C5greG%qbUP0tgSL)m5l z`9h{LaF4z6D9lXmGT%_Co?G#C>kX(M*-He3VC|&PlS!K2=`Q%CE7@N<);-YMR@oG& z{?&(h6vI1#(z#7)ZlYnh#WcwXw*+Ant}$C23c+ot5Zh3ZyC~lCchhpNWVlZ4RCCgz z7R}F@znfm7xsuNeNsafT6o?pf2UckWub3^zXIZI%PHMAs2YgccwYu7{_qB{ys&NQ#*vwbVnQb;-1=VDmV7AY{HD!7Y`(dyqeQnt`ComK|Pd`l0O)(F^X&G zj6(O`6=(+pnH>sobQGb0GFn)Wt2dEaM2;x0A-2mVnMzC;elV@(D zedlw4DmUWH{7OOBQSAMd%CWSL)juV7qSMIwJCslnsEiG?_<9X3+v);1yI^bnb#1VtzoTu(g*1wAbJD!)j6o%c*y7UUdWBg<*UE@iE4VAY6L87^IRiC-*ps{+s4j7&=LU)}!{)S+ zS!dFk^8LX@Ly5V`E9pb0_SZ@Td(_ism86V0J@m`N_;kET>&R%A*^}|S6T7Tby>&8_uxHdpq;uWBN=tqqfA>wStYjJNG42%B{6B>( zOupsN0cghrF`ZwGb~}?+&TbLm)(HcpaHWQL=1Ao%>7COevIf)^&fXiCrFBsFNJoyL*~-`(s1}S#~SIqPWDe9s;zEdh|H2{DIjc&R94)+WP%nWzym?j2;$D# zlvT~>4JEA0?GOyAxbMY7Hw>S!aPMg6D0AUg@gWe(T~n0ZS9*A5V<)OgVHvAGx#M;&92K@~_=d%?xnE#WUG+-o4_z zRxT3LaUXk}ewW6ew=t5)y`o#Kayu_3opFggskJs3zI~TKYTo)O#lzrpQASENe;0qU zqv8diYj*C}+h3}VO##xMmc#}aV?e1Id#e8Lh-#3e0NbvOKzaOYn-qgn_Cg< zGn3YuYne&Zy(uiXbQ-0Ra$ZA)0=T3cQY5*K+4Pb(T=m+mtouDRLmXqXf#XWJ$e@I6 z-aQ-ip^oYTRogop(wZDQ-`5Z9+>) zh031q`PVLFF}H!Q3b=?qnI1mK@ukaTSF`P&{bIW~`lw=zdUY*B3P=al(y<%!Hr=tc zXI6E(9pt-&t+yksbiwqWM_SxgYihvsLtMh*NTk(rBj{K5(2fYFluOZqk&i9vXe5i1G)bwJb?Q8;P2H`ml8%m@i5K8T z^s{}>U*d4uwB1NsUzVzFAAM|X@5aJ59hp4A@2i8#L@0E!N#jh38$?8zl}Xy2xN@Fn z(FYl*lZX~uY325js{G^QR<|E>0XdfM?hVT?l}jDvx=3I-Wgw%2P~CBxAr$eZ1k2hR z)C+CNnk$#(fDc-^92y6e_-tFmb_pQeaaOmFFbsUE0@^QP zo_MY^B)d%vim^&IE44>1ol_!c58qhjv(V4kUS5JTM;(wm>7s!bT&^*z_0|Jsja+(Plpn=&4vxw1LuYVWJSmjd6_=J(ILj_lRf zs|cDL55=}dd+Koj({TiR$vZuqR8}%v3wa(Ue~vq<--i11v6&H^=>sCBvzF_atBo#K zu4~)O6K=@^trcPzc#1RIN?|?z2A7oa^JLs=IMiq~*7z9iJw+}g?Z`F7<|^VIA!*MH zHV3%VHZ-nw9uzR3vUk+>%W=uM9_l#Q{3%v-!5#Fan2e5;jHd_nP?kWUmm0C(iWcj0 zBsQ}*xsP;tRqReTM#t4hYVx2}utCV9uS(sIczq#D!1$odYBgJ2BKG6(8KsG^w>i>v z9169#XkxvNbjD=EXljyIw1(=@@$AZtsyVn-{MKtDVWV-ZFYTb*`1p;IciWvZAE^HN zdpEV0hg&j}u6X;0onbCAst!ByGv7_aWVRO?Boad)I&@P87$SwI3teod+DzW!R8n!P zlf~y<`FO-Y{5$@-5nDu%NAyr*)1p)ot~=^mhqRL5$mO(2GZo*`r8PB>o@yy3nPnRTXqz3N$KvVI|J-*pFXZ--h{^}QgUc@uT|stfxrWy~#y z6V5QsYRcu92z3>aPjIO%t?p7)V0m(VA1dX{R^d7^UjG1%YYi)K8Jsh+zV_c&(XJCe ztgY3p)NKrJjlt{IiZxtV-rzt+mS^`{>#M6Ha3!0C$)i?sWRJV_Rh7IJ!|#pM;Kw5- zI}5*B`=Ns8Ji#zA!QUhJ3gcX7h_LncwNy|WA|bic{{XKFxVpK1S}b8gmgs+deb4b5 zmm=co;9@`VXrnk4KM9BMSB&X0%^u*>F27k&J4fjn5(E)#zADFvU-2m~FQr4uwuL%X z+I{i+-X%E^N}sl;;r7=2$>Ebj%Hs>C#=q&iKePUIi)guViOl5_Z=HgwPjew@i#&hG`E7UF5n&fAi-%7bR?5U2jD`jdq zt>iJt7e+|fisDyLaVV{Arq0K%zokmtNg}_1oGr?C*JNgl&kUM+YsX4mB)YfHJ=F0i ze_IQX`uiraUA^|Lt3hyf$;AkhE1uDFUaUB5k%Wk7k+v0c!|$Zj+Bu0L$FTU;vv96C znsH8|>ysx`B;uMsT#8#@2$Qjfpm`~;sckhRQUJ)qrYY``7Au(c1P;uD_tt|MSr=wf zD^#a1r?Q?k`92h?%c@_SOz}wZ5$`IUje5TjwnJ{)374wT_x9v!k3c>OrFeW zFaXa$FuxR2!4$Ds@bz9!G*DX5v)4_dauAeo)?Fx=Sto%Qon0~n5p{u*-f`cSrCi|L)huRG%`RQ@^ zq2o)yI605i)=p*HNOmK?>#Mdb3$&*Tp6a!+oZ<${%vb1+>bGktC6?b;yC=>1>Knm^ z*4j$1P-!Dj4ujjRaY~lVy;?!BrRNNOz=Xhp?wcbp92^5@C%T@ys zENADfYF~8jDQFJr<949}Cb2X_z#5Ky5nRG|_I-Z3w^wAha;H~wc~#W0-O4W^?QVM{ z4z-l%+lp^UK8-b>M*f_Bn%LsKo>Y$$Lg2o+B_x%v+34D>$&1`$%xX9LT!@<@HT{(& zdJgjH@*Y&S&J1^IHFDhJH23!SjyNSzJ-ov_!Jg`c{{Rsn0|Ol?E-hDA5VjuAe|UF_ z(!&_;uC0GjFP_h?v3JBUr6)xRJ{5j*cmLG5YPIbcR>$ zEq(L0v>ZP9_LsX?mz^_6!L^MiZnX!iFDgim&s;$#Sq1y{+^hDg&eGoSTYc^3b7h(= zXx|DCo;RtQ`fpd7(Yr4OSDL-%q=6%8V*|3X=U3O7;nLf7qv88Zu%C3ftxl}1-I|)< z%m4~T4RGn0Yl;)EuU^f4(2@w0FETd9`Cgx@n&Rn7MqhXOM!1yn55i`%!wl@Tb)gLA zHD_Wgj$AOpJ-`Y+0dl!~avP{QTtPJhp zntSUQ-FS#hlar47zGgRt7^8Jh$g!s8>|r(&Xzs@ z0I%(@SGVFa%>lO3%5uvQ`ZR5fOy(1&2L}Obn;^?5)1Mk5PQ!Om2dC?zqi+1>w92}P zIZ`O21MKLpN^=ttk-4Z|;z!p4X$0+>l1DwZJJIxQy*jsIU^_l_5Mo2A#@+RBx^%LW zja~GD9?m`0)z*YpP`n|!_Obz}-k*qCPRVW~Bh`z0 zhs(;YFXPg-(R<9hy3)w~jaY8gFj&qUt=YqK(woM|my9-JNP z8SMA!q~dmf@XjVZ*M+dIJP7GcZq@)^+YiNOBOX5rwt+1k=I%w)$hOV}Lvh78iLzE1 zI~1L5A@kqPPY8#CpkBGa`&~z!?2?a?}3+6iG~&$CXOW*6MKM zyJB{x;qpuP9i-aKcPq7Qq1w9)X%?hVzu_IZ5(^P;NW)29A3 z$sOE_p6=?K7S`OoICd+m?WK7~GSIdeN6qu7E_iLntlEfyaQ!f9&ES0yD;{DG8p@{i z2r%a44{5%}vg`oOYK`;0;<4RKKKXH%REw%J-nDNGw+nF7{wX8q z7NvsN$EC6kQ|+tX8FB|T*`0Nd)lkN}yl=H%PdP}WdxBOXcTwqhWI-Y@=xXQIdq+rU zOuZkc;htpHfxK4)-LC!+m#}n`-n8FI{L?OZ1$)= zd76g*01C#94d>roYs$9iUVYS?b?%_v2Wk;qF>gH7Gr|{Jw`Y8xu7qBsC%1Lcty@b} z2Pz|hcUAe#=U0;3_M0G(JB0@8;azb+gQ5Cr9Yr9zZu6%*WLMt%(DG_xVw)YDcve*E zTvH{)Ya~5RuIgAVBtEYeM0xq%b#Wb(vL_s#OwBl4s9xbsZn83DmYzMC~Jusl*pgCESaPqEBZu5!k6uUe7eW_4#RxZaI#N4|?H5(Rrrf$6<$b4eA<0^-p34|r5*1d_pG zQ!OiucDxO9Y^8+VY||avAR<8kss|QMM_9jfaX+ z?wXDkfZhfeDdF|gMFftCpK-dO@S|}Hg}5Dk0 zb91WVPaWb3GWQ*{#42Cj{NsjFtwe^BxrGSr!l@eslM@9v&X+WR@nal*#@|T zkg5xdW&z@zh}EAuHs%~%2h!1JBpP*+*~GCNNSb}x^}AjhGurFZm0tQW-CN0RDC&;5 ztxKF%ahfix_0SA4k4X`+O#9gHq152gjbV4jb5~Q`&&<)WgXpzI!|o!6ReNw6BD++! z#l^+X4xDs7tSQLf;Z|WvC4paVh~CkLJE|!nwz*v=CfZH(j}@*Ywt(>kn&FGKpT(2o z@UAJwuZv2A1hmNBzUMgWX@k`+hdSIH%9Etj0uZN%OAfx7&T8>F(McS00UDvfjAOo| z8WwIJ3Lb0&-jb%bf(8ekL`f%d*KN_GJK%TMCev8AX!h6De5rOi)1e1?h4lh-;IEBb zn|ZX!CC6eR^Hz$;<>E;)0xw$EGa@_mP&dU4Z$Ncwjt;w;ojMI&DcOb;S1)FXhT4T| z>|H0#J2etVL6eT^1g107HKg^ZgM96cTj(fVSK1hc2Gz{xHop>Sl3*Mj z{_$L^j?w;YzkL9heDoQ`AdwmeP&ERY)X_1%#MiVy&x~rvbzDCOuuE%QMec$}o^Qhy z6u`%D9dPLV1y5sba~ukftCt_?ttT#2?ndBJm%NPzJZMWD;$->lT9)EBIQK(uPbsn1 zHEJ47FY&1J^H^%4qD^uRpo|}~w-uU8e-+fnyA(9kS2uR4B=PJU9Y=*a@cT%u$t9Vw zxu+9chzE{(P+S}K19o1NR>po+=FBbRZT|q}S5IpS$H;^oGCylj-|VYDx;_fa726>7 zm_5|E6!XH~uIhB$T1wrxU&5_;yGNTuJgL+j%C~>iaZ_=g31bj~)p<7%q5N)eay}J# zd+TXzmtM?s6B-6Q`}0;7w%3}yQ!jZkk9S7c`u_lBHS3{ki?%Ymp1OO5U9H88mVs`` zkC>R$z1!8d4~_{f1QVXn-&yggA$f?99HS2UO+ze=jm;x~t-kuHxw%Z7v+3-uAb_pI ztK%Lc#=jj6XahLz6mA|eEy?dShR&MSqnqR^!->j^%(yvuHEc7`RpTS5mpU+=>-A7v zRvhJfs`+Ms%xA|eoxr4)9vuao`a5k4?B7*daNRtC5W_m1MTJWvwv}9ENvP#7*gtJ{ zI+M4ZXt^2>ffb8oGGnfqk5ZGhFe_816|ifQ{LAUo7vd>2+WN}s!i1BwKB{pXY_VtO zRkgw2mCzb%mjO<)G~>FF!Ok15Drr@7aT(4>geg=$6?JF6~z^ zKjl%1aM4bUrdZf+rlWarjP`e!K5DvMBQFL3iwZF16ER zPrfnK)5Fe=XkuTSJ4!0nH!9YxAQ=nOHKdIjcT>H_mxS!mIroJ{%e9Ku#vgM^?@I-u zI%<4jX|5W|NaV&yUW_Xm3ixUmuAd6Ey=zsJrq7QGvGqrDZ0A#x9sp|M7R^3{8Cf!cZLn?8v&$%3^w#iO+Td*Lpkz>n&O;`o z-It*FR*qri5!(m8fsulm?45h;)wF{(&x{ut!N+xO>(?0XqUmWR>XqmqVm_)Kt!aDf z9c|C6u~Ydvx>38h;ny+2-t894@u67vfvDnulyW_-bLEH`K;|I#l&uT>KB{hCTt$vF z40Ix-f7jm>?={q`n7cmu_<2_rxK3t97D%70 zSv@NL-pkvuPw`U%@)%quZ$Z>f?>X^Cj??nj)36rE`!z%8QF# zDM-zz8gyVgR}JC-a*P*Dv%&%8=#cE+R^O(QNnzK@?I~Wh#4I4Rc+oF(NW*T)JD-Ls z)(GShK+&BzeU8=ly6WOTUxr3SNAJP&sjUaHY26|j8*adDLdx~|abzf$Nz?Y$yIZ(g zH^)ZE>rEWvktjG(^JMr`cMhYM8DbOTLqG@Sjk;4saV{Y~{u>)qa6!Xu}ysG<}f#`oH2)r?vb|n2dfcMF`|9 za`{wN$zw)tB$C)$j-{7+f-BAnA-kSGV{*%_ZWG5n)y?2{Pr`C?VO7-wf7v}gs*~33 zLu(pD)@`KymB(#mk-c1KXx3FZ+<4Oc(b`;c;N~c}PVHUBuWuNt@k@v8G1(jnXknPz zOoy_gc;pmg;tuBh_ZxRq8WTYY?*s3AYqvz}1~b=g{Nqnq(&>|asR#<*pbcPX^D}nCi}*I}=wU)%jL&pnEB?`0+_`CDN>=z1;i4q~-fXPK0&Ee#*`^@$?9# zk8Jf6IBmkK5HlR7!^7i2qB?#xk&O9z3LG*Xs@?Q&p+>P{e+ZH@wmua%s7vbw8?!E* znwm*lvz_r->MBK9F%yh1E1LFKF7bD?Bexl-m9EV2ETEih*ryUe-mm=I1KJc`IYj<{ zIes;#7&OD6BA|XDtCG@)%+1|Fmv4m*w8?caj#pg9JKNz#Yst)~S7mX974Gfg1!Zm4 z;2!*MR@YW=W?QT)O|MoDnDC*%?r!0N=09dw3}B9!rkGrtZaWs=^){&r*qg}ON?Ob-;LC6>PNFc{@umYn+ zT`L-5xHl6K9Z_6%fE}h7J5{$5JUUdhmnC1~Ym@HEz1nxKR->*&`h{|I=(V?9bIIf> zxN=x?9vHhUBJ42n%}L4S*~-}n>#%Ps_Z$7Q{&kf&G>wT2XQoG5W^tj1br;k(+isO7 z+`Y`fBY1E%bfaq0B*qph(x~_9R_16u%B#HroV6vNH;~Oj8yM~`c)48jxusV=ebs9n z<1U$F*vHdqSR*=RX5Yq@E$sD9Gzv*d-Ts&bpk0#*Zpu=S~-4S?=-2S{u~%_W0Ez zXw-b_+SULv6EZOGHRWByZ%wx!w@o8gD(gV|4Sp47mv9xsY8l6vr#3Nm81_@c>aJX! z`|N88J93XzrHSqcjC{tUqCe4QE2ly5>p>Dcr&j`ovfQ>fo-ltHDeUA|O9sy?eb%lf zxw+*)u@I*?*WfEr*tYZ{v$bi)#hiPqSN42ncg>rGc$Q5Yo`>N=-UXT|8{GECHK^Rk zs0R9G!4)#ceD_v~m5J^LXn0ZexnAOFIxc%OfE-5_`%&W;VQ#M{*e`OeOFWS2jZo^= zdQmb)xH2}A^R(uh6`BQ3<9Y|KqrGS&EIJWWM%#i(8mVn=?GF`+3HG}EqSKhUfkEuB zJBpg*r>t5dX*+M4Sr^&9a6zeU&$E#{d;J#=Vxmi^h;T8Qy5Zbkhst&K#l&&;qCXnf z2yos102)U1c@|#b9DB7pU0O00`z*x*uG@c3GJ8GtSaWj-|<-dm0*ebl_eC_Vy;3oCs- z0wIbb>x5gmBi>ZOsa`3rye5;8D zbiYTlQygpV>i+=NDmJu_24y5f2J7{jpVd1uI$&z?s~&F?NHJ~(o@RAzS9csT0eZK$ z8k0`h87Hk@UCn5hdbGHS`H$zCCGcWu;1Ji4^~yVoqdQd`OIM{+e|>!7O) zX$$SkR@>^XTyM>ZWYro;^G!QVWbxbsjX4|Dudd6=k@q7xu4k*04m%vT+PKrq7C5cD z5wCv!o>qHu9<|=u1_1G)9HUIqFd9#A^eYbTxu?0|!bXU1B7Zkgt>k#Nj2~t`b5JS2Hhtg8sha4zMiW+g zEsFvf`ZbEjaJ|}aExwa=9$jB$krMS1Xl1rNvXr-1- z_s-S#*xE~TYTeN;cKB3s@}FOU6?TTwTb?Le+3mDL#*eDcH#~2VoCD%%_>}zF-b0qW zl}?|4twFVKMradKb2QOLQW}8YHOyi<;*(kvucp6xe=^us!0IMSTt2M|DPtI?kis<}X?a#4!Yn*i-X< z+S0dbWbn;rR!4OavoFpa)Tf8a%N^V5Ff#UIC&1G~FJAh}wy4j2BS{dJBeSoK8@?P` zCDo9v(-izxD3aRt7sbYr@2y7tF*7n5Vvf<(UEJ_<;}h3J0SFv;aYQs?(?B( zZ!#c@+DNht>mF4dv)s*V7#WP6+ZF0JxEw|y)VIDoYlFu#2;o_dw?7XW=G@+U0N7PS z?^UJu4(3V1rWj>E%{4K082U9FyggP#5`(0jvE@*iVCR-_+F@M1Bpfn%Wx1YhKB*#- zM|OOLEWAS0S#g_W%y%)K#Dlzl%A&AlgVj+=<&N-Gl=4gK2_#&hA`Z;7+&T3$F~*Xv zw)YSIg+TmD;Olk+L}M&!D^3qPO$t6c5#dpX9#PvG2%S!p5f(McUceQ^{qUdZH=oF;U!JuC3dWQ-n3pv!1AP(d2c6YIDG@%G$wavm!`(G zNQG3k0W`RyskiW<*w|1u=;`!Y!3L4~VH zH%$&YQXz{9y$6MP)ua)O$0K`1GIz0^$c4(xZ;(s6zioTkq$)pC9m{{VUHJwu0p22awfn_~LIjelK5C~~&xmOK86 zoTMueQQ7mRx1SMA>uUDGjNcziX7^e%C+q#&s-!&wRH!^mQ>J=o4osqt3C^({K z%I$RI{NDpt7B?D`j9N*Uq#J8a-0 z#nMmfHPWiblA) zv!AcTc#1KY*;)rNonBPV-Kb%;E=Pk>-I)1?Gw%bq6|WtJ>M9q={aw=*)TUr(>Rmk{PBdxXuaK*Qnia`Q(>QgCtXF$o*oyWH4QE z=p#8hc+)}`cIroUHMBBvp)Ktr&svc{mSEA~_O`5g5=7aRv$Zp7W~5 z_lfGXZH`uV=;vixHdj;cofuAynz`WZ5-irE18>I1+|&_3PzK5cUEj^xAxgy<>h0Vr zSh&rz$N`ts@_8JeN0ZW{iQ67psbE zJ9t(IM^nq*gchqB@aRuvbd0dCTH)iDjA!z^YHNt4)MJ}0l+wo@P_9@lB%De{w6H7q zJDs_bcvljJD^|Iku-4`?P(^TgSMx{MC#o8WXK`^JtV;2k^>{hyFS_YDI~sWTF~!Rz z2P|xS>M0kqC%m+@*D`tkD%4x+a7VpPh~O9SO`zBV+xjw5jiUY)%D zx+?eWp5}|PXf4&u(vp4YPO8kWr4D;TdhG&YbJ%Qq!nPk}X`MNd;<$~sX{~3AIuFfi zNc84Ds!v+qtt>ah#9V$4aGP?Tn#%Im*CvBWGQ`_3@va>w31;;;qV2KD;u$6*r2hc;dM{fS^3u%v>_gwj39R}?tqw9!XAIVR8@q+j1q-7T`)TulIFlTP5(<-DMC zd1YEQ@yA-9j3ukL3Wn#EcMh)8$MdU%jvI!7J8?RUVF>BxNyLltc%-MB6uNf+bW`Pu z7WdbFp~RM6+&Vh^JgRVnmgZrydf?RaTB0@Xzhv5vXX>T4jy2-&y5@5u6~Q~27l~yJ zgli6gZ`UN$tsvy1e8t-}G%S*>tb=KnY*nuXkC|y}YtSe2hrrk3jSaKqK~*;=12r2< zFqPUpSxSZlnP3ckt2cExTZpb;PKGmE4K$~Hjz`9&hlw6%5P|h*VSq<=4Pw$JPHcUp zZi0&$3glpp=cA$7QMb|13gjy=jPHR+%93-uO6+Phy+F{Z)fn%kTUeSg^RnAgn~or0 zk+4V6HEjir>s-$1tFqv&8`&;k3K!eQjo0g|D;r)J6}`@Y%`*%;P+hj%Rx`2NIq6!9 z>n-!ML{=+>@_MwoPr{ki!Cdt3uLGT^A4xkCQr#;_s`>Szk92Ll0gd~sr+oy~*;>Q# z80`ZN(@MJvd&lCwy)RQ3lLJ0gY}Te@&mQHI8o(xbe*zEJVRS5G@T_f%s{mot!c z2)ukKTyR@2S4WtIG8`(N`sZ;TJEl@~VkO4(*Boiy>SpL=a!VS9TgY0*+EeVABg$a( z_*JCr%+p2NRvjPXQZo=0P~xSSe>;0C^w@T(*VU)Glnf+k15{F~v{GBjl0JKfe$=lZ z)59(|*RQP`ZXXKCJ0V#4L#LUfOp@5kA4VvX<5@M2ocP?DjiHUUCnZHeDeI#hDQAVb za*l?fd)URzvh9@}rO)f8lGZ@W<!Yn0 zC_Up8FldP7WCyMd5U$P%*jB0CfgbQRsu?kE-BwXTQznH2bZTXZ@&!#IGcbhq`yTBA z_h^GS4mwt@VA1rujXaWjqr#>U-63T8n!3_S%~(_C7H;}%%atc~12kQ&mX zM{M`e?iGO99tN|vYpDagRF@nU-R_n%qCj-ueY@8WdALjZ-G#uFq()p1D#UyiXlHL| z%#tY^jAYcV10LS9zf-F@t9i(1*rJki*J|T&hAx+3j8YZZu-)Hnaeffe#5fXh25W~K zdFiHDVrc9FX-4{9b$Jc5HT{vbc?G_lv6IWnzUJ)&{E;2DW#zW{+h#O)jg(6}a=T{Z zE)&cSl-7|)&VH&CVy(D5P$;`&lMy?Ov#OfR>6+p-%!;k<(N@@ZX`$-vA8Y(%daE~1 znxoiq(?)C78FIg)dPpLRn7Pt0GBZzY7}UYANU0e|Fe_s!b*_m8Tfnn+URqaNg^YRg;0 z&*_v*ZBAw{&Ob-y)^c;`0lN25Mt){g9lO0ARO`!8t7amwvJ5u+nrsb6Jx280M~Dw@ z8!*S=-BEE)7)1AWq^yvW@1g3o9o3=N8TW^J9|J@YtAlWcCA=h?{{Tj%S z=KbSb%7UFAz9(`Ii_eEH>y2))X&1xv=t(UUS{q-H)uNRuo za>&us6*6^w!?t?U@bpqyH#%FbMI_PlM0q+3V_%hV556${><|r09TY@!7`94(~ z3GDkAeY%>}jUe==DQa1l=SFjnsz0(wn+5lTYn5zoMl|#iqnq4 z-Dn=9chDf^$?4%-sbFZP>Wl|wmNL&Q9XV^aEcl9s@0zzj(lzjNq){?)h1x)Za7bA^bK4EPq8xDe&VZg0r;(K#0 z+z!=EdmOMUxgnAvzG+>$p~)w{vy9~Rp>D3+oafU`$g(N zq&z-UwTO|9Y(nZMZ^ro81G3x3GCEpsV*)RAnttyQ=E>C1G zcdJ|Wwu;(Ie{{mQ0QuGvvu?mMAb)!lqC(6EP5Mze!kPt*VRx;!CbE9ox4esaV3aV= zeND=c!E&SAYPlOpAHFg3MQykhw^QkNx5C`Od8oy6w}0r(G>XFYW6q11;W+y#9V32R zkNDP10a@rM;YNGuGuYp%)KjF4_L{I+daW(VhEr;Au}bfp`PJImUPWib?T!o*jieqq z73#BamXlGyk|G&To@z_W>*<#9dktFmudKrvXlGTykqu???8m;I-q|Hf zjd|6cm7W!5Zs+K8&{s2yaW%1n83_@|ufn94h;7;~*v)e6_e$ml=(h7DB1sC5dk3u}TgW-s?8rvOg|*74fro9!RBqxaV!Tl$qn~4RzUz5b zjl)x!8wWI1h7D$nc{+SELH*o!fmbE=wYWJENSprv>w3GJhN1Nt{i^cUA{OtaUTkp4 z7jy~iWp@+18jX0Sl?>M>s#+x?yS(;K2%;CWNkwY z44{nFsPTfo~$q5nqDQ>ht9#X-Q7@HK^~qps6x<>=FfY4DnDDk zS#DkPszZ68r17Z0>)*Xdx!8sJopklVgDV7;o)rxASSH7Z8KR-WO# zEPA!c^SrAy<>*+zGDzJOMoFZe4ixKesArnNPCM#lP7`!&v)FYS{{U4OBf65=v+g$E zqO!fWJ{1daxQx<7__!qYRdHII-l6g&5vMx?Qb$);9HzCnj%_nQ-B8k%HN;-Z4oKN% z)6l{Xzf;{Rp2^_Yps$`ct=N){i2*m4m1c{jC2Xp8<)OQ!0 zDm(ktxMY;F_Vb;-s^F0)2T0_*;t3GZw%tyC%0UZU@TsP3N6DD!&yX})S^oRj>g>8j ziDLNUtuD+ZX&IYX$9**X8ucN$kmBmoJ23iV&ZUCd-t&mx%=(@lSI;}tX~djxo*Sol zEu`%qiKwICoH-Ymm`Mj|f%B`7_vb$et4SuoR~ojfSu8F9zTx))qK%F={{YtXZ*OHB(%E)C z^LbK;rS*1BgBe=9;%g%;({<6%&~i%Zr7O{fMH2ZVyA`e;qpdc-9<`y5Do>hm)}fT1 zY*H?DpzN=apnR)Qt*LdK=@=9eYgN3qC$^tE>Z8SYMB;uOoJk8ew2FZ#tq)vvq?QSm z;y%BZ8K@HOHsw!|FbS1ERb26Y2dZetZzIiJ-uMbwZwTe=yG;5u!l`dPG+($!Sjr|m@5bLv6r2#Y43erw%NZjIwd8w4j zBbj$n+X|XSo;T6dEd(8fhPOx!(u6n*+b4Jfvs1chvmI9(!3EB|z;j!nK>;RAu!0Wg`ZRjl^U6n|jg1 z?Wf`sblEh6QOS1A!mI)OT5MQQg4PTlq}!V9e!8)^ia^{xM$stKzG~*uJGZrs`(+kP zd}|QP*~T-gb5en^J5oKwtsw&dcnabiCjS6OsigkMH=gw26`mu1-lN16u69Y+2koYQ zPprk`3u>aQ3LgR}9OAVj>Cer^%|L;r`5JLgmeapq8tyskj{3f{UeS>|3*W2Cij`z# z*s1CbU$mOspIaJy~iO$1R9HaC3i zL8bPC9X~dNN45t;SfByGqPY$5uFZ6;c+}FtA38Yw@H&bIG`h(NFi(vCAYbFq8CDc+c#6b>n;f>9-WbLLu>EzxZ{;oOi6KOcd#k8p?agru>!nX& zA-0Kv`@naamPY9$jf3#oqP3Wnf*kt8Cc(S_q`E}ILb?Vu_C&QhLuGWxLKxMmD4C99?*Yu8k_K9vD=Ke{U>M@1kT}srxE9@0MFm zAJ-o1P5Y@W?IK%f6ks9`Mpdy)jov%!QDM_MYnrdwCj|vbIw4p|-Lv1}N59Zq`=i35 z;=DrJUlyMwb??hw>{fMFp6W5**{?JFY<-sdMMT#3X6J-;V&3}sQA=1Ofg9e?J?a`4 zzpZaW_R-erwY35X)%vRIh@dc=jUm82NbjV#hS}B;+Iia=aa>+_zZO_$AFh^NYa)Zt zR)X14Mc$L_DW4Qvr%o=KRo+hnFPal3m9Gt#b}CoxGHYYe^E ztBd5ESXh<8~IPBzv-VKa)=c1D1g70k2moVwOJAlUBCjWu4?Wj7E1R ziqCHc3f9MY+fxvHg=X)Io2F1o#ZiF?=7S$BsIOX8(#PKOpm3|GcM1{9cGeB2vgy)=%F83JMqFGL)%8?t zZPj250m1Ih^pe3KXqajg(3sFFuG@7r7=nIe+_Bjm-ZhN&LE5oe)Zx4K*wH-?m1uGK ztwI^55k%*5`=)&9xlxFv2igdmF`tEEvs&hJzl98(sp)}C$=TKKVD+Ft@87`Dxwip9 z*^qTKu=81NU4p8SwKP*P%eD{EHN;@MkCzC#Bn`kSciN5Jz4VaUJb73c?YODpZ)GfU z5J2gi*Dgr3xcTFupsRui$lkEWDr!z0ExJr5>W|;!inhJ5QwI;ZaUU;F;$%OvmJ5wg zyQa9^cGX<#i5NDFYCZMJ*`amHx9qFSNTh3NM0%rm`;CA6L>furT%<`iaqsxlcJ|jR z9lDOrq~5MB5={OC3u+nWRlVF&7e|jFaZe)-)7{E<{PSEVn5~2k{g1Qu*WC;7-7R=0 zN6{8*UlIqv55pbBpSBjTpmfJxsghN9GPE@Szk4p7+m&WJ@s=7 zN$g}fD71oZ+ymaJonz87*!WWGI&spuTC^>5dCcxQ{A;#wI@cg5<>#&_$Q)!IhiYkV zE~WLHb~HoS{{Ty+AJ<1t=9QOY<=slq+{qK;s_`vm^x~{tBh=8(*BP(K zJuyIoU7{Dv)wdG4w0SJ!$y^V3_kC3ymjp>F`-}5q_*JhRvzwO_FiWV<&hw^?@gb9= zW|7iKY~4N1OJFegchq;2UMtNI-Zp-R#<*PtySlwnA9sIk&u4Q}uHX!e9{PevoTnavP zt7&~TvWCthYAY`lxREt#_wh#N=3Z>tbn5b~^{uF9rAB9ym(22_Eu;q>>(;ZKs|3&; zaniTzh{#vxFU|9)uc6T@ zi8RX|Xo=vKCmnm~Idc_@KJyBPiv7z7uH}>X)w)PBPtv5eJUZgvM$is(>t#%mmd(w)0<*exqze7s7V{!?Xy}Rn(INR@|q{dk}TkrAz z0M|;m;&)bJ(}y&Na&l(aQpXSx#yTkUW{T`bgACT~_E%p(@u!Mmvks%ErnQ@Ebsouw z&J~u~@!eLIZUC8N)^X9PPjMcLJ1c1UvMY(1Tc#A|rL~M3JNt2oEu`3wg>P28I@>(? zj$DuC*0JA5a20%NIRw2|w2NNC$jkbLM~Gpvh`0?S{>o_O6VE6eN4nn%Rf^edn17Cp zoYKiG$((kCWZ+YqU>K;*PStT7VNKRM1a1MZ;}cr3bFUAx*F5Mq4cD`hDKD&yR(emj zg=6>rx|Zc1m&^WYx&xY#kI>jwka1Vb3+RSyHNZ}<-TJGDUfv0?|qJN=ZJI7BUt^~=3naJwkg zcx}4_Hkk3NzeuGTLJr_5qLoCku)$Upam0S-GcAw5EuVaN`WO`V&|=q%MBd%srNZN* z4;s1k%fz;3O$8YDn)M9F4WW^nS{#rwPj71xjwRSWcWO&?Ox!ubE^(7wGRiz2Au|=3 zGm#MSsN#YlB;aXBzI|`51uJlNsMiw zXzAa=gH|Y{V^3pQX6OZ5TO`rR&XY>8r**nTh+G&Y5{zNHtM5+`k!_@5n|T=JWb&iU zfsZNiB9XDJ5Hs0ZpUcP|dj?~&n( z<;HtR*m#c2KB|3E4N;$FK5_WgM0z!h{40}mxM%kp#+ftQUDdoR)+2U~@Sk~FfP;y1 zqaO5k5$eal^#GzkUB9XLzui^5^2FHX1VhV>w(I`@I=mL#LO9WrOfp2-H5^v&s^s>i zb~PjrH!)P;xbHQ#MmEg_B+|$jt0~!sbsJtSA2uzX-dR2N$CV2%F9x??#muJ+p9-6Y z&uJv^Ai_@Tonz{u3OmOcT*iCq4jEx>8f5mRM%mZT!l#l+G#Fz@Uk9PCaygU^?9_Zx z*#Mps*@?zEiQX%T-rCR0n$MVug?|>KxYr9g!E`NyTxRIvRF2%m6Os1+0PD(<3$nuA zdmwZMBVIe|&xc!DMEp+TQR;Ure-@+O)%8@caV|KqDO|v@#5FOg<%ZkWF5`^oiyrau zpwp=B4{VYyoh@FmYjC{7);b9+glZams`N4K1E)1@B(mgc(#BdFLqy)|dzz{% zX{QlHP8TPqojts7&0gp6r7m>%QzGP0)H+rpbB((oP>TLTZiqWwoy|#aXhiX6Ag@v? zSfiN1c&bjb*}SYQS+u30h~*Zd zxQ#ib8z2#pO7YppZI$il9`UAEQe@9!qL4-jJK)n4P=c}ZDY@OJ)$@ARnCG&^0O zbEcLaTH4PWWz~8(sS`%84&ErEu9h7^u9=`l#;op?kqJrAKt!s_Wr@xja*x{8wn7;Jhquh&st+e%=#k8vXYsz$kwnSCE+ zU$`xF(~ml6WQ@9$(z<_LCYS5;X=4kSNx&3sW(FqHf~>peH7sIXVD48HJKw~&DI#i! zcjVV7Z4uv3f1|p*{Rh9%oSFcVaniC5ljZV;4F*;*x0N#)gj189Siov!zf&A|*}8*Q zYNR?~VAs`H-|93BQ*xwVb;o7?(OP-)vLWp=uWqMg(|WAu3dk9&)YF2non+fFVX63a zwX+-JxQT%P7KFJZOh>F!#ZS?$*9+9&2DdGhb6uC*sM z8C)mO8Q=6*0lJ+CXf1uN54?Qp8zRPN<-bv+4bT8e2qriG|=-5`C^W9k9hPG7r)uKst zq{*LmdW1tDZdwz}lWGOz&`!V_NSn19jjJX8s!z_YGsc-ltz3wHs$LMxjuOe$HnwsugoGUl85p@gUK~`6d$<^(=JSpwc>N|LFGo)^5Vus;BRN6@x zj2brgH?qcJe#r-8LOZMJXNVl(&wU5ApG>4}sA?3ieHS$c&Qb*jjSPB*`RHpzcc~a* z(bsBejmUiWLfclj$yncfpBm6|mk2cL@vDnuW;00HFPe77LHCI?HGYamkxRrnfl^5t zl?SC-T5#lsM|a6vkHw#jP3wGC8z?y}yqj3|UA#>gz2K}ydU`Cb{oYLKN%GA}#&{+nL4l6;av4r z1ES>n)G$J~c*jZ-IVk@CNh^pq5aM{^cN#*x;EvC51pH|Xd{*8-TN^!G*x598mO9F# z>%%zlrH|I^)=)cl9NwmyXeYG0`be|ksDlX&-Y5YRAFHJwnen3<0&&oRN|v^c`i?d9 zRQT7bqs9^o4J_H+o}kjbrF@AMuvVsla=W93lkx%H$Y7Z%Wvtf%SFYa+bV1oD{Sje7mMiyku)WOn}m8RDlDiNvjLBNAsx z#z)&ovNlS5{)7q=?jFx@Pkl9&g}1HUl*$C$eRQ{z-z2w^zVYeUen_EwQb=S!jf?2{ z)5UcVnikwQ(xb$9W#Ug6IFi}+bUzC0YKm-iQ;dp|(#>72QF3&zyHZ1brU}9MK;yr`s)6o7lI$&xAwu2MB|*O#?$`~DqrVY*y={{VYCX+AY1 zAX{_Uxw20FJ{YN%<0_H9mgOOJW95q0vCRqv?S_G|j~cn+R=%-gZ^Rw7qLGIk7izHK zHe518AWl~>I*e7_t+lPCjlU?3+b`0ruO0bzV%3&Hdydq8>G*Y&mk~|bwqQRKAJU|o znGO1K#+jr|{xu&Eh;n3>JcFyT|t3cPblE&rH^smq(U!N!rp@nRRNEOUE|74$L_W}&GR@^vi&E|8)ZVeG z6eqJLdQ{r8?BpnDsoW7s!MK)0h&_zINO)9la;KLgX@sv+P)IUE06;Yz?WM~k?mKa6 z+v=>I*8QCKP~=J+l=mBAYF;UF35wD28j^m2(Eo-HK==VADXmc#-Jq**(Urw04wr@-?YjOLzIyE+WL*O311xUE0X8yS_^u zyH#&>E;)>&SYDa0FGZE~@)Wg|`Ahp}p)y&)7q>3dEG=w54?_zK$ z!z|dCC=OKh@~Ayh9X*q^U1z>hcCM8tAywIWp?o*hT3vLW@M|D?2Kl9tJ>}_I+>%Mj zAmWS4#jv=`9qD@;75rvvOGsP~bQ7A-$|pZ>@FOE4vr2k_MWkM8cz23>t6ejv^N4rF zWpHC|gHO9h1AJ}gL`uB5B5ajyx>cgyLoCx6{{RQLjsvm!Em7U691dbKn|saqLauIa zWPz^j*hvqola}$OP?(=G% z#?{Q+7XA)&LC$$c!mezA)ysX4l`K)GGE>n-G>vnM!7h^lUh34V^$N9~ImPTVrmaiW z4~1lPuDGG&Tg9nQQBJZJfb>(Hsy$Z`3Djtr4@n1c6(zjO&Q3<+MaZSTSOvA>45^Q0 zW%H|^DqO9dtbLUp?9zB+zOMMw+cMlIwU;|%@<8}^)OTDqMT+RBY%%P}JnHVs?kOSS z4wzMCI(|9nQiX>0Q{mxJ z@e7jD^8MIPxt|)ly|#lz-Os-!JG=#FT(k=?>N8T^IRTsI4(il8*JLs^a)rw(W2R~${NSR8 ztt_jhUlg|dM?i#ovX9$R>Eb;0)JWQwS|>0Kh#hMzt`K+W+OwTUy1Z*kb{LH5t6Q6C zc?LN{m&Qgu6*P@`ZFKJsW0tt7A&u8a@aa&&Y@GSsu!y})dga}swXe_RKBFJRRlI)v z+7F#vn6$^Qxi>Y;Sfrj6?CCBw{Bc%SH*q9Z(MlwcGj@(EnLbzOiny}Tq{WO$+}>1l z?8c?x_p$Tsq!=n|h;W`MGer%vYq2tPDt!L{MSd3?25YHDG0(m}6!wwGd1)fXPI7YI z=pP!lnhBt8Y-8BJXAR++kAklbGVxYjO&YhjJaby7;Vk3nM=&~QtjneR>2)>;=*zLK z_xRRPw4V`7%-dIHTw|fFD}6LW!44>fk>q^ibJny!WcV7?8^6=Na=;kx+Oh>>VOwBNwLA+aFNhUAd+7xK0LLJMLGd{5t|L9YrzU7_y<**UWJ#p%KSfw^`wK_3 zg};uZc|y7IsK*tRuPi^Bxc+)Su9o5}$uF!NY-AZLLz@_qBi~QNY*D0%&Ln|GPJF1^ zU9($SOO0y2_rkAZfFkmr5f&ST#YYZ9@ctbhw>`#V)9j&o(`6<)9smIYKR6l!F@UGD z-HM6iw^K0RQ178~@fh+nlm@too^Di+C}3abrCSDy8;B$sNrw0|V4DjxB&(6o_!_{W zSm|1GgO9eYo zZj39J8RinX8`N|4MHwT;q_|*GIL}&|RXsmNbRT622$FJ(zL@Fx(VK$GH0Nwl(cS0L zhg^!tjhJ_y>M>ikm*r%E)QXnw3xpIP7Z3?D=)_{zCj%;RkIs?V-f}#R~2z>YYnqAOOdt!t4U_LH=~$!fB@ywly1mk z2K{Lp%7`CbX}YtL<_zGnXJbO*&db#;ockYHlm^FkabCT3#jU#@`sh1UpMKgan>b2{ zmM?YN&V&|GByfoItZPY}miLQzwMf$dVeWC%QogNVw#%Bh`cj=l4@Sg_7P8zl(1WNe zZ&qn{FiFDbZtApXe~jt(m9`5}%{7|d1^KMlsqU?l)VdTOM!0%N>hegMot1H3b&AgB zy;@VsyG`xp#_DR~#`O$$aW%EixP^)^67u!L-;_6~%jztH7;frN4`iI0 zidmD{*+ggD{O_Cl{;C3BYdia~iWc*$B%!|Oe(s2kTGf1vP&^E{FuUSdq zLF2D+^;4|!B+>)BA@l;ctolc1IqGvrW46qVwzJ(x<9$P~$p;>dEOAZcSUr6Njll2p zCZv<*ugo>;H;2`2H4Olqv8PDv;+j@`v$)Bn5vr)i zP%E@^MVWUsC6vF2c(ND7ch%1eic=l`01W&ihc`}O?jN$QFE3*Cbaetu@5__CR87v6 zLM{_}F8#S1-Y34Z1`c%MdTh$GGp<(#;lQ zR)p*A5+CY4D&58olkGO{H0EgW!1zpqlMr2{n+J37&2wPNKPaTAr)d!RRF>`vv@)36 zS6;L%IF+!tv~BI?PQL?4lF0JM5baw6LZ6La$7{mg&xP7{qE*I52T@+9_qKbB%oj2R z$kUyVm0eAG%J(;r?z(f+yA*CMZ~pNj$Ed4zz658ba3~et4_LS^_!uW35hK9@XCIVL(s1iaLFy*VXa~qo1qMk4H0bx$mi( zNqK#q&@_f6>eS&oPLG4VO~tP5*Oh1NqHh=KYksGCCmE>~SjJsShVZ7gypV}4B{95! zV^`%@s6`06ZnH}wlY!%!HkOIVu(lq|DZ=KhFXcU_VWB$arJ7CJS1q57W7FkX^mOzE z-&e-4Mw8=3OPbJ6XTr54XGV5C)Z^X3#&J&)Hl=mJ4brp`M9B{`=#M%vT-hzb`L0(5 ze!9$kj|wiYq@JNR29|C%;cWE#tTxqL`wJUb^X^F+Z%qt~ttA>?J@t3N>`r4zO0M4E zrh*%I?ypxOON}&S{97=`Vx&~NYk9{)Ulf+@G%Y4|!Puo&(`$<^eOt>sQV4(9psWGQDidQSt?N2PIR?aQue;N!96}K8q zLjuUFt+A;0RB~H!Lv?norfA6+`l)V~NEbUIwHeHiXgzd3aat|m)^H0bJ$%J`Kv#TW z*BGq)jOMZK`PSp>^e8f{US^@Uob#cN@on6-EJ}cUYl}xSD@d`9N&$@cnw|@nn#vew zdsmW1$wE(Bc{!$d3|zT`bd%2%EpB7gX6M2yDv$ImD{2Jr@L$>~ltIMhR zmLC2DdC^=)h}@$HW$atW+(@QYWND^jG{?l6Yh=uJR;K_S_QeGwdeICoAsuilojB5? z@~TT{ETZQ;drv%B%|wkF=T~iD7!^FIbS$T^ta=L42isaP+VB*2&yL%QnoFo8keKw1 zJK)naVW2teGak^WWPiRlkv4fOp6SPqI@03QAZ7uGTw~);%a(h{yd#K}A6ox#VCpeMH>m9(?8U3JDs|*Kr+l6@?jQ6k)oteF#5R6d+|pw*IXEj%BJ}XB z4>5r;u|>(vT0|M1U1PJ$!m#hJSc?(&0<;c=E4Fm}>YC`bpo}%(R;2Bxbrj^1o;3cu zY>_bcSWVifea!zjkJoRLiM z0TQ08=Uj~@O#8T~;F1qjj2{lQ%EU9-Hd&;7$=iBKqq}7>j>8y;>0G;BB3@>}m7RMV zc~ad-3tUL<9Z>9BJw-HkxJmV%UZ(exx`4qUd;IC&PDjojRLk^Ql!L1tbu&R237q3K zmNm6wuZpsHqAtioU+|B z-$Fr_E6^y(q-`Y%{DMby1zy=dHG0-eZ5BJ6V9^%@j^v{m?JY`R_XggHa=L@B^348^fwd*ko$1cii;IjPKgDm52lDuUF#MPiHT2>W%OsfIm^B z)O!H$O?AT|XDjnHe##KJDQOLsi6-P|$d+eC4!RkAG2Wb;7TR!v7&hW-`zLhhcm zJTa+{nT+q(A6-Lt1STuk*C_JtAIlZMt!^N;nfXq@#i>ev*{HeY;kLh19#J)he(n3J z*j!y_7JSyX9W}3HH`q;F$jYks7cR$0$B^{xUR92|s977ZlCx<#tFpkKPKi59RyNWz zM`<8BpXp@0(8mCN}6U22w!zyW{DqkJKqih^F z&2c+qi*bT;QpIS>OruF`Z;B-3=c%aj#kBjmImH^t^yAUlO@1mW*5b;4elg6olix$} zq7xdsv*BL@K^tOy(@w61T{_pS>lZT>=}^0!F=JufQ^y2o=26;XKtux)JZcxcRcKDd zqkQT3)E=+Ing(xqBskUZs2E(`Nz7t2vWyR`P_eR2PB)p)NXMOP;uq6QNZDiTfnLt~ z>NfEwR%#e5vjd1(6bEY}LV7+lpoGu@}GU*x)a4XjDHQU0YJgYYCnu)&rUfMI`0_U;4W)2`{ z@a7$;>OG=2#X3zhNokEdsKziW)u48P1YD)l+$)*GZ}nV*mKPsC>#tVgc8_Z(&1`lb z;A(kpTbCY_qvJ^%CSET803SNINhXif7;g-b^ zb;orydPS_CK#r8jkot~%YShAs6|6mzBDZMKSs+%pSK0GjqE0*g9dTWATlB2Pa6Bsw zy?OdFA03UxcB0wVb##?peYjp^g!-+V3J`4x^sjc}B%Q0YiH;rSen)PlV zh2v)T`st`=vMF;2ZJ)e)8aYvAiG~>)p{sko9J)9woHP-P2%fH@?J@V^ZGP|M)Yo$& z$0UR?ROl&GZq(Mnv^Hu(aPKAuyYp!6q#lHdKG9<7l3J~8&SYi;>RG#Do=y>VFYN|f z543~IwLDI^?<Ddpw%S&lGh#E49GlAsZTlFaqQB#;)cyqB9S-OxWwW5TTDP^=@k zRs{aa;mn}Ta;4dV_)_spE+&&nDu-)X#sNMGd#UVrg@l&!TMX)W@IK!9^_k?!2T;K2 zPkA%q6*{{#8YtG@Hjo8hFB<%B{p$62Unmb!DZYCAE8Yk^>TV?xI>j2~NlPTsxp>CP zPf9U@Bir5-aW7}TH7p#{%4}*;(9r;Cm%|-s>(?KMB9xPvnXWRS_H9Wk2q zmt&`1WgTg5>^Q8#?>(qa`L9%#9%<^bNkcMp>Ay;Gfb4#iU1^1VZr9)T%|jYDFh+2ny0ndmIBXs3jiP%s=Vz~wG$r?&ZSh=XT3qwf7U;cm-&WwZtPcIF zcG4?L$)m)Yw~5@(8@?Py`bed=vz_I}`lTH_sil(|qwKKhL<;L(CWA-SI`g3L!RpG433zt$ih*(Nf9yJP7NbWzO;Nv ztoEW);l3y_XSh!#p{C6f>1JB|7TqrL*eHxLDFKg`JdSIh%hJG6w!OEG^4yFRnKe_- zz$R-ep}4n|vl;U8rQr8)n+w?i(amnlq_Tr7 zeXB9^$Iu6QY?#JvEWosm?KKH~DQd`_{-})e$f#)y=h7bCvCURDV(=(*j6W4L-#2(NPtqF93tr@pT)_+}xV zBkiDc+z*{n%M&c4CsGsIrr|N@ieGmHbE|xsyo%+Q*5Q+M0~;QcP@E3>TMJpW@flMn zF`WSS(TH81V-IaEoy}|NJWqXMq?A60QL&#IaJj%Z9)65`jk-|O*$dK@*QlqyEMeC8 zC%UJyxxje$4c&_6OWB$wz>_}ssSuJ!fuM#`>EYp6Y6vn*Y=gf&)VwS#P z@b_*I`1d3HU)fgcb0Xcxa)d(h52NBKCy;&){^J9&rqk5)rC2`+x)F919;Uc=5J*Y7 z2wqqRaqy#bx==p)GhL0o6fIJ15U)Xv>$JqTjd@qqKGbBGh&{Ep5Rr~rIA*~E%QY>Gc7_Yg`$(kN zua!?_KM4|Rw=D}uy?zw1Tq(D>)1F)QO+$AA0`Z?3BTPvF$6?RgTrZV7T5!wa+`_#Q zOlG3wO1H7IduI1Stxq&_!7Lfo93cBaOZ10K)(dXCoX~_^1dMz8Y--!q&ZvW8IdxPB zr4e)5%XOg8onGH~$n2rU%{k-GHl(^<05hcDLQ8 zoECA8&MS#<$u-{CSjxP)v+W0dJnBirTJ5H^Q53PZa5K`aS%)@58mK0vgf}kk$^k0K z4mA>e(@!LdG>i|0T}PlKD!r5fqmm{`2CsFS1XsR3$|2mB&g+kMmN?KRI-24MdutTZ zx@(1`ZRl{=lq4#ow1D6r$*Gc0eOqx{#mFb9tugQ8TkdKrnbJm8>)*XfVF_-Ia#hat zh__&V+8nrKwjEDzJJTV3dcNAy`#*IyvAFS~uBT8NP#nW%h`!HPeMv7lTR|#SIQ>d22MT;>@?`%2vdfW0FKmUa*cs+THZJ0{w14z;YLym%o9i`QZUTjFbJ!9-To&LI&nY2do6OmD%lVkJqwO`xCrR7xSL_EbL z@R;u{9BnKw`p0#4n3%d43w_N*eW49Z`at&W! z$~#lbt~~t?f`lo0ZPOm>8dj5w-6%Wg+M-!)PY~sMhT!IahQbKYbOIq*pM~2?@r+S_ zy-9AwV=)|Ji}21Z&LgB(OTXJ*sd;MFmsrc?va)_qqgcfOE}%aoW|k;yr-#8EPEVad zEzE#S!%9Y-Ym!;JL#Ak;16DSp3BbX(t8%#G5yODUFJKH6e^a-AFM zrct?Gp!yG>cdcTTd+SR5b)Nd)dd0NB40e~UD^!-^ct_CdMmb(y7jx7(O*_;NZNzzl zPf;cb_=+Opc_nP;wdppuv2z#ZxY?7;8iMhZ+(r(GU4D;^B+9=L;wnIqQ+y<(7c`l#`47auax@ei!qj`s1TwQo?f0O!=xf;4%)>TFC<$l7T=Q&@;~Pu z>ieGIu%KyUkjm;8Jh7)3{WZm6C1NWNz1D`f*9JKx)#sd0vtg@BYbVEgdzq3x$>p)e z3iwwIy!=daL~^X%mwz9PDhG{+C)%cxfxR3j+n94sYSB3 zGFDJjG?ML_Gwd49+FPg1+~Ppth#j=#>-K{5o4b_ zOa^oDu1(B(R35~tHhNo>(-*SKYVV_u(ODH}6%?{JFyw3ip+BrbWWJqQ^!F!rDY{oP zLd_q}jPxRavxk#zui=e8HM4D4tX0Gl9?PM|Dd6hyHVN^ixXe*c?lNP2sZ<;fcvlvh zAf`*$*9Ye=)o&}o>&c;(L?^ub>XG97TOC`9>w{5T1E^;Nc-J=EVMx`XedY5N7`iEa z0sLI*o3H12)|Kh#V0s!Oq88hF&S=%26^%nr!tWAn{ztm``iY~*_&^B~rmNU>ZG-c` zs2F4kW6o=YO_1veX(k_%1zTT7lWTV#41=W@Vwc)4P@`aP^8ckJvkW;oVc&aVsRfxU!c-Wsi4_V$~AgM_6>=*0xSm;lNAR8mQ?#WbsL>hTk{8jchlx7AN+s^aD}lsc*HeUz~9ZU8Oe z2oqZ$DiHAw7G;}Jeqy*g8g~*zzYmn1jTk?Q(G<4j9Z6*Row6?(><ZD z*5l@n8V_mz07zQxaVEcf(#ktN6uiPV?ltV&t8L|4TPrB2qq>QE1K!O@`0niKG)}h9 zb9ho|?)o&56WJX+t5Cu6G$e}v9=Q3myvE#DC8q5T?9lCYk3r*2&5uYJ$?l~Y>1p}9TrSCmUhi7`hApxv)|~kjei*Kb4on>RU{7~MRY0{cX`&k zJ}(1-&`5+D%+|>)OTRJ(>-A71cJ$$syi~Er8=G0%Q^L)*Pla-&$XO1Uv((g)MTD6~ zbUwt@+&4v|wv*liu4{$fLK0}@&W8FsRM!LEQWZytt9yirE+3;LgJ!7X=dTaE{{Ry% z+4xePp!bc%U{TF=&1qkF)!+wIHqnR>`S;KRx{XCR0O)YoBDpt<6fEbnF&^iYK|FFt za}IwPJbWtF`U$m2N41MjyF@dLHb&IouVs(MhJsjQxOzNkF6_@P;3>hcX?EBnqV%PT z^>eGE3go~VMs?BxjFU>j)op`+j(sFnsO{3^cts}v0H(Qja6PjQ=~GQ4YnJj9F1F9m z&uWtPSPrh;fuwd!Ee=E*rWAMAfHKn{{Siw$7I~iSS0(Rm+z+$ zNOc3*Pn(YuM&2C~4SOE)E2iERfH9iQbAa18K90!96ehNIhE?xY#Ujl=GqwR@H^;`K zgNbl~ZaTFGart@Q~eHvnlP!ng#)$0msm zrA@};r9&iqIy-sT^JS5Sdp;(kw2BoRM9y?-U6+4&R}q5p{bIkL*^8YRO(V;?jg;2r z9Prc2ngM_gKS8byZ;c@>6S6)ZA@klV*9@CYY&1sRBf^O8H9fc`y8sOLRm69^%kI`= z@dB;V+IAC4yF(%sC(wFSmX^1SE+k+Tn3WVVW2NOgPv z0F<>kA(Ijj~ zDjh_3dC`v3@TnE_I|1LE8dMwHf!cA?&ZM0&jQU0^FSSK8FE5u6OlNBG^br#3$8}oE zsf4{V`zqWP<-dN7zR^dAPQpPrJLBE2QLsR5t$Q=w%(z^5dC~QrA$0OTK#iqA@~>6A zM!2?p;krcGhn-#CTwJUGTXL=T-OHZuJ*v(K#Il&IUj+niO!xF-V|b&ML`udQA5 z#^6Y-TN~6CP)PY_#!tIS^G=$JV@NyKs*>KZ;N9Y!N041e2Ctzhp@f^~zK>uE>zd@= z%<;yy%v4A7jal(1<2>o7U~<{)=W1B=YSf^y&q^)J$|1%Ng;|&z)?wvqJ9nD5Xj?Fq z*+}>UwmkZS$3lwl!@m zF0o6D$0{6e=TaFk8Zn`ooMUA;%_x|2HtlbNT*#Xs9*x$5ox!Q5wY4`Q4}TphCgJxw za-b{>*vFTZNo#iZ782(gZhAN7p8A$po-UBY!A8W7Ih&ASr#*3G2(P?2$M#NysL&;hT=)zyy_w0nESIOLO@`Hw2MxsZEU z*BV#2Rv3H3qV=HhMe30E8BXS!adT_0=EU#seRUo0-5DlKe-(whC*o)#1+$3;06T3% zMbMMPB`SpFgX37PAj9$OIdEg?9fe9Qcti0y*LhkpH7NKRNDtiLX$Zq>8d*=6HFj>U z<+q4xD1dYo9q%>oBAEs`&9F2~F(FM{unKrkc#&=FxjIVyBjsMO*DDRo88DWU8&@LN zhMp+uxps;@m+Prav%|soesx6&O+~Ad#3Rgsaj)po%L^=<`@*)IM+~F!WNd4h2zaLM zlGin1dj*{LFc{i7oW-N-sBd(wj|>_?=KR*_pE}_1t83+5=ynI*IO$wg-c=8--ISwu z(c#jd(4C1Rf7eZC7$|~0dUMdxP{6w;6DF-J%u28{`MPttlwz(gE@V>^Lb_0%f}s|N zTm`c(4owImeGRv3#=jnw6ge$$4sr&ZRjGi@9L2q?Qm`ZAS|c%{XSb)`2Beg_r~vMF zp^pBU8`7rYUY#i6HON;zE0-#Sexo9b&Yoar5C$7gRf+Mvv( zS2`*Avgqyw>9` zF|+JdybUOB)A+4g!ZX-I%-W~h9i6LOo1*U9(0I_IdC>FfC|oKSCda;q6qiwv#F9Ve z#?Su%I)ZH)q94t=VUW^ZTD+y*wsr2Sm@CBGQ7oMUv(2&<;N zo*rwbvcrw27z9%c^)lkKa$>;#?r!R6wubV0BNH1;}9X%IvDfvyRKblCzW{%WjRv~-G zprlP$zm6cTdQe0ND`;UwM92;zBw16 ztgLD-QsKXun{50mbCW|)z2s^o;&y>#X*8w8U6&tNt|b=-oA1C-Ik6G#P*d1R zKQRH)Vwn4$B8ywwnd}MPIC^>HRpsT3?Q@|5MQr;Rv$+Dd81V+U6pyr;-4}lquT@6G z^FE{bxvS$A1Xx)?&ihkdHIv;528GiPy#5r=HKg)cPjKAe&wv{_#{B@OZ5}1EOGM{J z3ugwn&l{Bmr~WsxV2eKX_CXJ_*I3Kgr}b=3nZD|Fgn*RA)+K1W8>#u zwsVi>f$knPm{lI;6RiXLt>O(@@tY_kn}l7;OIhjuF5|z*R8w&?8(L^@d9oCUFmLC9Po_=@tP zKs6QhyqYCN$NZ>TOCxhsmW_LcXv%Vz3~?Ijt~F%W9EmNhGajsa-SnQWqC1w0D~}OY zuOf1$<@S}fIjmy`zLYy?CuPrlV;D5Py>%VCzqlFqK2)LYt}QGrpHPr5z4drd^)Uw# zhptjhEWbRpwHO-vSNCDqexSUgkUcrPyh#Ui zXTqaA1BYCqslzKDXNu=sSxV@Mr!enxGf5hiYWG5J< zlHN$?iT&9mZG}H>E0CK+sy59Rb<>~b^R+81&m3c76!fJ$Kaa^1llYsil_Y#h! zkH$(!UfO$me|cn6mH6VJSnh3QXxk{7^f4Y4bq^U&P}eRIgM8m3O?6`=yksivZE-Gi z`PI_3#+hTcJg5TWCb)kFwzirJ=_AuCpxGO}iKMZb+f4DMnC`RfGvk`#JU;TV9qKFbzoxxn;^$kkfQLBR zn-9#3S1s9>Rw_wgA=RP{oqZ`_v4R~uzSHC0G^Mo}PWb|(Sm%ixjP}J#6nwXzrlYLfsyS~CTTV4n$)tAo*W*xf+=55VIHuOPWp4hov4kw{+EfA5((^(w39n|XG>)Wx zRcc$A2H3{4isl)Zy>>5TwpAHpoQl`$Y}swI_4f_rqbwm$X2eOq}7M~m)}8ZA4) zEJIWL2=zTAw_f^z)pe*QzN@~u!S%Z&TLG5As2f~ux zH2x@=k@4Ppt5aZ+)C$RB7aN>c5WgBf1%oiFjkVVczgb(Dmug)=&JK5|0zPJYjTO&YGL#l}>M~jSpM^l_XeWJ`$u9K^Ti7MF z$8#>(tPZqCc>NUC?(B*pGGtJ;gJoF#VFRE(IYAgb@}xKAUeBkxY*DK3_Hbf zd;b7f9MkJGrhXS9 z>I|PZ<4Gm7hDDKcf-$DD2ycO<&wXdnj8e32(JfqL=eJm<2W)TgtZvEON?Y9c)M7bT znF|RNJzrfg#M2JYVtSfQeV~U@5;s~A!EY4yVle0>>e;T`o~?7Ibb7S0wvm?F2i9eV zP06Ea#xBZTMEFVN`QonD3DMP%3ukuQ1NQGmE_Nh<=sD^>H51Af(sS<13++Zbj&2Ug zFU?|Q*hWmS*WfoIHi)Se;7e1W1jk3K4(5Dp%SCgFhJf^ z=`>;OV2@O(o}~02uCH!lhh4Om=h!~_TgtV-H25Tjql*6kfkI=9d-%g*noBr}E;=`j z11Db!?GDK4n#U*E`O~;fGI`O`wG>c40Ifh$zbTmPnWB?6w?l)zX(f(!fa9!YvM=2H zd+8^;iDe^Z!qSGYjjXPFq#e|6tkz2$d;YHbDfm>7+TQxiQZ6Jij-be8e2ao-d~ z+)X4q9Z4QD@u^-5rHT8nI@DgXdTyK?jQrXQJPtP9lfH$;t>Bg^Tjwq`)G=I3p-Ak? zoBo>RjxP*u$*uy!vmo>Err0YljYiP4sS7t~qH0DJ6z{`UY02%)9DKP)@1~oA@kuS_ zA27E609|O}c2V3Y9fwBJ?NZ?wgS*1%rPt~;>W#!2(r|x^+zp%I;Y)R(LpdGiKVhQ< z$}Pkvs<_QP)tr(>hr3q8%B}dUGPIXkfoS3zmCbP*yZE%Uvg?d0_K2<*7=zUX$SzUN z`h06vcCQ-Uu!p8Q=wsgTtJrlm<$51`ewAybJ1aC>{Tv#F758ekwz-B0!gkn^+FuH? z+qzyxn)A9N)H-0BQj|o9V+r$HMWk@+q2EO84lGs zmN?v|$Cc20EAdbES7<6OJ<;P*+j7z4eD96vIkP+9U<~XjakQXrJE#?1yiI#aLtEISXF(G-1e7(>2;|-*Kfn!CdssEz&By zUmdBUfb(W{&XC_rot8-ZTlv?t(ocP8w_Q12TIlrNHLb7p0#lnqJ<*WkSU{e(;~JAJ=ChMvJx^eT**5iQt^H)oXb=ETHm?+ z%|m}ZqGl0`RmZp}dT~&F&|8Ct9ILPf!@$*~O2vST3T8EJZh*6^>pnueFTaIDd1U4b zggSxosBiBRm%fuSuTPB$<85&s(J}8_*jrS7G}pH6rdZVKPU$H_dwP$ui{qWH~3P+ramPn zQbKNP)$J@&)?&HS(!E~xCWdzC3F}$_FdXF9Pzmp$CB(7Jd-L5#)%Ciu#xvMjHt<~A z+Cz=I8i}I-;->Ao2^j`g?4c(ZmV24Q>RC}TPm!b%@XM>5oCWA=ORLTwJ*BY8XZNru zi&<`Gk+#+or8JkXE&N&c18LfpCE#%=2eTxyYHIu$BYAuzY-WUS_d98D&ARtcv*Mp} z7ZA#J?2L*=``>wH`)puu*+5)hGzErxaS=$6-Ydxd>f_#}CoRA zzvtb{D=TV{Irlc`Jg7+Vp_=ARm1;Rd6_6ge?yfLk2?UX$ca_Iqg>d^zjZyPq_VWyO znfEPH@XL`L%fr*~X;l6=d5;?5#~Ahl(eSHlt3aBqQH-16vE@?VSzE_)F{)ivad$jw z%{t(srU#WX%WtMWUUQwr4!R2OS5|iSj#5YFd)UvFNo5w4)6nScX1HGu<4$3&r*n#Lnse!$B;Gj}NzFnnZN&FK&QC7?0A)+4>hcuw%srYX&7maBTdt5!bkNIb z-mW!7yw```e)^8#M>YmRrE^@tX(w!K-NaTLki)u)k+mdsIX2 zAw!*6UDSMgs?uLu7f$04#~W&QG%jyo^$5`F*DK(xlu%M}b=_8Gm+$TbPg0 zl=ZC^*9?pX@#n21cibx2Ttt5u7enH;B!W~i0GK}Sm2+flBGlJ%DYlKD-eJ6+bR)9A zC>@Zt6bc3 zqG8Z{>Txx+UFj#8t9fW=ZX)La~3lmden1C7P+GORg237Z#-_N$kJOOXO2CP$k{lob*4vM zO2ctnyLkCwkAC%UVQ1U3X|>6ybn?wFY%SCy7Si{{OB}FiRaG4Ad(+-}(#smhsqkqM zNdy;{7RFm#9O@u+q3b}~-6H!U#l2f*feRUYOi`FD% z&S;4vVS|r_Co2X_cWp&verk=hky(L?j;u`>vDZp~RUNm)Q4UUHt zyw)Xp5)EmMvObd55ou+)_Ik!s%vW!Ej4vir0O$+%V``nPOh>Uv~{{Sl$0`YJmup_ZFM^^pX$8}v?T3m;-Z*?@}A38x~ z%{9%zJjk)KdDc$jG|EWpTUTTj2W(W4U*Fu>aWdyfJ1^DaPS%$R#A6HadYbK$M}?y0 zvMAo9;?_RO_oCspZ-}EE^bKoo2<>Uc=AOu96Hvxabz4Z7``=P??&Q9P>N6#*zK8^t7K8rB#Mef#;L9xu^%5s7q5*)9Fr-X&d55NXx7pg=En04 z-yRi_^#k2k96ENfs21mb zp;J#vU=G5HMCx?==faPxzM(2(vTI}L!Tl7+#;v`flHHHB3NUJJA8%@4f>qI-Rg@ZZ z4eJOGH^9=#1=7gx0K`l0D|gl&Lkj&BdiJf&@YPzxLzttoMSA>j^JHlB=sRgNk9ETl zq(&^R8*pg5$*GNO-&JQ>2C=In!iH$+thv>`aZ#|d=SDr`W!|k_;gKz6IFw^5pBm?I zd$pF<;A`ct^G36svDUY(n;1Vd)?vK3jQL7UayX=h=SIr!7Oc^lB8tP_3iv-^pkj2- zg9?e{gldfCUNcvmGU0W@JVYNVk~4{8ie^a{9dWfeh;kRW4(hn(xp?A;$akRf6UzDf zZ%I5-hR=t8m2-HkMjKd((Pyjio^4jwd_EGE7pv}k(EZ}HC@SNwO+>Bqs?K`Cp z@t%w`P|Fbk2jbE`>NiF?8IWy*vbA4MCQD?NE?;f4k~{0#zFiMyK|~Y`y;Z6n6=f!^ zN7_a{hIgo}RfUD9OiLoRTw=X{EpsYfW*2{blbL~1iDTtlS}>15@Wl;X_2g>e`NpJ- zr}^-7WUGX|zV>anU!77W`whsh!)rcfmRG@%mvFr+ zPB1aOJ&acz%VG-Xlekr_{H#L5qKXTuhG2`jX=^s%O^3%XGrT@w^JF; z2Cao#*+y^`^*)oa@~Kzou@%;kOq|RNDW*u%vJ|r(q&l=Sbx_fPB(x@PrVu zA7-bg+d-pTD+&%egG=kvLj<_fG%PWwe%iYA0gEku%9E}X?~1v);MbxZ7|p!HzO7*U z({UV_?aryHGxmPk<(nCthVF##QOb1i>tZrZ$51Pg!cRKrH)`)syYQ&dM!DpDE1vUK zp+Ze_aJbHW+P$5yZMIV#a+WOF@-^BwpL$gG+&U#bu6f&xVEp8*aUezST>F(3-JC5o zxL<1~tl-i~yQ7SQ-9&ZThklchR#RDVC*jwR??$I^Yd80PwQ(}*Ob+VLPp*gGR}W=q zf=*6<8vcI@MV9J2Smulf;`1I3+(Nem6U7k+8PVHpAj;l8ZDKXq!zF@BaWgMB-4HEOYGd z6D)E0W4fGVd)+I>w3Cl7M|h)w_S4222zrBEGCb;Np*^iRSn<|~I}mV1F)B=L?*UOy z9ELe{Z6XY^(7d@*d0-n$OoOyPI8^JyZ+T2((v1=KO&%S_?j+&&(6*Bzji1hh33bhr z7*q7<7kqeTgGRxW_vX82O4Lk8F%M1Z#w}f`8(B}utg7Y%9zzZ2WpF7ZSp!P{0E~%F z;-Pu2WR$?VVJ_b2siVKM=fx*yRBxrK*3M;URpkYBeH_*F$(C@K7!@C55&Z3`0G3Fm zL8{hx-xzNLP)9Q9m;(rIr#>`wMlK<=v`7?pFh=DDBKCsg9wRsUzn{ z281l-+Pz^d$U<-*x$4gEh&*U+{n)eHQCz)S55ly`3bejF?dfdP7#jXj7=2s+0P7WPYpa_5j5ThWV}STBEoqaR{3kMyd0WoJuy*9?Q96c+_) zEib2(s`gSt+S|a?v)eFCxjH^;Q%ek3*z33Xr{PJ&t*si)_fDoGvaedEQm~c8Z>O?+ zs>MoxQb%3CI=9%9N>Uw^K-Nc#MRdY<=I|T8ZAW4r*TY#^=-4h!wd$j=F2I zes09ptzEQ}DskOXDQ?pqz7=&ftj(qVcYY~AV*Q_Z*G;JwD9@{E_R{wOO?SgAoj7bq zmn5gXt8DHlt|%t5V;#n{yKUh|4ix-p-zPpkG;!MTqx=SI<6Bo{iu?^C%Q1Cc;yTx4 z1o6do4)q_cN4G<*de=U{BK|~2AkagIST^C#Db%JFzb7EmN6QYU=~q4nx#5!cO$%i{ zuy&|~*C}%<_FbdwnoJ*!aTsmcZOpitW0372KSs53%MSc+Tuv6-UB1T@>vbua$IOqu zqL$Vr^)P=ET#MhpZcFVHk*_-0$I>0&U0cd`Bo$-dkyhgw>{Yu>0GiF> z(JohSjW~d6v?tlNcKB5A^9LeHbEmsCaclR!E3O$gyy3JmAKOh92nVhWEO8T|Q($V~ zaGo5uce1LivNLJrr~b22TD(nfB>6>RbplA;vsW=_((n-!2kB`$8lKwV;w#7(L$UXz zAM&M$k*UtW)b`i2thS=ytgEMV-@2aC+0UtSF}L%Sc+7Dn%vRSc6tOAoE^*rWs@sgl z(WAVIw;S*Ec+<&mYp%^#CAEFEqB2#b`K#Yr849rOG@yMknuwqYt#uR>gGMn^@U&g! zxe~GXR5u)Q)?PPc6vq|1c8;%wHMbAp7aS(qC+sBS1-tW2%_^!!4x`ezX9-DCermIJ zycVE%t(q9*g`vE484P}Ae@#v5bFAhgi5H<-(cXFr>AgTMPb}_3H;oHOBh$n4+qhwm z^k^&!vY}qfV{mJy#=NOuL9N?hC~&J$rs4kpjmzcXTrk^a=J@5VnjxOeC=4}tFu|>q zk~is5-pxKP=5fhSDoEOPF)H9H>;R(jwsJa}<=k4hyI;l3kF$J52e)0L%WUELRP)dCpDMZ8N0kd*SdQg32gFh-Z6zC0 zum_EJpuR50Cd zB#WqGlb*U9u1A=lRf@RxS$nG4uGwU3c=RiQxfB^P8$G<%Cd@`v8`t04X;#umBq*&o z&OqvG*COI@-(2)*H3C=5%DHe|G;p7uDUvE#^@MvhDg2pKe%w-G!y5JmV;Iz5ku^{VrSv`vjZw{E?t=u5h}z-grhCJjks> zb@8sXjOMf5TW?(G^Q)yu*!QcKI_inGG+rPjhsA1ML;DvPk|*eBTv==3{6H_ZgI8i) zR}#4r6_R#1NjCwyeN>lc+FT*=*nwA%aRKK+sM_*htdfH<4w7YWp zjIAt?wx*uoyZLuiA9L1@T@)#x@&@)9;!LN!(DrM*Ts5@4X$;X{}?ZW}#l%)`8W zbg~8IY4>r~i9LJkt}6`K)89tju4a8P>IOH%0Z%^=V%P4~;QGMwQK6N=~hE6Q4s4&$@PQ`V63C9gRe<7OB)@akUp%xn3fK!cDvlc~osZ zxn=14_f(TuT?vz>j`}t{MiX@xFr4@ORm3br+}<8!=355$mpw%=UD>v)yRhEPTS%u! ziW4@ZsMp;;UvM0LZ#+gCGd}+JIZPu~hSo8*MmXa7pI#)PUPPOV+ zQF3Jqr$IgSB=WQ&18kx}nvrGQ^;T7}S#9boblIhlE`E-C>fi2LgG0Kp`_@&z%)M z>Feb~E;HO{aI5KgtiOt4-J&Y|2m;$)NzAqj+=a$StTVEkG;3sQt>I{{x5E18jri0;QV4I3OV|mXSj8) zH^dP#vJ%6{R1j;|t|*_gxlEqXt|w_Da=1*kDF6lUa(gk1>G3_)6gC7!tZ&)( zJn5rdAAG{)nTB23uWzq7o``vct?fj6w}8*WrPtVjz|^d2(}+f1S?!lhI(7kj=+7D@ zql4N$CayS**|vt*kr!v*cF$UFBCcb(v>M^k*wy(pZ+mV0;`sEdJ2~vsMQHt?PD38! zNQeSLS5k%Ut7~-aNYAOU+&vw3pwNXf5$_Swgs`1$sIwDIZc%jV-171IMJzXV2?$(# z-N>MjTdZJ5ry(glVoqv}hHFgr;(KT8jJBLqyflc^T!YJJ?E(jNT}wQ1wuA1Ch&7Wh ztA!edDoL`Qh5199qMc2Y?DgO%=Uw- zbgM_Ow^>YTT0xvv-F*hjj9bA8VX0)3VE#W{UqNWY)KX)~InQE`Om|hqq3p8^qjzS6 z%{&&*+>M&Jf>{Gg422x2uW_;TiuIuSdl}yyMFP5{M)ygnW$bOx6WVX8qv97(@-E>! zM%y#T@Tf1*br`qNM&?_?XCg1PiT&j?&u@H>AR8Aob303-%I-i9Ya^z{mLn>$)3*I; z8#W(<^Mknq!lkt3hv9HrnB$d)Wk~93-UpDkEg5suAa~S^RE}R#2ckC_Wa?`3*76L0 zh$XYA)K*UelNr=qo8He_mU|8#rsWhCnj@u$+17x0hc$aH5ACeR+MIRp6}3k-w2oQ{ zIgJAU06IR6MG8n@;v8b*Kvr$wLAf7brU?W{(fcQ2`PYHgue2X)j>r`AT;f?|bI@R7 zxpDUP?yH>z#7x`Z7@KRjng=GK|zF-F~FMcfL5l1<%{46Mkws|i>tOrx;M*%_|}9Y=);TM;%p z{nn{%LjxIpYI6p3K66&!$nmiF5df&cru;T($nB;*&^ZnPlsddi*Qa_`7=ZEPSX$Pwx5RjKwZz5U250 zC)ye^T13{j%`QSCA7;K4@3lnIMTj4xdC+(x<|yl0WgCvG;a4Y@sh6hxD5V+|`;e>m4(#rFDFmr)NPtnI(AiuQm@vX;N(IV-rDaAW4y^Xi1IjAy& z2OadQ9lu~Vy^3JYk)S>G4W*0*>Spg=iRNkE;^D3@8TH8L-8*y@aU8K|h>vBjY6y?6 z>P_5(?$$}kqZ!-inqOIqoTF#MZVg7LG~?~1RU|GqQ%!-5=mm^(Gw&Yi4BJ!09Hp{G zS>+4R_*2Ir?I|Lb?d+vXZs~eg7P*>09l(uGm0q!pmer@sFRLYm20e|p$)ICxON!pQ z`Z$)R(!9J-&KZwP3JJL{w`Qk;IHQL{6_c~yMqVD;okm_fZAEue-ngy2Xh|iz2+v6d z;)kk4SwF^~cC_DdCkm%@jYVm-yt%cw9UoRf_~yM&hyd}o;^qUg^*oD=a{byChSXhI zD}2qGq&9P6;~lGcHgQ>y>E8q6No@(j$u>9dtv%SJEAJ`q@1QRDV_M!p{9btRr1;U_ zam&qOA8ubKdtuHf( zS&v$_v*Fh1e{~dL8rs+bDx-ObaE(G!( z4Q(EXnopnmYl_`z56-a6f0I^r*LN|%&A`Z6WRI!u&2a1PB{;RSgV`p9Ik^D!J_3`O zc_KoGOEHsguBWiJxOt+9yK*qw9~zh1B#~>vn$ES=+(k6}WsI;7cS-$pY`ANv)JAlT zu~>v*S+E9r)K``(96Z&?9RAY$cB{MJx@*&MaAG<{G92f-dge}s=0}VOl(%6`aU{8f ztd`T1eJk1W{S_oy^g;OttsV2e7CiN+Igw&ZXoT`hoOb$(vEp*T!08f8ZcaO@J1euI z!ty;)OWd#CDDh}ZK8MtFjhSi|9@9{%THL;U)@P*;mkTs9gdsO_Y7V@IWWn~tP zS;l@fcWuHTXj3Ii>e;B{#=79rM5-j!u+1{QRzdT92SLVsDoZ!zU4WR5Nsi*Ak$?{? z>U?hWVGh^Za1B&!=RoVV!3L49=$FPV$;o2+Df(N|x4;#niNT`hC- zPn8U?*Vk&+)fBo{bj~S&OsMX~LbnXkrK9sAI=4gNK?C;PdecJ_opMc~pU9lGeb#a3 z(skVnbYszD&NKUJ`r;QeL{~u_;2!!hFw)E8PIJC02ebuc<$Ge=@8v_cs2-uJP>ZHQ zbEqE*5351e7~{UL=ATZe=F^}KgC2+^xh&Z};&rP&FTt;5hIGo6)2Bf_^%I-!dJN}W zU=VxiRlAoE;N@c;J~eL8DnQaMgyn5Z2RCuEIXjxnkEyFG*T#%dGa`K)?L)S9?x2O7 z#j8aK0KE@fkf8oy;=tKj`3oKrz@63qh)6@Bwk zaZVAI;aJVYJ@EOhG?uqtd}MLi@}{0u37?uft9k^TsYfqXf!4Dp*P0}6lUsTM;-s2H z)5UrI%=uOvcB`({o}~8*=0bXP6(yVY?H}g1%=lNbKD7pShF#W;)7z|E)3U2{J_f9b zw)`65v_CPjBWf1$taI?0l)698TDZ7%NoG~VP6i6qxzaRqJ4eEwOkUV*PmOEFJZWT^ zyBxm2$Gx=+>xp#9G>yqa^J?1bp3Zb>JMO+z`ZthmzgkP%J5}{gW`oXd+aD@Xco}eW zCuehCjk*5-R%mKs!^1mK^?6zXd?|@-PI{jDetJF!hjk*tbw&=^u64wi9pb!~-8GGR zs2jV2vE%Eg&X&;LB8I#NKJNW|tCuPikbJ||wM?51gT|VCW)AEQl?3+p@_NR5L%Zv( zKKf^JDnS*+!mIVwgQwwF<*nl4HxhfVaFsONHEp7jedh&m2axcuQi4;jJK$HelU_aQ z)PoYlDLg@o}P80dsM!d^^#rAX{52Zn}>dG>Gm4caTl#yj+Yke-R88~ zTbbWc!ET({K6jQWZ+N>2Na+?f_|b;fl^S#aY$|Rwc!QN57AVH*$F8clmf55Cdl9+X zoZhIK2~MIh`l?PBEDs&DyTIMq@Tu``=Hv|^>8o3bbZT|jAlkH@tIN?Skm*Su8Sk$B z&e^UXXQ_<*&v94EkKG>+wGEHskg9bbN|j)D4UCO6VYmyd^pj5D)9H=hmT*Wzy*$Jf2!KiXHh`U-pDAk>a2TV)M$nmKpZiBUo|qAPS^q<7+q$H=jVJzQ!ufv%*P&(2214K=dqk-gRh`cz{I19%$NZXIO$ z3be8#=qu5y7Xmpgv;e>^^jO=xYToZAtpeG!7OVK+K7Cy+nh#WC*~sZ#Yk!f9R@Kyf zbc%L?Q7R4QgTz(E?Xg#4zQpIupc92`%3VZS2ymUUSPF z)h~~oe(JD5;j#%W|LFj2Gyt-s2K*hq2(H+$t#qSQ4E#qAf z91$5lKN@yu`#If(1$;|`***0)-xwa@*?%9S+7BQ_aM|o(mdUN0=bAn0kn!#bh7?Q#aZ!NyK9fV7EyAbQyI+1 z#-X^sMzaGbnvjKBP8^dx^}WQog<|)%>IkM57OQP-b=Y9-iD*Lb$p{+_TmG77kaHM# z{<@QiN<`@nac(icnH09;hoo0>$U>mToYx73Ey23CkDYn}+0S<0Z9~NGI8EOTvLqus z;0-zHw|J|m?dC~sLUv`1vsQSUnmIs+@u|)cB$I7z)X;zpE$?GJ)xmAqd5g_5NIx`Y zt|P!+b7?2at|3VlOEq3ocZD>Ibs)D`SOj+Is+!96<5z{Wq2_)ud#lwgp^`;Va_TBR z%f?G&F^?Q@ATAqi#aeLq0_=duSE)6( zyG3rJ_Q||cr@WPLZups=* zRg<`&E+u#)&*KxQt{HV@#2VpekF~3OZCYZC%G9x3K=$%CMR7#+p_M3DXMXyAV`WEm zMe6W}U~&YHr2VyVVa5}aA1tYO)OPPZ^~58iA;P!SN^I?} zVw|_VE^tM5ch5?RObmq=PBFE5q`|`K-$};Q8!Hz$;W?i3R3m| zKdZ1g7&K&*M(m$GH=&06Jq(g4bYX^5-%PQ>I92)GW{7NlBfg}t;tP^Diec``JVk9@ z_FKZR6sc~Rq?E?C_g3V3)Ox-3@vD`$w<`gBMnUOO!wapy9GGy3(Q)f|d@yeas7)|7OMS221uN`^Kwtbi!-p~c`%Vq-GeuI!`6 zq`HpT#2Eldnv0(pm_`N!oz)Z^HpONfy==f?SL>;)ZbwNl-bSRkzMLX+HXZFzdYLx% z$o+-xK6Q5YpM^-bLAj0BPlbDuf2*Vt2FdzVFerzOemJ7wVAkgqjX4;kJ$!{|(o^Cp zOKB$MuuQ1c?^Jfz9{RUrKTK3oL2iQNcDsE66qiU5o-vsmeyV>|lh$sZXvfj5Gqzv7 zd#YQRJ(NhfC%Ds#Xg2O=tu1fP+s71bpEegiHaS~o_!^EU8X7~T0{7DA$G)|KJ12ej ztmKkt^*HHG#toO?wy}{E-%XF}+KU698sX^9`I=9}s^?xPy~Y|-;yPE~ZWCxddrp}k zL!?dr06M3TJ8Wy3KsF=j(!*

YjX-h1nYta5WP7i;sVk>OKaHt7(_6*}9*?#ePSgl$65 zB#_F7B^_`@b<#7nTkNFZ@7^iZ*IJ#3J@pS8v4@voblN09c8SmIsP1wde2sF4Mj15B z(I($J6uf5L%G7JMW<;bxQ%k|-A)BbbouAZ`iJBUbfAMf(A#=3xW|PR z-}lx$D^REL10t>Xg~M}Xdw*g+nZ-#Eo8CH{sK$ZeUa!N;E0OJFW2m2nGKOc6_MD!k zi~h4)(HPG4sL>-kZ;Ico6J4>ljbwI*jc@4~-imV0vE5o93-#A-1(^og*WRfbILJ+1 ziaFd-QfqHU$9mjn&ay~B-_29_PrTCl2CqynjYeax3_hbK`$!EgpXexJ-Za^ZKhqs$rAz#+vS7<5;hESH`k7 zqv26JPs*1&ZL#t-acYo9ZEoi-i@48zD~Mi5G{+PhJ9kmnHvTxMWc7>>HS1ofA$cHX z_D<(e6)S!2Yr9P6R7c#Yp3fo)K+?JQPklpkY6M&|77@(fNRN0>c+kW}umc_AH20P# zO~%^SsFJSzR_^NR>5pp8XtaR;03QmTNf2v0gKI1oFh+zo}Lvox{p(q1;ari;}vsjaU^mqcH#77 zdE@m|Ja>!9%e-iF%2AMn`>3PFzxIdjn~X_l@yLBr#y8UA%!;_;Hn!)EaM`<9_uez` z6tc*i=6$_gR}J=6z1_DGx3Kkqy!%syc=dVr)YmsoZy%I-FB^6hyv-gf#jjwx;$)pU ze8!4@T|W-{*=c_ik`zv8A$0iE{0`RI54rV1c7b~QDlQ*0G*=dOn-@QfsG_yYT3UC5 zvp#=jDrS+jGUIdC?W=3)(n*z(<`21-hp5jZC zX*rq?d8E2?rsfl+m4`~qGLXdkfbP|4XTE$;PB?&g@7I?!Ffk<|}cww6f;aR#lS zxAr#7`ZdY6zdBJAqUuxGAwAsr)xnN2u1?I4-;WB8ZeDeqE_>+RS~qQ5+ra%-;X*XN zdrP5`7gxRIO>c16J#&m?R-PgxirDOAk9vW9VDS}2!n5oL)l-OJ)jViqereJgq`R1U zzJsRP06u4pe0!;^?&Idik?k?Kt9y%kx3H0yX24}{jXV?aRkfA6O&mLYRIS7~wcY#U ze%32b3Z3mPmn9lTED5Wd8@SpD;XUoK^AxMh6Go$Sl>yCjQWS^sMRGma^!zhXnBoX~ z-A8>uUPkqZ&%2Cbms!-`HkKxE5ct&Mc_Us#V{Ka+bm5#9TfrhS^JeTuD%tp~@LFaq zG8H+~daW9 zibUdAf!y{Sd$p+;I6X1nPwSUS5z(DF-mR|rHxb&pWn`39w2K1lq^F zAHSab)}4s0#SGwMxKpIDYSrIOfF(jk6TDDX+9r=nEl3&I@3!64idU3NclT7O&n}DM zwnYgoMOwPH4Ap(sGyzS1G-n*RXa zl3lgarVMKy5q=o2P>Jpnmm}l zOV@1Ydd5i}b&j4jB-b-Fw+lxaljlwF@~EwBq7X$00Rs3`w^A-}J1RbLsW_bBQAB*W z7wGt!%{9Ykvcmv%G}Fvp*8K)zRc@aenh8|Ja|zQVeiWzX*ATn)#etDRHm?ef-6kEQ z*FOD5VSZdkzpXOH+XLG^H6}J*?9*G^Is4l<+reIgXeB$q6(s4~g!{uCE7$GOQJW*M zE7pIUW!{~c_r}z~rVvGv=e*WMUGU4E(oDUdBiw3RY5Q*sjTwj!CI*ty9`17rh= zjVC5{LyU)@Q8EwFITdwsk)K!%fET`+8-bBhpH{{Wd@`YkLAao`O*EFuLz zFd6`LH7Bet3ycl-tPRhPr^>qeNM6osQIWNH=D!D=3CX}l>+z^z;cYzfvV(Mv*;M?h zStPghi&q(0?e|R~HK}DIpt1;|$w*^{6#3 zv(5lf-&T|H;md%wn|nAP-W_uFX(ti7iB>-d)a>ZTwIJ5VUimikhO2bxRi-`J=%r{<1yQ|JB4%aWwLG~?#0VoAF`$5 zI%B)e6x(w*U&<9T-$f5x!yvTwh<|N!?k>{u;xY}oa&pb}Q%4MMW)F9}_0%!USG@JD9t#eBAKXH+&HH+Fx?XuP-iN(ZHWMOmCn@WPRXRr=2QZ}-rK0ybkg(p7h zMr8LjHh!vv+d=BuV+zaSd}$=n@12Kz6l5*G&K)Z+ZZV#<%H`k#wmxkQa_0l*Hcdwa z@-?85H6bgFRf`*!zqrr3+f!oRR_yFtZA9GU?UvhdUd^)`4(|FTwr=VRFkGp~VM#5^RWb)cMdy^0XQP^ z711iW&)1p?Yly)$lvjksm_(mT%AFo9BzAG0o>j2=>mBss7F~wntJJ}c^2mQNG3~Fw z(R3WB0o@Dd6&%Z!)wm+D#IMrX{)jnmvZA}Pxsn^$l*U=3IB`uSobcRXcSUd;^wxcFOj%)my@}75i!kT29H3WeZ?b ze9QT)qSb(*Lm>RpDWi(z=Zhuzk__spP$6kLvhwqahD+29Zput5>(;r$t97S6d@AMu zy3$`Cn@OO7sA5IME`!t?wm@Kbkx!$9kT;2`89+_4pbKXQzws_3H%vnN#3v@F*v-W*Vi6e|J7z)x@WY zP>XbNA}aPzopUsvQk+t9nBheytQC$$Uj2!t3A*N@m#SyApPgKwm>%%c-I`T#vGAcV zLSgz~R;6&%Wg&=sTrkd&^14Fix;pIVfY9I`eQgKv- z$hgv}-Jco;>gw9kIP=PZds!ZIE-!2nZW{Xu;C$)$_)u$djJfXat6-8C#m+>D*Rx*z z6&~pCqa-{!N$s&PxZ9pTsvGI`7+}gr^`B}-C3j5Npc&rbO^$>v!lAP*Kntn7Abq6E0fH0m_ z!{drmAPc09`cej^W4Zb?=NhOf_kUG-yFw31^6B7;8jT{aivRWwkx$6LEWl^vTj8asJDSMU%t2b81!oCTh)v` zrG9wO=yBgt$u1-DW$g_zxVKxKGgvqtEy8t_yvC^^B(2DNlSn6M9U%b;p zd1|+CFy)>48d>-a^jFqd%h_BG(tHS@_nbXm6S0tfqfBggmEDv%?13hvA8ij_J zNiUctC-_^lJ9pboj@W?r;F)-7;OFtA} zSkL0nSKodZ{M!Ne=$*S!`O>nfWYefP@TcXbrlm4j+sz}9&$y2pCw_hvE#zcf|;*pzsRFCjj)Zoe5_rFzevvVrTY_9P{$7bo@QOU&F z4WwzOw!0d)c<~1hFPT@n75FOll0)wO9_r#(Gu~Za-169qTT~>g{Z(i!hpU(q1#Xv4 zd@I#%`5v~NoiLo`z9y09wYi2ilti-JN(TMiI#f~p&|b)#P5tgnrHDTYpM~3Aw0t7k zK_v1v&7kz$Ro@-EgPCa+&#Lf_uX2LEX zKQAdV$DY+(Ni4kQX3nB1biXM5CF@^&ID;M`dU2)hJ9Zoz?%}05|A&@q_O&I8Y6&<-=LcfmWQ<$aaN9VOiECER;O6nQj zy<$0evg5QJbDC@EBTi$t;?!cJxsE+bc4EHj(8kO>E8aAknnRJDd+&b zKtjJCdXh7VIfu5@$_^{w@V^_qIytUJ~KBfUurp&8ZzGBldI;(4*2-h(lnaq zR4s1U!3Lp3`NM5zObWBZ<>`-MTc1T+hIc1;aWKX&ZRn# z(kc+y@UEJIZa;M#jCg}sYRzO1Mx8x8C~4p0(zRQ^CSRlUs3#CkO!*lE_F9ZsctJg2 zl9JXQC)fx1*v5ZFX^HJFoAOR5yu31ILGz;R)R zpy^+UY1giTq~81MkHUs9~Aoh}~NUdWhS|OUoEy%xY^}goU7Z z^ve@;ruDm5P8RNcTIEM$M|MptfCn1{ZyfZ+bw6z^s~YM2-OUV3${H{L+N5uJ$;Bv& zAkFci%wAa?MMW&CWKCV7z7;u!)ys1Ip0n=Ihc624%zS=|31A!Rn{o@ijG{5kYZha~?T^U~BJLVnhsdzlb#8 zY-yc_hUM&iHx?Hv9x2eP16LN8XYp^K5#ilgjB5aIze>X`N4b*UJB?i`55S|lv?=Wa zY)8P-g^E~bgo$HA+QvJoJDtFG#yjbe7<03g-xQNe6wsj`jKS0P^r+zBR?m4q=Jr$K zY3^>gm81?v$`H0Gk2c!+2_@Ad#@by*d@9_PSY~K~F0T6L%(`WM;Z~NB^_o>(yM}4_ zZw=<$6i}iVms@6`y5o|s4TN;JLEAqX5ld<7F?h<^&1$!StYrF7wwhIqnrM_`AQH{- zsLk!fI+wMB*1eAl_25o6+v}x{C@0mPk{s!x%YpDU?PM>$!#yipahCDLZ?UcVdNWw` zZB3DkRF2p9N^nI_j!XFs>T`HN*Q-PW2FsFtl82DJ!(xP26W5ReD&r;XL8?? zx!V-6NfS$LF81;PxgK;cteK{f4{jYjrK~X4d-Zi%BUg6#p(J|ekEmpqabCA-<~yI~ zGQB=D-+M125$Z1S+>XQK{)&dm@&RGQB>rr+V}H#x&k+b^@6+E~F=;-4q)Uj1clUd- zSJrnNGU2p_Sfs|zDo8ko4Y;+Hj&SguKT+?lUBG)y7*bEWM8h&%#69iC)hq)s;A;%s z50yzZvDF30)_gTl4ddwRSt=z=?!Gm{+%ISxXTKg4`kzA{%K20hOOP98akw64nmH}w zni*rmFx_OPw6{dD%IOS|VT zD(8nK>siGh{3A!sPYSTQ;X~D@ve@#5?3mu4h2N`O+AH(oz0>+B?YNpN!_i}Zo@(2G zK*Gu+5ztq)r1(=<-jlDK6qsAyPa5I;EAC=HS7)4aStG_2b}02kB0*;dj) zb0x+foMdypslp>K@_c+yZ`Y*-gN&q!#x!>R(VhG=3tuq!!nl^_pVwPGjxq z@TNR*^(RG*J3Tw<^ea5qYQFQF^8OUjTQO+#_8GhBx88)9+*Ev6sO3v9FWts#LZRlW z@27K6&FkusyaI1&A5SW^wy?6c;kSyq9hhoH$9SmW<8U*wKBCb{glct%gd2TFO3AOK z7}$@f>}cIE=5kQ-RQ)4d*6lyNy+J75n`7~-z8xYSW_wFct?wzvqC~ZcresY`r@D`- zz*=~4TYZ#MT+4!*x9{GyA@-weeHu3xGol6DB%ReOMxxr<);t&J(r?${SBV%GF45@h zu0Ae>ZG##r=_!!;HO4(|5Fvt1GD5@L zJ$}QQyq}50zP)mcmT*lF(y@19h2@=s*x%dc8B;;nj{5B`nE~H=h1IuK2Wp#03MWw} zK0c1Mb$2z#D%xl;!_T_E1GhlG<6Es3y}6R-S4jSCM6<7Do3@zlt`>N5av;3nuC1S> zr(^m}YGxd>)RWe@g}4lDT5{{Y%bLp}EP66`QI^Z_t8XLP6`+D2p#)Q6=Sz;`MrXQ& z?b=;^s-81-rfoTm`;V1D>x{9=iHP9ub4FV~V(+`FF8=@;9Mnc`@&+qO8fs_Z(Tj`H zbfj(W{As7+cX7ik^0Ue{caxo{Lb5d3Ue1;GYuQ-|$U8G`Y1G4Y4ZmG02}Py2mgY1< zcGl(gt9~mo!^W(mVa`~`cbKjm+zu$`pNPwiDUVfMF7TRb{+Fx#a^VR{R}?^;eyb@_c& z*Z%E3mBd->*DnWe3M^YfXTFX=!5u{y;!S+Nd%BfXbopnc2QS^dNpCzsqh{639cVqR z!pM!WAl2QBk(~3nk+wRiJ~WnbzU#Z60a`MBn84b#V!!phOg>_$(!L&!C&JZvkxdCW z)laE#M#iozru_HXr2g{t0b%od~sf{6qhl?!xA~TY$&Gx0NG1kRI8>bZe?-^w9J_ zDX^?CaY+NpWC_rov@~zyn!=o^tP$3swvr!QwTGY`R9CG9?98FYdxkct^$oFsL}~e$ z!D8&Hn+-DgiR(vANB0-x4GruMRR z`iZ8#;#We-X<^bMhj)x0KN>5;?Si|0GHE+fKba;;<`L9)sf|E!I*WFDUz?0kc<-Kz`T|__G{Lsfkf-?7299N zwM7t&h1d$y)mzKHwb{=kH(p1wej<_{BRGaoFk@BO>yTAiJoa|YC6YcLMoTk$i{oE` zDZ02Lw<{fw)@x1u)xQpd@^^2xzxNLikJcOUhFz6M#+n<+la@YoY8ZXA{Kw{M_qV1N zml9hC7;anRG?}`Pl<{g*zKv&$9D|$@O7@)VeLYx>RMWMgy0=sBpx^AROM&6F1zyWl z&6|=gVt&CtI+E6C^vE|krLdGMG=oZO=xRvf$0;Pzpi)~~KySFTpy-A^?=#_799xQ? zzC2l!v}n!QQ{XAh*WB^-c=9zwx{V$qDFleQXrN=4;xKCJN#y0mW6~%nhU9_{{DY*5 z;#@PAG9enQw2@O<`&;831+Zg_unzjayMHh`*f+E)Myj%X0hk)1rVC$Vnrg<9M2%VgJ+swq9# zv*AW7tC=<2%kAA0QEZ;?3bf&t&#KPS4q&whvRmflS3c;7l*72y(AO2>63Ae)-Yy-a z=`4C=`DUQDyy26z&$t>S<|+E>J9um+H!P>wNSZ#()Urk;;ckNxETc}W{AxqTR!Qul zTxkbjPtrAUZ_Sp*Rg;#dm_naAiW@#7>lV+v*_XGEDzxEu_X}ym;9;gXo3?;epAP$v z;h2y%WV)GgugiLkZ!QAch0-nH?)v-cC{osCx#_Kr)y^?u1Kx)?tglZhg=NlwaMcp% z(*oqMJ_4oXc6B%C@UL38P()G=dLI7(I^y?GKxLlclqqHWT8`=$LOx12aqH+{k+-f- zFSLII@T-w(sZMRJ_7REIgb}m>ei(9 z)5MbLjzQWO>*q*WwGc7&dNl_fo!Xp2b*_EyKnG^cTnKrRJ=_edkD5hKJB&*C)UDrF zPMOTej#<~;18uACL|SpgVnXs2`HP+Z08pb6p2jrq-9_7}*pc5?Ml*$*bfJaMjYBQq z1*DJJmGJbD-B7^uau!dXdROB8V1~m6I5j6JaCB^IfJ1Q;Oj37=cj^ePWu)N>OuG^8 zuZ26zi|bF?V4WJZx3c{d400r!V=8k))~(fUKgP$|YB8fpJ*%#@l=lxh&aFQR%yNSn z`LYd4X?1W*cRuiJ_tGS`@{DxHbrg=>o-B4wa7AcGTWv>uM>LU3do9H5*i;XSp6Yjx zD!EvR?H{hAelNnVZY{mj9A^X{8lCtj+`KDq6JZRD1drpjU&j{@TYpz=62~v;6+aZQ zx+}u;mzvX7rC-g@>a0r(nB>|{#%Va6jk1`vHX&}{YVzhoqA6Hmd;k@4u^wz_MwbWC zZ*u!AlyKM$*UqgKHX1u#H5_v(F*m*CQHjFom$d^a$YJQ&h^+2wr=v+K42!j9pknA=MKt$z%t^dWP!v zh)cw{Uq&$i#0vZ4WIp%ZeK_L$XU3&BWkW{01zhuMT*O;==8HihOSjE!t8t3Dwv-7X znKZDgX}Dda_fhgR%^7^KZyJsph+YYrVoJ!kKV>kIPJORun4VarnG`*|s#K37Q`*M* zA%gXxQPqggeP}`NYykLES>ASTlxi#7b3vYLTA|(to<6*HxKo@c(-IPflV!?zp7ck zMDEXdsA02^q_-WNake(|sH|uF9`J7NTRN7PLm8oE>V9dh!BUXM+}Q5PK~Nw z7kRzh3N+4}ewuZSP0Yoz^2zTSds!h_?q>HR?*fDlrqKM-Pg?fN@W*(opA(GwIDN-O z=4pR0cB6e}Uk^SdR_M9#sKcBoI5mI8!y`be%7wi9%^4j30Pg#9j#(d#e;j{>{y@pw!my(s zFRe)o@s=l{4TDnIT-ft?iX9rAaNlhR@yj812fDJqqNTLBhnqIM#Q67XWznF0wc8l3 z%|iy0t@jj(ED`pGaC_+loG&$#eNY1)P8#OrjWLPK5;my`6UFddu~2;2A1nV?m%ga%DOy_6pPvc(9`yz(8B^g z@mY|jIt+}_%+c!bT5FzcVKn4nyXkPuji+$6qDk}~?rzjtS&@}`9d!(ia{-j6(xEJu zk-ffu79VD*5_$P)*D}sZr7Sleba2O!@AI~L{4b2P{&wZZ7QEN~?2dbUjF7^+M!IZk z0d+TpCaz>qX&Ur(2fCIyVxO8j08c+B^E%{z9qdDMJKi``EQ-05X~jJs5vQX6Y{ZLZ}37G2*@ zg6}` zwd}Wdus}ldA5nKBrYPD?0G{&hC6ZZnV8l&N>U`cIXtFT8y`9b!XQKQn8(ts6M-X9- zU#t6?el>y`)^u_tg5hve>Y;4R*7C%8wwFr1rILpdzFu}a3J`2RDy}STCFEJV^Ci>O zt3Wz@N$E>87ZM5L+p{4ep62b^dEL83sCRrTmM&Ri)tplUAtSh&_HsId=Sa5}Z*6hY znE}}RMPVf0KRTbfQZZP^N@=un5#!R!u9D4|xRLsUO~NK`YQKxmQ{_|K+^~<9c8^!R zL?5cWeia?9j1PBm{S^oPu}gjTO8&Qe8w+BmXumjAP`@U}hQYeS6YSm@{nf^}Oj(-N z?^8s&c8UBbYC7Az)-#&LFjJ=^6^vui+WP8fW>E=G)*;(+ewH44AWI9@#^wp^+vKIk!>GG*2h>d9>Xm;?Y4H}8y z+C?pfuE_$D?kTiQ5z0FE8XP+9mf}5mcRk{gSjXWA-JQ0@J-q20NdE9%qLuZ(FFl}# zddn8k(Cba=Ju}D7HH7+T=>=0*HVrrF>?~ecK}vaA5l5jdDJ%? zRF&a+Pqjm}MRRW>Tw2StZYHVhj}N+Qz`8;ZeeUXkubGn4M98{w~L{6@61$4fObtQeAL;uNf9sj0|fX z^%SnBu;8#KeAC}U67IeIaZfDn2BFfe?Czy9+oKEw7$&YQqfS(axr?>$RkU{Vei-p+ zk1yKQ<6n-K{Ub+4*`hm;jm=9GcMWY}rxUbi1-yk@UhsCBYin_f==GP<4|vZ?_R&RW z2<^c#9sb%gbNQu4o@RH&6&)yG1Ls_sx*EKe*yGhA=WKoE?yGzLity@X`X;!A*C>tp>OLld zTHON@uFG&TKH7_i+QV;g#Scitxk2Ze_0BObtX~i2muTYn3hZI=wkx%IC?m&}WYX$8#ZM85 zqqk=!1|z$})1HR4sl{s}HEpSaMa~-hYcYYa#Y|Pf{TQj0TRfw$ty`5{EQHfrEQE7M zXMM9*R<3H;ph>?*wIP@Q+O{LV6y1Tiu-h_X1Sc5X8;DLQC#WR&m*dh=|J_a z+Jojhs|h@c!=YE+zmCc^9s7G4c;vm6_V*fW(*rTU@H>yLx%T{5lKs(3zG`bp*_X0d z{TeZ8#x?@8;YU662>_nI3h}J;_)yL(Q=lqn2VPkt8?Mw;eX46br&Ek`J>~lAmwRUq zt4MoNq9T;aR1O#uPQ zH?z;^sGw;|OVQXiuD*38t?sB}15{y8cb!9RKIsO?z+{n8b0Q!V$*G^7Kx>2i=Z4k7 zXHsOEEA`Xc@z~TWcONEF`b5#T7*VqO-4ER#4b|-A*NFo7Z`O^~uiTBDj)uzfWbJ3_ z6jJCftQN$vj)JiyVB3zXE_e8=3FqF-G9- ztB=`H+3^X2*&>+CFpO*b>igNj4vQTcw4a*iz|p#8X)ZPU-Ne<@mqE2JXG!rimgU?; z4!|{bNdWg#!^1Ro6d6mlFZ zFnjS!1QERV1ol-Etx0cj8zjhg6iEc0fO*u?PNZl9N}6dgf#Km!oHD{&*#mZ+ebM#M z_3jsO0w0_gP#ZyGw9R7BTNNbNJMw zhg$ytidM_D7vWY2vb>B~RWQs3Rge)w|;!i_l{+N)8LO(n9+uBEpTua>QgeRZWR z+feS!X_@q}IAtAauyVdNwQeZ1Xk7r@fzq<6szSY%tsM@2+QI!5C#y)vTyLYsp}70s zuHNq9r87HW>JvqCaSV#sU>^agptrf2(nGqlcF@*uZTZ&U}<(NeX~rSp%vQwrlT$%+}W=`{4VPc_dPL__+Ljz0byx_>HGJ&ASiU#u)Vd)VB#@ z)=wgAZQQ5YJLx!Gq*8GhCK|1z>w({>)5j#IDA;k}d@Hjc4S?HG)9$xVDrUF9%HZdr zqjY0f+1sM@p`$K-mv#+V`qVmB0^ErQP-^L*8Ip1yGUs(QGd3f~RqqGBfeoa0Z$p~7 zg^y~ka(Rkk?9*FBs`4LqQR`0)#C*9CuAGXh_^Vl8w~W(_1F#hB{A5SlPByu&w-S z+AAP#gpH4)+V6cH?4O%lLx}LlD|=}E)f;f>P)a0kRXZFS=iMTL&$c`}scj@r!DGTZ zcl>@8D$OpPDZhhem2Uq44Y!kA5J)}f!8zWp)qfV`W6G|fY5JdJjnu7K-`PqGXAsL7 zJ8C`Rk!~0ph1<2YE;Ng5XI^SJW{^uam(3OUyMOd6+HAEPg_mQzY&JDFsugR~?y?Te zda<(Qa}=b6{Nq{_DxmiO@TBGC+daagku`e%0M1J0K_|3dd2?7E(Z6M0+Y7X^Yp%?) z70!09E5O92Z&!264%s>nPpYrseV9(#zS<_Il329*%j!({bgN5)rF1?I*XiQCAg*PN zd9jn-MNd$0YVO7h6L)u=N=spJ=4;kCz5f6*->9^@-tzf`FMq*Gp) zoP_EJ9cz~bV8I7`?T+feDv6d%$pGm2vhS@j)jKV4CCJY)ZBlDC|gNe@VLH%c+&I}FJ8@X^$>|YVMx^N(xa6Ow{qy!ua-_hq?#7( z#QDWT#I0eH;^#Q!htt}ox4YpoMA4vWibIuC^;MAJ_>rFNbewk%w6n+tfZ>k14-zES z@4DgltwILr(^W$8L}4$?l1!Z9uO_yLOt#O70XVDs;=x&mvTnGkE;xNMrMLVyLw&8X7qXW~&q7C{}I{0&bB-t+2B zoe|3V^IpELUzUB6VXX zyH9r#{w(B*78W*<@VjP=r(w4gme54=Irmm2%M;^CX>Gvmt=7P4mV4LI?ez-0yST?W z=G1iis(b}SacbH}Ws3J|tU+vVH15i@1d%kC<};YOX*I(5eC^1RZq%}<>gKE^nZ@S654(#gGB;{5`sihwZsuxE zDKwnxmpI4J6(G}!#XO6+UwVKPJSlZH-6-(*{mD*qpLVn_xG2WxuMzi=hC!*XI3n^U zWIF9$L!tg26m4%IYgzk)jgP~|me$hQ?q@$TF`5@Qye2_x21}=FPsbb3Ydfgllm7t2 z&*9^mzPG-HMZc0_@J}DR*QH(E+uuoTA2&lmosXFFtwH&S+lIy~C-H6HTFC6;iSErj z$~Bi@7&nDW#dute1~yIAg| zo=#(G9_g+jc8d&ghQdZ4b4w1BB*WfBT;il%(TB}pgGCz$%8i`f*#>mG9-dWk!e)yb z>Vj3<6&16FHjRsU92^vGt5^1q9C7Gv4zoAoJaJQ7ukl%sNo%*w@SwV>#&Syc_f)qk z{IL+oml&nLypDUz9e&iWeN82@h^>jtV4mvAuDF=?)5fK{;jX>7%9vQ-tr#MK<#pOn zz0@#(bnz!O z#tes}XQ2j~&P>e%_U)zvW?u@yqW1S}vE$r5E1A!p(~ifwq>gkq!j>zmhP<{NBDn2o zppi-~Q1lt^uTr~gEZd`v)rZElrhM^MhG_Jxk>q*QygvO}OIG(^zB58-E(P7Uc>@f; z8aVfSX|ExN)}wgzNfxYXtBc4j{YhQ52)qqjTugH>x^d-6J3z?=#A8H+Y{XH3cA{a7 z6VjlN#tqmQau;Tyqfm7BvMS-&iJncv9rTY18DJR*ks$8KG_y%&-+USJiZ;`a8hk<( zQ>v+?n$^}JbJ+!lXqx<5QQDxs5%LV%qsV(CRQ9(DrbIu@p2-wS5)W|{H8dKw~j5@X$LRl{<5clh?X`Qy62`*46B;n&;3 zPrdM{zWQ7Gy|CTJa!oH|lBwBM$4Z_djYV>sXL`Zw=;ck)<|7z2#4Sea&D6hM_3E?E z@TBn&G*@eVq8KchL0+OskH|>%cWEw*y+u zB9zg#hVR~(MQnxf^Uh5k9SygtuAYSTTDiTNL|Gdv3iZ&ndBXXg+8enyJ>yZS5?A$S zWx#Z!X5`#j^GhV_`)jb-(s!$iSmor(>+Ija(?fEYo;E2c@FTvq@ucFG+I?yteL&sT zyy$FeRt}FE9wwOdF~G!Tx9LZEzYKOUZBU8h&ttO9-$vpnPPAW{y+w0tD?>bc2OVg@ zc!Ri?qxa^xhYGx$+*?ff?VOb~az<;HoyUjE!8okuu)BGR(;>+5#`Pjg7@FC(FrV3)Nvt`EV&9I1x{rl=h5N12F!n}& ze0_9u>*72i_I2ve*WW8q>y{+;;eVUv4KnMJ+HT<>*!&y5xpK_1#g6g4daPgro$*(e z5`f}ZO6eo5NiFmS)gtV%m#@`JB(~`>kK8UgR+Wl1UkwyZ_X|#M_~`o&_KLVj&BMb# zy&0RQ!nrnrNWu5DKCNFI)z=ZRy`8x&%xib|H|vTUU=iQFMR9w>=7z=z%qXh3$ml9q zC$)6cPa;v>`P7n$%Q0dePL*{PoW?GB(=IwYFYo7Cca$(ev(4~<$eg)U%} zj(@htEB;hslFrKJ9Xmi*YL|yW_cb-z%zdJV19RX_a;`aP44ttElUv8+XsV9Rd+SDR zp=aADH>HM1VzZk(zgvkme~nz-aG9fm^Q%PLB;Iu;mk<;1xJr>bDZzdA0Mp%BUR+qp ziIVL%FdPp2)4i0(l)GT`Z!uOpQw}~6GtGgne zOKS-(Ez$j~sJks(+FsszjDEF#uO?z5mqQ?;7)isy?AB!JE zSN_v*7B<&|Yp9oHka*&)Wk-(PjD4ulcL&C$ZZ*X4p8BK;6r58-Z61w(jFJ8FJS!yU zU74ae79n+S@z-R5K4Z?2go z9MoajQ_$1HWH}bMG3$&e#xvAWx`lJg&tu_SJJhdvR`)I#wtd#cOJpSz>1-DQv=hF1 z8VaJbR+dGAiDp&$su*pCnBh>W7p5t%geU(1XL!SpSS!-rZy&C;E*TGhh^zZ}`vE1@ z({9%Fb#Cj~R1BS-xvPU|q~0=yob_d+axjdogQRt>NZp?7QzwbdF<*Peq>kEdTytsW z5YS_&*QpT`ba=I4x>QQim zl-UWNn?@^%a)%*LOjWF0I&WV$0};e`IiMxx9xE(=gj|UZa%wAEtH?xhuA6DvJaY$u z^P~`6MoUGjK~v+7wfIG{K^p%6InBtY=G|LMjnpi;IHrQ&3EgTd-WHF<_*$kpMomu$`shfW>D`o!GSSj^uX6{^u+nf$c~mn3_hx5Q?8vMlSmD?>JQaT$zZpb>5K+6&`O-S zSKd~v{Yth-K;YMIB)0%b}(l zg>O1^(0P4BPy#`mXLDB3l?jL&b?-GL?E5T9kyBjFa_Fq*LaD$N_pge9FwSC}_4rcZ zH$67mu3}Zw9G=lWzeTmm9W4}rvsRo%J=>T@ej=>zK_inWZK^xthFMcP?oQPrUt>%@ z($xoXr)I356*VW~Zw7JcC+~pvG;Xu*X4N==H zq2y)Mq?}aJEL^Fi0G9eyj$Ti8D^ta&_)(G!EOPIU3c*Bg0%)e4K=&FuZJN1F8JXhj znglMc*7PngRb=-@D(O^?-VkKe94_)z^-VfrWAl8eIBoOt)WxZ1KIg)|`P&%P9A&h8 z^Gg2d2O^0kln#JbjytQ?8S{AkK|biAq@K@@p$mM|mGU&K<6NV>*18eR+K;$mxOK~> zE!>osewpZKa$^dlb?-kT0>Acufno1kX|4wRijfmH7xI2S>P^|r6@5cJ>q%pMawoC6 zPr+nuw6OW6w3XhaJnbC0FchAcq%H=m^{ycUbTe!J07{(`-PN)0psm$+Ek;CBBjexh zsV2Hpy}4M}j=SIbP01C$8IxF}E@aHY3ba@}ygSZr~K`lU&Q0qKSI4=OYv}T`3+o#wl(% zZN|NJ>I}=!HhNZ@$(9SHI~F(}ZAO<83&D7!w7uA;w`tc-oZ~x+S?#3Om5zpi`Lr3N zP(M1jrJ0>tc7WnAbDDOKd#+gJ=cYw)$fLRSTZJg{L^o1sPa?b7q84&?T-E5hgu(&T zxafWrBusQBGqqVoXT`l_h`o+Fq429aE+a9#k#%d3HmQ!IoF6JLq?KX{jO;2oIeOP2 zDh$W%(B?T%?@v9>Oph)jUh_~|UB@M#B=%)h%8}<+Pr)R&lZ7sxcW8+HzK z_Bg>|O~UwXuOx`HX&CJqwT;|QBQ9m2P;~cu&1Irswqk z0Lr~xCH0;sI4yU0{`8yw0M4OX2>oL27uK<_e~n*p>x3(F3}z@GZQWXu-<_^zTuBU_ z{xq|WA8t4=4|a^{j|O=`-~Py`FE~Zqv-76VoH@q4?USP$?N;VRA(inWN!{gA^1l|x zA#v{0FQyq;1jwzrnxB?^TI)_&V5laLaTbzD75ihniZ*AMC68q<-o4axI48ohL(oHR zJF!r4TYGaasY#+m#_Xo9-dEELj3S-%_|(!xFfHo=`+u^h;@3?l3*m0(KvCP5{#1QN zTZ>DbJ3C3OPsAE)9w0iL#Xm)syt7ufSo}=t=i!=)XtzlaGW;s*h2AK5CqlVB-gSHT zHN{vr6X8r1A6Mg|?rP!uViDLZAh{s-6S4mQ*Nq#oY|_EX0}7onSIs&05~EX>DXt&1lZ+@UB|1l>zo_Y9(AQa#&`Mt4ImQXpz#rV&*}r&fi*$?!?n- zBY!%%v6DRDHCwRi7<8z(E%@b1GZ>Y=kUr_7(fi2i4SoIL7W{#bZlOWhDt>SkoNe4_ ziIB-`%i2-h=S=W+6Fr@%>yMV}^VXcfcQuvHbu8$0B%VyQE8Rg16Uq3~rvZXC>l=C1 z)#As>j#um`7@;a`-x`aWgPR}E?<3J@SnOnM3gR}i$J@2Qw7JK*sBS41<{VCsp=D2Y zU}&U~D+BKL5mvxt5KsP%UEVO$b1M5uJgRB#=8LoZUKAN2PkkLa!XExv#%rC*Jj{6g zl)2~!+g|l^Aug9?w|!lf9wMVE?ATm6C#^J*pbOQAt$teyQJpyM9rYr;yDN@?{&f>YU0Cq&t-4ftPJ^9~g;^~7$`f|Y zL3)F=8)46&)s@qJHp+fm9}&~hZ1S;^TSnz?+$!(1NX9hL;?}*1W7^{b-%x4`^ct1G z*?Wyga--D{?D9CPhy~(YNt`nt`jMSXkE_{;%|8(+VwLtHuF?B%@2PLqS4lo3G0IS> z`JnW!DZ%)azET2K2417Wk(x%-J=2^~x4XTVg^#h?qt3`h*-7uL;+AWOL&iKuyHZ*5 zWze`GgVE+*OA-1q9VWeFhFlwn`tsQCNRkqPl&-^in%kUXiX_a9LqNhs*->0R+ax|r zjwu~mJLeu0X1F@rNKkwLq=rf4k|g&Pk4oFonu;uAJD-IZqCF2^D%;Vg=Nc7?BtAT< z)7OylBAr~3tT$uAU%Wo~i`_9x)qS|PG9UR)S zK5i(>>m>_Eq=o76reHbUZE@JB1nc)CT!9 z(G5CD?(U?OJ>@%^)?JP}x>T?vr?h$<=;w3P(2Cf0z}1@7Ey+m?ofqcfvXV5XUfvk- zuRlTbf%s*)fI^mWHH;PD26h{0YHq6`A zw>4B;Ajf7ss^Zpo@6>**`fgZxurMdC4_wSOjj?~ngkx|#JJ5qiKa~T4Kd!M zP|b#HF+0-ss&%&FvLt(GPT@k&jX$icyJ6F^ML~POu32oz?btc&eO?uNd&C5a9Wk=@ zV;>r}zDx9JCw#>5w`otpxOhkw-6uS|i_TY`Di|&1lIui$xnI4iJy>$v;MTV}1L*Xt zh%X@%rzrA+{KMlxWeX00laZD_HGdBbv-NoNDduS9tL@`lQs0N%F9EwA;o44SdYx3W z4ksn_Zaa4l0RZ?_&Hc@aOKhh?%G>Ha=M+*1;Aq`3qm~9KZS=K`(>`$R?8vCNP%&ER z*k!viR01etmKIK&&W5jVFN;K0Vswp(H5}IS{uYn(mw9OIy&YXBAkw27Q8PL7Caz_> zyO!SX9?Dp^QRPT%%#XxmAzM(&ubp07hPE?G4?XT%25k2OTrY)jdzm;bykv`>OZ(2f z0dET9^Fw&N`}^}8QVqhYt~Go%q_&HWTY(YA$2<4tzX#AGe$kPBercqd;UWvuQ(~?? zN%W!FrYESPWtpYd)VEsapw$a}>{nk#JsVeC8o_?R?xAZG(%oAh#lfc`ap&DiE#x-y z$rrVbUWXoEU3!(2>by>Ki3DS?qsPjph7qP=G3LpQ9*d8T~aQnV0(8jj#GD8S&dE4G$ z_G9gkrjskR(=(%!^%x)U1#-bE?LQQztC&r$_KmOR#!d**S9MUxwQx$8mD z=s3n{lKxSldPtAjS|ChikGPuJj;)V%bg3q=(je<~mB|a_E1hXKv|*5?Hmh4MB`{dn z=3k-(M+LO;Op&e^lzY7wa9vw=rDv@Z|;(zBR-6 zvc93GRmHn52o!N3j-!71(G*2G?0Bt3-p<3QZ%CN_AtH?|0SS}d`Pj+^w z_>hzF&!!}-_xaanw0?^Xt5J`a;=R;jn$Spx=Pt}Cqg$Ox8tT%^f+^#-o3ef79_g>b z1-+HVG$4^W=f5@hFXQ7KqP-kZyqt()RL9ps@0b?cb!^mT!Ni7K_VKdUt6g1k#&U7d zjdG-9lS$Zty#-^8pR$zXOB-~NXyk8PJ)7q7qF3K!>3cztxatEvUa0jcgUrY zn=6fBT#ZZiR8JPbIRyCE4zT6_02+1YIPO8YtBd0Ta?HA5?EJyDX?a$ubq?ra5qsvP zx@&15yUt{WHps_?Ts4FG#h~3Zd&%T$@lt=He|0L%?8-p}+=_E+z?VKNvH) zsV2R;7B=>mGDm7a-TX65W+GfRRD9Yx2*CtTgHD85#~(ZL;iHyTiC1NDtjq_ zD=K4k@2TyZ-igYeM;PHR+DC(!qaEVD6+N8KrW=^{$=gt=WfE%4o9Q)hRn}7R9Vyp( zGDtagP{a`Sz1Pn5I$a{q8+8x3rQ$Ynzb97q+WR1Q*AMkmB!QE*U9<44^sEDly`1eS zW|Ib^;!uN$;~e$+HLk;j$$e}(zOnXIs#hBXje(%CH!;`V z!KrQZ2?6=NYW8+glB}8vvFHV0;e|(kZxKskJa(&Bxw2CxymL_F2DpW-u2yfJH12cf zOQ>P9xU1<~v4emQm3EE|0U8%$;42sd(^b!Wt zb#<&!#`Wh%dbr_FHj8=V*A!os--^NOM;&Q+7XqE3h9UTD@tud4#wm^O9G0&? zK^YnIsRogadv8P@pwK$B*RMr;>by$W>`>vPsjlvuoh8p{+@AUporZ8Xp{cMNs5DY7 z)b!0Tx`m=FI~nL}v^S;R0I@($znzJU`?M|P zPE>^ULwD2L>H<{vv(lLuZl?#)qzvYhw}d@O?x69yNd0k|OSl4@4H60x#<^46d+Aq@ z$0HvK5vwX(FS@Ps{HXHWsrkV4H1BZ_tXWDiG6B=fR40X9t^K^;idSsu@~>Coc4o|> z?41=HsmqoF(m>UbjAwo6AtN&Win(qTA21QCGB6wXS0eV=t!40T{{TNmLCr(2Q0;hE zUW8TCF5Q*dwwaN}>Ay;j8SR9y4y=v65(HN;5!;FP+ssw6aM5pPJ*=9QV?ns^@~GA} zKC7Ot-IX*$zP%~$c+$WQSnW*;?(6ebq8GQ4EyJ!=Q*A$0H?uBE_;jdXmUl~dmrjVg zAF8wgRev zYLVPU8tCQ+_v%kq(JWGShP~NHsh(XUAZSzF<~<9D+qJfI)|Zc$`A&AJF0U-)zq{9j zO?ZzKu*DkK+b{D-I@2A&pn*wK+U$+!TyjZ9Z5oe_OB&c7EyS5SI6lri_01SqTU(rN zw(;%_TUwiNZWpu89u>{Io=b-Ovt5+H6`XBG%H~7Mf5ja8ty)O!nyR`l{|j#i6$VfY3hW$CWkpq^o~9KEgh| zqftQcfA2meD#j1d&r&`DqPK+tq*3<@;v5&wKBo{(s$(2TfiB^bV_n_fm|Z# z&XkJa5rJGz)@YZVb#5lJ*1tQU6%)qGDL#FrHF3iDje+8JgnJu@kOqOjZCt&?@$w~c zj?Y6`BxHA1{*6bwdRQj1kV$&d5Y`eC|oR_vDxcaMn_ckCr;bf+^vCDlTvE9KS6Py*H)GmHbVL< zja=8x(XK0r@ChJ1Lxaqj7WvMA{uO1y@1ga?vX>Ux&RYkiO?}3vHx}|~-4R(K3Yl>%#c~Q1EKEt`Ozt>Z9CDzvyfL!^SvflZ>ogQFqbRn5Y1X}E=&uEcf46zCKQTf^;mqy zRcbqq5yYaoZ=DkieU&JlK26*o#v^079wM~^jM9mbUe)%MS$nEU?c14aBV|vAm2lK; z`jPh4)R0EbtO0Jp-Hh+$ToO8RMe(=J`r&Kb|-*W;)E z0A@9&(j{L#Su{cJJ=A6loiU#JF&v2Vsh2wwMSGlJ3LxBbB`LbKWihtZjOn5U0n96o z>cavxb*VT+w_N#PUuF5U{6h8~Oo}rku^l^8*w`tywV0RiCEo% zynMlffN@gBCKAOe>qyzNrl$3FRBa>|Ug|d2FVB+OvghX4tXbu(^P!inlU+Mi$FFWA zJhyVI`5+FTZ6da0B{U5FiU_Nv3F+tGT3Hrfh^e^e42c#jX5tVr{{U!FP$!g>qkeqnp;0xk!?d~m71~#r#))wKcBC!m1K3OvJ~H!&ZQqW z&ZL@qaU(Bd67)5C5CCJiHHll*q#w@4Y8V#YH<_~B%;mFFM=uOUmL$oMN4-|FK?}$v zK;kIRy54mpQ5^yIZ1oioSyJI$GCPQ(tO~HKZ<9mI(X}ni3eO1qW`1pTt7#>39*4-4 zdZDN+?(afhmBQ-SNlC%DMaYwi+{?@Md-B1k?JdS;J*lKUSoQQ{HN6v2q;W1YlEl%B z9a@)G-PN^c_0&zH$kMYN(Bv>Q{5Jm9JGgEl+nBxdcy|r7c8+BdTP}0)+}1BF9#uu` z^4n2bZgg(|UcAJ`NpR7d8%WM@+dQ>D3wvEL<&0DO0=vFPkKA*>Y!vb$y-lX|Tc`X?jqV>R(Qy-6 z&ZpiP(I?m6MoW96!uYt|qhpxm`)I{>d3~}9YRJtOM0AA*ZJ1)BHkQlGm2#6iX-xMF z*Q_rMB%#%++F-`6E_k)X?Q@Ls|tFO0dkYb+YhRv9J<`-$aOS03yT5T(3Z!ntkl=^ZOLt-bE%r(1|~ zbfbN}?>dJdY5U4Mj_ z{{R}J#}&ivxD?IB?j;<>QPw^C>hp?mC`Yb_D3Sct^R6MrFQrpy!r{{yZ*)6%{X_dz z2Mpl+Vit*kH!?>cE*Hb=tBXIqy^TMPUEV?G<5I+jo`hyL?^QJ^jWkE+-$9#FOa{D~ zwz$3Cct6DJ3SKQOa zz)B%O8-tu4gl4dJ1N6}8r1(<14#$^$K{c$66NcR8qqj_2=s%55d8j84mT6Ny@Z3;| zF4upWPW9Hfj}MHfxY4Q&Ur29B7pVmiozaFFsaT*^$3?8PiVt|s^?MvhaU?|pHrv;z z-C-UgQT!@M=7Us!NHzrnf@1?_qAc5&apU4D;`4~dDQQo$n5M;hs?Ur=3d+%Y=zeuc zG^+Bi;r`;IFKGGHmiJeaA`)H~VeSvAvjpvO#c|iIUWw+BRflY8 z&YbiZ_*BRg`w2>HJPk~bZt@In>+@?mLZ&+`X)hwfNF>3_<07uDWJ1cA4hHzBV}fPm zjk$6!z5f6@F$d8w9^t8MWJJ_EP_%uGixub7RH`g?9{9?26@1 zx*POV(I_QXw0x?~zB~POswjC^AZeSmonywD&SyTT0d-=1+TgcVkIY#u*fyPr#Ujef zGwJ(k#pCu9_JMCIH&3E_1YIMX+p~DlyCoP&?BI;7xC zT6JYleO+1v)ih&VRg7sPVkk&G^f_ALTvxhCLbt~rj#J0$8dpmGO-|x7>d^0SN6e_L*phw`l(WFBr{exkctP_8fRomM8hx<>O|rSbn;_)g7OOXpNVcMyww?LK7z* zG)r#X^^Dd|!nWx{VezT$68@zRd9t2N{3 z*PXm89rZGkv_K4j-&XH{Az1ON9rUlr8vI8?N<>SfbOwN)H@BG%R#lT@M*~pPk>^op z>@aMm^$W=ZnIek_&M}Od=46e5+|`}k{qjK8@0LM~OTS9x@Y4{J7-rS5t#@|v&%R5f zolQt?Ehmp7caJ$gWjCquiET$uYyrhImN)jiMn3F5lTi!17lgKQ%i5$0bhsEPj2doI zYsZBVTU2_a!8N9&57Fq)%dseDB;JY2xtGxKN@l$}RHD^+@w@1kC? zOW=GeNTS8J9FL+A*ql;IR9dsQwO1Ph~ zozqITHhsJ6i}3zEW+e#th4X`t$u%t8Hg>zOOAW?H!la%iktb*u-KSf&(-STOu<20G42yYW&+mol zNe%i(e`I=d$7&k&jsbT3<>?fsBkJ#~&KbvT1(dO#$auR?_EEax$Zf0!Ru~6Y^J+_b ztB0P_HU>EK1;^GX05!$jb#GGK+d@A3z`CK6I(2?YrIn#E&7Ci+Z3eFr2#`l627IZO z(b6n7;l}hWqxRZ;`2}tDj@fZn@1R!`UH61p?L&=l?N z_u{)U&ux*oLyXZ?vo{PkU2XHcYHw4Gt}dMPhvs=uyW*TK;UfbEM#0C~Lsx9$10B>@ zMXJKZyI}tSI{p)9i+x)Rl!p3@I@Uw&ahUTuOaw>h@X}INjLy zd~1@NAZ6XU==dHN(|T)9jP*9>?U z*d#ma8qZ^unJ8PwkDED7{(~H|+gmwc)+aEfPE^j}QrTKbx$?5i0=(&Y-Ngpy6 z2T5;*aSMyn%HpscIgsaXDp1zq8y4@M-Xq~sP7TBo>(6FV5vW>05Qa`}nAr|K+KyQ} zCz{PJp8o)WsUF9O-Ei3^8l@qD4c}h2StqnIa?*IaIr^%9!M$QBAStEWaC~Y=;EFq| zLb}z=m~?8JoXIrz1GlffxqTNs0qALByp+uc&6DRxP&_vxZpU2ps~gx)@xi8b@yC5L z+*wL_J!iL5tbLUn0{t)S9dOBVxId4+FWCp-N`=?3KC08qR9xVOIIH^}a!DFCsFyzKw)FPV6;$PEC%@{cZ0_X} zT|m6HZkokQA1e?z)04hMJ+iTDQ@W|&6{|>J3YA-_=qo)4@9?cs$kMrP)Q7xMwDTWV zE7^7Glv2rs>|XQ9Al{&qUS*nWSk#Wrd)lDlR#WEYA*NWEYz0lj?jk*|*&X%# zOw^vmc@i#$INpacdr8z$SI@jF&?sZ`ddGYilfNC+OPJ4xR8{8P_)|Ja` zR|ubopW8+7J>PGj+D>%MYzR-Qp`xv`4UI8f(U%7_;&tWCeKSuao+G$aw%XL|PS0zp zqVqCaKRaTBaJ3m|wPA2gT+PCtnr>4sZR3yC*11}_nhsmVPlaU;DV`g4T>M=c+&AE(>eRQqN)4tWsm9#I? zT2P&}L6MrWloF;$>w22pTYAHe)P1aA*DB^Ff=>plYiP(^>QhMEzg)G)y8iVEHFBOa zodk5K;z!ey+VZ4?M45?n?!9QYAi*$h(T%Z70ck$#bO6XkLexiX1$zyiwA$nt#?`Q)s*JKsB87eCJt=3kn@o*! zohaQ$ok(U=&eFIY)z>4wyC#Z1e|{-+oqe1uQ9kaL?Ed=Yw-DTYC8L|-!MoOpnnLG3 zG$2XR*bL?0pruYB5nSvhiM7Pv14)9VS#r92=r+c+Lzr8}J*(ealT7wB!qK=p9FL6~cqZp7FSBDx z9sQu((GGG5!vjxcfhP}?mWZF4JSaMz%YBuzH``5|N!i>HQg#Ps=0U5=QK+vk8hH4I zFfL%11b9)$bG6 z0*p5IIM90zr)@pe3I*Lkiuk)I|1*_fmR{k0*}4>fgSx;aCrk zI_3$;msdm3iV9C`_*UcV^ha|p8X+>{KRbGoLkvw2P^b`gYoBFs_IH4G;eOJ6UG;6j zxCvW%m$h?ttL+-U_qP$byhV(N(2; zOp)^Dg|q!YaeRH z$ikRCls)F2+D6G42Xzc~b)Hbu=Tcnot7y&iV>(9M!Qoez(b!x@g%uAm ze-__gS{wsNTv;ej$zV39xNjT3j?;-+do5C&b32Cgms~52+YTva+{>+6OmK3S{Q zkaJoV*k`!WjUf>@-jeP{f4(`{M@o4cXJeCHDeyCqMCjA-te<(is#M_6>z*~z^0Q%7 z)K?d__SbxsBbRR2W~+$O(YRFbj@PV?t>7x^)_o~=1chWlTKTO6-3s;10i2)LLPSzp zvmwzYHyOdFjx{pQa1jU2YS+xfu05kSN)yW<#jEBy6z)%kDY%+1tBZyLT~TCX#-G(V zl3liyZcN?czY2lv8|P=GB=I&mV=3DAsy=i|%-vL;l@v`UE{ScLcqnr`{OpQc2Dl3wx)o z^wLIkuC0fCb0C)u(@S)#Us_d1fpL}ZpjJnW_hYBmP)@u#FRbPKYQ}S*_~Mh*`w85% zzjT~BJsii=dm3~fm0fjLWZ>1;5YSdjx!CIb-M0HFEMj78?d2tot(mC(_v7B8Vr&~w zajWa7I7~6y&BHlej$ZZZHXKH4Xrz3y&ZkU&@}UdyWSp+Vs5(ij>xj6`r>ac7gDk&_ z_zwDR9JZMRyVQT^}E=qqcx*E_Px%QpndF-FVa8U7r5{(@A}9O~twQ%8$jLI?=fY z&Y_1wy5kr>I+oHFOep+VZk5jrs~bnt_R%XhYdGsqt;56yMMmoxP-Y`>y>PizbxNw# z8%m=#22EPsb9vEo^vDp@i+TvPlQC&c!EWuUaEOKV>Pd#|6#Uxh{{ZZTZlyrq2fDiw z>GKAUI%576pL_OE0QReH(5X2K+ZC2MYFure>J7`*{rlHwZPi6CaTcN0uXrqO1n@qj zV!x`4Q}FpVJ2LL4>!&C9<;d-v=TGF)H%!<4np@ca02yl8I2~8f#NpL|Q&6o+a*}q3 zqEx!N&9F_ieyUdx^P_fSojJyQs(-xJGc@{rpEI(JNgVv18x}in8)|BH$(D8>jcv^f z>9}MjQ=V&qr&q?9L2v5NvgH8prH01pTVhTZ4TUCvzvra*$am<&$cj@H$dcO~q?KqF zOtJbSYSyku`X|w~G&7)@7Z_wBjP@3=%W8f2U3XeH94;?bzEhTseb=XnZzE~(hmRP= zS*x8(9DB7Lvq>G(a`l`m0ku4C(M#F(QloCBxq62>HY&%vY7o3-TTi}?w$##~5vR|3 zx$XOOZq7~#^R3tuikjjqXmhGX2lZ3S3pZ=uLON1|=)pTzWA)QF5}r8;PvYaWPt{U! z9uH?X0O4-mi5;DOVy2C!c`nt#?e!bg&lX*g8CAzh8hcHOXr$dM?{JMK&@l_Qbqlt- zB4M`O1qU}Ra=G1H)On6rBgn}eYn5tGs*ls?877Ihm0-I=?w_4c6ws8IZG%`N1XpDK zEwQGVx*rb;HxpSTt*2%+Eb&CC3a>3Rj{1fmdsx&(M{%WOjk_+5(-hi^EDS#udrSWS zDt=&JX4=to^riMpfrduap8D=IbmgXAv?FyIy!zIy4x`6b)r7j&`7&+|XNholC+;l{ z%}pUUHqo%bPNJdVCy0|AFRlq3?-%^2C9T{yE+2Py#?&neA-87QK-~>ZZziVDM>;k7 zJ;tJtFRj`t?pN`Vd`EppdWg3+%y(q!1xn1LlJOCyP3s94YdaiMbk29jppY`7t#(hz z4j)ScwMPZVx9<9?-r~~;BJCEF7w zW}fco4jXi%CgKx}{CsOi3%+TZHuiFb#-UoLfi7fJ?1Rxyje6&-g=IM9FStcrTN{S8 zvbY4e#$r-x7-zg^k}UeH!c5_OsiM8rcOG|?|LCY|>@%@D&@OG0SdyK~wb9JYL??WbBT7a`aQ>OEZlb z9h9v|<|}o4JlbkOB%J$J_Zt-{E)~wm1s;0oZvffFY5gX*p=eYvj!j5=$Dt>;orH>W zjO^c4b8blCd|OXuNV-3hRI51AB9aa&+RutxTumHsXol7!qAYzQ<4JdR3Os9w;l|Vp z*-q%orR9nu;v?sQN~<90kf&o;lHJISgw(NpELG)M`L)Ad86VWSqC1$Axa4Uyb;O9w(ZQlMKTPbuq}8tzn~4iJWo8Jk z9$A+-)%DOeyka6c`)EIPTg`POch=0>UE*8>qNlSOj?Vt|E!~~YuyL;3o}<2$!#sMr z=+5GYqr_)8uU5XWigeYVcX9AEZ}?k1#gIL?iOWPheCRUnriF2&lHkJD*Br$d?EAHC zdkbl{ySF-r*Wp)IRvXA$EXUo2E0G1mo+uY7aK~)?Dr-xHD|HKLkx!4KdL_Eo58=?9 zO+3MK;5*ORnu@~7bfTWq{O3L=bGmqg^7C-c~F+>86dO&01}Ve zH5?WkHguT=(=%gFm!n%T`i%)MunHz(W8P{Ddqh%`<#>fl@% zA!s5Wk14)etzFtmf@u{F2>Gp2`l}w^4aKyhX+9M!+#w^jzk&O4XMcrB9Ga3?{qTFM zvmuY+P-jmx3>MRaO3kTT>0@en8ctu(IPB2ZD_b%5PxEg`w{h-9@<4xBscZ|0Be+7C zVdYnr6M~b$Azk~&aj1B8w`b>1A?S&bpVv|S%93UB244yo%NJauo9F9~37X7*s-w5Nj652Elfa7Q{m#V8B5y2&dT;OQ)`UDRq{3 zqd=*vdN;DCD&|EcP|+HfbH9}Vz5|kLg0psGELEQ#?rKpR_EhQwnrAboEypk?jwoex zyJh}0&vA!4=N)VDO+cpVd}|obkgd*&?4IfyWxT~ms6DUFt%*$0V7gbmjYlKQBy4rX z6@l<`-Zr3QDqA?%?TT5RMJmVU_fr+0R8uZA9^>Cp+C$p8mpI#CD^C-EUO?Sj8>K}x zi}P(HOsQV#O#8JoEDOgXY3$VYZNDt+e5xI5tsf{wFvc{T0paMEr?O1o)z=L=gGz>2 z_Skshlly1=tI0=aP~U2cn#}rB3Rvcet8sgD9!*~jZidf8xa84vmUjG1{Kniwwlxo~aeU~%Z zoNtOti#eo{#!qrke?b)T9;E6u&5(O}lYhw-rZRn9cI?zwFi2KJZ@0>pTd1Q*wUErT zb?B3R&MOIpTz65?zBi|1D#R3Tt+8E<+{k;Q8Lv{ZkMA!IAC8+Hud0Oa5#o2p-k#v= zIjGNa^c~gr>d`TCY;!ON@rm9lLanaeMb^3R+LXk4R`r3s8Cz_1pxDi89cyayq5`qN z-)@!7g+Y}@?VYhrczvDHs0T+vYZ=z0WHxh}xqzJwt5pX*59q74W2xhPH4iBn zx-%+oinqP>e`pg-qBq8|O$_`xdk7``Yl_T#Tb-YDO8)ICaGpPHY#aHuO{wgqxwct! z>JP87)b{dSMG@24Z0t>Xi@a)NaGb_&$Hz1yPF>oOoWl90Enz%w^K;PFiB3VR}rNZVzjqoVI<)d3=0K*n?O$lx|LlCj+ zUe@^YsIEd_b55w#_VpI4X{3@!;y7R;Y*d6(#lDB{Z1td6>OIs0 z#N&lS`1Von{z#~;tnK3AR;Z(}pcyG-F@~4?V|&%=TuLOok|ourxM#%DSy)?(NHmOS z6`6Np+bHf8>gc@Nr)>!k@uu~sx3?$pYp*7=Jg^w(m5d&#K)@x_Qid z9#uRq#f97v&cb!qklFB~VJwDVndL}&k($kPtB8_+S28Xc{{U5Rt3DtBx_gao%in-- zYlYjY=tyl41s&T~;;yZDt49sI=th<}Jvz}rHn_9dB=sHDkZ8{=T)Rt!(IEpTG&xVr z9w*T?&CBS82WZxKWbOC5HPh@j=AVryyOr)_J$1HlJSnfNT=FMuh(`KrM2n$@ zmckfrVwrI)GWY#;KV-tiiwKltZ`>(FtN#GJE^|xDlZ76&Rpgg@dc4PR;r!w9Ciw>1>1B+6_^tY+*Rm7L zFSw0!PsHs9s)EOq@oaQdGTLznZ@7Go?G|x~7MP{8MEbp<9_v%G;yDK76I@q|n~Zv; zxp>Ek_|p2qyWousHy;C7S+e(PP7!z1ccH$vM(W*u6*#e#I8PdMD-+y%lOGJ%8i$P9 z2=C*7hts}D`Pron*8r2_Q2NcLgk$V(lQ?gUMI&~#jexFEL)shp(^_1>v%vjP#d`Ii zGw^0P$o^}{)M1@tfc_#=xCg+}3!7tM#=+Aa)LW##U+<|bY+xtuhT%I?^;bSQr-gc<*xC0vs5=Fsoom+KbfuFXdmx$QhS-N!+L~-`g%7?Pmo|QC- za9fC>&n)b?qXf&!X6<1PD_j!uV`I8MQ$?G<^i*@laOml<-imR49qTRrHZ7W-ZVi6V zC-ZSj)Oi{TcvP?4G_a_lyn*f7DHv#xaA^@)c}5|D(z$!O;{rn6Dt^ciMx!m_YAgYv zhu4~Gb2`Itqgodp9n~n2)yAID2dzo-po6oP@UBhul1UZBT4S8I;@ZFWIg^T7Tf@z` zO|qT?J^nTGKHA-S?rE1e`s-&pJgczjiVSWy&h#Z!{{XZbtp$k_Z=FfZVjI8Cu$KFS z-nH0;K=16=XZ2I)Vo+|wI|{UEA^G^uYF%9fOQL|rb63kM2S|H8d#jbGX$Ku^InqI^ zPAMAc6OA%_MI(&%Uo>x`VkAAO10K!|V>$4pR`*?W*9&=MDGpf})S3Zk)X`<_4CB$o zagtRt(zZ36)UjPmM+~?^Bptx`)RuNUR%^}@ovU*z6Qjs?(6he&G^vE&-xYIz20)3w zi?H{qJKLxp*@@aW>-v2eR@1*q%{8UVj$Dg@s;=$t1{gNj=tps@!X|ECGyxxl4+@pj z-&M#B-$osHL-Q&Kx`N|B3Nc8^sNI$LRE#C&c6&H9bqpNWtE#hV+%V|1BAB(y+`#pu zw&C0}RQTQdg-6WdQE;UEk{HwjiE$U>JVszkA;=5$Q!Ssdoz9iU`bns*^Uv&dnE2M+ zd%XrH$K_|jla1NsEG}l!A|C2_`U3aXG=|!e^_8(Kx>FquF#0Blpa(-&+)g(ye{DVz z06Q*#e!jIXyLjNf(qd&q=sT#}UPegKjQ;@6h2IKvniWku{tP?J2kxj90;Nfg{Z>@x8C^}?6;L)3QMN-j;*4W%TJ zdoquWO4l4c9Qg|T3R&#jjkLBv`)Mt1kWP{xXF9F}QrpP7NIjZaFjg5m+s3?3s>>g) zf-LPB17oU-E$raq80KtiOt%dxdD9Jhug$H_!^*Ls9EuWK$;)xxJLpIx?acURJ~a$? z)`lpg8fE1BPtjUO5|-u&jt5|tUn(XEv;P2CYf>*{_tw>p?(tggERaeDIgs{Rxm-F} z_?@OOv0ZHI@M>tTZDp{KHtRP}`zDm(hDP}CsQDqKg??%cSfRu&AKOT9clSK2n+Rwb zhCQa}-@2ER7QMG0x}F))pq+Z74e2$hWp0F2mZ%m*Y~xqV^a5%Hj!uJWi9r#%@7Jw! zUl`87wlh)5FKQMU3dd@n80?)Y3GS|XTELRO;~XaS%QAjG*p0eU<^V8vUgoRr6~!*V zgI23z$Dr_~yRn%rE#KYJdQ{d|sm!*JeQWTmi#fGOhkJP$vz4I?jv_g8htl`ZcOx+}z{*g%^UYGh1k8)wF$TbF38bQ15McA<*eW@MM#Svt`Sae>?` zg-0~9#;p%FNklAHQ*Lr<%ZPCK;o?JIwgOG@`|8H~hsnzq4m7WQT*_24+$Na|?r9jl zh|zF?M_N>d!fT!+M{ep&X{Md+?d2>m8Di2!bELU+VX#2kQxQ8I7~X4G-|^1z8jjZAiY$80k|x;W>#JDB(3%*I0ABUZ`1+~|?5@=l++>j8t~;m? zU$@p5Ryl&AybLCfPL+*YXy`A8L0Y+*kI?Xg^NYYGcNUGP?W)Vkmo>*SF@T)Er5sl(8^IlHzL7PsZyAelD#QE08g>A z32zGPU1(s_BvC|`^PhX&VI^Bz-ew!CRUocL{&d$}B2(KW*87V0MM*ur6u84tk|sIS z8!S2>I=Q!A(o1Hnj0cwDp^4pje>8XWu2c*e8|FC3H8c}*ZJo!>+*h@k`2b*ca>k~x zig6*iok0U*q<2@9a}f6Nfk;m5MFNqf#7FVa$himiQM$F3T_5$yXo7~Y@P zB#tg26nMwd+hdA}d1hG8Ol-oEc)hA<1eNZfS8<-TEv&#ab1sr9?}f<3JQCtBHSVj3 zXI4_$m=W%iT=^!FKn4+9^c5yf7aLdKM+4U{TTnkmJAnOlsP*x#O~h+F2dXfp8k+C! zet8#^Kg2eAd?+MPp=0wW9g|XV8SK^=ZO%k0a=QFzHgG$sl4Mzw^$s(dnc-aU*|!nn zwG(+%Q0X#Tj^`fo)SR~{jK@e749rBb9Dv|%twt$5WGvzl}nk0Q7FtIOkA zQ-+{imSf>wtM2w=D+{o# z>fY_fl=X!|el)JF%mj56>-O?;=C<~$tG~oj-%2qlT{!ZqyEgY`k05!9ZLwbO&8E8H z>+5=(vIAok>%3Ca)Zt#jg4>dN=(M~^ETlv8*E*|DJ#ORA&0JA3^3aaDj%%3_Z6si* z+O)#jLD@%sOyA z<3cG^$!)K*FzCX$u!0vErvwM7Y%i2cXk*<^bxa~-BmzcQzb$jIrq7Plc~WU@J{7>F zw~1m&AY7_+Q&~O#0H(Y5ttYy;mB{`r41i4-InI0WOT_qC3mnRM%iZ0ILo@&tB>XAW zw^kYk4@w~c>n}dL}D0cRADu>E0^(8^}bdBac-e z_M^{#mJK)Dw;w@%qxiMi{&05#=URhHZl9I0Pp`hUEYV%3b4Gg8+Z;zWeTn)lT)FM1 z6I!+(v6at=G;J>=R{A=Z1Xa9okfo*y8N0kqUqKT`#XXkoqoF-(KVYn$o)kJ@^{jUd ztF9_*+f@>Bz2w(|D>`%HC}0tT*11i@g}na&F=QQ0a;|t>LM(ncaO%~qqlOk|!S$%#j2crh9OLr8D`7cHxDA$aEn(UpZ!Fz6(Ft=58%}XxgK)_m8f@Do4u^Fg%TyTfEi&SdO?&G?Q6Wd!%Nc>=r zNv$ZlKsgKDU99KMhC1hZ?QP-c8-0}LC5hMyvw@-2dpQ!$>$hLrD~U(S=S>ppi#^z` z3CH+)@-J;$lK9w5TvG0M7Bk6)<3a5M<4b+YXzfIP(@x7dG~AmnRtKVk*`> zrITuhhwe!jtD9&FKt?EuD%S?dO`cy7iTHn{W}gtc>H%juwiqylG{C zduaQ49d@fLm~v8RhS=O1xie~r=fVNs&V|70 zM`eu?&8U;(UmE1e7*@G}tWtT3I?w2(TZ^UB%+f$U?Q<<|5@6lRY6aPDn%fJO>%BOV z1_Qa{G!gPXx{fZ_T(y8k%p2k8 zp2qVJYclC|HFd!zXPVtNfuFr9dvOs`szy)J6g=xF~~cyQB5f! z;vBc^``!kTyZh-Zh2N>Pu6}pwtEet_nH#i8&aXOxXZ&0D_*Rf`eFHVx8C>mGsLafX zDAU^MPZtpOg5eKkk6M;!m)JJT2pKwQG&gBT81Jij23_B;nod-tlHTZ!`&52Z=gi~qjTOUVxrV&D3vrDuGx-VSasTwF0B;n2uQIV<5(^;siez_9DzR<}?~&0?CFSE%x+rbXSPr!1NDM1hH>Mr^SIUtkIlQ-B50BSbKUG|%%kue4%vaAsI#f}k zhqni`r^2pn=Du@hE`5h~JUtfoC~#51KMF~gql}M1&V5|<1G=rFgcpDwVLlbG8jnF( zl(ca-y7BbI6YmcnMZL+4OUjfvUlCAU+c+rbF@sK?>#ucX4n;MT$CWtkLoPF<*AU@z zNPT`ObbGkkxpEBciWauAmcwHWzM6{eGOSrgF@+uKPP^0EaTX)U&dR?!3`tiu5;H?Q zudhR%jY#l00!71$$Q|B>M?ghrH&aBN_?gNjkmOVoOTtp}#fH+vw4;Xc z7vZx%^A{_sHv4N--*Z+RX4m{}krBu~qx_QftS=*Ae0x5PjtzbA z;qEwR8c~jD9hp3sRn4~(gj(LC;f9^LTHQ7-EjWQ_hvYu{R(q)kRug>Vov32AuR6lT%|bADtCqJMv~mwDRkW7cTI4@z zd%&P{05joJoQ#2iN41>NE!MFdV_uc{)KiAY(Oz4}tCuIb-dV3&mL|2C1{goi6x@4_ zUCHVxCYxJfux~c;?yp$3i|>1%#z`35(@DYjgw}U}d$M8C{xx?U)TRrVax`P-1HDNI zzmC>kqnbCVqI-pqgNNk}nv!_C5=FdzM!jZPnWoNlcvow*Pg6vn8ZAtH9wxe1Xk&We zmPsDC#NtW(0$> zyIC}>o8i~H>#LJ`&!nirjGad{6gc)N__XlysNQRSR8BIO?PvE>Z-)m2VuY%>$nmBL zl1|&wda*vOp44RKp_0-}TwLcm4@%*-^6Ggv=Q{k|=-fdf&1~trYOAP22Sk;EW5YGK zS_i_QnKR9fO-ezl=&#(Z$r_>8@aa!+a*8K*%N3%$I(30_tK6$o#4X~6`rGkWDsXX9 zK{eo(*+vohV^v79jV_I)vr8I|+Z-r8^nvqi>T<4)wLFa>W@FmTY1CAnq#ACd0etI%HouRwuN2`BuO%@2eCi z3?<3I^UXubI*`N-da&MEju*&y(6oU$NQu;U*43q?Xr%f;*S)Ct_|alBrqdqDZq*-GMDX7^T4n^*Sii>^i06o)(u51&sFt)|Oc?LY;u7;-W4|kvl7jglDSexNY1}Jc1-D zO0IEClRllYJn3xTPLiD|<4)2JhsL>X>>D{CSG?bCFW&(a!7+gG^{FMZfW;H0lDV0nU7UY8WmhE2*^rpEk9Kns}|_)yzHlr<(rNq2aL{ za_}`{#-1Nr=Gq?8>F5PEoB%px)~kq;=SR9o_f2saB|hY(m&h79tsqdXhWM;ih5TuR zl?pqK^G>n+@l0hZiQz>_?(P7rKvTb~z8$&ICZ*rTvasfLZC?>fFE4E2qwl4*fw_2- zc-?*V@}Yu!#a{4yt{`zGtf#7}{{YdgGcYm}+I9KWufMy>i7lM<%`}LaK)Q+aM|LvM z6Q*?@6qnYs>b7LmrnsfdAB2TMS5JN@W5a)tY+UBz+jR3N-#dW4_hF<#%Y+ZcfYJ*)_trpF39$;yq<; zxg_+j#)&kOk~&lpTVc>Y&fC9w@g7x<{L^Vdd~1n72Dtf|{S>bM0L9gNd)4K{7S8Bf zvJrEoX^i07+C{sxgBq!A!>mZHrDGlR?!@5q%|#xqLmO1U^vyUYx|QF1g_1Qx;a>N4 zDHkBGoo3$RSTVMM=SiUO%auJutD5%F^DV&W4LaLhyl%&3Cwfp=&EjY@XDe8(&2R40 z29*Rs*u*@mwb?#Km8P_Yb{z{Q^hY5yo}(4)t(GDN27!vWlF5SJqjOLm^HExH10vnT z_~!e>5#vr^oHX%_$0TR8rlb4iDUwK=sM{yTn8I~L#K$N@S5~&pSsQiynvL$l++3M8 zXg(EjByorp+p>$(;ac&hKA#H5yeQ`b%hTsk7VWBc8s^)cQ=fW1vCH*$eN^)Bz=?7X zwz8kc%8J1>ygKJU#paVzeN-X7Lu(<}NXwLO`&EVt>VGFR6aWX8r$zKCE`atoKw;yk zA-p=Rq;0O1doDc3aj88{Ob|6f;l0NA(m90@(`k{qhO4QKl-3boEOJVxOy6BLR6P>Q3Hu z?wYop81@ZD(8n{*!`={(KH6ybjkKDZv+ZF!lU5uu+t{l}7BpWLJJS+$s*ICMb7?x< zL!WsLYEQZ=T*+f8Us{Sa?I($=ekZ_gT3bweSS4=K`PWQSzg;!B`zQqMpAP!6kj17~ zKG5p!tqNU32Z$o_*rpjixwCp#6*;IepKk}yWuer$NMQfj4PM-FT`Vw;tTtAb9 z9Sfg2lIqS!OY3=7L>~$zDJq_*LF-V(F!f#; zbtX*Cx#gU6J{hhcQKFU&T4QL2#A3T3v|p;1lRquS=ObfD^M-e%?1;*q$pVVg!jrnd z-tva7&1HVN!N;I$T-0bc*5743FBY+(Osn*xJ?rO2>fS@e_*=)NaroHiHw(GAEwCB<>_4+hOHme-T$wXn_ zisCZajM=oAjQIK1dJeTDHhN+a<6E~uUaxmFR~HP&K}Es%QqOSOBMYH?X)d4LUeDW8 zupaz}9zvC|xj4Y=;qtLnZ9iVa-#M%(RFVq z%E$<#>bCkgeE$H61pA&MfsJ(OOyY=bkA)8Ey1Tj3sDlw?^)%W&)7}T5u6y^b2rw&s z@+fNU;9yjoJ{?bODeWaPy}kmT+4?kxhw(|0G4mPqC+V$sF-9l<02n@XG;q%+tFGoV z(!JwR$!QxrpzWh_4O>ezrLOeiNLSv?O%ztfB$Y(5XV1EcZ)c6L6Rm5z#f{=@v%&(C zQbjW@%wu(yBb~k#zibVF9rV+z4Gyum)8A9uPB9O?8DZZ~GL{kTo%+?){PMQ3HieHp z1#rGvYJ?+iiri^xVkUB<=GBeHPFfMvQYPw+9{rj;TZPEB_Yp8N+K+Zk>zvy+jS~}O z4u=%w2DzHO&-<02vC-i~V>Avo9)@Q+HtF=M@R@*E&$-`E_qT{D+bU)GgK@nGZ0{zS z(Q%ShvWtH2YPEI!gPQAoYVzP+ctOSMS$vzQ&12Ne~s6VldA*)xxMeyT5S z+}O_O{xxlLZrUUgYTLNek_G<&+3qdcY<$PY4PE-E_8jKX`MuTG&^|S7a}#OpX>s(F z*1qN$ts|vk<$!=8)D2!mX#C4zA<}#)qL(D+ut!SgyJTlVidRe|nC)q=Rkc06C5tye zE0niqm=|_N(m|^fo?T`)z>~_FDIm~Mbshchg#xEJr?!;@w(c_2#&A9`kc@K<*gpTt9?y7)Xj+P!d7&d=Hge@OkvxTyu!k zFK3uLh^4lCNMm-5&vC)5s2I+6r;ZD0E+zUgL{2GYl*hv@i1+6AzRKcJ4ldJr!r?ui zyG9uYHX*Q+#8t$zI>?hQjUeKcIfc7hElVoi#}vS8P~$XJdiR47?W)S# zx#k*=fE9UUG?nJBz*OiPBO6fkXxxg@K5u;sh+M|l$RO?wL`1HkeeV-osbg(paNuIJ z&kMs5J4oFtm+OnHcQNbmtDz2=RabS_P=OwtE(+&3tOfwrooCPr^{F_esy(j}QSA&z z-ukLLp}nobVq=U~tJuZPw$enBgWpVyB!%C2v(bl*dr*sUo!ocVFp@~=MGAlm=QL0; zWK*&9s%IJTp#teGs~vW$iz|d@yguuW<3Jt0M~*z}*En^^w&DmjD*b*n>Kt!}m3>^b zpH4_VG_hP5xSt0nXFmE?sAUgsd#f4w67cRL2$tRZ`_TA`HkQ{dCk?r6P|x4_rmXMn z$+ft342%x>{j~NxO4`eaN6}roIH@k}V}@%q_wD0iTn`cB@TF^MI|s5D3X&_k#4+CN!uN2D0#Y>dQ^7yPLf?jds>$uZ(JJh?uKaM zw6iTK&@eS)YT>d&DM)yShQtoFeZrZRIk~#y8TWywhGphN>!s9=>f?MCf5C69pP$37 zGl48;=2TI+(W}0vK-$n85(Nt9{KJ2J&3QqcDzH@EyN@uynya|=v%`%EDvi3 z#>h+e!tmvTlu>Pkk%8Q_z2_a(`Cfob}BmwgMD=i0ahJz@)=wRus*%c589<(rFyAr*qx?mOJ}jX>V{bt29H%b+2KI z4)H^#s_fAhnJ(XpL0T|z-C9RlZr(^6v8dQ4wF|3i5u>kYWMY|li5eiwvo&*JKZ3=A zTnf_*tHE^_wqME>J(bg>CO>t@N|hs+O9GLllCGN9Q-KNQE3Z#FU0cykZ>cfp(Jxa> zBcD@h&T&@!LsP7l(czm`PJC)>+li!0Ze|r`8@}Dt70^24-85xbG%Iz%&2vnV+m-5A z(c~fu@8E-m<;YQ|6DPhvJT`+jUVYxeC*R4Z4 zT-Zt3iJf-_xN@Jya)wlS)vd*}vZP4{=@J&rD{%#qDD$Lq7fC0&p4fnMHWMA%AOu|*ufdb^{p_S+fx-CO$sq-?Gv3t(y!h(6>n#IKdeU!YK@<* zXR6V3?Jw%BJ@gVlQ|hgb{nce~A3EW|qV+Sx+_v{a9)mR;mi$iJo1M^}wJn|Es?3L~ z9D*t+^y)=y`P7ZmCu+J?x75x*8R1j5jIonB0<_kP>Do<9>m!5sUf&TZ=(3lD~oX1Zn=<7bzAmvr@EHj;XPr1Ay|8-70R`>^=TST z)SGWwr*iF|8qXwPeB9QST{-SF>Qz8qr#PX`V5?s%|eCp0BXneL&LPLYT z50xh{^7ibo@uygm+LMEhlrz-zqS)`PU~WxKzD_c0uGCF=(8#T%5(eMlNvLEg+M0DG zqQNX3_n|GcvqhczEuYa$B#kagb@{AnG>cySb#4W3`VQ1R9j(C_YPjL@NF?F6d6LbE z>65zDkX>qsv->$Qu%Q$;3fEC~pqn`&rnR^lCWZ7p7d>c1&B~uv#Ep$ekqr?b$HdoP zLn9`wUpRFXPJX(~t*wFp4~2G)JUtt!9+bL)!s*?R^lDq%WkEWO={sb1io`<^u=bI* z_^nXOsx4UfQsuxJvAqm_n%mPa58@E>Ab$S!J|e7mUDT3`VR4&D^>$=a+-p56rU%EZ zCmrGF!p?TZ;tr7?r%PdJh~o){nYS3P$K@Auw_1&s{#d3R*xHuOgLbjaIQP7&%1di? zfg>0r8>pg5&Km)%z*cd!Lo%GJE0;M6wu>b9;U(qv?#@L3Y^1$18??GZt`tI}Z7z{6-tn8>-(GTdqB!ETd_@&l2xX2pDi(B*Y}o5d z_fNxA@?Q&k80d%TP*?$D->15zyO;Qlq0I6g{{Sj$f;%nlFMzJV-m}aRvaUATu1xZF zIeNExw_u`K?pIru8`Do`B5=+jAM?=>+VX0i+ES7Zl8I`rJpm9BHE-4XX11l>m^uhPzw@HC*N=en__mQ3um%erzWBOoO+CD$WC z-CZ-2<|&fq-U*gHk)Z7A`m1ghj~MsYR+bfWc(?a_7lsY3qejk8kLswU;!^$c;qo0T zaI2j^oG2^Gs}`UZDAJ{ikj4?RYU(NE$5snmP92lksn2yTM9b%LIvT?xD*Yv+rtd_*mc46SO%$kpi&lnH z82sAz_VT56k%8{TA8Cg10)aB?BfN^rp4MwagQvs_{q(!w=dD=I7q(j&_|`$(^`pHS zP4tZQrD`4(ET1ysAnW>#1&uXrxueYN`Yz&r)NDF=)`BTnJ0(+4W4NUnd2U8dJ=0hn zk)GjN75=((Ach^)oZ)xts^ooIitwmt$pnhXud_(Jm_=Rx85s@@m7r*NuTgty})|W z?4OMc#@ltkt9~%yk!|}^!HuOAKMa{7xZ!fPERL?)9BvQks5pGLDRX5n;yJxfma5{i zvuFu!-I;d5@~9S#;yH+5Iuocc1>6{D$RWu zg=FmFEHU$^&~lmB;*m=G<8xYvy4CM&2T@$xXjO)zrd1C)KRPLN z$A|Gj?nu2_fVs@Jt?o{vYFm>kS;BXWpLwd;?-WcOw29N_Ry`Znm2HgDzYyW(KQqzp$wDob>K!s0lb z4&y+Bw~viWX?q&WYclDP73tZBRll zqD^bp1miiYNG-Xta5p^XVt*Hn^!;X%_QFMbd7{C`&1KsZ%2yI0-^RHX^0RR8eWkfM zTvYRHdy@ycn{B&=9xz<<;fa;C9?BC^`&K*_)pV2xYl%N~BB;^;*b2$3OJZbL8rZfY z8Ou}2B$}E=E?K-ZgjV;PX7SS;*I^H!q(pIy;@bz zh^M!?h{qs5HL@z=d9M{?au-6K*kitgVJ;w-x=7@!nR#!-xvT^;B5tF=inWMD&`)cT zA$9k&M1|FXP;rh3{<{N48cTA0qMFUbEv-*zbj2HqT~658cT(lHZPeAIS@pY_f12^d zaVto)!+H19OpXSeBY()yvqPo@->K*%s3b-|_s=XJ#h6n39#jEmmHQF4`W zQfa-JM29XFw)-fL6X@$vzL4QhO2i^D26K#WQM&TwPFJ<&^bJXE!=gEJ_|BnfD~oG9~D&e;8`i!L6*>wKN&Yh|;2it2kWJ-I;PU09B~VDL~8DS5fs>Fzp^P zN-ZnJ_($jMN$Ylsk^LxptN7`ntTd6`U4hy@H4%-0VmoW$U6YEz{31N=jy9)Q6V&dy zh0kQsjzv1a!JuE<_}8o3!l0^WJ?50n0*o#hd@F994QD&iNZH4i!UtWpB5gSvwc zb<`E}qeipenhHh;tk(|WN~f_WE%x!L6}Oxnm&&y01h zMJju&z18cNlC-i(fYNwU+0H$_HLH!oFUTu2ODt#RkxwOzUwY*)uP}{)@x^jdM4I9} z7>n(iyWpID)QKjDtTP4Fha#?cb7P-u`d=OXj+M6FovVH8w7SQAT1Y!9ue{Wr>0IaP zuXk?>Fg31(#uupi>NbZ-WjF^{YL9C>Rw`%e*uWK)*n_o2avLDyDtgyltKRMSR`tJ1 zcU`rP&z))qw7vA2F$4a}ho<4=y^X`59_!Xd{($}zE4Bes-g~Mwx0u{6ogqm$T8+{2 z&7EoVYIw_Oxzp~qLrL?t?Haa>TwxtBB=f25W*TIT$oSD->OIH4xUH?Hk$ow$I4(IFp?53f<~#aVF|zI)A5VrMEB zW8bw+BU_8NjkPwwpN(F!#30mmRp>I_IYcZdDI+2+U5)UInOR`*67|isBQgc)+1&KtanmHXE>JS zTMwlAHtk}uo$D0XU4az@b1>3_2oY;6dRIB&WP@c^J@p-okrA#vNPdu_MsPaQLBlPb z+x%hK7wf64uQ9|e;c(47XHO^NQACa;nC?K_0YT!HNP9SPhaGAty=T@SS=EUv+g&Ug zrQ){I3y968sM|eGD$?mcjKdoJdYMm0 ze&PQBuNscx&xc#Zc!N_qE|LG(**g0I!jfb1>v&C z6cAuKo~HttrqoLv_oTKq?Gw$}M)|C1bnHQ+9N&w7daf;9o_l$ZG6@*u;Lrf|sG^Zs z;|=eDQ`}e;hl#H2xxsoMZUEm{{T0jm-5ie&!*6s|x7{(}p1G(MhB*HK7^r@5@y&hF zS-_n8``F{;qYNK+_E3`UXy%k1EJoc076-H4K{2D^DVL@zVn@KzO$(7AIqh^m8c}o> z-4J`QZK&3FYS=+$p+hv!J)Q(w)cg6zvJ(f5`3lrO5yA7{URD)n2Y)MITudimF? zq)^0T-(2O>||6utazG7 zd^7Yl*cA*z`Q$p-_X^_><%hBEr2INqq{e$MwL{IgY2TO$)Mz$I?ReGXkeo^s>1xdQ zd7F6!JZ`BpcsNs5?<%FDy5wi8ijEN`8J`%&abJ!f>gaPMP{X?w>|Ap`XsKL{T7B;? zM}BE0U8VWCuUv(H2v5f^eRQPd_9sobo>i75zPj+wekd7_u_qoB79PY4(@hv8-DL6Z zs~6M>d;!>B)Vgjec63C(p+15 z#rN}Nx-W%UNyH$MD@K%aA4$V6ek$576L*VA)UvxVVvXTX#BFV&x`P;Q&Y;8L){God z8Mt2%&f+&X&;Glr{{V?_z984ou*|T``-9^~&fsO`msC%ur9~yfwuv7do$EH%&$-!% z>roYdYmHI~4_YLRh@o0?cBV}`R}A5^$gulByz+O`;aW83NbBQGwvk@51)P&W;|wbDLg*^0Os69*XyBc#uo^G z7jYg+x9;@fy^`v0)kX;4oK-<%Th`RA*9WCXvEDr7)TqpJS?DWBU$@XaYr?!mEHi>< zjk_CcYZ=99J)$~Ni0x0N-(+cF-NdwTZLURXEc))T$GddxG&JUjMty(5sztZk9CX+9J*_fWNc z5lfE5g!QEgdp>peK$01O*snuM_SZsq`@q_xl?Q9Q_tnORI%31H&imDe6pwY0bVz+U zsR=&t?RnOWOy|+4KUydjdbvVN9u2wp{>RVo3NsDKd_bucr9P@%O zz*iyUQ4#B#MO0Oo0k>D|chZx57X3FG97qzt)+`D|@b3r+a6L{xpSG&<`1D)p2 zS~0Ec7m*Q|=ZUM3u88B_FD58*_;I*GGOrVY4F`K=hdbcD^~z}Uzk#5=PIua+F-aT| zt9;>|=vtYgGdASLn8jK}b~9}xxM>q{Kn~PV;6oTb70-Dwr)2}?)w<0pMHJJZozC5y z?^1AH4ieoGA?*{mc~rbU(jQuRh6w$pmOVj6I+`II6Z+|7oOb*=ioN@lz5`rmnG&(t z(4Lj|ylhXokrALvg+snCHE9Xrrkr2R& zi->xY+3_M-9VJbO&z98wxhWG$+MZ1Nv>U9uTl_0^@+sm-;G^CD@@B=I(4VURp4 z6qlCg@S85yK9W*M7@ry`lAv!vgOq=obEKMVrm%bSy;<2wamj*7m!36aP#fZ)j?^jn zmhi8YKNML^H^ZYKrb%UdGiq#ino}87Dsl@At6M6pz2!Pqss@{%ojP{MjcXkZcvZBG z+D%*JXB9P^w(oHr!uCSG1b%p_;3&xO$WVjUj4{H-PP-139Bve}O@!r~I2880NoTmX zKZ%p67_9oez>`QCLRS|J8IsZCIwC{e-I{135+=Q#HKe%WuzJLeA7b1;XnblL4i983 zL-cm)D&lS-bZ(nQ*lc0wMDU~ApLL___0`m}L#0v@qt2}wXIL$HxNP^(^=MTfL6thQ zT>OSvH#qUG%VYM^#xWe%+phhsG&bM9ttPs5x{eLe9kyCq*yD~VqdklYkDm&yr$g7W zd~2CE6SYgoeWWg%>K{hBZ{b;Ejp&VC4S8d6TM)zZvrDaX6WnO(6o{RtbG9l2b#!fD z38ZLU>Av>yV$6S$W zJMmW6*51^>3QT@>Dp@vTshBA6%_f1}R+lb^TI5#~glw`~92M@U<&(1tjDB@1+k(09 zuO-~(rfX=-^OKTJ!FR80bDp%AU1Pkp3wyS0YbGJeXKH4*xLr%z3>%=Y`dI$}rA@*w z_(haFKrWVxk~GQrr@p@O%feY_msGab&`G3^Dtk-wsb$H6Q}f54onTO5)K**Gp)7rq z`st^&_EMqtvA67?K-4G_HtB&uxrCj44Qrk@4vCafYcL89Pa^ zZ>3i=#Tv~V-^L=x>8MkO@ZVw&w=8jwg)2$e9v&4mcChozjx~&X%ioIC%6ofDaj2xd z^}<#XzN#3OMQ;B9OpwDOD~xR2_4mF>;GKG^%6Cr;8sX&FywR>Rk+UC-UD~MRBsl7J z_zJjpw~Sw;MWK-fA8NGYd^4CO$o17Sk`DMgbf>vMT*jUK6wpbONTZ-5Y6_(O>eb9H zpyIH{>Z71-Ua4w|&e7zv8o1?I8>pd_qr6No4F|ZkYjAzsn&mvA>O5?+o|P5P6Ot(| znem`*1%3(bZbNMxVUO%+HLG_H3hTXj8j98BGDL?c8|K!+onv#T zo`!=4DdR&M(AU~d@mF^dr>xrE%kJsVAoz-kB#UJ14~;CN@khR+<}S2uz7_1BlM5cp zADd8FOpvms@l6=Us?%N+GQreQE(*lM5@6N6owM`q9$wMb_ zxVl^WJs^;t`u$aF5gJDzoUq1>GN^9rxQgZhu&QW zx|tv>Ek16lR3d?H&P^!h$)QJON!V6^F@v^yspjG?8rM#AhQm}w(2rG7r3gM7Q!|zz zcT)20`wrMfLGJu$J>#m%cRFi{+-cn=(gjI%FdcpF_O2-1BZ}iHJSrqs&F5Fgc57eT zT1#e%#c=2tW8S4ND@ed&B>D!Ux1nZ9WQJw;9UQ4&tW#L=>Eye#X6#)s2b1xx)WTa? zm+`6LS5WX+nW2Tptz4bRKSUbLLzQjxb6tRSwO(AXGF(rhG3UK+%T>oWgp_3+Q*UZgWX&~`HUU}3=wwM;xkszqC@LWiqNX#TH=_a zfIf-qK&u$sZW&G}3zO>wdPx065;|6Kh4cal^k7u&cEMXuU>^DlfuBbBt9JE4D@7m# zhV7A87d)Bc7YMRI1bNltR$Mz;oB5m@w&m}?U#g_Mw!243I@{^#@T-e$dQZO>l`M$c zk-jPCisD^ibTT7%Rl(ts7`N>bov}vZeOD4^tDLoSH;4t#fv2^%)MVzCSsAzA#-m8& zM!75R0pmz#nqha*gr=;Z9``W0tf@MBQ_CKhp&;-r<%L`%wu zcnY{0v>4YT%+xTc!${cjriqw7owY4=?9t@5fO>&j4DU$ZF;Lp7TMd`vu^F0o7K5d-<9@kolnM$SE0F)jfQ&HvXSk>4;$*=4$(dteKAFYK=(P=9oq#8>^0(?_%z+)keIW5CoFYsP(bq8hC(6zPy3KN^Bdl4lXGyn2I7+78`LD4NKv zy3^U4Xp4+#xK+an&B6l8b|G*{u6}zSef4faHibLCl_Yk}ssYn~dbwXgh{bf$M2V+q4)7xkCPEr9ax%R z8?#DBv;gl@>r)+^3z7%VJ`~ZxY_XBNti!s3K^V7*Pisd~DtlSw7cj`A1|tlW2$JEa zw)a{$IRnnPMf7aT9IREDPj)&QXrHt6MIS;>8Pdpl(+0LT40_?RYUa>Nwv)PhH*a}O zNd%KOtlK_~akpAomVHdCr?s<%gMfx!NDYW;}#UmX)Aatqi9m~ghHKL!IR=WCEP|hm|pbsxbJu_R(y5W^{vef)K zXXf(zQMZcJLm@vXn&q|(jnf_V`zeX)Xm?VeEu{}FR@TBzAy4ZxS0G3e zR+00^h^XWIS!0a1L0!Eierp5PvyRZNn69Fvj$3@QeDyWcv*_Ec9v?hw*$fY1+Re6d&jRy&h%6F)ZU2J0E}uerUF+WF&lnmvk#?Gn9wt`Y;^BUHROQI=fAp$Agg1(py86;FtJwM z4?#$6ZI_l$ZItvBzk5Fw(7Sc|s4Vg^lifOUKG9K14XWGn^{R8QaZ3IjMH{&6h0N1I zk7>B8dyWThFF5aU2E2v%X0?6OyW2qzYmig%hr+F`cvX}s1nr+#k8K}aUM;s3TWfoL z^s(8RnM8x19?qoiLjYv2*;DI?vXtm1@#Lp8Dykw*558voDyd=Rf+dcjVBV~=zUsTHNCJn%HzJGy|N_m>0e1kZ^bn>jH{1vyz1I6A!Rgo zNJh7e`~Gz;>ie9Hx35`5BUB+tknft*-K{6I4LVydDj^oVBDj>2O1A9plFo5c#c0`* z5(A$a3Rnj4HMzwJEaK+f+P0+May!Lx-3pZJ8+8(YxAB==T* z-ROh6XLC`_Z?mcJ>s&9^32V6KB3&c8lJ&7B;{cqKQgKUwEv*bdM6#R~J@}!0Yo=q4 z+zYnGpGi?}r())(TgA>j*%pe$5^Ec7Da-Z|+kAH#ia<}aOzP`PEX~;6DkN-AwrzxC#<({K;Wr6!ZEKC=Y>kEm zY9q_*tHzBxeC%uQHI^D&cv8eS$jLNEg=^ZCSKq6Nm9p5h6_DYIL65}W7$NNP^Jo2l?l725wbx19nU710Gy>n6e^v`n9u9)1fY*G{@O8cZ7 z8gAZL_0(%BzY|e&x`Wv@#I9i_qn-tH&yRftED=cWr?-KYY$s@q@M^+TV7C#jm-4H- zxFn1vvS$pw`0=DwkwZAxsib?0sLR7HRW()Wo05IDxN*P5Yl#jYWpZVba&;_c08>Rj z3A&sz6PVYtiZXrVxzmH$Z6N--9L^IIBT4t}I##>2;qXt5q()*zGSA200E~7mxBYZE z+;ZkXJC-#SX&v3=#oQ1!L?neqK44ek+O%6CKa(^U>Vz%aZ3+1*>kfKy3~;w zft2n%>%;-yTtQcD3jkzi@N8&jA4do?@DPx9A>$3_O#y<@$A(8wLF&XDr$v* z?6oKlug4UO*~YwJ8ue(R(7Dtdx|-t=U9lPML%7^fTUl8K{J^KEuAQ$;oId5buyX?@ z-tBgJcY1TDQ0a>1Tay>&_fTUdW%^jfN?W{>SfJ}J`P^cn;s$WL?6{++H8gsFb{J7o zTX5*Pv&Gqv(%$h~h~?u<2tli42f~9{+C0$B_}OBQIQuChBXXG;?ydTPM*wQ@t*CFB z!0DaqKV>eY!;Y=vQA0G(Hx!iO9lsW$ig$|1*jHWa#<#_4)1+5g&!wO7H~Kw<-@c@Z zU^($IM#qS#q-M^R+JRp2oX{tyO@#z4l_RozXm3+n>C^(`H3mV{I$)v6qgeH&%l6G~#f*m-^~Qw1OyHs8F`Ka@L=u3Yjf+&l2{B zXM9%McvZIyy<;3V2;8PWOm9;w%wYDW5{vH2D5I|}Q=)eY)7F_{e8-=3?_36M85gYG znRza_&NKR{AB^!Sjn`ck=Ss)>>Pc?Q{7PMU0!P>im|LS8W&@Hl`Y3Y%-{#|`N$Yn7 zRDBAxTY05rd40^|6)b}?4LLa!gxX7WBb_Q4iRFrwE$koHx}qoGr98W=LM%>K*j= zkBwWbA~De<5tpVl~R zr`TK({{VE+4ZpzGt3A|{z^5Tu==#OOaLyec<7dS@(B7@>uB>VXy_;xYHXzc)GV4U! zwclJziVVeQ7)KmlBz6A)*OhZ4ATT&Jqp8Juw+a#7aRu$XT+C@-I=7wdp33P^iNgvQ zBQ%T$L0fgGrI9tm^S0?i>e-T3Z=p!|$;S05ju#d;c$XnNDfFxGYk8#R4`a!IwzcsX z6k@r8YfA+UCB(8uW5SOQiN!_3KIL_Az6Ba-n){dUd_PS>oFdNUj4=~E$0ggC)EF|D z{A&hGb?)nqv^3A!&fuj@AFM{B^SaWJAW|C{%~-@GiMi{{1Rj+Pawjd=b2b zyDNZu>qzhLrn-b`nh9{g)|uq$+W>Z297BqimdRI4PVbN@6<83S6nLi&)FIg?iF>~; zk{PrW2PM^T&E#s)3l`!Cai%owV!d=(O7^e0!sOzD!*?*YkF(2=;~RKazFU0xRm{G) z+&_n?!IUoYp9+p2SoM_-Uz|sArQ|<1N(Sq-b8clRa=^Qe>bIYWCMTR5nH9(LL){-; zT*x61$2`p80^>-|)MG=4#c?}9gC3CMwckbLDxuEG4}DDNl1vdhT&2kwqw3r?`f-o` zU8^y03(R+RK&@YRE;I38-&Z!ALx5ePyrt2Rb$;6B8z~?spqFaB;jbz{w+W+|26WVa z`}XSqcSf}8{9gBd{?6Z`yF6m_CwRjC>Ij@}@F4l5FYc%0ebC%4qw}I#1-|HHE#K?~ zdoQ{r#(sUSPwW2x*Od}}=p!lIJzM^D9>2O6g9DMK+x~PUzWb$lCQ*Q6w^4yWzuhg+ z$N01hLGCZFFHXIC$)_jJ6{UC`yubB}tM%4|;g;yQ#sov9Gq(e^*4;>ttpgVXv_d)_ zNUvvS41b##t&vC7>Fe^dl34T@so?}9T=u~~8tvRg=e-?s>qFcry;9gCXRB9hA5f)@ zcV;-Hj%E#U)F5t@9$xAh*k-VsligC5zhK;*fI4)Vm^7Tp2S&$Ac;!}F;(AozV+Xo` zVZNTV@94*eeGo_2K=ClHU0r^6 zg-64LV#eJU+RF#MA*g0Yl?culN_Au7MS1?dx$Vb3%}qmNaW5hwrbd}YYqfB92@Z?*`hK?iLYuTb$%B$@zG1SvC+x_&l9VWDH*z?o-vr*b{Xt~ztaVAi#sqtE~ z;v6dRE)?y{2lQ7EwR~Zpof!kDYEj=nou4~X9G1_$nhM&o4%zOehIsp5O0>%tDY4Vg zS07)aY7)oq4eHwKSc{xA%>Zv2xLy>>)`jvB_pDyo%NL8T;<%OUEFLj#aNX2|CX1Q!y~ZcC_V9OKoFuCBzpn_IaRRz4?uv(EBPm)o{!JU^|bE8JU8Cy8}{9c-HV4 zArAw=-BOJOF2~}>)1|bLt~h-7-Zoq-;-Y4MW6{|6RFXBuh3k>uCI zgnG-!ca-*ZQ$->R2;1FNIsG*6)W~ofJ#kki5Ed<3N1i+CIHNg{+ej72wPZ_cC>A2b z_v0t_Pzx@z<=;b=#zK37_g88eSI60!jvGr0i61&ov0w#1GTP?zQuK!0oi!A&@JrLb z_=et(GwyouM61!1DL)PBK_3FRl059sr>EOj_V#=-No5B_x*R)bXgWmjGpgI)|Zh9ppbTf6q3cqu5_M*LiF&aX?VT# zh&qjhdaKR&Gj--olGL^qd@^~JqvtzwO2kKp#;vTH(A)59sF}zY2U;@sR~@*%;o2J9 zw=P$FzvS=r*WT#kw(!F?Rw%z>#h3kAEqGuorIJ)OUvY6ZqyuNXA-n$oCu)idcw>qb7(`Xr z3db#QdW|&K5uF@AiW7_vc25tkt)`YZn)=(=T=oWaFMS`t;NSlMq$?6|%Vr*Miqj_p zvvtNX$rO@J!JugrVNRZvnK(RS^GOusS-@2vZ7B-%x#v&P- zEgMWLn!FnMAn3!@$;lrM>b17Au%5&&$|QiSV0q@Cwz`3@LoOweASH88BUng@B$&Xr zeUt3kpo7%ri-&W0vb2`$qe}O0^;PhK()}Dy%T7(J97MZ*nr2QFeoF16TQDE0mKeA- z>q<{XgpbopJ@wLXG-bh#F4Uxcpn~?nliL2fB_h6n&xOY9yAsdGdq058KI|x-0C~8X0=|~ zNp8v5V#$G;HxRgv6@4Md+cnSPd}aM|L)nfM+N|fXovxQ2=@=rra`K|a>_2TZYncNs z>}jI|b~y8-k4LtXc`;sirsc-Y!1W73eO_F6>821t{{U&IYf-*3Ya?nC6)X6*Q}xpK z>Oq|RDWbE`oXGXaiQG+00Rpk|1!l2ExAY3g+PdPkuh&3hRb!=a)iH%4-_Z(<)DG4v zNiEPk5P>De`{}2XgsYxj_#5E|d7~Y)9P^DwPSkeq>5AI4n%au=K94&6^@0H&bv2CB zFE6Wu9)K?!hX6= zCvO3kA=r~6V@Q$CkxX~xGhwJ|tkLfs^&S0`Voz6ZXrr#0&o@eV)5i?4##Dbi*r_;w ztVXH0DxI}Hb(rp)ZSywXm2DZ$*eg5co;{K&Hg%4M4}lr0Oh~Fsx=ybeQ1;Ii%Z%$A zBYkxf#KTC~k1C4VJj!vEKz13cxj32$o1|wuEi%G2#+^v7q%l%SAkx}#7&S9oI>z!Q z2Ky2zPDuKw$HZ;DvbJNIF3So_{{XqWmv&!z7j6EkN8+h07h*7(l`uZqXclCK;BFsk z^_z8yVUF4ld*fWW;d^uWYmHwD&vk0g*G|&5rZu%=(WrMC<~o3UstJ- zmkR#ruVs#Md!U_~h>~qE&G^U$)DK)5;ukZnme3Vzv!0Z?y7^SMO|L?yxTm_T?yOFz zeP2%BFp9aF=S{0TJgkqLD#=ij7&~WkS1~sZPItIgLAf2wwJcnAUQ`opoc)=j!?@Ss ze{T9nwSqgVMBUPPaC7nSqi^b#Fv5Cb=iU7jxi$yCPdNVSU~Vj9 zU0Gh)Z`o0L!`NjP1(1=dq`URoBn=*v>=IU!{{Vhl+Z}mx9lyQ$Xb1bPmq6*J-D#qq z?xywB_h?a?um_7w65TZER0CBt#Qa-`Nh1OU#z`TzJlF_^j`P^R8O9;qo7h z?0;<-{`K`c9%0Cvj{`^RQR-^~v0lx;X43$?eto=r_R zD`=1&r{hu2cV`9V+Vqv-8&;uVZV!(rR@U)vmV`?yqyRqu*dXq(-O%X4=bJC=W#g7lOa6r0meg6PA_ty=xS6rGPg>W=y|Hos0K?7NiN3nNNbna5O5(m0 zPBUBdtgdtlmhRg9V27K749Tc5r~9J&qMA0h7l|FsuwQ(9)2F>b#YW7L*znM}g>pMz zRb+SiFDynqU=C%wADZKFT#K?HwcZSE(FutzKbj3x&xW=1X^z5wv05)34 z!+0MWBTZ^uz7#_p^GqUfB6y1Mt1~dpm_ggGTDG&`fLu=T491LMwQ&xe!3OCW4gBaI6F}Bq~?Oid@9@pXw*hKE!|(bt@L44de!}mTP@srC6mgp z?NL%mCW}XJY%hgj0TM1onmT*>)=h3b2gB37W1yrijS7?5W*cUSkPH*H8#E~E+Kz*) zXWj9l@Ui5P+l|M&@T-dyIzyfI+LulXF6zUmscmm=^xQ+y*xbZ0#B> zZ>BAO&Qq<$vs;dV`k|}nuE>helJSM#R(es6(kEmCv!}1uP`tPrhO8@etZTu?c&sVK zMQ&wpRD;@F9-mcQAQ}};6MpJhc|qA^*V^)^qrSFVsG1;Ex{zo~YVCbu$4GPULO&{< z9)5YbPh~cq`dfQc=69VZt#JgnSJgB+S5Qhg{_}fA2 z$WJC{N7+IP^~QQg2V~Ocr+r9wdx5$f?LbS}J=KQZfKf-g9#r=VLqt63oJ(xERT<}uwk{f)u)=R zIo^k?Tv|gI`LX1mww1p4p?vR^+Z80TaU?M^<3}fT`svtl>%bX{VM6SF%KRe!`sn99 zscj%QZ(zJbTYUCVF4dUqU_<`^Rx7g#FNPAm(e_umzh|SZb^ibZxVwdVzCUYJ8;OmEGgc8x;)#CXCbssRdc;ZDV1SY8C_=-uB;t#)KPZG1F2TVE0`qp zkE15prflH*qvC4Fbi|>4vrA^Gda${V`cj*gz#(Fmfi<|kusgGvE5f(4&vO& zVqL^0lq=YjYX)b4A%@^RHLpsGM5WeapB8nKb#Yf7MWN8*L37*1$83n0-|F z^lj*d8_jENB)DxIYFVt3N4XK{_dWISG?3k|{`ayxqw5Wmj~WA4GtVB4s9xHqF2jhi zJ&n0@f6uK)&5#}?ZS3w>#E+fz`ZFQlxklvBKfp;AHh#(a>PX{Oo;w-zsIR@|=ba;& zUQPOv*~LJ)Rlc5P&Rg_TTS?itSJ2A+1xs&#W$IU>@l4I{j}U32?G@A1pXjz({iU7E zeAwGQ^=Pr+Pda;&T%L%0b5mN)G7cM{_4-wL9MA~6T+3M-qbGT*ho(NrS+9o9yOzWE5pxN+51WG@uMUceyKS8WEUNlTAJA{Wx9C#C8PIg+AbH5 z4RTlD);7t$DRm4kXsWln`Y6`aew7bK-90((s3TA^W>7Lb>R+RbS6mt`5_J7F3r5A|Z+S@R zTKD>>cDq31dX`8nWSL`Z604m?ij*X2_!`rLtG_+f)6TQ#8SklN_ohebo$*?)WiY2N zSp%&%27@;#s3Vy-1ID7Xwq|=dVb+;^m7vtEODX^d#=TlMHtWhP&*6%mUOyMp6(}>1pi>AJ{9QLJsUKGMmw_UQLE7Yugm%06CH2dz4y`?(v6Ypb>`8vCQ^R$FXzUk^eya8%?FI#ryPF&Qqy zU=&WGi9@V;S0>)n%>C?Jr3~Dqt&km|7rtqm>63NIz5u|~M{d`NcQcysf7#V-}IxD7Oaii zGvE9cbrPFz(^NyA_ou6T^Rm0uCzTpxp4L+kuWqryO)S-aTK;(ShaelB-bi0udD zifqc#1LN}Hp5kC4j2#eVSp>H8~1()#=fBP36c zo6|LO!$zfmNv;w`-eQvCW*mthKqJnUJF6zMgXUbuHAH?m_kOzI@mfrcA2FttfymMZ zKUo!T1-;AM5ic~hGYaFo{{UVTm$(lvGuqD}%K(36T-?66tfk^`KMzHd0#m4KWv&;* zu80EK(rDn+J0Z0H0QuGL-8I@Ceax&N)Hla@`*ZeGS8yh-E5l!%ZKJDc>c3d73&!os zE|LU?ybgpKjH>nPOQ>!-W4f%kovMiLmGLH>xw~{U8TN8F9*-KuWE?W?4}q(3e>Lw9 zx*v|7-cG|({nGu<@iw{>++t{CLDS<=JXaluP)!#%l4l=P5q6*)`|DD0qd1aRY{1cs z=yBgtxnF4m@~!{Pc`h2-$ zPsRb*_|>Jhy;+FKaB=T7HNHKvlW{9_*wmMNrjl5u*KP^#6=}vS5DSi2TZq@k9ey;H zS47#~!Z95A#^BPu?m60Vk)IQ^G7>k zc%^SDvshP?YJj9n8?=0@iCSsJ%+h8zexGea8{IgBolYSg{&gjn3bKVbd?yoJzl}+2 zf2Wfe*0V1|M8cXN2Vvt-@d>U+YF$3B^Qo?5ZFX7z0JJF=$GrLko~(UbeD&UeUvj); z9R*7)(Il_jF-7?zEnUKopcA%wdN!@-2I)$pC&v^DX9KxvS*C7V%6sdSs_ij7hQ@VN zlcQ<4bBNXZyla;$4sM(?_|YY{?!{tBSRaK%@f~2Fe-*c*r%yuSo3sRjqSdGUXvn9} zOwc|3=B|<4-1i8|_G>NJ-l9uk61s*u#6muPsKv9LJjG zb^27+Z1`aMm*8vO2h3Eqat%tr@8MT=vxRGDCeo5I_k|}Zw5aHyR^a?`T9I@L)YT=; z^7}qXjyXc?g!TQD=@hMXAHAs~p&t&l()s*r9q5^2GDYM&RUo>BIe*RT1x+rLS0|`e z&MO0E`Xuk^kj-p@{{WYW?lkTVM+Cew2`yt?GD8dLk=Mu0q2nADav zH1-C{<+80CFt16Q&-W-Hip+)D z3!8@ZyQM;^@(*+#xT*Mkk|msBPLm$mcg||fbL}D;CLVRabwR`7f5I*@(mMYDG=i;p zco5rVm>gMU@Ff7OLRrgShz2DPT(cNEb$-?D*{{R7s;+#U{G*;ThxVA&3TS45n{=2Dd(N-Y7 z;*Et`@M~t%cf~GN07uP_-jTo22Do!_f~B3zMi%H|?T-5Uo8VT;J!;}Y`nG=92K)|-1mBSqH_^zgw1rvaSzi+mrzTj4ah}a+FTsmIXpB>FTo{n6wpLabMyV4_2 z6$17^qj$mdo-+?(Q_*BxbSAw<^PIdrUrp~1U_F^V;-b2;&|sBvvM+rI!E1>=ghNp^ z>lYDnWZWWZ&XMxtUzwbmMd+)ie;wy@0^^0IS`PH_?Mvrxd3i*FU@k_X_mUwpM#$Vm>ttaiPhaHf=N|dyYRCEO9qGB39 z$?m0s{%=>a`Rup&PHNl5ne_K!xe=oJr_KDDI=h8fMJ=H>cQ|6h-ru0BDAsRVY2wt%M(JK2UKFGC zQjJ}aOYrU#1xQ;9-=9ZkcBPUT&9|40O)RWf$bIU@eH~5*K}xZ%qQhztKGKhRw9>&d zl$@T)H8rfG@n-?NXa?90`qb{v`NoVp zGyeeZ2@kZJPDE?tQLJ41$fb|ANY8G*_(8$m;?NCD%6gB5Ti8p)(#G0FCFRDU@c7h! zdpLseOJKg%Iq(KNh@i6YGi?xYs%QzBLg($Txx08F2ZppvR#^K%#&&vDD;%@TEbluGz`T(mC9?tV=pqPI@VXrc;JX=QdxYnV{QgT6-9V3We0t$Qyh5$`L3wIa@{^2IlQmqT1zmd06?5mE&s4d+)k zHs$wkyi%mADnLSwln%B0Lgzwl*-&vveO`Xh$o5q?559_Jjk-51f`_?* z9rXMgid=@`R^H^yG#J=or->})peb988_{0an}?rtRa%;m$68f-T0auO4R%P4ciBn$&0;x<$DPzZD_Di33y#Elnzv~l=ZDLyEzN-al(V-FyyFiT-+$itTAY#e@2rj@u(v>je2=3=*T9)4{FZu&#oSqG1O6M&H_??;$2d~;ow+rg_> zLFY=WH(E&qp47H93eVB>3RIMNW{RG_HjGjXF!X7S3%7#TEZH(|jFVokG|0CXC*RLO z;Y7S}3w-C9%=f5XPTi&5S3UjI(icFa?C;-8JSHoMm*$O)9wWpqBt~{;s1{rQLW$?$HV;^O1GeuR30(SuQq1fKFj=8O3F&%5^%Z!}YS^PS`YMxw(=^VjZ%_{_PZw z6~Q}#HZ<2fEmq3wy;Sxe>ZiB5jKeVMzBR%cRK>z}b$3v^G6@=0(zx!$M>_i{(R*w3 zstap}2)@%`yd6+Zo=TM(dgzWM-9f%aa;_ z@U2;CN$Og%7xRr1)~#PBOLlSNLu_c=Qy7~=_ZoYvlc7QC&DYMPyD;;$H)2JTwTf9d zTV~?UJR3>VQrrX9pN6S!5q!B4T3n1^`5u(7X~=_#M4ZUw9VK6*Le4m+cesmF+k=w1 z?-d2aH`e#s!fLg-i`sA9kw*0JM7y-+G@h#*nJCA+c~#Ai72uk6+p@L09Sj@bX>EC2 zsq%Hme^myGLmQ6#(OaMul;xc|npt6eYJSm9T!zJIO{;UgZ(V8Uop_ zid!k0v?jDT2hSAH*>O1dltIeJZ+bDT4+iV{>sQ?u-2Lwg9rMPV$iC6j>&1H>HEus8 z+e!U2mi7$XXNbwPR<@gxe`O1aF0FW4vG$hmF1aIL&O2x7sg@o;eI?vau0 zE2-Y<7mr%co}NTd0^`-Om-%-VSN`A zVm+?2kbWK%eP4pdBKU62`Y1j)b&huBxjfIX;)`7H)V#HCagp?GOO6=2&f}S>f|^8^ zh(TiQ?<6*TezQci#J3E4u#F=!FLF?ySO4o(U>o$S2B*1h(I+M5>AEK8cgs?Xzbsd)!@NtW1<+sL@ zGVk_^x8f3VrvT#IA@@ab3t2{C;s6H-F@*!B)r)H*274r{k(!oH81Uajqap@4f3~|; zx+f#G6C66%I^N1zUq<>d+VZ0${3>f#)rCz!oKx|x5oUReq~62RU*!)vx8VF@Q!SK- z7S}n+PbRHd)G?4p^ucGt#;cM|MZ^V~#cw3Z9BDVabsT=$M7pq!>z}i;{MM;bSQ)Kk z?c2;wp&yZ^hD)AXuZYHe6(y$$2G-o|&u*rJ%W)x*dN#f3G|eGB8!epF@bNo6HwuSI z3GW(J9gX&+p6>E1rpD_Z&8e9VJ9rh2>fi0H4%=2UsC{A)Ra5Nut9H1WS>uT5NcHunzT#IQ zSg*3RL$DPky_=ZsS7klaZC>W){_(~nMBhz%%Unv34|X;$q0Ks9UEp#w(tDk8q+LZxaX@&+AUXWYZbkU2u_VL?_3V@^m^62 zvk`Z#dV)8vS>b#_OKV3NSknbp;Z~eJS&iJb(urQ_2WJ5LwZ&nQF{Le=3P#6mtA~Be zeb9tsJ+i+Kx>m@LeG}(J`G-vLg97&qb^UdNT_{Ho%N~{504G2V2;hxVS3>6%YwHt4 z{Kvrw-AMYB$eo-H`i?j(r81M$t~RDgBPqTK?#)EVhX8htDhE%;tAd13Exxo3_0}a^ z4-C<|jIpwS>3t{N_==k2g`l56-V*z;@)aUUFQ{=OIMBjWs@!5bDYzC@qx9E za%9<(jnsDsiP;mg>Fp=S6s>c_xoCQF(>2evx?8BvemA0nw7tq|B9`(H$Jzy5@#9N8 zat8%+GuP~{d2V8_ya&ysG0vnnOi^;(k>6Q)Q8Uo$@IcmW`-`*&7<QZ8_5HJN)xrrN!+2^<3i; zLw#$hKD>&FE#pMD3)pL3)Ohg46CX8m^R4a($JJkh@p)f;g~VaMO?mvKJeGLAbB~)r zl;j?slwZE%vX9Tbf+JB!n zce~suN)XR+{yuir^n84M498#=zUp|1?KzyPpDjfEx0J79CDiTQE7sEFTnSq`yN8#g z*Q>a2#QQgl?xb|DYn7cGq>A1nztJIQ}c`F35W0%C00g z8qs9Zs~dOu)z2syURTa@wrILqHN2>psI4TvmMPqZTy#uTs5fG0-%31XvxDPDirtQV z#3`oVQOc%z;8RT>X!i<>g+hM~;&Lsx!14FLMrn9*#63d#!;}V{mUO`fZxNrexP9~h zDl}MS`Yql)K3(<3I4tsLw}|@HscxL7>OQ8==&P;~_cP5AUrU?2?H`Ikjfd4uYr-M| z;?vse)7qDOu=@9;c#dOXsZW&*P#s1(it(mWqXg79P|DzCa};fbVeqLEJF{zu*E)wo z-%v+yH#?e|gEra4U8R+mtZ9_1Oz)9Vafh^uIj~ol8@i^r;5YGc8%I3Jtu7qnC#VN~ zC+evnWosTO7S|SX`^)h09(DWbPC3G@^{GFHTMrMWzIE!7k;QmfUdJ)9BrEj|>fUQv zM9>r%Wo-WdOSSFl>9Dr#C@0@OH5AdHYbz--=tk7`){s0GpUuzH6>Y=sdv6P6MN7Xu zx~);M%TCi*5x?RS_DrXf2=J*D5qJt<_fgeBImXjyU%UPjX=AirswsQ6c`!tme4 zr>39{ddk`qi8{M@QKMR;1l!5kopG@hG%#-w!9nq>`t+1*)p2DnL{9!D0mmrc$_H`9Y% zrLF2~vOf_KBYyhfwh_h*vq_8*oD5`>S4|bwvf3dr+sahH<_xgySguU9Vl`qxEFZXIt&v_dlY=rj=1SkaT^KD zHwCq5E!i|o(lk%ilyo$(EXy1qYHrpAUR(pJ20XRIn!4>vBN2FE$w+4C-(PiI-hJzM zMcK^IIYj^^^Bw`=UN z*>Jw&c;=(y+zgoS;G0yU)85nGaoRdZ?xB!$i9LW(J8iO zC+Lde6OZREFb|L)DW#rrVjUw zng%9eqo;4aidxS-&Yq=;pDS*xL^A{e?@)p;SsF- zF6as7vr&SijoCkSCC$6*h58ySYDwm85Tfd4J=MdLg~2_i4~2|Z7vWF3`0L<1_wu7_ zVhgc3d0(qkk)DpFOuN5|j~W&?YwDNI>h_H%yCA8oZcs-* zJC`B)BgUeM?wH4HzQ$OF1}mL`hTMVHnG={I50oWyQBQ3uG+H#z9-J^W9FEOn#9{nJ z^dq*Pyi%_pw;WT4{{Z~P$`g_K>A&csal`Hs@)A3$--y~nqSE_NnFjh_uGJzU32hiG zlh~fPKRIb{IBfdU=O@lX;D4pKZwj=MAVh*PGrM@#7=wk|i69=*R2@|K3X$y9IgqZV ziOw2>G2iu219M0MWCiek9Xjjy{)6&{8&`s!drtEgn*5xC-U+-(G#( zS8f(xjeE2Xg6v0San`iVtRGe}j)s{ghqKr7smdmVWyl{P&W+EaTyM8QPaGIoRdt-6 z>Qp_fkTAV!;__vZJg)opjwza3&QfRD#>1s&A+g>MTGi5;=aiE+F^3g#>r%b1JMns7 zWue1N=1W+Zs{T-;k47Un&syYMzDZmwcvMzstFShT9+3R}jC9qHk@RhARnMsY^s)y&qXav0>TW|>D`>P}qI zMJ!Qvq6Z8OH>*HqU~!ynN|*3DIQhyl4M|}vj|9WF8#>^FPb#r^(xl>d3!>umo8CE~_~QZaU@47ZMMxJn6V? z-RfRhgwh?C4X5K*mXCg%-XA9}2=xq=Jt|9!bk}ilrKT&9ENx}R80k+F?cX=^ib zC-)$b`?8M%LyYie96yZ>u4DO^1HjZ=QV6|6ikQmDAM6J~SCfWjzS~0Hm?3sC$@ZzXQ9L+wvQ>pJDx#%v6Hz-2O5&?6<^K?VLg3D*V9| zqXl!<^!%doy2PF=aYil|5tGL0$FpCDje6Ao0ES+Fj+=aZJU&MBDWpB7=^A||@U9^+ zaTWE(h-K2==wpJvVXI@`EX?1h(y>R`h9Q|-#Q1tl@j@k=q+s}+sM;tq6YVZ#ZL&>I zX~U&-v5&H3ZN}RWD~WNwLF6KfOGue;U5UXp$E>2%k_%;)H}S~nR`z^J7D!$(y8FmS zooaM0`xU7jE?ZGuAP$LE;al3Bp986>0dTuuZSPhk1V7~Tr@*ERa=qSEJE14FQV5GG zpK~?!*I{x&+}2Tfv9Rdf#-*Ak(inD=8&bF8-#+(saV{5m5<0r*B|4BtTver+xmjd_ zEgJlBT==o-H%;x+=r_`-Ze?*C3Nl)U-0uVCF9=bK+0i>hWA#@M;M^v{>7Z*y?T8O; zyiRHsv*G&ZYhk6HLDv;+%(k{v{&ChqPuW+{pw+51b~wjchiqrR9*ljJD!Xay?N)1P z3AekmU1;vz>)}U<-5|A^Ju&*g?q%_=Rm3SR-a5z8yy(n1+$!&&k`b7n;wW3+S*vRP zek_drRsR6AUvsEsjDH)o$Gj;ET_ugj&WdA={Jd&Op(5%nJrLv?PAk9{?{5)tu2?^s zo5+si=SCSKYaSxr_VTc9rCeTFE?ZhKaGUC*wx)*`zS)+HK5iKP-OQ z(0>KuDm!-V^Ss4v`hUT;{{RkIgB8S@gATc==bF*)WVuy3M_;b4FBdR7yEcSA=qIHi z^?(O}>p-mf!R|X#DQ0uyry`l%bZO{oR<5;{W{y<*4KCm>eMYXmubOjFTG-pQ<@4?% zLB1&6$-{Z!n^OoS1=gc(C&KuRwWhw@yqtZta(?Idea{iKk2{X74U*F7e;3c& zZz@*ew!#;dFje&KPsXj}m^_g=<)H8BP|pUV8QU$^kERG9i<=~!1qd91#RD8sAnEg{ zu5895ZKfo5S2}qUnue$+_IoZ^s)<3QjQ?9_Z>dx+$>v5c_`^#1_$ znx5yZPRB>@taPL>xI-A!%cp!+sTrVP+Jmh}3(ustXIp&gD$Skt6nVK3$T5OC)yxa- zDa!BMYEER_xfi0I`gLW)_plf^t+!KMD>U}3RL7_sW3KgRuh?C zI?lEAaoTBd*A#DWB_5=Q@JNZk{NrDH<8bmt9(OyM$LXayw1HB-$eF>~lH$(hH@O41 z-SrxsRvz4krZU6Cine+G01CC`_8w83RkiP{w-L6!>`iT}8hQ^NTwPM4;+Ar>7m@uR)lCh{Xu3_ceCXJB(6!^daI1&MXU8zEjV@5?fFTdewxIWOJNb} zAsK(RmTCF7(vF7aO+)PISOWvVe3A~}ikc}K@g3*Ad#GGIT+5fotHKYt=UgrfE3~ub zMm^*&THsdgZ6tcFb!$C60OKT_D)`Y{@nJ1UCXA5Ex^pAO>6YyJI^Q-mLZzM6> zaPaK5ah1zWxy!f4jk+dbxAvNW`PFjw46AVViWnaXM>(6577_II6%1)J3rPLqolQ81 z5fSO0wW2KkNgdRyH`Pkfc2^tG8p`?5GGJ|ut9lx@9#nMa80%U4YkFcIK^^s>{qG+d zNmS&m0FrvSljzeTLmv^}M8;0#s5l(AUaP@ki&H-3n0Qg)+$!6X6bKB`>A)@FpBlPI zmztc$jCfMX)1b=NyNVAZr_3llbNM^ zP`AZtcz+WHJ}J^E8)djr^l9P0w+{F`x5nygh<(Z3Sj&1c?4~okWK_{!+Ze7OZdJ@O zF8J;{((yhH^3Q6Goe^X_9}IU?Tsw^W3-5M0`Xrz8t;g5?2hz9y01u9PyIx`YR)iqw zIx+{1M|NjfBrDpD_o&6ioLaQ$S>PI2ePXQI3yH3*rhIC4-ZSx{{P&hDV5#X|)G3ME zmm@gnY2lEWP&NYtv8dv-Sp?+o7BiaW+#>LsU~!k-h^{4e`tENcOe~Ii9}!oxNf2k2 z&}q+6j^R=z^}W{(kyloUqsFg=C^EkY``BL!-444O|b|0dKHe75gah>Y=A_GT_7|j#|Qm<1%*WO-+ zm6mN7=qpslIXtxDxv$ryZM_0qwmfNaE2amHXBl4eTs`DDMZ7}FKRTI|NCL3X7pcVy zPgF?UI4^@xTis<6XVQGC)hBORf(f+`g%1kbFfl(W@v_XRUYj`UI)FNDD+8hC%vo4)4_KVEv~)MM`?b#3UL*T zeKhT=fcK&0=*MuaEI{U45TH;bcW+Lkbv`1MWCl4tnCV*3;RxKPeMc04MA*wR_liih z^nI#9AXsj!-v=RO9al3rwJ@!~lXqRHKwxwPW;$g0hbV*7@Ttlr%;piBQWW#1rTrwcxpD5 zy^tf=md@fRojW@E=gO{NYfoMpgYw*9m8749 zEWW1DgCIHfP2uRx%w^+mI+jRe4{hKoJBxqfvi77Q_fz3R4Wa&*eNAI`8PGOXZoeA! zE1lgJvy<-+8USyO^Vj?XukapS^t^UiTklsagpYmBah!M8tV_{g><;0Y`<>y4a?THD zyK)6vTPM2|L1?p_3NpUuJ&(z(`XI8mZ8AINS06D&X~4kgN|PrsGm^R5l|*<7G@xGU z76kJ(k*J^3SGq8YZFH9Krs3QOBdKD!-)e#jDL97|#A?MYaBBM_Asu&Dp+%`FBzM z7aeLYF#*JHyJ2?I-YeFliDPNdF*w1m9}!b=ZVzp^?c7?X+5DmBOKrtDyh_8OO&@AV zyqcDNUE*0j$#B-K%lglC2`%JVqdn?*JD)1o z6PVk@b~L&!B@yb$3e@~E@=yKV4p$4>qa1Ck%=g#h19z3hB+$gR96w$f?sn_&6{;`8 zF1~%l$3JC6lU}4zw{bYBxP7h2kk7QbI%2KvEv4nit&vgPUbiuobfEC0g4*-dp$FVi z-&};^B}hMv1GQ87&6lo5km2T!sBCwNvv*(~S;Uy|%XiXFvNB02BOX-Q%W7W!`aYYB zStfW!jO|W}OCVwtp0wV(6q3GsAx_k>i1}8j__)Pc@u;Us#H91>{)o+5L&9$TMR{wq zdwoWwc|E*Q_8Lx=6l#T}X9$Bm=AV&qZ83Gpiec01sCZ=W6@}}`p|tL!yc(VPuo)IJ z%aN*UJ}VD8@Epl<&!n|oSwKGrTo`*@)t^G>ex6yWT%UM${Of>OK0@f#q#E5tDbIgO zy?*04sSL;-2;Wn=Hl*%hMZ^4o{0KI*A<6d#CQ+}^m{_VlUyDGiSZh+H#v7>wy2HF0>$szv-* z#zPu_ODGq!A6ma}4EGNT`7ACS(Sa8?g%yP$>c@< z0C>}RRgKE7N=h;hp48;-zpAinDTB8|N$VG0tmI&cJ=&WbnNi}>tsOO;`nt;#c4Tgi zUwtjg;zbKE6pH#~w{exh+POhPTNDhr-o2JaJE%U}b*WWGn3878{Ovt9rPC_9ENXc` z>UHt>*R0u&O|LiEKAxXdK(NRpCOuLx>8SjSp1u^mHLIxd@2IW$Ppc=|qUy)Sq|$)$ z{qTG|Yt(OSeQTZgwplc~pDL0&m@c8U)rgvP+wG?>5?jmeLo8oCyv18ZauV3caFQ7c zhBYOLy?E6fnQIh6i5_e~*sIM+|?}`tj=4ig7xW+rZ0f^M>bjG9S8a&tL zTuR#IW8>lSCTxYk>)}#aOWKtN7y<7JR4#BlHmsJ6BR#6y^w#~l z8&L71njyOAg8qra*G0qh>jfx4n*(#`#`3TdeW* zVmql~vEp;vMm^9JVy(E8v&nNUoa)&p=ADfW92xbP{bLLIGh8M(#79g>2-VWB9s zb>m@JJ!=iUd3V|a3!83@m-LU;S44H4XBNP10n~ zy27R7F{?KYyuxt=>&tHG2koRS6m!JGQkGoiw(00y9enGHaSjtA!=dz;Gl462?kWD} zxWqh|$j6mPkrtSlyTo& zUH}I!D}ja``5(aTTmJw;B98In(wahhMzG?xH^DZsuU|>6@CHRkJo-Qb5gC_p^T&k&h)$ zTvTic3sZyi{XE$AeK_>&YFpT?MAq>>AC~xI^;3v$t|JNFj#EWEb6!a1JJrbXXYJFAB>t|N}wR0G{dyj8{9^o&j?T&(c>ESR z!0F}a)K@hoo~`fa<_`**+(ci5aQ^_M{N#Y``fBvKKD8`ko_;6Y_*WP^G**x#FpmcR z0MV#nkalA`S7)sk+~cUIS>nT^dp7-fs3s1E+H-(O=xJ;?ju#!RURBRm)>?eq0DFxr zcS@}zL^b#ty0EtZ6vTSh=8@e|bDvf^}HsZrQFwN@SPjBb~slQRk5W?Sb={ z{{ZXs*CsjRf>PLipRS;@wh1IEHBTyzr1wyfbjPb<8V;20XQZ+=Ic(U?I!PIVRXwFN zt`0FEC+amE$J~-2N7+RWyr&uQtuyKg^o47WwF8Z|qjO_+OU3xek+Gn7&@N1ld-J^r z^^&6(OydRBCJ(6ok;kxcb zg(qHa4o7&at6N!S;rFq2il3U^6tdoM$5J~Fb!v0V{H%4TxK|S8&!^ny`_c~@dwCVO zdQP~CXnoxN`W8G{q2jRr05x;V!++Wp>l`$TS+lFi`BPj?8O$q_CsiS;?IQvUu3%`S z9nI8!n&6y3+8Ftu!NenseBs_|e30-e4q4bG7MM%i`6_fQ=-3?-u8?AZJ&1=+D zcpAeV>gD$i^H|fd@1#t&acZ}Zm*K2<|Qnlw$X`ho8dum6$Ojcj} zJu^>bA&?}a2YsuF@j1AQT+1Asf?ulua0OfHfHp>;Gg7>4`7M@K7$ecs&{H5J_T_q2 zzZA7h-PykQ>Q<6eAWTNM{9}+*GEPUXL+q{q?qOSd)c3qL>+fyEhufe{Nhg^Vi1?kX zirq|>$6@x=TuR?uyfR~^`#b1=r%T1+_M9I70Be8-%HK+qqjO=IJ|Kf$t;0Q5{{Vyx z@>1qPuNUO!!j=v*Vt6gVI8x7;r1&@Qtd57JUfkn6xLAx;nrX!ByxBb2x1+@@V#V}d zjph5yz9Y_`hVcnhU&3&V-DO|jOphM0MhG<}y`zcvZPaY&8-G%7tD@8f30CQ49LXmi z&N1)#U4&!4E48&83fN=%7GuI}vWj%I%#EfoPce?rMvIaK#^0)<;y1i9c&&~!PxC6> zW?yMHxt@lbmeE_vovB~M(?1WqiQBvmxvRTNNbqBQ4K$tK3YFvHQZhePHE+W%I-}*~ z2i_GcrQC7Izcu^nIQG^CPsXgTWtHChZf1tqeN`RBigT^?cJ%B;6p=FM+oRXBjjg56 z((Kc!cA7rr9cn2hPSJc|)uYP7+mza3Y;A+xSjTBj+x4Z9*Flyr*!d7!Lb~RfO(-gP zLPa2psw4J|SVHkMsdSkPtL{+Yw#egC_5yV#lo-8U=2MLlKfju}mii;arw5ifjj%pd zD#y!%M4hoA#W|MVDUhyvOP#7a&Jg^DMf_3xTZ*~izjT~C)ySMKrEH8;iDk8>J2?~+ zrhMpk`ZnlkqFk9zcZEX^uXZpA^fwN(Aj^R7-&>`;XnWdTpH*qQL7b z_(#z-=?CnkwX=jYTy~p5_ zmD$IUt6MH2pwAa%_#Zlw<+>v5Ds=bV83vwPo*g}&h4$X8dpYqHY|}>RZ8-cM zS0n7BZ#}4&wbh38B+(fn0e)%8%^d7h_Fl4BmhV1{iv3llmwYdmT8ie+9IjDNxc9y^ zUT6T+qf_LotxUG2IT!%YOn;pGmacNIs@(&L5cko!wT)ro5&kQF%|&O#G_>J!zgow2 z1L0n;E;)0lO!?BoBL`WaR{sFBwf947xRy6rGzP|zjaCRay)}vkCWyu}dDH8`$`BtYoGerx zH5^Q%n;%IO&@6LXG0kR1-i`>(ZZO&IucJe31@G~!5LQg=YA$X2LnXUpC?5Fmp+7V` zp1AI-=$Zw1E)H1;>roGXSxrgzKYcNuhur@F5Sm`9euir6hh5t{Sw?+~ ztbahS3NT#4v%-FBjMGcNxSGbl{GIaajQkH#S9ZKx?t0=3#NOJ?gt4F7`YO?HEv~HP zNSAlEAr959+VUA!zYZwziwUE(o0-K6-_ z%l9*Ku%jJM!|rloZ_Ph8nnsA)T*TTgAU#mlG@bmbxkYZ-uXlgwn`kAo<=b1ss&@_L zoY$=JLnJUU{0_=q$Y4Hk9rV!28nigULN>)oC*ct@9Iq~70{kiO0}dg>OK&*$qx|pR zLRc8Y$8Bk`qVhJjJx`5qS)?c3&h+!2ba%By%bfbAa>1LWNtok%EOu8IIq|N2)tOto z_Meh_L*rJrPzJbH_p!c=Qpay;3tXp73ySrLxi+?^aP8KX&UQ1v(R3$7iKN=cN*QigeSQuTUz`mXa&0QVP0_{{Z~zKe`JUUx>>d7UZu~_=?EfR#ay- z$w@ODry5_nqp;%2FF9?LVb>L^2hZiF`VX~Zqz<_m}ncO$?Girz%#B9@9x zeduZa_C?Bu9`Wc@(3gf@$h-ES zXUaV+H+Ju9ca8iH!kyMo+Ism`>4@>!Z2tgZi`F zo%*yux5pIL(ro_#&9~7tb;B=LPZ5LXW2pHrWp(Zy)=u<2#2QWm$1(T8cY@>{t{3;# z{*%gc9J0)@0uM}@NWsdg<9cSf;jl=@t7*ZZ%Ctr+?vA8TpMqH2Ncq%~A<`82_|O;4 z!)>C+yg_Fb7@lrqgWhEr2AXuYQ8NrP<8%ERCkl%CTbL)&8}mAE-BCw9#71R6Rc428 zs-In*uM&gkq}Y*u+Tr(6TbN(fP4I~ zEATr=rH|r6aP$LLQezA5{AvZ_0$3qYj+tEeQcJ_^La!;J zcVmrP_g4$`F+I?fktDX?j92=qOKFxw!tU1%+x;~n^111+IbWP8W>>bAhB;0<>BK=G znTKfS8jV`pF95r}l#gh6SYOjvvbMJ2cGEAkGcUA5gS!wm*e7<-4OEG$Ilb@;7O_ z&0usN!AlaIDv|Cn-f4l_bVH@JV^;Lm@&MX!eCWjf>c}?hv8iMEx$My24n5ZJp?@Pk z4B{|9Ze%@~$K?uHCHz~jVo=?OHK+mMwLxwhv8P$7l@n6q-OUd5^QStATzjO|o!k?N z?eAj5uzAt-W$hiZPEIJJjr>h|zzoWGO%bMhhg##jIszIKiH4KYJ=99KX@=Pqs~hT|%5XnjTVBB+)TgwBY(-yQTICXZ zer_W@AK_Z1QkFM=kBs;C8kWn4OtRS(=Boj^{!VC2uE~5P(9w0(=UB#(`e-P~Bi+qI zW9xCkq!1Qfl)Bta2<{E~XqA&%cw(h7^wr;96>|Vk$uC;bQpN~mk+-jf1coPnq``Vp z!*DrQYB3IDZrb$!H9E$=u_mdX$Vg@X5@9`_`=+oG0gdLcmbY)e*F~(=xVGS;m^R zy5emYu4&(s^M{>cvzo`t+Ohr$an_YtL-^*RP=hRU%RSZ3L8Ohd<64;JzP;&GoQ(HW zlA#(SY-HB!lUlWXltX9Z=+DaAt!FiipM_%vhAUx%-9j_5rO+|9{&Yrhnv0n2FmFDU zsyPdIioG1Al2IO4v)ZSJUn*3S1cAL=TPq1xIY`t!18%k2@b0Te`NOgHRw~<|pA> zuCwP`Mx*Nfk&ZagnnZDi&iNHI{8v-l+O~pw+*Ff6Cqdf{vkxi|UO<4mw276&AkM(m z=L5P;Jp7wGl=#;vA#Ndk?nxszy0t7<96HyDOnvDl+>a_=A!%_O7Up2rHr>iQ@megR zHw*4A4|kP9V~<6&OW0N$=fobk?-9ic3H-%8{{} zxB|izbRNk}n^e{^tP!l(ZE~)l4MTCn^j~{18}d_Znz+83Gu*t|V^G;B4~1Wg3zg=e z*-uec%9;hoy_e}%{67A9Bs`;)2W*PL>MMUm-L%%8w;Y?O38{grwN4yTD9)ya=dj1% zJH=YS{{V8ft#6G(v^zCD#{v7Df;)%zy}kfGG~@1*gWMi258{L*t9k8E%fYSFhFUi7 z%p_^}Ee7ITR%^EUF)oox_WUw7nNHHp+drnTqffwA{{SlcSl&-&xbxbQIQ9T+JS)G# zu41}hW$Pr{pQNU>Il!ySyO0*@?rndVpEYR)0Z_UA4)NC+)&V{{Rr85;%pr z_SL5rjdZS*Mi{B{i3rBvV`>_=tw>iZz7Ks{OAOILuip>Ryr}ZfEv%cegOx2$8sw_? z_)ukRszr?VX1Rm6D{MTdl|8K1g-ud7=%{TXf=L}02sCuAAeS&`(g0=u02iM+14lL@ zIBjgz;8g-PfnPiaLE4vH)=;?q-SHAZC>_`s~z3-JG!yp_gnU9Zg_e$ z7P4i?ag3iD=|swGb9B5pF_hTAsenLD|n;j#-FCUhu2&6tYDV# zQCmh-epL-~V0j9?33e)?4V!iZsN72$rZY(YOyortK;96NnX+Ac0=~J7Sqq>?#>~e*2u04yoVZuH`RB6itYz)#_Mo&87 zgi+}8@1^1P_RDP?aD-Mr3crj-#0U4Z?OAxTgmzhJ5H1^6Pa1P^Y&FDo4br8C@El9; zA>1u2H)Sp@CC{r|s^jW44-j@h*Bd$#bGGr);3jiiM(P_mWlN44w*Jg+2s!xo(1vSyr&(cKgaqRPk;JN;*hgo- zY6Zu2C?iv+=@kr+ej-t_{RXJ5Z{usL7woL6o5p`Cu5QC%G4^<_eZ%UOMkh6s^sAwz zmDerr8nC@(%)YeiD+K5>wO+y$G(15v;g`P{qXdxp$KLC%Mbs_6xQW@v+A3IwVkv#4 zyD!o3qKLhr`e(!Zw_1)k5B4Fb80*aJj9e{36<1NC~H99kv-Bb-z=w{F-IX zcl0Kmm=FbUo2!tr*tyd3XQp}sNj!1jN7^N7dqaS;KQ`YDzB}qz`7J5aswN)oNyK7- zIkAsz6lX0+M*?mk6{+pZ3wFoUdeXxc%kbOp{$A&^pN4Bi#9X%Sb=^&5QEgg_4fPGG zOG$KH2avdDjAwr8Sp}p4!hi^mr8Jy~$vx!-cE;Wwj-MmLz!fKMY#?}VUd6{ZIZ@?St3ItlO$Y0s!*w+^tnuqtUdtbwLfU+kwir*! z6q2wx>H+VqQYMq#O&q5~VQtK{o@vigWJb3UB?*G>e=KIH1eGXIyx){`%5*6pEv%<_d+= zh8vaB+eeTo`l{agehldp8PYkx{{ZX0i>13XxXA5(ifue160AvWcR0`JsFwD{6m(@- zvMH^uZ28tKxmQ_m@wdjiB2sjPCFIQ);W5X1sZVBC(p2|U{4ef@fW-*Wn64wARvN7A z z;ZY^5DFj4qp>g~W+tZ4B*eACM$q}l^Hx(Vq&21gn-@garQNw+GY?eWRVQi!^#WA*o zBa@bMyA$!FUNwAO0>;y8LL1)nbgvreT`O-#yIm{Yp||Lx*AF_qh3h=sTMtC1zV*2FGAnj*TY!qlKGDj68(s}oj} zOzRYhHUsMSPjx-)S2$_Ya!*>bTZr{t+COR3_f(VHPCaFJ(Cdt?BRoqaPI~xL1zc^g z@u-)aVwiXzc8R)=QO9C<>In~CPCgXrq$d66tw;}#b!|vj@o059tJN8KBa4`a=#jlb z!a*v}0Lu=CYKK_n?Bl?OSxFkTwP|Y37ZUiCvzpt>u@M^Le=UjcRTyaii$2Hm+sG?c9g+@%pP< zT;DkG=T_qF&t2{sx8X~0ag5wCll9OR+&bDEbkh*6um_N?zti3oy>;|%Yu>K4*B*`c zuMgn3Me6nD7|VTM@}N5U8D$wm*UGq6=S^@7kLW&?jUyfeSK`zC8s0TOReNhlru_8H zf6?%Ns}+{vw(NX)LV$wSD1iDgidguagg45kE6q&l_)v-)C5|AvLa%V6Z6$)3Ny%Rm zMP#vTW4c2_O{AcBbDMh8$e%sU>kXCq>p+(ENBP0pm0I%oiu7YYO3$udXT0+|(TMTh zA^9gz+w@|g;r_WL>};o&@^$!Ay0)zC)1^bjp7!F}SqTR~+ixRY%Z}Wy#x@Ene;^7TFbrRsnhu*AV0Pzi2yy4cDOWe#iqo;w}AwNA%3j8R^z^~To*E`tX zHb>OdjdjEQR$rV1x`uu=yjr}oUy8@qSoKr!29My6sCd@)><@*17L(5cw3}&8-E{3* zO{}4@^m@|f-c2XGcTgOOdi@G-V%Z*5tCar$=+=%?{B+m2-(?Y{!Ti%&G&^ma>7%oP zI_5J-aCh)pz=`^2IH9roDrSsST43Wm-{R<*cX1o|vIC}XGj zGjQN#?c@@Vwv~v+-h<&w2hO&br`7!{WpLjzeJAVMiv0KeHG5>;ZElFik>C6v`ZJG} z)6vqpevjw^Gm5d7S29zV0gVHpAkfRy zRkY=`$)^qR{{SXPX(W&6_uB zSW-~Gqx^)hl0mJdeIJ{(VH>CEsMa+sPU5h`wcoXG=o@zYYi~i+*i2AVL!z=s^lWQt z+Oojrumu8Z71w_cMxM`>swzegf5_{KapEyg!|o;0+PfOR$&#m`6~(O>V;2lp;CKDC zzoN$nO3bYh-`?9lv-(!zCg{Nmzcvo6{bD>s96%4_yBMlO|#R0K`C~iXM&?b+1W|<#I=cccpN07-#xZ z6~!Rw%ADij*0^sF60|C}3LhQdng_W50FYTH1J18)tzeq#*)S3a&XB{-l1F}KQ*qx+ z+22;w?cjad>9u)!Rludl_I=>d(g2_aD>?LLvs%09iqje_+H!nrOS)(Cs4p}(z}LH3 zu3%kXU1Jy?on6(V8iNXw&Oyr>^o;k`-{i*%;t089lSBMHBqzP_>0B!5PIcRi{{Twd zCVw9oYK*%kkXSo|N-XTduHeV8UFzqX_$veMb@)>{ zj?)SwzOuhxr%0vGPe!T^&8D{L++s-3Ofl*e4T zWD`aX2s_rK%J_p_J3chckZ7-?6pTBKSVbI;hDk8p)fmouKjg*RjOGF)`zdt#4GVLP zR z6bT|nXpJ`MgtTHEs5my+(|pwrT!)-@b$ zy=onM{y~tOEd?7^2TCm~=^i!gKrB9Sq3wRE03VGE?s|$H@v%pZy98n#K-% zYe*H6Yrt0Z(zCYR^gSEYg@zOk?zO_byGVUpZpU-}Ok>8l#lJ=u2OD_r=mo~D`c;go zf*yQEC-|TL059oYC2ZT~B1J6H=boDyy0dL7&9Vmo_k;fcKk^fs6JwN(m2vM?yoDnj z-GkDw`*?a*w3CPZb%w1>2LAvw_tdiKZc?4V?yLdX@vD`QK?Gq>c%h@OeFkrP^;cg* zXQnHr^{*O%@S*#C7_Od~iQjJuZ65EXyY{PSV_l<(bf2oSdj9~D`&3h=5Kk6E63$L zVD%j-hC=V(T2G@$>sFj5<^J_?2-HW3o3Q7|(81I@i2nd4I9>4mZS;_P^XZpNho?&6 zH#yYC+-g74yl;mb1eFBJG2>8N7sQtHqoK|*+Nht!0sjCX?^_+C85p3!wQajm@bt%# zo%(pze1An18_<0^SacLlGHB$T>&BP6dfVi5^l$R+V$p@pR8zZT5#{Iy6x!nrOCGPj zJUgeWO53OAnh+$-WqbZ2<#eB@^gnO;FT^l1@UJm`s@1+c{RMNe?ypuYt*z%}+rzK) zt+nj?G}gSdZvqWnu1EzAlbYc-M>?9^XFgx#7AovcyxB_Ux8LPg$!`ZL+g{7(TY7x{ zZGBtT+xj=GW6|eXKO-N&#XZkQ8bJb#7HUG1+Gg+hA%W7vp&it*wC9Ri4Y^kbBo8L* zLMz5@6Lr%?$Gi6Qu4EFd$>N7U*(uV?hnZ6?nnrrn{Pr_O>iIQ7pKYVT4Y?%lZ9~^tVhsB%73HMl{k%* z97;avAW!@2l`zoOKEVIF`o2n{{WI)Qp_$DXV=r|Z|ULvpcYkV$oSFz zl(}fmnIr83icVt&e!Ev4vFHSXMPHBk2fs=jTZigbgLxtyFTkoeenp<~KG;BLS^fV`hxwcR9zK6;8 zNumU0tKDJcN0|}Fe$-^)mvUI1^@>8jqOmmNiNro_$6xe?Yd>@MWyez%89v%pYZ(9| zaI7-49@n{>L)L-nd+XlXx2&&ElX9o$MtTb7!l2C(?gv~@z{hnoQl~Zt_oHr<*Om&? zSa+!1qW=Jw$m?0uYu-OyZu@vrk`=V{1!)<$Txlk<_<>`v$K5qX2 z8d+24{FCVOqng!>fmrVD&1V!&j0zd==~?dZp;+{9QuegAlf7xrWS#cwSCD6DJxxh%pW@dn0P;Kk07~%$!S=`` z6els0ByxsdfH|vMj)F*oe~@^kw0W8vf1J^_8{tw~r)tsng^yn`>BdjSypwJf&10o`dT~>dMmkbS?i0OVqo~%pdUpz6M&JH) z{7Zz#zgvrO`o(Uz_>PsP(%Gi-?jK!hzP?zzQZ>mH%!7$H!IHg{@k%?v*w?p*O7}3_ ze1RlCT}1qj(G-6N&<9orYKHE>tIZ!&C-IBnODtW9aqS{+c@Oy&b#CKQ$q^W-qIJh9 z%zJo`MhfP*mku2zg=HTehxUI;+DNgET$bfE=W$mUaUANq*9UW*OAdpR;kWq;?<8E7 zPSV|XFUEv?LM;)$;${SBli^+>oiB2qL9vlm=?dmKI}F5qlvg?VK2_QT(=+wX0Itgg z@}t}Cty?y0-rlqa*Wf4_aC}W;?D-b?F$YQ1<^tIhM% zJ0CjGk%*%m6?Vl&7d@kfpgMO_D=1P2T4^F2$nm{%Ax$c44cF7^k&KiYmwo7GARg}; zEu@KlG%u~)mTeyI(jEqu;w-Clk~Zq6{E5eLt}h01ob6v|^xCEdiPx8(>0TXi^HSqW zACAhvA9 z^s{tTT+x}?b$rz)tuESJ^sXXxXH=P>JN`z;723x1yYJmYzfkb>W2&B_nrn1!Q}x?w z(~g}FrVEuMX>IXBO&Vi8GeGy&N6j^UihY->hH;*xpYkf&;Yab9cleJ@mEe6mo0VdG zv%NFJv3S@5B1r?%V4T(wkVk*6n14}qta<+Fi-pDMUz#u>A{XMd5J+-8#-VwHa1Mr%({ zdyh)yE-h|6bY*F!?ck=L4hr{IS}LHv)xs_g?rp$r`~Lu?CXKo}5NJc70}~Y6$kz@T z+Ts_9^W)Tikle51oK3yUbv-^l73(}&V=wr)SMhOuRpmzVPQ%@|)(}?ic`5GT^sZE| zrf9~Ip8DFc=p(wkMP)`Pt97l%r!|g;(cw}`ebnBYLi1*GkSgZl+Jwk@q&v&3n)DG&nw`HRuIglfF87G4e5=s)z@v&!cnbEk{<= zPJ2Fd0*s9J)veN>V8AkCxvD9nZBe=g-h}X+MXTBzSK*QwZNq|9I=Jwp4}15$fX0i2 z(~4OvuOYfd8B-j9=lqGefc*H#sV(w#MoI_bUXE!3QRKgcb2lWVv><+^U|^;a{9$?E(+`MWebeSS5aAXY0t_q=NJ zjZD2gmACCbs+rvG@*lE-^{)zwQ@PXHp{IKAK7*#Wta>y0D;US8tpnUTS3XgwXHlT9 z3NgmpP>L>xy0`GDyIbndpe^tDGGBJ+WG)-Ml<2wz{ibyw3ym%ul4!EY~NB*^lO~MqeIH`{`tiHJqg5mp0q{ zf5?s{ZmK|L<`1sA`Z!-f9mz2<^2UFqctyzBd4?zY#aymCE}cN@R*}iG+p&a$<^DjP z9m90qafbwB=ELUSx~9Cmov!a@_np6G4YBa9qwS_u=|VIFyo?obR<7SA}`j{*&QZ2fKO$B*qPE_jPrrlel}LwVu9- z_sGvoSDj#dlUS~_LHld2{uP7Lit5Nc^zph0IgN$QNyBdy(Ii|a(Q2N?K8SJw-nTuT z`jq!`59{>xpfxh#wG1{ed}%Cr{{S%uSVwq20cYd`Ds&cM?kLgJrefVToA8z#%g}?_4bKP8Ph3D}z>tBO^kP>i? z2Ow*LF+I@SMdUo`q{%ZAsh_-)-$J_39*4Vh_BPAcyHTUHK%i>a?kX&e`c|<>{rRlt z(ZAI|G3<`|-GLrmYhzpbJgco^R@6dlo#v6W_A|GgCbJYNRFvC{A*-IFn3+A)xgI-I{oc_0ji~2(^}ZQ4 zg)Nz_o7|R+mZz0>ALH%Y-b4FGpZN>JZ&YWMHXD9``ZlAEwZi5Nuh{@e{*=Cly`ea$ z=IPlVZCu;4ZF6b%mHzx0afZyukc6zjc1rG~_VBm|+Nl{-*722#0zKo5i zAj>rb#>cGyJC_22XSRCQ`{ul>O-O@mHc!aTcC7uCiZ$g~q+brT*1YODWXm}2VO^ff zW4gC&FMcZ8Uo9ln#G3hf5T2Ej)b4&(^%oN1^Kvet>DLY9e5yOx3asO^aR@uc-{dC| zj4qmOAq3tcM*r+rOoWDa1M;CKW5C{*qU#c>-pz%g7huk5e6%f4_S=P}4Y@gLLA za64C0`#WUud{k*6)iK^zJy`l2W1;C1jUC!9>t6N+Wr?lt00**R##c$c) z?W>s7jcRhVE#}k0P@&sT$+wi)1_%Y5nf)LQOE{~QHt~QVEt57E@Wri_*dqx z^jPCa-i+_LJqLw((KK;VclNd(j+L7DQ-CxT8|vz4`UvjybfPEqkF}UbU=jH2jQ;#cAp23)G)O9|2ajL`csD7d%WnG82ICQxI4(E^ZTf*mB?=EP7JL$1T;{#k=cT0$aFv(!8TDjN`(NBh)+2E8G|(uYFp; z-5C9}B3-aBcC2S6iLVO5KUk$^?7AFk@S!!g;Jigoya#3J#IgFf5|7_pelU2~tiYph zd}5aB+^Z?~!0wE5<9+IvzSiYa8dURr~YzrM7o`1#Q>`=jg>ZD4It{P*#rA<4kP z=C|uw%@76$qyFCJv(R@}g<*Qvexug3jfcp`q|-~`*;?O!L|n6$g*QHQMy*R2)1Tn2 zuPpmFa6Ys(XT;&#oSn7Ly4~aDcz*=j<7!diN8|k?Ykj1c?qSe=BAc^{>GjpE^5@vf zALG44FzDzH^reN~aBc2KPd%s{V=KL1T1dk-_pgEA4*vktmX<-Xmhc%Ed7Xu0zJs@g zW2<;pBW_;(^>-}8n)dNZvGU%%>c-@s(?>)nKb5sOd`mA< zang#y4tvdJW;03jR=rjZ&VFkA+T_EyUwOWjZ{hYg9+|s6BG18%OFle#w{s>~OxFq{q-eyR5=^*R&kJVWI7q6k>>6+5% z%me2wdxd-n@2&p;q%5w^L4xC`8SAxg=waQ8;Zy3%asY4XOZfAG6H=cHQa(a#Gv{1q zhiCEet-_B!hxUI?ac(0a!pm}Fk3U6r70hAMu^V>rwJR4Oo}ku+I-48QLI%b?>$C4? zYPFCY?Sts)L}IZ{JE(B``3SdT*m8Z^BUZT2Lt6A_&W;F>_8tbb}NQBanEF z=nq$m9ZdtGFcf!J;}LU5PqeIR(w{g{wX`NnqTc!UR*jXrYnc8%VcvWNcFvj}7~Zkb zM@rw*a~4i@=i%t)9glWv9V=Cj@DVd6XMh!s$pq|uKL;PY0O zkY}H5D3LIG#aeMoQ|#wVkb0@_AHZ!#HL>2e+Pg;;wrB(C&HSBS26$(f&2IahK z8QzSuKHdh3z`VGqs(p0W_kin7j^5^`v~PVMvF0eAhPu%`^iF8^iaqp@T&bSh$nLew zvXLi%^+I=|Vs2As-Okm@zTxY{?fdy{+aC(%aLy||n~soOz!{XlL^DTT8yTx_+ zJ!>x575a^AMPoIA+9I>j!0gtE6puR2uE_qBxrMh9MpmS^KI{@Se_^hbisF_!&WRyc z3VeU1c(tx~7bS+>$9mxRuGoqT)n~`qK#qieO*OPf5?#!Y`~f@uiqHp2W6`^_Mdxg; zat$a^g`!7&75Tjhsp7|FTA`ae9?AGnBX3R_NyzS|)H?T3+a8Tkv5mY`;;}4_e8W<- zS5hO7oEozw-!yc|UFff@=^h|Z#}JTxeJe6b&U?vf@UI%~L0cXCYaM=5UR>rimGc^& zqzYi2bJB)#Jv&yWZpiMfB9FuL*5_kK1FZwnkBP4zM*C3Fk8`{DRGtPg+(f~nVbl>; zTv9K2*G!|qhg!$T+O-p^vEf+sY8x8M9MD>frt04HWFP5HAr_4>JevC+Cc4*J;oYnW za*gNxD=->DO>7^gs=j^RgF=OXJkGtVRdh6(#^sjgy8qaa*idM!Mdo8Q4$Ze?hv-}52>01m}Tvq2l zC~*t)D{QVgQJuMjch_YyN4w=lMi@_%=UJ@$jrt1OybT`p?yETn)2cE*g*A1-r<*X` zuQn0j-Syw{2&{v*ppYmQ^louj-25rBy0Sa#KtAt{ZfiZ?(pD2MyEG?I@gvh|b{kJF zWn$g~JJb^=X|w7fDa=fir`NX327SieQM62?53e@s6L z;jgf4T~5C@$X10-3*0LNd?`~K`B1KvsIGC{T2$nYwH!DklfFBvmap#9AjZdGQOvtK zw?Rn#%rXsm(A8cPxNP8mfD3q6J??&ps4ZbmS}5Pl)-y?^h+=CUtWoMsX1(sug>KcF z>zY1=Ij#4g2cY=S#^cArxPS^D39Gf!_&%8?gw8!i9_N>-`l~m0GTk}uUdW;iys_|-MXQD4 zH+_gayiEl8{{TIY&ptmRLG%#eJL%?cQ-W{qz~Mee1YTxibqw@SzKl<+vpJY*497Q_`WPGbSO<2!n9 z?McV1L#s#T{{Z>_07? z#dEIGFJ)@0^H=G8b>&-{*WuQi# z%Pf4lQ5p&ORoG;X4&9?^#18r2BT zj-gXPbETKFx9}@-co}VT*Jx2h(9Hl00b6qkDUVkRQ!# z)xE&nJYm11HuUDUugR{tuAYt+YZGX*xMt_+KK|W473(kn%653q&J-uM$y3#SjTS!b zFm8vXGmmvfY4SEb0PdzQ*#oDYd}}PbW`(+R1A6AjPW{!kmB!|RjlQ}<$836fQ|cHC zStA+#6l=(}L+uajqZCY*P$<&5*icsDImcdF=8C19^Lds6y`K+X`)^r}7$QC)b459@ z%#b0NbK<9QzwnE9cE5x5MDKb`3;;TKdUrLZwyf7$6f;8yKOkw`_)yi~>E4lg zjO5m=e7*kwqinBq;b*onvmY*l_0Z3v(tf5nk$~0bP)H6#AV1QaI^jX~&@wmGSFrsk z$OEl#nMlKkbU4m;8-GP@>EGn|dM3D?xo|{=NeS)(x$Ts)hp}xJfXVHBb=HK?oxXZ^ zFr}8+wFdX&`aXiYux~olPQs2(SHRQ1z4S+g9*QZSI<*=Y9VqJUZM^~;BcQ1>+Q7wU zr=v*h`PP*gtg_(uWB5gmJZo;5=~3|R5}eu4VrkD!U$%=+GfGbTpYT4p{sC_9mqoZ4 zSkG3Z1F||O@U8tgrDa^=v!_mbk9Va>u9PwI5&R8g`gS|eT<*T{uD{Zjmw)0e2BY8( z)IVpV8PnoxhTH*y6Gz$oDZ}ox8GYc+*5 zJUu-<9cX-0MhI4sWq!cejU}Ghq{W)Mur;_ zHx;RJMF_QpYP38Xz6>L%YVZ4r^*=)00dwiXe~R*e=BN{{Rcc zv?Ygoo`QtZ;^uYlJpra>Y?DOyR>wY^)06J1{-2O@zoUBTMz*7opO8DvT^4NsFzofL z9{&34{U^nt@8pudRSYgR8T4RP<&Jae_Z}GcxBisBR@A{$S7h(CMKTN~HpOxKBhqNn z;Cy-?=s(k2SDEw^ocyD{-i&vAiMW-^Z63(KO}r}R{^_+`Pa$^l^7$)qY}#CXhMCa} zQxC?&`$Y`&?w}Y9{L@lo104&d-TSq73K`vesR%k&o-mxfXIxXw^FAC!#Rd@t=|n+6 zq)Qh_!~zIH1QA4R1WTetb@QaBO`H;@6 zQ^O4Dg$+^9UQ1Fk@~lg~gyEM49^aUpJIRSR=3NnWX{a(_eB7;S8kFim^6nY+_4HBW zJ`GCGSK)w(zik7isli>>Mw{I43klR9sJW z%J!DH-q!X|sbcTA`a`>A5$+8f+C)6G-(LRBP=hUF>@SWjz2f)hyq6OI?qs zRrap$n(Vo#Z)Y*CJ8phR81`fE<){1Zx_vbwvM4TUMqjZGJ<`k2bjfC%yMNC=ZZe$k z31?lNVQL%rmBe*F!}sB&nS2KJ@k9xgWuJronyu**Ly`F92PpWdB<$=ZshBwcoi^9a zYWIo|?4}LT)B>s{%?~nU#0$iNJ$&X38~9FFWpgIcKhV*{=o7XVv^y z-VX)jIdw-rw_F-;WsBZWW74SLTNuv1FZH=t~75g=;OVDDD^CxDpbyc)4c?~ zv?_asoTv-?BhOLoV}o%+4ewBpm>_(Y^xe9ge(L#we&12D$m?;NB2h6u|D`z+>6Yuz zt>C?91q)pTu0dp2mf%=!MY#c=cV6jwe=eBE+2s1_ldTH|qtjHdxz0c(a98wXFFFww z1LT}}?L@2`e4E>jcn1>sgc!=N@7;f)lHxAQlbV%y%SOvxw%N(Rru?WZQI`N^bN*ht zX!3FA>({lQ`Q*g7(|r?lGNlgqcAdccz^J8zt`{69bxv^A{{< z7N04jhmWtcx=>ko(pjyR@h{z>W8Oc*qPt$;zyzwk_d55`ll7xKow>bdEmrea9>U() z$8j(B{tVY=5cTchg(I_0aC`d$e%0O#O5PUEbihfak@@I7FNZOM(G!FC4eu(0M6qZ&t>?L#04MNrAh&h$2IcDA1 z0RCBnE2e678@0qu;~s`aDyKmiP2f=hjpJ~!FPC)j_Adj*jE?u@B7E{Brfsr6b0aN& z2qxg$cWe>YQ!vD8lvnI(yiI4E#kaHGjEvKor7<-*QYwAxI-&?Jz6Q2IwdRk|3*t(O zDy>NTEtl(~KZ-^$0YcUVC*8U5`&>c`E>yNox5FUEvcGSuumE`961XP1sH z43Edps{@E z;iW+!Jb$c4an`Ju1PEw}$z7xCP*vHtnQv|FR`C6)_t|P~=7aIZgZ6fJ)&hqioW?Km@DRPSK-{kY6S_9RD&jMyTb7meDw zqpY!6d=FoTnL}kiXWGtmNsn*qHhj>o6e@5E;Pou5i{!1lIlFKlsD{rHRSB~5ridGz zj(s&NX0e}VCIWAW0o@9Q$UKG|I$`4P9{|`jAn%Qa`DEfd^;RkXKY`|<^1@T0bL&rhmPVLbLWfUB*W7+{b}x2%p%-FkHhf+d#MWKC}a5e zr6&gfi83f0SMo$+@~)l-(v@8!#uPCnv1Z#)!O(1N)>S|Evt&-t?G z?~xOc>uX7XT~z9d?jFEH1@;`@SQPNq>3@xjx@PI?W;&elVe`f!TP}%Bww^b%T42^R zZNM@hz80beb=_4DThF@|wPJWSRoPDRTwOXktZT?kc%WnHsa)?gDsM>;~HOA zx_~}Oz2^P&zLKEWmgd{qvJRU`#m79~?Ahm+1%mt$(4u8Fzet)}D1 z>D{BE6|HZ4sD(X@vp3*}wW8mfz3X?W>`Wc^ajbDvPig!SMp{devA7h*SW}p+k?%D) zfXl$7%SdgBJ=m-sOqzYjkUiOF^7tqRLREM(>zP!{(r%IApwab@6+%dr1JI}PjHMMS z%X*$xOurf69$W8w{xanH`ZUaOW4Lth7=YYvnAR#e1squ@Au_o*aiZPyyI?nfa}sDm z5FBYf-CTWqKq2p(~n+ zXWE_SEJY(;siV>%$3~J3M`XEsW>T$1Z(5!;zTvypFZ)uG(S_9AB)&Fcl(n0fvc+x_;byQtplk}rMi~Bta4pZ@9pc2ccQ&VMKm{-zD|GH!yZjF;vv_^=5yBr!}6p{ud0;N%|IgXC`ds@pnWA z632RPG-gYge8rib-bvcFt3|j5cO1${t|eOJ;0rIZkMo9)-~G{lI=S3xGcQhdZs9kT zBg*n(260oZT%K;8@A1f4&DRbl+vKFqFf(M!m0^JiSzX=RO9oj4o= zbsvo|N#@|`Nz;j=(Uy0>fuzQ(7WywloHz4~g2}UtRG}=3J%8j;oaRiz7tdfk0je~_ zg!}0+I-xdckk2&`dH5RaV~q%ZIVTXcZ{}0e#N5gWOYm!+%^<&EScCsnCvNZQ!YS0R z5)W6cyuvGVc>8(UO0r6%M6`YBKG0o`w{|Htc_LUuVWOHU&SR~~9lRmZ7^47#XL(OIfdsjNx zw+dwR%t&o?kE^;*r_RifPqx7+P%&ZnF5s^Qib#ul$Jd-5m{@BAzB2wx*ZkVtMzl^( z!Ly6XNKNU-rke6WU_$63%0{j81pjLAnngnxB|t>_f=7#_+VhmAg)FT3hgxB$0fvlY zVM?dhMT8nspl`kwb4ki-3)3C+)k9tHT4If^Jp*|*+ZGjvk0CTS=(?L)0oPMvHL121 z*=dy|yNx`G_0wUr-k~Yv$Lq*fE?Tu0wis?8fb52qOhB_#?cILQ!!(^G z?Nw=kXC7OvrGH^X?m2^Z`t59KW%1V$yri=W1D9{j*Pbt}u!Z-yCjWf4AOzgV{EY)P zHTL!w$4GeG5HdEXvb^A;Yq&sfMMmAPi4Wj}Xh4Fp0Be1FaCg)HFm4@V8i-Le2!e+0{Sq$wH zox98#-wcN60Q_v;?JL%L-^)o&J2fE8#qnD`uIeAowD12)@41_AGp=HPItv+mtW4na ztXTB&=$yLHi!%EM!_IDVc~Rl1Kb?$qRoskdG7ly`#f3Z4*?6*i5_aytXZGSEgNbST zG6)q9hUfzj{A8urYw05n-n=+361(OGWJ>ulk5#Qne5=V%)%kw$z+AZj8Iir}Lf)ZH zI28!>ss^uG|m_XmE4=o-Wc$hb@jb-c`17*t*&{%YRLe)7tacL{Oh;hMZl;gC5v zLApn`Wq4mJu3}%)DDl4RMbpVF$4AR{+?NNOEkERi)dcRUe-O)ID%Y~DCPj_T(jO2~ zO4jdk-n3VL-0~5@DrlZuzu0)J!0G<75kDiWhXTplyZ1aN+)qD-JGc3fs~=}n1y-*n z_S$jTMLG+veX`FL-`dgrQ9lUNP(<{c2nqK3cz^9tesrnT!^3w78yJSA?dq7dwjXz= z;aj!`pupl|_580YF;`d9=%s>fHqsSB^r8Lxi6CnYaaL4ew6-_(ig+r^-F4nPkTo#rZetPGpMJsTGNARn?h$(Qz z&;Z}F3Yd}-m-8dI4Y&pxe-=so{4(Faj2ZW6YjV<6I;^MLpJ!KPj~?Fz09{JJdh>*zPjtXl?0j?jYW?- z{f)&OrUi?izCXLDaqLRAN2J%#b%tRT!#(AUCsg6>r!CL`?NJHggh4r%!8vBn%+w&<+UK04_<_^{Ra)}vydnQlx&IfWZ9GCU=LGmZaapq0;fY=6@kFv19{F*nO5-j zP6v4*yEVS$*2e->B@@?K9+AK?;Y$G^vQNk=$&&gpXJRw=VF1lz5cP(O5Mx+y#*@G3 z105#f8{#yAsZEYV&m=$x+IWq*!Ne~kTWT533N+bx{N$1$=jrP3={|QWQz0bL#@B;^ zo0^t%VQuM%m#?J#{n6IB4g8qn_@l#t_$4bo!dAW^JO-y}t6;)!%5e?2#hwEyScs02 zNnp9z%zuJ94N(HR(>5O+VhPbK?&jh4`Kd8jvT&=I7%D58majMxdgff6NF0o*D%zit z8f*7!jDRmt(7`!vtbPZJZs>Il_DQ;y`uArc*me`Rkq^oTa%B*749^hI>w9+u1eQ@h z&k55$no_Rx)o7o z-*A}QN4;))05ue?u3SW#+ScBgHkh4=8IumUp*!Q1*zR-TbWyr`AP%{2D0=T2uSVV| zyG4@VMg2Vw(s;voQugbkTLRSN(cFp3*o*LfW1etsGP4Q?16%mF{N4+m0bE5f_!YbW zYZKZt0;^~5>zpay{gLc29ahBKSNbB7Qh)jYbb_6&r1Cu0@_1qVHxW@}T_w-;J`sg( zT`mjQyytdP@7PX#jQvOkES^mR!Pa<5?4!&GtM?)`W!%kV^vciF`8WlPv(u8YzNN31 zk^x3SXCSREXmaUT$s7ZZa%! zWXfTXZ8Sor=opc4?bBCwfC|pL2fm%}B}JZSb9So9GWXeZ#kW3(-&9f3jd1}kTDT^n zQLy3+Py8tF0rF(5tA?&w^d?8FN6%kwhll-!@MsFe(Flq%d+(+jLj6sjTtxjw!}I<=(gM1642IE%<;dk6tbZw z&xXrzT!PMd8~D+0O!9rmyLArrhF66#%DO>#lilh$FbkC^h$2!!4c~FcYv;hwA$7$@)xf1 zM@9GyiEI7zGd=aW)H7`3a}Eoq!V{G+*7=Z@vco)luXWoB@*r2@@%T$5U2{Y-xY0`J ztb9n~KC)@{NkGwAi9`<%%*pB4gj1EMHQ;g(BVO5z(~>e9jhLv?)5G&sb0@!*@u-a< z6_0i9++TgC*pfJ$TZL`nQu39?D?K4QDBR1w6YlW-o*Cir$LYbUN|w{&8F6%TLP}q4 z*qKjI!LY)4KI>0U`HzL)n5IhI*U7o>{jGZ+z5?b}^+?^)Ez;|Lt}vr}j8P5!T$`!I zagq1gdw2O^bN>o|$+9?xk8NbFXVHdQ!hI_w4br(sB#SH;A*0)x#8RgT0bUplbmxWZ z7vZ7Pe#Nf07gq{)bJHE)mTxyE@!ol$3Ih`}vuKg>SJe%)mq!{pWsGkm3+TC(@d?-O z8w@$_?QuM{+}iuOW9Y)|mpgh?gT{{);xl{6WQFLMmXbaa&bY{{&e`7+0O&U9P}3A_ zrc5G+joU)eoG<=mK5}*Na%4{Mm$aVp>~MGqHUAh<+_W!JtO-HL40$=Kv zQPfv=Gf4XVak9Fsj{}80OcO<{nnk%F8!Y|Z@(J==Y|90XqU=7@TP?RBxji$6J3Q6b z{2sX&F@}BoR0g@q^K52j_VtLsY&>74Pv|D`kKtcD6hEgt=DmP=V`gICSM<3@S=*(& z>pgFz6Zjr7ensRPx8`*z?Pj+4Tc4J5vTg}YPy$@(qQnpzpzHt!*Fd_OKkm;&3ml~` zFOS~VSf|nF4WQ(7v$BTv1mMGkC9bD_i9Qv} zRB39Ega>OQuTCIcP7%bI@qLnhd3vF60%X)$}_#Oj}1jSdMdmrp*t+w54T|m z4nWv&N!pdp%i7j#%C{q_AN?_Mh!_!!#I{ma_SG9z@;&`Eu!^0Z@ z$Sw>^FohUuM!avjcy{*brEhS2A;ec9>dRtT84 z;5JVqiCt%6PzLMMo}j)UW7q0mo8v2|4Of-)FlRIrN=?a$2?rp%HL~!9XbTGja?d_0 z0`YtaVK~mX4HWAqAn-HvV(0b#xqu#IQaia$9auM66oo&3kpWud9E55wpnu^YLqtqV ziN?6TsE%YRBzl~BIW8HtVI8k9363U;?>kmALkmMlhSF~)MDrP)&abwiS%`=wT%HYm z6;RLT2OwRE9b}+$NZT}o6ItuLG{H-Ih8xFauaJR)Svh*@e7Q1oq{}w5^lY3f_qh-E zlz;;qn|$o_Z1`UMKLlZB=6c+5I#wj@afHVcsZ2hiKl0mNYm3CjgZZ#0@zd|z-5ppo z8CmT27`F`5`bm_@?AWfkfR!0X;EIV%bn;}$TtF8B*e>h72%t}p9C(+etR7*M`NHG| z`^_IGOvl9c1X^&R1l;yDWD{maS%P*Cy(tn*09r&JUt8x1u}ybrEY=xDN)XTeC3GsQ zve0_8h3xy)W^X#l96h7FbnSztFAEX61k2B%6Ug2n+i^%ww7_~0wFQW!6rQ&rj{>5t z2Vt3ft~I05ukN zpP9Ked&!2@VLfePE7fYPlv@N`?SWWsJy&cyBXsJzXNEIoPGSsq=4}xu?a>#&YP7iIa3(>1!dma$h;;Pz&=`*=Tb2qE0tjNQY;Ft#J zwF8jvIBC z$)&JeL8aX#HzN);i#aQQ`tS&d16rU`NMGDV_=MR8-N~5>fZLk~pjp8KQ1>0jXXp^E zvCS@HlH7Cts^;c=Txg{#usa3j@kKK(kmt@!fJAo3iI7O_=9O;n4We7;1YE{Y&re&Tqj%q2sc{l#eBl58~({qv9EWlCv#; zax#x>^Vi15Q_%F{Aj&u5rShsb;$m|g-g73wtXQg|QH9J}q{p0mFVu`LNqlWGQCXZ% zj<@My2y28@#cL_fUAQ+nIsoPl8GHcfbb#_LayzaX9fOHV1Zf0oJu>DB znMZ#h*9yB?xn3@4pcLOGYvfi)@LsJ^Eyq@JpQu3v(vaU=Hdff^YczTDfo@tUiSXAG z?Dx~>3iCs~9!;$HgsBZ4_4)t-@|Ceok#=W6*mc7$C?8)u0^&Y_NgK}(k%A43Z?a+s z>$)DUj@{7NlwaQ>1@s~fI%z>vMsA?bAAHRhdD8h&ooiBofJ*ij^za9RRl;}azEihy z)||2&wU@L@RVlm6Un@41y z#?LgUj$%=R{0@Fu@-!oec^d`oeCm?@qFABoPJbLrj! zwrjD9ToSHalye(Q~pG`ln!FAri8c+Y+TVTrO!SKD+QcJ2dbtVfW` zk?Y-UQ-g*k=J9Sv-|2Rw~F0Lnf95!{e-|NWQG;(K?73Pv+i z%bkn`xjFaiy-`!f(?kXJ7V{0`Jw5@oB+2j-sypQ(PR9||xgnH+ zxNqF_&L8Tu<@rrhnZFJfDcPUk7IH|2)wS*vsJ#3Wf-=1_YTcieg_O#G3q$1Y)Lxmnk#2$8UH!FvRn3qD(Z(>B=ve(A+N$b?uJx^iT8xahy?^Fk7fQ^* zR+mRF9OJNzVPJSH#)@IC(s2M$yV=M%=bUJlt@YNc_i#Ibj1+-CH2pW6Ui<@2r=|Ug zuG_FP2OxL3i88mVE5UubzoL*=ywCzS71A|&{0B@CJ0u-uUOvSViA8$Elc2tqd7^4ehu)!HqRTx0`$gLUq{xo_?MSM z6wrt8xXPIwKCFxva5Kkx5|`?Jrr~e&8Ike_`o!(EPE}~$QFHP zC0MX;II6a4U*f@bD!QbP3J$O+-!yV znkzIc8ca*uSrjGZJr6*)$qr7Z@TKo7r)cK&o2W?h2}~QnVhXLWfzuJc z1L!}4!Hi3(P9w-8myiupNBif68#0^@ROg(Yn<~{0aCeXNNo;PvxT%u5Z z$FCpZ*Uz^ib6yiDdp(``E1&HwSeZ=Ej39 z(F}$)3rfK8$QfC&SFKeAs}AXp9Mf;)=HaC}xjH$Q3oBVW**;A_peadb0)1uDr^Q}~ z@4rwwaTDJrqyo!Yh2uh?`g6#RdUij#3|3B0iBduA;&%E<7rEW{&q*zvLC3I=4fP=E z(dwlC$(3INJx0{@e3_uE?)Z|VySu@a{0^&mh z!M`qkdUD`9ZI!lT6<`haTUQiGo6Ovjt0p(v z2`a5?+3H+II>%Ke(wO{&W(7;4&|5_~0?%)!|CxH0*1yRSem3(_OJi$3y1M^AG;6cF z6Ga&y5hTci^hW;_ksp2{5t4_t3>0Y={cQ2urT%8e6Yn`}q~A~;^{2f{UkoufUi^GN zni2moD8jcIvPq}{V>t@^q4bGu|EEdv%k=kO>BZ*jll{9enib=2&|HEL$V0YSA=L4? zN`KW^sFNQogD*|RU%kXS`tn|69Jw`TJ%rqW+yLi=p?WF3IeIYAN!paS`w0A(BM0J4kTe8_hFQ z1CwvfZD#TwrPd>}1C&`Sf8K~ed=jzPW0nH&+yEUUaeBIBT$t`6eg-+Br0+H9E}l3f zQZJl8Mb_t<3m?=ccN+C@Nvk(H~Ikxa5E0b2~18PauB=2J(u*PenxKby&c?V z!yL1#Up^!ybFO8?OrGN^Li0Oo6l=tKF%OGws~2oCf@M%CXq2IyOsmY@Lovtc@n%NV zE{!gs@qXZccg6Qo#V5>Zi~h+scr8$i@~aTy{`rgjw|9*yzZeucTB;6cP`b z#P+x3LxF@Y4u2Y1O;jk_?|T!5T$Aix>dw+VWGw_@CI?G=3=EJ%0y;C7mV#RzqL26| z)h*^*4IRx}uCiLPTsP0#rmD!5%gyRi!Ew4uq(we2wz4b$${ex?ofD$2l-Aiaij`k6j7uC-0( zOYnCwfW_I{1z7N=5bE`i5SM+Mo!jpNqU(ti zi9dCP?EnNl0J->jOYDC~+Vr;|I}Iu3^?wH${~mJu@dTu4Ad69d>Bj-+-xP#ID76MK z6>=C~QZ1nTe()YxAo;ZX5li0}_Mzk1c-fz^67@yUw4;1(U(N}U9gKGlK!^TE0Q~3H zF-<$lLftn7Z2hOpScal-)!ydfxd4xsl2G{A;zBolF=rjM1tg1*{jD%L*oI+$J#NLA z!bB`-5_2E7IOPGhR^8sExf{QBRdAZ^YIiy904;ipyrUQw*vXIaKWf!Y7K|`+8O?jh zdv9sMRmTHXQ#>x?0rHU4`Dp{4EP#+EOT_x*w{*-i^_7`i_}T4V`* z0Av%j1CUB4BChy%9T%5X|40H$VWW+|5`weltfL-wN2aaeh z_6v<)?t6Aznm1d$hPJlNRELv*|MqeRpmB7}t`f}{yu(Q7B<%AD%u4JQP#O8GmK{mJ z9$zC7u870V4u!q-+pL4$q4r4nc}qESGt*R%Isrf??Epk;{@aB$Ag=?#NWTs35qjb- zeg?NV3257^15hgVzs$~G;r-uc=dZ`#*#Yl~v_n9Ur+n2p%OYphjY3nl?l&ygihqmZ zuK*5s&Y6s8%HC1d<_?-tySmWj8ul?hBaZLF6xmT0>g>p>`XX~9rnjz$5+Gk3CNp7j zG5Dv~vI@|p&HUc^p2E*rZ~4Jzb&eW6y0cg9ef}~K$4OBcIRNCp?EhvD$?%_!3NYVz zk$~u&9ba$Oez|wsA2_K~`Uu=qmR8>Jj7qD9@!Nrxa13tR@O<$ZGtS3yt)U7e7cX7| zGC!;z@^|EU&+V4LovV_T?h04cZ!!TD4>ZLeUH5g;o#$@I2NJrj5-WYzRiZ!UJ0u3o zJl*rY@DfZ9b#6*n^ojEDXqg*SJ_hF%(w3~`F%aP3voqyCa~(4XvwE@`z%LH*4={u^ zFL2EQ70ChfroHD|bL|J9v`DaTxuj&{fpZ-sxW<0XrqvcwFVicb#C%@VN}4y)3Q+j3+i8R7LQ%W0B@THWZ1iZXV~))!hSruCd$!SPmYMU^3IXj*I$iX za}=k@bMVat?EWMG-aUvYt8}4M1IE%Q^9{|GWCCHvfmM^bJBY zT+?ChN(<$VO!Tl{^l%-k)r7P1ofR+Fwj;yafMuB7DjYx><)f>_xwp;LkdE4r<0%^$ zmKK2?urN3buvTBvjJQprN8Y1+NG?hM@oT@#lR9u6we*keGNotqNm(Q$t;9r}gKoDi zyF7NCZxkWtHE|aqwB!GIZxK|65UbPaI#*}r z!E@$9ILA+*#jpdAYk;!bRzIbTL_l{XQU*zYw>J<1Y_~V&H{ixk z;TFYcXgDX}JVXCX@m{kJpeJ|P%houeaJ@4?3gso9ZgulHdXl2?G=GiNo@{Sxp`+;6f<%h zY*TX?0JF8Kg-#e}*oCTe^j8~F9~L|^PvcYW4JGq*sF(^=pdF0NEwXvhYEdgtK_O9FF zK=sUT+{AhbiQ))_{GjcB{36MC1A33=R>;_J!qu9&)2h5otcXX%6w&0Glo7@2Mk2!s?^=IKOU67-1ReW?`!kc!fK$F%f zE2BckOJS!dAB$sZk$lt072u%y?-Gd(84vqiA>pJ~!S_6!=rJcZ|tq~AR8Ttyzf^MC)JMT0Y+u=quZ&z~+8t{c~YAyZbR zHG$${nH=6@mRvscMG5u<&07XmcFnujWNAP-uEC1 zb_;iRm~h%0-VRW}b#l8367O!)J3>MUloW-hT6aPt!g%CvNv%Ja1t$0JL-(<162vCo zb@B;!{1p>*!7C7etI7s_>kUeN!Fmy*h1^yQ{uc>=#z_33F?+i}&c#%Sdc9~`9>bb= zCh=!atf80K1S2YYGSuadugSjt`)j1Uf4ojt0m|HeC?UpC;q~CwU9oN{?P@8GK1Odo zzBC9UbMgfHt7jW4r|X@R1ONMLGweKSGkun6XCju@n-&!}bg4`QC~(4YtLRnDmVfH` z-`@Zf9rs(&KUbj6RF(i>-1a3l=DTHa+BP3wiWVP4^vrkOU++?aFIZ?XPx;&bk5OjN zDBoP@vVGi}et1G%EVje%r?-E!aMKz_!B^EyG3H2Y#S>);P+t3M-GL=W|Dil4(!nOh z$~%PDZk!!)^TZ?mdYx7tyMksv!U(cyysdmPWcD+5Fk69b!>==*XAwRgK=$mv6wR1W zJ(=spl#2JRcaks*JduFmykwxh4qA6Y=)>{B+_2mmHY%W)UiPgKSSg zNZSk1EFExl|7D{#;%S}lzWP?HhhBOytgxxOR2I9u?q}pUkN`E1!iCE2F>;hu5tHR2 zw(asSzxE2k-+F=GU@MKeIPZHe z_?9)a=cq`drU0Dv?+lE22(VWGdddOlp7I~$ncNXmJ~BX_nXUaN8|Bac(d|BxCv#0a zGlu(WV-o~_=;#6Hd(-W!rQ+OTJ|QTFdGW4y9VR^i2mW zWmn&Rx_$2Nd?aQb0+20$QS^-&nKb)2jbDCsV;NCIh5UO2x5o*Sp@sro&3zw_>_$Br zF_EZc9kPvtrrYnU|M|u3zo{q25hA%5vC+)08ocm9SiOWo!8=zi*K-#hCY`PR$_tPJ z{)<%MvVP9%`BUDS`La?e1;@8oKQwsCJU-ewt*h{TPP7iBk>%%f;45tux#OQ~n7^S> z9`i*=rQ6{StMvpCXB(4$B= z3%v-SzmQpJ#F?+g3Y_!HKY{x*ohqprL1bzClxN7eyz1!GhY|pTLFh$jN+X`~fnFFwVW6HL zA~(an(%=714%+{x5YL5aJ1Qp-gCp(3I?yfPlb2G_@rwrbcY+B-|_L-jdz zvIH&wflW*+EMJg5OrmuGq3A7IAWfnfCnvF<*bk8BR;=j5bnv>{mdydkt$$a2|0@zl zJ;9jun{fhE6aFN({7W{yhao5D-{nU?1mHlZ#0Go+H`sOfddi+STT`&BtJ5>*)1QEw zd~oVHk%Vj{LN-ly&(nAtlf6TK5V|(?+<2MuvtWE#$Ewk<-8iCx`I(K1GIeKxD4H_+ z8&v9=63sM*JlcRGE+TH;$H{3uEK+!?I8aV(x%GrScxuk__ zh_VCFapNwr##+013zm?@whte=JD<+j(*eC~(f%C~Etyj-C-;}N01nS`!iJDkVp4ZP z3)B?~=}G-_Z4d2vok)HJziVQ93%J(2TsEO%y4Oc$gK{?6;}su&-o~lBvXbP`BQ*Vo zfd-66_%`m{|IwUX^mcS^7xR$D2r+D%MGu}sI*<_n3E&gG9)O$E-*-zkPz8(!pczG9 z_gNym4>LCepmLzny0S0(XM%o41bD~m%j@6oB$wF`)q69%n#KDDB~s8n-7k4by#(m_ zFCY5Nc;XH~mI!jk_%{$i%ZgT+wVmX!VXCB^ujZ}^GQQb7zxyn{xDa`{PPb~t zD`xoH?8OxVFUew>N6vT^((+@hj2yhU{oqAzj8&eUj{l4L}3xnXciXamB9+rRj(MYB_&Lg2VY8;)bd1STkmRRvaH>cS{Hx& zKPCdBUay|z%UkxJs{8&P!=*1_0tRd2j#JuKYO*alw>vr8yS0zu;$XB^fP93R1LES} zLRcoQY#=A-w?D~j?I)Lazoaw#yDplQH9HL+h0b_*?VYros=2CQ(bZ@A;U01|8vXpE z!TRx#UgL+Y_)jb4<%zvsFSF$+$ayV?LI;H~yrbeSPG*;md)qnnk5UNz9-xts-%-F{ zsCA3U7;)j(v*+Q}qGI@S|64$!w3$qNj3)N7DiIoF14TngGHEYS_)^i(9ge=tE1QO;@8c`x|XA zkz-)GIpB%=X~UTM3Xc!z$Zc5-#29M8G^OGq_4`9wW#PcsS-Qs;dWV@~!Rzmnt4WZx z`|Q*sU%YDA6=6>y?7=lqXmL(eQ6c~bFQ%N2ud@F0Pl*UWYbR#hSb`;hz(FL zq7z7jY>9NmU!!$?+o!>lkpTG)OuAO~Bld0~A^H+DLW!e`Z^k1Gp2G9+00eee7@3}F z=XG&K-yG#xDXH)V+T0Y;FxoR<&%R491CmjA3w%Z06InCUv*0<5&Gs^B6R;aV#8?AG zS57W3A-@V2Ox!{?F&f(kbkJSbY3>1PU41R$Q~GU_&eS~J+F(_Z_LrGgo6($1Ka9rL z?y5m_+hFOn_HV|*Zcr_4Y$EqjF|N%Rf!IeE`#(Qr(EVFtw-i+XI#*%BTROk3P$V&`|VDR8@fSSm`OwQmgm zvlb~SV^ZfVQ7GR9K*0Z8-H;QM#^s3;!D#2g<^FA3`bjNglTE+vUzuXRZcQ2QTBi&= zEh$DV1hTw<79*{!)(aMiepa-kOjI%e*Yl0GwLHF0t_Rb;YqCJE~nS$^q;=SDh=@y>DbV+x2 zcSwnJ!_eK$jPLRO-uM0d;(ea~fY14`_srSn>~*cRuC)n6L2BE$70(H3jh0rK35Bn7Gx0loq*l*J%VOs_{>mz5z|w)MX4WP3Eh2$%y6>H1yG2)&t|*{8YM<@uQ9dBw+YusC@mM(7o7PK?D>0WS26 z`~+Uz+iczMow%h>F3YV-9=5-8#fndCeY1DO zs+Pk5i8&+Kzd^KV9Fa~oq@V>!L0nyP!X5$A1oCwQv||O!T>ID1l<4H4)kH{8*YF#G zc)8=Jz`ibZZvod5crK^Y4J(>NN)?4Fa$omZKixR4$|I#I+!J%-POoB;VLLMhv>p1l zF_mxN4%l7ICLB5&Klclh*e)=3T$z+%pCiC_-!uDkz%hoG&39+L~rY%%?-1(VOF z7;t;2VuY!-%gWcOvs36|P*0wkO?0^_RqoE>vOy;FZraF&BKIuI1iVC%E@RX#JcW~_`c~Bpcrcjht;H}1|@nQNeE|P7%I>VShjWw$1Hb9 z31@&|M!@Qu?7T%mOqKn)KEbjK%$#?QBH-doXq7S`DZ$WD>f{dFf$2H-U{HPfFSai! zHPD2hxh07bihYl+TZ%S8wTtXO-=yDHhv7(TP8SwdV}b9-?>z>B3Xc8$Qfr6Tz&oHy zz!VH#x_O%UzQXi+o2v=@4m5kN^bj<(#Z7xnr-!7?8#32m&}jJ_`zqq9UHOly{g*^q z2QQaD>L>te3-yK@i`}Y?Du&tyTbWHS^nj=LnWffMh_3AM!^Ccz`nW5F4 zhu)P%6YQ-Qub`pw$QzEmD4M%|SP$6za=5DzEf9)iaoim285HJS?0!t=zT=b_D?ZFS zd!Ak0;o7fx@Y>_|Nyl*b1~i%aY+$5W1ttSm@O&K{BG;HSNL zY>~hJ2Ge8dE4g4Uos1#F40l?vYp^SsbOPdjW?4hzd347Q08{nOmH+DEKd*dnPy1i? zIbjLTF*@Hta-OLNhEBJX)#C`!+b@x;i+LVd4R2WO6BRw0PK8k>yIH5!`Jw!-0|pNa zS3CQcD`(P~eOd!0Ajuo7(&=&B_PAsxE|XT2==006U&V9w*L%R`_Ba9X^&%yYJ--oF zi`WFnC4ws2xG5C8m2SK%O6Dk4YMGwGUuxF7-@-V5Ac5XI<~qvQo~hgL$1YCdL6ON=_yU^Ptq{lG!B1p>Pc zh+>m2B}!QxUdA;oW>wr10Wqss@Gpr$4zGlC&jqcb)UAz;ZQq<+4)pSwp$3XRL;i)~bW_9(t}P zyh+?q@D+smujTJuU_6~!P!}!@sWEG(Pb7eEu4B{TYic}B#}uvhy_-{HG;J*J{WAd8 zVMS)7LcsOxgex{IyF*eSFG%?n3jaM*AR@lrotT|+b|BYF5}1-gc0g&bj-i+k&WV7a=K zJ*23iajQ$SO#o8<2bp~PpmaQdfY_AR2vy@abvF1G5tqy`^JZXCW=7kEDYhgz~@UI}{$g1jScoP@2+LSa5n%lH0Oxl!kgug8X_t zG8d%a!Hbtat%h5MxBEBL#b8L_{DyUAfO2etT&OOQS9BliJx-l;RhU*~ZVzy5OFRth z72UdG2gNzz^k8mm3$`J~uSNQ+VL)-om&~`uw-2hodU_QT{j5igV9phfJ>!rzOX_c| zlEPOkCxq)OMb^JidoDJ-XLh!$PKD!)x`9*T4n(}j`*ebKa5nx~rhi#G{;XT=m+*%G zM;7W-<){M=a&$Lj_!B4;dD4r2Q}d4FZdG9@TWUy1>N0P6vH+#lA)br1h-_RQ=y_Tu zt-0liM7iFR!1foaNt1BGJZngdxqXa$4Tk_Sl}$%U+=Ja76gZ}oOJg#_J^%?AZ#qK7YwPu-M!d_;hEm)`I7kC8s459;b3xp*!d2h%GJW$vxPiO{q%OsE?NNvRo-<(^ZnUS>}c_@-XI z>MkV15>Z8r56AY{H@BITjp)888*ucS_Re__64de&ux@PhH-isDTK1r;sYEx@djJ%? zs{V~&4S0k9&%9EDb?W4Lnvi#Hyqq!0YNat+KN4~)e$D#wqVh*Z*3^U+eHhxe9j$Qd zru_~@SVjg{xB9hWg4@m6VZ*-Ohs+f350DgKxC=x0o|hmPUaxlq$p7zv;+TG5vX_}J zci4hpB_YyvUX;~^p{49O^*7V-OJi%lb0Vd{uED{*bG}Pd9szafT(@)v$_#4f3+gJS zs~WaraMyy~*C#p)C)-AH$Gkk%rEYqYd6w7^+Q#qvE38KANMp#$5a|>2PEYLJp{p4 zVSY@AYkoHkyO*i;GI`%>`0S8{V(!sABmV{;Kw=gUc;IuV>JzxovbetoIOQaWRGv6c zH#kMP;S_o$f$j2@$9|~;j9P2KH3X@%yxWJnaxij*`s2of1mN=VfHrABCbc0=dv)+C z`9pBtZ-hV0&m%<;I?BA3mX*Nc4!99ZdS$tQb2#Yhy}U&9L(V1M6_)HcW_z%#4X1@Z zM6bW1QD&Dibgj+*iAkhxBLMc0tR8TpUWf&`n(xG*dw+Z`< zyIxhgXzXHa<+5x8=sAz;J7=$U+|(1yf;C-=SZ6#|Kh+E2%M+OpN4a(Vn*$Eh&HRF< z5C(iH9k5k7M#*s%L!mdI?IBpEc+{DyV!?sk;@(EXz>c5;TLP#20f@#|&+{@JsIer? zV5_pN5`YV~A(rFX3UG-`{@>`eem2RY9_y+K7+|!&@s@bnez(Wf2ag_qXpimKV9wS1 z1$aGZA6Eeo9wkrsIM>mvCyxdA<`N&wHgz;)xX{nIZ3Tn-bWRWQCWTr9$i~Ni>HgZc zQWKKlBmieuVNtfw0224(>XB)*4w^1i&dRoEUerAwOu4A9G=Dt;&LLFn4YbxuIrkjr zwAS0kewYWnRF9HSsy&nBZhn(Mi83*8g4H~VZ*^tKa22(7cf=jF_ysk9w6c0%I`8v;N!418S59e(@v*{i{b#zGPX{1<(YHz0Y-d- zO>xHkF};2fCh^}0*bcjus$P!3sp1_8m=dsGOw$DC397@Cg2dNR2b3AFd*>ys!hA^M zRtmu$pql@)muH}mKHl;VKzG!RE*Cm}LSI3S`7Q_G77T}%t&@^fAN-gP?GcJt8lP3H zl86I|vZic>&UO>>8H_VAnaP&Ef?i$_Sr1zd54N3Uepua+i93Y92I!guZkZft2A-;S zfDiAv*8^XE<85`};tEediP{$^Ba3e2a%ply%`LCP%A4`X9!<8e@ ze<3Jw-v@LS$xik+ms>}bN}N*Oz?NVcspU8{P^P&$@#lAY9sA?+yX%j*Z;rIVZ}o*k zFJa*M%T=E$$nfv_(n~7cBc>cv$vw-!c9BhjKPny<{iBKq)Or(xkMwhJvp{mo|5hT@LyA-IgT!RIQBz9CDku zlcbT>iNFa-_qi_ zN4CeC`J*;d-cak=>IfHPc%oBZ_hEPF7I_GU^a%d%yxut*qyv9>}JB)#?F2oABn(MIN|6 ze-Og;wz$KAn_r&UjfOqsT>||O_w$f?Z~1b~<^_k~Sv2Y!6H1JS-GM$n&-x7k>G1wl zz6Dj>3iBA_B^_Ch5kZtndqxaegi%If;m9iXu?aoaxi_MUz>YMQi9di>r2TU&|b?OyIA)(Reg z%>WLC#tQ7&GP7nE(L4S_c=#7LT4L%2OsD;W#3T4>%)oDiQZt|#_HXj}67WeFLmDPQ zce$B0lMG8&X?bp5C59VPkDoJ}AbPos5i%|at}{k!mKWBFVSFi*wB90a~ucj28=KTa)Pre#)4*jXSFFt-e?;b@kpybEWyLxB<8a}LIQ=DINs_n{(rU4wCEi+1!CDrWH<0-S24Q3x zW(uln3g4m?^?l8{^b~0RIF9*Zc}6L*Y5xo$qxNA&J5EBH$Z_&b;Ts44-e0wIr%*_x z)I&-5cyFW5s2{PSp;fABlt9`B&7f!dGhU4KS>Ah9mBi^a3+{);G2v#ooCEm!IoR30 zC3OYM!^{S=!JU;whiHk)Rw4uhAgll0{S)Ky8$tIsLd73FW;E_WIE-w3d#C1wFe9Mb zd~xeQcUgfFBycRxF@P6fAR52ZT(1rB43)>D#4FzX?F0Fmh8pVzA43Gdrpa_y1^L{b z0g#A?J|@eQfZo( zVLHnksk7Ld`92#%ZUC@Q2Pi#F4B>?1d>&o^NDM4_ga(Ww+}GMsFV%qR6X@o+FYM6z zV$<3f3Ne7O{b%)WHNN<~yqMc`Jb3sAGcOSgVijulb+lb*!B%7X*s{G`md3OhT0UMo z3iFN6{^NempS^DaIzKXKV1|GCLe`hOX_ve)?BCr3QmEAtWd`ji!}<~*nVZvW!)?ty z;sA`SoPEbN>Td*Ry1MjQ z)r5oNK6C?oFVRi@j@)e*`PnK`=4yzW!1>}@7j2` z(lf6?C6i`-ESL-paS9h_Kp$~}2g#It!J-z&bxdZ^(WTHhcG`1}!?LLdDfzFU`tsYn z`RkhY&o@+nuYHmMH<^397o@alH>{I*omuf~9RB7PFU;yei1SpA!)f0yO?SbJBI3SC zX!WA>H^R}MtPEQqE8}k`!9M@dmeiUtq#<-mPDxB7Dto>m6*xJ z)K0_1ZGUCrKm}n~uDxb2=B^c9U&m%5FrI`i!{3+=Y9IPFd2uVxGTAlo6ttoF=5dt4M%8V*9+qZCwBJ(FIx`R zIk4ic_rf4Q@Dk84(Y%%X%J%DkA7qiW*q!#=}AaDSd-pb^I*BfoQcbao13}~|=fC}tgEM@eN zRV8MSCTmY)S5*ZVJ^l*(DA1+oJ+hk@Is5qa@9Akl8};3VIn^biWL#^nMDk?i!&Iw$N; z6ov%o*QSz(TbMf`_2W8Jl#G9579d)OtOXI4I=2u4IT%rHd zFWtBX75upWNb9gm#EU_nzL+mRyul$ha2u{jcUc_V@CzYFW6lov)*1eosR0iNaF^`j zZf2ikxNBPER)zq1Gc^=Qj*!1e;=g;We56RFbO8fhb*Ybf5zb%8F%2=Kj$|D3RrSsY*o;gZN6BLGUOY2<*{44Dc`J8&=Y|-k#XD;9vB)Ep3e+CCQk&Qe?FEPYS07 zvIq=JIQLo{#u_Qnmsb@!ftJ|+=0Wja7nD^_@LlVjJ9WsM=_uGd9RvRD@FK0*h)+lU zb-yCOV3?;K5EoH@`z%dH;Cu>b#_g}XopPUFxkMf4#r;pj_+Ph6phOM&Hi_KkGSJU; z3_mIP^(k-}jxHzL+M^9IbDdVdk|V{60)Y3$Pj4pA*%t+`u@AF75lTFosEzB>lMSLT zz4)f1YJmh8@P0PTW)JGgrEkkJuaL2QS8&uP^>olE;SJ;d7hi#Pc}gIDC+aG5jjkbs zgBka`6izd{(A4SLP){CR8T}dP!(CKtVW`gB8UinmkqsoEIb*_>l;d$lBQS0UsGH<3 zfLfYp^1peEHb)&uE$TYRFFP02#zBDZ`?_5MV?BxfHQfkYlGkoRMA_h7C+JU70+tEq zVNWry(~H!=)q(sEH)Pv`Z6iWV1VOkERXsRxrVdzMzPO=wy=+?_@^}>x+706N>9A5w zE$4N}+3j{0g#%HwPTFX2z%HPF?{)&ShYyyU1YBOrujt3;d;d6cAZXRgad?vXi`~jY zj&zk6xIIGH^^d}M&}iPHFB-RXmx+<>y8?`l2y-sFfDe!xOFyu@Vuk`|JYxG{#GLX$=UgDyX+)S6n2AFs)jfTxpJa5ni_uP!4J5* za7Fr+-Igr+SuJN#4^27h9U8vmufc&A#hkJdPW__x8K7BdZy|U^>J{u8Mi6F$7T`<& z(NTJv86)&<>AjUjoJ_DspEMX12wcV7=l13o484IVPiTKQ{n(}?_DceYSNM&8bns(`fzr(<tf%cSwu^ql-$zWVG4^ix=#B$zd6 zGchCM%Y$BNW=!`L0&OGmdev$n&~Wei|K1HHBZ3>C*e5m)kr@&{A~NyotSp2r?kctm zIyS}JdpEp6UH4moln^>lefyRT%S&~Z>`0RcqAbes$s1t9Qz1IAi(w#ID~&#*r(8gp zH@z5l$N}N4PtHd>B-0#b`s{j3{PP%@tUrE46l#GLdx{+M&@ORc5wF8Uf<06yt$?pf zjN1mkUE1N0}Sf}Mo9BrckK*gSxDQbmnbj>aKmJ8 z>OgSJZ-m3iNvr?re!%fNcXv^Z)0Mh32yTKA^tkn1rOYiXw&&wXE!qx| zA)cLFo|Oz#r?XHR%({P%1W~PdI#nXP&Qar%Xo81V}f*TMfZ5WrXe1`?}mkq~uRSk1rAy0_qV!8brTotREpV_R)89%yyP-vj;| z8E5`M#&IXE7=ZKDD0%<-fU?wWW0MfDO%RXBNxk7Xxo7&XK>DxCmBmoA^bwcOKcBHu z*nL5f`z#Wi&(yQo!0@Ot44>4jTQ%Cf?;NyMATv4J@Uft9dNn3eQ^G&zk4m9+% zgS`kE7cWC`y$-JmK#wDN1M|NUUcFQ|R1El_jd%|Ed)$Bi;lI^{XQ}K9888cC=`i35 zC^$dN0ayRe!3)cA`Aj~Uc_XtD`S4eioKBS) zu!Tjn^fdcik(?uq(O;)q)Bfpe#j)@73gTJ3nt#mLxIvVrOGNdTDR`;jm4oGDy)gk= zr6jZJ<#*q@A8iIK*$yfH7J2`ysa!#Uz=b)Yo6$dOW5eg%zDMDd=T_o*4G^_7Pj>z9 z=lr)`oI2`hG%51~x7!@e2NIeVYC% zOU>Q9;t6rMEMME9hU0BC47ufr#WIlU5F4|f{<{wUe`Z-fqdK9fRndaa;jegwwZ`K> zNnqph8$lLI+P+dZSCxV_(hONlnI7#JnAj-?*XWc;Z9hKb!{VQ6BTt{LzP*r#9nJ(B zN`BhSUh@p6IMCTau5N_nUk{fYKrHcWrOE`)!dS9e_kk>%b&|Yd0(nbqt3^e0CTi zjjm{R{g%Qr25X)uiTRU3;#drCkM(xN-)7D$_K@yI;4>B;0~Ft+F=%=ZR&ZxH9I!~T zd3Q8HL&@w>GQEC%6MN$1D1PiI{O2OeGpu&bxs}qF)N@#rhz$7y9sQ|O$JQq~$4Bu- zS2$6VI_1x(ABPk>KB`4}e#%>JHOpHbC%n@b6v(CTv86Cr_RrA|X9RLPSJFKtMo5 zz@g?4Q8d7I@S%$N&R*4Z`fg(VOhNzm0s<;<0V0@MBHe`weOnbhj`Ju5ww~2Y(e|NF zn!*&}V>AoF4Yj&5f#KI}o%i1-kEJ74bT2B8Sfoha>L?@QLTpsvXBmYr7KZTe4L)J` zzAQZ7!7cr46nzt~v}$UmV1W;HseYhAE$Tjhvf66UHYXbQM!RaprcO}Ju`zI(rH3a_ zH%Cde1JUi^gemNBwpq&vOA!r4f^?5uGT=*CPOo&8E-d*bDL+D|!v1wEv?g^DO?N6N zk{hi645}40D1uYOCTO?oQJ6Vlq{gAJfeDb1aV~a-wyE--8>cvj$R$R@LWtNw7{c_G-^MLkGMzABOnNRRi-D$!M@v6(K)QB!I81G7KLAd z_j$*EOOHsmS5l*KIYY`jhv=(3GR@eyqc__L^N7Q?NlGGpMxA3ZhIoRUfuQ)IEh@%C z{`XwbIgxt{*(6YH_8;JeGH>W@O>;z>f>o-w5m^eZFQ?67NT^9`i{Vj6$?hB!1k4 z_`Sce4_CZPcoO6KKBSE~&b~cv+FIqqRn=Qly+Aq}G;$0K#}NbqDH#mcOqY*()*fh# zE8q7*q2V*sVQlzYXjQ#+G@fLVfPNvSvd~<1mmzr|JRj(woN@5t)q>h)qV*v*E&0JV zPQCOe4XhKM4r$rK-S4NOX*+o38Z6oioA6jE+$op# z`ABwcIBTd36-I20DE6CUP4+VPCLzIDI^r=-lHe@! z)w3z{H>B!?IBDGzNqUr+8-3!`L!eQaui1tjNNOkwq+Eux1CH?W)`1Si# z^$qTN-ImX+Mx+So*v@{!q73exl1@EO5lvt|CM3_Fc8%f+b))=JxF2V3i&k&Auf@Kd z`%xftZ!Z2$Q0CV`bP>&y6~Fi*0kRE6a%EgqesuR?j~NiL(24Lvc4 z8hiP0huoI5kwrL?0et?%yKh;9`-N|x)sZ#V0F8=Lw;$(>$(bq6H+^f{XLiuHDcgL) zB)N8YR-e8eQizB!WayD6J+4_Yj@;@DLApr@L*ij8G}@KsOrF91n??G4OsB+8N61Ew z-Ta>;h_I0iG%*xKSlGC8ltv`2NgItSs?C^e<<9k8O}Wk1T(FI{zuY!0S6SO5{@POj zRr^WhiGx4f0B&`7R$19kHyeLup->m_1Lf();I>-m!#B2#U+h>nc314%1JY9y4Uc!ET4dM9;5Z8+PY)Y8EdBq^wbrL&b ze)Kb9w}VtH-x@;kxu&Pq3TAU#()@B(Sz-r(Jf z4&v`>22F1Ab~t>?Nj%SUo1&-P)Q}2EpD~4&wqI`b)WcIVJw_bQF$o+(?JOVJp z8cemYgs#SonR1f**!MsQMFS{rn?%_Bpj|~qZ6BrT4J1TR6#Fj(5~q0NXp9kMu@S9)|1s{1IgKKTEJY45LK{H;` zZu9Y3V9nnoAeXo?Muf(Hq$sDdR7!txt>4XF55g`MLy!thXU3T#A_7|;#(hr(BlV10 ztz)y@i@ddd#xO)wj`8`&SDltf!iW#g4iWSv*tHA`&m0P3pIi;Szf>MjeBL&M92;J1 z$j#qNCCQ|P@v!undwFYk3PJGE*fS=#h~TP|P71AIq%vYr%RONrwjVzzy`AdG7vzPD zUKCUviL*};9UN5hZ8_lJ=K8f9$JYJ6Qa9+yTJSG;FW0m!sa4jX>#>i8m^*R5GlE{7 z-5|srhO@k4Tf(@-)s% zF$WE?zS2e>d_&#p6%%iw`r=Nxczi*j#TFyq;l*RH2NN=S#rC!`Paa=L#x!H$i&Yj8 zL@Z1L4#P*RT8dMPmYXF4G0r+Y++@dM`+oVp!0Xm5bW%AF{~wEt7vyTVb0X8kliRvk zx2jqeJ?ifbugh009J(I_l@!g%_0|c?2r#--tW6LYZL58&{hQ6^6=nB|;r7}p&v!#_ zoya{XmfmY$7X>EQj*NJOsuxl`IUnp;P`I^~rXu4~So`Ug^poY2G4e5< zD#z!Y+em*E`~-Cvd^40HUpwQxU$_M8&0$cuv5l3Y_@)L^-)qKJl%@zFS%)fd`pL)< z6Y>xiyEsx?E)@>b{FP1?kMm#*QB1p$Y+hBe2$V#L6AaFR=f>Wa+l0g#9q+Ctlg{5v zns%CpBU8}6njpJg?Oi3-SJ6$DJv=xp`t()D$c6ki=)&$?SHQoJkCi9=;DSk%)NG6j z>09hBiqSd~-&O4tnzJV*@jbiiLI&)VOZM9x2anJ%)P z+BhX=eCf)i)VRav86AcZ*w2)dx@VB*Vek~GT)}8Pb@PIGG>e|QHG{-I7YnV*KfF+L zkcVVOy66YvlYHyL!~$pBXG9kW-N`GZ8F-YK1V19}B88~}OPdS2`fqqMpU!{kx}j0W zR0{Y&-{LK$CZWvE{?J1_h|-L?GMNxpP+4fCWz*43PyEJQkKLXKRTlZhQXfH;{9@v2 zfy{yO1#{=y%(?~G_nt4Xszs>&&K+(2L-?@L=O3+Z2_L>WmejZ!@Co})&Cqafg5#34pVZdp*Stvi;Z#F` z*I0*F=&zWle2ap|O2^q+#qv_7vAEYY20a#qp;g$VC!0O<8XS;g*b`8*Lc$N%hQ7Ac zdqnO2dPRk!(1}AFqoJ<`ojVu#vH0UsGeD`qM-PXBpqF@t{#(;`?V8s)uhLI2R|+Rr z9dtgByL)JP_P9su_-f7^UB|ydmtE8KDt(k))+gLwesE$uv?EB?82TzuY>u=7X1BhY zzfP@9M*If#owj?VV?adg!|8|m`KP;^(m*ze)TMQ;&b=T_zNDE8o{%}boQ6n~$zQdY znW0n@#m`zlFgc1i;fIA4%DpXCmtEaBAxtCSdZ(7if%B_4hp5T7)4*>|c*1=vkkQs7 zcGpm(B4=cSH7q?BwZ`bXqF`Af@9Z0qsbR88Pu!Yql-EVGIz988OJU3;K^aSQr&!qW z=7?)}oft)w*d)mrQ@$e|0{+ z$YxA_`a(4Xg5jb3qX+@6_rUYI*GDJTA`&9_)r{!klZK@KHNP#@EUzw|KMG~ZjWd6j z=R@T8r!R;k(KlRf#^?~t=U3>Kusplk!ENtlE~A}9?~)05)yZ+S7Ru#Q-9r)ef6kY> za*A`u-=eMdW}UR?ZftXEZBrV@d)I@FTjR}f`Zx$@%eWRU&M+RHA7VEskVH@+y0I<$ z_r8#D_8Z3pafvD#@HLp6xrfDtzff~#{Bl0kM`trKI?eRJ1f!epoD*u#32s>(49hDLk!KrP(ZT`DRKBY2(uzE#x~);R*N zE2_CyF|q_C4U2AR&l=~RRnV?0#E%4qW3Qd_`-VHzaJ0!F6B4L2X-!lbKFZZ&^2MtP zs-9E3CgDE`oGakcuOe*SVX1zUO z3%v`$nqnXSQn0ERq#=ANzQZknrzInTkZ9&~YE+t=79uG;u<%KC5Zle4aklOz_~SgL z7P9argSYP3+){gRSF9cVFqWlHk}5fA7@-*QN$@0I!A*jSQm6x0fLGv8=xggG989Sg zn=TpwaiSBlk1Z`j*06yye9Grgz5!wCwBv&~rkliSgiTY4ktfy(9nuHL{KWnr@YSPz zZm$v}H40gzCo`IsSRum#sv&9YEAO0vHWa~y3$LF3ATd~AyNS-#gvV6oEW9Y-tFpiv z`~zkJ^xy_Rp>okM;q_zxZh9ce7kpV_LVc7>0|Jt#j5FJMP+=*)j~E&!gleCw+Z|e# z+Bzg{THM~Faw(;yf2_5lpFY+S!dG6N+*Z^#IQA{68hMi{7gRgBHbvNdz0}%IqsgPO zN*Y4^)sl4_`u3M%*Bc{GLg3UH#aHxY>=C`vzpOgb9iA8LbF5{uDIx^vkJ$hE!MHGN zzD=6$k4xB_QKigW2xN19uyTl@v_VLF5n;Shq|1(9T1!5nj7*H%yh8OXra)AUS=85C z6h8Gj2A`Y%H25To<5+fraK+?+@D+swq1RS9O^F1P7kcMOy~GeRIOJr(7UP)oP@Rj@ z3jJ&8M}D6>RLosweB&WVC4swGDlMPm$q`CUgG7b-7Cw)E_(ulRBy>hnYZ#W2}G{P>;A9A z_WOM6{pU<$hmj-YR({P10nhEyoL1>7yZI}p5s{~>)?`$aFNt5qbhdn!=7<Ar7n1oe{EUglI>6yMg^#SX>}|pAa0I zR@}=3W$ur!9B;`I`OR^#*b^L6xgi`(V?#VFSsGHYQW~wK^CvID`vRYLBJ0a_DsNCpBn*Ovm^7i7sNd0Cg z3vQv&qa~TX%7BCyyym*Vn5FYlbd0K4(stA+6Kar@>-ze3X^gJ3P?%XfH@_E*!x%L`O>gyGf-N7?5KBn^#3O|{o{<*Q}_uC^4Z+;{A3rd!k{6=X1xvAdR zX|t2Y8N9a6l5Pv-P22PN26MGl=wIfYIARXnet-RQ=9o6JJlv>*hRz(_RFP}9#NDK< zwIw8>XxV?b3x)QBQOP^o^?v;kQE{UfjdWLq+KQN-C!Gjy9j?RV3Z+zbLI@N3=N-0J z*_=Wet;Qnrs^5ogmFL*rdjABs>by@X@Z?YVB5GgkpUX(?&iVW%@HK*l4XY_-;6&FH zL!^Mv7TwP6SJ`oahmnwaH3X2ior`N$lOd|53VTQ=D5yWSl{qJY`lMbHTvT*`d3hNOxnS})X zs;}%5#UVA4^=amr9roUeu>>wDeKSfJ6@`_HnuLOZ4&*Kpv1X^ukppS)VB@eC4JeIK zh~cx|6t0i&iyFrRINOpSFo^-qvFl^_T)=m8(I2+hF%dYw4AA!1zMr6Q?cml$E5e~B z!O!dTq-JL@Jk)pe6CnyamlZ*LNp~Fy`jJ5dUyw*PUHO9wKTk?oVa9-7Ut{@4T+WVezI34$jxdtE6^{`(%o*gXxU%xuH@{ z%fGxb2M>ivFr9PpB}F23M`yJS(Rb=jhXmpW8~?Sf)oih{!IF8d;JFVC^&_V)PJ&;b zsH(8BLj=3KjRSXjYsC)>x-lKUe=-UFuy!!}(Ep}PRFmg~VxqfC#exYp8J|d_c3_?H ze%NA7B}$RL{S$;Ul!qn?#LF`$y5 zXp)`NYP9ADZ&8Wa*h}@kHsAD7sggGJ!t)@+1seX2J)Q-MAPoo34*S>whGCRS^^tYX zh29E^VSzq1izISc5)=mP6u%svU z804y~uivHJI^&ej{2UBW)mNNwJ`L({AF6 zM)7e8ooG$8s7nlgus=ZHQFb@XuNjXofl4KkV6-w-DJci&j2nNJ^hAT0$ItLAp353X zL%H^R#Dn@Z$B%gUn%WdNbdi=S9fnaOP7I#us|z1d#mD-`GC3N2 z;uQGH4dlw~kT?_Hy{}xkEh=GNtUeA*JmU7hmiG%Wnc?@M$=c0eZx`0j(dK?zIN_>U z=vm}B_4&O(kM7k^ui(54?lw&pwFae(%~!*IM>wIZzMc2{FASG!Es4dJs+iMIWgw}( z!X$Ja{qGGl#YHyTf4&dFn>9BsZBaOTF{gR(RPecdGg=oa=-H{DGIXlx;YY2F>N9Jf zP-s6r;t&0qOQ zZhxIP%!(JF{jMZo8g(x;lyf7v*>*7;y*pl;y3W z-XxZ8()acGUinzwka%=!q0~r#3yh+0iXIIgrIW#5vcI^?tRI;T^=<2^ePg%)lKYpn%n3hxTD$=fT+kZI~-1I{uxKshEB1NQMSN#O!5%%im9^SIUlt6+= z9bEl{N};pFU&%_wnqI6{4SM?M*}h+D_{&ADHg8huEzC1&b{AK#pL z)rGxOtwP$a4$lS`p8B?_W1!J&PD7XHPfHMneVDMizqb>zCFt)1MM&wr7tm zX65f~GnZp*%l1%x(~YEgix4UlFYh^U8OpF#6MeSSn*)~`Z|$nk#&dnGZIf!-l8!L7 zJk^M^!L(6J_5LeL;lVr<6_JD<=b^msHjUuTBy02`q98T#h*F~!zPn^g=%yU#GfE3r zx<$@Fh=SM`3D1}Xf2X9*+1sHYXAC23PD;+n;Ch}xKLaC-I{rs}K{UbV&M3jq5R4Yr z3sPtEooUghPM^rfoYmc5H-6QovqM_Zq=>o{l<+gXjefhMbkw_N$#)m&2`aPQscp$x zLJ&(X9etZNI<&DCe_KKRE$SqBvuK(JjgWUw1M33!aEax7(8s;v4%N1C#bjps5Ys%c zvuBBp*?;&bb??iYagvw}z#3{nBFt-#yCYh8{q2hB5TjR^e?)32)Idgi|8o{At2a64 zj4kE^55Du+?1PV^DIL=1E{jnSbS>)}tusC<+@WS7s47pREj5-GnTd)*W!tUWsO*)+mm^4| z%WpHg1uLH~%Q*>6hKPCPz0c6;6nQH7Dr4Y zR$1XG!z7@OjkYB6^;3>MJiOvETQT|6_|1*imK{RCPtT55<18ojD%)Pg8=Xnt-W(-_ zn^4t6OnT$`-fGXk;%Ln8mLZ4??dTm$nBZL|WML8wVCBE6XOQ zfe_7Sg;3j?f!=A&w@pL(-shY8p(Pf0q%r>At2JqhaZ^wG3>KbNNPWsa#g4ij(*9h z$M(;C%_>^jde~YB15_kWlvQNU*>occ1}`S2gy$9tcv zJw)(#*BipX9+8~d8;1-RtjodtNFxJU7M{)h+vdn<%A@V;u;pu=aW>(f-&hrCvIG)J z-rvpK;U{8z2+gz4DS!kAD`FYo&3JqZomStHC&^jSRZ`B-*kJERnG!$*{FoEY%6FRc zh1X>SQ;1!C52fWkQyvP#uVeC3eq}VrYpXPCzO?60o~j@xA#odDpr2Fc5jA+|@j))X z^Jc_G9IR1XS88QnxWvMNGv-HOPK*f4b54~;v5fFpt5{aL^taJJ@F6PmCkm)>`I>*; zUs{P1oY~+ktZT$sM77A_usry&4{?g0o0S#7!K@Ilq>CRb?&X&jH2@um)Te%#D@#jN2JVah z0N4-;1LGj+{^jOJPuqz#z-^W7usX63hwCRGa|<-IkNZh6hMsM zWH{zvcg(+-j8`KohIJOkI*ihjmpXI|VoOK(}(HR~X;qQ3s zNJ~7gI2^t|>^I}Mj4VreteTRnZVZ@LGmpHmTvJ>*`B`#l7a7eIR zeoEk}MOGykTR?Rj#cF{w-(K@OcPVCSYT7Sv6Xozb>stAOT;NIszHZJ>5GYI~;=hQ6 z#YbT@Dt*s%%Akvc%`r@Q5R@ivAvcroqLPeLy=+Qc%tsYdoGvAPhy>x??&XvCgXX!^ zw7rU@a#}A}X{vG`yc%0g&Avp|vSwbZ_WkCGg@VNFw|zn0RyMORZA=8NWOAFjMl=Apn8D}|&usq8wnPGk|DHK)ZKXM1jn8n{5DX{{8 z$f#^B{{T6GW^5=vF__SFpf>%bU25B2V^GB$+Y6tq(kBD-&d>rAACdbi`GCz~lf&@J2zbVcPofD;#*4 zih6zJFV|jukl>iOi-A|=m{Ce@Xv^9xDx4AgsYo$ZmNR5i?4Ry(M|IN~JXw+=1N%;(uGX-@8U zOOI-U-M8~2zcHeQ^2tCf`;0`!!v)SnH-1J-xL6UR6wCOtjG#l*6#hW*74PZ|{3&fb zLJq_iH0Bc)n~qB`;zaB`!rQn43ktOjCC8l*qjiBc z)+38VDvlOcdRDBYxLUQ_YF{h(feOs_hW`MGiqgj!?qUU1ukQ|xk>oa&FxPj4Gl{~P z1a@+EROZXtCR!_{GCFGxOM!S9>Oir)56e#x$vRVFc_DzjXtS2LUHvh-ui|Y~Tl&^E ztlU@>>b>6*vD9rRmHr_2U4?Hln#wr?Wj=KnxodGR4(Q!Vm~3lsU$%YalJ3wI3NWn4 zye0rL2HDGEA!yWTQ?J1bGmr(0nHi9M8MW_uMy>{m#YOnlZ|wp!#hWI{hc~Ik>lqdX zY*mLsCKZ8Vm62!OS)O+AiC4O>f?s`mwCI3Vt@BrF_Km;j0CDcD#a@kZTk<4SD#M5V zMq5B!`_1{6ZLJ`C6^CD(90)c`S5BRiGOfz{rNud# z%rrv5#&aO^6`=6G@v*!6-8dWhnfP@Z(h6}gOfsf93|^CXW3 zo}vzAT{Pm`VABQr29fmw*uRNZK%`_$(|KBhz;eMOiz|PmO)j+qnziq!xN#^Q?f8}1 zNmLYLCMIr%)Weu&^YEDyfodqWiz%-c?JEVwu;sO80yD><_{6A8R2-TmoB}l&quOWS zm0l4uyfd%(-cZWou|xjhmmutbQq}jOR=N7PmxAls1{#>#m3S-u@m4b)m!IBo8ceCf zmgV*h9P@Yb+yXj+8b7a+2DG057v6OL04}4s%fT9Z$GEE6JcG~T4wz+2Mds%j4|PA7 zsqHcjO`ACWx_7>?FgL8ecMmWYk<-SE8J#*LfIz^8AmxIM&q3My;4( z=NWjRd+uC@?N&)gvM4X|h`*RNiJYN&r>SQfdZQBG8(XL>-`n_^%D1n*xhdtU<|E() z`C*(qMjRV;ufAuo2`;hYRem%2}m(qnU!V=Xa`AVH3>>N z&u~b;Uj3j1la#Y9ej-vmog7RKCdFujvpJIWshP^f*KRm7UlB1x5Vj)G$f>KCuA_8H z20qgnx_X&bEn#qSZE#F>kg4679MKh2+%E$@@^D`>oKg#z*8yhz;WY@|jDH=o8^kKQ z(d~8ilu=N4iEN{?IA*YAa)k{~Blm#K1a*N&q5MN0gB&%2Qf7u5vR}bo?73koYED33 z5U@?^Cc@(cwl`j7Pu9g(&zZEgtckEwxfcQmx<|)#eAtA=gNia=C3DOtgZ* zs>+oG3JwF8EkwXN*ONEnDF-BGuFr z?B;Qh;Cv~E>`rNH7a?pkFq4zaD7kP?y7dH8n+)95wb={oUoA{X@=j(*xXj6S%=`eD z44PlWvfXD9Uh@>?V}B9B8g9{lG1Mzv7sqci7Si#6@ukgWH0ZFEh=cDT#bT@ML1E&0 zO+#=jCpu=7=q49T{wZ7=KZ1LO4H6t3-|Z`f1F)9$)?ySq4=(gqpA%;9Ag+onqY0Ev`r`51BS{jO7mxy-OI_dSH}{o!{{L`3aDA{AYC zJ}zg3G_cFfq2JX=BPKbNnsLlb>Y?YdZ@f_$G#N(;4MLY?ryAk>`_LY0-aRMZ4gmw$};*dCe|l#!<8Tl%idqy z-}Mq-RjQrEmlq3*a~ZfsDbz|cbsROgrSX-0t{Ze+5lTjRA9=y{I_QnCxf)A3<-zur z6D%7_X*26}g*kl2Y8ObP)Qx5sZ+w60GU%1&{z!&xb}y6d9*&iBWiM%3<%gRZg#(~g z-f16eGmaH#ZWOX=w^XdTa~r`rD$`HibmNE!6=7_;tvK++OXuNwm5hmmjw7zb>W3*z z@?b5z>M5oG=DrfBDsG-9Zgc6~%Rs_M= z_ryr4c@%oaxsA)mrXur-0zq4j5P0h5IS*^T=WqoF6YZ&7=H;pDq%K3udo=||1KGr) zJs9=AY|q5AzV{m^z2;wJHiZteF?o)K^B*V)Wyq5(jt`7WCEZ($OrvI2KMD(~#<*2~Xx$S`f5H61R81Pc zGOlp1FmK{2lBinZroxhzYPQGhO)}}V9wMQk1YeawirMTBg3hv#}zm~AE zS6(K%>5nVDd`x}Y0Q+qj9VEmhJui!ky6irL#LE;u%GwsjTW|H?`2k zSKeZ}y7LSUvS?H-2I;6da=}VF*()GwD)vOOTv2JrVcxlndF?Q!vG8xqttZM0{{SX_ zU>eG(I1Bq6q9vWG;%{4%2a|><_ZT{t`-HUx5=WYE61=>IVVHB7f-+UWLqLuo88;te zip0)7!d|LHw$I`xXk_6EDc%_2D&#TRd%(_=;-UORh!kwIUeHXyN`g4EHHo%f5y2=B z#JC+rACy)(&N5cSg`@YFu<9kbbt+4Qeo>mMbBcy~$l44%%bcXdV+l12>S8N><}_Ya zuTZCG0ehTv%H|^d<+p4O7$%G_96n{!Jp^SpA9DIp?3ofQ-voXXk%F?FuN*PNWwe=T zz)Rd^C4R$BE?vxldk0K9jltWCbskuoSmbHusvggs7UOVJ1#qe7{gWUAJ$;T|ej_8m zP)pVd@F7yc7r#Bdc|DRm283W14Yh;lO6Qk!V{vp`)Q(F+YVk-5v+b{{X>;GLE3f=N-FP1IdWX900Y1qTss>;5CS#H>ezi&F1&Qjp4Tjpi~;_huB zA_c7SOh^WI%|J6t!n40IIIh*N5a~O!=`oRQjfpIG5!$@FLe;|uFum6i$(HU#*7%iw zR4u~{C+k_Sg)4@$&tz>7EKl730B$J9HtlU^73N?{#gPzKQX!FVekIBR;+vMdSrq_J z1J#55FwtN++wNHa+$Nv_+Ko(rJF^bqnOX+z+;Bzo+Rkn&!!+p2nBE1d?pqe04l8Dy z#~=sUN%JkOU4xtiGsZ~OcGjXdHQy+&ZFwRo7%4!QmW<8^#1?3jbiZkxA*L$#hz+Z< zCcY*TORSD7Fy8W2xdnm9xG!-vo|Y}HSP!YQ>Qa_r&;Ch5;u=W#Vi39tm3!`OLj3$k z5e}z_fZKEe10hug&Z1E)I)HNpB-*-;S$Tx=VO7)pABY3^IH3C>`Rgg9W6l+`A#(|K!a8M4Xen$E{{W#Bt|oGX@Ncqv9860Z!kzH6vGEOR#Ofx;Zs zUo(89r?V`=i#+FbJPlHBZZq!cExM&@a$l3}a0+j&jj%us zvE1?R&q`8T<3ETCm~vT*Lp;pru2lP;{oq+e%5PwpYpVH;dVIGAO)CbkpkU;+Lw30j1d*u`EB^p_ znu@gnK>q-7n(0wlSHTy$JA(mB_L)mQbm6bsY86;w`ztpq0Jx5UQQ_t^Dk4%%@l!x> zuu6ECl6N>6U*qo!VDmI>9nR<4jSjJf1BTU})XYaSGjLdGc~TW__1MNr82`XG88tsS$7LLEy{lQz6>)#v5Y~d7Y{O9@li)LiB&qECNsZXYOE_nSV_mHRtPovoTBksKT`?Fp*cOrMQ; zj_r!>OmnHVq40+f_|$Rl%|eB%6buee^%VN8+;jf`OfDJOJE6aH-f5VC@7kq70^-d3 z9Yc19(i^`jCf19Ox`;C-)46cP{o;gc8tw;=6{uP(5{f;K{q){yT3Z;{NZ!)6b zm?K<}Kq{bV(@9q_%6UH)Uirlj_PE*860L7m4jjz(X3AJC&{YJK{h$*LS|fSGTZR== zsg6szYeW@N{vl65N0W^Fjl=%{&^ybVocD1_qP5kc7@xUB1VS;G^0Xf*^E667ycl2( zB|XS_4nnThj&UBz>U{eL+Hfx3gtMdbF|ff<&P1CzhRW&ti83t=*US3EOY43rT-D;G zz5>3-@QD>-uDDUDrjp zoLm4{@2>L*FUE2jQ{xeg7jlkZOck~J(TJzu2k|yl+n7p^M!I$!%MeavXE;q5Dk>~L$W5PV@4hUczBhgcid-! zQe8@0VlW~nk4FH0>_LCvl#{1a@^u+yQv`vdBJVs#j{EGqOA^Rg4oTy1eS?8?-}`{g zM4&gRaon^9-R|p6KJvPhz7yS}+Rq<^>IJV7gNmMYF!mP%{(*y_VwNP%e_#xRnBKWsB2D?!0pO_miQ_n9YIeFgVcLPzuy*QSsw5b; z60`u=UHBm=@pq^ss_1()+{D+(%ZwiK(~q#U)?C~{$M3nfquq)WCzNS^Ixoz>rGo3! zu!7d}938r;W+`&@0J1**^me_BO{!um4q<^+POecQbp|jrSE%Z9&d6V9 zP^R+t&;6P={O`XIJIIOdhm;(T2XhU~UT-;nAsmXa4MxG#%CDc=CBgt_5Q!?26H@h} z&103uLr}m1k-+$>SM+E-U0n>gQM%Ja7iV0(3~>gbv}*d4n8>|XU5A<8#cO8rij9s!R1;RA66vh7I;#m$*R@bXq+TNBx4*A0ADu zVeB6pAC#_^C!}LLp!77(2ZKi%d&Vt@66_E4nyx? z`MI17>ma;wEyV+bG|jI~p~#bZAcq2m>gzJT1o3|oh()KieX;%G2J9JdwU~)gDPd&` z8*}3oSs{`psez=ak1s^Q?5x!T#ZY2w_cG%q&K%2S`=Cl<|VtcS01ty%k^F zZwbV&^AoyFRJE)7@ZwKBu~yz41V;{Tl6Pm30Cp=KYBAfY^Tgj0oQ+D@!D}@rYhOk& z0j*-C2U3|&@3DxXsh}dGuIAuj!Mgm*Y%xYDE*xUY2rdANO2Y*ckT32+z}gb{rT`H` zq3bZMEph=kB66ftPY6KKS;g<(J+NZ`0K;x1DXsClt{4rOc~)15c*9KQy9TYz>rN)5$(C35h z4rU^Yb0m2h-5o{r(J7pY*5L(BOYTzj`)-*c~`s>Kq&bPQ}kJFjFikpZ{QYFw&eljMs1jKY+0>;+QpV)ZNJBZoVDmQ8MS=eSp_qU_7@PSLsu{7ne)6aWQ7L%vohlD(IIKgOrzEy` zdxAgPQjLB{9X)^^F)gz?bE}FjvfE)X3?xi$0niNvc1H(hj2`)w@5ifxlz54?4X%un zAIdxV>iiy&QsIF=g&NJEan)9}nTs=X{&4-Ji-53?CFxc*sK*l}sDs1K24MJ?(ND53YVc+?FHK>F z`DkL9uI0&F)=^s0lzVNNQCQD>X(-|pR4;ZFootK|^&gTI=`AV2Ejhxd=Q6~$tD@S8 z0;^YdK?gC=;bxQs$)@mYCf<6>?J&x0wfWg9YJZZ zHNSmBUazdk+;g^BCZFD)OR8XhLL|Tq5@*7@KmG@?RAY@t}@z74RaHTT9D?(oY@zK3ib(|@d@z2Q$paS^lhwxsI(jbkC}Kv_XXe7x3RA=S!lbZ zil-4=Yi4gTCsNHVgXF(t$rqLk@Rb96L-iCCMJ|sr#*I%5p67#7-~!Qg zGha6dkWy;HQygUm8($WWn4~N3sguFR$kc^tN?$tNR7@B&L~0j=#e&l2-dV6Qi|^d6 zxN-+MSF}M%!YY$L;mF^_{{YNGIb5H;j1~#Z+Zx_Y$`&x}r%?c&doVrZ_pO2zE?I1v z_LNA5`QJChvPvHA>%_3|dC@SHIj#*8xmmPO&dPAkfdsXMOavZm>s&;uwlx=qW%)(1 zpyFYTzUZ8|0`~>e)v$sZ+a9r=4k41wt2t5aDOFRFaXR{YW6pMhg^`TB3@Y6zOe4bP zPBD%6h79fjUjg@q!zw`J7Sq8VjlB-|Y3k*)ypot< z;>aI_1^ez<<+t}(oJ2lmU5w=hcD`0(4e*NRbKL+bn*RXm z0_(Yf0aCaxnL#XZWXyu9b4Bfzbsjk_*@!Jv1E{SA5 zS0jcZ)(SXbhvW7dEzFyl6E?sxE(5?Kl~4L6VTiR#tgpgRva%u4A$pJxCzj@f$L8u| z;f#e9q;|^^XyVFM6@Oe86Zxumhh5HpEyxnMpz0+6)*G ze<AiBr+U zmp}E1MjvaRb(yhCCv}Gh+}qYXidb6am#fZ_8g0 zVH2C-)88hb{FI{rDy}-CT_k%jyv09&h;TE$qmr84#@C>?lkFU6%P@AP4Tw`cqC%5a zda^JPiR2x^jmn>BUDKSObfV@0T}5IlGAOIZY+Kn0RAXN#YXw3Emzl-!se;|^d#O;$ z=GmEik-$~p7xMtGX@Wi}hY5xgkj>IP@J7&Tjh7V+a9m|(tNc}7(%iy2BMFjNXUTG- z<3y(jc!3N|$a)}@%h|sbaGJ`lZvMp7uOs^;sx+Gt?_bQwDyQ~lBC-JAa+LZth~x>u z2(UgL7^V`oodvwY%)m_k(Ta1jfiZXQD#R9{rA#T`?McFQa*?tNIFC~%@!2-l?;33c z2cqVU7`p2BgrCmHRF+fL>SLU&I)kqV2_2=TRa=+dS6Gf)NURR>4C=-)-21_=8$r9u zQiFe^g8&9b(pYxfGRq^2j~0|O3CSI)Yh@5-RD)3Aj=X88F3)LW7jC@_E;l58a^d&* zmCcF+q!=H6vIoPplVRlz7)MK=WbLs?JbS=X6<3+iQwY~DekSeqd|~{N00t@0nG3Vb z*8cz`y0J#N4-BKh+-+#vmUAx_BGT32);*#17&Td}lJIWSJU`gVDp0k*lX&}AnMvc% z{)xmGxd79U;P`1c`(&pxpMfJM-a~Ae5@cud)~auHG6a^ zSkgJ@Q$ow~h%wY*#TfQiWd306#`!=WA`uRFYXb9<<1FGbg8u+?u=i&meAs^MVnVIq zb*+5CiM--ZGns>GwOky`wI1-MZ?F3pH6n^Rq*`x?czF~oeYw9wpJ4f9wQf|4)1|Lh zGTC1s;dq5-k8=>d zEvE>r`V(r?tf$$G+1le1NA<*D42r88^BlzLyi2U%wHJuSp@AQ8zz&$&7qU}(c(LLj z8&qbiAIvs~SnZsK_<(>94LgdY2;k@PF-DY4so+G8BfOT5>Rtd?9vKS@2G7jIoFo)N zW?qpIG~CFBV_0`E?)zK~W0AfZl{}`vU0`{a z<3M);L_2N**ZD%lg+Z}6R^@%xxHa5q>kpch6Vl1^fu}&h``zBsuFmoId z32ac&on7iA&I$%IlVf}XkBEc9ZA*8Bk9Zds+EZHPw(xFk@W9EExT$eD8BaG075MY_ zj`JB_>d@SSoOq1@gN>`mHkB@9C5J$#7xNvcT97y>H!Z+0{VoHR{_Zs~A#{g9eA80- zDxek9D0a%2U_dF%d2Fq=rRR8lwOvY+aC0vvn7~VQ4{U+hujVyr55yv#{YQp^B4<#U zUp*xlD-a9KOa|V);03x%ZK!yQho2@en&X7(Iwyb%(Jqf@*MJ5o?Q9{pV4+o7pySS5 zb&h9sojj&9JOrYjF=G#re(@Kb!)h>X%B5nSWqJcqt!Dyz!qa^>+(I&|&6&_P{{W4< z)%MJ;eAVM;AHfAN*G1dUnZ~XLcJO3eGe=3%A9ZZl2oX~`bp(aE0QOa;@!~O?WXnJq zD0sa=)l}#?3cKE-AG7Gyd>^uB9m8VYT(F>Os!#lz2gm;aEN-B?tfDhtYQ|9b1001o z`@}yS7(P5or8Qcre=_~St6?TSQy632N;Jn4n?mr;YA-b^>n>pScQ%$C!SgU08%j5laElGhwa&*&rsk|6%6!3l?#wt{hj+mU{{YfZ zO_Ka5dbV!a_Gq|Cq*<|7#?4Dc2FSY_&)HqyFmalDKGN8V*5MTg#K)j&Erj4B?FY$M zOt%F4%UO0t0?72}kv1KvVe*HI%p3VDh}XH?2mzK$=LLK9E9nP!$t!Pim}_>ekkq^m zQ#prR0YtAwcJPL=U!95=8L;WEn~5^&Hu1-YZ*nF+Ns3>W?bN8MrdzX5-t#C&%ql12 zQo)Hv0{pEt?uol-%!NnxmJJ8RI`dH{JL84-a+GW`x>)f8;fvsm>+yx;f<92-7hdeo z{p34fbZOP`Gf1<`%1~PxaZW~L0z!ClRHZ51Fee|rpep53@*f|0LOt%)z~)n+=GLPX z-O-hAq~4-pQP@6XE5Zqdt<0QkC~L_MGT+_qQ@lKNg?{kYF=%7;=JHbzw8K$3J`uO2 zfYysq32h>6-@!DipJptTWk4(WZaCgz!Mkt61f-XWy-fG&kFERf=3_AXOyxj;h0LT- z0I|_GQ3@{t5XN2siDoDO7$6r#IY*n9TAmM@>6F1#jTCB)!>IRV;eNn55Fw-4zmzk= zxP_jr_mvg_g5F55xZu(gFJ&JIDlx8oO6Xb#qN%j-G@7f|}ID>AT`G zlJ=424P?L0VUcZ8!{QUAYHjeG!Ss`$U-DEj;=jJAYGe$+C4;c>3*x601QzqC0>!ru z*v^>nr%`JI<`9*hrkkib9TL{5@liG$%ELBb%q9f~W*7x35ZaCE1t(yD^IXi-AQzTv ziG}{Obnz(h4Xf9*!LyQhGC&6%wRx#wx8$jEIa$lPxPyl90bRods_`*+b5h7U{ih@X z)e`-E{*gI~KJgo&VfOEcLK@_pfyhO;ZY4~iJTMl!m$K(QqjzDAL&^-BJo$_Xy02sZ z0AZ7n1RDy1=;rA}L|S`1EC{|qrl5MRUSYZnhgVfyYZ10>c`&uZdNN}840|rsIeYe*SX1U4VjbN=%Z#iO!VNbJdhXai@rd)tu?2^; zuCZY%jpI0j1Xf08De%2(_Z7rcoC#vu1IOkf`-k8d#GnYjCB=}E+sbf`pmIu>)`y4l z5HkmfUZ1lbPzHipvg}}>n1!Ua>Ny?7%{m~EtEg2PZ>>WwhwnuvTZyZSl8)X^HyfVX z)nFv8)ObKx2C{dOnQFvhF%o`VP?=>*xJ$>^HIztfbkvxyT z6BKk6xR$}N9Nfo9U?J7ww^{MrMw~Zc{{XQ606NQlYC17i66Y9VC_qtkdy1N|qhrj( z;kETBHj8z7W&Z%Uu^k_ILM`thoO{73JB~h8Z1#a8{{RHa(nw-T$2(=i z;szr{#VYt2Y=U*S@dI0pRtlp#xYt&_ABjT8!*l*XlMi|*(oF=cO=LxT_nHkCmL7;( zMY@08L{1mpHD3j>UUe`%(V)H|#7A(uUMD$ckZ*r6KwMI*;f^{1IDA9gB?PI_aII=t zlZtk&%3s4|3kS}^VS{@O$hmJ%{yAdCc)6j#WOiCCeeO_LxP~)k{19Dm8IUeAwgn9# zidW+*R3H=_<14-Rjto_~U(Q$T&0cph(=5$T@dbP+1}fk#wdK(1TGyRR*j8T4EnIGiN8m(}# zOuW%nN?CQWT|s+gH>9OeFa{`e_emx{XL=vW73{3zBuY@{J0;07jaxI>0KqSTUV4yK zqq|BcEa6JDHP8&!`N4B@rjo0m1l$I zSn@O`Z8yJW#HdAO7^%|LUsB?>MhnC+9g-%bWguGP+Xi`MbD1Eaj%yiB>0nA~=zNN?g++NIW|8qw|xYtJ0T*n;_I-f6n! zgIJ76leELUG+vhxK;6~c<%oa>b2>Uj!+It_YguY4hSeXG(MFUxOR@6eH)#FlF({Lj zDwY#YyvoY^U@q4mGb9-F<77*eI?!^jbEusHf9@Wct~LYMYcrzi;9u8?ga*J<$rmji`3Ffy|a!UCO$Kog6$GI^gC)D>g~W}GeuH{&UHRvyq~zOhq$mh zyHqtg&scNBAEYS;Fj5;?j~qs~wpB|~-xmd8Mh|I%6Sz^BF@<$j`z1}9v6lIZEU?qW ziWo84?3)B`ZCO!72O*T=H)P@xUonC0nahr&wR}utxskhFK|FCKL7Y*TwggX_=TfR? zLFGMV{fLE|ZT{;q)RARt^BLhP4sqJ2PItY`l4xR9-!qns8`}^sZ%DAZ`BUeuf4GIi z5UBplvl4--0r4M>ER1I-d|W#SUXjwR{iP-ke_-u8$D5>c_e~R0`<_5gahm zT^UnRWF8~-Sa7UUE9sndEKrw1_RV5eVWE7nP}%+5u5Ot~r^`etg-5Yvz6i_NrcE1* z#mgwZ1)dI&+yWDVFyRX66=YhSUZS;jQwEDP``ovqk5p*0V~k>B6OAV4pj;-<(~v7U zE`^t(=5g{ok8<}!4b1o;%o?Rw`JM+k6FN&Pbh7UsLp;UA%A=o%Ld$~M=Hl43yBnn9 z0a{$qtmYuu1P0AadZ)eOF!&X~F!()6j@+YjeU*#}RhiXGOROU>N@MbXkv1Z?gDQFEW!$i&xL`uQQakIHQaIG`Ml;syk$mI%M?XI{vQ)Cl-}I+;vwq&_3i z-8C=h4<}H8J4L^c97fLpe{pb97JbgdDb9ymb<6KPWn%;k zvsV?n5c83bZ4=xV7kVBXY5>DPEKH9!dMR206xMo1fE)`M?hAZz7hDl=p+&{yKrw_<-Psy0!zz7cbvo*^x zVrg(yxqK{~UrQI-EOXfBaCLo|S(==GlOeN=!ljjD%bU!-DD1}8V4=+l(?Z@G@8L6@ zB~e@6PW$F0vqPch9L6p|ff%#Sp!O^e#T7~y;q3PxXmGeCI$}#mGd${98I|3M2iodb zoRb~iSx3gAVxz>_b+X{R!RRgP&0WD)pf=7TyYg`x0=nS1>^1=z-hXyzoa z7lKi(J5-Rp;VlHG4ZX_R_?$A%C)y#}4?x?aH!OERxGnxuGNuC{9DYeesJ0%>>G0+< zx1BTO{{WHQME2Ab9oz`7YV=V#_6vH8R>6rdSi zA>!SR618*0Dcneu4y&`wA9+!I8Zf3={*2876}maZ(n12xm=m8w_ug=9S9`HNn5Xfi zR$3S;8eZL6SZwjsQZkQyI!_%x(if!5BVUJ=PD1e)EQv{IDJ8>KR~cyR=*A0?al(--H2$h_K5!g8F_6 zn#2RRC5ObQ=ZB!S`^*#~ESyw%b0=Occ!As;F@9%qo=P>{8f^ana`=Z!>^mMM!(S=g zAQPB3!~_J!UMK+cCgFvngP59-6m6k{v!~l(NP9#>^5eJv0BL<0Cd-+f!lIvi2Lm5{ zOAT5Lzp^f1_6fUem*O2lD^C<$MQsxV3^dAnN;d}ir&*XaY*BMVL{KX@-Vg;G{hzGVrI7u-r>gyg@TFO@}aDs?9xw%tmT~UL#tl$S&2K+l@fJI0V3onNkhJ0U27p z#NCTPe{AAt9|UjQJ{-T9(#vo%8Bg~uP_voB%H9oZF6Hl($**2LPui*tavvoqn zD8ao68&}yet_n=b1_gO#7ogP}xa|{TkqV{X#U4*HFqvCj6PQ6z0at8*)Fefy2(Jeh zoWw7XEqRymJG_}<2Cie`9CU7`z*ED9Tf|twbUNTB%p$Lcgwp2G*SncMClCCYtuJP! zXb`YDZM%%Lbhm3}O5Cn_HJ&z76FIqcAgjFTP}Hu{?Ur>M9bQWgJa5FNx*VgbV*dcG zusTpTT*ksZs6;%|6->eh0{$gXw2q7KywpVXAz}W=+Qhlg@Ym)S7aUrnvEE?rEr}VS z4nqAEa@H%^3Xl_edbHT#e6sE{2LLjsxWJ6aR7$mXXA?7`(6akX%UnE~i($uS=aM%>CJYX4uu_`l;H36fSYnQY;dD(CxT&;(5cC{*(ho(CA13!4X z@ee@JRiAl)X661LM>_Z_AmEyeJ|XhprTM*|-Z{{w4rZ@PQQ0<8@oX5%XHOb`|+VEjQ$!%CplY8s9wl>jdv)n;GW9KzrwQZAJZ zO}-->W3LaEKGFEnfk~hb=2+e6xr~Rn$h>hH*mDnvg6k6N(BUuIUDKErydS)v;~FoQ zyk~J4!1(SQx#JMf;V*0BZRO$+UHXv*D6xa7YT{WDODIo z24t+~lgv~QFNmCcIL@^>qg}${f{WL@R#;^p;-)I(OTIqPy?FyM<~IPuy{ueJ9iH(W zMrC;c?=U4UZ1SK?LrY$vKA1vgpUlrp-n=05gy8-rSS_(lA2P_4IO(@H148kEj+F45 z%0f8CzI~=DOAX@;_=vlh7{H^>YHXqzOKPkD+GPTmQ$-p1gJFEpQT@pQVFPvm)nfMd ziKB&Kql1^UuBr~gd9C@UgxQ#!^UuVs>oZR5jn!OaWzxDX4bBq5ar?u=)&m=)@bpdV zl-MFTR+L9$h&pB*Jwac&jzpJqd_#Fxws?a9zi2nFdWIhud_baOY{0A1V^T`26!!)S z`Iy}oLEL52r-;;vkihZoEXij1BgRp{{XQ2LO9V?QNZUz3q4W1XU)yx7;4($XDHb!obD@O5PA?Sgn+K z{i5lp3r{r?{3vW=u~hxY)vIb}Ewb7fZh(FuCL8A)sB;S_Zrt(sfIV1OR;}hX_T>v~ z%xl(W1;$?xk*#7|Ej=pDmzi_-wyk;Sbtw9QlU(-|0n{!v!J?&nW)pAa9aEWv+?t9# zm1Ayx(6IjT*M1>R(rIOC;$7o;t_algP-dD*xUuZdlKzCjk+gwo32gImtUx$OlK&ejUS+wO2 zynW#1Le-zT>xq5&a>S}1oz85!)r?QhN8Yl)fiUpJU-r3vRRDM9oNg>fw~nV%uGceZ zYvMV?QzBL2j@T^QUDhCj5~%XY%;C=Xo)}X=j4}(@-tu2@{Qm&6U=g=r!$MDiCzhi^ z9G+Fg290|p#}L9H;Zz_BZQU+mNkpJ18i~C?%Zd-aWfff-7nwm= zzQ`itV1DrxRDa8(!N$E;NpYQ>4=2BvzYB>g^94*fEY4gSqb~BY&i?@QQR7e^E1#K` z4pn|-byj%Y-}7)4_P*yo>LS*X)H?EQju>C&7Yp=SSSj;5Ndf@9@AjC`EYKc)-`y#H zUX7v5rW#gWOIcS8cKLn)n(q`+8D~{2V`I}o_FaB`;o9KN@tVZYeS+K}UM1~71*^`c zTZIT*Uk2c0How*Y*ojVHz@Vn(K%>;jau6F+NscE`%-Q#uHJS@E;f;wnxmAbkm-SbF zF&dYJ0CDM<{{WFcGoWkvtXM2nMzZmB7E=V6*?IWsGK9P>XG_`U6ZXqA*O+GVSyM3! z#4MrWxrAseA-IPlMZUU>NYIr4l0a?0pG}KHT=)LFA*HR2za@{JAiO22i#%p3k8ifXp1c{U>aK~Vm}IHG!ycW5(SafR;+$WH#mr;t$%j}jhuW%JrtQMCoOYly}vO; zyZ0#7w>}Atg4P{JTRur#6AL{{s;43h!F$Z(L|!g!?JGhWEU)rGc#P2rOPZ+kurZ8X zyD`jlyujbG`BxFsTBiyEQ6r(u(r^o}yr>!*?iy;fExLitw+eKJS>rcFDY_@T!aEsE zZ_P`)qbxwijn-&5+ya8zC8M?FmT=%ZmjEjEX1>u7ofppHSN@SyBk_qzY;O}4sHUxI zI3xM{%5;GQ*Jpg6_7oN7vye`bQLlz5qo#%P2U0Qxa}EChH^3liLm&GKK0v}b+qP43 zBPmEz{bl_IXi#RNFY6rN`it#mMNe4s4MVPlZtWm8(i;t?8GA4`>WwZXQ@OU@4a?M} zryG;1_uR>vCB6~7;0n$n?BJ4szeAi%5}Q#ssuHCh?u*VimC2!ae)TOGd22fPX4p{o zUA3&%c|Ip^F(3~N%s&DOtrf3$U2srB!`dgn+|X8UFI%_02mzOFrOfp|DtbT_D098Q z!VdyLiLZCj=rJ%ST$LuV4JF`1;IZP|F4i8vp5X>GJQq{GrK(=hFL zi-qnUOA5;MxLesmGuFqnsbayQ0{;M{J6)Ctt;2D2 zIc3Ym;`>0(ob=36rc+|RBCauRzQI^-RFv!`Z(Amm78i&5iHLJSOViK$Ag;yuFA$0i zWBDhC7CYT%S+fmLf&j!f_IpdQa13T;D0Womm`%d=Rj9E_OK}I}*bixm4?EFNKu={= zUG5|WW82AjE^feth2>R}qPLY|aolzMv4ep3i#di~VT-n+LwyLgQ1<3MV!L#W*Ey5} zRclkDs8OJ{*r?-qA`rHTX~@Q-bZ2lb(G3H$?Gfy2h97NRlP5k~b~Pj>ggN3}m?EyOtsvyL`+LNH32uxvB^EU;=wVQwsCy}OK+E37JbfT%==w5_yce; zuLFBEnO%o~vBGSZUY-iReQzHzJd9*JllVbdh;6uHWay-}V==ZWm|i!lVw!9{N?@1= z#8Oyk`^#4APOq58>w|K`IKERTI{SA7$PG%cN!r4&3vo@0*4nxETm|}X15IZ8h zwZ;1&T>N!PMVv8&DD>mz7&WQcM;|cS3$|cc*AYZ}Lk3-LmZs7{W*p~Z6eAV_8Yb%V z^9=YhtnlJ-@|vfD7b0&);sk!drl{gnlw|(oRtl#Ry+TD^(Y`J$0>|Dq2>sJNkIUze z-V0Hv1gK;b2X8ztak>U5F-pdhO*rRSXf zXiDpwiTg^;19|(@O&~V3D!JMQW^<0+3LNQ!8vw#p&9JBKEPWySnVnnmQMB<@uW4tM zBKw{`W@*-qAeM9fkR(in5if|nBLxLHOC+6Z4+k$Yqezn4Rq#^GY8tHBam=+cG`Y$7 zX6T~!)xzV=IObG#+fuWDgOXM?n;2gQXPHj!3t-Lqj6HF^z|7$g+SA@3v{RGzkH48l z-!ia7x_;&>XN3Dqbjl=PMM?JHMbnWj@OdR!N#|i>v764KQ^8B+m+vqw{nzg{A&NFv z<-~PwYS8$cSE*Lnq@a$vjuonQp{s;!UH<@K2SQg@HJU8}nLUu_8(eN4C{Xh1IH-AW@X1&9U@OP(vjCP9wE`IxKJ6m1USk45hVeh8d=%T!!dv*oIz-PB(jep2=W z+g>5DY9Hrue1QAR_2*G=F8om#kE@q(amM^ijZs;@ZF9xM0yVLCqf+>`Xe8$M-sV|j zERE!HUOplDO4`$$9l$Iuqi-_N?19R15k=!3jNV`^a~fz>%7KNR>`Ctq`eFY1u7dRkT-wt&?G`@y$`$?-(e1UNMm9D@G< z2~5LBN1HQm0WXmD>iBc<{X>aBv`7RMA$c{@ffBkXW@LYtCr2+FucTL z=0Y)TV|NQWV0_ca`yl`Umr2tur2Gx|^b|POXy}I&MA_8;0DmPGAu)#o{mhNAtL2xB zpj4xX5g2zuo6IgQu?3!GU`0t_j+2H}pdLnZ@eZ3T^Iv3f00!gHss-Y7ay9K=Oe1Y! zSysG8Eg=JDy}Fny74H=#dzcTEw-LcnS+ushY*59^&>^b;hHMF*$?6LLe@u3?` zM+BBgg<>`>de5YUSRP3mjVqUCCOZrJa$kGYH-bE@8WQCUU2>S!e$PWz2iME3X7Hk+J zG3N~XzVJnCi%5Ppdw*%RmxNkK?m!h$yQ#(wV-n9f3K0JQQnklDhnvg@KmwY%fdM!t ze(*gq#9ze9apm?yg15LnA|Oy8AA(r)b=wPv6N9^TV$YRnzN83hfd z$x<<=Vlxdyo)0h^a8>Qne3k_dOQ5GbY`tPz4b!bq{{VFt4GFhsI$F^hvlo}CZ+eJF zmymbgIfZlBL|(`(%qKb$7LtoB=s_9X3#>an8kYf*)}}XiLhHnN6mGeD-te7u8mg+% z?heeyCZs!>Q(0UC3)!+31;YHQd0&2Rz9KB5coiSSEJUNaZ+`H@>*=`{nQsv0aW(D4 zc~lA<>dm|Ji1A5N3CJ7#z~>6mF|=v>OJ*>kv~v8`;l{Oo9cko#Wn4f&2y!#;0V2l? zuEQwugHluR!|Yn87sRO;!pD(;`AB7ryDOMNDV!?Z8XBvX;gzb?F6r)x5w>G~22`W9 zR&b~ah_LSgU97t!S*CJQ-k?==aZqXI?gKg3I+;q|gJ>&2d>-U?pTQP7*82lDb9K9q zEoKI74`f>VfV^=v^NleQ9p^IH)|!31!>~fFn?pby7r!hDF?5W3Kmrb*O#+CHi~|&q44g@jJ7y9m&OOrV*E&9ZQajT`a&%v$9`Ggv6&1CLW8yU%4+bFyj6H^kJ40(nCo$(id^5sJ= z&#L|*^RewB)iCNQa<>Ah=qjU5w)8zuwt!eWCL}V%c^8j~Plr8U2-X-$yxM*9GQC_l zV6xjf5mTYEx8a$A2Mu6~=#~|aV+$))7)N?LCCB2=0P_HqHp-qfg%X7s;|RdIXG_X- zf=;Q0H2W=^Ka{I;hwl%1fDqll)+%IY45F3Q;R{RLw7{~c1K%FA?vGBkUtk>hmf_cE z;P;cPmdv<0Uo2fZe5F8}oY#kPirgQr2ff7nlC4gNnX3V+UgE9{(ov>=c~^#y0o1>N zfpe;L@f*l22H};LhAKxLGR~LTU?eVIFYk1Gz?LYq;-?^j#XZzt&Bw2Zk!)c?wTj*O z)X0X)nU**;Sw}Fj1pvYO!~AxQgA&lOTboygt|l=5003bh-e{F5znGS|lu*n`Qj?Bm32ibLEHYWA06NpxGi>Mh&1#8I?Xq0&uI8EvPC3oYzAm3W*V4~a_H zBwS1Rd=cs@>TnHH&z4Xf^V>__7m|j}VD({%VQ5ANAnk@oXm4iq17-0M*j)=-gRc36 zu#N9A(;H1-DKs3W#~I_SBMo;j$^kDIFHO-Xr3OEG3KB4>Q}r$Kr#hk$@@x| z-eli%h{9?M!TzoS1bI2K)L4}SirsWFkhLG$1RrYWnN+8XL`%d&Xvr3>$24D=p)gen z2$;~jj!_oo=65)8`2>#D1uiSg%K(&a3MU{SF?6irOGMsoIf7JlDhj{H-VcyshkeP) zw0QmHi+H?d-*$pmRrz-}Sgdp~g+kuUTyN8L0}eq2PKR|oN@ktY_KgH3KGAxEw0_7G z&5t6ng1DEER?gnkoD>?aYHc32tgRyzV|$0Z8e`df*~GYdf?*A`rZo#2&l2^Sbs%MY zSPzIbcEXiyov|5dW0;G=-SrlAsDc-57gwytBWzHjp8(Bd$~f02XS~8&)Lf^6%&~Y& zbOcF!Jc#Uoyy z7M6M0asL3Z&N$MTqt*WL5_$Ieb1X--;doO_Z9uSC`*2HiQkMeU-@LKiPOxEIvg(-Y zmD?=Tss8|2eHm=+xo%sPt&ZWYnnBbGXrB0_DKw*P8-u+`vlqSb{i#~+FM*c8rX7zM z73!7Lr6o?cEDA%eIHY@-5DF(zi4UIAGXph+uihnL??CQ~553A6aTyGWo*tQeQZ6}r zD;4G+PB{z8y~PdDYq};yig+$wAUk4ho^JV(rRkc>cyZh&%ib;&N8Ltd=L{s#DJ=*6 zK*Ggg2RF~c0N@WnwJV$_-d_V$SbN6l`|JvO?~jQ0`IiL`!OTUcf(~tBHDKWows^WD zHv#-}Q|5b@EySklPTG!0Texp{dW&IS0o5Q92D!g_x2u*W2rW{<) z@jQtP%f6=cyXk9ee=_NZ01vt{*I}q|@Lpw?l{y|$8u0$&B2Z65$$ZW+3OepD0OavI zcSYmg06%;D4}?Dp0}s-`Wo<`a&AI>tF=DKxv;@!UZUt;?8&5x1j#Mxz`9 z3yk}2XZdWpVPi)Ra?Cj;5w5GQQTNn)o~L_!#iZ37o@e$2@YFBg_g7W;E&z^mZauPKNl8^)|jd!hBJB=~YnV+Y2L3V6qC@ z>~E>KabC&j zvoK9GSy^ z?nWV?r7{m82wKO&s>Mq_KsF=Hpi<2&l)WCpN>;oE{{R(V&CT5At-|>82Q(6~IuP3eyY0ASmm&;dpztHbZ+C5CN3_EYaFPf{e0lA2$a z(Gy>UH}S+y_%>TkNiF-sb7YjL0{BBo&0w8IPbg=XP3xV`0g z*SrdCZPTB;y-WhDddw=CMrI@R%J70q8WBYRdb;HO*YO#F0uw4PG zG0s0G`XvdaeNJ;K4iH~~sYd!!CwSQ^`EG!K?83dr?Jcsc(@$qpG&KlN=04~mzDdY- z$w}fA-|o=m8%et!*xiW!Q0jskF8=_CSwg%qf9mYSYS^vUyx%_xgEXqo&$L5Wwhrv< zs+7i=6lqO-Kr!5W#$$V*%n`MFe~OcCbG=FvTE_5dj_fB7C9J(v{7MHm+#WvYV~`%? zY-^Sq(`9r5RIEGYaLUMCocvh4yv0jmoQubCyD&4J;zvi?`ui~&zK;#*3u^u$X>0>y zaDsqCxV=O(7KC_}abQ!;Uxp-=P&181gjPUZd=Uofbf2|6iH z(c4nuX#iJfk{{V2By194ZG&}(adCq(6cFtI`gU!`3 z3nVJeVN2CKLFd32_H_=4K{eYlsz~A=@AjBM#_}9TsT2hC57{Weo%eTdZ#Tq!kgmm2 z7c^^Q4{*dS3a^Q?qJaR+X$tRp_l|7YYW6^*zG1(>1jw($2lFp)JsRD)_Nj1`xS5`i z+ufRY+*Crc({@ny_{!=C0|YHzX@w-_6~r!iii><_sr}>mh+z$7BI$feQKg@YJC3RZ zvhUq9>o&Z=A4{bd91WNuFB3^~ej|w$%Chnu%Bzv64=&>eDe!QV-`-#=+oe8Y=}t%c zh2F|cJdxh0OR)1Fe=!ZGc zfZk;SK@HnX!FCKU#OaNGp!=jZdyqA3A%m~k-AYrMo(0%VWWsMmN@Ky?T7z1ZPg0u& zy-Zw6U8JzD(Umeaq=wCu%kDL^cw1LDQ!0zAz@IXs{@SOsx;YV;H!UM5qSb~Kj^$!) z#288+Fz0Pepi|r}ai|9+%Q|j636&+08sd9p63v$ac5YbOwymBZr*92Ckyg8xcw7?p z3A9bW@+zm8-NqUBaR&`hwMW|ai#-~kWNz~qZ-za~$8mW;@U$dxS@%`u0>h zxdIMx{qZ-o#FL-GQQrR3A7hSYeCcZAPU!g|a(@Eu2YzM}*Xc#mbmyt?j2F^Z$4aE& z@v4BYrr{5`aWJbf0?TXK8WZv2W$x^~^J=L|43%?1czUyZ++4w|FOc*901>#D%Uds& z=zzaY5f#AjsZ|;+zo8vmbM$Jxnft=cOA_h$CTNKlLAa)8LJG`9O^~g(_&Am~W>LrG zDM<4z^<_e|0eLq;o)wN{g<>sMx4#5EUrQBJF@)@HoP11P<8Q-pEG`&snT7OnJAiP1w0nGBOg?**altH5mW2)$Oe8t8m}yuG z*q6h37WXf>YxjU#DednJa_i0MGmebB+h8zBz*W@qFC=@-Q{oXeKJO$-Equ9vv3;4` zb}QZ+cVZ&(>zkbAiyQ^t7m)EChb%__0ElTv3e5Pm=5XZh^wtc^k4viIV3zMre}9?d zMj^1D-9@%3fW&&IBi5REC5Fq*K-T_ro@>>$94SSLs@$MktdAIjZ2C`AQ_6E`!m9I1 zac@l;dW6B`Ol{{U^X8+U={EU;3bR4By`?AL`fG}+0Hs=stS1c^sFjP{50pe)QL_<#w;NuYDQQ52!W^j~B>;C{yqQqD( zmeP>^bb}OlY*ag+c6X2|E1U5tBN`MQ0PbIFfcOi#Bls=jXXXQ{BP-z?9l%8ml*2i3 zaXo>X(9-jp+$l$0+~3$=%t~z5OGPXAnTJG~M)hEsequYYCcK2ISx5?L&xu;BaI3Ot zFQ}_W#Hq+NIa^>G8gnq?O7{ycMR2x059TX^9Raxe)loMP7Jwa)zd}J(PFDBh%s}e3 z{{Vhtdk$aV9b#L+PXy7#Y{a~?+EhnHQ)HFwVZ^4K4GUh;2&ZVIqumK0n@p>C>h4(A z1Io>d?*`h}Tpni&K=}~vvVSRXw-)i}KHp1Pu4N_>c7Hs|;WWLV!+ZtiCSBM-VkZ4q zs`mc3wMT|~);19Gp(w&k0J@g*}UcH~d;ipVPe0FgC5{BX&BV6RvZ zCl$o7nxms}Nwby4!a2y)Re_Cf6?{u~yJ;?i#H=>=0QbM*54%ljr|jxbB{&z2(K!Gu zzk*^S?C$J@73Bo73xke0LJ*YwbKN)gKHgi|dWdoCAgk+o%`$9VX+RU}BMy(Bd}` zX~T<+rEEM!L7ru$o+ZJ#GWzt*Va=7iKMYQJKndM(Gp4BzzxNP9s!KBE_iOf`mc+xS{DTSZ#0UV$XcE(LSMb>27WYo~PrCkH_9f4>-nsiar zBhj4|zqL*~0>yQ{SWEZ3C0BUOOYMO$*$1oQVQ*C0SNt+XJQnMERzv;Fei1Uohmhk@ zc~RN8 zoZ?=AG)_G*PZ5ZnblAb3QVCfDv{0d3Zlur0*_1MDvj!o#>qhBU0Zz6+Yo@AVEhLUb z@QKrXF84$!MaEkl)XwJg?QpQJ0Vx5gV{e5_=$HpwTy8X2Mv(|)aK(?NxiNA-nMJD0 z>Q<#uO}*l!mCV_fe{ioZNKm(oR;$Di>QiM@Dvl@qK}4uVN=+kP z-laN*!;Q+{s&s}+oq0__XJbw{lp9{^MmedBbtu4MKh=(<$qO>p(>`B-M1o{--R~`r z934W68;gRVps#@2bVC3g@RP#+pL;SFz!l_G-w`5Jlh|#jpVWa|pHF2w1cVc^z z`Oy9l!|cw*LL9JW2XMInou2cwsU_IvVUvSoCar}jI9*4m<8&i9M`_w~( zUh+Ximi7J04n5%aq2$`Ha0sYTnO2Ksc!kaDAbZC?P{Fn~dQ?VQroGVaaW4c#@DAThu4@5Ugnw+e$b=W2cUjb0hBsYuMl49y zvix-)rH%Jt&&}V696}rgu{wQDdhM}RwY0o@M8~%`G&=foVyLc?-DqL zsry6$R47iSS1Q8-X1w3aHNj|8=ggoqfXV11Cq-4Tt|Vmf?rtE~N?1+_d!%zXsap-cty~S5!sHwGy=eU~}U<~MiGii)B3`Yl$y1)G9Go)S6ODM=O z<}L5NQNvZE2Cv23WN91zPWqw6+x0GCTQ+ zMqXha>KbVD%#6)h5raKk_*nc)WpfCq;;r6SbX-U_8wCjb?14 zMuRL?`H0lQX=%K19Nkt`yhCV-6``jPVZk$agwa`QK(FDl=04fh^?eKcL>bKS$oNo4 z8k-di=_~&Lm*%thO4J>IGgq_BdpA=BF8<{b)XYYLp^7wxt)A-p$i}t_Og6L!H_X2y z7Ef=J@e#3lOQAxuf$%^z>dpuD2&EB))^0R;?J#jz7Q?)wSQlQ<-V|E|SVXavC{lQh zq#H3_p85Edh*@!aaZ@0|jH;qMP%!O-kKR|dt?Mvt`2PF_ek2~lotIZKLwyFT*4YBHRmmZEC~8w+V_U~WSpZVVU5JW2=T`M9Q_ zRmX^yGP ztKX992|!3Vt2y#kfq7D1LrK9sF*M- zX2Q~I?<|Q`rW1ACz3H4K=4g&yVw*&BMjWbS8$~K4S`6_^#J;(>_d~A#012qQp7bwp ztZuie@=f%+1b|0Tn=*7hF!a}_LRl-zSV{u zx)SiS%-Zocc=daig6OHYyA+x>MPp>KYB-vTXhs4!PgPI-9 z!57819IW7$pAz}A8y5V*urU@`sp!U^vI6K;OB@Z`rLOK6=qz2uZec~B76)}GrB+KT zICUHZkb^%EKElWqTY_QlCLJZg-o^YyjBoiX&$And`V!kD zxFBY~)UFUK-@_JiuYs!&X*?`(+|>x>5P{g_kpgkW2Wiati?I)H#9$dvuvUpvHS;J# z_EcM;zDL?VZjQ@;>_K6QI9GKAiCnO_foSZ`p(Q)p%xpPN2H$v^>P|PaoJ3(+u9B!) z<$H~o#6P(nz${T!?J5q9yjxjUdojco64?rhAhuIwa}e|CS}$pqsdNd5Bn!!MJZ=Wt z3vOx^#@gx|KY4#R!Kyf&_b#p^H82`Zu_;3U1HbtcDEC=#h27&(;=a0TInNV1?pE~#TXWPwV%Z5o(9j)BrFM$_ z;XF~CFTANbwhJ%!fDjHA!kW`ssXK>XhO+D7)U;v6pgHChRbWMiDS`9vDMWw-`G6o5 zFX*=XG2&IvkXgyNH4Jg?(b-}7jre3)?uMB~Q|LeDSmYFf_+?HRy>H}?m{nj0Zu*p1 zU$&Ll9L*BkDZWp%0u-gDu6^!aKRN;D39MZ?%!y?A#> z-Ef||wWc9D$a~I9(`P1oa~30uiI8Lvw4gIIN&$9M1MwJc;CzX$e2ym}GXZQq4>Zj_ zOD6eS3&w{{|spjPI*P7tRXh26rmE4J$(2Ge=Gd`&qpkZBBlC~rI>m{EobHz$1-n*rz4)=2g zg+(SnxXDHWBa8*&G)miFlZoclZC-w51)7!REuhq?_e({KH@V1Vxn|U+l_)_bUJ2vS z)BySBIbZw`%;_Ee4|q7?np{i#q_^1$gz$1F_)9`4wZny~fDCqfg!#3b@H)m43*^+LB;fh#Rzzq~M$}$#&P^Jh zZ&II2sP@-=Y7C>bzQBA$7kphs>>ytb)!h3=H!*svbepjdU2fo^G-MW8@T$0dnBHXd zLm?6cTMVj=qy+>>C^*?$a{kzu0ZxkcKxcVb#j$# zFFqn7BAA*Mi7{tvD9O<~>_H4^Vk0$EFqv%%YWGo54JODC64P&q#Ln6C!!Tynu+6A; z#`)G4_6m?-9BLm zSHD2PG;J)s;Ug=fr+b2nDf%WZ6@0n4d1*P-W*yK}dW5+SjyW(YqcVk}+m~@VsHWMN zr+nP1`X1sRp7!ng7a!Z0wfsR6)b$-!^MVfqaz0Z()M7jhR4Gx~;WxdO6=7;W23x>f z-)lrR@jlEPFngcOP$@>g2*DVL0`mU=33Nr?mU#G3vyqeq=}dPmDdU%@H}W+BS?RJ) zB}%)gmo_u0jJ8%T2V0&(#>XQoNM^9@%%BtMKJh)^i3!;WpYB=_r_LP4j5@o1z9U+<(sen1@mKt4m6I~q|YHSJ_%_De0FR=T-rH<|$ z!#3va2jW(R{{W<7W+m^b*k5m=WcW(aKRm&KKz)+H)fHbqkSgewMW zUP6Jm9ws2l@>9ZbFIYqy@;LtOLh%a`wd?|OtR5v}gplWm!{2$6VL8fUx`e5MakQ=J zZR3b;%GGZKqrO^hR19hQmID+4?tRI8Y5+|{r3LaWg$2r^R1#c{_n;N@P?8nB8= z!+paWq0x9zZ!~+&8%1q)zQ-AjU-mYx0{DqsV8Ne=a*VBC?3BK6;`oi~qLrLkA7rBt z!HQv&^zke?t5%tqXCO`~m5FqiZ?iQ8lM~O#>#4SV2LAx7ie@Yo<3M@$#4?khs;Qo_ zn`zt=g!TgLPGOHM_U})aY#Z^z8O(8RQ4u|&ZT7|E`bX&&xHf(gwgwT}*r!lcJL%pmDUE_VicEMPW#&N|lz%k2Xf6;Ch8Gbq@y^KHTGqwaP0sd?iY$12pq z$Ttd+2Fg1k53=vtP<~l@YvPHZPMz|nmnWV{7k}@SK6snoQk}KaLcfxg^J7VGa9Nco;=H{{^kzD%(P`5 zGu*bk)~r92TFjuNc|KwMnGjW+%^!fmb*AnbMStlCNxx9IICtE!lyx*XORq67C|agn z{GVnP11-%KppjVwDB^WYX^^b9sRmsSyvTc*EB82;`!Kyz%)AS^cm!62hKqd7CmqUq zvD_60oU=WW%IjO4(b_WovBV?eX(4g$Pxz&@W>#m-KeGY*#0s|2`=)3P&feo*zW{kA zF~eY9Cj{$CK;6s$)1O_Sa(PM~=QDPx)#YBLf3^b00AA5~;xNw+v5P?pp~O(+SgC;= z%Yx*g%tJ4x!|(p!3N1%ILw`2}o_t=tU)mbG`weV}iNL%I-F)Ae9vl9*{?f>-X1(B{ zBCr%sJ9CS>iCN{1B#-$+_q-<&4Wb zl`kVSRyDcyn`tPmo+a&COGpJY6F1qH4Qc_EiIuQC5U3X5Rhk)>DD>@X#kod>ckhq1 zer6?^#%s)Y*Vw)AG4q%)07xOW?d{y$dL$aHWOJE^q&8Q&TxW2=YwZLeJS;=(SfhT- z&RPpB)V66*+iX(#-qnI`vh<32N-#s$KjKB)~6>A8&b6>VqJ?yQor} zi`4|P-`f*`r;uEj$efW()-;yKJj|mEr#3-{oXzAINOa~nKY9;*p{MK7Q%^#yb6ObXw*^ArvqE^ zLioPq#O;bxaaES9ka>&91RoM?g}z8;cqN;NpSz>L!-73yDM+n zy@*<|GYfyoK{RcZ-FGd{rJo1mG2mgdKFG>d779G4MyH*W1P?2_s+b?MYQLGO$CFU1 zY-k-o8B!aiRLT{lj(fo9c!XB6zFt#zpJ-IJ$La?mY@Ae0By^*K9uSgP8+Eehi8DLI zP}dA@xrkk9oOL@a!vK#%Nq(Qq!rq5bXvQYcWe+tN^^h=-sP3$MtEc8W?jP9y08;nK zd-pAW$B5gJP5Z|ift5KF@p$qvQ}2WPLaqgg3e9DGg7z_9EGpTrqUvo_sE zzL~H1CEbjqeh=gADFM|9?Hl-If^z{lM?gifcOT04yfJm{DVYt6tf$4_#2^RRN#0D# zD46d}f>Y_mOEvIL2c@<1Ezmt2+H?&1F3nBa1LD;m4pI*;RaBFV-SZT zs-nypveuo&+>PI2R`{i^=51j+W5%;vnD*SxR4Q2U8j}%UBDzH5lIk*ir2S5W2jrS&Ck6ph@p>GEjp*Y$AXK4;$=UMgCrJ_c@_mI&g+e3g~EH0+C#<&RBN?| zNqoX?{K4i9#!~oUf&7_h_DH^6y4D$Tydy%|tg^E-B4!0;(8hKs&x@L(FDS4sNLRBL z>nybRGyB4h`QO211n2`vZl z6bSnHEE1SsDViyGinL@3)FtBc0dUBDJ2vGKIUQOMeo?tBXtA*V1?Z3Qe6dvA{_duX31fW8h zTFO}2o3=g~>vbDIFvgxx4-&|8?F&eE9dqVS!fBRRgLuCP$L%rR5M3Lfc$FQ{P!O-( z19;60vh|i-+oa7ZII0hX1A^dy;rz-3N6T>u>HQ%Hjh3qgv;qb@j!~tK=MDthQQsYS4IZw_CT^!RdDF9%j#RM-ynN47w*9x=n z>RB3o9sdBT7Y}hC@)d>~r&63;1|}vX<<)Ly?HtaQwlvHMKr|eMLTd3|AS~#^1FM0) zFW(`;#Vmr_e9JIw$8Y9P@?(;FaKVfj7O4LKsaFSgTM673eSz>};FlqeRriiQm=OCh zFvT6NpiXvZiO}iNZgbKZ1{~>_u>BlAcQ7E7gC1i*$-zhVaj_OBCe~g zkVqP1H@Yd33wq!tIW|#tC<%_ofObKMuv`7p1zVTWV+zBt_4?RyNU6>xIJbT4lROJsW&d^|&)-y5SuKgKeLK6d0hC~&oIb*rV0nvs~yKDO( zk^cZHlMjaMT6wuoxH0$miWW^axG*2RP9PUhv!T*ki+p@_^N3n63dZ|oMUhE&4j%04 zHFMB0p2$)E01Cm%R^?&6{GM1dW0Ctn8bhV(WC*P|cMQ!jUAK+nA9iB8ATaX`jnM_wIe^ee zX}yr1Z{c0v?-n6J+K*98Vw8a^%^Ja&Do}+Z#B(fmDrxwcxaKhb0CMfvW>C#vDPw|O zXK{O!(aI@B0>+ulJ>f|mQ*E$S!h;coBo64qhRagL&`4Hxa1 zQ)2C%BjpO9Lxr*lKrKp&1)adxK6ZJJz%Hr>M5$<`0?VQmT7&+~4Nr==AZ&xHiTlNE zFxvQqD+29mF$y+=h(vs&S!eGCG=SD(j-jHLh)P?OB|c;h#v*yD(O%NH(5jJI9zkE9 z_ZpV&H~5Utcyjwjt^;9CMN9?Pmc&Ip{CYO%1rj+%Ys8@tsUxu5y{qKxdX+NE=j{d% z3fRqRvDWx_nYjRi_YtlX7R96vUjG0SJ4i4%o!xuK)StKw`|%K*cqwmZlDEv}jjj8% zxlM0AwlS2?aXckl8Fxc$nx%&J-tbIVv8<||sdc6m9eW04>qI5|Iv zvi_tOL?3b_~&``ceFa&9I zX?^}>_Eb{TuF$$ysLhtXreGDM%@B$d;Nq2vhjBrUqpZb-C zltGd4vI2h6AiZ#x0PqC9MaXNoe%~-v(widJt0nuyn)pl-Pd>&s_LgLQIwvH#HN*h9RI#~! z11@T>7gzjD!Me|wuq^M)3I%&WBSU#+7FLZ>l%*jFFQA{XYE)jZOg)3l%gt1}Bq8Mw z61*_4XkX8r@uwt4P>ehGZ)iGP84bvbVzu(xG$`{>@_G-tiPi9oTqS7;x)X zxh`=I823(rd|H606`Oo)V1?U~{{VN05i2!iF-T%JTUdE~Jp9W(#0w`M?HMW>9>*-X zYHJDJK4vcnwy5S`9Mm>>g9!kWKy1H+cz6E*6K}RBFj`O$?b{YXyuUa%vhgYl%B$KL z5G!>rWzb+IoP_w%elb7x!U0LT{KhE{6`a>I ze%9F>9iQ?pVT!BGnV2SmPN|r(y^PP5#5T-a3-c1XQs3EjfoAu{g)?*_r zQbMG|%gUI%Bsp&w9T{SiEs>t-lbNa7yX2{h*wki?oo=KD^O!n;;n9DQnh14{{TO?PzA7F zF>vhxb$85Of;zq*-s8|ZGbt-lcd>aN3`k;>NbD#XGZC?jJRowQC`^0IqX~2zN9{hR zn8u<$bUigHV(2%V10HDIcZsnJHCqTj+`V6elxr`UWA-cOMQyP_Ed|_@hyG8e5m?3A zi|O&1ezsS)e;9>Z9%QH^;f@yfsVhxP0NCFoQc|Lxf^WIuC`-yRRG{JPK!ZaxzxO@qOJ_g3Tyg4z0p zled{@A_V011QC=aE|bsi<}4YzGH9rEz^4Yg^Bb);pA@)?C(*x%%RAcz%OyvmXy~10 zIlsKwV2_x!mA8+GlL>pB1FuHEX>k=4N%JufZ-<#ac$dB#1KpSrOAw;i@qaTrS{V8M zyvL;unvc$|3T&&B#zoC|fC%rn=)8VqF-(LEXuBAVE`SaDPF)}{@!avu=798^`KUg4 zwUST_VBe7`46a4{ON`}}1TlwF@4Ie*-O#fKA=hsO11n!mhTYq z%Z5E7K$q?m--y*|?pA7EVRb3Szp(}m?Id`29-_yAsD{~I=}Kxm@iBm#HBPc{{7Tg} zFwO5IJfkoI5pOA(Vn=hJI0&0z9sr7@(^8xxu`eBSM3@P zqR!qWiq$Q(h%l!8r8AG1Q*!L3bQMa=3di~+AD)7s=$7h=AaRm5Aoa@VrOE7oI)p`) z-0(jVoFw?C@&5oL7$X4c^A^C}-VN=8?=HQiQm#pi+=)Ku^OQUfXA?Fv7n5yo;yBrf+WWF@>N#PrJggX~ zN+niPuDziB#K}HaUhyxI^*c#n_T0$$ev0AufU^M?rS32#d{wvNFhn10?8%Lh7Fr)G zPh&E|bEr#`RKG6fBeKkVMYmiWhjO}BF@xe63x}1K{K@cy?MN|rsBVk$zosR1h5cF9!+ZCH7J*Cb_b@5rKF*~m9%BH6+XxTMuZSSg zOV~Ek#z}NWf?9FGuFUv>{F%gtH~h;@qdR@~05QEO*w{>hc%CJ)rdEK7T9MJ&-*q}fTNV7rlKsC0z`F=HWVR0 zxi2MbQK1-K;w=ydz1+!{K+7vPe~2JZqzB|M3f7hKi79}E zM@h@%smWC=-`*v)n>RS)Vy1}laZ-H8LZIlSwR?;hZ<47-I*Ik5{1U-iict)60FziV z68;a&FEM?+23b)KgG6Hulc~eZ&vChZ7uv%It0ws>Tk5c4n2%s*HDef3@fh_ zeVqb)+GVy?8gCY2j_gXg4xXZ_Gfs>jnS71zVek9mEWG|Di#NiY%=`f}5xpxE_Xser zjxrj~Imd_~rW~^<5nHP_Df~qI$~;3R2AQihxK}VVSKdAVR)$6fg5_D_;%tpRVmvh+ z4Z-!QAHCFIxdNq78CaN~-wuUwc{fnS*6K=kb>dNo$qn(i!Fg=0!7?&l zE(jskSKenZ8(R?_jQ~TS9og7k<^KS3VmZvWs^Fg1&q%4pv7AhiU2)L0sjC>jymy4q z{7S;G{lYL7Lmrbu`H7U)t9HoWhJE!CSsmocLAArfaoV=Q~a_R4azNB5{)maAatqlxBlcWwk20ob%~SG;kk zfS6If6YgfbN(F0J8a@23y_A-H^pNw@P1}&M*s@nA=7YSFsRp$n&{qq6K-jKNCdM z49RbX&#{Vwtl?GPeyz)2JY9{t>A`ZJc1# zzv*l4;L5aZ13&UQ6?2g4TPKp{A7aGShf9qRL|@4-u~vqMhccOx`)-d9Q8K)YYUoV5 zQXb^j7IZzJ7lbo%-vX!y9Sgc=Et||t+AM7{#}9&7SzAD2n|W5~nvDk%Nkjx0^?)%HqEJ{CvXW`7$*FH)wDaIncc0aM!# zA%U`tzsw_ZGnTUa-{KG#TipXS^9NEv=K`BtIGd(gn4!qtm^(iLmGDBS(UFIVkP^}W zb|c}K;|(}V=W~^<5Im*wtFW^sBNCO1Ed#6?@7ib{Hd}CeKWR>|qDj&v{{ZB_(>PAx z)!#(4K%oRN)oW6Pk9riWMykn8tk~uFH`HU^iV?_f!HuS*P#Yn!v*4PqYN~G7K!6$5 zaMU9!arm5~y)TuTDYw@?*Tq8QNq@hmFb(F}jdC>v4u`;RkC4Jfuma#w_v_jkg4$lO zyCv;HID(*_#K4{I4GV7un5+;xWrx0~YuX5-)FBk0<{uK_H-dD}{BIn9KV`78Ae#U- z64=5T=*BpK1_Jv2EIBL_hAs;W=#*FZHk;H2TjC{X)l-Rf+5E8L{{S$rCYqiwN>j~O zg!pB$=%vZmG0EN`yRXElJGNl>)j^Fd9zvdRxK6NKoo--;D&!v#0Ncnga(m3=v@BSk z+|VxH6#=0C0IgX0j}ZrzNx6_MrD<6%XsKOK{RGKYty8G5J9cD2j_Z;mCa8)zyPT{> zFPnh9nUpm|E;bm~(->DZc#9)OPitAw#YGnp&g@deR}!fcTV@-iLt%Y2s9C+D&k&ej z{{Td>(a275T~{s%%tX5V5z4pzj{`@`88 zXWVMwb-PNk)co(x;ez#Tc!+^x5PO3P!|;0P7u2TTnPHyx)U?w?=+2^}8ibjEwSeG) z78~Z}DW2?FG3|&I+S0QEg|3n2Go?W&uvV71XNAn7b)ia~d&=EFAv_2rH-cye>HJCt zt4EC*Ksw(m}Aw)5XsUj zK+2n8j&Dj`p6xHRzW6Py&QkNnAeh$Y1}6IetKRV}C@xrtRye$8B+B!KvE`YtMRj}M zads%THM!HZE;c(T~fO|94uBTho-5em`_Ic}} zn06VM`JNeyQB(4&TOEJ065E+MPprnX^YIilaPSp9-`O6FWyOWlGfEh2!SJb6LV;^n znMX5fu8YO3ilT>$60B-BKx76s{{WLug&aPkmBk|$4pSuHZ9dRVg+kZ*lvSGnm;K6K zBy~t@@e6Gt9tHDSm2-|<_T~A^EVELQ&{2v-vi|_PnTJ*Q*cqy?yWGpOpDW1B#a{Hw z!A&d}3{u5FGY}#>?2j$`!AAvP>@aCLX5M!eSz}ch%*P%6`3-_Ei&BvuHN-+L>++CZ zJh5y*oC?ypKZtQI$y~zUYcM)YTPM;uA6)!Oi~VD~#UC)kp{;W$a$AN0IXsUq(t!>%?}}iMwOP-fQ`d z7ExtXxeVXQ0D-S*cLXu1o^)RmQKQvFt4QLW-t*znG=uN>l|jlZI&wTgG)@UA%vBZC zeCvbl1@FZIH|ASrjcy+gn7Qe&P$Q|7B7xx^S=KQES&%HcTFqSUwh5X({Yzfl@Qx;Y zt=X=F&-#e6TemIRD&UACefx-7t-q0iz$s^%rMo5-J5>C`X4lT64xR2UJ6{RR@$-IR z;x@E)9eZ3LYbv9s7l~+A%-VTC=&U?wcB>giZpyXHKqpw5^DHKA%R{<^LhToxyMzZ% zevLT4K4JnR5`*@*#4r?ehBY#9^E+1m0Fgtk$KB}opEAmTZ07L_sN3p0%VQB;M|$)l z(;5Io;u9-t6gsx0E_{@7{KE{WSu#!N=xq*c=}mMNop&!bW#)?u1z9yk=AI{=@Jrg% zD<=%CdH0w64DPykz)L8P4u{=lI+**o&}tco6-y1zo!IryrYb1mWyDojO=Mw%$q*9I zi`s0OM8i8)r0mQ~)+KJ&7KY+PMh3RmogcKzB*EnoD0o~p@23?p=3#dP0h1)XJ4z1H zdvn(5wWHZvPuk1)(I0dd79&BM$TfW4D%CwYjU6z&D6Jx(#@2@ z_SmOnIHmvt$t%9wtsGPhW2%gtjj)f|x}wj(ix)@LbiP+S$_dM!r>AYf>fb8KgY9N- z61r-9sJRPnFL1TBS11Hxd=mULu>tU*OQg+}QGtOe*(t3K$PGv|d#)k-&^g+_z0MlyQy6V;ro9&l1)Ex$>5DyFx4@a29)PjS|h4APv-~ zVZX;e5SyII#12Ky(^u5Y$Gw?(dfmH+namL9p1p`Odkt7fry?V z=ky}pI}9`e6jmOqFFGek5Q&*2e=f=i0gr*|?jNjg&WRf)^W zay#Vs7{ih0E~M@vy)0n(l#yh<1bYC%!FC!%L*%ctCO~Hyt2~c@ec(MyI73)0oFG== zT;7Tv30pV_spSx3GoXnI$_Io-3kCZgo5v79FU7mgWmQ3STj_9z8=2deD>OPo+{-fw zBB)A~>I=qYdhxyI$aMhnv-k2b(X_Sl6r)-i@TdXX1xz_X`61$V3*owtSr9$=jA5dbdOEv| z!=>0*D@FN@?22D$-Twd)Tu}t(Sc3c|xOjsgG-_{_H-~CtWL4KDCgPhLSPU!oEzl4& zId=($e9=b{!@JB`?rL1{fMkMY%h<1D9_-@51s5OyLR?ADF-Hd|VzV2{y{7k&(S4rb zsBNJ310G;-cTW*7qVQ+|)W~u_a!-RQERV@El9hRP?e?6}po|=R;#laZO09jMhQ#8c zJ7}Yi5};8x#MV4!R++_lEiP$5yRyYRGVewqk&f_EtJsVvF1hA(R#KcXzi9Ge*D5Vj zV7;+SPbNAW5rV;;vie3@Bg05Be~7v9WpF&p8%XQjHFByobnV*$^Jy-t%Q$~VeB8$J zFs>bTg$tyB@PiN=OMDw4y$;I!7p|b^8AwqowvQ9tXtePgP$dSUWz^|79Wc8NNwJ~o zSI`@<%r6om;pDVQ`GIIAdJxN2Gt(0;D=;+qNUJMC&AiG>yhS%y)O;XLWCK~IR)L1q zLW=i^EdiYD>N3Hf$Y;YQ;I{0BdLBZXW&=>A&nc=HPVxT$M~FkE#I)dY;QK>1wiw%$ z;xEgW!yO+>!lLil8i;9c?JNySqiJ2#z>1b>+}0Ds^8z{$!4b(F`G5y$T5b)&mABCp zI9418vW5@28n?P57PMC{6G$C*2}HT7GYr}U*mWodT!o)A2hChQAWIbk=J*UthBjJ_ z2VW3$XUDx{xFgA*1T_k==5FpbO1VavjkSk;)L%rWH81&M{R;3c*Bryb$AFejutwtE2zN9pu5h`4 zF=iFUW!-32!lB++8fCd-NZ!=%-Ua*i77j^l8i_`2%+M-!{pkI*^Bb=@!YVXgFu`6e z%&cI{9niPqK4L&6()(M?$O8-IarrApCg8(Nci6@i7#+f|I9lnqflCW;GXZlH0+HUjG1a)o0QdyR@M=F_;m(aO1gr_&kV)$C1P?VNnIv!5z-VM=IJi>P>EmVQQF>vj%)pIw+m9B@3$`l$~ zJ)vIPFc>%qr!>N2X?cKCs5T{0{L1YnRVuOQpJq@HW&qA^Q8l33)nnX=V|%p~PU`;h zp}tUR&frSSd4yiEqki~d5uu);yPK4O9JtYuY367$CukHLOM#vJGRChje=^q90Z)7L z2M9^VnL7%`Ho*hwYiQF!eC`15=d{t&d`8mQXa+2d9gcm&QaROxbj{{S-Sqyntl9&Z&{jeNR66!&25lA#V*bCI6rFzn^dEs58hxDS?X z!o!HoTo{JQV_L1B5E&MAuluG?W@9BAGUmKou|bC3B@>{%c!U%@ohO*JdzBW_Qg5KX zEIOv^Hfks7piyk`_LOPVB>|tzthI>SsF;U6v@m(P!MWoNK{+t8j9kL~#UYvVMLf@d zF{l`R2!PAFc=vDf0u0!3d@VzqYO3Uv-i^w}x?vc^`@pW}NfoH%^aVeiKqCyTgeZO) zaR+tMe9Mw5Gpu{}mbxA#vxs(ra*y>516>GaE7Y}WoCo4R2Bp0Mb%^A>-2&wH%rR&c z#c5hLuHfh@t}a{-*r&8$7&Y55N?A_=Q#FN+jv`n!4y-Re@n|kPCK^oTenL2-V-$h| zy5P;9EV2=$gQR7$52tVvlxU?<-MPwl02fMPDOTSl_LT)GMWdqDTwicXhgF?jTu@^d z0q~HH8($-DUegT<4QtC^6KXxv(epT869iLi5|#TlhhO;?AWVM?npIO=Qff0nN@Hdf z1$8R|s|@Lid>9@hT^ife5l9rx{LHmOfO<+q1Ch+Sr*0if;NWrBY`QcKNpc3xJ+1JB zt9q`g>&$7yw%qhfXk=}6F8iFz+~VY|(JMApA@c@?Kvx(Ktu_dAHtR=GuTa}^2ce2D<6 zsX<-1)D@)W%ZwfqCRCwevU^Ugp`Ps8cu|gPD-eDJ_YX`4TI^*9L}T_&iKgrUD9JTy zC9?R7O0iVcRSl*lQX^?mdnd&Ak&!zbJjt^d#1-Lk*IaT7?qb0UF8s=S6{ezb?JGh{ zdp8CQ4KqzT3}rK_6Iv*%7lm?&VDUVEYB}D0A*8J@lK`8s!Qi4W^lbt-T0j{=^8^`LlmYY3!d^D2m_U>W)zuf;r4+6 zmp3afp5g?iL&@Mh>P3Nh8Jmq+@iVM#X zXr4sE{o~6FuV5|(_KU3q+{zzjt_};J6lkMg?M~KlbuC9 zr;T|=(VF5E;C-<9B8mO`{>;rumIt{S_G0dg3G4)GfWUm*wVFkOjQUj$wfo9#b7s7| zY6Azml5`MPOh=}!wEqCfX)HDG8pfD2l#C;srA%=y4w&?m>zL+qYvPpi{{SNQTRGw1 zyeAZbTx;2#f+u{kvXdG7Oe~X?^-0_vH-iTA{{XWT)Seel^#r}d_1-@7n+pL$b4)sI zx+{dM?aUU8aFv_UaqLFxTI>6dzszUuN((4Y=6~#<)fWu>O+D65Vx6tS$m%g}=$J0q zs2uxXgc66&%FE!!3XbipMGmF`IX1pe48VCAJ!G|}YOb~*k=S#dIj$}Yw*X3GsnVG+ z7e%~|XNtHgd|cDd3VniSRkwcmZ{d~qEvPE4OYt%{uQHaMRL@8b4ncet=D{2y0^+KL zd9O8mLA~v1>N;3jrhf;N%`JMXEBAkCW!Iorv?);+fgq|R3ZC27-d)r*%^E$m#H83R z1wurAWq0^a8Mb*8XN zGQFlfK{SI6&G=OO`@}cV2JmIH(kqEl2Jb&;7}lc})Axz!>=qFsbA$4&d&ds4v|6ka zPc+uns{zzofBugSB_Us>!Wi~ZDvGhCLdgEYz$;h{g$Yf<-x?K+3N2xq>s+hYY;KlJ7T7Rq#|6yjA7>TX{* ze`Y)mzcH7reYFaVHiHCdM9Bh@b{mR_C1tA>FTUDh1LMITF-8rQf*776@hWI5QTaLb zG+1vCb8N2(U0+H60M^bH4?a@WMJ)W#AKE;?Loe=ssY1_!zDvxda28AXtCx#DQ6G$; zscr=y*^5vb6x>_I7_8HFl|e^?iE0gZm4kBS;XJ^H>>ax4e8Dx)?e!0GTkeH=1j$r# z5=Xr+1m<%D<+cjD%jj3$S@3e+sQJ?r#?K3%Q3Ue52d!WFl?-b^yQeO4bu1mGv+#J& z;uQ)im%B@aI1ao>*#(Llqs*{gs<<4+GDSNMB%%*?zXZj>I!6F|^Dr0$w+AOpcLIzk zAyT05Mzl|7e&nN4+A6v^xDd~kWgCn)TVR}Y=@>f+`^0Cm@NAZ$fxN6~iUFBTLoY$xjOS9naRyO`1X?D<>u5130H^4PFyC742K`g@FwU^>MDb>r_mF(xs zHlGE$R59LEwbVW}HCED@ZbKyR$D;w>8%ydil0(OlHh zI205(U*b?p#!?ThrCjVRx|!xB#$Au@VeiGWNE+(?$WA2{mj3{}&_ajqAS%RFW2b)6 zuL(~o8iX*p>~ztc%O001UVJAU@-;ZU{7X#x>M);p^Xz0yTMjFo>SjN^7ZvaA3#{=& zTP-Oy6odZ&v|aD8gcmXtPOAI4#M1Ri_EBUW?onYgkoKgf{lZQf5JB8ptc78$K4qEe zPU3T?KaOLmi@}GIS}K}iVFx_*4atv&XgZw*X}QE`0@}lPWO;{rQL`{|dnq08h0rpj zvurT4nR!%!3cKcHDpnC5ZQyA-nTN-Nwq-0@s{^>51-y^{07z|cA#51->La#QKZ`HG z)!qBWNI?6-BSZ&pB>nzT6U2P`iZIZBGaAoOD!7a8Omgt`^9(uQS?s9keFekO29{cW zF7kZAivVvTJmu`wSxj}49LxeBsV^()Tyw@F9XlfzumwI@<~bW1T*02=C7wN@9t^+^ z2}4G;k_DW&YIqa^qpjPGr%@PaPsI(RpB!T2`mKk-ANIpGG5Hpj0E(MeuX(0b&3yJg z8ICfy_&ADei|`x>{<&H5MOfxv{-{% z<~^pOaCkb4X(!_jCv6NO-NHCkS*x_|%-ZOfQICiEnZhz_?XD$6U{K6W$Yln{xQ)Ze ztW>(f(-jr+f>&tl>Io^Spi2*Pm@Egn1OEUc?dzp9N(B>hUHg}hiADcvF^7HdD@3S{9G5sC6I~4XgD%u@ zEz~Xe`=VyY1&m+XG%H&JFIO<4IJsqk5nYZdaPr}FD{fCA^D+==X5C-T}^ua5|o zwh+q*k#fu4>RC7~pMb;d$7ovU?c5I7RVqn2Nt zty18+3y;F)B@JAFiM<%!WTZ`4;QSgQy8$pKvD7sM7T5P)(Ygh@FPZ-83YCVR2uF^a z1jnG=DU8zbXeT%(AXq38gUo#u(p>o?ND|IqMv8?Rq0{MZRl&z@Gcg*rT+-W>vsCU^ zcmtHpofkKIZ{l2JUIJHinx)0MM5=)8Epe;!9nOGujA5+7VOvrk%o~a{0Qoe_TG-M% zvmc1_Ro&8UoXf&n_aGN1+GV!d-m&&RHDjppd6KZjgH8cIv*HOIJTOycIj#7O8n%;j zDLWkJGJ;?;8q5V17}#^G%x>do;EoXcx}e=H+;qg3Tmf3| zQJ;J4KlT+7Q=^Rh2B1;-0g_vG3_4qw-Z9gV-KIe2BNlQ;%nHuK92Z$4K_7vPz^!if z00__-e-C(TQ;e-%&SOma7C2ZoU;Bn78dKmpKbgU{t^!pAdc%v$G`WeMIHI`?EF=*( zB51x>%qN_x8m)chu6}d3vOW99DF(CK9hVJW*TN=%c1g!A%{4+)o-e8N{SM521ZBn43Vdf0o<}174Vb#s-fl__Fqg7`Kc1-KF0Y&va(5uuV4G+37 z2nMZljWA`fUuGqi8I*7Mm*=u$-L@$>gwGYZFKt{##*u(*utfz)!-Hxyj7dlGVi?b#g)Qx_QL+fHW-oT{yCUa3Iop{Jj~t$ z;DkNf_>4?SzB4KT<>};b`ITQAS(4z^6k@s>RHOK%mS6hU&mc{{Y0KJrs1sRGx3V3uY<@G(hW;9JHDu%)|%-Mjra5ZdvZ^)C7Mu02mSw9bof!WNQNo<>!`oJxCZ=TbVPLQ=_9BL0P~knP8si$fivppx%zgG3KUO z4oOY`P_<1Rmn(m04flIg3B#_>+FdaQw{zUJ?wprKQ1ToS_lSf>1^uC_D+S*WHd#hd z$y~51=RmaM-Uo$su~F?fR20hNhEv#=y2BM?iE(~#Lv&zq2&ZxL-dY$nad?;QJbuu6 zb!&>j@d)i$?7dAFm2RV9yD%GLA6pW-9;4p!x!JLpGk>0KWcu-gw%x51f2P-H0)(4^gai-B;@yGiX1Vi$Y@CFG>+ z#LUK)X_YR@YZl5LVX?YO;iK^x8CU{w?+ft_kB%kf^l|Bn`>~~62FPwIb7Dt!Xef!$ z*yd49I- zWeXT^@L|V@;QQ(tYmVdW!kwM&5AhPXn1<1A)5u2ecXvKF%ba;*F&_6{ucl;rufuP<-|Si1iW_Jp4vO zgLmQW7NSJ5X7rWZ#DbRJWch)J*5lERB1{o0Cu&t2_?I}b+jn;AR&W`>a>Zyx6}j;> zcp|-#SY7Uiij0@XA9h^8Rrldy*jfz4RF&%&f@e@RjhMp*4=uAVnDj30=6hh>lFh$GM_(ju%S{2FNjOwAubBguja@Yk z2?3ceeUa%obPPE~X4+X+kkL(26TYf_C}UL{Hz$;0LpKEQlzMPu$w2za>I zSRS6yUoJ=9xDA`JEc?xEE7eF@CsAo94j!LZ8B7>=|C4`rIQmn{R@Qd4FX%mmqH z0Aq$MnF_O=^FL*co6JOD=G02y3rLoli%@rgsf;+oDVE8A3+A9_<6|qz?PFgti6QwS zin=w>>Jd@MN$)nzO`nNmyCZ?~h0LkC&eM&~0;V5=*TFA98aKLz5~!sWoCR}i2mW-v zan>96V-v-uj%HKPCFFz)vow=5O!DUwa2pafJWG$scym5u(PYV$))2P_Z6YNC*O7HB z6VF=j-X#)LfTOsEe1iR>OOqor@hSp#i#L@L>kwzl?JfXX-p^!hz|bezA+2aYJa`Igu@*7!m* z0L5be0P;{NvEH+!sVT%7xtK=<>|%~s%B&Wwj#Ag74sN+27Q|b_ij2!0i>SE~!?lm_ zlOK%ETn|h}t%cyIW_zG7jKtvBtR|6sKnxU0c~@aa=2=7)DKz6G0PqkUZbmxXU}P2^ z1E0<+)S*@x_eaqO+6)rq8G_K z7MZ%t!`TAQ$N5A*oK^>XJB}E~?t`pK7;84Dd~+L} zbOK%d$HddKiRxC1!yFVj4SPpj@#*klZFoE#f^X_s4LLk}OIFxx@VJEhfGhXgJkdu) zESzLP&>k5^pdN-W>9jgoE<7b5q|oMLwR)|=BJTvuyU1%WKesYnrQ__mlWuRK!sdEh zRFCF630?!Z4}s?FTgnaoY&Q6D9zQLjl8QR$4Ba;Yat4W2ky>H<2!!YaIaP7f?+0u# z)UgkjUl2j(G54kY{7a9eJWuwPN=7mEG&hVuev)d)=2j~-!99HG6a4Tt()Hx&W%-zbCUuiTTCi(eH-1dsKzka1bG;FXj>Qv1O9~0J&p9tUmFpcq_5&LO#bR9^4{Ldqi|Ac$q4KKlJqze2v)i zeMBCocYKohwdqw?{q9=oR^wdDS8Ac>h;0IopZeDP<*x|mQser3!#foOwheUoj<@uHwF)$iM zHoKOk6b2Y_sj4hP&2i?3~D)me0v#0CRpB%m5w z=Aq}M2(Z3$2uK?Qt_?@f;v&ukU-eR&>`u|hO&9b0>Z z9PvtOT_i`oDe{PHrUotcnZ^mUFu*RIqJeXJY2++##LVS3&nV>4FTvb8El(F9ufSQz zOQ)*KLs92w5)h7y@|RImfPav$dE`Z+`qb(H-bN`EZwp2>V^e%WAzHgs9@aB4ITnJl zN~VRL{!XCX2JKzL?Xx5(mCJdRLZgQSjf=%qcMJv2=8E0uA==P{{$H8jox!VgsZCZV zJ7$dOoVzDa;g=xCBDU87`Gno$5gBXDK18rTAw^ba?y<)cEIEw;4sR^OS?s3@-RiW(%_688hZhYl9E?HyT7wj%?yT-qAqC|gu%2c|8S zT+F6u{{Vp<5tdO9)p$0_!?9$jld$=PKfT3{E9SsATVmjiUK?Ct9If*aSaS+?two(K zG|H(BN6P2ST_}HAGS~f0UJLE2g`^uhpqySeR^qIeMtaFlBfH}7}6E;M7h}4$sg$#~td#>{(sv6bRo%}f(kE>AI+p{XupIR(d%$1M=!!G>~ zt@K$?*%xQ3QSwYL&YK@Kd`m-N%Vh=W$J^duA_-{LV8b6aX_TPY65xqyR(pXBL97rS zl)sxPa1Pp6NKv_?{b@GcfhU`TDl1_|_CbLoHG#voc!$g_zNP47)z!_lg>IQ8ej z+*;QKDCSVHJPvi@7)c#=Ie283P`og(S~`M;jf-9|W&Qo7@p^1cricAONM(-FSJ;MU z-fA$&aU|i$rN;q6iL-iVAGv+mbTto6fS1C))5>_b=nwsjt`?W<^qdu5kh)KLA}!V{ z0umgyy8hG&!8e4xrcs*kL$XLP^-d1vp*2%2ur9*lWu)y&HOv_oE2*Rg z2h4Ju-K9E2E@wgklBx>{?Jl-mBCh%?iHx~ljGL|E+{d+rWOPP{P*BPx#~$&-_*fjA z^V}spIHN=ta0NZD8i16vXg$#n0Or%qhBA@529-)TD3DVIi()L@uw91F2~o!Y6cF>z z-aLWc=&Lqe5vv(dqhHr@^CPDGJ*RM%bW1X|a&C650NzX4P}Yx8m9|X#5W(N;F9;vp z_ZO1^0>3a9M{=)duir0k?I>Hd%M^hFN;ObEk!~oPHAMtl+(j3fU>2{#{)vnZ&6*S= z9;GWxA18CSg1+-J5{$1T^Zx)7eLiM~9FU=KlSh1zn6Fj)BRm-S(s+d5OE(gf#w+OK zs_t0$StB*>;ubC<`vfStSha)ZIJKl9Wr@w6Up2W{NHv`ic17yXh`gIaOT4u0Uu>Y7~Qht5UGECb05^=U>`s3X=#+r~tXAY&rJPXAFWiqeomf8? z`&??RT?74*^R7pvz7x=u!(`s5Gla1Z0Dv+;%t6#%qRtyu`;}RGY&R1X=0ps zVadMf5>?bYz0ml5^8PHSuVYfW%J3fjO`{N#NNf+MaR)_?Pj4}?AaG3;V@@Q-jcx7r zsM16#VSl)nxlwGj73HvS3wtoVtuM1|UH2pfHJ@lxmw`M(8DzTKL$YBVEH-eB^yO;t zr)~UC{VZ>>V&l>QR{P}xgqVfrJ|cm}10dk{gKw3gKax_BZ?!u2nw~+J_xFMjO1VbO z2HBi2Kbim|s_igxP+-RqNn1;Wwm9(Pk$IglE!92=dr-*Rsbu10;_Q#iDJC_LSjJpD zR<2!_0ncFKX_Ct+{Dim#Dk6`xONC2itb4#fCdxmIVa24g0#x$lrNr%sBhn@~oJwhf zS=je4QK&&{(W;kR7f!1eGsDyi(mQfy+`MeEvF(jq!eW)k1#Q5ys07F+Eh zTtK2`#$afRMFHawB&DgDZS&2`#;` z-P#`p)^{^qtQ*?17XxpKR12AB)sfOM11VzuZhJuL7{Aj;x_)lb<;}{}_DH^Za&amo zpP1hfx|Nwi7)L%4F3L<5nc=B-p|m@84W3EM(LFfNGc#b{VknjZ&G}|%(=(V@c|E~) z#of;_sl+O3irMX*WBV7fC*ccT`E;mlA47Tem1sNwx5RlzN8`ORjxyW?Km###Fsv-y zD5`VZSoTopsYlIXvirpl@Y4ASOasA4kAZnp1MLZpuf^qmjJ1~ytFBV}#A>=L)BD28 zHOLN@AeYw$?kI^>JAlF&g<;aj;_awu;L|<9DWqyn493>mvxF zt3?yKaf_S>`Sy%;ftyI)XHxFx+_aW?q8SNvz#Gp~1UMtQ`VkdB9)JVCX?c`q2fn-$ z6Mw*^0QUh5MQUp_4@0YG)_ zEDS8H>m6W-8E3M-WvUl?zE~;E>?Gp=w}UI!>6q5xl|ZBhY8y^;W(z%f=kXJcCqf+u(0-UI}Pb!Oh0t`oeOaD~xcJg&9kn z+Vt*NZiGI-7`a;<#iXty$5MhIOE|{j5=QW~aFP3EMI^8e2i%ZQSQhN&b$z;3)#i`E z8N~AO7O_jzsyqd>Wf^S0bnQwOyvv8VMiALygf0yAy#D}qHcKV`YB;5Eu?Wb(g%(u+ zTgCaCHO4Ptgn06<2l~SZy{0Y_jSqQ>tmsgGczjnvp9hA2M$;EFCj}_M{<9*r@4TlF z5CFF=>zvHRrpw4zz1jRs!nV6uUk5Qm(u(LjHI`QiM#I&8vzb%uv^~)zY+;Jsuqt@- za=v1*6$UvAZh*|=b>M%6OB&LwBrL^FODD{r+BUmCbrWVT29BO>4%9_@TVK?@k( z1-v;y-Nt5>s-Fxr3iU2jA(AD0MKDUN4$ljZdY%;S;Vb%9&jg}2V3<5gqPFqWx|Z1H zi0zo=3*^%uRhC+R#!RhSe(psTTe87{XPy&n4(fa%61us+Zs!8 z;((1PC@@L)Rv|j8lB=gMR*1D*-OLwU`^`*tMyi)Mm45b3r^>^CFR6B{1j#=R5H~`2oVW^=B ziy!3N0lW`i`4es}?41c2L6xkK(&~$DYu&JUYGf7#0u#K+csM*1*`Hp?%@R7b&S8O@C_GTXe{HuN-3f^I z6C*vjZeH;FZ-!%sB>O>YrojD?H83h^+sv!msAC7;0K@0ZROyRQFA=p4o{y9OUWV14 zGpV2l0?~3<=tsLFP-s@?8L?in(O)qW6>{X)CzbQ|&)7epc%O@ulK@x`5m-s4B zDOZI7Z?eICWZOnEHbq6y*&G0AK$gENKXpa2En#s=Y<0Nc+d`c~b;vllvNg6Blu*BH z5um%8bMh|SsKT%kqBOAF5^DLisjo9$;gdqWo?_m-K1Lq~8N*S)Zp`6vfeoYH&Tbmz zHjSem4ddE4?MjgFztnVdt_Prtjn`B?S1@|KL>nUOdIR`EHEmCAcP!4%Ze{Z;De&{( z{3UIf(b`PBaqo{Bg5(8w8oWo=SX*Mvk{K0@VRqER^bw$Z=B1<+7dK04_t%+7Ot?*J z9{&K$1BFCYU{c_!^AIK7I~jp)UDVzWX+|94db2!2Y?}v><>phG)p!+0IjLy)c^~#erqyXq{{Y&@`_a(x7%iz$hQ;=b&Dy`b9UJA3@Vc2px@1o<5IA_y{E=yD z1K{xqq?Aeww3loFoAH=9Xsc-o0^r*bo{Hc>+?(vNEn64>v|i>oG4h2-bk%KeFw809 zh2{TvccC)PIC|%Vyn9R&p!>XfrzVV zmDAn~d#A54nJrVx!b8DpgY5U3SGXz?t^-+#f;E45VgqK)K`bE2DFIA4ACVXgTFTtM zGw}#5_J&8>>8WPLuVI@2<`SBJX?r)ud#4CsaDj3LcKdhx%n$-r>gE$OJnC-vBm9vs z>@|4^q+OgvWPW2fWG@hyW;TIQkLO8MMnu)~Edae|F-I96kQ1MoVi&<*v|P%!<-QNZ zUl^;lfbfkFWYU1c0uu=sZ1LCPVU_A<%4MXckRsAcU}!IVN6Zwae-K=vjF*4R=PW;Y z(LcQZ0CNjdRePO=d|TXH0lI=$GXQEznwymBGlgwj(;ouuOzYK_i+Q-rSK6_e1UG|? zApnxbJvw795!eXlkV~MY9p=XU;%6{!c%}#Be$X)lF{R-h&Ox|RDQd0M&TGJTF59&~ z@iTC6+ayE9*ZXB!cxMj;U3jGd$UkfvL1$r(NKKJRl;*vd^4%K>!F-VLt^WYz4rY5w zJGn8akjir7rc&_U$`@ZZ09t1+QyEki{4cyx1FhQOKE1d`n<9TsfrG&C!NE)d@JO`M zEH@UXtNfudGFcMP(#F4rQ$vHGMbjx+46lfPRQ8xn2nvdp540U6WIKRB)=^o1XCE@v zgunNY33;k-nL=m0qJGJw;8>4%Qj94@st7Gq(R@>^r`UY3cnq!ff~X!vi4BqSFYJan zhUnV8Odf}}VCJ;TS*4l`G45|rlNX%-0LZwOTCjH<+ghzeRrFROqNZN67-&<-)L!o# zKq|Z62&$#c@9zS3)o~Y0rIu=>ee(@?20B*Tsd{a4jA!B?{4*6+rH+!|Z0Vbi+9L_r z8|B-YQ{h=+ zT?IM2!ugHk=~j}(?8VP%4{=eE!(NXZFvJwfyhlHJ5_b1ILQVzl4s6kZ{{Y!owi2aG zH@Mk>6-_t&qaq4|$?SY4o2gW0t|y7&T*v|By}Lc5Tu1mU>4|E$!Qps+iJh%WCKmFq zK4mGsXX7Q?G0I`)9%xsGolTxc@H2fvckHbzf6=J(wVG^=0z1LxUDMXjqt`qnqC6EXebUm*@DG^3YJ)F~79HC0@Su z%8C`4TDc+dO_!3J)mu(jsAS?*ZxdzQwMITv#h0;`Yfp6m4R^cESHxaZRpp+iguwF1 z8ix4C56TQy#88A33^9eif0$G>Rj%fYUT}QGiX$kpE`}}9==)3Jh~nMDf}Tea7ZxmV zsu&}xg@N2L=oMwng3)+0%m5Oq5%VfEP)zpz5aH+dMZ?-@6_)<*Uoh(dTkE+7)G+`9uYt!Axo6p zQ1-MgOY0m)4LC}nzqhT;I;7|b{j3Ki1*TZ-4?Hyz#>*GYL*17n%3HX2hfjHi>d9gG zmC*YIqGAxCZ!E_lJ$MXF2aPZ;Zzw;!RC8Tjmh(AgHn4dhfZ5#Nv=f|}1#Z}&z8IKL zPWrK*w`6#s*i3+-ONA^|{Y#pS3Ujh;W>v+ScLE68FUnZJ4&E>N#5ffKhE=5k-Y>d`;8Ef?#JPb^s z0GbB6VGgdDDHJqN!#p1-$|kW4=ovOK@0r)ZfHM?v*Th$f?6Q7i-2rvIQ!mUy zRnBpkh?L9hO7J>s0)yV=8F+b2F<7+tm76D4xfQ995#n-(0odO z0CmqWwULjM!ELrmy699bVm-xp_ETQ-1;R0Y4-&kdfb4&`*Yd$as#(t(zlcEZ$0_XzQtJShUI&>}Q874h>V|Oed z=KyRE1H{m(ioN~6nSzeH$-83k zL3PgI4shQQyl%AKZQ@lznPxVXRK+vvP<_GzK#(a+j*c9upt z>Q=vRxI;Zl*I8Rtq75t^WJTu1t>l=}1Dip=TvGs{M@^NUf?gddYX1OqYvGKPmAh)g zTK%QoW0O3}PuW%*76Gm7c6?kX^@oFARhKmskR5{CvbvVUXVH19ZicGwfc(eEP{3&e3fXqhr*_6OID@$C%bxMgIT^Qy54a!#hYZUg~5y zO)h0$gR;MwV;61^k7{c9Tlj}G-cSWc$q0qkvGa50aizR0Ntg_cMZf9`$5TDefc(e8 z`a-WykM$I~b&DP9Wf0#e;nm*mSO%YjA0WtHAd?Uam+VWn+ZTuL3Td`IFf>u{FqDPG zEgS^rEF4T~n)_^din8b2JUA`3T`BjP{ld2>@Ju=c_T{vG_=H&-%$rtakj29z+{rBr zb`06u;vi~viGKr1P9LSG3A9Cg_+uTQr<)O5UNa8Lu{XFOrU`o~@fTzchM`jD#NdTx zRpwtz(HB^|G2C_x7DAZ=j`R}vS~RlxMs@=9(``gyK)-ONS6+$h7;HVcnkcHW+`xNJWOk-D-HwSH>sKCovXFX zsNJ7w?tegpr9cUrIF}xX037845WSBVF>(rcF(ewYa!_QPRmbfVviEp$MRH|6?>^By zsf*mHnihgV2hEFLWsI3|>Az@;Zmv9Pdm+cY53X_iFe2}E08$E z$LZ!4{6gVu;QfY4V~zt%9WLW6&MPvEosdCI zd{jjAFf%DTCxB*+90nzcHam24F%n@}a=yZwl!WT6uMjPLn(ELEU=JrxFlEc59wKEn z5aE;@F4AzdDQnglWf1suJW#-awZr0JF5}<3n(|7K3flt3W1}*-71COsAdhVnr~XJB zHF3e^<{8HsZZHjjO-zrl3fuXL&10Y)#dKEekxDSlZ+2O)XgRmdUJHaIGogD&DmX<9 z+tx+s>GFPH54U96QJ`g8xHK-0!llcASK3qdjBktr2luIDj07zM!XRNl&iya6uI(pJ|+Tgr^IW3qV8Rec@T}bT7;k^(MwOf z0{}Lnmcyj6mmDk-4pNX6J{}`vLvgN_H&;Mcr8>;Ph2G)=M8-Tz3V7cn$da1;`%!Y) z%tL4G#$pc7jBWn-m021OVr2QAHLb$b<4|mUu}1YAy%<}4jNBOb#zV<$MgmwX9gsRK z*g2U`$%QRhae4TN8rc*L(R^YqUs?^hPHtbeW?iD6!W*4sK_09bvo|K@n8Uwvr8|R& zS*^XS&W6{>%pKvZ@weg3vjXO@?`wQ<3)*pfe$q2L7pF@cc^V!vj9Z(aPK>-g|wPAt2IXn#)p>&@T?@YAPTF&q6B}HH+6oqSa~+82IPUda^#`$#>_F~22Q>$nr8k@J)trOmio6!kcFhbdh`sx98L!=_}+EJPk7 zX=Grvqs(POsb9tW5X6|1kazPA<}5f37D9=6fwVyP(*Q9PRIOBsmgZHBsuAyY+H4aL zSPulzxf^aH{{WhZoby*JkS|e15&6SefS%V-u;CWd66j9ET52lqsEHe06=3bE`^u=L z_3{;E+?a$~_k~kImli+VTN0nwgUs6TlwRKU!#Av0_K7YB71-bGBL$Yg@IZry;(B4k zSylbhfQ*#`49b`n)K8-Ul<(RCZFNiLB%I?Vryun3~fl-N(GxK{Ea{>@MnZwu8ohHce zWQ?*{ntRi5@1i%pFTcblnqAO1%N5ZS*X&w^ymfC9tmeJ_$z}&{AxHBHQ1_tcKDmx&Pe$j-!lH zijAam6|wQId2=~t160I$`E5J?dUYe(7rcxpwO9 zo9GJJTUI5me(j3aIJe>zx2$1pUUU1)j@)cJUcg^{r7`IsI^hR*=EArbF35GLZZ>JK zs=*HG0GRFr$?ut)F7Q6fh7Ig?-$ZNDHEZH=k^?m>{8UPf5hJAR-K6B*?pn85J~*X)2v%z{=sfxC5bHv z4vvI4W9kNguR?XdM7Ic=he?!&W&~VTwz%<(BjZzhefUVfC<%VzpuE3$H% z_bYNb@7h$>Iw>7Q79M3&vZe;MyLJc6vQXAOXFg@rS{}^XC{{>WIx~N3s>%pU{{!UvxtPElA$Q|`z2E8qrrSk(95Oq-8q(FQez{Ood1zH}S3c(Xd^$2hxX(1sF1^p25T6)VruZXE1 z+J-o7XGg@i86E+hMW`s(#Os*9{5a&|ER45?x-Gk9BnvllBzU*NkZBoG)!Bf`7x4Vb z(+%gkBWQt}d?2XaxsY6{~uwv#LO zE%>N46|rznF}2+1fj442{!*$nZ8J2+1CosQ0EbGf?kd_@!Be7;@`9}Qf*ZgMNPEQE z#8SJ(${65*uVqWCO6c=*h}<$v6MiAPzBk0Yt8F`V1rVSxu3|+lymbW5^=M)7A$4yN zu=7DwJ9jUIVE5oiRO$V1k78PDlM?RtIy$JcThljicrRuuCx{LaAwE~MZWj`R$_U@$ zTg1epMeZWF>zSw0FHGD6a&oJP0Qp@N019G>cz!SYF*KnzU5I<99o39tP|To?n7CAI zH))yCN2sOK(`x%lXUUdN9ll`tL7W!OX#i%(AG^!l5O%)K^y^j%6D+;p+ZhJT&CF|<`WuFsJFm)Y5 z?qJw$Kk5j`G~SBGM>P~e#0$#!7C#Vh=zFUyKij^vXrZmMgzvNSQqms#Dqf@N+izc) zV`{mmdm+Mn#xj!3Hf-xM%;w+-r4+|;jGC_l&v=!#HV)x*Qnh} z?IpJ1hQBo(Af55ze<&u4mzh~bj?3K1-S>>ejEp#m(E&z4_cSPY^Lid5Q$3EScUqTl zEQ_Nh$|1CDimbHw#Gq-qlC3$JZ&PdfnI){pJ-Z}#n2QNdjHr{^GC3GI zIf7VKcCJ;KL`2}9`xep5kx>Q^y7H4-1G6PcUL9Z^Oi3HOTmxI*h;$Wekzcexm|Q)_ zn9HIFld!RP)d1#OvnzlsnPxm6IgWWIE1RA;uM-H%1m!TcJ7cDy_&6mzgxEr(e;9LH zmk4cKT&{IHI<*?KX}@ew@886vL3goU@{G7EiE{HoZC?aha%np^0Rf=(#NOf6X*mtd zpqG{IG&*73^!=2qs&pO+#i2v;I)eLljg~ypZO^m zDC`$an3%xAuiSZu+*j-H#h(cB2mnz&R<0Ib{};So^}l&#iMl z%W|6=T0Ef{mxkJ29 z7dc7UPA*ix&<#S~gK+YUuKV-7%q^*9)H7w31RUQOl!#my!z&m=RpueLnO1jPOkKHJ z5*-kWaP;O6P8wtmpJ=tpFAdE-{AH#-H3Pv@QQ{kE0(A8+J+z}F=g*=Yq$n~ZDElUk zj`qaN>8h;oJwdn1%*&^7%G7A&>MSSaquS;Mve6R*xd@Mxr9&=`cjwboG3tkPgWqY3 zX-uw=a8ll7{K`~1Vpia#D!u!A$J2bcroP@{hdwhcprvrk;wUv4Lajn6)LItPLaPZa zmwILGGL!*mdvWZW$w*%Q?-eu93?&?l-Qy4)N^55#UgCVIagMhP6{t)sV~T%hPYP*a zv3#N^!VLslTngQK&+6)RK<|X{c|*Js|Bog6=)ijJXyH(mkbZ=m1Ntb z7aJTrE-++&h7dB=o>;*XF3&7nx)SPZib@r6g;Xd$}D6MJCH7q+#L9GJcSDA=*qvEu50jq(5YFQL*cOTK6>3qkF z4`FH_c3XKmJ%^QF%&4BNXxcgNFrkYDZ!5KJwUCLTr73EJ+=6v!2idwjKQ%yjfCQ=MO z{)xMMrpLsn2XPR*HtL& z&kUH=d6;MRwKU2d3~(_)Qujh7Y`x8I#=Oc+j-FcZ_lhgiXD)N`2ugs;%jE~=dyNUC z1@|Ry4wZKbHdV^7iyIXj%H}=z4N{jag=v6#9t5rsD(~C4tCdwqzqHsZm|iXg_fL63 zJOOoc_|;DOWF_#^?-;8j8y*m;XTcLzxarGxBrcCWWdZ|X{*i<=2C^6&*5$H|g}3nB zBb9{?u`Jr7r`_k?2m&VSv%?xfHWZxH9B?b$H$KtRip_f-T){u#1=8{un}HEvaZj1Q z77il-Wv+ZBC_3j`{n2Sfd`sk=#O>Y#*6}SV%ksXM0y_`oF1I077XTSWx{OnZ;G2w1 zpYk}CnXviua~iX*J6S*^>5#?mpwl$-^4uZ4(!QE8jZL3)i4)W!1?~$d>8q zBs|OK605iI65(>qe*XY7N=N1h$la#jG89VAgW)O71-X=`9`Nq%vr#827PHwKDO0Hb z0HRs_+|$GpG^&b++fEPqfjg3aiL!ud+cQzHv(8%>n$UgYB%~vluCs1);#%i{46YbG z=zavvg9^TbxyhkZBi`jpCfp3un5S!k?a~TGRksbqwBDD2g`VqQ$R+2ep~~tHrlSIL zQi(YtJ1d6nDlk_u-d%X9%c_vb^qtIBT#GRRyn%o&2dFNP4k-7VbNV)&MP;>wRAT-A z0EvlV<_TU^#)PmFN&)iumIOONci?vy?-h~NGfWMGLyDAoTWY~v!qk^MheN~!AK6Y3 zq9=ouc$>EwO8MSpXNqIb9u2}-#PX?(Z{rmBiV_7D6M}7ASIamdvW~eM&QR-^r2_VeLf%97!}yQB4i_HU zAjq=R2pGcaOF)%31;*uS1oA}G0bPy_j8q~ohHu>FU%eM$;7uaX-Ln;O10-uX!)gyw z(9))d!_-u13DexCa<^*zpkj-*$Uk;Q$Yv9FRlH0I^I7&|ySrSs1<}<;Vy$euj!m4( z^pmMbK4oWYE_K!XOMFXE7!h_rPtHiTdNU^K{nKYsfyw*e6jQrz-dDnHmH8o^+f46) z0-jv;;~((|2NwSTxH0XxuUk97{$ue2%esPpmd%~4Hi~P2T7TFz#GoGDFXmClk!Q)< zjI}Q9V-@h>chdx#mjb#z)X0X0LuV#2C?&iuUB&n4RiNwwXTmihwESGA-ba{=o z5}}Uj_Dz-%po`S8nQbXj=ZA01LPt8>FJ}j|gaBDZjm1iA>L^;++3Q)uEso3-5m-vD z4kaT>wfuU9N*rMKl7|VKUC@ODMO3{ueePcrfTwKE3|$K8tI>ImRI2pu5ojXir#=a7 z+fIjmSu5ftYzGA!_LJ`cx=<97+M1ltVk@fm!Cgi`A7`>}1rE4+l$n_E!we|=5Pofp zF3<>G=5;bU^I%88<>QE!wXiq~Z!u;&;)VYJCo<0Tx)S>fj+V>ImKRB3zFNOA1fr!f zQefe)5dQ#7GA{>*{l$7F{zt)Z7f>oS?D?Bt{{TKlBuh@oE>D1AJ@h$-Za%P^3qVID&LYqKg1>Z@Q9guv3Pb&-N*j88zMygX& zY1ow*L@>)|zGqiduy`6=>AY0A3Vq2-+zw)j51L#NwL^PZNslI$_|D+-mTuPtK+Jf6 zJfy_?btrlkQrr6`1CFkMzji#!;>R!-hU*Z+Dw&Sy6^#D?S-IVoS5uP!f+uBk^)nSn zgy+i;p1n7s(E`I)4YG-h$8>5%(a`mVk}6{{Sy&QMXmtxo`e0N3<#|Se zv0oQ+FB_oO_)2&wX;x}CQ&vkHL|`{{XOEoKtuzepFm*G@=ov&yBpma?oQTNeVjskewXYDE4jf07ZiO{tl2ZAMHoTm@Gr@Gh=%zM-l zHLMfkvG}Pu%L~273%c8-;Kk^Ki zyqlz)(A{c}P;Bu9ultxxX3f(C^9xbGCPo7mVHd@j{LH!lAihW#eHUNv8pldX`BbG* zpAuQH`@=$3lxLSx)x@gU!3EpNhNT>0Xw(xqz?0M=aNuGpFgKEJAzQ_BD8iJ}hyu_2 zbfBLG6uA5$D`G}TiiZ_Yu++&G??Cp6+&ln4yNYQaA&f=xHS|P^8e3DuZ-g0gvS)PJ z7cs6c60uQrGLK9}webqe&pBkZ3e?_Zp~~>}FR^?X#r#SIcB${>@^=M%wEk}&v{eLj z6{KzUjl#S3WqVKDnC7+Ydxm`m6wNQDUgaWY;KO5xs%>Jxs)wySLjn(tM+~gP9W>XQ zC4u-u8t%`*ek0p}E$4=%z#-W_KbUBdxLZJXa<(UpaXgo9$Wtaq{5(G-j?dtQH;o$zyZc0EH#3; z3yAb$*rMH>tBzj*vfDginY%x9X|b=a}Cp7)r* zpwzSng;%61MRVy_SZ0)Tlzlm?|utM+C1j+M^H zDNBGYdbxdlbB_}}A{DEg>n5UL4HBRiFh#A_7)y%1*fJN)xPFxCZzld>oER|vVDdo& zxwPc)-{ueiwp{&{nPn_wU{v>k{LL@zG7n7H(buuKW}$e00nJT9t0dvk>J*LJ4(Y3! z?w-P&JTS?Ed#?=2(+^BX{mj$3Tw0m6+HYn1oI@P9E`WvO$84dCYEYI>vSo8)N6tuq zJl&WMQkK1%P}4Ci5uA$VS+EuaN3j%C9!vR$047|kj|emV!CpdPzRLCCh&qD`k6tss zysF)+TZ>ViuTtk5a8LN35ur)2wthc(gP{gw7Gif%+18Q;~7Z*n9RHfcqTtXCu<_zE`v}>bf z)m*p|i?d-AcImpTX$dazr5(nOLz#Aa!qtYmOp|w#((;K4Xns#a-lY^XF=MCNUfBV2 z#KjjJIEF~5@~+S39E?lVEUvY-2FY8?xX@HN+jm|Q8Ny9nn%ZP*7(7eA^#~)b^LWWb z6I9AY-6+m4G~4BcD1BFyq~pRt=H=*2E#MdraYv+CTfqb#0AMnwNUwG6FBk?9R%YEh zu_EOA&X;y#X+^{HN5oQ7eByXgA)C<^OpJ4G;C<4DC9No8BJda-n4L(Uld;6Xg452f zRRXh2d$6;VQUSl*~eL8&+~5kQIbz=4z*66x;7Jg|S5PoKlv-M{4yCW+~~(s=sM% z0utztGNd(ci0;9;NYJu%;(N;q1%OOD#g79N1o??UI$*ra^@(l$&xT%y6gO}_>Z!@X zHU9u;L*qc%{6UovOKi}m9@2`qmfP^W&W+w5{Kus_H*thJhIpC>A2Dj+q1OEZdid;= z3Z-5k%(drG%9~>K0XvsmT$2qiGdj}cTB#G8ghPo4=l7a>F6sc;!& z^73y0;|iYi>0Wz^rFrd9>^<`gKt66T!zL%`6#bjf0(2-5fQ_G4>~1-lAb ziMrn2A_@Tohgz@RU{?AH;@@bh`lzA2`=VU}!J>2pIM!?N6VCHm&c0e-jT&sYpuKICj6SNE0`_S&E$%s3sg?zm7(rfL@G7`*$ ztY^wlbfZP`?F+tv)%9LFmumgZQKe-gsu{{XnRP$k|z#%AP1slXYJt8sg~ClRsK;M6r7Wc1W4fs3z{GCoFK zl0GpDkvE>EHx_2J%FWHCuxh;L`*OJCt#$S{`IZ{jH7I}N&-;<*DCvuUC+3dM$)jW; zhPaIPcB)p4f$n@kLC5)Rr!lRv%4!|7(0`dw6o@eCoH*Ao?b~gz@WU|tsP-7wh=H7S zR6nTAgyETmqHtQwKGWf}x*RvUZqH~&m)Ws{n-9q@3NUuRu@v)2u&)nM%dZ6g0Ay2^ zQv-ls%&zt{2<`IC097bv<>y*WR-16wGTyH4a-f$Ed@sIawB2;`G9#w0d-n=2xIWlK z*Cl>XdW}H84dNS)k^cY(#Akdv3y8@^o0g93%sxD<5HEVbnJnyCf%5XpNX=aN8M{cz zNLibdolBrSUy0^v=a{R|@h~PD4}c|cLa?=uHt^-Jtw&Ir|`@UhXH>1OS!k4 z_W6pH3?6SVJ-ae4=2mDKziTUJNc{X(9u~| z=P3j%K3QU+V~1&ycJ~EfsO*bD8a?=#rX4v;LTIsEO$#4_!#548C=vJ^HEDPL;h;6s z3bOUKUrcz&1hJ7Be&tHLcY5I}vOJm43lfsIH3Mi2F_fYP*f;*TVb%jHj7r6v94-W= zix0ir9x`{-y5dlgf44Ubt9hDbq5E-Vt*=vl`o_lV;FYzyI*SndPm9gNJXIJCZ}T!a z6#MXVQ7PkRli24>$oj~^BgTS5)&5BST71uLv)fq;VMha(&k28}+Blvhf zyc-|8ruWo8QW?Rc8zTf2WVeDs-W1^$wo{KRVV4@=)_<7xV}Z8!7)~=DzfEp18@5~w zodh7a5EKkmZQ+9mx(PIab+!!QiHEaHH5E}|_@3F)F-vx$!2--q>9Ak24>JP34oQrJ zF>tk(qV@a)!Q8kR?#b}Z#ByfrY3vPm6B8B?J)v=oSYX1nX*ZIW?=uilw4oq7%b(_E z>`aC1>RMTWQ!3xYT5}-r41+LQum;rzk9R8-Alu52(D07aHr$SSPu?1+$99*t_=96X{{WHZ5pu1qTDRNygLAHP%`=@Ad62fg zH7;E8qpT~zdE!xY+bOSU+k-QnlLN?Q9&rYHfQdX!VFz-e7MU#_j1nra!D$e9D3L ziNTZjDW|?wt*dnbQD<;Q`pXAzzhX{XOEV23T(MESL9tCZtf;Rzt?`FG-|865r~n*6 z41>%If~n=GdAN+P7N7VfvK7U|>4@>)#5G!L155>YW=o_6(J0~zU~dBuVIDc(^|;_E zptq0-bhW^$Fq9hOBTvHRpI`thquqnT`|Tn2lA@y`rtq5WNmWM!<&0b{Rlzw%$x+4Q zh-w%OcsKJw_hF{`wN9fNTp#HRFMgl2%+um7E_uV|5OyaX&;UzB+W1&Q3Q!Yt7VXu! ze53rPP9|oFoQFsQtVRH(OxG9hxM*84$H|B7^9A>%Eqo+;4s&-AMeDdNmGJ%H63nwj zT^{g$%1bLQkM%9fUGHZqV8kE?Cz}}NHLR}!6#UH*C{af2p5UK%F~(V(^0>b<0|4if z4AeGC!Fl1_dCRXgD$dnCh~v!Lj~BXl5M0cwC^WVMuMm`@GTbZojl(Jxxoe~+Ym3aD z3;z2`g)ZtG_P@6TXpHUQrt_m2F=>Yjb1?72e12gumZQTMW+36e$~4F32iozS%(i{i zD1S;=9&R3i?6iAKqJwov{x+{!_CeKFYMxC%_p!kL0J&Qu%Al{BQ6uwm_@xg0<_&$e z+WDHIGvQr?t-_lg0EfK2FQ&7 z=8}u;D~er}?ZGurZg}nyhU9>NA7@Yu>Aa|K6%EX24|tv}`^L4WZ^Fs~0g{~9@PN3^ zOVWPxMnzWbVzuumZ3`J5!p^a%%4*U&GnsN=iT5ysDNKjj5bZtVpAz#OnXD~*N)cBx zL<2=VR#|OTc|YXOQk46kgfWv^5DHxilKM_!cmjx;WhFMm`4}QqH8k!z!?nTUmY~{k zo$8}DIw{jFt93L-1E3GI5xRl-X_lgKlY!aRc7L}jiV@QaNVfC>aVZ0FVmrgynn_fD&^p;y3Ekl#7 z;R2Wme&6RGiANvoYq5M0gw|3IgPCrJ7`6FvXtL9iZq~lTFa4#ED_6(9qm`c;KiS7{ z^_vm+vyd?`W2$RM+7K0~P;^TgjmDQR%@Jq=K;~4wApD~$%ULf-CX8@C(`qBl<(0bz z(~k7pokfB>veXNeYDGTNnQAe4OP?H!xF4`e|w7$Dm8mHz1Yjkd%<+2Q74 zDyTb%m6%=voX3n9k=_Vn$-Fy`Yo#j{`%5rQ<(Zq{OW9z;oz75Ju4;ABVC;OtO^~8A zB=H(pt{TI~aRvBOaEG+JK$hBhAhCH3W$^ZamwvVh{pNgfhezToOyB+mHtuau@*Mr8 zB^hVDR4We!78?)FI$)MllqHBr=C7%6GBm%IR|84`+1Q2Gi96iRWgCMzvhV&v#Sk@P z@)C|$W6Nu^#CO;1fz2%yz-KoPz#ir= z5ryV@zahD-Zx|U{d+rk$_8)USQmJ^SX5xv|a78CQVhK_zD?7hZ$yC|1`G(Av20DC4 zuP;=K%5jN&+rs$~5z1&AfV)Dhgm)|>!6L`h6pOMZVO+3Q*^ENlkkYbmH!TT_6va0# z?}4wWU$!x7qUO3AUgn{IYknsHVT(ihCR*0qof?cW@S;9I^gAZHA2D&1QO^eQrV`J0 zaa>eu3zQnaZxa{=W>@ERhO%GCiyQ>=3SApfqEH&HA2NY-aqwo&0wk)7^LP8oy`=Wa zIA7i+?(#m#nzM00sL2uF8-3yBGK?V6`IO2FTQ=o!RQudGWVh#X$S0zHDDegqv>T2v z#buPhVsIaf#C41sjeE?wBanPlV_`PQcyt)qN-8bGM7$iL1r?rSTDeU)1ryk1eMDO~ zS^PTu%h1JEWC5Phx)@UaA>0uwhuUNAQgs{r0_j^G7-oAeL#ND66jeu2%Rw01-f=r< zBQMNKEa!C@2f*S}P}+e@nJ(E0N5NAS;Fj&HW5fMsUE_ChsHxSPw)Jq@;8r|Tx-kwK zyW(d75$d>?0?GK!xpY7qy6TOEK&x>ZjAb&?@Cs;)|spn~YH`s|*m2JVfQ8nU6`g0X+B| zP8ga?PFI)OAC*>v`!M!^R`sjyAkvYKJSuhPSwt8`nkShIxd^#4oBwnbddTFr$_gK-lpwn5lV) zFSEoKh(R!o0M_9wz^kxoPzs>ffZOInHP_0Pc>Z-J2!+-`SDciS?D=b%1uh9vw1 zSHTbzwWv$QsTFYW=2e55!Q5`1o$!L*9`d*d8z9IwE$0F8DKc9uysU(&QKt)c$tzz| zSQM?A!I_)Z?J)e&`^+}G*gd#_m>kyU%zdKYz;W|`BoQarvt7Ttgv6&N;UXSx7YsxU z>*#6XNaZoHCdV#aM8KsJFX+1j5lN2C);ys zKgv)Vr{E=%5gqh?-+7g=PX>Z#-%_Mi#9$2$Zd8LeTk4^J%oj4)88{_V7K4MRX0&9q zTpdw8fX?DHSGXn{Ee6y6P3Ln%R@o5hEO7S%RR;*X!+H&Gm;@i95YGL0@eFFpm{J1f z1Vvj$v6+(%Ra0AGLV~xXGJ#TVYTyQYqSHx_kBMkrQobF+jRyFaNrM0))(xGj#qI$> z=!=DcF?%jmM(J{z!^14UwaXB^Tg(Ii^c=cp0F^*$zbc(fJTSB{Z8?Q8Rt{=eq{7tI zq10SBRSiuU6=0=>Owa_fuX!p^!O*+$?I>P^96)rN8ci%qoi7Q*HVu?g^_Z~IU6{H5 z0H-NAPRVnqxT%-ADYr1p*k~iq!Uhq1S4GooU8=2y|4U=_Xtw5_`Gn&}Xg7nRK2%i#*EdCv-nJOfgTw&e%xM~&r$vPT_r zzF-Jtti;RK+W}=d(RG3DC^jpw)VCzT_Jx)=b+X@?l?HPx#C5>rj4(l}J$M$kXLIkD zGUeut$FGkQGxO(%uix365!_4yjDIh*;G&?u;)-j=?mlxr?(!l}`5O&m?=n+%D$XU% z8Lcf(y+q4{LtY|-m@dNGW`t_H5B~sD85*II6hlu$>9EjQ8lQ9ji~wb$YVp zib1UxL|shEZ5e9uEEETf|^5U7lbhRoi;FMd5KXEaH!8*)OjP6$4J@{qH=3KCymCGRMqkvMh@cjAr1MD;zD+*Xl`5qu0~~|zYIOA0_RgWu&Nvz z#KL@pG}fazWB3EidYxB55gz(C1K`|EM*(D@_f~M9f$om3*j(&dI8^w1p5^Ks@hyt6 zq)ij~gC@4S*7NN*C~-$EK}fA_;yp$VQ%&sR9$?ir_gC(m{9Bd#OjEK~3zP^ARb9-W zKfeX)3ny|;m^j@1*of&S1qsYF6a5VYy=s2amMP^55(OfdO=Pu%G(7(R*r4^zbqU$- zqVD`hh8aijm(oGW4O!f_vH|8I?NmAHZ-T^9`BXE5lZC?QDaa&HI_i| zlYov^becV=x7fg4NP>~dEK4Egbrrx(<&jy9kQEN52+l~hrv-n0W6H4+Z&>^N;%_ig zWahlg&~g6&X)@j-F-TgDZCgGqtOWuPw2)bt(+YV+P49fdF$VqbQ)Dpo0r)@4Z0J6`9KQwY3Dypo}b zjd(cB4-ZG*0Ltl&<8}~+7lL>H0I14R$BB)TA-kM7@76aHERZgP%uk^DLT*3wQOQ<=Nc&MQXpD2a0$57zGhp(~cxk}j1-+aUnO7yI_@OCJZJ_^dP5M%+~sH9blx?erxh>8@ULj(4S zWrQ!NLIxE}w&qeRlAvC0-WLcem05ti1q@zUYf0;aMW2~+6<}o_Cnl2R;rkGnS&pK+ zrO5{cXsZ4v3Pd});rND-!zoO0_Es3Q3-Z7?4w&BJHw6X^vHkNO zS&-2fjb$KDs%OUM`8rvacrgabb2<-W`vUj1WHQoE~0gCEf9R)!kr9WoqZ zCPl{9-gomZ@Fg{yDP7|Dn2{a8jNu(-D+rBq?7`+q4e1(l6*{}s`Iod6bUb#>Z&UrR znPqz>{o(@vV~Kjrp>d65E(Rt=+S+w9KHZRP;^z=En4kv1Z|0=vP##4Xu#M9=9A6`6=isKu_pZ8&hlOJrz)h`pq!0}H2^dZHv2 zSvWpr4Q86BQ-9rXSh@IqJC_@lCDZK;ZT)?w2@qfLCsNc)%uPPm3rt~Qtz1OQP9{$S zP!L@WdZI^#vnXHU027@=wJeH$BJ7^zIG5eP5N-_@*wi-`^5>eUaA2pnltTU3bCU~k z&>TQig+#+^%&D(htit25%jtL%!`9n#0R4h(V)Sy%LVc$*ql+cGq*9Tk@-tFyJg@wszLiS z(nW74?FwJPwti6LzYOV^s2O!nhGxInxMS?fVMcXWe7QxZpk|0! zdXI3Gnu0AMWq>Vsd4n)Hip*9G8?%|8!;<)wTwf8?vDDN3rZxFRoU=JXVnVbU9@9ev zrii+LxUl!!94m}Gw*b7(unA3QBjK*&6eB~GmUmhCn;km?E=V4*wvUl22xiKb)%Jv` zZ)m7=Gs_PmCA6SAL>w?X4a`6@Vt>qjYY$?T5iJK6Y8L{qI)lNDkgQEJRjzwJ@!)D2 zvuyJz$cDKugW>~)?(@tTJ0id8c>e%=ZR>@xa2@f?@rH^gn6QSG(k2WT>^zYWFR$F6 zIF8`RZtUhsFS9Dlp3>{U2Z4Vw?hCBZ70pRS!A2^j zW1(TWh|L-H0>+zjC>^4>Kn*DDc1t!DdgSvj%7|T)N0N)>fP!k}(p-*d!3BEKM+EE~$aFa`&9;J9Lq?~uJ;h%N@o(c%HdejGmYRbiE2aD{&|{ZlOX`u_lO zkq2ul#Xs&;%#pPsro9fLW6@S4h~Vxi?U&qs(vcj2mMl>ji@RsE7&Kj+d%(`#ZM$$P z*q`fSCDH~S)3Z|R1Yw%|PAKxSpi^i)%(R(IzQQd;tWj0tdA)duBWUBL{{XN7uOd9c zy`xJ6{xo6xEVcbhp6XLI7ur0|CWZMxx1?&=xAvKbGcAD(on-|C@ff+NnO+FQv(W`3qmjkL6|^K;jsu&CS~*7` zCuls!T;qe=ULpV;Gr7JY;VdxI42-9E+HF0mlgWewm`})vYa5m2Fx33^K_qN*J)$-Q zx0#lw5RtAvF}O)wk*$Mgp{}5j{{YoH6IpDULqTleto_JPruh`BwQ~EwVctP|B`0s) zT_|1bI6^aC?xSrGzM`gB{QdExehQm0&fuI=N!z z3*?1r_BsOdK098QMhP=wG`5C z7pH_?Oy{OT7v1NA81VL)qLhcmsX>z{p`#W z+~0T^Eu#hSz+=h+11goDF*I?O#JDKqhclI;XS%&rW;HpS9=0FDD=%av0KJW5I)F;P zG4GV+ZI8LkvTpbSb#UanCDY1SX=u6a50A`MW}jdaaaamN`eT?SMc5nxY@x^$vGK(A zpZU<3$>6i*Y}!+p%4=+j_5K~BHOe|FTcU50Y8&Vd>I)aV)YHVH7+0@X8;}!%G9qnf zrQ#&Aq*!Jvsfds)v?gNFS$0dP*|t$(DIp2tNfMJaq_n==z|cvj5H}5tRoVEdS7bWl z0qHJ+;!=xQK>3U?sm=LA;8g*3?jjx&quAmQTYLw(hU_djTZU@5sBe}y@Ea6CnWw}a zhdLP^$j~^j;;D-x%?az$5KtR;GHUAcnFR+Z*%<;X`>2&J9$^q*LYEKr%c;%Jd0oOb z9h%d1H&Z0@?YX-ZSvmZWX!qK&n7|@LWk@; z8@6%VEfN0wOnMdF^x;ySDj2#V(i~V_&!(5+QhXYBJo5)g2B6Z}itzS=VQe%db~4n) zDV18^1Ok5rd5Dq?qCppbFK%Wh33}I_rLq2^F%Se?)!ewLGyTIV>Eza6r85er-5v|e zqOiZTVxf+Z{{SSEt^6ih>{L39Hrdq3C?#$=4%(rTB|q*4!Gy(w?l6X#d6}2uSVf{j*6qX!#8lxnJhzmsm-8uG&3S_39KBuB zk6!UD`q&+TIr@)f&3KJT#eNXQng=-i`%NgVVUszS;5rfR0?g8v!stkf{E8z*9NVhu zJ*eH6%*2HZJR@#&(+xV#!do$p_a6N~QiY>;0H0$^#C#;Ot{gq$*jRG~TnVKZ)%WiZ z*Hz+U=s1JV&Ui)LffYb}nKP*EEbLi(m6F$hIWZis7QGAOGI1#;Wu=S58g;h4reXL; zWITlfZ;6MM1+`twFw%=lB^jgcdqJEbpFHp&%R2>yY^$cOJpN(gUis84be4%IZGQsh zp#%yw_m+%zS2ccJvGpT&3*HNS#hE)5qR(?I=fLI@`xPC=gJ+5UQAZ!n5HXTO7Eun@ zFLrUM!Mti+D!agcfnPG>dJ@AR{=- zB~(%=*i*7o`)OHjlcp7Y6!5gZV+*2Xb`MdjSY3BF-BCTJQkMB@WYUn@_0f}u^@eCT#f$(|0(*ep!3e|8-V2JN(?jwbu$KENo z30hT`93(QqeE$H%yb55c1{*A^4Hp_Uif$BLMQvd2HDuj0b|LJ<#4BZdreTL)m-8B2 z9tdlXZ2B1`V6OzU6gw;8Q6ZGvKFOvBvR}6n$T+T8_mtZET9l#;VcJ_|W_azc<=A|c zi13RExXLRMxDYSEz~Lq=p0{GG%6wCnpc$ocHLr6h#o2!n=oJdS=h=o4cdwKF64>p5 z+_++^3$|Ps%HjkG`7{HPAY|U<0yGVt5)$SrS-4UOfG_>9@i3O#c$Rb{On4I2wn}`!_8A=G#5TS> z#aD2O<69aS-D#d5LIM;^FWFB6*o#37hbg_3_DSJcA2`6WbCfaP)0 z>34FD&G#&?A(EE0GMp8L=3Cjn2Uwqk&G8Xfs;^5Wvu*8a2<-FhcL{3CECSYMI-Yhw z;@com(ZtT#a&L~}yA(K=Z~?a3gIL9czAKnKo$53=QGywN*!%@-gtcQ19;Me*V)p=6 zz{%D4nBxIDZ#eKJi~(QaFY*Me{h3&w2+h7(k6yPes|k?9nxWCFE7^%o0|Y;Si8vMa zo^X-yPO3ad%vnmaba<7>p<@j)<4r)G@ruGQgQVKaVP*(gwfBh!xd*zKe!M0-BMM!p zj0-h|geChBH%fu`6*p{Z_<{us06mDh!VS6@^C}x9I{yIdM_%pKc$Vh5lNM*P0;R00 zYQ3UjEWze#Z-@FA>kDWD2|HUoV0#-Y+8MWKi@1w$25CQo9ybUT*^TZ#U14zm#;b62 zY2aPy0}xr&P_P%|I`cUuF5dMk=7p>oIfSxx8_i4`LUZp8BFNL^nnWer@em~0RW&)A)x3+Os#rPZD&4fe%-mmF<~`FC;S^!MLp$t)u2UCvV}N z6w9y(7W`!^I2%lPP((UYGI*cCf>jXH?RloheYrP?`^gunPF zjKDa6cOx^}lP;ZV_jBQsCbz&<&q?2p=K@$xt)?;o!=3ghui$4ts{O5-(i zEnJ0yAfUBk;3d#aIEht9jFB}xW~T!218o3!^O!hluU-OqUhNfK6h>)xT*8Gpz@Tw+ z05Vf$ac5qA5C{-F6M;HRT@G_0H5m>mk!+$tQC***hN#XBO3e}x9?$Em8B7u{v~f^a+~5Q$#vrZ`70`9>EDf>&r2 zEqa%%bjPmcLaAIXCM5hlb2bKpizo(BTJC#-JrIdj$T?_C8_gS-rX-t;!V)j0q7Ji- z4+PUt*$2KaY_pOM_67oZltP&tvnr%89R4QdgB$#&guLZMlvbSEhs1P}NA38`6|cw( ze>#%zJ6RqE~YIV5QUVh>#l}J%6a;J_U!`Q|esJ}OfS->!$2;@A8!?soW zOo_trU8`fMn14`a2;n9L(!U<^ z%bi=Jbm_b)Jmn>M(^G{mx!*6 zRfGp2%nIHQ7Qb|RvhN#ACf{j8``|oyo?=?HNbfXs(GVdM2i1gm4hV@wV;zsA-mLLZ zN!SRZ$VK9cs>DlCpy%wE+r{J!O6EgCIyU=3g}YzF6Dgca><~mQg52NUaWM&CQ+Mr% zX+y{db2REKvs|HEU%q0EcT*=U8)MO7OCCs6rCTg|^FpkgCy7?1uaxELvK*D1+ zzi5i-M>2HCsD-7Q{nRaR_g2lihFatA%&&gLC3cH}PPl9KiI|*oFUj{N`Pi{)`LEic za^s;bRUg?T`-8d}Os~yA$UMd}hdfN%(+FTuW;L`SPRvHmA1g*%LDdCYt7YBpUt?UsMr2X`(z{m8CbjpECPO6luTix56~IvkA9>oTIt@zmAdAZP z8qO`$oQN{4JBhNEzR{4huJUMwAEq0X+M{z{Ga#FsWw+)d@35nX#9S$f z!87fp(H{-`$C#VaQ5TuM;HbNP171@bkyOlFKr^slDp8k)1=)#qxnhFd7-m8pT%SJB zSWUM)zGcQm!wpsYvwpru*#H-JrxgDHxL;D4P2P_YN!N%iA&9clC{!9+!~IT}8Y*`(#%=}Uxnc~+ z765@l_j2k>S^lAUk~jsqt*z6<-O7sS$6SL+aIP6tU!aZTlZ}Vt{{UvR&jA;{qI#ut zYZ;Di>52hzt=eB& zjgg8h0sO=TmR%y*2TF#;uMD&KVa28@ZMHajrZ(aiefU*IUTE-;wy0Co<{p9e0nCM` zBCcxAw+HLgqkgzLf=yTvFMtC*z2t^?(1XUqet zA$WGVU}>?`=byW5#)fb^mI@ee71m|WxwedXmoy`7yAKR*z$-sp584zK;MAc{>%^&+e-i}wg@@)gSgXsVgT&G2{CR0UV}SyK z_#;L?XcG2@wpH5xA|<`*uFifSBKQSmr7*0_aV>Vjwof)Noj@>XwV7jSnrOeu6G$Yp zRf$0|{gHqHz8fVM(M0zT<{&7ZQ5rC%7i<~Ln*#9j3<;e9{$>Ddc{9rDpAqo|VhY3T zLNeA@91#h+Ly~OhK(WF`iCMu^a`=s-7-en*lT1vXT;yYD=+Yb_%qY#9@af;qHYBk{0z_BTB{{Tr(3O@0^ z2qbce{EO;Z05u7H(D|3m z>h|KWKK}rTg}qvhM90OeWp{60CVm$!FT)bZ4xb1@6N0jz^tTyJ! zJ>gm!symk(Mcy-4B*jx~a)@9CEm>5(<_*Z{V$C<90bN;2UgfJvtVWg*2HNak{{SKp zt&4xy9RB{4%y~Be)=%1FuVvKFA{O@mR-!3D&xIH(lkpWvYT=J~z%^Q&B7fT_{sl(w zD2Aibwo`OWJ@(jZJw`>v;r{@Kqm}~g8u>#GYm1n3o0;=^6CF(X$g}N=Ah2$20>dx& zOOFkEF9)V_rPFZUTX%*Eyo%$vN?l*^!qY(0-!yy1^TN5Qhl3Ru`D0fMmIbP~n4w)D zWaJx*iM@)!YN%drX4k=%Zn-(K7Iosg1pG^dnKx#mbm*mflK7+cg3H)fd?Z^Daxy)- zfG9kw(2tqYXYx#L<$R)@qM>cs-AyE}Z%#ADqp0nKl*0Q&RHJVZYV)VpFhwQTPGjsN zjhw3FG~aoEk14R#(c)Z9%?N<4OSZvjTgT=t&5b?;c?;S5su=4vd_2fKf0#&*?B`;fFVqx;ceWR!pt1ok6Ch&x`koF~}}n^5EacO5elNF+ig?#5_81Hp}zU z(=Z8Ygk~6=4-q*noWtM>N->gWD8AxX&nvpFBN7fvz+O;|QC#}(YDU< z;=8@!--&%*Km)koK~Tp`&A4De#d47^qbm%r-b?YuAfdC|WEU)Bz~X{8@FRjIwye_? zRNQ53mk^O~=RHNl1(R0xMCIn5{oTiD&iVbNcoRhy{{V=BaYW^8{m2DU(^9|DRhR?C zfMVjkm?0BUes2SG%-PV(LyHpAnQr3B3yeHeVm=(WJ|^T5ET*R;$*<*lm(uMED}&xybO!cnVp_8H z_4l}Qv;b39pO_BZxl%IB(3a?#ijWgCLe3fcMic~j6JT6cV5Xd^IfvMbIR4Jr2uZxY zaHa!X+w#Qa2fRUayv&qIte(?mrNC2WjTT)T;|>d z#vjb8Y&S0~cc>9cq1RT@UrooWrB;zZ2Yfhy3|ZP8Kg?KL1&Hk2Y95f$ zuV|nlkgvflZtGskwEHT1zPvateC@AkS0Q-v|PG5Xx9favr@I<;J*^{Dw+7G$Z(*zLw`D`J4=(2Z6vBs3&VgVV!CkPjcoWx*ShcetQqa5FH zq*41)8=EK$BR&vlGZO-C1PqN2@|9ZOn2pmgtg^!oyci0QXyTq`P1fyANu4VQyW!L% zTT~wM<#v71DdEq#GPsDbx7~~W+-gcN!NeW&O+oa5Q8vZmM$9$S2f>DJ)u1wi45I1^ z>Bd9G>Ta4u4sV%V6LJ&U?3vPno#wNtON4S=`GMJNPf`7429wOTZ`S(}@t9A?Vf4^e zJe1tK^#c;NF&%J0vdTD@_+?i32uKb7APHG`7~Hi5%gb!Dr+iWj$KHf#ES~pRmd>VW z!rsX8sW9@|OHy4s`>|b$Quioo;d$i@CuGEBUlkm(@)fu366}`T);}V6$K3{nTye}S z)xc64EOeq`_TfUN;ZXghhkBL^<~9wZYp!NJX|;8cAkUYln zh*<6fIq;K+nxD0ybjChLE6zMzvZiUuxjQ1?Oos_sz9}#sl2zn~?u>P<@v0<=qvP9;B6INCdzU$@M?1mt^! z{pNg0xZ)?QOwg=;^0XYs`757kcANvE)OM8$eaH^Oc{+zN3hf{AA9Z=#`;x*oNGRf) zgv6XJTw?|WL%&nX1g`aROT;@|FXKvPX;n@L{{R-o*7F)jLZhx{1MAz4V2cOATSv@E zL#YQb=3wlXFSTw7q6^XU6qH5mL+2>9(Hz*v6xS0AWmOpdV%bc(D(QWpsvtCVsK%-z z%Gkte9WbhVdN1(@>8y>F~qEzVZBx+1?vu>Fh70&Z$Gy z@j5#!e&653@!yF71vSL~0Ny79rIi#B3aiQf(eFC&mgAg_C)fboRao8GQxUU_pD=Oq ziGx*_mqg0gutdfvgxgOxd-K%HoHqw@g`ooRBYY&ZB|(miH5yfG40hv*-@RfOsVihW z{Bgu|u;jldf8M1Mg7ulP^KfDI3B7HC8s(Q&C069PNg9P5OWpy9P8e4y{*jtZg+EbuQHs)t%Gjxy2#bD55d|ODih&egpy4YAaUL@)1wLj32l5?zK%|Svb2mY; zq=K}@sKCohNn`-4#%N+lPsc*d~Fj^t!(nJ9f;Q1D}*>OW7=A?|<@S zme)}5f%Y3*gSc%}SNl%wZgtK$gbG&j_&<3@j`6pg>oHTnL0bpt1 zctdu(LIBeM76n#DQ$we0tc+JbcsR{;VyoC5Vbkzow34p_<{TA>hP%3IvXm1+8-1%gxMK%2 zaliL5Xokq}J-M7YjY~N$VNBb2o2v#S48pKfy_^rfcf1n|6uv}qQIAZh^59{VHdidj z!K^!nsE?OggQ}NnaB}Fzh&_}JDiQC^>2wdwcRmz2N;*V3)5jdlMT!C6EevTQa1-Rz z5K}T74(7y5{(|vbLBLa`lLOUT6ZI%|O3Gv`Iwq${uJay`l!}|WP;;l@blqwGOn17F@ zr)k7rt5+f3C2L+l-hI9%MtIvNd^~IYz`X1B-w*A@fmSbHyFd9*!?YL6jsE~@Cdn2` z7svPS2~#w=4zzjSaEjrF`+t6Az!ucfJ3qSfDcKI7P*!;S=fp0*2Y`Hke`rG0g&&Ez zRb}1Xg_o%iD~Y{)Bzi(805^fIB14Gbe-H`wIj^sY%vLI@UwB{jnGR$cUc}psNk}%G4%eE8-16V!6ZPgL@$*K zDj?Xv){%8;2!Oio-?UoL?5)bZTS}=^#5TLF%QfWl1L1QYvOL2~Oxg~}NFBDx6SkD1 zy}_eg5z-lrBN>f>d&W|>+HGDJSD)`0OeKQeTCy_vc;9mVCXXY<;2(IRw8Fn=Hz!N1 z2cKv_#}J_caLA9sIVC8{$J-T>gkBN^vyfQ%l%O||=HQTv%i^E2-Z74N?$0re$V~_y zwH9^;e|dAlRupQhWU>W36H^Tw+Y=b!#AvW$E71L!lIGnTl@^Rceka8VhnLF+Y#OpR zq$Q#j6gwgZ+kUHSOmJqVMwHV-FLKG!rNBFY^9>@XGxI7~-MO_^>QGX(;sZBtiD;L( zIeu{Vvb;@13vrFi<#wj6l{W?e^#XCo{vy$4rpq=qOqaq8i%)U6W6|Q$Ukb90Mp`g3 zRFwK z5GN0bK!iAZGsD!OxDS5;>&~S+)yR(A-;0dxD+#S>`}bV3*xP z^txrP#$JL{DmUR*ETHH%c$RpM=4^8j6CBZpTfC|roD6m|+{DAh`9Y-mrw-q@?J7N# z_Xm6VT&Y%b)2u}SULqT{e)#vqV@mS84KBF+PF=^D_NG2&7_2QlxeT7r7;Vd_99@3@ z0JIJQ+LH6x{KL|DNApAWOu#ujhbcOFVNXBb`2|jLhM9Oc{M5{6)2coQ1bY=%xa3()Gh`BMC1m1ufohiFQLjLz=E` z7Le>&O}t!EUx;&5M>Zn_e7@P4tD-+Sxwe;M4;MDR&B5c$2cA&k8bk3D0NLf4s)eWQ zk6*2;xkCOYH^1mJ@--?5N25|FA@U3}lISiweUF>LGkFjiA&4!2)MEHR3a#s<{o*%D za4=Zn%6?^*GqL{w7$!)(ocF1M?z35=Q>r8p;t^nfKxLWOfRyOJ{pR7C`*oZl6#?Ho zA0L=I;}RoI3;fI$hX-<5`Bpr@QP+AN$gJ84v|#tYDRLrV#kGUR7zXixa136QaxG)j zQ!@dbo2|ft0E6dq;fHIyI4(5gUZreVOZfw5TbVbn_29-^hHp*eGBuD^rG$DjV9c5S z0BA{+fd>q5mF{aScq8)ofee_xoUvYRV$Ribh5rC#ud`oc*-1mmN1eUhSY}OtcP6R9Q>)D1fACtdb6lYX=-9 z8>d@L{(p#K=PM0dpys2NT*rHump;&{&u}5VRNf3v0GcXWMBKE%)MVVu^7eUUB9%pJ zFE9)lO67#z=fN0TPa^7QB*Dv&?TRu}AYeZw&R}L3o><)CtD!rVXtZ&em%!#yC{YWG z%TYyqLPmN7s_U9SrM?6%n?4pUr+3rKmz|$!gbulv8hcd&+&9<;ph>WsaX^Esn|Aa@7+Pk_!7q?Gt&0 z=Q5g^DLJU~bfs3bO5pj4w`UF^2|Go;7_jcQ@w%36T~|8XRVeEOuqfIp3oI1w1|gZ| z73MeXnVV*^8u$F~^5K`>W42_+To!h_l)kD^+NL$SOmfnM9_K$1Wy;5J4%>twOthwr zOek#g92B{aH_0&NGMX3^ZmHAeJCA0x!d=xuMGh=VS;BJ%0+bgHQoe4Rgf*opOiIP^ z;Rl3)W=8OHIaHnkEFXORrJE3CxPy8Ej1UJdjIP-^pI3-+eqc2Mg70J3(! zP@12+F*VC-8)hAtMC|)!ELw3{G=1u&pGe;J72{Im9A^mF2Cm4jxi8gV@bbpP?IDAV z+b$l@Hz&3s-gcTBdSXJ5dfw~4A+K6Tv4qa22^-6X17cc-Z8ZJ=0Etq7Hnv^s>L6z-JyM0lSxgSB zlyI#9#_x04{r%tG;mr}HkG^JboOov9=%?@s-aaAC1&)&ItlI@pkY5&GWIn4A*ofyK zJlqnm`y6q)gL3v4{?kuHi*A)V$_fjxkZ>LB2~n5gFKUlHVH!7Smz;giO$11W5qShEMp z%|CaeSMauE*2Uendj9}XY%16XJOHF800q++x-Pga^B9L8RT zAfg}A6)38+6frz9*!)1C$Iq`f%&1C~Ru|FTq^_|tVz7SDFi8ySvF_}rZSfGzjD-mI zi}r`&(Ximdj<1%3i*DswxNN+W3F8KvibjKeB?7MKz=mpMc_;=87=|7t{T?M>Z>Ie@ z`nmPLubE$06Q5g{q&lfKEu-y1A+$P9J&C(b5C?a6nP_qq)s8g&A>=@6;H+N|VzCV` zYti!^@y#iRIB7D(san35BIDY&t3$nwqm0#K>-C3I!*asoPn&p`{!fm}np~hceW) zs1R2dHry}#oa`RvK4Cc;Rf~tpzcRY8Er4|@M%|xHl$Xp`i&hw}G?w`6OZl!!)f*TpmOtDRxBk^e&|J)R zq$`IRz?P5u$Q$RT~r&oxzJVHeC0#$mrw}xZuVG-9SP?5+HkZa{q z@pPYJq1kdR9FH(42LJknq@hLn2pKr-C{rl26X|g{YDnl$&6yUq3 zL~jS)Rt+cPf4VKQhK+n3OK8m)x7p%Xp}N1pM4(R_Oxjv4O#)cmkl>i053nEKFl-PO zTZm*Sv0BQjK#6`D5Yku(%HHxXh}34r$6M1W%_<5H6$_RWB#jCl1|_pUb$~dds?3)F zD5p`Noe$a3%|tFhGldCUsR&FL>pCpXzH8%!-)yRsR#^O4n&QDVK)h%F#_ zt-z*WmZ`2#u!3kbUMx79fcE#RZfxgIc*qrOfC<+p+sxwRnkM!0@dB7ZlK%iNKFq8O z-L>?pnC%Mz;IiE3@Pi@IU^WlQn@JZ@3ck{cwqRF3Ze?zRb+7)-xk3o0?(x3kO3ZJD zfWAKDa`=rURpT(K{JhNV)1bDW*6vfh2HpWqhG#w{oUF0@A}yh1(oQeyCv0XeFk;D; z*FVL-XdB@{FuLBljG^xtyg&>Qw11t&=aLbQUEXx?F7 z+{V|4ZKK{oS~gYD!4IfmxU3xT{M-h|@a28q+`uGGOXTVJxbqYJ(k&j!+WDv&1luR| z{oJ^_vwjRkRTwjT!xKPhf>4ee_Yz27B0SX#ZN%8scsPKIwu|Pm5UO&;HF%lC$`dOe z67R>#RPT860j2_XD(S(rxqxaJW^Mh+XboGrUjjWln=fR0hG4e_ps)h?+bX_p&ZWk& z%va3&8~wo6hg1<|qkOTq=a_eITG4cKEAt2z4<&X~8=Q(M5t*4(%yLfnCR%2uoDR<5 zVz-Jxq5l9vM>N|I=AJ>DF=e(d92uJ9j^nT{u-QHm0OnL1x4}ensomiQieo8gmu6hn zLMM5Z&d;#x#5IeJ-*M(0D0ZvbQ4MP5{l)I`I79yVT7dS9H>S5cW01LRdz;7jmp@fq zQ%fDe)H2VsF#?sW;V+2v+egb*9?PT_+2c?=Uof~fXDVHFd}0H?8-}x7;Sg5LHM4r^ zP$tIR!B>{BY%swKY4fNc?Y14>Wd*k9P^t?%hZ|^-EoRT!MP*AI0gz%LaXMmS&xFI+ zyCT^rZ^(56&@8#OdGpL1qXPLIk8x6CYQ*N;@l06?3X_4#1};$!S7F{I{{YzPcMH$) z9mZAWV+MIt%CZ+JLwqn5&MwK0r^GR=L>AeL$E9aEh*F*pQEtwCU!e4@EaPZ+oc@^&V+TV$6%R07ZpB+|;fBkl?Sgm>MbgV7QMnTCyM9D-24*YfpNhv4 zQNTPM;P^#pZ>*So$oZJ(05i6kDZ_qZH8VGVm`a;c%8t z5LLRFWXOflk&2@5js~qXblKupk7IJ#$XmHXL4mOLj$z!C_=F5$r9X%+^nvJM!OUXC zCV%9x_k@N!b<*ICRiOU>Y(Ht#7z{nzfwV@R-2HonXm!?Q#ja@o0Jrf0;YnnzpS=9o zvbWyi)?ii1TxSSj`m291Z;6i3@y7tTGmxHpo8xl02;h}pr+&~>05w%Yh-vXY=n>JdBXc*1 zC@Nwx!IYNtUZ$bsI4B*#Q-TDrtSdz_`$RRWT8>o{tE=e$H zc%5gD5ZD>kbut2w4U9bQ5vq=n4fAY=6%{VnGV=8lrbjs@Lj+k*2Bv>US80rhC@&`~ zf)BIF;whQTW2L+@k%a}kGl=rgElK?+i=^IeFL@2)limcZ#gNf0oC&%ru-R9-Thy(N z8kgct6|oZy+QK|Qr*=mKcXxt5jZzyvoYU z{E0MV&`7%yk}?ALmY|AOYi!`U>SDfMc#fT$+2wyB4t@@$z?oc3QQK$4u8GsWFEul$+vDB!8ff6j{{SWk zn@O+J=jr@JOl%$=AHy)X$=~<}X7e=Wiw}RYu2>dceh-59^xL1J=ge7gwcF>!2jxGj zQ^nEmJH636JUL~L@52k6K{Br6*ImJueq9j(N2aJEc^5Zej;quy0|dVC@cqc6y=)e* z-c);xpF^9JYGJWxyso0kmET)FPnnp_oYAF~R+CstpgJxO5mH$y&C=Bp`$$bEy#ugk zTpNlgg1V;P7CqA9g2BY4`D5X>r{yr@)1S7LDRku)uRX^Wk(1&E7vOUif2)*WZwO2VH8U<{>|KTU*Tg7ReWmLSl~pc(dVzeg za2f$J1Lk5Hvv-A8yPLyIu8P-TUCdzBLNNaT?OZ$Z%k{Z(;mDwuzKHa90LMke4M9{Y z3$EN|IA%+e%wl>SU*2`wQqLehW14v`tF*a(mo8kt(7&eT{(<_p3SJ$HY$6rR)+rKo zP8Q<$EA;k&#;U&FWv^oPJ6K;+;C zC6wy0`xutlz7;9_qWp-IJ5{6!vMjA^&RI%eWnsOL3+!qXUP$!{g52Uii3lj+No)#cRQyB$1&Pe6u-Jk+&z9YLRH=jyd+`(rZN-X;U^LUjN{{YaXL3A5< z+s}yHdOGO09^d z(smshAfcZOc7dxosQ&=<5ITE6IQ3on0)n}f9^i0%L>jk4?|xPH~obsqh)422lpU?(x{8lcO{E8xJ)7*;F3W_}W|MT1exjxxi+D1V1( zK?;*bE9Lt!KYs}5EG%u>(YXbE&#D<$!+tY?|$Df0d!ucb$n+ixc6*%oVR z*L~Egv~3zb=D#F1pEb+iF`-8|wF4p}|ZIh{Ur?Nc^DVKOwSS8#o^g4JaH#nC_?G}77 zfwy579d{lM2P9_S=Sjj(WiJ+cny7+T1rl(@oK58IwHr6?Hm+=)a zag?<0TbEeZJy(8UQw~D|CjKrPVn)ixy@0{LNHOpmdLe9rVhj-IiKb4+P$^ zu8tux=o>jn9Bh5aS5hi2^!NlAz%$RY9|Q9W4$um693%=nMG^s@R&FutjH}sMi{E^Y zZL9ue!c}c>5@22Q!8i+e0%@so<4-|l=3FYv64y1vFJaIq_fVSjYV4zNE1c7lxvO2V zok6LmXL8GznRu5j4rA>v9*n>6FX*XXPd`n{pNR_hIrviS2$YwXA1Ac0q5~ssV4HY` zLittVAY~{;%8FdzW`m1q@sF4kc+OlYzp%ohHN9DR7TCCinba_bac|4V-dB4LTFWbN z?6~09L_QG!&mPf%Z1oP{xNOk(g(KmBaVg?&fj@iDLh&ET*|O{(kKVQ zak6TQZEEcxe!wdPV3;zT#VXlOo+XYMlyI(DW2tLhu?1w4N`R)-)zToszM?39r*gPF zcDvyFGii0e*SrqHAHvYnURC)um>z1F@*YU^9cow&F@Z-{yC0d5fG)DU*KrhLS3bnC z6^r@iTu<7LJ>#g(679z{`P|9S>ff_2xLcMSB&6<#4Kc3$z0C0bMRFb=5M{3uFU%(g zY#NleAXXIT#5giW3PlFf-EkImR|QK1IUey1G03%zGE%72%!*z+NprF&oVbYyHBBdm zV?J)YkBElwHS*u#DWJX+r1s2E3E%*8ydY84!e`VSxCO7x%lc=?rE=CKs)tglD;(Wo zKiC!6`8SZFOLLg~xL-SCnP%@Pu>Ct~S5qLB$HToAC^R6vK_Khn57U z=Go6EcjX)lE2E)Mmq>dT*)sHh`T?1jG&ch9@(Lk)Ibeg2e`(AEK@Jx$cvA_F*#Qy@ zNTAc78~afJh8R7tx9|9cRX5%-HykzAk>Q&AcMAHJSL_<}j{c`_+qvX7 zI=Xo5iWN&cdQrhz^#B@aY=N7<(G9ZOtQVCu*|IsvZ{j7pa};8DZD&2*>A*d`L`gk|siIg`%VlPF zMvYqgOFH_~MPrfjN_o+WWZpT%+?Fu%7XJWf7Gt&DulH_NjsUP?2qu!3W&Z%|2z?Qi z6Mh~dQX*ae2!Oyk&Y@rI=Ez6wQ0(K_mg#`vV5_)tISw!8E6q!7!Bz{xpk-wk;=VNf z$Yyk8te_uqR)Tzs%w@}Yhg#~+<&PJrb@+p;*(}3cJ63us95_Khd&CN@)2!1j;^4kC*UU&=W9s8g1lSdV z9VLaEIhPkNzj)=_d=4gcE-RaE;_I?AP_Yc%Z_HR@K86d_e-g^;oQL2w_GqHMrx^s&qX;ci1X%)6tn2V;c9wKx3T3oxD=RB=)p?KN7vkwO%(|;7f5ToT~1zoR{n6D4Lba zWD2XCjw8*G!(UNVY&%rddF~6Lc?c#zxiD>;6Clq^h|0rDaNw11NYJitP(=k3Y6Yo) zK6{I8hZlLwU^_-=OA6yoPiQF-PTP)JnNj@;dE}}80CbuJWL2sXukM*qucwDqlbLfY zw&%IVCZWZ0x7Z`?6ph!KPcxd$mHQG6uK{sg>g$MQVzo);td4vBfb$$%o5TFdTA{>r zcPQT}SGC~yi4@|kxBcL}i@OnxgUE4E6O1}`v#9LNGMYfRZu;tQzj=*@G{xp;yQlVB zgk+nx_SL3*?g3%D2xB*+x$PB{>qT>Mdc0~|5~{pg5rW(WCqsi1loTB^MsC@Qhk7>B zB`MXuL!Cp{oD;ArJ#rV@Oo+ot6uP*ydZdSz8}Mpe0MSz1ShaKc{wk&5>S^wGQhU! zprYt}tHXj9zq<#^uZe|JT;Z9l^BN?=y<%g1lVA3?&LMPOCH)$#*UVFPsZ}M~!|X8@ zaMbZpqltJ3E)}*60iIBO4KlKQ!v}}OPD^XT8Q^62rWy2KTrJr$#somO?dnj0X~r{y zi-KaR%(cl_%*3R+TC*&xK((zlP5>~{-OeU06E>~XeJFlP+5NLKXOgb0yB#!wEJG@+ zQQ^2bxp{`)WM+PSLc|xS(V>l&gbXon2z~zmGMQGHYPNTSPQE3A9KKf{ybd``&W74R zi^1+)nG}_2EO0o=xPlzb_L@q-m+TTDJ7TaoDr9lW6MzAkMs`cR$qq1>3X7xmkUEAX z>gT9qmz8tK9vvH$;^BgYQKEa?Gtg9Z+-!T7D#dqxrTUxHx{LH&T9@cPkX*dWoO;|P zKxKL>=zTc-E`2M|ZVbhDl<1j>pel+IGMWo!?~gL#z6f$9B|0&2fmn1R-DkW@YdNMg zMH{0kmr7M$eWEtA%Gy{6vK`An5B+p=w8cVSq}yTczQ`YF7i_9-jmH(oAt|}k!m?z$i5ce8XUK@Uy(rr@fwVkk`xv_6R;s+sD{rQf zUeCBo>M3`Ud<93E-)3A~Y2x<51~Q6<4N*K+K0HHc=9)Z?*nZbk&^UaF9xjcNr@i2Y zEk_O=UwDwYu;{A=cCYTpf5KcK{61qWk;_u3GNW({qJC$69mDu*1^QTg#iH+MAk)amXQ%5TH9~W!@ z!_J`IrR*Pe&KlG?ROPn#h>Ml>z*(q5NNLVKC9w=`mC31nkz+n3;Xr4NLrJ3FV~!w! z#28p4L=qTPm6BL9Qf*AB$HV{*#|7bK^JhP{dV&dQNF3`i?<5_sXEKQXz*qZB1%)P< z1~-(=&CUUtnA$oeW1*pYrE4dEbb5ma>C;aOB;sI+4y-IaxR+?-b5+8=F*!;0_m!Ws z2bG*9{q{hIXg?F_=3=5^c(0ytNQ198G_|-e;POh|51gvye$%4B_sQwUuRfMQfBa8? za>_CgSs$OiYK|^1zS#{}fZZodGepprV+f}x9 z)|7+5^~Ec6?hf2wj&|G>d6!KRmb~UyIKIqx2lkz%$f;Y{SPd(YW9LyRlaTxW0OAtA zKyaty;s6VKHgO(NR?cm5qz2k8+m*_g1zo}TMJHb$c-=2uE8MIO568siX;?Pj6)yIq z9AE=_r=Dd~N9`?O_pu+-_VRmr zi`{F1tm2?IR{1SnCXS5*eLh>CVCU%og~P)I)Q~ayy{@2GjQ!{(>`Fp zzP@k~FE;~wl&#Cw=KhlNZ$Nz*Ox#SELn9Z`%fl|&Y$D~$f|{9gHkB*stp1%!`kf@| zi+DrGA{~k=O4~pyLSDWkjR^!+=HRFTlbbK)IKglD_4jX^IfOUII4MGlwxt z6sqy!7wigNjPk9gF)eE(Cpy8D3B|&sv&~mCo?#FmS|GUP4BJoyx#5o09)jG1hzhaO zQ*gR#nR1s03Z2Cf_i&oMF%8FtfvS5ugD+v@G-YeYXBvs8XvewS4-M75LC4-IWjPF> z@^-EXWe2!Xzszt0V1o}NSBuHR<`q@2-H2O@;Fo{I!ddP?@POvWH;J*8T6-7(d7(Iq zGQD#h0mADrE~5ZBBC>$02CCrF{QOJE%CW*RHMwfmRdM&4{{T^-bbkK;c*_yWG+i~NlD9zMtb>PdXfQX7N)U!{!azjItiS0C{o#K{Wb*fWS`7K2`l zzUZ(^L-`%UwvY=3@!Y3T^h_UC>NgZR>sapL9ZSMoW}5L)GaSvY+T5shV-<2vi2aMnkB`jpTp>(%g5$YO>G|~M#Nu(Q_=MbW;p&x` z{*O|NFL^KGbUme&UVDy{h@h$sth_EALIT~2TS9L{XrKalK3k2Ju_?QjXWA({xwBtx zXE8$Ya`jxwjwSu(PmWYozWdZoF`21bajF72@g_0L(|GnEtFRV(BdTS2UP}vkWPi5` zSp5KamNDnSBN!$IyO~#Zu}e#UT@V>gi*cCtF_!JZ-ehLe#L>(b=3O?nCwL%B;d=Y1 zpD~m8DlV$fsPQOEF^*~N7PydFr?CQbcQsrE)@mQ9H?+Wd9WwceE(5r)>`yU{ zV3dJsS2k{96dIVbM-U0phKlN)`I)RA$cOf*)Eg!8OEWn+fy>??q^+ZGa79X-p{#N- znz9Ejs~7KWH3qX-4#6EQmjm~7K=*K#H)xn6ymg);rR`67|kHAX^v)|f)K%` zBK;Sca^q(423}?QH=@`oE(V}c`aJy{ezj`gYy-2*v29Q^s!SOY9F`qD;{zaWx3o(w z?4I+4$6hZ5MAaG>!!%xi;d+hKimYF331e7~ixpnVPdXj16JDH;TVCFZ`_G@UBRWnlw{B^4vD)UWu;!&aa6uKw}L-loI~OYhAZ!b;tUo0nIWUpM(bYgQl|#3G^}sh z3Rxj3DS{{=*yjE|3!1TP$<0Xe1eKDQ%T7Z7_%+=xL>TfCgi&rYZ-DP(>+Wp|@6-R;8#)ay^T^=A| z#XsRjSVT}u#yUL4?m;;>Ows=UBlDB?RoU+^VtIgYG#8j;=;4nP#CamtZ+8m(rEN8S zE|y)h71IbdSw;7mog=e)pt_hT_`mxCH3^AZ!H2}1tK znCNFz17CwO7FNcuM9YH% z#!D}DjvLL^9pPhM%O8ozOQ*g604OyWFbxE#!_fxX2?f(P50ahZ6BpXX9OwM8FiQ1h z{n0$gS_b~hJ;E26&9?2}!g?wNNf zy{+F;z_JLm@}xzTU)?sEct@Dj{mSHz7|$mWodsFabvt}y;qDzpp4G-EiJ=-piW`gn z0Fa1>lBX_MW(`+J;KE;f`$a~g<-gh>V7Ye?%?z@yT$Fvi$MQi}r(N%u%G+5|$aVT_P0fbDrdsj%E{1q+0{{T{p z86Zv4>w77L&y5SGIp(qVf(Th+Mzb(+b@G;G_maDhc?paf2PfuciVx9Xx56ezQBPa5 z-5Ub&u#h%=*eYra=1>g4N}0Gtgrjqb#JDlc<`9N3hj3F;ryoUnasD4Zp>E2p;PFtL zpb127qr3;P0}{VvLm@1wLiZ4QzGrDJcKPuWVZZ^j+*Yf@NCTmnpONDe3zi3x1NoL$ z#6@}y8JZtPSeM>$_M8OsOi+Edb}G@Vd;AV=&^)g((rBiD*W(epUBNIvF^92@nE>CC z{{RxaDiL*2-KXAy)H24kHT_v}iP>e>iIk4^OSHv`U{3~e3!JPt-r{rorHmKiw3zFb zwG9(&6#dZVTx=>1O!ft=r$u0wUEb7ar)c_;C`6X8k@TdaPKy#Of|DtKvIiz_HX*E1J23 zby_iTK+RlG>>M%on8yQVpjdO+Kv&yx#U078SKc;wsK+_@k2xDVJW5_QCI`(&0)Y(& zSd_NYgTCg(N)gPV+oHE~J666$zUc}kpk_z;6D54X@dg6En*GV7{q+%B6$8Nvb^}4F z&)wMekJS#k{{S-g^U~?_SMxDX=$7Pf)W|Eb9|prPqQ>un96&;mqaMWUF*4J2{{SX6 z$AY60IR5~W0r#Gm9q`=hzX|RKwoRVR{JcvrfIDR1~Ho?&sQySAUt21KQlNHw}#&~=R9Y)B2YYZO(64IR){dsgQxwPUQXrbxb#Z* z-SXg#ew;~5?#m~N>N^S&#Fs)&x@|;eP}`?d9}E~OwE`7u4XW5Y}0Ra$PUtHioQZUp}T>KaOYqH7o&z6TI4NNO5okhbW=POUNycW)?S z{$Nzu@@(7hQ{IxzyvhfoaqY=m)Zw>n?YeY#DviX%HiDai>Y>wE-v=Mu#?fJLyc>U? zYLrKwmzX*6F2QkK2a&4sCIMY1aQ4<}m(6@EEK^!w%qPr60_$%RE}4}P&nz#0x|F9& zxsHGAyC@FB41GK=e%fjbyShMb#@hSAd&A^~7Md8JMO$$--s;RZ5lhbNZS3Ir@2=dR{exyyY};Ma$M+$J(@e#qr$h_mnseBIb6> zkfQg+h~6nFtd%mSp4W~Jed^XTZGUIPLPc6=ES#f$(nlscRi4Q)+{vK#_Kcd?Hdin$ zyi`%vqp-f%SY58XjLzIMIln2Ao5xvAYy|A(h-9Yq)O*T1nWBv55Nz272btmCBRtEp zd;V;qqD3sI9o=qbz=(?K=zQWZ!4AWUCO&6oN+E7o7fvlKY8Eb6+*DGy6qoG`yUn}; z`jxfktjG!krIv`dfZ22`RrJ_G_@jHR)%7<3UIC4X<8+GOWc$IK5STg#FyBcl2Lt#* z`-W2eR-ss_LV@8>*KVYTG3D7-4}7VIFkj~X0Mxu{s28iS{`|`2&}9!4gi0-#Gj6l{ z%K9u87Zv8?v4Ac>#oa3suR)1rH~s1>?FGz^zbj1YUy1YRgSl>101GV@$ehu)mhlZe zDU%-GnQX#y1qbg3huxlrVOR|`k@i*B1-WC5!!22a%@Z&=(#FC%;0(OyGkMI~CkB z?gip71fvv$aJ>-1=BRhKtPQf=uvLx~H55WoQj|46f6%{HUM0)VuM+bd z68fA*QqDXG0~bYe15>9+p>_7~(T%q`g4CvXKu=O&05;`a=bQzP~9+K!(=U%FYzg` z7Es^bF8s$qtA~^Kj8&WaQI0UBVBk-{!z{ST?FLif^TlL*>K-{T-W#LG`u^A3OkswkW@GDxfV5)X1+|L zCzIk1VCzdQXWMwK`IlHh#2-q>p+COR1AB@GGF!q{Wqmx(Kg)2jZZh~wL3R+_0HYOg z047wcnjjO_2flcNBI38XPvYa`aG$byjIsvA!|J4@p8T}+XF*R%^tn7^2k zkg~az454s1j2!@$hjP)UuyM1@@>VS2xr1(z9QcmJ5o`8=6;pNG#A*ySN5zP3Yn!$# z!47R^ZHO%#yc(D+U|hG5U=ZF>zL><&p*Gbtz&q;*Ltwd2Kf4|p0ABI8Fk=DW^1=Je znRV^w`HQP%>;puw06)C1F@jy)8SizXhGNCYW>aGDUu65sPsMczqTA0^%2>BZ_IpPd zu)a<_pcTk*1JC#VMj`nK=vw=K%V1X1Jn(J@Bfu_DQ`#k@T+Ib^cE&Cj7l6)L**978 zs01tG>acqRS_kRIW&97s%c?JZz+WlcFIX^s&`0zYEto04ql?f+A5n%Jp+jA?n79qU z37)fvw}mjmXj=-cyvs`_qNF!vrzLrWDZKNjKEObm{{TlWTZ%@ejqHX}^svC_J?b7+ zPFK7-l!fr>pB?+lH7-qAA~~FR@~G)PjqaHx4s+CQE_IrF#C;aZ=?)x1pqX&L7(`g8 zcXrE^INs+&j7!20eDBIQND(TyzM<}=XdGNE%jU9rxIiyUizb5L6+E)`HwAe~V(2bf zsKEP{>2#JSeAD7rxs)%oE|4l!r;9Iw+DGjy_WAw5Sb4)z%+i$)0I>md-?}9jMk2F_ zSHbc@2Wk|t=G#4qm54UM--ZV^5sNLaVH(+B7swl?^X72j#vddmTZ24Cde{yVq>r#@ zTX=CXIH2!K7Ah#^$E~N(G>@;}*3;Kyq;r;YEN%*>vnE@Xj4Zm-4|j3IUBS>;6e+Km zIW@wGkC5&Us;Y{c39S)mGWd!6iC>3^{L71}Z3}lvmS+Wf3H!_%wY-Kb<$|&t!OS%?Iv%wY^YumKeSKlPOV$n1k#rvg*;ZfXQ`J0wAvjwQC zftQUS#$>a{w=0lUBEWbNeFBle#t0OP-S0Y*T08HXYFR_1AV67}SHB?GdoNxcZJ z+)N3gaB%zhVt%6Dt5`s9aIwg*#dsN|8@8}fiB%YNon!k^h@q>wc0hY(_F9+rN#A(F z#~nh5-VD=;>=82oM^I>*HQ|MQpRK`dHn*RT7BWZOBH+|D=n-bQ@ewN}mQ*Xf;$#JK ztfvRF>*imlA6x5x;Dg)?4(RQsJs3LEd+Yt?TkilLH$A|)r&JD<$`-kpyl~_Egz4AZ zxuje%y&Lf2)wTAFTFWlEa+c}q_VXOjJ*i^cGHKRNiDkMuCt-ec55J7kB$9}&R48s#&$ z*1(77BN;E4*bp1szX(e_aOC8KuriXRot|cOdG4JE6;~vgU6>4%SaJaBF=WwfB$x7- zAENIKV=Tx5`?A0R*@aQ={7SQz4?n!Qw`T2L9?&abFgN$5=^87>e2{m!BK^mSb6H#h zDVAK5kr8VOgB;-VF+NRRj71Kj*^#Q161QfiWb@6Ko zfb3!e+K>&id_)&F2;rL?n^x{xmj>~?#8F4Xa+i5;BtqNC09RUXg*)>!UL7;MokAQD zaB`j3GQ8@K3z6;{waUf24kmmVy{{%Aq$(5!T@Mle05OeI64Xxo)c*hw+{-MuPkQ`H z7b4|9?g@CAW4AQ!Rh*Sz9FR}Q;hgmoY>`krh%+x$?GDH{Np$)bb*W9o^t@N1=N_E; zoAtk5Z`ESOlt?8|q^xD|Kwvcnf?(I7Rr77jQyq&$u4p~x1sH3l@5C~z46$w@YeUoL zxJAnv!7D|xQ*{ll1#YW?qtX~u(I1hPfrjoc9@)ge`86C)Ug?FWA$!CQE+|vXI4kol zl{hyv)o$-3z9T^(n!_iQ%&(){3^m;47k=z>!<|QAe83h-q6io9g+XuH0}|(CaFck} zQwDJyDCM$u#JgStLAV5Kjw2W>)Hu3!M?zwn=!+r22s!@%cR4usx`l47=3CA*$l_K3 zb9_=}0%`x}=&AbWXA`+*A{BB`m4~KL-j^FXYF!JY{c)%r>7AE8bjKbEk;y&bueP|pxLv3$^|~lr0|g# zZ_a7U7O89CmR=pqL54yQ9bI>QrBIo^QuAIeTGJ~#Dll2Pq>=C|7`~>yCcwLQ0jU-m zo=zYx&xM|$R{_~~*z+(nqlb%#py7}Xcl$!dl{LGktj(Jej#Cc5+}!NI zm7T*@JhM4H`Y-Owq>983bX;{D)w_F|{C}yA<)x6goDb32dd|XI~H>(^@S3(w!rD=iwZ-mgRgx%5LTQ zU#-hfPH)kDZ#C+&{T3~Y=%vKZpzw~R#q9yPVz(FlfyO1Kdo{6>-U~zm!gUfqWhMOJg>GjLup2?sb2Z9zpJb&-zak-Ja*m-p=Ilx-cDlXXZR7~6@G!p%@fcx;6~%^j zizgJ+v|3_g2E=MofKYeS7*##$YETnWe2lzgw9JmB^(&O?QQog|(_QLj+UoHL=#jD0V+hKf89rX|t#scqFFrx4 zs+x(gQa29C7ku{+TFTunPN&bMk4Ku!up}_F7T<>DkrSHg*UB2XYJce%FbT^2ufr*f zDxEX$4eAV>_rt&HTJBX9wVM_Blz22j{O|KGYlk|mH)w4)0DdL=5weF*%yQ{PekTs* z&Rj(6am_hT5wF@Q-tc}RA*+XdAWimO{7g_`9K6AX0g0*1xcUp0!wZ&W9dHsj2`*x+ zQ_xkr)ZATE)weda6#Qmq@ey`h>&v zguNAzmc_U!MM*nVo_91shPSM6CDvgU^(d0z=uT-U+@r*J-iqAR)}`_R)uo+4vBkqS z`48F-9jOiIOGfS~$5=OH_7(2}=}phshMm5G_(juZc%}?_k+x9+S_qRf;WWm{c6gX= z%J&5#yG9}n;GYwl_o2{$#<(BKG8BppfPLi*T}&8o?gGpBh8onu!%@bf>%yz^E4e}P zj&VY?M&9&@?RFh6x3xlhkXko);#n1bSaD>?!j73icNK-f9Au_eXySU(R z9L{okLR`bUVg?cK54aea)7au2`i}2&3_2WG2rQL|(x#2@>Jhl#D8@Ughfbd5M5(Ac zaftZFme}h!jX<)hqHtZ>xJPcmRs1J_Zl)~^%zMllL2=}Zn&VzG8>Si@kvjk}c^?fQ zc%64buMjhv;tRMoKg6IPQKivxkT zq+IuRgDdxWlxEq!w)Lmdce>=hF0o$eGMn zhvpZ?OyFV&6&p#!puwQik$-!ECLP-tfDzG;csJ%Ycq+|0CRG;S6NoWiMfzN_w+Jw> z9MTxYl-Xx8>q@`%E;o;+D#h_JcOJPIxNmIH47pX!An9&{A31&_%I;#0Q?6x8wYS8g zV+FQ3l#Zpnt~sb=1|Ty+SaRlI1`(z|%(zynYmsSWMw}lCWpV=&m>rZF0ma8C8LEDA z>DC<_OE5D~m5;n|wh?qLH}Uf_iB`pS9%7N8Xi5@SCe}ibz6C`~lp7Bup;j>9S%hyP zE0yksXUz<97cK^FAIvmaOsjDKqXKJ2I&N>UKSM;dX27C5CLL}u3zU;M;?b+tB4&Vt5o9ZX*KGyy9~AQ#lZxsX2JZ3 zv<1_Lm_cyHnSeSe=65i#tPaj)%W9Khdp;m_fb({q@!cmpLKY3``Hx$RSELw7UG{%4 z{AV(uigE?;@hS>E=^K$(Pv?t7@z3lXAd-@ASyMRgHZmI8tex;ck5CD!8tb-HtT>Z3BVuzcgEnA$q^ zk~-pK_U;}OID0{3M{1*Zf(_svO~m?#%>%`z$(WhmzKzN3~77 zD2i~#OQ-Y2z#DaNMSc%M`oO);3-lF?;hG!sE=;23^%dr~8^kGsjJZqrDmG#oUa!RF z?rd8MsH987JDL@=p9F5@Bye6jZY2R(Cu7F5q@PoB3EK})K%y5s9jY=`9f7SfOhMrR4tcRZ;GSLQ=!XN1l3H-`o zXf)2|Ny3$kA%HnUh<#AYz00t18!1X2*;z|P?|?nvg7$&a;u;!@jF}&J2BdQCmJEX@ zDb?39kA?u{%~8P7gYdtE0e$qkzUTUvE?-XJwSa6N5L~1fcJ@JjbF}@UyW1uNpu(xB zR7Wr_Bo~_WIvJvu$Yysw@mWUI)DVrS;y7xjnlacQmV+C}FFWlwB8Y;ke!|_i#%2U? zFWoyi?reG!8EzCN*XS3ZQC|H#66N9*mo5=ylQyH7$D&FGa~IQ@;tJAR#;q-Sx{H$_ z_nE)E&S;}LoVZfqCjQZO+;`iZK^vUjChg&gV@O3pE27FCeH|`$l_v$aI4L>eWr0&TEyMu^8}q*fS!b*N_7?+ z#Lv4?kp6hIp%0kTTmin){APC=FrZIG01w1At;Sox%zIQ&;%U!5XXXF^YRM6pKspU4 z&G?CJj1MAL2OqRKhl>waTlPdI>>~JU_=$E)fT#40u=~s;q){5lr}1!c#UwQ?-PCTf zP^o*U+yU=9;(0PhrG?eF)O?wmoI=F4Q!jdj4x$koQR3JQj1I&G$K;7%JbCZL6Xe$1 ztiiA6H**n-buv-f5QhHM5_yUSz$ZENh7MXlpgc3RHb ztbFDX_108>5}D=2mEt?yjW*^Vm9M*~v|DXz;03jFC@mYftsmZ}+w`Ti(>S#4Td^;X zDQ;aah8K$rAcE0Xm_8BXF=3a1$111$#LPcwyM^K!9-8>h58oShN5>6s+=m%S6(&X6 zm}?+hK;si{iBd0SVjK?QToxOB70oB-93yVa5rt%(MZ~kun0m5iyMj}j(gqFLjRnlZ zNQIa=k8n^ndJ^XoNmzzRlpMp+sAcGPk3l7U=PXWU$eQVwnr62e?tIM+V(MX0M8qs8 zOzqP;3trAqXvQoSly zt$&MfbiaWt?f8RAv(&|gnEwC}jSfppWY6wW+D zS5(2Fw*DSJ5|Bp8_w*k?DGs09O@VkLRVxyudRApdRH9|{$GhlmA%?vunStJPV4Uu?)|q<=H)V;AX<`)_kU&sW#1CK5FXBg z(^%BBQsAvCIfnU^2-YtX3bCNKa74#7Z1YeXcUA%+R=xyOEj@ali3FRi=q#5|pE{Nx z7nD1uqB2%Qj(N|KnAx~<@WTGlbqn!;+kQJit+%UFM|o7j{$uY}-mVYIa=xQ_T!EA3 zCtyI~@`Mx}(VuxUY+$+(136yvCk1PN+E7`1@qM2o%)!d`ziEz{p@d?oV~HtbIO;AIQIs9%yQb3@)NdU=!% zHe)kj7;z4cVEH6LRrX1y(KwDrB6lpyb#ozZ8Sv*U!>sxxYRg>0;au(xgMQOCpJ|=L zJH*7`{7w8^u*FOjmI`w!wS&O$#>MM~rCc(tYB5_gDVbO^k<7N{A$pHFLJDi`I&NJE^;gqgjQhY?z*WKiRTsDn17CEsSocgn-ah27 zP9{EM73g7}IP~Uo=4hG3x8`Q26+UKNw=Ke6CA>nb13o7lVr;=Ujo%+>rvdF#@$nyq zyh5Q&c!(o|?K7BTScPyvimXLamTDr|bEO`XUBk^sRm9n!PAYS+s~)xbJVAR&R~!i# zI|TPxR2I~u<%&RuIVw9%t=!d`Ih7`zDI$`yd&|r>uI<}&9eBH*=!1B!_xZkubOVn9|P8h33(e5>&YHf~* zUu9*&a=)U#Q=eWx&gb>2SFYtwJvsjX3CJ*Z_LR6w``&*uDk)W&od`S{EdB}4kI>`l zQCiM?LJrV)io}f!uq|;9W_g%` zp{ALZ2;^KE&3jH4dVtWwHyGfdZ!>lb;KB0)0Im$z6%1pY9|H&|Dw^(FA#J-SClBe@ zr#`&OmFdsX&-nFZ*X!{wKdHyi{(=E$$wTYSf+GvX?#_sjec^3DE*{{WlM z)}L2CgQdGW#0>3iTw>xwejFN|h>9 zsZzab_4xJY>f{hk1gxT?6|ENHkysFh>IH2`Tv8<-;d98bXO#4Tfca;am7Q&aPrF$#K2z#Euy zP6%%m>B4dA$J1Y{?R#G6Js*w-{52q z!VO%dzW)G3^}nN^@VNEk>*IchrDj*DnzarX3s&E7Ka|WR{{U5u_{?4@XRGT{ph}f0 zRH%}kwe(lhUX}V)^wgiY%WRxJ2Avhf0cfa?)=bv5Ip63(iocrAO zePqVoElV|pOKFk*M*-Kvcbat~6T3)9P8cnlPl4E!3eR zX-*$IWyhlsnJd+@<2WJnWv}nPvTv4ES+R?tdvh1SH0)17H*Z%ypUVhT3`kBk*Nau) z4DIq2Ym%v{hTxzAt9|qE8DbI%$GZ-#5?|yX_N_KTO)<_xsn^cJt`)g&5~*ed=IpXM zD91~GwjrKg?2Tv)Ck}#RX_G#{Ko6}+*rU@7wpSVMr5SqWtOkvCokrje*g z#L_my_v!iDy(eeG4~Bgej^?WLoZimWYPkq81L%$0unJ}(@;!_5a6D9?dNA=$EAi60 z3ymNJWAVaA-@DOIZ28C8E{Y{t65a1*NUdUlC{AC(YN~`;)8m z^A&3Us*u6x+v?r7i}*Em^|VFzF8r5>i~U2i?e5_|F5+T$y<(+#I+rTjXwSCK@|xJC z^P~SLq%!mQg66qn8!IRpiL0%$VmrdPe#)VE>>+xyT+%FaYq9wL*imD zI$>X;Uy5`HcClx=#hd03(~!Y95+i+$~TLv($>U#=G- zXZ(f7)`Pim9u-Y_wS#Xp8BOrghpmn97!`ci;pCcn6X}3HqtQ>#8)36=ENUx$Qne44 z_LqjPRv8-#Phd~50(9+@k#VeK@eG;r0&0JAJQ}1Nj)si2T|oGXnu=E9)wEo(=y~ln zeJiiXEA>|26>KBds{MNrP?;I=Q3`y^sh-qfo2~Y5N1sOm8Jm7S`71ZTr09#t1t}^=-S*^#18d7OBR=N zJ?OcB&1t>W1SMmjHxIQ6aoWaOUAT_Criwb^|FO^nx-^bzCF7GO_7IdOy#O#*33QFYh+1Z!t5%K#mLsPp);@b6N$JNY3)Gnlya~`ERU@-cPwh$?C zaAlgd{zU~wTNkf^*XmNwtwjREL)~XX8i$aMJ?ff6DLt&Ybd)V|A3$sqjqEwn=2d_Kd1FRMjanP;E#P9H~w!j{t1t6 zHOMSBOd@Mt@sHU@kqPj-(>kw`|3&7w}O9U7QL4#ifo(wuDz@W-VlFYWXhWoAJq?bo=fL zqy`Zu%X^99(19?Bjo1Z=XOZEpEZahcBbpXet=O03(tLMcnpT9?7cJJ?-(`LbruExU zw`iDpjaUn`#nHMie(g{%#x*jNzfL9|>O9xj6yjI4BShn|Aly)0>HLxF5O$#Ea)?SI z=h+95g{6u>WdG$h z^$_BIbCJ+|KjcYFo!%hzDLiWX2uci%u$buBVx>L2K;5{^03BU+7Iat}o6G@6n0|y|6uP1(F&(d!{Qn*=s|zIjeFop8#3NO@;{e zG~_>FVjm?h4TJE=g6%yu9PNI#bnTt<17pE6GAAF3Y@J&vo1GbA|3ubb^J-J~7N-sHrvtK;?$ zTWib=DA!n1MIJon+2kX-UcL}>ks>Jy@q4$z@xJ(GZ>Y#>$-cExrwEexu0D*f)qRz0 zm=AzuXX~2ENA%pEX;oU>K{?CvzRW7RSrkS{MAjMcm!31_mPp*IB?lRuGyE<)Q%t#s zIm9wDH6`h%vL|I+3uP&U+o@glv3|ItzkVuv`8_t!JqS{Gz&Nc~B7PGxIf)o}0C=&7 zbTdP1v+l0du@ZAfi`dMBgV>Bij~43z#&ggGhTh~`1ni7?94aZC$oBZPjP88!J?P7n!{T2y4#RAoPc%s?KQtN7K zU0xIKG=VbN(gM)-1fl%OWR85*H7e~yxJAhHx9&X@9^Sn&BRvBR@j~h$`UPN z`caqTF(`ebHir9DGLCc4)6~=W8J3Hlr$kURMk|1OO5QHSGSfdKWmdIp7E3TR^Bndb(&i!9psTRDj(?)dCo+^NSE zjKE9Km|P)e7s9BME>0hD&XOHW81gjK;f|mvep0XzPVtD7!^p*?%$I=n*7#NMdRQ{f(y~4rZ28O>UD()K4zzKlX6!|^s$x2g({8N*%2>P=Bx58VTa4S zN{bliLDcpk^oYQFlLpLNla$ITzsQX9uXD=}9KklENO+@&A#8=f`ya{gy!Qiu#6ry7 z!5PPYpcu^aM|OV&fE)@;tK0pm=k9a0q1CKcri^#)bSzGaqCV4#F=vD*f056zqd$qdW^a868NajL2MUw5qsKtWz0gO!NmCvL z_o$}`lUJo2S|JL4lY1{Vb$NYa11AEj;(cwZlpPAX9h9ct(oJoFTUm}%&-zV}LlA~h z(`(0U#V$RlAJGS2S2L1eLM(2sIFE@a_*QJ$MeEA`VGOavHAoa2<3XrT87JDhdAVZ; zN_P96K94#3!re5a&r4w{k>R_3hF`6i$UdRlmwtSl)DA}QiTI)ME zX%42iaLBM@8y&_4!RU9H;YO+hnbC2`L zt0GuvdMxd)6CY?VFye4MHg<_I1!;eJi!&rk=;9zy;E+Cf*&{OHw<>=sMz}MaQuS20 zz7Z>%U+MswiMRWE7hG@s2>)GM`5yDJ{LSN*lgS)~!X)(~YEeP3AD`%4=)YQ?hZ8~ZcZ=;0o6zEJ zmE3^z^1~;KzsPJUDg{J;B+^CA#9YPtz9CTxlj2r?Ic;P|$)9bi^NA>X`8Z8FTD`Zw z7`m_Rz?!$Xi#tBhjDVREaW9<1vBwgD4((2!HwDwv&CfK;xZmUa6Qja6=lXDaxuTjN z=TUWgz7CjIN6aRP-~tqfy>JyZfgxjTr&%(XcV4ztE|xte>~U4r9Sr@RZ^p|n9eG?4 z9gl3BHmLgTfArk$Nq^xLaCXreBs;s7ZvDQ#A4(f$zF;@owVD5AJ}414(>49iG&j1| z^>Hy!nnPoyDgg0ugLeg~QPoj}8qRz^3!p(&HVvLlX6Pj7-+JAX?$q#M=Syj~VyPI8%+z}3%dU<4M#81jZa*Y3$I#&%P7;L~cPBF54z(by+g`0<5i&~g^+rf^O) zM*M)aVhL>@=Z06o0rO0GZw)Sonc8twAZ(t@Y-9oJKYE_ROui8ua1apAW{sc@o5X>L zlt4}OY+|2c$OJE7;hX8bclTer{^p-9ZlYmDCuicQQ`|lg)FE!Zn=HH>@4f8)mhGP! zA9__?2Fp$wrrvmFs(eEU*A?~_^KGeriJ2S&ctK*B&w^cTgHhtl8PWyc6(!*S;}B4A zqw*%u=Bd(O_7XVio!B`Q$nr65fl1$GdJhA7=EuzRU`DE)W#3V4!KQTV)Wk%5eG z!MZUr**Zc1zBgrt6Sr@X)3tXojm%JKtZ#AT-+3w(OeQf%Eia6k{b~D)hw{ybOa<8R z-(cHb_QoB(X%*RlzEW;vr^~P_*O7Ez>|CLw0>$E+hOBgn63S2Y$E1E(Q$oNP8&jx6 z1ef)4K)impCC2`M6Dt|mvL+r1VV=s$@=U$`%7WQEa`y+%to{lX5XicplpM5d{yi%G ziAtZVu}!?>FP5~`m-VzqV5Qd{c~;cl1ZwX_Pmi--K4Z-F^gZtT3-Z0d^Af@@v<=7e z;P@n&V)?`UgE$1nCNxYyI?0q$SZGaJA5$+%7q$!`Axi;Q-!)lDS( zw-D&Y*SKCH+>Zvd@aKZ-Za>K@{#oRey^+(1PF}d$?U*x`v{x#)i@nACZIm)T)%UpI z1J<_LT=>k`)L3c3)Erb8K)G}v+L8e-wBoyqHbkwt6mWDiff*lnQ^NUBJKj(7JKCD0ym3#LD~K5QHgT_d zxJ5yZj8|y0IL!@m-`?x3^_BR<{a%Q)8X~=1fsMpBEvK8N-sEZxYHEqy0OkCJzhEwu|!<0h}U^ijUWrW7>|Np?f_(C7T3 zu9lCG^!j_OzWe~=XT#a5kwpqG;A~%!j?BW%P=Ks2S!7AWl|_~X96wFz2Hz}x`x+~H@Qix~NSLa|?5@>AWnV|T-nU;`J*APe zQlo#K`ZVF~S#|s<^_Nci4h6lR3SFd;UY|`ec{XILcNf9%9uhXLcCJqkU$d-Rst#Ie zzD2zi#A7cU7Gk1j>YM7LxS;HyLMdh#o&_FP_VN!n4_0HT_`YWSG}VHWjg00z5qd)( z;~KRN_d95g!XCTBrtyKc`>R6D`4W5fYdM4@DIO>3p^C^plsK>y>Brv%BADQ>@K*$r z3(wHpo0Q$v8VM^`IP&#QQ_75bOQhW!o?Mcj-1X7+Vd@C-Ubm>-G>F8}JkD1XqL*X{ z)|Pe0rev=A4pdWF-oGm}ys4sdxsz>drYQe=MKP7(MR8UZ(`C4d(GNg5>ucmK4hPo9 z^Ejpj6~-T5EcSX9U4u`@NBy}Fj~e}ZdE9qMHU}R#wzvVe;h!KVs2MM{MF2@FSX)0# z7I^}12yt!=og3rYL9)X+tsW0P5mt+}=r@Hk(od7;Zya%}IX2wyyPmsUSHq&MAz{cd zf}F4#0)y%T1{FhIls7UiS`T>CFh>=0Cp)@b!Hjy}`pjg-X4kBjKEo?YIjqkgdK|B$ za{mov8Hdx(8_eV`{agV zfTL~1-rfeY7PY-(5nFsn%n2`A*Zw0h|E!))`&~gxxej?;KTb)H?kh-qT0+(OIr|xx z_Xgk(HIJm#LPC?9U^m5)z1V~1$P9RUMZ0SY_T)=x#Qt+(6Yd*ZVVb>A6SHI;&jDZ3 zuTVinbge1PFZRB`8HJs^8*w0L3Fv0BP9q|%{`5|UDe7L0NBw~^cW;dG_x8oW%1`K z)fVIKyX>CTtthTDiYwxXYv&_$@wM;lG7UMiVD`p~OOYbIQNDHv9$(hkS<#u|!@A1k z2i9%$1R0eJj~YBDJ}e`JqFo3|*7P5V4o8?I@ z7#>SmJ72qp7jFUE-j|?n)4%8a$V+zW-hS-1hd|Th>inWdRVYyb{{1-4gl3WxWVO|= z`sLy5WPNHP>ELkf(!a@u-ZGDTf7HwI5VV)Bl;jf~$)+NEGqj%z$*<-SHgT}WG_C5v z!09xU(W8pIGUyO1t$r=N$w8wr^EU&v@SOw6UV?5{H20U~0m#_` zG%hvc%bXFqDkgE^*DHvc&iT#unLwxEz7qF@FZ;w!sfEu>L%8&#F{bmMyZhEdIzxh* zB}maxpx`G3&lyBRi5}$O)?dlc-iXyt#R*$)qEvBt%LqC3v>NL@f|~q6OeC@509}k* zh}9vCyLT@=xl6%dGYxSqHd&GxEL5F5_F*$BMxCGo!>_}m6j03woVZdQvrwyf40kau zR@e#Sn&VMwGUWUH#><^X%TVhw^kk@+5bQH{Km;vT_ZKc=Mn_BXB)pJ{Am?Mjy>P6`?|Vve&&g`! zo^>O`uVf1LFQE7}(YK*H{85vyt-kx!^PBq}{(6^4U)x=sU+}r>z2q7ZBJf(^Bi9d8M$?kIdkGoPbcxEj zhWM2L(aJ3r5f+#{#QM)OrK(7O75XeKrv%lMY{qK1Ns?a;2uCbY8$7;So$;m$oXC`K zV)kr-^5OPGX*tUy>4V)>A3SRRV5mN}3E#AySD9BEBd`6?ddNMtFgq|__huP8$x4WO zHhu)ZX~Xl*5EwKg@Qlp_vjoKZY58N0?NYP1MSe)|v{S^9T$@*UD#y(@5>!EvJCP&o8 z$1yR(hXH|w{(3&J5|-HpxW4A=)W2Rrhj)ZOjwQ`dvZ^yGg~Oo1!T-CnuX(3W9_^V`kJV)bp0Ywdv1 zFS&Gj#iAdwge?SJ|HAQSAy7juO({s1?*UjpG?!aas<^4zADX@ ze2i3~v6UT5rru~)Bcp$fa5k~`NkD;I?e3HzrVe}wJkuAgL{8aa9Fgf7HDq{GNU%H5 z|2=E|DAx})@HdCn=}%&3GgOZ3pS4UJkl682$DxT%cN$UoFuXl6bs{1S`a>2mAiSb9 z6COb8+GPG}cws$+aYR9|xO&G-${!y|2!s)$3A}T07Kge2k+=XV#nwJVf9TBpJGlPM z`z7yBVaBsKik>1lYc?CNx4X2T=#^N3iOnA_Q-*-0_0LTx>FbmW=%sw*Izr1ogppy# z7d()=e{S)g{SmNOJxqa!)59%3x5B@F-fe)i#|$wc{lCMQ64xWdnXNQ zKTx&z__#i-9qCK%N!>z;u5WD=`ydL+HriM%^%zy;=sl;2k7K@lCAwPuqeM4Hb)uKB z3)J~G(kaYzi&m|y{+MQQV9x3t|7P^KXp?vtRDpjjr%fcIUh!Ip&c(=UCGW2k9zF01{+Y|-Y@<$xq$HbJA4iZp zd(vhR=J6Fa2#evywN`0*IOF=DP#b84H4z$g_Y*L*&?@b2uESKDW+x0VzYsUM;{(^NdRKdW=L^r^`8q1Y{O#jq`G7lINuK55P-008 zHJ{QkSsR?wsQ)v(_h6r;(1Es>f(r1>A1WtX96KP?U=_&Ps{YU9{;j0OT&^@zw%~g& zL_tp!dUUs_$vNe~^jdn2Prib`7f6nUbJa$v(A+Fb7gF@t($MCW$6p!O4kpgT$l0nK zSpHl2sE6g9kNrS?9y;PcENz6s$`*C7iLs+B`TCr>8Mp-#Jw2%X`viXdXgnHpbuM_r@Y%I@Y;;(m|m zZK#~L)AvX)ahg%4)Zkk`t-9rTB4t9P&nm5Q7Jo|ot-kcyU}oW=dx~&VaK;c7(|%@G z&#N8Ag3f4h{vMpeI?=4TwfZJk`yr8o@-WYOQ#GuW{eXPjW6SYV#2waimf+!&hWO6j z2HQ5*S7Ubv@6U%B-ReGw5+W(8{iRg$_WYTeOasCT3~DP{^qcq4_X?w=R}JHP&4Pd3 zC~2KK%H=4mF$_nH2MJCFBPftcR**#M)pb*AMjAN$E5ycmB z6~t$Z?Jdpr#Jc<7#R24Ppr*~rMv0jr$s(2n)RVfGm?@pW%gqaZ83K`#|9-EuAX2{{ z;6t_gt}kD`guvLq6-U&p#3nS%FCt~eWZnt)kH03&z-;ZuY?vyY3UmGAjKAnXl(zJWOUdeQW2ED`f?q>R+hi8I2cU zGs*jh#0Fsvu|tlFD0g1$LW?HQ0?OU?1(+Q~c+G_+?wLh=1p+{61@4))%n7A)n3PkcQ3^T~=!e9ijc+MEjMUzSwq>Zx}4?Z@uvE>p)3#O24m8 zP_OG7HH5>IPd`q>#*3RYLcWAE6=2w1>xD?_hTx`uP z2f^(8KdgZREdOlLb<8#FN@LHm(i1YCQ8aVHQ14)%`-Yyh^FYm%rZv#srnjTmR46Wu zNKLdXmS^=hoV+u%L`1Q$7g*2*l9nmz3qXF8ghKaPXU|QDmc19D$E&avfLTf zvfewU`_!*r!nHcin8&lfRZ=gljngr;uc3S?7jj_C^Bc-D_m_r+;JM$x9%99J{11;u zc#3fqC2WZY+-SF)cX2-z1;6#Dk>wojzKKn?Ba3r-?X3JFduq2 zXcem9(9uYJh~`b-)D3fd*cZEoE{t6GQw2#QuxO?YbOXt3`pgUv;Ck1mCQjrQ>DWTF z*@27mo$O74 zE`>%W8HUb^3BM(jl(j^n4e=afoVdtRvP;9<>#wZ{Uz|#JH(!+asPn%eFhh zt8bPIBUM4eX{>R*#r7&$4|3SQkjKfnF)zY9O+E^!$FseLGKH%3s7R}G%w|m@Dmkkj z`6H`i7L<)?{}ja*QKfq%|R|O&5)nUfplrt2nUsX?FvvzXtX7 z1=D`H-F<5pATFMfuRp~kb9TyiyQw8mAyY<4GdYyl0GY+bEA<+Fe81JA-y;UN6m>+U?xS8h z+Hj_t6N&lEMEj+HZ2G2<`>MWka<un2|*R06!fs0&X+B3eZJ`cuWfF;MhKVYFPy3Hzsf`x z2t;QC9QsaGmrkTU3f^Ui)qCpKF<*6H3d7qrv>IMuAUIdA!^zb+UA%a!fCXZ?T(CKS z0LRzrgIHT5mVVSsg}`po1geOfff{+%3Vq5`uM>uM)!^H&4|ms&7cF~Lm0E^>rvu|y zIvCUY5BLS0vh;d=aUGK6vn`}beW`^2Agp*N?Qbqc(EZHWz6^d#pYlZ&KM_TYx?Q9G z?(Y3|Dl^8Cha|i~TU_jXAc+D`w-&|QPlgpA`SH_MbJx0gBhdh_F5ZuI5RP}dJ(;OL z1yM^5iyk_9*-g63`>h2-j+yynu_ju6oxS3Shd`tE#X&z!Xxf}4J{G3YjC-!3ue8=u^b5g--%Ft%}Ne(=Cvl@JY4!IdjME5j(Kv`ReRFm7le z&bY!Nw((-fU=qq0$tC?)xb3GHL|bu%HxhW?D1ot$W?u_7X_Fr1ci`19zY?tNz~5Cm z-*DLAL|}+*VGRB7ijr0@PEnc6tEk5Abw1a2=bz#mD*pcsWU&wy=O6>ws0uH!^+33f zdy?)03DcggPw{XfDUF4dxmKaD&M6wj%AZwg-7L^K3Gf`+R|I^B2xEG-R(rsO zVTzV5)%R}j1@GUgwyA$)?(WNG`_au@CpVjT%u38e5O)2esqX$*d+(tKy|$f57U;Jg zgoI%@md$gx{Cb=wJ5b8hS-D^65$v_-ObI~f7^yIS#9xS8Z?O>7%3GeVQ%q)RITl2M z9GK1?|5*G`YDOKg<^Z3Ip;~`*7dDH>GP?W1@kg$^i-i^NacemchwsVt8&QD?v`$k8Q*p3b8{pZI!MinVi zn~$s~TcgPdcKseUWPDGVF8m&r8O7Ab^5Lgxd_=?YJCE@3StI`%1cdCIQTS6eO!8@7 zdf^Gv;8d*22K`9vLPZ;St~O9W?g5;dmE0=)uHR*;lS2c#H<# zAtan>`fp`^1yx*9Np^kz%|bpz-WvV`2=D#It+0Ns0poaL_UU8G@bhfT_!Wqp!9O1< zIIvco(-djX*6`pFS~Lx^%fpopcVip>AeexWv@JWk!U);6IcFsc@Z`Kp;2rz?eTA;@ zb@G6iBj}<>SLG;beJ#pWTW<%CJ&N+E@q20M9$I#E3Z)c9CD)U6&&87ey0G0{+hugu zqQqoL(lXM>5*BSE-2T`cqgE>NAprrq} zFSY>nv5=g%9dU{vSH|pSqRx#CI<{CM`a2YY__2SUx7By=Ru}i#+m2;3@ff@Mx`d~P zJ{fi8;p%NxQNzi>jFrj+fOm&;e(Y`lu3)ImfGp(RZrZ~KbR%v>I)Ld=5plXIB$@Kk zx3_}B_p7d$f3JE?Ya#=0v+jp87HIHffR7(478uQy)@LayrouVMYK>%b%r{bhMPRhk zYU;fX=)zRXym^V7WgO0r$$!q#gIK447voAENI|$BaVFY@^wNv}3o+aAkcp-ZlX@<0 zjRfozO3})fW~~}9O;SH^H&cK&glf=DlbpRsNMb;@Y=eTcOWlQ^+_DBN*0D~Cc79Q| zovjpJ=0((Pf3ghufp!qzB5~D2nK+^tlf!!po~+lnKtsY0v9dBrNT)e&SC>N6 z9GFL}e{tgx*N0Rj^ov0@$|&YN#M0$!nDkXyP-}CH^fEhcy9Hz0s;7{3jNHdbuMr}N zO!Dh@EIp*src!1p6H4O`vF6IoR6qZZga#g?+R8>h zzVNa4u2W!My|R$Rt=lJ@QdCmO2W!+{M0-l;vp>n4@DkqHhrbPXH3QP?w2PMUXG0QnVw~@UhDHY zQJ~ejt5YKaT|r*jN{PG*lxVV$QENqNecZR3e0dzBg;+iyD5iO94C9~ZjBNiC68G?5 zX%7geaxhKw{v)s-BAaJ$L=6Iw!VSYa)TrSUcF&pr@ivXb^_$%@IB-z3^pX-MN)+l? z&@)ot9<{?K$Qf`` zwLGli=P0*B@Jv7DdltL;y zYg}QfpB`Ibt1Ip5GdZ?t!JVXQxR>DM;&54-vM&0oR2 z7fJg@llBj3^i%!_H$l#e=1RPL1ktt~oJ@~P`)pjY74InxQ1u$_y#0;N9N;zeTu*gz z*aa5dV_=4dQ&nsIULi*=C{!EPgeYtI3Snbkb0|pOMi$*BBr3C{C_xCgc#^ zl&tCdBSC-m)AR-Vlbryk%y?gjz|wa)0WmB8@_kkSZ;)ba?89%yLme-o$Fd`MO1+IV zCV0f_J9D^dMg83m%$U54C}`}yNm45s60JNx+wHs?j~-_m+Vm-OfV zMyT1cwb^>QEC+e63WUPBf22_=m8GmrPBDB=aZylD7nv!!J@CxTE^8??f5Ii7+eOMM z(Y-^yaz>Z)$)^f$7Wlra9$PVmCsB3iQPsLE!l+M&!YJg`yjD+oMbRXx-B0XcESE-Y zGk2EIlCzea@rS_l?q198Cr%T^^XNa5u#)TmxC!)Q@=kJo&W?Ll`wx!MYyfIpgiD&&HvW2}tCnTn1u?8(oMGvchS&CwT zU*As@8hw6Mt|ASU`KF7N^DXX>FzV7%j3V(6}&W1D}m>w zp=?NXq4iRc{Uglr_(xupW;J!^oV{NfP@RkYl73QJQPNBQ)@F}cV>HKw#wg|%-BzWq zHCThL#?wl{$n)pJFGZJze(ipp0lc}AC5C=PCPFygAe@@ui1XtwhfQCbO7Kwi_Ibu1 zEn6lWB52j>#0d|ZGLSbtG|(S z(oD4dgzs-;zlkjAizMIag2f`k&k|$DW8k&Z$~Ut}R$lYbm%a}5@;q5msBUUf_7!XE z()KGWJ5vOgiAcb8ZE2=!Z@Uoz{@$tVHH>d=033mfB4wPxs((6X+3%Jv``!KTooUyE z_0mvjDo->}sa@$rYJgD>Hk$`o(f-3F-~a9u)Soadl-YM@Tf-Wuej)p8&u1YAiy?oi3coPwiMlVbkL! zf@y=-pfBakC{L)P{t?FG=m>fo+k?a6QW0gpAJS?24EdO!@FL~uEbYQLtO?1GguJE< z4`VHu9#p;XAchl!BT9`3yip#D<+y#^1I>zlnL_HEKj)l63TDIkUCl6%Qo9jkfJpmU0XF2m34VHtIPpUn*8^vllOB?q>X3Wj0h4 z&G`-NP#TSg$OlWCH{ahPQ={1Bi7!4Ck8(IsP*%W7`##7BTHK*Jr%hil4qYxOZShMp zi#_#umcnP@N5p3Fj+KS7qn5kZej9)BB0AFF)>E z*=oL4Do^k2WE-s=crYgtf4p#L(myIv{MZ{8Nvx-L7oxJ{92%^*md>9lUHX!BqCL6q zbl>W>u%$GUgO_xJNax%#R=F&a7wxR%xVT@dhxsn~>|p9RUA0lr}hks>mwo&ai}QWFmwdJR*QL9Q!%X!FZV zJKix9JC_2_I)zlNVr|2lq5*l_kt?{p)YLSA>CAQp|tAzC&$PY zETa)Ku7ODGC2(sc+WQcmuFex5zal6Mm9a8nhK9|p0}tTrvD}cW2To1WnAjiL3r%3? z6L!&=vYAK5iou-04!tO#VrupWxkuDi4Zh9=q82``OgIHdqB>%fVF#qS%KC)4F5`no z`o?%0$hJ1aadP8F$>-j0;gYadgi6i4($V@77w(mB?2qL~Nz0a?Y_ zV)_qcs$QLEokF(X>pGNFT9>W!_gs(T?-{h(>4#+JpX8WH9}QX28tMFm956mF6dj_w zWgGHcG$S^_GNQF)#Lp>>+&i6Ax6$n!{P;4VERJO}6DXKs(#hb-=p$L5-0N6yx)J|i zwbFPDLa}3Yvk}#{Locx0)=U ze>!_U@-tVrTvb%`KK)sk8Rm`G5wA2`q0E0IXNai66Zcu_gMXF@j7GNm#Dp2Qd-&;M ze<>6HfVe#DAe@gMEBhUCsYkIuc5TI1icc__+p|aJEFC*HKU9c}{AHUs^C$-*Vba2T z$T@8>wqJj}!f2;s6#^}Z-vZCGY-QvZU8m?qW^t8H5$c_*@`{p*s3ECbqkj_$JJ`@+kW9+^y(^Pj*Om*1Hk_Upa&AGLfu2wH zTlsWhDIc9O|oo|fYPPvfREST2eE9LmaU!& zZW1c}Zi5{-7b)>SW>GPO7JYc-#&}0W;k25K=n$}RppNxF60b<{RC=Z9^g-s|!EYhv(;C!ML5V*aGicP4g=xNJQ*=3=5yj=*aQi^3imFK2|nW-Y+N_j1fvtbXxN zz1o}m%-w8K62)4;KK-~OV~9ze{EJ$x9J`Y8irVuSVogR)36tF5}RGU`nRc+Y9|s^XN>shr;&vn)q~*b><{ud>vRCOiDXb6VdMI zA?I_gz&ijp@woTp+r-Wy%|e&S&j7z)DXvd^W%CVar?jMbka`@Wxs)3rW0i0WdYH#i z<7G>JD6xI%T;n#zcJeOTV$c3B{QE0Sh4$U)7rzcfJw0gONCkU6@F0RVyrUjKIC4;c9ED0x-=M>Z0#_ztJf@8 zCb1nSYuNBZST#x>fZbZ&GDtlOdvpYpG=EE+i1Y`eqP}k3|5z0~^^mRMXB2=agH)@8 z=Y;BdnKj_VNiQ>LWs;zUCbQQ@myRO^@eIMf&L9WTuBg<6**{XB7?a-(#7v-P)j-gAHLE?!E&ykFsCw~Ki#!_&`a!vS;pWLBmRslkb= zTh1qAq~wo}=6|8p4QqtLQl46W{44R0k!lgq90gT}#TG`f5cLiHev2!8&^!wxrfCk|Dv1=C;KoAV*a5ZM~7O?eiYk9(6spzpz)l4c9!8Jn6l z-98C&6hMtG9`-yP&!D>nFAPjC$qW}x9|<`X*J;oAp(ZcQS)gjiUrr?eXl) z3;{%-v5G4LcyMWX{O|3i;aLWi6XIrzg!YA7;PH;!NdV6%~P*P&488) z)LeSO)a~|!TAa*5xY}7|K5{lCh~Q1* zDaFDMek>i^rBFeq!*l*=j!(j@s>5Ht%>flZ;emW z@e=pmTd_0R{|re`l?lNN-Ul2&zOG8jKdq_{(MsIni%>ahF>#5|gUk&mt7tZV zLK}{8+M7R0d~ioSr+;*fCV52odKM}nAxV|KXFMF*D-~^?njhsNd0i{ogriLsRPReM zk4(rcoU0}IXF@T4aG0=vutfK_*zDVYnMk%1?B&P-oBw$|jI4tUTYQkcQ`8>w$`PIy z%-JUG6pv>9P%I@K!j*<9=wYNXE!CsMwM;H1s$YDOqIh71!#J$*;-4}ij5O{(Oc)eA z;=U4BxMgZaIYq~RlluAT8zwCk2F?5Vh2Wg}U9AK|X^0Bu8#(~t`z4X7Q`oLQ-IrG^ zri%_(#m@gOM{kAKI=THMCr zVw;W1e^k?)%ACz!jeHVFJYmy$Xy3Y(%q34gM7xqfuTh_61};U$)Z&eC zC9{x6bnuzkue!iQoCL`ephpmW)&QsN(7>Sks4#p~Zp_WvQu!oQovFI^KSlH8_9S}lfR*Z#VM`Zw7r7N)k-re zCf4ebKg8JXpc3m9FPHoaf%TTpDvmsY=HFnU>N;YE^NxT~DYP~tR; z5ObSx%;N(wue@{KAxe^s?eg(P3UQgSmd3HY7ki>-UdRR`-uE}fvfZ_<$Z`>_ZXO#g zWq7-}R#J{iG9}MqU@TVA$7q6;8V<{?Ta{p&Ys) z++%Q~#$e^sWf!9<-fQa5i^^$K-kRM^W!t^l;RLkD-aYbkoSyLHb08f6578u>c6=4|u%%2yqpQm!=jSK3 z+6$9cpDaVrW7bFy7SBkX5!unN{orUd1$v+Lwvnjb1s}rg01vtZZ_A5C)fYK`osU

J;oS!6UoF#G!R-Ui0*H8~m2& zWB8y}_WtMU=k1CF53@Bwt(LQvMsG7wu_otM+eHyC*%aCSa5hV}+lNCbcX}(vX-XH? z9W6wAzlP_17?G=c!dEMPXK3~Zc;Tr@y4Q(66ULd5W!^0noWCV|Jp177WO}JXVX~YE z7@djMU}4t$?Ciwc=94`C$*WiKwQr&0<>_pK{GS|~%MKQ%oVDCdc|(#4p7K=|s?<4!Dgpe-)9gqdH0)+dT4goe|iq*pa-XXlH%=kPJa5YPe zqznvewP&V+Q%Nh*ptQqeGgHA!xw6X)PM*_u|I&nYdu*Kc>H_l?;K~uDwcbLb&&W@& z;bz)qOlx*OxBVRcgb@x?=r_Exebh9kvL%sa7Yq((sXSH$_$p?`0zHkwRXw5 zb~YYJ+AqAQf47?5-btrof4p2``H6EuM?f;`Y3O;;xR`>FQ2OauV|i+M^ao01?lUgT z4j)gq=_~40$>qu_IjtnYhf$4ijss~~bcrLAv4F^jzUFED$Ja3-V_sgoKgAJQ!O`T4 z{TUa06*Z))6s~`{mvXDA;c=HbUY67%<}Z-l?ln?8_xoiNB9N@P0Yn|Hbpk^_xRFAb z4m*hvW=T9Cr*#LD{xJs4x%L!IXKM}s-iS+C@2XYlzcL#&RhXj%^i64-f)k(R9=&0>2Kzp&uC zzM|Xk@pG@#ib=d2Go0;_Uzhmfq}=Hoseo3PQ2{@OORJs=3NU`7sqCnb1>tMumaV^WZe8HsVoFs4fo1l(MoF2kL1DR`f8OBinKq+3h=qdjyvOzsL)NcM;b1_c7 zJ7t?)R(tiK%{#Rh7VZAhtP}0R-DKPdc3hFHsz>%DAXrBcpusjG$Pio&Dk>*nH4Btz zs3nFwN*`z5qWz42wU$CrnPBqu^}^0v^};$kTrS*31Y9lcy-smK)~Jx5h|AMlszdyG zqdwW>&Gp@pA~7U=q>NcF(T5s4ns@rds?Vl4G6(-kkiLGvZ&)s6gtnXY2vDzW`oksJo1Q+)X zRrhKo{>sC&B>T-TC0f9Y_TcU#>@qj^%Ouss|D1OcslMg zwr}2xHXgN}`2Km}83)Ghdd_CdiR1k=%|Q}iU)x=WJaK;JXy(q5>j=#?KyXKO=06;~ zHIrlxy;N1=&tXL!uBuLh%gS7XtNajeCcg1d?Nx7RjSWZ*jF02Mi59gRxEb~JXitwm zo{$}N{XWW567T$l(p4c}n0#@pc=K_QEWAi!toV&b%V;f~xu~F6T@KrBoFLOpu_~~u z?j;v?E;nwsia4V)b&r@T>TzW8MZ!8Gb8l@{S+jg)^IKi9etXv(+9(Z3pssnuZ)w>* zNzAJ=9RsL>klsp{P`?ikZjFakR=)_snRzZD+2I}3d01n{%=u=P*;5@tt zMZqf$cdH~tL>d)ZS--a+--eQP1&hR^63(yKxIXep9!St z8#wC*1Hea>G(fS+nad1z=4F3c6cMId_#Pkr?#OejuJ48V%D-PKo93dalK#UjLoZXO%3-6eo9o0b2dSi~ua;lV)yuW_ zzv8hc-+ilSNWK75ShX$5QnapEU=y*CzJJi@njhG{c zIVQXFe3&~VWK$ncnM*U?WgBHF)P+^KgPlX4t3n5n38X#Z!3L@XW(YDS`jDXG19@%$ zl+1_F4=y4BMmCuVtZrC{AOpM>1RuIVhL#3;rZkMB(%5 z2wImYB>v|`z)L;%d%Ab@&N#yauLoGIh2P9*Xw&(WWt6G=yJNYxt?ho5f3ECPk&GVS zitHsVVF!Pe%vYPv0$ow*D|sa!heUa{df0CA+!U{6)8Nfnu@xlTAb2=kvbpj~RUu1d zMuCcFAFOweQZIeRYAk+hb?~!>3!K*HvgG_}&pm_q7t6;|Z(l;~o3b|wfMx*9bPZJm zDneYPen7D1i2$;761)s0toaMZq6If2%?5t= zd5cfHpz|k$Y|+KsEqs3TUIgkI-I3TI9vgY%O+)Lp&Fze_hj({a7N3~asA^{O%C!a5 zy;bPV|6rPCw|bZ5MmM%AyFTUmv-?SR{M$9EM-m}bN^+8RFW$-r*!Y_y$*K476stCm z-p!9l3(EU_KiI&j;hCsUt;emhy|@c6MK5mAhXz^vKo%v5^8;uIWHu-VaK;WQ+@Z!% z$gu7pXG}s$*rkGuA?{i0`1U$u6k3dmcKYD9b zFboPQk#PBPTEKTTko6!G)%G3o$SxQBjXw&V`x&U{ilt#Aua-N+7h1V5=O{`J$bYCb zsj+Q6;7{hI(=(Yqf1|I`OXYx$&M%>BFE>bg1s3I1tjI=h%FZ3Wx|((GB71MMvM!-_ z^3`R>OuzJJ3+-PcyrZLUXUt~0{(PAKXNW6v<%PMHj11qWNpGc*D-}YP=TCa%u3jx_ z+v3eQ1o(30$B76wf>Q8|jT;mSVYz+-v#jHL5>X=m!H=h+cGl9Y-hMajJ?((_Y(&thEX=Mt3bZ0CJe+G;|yTzE|39#7zvU`xk`o=vu0q(9!*&aDebtd%!W=v z19@*PfUJ^6v9$LDtMyfOMoJgVT?6I>J={qV3*?WF+^tN7T+v5n%a5)#d-O=PO5!o#}duU34huEbZ zUpn!i7fnLx&a}Vl4bHF48uA0g19Q)QC!fm>@fv5krbE&8uZ(hE^9CWE&rLdhZ%JvE z<-d5RC8o_WR?qNOq2=>Gy{`!CFNr^*+sgYoP_hYpbW51`>hZVp9r2uDgA>L0klNL- z7tgo(7f)Y>_f=ivRoOYX+B-y>0F|%X_NMX?_Xz#K>Y)m|FyR4>j4nK%6X<*9eWOn`Mz#eK&E$o zJPR1#DL}9efQa(}<^}agzOvD!e1+d`rw-d|mPHCR-B97*6X0Z7>GF7?b?KRAyL#4I zuU*Kdd<5f$ad$V~sg|Ex{zpe<)%{uX?cCJw1>3X|JMBw*9KX5tm|m}GT}dQ3)LPkb z+kF!G#kt?u>EwkW!SZs^uP+rUJ>W@w)-n0#yBmz@je4wIuG0j1PlYT~2U`I6W4toM z)Z!2TWA#Ls3?&GV?;wPD1Y-sUyH&4qe%cS!2f4O%y{K|Cx_H?mcXlD1ZAGzhK`=?& z`)+D7I68^y$>w=>fm{U2^hp5(b=Z)1aHYw6J9bQ>i&E7OZnw-G>7-K|rukxxF>OSx za=Cy*G{5REy-hRq8g&54aWim?)Lw6L&g|8T5a{WqeP-e2 z>uOYWs13t|0_NL9GKsciZ-5*_bSJ7{)&cjyINtg%&3Ry+BbRK3GXUxc&-ImO;LwJC zVF2hrpZgeqi+187ppsuDU)|O)j`%J7nQI*!_4UCwtZNb1^Y7&VS?m=N3h>|zHP6zK zpE1(5`fAcPwG_ojfqn-lt}37YC*$Yi^c7C0KS$yI-;=*F%!?gJIPE5-gd?AqO6QWa zv~BZ^bK`H!Uzz_Ts#^y=cfjxrE6E)W%pT;kuUEz0;&=YNy!B1%<6O?r`P|X21J{$c zG*>1ES}+Vah(Q+;%}!C(m4*@yHhS&wUHHK(Jp+ZkxLgbgs~*|_9|wQ)S@V9j%CS1n z366T>X7fev$D|YY>(cI!`P!?nl&4|u&HeecwCwhhusH1K>KPm$0WOnSggb!KD-B_T z;Pz4w&t}y=XZDw7T9?IHcsor`TS`+@^+7B1((E+8{q!S$V-ey&J?1Mk%1H|a{utaE z85TaNSexlNMX0*AXR^hfAd|jOv6*Q++@Oio5a50&-))2$OV=T0bfdaNZum@ zJ!dsoF*a+thay1Hy#g{PgTDe}Yb)~Q#MuD?2he448K%f7*6QR)OB8hO8VwpUYwz=4 z>t0QG{Mo5<9Ym3K{?T5CtYPj!uPp<3Q#FC~z1g}tqXN$hWk$C>ykER5w~<__kG-81 z%&ZELpWlVFc2@4UJ{J&X9Nuh)AX^wdUVi3tz6+68jdkT9*LI~GMl*kas$2z-#dp}9 zzjH9?O7|@M_;d;C5A0q+2nRwhHDzsws1QlvW*x+7uHo$vz{b`>{Ed3>@41~L7>LL( z_mRCx<2NMZ=RpPtiE(PW@PivbygTi}6gC5w?Q(5rXk&?FpkWZ*mNB zQJrfpz_pu*wnOHbeeFi$6kaS6J!A^`8By82maqN*`!@$Q9s$ZA&U%Zx0rD6-adE?8 zqqnwgsD;(MEydKhyxBl-sT@2X9}MvA{R5Ut)i%FOu7mV-0US{jc5Ic1wR#7it;MTv zv=?aUu0S$P8W{(Mydwz4;_S}n%SEkc zwSO}|3j(CoA)JOh;CM&IVAi}t@%rvwl+vK5b;GK1)wYw>94-}qWL2a$$0ARSgK_<8jG?`YoyH~F6;GZY(6;Js z+66(Lf75aK_02(tPa{b*NZ~GK$wBCVAJd;3<$C+cTrd59oY9}+s#dNG->9ZOx;CJI z9xZ@-lO~GbASlOIia14y_z4XJ2mxG5VQRMGs{<7@;1otC^-<^?eLz<6*N-n!-}ait z5U<~DkfwzSUy8F>1{#xhyNO?WMhJBk&&kqu!i!`2JtRK=HPoYmHefpg`XG8}!V@9< z0}C!>9D?E4pJZ97^eR{OL1fxv`;g_HohxdO@ApEUHh6z!oZLK+q4$}RwA+k44Hxo` zPf$TmKE2j(jp^m)st=^Fca?z52Ih4CLC64x9Kg(VT3cOr0RUq*!Yu%I5nhiW3Z?-( zLSh5us)owvMS}Ck6w{Q>Y?b7~-W6|6PhRP&_2axzdQ6YD|hcd&zla+xY#+Ho#Q&}gMFiv~) zmQP5r%xWf9&%ADmg>OWOPHWQqI=_RJ!r=U_+v^2ya!oS)Ksh2Gl7|X5H6pu-T@pCnMG%Jrz>!>_)MW;Zhs+<-~v+#}c{K;eUB1B?NR zNFje=`)C8=;X+y~^Tvk=!%9`Mf3MO_UVUJ2_ao@m?h9meCvYSf3qy?Ha^46AxyM&m z{w3&v41{Ec@eg9v3{6cMJqfjVeL($2n653Z7s9kCe0Ta@a$`RTj%G|Bf1+4hPsBPZ zJ`nvQN6ycO=n*53v7o(;q0t4Obq?Ta0;mr!0i3UH5&>Y;0RyYt8%Ruw&$KtudGwgL z@)E#&Ak%c$*eQ9;CNwhPCr~`;P1XFKaCtr?7bn%6WL3%w>r?5f3~V=yR4i@YL`24_z~;{X)dFy25- z96HpyI{dE_NCsmV#>nEgZ~)ott8Nl4QDTt7yDld)0d)NULi=^ z+RsM?>!PSC-aBZ1Z=;6|vT67;rKuv87Aicm7&Lx7ZfYaw6SRQyJyukK7)LS=DjLRhA zp+jJ(=-;tV}B+4u{UiW&s9J z4Pf7B%Fl#UP=3kSrX$>+WY8rVNsbw!^Qe{M%jAi%0RoILKINl5Jb2mYgq+=p7E}%u zu>^Qsf%RIa;7k_W$rTy@&O-P0U#LAcgW_cOGieckI5gZ89Sb>DNz?Hfwdq#_V3#HC z>-Y1Z;dc+9M`AEnzTfSCX?T}bXdFd%2;l(LHd$$dqJ+wX`ia^8XuSueguQJ0mVwvV zrohNWMmIf_Lf>$65G%vJH|D6;?=(mw9|r>U0_*SrWy14`*<4m5M2=+m@5RnTXy+?j zz~?xVg>}Z4smUp406&%Kx}CzWF$r@)H9em4p}c(-QX#4s_UGB}m!31X=Dy0!rGwaU z-QPjQG;**!3!lFJyjaYD6+*#GlMF8mlROj`rnOiGz#ho}5)FK)tD}|i$+YHf} z_phVFU%j^eBf^jmvP@Hjqip90H`ZPb3%YVSGdJdTSk!`|U@pJCZ&P_gT7Im)#WD_%!=NclKu9i*(g6OTM#v`i*Yl^I`+ zW5viDV=W8PrMSdzx2pX%giaHg_Z;$LK|0$PGY)S#xtqrv-SmrY6FdZH`M?AZ#ZYr1 z(o3)(C9YzFLVQ@Jf9F2_exG}Wb>R4tozPQPKD*#&cNX#WYZcPPr(E^l`8Cv9>R`Ap zYpFahOzNL(&q+9K@!gkr6_<^s@{R>F1Q%g{fla%+uK=TQ7p3h>E7F20dITsvEl6$P zgGfX)Rm@I*LS{b=;VTX$094oIiDLRkoj5*V3xC0J=WVi2=(Ecl`rrGC@9r7$5>k(f z%wu!Cd1fJ30KpHv3Vy}u9D$0dE8r|dqNM|x^BD{G2{Orqr|66+Au5ak ze;4=VP_yj2GO*aZD?!!=dn?L6_vpyYA}{1urb3$W9ALH;pAO6YNcdRgwmSE6svc|>P|hVe2W9}`<1-c z9aS!P)3_hwz~{+la6f&h-IIR1LuA5Vnyv48#0s@b_;TmtDwjrxo~r6WqDpL= z3R1>}KHT5!y|H|}hGRO{l6rdf_GcGDl?<^!wUEOUPa?$ZfJ_L&eQ*qH)PIATjUOR@ zO@66yek|a|MK>Lp0KupBXHC>STyCj6({X=ibo69{0~3w=Iz%gtY)wC~KjkH&sEk4D zrXiz8Z}b^4q@4|({ns4qQ-ByS18s5Nw4w;eqDps2ZaYs})%I-3+nFA7+L!OPc7OFX zC%$-P?1jv-TzW4W%k}CWGC3<+LN;BHPK^Kb1O5S`bL=k-EW=pfUa(uw?X0`kNa`3M zL_$w~-gyS-*s*J*yE|5tNmbfD*Szdb#7_9GHR+kE3JxC*AeLXA(`^z%9tj_Rs7 zc7;0HjYw>I6N9m%mv5@d31A+)>GRGnLwH<4+_c*xcIl}e*?<|5R{hB0!fSWk5pJG1 znPC)#*V6z^cQ(Ju`)B3Gmq|$Rxr`Q4n(H9lotxF;YXP9AhPo740GdkbOiK5P*ght6 zIm?icRP5ycp5t(dcEP93)TE86$_ahw~$Cil-#R&M4A)Cz5@X)bZMCl^nn zu?43AoPfS2_KG2aHK1)~#`$pQhwikO;=Z-rhjn;$D0(r9dmxYId`QWEb$jl%u42b~85w7zyzt6tBB{1mgrL1_Kb}|_+ z_RaCjHS3S@+0D-96E;S5GU7w=DU-MM*)%LRJx8S0FYUPv;mS7_-zD4&t0vW%+bYoN zhhsXkOZb%eBfzFOR^x>cMr#&^#8vu~5-G}zbx@@NpU=K-DSzH~c|yMqU**^~ZLIzi z5-s^rw^$WWRZbJm9@MO4d1q-_l{>CIQ1q}Stf_yVZ+$74 zUWPJM^!#4#45RYBOMhy(+emvV{@_O(RIvEggMgb&hi4R>eXL^FRk*Xd2KG8?0{-QE z{Y!Kb2vc&kMXk}RlVS5R1*k{gMU?ESuWLS9wl5Uq($oS+=XGcw$Z1z=` zDCqiYto*E)V0AN04ptwtIzIR*b=H30_&ENDdZG4!S)_#_>o$Hj#ONok`W>rt`X$l^ zMF)xByiZZK`8j}aVwl+`C-Dd?Xwfn~`)$#0NEE_HYSQ8AA$4jYR@9wrEY*b*9G9QB zY}R-a0kQur-0$3S%iVzS<(>bOUgNmnDH5nu1X8q~G=?7ZaJ=E(azeS()ZCK93~vl# z-+14+3{U*3DcKXB>72heFeq>Z_Lm0Q;oKDMXThZ{swu-T!fmYelC!6|IveIhM9Gm+ zC&aqk7ubxY#id=fFDh^7Bi^A0&mzVkLf>kpscJF=S2`Y-V8b~^V-}7%&r`Cknz;7{ z%q*gYC}zxeYC=Vb3l6dvQO59C*v1=VqXI**rBpMOiqPzq+!tmTL2K|dmZ|x5-)X#f zOamaxLMqB|jpm>RXG#r{XE`8?<|2*JRY3VNp2MB?|D`eDRe*U$isuF}EQN}=>3U)H zx+TmhQ3ZcQdFN8VO#g+J=qLxE7(WsR4mO5!$()a8zjpU7CkgJshBo=h4AtZNWl6;{ zKRpK<_nC!CQLO5srfny4cFzTmAh>P4q;Jp6y988+Nir09Dyzx{^3l zt4f__1q*`9EMtaq#$ggYH-4%oL2LxZ*yD+Pm)Ek`fUD^96^bY8bKY}Th;$cL3Bd6J zBYvUgNIx^5$wl5fPvo$^FV+)sJ?72I+fDW}eH9gjC6LbL+&Em_DInu5z;dZER6v|4 z&?mE#=0^Nj1tZK~V3#F?p(Op0R%YGd?nyu>%_#kOM>G0n zfT|3ig(oUM82JOf!hfxaC*iJv8hhB48Z(B}ZwCe-W3ng@(`R7kRLX}~wXb9$<htUb0mW;Y~|6;lq@8-nFK;~|+R=uzN|HW$M&-9 zk}PKtr6azVst@x{^98G_e!RMe`$lCzHvMut1aIDvm{AAStZRc@l*x5OY9$_a^o2b8 zYGeH2ohOwM`?Lgv>m5Dex$O`0IEJJIdN#L0=*-AIRu-!Rpti9SE8bKYPPFFmfy@Xt z)BTTk=~t%66$*=ZGRaRe&^o73xsm~5!N2!<=%TUQ=5Hp ztRt-Gj28PoQO~yY%YB-d9#{=QDEct3@xM~Tp4S9<+}Tpv%@Sh%Vn`nSR+bVX2C ziU)^!@PV`AJ^{Mu`AF3-6!JZd^2Csqx#WTPxfUW&-`rQa@ZSagEN?O-nPNzK;G(Xx zspcNRX8Q`!%5^pHjzKyXDxjII{#5>nuUDwp1mah&z?oi4pOkhb@+JR? z@qACnf2ho@Byp3upVZ0#&8o)llaEmaDhwE8=a8>r&LeLPhQvDn4ft4^G>P^jI9n#o$gpF!Wg%I}^(s2DFmBpJ3ng)*UO1v${Qb;Og zY<-u{HOJYcF?m1=?+;FT@3EEeIJI&jUqgY{_NaVvK(Jn?3oFanBH#(BZ_UE4U1&(5 zTuPwg?$Yx;xL17~xyGDzw<*jV7f%@nI#xzRTo!;thZrK$fPMfhM^TZk6tpfS_>BK; zhx&ky=7ovE(FNfP-(1S98zbu2D+@2_Y=HBm&IWq6`ip&dXfm#uE!ZrAvi33+<ivKv ze&;MFF4sQ0ql}2Md`P*Es@oYud495~4cJmS6AlQH)LkhJ`V!yyag7>-&-!xrW`Aes zWU7l1+qE&fzKsZ-(Z2B$pT9KeKFw4c?J(86v1J5kg!vef)r8&pSK9^74K1lg%oKhO zQp4tZ65@8RXFu=}jpWNS$&c=R!7@q#ZXQyAuuZwzLv*+jOIfLdZ|=ukEUe zewxgRX67$Am@9M~CEuZ*`(52x7@zUv_uJ{!(Q=oYGtY_=UA@HoR5K@ytM(E^B=F_$z(+Wd0xdSnGc{w7vYZ^8v_HC77``!CHZ8I8U3 zoK1%-JH1gxZtYIb4Exm8rC%~Nsn2(f)^9p-yx%&LUx-&aE$ut@{Y!I~Wdf@252dWD zjpTpZtl19vN#k^ZJwq0h-TrjFM`=7;51m!**7dE~0QI0JoBHhXFYk4WGG3iooeEMA zg$vZnI;^0Km2f-Oc-h2y95Ap}+;wEqmB(zcGh}dPwJmkow^hrHcli2c%o=MbRrn2g z=4tWLT)SBwaEb;kUb?H~Vr}|?i_3Fv$!D3$j7mF-RWspCb|20MhtB2?-B6)$4*ise zvjd!m0#85%B?kf={=YONWz0rrF8N>$*+2m%J_|Zr)&O-Y5TK-}Nf0+kGUNGdL`VyO z_YNBv2}~~FX!Km0!?6JzMzS}-16o>gtvgMZRIBa1h72Z_$^E7IQ#__7v4MIhA}8!< z#%LF7Su=u+t@E;{FiZ>_U!~T7&ZJQ$nS?rk#x_s_7mNV1Q)DthPg1;M7YS;hC;Wh4 z3#%gq2dDg{Az=T&O3LOYeA0S|1!Td{!Ym(P<`6zHiZ1CMC}<%q5_it($*jBEFaj_L zOKigMA(J*D6@cU+AGGN!iu-s;Z4YsQGqTK`fY%0T0r;@KMF3NtzrMJRw*&4uxN&bn zXXZtB;Inpo)+)pns8KqBTpcK3X3dnA%)4RstJ4&CP;S7a@=*H<(3-dc^c3d)1;QN^ z3pN-aSaHej>tOUp20``*Km4(qKgHRF(QDpr3p*2??nNCj|uSpWi~`W zi%tOQQf3X0!$JwS@jrnG4FhE9v!)ng@9GFRDcJyE{mBsfj9Z4FiS?DX>E(+bDuXM& zS=IZGthbFH5HgZ7rYVezonjX!*Z$IMG@>Ql-g^i|lUQuzyiA?nwu;<>StY5E-8oZU z_Y0FJ^5sbXlH-7Qi*lX+7z>OQov?zHZ3`}KW-qGhwHv4r{}Q|U5rIIQ2gnroXUE!s zBtdG7GEo?AwzJj=AW=K>rrMRH0c4EeXEMW!t7My!xs}a|=1)TFs&684o`$FX_nZjK zban{h|8Fs!KTu-0eUA*O-5AG$K3DXdw?KalShr&T!2g_+^_ZC>;qwf8>F?YaP=0f@ zS%?#QXul+S*YV8eb$-2i4nix2-;8g5WPuuTY3}1Kj+&`;iwc!LNu@?Td&F}@hX*+n zv`J@zs_SKor@?BAJnsr@4~RdJNzmMoSRMJMcmymTYjX2Hm1xV$nVk{is{VP*Ci+u~ z9~H3w@^*7|W8FvH_yJryCW{%tbmO1a97MSdtiz#SuLZVzPBrzCi%!4Y9_RpMIp!63 zrQHVhexKk}*}>?*?U3V?E%X%uJ%F*%J7}7g@s)?P|>csZ-sr|#0pE8@m7yY>xXFIn*W>*uo=I6hBDYLC-cuu{z-PGsx+xy56Z8d%9XjrI+ zWo;wusK2+pK;561d+0D#bOaWvQS|kFaiSx9R_=+0{mgQt zMA?wrk+aXocYl9}=yrx(XM}=q_=-*9HZPpVem883aUlTK&i{*i9&dgTP<4}CR5%qxa}4&tB~UX|Ipt-C+8Vl#JX=0IkJ;i_7MHrlH9ggopEqLk};U{a78#`^`=R{doxK z&C4VKR)-ZE>LT8fH=YI*7t*pF`XFr=kpnrLrJN7u*O%+$uCl6e*En$Zm*Grl|K=c& z)m9ol(e3JLKsz76TKu}r>J|U4ay0HmasTlS6`S*y=Cr>lNo61lZUbEWEvId{Z={mE za8A!TJ+}@!TPB83dx{bj^l9T=m9tF8*W$>)b~Qxlgk?d1-$Tz;=_T@3a(BzXmabi! z;0xpWZc7zg=ix35Vg1P_5oWJ`3jVaPBjJ1oH+w7dNU*YAlNQ!6hkg8DiwV4>NvMk; zz5RC4;cZE!VGOBC`}GDfmvYHt&9^5LwrPC%pMHziC@Zae!;o<1`Lwb8yr*6_-5X@; zkB0|2zaI|2QXWC?Hc%Yb;F0=8!#md~GNY1O^Qg)SwN=|Ub6V*Os${CqFuuqwc4uhO zIllw+c!ghwEAvt~K-1cV+2Jh2H|9i6%^IIwT%jAy%54J5CrAmhzu(JZL?r6KpTPXZby$<_2bywlSx3A8-^&(TQjxbrF|+8lT@p%khX_M<&fh^hoZYCa zx@5J#G}3Ofeugo)R7yg)OJ4+Iw>&sreLPxQG{1HW5=m5MxxIcNH!4EGD_8Wb82_Ke z@d{2qS*ef+aG~(j=&!IT+g*f6=^Ir63AoqOB^IYozFA|Ws`qSHjTCiigEa4!hf;c| z!<{D1>1JRWA1F*`RZX0nPUv_7`OXA(MT&emugNe={1#Gf-O}}jg(qQkf~zOtr>#FK zc;hG6Xp7eB5T?RS{DAyUfp7H4 zm)VE9eQ)bl;xZ9;j7+XUF)25BeHB6A|2!eu4dN#oT9pWwX#)ZQ1paM0~cEs z+DtFXeZR}P4$>srA*1WCc50A&C#?&L!lwYE=v~PY+uEamOtr?8H$`>*$J`_~gaD{C`Sc{tf{G}PC8veiACGkVs)X%+l zb2AemnNty=k9n`W35LJ$bj4~gQu;gwAUb8d$!*($wf^?UGM#Iqf)4brA_gWx=RZ1U z14#+pa>|$OX*G2o!SH!%oT|6m;{1kfjgRwJhZx>{c1HiUo{|XxH7q`0a~s)hD&}hF zb(kANmm0n+le^a1rG6oP@*ttg;l*#V(?F_>PH4)Rj#UOF6>Nu3qc9TQA#Vs6|D}0>vkUnC zWLGMEqMssYdoK=LepIZa8>%@=lzh>CE z^Bu{$2MkaE{0#&OSOr*Wp1jOa&szI)=q;}jz0C>SVWXPF7V161RhsvF9|&>W6vuw_ z5HdGVTpRbMa=lI`M<<_cc0mBM0a$as+urg`q2RThVuC`Bsefr~I@j_~&@%*JUmBKR zS$HyAh~zWf^0jac&^2T&?RPC+<`iDp;D6{DsB`qdLGw!qlE^TxFZL{`8;_1 ztQ2omW|54GHa3$K*^$W5U+b3|0Kn z?Ac^5uj+$DudVE#U01Bf8+@Vy+wII$A+^$ZdXH?K zz}Z4DB)r^4=P~PuU2LuVBBXX_f)auH&lsf#R4q;;Lkrd}?;^IrrSlqRe`zwwv`u0Z zpl7x$N&8%*2|9I!@OTipdjWs})A$?Q+av_6VVpxq)oWlOV51E?8D~PZ^ zU+`d@8NyzkT`Z8_*vRuG?)4>fG#-rGekX+)$dKSr9FW)&b9}BlXBge2=D}XZ#htx{ z?#u^eil|Fb$~UO1IOvt^f@S_`$9gqET<#s7(u_mf3&`KeOC^7vOL46C`JtlB;Z^RQ zbC82|Q=P>w=qB>5Cbo`sbz(m~fwcAh)~6>43vxzgbCNZIv`Yx-g~%5rHIH0+#id$% zoHje`7w;_zsxhXa`;)<&KkYpp%LiH`5wPVeTRLRyL{T9nq_Q$Ob*S$5Pi3Wi%z7{3 z0Q7TmK2h+u5kSHYdb&tp3TpoO$7)Pw;A;RWqBP7g`oz6+JkEOb*}4>LlL)f&OK=k9 zCB{&K3~opaFO$>%U&A$zJA841I8G0oq(oS$1^a{BXdAb04{pRhBISfx;%jt zPIk?r90g02_gsnOR8cEs{Py zRL3*DYdNG)G^*b%iJmGRkqa(WadH+07{80>AVE}a1(OAy+L?S~;Pbc4C8zB#;pv8) zrpTK%BA;phoSgSwXP~tu74)_7T)MrU9Yir+>|_OTsU>6YysV7jTlsdJOnPA6fM1ZVOI3Q2;TT?6o@~`>52&iEBN53ej>NNr# zyZLJ_R&H!(X?lQ1Jf>CR_l13SgO6Rmn7|nBL=2htytiP8LrVY+eDKfS`GMM|!6X@l ztI&REAvo`SbKQVPwn2vBa_4be>zTZL3^QvTzMb<_xIQh+2@he1O*S-j-zZ+veS2-Y z>qJc`GLGxdS~biZuF894Cudv_3%0ASan#?VFJW*#KTWN{qJtr+U>} ztM_b;OQtqX28Q#y6bos~AT$M^C#7x;L%_lPFDoonkvbDWp%&k7u-$G8k_#C z#b>@uHU)A)>!9L|?gSCiKPjke+jHV{n~EPM67{sC+gs&q<}IX34rQJNxDV<40E#rm z59T@@CRrV0NA5C(f_L-o%22i8WoFk2TIUEJ*6~yC$I)7Xs~fb*{c5Z*V1>Nr)}C0P zFCH8E`G0tN6L_e;_YeHcb&VNI##kcaV#t;d?YLuW#=ccZ8lotbP-($6BoxLVl(I&l zNGdH#k}Z`bYbsk&S`aP5=YM>E|NsBKm=|~Mea^GIpXWUHp68si=8Qn`Eu$^umo9&U zU(;XT_;+Kw*uSK+haYY5ekI2IWei`~df zEq@Vlr#@ilKaj>8FY06ep3}douag#eqj7@mn*7W7B#o&Pl%m2NHV*jqca6&lTKm_& zQ|CUpgs=NBq7-Uj(j0cr#G8QznD~^`?7lr~Nxx>%w{4zeKDp!Lb+2YvDR_+J?fh6J z_}-RdIg;=H&i&s5!ONzXZuSBDUU=>K4`>T2I!bh9r_Sl5(f%J^FW3(|HMescLvyLM*VFO5Iq+a_FmZ{#F6~0&1dbjXAB`E=vWk7nfEhAmy34fv{;5kF7gSTn@3<#D zCI(zgRq`5y{_ab>sx0{Ggk71esy>^9%n01 z+Q$sUBhL-`l!vZ1d2ruCbxn3;$k~R01U+t~bH-<-#&JQJF@;0=11qz_Q=f#N8c!V2 z6q-q@p-=wnzf?K|w>ZE1^wsW=Nrn9Fe|}DgIyLq_=^OvzJ@dAxM(a@cq`}~?k~tlw z=Sk%-kNL$5zUuvrA-~Ux%JsFLo1^Z_jE^d`&9ScAwQxt&*N!4taYez{eb*}c?Csej zUn)+gEfO!}Dus}D$L=p&O79eD$yJd4?3MHW_gw8GIOLF1_M`1=vB{nBl2`WJN2_dmnTn|eK&hYo>_bJi&mY$M-p&v1#6 zMnfb2J0wEXX{Ib$WB;2&rI)g5#1*C{o%}$pkkC!Tv6UD7ZDx}df=bqR`jH(y0--V7_7JR-nH{HEO;H-;k`#^ zdS^>G?0*vy(Lw*K5%=a4RrdXec^&dFd>+ThMAGQjw#w3#A5$)yxs(cS-tAQ9aXP8o z6`w@3F4%dDz-;MHN_&?Gs!KdkvOdBx5_bG*ZxS~((tCB<>Mbru}Hzs=ZVtC zH6~U&K8OrPKKk%eJ3?pofX!AB$=}(ejcw-!XMHe@uRagd%OV9E&m=wx^fsaH`}xVF z!L{>v^slF~YJC>}2-(o^$6u8Xzb=?r*W1+Q@jrYdD{T5>B;dAV`-1-?N?dp|_gp%Fdn{w;y@YDZ+#NBzB6XPQ@)eB^gC+5l4XKz@i=j6>Pyo!i<{U3-K z885#v6R!PvWPWF_-Sc22>Azued#$&n_#eHPeEjgA^f~ESgQ4=9HEZA%aKE*6_CDr{ zcQo(kY&{Y#?iFdC(@|cW)6sY}BH48K=YQbE*q0|ikHw0}ksBiSs_>#00%^`&k#@>& zM0Wp9xwu$2YP<07z!Rg>-cJu+TG6zq8fPhS>eT7`a9r`hoP!sfTR-+C(rLjY;v!sb z*g}5JS$;w5KOmG-oRbHuGjpa7FAd@S8GvJMIcu}v2;-mA5hW)FO#evFoo);=)}P%~ zoj&uSGt$9y5c2ZuNqc$GlfS2zh7LAl%>Mkm8}5kw;ftxwhFNd%wuqa?4%V}*{h){#m1orPPr{7*QUF)zk2$&T)zklw}(p;J;_!OkDn5<+6%W%Yoz2MRlOQV>u zT7SMY;|rVwxpDT>rb}~Kjm2;;(K7FGI0p-I?eX~bf8ZjV>RoSgZed0Cg6z_&Tq`O z?YWF`rQ%laS=aJKQ-dewIqf6e3vifs63%T8-!NA_^JG!n)MoDVTu)~RTq3N7?G--( zXMW7TQjU8u8$5R<1Mb%}2h}W)Y&{$CIP$MWIGlB#J5%0P-UUnbr?qy#Nhq^BZiGAB zm|L1ObWmWBS@#_HbvM;+>h@Up};-STKqF>lu-(w3RkHtTcLL z#&oL^EV$8zoBNh`jLc?5lx~0cG@5yqQ;ScXD@^*PWd1_Sq2a_Nf`qpKyaH zII+?TE@!rQYvar+lSdKdrdLCf^X9bI=IqSa_#el?w;vU#Tsu z>2$t@xL${&djHbL;m*l8toi8q;~6gAF}M56gY1^qUyjTf!I7*SkGcDEC3-Vs?H}?M zUFMF`cfbuJ7tD{qGOpHZPiOX-B;Obqh6|R%vJKBgxbVv71h}R~;Y8Qjzgw2PZ07Iz z^3t5{Ck1d~LqQib;Ox)Y-G4kI@;*Dw#kFL_N1Qoz5-xf^|6tc^~q+kpI=pz2K`xeQc2jr|{o3 z2j7PtyN6a)AG%x@^X~(2kUB$|Ij7T+d~B>D+J?v-^3GGS6Ebo4ZI`&{C;lJE@BR3v z)VA9Da8}-dBc&@UNMbqM^eiehRwVTEt=xM=Xg-q3678&#%UeNO3W^X!@jUwmGB z(k|0>E@$Y&XY)~l35msqi$`0?7zid&fmwfN*XZ4!wKhd96NK!+;HEmTAN@r6N z?)>~xHhCuhjr)h&`%h7xyz@0mdd+y3w*xJQZQ&uu#ZA8%8Z1>66ZZEzKwlbi|@DWn)>C@J>0eXe8ZGEm+CA}Q;V$^qwE$+xFVZz-dft4 zDLA%oB-`D{@VSkmJgDqQJ^`_2&%g ziOr&=sVzn5+N|KZ@ns+HNyW%$9`ZW2N;TbnET6QNKVG_K?nL3ezHi@ly}R%yY0&QC zg$r##q_FtaDq_|}VzFQIy7YpPQP*S9%TKC*Jbvw1zaP^Tdo8dj8r4ayx%0}=PUncq z^&dwE#y$r>GivTWY7zfz?d8J$3@%F#F{tS@_@UoQ+o-uLjjY={mt871xlW7V-hEI| z-M{Be0NMOb^hZku+EMS6ZPvRm`Tp+AisQ^g@3s27cLc|V%9^j$=v@D8{jm??CYpO| zPaYaB?5L{jLcKn`yZ+rdXuvLZ%0pl(+rP8K-e#klXPbMUYSRyinDje|Qg#m`4IcDC%u`^>H9(~ZIJm|FzJ zELW8sJ6utA-{DrZ{Ic`AFP^k|7^1A~u;Wxk;&KAv=!vDJJ`PvkyZckTf0)Rlwj0vx z4C@?$j<|(=z(HF72Ls*<^Fr9w*AyjY(pCmf$X8w?V9D>!>-6pF zLWi#!NAuK^_8szAxA5xHmgB00j-i$n!^HC`5rYYtZqFA9a?Z;=w!ZpzATY#`6hBhc zIArwY`qADeBxSyZU-cWq+Q6Q>dUuu|4*A~x_|`q2e=J#nwYg^pgCe8no}b$jDDlU( z$7S<2|Drg?=P^}@BjL%Go~ITSnPJ!e1C4qO9xtC6>e%#+*l5?t-8fu3Ui8x-4Kb5C zpd_P7Psm!O`HQMFs+1N@KN+|uQ*8U%e5aeo2DE>?{d%b&gxj?5+nQ|KON`(9o3I^E z@?QDg`E&5Z+pC&a{v1bLt7gJ<$pW#rb!@h3d@4)6r7xf-{r#%zP|>wt2|FFAH%!;k zDwMe^bp!l{)_Ufu%}~Bu_n%);6>;%wT;{CQp^beHo*5Qqub@kxCk-5|6c7oXviZb4 z{KWk~F!jUgTjD;u=JSRowr(LC?#}D)I(hYj_TlS2LX1=~%b+1wDg7%I-$l;%=uECX z{KbCFU9;?E7H|9~;T%d1x6Xe(51q8KM_Vt)@ZVP|r5c!olM1tDcE6zB zKM-)l}eta<|7;#w3hjIu@}8HuPr^LeHj3^##)3{L?MX+s=a3 z#Mcn|HdDdeSKHEuoQeA?Kd6(ZL>7GSs_~W7`8!`5U8x<<8;`ZE5KNcfy2~krEEiq; z_rZJqCc!^1uF53jAOk%}PvF(Jm%qB*-}#qfR1vyhw%t`X4N6J=HBkg?~veX-mbKjXO zinslxT-^C^!;iF#vP}`q%#wZYgx6T&zqI!)`lMg;8M>gW(Oxq-DCP4`H{T}WTby`~ z-zr|h0qT{_>f6p{G0UcfOzO21Nv;Gh#>khYZ>j&Ll6BJsjg!+E%oYXuOoNbHymB=O z?vFF7{@ZuQ%gZgiDmXE}rk|nf|@z+Lu;}ihk^1iyx4=BfsjA_@DH;a(Bh2 z|H#Mh-u|j>$W%cl3VX1sp*@`M+9HQa*G$y)yv+YLOA3o}-5nUTSQd1C=K92a@=WVs z^}dm_Nls!<4ObOgpB_Cr0;iAk&yCGigr5p#-@7*5fWnkF#R3Tzt(ciqPb#BFF zS#~$-m4uu1zSxmpAt%;d+{$@3plrm`Kl2I>(B4-0^e#SYF-X?qv5VO<+d=s$-D=H_ zOBWUL4ML-3%>9lW>P;Qx=WJSO862P$RVjPJ+$*uw7?qEIRvjsNzKO9+YW}eG^;Hkv zoL~-&nO{?W)Ljf-PE0;ZvMssRYbg8pSZC0m^e?FsW~sVuyWAUg2ThT4WA|7_)0|I(a6D%KE??|=llvTT3W;M`vn?inK4KRE4lV~Yr@ z^U+hDr)gjVyP2sOoS^B-fx*TuYqw}=zUUpmeosm!P zOy?y8WPbzs^Z#D1IFsDP6nm&ynsuW6X!b5*r|9?Dp0cW|PTvL@td$>StczDOSxxg;2@Nw>a{t2*E|4p@UZ2Q*Vq1%S< zjePrb`W(|TWzg#`ERr@aRXef)UWiF zsiVFS6xo>a#dmyJw9Z70^Sb=~JA?WUe~Q!jtNWLn>%S#<Nj0xb3YD}Cvsc?|zN&F*ow$J5XZQE9I>egd!F4SI zNS$=OkA=dIXgx*yu?LdBz7$Q5Xix3S_}I4UP^?B?SJlA)Rj%yLM}CHtU+&&kDw7Ec zR6T!4`F)&MTUGv6FGtr40sd14KkP5n!_80qNiP+J|9VW-OwNyP{-kcb|JMLv6ys!Q z@}c*@;F(q#ZfBc}?XL?pwWkErwR;Zw6_RX#1 zDz8?qCVftDU$teRXTALk>FVDT7x!w$TV!~uTb;6b8;8yD|!ypeMnJytdA|K)Ly*ok2W+?Ocrj^gNptXy|5dMJg{Gk&y))##~5`{`X+Q>=7V|C@fK!-LZ!z1>4ym|v`hE-OhfU6;7bgcd6`ix8iG(CGxQ){}GB(hk|_&Htr#U<~-Ln-}% zGufjYi_`P{r>{I#QTdss>(Vu9pVf_4C%>FhjN# zN8D_hTrfoZKKW>t;f-H)F% z@LZ;$?d0pU@8rjr6URqtYbC~nX^zgW@o`Q`!pvNwBP(6rMWkF-YtLy@QRQ7l{sSe% zmtBSC?S~w`CXa7rT^8pE{>>-#rK;`U_EY%nk*WSoV~%IU*9ylpew-8_eRa>tGafyK zWE{A#v*HB8debpCDaIznkfc&-^^f(lwB~57!Ti@>536f#Aa58sr9w{?##|6XyJkOA+@x ztKPco(Rr`lRc9D+b!%nr>>td2bTgnSk+tWu(R^)OirbePZoYTtDV?`HpXDW3A1-UH zdiye(f3(RyFl^4r+jY;4wO!20JG?sgmgxx#+1p~g_4}gU)h}AvIvp{{9%^fS{a|BXi}bIds-kq{?P2G7 z8QH|P9ijWEp(o5vJ-b9S$!z*My8GivHMg+GDFRoL#N}Vp$9u!R=Bzc+uT4nj?VC^w zbqV&hGD2SuE{{8KFQ8fP>ZO~X-t(#juMSfq72+B+8M>JRj@O+g>nrr0)-;^`4{RQs z%A9|sK=%HX>uzLrTcl35F!%QNOB=CaT*~nJ0i#fO{L@9xJM^gJImVC8-*?AiHiQIN^Dc+S{o4~8dRx5-h z44Q}aGnN-^eE20Gggdo(@aAY7SjkfVcD3|+*pYL0w@B=+b3R_-Sx)@+>0|z?G`sNa zI;~@K&AsKGIY|Pia^##MLl?GQexGaQqw%_$tGBad>*oHl(WsM`er)I#bdpUVZev<~ zzl(hf)(Hp53AKm`ZY2Zzt#dE!_w|kzDGr_9H?}#u-?*?Ri0y)K{{5)5 zzuq8ovXYi!q|^N?$H^*Ifkv0VuBM(+a_{!dAKGpbBO86ZA7P_bX&E@}tDtMNiZ*9L zF*cpnsj&tqO+l7r-M{U~dvHp1Z z^|PC7#((*H2}XyBbvhIUy7`^qU21*q;w*KqyKz`4Q~#T~N~ucROF59~qK+p0DLA&X z@IEtI{`WVYz^XQp>~m`zZWQnyuD>RF)Kp0{q}ZTL`Nd0RL%H(%=e{UszEk*jVn`)vrhfu;HO!s zSF(H2H?B8S`i!JgN3SkFmArih=w4>&H%Qr(?}k+#AC3=mB+FjxV6BxH*1h}th~J>& zU1#SQ2U*v#?~*x^QL4F)eZIe8ZJ<43y@Ku1UZnCO)&8t}sNLXb-qZ2I zU&TWA&gHmaI2q;Ge+@@x#>mU5!~;_=^>9~!iE#$(xq>zCDqEk^I3?;nePE|penDPiAG zCi154pNQ6{_i3JY=z}k=Dg{-?iotS19>rqna8naa81?$td$K7nvB=krVpf7nKkdku zqxL6Q>I8he6}$fThB&@VS?M$Dp`4BSCE|@}wy@4mr0t;EiI`^hg^ooH&#H^O_>FF% zetL2aLMN>WnV!oF`P|UbJK(QIb3E+!Gu%tb-_V>g8ZSIFMvMmNd3eU% zciBTwyLq8>F}C#ITd~^~4sAa3nd1|+e#<`K8)Ze&(IzqIR2>?HfdUEwOtONX-f{~~ z`%G`DScb(N*IT{iu>5h5G#qF^BV=H;tc)58lER^ClAv<=wSZ zm#utb8(7t3-V~-@@O4Zi>Xl86GKUag&_pe8DVd{`_}*ui%}3+EhLn6NOLF+ce0+71RrTkvr%(x5>1V#bsC`p^u4@h zMhsJ4YV3xTuZqO^aj7IuRD!W|RM|_W8}k%*&8y9$5uA@~MQ!of5QebU@@NL}P!~sg zGA-v(P_0u?cY~rY8g%17@KGz*{F$>)dpBG@^x&_4jwojrBDSqAS2rt}n2D=Q8K;}b zPEWD<7Y}|K?F+nTTYt!}yBEevku9uKCaZZycxrhwxz{o!&M?YSN_B8+Ox@0l7ca#e za{2gW`u?&{r5kxMd-D}`3*Ps3$z?~ z_%F~VNDaZ}W5e{yLe|^;Ez6LXNH}y~MDK2|I)BkJzOKCLFRWO+J{=w0-E2la?sap9 zt1o`e~;Bc`DXQ_iQlKq)7WPP zvKj>JSJqhMIEbQCp%k_IKu(ITeug@>Lh=Rwmbc}yGhYW`v5&f?TWvd=RYFzO=i}El z!l64r0~pQYvU$tY&F9p1e|iEb!X-UXYtX!_?uyY)vx+_1eH%}Iy(%){|1A+ovd;s6 zq*ImPr*)5hyXgQN@29-1Z@9Ed?c}*DFTRhKDbE)KJkQNc;z^uG;NT#R0hU^xrM7&f z4apM3)<^c4ZQ8SE`UY>+$@tgNmu`Aq*x{u3t@_|8(esWOy{|ApLbh|j1Htny`sRC& z;|k#YHa}*mi)_hhE%(#*q#}t)pbi2ZJ(k8C0Ts{;GXnPRRZJ~#!o3q}?SA`*9q(~l z^Q^>!-yPzp#B^V4%D^PwM%}(;Fzw?*i#N-V?V1WAyK)E9{p2d;suNWiHeZ8KqFdDoCg>HCAvEO-aOD~=_P?{(f@%tW$TfK{oz{cV!zcCoIbPhhknAc zn-3~Nj5=-I_aDp0GM*v%%Dt(bpT&+>RV}YsrDZ2hYm=3>bils6{3{cx$BwSxAwaJQJzymt!-GnZ0=wQQXk9L| zEYUxdzOMvKxhe;8TaI&OyBQ_Ie)|R~3VSEJF|kr$r)HPIx|lQqU@R1C0!_>V z0B|!|Dil{ukFM;hgRehugog7~54HIIJn}ucMduH9xXMw+;cv<--l(~mxOulj9P8p7 znQ>+h(rTv{6`dj>_{5E&VW2N}c~#m*BbTa>0~R#V@LKIX5T>x3l%1X2Lv%$fRPvk4G?6FVd{Ar`6((u)f4EW3HTm{ zaUzO=A`}fWnOB^$Q4|FH^bjREQ*Z_k#t#yxg**dHo`M4S2gx6G@|C=0aiJ4sw4;So zoCdrBz`0B&ki_Nh#Q=c~6-+B3StvA>VaCK%qJUl;%97s{ z*AAq1G5`e!BouK6phbh%c}0cU0ZG9Y5hg|_G58cR$?`(xQJ_I3oURGQ6JodgE>%zq z0E^9|!beg}fdaSyMR1gl(`dK`7jO_9JYwEL;&A%Xc>rrC5E4setD52>7o#xvf`DLQ zbPCGD0gZ+6plFP%7tD^DTv=(aO}VM(h(rMz8|8tROpHNip(%j?uH!^-&^U@OA{`g^bO87)fIvJ@FiFJmhP21lMSIP(#+*(7 zqaK|KiR;0pp-vDM;8HPyNh9J{1F8k^SF>hM$u~Wi%Y`iAfR8f-C@B0MfsvE4jC`Jx1-QH zONSej2NQS?*2k$Y0-ahP<#`?`T5>h~;~Bg~CS|3eGBj171=59$x#6bu0R?nWdF z+8S!rmjHn0WC5k1AMl5WqO(ptvlD=>A#opC0n*2K0Psa}b0_|O989awsY8j|wc=49Wlq|aXqg-_m{+l)cA&{!zKMEN)haLf!|?|~z*4a>fZaVUf?U_y;y zTs)940|Xvd0kuT&1&(Hw|I^-*IhJ$+1zdjnjqi2*?Uo^z6)M&-7qo6d{KBRo!%$wx zKZ$`*Ddc!40>&jd(cLkC3mU{jU7_44hB{#(;VngH!lwXSwHD(;z2VrB9U&)FKsGMzjQ3S7nKuQ22 zCr}1hMo_D1P|p;`lIuaIphC5y@mFE}X9DTcv08u1mQ{`E=lBeWEyyJTP-F>J3_1=9 zGf}!ZD)Ib%Jz>G4U_?9=8|DEFI!Tl+?CD*JrQtDrRs~=&_|&DCLW4NN0m4Q*jwxPi z8A=jzskok3y<=NFl|evYp9 zX(NI|YE^v7Iw%Ysf)8pOIsojn5a}Iz#|lkWFR(?rHD3tTCqd-V;15(N34=5v;}Nl2a2sryPPn2iXB z`Q#p8X69>UgepLwL5f@o3MGU#fwtvKpip3<^07)3N~bUo9A&_bZRK)-_d1F|nQAN* z6Gng_L5at}3OXcBBSDym`^nm>T(oPVwH_?kQE?z_5zoSCOcc;i zG!EWD%?Q(|1SrH8LW2JS0-*X-6ue6%FIkYHMIr$l0}LPszas%s+r}qi2i%)kj4GLR z&GfL@fn)VkFQFbu3a+xGL1y0n) z5N9bs!Uz`3m>9M2ULd&L>%&oH){{4lWc`En9oHMc==bPxE|US6fX+fi)FgwwArlq^ z{NMxLbkJ}dD00I90#U4tupsC#U~yeVNCS(~i({foK1YSXVgT5R$lgyXr3a3UDKi(6 z<(;11UtcpHcz$3I_De7}fYq=pNW~daSPBo&8`K;bLj;auB$ROD@Sra)X;lN}6D*6u zRBvS(3AT^I&n5ay#+z4H$#E*f$5&MEXIT9RS*#BG$uj8xS&jQAZWh@kYxIIgkc{$uM{!SOt94XkSQd<@)zP;ZtceDv*V- z<`AWDPp_#KYyTSa!$kfhp(vI?rqO;gE~CAfzUG8xCTB^9Qr3b7fJ38`Htr#46pSAS zJ9ZT=Gm!KU;8bEnMO}u1!44KSis0l9P)K89bgTTl(3#W_^`PyC&uWI`DCqe-bGyRx zonAhFs6)#1WSQ^*f(tO704oMSZY}sI`w&1Ou%&pQ1*mXQz{3%4K(-Kz;z%Jo!XQP( znjnsF22&XmtlfJ|%U0?t;UBFh^!rCjbDdL{W|YUqZ|3}btwQ>#-H)kDIG14w!nB3X zM3pC5X;gsFKokdb#i_)>sAq@*8G=}ea(9{o9HSv^bX>e&q#_=UMTspx zM$&^3#DJ~G$I;Yg41zF$RjsQje!ZmP+M>E5G7U*ltMj>4 zBKz{U7xGB3+kyQX198ZE*aqDkNh8#*ILG2ll*dr7qg-|kqT~W#&O}#G00Fy7){!=| zhRCN$BLha2WDbj@_V>Q`D%GfXi92V+PB7x0S$*p3-o%J|6Bb0lXgG8elt;oi;4hiV zAgCD42GfI-sSKr7lx|c@6TkqeDim#za;kzj0!_Zp$h|eP+gC{^X1`ZD&sK%Scs4?E|r9kOb)U0m)zW9 zgS8nWy>c`*E6M6>_^QEEUt$BM21MTra5C}4ozv$IYly&Mw)D; zAk<$GQF1PJeW5yYdDX~6C%J6dHa65JlZxn>xAm7bU;(*J3?pT3AzlcUdS3vY1UiNW zjhc#ylyOB!WNHjzq36s7aV&KtJV>vWVMa}1*W?;ytG-#Lz>zvx;Mmf4Ur^OO^aaJY zqnd^QC^o~#!tm9%!FOVru`2`A8IcC8DnMca%FKVo)F#rzxeg>V5 z<^&2pq>_sI^)Ki#oh~OJJ9ud^OkbaODeSLMXlq#@QFALLl@xZ^}7`+xCO9>pH&kZGr zq6E(2y458Bq;5%*t2j1axn#6H+JteY^0p~N)D_QoYXkX6rcc9~Yd$hA!Xx`GV=UC&)Lvu*T6Ke)n*|Md7+xb{jB zbPN`>G~mM6gwN`DFNJA0w#pY}3>pHaV9~Mmj?1>(S*X9zt0Hv}tl$8Y&6@9E`B~-h zem`{LV9vFATz;UQDwb0D?YOk9=h35V*0$!`?-Q6XPJvt;BXA(aWJs>jOpQ{PArbjv z9K;T7V?mU6R@&&X*lVS_$B)PBJg_)+&PGitWj^GGl<1k2wxo)MXEAGW475BdF=Nif z#kbinzIB;O;Aqp&8lr3zVQHvPQ7#3=m;z^Y@(D16FmWEqkPiC;7Vp+ppw~&mS8F`1 zH8iC7B&HVKby7X0QMt~W9o-xFs>EL;@}MrwA*^te3Z8jYMQRqr95?u*Z<+#d4xrE` zDKLD)7zcs3wK|2vV__V21>ce(tAUZs`u2-oTCNUl#RfoV zFuGcUslCjpu)^e?Pbuq!P8c>U*BUi9(fHP1-Mqvt7Y06IQJ8BYI40x~G#rm2JD!?B z{adsNs6T&W%%m*7ixm+x-jylgAb^Gcsw69y(gJA|)WFR$c7>6QOc<&rD1z)WdU);i z^!}T7X=z84qurqGur?exRp7KZfMojeDOU8CmNM=jifYJZfyOq?x%UBzZI*avwr$p3 zz1nqK1gN!C!^z=2uN)2g^CEJZEA@Y*#Y|8v)9M4Y_%Ilnxa2g$e1e_q?6lOC9LSgaE3^$^hG&aPgArIfUVIgn1O@SwCUGsa?%t;lO z{3iXvH%lVO(n%m^oK+@l)*y|_6sxCMxLwXdNe2s4U!ie;puq?N;9Ct02>`59J}{rD zszv#L5wq`;FvK*4(E-RF5ysS#%qHI%9_8an72cz#hSAPfQezlm`XqgAv33uE3Y=OY ztdf@cwbCri03ePqwOrCIK-hpzrDam`d89OsQ<@4S3*b`^Me;D6NnsGHk$wt8AmwZZ zC#>WT5I|c}dc63%L|l_@bLUwoOZMoYO-K5GI&*W;R}GcZ>G>p#&SC&)HbH_1qYxWS zf!>Y+GfN&GhI6fP*n<&F@xA{B>j2EQ7!(WRLbe52%9jsu+^0e5*s z#46{UOVB&bU;45tj$BE8ArHn2CdvgE7e~1`17Tyr0Elov9fib`#kg(^9uCN=KhY@0 z3Q$x>%FR@-m0_N)aKQDpAKkJ1vxHx)Hak^Xgi&xsV6Ex1FVcIJJEH47E6*x-4Gfk6 zHiOG%@cba~PyxW;!t?M<1vzG2T-wip{v_kMflZq2Vipx7?Ck{fxhB zL~8D*nN|X)oS|tYYkRc8`Kw)qAXST2F!!TN zIf4KNSXeLB*tT~sqM0Aff!ENS*i3SRPi3Dk>zTT*i0}5p;z_k-fmx|B-@9&pSVXZw z7wi^`T&MXCqsa=mK=vTRfT2VHE(?o70nn6Ukl?c#1GdToG`{D%uM~zng@LnB3JTiX zLGE)Mx;si{A_(orM5_1zGkCx1mJ3sCJ_6tn3rCn3A4UqCL1Uuu z2f{@@Ad1%8n?( zlkZ=?mQ5p{1Q%?}5K1FKL3sf1VYG!xzyZPp0-AsxmP>cDpy5mXE@4B~bg!3N&8xM; zmL52lWI+IvQ(=t(HsHDV0yHhUKd_+3Pl{vmaF-CAAmKTdcC}hS6fyT%f(ig644R4S zSmnmXpa*5jad<0Gzz8HL%6tdWICD`h3)E6*RFt4XE&xWO=)m_waZC(8=m3`BMMfd= zvOcMkqf?|JWvo@Cx&d^<%ZLuZfEVMn444M;B&-My;0d~75)9a@v6=#DW|(CqC)Zjq zh60=+-j{?U03`UoqZXASSja_Ed`H&9+2ggFByZmo5>o#0_Q9cP_&t0p1xSEUZsOs9 zFO0^@qt+Cj8B$EJMx8A`GE|J49+2B2aH4p0Q=v9@Z^#Gg)jQ!bPUb!6S| zYPs$8`5Mej0ELGzF({@rl#|4eC0Wv-ULe|`O`&mdP8Ea@8;jOmA>annJAznJ$o~#1 zMgoS^rMn7QI6UL;vFBi-4P7PCNR#qT0_qt@xr`+|^Kg_7ghnaI3wO+w{bxx8CPpKn zT%f~+H!|;BJX6O90D-jrzhmj$J3w&Jn6x%g8U+k`kFUU2Bgx9ePi%AAmMj6$%VyDG z=LP+mpbP>r06|DImrV^qZykju)`1b54>iT4)_kPVC<4HYi0UwDp37u#sVJSopiz~n2Q~V|poe0B#E^iR!PRNdJ(Z&{77570yOal+ zvOG`u+*69t+gBg+hT2>50Y?&q0T5;~gmH!s+efe&z5o+N;!zA|5CVXQGq@}UkEtRc z=;pGNW6=;%DG5!0lQ06WQ>4K&7}AUpY)mvvmc&KT(hJx83n8;KDvYQYfM@|+=zs)U z$_&>GttKRhA#4UT4V?lBqcq4rg@ZWb`naqD@QJoV)7)Ts3=kFu{vWE|1rVyO z{U2X5HfAyyqg-;^!=TQYkxNa9n2|ISrOW&6xYRMjpvxdCaYEaj6B(m-km#mPy{QH@ zNXI=!Bf2;>6CIbRQ&G}MB=ui&-tX`C|NmFoX0QG1XFbp7xvbl^hXr(I+VFZb>;W12 zEd_@GO`{e7@zDg{XYm}m2nq^s-;AXd0%KM7SvE8V^Z_{VMatm%JPWFirX?*Ew^ddW z?Wvd)Xi%ZdcowP-7{b!xY=GBGJ&V|#!fBG1lL-X%Tpxi*a&gw(hzT1kg6o+qj6$_5 zX#~IGP&}Z)zavb8jiO>4frfEunWi9(#W#oUaW;d@v4wp!OzH4)4bQHZ;F-b2C^$rv z%A#$)`pv>VCdo00Rnk*5D|+D*@9Dx5W>+U z5gP?iW_Xp2ieX?9Shy=MQ~gMQT?tT4N=pW|g8mnW@qCNvR@^<1^Pb= zvRV!>Kwbp1ARCGeofcJJ!Qo*8Nn{%N0l*%@@I(uLfs51#xJS+vq80G9)+_<`D-;Lb zi(d_+M#wd#z7(Drh6i(=1fKw1?JFN$7K!!8`4`JvaAQ%;LhHI~Y z3}prwWDbCc2o~cxG`N-vObOUt99WzKKR!Yr<+=5Mtnp@%nhL0+12S544`6T`21Y2L z;W^NGffwA~z)=C421nWOg|?+!*ckM8b)zi!OV1{ajp7)93}X<$akKHSxRp6L6o=y( zun^qlm1JQhz@gm)JWCTTm_S8<76el|#XZh4Gf4|F#-yGW+k)~ zEE)t8xWNs89Uw@FfCV3#0=O*53T9VBHUfAE4x<5~ni7YicouZ43^J$`sps(+8EEFL zX_;zuq!94<2Qb`s!>!X6==qQsz!apFUI=}Ph7q&is)rIda-c3iiTm4;fZzcOWod)} zA}bXzIecrli4O1L5aCD!Bluwe7GGePI(BjjB_k-Rw^E}E1t_dl{|8`612C|GrlFEy z2Sg?=$2b`DjO}1$7IYX;iNS0Jdw(3#!b4e9ng~h*3ksm(a9~dcXc}juMlKDo(WTG} znzR>tLyto!EHxEIL!f1FIIM*ST?!H7Fas3P0jc1q1|Aw3phb{~0O7^jU@Ke{o~5BE zAVEVx?9#SjNTrsxGYM?x*=pddVQmRc3YCRq5EL8&meTMVAOlmM!$JFE03&t{2=zno z1h~V&gfGrAARy_u3^El1R8&MjpjWq{B7nfV(KdjX>mni;q$rBhJ*&e($xzn+G6y1v z00b5X^A$khT01<=AwUpd-l${|&|f)F0E9)*!m|L_3~*d1EkfK208O15S=uPv2GQWa zoCDnhz^)B~M#j-ZEWie!5IUPKWDZ$DIS{-zC{kaQ0$dB82)5(kd=!P!lKo&4OgRBb z!=VN!3@!wUy$Hc?ht6;SZq=Tppm1Cx!vI*SmKh3w0(BpS;dxLG=o0`2BY|Ltr=ezd z0M4`pjza)&gu?@d%Fr`TX1JOcx2WeF_kCn#a`B^i-PqD6ebLNOLi47DQC zaJFO|?Cbyq<|`Zx{t^LJB?iYlTpDyMv2R8R4xA$BLbhov=$rtD0(I=df>R&xuongh zjtY+gaw|B=VTqt5&_IM`NlZj>F_48f-ii4ANlm z0997E@c$_s7%wzD8-dm(bG$JwR9Wp&*ivMe3vojssR6*lDG0z>Yp_JPY#VFH-8s7SU3$&;RM-#JYX;5bzZ87Yo+3Jg1;iTqQ*a{iqiQ5A;MFG4G zK}1xIDdIyBo8TBlvo=H1q0w3Y|uzR#5F27zc;v!mI(z_8|Dp zjucM_9}33?5MkhrQMjln&KlC=!(aj!y0ef6dQc$f=-zOS39-cp8UU9Dfx#RB^h^v248`L>X(1#S z84eQEs4~d}ya7M~7gj=3f;LD74S@q;d!iQsI7N!G@4$?3-YLoyt zI4unp^)DgZy#N@LDbm^yppcIq0h|X31l&s;L<|5pn-k%*089PD;z4C#I0HEgw7|VP z97e%Gh!6~*22d#i4fhpLSXX!`jSN<%!VE|}i6;u6Zq|G)yjnrXY9rW#>E(bDwpwKX zbw@C4nK}fZ4DeKk0Bwj6bhU6q=muzxE=pnH0SS;<(8LJraRT>fl>kRbyoi99tLI$! zgH#~?Z5e5QF!h)Z9hzZ>MhVD($f{Qi~+eMHk0<8?CMWE5e zkcI?XaRgi%z}1U?g|z_s9<+-HW+B24EeuqHszw01B}RZ3VZMb*sS5@xVI-n7IKF~e z8lZ5hjFcC!xLdcs5yR(#$Uh$Ano2LhJ!Vb z6(IXz90D=`odGyPZU9ACEb<~~4yX_fg?Ab5fd@zriJ=xSC@>bAh9OyPFrWCYY!Rav zfaY6cv<0*fb>Qb`M75LP)x4nOXG_)Y4L?9dphy_ttvron;NgG-o_a%`B8&)`8^H$G z*dqL)5SC#qi3kT1HNdkl5rm5fh$x`&oqY*t5d%Oi0FH)Vk7*HB zLjMutP)LIT7Q(`B#le9Gj7qhWKq{yyK%uh$918whFsJ~IM&bOU8cxze1R_=%0mcGM zL3}cv4Sg&Fa<~ZWTA*xfB#i|pQ?$imkWsjCy$M3bp?DSmYNbU4U27;TUTp!$P2D2w zIMN6(7@-#U76<}ML}UThG8(*OvJ75@BTQ%u6h27+CnRaGCxRm8P}Szg$Z0t=3Tz$n zg#uDfZl$IX32LtYTUZE$TJ83*5@!V0Q*kKtA8RtS+6Lgr24oy0MDaWfa9}X2uaTh| zEFP?d(?+0MsR2K-;28#|+G%W51wa0`5Y)Y)2!}!h#9RP(#4x|}&{cppjm&|`jiAmI zKn$&}?v5cE08L}V1fmx8tOgRqQl}1efse?d&>v{<>i;cxHUeV`3JHnfIxxH)K1=}+ zM<|+F!lmALoO-g1XCY!DipRm6i6g^6gBFByA-M>uj3F6ffTY6nCh=QDj#AE{8xB+R1dNBe*4VyrSsF;PSk!Pb| z=gLLPU?rfi0C_Kl>7rynQ@4p=uo3{+D4-CLGzb**9yYuMPTvp$lm}kopczDf=g`Ci zstAJ~Mx)?(ur28S5MPW1j}MBtG(3P-RL?}9QPe81AWICMsf)S>HVwx)uu0gh(C}Q0 z08b%4ENU9O#HNu=0mcOs9JC-!q`n8mlVOe^pAKNc=p(b#HSk_Y1FiXw9%>?3V5Qnj z04j@+*@$|Ll$t?-_WGwlsQ`Nq21sP62<@ymR!vXAA^&mnIA6g-PY=Aw`sl4;=5;0LIS7;=NcuuusRK`~Us0-V(?Vj==yG_l|n0_InL z2}gsJ7!Jy24NZ)PkpRB8`lv2sBC7s@_9EDM(UE@|hH9dCHmYvL0EpO7S+I4> z9he_6fM8I1cpAGAPyNRbEQksXs4W8E{8wGnl+U@+)7 zfC8XWG?mH zokB(8We6NqlG*UOy5QA9s*4&txU|KF^Z<$qgBmsjYv3s$K%4$!7%t?1gF-?u$S{qv z;F%o@CNvfb<-}3pOc1EO3)cVt3x-2sL)d@4g$2YM1Y;q1b?Y=T4v1K=QRo|p-a~CN z5g`+47@*?GaBG7M6CI{jAA;m4;?mLxC>dT<7gT+Kmv9hFHNsFNF#*A|5Hb!G0|ZkO zK%P(-8h~x#Jim8<hqk7?*77*0Q09epR}kC^$$L`&L#s4IA^;+Do=>jGSh|4KONy4NJ1jM=t) zn)_vjLGMx{P=_|o?p@JCgX zjW6#v%#S=xr>E%(Lw?p<|5AXgBJ1JY5yx>;`{&|YR91` z_$B?vkG-LIj=dSb(oW+mUBgDZYbP649AucL^KNn;7Zu4~r(9~8qx%nm%4N~A+?@A_22q)yP>>F<-ZX^hFnk;xo(WtH#fyQBC!vUT-w4^AJsAL*VZ4Xo?= zfTj3xg4R~gS0@$ON|chSeTs_u^r=X@)ss!k7oiC$_%n>U$Kx3d&9W8R&p)`Y*O%`u z8FAFHCY>XH?rh>^*i6UHIN2ST-ST=Lh$N-2;c*3aQJ*rUJp4kJ;_XPI?8fgO4rGS8 zG`a2>Z^$vFMh6yzH*f9jcDJYgd13t1@aBg2EYrRGwGkOdCbo8a!dGr?HRh761Wd01 zZv(+?|6mOf7I?Qhey~TBHBjrEsi>3XE$uvT$-r%G(qN_I%#klyrcpxya=js%zU8i{ zkn4QHoWvu%lSsTJ4R~ zLm@>oPO;Trs;RQwHOJ_m6Ql6%x7LJS78*urdzydv$d8{lWA2!F?W_6@3a`~}-%M8= zA1U`}F=*mR-S~&<1M~Lv%zGwA(y0rrD%ZvRo-&Uwd4%J~# zwRF=A3JR9*Kh}67k}k67G*I};$hXgYFln!yXh}MLIiomfWJ&yJeC(sH$(evIH}?w3 z#aDUM%pTWa*L*bUZ$FFo|28FE{7~B-9ODqw@@@F$r<2b5gx`*5{21-~(BRVB_jfh; z(lD_`lHYTimK=*y`h$gItjG4`*P5loxCawjrq*7W&!_HB-KZ*@cC3)brvwlR>=#%K z=I;Mf6#dMXappsO{Mug+)W|z%w@MT3`CpSxClG0Fg0HtSsW*KDxmE^s?Gv-6cZ|S?=Y5n7Jbe zV2R{Ad@{C)Ug4$a>yj`B$YYmWh9|Pt>!wDJhUppG zx@Bi%IX+YLX@2a`>b&-o4a0rS7S8La`Q%fhy49wL%TU$w6%qYIt45X4RZwI7%6jSjJudbuuA1&`G7oENUXk~veOj|CTk%Qqb+h++_spY< z*2?2KTap?-A(TF3OVfJvit3|4kM-q*X5;X~naAR|H|?elxuJ1wy|d$TH#8^ZTy6d4 zZ-rTT@g{R&Ym2UQupML_kueXEvIY$|(d*E_Zfccby6&fv7^z0*J$AL;rfoCs)wXky zE|t7)%0n}^;Qg-qEQ*c_42QQcTpTzJ2lnH>8cM^g`)S{sb8BG(3NmbuqhcQN`mRTu)w6_ zu2ur0tFq-T6&hyC()*gzgn5_7`ivSK*IP8iHdPyNG`}&31bWKoze;>9Dq0?eP!@bR zN2O-j41){yo9p_j2%X6#b$vVKaipH?sGtO;OX(4Na@89W&2Cd0<=$h@H{F9%a}`We z%6AZV`kLUjZ&iL7vG#L+QOCrce3O7d-|%ePscqA*`0L_E-?ZWQ5y7u{;}4~YWrhx3 zXq-ItN7p^+zZZI#_s&|+u5Fs>%01Hc3JWH>N=Uu4Pn03_chb1SQQt03(B#gyCm0fE zTEvEP!W6NJJo4w4M42#L#wCkwnmqqFuWw{SOAgwdN|+}xAIkJQE}J@C;4jJOW=r!j znvdufzbcCF{tiYx`x{@5{o0~+Z`H_*6Ul9DJpK@0Qdlsc7koY8oJ9>1Bf_JPHFWIn zX7-m3M_qOQB^$ozg7F^BFeR8C(PQj7(Td!eO0C;S9}A7|(%I6vsYKG;IGJNSqj~vofk%kO+MDqG0#ruSrr+H?I)mMm_{W`ZWlCeq)gJQtq+FM+2a{&|Kzi-Bq>a=o z#qWCWN^dUYg;bZ|iT3uA3N1^5*!$1jRKuSn#xW(0DYS}xkA$?Rw3Lg5m6dopqs``D zv-377S*==)Q8lXN)iwv4R?M_!B^;jmWWINdmKFMT>=GsAx9z>p*E_ry7~BwD9ufIB zZ5d;=waL$TNbTyoX^rc`#6zC3i9Q19mL^k?Ns{#wM&;L&$(gqKdb7tG#5N)g~uiU*Ci3!66TZ14XZv02_VdEr&Y*?^>5aX>#O(&n9U|Mo^YtyH(3Gi883 zu%IfaNUrf?$k3)q+izair4EEJp$mG(hJQv7nH|h_y581wz597t+$;V3w(r2`ZvDoA zW6C7+J|}U1$D@FGvb`ePX2Cy?>ilQ;e1+r9x(+{N@7?)>Pm1IBM=NhM?tK^fD0oLV zuG}=rz2{`QB>Fm0+qcjnXHEGbY+astaUx05HMVE`Hn;l2Aj-?wA2wr!uV`eUHrO6ENLE=j$WIcI8wgQhrH*_AF|yg}`c z7Ma|hm&{jbzn?bK`w;1rVO}4Znw`;W86=Z=Schz-w5@GW);Q#s4ur`9N8e*pe{1vB z^xh8QC-i@?*l+X6f>nLmrZ$o1BBLC?KI>`}UO_(CmfgLfW~)o#P7;2^r2B|(Y6eey zIkToDPr#)W+*UMMIyUbNVta6o&KsV&%FTRyRnpd2Pi5q3{AqzTj>Z(FuE;#UUyf=w z9oWrW@CqOoW&IghSfI7wPu|ih)3))$1kM&||FebfknjRGV{XYWvb!&yz1RElS(B|Q z^Y1`CZ%a;8lOHL3g)QehIABG=2CHaR(tREdWq;qi8KGj1$UM8P^oz{nA2uy}t77vN`PL%ERa=p{@9$GlqVeBTUEOLMRdepq?$NZMz%5@lCLRt>+cH6qouCT% zhvnAUcK*gThECTiA_gUak*8D^$21!E&M#_PU&!3WSZDJp*=AwW>SOwY9b@RwQiq{C zHc0QwoQXws9sB&ZvOPPy9pyrzZZ=9=$VhXmKV9=$mXyCsxbDf?zhmnd%0Nnl?zinL z>=xt{x6wGaXpf(K8H#vHEBVfrBQ1u~V>=u(YkWhPKOU+TQzo01?LAbEi5zIx+fUrv zUBr{;-c3U%YJz4xd?=4hvJ%WVGmjY`FH`1n8)JoGCwxuBfq4pdvr@NG@25fRC{_godhQOyN!?K_=@17CF~X2iMmQFRVy^!At^U)mN~;_>R+Cev;6XFW|@ zr{9>UBBiA-vpZ+*{iN7ql9mYEmWop&16IN(DPDztn6LGvm%Lb7)co&g;>>sOvys6i z_f?$sY5VshmBpOa>hrp-CW5>Sh1OQ*B~tjF&t+kfz~RTFTf}0*Tj}@(M5Pn|&?M1; z#0}@?&e{C)yVm^&B({Q zN+Z_O&iqu}Q++v;7e%@HCcEmtPBHT`s49C*7a>j)l@nj)N{{WR9U#H(%kbQqk8S!6SfS-N%?iFCz|oa) zL-x_Z%x)n!aZP@3Z$OJ!@s>_&?q^JPl9QB7^D+DEtDO6(#OL#sqBfe-1Ucom5kdIG z5B*ci1~7>}S-Bp)6&oaZO5`3N|%F~-R)-<8g6TOz5yNZ&W{kNOqBqv$|m!Fn8=V1d> zH#!oj8X5D?dN*Ud!>=Yjt{;9eD6Y<~fVL$@H1thg{%6~_HM5DCXR;Vd7s|VcLPJ3d z?NLG>o2f0JeIV*qk2gukl+Rw$Hvt{4kwfENl=n54L$;jgifa zDEx9qwK6E}WvYGfdqo zmwYe)$|9Tb3$}ITMGxN%tg&@0)pN9lAb^>hj8^kbRFZycg)UB9U?an;iK z(2xz&cCmWWYma*vp1Ny9p)aPA_|gTx=}3`Bm#{}yp!m7Ny4~sK8A;7k+IGRqy?dJK z?ia}o%S7J0S(+bK_wU#l*Se?Pc4*0-@FLL)-(AiV*Ta85KINsG<>#>IMLir zFQC*cVa0EAFFtqNhu=!-TWa{3rEpVZ3xxk#Ho~6?nsN<0@<{JX-1e>aHE-1DmPV5^ zs~TS(Kl;fz%g$MEf^=J~c-e}^C5)$w!kU4tX7HrqF1p#q zJiMWspA#un^TXQaeU#7->BZlwo;b!xSJu-{^cV?iTII~3@^jtszWHM2`nRz&;8KZW zll`f$jU7YvtP;Z<;of(_EA!`s_dMNKkBhzo{=jW1uNC+_cw&0^hxJXKHdgepb1$x}C{&oPofvRbBI~9~ELK0g zWNEd%#A@4#Nr@qH)U>cmU?nph7T)JrGNaP1U$1t;Lf_l8zv*SCbQnAWr-g1&wR6-{8Epf$GH%aX%_4E;FQwJTFFrOYPS$w@=@{C&}$gfpj`xRmH*fs{)x*@|K)Oro^w= zl`rlS+gemF*0?&<96P9Es>piYe`)iW`}^zym40EcMM8tqd@R+Pc3tI~?5~`vtO|Oz zD@ovI%J{th)84;TT3_bfH@{pJJ$pzP;kZ7dW#Oh!kj1IrJW=b)xS|T#>VNO?wY0uU z4aJST3)}aj$CayF-QGI#hpnVKI?h8L7wH3ZF)vvvJlAJ&=BB;&IlTQFq=NCxsc89= zo<3#sp)y;{L1(K!HQrIU?}@#&dEOp*$wCmrwr+FgJfGw9=+XT9oOPT+SxewGJ7?kx z@ubmA=gYu66)x1t<@cLGj`LtnH`}sh_Q%jmGgcW_26R8HiTbqk>j`&rhsf=J1tk}p z)4e14pASbx#Qba;#qEH97=2>rHiu1i&z>)2=1*9eX|+h}>^ST5rvumB^ed=&9UU0r z^^zaKbha74)-)*_I5g$1I-Kc$cglQdQ)6}Q#p)rQKqS!Yh4aCgyARQ4e|FoywtvS9 zxvE2v2NxUZD;JLMuNhm~zB?7^uNuP1-ISIA*V~Hm^lqxyB@|xPo?X9a(YQL+Kl=%>?7Jrq*E1hN#q+SwBm^oG^la zJ#Vzwr#Gm)ctTT%MBYL(fm%qG+Mf*H%wyHE4wW6@IOZR-Tru2za4e-|a+jun6ZHVO%mpPIFMx>P*Kj;K9v2$$UAtEdwI#TUj~Ga^D=uc zUSF?(Z)B)2bJB>{#MWfWlFKe5PprnG-0EA*r~HG#`0G7I0I*Asv7Siv_orA%Az zy(Zc+`P-*Gzixbwbyl&AJ7d!=>gxSfF?W(;X_!1}2BmYB6$CEl)$l7*vu=$~3r~Ywc<>4lpKU**~679TU#g&M_z&$g1 z0dX5tJrP6KZhKouRVNwQf-!2RR><~Bk=^f7{ZJoW74Qu{2iH&E9Ql(!5Y&?oSk7Okbp$jU~ z=gF=!$sH~BXdTm!Df71lieL+zU7jH zbUMq-m5?7dC!AX`DRT_Unlb#mLddbA6?U~tBfH0%$5tE7v`imRX)84qCb78>yB{qT zcau#W#L!WdmOer2%^JKXT2Si%S@> zS;``&=7fH~E7f6Og)A>W@apSBys(N9fxFK+lOrvrDzdnnw>F5fD@Y(CeTsC(-HdDJ z#hI=4V>QvD^jd%88TY#vRNt`9BNxY+9(^fvlt%FH_?;;XFYfCKMelFh&r@k@=HF7p zEl>0`o)6%@H2TGNAkfV8kYlA%bwQCGI(FLbFu#&28_>KV4XYbmx9NGwJn@!&fQgCK zQ0lcbYtxXkw@-v#tGzaF6om;QTF%&#!VMyHmag|``8q}H(`@OKxlFg>-5a;_@%s$#@Lk0Z!`+7exMJ31T6pUybvickREK|9`A09(I=lNG?{h1i zq>>`TsIc*2m(C|UJ)UWPrs9J*#dG_~r|X(d((FH{-0icAnM@Aa7@%ymV(ylYr<$lT z=B~HOx@>2X@_mckIgEhu8~qk#qsl_n@zuFMvpg$dG}clcw%?$8;;N^H zfc0s;!?VycF~`%XJZGS)Y>!vU4ThEk&xToEY!rW)Dkiz|H4e{__rDyM#Zx`bb?@xU zOkcw!$C+o4{db+(uY2==lHSk;S~t%Y-Y*89g8AA8oQns@%)nEiSbd zR94%p^8BB+rz$s<@b>+@@9R1 zri<5`@vW-)VoG+N;5!HnmtB;@?>_go7+dbpG*+yeUZC+ZvN`F6i%Zvi`H`u%p@FB@ zM7gi-Y}kJHHs#L|*NSDKkCIMsy7w=g@#XDG#uNhO$rJvjtt*nc*-hW8 z!+bG)V(;+AskX$|x?@wDUay(ga?gyW`^6_-;DvwtYJOXJEteqBYd@6UB8yvduDIiD zM2~s>zE${bL$p|sCUYF|&^Lr*T+bbb^jh5pjRBKaa0)RRI^SI;!gbRr$U^5ltS z0Z{{=Rzw^5PX%=;n(8{+e^$c%BznNC(y%r)<7<6wQh4F4wlL+Lv;VocpTb@x1q6lQ zs3EJV-^TKDGcuS;#f**PXzPjfXdQtz-eB6~Lbo!TwQIRqFS?bRzcHAqr050d1bfff z(WK52>(WS7is%4OUwC@T{I(Hg!RU1D#fzt%=6r11`IN*f!kJ&>+idg4RzD$n+URDFS1CWtX*rtZ?#{aQ8AngPt$ zj6AU6TA{*_(W3CKPa>aoUQ*v!J$)$fejWYMLc1b7yfX zmN6FRZT)7DR-tV$B-Lx{RjxlR*(A?DuO*z;TM)Y!7L?x>5aL$HKaVVR)&w8Y9Vqp| zcJdJqzTOuj0$Y0Ph@b_tOjyf|{cAsNN?shNXue@lUiwW;&$SR1EflTw+Z+3q6BqK^ znf~GQ*qa4q!zW7Q64_j_zvTUGRpk{za^ZB}&RLaTvGlbKjoiGWQJLM@P+02ullNVt z&-z*-7?(Tbt^!YGtwZoc$z(xBMt9*etn}OJEknje7pHgkF>W?}vl29Bv9kri<(cT8 zv&o{A_7Ab1(Pc&9Py4=dU)Ks!i5B(ui|ho80*8AeRE|e#nsp0Do@|%*JA2st>upUZ zal*%ObulFue@L}p^u%EJ(hGhu+>TcHo?*P}ojg6u+VG|M^U}S;q#}pw8^#>vHe+SW zlDbmor}=B9dJ`7CIXeAdX7|U;N8966KbGx9sEM)# zE!D2LD_dXVDBbyRjOe;@*SeGC&hn%-@_47Cf3012aYao3+p%wX__3#BdM%80yMeV8 z=ac3E)5uRjZxGdr%nqOqO{bD7#a z{;_MvyZMS8mWn7Bt7oc}6A{7Un(cjD=5S96JCC+Djxshd;wZWl^yi>aLE-oi;#>De z`q1Wz9dE+`p72S$y~uL145kxutK>@UpO5MZJ547zNXZuLf;_yP5Y`+U6Fc z7jdordDDxeTQba5^K`>}{moOlG#@h};_%LC1K-(R`S+ZIf3(huieIYBF~R5)CsKB5 zrHRUQ?8g!3LvgPJTKiUJn=b1@@A$&^V_AlYon2QoVQm5P_TVcs7bAELp`sYo@qZk?5B2xF=3q+F(5j&W(r-K6x>ngR! zD|9N&s`6yt0VmE+JX_Gf^T8E=bN2$}J|V`X{Mb=8x~zM-=VsM`x}}K?bi0;&$lbR& zg-^(B^Q+(VR}7w}IdvGfc?B)({<+1Tr|lr(ziX|#pJ8Bf_+;GCo3*^QN3Y5y;orti zv^DNIePX6-n6C&FCs+7tEl^axnO&300bg6CIsBfml1G-i1jY^ow;Ga_Z-L^?)@cos zykwb~tnAg@JXvpVc)Fda%erSeI>;+>hCLIWmM}H8&H5K*(cN=bf09b@f$u{!k}OL6 zz8-z?#9z2sh+5FFS|3Z3gLmV)w-hGW{E}~|*=X%c^p7s7^j{SdDXq+$nz$;PO)ec+ z?$BD-rxs~nrBzr1^PP?!2=udX|zAgIt{-Vtfkzk6EsdMVervm=ndmu`&un%73^we`_F zdN2LeNX33X^YB=j&$BL_7t*I;j4a*xWyU^jdb38`_H@5r@gJu?T;6mzy)pi;@uK0H zu8_pI;PkAHgLRZ=&kCwvOfyUk`VI=iraFRdIhY*yc%t*#t=ue*s$Y+N=d>|dQT!#b znCC9`Xw^Q>{ZAWBZ}pbI*rw&7ah*k%wrN?eJ0Xy&4#w10{>P{5H9ugTd6Zs|Vk~K@ zZ5(^fdd3hQ){fvSCYCFHLz3!`N zo60P8Zk)DFx)q{LO?d}b=ai3E<#kP^$d87aH_qowe4P9!b-I#q-YVy9HK~u}b2o0( zAW{$@ba!OD;?dvye7{}(qUx5|uWE3jX78c2yZ%~&|BUb^+c+J0`~3J3?ltW_1r+5f z$zBKK!bB?3EmU<`qpFN-Lq6*n>AAyUHcEEhUKz*P++`~WwC`R%wtukT?fqiuK z4}Dq#R`wz2cOYzvbJ7i6bv$E^P99MesQ6U63Y9-L(w#e~`|G|=<2S#Iy;Dr&hBbol zPOWLpCdG2=0I%ESHZNO`dR}oJJKs0`Xx9+J^vu~WF6hc-YiW)-dq`7$i#pL1z3U^> z>1CkYS6G;DGsC)nJN{9NaNqqxT~0}>N3fDs&`sHp=9e;|Vs;9RCbCWNZR7csX2Tug zKF|0-o0qGP9W)QxqH{)8KIL<$M$w#{w|(*v<=)RRc~Kq5s^bHb*^0}F_H&`hAErJ! zHVO%I!Ms}jn{CrNCiMZ4$OY+?xwpo4GyR|fTOLg~3zSL8UOgGptqOW|$I0{nukS$m zcEs;en|5l^r>4KMF)~jg6^McmXwI6m(T^M<31|MKzjw^$cmUe6xb{Rgl)txp; z8Tqg#)M}yT=V$i2i|g)pg*u1TZ){@KaR!y|!?no82OEtCSqmy)bHJ!pW+{|7PYV1A zHHo9WJ+_~MTo$#`9;&HmvyQ}d_*EAN z8+XUQe@7h)sKV0&W2+^tyd7^N!yBF|-SDsL=n6X)=RgyK*!`xz?S6!o&$*~|MJon3 z-hS?$?iM|8a?_Z9^{7>Y6DFA@glvD@t55BY=RMhTisL-6HFZOO#VoQizrv!#;(fvB zjd&|iUVq^WD^e%U%KLH2M?1WnWu_w7-Ql@UwCt~bvgCRWcp6Vo zddSv61|)ZTfAN_bJ^z5WvP)ul_HR9Au8~Jqzjya)nTdR3eo_>keWf>eV2f?o)%fcH zfkhS7AA2tpzPb1*?Q3&*vp7pu#OeCaV@o&TY8s_c?u0cRUGlT&s?4ZEDJhcLtu$LN zjtpB!;(Xc{?nZ4h|JzCLuB@TXqR!#?(ahF?M5nD8Xd=);Co_w~zX_S?)Dx^zt> z6_)cN`Biphkq#LSJG~CsUk_d*nUmeGY8?4C_i2yZufJ%9xyL!+854eg{a2qC?o5l5 z3mFSt<|P}YIXKawq@}YBOC1PFDRQeOB;`E+ce58YFKn6R#+(24P4EujYk52b?qX8- zfj(wT|EImf0@1LE=guE}wdp^%ch9|`r`Yh08j$WquDFwfH@MW1E^8mvm@z2RfxCW< zBQv)0H1nu}uFGah94+>T#S<yA zFHJhZv=<}7oihQsyc*GDslH8(MZH+Edp5x*$C76F$CRjIb5zbg=WdOfL%}Ojt8_fg z$Ii*ahj6v>IvdUE)lu@J^z_P@3H=I#LjqI%^Uh{(bc;*}uC)~2DQ32f@ODx3(f3KB zx678yYqzuT&oI>u+({pR!7`lGnWs)uv8TG zD#~QuVM7|aJ5HJWdU_9k)Zd}}<7mVW+`+QkeH~2|%z@?;?)d_s^wX)fA|ib zmhI23S5aez*OW8YhaI^~9MGNd6)O|0`W+vyXmE(L9NJ1qdl7YGu+b$+{0rBtR#=^7 zs3CsK_*gS^+01DL?ca)%ncaJ%>Uz-Yy}Aw#WznPGUKKD+W_@f`=av^pc5QrX@kh_? z#8`PW{l%|ScA|J%A2U95R<$vA#AQ!@n!UNCtNSzED#^*Mcvhlt{?fcnzo=+hUp-~+3RERwYZ9$faQj*vV+utE*@4HlN*sMx z?OS^EhvarUm#L>QHIW5qqqJStzQ`dL=c_(}j5<=J&!-nVyn4ICi+$<^CO3qF%SsH{yuq`8Nsvfw|prno~mR zbi@oxt_(G2@Y^hIm4Jbnte-w@w!UR_y-(^ZM|2CK%1;Ib@-i+5Uk{o8i*Ki@@Suhw z8z#KW!&7d24GMg#qb<~O>=M^iCe@a$iR^XMZTnJwS~m8h&xViP@eeY1CO$_#3CDkn zF1%V)X&)n*V9FM=I(JRv6h)Kz0!%RHpW|qp$i$_)=H@P;RK6{`nuYFc_mGp0gzi7kBHlm`G_Kn)*vLz@^68ApWe-sM z4135&0{I@^gUmzn+g0{YIHjU@27(GL>)Gi;lUJh)=#wSu>E%q$s>rc5`F!H6ZE`@X z*zSiX!BKhD>A!5q<;N6S9M4Kf{u+=QWku7K(4(@ba>~Tv>VJhB8Zeu zoyt7XDogy7F1`PY?i?1khySve=E&q~^q#SuXYGvz%8inbeM3~^{_}Cm9V^E3Wt`2n zla&j(8GXbLX+1XFkgamMZ&4ZfFXS53x7qPly_B$wniz=hmN#{-Fvy7DXZ#{2oa#u$+tqG>;p8H@dS&@0! zzU(_NwaU>KuuQkKrHoqe>ThDgIiWnMVt3m?HwX8d;?dd=h zI&D~Mx3WAW%vk6iorq89iR+F!p(^q+GA&ga8^0_3`?a7gX>e+IdihnU!2e>L?hN4# z-#0{TQY%9kdGE0hUHAa0f??`##xwRi5Od`l`!vK`E|QxYkD1e_&GNf!&9rIG-rc$b z3+)~@J4j?NTkp`MOu0k0ye2(^#ksn;?sYrBPr5m4Uci|AQpb=CPrXHM?z)+P z6Gh9D^=fl^FmDIymA9`tWKY{xrQgX*u!v`5bn^|*dyN%dtQNm2)$+(=GR|-8FLt%L znl>@ic)qX2_XT0RY&w2HRU>GO%bEL&u2G#^8SP7q-`2C4*RZTa(R+oyHF9?w*xSNyii}!R3IjL7pq;M;e+=sIk%~>^ma-TbP z^H7_O?v|X$ewhZ1`~Oh%9ezn~|NoZe$gTG}a^Uvf8}1usB4nB)EpK%{B~mHQyn&{b zqYyO*ngi5AO@mw6`eubts96qBfl#@n8HipSsMn2}3JUh)_Yc71!TTKE&)0Lkimko9 zkZ3T+z5-iIp0%!ehNjYt^pAPWe#?~;VE&8wQTPO-K{DqU-L_!8+LWrfk-VdA#eZWB zA4jz7#Am22kvOV*@K%S^38DVENVwzE0F&8B3-sEuE3f8b$0aua2!!f>=-BP9O`r}> zXD=mz@5Y@Zv>j@cS0DRlu}QG^pHam2U6EFPD}EH8P}{Bg$-owxu3tDm&}-b&1VI}I zSc9T)^9H9fj*tki$DB1v;&#GOvRa-@Smlz$t~+dtRAn6vdt>~tdbPM=Yj6-d2@WHR)uCZ(^Hkjk2^xW%4~zYQI-h5Y9p%^(Lf@Ss>p#ZVJFRuqNiZV!>z_%#8NH^}!v5O4GocZkuO@AnXnU3@z#B!ZB?c{nvN zcKcqNe)=fS4sxT6$I%)VXAEj?+LB++n^LVF|J%u}^kq~Jnr>BeTD3@wye|3s&z>k9Bd<%|P8#k2g#GN~f|itMn<|Z;c#t9cd)>Kw)c_ z%f{6J-_?TM=Fpc{E<69eADP+uvqnt*%E|5n><&E~Lep|jQMK4;fRUoPm7avgX$EV) z(8X7wHFEh*xTvB<(?jmsc+mB-kTXVh;=)k_w@4=p3uqFdZiuUrgCB3dDnFJ*wcKmq zx#Bo$hs#L>KZt}mTsh{sn4#i)vQpmW9GO>QT>0-gH9PANjm@bw7Bb!r7i_wY?J2In zCd-K{jSuQ7rDM$wVIL_U#D3FxXwd(v9`<=^Q@hlM`J2i{z6E)r(mXJr6#-(+8>M%% z7Q^6Ycz}p^gw*qWYf-o54aG@^Gv@MTfs08#q|cWZK}%GIk7mpjaKG4I5U=-r z3HORJ!I$c9Zu3u-OA6{kSf7j?(lx8#lfEtBR*2m%cz56OIEvobg}PgNW9SQiW!=7I zcb)n}slkXiXI=dWViGp=BBpq+bFdnk>p6ck+}3r0X1aIY4|$h@@X2uvzKf4Og#?8Z z@(RDuWBvAL7$!=yj^Ar{EQ+gBDdS_E;ztf$XVwjb$lpI8GZ3#&%&Xm+n7|LCyXEb6 zI=x>^dK(ot+3|-`Qk<^s&M~z8Z^yxf>Ft3%tascqXj3mYq&%xrunCH z){3oUafVhVPPk)qiNwrK@{i5MGMkr_YdySmYdjoVhW`|R`EZ23w>bsu{N}zS`0Hx> z<0>3KnShuTYEq)l05cB!v_7shebScd=obiq#DcadBj4`C0C1ctkk zVr(Z8A#M{TWgYD2aDjU-dpw|Dz%hvdXmp(2jOzTa+5rfSbwcENr3|Z?*jDet$K6WN z1#)TE6W;Tftd3)Q7C(%+8nBiPcY(nm-?hst1%2ybc+*|~z}nx)2x6Y-@UZ#j#EmIl z?RBJ11LT5#yncZ4?D5AhQ$Od#B(7@o4b~bj#wzox7P=a0mq((6Wcv@L6rNul^yl2e zVa|(4fCu3O$zhv1sZR?=aR99WT{P$8t5GR;EItr=k2zyP3>S}v_^SyU{RpK*Z7UAe zimP3ON47UzXYw_Ep`^lH#<0B8i5k^BD_`|>53(N+8f9Ri@mGlFmnA#eP>;|Hj&zzwMGR z)K!00_Da#(v1O%G){=NWwEN9)_(VRZ=#^c=cEtg49?;_5h+ciDf6c;Q$NV6?A_&aw z(mvpu`)0o>(+t<`PVZYy3b}Ak=*eWbyqJiubZGc@cLu^Vdh*x#>A|IjwsDQK1m!4# z2I+<8^q_~x%ZLU#0cv>ZO)ic7q7<7@glcerrvf02zZ;XE~!*WVs%KP()4{g~&dBCuJ z*Ll4cig&3m4q@k^(_bR`H^@yJUyCoZM%~3qHE61bH%hJ8Tzpp770)Nf@UHS*G@tSP zf?SdcdrePIUeO{lkgbzCKYKEksB4F8iyh*9qmS@HZD#1256Fg31Ijx$$EZ|7o|E&a z9c5UcUFXdv$GRF1t^H66PI(ZA1a5|e2mO!1i2)2^#tTcM)>1YfN+&9{t<#dOrda3EbQ3e&|SBmu(O0Ln*S} zkLWP+FU(->m13ME$AGh>D}_GvqpX<2x4o}ULEqihQQ3g%Dn~-XPO-cYR#~|G=+4-e zRs_p^7VlE+dKtySv3ngcomVImn1W}aJ6!J^_jq`M6amd!dd<3+7BJ>UzbVa&XD-LM zfBmefpZthmb2_VX`VKw8FPu4DQMiD7C2*bvUD^(&JS}Q7=D0QLERG_yX%6|@()>n6 z%;?{Ywe#)_TEWNSy1&wf?yaR~R0wUX3#Ew&QAg?d>BglJ+MB+2Z$n=HQP((WeFw)8DOs>pLvtXljAmgh?juDj?dGXhm40g(!lm=DdJJQsqTLG+GE+TcZ9NYK+vQ6dCM zC(m1JRfLP03Mx-EUc@?C6x27{8jRxk2m*&Q-DZB0_pXV-*hFbNGhLcev_G>Lm&Znd ztKwSsH!oGS`HH0Df*6o+?Q8y4QG(nWZ!jO2Z*;OuJ#A>IcAeR$;zlUTV}@0R7zJxZ zMOGu7kpBKDWr=#V3K#t0=OLx~6cYoByi9LYg}K3^C!t_7ps9WZ<>~@f^7<_VV76G_ zhEH!E&2xxs4G9C;bO}WNKfhIMa|qPmF3M{fHnVVo%_f4Rlg^zPMD| zeyUTB0hT=VLWc{@WlGfmtD8mYH>%tRy6fy~!ZW?n#TVY`foyk!{|&lDD7(V?PS*Df z(MUi;K1pZ(S#^8BnWByw#Xa5S0wBEI2KBf`H^2U&jo}C`zx?7}57TF{djGQRf~iZF z1|DSVl#1TQ>DC(#)eBZ?E=2H(#1l4rcCJ7*n8)tq8%ey>Pk7Z;3w$oDdgD=RF-Mfd z4knJ)HixBu)xb*~z8v+N+12)-IMiF6iP82#6&-Uh)~@D-8edNYhLi|mD6KQ7%7CA} z9dAt$y0lv39`J9G0Tj3GCRgX`uGX%!oSk@lh^1fR#7ENRIjI16UfsKNxtB9rfvetz z^NH$+par0PC65``0pxb+0bW{=g5w@eJ_FXq+eHzN9%F1BR--$huqT6T=Tu+>S6&Eh8(+%`$0OQB1Y1M~(jUDZG7u#%1O z^v-V#-8moB`;|I}YDjI{1WQ?Oa?mkWCcO`0n3|%o>WPyU7 zlklozLVd1jQ;Y>G*5s%s4SC65{_V`9EU1oU<(NGRxdu)+=I|N}-MTC^os|1_APDEU zxzhz*9auYg)YVWK?xz^zZZkW4R*J1TbJSXi#K$(NA2Xt(4l>HL3F9< zBi5VTBKJ#Kr!peqjJVaoX!E)Rh)dgx8l0WkNsqg2hHg{~a~r2a(uO2KSNzV~nc z#XXnC%IfOQjc7XSMTD`F%QYtj&;8HhG{~!kf0+J*ZJJ5ELMuKxoXycJvhxvx2!iJB zN0_lzm6j+_y-b(WuFshj_H>z%<$W1m*4rB`5mm*Sp8W$6PD10Rgsqe$;Wg(0Nk@Fo zgSNzl&C%-ayO--vX_>8 zwm$o<5XAM@64&M_m@4#z+rpS0tE1bM?79T@3ZfSl9oh=+*fLN|&#$}9;tdxKibsKO z%>2S^^G!LqE?uhK1yR?SB7EAX6DD`tbe%no$XoUWAM?#pCYpl>sZA>(a0_wUj4m%$ zS<^QqhaKJetJ-qF+MjhvOw&b?Z)RK?+}!1*&Df6H4WT*jeLGh(?Z0MP^bXiY5*DO< zn4c8|S`NvZyR3hSS*ghHLuYzjUdFk?_58c)LCJ%9^bxd2~7+)Unp zILZ^@SOn|qKdRs}&$}@L9_#oj|^pk5TN4IOJlf&b8C(Y-lJUek|U7^ty z--EZSyboVvVhge(bK(T?*B=Z7T#a=N%L?E)Lr#qqdLPOBw)o38LK;6)e|PL=SDxvf zB)V^J`kL}{^h0%Do`xsVK`GpnX?mhGk&ndb7E|0NNQk^_%oBw{PS!m#KdR0!joNqNu z-#bbs7bzPi;ilS&z93DBrAuQVN1>*?k0ZuhQEhtRf{>XS8F*dMX{YfO@#xg^!}9Qp zP4E5w?ahd5lOz~AA3c)smq>pus^8s1w>xwxZ%@Y;zY>Q}p@{hy1*5pQAEtT(4L*XZ zc&wSkpeeoEp%VYky`gw6AsBG}WNpRd^keIUMs8I*dS|MP1-rsIGw9La$gXOvg!;isZVz6Rho)UzUo`O0M(>G{ z)Dzj%N>P#2Cq8}SfTJD{p%>>I%ySi^Y7e4Nwa)%orIY_+%o2AhC1-nGoI>QVU*EkA zg0f=Sk^TI+gfHF*SMP+5$ZIG|3Z(HOP@#Gg8*+ATuwPr_YQYg3;ynU1Os8GFnOkg^ z2BF7Q@4_mK<}45iXs6Y)6c)B(jt^)x&Iv_3TxgBC{N*3ezPI5|HMOo%dj_MA+UOP@ zJLh+<7)&;@8-QV+)EF%u7}5UFyf1D$$HEDWk&s6+E8&ig4Y$=6ne4;_py>^j_srX; zf-05`yKAI6a2w_~r-C$PD|Fb1UI^sW?y@BpqV8pwC9($~2w_h5O4K!z$B$u7NX045 z9uzZd9Q)@S_h5Ejc;r<)#NGhIMReq<*EQJRA9)}}Kgdn4o{u6CG~=E4;4*d%+<98u z9Lsn2_nx8y-2E5Mdpw=`4>@;ZN{6cnPXYx(b)UD;1~RU!L5v(C=jS%P*ZZ0tIxxnzYU3KG4bB{4}>W;p+h1kSDv}q++B-pi7gfUFA>jc|?=VtMYCw1(c5Q- zwZJF1)j$Pfp&j&)b((*%%KPUHLU`B2f`ip?FqY+u+0;(3Z{f73qSh|r6x*QPZf8v7 zSiH0OdG1P*PA~G2{8&{tzHP2;W{)P$oNos8KnB6%=z^>z3SshOevH1@y5K>X8D@=b z=(d$iju-*oa}G3bD~~vXZx$YX(nC9fl$Xli(Gq{#ySZnOHRSQ)^m-3J!{d+AeWZOH zqsQmcm$6O&o1*D9iOIey41JNMnHtQ$6%)JY>rmw}L;ai%P%803kmC+)mIc=<} zo;oSgyT;XiQhzY!#(P+T>#*=mwSV+M6FxunfbKie@kjqlinvDtpt4jkzHLn}5a!@g z*GGv>Q5PqH)o%KmiQOFI5F~}kK-*GKcsl=Qdf#*xG0A;x48=P{G#;jFeg90E{yc%C zh`e;%vDTLtJv%9m!qmNI!m;tUmYM8%Wz*Q19g^tUN?Qt^jw5ixp#p0jqvGv2_6Aa$ z5?#`yE`8l6XMwg^Oy1(BS6#&_g{?Nz9Z@l-bL})!biLzQqLMP=V?86b>(*)SwLftc zDf`^p?uQ%F^v$|$-){BcdroF$_tSv^ce*6h`pwN%)gLb~|O^uUQ&hcfG8Z zUaVQQRf_EEuzlr`-ZPau?>iIr)taJ^6-pt_okm7;Uh1?nYmq}gr<=1SM9Hnad?`>W&WR;?zJcj8e8 zJ$F-;CU2`%>S_Am7(7mN!`WC`nKUDPR{WkdBTSq4U?Z_;q2HYy&o5GBaJ+in!>g{Q zo*!IG|5i^pb$i?Jr(S#mY&T-pPo{-|EsSHdPGzeaq^!wD46@JbCXo=F%FV+Ou0BEL zEq%cP|JM-^_IpItrY`f+^J)fol!k1+k^f)|B|C~|nmIrV+bRnAd@GaoQ%gG*NlwqH z!7)13Y0x1`p#G9rK*`Dv2Av=5w99S{oXx9-0|2Q*v^g8h2h~$!rF<v%&0!`e2C=d4&%>G10S&>H+9Ryfu2v=$yba`O&Fe z2wPbtO^?Y(Kv-VZI&kcf08G&LU&^ZG@2LaAb5)fSc_(SkCSP}_CgHr)K@C%BtkF$D zavN8z1_P7ozU*!9lGQfk6v_*YFB!-bWe6b~MJmag+bVHk5?Dz>m-6CC>yY%WN=nRM z`X;{Kj&y&tjNq@7Z~fG;@$49FP@2k=2$?9EaMkr1*(0B6WMvfX5q$&5q8y8Ye zulw=z!_>iSmkmYSFbL5%lQ8-bvH?& z;J}MH#S=Q@7N_JSo3wMLNsYZCvdFMm;8-C%Qm+Vyt2owGmNmX38^rzrBb2__x3Yec zYMS<|?G_@>X&tzg{fxGI7^61httktXh+nlOs=mVO_>09mNExo(j=n1sDsN3$)N54R zy^)2J3iY{x{R920j?2E~n!5PNSZ=2vo4;kIe-|^_&Ija8jBgi>B$q{;x^cbbo*k+* zhe|E_N@Fzl4l3D<1oVZtQIP`~d((ypQMI=fIgQGwhzKY#^S+-HqO)r@mAj|jOTz%VQrE*NpcAXJuK{}2?6PAf^4OE14XHmsK7fdBk5wt zCl$o>)*9FkQ_!hENv@A!g%?0gB=Q@ZBnd1&qwi|LPOEiPR8&^vg*DZw8}SzSh|oiO zb&#KF3AnMcox#z3G5ag=ul@(oUiy(yY1Zl2MK_eG8J1|CMUN3 zl128?4oWk~Xtf*Z_~OVDwI;f)^zxB$(v5=2aePEzqiCXyZ0`LjtL0CCG(kVUgT&;OUT?+rXG8i-&4(n zz!QCLv%Ib2VKKkW%}`NobF>TyNFbTv@nbVcxhp91oYZ7_x2^0VGR@1f-EB*}9I|?| z%PRpZ_~qsJu#g#@Bx#S|R(anWj-<@9a}mG#@lr}F3L`xN=7+r9c9gA*dVL?%uB-h5 zI_1}Ay^+|II?!Mm59GI2yO4$8dpqwz69&Tw6>UMrqk53*doU>NPjz)0-1Yr!+!J;hf zOMg-SOoY|mfygtC1x>@lfy+k6@tl-Wq!y4kdWi5i5bNW-()zVZcWcioP2yeDj_S!@ z*92y9e58pG%Q#XeQ4N?U4yf_NylVH;y~C0#VEADcJNso~p{^NhkN!ISUx5#`&uFds$yPwHcFdxCk~fOM~(wj%U0*$_mEt|Ly8;hSjts7XPuSQX0PdY8D}w7hH8+ z1BZ@5^%TaG@)=oW~lY>Kb#1>W@ivYEo)HBvE7b$ zM95)wnk7MD#_G*@ML1zO1cny0{tlvwomb(>SWojZ0<=LbmQx>(S zizoMSVwgR2-t-2Mg8W6Xnc%rW+=NeF#rQD=|6u+;0vZQ_DUW6?o?gLnrjmp&Co#d~ zBl+k{cMNeH(J#kyv#O5N_}8y*(VS~Y>OjsGAR#?Y9S>29k|U`f$yFN%Hll7m;;6Wf zXbPS@)WXh>fs!=R+=%I`0yGPJRQ!FgOOVO|bFigh*o{0owatdMm=AQ!s=uJ$VSY=S zRLH_dqL0ATYCquCQ-jd&TDFP5t2u1}C|nUE^HI^8J+4c>OcWljzY&%s=wfWz>u#X(#gCQqq;Su6MUC>~s>p9J+1lzG}D~b<1OAzKM{oKO4Z4#8Q@s1DD zNO=IqVPT|mw1%QAuC8Zzr#w_)?YQV7KY>0PHA4r%;$iSs)h~NH;cs5G`%qZ*Cqfq{ zQt5y(oTgu6uCmH&t9w=Z-wDm5nO|?8&00Qw?E6~URP;#<&rdyV6m-GB^nX-ZEucjY ztrx4l7~0gBWP#m?LF86y8KrT%Vn3^oM#89M*mC$7&6@oWnW-b)^VjeQIGw+U5!las ziTMSQujq)n;*Kt?s&vf{*Q!(boo~4GjCH3mQ8U&1s;}v7AEyAJQ>2mI!u5K1+yMPi z|7~^)3AG43Gx@pouX8`WMK!OckXBU`>;l%3K8m!lEGil6HbIrn~2Ls2Ykcoz;tb4M(<3#9k9;-`%Z4wLjEdpggc5A=IZ5 zCjIBn%*8kNo;+fVs-O{m{i@K%qyXo#d*)MyXVoJ|Z}433*YMftE30%74iqt+JH5%u zV}2!iA>t#0rPW7Tq{IMd6r|gIdi_@_BODqOLNL!yBAruKiTjJkX!4+(@*UFq2eo1A z9Tf*49%%_j<4*y)&-m=^syrx&u(*`Kq1Q&hrLc_1afq3oe2CcPo-EYf)>~MIODnfc_E`DGdO) zO8v}1(cp3Gsb5gd5_esH6xj;vWF7@NSx^-&=X_{8HQ^`Hq!~KiY;onJS0Il<_Tb&8 zRx>yY>`a&>-1hl>{$F&xTF71+c&XOX&}!2QfKr@$7nW$8t?D4`e25uCm$cSZ3Xw3$QoC+#LLJb{@&G)Z zsR@*&@vqiV0%&v&MmDfhdaEUXx@A=rXUtWU8q`gu9x2U*ybk)mkx;)Blgz#B7^o`g z4vJL1MC!a%A+eUm5k-=0tHixSQ`dPpfo2XG7WU^go?R_=y1$ZV2-ERCC=#|gE+Tb= z$dw72L}C;Sy;0OlEwU0-7K{H9q!>5Y3{KQA;nM|+kP4y<99(xcC=N6JqXbIi98-Fc6T&Hgv7WoHPl!xd<24EWQmCKrCn&}Lo7u}eV79T z3Q9~{Q`N(9L6B{^Lggb>EC)!ac$)>s4W$Q_!bhHuEa|DkB6haOG#QA7=0RrxG){ZM z8WM8y_(zr(6b$BGrLKar!A%=Gl9?{a>=Z3|9HYidjd9bZ@2Ue zGfN(CTJ~L-=_rH}eXA@X$;CGWzZmln|G`FcV@-<;8TvYwZdPtqt$VJvN2g3Fri+-) zp{=pz-E7nrKo@X~W6S)EgvB4-IpB^qr-i4la(wu*P2o5+PZLNTr9hP%fhjNVv`Hzf zRWWsq>q_nOIZ4q3ig%_^9p$@fYbz*HkKW?AJd+TZR}}eZLDVHQ)w81?TEg*FfJRnA zV+jJCKoQIsWrt)JBZQK(s~oV;C4oyDI%u@o{$QHob_qp-Y-?GXum>dz91K{jcvm@z zkDbhD?s&3a7aJL*b#s0b~+U%07HSvyb?B9vmF!YXvqic$83f*^-dU4=}5#cXRXtLeph>jD1d7c zxb1q_UY1P!L#ZHD$QG~4b`|iAn8oCz2_r#55mZISWm;{N0JF84!DvX|^&IuYP0auQ z5e7tF*42Dqj`L zHou_3EO5Lm+%#ojV`54+TQ@Zkhr_PAN!&KGEiI2;zBlh(ik(+vcOysZkaiB4v_SB#b>=Yr*%+udq8RW zR*P+}*23+8U0o5zrLX??ux-L2uwX?zHDfv<0b$INH*kcT$B!NAos(}u$7}Se=e3*4 zZ<|={`=NwwKL&jcw2f}htTgpJXS@sK9#XleQuoFrTt1#F+;$es2$H9WOPh4*IQ?W! z4!oThhkI5#rA;Ej=H#K&)$2hw^lJm<`*srVt**(B*XK2WolJEkZt`a*)o&W8XdXb3q3b6We2g5ymSvL*l>mcicL1JWBM?x$Rb~ z5n{MN9PKsg$tlXhwa~LVGLKyUq4aQ0;)2>(JuCV=*ra0Lyo1d4-GVB~{2+>K6=!CL zrugvNf;$|uK4Y{d=2W*SVEOa9jW+oWuWGwORiurb=c>$+9V%6tT7|L6 z@}qpx=Io}?jkpIjjn>(V4r~4?1=+KESzt8u_l*nhkNP!t@4V{xB4pzxzOADj#n!Ed z-$LLW+*gWxx@zF6U3NM--z1Fxy#``SvPslxRW=xoe6CCAxcV)=rL&qUaIzmFgN++1 zk>1|-4WL)l8moIdd-7MMKCgRqbtxCRf4R(#N?z9gp;XNQ^msBxscX(jHF3~f*-OiI zz$ZzzVS7cS$}-n{mv%F|#})Ls3dw2j(m3O#h_(HG5p7=@KaLS7xTjj29ca&2(?*9lo8T9y`` zox3ODF!_b7Rf2ui`a{V?QTG&zB|T?UDFeC>^vp_mS@+y3j+$Pa9wnqit;MM_!Uv4^ zx=Z%hkzCfu4+PXl(1E^8YY|?rcxwMQ^0nPRx70nP6bW-nr|S2@k72_95+40f@`F0a zVMJiqcovDyfAxNm)SI;h%nD@e`gGsPp#P?4@H<1C<1f2crzF!|X6}r9Us}^J?h+6G zZ1`KAN{m{0dw{i}NW01@=x@a)M$R8WdLu`yEv7fzvDu;!sKxFb)JJ;2c2#A%7)pZD zGO_%R~JTc^T$z?EOQ@CPRQ^ib+*7$doE;Q4N1i_C7l> z8wa&wMu}U*ep{Ua6PY_#`f>S$8s4n;NQXeV#TQHO>#=>OS@EkfA+iYx;-v6v!GAXy z1uM|R>rQMh8saCZ>7BW*d`dqTP* zh5-6YVZXyPh8&6&f3Xj(-sN0ta``XgrtTV#Y+Vk@blU=U7VK0mjeRV`^mM$iJN@F^ zVVE}BPO)=i9Bh${-T8~ZHOA9Rv<~S$L{ZRTXYd4MO_2i-HK{fE_T^bBf4$YNY zQb8>tKEf`Vkda;2!60N`frqI4PFg#W)v=qYQ$p(4osG{4w_8nO7COcQ?plvS@Fe6* z+OSVN<)AnpOCM)@0Yo7}T{Uo$gsMv0ZT^dwi+}uh-vK?7z8^|>hJuO3p&YqyS1)>K z=1VZQWFg6GaU{ANH~vq~{XQ?qwQmv}6V<#Hv#XuzX0P-0@((4^J%O5|M-q6#0&4wl z*c4{ys)g;=(E_n7gn>*}t>TbZ!OkhV&ov2bXpOkAOy6jZ`n?ppO>N=?d ze?s!4qhvz5)G=iHQ#Uq2U4d9JgAqm zCoXm9fiEDhzhhKpAlR=hD8h^!-??$EGd_;;(+wLZ-j;!Iq0c%l`AG@=mdSq@f#LT6 z+*xF_IYGX=0}u?rrKU(m1urUieAiq?UFF!Wp`nkqJzbezk?lW}LKR>APmSA~+|RAa zbZt}TQ@l?6U%MX+T`~!<7YEO8hsGS19#IsO0R;}4ugVTM^5{f#)GtPyHym^=Db=A4Y%lcDFT*cExPC(bb4uSVES{;H(tU8EYf7; zpq5P|}6ny;Ju&`%Gs>+kxKQ2Hjf<_7BADg#Jvwc@fHWDW7?$<~yA%Hb$g7E8O zn6bnBXQH9o^9i5Wql@s;4P(&s6#@|9VFW;F-}Y#%eDa$An5MJ%x1@Uz7X%x~%n%~6 zPSx?+NNd@(wv^X(XlTLy!?WYi^4*ZAurnQ(G~1^utT0d=oRGC8PYNWn z)79L)5jtfLSy@mA=+xTa_Jhh(=S&p*etzxr)=T%Kfhk2$d7YAXw6CYG(c>&B)8)vkuvGa7PUzl53Lp|gf)|qrFK(DM~QYt+|ac#PC%E# zamoa7-~O*fg-2r;0O$)MK}x`QB}_C;NlaKBbEP9+A|NmrAMk#026lBwNDPv z*m6ne9oLz%eCgo0mR8N&Wb{q#$9kQn`$k)&x}UzHl_{l?qTeD9shZ9*D2sNSV^dbP zhP`T!S2eHm&mqj-dEQ?k3*GcOOF>-h5yZt^HsBt1927kba^jr z4O(TjKK*R^Sz~q#VuV8-Tt`FAw-kWnWi|b5NRZ}G`*lTlqpJYe&i08dgK@vML$f$Q zs1f{ED&~Wk0H=zgDy$DeU0u(bzMI?Jk2Xip+-iQT`b{Oh7w+_6MT_8#BHg`nvu$dM z*7F?+G)6*NK;>2Y%c|p^tTs!lkhm`K7HYS1;#!fmM3DRjE3;J~?uzK1L9I4d2DfOz zO8;D+4FIsY{}Tjb!W7f0(=uY|YB{1x3)<tOZQDAC84yX|NctjtYzel zrB$~&8)fH$!q18<$tLTMrH;imC^{i1sgVLirhTh(CesZ>wCzBl$L^k0N27s0mzGpC z^eNF2`Z-1t*;M+B3{#sR^$HYYfWfxnbSe|4JL{0}-4N5wsr+x3W4_)HIbz1$!{#Se z8f!AG7HcJ_j>;{&5Y^C>zqS|q&kePNhqi}H`1tcqC35r?^LL8ZUa^<<%?%Mvns)S1 zGn`hOG5Dm!tl~Ky*hQYW%!8xEVx-ISvZ~9Ax83RPKa|$#jtu-w=9bW${rHAfZ6!?R z)HFHW(XE)&o1`D|lukmj|CEsq5f%J9Owy)JllIi#pYimRKWt%+65AkDHm7!hkSlL}i;PGi?4?I3f>RCB{|E zD5i^WN%ncd?o*&w%F6fk)&DOKoPmzoH#^KF*EZQE5CfiminpM2D?5PJZU9^+I$C;xD6I~85#zuMu(0E;(gvYFt*&11 zRFr6Qo2pHA{@aA@jJs-vrx|y1L6O*DwcY@QGeWM z3AGQ`FP@T^K=P552NaU~9axne*PRO*BP^(dT_CRm6;#;JmNg>QV&keH``G9XYFM6m z@9Q(R`fBm|6TGjkrLU$9#@j_$eaT3$Ovi=gV|1~bTdPN6Jr~Kh}bHq)icp6t{X#`7W_HasOh7bOB@>ao-b|7!f6|r_i{9!B1jl6S(*402bXgahm zW|>W1bQQLNd@;|jlR%d;+Y_+gudT|tz{BkK>=)NwZQF`>)z#Wf>q+gh!lcSHR@&LE zHP&n)fn$ht-AN+dfdTTye<)pE|HRb|{=Ta`tGIxMq?Tn(hvAIOj!%+_cRR`B1poRx zpKiQEmY?>k7I9-#HJZ2T@sDk;C8`+?djw5i!6QvUqR_tsy3wR6Lq}2}OzjN^u}k7l zRS%K9*9&pG4l>_xX^j@%)ohPX0+o34ah&PC!&Tlc|M$(>lSS>PSu%6Esz;7h!=I;1 zB6a6oFRkXtlM zjFY@79G&H1tGb>NO3bM2-R>YD3zPA`E`WP77CZ4U`T{M|`~WZE%tZA$n)T#5?20AS z+Bqz0yA){61u)D|G#(q*Y1qB@Si0jGjjZH1xCj28Kod2fovfPz{rlDrC0bvc?S&KF z!q=x2wKc|U$MpWlNpC2^p4L@l*t$V%(sQEm$7qqB&EaQw3sY* z$?}f$0d5Sb@Pvh(cD|j?fE^d73$n3IMzcbiNbUN32LsD&V0H|!Ce(s*LRr@=yF@{e ze#k0<6`8+lAE%Er)MEC9!GTIvzoI*nRq$m3E{1pOhnUnmrGDqtQKE!B~n)d1yz8 zo1CMT-lMR2p-K?%k#xOk$6doM+ww`Xo)r+fS9K{ zc~PNQDWD%kQ<2elzrO`zG0c}Vi(1{aOH22L{jNC(cf`LMq=5Fchmwpe)h^I{-A}7_ z#{RyPD@*;;1P*XGC6xztI2jd%$RxW8NMzYevi*M?eRnvUZT~){#$(gRs4YhOHulpP zF>2Ikl#cglsVcEjl~_friaj1HXoFg9>F}aRh!QhVq)~ZlRm2``X%N&V{oUW+arh$# zN3P_!-Pd)0KIeIU&Qoa3DbH|c?sHxk{U@T7=|>EE9I}26td-AMOyB<6i(&`zD#cf0 z6w|u&n$FM+w@2c5z=X!^Qr{O7Mur0w%BYIt{3lKOX+{TBYMS|oEq}h}t>q|-_0T7( zG)%eK{j{r1D&Gcm%2VT-=^>!%yK1J?Ch0B&L{=LL94jt(A(vARBWZz9f%B=Hmjc%=-yk_gI7DM9Kp8roT?keqj2n0%#P=Yd{k{I4J@-k(K>EXXEwCqv-D3`&-k*hqw_p#V(_d>F|cElzX%B+E~Oq5O4cEFBxZ`+@+?)d`(4yhG`_z*k2Ake1sjGeRdps zh7Rs`XZ_ix{w!{5GAT@Czkv!8;8{t~#b&)PXa@f%aHs}uUQ{yJ14 zAxb&@4h&x5lty!ys@z@*sB-j)B|qgT7U9$35hYG@G_y=SmfEKr-prHT_Zw_?tc1jW z?|Rf*A#NZTqVs0biV3E>geD0Xh{3cf#QvER?B0oAvNT(q^K6f?5xXoNGr&k2J(PvfVY?Gu%d7adgJ(!eYZw`b(�DegiZznYwK2P|P)}3Q?bJE=O8|Hp z+z2vuIchXm%a~Wi@fXguQgHI!qE_vazqwTRL3A7;JB@4?DVFsPCg6UGq?uXrStduW z|6dukx@JWt`~H_e`CQBaE`IyLX#asnDR^+lXVYxXIc8F6$_$)L&sfH+cPYucq^B>& zJ2Vc$iv)cqpsRrk;Nzu*g*}@3PNLKTZ^^+r{c?nU3^So@(ZmLJvlCa|*l)?#LZ94- zNe&06(+})K>GVaHcx~e}X~^m0jY-BK(SB~_Mk|Ww+D5;+ASMGaJQ4V#EVI**@7idg z)FIiZ#omLnM;}~yt%&i$Q^>UVKM2%gFEjp%ZjIzF3km6JdxOuU&Ma_7NlWW!-#)4m z7oEQ_RI9|0{g3WxQz4(rtEX!=G>FWG))S&g5jjfXf;pY0cKrXs2 z+E8HMu)ohsY%3HWDi@kx&3drzL#~bQ^bdP7>GM53q2>(fAZzIWsg+5zK&JW6g*W2< zrMYkLrpz00$TWJZB>lnOBOb>p97b*m9dJl!DesUtP>_)%Jy&p%*LJ@nRUPXQ< zmG~mIn#ExkstS?0H(6m(*1RR8?66y`*U}oNH8aZYuuXG0wj9WD|gVB>5R+jl|Pes0z)=@~3!L6s{Fl4HFlP$A@`- z5zNu8IqA3XwZ;gu)sBjUFp8~Dw7blrhRp=U=rC}Uw3V{CE3$XJ7yiVPn7J&*Lfo;Z zhk0A_nN`{r#>bzPh)H*mQy!lVu0eMHT^K^fynIML3>w&Zn|>0zKeNl`{2P7cYmn~D z!f7>Oxb%sZM1eihQ@b@zQq};YN<;WDkk1Dz(yNdoSl%!6#4Mu9AcNux zl74dq3Rv>9<<@cWq62e=pSuoe5DPh^6f4REt_S8Qp)?v6YF+r`9SooNtBKlouUEj3 z^+xkqZ9o05GRA0zq}5@kZJ{KVI&GaNw)yw2hHdft~g1izxzY_ zLY=1?J) zo@b-)K%73`oNf1mb>iXMlWzd~_`PyuFf+R_Xm5y@702PYEi9rckQROwDEj4Hgxt28 zVdx~y1kr}b6nUobEc0-orL%I&4`)>{VXHINCGL}#B^2jwRekXg`NAvPAxuB-FdX3o zXIjU!AmoHH7m9lN7j}bmX+kbz$v#pp5a|3$7XoQ?3xt1h7-n#~xze@XJ>_#u3qFxt zslJx(sKQh)|IL*||HuXqeF{dgrMW215{#$*L`J>TMjlyTPrYb{J%DE~-n4gL@Q32t*Z<#RHKAD6!NB&F6?_Vv(3@Z1<8jbw`d=Im|xTfPB<^VLG z9#jD7E#SeWTbdErlbFVV{mKP1lx0J;ev$ESE*;$@>L9v%OYX4yW2s-|01nw)DkLs} z6G>cRc6IR&G!BJ<45ShbO&(6mUc2uDPAHasH1fc2Y#w)Gvp`O;311?%y7Z;J)J^kz zJ`~;+57p_b&(F|d%#|!1{2$852EfMgCrU|z{$?4GD%(JBKIn%HqgnDCDRR8DUt2g3 z(*QpE--IO%)>1spkP<1vmV0;S{50JiGIo}@q~$jj;WKw%@j8Eh8sFa+ zD?p>=2iGW+q{Z`>Y`A^H+(dDn0DC%l)$jkhBQoU#x-@SS)xM_6iW9d4%@F5$0rD{m zc&c?WGK;ipzr7bqt!`D)0})#X63SrskISJnJ`}d1C#Q?0lVQ|wdG=oMA!|`+QRVfp z%1FPGY~McbDw?66kJ?|X0}5iyRb{as78Ok=Ls4y_99NFet|D9@6lavUGr%^dfjG~3 zw-1*Z1P3>z4oGqR7s=NA!W|=ifFYf9!Kpt~8U5cYpGGz-ZN}zj+x~uklVL$fDKcd z1EfIn#Q#jqPEkQ(;v*5R+x9reJgVlFgK$eRl5gg1*AqG|lkYGPqf!9OwY#0Tl%Cdc zvQA~#PXJhH%OYfuM=Z?njD;%ztK<@C!At4Od&0#AJ5-40>V;i>+e8KmUHH#1Qvl`8 z`Z@TzliV{9iwsK5V{J7jyIRuwPDU}M;NM&c%qQ{g!CUKiCNSiIqjl#_#k-$s4LzIY z8C36NL%V+=KA#XrKelesl>a(C6x%vS&3{NwUz5m*6iyd64F2Htq%};_O{=fZ3-GaR z{=uJs6bqvtqAAnrJMI`Pr{t&dD0zZ*zcB$a1P-&z#(bMw0^og^?6D@c(=72^`r0I1a=yZ#}@%X<{%iN0D?FJ|= zejf4T-^#}H1n=(6c`jOTw7crNwvNw&Mgq58vy8>GqEAY=+WLF_@6xOLn#Nr5Q+lV}Cta`+qq0)595qXXa*>3n_Vao|#Q zEgfc5Q9lE4$}4z6OJVxM+ynZpowZB4UY-8t`qyxPJ-1+~0Os62YFPZ>GE4Idl3BA{ zBpkYOgz@yB7I{nA-K-v#qetcIIe;Yxex~^chxItyK}G&ns_Xb(teqiDEn0cI?g>Ym z_<(s(VVNX;2#EN6esi5UuqpUPkrgahs@xGaIrOVclg21957yt#OGhz2LS-x!1Kiz!%{7L z22_Y28&J5pkHop}nCuf}F#~!p8=yYa3QrFoj__+LuXC!oO$y(6diw*t{_i+Vp~dx?ckGJBBiNG|A(%dy|s_Pg)!%gY$R*(6vASKGKdp;JRb^-f|L%2IaAh5T~~RCm>(^C9!Q^SGR?39CPWk zh8hVF9nw%0CCsJW;t@}M2sUIbr9V> zMmIQAg=hq{$@tadkK&_jPL850*1Ksq`(MBz1Sm?_)>Jb~h$Uoh(cO*x(49C6+4+S9 z<~DufgA-5c^DQZr8L0gIV-sn&$`kReeFWuTPHe$~BQ^+K+3N-*Wx%)Rs!ZPBp&N4e zJvrwvN>Lcmcrl^-9uD6DqX*#cr)ics$7k~qC;Gp+{>uN&b=BHr=`e3EOKMLv3vh7( z?$EcjLY_Z^PfDeKbA2Lm+=EXAk(iWS;@pqC#pJzPs_EVO+jDE*Pu{pK07NxVpJJpf ze_%+6X#(3k&a#|+VmO!AbC7rN*|NKG`|aGvyd#qX)rFr6i_DX`?%u5~b9sqvQB3b9 zTmST%<(q-}`i8wQnyew`Ie^wR%;W6Ybrzi8T>PVK9@RMI0|gH6q~S4rl0!NWJFRE$ z=6&;--dw`jw-F_yFkf9M=Gl`iaGEPS5V#jW%?%}rJ(*^{ai2{al!~kRRxg-6J?^|8UUwk-CI5)qF@9Ej` zFx+AH)csaYS%vb)ykEt?xfbPqToUU_3I1{eFxjwHG4wT8K>=UM?$ZxLBZg#dJkU*w2x@B`n_=4Hk zTz1opvZQxGeshf&u`SPbVKGqUePF#v;EEm}D6^d~eWe@rJE-pcX~NdrY9%n01n{DB zKUOODPXIMmvdhO4mqU-%W9aFhz)W6(U;bft!F{c+N;WijCwQK72H;U4G<7=1xc30k z`wc^`>^rQlOg>N^HOFY-esi5yQpOwvE}X<*0>K=kE@d*t=>)<=9|6Kf5llXtQx$lM z0Oqr*F;WW$!OH`{Z?6*$Mv-}I3#THMW+w(>t4iIa3qO^6yH76X9rAx}-KNtpFJb`E z7~Ruon`U{qbD$KwR5@mjF`@uqN7eTwpr*?5`8I{Q`13%iOF8p5*O$sgCPrZg#WDQK zHh-eL2wZpaz-cTP!$sJ#1QQPEo;|xK{Fqd59w+;-LYd9m+0xRI8O8)Ega)Yco)Kk> z!ci$?TOLV^BTnonL`gug6ixX5kn8TWrPKiMo%-o?%Y!}O=%WX>ZE$RW+Zzw;>rXFF zN_E*vn?SlPuvVeg5$OQ9bEpuY>!eQ z@E$e#nkBG{q=-lH_TMl&noNx0QQPV5p%b7y{LS@EcWwwz|ACXlc%3K@V3On9T{wQg z5@vB`7-3Fs*W2azsJ;Wt_B4327~_ec3{VD+)Pd6Z1&y2uo+0Sl&7?WXmWKq& zi509L6-B-cvzbffAql*EQcZGjEXOj3rL>4c#(EID{fkV!xn@G|{|wHcK{07oT0%vq z*80LN88a_o$U;($uDHw9DN{nw> z4;wiA%mBY`^?jQGOABcqKV4R>#)*qEb;1wXX0AxR47Qi@zqX^{?S7I zHcMEjrXWnZpI?ku6<#pg{!bJ6(FE*01auwyD*u(<^-yzu!b7#49 z5zi1^SQOBddmAZU_QobU zpr3{s776OZ+{{>B!9u0loJzLAwyDIkqXJSE#am_mb6XFSRe?IscuS>U>&cXW2&_@? zm)&_ky9RkbM&QE|--*FS^qJKdTJxlzSS>>6v3=l3W|XN_8D?G>OLgt3+93pkl~C?bl%g`L|_e(vFp}!e|y=Fkq~LDC=bP z{ygl1flciCn5Mlsb!K*WX;5cy{tB)aUs0a4=GSQV5!l%Ha)$eS-Z~e_quNj(3|JZD zv?$gC35b+n-ZyMnm-B?t!EuRxV;85z{YF6*a6{xs$8|BG8LW`lSlRo5eN*g&wLl2& zb91|WX@fC;(2}wRgwz>g_$Id2jC6sWntY|A59HpNIUl^IdAW@=Ndg=>afRC%g}gP$%Wu4BJCGO zUSqtnpOm|@w41v?zOT43wq~9eWjs~!a_J=~vQ5}Pk~>rHVO+G9Ehr%;HB()yCouAXF$1ngiX7Y$<3&dGv_`q1oxeIM5yM7gVw#SdxBP(t zD;2YF*ymO?vCurc%Rz$AtYb>~$3;Hl`|3syJt+O&u+t@>_WOF*8~gXYL;obH-wOJi zI(24MpXCw%%?H9nO-%g#OyZ)KSV&G=?BJ++No$#uNTh9S5>2HbOE~hxuTHP;>Bef7 z9o{)(Bd*ZtX}XYPh_Uro4d0yfG>2VK0IOnT%e0f=4>P-*BsrP5y{;HbMsE2@+d6|Z zd+znDi9_M)C4tZ-@X_p*x1s*zXv&skpYhhlHA&IIGj=XvZd8E>Gdj5;DKGhYB%Li5 zB#yNlFJt|Z3~Saz=C_z)L}^D~c5kvNY3k8^ZM`h(*yM-Wvtj%5OAy8`uVa1nT9bI` zn8U@UGreo)Vw-=JJ8@V4s}=cJTpy?cme)eh+hC8JOd}(-W}UabXg_x~l#cP}@7*?v zGMM=nbmp(Cfc@Z;>~n%&DE3BpEmeh9PJ<4I0H%N!OHeEY07%OtBTYZ-0*_C?mwe? zjnKfY8j?52Kc>W!!ITM?!9ZF@39qu-M5nIpYYJ}(`Yoky4gy8p zylwD}f=JuQfg*c8mZ0ERY`C^I3KNNAfj8soG>(W?4RQXW^n?ybZ1Z++8Ax4Ysg1ws zSivhT=7Fw&>LnXd$zG4<^7f{^HLyl4`3CEe^>PB~Lqb7qizWdoCx(y5N#0U}d)Dkv zZ}iix74Du{CVP{iQSN?gV=~{a2fE{sL%nJSH6J@aaY5%Ska0S8{HFJW=^!Pu~3B`d|fP=QM9R5+031AHP4ov zmU}3~n^1JyOM_d=u!o;P6`_ns4WT zoKge4P}#ZrjuO);CJK+t9Tg`}?Hf~Gli71kf97P41O!Q};5Tl<=gaLzs09K;N6;Pj9* zdpZPN;PJY1syh4R1tq8G*@Sp8LI|3IDutHc!!xqep`d>m9wBvp4P30cd7t$W#~$}9 zk9y0kCta21E$^h44}O~|`H1_pHv2(XHH#(uYsqv`&a0TwR2C)w68`U0$d34=(A*6d zf0;l%l83gjyrcgv-SL`!Oi&VpbZ5TZyayXo3?TyzTwCN{p8#Ja zAsuQ&ZdM2V`j@dx)_H1ySm@83iuum3cL4E2P>Grw;mai30mfdRcU!wX7-kq%Vc z==yWkyvxI=SmR5Qf8&RsMXISPUTQP#{f$sQK9`M{vZk!Rp6^?($&E9Fq&=8)cd?zM zu>KKO!#szvAs6oC509v76H<{}MYDss)jE?{cA0IC-e59j3kNpggo-Wig-ukCYJ)8A<_)>Tm&H+5MZWid&|t&|EQ@YJ=>=uCc*HS|#tx_-WX zYG^`o+u-HqY`SN8^WwD6JGnS7{339Ys%(63Zw zu))opjt0cLsvBK-CT~l&xN7pv2^UlCT=e#0?JbV2E&mQXNfN> z*u#Un7xs1B+b%?(aYVzt(Y~aDv1Hia^E-)dtP=2lod|w$=Rd94Z;*PA6R-H%yt~bW zRd;@#620C?iR?&sTp?Z3shVjY@=AZ_Li~E4J2%szNmH1FHyOM0wWU&uS!kH^z&Zp? zq*G%i(;w@+F7n#Ay%DOY)fP$rBBV1I*kQO&`2uY+3!7l$uE%zh??ql8O@P=Y@@ORt zypz&cp84l}nGtLp*QJM?mvz_K!i6~m(TyJ$Ox{VvX=}IY{6Lk$bRUcPN)4V7MYXNU zCfL#+#^BW4Z`r&{RPV-cb@-)ktg=1qJPaZPFE6 z$ZQ~1*bCE|Ye^BE%VLdL{3waO_Yv`#kF3s{e@4_hVe6)zxoPn+FHKTvbm};-9dy>! zztbe14|^1k;&RHaoW)Lz=TgW2$4Fx>>RlQ9&2>vJa^!k$eQvd)Rdq3Sn!Pr5xj+QT zFl|9IT7RV(q62xn*7Q)Km!=!-KiJcvP$Qse0h0#qG+3+mLz|8WD~%iyk#g?Wp}HJJ zy?I;fwqK;J_VXDz5A{YkTq{)Ip6tE#*cYu+wYA>5<}WClPO{6S z_uMq?9Jorv+tx_^sn?}Wuycf54m`>&j7p(A0UgrBHGp zJX7(9-<0v{$5W{!?u1SQ#UhxUY{B*A`_CC)|8O9*1d8q}*qEC{psLBq?u0g%R;Spt zpwGE4bcj4Pfx`A!+NpE~85$_PWk$*hPw4ES!u>|bgD?56s-!!Ckbk9S>}se>FGZ@! zg{--}%hD9qAbn0pCKf^Ee1vFcFdtvtkNuBn>fVEc;YDdl{TYHHB+WgRSHbj?v0|^e zp1N;~;!d*Nmzwjf+P?tLe$Ec76Yl?5@CggM~kc@+J}D zeh__l*EtnRW)*zCFyYFu{a<`0TrH7F6wM2at4k`){!Ap-yX>aFUQ6w@>)nmuW;o{0fPAc4qfMiKjRWzv(e#uUq-BA zqzeT77-Yj~=}fCSR+ph)rYTE>mGTVh6zV&33}@jy0Ar3Ze$fXZ_1$FGvLA|k;Gj7uhla}EOEW=hXi z={O9PLJXzMxFacr6)yifx0z1#@T-;wjSNClpZdTA?hE)yN!LheWdH9smw?1vO2f=d z{?`yiCe4{9NHz%%-xgySvSKiq-^r|4_p{-r_a$B$2IqKft4}%-0L#5 zqQ_j6G+Z_|Y^eM}JqjT?Q>@)k zR67LO1(FZK({H^lQ*>ENlSVDW3Yf;MGu-XNt%1u+%sbvcdtXx9OC0pFN%NW!LHfmi z8*hwQ<=r>+p_*)X`wyU!+}6`Wzg#LnAcIY~R2(C12cy1RD35*mInKwKBR)WDd38%? zeadkes%Mn~t~Qnzb({=$C$cquH3nrT$66`9aGsa0E*;B^Z8Ww*{2{*XAC_Rhhu`j< z?n_MR%`eKk|KFGQTr_>9vJiivRUxN-b+!Q&)kg20hc5VMhQ(2@mq|n=lDrZg#SGZX z%XbbBc3M+^w%HH*EphKMsY693yYmkNkmo~$y(83q8Jhw*n-z;Xv`b$2-(~P6v3ZL1){2jQB$iz&3vlYqeR1?;6$S?{wBE4YmTu(_hv#< z{@NEt+jNL@*qGsEBfOr@a%J-qxx`j~#pFq{#{&W2MrymO;zzk=UfxTo|z;>QL9t#KgUwPM46Ju52F<**#UH{zX;`SZcrD<370N0~Nmq!w@&Tns%gdu&_ z>^&SGT8mLpr;&ErC;1hX_IZJmF`n~f`t=-6BIb%F*$}LGoe*2*a?_t**>e_4MdXx&9A&9KM$OnG-7MqKC}I7h2HKA%~icNYd2x8g1q zs3+fu(H7Egrv6WRlY~k?X}6pBJEQ75Kk+0&b$e|7K82(fftP}rv%wTcNtFavGg3>m zpiVV-tYu3k7XR10Kzj$jeAyK*4fpHa4?D54!EyX;@`0rnO&Rou$Pzdfm)f#6zyp?7 zH~5l2#=x2-Q@DTb^1ReSv}8|uQ27ckg~jAS7y&cH>WfIpJ>Lhf-b*yLWD=)5PZ~Gq zn+XOoiB@_eeCsm>*CK-SSO#PG7ZfR`oGRL1{L;66` zhDaCzYlPqnU64XG<2rPV@QNV{iAbbjrWBKCO@U9#JzDd5LtoF|Mj*Kx4cp$ATZ3LN z&t&jAAHV~3-Q+YTXatRdhI7{^Q6s&^kJHk^eC0K5*r22WZ4HmIM9zmNSG+}%+j>80 z(oaYoA)BHDLdZ@h#TG%?OdMXGo3TWO`UHIwGHnMhqyIyuDgEgleH$=&L^rn-+YQ_? z5b_TBL+ioSTaypg{f+Fb-t=6SMKSTcbu~H1uN#zfm~E?E1luYl>T|>8t)dZnjSkD? zEJKs&U`mY8%o>4?RdopptT%Z_I8ud9V2eH4M@uc#C%M3 z4$^%o0vp!ko8$G9ef^UEjY!GcFn6mXe^E)J_3G`r*J@@isZbIV?7#LvM|g{BQTPdK z@d^(A5q_8(E7I*QK)-$KH0Hb_?zWYUM?lCi=>WY0}siBr7oj%!R zX_yv%d1Pkc=x{Ze0h4lVEYWnE4p$KzqJAZH7BteMWSZW|OZ44_3*O%6F+d4KlKDF# z@!RX`>1*p~e|h-$XfI^##?|lQu!cXTQ#{<83VAx&V9m${LAhlAD!zYzCcw`(d#EgM z6^dSGJu`QXHSbV_En1;1zv+l)y`PjssXMPDZo}2~P5YLqIu(4w2R~v<%U!UYs8qr} zb;6^=Fkv}MQ=0KM447_WlEB{Kn_Pz3pc>22IpvLqtuI(h;Qe!5UtEL?FTgr9o$FhOHEoU9g0QP9Pg|au+hoJj1sew|DC%y$S6w5flT;$q-&52Zms0{`I)jBX zhccF84{rVB>)93kgXVTaIDTc`#x%#`!OKY?mHX`fFds`48NKaIX)0LjZL7^}@|yeE zklm|amX8d_CyV5Kb|Yf}=b(;1@sUu!%^!PgqMJPaN10|WH4y$tU4Bw&;XjUwi$}OS zXGi{i!%7vE^Lcl>+A4Z-BSPCnPEwLTiT$Cfp>~;`l>_DFx0B zd+xW)HNKKSWgYNh>L7pvCazH{j3R+JEF@ zw>Jey0V@sD(ctT^E+gHM`@NPlnxyInV@=7TGxq+U+ov3{Q%1p>ydUfov?hHW79Nd6 zLQ9e*%&lXrW(B)%nDkNtgD3a4xIs#G^(nmQhlhOLHocTDjhp8U2wN2CKbLR?A2#dMbu)IXhc%bB@ zr05I1aFTSZYeL?k*P!s4;&HX{n*_gd`d!;d_B`pE^MWB{wwgag zb~dx!+RYb67`ZXb?Hf8d%r&S_?QJ@H&pieDhPR|6ZBJU?$OokLWZ+5J+C~U45A7j< z=;E(QIGrMts-`r?+GG-?rQHklaW!LR{nGuReAtPicpJayt@o6Qp3nFami>u~2X!^v zP2G>PV&vivt6oMkMI-oJggW_fXso0&6F9h|S46C4%my_6y6k z`UvdVT^HZ~&$@{I`WGb{v5I>yZb2X;P4MCzk2)i{Wu@?3nX57d5P{BRR5fJrmLZgp4LsMiqpktC- z!w+;RxFEej>3Zt-{lD*Wmw4aV*7HJKS@&KO>>uKs)}g- zu6b&EA%{Kh%j6r=Z<~o!31i8M#r>v1CzVr_@4|SSeWPEKgCYrZSlwSsenlz|=F^db zg43caQ`J_j!j7_c-|^Bl8sR06hG8Y5w6XL3TVqYWPCcBJ?B3}lvFUU|0iVT^tfG+3 zJC*^F>?gAKDDT`_T~#RtQ2c$=&*U*% zTG#`q<|)~LqVuokX+A=jpe;2s69Hx#CqQNrhu_RRdHy^^XSv#YLbQ(XZXaRjy!PQ1UDxMvd%@kr-$ zK_$!M<-MBn`vYW)1ng*<7bD51)s=0gBpZ$V<n{b;ESgs%rUP$X_k%MXd){ zT3Ob~f}`H68+I!k$z6yT;)a|8!uHH+4O2bF(XAts^>OHLfxXS7y^ZA8GbD1le307f za%t_1kDd07JvLsH6ctY45iwh-TJ!~pCUE-V;ExVq0|g4|Sy4DchoTz{xFu_NhUEP6 z)h~u+z=4qiH89AbsVHcp3^nUIBLi#Fj8huG8`Ve~+)p;x2dhD_%`Wk zdugj}e2QOux}1?&(#|l?he4k7n*|PQSJHa0DL)!XC9CmcEdAbw0&argdoll;qC+ic zbQX(;yMRUyJja^fnB@{lY4$Lmj|ykWOpd-2E^52S&&413%70Zee5$ZX+NvNP`)6I` zygF6$)vw_3qP);Zh?c~^I+TpzRi1qb!i-xZ$qSlY`RZc=<2o$1K-cb1rAaMjuy^RW zGn$T{7-PBXHNr@}Nzzk=N>Fk(x-3f1m@&}QWAMaItwv<@EGBhH8@w1HF0b=O*gu+Y zMDEhNh=K7{6<^5rvnepV_+F0tm`od{aq_ArK>hjn`X%Z$CJQ(YoE_Q0{n(b@rD%>^ zFa9iBz1(?oH27bachcQAt|m}pEAIx7HHPK-gWXkG2{CEh(%=_-vvo#Zt)M+?uk|1xevGhJ616+bY64(|mJ?{kwgUJ}GMHboSa~BnjZMohmA|m)|F+&9@kIuV!aYDGf zh*&N$8;+2AKc7w0^n&5hU*#;=ug6Oo6&e1a$IMo|(xK$JSF0774)xhW0*#C_dc|wQ zf3`ZhmMTW0N^zOCJdAz>y0%Fpq_D)-HzKF1x|@&-uHj)&tCshMMY^Z>@#&3?@C$t7 z*r17fgc=HpG0k5c|B9=BOQ*Q8L?kULdtaWVb=TqaYa!xmf~%1a4RbxTH^y6(8l2zHKpY!|u6CS5!+YBv zfp}Fu1svyw*mc=?B!({#-w3twx4z|Gc^CN3xj5^c4d?w^v`hX>QLccx*nM77s=)Th zKN1KNvQ8F^qs>TCLx^FQp?oj;H)Zg9eVq&5O)JTOThzHFB}No>_JykSXmfQtAyKKo z;`3tMu-JMKYMDnH#g!o~Qa>>(CSM&pZAIb5{C7^eL?j4mU{pH-4CSZjRJcO(p^KNG>Bmn^+pk+d zpgvMwbx&N6@_e(2A|EJ)%R(T3_nc8LSiwg;oHhmuX9UYB{u+MIH;C2{s>AD1z}|Oe znkU0^!0{Vt{h#|U9XPMt@Aj?VKuik7rfm-KX6u*4o-G`MoJ!w~AC@_&I2}Aon8|6} zqj}BRd89-Qv%DZEb|`es_`kUY1{7n{g3!$Z&U=e!pFZ04-djS=d*y)<-AE6?|8X_LMDW+~3Q zukG^+y;8L@gX>MY<11YwS1J`lgrc-@hrVcCiHW-zX!+efJ|`B*rpN_%r>fA*RD#I& z!;7iM6g;Y6zW(>#Qu=!HO!+-ck@FI6hOssylM_O>>}$kdzd>7k@_1#861u_L9{^Xg z{&KE_^en5-DMH}b7%H?<)w`3j2B+D5F8*~7ytXQCY!srO8383A%Lpe$HD5#$HRJ@s zKbG=pNDn9#;h1{(-Pq)U{LT>PV&AL&wCSs9t3~R=MrGijzM5jb`)?-hfxcQO5!55t zEktRC^EsImkpH1Nd+g~qSDN&>*!G*hx$bn@!+)l2Ms_$?>5D%Gzx^lVUN-%X_1xK) zI{ObD9_;NQXL*YnxtRksNk1GJ?SIabUI=#ARLm^k>YvZr2b^Nr3GiT#Nek;qejcLe zBItV`**%PlDHg`)H7*!HZHTDEW>QnLhZ#kQ*<%TjlIZAVqnp*USKuI@wd*$yLY*wkpslSnCRfM=&Og@5cx1Asm%y?PqzKd_8|#>+ zRZu;V{3R0y(A%R>PwdFt}8QytGI+*rt0pyOWOSx>Yk?>;Pw z62a}!DT{Wj?!?`;FdI*DT}2oE7D8A!`cDmvhoP=8Ha%xoah*RRc$8 zBnO~nzuF;4V0s79K&Os**BdrM!!^9WR2$Y9++6-+Rd&PZmaz1mou)j(-LFg)xqmK# z?3F|@W@WAl$(06Y7)U6hk(K@mPxtJRtpe~_gT7A0LbTMF&W`s3-uHbunZ<79!^&9Z z{+y!HjhCCrci-!!t)`e_k;CT{7S286j}%A4BNuG9HMMNC!4AK~5s3s=GL5$`qBf>|CDr$#|KW8)8T^3Zz9KRs z(DzJnWW5OAful<9N3#YLSD*-nR^1xbwzw{@U3aC|OTY}t;ukqe^?92f>6KU%(97ey zwb9p8SD}-W013PHaWV#r!rx9UcKhRBLBq&D!5t}svmVv`P_&!Ueq^$! z2P0@G;=<9rWh3AL_Ui9jUvfqq)JyAz^&6jEpx*JES&VY8ySGj(6E5<5<9)5Cpa%;$ zl*WB)5_QeY!G^@DeA-g-2}jz+FB^YM3ia1C=?_*q*5>-X?NME=`-{dH@2KU68ioFM2vaHr`1{-agx62J&5dAxM(UV4~> z3S=xCS>I-gO@lKQt(}4)ZljSp^=A~*-L-Hf7jq{8hmvWyhG=hxjW+F$Q>+irKZHHt zWvnaCYrG)dqr@sgOUxSTHNb0n!Q;QVqR(3$r@&Loojy3;8$Ph`aS-h`kBZ~7Ggo3}&bs9l~r5CUa}V>?XSYo*>mbGZxK`1%{+XfK#l z$|_QQ?{R&GaDESi1B_8!Z!Ynhu2D1)nQ6>l5b+u`W)h~E52?FS*#YOh?QB>kjTv=k zMrjwsx7iEL`mJH|g8c80IwO8x3Tr~Xhi=};0Yl$<+O(UzIVN_;UZq;yWALuDx-d~`p#r-f<4}Bsnr1xr zVLno-O+WWL?B?Wx??q6*8`Shz+UIy7X(%JgvGL9=vkG~zd4`RKk!d~&WOi?Ny;8p_Of6;gB!I@`0%P1`+LYd`%Bj)Y5gn`doZ{e5Wwc)<3Rk zcFCZx_MIn5i-*6BrU-0a)wIV!Vbz&_^N~IRr`HtSHP25*_?7bI+w_S!2|p^rT2;Tg z{4oo!f9$4c6(No{d}mgs(^M5zxOkVTl`^kid&ZRH!@DXn|4}Qsd|1xk()EF>5=%UL z@d}#{4ce8r$AyNj$@mgILSm!%E)L z!&3$?@i{n_8MHSJYcK$i^8ZnE-f>Cp@Bep?=L_x--E*Y$cm zGsv3*vrIO)AZO6hJ}d0VbFxb`9p&>%#alYR?Z8h_?IOpNDdK)M5{SDBX3BO#%xM7Q z5&ggoQBX51zU{%&xX=en!AdUT#I3)uUULMat0^Fl&-}izFqf-_^y@aMuGgvPEG`0E(BqR1`h6!4RM3zU^B6NbXWK(9h}C4-v!PIpn;K*%#(sY;F~ z=NlZn-95~_Ek%jJiPZ%~C;PYH^Tj@5E_npLcmfw=OYHvYmy%#<=hCnECvTbK)mY^< ztGhEmo3i#QP|fk2{Am30n!)2RJG}L+l2YaKz0Mb`A7txK4fuU;BEo2B)maYh1x*Wp zv&xkK>(BVS*eh$Wv7qVEtXn74cjNS_y4j8C8qyY-WshJ7paO$Na$bI!cW%4Wo9n1t z>(lP&%}n?#NFA^$N799Tf5g?ZH(zb#i<8~ozVKPq_RiqSHH%hP#cYe3gw(6SyK*>J z`JaXBV~l5g#0ACqA?dUHA=z)%c-TgFM?s1El>1nzocmN~QGMy$GvTu-B&#sR6%Bi5 zWGK|}`^4-}Lua32O(gY~|8Zo^Q`&BK)07G;)EWs}b~8v|Xn2^$k%uNCD^VR!f%d(R zh|3sWO8Lssc}$$P<6=>B&x>3G`Q-taGP=G5c^Hq%_2k3*LuK3JNT0>N1SCocLtG*+ z_(qVnMeKelq1ossXWO?PhNmP>duJMFXI1E6sDXN{$YJBD$A~ptBJ{UYpK*_m^{G`+ zDKLkagvjCiwx(?Cx<+3ws}WlpcGWazR={@Q-4RRQu@J+R z+hxd$B%uQV=I)AW?hRS-XN=#K?IzeA6iq3)+@KRdz}~O=hDrJr+FPTVz(<3?6USny3zq%2RxK#1Ea!d*U0RIaInnt$JjaWWpy&5<&n@%71-8@rj|JM zzbXbVFA5l3et>}|iMuY>nV%Y90VY^75tSjAPA!jTUQ^<&duk+}j}2zW>g+_r9R1|m zeU=mhpAQ&*^S2(B^a|zrMmtw6qCJh73T-87i2(IZBGkyo&I4oYD>@)AEE7?D)vXBe zVkY#5Yw*b%7eD7r*&nRP&2>rtSJRX=3ffacLZWdyDz*(KVXpnAk01E5ZHfB0m%3Y3 zq^16Eg~QH#oz$+BnMriBWV_^*EZimLmVyu1bJuIf#9by(x{5OUS1+-`E*|RtVqDj_ zb|rh`?V6R3u%OSJ%#YqLYv;}VxbIh1zJ#^jrdV|?(Z`%(y0}2`@&)Ou zs=M^Z8!N(zf{{U3mxTd(vQ`P$3d02h!q2kE&Qc6QvRXbQM7Fj?+GIw&6G@ouG#)gW z&H1+RNPA2pXSEp7jU-%Rn%rD}dVI_KP#uL-%X=F4pDx|}9Cp;WLQ=j$#H%jA(%%bI zD~w2eH}J?RYEtif?vpRR;QnjE1~uVf_C zU`Ytb)PQv&aw&BQ%(h*`DkRCKQ)@I(c;0Ibr4$a+A2Eq+MZCG6>wi+~X(`0lwl*PUYXS__$HO7{O0eQ9}pdL7qGO$o!IkE!?FU=Bv!S^gpkj2R&f4%6@ zw=*m+hQc}L8l=8%I0M^}HJ71!^_@k0rRdHSHv0Kt+8y$i$BA%@7ct07Y)fvr%TgK( zWgUF%5h5MuJF6}$&el-Bg#1xxWML5s4h6XE z3K&tVp-{9-e|RB|dZ;?0IY6wqF@yOw-yJfnQiwb(10k(2X>d_7bL|Oq?&{rG>59^4 zt|H>9q_3A-cT@-8s!?m#tnFITW12zRrWp>K_Dd4ft(m~P(qG=b+YXH>6Oe-!mKu4D zDYKdEXE6!M*wWYo&sSwP{teYlA=v0P8(n$6+;(^QEM`|eMU31AuXnG64>;ccI?BT_ zIA=qC@!DDF58KO3heZ+xW-}559+XQ?@TF_YKZO9R{It903x^4-(^sFgEFUU%sUv&Ei4Hldl~h+-M9!%y%_xp5kmj1%thMFL;j(n4;huTDecf&~PwvT{ z;seDiR}M`c{IAg zbz7DoCtuYHF)pg159{S$#reMiVF4jefMKO($064YhaVL#lr&68zJ(Witkc5d@CXvw z>AvwT{}RReuPK)teTw9{Z_<=>*?$!JHL4?)SASFA`hB>Ij`~lqjM{1mcy=ca3GOyOb;JdIX`ww;u|PO@rcl)9qDOm7CEs8yc{wkREj z>Tw(N&WxrgHnsMj#Q;TI!=Nx;3+EC#d^1Tit_h_HkcQpf*edXqc~7vw^^B%op96?*;yWHC&AccQ<) zHmQy?=CeFDtTFiNtuhL?OCNxrG`Z1vGrJ9jGAw8u#IsmY`gHK$m) zZ$yug5_L@2r8a*z4I_3&fYucIsY_!P!i_`$O9nq-0nRp zci=sI-?&uux;$~1Z*(I%O+dGqZOQNlwjDgx;u$zle`&>yC^VEOcVECGFWKV@XyyQY zNan6NG<5d#Es)lVM$%*1rI+Enf*9EV6Hsm}HSZrvGG5IiXCeSnEt%dTf$hIQHmir#nQA=1SEzS6_L!@0nJ@Hh?ma>m90VyS$k)3$?C=mbM~sEiYs;w~TwM4>w%MGqUfJSNviEZwOx0E&NA`#RAMYc`2`{ zl4((Pg(ol58fFVD=eM<-KeZ=X{vf1S_X3wRf_#(2zHLXz*ovIneROXof5C7gk}i@= z)XzolCKT+(|IW9n3u^ZFRNS7a!=(2DogJxd|EP4FE}>B1yZV|EmoHt;v=P@;+bKWD zzKvgcrxH-A9$kK-c?)ctKOQlVVk!GmD9?3X;mz~-U^BkwDDYhs0{-4ZL>Qh2I^EtHTuV7SM7J)NF$)Cf?ZL8akuoX@ddhp zTU>8RJs4wZhN)|jy#)r@i_5>O61+Y*g`3CX|9-O3`6+Z0Zbh?z&gMWQt>s-&tG$-8 z3rn>K?Bp1b1eyr}h%hBYHd<0JRldrM|C*F7i+>>m;KD>P>;KEzRVnLuVM=+ecFnnA z$&>bv7CWSPHuasn#!L*$H%OH(laf!oDs2cYEQyQ)BxXCYJ~|y@ z{jUkqz!ct)*7U+%H6gk6T#4q=muyBQEVMsZbZj^`lLaYNYQ}7YfiF~jjzg69`Awvl z%jotydV)+dgLn-QrLS6M9!%Vm> z*vlMRb~B>8+{Plup&#g@gfTZQinylV0RO+g97ccve`;T?6OSu76E#CvGxtjYtfh&WY%8w%BBY-6QK15#;j!h=#xfWD;TPdqOSU?2%Mj+@&zit!J_ zSWwm_0@$5yHx)=_(U%bmcEB9svv{^=GCOxZI zz-zlTbnujUrYtl_@_veV+3j!ohJTaSz>UE-=(Jb)3Wt!gYss0auU;yRhMPXFx6Oty z?D)OOt*$aU>%~xIW^>Nv$sTWgcmNhrh2#0W$_!NWdf8xfcU&nWH1MlBbw-8#CGYom z2O?~?WTJua_y3jllQkvk8u8z=-@Hd;HfT>g;a_2Shq06ff>_p5wgyagw{Os$1zgjA zUb4AxFWvra@HY;RKSp0^7fIxtue4K$ek6o{(U3CoOXIIR=~9L3SLu5ZiWd)XSP}4l z5(p{tp@hud?Xz_XGb5T3#9RHAnkNnTVQhP}Ysw>|6vn3;%|*{YR4f%3wZkyVyGk5E zE)JPX6P*YA=BB=LtQL9Up8o`-r0w#bf0{>D$QEY*hQL>#+UokU5S&19gLilmLH~{7 zov00xnWiGB{OK!9W&>h+8*FHoWcoo0U&xa3M{^z&xt>fTUNsWVRYqw@$Cr_!67Rgz zekW@nP{0ZxP|-N+z&)CWReH$0XvmI_#74ONw-QVF=XC4S1a2XT1dXXRp6lY~NKdYp z*>(roVZhN_=v?9hFObcd5yUH&%x~prf4T0#TWmJA12^Tzz!!<&cvHVE({Awbd1l4B zL7tP1K~x2G8(UKq-Q7Y)kz&w$z#wPSn8+f#8<(?9r)d)rmtuz@hQRItJ%?8$m99jR zPN18IA4GS`h@rLy(psNEBPva|bf0#~Jqh40Yg&7W(75|{76f}NY?*1y@9r$vUaWy- zW!~MIcwF?0$IiG7`SMdU15#-|IMlV_8Ap4^j3B=!aiM5Px;H!tjve-Rn3=w)I5oHI zc4W8__%(jEB9aT5@+dU%1Voc4%~H&k)n3VVnoe>~l7=01(Ah9LIfSqo`aM_L#OMdn zt^@-6k~4IpjU+7<&CP+83sVmKi%uVW6{LvnGB#5VB^#O6<$(DlG$@rO2Z^9TqS^U8u_0X0ECDiduUD6{%a* zA4-Ax&lXOz>RBDyN-JXf@J)PpBtQ~v{~RgWvEo&Gmr))u5Rcp%V;%9#Fxn(7Q*@8Z zP@QP8MCm0<;|*m2Fjq5lwyi8Bt?t5{$k_Rb1_`S(W80IrdfFbK>?-&#wlfa#}o;)OGTolryESz;^}xCW&66 z<^4IZY~CG`mzT2S={g%5{oAVD-B@G>U(iRtQmoPM?=|*~%8wxf);DE7{1q9T&Qy__ zCkTg6TeDEz9=^AYt|1DZV*GQ37W;^H349t|xB^AQxN5n+9k%F-7Ud2@;ps%@dEmM& zU7!AL1Rjt7QO>-(6Tl8pw17=q7bi3FqIC+W+j1b(ges4hVV9)jp%|=)_vV|ch9Gx? z-EIX`T=NZ~V&LeBlSQrf0WlLqAFd{jJG`v{3xC9_Ek&kK{L?;+8@g;a3q=lfFCNqj z>F6ifnd>tyPAA00!-%v{e3Ho4prmbKaGraYdPQ8B5mq2%B$_V3<^&vvGL8GXGt2Xt zb*0Yf(!0g-3g0^2OJ|?oK@tO=FYk!e7?KktlhpZvwaW_<>dV#6bS@;n&BcY$$yHpJ zBUY{}beTlYdfI!Q{}Yh3lO(7X2F0TNGJ9H!tRgfUP07cvmuB$;7O(p8d*h6Wq-Sz-b}pT z)HpijiT2lUo9f?IOMQ9o95KjYL1N(KQsc8RS>Bo+(C0PkM7^k25Y+WKkC!*>Y_Etc zdfg^IXB#c?&2OhANnv)f6)ei+J`{|{4j9QaE>xdSeKU56aRD;xE~7@U)Na4f(i~&) zimyeG1%pBZ%%OI7cXotYA<~SO$BQJTd|A^4+vZSvm=rC$D@>%s;g$z-oin);yji`D zHUu%i;?D|k!uQwHzy^lCDrqv5%QE)l`9R1mn z+lR#iBDzEh26ry)M;r%|ZFR;;jZi@BDOC&XbNDNpQio~lGo^!1i?6OLV2)O93MkKi zj7nT^zb)kbtm)#|pu3C26g;qzozO3A_SV7uogt{I^FlCvTW+FGK z&O&iD*Gk?dhNJL4KZSIf{q6RG=cKapf%S4Q(BtkYP2$A&jCDzM$KDFDjyNx9gi@9} z24HsP8WZU~#J{MY6l4brfma&N9(z<%3v3|P-sptLix7h;RzyO$-vBF2KEGS?L zm2K{Vq{wvGHVMd!mM#z(Ev!TDC1yyJmA}rNzcpKl3`>uJepS;lFrdy^w3#3nuldUg z$tDDIZrox;=?e^<9TApNk+q>IBA#awKs0F<$^T;kUyyyCK6T08+O=P(*$+0a5G8Dn zwRu3GOrBf|)xkE6nt@S-m4{u?DFZ8_Hgqq$zi=8pmn7Uwtgp?np(L~0&Uc?_Bd;*F zB^Vij#w7>zz{TiG>|owNTg=40=;o%S*%?+#rNd>v+Nu&sl1vZUTx*f&e)F4`nyy#$ z1>-FluQ%IZq~}bZs3bb2NQsixf^7~LP^wy4+85v4qW!?8Q)#mYN>7SIJhNtfoW2TD z`LD6jH1lC`24CG59r0E};{>AeR)RVM`{1B^M^`~7l6LGD-{-Cyk_jTJlYjqrF;7@n zr&83>u;?9+M%YTJTU6l3v&mkU(;d4=KLBET4KmQc$ z8*jjkadByRP~##{I3>Z1`)32?WD;OSA*00h zN?Q_z4^g-og*3VPRy-LLk z@7^66Q}_bCM@&^!+3BsMV}LJS*^i75nW-?RTUgKcO|8z3N%Do+5+TCE7-@hpVamPr zpw!^cZzNr`N{+aO=MZz5xbeM_8m!^4qH+$}_ROLHyqxcJ^ME$jq{=PoavtIYH}}u@ zDWB}Ml3N52G3nK^{a?CAZg2t8PG3Xg3>fg|4CMzoa$V+rw#~;b)dOus9da#(7I|yo zm?D-jPvdx2(M@~*3CAUxnPJ~*PF{PTE9J#aO-ID96S68Kf%}7{L z(!fiJ+=3J%g>a2CBsuGqwfvDBKRmvr@*u^WVm zEsx3}3i#K;B@T6-`sGz<`TA2x`=%?RS-f~#oPM)fa11B}z4a?t>Pi1j@=%1+8y+Az zGr7g#<&N47xJvv1CP-OUI4g7@s@UG}p$BgEEA2e$qlDOhpUmQREEvAl z9%1c(nSd8tptp$%cg^Rv@40p*KXzr9KErB;LTPaAUB;=_ zJ68%S6)!{c-;FN|^|A0K2Fx-;dSSA#GrJ)*vVrD&y8~2xM7R;tN}5+V?Oz7B+iY*O z`Nh@bTgQ3m;T5YQ4(ZfoO3t zYhhRW`++;7p{AaK{C)s=K(g-QS2q!gtfgP?_3W1N8uYL$QCow zvMwok!_lW{&X#p;vkyh;OKklb0v#{#MVoDG5a8PhZJ@FT0zsGd^+r{xl=J{qI>-l4 zl1bc}pq${UH(*PGNwTdO1g1?s<%~{Q;zUs|%}k{yMn01|M6r8h?S1-_t$Y)6LNy`k zN(h|7r_9AIl4p)8zGG_Sh)1StP^}|g7Xb>xK?m45{TB%a_5&huSlu>6L(!Zb6!c*4a3TjpI4bGzxC!BJ9kp>O!alZzZCOjgX= zSDy-O(-Rp}=P~7{OytxRt!&K6Mh)(F$=ebi@fa`r3t$~Z=aO~FDiMJsaLb~AIv7ZnD+-ugoa-c8R`?#H#5izY{?!`$@%#HOffu%fi~4WYG#pbZ zl^Sw&9DF4gw#GNL0c0p5yK=>deiA}DX*cB=XP3gyoL*yJ)7xx5tG^p$OZ1AYzfz<; zCnC4F)E**9xBw2Wy)Cz#LTw8-hIviQu# zvC9USm$RfWyKq!X|N7~Z_XlNOsC`zNOy9cAkIg2+CQ+a))`^8AnV>&0ehOWm*Ir8( zq?JBase~X)$gZUGYPaVX|3ABKogrk zC6vAmxt*q8zNLS?Z$Xg%)<0lW4^RSjwyZV88)c3o{$Uv7opA*M8+FR!m{)_{wCD?^ z@Ce>$3CZ((vpu$IIz^QA(&RQeO=jZ(L_oG63t%p1J9A3aRt5dHEp9HE!XZ#`EYB2_XtsF3@TI40mw`D@+6hHv81>%FneVWN+7QlSD zZtx+mh5S=UeE0PuzV4d7$AF`<>dyF*(j<5>112XsC`6~!qjxCMK=FOLDB6c7y)(W zT-60->Z)0|?nVVL2G77$+eqH@d8LlYL=+2qkWM@FnEZl2#4lP*n2S9XnE zI9(ACHbABwh4?IYi6qL`^9MJA`)~%{dO%|0gQpV(#a9d^uld>W{dXgOx6k>%ZW|$v zY+wuz`wG8q$j$g7J@E?{)_a+85r4UG}Lr>X&W z1z8J=%j_kEsv7nyq%MV;(D{g=qiK~P4ZjC`=A4k|@GP2pIZ+70Hy_4n1Qakl7DFp$ zqX#m|dtt*xlmKo(3o20IN6A4hFCxspg;BlW^SsL16>qE}z`=@$PDV zi@p*sglwS!eWhkAAHSHh^B=hn$KU!oss>Gj5UW>J1)BPHI+ zrtin`%BB{JVk*$6DbztW2e@P;Fy|Umw^R3AGgeDw+hh-4j{U)zn-Vp4A+YxT|NA#$U#okZq$|K=<}m^D-!6N7V}w+RCn#&n?? zyAsf@@4-Xrb3%bR0^)AI9DK#Nt~<#`Jvx(XmXA|*uUyEUESCmvcp7U)Nj*$YlD5lz z7bvM`a_8wjcm;e!rD5aDevjt(PjuNLWpvnCg*h81i>&SMuZY1{PctQ`1#u*o*KLKl zD(|uh^3UBQ)&Yph)qY{HTDG-EJa${)IJ=8Uhd$z+1UWoS zTIFp+9KAko$19dM=raX|E5Z+Tdh<~ER!&T7cd1?6eB&MpwOoVTx6fA%>(>xV0XFyd z-vT7{!g^mz&S{;`a8!iZFCp;T$ucQjnp(Z^0aSMLlC}Laq!Rf2(gnWUlLT!5JoR>S z%Uf$3f5cJUk+{DW#XpNMJut!V*8}UAp0ZqhJ9FA|VR)|0uap~)s}@q?azrOj$j!};H6!auG5;LUFR9|gze3y zVqrKmG`c-Hrd(np5hjOUifJafJ1S_9qv@x)q~I4K>7?e&JqU4=$a1Pl6{9e`E8aq# zuC7OWwzaG3Ja}RzMD&dE0m`eDQFi>pN=}+oqRihTL3^9%Y*OPnPU6?Oks>QK4%?cWBEhai5*H^ z>6)~gk$Zt1)^p}G&}lkDpQT;ZwnRdiT-zF6gjL2ZSYKfIp;hZTmsI7L_foP9A$S*d z=@dX!iceiG?vl~jMuf#(pi5b=E8eojD#HC+brIF)E&5L|jo8I`yDt3X_J5*+7C*RuFVZC9Jh`@(FFvRGgOIJ0sI zd}K8E>+dCpm}7V1h8}DHgw1hI<;s%KHosb|Xh?Ae>qrCNyEKXCP={9%1MlPPCD+qi zDl;x67?-_C$exk7={6_G{Hgx85gS&F;VL0D%-4kFSS_VCR$`)}hKN#=hZlbITV9#! zmwnZ84!^whfP@Y0TDBAX=gpERz@9l>UIW#7KsT!Lw>enY&7})23JPXLAqgRKiVWLM zc;(~m@Bq6aOK;n%B%@s!bl+@^bcpuwe3N6fLSpKU?Hq#F_=t38^PymLeG?- zVgi?Zqkz!zvwOC?1Wu%BS!y-;E%Y7qD|RMM1uW2^pvkanNb>+^giIZrsPpEeU4C5= zmDp;&@9107^2njZO9UiJ11X>lR5B~=Q#P8~id1ivWqRX~!T|cLW#(N56zK0{%i1`M z^tTU_vTl@8J_|Qy%gb;JGgm3NBXy_rhj|u%AJC9l%tu|otx4ho><&0u8Sg1W!v2Ir6 z(ITS2ez_Q+?Xx*!7(%j1{8;pyJNR)C;NHf;2bEI<6ofl7dQ)?j1EH47b(LW;-&=ZF zCTJS6$1dvh3Gf8ayYW*<&BSphP%_pt>d@&i_{8z#LUU!9Ius;%Lr25>GC`q0zhDI% zM36U^Ke@jECAyQL8_*+I4vz{ppJLT}w<(rqpt$yOU4U*1)Mw={e7@{>A&O}^u-&2hN5LVvd#?c@KMs5QV@kbGMz?m8b==$UuOzJN@5vAo_5_>;#|>yazVyq| zcBnxG_KW1r@RSuvigq&ub=)W72BtLa(hy(o`=A1;yEHaCRA{_-RBu&jF?41o= zJgZ@^X(PY*@G_IiP6v?sm^!8YCccqIj@ggow7JMXj;+@C}%gkMO zDj{wz^_31}9?BM7P(vz_k1T0Dqud@1I`MPkZUjp3u6!S5`RWwKK^BP!mUmIT)6IO= zjdETQ|YIqk_Z+{)nr-SrBzpXBRcz-r5{*S-N)g`K0#b3^JkDJnbE2ZQ1QHB{urR{$NC~ zP{7re+8GzB=JtaBExoYw`;H<@Ow7h!RaLyjM5)ZIL^K=mUiyXAjoows|7KW8%Ac^- zcU(b^mzfsVSwD zv&{~DDiZ_~KySoZsuA=OF~|3kmwaF?OCDIW@7<*CX_yv%*!sgKdiKZwmnzp=2Oyjst!qjr12LJp`@`m@_p zC;lw&P$>r^2r*4uQPma)A%(H~kf0)(HPKz+;YA_1 ztcY8!@b^O7EP-BWb^($@kaU?dryw%TXkM0~o)hmu0c5etv_`;5NN);NGkfj0oD|oE zyLotWw$F%MGa+kl0!?cb2?$k-rOPj6?W`5H6c9zn$WpZPrA1sc^zCT~K-4BVt9w&i zPZyJeRZAeki4hNCZ%TzYZJGovU`wZGb{9N%S~Y;m?;9x+eA;3$K6|!dm@-hSEUVY||jV@+UZ#*OI+1D)H%Dj`j4JM>C-bX`3R2qw~FK zcX^*pnZ-*i-zs7nL5;fgefHIhy82VGyt1w`p@1g0MY&Ure<`Zuh6zEQKPVLOP9eya zO9(MG|F@J5P$&pt@8hoS8jl)tsZM(+y0q&gAuR&S{B&K!`gZG4%D|TI_VO3LBQ8e` z>JgH@2y9k=F5V{DTN<2jwxtW$R{KQcbj=p8RwixorI;cN6r~gJQo^m%)2f|^*HuLx z{uIhd)KyjFB%7loOTpjr@IZ&z;H@{c1Y#?|DE*!ik=tWT_aD+YQh?xsm(N zMS?yF8p1Be8ngTA?pCJ6Ar(M%opgDx*fGB$5f#%+%WXJs88wqelGeM2=%G6OZK(D@ z6n6Z=J%nSozj`F;lucNtEDJU*p>jom=`)g~#ahZp-F5wySI_X_@L`4%WL;yM8A!U5fpUdLnE^K;N|qR3n{YF z{i~fLhd$J2g%&o6PVy|e;1qCuyggUu+NY<1bq{-j$$oC%38k!7aT!-D)EW!}QJ1#a zGM&xZk@T{@m7QLxJ=;N$xm}7kaEe_U7>e!%EkZ~T@3!vFZ|M-aPk{SgAMwF*LG<@J z!AApQb$7OP*lF6ncs&lbY;EJ0up;BsB)3Q~2M^iE=S$gL)H{8sBUNSmk@m*0VB3(b zCyD~87Z@lB5hnihxHBPa)cNF~I4u2(;kj>ESkWIph2S>of`;N0-EwSdPC6>B7`#t! zT&SsPJBS;2vuc_!iLIH8>fhD;fm+4b)&!hLI96L7^e|J{JAOYP$3@>h*`a{9>~tP4 z|J4*C(R^q=TCipqmJmBAbLODrk>=SG{&9%kV^s6`4+ukAaN;)cl}hFUUi!W8TG=wy zT2=L7jr7j3rqj6kw%E6PmecsFndnscCH2;EU`$ibul|Aq!_mxNrDWBKd?DH-g^+viMwOXz{3eYq;v3!0!Ahw zWPPce$7b%C4;8j9uAml=G>m@={ceMpQW-t_W!r%_?Oda9V~ZTn#@38d5cC0$`qONJ z5cNA&)lFdgqLh{=sDaR2jATl-Ciu5Pu3o3E(+wS;B*ohWm9}fV4+%3XVjGtbZy|YA ztb>Jx^A$5*O?yQo))k!v(sW& zjw8{zAePAu;_P))S7n$2fZ+RYIX&JKoI$n7%w0;F(_Vc@Db4hsa2lL{y(wt4YeU0C zXQZ1brhAD_m6o(w;&5tge*%0o^qZ^ZIZL-@mb}En3y#14=t~e3=5`3OXNBXB6WXq! zrTXXRq4!Z=NIIc+-U&CA`Dj~PJu=v1=2up4)(D=kHxAm%>c6cJt?>^1Q|N6=--=C0 z-@3w&waAB_%^AW{0>aaZe`@RyHka21sa_f>T-r?l2m1LtI;3t5?Fkz`#67G;6pzkJ zGMrywXkm@(ll%=<2=N;{rk49T?+!@QTPj4KmY{KOprq&1F$I{T8HbAp=RUA^gnnLx zpo+8G%8F6L!OplwflkBvLTAyLasEydk-m7F(9*UyC(5W|`o;s05g?4(FNa+w9_?Fu zx#u{lANl@gv=QjW_}R9|n8+v?1@uSa{IM<85~f3P?7MuW363SRqT8cT zK*IZo^U&kAbu)0RNI|J`ZCzGbJ-g@hRt21u(l0;>y-DHwTNNxhvIyEct61wfs{{H- zG;_JlBV?ZKpC%9OjYlw1UG^yAQSksdrb`)FNFBPt-)H$QASx@J{P%aOh^(-79o2#X zYgXtEsECpT1C|uECxJ;2;y5<9Ftpv=J7?qm#{yOMl&YG)E)KeTS1=5)dAMvzIs1cG z@ab}`2FggL-gPZ$iWPYR-nXw=DJ2KkpU0w|4Bfwu6fC6~3WCqKq6v{ONgwl(Pshay zn+fSH3qv&9C#Pq*9dm3%6^muKDd8-h^B_!8R%MgGu1Ifb(9QBiYs;x#&+Na|6)wG- zaZpqw73;SY+Z+EUwsl_bBlQc>=N+Y@3y7u7^bd4}&>!Feqc@--$D(A*Gns1JYAGj; z)mD7ope*qO&ayUIAPlX5Ge!n#gdP0K66HEeVS$TXw$b3cbqVDs@UprNy^E7mC!%y2 z5EYu*k=l;HHHKYoCNU=3KcA>#J90Y&hXnEibWHnNqO{Lq^8sDy(8mtB6coUX5v;b) zhgmOzQ;DfokY$SlIsTQ^q})5XD5rev7q-z_2)Sa1QO^0Ir0%wb~R~1!}K$dIR zuGp5_Z(`9vqXd&v7kQIWiFqCg%YpQu$99s$A>L}j~DxdaPANCF1lS31>KpwmZ2 zHcv1n4y7`vzLG%Cf1GJiLXEvkiOi*Q3jz!LU&obk9O2n9hi8z^TDV=g$Bw>SgPk1V zi0`WKwVy6R_ql%{zw?m&->ctxYz$*l<@Qmni`GV)s>)$sAz&f)Vn(VJZ_jaj1-zh> z;o`8^&DdC4%++~pOO19}l{$i%tvXbfBiGf;)y1c$#Jj{$bC!utsw_*^0G)W0q3j## z!+K7;MPX{a>xub3`KJpUAWd+xbaxr;Ougs9bShkRCK z3lR*tC9Vm2>AP7Oa!8+*wuNh7kXR((E!lftEGu5b(*#w>3ek2KG=Yx{Hnl?~V|~Vg zp@sU;150x@6tQc$<(-QlapEe>_0=x$#ug@!p*W5~z>n4^Md6~&51gW|;1e7ft z$(tq_CjpN_W6jsaF<}Z~n>~O&r_r!|7;4z%a%PDqVI$>8EraHWW*!|HZ+RI^%^s7+a}nrm4Ahtar+mtwSZxV#Cy(YpQk^7K`qD zWhW(ce&~+fh`nsVHeCrp5TpDSVpCf5=~f$I^l86nAGikkLBckXV(EdDmgX=Mcdb8= z9J(GJ5-s|UO#I_47$#@~qGefkX4JnBVDz1ao-}Cy+4Ool+*jd&BQq!nu=-`>fp{g~ z>&uV2tg|yO`WKR$_isWDJoSCFQ?(Z>?d2DXYODS+#UzE<)V&aYq+iy-Xv@u{dwB(l z?~gB{%Dzz(%qKOoK;gn{IJT82Ze1>k5-nw_qNMqXpoTXi3-8)RPe-> zgg9JG1XowMXF@_r=uZFnK3rQm3a~U`C&9Fr`F|vRcRXAF_kZjy_MWx(s1-D^T3WTL zgW9VosZFfdMeR{kL(rkardDGURIO^2T8Yq5Z3RUT-oN|#ee>{#2lw9G*S+VQ*E!Gg zJm;KS49T-re|zgOMmciYCj}q;I4p}^tE0Rs8f{YFc<1nu+Gd|Nub}P3xx|%SyrM); zW&E#PPWqn8t5$Y)ajEQ9^qQbgxn+^EWU3jH8W&Np$DAcH^ILutHi|seX&@;GVVAGq z==&JtOwajJ`+-Vx8h)HD7(LO;f>BK@tK7Bw4*L6*wEu8Ud4BBIA_4aHFW2e;hCLer zZ6(#t?#98;I@2l0Yuj*3db#$^j=MH8&-bUXEx*P6P#QzNv?s^)t%5rZ3@S3C>B8gU za*pVq`aPC0Bnxd(RIMeL#jG`D)!}3jWkF#23;8&pOuv-+VK_>bqXgC!vmpX8FCn(% zu^O`m=I8D*_Dv>W8ozVce~dg5nl20qtA+TKB+#}bR1}qH>RuJYUEbF?D2e;Iuzxf7 z9QB~xXdto`m?1ZsxUwYr>h6+9M_`NEccl^(ktx#nI~czCaX^f+6GKX8`L}Ng{l0T} zn3~m+!O`u(pj_~4kS6(0sQSPP!CP>OqPbGTa!1)GuJ56tLZI|wPBQ((`mqHg#f4Pi zaatMJuKBo>O!8bv6odd%{-Vr7bsrmgNGe+!YNWi8Bb$Q{?sEU#7Tegmo)UW^?v*yW z4IMwyLjZ%q^(G)=*DD1#pUod84`Ox0fN9?tzUk2>OsGllL8{;(8q%M)UR|WREm0b2 zQ`QP!xL$FN_w|XDckM1SwXMF=6lZ>Otm6&PHbdJe%1_rVn6)E!Hn)IRYFX8%Fup0g zy~_t}fZ515VtYS+IS24o=a+oYpRLN+vj2Er@95jKwB{0qZxVfQcuBH=Bg0*r=G{xd z`{{zBd|^4@kd;EmJeK@C?9zUeH}F6SB8^}Mg}ojAoC}zz&9{^;_{s;cfo;RE!Cqqd zuae7)a%M_Q%VhxSJa_D~`CDJYr|-c&Ur7n_ zxtP)2$8bmOqr@D?hq%4vHreKgU#7%UT??ZaEmvAd&t)3K^$dKsiH=bfA8&>=6)n4E-#A~OD&I~}!oO~uOYFA%HYfcTI zRy)6uWv}4Le@C~-2?|4KM_(Kyft#{MEp(k#GLMv3o3d(ciFA84f&9??%mlkc3aOoP z*bkN6#VZ#EDZsLMKbivHPLv>>__&t1p?~GY=+d{`K%1 zmVmA`w!~+i=pk*=$?0l~pRT5g04s}K%=`k^&wB4ZezG>u+P{h6BOSuqm*A}d+_mXT z$H&Xh29RXLxlPdk*)4iPVDliQXaW6zMGxZXE89?G$W=KKg%CFgVhCCnbNXkgPxgMC z)v}9UH4)G9RXG(CuTIDfD>24~q|Yx69TfT=aK~VWEI)^K>^=sjqXON2{dJa(!s_ZV zfjx1OQyB4^-8pA{b|S5YY%NPuBAX?S5gsy&k4V7-2qgakKIm>c{sM1p?Q|Byk%zwW z%<6QEyd;`_Yo6lAx0#YV^UG6>zal~Ym)klj2)CAwYr#%fyZ!VPVnV2J+&owys=**W zD7t*4ZjKW-bT@_-Ng;y%I<6A<91>T2K+w3QQ`Twrc zuygmg9r}@iTkEsg1%*ifp=Xy7r}p)^l)}xS>?s?~uUI`ZEX46w_@FBTLD_58zke7L zb2f@=-Dhj1OzK51B35-4AH&MJ{yh(O?=jb}SI9jBnRdP0Hd@*1OksH)<^{--+Rx zS|+5MH$bheYP$fKrG+M_zQN&!+Jo!1Ea5O z*3SKDH+$-_+0i;Qoqc5*1-10VBBoaId~<%qCJ$K%8X!6(+qqTi2s+bF_B2cM@fbL! z@B3!KzY_EpZqDEE*S@Sh=BzdlK1bi7{s`|ls5vQg>hkH8Hgpb-jM!iO{A=6e(XatQ zC&($5A?}K&Fn#UIXzpFMEmKSJE`b!qmtRETB``vi#%HOA3m&As#`#r%IPSXmcH78Qy2lU8}<*xx51pQ)eiLS@5!B}KU27^sbX#x}0k;1BcahZg?OumUkW>5vL zefjMqILMB!0K)x<(p>~J{Niq0i6c2In^Hu>0S@|y(F~@2M&Ewj2Tc@wwW+nRWc{Ln zVM^!kU)Z1W%{ELsX!jUGrPu(v_#;dO@5|q$EMnU)0#o*KFhC*He<1BJlIo(438;OC zR&cM64R}9t(FoXO@tl)Y&1vibW)mg**-`23FUC6@B#a}=V+9|KH<5cg*?cxRzY^_BkZ^4Oi zY`lKqXP1xGmsLyBvOGK%WsM7dnV9C?C5Wz&0N@ye#shQV`@U)nxk+<*PkcyrNEx@* z`GU-ZmBV5OgF{F0<|(L@z2BJ4MR=bq66b5b;wbRrzOp6#T#9tZgF#j}YmUd;(E^w- zg(myLkxUbq0lmBScqxJYg8O8;eL6(dEU83&>Ytov0+yRH2Y@OmyQ;ukEsr%kX0rgG zYCHI20{!t|V(0KaLAgcWe}bQ`R@Emt zh+Xo#ir_=Cp|`BLQveE?n9aI(>=3rkX^hm@zhrp6YyY9RpE3lUZ}$lkPL5>a!aw@b(~7z zX_+4H3&Jjt5>!qm#L+4Q>FFHen&i24i1!53bw1YF6puB7a~)U;^7C1=G9?`>b?$2P zY3N^uffnio>B6X$sGOJGx^cQz*P4=j;YAAGYp007oJvrVd9ze1zB2Qp?l-6FFMz4w zpw@J{4Xizo98WFWX*~RIZ{>H{58foglKKS4$?6ny!E-1vbkhGx ze5UU}yD0GV1`{3~pa4ga6kLL4n0I6VQtnGv_Wqy;^pK+fHib|5$S#h9_eo*@2N|5# z+M>Q@{0-vIDE!FSX2HyQ9(5V03|%6UM~ zZ;)joFoBuzXp{`bhJ9p+gF(C#)F2Z8{5L)nq&5JU@~}Qf?*tYWnAnBxDvNUF<kQ51oim&4`duPrYR3~(Q~>QwMAhA?)bslSRcffpcm5y&{n{b zzJv+!Sp-f8c9PZ0Tlmui`XRDSI_~rHmv`oXY4QJoI(D7lCvgL6{m{?B#Sgf3Ij#bJe@#Bu7>?Nz-^KZ@sutufY||! zTowQ96a*HAzd~njoXnD;dFi<5y87e+q5*q7`_66gCKQpk9 z%}KrSeKbR3@Vs@TMl;2m6bFm;1t4Excws1t3wb#ezi}GBaS9brNuN&dqA-BbgE0Cy z5jh4mIaD9ReDHn<;88@zp#or3gYh1QX=!OF!*qplvRl2(T5VCb^hQ%t6aJWhNZ=lYi{nG!E2{5prufT;|(Iy!Z4;*%qz&^1D zY>?^%WaxxkQEAbXtF^1m;J(eKUNlr38-3V5jSY6NF$mlbJsIDfcl7$lhjammCFvD< zOUTeEa5ivHSm5o-4eke*#Burli}oc%L!u3VOv?sEO-_(x5$|j33zh>y6Ba;vkYL}U z(&-9{AjuGV5#F3DUIXvIA1xs-<6|f`1gLmU`&!B=*944e;;_AtB7(_N``<$WE-1Hi z_)r@r92kri4jMQvfFebjah29?)xgPcl@78D+R6W)jX{uth|J=|iTF@Syf2Oo@3Ba6 zq?o1?^@i}rrQ172r8xZm-Ikhk2}~x{;|yZcx(7wxE5bu<5D8fYpO(}Hd3Q>iVtoMoH*n6rbWmb`Bq+Ype$b~z zSb|f)v=o1ms15BRcImhz;cDwa-|X4c(lPK#w@N=E06GmtTsR1f*(Iz7x8|fH*~LFC z3R74wntT?N^C&-;j+Rc2+(udt+KVVszsbw(NSZ)OPSY-atwj5xS_*#zY+7d{9ptQ% zqP;#f1~uBg89qnys8k<{@?33WdXNJDgX)_DNMM5hfl?-583!mdcy8PqXiuaE6(4qj z*KSS|42!0g&h5MbGQZP*pnRnM1~Rx64@kgubUHM116_;5lh?L&)7SEBwldGAD^4JA z9K{LVrvz`J{Au6cPjCkKH8jfjvoUl6J0(c?%Kl9tdvkQ|%K*e>%0%d3LX}AS1Wb5* zcO4LDmZ)rlL?;FN~5Z`-obpoD_SaNbg9#?d1?h+0G(_$72 z;Msi%4K@kfYcXd@dMlGBKdZ--^;qkoF09(j%*6fJ!x!Q@a-k_`iRX|E(s zq!%a?NkcOTEbisxi~Z*6QJ$)8_~Zr96?zPmfYpP zw-`WPwMpMR8Q;O73-EXymV_$Jse6F&eo?eGcD5fqu^+qtzv~QY(1SZ&5K1ajK3-f*S|11@zPk2A{Tzqism<%}vSP6iX zv;)R*7VALS{RFHR{S-KJZU^cFJ#PF3P6xj5gzT2`KU;ZRyp~^SlX?Q92^zD(6a^9G zvMG{SBYoUbrxAL*5S!7g5W@$Dk=oc;by8wLOk zHD~gbyP#@rCI|~d)i)}w#UfX20PUd=Q_fr{GO36Ajuhn+aR5`gp!vS1u?zmv=1_7YNjcbt0@VT1c7qFKI7)gKn=i2A|eM5LF9lC-5haki$ zn&trORA|-yI_zw9R&iSvzP6=JFsf^ z6zJ8~lhM77?G_jx&_B3+pA`EaD9I~%0#@r3h|o(YPvFD>e()z!0=xvkR4(Xp*~P-q z*%x6`MQdu3u(4@^58%FUS~cgLU+lFW*&Hk;Pl^8wbZgx3DfkCiWwMSVx!vU=*4J4r z4sh4TDVY@e)Rrq0M~44EWst~r(Z{hD5btLPz@d!R;{So56R^@g-~T|x{)gzfzUi^c zW)c^OPp#nZ2Do&83hOwOoM@UkEM0N9k`YZ{*XJq@|4-n)3 z{tM%1WiBjor*rBW%4W?7zQvY8SGgSabS(KjU6U~7bHaUfBfF$g6|9C4j;y^H(HrXF zr5{3*et_j`zLOGaKe=A9)|-=4V{nyT(|j+ULl_1A6?03q%Vu7=%eMhW;y& zT(l^XuP?6bk=Ku%=V|{4T8OvRqQ<*`I*PCLgJdq3(m$k{>At0OBQbm~v*+WqWMXl( zc`2t`s44xp{!+aje-TJ31w@M3B zL+xRX+)x;e*sN5?DtyEXPqsZi?ROFLv5KT-tNs9VS_uw_1og~AHjORr5r*cmTG$sMB zOKIcjB|o7ZpqUFeiC=y@^v(JOS3?_U7sOh8?Ul4CY6wNUVNx925)gFw~WP>7pMb+H^mCP;#V(&G0eE z)%cBO)m${t->ma>_J-g3OE>I&^Ve{MAM`N&4igu9&y^^34S`#V71(?bS)IdwRb55I zqE66G1N31z`-pzBsH|CgYM}U&-y-9C`Qyy%Fpu5Y#-EdXIHuFefWC5VFMjr=x`Dt`f+!NTulh{DgB-;Xt#*LHMwXZ%nwpJrCWKTL9X@2 z3R>HLWA=(~D)VfNYE?F`mcJ^5y|$T>>@-f~WE?`)G`{k|9ld=qn) ztyKCDnc#-$6e4wSnj}6qMje(nmA`9Y8vK6CtC~(-toU!LUV?D2G%NioY^}$==946c zfl{2O68X>V%jQ(Kb{$-@kUn68g^&j{ZiZJGtSYTvtH0%-s(TS;QY+&1B_1wB%VDM1 zy~0`ATWrQC3JFMl53^;_diNpgyJL?Sx#q*(&9h~FVKx!HU*J01CdOPhtL~OaAF1|!X}ARr+$&z!+`)!vB;pnM?|X(D{S9EmuqP6}-t9_HdZPE@psy-q7idaO#a8!HB5?k&vSF+UlR zMo6@>t(g7wdc+c*xO04leU+OlI7KVc36gfS3Q2J!gKB6OB0YrI9GSPMa)eKZg|vXBmc-lk!$8Q)KRn1 zEOA5Zv*;FgkGIg`Q*R$^t7qqjGhSpvK=z%4=S9xOBlLy*CP|ZH*)`Q#+|?J&fe%tZ zskTZnUP2~LBxZe+jZZ&(PZU_D^+il%E~==mqs|X8?(#PfS;boaff}B4(Z5l=^s%V2 z<@odAZ5*f8U!;a0_GQ$x{9f3eE8I-!~SfT%Mp*98#}k2D zUl%d!)2G~=JO+*A{ucHXt#d1HV&{7!=G+f>jZLbeR~dJitYbyJ1rz){>z#aQhpW5m za6csPM6BNKGsUpx74?aF+W(l`?;IGnm56r_Q>n`Z3CBM`T~GD$W=w!2d@xO_j(Qz| z#k08lD+BQhYya)0VQU-r9WNH#?Be*^Iv#ff$gd?= z@sl8MR#9rgfi@qOnRt z&~e5SH6t!R^o`g6G0kfxx-*vk#soF|i^BUk{kZ=?0@9;gUovN?4A#EundKdb(;l*8dCT>0nNTTuJ)?Omxzho_;_KcoYQkGr* zw&!nA^j`w4T}RYL(3Dn)?JTzC&eS&|+by7_?O&6Q26Y*StGniE0{#*Wc+s*7b}G17 zz*ifKE{mX~`GevrpygEQuAj@w-SRUwR zl|%K(fcVMEL?mbU4o2kec$&`W^Wz+L$UleH+yu(lv8WqctZRZEUAipq>OGft*KkQY zF3Tl~Ql6xtx|@&mb6y+V49QCBP^{W}$(n68n))tmVsNpp^J@V0dquJ36m8Tio3vh= z(_aM8rbSR{-1M&Qz2Ybnmok$(%MYlm3PZ96W(If|e8U181zrtt>8QpqHPXZJ$4yjU zNE2G_bNSMKu7CVRBZ{Oo+gNrDE$sD1e(XguVCHNTz-v7IF zyZ|vtxcs=jQDlQ+JkI2-mE}0Om-Q^yN}90az@6e{((R<%2y|Sok>CG-`>{*w5|k2Y zl>sM3iKwbJ7#`-bS@Ese^Kc{)(K#NxD}Yl|`1nfwHwvK`&$#>S6sW*CI>GI}DCOy1 zsy5AYsIldE3Q0GAq0L#%LEzMJ{l2}*#VhsKbZKa8FLx>VE6_py%Rc@!N1kG_u}+eh zGyac{3yS#?;(_*sG7CN{XQ8@aQ&`Kn%)0s6>++Grp`7qWF))^Y{E-xG#H8%`&&O}{ zz?}RCS>-elLvKPus}ohi0fMc&2y@Z<%0YfRp!-rCyR9B))jz9vqLSHQ&cV}9qxOG2 zZ>}`kGj&j>4kq#b5J&ZWr-ZVb`k}Il>(g%*axH9S5U$PAntyDF!-u2U4Tmgv=DwFY zR4AU;)4WW;qkc6>B&{qOALhi|({s^9ngruRpcWQ3tWQWqt2#zT4j2!Gj8onP18WzL zRFBJD)%bxvYM4TIlWKzE`cR0ERuL&iq`Mup${V&+k-0OlAqGVr4v>AC ze#|QKaD@SVhV!Sd$<6|A?%wtbpNoT`>Rv0AU43byulm=F`*Eq!J)5pt8fyjFKjtyE z(IM5YA6;^``;|1}!3!cEJ|7chFTD{+UZingadqmyOf47;))I&l)FD#|`k=7e+xY6!X=H+M7S+CB9 z*P4DbX-?YEtiKwrw;dgU2}w2txBSF$6&I~KYCUIVWlFv;j?|PrWuk%^jO7Rqo+zOa zFE=ENuKN33Hq(Bd|7W1K6rsiOd02}3Agw>olzT^x?v^4dS0n^58X=KfQRb zGDQmxm-8I&jmQ77?w?$~bv-5X^SNgRv%rJ<6;%Uw-XB(3E1a1M_36 z5y(z9FCqN+7y`r6WkZZ-401ohAO=5v+r{stQQfv6c-KZS$`yKhE288` z!e-&i@QR*j(oKen4MEX8w*2T-$Gl538(I*Ksl@A1uMSVK0&{z20hN<@FGe)T5;P}8 zwatE3#X`$$X67mTxz9qfzwVgzi!;N6SEt(9fgXcX_ig3{x^gCx^Yk@v)cIQ{d$~QA zci4Hv=+Vm~uVSb8>1H#k~ zt4i1Z*xAh|HUfz+aZfo5b{yji)em#6QkJ0o@g1!9Jy|cDqX48ZtyJgtcY~(7oEV&d z1=Wd22ABLF2jHC0^6i7ws}bzpDmP{kQvvz0^=J5u){ojSU5F z4ECB*W~E)SSwnF$s^`qcVAHvtFs3yb*JexP`c`j%EI2>PXgsVpOD6ig+EwabWo9xY zc>jqE*OaK8XO!+NGh|d7N|mwYO8Zi2I^X2s=;clar-uJpdETg2R-B-h_s!r!m) zT%%2mOc1d5NG+K9`E|aTuW%yii4cFi$%U3Ta5FmahF~eXufMIDv75d@Q9X9WIn8|p|`B;0WG!9?T9eRYd5X! z@KoNu;Us5{QbX@?7_AvPZT6?|a_W}a*g(UA!f&)1{ln2Sr@l_?zO8<>O3*c8dPnP_ zdV=hxkNrE;Q;#QCG@lost{8gt8|WrWCNb{>J%HNRJpq}r8JzZbX5(lkIQ|jBiGo>v z(M0>}K;gtg-j#O3OQVl2yx$?+j^C-D)^~82ZVc-&N%-yMzEbU`)_Iz{|L^B0g<+o| z=GpCnPd{#bPrHSz?Zko>js`rW;7@8>-4KSkwfxr+wb?AHh3VRQJIIzbj+I&vtT%Y* z%T@hyq`F7e^z|Q4D?Dq9y`js{R==4Df0uHC)6M-#XSz>mzyDAIpjk$dbih7mnfkhp z@$H;H_G34E`yWSq#99p9u}zODRi9rj3z4TDpW_`NFz-<>!w$(sV-7obi(uHz|RBhb~wyms@g zWdG1(U&OazwLDn{4Ig1>NY%>`^NPH>elB4^IQGPOqHKs+;TM$N%Saxy3%+PrW#sr z>hWhXJ$t;bV~6F);>K>SL)0qGm4TUS z)W&i#yC!YYWVo?27sxu${{Al8gzh}FdKpf(j$TN%wEKOhwn%ZR;6}9M4kEk$kLaBv z>o9M>)2cr?UYJDCLgu$ZqRN#x&dbl+&-zJ1mW$@WUcIM-0rxXhQ)+c}JkAq!!ShCw zyNtiv*in^{LN$X2J>JuC1GY-zFX#E4KhMxQTQ~99c;|j`EPnW*Kc$QM0Dm&lD;1#l zBGLbn_>EiS#9*<#=o_3@dV3i$gdUeuUUpaTUa8{gU2!l*dc!sD>T}NM$;-Va$`x5d zjdfbh5h>L_ zlKh0<6N`B566-TquGv>C?~l;_3oK0u)X0C3x-scz`KkQ7UexVmr5dGyr^+UT7{_ME zK2-`LX7HbS)rUgx-c&QIywv^1q6R|`X@H!h;J(r^#x3wwa_Q`POq5}{V+h~26@lrOaZ#Y8$%z^LuZTkVhf10p_YzeDmsNl6l=H&P|K zF;%;K>n{#i6WN$1h6he0+4&V5=Ep>}D`K9$D>(>bTGoARwOCN+%AMj$>Ueg;j1WW~ zWi#VKB%cN`j!AOn8q3jM@!=nDk+`w#@)xm}zAd}rtPfr|9h0Q<@waSP`8Gl)!ctux zks>Mlu50$CF)M%`J~RC^h4|%MYs(dJ&uYN=LXvf*?SK!b<{?;%`X!fby(K?8=utoR z%0%><;iJ&?ue7#A#n$gbr;90k4Df*&#^d&QcHVd7s^6JA)+#T?Lp*|hdJL-^)0w9D z5FKVnk8-OxMbFPS@e)1~;4R&BWuwhgpT=A*v5m9Zi z2=W;sxmT36=3$R+f$+8LYAG^p-N@!mDxRy*z4r`O9*QBhjb8Kp~0sV zF%H)BMg(O)`5#kW8MB&rx}+8ErAQdtUhaROqozkxYVGgei+D_Oz9zEpWU+5XW?2Oo`s7aVKZV*RtFjV zNmd!m`Vl{Id?HUaILytL=D4z}bNASMn|ArC%5Kmk=~0M$TJ=t*Q?JfG8RbY)ZB8~0 z--hYEj_IEn`rryS*VAQI;1*^P|0zTL%jQTnTc{ADi&ef=r**IZvBoC~AsLoovaZWwA3JJ>VsJwVT_-`n$cBb7HhA+7qeK6PE8n zWD@bx=pUH59sIYEipVMchNA#>f@$Y9uT!ShmhD<|5JWu@t8Zubet)Yu2ri6!>q{Q?M)aB#Z4Z`D8rv7>C9MT3)8LC=4Po2!?q!Ms?* zV)`=MZ7!+0 zy;_%iutSITc&=1l`1Nt!Jl9aVy8WA+=+`ad9M5YOHH|>>3Su?%TK8{%8z`q?ghGg{(Jxa_opfe zcSbo>HdpA%P_$I%%qmCVa|!`e&evBkXki~QmpfGZ@yRolbZ*Z{7)rzBbjCW5`XYY) z&TX?V;10yecx``q21ATisHnTmkXIz5wPEZoRV&}W-0T!DY4iJc$D0l^IM+eT@x|E@ zh4R>lC7VYGqCgz=1Ja|rX$`)s`Z~nbpdDIKvv8Q+6JPEk0eLZ(sN`F(81m@v2rDJE zq8~{yIlg1S$or<;c@HT?sNOWusuB{%C>N`K4%h+PW=*o}Dj52(^#R~0@-q*ozjywG!9{$Ch@7#-Hg*D4=mtPm6=ivM(hC;wc1q$RUyNKE#yY#0OJ_*R<7cVG2 zJZ5Ro#{~Kf(@+(vqSQUjIzPF4bXVhk9+5(-B20z+C4Jvx*=oLf>t<`+FAq8fK-*e( zyH&+AW;KVj)O&ZT=qq)sNmZQ0(vH);{*^1nsPwYXKV(Zo zK}voG{XijDVm>o5#wDP;TY`KJc`seuUD_Z}}YH5piPwG~A_U-QSj zZ4+`mBF17*>TxQuH9u<_B#*Qtj3vUU{g;A;d-J<4siq}}g*`(Cnfjd^olR9G?wbAw z`WZaW`#LzC@or*9FJ;|WKI6k|wph|U&BJ|Q-@)8qZwl!y)8-$=G{&t^CxgK0t-{_< z(?!(k^0&_B1v&dKedSuaIW)-`0{I7Ai^hnczzKaW2j0X zF6MNJkw^Jah!kT3rJ*!DasJ>|y0@F)n}PE|bEcA5wkq;poVG`iai=5vc@kdDFjd#s zGAA$DT!PiT$72U>2M?dQb~3Rul%%@Cj9;uU5#vP+9L38#TnL<>*6%lhF$qQm^lV4cHjC!@qAL_b+Xg%}tfMk|eQA#y{gXJB#XOD$*|4$-}*LcR)m^ zZJ2V~Ec-<{Bh8&iT)F&}%byXu3G)J%4V6F2GsJJs9PxcHj`;ZGwhSM*&g`5+Ugyuh zVZxzj(uRBbQt~3-t?NZSGc5I3d7IQTehcWx5)E}ZeLo}DRwg7gj7ThvIMGWxzoB6r(jdIRT|fF-qt&HptL)vCU>1;K4t&l5#%v~ zFz&=$cA-E8kE_bg| z(YNY1T`BWD+ZP3m--}4P=6q|Xc+y{GlTbnk4O=UuPo%bYuT4*Pu}v` z=cbKP%N6iTpw7v!deQw66138EFzCMP;6hw({#Z!-(-#gycgF6(uhwR$gFb#$f5>rb>UJ@FEXbgSz{ zk?7ntVnZMLgf6Tr4ux0lFT}}vGbuX+MKQoA{ygy^dY!$4>|A?KGp?WxbJB{Gv`+Ka zVn(lp$ueiQ4h%+h+Bips8agTNU}?%u3Ur3p1IFtGYwaFec}@jTj&mm&YF{ZE z|M`bs&8(;AdY7zaLK6Q7RHF|FX_A`}&Hrs9=n`99WuR zrW)h7HHlQvj{|=X3>q9GpJ{*fn_Xbhj!0a%?Ga1O-bIxE@rdc>!z6Z$^Q%s5ppADl z_MyKJb;J{JNT^HBZ05^9$srEb<=PDzSX)wI)0L?>kM*kCv-sMqo*jK%eVK_*-LU8YDm$iGB#``z9_CQ(YY0we63aWE zSGZB!2t5cMjx^$lEIJ+1W%(mit+afQvz#aOBI?Gy*+iBrlJB|a*=X}efQVG57;ZAd z5F53tOJ7zFXWmJuAM|2WYvEWp6A^1-LV^Zsb&z|F@8rF2RGS!B`G*+jR*pAV84}Sk zG-TKnUz!TtQG$q6?*7}~#p|+7^W1)<8wWjW)B#%05f)B297+>)>q5j|$yWniB;=h( ztk@oY4}S3d`g}gSSuU$X^gH3mkQ4PysT<=vqI&mJ!(h>N>O7B@qOB5E1B!R4-wWf( zBZ#60BNJHKOD#?p&0JK{S>I>FY(Y@X7fn$`qts67{AuH1yYmbU|GtP~PlgM!79`ty z`OO{(SKUfXA}8AaQ%x@HV(sYxBFST$dyy@|z&fi^3NlZ#*8{ z8jvsw2PxoflRi#Pgm^SB*{!KocoS~V>d>c@<~loZ@%Q!E+et4QhrZHRyj`lyEZvuXYKA(gw}|@?Ue$ST7i%nkpOJ~PDR-F_B(xn0);V@V{R*Sh;SSQP zSDtKGi9Zs52MPauRr0U5w|2|+s4yjZq)$~3F{mFr*afc%%8 zPaZYuvGYVcKvyRqLYRJE#TbCUj(Mb=ZrpR)jl<_=j`tg`Grv_Q0Xzc?2alnh^e&43 z-$aeoxIo@wYJ*i%xBrED;gUP`JH`iTrvB=rV`~pEgTN946p_`Xh zwq(e<_|Cd%mqVIrb8X#yi2niTH}@E2qr=Kb($20IGF2t1v>lZa^P!biK~bo{GIaeL z##E(Jb)B^L)J))VPBat1l$NvlMYxYV%2UxZ%R|Dn>V_i8)UHO z($~D;SE1Hp%QgOI;mmCi8Ezn90UpIL znSpQa})Opi>I(Cva`nTGnNw3a73Wr^q_-cM>{>L(UUH8I|6~gsl0x3hP zjDK?~Nob>Jww*U*>{4!e(4ER!dokuNpgJWY2Zo^6D@P*Z62@O6N}|< zMoc)xZ7V_)ZMkjg6GyDbrRrDfu|q#CyYfMkLNB#eg8l}+tkiO(an$$X;o}D8hnQ#B znFlFXqh4?k*!za`dV)E^(RF3_J2P9_4+fqn9(~o4tO^LqgM_zPzV){-WM+u>^fEPL zGfc}f-=(dvVp7w~N=<&6T>gAz6jxfvNmI!0OCAEtdNpDVLq?Q`{Skqj-K6aEjky8c zVPV`}@kqhl*U{yab(c4j-LphcH|UNap^jte^`+hKV!=d-{5+|YT_q8BdB5Dp;`6da zi565G^tDjZwV>i!;{Y=^hmcBq{%ynVVXb%HeB}V5WOS6O#<-=~7pEOgZ5q|mq43W! zqYl+pBv0Pf=sOLQp}h5syD^j(RYUT4ow`Rhn7JG|b`c5MXCIVb9i(#jUw4N-XXrV( z)fj0qtY%he;0~c>0@Ej)pt_FeJfEux9TcXU+?C6-T+7OyQ66~vv5~6+r&tqdl{Sy@ z(hB4;wha}Uu-7j&>ZjqYW#_6+7BqGdiHIuS<(*k&tln;HXvrMx?=-)2)1ijp%DegJ zt3q1dA>3`NYY4{(&RvGZ9?woWudF1LYe=;ChwGcc=(pB=+FWQ9bH0R>>GBIqF{kkz z1vQ5GCJS4wJ>oeoXTh%jIUzQNI`bJNAb486pjxh`*UUB1*WS2%b__ThHw$uSC}98TA|-KFk@$SL2~$DLfkDmIldPm&3Ka>UK_nX0cBaIMiOuS3 z`oIHC5O&+Ga>A`65w4sDxK$1+yu%g7-&&M(=LqnIeRGaXYjY^^j?jk!!xV5D(c!O)%f$AI!s z^q;5mfD_>Q#JK4V@*WIH*8(%B4Y9s)f3C$sC2@S?I@4nJk8uM}52Gi^p%3B03*cGE4 z;N&)W3$pidZK-QHdvME9Y!zo16iY$=$%(&ZB2-JYeVN2i(gc_-#Fot)T%#$9uiG1n zIMQs^CQ|}{^-l-ZOn-xRITci!j9@L4EFsI4)NqdRiAL=7QWqxgc}$TFZ2U`)t&p-M zZ@*7?UVDN2p%UQT@4&*2Le;BLpe#sm;SH0Uk)i}SNsVE`wY$9$BlR#TfPqon?3?{% z&|_2=mz-`Myxs=ABOmuS_xj#<(u6SC0v_}_{V}dS)DrNH^O@SpX5z=}w9XLi)k$0U1+}-_iAz&EAj) zgdOpZ1F6vob(~Iknqs_!`QLzN*W}r=3Yt~jQ-$DbR_}}l4}8~z+SCB;n1(t0Xa}KA z*T#%Rnb+6@WHhFgC!6Ea<^u#&XpXfp%Q;sgcI4pXK5`}V+s2S01w3_ue|K_2UKI;g z)wqA^#(<@X6JZ|78^gBJTtRrb{lREiDqste;LxXjbCR@w>I0CJJUrvY2R{S!U3exfDadVGVG}F8)(}90P_P`{{S{;vW*3C>cJ*tIzUUx zbLTcuk%0t5P;Cc6jWoOp2&g7kklt~Cd0az~a(O$~tT8Fb-FAcTKD z1J3UqOI!uU!0%+m)xrA#)lpoLltGSjeV*4m6@-wtUR`HD$JM$=$ z{;`Ig#MM0(xPZK4t4lE01S)DBG|8y-mlACPs%TNlWKNX@CZYj$J2863rL#C7u99W` zv|6t9!HE}V2Axfs560ft+{>|cJghFZ;EgJN$DEf-`b)PZlX4Y6qEy%G8hYEDZN-Db z;}cQJGA8-~yp;IDy4ucY0VgpPqe&L}Zp0L&BVw_;nk?rMzz2-yHv8l#s)r-Sx4be~ zfLa{HEP7+(5<&o}X8WFh7Q@E$R zPbDc8IoJOHrtxr9a{DJy-t~y;!i(X-3cQP_i-D-35DZ&F96FdS5vxx-=LE;op-&kgv(>QfDY*%8Rne#FRQfC7g|>OGju=;44hK5_>d$sjAOf3@QZn2Ue~ zyFBxQt4|t<5mRwP5{_Ru)DVwj?UZ^s4o~BSO|G_J95#Liqm(u3d(8}UoPB<=q=14g z4_D8;O5>YN#zo|JKC&dPQWSx|e~b~E3pG0nvuAT7nSeT|FM(|2eT2QE(wZjNaoLY- zND2 zjWUemlLADDkZ?92gWo&e@uC5_^sA=G-< z3%rTTyxJ|;EVM*4;RsP^E!iKLOi)oElkVe@_oBN-jp5NE4gxdI8=*OlxNxO$BHRcH z3%%o3*u@a4Q3&SomKMw@c5s3e(@bed3~4laTrl}kD2_d0pe94s9D~zu_RWl~<8mm} zaQtH1?}S=>xOIXD_z%@rju#Y7gCtF{19c06T|xq!9$R;dOd%k$oI_3;XtTD}CnCPx z;BY}2xSfeWEZ2K+8*l@L?_+_`F~^_)1-7>B=a=g$B%9@lbyC38Gi!tQF4#y*AEtT7 zg3{fZ?^v}i!rvb>G zp0V-p)OPXbHz`MWOQ1R&(AqHqD)MyZgSmiC5eC2X$9UCm@pyw(!N+( z5Yh*Ph_TyVA$LWmK}-GvN;jRWcMV3u=~+rwA0t}@i~?c$_FYoksaMKHxUCY}NN zxEXSoTZu$jm_W_&Cu3JJp0DUBy^L+aSg?gdV(gZ z)+fQ$*#SizmQw2sEky!4)3W~nc;Nb{QD>Q&$I68!Jx?Q#euJQm(XI!brwoWgVgp)U zH*rOlQiYE^V2#}q1A17NjrWQtlxprLIG2o3qANi~Q#4{(rB};{P&7%A0IIls-reK4 z5Nolk$+hD8!fB!eaChVU^PAizZj}9N);zaGr45kmCQy3>JQh3zr#FpE(+OfGo4&E8 z?AB54kNLxlPqPe5)aL3L>~z}ADZscN4PGQgy(s|`i zKG;YFi9;S+0Fll-RYydCp6*+$0DX$9x&(CV4-cp>f`IlNUrwhkCc66sHn!zBMrTAy z3t_f4IvR`)MA}GfV^^0D5)@Uwr9^z0JfXR?LDLqI*h0i1O?e+sHFomkmSieSx!xuX zVG@SGpzLe0?*~BZ&bQ-4zVW!+%n=P;Ni4hYzy9!K0mua{<5-s=BBsZ(9~|KS0Pze6 z4Hm~?;kivQmaO0?0?#u8jlDHNv`Qr2y<^J6W4eU}G$s4j{-6Eh@B)j;-c(yU1ez57 zvsM295(@1wzH0-(?T+KiBylDr#yMmxe3lp(Zur>}HzOe(VmiZF4#H}vS8J?u7-2IE zv_&u?|OThv_9bMlI^8 zsuDZDiQpr^q`$7P4k>7JHXk^1HvPf7{_sho!~VyI5wQci`pMaY+o}*~0bZ~hG$lpy z8U!PyLAh4c)my;L$f4ZArikSB01X<~jbMfnz;Xvp+kN36@Dz74icL#Aae|+NhX8<) z*}x$i6p&}Iq6$@f^7EHK#ZJGIz4*pd5yf@CSM9^YWH>LpN&rH@!}6FOY#~yDxB?35Uh$%GK$NE-{{WU6fns_a8qnTrr5axN zsM6^98B=`Q7zhB1SKEw}=T3A)w`AGY5-XtL5dq1&7XUvKm{XJh_g{Hy-1u8{#7qtHL=situjc@r9W)B6JP>aWtd7JyF<#N%=Q#e+2Vmqb zl-{#es1$&*(*SeZ&l$mdgjG*1yWT9;I9TmABpcN^-XcD`;1gemCG#;nkiPZ|f<&x4!HciX^uPLV3b=#IR@HAWbv?@9Dwqg`>UR?o)?DW5{!@AO%$?t~G!kIvG?4I!!d( z$J4hsavJg48{WCg`r;vT07jL&Wf_3+005#2s;X6VV7?=cT?WA%-n-3P!4io_LQAc) z2%Gf?A)O~xwz;NW`q*sJuPV2AZa|CzA~$tc+&IFmGD@yeR69*L?O$w&F9akPVbg+@ zg>PMpOWNV~lhl^X35e*UDTzU9M2dKmN$%#R8@G@Kp5mr&8UUfrfPLYm6EU;BLIyq@ zE%z6?NG~rM@sv12RUbaJiE%B_q$et{4&2=tvj{aj0DD=ZsiabO)@v348s8^88p438 z?-&P?VhBli7|2|u>FXCJA?l}$d@Z3H0C*kek(U+eJO}&Z5y1r#`yNYB56OYw;%}|wZFU~ z(2>v>8%*=YSXDo_p3u8PHWO8Y?hJ?9&!WYh_@nWE?Et-dH$Swl?3`}pd4LM7Bg`Dq;Pn8NICaOY1iMsD`Tnq)%BX96t}!J=aZ^v$ zI4DYNa2()Cj$z82i3g!4oQ%luDujDSh71Ch1rkHH+xf|F9mcU!?~lA=cAPJd7}Ln0 zau-Mc01li0+(ectE2P`{%X@2XiuuWq5F>t(=|=j+s@Vq%k^-i2w^+!OS#I7BB;TAD z)B>WKl{e4p2o0$Y`42^gH!K#1SI+~2`nV6DwSc-_?mKBW2OEOSL6)3_FU*(gaDL1+=MjQ zkv8&gSrHQe$DAPWhkQ5*z(*7Jaq0=N&m!05gV}Dsxo-ae$jzRi!E>v-1hY$DI8AtW zVZ*y{S_K=_zl_9on1vcZnW0XXyM&PD734!o5q|SfxFs}} zs4?eH)+7>iL{TUNsBc*a*40QLy8sL=xMG|wkDP5%5wHe+dzg$zH8)-YZ)D9!qiokz zi`crYf_?&F&s(%hvrD}_We<8+p(c|@y?M!({+9#-WXLIe^fv+bGOTm%LX=kEs%;lL0B{{VB6AP@)> zl$4H@<_=fDbBP-kpmgKy_~q3e+Pe-a<(Nr;y_o1gX=a92v9jZ>(8t(#032uf+7Zz#-(8+DeJIo+c|e8 ze)7nP)0DX>@eqF8@sMQ7(DqB~5(1ABoRK$YoKZROFac3|{{XC1IiOJT$c^#%%A4U4 z#lTTIZ`)nVqXf}#I148`$R$E)S8uXEoKQ&(gz&jD-zkkRW2WrOjdUUCHNY=8sCF#A zv81b~{b6sJyrBwl@2pgS7*z=-wz8~ML5So-dfLIWW_k!Gcj1}G~H{JpY zAp&}ivy#WuSLa{6)&prIaGXz59|s~kX2z@jGiwyzunzBL1Mm5Gz-bd#a>?1KIwp!V zB}21WQ3%BWRBq3+IFlIcWwwax?K#CtKH6-ra%%&jY~^nh?>c}#3|cU?e|Q5!-^Mhg zYA_liVT^MQRRXW9vj+enj0>FncnQ^c$XnsUu7rxk-Q&6hVsa`b92QJ$t8Kvl0PgUo zAZQx8@%qHUtR1ujuFajlZz)A2+!KSac*S;0KnJsfdBhZAM^FtmYJx{)z+<-^P|7}~ z$iZc?0IOP(7f9j=r2*K92!1)k=+vC3myuV?fCCf?$aFw{JLN$Aqi}w=f>=Zq`@Lw# z-uR(Z_VJ0~VvK??V%|R}cRx7g*%Djr{{Zev3_`zef8Jae31*5dhg>_O(c$Tv8yg&K59(s9DBfy?h_NCy&>!alfY`64&}+lL zIE(@eDXKP3(E7@&%z)Itaz0JC9s#07v0+FWLQHTmO_9FPBY>`M4WyA;I|Myp#t~Q% zQi3H#@b`*BG{J-0m91gpI`k`14{#>9*6>VWLqKUA?^z6ZAfpmV1cu?;3@uxQuwb`E zL&2`FLp#VpPhdyz$BTBv#SBy6xo9}!lex#7WJGu;optz|#2)1qymySHjDd1*){IdS zDCo{Z0EWiiS$UOHa5HV0I2DQCR+ySa9RQfp@S^F#Z!82N5Q?_zjL=&tbpw~N-W-h4 zT3$pn*qCjH_|VUE(DuzTnGj#-K^aQ<)xxjK6v`-pn^&Ap`bq7)9aSUl>V7kf{-o5u z1bT-zrPhjt4Zrl_V0hI6z!#?#`*KL+u>2*~KddBJ*ryX1&->XES7XbAMg#;2tNmSj z&YMo1J9%}+DQuKfhsRgURDQh3{;xh^u6WLub-tnPMjHPMuCj4Rl09@HFSEtvk zZvtI`v{Ri&E}JQMjE36R2kbrsGTfs=48`jWspDMuKnJ;tSw52p@41!0@} zxCbH~{j-WJ;1Ch^hpWyI;{$=1D+p=M3X)t~kojEYsgzJw!%Au#Zw{1jfiFfR3Nxc$ z=P3z#bm3JV_kmuw-OqVgfD6mO;@oNB*=w@V`oNSd!n;K9zOY%$)d&v%02qgX9;IUC z@Or^hi3vYhA`NJ8F0+hjWa=r!vmUjHG^#>m1?A3FyEzC;0S$40^8<8;)=YYd$U6T3 z^ELR9RkNB0aGTz7i5c3P!@c*61_Uz;0nx;r7+@v|vILlM)+CvLOmv#Nlh!9;fub}$ zX6k=0*t>7n7@Bk~wKUl{1Z6g1%$U%f3)#*^00fFk;Z*02@_B+4Re}jE^qlJ!7%zlG z^mB{|fe>u;-JOnHIZ-$!5PPibec@}A1s=>lD~JlM5#LWaw~UFyQH6PI4s$>oV3j9Y zfSf+DDljm)3pZ0^{a`$~c~dy7V^vbQ8(^5|TH!~Iajk7f0D@2~ItzlL^lcgj!Po{01H1k zZSYVeqaDg?6cj}eK#610nY)u;RwE)Fmz+k2gUanr`177HA|V7}yJR<9vBfJFLY+wc zVa_19ZGq|R!kzt~F2=zuW$~5~+F;eZU{_TfN+a($7J6~EIsjGhAKoJg;svF5hC+94 zkVcSUR5k?@is<7T999Kply-6X!Hp@sDO7b^Mhe8l`g{!-AJ}_gYYWa06>KCUr!NJ9 zO%2`AxEGtkloO=@>mulyz!Z@YS|@lR z(==aa)(*QcCB zyl~UoxSdxz#=Qck~qif(@UBY#b%aEWdpBVU3u>j~u=)9H1^)YTVodPOw zVkD5@!E$Ke!~Xz+IdHy#9u<6KtczzL_j2aY982Jvvox!23?c*0Ya(?UZEg%w0a@cn zoa(L9bASR}G3!Uy8FdS`q}Ut|xypWuj!8S-%zfc;!WiF4b-;*hqpyUAi zHH^zo0=>>Lh9J86O`Y2xj80i8;RU5T^LbD)F2y8r+7uIC!NP{r+@HKjQ( zq1N?;10gKM({7=IIx>VPfsF&HJa1T!%(9-*+xKwsMt0pz2cwmnlRU^bVZ9G3>v21Y z9K4e5L9ik%A(`dN%K1sgk9`gkbO?({Hm4t03EDzP@u?Mhx5<1Al7ZW%mho`TH87eg zqW=KiccR+ShrkCFtbk4J`@-xgqFNOE-$u9_&?9*SjvRrGJXTPYKtnN6FHR$ZClI_k zXhD?Q2CWwdP8ms65_`$!VGb$6DuUN0lxQOr`=B9jZ>yVSb0=QfA8qNuo#;Rd2}e+- zqlIFyN-3nQbVR_N`H`TjHFfon#2I23_d=Ror&i?FQ&Ck#9Xsx0u{f*9Yluubo>`#@ zpN_qNW5`}LgLa)u0UaU25J)|0Zqx}?uLq1|MGFIT4tKZ>#V5bHvUDMZw@&cusf0C! zh~7q~@*wX5oFeZ~Nd9gQS@>5X0n$h=X-#3PypiRFLBAwmjkIkFWw^Ke@7UtnE$ zi^*Ov4pc%jG~S}?u5rB%!zoDs1V>s-S;RsNb=K9hhnU^9C3*3Vb~DIu6ZlU_4W zf}P<6QvU#~xG(2sikOtjQEbDjLJbJ`bt9ZTIb!HF(y;?6v5VrgHQD|TUwOU+AYg~v z6XtbPT5ESONkWCClXuoG6b68*G(l6oF%qsAIUV(K;rRlAq}ZBr$blh1>O@z?xY~V( z6*hrZXs$Bly@?Qp*PSB0 zwwa0C4i?(ckwj#XC@&^%QYdlP%%6-xL{xM^A!>94-U*>n1bP#k8R^v7GkDRTCN8Ugiy|RTe+5T9AU!`@9Wsp@P z##sKaDz%yU8^Q_JV}UzlH?+-ynrVdIHr&$gAT6stXT4J2>^G)HtKy0Gzf=GiLI-@E)GcqfCwb5 zc>LhOo1e5!2#uq9nG)keiY|e+^>MWBL?EQ2oaC^_N!Kyt+B|jEigdPK#?o1-7M<$vYUr#00GX@7KKoe>mz~x2@I-r3f z$6&D5Dq&^WIqXiCeCo`%;KFX??z%kSZ3d`DUp(VQS_20N?5?iyz#>co;%~q6gQOtr zqrXqQiZmiB0Psz?F^U9}PJngq4*{XQwY;-64xK>pYk`PFg&M@)O5tSI-Xu|8y1=gT zFI+LEy4#N~1f^1kLadSFD1BRnBcc$0c%x~ig)X@toEC%vBA!m%EZp{|6hsgtVtYl^{D057igJHV_WK*qV}jNsC>7Wo{bNr6dJe{b2Xy1_7HwdeQ^+h|riU9aD}=>CHm(Eg zk}`F!L8@S22$YE)$mJyFZr9ErxDT%wm!u7tSey@o53JNn(`T~)PyjaaYy08B(lC!< z*m%?o9j>sautL3W?aS_CW(w7USwnDCWpv+HCe=g+6pR&r3@^6rj3|i=G~kfYB2L+N zjsWy$E9z$I!t)^>IuSV%x&*}|fguL#{5Y^#3OiEc!Q~0jC$d#LfSjB2#&L%$)+@?5 zT{;YC5UbD#Sx6i`p>bk#(tw_Iu05Et-u^TMhyg5-% zH;lAYJ%XUEG^INm!ypn8ArSWK+vUf5Fu=ElyJ0cqF%h<$)rS9 zveWQ0lHl^e);bjI*OvpJhahFAC>Z&tZYO_e_1c$c@izgGPoeOE>rf?FZsW`dx7`D( zSDvuNeM<^Kb-Cvew|b*iozc5^_m?k%0YK=g8pSi=l|xhD6N}`*zD-NxF;P_G-Uesf z(p2+C{bcl72(8t6m-m|B8b-qqHY~y`4@h|&Y_2*`;je+6A6OyAv?PqiUK};LI-x-} zU1fZf}*}Sxr=>(y$+hz!r?73oib}-Yz>x4jh8Z!2SxCS)C zD$XNXLvrZ#-W0Y+ra(Dx3s8zFIC*b#oQ1$zOH-~7#v5vh0XX_56C6o4vxxJEpbneC z9Tp45sPTju>y(HCXWkC9iHuFkegT=q#V&q z9$F@!gU48#YFjDb>hpsr_nE__ykaTPN2nbbhMvE8sNf+(PoUNkthPX1KFe9}ABu(K z41$G@->hnY<4SEBhdjdpSarH)215zCHwkGx`^PZ|C6}2oDP6*sx=t`_O}y`%P$LBt zcJFT(u2hu|{{RNujES%yolgbv=bYeI2}7tU8O|J(L?cmuY$*xi1oxWNlho@cERf`_ zAvZ^QH>@r-*7(^YuPvIn$6_k$vo)?Vn`WM*-b+kSA1YA{JiapH?g6)k$%v(*vA_p) zkDExnCmtLMR5=xBgr0mHOc!mVMw|%<>KK*-6kRN`dot-K$PUjBTb<=G$XEm|66_h@ zILHrAs8w!+(cT5(E&l*m0=~D1uBjf@u;46Si$^1X&ZsuJBzZRM9;i$Z#8$r(AJWMgkP$YjiRBKT>i`8rlH^gdBNGp?_dVqy?f4q z!ect8X0_)9;T{9zk7_TS@r6|B-QU3PM=ZeP002z@EZZgh@rm)8V`L#vh1pCn@eUo5 zP|*N8f!-3)T%IC;+fQwAhi5JxUxvPWz}G=p5aFix3f-w5&(3W)PZuT2z}t9DdY8_Geam)>Cb>$7E^A|W)i^w0x{N`Rmoz0D2eM*x zIA*$C}{*BiVzd~wOrSWqOrxtcmdWo;hTm^jvEEax6e38CE6i0 zL!+D-Pz7MP^YB4-Thr9YQ41*HCMiEHDh_?FT5ISY=ymR55Q)*xcuf`+ruoW(L591( zmH``h?CJXMWX9ISdhe%;;~N^Z2<7CIh+Vft^8WyP!VqPFy8uhTr=QMqiROzGYTkTh zW2vl_KC7$)>s$k1z5X&t9IItT=d~9ZcnG1IMIKHix^kthguE1T2;nKFD|!PSK$Az4 z$$&sFuJ8n?hn6cg;4nRhtQRZj2Uq>&)SL#74zkoBUE!&&4RNds(-c^=cF<0BmK>g~ zHM$ylKHQrrL3ExK7yj%d?I=y>*1@W`6RC%VQmNB7^x^fpA<&=J2Gfbbfewy!?Qy7e z8v(1WQ(Z5d6rMpI*7+XXSgA+|aOzI*7!ctaaQ)zI-XN`Z_Av-R=H`kHM3!eMXces1sdf`)(8{|ji+-M zy%rF>-|rBl9D~wMPG|V%0wfR-V4R#(P1|#gQ%gAvKUg_vf`y5;tAvJ5DiMJxJ;2E=WJ>C1_*&MS z&dru~xMzCA<+Y3>%JjU>*PnY~AF-syrDu!x*9mTFRuO@ult@_}4kQv8tO=Vw$sNu>h|c zf&dqQGj5D_A=Kq#Z=A6bD5qi^SbN4XW#qhNkyDqm7S;3!(Lj(*%hirVC#8N(a zJ>o^*_`^gz$^B+1v0(4?>m5?CQXJ|0VVv9rf&`!*O;PcJ^gHpJuUWK9Q?NE8Jh~IS zIzq;?d=r6hk8Bl6NCCcyf-S-1xC+QkJDA`@LY!qaP*%y%;}`%PN9zJcd023YWp*Hp z4My3s5lFXVdmWwe_m6@c4DBa@2k*RlaPb?j^OQx_Vu+5yi=_j+db@yhZKP32!|MhR z8&ZMe?<&a;8siaREi;L)F#5RtsXYaLO={(>F8kFztPLIVW{{1F&Mythej+s6U-UBM zfU>s;yXGe2;|!{)y-9Vu{pDIUKy1DaFUw0)wL(=9mB-Z11dc^XZh@>vA?~H3^8bPYtdGqHt9GE?t)nw6? zcgah!#bH2!a(mjO|jniClt>EB$QL#Ld?C%to zMnyaT@tXSZRHDb6P`1n3xG+}IGNsGbaIkSsM_sw5 z=vS8s1-(o_x@8X=I$O?cp#W+<dye}@sGc9Of?Rc(ofDSB-p9hoD2aW z4e8Dm!`L|?t@F#j7;YUR0=EUA(yy{lFiimqt^wav@e}+DDvP)tl02t4Cs>#$O`{RP zK*=>0uGDnF&WXz*^1&JmfNOk!-MuMCO?~{5Iy_*20=9}l>Gh=vcO?8eofXg5%3@sDIJadc5 zU_~FSruYp=-@I@=~0GO*ZylW6R^rB_jQyk6mf9+(EG;2e3Tl0(lwEYojL4lW31gB8RY*lTx^7c%* zM4(bU0AcE4jM5h9m|mELZe)DnyWrPFS>#)E_; zMcRXXZ|?!XB$Oi(FE6y9xJ)=%(Fo$39cvY3)RZs-DXiAe=qh1d&8P1)AG}+Q4o#ol z2ea!a-=TGv%*e9yT)l$vxl2mwBFbtI=W9RSa{d6kl{XtJI5Bo=CC~@xC+6iR>HEf} zn^J_qF148i!tICa0!!|o_}5V2$SpCT^9_J*xY1gXeSw4L>fulXFqY6n5%2!;3GPt? zK+(gFv7&M!E)wcuCwZzs@w)-gB@VZAf>nYOeME{HB>w<8M=L(A_qLJx$xSp{H#A_I zhR27jqNfU6)#odJcf3Xm-D;Mm0CAm378gU-Ii}nH0Ht77q{yRhiHQQn zqIj>IPJ2vNdjgukk!E)>9rN$EoC$s@xFINC-~^?F?l( zunviRAMXdMFJy;tr!h0sXj5{Fk1igeP5Z z*H2kIPfqw?yvT13x+~5r&JLgu>5U-jUc1Q%C*ufB2o^3CAnbPrZoCs;-Vi5SHzm!H z)+4u`_eJ#6&|)Ue0XM8ekb3KWE)+e9iD7HK;RrA#y2gQU(Ox+b8N3^X)%G4X`o>8- z(M%~Db7#u=g!zEiY`e9w{lG9IrSpZqat$+)KmEkTrbi}pn^e5qB#s*E*g4E_o{VL? zTex)N-$djwM>O}*n^KPh#>ajPN}U>tf+5e?;Qqwm)gL`99`UPt+zZl$Qhsi*#VEw( z0aJUZ9KGWsEF4LEx9km?jYznJX(UR~EI!Tn$p zWQPgygU+onH7+fkni5Ej-k9QnhK0!cGH+k3HXWT(;0K<3;<3OAANF7{<%ob3b|l|8 z>t|Kd4;lgd9fpKp-d6-4ifGp_xn#)slLM`KlxNYc> z1Xs+tNjOE-XYDe+wJA0S#p@bpSH$!03D6?IMG4bM`pDE|YEp#-)$195H}C{J)BNQ; zIl~A2;(=At@?ian_yq|;f_VR(u$FHqv+fRy#`HH;)R0It?LhJ#3P{4b&CH0*s<0b3M9l% zL4v_NgBN+G?q~u=2KjcqEpQY!<4CKa^iDN^^6E|mMV($QrcZ+qHQKXuY>q&8hiDv# zk+>*Tyw|i#qR^;9BV|M}yv%pk1t8i8JZZ)eO?Wi6JBZ-%i3W}lIzSZ+U#B_rpim>q zZq|OW0;|+=ps5r(*G9Co+D579LI^rt*@XdGlF`8SVAy8Mv86wnV3$82k0pV&{jfYd zQbIigK@jZtI+KbuASZcx$vi0J8Wzk~vn)tE|uNLK|psao^I$Cy9@G5RkVZ}*NEilw5uFTN&>y26c-$e=-!XRZ@=%?Q{;i6P&tPQ_%6bP2)5 z=b4Ccom@t80pBK1!sAgATMpU8lNVj6QQrqLZz>B>jfkIFdHCxI7oS%<*El$PVCz=3 zJ>?~^5~jsD*y%dM4;vDmAUg5-$1eu9-V$ucfU@d~8anc830~BzLIC9TGH&5ag}mO+ zSQj-E*6Z8eRy9@J5SOzD)+IDhZ67$=!l4}C>w^QVO0XTFn=&*}-(OhM=T)FDSQ}m; zMDg#8J>FGVI)ktB=R7D7YfVQLmBwg)SI!NfA)r8$MOuPzZW^ZeuDoL4`Y^TxCG~-Tmh80-@oiM*P)AIG z+XmAHg^o3#aO&~S9Y89#aR{RZ>fW4%RFK698MwL|c3YOw=md>)an+ci140(kY^T|S z{##A<3T@@Lws)!!HAUoj)-o_R1RlF={A1#U$STOopk@g|8cWqfIpjYWW&99L4ka`< zo%Mkodjbi{fxdsd)7y%KvsRS{WcwdRBEWaXFvvOAj6^ZOAtZkD(`Ee$y+_h%4>=JR zHpbD<;rhj;q&2X4w7>U(N>K1LiqO~i&gMXxj{)wORyacUk{}*Nju8&^Kd<$d0ua}D zpbe`qn~uZAEZXaA2J}9Qv8!{JsNrgmsECw8mzj!*N z!Qg>bIkO*zkjtwksnltaKk5@D&JSj=Vt9KCqsR%aLs({jCKa(BBi3)SBRUrtJPJG4 ztWd!d>XAFc-lBuU*!nI>fIKi({{Wn{>`ShdM_hv@fNxP0uaN`9z*s$!b__s8Fm@R) zd3`xY^-i%5sM>19wC(Trjr1MTgJh7n-{TZu_KFT5R9*&u zXfgTp79xrbiYZX%6A;aPeE{#S_vaQc&U_jM$tNaIk|ZUJ6dOo%J-8H}`V2+@-zW8o z2O6Cl29JDSc&gQf9v>y=EP{#{+U5TM4sh%5aEzTdp!N31y#D~!OfFzX5C>VbvMv^m z4rTGz89~_iQDbE_<|noZvm_~J8()|279IGd#GC?S%6Em#Rn~Ta%6P~;c7)9$Fhlc| z4YZ}~!~`wyAEzaeUT+V)*DV7%PX;tq2i{H}vVL-Kq(Bu>)G|Qp$#{FpUAEjp@mh6f zSKEvB$uTqs@;k%~xu(+tIHcAF@j1do`eJ~bGatJxP&66`aJ&;(z#%Fv4?$MnFPzsp z<*`uvNab-*#+YlV=<5pBTBu$r$&n)@gP=QE#KoGp8X&*-i6aEU1Kx3wLKLXp2VQr8 z!D|@1qNn6ZhCObHbqH+?_5Sd@IBxoA!X+PhK8qvP9xt~9m0tQ)0$!p zuH~!9wCI_*mULnzS! z(i2xU%vd?9IuKr$tlA{|G}x|)UV69%yrdF@N`X`_EWGYuH0Wo#4>LFxRS>5yYM4ol z!6hi-s5sG3sm?QR7U@Z9Y@0CpDNB%AdRpPc&`J`gL8jj(GO@A=5G8>+*mV}7B$0sX zfTN|aIeCia%zG_2tPG1_S_l4fn;_&p8|V7PD=D&pezA|hFbLaja=L-u3rh5)#Q5c? zUn}9)>jZg)IL+EA;0C`W#b$Rx&;!$#c-@lgbPawqVBMS!@`Jt?Z9X^Yj3TRK+S2uo z_+r+oJw7tIyBblVm@AQJk`gn zG@lS7`ov8yYj^7!PznxaM>NC(4c!8#?mR+_eD6^O^*r?bH`pe{`nU5ch|` z2W9ylMUzf8;hZjn9i*%=liVUSjOaG;Fj`3Z3inB5{akSTu&N3JwegR(<&gwv-jA== zM53WpY2^x~ISOL6F61kqIC4iY2ESH#3T*2;>m^C0@6nF~1+PrP25d;$qDv{xJ9Bq} zVqQBr-0vDybKp`^kT0B)B5tjwL{=YNy#~MH_iTLxkDM9(YlrIWdSgcI@QVG*}vdmUU;=QEbBiQNk~v8!~}ar8n&i zc-k$Qd@ZTN>nH#y*o?Q{JRyWAddIkWL(G1SelR0>$b{_et`0Lr&6TOhf|VWz7vzc( z$}&Lvt|^xGNfbkamB(5sXdrQDVLS`?!MPys;x(7+-AMr|tJ$VJYXL1M3Esj70tKG1 z=t3R1-JUqO>RB>P=DLA!Ln>p9og!VE#8bw96>fsSn@h@|vthSHjg{+wfyPEEFHaKo zKY8N*$9P(jvMuxKF3(VAheAC05=?r5es_lRCLphaS9=H8COfu`NFv{-jIAvGqC ztHi|ZIzgigNlP(-}_JI(~GQ;eS)(gqmI}M5Sd+nX@V%6124`y zl3p{y%CDUlyi!h8P|zEcKPC!2TV)|f%kj=M5MKuwf0nwQr`JV6&HUNpApl&S16h$usL*oqfENj|FY5|_kB#WS&h>qqfr%8dU z5QBl_CU%(=IU%J9Y#>2B`7{toSk%|#T&Mt%OG9!fdgRES6HQTGQZCS3=TU!^sSTkO zIbo7Sxj-6Syd7|kwuOcN0C>@qltezURkUc-e!S#zbOAZXc~*}g1!QnO!z%NxKBXN1 zOX8;3?87w~ z(KiKlipw%Fnz0z7QYqzLaN;E^qM;p|7(Q{yr3=d9EiH;Bd0_UkBD5=0MWNm^CTy3q z?MRyexJdaRUi$?k9)NBX{j*p`-AJ$J1yfE7Az~;5pp?p-HUJ8498tA=Vh<}uS7cTo zw|erK!^78lwbWyVa8IIRNqGEbyIUVCxb&xSo(|2BG5zZhiD)6$p!Uw4~&f9_= zc*3#{lTr_@_k`CLxQ{rBK!*dMOo;}I2SL1d-YLr{HO`OGk%=i<1GYLEp7J%^oL=>! zu4-xqHonX6)(`{U5H^K3->kjg5#ljn&IBt<9l(0V7qCXJ;9*l%Bqx*T?>BblcL6&S zWZoO7lJ|30Z(Qc*9r5}TDqxxb*JcUH9BejtH%I3dAQYr*3Y&COo-)t6fkWW&>ldsh zBt?9>af5zTXuuf5X|Q|QF=X?`>V1t93_noCH$t`c_{G?QwG9tx*jG8pA_{5tyxb|W zYuMtvIkLu^$;f{3P;Nl$3;I7;XfMHg#47#S<0}G`HDn?l6zd(SaBZ)ww}AQp^Wz-! zSv{76f~?jP(muzd5E>B3i0`!HBM7Nk&^>`bbY-gz-jLXvoMV77SxH;FJYstE5)@E` zp`^)id?2VRDI(hIR|c?pB(8PXPFdbi2TjpJfN8>rh@*0s*cU}cfE`oWF`cxSf~T-H zP_&rM6=Su|D?)&XMqD}f)lf)7(bK%#p=FroEKue9#4qKyzzt_kXtBdhX6cJaz*^Qz z5EU+y&(IUvG2R6^ET%7%BpXVl>B9PVsU=kZ(Vb*Q^~yzrD3^TQ)Xd zuJwl$NW*Q!F1GW$IWC$Ij&}jA@MCP!Y*4fS<8r23Q@A{Uc|XQ!iIp+!Or{s8sd?X* ztQ$Lub&7c3B{JUYrS4h%m}8Ph><@PJi@92f=tuGX@hRW|nL7jp8UC^nVeDvJhL^qM zwD{dp2so*){^Kt`p+<_?$2fh0=HP_ng|DojaSpUZ*G>Mh+q^!CDcA+Vo@liOS42ir zPVw5Nm3QF6N;7^qkXbv{M8P>03P_}F=M+^G%!gYPP-!?~Wg^l|4+<5>ccO?V2-B^3 z#c5KI$GU_1{NSV=<;+esPBe9u9z7MJd=ryc$zz)vsX6;@Jd94F8bie0!_t0JfDrMw z^y9gNDy+W`d}NPvRe)3o4;{tGjt#=CAFSDJLNmb~b*y2F^!&e^7Shr1pEyYkctN!L z{{T5%;aFUn)#`c8Sg|l0QAnI4m8@{0y5ZPQ@4STmlp(>|CBxm`I{*xcquKueTEQlo zg8u-~);UARhuP^Jb4FmDQhH%~*>R4%gqmq}Rp3{w0j+mb(B3%Sf2W_&>VLe6&ku7< zLu#LRBcTMql^#GdLofuJ5sYjT0f?X)9u=B_5@L)w6Jg&RA9&hWgf!+wIgjHC5lI*V z0O$wDdc-<6{lFauzZqeAAB7F>JU;M9Px13XWd8u}O*Mse*J?KGRGSJca!{L)S)s)r zcxyy8C$RbTkHZ7H#HGX<8XY*aDkKJ@h5!H(1DmTBoUd7<7>FW_bJBjUBU~D_YMnpz zh-?)iXb%`}DYP^W2OM2?xfu+B>%2u@sw<@JnR6O|9U^(Skq1f}?QnvPcq54OlLD;+ z#=3takw#E9aw(JpBZ-kM0BU8l;chf}T*D8XLFa)L$%y^tqHu=D?qddu;HyILAKnTf z>%BpfeDB^bN2rEGn!461;o?xR8jE(~!EH*0qOpf4GlvTb zbO2MC)0b?IQ60hQ_m+}cu^tHdXnBqeEZs19SRw(_Vs8clRx6+o1yjQTcxmR{#3M@> z&UQap#7Ex|8Z_PoqmOT}pm<}1nfeae*%v>CCF4R2M?kF{#d_8h^BfL4Ht9cSIFd@G z1_1js9|pz9SW z?eyhIVx{=)efz?V!I&cR4tI|rCR-1}Ybj{Rx z<2S+-iP(-$X^5Mw@AP1-EVcB?6yC>4_l;aUZcjs@S|2%jNHE^?m>a-5pmPt-N^=mu zS4|N7WN{)7U{HsV?C@(q6Oxh9v>h%O+y!XP$Vb(1DUGIC%TZa=02~(Yon)X!l|nqO zCJ>&JKu)`>TrRLkRF{koZIE6VJvbo0q!)BH2p#g~EQAz6@Hg)WFR8H=XGllJ3Y*}# zbr4N$DSV=v)z?nTTmG=Er8xe>3rGS%Pp;uFypc#AjD3jf5fqM7#%ss*g%~(MzeFDK zw1_~u01n0u>4S6VZfPoSLE=qdp*ux%_SrxcKjWx3coE1x#lWchZ0OuGDMyr^td>`)&q4Uj6vr95UAM$V> zkT?PmZ%;hsm3@?>@;;m)ZG#kwL#6K#iH3R&V|By(&D6MrKy616<;}qBf?``s zl3xx0kcuvyaO=O;Cr=eYrS3GI7P0kVOM@mF_5AKU6;oE;Zr3sD%fcoqlO|^*1Sh$5A|_a2D}q! za1Fz^Ia(FUnTP?3!$fi){z~;hP?JDBAoMCaDd+^P619v1)t(aoSZng)V|iAM57Ilc zU~d?{(Sxi%2j>Kn%Lo)BPb6us6L*+oZlR$YH0E=a05fZcS$OVZ!<`M`mEC4?)6G?@ zYTLbjaOEDN&ly1$#T)Av-T*?D5lgK*=i~4WYqU`Fyh);oOM>HUL356~!Q%;4nR*nX zyYDP+9%+$DKxHutpnU-(y?2IVZ;n; zyf~ySxGW4YU+ug;hafPO2EcK1GrbIhTZETJ3~xGy#ceN4KII%wH2c;cr_k>2*Q{7( zBkenV_mpbjPEHwWOBtmdoVY%aADYJiRXjW6AB^LoG1C}GesLy=MQ?(ft}L~X0yeYF z$`>2~(}L1(5tC;MyS_7sg)KF%-LCTOg{kqLErI@6N*7{0;OdRg$=HPgH(8}6;p22T zv@@vbJL$!w2a*Nfkv8|852~*DJxoog8UcJbrj?M=;P&OjF4Vhk)#s@sV_@&y5@Lf?-V~zKGB}I%VM|2)b*Mo3++0nI1apNK=a9 z=MLR;QuxyKiMU#}9hKdO=N#8;cDuyZ=PH<0PRElc&Qvy{ z92_RT@rp+5+KB6V$6R|g0TYq)_mkqpw1As$UNV4v2-r9Gf8I!AAa^uv6iLO(;Wi6y zI0fLl`gz6IVz@or;7!Um*C~)sxH@qciQG*G`M@a}Y|>WcyCfoRCYcF_u>ArF#@xIfK!NIYX(%c;V478SY9=n78SrmM_=WSL<36T!_0Y{ zVtP-cAaMk!qUbrzi(sTi+khiuf;;-tx=q}Z8Ef`e#(U=KXew@axE6a3&r4eQ609!w}yb(5>k+1BnKl{Wjg_2 zI-#f_Vg)_`-u4Mgu5|AMRseZknxjpv1i{$xQ6xan6z#j#QmR4=bnQ5=111>PN?~dQ zb|Gvr%wqSa)0=qT-XpyX^qUYyRST(&x&Hv20$v^YePDk~{p7qGbhvPVK8V!sC7vOy zZpTaqfFpJFxq>2)qP5wj3-1SxC!KCup653K`iPY%JWP8AJzqO@zH?Ns2Drw4oYUdD zzn-xXvb%V|2ap%uM@TBtAoWqaDTPUqWQsOD-myqS!7VfmF(_#x-#fugEb1Ge<9p$@$AFKuSB4ytPkuOf?6-@_-wgrFsR| zdd&h_3M+?!X9lMuBn@vsIs^`%tK$umC2mOiYx{iWkznMe@{~uV>jr5~N$MdO^R4?h z4Xrn2nzM|3BL`!fB6*AcFpivcvYiu$92oEG0AInUP6-<4ZB#lMX9rN28dY?A9gd7` z;~W?(+S5WIv_aWM%2V_>ThU4`xsC%;Q&@U^V`hPV2#1Bg))4VQ9E9SFp!)mGj1(Y} zcht7jR~F8xOfKF#t_34eK7MO%K}~xaFWV4=H97 zKEpE2CW$<2tkGO9jbI-1x9boVmkV3DsD|Z%~Kb}^SK(q7XC@hf-KWcbs)@?ct5X(SsJ5a{nFbsV$pZ>6wsSt-|xZNqn zmBujCFAmJTiM>f!SZwM2(IoFp+LMk9V0wo0% zydM1LBC=HJfI23%T%|_xAc1xfN3Qt8X)D{)C=pa>DUALx`w9S!O3H9K2F$9s--RO0 z16!y&uM$nxLASL{U?&h#tv>*0JL3gTj5`2WZZ|O?`709MQlFPJo5aOM=@IVXvZd=1 zNz{jnQ@nU+pxG%m3a=Lg2>@`Md}(EAxXjd16dfM$fZvcQJ5?Qo_r@5ur>Jd!OT)?Hrg9|=(cd?CU3rw? z*9l(Pi4taovZV97k8!5(Upw^Tr>K-;-a?{;2;~RfJqsz%ooYMf&B?O~sDr@qOtfoi zpDvca+XagTP}!{>adEK$P+%NLJAGj{5}cdGO)~>>+j}`;dcbsci=|^+jQ;?}Bve-v z)9OF#4P1v~oTL(A!{Nb=jfY(@nK_M$Psncsu@6Oxv1OKf#Vrv(J%e~;A8MLi?Z(z; z(28A0y}44%9-$FYqi((8j|fHda*Cw;*6`vm9a1m1`ojp#!>~=edE;3yIST`wJTEgZ zzT&LWDDr3$=8%iT85=9wDPFSBrRWVk9OW5<;Bw%CpmZNYPu2mpTZyQ<05Q6u%BAI5 z0)6cg4g)f&>W-Puk%Gp3@S!IlFAiq-KuJ6QtqW#umV;vmHvE4;g6$;aHSx0`K$IYIcQG zygh3He8v!hFyfVbVgxhOLE&Iqt(Z|*!P#j=?uvTJoaIzUJ?Of0gDq0XG(Dl9J>j*Bhx^(Ek89 zVg?(M^4tna)K5h^z$xG0JUZ7njx`rP9mtT4JRjcAEpVq58oP$|Z>^Ub)kVQfM!0(Ly0Q zGP_I=8+i>hb%06$&1qgo<0p4@8KtAo13cUyT~Jp?r1Z~ggM`&iyI^nDDw%N$N07rB z5!yIG3^j4%Nf&STknuqu{7e8|cSa6w+FdQy1=y{DJ9?M{6$oob2m}q^9N`IZ%ZO0n zci+4VL5l^NsmqChZ!V63{{T)Lij4+}?0E@<`7|i-4_jT^yo5vkKfgaVtfVYlpI3iq{UEFqN+?6aGQ@W-5iCzBS~9pA_YMp^!ZYI5Jjj09^8P)x@)#s zbYgA7Yy|7aoVAM5(KiMXV z7d8YLAONoHQumI%Muy>N3#xaE0%v~c4In2{Z%#kL4vc)z9x)R&joc*AT5;0g1jgC@ zCkl4B4)&|Fa{I@h!$S2@%y3XegPb($ojztMSTK!_a4^6GG!Dzwv0b2C&fR>rxT7A1V31$&A_1Y3d2@6&;w{i z25XE;qcXs-KwTLcOM&}j@TiW!{+Q#ubOA}%1oYdKfqy(CAxz+-$ z8_3vtFFC+`Fc2&1gLv37V0@#LH0rq_#0If;fEg2dIB*)i7GsFm2|eor;TL7G@*8o* z${_IB&dn_60njxeEbdddeI^ToXmYUk*nDE6M$$dQmsFYBw0t%M*>{!=^D651O=Iqi zV{1cpH8q-OWD9KKG6nBm@e`wAv4kbIuV+|j6o8{bBF|3n;}C>M!)zlK3VFqk>@<*W zyr+i=AWwAdE5P4%%X$u2g$Lvb9@7G-iM+WwV9zU#$>dMK6!3&9zM^>hKDLhyF~-)@#`jC{%AIa?AYC} z(Y|$A%^V3eLf{%i4R?-1{;;hnY!Zba53ci%`w4aXI?WuQx7h6ZxD;CjG}!+DPZ*C` zh8k_`c6EpjSO;ZiSwflVin{{#Cns?;OTEqjT?Iy#Y`P!Hc@(EG9R`yh3osWaK0V~Q zaSJSNiL+;?3qEgw2ncC3cU&bkP}c$js@1)A?-YazljM@<-IFSI3_u7D;*ol1CI!w^ zxpe!xYpk8?U;=|oOU!j%@Q7fj*s!4g0H1h_jXYtZH&^+>kK5&_pJehC80bh_ti>P+ z!y$4bSIeSSz~Cypw+sF9g~cw=H|dCu7lOj-cjNxB-jy9`5St{M-?s}_dgeh*(4r7m z6t;jCNGbpZgNInAXxJr!oI_{Vj8F004X|%zKL?yIO9CP7oE3h<#LxY2`oilpPSo+7 z{5J(nzQcWC%o#YO0e99ZTh^WBzg0%0 z0*6IMo#EC<1x`*_h6z`*u$qo&zl?ZnqgAIbneQq%D>)S~D~X^pr0XIVfptMH{TyIF z1$DfNY#uoJ%ArctQ|4G}ylRr*086qEyW$fnC;$N1K(LY}$m&|M1a8bWwtlf}>2C;L zQSjrl#)zladd2_%I;kc4n8{Gx4gPVvBD+b9v=ISJjkXDa~`~t42>W-S8ej& z@MY8U)a@g(_RM@bXFAb)v(WX8)j)vZ)bhM8EG^k7*ffr9I32UQ-trVELOQz9V{!8% z%*ON^=+-+0pjd*qz|vElL3z;M2W_>lMNRSw zNZT+6x12M?g@h1Dv`zm2jBuP`LOmy);&y3bL4_Q7%^!~LITe&jq3}F$~nr- ztFK!!Yf23&mw|Y~i1MNkF-dvvAvF4gZX1H|RpSDv^kCW50}1V~W%ZIR>_l;tgaS#v z-nHW`@64N2Ut0d~y%4q`YSu1Ofj|g|B1gQ60UQB>Iz2xF##p$clzSuB4)B7OK*Nt1 z7i!!}n3OG&qNl&>E~w6SO^2jTHsBF$3emj&@(RvEqvPuvt^ls_Xk8p)$O+nytX)eR zfFL}gxJDoJdLJjfV%2RN4+eP{gHJsD;-tsGVF(C74JT&t*d@@AG_fq>mp5O`uq?HE zp7O`JIRO);@P_X@!d68%XeF}i0Hhv7%~hOYJ)Ag@#TDVVhW;|pc!mpTcY&$JMp?o) z`oj|{6?LwM?&3;aU+lL1Zvu91*(~YT2b`uSG!`i74x`=|o>|a*Cx5J8HHfPHhJENb zsGEg681!^d*s6OoOeg5Bka**P&M#T8>+f~E7G+)q8YiBt$2J{rD&@weO(K2^vmYh9 ztWT!_hh-spL~+W7Eb0(e&@HaWE&+h?Ayu%oIoFInXz4saQ*x&#a^S{13(HFt6|bCX z=TUzr$8BR}-$iK>I&|xmii4ggLD4A-V7e)qDPWw7<42#6u>4#0$voO@8sPa4NM2g!0-M7|i15E8w?A3L6n62T|(B zcwUGBt#psLG@#J)=K5C|Ze3_y67-f$;Qxd}B7Ki*KJ0d*|!+r6KJHf#)y zXf(QUb46HSSWd&BM4H5=NIZfnat}wWDj1dmfg@F2_2UyyYUl)MuQwkl%Qi_L+nfR& zeNyM|S$8BEw@1)1XxB4%q6}zmIil*qPLr%ALK>W}1wIaG!l4XQaZg1EAz?o|#Uuz} z+1s$b9ecqxkSx9~DrM`=w{8F#a^tp(ec_)yNTUeyMify9bIt<__;9#6&^WO0^4>2- zK^p97@2I&U!er8bC7SEbSm8pjNbFJP)*?S)c#!deKVDe?Z~!e66j2-{Xqi#XX!CMB zVq6Pa9!l_?<(xDE3?yRNwyoKu5;JzPG=sB_aBN4rC=*I26lu+^HRxJ!-Zj~rFy)d> zQa`iCH>EYWLa!)P@rg3U95Un{vxqqMJg#n}@=UW1a1~iaTR2ZyMW9}YR0Og-zBP%X z)cycs)6Tza1=_Wb5vN%4uz0cZ%e&P|x;2`j^H&=xNg+loAdm~u`F$L}qK+(Bxf z?SONZZ}_DZ3WD|nDNGswg=h{BJjXUucFPVtFAW5d7u#5YyC z0^5Gk#J0vu!NxiZdh?B&K~xpkR|#AWtqPtVaVhvNaV@tT1J8uW!h(Vmlk1##-798= zKb%0o$pF4xU{+*3blc~QsIg%kJ9qVQI0NM)aaCm|{J5%AG;Ha)E$OK4R;JJKh6Ebz zP!}UV-g3j6rjg$Kd&Gcq)YuD)`}8f+f4l)n(Xt2^$E=tMgb_WQIV|XcCV1}w5#iV@ z7)icSoXuvAmB(lv0swX8R}3ZSgaD`=fKcNJI7d%m2)-Tp#*+H1ct>nq?^>90>LL`b zQUwn9ZVhF$loV0JeqVWbj(S?cz$JHGbC5znXhl&Gqv;P3nf8J>W6+BUTCIWeJglsF% z;{|+;L>iA87;opq(Ewf(c$~Bvq2xT?@I%9wmlR4HPqQ#d{>#Q6l zi9s8q5P!U<*B0}`V2_^}EX?aWD1}Fp}Tn%@ud4Dj15LU;m zvtW*rbg-c5;Y#Gnt>6wAgBnQS#M^cO2Td94!-1$AyWffHj77D`K6w7WIl)w35X%8N zU5C~&F?2RxStMABzh)X8ICM`u(SOevHnc3Vi*;LO@i=QJh$-~(g$zI|kDl>VOMITD zZe1@p$^w${gTx{t4P{mfqo~XZ6j#bLNDUE>rEzvCV$vqLX_#FunIZJbtx&=27}7|K zVmj>$`^wJ3#`;YD=}lUQhsXzYl)yC!pRgB0*F4 z846=lU4_*{O>^fftciA`*6?Rxj{qp+o4)(P*sljTHi=+{{_#*Zdjp(crY%fyWpMqg zT9f<7odN&{Ew}l@q-C17LH_>nok_9mWZ4b;hi?;D?#kI=Rnmc{oLbLAiS&EOWTXcd z)p>&QSTvY@@z)hYP66g`{LIHZ5jTf=%?6 z;5yUCPnM0B_k!iZ#gzyqb4eSo1$iqc9c*GyLJApC9)H6eVoD0nedUl&jYI3}60Hg( zP=mg<;Q=F+4fYye_lp}`mE>YX{{ZhtfoAzUlS^H^Vd1c#Wj3#7N3UjucK-nNkZ29VdzsIxwYX#%X)pjQDsge35l)Z&XExpd zSUewa#tp#Gy^&uLq3?`f{Y=$jE(L+W3y7S^_FS6DqHR90J5;Bf7ja>Utr-9|AnUB+ za^mXm2QFR$E4ifcyeQ7p8SzT+K^TM{5k*Hdodc3)q;cS5W`v$i$d=XB5dLD_KLAKX zZKxGeX#&SsVq}ErWTHiNy|EIWNN8y6DxLmwlGd-rxrmjbMzBLNJ6U@?`c3ATvCnvA zsuFL!GFZH-_5?-`d*=qD0!3-&zC2B59hWeKT{eldCaXLD0BH@n4GLd+!{bzSL4m#n z-+0@jHlUt#i}i^RRfsK+IDkwJWdzf*_2Vb-V44D5r>&TBT&|^r3cz+0D6iPfRA|^y zs`2Ak$Q-Hb2d}Zd@zTg3gSIa^ecraPEJbb<;`eqBJa`0&BJbL ziRm!J1d0{_3cSPC4zVeOigiRT^w>un#gL_22(5;*XBlbY1TqABiT2iCqL~fy>Bg@a z0EN=h8iK?d=c5CNtce!>pIF;a3IoIE0;9KooMJB-2rK0}autCQCacek+_2A_BTkSL zc?UQm4tqN_$Gj${UYufS@2$N}l!3H@qrezK}y`E8V~l?D>Z#834BZ zATLEsF~r>_r${@E4e_i<29vr1YeWXO02r?ZAuh04mikQzuHL+K0pW3}P&*=lR2|V) zn5x1mES(Ar@P%stkpMGwFyaxDjzmz5Qma5P8#)Yr`LXH+c;zU7dPUxa0>@dZg1!*E zV9qibVm{y#QQgu8F6Px9f&?RU)9#AT;edv~3j`P{;k_TS&=x#dzVQ(db}qxGrt5eX zMy`NMpC9WrFQLWDqHHC_+#o{~Qg}UA1`QA)X+`hr6^cW3Km9GlO`h4{K7cV@9;$Z} z`0oW~5iV_heBy_2#dnz%4{kaJsKBW>l-F4+kO}M@Dyi4?kCD@>sd>&1qXj`d1Fhcu1%Mg=bq?`zVJFRMa`XGm+(yR) z0&9!w7+47n5$y8+0JjDvn>O$(o#={J;u>(3TM&^PbGrG!ei)%Y<24$<(DN{G5}2Kb zLGE6#ABqyQOamYoR)A6B(Vp=ai#$&Y_`pu09_2Qfbw(JVlcXq;9&1l{9Rry{ia2$U zuM8;!rzhSZrDrQT!6Ucp38RxnF;h(#vw`CrwD|%hjSI5?1r(TVT#vliqJx%s`@{kC zs|{+3Mg;`G1Gjo7JdR7DUv`uL^0B+?9c9(OL~3iuV%A-1(z)sB$IdBd7***Rspk|z z;VF?2r(47hz!4_42SL{SyxbkKw65Zs^@mXl6jzAss(C3W_A)|rn!Ag*dFKa~IZIxn zcJY-wKGGz&nuo#10gkPX3a0^f2Ed2XqhZ-J0Hv3Gxi04zP>g5J(VRQz$bw2Zs5!IR-X*j@bCH}!QbZ!{zXzW-!!o^KK|$=;+1CV_q1ceqPoMYdy8$|namgyP;af6 z#54@OLSCi>X+k7Ak9hc&aB^|Wyw(CjlPOb-M>Ez%S_96x&8YFJ2!@uVH4O|b$RPxB z5EYv)uz;G78sfu213Be{8hnl<*Fpq}Mg4tDXf<>}iZnipHpeEZcsF;6I69Y%dW{ku z*y&vkB>UQ$$95AVxm!@6;pfLhLqn6%I}8^sNzG~QXX~RoMO6Q z2x{dT_O|&&yajSY(}AG`Mu%#8^Nt7) zLI;zq1p)|GA{g20)>YZOg`{19?Z<_f%3tOb@s;S1ASR=T^^l!7i+eH90*GsPNT!Oo zZRTIj@lUin$a)?7&1#W&rlI5y#%zcsNSozv7#!40DenUH3Ebh18@6O$62em>dR4O(9rw<7ZjNBMq$x zT6Q+`6DZigj0+7N^VWAdSBAf}(9$gj6MbiCi)oIPy6P(VB@&jEr40kEwJ6*`DN!^a zM`cboSKDRI8ce_dIgmee05nu;CF7nA?H<~XN+2YQzA4Q>3#`v3mF}8y14!DW1(USy z<8>LGI+dEgaK;Tc^p7ARKHP1pnFp*3VE_VeTew$Y3=W!6bUGB=B!HFuayaRVot-hu z%sYqs%HcWqpu!o~<~Zj)1VvAE>Tu&DItxeu>zZ?qH%Afu<**2wBi6HeiW6Gg_l=xf zItGJX>m!t~E25m}i2!S}$^P)MA_AJ+TE2PCM8|P&fbE@NQbu&qUn+9HMiqvHIOeQ1 zi9k;vPt(pIT%c*Ks&Hwe*qHHa6!%Gna)9XPHSBD~7oBaz6$97}F@WltXP@zaZ1m_~ zyzU@W{RHPUzzZe}M#w|pUP=1FmlK^2Iacj3Uhha?Ub2&tY2F+v8c;8Rp$fujayHVM ziFM}`nD`Mk`u_l<8c5*TZ|CmjnL-dFtzwhBz_oNwN%+T?W@7*~U{Q(~eb)*AgQcOe zn$p{f0ACRP@Sf7w#TtKkZN`uY6;1-eQ*8`0lWOV*$;CD+!Gbf$O|7KC2L$ZG1x@#` zdQ^atAZ|SmsH`6oIR@%HVB$=O8|kQ`4&iPLv&2ba5MKo<9U ztv~N5^`V_bHrjbGCGhwCbh5X>9G!WU!@0@C46lu5+$Pq;( zaxMP=+s>Augy^(B_lne1;P{&Dlf1)#9SQ9|@gp&4NGi3Pc1Rn+3_Xhtx_R|+H+E2@ zY}C7;1T~1d;``*kLFWgKf{8ze`oUKD2S;Z&d}}sG0HtjMmL^X_SCA(ktzgO}IPlRK zLe4G#i?apPDFa5(b{R3h(5~ZZrVg~iF%M$W!1(77UM%?`D+I4THQo(l>>i_OzCSoN zn1kJ+X1=DUEF)^c9jJsFsddgmOaualPL1;r-$8FIYy}=Pdo_pS>?@$C&C5I{Se9wD zAhnG&;(IdC30Wec5cSNw+&x|iML+{}D?ZE@*+8K1R}@J&et}KqPymgzX0G-GiFo8M z3?U8RMOO~XMHb0b$9-`jqOJo0EM_EJNT5~T;MnBv`t4Cc$LHc>_jkCFLty5Y1WQQ+ zsG2O4jx*tF8j3sdM|chMDX?MiFcxG>)x(P*B#x!?M3b6=Mlr|nY$0)kg+KnWV4z|po4ILXq5#w)( zfF?6ZP*;1TmGfwZR;eX)NCiNGe(4s)xfDuT_NC@CEanui@pB< zoO_h|;ss>vy?tOkY?XLsN*e*x2YT;EoI7+9pa8oE zg*xX8>dR~F>ncxpZq*n>Vj#jD`7=iG1db<OhA!Gnd4Ec@Bx4YOJ7w#`3yh&)07FuFdn5P4RV z4t#Tpx=OoNuJt$0ApuIuwi*q=;fNK*eZH|MP#;0(_b_vl(eoozjUqkd3{>DmVl;!( zt{IGTK`2NwOQU!-XmEA+gn;;PT(qL%ezN`DA!uE7v%7$v(G}7Nlg}S`q#{A8oNI%Q za60fEvAsuM`>Z|;z{vT+w-eB(rvCtU3-%R|cHA%8-_Za*c7E`>qKaO?Z_wtHDPXr- z8sAu-R2RfMpG3g4T$;=fV|?p>lX_?nqqvWaA6U9!c%)OsJINr=Z!kr)MJc;Tf$Okn zM*%2x=Z#|ECav-JH<^UcYzhYW?(2%yGs+WZ!a_#zH!uP4Lp%)t=qTFxD^SV>NHjFNhm1ua@=$Z78Wa}=!la%- z3&J3Nc1&vYM3*BsG&IWV6ljTXB1CqipD}fXY=^nsCjkEdHwEP|0P;ny*Hy+xt5qvg znFgdEZeCVGHZ*&0r8>mezc+D^?-7(o#-W(Mc;`pq&xO^|3OjKn($eLPhb65o<;+U+0q(&VqZyI3P7I8a}Z}qYcN54NV%ZGHyqJ zVzN*cf$awP%Xf8q05d~$(Z9Tdpe~RhJbT9*8=@EwGT(Wx$U+1!I{ZvPEeub7A%Nra zmgJOK{{RFgXfj~o3PI+Qnw;U&Vw6zEtWu96P78iVhYoh2B9o4X3J~#KWQqFqJ|50E z^OP!4U`|^v;^ifk3L=7VD7wCJ^R``apc+}rdA^h;14h>0yi)2pL%;C5nDp!mh--ZE zWe7P8bPs+LyZOYe>I*p^PHW0zV=f>7MC>i*t`0jH2+M-}cY#P0K&3mhw)cT>3l|xE zuv}N87grG2XWnQ)fHor(ig<6esdhf2K%gcfZ5`erAkou!xY~oj<$)ybtXN={4IL=8 zBbHuL002$YqmbFc+r(9?rPlzaj5}Ne@QxG%=$K)KNG;HCVQldaNHmNkt z-3>tOa_NDf!Ra-jPTKuz2z9Vm%ggHqS%d&k?R9spcZ&%0uhdl+$<@V=N+;AfzH%<8 zUWp6K=L54?Nj}@ddBF#&bAYK*uPZVt?^wcKQa4u%BXo^qLE!K8lw>bgZ4i14L>t5j zzl0hNpFw!adc)mgpob3`Mtb&m67o$LiSKwkbsOcuf<|UxRrpha2fTXn;aN~QD|_!J zKC6{o1pff*1GECi)i?-o$#=9Q>+gn2|A43KSG~bb@>7bsMRtu#&l$m zBp8PXj_H>TR;srG#x?FVKz4PN*G16-A_77B)+v`mOh_b}{{RlK2_Q9E9UfE; z0D(Y$zaLnpEUMb4ChK2V<9I^?kpYPlZlt)IES`y#u#x6Q2KQw)T|DnC^T<$uDaq+X z;zo9W9ag*%?aFWI0;SCjT6Ek5mwhdtCG1uuxlCF*2!Y+QVH*Sj(dQE-at2ilg#!WF zkfxv#bJ%7Y3x{rnJoojL8dl)ZQXA4^bHIrOrH&FCNLV&Lf&G|S=2Z=NJi1AV@-U8* zwuql#_|N=@`oTfxlE%?p>i#gy)f#Q>0TS`9Fhvqz0IYb0YjjH95!WvWUl+wNL-p$pL~=uhYfUhovWrID z(3gNK({U#pLD;?rolNKJih2iMq4?FyH2mdOI&ABK@q+C!%eLnmy2MFKLaM=d))Yd> zi4q62H2(m29IX)F5r)u}! z9o$O-+Poy@_|`fVF2iTe%Cwy3uR0J7L^sN77dk|o;8j$4xUaTEgjvzx9AKfYg3LGp zqycAnN^<8&TKmQ^kt@OIG~YwK)(8oO>#WilN$5P~@%>o_)iGr4_%<c2v&y$p0G9kkl3Q~q;-L~una@^g84%%MWC<0@eBY+!LgwBj;j)&R5yD3 zBr+4T_=o$0wMm) zFayXOWD8a62s}3q!`4nnIbY`njna9?PHeIV#{2P-%?gxx8JmWxJuTjG$B10o=ggzuh27N24(38@QcEAR1T#>wi{tTdRcf)kI1w6!LvB!Eq8$9W zUTAKCU&bMAiUHEcSY(ny4`()r!1VaYD4?`>Ip^_(?UI`Hynt#BNq;VgQPek;#UzYS zlg1B4GIlxx`Rc8XM4^B{Z|(^B10GepX4fR^_^^5HIg_&+2=IhfGKpH z2($d+>;5r~K@jxaR2Kk7hsAnU0BQ#^U^Uv{8$-xt_8Mz8F+|R!G+#I#ThVbybq@y( zJkYKFvxLN~f1$^32I@%!>l==u={5!E9HCjxJB$uUS15vZ-W1L}ZFbY}Y{Wnn>=(ZQ z$9UN&l+Ac2UU8BtXRb+qW&z@o1X8`fU~vNnJEbeAso4352j3T3G0yHCNF1Q8%*SUH za9AK11qK9EY5xF>(=qz~RUnr(>69zXq5j!2QJ`?D6ht&$zj$5_{dWX={_tVz@j%jS zn!5aFo>s|ifQ!cP!XZHrP;;(4V;Zr+9ZMWlsPV=!mO)rKbVWSneU8!Ft<&|0=utLx zOEs;`v!ity;J(^^GW&-z1a{jgq?*7Z6;S@nB{&8x5_-Vm`@hl(AWT~2Qe`PczJw*R7XRwX`DxclQ*-E)@hAVL$Ch;WB0rX zl`qHIhfHI`6c-qZ14(%6#|^~tREj$doH^OPnm4q#;C+X@6u@5G%9O))AOn`CM;>*d{SnqA5sG%Vl00K~ z)OHR>?==L4LA4~+(cH~uAK{f59$mc1U|OpM0#Xt?)>PWupyc2LZKcY8@2=>skXP0s z1OaeCM*GEK;Nnfgd3wVI=2*UcVx(HtRPwyy(KWdS)O{BS49FTd_mhAAVPMePA`Kri z9SZOmqK$=2Z+O7KD!L0-9sdCB8l4L_C#)c@1I1y7+}?QEl!aL&vs#4(x=a+6jvS|& zy_&g6>g}OY2B?-T;)qEmTv!7$c?fs7lMi8t3?kum%3@d+C0ZYAx84dxbpyfh0UGa& zG(QDEpmMr@I2EgQ5`iYiDShR{Scs0E*F;b257GjBENm5`DowaPZM!xiOTufDScNQ! zbg1t7-mqw5$+%@xlp0co0(AjzA3SEF%eKdKT;*CrBcg0?945r`RkgiWBz-OiA#4u1 zPkBa)ggMB%dpGAVZ;A|{uqs8uQef^`p;r$H0Z2sFa1?4>IJlQm(&6HG5Y>*{iu%Iz z#5FA~GP^|9Z}GyeSm;Zovs=K0T4vZaT1J{|aB!0faM2U2TgQX}bRai*M*E z2?`^n)Pf?mhG_@*U_6Wyi!u$;OCqiA>hKuG9aQ^Cq~ODME*wE_D)WRq+H;8x4o0TB z!-0-G5Y=wL`nTW$2FL&^2tB$oCH~}-xd%H3^NO6+5kgzAJ|7r2K?7#oh9VY}fICkP zvc8P;5#zhZ;~`n;EtE+fXL{a0R~M3^Xa=jSPw*Td_5=czH`&fK1|f{EU|vcetzv7x zWREP=+&tkpo|C5>y-yfjx%}lP1Unk0*b%{8Vn?8DBjqD|P&&nf*sWxAINsCzW7rEx zZSe7%77kUDrIZ>v^xz9_6Mp?*_$@|{$9VzA2BK8sM|kd(C=CoMkfuTa31MMgJZXdC zFe=DEnxj^d#5IV;8&V;cmDFO(nGE zsyONcKS58{R}Eee?wDahc267S{{Y-!7bIcs@m(U|xK@-N8`a_LnCMK?yxZ_2vi>p* zZNxf8ss2r7(@2v`L+#}60NPLlt^(yq?tS*C*6Z~Ui8|6%d2;u7*#e$g0aVntHYJzb+ zIIL&1l>v6a*SrH5ssjn+J7gAF5WdUd&e$T`vgYP|pE&Xwb%LnqD&kXs)i6q{(|E>R zZK9?Uu=cvb0Mo_}+P`@92=R0D`s6eQu?5uNxIM^V6|zT+cc&n`HV2dlZOh7Cp;c3Dbmvr)D$`DDEiVsjvW<)cD zX%cxLY%;dwcOHm~Q4oOMt>Xlqj??)qpUi{?bxPGhgIGUR%*2U=BFIT z6(4W59pD2`IIl6v3vu2x#7o{bX&abd(eHcJxm08|h@EX~_`_Q82+|46jc{u#S7;O? z1wtonH!;D<9YjzDy>zugdL7ocxYa8f78DupN9T_b)gLk)B->ll@%WP;OX%N6YK&WXp2u>X*czhwoA)*OzE?K)RwzwesV8&3u zI1nf{&nt$3x695&R$(Tb;KD7urm@K#)4V1W4?A+>=pv@*Ufk`h$(m9@ZS{$bCQX33 z@o)H;9@R>WU5kWhoqQa>wzPoiP9$+c$+E znu1T;j1t-j-+}g-YT$a8${Y*L;4+T#MT|!PfOzLLG2Sg(p7nv_iK{z&J>tV0W1_#K zE?kl=t^@awLMo-mxEYnlq|o@Wk@vNc?6xncIV-SUdjL4S{rN zZ9^rf2<)`979zfbc^ab^jsRScw zb?X88?1!;;b5=RIU#}R84|23Red3WsxDL)N`@}pWcQkA(-+2HZ3etf-=jFy8<4il} z@y;LKeNYfhN!}wU)myJ`oPdj4F>>BPgNjytbuy3`?%TYJQj}|q;wt!I{q55!cXAmuu!#|vA-%UIAV7S)~XFg2c;6znf(P!fU zo(V!0r@kEF9&_Rlo6%^l6qP=78^Oq&HxeHXKnZziOD3|WpGF`d-C~r_EH@(bNuWVW zBX^9@Ew+V8j;@}!*1<8z2q9>I(UGnXwXX-xD6u6y0PyQLZZ2Xli_su>n9<3XsxWQi zk#6vk0P=t-Zig}ExI$&3gGnXn=iUlHc%b3iMP~8hRQ+J!O)qZIg1Y#Fj zSv-$9{{ZN}>n9%x(AZ$|w)({Vv~YxImBIMq0&f4@E_SRL{VT)38badyMtb`wNvl+f}^4u7lFx_vz->Vx0T9(@o~Nxdg^hKBv7IqVbK^;Hqka zfjD@1$a*U};76O;n>^qUX`$Ovj@t=Ba*?ExEx|QtZuE7cR!lSnK>WuOQ}XzA>s7pJ|KrWHYHo+-*~^I5-du$!Qb9iK!Q1%A7KoK z4$&%jcK3kMb5Sq^*tiqSQn2FB51b@(4I9G{n;JDl5%zD4v`5oN=U_#jy?2+Q2+bOEgURnHxY-6|frz=#@DySYopDU#XX;WAOk zC>VKt-~&uEMhhwpBYD6hF=-X`jU5f!{QP;zg=BO-c*`X(XjzI+ff}wZKNRuo$V63` zs5E1lf?dpSH9@iZ!ee%ry<>$H7Xf93H4_5vYhar6bBy$_SlcV2ochFxA;U7b4MTi> zu|zQ14?Q{1YX-o8c<@84Ne;Gy^xhOFM$ia-<%$ecb{BgiiOe+u>Cka5n>x$Nc-F^* zX+Z@G3`@u+ok7$&WuWf3@>TVYxGh2KJUFKXcGjzY+?XrU8+u3gg1?Rqjn5|%w6$A| z$u|!+oL{&yIz;uO zd-0YFa~7%~sShRV2(IK-5pZQDic;dfr2vcs>tn~PYB3!iP(bXOE;MXSE$~3a!(}i( z$fT)|(WLM%tbw7p(1@BxLNe)T;|CW2;P9JkE7Q-9Fxr$HgWf+{95qoN*b|A3sYW_B zeUZP(&Q8y4m8!j(iY+;~;T=Ptep4IgZE7VJ7juuLjIzA zv%ZJO1h=eoteQ6Q9wDq;e-1b(LyuVa{zDlXy*Oc27MfofWw~hx{{Yr=ffOUK?7?9! z#K*Z%U=K*+aAy<`B6EfXj)Fe9v=u78Tm56go_fU%Ja1S)fawBQFWxWNjX;|=b4!At z3bh^sE8o$04xj1P6s0C`(haAEY7J3j*BN=@0ZW-dc`rB$qlrK-KFhA;9J3 zbzX5V3tbW<iQE5llzQ=PEsHKW<)8?_KwUg+IlC zpt-nP8yOw`wStifT^iK#9L~5h<|0khM!4tJCa}2ICf2MxO}imW3l_G+$UJmRT;2R) zagdEA{1~O*UqZVK;MQ)20i3fGW3A8gibseOg$rkN)^TXib`Ww$!Uxl)`;d(Go_ zV`cf+8tW|Gw-n!6es)k0UsM456 z?jS}*J$d@MRDxW3DAwUiXEtHm&y}Mt98u1(4CoL=-U4toYxayq9V-$61JS=PI1Ccy zNzeic@k3x?cjPE*YUu9Vvx*=Bb`&GL8>+6tE2jY(Zp5<)GJ1yp0KO5mvN*(|CUru zSCp7HS0&S@lLtjw2m}JUJ#n279lc@MlBa{C{Y<3&T)82|?|;?-2eSC{#tI$ranaxmdJm6X5=8H zqutwSyh+!Y&G_kH;(E-Aoi>yK|`~ZGDubE@A}C(u#+E)VSJBx0}I_OR`}9Rf$tVt z4Xv-20cm`Ssl+#i>;)n63prL_?;lhS$dOnRL3LLa>~uw_FKMOYjOCGm;LVlbeB*#q zxtcP!#tW;2bM*b>mq1>R);Uimq+SYZ&sf_71!B-0KCz8(Ax!E7aJZEZt})<1?GIV4 zQBI#h%k_&LX73p`52VUrq~gC_bBN8F*#`1YNwtItzgohAsnEVK*HhZB{iX?M(G%$9 zbP!w$0(guq7aD>XvJ31rn)NZB3V2R&sK%jSvycAb2yF&VQ@=QC#+U}|bi7hy@x9Yl z8hgjHqj{m(JO2PU8f%X!<+SrRfJ&;{_zxJ2?Nlg^oQa3tzTp)=PI~;{$dV?&5jmRR z^PI$}tHV{j1m7Lt(P|qVgB^rNA&gy=N)IAsJ%Me@v+p5AGBvN;j#DbNg^JVRj+u@2 zNFEY=IkgB#34DXwf+x&~dlqwmF}kORK1qPKv2;J7!R!94ob)qX-I~t7U-`i8KsDXO zSb(@)JNm{Zl2fB2Pa-D$5ZLU3k+C)HL2Clw%CypWN|&3i*9mr{f@;!vbGoHKXraXc zU1-TL^Q&ryLEddW;1INob@wELU27a5)mat-2ydOkI6w%0Tj&b1YV2VkpJJm9!P#TMYJRhw4?60QnIjFCgx@MMQ(!^S9%A^;B8 z5_&3U2zUyIJG#aI=t@yJnP!K>n!hfw=}F*!wlgpEolC&1c6(r6t>wXjG@vh>0PrEG z+ZX-g9sBPHj)@t_SuQ{srP9`tiJT|G(y?cb@n%THxTU;4oR1+Gr@Btv@!&A*c4K8= zbku!gQ*zTPa(L$gJhnx1w;%P3s*nZijA){pW*G!799^W`nYuLKX(xrOL|TJL*mc0~ z6r-!0#6r_vMKJE0D3Q7EDl!TKctciBE5*8)j;)e*)gJl7EzHDdywxTOoV#0(*|F1M7e~V(INmr#NSn5b-#7*xM`GbGIJVA&@Q%B3?9Gq<#B@Ob-=1=s z1B8mgMx=-94lNc$tVCUKZgrc}wSsG5KGaYHzR_ka8U%qkC~uB%VMgZH1E69Ks&Zn{ z>x+pj;;pWork9O#fkX&42}AYX{a^*H08c4+)!)2$DHwc}>yx(O4GaGOIUA4t&K74l z3V#>|OSTllk{lxlE%rFX1~akFrwY`3;gGJlxm8r>T+o{6X3Mz&2JX;x$a&2a3v@^a zuoLxwjS);$&n#nymGg4?B%m}@y14fqI^8qGmrbuU6X3C@ib$b z5TQvR0WAo;99*-;=(g{mT|$g@d3z5@7s=tLUI6kS2wCF}gOy>>V9Hyq9f_ z(3bxIWLB3Lc1nX#EE`QxZF5q&6yI=dLk(N?ff7xN0GE7@%i|P#^Lc?mX<8}t*|zh^ ztci^!{m^i^FIP@^E38XVNf%DTw+fF0SPGg&S+4W{0M_FDkiu^vw}YQ9O)z+e>3hN? z2$87bWu(z<1FC61-b#rMKIj9#&TmHrYu?0p+lu7m3!Ymy*BCn&u$yJenO5kLXAb=mlVi*2m%Llmz#}C(fqOW>((FCVkxjUPXymL3gF5Nc+#94 zCBZ(Vu7L-GR&2vbV~#G9hm(&PdW}ef(I5;cb8rCIU)HCR4#ytt?F5z7g&Op@FChVr z%V9U@$mh!m5<7a2jHZ`ZU@k*rqP%&BEyy%hqAHgChCio@LrJ#N?~KyV4Mn@*;|kGY z-A2xhVNfDe@ThTSI5o0&+7|~m2SR@hMKkEgWceuVc zukRNCX{Y{oj6Q5)7L5B?^_^}2g~)d@f??%4Lms}KF{d7mF_lgqSmdQNr{Rp^o>Y{4 zAQK!kS_KzNM0IBjW)s>Cq#R;P7-LF9ezIv06Buc?-;9BU6vM!ciLcfp61|&59)jNR zCR0KRPtx^A6N(Y1I%;tF!^S88Todap#ojn#F9B!PZDFYza$dRT5@7I7pq;kU&pakg zm=jZF`{VLpOfDDGPC_@Ekgpp+MMByD2hoG>k5CFgcLZMpap=XPiOqTFdAM2R45rGE zlayariZv&&H*(H;!D};1hZmX40pe9bvlRnzLmKY1J>=>%4Ql@I)`3_Dqi)%V76MnS z1vr1U;H-o_NT*8s!qF%i1YyayIAPFeZP)n2R&(ahCP{*N_mxseQ4dV?9k? z+H^-)$<3ycf`^ATa+zvoK%iH?b~bwCP)n(V!{C=b8u9`Gkf0{9aZoS zGR2`yA2}f1F)bm)ZcN!n^1?v5jo)}Rl$a+iWc_^UEi}h786-diRW{zqNp1^M8f2R! zkE{WdDxV;_#$-jh>vo>ZEbLi!4T^Q5&hRm@+j=ow$D9e_V2C%f1;eB%PGi8DOh+qy zPIO)S#}^F`uoLtQA52SUYb1h!%eaQn<2Kuo0L=Q{bo6_{YeImNnjqcptmQLy*`~HN zveQ?Q&ih6v?YALj7RHqYaIaz30hI86ixXbc&J^kG7LmUd#I`Q1yM-^An0|7IZWfM zDGlgPJD8IfAZiZ9<~$tv%j}#Gct97#9&a>GKvN^Isa5*O=3xbDXd0qjJ}}mIRA5?y z3J}6bq`taQxr-DK?7B&X30ycTXc09fz?3z8n*zA$$DWi8wq5NA0QT8t-Kg~*6PND?j3cIw!j9Tc@PEha@M=|yHD|qBICAx z&{Uh-Fcd9m6jH$gL`f~UmRei`MvpGDb3$@hG@ysK=u@m15X@&|A*2+VOaKjzd515Xs(0CRY)ivykX)9v_L_5?ZiR=L5Mb#Cb##A z#;~mh<5$Pt6i*xoO$}MjjHrTy3J|RJPL~l>FrL}pd|=qw;p+n(#`q@G@tj3hD?mUi zv2KNoP(cFI8Xhf1ln#joLK32(7oC^Lg*C$kW@_KF<*2hlp6Ec_82B{ouqHN=~ig4bnLQ zrx~rf6a$~ES8nI+ia#9SKsIzdnD20e)UL1RD0mqSM`^A<$&Y(nmw0+|`^2!wC|Kk7 zmI?SrS>W-Lk?&A|9ya~CPV;0RW@yWRu`QYT2_imDoh&`p7M1Q-&xM<;CSI3X4? zRHsiKw~7u0svcG&fHvg_J$T95^O39Z>-B(OoIox54t28$WYdoDOTACt9%QFW(GE(B zP7P-aAk_|4BkeZpR~$&CC#QOf8MK@0TGEP%*q*eVdG+&!SSt2hzaYxUF2qgf7*geB zhy-H+bdiYo93m>&G$0;1Tyc-EH5+Yqtx|D|VRmI?5U;)L-UR@p%cip~s%Gbv8g(ktZ-pXx=R+$4s}ANrP`f0n~@K=k<%$hb18c0!$PX zeK?KF&L2=dFdP`gC1KyzJw#{@^lmtCo#IiLp-kAS%ZziJa}gd*zH@T&;5MkXlFxG| zkIf43-#u>@g9~v!v7UXZJT>g~g9Z#bEZ5)fI=;270fH{gG`39Gii9?|BTDBDWKy$f zN8UVX4jYk?{_-seQi!W3wwQvE;zb4Cy6YBExyijhtB*yu-gU5H$UvsZquH!I&(a_~ z<0ks4j-=-J$4s{ORp&0Gj#S2O#= zNMoKH&=hPiS7n86;X7V7pIU#l^@!fr6xi%8-F~n?BbJ+^mlqS4H0(J#C#++>&HF3Ddc!APfI%8P{{XCXmofvD-ID#`Wliz6p74O- z6b6kRg8&v@j1SULHbVL>_dIC;=O9N1F5&yexDwReghc71ZuiDGZADZuuw+k3kuH*5 z)nAGG&$GenAZZr__hi-x=u!G#@t2e#&CS|j>42lw%#_bmUR$;KE*b@J-N=r|@sGeR z19&1Jv$Kq7qnC?na%r&(%l`o8JJnejVmpy3 zux%|~U1Sy+lujxG^8WHjiSMwA-i2O0VbQ$rwFal252=kZOI6|_e*XZhaUG7Bs7ct5 zIeeL5Dx6({I2;|*I4DkblA|e|Q zPgT{?iT0Z&y1qFn!6HepptHl05@+yah0ZF`&I0ulvKX zEhJSTE|UIFc~C1Nt4FS2_i^G13G|*4C{$ixT8)E2NWUztw+-8`*T1_ zf$0U^QE&eMFhGhMJ)-0|F)+kk7SeFmCbpxfQzNFtH_(aQ#mI&tbT!75guS@pq>2|( za4VzK;~@ms@`O-Hzh*t6SE3MlEc>`szeDr61J)d9*^|qUc)x;C#5H+)F${sG-f%~v z+;!E%Cs!1ar@ZEhae|=%ITy$H{NOjcMBQhYPpoD6nD(SMLop)=l%0WUcc*?XOaVBZ zFeY=^?>DMp)`w&<3@wyl_nk`#Hc;gJJIJ%r2UaZnhV1DO5^p&?pL?z__Q4_G^Ja_( z)NRtIZq{RSK}QZp^jz2+&6NJGa&O?gPt>@tP0)hZ^cNoS%(q0%_HFM4Wggdx7pV?! zIZn~!RU{zipig^@#rSJQXotg-FT+3$v<^bybJZ=LI2?XtBTryFbI!2lwnFWR%w94S zXv zpz{F_rwz=WNbn} zCRy|u5_XsUH=NPo@`r?j%2VvGG2n&eHiHL-UU4J2w{3!`9a)iF*$+ldQt{?-gtIRt z4Nkag6@HlN95PjdM{AGbVT9o)0jF4+BP~~H7hHP8Kw`161<*;x^}S`l-(?vrP5`SL zro$=$EjDeqg9qQdRgka_C>=Uk1NDfGywCvAh=F|FR~?`*YXx+9%iFw9a)zKHJefT> zAZ{$|00LHRPODaBtk@KG5f1+VW?PLpze?S}r#WgXQo=XLA-=qPWh3cUfnlks%ae$A zKvUg4cZ!hKQ7aSozGekYK#X_czL?u37&ruRA)C_iSzf%%MY)TBa^jOn$!@23+v+lG zN+C=y7z8ccOOlGObL&|iH-Aj$-az9lqo#R3`IP}RE@}bU##*(h4C1)0C=^v{2X|jx zV)<93ALNFypq

fIm6ga43(o-RF0_LeFa{=aX3kSa5xXXa-|djMi2o102utc-nEHol+*TR$)K;Y z*Lh(*hzdG!qG5N{a3^w>UEJaT5Eh}sUh5+$m~w^abi4lWkxxej z2m3<+YFS6D7eOw(xT$$sWm1(06W%?bdss2{9_}{Q-y0|8Pk(#$wR3(J>jm_wE4|?s3ILTc3>Hy zK7qB|n8ag8^AL)BC#;2lVZEuSNeq=kC`i-K4>?1q2(H1{Ye&3uBkZ!v#37u7S7c}2 z4YVsn36NRnaPM#@{a_L?%f1oWha5{1FD^*@raHT*Tcj6HWJ__MLa9->liOFFGn`yh zQqORK?or?#$&3~x2S^9(rV=gPq?&8K91$e}L3pRDOisNDt%d47apF-RT|}|@Z4{yl`OJ zMfsRFnNg3w8D@RlDn^!3`RgT&24|B-DY#%&p?CD@y}EESIX*82RBMC0Qy^~5(QtwP z0PZzQCQw>H^!8vPCfBlSadWG~7#>e289@r^z@fH~)5i`}&r;g~^nf3D5-gcYsGRq_ zZdXt+J^kY_*ev~wwTi_%sESV9_mZ-442Q+}E-A%v_boXt-F@Q~h$CY3G~M^-1|Nt( zpF_Q_vT&9l$__<#MAQ>D;xu!o(ZK`+0yE@BSVMbixExT?k)pY1ca^wN zIfMEq?;2FBys_6d&EFdRL9z9L;EoX*G$qkJd%|@GZ81bD=oNmmPqkAWH2pAo732XO z!4=JjWpkSI$woDSRXsN9q?+w_3BoN!Kf2v@ffQ-@1aG20Cg>Kc1VCTRhWLX!xUf?(233=s}gSyup8?}28|y{Fk>iIRVK9i-@=?kuZR0mz^BglvLyg|@s1-ZNM(T7C*`s(L5A=c&#gOlt zi5q@3G&yO6Eo42Y*g4fN2h*bmOsdX#WMHE@I@)?fgLrieWs1TJ-`+{Rf>FU=b7n%W zs)Jnn{5V>M?!WZQjBtrT4u^Tt&P_I>6d-R=uKC1KvS?D4gzPU@SOtZ7+6Cui2Y;*x zT969hfnIlwYN#NTLSq)b#=cdAOpWW;#*!Igc1T2quUEUU*c)al~*w8UPJb zqlWJ*dTQNiVMi33dzrh5WDO9-v3cVPHf1RZQZ{kDn1qM5xokuuq5~M^EQ1IMhp8 zLB#I}zeT!SkB?ZQmMoPGhc7?8pZ$)i=;T_~op{EnY=GsWVUDP57J+IVVTv1&C;P`! zNjq@xCM9Uto66o z8_jhcTwZKx>er#oR8tkTwNrr;vkw^Xb@C&oq6nLrqz7(|?D+2p>S)4Yx03$=P8US0 zwXY7%V6GrYzU~eKs`NKNk1no7l0D6yGS0BKQ?rNAb5kHa3W1DHXmzt4>|la#qs2wz z8n8^Ib^tgj&T_#i%@hJrInr+^04*&}Xd%PHhO*rUCo8_(EffQD053-W0C+DvbI0c> zBbQu~JEK|==(xaqVpIWWh%fb!D?n)DY2szD>rlqG@0@l6L#3nj!h%D~a=RR=-)zDO zYa|igy=IFOIY0Wrb|~HN z&iI=8!H9539U?@Zk@XfbAlQi&P1jg-uJl>6YySY;-+QJ5e8=RNime!qL%@D832Cz) z4CS{Ju@;(bIqM83$7(eXMzX>NrQoU@75!pjow(JZpiH4oOkqLQ;ffsYkXkz29ajo5 zI<=dNMPTJvk+=;MFZh|hx3STx*#0mzM&L5h#G{?#1vg;6k9x*v4>xlLGjG}H3m*32 zr2hbRwuTd!U7y;Gb>=?uW!c?0TBMvuIlJhU-v*<~L8|L7ip%#EFcIkuV(tLek8aB1 z(FBN|Sh$nkxwLK6Wu@!v;nefTw<4Sxjc*lk&yutj9;VN4bG&G zbYj+kV?^`yjCzAnAG18r&>vC-A}n=^#+%ZRkO9@(qoXCI3927HNvr@r)MHf-hFS|gN@#^T`4k@ zS8W`4#U6Q}fRE4^JJCQofGt+|b%evp$=i)>Hg0X?QCF_*=Z*b!f-OIbTDfyA>9v!x zm}CY(4q)=4YhFhoAx4j5%ItYK818d>I4TDB^K$$RVg+!=Qfcj))l38cO8^wR;btTD zpfqu7@N0~}%}AEOwXi*yFpX>=rR7t7W{SoUF<0B?BHCr6-W~m5@!IKYuYZgjT@d+5 z>BNgz-rXeU4ECT1H;?LL7D`)7*0V^aM+bOze=~D;Us&CTdYmV&OlCYuQKeY>CO-lL z8;1ld$@|8xSC_oOr#Ay{7?xb5A?%l%=PlYw0?=LqZ-*U&hX^zg;T>yFS;_<}P(;I> z0q&(|fRIFaH+&&Z9hb0ylDHH<1EHHlVJp^-_YcRlAB0|T-=f7T3$!7sqw`oygu z@(I8C!s;nSsJ=))-XHW2Apw^5=qej7Ps;!`7PT*=`^BH-b3R{Lym;( z^a<;j2Qv*{tvqpdBja6bBYogXaDb9=$KGzljVCQs=w>zLh8QBY%up}*z)QqRtG3lU znwanM*=vOH=N>D%c-u(C1^)6D^6xWRsxK_V>=^+WMd-ktrRb@kGgL&xETQTc1uMdu zw^;^nhzQGdbUX2^a)n_=$@@J20IX=n76=GcyN>s-7?=Vp8bJFX6U&T{7%Xc+Q=NTg zvT*PgmEV+QWyyZKsZ|z4hs^r z*DZJq(*dc#(0RA+WxcDj!QlO3sFE&fQ_!@hStqOz`M@}mvDp0t#$77!tA30jwNb() zY80l#fcxVE@esh!9aNKVSPJ9~sic9)L}tedy4xy-Rsf|!g|`msCCSQ`-zoa8HgZ8p z=ZsytP(?>k&KuYoQH{JJddtIisIoqZY0c_Hz zkay=9u5f{}%{RP>--X(B9O(1xbASABV##8*8l<8ij`Qe+tWDh;*V5VO%d}?C8UFy{ zuol*!gI0>w;mUnQ3{LKaOI%c>iYAJc#nGa0V=^}>e5mbjI08cT+p=;z>G6TMn}uQ) zD#IbkPWE6MH_5D_r-7WO1MS3Z+pfCjl0y_F8y5#bUH-F5Y!J#I&~C0;RY3ycYn((y zir{c_RJZAJ13An$1Z=TDc;;gZ8zmbk^5{L`$!yTdT6x|&C%7nI7!I2b$*6PBhXxn6 zc{W{oR|09simjy#(ijHlv@dW~;r!;w!=fa*KK}sT5D9^+GG0V< z6$8czu@)F1P`gj9Ox$G(;R1l=!&5BHmPgFsU`S#r9l z`BiJ4ImUnx^Kn7pdof0V4AweXgnHA%tBO1-r-x1g%f?WvVDcuB;X0wLSfn*jL{mg6 z+0QkXcr-RayXRB-&B|e5K zyzgS)cs9SVx3r47J?|ull(tfifU~^P<8eSJ(ksgKi--X_b#Qa*O4bh)5r`5AzHi{i zLsZTiPLIvS^eLL_o2%knT_7b(x0pkB`@tm6x(5FMV_%~PRx~OASILLgJEZKbKsGry z_km@b$K!VHeUpSRVTNiv^85A=t zb(DDE=Me_u+fsT?oN-Tt1J0j$W`tPIi=e}LJY?> zk!he&XBwG7n<9rp!TjUI4XnQAzVYnM4JhZ>=QR0Nt5g*Nej+&3my5#WABt2vkG4rH&O8KG-34LM|hd+{nc)s&lrjw3#0~+vr_^QaOM*C;yO9Nwh~H~hCS;6p0(+|^Ml(O1K90Jfmseo@S^uW z!I*52tr96a#!z14Q$_N5Ob(m~4&V|1 zf#7+#J+UCU*IN}q4>ZUB0H!V0w^-om=PploYpeLy3YvIc{<4E+gdd!QFVsV9JQ8Vt zI3lpJYS4Crt0Rs4<4_aH8#h}y#3_o%Lx*^BrNAlRxt>QE# z((LCh3rrHhc(+FKqMf%8F8mHN_9jUvC$vpO?b9Y1rNkLwPUpPTvtXC7AxDP-z|hSF zSA_#h5gb6)CzRtVtL@d8p&;Z9{_^}m z8OI7FhJb8zI!t95QBK3u@smcq0CK+u@b0~9L9tE)IR%s;7s9j}(9N_sK6aGV9d7LC&V(fYzlSX3g4)#Fa_U)j{jJfQAf2Uij0Zq}eNq@?8an-QzmX8Lhm39Lv8TkoQB zIKe7lxNsS&*9HxNKJbtPc!M#gGDXS_YA5@|(Lyd&wfn1_tiTsvY(b82GC2n6jx+=% zZk|WS{bJ~(Xf%eq(*BHy?>J@q0}<&iLT~b9U=ng+r7SB}=~q%C-U?rMXa*o@BdhXq z9AOJ1XlhWhItDR^CeQ-NQ*BVi1C|GK=FZEkI?1Op&}&D-k~i^J*K5UEsoChi*)b~*gU@+QY3`4LB9Di)1UCA6*T)eofBmiQ;9)7X6)_9-};cK86G1}bH zh)`+gc?chTA;}Rw-&jL7?o(pck~-+;H9)OFH3*~HWaJ#bVkOw8Sl<_b(pYTfnOit^ ziXDHOjeu@Ggh!7o6KR4Ip_~w|>Vp$5yafo7o@}@|mXDMb8060Kws$p+#`{$8U~lv> zb0MquezC5IjGR(0C;XXMHt2?c!BdW&uQ;f=X0~xM#1%hTBG|~n8@Ezziuu9{;Q}ug z?%Ns*iJC&GD0|IMCr$2=M~c=t_=t+-_ss(gl16v zYwPohM39yszy*}M*0YK%QxVbLx0)O962K1+8vNso^4WN9Bwmp>jA72h)pogaGyeeF z<#U3=x|A8B-^MQP?Q90CqnuYu2%|&|&khd>Mp#;pY})ogpz+%^(Z@;fcv^~X}&&c`X81w`vP_^5a0tysH9%mKjoU^|}TuLs5=k<{uX2xiTV}0JUrONb0 zXy;m28;YhbzQD$ki5O@R0rh~s!oZ%;cgOk88(edA{FgWsl$s5V7nm4W)i`$$LRd;!waE7X%1Ut%6rHiw7+s-rq=lMGNDfz& zoBd%1Qpr<_f4n$MW(aco!dl2Aw1oEDJUBC|*l#E!r{frD3BUuNM3R0LU zRGl4Q;|aoSI~kjyw~Q3x=?c7)rqh=M408&^V|F+`aaRGo7Z%@?c*21;ajtPwvDzpX z?LT?KA**dc(D!*JB_Z}?vl2OPxh_Np0utGS*|{@nS(5`w5_{p+LPF(7k>`rvQy(VR z&`6*m-i`O01A1a1wmgRS#!<>>?$P0Z3zZ?TxUH#tVwqInxPl@8=so3{3GfHj7Ue?# z7eqzdZ{9fC^;g&b0CMAaRg@~Au~;d>m}5Gsgl==I zSzdDg0MQc-+sC#5I1D$(Mv%~cGhL4|-%5h1wl2Xj3Tst6v7RwyRL}@8=oOoKuCu#| zv=wp^0q@QzfkN(9a3i@3aHkPG+=%S*Va^)_vEO`x-kfEGJ_$X!~OVhhWh>Y~4Y%*Mx>N?~%v6QCyq|tF?D`&#aWV za7$P@0<)9G5ITSdfmsJbo$#)GII9E0t4#%bel9jjsv_Lk*hPkG3!6J@+rj2NKwwS5+TfBgis|YLULE7c*P(DRpCGNxLf&1daEoucZQ~5TbAI9_WjpI;BFq z8pA|8MBHf7Ja`j8eGMM+lN$Bm!;Vj88(~$=6{zVkLEHLxE~rL#9B6)9(W6AZ zM0Q{ytRmHimiYewyt%ZHCfxC_);C2Yi728d0i=7=j%*op?S(Yu4x5zT4baIUsS+0B z?Ee6YtI(W8Hhg6Y0E}!>pnx3@Hz1u17^d?_xyDf-TSAi91W#US5lzITIjz?mz`{o81Eca}VpKarsiJRqJ5mjFMjNeR;6NjA zBe-VWr~~SC*EtmJn=4p2Fq3AW)al6eG>``#ILS4ggh6OWXmE3hmZ0)I?1M{3qYt42 zfET@xc0jqmlgh#(QCA9r-R8AIm=a;d;r7--5tM2#&%U+ROK2~Pq7t!_obS?xr0QRNkt8l|ckAb`Mw*;6m1u!AfX6mg-kf|MT z!^*Kks<}zGy5Z)u6BSB_xpDVcQ=p-4yQFgXdl^;LfVTZj=Ze)TU9s{SSy{F*^% zl+}T!&IVIfY)SI89)qm#85NZi#2EDsVMwAm<6b?CST4r5A?(8Cjg=0$#fYNN7p{rE z3}k<0MY@QrId$g>!VqnF7tTrtyL8&UBycS`1d|L>j@|1Gxc7mD8MS4jHGLzo^@)*@ zbS9g_&L4?grj@+=#Ux1p+GuyGUpcmv)Y-6{giI~{YEYx$C-=6MS2NdIzJ9JmK|{8DBI6C#1L&(fQ5KuIK-Uu`(76yccvsJ5u zbcTo_jbe%g_BMVp81-e-)q4Za=_;n8AO}E|4x^S)nlhj^gMXZpO+^R>qtx%#1i}E4 zuAn`6H<6nldLXF2P2ms;xua<6cM~D)koDBm$Hwv=6Ht@Mt=ufCVgQw{hYsV}im#Kg z2;d;=kToIQNfpvm+gg=*2c{Swi7=A!UHvZ@(BN9S&6nh1(6(Y5Nxa`P35r`uwjrt& z4&Cu^${+)@!V(Qr+m8t)!&1TM^NO<70Iv8S#!Xge3)u-A`f1)PT`$}k{{Z2XU#4S< z@n-tK5$^gSa2=`pV$<5BLaqlue(>8dY%ccp&+jIl@!nkIvG(K#3sE}iBc$G{#VlPyKsMx&USS?9gVsD=u;WQ5C7{>=}nKa@h1KS;A&3S0y?oxyA6D{1& z){Q+#oO;9XU=lz(-+!!m08QRIE5@-D3+^a!N;Ux?^9>F@WsWG+ePPULp(84=;(Eh% zXPC;F$mZ*;VoWI*Vvg2V!;3seE;O{)gLk}4c98IGz;i$b!$~nG2@wQhm2~PA!Uj5q zA^<_Fb>k0naBDg*5>R}{H@!6lM0gB%?>E=sLiN)Aae#Zo0O5Fd##a-yMl6kMNaD~D zO+Mx{nb?wfJa?7ccpX;w+DDZ!1AI*%70f)i6hsCUeYmQngiY^Qa}1tI&i$C1GV)eY z{y6iGIHTwi$^qY(4{6X-F5qz1^EZE}nGY=Yo(bDHXh2pSd?qD!t2J&O|U)a=xfWX{K7OiFts2S-;C|+)RQZ z3%!$Ad8})c7z;tdoM0K5S&-@tlMNn02&uK4b)CHl$hQ2Nr#QxtQ`T(*fnVl$;LAc*nFu7vTpB!tuT+Tw3!50rmc}sG<`T#p<8=h^2GujK%@yDLqh%BbWyF|A7w zv_>d#geHsuqK9kcDO(PKMi>Ghgcoz(G{%0IKITDa2%){2qvGqUjn%-O9@x4Lf7V8+ zlP(=Ob9iDQa^pMc9 zj3_AMB8*ziaiMq5jGOZiL~8BUu2E#luT<{|_u+sYn&`uL%#ex%d6B_PBa{+Sb|szM zQj_JewFdjZS1K(b#VwEd$?0yObxK6(y!C=h*96peR4Z+TxU8-u1q#}x-fV}6@QI71 z^hF;0Le8K<5yTu$@hlt zQHYX?{{ZWo+N&+p5#wCqfE1?HJw9-V;61nG$vK!+<6!EAZuhqZ4iwppuvjUrw5@0{ z2B>jKqf^!(1r(BvQ}HG^oy_xd^020yMs6gUwkW)<@s==i;^;Kio=jmJfhi%!uJRlT1Eh!?Te~~R+(sje zA$L2NRDO}p6oY!I;T&S16#4C6`@srgcAyO#6mGolH;%(75gMkiyxXERjRFnp6nD;A z6Q-3I;Uw=sEyE~i?nl$h{9_CoQKqYAv^&HENNE!P0O`+U!y5rABXxx>-oaG9IO`&W z8a#9lC9gP^d^>u?>|%~^BEh3b?C{~mje?ymGphXHohG-xVtVm`U;`m79Xv*dGzmOR z1!&$yIJic*NFuQ$UK_>5Wdf`!ZK#P}S_=r{qJ{fDu$odA$3D);dB+dt0+w~;4>-b} zw!2Wdy$Gr>ue@Psi+zCAEXAP*rX}*$2`==rHv#vdGGze)xWx@rk8y~Wh%QUPhOUjG znnUH@U#F+`wmRF2Yg2no1HD&|Icp$!B5y*SV`zaBa-ekp2+ z%$Nr-bT@@7edhXMp^IB_PncXIf71&hBB3 zT!8US>jMN%VZ=kJVVou^vQp8dK}NbaoSj9{th_zs46?hcQ1el=^N18+AP#meA1*tR z!FuH9kIq=sosU&0a%;(pXi6guUEQ}yg254sK$R7iJV%^+qP{W)lmMx)qhX4@@sl*W zQM)jEbOKc8-N=8Age_9&JBRn1gILJz>;xu0QZ}A!)2H0UQ3FGc2yiy?P3t85k}b-# zJADHj z71<5V4)JtQiP6*j;}f+y3xPd>I~P0Fcr;*gl!70$UoKR9g@R#sn+y12wQ| z%KZfvjM{m{P6^x1K{j6VZusN8aEdV0bR7IxVZ{}|5qWGd1lnC~RZqK&#Ea?3+0Dc~ z?|{P($`g>w$_t-A6m^=5npSJ zTH5beO}$tZ3)ie4n5#>rC+0tleIyR)Qhjxj5wy%B4f2N%KCvqlAftVUh{SO+b1Y4_ zUI8-W?c8oy3X)-SvhjYBe!Bt|a0cLLaWN z%?m_mJYq$lL8uk@IXJ`n;ZVIH!+l}$sQ0}9fG_=)uDNrves`{cvQuW5UPV@!tKNiW`H+ENTg3DB0B<& zqB|^fso|Kj4q5=v;&q+Jx<-Ny+xo0wwbK^J^vxJzh!Z4p{{V+K4cf!Uo41bgS+wQ? zztN{SAr~-4MpB6p;HVMaon#EDp}yN}C;;3Wc{lBXh0WtJ6ww}D z7WIxRrR5Hi;GSD`h=BE@R+=3aXj=}oJaOW+CqW79b(LlTw zv!56#egNenDOat{4m)dDy#y>E4LeLL4JbUElXv~)V=^_Jqpx|Ok0FjGje*`WGKP(L z(%=VoG(!rF6Ah_fu5fvv0@=#G_{mE^byH@fKdfkFdAcQL@I|@?+$w&CK5;<zpmqO2gRfiTkc4N_LfQ$0J(8t-DXY&o7*TpThxC4$ks_De6udMC+Gx2=SQ!0mQD2 z^Nyp7PtbLBIk+b;dPdK&q1RX%?xCkjAOnojdctr+aMlwli%8HhyX1LsfN@=CYj&?V zv1REl@Ewq~oM0n(`>_C&B{ZhF!1BfRCvwr-gF}YlX-m7h{a^|WsJv%NF6!eG1ASnO zYDVI&P&Zb|Fc@csqx71>>=}DO+uRTD5|=<+#e88kJ#Ghd5CEK4x?ijj&XEJg1}Px} z&YO-rD`h8UxcV}2M7c?ITjA>#C~DDtaH>UODGD5_{W-%9<5V_vdDj>Lqn%EQhsYkW zHeMqMln7ET+THEfBouLVkU^J~Wxk*K&R}*YdmWI!yqiy+yu*#MzF9}v{{XOA=Phv# zx0Uo{SyHm2-2GtzCz0UI81d6MupK)wfHEjNVhu+vpL47OdUiDG@x!-_S_Fhpkl=2& zXF1`4jUPmBrTW$nevxmUo;%H#=c)zKHBroZZpu7-}%EYhk!Z;dDa4(F5HL-p))il zUs=HC0=UoE1BF2w%hoxyN2txkZ^sxq4eK<>_<-VNlq2lM2sK<8&4XXOf?}+*6&H7( z#mQR&1{nZ2TTv%@zp&7yINbwNAN(!=0_^!$w=}U7Y(W$d+Y`HJ>F5)`Ml^#Y9Y7wd zuCUkPDbe;d&bP~nTvt%MOcg=t5CxS5p{hBN4iH3-8f?C%QIVpKE71-9T!S_?!z#a= zaxt`Tzznsr5nVc=o11_E0Iz_Tl->|jzEgEDYjb@lspzmSAP9f%vMaiZNf8izZ)PJz z1mUAW*Y5{VBpN9m`|`{T2THI|#*ha)busLz5CGvjPX7QHEefUy$%(|Hr3D+N!t>n0 z+E0~+g;LUm=v*Y$*8+zG8LV{KdX*qNUB0#FJB{U9)o)YoePP;tL=ZcTQ{}IDxb|EH zK;F&q+h#JM5NSv%pjsed&Jj44xkg>6QG2S`!BW>)@FD;HH=hmJ8( z+XKx3vbyTAmrtpBylOahsQd*}6(=2^y=V|MkT6htLtL3e%GBW)?AIb??svg8Wp@RILk<>42wgWCuLi_u%#__?$A3;J~hrD3?yFBRh%U2 z0|P0Dmtb-qM=OkNY7D$~tfc$XajY=T2-B&BO+>48A0n6I!Ym%BA5!^`{*A7NQDjeK^32Xd3dl6+A32nr|&fL;z$w;C5&xkRUnJPhB~1ULiN#GB=>; zuP8gmpM)wKw|LaMKh&pB)?57pQKSw;z)B@iPhIi*>seZLXpJj_U2BYF0yq}z5^ya2 zVcVzy#wFal=Z-S_cJXX$K&987F!AW2bT#ZAoMyynXgdR~CMX{PChDHScR83O)npVj z2uZ*k;|9S~pk7gR-&p|fg?85CuG+PYWVX#Izzv<^t%{$4AI<`cfrDzDsAG$2iK9y4UF!r~HF?DMymRewyxMt4@2^2Tt8ZWr> ztTqQSpm#jrmKvW2pz97to#!-(NECIf>aPRC&Gmxj>p}rV7mo)GQVCT+-4y9?==6<( zsC*tb)-oSe7Sd~$XG!B2CB%d&>{vYpIB?H;WbBD+{zNvJp`b~$m& zGAA4)UbP-H%%to-{{XfMMMt12@!RVs1=vtZ5+Orh_l-s2W=qpf{ASu^kNSN~Mje{6 zoWpwjXEqMg&)z7&R>KBthMuwY3jJgx$3ZPaDI9>Oec}gE-i|R*bIe|GD0Pofvux)o z3+e50F?OCVB`Em~j9j)Ii;ug;LvuUzn`@x~GXh?-UW=nT5BXCD~&3Jl)PO7Y}HfIGlOUw1+2JIAhIQVFdHV$W9 zI?JCzgF&0OZP()zwaNAyPriRRyOEN0sZPuW9L2`gw+sPLnjyem^j*M`Db>+4r1IdG zXLz9}{fOYfq8*14Hi)|9*8Jwkz%zHYzr!2GA|nnVKr$Zs!9gMmjH@|T=<}@W2>_i! zg@qQiCLmxM(A3x!H5YEz4pkVXM;Wei#oi>ViipbX6+dTs5VB%eg#}Zfsd{AJs#M=h z8>nflW1=LTDhMI^ddN0h5ikIR=ZtL~?lT7-#~vmq7@@}h0C-0%+l|`Jd39$x%C40b zbR1hkuP!fCkkHWGu9MFXMGTwXje%*U(Zv}n-H4w0cY}WCtU&tD| z;og}!d&P5p!rrk>U-gUHAl00WR1eM^yPVqg9IlgF)-c41l%Zk3c(m!k^m@`QbWjR? zJS+a=D5%p=B>FkPKD0LfTv@5ZG%n#@4fTB4L2e%69cR@%U^_vF4y^ePO0C`r!&^1A$<1XMhiV3+Y z3&s$Nj>gb1TUdkP%5*7+AB;U5bs;lNsBS+DAqI(V7r6svFEa;dsHk9y3ZF{zhq-)x zL5>b&^@=50N2_2Wl8!MQUN=LV!5%zh?CmC@*v_~Y@LxNPs+tj(NvB(I_^y*jzHFwFG!an~J!%5RihmI2Q&H{=Jas zuJ_hGVqjc|6goODXFvw6F;e*hN^5>|m7{$giG*tzwmc_$kN%j86dfk5cyT{0b?5>T zI)@G|1k03xv8xr^+%iCB4irwqAn)k;^Ko^km|!=g z1W{z()WNy8OBLteoMDn^9~gc+CsgAc8g2uWlb2oj$LiyPWQ>+#9GZ+p;GVMRHXa8* zjxm{K;Ywr0P+`xta7;<5z%5Fi{=)N1TwJv=nVX&~Riq>&JTc`NjA> zMWG*(U1a^dG}^a~rU=gHq?!k9k6Pb(SAN4Nm&T>`(40WY;>sMHeJg|fhD0q3p&^NargD59! zTqQk028-`rmg7O-y7oN@=hkBYiCH50X~>mfhg!Ver8?+TR!DcbwR zY54r0$)v_NkSKDC#GPOsl3=vh^83V1@dpHGo8Q&~764J!-?v#TR?z}fKOdZJ)iR6H zZ)ctO#x>zt)L!1EFvO|Xk7HQAa;mU%&((VLNwO%S|uvS1G2Lj z@ewgD#n2l&!_hmun(?F5(&WE0c1W0D@KcJeUGzmh1$fiE(i9#X?Hp$U>L$b9Y`{#m zCfR@|s8YtYz*WwJhx}-ISBP!R{u)M_4Jl1-^UepvP=M@&Cd7A+@M~R`0*SAnxo^RU zj4t>nesffm>Y_nigd_ULdZ~$Nz^zMA=d9r1Q#L;&fn}>{4sPa_U7rs)>OpK+aCY9c zG;3H_0$s(tXav^(01Ri}GPU5tMAD|QwkBF_q#~3Z?Xq!}b6xbpNLFz%#R+x1ynBdw zi$EQ!$&pAZ6#yaQhevKemsnaf(2qKEoa0n*4Oq4`FyIvGpndx|JHaJWG)oeSecYBV zNY56SEtkKnDv2w_g>gvp>o>nc?d%?%@7{MjkU87W{o=xZolki7pjx;i$@s?<+SDcX zQhCO<(^wT1;(N#zc!WewR5nv*I5%r09v8?hFqv0w_e74Wl#qMD{{X4-+#meO4Jysy z0ty6lUK=w`n&(xxCyO^R>4HJA>SO6v?}(WzrN{4+ehzlG*$<@6T3T@`i7Ytl zcwZQpF&J*PA9w?>tRtgt+dNF_DK!XD*-ON6lTTs2g%f^E94>(gJRzo?VROI^y4!7= zX^B7?HH99l;~%#IDO=2SA2<+#u!smAHea>CSsFCE$Vb|2!ioz?fnY7!;}_B3<8cho z=)~08P{SG%$~3PK|Srv?hoCjN@&f{{XiY7S0B;YoI8zWoXs7_YYLz{A93g zI#;Z1_crC4QZV(4_4TcKPAGSSQyc{FlN6ZD6iy%3Beo({o*9maSV7a?1FO-8);&&M z3G=nX?8JbvP@jxcD{0YqxnZufVFb~DCEtOWO-Jw_2%P)I&UeYSp-nKo#P+b`$6YsJjBMh4XO| z$wKOk=yD=1mMMn^&o0!A1_UTPu2ecR0-}IT3~y_dL~D8$)Kj)qTmvMyw51k+aI74B zCTQwFZw>ybN0b^#u@Ks+Y3~ozw}aZ6XDT?xRHOm=F8pLpgM$EuuHb$B=BWPPfD#Nw zvd=h>8QIswQ1ByfX1~Aj0Jbij9fV^jlqRQMa4BCJ%CK{Tt51;=A2cwGn@-%~AHEa` z_ZA+pQt`kP2IyzsjxX69AwY=gLDoU+NL&vMF1_G+17O$SNbqxtVN1Hj#RL=0=N$;a z$x;g*HRJ0Lh3DZn(YR7mIp;kI44PjzpA%ph9D{SlH5LOBtQ9T66B>5wSyjk2bA@t7 z3!_qXCzlu2YDo#Io^RG#{NYL9o*tZ12h-s7|S0IAO|k`isJ{tvE}1@Ys6_`px5s1GFaRTn4p^l41e? zP;xxs*EdJr#Cbdo!3I9^O+LpPcnZgAZp}RU&Pf+jJP3H-b2lO{P~8;s)$^OsRYlQF zDsz6r7Jxu|2aq#M;2;MGb;*^3=zB#My-yhpW(On?Bw7Iy?=Jm@R#BxEzg*#GX5qn> zkWlk@YZdS@AOtcrM-8;NNa}~PY-#UEdh%8>3zFRr=O-iwCTt2sYlkM=rv*-BSnFJ4 zs`>C>j^p6*;~Yq8G&olrV|YBBl@_X9cY?isit068+V%`xW{anK$`r`E(<+ zSitoBqm8;Kl;ckq4kVn!>IgAp9x_vFE`O{So8`@MizlI=>VNYNB^v3E3P2Uq;Bc{|R=&1?_4rI#S9l6*M-IXABZm{7 z6O4vA;{$zf6d(&mj8|I?%t*t-M3M_a@!m6wk3kzP@_L8XF!jK&q88*j*z1l?G0nqw z_F*+X<`m)`&hmoA0ihO3z*u8FMXxor{bDYJZu5!Q7OB8Xo1vYEzoMaiWxJguLCR^C z&V(OZy6w1@>4}!N7iwnMe3rvA)4Z0x00wJ6JQGAcd#J%WfdI=QpNl;jIoax zXegQ?Ypa*is?Hk9x*iU=_6f!6OGB>1M(H}k;R)uQq}IjnoR^e1miU}5g8JhtKpirY zo18gy1S+7Hh+SdR4k)P)YaYfHk52KRC>9=J(SPut>l%>LXXNXX6b>Gr{PT|8hQ~Qy zI9!UsnC~P_ zdnDz@Yd=`1JIxqu<~6P6ehGw>7V3wQ&wPr4MTO9K!)F2d99mW!m~mn_N@bq#EWnk^ zft)E&7X+RP4tv0%(^h2H^z)0oqC&V>VDC(+$n<(C{am5vgHd3rhO7GSMs=e@Td10vhH5-3hJtRNsD#jujFazYZ593xivIt{OLkVCkb0ma&0hHLH`;bQ^hdn#SVRwGui%8Fyn3 zbVSOwO%cU>1f;l(19fn`Oc}ugdGvWQj*XV=`@mo?W!S?hsTATn z&nG=5GCAa zt!g}h!I6dRq#s$xgW28zO^3cSQbE{Dl64YY5B$H@7ZR)hf!*I9>k~`iUh7c+PB?G8 z(||lHX)3N1T%Xyp^iUXC<0e)?#%emj^ADFSujek1ZU=~j=D6iYot^>*^n4C%qAnn1 z*l$F>OgiYXG^wL!hmPhSVXTEW!_VUx6NvSfTyUT!SS4?l(-VnVM!z|>dows!xD8{M zDUn(XYUmNXW|@O6dk<6djihGVZs@oYY8(qR&2!E-K&mdPrBSiq{bq|RwAH1t^>HXL zD9Vp9PQ88LJFJ73hU;DPoZMQ#qNat^^5aYDr<4}b*ev$N-5#;_#2ApEJ2wR-C)A5B z2lVBKf20{TDhN~5!X*jFTiVyP2N3WI0vM73S^4iH)H0xW`^_&n7ytvcP00@%2HXi@ zwO$88>u;>Oj7d3TY}SP!^tIHASD{I25E6-LmY^~;EfS|OcVWnur0;5+4N50F&LlDD z@G6r6a%!$|!v;bzqaHx;0FxPmvpvNymS6osAi);`IopX;M*pUzx zjVoFgMDGS^E_f)^F5ehYLS$yUB@)@F$AoQxu8JC(8YL{n64qT1T|&|;vs)!e0Vgk4 zp>DC}e3$@}R3Ti3w}RCW$UqgqM_+gelYzQ#leYT3U?iTT)mot$oDmITLWaQx=>rEh z1$+o5&OnEN#8XA)l|En{@sca9V(aU_&Pbi_7AY!3ny;J#b!pn+D083}1zFHR2Z;BD zt|15VOdiLvVb#)%PsuTjg;r|v6JmJ$Zx?G$Q6RVisB-1xN)1R@2%J0qu%AFkPc7Sh z;Xc)vo`F0`?+UC5n}&#s{&L4*IvS8cq^E8f7?Nm@8mO6SrWg?5jsVg(oRQ3`PariD zS6v)u(NI)M2r(uneWJT&&VfuS&E8e)Cw>{%p=3>Y5oWr?6DW3$V~c2-9ISTuDuaWh zH8{<^cne2GMxR*s^1B&os*P&D-aYXTC#x_7<$YjBG#!PF$zAa=tfL@!&Cx9rdZBgW z2bI>X!FaAg^l&45=XTlvD&FQes6vX>)F9mF-zuR!6f9W5OTZ-R7*4E$jsp;YM`sT4 zA@;{gf|rrF8shH7&|RD_J~EX>6jw;PkKO}IX?{1`)#rHJ8gOVD5e|3Dn*-fpch6e~ z@s+GGKxCo7xHPaJJ;2?6-fw5J$6(da(hE%sh#|E4#phDEszWP<>=~+k;F&nEKy0E%KBe>jOTA>O@XDMXNg zIFA1SSQK)$AVqpbF+bsUAXVu7ca>i##dr3Y$%VvJB@qp%?oIA0D7sm$wSPBQkEude zWzXj&U;_xgG|ReRS@J>?72bt4IgLYGIm3kP!+R=cs66{WLR1{6g38M&ny2z3TIXac@x1TsT(t{0mG=udId8ALHVrH+8ta2bO zQ8e`%#{9Sf7*H3w!Azy<+(}5z=xsurd5fpv^SMGm2h`&r%a#iDh$@-~u?Wy#(B)cy zJ=6t{Gk8lCP!7OBf^v7OgkbZ!>{m(75>gdxa<~w08_6K(nFfBc9lBL(W69P@WP_`E z^f=MuE5qPGE`?Q&xy1N1pv5WJBiDWPm&XV?j0lG8JEdP^&Tc}P ze?s=kP3caCH^X_$o@1~g1lWn5cah&f@OS4X7OHGKTaLW!((5Wx$*BhWhxe451)R}o zqK;xlrBxZ_J?6&cBOz*b+L!Mc(lhK`EUUQssy;hf`()~N7ckXw^}JctCHnNpi!QY5B;IfKhFurz3n`@yFfuf>#I zU(t&(fQ;!Z(nqXbvQ$gM#m_s(-T`{pP_So8Ze`IjiJ`(UPH}|jbXCjeH3Lp78z1gmgjckN!-@xtQQIaLN<)K;323|tA_3~mMlAq{5-*lq zE=7GO04I1PK#vOZ^||*@)<^T{!bmY0Cs&z{L+aF#@8NH`fM~hTi(poVtr!u?oJGEb zXQcOpy@c!&P4M6i^(p;*jS%&MKGA~28?Rydc@FX<*m^Yei^#PH978V$9eYT~-P6|@L_#V`#F!3w zNItJ!juj^hv!$m{-Ww$`1+BNmYx%?}i9I(%g;^AFqMBb}n(A6Xv=@#){KQTc0oq~m z*#7`oO%D-klnTH{qgu^+K|v!yxT}5p#m*7~h-zz>JZ~)>645NPfm}1LGHC)3+1T++ z)6m-0v8Mvh!<&zQ?GY4Me)8xQaz>F$b+YdW{sT2o0Fa|w<0glO3XmHCy*IZPchyQy zKG2Mk%I^$1`UMeqjaP}B3!Z3A9H${>ur#t5@gPMJ;PklN-#9F)ut^rzn#&CtXLCce zs4uQDQi$Cf*1@pwy=a|=8oEH(=AOF5d(H|1%g;a>LOWCgkl2s4N+>~ic+KV=?xfI> z*XQ$=W`Pr7Qo#J<<51I;3FJ_>olEiRBNhVr8h6Kxi1B9cKqFLj9biWhkoS|#)6VeK z-dqmDz2bqe!&qv4GC2Jvpywd2raYz^+rcij;Y%&X69K$&EchuSfEAUA6WBVZi&d~PWtCAy1meg zHUO_cP`@$yd&7p3v^PaRE*ni(3Do@xW3Ey}1EKV%=QvLz4$-ANc5eg*od>S53IK(t zS#;B1oZ7s^l}*qorvnM#Kt1-HY;g}7dGjvo5AVS2ut$3Go%Q>|1L7g8(tx}>gpO&d zl!a>GT02Zc^iGKa0Lwjbk7;NW*^|6@DjQ4X^5AjJc~_9y@J^nwb6xF%*2(z5OqCEi zc5#Z(p9uRB>qgobk|8E^0gIw@;xWxaqN~tA-wHTlX-uD(@_RLd*IfB*b|d*5Y^f~@ z1RBv`GA6D?Cvgvc@nC(kU&9a)b9`?*hBh%-{{WnmhPa~*09nqt#FS@hyrH5ZG--r+ zfDkPzD{Kb9CN)(ITn-IC-Zzy2rL=-UWV0hKM}jVq?E1}>v>b15`u$-F0(5k#fgBgMAc~QZyDg%14*cXtpe<$rptii@02y@j`rBNCHhLS8rvCu>govdF z)CWJDw(#l%1w=N&T_GdqvLD#2bo&9%$1Fj-@>^}~%%&lm_PJ&a;|h0>pbF-~8bPJSB@80B-c);^j>8XexzK0db7vQs7VQ z@p$hP#01p>+YT5$UnH3Gk!}#$)^Ejm&3TQ*fsPkiLE2-=8o`&({{S$~IVnPk+YPEi zi@dK4tRT@!^tdKmoom2i3gfIptf;l9O8tfsAt96WGfbT1duz8zw}?0*esa?KB?E2! zxkB`XQ^@aJc+0kg1vLxfW(aJ(4W0leE+QzE*lS@Ez`s~((sA6VueJ!eS4a;&KN-J4 zQ9rDcq@D@DR|_KH(Ip(T4?~3<(iW6Ej=r3i9X%ZyO>ov;@_hzLCdE+=kG;l&L_;?J z07E8_II{QS6`?sb9Qx}G>29l}blBLzyE?(Ez?oJ}1YUT>RXAa2Q(^*DHIr*pC8D56 z!4s@!$IYYiJz&rh)g94 zP-b$Iq_QfYb15z??S;786jGP2IL({!FgKXvUi5Q>jBv9m$;)Xu$@3WW)D8_k@bz2_ zCe85vF|NukppXKNK6t+@J_j|RbEB~;*Sf@=Lz6X1$@3SkY|I+ zgt5tR=!{Ux`5gZM_jyL40Bs=QtyIoBlV~@6mADRWk1AECdsmCz@rwFHR4c0ud&?LD zVVW^k5l|9B@e6#pW~PUv@jkIom_qj3Q~Jw(R5U`8KC@z1Sq}YTDpVD|uw_iL4tYl&^`ryNJ=clD4Y7DRaj3Nzm5_LRIi?#>Q7Duelg=L7#f7JJPLqk7 zV>2|ED2byej2i*1yyB5vo`;NSKb&)m_8@nU6XX=33A2XI44^eZ8$lu+U67^5@36F? zU9)>p<;Gf}CLQZTVXK5h4NCdhqp;Q>;=o$|ch`)q4`t3fTLEqP!J=~~8v12<4GRn( zoy=*bPA@l%y*vYBp*UQF_Z6+!ju$ECH98yA3F@IjbNR(acO!^8y>j!5eyHy`4tDP< z=%$L97aBm5gDgB@#P%Q*6RSBKt}#9nAf@mg_k*s~pfai(;U;jM`jGcf-uerC-f=2t zN};bi!&XRiifq7%qeBwV)hgVu^bQH2AgHC<@h~1dQBjhrT0UP{d=KV=F%TGb+RS*= zeJWX~@`X#TFy($%XfEYh_lnPNAr<$s`Q69rw9(d$Y?EVH{4}@*i+CGB%H;wkMbxg&u}H9v z5o$LWokblD6;;%*I9W5k$571~0vPjg6EryhlJF3(EZ!?%E(2jDClmLO&Y_4`u$89u zO<+}PrUyZ3oEZ`d2P*(-EWjU)L!M2J9p><m- zm=uH?7OTQ{COxL7Frq*e+Ocs=pP_61`F?CpKWz}+n z&E7Rmpxtz1lo~X=FPsr(L!qi!QTt%%@>$&%-dVe6}uu zoj~3i?kBaUN14ULu#{cUm5TT07uv}o4LN!Hc*9Odi5@tw<%GJ~17UsrIKpa?5f`r< z;E=GSHhIX3ZFl~#Fm?bZ_5T2P@}EVNIgi#raiT?47l8Zv#yw68 ztgI}i&QLWtHIs3e2HV1XjGkU_?zx6f15LkM!tG)R9!};!kX`K7DP(xG`oacPAwtpH z;~X|&(rhQkM~trcD!-7Y=Q%BAd7qO%Pn-bsHv*y=<{nit*r{;c5Q5!*oFJtuaSfqYVm4_ecU+SF|ua5al9gKf+RN<`pY8kbDRr~KdjaBG0xk7Sb5j& zT@VAih-#Iu7{rD{JLnDik6E{ug`|APkusp-vKYQl6RV!GMT&FE9zM z&M}juTl-|F&gJ!mJsQxDhexwq%o+)o)N}x{#Ot|)78^8y8)O4*lNw~P0=sl-oCY`h zu}Fm-bF3Uhq@tun8V$S|6_hl6Do0{-^_HOk=p2p`XRhbuV>Ks(L_hU*WX2pa8jps| zp1^VwLy8vO9O#S9q}pCG{%~|a!+9M40NxFp_|c2+&ID4Xh_5Tg^@hyzfvHB)pRK=@ z^M1Bpa(low0%algDSy^Z!7WR2H8I^0MH|<)u4@sb=-dWC=rM+ujLS-F?Y(o4k*T{{XCPqag*`(Y<|Q2I#6wXeDPWc+ zd}{*E=-k42roH4|qV&Co2*1`=^W*wJd>nNOkU>des9mU<#xR|cr3DQnN!~phZV@1K z_C;~L@bX^doYK9c!)V5{!OlP2hM&0(>XcTBm{+A@~{;&uHGW5fI;Nf{{Xn# zw*LSr2ll^=s1VMEkFhB|m((Jv_M|_!|BnNCiJ#{ynTy4w27`Mckcr| z>l4NFBQUaRErcwAu0OnhE|z2aWs7)$vwOoMgrW~*nMDGdWSJ1Dqi9IsI4#+EEvS+@ zzHwFO*4MY*HC-qnS|=7uGihr9o?kfPtwSE47+?8@8U}fRCQ&?Bi4cMgCyFqQZv3(r@ppjgToHGq~ph|Lt;}sD?U9omP zyk+U7D0}R9*}%Z$R^qHq26HbsHWxzP8h}X9j9IuFPJcl_9|C&EIbsdquVczAIIcE& z0A3+9ePEid8qi;$QuJdTR1#Vld{nh4^C6KR6`a)AP<<>Bi!DQ!dJ zjp5@q4xGuGsxb(kj3XN7U!xtR1op$aC(^Z|3w&P0#r6ELu z9Yx|W&xlM%MQC?7*LiEDq(h;eUEt$N9Iy{Ca z9K->gSO-H?0*l01`pD0>{=PvKIJiIcV=WV6HPUyIMZhTJ(#l#- z#z79qTdVIJEt8%wn3tvyj#iPtV{kuphPtuHXm9<{AYJg#W~JUq9-xtkkwgfMNikyl z5qqRG6gYOKMeOoRO*Po%+y4OM(*!~T)WUFD*rh@zl2H-rIVrjv<;O^r+AcDd2C`|i zJ8obqu4o9Tv2@YEVp#(HfNW!H=qB(vEY|BvsGv#-G)zDcqA!8OmrJr`Rv98m$&(?y_vrnuGq`ee!_fGL5AGS=op;UtJhkvIY^$`HXQ8ehepnjujcm}1* zZzvTYJo;4pV#=GW3a?~zWKCrX1P5dxd&$?30jVQZ8JpgXG&$E>#oi08U_?}MWq^xf zZTE($OujNU;4$YRu86d!*r52H@XvxJ$fUiI|jx}K+T=7D&Zd8rh1 zlnb#}hok}oucno2Mi8cb$mD-bB0#o zpy!DKFA;NJXbA{&VZO6cc;}BzI2u_uhQn&X7IGZcx4$?Ta3N8{%yV0ns)0^9)VMz+ z`kgJ%2Y#~LixITHdE5zraAPPsk8Zu^Ez=8HCqFGJe!Za8@3=eu{*vpkm8Tv+k?v!R1P1%tRwdcLo2r4xWWwA{g59Wx-h`OiSXHcTo7&A14b>D zmqwlMUyFv@ttxQR{&9VeB6J)Hnj1jyx$!CqR5GxZ0L(yjU^NEOL3Ork2itT*QKGov zuN%Q|vDVhWRz3)Dud@(#m)-8*L#U`I zb1>0}yFB^A;7B)UwNSkhZs-31qyGS`G@?$+I$PhI<+X57?|NjtO)oD{+ZYb0r zv^*ouOf?p_F@gZKc@*LPvPcDr%Y5eZeP+i00Bkd&e#|8-RKzAbK;yh9%8ENB722F! zISXm0u~4A@0Guo_{&4>QWE@jNjxg#gdtOIHS9Q(TT<}(XV5z+j$NvBdljI>Dd=JH2ZIQfMi-zC4sRI&8iK5E5BS6gi=uhN4%>q_*lQ-=+2?62AXJCKWby2^I<6UVSg_etiN-v2Yv^P3WXaDGZh5!F-m~2f4uU+KpOIaWiX=P6VDf^C855xxnM{mUpbJtUFDFT; zco-wi*kEm4y%%%N&(HuW=;yo_TLhXeXGgfSOd2LjNpB{&2qbe$$G;&L?>i~{NfL| zZ8QxI-`9)@x}?Sny>V~8v#Y*qV)P+bZuiNQvObXTu>qO_F?EP~=RYMP$@hC; z5MLk)Xdh*{Dx8O92Dw$>1p(1Lzs44o+h%GBJY(jKD9^&+6}T*3O9U6Jsw2uC8@hC! zGC0Kn2Z1pt4dqh)vfr8>}%WCmVPJCTrXA#>oY6qemTt3hZ279mp*{peqY8k1n}7ultuP4&S|Oi``B3P4S$X~mzIo8-Ci;@sf)%e)yqhnPV-X? zO9*bQa9s&SKT6)a}>FK9PgM0qo&7K+pZAL6kIWa;2){?{~ ziOJs`;gDe+O792?S7d;xtF4V3paeQyCTS<+?1}|+z}|y5@0I*^2)v48N4Ww9!%4rT z?;hEDQ>)rv@?`t}001oqlRe;gU4S`oAN#z27NuoDVR`&`$+Q3i2>y-`-jH)la%)&n z83DNiP76~8#izmKL8>O7Ian$nL`+_`-UIl?W|}L=;#(X;tAK|+;tYZ2KeGP-ywD1C z22=@M47HM&{2d8Ka1IP@aC5XD?--{^{xBds!yEuF6zQu!Cobl}z^0FXSx&TkFb&D# zI9L5(57&5duu-~xu&e?o&#z00oQn+64<4ZKfrxZ;z}Jdo3tWP3^kp7Sm{#TN7pO>!RY_6c7Q0G$f3Z5eI?O zO$>@EBsgY&;r{^M0Wo(F%J!MH<=s5^mLBAvYXz#bGsMbeK9n&bP%9{ga|eWT<~3LD0^ zIR|y-sIXY5cef^4G|d9uxylo0zRSzaLJP3zt?G=`&rXKi*3tn5=q8vqUR zae`dkvic`C9&q~Cq3}2hjH^H>VuPegoQ``kk|GKY!-&gT$`2#nRc#Ck@p6J-kkBRk zU4AKrrkSNUZ~p+9X)`Bl?&Ao3vQv=YBo-=w5_P=c!$}dv#z4)N0U(1L?*i@i?pjVL_`okv5F0OCl14*;LE>l{oC5B~RYXkEFZ zO_;A(v?#PMIEv0M>~)7?1IX3<;0#`SaZcP~$l?WSzuripD|vBU!s_7~LX#Is?8Z%K zCkY1zk~_i6FhMwXco;Mu1G1P9C7$O<$I1D{JIQnhV|}ZMD>yr|tP!Xsg6NJ4C*Mb3 zyoHhiC6LcOVhG|<1=26QPPd-m_qU?k z55_U=RMx@&0K8Drj4oPb3*I=%jY_<`#mqp6yqqyk*abG%LvYFnPo1sA{1`L59`PQY zZb=kG531mBhDZW2N%MKj^5wC7gFPF~C-OWb^ZLnrb;m%>KEau!^y+zis3Ew1aIHiQ zJSw1VDb_v~h+3R>6iLMOlY0t%Kkx|eTf-!pKw4EN2>y}66t7fI1=?c=dhMus}| zh*kwutArMX4vvE&8s}z00C!ib?->`k1aU}-%og}yz;;Q<7JJTa?xysy0ssO8MCm3( z`6_PFId%r`Q0l;tY`Nu^9kWPpcDpI?A0YGA_I3cV6l*M&WF00@;zMe64;`z1NP#p&) z;JLX#Qdy+uYR`BVAW#%TbWn>*jLYkU$ffQS6<83EBH^k?NR z+`Y$t-Y~RCAA+OcBQ?faco}He=m3GQ-V*H10~^pxkrF|ubvh%)5L*DGR{sEanWvH+ z(L28KRpuJcLdO?{!9 zS1#}X=xnxXZxO<&UlDnH{_@mWJjgv0MXOPE1MS%$4W{^lG#X5hZD2qlb`V}vz^E0u zG#>`h$Zw3KR6#|c82!BEe3!8jo1nFwVi=|Y1Gk~4UFNvT7f#dfy$I0~a}Iv$*qieL*t{pQOxH8-whv-O0a!)D4X?6zWr z!>p~XS3BwPl$afjxwJ5pF-=8K?+Srdut5#;`!VgH#!B9UdR(Ong!LO+H`KtT zfgunh(ark7Jh|?ub|mWHFpNTlB97La>bR7HaV})(pcG8k6OBm$-Xp(kZJOa@}34H^$=QNM48fI`WGKOX-8#!8cm0*23y zG8AxnR)a+4@Zl*={Xq&Kzyh-G6N#wO84x1~j z$6KqB1)-P5uu!()(lO&}Ylo?xN*kh`|#6PmraEFavIsIil z5)_UB{J3LJ-V?ot2jeZ20uNF0Tho?LyA<=k&L0sJ9g)v)9CFup1%M{aD=q?U$SDi~ zY6mdyZWNIX(r*@a9x=&VLv--upQsf=@o`|3sc!>{I-}r(c}Al;xGirLDhuex4MtS^ zE|reQKM*ME#@RSj1~i+S*N4lGz~iKy5p<&OyXygSI4(4#qrPo5hO#26r6EEa078qt zUUUfK@in!3XX`e!kM#0)N2kJo#_*B4aUZs$#Tne zLWB*PhJxeX6b5!`5r{yVcFnNxz&N_A+L?9B`9^3sKE>GOtIDi)6S$lYPN&hGLWExBmPX^VtQye(}5oxO377*GcR zmxPY*2Od_luwPC+VboYLeup;{iiM%3o`bi1?;jJllsqIOT*nchhJY+NJ^1CrE%DSr zL|L6@3WA^D0C<~vTv^2I@;vCK&Q)qWFYOv8ECoTX7>kf?I6g|9}>B-(?jmT?LgTx%S^eMRrn!97;ltz?`oNO{_ z>~)ls8C6Ct=qSFon_#K1lk)Z&^|8g3|q+MiwM$#bV4p`aAtbUT*@6W*)eV)&e-2TpSELy(7LW7g9cmS160?$XB9rTqAEb37zgY=l% z;yece2scHU1sw=WX<+uV7O0QA4g>2b0g12BAD8-YPZl$ckLCXW7}R!x`d1Qwiw1Cl zw;}oAaSUozuGO7w2A-7aCEYp@6>HxdF%KuT0zV*(Hrg5<=!`Z)$R(Q(%4$VI1Lwl>R1hJCR-LXNkBc>$%juC zk$M7@@ZmiyLpE8%FlGyFkJ!RU)2oGaH-~0%{1qgM@#lEA7Iau$fa_b{dKuzEoArW) z8lz$Bco8aUCnNN@Dg&1&kYRVN7JYcmPZg{> z1V^+eV}?7d;*f^NU*iXkFnS=5JSTkN?p~3yqp!R^UvUvYY~Bsvkwh?SK+xxS;zHk{ zA*VK+I4{<;Cqh8((++thgL`%1c|j4@^&J|EV4qjiz&KnW0>pDw6hbc4Vwku)zw=H% zj=YG%Z*YGfc*ulBgg?sM)8g|nsNXaC$(Vpm;sb{+F(G7=0=u+gd-0Qv=om(2NeI4sYuX=vHm|Z8^hET@4S+$BLB$$ERKn zG^uVANrszM*yMA@anf;i8UC_+Kw?8gMpL%%kPvzTa!_}2%cCV1Zk{mFZ7M~{NZj5O zz2wAv~(mZ2|6YKD-#jvQv4!J~C# z{bgqIt&w6n*XyhuCm1xON7{z9n-<8bic(%f`+Cp+06~)f0C-6n*i4s;i}9MC4W9A) z2E#NqicsgQ_6dO!jia=*)-iOYRcmJXeD{wq^AZB09bY;3-o1 zN_%c1aEDAsbc;H?;Ne6NR*SQ9dUl2jW9VQ>JOty`gRHKZRffp{t`kp{c0ErSp`PI= zgOuyW4agHv^@6C8&N$}D=I#ze*jHlnv|H%}Q3@XNHme1~Xk_ZDJZh#ohZ+cNJ&y{y z@d6Pug1d%V@va$@Tqd;RNIrw<%~}Hkkk@@ob__s@eF$^o?Zs&KEP&tu8sk~YOn6OZ za1PEKb7q`EiiK)S;k@UD6Y_75xz1TNj`l;gO}tO6PC#I7`)3g?5wV^I?~r=Vws^(v zePAxIV-Z7On&pno<*UGmU5^BPY|1lt#vG2oT{vxrrtS~0ii!Hj2Mk>)L+<570(#23 z^_*2scL)i;tbV@`i$dLl0laz1$*t7Dx^;iASu}?bgnHc+xFC2{3E4%5gKL290F^B7 zfYxjSJ#wgX;J*CQMxYw_z8>+@W{91no8L|{n$dx{RRMAzodTS4;5_@rvjJ#U!gEgC z;1)j}07Xkl!EQRYb{ql(OG7Pks!gQ6@Ck;UDNjsjDcd=`yrubG9X2zzmXvLYdo z>(s|2I8?vjb(EMu04HAXRn7v3@?waNMQ}peJ0Ic3Hal=6K8J(r1tS5pcdpN;7W@Yg zCFTSF0E}VD5z-n4x50emC(Ei%4N406#y7d^&%8UEot$NuqQto^R>y_Q+s>RAp?an& zjrR%;2w**$A7_l>2}VAL2|P!L3By)*&V8VDeZKzi+cXp%y-nni#-q`QRi>fPU#~G? znVmQWr%W5xFBk||-&?xi?ldeTuIa11Ykc4>vu1$-p#46v~)(OjwSg3E2Db znn{>ax+pJ3_u~iaDOCh$o&|ld-<1^C!_s$;H4Oly8=$B>7Yx0B@WdKMasu&}y<#Yq zjq>EyP=wZtuXR;K-x#O5e)3xjX*V|Wl^UBVq7+Y0`w0rbB*Rtw{xWR2*UQ(lg)!VA zLXK5W6Yn$&u#cxr-3FbxS5*R=8WWA4v5H7wmWuJnevHt&u^7`t;n!J0bMd-$5ZhXL z=Qwu`P6D1wfn$7xdmq@YEs7Vz^g)p(zPZAljV7Qa*jWNf249709CPo!Yp<}ab9P|?UrLj)WIZebieH!JsPW*r&UsCal{f~KuWKbo1;xHlR zg{>{1yV`S&z)MwIrx(#hq9q^+mcGlpofyOzqYm)<%MK=D%7 zks+=drm&LIL>2`Dlhf{FXss&YN1eO;V)2+td?GHxEec)@cPR}w4mX0ON)C&im>-Nu zPiV!)NSj3~Ru3wAdR_z(L|PYEBu4z&y+ld_`^4d`tSG6y3v{QP0?3GaFc{{|Hsl7a zhTV^?tqulh=kZ;HLdsE_bGL(?1SqPA*cXfIAjDkAi{3j2A-4Yi02#W@Qy&uSon$xQ z-lp2U?;c8{9z5XNQ=sj7KXVnfBub4M*#zYrHo*mLAU%m4n1vKGRQc?NsRI|zsfZe1 zW$PZ@>BguCkIdWW4bmFACjJU)`@z;*jKn-w@rZ~aZw(;j>2Oq|tiz^VA)ti9^3+5d zAo3#@Wl%iuX|BK?byGU`JIPRR zyVh=$PMiWI&~by1AcBqj<#19VLvx|@LDF*w9zilRa`VXQG*GM*LVvU!nhWY+?-<}S!&vEapK~e z&&h>9#$891^c<@}xbuw~s|^irj1j?iDu8{E)~|U$21#f;Gg{s_dN~0R$}^syylHi? zm7#hp*BUXHQ1}58X{R>p4F3S6jIOHkPZ?{LgKmlo{#ee~nuNTAN&_y;W{Ku$Oq2l{ zH@ra;paWd1H$%R$$0uRTxCgxd0P|1##{j|V5HBuvi-VIPfg8Sf#aID$04J=UptKRN z7yTHwV622U9WmdW3kC3dpCPtRjG8hGO3(o(hh}Ppaq+0Fal9(x+aVO?qt>~`VQuwQ zA4}hi1CePAl+{{XGz?YOgmT^tAR757z6@+!g) z7_19KBu63_^kg$pz$}99>^YnA<1w`j6l?517*mK~9-$L|pmf$U>IMA)sysq>b4l3% z5`kemLPfcuzM)0e(6cRZZ{3({I3!$w@t08}xfwB}_oEXx)9l(E(urPCLA zL?ACtFglUZPk5rk*=D4w7l!fPk_BEWs>t|o+h#$rl%x`N{kQ;20NqNxZ17y9QrX>sUZOH-Zpjzr1!3^vUQ_o~{S$2I9N)(A(oQSe9~l520~3nnf5c zY{OVELTy9oo0`bs=Xf9sH?#4ZfLSArl?amK1R7&}P*mH(n&ryc3(5u4dU-ywCq$SH z(NN=TE)sG*vLbeKF+FySCk}8WOf)xeZJ3=SC>#j#lP_I`H`EY;r?{46WQ1ZI!@Mpw zh2pr<-HEpiCMIfhi^4oOj%4FYy6a%xH>{hXeFRl52{ik0t>5lp-?Er@kEa}3MA=>8 zZQ3p41!P%mWD<(xo_fO%9*e7Q}jFNaJ{Q1DcP+A^DPxhWLS#W@$VvTJ6xfeE;y+ApgJm+wf zExf7|)b9#NL~U15I{s2LT6OJ%E zz!izTEIm+aI$SzaC8CZlK)SN&*5UDn8ue zTPJQfkO#xblw&~HG*s2r)&IDl*d^I;H70vEw-4BGSKCcP;|1VASyfAa^sOEMG^ ztVS{&>Y~*}ICn~)mN`u@k}!4I9t@f=lLQc87ZBKu>G6m{2)IES^zXh55utQDpru#2 z9jp5O9$+>j5MNc8UX!zg57KLIMIqWzf^+Vkca;S|hkQ z@~hq=Y14;S)|C-M$YGL@8IulCYTN?wgkUErb$ow}*yg=DjszKX#zuX>yEQQfbX&Y- z(ijl=9bjNJGt;8}@Vew6$Idj?!s&!cRY#lv4j^~1AwciFsNg8Gl#>efd)FQ1;o-tH zU2xZx*6}_mh{$_Fiw-GRLj(lO$FDFC+h~?P0sL%aYg`PzYr7FvJCv?2J@_B%r$K>QCEcV z<2Cj<#Ey|P?(X#9bdW@Cx;_5@^995My5vU+i0|>2g9e=?ILF>f2Y#IXa2UrlH z=>j`?%Gx9&4Nn4z_%6adQg@(=asj z$b`~^61!J`$Rtr^5l6^Pai5~>{foe1rnWz9EImxlZtk&bCd&C;yyUS`8i&_-7OqyK?;Ir| z4jZ=!DHh7;5qiH`nPt$=8%{|p=;vkFSUNyyHgaM*G~^o^UpHAo9ML#+kkAbSI`7UM zj;DM)>CEx(Eaws|Nf2F{Xr=|mi1nlh*<`wLmEu9AMQsR2yoSpj2obk8r0J} z-f@b35u}>%%W6&X!rE5OkL-L@p17P2GX0!ldZ@W$I=zE?=Lb`Cc~SIlP@kN7&jySS z0=gzC^lz?m{u zd4*Tuz%d&|_83v!@sC%qmTBzGH;P}e%G-14zz9VI>I1H7p75uKw^~NDLH_{UjaAK| zV2(+S(86)(({Qh~&HQ2V*mMcR)8FO{(OL>MH6rtiYy|m=&NLbiW#p(ye4epMf|`L( z<{$OW3dEpA1vT@68`{ElsEqX+!2=w1thn^>&7b4e|V$CfqIOYIm}FjO)$bE zp=PlXHhLXGw)8f0)-o;~2G-i*3!G`eN$i~wpoH1+k9 zh6ErV=!@2HPimujCf)Sp&%R;tE-{xn_dolLhp^!>zP#rXjCG=XULRk)bV1#c8%@nj z+Eb9zxjnu3!QV8hL^a6G9voPfTrZKqCWF=x;WDX#hkj(^VwoOY5R_=@$-a2r51M&L zqyGSV%FZ_hRG0IHP8vYx%K66NlVtr*cLvba9kl@KW6v&6?KMK{{5rr2i>f4;HZw+KsLB3ulB^|h@7tHpZdV_@)51A*zRgze2)-L`hPyN zTpK%7fwKJ_Vv>Tr$RIIYRW1=;Y7uVUo$n4Ly*~h4GoQ{iW?E&jx--kpB**iH#GPuq zxERJ~+Ks!Z^^n&oyW0$Rs$*b8oH!c5=-`4#>D-vXN$pT4QT}i*ky{GlsXzofd&LeF%(@~Xy%;%~iM4pbCog|^e5ejFi$P|!tZIN9 zK>81iXqA?0Z0e$tnt#q29zimGE#$BKcdM3`*jA3&2p#om_S@E5%v{s_m}a-{r|f4Ep~0 z$YtkTQigCja?DKJo@Yz2hh){(Vq~rrkzzM^YBkYdQi>xH>@Vkg2Y2C;%DclTkc?iHp=R*ase`0z2A&7eH9TBI)Q-Yb zJr#K9#I0}}$;aE2%57oSV~=&bSqf@7eB^E|c5(Q{iCL&sI~G*p9&vva+QeGLN(>4Z z`b7am>g`-(X(WR%uoW7ov=<9{R{8wth!8Z4Mk5-A8C`lpF!1Tn3v0wBT)+&HxHVPiF9Ziuj6LiRz zDi}7Gy^U<~yibeyX!)~?#HK_>*vdtN)AjEVM0E5omckDXuXw0CPnDdxKCpv_f=n{f zoH7JyqB#6yW`dLra!z=`nMvU+$|q>)ozfxKLW~&ae4PGp`H3fNjwa%4an}kBv8{pM zCuXr6R>b6^dyQ)H?&PVvkH%;|Q%`u|Izv&$*MzD$qI7)yCY7&n!7y90i4g^qVY0zaDlG7r7Dz~=g6&pV^$_>IaTF?QG%AibH@>oohphfocP55vwRHjae#)#J~sNQx-}$nwiTAc%m5O)oz3>p{Rg zUPSM)_;YHdZtJ-H;B2U*X&K}_BQin-yY45173kynG+Y!>Ii{~!8o`T9Y0yy=uRPGO z)|@_!sSj4Ko+z|H1-mscdsNRKEooMOY^jTJ z?Zo3~mlWM(GT1@ajDq=M3lUX^H|rtrO%V?$<$w1ujUv&`DudVK>lhYPJqOg@@T&^c zJeMe2nCA0-9RK6GFW zQQ53h2==K#z#KQCVF79g>;MOo@1FB(GC&Ikgx-Mb9c&R**-Hx-eGV|OP(&fcO@0qp z7!un_!P0UQMPH0NW^MjV1#5RCk}$3xn1rjf}vJK>R=-#l^{Z z&D82_i}{{2b&xg+@I1bL^3n>mt@PeMryziLMD!n=eLEwxsT2Fbg~AwmF7ZODR`_e^ zhvOKuEUE|vX;%KR%2rktGjnfT+;yg^VX&L%=gwFfnm1UGdr-3lN_d;X)Vs#jJHg>{ z5k8!9EENfqjt&4(;6hZdkKS5M%JO6F=j#%ZOTyv2i7*MfxN3^$97@iY(5t|U>$d8nuPeu;JLf!QjOx*rPx+@0g7Omu3Ibw@iz$PQfZLb)0@iCqN*h5-nG~>6ZD$oQd+4*ySw9s=6ec{V2BTwau zL1}2=#E%#$nl8~gyR%q~Oot|5r3#|&QwQlnX0|l{0G>VJ_Hu5+!2rR!4vY$mRAZt5 zbOljrxF{rrcAL>&P_@QXErdD_*41@))=|W?146RBI9Pi{t!O@8@CxYG2IuXU)+|IK zT=2Xb!9K#Oiv7BnY<8U~hLTsI(TK6MxWqW|kiZ+t;oKY(yL9G^pa&@b02uI27%IX; zgrM(Or8hc`K_vmYC#Fz34{=FDU7V)z#Hc|C03lXQbYcVPP2OA3iTm}CI>9IyCz&@5 zciWQl7&T3;{{ZF^F_x3=k^tqXzOn7Gpf1Bw)k@p)~VhWAocZ8|; zj#9b-!W|ZD%cbW6EfFUNW-WH~AG`^ybG&luHbKAujX|diq~0irCMtav$BcfU*0DBF zr30D!!-!o1iV=iqd6$cYc{-#v3^P`ntq!rnAfmkvoBseT)r%^5>+rkRRKs=h6p?80 zPu?bmumd2T3q9~jnu)RTl?SPdhQcGV>PnC&;xga4A5=IXy(!Bw9ESo_s*wxKx^J9T zJew>n;DsUYvp0YdAnBTAVIQ{f3R0%(y#?=j7=lxwqs)Iw#j)u-UE|i407;cgJs}-Usd+#D@%4`k2#P#kjI)do09pdr)8ylS?kf z3n7UcNlrvt(BknsKnjpFVN!24S#4pV#l=HzZE3At6|XBf*X2114G`^XSgo1#6ey<3ceoAy`8xB9^<8#D&*T=DmT z(j5b@d%^`msei8-C(QxvtEL*E;QD|uD|+iC1JiDe(KxtiWPuRyBc|J;Vh`GDj0a)w zcuWk^Jd4q;)4Tw3;$y<62FyQ78cxBnP@TsJP?1Tn2BqsMELH$L8!!#0ehW15hBQFb zcn2)&UjWegz)@w55)qI(xba3CuOxRlhGF$cIaepCfP!|iCWHR~ z+--e1QXIJYWkx4OHQkQRUf56-HqOg|W;RIAaBcKB!0_M%Irk^{!@1ZBARQuc^@VDC zRgrd4uVH}UB&lLl>mA+XDuz>|VKs*9VTW;FvOk>BZ;v@H#w#PRdl7lQF-zYq=`@$` zSb768CaF25@X2SA8Y{8`05Sy9;AG{saY`@iL_?bo{xg>n7#Bg&f2{5iw`>A-VnKB# z1z}{%As!T7UEofp5<||gJ#(TDx04JqqN-bbiKEbmSS^7OnPyalI}k_AF(kPvHJ!X^ z6w`qWWV2vM&;b5iAuXeq06Hu=)kDjYP^*0RvlW)J{&3O}9ql8{@%H#!zT zLh$rp#3M!?bd}<348N^)k95OAlO?AfKHoqesfEe*-{kmkj8nrZ5^bGPRxd$4@)w5lN?`cyt1= zMzMI^r(M&<>DCuRHtTpmLa!KW2E@S?MFP)fcn&4fBy@kO%xpzk33r~m@oFP}IGN_M-wzpN95bbb*&F~XDrH*KPySmA&p z?kFk0`d}rWAK4I%bnBaf_aMfUj)Tk_I>8j^fR5sta!MkFSJ&1F=p@w@9;g%ZgVdHt zB-lwApaI%k>eUCWcHL9TiTZ&eEM2c7Mcp$^ab}R4y0M4&)zSJ8XXndtuPG3q0SHFJTVayH5y!iUb}EObe+dQ?~d2;1;V<7u|eNs zj0QBqQ7+`-<9E5T1k#-x_~$i8%e)R1XQr`00&_^0MJhiQ>rZGc1TWxEA6TO`2}uJB zr%>KSA;mz`f^~vrzPgck10t4df$5jrj=ct*+kp91=>B-Z4u6Al53KVkIcjm|jMdH^ z3zV?!Y!~&3D7hU5hNj;(%q~pAhQn^+%oH}LTfQVpwE4;`YKK~a?N<)pIkOO^0Z7BY zOda8)x7azfqVj* z!GLd4fBA?qq0i2MKUgOw2y{-&1Zv8!Tx4n;W1ju=r(oU zu>Sy{pq+>z^xyXyFJhCapIL{mMO7%ul) zI4ge)#$h$u_2U-pCGF8I7bIRyTpNpkr6^QR3{-<0#B3loi^j{riAF$)I~hH^z2NTh z^&wGtN~`ZEEVZ4dJmOHJv|oHKDsF(-_?~jb;G!xOZ1pdrg8Dt`Uqxh90K8y23-YsBgVM|!+TUrsxL z*->2yUeHsY7_@~n>t{Mf2`~H&peDSRP)yc=&@BRScc;!(VwDc$*q)MNe;*-dsLOle zW#xM*J8sl{*>R%|Fk@aPSGkR|adsVJNnGeIydw`9Kt(FA4qM&dzdRoiPyXB@fbz5o zIN;v@02oDBs{?Ir0f_LFJc!_Rr?-cfqP(0uJ8!%$BuPNQ4e_z>HUTJ<4vH(dBhDI$ z1@C}8Wj)+WL(ZxYF6&Jj&~uLFiZyM(TndE-UxX(llAsQD*WY;Sg)9*sSFPd>%c{Zs zht>zC4Fw``Z+Ha>LhBB_r#^E-_?-alQBDk|!=S(mLz5JsSx(Qh!-`7UCWC@bD2w{S zcL)&RD6^v)H#9dBcA!h(%J}WCaWiYOPYo=xGexYj~{Hh%3B68I#==_ua08FIgTsF)^PO%5Y6@r5< z;hVz*@q{ZlQVY(WF*5u`GzxNEp4?{#fEQTlwm9`6->eg4vy87fG`=|t*_mW_N28lr5GcO_21J!v;);>xFkK{M_3_yqq)njFn1NqMC=*^ zJlt;T5u!Se>4QSm*;kE%GpWOr>rp(rjqMEC1`;DwNbZDN94fFZWA`7%BC-$*->iUi zlWXG~S3|#fSlxu=#EDTQ`7dR}+!QqJg4gqG5IyX~@ZuoR+|G1#+13C8s&vDf8_TM^ z4mbu0TT$B*c;gT*z~y)E2_W{kb@rH|cIb03yut#IJCuuFq0P~txd&1ctLMf|NL^QR z)@p7zACc!ZBx(li2LzVmv?hSFUd}KhcY00X!N@@C^}VQ?Q}s z=zuv$*C-~>WihLYSzw2m075(*D#*(MMAQomy$ONF?WPdw5{>DXliYtUw1U zK0fd8?S&^|jPKzZhz?g+Dm3f&n67#*o@gmg)Zh83Afqa2WEK*M75+PAVK%geN&b*N9(` z9E6{YGe&_RqQ1Sm$TfsgDE571Nj&nq@%4g?Tmp6;HJ8dj*$%xh#MInHN|XNp)-&@d zUt&rJ&I-dvV{(iC0Gws%QJE-OO*C%^(vvILrq6h>w;l!2bbJ{RV75c1DA>EZY^xiI z38_!%->l_1E8xdL*K+|y_JeIJ8aYkLAf~lUFHzcvUC#oX_l)Ua7APKcy%S@G(Q84U zusLjFDA%XLjvADm#@=it2Lvlq+G4P+3Jwfe-S zF^H-VqaMrSH+du4kr8!5YT|HpymU8=3_#Oxlr5SZB8(;k+i0&)Ny=rbnGHmMLvy>f z@IpZ902(jN)&rys;&O)(hWX9JglO>J9pP|ji(`-LEi6t!C_Lo6q)Ga-Hagk5KyxG3 z<0T1Dkf?*%FBovsOUEKMzvf)s=5`92(G=dpesHQxh=OQ5Ol2_&+J3M@ITy@zzrJ&k z@_IV2c@;OfAyQcQjLtxDq>59Z8Gky?{x~*((tF$;SDZISnj|P)KWq_J1rtsnH+9R8 z+!ktw>Vog@HkXwHR8z@j1V-{SiNo(XId-6ca-#Ln%RVM<1q1JR`nh+5$M=IIAT68= z*?^peT?Br?^_ppni? z!Rh|8AUW5UX*u9bOY1%eX&pnEjG#8a1rN~H`N(4}&m_4^`7@jhQA`jpp4u}6?wno& zQmfjJtULs$!E7Y}k1Q!cky ze9+4fL$so67wLcv+h)J-4-F89P-vqG-bol905sIxmz=NkQ8u^BA7SGOT&A||v-HV~ z1YrR+w-9iadDQ3&nGqKsY9t}Vk}53PJ4|yXk8}Y?bm%mXS)xLK8jr>xN#QOqhng5u zoxDspJgv>d2x$v8{o;{I2$H3)T&YYMHt3G%a7s4~6S^G%Jkyf-83M|MPwOqa8zTY!_`qkCydsPuF_?%6WZ>z!U#w)V*n+(Wh%fivQW%mEB)LEQ&355r z2-k+|fgF?YqR#f{2#a2#GQ_ol2DTJuAq$rIH{!~*SCh>*TxMPG82|lfOwC2%dG~h)1SObyCMKOSMdDf+>At% zlcn_U5k08}x%9l^PXKOG!?VQmjplCd=7+qObR*CoSQI+~j@)r6;`MPK3tu$YJ40M~ zz>v!1O5K_q^_GQ8kWo&WKaY9k`kf5n!WQy~XT2?G;NupJyGXZFhvxu{2kdY^#tYrN zIOKmg?~qM)2@heKyEmd}M<$Z-#OECc?H6zU)(lY8KjHP(^J?xjtHk>sr!-&2aG;Ta z9yRYcynqyK3OfxsF%3~cPK9o`#I>d|u1JU+BgV6G;SE3n!5P?q@KPQI?dKqsN4H)B_+->Bi_BU-Sa9+u&{_%hIUXYjU5?X^G2@9LqPh?~ zyFWWy9j!fvI&@$PlKC>~9)aG2wwMUKWA&qQgm*{1W4#9yw-z-< z?nQ|WXbeEk$?@1zoNRK0|76(DiHT{&dv0thc@u7?$7G6u4Wc9z4)0@_PN?Lojog_MK(!pr|~!6uT>Dce$%q7u~%3RriZgc$+V@&5qK?&-23yy<8Y{bz-Yr2-LmEw^rSARcdLNlN0D*w6!^ z%d<9U(Y)frVS95tV2p`veFjOIhFNYrPg4wQ9-t=OWAGShCm?CC=Pr^iL*YC_UyKdX znpbCt_<6?w5+KrdU1`?1)w1Zd;%w|fR2tJc{GY$anGFG^(m^P>|R`qDj;zHyU+r2W-b0#V30Ia zrCsyJQi0-$S)@gz^uYv{4vi+n=^b5UreK=_G^Ycq-g0vsPjrB&hT2uak{fbo0&nUF&0#~m$60y82|NJm)=l$)>w#er07$2NnQ)pYfT=@rV7V3w{*#34z);USV>BSx zyVPM!dv}FRg8u-FeDS08YOeg`E)rUgcoG6((EVaDX~T!CmP)07DdE7B$tJ^9@2p~{ z3=pXfPsccldZZnPfxi6B+=AT+=IGHYvG4PgcBPLEBm$dSt;zoYj7I|fCl7a68CpK3 z${b#Bj`L*-t5ex|Cr(61iCh*QRRF|VQK4u7=`Bn_SWDo8pa6T}#t_g|0t7syfzA!} z{{W*KSbvl?k}jdK5#UWXr-vsK1=!9Vz2UPVRW8N}PZ$a%LZJ%u{{ZeNgu6gho;Dwx zETOmpA4@Ia#gPYqwuPbKZ!ZG|O_8D_C?KZ5Cao!A2S8g59x!TEv!PH%(g_suU=3{~ zVitNS4Z|(_dH~rGr4)J*bb3}!8i81CJvb1|I}>EQE5za4V4YF|`flhv%o^re2aQ1R z;nosxCtphzoX%RaA|XN@xC9dYJ!9Iey#$=2V0ywrj#4QAxBf1s-_EqLq&hE$e4EAz*}KYr)cFDn~nqpSL%$LhPd%-x*d+5yO^;h2NY4 zW=xW*f>wLw!dA+0D_k%yp?JXVvDpzCM{-_sWUnPx5Ro8l0`kEY;$Hf!QFO*8^_$}i zFw#P;V@0sMB3Qb2UT1-$$OzL>z&{v6R}Q+un{YrE zIC({7M%o+;2VppHh-&F@qmFaYS6IRe5R`J~mS&-G>Z^63+{LuW#KNLUX0Gti1I2I{ zZ?-pUGNJ(sBVkNADlJZ0B*K)eTEvxL_iCfJmv9Ev2{jtnTO7L4xBCLtJxl=i>@^@ooz#6{hn(qn<0 z2pSoroXLVo(Lrtx1b=Qpzx2RBb_aP}ma21!ybiz8#I*5Y`puz~;Rb^9zdhi$reV^9 zn2P+J<>R{~M0K*gj4snCj3K6tc({9r9TRV{)?uGLo)=+tcp_8=mYuhg&fOLowrX6zfkK!3xMUIvvH2Ic-i+Yz;djv$GDt3nDkK= z5!-cE3_pgZ;k7^S6~Mt=NWW{3&RFzTg7(}l#Nekpn2WIz>HK1@&mgFd*qZysCUp&n zDDNY}5wtZE!a6cB|1RNX$8Js@)QuEVL8~}#u87>tW#PV zTeRUbM}MgFFS?J6iNOpua7nM;HRI_4BS0~&r=Ig%ZeX|W8E-hjQ+4!m&NNI6a^cJB z_v;J<2}&>P9*t?J9$zdPC%n|WF#U=v6A}WG0^+IfSGPbY8hc(^8bjV2FRBap4>Jl- z5<_*`;u8jxQb(PJxx^62`6$7OzlRPZH}$MkA`;o+jZeYG?{G=R@^1xy@P>$~t;&9~ zjW$6NJq};q1X#(fHhOieTtMN_)zJ3h=vLXCi+cY*sH;u~g zT?1Q;yXO<_?~_6?*-V_{VI761;}-g6LD|-(=D1ui#d82gf9r)5n@}Od<;80eZBN$$ z`ti6N-Qr}BsU8!zjA`WdQb(UB&knK8x0JUR?Y~%CT0ueggB^lJVMLmml`NLxx2WzComRjJU19U_^8ZjIw3PY_7(WCzW zcrErlTsp0&62p;j8BdXF|J8helt72+;j`&QSjVU^00fI&dCB)fH?!kkk@! zfDK#RoF}}TSU|ZjwaCq_w&5*FbkmK<4V$gGyBjCV33nJCO>M^7z4l1F2|VL%xItbs z01`?fgA(E%j0`%25RRHpI8f{wS_ict4>&H$OkP0Ir(?{9vE`!CH94LQu1wAVyO(qg zXx{Kv!$XK(L3MxxnD$R2`0E4agcTOuTE11~xQz%f*`sd(k8Uda7>y4qJKi(r&9NI^ zJ>Vd+S!JHxOqPs9YP>z~tRrhvyG|~0YUK+0bYZLj#sR)hSn+B>bOr-v@yT<4UioF; z1-aq81(+{DhY-FA4B)irr;f0cOPmEK2ZA%MFh_Rsw6NxtoN*|Ok>ZjHKv;UK%~GU1 zdYHr;e#A^a+3a$8hU8lE>5n8-P3T_=-gljf6`=(k1mHbqKGGOO3(CXg!lY@A$Xy>y z6A<&l`IQsF&GP3HKaI)F0+78&z*!ufMe@fppZ}D5u($gz+0Eu z@wuf+J!tCD-fyyKHwY7u*f_$}?z={=)F9r@CJjeGSSA#_jw$^I~MCk^wK=Qv^O9F!_xM+YOXnfL^OeFqNmir_yMn6hw)uCi0zMPtMfEwj9U9gWuKLrj{$VG%1VKg)Mf1I4 zI*_7Lfv&ZM9>WKDT*7%?qlImSkQ3L8COZS{I1k<+1mr9v38E+*Va<(Tgxu96(kpib zIzK6p3LzSLfbRfm|4F}Yh1YVSM@_NL)eGmZHjz2gpLkB>;c0c1Z z`muNrIwE>2)^jq887eLA55_o+dVRi-TG)>BP(P)!0t0Q>Z%z>%(br+Vfv!i!u<`{F z?t>?Wn0x2}ElqiCYkV1SuGTaGuDm^nJYmWwk=}&x2=KW*QEMWK2p4Vg1`@FOodtoz zmzB4X&YF%09hqK8_8nkN*MdXYfN$ndf@pA`S+0e=qDlDTxvkg450H<%JWQ$q2&3o} z_vaN6+ErL^^8Mt+;IJV$oG&ldYIRX+Ri{57P_=^j$t8haXfPR9x-uNk#j_^L(U{ zR?D$Wn$Z3XPWe0-H8xTvf^Qf&3Z%oyIy&zY*(x`i#=~c$E|Cg4p}8|{grH3!x$h%o z>v7D=f+P~SkQ%8ex zd&(<**I_HXcn!P}@svPdYpks!Rr+>pEu};D6a?M*NEIgXgM)yFUIz}lS?GiXe2xmT z2J;a3e0#ttsD~QS9Thn+zTW~m4L9hM*?@PvY;syc>P|5G6+901asL3^2;vA?zFD_R z+$K-4b-iGnB4+tF$KFSCyTL6CZn)k10;&`Z4Jg;#r17jfF93bHer7mHN^B(cNw0Ww z^50lKIOXQ2qutAA_r~nzp3XVO5^bhoL*^RC1Ip@CdiM2AVh&XC5#Z;HkF$u`pylN* z5hEJ_2FSN}pY^MZPF9QJvv4Q=xCyEqgRciyHWrA-e|XObv~@E@ypD%?s?6Xar-D%4-n`^V-2foF+&!P#skE*+@0@-T!+AP9Oh^1x z1yJqPgW#APrwm?AFB@yDl7N&}?!!#;ZbBw907K+gqTu89f(jxY#Qo!Ac1@XLv5Cv|oUAemGOYW^t+WQzh3C#}hAf444)woSFd_yB z-gcqtWfmm6DFu7aKLA>5IHtM8>CrUqn_{?ESfqN79#h47#BE56DW@F%G5M?}#uEa9 z#)lOSItsOYj2A5^AVbaziwxW7VT2|h9>Q!LN@oUyQ#cwwR$-QqOkJ-icn?kqPLXP? z+J#*QtQQOdK`^g1T{m`bF{ugkm!04QuoukFR9!B~i*)${Lp zI&dvg3&V=!iMS5Q-Z;Xd0Yp&b!ntuwsNhN@4lQbOHGqWzMa^srwzV&KM4uvE(Hf#` z@Nv9cv`=IRC@V<-cY}yy$5&KC*$v#E>GE>X({E?SX`m_k%Hh2@QbsybgR`-(*{aRK zJtT0mpVk~UfF*ensA~B!r_sWVDVS$LHE2iu?+A(puEqZV=2wDJAWT&`a^A6xwwb` z3&EehdEN&B3n&eMh>Sq0gr_dNb_$(G-Xvg#VCiW@A?F{T{vT8&)Mki2z~4%e0;{PHa>-Z!x3GfU5{DiPRPm-KpMcKDRwpWT%7A==&J$6ui(^5fg&hM0}%kd z1Smlz?5{W+qF^XWMM$0v8|NKTK>)3aG;zC!;p?hsFn?o-pvah81Bla(ve62tIXvW2 zX)!DW3sZvT^oTG-idrWn?A3qg6YoVNIJsq}RriHc5tc_#LxBVcSIKI6lI=ngqItCKLU3wO>8 ztw5>Ic<&0@qe=e&)CO?84L}DfmapDagS}+LSy=d{l;R&FgyR+fR0KkqG_j1^9qZSH zZL@~!2>P0d(v`nY9c7U<(-ydsSc)jw{{ZG9bQ*gDqzJE_WirG>U?T2SKC@QzWmmiQ zZ}*1Swj+W(C>MS_V2JAS?}(ZUP_kp@? zY`UUoSMxF%tO-;tl5_qtbAmiYdLU=KFzj6cMiDE7x7G{|Ks4B{pA#fP#wps>CuXs! zg%BUeYwwIp1a~4ZoFGpbE&l*uR!z+VI_DG=HgfSR6JmqANVJCjunb_)M6Z*8CVORN zp^u$+mjdNg+3Y=+5zWq42%L_=`N#5VJ;s!`jAAo_51;=4W=YrPPjqo31I@s?RMZI8 z^lkF*cu0V$4#D_822?>ha)+U##xus?1(aj)udFeh_(@{;sBPZ;;9J)~Qn%?j7Z|v4 zw?I$s=8(p>Vu0=z>v{U#m;t_YdC&Z&Aecb}diKClRYVRruQ(Fj#`bu_T;ffitRS;Q z93Fo-nb}7ab3ErbNfBNMdERMq8*1#1-uTOVg$j^J(huh5#Ry)LpmnExX6Q&S0j7mb zb>kGtiFe}gx6T6BxhzyQC^h3Lz|uhqR&o=+!z+(i6=)jb^|_637R#NR4e^fTlGjI{ ztb$X(=!X2vK6|0xDt-0e7#7<%MLGPK1}3Nm=+=ylh#>0^QsqEUXg9C%lQ0Brg1nXe zxDYlgyLR4r-Wid0(X+=rV?!owf4oTSsUxrwHoakM6L94PukRKoD6tcboNi#UR*SZ1 zg&K5u6vb|1ra?n$??wkU2h7OSA$6_sj31MTbWPOqbK?~+&q2-a0?JDb{o(eV`d|i@ zN-yB$do#2Fbumme*5xu5SDu%Ar?ZYP)fwuzLRY6Odfl>O#P**?) zqv621vDj-E1SAJbFybx51!(gzRq6vq;OQSYD@ipaN_LC-u4^22(9)dFoM|B4f$uozkE0C!oN#4|sN! z&mV^x9pxR0^Mpa#Iz2%*yoeWGChTR7F@yZJpHDQS7sBDO=rt~*fDQT9J2<4AKznWV zg$dqOc&49YiYS2FM67N)ew;+mO9j!88(u-SPrS?xG`C%xo#CsGVWX3e@s&W(P_Q|d zdVLs9y=O7;;|f98q!zCze%i(;!PJcbsGa-7Z=poh27*6kYt;IsTmEr*b%>DXT)%kH z1~b=#7Hd@kOd}Q4huj#4AcAly%xHu`*ntRLa?%m(RP1~gq6fW(QcZigY%FN zQq0{Dwv9B`vZCxGY>3cX_{+#O)qxh32|unSR)9)~f!=_7y2)fI5zz=L`v&DQg&W%x z#2a?-3!>y>)B(v2&7=0_m$?W;phl}7OoA!v;Wa7apu8p}1i}#%Z>XE^on>X|LBa1* zVt?^%feI8hO~)n0rP@#HAJUB%i)d@cZH;VAyfnq@cp_L{Sa=UT=IK8Y=!Zvm*h?hu zmL)WF47S5HV7llV_hoJT!_Y>+x~=0B+NeJPv0PD5`oy5HF!Z2ZZDqws`N@a@EjQ_z z8cd)CC9-L%;qH5ND-a|N3;Jy$=p|hm8~kG^+p&ZT!gGn&WY53_>tEhTEh4NEtkYHm z^_#ARfpPQzrM&k927wSb$I)%%1OEVd#x__rE=ZbZB=eLA_<&Zix|WxDl{s@{TujRJVRVeD3d(RUp#4yp57PTVBq0YVQ-JkPvq1Qmo^O2*pnx@c3l{I_Z#Wbl$x*?wi!xQlKHH=M&b4_Y~p&#^Pl|?)`-|rM?X1wB*C~EQh!dXBT(dea4MK#U<+My28 z1n3l_j8!3H_AGp$ac)x(TinD9OtGVSe;5J!;>)q$^)pHRP&D0Hv<`#`42A%TY?`e# zuUR-*1IfjeURmC=XJw~I5JnAA(q*J>gUBQ!bn(3=4sOXd%gQGdKCtqI5j$_3bAfBO z+I7=<+3O+nOu`7Nc?TGi8{-rJnlvlW!W?!cju;h>MKpDduA|WCo-h=v>N|AvoE`bc zJKQ1ZQuu6e=;Z*U4VY+Ayh?6)$7H3UlBHBj3Ciy-+-IEU2~;p~w`4{mL<;_egD6cu zfhb`B-+R^vUASS2K^oE_y|CZWCIC?0hhg2*4I)*jf_5C5b(gUv&R8Ma1oN!#2+$@F z7aVEk8^nZkVhMJP@`34QE4I87>5Cw1Eq`+q>Pij(gh_U99A>b9&B?yW=MoOdhCBaVWMmeH~}w{bILl+8a|U;2F;Ne z+EK-VBVrbY&lJ?1++sD703erKJMS%g(BS}h_xF!M;@~rV7COE#o?dyO2VBX{vKYs7 zi9@)PIJ6TwEiK?Ri~GwS&vO(fjHIVr*1>=RPdYRI0N8)l8-oFVv&Z$C+jyw2d;b7Q zg}{#BrrkV#CNcnUg1cv*teY;XhkyEGF(n~$6IUe)!U3&cXF0Trs@J%3^q4wYzfed0 zVNe7R6L~}4QevX&@xl7R{{X>3#wQZ4P>#4$+hU#G9y-P-SqmPJ)Ky(#awHE1EJdaO zwmfY$;K#@W8-u~G0%6`v15q6v{pN~5kdunIP8i|&#qu)>1Imv^3QM<()@=yt zg-Sn+T~3ckG~iPHFeOdGk70bbysUMgSo8SGj0sYN{{T5tpwR|Q6bZ;F&sZ?ZNKo>g zF-nZY7SB#I_cpl*8e)s+@v}vQ73_K{72)v=rZz3y0pdE%^@ufqps~yjg^mCah(n^( zEUGRqKy1t-h(QqVUNN{LGK)OmF=a(OI(bjlJ)5o}&~`+A?k~~?*aC2#JZs(ry+)Ho zf8GPF06>;Qxs`H&H0M|jz6%#add}d`_-*&BB!x<9orWlzv#q=HfnJ+|H_lR+FsX`s zW4pYhoTX^Zxw7-RW|t1lk#8d@wr^v?BUkU_tg>Bo?GtAn&uCD)b5ol+i}2^%~{on_lo0A4^g zbt#U8jX;DZ0_iaw@>>Rg*Os%?OV4Xw+sf+6ta<0QPu>B2BcqOovXc{|lObjLBi^wX z175>H>N(~8A}g0$n4uPdN0N6udBU4(#SOpfFV#>X#uSJSzo~|0XbI8Vw(ai?GF3apg{IjelmaY`}+2?b%}CecJU;6Huf*Mrq3A?pA{WyBGB zV%5NsZ&wofbAOUtWFeu6o#v>5pZN^8MG~GM=Q^jK*lA2S)@wo38M*}(hqeT4C$mH} z8sqnY6omwm>`go448%3B%;y(rNvEa}Jy|!dk6y7iXP^)!hp$$0!Ve&?JX)RmQ0WiFX&WvvZ*Z9RW@VWN&3 z0Gl3@oHQw+3Y81l*?`po&>Ze=?s1)vhsk!hIfMz+Ua>Xo1cvVXPQBxY{!2~hU323V z8QQj7;Ev67ol7fh=qu8BKF?aWDo)(L{FE zH1U32MccY^oEX?x19l6i5n|Zg9HDXqlMJdFOWYO!#o;{TZ*LZG7DtBDhacl4VD6=M zB}-27JHC>^wu4n^x4dXr07dRzI`fX^?WxfoLHvCZ z0otR&efz_5G|&u3S4RO&JYa!fhYIW-p$(NfWJX6a)CpcM*~q{~L06SoKPIxfSU3j@ z!_aM*9&U4;j3&@>c(@53fZ@SwynL`@BC&YCMy4)mXc2dZN5R6tXGt2h^5+$J^gX*) z40xf}a^D!TvV=a|21CMwy<}q5WVetJXb>?I6eDn6DSQL^^^{BHXV-V3$i;9EU^hVrvT(+v5f$6+3f1%qX-D1$L(TWN7+W z^?2dHajwVC3pY#vX6LontfFbW zVIrphxlCQT?sIgvt*8x%HZobD0Y#&woA-jMT8BO!VQma9LvTavZjh0q8gh~hq+00*%9MNe^|)G zSd)gb_OQdn2p{^wfE8*ZexHo9#=Vs4UA*M)nIv*6Rk7YT=SP9M0!R*vmo|&RjO%k- z9&tt|PfiP4cRA+<>BuEZ$)1Y*XHp}9f7U?M5>C)pl&+Dv9i)b#6zuP7N7-GcsIvB@y?O6U;Dfo1#4Kz_u?#f-@Fe7 z)?S6C@xSX9u|o<1j;G#1EoI;ax#R0Jb508>Kor5(4h6$2o|k)XKJo1OLv3v*i?fS? zs4WIY>)+=#5Q80icr+pB6On+Rc2RV1j4twKNT+;J+xo$JwZmp5TqHf<_bV#O<#eSN z(W#&LpZ9%D%BgvAm1s#Ip0OxlV-Pssc)$cJqy6g@m%Sp&Z2P!bKzuai z`Y${t#&QXCX&nLSaf>Nf6Pdz>vhqz(soV`%V)yjw;elaAF3BDhB3Kd4V7aI}(02vM; zy1^J|4TO%9GjdsQnfbnX#8E*`8|-ANUjczlm(OQ&B*&7l2;2oM=4Jh1 zRP6{3)A(_V2LVW1^8Wy=*c(YA9{c>_IKUB_iC8C;x|Psx*lxITW9Fs8q(B0W$_}$j zY5=o9OutZgZTczt-c3iZbWX}2ZVu`$Lu}Q!Zxm1j)Nv`2JOM6MP(JeVPn$w}3^xQW z4Q~0~YaD&!Ke%bd3C&rDYf($G>j>06BP5VHM{ZG6xb^ z12pad%KDNzzBc?{TS8ty2#u-7#Kht zK8#VL1i|kFvLqm#8iL1&VytQzJ;7cwtj$D{M$6cjCSaKhvFHfx4jwctLK^ zP&*P#(cz{yVbS)Oz>3zqcYU6+UmWZz@$0N207W}XalghI)Kr;vNLbs(2~_PL1EQ~a zE@s;`9oPrrW~y$%{{UFs+OLP0JN#reMFZse!z$h}5yUu9gV}%HHo!6o91~)q-vGci z6LS}K_9}7o!)bGISJf(X zxQz;3gN@6TI{;3+;RFqhezQ@`&_U7Q!B%?)mq~r%K3XDOSsf#Fy>Rh|@EZp_2LiY_ zxi~P7Mg~MRQ}dUrTJXdM*=yA65)Eqs3hk@62d?rd^+~HoGyL4LFROqY%WT!>EO3*q z7s&JExKBVq6GMCQd3wX(q=j*^Z5TZpGg-z30-H6mbsS989Ieefh&aL1<3&VISa>-R zs5$-S$spC(Mc^oR=S#lHist+ zxk-maSXY2oci+}NO1mT>7yHeJU1x)hV^{_t$OJAot{A4Hymn{6_&DhdF&BdNsD5zx zOaff&Q2jYGa==NcG{c^JZxNzOC6oy8yv@9rKLLSU=)lJ+*g~#NXbTG+0#lWE!oXx> zqVi{zC%m=^Q6h$quU<1&u;}X{)}XvD66INF5R-*;=y|v#NCatDX-F$g1_E1->_ZtH zy4M)EAPI=QXQ5z!c|5=$+0pbb;~#WU(!jcqCne&T!O&fVSs@j+d&X4a4bF21nUgeR zh$x(?d}DUW&LC8jjDE$eFx@mQ>&7U4CZT%qhc9V2Jmd-S@0=Wq`rbMX5!!Q_jFdwf zM!@T?ajR&a@%MPm7~28_r!`r=*rA#iC~lJM@pFpS0ZDo1{9*}*KT^d}$M!|->^rSt zy+ZYzCMnwsTgO-=QO*@U%*_MLY0h4b@^n33KN(F=I=ihxcJC#ru})Kbh5rCJn&}Z;ClY_) z!Ff8N2?v7ntQ%sIog0roj7gn=K@bSM@?1TMtKhUg(ci2}y%$&0lH4yfZU9+}zcBjA z`=#W2jO$odXcQ0)^2*${!XmmXu88Px!Yx&LJl&{M))+(%h!8E(y?d02xRvI}Oa!_Fn+JnO|w3es zeXtFw#P2SM&?`_j>YvUQRc#}%oTq@|`!ZyOn z6kdppS<3Us{pFDKG;lpaUdLEI@`}uq5Y!>|+`Lo>VF&@^I+Y%jySTRCA^x}oaMcDT zx3SB{a8)6olTV=D0Eh&q6aLsXmZqTYzs4En0xU-&kr8R0fK5BM7guJ8#WPf%HGtlk zE|hjsM|mFDn9nHkcY#0xumCr#9wLsU4{Shx4;V~r+Z#xtYj0g- z0RRGB5`U~9-~xifc@cG&0Sb+8NA)zp{bkiF*tih%G{MO*_^oAi}EgjUc!qV*O^T zIVBWIR?Ay4h=mGdSJs#+!<{G-ikhl>?c)kyyfEKIVQ-20EnGIak-sJ;L2uqh|B&y^5A&~cDgqD!Hv!c+BQKs z7QAhSONkaV(bRQ_Y$OTgcZiIfRsR4^A(X*q!?SK8z*zqP?#NGBFw*ZpS_4W{w(y3q zJs_H5tQ5D;M4O-zRJseLyR9eb#ZIAn&;(K5)!^Zmi*&#m5*~#fTEpQ%njo+v5jn~e zTB-mB`tn(q=)!|cOhLD_af9T^piXpROASMMgOYA-0?LC<-*_x(wC87$uxs7}k^nha z0coRx3glm!-HpK~FBg*>7Gu=Xu9EiPlF0(eIqwf~&44*WqYKJq1)kh%2Cl#%&LN_| zaqlTof=S1hSSb!xzL(@jcnkz07Xdf~(+ooJDO{-{=zj}Q+0lX^%Axd@ob!!HLJxt! znkJFQzTZkw0=ty<-X7kd+Nl313;KFUw&)IG*_BZg{yN z12|)=1ofc0Vv5_En3yX~WT&0%K{LXkF44=vJ>o@d(f~OzP$?2SO_4hQv_bzxpN@d+klwevc$lq7C?zbSj3$j&TgEXUHYgOub-q6*I0{|X;8fms8k3A#-^p?y zRac&NVqw#Cc#H$RpPn!QUJ$0lMGbMU80bZ&0z@1IG;79tlYR0O)#@Cd$F%}1RGA>y zC<+lpIh6dk*o_`TL;UaS7+gcJEfpE+W$1oEg&z*S`0FOrz)&iAJvw!LW9@dzIu7y^ zhDurp8R+*Yvh-vtU35KO7gp~53Cu!4RAuduZ~<< z;;z809l`O|5&)Myce(OXV4J3L73K2tnmv!gP!CncIC+HqocPV=TdBU>8F|WTLZe=Nmc>6iA9R_};Qxz8j%*VheP)Wu6^GRRQm2C($9OI^TG} zShoZ{h&@}Ic6SUhIYEDuDU`daDSOki-UPODK|zN=4fiu;6q-gWI z2TrahsKO8&rytPl4Vf+9T4KJm*g4mmHx7f;jCqN^2OC6oZ950sp z6gwWsE9hFw1NcR9`izfv0Z_xlwF1&+Fcc}mWZ4_ zI>}WyC{7m#t(DLRI1j=N81XO)8d6fY*$NHt(QxTku*9Y(0kyM?J8q*H^=)wM8MnQr^+eW;;@SZviNLVouwBLlmgyA~MA*hfiTJxHL?|>@p zq$(sXn3z^(((bJ$dk$l^Az%?y3>VDSI)F4qSSCOph-f ziKiidzgP%cF&0oZh&ci-5vl{E9yHY6B@y=oG>lq)gI9slm|TJ1$zzM5{>^q-%Xcs^ z!a5-+JdJ*`W|9YMdc{HBj&}y!QH-WVQ%3JWGEj|LNb~(*2Az*UcRl9tm5B5gtO^PW zzXyhEeEHT{$P6frALk!<_okvB?;q_31bErr9BnDkRELGC_mHOO1)QB7{&KuJjVQyk zH;35R1yfFi4P9Lpj$Yt$PDR4EOA^%VZo{EEb8cp|K_wn3&I=1Wz(=eQ?V15RWpL#H zC^7v108URL0};+DwP};E*JJNzW?5DPvv^K1@>~3?g=mi-gB8~pLcOt5-0u+4xL5{| zUk_MceMPNwJ-i>soQK&8>!J6&Pd0snPxYG=lJ-%{UVZhB2M;EMaTwdlG9Iu)%$z&k zU87h7;Row@2n}LFVA#G0;l>oTQCD3ZLtW%CXoDPy3LDVmnh=G)C#vQ5($_eK(w5Mu zDCux*ph?(QHsAX&F1ex>g=UGXfE3L0JCjZ4Si}SdK4jIr+>7E!poDU4QPV!LBgCFR z!cjS!BwQi^f)GuzR5ka6FxWW*&z6hixQKx{IK21PAO)qIcyb^`f>FxMPQTT?=Dc6> z_|8`nDz{z>KN(ZFVpT&z2kpm`O99LcgD9y6mm1W}i~@Iw zrQ)l2u5CO9Ya4dzz43`qz*l@xPczm7(b-|uKTyCBKnNQeI(ozu(m4_dP$ddeobTq0 zKrlw$c=LynqFQiC!YSO@i7-r?h$ghX1Ue z;VP{uBqs*+JIMJYOkFxbc@C<~g%xv2$)dcCVm`w8P85l&1I7ic@YSY(^dZ8?S$4+< zlkW-cz>q$(ekq_EOmK*>0-S3>r5+J7?m}YdMT9Pa+XWB6Ye$y>ruqFG>f5 z-Zru$6W(W#QGwOSp=QfIwU=A;lDQvPj6i~Fn%3QYm{1VZ(3b?JyybV%w7TWuVNt1h zEwtpl=H8G61%x|m9P{r`V{POtCp7o0kQ!ry*XseMata5NAMs+NIY$ZWIO}gpmL0*p z_%LpzV$vo`?KPAo0Wu1?55O2L=)4iSajX}jj>5I5o+Uu$eVok7&-d zHJWysAVT*%;y3Zi8|M_6vW~mWR0{5ZUOAujm-aT8QQ+atn8tAw#!)GB4zO)1kkJlr zyN5A_jmw5qOtti561gD9fBxZy>CJIxWfj(g2vVTI?+-x;jMf8c$P5O$a4v?57m(Lh zyJBoFY*9v)Tc))*GJ;Y?#6*Nv?&}UgjF`rgso>wW#{QR4UU3^vs_>$62zYo0d0oNwY8#Jph6T2u2Tl;_IX7$O;PJNj6xKw zXKq)#t6G*$Ok;1SR8O|tL^uvnq<-pN z8AA~3x84r86NqjUgY2v5t-s@3vHBSTc z#qwgM0g}DDiQAvf79z~03EjoiHaLs43vJ;Z9HVO;UqC@g)d=^RmKEnTD$qUe9cE0j z!48Z-@SdDNWZ7k?A{mz{0_h8rkDCP*Y@lpE(6W?2=>HZVAoFY;+??eY$>e zQNrzK1p2{()v{|OWF>Y{`X4zpGAtxI6sR6Yyr=Q6A3|+Xpj|SWG2}NJiC?w%FrW)y z?eTH!M7b-k{usJ!Dh04Jopj?32G?OGC}qV8S&Rl(H}!QfQrFWS{rbmRJR?dc>(&Me z3W}Y1e|fX+%5$JI*{nuD0!SRcd7(nB4`NH9hB6mH!hD@LR~s>5P==lb!vL-nqk$ZC zIJzK+JaHS#jf{G$Jw1S;$d>Ulho_$ z!3j&|*U{DLoQJ!u+6X5D;Aj4 zPG~sM=N2_-h9rqp%|aOdR4Gh25LR;R^MyP$nVWWAO?_h}Kv6@_!o1Wt&(LLtfg3l@ z@exEy8{4xu36N0j1};m>Zs*h|JnDCqGzj5P#6VCuq{T2fi>I7Ul4pd|tTZ#TIL3MA z=*SOlGk-$UO#X*>krx|uJNN$pSraJ&HlAL!`^I(PgSbcYh$@@LaiM_n+yqMuz0-|k z-MQvP)#=$d-Z-DvP>>If@4a!HS&7lGd>uH^ouGB+UNKyUup{}wlNT46#&x364hC@Y zbHnE(2_y%pfI8OKPyNm>em+^GwLs}%9AW-D|Cg4>l5^QFBuXa;F3$;_msNSijvDo!|3k=K(se9 zJlqqQ1T83q_-pF zIV)}S@eP*j4H*=KF4Qk|ro(^|29ehxHsDk&A;Z8;=!Wu(8)Jg02oG1o z;lq~6O1AWMIdO2NFM=-SbVefVkcrETv(zXXzpD)10L~E@cg6{k$RA|1zRWdrny(Z$`CybHXQ8voT;gPq z*wvbBH-z~O1Q8g#_w|)Z0^1(2lpP;VGl~>7tg1#82oyAavc{S+3bwc2-tl#lv3)Ys zR@pZlxJBBu4S*g|mL2}%ENN?A&|W8bLs0Dh0D^1lJYzBD*W%(V`lgU(_pd+a6(WYy z`Tgdl)BZ46baDn{awIqncZ7NrTDxG>=9AQ2`1$jKB6)T1oLoEXb%KH! zp^p#a9uB5R2F}RzoO6bIkednE6mZ$G&^)S*K^|Z~P?qJ?NeT}YbRIGk3wlHstQJi% z_Z(bHD7}*);tivFC2UBJJQN~Qu_&g>?dhdWs-`yK8z}L-i>9lNL5O(Sr-LO6d;@o& z;r{?b3cI+02ypX^+?0-kkh~{XB2FgQgdjtj;PL8)H(;viM7q`i^el)f5On1BIB^vv zXc^9>_A@WQ=^{LL=r9JrE4ug&yWR;sFb1OL;2&1pZz_R<2_3)p7@Ze)ZDSBQlsGb` zOXmlhrHt_|Z`IK#O1mdIV?Z$ds!&HqhtkR6&d+WlQ+)Hd06=V@SMa!v#ityqRN4!n zDKWSmVFeU>W+n*CNq{;1W%!3eya})W09efAR166Ybz?wKoMPG<+bGKPq=DeXNXKm+ zKHhL0lW8Pu$b1y}d9Cw#%EnY|3FSXH@k#=Oyco~6VV9x;;85=flkA}N7_(2i!?J>$bvE)sbuyc;{X{W@=#F(Ak%}}ViRpq zR?>$|&ob`8tw}U#FTM}P7RW$Yu_)ji5(i7CHTX{{TPEE^3^U2@!1>);UOPboep#T=XytxCfdV?-M#J%a)sf^3Wdfp+@+3 zp&Ua{tz=cELqixr$=UMyaD&i<0l6?$uQvluJypsI_8y1vSFBxMV)kLLMpy3{AinUz z?1mL^kb*)7hm2#f1%tx@tTKQmg!|q;wbC&CWupk8!> z9b$@UG#ZM*_p5+^4I^hUk-V7F`pdDA*IFOjie*+F&R6!u2TeGQXNpF-iV zU%4EoHVaY}c{?4LWFr{@GH`Q>bdV74Km5o65O_s6`^B%NJDY0)-ZfLabpA?ewJ0^| z%O;a?HD&DtHRDE{kE*l^`M3^%?s1JN*ryMiyXjVFabx0O!n6Qe zHNW$V6su(x*N07Wh8aR;a)l|fb8u?l2{uj5>He|jewZ2+HrC%+1LDz;*4Jmz#%(+j zs)9%&Cm0-)#2m2VH;27|xzt#)JX*MANP_JLZ2HZ%@f0T2JUNqmm~Bdu2R55)+xh1_ z-ki{}=p=5xGzgx!t%rDZ#{}RgUA%G5Ft$@jN_zmS z4ZK$+?d11WkvjpyVJ3pNo;p3arr@^vH~#B5uj2yj9M0wpbYc{MgORs>FrwZxe+oe8 z*8SiT3CQ6CqBcBX+gc~l(XPOA)0!DP5k{(q0ZQFqN;W){Z=JBKt(+EGc<&>}v?2y& zFKxd7?Jk$ddKhp-i7N2pM;g@R?U~5eQtCB2iJS%kaR6-kV>VGjRbR*Vkob;+mk1&^r@+0PVFtU=wL&01GxI@l^zqHlC&n(?s-w^N z!!}V8ERX)+@9?DeQtCsD0E7oU?O*R47)6Ht;DL}LA6%QmvxQwQUYBcI%>Zy{8${_m zo5cIYR;fPdb$|&sfx+t#uQ#y0`oY6wIB&)Z?MP}K&BV!cku8Hn4)WG>Dx_(}raC7l zi|m*)^kN^wL$k2Pn5?Qbk0oaK#Fzk^xD6T8-+17$ya&_Sxt063ch9`12BxxT=0~jJ zzRuit&Vzn3W{cK|{V=Mact!+h=l=lRMKFlKMtI&)1#q)Rf43&#%bzX?%|yI7=42}L zD{MI$JH-l(E>9=`$Cu=lDoSU>Efo$Z9DBi{A*$e)mV4eG&>A!pz#?rOI@6C0fIKq4 zw(ttjLB1L~VZLq?w9I0K+VjKKSd_4)m;&hO#2~`1{UOg2I3c7%TD>j_9*1Ln*yVH# zH(Q6NTJw!*110xTRj&2UKnm4SdDCBvMx#y2f9sD|js;hEK~iKv zc(LXmD>lVmSp9pv7z$M6;#q`9sZI;a>VKREOFiyN)jy4uVQQYcU|i0;6? zTkk4UU=el)S!+0=^pPa$V1PiLU^_#ntzc7F?JP<=csWwS=ndPxWL!l?$c8K$cMFc> z5Yr9*?wm>mH|sSbWC1S|%JlyLoMwRHs91DegNCNC2Ud$j06n)|{o%Ek6xGo332+w- zO&x*Z5j`h)wxoRixc%UVl7r`u1L>IvXat8(Mlc=v^Mw{uUKsJ!sUmfJ;p|EixIgPg zN-E(1U;utq-E+V-M*jf!jF5FfkApNs1ty1)#!V*Y821g$Oq?=+C10}!!I2kgQZnu? zI?|N`Ejms8U?VE4b5HGy>PBix$Mk-1R@7)qy?MkE8?>N(=DcX*7f{$Sk(FQ`ax`pb zI8Avs34H88tQf!^UR0aW)^9=*ggd(Tl(|4xpeBqO7PD;&nGBE!2WpT102mrQyd0~> zpVtOz#!2ni=@G{VN&!N0gox|Bf=3frZ*;sDA#TE-FrY5Ayig}Wa&xy3dyzJqdG~>2 zFcp^T?*m&F-W=GB7|xP9e|~YEqa}MW*ZP^On+k5xLTsJQU>l>UsU;GcT*_}5Lk?(+ zo0j1PE+|IE9uFA(MvNrhU>AN4%&yFO4i^Bw;{p!8@Ojz3^68eZ3D+)ht2;UZr{w1; zGD>&$aDS`}4J8-TD#}uBk^ca>!686q5FERp@#i?9Xndj_r10Uc_&oxn$|?8N#uVc9 zRI~(38vNp6hXo}Xko$8u9FHVu5`c`XYt@DfyD;fVOD&~BWG!71YOa>2Z%!^pFMFf^XI)%Q`#en~qT{LtYa5do zorvTMg;!kSLTjYhvv%54Ryn%gJ(hMhj=JMHSW*fgdIfQg&N>3Mz8=h0_r$F5c`cjw zko9cw4XOrWFGi@J`@EPQkRMv#=Nir_1%lP%dQa93=WX=9ZgRhBLO(!dc-iL<_`b_< z)Zy11lVfoA|v&IC7O~AUJh3ltKbzd zCya;9d&mH^*2y`MBl@^u!+Tn&nm?@BFb_s71!g-{sS$O1{o}%jk-viJ!1`9TI9Q|2 z_mckrD6@xV!_x*ghaFSE6e>n>yphp}n^d&W^MFc0NZy#%RN?c7siL)Al-BiyOOYz` z1nVk`wVOP1l?rG<;>TEiVU`NI{{TO{a4wh~I!aCsFlG<|z4-4Tb}GQs@+OlIb1qN; z>8oNBjGe=)Tm#VSXAzvZwNV7LrF0y)n7V#ugP$+fAcDk?Zsv!N)>A39@cF_A2wEO> z+kv(sr8?gZu}GvFA{4PQ*(MX=EjI9)y*PRT!X6qFNp+`N$0~B_c^~j~iuAyWbcnx< zehe9e+215yzZeJks+%Qz?-I~xB^Q&Tb@jYU2@+H{$6oRYiUq_6o9h(R!ULi?f1Yr` zHK218ye0{(-i@jeSKQL(73!avXp{21CQu5Gt*Kut^RJ|)jJ2y1sQ%pXCPk;8SjF3?mIvEinN;}B~Ox8Q2( zHDjgw&3Bg$GY4562YUEoThR#kc6i5jb_n}mVK50C=+J%W_my?Wx;UeMk$}Zfn(1OV z(m+8G{V*g(>BEy#&C62b3;r-x>QD#XEvhc)^5=)^HR9l<^{>vcl9h-y`Fnr+m2f3+ zem^(^_mF`kcwvCR5R@rr7zfZwCC4;Pjk5Z}3OW@j;!!;AelSI=PX~)}TsJ2Gql4RzWdMS# z@NXD?)_@#VX1hTFJ)S=B3=~}m@?vYg(MO$NszG2?QC>LwrU)j9c);yHc>08hD4*vP zMp>>Ocs)YuE5OgQtW4^CQ}={|X9H{h08AY$q_*CVI`N3bAWqF7){gboMj>d6xV#n3 zpi+u*=3%wG$09MRf7U2ylyxpeuj?Wc_5{3#it2v2z)F#B8`oGjreh3pUOUT((#K0% zpTZ_ zEdbJ(e)Ex}NU`F5>{n#(1FHv$ypvMKoaM%Lpav`!29d2*xhevML9_}*W6WHkT!AM~ zulBIF@}z@Msy1`KyhI>0j5U8)=Itp~d(HhSg0ApVrw`wR$3WO&FIGHx!31)(X0gcb z>E1qUlnrko1$e3N4|aARl4UvO3E*DmS)lltv~4hH#u@S~Cs_x~gu<+kjmuq5n;^qV@?9T-y4*v};eHwH?|mw6ArjCXc@NO@g7M?tp+S%-td?kq@B37s=Rq-J0UCe?o$b~TKs#bHWXilOYJM=5LD{*lypYWjQyq9k z1OEWr2_!WF?5#(}7z<747Hn;)i+Uk^0m;*m5J`W(N=1l^;l=phT5#moj z`N4I5Oy6iu@&5q1%t)^;@J89rNS>N?a(zfMz2yOqXDJTP71ehzbs2vU zM(rSY)^VYq%5u974_LnyqbNscj1KZa!RSVjO%y?=TEQx3Y$2d*?^psYv_ClZ2l?}j!@H#(#{)1N324!U{B@1t5a+oQ5%UjYJIyV0XthKqu*O{AGG z!w3YMNNEYzjWg-0I+3CN280xu%nbF2pVt*CSps$_Yfo+3ICx1M^-q3TCc9Zd}{)({dG2!IAx!%1P! zI`@dzq^|l=E&K6-dwnlQoSmW08)udYc#b>kStw2tK1B2Q!Sfja=!E5mcxqRpPDJ3(TgG8y zhHN)=fYGQpC&}NyI!G-pNw3caH6^h<3R&n||Qlr{HqwaCvR z>6|*ow>r5l0Pab9NaXR5ek8(HN?<_L+$02B40h;56mGLHUH8dBTp!IwagZ z{{Yro0>5n~Z$>w&;0Xmz`TELS*DWYlo2Qr@;JRgTZ@>Ox>8s0(6qOrK`p$Wzir*=` z3Maqd*nFN`LqV|tVbyTBxhNyfDUdmawCg17c8$O^yj0g_2>AltG$f^hmdnl-60``! zE|ZUY${N%~oke{A0C`UUf&meF_M15OkPKDimW_xzkl#3vg!qN4!bTdTgS9BofRK$i z1<(gQTSeQi7^KaX<^@hW#v}sIhIz$(r$kr>zZeacJpf$oXq?Su`+QQ`OUTz zMwkI>qbTNvLRxJ*j{5xIRk5IMzMJQcb3?_UBuL+F7mSHas@T}teLissMx4Cfi$Fu} z9e?|u{mNiV*PjM&4YdbGV>TyNAwP6JoY-+8{;-vpwyc#IlYf&0u*1U!z~)X72-!@~Q{WBR)G)7GXMMP&`(GHXx?Hm8@?MQ5x**>*DA5A^Jy zOHUbUBDUTrfQJc(2@(Y*=zclHh9nK7*EyggmkYnVb;sz9@y(>qcJ#IxNZ#8Icy0`O zr@M@he$s0Ui6CBpznS~Q8Ct1L3*>R+!U@e?K@4>Qr@HH{Z|Y&PP5QwR z3yuz!Z8@hS`@!ibfoX!mrA;0&snItTr2Wa1)Iul_mrj+}csHX2V#xIJE;$9kPP$*y zG!bYp*A_~rECsZ0~?ZU};3f8bKTOB3VvO0d>d07x}ggCaOOh&t0iA;R6UQY<} zVjx)ItQfK=z_@#ey{&6Brtq>%F3^w=1p}$F4dfnzQ)>i4RoGW~Aa<4;cQ=U=Ua+8S z*}Y;D#6Gb_`Kg*(c};5?;X4*DKm5+8PPICi6$sRXjb1W(db?5KgWl8WBzYzwk02gK zAin-SY`yh7Qx;7G zJsKU6;jCB^Xa(y;b#qhAG#rwX&h7*^2eAgx!KX}HJup*%7thsYLes|`HolhNX!axU`pY_1t{PB$Qk4u!+0I^N^FcM4w>l2^) zU`r-4M1!zU>0B-3qFE~LNIe@E;|OAWfkUfleY=N08w3JUP=PhD&40l(z?OmrTp-O3 zcXj}pLz$B(1W*CMPCl?aXG9B=+DD$TBdFYg4DXxXvqZW{6TJxN{5|65%LEr-@xM3; zqz$80pb8F*40}>xv8>ny8GDG}3PBq+NdExW1ISoFas`d=vnj@@u)%;pP+f7s))7CV zaDC&8V5hN#ALSQ(UoN=&!np_HO&&nNL+xiy-_CD?wzPxZ#`8ou0k~1fgZ*XjX_%Ci z@x{x}(Ude4H^?e#n=`BS7gkhlsCbFqGWIYoK)PFSB*`j(DeAvi+(^4LB$>fMzD#pB zEv`jF-{&gv&O%&FKEsK*$JS5({;j>yuY)A6^ zjtTT-^#XKfqkWWxOo3>qZ$=m-h9Ej<4lXDnA)=vr;IBdEX37xak0MI0V)iRG1~lNR@$WBV8)~;(-DVw{ zRj#7ciM)NYcv?WE^#1_UfMaAZcBe_xlrn81t9+7=e4bPITr`haFYMG_5;ZyF2WX`| z(UW|0fSQ0YQ6{OgUUA#LN=T$5?7!m)0Zb$9&_PcnHphK-b`qES-udGu$8Cd@ z>I$kDKJKuZRw^BF`OV}WX$SmcQN59UQ+Vji9r~>~UFQ@%12|)oe~kJ<;s7oYGnXl| zPjjyEIg@n$AnjB`N3`)RxzW_3(^cl@~?B8yR8J^>`gPQrN%Jji`z!NvK@{EZ*Az! zRK&Vrbl&RwWN zye4TK4>c!TWJC@W$f)RSamaznesPxxlO9h`yd^;FX<;ZmWTF8;Gqr8@ykd<>Ge)zK zd6{z9C6t3(9J30e3SEP3deGB{L&9=LGM)50hsIxThK@rHt%VA=_=(S@Pxn<4?yZB8|t!G4U< z`Vh)^0HJ&d$#Z1GlyL`!WXUTk0&9&!bE$!L1xnUwXrxaV1Tu+Dg`E=*oLv!g!<_#B z-+#PX21O!NUBNZZF1QFvw|<-bV9^N%^>@Da>lmT8vl-|*J6{Gq5tV{PDtM=`ej$4x_RZ@ID^1RUx?l09nmKQCLq-{lkA)tg6TV03BQssDlfU7QThF5p`$( z0G#08-4PyUK6wXD2sdD4V?3Th)6Y2&;5-6Mfj~KJTljjc%cR<#gY3<)S@P)Q%A(M?w^o71EjS3pykMxPE{xw{t}9KwBgz1HlP5 zZwU1v44o18x4iF6g8?J0F8nwF$1)8&colxJVh*JDzTeh*XJ9-30Dt2&Qbq;tVPjPo zEkA5p1ORxg)*9!WP|%wn(bnOFD0CsIrkvp9t`-xtdQ1_{BiAdIo2MUGm?#9sQ(NnR zz7{#5{4aB@2Aprl)(i-}dI&UhG9X!9Oh5z15zB(OPHtjOGK+b_0C-%2fO^LcR%1B? z@w^K0tFNLfC?DSOqw3?jGMul%<;SsaT#g|DT;UD+A9$t^Gy&7MA-=Hvf=x(w0fu!>hJDJmBPNC@)No7Tj6rOk@@{5FZ&o6{w)S2)|G3HyW5yEJM{e!)gUp znX~>i_lL1{MWtD%=}d71D8W_-S8g{bL^P^wC_eUJh-Ls{wtg2`Zq(2`;-%woIm)Pk zOu*iAjA+SEZUw%_f@};!@0L%$EO87dXv=xtGyug+PE4PY8*zFiAUtm&0&aFkVffHp z?LU~ivWDd~eC1Qj6$k)t$otNqT&$bKfwe}&$Rd@8Im(kkH^+G*;8A*_01ijbST3Fn z0m*`k&idmPv=GefTCz#?h?IPT_li_D)K#r0}k?$*3;}TS4@< z^Q^B)P2R;mUNwokbS}ZCpvG35g6Tpiem3Aq!WiL4OC4L!j7)%lsE+4I`O5mAu~h!J zTa(vFTW~sj;{L);ASVGyjxS4f2+)Y0vJ6-#xH;q%$o;sPg_#=eTMF@yrBg!=LsM?I zjcpZ*7$KoWDd!mpMevFuSY^^~+%>CX0DuGog}i=o+lEYmv=|QPj>K@1)Cf}tG~W1d zqbB+ky{=91hb_qizE?pQd0ZP#aFK1uoV<_LCE?k}h=lh^?*fN#Uxc`sn?#<$*Dc>* zV3n4%iaf*Ym#j6GPJ#tsjl8~F;u8=`I)2lv3}x=w0K8BDXS? zCpm|#vjJQ5D((P#F*-a(x)W#6=L5h>imHoC)c*ijNSazD;5>&|YJv9u0R6z#P&EZK zEjV$<*p~Mu#?F0x=N3KhlSezl{E}!I>WcMEVI8uK14`qY@jJ3k1Ojq#eJK&kNzes& zpLwbp(ggj)d2!3I6ji6f*NjoXn;*!B@AZ*i2rxE@Q}=^1oV$C(DD(~jn?QI|9EOB? zby-z*TAKXe?EuIY=y-}?M+C$aco$q@t1lY4?XoASf@BcP0`CU-#6bPG`hAfk)-d2I zd8bl4w+(Y`0Jlm_FFfm=W6K8cxFCRRR(IUoe>zpxp-wYNvt806k&o%YQttqFVk91S zJ>|2Ku9jS`g(Q$;MSIK-nGkuR&3sp_d8sQ=CfJK3<(X-H<2*1W} z45?3Oo(=vmRtj6DL_FW{ISPeD2}#ur8uN0mzDf#}tr|THJtIhH(^0+jDVueK0d+f>r8X%FE^?w*VP0Z9mninp| zC{~D4cYU6-Nlr2FasF|a?&GG1T2H7rDPaiG+j+gd8^ZP|#4QfCY~PHiw>qp3pwjxl2=dwBH$U6n5YUFSKRLPr zoDX=>fo^f!M$afr1d5#djGZ}AeMkPUSC%Ye6sK|(80 zWj4l9(KZOR+@FuUB$$CgyESXh29=qbPy=0K*c7J|0LBi)nhCMa6h>ahDVIEDi-hv) zY1Uivm;$s2{I}zr;?M&Qio{;txz1EVdYVRVPTU#ia|skEBCkbZT;|@2LI_D*zx9GI zvxBz6sMU82lC~jJa%q*k?<3dilGIn z`gGLgeISH(35t}%C;D#k$+zlH9a)2soyLrn9 z2&LWgk6uEd1mM%1D~AF|ZBje`02yZxG!XC)Ca_+p7WNJf@;{*{-<;P4?1SIl7!s%! zB|!_QTcYKImkeTnoEunSwWUlKlgagotwkU?DF=n$7%bC;Lx4P;>ysmh5i%mF{oz2` zY2SL^cmW+S<(&J@m<4EgCwSQk+Ki>|Q{J(|soPS)kxfm0a_~wmgU6hYoq@k3{A6-% znj7N*$f>;d0W&*^))8R}0IgS?{{UD)d=$rN6ySSsjuR9JB5Mb}Uz|EYgDP0PpLnuR zf}%YT>#a^v$9i@49iF3!xnw{iN&ax~n$b(gYDa^tm5a;?q&gFwaBB?rAOa_~YxRix zCVKPdkNd+1)qrwwGs$vog-bsO+n(uIRmPo4;WQG7&>p6l>m_^gyCV~Fe|S=WfaTu5 zcnn!}b*T2$ezK~3Ao5YK#u>v$)NFfohS2UMLrXz?lP$FkQ?A! zHJq8(VNa|JrnVSe437ytVh8GLG$D?%ih&Ja!EmYqcgDmn{b6GZD*5+0+#FZ;oKR7KZ% z!obqS&%+3r5RJc&yeOhTp*U<(dAq}67!C!~I?d$0$N0&58y7Be{^U{|Ap!DhtBy#c zM5MwLlwz7(-#@8hLc0d_#+ibkmYoV{=(}#X#9~?+wI$?zXAty35sJLH<~ihs&6kTV zv3SZ{c1AZ<`(w0Q17I$mMBupoq?V?Lhl8o!24}so0RW3YbicF`9pLNm2I^b6HFj$c zd-nG#&UV~>6ou$Q`{VJC7z(UTrW?UQLE9Fl?~K^j4z;{FiEz&D8E}yIDbio@gEk~9 z&@+NB^^G;BPgxFtt|{#_0eyX9b>xE2>kvS67q`=hkKeF)bAJKB27jXUS_`_7a(s1t{O)>{{L29SB+{TV0) zIdT`t&Lw6qVuo(Pq2taj-chcj@IKsRb>R?*(W9EK#buH1Cg$rW#&NG8H?H`^d%cgR6wXoJ4jwXr^w6rt^2j znOIu|uGD10n8!xJ?|4sVusFxhJpTZl=Cb^CaA6X8H-$E7$kXsEOg|~7`OEz`wv^hz^?3rO5$|lpoc?12>2Xv#^w`;{i0<(cnUft9IH-% zZYDscv)iTq-`)pcH$Ni`QS18+{xOLPKx!c3A-ajrBB7rJ|JBA+r7B*|3#*UG(7w;s*$7f*tSmi+U#+QU<{`L+cPV(u@Gu z8f`-fGL3XV8fYc1{kXavL6zXT{{R?z3UWYvI@c38$e_nAIaWcn9Deb=u)qlf=op4K zp{r0JHdA=R+MccKhraCNo08W!L&FKD6ehk+NLp03mhT%xZ-BCOKrQjkC1uKNd%{SC zOHkkNE(fF~w0g+#C`vmBuhWieynv#FpjOTHWYIVRhZ4Oz9!z^Um3Xj-uJJ2DEfZ?W zymN};wJb?WzV1Ixpl5Jy_YM`MblJvtgR(mT$AC&Z;gVG*9N_+BN_ zu-@iPsZ`iFP9WhO4C$#8d;H*RW|96fh)aZ~9pGmmMIDVjafec!0?%T+YZ8iihcWPX zhv!)*{{XH=?}866Smp;37!}05hn#1GfNA^Fj3nC*;Ze_6<%m$NBXINMc%}CVD6Ru& zKUqoG12tcV34G!w(5TK^I*)iou66^Ajy7<+aBLD}7)`NC{{VP)6eyd&-a@d%RZuiO zpRAUHI}ZFgB78<8&Qn!h22n!DLlYn%o>@LMZ8qRIWLZAmONQUNt`*^$ImB#5SEyhC z02-`t?iD1d=J?2ooe)Y=nP+nAAf%8B;SP918TGX~$+4hMNAnj(O0%YYO$V%4fkR0E z0O;Gq-yk-H)UJ3G)i4)On}ki5({i3tKCw(*Vl-}iahsUHjWq8ga`1v+^5<4@1WFft zyyH!;Zd3DscJL+-)1omI?eT^XtKNV%lJ#-h7OILqd`uj5jal5@ov#Dn)~kVcfI^AF z>zzOyRyG21SQO>&c#>!pvmAv7u|tK*P$a=p!P%Z)wi!YpJ=$-VbjmmX0Iie*3A1`! zKx1MTWIudlEZ)%*(&rs{i2}Hnnq;n!n*G_6pcLKeTnfl0yBuD9(u`kF2o0O^zRkv*N&<#<>RbiyTSux4<<=$!pW^KKoi4*E6)&T2+h#) zalY_(YDI8IWn-dEa{>h7;Y5b-*%PtN^^ApLz_o+lOnm%! z4%!n`;na7U5(X*EUdz0Z+S7aHXfGx22BUIf)LwwTaEG!zG(U@rN&+-nn*BM=4BXuu zTrpxP7NN6&P30-`%FQ3|ANt@Xp;ULq1W1jb>R|lB1P(zq9po!j2Hu$J;wkF`z)9)s z61=i87+E41@W=%b9+MCVQFdM(B8Qw2L1RWZ4==6ZnL;8~pkEIf#nbl+D77Lb)+ov? z0Yx4|d^uBKak}r>lP;n3>nJM9nDfbp0L`TT0IXso*>t|~7bXW#+#X&qpe8f#@Ar(A zOuGJaZ4epw%&r-KLCa;BHSGPg5ZL!TVp}>mD78`1zgUeAvX%WP2UI;{;F669t!Ozr z@?5ElZN*YHP9x(UQ30f{6NlCeb=fH>$C@}TAaJWh8UcdZsR^nOc6E#q4w7iMxAl~~ z7)iyt4p`ziVH0W>M$Pb;5TkJbhmob8v1N!HAhO?a#o0diW0r<1Z2VTQj8xa^74k!NS4|kFA$WV*F))fBCCfjzrxmNuJ2hLA))hyjPr;KkC2BK0{ zxp`kXKYAd5aX`PEIXJCS&WE1Z@2npPU3lTdh5I{U0RznpZ;jt8(y0|z~J;)JR|ku6!%uCXYB1rOJ-dlKoml}+-IR@}C9lh$&GBg`ns z^60$S!BxqOqgyyURpWB&Cc`oaT9>iC4E8BDax(I&-Rb62!-brEiPUnK`vcd>x08-%c@0pZQ>&M?UdDrpyMaT%?x7tZ|eDdr#1 z>*!y{tTd|;vhiQ@f`VE^yamdcMZH3K^O4<*=4umJ2|&6^9AksaUdvp(Og_PUU~9LV zpy8f)Vi;i1bkKplB*aPb;17=1~#zdygDXRAW0K8f#vAnY`+D~n4<|goS3kVs5Y9eDg$Sxucf_8NGgCE71 zrQFvh4I=)7AOk&Mw6POc^yw(N5%2326Fp8`JDG#ZZwMfFh~cw%gK+XY90bCt zbmT&&>wC)fe!^++Ch_g!(<_o>RYDODN9PrRRf^a@hO@_@VR+vjp0FmfmABup69&zd ztoC0{!`>(X1|^*zsLYkM&I+S!QoZ69C9NPtdgq+#lcOqZ+8662u0KPl zd|{@iI69`Y%2R3MH#j;>;X!&+^^$O=)}^$YF1on&R6@k@dXMWAA{3H62PK{1DPU|) zFwUj)a35hOym8zusyinfYo8eLoErUDC=i@x@k#2*e(_IMb%$NK5n)aP8|20nX|;WB z8qsEe_|2LjQtDREg&94D24NLlqd==KC+7{>4%h-Ho{PO? zk28OS#7X5Q+z7^#E%ALAP?7>^J24!!IZFcJ7CK2Eb zimMwf4WL0%J3!DiZa)JcMdM>@=nX3Y3>{F}rrrKF3D&4cs`|s+;Zv~K3C|dd`crG@ z^dWZn-aFlG$4Bhhe_6_Epu4akCt7^$WppB)VO^3dvsjf5a)e{8JY(&hgE`WKEA^9= z1~_sJ%cp!e%K!ujQ`rJY|WJ-U(r9lv%C(0ywrjV}+}J z+^$%SmtT7J9AhUobZv?rT9W8(Y5r>|R{N~D>n0Z#yeewhQn;iW0h2N!a z5@dksHS9QYwIv$WL%V|MnaL0Y314c#l!V+7ppM}U8_pZ7U!)6E3hY_NHcKa_21bH` z+iBdhcGLhnC$iA>ytw06g+$ezFolj;!9zfKz6SAz3l@qnOR!T`3$rHECNnPNWUI5`gCm3=ybt0QBX>wgB42nF>xD4tGD#tO6Cnz|(r`H==0jM7)7+ z@Q97oV8e^4#sLOs&O}WwjydZgx`8ZMUf;$<)4S`Qb)@0m0Glv}Wr2DfqI<%V zWkaoyTuqXTUA!3$$wpAc*)aq@W^0 zqY&i=4aU`avO`9j!k9|6aRmaBS}mbq6GG7eJdnL_5rMx>yq<~4%gm!*sCWQFA+35C zNZ4*BrnoxDh=Y{@zdFT2A=T?61$tD)7N)Rl5PkQIQq{pnO!~_I0M0Vv6+}{^limdd zkEfgEj2^ui#@(T#jXYkmNx3j-zD*aDnw3eQ&H{e)5RW@ulY- zDG|VfOdAEB1L=zdN|Kh*s>zi=rNBFBw}oTVh#^!?Hm@UFG0QDuM)c{i_xi^qr~^!Q z_doWtaQFii&lq!lCEA;P{Z4R20Md5(Uirx=H@t6zG2yT{U{-t9YPhfuZ5KDKagaH> z+eaJbCUi1f6e9+k2U#+OfP;}b#-USLdTi?yr8U~a-Zzt|fLsMY5!>DOh^#EGL*gvP zcsCtBoI(^(=zNIb`WHj{I2!;SgCxn81M`4G6rEFJ_{M!IY4q`$dqyMEkI>wPSewlYYJ>oJ3pg0j7C68-n6eg;^ASkxFqN>W~70MO`YT* zNMsX(f|3C~sEcmp98?M^V0i>4qV6*o9e5rk*yMF=v5JAnSM#Lc(DHO1qC3QAQC-;h)wo zO%NslsBhS+&hq>PLqfXVD>9m?#^)iHiqWvr8SZ50A1-Y}eA7W?#KzE#je zT;)bM9da6Z<0JE*GCS*^&Vw43n35*Y@Hk^f5OP2qvPuQ^PZk z{FsTcG^yE$;bu||iF*T`WznF~d2qJQ&~RwCqz2&T>gi|#8QYZgh*9aSBD5i;jm|C( zM26XaVfe$dyttrVrQeK6sWk_c-<9CQpv(3#yhxwFSV>3`0@ObS7-Bg!(c?5*mV(gp zIk>mjnFJod*Z%Av0QNMU*MNZnSOyJ=e z(~n0q3qS-D0dntVa4@wtti^{G-x%^Hi3`AXA{5&-JQkx!hg{@wjl`2IT21rgoL@4Q zId&0yJnLG*pI@=mH~?9vPp2HbYam4w*j|-MapHyz2qs-e?-U}TIK^Fk*CjHYSEipV_<3XoI&{kkr|!PG~igRw-1CqVemDlLcH?U?Q7J`pY7qFgadH{{Xv=u+dF6 zt)af>`@&W^IHZ+-z0-K92QN+d=%=ZMt8PxobE;^NPZ+$>`(GsRwXh5a$_kYpgPOtf zu62!e7TpVZZzlBZtRZZ4hSM|>3)u!{+SHo^0tp3lW`uwob2ZNJyMAq?4Y_oE{hf6 zZwR#80OS=)?(6*E(fL+zAWSwBfEhs5WFS}xHzZ^-iAuP1LY=X2QaWfF zp$0w>I33`%wtm;2+uQ5L@S9r?z9gNxgHQY7WOi+jy8qy^J%;OX4zYBC7z zy}aRf$7l$RZF;=ojvt)9

P)XK8e+EREEna_6yk7@dj4mx={Os^9Lbk!%aPK;Z; zZ57CG$bEGMFqN3L-(rrKIi@tQf!Guv`7~Z984U3b$zu)caMb0HE9^7A5_n7Q;YAS| z5OPD9!^AnuilpxJbWj6dZNhob!~KK`0K!RpbAikD1=)ZQ>s{dIPV0dr zQj%^~84^hT6B!^ttd}+ROD7>V;L;meW0DzzN~@-SsGRE-Ae}O!>sfovd3It2GPdxo z1xH_I17=D+O$)8MIq+oYI)Wz{mIyaGa@fs+n3lr3zH&*Z<9uSq?<=-F;1;pq$vtDI zOWtWve^_h5^y3$3q}QwffzST{tPqmddd;Ozt0zql7bk~#HP4DCwCCw>ro? zViICtcQRKbc=!bW094+Dw>f`CC z#V`O`sD5w{wGa)YZIVfQ1l}1TsgZacT*Wh*d;&^3TPNcVy=F|cNC8dgyz5xpBFe=f zHdk7XMAj2%X+*o1014LMJf0V3JJP@^LQB2ogd8VXJ6&JSP&5-;@BC*hDrAsdq0GNo z#BPe%x8EmtrBO6IR)p)Ez2gwzDu=JmA}do?^*+9^s^ua(CYoKoCo#YTJ6uq^VWK60 z1yJEb`(QArr+4eTw8-GQed5aJ1`b5M;1FQvcoFV3*v%WdNMogQ7^6Trd&Ih-XRPH7 zP3Js>i-}S*RZa$PDjkrW9`YyE zFN29V#;oWiR#fNM(d^2|n)vSaPZi)pSZhtd4>+L>i}=Q+f)vXXyYcHb^jc$kHNOwx z&4P1!orIX$W;Y!GS9lLH4Q;(2ydq+9nnnj@XyRpHr(QC{X7Qecdk|@?CND5mr8vk@ zNha}j(d!szyPzQ#@Zp4jVj>{<)&1uW(@DNbV4lVTHN6Kz~HPPYeBSsv#gQvU8TzCcdmOo!wA$Yh-UC!e2xJHM+IoD zN};2K))BXq1hMELI_DU&fxvZ;if|^+3?5>Il^Xc0tl`HHubs3#i+%v)In5meoiuc` z*}jfuJJh_8qp7|H>x9z6mRXH8WvYsKxD=Fj^s?%@I(=NJb|VG`0+i%&B=RE$ZHr_A zj`*YObvDD<=EiYmR@Zgg5UQ<(w2yfOV|F!kapK~l>{HTN4pW{?TZr)iwM7hPFL_JB z(6ob87A3K|iS+!kJrG5^N9fLQXl4VNI(1O%u$i-YK^a7eP)5p4o6WOZu^v6IRp*x- z$(_P2P)Cp*ThVWB8;$1yzv$kx#oW>4y17jYr-sE08M5{_g&_x89pD3UNC@q9xvlYm z3D{5`l$ryfVJbw#vEH3=HclJ92r7sHAlNyU(X`V|WuP>H1pr+NwdFL>3{GJOZJIYp zb)@QLxvr+uTiytovkWQCk6_Lcr-r8Sq-`G@R+5I=Smv)7RYVgW3zDZRmInAT^8Nes zgr#MHbIZprx0eszAB(IIxQIZ#aCLylI|B?#Q2~#5IB00S_a;7BNZgeWvS@vx(kJX4 z^nq8mF8ou>bG0&m6W}2{h`TPxca4H=UpJ-Kx+%{Vf(4+naZ1_T%it*Qcv3zqaFcf1 zM?5DONYv^Yf;l_b^>vAkg9HYUO(U`U#8;`%)P^-TpT-9BCzuxe3LVclxtOVpOW2@< z(zGTagdV6wfY66Bbk!bgV%x|HUb)*K&p{W8El_6?onoxwcEh|ymz|PaXzF?q6!n2i z#mxdsu!R7wzylVJ2;-0&g`28QxX4zrp8C1AX^3`Vg7xHxq(bL|k;{{P@B@ z284s=y#R4K1Y%C?2vWQHWM*7-Jq|-adG7+kBMt*db#iaULI<8aaeZ}_FcD z`TB6<#y|@kL_KfLSgkJ(O&xgF5RRe%F|`f6z{^kX9cvxv&A|lGAdX8F9`}G28eRL( za9-ay^ThR*XAgoqW6_bg4{jXq<6lgNoL%K&--_MmSxc11ahe?Ad&b{{hF1(4!nicZ z#kTxaNlNrrH;uJXEY4sqjt9nVt!J@rD^r)&_}&0ZHb8(p2#*t6X>j7jRSQ5HXDRO( zVFipbEh18}xIc8=x&XBZ!8GTk_`NyYgjd*S*GYl}kak-r^WG}(NtCf2ZP73w1jkCs zqo7lR8kCSP$>+Bqcntya>B-rS06myH9q{bB!Zv^gAf3iD+F0g`<@3Ws8Dnsh`VHaP z9=flrd0-PmUKyM87?4V?(^wV^njGRz=vK}}fq51wzFFq3b5RSXapr8t%@ByIrvNZI z#9$e~+wUKQ%_!TBSaiBa5U4H>N8VW*A=igEmx02x`i?mU!iNS@FiMUhfwZ0CHTDr} zaf;~8W7)%$R8Rv`2Nm2M?~Doz;PL+e{hyOI=8*bo`GI*@pczBFjcY@%thFPD&A6*a0WkcXWh8Ap zjt0ZLaK;)Dz~#bmv8m0S*VqD!?%MPrYwz1d>-+c5n-MuOQPbrvv4YP?W1+^pX0P2ley97Bb2Kb*h0gb30(P91fPg#fWR zH$V4SGU)#Rh}(h**{j|^cS!_GP@BgI_|%97ws>*Dtmw_yV#Ez{UhtY703+FX#~w;@ z_)z}=JQ z7b{?c5_^4S$wQG8x)-&wPZ_4F+Bza~F7A^S>EeiZ4GH8jickyds(OwNj0(%qq7Kk& zoM{K2m`g1l3#LDKq)Qep!YF9Y_AuLDI!9SVqlG6otlL-wm7;{#n}df@gaU@za&b=c zc+~xps5wa;b9u?qNYiLVpi|iIK_VK3Xb}{nqNYrmi`FA5_krNVl!w-V6_qI5Z5f$X z&Yp%Lz-5WMkwWqlNwdR?6ga2V>Xmp5J!c0_BBUT`VG*CA0? zhKz#)f<+tYhTe{Q+%j#1UNew7Uhz%N+nYF&9rVD4Z>C~O=H|k0?qiRyg*L~PNOG5m zVMhrGQX2BcmEgPU;e;I}F3Hl=4I@y&7q#=NI7Zqlv#+44lj>db!A&C(q;XLNT3bl2B%n?7V zQWCmB`BM?o)Tkj2Hja46Bse_^XK|*fz)NEI4W0&0tbBpxo1(7^MA-sWfrZ=vH@ zJrTH)4%*7lFS5lq$S}>W+8pl(O73@*$Hd-U#KqQka5tT1+-o8-WZc9j#PIw_XW#_q zc^p)HVP^6!BzeRP3gf3Qo#iH5$&=i`ZGKYZCM+6| ztJxF|#t~HON)L+mZ;I7r#kTWtP1F)tu&1d zZXfIcW$lpxv+=Kk>Yu>}Nxoo|1PSwGFRIAQNNA|U?&y=K9H$obe#HJkDZHjq5bploT% zSP%Mvg0IB#Vu59GDye$qay9}L!S{idvaYXeX?EQXTqAhr09HL5zgafaNKw(N062NtIz{BiBDjWy zO>`RWV3FAk2-d;=(+-MOj!tNI!6CjJX&4Oz>8|igs-utyURM4tD(5CWff{cwEXFb{ z3G{D%GJ@oT$dA0HlJ+?efTUsNvfvFumA=F!e~cHgMvu|DWV+iF2F}`?J@1nbdg&DX za@`)69pzHp5z(0Zhk}~?bBd<)qwE_w?8LAHU@MjK=rd%E>k7U6>LN8h_^k zJ|u^kA7>aw0}%>M-_A6qiO8^|WbeNAV_#^g$^vLvzZkvJo;T zvyZGKnC^2!e;Krc6i`V(jjM}M5)cF-?rg{{KyjNBoqlq`K?nhZ!A@o0S@$C3qfb12 zV+lo_&n_BZ0CHa#*r?PGI!uAD9FyG%=ymnZZ{)`};vwWw>2eMLEDeCN+ElXxo*`AF z)*ecJa`N5wsHf)G-ER~q)*6u%YH*F?_*0?S;9Bo}JZ9Q=64^!xprc%GyjaR+haFzW ztkhlx&;W9V`@ zQE%7YHkX@=4|qH9Vb%VK-!4sU> z_}QF2=eARZbHf7UL>!qVWgp`%vQ1)XFyrIA`(Q;WmM3InH|f7HH4d=%z^NMf$^z(? zO>KlACoOK`yJ8D94&d@Vaxh{TqNW~%`zrav@kr1)0e5-#JJG zJI2YN=}c}4Aq9ig&AcLnQ-h6|9TP}H@MitXeQQrO1^Y~L&P}+a-}b}7w&z$bSFfWN zNnw)OKkbe+!;lU)j+EAh+oXHc!^m@0H9ll+HZW6}7aHQfd}fbp2TPp(1vQFD?G10v zI*Qrc-VE3a>^Sml!&iVv4)uLxzY8)8>&8qoYd`~MBvC2HZSoMlbSPJ-zlOn<5TsAb+;pxga1!(A{=99`CAwUJ2 z9EKoJIyf)q7s+DP8lZlEcuSfrvQ;>LI7SE`TEuQ$#~;14q&$h)KgK3AsuX8^Qba%R9Z1mV@4S*qs#R|vS*4-U6p4g=iWcwzMZA4` z&Dv^X7lY2+aAUOT#YgF_7-3j*Cv%~BawgxkII6JP>x@PO30VC(0ZJFMW5eDdVx&rj z>bsTa`oz8~?OC%E*!xSImjQrQDHE5;e^?FzZPdM|pZAR+2LY1lQI3<|NaIKszql2< zH;ubvEGjv_Z=YBocRTLE$m@&7Itq|*5ex^~nF>3%Z%7ZrtOde|W7nV7Br3z3{{Zex zXymd^H;Q*BMBrDGieg0ButaW&u!q|n$*{F)N=eXvBIF1js`i~Pu zknBi0IW&Ip38L{B@1n)(k9lxkmGCHswjA3PYXuQFA zgMT=(nvTmxa=vi}nkvlc9&H=%3g<~(jK38nJfK6i?Xj4wXk`dPYL#a<1U=X&#nY#a z!oviDJ2!Gy0w8-fgLtTE66{7OrtN&ICp*n@vFN2o0Iw}Na;w$oRUt?< z=v{9$fF(u|6z#E5af<>@Gg5M!*QXSD4L}RD8-(|Go`Jg?)-8^~t>WW=k-5Ewx3@dI zQ}%4*@@uhOs<=QR86i~w>+jAG)`SEWYz!|dprKJXI&ft{TU_OsRVcvpiomr=jnpD2 z9fqF&0C)f>pey*t@)leZ#Qy+T%_{JC#Pq}uCjj&L&Byx^Uc9U)(3mwSxRFoHJA#u# z#$6J((#8sU>7#)Y#?HnzFgz*V0pS4@h4Vb^>fnI^r%>rfV5rl`!mYBbb%5!$L1pcx zoiq@bkJ$q^!I^8I20AJtreb(+4Ya!vX>k(L_PTzW$#!rXQUn#2=XYBVfUQLa0Y^nf1P2WJ|htqVsZG$ zg=6Clv31UAkuCwqPD%03U*x3Azk!BUdtmr*D~TKp>nLjxw8q?8pAd}7<7Tj2ckr|C zEiPTpgHBc{qFo9K#f;Q+XJZ|9(IoujZp@i`QvEOMF9U={#kXDl+;kBuP?Kt$_lu0! zKoSU19K2=p>E#OskVMnRS-@}1l0aT5)VBt46TmtJq65wFp{AW4flneL`e)86d z<+zs)4r>k2HOQBYI_MyDyk#{?<4BtdICzHR1~2CcxL^oNH`9Y}uTs7Hlk<*zkd0#h z07@U6+JhNciT8^f9o_!`^f^p4F=A-z3M30)>{vnP8|Y+2J01JQH5i?h4lzr0j>J`}1mjK@0IC;YoJ!CC z05H*sXIG z5+3n&#b}#VG33oo2$kjj{{XB+i$kzSEEvC|1vE9p zW1|eK?XALvrLX6VVL-f>)O#}4mcvy<_opD+RD!OFf_1D2$#5VX^Jevg0<;LIhWqt# z)&1b8PEQMgvs>RSlwpP{e+A zk=HhV_Y=Sh@EZgXUGkq<44I58lsAEK)a^C^GBk@Jf{pI)&_KA;BH#qrhynX740@$07>he^8f zpYY-;JuwGLC+V2X_dxXuKTZy7om^U7XKpc&b0VG~)y__`>`stQh-Zyt+&Ex)>B0Al zj6Z>QoR}?v1jSt@6d5sAdp{%bS@LbhcFb{rRJ$Z{8+mxbb{FrFl||@gU32gu?eMKD z4+`QJ=!&ni>A-%3peRH*+F_}*VMMYqwaVznzU&+H_45ml7*!4zS)f%x*~4H|`o!## zYfv8B!J&6JNIR32N)tkCfwwPXO_|PX=+!e*qG_C%=!Udw)j0x<<(N63Z=(+2!<1hD z730nWfbBRy51=qzc1MS1B-p1y)pf2CJiOyjlnhRSPM`(%N1a;GN`c0W6yJ=Vk2d_S zs4F>hmimz!Rq{<+{9~I>!lh4ppP(&r zrR?p2&=OQY0ynHV1_DM+l_ON+xty+54?-CM4)!Ik{ONf~; zVIWi2>kBK*6g?fZhp_dNsl*pYlhq6jKvtQ5IGAXJXv$=# z?v!b`I43Hj?s1Y58M2x|OL!D5wZ`oP*sHQiD=HF4jw*5|Ch%x8ZHOIUcsUs$GI^Mq-3FBwrm<3oN%Q(2x zzWdE)=VirS<{CL2F*srnq-+($ab-dd7_@KZ(f726igMf2V3viC2sc4plN5IH==SReX2OKy35+B`Qf+@m6Ky>ZMxJ5&%@PbbeLi@`G%7=z9=X%RJh)X| zyT~Qv#%fk6WjSn|K6iun#D?9;qIOkrFJ!qRr!-;)i@_Px0;!X57B;IMhQTV}4PAV?Ma#0;Gt zhg(4GTZydQ_UW-!9fD!lVj1B43h1b-aWAaAt>nT;*c8oLZOHvkN+qGUL^SWHifv<* zs7gZ3H;5+k#8^hbW{=_52k84+c8SHoTmXnm$`}L)SLGe}zyZm$PGgP`*eai1a0Z@) zvw1;7>NTCnUQY5iBe-f}k2u7z>Vm1@!kdHzz;^AE!6BEW!fsU%VC@G;ILS*Rnqf~% zzNgcY{{XNR2(UwD_->aMN}k}g1CeM@yLrw0Hn}U@@E6K0qLzijIHEQpsrOp1Lq5?P{R;PsSKXlaV)4LMaXr} zgCSyR=+d)+dAnASSEbIrF1g2TV}R3Kj!UdV0)YiC!<&WcFI}jZNX1H!pyjS8?=zlH zc?9^vCxOtpR~Znyd?n=j$fUS|&Yw8C$88Gas78=P;11kdq!I_K%AfXpVw?^}7VJjK z2wW0Thc%gPbY8Olr#V^G3a^ERcd}ck0J4$#z>IQ`4vE%p=q3Sbh)heJ8dC-^SVWXR zmE#r5?;ub5%DkNHWZD%JhzbnifCEqm$!&u5u69DPJSKIgASIWat0k}2E0D8-yZP1n{AU$?X zC`cW+LWrGg-ftmMLqu{ovo7~cud^&13~AH)!Ax4=qj++ZTV1&+C#`P?9$9u~hV!01 z*&cEx4)GDa=AGi1ycFItWj$vZjQL@<^@h4|b&)ck2G4^2GB_t3$<|EMb0K)mxWt$x z;}UO-4*SG0{IE803cX>stQ*!=N+AZRQAEuL7p!nmu_J=PvZaH|tkYhYQc-vW)Z-Qt z2Y^bLb7^(1vF<}=#Ue?sg~!}bQ5=*`O<&gW$06K?tZQ1nJ?8o##SM(D@W1tfCMAUX zO1>O-f~%0UP#gT14$PC9L(7KxOQ;2J#&0R0K(wR#ak53fpus76DI~)(6j4lg_Br8r zE;Zi*?XVo{S#}khZ#ke|a9JU${>QvwBm!UqviZcA#WMM?jMgE@J?8tABIXGDxaJ*< zy2qQZug)td#?FFbIw}7E+()aafJ*Sa+?9ra)87KRbWIrWaKK|B9i8)>dD>~vpJX@B zyj6orB-9zU>d}80FZw94b)ZMyO@tg*u?M5hYqEiIs@)hYp@v|mi^cVc$;hp*hbWUT z-|atG+`yBY0Ba4?DjdD%3bvP<&(=5~#KZT59dDoz6Yu)SNmlCZRmr-P-9+B8Vc2C3 z1E&lmNnxO$tAf8UtANI6MS9%BhD0y(8f4ahL{aeeOk^IQ2aFumGVsufE#{c!2%br; zWYd4fI}5EF$zEJ=M~i1@{=MOaR-r)@hy9$4nqP>+o+S%t;K?!xyS<=( z3~M}y;{NaPci>So`dwv!+z2CfP9n}}f^2}_6@Ryz!4g7bvJlAw~pdDlL0m(3&( zV#3iihhS9|CvTaaPIFrKp#k7*3nwual5OFmJdjCedS&Keh`9H&Yh}H>Vy|H2Ezop3m|L7Pht0r{Mx*6ie79bF+X`uK zS;BfEiBg3l(rlr305YnaO;bm#c5J}`R$&#pHM~pQ5lWLLcck4oR0TXoW`LlDwchf5 z(;^flMi|EYh5%NPEg()U+L1JEa(L#_v@U>fJ6D__$FPa#SzTtR_5Lsr6)Ycty=r5@ zcoljE-7fJ}q!{iN+rk8$Lmb(q* z8FfK8!_|mjy|F{&xF$dZB%GPba%Wk~E>Je_HjxL9b#(R)5iZ$*@#9zTjBmh6pzqa3 z6+!|$b1`G_a&C@TZxchtBS%Zd)X&VxL>N!?zPZ3i1pq+sr-6f5Zut#5$T#T+I1-($ zt`RF;og9;eiEm#0UV;5$u_zdR7sdrj^28fQ(glwIU5HQi(@julm5 zqTEAj2tE0~)*GNnjYQ#Fue`SU;AcXcHZViZ6Iz&hE}X(XonvfDjwjheb5C~V;Dt1b z4McO!_%iaxWYF2V9QTBN(6yn?Zm+x@9y|bmLX=%|hLCZqz&@&(K!!-UFm(jJobZxa zj-bGz3aZp{%`k0I-O(K#2`$kg*_69IY7gS;B=dB)r*=K|o1g{Ja@oEg4-e16ztQe$S^P~Na=T(=aw z=hhC+aVx~ZF13(vcw`d@Ff*(Z0f7uSVi^;RZ+J;^T#v|ZWEkrqn(>jr4dSF|&{R{Z z-iI6MF4|~$6yKSa<%JAY2cnL~7g*=cga-c0bH|Nhqp38~Y&-86{52xpJxn>N>IEm6 zhM@=oKb$uxmedd)+x>gRL{=e)syf!0iww%mgHtJy@&^Wfu?%BHuQz~H;ClE&vv~a- zPy8CrW+Dy;6oFX9UWaV;yeGqfqLYg`BKW~PK@@J0?*^tVmxmy55byv1f-%xeX_L}p ziHIRrGM^lN@e#+lfbBbGBgDYcx+m+LLK9XS<(_Z#JHZbvb)p_?Osu&QAtb`7=Fs7o z%gh$a2P$n3MmzRgis-s@H`$DZ3BmqclV0GG(jBX07Hg{jRJnL!#=rac(GNEr@=();U!+M64-P*QXz|TMw)kRl2X<5fNdBiKl;DVH};tm1**U z^>C~(a+|dr`Q*i$oAVBeoOi3>&PLnca^1g=tTR#}hfC50*A4?pdFxfr)9WVwOw>?x zHJ_|*s*!qOiP{}%05IU?0_3-3)S?jlReHh{vks8HuIG%6Fq?Zwb_-XmWPsG8+;oRUh9@!#_AgDj ztH*h$T1l}2vT*GW#!gdNxEq7A_Kzu)F?x#9;+hLhZ7Q&CZumpB_le+>2g~8{f~qqb zp!{2%O^uZx;Mi%%VxVub;VHL$igMr@=byu<1p-?3<9oY+XBgjRm5IhHgf0doK}F3t z$Jqsl+o~>|D_U^WpzS*F8KQP!5&Y>vKoa%KaXLwu5D1B5{{UH1aS$}vhxKq#idxhM z!}P~}3-qFdQtS^bVmag(n~l5Y7OVnFjj2Kop?bhE1>yiM2pncHuo&n>DX5)e0a~j! z1UfWqU(OhargO=x@s;mq7xKV+2YD6JFvq11(T`cjmp7terpj+h{Rzpzf#p1|ZxWIZ z5NNaTViTu&YXgRk3|7AZFcPOuUE)9J+t|e#V}kG~{+v|n*Y7nFs(|2-n_tIytTjX1 zKrK|U)*hcKDA`7Gu7gJLNN{aJi@uvjJaLFDgg`V|vSA07?|avfdN5GenV^ja(|+(8 zFtyT_xok~X9(1+a_esc;P zs*kk3GlUtK^gb@4VkCSz6ICdE*L>q1{t}oMyf~&MG}Yevz?NzzXQ3(fWWijF&crW0 zKC$dUrj|aM&OMmkgVt}emvLm_a4mp{L>z;{G=8zQqJ84<_&LY)%1ltB0NvIc&oxBx z&Q2lTCLzJ08c2xCY0;LP**fj4!tNU05SKhArQ%}H@z=$JbOycTaMH>|UrGb%#SULp zCzrV3cek?;#CSP(j)X15Hy0_8vcm)_2#j(@*1F?Huvr9*dr*t$H1mSAs~!zDCzB$lx@Pr~trl2I^GCocA56{$JLpKzS! z>4^tZni}h|&J_+<$6A#ON3r)eg8$)e_>>$p0?mK`8*fPxq-bZ^m^U!N&R4*_U26FONXXvjGZ_M5!jOMIB5 zFoZh7y6xLr)wdht*_u;(6cY%8u5c29V7V$BSdS*mq~+Z2Du~D_DiqP0$5OO-kPbtd z45+GwRmvhWNQA_7K(N&8orB3^REVV64`2W+;T-pjXV%cYfShAV!`;e!yi8L_zr5Uq zJmko4*^abs93A1XwK)u_M3eQAca%VW^UIVa!P#nJaZkova4&eB z@#hcxFbRUWpbL)(+}=(AVWuW_9|^5tv&IB+E9)la4C@8?zptORMrd&5e}P|GC;@bn zS{``s5p?#P5H=3NK5l`YSd*r9sA-(_amuC#LulT3$PcJ4&%8ZoNg}Y~-B<4jDQlzY zJHsJB0I;Iu)VDN0#~A%RMtT_Mo@N3E?~EI!@L=KtoKvY8wduH}>^p@t{+uqWxuvI! zJL;21o_ToDn=hG|F(;EF$`6owxg8t#n{10!HW^||fej>*Eb{c(m8k+oVRItc>Q5O zS*HotlHzQ|&wf<2R7>Z1aIEG;+3kgoq$nF$H+#+bTr`~>ZPUY$j*r=Ow`YxSMouCQ zfcWv1T9KjhYTUz~zhh&vvAWH~5BRQ~|Z7(3zwBEj8QcaUMy;Zd~@`ps;# zy!k}@Q1;^=UIxG;%s1z}iq%3(^r3};quhh)sy$+r9eaVQ^5Z8C3j=k~H-x$4Z{Rp0 ztL@5P9=apGH7O?;=W*R&(zPE=pPX?99)qRXJU31xYC)8%h%3vt63NUdh&w4k*qvf! z8OUt|ivx~nhoa4K4jk<;8>h1!EkxD{r|8}riNyes#tgeSd2t?XRH% zVAmnCU^|1+PcltZ<>Ak6vCR+=2TlWS4brH1)uK`wt5;?sx|U#s0+CJ3c&s$DfR$5& z0T{)Q+8(h7q@96${TTGb3CT`+AUGdGMI%JKA+ET&r&$uaH92+1<<4cmNNymOo!)hX zBToYDppR%`z=ouL9f4=Pm`aJUp%A3-Y~i;LyicWlOTJ#PC2|lv&SBplyq-izrKmWm z`oxdn5lRljZ1>(t)CFn(0OPBKDu{EuS|+5B^XbXFtwm&v^_nP%);^{NH1S7h8#Z;0 z`oqf9y5u*LgnBC$YLLI@7+X_VdYF6wQ=(iUJa?PKBS;SzDHIyj{{XH|fwqICGilE9 zAW@Q|P2gy{J!CzuSYE^YX7J#l*@7JaEghIy;+O}>UQA?w9T4v)D=i83<3M@PG=1d_ zLq?SVn$17n@V(@@r{$oi?D|pJX^eq@Vp<+gE#(FS&91_$p~>R`Fd?t(-hH@R)&^3V zON4xUa>tBaIYII1tdig*52p?jKj0`HFfHL$fh%P%niz_Uq}1&ooFgNSM<2Iw za8Xf9zgH|vAfgsrF75Di_gg?x3LQL{r|%h@wC%n0VT)fB5NO0*@Jw?0>61XrCfp!o z>GJ0RAmzT(7|Fudw7#=+tQy%^INlL=g%Aytf5s9TM0Qtyi~e#Q{dbY6dFu$%7DlSQ zx4Zsu)v_&iI}cd}Pm`5GwfBx_#EMkux_+=`e-YJ~1PTxrT9||!piTji5Ix;*BO@Ub z7j1F8v-&Gm9LtVuoemQmCGL$_D*pf*MEZrgA*RCKxOgSuXF-8igIa66EA9dSYU_f1 zd&cyEyHq#hEY|>QoKrMV!fLu2Xq<6m{N%?FMk)bL8rVz(+y_S%$TsHS?kf4FPnlX0chDq&L?;(N2 zFEkCD02?-%&WGUY53&IC)T61VcM@zPa?_z@1$9=+XpdTboMCt&w|KG&jQ-3>ZxfH> z&Lth2=MEwVoQU7&H_;zBC?DQf_&l&{9y`ug^kGvp(|98QFj~9AY#zq&SZQ-eN7Djr zFPs60rm;!PFbnVjmf9&(B&mj=U@k~`z|rw3fq}=y_+nS$?^uh2N6gppXMeno2TQhZlQ)fxpHE=hufB0!e%q0hnX8;l%jvheT*}D4ueUO~sUG z13~!0oW&3UC`Kc%ITs2E2Z8?p*Ce?-GHlia?h|6*lZ+U>g5KU{4gm9D`yltOu?|$* zJcw<`QH%AKuu>58WzU9IVC!H4r=y(V_V8&8%e7%QfGOOid)}!a*N3C)(*dB z6xII#c;v{+uS3UWR4=?YcV#w!Wwab*nj z=Kv55-Cw65okLUhIpYQF^llhoqE@Rmj$CPZ#%^_KSd*uXYrk3L-GmOQh~x^&J)S@B zHM&uRHi6-eXrVfnG&5IEc4 zVaSkX$R(CoDDptKY9Ud-VXvVK0>FkWb&GR{csl16CR|-*nsbQ7J&tgTU2{d%dNk4O z#Ps4goKkPdo*d9Jwck*G-Rl>S>UG#*-vO@V!Gi8H$)ws{Q^VHsNBwQ1tswEbIs5_= zn!9=}9nV8u=8ybnFGhgKn&X}3f$KIhYZ(m2v`Cnqg9h#&U~Jzf1{rcsK})uBxyL za>N7sJYa&2S(NgU9>logNyj?R3aPAX&PVxOt4ddEzVl!1##Y*Pt>HLGc2|?&3)~!y zBVq+1JS(#o+uxv+?(>a?Nal!x`^QL^SP7iAPVb&I(A> zo}MyFwn0P?b13*dO;|*0RFu zw%Llepk>P}G%LEjYdP|@Q=#9YAD0(egKq?mOEerDT$MIG^YInKpj)6F;!3N8?9&wQ z5rM2;c3_NJXBCHT@OYQrBy&F)GA(nv4yo?pt7S0eB)~;VxEMM2onTYt#splu%6~q; zg%9I+e3@DOqhhq<7@kul=J&gi?nEZ5_}83En9Hpl1}7BbF89C;U~SpSbuR;TLgYXd z1%@1fA}!FKDi(A5!EXp!DY89}K_k)HKg9AsIw2v38SVAkPDFZ8YqIK@EJ&FKU1dsl5tff<|MdNSLJ8drxLBSwDgS>Ow1IX+0 z;c=D}*te~i?+zIWpgbXa@L_xq>Z#72Od zbYuZYa6WQq`xch)AN zzEkTZGb^JCi$R~WoG%KODS)eX)YF5dQ4kbY1%IqpqjCX9PdsY^+6>U0Gn3Xw;#;Rd z{cH1-LD84Og;RoEU>gr$ni~NXxp;O}VpMAGCb*(⪼S&W5DyrgCiEeO^E&L5z0XV z4g1Q1LPXWM!^_^>;jv>5Nzyq3hk zBuX~akJcPR8YSR$B)#O)F6F`x7GH1HS1XOP9bUx8LlWkqK)C+^<~qT)PbuT?5mR)_ z(6jFWDM2GZqrKG8m~;)mxaL< z7S~W@=3pogl!*I+NjT0q`J_UdLrU?ka!=LWrWFIeANP#|5A60G0d`nk>y0y?V_xs$-Jq?Zd%bi@Ziq#jAS2R0Km}V}uA$()h&=R@aPSP8g@@-aSCuQ^qL9 zwyF9!D?Ek53#}6KhUE0IXb94=BeN<{MqD6Ev9Q~g(BPQ(xn5td7!WO8i1Ycx?22II zqL-X7$n#Q+=dk=?_g%Gh(q|c{x;RH83Hi8ZoE)GhEE^A_9XNrVA`aocBlyIhvS#N> z+HWnenPx4)*7LvNZ^L@P(jcDjydmkuLtbzJ=6hByHku(8;kB{A>I0zG6nMb*fJb;F zgMv&12bX|tUsB?5Y7EYfS3@+ys{835?f{{W_0>hxPcX+m^hcxQMSmU(&2hyZp# z0OeH)?*!wBoxYbWQ}lH@5v~$e8nQGLL-Vo$8S&cAep3WS0CxtOQ1Fxa6G~ zVt~@P~O-VQXU@h%CEO+?G#_>aTC#E34AR7;l#x@!> z5yCPEovBIKbufiE3$y#<9*mNX5M+uLqCDW2*&Tyi%>j;awTfxHkeG&)`Sb-q7D4X- zl#+^3pzTH;NxiBl1N3rKQigWo-*3sf-9V@fz|C|e(W%%3IY+i@U5&iXP6ZxYgn=Ej zsKoOwC*^_d#>RrhOyFJI&K4gpP` zOX$k#&V#wKb2Xs12l`Ew8g+nf@FYx4a#_sBwkah6p-wdL@iTSB!GAbNFYgqC2UsQx zb(KJHHT8i)ms12IwCFbBD(=MM$l^O8#y}v$HIca{Li`+JA_yso!QsjVSp~ejit}6)tH9!vn-gg$%s2W8 znq4zkq1!BDL5gggTZ;bxSnM?DEuPJQF*!-KT3xgbjSK_VLkvVnz}D{uH6g|-=b zl7SzR4(sOz;_a)3uwqx!e*Sa3t{8THUnF8=_jez4D54=Ap` zC;IC(xPz#!b|Yp!HE9~d))+(std!cvvwUHGX?xOL`NPdow~lgs$%302S4R$A!N%Yb zfeY1{tOy~r?GV|qe#FPS`e?8l4LTuU>YknpFpqd-mv_Vp(CGc$DNl-fY2(r7YGHZ}dR) zcH^@UEMIC5SH?aOac!Hmt9!%!GWUuB=yUan{LTUh)HPDD-%Jr3P#EINuXOdiVzN`7$kF+S=V zX{n{S53)!`Q1s}Y*x7{@g%B>QOYgzW4ra6MlqzY>gtkj8WXgk4>J@ht2L2DN4q^|fU4gvtiaUUO3q@=#yv_Dp!3kv-6Bk9l55 zr!W3ws5$RMYhH6n(e9?L;9RE;#z#w*3=uZu93bprIt)25j6jlCi5pfv4qUqs@|i$N zQ+{0;CEYMIH1ODS(}J<-%K)c`W4{vtb+jR`S}lFeh`>R^MB;;8#RkRh1B?83M>e`c0V}#Td;={SOQQj%cC2ppoMlD zl?1yA0Ru*M&M}k>+tL$5o4OAfI@Z{QUyD(wCX!l>!vH+!*a_r0=NENmf&hJ$9yN%@ z!p0s2((4Bh1*yEF6mml*j#2UJ&U=UyuE#pZ52NclgvC7}*j!?kka&-#>-ui+1B*f^ z;;&=D)>z}t(6r8ociZg6LJN}Gt@Z&-84FdzzbTp-a>lS|{q0oyoGJRdt3aaC2A=~48<8*a{%Ib^NYeU*NCBM4|Tq3+W+z6uz=v5w< zR{i1wiW-B8NJkGjqvH-ra7+lI?AnADla-y~$wJnPAZ^+@V$YR{GCNCgell@>LB!;|>ISQ@L3mwjr z9pa+uo>o0(&88IbA)&^Td$|=EnSo2Mvh#2oN(n;+DovMt^N!or+;T1h;&OAn8WvWc zjn0ANtBH=n*l2+7>jW_&bm=~)_kt+W8#^)@3mCi@@BzEXt7${VEe4X>o)hmnqkLx# zA^^K>*^<-Obc_Y%B@ubTtX<~NibqPzF&_*WWQwh*3h}&d2q4oZN}QVSSyr>KbFLVn zo7V2IY!tMi4W*jVzKjrTWP&X8C^VEctVn8uvKP>F=Lw7Hwvqrh)4DEDklFqRtuvf;7%Pa4`6d&4y_z|2r<Ye3_wR%z>pM(j2$RbhlY*~%OkXWa+{>Ql(k(bibO@yuXx&sL#S&7CVR;EqWT;I z%bREo6sF!#EAC?VYt9<_$KL{A0iXvVExAMP)k=x9PEo|b3{agHvvO@y!qZWl?@Li$0S6uGj6!cJQ*(WBix=C zZd^>n5u5I>7^F>+FBNnM5=t^SZ0;f=t)mm(`ArvCuzh%awi-WOZJ z4|o6{J*B&Gt~Utk}e- z6JD3R0DcK(OTqSbz&jU5D~!A`q5wZ7d-tsDOHgqG*dh8beqvD(3|OLH&hb8`^9>87 z=01NpSk~;p_PF`w_`yKbhT)Rf2OwNSHVcsApKeLb{-4@BJVKx*S06-no)I}GjrEp& z*n}NEh9yAY1(+)8hujDPwh~4TO9_@iJ09_wtr`wbcP8YMs1;sX&!Z_= zb4dafRbMeK9_BuTA%aMWzdga;9Xf<)n-k6=R77nm0jIdqfiMY#4K#G~sB}Qq02+>2 zQJFr`9+r&?L!0cQ6R#^@kS@ZU@7Mz+42* z^0Hy078o`4oW2K5$n!F`;IHv-SXsaLLoD40bTtNn~?UVbM$1@R3O(w;ok6b6V4ta;uZCQ4bLvZDr^&5JTcTpGb2P^2M$oC(I?=uE5GPd z4Qb9+-SvhI{?Nt_;D?M-v;s=0k*(_1Vpkj5m2nM?G20C}4Z6m-$+o@HJmhsPwz!K> zsr7>-#|>DBIWI})8C#*EGqMUm!9KX5WenF&XuGQNsH3O@&k2GovoC6SL4kQJvly_s zA3)^s<1RrC6jpoETDHX8UNIbbF>}ku|%U8XEB}BqP1wyuyho=7WfA$iZo<597K!spE`Nm$3 zM46?FTzbM2`t^gt4e^i@CtQQy;}fkDd>=ii9$Yx{6a~MXe~@qm81cIB9^dOGjN>hG zasYdS0+pf;BcZ})e&p}7*^ZJ=q#sRph7XWJk#7#4zgRd#l7ok#IyA%YEszM6G#Mm~ z?adEbLB5g53^=%pw1NyFAI2;Dw4z?!%blex?Zc6>1EHtRnqL=;k&PaRsb$5~mdu?H zg>cY^keq@{OZMNf+T`i=$5=WR76co6EUrPsh@4L<7UdAOG)4*nnuiYZW$QxGDOFRS zJ~M?!19fiT{_sX#O>{Tm*Zp85)J@9x$cm&W0`4 zl!{NM2b|Rh4GV^Qz(4_U8rAoVEH()`d81D8^JK=a$ye2Qm}sD}5dzYG-Z)e)=G0vM z;7_A*B|AVpcbD@iK)OWoa$vNjvCHQs6ULLg2_7`>Euy4su^J5lS|?iJxQ`251q3X`eeL$=LAvJ^n-JVqMOVdvY%yH=>u(jbU;~LVtauVn{ zf*fZHu8$vBKrWpX&KB|%NvB7?&-arf%R#I!4FV_LKWv%bp(DG~ScE4QM=Tbay6wRd zEAw%29BVvw8e?85cbq||qp&{>c+Myc5ZbKeoMilNnpFP)b^KuPf|Qsd_w|&9n1?NV z3r`tdB6W_26y-AVi4WE}TX^Jrp>9JmYL(PE$A1(xT|>@rY**Lw=9? z!3IKjF-mI7{22B3pwmCbEEDVqZ;OZ-K(Fkl4j_L6Mz@YdOObo_oVt3D302E3a zu6Z+fwnSIn0F4D`9k>L6(f2^VQoUzvnRMCOw1!7*D9JiZUapJtH1#&yz^@_PI z%EGaw@VgCCtM&e>2B?JJlcNG+>x63sLqJ#D6AE`r-Rt4J99?0+2&D8#R`>&*_K1eE zP=tZ5-W%s3oVtx7@2H*OcT)l*9K;0)>jlL0P=tu86g`Ia5AUR7t(rQuc+WqW0Z>a* zfK|1)gvygDn*~Eu*p4;G5>cM|$c=Du6})OS?yIoOqUP zP;z;4_LpOfacikbvK0Aqo`;hoJ;Q|foA!;de>ayc1|e%f~n518co#{ zj$q9qbF4@_N{uI^!Y^ zAeablI~{b6CpUKw^b1feXTyHk?8tA)p1n{xJF>k!lBp z1s%s(tFxd*8^i$;-=N?&2}BPZQ_hUItpLQ^B9Qk#P9|Cm6exiLi5==cs{3p41V0E-8CWwSch2*QeeC~8a-Eu?P;K1e+w^z<2L6S)nUGlwgnj|fo z4m5}z!B5^V^oIS5qGGe?xGoU&RUX}YZK^*{&?rfS+ z>G?Qv#0XQlDI+hONJ>x}-1V-oLyred2Hr<_V^Jo&SOgmWvAPMqr;VCD8u5s5edtjy z30^$<#7?~_j)Y+)-_yoAQtMc4d)vp8yM%L21q2`6ajPNl$}0U$VI1B)2gETCE8Bo} zS>t$uze8|Yqye;e!HQG~?tNW@XX7S{u%Ze({0#fWVo@LtezAgOFgeM{2YblfEO6mF z8~2SsC|Gr8F)`hC6f$U_?}sdbXPP;Ee@vLzfG2Lh7<2&GYI)9IY$2d7vK%pXC#~tk ztr**@q|$E(U{YbrO#cAR9e5w1qB|48k@l&{sJF}K{NgI!o7sCsQ`3O71VZ#L;{-{S zBu4d&yAHTg;Ik2ttcBY?^PWJsiYH0u8HA$-b=e5w{<68i$wz`M9Ry9Bu%j5UR@w`P zjyTHXDRV?)vsI?%xiuqc)GH(p0Q$lB7Nib=7od993M)R%B&!pU#aNO|b0tgcZ_dYZ zwF`)-bibci$flpz<(jbb9i2RkC1eGM7}@E;yl){r=X=EtFiHj*k6hzD9!wfhrg=YK z4+6OGFsC>$xwD+v=PNNgOsBkmcp@TPmI40&?pC?p6b|!?x8oG|!S;Tz0||X$i~BGk zCdU&~O~#e9N*w_PZyxckRqCt(%MIgwD``hfA3fvULf(Vo;-eCePgsE3kR5$x0HiW# zfr0~Z7SF~FbhYI1PbaLj!Xl-P>v1VGO%1%`83PbOjflXMAFOgwTVrS&cZ5{Q2)u%R z<_w9!5OMd4VXToMsX=ZzDe3L^!<)m@&Tuskp|`7mp`t5(hsGi_ynyVPbg*m#%C6G} z*mPgvpR6?FbSA1SocZS=*x>0;?8N1Z5UkP?B7JIUc78{YJV6Be!orZ5qd$02p;_7M z30Nh|5!;6Bwi6~4*7&#ck1#rILeI8fm>?nrLh<7qBw-0NpEN$`;l872A%GX>AU&rz zN~=#FjF%^z{9 zaX=366C?*F+6)bR_53)^Zy4}0!!2Kwrgfd<+{8>GXQl@C@Rj(N`FH#ScypcR@2{Q7 z%qJL?3a7I5f%cQufQ=E)z8quF&8+kZu4(g^S!}ijiM>E%IpU&E%9TneRACRSsXDxj zQOzoa1DS`tE|WKR;$b4FhDLrf1g^163;d>k3J~qynxc13t8b$Ta zbu5gDI|L-x8MfRxB;e>4dd=v4MK0!@Hh1-iN>A>qs&VYfWC?UF)amt+dmZ7LG#cl4 z+UwmzQ2U?j5#rAB5#3?6k67El6#-IMLfQws@4N^jm>es}8M6+MD$#I`4layMmqHe* z(sn$1Im2Bm!WtN&?`V6&R5Jr}AxfwZtTV}KlF)={wF*l^2TLZ=h!x(>_%u9flY9m7 z=aJhR`t(X*jqj#1y9e{lfdpjSbcZXYu}Vsgp*4 zS5EQ?T7eQ1=;7BLVF0A_bQn$grLldYgO&Qp)e9u=euzJelR^;C8qGqc@Iv{xg*|4= z!PZf+nQ6V^PTnzyG0i}`=--@!@j{E4+$=e+LKBtcl=I~3b>1R2ZVC~4Isv@UW~jjs zc_^sl72>g_54>kxFH)716h$Slp296~J8|oT&J>ja&@Whg`H~_<`}dJ|#04haTA!@2 zN7zEYmc3!~91sNa;li6}-ApOe>jRu;ru(YZCmGDfn(wljp5GWC&~ikY-r46bWJC?b zOK*h3TV-xr0qSoOkG?j0OHQ`Va=Sc707-Bzz}vhNryLXklTB@48{&EkIYMl!wjSc`+MYZ&tKXVFy zO@Tn6;&{VmXFWLi^=)1lH2(k?z$xmwCD|~`hUHTiU2gsZBHqUv*7xJqXqV$!p??p2 z7|08HQKiW7_A8ds-P{fW}twx)06ALy^nxJM4Dcyq0#?=L#c8H2@6j z)*LY0Q*ZDgPbI+-X~Z_!=9*u5=M%+oOCb&27=O7)$mW}<18(C*jsw~ZI2C^wt0fIP zIu$#~qtG$>aUNq(h5ny;qP;$IQox(K^jVA;Mu=qg`V<nz>jT+Hgdz9QK}jWSnHs0QB~Tp+VA&+o2dg- zb1;Cr9osm>4_Mr0jx>Lq26^J}Ex9J)vyMw3-XXq+1lL#cFe0kR>mdRPuKirEO!&j7|?PIP1ZH-VTEkW*{MXr_S)^pw%Cp_l6o4RW9~oh;cjw%V`m?R#iwK z5g&eXN`+9t#=gwj6-{^`c3_%_Vsi~Vz{sEn3MoSW0Am!j+6d4s2o!%gtCXI-LGCns zBa)M}^@OPQ@qypGa%xC;ar(s^?@H~<^^T^JA>^C>urUEpV9K1Ye@DDPg`+}1A4r&~ zO6?@Xkeo8;PP1?&z?v}>xe^Uj;=R%A#dh^LLkrl=#6+TEKnxbI&|yZ5ivxPzR9hQC zYC53cq!@y8@769Gp-}x`#oohdh;;bKV%gR0fy1nvdgJ6<@lII;)(=;I3#=E$UCdC! zx8UYYWZlTmhINA+8=Gmy0zdKuzcjd~#o_TxrYEH>2yJTVyUcOah$yWMUN^2?Yj{aH zh{`4kGsad$n$+GZC{63$Z3wRIlT@|KePnh)PEeQxs2scI2*BkeA-%fc*7~1T^VG zUa;XL6i;g%>}bcP0nGwM8Bo4*@RL-IiN6>~;CA7;ZD_LN1vHuJgtODmO%kAYS?1EX zl9PO80PNV8wX$4iLt_U4z3u9^#s{fP{-&C|DHmwClO``IKm;4fYTe0%j{(cLbc^;5 z>2ZBxz|Cl!6n1nWX?Z(m-SrtOaJ#|dwAmp6Z`Qv)Q zRCVO!6P`KFRAfOr4+ki@j~ULx-gV79C7=E6@Iv&u4#BT!JffsE;fDVHRV2(Q-! z(Oa8aarFcB6=Rnl0pK<9W>w5a-1S&2&#H~+%fvDUu(e|pgPO2vPg6~ zY7&k<<)L_9GH+YJL`85s*V`n9HgixBr(c|1`4qH;*#y^E#Ml90__y*lMy0fNC~*aQ6U4V&Y^ z-GWip-VLSWdsxC1Io2>^2MO;k9b$}7oJ?na9pI5(a_;kYnTfTt9;gmb+jop5PZKX6 z&mVkDR+^_IEmNWC{;{|Ua_U2cNnJ+O z{Dx(~WG7!n6ePP2vag^yXCS(`v6xxI;|)0??^gjD1C*UMz2rebz2ep(@EEoxZDgsq zxwsBa98sfFkM)}f460^3jiGtXy31BD9G)^aoFJv-Jf88Nv1l&vet&s;kx4K4zl;~h zeY87x-}RA!m;ps9ujgOhMH2h!99}ENAV<1`PrHHS@rS)@&K??QnLh4r zC{i14-^MNr28{}+U~Do<1At*t*;H>2tU9aD?;20~z!$5|B6+~y84u!V#iqZ7F_$Tj z&kW-f`O)VW&N4H2Uyp32Qsv%J?;1Sk<(KoEJ?FMq>x|)_Oi|UxCfQZ>n|^Fn*f#Pmw38(gRmr^nmev)#@3WPJ>#Rj0i2HjTfpE3JHbqM(nl4! zSUPKXLae}siSVMio687nt@y6n{xT#`i3QS#*IekY<4F@nh`0y5({U% z0Zn?y1GqhJ6e$d_w~Tz)mke=11GR8sT%j5-p!=pHkH^yPuGhb;kkj@ow}>v@rd^n{ zKu8c|=L-2LNvD=?5bAlxb!Z7~!F4AuF{R~N`!P+G@*2R8Vq#>$N>={>SqU4QBb;9P z9lFT`ZsC@Vl#v)zrX*4FnVlg79rN;7okvHtaYx^x`8s)xg+@@+xvT z5W}!&x<`i=2TY<&Am>=D@=HpBHXV%Ix|XK0QCLV#&QPSI)1HrLpLhp+vM)o%vG-tw zPc7>qr4$?!oJDi&FQ>hl^@YBNJ6Ko)?ob97Ot@iFd1TbP=z>bzVn6DBslZa<9If{3(^|l{o}L(pkzenN`7W;=o-#!`?EKD z12z+;0JAxb!J-~;5w^6YPtF!qRN4VI&hgSgqF+_gd!Kk~psG4)yW3_6T_(dIvXZm& ziL(JzU6|7SNtZF{_6Q330DWNv14Mg7jc|!bJCh7;MciZdq{bBhjymg4$evubLCP_V z5bUB(YsNh2zzSG|77Vg;&K$EflIUjIHXnFgd@Bs{%gxI~TDc~TV0nTR%_kP9VfxXm z8rYZzTjvl(PGECgy)^#-mIe;H$V&NOJa>R9u7_B*Q}1}2M6WI9D_3PAsqY*V5yJUH z&;FR*TFir^*={tlntav zo#KNDy5jAD-N6yC_kuIC5h1e_mDX+EAa{ZRdBeHHiA{2aVZJcrm}yEi^{WdnF=V+IdB%o0rEK9#PU^s@-@gNX)wYL`^g)|aFY0#3VdY~#v<-;;F3GQ zVJmPE(8o@P#~4y9ZnuX(T>xtP#Zh`fJWkBXmcqn#yO-}D2d<=J;9XZ-Vk<7Gvln6P z9j0zycn~bTi3w||{{ZfAIgA2vuD+a41ss$YPc7z@@({Qd?{;8mcM4@>R5zmlsAKbB zbz`D<fZgvys8<0|oyJ_5Pl!jObd0O@LVz}~R?u-+7f1%x#8eWcd$da@> z;wO2@Z4h0g_pCz;8TH_5p3_{WBLFld;~W`9dFrM#%x~JYD!7D&XP#Uj3JZ848 zjdc)A_Hpl6g@aZE*a^f(Q+PUb6-TiV+*dA52a-S|r6v30CvtGwG6>xio%=u2?;FSG ze4aDIoKi#NeAt{rR8Ex&IiC};Ib@`q=QM|MW=<(8bBGEV#+dUuC=|_Rw0x#!q{yMK z?_co#;r+Pp`+8m1>w3P-IeXi_LKZt)08fAJMM?Y-yB3>TdX1u2ZWx$YS@uKGqtEj@ zUe{0curr|}=5xql@_uT|i+=za9`$;8*Upyt-qaj@HetIjicUVSBv z*CKmmEeVf(zh_r}282B=Nf-~g3$#DsZ221$7Mx1w_po`Vn|+n-yal;)-MdGn)q_d@M8kU%)LO)#e}~~Zf}#Obj(6M#*n=5+w-uy**AZO zc@OLnqQ_h`51t4+OY2{+a%gxwp`KA^`_njB+_UrU6x*#O*^{6L5s~bj>@WalU4J>| zYQ0}We9bkc-5Y%5$?&UTD#7L}%HMS!7hd>5Gt9{7t#`Jqj#mWr;~$LI|8Qbuv;(zX z_k8`fQ}!B=oftFM*~_+ z`mlWvQ&#$6K&?H%8S@0-JrfL&{nGQJDxnFWc9bx70U{8ji8?K7>3-rjJfPI5$JCL3 zGn3{Rk%1XJQlIC~bIO{$Lr9puWZAv||7{O?=-04}z_ zbpD2*AFyEpT?A5d0IoJicFFRzmYPk zkXshWrXW`c;*G6Efcg-dF&Vvgy*}%mFfO}rulqvb5V5XC`%~{DYHu#?cR+3IjrAOB zl#b+u$4`t`s=bm2PT+5gNZ0+{u7d2vokW%A+t-~uJFE73l--oSy1S3J^gIjI`42!f z6Jb0L_w*!IwQjW|i*>C4J(v7qaTNkCCL!DYr;#;&sso!pjB5}%l(+A5ibJkno$4cq z)>eXrqE37plYs_R8izPwdMeN)50Ij;qwU)WD#mrohP&ecbNnv&>2$i$y8x z?#YL0(8TCAY5wN*#~~Mtl!=7hSn@+SqfxD|=Xi`F_MN6q!`qr>A*N7pK-;5y<^?h$Y^57e zJ+jlx_G3J&OBSzVXu$`3kqKJSuSQiHTI)XL3`}KjZZlXLQuHc})*M{jI4Tdo$9!4Dw4FcY1ce#hY7I#Lx$)T?;xN z$3psYgiPsYB1RNSB=b7r(Y+2*5pT3Mg?HCIukBQcg!sY5ZP!;Bpj+t=`Glkow&oM& zOEhi~&vv_oRE0}y=eQ?0Yrg}}B3p*LB8yuEzy3kkce10_U*2BD2g0G6R4V zs@fCi&jF>_pF(X*28GnfF2Ca29p9(T_1*Yy<~`<#Duzn6WGWmYo^Iz9-zrgePEBTF zlD9T!v6#Qo>o2*=e^|=+XbXjpS`tsTehtm^QN>+|E2D0ygG;W#E+1$!4ubwFy_q?PVX&v)5fyIM zZe8HI*KxG%XU+c+>Z2vHq$KoPvj!ZD558gZan47V)3IIdHvZTNEj>DMQ|a~~kz=aq zQ!=PF-uU{d#n@N>k)naXs~qH=s>LV>3dS++@cYTw<;9<)`3;$P;P4iEIy09CgMRgSCO{T!z7~+1{$OakG~bKc{ryc{spp@l?btKl41bxu@2wUp z`_52XeA0di_(^&T#N=`i(77ObwN=`Uo#(Dxl0t}yh{~(w_s031C4q6-#uBA;Rlhbt z$j&^s@Yz%)OrT_LAGpW*EO7MgU$W-T?Hh6J?sPX=mfV!GSIs`b>K$NYRPVN>hob_; z&EG|zM>ADjcwpI;bf|3^e9-AU@ZaH z(7#)`wo)96ZW{ogY|M4c4o*~!RM6F#(BwnnfMM4?%Lo41@A-_e{QYs++?J7>B}>ms zm)~UmNmzsa0}SR{45(Nr-#6t$C?#ES)(fx8aY)A{;M<~SdOlEWsEh6oRAJI}nISWd z^X{(B(MCafDvo`haW2F}dq4C>V$Vy`63EhFnEphCZL_9DT$x0FW z!I19SgW|Y<&!w`ukGx)mL_@!CvIm+7|1@U%*%DIo^PP%)>VJv&EnzzJ10M|#>>4}M zmySctE#^twR6Y7yna1U}9x;=DYLmhR-1LvjYY?K?Wlosf@5oh_Mn5?*@Nge5BeKm` zbe`+g*;J%Su0YBhr@@?*(fM^;XOyRD(B;dXP3IhcWBgZ7eV*fA^k@<^mvI7b5H>|1-I357@toIk;0 z;ebN~UndBbs|k)~Z*T*~U}clpDqfBIcY0)=q59k|vr07*F_2bm+@2HHL1`<|c%+6o zdA@HGSMzTgQ@2@DELWv+v@lVwzhWG<9iA%a#89zNZxRbvj@nGE@q4zJ-X?h&Zzp?a&LIa<7xb zdh&aJlzt}5>3%15T=S)evQ&NLlT3B|H<_xiskyk#h`55yD5@44(aBOgT`KquP3U+? zTb!&E$rO7UE^oG4NIanXiXGU~aADO}TUx9&d9@k)G)r~5X#V))dt3LiURNh$x&5uL zfY<5bw?Ll+m?EoXMXRiw>%Kn?^|IS9WdA2DK$dNMZwL}k;+j3$IgSTcg{7r9zSFM% zgI3{gK-|_kiP!Ly=i!iNyjBv&|DS#o6FAKETzC7Y45YgV{jQK?RCP?Ta zn!-ajA5BzQ@M8R;h*y)=#6^a^=ER5_JK6YKe#@)2bcl`4xvyby_R7D%hfZatVlgjh zz!0-(hPht1c2xd~Ih{xHg-)2(RXSI+G4)EeOi1@lkED^dL~nnh=G5xA8I+@dBU#)9R2F0*?XLW)5+Q~bDo^?c*h|v` zZ2`?cBDAZ-L%Xzz!VTx|5{>uo=}6h8B&{_d!ifBB3LW|>iq>hqF`Cn|#lI-HD3#ZL z$ZRhzXC@r3LMX~k$ynhN7_(40upGW4Z1@k+=1Ei-X*R1^Cvz<#eyN$0_hmN^?yquR5<<#jL-j&Z-! zJ_@zE=Yguoh)My+`9=1g9MsIJg#ZWL&Q*4k4)m4zwVRwbxGU{nlPr#Tx3|YS;11?D z9c{W9m?snrrz^M&yGGiWkXRwtms&@>L%B8Ezsbui<9#dRP&vi!azTqZjto; zB|$|(fr$fiZ|3MQolT3EJ<_L8d~;l6CsuZ`%)MZloC;rNN}Lj+t_oRxzF7DVM0)b#zEo%yEHDnHDP}c#35LlE986uh4mLvNl+k>P3yXO{n-a45S+GqXK~|+Foj!39q&VQ>tThx`LN}B zPownX{6sbpm7>2>oCbG#I%qO?v43YyTTV&a0x91oZe={Z2_w2(5FOwv`v*Axa~_wS zqdzspN7H!4E)DXLQxwed*l0Up*@L${JbK~aSBI7B-$@a6bFXo5^y3>oS(fZ^H!)8h z^)cF|>TKy<-N^h7N2lCP5A;R2^RFml2qr-NA|-j2DfG$Qp@d#CHxu}{nojHnXqiiEPhFn;&wqw4IaPfh7~L(jm}5G5tbUFQkpsc|&f-wT?6q7&@{tzgCpc;2 zV-_YhqUY?7-GsW&CLLEYg)W90d)YSwZn=IGIQOY*CyRA6pZCmHQMtazqbN-&dW?dF zvxRt4XstKMhZPW-JfzKHYENp^_?zwtj<#J7(?pU_QyFN}QxTpA7DW z*l-XzidYYWAa+(G`dj|OGN5WlYUxhtvdnsh+4+?dwuI{^@ZasV_7yyJf5t3hGrqoO zK+>*xJ$uQ@P-*(Fy%sL)nf`psk84uzWF`MGOqM6&>h~c@wXqb-NHf_T4J?l=)oUsA z?1{5*RU3S>i6i!o5zMeznEQ*y!Rq<`iu9T9+xi)12A=Pkd}0sO#nkCiMsyB5{I-J| znWr?TJ|F!4p5M1NP?c5ceouI2*4db5iLQOW9app{+i20ATWck8GBlkS2E99K0s%kv z?J)B1JTqy)z3?14ZuR-~SEKzQn#4XnvLm|hZ3IIl1>Y+{W{Mbn!UeA#>u;sCs30^yib zlCA5Z_@I&uK0d^jMj^Aikx|F5SMG`Uxzndf5|TcT$hiNg57pYv-f3SJ!i zA&=kNT8YdY>X&aC4T`*V6pB(#)m6`V6q3QD3gj5aV0nX3TOa5}?NIY1(^;zINUxmU zeHl|{)OHMMz_xa+h$j@jpw2tiS&$>3q zuCP^!njQT9hyp^@>LY$*xI-s-c1}C)cOA z;g4>!eH8d|2i(ky*~iy$;MUNx!+#EJkW=mXh&&y8@w+5$;laFTD0yj|?20&0-}`_M zM+O?_C8rJJR)9B0hafLbhhiB<2x1%#g>v$9MB@9I>`7*H(D$C7x~lkF2R0-#+R$c7 zcTX0&X2f=Y!<#tsa8hFn!_U`zVFMsl>t^V27gXzE;$!NHB zOBT^3WI<>%iql=zbb{gi;CQNufm?6N=*JU9b5c~$ie6D7SGcTb$6fx{b)yWR?&+$* zz2HmdTtr%7MO!FUDFBOg~9LUMlB#AK%6i+hMbBb?7NA}#*$sK9ym_dYQ;)^fdBE1k2eHYlN zNaxgcSg~ta^E5SEx*`QBct=`7cyBL59u~9kmNP z;;~b>uhqQSH@c+L{|^9Eq<{yrl6j!zD$)IckRzbJ>!~=Rtl7#_VRwlhUt{f>Bs0II zOGbyC6lX}*vCl=J`!f4u%-x+#rL_?aT)m~-e;9%%bGv0=+Sk|vi ziDQB;-{apOs>wkz3;N_0JSXMfIsM%aT1W;bePu{N4R$>qRuh`8Q0|OuZ^zf%-Cg$Z zS{x-hWdEdwm?`sPgkAH=~@gEjy zHehI&7wGCZp~tUQp79FgovXi2AX=q?0LpI<@4t|p78^rZ(z%AK@)xw{HkH2FsA-^$|HO;p3hAq6Uyq1XLGV@jX>j%O7 zkumu^U6ZR@_DV~EhRh~;cBiIktLZbXeMEmO532g;r&7d01?TJ43Rk5T6CWQ|V!b+> z0Aud_TKxvOE6SrQva1Y&hLSAQo*i&2LASQE%4{MMD(6g8-9?9QP#Cb?_*CcUuG=ux zu>>#lZk98bo>*|k%)!Ob1TuUYd6(qA8(>bs1hI|}6_u!|8=eI!HLgi!Cvf-t)a$Sp z?a?G(-ebz^*^3n_jt#Cl#e-{P?ze9}-i~S7M|Mac&{af}j<~Xk9aJQ3HuXPMJkm(@q8NbT`H9Pymdi6KWd$0Gtl~%&K z8IP#^GDd%WWHyb0e+B~*Y7u7uD^kbov_6uCfKggwOKb4+L$}RzU7J?pu1)w^$#+qT z7#r6wiihx#`gfeHG({O*Z9Xksp-Q{+=b)pfY~ECxhrG36NWG}3fEydj?~T87%cECk7J6Bg$$VG0M`!|%|2&3y)f zX_V)*0zpoY$RaKd=YssbTRWg&XKUPz<=c)Eln3K(|XhqBtIlfhbl1wJT zvn&PDLwpovhk9_878SgIcTsUE+hdbP1@>hQSu)0(4415s4&wujgE#*GX^q1;5TZQy zyLc03SMjt&E~mtu4-~%49}L{31?$NFj2?U)#=QAG`MTY^4RCYbLofmF_yV&Ux>+R* zWwFeR4gfQ^u7EBXh}My@Tj0%E!K)mINCl32C>pzvhw|wkoY?O&$@yiS(sjd==9C+ zBv!6KHP{il8w=IhO_)qN1s@J)Wyv_?5su`c_Ey4ZdoFd6h8fG%X&8kTvLbFL7 zA@Nm?sl@nlXp}`4?#?o((;u=)mx&bE6zb*+M)uyHr|fq4fXv8;L@wZEPPUg$UM}FzNT=zV926z zbaLmhPehUtwlxfH_WJqIWZ!$i2?X0%H$OJ$TmyR=ig#<$vFij4Yp!U_eO%AT+yG`*RVlf=Zgx_U0&U|}T?bk1V4u4ma_l3MjD-fR~+5HB33 zi$v3!J>1+yNj|z7(U`!*iRYBU;c!~njV7xxJ2^cLrs>}8xx0STmvb_hoJPi=*U6{7 zm{Q>oCX(DiOHd_1HXVhQXjHIegw&WeQ}`4|4T!P)hNpq!ef~hv<-vE?yR?RJegH+} znYK-6JWL?Eveo1KEz*mdLKRW$O5PPW7KHfF-e&p&MfoS`+B|U;H!mr$&gXs~Djg4R z7P$s?OyyTAFb{cHbVsP-U0kkPs_Aw#K2myn2yK-(k+VcBwZ36%v9*;(UpFmTL|x|_ ze`6MeEq2s_LOqZ1Zy5i8l^Uf^g<-1%xuUBEc)L-Hir>L$&$xf_yg+hNWglL(AnA(x z>)y;$1*wScy8F$_R}EMGDBy<0l@2vUQwS<5QoUZSyI0;#&019Sz(}2up`agh(;@ii zTy(+B{n0@lvbkj%a)=D4C%Bq-GPnav5H?JjRj{Mrt&KY2?t`-km45)iAVCHjl+)AA z{R$246I<2NjdMwjB_rJ5x2m{bW2gkHT0{2Swq>zq4@Q8UOf&-;+)KWQKxL7_hByok zxZ^uR<_!XlKyL0;gc{n@w~lW54Yr;Up$kOk?fPA#;9F*YQa!UtbKGnjGzEHzdWoYfN;CXdTzpHnTPR5CQ#x=zJHF0O|VmfN9Y_i8Z{?%}-TRL)dJsHamrrP71>A<9d&_ zhOy~gbE4oL^pCXKYLf}E_S3Sy3`1t^R%v&!F)**==Yl|l!i3U_Ow_|c|ddSe-8wdD3T)?P7R*Y*Q@So)KKtPoXE?p?%#V%^i9LXw*j_1qUz~R;XBTc}0~^A{lvIXoc2jB&Gz?3GlSM1Z zY=1B?G8g{i7(NI=r==aJRTQ(q-|Z354rGbl{qcj_zxUiJyHjoVrGmZC{T8MZ1IAg@ zx(MDRXWyC6nJV&QV@SQ@{)KaV%|8H7$`SvYHi?(fQF2)6*vNUk_4Sr6omqjjQ3hW9 zZsOsg|M{Bg71OcsO+$D&62)Fg?11@k+lU3NkvVm>Y?Lez6=x=)JY?vb9$7qHd?<$? zSqwz%A(Ob6D#VkdnBz@Zd9QS0bRk~35E>l{Wce+@#!Y7GK-?)v{L77UQRKKYP&^6r zALmN;NtW<9m-WI3R6Yn>tZV zX!IEk=y+$8l?Rs8I|UosWoq*%4%_d_&0QP8dle{nSPI&(4SN}AlqBNCiHaz0>magI zYH!i=(hUV$;>{z?s@u``#Bp3g@&tvbe!nx{SjB-Py==i1$WAsz>x+mjL&CYWQc9bF zX#DcY`Nf^%nSTdt{5Xvr8C|t$Y0;SxcKu2kn_3<665G>?59~Q2!Xe;Um#O17GGSsJ zKrAPn(QyJFu8AT!QHossFg`0vOxdtaQ9*(o24tUT6lP%V!c=s1l%f&7|H@~ih4l9X zw+pgSv^M$kclsh{Zg3KP_^=*YUwF--B{s&cw0YW!__SjK^4fbvOOK4iW-MzLhPTF)3F+jmQSPK7E=6_y_ngRVMtG z@~yZjV3y`2(e~x0G}b%%$-MSIfVqFbgF3ZJXh0}VZTVqR6jLNR9OL8$sF*0-WS+55 zGCR0A9KUHP&omvs7qmT?urKL1@F)lD1#0oiPwLBFtR@U$5|h&cxZGHBBfNwo zTpIO8@M@t3;LGa5(S}BLhr0bC^;p^HhKmsc8oOB1teSzpX%j4^l@iX@?N|UX06ObUpSvAU z&*_Hoyz10b9hw5w_qRF!c{qe}lA@x->f#PToflO6{3pK>R+2}Bo5;SJw7p(@cOqFY z^G25O%fq`8A=IZwF_#6e8o1rS_X|vJ&SVGnftD-GCfq?qci zUi_dd!s=h`@+qpP93yit->j?_KOgQ;0H_=yKd@cbEj1i4^YaSB>blKw!-C0L_}$Dw zu%dA7_M%K&mZcb$y0}%1kC|23lo)}Ri}lK=a?Lco+B~kDKO8(gW_4p`26+G%X?BI8>9_%E}g8V-wyJQ?R&gNQ74!KBU--lMMLAfEEY*A7TrZ|5A`0 zPxZl#nxBTCd98e%Op@C_z}u8T;nyd}r>pQy-qY^V>@Z`*Cnx{05j{oupk0|fFF6)C zmK&U`AW({Mbl8#WgO6o|NtG zzsgIQe zwqNZFYumrWR+V0}{A;{zWA=N=q^QZIp$%$5{}~?lHo$`H@aENgq+O}cbt_Daoa z`u9Mtk}99Bc<#!jS)^f2&*kZT4^*_yBRLUs9KAYMGi_g^5W;1ZIbgA+dLE(Ec=F-d z1*i+o=G8gKdte}IifZVCI0pg-8#VwruOkJra6aRQ)+3HY*m|3wUa{lx~}6#shE znZ)z`{nNj7IL%kG{vT?n4T&4kn6pPnIo-Q7Sv$U0A=F<=#w&G92_6Bf&%fh$@;OEW zBF{Ce7|_5o;xG5T%%CQy**cGA1I^~?uM>TF7RNpI%wRti%)QQXF^Ws(^5$g-=dp}t zITq#y1!#5EVQ%o=qYSz?q6{J>N80SD-I!uXlU;l&!nIha;y~k1mV%BJCxRyEwqo7m zNfaglUo4XC{MQ~t`^|*xi|%Lz!w65S*18rCSGFyT^hUEp-fHhWguQtmYip#i^z+vG zIB5dHuwC4@C18QMA<2;LeM>FAE)(27u%m1O%Gs&&;{n6%q zn}tt(vW5n-Lt;IdFw*WZ$JqrOa2%*6F_U!RAAmPp!Ggo{_$|wF?@}-<_QYomS*FC} z5{4Wd1~Zy$W7nuzu*dIlf)OEZ9HJ;pEFt4!P(yS&(bSPT1=lr8f=?Jx3UnuG7p~Dg zOv9N%Yfm4HN?UzkNhd&Uzza%gH5_lvXx644hmMvvK)BT<*|qJ=Cyh5VgfBXMU0X*s zNsSF6yEq-jm-ufW5rnGEz?h$Se4{^6jq`gfbqhWmoHo3-&6_m%Y+Crf9!UJKoePup)0Gu62^<|COjF|q*l zVae=Vhm9M^HA7fms5y-@I9^Tngnzb<(49S=eVuOc7>?a1Z(qZ|AB81TKaC1jKQPR7 zf_mV-?Bea`qE7WHmV9-lSD6WE;?zx|j*WaB4^38k`*5d#iJ^YZs6CQ8xTgb=YwH}~Kt9+F z^)Rh71&0DJGSCep_t|OGtTJ~7Odku*u`ecxho5W6z{n|J=!HX%nrU-p>m?7avOQ|= z{{x@v39gVF9l|Bd{28P!PeSaH`KEvfDEK-4xguYowTFqwMfQ+s zGmc#=wpG3zk_MYffT=xYtG`KeB`xr~wUl0g&toc}-Bx@~0&ha`v*sW=UthI}0fa#w zq)-BQ>ydMMJaHj^#{}UPt!A`RLoQd(5x-Euc^u|vn9JAkM;$B4?t;blN#TdV8@#v> zltx;1&9~No(SFL~=W9=Ylx}z$96AMK9)8Pu zHi*1uQJsBB(HvT8`&s2Q9#Z-zcjqf!`@SRA>dZIO_dqKjv^sj4{|fzhQ1o=G?_Y6@7KBCBArdKlL^fJwo~=4m4Y|qpx^#Q zv1<5C&8jsDH(B0{^4*kQ8B+^N7-1`TL+Ac47~wAHz6M^M@uvH7BIdwJTq6WAYBQRe zwhSX554?%exXhV*dTb@E8oI~V$+yLr8*9s^yN~g&5D;0NTL;dHd|;#Lwi5;1UDkcu z458&ZB_Rf!ytg@Fq~9#_DN?!NUHTTcrJ0$I#h=^iSOrW{CY%G46d2OcPwV1HVu<;L zK{iYs8SaE)Qm1ZT4YUsGb- z0T7YSkWSQ@RTN~>_5lsEc$R|L+pM1l^^k;S`KYr ztt9P9{{ZpO8(-wcth-8LviUvY;HPiIhK$dg4>-Bwq!^C1bgs?ojq(bRgubqAexKK# zHj8zusResKeC19HO!vwlw^uhaPmktoT=ToS^;)8(74y{6+rWoO%z zGo!y_WB<@jLGYJhmgv>$h}!N2wfT7Bt?wuyRbOFgt(ShKL*Ppzj`cpcAP53E9!3-> zKtL>;_}82rz0NKgzet{rUGevvQWzrEhRGvm+gB&;AKpwaccPHPB9JAo1 zPu!hcYRL<+A&Rl`dk}>(u2^vfG%k1ZK&(LR`vLgamlKUQdX-MJbM6SFbG7NvH1Qwk z8RKGoyQeK2tcHSj@N`{>drivIw+>+VnVK8UXd$Me;SDmMp$?XV$)-9mzI# z*a`8#reT!)bS{TKy089=u&ojK#y&C&eHz5IU;c?E@?(-NmY2Vs7HraMoAKBu(gA$o z{Z8tMohSD@0_wXB+s5TO#8DucRjyGuodQE5$}R`Wh9&Xm{^-`Jd$1yQHTp za(>UMFGHCo8Bk^n_ZS^``PZ`^3trl@HRDUWV#=j0H|SpkXb)Bg|lcLYs~E zc7S>)}basG7S^^#ClCCQBl<7z#EGJdaA=Tm(!qUSG261(%Tx^tyE8RVI5tl|sCdHMGACI7AD8WdAZ^FA7 z(1-oE$Zn6{yVxViy;z=PcAjCQN*nzPB)R@NHZP&^X{j}I7x%N$#=N`{F)o@x=6vFW z?W09z1!lEIYRk*=I>#Evua#*|Wnpuq3Ts*I*Y^6Z;$SMuFctf*7x-|+9u}&3{Ta4( z$_FT(tlRUS4xOS=o;4aAyF|_S>nDD4409WDd(;`>lrRN;gh-=FlU%chfUhvFc`f9a zqF#vB)}G#3+l`nI?bmZ0KMTp+44$j=^|EOqf_^+aj?-g5esmS99fOlEOqcT zVOK=Iy=cmN#q5B8mAv#OYb3-3Ff@-dU@GVa>-wW#uQ1i>P6@)gHDVTFhNx-l19Cf_ zj(p78db#V71?{I2x5_C_OE+1lr?>pd^qF#{#ER#Sb!LseCZgX7n3HsC!jq#v*1}ln z*8GjyShI)gg{niA6UFG5ONx}ymLWHXwXrfO{CA$FD2d9A`1d2<*d9B2c=m_akzxc( zIFhkN*;SAAE6v?P=gz%z-Z1;1?1N6s|NaBvrmvyS;QLaAUb4o_ZuAuKV(DkD>PSSE z*B|R9sGR{k@8szKS1gVrB*spTjhzGj(N{L*zNy5ft$!Kpc z&5s|s>l{gz_WYjmBwb1Bo6?OzX|x3T?r)>s*}dTs8yIK934U-mCADc&memS8!v^s8 zlRc!Ie_hBBA+|~s!Y%^9{F8@yzx7^w&bp;#oglY9$tY?^}_7cZ7k8ZU46hfQe<6%n%#< z)Ez&*#(bXhjLHq$SqjKrQ{jy}vg`&o{2bXTl829`90%(M!M%UE`93k@@0paGj@11%j*N z&U&(XExL;yqGR&@L{n}T;Ps7B!CLR3Xu}NXOvKShuz-x(8q$1 zQ;1zHVT=*R=(8izS!WKGq_F{a_F7{Y=x&!FXkaj9rf9TIA{+@ml5rI?wZCOw`2!F5 z+0d*tQBQMc3A1PSNh$uNWa{~#yQs^Gx7C-NzyN4FYMPYYxk3Fa5yipNd$?SRFqaf5%PPH0>vJ zp-u~e66&qFzna01D5N*DTJU6RH|~PpOdu|?7_UDs_duP3AgJ{A-h!G{*|B#5OZQSxQSSt+e# zfq35#589#o#ie&~)mJ4G;m^X~%Rz^R9XfVq(@!@@!S_byRHFIOt@mtf=m&lRRXhL?#)@G<1cy>bBe z-e^s5)G&tu0~4OnW|J>uNmg&xp3079fM`N(ya!sFVdW7XOzs1u9HFqJeMsv#_k|C6 zd<9;olH9U3Z=Oy~j9+{xMD!l9T^4pah|J33e`HD~bzKynTSl42C65D)1FC7~D%6pU zfWmLIHu$3Xi*IXigaPg_P9$a&%lNXv_3A54bKBD1QzqK7tVFsyL*4E-hPl_Vs-5Rc0jqOv$${o z5Z2v~;}iCnN*qH=j8u~24vGsYk|QoTH7ik`W3y~#tG%itA$CDz8^?#Z12HCK2X_;Z z(k#=A6Jn}lwBp-rx)Y#*B*1DUoDOj0UHL^3r$%y()nz3Q_4{=z-8N%O>ydmwR;W8; zTzIvrN&e~SWvEEWH&!Ca+3Cy|{6gymH!|1XTPH`%=c5!qTOUn-;dQ$To1~0QyN(Wz zya+0*9_wQ)MU!50%KjH9DE74e21kmS{XVE4wDLf_yECgKE{yW915)#tBc%UbkG!?68b9YMD`ByeC&0Cib zk;|Wnr+(wiBuLFfkgvF5givi>C+%6)@S2Y0Sq!LL$?E*o;(B>-#-x*&DE~V-!)w2x zBCdjSIva}oEBKF zXZtih_%gt|?H>U9G45v&r~jFm>gI$e4{T)*EonxXtfHaZ;EzWfifL^i@4E!+mE{%2 zsY*`_#&1k2c%A4JFb@p5^>>o2OE)?I>Tir6n`F#-s`XqA$anl4%?<=F&l5* z)-6ewI{}dVzMqwbyVq_%>WLa#_V`F(Cr9s~2DW4A35M{+g1S}Ckvd`fk(sal82)+C$xr#l|I2rCTmtj#R~+JjVCuR5xkFthYc zNB2j5H>7>KUee2|@*(gVvz|H-9h5q`Abk4ypTZ$i`MS_LqJ_v0pq$o0@S6C>T4=Ob zOPgofX>qIDJZJDp7b6lC%Q&+ys$^^i&M7%N7cZs(LO$VYuNSLx0U90Rbnl!Hdhr%? zO<4iyeD~KIrDLWZ~r7M1i((L&bXewMqov1Oj$oVw* zQPJxvDDY??Nka4`axz9|k7kkqp)MwSLU59FMazcekNkU4T^?UVVl2QdPu zK@kaW{o(N%7g6Fq&QmeK5cO@%FLdTQWrB5k$|~e|&2ELDHoPTh;3Q*wpTLYx;q>Ow zVtoaE6p|wRA_x=(q=N728}G$8jQ29j6i>|<-&tVGu-wR~AOH=R0vF3cY2#x!T3oN` zKY*JkkWK!A(@#n;tJ!ugY0k-zNwZUanVdxZ@ch?7y~M;A@l`-9-09FUga04viT#)z z2uyTo59jq2O}xuAwp)Xfjdydho|Je8oc24Ba!V>_URGv#5n66tvG5(H6VwCOoTM8) zFc~&fD|mZ4GD|yVhz+=Q4vd&n!&ztdox;CPK}vYXb`FM|82$-;z;toqPN2iY$eW|R zn!4UE$MAg#cY2k_tRUdZvC`N6273sBwf!v6nUkcfXKPMtQEbgBuhw05Sn4V&$nvs= z`3l|z`Q4|h6VMz)58*gXJ<*o)5tczvxXjDWvY>cjxX98Ke8F$VupFJc9 z-xl!Zdjr+UwE7Izg_`yh%vE@b{SBrPTWCbMs)uPD` z&FX%V%_6p40>6fcg3beMAFnZr{hWBnTw~3?5JR`q%lA7+#1#D{MgosK*&fdDKKzV? zh&FSHbWtt=bRfke4~;PF^$>X+XSH;Rz#UxYT)@F-!oT{ zKKYHc;aqMldyNwLj1UfT_{myJe3zhc0vbTgYDLII(_SOc4GD9hS?%A==jz%fs25~6 zX^&QuiLA95U^|FjkqYP^gndjdZ_#h9ftoi+4&Pmqm>70K_LS;r#URw(cIUZPB`M&K z)q$~!MJ__R<8??3ezu;XWlCa=p6RdO;FT_a{ZCcPr}7_*K%G^Wb(!4MTvi+T{CLZm z zzG_3X=3Y5|d=35#g5s?`Pu4AE?4OI^-u>dWKm=Dbaa!@z zr5b1%uWs>9y$g75fT;Q%NM>(qxjnZE9;+1YwWPEIX&ho{{0h5!rS?aA@^QLW-8Yqb z+Ev$gbkiyY+=eGQ#xEO}M@^f##eY>&cx^$`f9_p$>c0MJK>m{>0w&_}M+giQPpdDcp+v48~iwh80qEw*xni!$X0Ov*diz+k)37hm^du18{o9l zK)m2}!~*btYMo%}mof^<5iF`?Bl1Sovq9t1W7V9l-EK(Gu@)d^IHD>_yt@Gcp=%ep5~QwcT^$%H*YUECb2M=7e^DmaW<*&U0SCU ze|W-PJlrV017xJ{6$&Kr1<&X$nHI=FtdmU<9zeA7367Ff8?bU^cwt;??35nYz8CZA zGEBae$`OZ;LrKM2gxw5{Ps+8|naZlvpA!EMaQR1apJ-lc&~=A%iP%S7K|$GvE6k!N z39Y9-SZ1Y2P*zp~4n4BN*UnJ!2TPO9kg*V*8wnX1G6A4-xuxewY`<<%i7p#i3&W;` zQv^qqU-{o7NWAen!u@0p3wDB;s)VwhPHddnEMK(;ohrg7B8cSmauBJbvBZ3J7HGwZ z;ir~dYoXGxVGEHrz-aSbt5Us7=9-!NxxauP_bw zC;oDJMDMAJ^w-jfIW9Y92elw5bo$!8H+<{bN2)#-NJh~_@5WS5ixZvRZ1u_s!OW&q zAAfY?r&nsd_u8dds9MUC8De&D=+k_XlO z@Q{w#fRXP<=!bp^7{b&$+<1c8}ShCyHEHy zdd0_!`QG}N!J3!dzt3J?TB2#Vh)5|O@k97@NzN?h@TZI@vV03HZULOiC7NaWyG`HV z;d6*}xS zfs<&lyG2xj(7>!`2nw%)7)JK21ORH&HKIf~tAIf!5%`FiJ9(y+^Pnnmv$3uye(=}l zRcMX>02PJy6?YzO>f`vEPJ1kvIeexIJ$<3;6IGrPI(IFgpJcKTd$p`gPWGBEzh~+K zkSR|~50zIBDR}VpQoQD=flOMi9o3~$!y$LW}kryaZJGI^X$PUsq=!h z!yo>!04GVES(<7$9abE^BVQU`X1bw~#Ox;RNt$hABISO3yc^i=jzCVs{+$N?QndNILvuwd6Zm$$AxjUZj_(KA#dypoAO#_j?>$0u3zG&??&7nd-Sj3H`uL! z#~CO~VnGiN3@9bS@9eINX}W4b)gOO&>BfmtrOpFB$s)Yo;O}+o+i@%;{txYt7S;l% ze@tj!N+4bE-G{qX#(xq0jhXog1ZFbcR@&INi{)X&NU^Djo68Bs=%Gf4N?~Hn%iRF0 z_i)1Oep}JqbGVO#6Rv@Gehzn=TF?TBoryW9*X+y5vw6{YxZ(*10cWTLPfZ z#UMNFSi3y`B05PWT2Q?BJrtq!RFQ_#-BR~`yhwFRE8rKx=WBCUPX_AgdW=hoqdT-xJ{nS?BB)LmgrKq3C}mdYYWbyZQoEB`h>T^%13wzULB|#L zVT%tI>KQBcT+fEt$T}>AGPgg?EF_pM)XnEtl8fRSed~#czObXS)q1 zj395JtvgZHFGr%XLG{KzxM=xJ4n}A1Y=o%dxS-q)d0u613x27J?@l%2x{F z%95Mj9<_I%ce@q9E|TGQT@jFidC!G!At6OCXvmf~()GcA*!O$Ryc|4Km1JG}i2vJp zsl|&Q3GtHr-tA+T`H9cOHpW3wvE=GK<%{>~1yo`0Cl%jffz<)t7JhKCvj;^tyzIBw zSvfEdo0p2Sv<0m893(mue-(7UvFQ8slhxFGDx|+w=m7oGST%jWgl%?A(fq3c=Ytj@ zX12)ZiVhm@WV~Y{pGtDAD~r_J$#@Cv0~yuqhnh38ZgCU(GV0sAj5Y=pg&^ju;o&)@M{&p*~of z2!{Tt<{~ILc&aVlZTh|=B5(DnPL)g6U-t#Oc{A4%dW%9+9gixWzcQMK(7a9DuhJ}# zQ+F|m-D8IikoL-~InUKP`H=M{bn$QKnt55ZNG1J1D`BwI5RfK94xe7Toa<)r7JKDC z0MCmQNa){OEHn-3AvM+ZBt0= z5H}>k*uM>F>k$z@ztdsD9cn$j!*_G$A)7RPLZW2;d!8nAVyy+4afu*Ndviq8arM-n z(Qh__CIP3nm)9v70yr>>_Q$zI8vy5YW~-29C?xp=Bx?(>Wf0lNt9OhW9*3=T~)xdk>Xk3F^jwXFZFrt+!hnl*Xk;E4R zI!fh@SCf4s8+7wkh-gc6B~<=+v_chob@$BXm=yUY&8qV!ez>%T>{C)mp^4%`AX}Pr zCck3*Ile_ZogY#=B$00>il{y&|##_mbqMjE&ZCy9eI0Yw^&ru7pQWo#^ zkoX_)OhCev$9iDaNxQ@2N+HV%A~nR^6Egpz?+_%ADrtJ+9&vrw{*j z*Qbrr?#G{nYxo@Mf9Tn-sMz9ZFM@v~Su#q9lUY)_*JtV~^$J`77T||_2PK8NK5iU; zM(-A>;JZ=LyO+LramjYT#{$yT3>PF#Y#*OpXBtF+713fJ_kXT*7w3)UE&s}{2{I-c zK`C8d8&NuM2_3}O>VL(-pl?gCRWD`Zl+hOy;piSzmo&Z`l1q748Q5E&Gv)F(_`r0?K1!G{n3`nnTg_Gcd%Zg zLp>I^Kdi{&HXaNqSmTnVl{n^eY-+z-9v+VctV=ZehThg%TFxI~Ty?sCG>Hi`yTwC) zwJzQl1){|QtvY3gpr2B?->4~}xoGSUk)NmP8NVkv{ucfy<^F&WTNTX>5h|bWRvQJ7 zSnOjyAWG-&?N_}x(YJTdUVc)1h1-_K;-|Scp|FT!6z`$FOdNQ1j2TVbJ%97h%-0vr z?>&#FEYkYphgpA@@;NSn&H8SwY_Xc-TP{XnlsYjj`XHcz7wQUFq}y0h$DT&X40vFO zQ-pb_({*wDjO!E;LEZ)q$|hL3)Z&Caz6z#qPudU7MS8IIq5DXNE^Vz8n%0(>6dt#h zTl-qjzs_N=*H~7|slU=K#NUHs^W9IO_7l|dAW*RUus(`{3vf#20I=Oc$`Mpi}VyDElC44K6cH=1*jibN?_a38l7pVg>`4|>or62 zQ^J6Rn!ll|$zTx^gQs;r=`p-j?r)$;hhup^&t;ue9&mDV4#>2>;c>O{559-mD_A2* zN@Dyb0*|rUY2z0R= z6y9ZFgp6j(WZ%RyE_O-;m)9%N`E0VpRAD{IrNiv~f?HDd+Rv|!dca-XmPciWz5i0w zrPOFGyfm~^Lw+F7b?Qe@j&~*hVx}iQSHby`i(i@rXiE0xzY1z|n{o1&1O!ka0Ql-{ zGG`kN@b?_x%ld%K#FGNU+iSxIpV8nyZ?*O2C z>i6QF!uWb_1fF8wrMT_k$c&!k`8cf3!z)bmy=$DC`WqJ*`=SJQEHiaZ(#^W4EsG&r zNGIqdZ5K6EW6I0 z3NGMzECj4n27Oui+OS414gxt2CZjoTj!Gw%#G^T=i3Q*)mHfnA&eYiz*aQZ=9#f1k z#PaMuX)2d>DB*>D5DW+37++ebH*@wVz=}S)1|y6%KH%6?xiy_oU~l@FEdvKa>g9{g zqsfa{M!x7ASp|L3JOQ`9R6cOXl*YV*{FfF=eNNIflBa>2OC8jv4y%sgs-?E;8sx&w)XuHfD z^q*lXqNmm@k3Nr<#tqYIPWW9=hYKV>`@>+1^^Ke@*@Oyt-@cbtPuwA!RqUGBD{8ua^~hgBN_bTtK6C9NMjLJXYm8YKae$duJ^uDv$a=D zh2D}c{8)H=nLx3URUn(i6nqr&JtgV9yfg*x8TDf6+Nbi_RoSeW;s@QnC{8_zW`a+h z6j{{V2Fh?bk#T}Rzc@D1FQvBP8Xx}}VOWi|e45oJBX7@_p`O_(?!6lNgVWs& ziopq;rb+bM4RO&VFGD%iRvmNqD|a`@K^E)WjLa}u#(KZsjz)!XjMh?iv`-L0 z7oQfaZg#y4lhV{-!!36eFMVIaP4nyRTdH)9Ty18K^0@b!_xVzleqq%w`fDXEEmFMi zE;O@!Hiw`sSI;gUPYdy?Jimrp7<-|y(3bg%~BKLDmF zdo{DKjs&!l-@g+w(TnFQ?Vs_fsG9XXy#qDy#TcTs4~6X1l@=W=XcIxrSe)hlago_QD}{c*k2oeT|{A1Gwaz=w808H1~Vt?Ta?AdH#Ylqw?5$R z-Glq!@*-^WEvSpS!Q>=t3BOTXOXt=fgLKZ{?t8|@s##|W@SzygF3@0}yqi_NM?k`PVSGp_8b0Ksn7O~m27xTZ+wSq96X2_-IiRp#TNdxmV@!!*f- zsnN{8yYuyHDiB)iKcziRxABVqWVt z#-G1VgLU_RANh34z8K#>6R6Y^^G7d`Tk^{K&5;Z74yCJ)h&Dt3EEWKIq1r%-4)0$_ zaKC7z5};O1 z;51y2*J?pSSzfU)-rA9OTH{ZpK0o{Ea4PA>%DGahZ{h_t1Pk+F*M)`0>4t%RN>jB7 z8k~;8rN^~@Wa$2VW;Mu0zb(l;k+5N+MIh1nO%fTPHZE_Y=IiIwY#L>#WNa z^%jnW*DD|X&R4yu^JgLthFr40B9$6n@LPVVQJ-%}f|hXj{_Q;D0&zB;Ks6;jyqnrL z7(OWWLNAXqTCl&pQ1YRIv@GLmYc!$+a#ogs_d6(=T7Yg&h=;%4v(+#2zNPhI0n8ZF zC%R#RnK(aBhbYrma( zk%7(8=)96jxb&FvciYFYwPXW8DW7F$>&@8XQ7+QXM|y@gx2T#uBJ$Bi%@cFC+`*f)heZC$mn?_0?E)0`IlRbY{UzaUcQ1}= zv!VCyrX)?eL$DwYlhK%P%h`6c-lY@%FzTipj&lR;I6rZ}$JZ`)6J_>BE?2plqpjGkC^z z&FLr!!_7lvX`9)=%YGCf@?N;1z_!NP`f2!y@5kq4he*&@!jU>&${L$+SSFelBKSV< zS`xowUE7&gNakmaIzV?vJe8o>KXkP5Di&e%zn* zJ1uCbwkM>$uoj^o_DpaNBxnqvVVi82M+$3H=^L5NQ?l$9IS>2FA`aoO%=fp4_DjFN zn=IuGlZswOr7$V)_;KyKg{HM>v7g{+ypNRh^G+Mkl&&o6oo(!!xDxXyAcppF_6JaV z!~I(v@f<+qWWOq)WvU2B)@@3IFSZsDqMZ_qGylbFLtf(hjI&#DjUN-vZ;9Uv(hQP( z|HgQ9Z=7sq`Gu$_YA6&By5?ra#F`l5wqTNhB4&hqi{MzU5+ZBLtX20Jl02p}>NZb8 z1;+Rs4*S{77#;W@;D?FS@P2V(QT){_Y6YLCqVo6h;@~?s$^3!`#o6<*Mr%<-?Ub@g z)l}$r#Wg=WF2j729Sz3a@g?j#x(;_t_5;Zo&Zg;p?}%9|DaU_$>O{u1y}jD$MKEql^7DRExWDao(69g_HHJ)sy_=y6W`#Yi-jU_R~p1Rt-SILe)<5PSVKpf zUXGr=&Q?hJaAxZ|F9dBpX)rd<4#VZIJ#9Wo&OnfHTc8*{j3+R%dx-ES;a3d@%(Kn zr2LTKcKK{2F=hRyL^e+eHXV3w=;X^s%ZT3d1pR`rO1}WODoTG^YI?N*!x}_P%CDQD z1XRJZviUg>;l|X;Jy|_teVZaYMz-TBt@rE=4$KWai`(iJ%c3&mH4;0gZ5@WWq&{Bg z7D$NgB9%7Z{xF1ze5aha*Wc{ub?FEbN`9x9$-j7TTkZMfU#|_LJ`J}y9bhp{cP{o!o(faHk(5^B7J4o1Eg>?HS3Y;=PsiFSZB@BkWNt!c3IRUG9OJhqF7s5q5eXDJSz9Kw zOE=~6@6I_mP6)m)%Mre!7*4~w+awMdih~5u*T2o;mDAQ8TxDr>-PcDvn=?TcPfEXj zyx%|U9Ey+a-p&x(&t!ev6N4OGdh&?^t=t|K3(P=$mqu)dF!J=hh$^|H_tes*{G}M5 z_4tX~_~I8XC}@u47K`+VX<^^>greeCAkOA;zYt_M?_mF6J^Wn4Ijm^#n65OwpL*9Y zVlVtxIV!##mAZ>bMOsKATBT)m6fbTA+TtI7y9kRDY$MWzT-AVkuL1$DAG}FpJo^5r z%gMC=H%rfhw&JwVe4Q`n*L0+@=dyV(Cgiou{cM;nFeA=Qg}4AG zQrABoKHlsfY6bPHScLH~Gm439;vumH(WB^?;kMmrmxvbb_SYi5q2KF_tyi>mt88usXro6c_l-jow+kQ#@=^P?lC zgIGCm_MQRd+1q*`3VV#^Ys27nHP^myyv3J3qD;ufy?}h9gTgwSZ6vw$x<8`TZ8HAi z>GOV+w1RZsbdEH=k&?5SU1cGQ)byCmdGBqzi_j-_x5FothAY|+CHOIh#L9uPol$#r_8%BjY*V6mD<1sh`k7c@8qIjOOjw-Ufbf zEa88bH`{5kJzU4K$RUR-uQn^fy+#~nN9PR9_Je{ZUT2DwcHZIEwA|sey>xdfQyi5t z{mRB~B;Y5@D6M5JhsXkm!yzFse7pJam`jxi!4TUy0O`9q|$4}nN619skNn_5vdR##=W@2+gTl=}# zlm7q|6(nIljGdLs&oqoJt}bUd$1NlHKfsuA9!Dp3h>f`*&P?QH$G(?J?~E|B-1wPM*WZ9o2FrN;AK9Dv;c7ADtLTc~$E7ttyI&h2CkKMdRJ zi?x^yMhKA|MzYri0zH7zB-XD_-r)qK_G@+IcX6_YxQVhNV(?rS)%TE2-hUobK`M3D!6Sx+i$DmJug^yY1)4({Yy zxdgfm&g#%g3MVf)-r1h0ld&d=TzYk1-~5LX;Z#fxkNSd}y`O|nr|DZ5pW1HCiU68J ztG}t1Y$m{qu!(1ujRuX&J&*q1a8 zSn*82}AI)MD z8-2qdqx<;-H-uYS6aD`}BnlUjN125C!j)u_E15y3VU@|Mx9A=luTDH%c9e*)#ffOo zS0Obl#G9G(pQj#(G4jaE#>U$PnUXoKEy4FZbi2S@j_LfKR+ADtc($dGX<;9aZY{?hu zcl5nVc_Swr zo?g6fjop}xq{(ogBNuc* zI2SLWVVP!gjn4!&?2|65gsvWXagtVbbk1qt6ur9Qzo1j!#dkD zaF$Xb@!@nHfBa+&uFAN4XU6fG6na7}r~IB`#O!iWEhGEs7M5)sO5EI@{) z1m6stJWCUqvVy$14l=0XGA@}hlh8J6fy(`MJdav>{vSYiynP$HPgBZsBFKqv2=nzW zG#G-#r!=k{Q$|Fk0`B;_RGTh{GChATe&7zH{)dJRz}de@_T3r6sbRti`v^pz_wW;( z6urTc4K>X#I?*1h)7KP+?$C6uTd_hJ1z-kNV1}nEVXgUgNjl<$b&kJz{Rvh%Ufv_y zqd0@)m`8hD(jf{7SFO4P*d1f+CLsS0iuiTAuR)BstB#E!UEG0LiG!R^4Ribr5>Wo0WRREF2VQb^z zy%eBp*oDIEIF4c@fyGe&TFz8urG&6_Y66LGJ`0k**FP%0wm+C<7HUM^C3A$}I}$TZ z^h6xhV#&N}FJXtM(O96Kn!)uDk*;6Gx?RBEzm6xaJOrG+n(22$47m!mPylS|A4Yg( zGYpF#w&~(@g>-uFiM3qHvhbQ0f;@1%CAXvCYII|ePKsgs6sJ5zKCHQMJ3Dei;5jIK z+QKl)2|(81ba0p}lf@JDb?_WyR&o2eJjIWrfyQg|y5Dp`kzRtX{MwL;+8xYRbSn>? zz!x07F5qqX4#M_lDa&GMrj#^?CQD#GmG9T;;bqoUy^96T4?h$%qB+&;D8N*qQUvxP z62Q&t{{Cr6-_;UK>sTxLPp}=E?S5hjS%(pIH`AR-UhO}`9y$lM|8tyO5z=>ZX=kns z3U_pVn7drf_pAc8h<@hd`kj!y?irD|+>vo}EO@&nuz3)%Phfv>X1K>(V>SE$Ar)k$ zS|Cl{twO!hyV|OSz{?ufiY3+uc&RrPKp!#N^z5Fco{q0TcVnxPMM6bfDl|Pblf=O~ zpC$*1mL0~pHrM2_*Za>4QcPL;ma%atNC%)?9zi+SW1sHt)sQD)#E3cPOzt)*Rm-FpAPW12@I+;H-JyFPAFN z1V#R_vSC7CP+WG4~rKQ+}R zzNN8yN6tsfr!0+T@_%Un|MXrBq471@tPC*n-}Q&k*lpT~ur=_;m{UY{Kz*Akx-Z#v zG0->b$-li7_{-$@NwCg$F@X#B2<@5F^RDV3} z5pQTR*YyBkekp{vn7Rnx{WA*MV-72+A*OkP4{ZxQ*JD(wQo-R@PtWf#?{o1jTx3P| zgEaSp5{pFV)cY?ecbhtD12bcA;1rX<7IGL)lT>U9 zM<}0WsooZJ80jJ#8XJ={XCN89ejQ%l?j=4Xlc6`n5nXt#1lxTpz;h+M4_TB@z!6AC zhklD)mDInUc&(PssIZS4bNxGn)gF-x-P|Zh*GIkQZ!fj#dNQ5mdI=VieVr?60ox z98a9(_=FnAE?IQi#L##zrESnvZ;#)}4jAwub|x7wV}m))w?fJKJRFvVFncRZWILASe6(fb9f-YhZa2^$A=4i@>p84_0&~_Ky2jhNW!MAN zECg^HV=fBJY;Qt~6G4N{mRZ~P+Q}PPI;t!~&12Ll-He|u{xm+9kc5%UTWiB`&Jm0j zx(hg$im(B1ym-CP;`whSeb~nv4V4AGoV@ct7nmyB$;ePc1`HzsWLIh9;x)15RVa&* zMc>oLUA9)mc@I0odtrOvW13S^FR$g(9MSBk<5~PQsKh<1y;F2TT(^f4_#6-L4%>M7 z&fJnmS+n4yIkNb+v+eTV00Lj;_Y}w)@0NzD3k$VWe$$vYMQ61gF*(3LyH6g*H^S@^qE$ATM#9eG;@&UbUngA5S*v9b6tRzuTA z!S{mY`bXlwQ%Ay1vWdG1*yo`egE@VwtMpUc{fzUTF>MZR2J<|R@L)GjA519>Ly zduh3X&96%`=iSDbcL30yT5ae)H))wXmJ<-^u@_jWGJpLiYPR#L2+^vMWb{2oIyJz4 z;E&Y*HLi%{&&0=yX}{yVd`=WUL({FaBlv~def@7w=E;CSsYb^DJyeu zlW=HD%@hV~MpmbR1Q`FS0c34tQiUDK+=$|oY&%{fkRaNPb1w6~rzAsGG2jvgJZPb0 zgdPjpLZM@u=lj?`jy?@oeSWYbMtm;9Bhip!wb(gkMuadS$I8_M6KEdjyps+cUn+gI za{4(zpI9AZ5%NSogjXJ)`_@H!b+ogzK6Kt^VcKtfb;5^*fGpy`oR+}7SHhaW|AxE| zR^bPIoUOV2oOSSqiak7EPm*%6!h77Q6DCYCN4@J7+4NH?7}pJe*=cj{LT{0LdR zP%cW;v+L2mt#G@Ge>c_RB!Dl|)rt3%?mZtaSqsVwzGQIfC!LJX|*k(hD?gj}K;lc#x|$--Hg@{=5Ua{@%kx zwV8ZgCVffhyx2iLwHt6f%3+N%pq6;+sVN%3-MJ*~QPgZ9f5D&tvGO?f=|7h^*CA)58BHv`5JuP3rMK^~HpKou=)eo`@+EK25u%H=e5paj&4~09L z(oapqi5R`RfTNuX75B*?$JhGD+phJow920cm{{r42S?BE^@7@Pk8IL8j>kCxD^GhEX_32(AKWbfq#eZS$LzycBb zykC~(>%{L`T(6Oh#f3pO^K$;`q^-C2%?kLmlGwU;7tk9eVFVjPFK-EOThZBkE!cP> zRus|7*UlSX!RD=^j@%2<#l*UZso%X!6sTn+lqQzAhFybfi1mwGlTOtPmjbK+t0SW{ zNuA^b{YVzhMBVqn(Sz_2-SiTIBJeok(mYl=QU5HOO0<`-SShdr>zH}(!YkSNs#pyK z$bi-bI`6nPLg+aXi7EbtODL>|y&XagjPkjx_zF%B$bkzr>B9LO>Uj}#=JORsv>Du) z-1SE^{_A3MI4A+gK=ECxqk>rj{9no120Os6{SHSyF{ddNmeb5?p~zi9;@RJ3BUco9 z|9~}{-Z6?bc0Vj_Xq&iDi1_3;8IUcs@xDt*9mj3`B!#T2y~Rs9eb`hb=^Fmur@7BW1gJgtB4%(5s-Xb z4>nN&i0qfew-g2y@;m6|#0-QO$cxPpIkm!kG#to46#tEhJK1F-Mhc~FyQ#MIaMz1T z<-$F4BtI35Tx2p4Nr?TLj1R8=g}o^swF3?qHIkMoKuvybS)TvZ(guyU=m& zC<^m(O)?18l8Jd;1*k8GjsOKpD{S%5-d%%EpRgtOFE7j4K3JOsQ0Y~tdwdp5g$9*H znFA&1bdvz+OzGS_jbtupzv*wlD!xw$59i!||MI9x;)mCz_?C)vNTKh8&x+Q|I^y3W zZWc`yEe;BKwcT_1R#{Kc$%R`RugyIc>3bI*sth($1WbM(H=_WSXeLC9Z>_m+TN-xm)Q-{!ijxC+r_nuF|v}f?t3dgDz~dxsM8R zf7eMQqzsRb+Bj5aUF#J;=jZ##HCg4-{SGw-*2GnnD^I>ogrsr0@%qj27pGrX(n6`5 z3S_0@UGpt@DK6Q63J~LRMt$G}{)FF3qZJ%}a5r9wuG0}zx_UQ18eSfJ4JCs1bYg*A zVYVacxDoc^+&V-twBo6}W|caUgKo^1`g~PRzLPlMx?&)g>^5{-ly>p(po6 zAL$RA0$kpEqT-X14Uh!Rw=)*`u`pI~+Dr9-e7zoITIiDjVnkB;n`_C>OyRVre1yU; z-@ksPNwSdDLKy-?hjRY-v74;H?7p_OTdJ`;;H+wPx9;kJWBe)sz>fh01Qmi$I&wXj zW7ZGpVZh^Pr7YL%mH3poxt~nat9lHC31X!*doq+&n z&tKkP+W z$E4c-085A1A0Hi(wuhm&E~kH5i-gJFwuwG)=#}_6^MR~h+vAQ6dldQ~^UE@DN?;7vJa?WQGg)9Wl2f749$gA~aIO`SQ$A=}Gb|%JJT~S_ zy(JMw5{>{UNTpSQeUR$|M^G*N${nBA@vla|XB-ueh|M)0R07@&4*oj%($2zAO6TsA zVB>SXK=efX10BLuIjy(H#$m>RaaeoRF5556YhB2%zrMjA4P9(6$pvxU;|o0hDW}tK z=v@H&DN*MNrOO{#?-yW9qh}js84Buu*9pPIwkG^SK|vY8vM>h{y;%@?RZBKZ(i3|J zUPoZ$tFt^JX|P{6xAI`Ox8N7rp-ZXq$_TJCFy1#(b_s39tai_ms~UGfj*entGUYbRW@Fupn};DQEGV->;Xhwo9dK)N|&FHX3T;zW~K7*ALh zJN#`W!;*KcWK_vulzb&svGCNCAW2%0^`pX{Cxoddw~W{trQKmR>SJvWw!{?{+Y%W} zi`o5b49FKYgLU3wL*44{wPQ~W&Opt*IdA>iW6Qh&WFlLt{ z8ikL8jq;H!0-I&^lA%aU-=Wlrv+I2Wk6?sVWZJr{aeZnMjRjn0891t?<*0bzM z@|zc~yb3L6-Y5ra%}0NazJ>LI?J`IJcS#2kRGka2zAN+vk=LHA;I9X&8&P^W%?Zw` z4-vhC`7(L30^tTR+zJmTPM!Zf_h;sT!eo>0n?%R>jQ+`!Q_l#5>?)~xp84U`_HeQDp%TmO}x|A~?PiSt5A$}|T@J6B(Z zBnKNSvoifaENoEcK>Ts}+0aO8N*{j)P9^tzUwTJmL=vPVIgo~u{{~9GI>GI%Z#&2f zmA?|@61@XyiUO!Jn*gE5(_2%-#t>N@?bHA#d09!TH-)*Fmc(7)SU&sMZXoV#olVfg z0AG3hU9_A}n+Gc56|9?Jov*a3u~6gI`33J_5(>#VX8|4)(;=t9AKZKYytf%L7tu_y zpgt&6{~tx?;?LCo$MLz}@5(Uu+%Ijen_F^MbBW3&m$^o6Lo$+U?sLC0p$nDek}hO1 zx4AD;qtc9FNoBKyQs3Wxf5O?$`8+<4_xtsFK39H^edke3|3Uxa-2UVzh2Ji=HTpQz zGHkjm`%SjG*NeZ;ZzhkP;~(;NJ1NtY265&j_vy3WKO|Ww_#rk`+KEg9gD?Q79xADP}ob#1iaKasNZE z7!M~^jdwKX%^ANSu8uW5qi*emT5pxM{rt;%Algd@sz71RGj)!BG^n@z&$xtx4QdT| z-|`mK;ZzH9E&p3$?j0ma$kJ;14emy2R6RV3HEk}u1@&5e_F23lPoZac!bzwy!Kr18D?bO{EDM(s-)INpgK`Atv0?0Z>Ij^|*BS_@x&r7AL$sQ_!t^*QH2 zv!c?RGx(G!dFc&tnatvpwWD453-K;b|O_i_HANGtCM|K%zpssm*LMjQ?07D zlSA^S{lOsFxqd;9)_WX2WCt4ir@SzUVi5_+D?>iR!ZosdO&FGm+NsJA4R#2+zF_`r z3mT9d!S?oF(~5RTl=WwMD8%zd;)kQ*rHF8zezG`Qs`Lqo6!0LVb!UguCii;rofRfB zV^7ek-fo;-H)U89o&4fh5Olldm56F3_lJ-#o=5c^CN2?K`3(;8<3XpnEs@&AZ5GEu zmhwCTr26=moN_@c?pD2`KfyDKxM#!OXQJdgy4YM&)u3b1BL{EC$6C=u_Frpb zTYmg2*AIO2{{z4V@GrG@rZU|=n$Ono-Zso6XnkQKeKn@pH#|ECr){wAx$d&ibe!m0 z%>bf!rhH;1u-pCsD_UGAk6WMhYnk5;%ua1dd98LWA{oqnJBH(7>_PdcPCjXMPmWo< zr!?P`zbiV-A_)i@3Z9Zgt&%}Jd4TWt_J@*hpht?YgCvZ(dhB(+ z+o(iC*s$kZ&TZn?LU2d6#oW)bSIx%LE>-BOyZNh``OIs6i zoVyfe&3CjMqu|sk2^k&+($l0;uS&P^Mru|!txxH9_MEM3V`pZN1)?ia4^z^(cfY(k zo&{KgZ+!N^M6y38r_uecZ``oQ+%~~NB1X?Yh#F=qA&KrL3nl_3=bk{dCXW;7oMg4u z@>*0(FM3I+n#%rwB$-;zS5l`^3Z$=v(G@U4!47DD>6vw5UKQ~=O}VWc8dd??1p}G) zaXw6$TF7?wx*z$As{D=QB7hpL{?&h3J+-ekahb+xrs4HFEk0c8uEB}FHe^L>d1t_8 zt9(C6H23hD)*!=FN^Ub@hpRZTDr90*2gJ|lWL6WPpTV?Jc5xbbCeP66FTyVW{v2k4 z2Y(4Ql`pCo^es=4_a8X6Dr7iqv4YKj(j^Ql7dn+MtllIYua`-VfCl$G4<`hAUGp_~zED@B~wer}c9>d;h|UHP(%JlM-T z$#tr>#>#&}IzE;5AiLA(TluW9r;jSVkT>K-B6 zan{90yC?pPpTh=qzYYm(VW#i^Ib<)^qM}_jmX9|D)z1lww&CCZtowz~ia&$04ZRs# z`kQe78c4x~^=3P8wzfX8?5;TH_&Y5AINDr`K~yFCpPvy|-Tpu|ZgiRD9v?^ko`{|B zR-wPDlb!GhET?gMLUb9b9LjK{!R=HX~Zq}uUjpT_=IMA?pFA1j$= zss+8?dg}gwoIp~3;H~SoC@qrul(AuZUzJOWebLkyou>By9*c)H!N|_;#5>;FJ3O6^ z7Yi8=({b}+7e0Q+uXv{R3OFifT<+mi7IitCQx1HbgjeSL#jP_CO=D-b`<_V@^od%_ z-8X7~x+aVV0LtnhsfRRmyoASh+KK0QmHPsDz+loV#T_c{LIE#ZA@`P?X$JqTx+L7v z-#yw{Zp@7o!uvmR+-$lYjTO%##jdnV`{rL`W*|x!st7Y1&wq=;L$`545WeKZELiti zVHW7MlyaQtyrTTm)-2FA?pP-FQGW0m)_86ZuD4wTKfj;D8_MZ(9G9@8TSW-)h6Fdm z0XK=>gqYr!CtIo9hAe1gof$c)RGJlwoxt7!ZQ|ClQPk|$>unKZucE0${_S(lTbP2Y z3LDm$VqDJ&A5Lk#ixdN0MtPm7LsI#!9#eHxu$L()YqAdh?Ck0ZH$ zA8G`bE+7TsK5aYM{Ov3PlLG<6 ztw!LAD<9hBPC4YswTF@p@oM;tO#nbCnZW+3Xd!xxKd}P5gQ+dJGae@kDZ1s5!0}KXit>=y$5wgSxPpIPdW}=62 zdoo?HQ4Y-AQHdzMENZvX4ekB>#&bHiA!gGWuY)O7JDi;s2+2VH?!>rkJcx3`EqT}h z%RYuDS4gX4vkD}E+UZy>J4>*2Mq}N!5y~GN&3TO+_eHx?mS{JH70fFyD8v|GM0Z@# z9LDKU>6f8#I#MsWT-X!1{pRm*rA(EBc~WWWmGp#)izJ`l!_Pcq2I=k~z)W$zvM#9+&{%=NV5>XB!IxNl1&B=)!>^sSfx=yX4wrV2#`MeB^KN!7$^OWu8^UfM1f%1tVX z{(QguRkA5ntE|QUvesf=34ODwL&hrSk16DP#FO&YdAgJA5DfkgzY{;5tg#mAm;_|I zBdfe#5Q^9l*HDh(k@aI5N-CU zh3&29>5aKdUkanBWy3Bt!{mg8k+0W|FM&z z>s0>)jT(G#oDHxSjsRHvP3y%p+i+$3-Nt`Yz19hSrWhW?X7I>sbliSi@rI>Eow_5Z zl@+ALr9@D45*bX>K5?C<@_KZX9mqlsM^Z*-=#2Q7jnq*6T?wC~wLCLQr0FPnt=S|s zxK}0q$JMY?Qv-CvC20QG;kSwM+wukx^gPX)g_Utc!&MLgg*>NE5nCT5JOUpp@~N|IZDO&QG9^iU1suYXJCHZg|1;ET&2gW?^0H|#nG#dgYr zW)r;($3k2{h&7@$yk>T75V;+fY^jqxj&vM^aJ!lHKl&M$f;U#8V!m>%;Sd8h=yz`B zwI-cR)3;i_+%Z(Uv&gK6w}RB_*cQv*@HlwQJ1Yu+6o=mGdHfuAlxiw9W1e}b=dsnT z_vG1EQ$C28I7{TtN*gmm2Ksd5C|}@-_uzewR6q^0*vfzQRe|4DcU%O1Tt@mR#KEH% zmyt`S%;brI7vNrZWB6WlKaMxwv>R44Uhihql$pygDqC++fIL@7?h^cLI8Xd%2f3nE zQg}+ci^F|>;HR}B{!6i_uqVP%%^3dsL=h%>d@D#Pnzs#d%MYVp;9Sryc=3A&NsJtT zg|)oms0GEV8Bcfy?lz>%oKvMRikIWeW)rhC;|kMESb&>+VbLmeVQ`$?7d(Xm=HPFWApf#kM4^yn9vd=n zylmgDgO)5Q^hVND0hQ0LLGeSpNp@1=avK*sVduffvXZoZz`~f7KOFC+k@tVDJD8{$ z#d^OPr?QzK;rCA;%_z)F8l3MmXi`(LaV6_;OJst)%&vX=0vjv6AT*J}bMKe}@4op< zT1^23=oi1mymGl>p4G*-i^}JCEVEPKAr(?^R1Vn%SpQglez$ghp#GFloF6FT-Po#2 z4D!V2@ax0rgpAJ1U)?w(fa^T5H@Tr~?mppX5@f7EVnXqq;mE?0v9pz1WWaHQ)mImY z+a+hj*%LCKSDqbyD9g;WdKe=Wn0XAS(w@Y1{OXGFZx-h)dpCUFaeMrs{>HtRjYQTO zRC2+hegyM!_g@d^>Kp=JM9=8&$XsCC=$H8!e`X42JGBD3Yo4gxCfPUUeAd3SR7^tE zzOL=_-*mD*CmT|W`(3sghTn`LYMh(9B1~BMhvKPRk_Oad@^AdKQTriuxY&w2sRRxZ zhRA;$WuYpY`I?T~_%~96_#k;0ADZ{W62X~{Y}Y0aDb(pzy55hZ!q3fOwI>fiQmP46 za{xqdFm$?40H}<{zQ{{Yrmj4hAI6lJ)8iVpBssF#DK2~jiSX{QQ`&OZk7y5Y0w~tf z(^vNmjCIv6xv(oZcs{R z!V|+i1k4X4t+jI89;u8R&HA!ymPzs-(UtZUM{JydIrfV+>Z|f5gDTWM_K6-=f%;)6 zvY`Rcu}(0;zXxzKzJKgXpEwl4{|C<=>UBrL6m=zcI2&!E!1^i+9_7E3(?-YDmAc|G z^AJA*KW2sxh(J$incjiOYUIbSXV*Kt!AXBbLUDEk?Hu3WQ#yJtbGNTyobsMQH^wYi zp9;r7oI-Yuyc?@%d1qphns7lX1Wla7>6|PXi=cU}BiJJzbf?fn4cns55+(bSv@>Ol z-2!T4Uq#pxYzIOAmbo>sU;69XsegD79<|7*Jmft%Eyc<|J+kClBd8l}hQICk$6%JG zF(&)|ZcN|*gewJpybJZLM;#cH+d!A}7%%mVDP-^tlY`Y`d2DWF4ePbFh+Nl)5D$(HcB587~VYD0v~?i?Rr)D6)6GBtb(#T#Esb`spSdcE!zl-9H0^Xq8Jaxa|97VOU| zt{tThl>nphxoU&lbxdS5E<{R6-<37$WN9&`4^J=TW^dkD!`X;LEhAP;;a-SJd2nL2 z{@Wp$caVr(DHlQa3F$a$eWNE>a>;!C^3YlC$=+J0mvjDn+XW+rHqU~^l!LZCmu2sC za1xXrHnQ?eZ9$1(bsvMFdHXo<2q5arLT>bF6zUw2V1 zG^H&Cl0}Ov>YP`e*B*Fp{ru!NIT%rx-)_~r7xO{-J`dL_^a>O#_UseiP0%~p`4TsY zv$OT=3PjOd4CT=+HE}(~%W{+!q)hxDC~_@g88(u8WM8w2yDu82d^GWMc;4Su%3z`u zwR|D)X^TayMeeI9nMpPpLHf?KKX~Q$t2$)|RTuRJjH+@X>oXl}_^Y8bdXUFAWpAeQ?xwd^?;vWQkVadsxWg#*UHypShJCW5IXeM<4%; zTXCRmWq5;tU)i4gnKtJ(awS^6@|*CAFEl$X|J3$j96=T*H>(oW1dL#k6%|nspxjTj zaJ_KDRTJ4WTR+DSAbjPj(o0#VOqGgzxx&CD*{T{VP$GyIx}JN`fFF+OQy(6+Ty9|I z>?&1yPXJHD&X1Go5GAJHr=d;01(T2IADP&)C(m6(cVdP4U+3=l{s%zI3xKjpu99M6 zC9AJ2c|G0rVt*f$K#HU~9%dX}rpeB=F zVh3cZt=v7oN6)?Ja4IR({r>6yBu`e*PahgSd2XL{<5-A`%C|J)XOyQvw<2CcpmqqH zY0|6sq%?mBReM(t@Drr_$O&=7{lr(;Lq(YC(&UZDLow0G)5oyHyxJL5e5Kh;nlRW{ zK`vOW+o>oZt8~u%*bmMscY~XbxkY&+yR&s&c26w476qU{UNM4bnn}!k~(ggdYW*7z<^TRzY!!8TI-&U zXnY~Gi1>9|J^4i|2L1}V0p^0FR~Hqq$|D~N!U>ToQahpop0xxYXH=NiM@$G^kNN_b zQTHqY2aGzJ;a$Zr)fY3)=^kX>Yig}3KkIrw?)+&hqj8X4BGoJNbv{`1a!20#a8W;t zOB}J{>cCT)9_Y|U^Q{T&CBMZJHz=dSncw6gR_vj?7ZKkEJteXW3M+B%O~*KdEl(Su zxO*-D@a6MZn|R;n^hnMNNm!wZMT}%AO5HGJiZ?)d_C@2EngFHm zWO}l#L9fj|`uTaW87kY|aG0$_0HtLZcp ztwo~;;k!Cu@@YZT@ahDFlz1%A&eba#Nli}|Um9-)JQySQ=(%mN#P0?0zu#O#I~M z#QX#Lg*e-LSkAs;W~C1SZMYG%%jf-}2Ka!g6dvr66Fho;#sp0)w^7Ph`;B^C_nyZl zPs#zKgsPL8@`sLcJMAdhvlsQ639a2No8#=ebl)r$aphVPq%HrK^i#n>uyoRoP2~Vg zp4uMe4NjgzYZt@aF5e@8Qs(=%!H;_^k` zjnHM2p)Br&9}7FXB&@}iOcFgO<1Vc`tJ3Xy^xz)C;Xlr zC*SFY7oNES=KF_@n3Yg;nIZd7dAz?y5zDnn|uL}P3yryrD6>)n~v~c z4}* z;le?@rk(o>-#l&z9l5+AY^g#G%zquY$*`szWLWD^Nf*c4rO7wa@r*2Kqdj5$SU!^Z z8Ss#{;I;iqu^F}(EbQP!uFz@$u2&NrNv~_9B`*XMX$hQK0ay{cDhanB``39pJfkC-dsnWlqr z0u_!c9J?pgy^2AfK!K&$awM&&SQG1*fHB{iTtC+zk?}c*eCdDzg;td4Z>$xh(Z$U- z^VoXzw52=a?&SJHeHzUv%u*M)UClyR9tU4`&S1lqH*$+NugY~_lR-1rs}LME6QL8aK2Xe`0BFd zsmD-#i@^H5|9?>*y)K$LFTHp z%lMjunZo)o4$z8+(dQ{Gxs7wtWKIwzQ;>~)HmKYu(WDf7Gco)xrTW5y7q1aaC7zZvJ&ugl8-6^xr?C=8a zBt>#efZKH2Z&&SxF#HqSEx{CF^o7QK958vO!Qu}6ce(Nj)87NfVfiVCxvyS|zyn>$ zZi79xQ(UXrzvogKU!ok>$8gOsI}x|}xDv$2|0A$Uip9~3vQ zrkD_w`~S;U6<_?gQrdb7sLO z`(9+5)v06ZK+x=m9J|rqL3=DJ0oM8~mAz=Vq6HLMoh3>Ss~N4Te&Su?4-|$1zfF6% z-06M8J$vr_X&UznjyOVSLgCh*(XDecVJ~s*P($QhH>u(^jce~g>!(ZwJ6eAt?)mJ< z>5Sa|yVfAPJq49+qhe1^d3-fG8n5i>Q`w^0NeOW9M0FkNEF>>)=i9!tb@?5?WuL$B z`Ry4OC58F!{f$3kc`08KqKtPruS3C~sB*nGW=mCxEMmL_I`R~NS=C$Cm->zacgwua z+zC4G>H2$gp>@eqo@0BM%yh|8F>fx&1eAck`}(Zjft`9JZF5_j&2#!Sj&-jMQBZ0iis7L{Hc`tu9_y`DuN{##1WUyO2KJ zlRc`J9Q@3n<|YDV;L`2dwcayLgK?m5P&#|=?*Q<1jKYXG@zir0f@sGtg#D&9f{y-f zIzFx|uXcE1dO|oLFLo|uROE%zoIzIsbse6c=<9RLZ#)6CS7EzHbVN*!cQN>{>fGoT ze%{zSqGaZT-LQnW z$;~m)ri6=1KAfsWk;`Q=eO)qrTJ_>LzGRD%9Mza^t5>l%T`cJ(+Bfx~l6(50)YNs= z7fe4j(O)AU^6T_Z8es10OjjGx0LBhPm@&{QaO({tQ*D6tYoNT6mVjl7PhQQLMSV)V zSEHe-)O&ku6;>*!HDr=Xn}lOQ_gA$OHD1O#9^iHNiZt$aiDKh}{}H;<%@I z7`AznI1`(jWbH5>Om&AfkZ}!3>b83y$aXsF#m5jx7ENP*`DnED{A*^$)a_9ptW#Xn zl^3mtBlCb{7lX?}o;1D;WP_uS6E6y=tW)THNEasU{~FcBY7-BL^+m(Q7le|3O9xAq2zmS-A4HU`QTbYSq_;8E*o%%h!ABbW5miZ4U zEJT0kzh^Xedn14t)7f(6rMWKk14;T(FK^^ruvWzMM#Q5OuC)=^&L1ezGP4k`f~6JbGMs@~L?GDB2n^dJ_`k znq8j{UlrV?MARSz&UW6kpgezbsMTKj{O`})+Kh}o-l8W{JMu#F5pu=hNnNlD((muZ zzM>996F-onHfIMK%){pQ(T(H;J^f94VR^4cwLuUolIHwnY<%Q0_pU^Z*|6|usAyIn z#-Ijj62_m^$Kgrx3P(o!vtULtM*pHyH96x?$+@$vOKM}q|YMc zfqYW7#k>m$0^pN)*Vnc1+##J4= zMye$%4}c*jX_{0Hl*IsC{gcX~=&kN2n^iq(%0$LR$Y#@qVAI4UWLD={ei3MuS1@Qk z_>9WQ9M`F-41qRg4mmU{=4Dn~(UUdN=HuZcU#}H+xka`mG=j72PuvZ^C(p(oe98~9 zyfQp>ag;3ADl}`cU5bfV+yRN81-cza(TZ-JdF+k?Fd4F$>DN%!66^7!!whEr*_I%8 za2m*!^WRg&aQbEj8xy*t_;q0e%;yA%7{n-l!fje;c+ogVhR=M5iZx19%foLEoV!`) zUyit5vOPb?-u2E`8 zSWS4K!5j(yVt{8?um^oN1B$F7hj*II`Upf}liYgvralj> zmB|caD^`HbsO)H_afe~9N1i}_sIeD<1k>5l=`Ph!!Zf9=z)>U z9WlW1@hOYVcZV{J;>+yj$6{coQfPQv=`L@J+r?69(Jk4P`jGcN@6_s$(aorW!}}x# zB!fdNX4T;U{a4Dauj|o1)kD}aDn`txMB_uv^DO8@RJ{u%^c|I71SWhm5mG-2oJf{H z+bM@Nh4@uUwShv-<}flLr$>9)fu!792-{=i=2h4LaS-5Fe@=4RXZy<>7iutG<>@~W zs&2ouzdOY_DLz|psgg6SHaHW240TE@g;}igg(qg+&nEZWFnJQl4>*8?+nQ5kA1BYr z%5iUJsCCZQ&-OnOIHGbWcQ$3o;bS~OSYU=22aB>@cm1nk2V`FBr^%(s%cWWS764ye#xQ;0IQXO^MV@20W;SX@lc4Vi{rVeUwx8P*l&aUuymM7r zx>%ZvVfZgjr;)G-NH)36BD809ir%APt|6X%`}I#vZ*91%gqewLQN_oH<=Ni4hk8)p zu}$L&ZRLI7_8TmFk?vu7$@Ak{Z%jOq9^I)8;UDEw2K-fQwr!))hk~gw4nTkn$ zVnd+@2y0uOhzmNshaHB5Y1R4nVjUGgkT5W_98-@)htiHjnrlmMw?!T1p(Qu!&SDa= z`}l+iwLORR3a5&VMcqTUq&&qHZ?7RdP4ZAZ#x$|IS7Q?Gs=Kc4DGc%t%CkSa%yHfH z;GXK?VVexzEaq`vnm$N+{%;BuST^6;0X%3~H!W58?kh_)$f0Qk^RP|n*S`T4Wsvv6 z`}v-%ZI%(A{#eg^GkY2;!AeortM8q)G>4SNO_tatB&lGY=c!~akfVvjr=?C*b$Mx* zbm&=}Z^s&5nzlL&#DE`XRzEMecD(+)%K8k{QR8z$QN5Jyj_|+$>E=kLgAi3rB6wu; zKD>cr;O4kL_#(t@5n?wVfYEKeV$*)|EDz@7y*6+dc@cdfD#e%k;uk4V9xr&)z%Kv3 z>5`YW0@i9*epc)Ww@UuN1a=3Y`yXJ-jo)}+OuF}RVPGJCM#^Z(*O|WDcW{|9`s(Ce z0V>(>P>{C+u-z)?blJ$ZDfzffFz3YnK3K{4ErTF>(ac2h#sUg_BGx@n5*OaTPuJ~? zdTkoU9|Rg0&rc+Ywwj6>=N+Z760a8gOMj3W_mEVwjINwNgQFrYpBE65l$}g*g>ux6 z4-q{0^bS&IAH@t|PiB5?W4s!95uVf_Mv;{zafFl%r0DUTgr7-D4&%Di`a0BrUt*Pf zK`n|#p-fzWdr4Zlq+i`uRBIx6@l**6Vc{h;3Pm336^xn>fEZqNi#pgW2VFfZB*y8dRE&9MFx14QXbwN13<*CKKM~z9H7I zbNKMvxas5@4~|UK8+)suU7eJ1WMDEkOQx}STMDOSvA%OMB=L4ET9rx1ft_E&g^d4F z+GWO{?5@A`;<&0JHma;ST&S%ppWy#G_vBN{-oYHQNGyMq0?K=Z=i%#i^y>@$g)$?F zJ<9>=mOhu?P~7jpMCu5qH1n7m=zmH!UfnwdFx{5n?G~6ZqYYh{dS1;(#gN8 zlAl5dNMv8lWKGBJC{&`JUNgjwz7?g6RebxlRuCKo|gjyJAJ%xa}2<} zr-rP=qb9HO**9Y!N$%~6Q53NGxG{s!8&Jr#ZFWfCv?0Gp$&cKAdEDhX0J@#3%j+{!QPHK#no{& zQ0v6d9j^hRYj!b}&_9O6rCyoZ%iocY?_215DR{mzumJvH2J42;pLNQs(Tt-t(wSv1 zH}yCVdty!`X40r?jK}7oX*`l~mB}60WFj+H9fM57eBWba{M|_Sz6W`UVw5UylDh3b zP5z#PFVsc#HNtht@xyfrl<4V0HjCpEm2CZZX8DH(pU^tzl^dBEh7{9D=c~G*;%eNR z$tr{om`JG#@UGQ=0D`ZKpr`R1%>;pQ#fkB}Ue@kW=-xIHdm1IOgiS$=A;n)ExCL0!=j7s$x$u~jtR|%tY47MnoZR=!8}qpOtd&=XB2*ml$jZkkKsXYOpOTc zm=1G|Ln1SJ^Q3s7jU`4@$#t^jwUrEiWU;KlJ3KE{;_(@;-7tnc*mT6IiY4v6X^?yQ z+`knPsN^2I-1&Q`i0e^}A2PyzMXLJbq0hE|U>1sW}56ecKUGxi;IpIVGZ8wTXwu=t_JC$FrApLJSBQJovV|`Awak8dG z(i@t#=kIqAv0w5=8ml5@+i`?%RuQ71K)k8OJ1391^k0#Add-N^N#G``eD9(dIJhbG z%dB)`Qf+b)Js~aT?{N~-to~jy)(;jJp1Pc>?c1xV#}{X!$t2bf=<8EL1ZC2BFr1Sg z3c7Nr!X}L=;~zuTkb%`W>KfhUABWl4`(5tPCW?oOX`SkaLi5lY!~J)sXzZaST9Fv8 z-=i*O2JJ)*t3lj`vi}>QnUUn*WIKIA#hqi?YC$rXYq-p5Ox}2Bu-6&>*E!+gn?NM{cw(L+NrWINO6zm z)qM4PtsrlPkMOKzRuw&X@9{%3e5OmgKlo1VrqttLp9hi$8J?$cAgcww>V65{4C8_l zA8c0d>EWBw33(176lUB@pdzkc_;bX_13$wxaN+8xoJm$Xs!{lpDe=UKKfpwDDN&ny z9DcJBXq}S@VgKl|_D!XzX|6S^Plfk2e(3xmA_>oiyd%zDeNIvf7UN0&B1bW-5{!|I zrdaEUZI{Z=UbD54ncuXrC2=ilPb7C|>L-=GL9w|>?}%qymTCGO_miuGuIwSab?!4Q z9pktm;U$=AkW`SN+JR93k1=x5Y5uoCk;rWbovP3=~1 z`OKqIAYZRMgpqN62`?W<==yyof8MAYZu&rBp=YxY`A9?tX?vH#xWW zygm%TGQCIG-bkz-?+fpw76;mi>-i-|HB4U?KDw}kS@K+yn<78W2RuuKlpdnPf zxv1m!FtBW;zhLRko?S8lbR{)3SN8+*%VfW7JE#h-zP2pglHkBBN@pf!8VnT{8)VV2 z{OfFVD{8tXJfg4X&8QH4zHN5N_8$+7jHHT2W5rak{M2?YH4j5@Q0S`H_iC1IV9f>= zNTDpPg_#Gh<-%eC_0I#{_ily6P7L1~>@lzW1Y`3*7btq#c4|#7lPbXZ{FL3|UtilJ z+p)W{tkhwqTu51zgS0{5JlhA$?E&x3_MZm+ zrX_4^2MtfG$E8NEf`Z=1R$>6au4CdMEaw1bw5|%P?7P7Hkv~*K~aY!oSyQRDh^lGk)x1WBS zQ&F!_AH~sohVoKFb}WJviG45?Db~M`2h7ARLF=Rm$L_IG&81hNoQ}V?HL_Gw) z_TIEGdW(UTB%{|01%1FHj6p0;+%{)JJsV^ZIZmm~a#;lJ=uDt)FJeq;DsjNs_d36p zMo3oPp2nP&nu5jwl^Exsfd2qR&3T7UjyB7WjgCj9lH>lhi|f%{67qvHpCs+cE{*+| zm0KqXKw@l%Ie1X!yHcoU`Fbd%==LnuI!Y$ge2PwkN*I5g(%tV zOn&gnB-?LAOAD&h?O1WvG%X^bUG(*ZSheu&lg*pih&sh$X6*ys?2(`lud(VBCl9iA zHb^7l2lefe7xDOnF?<>0aAD@W4MUk=d15EJ1*K4)4X0#_~-P~8>F}`6u zifDyYD&S$W4WopVkR#zGlV@8xJhS!}I^O6R{ABZov+UEFEUD?-z0(nk5BjG}xB%TT z0fBNY#=aLdCzpd*y+G%zhL3pkZSR#x?UQOw52N2x;!>{XNf2!1W@V4XUQJ{E18}y< zc;M90f$5nsNks{pG+E>t{bqf7F%K+wEn}r&hz-7@*MIb2oTPi`-9(+6!9r8lUa~`# zyMGP0DeY&cU7lrWHYVhTh9iptiW9O^hV$79l?M7J1_k^f_v}q@jT0`q;Q1nm1BIq} zc$x}JK%ak+l!;xYiM69qkhM~2Pi3qyuzy&5(mV=s`sa6Tp1T}G@AB_)qm_9*q-K~i zUL3LS^&en}+Z3EKkwqU1F04=7F}z0rrQj=K*4+#Zeh0SkZv7@iLK8s7QeF`XLa+V< zWYJkK4A#LcbqDAAA0U580f11)Jo39Lf}agtVwtMF`dm-v^9eGqWRxaSM=mLzszuaf0Y{W%-OYvq{-6B1YIkZsO5O?`F_b|=RJO89qktXz(2Zs`k(5cLY3erbx+%oGzG^4bjxyOtxR?2 zTA|WPiJX0euca$W;A2;1QO11*h2Oz|?BN{&)dyxCl_Y~LwepQQyud5WS~76)#z8|) zbhvq{?S>Y68JpD%jT~+`W_qXq^M78Xnmlq)U5UPaMGY7-c>-`*;OT|!MT%%M`+#Sf zZ~eQtkr4Lh2L+BI1dcYPxLUPlshiYIszBPwM5e{=)=jdE2PL?sVYqK%?RsBF*%ybC zNnKlXpv?HY!&h}?v;f`S=A7wJvKpfAB_+6u1`D<14$O{5yvb3ZyqbW!W_J|tm@vlT zzam7}jeo2Kh<*!`_eUnB5Pe~#BP@vX94aVf?s46v67^3-zB)wEqblRDCxH>^(n-F5 zfv5Ufk4CHU(CWy}*IRh@XIEe7{z(Ve@u*4KSxmrS*3qKJb;o0Xiz?||T~eZ)#(6ku zQwZhM*ct{ov+S@VCdH_dljd9xiRp3Glcl)kD~v_|^ZO4lu|#)kS58eIHcHRfP^D5n zWgsaY;z@g1v2s5*6~@B^^(*D{*Y(NFJapi=uiuXDBw0v)Z#6F_PNVMg?P%*&udM#Z zjBG%}EOeZ-3N~6e&c|kFM5617_EV0y}6C>ta6QYnoGKs_yh z&Db&G8Y{&gjVTAeIp#0LLXSF4Lswz&>%*OzMd{fDP%7vcjZ6(Cov9QuxN5Qld#Of` z9u_ch9b-w@2MxDyx2b0Y3j(To<&oZ%^8 zQffBU+C?EM6Wk1>w#7$h8F)))1AN zLKdYBVi*g)54bN!_eEd^MeD?9YgB3!q{F|*xuV~?rD<=34+3jWZV`C#ax(dBA73RSfPJ-euPAUd2*On~1XurFOHxlX%yw6zO73VA3CV5Luy$;k;Gf{2@ z_On40-De2eTs(d~lf~Z@+Erjr{BDK)=3_ZybFAJ5cTL*HCsz22-G%kUwWtFdBjna< zV^;fIfNbA-cvLe3)G{+90PL?H51b)#EDm|gU%}_mrR=$P^%!Z~p{-0Fbq-j%Xq$uC zcqcbwA?sN^p5PM0nPxUlqv4X@=LhkhK|;{7GW>6}rZ*D7=!gOWBid8x&C99&hWe zvoBGF+b48o)^!i}&zP`+IkAeBr>z5@^g3kjXFMlpwkZcWeS5bj>|( z;LquO<&C%Ad+(w>#D=Jag|AE%#N~{j1iSeJO!2%K(g*Ob7kw*)Gr8l0#6@I1msqB2 zC}UOc;&YgL8vXOx&(RS1=%@xfzoy-Uj_Oijd(JbPiY?;zfp@ET)qhH#biiU5$_wb- zO$;krpa zptt2!fL%=KOXt38jGtmcZJvgqPk^Zd-@+~!|?h$seQb(!y%%2)0Ie;KCLODH}BSYhNfh_DulH!NWbO{YI!<`>)%Z#OU z=aJ1KwQr=tuiGfB3Yk*&l=S04)tnbp#S=(v!b!%A`=&8m)xF7A1{oK=KX|eMYDT?{ zIT}h%?2OYCPu0LYzy#gXxAYK(P_D=(3 zmCb6FH}4waIPVK3_Shts2a^Z*gAhl=IL3k1qDV4u?o?jc>AvUvA2*7Dszwe@YlM-> zPCmbkP|}a?5mL=NGb_cb0jR(7Yl_hPnC*KgDqNpSZV-I;eMfW78LT>|JG7l9!1ide zQrdlirX>;s)ZH*k0biPbEo}zPikNe3ca`=}EX*zp63|)ym)4CA)-*Y7`;1oee9VNrFe6G9V`VoMX9!tQeCbyeLXD6fYTd-jO} zHxP6Eb1E1`WGpxI6_JB%!AVrvRO!kKb6m}V|C+0ZchvO6+kXvCw#8gcA9l-bN(~q_ z7s1mL!e%?LJAx+Jn9UNN#@a|?bU!R8hVpp=Z5;B81`?)gFBFY}#v}jCrNC5*J^HJ0 z!FZyla;hJWB_&1d%BOLl`tc?G<7VWuV0XQnh+SAf-a?UAttgM^ryl5zNtea&+xs1~ zL?+;@ddok9i}`zuKZKhAArl@+AsW43K-*a&0s5`PG$A6!K32}DSmg~#HmUq~svd1* zlXZrZKv%sK+vz*Ns05D&2&e=BG#urDYT%DfU<$^iK zb>!S1?WYR=f(k>FG1eo4sIgMTlBZ`SB4T16X04+qHzF?TK!tI36Yd?sHyVAT@xpCx z39h*7L5HNv>Fj66#gE+)!YLtX#xYiZhRM3rSK|x%{oVx0xa&t#SY?;&t<}S1i0Kq= z;eRZBXIxTm+&7AQuM+plm1f|?kvq-AQRXW5%rr&KRVMB|Q*+@q&7#z7SdxOcO&tBh zOjCxVG7~fli}2yT?}yKamz)=e>zwO%eP{YB3Y^hMNz``I!PYjuR|-d*X6zmgl(_#c?Q) zPX=q!y-IHxwED^K@!WgANn1T)1TSCc0*aHI3qfaH^?1XWyToK&maM(AiiV7Gh$o{Z0u0y7{= zfVwOp2v$4 z1V^7*2g`+Z=W)4h=_o#~cqyodO5Yt@CE+g<>62SHlh+C|TQVxD4i>g)06RS%zq4SZQ56~xV$JRu5@NCHSB0UuA2}0$by1vKhMBbfb>{bSZ zz$I{HL><-IdioBFsjV%5Y?~Yr$$zG+pwde_3I!rrAE(tTlchcHluNozyMLZbrk~WW zoO*0t0ZqQ~29Rczuk6mXh75}Oh<{6Q=pD(I4^H|#A%G)Zl(D0fzX@XV{a{Fuj!QC^ zs7o@xjluWozyr~%s(Qnv_DJu>pxvp*)%Xb^Na}`PGFFaE>SYxa>v=LY!aHR{K2Ibk z;57}h_f$#Pz#3T4z$if-)hw)i`^ak(T!~!Bpk=_Mca%*jn+|wd<3V-R5#TWQEp;*0 z(-aSw<^?C=wZWQM}3;)G@qx*jipRlBL@y=LbP6IwPI69mWKNkFCqWyVcyYow;@ zY!fs(W~$blz4W*xMKIWM;=@5)lb`pKXFVvnAmyLIk1kX%Rwdd0GYc6Livo6U` z?swIY(w?lghe{sV#>%MAeS7FHCK&ns$If1md2FXP9Z6L)0Y?Eq8ey3V<913B(~r^f0}el7>C-$02ktZe9jI9$2n2FN#(KsUHXxp z%02Tqy>@r47pMeYfJanec?nLzc>Wo|he+FNZ8Uj!(B^XP`FK9X{I7;d*%aml#iMRe5;@4>)}HWgvGI5UfcY z*lqoIygyFzzOp$ye=&#y6jf(X@Dy$?j^3D}9#qqh0RJk7vY=B;;;;U6Qr&dR)6TI0KF3OrUb>q3pFN#2YlK zBpf-y`?f(5<=#!)6~Un+?93Fv zxrjm#nJp`nTtRp(a9Uk#0w>20rpMQRjB78kseYXh>jC=&(-@{0lG;fN)PfSwmq4=# zPJv$|+)}n+)WZ09pPo32)bWxg^xO69OEV02csMEA+d`(XN%g^9Wm|D+D(1#INtML_ zpDzdXQr+;i_$gNR8hsY#a9ALV)(aNkq_7R*r5&i?nPDzA1qDsCxnNi=+8iKjb#4Pr zF~R6U#8r1pMxSzXzmpWL_ihLiGHgZ#nXzNC22Si644yA_&up{ew-!x?bKkU5yp?R| zy;>R}_Y_T(cPowPKVu&7!YOenfaA;OCjh`zhtkhM_N<|CTpEAZ{Cc<=5DDiAg=cP! z)e<>_^y>)Hv6cgpDNAT`rYwY__M&7@$fAka%#FY|DlKsN|Wj<6btZ}{kP4P#8A;mN{8~iP5_(HqGf}Ymd0WvxyR4+cr}vn`xYQB zBr&K+$hp@ZSzC4V5+cieSho5ocZ~nSvtM1WM8&KC4e=GYe(doeG{utwrWX$xvG`J&r ze&h3Nl_#LgBFML@Nhf2;P3+v*T3^UI+6e+nTr*9mHlPk#)Cerp?KVb?eBRb(b>F0K z_~c~$owi?^c(0Wvqx&=p7nYDch>yPyfT&}9D9%cnjeqD6feYJ3Vo}%?mZ3_(jL{?Y zd`$x8?`?$6pn;rWPp04x{=uejPNA`)&ie)g-9#;is?a3?}GTYt7S&ZBoEro)gt2!=2y_8z5+lcHrZsl`Qb z_Nq~-hpfmN)k8^2Rmmd|y=1m=#{%Ijn8Q9-ucRTIzr0Q^Y(jrOK!+oK*ni{(Lngkk zct`E2oVf-~uZd<07osN;-87Q!HTJsIPD5+2M+d*dG_%Pr$MMRx9Og;+_4ZiEHti1( z@qJ;MnNAx7q>OQNXWWxHk@89}y;BBaAzXcFKf&42Xao=?oJIBQ`iGM&u=Djm!)ZGHT`|*sQP)(E^jI?$+NUWBYc|xML zyA^pOsg>~cvGzjb*MFhBEhNF@<`jQl5nHcSp$dZdO81E95ET~gO%PIw_N!GYCl_f9 zj%9$y$D{Q)ij~&fShmEI4fV#7DQh4PvpQhx`*uMJJp>fqoNT1OCue?gSW?pKJH{_f zGAyCMCH=$bqGR#?Dq!pB5Y(q+4V3ema6Kkk%PhEEKGf{gYq#}CNddVZ7Hw*?NiXS`WQOFg*3hYYqpi;n%_`cU8e^tSk(cwCpw zF~AFc_K|zVMbaX`?ll36yt(s zlgOsf>fuyjt>4+wI5i~*qzfeYGlXXp-AEeTbnV|Ea?N0uyhu>eNB zsRgBsGtL%6>0G@^m7b=7+oCW*h9m83!`IqK%8Xzg%$K-SJe&)CMgA7V0zj}?EN338 z`&^gRi6l`f9Y0L>g9MqIAlO08xekZrTbpV^Px<%Q8!*j$^(>g52dw9rvN{=J7Qz}K z`WWd0R4MUOJc4b#5b!8qJ{S5@X%)H4x z9IWxt`GTs2R`cJffxKerkTsBam{@IJT;BoG+y$pWG+;s2+OLe~fI8c=wH@1rEd*ZU zGMv1(kFn21^1xHxaZz4aIu#TBC`6lrx?v-ZEV#de+$`*j#n=}ME~DIb40k&v3(gTI z*JP99AkhgKaG8|agZl{cIJLV#wZn8gM1_j3GxwF`B6rQkOn4noZ_=Gu%aPE38z#Iy zp;?~>#AbPl4xgAAP97GeH@r5$yW?QCbbpJ9aL`M2g>wNu1&1_HZbEfD%8vZb9q+7X z1Bt>eXTf}f+d@eh7b)Yih_M8V%61VrMJZr}k)|HD03gOY;f3{S3yj1xCY zPFVANDu)<(R}SiCp&T+tFxQK%L_wu8hr(R*S#2knFD`#OS>+n#>~rxL5W>gD0>Yi8 zWrNdy0UqVa64QJ9e-p_zfKWKyjOza{%*L^#X2(1|Q=wnr%7@o-6udZkkDc^(w1Z!9 z%oX6Ndar+bAq!m%db)ot-dhsu08#$;Jk@*i>%mFe}qIh)gBf-6(`VoAyP?xw z#t(6YtC?x)oqa!b;uA1}`q@qACj?19{rO5%z+j1x~vJRyBaqmH<0EXehLeYzP=~)gVTk$Hl&1LCbEEl zLGyD&I38BHuJlw8UHu3CC>i(E`3+pX=t!!sjbbWT*3Td1u!B3Y3iatRzsk-#j@#NZ zZ5!-w^*bTb*rkSq(pL$+k9}Q;z7unXgfrl{yX)ATva%ghh5sy4#-U)8d9fZ_e5CviD1TSZAXG*q<`r3_ZxORg6TJ<*sLxUZX|(2K&C-qx598 zvuF$(?~G9s^D&2hWh+@3X+Fb(2L7AyvSP4pm^!U@3u zOlFaqMLwL?>pm26EUJypY|JiD=vm*TzRMdS zf0x%|elP`2^Vr@oqDY2u-b_jmS@(J#$j-TGac7+U;daP6Sb+ukj@XEjjO9;sToQ#r zUgJ+b9#w2@fvh=PgS(ls6fQ-IHkp?uf$F1Y735M8UdV)9#F+t#`HzCvMTL;-1D=d1=xPre!|?Q6vE&R+@EffC}rOuqHag*BD9VTbF6~Z3!``Jzug7!5dw5EpJ2L{=cbm z_J^&Z^5AfhXFCt=iN^p#nbjrAn~Oqa3dvz>`AsGIJ0*xrvU8#Sqc`$f#R@s);fM*- z#0|^0#H9m9@Tq}(*J)S-v06v*vd1L!Ac$)e7?=QHethJqV15i>GJ2Vg;teNSq@$vI zR-4|n&v0?wtzzy^zT+QU`2Nvsr&y}%rP<|m#IMx)TKa1*OA%$oIz!dTyo*FjYXJfl z#p^%TOPHAS%4|`-h$ab_0{~^99M589Zxr{{m@b{y1oir$uRB8KCU|dd0`D>4u|Fni zV$XEyS~)U=)y|+NwKV=*kV&>f)M>JT8MW2wsDDJ)o7zT97vno0hTrBhh?^ShcQ|lm zl!Qzq*`B?28pY|E#XXQ)r*ZBQsF74<kekQwR z)9E`-N9=LamplFHK0(d-9~eSsT!mZ+~ftemPywBf4Lkqup9 zT;1gy0bcJkb_f1$I&}HM;z7>&^p4q#=1Hf9+F@PQDLzFuxugw&K-Gnd3%0~-!JdM*z1Al>cQH4{w z`=M6JU42S1RLtqSnu^ia2&joIjh`YHH~TPkojfIZ{wC#GyN4n|VvAeaAZE!aOxf zd+`Zy&R)4WZ~oedro9#VmuW1IihcHo6R7}^E=)?$98W$oVHjH-kKWOGvZ+XN?nNUG z5vLgQnC2<)f~V%frK_!9a9ftLviy(#GEI~tB&yralg06C1{BV_&RgLpAZBnSO^zpVupzSn=2v1eup;z#*nx>RMy)%ZAi=-!&8F7p!6?q{C$HIE$yURUY7;I^M>SK^&Knca`%rdnG zm>5th%lnr2oF|xPye+_Iejt(;ksiDeE0fQS-q(8x+zlQ)X?nO3|a^}wQ#M={U%%LTcE+nMm^)&f<|U?m2tdg*h|26E*L z6X9~#>l6l9eS4}EU__GSe^8IEwFGVr+vMh*u&@oqy(7QO38{J6tUQl>3@DxK^RcPA z|BX*&8KQC@!6x0`?U;J4?gR!qTv^Ay;Ud2Ocn?9gA&s2mJniWR0)yw5(3sdH(GIDL~udYfNcrKh5%yi0+-!?9s9QTa?B0OE3!pp zW~siBOyOg|-zMREAGv=EOvKe>oI~&k=>HU9mY#}ZDI9b>6{ziSIZp2I~CIY?Hzw`kf*M{H*NROISH zO2(WW!3owrZ~EHQBwlWts8SxMsptNS#r2{Y&$>9sY9C|UqLeW)YhEMLxe8hUm3bSgbiFSB&MwFP zuspX}pirMQ>J)*|d%(lL^yuv56z_`q!NaIu^f9#|>kT&SX7lH~{lHWG&^)TduIkG( zj;?}M)=kAQCIE1l^Aht&WFy2Wx>~sr&08p!|1Gusw?XgSAE*AuMe?$ZgMC4v*f@N} zGQ57?rs~nKBx3F2ScAJ{>QvSij}X*2B4$5*{;?%_4z&`Ed54v5Da4Ve<4uyShWeS` zsw8-wze!H#*xxw4PZV~&GoG(+D{81%XDif#*2paibj};?$67U@ex&5@;+hhR{8I{nU_-(eIKE^>%^JCyK>vpIp#BC6~47p79+3mJBuF+~JZG6b^v1p;DM8 z&JD1kFTXt{^lZJaK1Px@9^b2bquPl*B8^=;b$#qQWo(A1iy`#VaoUxVoRvi$CQR2!fTvp`=}q2+Pm{6cJ2J z9nphF2@fUW(gCMixIPHH!mdgt@h>##D1@c>uhsm{lw)YonEs;`4URN_qk#qw94SN% z`RH8QKJy|d@Z#qwvPx<@Hp2&X`YD*$$B?9K6oDk2{BmERPS>sJ&SOk`{X1M<&CP;7 z$z4*|rb@?^d9SfIOtcpCY-X2dZ42(FjEbrr$^3@qP22XzbZMpo0G2|!xt9;Jd<6AH z(#on-U28D*Kf}*pEz+%|kBGt`PK>?w&l(@c56Z^?K)|P-hjNv>fePu@136uioz8rf za(o+ji96fYrRiKTdr5Ptj6v3I*7?xH+!Sj;zHLx^+2Op_=I$6}juxk5B8nNF@O@0+ zX_ywE^I&ft19)AIB9!GLMeYHyYrOKAU*evSzWoa&mW%wvrR~Sx&VL@KZ%f^i2P>dh zu}M{DSqeyR#tMORoBwXA(=kA)hk7!2Mu-~Uu}^p zoOi+8CKJyS132Aj;1sf#rDa9d+ZcrUzGEVX!|2{F4gF;tQDI?xGwRA;)|kmv2i!iL z8umhM#(uS)ZQS)y z`Q~b0J zKL*59AP&D4m;-d|OmKKLcZ`BYLy3*V-Joj>?8{4)IbA=gO63RRmM&QAK(0JXHyXK7 zYV~x;=t$9jIJXoIJZmKXErg&%Fa0yD<|A_nj1Y=q)i8_E@)_Ki3q%03tm&?0-A}lE zJJE2|ym$U++=;?!fTAb0Ja>anz=fT@5~3`NRa-Nx{yVK!D%{HpfOGp(jaOWm7k4=^ z>)7-sTNr%)b1oCvxMI!hOMOgpg8xGv&%UwHqL8a&rt+uQqV3L{G7}@PE1%}Dg)1?l znEa%%7|eS4YZ=Bp7y6+^Gpqf3AIw`LUZ%doCH|BuPz#I(KaLK3fahOWXu>gs5ZWmt ztN&o}HR1g?`M+JvT%x|{ydkahG1s}`@7NOP6?oxlrn}3O%l6hEwld+bKlgI8u~FvF z;s$mS-YrbjASj#jjW1leKDY`f60OLHuNnSc1?}{J(_voi<$KD!$i9BjZ~Cs-*K_!9z`Q`fCoL$ENd^Hre#sZyu-w2oO4*3ojD3lR>WoWaN#gyCt7seaL zF<_e>Ji`h3nw7Jowpu|K-^_|D+tF`=t0IuBjck#6^u&wbs1!{eh9d6dG?IT;PdWH; z{XA+{uPq8p@KK1(8j(PFeeA%MhuQ(+HgAp;IN8r1*#a)CRs8|T7hfRbwrdU$Pt;07 z%~`pW-T&^dZ(F>E3-U0aX>ib8uKBez<=+-c5}f!0P0^|zR8b|>0&WP|-oSYKsP*{R92 z{q9V;&GFd)b!ZHdC*??t#<22nDB7G3VL5BDVRwQHkLajNkfO$I2`vA%aY$J2C5o1p zI6Yh-)5qFPvSWt-M)|~S;HTLS#TSM@}x{gV0OZI)vtzhd4&Cpbc3M>^qPd-udapg6Nf&7OLH_H#418Qdc zgpL93))L>E=CLn-5T#{<@~BvuxX;COE+3gI{OlN$aG{0gsvU`3FES!(?YI28KlQ{+ z_ZgM1(8M^}M?FmSYG|0Bsrz#ct;Yav)`-EhC7W1EGix3k?i<3St34}P*P6|w0xuqj7XCoph<_m0*Ip@b!I7l)KC&p&U-Fh5eQ@ zm$(Wgq+Yyp&yWj^mbNtM5BT}0qjhpv#x#CP;to&%o9Y?s8U1_F{{|FFTdRb|alA z(AesH=S??K%z0pK%=e=miA1C7_`DIf%_W-g*wPgKIwS^1%3*;N8!k|g!)Aj@gUpzK z{72sWfW0QJAsEhAPY{6Nuoc(ea#N2pWH zFVw7>b)(WApOC9&I|VD7zD}b~+{@-^uP}FQe5Ltn=t+|AtK<}XL-oPP`o@==F|w?dZ*u~#)^;z{$DbNi22qPjKgD?5sJSud zNmsgA^srm`jp5150pTiw+FH}-$2T6oGV1c50qm4q;Id&YJYn*chnF9vlfpYJ3q>X3 zSlUq?fgOwAXp1ouoM7|J#{|c>?h4zR&dot0_AuK7)Y&)I07Kwa-nH^a8oE+nv%cs^ zE!cHri`rTxsZ)nv9s}ww(Vu&|SsbRO`5Xh*J3R&d)jF%3^@DVxiCrSGRue8;2Gc^i z!}Xk(SvYCr)WJ(7(AOQ4Z$__D?jrp0wbDD*f|pIYG?H@XD$ahK`eQCD;)T1XnSb&v zedhbLQL?z{5YK;~BZm21U1Pl8hmG2PgfdQ*4Bun1`(r6n^@_sL|6TWxad12@x4~=p zp!(BkPA`|-;U@)Kc*la#r%3+NJPN9WVhEKPXqdHN9fbZ43HWa`OcI+%-}lJA`(*t_ zJnAUj`4h*2c#!Ep)P)*ZuG$-X)gA*vJe0TcSE6P*SEJ}g*Qcx4isv1?!D~4R(8V7@ zfiWd9&S&mkHI`q-K9G=S5 z@vz#uF1G3X$s&?KpW+Y!qAe^T!fkBixJhv0W`Qq@Wtb0sb8qZ2KM*CA?i@;Z_+eE7 zHCm8x?l7^i^}M@}I=lZ7+*yX&PggZ(EephCGb*GimqJiI$5%4QP}^t}{95#U{!T6g zcIa;}nQ@}qLSY4gLH%1gI3vmIDVt+9=bl5BfQ@ta-2JXB4q6{%23Sy1*Z-lV40JtJ^6sCCgNh$Htz0X5viV^w zDY)jl^t!Di-!WkJ+*RRs=iFL^R$HgKZ}jLz6@zasp?#C_abh9r2dQ8sR(*~|{hna+ zD1}9(sgw0K%(g-AcL0JxyI|S4T77)rUp&1veF-A=l1J$k@J(vFT}h!o*FSRI?(jd(dm2#_Q5{Zp4_?`^ zchBp-xgjdq+C4Kx_=(1CySMve;;s8~>!p1?iI(E=Nvnsd zJj!Z+@J#-1m%Uo9=KpNA#{k%trvJ@?olK>ihNaum0{{|*(h(yJ0NdnWr)wUr7zd-J zsi@H%9>Vj_>`7Fh9p8(%KW%pQIWgXD&1EsA`^j-0Dl*l-=oVlE_Ezf?wGd-!CdpP|9S)^s6 z)!j52wmdo5VP#<%$@o1ui zJP?qwK(?C9Q-(b-jk)+yu<{D*{^{3#Gs@rEB>R)^7<(}rEQ%d1KT&>k9Y97Ts!fGd zFkQdX9j-fwmP(K`&x7X!?kbjZTUF8PN53a4%Nc5=8}ww5g$uB6cS0*a^62|t(RSO)fE=v`nNTc!CP>ZSnFBL zv4XyrW*qVnw88SvUdNO{3k3j+WP4ze7F;H7)!&$qIL2LUt38tbJZ=uH`}mcaap*zy zt$;)7`)w|f=Sf-Aq9Slap=`hAwjfFP+Q=Ny^oVuJQYr%(^<-RNS*G|$S#SIi#&5=* zVWH-Y>){H}0VAY4cUeA`Tjyy!)wV`{Un^t9NS|RUegfiH9fE}|WdUdK5qZ!PQ@ZcG z0vt+L`L?}|#)2U4$K$q7QXl8niBr(FbeS52u+si{uo~wiECn-~H<7YF=AZut%!P!* z-x9eI4Cg-O8ZsKzQTv_oUd-54sx?-tN}niKeDQ_A$)-Mt zBOb20rh}Qt&|!<#R5uQdub%Wz(ZbtEk_ol3*$s22i7uP`)ZPL8qc_bO#_Pv`g$YJt zY$NM#I94?r@li-DwU@OLY!e5In*K}YtJN7&+%sOs?s*$EfTKH4#YHM*M01lGYrjuK z2^bzwg><>0XMU%vvHiYhA++pRErnLvChG|WJ|jCFR>a@e>D8?GI=No@BPGyuBzaPF zBveO->b7>q+|NI+xfD7zLqQ20tO+7WDd8+J3H4m+tUsA`T)X#!71mmrl_5-oOs9+u z3xm|XeOy;LSE}U=>Ve4q+xn$#l?My^`mQ1H&Nc>G;B}u%gvP8 z*W|yrGGuQHx&PMUYqct|1ipO9%1E$kL?@ldA`D|h1KqUl$6=Y%nl)_Q!8|rb` zpl33B?igTHY!q#I45$c8I0hUhH1@H~PCZ3>D-`rHUdu}{3~3#nG7_*O%R|@Y0syk-%UR%ZlbT^y;aQvsNYvV;4SLc0ZT3A0qhL9rP;}fx z!u^2vDa)mG?r~kvrK_W#0=xA8gu~39`2?1N@J{f>IaD`#>w~0wWqMKO}FEHPCzvP+)~xQP-Zqab>KVg4$z7I37qbc$3EcfLfWQ z*9uNxo@&2K*;WB-<(KyPgM?@iC@GZqeeZDvc2JD~$I+hJkYbD`vYwtyf1jU$H(L!{ z2OTuLZZ9Nl6IE#I3{STs)I@Xnk>Bc5A$gw!0(F_;A(ha$vl07~DVmig?ZNm>n;|U} zrTKx|tFgml?G3|{+zQ;rkZrm(1A^jC=Jr<)i;8P9%4%2MFz;Qcks`p1XIPb(L3?K< z*^EbDE1;C5lSj>rGN^FzleB!ra{+(oGR01jDwCL8O!SP#x;H&eRA*xuI5BeWWqWVHPlVJ7FI0uW}i zBk#=-Uod2lGw@5+a7io>PvfoGisW4rN2SnHuyt#<#*1GACBPS*A=$qPvf$ukjKliq zOiyX=<7i;gfg_ccv&S{ii(NAdRWp}b(+It}qrxqo{Ne}->G$3(gL)cs6MTb86Am29 zW4DPg_>k^HQc^4f?CG_P?)1DmJ-8;j8GSjRa!nBL^~z+dZ2vv?X4OPV;J8{3CQ@BM zKUEqYZN~UKSI%ABGGRGQpRGYj`*^5>%-`|S;{S%NzO303x6izeiy4)*-%*yCC@4ao z!2px{bibmm--GfI&%H!PfqQ3Om2Mb=)l*US{YBlE(+Ra z6|O3q%fYgtmD09169fdeviR0Cxj5rkyTDE}OjItR0jj6vQ=_&8C-5HL-{Cc&#uxcS zP~|A2)6M(>%SZ(0=u;&)t|Z8Zg!hrt3*1(mdfXV;Rcy1dTQyPKT^6ldsURR7wBzg% z8jg7f+csX2Pg5Vx$-R_B)zdg=-1ai1Cu4kg3(yxB2^oK<%uB)(?(;i8F_H_9o%`@{An{b!2s7 z`)1zmlTC$A#voJTeW(=R!DwsBtdMVL^s^h=(85kFs+wjz8q|1af_ELHbWjpPL1+HO zd(|TKl4R}%sL^tBd#^m0gjt}T5aMD;!8M*-b=Y*7N}lC?&*#fi*+$gMZEp8?K2kj& zEZ`1i#2U=KP@)FuwI4);b&Lo;xlBG^-V&>}lw$zH?-)S(?>CLWDkYUASCSY@Kz6G_ z%luM#ev_xNYo2Jw(^yf_&bVYcAL-h(47Qk54f6)-{BVzx%y{_bpfo>#vO;=2BLrC! z&+@rZd(%I!ct_k@X`J?Rmb0#_(L!jw=>P_2B`NI|rLmilW619X_g!6iK$C@~$fv5& zx*F=Iw9{K3MhS-{6bVSD8veoeQp^WFq;aMNAjFH8W|MN4%5u}<(VMu`AR*=76<~+b z^@5|+Gw&46Vg@e2Cy=I1ZxL56)h1`Y_1z50AQ-)K1eJoPX)Fck&6Z_D^GT+2DuD#v6 ze@8z+z?bxrFW|o&A%g-J^6y=4^34H}sTmSCj}Brt1;GL=gv*!T+5F!n(k@mfmQY+# zEv(-om_U^NKBLMuFK*4;62M1TpeVIPE>gd7|B)B9P5(J(+Yk=+0i1_w(#ra9whzy?{q>cM1=L%d7=YzMfRL}fB^O@U zKJ&ta2%tmN4^dY2b524Hi88>O6+qiqDdL+;Q-xfPXe#EF7&N{yB)Fd#259bTaW$yE zWD@T(wvxwJ`cVv!CDMgFLBIL>-bRoK9$MF*7OSzL;8o68MxI5kGL5`8SLkA7R?Ens zPcen~8pka)Lo}$U6sz+#q>OV5&w0<37JsH?ryVr=cm=;wdwNzqTF8R4mPU0V;bZLN zTPv#~r=$s&r4!yP#HaXUu{Z7t?oIt2QI{ZpI-Ou67UZ=9d_B(g`#vkLX4aeJ&3jb_-1-Yd13N)JoTfpWnO-sasi7Yb(yKpqT_{&hKVg> z>l4hS8tO6N6YG0FKIoqXYYV1dG35{`Xb@*(bJ43fQojxXIBl@~`N>+$4U%MyU&32! zOy7ZwewlM;X$)yw;wkLr`nlA5E$)`Zh_8~8ezEV5ywi}J`ga+!EHhV@Y2BJre6`}5 z8EITKK4WY^#^<|5ehIau)|rM-7}Me2EP!3R?=YM(1<5@m2q;*Hdy*-5v*1xCN7ZOJ zYzN2>iL8GoD9F?j=)t)+2H(LIqruyfl2he1s6j$}zFCM3UW_tV{4^;Y=G)2YaL-+@ zdbtJ2_ANAt1(>{+dxRdIV#M=#tz75+X;2%5vDOg3kY6^ZfHO`N4j=2W;PvVBG{wTC zUrS}69Seo0@E+DMOMAYSQnS>g3MhPcsyjnAR&$SCL3~^#m23i9LGKB2MIG%3s>@)T z*f5 zn^v$8eKnlj0~Hx*EBCf7HJUUvSK@V5e96Y*a&gFIn`a-sB{;!|ljsQCLF_3}juK>x zGBq5bl<`S2W#I+YcyexDQ^E8y6OkdZtFQWZkr9p%6iz-&tI^u(I+K&ZaoC!5f~j^5 z4Fi$SLAE#Bi!rJ!|DeYJ*4%3g)xFex zQl*OPo8os{+caOo&-u7po9mHyU!NT_i_Fc1vKhjew8)wo%p=-38@B0ZUi&=T`P@!%x@R>6lbTgMW+7k6X;u9R* zV1m)nzP%ri7K4swxDv(w+7K>wgVnuG-rDJa+6h^nTRq*5N}#03sCiG8d-Z#dLurMn z#rp#pzSghDee=BZRTMWfZbPy6I110Lx}3kiX2>(1WI)0ui);Eh0&#wQ)ekjVlzA?7 z4?)CPD4$fghN+R$RfFcglY=pf+VA6r6_(iMVv}z!CybkcZ0zr=(k1xAens!-7yfOY(hCVKken67Uut0A;{#}eHOAd?|o5d_Ps})#d7FMT18kx zHJ#aCa_58L_cxTS@Iww``sFEw;XKp<<%A;(9GW*Df!myqXf;{}CuT3a>HzU;g_Vth zxt_1|JRfcuQ=X_Pw|%=rh}9iA1649U1`Np>qAq4UYh|eWQ#F#-8A|;k2ABWX&1|Rk z=mXt8@Y867nC#&SwL8M^sXF0tL8{u0ItD#nrr0msm(+$hVTSXV&-&ZL{%YEmMsE)t z6wYv2T2B8w^?Mg@7qdr~GL8T8SZUKr{@^Cha#cV@%V*DjHxR}t62fPJM!QgDvYpQ7 z#c$?RoX<0zUxZq14Wn$R>1@8~xKhyi!bTJKlYwQ$heeE zoI2a%d&g89Av65vN2ovVXS~@a%f(yHz#Mn;XwgJEk(5d)T&&_{0k&RlYWv? zPb(y?nGhdel=zQh;VNOiEcv44WdT*lx)h7@>sg3zd1LL~#S6M4Zgz(zwLCVMt-Q?| zbZ*QJ$KRE_aFM~nq<_iibgw23X68al{GEwUpA9PLZ1=eumgjI@x-8WD9=T02`aQ|r z`q&cLHA;|#Ylw&iz0_Ph7ix29X4~7bqW8${^B?KPUFh6iw}^<44C#R#5?WtK5`V8=*BE9jo( z&D&LD!CEdsq z-mt;C1n^x3C-X!<1udxdtjm<%g6ZBiypt+GLcSK6*;W1Oi;^JRT%G=x%XB zb)VQTXtc^d!u~h@F|W^l0CIVxE#yZ4bt1pu&f4T9E;bHd3Li~I<6v&da2(s^}CRwz@+_JH?l zh6kfNZ~BG%5mdlVg;kJz2?FUhL)*iaPWu*XV_zQwUTiWfexWTWbEIzZ2{s{2lZIx` zF<_3<=4A>$;zB~e=FUd0NdlYGWzbc-kAv#Ug7m@OzE+#0b{CnZA)VaDOFq=Hq23EX zRBQTgZ+cF(73!3)a%+FIaE8Vccv~9Vtd{gZ;vXPwfBRn4NydpQZ=cXXwp~ap1c^wWh;^S z-!y{^pHd!>N%)w~*=?biQE`;*^*zyS2IJheaCU48SjLTB*B};>E}?ef-l>l9GBB7H z*hD+!eWftRl~2$QXs)w)lT_5olVI19Auw1Mw8__I*b4levwt*7@(H|^{%L7bI6*V< zQm4|3ANSPM_>x)FPt0MdReW7x;>fPZbC>&gM~OoIm%D6hJd08eL!V}P<;Bm4nKWk` zw`u3Njy{6|;A!-oN0-NyQ}+))+ltZziwt1PG@jT>!$~^0LKw9po=9#=%8<%!Cv9Ji zT_=6%EI7&IuqMD>s0l8PywO97)xH{L+;Q%`b?ZK|XVLOku~mLqP~f}W3spZseV=?8 z|9^THKwtQlCbE_P?1YU{#rRBC3Z?#mc98mE;_|EIuBp{@776bSZQIqcMj;jQ=O@#s&Z zNpI`6UC!P=#Eo@#tXtqBs~mcVxoN5SpPe3SSR9_6(w=DE>VQA*I%~^Fofiqn3(sxd zCg-zr2sUB=G|MdAHWBZbU+RkZ(m5JvjO%BOl}p5~Tglab&iT9zh)j0PRz6)-j=HWn zT%F<|VwE&sHqIVk$-}+BU)^?aoyGP8Z;%2lZ)puiwX$;C%d`}J?o0G<#aD(mOFR&@ zJOBTB`p&4Px@g0MDsKqLqfdanXf6)b=y3J5B_1ws!f z8bmOp08zn@gjf=d@g3j2@BPW2Bx8@W&)93vwbop79xGL?jLLZU<&NxU*QY3qQc~{q zX~fuBuB&iko!ovr4kQ=|e)gfee@NM-T*TxK3-ct6oAc8A+}^+EjGJoLaukYG&{0%X#kIoZ_k#?>!}zNRE$shgk&i$5k3SQ)l;03LGKXjlpe(gTiK3hDLBvF<~ znefVKNyR9{$p6M|IE$#XXw+hZ}}9`t~hudbgA{= zf@2uU`%|@e4p0wo*nWr}r5Q-y{I8IP@sbG<4&?jM+bssa|57I8?SDr~9@a|nNIrb0 z{P;z14))ro?LzQMbcova!CPJKI_iPd53u!IlKXO;*E>A3rv+l%Br0+&hjnQuo(p_~ zTSBSAUb$Z)-UkR{Cme#y+}`qeEd*E>`RVKkC0w5VXhZNj!rb_S(7M)or&93Ojk?G) zW`1tV)$iUkk)LFQ?OupEx;nNp$?GD_!YL>fJ3Zjmf6^jGZ*A~@<98)M|L1&K;-Slr>(GY;1!|}V?loBRzt{?V{A?p9ZTp<3 zYiqyz+!Fkr2E0sNND9DOy-ZF284%BAdd^Wj+PS)-Bl6Peq@I{i8trI{BG4;_gw}Y6 zX^2(IxC?S7ol{ut&^?{i^-}euUd;k>u&*kAH zH8M%R!eTx7!T1Z(4YpwT@+8^8xKFrA=?k`pJ@9I0Dwy?lld<_#sPO=tRFQm-s)K2( z(vUN2htk137u{H4bF1RlZB^rMwcitoKKfDfX!i5HYa?DI zE>q~=Bf>5uH4zc@{~q$w^Cuok?dX)k;kPc$D15uC65COMr@OAmU&^?+SiwnmS6u0j z6TRD}Y^FMI1PSR<5!7_{|oPovt9Nv>2JP!EgNO zoZ+iWH8yTmc!FZ$1>>6si>v z*biMM5wy1CFH|aP%M4ctWPmg5naw$8_2SOm|N_2ddS2 zzL%Cs8=`tUCmC|Z>nEvG{C~a^M9hhbPfv-MylG$CRO1)5=YNZ;&-z}Q7CvI&Pv3?! zVS{AfaJ#7cla+a@Vn?>6rnhrVmZpE6Lm0Zv4tUr#EljdbIwz2`}t&G@zQVo`z2GALD1<5JT1-(7_4tH6$d65o#ACu@Cu!tJhncZ4; z&EY?yXnk+#ohhV++r|4E2*kA=4Hy%Bf(zZC2y#?~runAiP5gJZI=|Br%bjPxq=}e6 z6EurVBVWD(->}=TpY9*kKASpz@_XS6f=oz?`40xeBD%SdJ-jJ3F!Qd`D1F zlm<)-k_G;;(D2spg9&KUxnkMo3tPg&eAu1G{`Jx^2N`?U9cN83C#mh{$h+rr&N%bA zDjo^@0lwi%@L~?CH7)uq<5+hCwJszNq3k5qtiZATE*;B6Lg#Gi2?>X)k=sX!=AOK7 z!WXDDPJAB=t#+>oQv6m+?OlWfj)3Ihf$W;5kRo0U-T{yUj*d^|s3aAZQ7Qk=U=Mo7h3cMkyn0s5lt$>TY>%z(4jVQm|S6;<$YaxHRk@fg?`hTXL9cLH{)T| z7cJ8Ud1pVr!4wyAgPN8Q-p2h3ofm`{_Owv1U^Vn@Z;MNXA;KCwS5^$bfZ7J4i)ip4 zz_;$6NVn{xiF9_Tw=U7L?A+_KGOLRPV2LR8lSvpyw{J;Dt$vomRywoG|N+j_mqRXm)D(%Q)>Xkens9SvL{c?s9F9uRAWhHYq_ zwiB9AQN>NzA%dW3Ar^7Wj8BLqsv@+X))aS9r}~7+XJTf)2)5mGsB)ysSyip#tqtDM zWh=DyJeAzJnhqAHtv&0%bIbjEYWpOKE+{H0^lo2q5U^ixi%#uqxxwieDgV=9LR5AC zwPBPg^{w1?s!9(PNAEIn%*1Q8^O)l!>+snlf3cY`0{aI+&yg%$}-0e8PU|zL38LQs&g~H z7B>^Jl5ZwrW40!w6tBkLe#lAZS1CLLN;zwKK)x+^wzr5^Ms_kWj;q}J3Fhvh-$+hC z<4vv42ESbx`=fGtDjcWI5ka^OBS4N+;5I93+w$n`P_x5@PV3O=?xsiGOlH15gW(m?&hC*{v!FE3thrwuT#rlC^W zAF>ZP$%UwJWUF!eDhbYdPNxtQO5d&CF=^t#SnCvkO2I(uvK97^_f3m*i0m-K!yT1P zlxALr@;?+PJNFUR%)R(PJpH9MrLycm<~hxz^A!@79|Xeva?};uX0z^Ed1~WjGYr4E ztUp_!CY}UO#Jet6?}?~MOrE^FcyoioWPQAEBy$*Y*;nS!DFF|qKkDY#d@=lwbGiEc zN6pqUo!nIggGnz0{(}A+&cEcIrTcmO&uB=CWYGXo0CXgdgc1k=yZz#dTg@^b1rxWRXT{{Jyy+AaC#|CS^CHnjZT<&5DvzxavIHvfXo{96sGJ&`zb zEzaLK$XclFaI4JHnv5Zarap>v-Q@6njSrKr@J8%sQ4GFc_!UY>Abx-%10r&jiyYZC z`W9@-%#(*s7o<272c0v!a1A~bNzC2`UDNPHjwm?mX-|XK?XtQqsl5k_!4p+Qao>j@ z#r_$#!-5^vYMl>V7o;g4rl3dq=2=-}t!@Zd&WK^s(DpZ&|uKIZwnO{Vg`$&|_l) z2ejl`U7vSSrNWeLuiq+sXzK39n{Q}%`g|d2>^*rN79RVGE352URp?cg%sIcUJ{Iea z*}2O+!H4{MUeE2zJPHcZMW2>A9*P8Xc8f{3Lt1)QKlA?Mrq-MLPAN?sg+11POwNX` zoCM_bhKT2V@Cn;*`xK&tP0!BOG4kzrr#-*TSacMfkF|`~*35=#7K|JW>!2rSKd)s{ z&d)5Er$8W;=XXux`uZ@|<`lrP#u%9FbNJq{k5j-(`$^gnG~LnB!I-## zvsx#Wj!E8??PI%ZbaApfw79mt-n%tk10To^~wq5^DbL`zsvo&pwc;9Ns|KE=Qn#Nj4br zbE83D=VWkm184S3-)gt-Df2_7itY>EIuxe5waLfD{CrL`&>F)~zn~cO{UKXK9-=#7aN&^7e1MDOb`wHrl2@3UIc z_FV>`e0z4d`gc5jJ`pIWkx&&RrplZ>=rRzZa^ z_$|}(EierbQsia5kDolu=jOw{&d-(Or{9n%9w**@mi&=>RMp1&h~x3Sus9Cc99(rwnA~@E|x|MEtfs zC!1SFeRuWG68WVD)ySjRmoFEV*6UZV(uaF+>1!7>f{@IfO;BR%p>oL4|7FywA+QMx z|8yL7ph*>@d6!ZFxe#8CU_j|KPLT@!UT$a1W4RS*2kYkb%%w2xZ0x>G|AMPK=b1`u zwb|dH_b)t6$hCeJC?z2&%@=Ye>Un3zNeA7ter;aaROvS;?s50e#7M7<-otf*Ts&%* zOvS@0+MpfqUF%lIzJM(zZ#?IYPUY^&0`2*BPv^cc5edO-Ghv$vtZe>Gj#Tu0Iif>Y z5GiMQptP=0oulM-tKb^IcA``%5I>o{7d7IpF=MMcNMsvylzH?lofSjJs9UBSHcdGT z2+Mug=cxV;Qq{>#zB{phu&|4Fwf1QKPs77mT*j-m(6V6D5Oy;*!q@qX8u;B+u+nGP z-2Cb4KLDD!G)eR3+O>7?)R7XthfHtiDMYbDT{^YvdSx`jq!A|pxEA<2e>k{1DUQie z4t@7SzvkD0@6o}d;9rh1cix-41*ZJ-7a2{!4>c?7CmMDCB2+ryJ{t+8YNO!AMj z8Ad3ul<}8g$-VJ7ST%lQi7-tJ`?#&Z^i_jqytr*F zRHO3l7VCYL_$9}sr2(D&Z+FxMX0MAN>j`|4!+csxP_;uxbA*;a;{I{Z&26LUE;Z$f zxZ$WhdK2gU1i?I>Y-=v&2$Zu2AzQeS0;mLp?1D62zl-LJrQsM~YoNAG5N!F)A!D3~ z#R*7-=$K&))8IqQ)>v>u-=RofMPJ{5;z5D;6`|2yhb%!LMUf|1c>GpRZdk-C$ZW~+ zr`-mys!<7|wwkn{?C-uDi^(FJqh4q1$Ou`BVBwjmlAX=9CP>-*lIl&>7UJtx4;S1r z@v(xkCnuNt@KsP~|DLw?{VGDIdI_~jbk+16{IH_aiEjh8X8gipG_p^&z!L4>tx&Ln z7MDG6#!^p|sUo8K)va9HZ|Mg46!ge%>3v7OC8aWco+T7$eo4klfjnNbF*=(Se&~>+ z>XhdX)MgB{A1Ut$%s^ zHZ!fe-1RfVd*ioQ$6)Ocn3f@tK2kg`gFN*d)K+oIN%+(FQ`8Cb7jJV;Xy$Vcsi>WF zwJf;jJo@O&U5DOq>5S9-;m(Eo$G%pp3CRkv{vkUq0d=lpra;EXmd81*?uLHqI_~Q` zOE3AfHMN*Jp&%iFaN>VQ@I_DR^D5S@xVlzN9pcQ&7s@yB~lWX?X+=ZTEA zdrZNQqkhJ>J6Qhj)Xt#$UT@I+)>0#)I%MdDRi{tC5pQ@d6SbBg7! zSfj~!QgBz%7unBoXqYe1xB)ghcTp;KY;(^{J-uM}=?;-q4%P zl<(m*pfTvyf_gF=5UAL^2uMo!Y~N>pMsWbaHujCQz{||@X&3j9TDZjICLn&V zt2zsg=iO~C-CqG9VNC~k$2Es~doND0yZwl$TB`cpR zKI4Uak^=1we&yP9BC}e9dW?aqAL}+WJ>pwdZFC!P~2SPEdNACktCQv~;0L3IT zNcPEal%s>iN_IHc?J#J74N(rz_I}m|jgSTwqEY)=Qvl(Ot6MJmeubG;ww1-Hz}3(7{@rA*+T+X3!>OiiaC)0@#=S=Ou_xxQ|`q{?D58nb~}+=Rl|O{`Qo zOdxFHhDgK09Mrw z98Fs7GIel=yh!@N;jNEuOGrCT>#FY>8xexi3y;_{3oAxzNj{qKxHkLgW#(XrqYZV0 z>Be^dOlxHBkYBMJLzXG|4gl>a$eAb_5-&yCPBY3ZcY`a;;f-HpU!P8MZzsDokIR!^ zF>{zlLSnTziC@AJOJj~6|E1(368%iyYyQ_*=>F4R-Rk#_)qVh_Cgq>Yrg-O~=FqLd65UOK65t#i`4D8e=jVa5iVd$sa-rUOU1mL{)ZizqgY zpTh$6tSp)h+k_n|P8`s7u~wXYFglrc4jSU#oSP>V3(z0;C?nf+wA}6(yED{m6`enS zg=z=4%5cCz&xcM8c5kI%no0MORw(fL#dqU_#48lJNNu03C?zK(4i}_=jLMg7Al#?} zl-<+V64{9si+ng z^DjmfIxy{~;-FN+23A>2VsUPs+1Q|Ix?E-jK*RSRY-N%v>xA=4_T&@-;sQ#ThpqPc zW@ntl4Nry;+;(^_j1o$k%p-V6y@3d*2})l_2~)CaeAKF(tHzS!<|Y+u^@HV?Jt$P0 z0Bd_`DK5B@A;#)%8bU7OWp!PZno_rBe#?g>(PMz zG@aje43~7fmM2(nuv@Nyb1)QpVLyRd#l|5b^Q2LfIUqWZDr7)3fk5YDY1^0NWC@vs z;EkUdU`1fq*dlw3UV#fa+Vy7tke!f#9?rj+Z1aw2BX2p^+DKYu$iaZRRvY8>#e zu(h0F+p_X(ZI}?3rp<23vI9pstjaFhpKvvQI!#my#9vMY{`_MDsnbzHWa*w4=6G1cEGq}Hv$Br zA$VVHospWn^AS&hq%TC1%G9CoiDx$vXZbDR>Y2UL_VRJS{GJ3vb6He%EG*o`c=$wg zFmGQs&Tw`EhM;{KYoEjN&KO*TcLDK~z~>fa^?{-%1+{HA_Ylr!gb>Jc%f;+%hBhMcN)Pvz>WkbF!VbRknl+ zhMFd2V~nYzpL<`~PhsRD1C)!|afQVr;)s{e4hI)lJtlNqqX1b1l`S0EF#J%Fch zAzq^98RBR@`s6($ugpDuKchHl;ef`UP3CbSDHHs1kx8{x#ZRNxz@PK&#@fNU@T5l5 z6$qk?q84_R83Ct~<&CKm{N;s1e?hk5|J(%1*7r#AYxd@Sy^jT_N(?9Y?O?HiKv;fL@_(HlJf@t1m@-?&F?)r>PQZ>T(*<~h} zf>n&hTs1eb!#)e7rmTzrqFLd^F51tMEjma6B${#>xZb9?2%v$sCU#e+gUZK0dfbfH z%d)LYi3S7Ez~B|Rn|x_|U1_>(KF@1o4kx}<-3v@yk*v^2_!S<)*j+S=fw;^2Iyvl}-)EM$&SXi+^Wl;~Dpn23hFBCaJyv(U5QSn;M-*3~qR z3@B<;cFzCymWw#r)>KSmUbZi=V?5w+a6xZM#3|F)WhLbuR2#Nj@n+*)*4uWG`571}H7BhYe--^G`+tcLlSI zcD$)Gw0LltR2AREWrKyQLlxN?gT#X+JKQ$K6SKduMApLkzrJ&5>V!1%Xqu%JPH4aa z&ASKqRM@kw(~A{mcPx$OlFPNB5;Hv)C{XTrJtMr)>)d{(e}+F+dt&>JlZ?2e=5qzGu1I{2lh%-2iz=Rdo=NIWkA7>37|LRh@kMNg##PrT$TlBX1F)0 zI?JA-OOpen%q*t^Z9fzInlsbup04bpS-SwzUOy&Ily|wWJV77wE-j%{20i;tb>^f8Z>~PVT8h`AtYd zU+~+VUd^%vBqj6UAse}QP}KA(dXk8nN;G6Oe{*KQ)T<-MZqft?dQY_i-lFcNXO`y< zSpj=uvsrAaoLCUWee1>+WH9Y}9x&2>86U4*Tu1@iJ)laZf#;D6$utIytHAgqMkDVh zUAQ+Et%%~N2Gjfuj5}+@3u6nRT606u!4iElw?jsdYncp>=HMa)zo(JTH$5#Uo=y{) zQ!Q-L+1|#n!KAS!X@jRx6;}}avddZdv_2F1o|O_X?XjnNhrZ0_=5Im*S_jz$^p4_= z8ocpy=~I^Qc&&xTf_0l}p?IeaE_cA%%6(7txu@1-UO)=oF>P`4vALtpAa6gxJ#51+ zs;%=Vxa4)CNGtAeQIRjvRc&NH{zOgeAN z1cjKCVoo+-;y6mm#PS)S?m-;0 z2kcup{La}F&eV$vU-6_XumJv`1 zyaS1;JS-Vxm8qIvq6r=b{n;!=YJ@$ZQg_rPn#gP10G+6YS=(Cuk_{-aWwt$a$QBRoF zkRQ6Yp`=O<6`ta}v z)2B=wqZKZqO;BSl24%u&p?0(NQ_6KY7~u3-l_0ZfDi`Q%PH+9pf%wx?`vtEn9@o z*o{uBA3QyFDj}<_vuN?M2Uhf2N6MqA(VD7s_~GG%c*y6`d}pp#+^WJNN(_Fjl_}J| z$xFk`+^3kPz({0RFj9?CtdQxEp%e+M+(LA3&MWh#`Wsvy?f+gai%W=^Xgf{=#vVn7 zhePAX{ZuS&8KTOO5QkafK1I1*jnF{-BY6h$Fq}?vN+ae?2Sl5BgJ!`xi5^>)%<26;Z$YE zP}B1E@xb0iN7n>fC7hU9@iTa=ozf^I%zs#$ zl=dU4m|%`~aYIGP}EWKtqYG)d!x zUU;t&)^ktO9*Djsi-46|Ri2ek`p9+{UZ25Gpef;=$0IB7&@Jej`D4GvlWwn{55+l# zq)G1aBfDk-*@6~VlGxIuIOF!o`PRj@q$2oaUczePt=_pg(MFtkzqWo3-i2VgxiN*r z>@Z*M*c{w!V~ui*=Xu9)&ZA{XdGA=FA&C{@Hu8;e$v0L0f^zH3aQo8Igg}%+Ri5si z|NQ_P!uixi@iLB#)O^RFC8Ty)og$+NIWTj>e)Oiyp7@Whd^bUaHK9{*s40S{#3|bF zkTBYMz7f4+X+osuDy>3mTQyWltw{fFA|{SpnV@p1wwZsx3dh8QcIfgxpL?}JQ%JWTYiBFoVT{z42-5Cmd+r&OHJW~mNcb;CnpCLjD-zAr=0!&*M|Z*m5B&_P9L7pAD?5Ax}?B z6i(p4zKXnEfX@zw46%6vc6c48XHmSp>I}~v?gLvKWfb^(9!Go>^z-(PZ6qn*wkp}W zO%uM&7Np6h%PCy6SmQ=5qN=ypWhmmngbtg>ES_c?&_BkwiDoL3G5m?rDPsjynx<4B zu$_STS2mAP!FHZNYANQ-+YH_IX#!b}3O5*7A_g6t1w2ew_mu*i4VQN`e-@4aLz7G# ztP?jVs|~}+ezqQJ8II;g;-EX4 I&VN_`52#pabpQYW literal 0 HcmV?d00001 From dc4ccbe56445ba502e87f36530d6bcd509327167 Mon Sep 17 00:00:00 2001 From: micah johnson Date: Tue, 30 Jul 2024 16:05:18 -0600 Subject: [PATCH 07/21] Working through #2 of the db tutorial --- .../2_database_structure.ipynb | 154 +++++++----------- .../snowex_database/images/structure.png | Bin 0 -> 94130 bytes 2 files changed, 62 insertions(+), 92 deletions(-) create mode 100644 book/tutorials/snowex_database/images/structure.png diff --git a/book/tutorials/snowex_database/2_database_structure.ipynb b/book/tutorials/snowex_database/2_database_structure.ipynb index 42d7fa5..d9fd04f 100644 --- a/book/tutorials/snowex_database/2_database_structure.ipynb +++ b/book/tutorials/snowex_database/2_database_structure.ipynb @@ -2,143 +2,113 @@ "cells": [ { "cell_type": "markdown", - "id": "dangerous-decrease", + "id": "443a62b0", "metadata": {}, "source": [ "# How is the Database Structured?\n", "\n", "The goal of the database is to hold as much of the SnowEx data in one place and make it easier to \n", - "do research with. With that in mind follow the steps below to see how the the data base is structured.\n", - "\n", - "\n", - "## What were about to do\n", - "\n", - "1. Access the database using the snowexsql python library \n", - "2. Query the database to see the underlying tables\n", - "3. Query each table to see what columns are available\n", - "4. Query to see what datasets are available\n", - "\n", - "## Process\n", - "\n", - "### Step 1: Get a database session" + "do research with. With that in mind follow the steps below to see how the the data base is structured.\n" ] }, { - "cell_type": "code", - "execution_count": null, - "id": "artistic-thought", + "cell_type": "markdown", + "id": "e1b9c8e3", "metadata": {}, - "outputs": [], "source": [ - "# Import the connection function from the snowexsql library\n", - "from snowexsql.db import get_db\n", + "### Where do datasets live (i.e. tables)?\n", "\n", - "# This is what you will use for all of hackweek to access the db\n", - "db_name = 'snow:hackweek@db.snowexdata.org/snowex'\n", + "Data in the database lives in 1 of 4 places. \n", "\n", - "# Using the function get_db, we receive 2 ways to interact with the database\n", - "engine, session = get_db(db_name)" - ] - }, - { - "cell_type": "markdown", - "id": "intensive-tracy", - "metadata": {}, - "source": [ - "### Step 2: Query the DB to see what tables are available" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "random-healthcare", - "metadata": {}, - "outputs": [], - "source": [ - "# Output the list of tables in the database \n", - "engine.table_names()" - ] - }, - { - "cell_type": "markdown", - "id": "varying-anime", - "metadata": {}, - "source": [ - "We can also import classes that reflect these tables in python!" + "\"table_structure\"\n", + "\n", + "\n", + "The 4th table is a table detailing the site informations. Lots and lots of metadata for which the API has not been written yet." ] }, { "cell_type": "code", - "execution_count": null, - "id": "imposed-thomson", + "execution_count": 3, + "id": "a4a28a93", "metadata": {}, "outputs": [], "source": [ - "from snowexsql.data import LayerData, PointData, ImageData, SiteData" + "from snowexsql.api import PointMeasurements, LayerMeasurements, RasterMeasurements" ] }, { "cell_type": "markdown", - "id": "liberal-binary", + "id": "a4fbe854", "metadata": {}, "source": [ - "### Step 3: Query a Table to see what columns you can use!\n", - "\n", - "In our python library [snowexsql](https://github.com/SnowEx/snowexsql/) there are classes that reflect the database tables. This makes it easier to use in python.\n", - "For google purposes this is also called Object Relational Mapping (ORM). \n", - "\n", - "Import the table class from [`snowexsql.data`](https://snowexsql.readthedocs.io/en/latest/snowexsql.html#module-snowexsql.data) and [`snowexsql.db.get_table_attributes`](https://snowexsql.readthedocs.io/en/latest/snowexsql.html#snowexsql.db.get_table_attributes). The use `get_table_attributes` to see what\n", - "columns are in each table!" + "### What info is available?\n" ] }, { "cell_type": "code", - "execution_count": null, - "id": "operational-province", + "execution_count": 10, + "id": "05edebd8", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "These are the available columns in the table:\n", + " \n", + "* version_number\n", + "* equipment\n", + "* value\n", + "* latitude\n", + "* longitude\n", + "* northing\n", + "* easting\n", + "* elevation\n", + "* utm_zone\n", + "* geom\n", + "* time\n", + "* site_id\n", + "* site_name\n", + "* date\n", + "* time_created\n", + "* time_updated\n", + "* id\n", + "* doi\n", + "* date_accessed\n", + "* instrument\n", + "* type\n", + "* units\n", + "* observers\n", + "\n" + ] + } + ], "source": [ "# Import the class reflecting the points table in the db\n", - "from snowexsql.data import PointData\n", - "\n", - "# Import the function to investigate a table\n", - "from snowexsql.db import get_table_attributes\n", + "from snowexsql.api import PointMeasurements as measurements\n", "\n", - "# Use the function to see what columns are available to use. \n", - "db_columns = get_table_attributes(PointData)\n", + "# Grab one measurment to see what attributes are available\n", + "df = measurements.from_filter(type=\"density\", limit=1)\n", "\n", "# Print out the results nicely\n", - "print(\"These are the available columns in the table:\\n \\n* {}\\n\".format('\\n* '.join(db_columns)))\n" + "print(\"These are the available columns in the table:\\n \\n* {}\\n\".format('\\n* '.join(df.columns)))\n" ] }, { "cell_type": "markdown", - "id": "fatal-collection", + "id": "6bc99e67", "metadata": {}, "source": [ - "**Try this:** Using what we just did, use `get_table_attributes` to look at the other tables.\n", - "\n", - "**Hint**: You have to change the table class name in two places in the above code block.\n", + "**Try this:** Using what we just did, but swap out PointMeasurements for LayerMeasurements.\n", "\n", - "## Discussion: What's the difference in these tables?\n", + "`RasterMeasurements` is still being built out for ease of use but it would still have some limitations. So for now it doesnt have the `from_filter` function.\n", "\n", - "If working by yourself checkout the readthedocs page on [database structure](https://snowexsql.readthedocs.io/en/latest/database_structure.html) to see how data gets categorized. \n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "92bfaa6c-d489-4abc-a485-757cb914358a", - "metadata": {}, - "outputs": [], - "source": [ - "# Close out the session to avoid hanging transactions\n", - "session.close()" + "For more detail, checkout the readthedocs page on [database structure](https://snowexsql.readthedocs.io/en/latest/database_structure.html) to see how data gets categorized. " ] }, { "cell_type": "markdown", - "id": "immune-symphony", + "id": "81088ff6", "metadata": {}, "source": [ "## Bonus Step: Learning to help yourself\n", @@ -162,7 +132,7 @@ }, { "cell_type": "markdown", - "id": "aging-volunteer", + "id": "96478a34", "metadata": {}, "source": [ "## Recap \n", @@ -193,7 +163,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.4" + "version": "3.8.10" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/images/structure.png b/book/tutorials/snowex_database/images/structure.png new file mode 100644 index 0000000000000000000000000000000000000000..3e36466b0603ac94e70f19be4c6cbb4bc4ac2bef GIT binary patch literal 94130 zcmZttX;_kp8~+X0kdT5{Sqe&K0}nSwe6iBhKK(v+>go2!}Q|NNi(xZipBg1ipxIzQ+4`#H~S5AiiM zu`-!6XO5}A-8QByknr^Iaff>sq7DnL?0t44ctK8jr)_=vrC$ziu{-_P7C$@b zY3q7A=nq%BYe7iFW5m5k!JV*o|1@oUb>h?~7LZzT;=#?Yu=V=p2d}>VNZSxy`)LDX zV@~sWkM;V>i{UeaXY@-yd^=-Vld28de|zMS`C3v(VBfcI4`Udq>WAZuCfe&^_AO$^ z+Mt&B2}}2s7lSwS`|D-VW?wEh^~HSbfZh91>5du7W28QxdfC!-i#c<{a;A9bdw~7m#wPi^px-vl z)=bzFUX2gFP1Q!uJK8i8SJY7y(E-%@O@yMLqGjQ@PH3B*U&OfPnjoY1Jiq zm%86FwS1k;>L}3e7?46v*moR}zb+T`JUO@;t>PiYU5S!*PH>XEI8yb-Bj=%2PO$d$ zDhx9kQ>f(ZBWA;p(>l#s9vlMkb*)Uu7SK@v*;hGJt5H3C*-iXnM{l}oLK3u>ay!^Z zJF$6gf4JYvqxyQNrDIc}P*6B{TZc@xDb#TSY@{5$d+JNro*;2Me=A8;0~dISQ)}vs zmq>2Pvl|o&wK@SF{!eD!19mI|H7P@y6VkLloMDdbKIDL|B_7S465NJbWKn`G#mKS7DAuV~Uh@ z`-nVP{)}#Rn<9(Du|sc%`jpe{1AMLlv*&ry%9K8|Y0(Z>6xjn3?W%!RvpzkVGrl(Y z{-Nm^uKU2}O66{2XRUPU{Mfzm$2|&srdK!=yp*;IJjWm%4q^M1@tDx=tQcE0p;vX% zM6ic?Bb?TO9lIk8J|-`IMRF!z?eap_acGm+e6?H17-^?8Y9!w@$X$TGelvS{Ttiu4 zs+*^UAa#NJWaH5&PFL9NXzY)ARRmOWmCH;M2G`eXLsa)Y!cS?Xp+lOLn7vuvv3aeo zqzJh0w6v-MF<04*!zJ0%9!o2W5I#!V7ic-ZY7Oc=6#9^IF39Hzpt3?VDmM)Z@teMC zl^)}1k2QSzzFX|iMaP#6syO;zQ}g-yn=>lMg3r>;{uX=03;II4l+f)eJd{u&Pui{0 z^{TM&a3LupJMd2Ymhw#t|=QHpVYR?sd z)OAl@KYi7CP#{WhV$Or95B9458eyIi*4EdLho~NUz&2@Bp+mDPG5fNrV>KcyrcQab zMe($P_lxok4wq)%8o=oGhgQ=Itx%6Ls@9;V$&iDt+o9DA1~XVONU@!m7+ITeKWw^) z+o1k@TKUg>=ly!Qll!Ws8^WAlQ&01AZq7&@&1R*G{EK%{mmsmj^tYA-9%s!}(T*jO z1~-XPKGLr)bz;s4?fzu9bdtnS;9fm(S0C}BQ~5_h*;?S>NwuOe;d4xDUxszT+b}G*3)^Dck&-vA!Ab-i(`dj^rQYNrc%NC@!bU7c7Puj+9*%~@!V4kHhRxY{@j?P4qr^l6~?yyKmbZ7M@l3bk%1c2Qj;aa;OF z8rNO*nWcQ>cQZo&7p!4L(`8}X^3*hbTa4yNaK!}hdPU7ux-k;_n*P*M@&~8uifHQ+ zg2au`E|>JH`A*D9VQUpz)Jdv=<~MW8FGrUv%|m9pIv2yxp%NENqz(S>-LBG?(`o59 zbczTYv*!exK`!=87glZ@cr340YbyYx5;w-`F=n-JO^Q7GB?)2T+ivB%Lpx_R<~Rh# z&^89=>p74O==mnJEsS~oKE<3WCp4d5^%uU-0TO{5O;kLj*90lLf%(>mW?5(i#-#gx z@Fb)tx$iSwcF4~;T+es<79D?t-4#uKqipts^?h|hk@7gBZpS(AKLY*6BAcxd0t_7P`@Tg(gP&5C?qdQi%eijE7)&Z)N0I0 zNE;)5&;t3EL)(Cc^IZ;77WhL;I8U8WhUfa7f`vmH>6&+lTqO(5s}e3Gpi{Y8Vld?P z(ZX-HHMNNw_QacJzxnUfVBI-&e1QrHwR z1GBoAdBJs}^GOn|n`8#q(M|Fh!30Bc2E0N5w-AkS&SyeY4mZfby7Yu|Cod^AsHBgd z8=pGZ4xhOeqv335|4pqBmy6o_R9K|g)RakQ6WRbpzxrICYS07bttEyHg|5OxDYXrX z+Zs2w zzaZe{UOnE((za=zaP`u`VjUsLhNC;{Z&Sx{T9^8#2mIHtP0EaL+6zbcdNrz7Md6!X z7vV0WLSH-_YqB~M>~ha8Vw<~Hn^3EVhkr5 zb6NRRfO!#(`K&x$$XhIovqv9*LM!Q%0B8-sDn_tnsy;NjXdxcu63j^j_~V6&$Y5vx5*U80ybmi;yv5M{m^2j_+il+YF@2_ z`VSLpm6bJ>`gM$XFPfP}$jv{B~oY{Fx}aX?+!2hQCs+QVT(;M`SuH7Yn4 zFj6IFJxk|gx0xz>gK$tTz~i7ske#lS#O!){X<+sPK!f6yD*gJ=46e)_eXhWy`=sA= zKKY{K>>Fj`XvB~v+umKoo+-+4NEMUKqNZ)lYPj^b_JJ{!I>+2*(J};cRo00W>bt$F zU*OgZYMW4$noRfsRJmvuTM-{3<2{k(bMFyB6NbhU|umB}WsY zSx=vIc(dl(bk(PP&||O0VE=ZLq;rCGwgb?icf4px zek%uZhlOxz`zV!NM3^WkF1QQ!)jj>1T;JC6u|K*KyC@#siK+M{z4| zK@UGz@!425@HXw7#@osAI-66}ym0U?$77kNqmuR_)xO9#g|g5-*D;I^=~x%mo7F|3 zc&ub@R$jTI7}=|Gg8^!-EEk2bSj&L2OiPl_S-zK4~4Red!ZJSR@O2r>&NB6zf%N)`a}!DAP}{l`fe=- zl|_rn8(KwrX_E6=3erVU>v0W87xWesYCE5E1&?rO-HD4b1qrZ(moA)gLA!HhxA8sD zp`*X9IcnN{|HPyZdD*X@AIgT`M)d3U*ng^J4-_%%Q!1eqZMx6no6RLU)I#T zrCXy^ekKFksBKoNk0ydc)Lfy6noRgAU+AJ&y)EAdBOzcRJ#HZ*rse-*NBzM?VD*R6 z$rYrD-%&f>-%bxOyhoL@yQc?o4Yk|sQM3T~0h5nTrhevPo zsE)zSgFO?^?Jt47BBojjw=GB;)b%IajAohh1-(sLC4}!8EX;99O@UQ>r`Os?M^h3V z;biq3sH9M?*r~b+CA7#1VX6ox=8LTL_u0fw5{sPkq8!i4<0j-mK4XDzB=$ou$8&5K z=cP~DlTvx*ed&R$)IrHmY69@cJFRfog`pHa;_s(LhthJ(>SGcmEu?|N47f9M&^(_b z*X|(3Ly@)e9eatkuzZ!yFC>4Gv)mSK#a~XN1ole~JdsVjZfziz1yP`YE`B}#LPN|EV{*5(pV;?ccoz=6gbScvHJmv{2 z!T!1W5H4^cqay)52-u~T8V0Q4Eng;@B#2u2RE|)>1(Kjo`q7<=A7?(y8b2`cpQ%ZDO~6kJFQ_lM75exk~&%s;T84cs zzq?H3$p>-6lo_8@TPLatQB}YN$Ml;@SuF`6SGkyDkhT%2x|w5sQr^NU^w*_asiL7C zIxDU<4oJ7QpxkFsHZ?=3;H%ydD>udd!|6ImX(qM%^s47MF|P~98%1Zf5e-w>UptE? zN=@4K#|I%Xx3h*wBmf4@pr`vm^8pbb;SL$vf%9|V?qwVf%xGQKqFyHXrG6_PIwWB*%^h(Hoc~ zk1klr42d3NDX)a80-TtgS>rA2#X-bSa?Z2z`dH2Fh@tlNxjRqDd91>>Lw<^jG*mOt zfop8WmCUvbPSa9)@^xMt+ZSCB**-ZayHyv5V6JCN>VZ8(Ds7zkIIA{IF56BF;SVwL zXf>=^hn!()TsZMkk@pD-)=zPoKK6!(Ri1v1F5t(lLO&o^hvRe(-c&{y@_bo$(@p~vvas0ACe39PhUfNzEwW<+w&V^xkYcR zco0V5(YY&`fziyP%A`=$7AK}ME3bt;KZy7nx$SAWU96@MLprsQB-R_poCNLR_dFvd>MU<5gd6DkCL#M0{hEp57VxH+cT9O$gg#W%g}_Vvh=5G|rYsMX2N+1OLlxy~JM7MH+{D1`~7@cB$q5e*y2IO-mboQ7#N65@Go-b=N}jKXSCTXh*)b8sBKo1*F#&BX%nn^rAI<&RUeI2knq+HWU)g zP?;)TC-|g)jNxAlOQ}~n!JWPJiyZqr8c9NHf#-bX&gZFb_&K*{(w#t#f&}8i#L7j> zRQ4v}f#M~#b(fbAXE46Mu>Qqm%R;8uEz4{s#+;8}F2sD_^4=FT^0W z`?|{h4tN>&&$ssQGvSH$W{(Lrk7=O@wuLHl_?X3jOq%T~a_CZzki&JErVXNCOTs5N zJVZkA$FTxf3vsqW2E^jguu0PygkYlz38C~&RX;WkJdxD zY)4u&RTZ2)Gzl)qPOt1{Il^SCv>KgN!p#G$x+0I~O*dqAg`Td$wl%4qu!;$~oBfTe z^|Sm(`$AtqJhq6h+Y7p_1YuM-mRTOnlxD>=i`3hQWO5r&Ud`0tFvO52uN(Id=`P}f zF|CX1IdO0OvhN6FxZ{D-SB^s6-}~7JO+72yM7R;G#LZ$njA;THcq~<{W7NN6o->#H zEsu&+z3v0iBS;&%Zzv@&zg0JjA*RFIlHxm)eKP5n{Co;I%N^0j$RJZ0RfjS_{H1If z1M%02S1Ua0j>><&Zqrw&a@*>bE}a2@E7?b!%F_W~!EA6@MJ56b3>si#;FW^Z0Rm}!(&SWC@YbESTLmwK8!Fr3-dAUb48 z_~M4-$-(Rin%^L=D#iQ>X=BAREs;1GfFpLRTQPm z0mLeZwYT`}V#!60X^m)n38BM{@V9(Vq)Ow2u@qKE$<=PG52oc88F9p0alp1xD+2y1 zlVa81IX~%9(1pHic-*7GkuJ|r>y$M2dWs|Vfm`uZ7}FeL-6h@QMjd*`ykIWT{ETe+ zhy)WbfwCg%Onhna=a3kMQY*xKgbZzV-ETkS$2jNja}iLT}E16LQ zQtlK359xb>+d5%l`R@0|DM4xv@OsC~&evt4#eJdAU}`M%XC5H`*rz5tfn&N^^!8R< z%HsTTxtANOX9==hw`nPnUu5S=nucX()7$4O&T=@8=yWoOiw?9f#-%_XDJ66aaY5#H zfhQ79xueeAB5(S-LY6ZTA<~UP8~$Wl7Y$T++6ncmQ*As7*wbT9(U4 z(JA|IKze1jYShG9XJs8jJ?_jLHP1f{Ou1@BqveT^tHWM^*4X!p)pJ?Y$l3bRWQoiE zNP_q4SbWK}ICZgPN+org=w#W7beaz@yp1caE%61e3shC ZSbuv3C-VW^z6FV0rdWy{L z1-@c+O&!fa5J8QOpyjRsXLOoeyPddu1hZ2J4l>X7sb+=$2I>lx0uf(0mto!7bJ^AS zWxz|4KJci6^VH>O7IVnUv)%4~-tanV+|9anGw}%obCa+u8psY+`8a`tx`j2TCa!RC z{zYBmz9Cg$zEbyp9uEeBm7h-$5L(3Z5-wbYZpzTs;8hM>3eGi2(M7=pL)E|nj9pr`4Y`94J)ts{yHgM2@YiQi=Ze^TsG#BWN?65e6qlrtK}mDS-B9KC_fU1iTzH$v4V+% zgzuv64J63j2t9IeR`(HMhRh>#=o7Zos#gPD@x>1aOde7iT^=>~iwu z*3YVvw%WTmv*%%+HLx(~Kxlk4_HWLkQ-xrbZHNfWCGEh+y9z?2Y7p)#xAF~)U%Uh< z;@F8;EJxV5bcYZ#u3XWLw&T~?p?8w)LR=RmDy~x|1E6<+LQ5W3Ijcgi=Pq|cF+Bb+ z&NpQ0FH@#hdhA`%ST4(YZ;0p}owjY!A2G4H$8mB`=`1?rBKnKJyR@bs_;c-;xw6+) zL|P)bO@~L&R<8l4_3=C~{0JhRCg-T6E<}BTVVmARbnTTiD6a6xF!oASu1ig1Y16b7 z`-pRAS2N12H_WpU7PiPbG$k6VaU*1q1Rc_kJ?ef(<~d<-QeM|x(IZP_wi~ikw`moI z27yuISr+*Nz`u`&!v)#5`r@u25M-HO5Be&9YBjo#T)qEip~CnOs|HhuXgK;e&TSSR?2Qo1VaaIU2F}F&BUy$>>^V{V) z|8ar!4P-n$ne+ zkSx0x&GsPVQ(gB`qNE56PRVv#T{Ghc#1$3epivT zgLNo%z*e9ir3x0 z+^;mlW0{mi zw?nJ`;Md*|X-%1BS$PuC`df8f$@!<?(mmVi`oF`-)9pLxt}aMzrVxk|%y+1r~jMm70_RtDPxyG)ol!LWZvhV<~@G z8v06ET*zDw5o{M9St7a1=@N?`SrA6t2(y4zq*(r(R7uVmD95ukJ&{9iHsrpg01sUl ze~>I^dd?yeN*;$EbJ7n*u5usov&m&or30yN^w>-Fq1U3pe3%9hden0Az$+^-Fc{g`r!z}n;p`#pY+8Ahu-dyzL^IQ1*~-_(1a_iqeo08~s#c*i@TEJY#C z390K);oP|mcudY(=;2eOS*UQC4M_e=oPFYlGdc#Fw#vGKVo&O2{uN@t+{zPB4s8@2 z%eY*O?czKVGNH;57t!~{Nj3B$Yn3Bh5KRpiiX5Y43TWC#mETXxQ{_SYZd@?!9?a%=k|Hb-@&H#m&lKu{HN>*CR zJD){ehu+V1X~6%QGc)h-MnYmL>%@4F z{$0l`d~_`LQ_E*B3ooKuWV+{zoxS6`GT?(vcv(!)M5;d3*ybj{E%R(wa$kk5QyR!? zSb8DkV>!j+kM*Xyq*5*`{4L{oR} zr?J;!jFk(;3J^?`JKR~JjycisC^L*+Idzc-7w)h_2lIDa!GkeBLlux+PvO1erOQO6 zh?1(Ep#wE@54qTQyi9Az_nLxA3Do+Y;Nws3$y*s94+wkg&rM?KFgcVZ06z-q_P z{XgqyCA5%Qq~DZiyk$a==vnmQG5(8Y`igMeB1U!wm~5^D5*TJE;| zOu3gU3#1dB)SBp8WJe(JVaR{z^XLEU+EM>Ln*(hpLuUe381E1nGO%qD%GRN%MQ0oS zP5Q6RJkMybNIMM}`Q6;ZiuCwo-)Law3D1?Xf0KS<>Prtp*&eRkHwHGjPT`NFQANy< ztTi!|oml2&WpA^>V!vwE31gQvbCu2NA|X5&Z>2}lEUtdflu_mO@d)p30`%rk+1I4K z(ybdStRLj%jG=5Mi~|qJqTw}lJlhS-3-BMX1=+kUk<&e@VSUVWDU_ZAe$)b z+(Gn;iN_^_59gPi4M@)-Rwy?;M`vf$UB|~e*zLo0CPHNtdXP^ikYa@p%i0Id78k&~ zPwtw&pRuj`^9R{w6X)Oc+4jk68(#?9>{G9hpU@^J9nFq2s_fyb!%hpgmSexri%_a4 z6OWzZGE-(wR`5D?LZ2Z63jdJ_xx^Yv$gd%_QS|ed5;M)><=aXv9fOv&;r?M#TFCs* zvB{7owD0r^riSB@4Lczhmx<<^iNQGsjJPsdN0~`kYvSeE;i@Zrs)?eZD%LdwCQ#|J zhxiSe|3n8iy1>8ndpFvH@8WX`_=McESQa~B|@5c#sxYVKnD^I&^e;@3q>4^j&J zC70>e)~fmN0Ym$=R3(86zGqffvos0F8^%{(Nwp-_Hya)00L`Zq7l$#Vc^0ibXL<4N zPnwU~9338sJD#u85_5Cjqinty2OiG5oKm=TgD4omTxTw+1&a5oRyZ-6v$~E^n%80$ zWmO;2umX_vx=Cx|hN2+?sRD+arQ6Q;$>C`2P&@f`SMZA*>~=A}nLzJQF1-V}8HKnY z1i6_jYq-JryvMBDnW5h^&wWi(tMIB_$~kfYbz0^4B!zLt{@u#ZG)RYgn4!|eiDdTH zzlk}fOior_z36WwQWI`aP&>omu^#J(0Olow#xQJ2zQ}u1^N=%I}~@*h#SdR z5tQ9d864yNCEISzd+_&>sQZ^8x8dq0W7&AXM2x;^zRjNiq|~!kR=r;2n(?!X-))VZ zq6eZ>yZFJ^L`O}TCzVlQs)K#1t3|aZ~Y zeQANjB|p*>KjJnNA7R>%WL@wy%=5}X=pu6ql@&Y@c)d)ufgJuMGq0xJ*g^srTgQpx zZpF=6oS&yFMH8=?w1vlGkeF-Axfsj~NX`jY%skpdsqLcw(*F#vzwnt3-r=~Hi9W5A z(+EWuaLo#FM>abkj2fw(+uvaJ(r>cZW0`v+PPrQ!@k6)Y$XznC-G1A4{ad)r3tiKM zAtX07g2z&nj_*9wX5;~XDlC9d%ZXX5Ho(a{D?x(z`ZnUPCa^&5mJ95MiTQ27+hc{^ z$MafG<&h3r<2%ASw^*a@I|~+qwpB@2*Gs8gqD8?Np}5VegPAvctT3;#{!9X)k|fwi zU5#Z{noEZ0U-u88R$y$DR6Hxfp)FjyeGGiSa*PV%dlHASZ{5NGRSL?(w>)1Z@df%{ zpU0${>KXv`W-utGJ_D5b&i~aLZ`0muBImttmpT%}@KRMSeY)~166P4HxY!gSCGE=hFyQ=r}85${%FIG9;TECT;E#@H-;5w0Y z%|_Q~L!9X=T`F<8ilNW%SKLla?L5U7=f5r>c z=+(^ASuqKDU@dhk4rQO?t8GUUZ}YvKNsD3mFLbDo{BZyzOr_sbv~PyY0i8hh{tXwB z=u<~efM>S==_npw)~!Z|a-R}V8O?UT+&+qF$xj}>;H^PWK>As?FJ2A+_w>uM3 z%SItFSJ@$N-SWS<`DB}RI>O415peq>7tLr)KUCb%wheA_o^Y7@ITqThTR2Ab3VAqf z?i2N5sN_6QypGCU&CJc}O2`Xt5}m&lXK(N8r`4c|clp)MBr6!QPlrS1k8`*i(Tg+A z{)x}G9}0AxNbtE#xi*TR%fL1#3)~O5PwVmEetDtq+{=4ZulN-cs(`6&$$~%z?SiOl38771d{@yMq3Z4DX3#A9zv6{C&qKIlCA!uG66Pv3s@~5CLO>r=K8*2dW$D&D`QKOOjE6%vdZu2@ zDnLc>bdQ%9Dyvf&0(GiMhVPY`Mu#U+leWngUgE?2CB0#l%8U>~I>*ooALV~PLdgjv zJffRN((ukqZ8XLx3!Lpi#D`=UML${2cDxlQy5(Zaq%11KgOeh`Wu!Uq(3X4V(`TK} z3*uaC&ef+Z(0dMAhi;DkxuciI{8|4fL2}ht5J}C&GHarl1|ji8-q3OqSU76t1R`5> z=@{a{B0CaE?$LJ2)!BY%D`TB;b}9YMTSSoT@C$TD#$0FgtO@O)>mDfNF!f)@&iOv7 z^7}CG34StulHhT1ZQ~-@p?4AQH6!-P;>r2;PXhH}aGOru%88nEN|SxZjrw&(m&>u= zIbC*YCcoQ-Umb|-g()aesC>v zN1blQ8~#^Xd{gPxTWpA6q508!8dXZ6aV$;$17;Se_X@0dtXVi=5Hj}p_wHdtI=&-@ zet-=4h`a0uo=FwO%*?EDHU;9$9EfKAFUz}{)e}T)G;w+<<&g9XY={b26vs3O!@g3= z?ew*zu$t$154(*#i%7RlnrlnB z3kJ4ze9TrzPFVcE#j!P}Q|a{*{R_WpIog#B3BWzJuinN0Yaf7R!HZL>_M$9`w5}*` zIJg}_X>oDxr>bUz8Q^vVIKgjvv1H`E(zo{%^H~-<73Iod zTl~{h^mCv?*J#~H*AH7%l=zO?f~zgd0&dXw48gRXxlCAlRYVO|{V)+kQEx=jI-Hpw zAii7UZ!bn(;@GVr{ZeFC&mMGaW5<^#`*7$9^RszCIv=r4_U1WSz<0TU|I?^70{1b| zM?q;s{C_BhduKys;2NO?{jSF2LQohI`eIX1ML7*K8mAlfp}#>^yN2FZ#xGN?;s5QR z&Vzoer^ACJot)qX(e7Jy!Dj2 zkJiqVWo%m(@fYBRjP+x^BR8y1^)WHqJ8cgwh|wF01wU~Gxx*!_S+;qZY84;!*Pw)Y z`b?mqxl0~4re&?btc=D43u(1%`w$`xmj8ys{(&7iZM+kl8!6D6cIZz@ zdli>A@~uyKn!PHA9g|NJbBEnU=`cyUv2_3gKgy&>gTw!}==06GGfsjZRyn@$D*K%0 z(y3xhj&e#(I#yIoCiQ#Jyj*?eL3|mZ{@DTwVwAUCCVGMH$vEqbo(t#FTn|I-j!+9t zeO}VHAlr-%Z(NnKQ@G7MZ9?;F;>}pr>I~41l2t!Vt>H6pDHIR0<6;A$t`nJX9R%1Z z&eC61A^dR$1rliRqijf`r;gS$R@Q0S&=nZRXiR_*9RDH2eK5mZ9Quw`tt+3jUSz@g2Qd1Jf+ zStXixNf<{!rEwRMB4W}%?#M6`MpVf!2Typj+QZP9vvv*NAdY_dUl zxFvgSqq5=OvsWJ{hwr5}1QOagYb2u8X3X&{NEM4$6NgF67t7H^{r2&4CFJUtupm=& zXrZxr*IC{!0s3|9V%pE}bI0JNE>8>J>FpsY51p{3^`V83z`ONJJJknGtambYhSS(s z=Jl++6bhIULVW$=b&HXI0pJ5Fmy=lt7%VAXnhd(J^A-6(JD*3C;d;=QGS1$>gWHAc zd<#VzeGmbCE+<+e?#oVNdLg$DSbZzhj3;dHojk+sc;0kV7Hqf<(C>knZPjxED(-7` zjC+nKFU+^t&X{sAV5(Y}w_NSV&tp(t1xW7FqcN%oc=)vR%6_7W39Q`;wnM*QHRc36 z|2eS3lU2Hm{#z+7IjHntK0Ui%(VldkcR4wJ!^_?A1CpuJ7$t1C0Bu7iNYdG6$&4il4kEGLZL{$PUDaKivv1>+ znKj=GGXz5~=q+_~403M6t&5>;YW`)UD_ZK%_)DygU~_?%66)mnB^q1B#R8n+^&+nz zRji3%7lRv4tHv^KWd)~F!q;M;kT(B#Ll*i%3gVlR(+}dC2XVyX{}?RBP$9*Bl($o+ zd4cZF0J}c;e@Y+qnyKOyW&3{9?vpzv$GPs$KF^c=)cXE_mTYX?ArxRdkwV{@s z&0th7eE!vzEwh?=RL(hs-}wxxs0%z)-tsY`GH|#zRx`K1)6Ro|uBj_Winn`!Nqwp4 zZ33Z2PH0dhg{kQ9@EPey1qK?8S*2Wl4zo`PSxd4lf+TAEkjVEs(R)y$UC6T)PC1~H zGi2BByNrhRGQfr7rwJ$PM)R%;!G!~I`^49ABKkYqEv|@@cN5Js!UC@tID(Cm9j*p}F)0 zZxJrCMstLZuxb@rZt|ZJM?Htg2IzikcoG@dv_lUcut^)ztVsY3MsDD(aV3&B$zeoPdlB!D2H+hJ4zMYYL!YdqD{aM&X& zSctZC6ccBT>;$MDtcWLNzx0+mI(9k=%Cdojn!AXoR_k~7N@VW$>LR*3G>VIlxOd8Y zQ|0nd8hE(_>9}8iC`gq~7VM>Vgwx((nT^W-f_Vf=$e<3B45+TUNWPgj4oW|On_ zPxejz)OL*Kb$}*FA{zUev))#X&oGUm~$q#l)KD zKL%U|NSDpxXK%S|sc|V_M*Tw0HGX%nGktGs`SG2p?7gj7_fclDFi*N5wWcrBCK_AM z#cF`p@0l2LNfltRM>X54+5{hn6$js{``f9lRXVo_I59;<%#L7wx!%`+rHPmM;@07jko-HvJ)U zFpCY*|18kd#x}Qg*T;UEJT>P5GTb0hWO!I_5>xG)0~zc9kaet88{i%jQc0xhZBZ*V z&-)5%U1I(n;~cs^eH;U@fp2b6Ic`yfT|w(%=(ohb!9UWZ14Mghewi*bAioX(c}}@-fCS1E z#D682dH)$p6u(hKsO&$B?x!G#ONUnfPL&2jU$ZWhJwaD~p9Gqb8xF7>OiFM~FJ;1& zgU@t7EWzs$xQ!AR!g$UqH^0S->06;44fP+2YJXMlgC<>}I|UjF-g|g;EQ~NFCtSq9 zqcLlYvTw>zzYs771;4W(JoTFsmt@%+v0mt%f_5L=N&5rmFj`9)kj>99vm z0;}Aq?Gz)y&nJ(v;w^~gMZAElxvSCbCbS6Lqyyw2wFUw0ru_fR)nVA-qoi4u?9iKt z2bzPhhRf`YT*0f<-!pu%sWx!4_~{;4;H96^NX_5C-EAMwP{5j=AA?nYgc1OH^-|Se zaO<>q+nPAh;{0l0heUB!MGEn_I^~7@%<-q@ouOGj@A4YC!ghHWnLc;sLLA9i8cen< z=!b&gT>Z;Vb8s2IRm@=nOoRcL3f%Q{pjoED4wzZ!ePE(v@! z-4MnyHL+aV^h~yXvQA$$sQ3l-GZi3pG}nWbh8u_mdsGWxk{-EFgz7#FnXZ$fi1B>8RitO+HfnsD zV_S?K^jazN-yjw!r3-nELU0k`bFTjs(x|0y#eI4Z7EvNYSs`kKRCiQvEBGcNfNR#9 zh$f9I%>5GEi97Hzb$>?A>eNMWPyvGFR@aO8yHQv*XUQ^9k9?*!^xLb|qfkNzogGQb z2_gI=-+^P5F3ztsNQ7F{7^X@%lnk8RfU~S|iC|LxD8r+Lx#;nfE06y6a(*>6C}&UM zx>7f}ix9n`ArN>x@auc#0%6x7`JUY>jmf}ksbZfhzi9k;9?h0SfFdh&l>tZz09ul= zI1d&D=6l@LBtdbSqVa>ClY;`6OxlB%WYpE*pBc3tz&R%QbW%{Jie9A*796~H@bMAJ)9AZ8O)P|eWI4?Us0oR8S{J~Yptl^0e_hkQ^fl{I@YVLGxF$^ zWdR>+=@;KIi?W1?l;a_i8ToP?i?<|l)D1W!qI0ozX~am7cN_lP zQsu6c^DmQWpQrXJ53T15j(M8(mggiw0uNGlm|{Cff%ocz6C|a^)_bU6Lj?h=#Sp?2 zhgQil1SS7IET`IqxTVOuflYCOrQyJbrH{>ro sJTIkc7fQm{*5LmC9~Nl0Mzm@9 zhT{fwTBYu}rE@ro!wrAhlp`~J50-CBJky0a?y1kXhd_ts3)~`_QRQSXLUR)cRrKcp zgeDFcxxxq|bi1|8|3P4WTGdL-9`pSBKwTK|sJ>ha*(tTEei#FjZrwhAMSx*e_i#jQ^_)Ynt11c=px+^p0hDf~xyib;h+?>KcOR0qz z8%W!>crahq9}dcYrh7Av8Ib)a)SwK7)n)wad9B-VghZd46yiHXl59Q-k(;#;kM`$+ z@+-78ZuVgM#}Y1huO~l_*bqGV)T0mEcvp5}#h_FdYY84-n^fEfimW|HWEpR;SLjm? ztMAl5=B`<;-b@A)W`}_RDYT4v4H6zN&ax!@a0@BWNmpWanj`PYkElsedd%ODoc~GZ z)p3>|lJ~If@qJOydmR+ld(Wq3hATHwS@=nNv%$=^WJoTZQf7+nA>}@(k6Zk+X8nXw!`&I)JhNSs zZxU?=bZE0Z-V6t$4(G5dLWhbmn9SfZe6l~jTilQ+QP5W}Rq^0olf}cg;u7pZWVpZ@ zT!K^rb3OFk6XlVgJ)gF#YDQR@a2 zXcGN*2W$*p9gQOP%TD*A-)DH?P-r+e3ip4^U)GVi{nm&L0h3i8dsjE!lr3E`cvrW< z(r|r##H6Abz*~E2WWT+^R@1wT;J51=i@I#pB(n83@eT*;aK=vTShX;wQIzT=_->Ws zqb>K(zhVrF)TWGKYR!RBPW4I3eqwGaU7o;3?0iAUZk%!5yFbwRacYzQK#Fa?)~kFn z^x`8iIy40mm@N0{R&Ox@+aIiY)?{GV3IrpAa1VgDA7tMh@d*yTk^0ggusWE)Xl0;v zBQ&T$UKyYdHqUN{>*giUTlDR#dC4+c6pts2!=r+@3ne)4fYIP?FZlM;aE_cLWo(OR z+$Gy;>U>In-^jfw9Qn|F{j}`BiTCeYH2++^_3g{e)ek1veJ%G#91pxYQFQC;%>$<< z=6>=l`=ZEnJN2dF)zphmcfXz-@4IvNhth0g@#brBO?RJc+c=(kAn}Rd+6*6Ddj~iFNP0kK~y>lS>^E>LcuLW*9(GN1bYVkUwAqtL|lnqckO`&S}tTp2C zjk*16P41u2pD?;;J6n^LyBNIlv5eh!E!?9Y^5JCUK(tx6;e&E+g{7bDE3Eo7=iY(7 znO`@(I+>PD0FP^M8!Z0&xS!5$$%4vz*EQp?Ww+T`8PVv7Szsxg8I$-0zy5go%UjVY zF=pNGPkw4{yWeE^p-Ubh=ezDJM`F-3@&6$nKe0G=Vqh~Yn%uRX@y z&fDVGaBu8yjI4?seSToF<-yFgoU~Run-7=YojuUr z7yLM0aQtD)cc)k1|2NThGBW2~!3lkdT!yOL`@630RKkgI$a~WL7lz+n#Qr zpF$V!F~f%s82;T?Uow3Q)(+hIes@pbvaOk^=`W+{4{m!7Pdp;lE_3w9bizjY+?G#L^uDAbhnKG?v&UoHD5J828TJeD>!OcCJGw~Dvb)C@|IpE2Vt!Q8rGkQCU%hF549qtJ6R)Jo|v5P{Mk-A_RM5=~qRzzre> zN*`V93%l`E5=7bY__`4^^0&=1I?BmDH?BTjptzZRPRU#7c_qvlYBAORoW{il@Xal` z3DO9o9~elw&j8f@>s;{3F8eqsWVe}&kwP|b83Lrkz4iy$_)}_e6E{avOHiOA0~(kF z@R+jw-%`9i7u?0|`=N&Rza2Q|BYWC4InI}~eK5Zm-@!&+*}@eR-lwOisL-YFcpDULHPAhD*og=hsMJoQilfjoQD83y`E&j+&U*1=s*7dv0 z9S_nl&f1}8%Uuc{C9kKdZjtP$MJRo^o3sSOCVT~Cc(+Jt665W_b)Lj{i=NMKBi)J+ z!FYSJj=a*GakA2dG|I-Wb4|G~6kyw5D{k* zmh=UJuCX+Tl+L6Ke|CKj`p=;bZxVq|pTCl9VG!!W95(T16A+}gm=dGFwc%6H8B_|4 zvNdGF2N=L+mjnF2%_$0suoky&^uG*wTcAV`W_FK)t=y9;EbvkKv(3K-4Llk;{`VLZ zm=5-FH1w5k1_?dF-7EeA-*p@`cS+tk)aN*yll1kP|J&9I|4}EY-@2{V^rAsHiMRfz zpNZ{1Z86{4s%XAGo*Sp~{Ukdz@^?{yhfh@8u??WksZV7vU{Si-&OaxSZtedJHO3CK zZcAT8#BzLa^$I<74~H;Yw6~MkDBt=|Kn$^T03Mt4ocnF0c^KLuxj0d-En4j3|8#hm z548q~fxM=M{(oNse2<$-vXV^v;sGuBfU}V*fPsKuHJ6!)h#WsJ1IK zz*Q(DdZikRDkhIsRCf%P~8bi0b}Ip?cpSTfc4+u`bGnUfg|HA&F(wUFkds$iB@WH z^EnbdU?)$)=018V%-fg$Vpuo_O7A8K#+;o+6ZgTG30J`Q{_Qy!;fFP(kaX-y1;RQi zj&`(d$#L$Jkp%#=@Ro*lYlVg!_gK43({`4(lWO+}+Zz{w6R4Hf|Bs%9fS`boA7-IG z?4*l4{?_e3NQ+VP=Ufv2qgzA&8?PdP&r3VN$>9!ube)soWcY~J+5PnB=BGPv!;ee= zp5qoZX#?_aW&D2x8Ilzhbb@Zvp}(+?n+&tBhRu~+ze!0tTnUXFvH3+uIX^GXgPQ6j zIm&;RZUZo5c>oFK&NW?6XT4i*gA;l6s*Q9JNdyTf!;!UrYa98QZQVDSt}_6*%KXLX z|ADal0JfRSt8)HlyZhJd6sw})&T9Dj!+&d_(v7VH8g$ml=?Wols;cH+s}Uu`H*E)R z18SdQ8>Y>r#CSe|hg)6;LI2&oYybC#mklz!I3}XyPy}&>XaCFAiRF>su%zNaNaQ;OlM27$N7g$XAMr2?okc@3FA+7$J5-{d%aT5^9muCWaqn|W3 z&s+Ht@li^%=2^H}s%A`G2_eq+1e&~N*|I;U6tW#Sq}M`(WG=+I(DlT{IeP~LPjze& zbrKLmQ(4E@tdsXLXLAKgn{3;COKzcx(bUO2sBJ={!)~_3*@5+edP7Cf#9N;Jo0(SD z{@a0~+{@;fxY6z4=?bgez8b`#XV!kKZ(7_jiW2koeDEq6J}`>I|A&=;@iO8xoA+WY zW)Z)je~-AMm0(^!EHZNtPmu7?utQ!z8B10&7E4Zp!)quZ}~{5j1XrpKd7W<=hX<2DeK@UbBEB3X-{(PO?DkzKM1R79AnFP8W^frclJ|&7h8YS z+~r$$r=RdgX7@o!z>$3L?+hSv)VKkrY(8*!F4!Zuhne@pocB0*W@+!vX`V!`l_EY` z5BE_%`vz|j1*YfgYX#VhCVTeJ*18xIO7Ck_^CGx;Dk6B}ZPsahloBfBC)20k z-w}kdyIKwZ)&d>;d%Tc-Xp$@+1%=Eo)GT_ARH zY)=W0pp)*(xOgA3@a#G+6X@rrZ0o0))}QmF$davuQ1&EH3Ko+)**okve7 zVJLyTfC)8o)O=*=7-w+@hQKms$?n6%qYfvDDn06l>w{T@jV=jc#*iI5-h&gWGUc+Z&x_doh)B!gF^lF*t|=B|NNZU1hV+1wE$b&&=>3_a8i&$`f<+%80| z=_jfVl1-u7rN2z3>BV`q7Ihwi5sT23+Stzaqw} z0x{uoY;PCcPV7RQ{%+YppJX(j>CJ36v=Dyi`JMK-auVscZo7tb{K$|u{v9J))W@ze_3LCxh56Z#;g9XvOhekFe+5g-{PMCBAj|bl~kl2tN(n z*$&*@KmIK7?SnOR4S|0xbecjHvKroe*mh)f4dXC_>(TDqgSfl_Y6c2SYPLkv-M;ha zgpe`qHD$TuZ3o5ux_-jqy45~I7PfYfy{u@nqr zjuLj#I(Tr;yanKRM!HOC2PJg1=MlqcRxLw4BoxzgU0CNi3q|a|%JLhVKuj6CR@{I| zBq_FvB$IE%4n!%P?egLyCX&x)^l(SwdDuZ$zbU_Vy|fOTkeYT|=IQVnySdzihuzHC zVi%E(p>bt3S#$y`5i&2_A2PVEBpHNW0?J1@3JhEEQw%2uDi}TchDH2|+YkAp&jl;V zGaxd&RtwI3_LAR>x5?90?b4Z{8mkHxjTp9dh8Yn?T^lX^_{y5uHMh5!aV)ChtKmKW;<;wP^=0{=y5hG zdAcY{C=1zSi)TO|=t&rrT%pc9D<0E1kM5D3`@SG2A@-~>>(Bb`Qa@WiBZ~KQekHEN zv?+7%^I;cJX6i39Bd)+jLS|Ab!5gykyYa_b6~$OhBT*Z1T1}y5bv-gt4{=!WqWfw3 zh>|!S2uvY-5ktr}`(`L+9g;a~|McGs-4#4m005-|*MB_$&xlYoff*r#vL5q`;>?cvA? z3kPhx0WC8ZnKo^KbZcH&B0wDQDUt0$36o6U)7Ygy&SUTJR0ds?7`@(;PAL z0Fp3<67JYo58)KtCfiMKf!I3P3YIIck&5CFYF@dmB-w1^BQ_&%`CCa) z0or|w1}(vH6B`FXD?WC+0rU#gjz*ZXO#U+GgC*pdBUo&2r4xV<7{so^;5XM#=nztH zIi1QY{5g>&2_r^CO}o<2^^~8kXW@78gLy(DjzOn?j)=p1sc(~aQ?DFloem!o8(lZ# zf$}*FG3r7i!h5pFhUoK4Awv*O2sF#v0f%}L!pBW5M-44IUuzQP7O-8Z$=gGETc_6N zXX-^&*MZpU8mMb^TGx*_TaTKk9r4UMUY=->@H+77}wmIU^WD2`_39oJd=FRUgrBa#X82{I|EZtV;tbAN`=s(L&{LPPPC6Kqe-ukJYFK5T(q@d8Q-$ZhxM zm(n)z4X06&J;aj_6V~-X6*XK7PY=!}G>(s!d$u!!HuoBY)OUM3W@tne))s3rQ4EOW3;Hj?q5)s?^>` zDqPxcDkmwIzIwCkyME-VeSS%3kW|Q8S9`CX_Jm9wR$CJr^l%}~L5>yH^*y7zyDhes z9)~0ZZQ1_bPb7vc3mFq<)6X?cc3MYkS(fDe+TJa45Or=A{f_HkDi8~Zb*JT}Mz`F0 zHFTvU>uifk5ziQQM#|B6hI&nu?(gQ!ire!((W5wPXd!$*pgWA zb`$pVD483ulg>8ttBt#}`(WdbZiFxq%UY$jjK)u70Y9u3tO*jEt5}WNBo^EV&jGQ* zmuE|#d*zI%eJJQN|LsuXs59F2vHVhJykYwM!!BKqx3Yw3tcB2x&JWXR81CrlK&o(< z%6t0!aLh-VOEEBzmRpE*lZ5=MW>250Sf4*Wiv9lBBHav0ho268DUuG?i(w2AGfEzb z_`3o}<0W{7Fc{JKnE#}T920T!E@fKKi*qTP8@BMa2!`lb-EnXUL0!mJM_9|vOhcc$ z@43EHtj18-9*s=t%UYzY*E>ZwwHG(|I;vSce3mWowTdPil;Lt4o(=0@fO|e%Jfwx! zplJ&WdI#7ia0`c?K1pWgR1Y65?4@vyYDyoTz!({Iggk$1Ti90jnN>DTnV1~Q-YM8pDW-7lb?s?4u9M}FwO$^~CR%kBF-r6~FRU>LEK>%dEre3@kU3CJIG28Y9EHr~2Q`7u!b+3<|-8&7$oc`4&1yCBCXJ z>J~JGnRi`!s3D;gL>px=B6dL&<*q-Y99f5u65bsGhGsyw3m&0!iE&K>K zo(*Z$n6Hdtdb9cbks4j40Tjzi$qC-@ykDf74icFk=IUccmzg-m+N{9@}UENuGU*qx`ayI_iINsQ8 z5VHDB)Uwe*NUUl<6(oH8b5zij)8koEJt(f!vWaljT3YKKimYj3r}j?`?XI5wT647e z8(Z!0dHbuzs1crVJt~iuHI*9m-KmBRak(GKlhpZf%5}I^i^C__gn?_n8E+g{;ufW~v!`2TQJ!0ogE?+^1 z(q4GcC90C4ej_sJRh6T_%(H;-)klM~TOE-`Hi&L@1TEs{$i6aFL~=K5?6 z{ahH$MF-{b2WeD*t+|jAIXefh<7)g2O?K))893~d7MFsrMyZx{HRUSu8vM?`$wh~X z>>bNN+;VGNd)GE!G{Z*)L4-~z=u6p-8R+qzs7rPt=v5?6|0HTXKpxf4!bOZ){_>y z;s&=85N~n8TMcR8z4BO@7%^%v#wXj0%;a_Q&qNmR$|o%Fqq?MtX;o#N^�K!&O_$ zirSH>#;5djdFnHnQuV9D45(Nah!h8|%M|f;kmj2pYt?K5HCE%qEAJ@oYMR3DqbZaA+(N8>0L-`I>J`vtbE1RNd-`!r z)RaL#cS_HLkYcBW*Ws~;8^46be!X#6a=pJ$rqkWRtApx)Xc=tH@X!E7g||KQ8}E<) zNjqH>hoJyjj-cIk<|9~nH>Y5wx$H;hU9@$49#L!!z+HYg`rtU{YcV5gMLC((_U2&)2xUn1(5o#Rc zp;yk7=eCw|>@Fmv7zPt~7$sr(jkOCYsK%hSy@GnU*h^CVcs9&cD?+t`7E*m(h7oS1 zKWj-F^aMg*(&`}S#%1F6i-xNU8uXN+IWi)mwtiC$rK;hiR_t1`51gQ8vKf4SU@)HT zUsl5msXR&LYodd`lsU3!;6HnSws(q#b)+?vnBJYru+yf+e>6_)a@}}MVDtbaU>vaF)?JehbTSI~%?lrWi1IRfY+>_Os3UBie zE{&uWErJ%+fgoiz>2QKL?ji;VF`UREJR5eDSu>sxS$C7dWE&1 zbW*AAWi(Qt9KSqB>wr!RXX8CwtJ{=?&l~z=%uETBXi!6Rj?E?GA^Pzs8q(2FF+Qp2*#ft?>qJitTMrca&C#B%Q`ouM|y&- zY$*b=1<)=+&#uJ75`Il+%4@lO+_vt#B#iWl+Fh;li7<`%61q^2jDFh=AjI}m3ooAa zeOEF0Z$i#_HjLOOH#qcho2;iKs8^mD_W{affb7?rt*DumWtR03!=+LO9em3)*Ff3P z*^P)|rRAEapDs-QUd39 zx-%M!+$PWX4byz*+?2o$2*0u3*(}Z*7bG|5STrF#I;bh+W{Z>)bx~gk#nB+Uj>YFG z+R9CI#v{~`_0@tXro`(kuWk(s-JaZL;XqogOBvezfw)tQ6UzUHENIl4{>pfKP~!vm z&{UAa%!oArS7LxsNjorHgAF|UDxT~Wsf0U5}mPnO5l~ui@`l$4dHe)ya|O%@baAL*k)UQ?6)4IH3% zZ0dW*TQX8_w(_CAbFvJlX?HyN`;X}+WT_q#MuTMY)1VdYm7zb-!n18Ep%uj6(ZtmmO|18g2<-7>v$-e zQ+pj`$d|n0Rdya&xsHkDEcD&XyLXR*rmSy)r7;D(-lGW#`!}V0DPugbX!t0cY zSjP|%2=>QMk*%wC-SpU1D2K?bgJj)s)H}4@S2e)0IUu(Ve)DCsZr#qxb|ix62Dh#wt46t{)q%xvMi%T zoj@WP;8;}aPk7r$;nFv>q9xFxMo`ZU8Yu}DKVA@TZ&=6Gow09KD~;EY%bHcQ+Lw0J znSZH2?+4K}uRjbynBEx)Y9OoYCUA5c5*j9Wec{~5Y5zm1;+_2zLpyKTXdu&;ZJ0NF z`k^|BJFUg}L@8M!mqB=);!=)fovWJurwl_gO@^u)-0%RI-wMuZinna0y{2D|+h|FD zuB3_Z-|D8k8e1G(d8LeEJSp7h0;bGdW<4Taay9g#HyxeV-0aW83hg0>Ep?h=T=?~s zL7FJHC5gn;X>XSgSMt)|7z$NB1zYFdH8ult)EO+$mV7!s$^$x(M$m=a zR2)c?2HO_?@vSvC=CVNEt^QN=qMGpP`FHr`+J!_u=|Z0K=~1_N*H69@yg@8{Tj#j9 zd`%`lUton6t1@^d>TI|e*KAGa8GjVm>x--ke+Lv#6yW;ntn|GyR2Ds}gwxXx1^1S-rN-wx77TQ&tiJLPH7G{)6()3(;D-+{`#3qimD1J} z_|+15;mrScIvQzg?WUOYrIt=9qfjF;?!-bx=<>B^5wEoBm|~v!a_W2m-i+{3@t#q+ zE9GNac2PeD&+~hIi;B4_(XuDH8$S5*bo)L}&U&rbL;;o8cD)k~J%u;D7<$rts`%A9 z6}K^J6;iJ32~r5!r!ODQLWQQAzQt%sYiF030aJ>KM9oPki&N~OkkMIJIrt%P_x`m^ zpPSBs(GBAckq4?qH^bfQ?1EA4-__fYKz`UP-}&(JR?S*H}F zP;XTE>^a&X9#B>pxa)1}4X3sdS zH4JM8;&R-;waRymrsnI@!q0p@rbQGc&IcjYc@3?af<>_Tey74MqPY@*X%__1t_9}w zW>?W$)Ly;1TM9hj*Yf^z4G$l@RK4;OA*-Q4m4;)pIcNG)_m6DJ6`JxO~V$=ld zwX8!3Wg7OA&?)bd|8jo8P=tB@}}B$4tKCU98uV z7VHxrAjN4t;lsC(-}}P6AK188+Dx&S+y@((K%g@k7vR&#)~>QyG|j(yGQ76IK5AS^ zfJnuBHxY0jz*eLfPHy~m0&UXI*yVdsVU|!ZjP}rElRslpuLj->lP}h*Yls!@w&s*~axjLbQMrGQBP*8z zFJc#E2ti(~@vdliuTXcx$YYIS^V?>qZS}47+J36Z_m1%=Z3`rQef!7P=izPj!lfT* zi%OxQ%^;C-MtG*!&M=6#D@;{r$N#cp|1rBT`X|1F3Udn*h(AIq2(d0TD6oeav0z|| z?5yK1y2Y@Z(jH;4A|2pDwwOA!X1GmueoMd!l-&nY!(&%vwZZl@M(@4C_7I-&)5U4i zy4;U=!C;V_)SHPH^w-c2Mt8yHDoT>ksTak*eDCA?G788Nn)p~OicUBRSy_=RXh%*aCsHN6*rozS0 z$e=&p3HZBeJS?pX5IwGf<3p-H=DZ^ed}uat3r%MpMPY$rlF^(On?}2s$<19z^bQnVR09}^*O2M-jPRKLIEQ3# zgKzCje~e~GmdS@GeAx1ltK2nRzVMY=%MO7)*wu>ac6hF9%5$mh~%1-3k8l&$t? znnL#B{CggncV5R&HS}!=UY(02@tkLQ`l=7YeJrbotUn{GUx*S3pnPEsIy{6bS8yu=mW z8i6|*I1b<|dKGqt&Z82Gx-GB0ne*z`1l)BZ@<~+$EJraPuJ!X}0+?U&f zRvA)wb7l?YpbBkT>~dM!#;R^9-N7zhFQ{zPd+S%}BppX2TRG+I8qs!c@)H7o6I1*=FAd08m(XcRrhM+J5^ga!FwSqyNr~WIo>uxkRx>+l}E~ zFP3Sm(6y$f$BZ9UdJ0=aGvyH@K4vR-pZ5ZRvL#K1d~5F~j!`M?Hdub-uJGP0spvrR zO;-9lzgfZ|NrgmlqDJA3>MeALS)0{ouBM>q;WBHup_{2=20Bf^cYXae8L{4PE5Sn$ z^$cM*o||2_-rFNKSi?FN2wSNB(W&n;Jj~w z2EsR28@?p*dpF4jU`9HhW_PYO+mDT_o@|?`-V~xA5K<3IN#ss^f0&_^+%3k*nZEIB zGtQNFT-YK|A^TSBv!}dQyq-8)q{eB`pE)0Q6umGSQ2nGjlti*Pcmc+4l}o*)@nnm-lCCqHJk|lf!+$pYNVvvoJt{;ndQ#fJZXI z7tk5<3AvoL!f{TgQyBAt%)^8<2_J^`k>p5WUg4Td*rQK$wXM$JIjh|XIN@v|@ zf+)4dJ)7C!2||CqvB4j`=o6zFdMA-+TFrCD6xOKp_0o%J1BU7b(4}it>+aouCP#fY2L%P;hmGAeUoT!Q*eoz5%jP zWth+#ZOv#m9Zu;r2j1iwVbDa$`|@bfj2{pORq>+J6@xr7G%X~6lMvpLNA!)44}Nu* z)a3dbS&U?mSNg;LJg|wbv^iigF)%ko`5!^Kt|B|ccTCOPCaJk%p{+dwbnsI#{_XlJC-~O|gMgmcFu5O^a()zc>M>x>IxDqY#msk>H`38J zU8Kps7ByTl~B0m{k) zcj>%2w3r1xsulVGxrOz(;5^y}Q2#v>JPGSmRw(9`X~M}??F;w(m8hc;*N6Ucv@Vod z(J;2lt7y^J(4tI`_UBeP=QbwMM6sGo*uJot+c#=11e9wXWX+2#$z_A<*)M>{@0YCH zzyG92MlXNv?*wE6jtzc< zg+RGPKwVkju7LJKi$&6M_#uZ^;~d`tzOfg;qxXT=52>4!T3@g4pY}MInP*Ul>VPAq z=Ehj|{GClQnQ$pu>>G7ab0~?yvPcC7Xn#D?THOwrk&bVp#4->@hCl9bOa8kTU3C%r0qUG2SmpO`RVm$_3P4TOOo+B{-4aS}6$ zNCV1z%h@I~Hxmka?>C3(+oTm>prOHDmY~Y~_5FaH6+V&O1Pi$E>9@e49Gg=;=j6)5RoLjTm|PVzQ3XSXy&zKC17YO+Zhl}zNl1Lce{^@<3Z;;Vs|_L9)Qwv9%Ml>U z#9Y;i2WEdcL(rFEFvOh;xy%Zl&H_iN%&-pv=ZmC57@U9*6_!hwJ66NhNMl;6@)Er8tCw18`&U?k zgqtQUHaQbDVFxE^LyQIO&mNh$#( zEVyl<6biGh_xiEIm>@*m!xs(l(g(yHr6~%9ipGOP^1-o=Kf$SNw2cf9MGpXuwJKoy z>KAZkrlfiP`*|36+y|beafdw?sB5mGBW&q=Y2j`2S4$t8{mn|XXt9Fs7@x~%E-ffm z708+lS@J%Dq#u%r0O=fQ7)qJ&TvZh0jThYLJ_KrrWR1AfiW$mMqv*tOF{1@r7ax#>dbSO;T^ zye$=r0GB2QF(gj}IqZn3(Bz2P( ze3ZU7M)U4-{v>cQldSgJD;0T>R8|}ufAC_n zZWK^(#eZC4h$C6T`VbI;rv0X-=s)v4ph!}I82#`OM+aR+s$O;*&DmL{nn5v*uLA=;rPcc2!9O}u$xyvzOku++P9OJA_Yv5QrulzeSqto?hZ>3aC`Z9!qe&+ zMQV=4tcaa*@*ruI9gToI>90Q4sqO+iY#{RRi6{_z-~U}_?QHOu+|~idw$G`#uoXG_ zsjuKv0fSi_6!+5vy@dULJ@h55mzEaIs*(FOih90k)rxzxq8ZSl&(FotTwF-i=WQz- z6PY#nDyZYf0lV;r~v-ouXbAc)62CGzj!18w`2+2Gn!~NHl`P zx|8I?Vf#3llq3-gGo`WK1QocLxAd zw38S4%meN@Ox9dl1<6(WeipHBPqf zPwAW}U{Sk8KSJxD*y^6egC;0N9X26|iW1JewIOIcNFmt#b$%33<~aUd{1{~ERW#2e z#(!4tCk_JYHCYMjunY%1MB&N=!bCQWO==0)OWl}@8e8yJUMnpA(s4;q<}sgyCa2HV z$?`Y-rs3jOe>&l}_kEt9l<0>u#<}Q@tO8XS*dy<(cxB>Bf$q-XCKCXr4^WT}uGBy1 zum}U2gIDdJuayqb7PaViCz+!By&;NWt+vt6`~3kB(8#kyjcDl*<7fmnQ_KhmLl14y zfy-!P*O_(~-fcqP`fcVLgcdS|o$aH7_%F?#QO4f5tYgWty+g?YKjrfeChZ7~3mPjM zqJKIFR~jp2a%;n6{L~9_7Eze~UMW&b|>C2TACqwz%L+_}(mT58GW&$NGEn?FZz>sKHc?)(@u^y_uHA zVr45ie~|W>;&N`;lU9q5A(i?2GCA*iR=>Q5%g0HKJ}%iF5C-G>W0z-NN+fVcZbY`= z;;<>*Ibzh}MrU@O#q??0x;){u+>c6s%);d!3rWPWe$xu$kf#jj9)v zOSjkU_pNh9(+05BQhVH{7!`+!s?}9>N)PN>8zI|&`9~#|^<0`7Mg7<8 zOT(8gyfI0DOuj4!%Rx6U`CbM3k>0}u3Q&uc68P#tA@7jfryyp zP{&~=J5O26lu^pb?_=HH0aONF;vL5^b6)1M+dDpl`Avot==vQ6)CoX&q~f0=?WG8vZw2^YOT_ckuVOA$6mH!6o=~8tGA0xo`2nL|+8faU=1y(kVRIoyc)YMy zJv-ew%h{8*)p@}#sUtI-{wB;}sgqnKKL6b+PuxXZd$%$G$sJ3r1A26;8QpP-N$6z| z-Oz)PyWYn@6yjYwmcFl>1L@U$LKdf|)?GQkZ`ljQkeXMp%W5Y&&`jBQ1eJ@$7h>k8 z`k0r0DgvLjYd#Ul;H9PU;`_6+&@`j$x0V-m)ya90x|dq-aD5oj;Z(_xU@W!Vm7pmX zS#U-Z-`HVVgVJ@^skYT>8;(ult+g zc%p9bwS34;g7N?Xpd|$vK8C2T1>E9Rl7T#u_hTlc2qv(YcXbR93*yWH`(FxPeP{RJ=NO2@}@zlBE5y^aQ5XhUnNZb>)e z{$m`SO=*ed4FJ-saS%uL!%=sMpcfhNa+E6C0~QcD0d zwD7?)0KvzUQ^j?+!nv?ZH#!m<%WBYOf^eYCW2Nl2L9Gk@jqfcpam&3X8eLABD)#-d z>$tcZOz`XQh4IcWb;oUg)Ha%KhN!6-$TH2**CAePyb8a&=yOXY&$sJ=&n5B@&6~>r z`FKgNSFvrUm-B(n17@j*sMi~1{Znsx5_fk4Cx?3jWFOjUp6izFHpCq%Q65-SyVi_d zI9>_YBrD(a~@H;c(nhZ7PJ&|v3rcKnZC*8}pMBrd*@3>P7 z17Q)*4?h)X9jU8;>-UUq+0RdsGv>c!c~lteuEt`5i!)%#lRo?7Fez&|wFBf0@CS_N zg5R;X>|W4DiMURMVNm7UW%jq{FSJ}*R~PC5Ibsp^CQ6nsm@Yh$|0%fXQh30=ywIL) z)Ve(;f3MHFCDQFPSx(zqYabTpj}+fpK7-&Ib4SLV^cs0DeN@!EbX@l_f1-RC#wx9N zA$*q)xl!*1c_=vEQymgV;6GEEi>ZlD2%g;Mx#AWO3zl!2`%H08N}Xl zQZ1%TK_=XmL)3w4JS>7LFY;~nPxtL;j(-$#q0i*2 z!Pe=C{FdOyA7!OBXj!jAFSQ8J@it>yzgWyuOK~K6=xr(FI^4&R?GA{#Rj*w;`=d^f zF6wj|CHG)1zkSWaLY9JwO?MChFgF+EDJXAK8&fDfWW1o6>!|?sFjV9CAqx=;y1yL{ zZ02>fTn$USh!SShKZai%e7R2b{0bWG(nhWG9ht=R_^fJ!#;Mb6!0A`eh3B1o+4D0; z30&tzk#~O-9eKIMU9gv8JkXVXCz5Dh%BW>$!YhdPuTu(JzbFeT{?0~go9m_%IHajM z1~!a(?DRW|iFF;*%SIh=*{lbX5o@(>M5zPD&&RDZibzUpP9ZJwiJfu*K3d9ZpN%(6 z^-TLkpkHCm!Ey5niOKwl?rsmBjQ&1OOZ3wB&!$wiJRU9wGYbD;jDi;p{|waW9=iH& zXjXsxoko_%R11RlhNF|4Y9WlMud8zc6Ijsr*z2*l^is+(u_tlCjqk~gCvvPyVa#19 zva8H@m!A)5O!g|;YSOq+?t%#CtYm1nt!5ukb4_0jiUD=K0C!n`P+$W*skXjY0Ns73 zzbBY2_!^eshhM70gKx8#d?aYjG#JNh%pV$oETH<8B8&dn5hG&$ful*TZ^8u)kFQBN_S6>m6*nSX~{GZjJ1q3M+*1miVD@zY&8+ceT-q6!_t(hQi0$8gkU3(%KJl zsQS!_Zo@BurjHlkfS@+$DGz5;`FKO>*2(w_T5KAB?>JQDic@{e7GqVgr&0Bpv+o=l z5*MJ$%xSOaJ&w&eFOG$$&|G zw235dPk4DTi0^1_hm%gzlHz?^OD)%kvy*}bQrcIV^ zUSY^jV)%VCD&}7@!P*fVFL_?WJIogvXjZ@8wpO;`G?YX^;}+H85VsB*6w4}b;Z_FB9nt%? z*wyALNxA`SUdv6d;8e`IMn@w-SM2>+pwckj{)SMn3GdUsx~;#RA%7|}a>}GLZ@893 zm!-JtE$%pn-dS13f#9By2j}4fx#UjfKJM60lq?~&ijc2b_u2*~*p<8A> zxqpS7s#wTaLE+s>YZxzuTHB^wB3s;WF)%1la`IzV8=Xp#^&}ChCYoR5gRk*oWK+hy z*f2H20VL{-LBwYIyn?dnGOA0Hkm6#g8uT|NZ*C2vlnI9CA;R}8!IE3GCoOhK%YG;H zemlR0HQ0Nv@uy&^rG{6Tc9=Ni9E<=d3c+`mDh#I8|`& zGcWjj9_G}{5Dhw|?Yl*JOhnX`zU+_e@!2s4dftP#^*Yz6vtG1eqa5A0nT!60HC` z#>12_+xM3+5pfj*^a7*FmJ2#iUJjMjym^QDH6O-yDQ`dyb=S{`l9&`vS4suR@bXT! zl2ET=>!7=?MR&>)cMU}!>DHEv`a?~$n$r!^VoL7@`mk+Qy;#23iig2Sa>j-|8z8~} zPungy@Q3xxh^lV&PN@UgL}N~z_Q+OYo`k0|4$`jcmfk@u4- zQRR1n?-6uG{mwt@hnaaXC$ApUn5XI(nqHS6B)$Xp^y3Ugto6)AAFSB2&}r{{>`)Rl zW;`DE%j6A#kXl5&YME62(69c=08%V1FZkFg5-ArxV7x^U=8-!5+*Bx4Pp1bg&#*G7 zx_o#(p;Zwg8;72VIV6NyB8ykT@I!( zGje5xZu>RT`8!aIgElK@!jm6MH2Nf0=XjGX3Tx zHhA`)b>fX`2EvZ(-q$Lqx10aMAU?1Eeu)6;=gIN>xrUDD45wZ^S(X|{v1O>eZILCI z-W@5=di`RJn_U>Vyoe9-1~87V2Q`U4`mY$wHmu{>$uC5bYx)2lhQxAnYnMvi&%5oE8Hy6+^VP$c=kv5*9w-AzisGVI3A)G*N zF2->CxV>trn1}>!N=(w|ea{X!D?mM888L{_B^{UgbI6yzgW?3LiC=5H*U!Y*XXluxhiCt@Iz`VqG%ycAFf?Hs(Vs% z{=BpNF>0hjJ|t&12>A}VL4zTK!V+T~B?z;&QrN%lTZ-@UAl9BUP27BSzk(05>mfqC zS2oq*m@KD_8sRf?{+T3bORJA|spa_d#D-Nw(ta!Vw!FI;eNTNRq*w!`+D5ZMY9pyX z2J{z#?;NG{ld!F6u6vBAk&>AShbsxDO|;<$vLoD91cK?Kid|i=1lz8#Pmv|TR4X9G z)&z>TA}SwLHj0jtK_|rB>ULidS2o7J8KLuE^C>rc_HnKNv8Ej>tu<>~i{Plu`h?Ij z)z-HrsXX}bdQczp@(q3LcanhphPso`Q0|<>{vRK}HQxK3BF3(#;b{c!XQq|iz#Lt? z>rV@$lV02a-@b^hT_>ksTu_}7U8WB95^taxCGG2J_3~Up)C%xmiuq*B1H@^`gkb)q z@OR++Tfdc8Xfd!(e^OjwWKza1_ z67a(H-ScQPQR|&pM|BI28&@H(OShaRtHR z3B4mYUCm%c-a5!2;Y~;StyJ&Rd{=$s^C<#S#r^9WWf8eu#j(h0p0gBf!+Z`cWT*(! zJ^M#In3Lr*a8K`dyZ{RBt?Pc(*NH=>{*eEue8=VQS^>(k+@ zaFLPY+a>K`5J~?VS5)p>-k)dQW*ny+OUW{9O6YPf*stv?J^im7f(ZtS&eInN_kK!C zeGc=MbpER_FS{*K8li#4JB(w1i5bkTLKMcV49o3g;WB)I6jz%)d@w_^EEG+j2aPQ# zI1sIZo_z8>C)QV(Rwq!%a^a?Sc*x$J!8D?w%~S&W4jzQv^L9eC?X7Bpi?EZ7%Hv z9`4<^K~4B-_f^g|>q)_z6@iZ%9z%o^L-lUE`0U0hgH35t=Wnk^D{0@r$n6z>ms!*Q zXu=vJJz7#TD}KvPK;77MOpO3rGfxwi(u8>OZ|^|KY^Y@3RQk^ip5YGzDxVCT`y78GiLE$7uM@y}RjdgsCW{-?uI8cLtwwY~Dgp2wSI22i8%iY~-1QWP; zJT(`d%8zOXB@n}tDk^lcsk2@_y4JL`&O`d_Y(-`7{g+5$xSA%ZLg`F_Li3)&!*fan zK4$)b@+C8UP4nGQsskIrsltA9zt4PRfjJFOdsHanGQ|VJil~-n?6UDt*zYg+%@&crwcBx@2N_Ns(ci%#;Fgi==lawR@%wJxoV+gQ)X!VfE-I zhR$x(*n4~A6R+V>a+#UZ6lR!vI$39EGe?L*mPQP4ezhgx#ohzGwdX~p0fM;~0draFCtS=HZ6$H7-oo z9mDHCzqWJ$n{0n@LeV%_c24etJd7kBTNn#z?slOP!y;~G$*ZZ-IUn&mN-UlIVxQZi z@F(`Z5>I^kYP;z1yeK=nIAU-6HhqmMK}Y{u)_L0$MM2!eATa(U$)R0-l6P?Sz|4MX zo7y!#Hag9@Y8@^<)HQl~9{tUTG5XtgsovCkFQQ0$))p0rp|C*UgMD8>Ow@W;tgM*h za}9kkp5##G<9>eZ^tG82n8Uz`20NgJ6gpEcbbq8qlI1}&-Z#6LwcH-P4TW`2J$YlX zvY~{lK=pgU=m%|c(2r76hH}e=<+F~!YsWZzDJR*h2ODfDBWt#n`oMA1>ki}vRw@HY zuR%!%UxG(vS&O1;JY8Ck`wy?)%5=DIVUua4C|=H2xzf*`(OA6WZu40Z;D2F?-d`kR zv}U+yep`^iHVF%Can^-L^v$=vZMdHNqOq0hPW{}lbDQ4d)$C$}KWXucKzymrCQ!Yi zuC6ecG>jI*qvJl~=AW+EGmgr5rtO8|K&qZ!&Q$Be8*knzuI%z}r)oc0#XU7sGzd=W zm!d+6hdrseV9%to)rK^VJuNTS4n1((15Mn%*8pzF=H zd3O9ILKp5*NqI3vV_+o3I{n-XYko|1iXSr2^3#s@1G|1~S$QBC)UW>M9sd-UPn4H_ zH|WjsqTX70UbN~WrbBaUl&miEji)tGPZA$mb8!;c60jHB(l*ay#^fQ0&|xDP130|; zcD_~4lXcPuw+TpjnJoC!ow^WDx_e$*;RTtH&B1pjr^H7w$?qs*b+)&ju4QVktWcd? z{6bw`jQ4!Z z5a@O7BZLP$^M-NDx*VIco#oHWZvOc^)2knIw;RbT=XRZdkx8+w>BctwsxsG)9o%cn zdR-i^c-E(;WraXnDV9t_Z;V{K@-p-)`*M)B1EVj}g(A=GkA+n?4F_6N$F z_MF~V`wL4xqSZJyrYzpE@Lh7Iij7VxV)L0@V=Huc2|v>;m?k%Lde#3_C9@IM+e-{e?W zsD2^4)RMLQLy>`urMZdAF8lsH!PfrUnO37P<&<$NgSCYC-_K&AZeU&jyFegc8L{&1 z-ZS8fq9K_nZ0^)ZL%3EFF@AxVhVl5W1dCEGkKobBPITr?x)q`p*ku-|^H%VQPeI?* zEp4yCSh;S;4Vg|(ja{0kEhg$4^SdQfxksmQN59p zZYe}?<(JUT_s!)Dlj#w6bkPy&i4B0XgzE~2#lO{0XPA-oGij8hD#xp<_>MAPX`BXw zAK1i?eAkMNy>Cku_?4M0A5w20*MjEnmeboD;9#pqc#3aMH(gGDvv~O7-J74K5lgE` z0UO|15};nr0^^{6`J_o;y=Z}wWrJOWZh4PlqVEn>*BF&XB5;hgJvWOl56{_6^D^w~ z+7Id#!1(;=YfKmJXZqTd9Y3Nl(5t#u`-MJ-if}LSR#+8((uxWgE%9yBl+CTteqM^} z6$E}6-#d?ifkgpq!LC^Q6}2P23$%_C%$0}u4Yu%TTcUU{^$$?d{La_2w{3`g4`>;! zv5pt&dEhY$|LaqeW)1?Z<_E-5rw1}oA0?u1#ugR#6t#H8a9iS^Ur;56o5EX+b^dyz z{;&OmlLymY&Xl~bZbtbq4Y3p=0kpgB!_z>Ga1dw>R?R-1B3@+isJEY$8*)f zIs|x>&En;YRFldS?~n zv-6@8f91*{ZYb~?ed(7XOnYBtKB zfyct-99==Y2Q0VjxwRa&92LI6m&<>mJa)L`uq}a0I7dJY3HxjeC*6-`k6^>Kq)QR3C@Ig4C2y%=IU9Y>218nDYKUy!LcXqYvPrB zs3)u$^epu@X&0b5x_+k%7++IL-u8pf>-u-GS+P|uUx)O>@;Xl$ZPQe&*S2BJ9p4bB zbkNv_`|BD>++e|6M9WF{h;iW_KT7rw?#s<9QI~zD24VW1cH(_nm?*06BzD~K>;WE3 z?o$&PGAP>)8SZnql@i^-$B8Mg(K2eS;74YpUBMc|^-GLbd|%)}idj1IKJWlju;Nm+ zCfY*oCa(^fLHnp7N!~9EC}+W|{yBPbR+-k?V9d$Nr#oBQ>YB~^t5O3xF6$TcuA0jc zpNM8T4%~bu6=vV430$6X^Y8L|4=(QkeKSzb@bA5r)v<%99v{{gQ zBE&fd+5-{MC-kyUHTFoJVCQh4Lp*gdI5#L21k?L7FgpjeB;5$0!4H8w8ZBu2$&=3i zmqOFM`mM8CfUxYE$x1&3+U*u$@(D?KbSNdMZ8ZoOlO+VKlL}G z>Q?aX*plT>jhwZpcJwa@@GRO5i4D51E`6jaL9`bo{2|7V{W*B@ROxId7pP-Fgc7g^b-XsbjPt7xGw14+?5(H!cu zTjSv@K)!b4Q)t()emGM6gi+dUuwPy>U?cO~K)`PIviV&HG?H@8{Mr zxG5|ePDR6ielQPVW@%6RPoE8Y+OkoU8S(r9r2-a*d8Re%doS|UaM|*ycBk5`UZvS# z)NF5BlmvyH0@%3 zxe}bmno8;7ol2&_m=_q(B;u05yyp2_jFMP{OZM=~z^&y5M@!b*c{d4)q4r1K>e)8t zmQtxquu*ayv_se?91@8?jG5XOr{fezlW<(KIx9Rs)kVh|Zcn;>$08vY=ikTXQP}wl zn`q_v0dPkrZcIkzj^SN0*LX2Enf^$BIoo9yBvu@BJNr27>Z2EhJMZ5JV8m&EUH?e^ zt>(w~c9jm~U|j~Z912r2CdIwBnlf-rG!jvH;?}=>rY8G-hNltOFIvu~EW$YctXuZ> z4)}jMey2o=66~A(d@dH(nK>lR)GgQ1*)+yz#8#OB8(?@(_Lv-`D9LZXR!=mioEV_A z8NBdYIWw&Rk9O*U|fBrTM^v%N73~(xAxj50p|gZl+oy0=YDpZMaTMiQG3 zkTH8aL7aClg#)bGY&j7!?Cdvwj}}l|8PsCPZ1-)jQ#TO@H^koDA+XR48w4`T`LQnR z7ZmEEFI|zQ8&`1UlzqQmcjLxxdXnV`d0h?D;x?MIr9UB(yY2n*&c(XPRCGua1ru>& zlxVbPT@mtOhD2@%&>=1cvm}lhfHB%+1M9$<9T+6v)Ma>sFfIKkM|D`ydNTao#F|qd z?pgi~sPvm7quFv1R6`|?flUM{;9GAhwk#eMVi&eM(BLQU=(QGUzWNnREV!=jep5=d zQqYllMGQA2t5do3b8=r;!<&%NdQX;vZa(%{E_a-|8fY^#pa+cD;D*DJrG{l)GRcTt zdy<*>=1w3f9p?y$r{hKSkNve#FN8m+01)-EFNAc-Cu{3V2J--c`_jfTY(IV?NMgCM2l+MW^%`% z8$uY3S35}o8V{^Dfd<~Z1xhks;JwOAAy%iy(R6>QiYD3t8#&=ik2~)*ljwk^zK?&p z+dFob{jeAO3+aQ~WdST>gJ+Zdz?4T=>9VZOfl1n4*iQ}D*bgB8sF+JpYcYH58Ve_^ zT+yrC>5@B(uzG^gLHFMZ>XDZekzHkufw}VqQ6lYW%DY8ka6H%t@JE#9Kn;+jNHZ)( zY34xnq~3+8_DWbs&N(049{fR4PGf0#W%Iz-A@?y0%q}JjJ+5BbrhtdPBrXl&)@ApU zfjAeqc+VmeH86htqtpG1&prHr2vYo}Ol{Z9@cZOXlS#FUMb6P}p+#={I|g3;281UUO6hBJbbDOc4xJK7 zfV8&z=e@mf6-j8_@-zC2^U1guU`>v&j=!fIOl2Zxp1b}Ak!|zZA-1fCUAQJk6d!=3 zy{$c2X8oO~?mh(phq6M+!p{az`cyj$te}Pr8Sjcg#-Elv`y+)m%4LMNdv<0Nhf>bF zgEN!K9%e~)M|?0bxdA$i0jrjR(PO-1avtXz{v&&^uScn)ET#iX-(ro(?2U**cDMVe z5veBu#^MaayM-f~oxCHN^2i%EFcTJDPJ2Y|zl)99KYagQYRV_Euc;8250_0w1OdCt zxx%bx4=Y1{5=Z|?bZ(m;g8P1J47IdM>WY}dChU?zB#mtx%o(_Og#9W%5)$9 zS%)>gm<;7>4h&Lf&0(u9G*qB7n)SoonbR~fKbDCe)|G#-0xWF#uc~WTuILR-)=-=i zuA1}0R+l*mZ)lcJLh=2YWUg(z_{e{0rlC-zWy;9kq__XB-L+Il);AnOi`-}_>PrjC zgB0I;>Abv#V#Re#=4*cKkH`xeg?}7 zi=8)W(-#sss}e@}jmfzM{SlF^i~mvaY0Za&euJG^H_f%)x!ZOvVN8 zM1MfFX!)1RnUc<0_+)jt6eIA5_d(KFCNm#DgX+z6Qz9ERAtvhBR){MK!63Vw03p>J zp0C%;oXDVS47j{7%{6LYxRabh=JjD#-4$B5em^8CnuM-N%gBNR&imZ2=Mq?KhEA^2 z6wgea0t;4bM~k3$_V<8-OP`~2;BN|A#7pMF6QX$g!o_U?K>$w58nLsZS!hM226z2I z;X>#dd+I&T6EdnwgRq^GzD&R0x6gY7EzTJudp0l4bF;zeU{M6=nsV3>qTFV}mEOtE*HH_ui}d*0w?A1@yrFtabJWm(3}YYZixbOV|MrIJ`RV3#Y8+&pbg|*2 zS;i+=sLLCe$7tOjmyca^{d`|gh;_!C0g5(CAFlNEXTCY>)vXf46Hr`{J*h|FhF*bl zdIM0Nl)%B*hgWi7clyM;NYrAob+g~%kL!M-#}Z;!g^Lg_Xq~9Wm1yPr>FgQqbN3G?>dI!$axsm1_*s()=Sbed?xcgcs*!%Pt=vw z>F}p%JV8Iay(yC3_4m`ZGAUkDEUCqd$<58pF}krr`L|HOqRob7y`iA-86%tC0sj1{ zz|uIxKmPpwPeQ_2XbTUNL4}BFt|5YnK^MUL72wtJ0Of)hI?~BglmdzP2wk)P1b790 zY<`7+Dr#}?^W61o;)0;Azbn9+h!Beflu-KBj{P7C)WHi*RiMehrmhb7<9XWw90vRE zd!wr6|KSk-7r|Ig9JJVYJ?hF8>i=$Xu-y4CW(cS*Juwp6#$L|9Y{IjarPv&Vs{%3O zEUoWbEa{>~^xq_g4b5L1%CFLF<=-9nhYK~f%f$aLX{8ZE@d<4jIyvQTWZ z{=k3Y5`=D+mbrZ#%o-Gla&a`vKS8PWmAecEj6ughU2)el+u4UW0P5tw;h|TQ%bH~1p$PGyGnZL1_*_dhIBr)_YuUN2Ao)e=06xIFo&fBYE5Bg^ELXA zTx~Py&t@ML!Xi#(f2B&e<%f;X*_qJ_$v<5Ytx8nit{OnE-F`U2U2kI{*0qU{;0g>tv!u6k< zJ5@g*T&al}2Wfr%uos^Ut62R97dH(txegLfungsf++Q}KJ+KdpQw@&%&&S5r2LL=% z=lbhWqWBnL~p;sIa~3;P+NhcmG(5MV?AItJzey?7%vJVkyG zlBY|wNV3LeYnv7qfMPDF;{M-Hl5#wxmiA&LE{fAKkcK7>@$i3!td%xrP2B^~r-AbrROScIU+xoJgb(fibwxn723EVp zGP|BYYrSxVO`xgBUtUwp~?~1IyWBV#i&i7v!3;LH>(o-d& z#Z&>vr=dBsY_1FtJYEwxnSc4K+y4tl=Ijz-l~F6LO-4x1JH@#|?t^vk-Om5tKbhhh z_8w8BGFZ$iJ0mIz2LV+QbC3)`#lFUV0O|kxYHW@r_MXGKTn-=`|M7M>cqgmFh2UPe zD`$WmOybQ5rU5;c-MJeWC$iK9FiWMTQl7=Hm$>=>Zvg7O`C2*W;>CmhAMd;zUyHkc z{sTdNhK)_+GaOMkA)ymZahx8P7?9nQ} zJC$cImilD*l)ZXapuEOkKQ2hmk0fkW(*Xf-?^ zoSD8Zdodt3$Er6sMXXoHq&*sNBA3<|-C>3Ja{lA}U`RCS`U)7ge=|$BxwbBsTOEV+ zB`-&9fW~YB8SzC4w?pM8MD`zHdc47+jT`k!5g=c49$Bz6#d*B&bsP+S8$f*}Y<(H> z2j&t2#_bV|d(OkG-~|8HTk&B-LX`Ayvq93v?YzOKp7qV87`hYaiRpGY4HpKpp5Wcn zYW!pLQ0a#C!@V4acRo<${Mu5Z|KS?{3tZhkYf^Az{@zc9rQyb3%$?ODuAPC3XOd5U z_M@MGPoQ+znD6>_bEMr1$Ln3*SaN4c)DqZ?yW;MS#*0o}{Ryojsy9)l0!ZyWNxYLL zCGe2m7a>b|Q3-@@?`R_4txsF_y)Q5JYCg3KyoG9XKXiOC<|i(Hyl)5U-|eYe^@wVD z!^ddPG^t%M7w~et4{&eU@luAn&FQ;o-z@g#-|%5Rlbn+*U)CpxB2Dt5ZnaZ@&%iR@@GzaD@#Q~w^%;=3kLcFU%vNjC?ev>@ zF-oSc+qnGRAZC>s#{gb_Yiolh!aqTH{)a{AipdiWj5jwqRIiD&aBH?H`c7fkI-buY zcQwvcP;DKJv}w&I-Fp6PM(KleXNgsE5qc`6_nD;0BLI&|1-A> zF8+3x(<0Ll7BGqZ+Ur8Axp6w8ZFP2f5gP!18aF zb)qbY$&11h093h8Hm>PA#O>Y-L9v4Hjb}wgkjP_A+EiALzyKiEwA3m`uc*?86Yd>y zN2}^GyFk6~na=>H`?dw}4XSJ$m2YA$wltW+5^gq1bZ{n0k%B;oO&uG_aZ<=Z-L%k28;(%7X;ovme5RoYGoGL08Vglg2 zPvljKwVC8a0iv$21D>Y=7C{qL#U$y6%@Tdt<}vs4#hDTetm<2j_y_Jjy2G{67jzG+ z*YTjVw9$8!aW3|E9)qeBrV=GTBS+?K)2-Q~sf3O_yQq4`9ESk{hR%%bx_Fp30nv3= zkT_`$p-`D=>5csXI<4NG2}3-5A0H2->B2{(Jp1Y0;Y;atino;h^?THr~y$;n8X98 z^l1$SKFfYleouLDKYq9$Nyr^~V}allmj%~BDVYHZ5ba3fgK#nR$c4CSrjHB_n;Q}C9j}d2#3uzgG~Iem(F+Om zm;0`*VQb@ux>zssPnNsIrn->Dahs#X*X0-5b+iDkn%zS5;3X-#mrvRc5}tX|%QSR| zJXI6?-s#`rI6Y-IegDi0==D`k+$arUO7j$_S1y zAa~jMQ&P}KsZ6bsFwH#*1?U8vx4Vi*e&+G`GG5m{F9rmW&ObzTbplJ(JV7N_OB8#0 zj`KO|G$hh3i~dXpZv6|@G#A}s#lme94 z_Y6Tcux?ehg^(R7B)P`>XGqA(l0!utZZ8!xK_MX)^1%|dh`ta z@+A}g^LX7f));SUO9DK}4`5)4rjH!Zgu)bQ*7Y73Bxv&3X+Hgl;gQ#>T0J2S9-iX7 z#mi`lR-+?J&;-Xta`8!#>3&CLxT{CPY6Ec)KWY z8Z?LvkFP0wapoUuz_rXsXZ`Lt`;o)1vJoL4ArfTvXg-Ktp18+EY$yVw{EO_B(137a zfieE`rWZ~1mwRACrWi-y8Tyzrm)5+YW>B!x%aKOra@S=}Hops@VtLv6b)XZXlJo4ho||Sy5DecjL0BDON7lhS-Q?iic>kI}osA zCd3uKj~Y{SZP+F(jeRT4sx|@5bOfv|$LJRmBcb_bqZK{xP0o8m+E|`1&+(Asp8s)R z<>5=M`6Gx!oiqAlxUY59y{ZuQ*34M2w>qF?grfZxwJ!khbKyt*_V=TR$KyPaY15)kC}yqK|hfKQ7M*{l-(qUX}{0cGN(=hkW}7_m3O3(8rv zSUH@4-4u7F9jB!|ndeteRXH9^LjBYqh{FNy##E>dy@~OgV9*d48I*kO<(*{i5Wvxr z?8$qPpbpd2QH#ibl5Q)3AV`g9A2(%Ifj%-?VwSopp+u&CJ5mTU!AA}K4dUTa1Q}1v zNS;!5o&Mml)STLToBka+o)YTCYBHGqPLL6#NtRKFyMe-q=Z9G}0BMyzpMMXIHLPsu z*Z=09U;v4{WkC+6fBnH;*xJXM7gH9dadlnm#TxA*sG5-Ls|uDDbY$JA-}QI=@$g_S zM*ySr{$dG8HZfZ}3dP0E2<{MUR!nduG5ihv%>&@b$(NeP10v_of$TpWzm*DJCW-Q4 zk}1u)C%(xIZj5}gz-X^CzPCK7V$Z1qP<%gkeNYaE``%Ftn4LMPD&N#82mZ^gM6Vz| z427QG7a(nLY#|9Wmmz;jrC}xjib@|=;+h~@o#Ms(IM}#oaBG_|@;~7Cw6WboUgr#s zQV@#yn`k0K+!**xNpd<@!8znh7X@ywztK=Ys@M-BKLdqKWlxMsOo=mf@lDP2!lVv5 zBz04lCeQ24Bo$e%Y4%#%ms;Z4Ly8h--o0%Tb&@)?UEYgwq@VD=dpNMOSDe|suz356 z8150s&)7z@EXYS^H=G@9j{Twy?Ifwm2yuB~IxI?PP^u7TL3e$MOfpTx8*e?2@fh>+ z9DbxzdW5qzT21*{omtj7^UTq&!Edb-yQdCF{?pGV&=zGrLCeqE4ZMapkXsxAn<%kfU1Q=QoBPQ_a0zmtY%xHzr$(GS*PRdV5X{6+cyo(rc`LuZ;~fNdMfUZh;U@(1 zXD3JeMP(n(ihu`KD!9!|ZR2yE(|(J;X6)Lu8&o}-)=E;%4;r0>#7Jv1QvmKx}Y25)(2zpl>O$@|9a zkB*i@hvu)u{?Vd*x(JR}_y@cJ#$kNkyNE$yJlMzOVbyG{Oxq=PwQ5w3*e?-IHa|A< zlhgB$3v(^b+C47BZaD5`Tsp#SpR_!1Vb4vO#2D%EI)`Vd3B!Ry7B7HRh;uKt`sB%5 ztIUStO;W?6bE)z?537)(OOq$;ZN%QLJMRWmVb_9wLLOiH9bOU+!JBz`rP**VH0vPz zD=1ZM=3k~Ay(1h%tr6JJAYmP38|*`r$?N?;sBX<}*A(z;PT&Ppl%fe+AIpA!|I%zSs7T)VvzKy;rmG8xx)}en z=Uxr3jTHmNjL0`ZMIU0{uwda*bk=uF4B91%7q^yZ{Bgw@=(s8D6Rv>XcHzFe$olxy zo5LImu^=y$KcN%bcH<=Q3PCB4>J&F>;lq$L!*xMMkUNC5M5#;Uk%V=|bAgSp5b=Tb z3-&+Az?o0%W&;G5e4-*ZEdv~AqM{Inkp-)mRQ`WTpKNe7Va1XF_J?Gkeg*QvGzgPG z;Q{GL%n^Sj;cw)}H&D*{+@)9W1=-7gH9ce5GB92Oy4&A49J=MOZCaqLfd>=_SIiw@ zvu1KgvBIM7{|3(tXyN^Js?HG?eSL!d*HQJKFZicS0XlgCuz3_8yA1tV8(kKD9$vP) zZsVi*Bs!9A`G9=Dcjx0LhR=~(_eXxHJgE=Gw$^jd6cp6#(L z6l88%SbLt)A6@stkN^ah-p7(rCO*g}=_Sw)7H+|#@EwkRcFCOxoG5@}br0l~0`ExW zZ0PW3clY|E*q1GKN*CY+hZFnw!koT$eK0C}>(9{T5X$Z9sE4-wHZGmrd= zbus#Y%s9w7;QVE!Dobm{z@r^j0n(rK%BF54d(aVzr5eE;TRFf76(t`^Qt3~xB`bdf zW@!5l1f!dQJaK;Q`<{a$5ZQmX3(SqW=KX#r;;*I#G@=vG;A=sq9rgzR7334;KRCnX zf)W&WS+`sGRNy!ZrdOp)6EuqpUj&}*mbZf3G{+iGa|qb6G;&FZr37j-asxRh z!@bF}I$*dE{|=hiQKPS8yO-S=$35ZMdlotrfuNJ7>msnYtt~4b5_r|h0&EyNzsp;n z^u2$jrh_Io=D9RK@G6o8{TZvNQSkX0NXvZJaaFMy1kOEO0g(X5A-?UT-~?vXkpHo-0TF>OCZtO41btj6>zz|ui*c(?lQ}+kt(YGayO0jXj44>-+j$;W+&Rndg;wId zleD)F$~HzjtyjXxPfJWg&I8PUu|A6g;#PT|KG&NzM-a(RPJYzZ%zPwvI5rOsw*|Bk zdY&bQyy#80`~4}VHCCsmQN$>2U2sFoKw(5zUU2?4&31#rpj+UfK(R7DMUSHbnSLJw zZuK5|?RR#%N^p`#S0@r%uvU^bG`j7EI)3r$Q{PRymvGS4kMw2lZ~S7rQq2{0ucW_k z>Z#0yqKEu&(3wbaC9Y9bcR&UrJ~ z=LsnJCeU@v5fs=au=22D@run4r^%LJ<{f06T@-AfKU=%oJvRdiB^9*LZ2ivE_63OQ z)T(PChiy*#*o{M|4a7T#2@Y&(!`W4v$buwR1$m;h5;tT#@k?G_BmI4cI!Ey2voj+Z zzOl#eI|rc-Y#0N)$(NmTZ_I{4{wh%5ppnhK)IWi>${p++(#K zSH@B6V;7G68vH1_=TgWi25QvsF*{CqjB9S%h{6E=yrCLg_I?59gc}gbQouiP0D5^_#L0=$~=sfjeeoub;mq+8%9p)lvxcm`?)Hz!sTF7hq3PfW9_s zc(8LhE=7LGQ{r=ec|k5%o+cii))rnmxSnFg9kp@96}7?X@soPCO*M5a>dVKxp!{nM zK?paBhHNFutdytT%7hdRBovT?!&RTL{_(@^5|94-6Vu23>4*Il$!XrbslplW)6z)q z*sx(t61xxewqn!MjyCY;h~f4$AAAGSZ*{DjiLn7?v zjWOm@wrFdaseF3lF*s?!qZJw_>^PK8;}qejj`XXaMda&^#EB2q6$ZVe0{$$FOW$M1 zxVHLy>8ax&xGiz;O9b4?D#3bIp#gQyWNqGyiE1o;Y38AGnt`>MgBKYW(zh2Qvcu-C z=&+Aw_A}Pg*FhS#_EanL0v`4VlO7jNPiC9UU3Z)7{unbwY)QN7LqgDN(f6dG?xHI* zE0*%bZatpsEQaR<95*fD{{@7--wXA zIrchJD&=yu)k9e2r~IE^Um$Z!5&9Akzh6_2-FS?mnc8(U$W|AK-BcPI^gWglo$b43 z10v6%6Ew)J)jN!b1N(L{*NeJ=WqV|*E~F_)pSCrpf!?u%M@%0hZ;qNV@IP9Tujt=R zZg#RqU1<109PqPvSS80^7q&D?OA6q5KO4XAw4cr#*W)C1r7i^5+Ku8VJgnpaotMJpEPJ7e1pMUE9 zEVic|y|=DoU|py!z*cm+)Dm z;pX5ijZzMj5~@B<3c?WLa4C10PSes@DQ9?X}b8LX4z_U znYo`MMaJaKn#aI1$jZYO&M@n_0cm&1d_Hkw#2@d=JPxIhoyu-aQ2Wd>?S(-5&c22D|&dk=Cmr2Ri>Kx#BJopv8)Z1Lwa>T|+0po#IHv2YzI@mVJ z)q??R^-UhkSbWoHsnp245LM@s2djQB`|-RFs(L| z$@f_{`dK<2U)QUfV*Jtn4W<_M5xw-aWd_*F9=;ML*nPp6GxddVsoeK6J%e;5Y`Ptr3)$9Tu`vpD0G0{a#ABMcFk^mfJM2?Pqr}Y`5A;af>l-X0Yg2 zSC{n}G^UaQDgXR)^PF@CnUu!NiO9_E*RT@a7mfx2>t^wyBmR%8PCtb#e#4!N(ogF6 zWPeDuE-Ul~cD13|e1;*)W$@#cQNxg z;vE)EiX0+*gAOZ@-F$b(#cD>W*9}Y?aL&H-mkwq(fXRF4ZXPb_nf@nzYa0H#Y;qY5 z=D)Wy11vid;i|@PyQL(=Rf0eN;6ZT2Qsxgug42;Vs<(QD^-Ge}Ypmy=x^0Q)X9k)0 zIX6jHOZ^!(VALzSwD`I}Cp6c*G+iO);c$}-&Q^=rt%u_=!n%8Xk5AlrKG{&0J#jVZ zX!UtBox%0ypb-`o+i&|&UX(eyV}G;z=FwrbMOaF9A4>QGdLetX=qrxP(JGDA*MPpH z;P&}oTL0*SknuWlX05wZ_;EOphOd2@k3-gIkjy4?wFL;ip4WaPVQ~~ToEV$V5ewxN z$;Ui@XvuB}0PWrqY8W2r34W?Dg?|kMafiDhX^=P0HBpV$fXN6iw|fvEj(&G~7msGS zvK3@5FT)j~b+?@vUJ>t^cp0OX3LwQiE8)a$94_aJJ;{^RFY@C;Yy8pR|1x7&X(LHA z-?p(Xn&yVI7D_K+?Em`_6*Y2(pG1%d_2VJbP%92(kYu$1s|F2HamSfK#g=%FS2oPb z{Igk)F6v;LR~KqXbcYx7`Wkq6gASUez10C!%%1Zu(DXv^i#go97}W2@VxyEO=AFhx zujO_6Q#vXda_noj-cNJ$37Ir?$iH>#_>bRmD|qC(rdK*KJGpkc7qiY*c)uH0MENZM zE4zK&r(S_9wY5LXnCe~b6x3z1j7#?2bWt`*{^W{_E;eS~q_An;kE(D~)o<1y=!6d$ z{Lf6$M<4ZJ8JA<`8bgzY>_6h<4%d-Mi=%gfu@nPtv zlmwrA8L@qG5skm+?XpL4y7EIxo$<7D=-q07MYNe@{pWh?L@yu7;@(gA2 zjuIXTVZ19Zu{-_N*9GFc`ZUWrxoZQ^jP9N$Ep6A|9s9Bx*M%KT=<%!G%lk#)QwlVd{`)=*X4(SGt){R*3+1&J!m>%yJt;wIplaz3xKl<>t~-EJjmk&N zhIG<+mGELnaVK8OkAfrBxukDP`OH1nQ4CWuS-m=GeaG@1;Oxd^jLVfD3>2@dh zRSh(0AL*J<(}Cx?tnddj<@3p3E=z?4B~vv!fH-r8tZzH@Bt2tR*RS*(CCSFOAT$&- z9J!3Te)PGB>^i~4dBi;Kh2#rH-^#_2V)clndDAyGGQ;0YjEKt-*@*0v#uprkffDr+ z4uQuskKmI0gz|qzN+rB681uaIeSCIXQIh? z*a7zTV*Vdv?-kJG+O!KV1CbJnQbGq=G^Ll&TNDM6W}|ly2-2l@g8~ZyQBXi?1O*j@ zAiW1^A}ti@y(_(U*muzP`_{YveefT6fJvU`t~1xnTr=Z{STinl$^2+VL(wK|7}oQI zpwebQEr5!}8M3G-p}==`e25?52DIz2_(7s|fe+?(ltQkD?@hmKZ#(U}r?ni)8*Al- zwr=RJ+fRDw7N!C#yHxRHn=F(>+s;8Ja@@-2{3kS*k6e0tk1)YHOW|YG&3+KdOM}WR zcl{04anCGCpED2GMH+KJT*D6i%6}vvU5kpg0@rQ=gNa&pu+#rh_cq_9yNS*?C9YKW%i4rMBl6p7>a- z9%nmn7_OS4!vGBrdt0#UsHU`g>0KytHCJJM)_J+@*Bg!u9e4@SMbT?3xmwP$(?wDw zxGhPSQ}$P>xy<3l_9C^H6RfMjaNMPtDtyk0x_Koq?-&2r!Q^AJ+q$ddh#3|xm)F#p zoEVPwH_uZ!mZvI@E9yU!E4F~xUh>ASg4_9s46WStjyQ)@%}fMLEfi_*)q0#`;lBx4&Y z^-quKfacAh6xK(qjw6r$h(mv}1W~)uLF0yl12Jvb%Ip+V~MtT02;e*%)2S)%MwS3Sk zWF(Ev2Oh`AdoMXJq9~d#ux2a2Nv5U-Z>;BbT{w;{3sK}C-MU!5@zh#jggM-RHL=}z zVLFP#AF}+Dl&Z5SRuSFAdE{MQKe;lOQ5;JScFo&ReB8KN&ChG9l;tmCW_bm#pcx%n zRhAojUgOTA@xr*B5@S&o8Zza_CrRsXV_)?D1n@>WS6LMqq=fKa&szqC_@WbEa%Lsg z`W_!N6eP+L`+fTq`(k8$-!+D6PH13xMr#qiG7z?dn%f7Aeu+}Y4PxdKv~N-={^_BJ zNQ0ckXxq$r(jxD6m+x8IsA*91<{cAcRN3zYw00M|CLhg<7oc7WZBDkCY*6wZeJIEl zXO|!dTN3(oh981+^zHJaJ&Y7$#+?~;fBcY;a%t!~SNW{G`6m!XZ$wHx%*2Dcn~K4L z<<<+7b74=b#B8eeZ#Rm5akR<*+BjG24I^n|TxMpDKJT+U2WmwXNMydB5E|I;Ub7Rt z^?gd}0{ueeS{bBM7g})+GwpL`ebv8AY%bHse7-O%p}#W3@6kt#T7^?lgMV9rYea`a zIv5@E@+czNfUlKUQ}@FimC<3qi*ol*38dZvXhSX649zZ8-hcCzKQ92~Bo_a&o9Z8r zR$6pwFIAHsbzD@&!bQ)A{I96y}FyzqpP> z={}tJMv53>+i_xry5jf!^gzLo9EXP!?F4~j9GtA64VBw=`xllO73Fm{IJD?5!7rr5 za_66~_za9x@zPMt^kL7_uD1uoen1s1oa7mL$09LWB4I)M<~@924HWQiLaYYvJ@!o( zP&XCk!i4u2>PZqa_dwcZi11Upd;}kG6%3%w(`Dd`f4$UNQLCtd9DAM2)CokcL#Uo9 zj?<$uNna-jTYc;8>@%+ja$5ZuccJI@JETfNyAUf$N6G=Xzq*fLYM@E!C#x%2lyfeF z9y`Bu5%Hjr2W5-tHy?-O0AE;ANbv?e%18M=yL%9iH?b-fT2Y@N3+x_8mnCDF4t?Fg zN*8JO>E^1=(v&ifi;EQJzSg$xu8P@BT&>@JLPv+{72FZaCDQ(}G*&r@8E>Luie1DH z=o0QkJ5Vcg(T^phmri#S@lFhFziO-SEawgf?maooU^A`qT5cxtSHX0hPSb7eq{=4? zeCJr`o_pvi>9x0Nw~PBW|0z#ts8T|;spF`p?s#cF=<>&if1{W4PgIhQ-{^nAIg;dE z_OnG%$z7Gn+Ych63J>-7>P~!de)S4AFfw6i{`kVeuB}$6-2~1t@8+avOs2@(&%g+* z`MS7As9I;bL+#p%8ykt^riDn=-adW_*8j<309Xi7`$b6!X=zfsU^Tkd|j>i(}OJi$~0j@nwls@3Nw~37% z`!>)bFPs!IKx*eah%nY>6I0SAYeV@i_S3aQ8}Gqj%?k2DY2g<|jc)nFaNq#e|O7Dch@HSNAP;5V;ZiG?q74SS4-+PPEzQa+^h& z8XHx)NSoyKqKiv6S36Qdlvpz; zgqrfUCsTgz^sBp#Nd|5x6K;-xeV~O z^w^#VvL?2bFVtq~G$_Giby8e^?S-#rx=w)>4fi;>O{`f!)|M$b5#io5g3fyue@ZI$2sQ-U` zL`J^#eSxZ-htu`VNATNN@XLQ$7V27PTS|HZ10e%O4?4(4gRe{X==6d|G%}u-+Xr_eHqT z)8ltl119BeT#3{MniogTXFviO*!2mvRyKd7cG_NRLxIlBgJY+SGR18EuF%PGfX>2a zex{ANua>gQC+T7r0JzAXdA>HK*ek&ugOAyvjquk=4XE3{Le67)8=Y3=HtJq~0Q~MQ zF*dMv9V#b)C5*-{7csAP{R|uN%mH%wj`XbJIsc}q6Uo3SAPq6g7B?%Qg?86ZcCusd zmIYlvqS-4;dXLhyt7lvWuTx)JS{{c!X>=D3o0ymQ43$dDq^O`i=P+9P1my1@x<6ig&ieGi#02G_Btuj-h&CY;q)0k?Pi6*Q z=<*Emw07v4ZU<#1KmMmy#*dVm9yF6odJNn8PUN4?7Vlp3iF`hujiGb#%Y&14<5KqJ z(MA*g`by>4@nu+x3(fHZ3yz~<-1uKZCU;IMM~2KJ*MR@f%|w|r37MRF3gk+EL&0XI z>iw$RyiELW|0QY$VA|)Ijxa(`Wo(@74y3PRQihd zcHMCoF>~xO@RroX|CpREm%x+xDF==ex~|8X4s+rcj8DZRSATL2rouZb-RG&s_y-DU z^^O5zXrjPU84w?o)oQcb1(n}czu0{PL!GK95wQKtYQM3DI~IVt9raCSf7|t%QGLMJ zeYm@mkZ&$cH19J0P*_7`ymo%{%{`;eeIfQ!*`EXr!3n)Qp7=jrtd61&K?KADSXr1@ZIKWoy8tp`Vk} zMUKtP;M@{2liM!buD2m+5}O5nh-u{G&AY4&0Z>2u_lzzFJ z0UB*L=4#cmib$M1zi+CeX*GB1bpqP87znWTir;^DFHKs>W1Z`jSU_bB~S!yQ&)FoxEs`xojar2;Qh8Lu|9{nz%DPnCrqCMQO=Uyodr zIhdm8i?dzIIPIymJDm;1dbwy`7H9Q4eyNhL^L_h#*v#eUJsmyz!s9QFIfNkXzd%@^ z%}zcwp{?1M*UaLYyIAEC{@f)P-ks<};IA(pV^e>1MlYCke$ zv|O1to~mWe=4R`szIz*EnU{sey!R>X=Ytvi1b3>RU1=fJ3D`ShZ9>V{9x*{9RR#9^ z^qK>+9bD9}@r?t2!ObL!9lMmf8G)9i-caUncGfVwmut$`tKTWMh?&(`St-|72v=J< zI1d0gl-P3MDo3p`81yl#0C|)S#Rs!FH-7fgpM0c)(1$)&E5nMTmnQPiP1AkotvwNpdWa$bkc?q5L33&-ghyi(~?xuXD7iLavXwA_FwG4pxH zup?Kb$m%V|^It_l6lIB(D_QSJiBwSF;M}uEf&$s^EEWqgZK-Y*{;`v$s-(K@*A;>) z&rOuAUH6%97WM=F=_((rgK^4tD}OguUm=%QqvQ%`CAXhbIQknL9dDjzb{;Joo1#_S z39!(|ZSMPPj;&Q+W2I^jmr0-C9Yl&sNt*KJDer93`Hko_wyyIWE9>^2T3X*KLZ{!Z zEW3QWu(n(?8haR#M?*f7D-LsvZ5Sk3)85l)h6~tl=F0=qs(o zE|+T;=K^b>r`lsh9VYvFcb_ssmSut5+S*Q*=1espNvUew4yf8dSEqlweS z8Mn2ctJ{mt&SN-dYP70GUB{|o&P5l3(sR!bzDbZxruZ+eGhr8|Z@R!d4nZMgU`i}= zP%ebd(Q0A34)8|p(H!o|<9B_3S^=SBJ!5|!`=WnC^$ioh7O3mQjYnMplTX)uWnJ4S zcVsg);GkYjec|ECC~Zj1F>uDMO~v?T@;MqjVW`y6%NwZer(Y0|cAmKDHfi)@|I;VC z@L7!M3#9ea)0Lh^gyLhO2IGy_f9YU?6(5R@De|a^wQ)p4>|zHHtf;1Zk(}yK>$`d7 zq1Gc6;#_z_2*r8Q;ERKQkxR9Jdb86dH*!Q|67H5=-QOQT=vbZ9#FmK<&$*xEPEpn;8D^MD1r?piEwJ|3Zuzn{;=|#~$mYHX)8M0@_AcZn10($Zr_} z84)HBtl-`BiRh4DI3=96ULgp00PXg_+`Q?0^@%$M*2-@{Z2!2X{x1w{u3pKdgG&*mBoEI!EWq z`dks&8U;dNX_-&h)KSqT%Xjyo=k{S?c3pOR0;$-8<_POKB95|0YWpA9z7m2RFA$nV z_llBAV77HMmu7?0#n~w-DfxbS7xS-A6I?JwoIjn2g{D%ET6SJg+v?P-&$YBBoJjey zGLu$#7;OI(NN|%8<-%;Hf3Xj|sq`Y?(QR{3swiD#poZS*oK{=1&fweQxs%H(%jz5N zOjwCQi)otY*HIS%?5MXSbx$l>UkQ&V(x-c?n}OC$5E-4qZ&r>>GKTCYXFcV8asyNT zGl4Xj=6|G%z^$wos*u#Af&Q^qQ4QNqUI7=oy&nO(nv&>rB|@sdcfKueBNiSKHDQ7D zCj-Dt3LLW6p>op%1Z+fzEOdiXQRJ7gf~uwSy8L)4lM2f+DdIe7@Suyp8P6k?2ddo( zJPZGy_#-{fz5j;hXTf1mHe7#C7UA*+nh*}&f?)n{e?IWN=6-_z#so#=MKlk9=5Qm# zB)*+BT(sxq$KSFb*z6u`3ZXa&J%IfY*TML#K(9FPIG-{~ZZ2pNkHIBl!bg9B!oQab z{$~bfljU5ix~Gb1Jz`B-)DnFS0vN=eaMVm2=zAaZE7M2CiQ$PRT-vR+iK@2446BL$5 zjvx%{zdz>3UtGH$1gTc2P}wwsRRvm>{m*mONsGRtX&#s;i$Xp-UB7cJh?090dY1p_ zwNx&159$}4u95@x@4sewQvuTcj2GKxh=qJY9)6wWbZsG+T;l)tzCM4P?VyP^o1Mp- zJc2N|GUm~u9dy91fO)=G`XAel+Z1C+C`!GsQ*{eE6xu37(I0^;&i*}%yBv8ONKA3` zUUUx^C!C+?Igq1xP06l1XBf(Gd%*ypYM?BUSa+Wijor_F3kVPaE zK>G={y~h=>s@Ilf_lbp-!E5bB|9k58Lij%^!>n4E$Ya)|giC7`PbWPYd<5!U zKa!dRK^WW_^O(?!x529v#E6I7QLl*z_Y4V%jweh~(3wa*4_UZFCio8|=KH`_#AMDT6HF3sp=)UT-l5u$G28Umxz;^Ixgq>9zxCpgB*uN{Id}j!@wmam< zJqvZp`nv+y6R84Z{+c^#>=sNoS(SEy;ruoi8jmm=Ye{c2O|8dv&w}UiMuJ8S91?A8 zT0J)nYl5kz$-=Y4A5_vlWR@&|9_Tu8X}wnS_nzFDz#cbgx;KbXB1}swvc&TdXbo%6n@qjrZ_|dYkP_c;KB?5_^VUlWo9W7Z z4(6()Y&Hqz+B-lASR{JF=vl!E#RQvA$OIr6^CO`yS04gDbL{n8^V$=6Mfq~SxAr&h zW9}*EAuCg0*1L&G?;h-rnT~L?1`X9F$iK~M0qrH+qXdzt78n$I-q+(D|&&9e$dKvK6pAhUz+W0Ix$@gF(p7i^=*J&fMn0W#rt z59a%5DOYu4*JJQ45NEun%#F9Rk}Dc^dC1I2SPnjX?_G*C#T=xxDzNweCfwLwhzQ>w z@#RP?+(>*TQ`F?#iGkq|L+% zaKU1JJiAF8z<4Z#mk8kPGUWgFoflEg+#ybY0vml1#G^ryNxj4x?ZRvqTT&@`o@!*(UIf9j*-vlZvL(^=AJ)N@g0dj1laesxCq~ABt^8wD>W+W#g_Rj4*}ecN;Eez~xzsjNh2CA_cAM`=_0HCLl<+~_`96jzEgTp5@Q-eE zf#vbgFYppV&)NAVb3r+E_xpQ~guTluWwagbwDK0GeghHXokVI zm;qlbi#7IV7>enLtc z4Yj2=1`a5SS=KXq&jA@q?h!Y8vcnP2rulWg_lKlpEtBj(YHilb49MsMUt5dxR_VM= z_H>!y?Uk%7t-HiYgx;>8A$>j8nOrano?EC+w_pWy?0d4RyOuuk#A8-4;df0J7mDuy z{Zlc?^ySl2|1ZQ>MhZ7iIzEreIxt@WvQ+b(N+qCNzf~A1*CJBRu5q957{2$TI|%`9 z?VJ84s{C@#$lb&1crX*C3#dLpbf~6iU8x#x)>bqZi&bK#WI(b zgI9q0HNpf`#5VaBQ!C*@xl6uxLk@_2xs#@(JxxYf9 z3vqSo;(~-_xYwapyW)K28?pfH>d#XP3GzWx9oKt^Bko~zQsv%*ACL5()W1I5an<-o zyRRF%qKVL=HAmah(;5s38fbs!#d zh6#Tn9MB-bf!I3o{hH{foV`-wfhMRynrvkHMZ$Eoh~iES6_u?5-hTSUH)u$J2O0{H zz+1qx?B{Bt{~qtZmSk}r{k;zn2$dG0$)144Ugbg_))F~oFf9$%%2 z?iZ$TiN*~()xCd>K_=|WBKkk!4ss!*GW!plm3F=0<%@ciai}EmJY@RwDLfFCFAs-; z%Rt#bXGTls-jM*`2BbH?*1aZDgmf%W<18Y|EcnHZ?GM!9V_ur8&JRx-uHbVW;DWx8 zMTCXTB-gu!UH4zkk#ptN4+$69nf)cW2v^6F#eR0A z%6k!YRVLr%1Mu)E+1cQOc1)7aK}@H>l6k?awD|FLtwi9e0hiC>-t!dsL)2==3Mwf} z2Z2^vp2s`aepJ^>W5*AlT$~<}%o%Y*w8suWmIn*TJ*=}`>a6n7Kt)t3JbEGjJj)PJ z+S-!@uosLG$-iN=5hNi8*T@m(po#fpngbb~**DS)2lSS%_0*h-gK2d2=tV?30klQz z%5DSYTUiL*{P)<4zy#aEYQn5vl8N8|^$5pj_EJ>23!)6E_5E^q53&;qVAxzi$}&!RJ<`+OaMdO^_}R6 z89^t_X#oo@!?wz!u0J=Fql0n$F?>3B35L~)Kks&+b%a=KV+A8*N)h zZxAY!WQfsM^+pLxpf&U-Zjsh+^9~d*0t<`GCkmPVtdk&xGh6olqaPhY-h`1NB2#e$ z*F%_PIh}!ukbxPCFkXx`X`X*=BaZLP4grty!%lnx^(s+E8IaFi4caM?z>OJodX$#v zy?kV0h9Q1T%mfCqG=M%JorW+;9D7dw1j-7!B*V`>Jz+qh<1rw>H}EOv^^+u*>RR?+ zMh6)ANfu3T6kG&N-yYIPSTTT9;J0CYdT1zN#dDDUgkP~6V|0F;U5l;<0cUC;8oc`( z*mcd{>)RVrsxx6lTF=Ah$^=xFp7~;=2~-iY=VB3+H2t;0wB71~!7OPGC}>kPZmoj*v_mh!DaP;5;}J z1CaJdwsp7outzrlO8&@&zX71mywI8vY1J1?pF?6{G8n<&jLy0^MZWcM;m_e{CdfBn zf--AWkRtxHr3)_zl{G^P?-0yxbbo({v={)lz+I9@3CmNd6Q8dHa}Qw!XqNsA&4O)5 zV#<~Z^R`e(au(cMMXIqUx^ZuSP zKfZXa3|>Wy*603Xh#V0M+oJ^!rms&O@j;O zw$LwR0KBGg!N-)?Y*w`DH6$S%nqVbP{M*0c0Ab<6^JU5a*On^CaCj%xPdNCtQOH6^ zvOnW6-vBU8*Md-Ntp0@%-=(wjw)pp&k?~p>(7*(E;b~PTc?GLvSA-1CH{Ye6*9_*S zmDY-T1+MtL|6K92yPEod3;|2WJw(-AV;W7l=oiARSZ}I1<^;vmfH>kV5;mjexZl)3E>r`!93m#z-^iw42V#O$OS;nVRr&d zIa{9up3TuW4-CxMCFpE60C8r;mtfgUdY{zc12INU83`-(>agFT47}OeEkYZ|sHf(k`P(1-{d{pVOCRbt8fS zNhpn_Z=7wg6@*|@3Y|9H>q*L7eD^^fMxyTizWbcH4rVu1>1VWi@O)pku(^0Wu-_8$ z%THb)H{ z`9tr+7i5i82 z9(j&`j{*rKaB*0l3_4WDLXx7M{|eT_2>a<^&|STWl)#&w+kltZ3YIBB`{uVUqW($U z--V?b35`}0sbsl~p~66T#~pBT-EWbPC5in6us9K2%PzV1WUwcVE&fUWX-ZOfKS=)g zrWR+K-j-@7x0)WLu}lbz+Gmc%0vFlYZY zHfH>TgL-Kcuh|bi291Am$ z1~N4(rXrRu((-!3Wp}wRXwva4U&c`>EI=rSNVUEe#C5Ad3P9o}2+J5uRRTJ0QLPTs zs!+vyllx7iit$1Xzus^fP->pkpR2}tGM;A2_5dc*`5WQre&?} zBpZ$*8LH!jmMTyy)76!UoFWv9F&BgW85Iu}H)BLgwObwy-Ibuq%{Uq{l)%Fm%&FRc z7WgP_+}GA|nRvpcLPe*UCh=JMNjMxk5fLpXT_7T+}Fq z2Mb}wMp%bt7TV^d7ISvl57J4K-B1z3v{&a^D9}wXi3g2iqkGcc?fjb}{6(!_Wj}05 z^Tkx=ABT@UCD@vI%H63mfBofRseb+H{q}rM`(dvY3JHNCNWQ&=j%ak_q2QFhp7qrz zWU`l-<>*6~lkmZg~r z*zynp?wHzd(AM&#-(aXS$3ZZ-?X#2M_^+`OA$!5OyT_d*J6G>`n8`G=d=5px=}4RE zG&QZSl35!SiR2oT-YAZq4LZKpB#CTK8C46gys zXnsj(#bw|ze?)A?h1OS~aLK{Fx2m(b;`);0F6QC_TNr_al^-ncwKu!iueEx9C*{+T zUVaB-T4@mF$+CVGMLu=9d}KdKXWEXcKM2x-yt&O2Xf2}>j&$qUvA;@RH3xz1Ng&&i zg+iI-0F`<)_j_l0{RIj@Ij)`CadO!kswY`x2u}l5exxr%2^vSB6P3-VjSL^eKUz0h z_B1D5S^QfCkYCDp3J+8}pSzCa{P;08Bja0^e=jGUY9+iMFzoz>gLZzs)+O2T%>>b5 zard+@_SMoCa!3mEP2Wcs=R9B_?NF_8HWeX@P_eFjo~ArcS@*EYWIR>Eo{nZAPK<46 zS^6Fy;J!3((=v$o{0KLl{dun1oJo zWqE?!(vB0W74;<1NDc*e=BB7O6E{b$akCIb>-j+xt#l)#rI*@dYDz9>2rHWpGg9j3 zfM%&i|3sQp8kWX!$hk9DLsx)rRa+D7JK{j1vP_qpH>xD#tuIq5G_ z&7ZG?ULR7ykKhe#T?S_;uUd;$yeakaygXtc#VY%Nn7JYhX&OivyCUPAL-##kt!k}PF?M#={y!y#}e zzr-y%*Ci)2Lnym7FzL)A-iHy^jN(CoOcdJ#p_@Lbg;f)PvCs4*WoIxfJ_thjI>55m zg6q|b)qD>JJICz-kX=3VAh19KK$ksZ-=BZe?EpohI8ZF)_tcb6CyF*&6ru>+HdRgL zxrt(T+Gx3wlR3;lOWE>qi@{pyppu;XA*y2wWS)3k3$W_x;sV+0;+j-6hdSwB z9mf;JmAIe9xVd&bUI*Ez&x9m%s>?Hu0Dc)3Nnwk%#wApg+>kXXzcWm9?Nz~o(v4yc zNvlOsflX#U8fWNxdlR%02(*m`Nq7P$U;AXhMwq0`gDDZS&OJxP=Uz=p!HNMmefi>R z)zggo271ljSz0ef=eQmBrVa18(W%kmzJY|wgmMSHKyinpizwFE_GbKCk}x+>{<wU^_WO4q+fc^F#NGmY^6e!0`iQHMSY$ns1$)no0(|&zr-+PT;j{iUXBNAl zk^8FL(@=&)sh$W#3`01z%;ovE%Wqt~9H@z45k^|DJ_0f&|O*V;L8p@RoiC$&{~K3uhq4sK_m zq`l$v^@`Z?boFZA9Bp95HL>m2PVAx$Bs3$SG+Q6Va?$foXx zJ04tk0FS;48-+0B$8h}kJD|dbIr8E{!t7t+U0CCjz$t?ibt@`r&xeX0Hp^7XYRr*$ zP8;P*ECaa42ZRb1;orjxsuP5A^)ZwAjQ>ddIM>*^<}z3pI8fjI?6VR!|Aqm^E$E*n zahvI(7bfy*rH^?Xshlo&3wE`AUd$**2?ATZZm~3bjtSkgcRLs;6NZx;WSD|P@jCNY z=TB~|fBg)U=!$=}T(Z0E>a(CE-W$Y8o;@Kvx)!O?&LG4k@Y~<@9`|0@b=JW3bygvg zR;B`AZtqRK<(Fnnpv&-b%Q2u)fLjy&()c^QL)BQ|moGN2{4sA!nw*0ZNODsJZs@d}qTV-+K{>P*Dxxzch!+ z`ZS$|QnF?U! zOwA6*)Y=j7UNk+K{3!IbfAUhQizX{etjd-1!h;2r`D*!QmNkMl9U8&0sW!Yz`eg%c zcv6H{EXVfZb8F7~jLp4(K!Xzr7W&*m>X8?)3SUhs4;1DLlA-C(yIV;u%B$Cs*bv4Q zF6tT&RPz`MZBxMK*3rdK5YeO>o)fYzWn*Y-`huk+rF=enftd?G_iMtTd#zNLRWdF& zu5>~`)%+6DR<}LW{qmQKDEGnK8+(rL`oDw<{k@6~)2<_OrGbD7q2Ymi$n(UI_I9o) zr_L*&YuX3i=~ujX88FZrOY}aa+bKV9>)uP2p)7QWTS1!@1qzs1lSmy#m6sg?cvcvP zyVZVQ6_m3mI|0EPyuqB~F~uQw1DpJh{23J>`sOqrX_plwz7~@<^o?#bDI2{X#7MNM zJbWSc-gN|gb;_?A;^aJ!#9v!?nGbcx=IX0b*ELP8J%uuX3}*}04+>_%>??Qs*oQb` zHC9D#v4k%s>q=5uekbf_YiFwDbh5-R0NjkOkAaeuR2$|NWF+yeEQeuQu zPAvEk^pJsezb$>E49gGxn?uH|OfR(GrhEM&;GBPfGK)#i)SVcsl5ZWS8poKM+m1n5 zTB()Ou9^$C`JkKbw3`?=n!7KznNyLio;@I?gIlu^4I!PSFObRiLdKpWOJB%; zZr@kExx()2eZVcDKorXaiB@dB$-hIpWItz`;{4XGK8@m7()&6RBX-m|t;$Y4zV~$K zsBdT< zT9ntvM^Iu9bR!Hs5TL=)(=J=eY8y@<_*k=%EUV3Tms)`7D5Z@)0cl*ev!}9>`I;5| zK(X3JHFISW<^@Gt}hc_T^8>&?hPHP{4hsWv>ufBOmP_) zTru}BwcQ2uO=?Uhk5E)$z2CO0Ts&P|vTp4v4A(N0Qlgj2#fzasOOrMv4nm@(j_-Y8 zlA%GJ0sZZl1&N39+OOVCW+ag(0<20aR&D0x!1K|K`j~TL;^r!dXsCS2;C?hRnK#US zxje9Znr}|9*QB{o3FQ54O?MlJZc=Y%CnoFQo4Wo|c{E>O=s|&&GQZ~I|1hmu1_3&t zd#A|Q@~#sPA^t{4`y0K|Nr5cWubxu1v)`_2L%=s@=eD%!0ZB^7g009Rg3dr%$lxxE z4kj`~9wDMNu}$N%E##AVPX$w(S^_x+RR6ghb9ZWwf)RC)mUypqkNCj8oX(q&WE{n@ z4fItsvh!6-rHC;jO`Glm2|IV{E%EYYifd$iAPcDh*gwG%UWw&y8J{W+$|s4;7$pZx z>h}PuJB7j4LHbsBL|Xo*ueBf@!E!F9ejlVgl%`4d1nAe(qclB1x@A}tzwtiE+69?d zM*e#frGEP`k71}F{`8G35BIp_(QcG_B5R-0wHj6?6-@j4TW!Bcj{Q3l20`NFU-je3 zl9JrxQ3!CBKrMi^LguIH@@OE%R*sp9slSV&nG#v}CTe6Xl0``4*#{hW*V*4e=|xqH z+Cg;?2h-qmnVmQ2z@}U?OQneCym;3TwTfa1zPLH5C}}~oRP!N-uAbT*G^A565&ggg z7(I1K!KJuWNlWvv@Zlc0o$MdI7!sjN8ZIsfqxN=oSHrzL?5`(T`lP`A>~H+s}yxMEw=1*2%i^F%oe{8lX(Tzrebh1I`&zDahX6xZ| zdo~PvVh%i|@4fdAfF_L^-V8(ssXylep-I)lHiuqus}!2&4$h_nj}RGB!2|j7UNlSL zKF3WB1u-_BM+R~#RguRehZH-kOL^d>`(+SF~* z;aUyEX=P%_)E81I%-jm(X_b(4C=jzfps&_H;+{^qd4(dIakICX=hJ| z?-ZLy59qnkIYcJv9mOpPO6Vr>(i11$=n2`rZ}F1ez_%XzH;fGCQ9uZ^l2t+BRiiBz z7JiV)Ar{@`U>+L2*HVsOJOi;-=8I8knA(B&(YyAe4!)V70*v;!^NS$|X&0rD>7MwP zkm%B#)V%8Gw!gynKnfItTrvM^0oL>GH_E-cVh`m@rM@m(*2L}lEcb7(1g!*o-Vx9% z=Ey0BjNVPlv>TJ0u%M>jpkil*~Ek>$`{-cBldIN<0Mkie?5_l^FJ?D z7PL7>DCM9hI7$nA`>F)yOqO;Ol6JK{ajUEC%G?J41Ma;Y>bqmlyB_p?GS!~8?FEoC z($atXw+)w+-_S%if!ukg=0z!Y+oFHy7T_OcMUR%%|YkC!?0O`rcG=#Ccx z?#}gv1W|N0HjSC-1mJ}-zE18Dxt1-!J|NpwgZbKPfEN}O*LGWOf+(K^Qw0;(w8D^2wrCbWDTA%LCHvJG z9j|e5-&~!3s>rz+Q0y*+u@l`CVDx?WXzd_+EiSe;eUylO(6=Q3wGL#>w9u-$6X5Qi zbka5@_G1mIpiYvfO8EEfAf?J8;`T3&r?sZx=+*Wlqr;-P2qn}#57&!3 z(JQ)Td(zh7Z#chElWcwGH+Xu4LW*quP+6752fvZ&WBL4EVW9%#bR=$q1fyWZoSiwB zO;(hjAVXQJTaCxv2GJ1_&b2!`L&MJibV+Ep_zW>wPR! z8O}5%1qbWCdA|(40lilUF@KTGlhkCjBb@TjRPipW8*wF^S)=xATyQ*a zI+kDxENn)aLN1D~xzIKZL^mps3<>rVZ#Lh>3RV^*&LfjazA5lWLwT&n#G_}|*QUj* znl>y?=r&)E=eN3J+JB;8zFCqdH#VhDYZR<7_J(ujn~6@23A=myMcURNq=|tpX5upJ z>->J%b@J@;;%lhd?-{R&L(M8x;b&n*qc50GlJ62g~|JL)hDbHfiDO`p|H052E}&y9k#zK05Y#BC&z|0Z5Y!cERY z65^o=1vp(W?JjP>sW4^w`R{mVxgFZ}J*~lspaBy!UIV6gSJ_|Kz6^ONhv;kxNf22} zBCom%H=+2gTS1hP_uEIXs6v0%f%Z400R)%RkcE#7v4mo|Ai@k4unyU&QeXo4Fz$+= z6E>jg>_hTD;)Wm8@pQ2g2=S6=5YJYnmG2@>S~`pEJ^)eE3$Qea@yg#m%HLn+bVVDw zih&?Bf)WPG4Fu^Ckr0+_S^&S)5dsF2sGb4%$c9)!^4!;O!AyvQ10Z%gTb&WR$9T`` z2(^W17)_9aQ;eE=esO_zUG~p$(8q8Ums5eKiMqQ$+Qs>>|N9tV6vYang~3*(r9<;W zafnPqKi92 zY{ahmo25~pOG3+o(89OyZ+!!yW8yGjYIJ0K2uz;oY%S^lryQ(>8~N7ybTc?8b(&v@ zlR`T~B=1n1FZ$?xUKf#yfz9E8@I3|(I$!jYg(lh$9;?d-;VtDS?mpdkm*+>SS1$#3db?@C+AfS9c>19Mcg8 zK*hiQ@4IF>379|x?!_}?;V(lhp$Qh8koWK~WXGfz@%yj`!q4dR(1Z%yYc5wwBdijE zyzmAE2?XV@esf3w+8G9fC`q)|=^KfGg0I+kGC@~JP8t-Jfg=o#AO%2GtX3d|gq2~! zo@fGb7)U4reL`G}_~7aEpQ{5B2?sabz`SnvY(d&-?CXAAIdj0k1?wP#Ut*99AX%Vu zIHdpP1c6;IR0inJ*I>dvK-$iwLCy%SxNE;<${Ae`Y#OsLUeFhw8wSyM2hGXG#qwi2 zjIhM=V3BHnFVYIc=5KK2}Af~r(DcJ!sNpsEqkOr!{^quld^M?G%V#|)-I!S6+T9sni| zBiUjWI0Zl>gY_YBpap%{pkvHv>7ft}jfrc;6Q3@Wb?Xsi_lX#U(%^z1Sp2Kc1@IU9 z9M4qn)I}6r68*X(3an<9%YIsrIAn^mzj1K0UVF-Z|h2=!&ZQ2mDf~X3})!{i)L2$tkh(IPZG7EPriNaslQT(^` z16)xdbnA~02bBpw+NB|$Gc_cH$HAdzw`Kt1Bn>C9h(zO(fJWfQmKb4|$a5PZu%djG z%@ks@EGR*Taj#_=yQ0ZVir^-k5dG0#1`tzTKtBCUW&!H^ri#n|CVQO(7q|GA_E|4hJxGJS~MX^?~_bC<_9AX;rc@sub*+q zc)=j+K>x5y0PT*P5#boobE;DyRgO2Y0GiaOVL@ndC-{HZ`tx|G`u~3%zar}lBF11) z$*2s*K9*2jadp{RH6lzy6fvW+Woa;!wVJYIB3FxwGD8bBSRDm?0R- z?C=?Rac{&~v*|~+b7;Z>YH5*E>${||2t^<-=MGu-liVX38)&M0S&|E8#X{c&?km+&}k)Jgu#P(u0LTV-V~_o zfXDRd;7=)ZmzykqxGFYx%rr>yOO+KNS4vSRrME@Iv_ml=RS>X3Z7U2+e?U(uXi-)L zb6YDrm)u?|bz}r4LoWIsg^p`&OTVi(vReUkvu)**qAcZMmQIw8zRYOP5ohf+=bf|` zeq+#O$g4L3-uuEu58H0g9J8IW=XIvS-Y^|R3?bH!5>k0!ao;}bfbo~xD)At{SJMTd zEYP~Pl*R~TKxrpL-32+=jW+0OFyOKAu>06X4_(k{-MwdIG)MyF>f}nZ6-ukxOpmmG zHzE0|V!8<6U0LSix(Ic^1Mbi#?m)NQewk)e!)Vj;hgd!JXYb5N+wi1mmEaeMV0Sst zdl-JKPAw$sJuxf4SyOFzL0YMZf5BWp$y&Px?N`|oz2o}^`+C~ZOkP9k^ zWT6sVB?tM)!EJG++&T3>CdfC_4O!5mr;_Q>xQ=JlLj|{B=x<5~JJWl|$W&3b`QK0- z(+j$6{(qs#s3Ev5t3WW{cy}uRedBb|AjfBn0|#~ApW`M*-7%-s?p|uOYkPG54;(pl z#j6-J++~*2XFhzwgZM*#*Z^S{CX@lvY1)lx!YEiC zhk@6R-m`T5J05%gOk8Ryo|l`?{u#e};ib^C>ZyCWSx#<$Uli!s*HY1q^r0vQ@0Z(K z2lhr2sm}Yn1t&CUm{kI0B{pyadJUeELF&{eY=3_C9;@pc>%mi4dwnUKSDBFLu7f{I zJ-_1ps5KZ3**%i^U_^iAjl*itBm?r-U?H>X{x->1gY+o~RbF4RyDzfy3m?J-<2dFZ z(X~V2VOw`~vXfl>Sp~2K1z|}2c+zRr;2(%!qTHU_;QMj~v}@}8$LqIX=QZ8~J#giq z#g9kO0>2yX2^yCx{%YE;V3`iPV@Ems2HM`FMH=)^&?2h>_A`(@T(}V+eh8Jzzo;;A zscj8X#XI~;|53t6*te-N^=G3SNNRY}W0n7mSSCFu6;?wpT^Q(J%(f3&=*?(ERIe9h z>#i`zahf4Gjn{cL{1^Z9yYX!;<$fg zbHm6#I!#&_&=LD6b0c_>P2l-rV2#&ZEOro5rmnNH+6&EY_dObuRO+G-|1%4&XB6yX z0IHZra?wl>5rO;Lvzp@YYW>l*izd+mkE151uLdvNr42oElFk=@US78Ma#;CMLud=R zAZP!m5%l6OJtHPs#D%Tpu3U`uX(3!FIz5@39bp`8yr%^eE*LEP5gfMM`Tmx#Gs{Ej z+RUTcD@;ktl!JF8g4^WwQWf4*uQ=3|2#w(mpc!Wg)h>GD!S?rm=QoP|tIW|o3uV_L ztg9T;b8^Y&3a5aumVaYo9qY8)v`Cxs5 zo;JQ*J#j6Id>ZyG?}_2X=$)s|FZy%K!A1$K-w7JtnuEcT^$H0_P_*zJ82s4s-j=_h zQL+PE73zUUqpH_VvmPc05H?5vg%DrZkQ*g`(}-N-$T>ulAEpVd0EM~0YVUFR8MEs1 zs{i*vx~>^jvX!#rR$ee&6JS@K=~?#FYC$P*aN1BgmW)~&h;#q@*uX)jr+3)u{Okz7 zu+NQQf!cU;g(Z_USpM&aQT+0@e7)!iRIDQrl!Ids!F_Uj^A+CIw0*%q@B$fhx#Rx; zSk6}HHx6WZG;&oisffDMa3-r5a4&>R!8cIk&L+M-o4?TAWS zFXe9ycH}5%nBisqw*o$2{_wv*bH>#ymQsoBy%Y@kt?j^90vfO6ylWI{Z?!>b+kJfi zN|_R(1LeV^<;sw9`@bxWzEwDdUr*1PK(8!UC#r<;7k*@Uz(yG2Ps*O1VIS^>?a{#> zR_G0d1(j9oyPRLaufDlh{J?l^@qZw_6g>BFaS{J}XaOZ{PvF)D#w*pjRs_^;0!Mukg*9S8vyYcV>Va`4bf{Nx&fy*7T0La#5ZWH$vW>GxIz zfgXIAFd-`B=U+)z6fBJ>u*Cr*@5vod42beQ^FN#w^oC5I0)OQV2&Pm-I>s+h$B-*M(-xtp0*wU`ghLB;WtEa#p}c$TChf(Y zU&v8F<@=xzjBD6aIF?$_#Ihso`Q5OMI#32J1cn$L(|Rvl3#OAG{^&o~;VIvx7`C_n zzXRSK^Y>%Ta=y|KWC+cGBzRL&~tB6iUao5v_Y8DJz<|YnYu2 z3<^YHF}AjI7On~ofB#_(Ax>y3@IPaQocVQy{F`m6=8RAKz^3-W0xVCPNB(X+Ww%gR zA@V9GvB|qE=z8SvD>gvr4e;cfyc_nD4+`T zR)uAFcA;>}>E2qH77*L6x(+YAxlM9MPOTWnE?yZ5#G=$;3r{Tw^a9pGm%gL`Wq#H% zf<1u);H9~D$1{;~X&Rt&ACaV>Fr*E$l&64WO?+Xt`JW@V{=>n5`2oc`sK9$%51}|L zl5rrK46vg_SZX0QQ7-HVYrY$1s)L7eIIt4pvatcW+#Vpm;PM+zKq6w4jQ~my3>ATX$8iqqgm0bbCBz03^xQ@~fNIE{A3XN3A;u z@aX8w#omntJv9HV&I{BU7%4BYrPy0)K?BH+u-kVR1`q|rz+d&KV8J5BhSf0_IsUx&JZ@iURE(Ig*zR+cI)sWfOEN0`OmMM$e>2F=4sVVqad{Q-ZaH z_5=;m!6j5eVPn|zN<4T-#=n2zJr#O;!G5x$#$z}OJjeo!oyf(3tY&T-lz#C7K)T0w ziS7ZBr^cKA1Ui=DlOSB(w)=A6$Qr`p1))=t0t7->DLe??<_5`3YM78cdVqrW|(|Vr?zGfhQH3|ZHFJRAFQp7&! zI(Iw_);w`4ScLIl7^Zj~_^1CRQ?>$c&HjhT0xPY73XD18bTr$;%6FhT8BB{rQyy4p zSt2R<+ed)=Bm1|({Y(b`W(^HG4JIn991_O=uoBSTj zrS-)x0c^0quU;(hi^fy{i#dy^tCaJ;)#e=C4$U$(c^*%v-Jj3nM^{t@!~2_N@+*ZCFV{^%m>ebEZub2F1C<|eyN&OPp4Hak81b9(su z$+_8MbEuxG`Lyo&+wyNU1L)DTUG+HC{IBHr6ol7da+gEV2(T}`{p8$-tp;zccF&Xu za^qZ?z;oeIkBqsWgL8=)9vRHBvGI(m`Pq;2kB~iS8#C13ch9%Hn;&w&Y?v%qhw0*R zp9j)wIICTpGGWolwwE)0&*c1=+%T6ZjJq`R7pFUL<_9e|05|yMr~I$_*{u1G^)sdO z(=PMBYmMiIGo;M<+5Y+;t@Gm2naQ~MbMv#0Yv<=)w$9fSWj40{s+sQ(oqm)t@wFBF zPr<+VmGM<0O@;b>hEp}0IR9Ce@w=w=Q%1(u(qEJAb2{@s6WxBbwo0q#XT6NS4rk03 z&+i!C-BmB#UV%#HIN?!6v@4A`|NJfY$#aO@sanNv{#I{$(rbje7U{qFN6lxC?RB5e zc=~+yr^~$fh5O)iq|*G%i+RRZccU5q(z)?V^P?jfkH1-|&yBXXrie3KWW&bO?&@>h zS@RP)^S?iZR?WIQ&VUEzjlF1nJU)No$*s^Pb))I&dG>o)>-_vO*}Iwf?%#=%KPKHb z3e8Sb@)EL2MS3Cs8e07{ajT?u#|h-!u43J!T_sx(lNB7HMoMjm51Zgb#mW|pPF~I3rR8b3Jzf( zok9Eh0C&C>{@yra=J|Z1aQ>yx{e|p}PKK9M*FXK1(90ryj(ZfQ(JW2K-g`6Y1KKJ^ zdRTY3U2LFg94tNV*YXLg2=tW|(6Rpje^vNA;jXyUIl}EzC#LfrMq$bsrRsG}+yivX zYkBh&0^f?RQjFW89&Fc5+BPT(KVi-jCGv}>0*qd43^^5g~dC`qE+x*$;4MJ35y3_O>w5qOwi=T&FvEDpNadmvqQ? zs9%z)TLp-1H?%ZMD1L5Vu<$%S6PpBFR?RwMqs>O`N3shAhB>oE*EE0l5bX`|#|ppW z0&hnqd=Gy;*`#YkE=D!QRtj!Ce5UzR{mZ|h_8BuSNoyY@t5ga`T_hXag}eHtd|$UW zwkBaVZu(os+mxf>E!cI5@B!>)17aG%I(w^4;AX-hs_6p;I-jbKkc21aMugH8XtaND zZUEE9=~y1^2CfpFyO;crZ`UK?3XC6@TOCNh%8@!drRJ|}c6GemDycd=W02o^UG~V# z9WQ-}(5RMv1FpofOa#;oA&>ddK`asH4R-n*5UK0-l5ZB$nT2&lH=1?c!oEXz5|P(n zY+UCg_vtXx8Mt)_b3=aO4s)#;>__K|kiKbHE?X^@CSTe`Lj^u?nh0rsJ?+(D{6p2K z?TFDdjYU!l88%2=3#;k}a#O}cRq!HilM|MuZ(>#O)bPrE>&tA9P`nC(iosMf?gHm3 zFi#oV^Iy9Jz9T%#Z48Uwsm=2uU-$8&3z4e4T_Uln**+1&+^-EZNTV)tw(SFtzot3T zpN=NV|GKI6xwTj3h{*7jy)E}v6b>{y*r9tE=-ItuMoc?6MK4252UT~Ys zh%R_aUHuOEjBwrxlf`gF^!nrX5+3^o5b@Ut-~DSSNH|qX~UIZDkEEC$I5P ze7p{?U%a@^7ZgLuGg~;}j&EqaBFcOo*bcb}TQ}kRIa|t{ukQ_XRy&QV4de%F?^`>mX ztTk9_pzBYZLgq)hB?sm?nzM2We>$>0aZ0VHZvkfb)OuLe32OsjRe5JM_5nZ-LedBg zUy$7dx?@QjpnnKc#r@Zr@rPN*(T1dM%vb8sFrF_tt7Ej&{u{ceVZ2$@egD+gjol`x zE3ICZ>wZ(LYA@z;KHTQjVT`y;(JkR;j zL9J>|T2*MKXLLf8red{MiuMZ;2-7r-d1Cg47C^%HYms4%09<*&KiG%BjUZ$Rp~=$c zJ$HLtT_!c+1%4B4@E%dkFW`OnY-QjFmoJ%AkE2mjzR|qx%2?aI$sA%{T>e;u*Cxz0-j6VPXk9Q($rCx9d%q67d z9CrzPO}MA))h0fvtmH+$=+kvk_=l>}E>WjyWT2?bysL$Tb|~r)!Y$N$`OF|XhqG+< zmfGjxpqU6x9Clio7y2*>P0I~*o#vbGVucDKVptr(1*?`~{sSGiClZ05+b`_eyweTX zGr%7(`8Yy&j^-omRf8)VW3mj*uQ5-dy<>Pbbj%CBR!jH;E0nU!oq`j=cBQDl%cnDm>NbWqL;wLvH!V*`M`L^*2Frk%G+f^M;B(HQ68L|c213XSuydQI+3B|Renp$ zx5|zIouM=br zo4X|^@-RFlRhcr`xqUP&X`&GNlU1E zd!V3bmV zD7@aUcdC3(t0=sWoH8)>qFJ1iVq7|y-{diWLq-gF;y>>elJ6bT^o}KTal2qxHBjE2 zWFv3Y(@2_<`YZA%)^>V?!uAKmlMdWiSe4iXf-tK+8nbkUnHh zZvjC~F4!e7>BW4Fz?qMnujQ_NLW?q%8|M)sq?7NxKXsYlXnE>kPNJThkPlb3HG!8= zHFZ4qAt|secJM(%whR0>H?NO*SRZz{VL-j^U;f4YeJ>(Q=8H^(Z5!h&VDB|`d(E4c zwOS^AsgSw?MjnBQF(F3>3c= zZ8Ao%fx{}b>+0@MM|Ddg@ONk&6e5{9Wj4MUXO*`lJpM`cl^R?zx@HeK+gH5_Ji(<1 z;BN|~S8~oeJCX8tHG!5!a38@*q;=y=HOK#j%z~{E>iQ42QOybvn{EhsARMH#-Uv+A zwUqJSAl#lw*86ikkOqWKpX!@>wFd|2*94Kp z)GG|~-w3Zr+)jg)7)8r8dV^#q-0+~zcGC|Q~MhsKnV)iYaGol?lGVO5W*@i;L4 z7`sZnpn`kmBD~2ktHCiNg{L1%xp7mJ)mOa z6q>iC26q}gzMGunTXbK@f{llXPQjtoITXDW&RD3AY8dvoZ)~idb)XsFOOoR>UUVH7 z7M8Jm1+UFRUhrW?Zl{D3<*CU6TeYh1;cK%swLH6k9@QNX5LAJ!qE6ts3v>$U`zjayFro1@4vo0bB~{66^ogJBAw)Oy5HI+(nmzi z;>KVZ!)%M7^YS66v%j-mV*sHRUBwil8U}NY0iv>f_~QiooITEgY{HRTdv__CwD(?xxqLQ=a|pFOYTDC#*x>Q7B6kw zW?I$#Bz4Zp3fIrV$7QTt0tL)aFTcXbEnjG`PqsXN(mr(nCaNwoCH%k?+`)dV07)*BdYmG+=DSV{Ki`aM$h9NmPe2Hj9kSphnfAPZ-kxs|UV z(6gnD*fyXIW*g7Dtd^C`I~i9;<=XT!&!b^S8sHjrz0^?_W5}57hHCn=E7-C7C}AT% z;^zmp>_e5f-Mzabag6FFNp=-}4U(PI^=zY1Z1g;7o9+`=IdG$hvM)#>;r%4uh|r%s zdY3T-IKwB7Hl(m`sn@2(BeEeRjpqH0i_No*ir=im>lJS|_j^c^b5Q4zz=a(Wow4v6 zBCRPEfwhEDJ^LmvDRZ&dYU`@5JS~x>uzKsc#rbk!F)8WH^9lH@$+L z8_uG{FpKMa!P(L zzubG=7ZvOu|0OL&)BPLGb<9x;TuMHzk*ZZJ6DOoTq;=1MY2t!vzVbV3RRj6E)(MFP zlh`kbb%l(Bz`lL>7=mUFr1>Cc7Lk$bakZ;)N7#OU}NI?$ZptIiWb za}a-Z5Hts&>h*d;Wi|G5*M;>O?t4Uz>Ka#*j?s7_EE8I3ZPH41v`g|R+iYj5Kdg!< z{hXtbM%bPGT+8!0fQ7NG;2qS{?~pHCa?*%f?GPPB3ig4qG)~gNe#=iEsnm?D3Sk>H zo-g={_G64UFLU3>*ZAeC@!gjdQp##la?3JEje%8707@ALPx&bJgeQGQW)?p0M>e@A zCK3m%Fa?Y-VDmowA%a5Ag=WSvHV8GRflb@#>Vj8g^!0+e_3D@T(%tkx+REFwF+lnT zr^h}Wh`Lg^(qUm`d*y%eA|38#42ruqq@NVNxj56wv0Yy|B$Az$-yJ^!y4e0O_x_;d?6}bj55*B1zbAFrj z=<9b^2#r8|J|0!d(Q|epK0mDSGCGfT^uP znv&!@MofWNx*;jUY!bxMK(77tI<{AEsuU&I*W3EoItT|W1m z6Qe;tKbGKM+5Z^!?u1}@Q~L$-SbVb>ouU-^)};y6N=(0)C}|sNk3PnSrHox`ZLhf} zAzP*nMS609o$+Z^HbxOXJ1*3 z(xb^=!$kleY@I6dPV56{UGza|awYLD{0lgGBUwvXQx zLA|aUp3lEr4!#Q3pwxd0ovc-R&O#`WcUByb@io0W?=3nru z@H0q`mE$x&e|)9UL6L=WeW&=i`Oq`T8h^J;$#d<{K0ry|?LGDn^jDM43Tzbu9ZX!8 zv-%+s>F6md+S7wyRe0}c*lAzHNO*Ec15Fq4yGUMORQj}hVodYROY^2lx15#VD+I>B ztY_ZWkBlZgfjUDAkJl(N36>RD>8+p%Z1jATxWPo6gXhPh=L5+1E{HAowT0gs8EpUn zgT*%lvu)HnP7r2wb2sBKXs>NJ5I{%9Z=k-sMLt87zk~aZjyyo#j;I+I$5^Nj2(>Fg z2C3fh?tCpLqg7VwH}|jbr?Pv9Xs<@`jigGNZgo;LIxaYABYVPiT03tNof;0SIwbYY z)ni~c15Z^<4ilc*L#(HZXFT!DBwo4D{srDmDWE@G%`)b>ZAUUMXPCTxU}SBx_(gNO z_4hSjTI!z?ey^Fc4Lxi8b1O^LF-c&Vd?8NK{z)cDNNtPE0a=yuf~)fKcdQWx>|?y` zu?16x=Bw+@aD{>R{e;)l*G&v?iI%-T0HH?iX7Wy-uCt_;Y-ou(Ua!Tg%>5paKH954 zA^oo<#)2eLoEpf|pH}<)vtmZV*`->1Y|2^Ns!MzgW_3vF>EDtg`H<~@Wa?T@w{ro7 zx=BmXAGsTL<&O0#w#T4#nSm&kw=W7qs~W**l#QAW=LzYX$Rtqv~#_2$IxCo$$q|mOwvOguOYDq#*Z(2Pe;{p z4h5mwY4X2Pw)}40KVzPkF)5C-NWUOi>5%?gayhTYIoSl5uucA+_tTE`il(t9)r0fq zzJ!@m>;li?V-6KmVecRmL&_k2ljxdzIz7zEF5qvX=B54^+HG9mtnDAh(^X8ASD{Z;cr%hKp6ExC`w6CR)$(5Ag%YK^OLo^Zt~X$ppFQhM$>Zy z=P^ZH{PunH`y9;ykaw6=U)-&|^qCn>qpC*2)K2ZV9x;fV4@*O=QV|?SZMP<>|9x2t z+ZB&ABgon3^a6b_VuN*XBK!mPl}6nu?t$`{tMcZt4Mw{6C(5rqCQchSnS3EPx(d+` zdD8FJ^fSYH?mV6(YEr7dQE2~|XGR`@T3zL|Oc!c(C}cQobszGQk|G&7;DYcV9?7nn2qt0@got*aM zU%8LVr~wHh$Bmcgr;Z!EZM?+N6_{RRo#edJ5Bbb5)pWZe>Gy4UD>NzkuIjj7G5%(MRI5#C7-I*n=sLw$(ef)1HkG411<+zR%>k$c+7;~oyBK6o>+}zh*^8e- z<(VOjCdIGU4PD{8AVc~jnf`7?5^J5%At2Yl?Hd+}@bpG*B^!fs*{6@J=_3cbvYntx@1XQ{uULC_Y+Al$P4Q<3tA9;Go>te^Cnzk&mE-*-XZ&8TUwbL^kD}fJ{A!$0%)muJ7PXi?L$$^ z1t-f;#sa(w@0l38!S4otTBqxtkWqo6a;EX9i!_saxX65V;>WD%Amg5l>4$2cRs4sF zBpZA~*pj!1Nf`j4Mu8|umdYMC;HzvN+EFaMm{aZKv@`$ceOzjdTbW@`Yx6+QoQuGC&&*e|j1;MfPV0N|p=__c zu3|n+E93^h1J7y}*jJ^R3TUcTBVw3(XlmICnC*4z5&#*5%r2Dbp}!O{2a!LN0=$R< zpOV+*pB)1$VG}>kaneUTaU`-U``Xbg;>T@%&HkZhbERwR0kx2($fV~QsSZkRfVbNu zb(yuEWu#(nc%Qwem_m8CMA#KxYhaWB`q7wH>UTW|G}2xhL7>s6tB7=6Tj`k?)URHO zB^&(il3w^if-Akh9nLCZs#Qgss?#VGq>0cewu2%61|I9W>LWAu29>O$dkkt%*ey8G853|6P^0> zx*n?O%qg{ukq{gy&6WN7Xz|yN$zLA%8@CnDxoXTAS@qkp29(?`$QuutxP78N$Lg6! zdcF?tw9gSycDzIOxG1LK;f2Q=7-zs$)jg(i^bkkzowRF4MJGviKI%oJ%h_261BDLwX*$Y-D_Rjgopfx z&P(?BhVUh-x|6?w@tvtbf}mj8d3KGlCkJ4tuy0zwK;#@Cp3iyyh?woDI8U*+>31*W z96zXM`RN7q$jqrDts)Zc=xJBJ=CR_e3EzRVs-gDc-)N(+8$)iIC0BQ+u61#{@0HpK z6NM2j)Ae>1K6lW|SIUVY+D#&*1XDW%AJ}jh63Gz(2k}gTsTJlsX}R_|0JQI*qXp;7 z>6-*G7wN$qGNP!NzZy?3;E1Ddydv_>IkV=|u}3o>UpOIosh0la!PNG+ulgJL-l=13oTPlC&^83Q z9Ck(A7IqPSkMH4%g%~UzDXuP?u{mK;4iCbY5Snu$Sd1?AFO6|P{7SiI8!iGJxt)yl zExJttf&GAZIi`q13U=^&K>`rGFXHWUHkapxR&&6D^3Tn%osrLPJve2n-5MyP82F=I zxx#Y)p;Ae_Z%C(PO|EXn)bs3OOzL@BoO9<%tS#cYA8|Xi{XWqnhw>K5cHt%yRZ#f# zwBvSx5s?WZAYp%BcX8jm(w)<`y8qG!yt+x}9~bYE?vmO*F7}ea>$_;IrbxFO`Kn$M zw?S%g1|gNMw~a=2(4#6TMiWt!$ce&;6(zhPQ|*!f;%f^`2LzicF;ff~yBh0c1MJW$ zD&sHHR=>_??x9Br3ZhXN0z9VcUp}N03;K?LIg4jpI!Ej=oLyokldI+zegy;xg?~8a_ zZraQ^sEhcn7E6&Y<&;N{CU;$n#Jvn@Up+l2*}}?H`T@84_baO|((R;t)k`(Ex76-* z0*MZBAr5+(N}h*_D<+Ze3+;RGMlgtZ{*PbY@wB3Hr2!gWy+bhaY_Rq zWeNxkK#^#odI-|@<2>2Yee`D9%I29^kBo0QKOBA23xuUG_pf429SvL88GimQRs_w_ zj@2djUX{90unSf-2Jj4XHX)5*A~T;l?io-nEfl;(@?AWChns<-4ehmEV02`_D9|v- zWEzvT>CHA>!Ip8tlPTxkeZGdO$PmvYTaC86@}s5bkRDsB*>a5!n#LcCG|~y-biFM! zO$WUU7w-G;<&((KLWLf@0W80U3Bslz{24-ZjslATu>aLC1H>%l@xO4P=q0&^bVjG< zo%j0t%v_}5YqE8@M`Q`{VTBqyn|;95j%;L&_)>xeL1{&e}k>={V%}BmiFVMF=)hO zoj&m~S^c4gXpwM477LO?sE*Q|mC4V$Q(YZpf9kqTQLV}RKQ6-S`6KVFJ|j~gcVJP9QMwx_Z3j$(&(z&J6U9yp5-m*{7&ZY_=@hTbtI3b?Jw%r z7;&FIKHWV0Br9WO{fMd6&vK11#j4Sw?h^zLx}Gx(QZCdBy7+yA)-47Q-awT25<$Fi zpP_9~Ygac!9o=6yO+sK$hy_GQT~cLmoV+VX;w4mhCeG9>GK$PV)O;3WEL*Fdg&y+A z5EMtxY!E=|As+;~_mg1gxa~=U=(y;ld+Zv>W>N~;OsEAnQv>|-@7Dr#*N;4 zB&NE3Jv%V6Ye2ef5~&u+eHOmkmpeeIcG6qqsvJw602dEoYPf#~LCkQ@wMUHm?28(a z?c%G-W`E%V(c^wgIujLIkxmT(XKJ7ng~R8+Oo&J5Dt+^ci^>=l=dMrZNND~>d!;e# zd~EV*z}qpIz=rsIK2IBBye(6|5L~m#pp>mo#Q3xriW;qt8C*%>J*}$Cm+y#dXhM5W zp4r;vpB z1=$)2@}wC|nY+{Uxc0n6SWlnXEEvb6%lKPBqgs*)I&N3e_XYP4I}-AY>_xV`r53w& zp5{gcBK-=_B0NWmcD!98r2GSTl&yAw2Vl{XbDtkF{z0(6b1{}wK7HF5zH3grPBmWgYQ89Zirf*QMC*ANZVhK_3agq2Nrs$QBeu)lT z(-^CF2DdBMFa4@eSIvDMGN(DQv}w8g&6>(b*c2eR{S-kT@}`pFF(M?A6)2YI0F z?zXjhV!>-JHnu<_536Q+c73|W-xt)E2Y$MedMzz%epuAoB+hGYzx~bG@=@`4@GMmp znda&~JCU?MR>fx~HrLzR0e@o$KsgU#@$vr?UGeSNqqzvKZU3#|>RjAkQ5vQpU zdL|st<&;K-{L|aRL|ZK ztoAVqlip?5S|>LG(YWM%wz;v}St^8<1STO!c|uIKbt5sDD(yw)xj^EWqvAB>UJo7} ziFg&>Y*EMaMobocP8&fq@dnBKtw)Prez+E#I;{0GPBi~I?sS#x8VmI^Nz*EsGbwd4 zl;ILn#ia$s)Ma*hA(4s)hy_N-e+zdE;s0%P*pWL;8O8Q*Q0jdZ z&auGoy?ZAqzAd74P0!S(PRWlO@m|$7FLxgtt4X!52R4R0@?!Nqm_Cz`dPd1@(p!-S zye}`fEx(0im7nIUVp#oA@Z+Iz5fDr|C_As411isj zXB#0r0n%oP@VDHgSon8&^8*bb>X=&U{s#;TtA4giz%R9`{b4wZTQ*=FYp~^^^;->0 z9v@N}5G6yv+teq1L(F#?!Kx3MePc;;17jnbC3ikZX2wc>4UJ_vNv1!` z3XHAM2*qc>4QH$jy+p=vn}(SV`W@Gq{~$_&iJ;v4kWs*%QtwC?1S>E3S8!?Q$X&Qa zpA{8Cvu0)oaoh4m$Kz!Pv-oM6ak{J>8bT%(tgCF}-80{5p_Y(LR1R6LKnX>#6=pRi z29IdlB#S~12a6y@9nzeyTBjov@x)K|Iip3@?~tzxmt}49=JI3Qv}3xh z(w$^KFy`0XZvPE#*7rvEVrGxTE8W8Aqbsgdcte)CdT99LCa?qx-tANFC za>b?^m^`w6pNJ{oLWqL;y?04#X52UENRMBa&0d3ALo-36Ho_uzk;AA<96I;3kSlBDY zmcLD#wzY1Xd)~TSV{%)_B?H#wZV7=t-ItJhw-~7kBSsLgm-G^7o07vmIpiECKAFVp z6e_&Ld%N^5KnqLE2=}debb36<-mamqf_eGiQqW4faE!cNG4Wh#V?Az#87~6oncsLk zehR@OgA+)V!`*oUfqS2`)7w?P=RO0j+xx+!_dDfT#@NNA9P=@w@fS2y z^spB1lai!rrX*>%|I|MNqHC!+#ezPonq-!egKTufazRRM)az)N8Nb#(yEwoVs-Lppv;KBNZ;Jm`?12cmT@)1XK+72y=B z_TFlyYW-XVEh9!+O06PHtwgjYCgEsG1|iwP+kr_R0B`5ycD9nH+hwXhHnl;pG8Cy* z2#K*pXM2&^gajkVC%&=#mr}yh@OgUwAy^QZQ15mi&bUdgD;UvDdOk3AGNlss<>lV- zv##CIp4&-V2h4f^o9Em!$ZB9NW7%ycsW+jNln7emewm?b>sV zw2XKu4|4nMg}Wyw{Ym2mv0wsDIV(}HaevY?b|gsU^7r=1NbKAe>;~Z2A^26pEQ?N1 z!gIwI7?`Bm%xPd~{58&v1BhM`komY>-JPTf4vm%Kwr1YO?*Wz|;l%Zy4+x>2U?uoZ zy{MW#qn=vgD1#Vj;16fpS7>=@ThgV1F|LO@!${xT6jN>3QOA^H{~L^dNZ95W@LP;g zhMdC)^-|J%pQ5Xz-8$oM#K&Ne>CG%Mf_xHD^HJQX7D=9-jhSPgOh3Hkx0V0gYk@x| zy@0Qwmo5{o_pKx)87}AtK&^A~OLnPd%T=m|b?T$S?leMJ_Oh2qZx?P5GPiJbN*L6K z!xveLV+WyLWmxe;vty?15Q)!`uKn3%8;p+|75@Gfn=X7X^|VT`=fpYP*>nEy+mxnH zX{7T;@W_pk-2QNFBV-+|dH^}9gxEs7l>NPtSZH4oiZ6jp+-F{8?+nGkfJOI)){<~Q zO8519Abbk*5{NHj{JKfE{JI8&3xM5G{rxZt+$?jpzsi z^%4XEm5pBl<4Ct*u2(D80Vq2Juc4~ELFN_iNC|_QZ@3N$kD*;V#=jHPR{}HtsTefd zR!HK1m%5I3+tT+>ijXtMvW%r^t|O62%*yf67ICAKM003lS11wz6OEl)q$)m!qa1T& zlnXse;+%f8RUMzY^&KRTTS1((vJ!Z19mq)o$-7ZI1(J)95(0)x`0Mrjx`lsTLNy5% z7G!-nBkACl-;@4xp9LDA%EPzPPoEP8TDX1`K32ARE;fWuegYu0B-v&Gp(XX<*&=~v zjxX^~3wSd(DhB>aUes*;$_yrGO9|}ri-bDX0P{o~L!dDLD-B-LeN=5DfAtSlKaM}A z`F35-UlbM6QHojde=)Av2V6K7_Auxs4(4qoSmjuwFIO~Idg{A*KIrpr>;clz_ z40gf#B_R7&CM4MdwRXvB?C3`jLNZOoFW?GxO)J)2-=xO+2Eubc(ZhlJk+OOa`I&Z) zbg?>pxl$*7Ip$A37-@+VJLjU0EqKc0Mi=!thKf1Er< zJMqNqG12Z5(mImc8!o=2cZH@ofE-YQ1S`9MF5t!Cx`*7%V2Iz$)oCFuD*Uj>zj4uM zvmLl<0P+k0$$L?mG!q-tB~G%l(-Ahbo&=A1Nhe5emdz*#x-HTx_>=lZo0FnwN=6}P zgh%!z>9IRpl7F%vXtms?);CHw0W8ZY-ms8%B=O4sdZtUj&u%^>9?#>X5*;`U7bw_Wrno3i(BHbDdQafEB)wDT0 z%r|GSeA!#%Bih-tuw{0=p2U6(M3P08Y&I+oASI#Ws}I|E{gw_ufB&J>niBt zwq1fx$X{t?V)dgB@*b*A+-7R)_8unc<&HjP%(0tSbmdd!O;L6<;yRQ+r~DoX@(C^2 zyCCb@vG`Yr@i<0_qx`R2kckdeo~QGxcFsH(crBQql#64hKnSQ6Qp-2j3lUI@SEbqs zOoC)S?8rf+B20AEIvePDYdxcH(r6u}QSh1nwCYnH$W##0_BZJ0222#`q!kB^bf!s9 z{T?->?~WU7`R#x^9``ll{ksvb40Ee?mn3^*>Bp*R`WNYkFUV!EE#h<1yVw!+f)4(T zO9da~AvOtAuXtb*1Bn)J;8s&&m#9={!LA?~ zp3O5HYcHzS8rx1h_8CbjY@A_F7YqnmRo=WeQ6!f&?SL)rvGUY~@4V_(M_Su(g||o)4`$;ox?^oKN8%lgMv0NWO9j z*iD2KMj}XNq7Xj-kj&gHVw9mw1*ZaWS$SFOQFxjNgE}gZRiKJEr}g|^@STECErRWC zpu_`OdNa&suAnovOW)*H9iFn)1+@@1|EtENcTzJVq+8KQieB)BA2nnxG@Gbq?oNQXF_<}tw?VDe zvF@XxxjS81aJ7tXB1jFyodnvo)$90>1S0%YK`#(2`qK>lV=J_pse!zAajNbf(rDlG z4-z~;q_gA%7gXx|#A<4B-v9^_N!l$^?-fFPpP@V&ewB-SXRU6q<(Lhmfbg}-FlTJN z4-szfZ@?zT49dIA82toHOP{J0T}nKf|G20_`bg}RY^X6c$U5wpRBbiA`-?QtNcJ@G z|10XupPD!WFswrhXrh41auYQwRUjdykVGI@Q1B$$Q3-{Cz@kz#5Nt10kdbgSfaS1Jx~nsG|AX(B-FM#idG^C!I@H(!Z}xJx zcgjim`f?h6Q4yz(Qz2H>npi=~44)?GNcAjDh13A9-ZugiA4uhI@ zIDrXaxnOeQbHFJc^#Bw0tZ=m*AI>5&&*jRCLz@k3F~Q4QGID^VG)2@q2NlpYls>@8 z_AM2_XR7sxCu7mg5jcGqL<_PW;ccyTshFY!CCrlz(E>@x5nS`MMM+YV@u0jVKFKRA z@k;;j0?&flTV6xL+>ZO>*|qtvCXLCn+ht80#&ZY4f^hY0{^~#7;I;y_X1}yx)B(&? zY_Po)-Q*WrA#a=uWyvB3Jg>fm(faaR8WC7u$bIA@VW3|bPjy6PGtspjZR!rEG4-!!qtzmE6ef@rKkDZDn} zNS@g)d&XhFMzXiUPOhdS#5(j$01{mg6rj(}W`r0EEEOPHh_S$FSC_WN$Ll6}kqvn{ zw-N#l2mQ=dxY+w3``2RF3(h1gL3gC>85hm1$%*Jbh2~ajJjO(}11t3!f)zG(lo)h~ z1r)fOhvvJD;nkWx+rb$~MC3CCOfH%n2$|q<7ko)$ek{Jq!AL93eGY$XRaBN^z_|#7mi(y}=l9f7F_nHtaq~ zS?@@R1B_o5Z=u=T5+fPx%S`N3JH_%7ba%7Tan62SfWx|4OB1Mg9>u6Qfd!4=kcCBdVNTH+AqKi|}9c zFOFak0-3)RowXwnA(PI3C&1=J+nh4WU@Ce&30I0AHv-Qqw(gjG-SStje32AVX0kA! z&B-eHcf?|`nbTGpoHUt<0j%Y`V{!AbjFIlT)~3|qE+02jk`2Wxpu2dMY9kfPGuZh| z3=NrL`3g$ASt++G!q?2aOW#oyGo67)$XzHUqfY^Tb9J`^)MHIz3c{ zSyEk}G$M6f@?3DP?6;-&02c2c6E7Ya&e$~g1bXGE9LEt3EYco{Rn zFpu1RVPucBTs+HXYngyLS`(&t0szCrs!8F#%+vEjAK%+aB}O`sW`xy62J7%kead`l z`at}Awsbirjc*WHlW?OGMGaJ&8{+H?HlG=g1x8M>yag%UtVAzNH4$7&sR%4GSTdR*Gc+>5S}oxzjEGqZ5>VAzyuIpy zF+qOX?A(-la6M;6Xoqss-0w2C1&-Wp6#Y}E{GweyH!y5j*BY2I?(d`T@r|l*!QXLL z#YKh%1x#l*3|KFUPsqX7-vB4T+G%Vj^t?I??>58GKb%P*?I;i=;ckF1vl~ism86Ng z+$2TnPCA{X$_|ylUDsY47FNH9vixTMmSXzF8sD+8EkEU*^hO{nGyoxAN|bd-X2epI zEg@v-D=WriqnoJ;Y%-56xYt5+wb>LHpH@VQHdMt?vIyVgJCYL5tE?%v#AlM>Oni9>_#lAD)( ZS1rzwMwTby4Xe=Sz`mfp_x#vD{s;ZTOl<%F literal 0 HcmV?d00001 From 0d9db15bfc08d603ca13d795f17dcbeefd24cfa0 Mon Sep 17 00:00:00 2001 From: micah johnson Date: Tue, 30 Jul 2024 16:35:22 -0600 Subject: [PATCH 08/21] Working on tutorial for forming queries with the API --- .../2_database_structure.ipynb | 16 +- .../snowex_database/3_forming_queries.ipynb | 1017 ++++++++++++++--- 2 files changed, 886 insertions(+), 147 deletions(-) diff --git a/book/tutorials/snowex_database/2_database_structure.ipynb b/book/tutorials/snowex_database/2_database_structure.ipynb index d9fd04f..125e2d4 100644 --- a/book/tutorials/snowex_database/2_database_structure.ipynb +++ b/book/tutorials/snowex_database/2_database_structure.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "443a62b0", + "id": "8d563d3c", "metadata": {}, "source": [ "# How is the Database Structured?\n", @@ -13,7 +13,7 @@ }, { "cell_type": "markdown", - "id": "e1b9c8e3", + "id": "a9f0a9c7", "metadata": {}, "source": [ "### Where do datasets live (i.e. tables)?\n", @@ -29,7 +29,7 @@ { "cell_type": "code", "execution_count": 3, - "id": "a4a28a93", + "id": "979fad96", "metadata": {}, "outputs": [], "source": [ @@ -38,7 +38,7 @@ }, { "cell_type": "markdown", - "id": "a4fbe854", + "id": "07bf71eb", "metadata": {}, "source": [ "### What info is available?\n" @@ -47,7 +47,7 @@ { "cell_type": "code", "execution_count": 10, - "id": "05edebd8", + "id": "8fd4e693", "metadata": {}, "outputs": [ { @@ -96,7 +96,7 @@ }, { "cell_type": "markdown", - "id": "6bc99e67", + "id": "ba2df485", "metadata": {}, "source": [ "**Try this:** Using what we just did, but swap out PointMeasurements for LayerMeasurements.\n", @@ -108,7 +108,7 @@ }, { "cell_type": "markdown", - "id": "81088ff6", + "id": "6d106e6e", "metadata": {}, "source": [ "## Bonus Step: Learning to help yourself\n", @@ -132,7 +132,7 @@ }, { "cell_type": "markdown", - "id": "96478a34", + "id": "fbe9ae13", "metadata": {}, "source": [ "## Recap \n", diff --git a/book/tutorials/snowex_database/3_forming_queries.ipynb b/book/tutorials/snowex_database/3_forming_queries.ipynb index b0dba69..8e5eea7 100644 --- a/book/tutorials/snowex_database/3_forming_queries.ipynb +++ b/book/tutorials/snowex_database/3_forming_queries.ipynb @@ -6,93 +6,868 @@ "source": [ "# Forming Queries\n", "\n", - "Get Familiar with querying the database. BUT don't forget your [cheat sheets](https://snowexsql.readthedocs.io/en/latest/cheat_sheet.html)! \n", + "Get familiar with the tools available for querying the database.\n", "\n", - "## Process\n", - "### Getting Connected\n", - "Getting connected to the database is easiest done using the snowexsql library function [`get_db`](https://snowexsql.readthedocs.io/en/latest/snowexsql.html#snowexsql.db.get_db)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import the function to get connect to the db\n", - "from snowexsql.db import get_db\n", "\n", - "# This is what you will use for all of hackweek to access the db\n", - "db_name = 'snow:hackweek@db.snowexdata.org/snowex'\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Importing the tables classes\n", - "These are critical for build queries. You will need at least one of these every query since they reflect the data were interested in.\n" + "We have two options, `from_filter` and `from_area`" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
depthsite_idpit_idbottom_depthcommentssample_asample_bsample_cvalueflags...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
041.0Banner OpenIDBRBO_20191218_142431.0NoneNoneNoneNone268.0AD...2019-12-182022-06-30 22:41:24.610808+00:00None22602None2022-06-30NonedensityNoneNone
131.0Banner OpenIDBRBO_20191218_142421.0NoneNoneNoneNone377.0AD...2019-12-182022-06-30 22:41:24.610808+00:00None22603None2022-06-30NonedensityNoneNone
221.0Banner OpenIDBRBO_20191218_142411.0NoneNoneNoneNone228.0AD...2019-12-182022-06-30 22:41:24.610808+00:00None22604None2022-06-30NonedensityNoneNone
311.0Banner OpenIDBRBO_20191218_14241.0NoneNoneNoneNone243.0AD...2019-12-182022-06-30 22:41:24.610808+00:00None22605None2022-06-30NonedensityNoneNone
441.0Banner OpenIDBRBO_20191218_142431.0None268.0NoneNone268.0AD...2019-12-182022-06-30 22:41:24.702514+00:00None22614None2022-06-30NonedensityNoneNone
531.0Banner OpenIDBRBO_20191218_142421.0None377.0NoneNone377.0AD...2019-12-182022-06-30 22:41:24.702514+00:00None22615None2022-06-30NonedensityNoneNone
621.0Banner OpenIDBRBO_20191218_142411.0None228.0NoneNone228.0AD...2019-12-182022-06-30 22:41:24.702514+00:00None22616None2022-06-30NonedensityNoneNone
711.0Banner OpenIDBRBO_20191218_14241.0None243.0NoneNone243.0AD...2019-12-182022-06-30 22:41:24.702514+00:00None22617None2022-06-30NonedensityNoneNone
847.0Banner SnotelIDBRBS_20191218_100037.0None127.0131.0None129.0AD...2019-12-182022-06-30 22:41:28.401134+00:00None23406None2022-06-30NonedensityNoneNone
937.0Banner SnotelIDBRBS_20191218_100027.0None173.0161.0None167.0AD...2019-12-182022-06-30 22:41:28.401134+00:00None23407None2022-06-30NonedensityNoneNone
1027.0Banner SnotelIDBRBS_20191218_100017.0None226.0233.0None229.5AD...2019-12-182022-06-30 22:41:28.401134+00:00None23408None2022-06-30NonedensityNoneNone
1117.0Banner SnotelIDBRBS_20191218_10007.0None248.0259.0None253.5AD...2019-12-182022-06-30 22:41:28.401134+00:00None23409None2022-06-30NonedensityNoneNone
1247.0Banner SnotelIDBRBS_20191218_100037.0NoneNoneNoneNone129.0AD...2019-12-182022-06-30 22:41:28.440857+00:00None23410None2022-06-30NonedensityNoneNone
1337.0Banner SnotelIDBRBS_20191218_100027.0NoneNoneNoneNone167.0AD...2019-12-182022-06-30 22:41:28.440857+00:00None23411None2022-06-30NonedensityNoneNone
1427.0Banner SnotelIDBRBS_20191218_100017.0NoneNoneNoneNone229.5AD...2019-12-182022-06-30 22:41:28.440857+00:00None23412None2022-06-30NonedensityNoneNone
1517.0Banner SnotelIDBRBS_20191218_10007.0NoneNoneNoneNone253.5AD...2019-12-182022-06-30 22:41:28.440857+00:00None23413None2022-06-30NonedensityNoneNone
1657.0Bogus UpperIDBRBU_20191219_100047.0None206.0157.0181.0181.33333333333334AD...2019-12-192022-06-30 22:41:32.716527+00:00None24292None2022-06-30NonedensityNoneNone
1747.0Bogus UpperIDBRBU_20191219_100037.0None232.0237.0NaN234.5AD...2019-12-192022-06-30 22:41:32.716527+00:00None24293None2022-06-30NonedensityNoneNone
1837.0Bogus UpperIDBRBU_20191219_100027.0None249.0252.0NaN250.5AD...2019-12-192022-06-30 22:41:32.716527+00:00None24294None2022-06-30NonedensityNoneNone
1927.0Bogus UpperIDBRBU_20191219_100017.0None286.0296.0NaN291.0AD...2019-12-192022-06-30 22:41:32.716527+00:00None24295None2022-06-30NonedensityNoneNone
2017.0Bogus UpperIDBRBU_20191219_10007.0None268.0265.0NaN266.5AD...2019-12-192022-06-30 22:41:32.716527+00:00None24296None2022-06-30NonedensityNoneNone
2157.0Bogus UpperIDBRBU_20191219_100047.0NoneNoneNoneNone181.33333333333331AD...2019-12-192022-06-30 22:41:32.752326+00:00None24297None2022-06-30NonedensityNoneNone
2247.0Bogus UpperIDBRBU_20191219_100037.0NoneNoneNoneNone234.5AD...2019-12-192022-06-30 22:41:32.752326+00:00None24298None2022-06-30NonedensityNoneNone
2337.0Bogus UpperIDBRBU_20191219_100027.0NoneNoneNoneNone250.5AD...2019-12-192022-06-30 22:41:32.752326+00:00None24299None2022-06-30NonedensityNoneNone
2427.0Bogus UpperIDBRBU_20191219_100017.0NoneNoneNoneNone291.0AD...2019-12-192022-06-30 22:41:32.752326+00:00None24300None2022-06-30NonedensityNoneNone
2517.0Bogus UpperIDBRBU_20191219_10007.0NoneNoneNoneNone266.5AD...2019-12-192022-06-30 22:41:32.752326+00:00None24301None2022-06-30NonedensityNoneNone
\n", + "

26 rows × 29 columns

\n", + "
" + ], + "text/plain": [ + " depth site_id pit_id bottom_depth comments \\\n", + "0 41.0 Banner Open IDBRBO_20191218_1424 31.0 None \n", + "1 31.0 Banner Open IDBRBO_20191218_1424 21.0 None \n", + "2 21.0 Banner Open IDBRBO_20191218_1424 11.0 None \n", + "3 11.0 Banner Open IDBRBO_20191218_1424 1.0 None \n", + "4 41.0 Banner Open IDBRBO_20191218_1424 31.0 None \n", + "5 31.0 Banner Open IDBRBO_20191218_1424 21.0 None \n", + "6 21.0 Banner Open IDBRBO_20191218_1424 11.0 None \n", + "7 11.0 Banner Open IDBRBO_20191218_1424 1.0 None \n", + "8 47.0 Banner Snotel IDBRBS_20191218_1000 37.0 None \n", + "9 37.0 Banner Snotel IDBRBS_20191218_1000 27.0 None \n", + "10 27.0 Banner Snotel IDBRBS_20191218_1000 17.0 None \n", + "11 17.0 Banner Snotel IDBRBS_20191218_1000 7.0 None \n", + "12 47.0 Banner Snotel IDBRBS_20191218_1000 37.0 None \n", + "13 37.0 Banner Snotel IDBRBS_20191218_1000 27.0 None \n", + "14 27.0 Banner Snotel IDBRBS_20191218_1000 17.0 None \n", + "15 17.0 Banner Snotel IDBRBS_20191218_1000 7.0 None \n", + "16 57.0 Bogus Upper IDBRBU_20191219_1000 47.0 None \n", + "17 47.0 Bogus Upper IDBRBU_20191219_1000 37.0 None \n", + "18 37.0 Bogus Upper IDBRBU_20191219_1000 27.0 None \n", + "19 27.0 Bogus Upper IDBRBU_20191219_1000 17.0 None \n", + "20 17.0 Bogus Upper IDBRBU_20191219_1000 7.0 None \n", + "21 57.0 Bogus Upper IDBRBU_20191219_1000 47.0 None \n", + "22 47.0 Bogus Upper IDBRBU_20191219_1000 37.0 None \n", + "23 37.0 Bogus Upper IDBRBU_20191219_1000 27.0 None \n", + "24 27.0 Bogus Upper IDBRBU_20191219_1000 17.0 None \n", + "25 17.0 Bogus Upper IDBRBU_20191219_1000 7.0 None \n", + "\n", + " sample_a sample_b sample_c value flags ... date \\\n", + "0 None None None 268.0 AD ... 2019-12-18 \n", + "1 None None None 377.0 AD ... 2019-12-18 \n", + "2 None None None 228.0 AD ... 2019-12-18 \n", + "3 None None None 243.0 AD ... 2019-12-18 \n", + "4 268.0 None None 268.0 AD ... 2019-12-18 \n", + "5 377.0 None None 377.0 AD ... 2019-12-18 \n", + "6 228.0 None None 228.0 AD ... 2019-12-18 \n", + "7 243.0 None None 243.0 AD ... 2019-12-18 \n", + "8 127.0 131.0 None 129.0 AD ... 2019-12-18 \n", + "9 173.0 161.0 None 167.0 AD ... 2019-12-18 \n", + "10 226.0 233.0 None 229.5 AD ... 2019-12-18 \n", + "11 248.0 259.0 None 253.5 AD ... 2019-12-18 \n", + "12 None None None 129.0 AD ... 2019-12-18 \n", + "13 None None None 167.0 AD ... 2019-12-18 \n", + "14 None None None 229.5 AD ... 2019-12-18 \n", + "15 None None None 253.5 AD ... 2019-12-18 \n", + "16 206.0 157.0 181.0 181.33333333333334 AD ... 2019-12-19 \n", + "17 232.0 237.0 NaN 234.5 AD ... 2019-12-19 \n", + "18 249.0 252.0 NaN 250.5 AD ... 2019-12-19 \n", + "19 286.0 296.0 NaN 291.0 AD ... 2019-12-19 \n", + "20 268.0 265.0 NaN 266.5 AD ... 2019-12-19 \n", + "21 None None None 181.33333333333331 AD ... 2019-12-19 \n", + "22 None None None 234.5 AD ... 2019-12-19 \n", + "23 None None None 250.5 AD ... 2019-12-19 \n", + "24 None None None 291.0 AD ... 2019-12-19 \n", + "25 None None None 266.5 AD ... 2019-12-19 \n", + "\n", + " time_created time_updated id doi date_accessed \\\n", + "0 2022-06-30 22:41:24.610808+00:00 None 22602 None 2022-06-30 \n", + "1 2022-06-30 22:41:24.610808+00:00 None 22603 None 2022-06-30 \n", + "2 2022-06-30 22:41:24.610808+00:00 None 22604 None 2022-06-30 \n", + "3 2022-06-30 22:41:24.610808+00:00 None 22605 None 2022-06-30 \n", + "4 2022-06-30 22:41:24.702514+00:00 None 22614 None 2022-06-30 \n", + "5 2022-06-30 22:41:24.702514+00:00 None 22615 None 2022-06-30 \n", + "6 2022-06-30 22:41:24.702514+00:00 None 22616 None 2022-06-30 \n", + "7 2022-06-30 22:41:24.702514+00:00 None 22617 None 2022-06-30 \n", + "8 2022-06-30 22:41:28.401134+00:00 None 23406 None 2022-06-30 \n", + "9 2022-06-30 22:41:28.401134+00:00 None 23407 None 2022-06-30 \n", + "10 2022-06-30 22:41:28.401134+00:00 None 23408 None 2022-06-30 \n", + "11 2022-06-30 22:41:28.401134+00:00 None 23409 None 2022-06-30 \n", + "12 2022-06-30 22:41:28.440857+00:00 None 23410 None 2022-06-30 \n", + "13 2022-06-30 22:41:28.440857+00:00 None 23411 None 2022-06-30 \n", + "14 2022-06-30 22:41:28.440857+00:00 None 23412 None 2022-06-30 \n", + "15 2022-06-30 22:41:28.440857+00:00 None 23413 None 2022-06-30 \n", + "16 2022-06-30 22:41:32.716527+00:00 None 24292 None 2022-06-30 \n", + "17 2022-06-30 22:41:32.716527+00:00 None 24293 None 2022-06-30 \n", + "18 2022-06-30 22:41:32.716527+00:00 None 24294 None 2022-06-30 \n", + "19 2022-06-30 22:41:32.716527+00:00 None 24295 None 2022-06-30 \n", + "20 2022-06-30 22:41:32.716527+00:00 None 24296 None 2022-06-30 \n", + "21 2022-06-30 22:41:32.752326+00:00 None 24297 None 2022-06-30 \n", + "22 2022-06-30 22:41:32.752326+00:00 None 24298 None 2022-06-30 \n", + "23 2022-06-30 22:41:32.752326+00:00 None 24299 None 2022-06-30 \n", + "24 2022-06-30 22:41:32.752326+00:00 None 24300 None 2022-06-30 \n", + "25 2022-06-30 22:41:32.752326+00:00 None 24301 None 2022-06-30 \n", + "\n", + " instrument type units observers \n", + "0 None density None None \n", + "1 None density None None \n", + "2 None density None None \n", + "3 None density None None \n", + "4 None density None None \n", + "5 None density None None \n", + "6 None density None None \n", + "7 None density None None \n", + "8 None density None None \n", + "9 None density None None \n", + "10 None density None None \n", + "11 None density None None \n", + "12 None density None None \n", + "13 None density None None \n", + "14 None density None None \n", + "15 None density None None \n", + "16 None density None None \n", + "17 None density None None \n", + "18 None density None None \n", + "19 None density None None \n", + "20 None density None None \n", + "21 None density None None \n", + "22 None density None None \n", + "23 None density None None \n", + "24 None density None None \n", + "25 None density None None \n", + "\n", + "[26 rows x 29 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "from snowexsql.data import SiteData, PointData, LayerData, ImageData" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Query Time!\n", - "We build queries in python using `session.query()`. Whatever we put inside of the query parentheses is what we will get back in the results!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# This is what you will use for all of hackweek to access the db\n", - "engine, session = get_db(db_name)\n", + "from snowexsql.api import LayerMeasurements\n", + "from datetime import datetime \n", "\n", - "# Lets grab a single row from the points table\n", - "qry = session.query(PointData).limit(1)\n", + "# Find some density pit measurements at the Boise site in december 2019.\n", + "df = LayerMeasurements.from_filter(\n", + " type=\"density\",\n", + " site_name=\"Boise River Basin\",\n", + " date_less_equal=datetime(2020, 1, 1),\n", + " date_greater_equal=datetime(2019, 12, 1),\n", + " limit=1000\n", + ")\n", "\n", - "# Execute that query!\n", - "result = qry.all()\n", "\n", - "session.close()" + "df" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 23, "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAS8AAAEDCAYAAABksIKVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAATXklEQVR4nO3dfZBddX3H8ffHrDxaSSBLzGQDCyUVmBZCXGniI5KBIaE16QymYdoSME7GlnGwWm3U6YMzOoXWijJ2kAyxxo5FKNVmR1BIQ5iOFiKbkAcgIEsmmF0TsiIJpVQq9Ns/zm/hsLl39969Zx9+7uc1c+ee8/v9zrnfe+7NZ8/TbhQRmJnl5g0TXYCZ2Wg4vMwsSw4vM8uSw8vMsuTwMrMsObzMLEtZhZekj0sKSTNr9J0uabukHZIelfTh1H6CpLskPZ7ary8tc2Mav0PSjyUdbqCG6ZLuTOvbI2lRte/SzBrRNtEFDCXpIuDqiLh6SPtc4FLgJ3UWPQAsioiXJL0JeERSN3AY+EJEbJF0DLBZ0pKI+F5E/Glp/R8BLmigxC8D34+IK9L6TmjyLZpZBXLa87oR+CRQ867aiPjfiHgpzR5Lem8R8WJEbBkcA2wHOmqs4krgtsEZSZ+Q9JCkXZI+m9pOAt4DrC+95oh7a2ZWvSzCS9IyoD8ido4wbq6kXcB+4IaI+OmQ/unA7wKbh7SfDpwB3JfmLwXmARcC84G3SXpPGjMA/KOkhyXdKunEKt6jmTVn0oSXpK2SdgC3Au8vnYtaBnwa+MuR1hER+yPiPOAsYJWkWaX1t1HsWd0UEXuHLLoSuDMiXknzl6bHwxR7amdThFkbsAC4OSIuAP4bWDvqN21mozZpwisifjsi5gMfArojYn6a30uxx7NT0j6KQ77tkt4yzLp+CjwCvLvUvA54MiK+VGORlZQOGQEBfzNYQ0ScFRHrgT6gLyK2pnF3UoSZmY2zSRNe9UTE7og4NSI6I6KTIkAWRMTB8jhJHZKOT9MzgHcBT6T5zwEnAR8dun5JZwMzgAdKzfcAH0wn/pE0R9Kp6TX3S3prGrcYeKy6d2tmjZp0VxubIakL+HBEfAg4B/h7SUGx5/SFiNgtqQP4DPA4xR4bwFci4ta0mpXAt6L05zUi4l5J5wAPpPEvAH8IHAI+AnwzXWncC1wzDm/VzIZQI38SJ53ovhX4TYqrfR+k2Ku5HegE9gErIuI5Ff/avwwsBV6kuO1h+1gUb2ZTV6OHjYP3Np0NnA/soThRvTki5lFcvRs8cb2E4uT2PGANcHOlFZuZ0cCeV7q3aQdwZvnQStITwEURcUDSbOD+iHirpFvS9G1Dx9V7jZkzZ0ZnZ2fr78bMfqVs27btZxHRXquvkXNe5Xubzge2AdcBs0qBdBAYvC1hDsV9VoP6UtvrwkvSGoo9M0477TR6enoaezdmNmVIerpeXyOHjSPe25T2yJr6e9IRsS4iuiKiq729ZrCamdXVSHjVu7fpmXS4SHo+lPr7gbml5TtSm5lZZUYMr2HubeoGVqW2VcDGNN0NXKXCQuDIcOe7zMxGo9H7vGrd2/QG4A5Jq4GngRVp7N0Ut0n0Utwq4fugzKxyDYVXROwAump0La4xNoBrW6zLzGxYWd1h37n2rqPa9l1/+QRUYmYTbdL/buOgWsE1XLuZ/WrLJrzMzMocXmaWJYeXmWXJ4WVmWcomvOpdVfTVRrOpKatbJRxUZjYomz0vM7Myh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5llyeFlZllyeJlZlhxeZpYlh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5llqaHwkrRP0m5JOyT1pLaTJW2S9GR6npHaJekmSb2SdklaMJZvwMympmb2vN4XEfMjoivNrwU2R8Q8YHOaB1gCzEuPNcDNVRVrZjaolcPGZcCGNL0BWF5q/0YUHgSmS5rdwuuYmR2l0fAK4F5J2yStSW2zIuJAmj4IzErTc4D9pWX7UtvrSFojqUdSz8DAwChKN7OprK3Bce+KiH5JpwKbJD1e7oyIkBTNvHBErAPWAXR1dTW1rJlZQ3teEdGfng8B3wEuBJ4ZPBxMz4fS8H5gbmnxjtRmZlaZEcNL0omSfm1wGrgUeAToBlalYauAjWm6G7gqXXVcCBwpHV6amVWikcPGWcB3JA2O/+eI+L6kh4A7JK0GngZWpPF3A0uBXuBF4JrKqzazKW/E8IqIvcD5NdqfBRbXaA/g2kqqMzOrw3fYm1mWHF5mliWHl5llyeFlZllyeJlZlhxeZpYlh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5llyeFlZllyeJlZlhxeZpYlh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5llyeFlZllyeJlZlhoOL0nTJD0s6btp/gxJWyX1Srpd0jGp/dg035v6O8emdDObyprZ87oO2FOavwG4MSLOAp4DVqf21cBzqf3GNM7MrFINhZekDuBy4NY0L+Bi4M40ZAOwPE0vS/Ok/sVpvJlZZRrd8/oS8Eng/9L8KcDhiHg5zfcBc9L0HGA/QOo/ksa/jqQ1knok9QwMDIyyfDObqkYML0m/AxyKiG1VvnBErIuIrojoam9vr3LVZjYFtDUw5p3A+yUtBY4D3gx8GZguqS3tXXUA/Wl8PzAX6JPUBpwEPFt55WY2pY245xURn4qIjojoBFYC90XEHwBbgCvSsFXAxjTdneZJ/fdFRFRatZlNea3c5/XnwMck9VKc01qf2tcDp6T2jwFrWyvRzOxojRw2vioi7gfuT9N7gQtrjPkF8IEKarNJqnPtXUe17bv+8gmoxKYy32FvTakVXMO1m40Vh5eZZcnhZWZZcniZWZYcXmaWJYeXNaXeVUVfbbTx1tStEmbgoLLJwXteZpYlh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliXfYW82DP/hxcnLe15mdfgPL05uDi8zy5LDy8yy5PAysyw5vMwsSw4vszr8hxcnN98qYTYMB9Xk5T0vM8uSw8vMsuTwMrMsObzMLEsOLzPL0ojhJek4ST+StFPSo5I+m9rPkLRVUq+k2yUdk9qPTfO9qb9zbN+CmU1Fjex5vQRcHBHnA/OByyQtBG4AboyIs4DngNVp/GrgudR+YxpnZlapEcMrCi+k2TemRwAXA3em9g3A8jS9LM2T+hdLUmUVm5nR4DkvSdMk7QAOAZuAp4DDEfFyGtIHzEnTc4D9AKn/CHBKjXWukdQjqWdgYKC1d2FmU05D4RURr0TEfKADuBA4u9UXjoh1EdEVEV3t7e2trs7MppimrjZGxGFgC7AImC5p8NeLOoD+NN0PzAVI/ScBz1ZSrZlZ0sjVxnZJ09P08cAlwB6KELsiDVsFbEzT3Wme1H9fRESVRZuZNfKL2bOBDZKmUYTdHRHxXUmPAd+S9DngYWB9Gr8e+CdJvcDPgZVjULeZTXEjhldE7AIuqNG+l+L819D2XwAfqKQ6M7M6fIe9mWXJ4WVmWXJ4mVmWHF5mliWHl5llyeFlZllyeJlZlhxeZpYlh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5llyeFlZllyeJlZlhxeZpYlh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5llyeFlZlkaMbwkzZW0RdJjkh6VdF1qP1nSJklPpucZqV2SbpLUK2mXpAVj/SbMbOppZM/rZeDjEXEusBC4VtK5wFpgc0TMAzaneYAlwLz0WAPcXHnVZjbljRheEXEgIran6f8C9gBzgGXAhjRsA7A8TS8DvhGFB4HpkmZXXrmZTWlNnfOS1AlcAGwFZkXEgdR1EJiVpucA+0uL9aW2oetaI6lHUs/AwECTZZvZVNdweEl6E/CvwEcj4vlyX0QEEM28cESsi4iuiOhqb29vZlEzs8bCS9IbKYLrmxHx7dT8zODhYHo+lNr7gbmlxTtSm5lZZRq52ihgPbAnIr5Y6uoGVqXpVcDGUvtV6arjQuBI6fDSzKwSbQ2MeSfwR8BuSTtS26eB64E7JK0GngZWpL67gaVAL/AicE2lFZuZ0UB4RcQPANXpXlxjfADXtliXmdmwfIe9mWXJ4WVmWXJ4mVmWHF5mliWHl5llyeFlZllyeJlZlhxeZpYlh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5llyeFlZllyeJlZlhxeZpYlh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5llacTwkvQ1SYckPVJqO1nSJklPpucZqV2SbpLUK2mXpAVjWbyZTV2N7Hl9HbhsSNtaYHNEzAM2p3mAJcC89FgD3FxNmWZmrzdieEXEfwA/H9K8DNiQpjcAy0vt34jCg8B0SbOrKtbMbNBoz3nNiogDafogMCtNzwH2l8b1pbajSFojqUdSz8DAwCjLMLOpquUT9hERQIxiuXUR0RURXe3t7a2WYWZTzGjD65nBw8H0fCi19wNzS+M6UpuZWaVGG17dwKo0vQrYWGq/Kl11XAgcKR1emplVpm2kAZJuAy4CZkrqA/4KuB64Q9Jq4GlgRRp+N7AU6AVeBK4Zg5rNzEYOr4i4sk7X4hpjA7i21aLMzEbiO+zNLEsOLzPLksPLzLLk8DKzLDm8zCxLDi8zy9KIt0qYmbWqc+1dR7Xtu/7yltbpPS8zG1O1gmu49kY5vMwsSw4vM8uSw8vMsuTwMrMsObzMbEzVu6rY6tVG3yphZmOu1aCqxXteZpYlh5eZZcnhZWZZcniZWZYcXmaWJRV/dn6Ci5AGKP4jj+HMBH42DuU0a7LWBZO3NtfVvMla21jXdXpE1PyPXSdFeDVCUk9EdE10HUNN1rpg8tbmupo3WWubyLp82GhmWXJ4mVmWcgqvdRNdQB2TtS6YvLW5ruZN1tomrK5sznmZmZXltOdlZvYqh5eZ5SkixvQBvBXYUXo8D3y01P9xIICZaV7ATUAvsAtYUBr7Smk93aX2M4CtaZnbgWNS+7Fpvjf1d45RXacB9wJ7gMcGX2c0dVVZG/C+Iev5BbB8kmyzvwUeTdvsJl47hfE2YHdaptx+MrAJeDI9zxijum4AHkmP3x/n79jZwAPAS8CfDflOXAY8kV5nbSt1jUFtXwMOAY8Maa/5mQ23/ZvKlrEOryFvZhpwkOLGM4C5wD0UN6gObqSlwPfSG1wIbC0t/0Kd9d4BrEzTXwX+OE3/CfDVNL0SuH2M6rofuCRNvwk4oYq6qqhtyBfp51XV1kpdwDuAH6Z1TKP4R3FR6vtRGqu07JJ4LezWpum1wA1jUNflFP/I2oATgYeAN4/j9joVeDvweUoBkZZ9CjgTOAbYCZw7zt+xmrWlvvcACzg6vGp+ZvW2f9N5MtogGtWLwaXAD0vzdwLnA/tKG+kW4MrSmCeA2Wn6qPBKG+BnQFuaXwTck6bvARal6bY0TlXWBZwL/GAs6qpim5Xa1gDfnCTbbBGwDTgeOAHoAc5JfY+Xxl8J3FLjezAbeKLq7QV8AviLUvt6YMV4ba9S31/z+vB69fXS/KfSY9y+Y/VqK7V3cnR41fzM6m3/ZvNkvM95rQRuA5C0DOiPiJ1DxswB9pfm+1IbwHGSeiQ9KGl5ajsFOBwRL9cY/+q6Uv+RNL7Kun4DOCzp25IelvR3kqZVVFertdVcT0W1jbquiHgA2AIcSI97ImJPGt9X533MiogDafogMKtGTS3VRbFHc5mkEyTNpDjsnsv4ba966tU7nt+x0aj3mTXyfR3RuP0lVUnHAO8HPiXpBODTFInfjNMjol/SmcB9knZTfCgTWVcb8G7gAuAnFOcZrgY2tlJXRbUNrmc28FsUP41b1mpdks6i2NPqSE2bJL0b+J9Glo+IkBRV1xUR90p6O/CfwADF4ewrjS5fT1Wf41gYr9rqfWatGM89ryXA9oh4Bvh1ihONOyXto/gSb5f0FqCf4qfdoI7URkQMPu+lOM90AfAsMF1S29Dx5XWl/pPS+Crr6gN2RMTe9BPu3yiO/1utq5JtlqwAvhMRv0zzE73Nfg94MCJeiIgXKM5/LEp9HTXGAzyTQngwjA+NxfaKiM9HxPyIuITisOzH47i96qlX73h+x0aj3mc20ve1IeMZXleSdk0jYndEnBoRnRHRSREACyLiINANXKXCQuBIRByQNEPSsQBpl/6dwGNRHDRvAa5Ir7OK1/Z6utM8qf++NL6yuihO6k6XNPib7xdXVFcVtR21nrSuid5mPwHeK6lN0huB9wJ7Ut/zkhZKEnBVnbrK9VZWl6Rpkk4BkHQecB5w7zhur3oeAuZJOiPtKa2kuNo+nt+x0aj3mY30fW1MsyfJRvOguHLzLHBSnf59vP4y9j9QXF3ZDXSl9nek+Z3peXVp+TMprlL1Av8CHJvaj0vzvan/zKrrSn2XUFzy3Q18ndcuV4+qropr66T4qfaGIctP2DajuLp1C6/dWvLF0vJdFLcpPAV8hddulTgF2Exx2f3fgZPHoK7jUj2PAQ8C88d5e72FIjCeBw6n6cGrnUsp9gKfAj7Tal0V13YbxbnLX6b21cN9ZvW2f7MP/3qQmWXJd9ibWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5ll6f8BLRCh2UfkUeUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ - "Pause for moment and consider what is in `result`....\n", + "from snowexsql.api import LayerMeasurements\n", + "from datetime import datetime \n", + "from shapely.geometry import Point \n", "\n", + "# Find some density pit measurements at the Boise site in december 2019.\n", + "df = LayerMeasurements.from_area(pt=Point(740820.624625,4.327326e+06), crs=26912, buffer=500,\n", + " type='specific_surface_area')\n", "\n", - "Is it:\n", "\n", - " A. a single value\n", - " B. a bunch of values\n", - " C. an object\n", - " D. a row of values\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# uncomment the line below and print out the results \n", - "print(result)" + "df.plot()" ] }, { @@ -102,95 +877,52 @@ "This feels soooo *limited* :)" ] }, - { - "cell_type": "markdown", - "metadata": { - "tags": [ - "nbsphinx-gallery", - "nbsphinx-thumbnail" - ] - }, - "source": [ - "**Questions**\n", - "* What happens if we changed the number in the limit? What will we get back?\n", - "* Where are our column names?\n", - "* What if I only wanted a single column and not a whole row?\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Filtering\n", - "The database had a silly number of records, and asking for all of them will crash your computer. \n", - "\n", - "So let talk about using `.filter()`\n", - "\n", - "All queries can be reduced by applying `session.query(__).filter(__)` and a lot can go into the parentheses. This is where your cheat sheet will come in handy." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# This is what you will use for all of hackweek to access the db\n", - "engine, session = get_db(db_name)\n", - "\n", - "# Its convenient to store a query like the following \n", - "qry = session.query(LayerData)\n", - "\n", - "# Then filter on it to just density profiles\n", - "qry = qry.filter(LayerData.type == 'density')\n", - "\n", - "# protect ourselves from a lot of data\n", - "qry = qry.limit(5)\n", - "\n", - "result = qry.all()\n", - "print(result)\n", - "\n", - "session.close()" - ] - }, { "cell_type": "markdown", "metadata": {}, "source": [ - "**Questions**\n", - "* What happens if I filter on a qry that's been filtered?\n", - "* What happens if I just want a single column/attribute back? How do I do that?\n", - "\n", "### How do I know what to filter on?\n", - "Queries and `.distinct()`!" + "We got a tool for that!" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 44, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Available types = swe, depth, two_way_travel\n", + "\n", + "Available Instruments = None, Mala 1600 MHz GPR, Mala 800 MHz GPR, pulse EKKO Pro multi-polarization 1 GHz GPR, pit ruler, mesa, magnaprobe, camera\n", + "\n", + "Available Dates = 2020-05-28, 2020-01-09, 2020-05-23, 2020-01-04, 2019-11-29, 2019-10-20, 2019-11-30, 2020-04-17, 2020-02-19, 2020-02-26, 2020-02-03, 2020-05-05, 2019-10-05, 2019-12-29, 2020-06-02, 2019-10-28, 2020-01-30, 2020-05-22, 2020-03-09, 2019-12-09, 2019-12-28, 2020-02-24, 2020-03-17, 2020-04-01, 2020-05-14, 2019-10-29, 2019-10-14, 2019-10-02, 2020-01-31, 2020-04-18, 2020-04-29, 2020-04-26, 2019-10-12, 2020-02-23, 2020-01-22, 2020-01-01, 2019-11-21, 2020-05-10, 2020-02-12, 2020-05-06, 2019-11-19, 2019-10-25, 2019-11-02, 2020-02-08, 2020-04-14, 2020-04-02, 2019-11-16, 2020-04-07, 2019-12-27, 2019-10-01, 2020-04-16, 2020-06-08, 2019-12-13, 2019-10-17, 2019-10-22, 2020-04-21, 2020-01-03, 2019-12-12, 2019-12-08, 2020-01-25, 2020-02-29, 2019-11-24, 2019-10-18, 2020-05-09, 2020-03-22, 2019-11-06, 2019-12-16, 2020-01-15, 2019-11-22, 2019-10-13, 2019-11-10, 2019-12-06, 2020-02-04, 2020-03-07, 2019-10-31, 2020-04-06, 2020-05-03, 2019-12-10, 2020-05-26, 2019-12-02, 2020-02-14, 2020-02-13, 2020-05-11, 2019-12-01, 2020-01-19, 2019-11-28, 2020-01-17, 2019-12-17, 2019-12-25, 2019-12-14, 2019-10-24, 2020-03-11, 2020-02-01, 2020-02-09, 2020-05-12, 2020-05-25, 2020-03-29, 2020-04-24, 2019-12-11, 2020-01-10, 2020-06-05, 2019-10-10, 2020-04-13, 2020-03-23, 2020-04-23, 2020-05-24, 2019-11-08, 2019-12-26, 2019-12-15, 2020-05-07, 2020-02-28, 2019-11-03, 2020-04-04, 2019-11-27, 2020-03-15, 2020-01-16, 2019-11-23, 2019-10-08, 2019-11-14, 2020-02-15, 2020-02-11, 2019-11-13, 2020-04-30, 2019-10-26, 2020-03-06, 2020-05-31, 2020-03-04, 2019-10-04, 2020-05-16, 2020-04-03, 2019-10-06, 2019-10-09, 2020-03-12, 2019-11-12, 2019-11-01, 2020-03-10, 2020-02-21, 2019-10-30, 2020-06-01, 2020-03-20, 2020-03-03, 2019-11-07, 2020-01-06, 2019-12-22, 2020-01-11, 2019-11-11, 2019-11-05, 2020-01-13, 2019-12-18, 2019-12-30, 2020-05-04, 2020-04-20, 2020-02-22, 2020-05-08, 2020-01-24, 2019-12-24, 2020-04-22, 2020-03-31, 2020-01-08, 2019-11-04, 2020-02-06, 2020-03-05, 2020-03-14, 2020-06-09, 2020-02-20, 2020-04-05, 2020-06-03, 2019-10-16, 2020-04-15, 2019-12-03, 2020-05-30, 2019-11-09, 2020-04-28, 2020-01-12, 2020-05-20, 2020-05-02, 2020-01-28, 2020-02-05, 2020-01-21, 2019-12-19, 2019-10-07, 2020-03-28, 2020-02-10, 2020-03-02, 2019-09-29, 2019-11-15, 2020-01-02, 2020-05-27, 2020-02-18, 2019-10-11, 2019-12-21, 2020-04-09, 2019-09-30, 2020-01-05, 2019-10-27, 2020-04-10, 2020-03-16, 2020-03-21, 2020-02-02, 2020-04-08, 2020-02-25, 2020-01-29, 2019-12-04, 2019-11-26, 2020-03-19, 2020-01-20, 2020-02-27, 2019-12-31, 2020-03-30, 2020-04-25, 2020-01-26, 2020-01-14, 2020-03-01, 2020-02-17, 2020-05-21, 2019-10-23, 2020-04-11, 2019-10-21, 2019-11-25, 2020-04-12, 2020-03-13, 2020-05-01, 2020-03-08, 2020-05-19, 2020-03-27, 2019-11-17, 2020-04-19, 2020-01-23, 2020-05-15, 2020-02-16, 2019-10-19, 2020-05-29, 2020-03-24, 2019-12-07, 2020-02-07, 2020-03-18, 2020-05-17, 2020-05-13, 2019-12-20, 2019-12-23, 2020-06-07, 2020-01-07, 2020-05-18, 2019-12-05, 2019-11-20, 2020-06-06, 2019-11-18, 2020-06-10, 2020-01-27, 2020-01-18, 2020-06-04, 2020-04-27, 2020-03-25, 2019-10-15, 2020-03-26, 2019-10-03\n", + "\n", + "Available sites = None, Grand Mesa\n" + ] + } + ], "source": [ - "# This is what you will use for all of hackweek to access the db\n", - "engine, session = get_db(db_name)\n", + "from snowexsql.api import PointMeasurements\n", "\n", - "# Get the unique datanames in the table\n", - "results = session.query(LayerData.type).distinct().all()\n", - "print('Available types = {}'.format(', '.join([r[0] for r in results])))\n", + "measurements = PointMeasurements()\n", + "# Get the unique data names/types in the table\n", + "results = measurements.all_types\n", + "print('Available types = {}'.format(', '.join([str(r[0]) for r in results])))\n", "\n", "# Get the unique instrument in the table\n", - "results = session.query(LayerData.instrument).distinct().all()\n", + "results = measurements.all_instruments\n", "print('\\nAvailable Instruments = {}'.format(', '.join([str(r[0]) for r in results])))\n", "\n", "# Get the unique dates in the table\n", - "results = session.query(LayerData.date).distinct().all()\n", + "results = measurements.all_dates\n", "print('\\nAvailable Dates = {}'.format(', '.join([str(r[0]) for r in results])))\n", "\n", - "# Get the unique surveyors in the table\n", - "results = session.query(LayerData.observers).distinct().all()\n", - "print('\\nAvailable surveyors = {}'.format(', '.join([str(r[0]) for r in results])))\n", - "\n", - "session.close()" + "# Get the unique site names in the table\n", + "results = measurements.all_site_names\n", + "print('\\nAvailable sites = {}'.format(', '.join([str(r[0]) for r in results])))" ] }, { @@ -207,6 +939,13 @@ "\n", "If you don't feel comfortable with these, you are probably not alone, let's discuss it!" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -225,7 +964,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.4" + "version": "3.8.10" } }, "nbformat": 4, From d8fecabe5a14112b85da9b74b5181d9b3b17ad4f Mon Sep 17 00:00:00 2001 From: micah johnson Date: Thu, 1 Aug 2024 14:37:00 -0600 Subject: [PATCH 09/21] A bit of cleanup --- .../1_getting_started_example.ipynb | 246 +++++++++--------- 1 file changed, 125 insertions(+), 121 deletions(-) diff --git a/book/tutorials/snowex_database/1_getting_started_example.ipynb b/book/tutorials/snowex_database/1_getting_started_example.ipynb index 2f1e4cb..9b115a6 100644 --- a/book/tutorials/snowex_database/1_getting_started_example.ipynb +++ b/book/tutorials/snowex_database/1_getting_started_example.ipynb @@ -6,7 +6,7 @@ "source": [ "# SnowEx Database Introduction\n", "\n", - "SnowEx has introduced a a unique opportunity to study SWE in a way thats unprecendented, but with more data comes new challenges. \n", + "SnowEx has introduced a a unique opportunity to study SWE in a way thats unprecedented, but with more data comes new challenges. \n", "\n", "\n", "\"Grand\n", @@ -29,7 +29,7 @@ "## What's in it?\n", "\n", "* Snow pits - Density, hardness profiles, grain types + sizes\n", - "* Manual snow depths - TONS of depths, Can you say spirals?\n", + "* Manual snow depths - TONS of depths (Can you say spirals?)\n", "* Snow Micropenetrometer profiles - (Subsampled to every 100th)\n", "* Snow depth + SWE rasters from ASO inc\n", "* GPR\n", @@ -50,6 +50,9 @@ "\n", "\n", "### So whats the catch?\n", + "New tech can create barriers...\n", + "\n", + "\n", "\n", "\n", "\n", @@ -70,7 +73,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -122,19 +125,19 @@ " 0\n", " 1\n", " CRREL_B\n", - " 109.0\n", - " 39.02857\n", - " -108.14074\n", - " 4.323838e+06\n", - " 747510.215981\n", - " 3122.6\n", + " 94.0\n", + " 39.03045\n", + " -108.13515\n", + " 4.324062e+06\n", + " 747987.619062\n", + " 3148.2\n", " 12\n", - " POINT (747510.216 4323837.789)\n", + " POINT (747987.619 4324061.706)\n", " ...\n", " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 5026\n", + " 4070\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -146,19 +149,19 @@ " 1\n", " 1\n", " CRREL_B\n", - " 113.0\n", - " 39.02858\n", - " -108.14070\n", - " 4.323839e+06\n", - " 747513.644247\n", - " 3122.7\n", + " 74.0\n", + " 39.03045\n", + " -108.13516\n", + " 4.324062e+06\n", + " 747986.753289\n", + " 3148.3\n", " 12\n", - " POINT (747513.644 4323839.007)\n", + " POINT (747986.753 4324061.679)\n", " ...\n", " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 5027\n", + " 4071\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -170,19 +173,19 @@ " 2\n", " 1\n", " CRREL_B\n", - " 122.0\n", - " 39.02858\n", - " -108.14067\n", - " 4.323839e+06\n", - " 747516.241630\n", - " 3123.6\n", + " 90.0\n", + " 39.03045\n", + " -108.13517\n", + " 4.324062e+06\n", + " 747985.887517\n", + " 3148.2\n", " 12\n", - " POINT (747516.242 4323839.089)\n", + " POINT (747985.888 4324061.652)\n", " ...\n", " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 5028\n", + " 4072\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -194,19 +197,19 @@ " 3\n", " 1\n", " CRREL_B\n", - " 121.0\n", - " 39.02858\n", - " -108.14067\n", - " 4.323839e+06\n", - " 747516.241630\n", - " 3123.5\n", + " 87.0\n", + " 39.03044\n", + " -108.13519\n", + " 4.324060e+06\n", + " 747984.190953\n", + " 3148.6\n", " 12\n", - " POINT (747516.242 4323839.089)\n", + " POINT (747984.191 4324060.487)\n", " ...\n", " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 5029\n", + " 4073\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -218,19 +221,19 @@ " 4\n", " 1\n", " CRREL_B\n", - " 118.0\n", - " 39.02860\n", - " -108.14065\n", - " 4.323841e+06\n", - " 747517.903394\n", - " 3123.1\n", + " 90.0\n", + " 39.03042\n", + " -108.13519\n", + " 4.324058e+06\n", + " 747984.260913\n", + " 3150.1\n", " 12\n", - " POINT (747517.903 4323841.364)\n", + " POINT (747984.261 4324058.267)\n", " ...\n", " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 5030\n", + " 4074\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -266,19 +269,19 @@ " 195\n", " 1\n", " CRREL_B\n", - " 102.0\n", - " 39.02910\n", - " -108.14299\n", - " 4.323890e+06\n", - " 747313.563476\n", - " 3121.9\n", + " 116.0\n", + " 39.03001\n", + " -108.13534\n", + " 4.324012e+06\n", + " 747972.708423\n", + " 3134.6\n", " 12\n", - " POINT (747313.563 4323890.494)\n", + " POINT (747972.708 4324012.348)\n", " ...\n", " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 5221\n", + " 4265\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -290,19 +293,19 @@ " 196\n", " 1\n", " CRREL_B\n", - " 103.0\n", - " 39.02911\n", - " -108.14295\n", - " 4.323892e+06\n", - " 747316.991742\n", - " 3121.7\n", + " 102.0\n", + " 39.03001\n", + " -108.13532\n", + " 4.324012e+06\n", + " 747974.439978\n", + " 3134.3\n", " 12\n", - " POINT (747316.992 4323891.713)\n", + " POINT (747974.44 4324012.402)\n", " ...\n", " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 5222\n", + " 4266\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -314,19 +317,19 @@ " 197\n", " 1\n", " CRREL_B\n", - " 102.0\n", - " 39.02912\n", - " -108.14292\n", - " 4.323893e+06\n", - " 747319.554219\n", - " 3121.6\n", + " 109.0\n", + " 39.03000\n", + " -108.13529\n", + " 4.324011e+06\n", + " 747977.072289\n", + " 3133.8\n", " 12\n", - " POINT (747319.554 4323892.905)\n", + " POINT (747977.072 4324011.374)\n", " ...\n", " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 5223\n", + " 4267\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -338,19 +341,19 @@ " 198\n", " 1\n", " CRREL_B\n", - " 106.0\n", - " 39.02912\n", - " -108.14290\n", - " 4.323893e+06\n", - " 747321.285794\n", - " 3122.0\n", + " 112.0\n", + " 39.02999\n", + " -108.13526\n", + " 4.324010e+06\n", + " 747979.704601\n", + " 3134.2\n", " 12\n", - " POINT (747321.286 4323892.959)\n", + " POINT (747979.705 4324010.346)\n", " ...\n", " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 5224\n", + " 4268\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -362,19 +365,19 @@ " 199\n", " 1\n", " CRREL_B\n", - " 106.0\n", - " 39.02914\n", - " -108.14287\n", - " 4.323895e+06\n", - " 747323.813386\n", - " 3122.5\n", + " 100.0\n", + " 39.02999\n", + " -108.13524\n", + " 4.324010e+06\n", + " 747981.436157\n", + " 3133.1\n", " 12\n", - " POINT (747323.813 4323895.261)\n", + " POINT (747981.436 4324010.4)\n", " ...\n", " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 5225\n", + " 4269\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -389,43 +392,43 @@ ], "text/plain": [ " version_number equipment value latitude longitude northing \\\n", - "0 1 CRREL_B 109.0 39.02857 -108.14074 4.323838e+06 \n", - "1 1 CRREL_B 113.0 39.02858 -108.14070 4.323839e+06 \n", - "2 1 CRREL_B 122.0 39.02858 -108.14067 4.323839e+06 \n", - "3 1 CRREL_B 121.0 39.02858 -108.14067 4.323839e+06 \n", - "4 1 CRREL_B 118.0 39.02860 -108.14065 4.323841e+06 \n", + "0 1 CRREL_B 94.0 39.03045 -108.13515 4.324062e+06 \n", + "1 1 CRREL_B 74.0 39.03045 -108.13516 4.324062e+06 \n", + "2 1 CRREL_B 90.0 39.03045 -108.13517 4.324062e+06 \n", + "3 1 CRREL_B 87.0 39.03044 -108.13519 4.324060e+06 \n", + "4 1 CRREL_B 90.0 39.03042 -108.13519 4.324058e+06 \n", ".. ... ... ... ... ... ... \n", - "195 1 CRREL_B 102.0 39.02910 -108.14299 4.323890e+06 \n", - "196 1 CRREL_B 103.0 39.02911 -108.14295 4.323892e+06 \n", - "197 1 CRREL_B 102.0 39.02912 -108.14292 4.323893e+06 \n", - "198 1 CRREL_B 106.0 39.02912 -108.14290 4.323893e+06 \n", - "199 1 CRREL_B 106.0 39.02914 -108.14287 4.323895e+06 \n", + "195 1 CRREL_B 116.0 39.03001 -108.13534 4.324012e+06 \n", + "196 1 CRREL_B 102.0 39.03001 -108.13532 4.324012e+06 \n", + "197 1 CRREL_B 109.0 39.03000 -108.13529 4.324011e+06 \n", + "198 1 CRREL_B 112.0 39.02999 -108.13526 4.324010e+06 \n", + "199 1 CRREL_B 100.0 39.02999 -108.13524 4.324010e+06 \n", "\n", " easting elevation utm_zone geom ... \\\n", - "0 747510.215981 3122.6 12 POINT (747510.216 4323837.789) ... \n", - "1 747513.644247 3122.7 12 POINT (747513.644 4323839.007) ... \n", - "2 747516.241630 3123.6 12 POINT (747516.242 4323839.089) ... \n", - "3 747516.241630 3123.5 12 POINT (747516.242 4323839.089) ... \n", - "4 747517.903394 3123.1 12 POINT (747517.903 4323841.364) ... \n", + "0 747987.619062 3148.2 12 POINT (747987.619 4324061.706) ... \n", + "1 747986.753289 3148.3 12 POINT (747986.753 4324061.679) ... \n", + "2 747985.887517 3148.2 12 POINT (747985.888 4324061.652) ... \n", + "3 747984.190953 3148.6 12 POINT (747984.191 4324060.487) ... \n", + "4 747984.260913 3150.1 12 POINT (747984.261 4324058.267) ... \n", ".. ... ... ... ... ... \n", - "195 747313.563476 3121.9 12 POINT (747313.563 4323890.494) ... \n", - "196 747316.991742 3121.7 12 POINT (747316.992 4323891.713) ... \n", - "197 747319.554219 3121.6 12 POINT (747319.554 4323892.905) ... \n", - "198 747321.285794 3122.0 12 POINT (747321.286 4323892.959) ... \n", - "199 747323.813386 3122.5 12 POINT (747323.813 4323895.261) ... \n", + "195 747972.708423 3134.6 12 POINT (747972.708 4324012.348) ... \n", + "196 747974.439978 3134.3 12 POINT (747974.44 4324012.402) ... \n", + "197 747977.072289 3133.8 12 POINT (747977.072 4324011.374) ... \n", + "198 747979.704601 3134.2 12 POINT (747979.705 4324010.346) ... \n", + "199 747981.436157 3133.1 12 POINT (747981.436 4324010.4) ... \n", "\n", " date time_created time_updated id \\\n", - "0 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5026 \n", - "1 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5027 \n", - "2 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5028 \n", - "3 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5029 \n", - "4 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5030 \n", + "0 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4070 \n", + "1 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4071 \n", + "2 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4072 \n", + "3 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4073 \n", + "4 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4074 \n", ".. ... ... ... ... \n", - "195 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5221 \n", - "196 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5222 \n", - "197 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5223 \n", - "198 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5224 \n", - "199 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5225 \n", + "195 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4265 \n", + "196 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4266 \n", + "197 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4267 \n", + "198 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4268 \n", + "199 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4269 \n", "\n", " doi date_accessed instrument type \\\n", "0 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", @@ -456,20 +459,18 @@ "[200 rows x 23 columns]" ] }, - "execution_count": 16, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAADSCAYAAACxZoAXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df5RcdZnn8feTTgHVMNIBokJDDCoGCYG0RMzKgIiuQX72gj+YkbPqjiKKOyZiNBk4kHhwwImszoy7elBmHBfFBIi9/NKEAYbjMidxErpDiBABwUAFIUIqrKQIle5n/6h7m9uVqlu3u35Xf17n9Omqe29V329X91Pfer7f+3zN3RERkc4ypdknICIitafgLiLSgRTcRUQ6kIK7iEgHUnAXEelACu4iIh2orYK7mV1uZm5mh5XY9xYze8jMhsxsi5ldGmzvNrO7zOyxYPt1kcdcamabg8f8XzM7LsE5zDCztWb2qJn9xsxm1rKNIiK1YK02z93MTgc+5e6fKtp+FPBD4FjgJHf/Y9H+/Si0Z4+ZHQQ8ArwXyALvcff7g2PuBf7W3X9hZm9w95eDx58HfMHdz6xwfv8GfMPd7wl+zoi776664SIiNdROPfdvA18FSr4buftr7r4nuLs/Qdvcfbe73x8eAzwEHBncfznyFAeGz21mXWa2wsz+w8weNrPPBduPA6a6+z3B4/+kwC4irWhqs08gCTM7H8i4+yYzizvuKOAu4O3AYnffXrS/BzgX+PvItsuALwP7AWcEm/8K2OXu7zaz/YEHzWwt8A4ga2argaOBfwWWuPtwbVoqIlIbLZOWMbP1FHrcBwGHANuCXVcDfwN8yN13mdnTwLzitEzRcx0BDADnuvvzwbapwB3AGnf/TonH/CWwwN0/aWa3AicAYa/8YOBzwBuAG4G+4PxWAne7+43VtF1EpNZaJi3j7u9x97nAZ4Db3X1ucP93FHrJm4LAfiTwkJm9Oea5tlPIuZ8a2XwD8HipwB74GdAf3Dbgv4fn4O5Hu/ta4FlgyN1/5+57KbyBvGuibRYRqZeWCe7luPtmd3+ju89095kUAuy73P0P0ePM7EgzSwe3pwF/DmwN7l9Dofe9sOgxx0Tung08HtxeA3zezFLBce8wswOB/wB6zGx6cNwZwG9q1lgRkRppi5x7OWY2D7jU3T8DvBO43sycQs/7W+6+2cyOBK4AHqPQ4wf4rrv/EPiimX0QyAM7gU8GT/1DYGZwvAE7gH53HzazrwD3Bts3Aj9oUHNFRBJrmZy7iIjUTsunZUREZPxaIi1z2GGH+cyZM5t9GiIibWXjxo1/dPfppfa1RHCfOXMmGzZsaPZpiIi0FTP7fbl9SsuIiHQgBXcRkQ6k4C4i0oFaIucuIp1hYDDDijVb2Z7NcURPmvcfO537H9sxen/xgln09/U2+zQnBQV3EanawGCG5XdsYefu/Oi2TDbHTeu2jbm/dPVmAAX4BlBwF5EJCXvpmWwOo0wt7iK5/DDL79ii4N4AyrmLyLgNDGZYunozmWwOSBbYQzt355m7fC0Dg5n6nJwALVJ+YN68ea557iLNF82Z93SncIdduTw93Sn25IfZnR8BSNxTj5PqMg7cbyq7cnnl4yfIzDa6+7yS+xTcRSa3iaRX6qUnnWLZebMV5BOKC+5Ky4hMYtWkVyrpSadIp8YXYrK5PItWDnHlwOYansnkpOAuMomtWLOVXL42q0SGC2D29qT5zsfnMnT1h7j2ghNIp7rG9TwO3LRumwJ8lTRbRmQSiqZiqtFlxoh72Zx5eL94mmQSP1m3jXlvOUQpmglScBeZZMJUTLU99tQUY8VHT6wYfPv7eunv691nsPZPr+4lP1I+EeQUPlkouE+MgrvIJFMpFRMOqk6LmS0zkYHPMMiHSl34VGx7lZ8sJjMFd5EOV1wSIC4V09vAKYlhsL9yYPOYK1mjerpTdT+PTqXgLtLBilMwcdMde3vSPLjkjIaeH8A1/XO4beOz5IJPBVEtMFO7bSm4i3SguAHTcAX5aNxMp7pYvGBWo05vH6+WCOxQmBopE5MouJvZl4DPUvib+IG7f8fMVgLhX0MPkHX3uWY2E3gU2BrsW+ful9b0rEVkH1cObObm9c8wnKC76xR66q1SrTEuXTR3+Vpd2DQBFYO7mR1PIbCfDLwG/NLM7nT3j0eOuR7YFXnYk+4+t9YnKyL7GhjMcMXPN/PKa8lnvzQrBVPO4gWzWLRyqGS6KJvLs3T1Zjb8/iWVDx6HJBcxvRNY7+673X0v8ABwQbjTzAz4GHBzfU5RREoZGMzQ9/W1LFw5NK7A3uwUTCn9fb2xV8fm8sPctG4bmWwOpzB2sGjlEDOX3MUp192nImQlJAnujwCnmtmhZtYNnAUcFdl/KvC8uz8e2Xa0mQ2a2QNmdmqpJzWzS8xsg5lt2LFjx4QbIDIZhQOl470wqLcnzbUXzGnJHm9vT3pcx4dvBplsjsW3bmLu8rUcrWA/KlHhMDP7K+ALwCvAFmCPuy8M9n0PeMLdrw/u7w8c5O4vmtlJwAAw291fLvf8KhwmMj6nXHffuK4uTae6Wjaoh2p1cRW8PmDcyKmdzVB14TB3v9HdT3L304CdwG+DJ55KIUWzMnLsHnd/Mbi9EXgSeEd1TRCRqPFc3NPKvfWo/r5err1gDtNqMLc92qtfunrzpOzJJ+25v9HdXzCzGcBaYL67Z83sTGCpu78vcux04CV3HzaztwK/Aua4+0vlnl89d5HxqdRzN+AT82dwTf+cxp1UDdWq9k2xTuvJV13P3cx+BRwK5IEvu/u9wfYfUZjq+P3IsRcCXw+OHQGudvc74p5fwV1kfMqlMDqtHnotUzWhTkrZaLEOkQ5UXFag3QNVOaXaCYyrCFmcdn5DVHAXkY5W7WpS7TDgXEpccFf5ARFpe9GKkwODGS5ftSnRlbqhXH6448oLK7iLNEm0t9llxrB7R+SBmy383Y03V99p5YUV3EWaoHigMOxlhlP3AAX4KoS/u+I3z7iUTaeVF1ZwF2mCuAUzOjFF0AzFi4NA4U110aqhkqWEW2D4saa0QLZIE1RKAXRaiqBV9Pf1lu267+qw8sIK7iJNcESFOiqV9svElfvddtrvXMFdpAkWL5hFOtVVcl8rVm3sJKV+9534O1dwF2mCsI5KWAmxywxonzow7Sz6uzcKC4HvP3UKi1YOdVRFSV3EJCKTVqnyBu10QVPVVSFFRDpRqVlL4WyldqfgLiKTVrlZSbWuRtkMCu4iMmnFzZBp99y7gruITFpxM2QWrRpq62X7FNxFZNKKGzR1Z3Qx7nZczUnBXUSkgnYcZE0U3M3sS2b2iJltMbNwYexlZpYxs6Hg66zI8UvN7Akz22pmC+p18iIi1epJJysY1m6DrBWDu5kdD3wWOBk4ETjHzN4e7P62u88Nvu4Ojj8OuAiYDZwJ/C8zK30pnohIky07bzapKZbo2HbKwSfpub8TWO/uu919L/AAcEHM8ecDP3P3Pe7+FPAEhTcGEZGW09/Xy4qPnjh6xWqcdsrBJwnujwCnmtmhZtYNnAUcFez7opk9bGb/ZGbTgm29wDORxz8bbBvDzC4xsw1mtmHHjh1VNEFEpDr9fb08uOQMnrru7NGSEHFy+WEuX7WppQN8xeDu7o8C3wTWAr8EhoBh4HvA24C5wHPA9eP5we5+g7vPc/d506dPH+95i4jURVxRt6hhdxbf2roBPtGAqrvf6O4nuftpwE7gt+7+vLsPu/sI8ANeT71keL1nD3BksE1EpOUVFxYLi7qVkh92lt+xpXEnNw6JVmIysze6+wtmNoNCvn2+mR3u7s8Fh/wXCukbgNuBn5rZ/wCOAI4Bfl3j8xYRqZviBbfj1mPdubs1F/lIuszebWZ2KJAHLnP3rJn9o5nNpTDG8DTwOQB332Jmq4DfAHuD45OvUisi0kLCIL9w5VCTz2R8VPJXRCSBucvXko1Ziq8nnWLZebMbWipYJX9FRKpUaT58Npdn8S2tM8Cq4C4ikkB0Pnw5+RFnYYus6KTgLiKSUDgfvtLFTplsjkUrh7hyYHNDzqsUBXcRkXGKqwMfcuAn67Y1rQev4C4iMk6LF8wi1VW5Ho1D0+bBK7iLiIxTf18vKz5yItO6K1eU3Lk735Tee9J57iIiElF8odOilUOUm1i+Ys3Whk6RBPXcRUSq1t/Xyyfmzyi7v9xC3PWknnvEwGCGFWu2sj2bo6c7xZ78MLvzIwB0p6aw39QuduXyHNGTZvGCWQ1/JxaR1nVN/xzu3PRcyQudkgzA1pp67oGwfkQmm8Mp5MnCwA6wOz9CNpcfree8aOUQM9uocL+I1N+y82bvU1HSgPcf2/jKtwrugRVrtpYtDFRKmFtrl8L9IlJ//X29XHhS75h58A7ctjHT8Bgx6YP7wGCGU667r6r1EXP54ZYt+ykijXX/Yzv2GVhtxuIekzrnXqmU53js3J1n5pK76FU+XmRSKzd4OuzO0tWFK1YbER8mZc897K0vXDlUk8Ae1QqXHYtI88QNnubyw6xYs7Uh5zFpeu7hTJhMNodB2fmooWllZsvElfwMOXDTum3ctG6bevIik8ziBbNiMwLVpIDHY1IE9+L0S6XA3tuT5sElZ5TdX6muc1Q44AqN+SgmIs0V/p9fvmoTwyXWyzAKMane8WBSLNYxnmAMkE5N4dX8CEf0pHn/sdO5/7EdbM/mRue3A+PO1Vd6wxCRzhJ31Wqt4kHVi3WY2ZfM7BEz22JmC4NtK8zsMTN72Mx+bmY9wfaZZpYzs6Hg6/tVt6AKA4OZcQV2gFx+ZHQ++03rto3Ofc9kcyy+dRPLbt9CLj8cu3BusUw2pznxIpNIf19v2SxBI65YrRjczex44LPAycCJwDlm9nbgHuB4dz8B+C2wNPKwJ919bvB1aR3OO7FaD17kh330zSL8yJVKOCytOfEik0u5hT0accVqkrD0TmC9u+92973AA8AF7r42uA+wDjiyXic5XuFsmKOX3NWQwYv8CKSm2GiFuLj+vObEi0we5a5MbcQVq0mC+yPAqWZ2qJl1A2cBRxUd89+AX0TuH21mg2b2gJmdWupJzewSM9tgZht27NgxoZMvpbiMQKPkR5ydu/P09qT5xPwZsUtxNasEqIg01v2PlY5t5bbXUsXg7u6PAt8E1gK/BIaA0ZFEM7sC2Av8JNj0HDDD3fuALwM/NbM3lHjeG9x9nrvPmz69+nexes5dH49MNsdtGzMsXjArNsA3aq6riDRPudx6IzIKibLF7n6ju5/k7qcBOynk2DGzTwHnAJ/wYNqNu+9x9xeD2xuBJ4F31OHcR0V769Wa1p2iJ53CKOTLLg564Rbsi1v9PBReqBDOrCmlGSVARaSx4nLrc5evresn+ETz3M3sje7+gpnNAC4A5pvZmcBXgfe5++7IsdOBl9x92MzeChwD/K4O5z4qnL0yUeO50GhgMMPyO7awc3f8DJxMNkd/Xy9/s/rhMdUlQz0JVnARkfa2eMGsstMhs7l8Xa+BSVp+4DYz+w1wB3CZu2eB7wJ/BtxTNOXxNOBhMxsCbgUudfeXan3ioSRTHSv1tR9cckbiX25/Xy+DV32I73x8bmzaJZwmud/UrpL7s8q7i3S8uOmQUPiUf8XP61OqJFHP3d33GRR197eXOfY24LYqzyuxZbfHzzypVGogyRqIpYRLbM1cclfJ/eE0yV1l3ngcdOWqyCTQ25OOTRm/8towVw5s5pr+OTX9uW1dOKxSr70nnYoN7Kku4+pzZ1d1DnG99ysHNrdMESERaY7FC2bts4BHsZvXP1Pzn9vWwT2u1z6tOxUb+Ht70qz4yIlV95oXL5hVNu3zk3XbeP+x02NfWA2sinS2/r5err1gTmyWoFQNmmq1bXCv1Gs/+4TDywbdsK5DLdIhcTk1pzCf9doL5pQtVaCBVZHOF47VlYtJCSbhjVvbBve4dMa07lTJ1VCgkIOPm6I4EXGpmXDWzPUfO5FU176v4J9e3auBVZFJ4hPzZ5Te4dQ8DrRtcI8boLj63Nll0x3OvgOYA4MZ+r6+lplL7mLmkrvGPf807s0i7LH39/Vy4H77jl/nR1x5d5FJ4pr+OaRLFKMaofYXNrZtcC+X5phihUB6cLp0uqOnaPvAYIYvrxoaM289m8uz+Jbk6x3GpXeiubRyaaRGFe8XkeZ7tcR1L1D78be2De7lBiBGgs3lqvEWb192+5bRx0SNt0cdV/43fJMol1erR75NRFpTuRl0ta4U2bbBvVyeO9yeLXMFafH2uEHZ8byTxo12h28Spd5E4raLSOcpNTXSqH2lyLYN7pVKaZZLy5TbXu2xcYOqmu4oIqH+vl4uPKl3zMwZB27bmKnpoGrbBvdKpTSTpmXi5p6+tjd5vZq4+e7hx63ifH+o3HYR6UylZvPV+qLGtg3u5QYhw+1J0zJxV6juzo9UfCcNSw0vWjnEASVGwdOprtHZNOeceHjJ5yi3XUQ6U6X4VQttG9zLDWCG28ulVIoDcH9fb2zvPe4q2OKFQXL5kdEVmcKSwddeMGd0Nk0zC/eLSOuoFL9qIVHhsFZUbgBz2J2BwUzZtEwu6I1Hpy9efe5sFq4cKnl8Npen7+trye7Oc0RRaeAVa7buU2o4P+J07zeVwas+NGb7wGCm7LuycvIik0tc/KqVtg3ucZXWlq7eHFvffcWarWOCe39fb2yN9nB7uMD1ht+/xP2P7Uj00WpgMMOy27fEzsppxGK5ItIaws5nqTg+0Sq1pbRtWiau0louPxz78aZUUE5aHTKXH+amddtic2Phzw7TNnGBPZqTF5HOFsaEch30WtYPa9vgHlZaK2fYvezsFWPfOg6Vcu/jEaaGLl+1qeIKUdGcvIh0tlKp3Khy6z9MRKLgbmZfMrNHzGyLmS0Mth1iZveY2ePB92nBdjOzfzCzJ8zsYTN7V83Otkh/X2/s9MJyRXqc0gOlV587u2Ld5SR60imWrt5cMX/W25NWYBeZRCrNhqllirZicDez44HPAicDJwLnmNnbgSXAve5+DHBvcB/gwxTWTT0GuAT4Xs3OtuT5ld8et7JJNrfvMnfhp4FqRqwNyA+PVOyxKx0jMrlUmlZd65iQZED1ncD6cBFsM3uAwiLZ5wOnB8f8C/BvwNeC7T92dwfWmVmPmR3u7s/V7Kwjys1n3xmsURo38Lpw5RCXr9rEsPs+i2RXGpQtxyksmxVnWneKq8+drV67yCSy/I74xYVqHROSBPdHgG+Y2aFADjgL2AC8KRKw/wC8KbjdC0TXjHo22DYmuJvZJRR69syYUabGcQJHVJg1c+FJvdy0blvZx4epk3AmDDBmquP2bI6D0yleeW0v+eHqRju6zLj+Y9Wv/iQi7afcbDxgn6nTtVAxLePujwLfBNYCvwSGgOGiY5z4dahLPe8N7j7P3edNnz7xgjmVZs3cuem5xAOl4eW/A4OZMYHdDPLD5Qdok1JgF5FGSTSg6u43uvtJ7n4asBP4LfC8mR0OEHx/ITg8AxwVefiRwba6qDRrJpvLc/YJhyceKM1kcyxaOTR61Wk2lx99x62m396TTo0G9rBkwdFL7uKU6+7TSkwik0Cja0slnS3zxuD7DAr59p8CtwOfDA75JPB/gtu3A/81mDUzH9hVr3x7qL+vN7Yq483rn+HCk+KPiap1Bd50qotl5xXm0ReXLAjTQQrwIp1t2XmzSRUt3pCaYqOxodaSznO/zcx+A9wBXObuWeA64D+b2ePAB4P7AHcDvwOeAH4AfKG2p1xa3CjzsDs3rdvG7tf2cvH8GTWZ7phUTzrFAakpLFw5xNuW3s3ClUP7DNTWuhqciLSmA/d/fZhzWneKFR+tX6o2UfkBdz+1xLYXgQ+U2O7AZdWf2vhUKiEAhQGN2zZmuPCk3tHyAV1mNa3nEDrlbYewZfv/G3N1atzPUX0Zkc4VfmKPduzKLbdXK217hWopSS5CCssH/GHXqwC8+eADqsp5daem0B2pNDmtO8XF82fw0LZdsWUHiqm+jEjnKnVlar0/sXdUcB/PRUjRKZDZXH6fX0T4DD3p1Ohsm+jTplNTmNadIpcfYdqB+3Px/Bn09qTJ7s5z8/pnxjVHXhc0iXS2cp/M6/mJvW2rQpYz0YuQoh+QwoptXWZkc3l60ilSXTZmnnsuP0Iu+FiVyebGzKUfT5qn+OIpEek85a7Hqecn9o4L7vB6gK9UarecMDaHQXoiz1FJOtWlomEiHS68ZiaTzWGMnYlX70/sHRncoRDg+/t6x/xym22KwYirty4yGRQPojqMBvhGxICODe6haJCfaL2YieoyY8R9nxWcRKTzlRpEDQP7g0vOqPvP7/jgHorWi2lEL15pF5HJrRmDqFGTJrjD6714iM+FlZKaYhx0wNTRtVRnHprm3598aczjGvmRS0RaW093quR1Nz01XEovzqQK7lGlAn20UNjO3fnRC5zKBevo45R6EZGoRiylF2fSBveoaKBvxONEpPOVm2VXj9l3pXTURUwiIq0i7mLKRhQKVHAXEamDuIsZG1EoUMFdRKQO4kqMN2LGjIK7iEgdxF192ogZMwruIiJ10N/XSzpVOsQ2YsaMgruISJ3kytRsb8SMmaTL7C0ysy1m9oiZ3WxmB5jZr8xsKPjabmYDwbGnm9muyL6r6tsEEZHWVG7GTJKy5NWqOM/dzHqBvwaOc/ecma0CLoquzmRmt/H6GqoAv3L3c2p+tiIibaTcjJl6rP5WLGlaZiqQNrOpQDewPdxhZm8AzgAGan96IiLtaWAwQ7n+edxMmlqpGNzdPQN8C9gGPAfscve1kUP6gXvd/eXItv9kZpvM7BdmVnJpbzO7xMw2mNmGHTt2VNEEEZHWs2LN1pI1q4z4mTS1UjG4m9k04HzgaOAI4EAzuzhyyF8AN0fuPwS8xd1PBP6RMj16d7/B3ee5+7zp06dP9PxFRFpSueqzDg0pW5IkLfNB4Cl33+HueWA18F4AMzsMOBm4KzzY3V929z8Ft+8GUsFxIiKTQrNTMpAsuG8D5ptZt5kZ8AHg0WDfR4A73f3V8GAze3NwHGZ2cvAzXqztaYuItK7ld2xpakoGEsyWcff1ZnYrhXTLXmAQuCHYfRFwXdFDPgJ83sz2AjkKM2saVORSRKS5BgYzJeu4Q+NSMpCw5K+7Xw1cXWL76SW2fRf4btVnJiLShpbfsaXsvkalZEBXqIqI1Excrx0al5IBBXcRkZoYGMxw+apNZff3pFMNXdxHwV1EpEoDgxmWrt4ce+XpsvNKXvJTNwruIiJVWrFmK7n8cNn9je61g4K7iEjV4hbfSKe6Gt5rBwV3EZGqDAxmmBJT/fHaC+Y0vNcOCu4iIhMWl2tPp7q4/mMnNiWwQ8J57iIiUjAwmGHFmq1sz+aYYlYysDezxx5ScBcRSSjsqYeDp+Vmx4y4NzWwg9IyIiKJVZoVEzqigVeilqPgLiKSUNysmFA61dXQK1HLUVpGRKSCMM9e7hKlKQbuhR774gWzmp6SAQV3EZFYxXn2Ut5wQIqhqz/UwLOqTMFdRKSMsF5MpQWtd+XKFwtrFgV3EZFAdJrjwekUr7y2t2Jgh9YYQC2m4C4iwr7pl2zC3nirDKAWU3AXESH5NEcoLJfnFBbfaJUB1GKJgruZLQI+Q6E9m4FPA98H3gfsCg77lLsPBeun/j1wFrA72P5QrU9cRKQWwlRMJsE0RyhcfdrMsgJJVQzuZtYL/DVwnLvnzGwVhbVTARa7+61FD/kwcEzw9R7ge8F3EZGmKs6pv7Z3mN35kcSPT6e6ml5WIKmkaZmpQNrM8kA3sD3m2POBHweLYq8zsx4zO9zdn6vyXEVExm1gMMOy27fsk0NPklNPTTEOOmAq2d35lprDnkTF4O7uGTP7FrANyAFr3X2tmf0l8A0zuwq4F1ji7nuAXuCZyFM8G2wbE9zN7BLgEoAZM2bUoi0iImMMDGZYfMsm8iOVZ7wUa+V8ehIVyw+Y2TQKvfGjgSOAA83sYmApcCzwbuAQ4Gvj+cHufoO7z3P3edOnTx/3iYuIVLJizdYJB/YHl5zRtoEdkqVlPgg85e47AMxsNfBed78p2L/HzP4Z+EpwPwMcFXn8kcE2EZG6i+bVxx/WW3dq43glCe7bgPlm1k0hLfMBYEOYRw9mx/QDjwTH3w580cx+RmEgdZfy7SJSjeKBUDPG5MGB0Rkv4TTFiZjWneLqc2e3dY89lCTnvt7MbgUeAvYCg8ANwC/MbDqFKZ9DwKXBQ+6mMA3yCQpTIT9dh/MWkQ4WDeYHpKaQi8xoiQ6EZrI5Fq4cGvPYpIG9OzWF/VNdbTlYmoR5gktr623evHm+YcOGZp+GiLSAJIW6qtFJvXMz2+ju80rt0xWqItJ0SZauq0Y4QDqZKLiLSFMlXbpuojplgHS8FNxFpKHi8um10g61X+pNwV1E6i5avyU6m2Wigf3A/bp45bXhkjNjOimnXg0FdxGpq+K0S9KkS5cZI+4lpz6GgTv6KaATZ7xUQ8FdROpqPKV0Q0kLdPX39SqYl1Gx/ICISDW2JyylG9UulRdbmYK7iNTVeJegu3j+DAX2GlBwF5G6WrxgFulU15htFnxPp6YwJbjTZcbF82dwTf+cxp5gh1LOXUTqKuyFa+CzsRTcRaTuNPDZeErLiIh0IAV3EZEOpOAuItKBWqLkr5ntAH7f7PMo4TDgj80+iRrolHaA2tKKOqUd0H5teYu7l1yntCWCe6sysw3laiW3k05pB6gtrahT2gGd1RalZUREOpCCu4hIB1Jwj3dDs0+gRjqlHaC2tKJOaQd0UFuUcxcR6UDquYuIdCAFdxGRDtSRwd3MZpnZUOTrZTNbGNl/uZm5mR0W3F8cOfYRMxs2s0PM7AAz+7WZbTKzLWa2PPIcR5vZejN7wsxWmtl+wfb9g/tPBPtntng7fmRmT0UeNzfYbmb2D0E7Hjazd020HbVsS+T4LjMbNLM7I9vq/po0sC11f11q2Q4ze9rMNgf7NkSe4xAzu8fMHg++T6t1OxrYlmVmlok87qzIvqVBW7aa2YJq2lIz7t7RX0AX8AcKk/0BjgLWULho6rASx58L3BfcNuCg4HYKWA/MD+6vAi4Kbn8f+Hxw+wvA9zarzGkAAAOzSURBVIPbFwErW7wdPwI+UuLxZwG/CB47H1jfCq9JZNuXgZ8Cd0a2NfQ1qXNbGvq6VNsO4Okyx/0dsCS4vQT4Zqv/fcW0ZRnwlRLbjwM2AfsDRwNPAl21as9Evzqy517kA8CT7h5eAftt4KuUX8rxL4CbAbzgT8H2VPDlZmbAGcCtwb5/AfqD2+cH9wn2fyA4vuXaUeHnnQ/8OHjsOqDHzA6vpgERE24LgJkdCZwN/DCyrRmvCdShLRXU63Wpqh0xor/74tekJf++JuB84GfuvsfdnwKeAE6u4vlqYjIE94sIXjgzOx/IuPumUgeaWTdwJnBbZFuXmQ0BLwD3uPt64FAg6+57g8OeBcJ6pr3AMwDB/l3B8a3YjtA3go/G3zaz/YvbEYi2saltAb5D4Z91JLKtGa8J1KctoUa+LtW2w4G1ZrbRzC6JbH+Tuz8X3P4D8Kbgdiv/fZVrC8AXg9fkn8IUE/Vty4R1dHC3Qs71POCW4EX8G+CqmIecCzzo7i+FG9x92N3nAkcCJ5vZ8fU851Lq3I6lwLHAu4FDgK/VoQmjqm2LmZ0DvODuG+t5nknUuS0Ne11q8fcF/Lm7vwv4MHCZmZ1W/CAv5DDqOve6zm35HvA2YC7wHHB9rc+/ljo6uFN4cR5y9+cpvChHA5vM7GkKQe4hM3tz5PjRd/xi7p4F7qfwLv8ihY+R4WInRwKZ4HaGQo6PYP/BwfGt2A7c/bngo/Ee4J95/ePkaDtKtLGZbTkFOC84/mfAGWZ2E41/TerZlka/LlX/fbl7Jvj+AvDzyPk+H6Zbgu8v1LEddW2Luz8fdJJGgB9Q//+V6jQ76V/PLwr/MJ8us+9pIoMmFP7hXwIOjGybDvQEt9PAr4Bzgvu3MHbw7gvB7csYO3i3qsXbcXjw3SikCK4L7p/N2AGvX7fCa1J0/OmMHYRs2GvSgLY07HWpwd/XgcCfRW7/O3BmcH8FYwdU/66V/74qtOXwyHGLKOTZAWYzdkD1d7TAgGpTf3hdG1Z4YV4EDk74Qn8qfLEi204ABoGHgUeAqyL73gr8msLgyS3A/sH2A4L7TwT739ri7bgP2Bxsv4nXZ9UY8D8pjPxvBua1wmtSdPzpjA2IDXlNGtSWhrwuNfr7eiuF4LYJ2AJcEdl3KHAv8Djwr8Ahrfz3VaEt/zs414eB2xkb7K8I2rIV+HC1banFl8oPiIh0oE7PuYuITEoK7iIiHUjBXUSkAym4i4h0IAV3EZEOpOAuItKBFNxFRDrQ/wdYPUWaoWkguAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAG+CAYAAADvFq2EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIDklEQVR4nO2de3QU5f3/37u5B0ggQC5ggHDRANFSRATDRTAYKir2y7d+oYBiMSoFL+CvQqyIBTFiTwtqUS4iKAjY2ipaKR4BRRITsSBqCCJCEhBIkCQkmEASsvP7I866O9mZfWZ2dueZmc/rnJxDZmdmJzMP7/ncns/jEARBAEEQBOHGafQFEARB8AYJI0EQhAQSRoIgCAkkjARBEBJIGAmCICSQMBIEQUggYSQIgpBAwkgQBCGBhJEgCEICCSNBEIQEywljY2MjBg0aBIfDgYMHDyrue//996NPnz6IiYlB165dMXHiRHzzzTfuz7/88ktMmTIFqampiImJQf/+/fH888/Lnq+goADh4eEYNGiQpmvfsGEDrrnmGkRHRyMxMRGzZ8/WdB6CIALDVMJ44403YsOGDYr7PPbYY+jWrRvT+a699lqsX78ehw8fxgcffABBEHDzzTejpaUFALB//34kJiZi06ZNOHToEP74xz8iNzcXf/vb39qc6/z587jrrrtw0003qf67AOCvf/0r/vjHP2LBggU4dOgQdu7ciezsbE3nIggiQAQTMXr0aGH9+vWyn2/fvl1IT08XDh06JAAQvvjiC1Xn//LLLwUAwnfffSe7z+9//3thzJgxbbb/3//9n/DEE08IixYtEn7xi194fdbS0iI888wzQq9evYTo6GjhmmuuEf7xj3+4P6+urhZiYmKEnTt3qrpegiCCg6ksRiUqKyuRk5ODjRs3IjY2VvXx9fX1WL9+PdLS0pCamiq7X21tLRISEry2rV+/HsePH8eiRYt8HpOXl4fXX38dq1atwqFDhzB37lxMmzYNe/bsAQB8+OGHcLlcOHXqFPr3748rrrgCd955J06ePKn67yAIInAsIYyCIGDGjBl44IEHMGTIEFXHvvTSS2jfvj3at2+P//znP/jwww8RGRnpc99PP/0Ub775Ju677z73tqNHj2LBggXYtGkTwsPD2xzT2NiIZ555Bq+++iqys7PRu3dvzJgxA9OmTcPq1asBAMePH4fL5cIzzzyDFStW4K233kJ1dTXGjRuHpqYmVX8PQRA6YLTJqsTSpUuFdu3auX+cTqcQFRXlta28vFx4/vnnhczMTOHy5cuCIAhCaWkpsyt9/vx54dtvvxX27Nkj3HbbbcLgwYOFixcvttnv66+/Frp06SIsWbLEve3y5cvCkCFDhJdfftm9TepKFxcXCwC8rrldu3ZCRESEMHToUPffCUD44IMP3MedPXtWcDqdwo4dO9TeNoIgAoRrYayqqhKOHj3q/hk6dKiwbNkyr23Nzc3CxIkTBafTKYSFhbl/AAhhYWHCXXfdxfx9jY2NQmxsrLB582av7YcOHRISExOFxx9/3Gt7TU2N+3vEH4fD4d62a9cuoaioSAAgfPzxx17XffToUeHEiROCIAjCq6++KgAQTp486XX+xMREYc2aNRrvHkEQWmnr+3FEQkKCVzwvJiYGiYmJ6Nu3r9d+L7zwAp5++mn376dPn0Z2djbefPNNXH/99czfJ7S+KNDY2OjedujQIYwdOxZ33303li5d6rV/XFwcvv76a69tL730Enbv3o233noLaWlpcLlciIqKwokTJzB69Gif35uZmQkAOHLkCK644goAQHV1Nc6dO4eePXsyXz9BEPrAtTCy0qNHD6/f27dvDwDo06ePW2hOnTqFm266Ca+//jqGDh2K48eP480338TNN9+Mrl274vvvv8ezzz6LmJgY3HLLLQCA4uJijB07FtnZ2Zg3bx4qKioAAGFhYejatSucTicyMjK8vjsxMRHR0dFe2//f//t/mDt3LlwuF0aMGIHa2loUFBQgLi4Od999N6688kpMnDgRDz/8MNasWYO4uDjk5uYiPT0dY8aMCdp9IwjCN5YQRhaam5tx5MgRNDQ0AACio6Oxd+9erFixAjU1NUhKSsKoUaPw6aefIjExEQDw1ltv4YcffsCmTZuwadMm97l69uyJsrIy5u9esmQJunbtiry8PBw/fhwdO3bE4MGD8fjjj7v3ef311zF37lxMmDABTqcTo0ePxo4dOxAREaHPDSAIghmHINBiWARBEJ5YolyHIAhCT0gYCYIgJHAXY3S5XDh9+jQ6dOgAh8Nh9OUQBGERBEHAhQsX0K1bNzidyjYhd8J4+vRpxSl5BEEQgXDy5El3tYoc3Aljhw4dALRefFxcnMFXQxCEVairq0NqaqpbY5TgThhF9zkuLo6EkSAI3WEJ0VHyhSAIQgIJI0EQhAQSRoIgCAkkjARBEBJIGAmCICSQMBIEQUggYSQIgpBAwkgQBCGBuwJvgvBFi0vAvtJqnL1wCYkdojE0LQFhTppLTwQHEkaCe3YUn8Gf3ivBmdpL7m0p8dFYdNsAjM9IMfDKCKtCrjTBNTuKz2DWpgNeoggAFbWXMGvTAewoPmPQlRFWhoSR4JYWl4A/vVcCXy3mxW1/eq8ELS5qQk/oC7nSBLfsK61uYyl6IgA4U3sJ+0qrMbxPZwDssUiKWRJKkDAS3CAVq4rai0zHnb3QKp6ssUiKWRL+4G4xrLq6OsTHx6O2tpbajtkIX2KV0C4S1fVNfo/dkjMMtRebMGvTgTZut2gDvjxtMMZnpLhjlv72I6yHGm2hGCNhOHIJlho/ouhAq6V3bc9OTLHIpssuW8YsW1wCCo9VYdvBUyg8VmW5vy8YkCtNGApLgsUXooW36LYB2F9ewxSL3FhYxrRf0fEqOB0O1fFHHuOWFDbQBgkjYSj+EiwiCe0iUF3f7P492eM/97aDp5i+q7y6gWm/2W8cwPmLP38Xi5DwKEByYQOx1InCBvKQMBKGIiZO/LHw1oFIjov2aY0ldohmOkfPhFim/TxFEfAvJDwKkD9L3IHWsMG4AcmGW7U8QjFGwlBYRS05LhrD+3TGxEHdMbxPZ6//zEPTEpASHw25/95iLHL68F6K+8mhFH80stZSKXbIWuq0oaCUYo4+IIuRMBRR1CpqL/kUFwda3eahaQmy5whzOrDotgGYtekAHPCOTXrGIiPDnbL7+UMu/uhyCaprLYHA6y39ue6slviS9w/jlfxSijlKoHIdwnBEVxTwLWqsrmggdYwdYyNwvsHbhfZFx5gIL1db+rscz08ehImDugd8nSnx0bj9FylY80mpYslRfEwkpqwt8ntd0uOsLI5qtIWEkeACvZIXWi0xl0vA1HWf6fK3+GJLzjAM79OZuY5SaT9/2frk+Gjs+cMYjP7zR7KWuNxx+fPHWjbmqEZbyJUmuGB8RgrGDUgOuNwlzOnwcllZ92txCYouvVY8QwGsCZGx6UmaSpjEz8/UXsL+8hpVYYNAS5WsBgkjwQ2sohas79Yaf5TDM74Z5nSg8FiVLvWWLJy9cAkTB3XHy9MGt7HEldBSqmRFKCtNED8xPiMFL08bjOR470x5x9gIpuM7xnjvlxwf7RW3Y02IsNZbKiFm+8dnpCB//lgsnNCf6Ti5UiW7tXcji5EwFN5mi/hy6VnjjyunDlZ0Q/Wut/SFryx+mNOBGZlpeCW/VHWowK41jySMhO6wih2Ps0UA9fFHUYyG9e6sKByspUnTh/fSJGJS1136NwVaqiQtObIy5EoTurKj+AxGLNuNKWuL8PDWg5iytggjlu1u44qZqTO3KCoA2hSHK4mR1vOI9ZZy+zkA3D8qDSkSl1/quksJNFTAGgqwAlSuQ+gGaylKi0vAiGW7ZRMCvJaO6GXh6tU3UmsYQmupklhyZFaojpEIOWrEbl9pNVPxMY//EfWKifLUaVx8dv5cfN5eVGqhOkYi5KhZhoDVJePRddOrpEhrvWUwYJ1SaWZRVAvFGAldUCN2rNlZ1v2IwJGLP/qLW1oVshgJXVAjdno0jiD0R6/ZR1aALEZCF1hbf4n/0fTI8hL6I7ruvtq72QkSRkIX1IoduW4Ez1BWmtCMr4zphyUVqkpaeJv5Ynes/DwoK00EHaUaO7Ekh+U/l5GNIwhveJ2JZARkMRKqobWZrYcdnimtK00EDSPXOCGCAz3TtpAwEm3QY5GlfaXVIbhSQg/ombaFYoyEF3otssTjrBXCN/RM20IWI+GGpeMNzVqxHvRM20LCSABgjzNd27MTcyE3YQ7UFOfbBRJGAgB7nElcZAmgWStWgWYitYWEkUCLS0DBdz8w7Xv2wiWatWJBlJ7pI1lXovGyq00izspQHaPN8ZVsUcKzR6KVZ0nYFc9nWnauHlv2nUBFXaP7czMXfFMdI8GEXLLFF77iTNRwwHqIzzQq3IkVO496iSLA59ITwYCE0aYoJVuk2DXOZFeo4JuE0bb4S7Z4QrFDe8GaiCs6XhW6iwoxJIwWRmkGC2ux7pwxfZE/fyyJoo1gHRuz37CuS00zXyyKvxksrMW6mX27kPtsM1jHxvmLzZi16YAlvQmyGC0IywwWKuol5PA3NqRYMd5IwmgxWAPnAKiol/CJZ8G3P6zaYIKE0eQ0XXZh3d7jeHJbMdbtPY78Iz8wd0qhQm1CDnFsdIyJYNrfag0mKMZoYvK2l2Dt3lJo8WLEgUwrwxFyjM9IQYeoCExd95nffa3WYIKE0aTkbS/B6k9KNR/vOZBpeQFCjmF9OttyqVtypU1I02UX1u7VJoqUVCHUYNcGEySMJmRjYZkm91nEigOZCB4ssWilmlkzQq60CSmvbtB0XMeYCDw76WpKqhCqUYpFW3F1QRJGE9IzIVbTcSunDkZm3y46Xw2hhJU6EPmKRcutLijWzJq1uoGE0YRMH94LS7cfZnanxQD5sN6UYAklVrSkPPFXM+tAa83suAHJpnsZUIzRhESGO5EzMo1pXysHyHmGZfaR2bHy6oIkjJziL5ide8sA3D8qDf60joq1Q49d2nZZeXVBcqU5hNUFy71lAB69OR0bC8tQXt2Angmx+O31PXHw5HlLxLTMgjSO6HIJzG27nA6HaZ+VlVcXpKUNOEMumC3+dyHrTz3BTID4eol1jInA+YvNfo+V7me2+GOLS8CIZbv9Fn/nzx/LheCr0RYSRo4QB5qctcHbQAsFSqLGInjBTIDIvcS0YsaXn3gPAHjdBx7/FjXaQq40R6gJZtthCp+SqAHwK3jBLCVRszQEK2bM5IrF39JnkRwfjcnX9XCvLmi2MAEJI0dYOZitFiVRe+AnC0WKp+CNG5Ac1FISNUtDqEF8+W0oKMWMzDRTiIm0+FtcXXD5zm/d+5gtTKAqK93S0oKFCxciLS0NMTEx6NOnD5YsWQJPb1wQBDz55JNISUlBTEwMsrKycPToUd0v3IpYOZitBpasri88M75Fx6o0lZKwTm1jfTlJ23Z1jGVr47Xk/cMYsWy3acp6rLa6oCqLcdmyZXj55Zfx2muvYeDAgfjvf/+Le+65B/Hx8XjooYcAAM899xxeeOEFvPbaa0hLS8PChQuRnZ2NkpISREdb+z90oIidk+3WyURtVlcJUfA+PXaOaX9PgVMTj2R9Oa2cOtgr8+xyCUxtvADzzR6xUsG3KmH89NNPMXHiREyYMAEA0KtXL2zZsgX79u0D0GotrlixAk888QQmTpwIAHj99deRlJSEd955B5MnT25zzsbGRjQ2/vx2qaur0/zHmB2xk8msTQfggO9gttUKteWyuoGyobCMaT9R4NTGI1lfYsN6e6+33XTZBacDTLOWzCYmVoqRq3Klb7jhBuzatQvfftsaO/jyyy+Rn5+PX/3qVwCA0tJSVFRUICsry31MfHw8rr/+ehQWFvo8Z15eHuLj490/qampWv8WUyJ13cYNSLZNV2252SEspS7+qG9sUfzcs/2aloJsre249pfXqOqMZKbZI1aKkauyGBcsWIC6ujqkp6cjLCwMLS0tWLp0KaZOnQoAqKioAAAkJSV5HZeUlOT+TEpubi7mzZvn/r2urs424qjkuuXPH2uZ5gO+CEZWVy2icBWqiEd6WjpKGVm5RINWUTCDmFgpRq5KGP/+97/jjTfewObNmzFw4EAcPHgQjzzyCLp164a7775b0wVERUUhKipK07FmxqpdSVjRmtX1DDFIww2sJLSLwDO//rn9WiCWjtqlIbSKghnExEoxclWu9B/+8AcsWLAAkydPxtVXX43p06dj7ty5yMvLAwAkJycDACorK72Oq6ysdH9GWGsurdYGpVqzusnx0Vg1bTBW+Qg3sGZ8F9460OulE6ilI2ZkJw7qjuF9Oita9mqXJjVTx3UrdftWZTE2NDTA6fTW0rCwMLhcLgBAWloakpOTsWvXLgwaNAhAq2v82WefYdasWfpcsQWwSpA6kFklWrO6ntaY1FJjzfgmx3l/dygtHaUEm6/vBcwjJoC28AKPqBLG2267DUuXLkWPHj0wcOBAfPHFF/jrX/+K3/3udwAAh8OBRx55BE8//TT69evnLtfp1q0b7rjjjmBcv+locQko+O4Hpn15jisFGgrQmtX1RNo4tcUlaBK4UFcDyImHNFttNjERscLKk6rmSl+4cAELFy7E22+/jbNnz6Jbt26YMmUKnnzySURGRgJoLdlZtGgR1qxZg/Pnz2PEiBF46aWXcOWVVzJ9h5XnSvuysJTYkjOMS4tRrzndwZhnG8g5Q91YVlq/eW3PTthfXmNaMeEdaiLBIWoaDvDeLKLwWBWmrC3yux+LsAdDjAI5p5WWIiC8oSYSnKGmNIXHuJJULCpqLzIdV/DdOb/CEgy3K5Bz0hrb+uE5brq0jwIE4Fx9oyleOCSMIUBNaQpvcSVf1ldCu0imY//20Xf454Hv/f49wRAjKwucGaxaf2Ej3ptKkDCGANYkypwxfTF33JXcDHI597+mvon5HHapywwVZlhgiyVsxPu4oDVfQgBraUpm3y7ciKLWDjdy+5qlLpNnzLDAFmvYiPdxQcIYAvwV9fJYxKtnv0EzzfflFbNMClAzbngeFySMIcCMMwKCUUPJc10m72hdqlTrzCStaHnGPI4LijGGCLPNCAjG3FwzzPflFS3zuY2IR2p5xjyOCxLGEGKmGQH+ZqaowUzNA3hF7Xxuo5qUqBk3PI8LcqVDjJqGA0bC4v77+kwKr6ECs6EmTm1kPFJp3HjC+7ggYSTcqGmaK9fhRjrGrdhg1wjUxKm1xiP1QgwbSceGJ7yPC3KlCQDam+ZKQwM03zd4sMSpeWlSIg0bmW3mC82VDgAzzEBgQS4exeOi6YT8uLNKk5JgQXOlQ4AZZiCwYKWV3eyCr+mOapqUAECn2Agukx68QDFGDZhhBgIrRsejiMDRsn6O0W5iqOsr1UIWo0qsZmFZaWU3u6JlltL5hmbDOsSbwdsii1ElVrOwrLSym10x08qDZvG2SBhVYjULy4zzuAlvzLLyoFnmewMkjKqxmoVlxnnchDdmWXnQTN4WCaNKzGBhqQ1syxXk8l6ES7TCOttE/FwA8KuM1hrDUFpnZvK2KPmiklCvKKcWrYFtM83jJtrCuvKgwwEIAvBqQRleLSgLadLDTN4WFXj7gKVwm8fMGhVqE3IrD+4sqcC6grI2+4dybIirS/pb3jZYi8DRKoEBoEbweJr5oteSpoT14GlsBGPJXFbUaAvFGD1QW0rAU6ccMwW2idDC09hQimc/knUlGi+7uCj4phjjT5i9cNtMgW0itLA+84q60IwNaTy77Fw9tuw7geU7v3XvY3RYiizGn+DpraoFMwW2idDC+syX/PtQyAqsRW8rKtyJFTuPoqKu0etzowu+SRh/wuwWlxnKiAhjYK1zrK5vDqkY8VzwTcL4E2a3uKhQm5BDTZ0jEDox4tlLI2H8CStYXFSoTcghjo1O7SIV9wulGPHspVHy5Sd4L9xmhQq1CTnGZ6TgYlML5v79S7/7hkKMePbSSBg9MNsSp3L4amRKEACQHB/DtF8oxOjanp3azMyR4nS07hdqSBglkMVFWBl/y5uGcknT/eU1iqIItIrm/vKakL/oSRh9QBYXYVV4ChnxHGOk5IuJ4b09PMEfLS4B8TGRuCezV5tETKiTdBRjNAE8zXtmgccmFgQbRo01X2MmoV0Efj2oO7IGJId8zPPk1kshYYT5REaui444W8BqpTlme2kpYdRYkxszNfXNeLWgDNcZcE95cuul2L67jtladfHUKSUUmO2lpYRRY433MbOj+AyeerfEa652MJ4xdddhhOcpSXLwPFtAb8yycBILRo41c4wZ77/baHvN1q60mgHDS5aa50yenpix25Gny9+lfRQgAOfqG5HYIRqXL7sMG2s8jxk5K7qyrtHQsJCthZHnASMHz5k8PdH60tIajww0junL5feE9UzBGGu8jhmeX362FkZeB4wSPGfy9ETLS0trPDLQOKac1eMJq2MYjLHG65jh2WOzdYzRjI0j7NJFR+1LS2s8MtA4ppLVo4ZgjjVexwzPHputhZHXAaOEWKD7u8xe6NQuwuszK3XRUfPS0prY0CMh4s/qYSXYS5ry2HmJZ4/N1q408POAeerdQ15dhJPiovDU7QO5EhnfBbqRuGNQN4wzoEA3mKipcSs8VqXJJWN15YqOV8HpcPiMP+phzYh/X7CXNOWtDwCvLj5AwuiBnM3IB/IFuk1YX1BmSlH0l/Bg7Xak1SVjPW72Gwdw/mKz+3dP4dLDmglloT5PfQB4LvC2vTDKlwvwM4uE5+ydVlgTHixWjlaXjPU4T1EEvIVr3IBkRatHC2Z9plpgefkZMfPJ1sJoFsHhOXunBbVTGv1ZOVpdMn/HySEdG3JWTyDo+Ux5n1Kp9PIzauaTrZMv5pgRwHf2Ti3BmAGiNYmmdi0U6bWKY0MuseF1HRp1KNBnuqP4DEYs240pa4vw8NaDmLK2CCOW7eZu1pCvNdqNnPlka4vRLILDc/ZOLcGyfrV2X5c7rmNsBM43NPs8xhNxbEitHunMl9M1DXj0ra+Y/x6RQJ6pmZuNGO3N2VoYzSI4PGfv1BLMl5HWrKuv41wuAVPXfeb3Oz3HhpLLX3hM3d8S6DM1WlgCxejwka2F0SyCw3P2Ti3BfhlpzbpKj2txCbqODTXxTD2eqdHCEihGe3O2jjGaqcBbdPmS4qK8tifFRXHtEkkxy2wjvceGmnimHkXXRgtLoBjtzdlaGAE+ZwQow3e9pT/M+DLSa2yI54uPjWjzWfuoMMzM7IUtOcOQP39swOPOaGEJFKNfoLZvVCvCe0mD2Rrq+sNMDWj1HBs7is/ggU0H2mzX+zmKzWn9hQJ4bmgsjnnAd/hI7b1Soy0kjCaA9w7MWuH9ZaQ3oX6OeguLEeRtL8HavaVey6w6HUDOyDTk3jJA1bmog7fFMEu9pVp81a5ZmVA+R55WA9TKjuIzWPNJaZu1p10CsOaTUqpjtDtmD6QTrUJV8N05pn31KOrmaTVALbC0c6M6Rptj9kC63fHX3VtKMIq6jVwNUAtGlxuRK20CjM7Q6UmLS0DhsSpsO3gKhcequFpoLBjITWvzRaDP0YyLu8lhtJdEFqNJmHxdKpbvPNpmO28lLkqYKROtB2q6e1NRtzdGe0kkjBzima0tO9eALftOeK2564m/ucC8YOZ5u1pR091bj+dotJWlJ6KX5O/+1dQ3Kn6uFVsLI4/lImriUXOzrsScsX0Nv2Z/GDlvV2lJ02t7dsL+8pqgPX9WAZozpg/mjrsq4O822srSkzCnAwsnDMDvN7et+fRkyfuHkZ2Rovu4sa0w8ujWsaw2J+IAsPXzE5gztm+wLytgjHLx/L1knA54lYLo/fxZBSizb1dd/mObZe4/K9IyI18EKzRgy+SLkX3e5FC72pyZaheNcPFYkh7SHITezz/USTMzTbdkwcjQgO2EkdfMndbV5swQLwq1i6d1SVO9n3+ohcoKRd2eGBkasJ0rzWvmTqvAmSFeFGoXL5AlTfV8/k2XXThVcxGjruyKAydqcOHSZfdneifNrFDULeXanp3ahDukOB2t++mN7YSR18ydWoEzU7wo2P0kpUm0itqLgV5ywM/f1xxfB4Cx6V1x78g+ugqVVYq6pewvr1EURaBVNPeX1+huxNhOGHnN3IW6kakeKGX1pZ+NG5CsaekBf8ittR0ogTz/vO0lWP1JaZvtAoBd3/yAvontdfuPbPZO3UoYacTYThh5ztzJFXFL4aF2USmrD0D2s/z5Y3Vt4SW31rZWAn3+TZddWLu3rSh6snZvKR69OR2R4YGH+HkNDemBkUaM6idz6tQpTJs2DZ07d0ZMTAyuvvpq/Pe//3V/LggCnnzySaSkpCAmJgZZWVk4etT/f/ZQwWPmTlzJTU4Uk+OiMDerH56fPEi3RqaBoJTVf2DTATygkPH/sKRCl446LEk0tejx/DcWljG5fxsLyzSdXwqvoSE9MHIqrCphrKmpQWZmJiIiIvCf//wHJSUl+Mtf/oJOnX4Ofj733HN44YUXsGrVKnz22Wdo164dsrOzcekSPw+Gp67d/spK5mZdiYIFN+HhrCu5aM+lVZD0zviyJlgS2rXtli0ivY16PP/y6gZd9/MHr6EhPTDSiFHlSi9btgypqalYv369e1taWpr734IgYMWKFXjiiScwceJEAMDrr7+OpKQkvPPOO5g8ebJOlx04WleU0xN/ZSU8FnHzkvFltYAW3joQyXHRIZv50jMhVtf9/MFzaEgPtC6LGyiqhPHdd99FdnY2fvOb32DPnj3o3r07fv/73yMnJwcAUFpaioqKCmRlZbmPiY+Px/XXX4/CwkKfwtjY2IjGxp/nO9bV1Wn9W1SjdUU5vTBjfEgPl0yPc7BaQMlx0Yr3Tu/7On14Lyzdfthvicn04b10+T4rrSAphxFGjCpX+vjx43j55ZfRr18/fPDBB5g1axYeeughvPbaawCAiooKAEBSUpLXcUlJSe7PpOTl5SE+Pt79k5qaquXvMCVmjA/p4ZLpcQ5eW7FFhjuRMzJNcZ+ckWm6JF5EeAoNBYtQd3tXZTG6XC4MGTIEzzzzDADgl7/8JYqLi7Fq1Srcfffdmi4gNzcX8+bNc/9eV1cXVHHkqXGEGeNDasqKpOjp1hlpKfkbQ+JaJHqtVcICD6EhK6FKGFNSUjBggPdD7d+/P/75z38CAJKTkwEAlZWVSEn5+S1VWVmJQYMG+TxnVFQUoqKifH6mN7w1jjBjfMifIAk+/i3+DugrVnLxp07tIvD0xIygPFPWMZR7ywA8enM6NhaWoby6AT0TYjF9eC9dLUUpRoeGQkmwDRxVTykzMxNHjhzx2vbtt9+iZ8+eAFoTMcnJydi1a5f787q6Onz22WcYPny4DperHR4bR/BYOgT477Kt5LqtmjYYq0Lo1o3PSMHCCQO8irqr65ux5P3Duj9TtWMoMtyJmSN7Y/HEDMwc2TuoomgnxPK2KWuL8PDWg5iytggjlu3W9XmrWj71888/xw033IA//elPuPPOO7Fv3z7k5ORgzZo1mDp1KoDWzPWzzz6L1157DWlpaVi4cCG++uorlJSUIDrav0sYjOVTeV9+dEfxGTz17iFU1P2chEqOi8JTtw8MuSWrxqpWM/MlWG5dqNbb5n0M2YVAnrcabVHlSl933XV4++23kZubi8WLFyMtLQ0rVqxwiyIAPPbYY6ivr8d9992H8+fPY8SIEdixYweTKAYLc2R/5WzG0KG2y7aS6xYKty6U0+HMMYasTSift+opgbfeeituvfVW2c8dDgcWL16MxYsXB3RhesJz9ldOjCrrQtvy3wxzbqVWqMslhEyseB5DdiGULydbzJXmNfvLkxjxbhH5cvE7xsjPavEklHWTPFUQWIlQrssN2EQYec3+8iRGPFtEclb1+YvNTMfrWTfJ2xhSgqfStEAI5brcIrYQRl5nB/AkRrxaRFq7cQPWqZvUAm+laVpRuw6SXs/bNvUDPM4O4EmMhqYloGOssmvaMTaCO6taDi1iFUiZEk8zTHgsTdNCqNfl9sQWFqMIb7MDzOaeGXGXWK3ljjERXq612iYDrBYWb2NICk9x60AJ9brcnthKGAG+Zgfw5J7tK63G+QblmF1NQ3PIky+s1vLKqYPhdDg0iZWeZUpGw1PcOlBCvS63J7ZxpXmFF/eMp3inJ6zNIob17qypyQCvq0ZqhdfnqIVQr8vtie0sRh7hwT3jKd7pSbCtaitZWAC/z1ELRoaayGLkhFC3VZLCSxsvXwmQYFrVFXXWsbAAfp6jHpimgzdhXXiId/pLgOhtVe8oPoMl/z7EtK8ZLCyAj+eoJ0Z18FbVRCIUBKOJBOEfsRh4Z0kF3j54CtX1PydiQlH/FqpmEP6+T4rZmkOIz/HDkgq8c/A0qj1WTDRjHaOIHsXqQWsiQegLLzMT5NZmvmNQN4wbkBz06wp1iQlrfZzZLCzfzzECvx7UHVkheI7BJNSVALYRxqbLrpA2DfUHLzMTlNZmXl9QFpL/TKFMgLS4BGwoKGVcYTASS38dnIa3eiP/HJvxakEZrjOxKBqBLYQxb3tJmzbzS7cfDlqbeX+orZsLFrwUA1fUXmTaL9AEiNo5t09M6G8KUeTlOeoBL16U5YUxb3sJVn9S2ma7S4B7eyjFkadBzEOpyo7iM1jy/mGmfQNJgKiZcyuSHB+j+ftCCQ/PUQ948aIAi5frNF12Ye3etqLoydq9pWi67ArRFakbxMHG6GJgUaw8EwS+CLTERG0jCjOVtIS6HVew4G1+t6WFcWNhmeL6vkCr5bixsCwk1wMYL0aeGFkMrFasglnE7YmZEi7i2id/++g7pv15LTnicfaRpYWxvLpB1/30gKeZCUYWA7OKVafYcKaYq1JnHDUvGd465cghZ2H5gncLmCcvSsTSMcaeCbG67qcHPHXU8SwGliNYlhOrWLkE/9/tLzbF+pJZOKE/ZmSmcW8pGtmOKxjw5EWJWNpinD68F/yNBaejdb9QwduSqeMzUnDfqLQ298npAO4blRY0y4lVrGovNivGmFhiU6yWsRlEEVDfjot3C5gnL0rE0sIYGe5Ezsg0xX1yRqaFvJ6Rl446QKuwrPmktE0sVhCANZ+UBi3o7U+spPiKMbHGpgBw9TJioemyC+v2HseT24qxbu9xrwShmnZc+fPHci2KAJ/zuy3tSgM/l+JI6xidDhhWxwjw0VHHyNIhFjfe81p8lZuoiU0ZNedWC/7qbo1sxxUMeJzfbXlhBFrF8dGb07ma+QIY3/DU6Po3UawW/PNrpoWtCr77wevloTY2xcPLyB8sdbePje/PTZxaD1pcAuJjInFPZq8287uNenHZQhiBVrd65sjeRl8GV/AQ9B6fkYIO0RGY+spnfvf920fH8M8Dp1QnVTz3M/plpARr3e2jN6dzZ2Fphdf53ZaOMfKCv0WWjIKXoPew3p2Z441akipmsZzU1N3yFKfWilziTJzfXXuxyTBxt5TFyMs8S094muYkhZfSIaUYkxRp7NMqlhOgvu7WDKEBOXiaGusLy1iM4iyAKWuL8PDWg5iytggjlu02dKlI3qY5SeGpdEjOAvKFr6SKmS0nES11t0Z3ftcKj0XdnlhCGHkUIB6nOflCTliS4qLwSFY/NF52hcz9H5+Rgvz5YzFnTF+m/T2TKvnzx2JLzjA8P3kQtuQMM0WZihQe626DBQ/xbSVM70rzapIbnfFVg9QlKzvXgC37TmD5zqPufULl/oc5Hcjs24Vp/q9ZkiqsiHW3vrLSIkbU3QYDXuLbcpj+DvNqkoeqx6BeiMISFe7Eip3ftlkkKpTWt9WSKp74S8Tl3jIA98vMRLp/lHF1t3rD+zM2vcXIo0keqh6DesOL9c1jwa8esCbieK271RPen7Hp7zRvJnmoegwGA56sbyslVQD1cXCx7nbxxAzMHNnblKIoZx2L2xsvu/BI1pVIiuPvGZveYhyaloCOsRE43yA/c6JjbERIBCiUPQaDAW/Wt5nLUTzhxRIPJXLW8e2/SMG7X57xnpYZF4W5Wf3Qq0s7bp6x6YWRhVDdYtauJwntIvDMr6/mzurhzfoGzJlUkdbTugTBNIk4PZBbRuJM7SWfiaXKukas2HkUL08bzM3fb3ph3FdarWgtAkBNQ3NIBh2rJbXw1oHciSLAT8G3mfFlKXWMiWA6lpdEXCCo9ZoAPq1m8wUuJPDk/rFaUslx/CRcPOGp4NuMyMURWRpkAHwl4rSiplekJ0YXdEsxvTDy5P7xXoLAAkvSg9e530aixVISMcO4YCVQA4QXq9n0rjRP7p+/Ob8CgMnXpQb9OgJFKenB89xvI9FqKVnNEg/UAOHFaja9xcib++dvzu/ynUcNn8PNgq85uDxOvQwleiy4JY038lCaoidilYhaeLOaTW8xik0uf5fZC28fPIXq+p/jOUY1uRQtrr/t/g7Ld37b5nNRSMz0H8KOJSee6LXg1srfDobT6TB1+ZHe8Gg1m1oYfTe5jMQdg7phnIFNLkW2fn7C53YzComZ5n7rjVz5iecLbtyAZKaQzjATdcBRS4tLwIaCUr9VIlJ4XF7CtMIoN1hr6puwvqDMcFG0mpDwlP0PJWosZZ6nuAUbX0aKEnPG9EG/pA7cWs2mjDGaoaUXq0AUfPeDKbK6PGX/Q4mWBbesMo2RFbnYsxKZfbty3UPSlBajGawxVoGQrmPCKzxl/0OJFRfc0hO1ZUpmGSemtBjN4NapWTfZDFld1uw/AEvVOAay4BbPFpFeqClTMlNIwZTCaAa3TklIpPDi/vvDn6sIgLvlJQLFCkX7wUSN8WGmkIIpXWmzuHVyi7z7ggf3nwU5V/HDkgq/mVsz/IeQwnvfQKNhNT4WTuiPGZlpprlPprQY/VljAoBbMlr/8xptgWldx4RnpK4iAO6TYYFg16QKC6wWtZlEETCpxQjIW2NOR+vau+sKyrCuoIyL6Wpa1zExC2ZIhgWK3ZIqrFjVojalxSjiuTrc7zJ7AUCbBct5SWxYOVZlhmSYHtgpqaIGK1rUprUYRcKcDgxNS8C8vx/0+Tkvs0ys+mYFzJEMI4KL1SxqU1uMIjytVaKEFd+sgLWtYYIdK1nUprcYAXO5clZ7swLWtoalyxSY/VkRbFhCGM3myplxHRN/yCXDPBsEmE1kqPekfbGEMJqlrtHqWKnBLUtHHR6vm9AHS8QYeWtWa2es0ODWDE1KiOBiCWEEaK0SXjGDyEjHRdHxKlMk84jgYQlXWsRKrpxV4L342+7LnRK+sZQwAr4TGxQvMg6eKwbkxoWdljvVgtmSaFqwnDBK4XGtEjsMLBFeKwYCXe7Ursk8u3helhfGomPs8SK9XTlfAvhhSYUtBpYIrxUDtNypeuzkeVlaGHcUn8GCf37NtK/erpzP2FVshM+Fgqw4sER4Kv72fFEdrfyR6ZiOMRFerjWPCzeFAh49r2BiWWGUe7vJoacrJxu7klk9zYoDyxO54u/EDpEY2a8rPj1WhVM1FzF9eC9EhgenUELtYk0itNxpK7wn0fTGksKoJn6ktyunNXZltYElRVox8GFJJbZ/fQZvHTjl3mfp9sPIGZmG3FsG6Prdal+SgD2WO1UDz0m0YGCZOkZP1MaP9HTltMauRKwysHwhVgyUnK7Fv78606ZFnEsAVn9SirztJbp9p5YXlZ3jiHLwmkQLFpYURlZx6RgToXtcL1Bhs8rAkqPpsgtr95Yq7rN2bymaLrt0+T4tLyqzdzsKBnbroGRJV5pVXFZOHYzMvl0M+W4pdikB2VhY1sZSlOISgCX/PoSnbs/wabF5JlG6tIsCHMC5Hxt9xgBZX1S8LwBvNDwl0UKBJYWRtURkWG/9Y3n+vtsXVhxYcpRXNzDtt7HoBHYePtsmA+wviSItfWJ9UWX27WrJ2G4gSMvNxg1I9ttBySpYUhiNfLv5+24Bbct2rDiw5OiZEMu8r7SMiSWJIj2G1zpK3lEq5M6fP9byExQCijE+++yzcDgceOSRR9zbLl26hNmzZ6Nz585o3749Jk2ahMrKykCvUzVGdstW+u5V0wZj/xPjsCVnGJ6fPAhbcoYhf/5YW4giAEwf3gus/4c8m0w0XXYxJVGkjSmo85J6/HVD+rCkwjKduuVwCIKgqa3J559/jjvvvBNxcXEYM2YMVqxYAQCYNWsW3n//fWzYsAHx8fGYM2cOnE4nCgoKmM5bV1eH+Ph41NbWIi4uTsuleWHk9Ds7Tf1TQ972Eqz+RDkBI2XhhP5Y8v5hVcdsyRnmdo/tMpUtUFpcAkYs2y0bqhAt7Pz5Y003ltVoiyZX+scff8TUqVOxdu1aPP300+7ttbW1WLduHTZv3oyxY8cCANavX4/+/fujqKgIw4YNa3OuxsZGNDY2el28nhjZLduKnbr1QKxTXLu31G8iRoQ1NumJZ+LFiktKBAO7FXLLocmVnj17NiZMmICsrCyv7fv370dzc7PX9vT0dPTo0QOFhYU+z5WXl4f4+Hj3T2pqqpZLshR26BuZe8sAfLPkV5g+rAfT/mpikyLSxIuVFmsKFnYr5JZDtcW4detWHDhwAJ9//nmbzyoqKhAZGYmOHTt6bU9KSkJFRYXP8+Xm5mLevHnu3+vq6mwtjnZy+SLDnXjq9gzsPHzWb3Jk+vBeeCW/lCnbTwkV7ditkFsOVRbjyZMn8fDDD+ONN95AdLQ+NyYqKgpxcXFeP6GCN8vMbEsA6AFrciQy3Cm7n9wxZBGqx26F3HKoEsb9+/fj7NmzGDx4MMLDwxEeHo49e/bghRdeQHh4OJKSktDU1ITz5897HVdZWYnk5GQ9rztgdhSfwYhluzFlbREe3noQU9YWYcSy3YaJjxmWAAgWrBUEcvspHUOog7L4rajKSl+4cAHl5eVe2+655x6kp6dj/vz5SE1NRdeuXbFlyxZMmjQJAHDkyBGkp6ejsLDQZ/JFit5ZaV/I1cOJj9qI/1iFx6owZW2R3/08M61KmDEjznrNama+EN6w3mMrhnSClpXu0KEDMjIyvLa1a9cOnTt3dm+fOXMm5s2bh4SEBMTFxeHBBx/E8OHDmUQxFPDaV441mF1Re9HvPmYd1KxZfMr2a0PNuLB7Fl/3JhLLly/HrbfeikmTJmHUqFFITk7Gv/71L72/RjNqyhFCCWswe8n7hxXdfTvGKQn/aBkXds7iByyMH3/8sbu4GwCio6OxcuVKVFdXo76+Hv/617+4ii/yWo7gL+gtUlPfJDuQ7RynJOShcaEeS7YdU4LXcgTPoLcSSgOZ1RreUFBK/wlsBK9eEs/YThh5LkcQs64J7ZTXNZYbyKxW7pL3DxuagSf0R6n0jFcviWcs2V1HCdbOO0BrpjjUgefxGSm42OzC3DcP+t1XOpDVWLlWXoDLbvhLqvDqJfGM7YQRkF+cSWz/BaDNRPpQZnWT47QNZDW9IK2+AJddYFnSdNyAZGq9phLbudIi4zNSkD9/bJv2XwAMz+pqdfeVinN9QbElc8OaVAFARdsqsa0wAm3LEQBwkb0LZPYBy+wQKRW1F7maGkmwoSapYmR/UjNiS1daDp5aLvlz95UGslicu6GglKmH4ZL3D6O6vsn9uxmKwQmgok5dUsXuRdtqIGH0gLfsXSADOczpwIzMNKaONJ6iCFBixgzsKD6DJf8+xLSvZyyaZg2xYWtXWgqP2btAZh+ojTmKUNEv34gJl+r6ZsX97NIJJxiQMHrAc42jVuRiS1prJQljUUq4eEJJlcAgV9oDq66d68slr6i7pKlWkgg+Sh1w/MXBRRLaRWLprzMoFKIREkYJckmPpLgoTBnaA42XXSg8VmW6oLU0tlR4rIrpOCr6DS3+irVZX1RPTOhPohgAJIw+kFpYZecasGXfCSzfedS9j9kzt7TeMn+wFGuzvqiS42P0v0AbQTFGGUQLKyrciRU7v21TGmH2Nl5aaiV5WwrCSrAWa1/bs5Pl4uA8QhajArw2tdULNbWSZm1+axZYa2j3l9dYMg7OGySMCrAO1qJjVcjs1yV0F6YjLLWSLC4eiaN2WlwCCr47x7Tv2QuXMHFQd83F/wQbJIwKsAa6Z28+gGcnXW3aAalU9Gt1q9lofFniSogxRprFElwoxqgAa6D7/MVmU8cblaAmp8FDbrkBX/iKHdp56YFgQ8KoAOtyAyJWnCnC2zRJq8BaqA1Q7NAISBgVYF1uALCu5cTjNEkrwFqoDVAHHCOgGKMfxMztgn9+jfMXleemAtaznKjesS1a1r+W7sc6TuaM6YO5464iSzHEkDAyMD4jBR2iIzD1lc/87ms1y8mq0yS1wlq2pNdyA5l9u9rm3vIEudKMDOvd2baFtdTktBXWtZlZ9rNiwxIrQRYjI3a3nOxeHsJatjQ2PYm5vMnO44l3yGJUgZzl1KldBFb+9peWt5zsXB7CWra0sbCMlhuwAGQxqmR8RgpcLuCJbcXuztfV9c1Y8v5hOJ0OGswhgjUBovUc0s9YlxEor25g2o+WG+AbEkaV7Cg+g9mbaXqcL/QQKxb0mLetdA4AbT7z19hXpGdCLNN+tNwA3zgEQeCqIrmurg7x8fGora1FXFyc0ZfjRYtLaLPetCdi6Ur+/LG2e+OHqsmE3Lxt8W6zvJiUzqH1P4P47Pf8YQxG//kjv+VNdhwjRqNGWyjGyEiLS8CGglKaHucD1mxtoLC25lKafcRyDn8otWmLDHfSGs4WgISRgR3FZzBi2W6mpUgB6xV5K6GHWLGix7xtNTNO5OjULtLrd2myhJIq5odijH6Qc7uUsFqRtxKsYvXp0XP49uwFlFc3oGdCLKYP74XI8LbvZT1miyjtp8dLa+GE/kiOj1GMpVJSxdyQMCqgZqI/YM/pcaxCc9f6fV73cen2w8gZmYbcW36ei67XbBGl/fR4aSXHxzAlSyipYl7IlVZAjdtl1/gRq9BIXy4uAVj9SSnytpcACN1sEbUdk9Sen7AGJIwKqHG7OrWLwO8yeyE+JtJyrceUCERoAGDt3lJcbGphilMCCDixwbLWTSDnJ6wBCaMCrNZQh+hwVNc3Y11BGaasLcKIZbst2bTWF0pCw4JLAJ7ZrtzBWu/ZIkrnWDVtMFZR4sT2UB2jAmLdolxNmhxqauqsgq/4YGxEGBqaW/weO7JfF+w96n/Nk+cnD8LEQd0BhH7mCyVOzI8abaHkiwJKjSOUsONaKL6ysMWnarF0u/8Sp16dY7H3qN/ddJ8tonQOSpzYG3Kl/SDndvmbImbHYm9pk4m7b+gFf+8EpwN4/JYB1IKL4AqyGBnwZQ1V1F3C3DcP+j3WTsXeUiLDncgZmYbVn5TK7pMzMg0xkWHUgovgCrIYGZFaQ8lxtBYKC7m3DMD9o9LaWI5OB3D/qJ/rGGm2CMETlHzRiL/EDDUL8KbpsgsbC8sCmvlCEIFAyZcQYPeO3mqJDHdi5sjefvejpAfBA+RKBwC5fwRhTchiDBBqFkAQ1oOEUQfI/SMIa0GuNEEQhASyGIMAZVYJwtyQMOpMqNY+IQgieJArrSOhWvuEIIjgQsKoE6Fc+4QgiOBCwqgTeizURBAEH5Aw6oQeCzURBMEHJIw6ocdCTQRB8AEJo07osVATQRB8QMKoEyyLLFFTCYIwBySMOiLXVKJTuwis/O0vqY6RIEwCCaPOjM9IwcIJA5DQLtK9rbq+GUveP0x1jARhEkgYdWZH8RnM3nwA1fVNXtupyJsgzAMJo45QkTdBWAMSRh2hIm+CsAYkjDpCRd4EYQ1IGHWEirwJwhqQMOoIFXkThDUgYdQRKvImCGtAwqgztHIgQZgf6uAdBGjlQIIwNySMQYJWDiQI80KuNEEQhARVwpiXl4frrrsOHTp0QGJiIu644w4cOXLEa59Lly5h9uzZ6Ny5M9q3b49JkyahsrJS14smCIIIJqqEcc+ePZg9ezaKiorw4Ycform5GTfffDPq6+vd+8ydOxfvvfce/vGPf2DPnj04ffo0/ud//kf3CycIgggWDkEQNE/c/eGHH5CYmIg9e/Zg1KhRqK2tRdeuXbF582b87//+LwDgm2++Qf/+/VFYWIhhw4b5PWddXR3i4+NRW1uLuLg4rZdGEAThhRptCSjGWFtbCwBISGgtWN6/fz+am5uRlZXl3ic9PR09evRAYWGhz3M0Njairq7O64cgCMJINAujy+XCI488gszMTGRkZAAAKioqEBkZiY4dO3rtm5SUhIqKCp/nycvLQ3x8vPsnNTVV6yVZghaXgMJjVdh28BQKj1VRJx6CMADN5TqzZ89GcXEx8vPzA7qA3NxczJs3z/17XV2dbcVxR/EZ/Om9Eq8OPSnx0Vh02wAqDCeIEKLJYpwzZw7+/e9/46OPPsIVV1zh3p6cnIympiacP3/ea//KykokJyf7PFdUVBTi4uK8fuzIjuIzmLXpQJu2ZdTgliBCjyphFAQBc+bMwdtvv43du3cjLS3N6/Nrr70WERER2LVrl3vbkSNHcOLECQwfPlyfK7Yg1OCWIPhClSs9e/ZsbN68Gdu2bUOHDh3cccP4+HjExMQgPj4eM2fOxLx585CQkIC4uDg8+OCDGD58OFNG2q6oaXBLs2kIIvioEsaXX34ZAHDjjTd6bV+/fj1mzJgBAFi+fDmcTicmTZqExsZGZGdn46WXXtLlYq0KNbglCL5QJYwsJY/R0dFYuXIlVq5cqfmi7AY1uCUIvqC50hxADW4Jgi9IGDmAGtwSBF+QMHICNbglCH6gfowcQQ1uCYIPSBg5gxrcEoTxkCtNEAQhgSxGzmlxCeRaE0SIIWHkGGoqQRDGQK40p1BTCYIwDhJGDqGmEgRhLCSMHKKmqQRBEPpDwsgh1FSCIIyFhJFDqKkEQRgLCSOHUFMJgjAWEkYOoaYSBGEsJIycItdUolO7CPwusxfiYyIpK00QQcIhsHSfDSFqFsW2A+LMlw9LKvDOwdOorm9yf0bF3gTBjhptIYuRc8KcDtRebML6gjIvUQSo2JsgggVNCeQcf8XeDrQWe48bkKxLzFFpbjbN2ybsAgkj5+ixgiCroCnNzQZA87YJ20DCyDmBFnuzNqIQ52ZLLdOK2kt4YNMBn+cWXXnqME5YDYoxck4gxd6sjShY5mb7guZtE1aFhJFztBZ7q2lE4c9dV8LXvO0Wl4DCY1XYdvAUCo9VkWgSpoNcac4Ri71nbToAB7wtOKVibzWxST3mXIvnoB6ShBUgi9EEaFlBUE1sUo8514kdoqmHJGEZyGI0CWpXEFQTmxTd9YraS4oxRV840CrQ1/bshNF//ihkZUUEEUxIGE2EmhUE/YmdKGiiuCq564KPf4u/A62u/P7yGtVlRVQzSfAKCaNFURubFN11aXwwWaGOMdkjdrjt4Cmm62KJRfr6LopTEqGE5kpbHLXJEK1WXOGxKkxZW+T3erbkDEPtxSafNZNSAZd+BoBqJgnNqNEWshgtjtrYpJK7rvQZq+vuLxYpB8UpiVBCWWkbIAraxEHdMbxP56CICmsPSX+xSCVorRsiVJAwErrBUlakZ80kQQQLcqUJXfHnuutVM0kQwYSEkdCdQGKRSniWGBFEMCFXmggpLLFIpc9orRsiFJAwEiFHKRa5atpgrFI5/ZEg9IbqGAnDoJkvRCihOkbCFGitmSSIYEOuNEEQhAQSRoIgCAkkjARBEBJIGAmCICSQMBIEQUggYSQIgpBAwkgQBCGBhJEgCEICCSNBEIQE7ma+iDMU6+rqDL4SgiCshKgpLLOguRPGCxcuAABSU1MNvhKCIKzIhQsXEB8fr7gPd00kXC4XTp8+jQ4dOsDhME/TgLq6OqSmpuLkyZPU/EIDdP+0Q/eODUEQcOHCBXTr1g1Op3IUkTuL0el04oorrjD6MjQTFxdHgzMA6P5ph+6df/xZiiKUfCEIgpBAwkgQBCGBhFEnoqKisGjRIkRFRRl9KaaE7p926N7pD3fJF4IgCKMhi5EgCEICCSNBEIQEEkaCIAgJJIwEQRASSBh1pLGxEYMGDYLD4cDBgwe9Pvvqq68wcuRIREdHIzU1Fc8995wxF8kZZWVlmDlzJtLS0hATE4M+ffpg0aJFaGpq8tqP7p88K1euRK9evRAdHY3rr78e+/btM/qSTA8Jo4489thj6NatW5vtdXV1uPnmm9GzZ0/s378ff/7zn/HUU09hzZo1BlwlX3zzzTdwuVxYvXo1Dh06hOXLl2PVqlV4/PHH3fvQ/ZPnzTffxLx587Bo0SIcOHAAv/jFL5CdnY2zZ88afWnmRiB0Yfv27UJ6erpw6NAhAYDwxRdfuD976aWXhE6dOgmNjY3ubfPnzxeuuuoqA66Uf5577jkhLS3N/TvdP3mGDh0qzJ492/17S0uL0K1bNyEvL8/AqzI/ZDHqQGVlJXJycrBx40bExsa2+bywsBCjRo1CZGSke1t2djaOHDmCmpqaUF6qKaitrUVCQoL7d7p/vmlqasL+/fuRlZXl3uZ0OpGVlYXCwkIDr8z8kDAGiCAImDFjBh544AEMGTLE5z4VFRVISkry2ib+XlFREfRrNBPfffcdXnzxRdx///3ubXT/fHPu3Dm0tLT4vDd2vi96QMIow4IFC+BwOBR/vvnmG7z44ou4cOECcnNzjb5krmC9f56cOnUK48ePx29+8xvk5OQYdOUEwWHbMV549NFHMWPGDMV9evfujd27d6OwsLDNPNUhQ4Zg6tSpeO2115CcnIzKykqvz8Xfk5OTdb1uXmC9fyKnT5/GmDFjcMMNN7RJqtjx/rHQpUsXhIWF+bw3dr4vumB0kNPslJeXC19//bX754MPPhAACG+99ZZw8uRJQRB+Th40NTW5j8vNzaXkwU98//33Qr9+/YTJkycLly9fbvM53T95hg4dKsyZM8f9e0tLi9C9e3dKvgQICaPOlJaWtslKnz9/XkhKShKmT58uFBcXC1u3bhViY2OF1atXG3ehnPD9998Lffv2FW666Sbh+++/F86cOeP+EaH7J8/WrVuFqKgoYcOGDUJJSYlw3333CR07dhQqKiqMvjRTQ8KoM76EURAE4csvvxRGjBghREVFCd27dxeeffZZYy6QM9avXy8A8PnjCd0/eV588UWhR48eQmRkpDB06FChqKjI6EsyPdR2jCAIQgJlpQmCICSQMBIEQUggYSQIgpBAwkgQBCGBhJEgCEICCSNBEIQEEkaCIAgJJIwEQRASSBgJgmDm448/lu2W9Pnnn/s9XhAE/OpXv4LD4cA777zj9dnnn3+Om266CR07dkSnTp2QnZ2NL7/8UtX1zZgxo811jR8/XtU5ABJGgiB8cOONN2LDhg1ttt9www04c+aM18+9996LtLQ02X6knqxYsQIOh6PN9h9//BHjx49Hjx498NlnnyE/Px8dOnRAdnY2mpubVV37+PHjva5vy5Ytqo4HSBgJglBBZGQkkpOT3T+dO3fGtm3bcM899/gUPE8OHjyIv/zlL3j11VfbfPbNN9+guroaixcvxlVXXYWBAwdi0aJFqKysRHl5uXu//Px8jBw5EjExMUhNTcVDDz2E+vp6r3NFRUV5XWOnTp1U/50kjARBaObdd99FVVUV7rnnHsX9Ghoa8Nvf/hYrV6702SvyqquuQufOnbFu3To0NTXh4sWLWLduHfr3749evXoBAI4dO4bx48dj0qRJ+Oqrr/Dmm28iPz8fc+bM8TrXxx9/jMTERFx11VWYNWsWqqqqVP9d1ESCIIg23HjjjZgxY4bfZsO33HILAGD79u2K+91///1oaWnBK6+8AgBwOBx4++23cccdd7j3KS4uxh133IHS0lIAQL9+/fDBBx+gZ8+eAIB7770XYWFhWL16tfuY/Px8jB49GvX19YiOjsbWrVsRGxuLtLQ0HDt2DI8//jjat2+PwsJChIWFsd8AQ3v7EATBBUuXLhXatWvn/nE6nUJUVJTXtvLycq9jTp48KTidTuGtt95SPPe2bduEvn37ChcuXHBvAyC8/fbb7t8bGhqEoUOHCnfddZewb98+obCwUJg0aZIwcOBAoaGhQRAEQRgyZIgQGRnpdU2xsbECAKGkpMTndx87dkwAIOzcuVPV/SBhJAhCqKqqEo4ePer+GTp0qLBs2TKvbc3NzV7HLF68WOjatatXZ3VfPPzww4LD4RDCwsLcPwAEp9MpjB49WhAEQXjllVeExMREoaWlxX1cY2OjEBsbK2zZskUQBEFIT08XHnzwQa9rEn88l9aV0qVLF2HVqlWq7get+UIQBBISEryWrI2JiUFiYiL69u3rc39BELB+/XrcddddiIiIUDz3ggULcO+993ptu/rqq7F8+XLcdtttAFpjkE6n0yuBI/7ucrkAAIMHD0ZJSYnsNfni+++/R1VVFVJSUpiPASj5QhCEBnbv3o3S0tI2gge0rvaYnp6Offv2AWhdsCwjI8PrBwB69OiBtLQ0AMC4ceNQU1OD2bNn4/Dhwzh06BDuuecehIeHY8yYMQCA+fPn49NPP8WcOXNw8OBBHD16FNu2bXMnX3788Uf84Q9/QFFREcrKyrBr1y5MnDgRffv2RXZ2tqq/j4SRIAjVrFu3DjfccAPS09PbfNbc3IwjR46goaGB+Xzp6el477338NVXX2H48OEYOXIkTp8+jR07dritvWuuuQZ79uzBt99+i5EjR+KXv/wlnnzySXTr1g0AEBYWhq+++gq33347rrzySsycORPXXnst9u7d22YVT39QVpogCEICWYwEQRASSBgJgiAkkDASBEFIIGEkCIKQQMJIEAQhgYSRIAhCAgkjQRCEBBJGgiAICSSMBEEQEkgYCYIgJJAwEgRBSPj/bnC3WnMY3QkAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -484,8 +485,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Old Ways \n", + "### Old Ways / Database Experts \n", + "Advanced queries can be made using SQL or SQAlchemy under the hood. \n", + "\n", "See previous presentations\n", + "\n", "Engine objects, session objects, and a crash course in ORM, oh my! \n", "* [Hackweek 2021](https://snowex-2021.hackweek.io/tutorials/database/index.html)\n", "* [Hackweek 2022](https://snowex-2022.hackweek.io/tutorials/database/index.html)" @@ -508,7 +512,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.10.14" } }, "nbformat": 4, From 026ce3001404a31f0bb4be695f512b6a91f7824d Mon Sep 17 00:00:00 2001 From: micah johnson Date: Thu, 1 Aug 2024 15:46:55 -0600 Subject: [PATCH 10/21] Updated minor things, added in most of the raster example --- .../2_database_structure.ipynb | 56 +- .../snowex_database/3_forming_queries.ipynb | 1269 +++++++---------- .../4_get_spiral_example.ipynb | 638 +++++++-- .../5_plot_raster_example.ipynb | 324 ++--- 4 files changed, 1177 insertions(+), 1110 deletions(-) diff --git a/book/tutorials/snowex_database/2_database_structure.ipynb b/book/tutorials/snowex_database/2_database_structure.ipynb index 125e2d4..71daabd 100644 --- a/book/tutorials/snowex_database/2_database_structure.ipynb +++ b/book/tutorials/snowex_database/2_database_structure.ipynb @@ -23,12 +23,14 @@ "\"table_structure\"\n", "\n", "\n", - "The 4th table is a table detailing the site informations. Lots and lots of metadata for which the API has not been written yet." + "The 4th table is a table detailing the site informations. Lots and lots of metadata for which the API has not been written yet.\n", + "\n", + "So how does this look in python?" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "id": "979fad96", "metadata": {}, "outputs": [], @@ -41,12 +43,12 @@ "id": "07bf71eb", "metadata": {}, "source": [ - "### What info is available?\n" + "### What can I use to filter a query?\n" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 8, "id": "8fd4e693", "metadata": {}, "outputs": [ @@ -56,29 +58,17 @@ "text": [ "These are the available columns in the table:\n", " \n", - "* version_number\n", - "* equipment\n", - "* value\n", - "* latitude\n", - "* longitude\n", - "* northing\n", - "* easting\n", - "* elevation\n", - "* utm_zone\n", - "* geom\n", - "* time\n", - "* site_id\n", "* site_name\n", + "* site_id\n", "* date\n", - "* time_created\n", - "* time_updated\n", - "* id\n", - "* doi\n", - "* date_accessed\n", "* instrument\n", - "* type\n", - "* units\n", "* observers\n", + "* type\n", + "* utm_zone\n", + "* date_greater_equal\n", + "* date_less_equal\n", + "* value_greater_equal\n", + "* value_less_equal\n", "\n" ] } @@ -88,10 +78,10 @@ "from snowexsql.api import PointMeasurements as measurements\n", "\n", "# Grab one measurment to see what attributes are available\n", - "df = measurements.from_filter(type=\"density\", limit=1)\n", + "df = measurements.from_filter(type=\"depth\", limit=1)\n", "\n", "# Print out the results nicely\n", - "print(\"These are the available columns in the table:\\n \\n* {}\\n\".format('\\n* '.join(df.columns)))\n" + "print(\"These are the available columns in the table:\\n \\n* {}\\n\".format('\\n* '.join(measurements.ALLOWED_QRY_KWARGS)))" ] }, { @@ -101,8 +91,6 @@ "source": [ "**Try this:** Using what we just did, but swap out PointMeasurements for LayerMeasurements.\n", "\n", - "`RasterMeasurements` is still being built out for ease of use but it would still have some limitations. So for now it doesnt have the `from_filter` function.\n", - "\n", "For more detail, checkout the readthedocs page on [database structure](https://snowexsql.readthedocs.io/en/latest/database_structure.html) to see how data gets categorized. " ] }, @@ -113,7 +101,7 @@ "source": [ "## Bonus Step: Learning to help yourself\n", "[snowexsql](https://github.com/SnowEx/snowexsql/) has a host of resources for you to help your self. First when you are looking for something be sure to check the snowexsql's docs.\n", - "There you will find notes on the database structure. datasets, and of course our API! \n", + "There you will find notes on the database structure. datasets, and of course our new API! \n", "\n", "### Database Usage/Examples\n", "* [snowexsql Code](https://github.com/SnowEx/snowexsql/) \n", @@ -121,13 +109,7 @@ "\n", "### Database Building/Notes\n", "* [snowex_db Code](https://github.com/SnowEx/snowex_db/) \n", - "* [snowex_db Documentation](https://snowex_db.readthedocs.io/en/latest/) \n", - "\n", - "### Extra Resources\n", - "* [PostGIS Functions](https://postgis.net/docs/manual-3.0/PostGIS_Special_Functions_Index.html) - POSTGIS is the extension that make postgres have GIS capabilities. This is here as a resource but it will be discussed in more detail later.\n", - "* [GeoAlchemy2](https://geoalchemy-2.readthedocs.io/en/0.8.4/) - geoalchemy is library that allows us to leverage postgis and other gis functions\n", - "* [SqlAlchemy](https://docs.sqlalchemy.org/en/14/) - sqlalchemy is the underlying library that lets us map python to databases\n", - "* [Hackweek DB Cheat Sheet](https://snowexsql.readthedocs.io/en/latest/cheat_sheet.html) - This is a cheat sheet we put together to help you use the database.\n" + "* [snowex_db Documentation](https://snowex_db.readthedocs.io/en/latest/) " ] }, { @@ -139,7 +121,7 @@ "You just explored the database structure and discussed how they differ.\n", "\n", "**You should know:**\n", - "* Which tables matter to a snowex scientist\n", + "* Which table a dataset might live in\n", "* What columns you can work with (or how to get the available columns)\n", "* Some resources to begin helping yourself.\n", "\n", @@ -163,7 +145,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.10.14" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/3_forming_queries.ipynb b/book/tutorials/snowex_database/3_forming_queries.ipynb index 8e5eea7..99bf281 100644 --- a/book/tutorials/snowex_database/3_forming_queries.ipynb +++ b/book/tutorials/snowex_database/3_forming_queries.ipynb @@ -4,18 +4,276 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Forming Queries\n", + "# Forming Queries through the API!\n", "\n", - "Get familiar with the tools available for querying the database.\n", + "Get familiar with the tools available for querying the database. The simplest way is to use the api classes [`snowexsql.api.PointMeasurements`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L185) and [`snowexsql.api.LayerMeasurements`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L262). Each class has to very useful functions [`from_filter`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L192) and [`from_area`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L210)\n", "\n", - "\n", - "We have two options, `from_filter` and `from_area`" + "## `from_filter`" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdQAAAGsCAYAAABkVlbAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuPklEQVR4nO3de1TVdb7/8dcG5CIKKuIFBu8lpaKYhaI205LJlB91nE62kDTpYjbMyUsXxDA1L9iNsZo0c3kpL1GezDOTppmNU5YhgpaO5Y0SIs3MBPGCAp/fHx33aYciGz9x6/lY67tW+7Pf3w+fN9tvr/Xd+7u/OIwxRgAA4Ip41PYCAABoCAhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsaHCB+uGHHyouLk4hISFyOBxas2aN23MYY/Tss8/q6quvlo+Pj0JDQzVr1iz7iwUANBhetb0A206dOqWePXvqnnvu0Z/+9KdqzTFu3Di99957evbZZ9WjRw8dP35cx48ft7xSAEBD4mjIN8d3OBx6++239R//8R/OsZKSEj3++ON6/fXXdeLECXXv3l1PPfWU/vCHP0iSvvjiC0VERGj37t3q2rVr7SwcAFDvNLi3fC/nL3/5i7Zu3aqMjAx9/vnnuuOOO3TLLbdo//79kqR//OMf6tSpk9555x117NhRHTp00H333ccZKgCgUr+pQM3Ly9OSJUu0atUqDRw4UJ07d9YjjzyiAQMGaMmSJZKk3NxcHTp0SKtWrdJrr72mpUuXKjs7W//5n/9Zy6sHANRlDe4z1Mrs2rVLZWVluvrqq13GS0pKFBQUJEkqLy9XSUmJXnvtNWfdokWLdN1112nv3r28DQwAuKjfVKAWFxfL09NT2dnZ8vT0dHmuSZMmkqS2bdvKy8vLJXSvueYaST+d4RKoAICL+U0FamRkpMrKynT06FENHDjwojX9+/dXaWmpDh48qM6dO0uS9u3bJ0lq3759ja0VAFC/NLirfIuLi3XgwAFJPwVoenq6brrpJrVo0ULt2rXTXXfdpY8//ljPPfecIiMj9f3332vTpk2KiIhQbGysysvLdf3116tJkyaaO3euysvLlZSUpICAAL333nu13B0AoK5qcIG6efNm3XTTTRXG7777bi1dulTnz5/XzJkz9dprr6mgoEAtW7ZU3759NX36dPXo0UOS9O233+q//uu/9N5778nf319DhgzRc889pxYtWtR0OwCAeqLBBSoAALXhir42M2fOHDkcDo0fP/6SNefPn9eTTz6pzp07y9fXVz179tT69etdamzcLhAAgNpU7UDNysrSggULFBERUWldamqqFixYoBdffFF79uzR2LFjNWzYMO3YscNZc+F2gS+99FJ1lwMAQK2q1lu+xcXF6t27t+bNm6eZM2eqV69emjt37kVrQ0JC9PjjjyspKck5dvvtt8vPz0/Lly+vuKCL3C6wKsrLy/Xtt9+qadOmcjgcbu0LAMAFxhidPHlSISEh8vCo+nlntb42k5SUpNjYWMXExGjmzJmV1paUlMjX19dlzM/PT1u2bKnOj3aZt6SkxPm4oKBA11577RXNCQDABfn5+frd735X5Xq3AzUjI0M5OTnKysqqUv3gwYOVnp6uG2+8UZ07d9amTZu0evVqlZWVufujXaSlpWn69OkVxvPz8xUQEHBFcwMAfruKiooUFhampk2burWfW4Gan5+vcePGaePGjRXOOi/l+eef1/3336/w8HA5HA517txZiYmJWrx4sVsL/aWUlBRNnDjR+fjCLyAgIIBABQBcMXc/PnTroqTs7GwdPXpUvXv3lpeXl7y8vPSvf/1LL7zwgry8vC561hkcHKw1a9bo1KlTOnTokL788ks1adJEnTp1cmuhv+Tj4+MMT0IUAFDb3DpDHTRokHbt2uUylpiYqPDwcCUnJ1e4P+7P+fr6KjQ0VOfPn9dbb72l4cOHV2/FAADUQW4FatOmTdW9e3eXMX9/fwUFBTnHR40apdDQUKWlpUmSMjMzVVBQoF69eqmgoEDTpk1TeXm5HnvsMeccP79doCR99dVX2rlzp/N2gQAA1HXWb46fl5fncpnx2bNnlZqaqtzcXDVp0kRDhw7VsmXL1KxZM2fN9u3bXW4XeOGz0Qu3CwQAoK5rMLceLCoqUmBgoAoLC/k8FQBQbdXNkyu69SAAAPgJgQoAgAUEKgAAFli/KAkAgJp05MRZ/b8XP1TR2VIF+Hrpnf+6UW2aVe3mQzYRqACAeuuaKe/qzPly5+Njp86r75xNckj6ak5sja6Ft3wBAPXSL8P054ykDpPW1uh6CFQAQL1z5MTZS4bpz4WnvlsDq/kJgQoAqHf+34sfVqnubGm5jpw4+yuv5icEKgCg3ik6W1rl2qqG75UiUAEA9U6Ab9WvqXUnfK8EgQoAqHfe+a8bq1zrTvheCQIVAFDvtGnmq6r++W93wvdKEKgAgHqpKt8z9WvkUWM3eSBQAQD11tdzYuXrdfEo82vkoS9mDKmxtXCnJABAvfblzCF14vaDBCoAoN5r08xX26fcXKtr4C1fAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAAC64oUOfMmSOHw6Hx48dfsub8+fN68skn1blzZ/n6+qpnz55av359hbqXXnpJHTp0kK+vr6KiorRt27YrWRoAADWq2oGalZWlBQsWKCIiotK61NRULViwQC+++KL27NmjsWPHatiwYdqxY4ez5o033tDEiRM1depU5eTkqGfPnho8eLCOHj1a3eUBAFCjqhWoxcXFSkhI0MKFC9W8efNKa5ctW6bJkydr6NCh6tSpkx588EENHTpUzz33nLMmPT1d999/vxITE3Xttdfq5ZdfVuPGjbV48eLqLA8AgBpXrUBNSkpSbGysYmJiLltbUlIiX19flzE/Pz9t2bJFknTu3DllZ2e7zOXh4aGYmBht3bq10nmLiopcNgAAaovbgZqRkaGcnBylpaVVqX7w4MFKT0/X/v37VV5ero0bN2r16tU6fPiwJOnYsWMqKytT69atXfZr3bq1jhw5csl509LSFBgY6NzCwsLcbQUAAGvcCtT8/HyNGzdOK1asqHDWeSnPP/+8rrrqKoWHh8vb21t/+ctflJiYKA+PK7vAOCUlRYWFhc4tPz//iuYDAOBKuJVq2dnZOnr0qHr37i0vLy95eXnpX//6l1544QV5eXmprKyswj7BwcFas2aNTp06pUOHDunLL79UkyZN1KlTJ0lSy5Yt5enpqe+++85lv++++05t2rS55Fp8fHwUEBDgsgEAUFvcCtRBgwZp165d2rlzp3Pr06ePEhIStHPnTnl6el5yX19fX4WGhqq0tFRvvfWWbrvtNkmSt7e3rrvuOm3atMlZW15erk2bNqlfv37VbAsAgJrl5U5x06ZN1b17d5cxf39/BQUFOcdHjRql0NBQ52esmZmZKigoUK9evVRQUKBp06apvLxcjz32mHOOiRMn6u6771afPn10ww03aO7cuTp16pQSExOvtD8AAGqEW4FaFXl5eS6fj549e1apqanKzc1VkyZNNHToUC1btkzNmjVz1tx55536/vvv9cQTT+jIkSPq1auX1q9fX+FCJQAA6iqHMcbU9iJsKCoqUmBgoAoLC/k8FQBQbdXNE+7lCwCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhwRYE6Z84cORwOjR8/vtK6uXPnqmvXrvLz81NYWJgmTJigs2fPOp8/efKkxo8fr/bt28vPz0/R0dHKysq6kqUBAFCjvKq7Y1ZWlhYsWKCIiIhK61auXKlJkyZp8eLFio6O1r59+zR69Gg5HA6lp6dLku677z7t3r1by5YtU0hIiJYvX66YmBjt2bNHoaGh1V0iAAA1plpnqMXFxUpISNDChQvVvHnzSms/+eQT9e/fXyNGjFCHDh108803Kz4+Xtu2bZMknTlzRm+99Zaefvpp3XjjjerSpYumTZumLl26aP78+dVZHgAANa5agZqUlKTY2FjFxMRctjY6OlrZ2dnOAM3NzdW6des0dOhQSVJpaanKysrk6+vrsp+fn5+2bNlyyXlLSkpUVFTksgEAUFvcfss3IyNDOTk5Vf6Mc8SIETp27JgGDBggY4xKS0s1duxYTZ48WZLUtGlT9evXTzNmzNA111yj1q1b6/XXX9fWrVvVpUuXS86blpam6dOnu7t8AAB+FW6doebn52vcuHFasWJFhTPKS9m8ebNmz56tefPmKScnR6tXr9batWs1Y8YMZ82yZctkjFFoaKh8fHz0wgsvKD4+Xh4el15eSkqKCgsLnVt+fr47rQAAYJXDGGOqWrxmzRoNGzZMnp6ezrGysjI5HA55eHiopKTE5TlJGjhwoPr27atnnnnGObZ8+XKNGTNGxcXFLqF56tQpFRUVqW3btrrzzjtVXFystWvXVmltRUVFCgwMVGFhoQICAqraEgAALqqbJ2695Tto0CDt2rXLZSwxMVHh4eFKTk6uEKaSdPr06Qpnmhfqfpnl/v7+8vf3148//qgNGzbo6aefdmd5AADUGrcCtWnTpurevbvLmL+/v4KCgpzjo0aNUmhoqNLS0iRJcXFxSk9PV2RkpKKionTgwAFNmTJFcXFxzmDdsGGDjDHq2rWrDhw4oEcffVTh4eFKTEy00SMAAL+6an8P9VLy8vJczkhTU1PlcDiUmpqqgoICBQcHKy4uTrNmzXLWFBYWKiUlRd98841atGih22+/XbNmzVKjRo1sLw8AgF+FW5+h1mV8hgoAsKG6ecK9fAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACy4okCdM2eOHA6Hxo8fX2nd3Llz1bVrV/n5+SksLEwTJkzQ2bNnnc+XlZVpypQp6tixo/z8/NS5c2fNmDFDxpgrWR4AADXGq7o7ZmVlacGCBYqIiKi0buXKlZo0aZIWL16s6Oho7du3T6NHj5bD4VB6erok6amnntL8+fP16quvqlu3btq+fbsSExMVGBiohx56qLpLBACgxlQrUIuLi5WQkKCFCxdq5syZldZ+8skn6t+/v0aMGCFJ6tChg+Lj45WZmelSc9tttyk2NtZZ8/rrr2vbtm3VWR4AADWuWm/5JiUlKTY2VjExMZetjY6OVnZ2tjMcc3NztW7dOg0dOtSlZtOmTdq3b58k6bPPPtOWLVs0ZMiQS85bUlKioqIilw0AgNri9hlqRkaGcnJylJWVVaX6ESNG6NixYxowYICMMSotLdXYsWM1efJkZ82kSZNUVFSk8PBweXp6qqysTLNmzVJCQsIl501LS9P06dPdXT4AAL8Kt85Q8/PzNW7cOK1YsUK+vr5V2mfz5s2aPXu25s2bp5ycHK1evVpr167VjBkznDVvvvmmVqxYoZUrVyonJ0evvvqqnn32Wb366quXnDclJUWFhYXOLT8/351WAACwymHcuJR2zZo1GjZsmDw9PZ1jZWVlcjgc8vDwUElJictzkjRw4ED17dtXzzzzjHNs+fLlGjNmjIqLi+Xh4aGwsDBNmjRJSUlJzpqZM2dq+fLl+vLLL6u0tqKiIgUGBqqwsFABAQFVbQkAABfVzRO33vIdNGiQdu3a5TKWmJio8PBwJScnVwhTSTp9+rQ8PFxPhC/UXcjyS9WUl5e7szwAAGqNW4HatGlTde/e3WXM399fQUFBzvFRo0YpNDRUaWlpkqS4uDilp6crMjJSUVFROnDggKZMmaK4uDhnsMbFxWnWrFlq166dunXrph07dig9PV333HOPjR4BAPjVVft7qJeSl5fncraZmpoqh8Oh1NRUFRQUKDg42BmgF7z44ouaMmWK/vznP+vo0aMKCQnRAw88oCeeeML28gAA+FW49RlqXcZnqAAAG6qbJ9zLFwAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALDgigJ1zpw5cjgcGj9+fKV1c+fOVdeuXeXn56ewsDBNmDBBZ8+edT7foUMHORyOCltSUtKVLA8AgBrjVd0ds7KytGDBAkVERFRat3LlSk2aNEmLFy9WdHS09u3bp9GjR8vhcCg9Pd05V1lZmXOf3bt3649//KPuuOOO6i4PAIAaVa0z1OLiYiUkJGjhwoVq3rx5pbWffPKJ+vfvrxEjRqhDhw66+eabFR8fr23btjlrgoOD1aZNG+f2zjvvqHPnzvr9739fneUBAFDjqhWoSUlJio2NVUxMzGVro6OjlZ2d7QzQ3NxcrVu3TkOHDr1o/blz57R8+XLdc889cjgcl5y3pKRERUVFLhsAALXF7bd8MzIylJOTo6ysrCrVjxgxQseOHdOAAQNkjFFpaanGjh2ryZMnX7R+zZo1OnHihEaPHl3pvGlpaZo+fbq7ywcA4Ffh1hlqfn6+xo0bpxUrVsjX17dK+2zevFmzZ8/WvHnzlJOTo9WrV2vt2rWaMWPGResXLVqkIUOGKCQkpNJ5U1JSVFhY6Nzy8/PdaQUAAKscxhhT1eI1a9Zo2LBh8vT0dI6VlZXJ4XDIw8NDJSUlLs9J0sCBA9W3b18988wzzrHly5drzJgxKi4ulofH/2X6oUOH1KlTJ61evVq33XabW40UFRUpMDBQhYWFCggIcGtfAAAuqG6euPWW76BBg7Rr1y6XscTERIWHhys5OblCmErS6dOnXUJTkrPul1m+ZMkStWrVSrGxse4sCwCAWudWoDZt2lTdu3d3GfP391dQUJBzfNSoUQoNDVVaWpokKS4uTunp6YqMjFRUVJQOHDigKVOmKC4uziWAy8vLtWTJEt19993y8qr2t3kAAKgV1pMrLy/P5Yw0NTVVDodDqampKigoUHBwsOLi4jRr1iyX/d5//33l5eXpnnvusb0kAAB+dW59hlqX8RkqAMCG6uYJ9/IFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCw4IoCdc6cOXI4HBo/fnyldXPnzlXXrl3l5+ensLAwTZgwQWfPnnWpKSgo0F133aWgoCD5+fmpR48e2r59+5UsDwCAGuNV3R2zsrK0YMECRUREVFq3cuVKTZo0SYsXL1Z0dLT27dun0aNHy+FwKD09XZL0448/qn///rrpppv07rvvKjg4WPv371fz5s2ruzwAAGpUtQK1uLhYCQkJWrhwoWbOnFlp7SeffKL+/ftrxIgRkqQOHTooPj5emZmZzpqnnnpKYWFhWrJkiXOsY8eO1VkaAAC1olpv+SYlJSk2NlYxMTGXrY2OjlZ2dra2bdsmScrNzdW6des0dOhQZ83f//539enTR3fccYdatWqlyMhILVy4sNJ5S0pKVFRU5LIBAFBb3D5DzcjIUE5OjrKysqpUP2LECB07dkwDBgyQMUalpaUaO3asJk+e7KzJzc3V/PnzNXHiRE2ePFlZWVl66KGH5O3trbvvvvui86alpWn69OnuLh8AgF+FW2eo+fn5GjdunFasWCFfX98q7bN582bNnj1b8+bNU05OjlavXq21a9dqxowZzpry8nL17t1bs2fPVmRkpMaMGaP7779fL7/88iXnTUlJUWFhoXPLz893pxUAAKxy6ww1OztbR48eVe/evZ1jZWVl+vDDD/W3v/1NJSUl8vT0dNlnypQpGjlypO677z5JUo8ePXTq1CmNGTNGjz/+uDw8PNS2bVtde+21Lvtdc801euutty65Fh8fH/n4+LizfAAAfjVuBeqgQYO0a9cul7HExESFh4crOTm5QphK0unTp+Xh4XoifKHOGCNJ6t+/v/bu3etSs2/fPrVv396d5QEAUGvcCtSmTZuqe/fuLmP+/v4KCgpyjo8aNUqhoaFKS0uTJMXFxSk9PV2RkZGKiorSgQMHNGXKFMXFxTmDdcKECYqOjtbs2bM1fPhwbdu2Ta+88opeeeUVGz0CAPCrq/b3UC8lLy/P5Yw0NTVVDodDqampKigoUHBwsOLi4jRr1ixnzfXXX6+3335bKSkpevLJJ9WxY0fNnTtXCQkJtpcHAMCvwmEuvO9azxUVFSkwMFCFhYUKCAio7eUAAOqp6uYJ9/IFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALLiiQJ0zZ44cDofGjx9fad3cuXPVtWtX+fn5KSwsTBMmTNDZs2edz0+bNk0Oh8NlCw8Pv5KlAQBQo7yqu2NWVpYWLFigiIiISutWrlypSZMmafHixYqOjta+ffs0evRoORwOpaenO+u6deum999///8W5lXtpQEAUOOqlVrFxcVKSEjQwoULNXPmzEprP/nkE/Xv318jRoyQJHXo0EHx8fHKzMx0XYiXl9q0aVOd5QAAUOuq9ZZvUlKSYmNjFRMTc9na6OhoZWdna9u2bZKk3NxcrVu3TkOHDnWp279/v0JCQtSpUyclJCQoLy+v0nlLSkpUVFTksgEAUFvcPkPNyMhQTk6OsrKyqlQ/YsQIHTt2TAMGDJAxRqWlpRo7dqwmT57srImKitLSpUvVtWtXHT58WNOnT9fAgQO1e/duNW3a9KLzpqWlafr06e4uHwCAX4VbZ6j5+fkaN26cVqxYIV9f3yrts3nzZs2ePVvz5s1TTk6OVq9erbVr12rGjBnOmiFDhuiOO+5QRESEBg8erHXr1unEiRN68803LzlvSkqKCgsLnVt+fr47rQAAYJXDGGOqWrxmzRoNGzZMnp6ezrGysjI5HA55eHiopKTE5TlJGjhwoPr27atnnnnGObZ8+XKNGTNGxcXF8vC4eKZff/31iomJUVpaWpXWVlRUpMDAQBUWFiogIKCqLQEA4KK6eeLWW76DBg3Srl27XMYSExMVHh6u5OTkCmEqSadPn64QmhfqLpXlxcXFOnjwoEaOHOnO8gAAqDVuBWrTpk3VvXt3lzF/f38FBQU5x0eNGqXQ0FDnmWVcXJzS09MVGRmpqKgoHThwQFOmTFFcXJwzWB955BHFxcWpffv2+vbbbzV16lR5enoqPj7eRo8AAPzqrH/ZMy8vz+WMNDU1VQ6HQ6mpqSooKFBwcLDi4uI0a9YsZ80333yj+Ph4/fDDDwoODtaAAQP06aefKjg42PbyAAD4Vbj1GWpdxmeoAAAbqpsn3MsXAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAut/baY+yzt2Wrc8/y+dOV8uv0YeWj/u92rXsnFtLwsAUA8QqP+ry+S1Ki3/v8enz5frxmf/KS8P6cDs2NpbGACgXuAtX1UM058rLf/peQAAKvObD9S8Y6cvGaYXlJb/VAcAwKX85gP1luf/ZbUOAPDb9JsP1DPnL3N66mYdAOC36TcfqH6NqvYrqGodAOC36TefEuvH/d5qHQDgt+k3H6jtWjaW12V+C14e4vuoAIBK/eYDVfrpe6aXClW+hwoAqApu7PC/DsyO5U5JAIBqI1B/pl3LxtozY0htLwMAUA/xli8AABYQqAAAWECgAgBgAYEKAIAFBCoAABYQqAAAWECgAgBgAYEKAIAFBCoAABY0mDslGWMkSUVFRbW8EgBAfXYhRy7kSlU1mED94YcfJElhYWG1vBIAQENw8uRJBQYGVrm+wQRqixYtJEl5eXlu/QLqg6KiIoWFhSk/P18BAQG1vRxrGmpfUsPtraH2JTXc3ujLfcYYnTx5UiEhIW7t12AC1cPjp4+DAwMDG9Q/mp8LCAhokL011L6khttbQ+1Lari90Zd7qnNixkVJAABYQKACAGBBgwlUHx8fTZ06VT4+PrW9FOsaam8NtS+p4fbWUPuSGm5v9FVzHMbd64IBAEAFDeYMFQCA2kSgAgBgAYEKAIAFBCoAABbUWKBOmzZNDofDZQsPD5ckff311xWeu7CtWrXKOUdeXp5iY2PVuHFjtWrVSo8++qhKS0tdfs7mzZvVu3dv+fj4qEuXLlq6dGmFtbz00kvq0KGDfH19FRUVpW3btrk8f/bsWSUlJSkoKEhNmjTR7bffru+++65avUnSkSNHNHLkSLVp00b+/v7q3bu33nrrLZc5jh8/roSEBAUEBKhZs2a69957VVxc7FLz+eefa+DAgfL19VVYWJiefvrpCmtZtWqVwsPD5evrqx49emjdunUuzxtj9MQTT6ht27by8/NTTEyM9u/fX62+Dh48qGHDhik4OFgBAQEaPnx4hd9TXexLkgoKCnTXXXcpKChIfn5+6tGjh7Zv3+7WfPW1t9WrV+vmm29WUFCQHA6Hdu7cWWGOqhwDNXU8VqWv8+fPKzk5WT169JC/v79CQkI0atQoffvtty5z1NfXbNq0aQoPD5e/v7+aN2+umJgYZWZm1vneLtfXz40dO1YOh0Nz586t831dkqkhU6dONd26dTOHDx92bt9//70xxpjS0lKX8cOHD5vp06ebJk2amJMnTzprunfvbmJiYsyOHTvMunXrTMuWLU1KSorzZ+Tm5prGjRubiRMnmj179pgXX3zReHp6mvXr1ztrMjIyjLe3t1m8eLH597//be6//37TrFkz89133zlrxo4da8LCwsymTZvM9u3bTd++fU10dHS1ejPGmD/+8Y/m+uuvN5mZmebgwYNmxowZxsPDw+Tk5DhrbrnlFtOzZ0/z6aefmo8++sh06dLFxMfHO58vLCw0rVu3NgkJCWb37t3m9ddfN35+fmbBggXOmo8//th4enqap59+2uzZs8ekpqaaRo0amV27djlr5syZYwIDA82aNWvMZ599Zm699VbTsWNHc+bMGbf6Ki4uNp06dTLDhg0zn3/+ufn888/NbbfdZq6//npTVlZWp/s6fvy4ad++vRk9erTJzMw0ubm5ZsOGDebAgQNuzVdfe3vttdfM9OnTzcKFC40ks2PHjgrzXO4YqMnjsSp9nThxwsTExJg33njDfPnll2br1q3mhhtuMNddd53LPPX1NVuxYoXZuHGjOXjwoNm9e7e59957TUBAgDl69Gid7a0qfV2wevVq07NnTxMSEmL++te/1vnX7FJqNFB79uxZ5fpevXqZe+65x/l43bp1xsPDwxw5csQ5Nn/+fBMQEGBKSkqMMcY89thjplu3bi7z3HnnnWbw4MHOxzfccINJSkpyPi4rKzMhISEmLS3NGPPTgdmoUSOzatUqZ80XX3xhJJmtW7dWqzd/f3/z2muvuYy1aNHCLFy40BhjzJ49e4wkk5WV5Xz+3XffNQ6HwxQUFBhjjJk3b55p3ry5s1djjElOTjZdu3Z1Ph4+fLiJjY11+TlRUVHmgQceMMYYU15ebtq0aWOeeeYZ5/MnTpwwPj4+5vXXX3errw0bNhgPDw9TWFjoMpfD4TAbN26s030lJyebAQMGXLSvqs5XX3v7ua+++uqigVqVY6Cmjsfq9HXBtm3bjCRz6NAhY0zDeM0uKCwsNJLM+++/X2d7q2pf33zzjQkNDTW7d+827du3dwnUuthXZWr0M9T9+/crJCREnTp1UkJCgvLy8i5al52drZ07d+ree+91jm3dulU9evRQ69atnWODBw9WUVGR/v3vfztrYmJiXOYaPHiwtm7dKkk6d+6csrOzXWo8PDwUExPjrMnOztb58+ddasLDw9WuXTtnjbu9RUdH64033tDx48dVXl6ujIwMnT17Vn/4wx+c627WrJn69Onj3CcmJkYeHh7Ot3W2bt2qG2+8Ud7e3i697d27Vz/++GOV+v/qq6905MgRl5rAwEBFRUVdsrdL9VVSUiKHw+HypWpfX195eHhoy5Ytdbqvv//97+rTp4/uuOMOtWrVSpGRkVq4cKHz+arMV197q4qqHAM1dTxeSV+FhYVyOBxq1qyZcz0N4TU7d+6cXnnlFQUGBqpnz551treq9FVeXq6RI0fq0UcfVbdu3Sr0Whf7qkyNBWpUVJSWLl2q9evXa/78+frqq680cOBAnTx5skLtokWLdM011yg6Oto5duTIEZeDV5Lz8ZEjRyqtKSoq0pkzZ3Ts2DGVlZVdtObnc3h7ezsPwovVuNvbm2++qfPnzysoKEg+Pj564IEH9Pbbb6tLly7On9mqVSuXOb28vNSiRYvL9laV/n/+/M/3u1xvlfXVt29f+fv7Kzk5WadPn9apU6f0yCOPqKysTIcPH67TfeXm5mr+/Pm66qqrtGHDBj344IN66KGH9Oqrr1Z5vvraW1VU5RioqeOxun2dPXtWycnJio+Pd944vb6/Zu+8846aNGkiX19f/fWvf9XGjRvVsmXLOttbVfp66qmn5OXlpYceeqjC76Wu9lWZGvtrM0OGDHH+d0REhKKiotS+fXu9+eabLmeiZ86c0cqVKzVlypSaWtoVu1xvU6ZM0YkTJ/T++++rZcuWWrNmjYYPH66PPvpIPXr0qMWVV+5yfa1atUoPPvigXnjhBXl4eCg+Pl69e/d2/uWfuqq8vFx9+vTR7NmzJUmRkZHavXu3Xn75Zd199921vLor01B7c6ev8+fPa/jw4TLGaP78+bWxXLdUtbebbrpJO3fu1LFjx7Rw4UINHz5cmZmZFQKnrrhcX9nZ2Xr++eeVk5Mjh8NRy6u1o9b+z9esWTNdffXVOnDggMv4f//3f+v06dMaNWqUy3ibNm0qXGV44XGbNm0qrQkICJCfn59atmwpT0/Pi9b8fI5z587pxIkTl6xxp7eDBw/qb3/7mxYvXqxBgwapZ8+emjp1qvr06aOXXnrJ+TOPHj3qMkdpaamOHz9+2d6q0v/Pn//5fu729svX7Oabb9bBgwd19OhRHTt2TMuWLVNBQYE6depUp/tq27atrr32Wpexa665xvl2dlXmq6+9VUVVjoGaOh7d7etCmB46dEgbN250+bNe9f018/f3V5cuXdS3b18tWrRIXl5eWrRoUZ3t7XJ9ffTRRzp69KjatWsnLy8veXl56dChQ3r44YfVoUOHOttXZWotUIuLi3Xw4EG1bdvWZXzRokW69dZbFRwc7DLer18/7dq1y+WXe+GAufCi9evXT5s2bXLZb+PGjerXr58kydvbW9ddd51LTXl5uTZt2uSsue6669SoUSOXmr179yovL89Z405vp0+flqQKZ22enp4qLy93rvvEiRPKzs52Pv/BBx+ovLxcUVFRzpoPP/xQ58+fd+mta9euat68eZX679ixo9q0aeNSU1RUpMzMzCr1dqnXrGXLlmrWrJk++OADHT16VLfeemud7qt///7au3evy9i+ffvUvn37Ks9XX3uriqocAzV1PLrT14Uw3b9/v95//30FBQW51De016y8vFwlJSV1trfL9TVy5Eh9/vnn2rlzp3MLCQnRo48+qg0bNtTZvipV5cuXrtDDDz9sNm/ebL766ivz8ccfm5iYGNOyZUuXy773799vHA6Heffddyvsf+Ey/Ztvvtns3LnTrF+/3gQHB1/0Mv1HH33UfPHFF+all1666GX6Pj4+ZunSpWbPnj1mzJgxplmzZi5XK44dO9a0a9fOfPDBB2b79u2mX79+pl+/ftXq7dy5c6ZLly5m4MCBJjMz0xw4cMA8++yzxuFwmLVr1zrnuOWWW0xkZKTJzMw0W7ZsMVdddZXLpeEnTpwwrVu3NiNHjjS7d+82GRkZpnHjxhUuDffy8jLPPvus+eKLL8zUqVMveml4s2bNzP/8z/84v+pyqUvDL/eaLV682GzdutUcOHDALFu2zLRo0cJMnDjRZY662Ne2bduMl5eXmTVrltm/f79ZsWKFady4sVm+fLlb89XX3n744QezY8cOs3btWiPJZGRkmB07dpjDhw87ay53DNTk8ViVvs6dO2duvfVW87vf/c7s3LnT5ateP7/6sz6+ZsXFxSYlJcVs3brVfP3112b79u0mMTHR+Pj4mN27d9fZ3qryb/GXfnmVb13sqzI1Fqh33nmnadu2rfH29jahoaHmzjvvrPB9pJSUFBMWFubyPcaf+/rrr82QIUOMn5+fadmypXn44YfN+fPnXWr++c9/ml69ehlvb2/TqVMns2TJkgrzvPjii6Zdu3bG29vb3HDDDebTTz91ef7MmTPmz3/+s2nevLlp3LixGTZsmMv/bNztbd++feZPf/qTadWqlWncuLGJiIio8DWaH374wcTHx5smTZqYgIAAk5iY6PwO7gWfffaZGTBggPHx8TGhoaFmzpw5Fdby5ptvmquvvtp4e3ubbt26uYS2MT9dHj5lyhTTunVr4+PjYwYNGmT27t1brb6Sk5NN69atTaNGjcxVV11lnnvuOVNeXl7n+zLGmH/84x+me/fuxsfHx4SHh5tXXnnF7fnqa29LliwxkipsU6dOddZU5RioqeOxKn1d+ArQxbZ//vOfzrr6+JqdOXPGDBs2zISEhBhvb2/Ttm1bc+utt5pt27a5zFEXe7vcv8Vfulig1sW+LoU/3wYAgAV1+3JMAADqCQIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsOD/A9LIyavcv8fFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from snowexsql.api import LayerMeasurements, PointMeasurements\n", + "from datetime import datetime \n", + "\n", + "# Find some density pit measurements at the Boise site in december 2019.\n", + "df = LayerMeasurements.from_filter(\n", + " type=\"density\",\n", + " site_name=\"Boise River Basin\",\n", + " date_less_equal=datetime(2020, 1, 1),\n", + " date_greater_equal=datetime(2019, 12, 1),\n", + ")\n", + "\n", + "df\n", + "df.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## `from_area`" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAAGsCAYAAADAPO4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtN0lEQVR4nO3deXhUVZ7G8TchC2GpCsGskAAuLEGQFgZSYrtG0hgVNYzLIB2exgUNLkRQaRG61QYGZ0TpJiLTLO7Y6GArCnYARYWAkAaFgJHVBEMFFZMClRDImT/s3KEkQIoESE6+n+e5z2Pd87vnnnso8+beqnsTZIwxAgAA1gg+0wMAAAD1i3AHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMk0y3CsqKtSrVy8FBQVp/fr1x6296667dM455ygiIkLR0dEaNGiQvvjiC6f9s88+06233qrExERFRESoW7duevbZZ/36GDZsmIKCgo5aunfvHvDY586dq549e6p58+aKiYlRVlZWwH0AAOxmXbhfdtllmjt37nFrHnroISUkJNSqv969e2vOnDnavHmz3n//fRljNGDAAB0+fFiSlJ+fr5iYGL388ssqKCjQo48+qrFjx+ovf/mL08ezzz6r3bt3O0txcbGioqL07//+7wEd29NPP61HH31UjzzyiAoKCrRkyRKlpaUF1AcAoAkwlrn00kvNnDlzjtn+3nvvma5du5qCggIjyaxbty6g/j/77DMjyWzduvWYNffcc4+5/PLLj9m+YMECExQUZHbu3OmsO3z4sJk4caLp2LGjad68uenZs6eZP3++0753714TERFhlixZEtB4AQBNj3Vn7sdTWlqqO+64Qy+99JJatGgR8PY//PCD5syZo06dOikxMfGYdeXl5YqKijpm+6xZs5SamqoOHTo46yZNmqQXX3xRM2bMUEFBgUaNGqXbbrtNy5cvlyTl5uaqqqpKX3/9tbp166b27dvrpptuUnFxccDHAQCwW5MJd2OMhg0bphEjRqhPnz4BbZuTk6NWrVqpVatWWrRokXJzcxUWFlZj7cqVK/X666/rzjvvrLG9pKREixYt0u233+6sq6io0MSJEzV79mylpaXp7LPP1rBhw3Tbbbfp+eeflyRt375dVVVVmjhxop555hm98cYb2rt3r6666iodPHgwoOMBAFjuTF86qKs//elPpmXLls4SHBxswsPD/dZ99dVX5tlnnzX9+/c3hw4dMsYYs2PHjlpfli8rKzNffvmlWb58ubn22mvNhRdeaH766aej6jZs2GDOOuss88QTTxyzr4kTJ5q2bduaiooKZ93GjRuNJL8xt2zZ0oSGhpq+ffs6xynJvP/++852e/bsMcHBwWbx4sW1nS4AQBMQcoZ/t6izESNG6KabbnJeDxkyRBkZGbrxxhuddQkJCVq2bJny8vIUHh7ut32fPn00ZMgQvfDCC8fch9vtltvt1nnnnaeUlBS1adNGCxYs0K233urUbNq0SVdeeaXuvPNOjRs3rsZ+jDGaPXu2hg4d6nfmv3//fknSu+++q3bt2vltUz3e+Ph4SVJycrLTFh0drbPOOktFRUXHHDsAoOlp9OEeFRXl9/l2RESEYmJidO655/rVTZs2TU8++aTzuqSkRGlpaXr99dfVr1+/Wu/PGCNjjCoqKpx1BQUFuuKKK5SZmak//elPx9x2+fLl2rp1q4YPH+63Pjk5WeHh4SoqKtKll15a47b9+/eXJBUWFqp9+/aSpL179+rbb7/1++weAIBGH+61lZSU5Pe6VatWkqRzzjnHCcuvv/5aV155pV588UX17dtX27dv1+uvv64BAwYoOjpau3bt0uTJkxUREaGrr75akrRx40ZdccUVSktLU3Z2trxerySpWbNmio6O9tvnrFmz1K9fP51//vl+61u3bq3Ro0dr1KhRqqqq0sUXX6zy8nKtWLFCLpdLmZmZ6ty5swYNGqT7779fM2fOlMvl0tixY9W1a1ddfvnlp2TOAACNU5MJ99qorKxUYWGhfvzxR0lS8+bN9fHHH+uZZ57R999/r9jYWF1yySVauXKlYmJiJElvvPGGvvnmG7388st6+eWXnb46dOignTt3Oq/Ly8v15ptvHvWAm2pPPPGEoqOjNWnSJG3fvl2RkZG68MIL9fvf/96pefHFFzVq1Cilp6crODhYl156qRYvXqzQ0NBTMBsAgMYqyBhjzvQgAABA/Qn4Vrivv/5at912m9q2bauIiAj16NFDa9euddqNMRo/frzi4+MVERGh1NRUbdmyxa+PvXv3asiQIXK5XIqMjNTw4cOdL5UBAIC6CSjcv//+e/Xv31+hoaFatGiRNm3apP/+7/9WmzZtnJopU6Zo2rRpmjFjhlavXq2WLVsqLS1NBw4ccGqGDBmigoIC5ebmauHChfroo4+OeV84AAAITECX5R955BGtWLFCH3/8cY3txhglJCTowQcf1OjRoyX9/FlzbGys5s6dq1tuuUWbN29WcnKy1qxZ4zxMZvHixbr66qu1a9euWj3zvaqqSiUlJWrdurWCgoJqO3wAABotY4z27dunhIQEBQef4Nw8kJviu3XrZh544AEzePBgEx0dbXr16mVmzpzptG/btq3GB8Nccskl5r777jPGGDNr1iwTGRnp115ZWWmaNWtm/vd//7dW4yguLjaSWFhYWFhYmtxSXFx8wpwM6Nvy27dv13PPPafs7Gz9/ve/15o1a3TfffcpLCxMmZmZzm1gsbGxftvFxsY6bV6v1/mmebWQkBBFRUU5Nb9UUVHhd1+5+dfFhuLiYrlcrkAOAQCARsnn8ykxMVGtW7c+YW1A4V5VVaU+ffpo4sSJkqRf/epX2rhxo2bMmKHMzMyTG20tTJo0SX/84x+PWu9yuQh3AECTUpuPowP6Ql18fLzf408lqVu3bs7jT+Pi4iT9/NfXjlRaWuq0xcXFac+ePX7thw4d0t69e52aXxo7dqzKy8udhb+EBgDAsQUU7v3791dhYaHfui+//NJ5/GmnTp0UFxenpUuXOu0+n0+rV6+Wx+ORJHk8HpWVlSk/P9+pWbZsmaqqqo75GNjw8HDnLJ2zdQAAji+gy/KjRo3SRRddpIkTJ+qmm27Sp59+qpkzZ2rmzJmSfr5U8MADD+jJJ5/Ueeedp06dOumxxx5TQkKCrr/+ekk/n+n/5je/0R133KEZM2aosrJSI0eO1C233FKrb8oDAIDjC/gJdQsXLtTYsWO1ZcsWderUSdnZ2brjjjucdmOMJkyYoJkzZ6qsrEwXX3yxcnJy1LlzZ6dm7969GjlypN555x0FBwcrIyND06ZNc573fiI+n09ut1vl5eWcxQMAmoRAsq9RPn6WcAcANDWBZF/Aj58FAAANG+EOAIBlCHcAACzT5P+e+w0T39U63/+//pVLWvD79DM3IAAA6qhJn7l3fMQ/2CVpne/n9QAANFZNNtxPFOAEPACgsWqS4X7DxNoFd23rAABoSJpkuP/yUnxd6wAAaEiaZLgDAGAzwh0AAMs0yXD/VS2fWFvbOgAAGpImGe61vY+d+90BAI1Rkwx3Sdo5+fjBfaJ2AAAaqiYb7tLPAf7LS++/chHsAIDGrck/fpZL7wAA2zTpM3cAAGxEuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUCCvc//OEPCgoK8lu6du3qtB84cEBZWVlq27atWrVqpYyMDJWWlvr1UVRUpPT0dLVo0UIxMTEaM2aMDh06VD9HAwAAFBLoBt27d9eSJUv+v4OQ/+9i1KhRevfddzV//ny53W6NHDlSN954o1asWCFJOnz4sNLT0xUXF6eVK1dq9+7d+u1vf6vQ0FBNnDixHg4HAAAEHO4hISGKi4s7an15eblmzZqlV199VVdccYUkac6cOerWrZtWrVqllJQU/eMf/9CmTZu0ZMkSxcbGqlevXnriiSf08MMP6w9/+IPCwsLqfkQAADRxAX/mvmXLFiUkJOjss8/WkCFDVFRUJEnKz89XZWWlUlNTndquXbsqKSlJeXl5kqS8vDz16NFDsbGxTk1aWpp8Pp8KCgqOuc+Kigr5fD6/BQAA1CygcO/Xr5/mzp2rxYsX67nnntOOHTv061//Wvv27ZPX61VYWJgiIyP9tomNjZXX65Ukeb1ev2Cvbq9uO5ZJkybJ7XY7S2JiYiDDBgCgSQnosvzAgQOd/+7Zs6f69eunDh066G9/+5siIiLqfXDVxo4dq+zsbOe1z+cj4AEAOIY63QoXGRmpzp07a+vWrYqLi9PBgwdVVlbmV1NaWup8Rh8XF3fUt+erX9f0OX618PBwuVwuvwUAANSsTuG+f/9+bdu2TfHx8erdu7dCQ0O1dOlSp72wsFBFRUXyeDySJI/How0bNmjPnj1OTW5urlwul5KTk+syFAAA8C8BXZYfPXq0rr32WnXo0EElJSWaMGGCmjVrpltvvVVut1vDhw9Xdna2oqKi5HK5dO+998rj8SglJUWSNGDAACUnJ2vo0KGaMmWKvF6vxo0bp6ysLIWHh5+SAwQAoKkJKNx37dqlW2+9Vd99952io6N18cUXa9WqVYqOjpYkTZ06VcHBwcrIyFBFRYXS0tKUk5PjbN+sWTMtXLhQd999tzwej1q2bKnMzEw9/vjj9XtUAAA0YUHGGHOmBxEon88nt9ut8vJyPn8HADQJgWQfz5YHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGCZOoX75MmTFRQUpAceeMBZd+DAAWVlZalt27Zq1aqVMjIyVFpa6rddUVGR0tPT1aJFC8XExGjMmDE6dOhQXYYCAAD+5aTDfc2aNXr++efVs2dPv/WjRo3SO++8o/nz52v58uUqKSnRjTfe6LQfPnxY6enpOnjwoFauXKkXXnhBc+fO1fjx40/+KAAAgOOkwn3//v0aMmSI/ud//kdt2rRx1peXl2vWrFl6+umndcUVV6h3796aM2eOVq5cqVWrVkmS/vGPf2jTpk16+eWX1atXLw0cOFBPPPGEpk+froMHD9bPUQEA0ISdVLhnZWUpPT1dqampfuvz8/NVWVnpt75r165KSkpSXl6eJCkvL089evRQbGysU5OWliafz6eCgoIa91dRUSGfz+e3AACAmoUEusG8efP0z3/+U2vWrDmqzev1KiwsTJGRkX7rY2Nj5fV6nZojg726vbqtJpMmTdIf//jHQIcKAECTFNCZe3Fxse6//3698sorat68+aka01HGjh2r8vJyZykuLj5t+wYAoLEJKNzz8/O1Z88eXXjhhQoJCVFISIiWL1+uadOmKSQkRLGxsTp48KDKysr8tistLVVcXJwkKS4u7qhvz1e/rq75pfDwcLlcLr8FAADULKBwv/LKK7VhwwatX7/eWfr06aMhQ4Y4/x0aGqqlS5c62xQWFqqoqEgej0eS5PF4tGHDBu3Zs8epyc3NlcvlUnJycj0dFgAATVdAn7m3bt1a559/vt+6li1bqm3bts764cOHKzs7W1FRUXK5XLr33nvl8XiUkpIiSRowYICSk5M1dOhQTZkyRV6vV+PGjVNWVpbCw8Pr6bAAAGi6Av5C3YlMnTpVwcHBysjIUEVFhdLS0pSTk+O0N2vWTAsXLtTdd98tj8ejli1bKjMzU48//nh9DwUAgCYpyBhjzvQgAuXz+eR2u1VeXs7n7wCAJiGQ7OPZ8gAAWKbeL8sDqD9vryrSfW9tcF5Pu76HrktJOoMjAtAYcFkeaKA6PvLuMdt2Tk4/jSMB0BBwWR5o5I4X7LVpB9C0Ee5AA/P2qqJ6rQPQ9BDuQANz5Gfs9VEHoOkh3AEAsAzhDgCAZQh3oIGZdn2Peq0D0PQQ7kADU9v72LnfHcCxEO5AA3Si+9i5zx3A8RDuQAO1c3L6UZfep13fg2AHcEI8fhZowK5LSeLyO4CAceYOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALBNypgcAAI3FhqJyXZfziYykIElv33OxeiS5z/SwgKMQ7gBQCx0fedfvtZF0bc4nkqSdk9PPwIiAY+OyPACcwC+DPdB24HQj3AHgODYUlddrHXA6EO4AcBzX/evSe33VAacD4Q4Ax2HquQ44HQh3ADiOoHquA04Hwh0AjuPtey6u1zrgdCDcAeA4ansfO/e7oyEh3AHgBE50Hzv3uaOh4SE2AFALOyen84Q6NBqEOwDUUo8kt3Zwlo5GgMvyAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWCSjcn3vuOfXs2VMul0sul0sej0eLFi1y2g8cOKCsrCy1bdtWrVq1UkZGhkpLS/36KCoqUnp6ulq0aKGYmBiNGTNGhw4dqp+jAQAAgYV7+/btNXnyZOXn52vt2rW64oorNGjQIBUUFEiSRo0apXfeeUfz58/X8uXLVVJSohtvvNHZ/vDhw0pPT9fBgwe1cuVKvfDCC5o7d67Gjx9fv0cFAEATFmSMMXXpICoqSk899ZQGDx6s6Ohovfrqqxo8eLAk6YsvvlC3bt2Ul5enlJQULVq0SNdcc41KSkoUGxsrSZoxY4YefvhhffPNNwoLC6vVPn0+n9xut8rLy+VyueoyfAAAGoVAsu+kP3M/fPiw5s2bpx9++EEej0f5+fmqrKxUamqqU9O1a1clJSUpLy9PkpSXl6cePXo4wS5JaWlp8vl8ztl/TSoqKuTz+fwWAABQs4DDfcOGDWrVqpXCw8M1YsQILViwQMnJyfJ6vQoLC1NkZKRffWxsrLxeryTJ6/X6BXt1e3XbsUyaNElut9tZEhMTAx02AABNRsDh3qVLF61fv16rV6/W3XffrczMTG3atOlUjM0xduxYlZeXO0txcfEp3R8AAI1ZSKAbhIWF6dxzz5Uk9e7dW2vWrNGzzz6rm2++WQcPHlRZWZnf2Xtpaani4uIkSXFxcfr000/9+qv+Nn11TU3Cw8MVHh4e6FABAGiS6nyfe1VVlSoqKtS7d2+FhoZq6dKlTlthYaGKiork8XgkSR6PRxs2bNCePXucmtzcXLlcLiUnJ9d1KAAAQAGeuY8dO1YDBw5UUlKS9u3bp1dffVUffvih3n//fbndbg0fPlzZ2dmKioqSy+XSvffeK4/Ho5SUFEnSgAEDlJycrKFDh2rKlCnyer0aN26csrKyODMHAKCeBBTue/bs0W9/+1vt3r1bbrdbPXv21Pvvv6+rrrpKkjR16lQFBwcrIyNDFRUVSktLU05OjrN9s2bNtHDhQt19993yeDxq2bKlMjMz9fjjj9fvUQEA0ITV+T73M4H73AEATc1puc8dAAA0TIQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgmYDCfdKkSfq3f/s3tW7dWjExMbr++utVWFjoV3PgwAFlZWWpbdu2atWqlTIyMlRaWupXU1RUpPT0dLVo0UIxMTEaM2aMDh06VPejAQAAgYX78uXLlZWVpVWrVik3N1eVlZUaMGCAfvjhB6dm1KhReueddzR//nwtX75cJSUluvHGG532w4cPKz09XQcPHtTKlSv1wgsvaO7cuRo/fnz9HRUAAE1YkDHGnOzG33zzjWJiYrR8+XJdcsklKi8vV3R0tF599VUNHjxYkvTFF1+oW7duysvLU0pKihYtWqRrrrlGJSUlio2NlSTNmDFDDz/8sL755huFhYWdcL8+n09ut1vl5eVyuVwnO3wAABqNQLKvTp+5l5eXS5KioqIkSfn5+aqsrFRqaqpT07VrVyUlJSkvL0+SlJeXpx49ejjBLklpaWny+XwqKCiocT8VFRXy+Xx+CwAAqNlJh3tVVZUeeOAB9e/fX+eff74kyev1KiwsTJGRkX61sbGx8nq9Ts2RwV7dXt1Wk0mTJsntdjtLYmLiyQ4bAADrnXS4Z2VlaePGjZo3b159jqdGY8eOVXl5ubMUFxef8n0CANBYhZzMRiNHjtTChQv10UcfqX379s76uLg4HTx4UGVlZX5n76WlpYqLi3NqPv30U7/+qr9NX13zS+Hh4QoPDz+ZoQIA0OQEdOZujNHIkSO1YMECLVu2TJ06dfJr7927t0JDQ7V06VJnXWFhoYqKiuTxeCRJHo9HGzZs0J49e5ya3NxcuVwuJScn1+VYAACAAjxzz8rK0quvvqq///3vat26tfMZudvtVkREhNxut4YPH67s7GxFRUXJ5XLp3nvvlcfjUUpKiiRpwIABSk5O1tChQzVlyhR5vV6NGzdOWVlZnJ0DAFAPAroVLigoqMb1c+bM0bBhwyT9/BCbBx98UK+99poqKiqUlpamnJwcv0vuX331le6++259+OGHatmypTIzMzV58mSFhNTudw1uhQMANDWBZF+d7nM/Uwh3AEBTc9rucwcAAA0P4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFgm4HD/6KOPdO211yohIUFBQUF66623/NqNMRo/frzi4+MVERGh1NRUbdmyxa9m7969GjJkiFwulyIjIzV8+HDt37+/TgcCAAB+FnC4//DDD7rgggs0ffr0GtunTJmiadOmacaMGVq9erVatmyptLQ0HThwwKkZMmSICgoKlJubq4ULF+qjjz7SnXfeefJHAQAAHEHGGHPSGwcFacGCBbr++usl/XzWnpCQoAcffFCjR4+WJJWXlys2NlZz587VLbfcos2bNys5OVlr1qxRnz59JEmLFy/W1VdfrV27dikhIeGE+/X5fHK73SovL5fL5TrZ4QMA0GgEkn31+pn7jh075PV6lZqa6qxzu93q16+f8vLyJEl5eXmKjIx0gl2SUlNTFRwcrNWrV9fYb0VFhXw+n98CAABqVq/h7vV6JUmxsbF+62NjY502r9ermJgYv/aQkBBFRUU5Nb80adIkud1uZ0lMTKzPYQMAYJVG8W35sWPHqry83FmKi4vP9JAAAGiw6jXc4+LiJEmlpaV+60tLS522uLg47dmzx6/90KFD2rt3r1PzS+Hh4XK5XH4LAACoWb2Ge6dOnRQXF6elS5c663w+n1avXi2PxyNJ8ng8KisrU35+vlOzbNkyVVVVqV+/fvU5HAAAmqSQQDfYv3+/tm7d6rzesWOH1q9fr6ioKCUlJemBBx7Qk08+qfPOO0+dOnXSY489poSEBOcb9d26ddNvfvMb3XHHHZoxY4YqKys1cuRI3XLLLbX6pjwAADi+gMN97dq1uvzyy53X2dnZkqTMzEzNnTtXDz30kH744QfdeeedKisr08UXX6zFixerefPmzjavvPKKRo4cqSuvvFLBwcHKyMjQtGnT6uFwAABAne5zP1O4zx0A0NScsfvcAQDAmUe4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyAf/JVwAAcHyrvvxOt8xe5bye97sUpXRue9r2T7gDAFCPOj7y7lHrqoN+5+T00zIGLssDAFBPagr2QNrrC+EOAEA9WPXld/VaVxeEOwAA9eDIz9jro64uCHcAACxDuAMAYBnCHQCAejDvdyn1WlcXhDsAAPWgtvexn4773Ql3AADqyYnuYz9d97nzEBsAAOrRzsnpPKEOAADbpHRue9rO0mvCZXkAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAs0yifUGeMkST5fL4zPBIAAE6P6syrzsDjaZThvm/fPklSYmLiGR4JAACn1759++R2u49bE2Rq8ytAA1NVVaWSkhK1bt1aQUFBAW3r8/mUmJio4uJiuVyuUzTCho05YA6qMQ/MgcQcSI1jDowx2rdvnxISEhQcfPxP1RvlmXtwcLDat29fpz5cLleD/Qc8XZgD5qAa88AcSMyB1PDn4ERn7NX4Qh0AAJYh3AEAsEyTC/fw8HBNmDBB4eHhZ3ooZwxzwBxUYx6YA4k5kOybg0b5hToAAHBsTe7MHQAA2xHuAABYhnAHAMAyhDsAAJZpcOHesWNHBQUFHbVkZWX51RljNHDgQAUFBemtt97yaysqKlJ6erpatGihmJgYjRkzRocOHXLaP/zwwxr34fV6/fqZPn26OnbsqObNm6tfv3769NNP/doPHDigrKwstW3bVq1atVJGRoZKS0sbxRxIUkVFhR599FF16NBB4eHh6tixo2bPnu1XM3/+fHXt2lXNmzdXjx499N577x01hvHjxys+Pl4RERFKTU3Vli1bGsUcDBs2rMZ9dO/e3a8f298Hr7zyii644AK1aNFC8fHx+t3vfqfvvvvOr8bm94H0879xt27dFBERoS5duujFF188aixnag7qax7uu+8+9e7dW+Hh4erVq1eN+/n888/161//Ws2bN1diYqKmTJlyVE1jfi+caA4OHDigYcOGqUePHgoJCdH1119f41g+/PBDXXjhhQoPD9e5556ruXPnHlVzop8bp5xpYPbs2WN2797tLLm5uUaS+eCDD/zqnn76aTNw4EAjySxYsMBZf+jQIXP++eeb1NRUs27dOvPee++Zs846y4wdO9ap+eCDD4wkU1hY6Levw4cPOzXz5s0zYWFhZvbs2aagoMDccccdJjIy0pSWljo1I0aMMImJiWbp0qVm7dq1JiUlxVx00UWNYg6MMea6664z/fr1M7m5uWbHjh1m5cqV5pNPPnHaV6xYYZo1a2amTJliNm3aZMaNG2dCQ0PNhg0bnJrJkycbt9tt3nrrLfPZZ5+Z6667znTq1Mn89NNPDX4OysrK/PZRXFxsoqKizIQJE5wa298Hn3zyiQkODjbPPvus2b59u/n4449N9+7dzQ033ODU2P4+yMnJMa1btzbz5s0z27ZtM6+99ppp1aqVefvttxvEHNTHPBhjzL333mv+8pe/mKFDh5oLLrjgqH2Ul5eb2NhYM2TIELNx40bz2muvmYiICPP88883iHk4HXOwf/9+M2LECDNz5kyTlpZmBg0adFTN9u3bTYsWLUx2drbZtGmT+fOf/2yaNWtmFi9e7NTU5ufGqdbgwv2X7r//fnPOOeeYqqoqZ926detMu3btzO7du4/6B3zvvfdMcHCw8Xq9zrrnnnvOuFwuU1FRYYz5/3D//vvvj7nfvn37mqysLOf14cOHTUJCgpk0aZIx5udgCA0NNfPnz3dqNm/ebCSZvLy8uh62n1MxB4sWLTJut9t89913x9zvTTfdZNLT0/3W9evXz9x1113GGGOqqqpMXFyceeqpp5z2srIyEx4ebl577bU6HfMvnYo5+KUFCxaYoKAgs3PnTmed7e+Dp556ypx99tl++5k2bZpp166d89r294HH4zGjR4/22092drbp37+/87ohzYExgc/DkSZMmFBjsOXk5Jg2bdr4/f/x8MMPmy5dujivG9I8nIo5OFJmZmaN4f7QQw+Z7t27+627+eabTVpamvP6RD83TocGd1n+SAcPHtTLL7+s3/3ud84fiPnxxx/1H//xH5o+fbri4uKO2iYvL089evRQbGyssy4tLU0+n08FBQV+tb169VJ8fLyuuuoqrVixwm+/+fn5Sk1NddYFBwcrNTVVeXl5kqT8/HxVVlb61XTt2lVJSUlOTX04VXPw9ttvq0+fPpoyZYratWunzp07a/To0frpp5/8+jny+Kr7qT6+HTt2yOv1+tW43W7169evUczBL82aNUupqanq0KGDs1/b3wcej0fFxcV67733ZIxRaWmp3njjDV199dV+/dj8PqioqFDz5s39touIiNCnn36qyspKp5+GMAfSyc1DbeTl5emSSy5RWFiYsy4tLU2FhYX6/vvvnZqGMA+nag5q40RzUJufG6dDgw73t956S2VlZRo2bJizbtSoUbrooos0aNCgGrfxer1+/yNLcl5Xf6YeHx+vGTNm6M0339Sbb76pxMREXXbZZfrnP/8pSfr22291+PDhGvup7sPr9SosLEyRkZHHrKkPp2oOtm/frk8++UQbN27UggUL9Mwzz+iNN97QPffcc8J+jpyDI/uuqaY+nKo5OFJJSYkWLVqk22+/3VnXFN4H/fv31yuvvKKbb75ZYWFhiouLk9vt1vTp00/Yjy3vg7S0NP31r39Vfn6+jDFau3at/vrXv6qyslLffvvtcfs53XMgndw81EZt5qqhzMOpmoPaONYc+Hw+/fTTT7X6uXE6NOi/Cjdr1iwNHDhQCQkJkn4+21y2bJnWrVtXp367dOmiLl26OK8vuugibdu2TVOnTtVLL71Up77r26mag6qqKgUFBemVV15x/srQ008/rcGDBysnJ0cRERF1Hnt9OVVzcKQXXnhBkZGRx/wCzZl2quZg06ZNuv/++zV+/HilpaVp9+7dGjNmjEaMGKFZs2bVx9Drzamag8cee0xer1cpKSkyxig2NlaZmZmaMmXKCf+s5plwOv5/aOiYgxNreO/cf/nqq6+0ZMkSvzOpZcuWadu2bYqMjFRISIhCQn7+3SQjI0OXXXaZJCkuLu6obypXvz7epZq+fftq69atkqSzzjpLzZo1q7Gf6j7i4uJ08OBBlZWVHbOmrk7lHMTHx6tdu3Z+fz6wW7duMsZo165dx+3nyDk4su+aaurqdLwPjDGaPXu2hg4d6ndJsim8DyZNmqT+/ftrzJgx6tmzp9LS0pSTk6PZs2dr9+7dx+3HlvdBRESEZs+erR9//FE7d+5UUVGROnbsqNatWys6Ovq4/ZzOOZBOfh5qozZz1RDm4VTOQW0caw5cLpciIiJq9XPjdGiw4T5nzhzFxMQoPT3dWffII4/o888/1/r1651FkqZOnao5c+ZI+vkzxA0bNmjPnj3Odrm5uXK5XEpOTj7m/tavX6/4+HhJUlhYmHr37q2lS5c67VVVVVq6dKk8Ho8kqXfv3goNDfWrKSwsVFFRkVNTV6dyDvr376+SkhLt37/fqfnyyy8VHBys9u3bO/0ceXzV/VQfX6dOnRQXF+dX4/P5tHr16kYxB9WWL1+urVu3avjw4X7rm8L74Mcffzzq7LRZs2aSfv6lp7qfpvA+CA0NVfv27dWsWTPNmzdP11xzjTM3DWEO6jIPteHxePTRRx853zOQfj7GLl26qE2bNk7NmZ6HUzkHtXGiOajNz43T4rR9dS8Ahw8fNklJSebhhx8+Ya2OcevLgAEDzPr1683ixYtNdHS0360vU6dONW+99ZbZsmWL2bBhg7n//vtNcHCwWbJkiVMzb948Ex4ebubOnWs2bdpk7rzzThMZGen3rdsRI0aYpKQks2zZMrN27Vrj8XiMx+NpFHOwb98+0759ezN48GBTUFBgli9fbs477zxz++23OzUrVqwwISEh5r/+67/M5s2bzYQJE2q87SUyMtL8/e9/N59//rkZNGhQvd3+c6rnoNptt91m+vXrV2O/tr8P5syZY0JCQkxOTo7Ztm2b+eSTT0yfPn1M3759nRrb3weFhYXmpZdeMl9++aVZvXq1ufnmm01UVJTZsWNHg5mDus6DMcZs2bLFrFu3ztx1112mc+fOZt26dWbdunXOt+PLyspMbGysGTp0qNm4caOZN2+eadGixVG3wjXW90Jt5sAYYwoKCsy6devMtddeay677DKnplr1rXBjxowxmzdvNtOnT6/xVrgT/dw41RpkuL///vvOfegnUtM/4M6dO83AgQNNRESEOeuss8yDDz5oKisrnfb//M//NOecc45p3ry5iYqKMpdddplZtmzZUX3/+c9/NklJSSYsLMz07dvXrFq1yq/9p59+Mvfcc49p06aNadGihbnhhhvM7t27T+6gf+FUz4ExP9+ylZqaaiIiIkz79u1Ndna2+fHHH/1q/va3v5nOnTubsLAw0717d/Puu+/6tVdVVZnHHnvMxMbGmvDwcHPllVfWasy1cTrmoKyszERERJiZM2ces2/b3wfTpk0zycnJJiIiwsTHx5shQ4aYXbt2+dXY/D7YtGmT6dWrl4mIiDAul8sMGjTIfPHFF0f1fSbnwJi6z8Oll15qJB21HPlLzGeffWYuvvhiEx4ebtq1a2cmT558VN+N+b1Qmzno0KFDjTVH+uCDD0yvXr1MWFiYOfvss82cOXOO2v+Jfm6cavzJVwAALNNgP3MHAAAnh3AHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALDM/wHbeIXxqk8/cwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from snowexsql.api import LayerMeasurements\n", + "from datetime import datetime \n", + "from shapely.geometry import Point \n", + "\n", + "# Find some SSA measurements within a distance of a known point\n", + "df = LayerMeasurements.from_area(pt=Point(740820.624625,4.327326e+06), crs=26912, buffer=500,\n", + " type='specific_surface_area')\n", + "\n", + "df\n", + "df.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How do I know what to filter on?\n", + "We got tools for that!" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Available types = swe, depth, two_way_travel\n", + "\n", + "Available Instruments = Mala 1600 MHz GPR, None, Mala 800 MHz GPR, pulse EKKO Pro multi-polarization 1 GHz GPR, pit ruler, mesa, magnaprobe, camera\n", + "\n", + "Available Dates = 2020-05-28, 2020-01-09, 2020-05-23, 2020-01-04, 2019-11-29, 2019-10-20, 2019-11-30, 2020-04-17, 2020-02-19, 2020-02-26, 2020-02-03, 2020-05-05, 2019-10-05, 2019-12-29, 2020-06-02, 2019-10-28, 2020-01-30, 2020-05-22, 2020-03-09, 2019-12-09, 2019-12-28, 2020-02-24, 2020-03-17, 2020-04-01, 2020-05-14, 2019-10-29, 2019-10-14, 2019-10-02, 2020-01-31, 2020-04-18, 2020-04-29, 2020-04-26, 2019-10-12, 2020-02-23, 2020-01-22, 2020-01-01, 2019-11-21, 2020-05-10, 2020-02-12, 2020-05-06, 2019-11-19, 2019-10-25, 2019-11-02, 2020-02-08, 2020-04-14, 2020-04-02, 2019-11-16, 2020-04-07, 2019-12-27, 2019-10-01, 2020-04-16, 2020-06-08, 2019-12-13, 2019-10-17, 2019-10-22, 2020-04-21, 2020-01-03, 2019-12-12, 2019-12-08, 2020-01-25, 2020-02-29, 2019-11-24, 2019-10-18, 2020-05-09, 2020-03-22, 2019-11-06, 2019-12-16, 2020-01-15, 2019-11-22, 2019-10-13, 2019-11-10, 2019-12-06, 2020-02-04, 2020-03-07, 2019-10-31, 2020-04-06, 2020-05-03, 2019-12-10, 2020-05-26, 2019-12-02, 2020-02-14, 2020-02-13, 2020-05-11, 2019-12-01, 2020-01-19, 2019-11-28, 2020-01-17, 2019-12-17, 2019-12-25, 2019-12-14, 2019-10-24, 2020-02-01, 2020-03-11, 2020-02-09, 2020-05-12, 2020-05-25, 2020-03-29, 2020-04-24, 2019-12-11, 2020-01-10, 2020-06-05, 2019-10-10, 2020-04-13, 2020-03-23, 2020-04-23, 2020-05-24, 2019-11-08, 2019-12-26, 2019-12-15, 2020-05-07, 2020-02-28, 2019-11-03, 2020-04-04, 2019-11-27, 2020-03-15, 2020-01-16, 2019-11-23, 2019-10-08, 2019-11-14, 2020-02-15, 2020-02-11, 2019-11-13, 2020-04-30, 2019-10-26, 2020-03-06, 2020-05-31, 2020-03-04, 2019-10-04, 2020-05-16, 2020-04-03, 2019-10-06, 2019-10-09, 2020-03-12, 2019-11-12, 2019-11-01, 2020-03-10, 2020-02-21, 2019-10-30, 2020-06-01, 2020-03-20, 2020-03-03, 2019-11-07, 2020-01-06, 2019-12-22, 2020-01-11, 2019-11-11, 2019-11-05, 2020-01-13, 2019-12-18, 2019-12-30, 2020-05-04, 2020-04-20, 2020-02-22, 2020-05-08, 2020-01-24, 2019-12-24, 2020-04-22, 2020-03-31, 2020-01-08, 2019-11-04, 2020-02-06, 2020-03-05, 2020-03-14, 2020-06-09, 2020-02-20, 2020-04-05, 2020-06-03, 2019-10-16, 2020-04-15, 2019-12-03, 2020-05-30, 2019-11-09, 2020-04-28, 2020-01-12, 2020-05-20, 2020-05-02, 2020-01-28, 2020-02-05, 2020-01-21, 2019-12-19, 2019-10-07, 2020-03-28, 2020-02-10, 2020-03-02, 2019-09-29, 2019-11-15, 2020-01-02, 2020-05-27, 2020-02-18, 2019-10-11, 2019-12-21, 2020-04-09, 2019-09-30, 2020-01-05, 2019-10-27, 2020-04-10, 2020-03-16, 2020-03-21, 2020-02-02, 2020-04-08, 2020-02-25, 2020-01-29, 2019-12-04, 2019-11-26, 2020-03-19, 2020-01-20, 2020-02-27, 2019-12-31, 2020-03-30, 2020-04-25, 2020-01-26, 2020-01-14, 2020-03-01, 2020-02-17, 2020-05-21, 2019-10-23, 2020-04-11, 2019-10-21, 2019-11-25, 2020-04-12, 2020-03-13, 2020-05-01, 2020-03-08, 2020-05-19, 2020-03-27, 2019-11-17, 2020-04-19, 2020-01-23, 2020-05-15, 2020-02-16, 2019-10-19, 2020-05-29, 2020-03-24, 2019-12-07, 2020-02-07, 2020-03-18, 2020-05-17, 2020-05-13, 2019-12-20, 2019-12-23, 2020-06-07, 2020-01-07, 2020-05-18, 2019-12-05, 2019-11-20, 2020-06-06, 2019-11-18, 2020-06-10, 2020-01-27, 2020-01-18, 2020-06-04, 2020-04-27, 2020-03-25, 2019-10-15, 2020-03-26, 2019-10-03\n", + "\n", + "Available sites = None, Grand Mesa\n" + ] + } + ], + "source": [ + "from snowexsql.api import PointMeasurements\n", + "\n", + "measurements = PointMeasurements()\n", + "# Get the unique data names/types in the table\n", + "results = measurements.all_types\n", + "print('Available types = {}'.format(', '.join([str(r) for r in results])))\n", + "\n", + "# Get the unique instrument in the table\n", + "results = measurements.all_instruments\n", + "print('\\nAvailable Instruments = {}'.format(', '.join([str(r) for r in results])))\n", + "\n", + "# Get the unique dates in the table\n", + "results = measurements.all_dates\n", + "print('\\nAvailable Dates = {}'.format(', '.join([str(r) for r in results])))\n", + "\n", + "# Get the unique site names in the table\n", + "results = measurements.all_site_names\n", + "print('\\nAvailable sites = {}'.format(', '.join([str(r) for r in results])))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Further we can gather the unique items in a query you are interested. " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[datetime.date(2020, 2, 4), datetime.date(2020, 2, 3), datetime.date(2020, 1, 30), datetime.date(2020, 2, 1), datetime.date(2020, 2, 6), datetime.date(2020, 1, 31), datetime.date(2020, 2, 12), datetime.date(2020, 2, 8), datetime.date(2020, 2, 5), datetime.date(2020, 1, 28), datetime.date(2020, 2, 11), datetime.date(2020, 2, 10), datetime.date(2020, 1, 29)]\n" + ] + } + ], + "source": [ + "print(LayerMeasurements.from_unique_entries(['date'], instrument='snowmicropen'))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Query Nuances\n", + "### Limit size \n", + "Try doing a large query. Something like" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Failed query for PointData\n" + ] + }, + { + "ename": "LargeQueryCheckException", + "evalue": "Query will return 2296512 number of records, but we have a default max of 1000. If you want to proceed, set the 'limit' filter to the desired number of records.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mLargeQueryCheckException\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[24], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msnowexsql\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapi\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m PointMeasurements\n\u001b[1;32m 2\u001b[0m \u001b[38;5;66;03m# Ask the DB for a huge query.\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m df \u001b[38;5;241m=\u001b[39m \u001b[43mPointMeasurements\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_filter\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mtype\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtwo_way_travel\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 4\u001b[0m df\n", + "File \u001b[0;32m~/projects/snowex/snowexsql/snowexsql/api.py:246\u001b[0m, in \u001b[0;36mPointMeasurements.from_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 244\u001b[0m session\u001b[38;5;241m.\u001b[39mclose()\n\u001b[1;32m 245\u001b[0m LOG\u001b[38;5;241m.\u001b[39merror(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFailed query for PointData\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 246\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 248\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m df\n", + "File \u001b[0;32m~/projects/snowex/snowexsql/snowexsql/api.py:241\u001b[0m, in \u001b[0;36mPointMeasurements.from_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 239\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 240\u001b[0m qry \u001b[38;5;241m=\u001b[39m session\u001b[38;5;241m.\u001b[39mquery(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMODEL)\n\u001b[0;32m--> 241\u001b[0m qry \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mextend_qry\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqry\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 242\u001b[0m df \u001b[38;5;241m=\u001b[39m query_to_geopandas(qry, engine)\n\u001b[1;32m 243\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n", + "File \u001b[0;32m~/projects/snowex/snowexsql/snowexsql/api.py:139\u001b[0m, in \u001b[0;36mBaseDataset.extend_qry\u001b[0;34m(cls, qry, check_size, **kwargs)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mk\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m is not an allowed filter\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 138\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_size:\n\u001b[0;32m--> 139\u001b[0m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_check_size\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqry\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 141\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m qry\n", + "File \u001b[0;32m~/projects/snowex/snowexsql/snowexsql/api.py:80\u001b[0m, in \u001b[0;36mBaseDataset._check_size\u001b[0;34m(cls, qry, kwargs)\u001b[0m\n\u001b[1;32m 78\u001b[0m count \u001b[38;5;241m=\u001b[39m qry\u001b[38;5;241m.\u001b[39mcount()\n\u001b[1;32m 79\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m count \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMAX_RECORD_COUNT \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlimit\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m kwargs:\n\u001b[0;32m---> 80\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m LargeQueryCheckException(\n\u001b[1;32m 81\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mQuery will return \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mcount\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m number of records,\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 82\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m but we have a default max of \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMAX_RECORD_COUNT\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 83\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m If you want to proceed, set the \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlimit\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m filter\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 84\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m to the desired number of records.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 85\u001b[0m )\n", + "\u001b[0;31mLargeQueryCheckException\u001b[0m: Query will return 2296512 number of records, but we have a default max of 1000. If you want to proceed, set the 'limit' filter to the desired number of records." + ] + } + ], + "source": [ + "from snowexsql.api import PointMeasurements\n", + "# Ask the DB for a huge query.\n", + "df = PointMeasurements.from_filter(type='two_way_travel')\n", + "df\n", + "# Throws an exception, try adding the limit keyword arg in the function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What happened? We have put some guard rails on the db to allow you to explore without accidentall pull the entire snowex universe down. If you know you want a large query (defined as > 1000) then use the `limit = ####` option in the `from_filter` or `from_area` function.\n", + "\n", + "**Note** - It is better to filter using other things besides the limit because the limit is not intelligent. It will simply limit the query by the order of entries that were submitted AND fit your filter. So if you encounter this then consider how to tighten up the filter.\n", + "\n", + "### List of Criteria\n", + "You can use lists in your requests too!" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Failed query for PointData\n" + ] + }, + { + "ename": "LargeQueryCheckException", + "evalue": "Query will return 8696 number of records, but we have a default max of 1000. If you want to proceed, set the 'limit' filter to the desired number of records.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mLargeQueryCheckException\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[25], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msnowexsql\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapi\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m LayerMeasurements\n\u001b[1;32m 2\u001b[0m ssa_instruments \u001b[38;5;241m=\u001b[39m [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIS3-SP-15-01US\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIRIS\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIS3-SP-11-01F\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[0;32m----> 3\u001b[0m \u001b[43mLayerMeasurements\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_filter\u001b[49m\u001b[43m(\u001b[49m\u001b[43minstrument\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mssa_instruments\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/projects/snowex/snowexsql/snowexsql/api.py:246\u001b[0m, in \u001b[0;36mPointMeasurements.from_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 244\u001b[0m session\u001b[38;5;241m.\u001b[39mclose()\n\u001b[1;32m 245\u001b[0m LOG\u001b[38;5;241m.\u001b[39merror(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFailed query for PointData\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 246\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 248\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m df\n", + "File \u001b[0;32m~/projects/snowex/snowexsql/snowexsql/api.py:241\u001b[0m, in \u001b[0;36mPointMeasurements.from_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 239\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 240\u001b[0m qry \u001b[38;5;241m=\u001b[39m session\u001b[38;5;241m.\u001b[39mquery(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMODEL)\n\u001b[0;32m--> 241\u001b[0m qry \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mextend_qry\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqry\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 242\u001b[0m df \u001b[38;5;241m=\u001b[39m query_to_geopandas(qry, engine)\n\u001b[1;32m 243\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n", + "File \u001b[0;32m~/projects/snowex/snowexsql/snowexsql/api.py:139\u001b[0m, in \u001b[0;36mBaseDataset.extend_qry\u001b[0;34m(cls, qry, check_size, **kwargs)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mk\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m is not an allowed filter\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 138\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_size:\n\u001b[0;32m--> 139\u001b[0m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_check_size\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqry\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 141\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m qry\n", + "File \u001b[0;32m~/projects/snowex/snowexsql/snowexsql/api.py:80\u001b[0m, in \u001b[0;36mBaseDataset._check_size\u001b[0;34m(cls, qry, kwargs)\u001b[0m\n\u001b[1;32m 78\u001b[0m count \u001b[38;5;241m=\u001b[39m qry\u001b[38;5;241m.\u001b[39mcount()\n\u001b[1;32m 79\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m count \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMAX_RECORD_COUNT \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlimit\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m kwargs:\n\u001b[0;32m---> 80\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m LargeQueryCheckException(\n\u001b[1;32m 81\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mQuery will return \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mcount\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m number of records,\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 82\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m but we have a default max of \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMAX_RECORD_COUNT\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 83\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m If you want to proceed, set the \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlimit\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m filter\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 84\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m to the desired number of records.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 85\u001b[0m )\n", + "\u001b[0;31mLargeQueryCheckException\u001b[0m: Query will return 8696 number of records, but we have a default max of 1000. If you want to proceed, set the 'limit' filter to the desired number of records." + ] + } + ], + "source": [ + "from snowexsql.api import LayerMeasurements\n", + "ssa_instruments = [\"IS3-SP-15-01US\", \"IRIS\", \"IS3-SP-11-01F\"]\n", + "LayerMeasurements.from_filter(instrument=ssa_instruments)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Greater than or Less than\n", + "Sometimes we want to isolate certain ranges of value or even dates. The `greater_equal` and `less_equal` terms can be added on to value or dates. " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, "outputs": [ { "data": { @@ -38,16 +296,16 @@ " \n", " \n", " \n", - " depth\n", - " site_id\n", - " pit_id\n", - " bottom_depth\n", - " comments\n", - " sample_a\n", - " sample_b\n", - " sample_c\n", + " version_number\n", + " equipment\n", " value\n", - " flags\n", + " latitude\n", + " longitude\n", + " northing\n", + " easting\n", + " elevation\n", + " utm_zone\n", + " geom\n", " ...\n", " date\n", " time_created\n", @@ -64,865 +322,352 @@ " \n", " \n", " 0\n", - " 41.0\n", - " Banner Open\n", - " IDBRBO_20191218_1424\n", - " 31.0\n", " None\n", " None\n", + " 101.096736\n", + " 39.034358\n", + " -108.190907\n", + " 4.324345e+06\n", + " 743146.962029\n", " None\n", - " None\n", - " 268.0\n", - " AD\n", + " 12\n", + " POINT (743146.962 4324344.879)\n", " ...\n", - " 2019-12-18\n", - " 2022-06-30 22:41:24.610808+00:00\n", - " None\n", - " 22602\n", + " 2020-01-28\n", + " 2022-07-05 16:45:41.402741+00:00\n", " None\n", + " 1320356\n", + " https://doi.org/10.5067/Q2LFK0QSVGS2\n", " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", + " pulse EKKO Pro multi-polarization 1 GHz GPR\n", + " depth\n", + " cm\n", + " Tate Meehan\n", " \n", " \n", " 1\n", - " 31.0\n", - " Banner Open\n", - " IDBRBO_20191218_1424\n", - " 21.0\n", - " None\n", " None\n", " None\n", + " 101.096736\n", + " 39.034358\n", + " -108.190907\n", + " 4.324345e+06\n", + " 743146.933029\n", " None\n", - " 377.0\n", - " AD\n", + " 12\n", + " POINT (743146.933 4324344.839)\n", " ...\n", - " 2019-12-18\n", - " 2022-06-30 22:41:24.610808+00:00\n", - " None\n", - " 22603\n", + " 2020-01-28\n", + " 2022-07-05 16:45:41.402741+00:00\n", " None\n", + " 1320357\n", + " https://doi.org/10.5067/Q2LFK0QSVGS2\n", " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", + " pulse EKKO Pro multi-polarization 1 GHz GPR\n", + " depth\n", + " cm\n", + " Tate Meehan\n", " \n", " \n", " 2\n", - " 21.0\n", - " Banner Open\n", - " IDBRBO_20191218_1424\n", - " 11.0\n", " None\n", " None\n", + " 103.532801\n", + " 39.034350\n", + " -108.190913\n", + " 4.324344e+06\n", + " 743146.462029\n", " None\n", - " None\n", - " 228.0\n", - " AD\n", + " 12\n", + " POINT (743146.462 4324343.986)\n", " ...\n", - " 2019-12-18\n", - " 2022-06-30 22:41:24.610808+00:00\n", - " None\n", - " 22604\n", + " 2020-01-28\n", + " 2022-07-05 16:45:41.402741+00:00\n", " None\n", + " 1320378\n", + " https://doi.org/10.5067/Q2LFK0QSVGS2\n", " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", + " pulse EKKO Pro multi-polarization 1 GHz GPR\n", + " depth\n", + " cm\n", + " Tate Meehan\n", " \n", " \n", " 3\n", - " 11.0\n", - " Banner Open\n", - " IDBRBO_20191218_1424\n", - " 1.0\n", - " None\n", " None\n", " None\n", + " 104.750834\n", + " 39.034350\n", + " -108.190913\n", + " 4.324344e+06\n", + " 743146.454029\n", " None\n", - " 243.0\n", - " AD\n", + " 12\n", + " POINT (743146.454 4324343.945)\n", " ...\n", - " 2019-12-18\n", - " 2022-06-30 22:41:24.610808+00:00\n", - " None\n", - " 22605\n", + " 2020-01-28\n", + " 2022-07-05 16:45:41.402741+00:00\n", " None\n", + " 1320379\n", + " https://doi.org/10.5067/Q2LFK0QSVGS2\n", " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", + " pulse EKKO Pro multi-polarization 1 GHz GPR\n", + " depth\n", + " cm\n", + " Tate Meehan\n", " \n", " \n", " 4\n", - " 41.0\n", - " Banner Open\n", - " IDBRBO_20191218_1424\n", - " 31.0\n", " None\n", - " 268.0\n", " None\n", + " 104.750834\n", + " 39.034350\n", + " -108.190913\n", + " 4.324344e+06\n", + " 743146.447029\n", " None\n", - " 268.0\n", - " AD\n", + " 12\n", + " POINT (743146.447 4324343.904)\n", " ...\n", - " 2019-12-18\n", - " 2022-06-30 22:41:24.702514+00:00\n", - " None\n", - " 22614\n", + " 2020-01-28\n", + " 2022-07-05 16:45:41.402741+00:00\n", " None\n", + " 1320380\n", + " https://doi.org/10.5067/Q2LFK0QSVGS2\n", " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", + " pulse EKKO Pro multi-polarization 1 GHz GPR\n", + " depth\n", + " cm\n", + " Tate Meehan\n", " \n", " \n", - " 5\n", - " 31.0\n", - " Banner Open\n", - " IDBRBO_20191218_1424\n", - " 21.0\n", - " None\n", - " 377.0\n", - " None\n", - " None\n", - " 377.0\n", - " AD\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", " ...\n", - " 2019-12-18\n", - " 2022-06-30 22:41:24.702514+00:00\n", - " None\n", - " 22615\n", - " None\n", - " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", - " \n", - " \n", - " 6\n", - " 21.0\n", - " Banner Open\n", - " IDBRBO_20191218_1424\n", - " 11.0\n", - " None\n", - " 228.0\n", - " None\n", - " None\n", - " 228.0\n", - " AD\n", " ...\n", - " 2019-12-18\n", - " 2022-06-30 22:41:24.702514+00:00\n", - " None\n", - " 22616\n", - " None\n", - " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", - " \n", - " \n", - " 7\n", - " 11.0\n", - " Banner Open\n", - " IDBRBO_20191218_1424\n", - " 1.0\n", - " None\n", - " 243.0\n", - " None\n", - " None\n", - " 243.0\n", - " AD\n", " ...\n", - " 2019-12-18\n", - " 2022-06-30 22:41:24.702514+00:00\n", - " None\n", - " 22617\n", - " None\n", - " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", - " \n", - " \n", - " 8\n", - " 47.0\n", - " Banner Snotel\n", - " IDBRBS_20191218_1000\n", - " 37.0\n", - " None\n", - " 127.0\n", - " 131.0\n", - " None\n", - " 129.0\n", - " AD\n", " ...\n", - " 2019-12-18\n", - " 2022-06-30 22:41:28.401134+00:00\n", - " None\n", - " 23406\n", - " None\n", - " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", - " \n", - " \n", - " 9\n", - " 37.0\n", - " Banner Snotel\n", - " IDBRBS_20191218_1000\n", - " 27.0\n", - " None\n", - " 173.0\n", - " 161.0\n", - " None\n", - " 167.0\n", - " AD\n", " ...\n", - " 2019-12-18\n", - " 2022-06-30 22:41:28.401134+00:00\n", - " None\n", - " 23407\n", - " None\n", - " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", - " \n", - " \n", - " 10\n", - " 27.0\n", - " Banner Snotel\n", - " IDBRBS_20191218_1000\n", - " 17.0\n", - " None\n", - " 226.0\n", - " 233.0\n", - " None\n", - " 229.5\n", - " AD\n", " ...\n", - " 2019-12-18\n", - " 2022-06-30 22:41:28.401134+00:00\n", - " None\n", - " 23408\n", - " None\n", - " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", - " \n", - " \n", - " 11\n", - " 17.0\n", - " Banner Snotel\n", - " IDBRBS_20191218_1000\n", - " 7.0\n", - " None\n", - " 248.0\n", - " 259.0\n", - " None\n", - " 253.5\n", - " AD\n", " ...\n", - " 2019-12-18\n", - " 2022-06-30 22:41:28.401134+00:00\n", - " None\n", - " 23409\n", - " None\n", - " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", - " \n", - " \n", - " 12\n", - " 47.0\n", - " Banner Snotel\n", - " IDBRBS_20191218_1000\n", - " 37.0\n", - " None\n", - " None\n", - " None\n", - " None\n", - " 129.0\n", - " AD\n", " ...\n", - " 2019-12-18\n", - " 2022-06-30 22:41:28.440857+00:00\n", - " None\n", - " 23410\n", - " None\n", - " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", - " \n", - " \n", - " 13\n", - " 37.0\n", - " Banner Snotel\n", - " IDBRBS_20191218_1000\n", - " 27.0\n", - " None\n", - " None\n", - " None\n", - " None\n", - " 167.0\n", - " AD\n", " ...\n", - " 2019-12-18\n", - " 2022-06-30 22:41:28.440857+00:00\n", - " None\n", - " 23411\n", - " None\n", - " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", - " \n", - " \n", - " 14\n", - " 27.0\n", - " Banner Snotel\n", - " IDBRBS_20191218_1000\n", - " 17.0\n", - " None\n", - " None\n", - " None\n", - " None\n", - " 229.5\n", - " AD\n", " ...\n", - " 2019-12-18\n", - " 2022-06-30 22:41:28.440857+00:00\n", - " None\n", - " 23412\n", - " None\n", - " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", - " \n", - " \n", - " 15\n", - " 17.0\n", - " Banner Snotel\n", - " IDBRBS_20191218_1000\n", - " 7.0\n", - " None\n", - " None\n", - " None\n", - " None\n", - " 253.5\n", - " AD\n", " ...\n", - " 2019-12-18\n", - " 2022-06-30 22:41:28.440857+00:00\n", - " None\n", - " 23413\n", - " None\n", - " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", - " \n", - " \n", - " 16\n", - " 57.0\n", - " Bogus Upper\n", - " IDBRBU_20191219_1000\n", - " 47.0\n", - " None\n", - " 206.0\n", - " 157.0\n", - " 181.0\n", - " 181.33333333333334\n", - " AD\n", " ...\n", - " 2019-12-19\n", - " 2022-06-30 22:41:32.716527+00:00\n", - " None\n", - " 24292\n", - " None\n", - " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", - " \n", - " \n", - " 17\n", - " 47.0\n", - " Bogus Upper\n", - " IDBRBU_20191219_1000\n", - " 37.0\n", - " None\n", - " 232.0\n", - " 237.0\n", - " NaN\n", - " 234.5\n", - " AD\n", " ...\n", - " 2019-12-19\n", - " 2022-06-30 22:41:32.716527+00:00\n", - " None\n", - " 24293\n", - " None\n", - " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", - " \n", - " \n", - " 18\n", - " 37.0\n", - " Bogus Upper\n", - " IDBRBU_20191219_1000\n", - " 27.0\n", - " None\n", - " 249.0\n", - " 252.0\n", - " NaN\n", - " 250.5\n", - " AD\n", " ...\n", - " 2019-12-19\n", - " 2022-06-30 22:41:32.716527+00:00\n", - " None\n", - " 24294\n", - " None\n", - " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", - " \n", - " \n", - " 19\n", - " 27.0\n", - " Bogus Upper\n", - " IDBRBU_20191219_1000\n", - " 17.0\n", - " None\n", - " 286.0\n", - " 296.0\n", - " NaN\n", - " 291.0\n", - " AD\n", " ...\n", - " 2019-12-19\n", - " 2022-06-30 22:41:32.716527+00:00\n", - " None\n", - " 24295\n", - " None\n", - " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", - " \n", - " \n", - " 20\n", - " 17.0\n", - " Bogus Upper\n", - " IDBRBU_20191219_1000\n", - " 7.0\n", - " None\n", - " 268.0\n", - " 265.0\n", - " NaN\n", - " 266.5\n", - " AD\n", " ...\n", - " 2019-12-19\n", - " 2022-06-30 22:41:32.716527+00:00\n", - " None\n", - " 24296\n", - " None\n", - " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", " \n", " \n", - " 21\n", - " 57.0\n", - " Bogus Upper\n", - " IDBRBU_20191219_1000\n", - " 47.0\n", + " 95\n", " None\n", " None\n", + " 109.622966\n", + " 39.034313\n", + " -108.190909\n", + " 4.324340e+06\n", + " 743146.897029\n", " None\n", - " None\n", - " 181.33333333333331\n", - " AD\n", + " 12\n", + " POINT (743146.897 4324339.877)\n", " ...\n", - " 2019-12-19\n", - " 2022-06-30 22:41:32.752326+00:00\n", - " None\n", - " 24297\n", + " 2020-01-28\n", + " 2022-07-05 16:45:41.402741+00:00\n", " None\n", + " 1320471\n", + " https://doi.org/10.5067/Q2LFK0QSVGS2\n", " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", + " pulse EKKO Pro multi-polarization 1 GHz GPR\n", + " depth\n", + " cm\n", + " Tate Meehan\n", " \n", " \n", - " 22\n", - " 47.0\n", - " Bogus Upper\n", - " IDBRBU_20191219_1000\n", - " 37.0\n", - " None\n", + " 96\n", " None\n", " None\n", + " 109.622966\n", + " 39.034313\n", + " -108.190909\n", + " 4.324340e+06\n", + " 743146.915029\n", " None\n", - " 234.5\n", - " AD\n", + " 12\n", + " POINT (743146.915 4324339.839)\n", " ...\n", - " 2019-12-19\n", - " 2022-06-30 22:41:32.752326+00:00\n", - " None\n", - " 24298\n", + " 2020-01-28\n", + " 2022-07-05 16:45:41.402741+00:00\n", " None\n", + " 1320472\n", + " https://doi.org/10.5067/Q2LFK0QSVGS2\n", " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", + " pulse EKKO Pro multi-polarization 1 GHz GPR\n", + " depth\n", + " cm\n", + " Tate Meehan\n", " \n", " \n", - " 23\n", - " 37.0\n", - " Bogus Upper\n", - " IDBRBU_20191219_1000\n", - " 27.0\n", + " 97\n", " None\n", " None\n", + " 108.404933\n", + " 39.034313\n", + " -108.190909\n", + " 4.324340e+06\n", + " 743146.934029\n", " None\n", - " None\n", - " 250.5\n", - " AD\n", + " 12\n", + " POINT (743146.934 4324339.802)\n", " ...\n", - " 2019-12-19\n", - " 2022-06-30 22:41:32.752326+00:00\n", - " None\n", - " 24299\n", + " 2020-01-28\n", + " 2022-07-05 16:45:41.402741+00:00\n", " None\n", + " 1320473\n", + " https://doi.org/10.5067/Q2LFK0QSVGS2\n", " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", + " pulse EKKO Pro multi-polarization 1 GHz GPR\n", + " depth\n", + " cm\n", + " Tate Meehan\n", " \n", " \n", - " 24\n", - " 27.0\n", - " Bogus Upper\n", - " IDBRBU_20191219_1000\n", - " 17.0\n", - " None\n", + " 98\n", " None\n", " None\n", + " 108.404933\n", + " 39.034312\n", + " -108.190909\n", + " 4.324340e+06\n", + " 743146.953029\n", " None\n", - " 291.0\n", - " AD\n", + " 12\n", + " POINT (743146.953 4324339.764)\n", " ...\n", - " 2019-12-19\n", - " 2022-06-30 22:41:32.752326+00:00\n", - " None\n", - " 24300\n", + " 2020-01-28\n", + " 2022-07-05 16:45:41.402741+00:00\n", " None\n", + " 1320474\n", + " https://doi.org/10.5067/Q2LFK0QSVGS2\n", " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", + " pulse EKKO Pro multi-polarization 1 GHz GPR\n", + " depth\n", + " cm\n", + " Tate Meehan\n", " \n", " \n", - " 25\n", - " 17.0\n", - " Bogus Upper\n", - " IDBRBU_20191219_1000\n", - " 7.0\n", + " 99\n", " None\n", " None\n", + " 108.404933\n", + " 39.034312\n", + " -108.190909\n", + " 4.324340e+06\n", + " 743146.971029\n", " None\n", - " None\n", - " 266.5\n", - " AD\n", + " 12\n", + " POINT (743146.971 4324339.727)\n", " ...\n", - " 2019-12-19\n", - " 2022-06-30 22:41:32.752326+00:00\n", - " None\n", - " 24301\n", + " 2020-01-28\n", + " 2022-07-05 16:45:41.402741+00:00\n", " None\n", + " 1320475\n", + " https://doi.org/10.5067/Q2LFK0QSVGS2\n", " 2022-06-30\n", - " None\n", - " density\n", - " None\n", - " None\n", + " pulse EKKO Pro multi-polarization 1 GHz GPR\n", + " depth\n", + " cm\n", + " Tate Meehan\n", " \n", " \n", "\n", - "

26 rows × 29 columns

\n", + "

100 rows × 23 columns

\n", "" ], "text/plain": [ - " depth site_id pit_id bottom_depth comments \\\n", - "0 41.0 Banner Open IDBRBO_20191218_1424 31.0 None \n", - "1 31.0 Banner Open IDBRBO_20191218_1424 21.0 None \n", - "2 21.0 Banner Open IDBRBO_20191218_1424 11.0 None \n", - "3 11.0 Banner Open IDBRBO_20191218_1424 1.0 None \n", - "4 41.0 Banner Open IDBRBO_20191218_1424 31.0 None \n", - "5 31.0 Banner Open IDBRBO_20191218_1424 21.0 None \n", - "6 21.0 Banner Open IDBRBO_20191218_1424 11.0 None \n", - "7 11.0 Banner Open IDBRBO_20191218_1424 1.0 None \n", - "8 47.0 Banner Snotel IDBRBS_20191218_1000 37.0 None \n", - "9 37.0 Banner Snotel IDBRBS_20191218_1000 27.0 None \n", - "10 27.0 Banner Snotel IDBRBS_20191218_1000 17.0 None \n", - "11 17.0 Banner Snotel IDBRBS_20191218_1000 7.0 None \n", - "12 47.0 Banner Snotel IDBRBS_20191218_1000 37.0 None \n", - "13 37.0 Banner Snotel IDBRBS_20191218_1000 27.0 None \n", - "14 27.0 Banner Snotel IDBRBS_20191218_1000 17.0 None \n", - "15 17.0 Banner Snotel IDBRBS_20191218_1000 7.0 None \n", - "16 57.0 Bogus Upper IDBRBU_20191219_1000 47.0 None \n", - "17 47.0 Bogus Upper IDBRBU_20191219_1000 37.0 None \n", - "18 37.0 Bogus Upper IDBRBU_20191219_1000 27.0 None \n", - "19 27.0 Bogus Upper IDBRBU_20191219_1000 17.0 None \n", - "20 17.0 Bogus Upper IDBRBU_20191219_1000 7.0 None \n", - "21 57.0 Bogus Upper IDBRBU_20191219_1000 47.0 None \n", - "22 47.0 Bogus Upper IDBRBU_20191219_1000 37.0 None \n", - "23 37.0 Bogus Upper IDBRBU_20191219_1000 27.0 None \n", - "24 27.0 Bogus Upper IDBRBU_20191219_1000 17.0 None \n", - "25 17.0 Bogus Upper IDBRBU_20191219_1000 7.0 None \n", + " version_number equipment value latitude longitude northing \\\n", + "0 None None 101.096736 39.034358 -108.190907 4.324345e+06 \n", + "1 None None 101.096736 39.034358 -108.190907 4.324345e+06 \n", + "2 None None 103.532801 39.034350 -108.190913 4.324344e+06 \n", + "3 None None 104.750834 39.034350 -108.190913 4.324344e+06 \n", + "4 None None 104.750834 39.034350 -108.190913 4.324344e+06 \n", + ".. ... ... ... ... ... ... \n", + "95 None None 109.622966 39.034313 -108.190909 4.324340e+06 \n", + "96 None None 109.622966 39.034313 -108.190909 4.324340e+06 \n", + "97 None None 108.404933 39.034313 -108.190909 4.324340e+06 \n", + "98 None None 108.404933 39.034312 -108.190909 4.324340e+06 \n", + "99 None None 108.404933 39.034312 -108.190909 4.324340e+06 \n", "\n", - " sample_a sample_b sample_c value flags ... date \\\n", - "0 None None None 268.0 AD ... 2019-12-18 \n", - "1 None None None 377.0 AD ... 2019-12-18 \n", - "2 None None None 228.0 AD ... 2019-12-18 \n", - "3 None None None 243.0 AD ... 2019-12-18 \n", - "4 268.0 None None 268.0 AD ... 2019-12-18 \n", - "5 377.0 None None 377.0 AD ... 2019-12-18 \n", - "6 228.0 None None 228.0 AD ... 2019-12-18 \n", - "7 243.0 None None 243.0 AD ... 2019-12-18 \n", - "8 127.0 131.0 None 129.0 AD ... 2019-12-18 \n", - "9 173.0 161.0 None 167.0 AD ... 2019-12-18 \n", - "10 226.0 233.0 None 229.5 AD ... 2019-12-18 \n", - "11 248.0 259.0 None 253.5 AD ... 2019-12-18 \n", - "12 None None None 129.0 AD ... 2019-12-18 \n", - "13 None None None 167.0 AD ... 2019-12-18 \n", - "14 None None None 229.5 AD ... 2019-12-18 \n", - "15 None None None 253.5 AD ... 2019-12-18 \n", - "16 206.0 157.0 181.0 181.33333333333334 AD ... 2019-12-19 \n", - "17 232.0 237.0 NaN 234.5 AD ... 2019-12-19 \n", - "18 249.0 252.0 NaN 250.5 AD ... 2019-12-19 \n", - "19 286.0 296.0 NaN 291.0 AD ... 2019-12-19 \n", - "20 268.0 265.0 NaN 266.5 AD ... 2019-12-19 \n", - "21 None None None 181.33333333333331 AD ... 2019-12-19 \n", - "22 None None None 234.5 AD ... 2019-12-19 \n", - "23 None None None 250.5 AD ... 2019-12-19 \n", - "24 None None None 291.0 AD ... 2019-12-19 \n", - "25 None None None 266.5 AD ... 2019-12-19 \n", + " easting elevation utm_zone geom ... \\\n", + "0 743146.962029 None 12 POINT (743146.962 4324344.879) ... \n", + "1 743146.933029 None 12 POINT (743146.933 4324344.839) ... \n", + "2 743146.462029 None 12 POINT (743146.462 4324343.986) ... \n", + "3 743146.454029 None 12 POINT (743146.454 4324343.945) ... \n", + "4 743146.447029 None 12 POINT (743146.447 4324343.904) ... \n", + ".. ... ... ... ... ... \n", + "95 743146.897029 None 12 POINT (743146.897 4324339.877) ... \n", + "96 743146.915029 None 12 POINT (743146.915 4324339.839) ... \n", + "97 743146.934029 None 12 POINT (743146.934 4324339.802) ... \n", + "98 743146.953029 None 12 POINT (743146.953 4324339.764) ... \n", + "99 743146.971029 None 12 POINT (743146.971 4324339.727) ... \n", "\n", - " time_created time_updated id doi date_accessed \\\n", - "0 2022-06-30 22:41:24.610808+00:00 None 22602 None 2022-06-30 \n", - "1 2022-06-30 22:41:24.610808+00:00 None 22603 None 2022-06-30 \n", - "2 2022-06-30 22:41:24.610808+00:00 None 22604 None 2022-06-30 \n", - "3 2022-06-30 22:41:24.610808+00:00 None 22605 None 2022-06-30 \n", - "4 2022-06-30 22:41:24.702514+00:00 None 22614 None 2022-06-30 \n", - "5 2022-06-30 22:41:24.702514+00:00 None 22615 None 2022-06-30 \n", - "6 2022-06-30 22:41:24.702514+00:00 None 22616 None 2022-06-30 \n", - "7 2022-06-30 22:41:24.702514+00:00 None 22617 None 2022-06-30 \n", - "8 2022-06-30 22:41:28.401134+00:00 None 23406 None 2022-06-30 \n", - "9 2022-06-30 22:41:28.401134+00:00 None 23407 None 2022-06-30 \n", - "10 2022-06-30 22:41:28.401134+00:00 None 23408 None 2022-06-30 \n", - "11 2022-06-30 22:41:28.401134+00:00 None 23409 None 2022-06-30 \n", - "12 2022-06-30 22:41:28.440857+00:00 None 23410 None 2022-06-30 \n", - "13 2022-06-30 22:41:28.440857+00:00 None 23411 None 2022-06-30 \n", - "14 2022-06-30 22:41:28.440857+00:00 None 23412 None 2022-06-30 \n", - "15 2022-06-30 22:41:28.440857+00:00 None 23413 None 2022-06-30 \n", - "16 2022-06-30 22:41:32.716527+00:00 None 24292 None 2022-06-30 \n", - "17 2022-06-30 22:41:32.716527+00:00 None 24293 None 2022-06-30 \n", - "18 2022-06-30 22:41:32.716527+00:00 None 24294 None 2022-06-30 \n", - "19 2022-06-30 22:41:32.716527+00:00 None 24295 None 2022-06-30 \n", - "20 2022-06-30 22:41:32.716527+00:00 None 24296 None 2022-06-30 \n", - "21 2022-06-30 22:41:32.752326+00:00 None 24297 None 2022-06-30 \n", - "22 2022-06-30 22:41:32.752326+00:00 None 24298 None 2022-06-30 \n", - "23 2022-06-30 22:41:32.752326+00:00 None 24299 None 2022-06-30 \n", - "24 2022-06-30 22:41:32.752326+00:00 None 24300 None 2022-06-30 \n", - "25 2022-06-30 22:41:32.752326+00:00 None 24301 None 2022-06-30 \n", + " date time_created time_updated id \\\n", + "0 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320356 \n", + "1 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320357 \n", + "2 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320378 \n", + "3 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320379 \n", + "4 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320380 \n", + ".. ... ... ... ... \n", + "95 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320471 \n", + "96 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320472 \n", + "97 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320473 \n", + "98 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320474 \n", + "99 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320475 \n", "\n", - " instrument type units observers \n", - "0 None density None None \n", - "1 None density None None \n", - "2 None density None None \n", - "3 None density None None \n", - "4 None density None None \n", - "5 None density None None \n", - "6 None density None None \n", - "7 None density None None \n", - "8 None density None None \n", - "9 None density None None \n", - "10 None density None None \n", - "11 None density None None \n", - "12 None density None None \n", - "13 None density None None \n", - "14 None density None None \n", - "15 None density None None \n", - "16 None density None None \n", - "17 None density None None \n", - "18 None density None None \n", - "19 None density None None \n", - "20 None density None None \n", - "21 None density None None \n", - "22 None density None None \n", - "23 None density None None \n", - "24 None density None None \n", - "25 None density None None \n", + " doi date_accessed \\\n", + "0 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", + "1 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", + "2 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", + "3 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", + "4 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", + ".. ... ... \n", + "95 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", + "96 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", + "97 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", + "98 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", + "99 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", "\n", - "[26 rows x 29 columns]" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from snowexsql.api import LayerMeasurements\n", - "from datetime import datetime \n", - "\n", - "# Find some density pit measurements at the Boise site in december 2019.\n", - "df = LayerMeasurements.from_filter(\n", - " type=\"density\",\n", - " site_name=\"Boise River Basin\",\n", - " date_less_equal=datetime(2020, 1, 1),\n", - " date_greater_equal=datetime(2019, 12, 1),\n", - " limit=1000\n", - ")\n", - "\n", - "\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" + " instrument type units observers \n", + "0 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", + "1 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", + "2 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", + "3 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", + "4 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", + ".. ... ... ... ... \n", + "95 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", + "96 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", + "97 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", + "98 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", + "99 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", + "\n", + "[100 rows x 23 columns]" ] }, - "execution_count": 23, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAS8AAAEDCAYAAABksIKVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAATXklEQVR4nO3dfZBddX3H8ffHrDxaSSBLzGQDCyUVmBZCXGniI5KBIaE16QymYdoSME7GlnGwWm3U6YMzOoXWijJ2kAyxxo5FKNVmR1BIQ5iOFiKbkAcgIEsmmF0TsiIJpVQq9Ns/zm/hsLl39969Zx9+7uc1c+ee8/v9zrnfe+7NZ8/TbhQRmJnl5g0TXYCZ2Wg4vMwsSw4vM8uSw8vMsuTwMrMsObzMLEtZhZekj0sKSTNr9J0uabukHZIelfTh1H6CpLskPZ7ary8tc2Mav0PSjyUdbqCG6ZLuTOvbI2lRte/SzBrRNtEFDCXpIuDqiLh6SPtc4FLgJ3UWPQAsioiXJL0JeERSN3AY+EJEbJF0DLBZ0pKI+F5E/Glp/R8BLmigxC8D34+IK9L6TmjyLZpZBXLa87oR+CRQ867aiPjfiHgpzR5Lem8R8WJEbBkcA2wHOmqs4krgtsEZSZ+Q9JCkXZI+m9pOAt4DrC+95oh7a2ZWvSzCS9IyoD8ido4wbq6kXcB+4IaI+OmQ/unA7wKbh7SfDpwB3JfmLwXmARcC84G3SXpPGjMA/KOkhyXdKunEKt6jmTVn0oSXpK2SdgC3Au8vnYtaBnwa+MuR1hER+yPiPOAsYJWkWaX1t1HsWd0UEXuHLLoSuDMiXknzl6bHwxR7amdThFkbsAC4OSIuAP4bWDvqN21mozZpwisifjsi5gMfArojYn6a30uxx7NT0j6KQ77tkt4yzLp+CjwCvLvUvA54MiK+VGORlZQOGQEBfzNYQ0ScFRHrgT6gLyK2pnF3UoSZmY2zSRNe9UTE7og4NSI6I6KTIkAWRMTB8jhJHZKOT9MzgHcBT6T5zwEnAR8dun5JZwMzgAdKzfcAH0wn/pE0R9Kp6TX3S3prGrcYeKy6d2tmjZp0VxubIakL+HBEfAg4B/h7SUGx5/SFiNgtqQP4DPA4xR4bwFci4ta0mpXAt6L05zUi4l5J5wAPpPEvAH8IHAI+AnwzXWncC1wzDm/VzIZQI38SJ53ovhX4TYqrfR+k2Ku5HegE9gErIuI5Ff/avwwsBV6kuO1h+1gUb2ZTV6OHjYP3Np0NnA/soThRvTki5lFcvRs8cb2E4uT2PGANcHOlFZuZ0cCeV7q3aQdwZvnQStITwEURcUDSbOD+iHirpFvS9G1Dx9V7jZkzZ0ZnZ2fr78bMfqVs27btZxHRXquvkXNe5Xubzge2AdcBs0qBdBAYvC1hDsV9VoP6UtvrwkvSGoo9M0477TR6enoaezdmNmVIerpeXyOHjSPe25T2yJr6e9IRsS4iuiKiq729ZrCamdXVSHjVu7fpmXS4SHo+lPr7gbml5TtSm5lZZUYMr2HubeoGVqW2VcDGNN0NXKXCQuDIcOe7zMxGo9H7vGrd2/QG4A5Jq4GngRVp7N0Ut0n0Utwq4fugzKxyDYVXROwAump0La4xNoBrW6zLzGxYWd1h37n2rqPa9l1/+QRUYmYTbdL/buOgWsE1XLuZ/WrLJrzMzMocXmaWJYeXmWXJ4WVmWcomvOpdVfTVRrOpKatbJRxUZjYomz0vM7Myh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5llyeFlZllyeJlZlhxeZpYlh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5llqaHwkrRP0m5JOyT1pLaTJW2S9GR6npHaJekmSb2SdklaMJZvwMympmb2vN4XEfMjoivNrwU2R8Q8YHOaB1gCzEuPNcDNVRVrZjaolcPGZcCGNL0BWF5q/0YUHgSmS5rdwuuYmR2l0fAK4F5J2yStSW2zIuJAmj4IzErTc4D9pWX7UtvrSFojqUdSz8DAwChKN7OprK3Bce+KiH5JpwKbJD1e7oyIkBTNvHBErAPWAXR1dTW1rJlZQ3teEdGfng8B3wEuBJ4ZPBxMz4fS8H5gbmnxjtRmZlaZEcNL0omSfm1wGrgUeAToBlalYauAjWm6G7gqXXVcCBwpHV6amVWikcPGWcB3JA2O/+eI+L6kh4A7JK0GngZWpPF3A0uBXuBF4JrKqzazKW/E8IqIvcD5NdqfBRbXaA/g2kqqMzOrw3fYm1mWHF5mliWHl5llyeFlZllyeJlZlhxeZpYlh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5llyeFlZllyeJlZlhxeZpYlh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5llyeFlZllyeJlZlhoOL0nTJD0s6btp/gxJWyX1Srpd0jGp/dg035v6O8emdDObyprZ87oO2FOavwG4MSLOAp4DVqf21cBzqf3GNM7MrFINhZekDuBy4NY0L+Bi4M40ZAOwPE0vS/Ok/sVpvJlZZRrd8/oS8Eng/9L8KcDhiHg5zfcBc9L0HGA/QOo/ksa/jqQ1knok9QwMDIyyfDObqkYML0m/AxyKiG1VvnBErIuIrojoam9vr3LVZjYFtDUw5p3A+yUtBY4D3gx8GZguqS3tXXUA/Wl8PzAX6JPUBpwEPFt55WY2pY245xURn4qIjojoBFYC90XEHwBbgCvSsFXAxjTdneZJ/fdFRFRatZlNea3c5/XnwMck9VKc01qf2tcDp6T2jwFrWyvRzOxojRw2vioi7gfuT9N7gQtrjPkF8IEKarNJqnPtXUe17bv+8gmoxKYy32FvTakVXMO1m40Vh5eZZcnhZWZZcniZWZYcXmaWJYeXNaXeVUVfbbTx1tStEmbgoLLJwXteZpYlh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliXfYW82DP/hxcnLe15mdfgPL05uDi8zy5LDy8yy5PAysyw5vMwsSw4vszr8hxcnN98qYTYMB9Xk5T0vM8uSw8vMsuTwMrMsObzMLEsOLzPL0ojhJek4ST+StFPSo5I+m9rPkLRVUq+k2yUdk9qPTfO9qb9zbN+CmU1Fjex5vQRcHBHnA/OByyQtBG4AboyIs4DngNVp/GrgudR+YxpnZlapEcMrCi+k2TemRwAXA3em9g3A8jS9LM2T+hdLUmUVm5nR4DkvSdMk7QAOAZuAp4DDEfFyGtIHzEnTc4D9AKn/CHBKjXWukdQjqWdgYKC1d2FmU05D4RURr0TEfKADuBA4u9UXjoh1EdEVEV3t7e2trs7MppimrjZGxGFgC7AImC5p8NeLOoD+NN0PzAVI/ScBz1ZSrZlZ0sjVxnZJ09P08cAlwB6KELsiDVsFbEzT3Wme1H9fRESVRZuZNfKL2bOBDZKmUYTdHRHxXUmPAd+S9DngYWB9Gr8e+CdJvcDPgZVjULeZTXEjhldE7AIuqNG+l+L819D2XwAfqKQ6M7M6fIe9mWXJ4WVmWXJ4mVmWHF5mliWHl5llyeFlZllyeJlZlhxeZpYlh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5llyeFlZllyeJlZlhxeZpYlh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5llyeFlZlkaMbwkzZW0RdJjkh6VdF1qP1nSJklPpucZqV2SbpLUK2mXpAVj/SbMbOppZM/rZeDjEXEusBC4VtK5wFpgc0TMAzaneYAlwLz0WAPcXHnVZjbljRheEXEgIran6f8C9gBzgGXAhjRsA7A8TS8DvhGFB4HpkmZXXrmZTWlNnfOS1AlcAGwFZkXEgdR1EJiVpucA+0uL9aW2oetaI6lHUs/AwECTZZvZVNdweEl6E/CvwEcj4vlyX0QEEM28cESsi4iuiOhqb29vZlEzs8bCS9IbKYLrmxHx7dT8zODhYHo+lNr7gbmlxTtSm5lZZRq52ihgPbAnIr5Y6uoGVqXpVcDGUvtV6arjQuBI6fDSzKwSbQ2MeSfwR8BuSTtS26eB64E7JK0GngZWpL67gaVAL/AicE2lFZuZ0UB4RcQPANXpXlxjfADXtliXmdmwfIe9mWXJ4WVmWXJ4mVmWHF5mliWHl5llyeFlZllyeJlZlhxeZpYlh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5llyeFlZllyeJlZlhxeZpYlh5eZZcnhZWZZcniZWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5llacTwkvQ1SYckPVJqO1nSJklPpucZqV2SbpLUK2mXpAVjWbyZTV2N7Hl9HbhsSNtaYHNEzAM2p3mAJcC89FgD3FxNmWZmrzdieEXEfwA/H9K8DNiQpjcAy0vt34jCg8B0SbOrKtbMbNBoz3nNiogDafogMCtNzwH2l8b1pbajSFojqUdSz8DAwCjLMLOpquUT9hERQIxiuXUR0RURXe3t7a2WYWZTzGjD65nBw8H0fCi19wNzS+M6UpuZWaVGG17dwKo0vQrYWGq/Kl11XAgcKR1emplVpm2kAZJuAy4CZkrqA/4KuB64Q9Jq4GlgRRp+N7AU6AVeBK4Zg5rNzEYOr4i4sk7X4hpjA7i21aLMzEbiO+zNLEsOLzPLksPLzLLk8DKzLDm8zCxLDi8zy9KIt0qYmbWqc+1dR7Xtu/7yltbpPS8zG1O1gmu49kY5vMwsSw4vM8uSw8vMsuTwMrMsObzMbEzVu6rY6tVG3yphZmOu1aCqxXteZpYlh5eZZcnhZWZZcniZWZYcXmaWJRV/dn6Ci5AGKP4jj+HMBH42DuU0a7LWBZO3NtfVvMla21jXdXpE1PyPXSdFeDVCUk9EdE10HUNN1rpg8tbmupo3WWubyLp82GhmWXJ4mVmWcgqvdRNdQB2TtS6YvLW5ruZN1tomrK5sznmZmZXltOdlZvYqh5eZ5SkixvQBvBXYUXo8D3y01P9xIICZaV7ATUAvsAtYUBr7Smk93aX2M4CtaZnbgWNS+7Fpvjf1d45RXacB9wJ7gMcGX2c0dVVZG/C+Iev5BbB8kmyzvwUeTdvsJl47hfE2YHdaptx+MrAJeDI9zxijum4AHkmP3x/n79jZwAPAS8CfDflOXAY8kV5nbSt1jUFtXwMOAY8Maa/5mQ23/ZvKlrEOryFvZhpwkOLGM4C5wD0UN6gObqSlwPfSG1wIbC0t/0Kd9d4BrEzTXwX+OE3/CfDVNL0SuH2M6rofuCRNvwk4oYq6qqhtyBfp51XV1kpdwDuAH6Z1TKP4R3FR6vtRGqu07JJ4LezWpum1wA1jUNflFP/I2oATgYeAN4/j9joVeDvweUoBkZZ9CjgTOAbYCZw7zt+xmrWlvvcACzg6vGp+ZvW2f9N5MtogGtWLwaXAD0vzdwLnA/tKG+kW4MrSmCeA2Wn6qPBKG+BnQFuaXwTck6bvARal6bY0TlXWBZwL/GAs6qpim5Xa1gDfnCTbbBGwDTgeOAHoAc5JfY+Xxl8J3FLjezAbeKLq7QV8AviLUvt6YMV4ba9S31/z+vB69fXS/KfSY9y+Y/VqK7V3cnR41fzM6m3/ZvNkvM95rQRuA5C0DOiPiJ1DxswB9pfm+1IbwHGSeiQ9KGl5ajsFOBwRL9cY/+q6Uv+RNL7Kun4DOCzp25IelvR3kqZVVFertdVcT0W1jbquiHgA2AIcSI97ImJPGt9X533MiogDafogMKtGTS3VRbFHc5mkEyTNpDjsnsv4ba966tU7nt+x0aj3mTXyfR3RuP0lVUnHAO8HPiXpBODTFInfjNMjol/SmcB9knZTfCgTWVcb8G7gAuAnFOcZrgY2tlJXRbUNrmc28FsUP41b1mpdks6i2NPqSE2bJL0b+J9Glo+IkBRV1xUR90p6O/CfwADF4ewrjS5fT1Wf41gYr9rqfWatGM89ryXA9oh4Bvh1ihONOyXto/gSb5f0FqCf4qfdoI7URkQMPu+lOM90AfAsMF1S29Dx5XWl/pPS+Crr6gN2RMTe9BPu3yiO/1utq5JtlqwAvhMRv0zzE73Nfg94MCJeiIgXKM5/LEp9HTXGAzyTQngwjA+NxfaKiM9HxPyIuITisOzH47i96qlX73h+x0aj3mc20ve1IeMZXleSdk0jYndEnBoRnRHRSREACyLiINANXKXCQuBIRByQNEPSsQBpl/6dwGNRHDRvAa5Ir7OK1/Z6utM8qf++NL6yuihO6k6XNPib7xdXVFcVtR21nrSuid5mPwHeK6lN0huB9wJ7Ut/zkhZKEnBVnbrK9VZWl6Rpkk4BkHQecB5w7zhur3oeAuZJOiPtKa2kuNo+nt+x0aj3mY30fW1MsyfJRvOguHLzLHBSnf59vP4y9j9QXF3ZDXSl9nek+Z3peXVp+TMprlL1Av8CHJvaj0vzvan/zKrrSn2XUFzy3Q18ndcuV4+qropr66T4qfaGIctP2DajuLp1C6/dWvLF0vJdFLcpPAV8hddulTgF2Exx2f3fgZPHoK7jUj2PAQ8C88d5e72FIjCeBw6n6cGrnUsp9gKfAj7Tal0V13YbxbnLX6b21cN9ZvW2f7MP/3qQmWXJd9ibWZYcXmaWJYeXmWXJ4WVmWXJ4mVmWHF5mliWHl5ll6f8BLRCh2UfkUeUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from snowexsql.api import LayerMeasurements\n", - "from datetime import datetime \n", - "from shapely.geometry import Point \n", - "\n", - "# Find some density pit measurements at the Boise site in december 2019.\n", - "df = LayerMeasurements.from_area(pt=Point(740820.624625,4.327326e+06), crs=26912, buffer=500,\n", - " type='specific_surface_area')\n", - "\n", - "\n", - "df.plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This feels soooo *limited* :)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### How do I know what to filter on?\n", - "We got a tool for that!" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Available types = swe, depth, two_way_travel\n", - "\n", - "Available Instruments = None, Mala 1600 MHz GPR, Mala 800 MHz GPR, pulse EKKO Pro multi-polarization 1 GHz GPR, pit ruler, mesa, magnaprobe, camera\n", - "\n", - "Available Dates = 2020-05-28, 2020-01-09, 2020-05-23, 2020-01-04, 2019-11-29, 2019-10-20, 2019-11-30, 2020-04-17, 2020-02-19, 2020-02-26, 2020-02-03, 2020-05-05, 2019-10-05, 2019-12-29, 2020-06-02, 2019-10-28, 2020-01-30, 2020-05-22, 2020-03-09, 2019-12-09, 2019-12-28, 2020-02-24, 2020-03-17, 2020-04-01, 2020-05-14, 2019-10-29, 2019-10-14, 2019-10-02, 2020-01-31, 2020-04-18, 2020-04-29, 2020-04-26, 2019-10-12, 2020-02-23, 2020-01-22, 2020-01-01, 2019-11-21, 2020-05-10, 2020-02-12, 2020-05-06, 2019-11-19, 2019-10-25, 2019-11-02, 2020-02-08, 2020-04-14, 2020-04-02, 2019-11-16, 2020-04-07, 2019-12-27, 2019-10-01, 2020-04-16, 2020-06-08, 2019-12-13, 2019-10-17, 2019-10-22, 2020-04-21, 2020-01-03, 2019-12-12, 2019-12-08, 2020-01-25, 2020-02-29, 2019-11-24, 2019-10-18, 2020-05-09, 2020-03-22, 2019-11-06, 2019-12-16, 2020-01-15, 2019-11-22, 2019-10-13, 2019-11-10, 2019-12-06, 2020-02-04, 2020-03-07, 2019-10-31, 2020-04-06, 2020-05-03, 2019-12-10, 2020-05-26, 2019-12-02, 2020-02-14, 2020-02-13, 2020-05-11, 2019-12-01, 2020-01-19, 2019-11-28, 2020-01-17, 2019-12-17, 2019-12-25, 2019-12-14, 2019-10-24, 2020-03-11, 2020-02-01, 2020-02-09, 2020-05-12, 2020-05-25, 2020-03-29, 2020-04-24, 2019-12-11, 2020-01-10, 2020-06-05, 2019-10-10, 2020-04-13, 2020-03-23, 2020-04-23, 2020-05-24, 2019-11-08, 2019-12-26, 2019-12-15, 2020-05-07, 2020-02-28, 2019-11-03, 2020-04-04, 2019-11-27, 2020-03-15, 2020-01-16, 2019-11-23, 2019-10-08, 2019-11-14, 2020-02-15, 2020-02-11, 2019-11-13, 2020-04-30, 2019-10-26, 2020-03-06, 2020-05-31, 2020-03-04, 2019-10-04, 2020-05-16, 2020-04-03, 2019-10-06, 2019-10-09, 2020-03-12, 2019-11-12, 2019-11-01, 2020-03-10, 2020-02-21, 2019-10-30, 2020-06-01, 2020-03-20, 2020-03-03, 2019-11-07, 2020-01-06, 2019-12-22, 2020-01-11, 2019-11-11, 2019-11-05, 2020-01-13, 2019-12-18, 2019-12-30, 2020-05-04, 2020-04-20, 2020-02-22, 2020-05-08, 2020-01-24, 2019-12-24, 2020-04-22, 2020-03-31, 2020-01-08, 2019-11-04, 2020-02-06, 2020-03-05, 2020-03-14, 2020-06-09, 2020-02-20, 2020-04-05, 2020-06-03, 2019-10-16, 2020-04-15, 2019-12-03, 2020-05-30, 2019-11-09, 2020-04-28, 2020-01-12, 2020-05-20, 2020-05-02, 2020-01-28, 2020-02-05, 2020-01-21, 2019-12-19, 2019-10-07, 2020-03-28, 2020-02-10, 2020-03-02, 2019-09-29, 2019-11-15, 2020-01-02, 2020-05-27, 2020-02-18, 2019-10-11, 2019-12-21, 2020-04-09, 2019-09-30, 2020-01-05, 2019-10-27, 2020-04-10, 2020-03-16, 2020-03-21, 2020-02-02, 2020-04-08, 2020-02-25, 2020-01-29, 2019-12-04, 2019-11-26, 2020-03-19, 2020-01-20, 2020-02-27, 2019-12-31, 2020-03-30, 2020-04-25, 2020-01-26, 2020-01-14, 2020-03-01, 2020-02-17, 2020-05-21, 2019-10-23, 2020-04-11, 2019-10-21, 2019-11-25, 2020-04-12, 2020-03-13, 2020-05-01, 2020-03-08, 2020-05-19, 2020-03-27, 2019-11-17, 2020-04-19, 2020-01-23, 2020-05-15, 2020-02-16, 2019-10-19, 2020-05-29, 2020-03-24, 2019-12-07, 2020-02-07, 2020-03-18, 2020-05-17, 2020-05-13, 2019-12-20, 2019-12-23, 2020-06-07, 2020-01-07, 2020-05-18, 2019-12-05, 2019-11-20, 2020-06-06, 2019-11-18, 2020-06-10, 2020-01-27, 2020-01-18, 2020-06-04, 2020-04-27, 2020-03-25, 2019-10-15, 2020-03-26, 2019-10-03\n", - "\n", - "Available sites = None, Grand Mesa\n" - ] } ], "source": [ "from snowexsql.api import PointMeasurements\n", "\n", - "measurements = PointMeasurements()\n", - "# Get the unique data names/types in the table\n", - "results = measurements.all_types\n", - "print('Available types = {}'.format(', '.join([str(r[0]) for r in results])))\n", - "\n", - "# Get the unique instrument in the table\n", - "results = measurements.all_instruments\n", - "print('\\nAvailable Instruments = {}'.format(', '.join([str(r[0]) for r in results])))\n", - "\n", - "# Get the unique dates in the table\n", - "results = measurements.all_dates\n", - "print('\\nAvailable Dates = {}'.format(', '.join([str(r[0]) for r in results])))\n", - "\n", - "# Get the unique site names in the table\n", - "results = measurements.all_site_names\n", - "print('\\nAvailable sites = {}'.format(', '.join([str(r[0]) for r in results])))" + "df = PointMeasurements.from_filter(value_greater_equal=100, type='depth', instrument='pulse EKKO Pro multi-polarization 1 GHz GPR', limit=100)\n", + "df" ] }, { @@ -930,22 +675,14 @@ "metadata": {}, "source": [ "## Recap \n", - "You just explored using the session object to form queries and compounding filters results with it\n", - "\n", + "You just came in contact with the new API tools. We can use each API class to pull from specific tables and filter the data. \n", "**You should know:**\n", - "* How to build queries using filtering\n", - "* How to isolate column data \n", + "* How to build queries using `from_filter`, `from_area`, `from_unique_entries`\n", "* Determine what values to filter on\n", - "\n", + "* Manage the limit error\n", + "* Filtering on greater and less than \n", "If you don't feel comfortable with these, you are probably not alone, let's discuss it!" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -964,7 +701,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.10.14" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/4_get_spiral_example.ipynb b/book/tutorials/snowex_database/4_get_spiral_example.ipynb index 1fc1e03..ccf1f6f 100644 --- a/book/tutorials/snowex_database/4_get_spiral_example.ipynb +++ b/book/tutorials/snowex_database/4_get_spiral_example.ipynb @@ -4,99 +4,562 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Forming Queries: Example Visualizng Depths\n", + "# Excercise: Visualize a Manual Depth Spiral\n", "\n", - "During the SnowEx campaigns a TON of manual snow depths were collected, surveys for hackweek showed an overhelming interest in the manual \n", + "During the SnowEx campaigns a TON of manual snow depths were collected, past surveys for hackweek showed an overhelming interest in the manual \n", "snow depths dataset. This tutorial shows how easy it is to get at that data in the database while learning how to build queries\n", "\n", - "Don't forget your [cheat sheets](https://snowexsql.readthedocs.io/en/latest/cheat_sheet.html)! \n", - "\n", - "**Goal**: Visualize a small subset of snow depths \n", + "**Goal**: Visualize a small subset of snow depth, ideally a full spiral (mostly cause theyre cool!)\n", "\n", "**Approach**: \n", - "\n", - "1. Connect to the DB\n", - "2. Build a query filtering by dataset and date\n", - "3. Convert to a GeoDataFrame and plot" + "1. Determine the necessary details for isolating manual depths\n", + "2. Find a pit where many spirals were done. \n", + "3. Buffer on the pit location and grab all manual snow depths" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Process\n", - "### Step 1: Get connected" + "## Process\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ - "# Import the function to get connect to the db\n", - "from snowexsql.db import get_db\n", - "\n", - "# Import our class for the points table\n", - "from snowexsql.data import PointData\n", - "\n", - "# Import a useful function to format that data into a dataframe\n", - "from snowexsql.conversions import query_to_geopandas\n", - "\n", - "# Import some tools to build dates \n", - "from datetime import date\n", - "\n", - "# This is what you will use for all of hackweek to access the db\n", - "db_name = 'snow:hackweek@db.snowexdata.org/snowex'" + "from snowexsql.api import PointMeasurements, LayerMeasurements\n", + "instrument = 'magnaprobe'\n", + "data_type = 'depth'\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Step 2: Build a query " + "### Step 1: Find a pit of interest" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
depthsite_idpit_idbottom_depthcommentssample_asample_bsample_cvalueflags...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
067.01N1COGM1N1_2020020857.0None217.0213.0NaN215.0None...2020-02-082022-06-30 22:28:48.330383+00:00None11536https://doi.org/10.5067/DUD2VZEVBJ7S2022-06-30NonedensityNoneNone
\n", + "

1 rows × 29 columns

\n", + "
" + ], + "text/plain": [ + " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", + "0 67.0 1N1 COGM1N1_20200208 57.0 None 217.0 213.0 \n", + "\n", + " sample_c value flags ... date time_created \\\n", + "0 NaN 215.0 None ... 2020-02-08 2022-06-30 22:28:48.330383+00:00 \n", + "\n", + " time_updated id doi date_accessed \\\n", + "0 None 11536 https://doi.org/10.5067/DUD2VZEVBJ7S 2022-06-30 \n", + "\n", + " instrument type units observers \n", + "0 None density None None \n", + "\n", + "[1 rows x 29 columns]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# Pick a dataset\n", - "dataset = 'depth'\n", - "\n", - "# Pick a date\n", - "collection_date = date(2020, 2, 7)\n", - "\n", - "# Site name\n", - "site_name = \"Grand Mesa\"\n", - "\n", - "# Get a session\n", - "engine, session = get_db(db_name)\n", - "\n", - "# The part inside the query function is what we want back, in this case all columns for the point data\n", - "qry = session.query(PointData)\n", + "# Pick the first one we find\n", + "site_id = LayerMeasurements().all_site_ids[0]\n", "\n", - "# Filter by site\n", - "qry = qry.filter(PointData.site_name == site_name)\n", + "# Query the database, we only need one point to get a site id and its geometry\n", + "site = LayerMeasurements.from_filter(site_id=site_id, limit=1)\n", "\n", - "# We then want to filter by the selected the data type depth.\n", - "qry = qry.filter(PointData.type == dataset)\n", - "\n", - "# Filter by a date\n", - "qry = qry.filter(PointData.date == collection_date)\n", - "\n", - "# Limit it to a couple hundred - just for exploration\n", - "qry = qry.limit(200)\n", - "\n", - "# Execute the query and convert to geopandas in one handy function\n", - "df = query_to_geopandas(qry, engine)\n", - "\n", - "# how many did we retrieve?\n", - "print(f'{len(df.index)} records returned!')\n", + "# Print it out \n", + "site" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 2: Collect Snow Depths" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
version_numberequipmentvaluelatitudelongitudenorthingeastingelevationutm_zonegeom...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
01CRREL_C47.039.03453-108.221424.324283e+06740504.8181493031.90000012POINT (740504.818 4324282.756)...2020-02-082022-06-30 22:56:52.635035+00:00None30048https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
11CRREL_C50.039.03454-108.221404.324284e+06740506.5156383032.20000012POINT (740506.516 4324283.919)...2020-02-082022-06-30 22:56:52.635035+00:00None30049https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
21CRREL_C52.039.03453-108.221384.324283e+06740508.2809843032.40000012POINT (740508.281 4324282.862)...2020-02-082022-06-30 22:56:52.635035+00:00None30050https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
31CRREL_C48.039.03453-108.221374.324283e+06740509.1466933033.20000012POINT (740509.147 4324282.889)...2020-02-082022-06-30 22:56:52.635035+00:00None30051https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
41CRREL_C52.039.03454-108.221354.324284e+06740510.8441833033.30000012POINT (740510.844 4324284.052)...2020-02-082022-06-30 22:56:52.635035+00:00None30052https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
..................................................................
1061CRREL_C90.039.03469-108.221084.324301e+06740533.7093393035.20000012POINT (740533.709 4324301.416)...2020-02-082022-06-30 22:56:52.635035+00:00None30154https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
1071CRREL_C97.039.03471-108.221104.324304e+06740531.9100613035.70000012POINT (740531.91 4324303.583)...2020-02-082022-06-30 22:56:52.635035+00:00None30155https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
1081CRREL_C107.039.03474-108.221104.324307e+06740531.8082653036.10000012POINT (740531.808 4324306.913)...2020-02-082022-06-30 22:56:52.635035+00:00None30156https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
1091CRREL_C103.039.03477-108.221124.324310e+06740529.9750573035.50000012POINT (740529.975 4324310.19)...2020-02-082022-06-30 22:56:52.635035+00:00None30157https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
1101ruler67.039.03462-108.221454.324293e+06740501.9156743029.90991212POINT (740501.916 4324292.667)...2020-02-082022-06-30 22:56:52.635035+00:00None41832https://doi.org/10.5067/9IA978JIACAR2022-06-30pit rulerdepthcmNone
\n", + "

111 rows × 23 columns

\n", + "
" + ], + "text/plain": [ + " version_number equipment value latitude longitude northing \\\n", + "0 1 CRREL_C 47.0 39.03453 -108.22142 4.324283e+06 \n", + "1 1 CRREL_C 50.0 39.03454 -108.22140 4.324284e+06 \n", + "2 1 CRREL_C 52.0 39.03453 -108.22138 4.324283e+06 \n", + "3 1 CRREL_C 48.0 39.03453 -108.22137 4.324283e+06 \n", + "4 1 CRREL_C 52.0 39.03454 -108.22135 4.324284e+06 \n", + ".. ... ... ... ... ... ... \n", + "106 1 CRREL_C 90.0 39.03469 -108.22108 4.324301e+06 \n", + "107 1 CRREL_C 97.0 39.03471 -108.22110 4.324304e+06 \n", + "108 1 CRREL_C 107.0 39.03474 -108.22110 4.324307e+06 \n", + "109 1 CRREL_C 103.0 39.03477 -108.22112 4.324310e+06 \n", + "110 1 ruler 67.0 39.03462 -108.22145 4.324293e+06 \n", + "\n", + " easting elevation utm_zone geom \\\n", + "0 740504.818149 3031.900000 12 POINT (740504.818 4324282.756) \n", + "1 740506.515638 3032.200000 12 POINT (740506.516 4324283.919) \n", + "2 740508.280984 3032.400000 12 POINT (740508.281 4324282.862) \n", + "3 740509.146693 3033.200000 12 POINT (740509.147 4324282.889) \n", + "4 740510.844183 3033.300000 12 POINT (740510.844 4324284.052) \n", + ".. ... ... ... ... \n", + "106 740533.709339 3035.200000 12 POINT (740533.709 4324301.416) \n", + "107 740531.910061 3035.700000 12 POINT (740531.91 4324303.583) \n", + "108 740531.808265 3036.100000 12 POINT (740531.808 4324306.913) \n", + "109 740529.975057 3035.500000 12 POINT (740529.975 4324310.19) \n", + "110 740501.915674 3029.909912 12 POINT (740501.916 4324292.667) \n", + "\n", + " ... date time_created time_updated id \\\n", + "0 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30048 \n", + "1 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30049 \n", + "2 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30050 \n", + "3 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30051 \n", + "4 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30052 \n", + ".. ... ... ... ... ... \n", + "106 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30154 \n", + "107 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30155 \n", + "108 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30156 \n", + "109 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30157 \n", + "110 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 41832 \n", + "\n", + " doi date_accessed instrument type \\\n", + "0 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "1 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "2 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "3 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "4 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + ".. ... ... ... ... \n", + "106 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "107 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "108 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "109 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "110 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", + "\n", + " units observers \n", + "0 cm None \n", + "1 cm None \n", + "2 cm None \n", + "3 cm None \n", + "4 cm None \n", + ".. ... ... \n", + "106 cm None \n", + "107 cm None \n", + "108 cm None \n", + "109 cm None \n", + "110 cm None \n", + "\n", + "[111 rows x 23 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# We import the points measurements because snow depths is a single value at single location and date\n", + "from snowexsql.api import PointMeasurements \n", "\n", - "session.close()" + "# Filter the results to within 100m within the point from our pit\n", + "df = PointMeasurements.from_area(pt=site.geometry[0], buffer=100)\n", + "df" ] }, { @@ -108,14 +571,35 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "tags": [ "nbsphinx-gallery", "nbsphinx-thumbnail" ] }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Text(38.347222222222214, 0.5, 'Northing [m]')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAG1CAYAAAAGD9vIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDTElEQVR4nOzdd5xU1dnA8d+903d2Z7Y32MbSmwgiAoIKCAIqlkhU3oglYgxq0MQWNVhjSaJIFDXGYEFii2JFRFBBQKT33mF7nW3T7/vHsiPD7szOsrM7M7vn+37mjdx75t4zZec+95TnSIqiKAiCIAiCIAiNyKGugCAIgiAIQrgSgZIgCIIgCIIPIlASBEEQBEHwQQRKgiAIgiAIPohASRAEQRAEwQcRKAmCIAiCIPggAiVBEARBEAQfRKAkCIIgCILggwiUBEEQBEEQfBCBkiC0gxtvvJHs7OxQVyPksrOzufHGG0Ny7sOHDyNJEn//+99Dcv6W+v7775Ekie+//96zLZK/R5Ik8eijj4a6GoLQYiJQ6oSqq6uZPXs2l1xyCfHx8UiSxJtvvtlk2Z9//pnf//73DBkyBI1GgyRJPo/7yiuvcM0115CZmYkkSS26IDZcFCRJYsGCBU2WGTlyJJIk0b9//4CPG2ncbjdvv/02w4YNIz4+npiYGHr27MkNN9zATz/9FOrqRYSvvvpKXJDP0MKFC5kzZ06oq9Gs2tpaHn30Ua8gsjlPPfUUl19+OSkpKX6DthtvvBFJkhg4cCBNrfAlSRJ33HGH17bW/PYJ4U8ESp1QSUkJjz/+OLt27eKss87yW/arr77i3//+N5Ik0a1bN79ln332WZYvX06/fv1Qq9VnVDe9Xs/ChQsbbT98+DCrV69Gr9ef0XEjxV133cX06dNJS0vj0Ucf5dlnn2XixIn89NNPfP3116GuXkT46quveOyxx0JdjYgUSYHSY4891qJA6eGHH2bdunWcffbZAZXftm0bH3/8cUBlg/HbJ4Qv8Yl2QmlpaeTn55Oamsr69esZOnSoz7K33347999/PwaDgTvuuIO9e/f6LPvDDz947qiio6PPqG6TJk3is88+o6SkhMTERM/2hQsXkpKSQo8ePSgvLz+jY4e7wsJC5s2bx6233sq//vUvr31z5syhuLg4RDUThMh36NAhsrOzKSkpISkpyW9Zg8FARkYGjz/+OFdddZXflnQIzm+fEL5Ei1InpNPpSE1NDahsSkoKBoMhoLJZWVnN/qA0Z8qUKeh0Oj788EOv7QsXLmTq1KmoVKpGz5k/fz5jxowhOTkZnU5H3759eeWVVxqVy87O5tJLL+XHH3/k3HPPRa/X061bN95++22vco8++miTr+PNN99EkiQOHz7s2fbpp58yefJk0tPT0el05Obm8sQTT+ByuVr82g8dOoSiKIwcObLRPkmSSE5OblSXVatWcc8995CUlITRaOTKK69sMqCaN28e/fr1Q6fTkZ6ezsyZM6moqPDsnzt3LiqVymvbP/7xDyRJ4p577vFsc7lcxMTEcP/99/t9LYqi8OSTT9K1a1eioqK46KKL2LFjR5NlKyoqmDVrFhkZGeh0Orp3786zzz6L2+32lDl1fNELL7xAVlYWBoOBCy64gO3bt3vK3Xjjjbz88sue96zhcbp//etf5ObmotPpGDp0KOvWrfPaX1BQwE033UTXrl3R6XSkpaUxZcoUr8/el927dzN16lSSkpIwGAz06tWLhx56yKvMpk2bmDhxIiaTiejoaMaOHXvGXatut5s5c+bQr18/9Ho9KSkp3HbbbU3eUCxevJgLLriAmJgYTCYTQ4cO9bTgXnjhhXz55ZccOXLE876dOh7KZrMxe/Zsunfvjk6nIyMjg/vuuw+bzeZ1DpvNxt13301SUhIxMTFcfvnlHD9+PKDXYrfb+ctf/sKQIUMwm80YjUZGjRrFd9995ylz+PBhT6Dz2GOPeeraXHdrS8Z2ybLMww8/zNatW/nkk0+aLR+M3z4hfIkWJSGsREVFMWXKFP773/9y++23A7BlyxZ27NjBv//9b7Zu3droOa+88gr9+vXj8ssvR61W8/nnn/P73/8et9vNzJkzvcru37+fX/3qV9xyyy1Mnz6d//znP9x4440MGTKEfv36tbi+b775JtHR0dxzzz1ER0ezfPly/vKXv2CxWPjb3/7WomNlZWUB8OGHH3LNNdcQFRXV7HPuvPNO4uLimD17NocPH2bOnDnccccdvP/++54yjz76KI899hjjxo3j9ttvZ8+ePbzyyiusW7eOVatWodFoGDVqFG63mx9//JFLL70UgJUrVyLLMitXrvQca9OmTVRXVzN69Gi/9frLX/7Ck08+yaRJk5g0aRIbN25k/Pjx2O12r3K1tbVccMEFnDhxgttuu43MzExWr17Ngw8+SH5+fqNuoLfffpuqqipmzpyJ1WrlxRdfZMyYMWzbts0TIOTl5bF06VLeeeedJuu2cOFCqqqquO2225Akieeee46rrrqKgwcPotFoALj66qvZsWMHd955J9nZ2RQVFbF06VKOHj3q94K7detWRo0ahUajYcaMGWRnZ3PgwAE+//xznnrqKQB27NjBqFGjMJlM3HfffWg0Gl577TUuvPBCfvjhB4YNG+b3vT3dbbfdxptvvslNN93EXXfdxaFDh3jppZfYtGmT5/OF+u/qzTffTL9+/XjwwQeJjY1l06ZNfP3111x//fU89NBDVFZWcvz4cV544QUAT+uI2+3m8ssv58cff2TGjBn06dOHbdu28cILL7B3714WLVrkqc9vf/tbFixYwPXXX8+IESNYvnw5kydPDui1WCwW/v3vf3Pddddx6623UlVVxRtvvMGECRP4+eefGTRoEElJSbzyyivcfvvtXHnllVx11VUADBw4sEXvW3Ouv/56nnjiCR5//HGuvPJKEQh1ZorQqa1bt04BlPnz5zdbdubMmUqgXxmj0ahMnz494Hp89913CqB8+OGHyhdffKFIkqQcPXpUURRFuffee5Vu3bopiqIoF1xwgdKvXz+v59bW1jY63oQJEzzPaZCVlaUAyooVKzzbioqKFJ1Op/zxj3/0bJs9e3aTr3P+/PkKoBw6dMjvuW+77TYlKipKsVqtnm3Tp09XsrKy/LwD9W644QYFUOLi4pQrr7xS+fvf/67s2rXLZ13GjRunuN1uz/a7775bUalUSkVFhef1abVaZfz48YrL5fKUe+mllxRA+c9//qMoiqK4XC7FZDIp9913n6IoiuJ2u5WEhATlmmuuUVQqlVJVVaUoiqI8//zziizLSnl5uc/X0HDOyZMne9Xtz3/+swJ4fS+eeOIJxWg0Knv37vU6xgMPPKCoVCrPd+DQoUMKoBgMBuX48eOecmvXrlUA5e677/Zs8/U9bThGQkKCUlZW5tn+6aefKoDy+eefK4qiKOXl5Qqg/O1vf/P5Gn0ZPXq0EhMToxw5csRr+6nvwxVXXKFotVrlwIEDnm15eXlKTEyMMnr0aM+2hr+J7777zrPt9O/RypUrFUB59913vc739ddfe22vqKhQYmJilGHDhil1dXU+6zZ58uQmv6fvvPOOIsuysnLlSq/tr776qgIoq1atUhRFUTZv3qwAyu9//3uvctdff70CKLNnz2507FM5nU7FZrN5bSsvL1dSUlKUm2++2bOtuLg4oOM1pbnnTp8+XTEajYqiKMpbb72lAMrHH3/s2Q8oM2fO9Hn8lv72CeFPdL0JYWf8+PHEx8fz3nvvoSgK7733Htddd53P8qd2DVZWVlJSUsIFF1zAwYMHqays9Crbt29fRo0a5fl3UlISvXr14uDBg2dU11PPXVVVRUlJCaNGjaK2tpbdu3e3+Hjz58/npZdeIicnh08++YQ//elP9OnTh7Fjx3LixIlG5WfMmOF1pztq1ChcLhdHjhwB4Ntvv8VutzNr1ixk+Zc/91tvvRWTycSXX34J1Hc1jBgxghUrVgCwa9cuSktLeeCBB1AUhTVr1gD1rUz9+/cnNjbW52toOOedd97pVbdZs2Y1Kvvhhx8yatQo4uLiKCkp8TzGjRuHy+Xy1KfBFVdcQZcuXTz/Pvfccxk2bBhfffWVz/qc7te//jVxcXGefzd8Hxq+AwaDAa1Wy/fff9+i8XDFxcWsWLGCm2++mczMTK99De+Dy+Xim2++4YorrvCaHJGWlsb111/Pjz/+iMViCficH374IWazmYsvvtjr/RsyZAjR0dGeLqulS5dSVVXFAw880GhCRCAtJR9++CF9+vShd+/eXucZM2YMgOc8DZ/DXXfd5fX8pj77pqhUKrRaLVDfilVWVobT6eScc85h48aNAR0jmKZNm0aPHj14/PHHm5wBJ3QOIlASwo5Go+Gaa65h4cKFrFixgmPHjnH99df7LL9q1SrGjRuH0WgkNjaWpKQk/vznPwM0CpROv4ABxMXFnfEA8R07dnDllVdiNpsxmUwkJSXxf//3f02eOxCyLDNz5kw2bNhASUkJn376KRMnTmT58uVce+21jcqf/noaAoCG19MQMPXq1curnFarpVu3bp79UB8wbNiwgbq6OlauXElaWhqDBw/mrLPO8nS//fjjj16BZlMajtmjRw+v7UlJSV4BCsC+ffv4+uuvSUpK8nqMGzcOgKKiIq/ypx8ToGfPngGNHWrQ3Hum0+l49tlnWbx4MSkpKYwePZrnnnuOgoICv8dtCLT8pa8oLi6mtra20ecB0KdPH9xuN8eOHQv4tezbt4/KykqSk5MbvYfV1dWe9+/AgQPN1q258+zYsaPROXr27An88jkdOXIEWZbJzc31en5Tr9eXt956i4EDB6LX60lISCApKYkvv/zyjP6eWkulUvHwww+zefNmr+5FoXMRY5SEsHT99dfz6quv8uijj3LWWWfRt2/fJssdOHCAsWPH0rt3b55//nkyMjLQarV89dVXvPDCC14DgoEmB4MDXneLvu6wTx+gXVFRwQUXXIDJZOLxxx8nNzcXvV7Pxo0buf/++xudu6USEhK4/PLLufzyyz3jV44cOeIZyxTo6wnU+eefj8PhYM2aNaxcudITEI0aNYqVK1eye/duiouLmw2UWsLtdnPxxRdz3333Nbm/4UIcTIG8Z7NmzeKyyy5j0aJFLFmyhEceeYSnn36a5cuXBzy9vD243W6Sk5N59913m9zf3OyulpxnwIABPP/8803uz8jICMp5FixYwI033sgVV1zBvffeS3JyMiqViqefftoT7LW3adOmecYqXXHFFSGpgxBaIlASwtL5559PZmYm33//Pc8++6zPcp9//jk2m43PPvvMq6Xg1FkyLdXQwlBRUeHVxXRq6wvUJ8ksLS3l448/9hrcfOjQoTM+ty/nnHMOP/zwA/n5+V6BUnMayu7Zs8erq8dut3Po0CFPyw3Ud2NptVpWrlzJypUruffeewEYPXo0r7/+OsuWLfP8O5Bz7tu3z+ucxcXFjVrucnNzqa6u9qqHP/v27Wu0be/evV4DrIM16DY3N5c//vGP/PGPf2Tfvn0MGjSIf/zjHz4Toja81lNn4Z0uKSmJqKgo9uzZ02jf7t27kWW5RUFHbm4u3377LSNHjvQ7O7WhhWf79u10797dZzlf711ubi5btmxh7Nixft/frKws3G43Bw4c8GpFaur1NuWjjz6iW7dufPzxx17nmT17dkD1bAsNrUo33ngjn376abudVwgfoutNCEuSJDF37lxmz57Nb37zG5/lGloHTm0NqKysZP78+Wd87oaLyqnjY2pqanjrrbeaPbfdbmfevHlndN6CggJ27tzZaLvdbmfZsmXIsuz3IteUcePGodVqmTt3rlc933jjDSorK71mI+n1eoYOHcp///tfjh496tWiVFdXx9y5c8nNzSUtLa3Zc2o0Gv75z396nbOpRIZTp05lzZo1LFmypNG+iooKnE6n17ZFixZ5jdX6+eefWbt2LRMnTvRsMxqNnuefidraWqxWq9e23NxcYmJiGk2FP1VSUhKjR4/mP//5D0ePHvXa1/A+qFQqxo8fz6effurVXVhYWMjChQs5//zzMZlMAdd16tSpuFwunnjiiUb7nE6n5z0YP348MTExPP30041e26mfkdFobLKLa+rUqZw4cYLXX3+90b66ujpqamoAPJ/D3LlzvcoEmsSyqb+ptWvXesbINWiYEXqmn3FL/d///R/du3cXiUw7KdGi1Em99NJLVFRUkJeXB9S3zDTkOrnzzjsxm81AfStKwzTr9evXA/Dkk08C9XePpwYxn3/+OVu2bAHA4XCwdetWT9nLL7+8xdN3p0yZwpQpU/yWGT9+PFqtlssuu4zbbruN6upqXn/9dZKTk8nPz2/R+U49ZmZmJrfccgv33nsvKpWK//znPyQlJXldAEeMGEFcXBzTp0/nrrvuQpIk3nnnnTMe9Hn8+HHOPfdcxowZw9ixY0lNTaWoqIj//ve/bNmyhVmzZnkl4QxEUlISDz74II899hiXXHIJl19+OXv27GHevHkMHTrUM56qwahRo3jmmWcwm80MGDAAgOTkZHr16sWePXsCWpohKSmJP/3pTzz99NNceumlTJo0iU2bNrF48eJG9b/33nv57LPPuPTSSz1pGmpqati2bRsfffQRhw8f9npO9+7dOf/887n99tux2WzMmTOHhIQEr667IUOGAPUDiidMmIBKpWpyfJcve/fuZezYsUydOpW+ffuiVqv55JNPKCwsbPY4c+fO5fzzz2fw4MHMmDGDnJwcDh8+zJdffsnmzZuB+r+fpUuXcv755/P73/8etVrNa6+9hs1m47nnngu4ngAXXHABt912G08//TSbN29m/PjxaDQa9u3bx4cffsiLL77Ir371K0wmEy+88AK//e1vGTp0KNdffz1xcXFs2bKF2tpaz03AkCFDeP/997nnnnsYOnQo0dHRXHbZZfzmN7/hgw8+4He/+x3fffcdI0eOxOVysXv3bj744AOWLFnCOeecw6BBg7juuuuYN28elZWVjBgxgmXLlrF///6AXs+ll17Kxx9/zJVXXsnkyZM5dOgQr776Kn379qW6utpTzmAw0LdvX95//3169uxJfHw8/fv39zsG65133uHIkSPU1tYC9TdCDb9Pv/nNb/y21KpUKh566CFuuummJvcH+7cv3Fit1kapPc6UVquNvBUWQjHVTgi9hqnyTT1Onf7eMEW5qccFF1zgdczp06f7LNtc+oFT0wP401R6gM8++0wZOHCgotfrlezsbOXZZ59V/vOf/zR6LVlZWcrkyZObPObpr2XDhg3KsGHDFK1Wq2RmZirPP/98k+kBVq1apZx33nmKwWBQ0tPTlfvuu09ZsmRJs9O6m2KxWJQXX3xRmTBhgtK1a1dFo9EoMTExyvDhw5XXX3/daxp3Q13WrVvndYymppQrSn06gN69eysajUZJSUlRbr/99ian+H/55ZcKoEycONFr+29/+1sFUN544w2/r6GBy+VSHnvsMSUtLU0xGAzKhRdeqGzfvl3JyspqNHW6qqpKefDBB5Xu3bsrWq1WSUxMVEaMGKH8/e9/V+x2u6Iov0zt/9vf/qb84x//UDIyMhSdTqeMGjVK2bJli9fxnE6ncueddypJSUmKJEmeVAGnHuN0nDJdvKSkRJk5c6bSu3dvxWg0KmazWRk2bJjywQcfBPTat2/frlx55ZVKbGysotfrlV69eimPPPKIV5mNGzcqEyZMUKKjo5WoqCjloosuUlavXu1VJpD0AA3+9a9/KUOGDFEMBoMSExOjDBgwQLnvvvuUvLw8r3KfffaZMmLECMVgMCgmk0k599xzlf/+97+e/dXV1cr111+vxMbGKoDXuex2u/Lss88q/fr1U3Q6nRIXF6cMGTJEeeyxx5TKykpPubq6OuWuu+5SEhISFKPRqFx22WXKsWPHAprO73a7lb/+9a9KVlaWotPplLPPPlv54osvmnzdq1evVoYMGaJotdqAjn3BBRf4/H06/T1uSA9wKofDoeTm5jaZHqA1v33hrq6uTkGj9/n6WvpITU1tlKIi3EmKIuY8CoIQ3g4fPkxOTg5/+9vf+NOf/hTq6ghCp2GxWDCbzUiDrwCVpnUHczlQNi6isrKyRV3MoSa63gRBEARB8E+lQVK3LlCK1FYZESgJgiAIguCfJNU/WnuMCCQCJUEQBEEQ/JMkkFo5UV4ESoIgCG0jOztbLCEhCEJIiEBJEARBEAT/JDkILUqRmbpRBEqCIAiCIPgnxigJ4cLtdpOXl0dMTEy7pukXBEEQIouiKFRVVZGeno4sR2ZrTSQQgVKYycvLC9oCk4IgCELHd+zYMbp27dq2JxFdb0K4iImJAeq/+JGUkEsQBEFoXxaLhYyMDM91o02JQEkIFw3dbSaTSQRKgiAIQrPEMI22JQIlQRAEQRD8kmQJSW5lQCZLEZmdWwRKgiAIgiD4J7reBEEQBEEQfOjEgVJk1loQBEEQBKEdiBYlQRAEQRD8EwknBUEQBEEQfBBdb4IgCIIgCMLpRIuSIIQRt6IgR2jztCAIHZgkBaFFKTJ/20SgJAghZne6+XpXAd/sKqS42o5OLTM8J57LB6TTJdYQ6uoJgiCIMUqCIISG1eHi8cW7OFhS40nEZnO6WbG/hFUHS3loQm/6pIoM7YIgCKEixigJQgh9tOkEh0prGmWrdSvgdCs8v3wfTpc7JHUTBEHwaBjM3dpHBIrMWgtCB2B3uvl2TxFuHzn9FQUsVifrjpa3b8UEQRAaCUaQFJkhh+h6E4QQKamxUedw+S2jkiQOldYwPCehnWrVedXanOw6XkmxxYpKlshJjiYnJQZVa9e3EgQhoolASRBCRB3ABVhBQSOH912Y0+XG7nSjVcuoVf7rWltrp6bWgQTExOjQ6cLjJ2hvXiXfbMnHrShIABLsOlGJOUrDledmYorShrqKghBaYjC3IAjtLSlaR5pJT77F6rOMW4HBmbGtOo+iKOwprCbPUoderWJQVzNR2tb/6VfW2lm3v4Q9eRZcbgVZgp7pJs7tnkSs0TuwsNmcHDlaQV2dw2t7TIyOzIxY1OrQBYP55bUs2ZznGSemeP4fWOocfPLzUf5vdK5oWRI6t06ccFIESoIQIpIkceVZ6cxbebDJ/bIEvZJjyE2MPuNz7CuqZt7KA+RV/hKMaVQSl/ZPY+rgrmecs6m82sYHaw5jd7pRTgYVbgX25Fk4WFjNr87LItGkB8DpdLP/QClOZ+NB6VVVNg4eKqVH90SkEN1tbjhYChI0GlFP/TixyloHBwur6JEmZh8KnVgnDpQis9aC0EFc0COJa87uAtQHRqf+b1Z8FPeM7XHGxz5SVstji3c2arFyuBQ+2ZLH22uPnPGxv92W7xUkNVAUcLjcLN2a79lWUlrTZJDUoK7OSWWl71a1tqQoCoeKqhu9jlNJwMHCqnarkyAI4UW0KAlCiP3q7K6M6JbA8r3F5FdaMWhUDM+J5+yuscit6O75YOMxXG7FZxCweGchk/qlkRyja9Fxy6pt5JfX+dyvKFBssVJUaSXZrKfcT9kG5eV1xIYguaai4DdIgvqGJpevqYmC0FmIMUqCIIRSutnA/w3NDNrxamxONhytaKo3yUOWYNXBEq48q0uLjl1WZQusXLWNZLPeb2tSA0cAZdqCLEvEGrVU1Nh9lpHA040oCJ1WJ+56E4GSIHRA1Tan3yAJ6sdIVdY5W3zsQAdeq1X1d49ajQqrzf95dFpVi+sRLGdlxfHDzkLfBSTo19Uc0LEOFVXw6tLNfLpuHzani3Nz0/j9hLO5oG/wgmBBENqXCJQEoQMyGTTIEj6TWUL9ArwJxpZPe+8SH4VGJePwkzFcLUtkJBgBSEiI4kSexe8x4xOiWlyPUxVU1rF6fykHiqvrZ9+lxjAiN5GE6Oa7FQdkxnGkuIbDxdVe2yWpvltu3IA0jHpNs8dZvv0IU577Hw6X29NVV1Bew8c/7+X+KcN48trRZ/biBCEcdOIWpcistSAIftWPc0rA3xAnCRiV2/JElhqVzJBmnjcoJx6dpr6VKD4+CoPe9z2Z2awn+gwCtgZrD5byjyV7+OlgCYUWK/mVVlbsLea5xbvZkVfZ7PNlWeLSIV25oG8K5qhfAqLMRCNXDcukT9fYZo9RXm3lqr9/gt3p9hrP5HTXB5PPfrqWT9fta/mLE4RwIUvBeUQgESgJQgc1dXBX9BqVz9+mqwd1IfYMEykOzU1gUHY8UN/yIp8yznNAZizn9UzylJVlidzcBOLjDF5jOWVZIjk5mqzM2DNODXC8rJaP1h9Dwbv1TFHApSi8vfow5X7GH51al7Oy45l+YXd+P6EXd1zSmylDM+l6slWsOW+v2E6t3YHbx8hwlSwx56v1AR1LEIR6K1as4LLLLiM9PR1Jkli0aJHXfkVR+Mtf/kJaWhoGg4Fx48axb5/3DUlZWRnTpk3DZDIRGxvLLbfcQnW1d+txc0SgJAgdVKpJzxOX9qNXcozX9hidmhvPy+LqQS0bxH0qSZIY3TeFGy7IZWhuIr27mDknN4HfjO7GRf3TGuVnUqlkMjJi6dsnhdxu8XTPTaBf3xTSUmNalT9p5b5ivxNp3IrCmgMlLTqmWiW3eLbhj7uP+93vcius3nMCpbkpdoIQpiRJQpLkVj5a9ndVU1PDWWedxcsvv9zk/ueee465c+fy6quvsnbtWoxGIxMmTMBq/SXdyLRp09ixYwdLly7liy++YMWKFcyYMaNF9RBjlAShA+saa+DRyX3Jq6wjv9KKXqOiV3J0s0uNBCrWqPVqPWqOWi0THcC4oUDtLazyOw5LUerLTAraGZsWyO9/hM6MFoR6IRijNHHiRCZOnNjkPkVRmDNnDg8//DBTpkwB4O233yYlJYVFixZx7bXXsmvXLr7++mvWrVvHOeecA8A///lPJk2axN///nfS09MDqodoURKETiDdbGBIZhz90kxBC5KEX1zQN7PJzN4NVLLE6D4ZIcs+LgjhxGKxeD1stsBSjpzq0KFDFBQUMG7cOM82s9nMsGHDWLNmDQBr1qwhNjbWEyQBjBs3DlmWWbt2bcDnEr+YgiBErNykaL/jQ2UJcpPPfAmYQP3fqH6YonQ+l4RxuRXunjy0zeshCG2mIeFkax9ARkYGZrPZ83j66adbXJ2CggIAUlJSvLanpKR49hUUFJCcnOy1X61WEx8f7ykTCNH1JghCxBrVM4nNxyr8lhmRm9jm9TBH6Vh071Vc9uxH1NqcnkHdalnC6VZ4fOr5TDy7W5vXQxDaTBC73o4dO4bJ9MvaiTpd8Lrj24IIlARBiFhZCUauOLsLizad8MobJUv1PWHXD8sKKJdSMJzfuys7n/8t/162hU/X78fmcHJu9zR+N/5shuamtUsdBKHNBDFQMplMXoHSmUhNTQWgsLCQtLRf/r4KCwsZNGiQp0xRUZHX85xOJ2VlZZ7nB0IESoIgRLTzeySRmWBk1b7ikwknJXqlxjCyexKp5vZdeiQtLppHfjWSR341sl3PKwidTU5ODqmpqSxbtswTGFksFtauXcvtt98OwPDhw6moqGDDhg0MGTIEgOXLl+N2uxk2bFjA5xKBkiAEQXmVjRMlNThdbkxGLZlBnFkmNC8zPorMYVmhroYgdFwhWBS3urqa/fv3e/596NAhNm/eTHx8PJmZmcyaNYsnn3ySHj16kJOTwyOPPEJ6ejpXXHEFAH369OGSSy7h1ltv5dVXX8XhcHDHHXdw7bXXBjzjDUSgJAit4nC6WbOjkPyyWs9vgKLApn0lDOuTTNekth9ILAiC0OZCkB5g/fr1XHTRRZ5/33PPPQBMnz6dN998k/vuu4+amhpmzJhBRUUF559/Pl9//TV6/S8tye+++y533HEHY8eORZZlrr76aubOnduyaisiA1pYsVgsmM1mKisrW92HK7S97zfnUVRe53Nm+Jiz00mKNbRrnQRB6Bza43rRcA7V1Y8jaVrXla04rLj+95eIu76JFiVBOEOlFiuF5XU+90vAjsPlXDhIBEpC0+wOF5+u28PKnUdRUBjdN4spQ3uhPblOniCEjU68KK4IlAThDB0vqvGsMN8UBSgsr8PhdKNRR+YPhNB2thwu5PK//pe88mo0J8ezvbpkA+lx0Xz64LUMygl8Vo4gtLkQjFEKF+LXWxDOkMPlDqicM8ByQudRVFnD+McWUFhZA9R/lxq+T4Un9xWd3CcIQmiJQEkQzlBMlMZna1IDjUpCJ7pRhNO88e0mKmqsuJpYqM7lVqistfHGt5tCUDNB8CGImbkjjQiUBOEMZafG+F0+QwK6pZtavBK90PF9tGanJ3t3U9yKwgerd7RjjQShOVKQHpFHjFESOjVFUSguryO/pAaH002UXk2X5GjMAWRz1mlUDOmZxLo9xY32SUB0lIa+WXFtUGsh0lVb7QGUcbRDTQRBaI4IlIROy+F0sWFXEZXVv1y0yirhWGE1GSnR9MmJb3a1927pJvRaFTsOl1NWVb8CtkqW6JZmol9OnJi9JDRpQFYKR4srcTbR9QaglmUGZiU3uU8QQiMYXWeiRUkQIsrWfSVYqr3v7BsuW8cKq4nSa8hObz7XR3qikfREI3U2J06XgkGnElm5Bb9+N34In/68x+d+p9vN7yYMaccaCUIzJCkI6QEiM1ASv+ZCp1Rd66CkwuozUSTAobxKv+NITmfQqYmJ0oggSWjW2IE53DZ+MOB9j93w37eOO5txA7u1e70EwScxmFsQOpeSCt+JIhvYHW6qa8U4ESH4JEnin7+dyCu3TaJ7Wrxne/e0eObNmMTLMyY12+0rCEL7EF1vQqcUaEuR28cYEkFoLUmS+O24wdwy9mxKq+oD94QYgwiQhDAVjFlrkfndFoGS0CmZo7XNlpEliDZo2qE2QmcmSRKJpqhQV0MQ/BOZuQWhc4k36YnS+79P6JIcjVosPSIIgtCpiauA0ClJksSgnkmoVVKTjcExURp6ZoocSIIgCECnHswtut6ETivGqGXEWekcybeQV1yD0+lGr1OTkRpNRkqMmL0mRDSn2813+0pYsruQWruLHknRTD27C13MhlBXTYhIYoySIHRKBp2a3tnx9M6Ob76wIESIoiobN7y7gb3F1agkcCuwdE8RL/94kEfG92b6uZmhrqIgRAxxyywIgtCBKIrCLe9t5EBJDQAupT6RqkupD5geW7KbZXuLQltJIfJ04q43ESgJgiB0IKsPl7GjoAqXjxQYsgQv/3ionWslRDwRKAmCIAgdwfJ9xahl3xcktwKbT1RSWSeSqQpCIMQYJUEQhA7E7nQHVs4VWLnO4GB+KW8u/ZmjReUkmIxcf9FghvTICHW1wowYzC0IYc/tcuNyuFEAtUZGFrPSBKGRvqkmnO7jfsskGLXERzWfdLWjUxSFR95azLPvf4ssy/WXcQle/OQHrho5kLfvm4ZeK5LOAiLhZDh45plnkCSJWbNmebbddttt5ObmYjAYSEpKYsqUKezevduzf8uWLVx33XVkZGRgMBjo06cPL774os9zrFq1CrVazaBBg7y2v/LKKwwcOBCTyYTJZGL48OEsXrzYq8y//vUvLrzwQkwmE5IkUVFR0ej4ZWVlTJs2DZPJRGxsLLfccgvV1dVn9H4Iv3C7FWotVmoqrFhr7Nhq7NRUWKm1WMUSI4Jwmsv7p2LUqnzeu8sS3HBOBio/3XOdxcuf/cgz739bP9jd7cbpduM82dK2aPU27nr549BWMJxIcnAeESgsar1u3Tpee+01Bg4c6LV9yJAhzJ8/n127drFkyRIURWH8+PG4XC4ANmzYQHJyMgsWLGDHjh089NBDPPjgg7z00kuNzlFRUcENN9zA2LFjG+3r2rUrzzzzDBs2bGD9+vWMGTOGKVOmsGPHDk+Z2tpaLrnkEv785z/7fB3Tpk1jx44dLF26lC+++IIVK1YwY8aMM31bBOrv+OosVlyOxt0ELoeb2korSoDrtglCZ2DUqnnxqoGoZMkrGJKov6EfmhnHjBHZIatfuHC6XDz93lKf+92KwptLfyavtLIdayWEI0kJ8VWmurqawYMHM2/ePJ588kkGDRrEnDlzmiy7detWzjrrLPbv309ubm6TZWbOnMmuXbtYvny51/Zrr72WHj16oFKpWLRoEZs3b/Zbr/j4eP72t79xyy23eG3//vvvueiiiygvLyc2NtazfdeuXfTt25d169ZxzjnnAPD1118zadIkjh8/Tnp6uv834iSLxYLZbKayshKTyRTQczoyh9WJtcbut4zOqEGrF83jgnCqHfkWXltzmCW7CnG4FbrGGrhhaAa/OScTnViah592Heb8e+Y2W+7Vu67htxOHt0ONWq49rhcN51Dd8DKStnXJShV7Ha63Z0bc9S3kY5RmzpzJ5MmTGTduHE8++aTPcjU1NcyfP5+cnBwyMnwPsqusrCQ+3jt54Pz58zl48CALFizwew4Al8vFhx9+SE1NDcOHB/7HsWbNGmJjYz1BEsC4ceOQZZm1a9dy5ZVXNvk8m82GzWbz/NtisQR8zs7AYXM2X8bqFIGSIJymX5qJuVcNRFEUXIqCWhbB0anq7M3P+pMlKaBynYEkSUiddIxSSAOl9957j40bN7Ju3TqfZebNm8d9991HTU0NvXr1YunSpWi1TQ9CXL16Ne+//z5ffvmlZ9u+fft44IEHWLlyJWq175e7bds2hg8fjtVqJTo6mk8++YS+ffsG/FoKCgpITk722qZWq4mPj6egoMDn855++mkee+yxgM/T2QQyBkkRk3cEwSdJklBH6AWqLfXJSEGWJNx+OlXcikL/7LR2rJUQjkJ2i3Hs2DH+8Ic/8O6776LX632WmzZtGps2beKHH36gZ8+eTJ06FavV2qjc9u3bmTJlCrNnz2b8+PFAfevQ9ddfz2OPPUbPnj391qdXr15s3ryZtWvXcvvttzN9+nR27tzZuhcZgAcffJDKykrP49ixY21+zkgiq5r/gZcCKCMIgnCq1HgTV4wYgMpHS5tKlshNS+DCgd3buWZhqhMnnAxZi9KGDRsoKipi8ODBnm0ul4sVK1bw0ksvYbPZUKlUmM1mzGYzPXr04LzzziMuLo5PPvmE6667zvO8nTt3MnbsWGbMmMHDDz/s2V5VVcX69evZtGkTd9xxBwButxtFUVCr1XzzzTeMGTMGAK1WS/fu9X8QQ4YMYd26dbz44ou89tprAb2e1NRUioq8lwVwOp2UlZWRmprq83k6nQ6dThfQOTojjU6Ny+F/jJJWF/IeZEEQItCc269k3d6j5JVacLl/aZpWyTJ6rZoF9/+m9d1NHUUnTg8QsivM2LFj2bZtm9e2m266id69e3P//fejUqkaPUdRFBRF8RrTs2PHDsaMGcP06dN56qmnvMqbTKZG55g3bx7Lly/no48+Iicnx2f93G6313maM3z4cCoqKtiwYQNDhgwBYPny5bjdboYNGxbwcQRvaq0KlVrG5SOJnqyWUesaf1cEQRCak55gZu3cu3n2g+X85+ufqKqzoVGr+PUFg3jg1+PonZES6ioKYSBkgVJMTAz9+/f32mY0GklISKB///4cPHiQ999/n/Hjx5OUlMTx48d55plnMBgMTJo0CajvbhszZgwTJkzgnnvu8YwFUqlUJCUlIctyo3MkJyej1+u9tj/44INMnDiRzMxMqqqqWLhwId9//z1LlizxlCkoKKCgoID9+/cD9WOaYmJiyMzMJD4+nj59+nDJJZdw66238uqrr+JwOLjjjju49tprA57xJjQmSRIGkw5bjR2HzeW1T61ToTdqxR2fIAhnLDk2hn/MmMJzt1xGVZ0No16LRi1uvhoTmbnDjl6vZ+XKlcyZM4fy8nJSUlIYPXo0q1ev9gya/uijjyguLmbBggUsWLDA89ysrCwOHz4c8LmKioq44YYbyM/Px2w2M3DgQJYsWcLFF1/sKfPqq696DboePXo0UD+j7sYbbwTg3Xff5Y477mDs2LHIsszVV1/N3LnNTz8V/JMkCX20Dl2U4mlZUqllJJEwTxCEIFGpZGKjWzf9vUPrxF1vIc+jJHgTeZSEjk5RFBwOFy6XgkolodWG7f2aIIS19syjpL75X0HJo+T8z4yIu76JXyhBENpNXZ2D8tJaHI5fulE1WhXx8VHoDSIXliCErYbU7q09RgQSGcgEQWgXdbV2igqqvIIkAIfdRWFBFXV1IrGfIIQvKUiPyCMCJUEQ2pyiKJSW1votU1ZSI9btE4RwJfIoCUJoOOwurFYHCqDTqdGJnEgdks3q9JnioYHT6cZud4nvQIjV2J3U2l3EGjRoVOJeWhDEL5IQEi6Xm5LiGqyndbdotSqSkqNRa8T03I7E2UyQdGo5kX81NDYdr+CfKw/yw/4SFMCoVfHrs7sy8/wc4qKaXjZK6EQ68aw3cbsgtDtFUSgsqGoUJAHY7S4K8i24XGIBt45EFeAyMyqR8iEklu8rZupb61h5oD5IAqixu3jr56Nc9Z+1lNX6z44vdAZykB6RR7QoCe2utsaOw+7yud/lUqiusmGOFTlNOgq9QYMsS34XOVapJHT6wH6SFEXBUmWjts6BLEmYTXr0Pp5rs7s4WlhFfkkNLpcbc7SOrDQTCWbfa0x2Jjani3sWbcPtVjj903EpCscrrPzju/08NTnwRcIFoSMRgZLQ7qqrm18aRgRK7cvtrl8eSJalFmc6VxQFu81JTY0dxQ1qjUx0jA7VKeNbJEkiNt5AWYnvAd2x8VEBnbu6xs7Bw2U4HL+0Oh7PsxBr1pOdGet13opqG2u3FeA4pYWy1uokr6SGbl3M9MmO6/SZ3ZfsLsJidfrc71IUPt6ax58v7olR5LzqvDpx15v41gvtzuVqfmaTv5YHoZ6iKOwuqGJHfiVuN+QkGjk7IxZ1Cwbg1tU6qKysw3byQinLEjEmPSazHjmAbjC3W6G4sArraRfaivI64hOiiDH90moTE6MHBcrLajl1cpskS8THRxEd3fzgJKvVwd79JTQ1Oa6i0sqBQ2X0yE1AkiRcbjc/7/AOkgBPq8nBE5WYjVq6JEc3e96ObG9RNWpZwunnb87mdHOiwkrPTv5enUpRFKprrRh0WtSdYckTESgJQvvRqGW/XW9Qv0SJ4FtpjY2XvtvPiYo66of/SHy7WyFGr+b3F3QnN6n5C1pVlY2ykhqvbW63QmVFHdY6B8mpMc0GS8VF1Y2CpAZlpbWoVDJRxl8GAseY9BijddTVOXA53ajUMlEGTcDL0eQXVjcZJHleU7Wd6ho7MdE68ktqsDv8j3U7cKKy0wdKUVpVQGkZorSdIBgIQGV1LX9/93Ne++RbSiur0ahUXHXRuTwwfQoDu2eFunpCGxBXI6HdRcc033IQE0CZzsrhcvP80r3kV9YB4FLqu0cAqq1OXli2l+Iq/92bLqe7UZB0KpvNSZXF6vcYdpuzyQH5p6qoqGu0TZYljEYtJrMeo1EbcJCkKArlTRzvdGXl9WVKK63Nprez1NhxdvKJA+N7JeOvkVcCeiVH00WM6aLcUs3IW//Cs29/RmllNQAOl4v/fbeW825+mO837gxxDduSSDgpCO1Gb9BgiPK9XIVWpwqoG6azWn+kjOJqG031lCiA0+Vm2e5Cv8cIZJxYlcXqt6Whtrb5TNoOuyvg1ADNURT8tiY18MyYVIjU3+V21T0pmvG9kvEVryrAXaNzO/1YLoCHXn2fvUfzcbm9v9NOlxuH08V1D7+Iw+l7vFdkC0ayyZZ9h6qqqpg1axZZWVkYDAZGjBjBunXrPPsVReEvf/kLaWlpGAwGxo0bx759+4L8ukWgJISAJEkkJUdjMusbdVlHR2tJSTUF3MrQGa0/Uu7358atwLrDZX6P0VzXJ9SPJfMXmASaRTtY2bYliYDGX+lODjiON+ubDaxiojQtGtPVUf3jiv5ckJsIgFqWUMsSslT/349e0puJfVJCXMPQq6618taXPzQKkhq4FYWicgufrdzQzjVrJyHIzP3b3/6WpUuX8s4777Bt2zbGjx/PuHHjOHHiBADPPfccc+fO5dVXX2Xt2rUYjUYmTJiA1eq/NbylxBglISQkSSIuPgpzrAG73QlKfbJJWVy0mmV1uBpN4z6drZlWnEADUX+/a5oAkoJKEl6z0FpDkiQSE6MoKKz2Wy4xIQqA9EQjOw+V4fDzXnTrYm60rbC8jv3HKymrsiHLEl0TjXTvYsLYgRftNWrVvHHdYLblW/hyRwFVNifZ8VFcNTCdBKNINglwMK8Qq91/K6pGpWLb/qNcfdGwdqpVx1VXV8f//vc/Pv30U0aPHg3Ao48+yueff84rr7zCE088wZw5c3j44YeZMmUKAG+//TYpKSksWrSIa6+9Nmh1EYGSEFKyLKHXd9wLUFtIjzVwoLi6ya43qG/cTjH5H08SFaWhuplxTAaDxm93S5RRS1lprd8Wo+gYXUCz5wKVkhRNeUUdNlvTLWKpKdGeJVBUKplz+6bw044Cr5mWEvXdSVlpMXQ9ZSC3oihsPVjG7qMVSNIv3Xx7jlWw70QlowamkRLXsVNWDEgzMSDNFOpqhCWDrvmA0a0oAZWLTMEYY1T/fIvF4rVVp9OhOy0lv9PpxOVyodd7/5YZDAZ+/PFHDh06REFBAePGjfPsM5vNDBs2jDVr1gQ1UBK374IQYUZ3T/IZJEF9EHBRryS/x9AbNGiamcVkjvUfbMmyRGKy0ed+jUYOei4stVqmd48kEuINXq1dGo1MZlcz6akxXuXjTHouHNyVHhmxRBs06HUqkuOjGNYvhf7dErwCwRMlNew+WgF4j4VSAJdb4cdt+dgdzXdZCh1T966p9MhI9RsquNxuLh99TrvVqV0FsestIyMDs9nseTz99NONThcTE8Pw4cN54oknyMvLw+VysWDBAtasWUN+fj4FBQUApKR4dwunpKR49gWLaFEShDCyv6iKH/eVcKikGlmS6J1qYlTPJNJPCTgy4qOY2C+VxTsa/xhIQN90E+d1S/B7HkmSSEmNoaigCvtp45UkCRKSotEF0NIXFaUlNc1EZUUddSdnwEmyREyMDrNZ3yZdqWq1THZmHF3TzdjsTmRJQq9X+2z9MujU9MqKo1dWnN/j7jla6Xe/06VwuKCKnhmxZ1p1IYJJksRDN13FjY/Pa3K/SpaZOHwQfbK7tHPNIs+xY8cwmX5puTy9NanBO++8w80330yXLl1QqVQMHjyY6667jg0b2nccmAiUBCFMfLuzgK+3FyBLeFqMNhwpY/2RMq4flsXZmb9c6K8Y1IUUk56vdxRQcHIav0mv5qJeyUzom4pabj5AUalkUtNNWK1O6mrtKCfHiRmjtcgBPL+BTq8mOTWmVdm9z4RaLaNWB6ebQ1EUSppJhwBQXGmlZ0ZQTilEoN9MHEVecRkPvfo+8snvuCRJOF0uLhjch3cemxniGrYdWWr937Vy8vkmk8krUPIlNzeXH374gZqaGiwWC2lpafz617+mW7dupKamAlBYWEhaWprnOYWFhQwaNKhV9TydCJQEIQzsK6zi6+31LUSndqs1/Pd/1x4hKyGKeGP9nZckSYzITWR4twQq6xy4FIVYg7bFi8pKkoTBoMEQhIHK9WORxGzFzqKoysbCDcf4encRNqebs9JN3DA0k8EdvMXt/humcO3FI3jzyx/Yf7wAszGKX188gvPP6tWhUygEIzH3mf48GI1GjEYj5eXlLFmyhOeee46cnBxSU1NZtmyZJzCyWCysXbuW22+/vZUV9SYCJUEIAyv3Fnu1JJ1OAX46UMqkgele2yVJIjaqow4ebT+SJJEUq6ekwup3RmFyCwdz250u3G7QaeQOdRHdeKyCaQvWU2t3eb6zh8pq+d/WfO65MJe7L+we2gq2say0JGb/9lehrkaHt2TJEhRFoVevXuzfv597772X3r17c9NNNyFJErNmzeLJJ5+kR48e5OTk8Mgjj5Cens4VV1wR1HqIQEkQwsChkhr/A7QVOFDsf1q80Dq9M2JZWeF7EKhGLZOdEuNz/6mOFFez6UApBScziUfp1AzIimNgdnyLW/3CTY3NyfSFG72CJKgf8A7w/PcH6JtqYkLv5BDVUGgLwex6C1RlZSUPPvggx48fJz4+nquvvpqnnnoKjaa+Bfy+++6jpqaGGTNmUFFRwfnnn8/XX3/daKZca4lASRDCQCC/H3IHapEIR+mJRvrnxLP9UJlXegAJUKkkRg9MQxPAGoTbj5Tz465Cr16GWpuTtXuLOV5aw6QhGREdLH2yLZ8KP0vXqCR4bfUhESh1MHIQut6UFj5/6tSpTJ061ed+SZJ4/PHHefzxx1tXsWaIQEkQwkCv1Bi2HKvwmxupV2pgrRnCmeuXHUdqvIH9JyoptdhQnUw42S3dhEHX/M9lVZ2DVbvql49p6qM8UVrLzqPlDMiOD3LN28+aw2V+u4ldCqw/WoHLrUR0QCgIDUSgJAjtoM7mpKrWgVolERuja9Q6NKpnMptP5vA5nUT90h3DmpnyLwRHgklPQjMJO33Zfbyi2TLbIzxQCmRFGoWGpWtEoNRRSEHoemv9aPDQEIGSILShGquDTftKOFFS69lm0Knolx1Pbvov02Mz46OYOjSDD9YdQzrlbr0+SJK4+fwcYkQG87BXVm1rdnmZyloHbkWJ2K7UczNj+aKJHF4NZAnOSjeLNfQ6mFB0vYULESgJQhupszn5dsMJbKcldKyzuVi/pxibw0XfU5IgDs1JIDsxmjUHSjhYXI1KluiVWp880tSB1xnrSNSy7FkixRdZkiK6neXqs7rw7PJ9jQZzN3ArMGNEdrvXS2hbokVJEFrI6nCxeGcBX+8qpLjaRpRGxYU9krh8QBrJMcGdcRCpdhwux2b3vYDt9oNl5KTGeI19SYrRcfkgkdk3UuWkRLMv3+JzvyTVl4nkVAExejX/uW4wNyzYgMPlpmEZPZUs4XIr3DYim8l9U/wfRBAiiAiUhBarsTt5+PMdHCmr9QQBNfb6wOm7vcU8eVk/chJ8rwHWGbhcbg4XVPltWVCAwwVV9GlmaQ0hcmQnxxBr1FJ5MtN5UwblRP5Ys+HZ8Xx3x/m8s+4Yi3cVYj2ZcPLGczMZKcbSdUii600QWuCdn49ytLy2URDgVsDqdPHct3t4eerZETsGIxhsTrcnr4wvkgQ1Vmc71UhoD7IscenQDL5af4yyarvnwqIo9WPNxp2VTpK5Y7S4do018ODFPXnw4p6hrorQHkKQRylciEBJaJFau5Ple4t8Tg12K1BgsbEtr5KzusS2a93CiSbAgaw6jaqNayK0t2i9hmtG5nCspIYjxdW43AqJJj09001o1eLzFoRIIwIloUWOV9ThcPlvKZEl2F9c07kDJbVMl8Qo8koat7w1UBTITIlu13oJ7UOSJDKToslMEp9vR1ZeY8VSZyfFFIVe27Evp7JU/2iVyGxQEoGS0DKBtJQogLqDJ5qz2Z0UltRiszvRaFQkx0cRddrMtH7Z8eSX1vocq5KVEo3ZKNZpE4RI8+PePJ745GeW7zwOgEGrZvqoPjxyxVCSTVEhrl3bCMast0idxCACJaFFMuOiiDVo/C5hoCh02BXEFUXhSJ6Fo3n1M5sapoIfzbOQmmikR3ac58cgLkbHhYPS+WlnIbU2l6esBOSkxzC4R1KIXoUgtK1qq4OlO45TWeege4qJkd1TIvYiebrPNx7imn9+5bWtzu7k9e+289Xmw6yefQ0p5o4ZLHVWIlASWkQlS1x5VjrzfzrS5H5ZgkFdY8mI65g/FHlF1Z4gCbzz5RSU1KBSSeRm/jKLLSnWwKXDsygoq8NSa0etkklPiApoOQxBiDSKovDsV1t45svN1Nh/majQI8XM6zeOYmSP1BDWrvWsdic3vb4Ut1tp1KXuciucKK/m4Q/X8Ppvx4akfm2pM3e9idSpQotd1j+Nyf3qf/Aa/nAa/rd7UjR3X9QjRDVrW2634hUkNSWvqBqH0zvBpCRJpCVE0SsjltwA1wwTOiZFUSgoq2XN7kJWbM9n88FSaqy+W2cjzexFG3jkk/VeQRLAgSILE/7xFesPF4eoZsHx8foD9akffOx3uRUWrtmDpc7ervVqD5L0S/fbmT9C/SrOjPjFFlpMkiR+OyKHsb2SWbq7kAKLjRi9mlG5iZzdNbbDLoRZVWPH4XT7LaMoUFZhJSWxc+eREhqzO1ws25xHQUVd/QXj5NV284FShvZMol+E59MqqKzlucVbmtznVhScbpj9yXq+vHtiO9csePbkl6NRyThcvn8H7E43R0osDMhIbMeaCW1JBErCGctJMDJjZLdQV6PduNz+g6RfygWwaqjQ6Xy/LZ/Cijqg8cKyP+8tJkqnJic1JgQ1C44P1h08uRBu01xuhaU7TlBYWRuxY3ii9RrcAawKHK3veJM0RNebIAjNigpwUdoog7j/ELyVVlk5Ueo7VQTA5kOlfgONcFdkqUMl+7+kKEBxtbV9KtQGrhiS6/dGSJJgQEYC2YmRG/D60vputyCsFRciIlAShGYoioLD6UIlS8TG6PyW1evUmKP9lxE6n6NFNc2Oz6iotkd0pvb0WCPOZlpdJQlSI3j6fI/UWH49rIfPVQcUBWZfOSxiAwJ/ZH5pVTrjR6hfxBmK1HoLQptTFIXSslp27ilm6/ZCtu4oRHG60anlJluQZVmid7f4DvkjKbSOy+0OqNchkrttpw7thtpPi5JKlrh0YCaJEb5o9uu/HcuV59QPOVDLEhqVjCSBVi0z78YLmTKk8wxH6CxEH4Eg+JBXUEVBYbXXNqfTjVqS0Bk0VFkdnrEmiXEGstJNGKM63tgEofXionU+l/1poFZJGPWR+5OcGKPn8SuG8OD/1jXap5Il9BoVT1w1NAQ1Cy6DVs17d0xk27ESPvp5P5V1dnKTzUwb0Yv46MgOAv2RJan163dG6E1k5P5VCkIbqq11NAqSTuVyuumTE09MjA61SkYV4NpuQueUlRyNVi1j9zFrUjpZZu/xSpwuN7FGLV2SoiNuBukfLxmIUa/hic82Ulz1y1ikIVmJvPyb8+nXJbJn9p1qQEZip5rZVp8eoPXHiEQiUBKEJhSX1gRQppbEBJEGQGieWiVz4cA0vt10AgXvWW8S9WsDHi2o4nhhNUj1+3UaFSP7p5IWHzljeiRJ4vaL+vLbUb35cV8BFqud7snmDhUgCZ2PCJQEoQl1fpZoaWCN4IG3QvvrkmBk8rmZbD1UxtGiahTqgyGDRqa2zoEkSfWz4k4GUTaHi+83n2D8ORkkmCKrS0ejlrmoT3qoqyEEkeh6EwTBixxAV5ocYd0iQuglmvSMOSsdt1vB6XZjqbGzZP1xnxcQRYHth8u4YKAIOoTQEl1vgiB4iYvVU1Vl81smPtbQTrUROhpZltDKKo4WVSNJjRNQNlCA48U1OF1u1GIcXMQ6XlHHv1YdYtHWPGwON0MyY/nd+d0Y3b3zjHGKZCJQEoSTHA4XlRVWHA4XsgxajYzd0fTgW1mWSE4S45OE1vE1uPt0IlCKXKsPlnLpq6upc7hxnYyIj1XU8dHmPP40tgdPXdo3IlKKSEHoelMi4HU2RQRKQqenKAqlJbWUlHgP4NbIMiqdRJ2tfpHbhuW5VCqJ7jnx6MTitkIrxRg0+E3XDWhUMlq1qn0qJARVtc3JlNd/otbh8koP4Tz5j78v28eQjFiuHtQlRDUMXGfuehO3KEKnV1FhbRQkNZCRSIzVk5xoJDExiuzMWAb2SyVaZN8WgqBbmsnvfgnI7WIS4+Ei1H/XH8NS5/CZQ0uWYM53+9u3UkKLiVtioVOrb03ynwqgrs5JbnczGo24qxeCy6BTc3aPRDbuK2m0TwKMeg39s+Pbv2JCUKw4UIosgctHoORWYO2RchwuN5ow71oNxqw30fUmCBHIZnXiDGCcSHW1jbi4yMlnI0SOPplx6LUqth8qw1Jbn5ZCliRyUmMY1D0BnQjQI1aExgVN6sxdbyJQEjo1d4CrtTez1qcgtEpOqonslBiq6hw4XQrRBrUYl9QBjOqWwPsbjvvcr5IkhmbFhn1rEnTuFqXw/3QEoQ1ptYHdK+h04qIltC1JkjBFaYmP0YkgqYO47pwMzAYNvoaYuRSFP1zYvX0rJbSYCJSETk2tlomJ8T8wW62WMRrFYreCILRMtE7NZzOGE6VVoTolWFKfjJzuv7hnRMx4g1+63lr7iESi603o9FJSoqmrczQ5VkmSIL2LOSLynAhCuKuotbPyQAkFlTYMGpmh2fH0TI7u0H9f5+XEs/3P43h99WE+3ZpPncPFkIxYfnd+DufnRk7CSdH1FgaeeeYZJEli1qxZnm233XYbubm5GAwGkpKSmDJlCrt37/bs37JlC9dddx0ZGRkYDAb69OnDiy++6PMcq1atQq1WM2jQIK/tr7zyCgMHDsRkMmEymRg+fDiLFy/2KmO1Wpk5cyYJCQlER0dz9dVXU1hY6FXm6NGjTJ48maioKJKTk7n33ntxOsV6YOFOrVGRnRNPXLzBaxp2jElHdk48UVGaENZOEOpnZ7pcbpRTxtQ5XW6OltVypLQGq8MVwtoFZumuQu7+aAv/23SC1QdLWLaniL9+vZtnluyh1t6xfyfTzQZmT+zDxvvHsOvhi1kwfWhEBUmdXVi0KK1bt47XXnuNgQMHem0fMmQI06ZNIzMzk7KyMh599FHGjx/PoUOHUKlUbNiwgeTkZBYsWEBGRgarV69mxowZqFQq7rjjDq9jVVRUcMMNNzB27NhGAU7Xrl155pln6NGjB4qi8NZbbzFlyhQ2bdpEv379ALj77rv58ssv+fDDDzGbzdxxxx1cddVVrFq1CgCXy8XkyZNJTU1l9erV5Ofnc8MNN6DRaPjrX//ahu+eEAxqtUxKSgzJydG4XQqSLIncNULIWa1Oikuqqay0AvUZ4eNiDewsq+WHfcXU2usDJLUscW63BCYPSAvLWXLrj5Sx4Oejnn+fOoVib1EVL/9wgHsv7tX+FRMC1plnvUmKEuC0nzZSXV3N4MGDmTdvHk8++SSDBg1izpw5TZbdunUrZ511Fvv37yc3N7fJMjNnzmTXrl0sX77ca/u1115Ljx49UKlULFq0iM2bN/utV3x8PH/729+45ZZbqKysJCkpiYULF/KrX/0KgN27d9OnTx/WrFnDeeedx+LFi7n00kvJy8sjJSUFgFdffZX777+f4uJitNrAxrhYLBbMZjOVlZWYTP6T0QmC0HHV1to5dLis0TpwiqJQ7XDx5cEyrK5fuoslCTLiorj9ou5hNYtKURQe+XwHx8vr/CYhf/yyfmTFixQcLdEe14uGc5z11Beo9K1btsllrWHLQ5dG3PUt5H9NM2fOZPLkyYwbN85vuZqaGubPn09OTg4ZGRk+y1VWVhIf752gbf78+Rw8eJDZs2c3Wx+Xy8V7771HTU0Nw4cPB2DDhg04HA6vOvbu3ZvMzEzWrFkDwJo1axgwYIAnSAKYMGECFouFHTt2+DyfzWbDYrF4PQRB6NwUReHY8YomF8uVJAmjRsXQ1JjTngNHy2r5+WBpO9UyMOW1Do41EyTJEmw8Wt5udRKElghpoPTee++xceNGnn76aZ9l5s2bR3R0NNHR0SxevJilS5f6bJ1ZvXo177//PjNmzPBs27dvHw888AALFixArfbd07ht2zaio6PR6XT87ne/45NPPqFv374AFBQUoNVqiY2N9XpOSkoKBQUFnjKnBkkN+xv2+fL0009jNps9D39BoCAInUN1jR2HjwWZ4WRCSrMenapxX8aaMAuUAln4V5Ik7C6RrCycyVJwHpEoZIHSsWPH+MMf/sC7776LXq/3WW7atGls2rSJH374gZ49ezJ16lSsVmujctu3b2fKlCnMnj2b8ePHA/WtQ9dffz2PPfYYPXv29FufXr16sXnzZtauXcvtt9/O9OnT2blzZ+teZAAefPBBKisrPY9jx461+TkFQQhvVmvzg5tlScLURB6w8hp7W1TpjMUbtejU/i81LrdC11hDO9VIOBOSJAXlEYlCNph7w4YNFBUVMXjwYM82l8vFihUreOmll7DZbKhUKk9LS48ePTjvvPOIi4vjk08+4brrrvM8b+fOnYwdO5YZM2bw8MMPe7ZXVVWxfv16Nm3a5Bnc7XbXzxxRq9V88803jBkzBgCtVkv37vWJv4YMGcK6det48cUXee2110hNTcVut1NRUeHVqlRYWEhqaioAqamp/Pzzz16vsWHQeEOZpuh0OnQ6scBqaymKgt3mwn5y9oxOrw44maQghJtA77xdTfTNGcJsMLdWLTO6RyLLdhc1uTisRH2dh4o17YQwFbIrydixY9m2bZvXtptuuonevXtz//33o1I1/mNXFAVFUbDZbJ5tO3bsYMyYMUyfPp2nnnrKq7zJZGp0jnnz5rF8+XI++ugjcnJyfNbP7XZ7zjNkyBA0Gg3Lli3j6quvBmDPnj0cPXrUM45p+PDhPPXUUxQVFZGcnAzA0qVLMZlMni68SOJwurG73Bg0qrCf/eV0uCgtqcF5WleFVqsiPsmIKowGtgpCIGJidOQXVPncrygKtU435ae1PEkSnJMTfgHHVYO6sDPfQn6l1StYkiWQkPjd6G5oxd9pWJOC0HXmDu9LiU8hC5RiYmLo37+/1zaj0UhCQgL9+/fn4MGDvP/++4wfP56kpCSOHz/OM888g8FgYNKkSUB9d9uYMWOYMGEC99xzj2cskEqlIikpCVmWG50jOTkZvV7vtf3BBx9k4sSJZGZmUlVVxcKFC/n+++9ZsmQJAGazmVtuuYV77rmH+Ph4TCYTd955J8OHD+e8884DYPz48fTt25ff/OY3PPfccxQUFPDwww8zc+bMiGoxyiuvZcXuIvYWVKFQfzc4OCuOUb2SidKFXwuNy+WmuLAadxO3qna7i5LCapJTY5DCPNgThFNptWrMZr0nLcDpJElia3G11wBpWYIorZqR3cMvP0+UVs3DE/vw1fYClu8posbuQpJgUNdYLhuYRrfE6FBXUWhGMBJOtvb5oRJ+V76T9Ho9K1euZM6cOZSXl5OSksLo0aNZvXq1p8Xmo48+ori4mAULFrBgwQLPc7Oysjh8+HDA5yoqKuKGG24gPz8fs9nMwIEDWbJkCRdffLGnzAsvvIAsy1x99dXYbDYmTJjAvHnzPPtVKhVffPEFt99+O8OHD8doNDJ9+nQef/zx1r8Z7eRAURULVx9G4Zc8J3anm7UHS9lTUMUtF+RiDLNgqbba3mSQ1MDpdFNba8cYHTnBqiAAdEk343IpVFfbGu07VmtnT3kdEoBUP+MtOUbPDSOyidGHZ4LUKK2aXw3uylVnd6HO7kKrlsMqjYHgn0zrW5Qi9dMOKI/SmUxZj6QcCeEkVHmUXG43zy/eTZ3d1eQ0XkmCQZlxXD64a7vVKRCFeZYmlx45lVanJilF3LEKkUdRFOrqHFRWWnG63Gi1KuJiDWi1avIr69hXWIXbDVkJUWQnGiN2sKxwZtozj9KwZ79CbWhdHiVnXQ1r75/UMfMoxcbGEhcXF/AjPj6egwcPtnXdhSDak19FrY8gCervWLceqwi7pRL8tSb9UkZMOxYikyRJREVpSUszkdE1lpTkGM8khTSzgdE9k7mwdzI5SR17vTQh9Bq63lr7CJTL5eKRRx4hJycHg8FAbm4uTzzxhNcyPoqi8Je//IW0tDQMBgPjxo1j3759QX/tAfejfPTRR40SOTZFURTPGCIhchRZrMgSTc5KaeByK1TU2kk1h880XpVaxm33H7ypm5maLAiC0JYUReHLrcd5eflONhwpRauSuWxQJneM7UO/9LhQVy8gMq3vOmvJ85999lleeeUV3nrrLfr168f69eu56aabMJvN3HXXXQA899xzzJ07l7feeoucnBweeeQRJkyYwM6dO/2mHWqpgAKlrKwsRo8eTUJCQkAH7datGxpNePaTC03TqOQmswA3VS6cGKN1VJTVNltGEAQhFBRF4Z73f+bl5btQyRKuk3ejb63ax1ur9vHB7WO49CyRaPh0q1evZsqUKUyePBmA7Oxs/vvf/3rS8CiKwpw5c3j44YeZMmUKAG+//TYpKSksWrSIa6+9Nmh1Ceiqd+jQoYCDJKifjSYyTEeW3mkmv0sMACREa4k3BrZmXXuJMmrQ+hlgbojSoNOH1wB0QRA6j482HObl5bsAPEESgNOt4HIrXP+v7ymuanp2YzgJZsLJ05ftOjXlT4MRI0awbNky9u7dC8CWLVv48ccfmThxIlAflxQUFHgtLWY2mxk2bJhnabFgEVcQAYCEGB19u5jYdcLiM2C6oHdK2I2DkCSJxGQjlgorNdU2T6uYJEtEx+iIMenCrs6C0FYsVgf/25LHlzsLqbW76Jcaw7RzMhjUxRzqqnVa//x2J7Ik4W6iyV4B7E4Xb67ax72XDGj/yrVAMJYgaXj+6Q0ps2fP5tFHH/Xa9sADD2CxWOjduzcqlQqXy8VTTz3FtGnTgF+WBmtq6TB/y4adiTMKlNatW8d3331HUVFRo4Gyzz//fFAqJrS/KYMzcLiOsq+gyvOFVhRAgov7pzEgIzaU1fNJkiTMcQZizHqczvrxShqNSgRIQqeyr7iaX7+1jpLq+iVMFGBnYRXvbTrBXaO7ce+YHqGtYCekKAo/HyppMkhq4FbgpwNF7Vir0Dt27JjXrLemcg1+8MEHvPvuuyxcuJB+/fqxefNmZs2aRXp6OtOnT2/P6rY8UPrrX//Kww8/TK9evUhJ8W5hEBemyKZVy1w/PJu88lq2H6/E6nARb9QyKCuO6DDNzXIqWZbEsiVCp+RwufnNgg2U1Ti8WoQbunrmrjhIz6RopgxIC00FOzGVDG4/800kCdRhNvazKcFsUTKZTM2mB7j33nt54IEHPGONBgwYwJEjR3j66aeZPn26Z2mwwsJC0tJ++V4XFhYyaNCg1lX0NC2+qrz44ov85z//4cYbbwxqRYTwkR4XRXpcVKirIQhCgJbuKeKEjyzeUH+BemXVIREotTNJkhjTJ51vd+Z5jU/yosDYPuH/ubR3Zu7a2lpk2TuAVKlUnl6snJwcUlNTWbZsmScwslgsnoXtg6nFgZIsy4wcOTKolRAEQRDO3MqDZahlCaePi7FbgR0FVVisDkwR0Drckdwzvj9Ltp9ocp9KkjBHabl+WG471yr8XXbZZTz11FNkZmbSr18/Nm3axPPPP8/NN98M1Aehs2bN4sknn6RHjx6e9ADp6elcccUVQa1Li9v77r77bl5++eWgVkIQBEE4c4EkXgV8t2oIbeai3mnMuXYYEqCWTx2qAjEGDV/NujgyhjYE6RGof/7zn/zqV7/i97//PX369OFPf/oTt912G0888YSnzH333cedd97JjBkzGDp0KNXV1Xz99ddBzaEEAS5hciq3283kyZPZu3cvffv2bZQv6eOPPw5qBTubUC1hEkkstXb2nKjEUmNHo5bJTomha6IxYhdcFITW+mDTCf746Xaf+yUgM87AyrtGheVY0tIqG5sOl3G4qBq3otA1wcjZ2fGkxYVPctvW2p1fwb9+2MPPh4rRa9RcelYGN4zoTrzxzPO8tecSJhe/8A2aVi5h4qirYend4yPu+tbirre77rqL7777josuuoiEhISw/KMTOq4th0rZuL8U6eRCoJIEB/KriI/RMWFwF/RiMLfQCV3WP5UnvtmDxepoMru+Atw6PDssf6/35ln4YtNxAE96j915lew6UcmFfVMY0i3wHH7hrHdaLM9fOyzU1ThjwRzMHWlafFV56623+N///ufJlimED5db4XBBFftPVFJV60CjlslMjqZnhhljBDTtNudAvoWN+0uBX35QG/63vNrGsi15TDonIywvBoLQlgwaFf+57mz+750N2JxuXCf/MFQSuBS4amAavzkn/JIAV9ba+XLT8UarAjT8+/udhaTGGugSLyaXCKHT4kApPj6e3Fwx8CzcuNwKK7bkUVTxy8wXl93FvhOVHMy3cNGgdOJNwe23bU+KorDlUJmf/VBUYaXEYiUpjNaiE4T2MjQzjm9/P5I3fz7KFzsKqHO46J0SzY3nZnJJ7xTkMLyd33qk3O/SSZIEGw+VikApDLT3rLdw0uJA6dFHH2X27NnMnz+fqCjx5Q0XOw+XewVJDRQFXC6FH7cVcOnwrLD8sQxEjc1JZY3dbxlJgmPFNSJQEjqtjDgDj0zoxSMTeoW6KgE5Vlrrd+kkRakvI4Reey+KG05aHCjNnTuXAwcOkJKSQnZ2dqPB3Bs3bgxa5YTAuNwK+09U+tyvAHV2F/mltXRJat1gvFAJZFaPhJjVIwiCIARXiwOlYOcnEFqv1urA7nT7LSNJUGqxRmygZNSr0ahlHH5ep1uBBNOZzyARBKF9ZSUZKaio89mqJEmQlRiZv1kdjeh6a4HZs2e3RT2EVgh08HIkDnJWFIVaqxOXS6FnuomdRyua/FGVAK1GJis5ur2rKAjCGRqYGce6A6U+W4IVBQbndIxZb5FOzHoTIppRr8aoV1NjdfosoyiQGh9ZY3fyi6s5eLwSq61+oSRJgrQYPQXVVq8p0JJUf6dy0cB0VHKk9oILQvDU2V2U1tiJ0qqIN2pDXR2fYgwaLh/SlU/XH0dB8Qzsbkj/cfGAtA6VS0mITAEFSvHx8ezdu5fExMSADpqZmcnKlSvJyspqVeWEwEiSRO/MWDbsLfGxH2KjtSSaI2fW2+ETFg4cq/Dapij1X9gss4ESq4MqqxOVLJGTEsOA7Dhio0W3m9C5ldfa+WjjcX46VOZZzqRbopGrBnVhQBdziGvXtG4pMdx8US5bjpRzqKga5WTCyUFZcSRG8EzdjkZ0vTWjoqKCxYsXYzYH9odWWlqKy+VnuWQh6HLTTVTVOdh7rNJzN9YgWq9h1IC0iOl6s9qcjYKkU7lcCmdlxtE9MzZiXpMgtLXyWjuPfrGzUdLJQyU1/P3bvfxuVDeGh2nyRnOUltF9UhjdJyXUVRF8EF1vAZg+fXpb1kNoJUmSOLt7IlnJ0RzIr8JSY0erlslIjiYjORpVBH1D84trmi2TV1RN98zYtq+MIESIjzYebzIzd8M/5685zOCMWHQaVbvXTRAiWUCBktvtf0aVED7iTfqITiwJUOdnrFUDp0vB6VLQqCMnABSEtlJnd/HTobImly9pYHO6WXu4jNE9ktqvYkKHUZ9HqZVdb8GpSrsTg7mFsKNW1/85NpcRKZJayQShLZXW2D1jknxRyRKFVbZ2qpHQ0UhB6HqL1JESkRrgCR1YSkKU3yBJApLjDRGbZVwQgi1K23x3mqIoGES3m3CGGgZzt/YRiUSLkhAWrFYnZWW1WK0OZFkiIUZLaZWPJUskyA7TGTyCEArxRi3dEo0cKqnxeZPhVmBoVly71ksQOgIRKHUSiqJQabFRW+dAlsBs0mMwaJp/YjsoLKqmoKDKa5sEJBo1lNXWD05t6IrTamT6d08kJoxzwwhCKFw1qAt//3Zvk/skYHi3BFIifPyiEDpi1pvQoVXX2Dl4uAyH45dB+SfyqzDF6MjJikOtDl0PbEVFXaMgyUOBVLMeQ4wORYHoKA0JcYaIbb4VhLY0oIuZ343qxvw1h7E53ahkCUVRcCv1QdLNI7JDXUUhgok8Si1gsVia3C5JEjqdDq1W3OmHE6vVyb4DpU0uKmupsrH/YCm9eiSGLB9RUVG13/12u4uuJj0xMSKZpCA0Z3i3BAZnxLL2cBkFFitRWjVDs+JES5IgtEKLA6XYWP9J/rp27cqNN97I7NmzkcVyEiFXUFTVZJDUoKbWQVWVDVMIfkidTndAqQAsVTYRKAlCgHQalUgBIASddPLR2mNEohYHSm+++SYPPfQQN954I+eeey4AP//8M2+99RYPP/wwxcXF/P3vf0en0/HnP/856BUWAqcoCuUV1mbLlVXUhSRQUpTmEgC0rJwgCILQNsQYpRZ46623+Mc//sHUqVM92y677DIGDBjAa6+9xrJly8jMzOSpp54SgVIY8Nea1MDlCk0golbLqNUyTqf/hKZRYTLoXBAEQeh8WhworV69mldffbXR9rPPPps1a9YAcP7553P06NHW105oFUmS0Ghkr0HcTdEFkIOlLUiSRGKi0fdgbkCWJWJjxerhgtCRud0KW49VsO5gKcVVNrRqiX5dYhmWm0C8WOw6LMgEYTB3hHa+tXgQUUZGBm+88Uaj7W+88QYZGRlA/aK4cXEiX0c4SEowNlsmMSGqHWrStKREI9HRTU8AkCTIzo4TiSUFoQNzuRXeX3uETzceJ7+iDofLTY3NxbpDpby6fB9HS5tf+1Foew1db619RKIWtyj9/e9/55prrmHx4sUMHToUgPXr17N7924++ugjANatW8evf/3r4NZUOCPJSUbKK+p8DppOTYlGrw9d15YsS3TLiaesrJaSklqsNmd9K5JZT1KSMaR1EwSh7f20v4S9J1uVTx0EoCj1azq+99MR7rmkN2qVmBwkhEaLA6XLL7+c3bt389prr7F3b31ys4kTJ7Jo0SKys7MBuP3224NaSeHMqVQyvXokciLfQklpLQ3jorUaFakp0SFtTWogSRIJCUYSAmj9EgSh41AUhbUHSnzvp37B3515lQzMEL0UoSQjBWFR3MhsUjqjhJM5OTk888wzwa6L0EZUKpnMrrF0STNhs7mQZNDr1CHLnSREHqvdRUWNDZUskxCjE92hQlBUW51UNZMiRJbgRFmdCJRCTMx6a6GKigp+/vlnioqKcLu9BwrfcMMNQamYEHwqlUxUlGi+FgJXZ3eyencR+/MtntbIKJ2Kwd0S6ZfpP6eaIDQn0IA7Ui+wTTlcVsv6o+UADM+Op0uETFaRgpCZO1J/L1ocKH3++edMmzaN6upqTCaT1wuXJEkESoLQQVjtLj5Zc4Qqq4NTU1nV2lz8uKuQGquDYb2SQ1dBIeJFaVUkm3QUWWw+y7gVyE2JacdatY2SGhuzPt7Gt3uKPWOxJOCy/qn8fUp/zCINSthqcfPCH//4R26++Waqq6upqKigvLzc8ygrK2uLOgqdiNvlxuVyiySTYWDL4TKq6ryDpFNtOlRGRY29fSsldCiSJDHSTxZxWYLEaB25ydHtWKvgq7E7ueLfa1m+r8R7wDrw5Y4Cpr65Dnsz+eRCrTPPemtxoHTixAnuuusuoqJCPwhY6Dhqa+0U5Fk4drSC4ycfFeV1ASXMFIJPURR2HivH37svSbDneEV7VUnooAZkxDKqV32w1HAhbbiemgwapo3IjtgumwbvbzzB/uIaXE38nrkU2Hyiks+254egZoFrWBS3tY9I1OKutwkTJrB+/Xq6devWFvUROqEqi5Wy0lqvbW63QmVFHdY6B8mpMWLwcDtzuhVszSQqRQFLnaN9KtTJ7Sqs4tNteWzLq0SWJIZkxDJlQDo5HWCmqCRJjOmbSt90MxsOl1FYaUWnUdG3i4n+XWLRqCN/XOXCDcf97pcleG/jCX41qEs71UhoiRYHSpMnT+bee+9l586dDBgwAI3Gu1/18ssvD1rlhI7P6XQ3CpJOZbM5qbJYMUfIgMeOQi1LqGSpyTtgDwn0Icrq3pl8vOUEr685jEqScJ3sB/12TzHf7CniTxf1YEzPjjFOLDXWwOQOGigUVtv8ts66FSioan5dzlCSOYMuqCaOEYlaHCjdeuutADz++OON9kmShMvlan2thE6jusr3IM4GVRYrJrM+4pvfI4kkSXRPM7E3r9LnGCVFge5ppvatWCezs8DC62sOA3iCpFP/+x/f7aN3SgzpZnEjEc66mPQUV/kOlmQJuoT5ZyhJUqt/gyP1N7zFAZ7b7fb5EEGS0FIOR/PfGZdL8XmxFtrO2d0SUMlSkyniJCAj0UiqaOlrU59uy292AOyXOwvapzLCGbv+nK7NtihdP6Rru9VHaJlIbQkTOohAB/dF6I1IRIs1arn83EyiT05bPvUj6JYaw/hBXSL2DjFSbMurxF/vp1uBrScq269Cwhm5ZlAXBqSZUDXx9yJLcF5WHJP6poSgZoHrzLPeAup6mzt3LjNmzECv1zN37ly/Ze+6666gVEzoHKKMGqqr/Xe/GaI04oIcIslmA9eP7sbx0lpKq6yoZZnMJCOmqKYXMhaCK5CvfaTOJGqK1eFiT2EVTrdCRpyB5Bh9qKsUFAaNiv/dfC4PfrGTRVvzcJ0MfjWyxDVnd+HJyX3QhPladhK0egGSSP2mBhQovfDCC0ybNg29Xs8LL7zgs5wkSSJQElpEb9Cg0aqw25zU2V3U2Zy4FAW1LBGl06DTyGIgd4hJkkRGopGMxMifYRVpBneN5bt9xZ4L6+lkCQZnxLZrndqC263wyZYTLNlZiO2UfEL900zcNCKbxGhdCGsXHGaDhnnXnMWjl/Rm4/EKJAnOyYgjwShuOsJdQIHSoUOHmvxvIbLY7E5KSmuxO9xoNTKJCVHotGe0ik3QSJJEfKKR7buLcJzyA+l0KVgdNkzRWjRiZpXQSU0ZmM6yvcVN7pMAlSQxqW9q+1aqDfxnzWFW7m+8OO7OAgtPfLWLxy7rR2wHyVydHKPjkj7h3c3WlGDkQYrU1s/wbusTgkJRFI6cqGTjtgKO5lkoLKnmaJ6FjdsKOHK8IuRZsA8eLfcKkk5lqbZzLM/SzjUShPDQPTGauy/qgXTa+A5Zqk/h8PCE3iRFeGvLkbLaJoMkqB+DZbE6WBzmyRg7AzlIj0jU4uYEl8vFm2++ybJly5pcFHf58uVBq5wQHHmFVeQVVHn+fWpclFdYjUol0zVE07zrrA4q/azzBFBQVE3X1BhUYd6HLwht4eJeyfRJieGLHflsy6tEkiTOyYhjUt9UkmMiO0gC+HF/CbKEz0HrbgV+2FfCtedkiLGKISRJrZ9UE6kfX4sDpT/84Q+8+eabTJ48mf79+4svbphzud2cyK/yW+ZEQRVpydEhCUQqA8ij5HYr1NQ6MHWAi4IgnImusQZ+N7JjroZQXmtvNv1HncOFw62gVYnrjdD+Whwovffee3zwwQdMmjSpLeojBJmlyuY/uzInlwupshEfgkHTgfb6KX6zkAiCEKnMBg2S5P+3QKeW0UTq3PJTOF1uPt+ez8J1RymqstEt0ciN52Uzunti2Dc6SEEYoxTur9GXFgdKWq2W7t27t0VdhDbg8jVd5vRyIVp8Nia6+RkfkgRGg5gZIggd0cjcBL7dXeRzvyzB6B7hH0g0p6LWzqWv/MjPR8o9y9GsO1LGu+uOMnVwV978zVDUYTy8oDOnB2jxp/LHP/6RF198MeQDgIXAGPSBxcJRAZYLtugoLdHNTI9NSYii2mKlrKQGS0UdTqfIAC8IHUW3xGiGZcc3eRGVJYjSqpnYL/Jn9t3y7no2HKsAflmCxnnyBvXDjcd54utdoapa2MrOzvYsnXLqY+bMmQBYrVZmzpxJQkIC0dHRXH311RQWFga9HgEFSldddZXnsWrVKt59911yc3O57LLLvPZdddVVZ1yRZ555BkmSmDVrlmfbbbfdRm5uLgaDgaSkJKZMmcLu3bs9+7ds2cJ1111HRkYGBoOBPn368OKLL/o8x6pVq1Cr1QwaNMhr+9NPP83QoUOJiYkhOTmZK664gj179niVOXDgAFdeeSVJSUmYTCamTp3a6AMpKytj2rRpmEwmYmNjueWWW6iurj7j9yQYjFFajFH+p9VGGTQYQ5hAsGdOPFpN4xQAkgRp8VFoJZmaajt1tQ6qLDYK86qoqgzvBSQFoTUcTjfFljqqrY5QV6VdzDg/h3G9k1Gf1r2Wk2DkkYl9SDBG9vjEA8XVfL4t32fLvQK8/MN+6uzhexPYkB6gtY+WWLduHfn5+Z7H0qVLAbjmmmsAuPvuu/n888/58MMP+eGHH8jLy2tVHOJLQM0IZrPZ699XXnllUCuxbt06XnvtNQYOHOi1fciQIUybNo3MzEzKysp49NFHGT9+PIcOHUKlUrFhwwaSk5NZsGABGRkZrF69mhkzZqBSqbjjjju8jlVRUcENN9zA2LFjGwU4P/zwAzNnzmTo0KE4nU7+/Oc/M378eHbu3InRaKSmpobx48dz1llneWb1PfLII1x22WX89NNPyHJ9vDlt2jTPh+lwOLjpppuYMWMGCxcuDOr71VK52fFs312Eu4k/UlmW6J4dF4Ja/UKnUzOwbwpFJdUUldTidLrR6VQkxOig6awBWCqtyCoZYwBdd4IQKSpqbHzw81F2FVZ5kkymGLVMGpjO2dnxoa1cG1KrZP5vWBZXnNWFHQUWHC43mXFRZMZHhbpqQbF8bxES+B1pabE62XCsnPNzE9urWi0SillvSUlJXv9+5plnyM3N5YILLqCyspI33niDhQsXMmbMGADmz59Pnz59+OmnnzjvvPNaV9lTSEqI+9Cqq6sZPHgw8+bN48knn2TQoEHMmTOnybJbt27lrLPOYv/+/eTm5jZZZubMmezatatRmoJrr72WHj16oFKpWLRoEZs3b/ZZp+LiYpKTk/nhhx8YPXo033zzDRMnTqS8vByTqX4afWVlJXFxcXzzzTeMGzeOXbt20bdvX9atW8c555wDwNdff82kSZM4fvw46enpAb0fFosFs9lMZWWl51zBUGd1cCzPQml5nWdbQpyBrmkmosIwkZvD7qKowP9sPZVaJiUtJuLHLggCQHmNjecW76bGx0LRVw1M58IO0AXVGb2y4gCzPtrc7JSUb+4YxYU9kwM+bltdL5o6x8ML16CPim7Vsay11Tx5/XCOHTvmVV+dTodO57/V0G63k56ezj333MOf//xnli9fztixYykvLyc2NtZTLisri1mzZnH33Xe3qq6navEYpTFjxlBRUdFou8Vi8UR1LTFz5kwmT57MuHHj/Jarqalh/vz55OTkkJGR4bNcZWUl8fHed17z58/n4MGDzJ49O6A6VVbWLzLZcBybzYYkSV4fpF6vR5ZlfvzxRwDWrFlDbGysJ0gCGDduHLIss3btWp/nstlsWCwWr0dbMOg19OyWwLmD0jm7fyrnDkqnZ7eEsAySAKx1zXc5uJxunD4SVQpCpFm45ojPIAng02151Nqc7VgjIVjOzY5vNkjSqmQGdoltj+qckWAmnMzIyMBsNnseTz/9dLPnX7RoERUVFdx4440AFBQUoNVqvYIkgJSUFAoKClr1Wk/X4kDp+++/x263N9putVpZuXJli4713nvvsXHjRr9v0rx584iOjiY6OprFixezdOlStNqmu1tWr17N+++/z4wZMzzb9u3bxwMPPMCCBQtQq5vvaXS73cyaNYuRI0fSv39/AM477zyMRiP3338/tbW11NTU8Kc//QmXy0V+fn3G2IKCApKTve8E1Go18fHxfj+0p59+2usL4y8IDAaVSkavU4d98saAGzrFnAKhA6i1OdlX4n88o0uB5TuDewEQ2seQzDgGZ8Si8pHiQCVLXH9OBvFhvO5bMMcoHTt2jMrKSs/jwQcfbPb8b7zxBhMnTgy4dyaYAr5abt26la1btwKwc+dOz7+3bt3Kpk2beOONN+jSpUvAJz527Bh/+MMfePfdd9Hrfa8QPW3aNDZt2sQPP/xAz549mTp1KlZr44G827dvZ8qUKcyePZvx48cD9VnEr7/+eh577DF69uwZUL1mzpzJ9u3bee+99zzbkpKS+PDDD/n888+Jjo7GbDZTUVHB4MGDPeOTztSDDz7o9YU5duxYq47XUQSyvpsk1Xe/CUKkK6ys85mZuoEE5FeISQyR6t0bh5EUrUN1ylCBhin3/dJM/O2qs0JWt/ZmMpm8Hs11ux05coRvv/2W3/72t55tqamp2O32Rj1chYWFpKYGt4s64DnhgwYN8kzNa6qLzWAw8M9//jPgE2/YsIGioiIGDx7s2eZyuVixYgUvvfQSNpsNlUrlaWnp0aMH5513HnFxcXzyySdcd911nuft3LmTsWPHMmPGDB5++GHP9qqqKtavX8+mTZs8g7vdbjeKoqBWq/nmm2+8Xssdd9zBF198wYoVK+jatatXfcePH8+BAwcoKSlBrVYTGxtLamoq3brVZ8tNTU2lqMg7F4jT6aSsrMzvhxZI32xnpDdokGWpyQHoDaKMWuQOkIROEPQBLE6tAFpxYxCxcpOiWX//WF5ZeZC31x6mrMZORlwUt47M4ebhORh1oV2gvDmhzKM0f/58kpOTmTx5smfbkCFD0Gg0LFu2jKuvvhqAPXv2cPToUYYPH97KmnoL+JM5dOgQiqLQrVs3fv75Z6/R6FqtluTkZFSqwFd5Hzt2LNu2bfPadtNNN9G7d2/uv//+Jo+lKAqKomCz/bLsxY4dOxgzZgzTp0/nqaee8ipvMpkanWPevHksX76cjz76iJycHM9x77zzTj755BO+//57z/amJCbWz0hYvnw5RUVFXH755QAMHz6ciooKNmzYwJAhQzxl3G43w4YNC/RtEU6SJIn4RCMlRU13R6g1MqZY3y2RghBJ0mINmLQqLM1MDx+Wm9BONRLaQnKMntmT+jJ7Ut9QV6XF5NMWZj7TY7SU2+1m/vz5TJ8+3Wv4jNls5pZbbuGee+4hPj4ek8nEnXfeyfDhw4M64w1aEChlZWXhcDiYPn06CQkJZGVlterEMTExnjFADYxGIwkJCfTv35+DBw/y/vvvM378eJKSkjh+/DjPPPMMBoPBs3zK9u3bGTNmDBMmTOCee+7xjAVSqVQkJSUhy3KjcyQnJ6PX6722z5w5k4ULF/Lpp58SExPjOY7ZbMZgqF/Wo2HaYVJSEmvWrOEPf/gDd999N7169QKgT58+XHLJJdx66628+uqrOBwO7rjjDq699tqQ9Kl2BDq9muTUGKosVupq6wd3y7KEMVpLtEkvWpOEiOFwuTlYWEW11YlRpyY3NQbNaeMEx/VJ5eMtJ3weIzVaR+90s8/9gtCWGnqUWnuMlvr22285evQoN998c6N9L7zwArIsc/XVV2Oz2ZgwYQLz5s1rVR2b0qK2Po1GwyeffMJf/vKXoFfkdHq9npUrVzJnzhzKy8tJSUlh9OjRrF692jNo+qOPPqK4uJgFCxawYMECz3OzsrI4fPhwwOd65ZVXALjwwgu9ts+fP98zwn7Pnj08+OCDlJWVkZ2dzUMPPdRo+uG7777LHXfcwdixYz0f3ty5c1v+4gUPjVZFfKLxZGtiQy4PESAJkWPr0XJ+2FmI3en25NLRqGRG9Un2yo10Yd8UDhVXszmvEoVfuikUwKRRcdXZgY8BFYSOYvz48T4n9+j1el5++WVefvnlNq1Di/MoTZ8+nUGDBgU1R4Hwi/bIiyEIQvvYcbyCrzfn+dx/8YA0BmbVJ3zNK6/lrRUHUVBwueuXuZAArVx/J69WSdx+ca+wH8sitJ/2zKP01/fXBiWP0p9/PSzirm8t/ovr0aMHjz/+OKtWrWLIkCEYjUav/XfddVfQKicIghCp3G6FFbv8rzu1cncR/U5OG19/oBRZArcioZZBfcrQVwVwuhS2HCljRAsSEgpCsISq6y0ctDhQeuONN4iNjWXDhg1s2LDBa58kSSJQEgRBAI6X1VJr8z842+pwcbSkmpzkGA4WVftNEaAAB4uqRaAUQmW1dj7YdII9RdVEaVVM6pPCiJz4iA0AhMC0OFA6dOhQW9RDEAShQwl0gdOGcu4Asqc2l2upIyi2WCmqtKKSJTISjWHT1fjR5hPc/cl2HG63JxfSv9ccYUhXM+/85hwSwjhZZDCEatZbOGjVN7BheJOIpgVBELyZAlweqKFcRnwUB4qq8TVqVAIyEzrGIrFNqaixs2TzCQorf0mqKQF9upq5sF8q6hCuJvDjwVLu+GirJ5R1nvIhbc6zcMOCDXwx47wOfS2UOIOlPJo4RiQ6o9f99ttvM2DAAAwGAwaDgYEDB/LOO+8Eu25CkCmKQl5pDRv3FrN+dxH7jldg87O2lCAIZy41Vt/skhQmg4Yu8fXBz9DcRJ9BEtTP+Bx0yiy5jqTa6uDDNYcpsnhnHleAXccr+XLj8cCXNWoDL3x/wGdriMutsP5YBT8dLm/fSgntpsWB0vPPP8/tt9/OpEmT+OCDD/jggw+45JJL+N3vfscLL7zQFnUUgqDW6mTp+uP8tKOQI4VVHCuqZtvBMhb/dITjxf7XmBIEoeUkSWLcgDRkqek7aUmqn/XW0AqRnRTNqN7Jnn2nlpMkuGxwV2KjOmb3zuZDZVgdriYDRQU4UlzDibLadq8XQI3NyY8HS3H5idPUssSXHXwdvobB3K19RKIWd73985//5JVXXuGGG27wbLv88svp168fjz76qEgbEIbcisKP2/KpsdYnbTz1x8itwM+7iojSqYk3iUzXghBMGYlGrjkvi+93Fnp1KSWZdFzYN5XMRO9Zw+f3SiYjPop1B0s5XlaLLEnkpkRzTrcEUsyG9q5+u9l5vKLZ1rTdJyrpmmD0XaiN1DkDHGvmcLdxTUJLpvVdb5G6AE+LA6X8/HxGjBjRaPuIESPIz88PSqWE4MovraW6zuFzvyTB3mMVnNcvuAsJCoIAXROM/N+obpRW26g5mZk7Icb3+o5ZSdFkJbUuX00kURQFazNBhqJArc3ZTjXyFmfQEh+loazW92+oy63QO6XzfGadTYsDvO7du/PBBx802v7+++/To0ePoFRKCK78khq/g+gUBfLLakM6BkAQOrqEaB2ZiUa/QVJnJEkSUVr/64RKEsQEODg+2FSyxI3nZvqdsaVRyVwzqGNnTpf4pRv4jB+hfhFnqMUtSo899hi//vWvWbFiBSNHjgRg1apVLFu2rMkASgg9l1tpduKxouBZIkQQBKE99c+MY93+Ep+/U4oCfbvGtmeVvNwxuhvL95WwNa/SK0WDSqofvjDnqgHEhiiQay+yJCG38gLR2ueHSotblK6++mrWrl1LYmIiixYtYtGiRSQmJvLzzz9z5ZVXtkUdhVYyB5Dfw6hXh+0is3aHiyN5FjbvLmLzriIOn7BgF7P1BKHDGJQdT4xB4/NGrVcXEymxoRujZdSq+fiWc7nnwu5e+ZJGdkvgfzefy9VndfyFz6UgPSLRGeVRGjJkiNcitEJ4y0qNYdfRcr+DJXO7hOeq5GWVVrbsKcZ9ym1caaWVQycqGdgzkYQQ/ngKghAceq2Ka4Zn8d2OAg4W/jILV6OSGJQdz7AeSSGsXT2jVs29Y3twz0XdqbQ60KlljNrwSIYptC3xKXcCBp2as3sksnFviWf18lOlxBnolhZ+CxRabU627C7G3USE53YrbN1TzHlnpWPQi6+xIEQ6o17DpUMyqKpzUGKpz8ydFheFRh1ec6VUskR8B03T4E9n7noL+Aojy3KzORAkScLpDM3MBMG/7FQTUToNe49VUFRRB0CUTk1uFxO56eaw7HY7XljdZJDUwK3A8cIqepxcfV0QhMgXY9CEbOC24JtYwiQAn3zyic99a9asYe7cubjdHTuPRKRLjjOQHGfA7VZwKwoqObwTgJWU1wVURgRKgiAIQlsJOFCaMmVKo2179uzhgQce4PPPP2fatGk8/vjjQa2c0DZkWUKOgGF1/lqTWlJGEARBaJ1gDMYO/6tO086o8zcvL49bb72VAQMG4HQ62bx5M2+99RZZWVnBrp/QiZmjtX7/sCTAHC1y0giCILS1hjFKrX1EohYFSpWVldx///10796dHTt2sGzZMj7//HP69+/fVvUTOrGM1Bi/+Z+Uk2UEQQgPbrdCXnktR0tqqAlRJm1BCLaAu96ee+45nn32WVJTU/nvf//bZFecIASTKVpH98xY9h+t8NreMHMvN8OMWWQ5FoSQUxSF9QdLWbOvxBMgSRL0Tjcxrn8a0XoxODvSNWTXbu0xIlHAgdIDDzyAwWCge/fuvPXWW7z11ltNlvv444+DVjlByEo3EWPUcjTfQrnFBgrEmnRkpsWIHEpCyLndCi6XG0mSUKnCe3JEW/p+ZyE/7S/x2qYosDvPQl55HTeOziVKJ9J4RDKJ1i9qG6l/HQF/c2+44YZO+yMghFa8WU+8WR/qagiCh9vtxlJhpbbG7knkqtbImMx6DJ0sx05pta1RkNRAUcBS52Dt/hIuEotuCxEq4EDpzTffbMNqCIIgRAa3W6G4sBrnaSveOx1uykpqMce6iTZ1nsB+29FyJAmfmf8VBTYfKePCviniZjuC1Xe9te7zi9SPP7xSngqCIIS5aou1UZB0qsoKKy5n58kpV1HraJzu/zRWhxuHS6TyiGRykB6RSHQaC4IgBEhRFGqq7c2Wq62xE9NJuoujtCq/LUpQv+yHRhVZzQlut0JZRR11VgeyLBMfa+jUyyVJUuvH4EVqi2Ln/dSFiON0ubE73WjVMmpVpN6bCJFMURSvBZp9cThd7VCb8NCvaywbDpX53C9J0K+rOaIukuUVdew7XIbLpXhm2R49UUlCnIHc7HhUkboWh3BGRKAkhL3KGjs7DpVxvLgGhfr1gjJToumfHY9RrAkltKNAL/aRmljvTKTHGeieEs2BwupGPXCSBGpZ5rweSSGp25moqrax+0Cp59+nvqbS8joUpYxeuQntX7EQ68zpAcRtuYCiKLjsLuzVdmxVNuzVdpw2J0oYLA9SVmVj6frjniAJ6hfDPVJYzTfrj1NV23w3iCAEiyRJ6A3N3192pplvkiRxxdBM+nWN/WXbyf+NjdIybWQOCRGUQf9YnsXv/rKKOmrqHO1Um/AhxigJnZaiKDhqHCindCcoioLL5sJld6E1apFC1MysKAprdxbidiuN7lQVBRxON+v3FHPR2V1CUj+h43G7FWqqbTidbmSVhNGoQ632/nmPMeux1lX7PIZWp0KrU7V1VcOKRiVz2ZCuXNA3mf0F1TjdblJMejITjRHV5eZ0uqmssjVbrrSsFmMXczvUSAgHIlDq5Jx1Tq8gyYsCjjoHWmNo7o5LLTYstb7v3BSgqMJKVa2DmCjRBdfRKIqCtc6Bta4+07NWq8Jg1CK3UeBeZbFSWlLjNSi5rKQWk1lPfEKU54Kv1apJSDJSVlrb6G9Hp1cTH2HBQTCZDFoG58SHuhpnzOVufraiJIHL1XlmNTYQg7mFTklxK7ibmcasuBTcLjdyCAZPW2oC61az1NpFoNTBOBwuSotqvC5ItTVQWVFHfKIRfZDHptVU2ygprmlyn6XSiiRBfILRs01v0JDWxURdrQOHw4UkSRgMGjTaztWS1NFo1CpkWfI7YF9RQN8Js4yLMUpCp+QO8K5ICVH+E3WA04nFDLiOxe1WKCmqbvKuXVGgtLgGhyN4s8oURaGsrNZvmcoKa6P6SJJElFGLOdaAyawXQVIHIMsSSQlRfstIEiQ2U0boWMQVphML92bQ1Pgomutl0aplEjtJvprOoq7WjruZ4Lw6gHEkgXLYXX4TSDaoDbCFU4hsGWkmdH6C3uyMWDTqzhcUd+bB3JFabyEIpABbbGR1aL4mWo2Knl3NKIqC3eWmwuag1OqgzOag1ulCURT6ZsWJnCYdTJ2fcWktKRMoVwB5kYCA8id1RC63wrHSGg4WVVHZCWaZajQq+vdOJikhyquryKBX07NbAqlJ0aGrXAg1jFFq7SMSdb6OVsFDkiRkjYzbz920pJZCNusNoH+3eHblWyg/tQVBAYfbhQOFtETRBN7RBJSWIoipKzSawG4E1JrO1YqgKArrD5ayam8xdfZfujq7JUcz4ax0YjtwCgStRkX37HiyM2Kx2ZyoVDI6rSpiL/RC64gWpU5OrVf7bFmSZAlNiBM6bj1STpGPbhab080XG4+HRb4nIXg0AQQkwQxa1GoVhma+57IsEdXJJgys2F3Et9sLvIIkgEPF1by14gCWTpBLSK2SMUZp0evUnT5IkoL0iEQiUOrkJElCE6VBbagPmCRZQlJJqA1qNEZNSH8c3IrCxoO+l0ZQFCix2Mgrr2vHWgltzRjTfHLC6CbKOBwuystqKSqooriomtoaO263m7oaOxUlNZQVVVNZWoutztEouI5PNPpNO5CYHN2pLpQVtXZW7y1ucp+iQJ3d5XO/0DHJUnAekUh0vQlIkoRKo0IVZl0LlloHNTan3zKSBMdKaugSL7rgwp2iKDhsLqy1ds/gaY1OhT5K6zVjTKNRYYrVY6mwNnkcQ5QGw2mtO5UVdZSVes9cq6myEWXQeC0n4na5cNhdaLQqTPGGU3IjqUjvYqastIbaU8Y/6XQq4uKNjc7X0W0/VuF3oVtFgW1Hy7l4QCoqWdxvdwYij5IghKFAutTqF6wUXW/hTlEUaqts2Oq8A1+HzYXDVkdUjA79KcFIjEmPWq2i2mLFfrLrR6WWiY7RYYzWev3g1lTbGgVJUJ/rxtfPssPuosZiI/qUGZMarYqUNBMupxuny40sSwF1A3ZEljqHZzFYX5xuBavdjVEvAiWhYxOBkhC2TFFa9BoVVj85c9wKpMWK1qRw57C7GgVJp6qtsqHRqlCdMsOyoeWoYbZZfcK7xqFPRRNdr7LUfH4ta62DqBhdoy43lVr2qkdnFKVVNXv7IUugC3AgfLhwuxWqqqzYrC4kGWJidOj1nau18EwFY4xRZLYniTFKQhhTyRIDs+J87pckMEVpyEoy+iwjhAdrANP5rT4GB8uyhCw33ezvcro9LU6nUqnkgFoknUFMXNmR9Osa63dioSRB73RzRCV7ra62sX9fCfl5VZSV1VJaUsvhQ+UcO1rRKZckaSkpCOOTIrTnTQRKwpmprrFz8FgFew6VcSSvEmszY4nO1NDuiZ5A6NS/MQnQqVVcNqRrxPZ7dyauAAISZxMBT3NEt2vbSDLp6Z8R2+Q+CVDLEiN7JrVrnVqjrs7B8WOVTebCqqmxc+J4pZg9K/gkut6EFnG7FXYfLKWkvM4TuCjAkRMWstJNZKabghq4qGSJy4ZksDffwraj5VTU2NGqZXqlmxmQFYexE6651FGdyddGpZKbXJvL5XIjaZv/bnS23EgtMWlQF/QamY2Hyjj17Y2L1nLZ4K4kmiInI35pSdPr+DWorXVQV+cgqgPnhmotMZhbEAK070gZJSfHhJx+/3Ukz4JGoyI9ObiZa2VZoncXM727mIN6XKH9aHRq7Fb/rY6aMwh6JUkixqSnssJ7nJJbAafLjcpHlx2APkrjNyVAZ6eSJS4ekM7InskcKKzC4VJIMunoGh8VURc8t1uhurr5jOJVFpsIlPwIxRilEydOcP/997N48WJqa2vp3r078+fP55xzzgHqJ4nMnj2b119/nYqKCkaOHMkrr7xCjx49WllTb6LrTQiYze6ksMT/4qFH8yyiCVtoRN/M9HpJAt0ZJjeNjTOgayLIstqcuH18F9VaFUZT8/maBIjSqRmQGcfgnHgyEowRFSRBgJne6bxL1ISr8vJyRo4ciUajYfHixezcuZN//OMfxMX9Mm71ueeeY+7cubz66qusXbsWo9HIhAkTsFqbTi1ypkSLkhCwUh95bU5ld7iornUQYxR3ZsIv1BoV0WY91ZWNv0OSBDFxhjNu3ZFlidR0E5ZKKxaLFZezfmBulFGLKVaP4lKw1Tlwu5X6pSiiNOj0ItNyZ9EwGaC5QEjrZyFcITgJI1vy/GeffZaMjAzmz5/v2ZaTk+P5b0VRmDNnDg8//DBTpkwB4O233yYlJYVFixZx7bXXtq6yp9Y7aEcSOrxA77jEnZnQFK1eTWxiFAajFrVWhUarIipGiznR2OqxQrIsERtnIDMrjuxu8WR3iyc5NQa9XoPBqCU20Uh8cjTmhCj0htBmnBfalyRJxMUZmi1njo2cMVehIAXp/wAsFovXw2ZrvEzVZ599xjnnnMM111xDcnIyZ599Nq+//rpn/6FDhygoKGDcuHGebWazmWHDhrFmzZqgvnYRKAkBiwqwa8SgFw2VQtNklYwhWospzkBMnAF9lDbo44QieZVyoW3EJ0T5bTFKSYlGrRYtSu0lIyMDs9nseTz99NONyhw8eNAz3mjJkiXcfvvt3HXXXbz11lsAFBQUAJCSkuL1vJSUFM++YBFXNCFgcSYdOq0Km59p3IlxBrRiJpEgCGFEpZLJyo6jpLiGioo6T44onU5NYmIUMRE0gy9UpCDkQWp4/rFjxzCZTJ7tOl3j8YJut5tzzjmHv/71rwCcffbZbN++nVdffZXp06e3riItJAIlIWCSJNG7WwLb9hTRVO+aVqMiNzO23eslCILQHJVKJiU1hqTkaJwOF1InXqLmTMgEYYzSyf81mUxegVJT0tLS6Nu3r9e2Pn368L///Q+A1NRUAAoLC0lLS/OUKSwsZNCgQa2r6GlE15vQIuYYHWf3TSEp3uCZ6inLEunJ0Qzul4IugNw1giAIoSLLElqdWgRJLRTMMUqBGDlyJHv27PHatnfvXrKysoD6gd2pqaksW7bMs99isbB27VqGDx8enBd9kriqCS1mjNLSJzcRd46C0+VGo5bFmBBBEAQhaO6++25GjBjBX//6V6ZOncrPP//Mv/71L/71r38B9T0cs2bN4sknn6RHjx7k5OTwyCOPkJ6ezhVXXBHUuohASThjsiyhlcVdmSAIQkcXzDFKgRg6dCiffPIJDz74II8//jg5OTnMmTOHadOmecrcd9991NTUMGPGDCoqKjj//PP5+uuv0euDO+ZMUkR2wLBisVgwm81UVlY224crCIIgdF7tcb1oOMfi73ZgjI5p1bFqqquYeFG/iLu+iRYlocOqszupqHGgUUskROtE96AgdEBOl5vjxTVUVtuQZYm0hCgSTHrx9y4EjQiUhKCzO1xY7S50GhW6EGS7rbY6+GFnIXvyLZ5pwOYoDSN6JtG3a2y710cQwpWiKBEdUBSU1fLzrkKcLsXTrbPveCVxMTqG90tFL7JtB42MhNzK1d5a+/xQCZtZb88884xncFaD2267jdzcXAwGA0lJSUyZMoXdu3d79m/ZsoXrrruOjIwMDAYDffr04cUXX/R5jlWrVqFWqxtNHXz66acZOnQoMTExJCcnc8UVVzQabV9QUMBvfvMbUlNTMRqNDB482DNNsUFZWRnTpk3DZDIRGxvLLbfcQnV19Zm/KRGmqtbOup2FfLP2KCs2nWDpz0f5aVs+FVWNs662lRqbk4WrDnsFSQCVtQ4Wb85j/YHSdquLIIQjm93FrsNlLPnpCF+uOsySn46w81AZVrv/RYvDTUW1jTU7CnC66v/QFQXP33xFlY1V2/LFupNB1DBGqbWPSBQWgdK6det47bXXGDhwoNf2IUOGMH/+fHbt2sWSJUtQFIXx48fjctUnPNywYQPJycksWLCAHTt28NBDD/Hggw/y0ksvNTpHRUUFN9xwA2PHjm2074cffmDmzJn89NNPLF26FIfDwfjx46mpqfGUueGGG9izZw+fffYZ27Zt46qrrmLq1Kls2rTJU2batGns2LGDpUuX8sUXX7BixQpmzJgRrLcprFlq7Py4OY+iMu9Fc0sqrazamkdpZZ2PZwbXT/uKqbY68PX7uGJ3ITXNrGIvCB1VndXJys0nOHi8EsfJNfEcTjeHTlSyclMetVZHiGsYuL3HKsDH37kCVNbYKSxvn98doWML+WDu6upqBg8ezLx583jyyScZNGgQc+bMabLs1q1bOeuss9i/fz+5ublNlpk5cya7du1i+fLlXtuvvfZaevTogUqlYtGiRWzevNlnnf6/vTuPb7JK9wD+e7Pv6d50p7S0ZUeQpeg4CAwIjMNoZ1TkKm7jVhwQr4Ir4wo6jruAo1z0CgjKCF4ZNxyggIBAKVq2UmiBlu5bkjbNfu4fsZHQbLRpmzTPl0/utW9O3vfNmTfJ857znHPq6+sRFxeHgoICXHPNNQAAhUKBlStX4rbbbnOWi46Oxssvv4x77rkHJ06cwJAhQ3Dw4EFceeWVAIBvvvkGM2fORGVlJRITE/2qj1BN5v7hpyo0e2k5kkkEuHZMco8289vsDO98e9J5h+kOB+DqnDiMy4zpsfMgJFjtL65Go9boNr7gAESqJJg4IsHNs8GFMYYte8o93hABjtaL1DgFxmTH9d6J9bLeTObetvN4QJK5fzdpSMj9vvV5i1J+fj5mzZrlsrCdO21tbVizZg3S09ORkpLisZxWq0VUVJTLtjVr1qCsrAxLly7165y0Wi0AuOxn4sSJ2LhxI5qammC327FhwwYYjUZMmjQJALBv3z5EREQ4gyQAmDp1Kng8Hn788UePxzKZTJ0WCAw1rQaz1yAJAAxGK5p0nVeOD6R2s9VrkAQ4vjy1BnOPngchwait3YIGD0ES4GiFadIZ0RoCn4+Lu9m8lfH1fUD8x+O4gDxCUZ8GShs2bMDhw4fdLojXYcWKFVAoFFAoFPj666+xbds2iEQit2X37t2LjRs3unR3lZaWYsmSJVi7di0EAt+563a7HQsXLsRVV12FYcOGObd/+umnsFgsiI6Ohlgsxn333YfNmzcjMzMTgCOHKS7O9c5FIBAgKirK6wJ9y5Ytc1kc0FsQGKza2v3ryvK3XFeJ/VzUUkIz8pIwpG3zLwDStgZ/oMTjcZCKvX+OOQBKmX8LeRPiTZ8FShUVFViwYAHWrVvndXKouXPnoqioCAUFBcjKysJNN90Eo7Fzy8TRo0cxe/ZsLF26FNOmTQMA2Gw23HrrrXj22WeRlZXl13nl5+fj6NGj2LBhg8v2p59+Gi0tLfj+++9x6NAhLFq0CDfddBOKi4sv41139vjjj0Or1TofFRUV3dpfXxAI/LtLEAh69nITCnjIiFd4TRi0MyA7Se33PptaTThU3ogDZY2obqF8BxK6/F2ni9fdBb16ycBE759jBmCAJnS6d4JeIBK5Q+PS6qTPpgcoLCxEXV0dRo8e7dxms9mwa9cuvPPOOzCZTODz+c6WlkGDBmHChAmIjIzE5s2bMWfOHOfrjh8/jilTpuDee+/FU0895dyu1+tx6NAhFBUVYf78+QAcLUaMMQgEAnz33XeYPHmys/z8+fOdSdjJycnO7WfOnME777yDo0ePYujQoQCAkSNHYvfu3Xj33XexatUqaDQa1NXVubxHq9WKpqYm5+J97ojFYrcrJ4eSSJUEIiEPZovdYxk+j0NchLRbx2k3WXGqWofWdgukIj4yE1RQyVxbF3OzYlFe1waAdepi4ABkJigR58dK4e1mG7YUVuBUjd5le1KkFHljUxEpd9+qSUiwilZLweNxsLtb0foXPA6IjgjsrMY9JTNRheqGNjR56PYfMTAaMgnNgBMol7tWm6d9hKI+u4qmTJnSqTXmzjvvRE5ODhYvXgw+v3OzKmMMjDGYTL9+MI4dO4bJkydj3rx5ePHFF13Kq1SqTsdYsWIFtm/fjk2bNiE9Pd2534ceegibN2/Gzp07nds7GAyOkVw8nmuLCJ/Ph93uCA5yc3PR0tKCwsJCjBkzBgCwfft22O12jB8/3u96CUU8jkN2aiSKvQy9z0hWd6tFqaisEQdK6wHmuDNhDDhQ2oChKRG4aki8s+87Xi1F3vhUfFVUiTaTzVkWAAYnqfE7PxJVbXaGtT+Uo9rNSL2qlnas2XUG908eBJmYvoRJz+sYb9PdgRBCAQ8DElQou6D1WCZVo4TIzy7svsbn83D1iASUnG9BWbXOOYovQiFCdmokkmLkfXyG/QuP879V0ts+QlGffdMrlUqXHCAAkMvliI6OxrBhw1BWVoaNGzdi2rRpiI2NRWVlJZYvXw6pVIqZM2cCcHS3TZ48GdOnT8eiRYucuUB8Ph+xsbHg8XidjhEXFweJROKyPT8/H+vXr8cXX3wBpVLp3I9arYZUKkVOTg4yMzNx33334dVXX0V0dDS2bNninAYAAAYPHozrrrsOf/nLX7Bq1SpYLBbMnz8ft9xyi98j3kJZWoIKVhvDyXNNYBcFM4AjSBqUEtHlfR+vaMGPp+qdf1+cxHmsogUCPofcnHjnttQYOe6dkoWyulY0tpog5HHI0CihlvnXCnSySosqD91sjAGtRisOlTfhmpz+O5qG9C3GGCrq23CqogWNOhM4DoiPlCInJQLxUbIu7zcnLRLtJiuqG9qcn9GO/6+JlmFIenQA30XPE/B5GJoehcFpkTCabeDzuD6Z5Jb0b0F7SyyRSLB792688cYbaG5uRnx8PK655hrs3bvXmTS9adMm1NfXY+3atVi7dq3ztWlpaTh79qzfx1q5ciUAOEewdVizZg3uuOMOCIVCfPXVV1iyZAmuv/56tLa2IjMzEx999JEzaAOAdevWYf78+ZgyZQp4PB7y8vLw1ltvdb0SQkxGshop8QpUNbTBaLJCJOQjMVYOiajrl5mdMRw6Xe+1TPG5ZlwxMMZlFl4ej0OmRolMXP5w1p8rWsDB4xQtYACOnGumQIn0CMYYikobUHpB5+yoYAyobWpHTVM7rhgUjawuzjDP43EYnR2LliQVKmtbHTPoi/hIiVMgQhm6y/zweBx1s/Ww3l4UN5j0+TxKxFWozqPUU2pb2rF5/zmf5SYPT0DWZSRpe/PBztO44GOiOrGAhyXXDw3I8Qi5WFVDG3YXex4pCwDXjUuBmvLkwl5vzqO0a08JFN2cR6m1VY9rrs4Oud+3Pp9HiRBvzFbPCeJdKeePCJnI552PmoYdkx5yqlLrNeWVA3DmQujNt0ZIqKK2ShLU/A1IIhSBu7u+YkAkjnlJeAWAMX7mcjDG0Kgz4WyNHiarDXKJABkJKij9zJci4adZb/LY7Qs4un4be3jyVkIuRcnchAQplUyE5GgZLjQZPM7Eq5QKkdSNBNdLDYxVYHCiCieqOt+1cxwQr5LgitRIn/ux2uz44WgNKn9JnO349Tt2thlD0iIxKiM6ZHNCSM/xZ/Zifqj+4vjJZrOjrtEAvcEMHschSi1BpFpCn5c+FM45StT1RoLe1UM0EAl4nT5kHOdI4rx2eEJAv0A5jkPe2FRcnRUL0UVTGvB5HEalRuKO3wyE0I+pDg6crENlg2NhZcYccVJHrHf8XDNKKr23WpHwlBQr9/mDktiPh743adux/0gVSs81o7a+DdX1rTha2oDCozUwmmhBa9L7qEWJBL0IuQh5uQNwsLQBZ2p06JgvLyVGjrGZsYhVB36CPD6Pw5ShGlyTHYeqlnbYGYNGLYHUzxF8BqMF5ZdMVnmpY2ebkJWkDpmZkEnvGJSsRlm1+xwkDo4Z7tMTupdUG6zaDGYcK21wth4z5/9xrBf5c0k9rhymoc9MH6AJJwkJciqZCFNGJuI3Q+PRbrZBIuRD3AtrtgkFPKR14e69oyXJG6PZhia9CTE9EOiR0KWWi3D1MA1+OFbbaRZtoYCH345M6JVrvy9U1ui9LnZrNFnR0NyOuOjAdbUTPwViCZLQjJMoUCKhRSTgh8TMwTYvy0S4lgvcaD3SfyTGyPGH3DSUVevQqDOC4zjER0qRFq/0q9s3VNX7mJYDABqaDRQokV5FgRIhPSBS4Xv9Pg6guXCIR2IRH4PTfA8a6E+8rUN3OWVI4IVzMjcFSoT0gPhIKRRSIdraLW6HenMckBKr8GvWcsYY2trMaG5uh8lkBZ/HQamSICJC2q318wgJNjKJAAaj94RtmZTmMOsL4ZyjRN+ypN9ijKGq2YAztXrU9/K8MxzH4ephGvD5XOfRegBkYgGuzIr1uR/GGKqr9ais0KKt1QyrxQ6TyYaG+jaUlzXC6ONHhZBQkhjvO0k9Ibb/jvgLZh0tSt19hCJqUSL9UkmVDtuPVaPFYHFui1dLMG1EIpIDOOeSN9EqCWaMTcWxs004W6uHnQFCPg+ZSSoMSYv0qzWppbkdOq37IM9mY6isaEFGJs3HRPoHTYwcjS3taPZwzQ9MUUMqoRYl0rsoUCL9zrHKFvxfYWWn7XVaI9bvKcetV6f3WrCkkouQO1SD8YPjYbMzCPic30ENYwxNTQavZaxWO1r1ZihVvnOiCAl2PB6HoZkxuFCrx4XaVpgtNgCAUi5CSoISMZGUxN1XOM7/7y5v+whFFCiRfsVqs+O7n6vdPscA2BnD90erccc1Gb16Xjwed9lzv1itdlgsvkfFGQwUKPUGxhhsFjtsVhsADgIRH3wPOWI2mx2GVjMMBjOYnUEg5EOhFEMsEYTsj0Vv4fE4pCSokKxRwmK1g8dxlIsXBMJ4dgAKlEj/UlbXCuMvd6HuMADVze1o1JsQrQzu4MLvL5VQ/fZxw2yxQddmBgCoFeLLHgpvNtvQ3GyAvtUExgC5XISoKBkk4u591dmsNrTrHUGP81jtFvAFPEiUYpcg2GK2oaGu1WV0ls1mhclohVQuRGSUjIIlP3AcB1E/nS+KhBYKlEi/omu3+C70S7lgD5T4Ah6EQp7PViVZABbYtVptMJls4PE4SALU6mGz2dHc3I6mZgOsFjv4Ag6RETJERck6tRBYbXacLG9CVUObc8JBHschOV6BrLRIv9Y20+tNOF/R7DJhoclkRVOTAYmJKkR1sdvGbrPDoDW5f49WO9p1Rsh+WYeMMYbG+laPQ9jb2ywQicxQBPm1R8ilaHoAQvoJmci/O1CZOPjvVDmOQ1SUDLW1rR7LCAQ8KBRdD5QsFhuqa3TQ6X4NBAQCHuLiFF0OLABHt2H52SaYLlqby25hqKtvRVOzAQPToyD6JZndbmc4dLwW2lazyz7sjOF8jR5t7RaMGRznNXizWGydgqSLVVXpIJEIuzS03OxjZKHdxmC12CAUCWBst8Bm8z7PT6vOBLlCRK1KJKSEc44SdfySfiVTo4KQ7/3DGK0QI04VGsuGRERKofawxAmfzyElNaLLXz4Wiw1nyhpdgiTAEeRUVelQV+85QPOlukbnEiRduv+KixYErqpv7RQkXaxRa0Sdjxmbm5oNXpe+AIDGRt/Lyrhj8WMhVqvJ0d1rMnnu9u1gs9lh9xFMEUKCBwVKpF8RCXi4ZnC81zKTh2pC5s6G4zhoEpRISVFDoRBBKORBLBYgNk6OgQOjIe5G7k19QxusVs/denV1rbB4yffyxGq1QetheHeH9nYL2o2ObtLKOt8BWWWt9wWGW70EWr+Wcd995pMfMQ3zFaURWG12VNW1oqSsEafKm1DfZKBZtklIoK430u+MHRgNDsCuk3UwXxQIyMUCTB+RgExNaK28znEc5Aox5H4si+Ivu52hudn71AMA0NzSjrhYxWXtu93PSTDbDRZIJUK0+9Fi0+5HS01P4XicSxK3Ozye455TLBagTe89IOPzeeD5aPXsb5q1Rhw/3eBcA5EDUNPQBrGIj+FZsTTbdgigHCVC+hGO4zA2Iwaj0qJwpk4Pg8kKlUyEgbGKyx6i31/Z7XafXVWAYwTX5fK3hju+NEVCPsw+EtbFQu+N33K5CO0+EvnlXVxXTyQRwGTwvm+hxPFVKpEKwOdzXvOUFCpxyLRoBoKh3YKjpfUu11vHf5rMNvxcUoexwxPA51MHBwlOdGWSfkso4CEnUY3R6dHIjFdSkHSRjhYQXzzNE+SNVCr0KxCQyx0tZEl+tFglxXkvExUp9bmP6KiuLX0hlAjA8/IjLpQInPXEcRyi4zwH5DK5EPJuJN+Hogu1eq/dl2aLHbWNvls3SR/7JZm7O49QbVKiQImQMMTjcVD5MUllhIdEcm/4fB6ifcx8rlKJIfplhGJynAJSscBtSxQHQCkTQhPtPcgRiQRISVZ7fF4Tr+xyixLHcZCpxc5WI+d2HgexXAixzLXbSCjkIy5BCVWEBEIhzzHXklSA6Fg5IsJwDqWG5nafaV6NfnQDk77FBegRiqjrjZAwFRergF5v8tgFp1ZJIOniulrx8QqYzVbo3OTrSKVCJCX+GtQIBDyMHxaPn0sb0HTJCLyYSCmGZUT71RqoVkshFgvQ2GRAa8eEkzIRoqNl3Z5riuM4SOQiiGVCx4g1zhFsegp6+HwelCoJlCEyurIn+ZOwbaOk7qDHIQDTA4RoqESBEiEXYYzBzuDXBIehTiIRYkBaFCorW2C5ZPRbRIQUiQmqLu+b4zikpESgzWBGc3M7zGYbhAIeIiKkUCo75+iIRQKMHapBq8GCFr1jxFyUWgLZZQZqEolrEBZoHMeBL+j/10YgyWVC6LyMSuQAKAIwaSohPYUCJUIAVDQb8O2xGhw+3wyrnSFaLsK12XG4NjsOwn6cZCqXi5CVFYvWVjNMJit4PA5KpRjCACwdwXEcFHIxFHL/R+spZEIoZDQCqj9JjFNC19ro8XkGIMFHDhrpezTqjZAwdqxKi3d2nna2JgFAY5sZ/zpciSMVLVg4JQuifrwoJ8c5giMlLatBekBslBSNLTLUN7nPQ0pPVkNO0wMEvXAOlPrvtz8hfjBZbfjn7jLY7b8GSR0YgDP1rfjmWHWfnBsh/QHHccgZGIXMtEhIL0qIVylEGJoZg5RudPES0huoRYmEtUPnmtHuZfZpBmDHqXrMGp4YFnlLhPQEjuOQGKdAQqzckdzNAXw/p6ggwcExaq27ydyhia5UEtYqmgw+A6A2kxU6H5MZEkJ84zgOfD6PgqRQFMbzA9DVSsKagMf5tU6XIMyWnCCEEOJAgRIJa8OTIzrlJl2MA5AWJYOyi/MJEUJIf9CRzN3dRyiiQImEtaw4BQZEy+Cp940BmDksoVfPiRBCgg0XoH+X429/+1unZVBycnKczxuNRuTn5yM6OhoKhQJ5eXmora0N9FunQImEN47jMH/SICSqHWuFdQRMHOdoTfrz6GRckRrZdydISC9jjKFBa8T5ulbUtbT71TVNSE8ZOnQoqqurnY89e/Y4n3v44Yfx5Zdf4rPPPkNBQQGqqqpw4403BvwcaNQbCXsqqRBPzRyCny9oUVTRDKPFhgS1FFdnxiBGQXMLkfBR3WTAwZI66A2/Dl6QiQUYPSgGafHKPjwz0tf6ah4lgUAAjUbTabtWq8Xq1auxfv16TJ48GQCwZs0aDB48GPv378eECRO6d7IXn0PA9kRICOPxOIxKicColIi+PhVC+kRNkwE7ii50WsDWYLJiz9EaMAYM0FCwFK46ur66uw8A0Ol0LtvFYjHEYvc3paWlpUhMTIREIkFubi6WLVuG1NRUFBYWwmKxYOrUqc6yOTk5SE1Nxb59+wIaKFHXGyGEhDnGGA6dqu8UJF3s0Kl6vxa4Jf1TIGcHSElJgVqtdj6WLVvm9pjjx4/Hhx9+iG+++QYrV65EeXk5fvOb30Cv16OmpgYikQgREREur4mPj0dNTU1A3zu1KBFCSJhrbjVB2+Z54VoAMFlsqG4yIClG3ktnRfqriooKqFS/zsjuqTVpxowZzv8eMWIExo8fj7S0NHz66aeQSqU9fp4dqEWJEELCnMFkDWg50v8EcnoAlUrl8vAUKF0qIiICWVlZOH36NDQaDcxmM1paWlzK1NbWus1p6g4KlAgJEMYYKupb8Z/Dlfis4Az+tbsMB07WQefjTp2QviYV+de5IBXxe/hMSLC6dJh+Vx/d0draijNnziAhIQFjxoyBUCjEf/7zH+fzJSUlOH/+PHJzc7v7dl1Q1xshAcAYw4GTdThdpQMHOHM9TldpcaZKh9+OTEBiNHVZkOAUpRRDKRVC72WpHpGAh4RoWS+eFQl3//3f/43rr78eaWlpqKqqwtKlS8Hn8zFnzhyo1WrcfffdWLRoEaKioqBSqfDQQw8hNzc3oIncAAVKhAREeY0ep6scIzkuTndlDGBg2PVzNW68Oh0iId2Rk8AwmW1oaTUBACKV4m5dWxzHYUxWLHb+VOWxzBWDYmiNNtKrKisrMWfOHDQ2NiI2NhZXX3019u/fj9jYWADA66+/Dh6Ph7y8PJhMJkyfPh0rVqwI+HlwjGYTCyo6nQ5qtRpardYl2Y0Et69+PI/mX360PBkzKAY5NHkl6SaL1Y6jZxpQVd/mDMo5DkiJU2DIwGgI+F0PZirqW3GwpA7tJptzm1jIwxWZMchIVHfzzEmg9cbvRccxSk+ch1LZvWPo9ToMGpwacr9v1KJESDfZ7cxnkAQADVpjL5wN6c9sdjv2F1dD12bu1HJ5vrYVre0WTBieAF4Xc0FSYhVIipGjrrkdbUYrJCI+NFEy8D2t8UNIGKBAiZDu8uM3hAPA0Y8N6abKulavw/ibdCbUNBqQ2I0h/DyOgyaKcpGIq0BOOBlqqMOZkG7icRziIqRe4yUGQBPZe/N+kP6pokbvRxmdzzKEXK5ATg8QaihQIiQAhqRFepzVmAMgEfJprSzSbe1mm+8yJt9lCLlcXID+hSIKlAgJgKQYOa7IjAHQ+a5JJORh8hVJ3UqyJQQAxH6MbBPTXEeEBBTlKBESIEPSIpEYLcOpSi2a9EbweTykxMoxMEFF0wKQgEiJV+JYWaPPMoQEWiC6zkK1640CJUICKEIhxricuL4+DdJPpcQrcK5ah7Z2S6euXg6ASi5CAq3FRnpIiMY53UZ9AYQQEiIEfB5yhycg1s3AgPhoGSYM19BQfkICjFqUCCEkhIhFfIwbqkFbuwXNOiPAAdEqKaQS+jonPSiM+97ok0VIiOmYTD9U5yQhgSGXCiGXCvv6NEiY4ND9rrdQ/caiQImQEFFaq8fOkjqU1urBAKRGyfCbrFiMTI6goIkQQnoIBUqEhIA9pfXYUnQBPA6w/5LFe77JgLX7zuHsoDbMHpVEwRIhpOeEcZMSJXMTEuRqdUZsKboA4NcgCXCs7wUAe0obcKKaZmMmhPQcLkCPUBQ0gdLy5cvBcRwWLlzo3HbfffchIyMDUqkUsbGxmD17Nk6ePOl8/qeffsKcOXOQkpICqVSKwYMH48033/R4jB9++AECgQCjRo1y2b5s2TKMHTsWSqUScXFx+OMf/4iSkhLn82fPnnWuc3Pp47PPPnOWO3/+PGbNmgWZTIa4uDg8+uijsFqt3a8cEtb2nW6At4FMPM4RLJHQYjBa0dJqgtlKM2kTEsyCouvt4MGDeO+99zBixAiX7WPGjMHcuXORmpqKpqYm/O1vf8O0adNQXl4OPp+PwsJCxMXFYe3atUhJScHevXtx7733gs/nY/78+S77amlpwe23344pU6agtrbW5bmCggLk5+dj7NixsFqteOKJJzBt2jQcP34ccrkcKSkpqK6udnnNP//5T/z973/HjBkzAAA2mw2zZs2CRqPB3r17UV1djdtvvx1CoRAvvfRSD9QaCRfnmgwuLUmXsjOgosnQeydEuqW6sQ3F5U1o1jsWt+U4IC1OgREZ0ZCKg+IrmZBOwnlRXI51DKHpI62trRg9ejRWrFiBF154AaNGjcIbb7zhtuzPP/+MkSNH4vTp08jIyHBbJj8/HydOnMD27dtdtt9yyy0YNGgQ+Hw+tmzZgiNHjng8p/r6esTFxaGgoADXXHON2zJXXHEFRo8ejdWrVwMAvv76a/z+979HVVUV4uPjAQCrVq3C4sWLUV9fD5FI5KMmHHQ6HdRqNbRaLVQqlV+vIf3bu9tLUd7Q5rWMUiLA0j8M66UzIl11tkaPH0/UddrOAZCI+PjdlckULBG/9cbvRccxzp+pgkrZvWPo9DqkZiSG3O9bn3e95efnY9asWZg6darXcm1tbVizZg3S09ORkpLisZxWq0VUVJTLtjVr1qCsrAxLly7165y0Wi0AdNpPh8LCQhw5cgR33323c9u+ffswfPhwZ5AEANOnT4dOp8OxY8c8HstkMkGn07k8CLnY0ES11759HgcMS1J3+zi6dguOnG/G4bNNqNMZL/v1LW1m7DhWg/e+P4V3vy3BZ/vP4XSNHn18LxY0LFY7DpXUu32OATBabPjZx/IkhPSVjmmUuvsIRX1667JhwwYcPnwYBw8e9FhmxYoVeOyxx9DW1obs7Gxs27bNY+vM3r17sXHjRvz73/92bistLcWSJUuwe/duCAS+367dbsfChQtx1VVXYdgw93foq1evxuDBgzFx4kTntpqaGpcgCYDz75qaGo/HW7ZsGZ599lmf50XC17j0KPznRC2MVhvcxRwcOFyVGdvl/ZutNmw5fAE/nW92WRYjPUaOP49LRYTMd2toRUMbPj9wHjbGnOdY0diG8w1tGJ4Sgd+NSAjZZvdAqahrhc1LHypjwPnaVoweFAuhoM/vYQkhv+izT2NFRQUWLFiAdevWQSKReCw3d+5cFBUVoaCgAFlZWbjppptgNHa+2z169Chmz56NpUuXYtq0aQAceUO33nornn32WWRlZfl1Xvn5+Th69Cg2bNjg9vn29nasX7/epTWpOx5//HFotVrno6KiIiD7Jf2HTCzAvb/NgPSShXU5AAIeh9uvGgCN2vNnyBs7Y/joh3L8VNHcae2wc41teG/HaRhM3gckmK02bDlUAZuduQRyHf9dXNGCY5XaLp1ff6Jvt/i8o7YzoN1HfRPSN8J33FuftSgVFhairq4Oo0ePdm6z2WzYtWsX3nnnHZhMJvD5fKjVaqjVagwaNAgTJkxAZGQkNm/ejDlz5jhfd/z4cUyZMgX33nsvnnrqKed2vV6PQ4cOoaioyJncbbfbwRiDQCDAd999h8mTJzvLz58/H1u3bsWuXbuQnJzs9rw3bdoEg8GA22+/3WW7RqPBgQMHXLZ1JI1rNBqP9SAWiyEWi31VFwlzKVEyPDlrCArPNaO0Tg+7nWFAjBzj0qMh70ZOy6lqPcrr3ec/2ZmjO27/mUZMHhLvtgwAnLighdlq93qcwrJGDEuJ6PJ59gdCAQ+dolE3BNSaRIJQGK9g0neB0pQpU1BcXOyy7c4770ROTg4WL14MPp/f6TWMMTDGYDKZnNuOHTuGyZMnY968eXjxxRddyqtUqk7HWLFiBbZv345NmzYhPT3dud+HHnoImzdvxs6dO53b3Vm9ejX+8Ic/IDbWtasjNzcXL774Iurq6hAX51g9ftu2bVCpVBgyZIgfNUKId2IhHxMzYzAxMyZg+zx8vgkcB7ddeoDjd/3QWe+BUlVTu9d9AECD3gSLzQ4hP3yDgJRYOYrLmryWiVaJIaNkbkKCSp99IpVKZaccILlcjujoaAwbNgxlZWXYuHEjpk2bhtjYWFRWVmL58uWQSqWYOXMmAEd32+TJkzF9+nQsWrTImQvE5/MRGxsLHo/X6RhxcXGQSCQu2/Pz87F+/Xp88cUXUCqVzv2o1WpIpb+u0n369Gns2rULX331Vaf3M23aNAwZMgS33XYbXnnlFdTU1OCpp55Cfn4+tRiRoKVvt3gNcACgzUdXkL93iSF6M9kJYwzt7RbYbHYIBHxIJAK/8q+UMhHS4hU4V9vqscywdPcDSAghfSdob+8kEgl2796NmTNnIjMzEzfffDOUSiX27t3rbLHZtGkT6uvrsXbtWiQkJDgfY8eOvaxjrVy5ElqtFpMmTXLZz8aNG13K/c///A+Sk5OdOVAX4/P52Lp1K/h8PnJzc/Ff//VfuP322/Hcc891vRII6WERMpHXySwBQOVj4dXUGLnXYIsDkBAhheAyWpMYY7Db7IEdMccYYLUDJqvjYbYCNrv3prBL6HRGlJc14kKlFjXVelRWtODc2Sa0tZn9ev3YnDikxSsA/JKx8UvdC/gccofEQxMlu9x3RUiv6Lheu/Xo6zfRRX0+jxJxRfMokd50ulaP/9ld5vF5DsD04Qm4JjvOYxmrzY4PtjuSvj19mfzhymQM0vi+nu02O0wGC6zmX2erFoj4EEmF4Hcnd4cxwORhBmweBwh5PpvGdFojamv1Hp9PSlZD5scIQQDQGyyorG+FxWaHUipESpzisgJJQoDenUfpQnl1t4+h0+mQlJ4Qcr9v9MkkJIxlxCkwOFHl9k6PxwHRSjHGDYz2ug8Bn4e88amQiC4ZlffLTq/KjvUrSLJZ7WjTGl2CJACwmm0waI2w+UgY94gxwOxlmRA7A2ze7xftdob6es9dZgBQX9fqdwuYUibE4LRIjBgYjfQEFQVJJOhxAfoXiihrkJAwxnEc5kxIw7fF1fjxTCOsv8zzwwEYnKjG7NHJkAg7D6y4VKxKgrsmZeJYZQtKq3Ww2BniVRKMHBCJeLXU5+sBwNhm9joqzNhqgkwtufz5mBh8jzaz2gG+52E9BoMZdm/ryAAwm20wm20QUzI26Y8CMbo/NOMkCpQICXcCHg+zRiZhyhANzjW0wc4YEiNlUPvITbqURMTHmIHRGOOjBcodm9UOu48WI7uNwW61g+9H4Ob6Qj+zCxg8fpFb/WzNslrtoLEbhPQvFCgRQgAAEiEf2Ql9kzdgt/kXiNhtDPzLi98uK1nbE3+7xmgOJNJfhXGDEgVKhJC+53d3Wle+aXmczxwkX/uWyUXg8Tiv3W8iER8i0WW2dhESKsI4UqLbH0JIn+MLeX59iQq6Eojw/BiXLPA+6o3H4xATK/e6i5hYRdivZ0f6r3BO5qZAiRDS5ziOg9hHTpRI6t/Ejm52DnjLa+LBkcjtg1otRXy8EvxLygoEPCQmqSCX+zc1ACEktFDXGyEkKAglAjDGYG7vPBO4UOyYS6nLeBwg5ju64Gz2XxO3BbxfWpz8C8BUagmUKjEMBsfM3EIBDxKpkFqSSL9Ha70RQkgf4zgOYpkIQrEAFrMNzM7AcRyEYj54gZhniOMAAecIjrp5ntR6REj4oECJEBJUeHwexFLKCiCEBAcKlAghhBDiFcdx3e5iDtUuarptI4QQQgjxgAIlQgghhBAPqOuNEEIIIV7RqDdCCCGEEA/CeGJu6nojhBBCCPGEWpQIIYQQ4l0Y971RoEQIIYQQr8K5640CJUIIIYR4F8aREgVKQYYxBgDQ6XR9fCaEEEKCWcfvRMfvRn+2fPlyPP7441iwYAHeeOMNAIDRaMQjjzyCDRs2wGQyYfr06VixYgXi4+MDemwKlIKMXq8HAKSkpPTxmRBCCAkFer0earW6R4/B/fKvu/voioMHD+K9997DiBEjXLY//PDD+Pe//43PPvsMarUa8+fPx4033ogffvihW+d5KQqUgkxiYiIqKiqgVCoDOt27TqdDSkoKKioqoFKpArbfUEP14ED14ED14ED14BBq9cAYg16vR2JiYo8fq69yuVtbWzF37ly8//77eOGFF5zbtVotVq9ejfXr12Py5MkAgDVr1mDw4MHYv38/JkyY0L2TvQgFSkGGx+MhOTm5x/avUqlC4gugp1E9OFA9OFA9OFA9OIRSPfR0S1JPuDS1RCwWQywWuy2bn5+PWbNmYerUqS6BUmFhISwWC6ZOnerclpOTg9TUVOzbty+ggRLNo0QIIYSQXpOSkgK1Wu18LFu2zG25DRs24PDhw26fr6mpgUgkQkREhMv2+Ph41NTUBPR8qUWJEEIIIV4Fsuvt0q5Nd61JFRUVWLBgAbZt2waJRNK9A3cTtSiFCbFYjKVLl3ps3gwXVA8OVA8OVA8OVA8OVA+9o6Nrs+Phrr4LCwtRV1eH0aNHQyAQQCAQoKCgAG+99RYEAgHi4+NhNpvR0tLi8rra2lpoNJqAni/HwmFcISGEEEIum06ng1qtRktNY7fztnQ6HSI00dBqtT73pdfrce7cOZdtd955J3JycrB48WKkpKQgNjYWn3zyCfLy8gAAJSUlyMnJCXiOEnW9EUIIIcSr3h71plQqMWzYMJdtcrkc0dHRzu133303Fi1ahKioKKhUKjz00EPIzc0NaJAEUKBECCGEEB8CMQlyoCdSfv3118Hj8ZCXl+cy4WSgUdcbIYQQQtwyGo1IT08P2EgyjUaD8vLyPk/QvhwUKBFCCCHEI6PRCLPZHJB9iUSikAqSABr1FjQGDBgAjuM6PfLz813KMcYwY8YMcByHLVu2uDx3/vx5zJo1CzKZDHFxcXj00UdhtVrdHu+HH36AQCDAqFGjXLbbbDY8/fTTSE9Ph1QqRUZGBp5//nmXtYQYY3jmmWeQkJAAqVSKqVOnorS0tF/Vg16vx8KFC5GWlgapVIqJEyfi4MGDnc4hlOth586dbo9x6Z3ju+++iwEDBkAikWD8+PE4cOCAy/NGoxH5+fmIjo6GQqFAXl4eamtr+1U97Nq1C9dffz0SExPdHqPjHPr79bBs2TKMHTsWSqUScXFx+OMf/4iSkhKX44TD9bBy5UqMGDHCOWorNzcXX3/9da/VQ2+TSCSdRqp19RFqQRJAgVLQOHjwIKqrq52Pbdu2AQD+/Oc/u5R744033C5tYrPZMGvWLJjNZuzduxcfffQRPvzwQzzzzDOdyra0tOD222/HlClTOj338ssvY+XKlXjnnXdw4sQJvPzyy3jllVfw9ttvO8u88soreOutt7Bq1Sr8+OOPkMvlmD59OoxGY3erIWjq4Z577sG2bdvw8ccfo7i4GNOmTcPUqVNx4cIFZ5n+Ug8lJSUux4qLi3M+t3HjRixatAhLly7F4cOHMXLkSEyfPh11dXXOMg8//DC+/PJLfPbZZygoKEBVVRVuvPHGbtdBMNVDW1sbRo4ciXfffdfjuYbD9VBQUID8/Hzs378f27Ztg8ViwbRp09DW1uYsEw7XQ3JyMpYvX47CwkIcOnQIkydPxuzZs3Hs2LFeqQfSyxgJSgsWLGAZGRnMbrc7txUVFbGkpCRWXV3NALDNmzc7n/vqq68Yj8djNTU1zm0rV65kKpWKmUwml33ffPPN7KmnnmJLly5lI0eOdHlu1qxZ7K677nLZduONN7K5c+cyxhiz2+1Mo9Gwv//9787nW1pamFgsZp988kl333YnfVEPBoOB8fl8tnXrVpfyo0ePZk8++SRjrH/Uw44dOxgA1tzc7PG448aNY/n5+c6/bTYbS0xMZMuWLWOMOd6zUChkn332mbPMiRMnGAC2b9++7r7tTvqqHi526TEYC5/r4VJ1dXUMACsoKGCMhef10CEyMpJ98MEHjLHerwfSs6hFKQiZzWasXbsWd911l/OuyGAw4NZbb8W7777rdjKtffv2Yfjw4YiPj3dumz59OnQ6nctdzpo1a1BWVoalS5e6PfbEiRPxn//8B6dOnQIA/PTTT9izZw9mzJgBACgvL0dNTY3L+jpqtRrjx4/Hvn37uv/mL9JX9WC1WmGz2To1EUulUuzZswdA/6kHABg1ahQSEhLwu9/9zmXVbbPZjMLCQpf3yOPxMHXqVOd79LXeUiD1VT34IxyuB3e0Wi0AICoqCkB4Xg82mw0bNmxAW1sbcnNzAfRuPZCeR9MDBKEtW7agpaUFd9xxh3Pbww8/jIkTJ2L27NluX1NTU+Py4Qfg/Lujb720tBRLlizB7t27IRC4/59+yZIl0Ol0yMnJAZ/Ph81mw4svvoi5c+e67MvdsQK9vk5f1YNSqURubi6ef/55DB48GPHx8fjkk0+wb98+ZGZmuuwrlOshISEBq1atwpVXXgmTyYQPPvgAkyZNwo8//ojRo0ejoaEBNpvN7X5Onjzp3FdvrbfUV/Xgj3C4Hi5lt9uxcOFCXHXVVc55bcLpeiguLkZubi6MRiMUCgU2b96MIUOGOPfVW/VAeh4FSkFo9erVmDFjBhITEwEA//d//4ft27ejqKioy/u02Wy49dZb8eyzzyIrK8tjuU8//RTr1q3D+vXrMXToUBw5cgQLFy5EYmIi5s2b1+Xjd0Vf1sPHH3+Mu+66C0lJSeDz+Rg9ejTmzJmDwsLCLh+7q3qiHgAgOzsb2dnZzr8nTpyIM2fO4PXXX8fHH3/crX33BKoHh2Cph/z8fBw9etTZytrb+roesrOzceTIEWi1WmzatAnz5s1DQUGBM1gi/Qd1vQWZc+fO4fvvv8c999zj3LZ9+3acOXMGERERzjVvACAvLw+TJk0C4Jib4tIRFR1/azQa6PV6HDp0CPPnz3fu47nnnsNPP/0EgUCA7du3AwAeffRRLFmyBLfccguGDx+O2267DQ8//LBz9eaO5mx3xwrk+jp9XQ8ZGRkoKChAa2srKioqcODAAVgsFgwcOLBf1IMn48aNw+nTpwEAMTEx4PP5Xt+jRqPplfWW+rIe/BEO18PF5s+fj61bt2LHjh1ITk52bg+n60EkEiEzMxNjxozBsmXLMHLkSLz55pvOffXWOmSkF/R1khRxtXTpUqbRaJjFYnFuq66uZsXFxS4PAOzNN99kZWVljLFfkxRra2udr3vvvfeYSqViRqOR2Wy2Tvt44IEHWHZ2NisuLmatra2MMcaioqLYihUrXM7ppZdeYoMGDWKM/Zq0+uqrrzqf12q1AU9a7et6uFRTUxNTq9Xsvffe6xf14MnUqVPZDTfc4Px73LhxbP78+c6/bTYbS0pK6pTMvWnTJmeZkydPBjxpta/r4WLwkszd368Hu93O8vPzWWJiIjt16lSn8uF4PXS49tpr2bx58xhjvVcPpHdQoBREbDYbS01NZYsXL/ZZ9tIva6vVyoYNG8amTZvGjhw5wr755hsWGxvLHn/8cY/7cDfqbd68eSwpKYlt3bqVlZeXs88//5zFxMSwxx57zFlm+fLlLCIign3xxRfs559/ZrNnz2bp6emsvb39st+zO8FQD9988w37+uuvWVlZGfvuu+/YyJEj2fjx45nZbHaWCfV6eP3119mWLVtYaWkpKy4uZgsWLGA8Ho99//33zjIbNmxgYrGYffjhh+z48ePs3nvvZRERES6jhu6//36WmprKtm/fzg4dOsRyc3NZbm5uQOqAseCoB71ez4qKilhRUREDwF577TVWVFTEzp075ywTDtfDAw88wNRqNdu5cyerrq52PgwGg7NMOFwPS5YsYQUFBay8vJz9/PPPbMmSJYzjOPbdd985y/R0PZDeQ4FSEPn2228ZAFZSUuKzrLu72rNnz7IZM2YwqVTKYmJi2COPPOJyx3UpdwGCTqdjCxYsYKmpqUwikbCBAweyJ5980mVovd1uZ08//TSLj49nYrGYTZkyxa9z9lcw1MPGjRvZwIEDmUgkYhqNhuXn57OWlhaXMqFeDy+//DLLyMhgEomERUVFsUmTJrHt27d32vfbb7/NUlNTmUgkYuPGjWP79+93eb69vZ09+OCDLDIykslkMnbDDTew6urqrr1pN4KhHjqGjF/66GhBYCw8rgd3dQCArVmzxlkmHK6Hu+66i6WlpTGRSMRiY2PZlClTXIIkxnq+HkjvoSVMCCGEEEI8oGRuQgghhBAPKFAihBBCCPGAAiVCCCGEEA8oUCKEEEII8YACJUIIIYQQDyhQIoQQQgjxgAIlQgghhBAPKFAihPS5SZMmYeHChT1+nAEDBoDjOHAc12kdrss1adIk576OHDkSkPMjhAQfCpQIIU533HGH88f/4sd1110XkP3v3LnTbZDy+eef4/nnnw/IMXx57rnnUF1dDbVa3a39fP755zhw4ECAzooQEqwEfX0ChJDgct1112HNmjUu28RicY8eMyoqqkf3fzGlUhmQFdyjoqKg0+kCcEaEkGBGLUqEEBdisRgajcblERkZ6Xz+tddew/DhwyGXy5GSkoIHH3wQra2tzufPnTuH66+/HpGRkZDL5Rg6dCi++uornD17Ftdeey0AIDIyEhzH4Y477gDQuettwIABeOmll3DXXXdBqVQiNTUV//znP13Oc+/evRg1ahQkEgmuvPJKbNmypUvdYB9++CEiIiKwdetWZGdnQyaT4U9/+hMMBgM++ugjDBgwAJGRkfjrX/8Km812eZVJCAl51KJECLksPB4Pb731FtLT01FWVoYHH3wQjz32GFasWAEAyM/Ph9lsxq5duyCXy3H8+HEoFAqkpKTgX//6F/Ly8lBSUgKVSgWpVOrxOP/4xz/w/PPP44knnsCmTZvwwAMP4Le//S2ys7Oh0+lw/fXXY+bMmVi/fj3OnTvXrRwng8GAt956Cxs2bIBer8eNN96IG264AREREfjqq69QVlaGvLw8XHXVVbj55pu7fBxCSOihQIkQ4mLr1q1QKBQu25544gk88cQTANCp5eeFF17A/fff7wyUzp8/j7y8PAwfPhwAMHDgQGf5ji62uLg4REREeD2PmTNn4sEHHwQALF68GK+//jp27NiB7OxsrF+/HhzH4f3334dEIsGQIUNw4cIF/OUvf+nSe7ZYLFi5ciUyMjIAAH/605/w8ccfo7a2FgqFAkOGDMG1116LHTt2UKBESJihQIkQ4uLaa6/FypUrXbZdnEP0/fffY9myZTh58iR0Oh2sViuMRiMMBgNkMhn++te/4oEHHsB3332HqVOnIi8vDyNGjLjs87j4NRzHQaPRoK6uDgBQUlKCESNGQCKROMuMGzfuso/RQSaTOYMkAIiPj8eAAQNcAsb4+Hjn8Qkh4YNylAghLuRyOTIzM10eHYHS2bNn8fvf/x4jRozAv/71LxQWFuLdd98FAJjNZgDAPffcg7KyMtx2220oLi7GlVdeibfffvuyz0MoFLr8zXEc7HZ7N9+d/8fqzeMTQoIXBUqEEL8VFhbCbrfjH//4ByZMmICsrCxUVVV1KpeSkoL7778fn3/+OR555BG8//77AACRSAQA3U6Kzs7ORnFxMUwmk3PbwYMHu7VPQghxhwIlQogLk8mEmpoal0dDQwMAIDMzExaLBW+//TbKysrw8ccfY9WqVS6vX7hwIb799luUl5fj8OHD2LFjBwYPHgwASEtLA8dx2Lp1K+rr611Gy12OW2+9FXa7Hffeey9OnDiBb7/9Fq+++ioAR8sPIYQECgVKhBAX33zzDRISElweV199NQBg5MiReO211/Dyyy9j2LBhWLduHZYtW+byepvNhvz8fAwePBjXXXcdsrKynIneSUlJePbZZ7FkyRLEx8dj/vz5XTpHlUqFL7/8EkeOHMGoUaPw5JNP4plnngEAl7wlQgjpLo4xxvr6JAghpLvWrVuHO++8E1qt1uO0AwMGDMDChQsDtlzK2bNnkZ6ejqKiIowaNSog+ySEBBdqUSKEhKT//d//xZ49e1BeXo4tW7Zg8eLFuOmmm7zOzQQ4phpQKBTQarXdOv6MGTMwdOjQbu2DEBL8aHoAQkhIqqmpwTPPPIOamhokJCTgz3/+M1588UWvrykoKIDFYgHgWMqkOz744AO0t7cDAFJTU7u1L0JI8KKuN0IIIYQQD6jrjRBCCCHEAwqUCCGEEEI8oECJEEIIIcQDCpQIIYQQQjygQIkQQgghxAMKlAghhBBCPKBAiRBCCCHEAwqUCCGEEEI8oECJEEIIIcSD/weXsfKoqrRFtAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Get the Matplotlib Axes object from the dataframe object, color the points by snow depth value\n", "ax = df.plot(column='value', legend=True, cmap='PuBu')\n", @@ -124,30 +608,9 @@ "ax.ticklabel_format(style='plain', useOffset=False)\n", "\n", "# Set the various plots x/y labels and title.\n", - "ax.set_title(f'{len(df.index)} {dataset.title()}s collected on {collection_date.strftime(\"%Y-%m-%d\")}')\n", + "ax.set_title(f'{len(df.index)} Manual Snow depths collected at {site_id}')\n", "ax.set_xlabel('Easting [m]')\n", - "ax.set_ylabel('Northing [m]')\n", - "\n", - "# Close the session to avoid hanging transactions\n", - "session.close()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Lets try to filter to get the data to show only a depth spiral." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Let see what instruments are available \n", - "result = session.query(PointData.instrument).filter(PointData.type == 'depth').distinct().all()\n", - "print(result)" + "ax.set_ylabel('Northing [m]')\n" ] }, { @@ -162,8 +625,7 @@ "You just plotted snow depths and reduce the scope of the data by compounding filters on it\n", "\n", "**You should know:**\n", - "* How to build queries using filtering\n", - "* Where a useful tools like [`query_to_geopandas`](https://snowexsql.readthedocs.io/en/latest/snowexsql.html#snowexsql.conversions.query_to_geopandas) live in the snowexsql library\n", + "\n", "\n", "\n", "If you don't feel comfortable with these, you are probably not alone, let's discuss it!\n" @@ -186,7 +648,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.4" + "version": "3.10.14" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/5_plot_raster_example.ipynb b/book/tutorials/snowex_database/5_plot_raster_example.ipynb index a73be11..dcdf0cf 100644 --- a/book/tutorials/snowex_database/5_plot_raster_example.ipynb +++ b/book/tutorials/snowex_database/5_plot_raster_example.ipynb @@ -4,245 +4,134 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Forming Queries: PostGIS Functions\n", - "\n", - "PostGIS offer a host of functions that we can access through python using special functions to utilize them \n", - "\n", - "Don't forget your [cheat sheets](https://snowexsql.readthedocs.io/en/latest/cheat_sheet.html)! \n", - "\n", - "\n", - "In general they follow the convention\n", - "``` sql\n", - "ST_\n", - "```\n", - "\n", - "They also tend to fall into (generally) 2 categories, points and rasters. \n", - "\n", - "\n", - "## Process \n", - "### Get Connected" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import the function to get connect to the db\n", - "from snowexsql.db import get_db\n", - "\n", - "# This is what you will use for all of hackweek to access the db\n", - "db_name = 'snow:hackweek@db.snowexdata.org/snowex'\n" + "# Forming Queries with Rasters" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Let's get a single raster tile\n", - "\n", - "Checkout the documentation for [`ST_AsTiff`](https://postgis.net/docs/RT_ST_AsTIFF.html)\n", - "\n", - "Raster data in the database is stored in Well Known binary format so to make it useful to us we convert to geotiff format. \n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from snowexsql.data import ImageData\n", - "\n", - "# Grab a session\n", - "engine, session = get_db(db_name)\n", - "\n", - "# What will this return?\n", - "result = session.query(ImageData.raster).limit(1).all()\n", - "\n", - "print(type(result[0][0]))\n", - "\n", - "session.close()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# import this to use define sql functions (e.g. postgis!)\n", - "from sqlalchemy.sql import func \n", - "\n", - "# Import this to convert to a rasterio object for easy plotting\n", - "from snowexsql.conversions import raster_to_rasterio \n", - "\n", - "# Import a convenient function to plot with \n", - "from rasterio.plot import show" + "### Let's get part of raster dataset centered on a point" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", + "0 67.0 1N3 COGM1N3_20200211 57.0 None None None \n", + "\n", + " sample_c value flags ... date time_created \\\n", + "0 None 242.5 None ... 2020-02-11 2022-06-30 22:28:50.782395+00:00 \n", + "\n", + " time_updated id doi date_accessed \\\n", + "0 None 12277 https://doi.org/10.5067/DUD2VZEVBJ7S 2022-06-30 \n", + "\n", + " instrument type units observers \n", + "0 None density None None \n", + "\n", + "[1 rows x 29 columns]\n", + "[datetime.date(2020, 2, 2), datetime.date(2020, 2, 13)]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAGsCAYAAABn4VjoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9f7RmV10fjr/2Oc/z3HtnJjMhgcmQEhDBCpFEFCjMsguBYAKkLPwQV/2BJFQKNZ3w1aRFDMZKiCR8sJ8KVkHb2oCFLF2wpK6iEBJdQIUoNDUSEk0L2AYlkygxmWRm7r3Pc87+/rH3a+/X3s95ft7n/pg757XWnXvn+XHOPufs/f75er+3sdZatGjRokWLFjsQxXYPoEWLFi1atBiFVkm1aNGiRYsdi1ZJtWjRokWLHYtWSbVo0aJFix2LVkm1aNGiRYsdi1ZJtWjRokWLHYtWSbVo0aJFix2LVkm1aNGiRYsdi1ZJtWjRokWLHYtWSbVo0aJFix2L01JJra2t4bnPfS6MMbjrrrvGfvZf/It/gWc84xlYWVnBk570JLzmNa/BX/7lX4b3//zP/xw/+qM/ivPOOw8rKyt49rOfjfe9730jj/f5z38enU4Hz33uc+ca+wc/+EFceOGFWF5exsGDB3HkyJG5jtOiRYsWpwJ2nZJ6yUtegg9+8INjP/MzP/MzOPfcc6c63vOe9zzcfPPN+Iu/+AvceuutsNbi4osvRlVVAIA777wTBw8exIc//GHcc889+Lmf+zlce+21+NVf/dWhYz3yyCO4/PLLcdFFF818XQDw7/7dv8PP/dzP4Wd/9mdxzz334Pbbb8cll1wy17FatGjR4pSA3WX4/u//fnvzzTePfP8P/uAP7LOe9Sx7zz33WAD2z/7sz2Y6/p//+Z9bAParX/3qyM/8y3/5L+1LX/rSodd/+Id/2F533XX2F37hF+x3f/d3J+9VVWVvvPFG+23f9m12eXnZXnjhhfajH/1oeP/hhx+2Kysr9vbbb59pvC1atGhxKmPXeVLj8OCDD+JNb3oT/st/+S/Ys2fPzN8/fvw4br75Zjz96U/HeeedN/Jzjz76KM4666zktZtvvhlf//rX8Qu/8AuN37npppvwW7/1W/j1X/913HPPPbj66qvx4z/+4/jsZz8LALjttttQ1zX+5m/+Bs9+9rPxlKc8Bf/0n/5TfOMb35j5Olq0aNHiVMFpo6SstXjDG96An/zJn8Tzn//8mb77/ve/H/v27cO+ffvwyU9+Erfddht6vV7jZ7/whS/gd37nd/DmN785vPa///f/xs/+7M/iwx/+MDqdztB31tbWcOONN+I//+f/jEsuuQTf/u3fjje84Q348R//cfzGb/wGAODrX/866rrGjTfeiPe+97342Mc+hocffhg/8AM/gPX19Zmup0WLFi1OGWy3K7dRvOtd77J79+4NP0VR2KWlpeS1//t//6993/veZ7/v+77PDgYDa621f/VXfzV1uO+RRx6x/+t//S/72c9+1r761a+23/u932tPnjw59Lm7777bPvGJT7Q33HBDeG0wGNjnP//59gMf+EB4LQ/3feUrX7EAkjHv3bvXdrtd+4/+0T8K1wnA3nrrreF7Dz30kC2Kwn7qU5+a9ba1aNGixSkBY+2pvenhww8/jIcffjj8/3Wvex0uu+wyvPa1rw2vfdu3fRt+6Id+CP/tv/03GGPC61VVoSxLvO51r8OHPvShqc63vr6OJzzhCfhP/+k/4Ud/9EfD6/feey9e+tKX4p//83+Od73rXeH1Rx55BE94whNQlmV4ra5rWGtRliU+/elPY+/evXjRi16Ez3zmM/gH/+AfJOdbWlrCeeedh5tvvhk/8RM/gW984xt4ylOeEt4/55xz8Iu/+It405veNNX4W7Ro0eJUwnDs6RTDWWedleR/VlZWcPDgQTzzmc9MPvcrv/Ir+MVf/MXw/29+85u45JJL8Du/8zt44QtfOPX5rLWw1mJtbS28ds899+BlL3sZrrjiikRBAcD+/ftx9913J6+9//3vxx/90R/hYx/7GJ7+9KejrmssLS3h/vvvx/d///c3nvf7vu/7AAD33XdfUFIPP/ww/u7v/g5Pe9rTph5/ixYtWpxKOOWV1LR46lOfmvx/3759AIBnPOMZQej/zd/8DS666CL81m/9Fv7RP/pH+PrXv47f+Z3fwcUXX4wnPelJ+Ou//mu8+93vxsrKCl71qlcBAL7yla/gZS97GS655BJcc801OHr0KACgLEs86UlPQlEUeM5znpOc++DBg1heXk5e/9f/+l/j6quvRl3X+Mf/+B/j0Ucfxec//3ns378fV1xxBf7hP/yHeM1rXoOf+qmfwn/4D/8B+/fvx7XXXotnPetZeOlLX7pp961FixYtthOnjZKaBv1+H/fddx9OnDgBAFheXsZ//+//He9973vx93//9zjnnHPw4he/GF/4whdw8OBBAMDHPvYx/O3f/i0+/OEP48Mf/nA41tOe9jT8n//zf6Y+9w033IAnPelJuOmmm/D1r38dZ555Jr73e78Xb3/728Nnfuu3fgtXX301Lr30UhRFge///u/Hpz71KXS73cXcgBYtWrTYYTjlc1ItWrRo0WL34rShoLdo0aJFi1MPrZJq0aJFixY7FqdkTqqua3zzm9/EGWeckVDKW7Ro0aLFqQFrLR577DGce+65KIrR/tIpqaS++c1vjm1L1KJFixYtTg3ktZ85TkkldcYZZwBwF7d///5tHk2LFi1atJgVx44dw3nnnRfk+SickkqKIb79+/e3SqpFixYtTmFMStmckkqqRYudBvN/3wsUFujU7vdKH1geAFx/xgKldb83gpMd4O/2ApUBVjtAv3TneeKJeM4mWAMc7wK1AU52Yc/51xsbR4sWW4RWSbVosQiUtVNCpVdSVE4WzX/Pi6UK2LfulFSnBtZLoFcB3cqdvzbu/MR66V5bL4FB4ZRVWW9wEC1abB02REF/97vfDWMMfvqnfzq8trq6iiNHjuDss8/Gvn37cNlll+HBBx9Mvnf//ffj0ksvxZ49e3Dw4EG89a1vxWAwwgJs0eJUABVUOcZjsib+rJfAsSXgkWX3+7El4PGee28cCuuUlP7s6UcPriqAtY7zuB5eAR7aC/zdHnfstY5TVEVbv9/i1MHcntSXvvQl/MZv/AYuvPDC5PWrr74av//7v4+PfvSjOHDgAK666iq89rWvxec//3kArvP4pZdeikOHDuELX/gCHnjgAVx++eXodru48cYbN3Y1LVrMCYN3eAUC97v2f1fGhdSAqEAo4/n5qgBKOOXUqX1or3ZekyorHg9wymJQuPPwc4V1yqtbjVckZQ0Y70nVxp23oGI07hy1/CQX6rw889hN7jg9f67VjvupCuBEF1jz10yvsCOf9cexB986x51u0WI2zKWkHn/8cbzuda/Df/yP/zHpLP7oo4/iN3/zN3HLLbfgZS97GQC3I+2zn/1s/Mmf/Ale9KIX4dOf/jTuvfde3H777TjnnHPw3Oc+FzfccAPe9ra34R3veMfIzQRbtNhUVFQa/u+qcEpFBT2ViYFXFF4xFAP3u2Odgmk6dm2AgQHWO06JDAqnkHLP6XE//zu1yy/pb6LwSmlPPyoOvl9bp1SpBAGvdP34rVduSwOgW0clujKIn6cisgbo+/H1C/dj/PttyLDFFmGucN+RI0dw6aWX4uUvf3ny+p133ol+v5+8/qxnPQtPfepTcccddwAA7rjjDlxwwQU455xzwmcuueQSHDt2DPfcc0/j+dbW1nDs2LHkp0WLhaI2TgivezLCWuk8C+ZyqiJ6KMwtlbUX+BWwXDUrKMApAnpcqx3nqZzsumOvy7lOdlz47+EV9/Posvv/iRENhAvrlFQnUxgDr1CYgwKidwgAnSp6fDrGTh1DldSdVeHuR1/GuObH3aLFFmBmT+q3f/u38T//5//El770paH3jh49il6vhzPPPDN5/ZxzzglbWBw9ejRRUHyf7zXhpptuwvXXXz/rUFu0AOBDeeNQFZIvQvSe1MuxcCZd7kBM41XUEoJTRWez37WJHh3gPls0hOzGwcrYC5sOOLw2ZpwhlIn494jTm6/+SlS0eg6FV+T2/CPTX0OLFoKZPKlvfOMb+Kmf+il85CMfwfLy8maNaQjXXnstHn300fDzjW98Y8vO3eI0gOahBkUMx1Um/ekXwpJDGmYbBTLr1juOuECvhMfgeXnu1Y4L+TEv1BelNQ10vIV1ocLlgfO46HUx7Df03SJ6jVRYVMLGpoqc4D3gcfna0sBR4s9YB846Of34W7TIMJMndeedd+Khhx7C937v94bXqqrC5z73Ofzqr/4qbr31Vqyvr+ORRx5JvKkHH3wQhw4dAgAcOnQIX/ziF5Pjkv3Hz+RYWlrC0tLSLENtscthjt2UCtpu5XIso0Ju04AeCD2XnChh5HPIXht1vCoLFVKB5N/juZn7KUr/PRvfm6bGKnhm/hwliQ5wTtUoT0o9MP0Iz1nAjZvH5zGpxKxx+TB45Ui2Y7cCVgYwj9+YPp/s+q35hcnX1uK0xEye1EUXXYS7774bd911V/h5/vOfj9e97nXh7263iz/8wz8M37nvvvtw//334/DhwwCAw4cP4+6778ZDDz0UPnPbbbdh//79OP/88xd0WS12PUKobAHHosA0ItDJljPqKdhYlEu22zjFsS6eEL0lg1RAMyJHz6VTO2FOzycnOIxCbZynRmKGhu6MJ3QsD9zxetVwiJJj7RdRwRX6IzVgquj4udLnx5b77hw8T1e+w1xXIKDIT4sWIzCTJ3XGGWcMbYW+d+9enH322eH1N77xjbjmmmtw1llnYf/+/XjLW96Cw4cP40UvehEA4OKLL8b555+P17/+9XjPe96Do0eP4rrrrsORI0dab6nF9AiMOxFwG6n/CQLURtON9Gsel4KfAn/c+dZLF7Kz3nNSD6WwqUeibMJODRgfotvTj4plEk4IEUOVInNpS9VoanttUgp6baISo0LV3JkqWlU+rNUyXmEZf686VVR0rUJqMSMW3nHil3/5l1EUBS677DKsra3hkksuwfvf//7wflmW+MQnPoErr7wShw8fxt69e3HFFVfgne9856KH0uIUhjnxrpT+raE3FZZ8bUMn04Nlr6lgNf4fVVyjUJmoeJQYoedSRaUKDHVaGDyN8mVOKyd8ELkHlH9Pa6vCtSK9dnquenj1jjhmhvtCKyj53AgYe/1EBWYnEWBa7EqcktvHHzt2DAcOHMCjjz7aNpjdpTDHboq5HOZjgqAUL4rejuak5vGo6E2wcLfOlIcVYd6tHRmgidW31nEhs7XOcEEsae5KksjRq2Lo7Iy1SHbojci1VT5E93gvtkAi0WLJe3xlHbtSKKxx3+N4VzuRLFGIciltvA8505DKSPsWargUiKSKxFuV50llrsqtAa2S2l2YVo63vfta7ExQ+JLe3CS8DNkAAIykV6cJj+WgkCWLTT24yrjTWMS2QrVxXSZyPLoUi3TpOWmnBgrnvng+3dqFxErr2HAs3l0aROJDrhysAdZ9DRPrryp/DzTnE+5Vw1hPdoDHeuKBIZItqHD4Ozm3jEdrq/LPJt4vUgIIw39U3IAnYMixWrRAq6Ra7ACEOib2tFvtRIYaYd0nU9hIRmiiR8+KwisoCkp2amCIL/kZETqrM8HMsUG8Eb6XeISIjLhOLY1qbbw34T5gmDkIOR+/x9BbrmQ4zvD9TLmVdWzrpN8PhzFpTooUdX42hGPtcJi2Nu5arX92tbwOAEU9ks41st7NsyJt7+eb329xSqNVUi22Hwz3AMJ0E4UTlIX8HxgOG9EbGLVdxSQUFjC1eApWSA8W6MHTqutmS18JBUFZ+LFpKyRS0Rku7DmaNkrfvSJnDWrRr+aOGFoMHoofH0kdywN3XD0We/NpSHJQRDZhYd13cm+UYUR9Lrz/eZcKHTfbTOlrlQEYvaxMvCfdGoC/D6WZPmxLb7XFrkSrpFpsPyqRboFs4P+vbX2AjDjhlQePMW+IiMcu/Ikp8HmukEupXYhvXC0WBXfwwGxUKkpSqKQbeVdCe72sT1/elUKLbUkb13OzTRPzUAqGUE92ooJTBcEw35JXbswXaeizqftFE2tPx930/9DA1yvLygBWWjz1/X0e5bW2OG3QKqkWWwbzP38j1s50K+DMVS9ImxIm/FIW7jIAIFZ7KDZdoCBTGrq10ePhGDojzmW891KJIvLDDeFIhsOKWnJAopRYwAsM3xZ6ZwPEcFp+3UpkUNCD0X5+Ghossp9AVGHos/DjlGvS7ydj5f/FGwoNbuW7VOLGOuWvyq4yQF26001JhtFwYEuy2D1olVSLrcOgiHkXNi5dz7wf7ZtnEJll+jHNh6iyGkWzJkJOJMv1kOCggpbvdyugKOJrkyz7/WvxuOtlDGfpPk51nSoSJUfoZ5nvoYcDpOG9wvoQGeI1MWxX0iP0x14tnccSCBI2bTLLMCPDmQQVKMc4yIwGJU7ofaYxIb+cVyb33BrXm9AM3P9ZNA3Eui2eg/eDhc28L5o3az2uXYlWSbXYFJi/el9kja2Vrut30nrHxuS9QkNbAJJ6JYaaQqsfEUpKmR4FhtsoWMP5MNaZC21/ZhGCxrqwGcNltQFQAx3mo2wkJ4TQJvznrfQFLJzXxWsLPfSQvqYelNZWhZ6Evmcg7y9DkvQKSZYYpeh5DtRxnEDzPVdPNIG/HoZo6ZiVtVNWpSjNQeHmDMemSorKmwordASJeT6Dd3jmo3HHObYE+7SfnuLBtdhpaJVUi82BhbTnEU+FbX+UwUbBqaAlnuSEkHogtKKB+JmyQcDqmPiTn2uckuLx5wGFf1n4c1ROUTWF5ICUqt6VTg2AD9lJ7VjSakg8QfbYUwKKRVS28L+V8NCtmr0ihXZv1zBhE5qOUSKeO8A65RK+58dKJZ0bEGEMoiRpfJR1JLfQOKqK4dxdi1MKrZJqsTmoTbRkudGeQeyOXYpVzHBeaIxqMzKDR5PXkNQf2QlKSj05DfFtcqioVztSgELJCHru0lOwte5IyQZkCAJe2ct94L0IW30IPd34z1u48KUqAv4e1SMwMPKycKkq0GlgrBuvNU4x5ZtJqlItvZJOFK3xrED/Pa2ho8FT+ZZS9MS491VT4XSLUwLtk2uxIRh7fWyiOiiA4z0nGGwZrXl6PPR0QqiLykEtafGeoGE/pF6D5mzUE5pGaDZ5UrNCafCToAqE5zLWKZFAo7fpfUq+Y1Mvps7uV34NfF/DqSH/ZKJhoEW74zwoPS9p5R0Z26ww3nvKnymQMj2VdKEsQQ15hjEWMQ/HsZK84kOu5q5fj8q4sJ7EU8Ge+69mv4YWW4ZWSbXYGELbHOtyKRQ2ZR2EQCIMV7wnZRCt39og5CpCcS6QhPtyr4k/TS13RoFhIE2yzyNklUoOpCSCJm+EublEyfqwG4Ck+eooZREYgybeIyAqtI6QJSyigUCowdAbxFzQOOXEa8sVAgkegDNQwtb1okD5mubegNRL1u9YRIXCsarC5rXqnMnZkwrey7IGuoj3jfmrwvpu7W191U5Hq6RabBxlnRIQ6DGxqLbHHnLWCUgKBm28CkTBpKEwa6NwouCjoKcQmhaj2vzMCjL32P6IIc1SrHRuVRFCZfSaKLBtbKs0zXUMjCM/kIihMpmEgk6djqcSBcTXO7Xb6n5a5cznqkqAmyMmnkwWDqTxoN5ub+BCnzwuvUnWSWnBcN5xA4iGT2n9JpTeWx8UseeiepacLwyZsrs7c280mFrsaLRKqsVUMH/3nrTotJN5DFROxqaCgsIiMLFsGsYJLYess+4TAey1nnaWaApvzXQhEzyHaUChTcEXyCEm0sc78joFcjKObEyToLvlashTWxKF6zMx55SHGct6tutXT0qvN99+JCn4RSxWtnChOANHHqG3rcXZdXYfiSQfiTQMWvO+yfzRmjmL1HgakP1nxWt1yqqp3VJbZ7Vz0CqpFtMjbAfhhYF2XlBSA3MctIaXB8DefrOgruVvUFHlr9lo/QYF4cdDltc0FHR+bhowRKdeTt5LkMqn9C+wJqqQe2DgiRDiWYT7hVTBjMJ6Gb0NIDLxVvrN95XHZ+H0uDBiv4w99Bg+Y+d19Y60pdOaeJE8pEGss+J1WcQGuMBwt4rCuvfZmkmNn/y+Wzmmkl/CM7DiadW+M4gP7677kKSen6HnWTzxFtuCVkm1mB4WPmdAISxej1q6unNtWQ/3jyOMdUqG3gFPkheiMnxICvWAXox/08q5Q33RBrHuhWuncjkNVYAUkBxb4c836LjvUWD3DIY2+9PvTSMgGVokOYXbeHRq161j1H2Fme74Jzux1VLo8N6PoVolH3AMZMup0OdW8Un9mf/uSS9m8o4WhY3HY//AZamDovLOWzMxd8lz8PxkjOp9KC2w4hmT3HVY69Ra7Hi0SqrFEMzjN6YvDAqX6KdMyuWihlmC11OnAqkJgTGG5uQ3kIYR9Vz6Hc1laXeGjaCwPjSF5tCi1iXl4LiS+9XghTG0ObYuSYSznle9sqHzm+FnNO74yobT8Js+Ez0ez633oJTnHsZr056KnTr24yNyEkwpSorGCnyojudhqI4Ki9c7bq5xSihDcQwaO66vdWCXrhv/xRYLR6ukWgxjT18WsxcOocNAZilrHz124A6CRizmJqyXcWPAISGs4bLsGCpI891v+bl59pRSdMYoWSNCVcNPldyv/LrzLTyoWIEYqgx/27TOjL+B6IGN8wJ0HKMU9sB7Rvws+/oZAGsybj4L9Zr0mAw9FjY2tuV1AEC3jN7N3nVg33o8f21cnoreGhvbqhcVrqlI76k1rkUTlanezyb0peMGP9svxzcLztF6XtuCVkm1GEZIThtnwVbeYgWiRR2sdYPEzO5WqaIZ5W0Aw01YASkQVaXVIHw0ga8KNS/2nderyhUjQS8mWPKIghIYDlNC3s89P8h38lyVsgI11DVubISSEJraOVFBDcr4WaWP9wugkNxakZ27Rswd6dYi7JCREzmIFTEcOnUMHXd9HoueVhNyBcFiZ95/7SqfI+/UwRZVA+NCudNi3FxusWlolVQLACPCGxoKagrxNYWqWCQ5DhQYTbVG1sKFd/znTIOSoXeluSEqAerMQAsXJUevS18bVRwLOVZyPzDcBYEo5dr1HAVEQdnIYtSO5Lx33YxizdooHd8oYcm8ku4MTMVNb4c1TsxD6fnVg83zR6wx48fzMVGZ6WaJAJxGGzTn4Mg07BdxjLNAC6AnfZeevbXO8CpsbJk0Q1mCWftFl2NbL2EPvnW28baYC62SajEarIUJXgok6Y3xobxRWO3Ebtz9YrjBLOnDqiCarOjCuhY5qjTgx8q2QJqgD8xEk3bbZqcMRbeWjQdFSWs+gwJez83Ql7EudBVCU/64NaJyY9se3cSwsC7UulS517V+SD0ZhvuqIiqPE900PEhlXIqXws+SFJI/Oo49NGwVRaXeHDuxczwck+akwjEnKBBeM0khmwGLuN0HnyMQCSA0rFgqMSqsV8uzy+dMi01Dq6ROY4zcjpvIQ1nDB5gNVBRUFgzXDR2XCpFezpQCgTkyVar6W8OC6hXl1OgaUVHmx1dFM+RdIq1bCt/X8J8I+8CcM1FIVxVQ1/HeqBLPvVaGY3lPB3IsC+e10ZPieFVZczhBkct51EvR3FnTfRk1vmlBL2ejRdbjoNcExHnAPBzgFffAsQFHQYw2841fjh571+2ubM/+mc27htMUrZJq0QxamXktjIUTjLSoSTGfBhQMpAJriKexMLSIdGFNchu41wYi2GpE706t+hDKKQBbxxAgBS5DPnp+hsK0awIQP09vjQpE66Jy0gjzIaxFYl1S2BfKn7OUcXMPq7pyXSM0rKi0bNRAXcYddlX5UyFVSBVOcv2ZAcJnkocgNfynz0jvlzW+UHvONkObSUpgTRSf28BESn2Ya750oDJxfuX5MfWs+UxpELSkik1Dq6RaNGO1Azzei/H+kAj3i1pDVAUms+k0zLXWQSg2DUWjAFjzpN4DW+SElkgicDt1Gnap5fVeleYqTI1Qk8VwGb0VKmPt2D5gG6cq5plUCaxLAWqvil7U8iDLyUDyb0XcCJHHIlW9EAXFrdyB1KviZ6lE2AqIeSj+X6z94Enl+SV6l8HrotIx8fvMT+m99x9JFOF6GYU6a+c22tVjMxDIHYVT/mudYXYoQ9CFdWzE5YZ5XYmRwR6GJHG0WDhaJXWawPztL7kOBSuD8fUkhIbHNHSllnSfIapR8R8dQBYnaqqJUjS1zaEQzcNRiqTbg7ynIS09tXYu0HCghgnzcSkbTllshYwpr+dqqj3Kx6z1QpVxq7MqnGFQl+kxIWNL7g/i9Vj4683uH+T+8bnQs9KQWF6bRtDr0zzVTlRKo8DWUQpVutybKn/2o6asPE/zyLvdGlsatK2VFoRWSZ0uYK3LWhlrWsYVkbJpJ7+XKzZ9n6GO7hgKMZDWHgGIhbKZAlOoBxCse3++niTDmS8a59Vp3RUQFU7oQyfKZ+Dp0dqjMISLCud9rZex9VAJUVQ2KrzKAOudaHEb3gdRcCRqlHWsI1LCwaAATiKSKHgshpyaqOoW8XUSH6h4VUDTky3hvDYD7xHVw/ed4Psh7Gli6DYYMztYcSUGA1KjgeFcU7jnskca0BbWPRc+L911WUOiLRaKVkmdLjCIi4oLahT1VgkOQBReQBQ87AJuIJ2/q8nFkerhGBWCSL0ZPZeOMfeOZinGZPgKSL0nDfnw+oPAl+8H5V04Zb/ajZ+hws0VGkND/SK954VxP8a6kNK4PnKd2rVnQikKVI6fFxLzOkJTWhPp6aU/t0WqVPU6km4hI+5l4SV82O0X6bMZVaO1E5AQYMQDpefMec/NE8MOxrJuWNtF4oV6wvDHaQmAC0GrpHYxzN/+UsZoQlQIebhKkXsvSbeJTHjnhasTByWKIvGobCQ+KPOMn5v2+NOCIR8KHobGhkJe8puWtx5j3NhU6QYvJj/WlBfWsY74wWdGJVPCeXwQlhpbBTFnl1v4HFc5YfxAfBbj6OFNimgnKidCiQ9cE8lvpPdEryWvH2PjWu2S4e+psmfb0N/8aJXUboYmcxPqtXXtaPiZHIWENAZFrMHRuiitjyGxoTOFV7M8iHU8wfPwwjaHWugh/DTTHWg+JoVOWTvvrz9IyQydOtY5MYRFIcZ72LEABrGuhr3mwnkQyRL0dmAj63C9jB0fen6b9KZ7QHS9l9oX0kdPBK0qQ+YIeW6D6MFxXATJK6rIqiLS8PtyT+gxb5UConG0aObcameYbKI5PQO4vB2GjTh677wn3DOM+4eFObODlfQphlZJ7WZQmGkYiAJMw0ZNC4pCt4Jn5JUpKYDCTRuLThPeIIMt7/SgBAT+P7Df7DARYlEINHVRQCReNBWnBs/CJ8DUgs7DXUo+4VtU7EYKavME/ThQQFrE3nU6LlWKhXVsu6bx09Pic8775dki8zhMfP6zhFjnBbfwAOLcWtS52c09FEojjSyosdH0aDo1UHkDkPc3FECjVVALRqukdhnM6i9G4ZKDa6c2TggUFlivm4kGe/qRMt0v4uLjouUOu9weYZYdb7v1cNI6sM0QFzkVqdY0FQzTYXZhQCXdke91PW2cyf9BEQkgCQnCf56Kmwq6K0I+DxHluYo8t0ZPd1bvhN/TsCGVYuiJh3Qe6OGpNDsi/PP7FLwKO1xou9W5Jnr/vM6NnpvzjLR53id66pqTa4IafnzmTYZKcsp3AIMCtvNvNjb20xCtktptoJCqvRRTwRkYbAD6UqjbpKQ6NfCEk/Hv491UePWq2PV6WbaE5+Idp7Cm7VBOb4BjDvsdmRh6nMXD0j2Z+J2ukD3WOu4zVEDGRs+E19Wp3arh9+kZ5vsTUfEUiApPd8Xt1LEGpzeYXsED8Tzj2g1pRwuG+FSwUkmGdkHi9akHuyRhwlCflYULNxN89oBXzEW8l/OC3+8h0v15f5TcwmbJChp4mutTUsW457iILWROQ7RKapcgJGkLg7BzbhPUwqanwh5wo7A0SHvMAV5Jad7Gn5PHZR5kI1av1jZxB14qKHpTs1RQKpOvKYzTE+8pFNNaoC6igE6S4yLQmq6TYy8swkaRirCtxYjxbATG+g4QNobqyDCkl9fkIam3HXZZ9gy+CtHQUc9zK4Qv2XL0qDYCzp+SpQAmPt9SPMcmDzOhrusxpz319Y1zpSVWjEarpHYbChutW1p9tY8LBVYYEDb0I5XZNCxKYt+626Zca4rKetiLYQ0PQ4kdv3XDRvZ2Ym0TtwoJ+Smknsk0oJKtCjS279EQnB6WyoahofB5/1vZYcp2ZA1SYR2NH4iKiVucGzRb7BuFUux5PlXA+fno9QHu3uQhLyo9IBYY8xo3A2UNFAXCgwhe6QJICYFE4u8NFY8pYi5SqeQGMnf8/OE2I9yQsZ4y3N3mq2ZGq6R2K3qaYPfSJyw8xLg8FUuN8T34KNxGMdBIVT/ZjQXDnTIK8nkVlXo1FIxNm+JNAwoZhvRGUacNUo+r1DEwNIaYx7By7I58TrcypxIbeOZcLgwXibVO+ow5lqZtTxSqYMeNiwp2ErRIdlbhTA9dj7Eo1hwZeUSN6BVqCJmhZSAN+yrpgp59d9GucAuiVVKnMCZ2MW9aN1pjQwFGAbpR0ANRxhnPt1HkdU0bQWByYbTQ03syVAvmtRfHwUPkBaxJ4TGiMOR+RpuhoFSB0mvjc95qJKc0s48hD+cu6hroGYfnaaJi5r1SL9nY9BkrLNC80GZDW1M1GjPVRH/gAx/AhRdeiP3792P//v04fPgwPvnJT4b3X/KSl8AYk/z85E/+ZHKM+++/H5deein27NmDgwcP4q1vfSsGgw1u9d2iGcqSY9iJ9S5LnvjQXZA1T4+H9VVk/JGEsFGEmqwNHIvfz1sd0Qtc7biasMd7ft8rHyrt1ul94uf1h921w5YZQt3Wa+C936wwmQryvJPGVkJzePPWVnWr2OCX+cJFQMsLkh8bw4A05Ki4OJc7WSh0s4yNFgEzeVJPecpT8O53vxvf8R3fAWstPvShD+E1r3kN/uzP/gzf9V3fBQB405vehHe+853hO3v27Al/V1WFSy+9FIcOHcIXvvAFPPDAA7j88svR7XZx4403LuiSWgyBgiosTMRkeJPVPy+42Lvi8WyUiaWYJAzyHEOuCAoMFwXrHkzsbB7yXUgVWgGfk0MkDwBIm5XW4inBW+hY7H2eBCb4C4uRuxtv5rmBxXjPmwX1lAjdMiZvzcXPFjbmrXKva1GKiiSXFgEzKalXv/rVyf/f9a534QMf+AD+5E/+JCipPXv24NChQ43f//SnP417770Xt99+O8455xw897nPxQ033IC3ve1teMc73oFerzfnZexumIf/X4l/AziwOj31N9TB2Fi4aoFQvDorjXsS2CaGC3je/NGsUOaV3itVkIG0INfLz+f97ahoknOMOjeiYDFIhcx2CGtlXDKntlWoRbifKhinFDRUahBZmpqjXFQ41Xtwpn4nUBvY7s9v/Ji7AHO3QKyqCr/927+N48eP4/Dhw+H1j3zkI3jiE5+I5zznObj22mtx4sSJ8N4dd9yBCy64AOecc0547ZJLLsGxY8dwzz33jDzX2toajh07lvycVmB4gkWms9SmLA1cYS5/2Mx0T9+x9vb0Y0uXRWCpiufatz79hojzgmy90PS1AxzvuZDd8W76WbY7yj07No1d7UTih9YMKWymCPNGtFrYq6FAdtfeCiz757sycH9vRYcIwHujxTBRZ6dD85xqvOj/CdYFrsi66VZpgfi8CPuOta6UYmbixN13343Dhw9jdXUV+/btw8c//nGcf/75AIAf+7Efw9Oe9jSce+65+PKXv4y3ve1tuO+++/C7v/u7AICjR48mCgpA+P/Ro0dHnvOmm27C9ddfP+tQdw8C+WDO+DcV0FYIDaUqbwWoTHRbenbJqI0T1OOEtHpQfS9kgeYcyFAjUibVJbxJBViZmJxX72LR8mcndRqvCtePsKyB7uSP7ziEVlwTPqfzaZridcW45xXqz7C13u8Ox8xK6ju/8ztx11134dFHH8XHPvYxXHHFFfjsZz+L888/H29+85vD5y644AI8+clPxkUXXYSvfe1reMYznjH3IK+99lpcc8014f/Hjh3DeeedN/fxThWY9Rv89uki5ObxfU8Vi3YeGAyz6xSTLt0ipRMnisikocO8mSuZXUWd5ieM9XVoJj3PqK7zwOzCbieCnRd2itKcBSFkJ89onEFBw7GQ/08DDQ0nr/P5Ixg8pr4+HPd0ZvzNrKR6vR6e+cxnAgCe97zn4Utf+hLe97734Td+4zeGPvvCF74QAPDVr34Vz3jGM3Do0CF88YtfTD7z4IMPAsDIPBYALC0tYWlpadahnvoItU5mfobUdiJnty2CPp5jUk5gUohNCRMDyUlVxuXt+iWwVkcllf9omEgJEkrO4DhYCAqkBcODMlrQS4PIJJv2+oF4rxfdMXwW0JMskDLkRiFvjrudbYMK6563qaUAeszYSyFaANOtTQ0P6zoYaqSM7X2OOwwbrpOq6xpra2uN7911110AgCc/+ckAgMOHD+Nd73oXHnroIRw8eBAAcNttt2H//v0hZHi6Y6j2SeuathrjLP9poLvFEk2dxTeCnKiQQ8NyTdAWUXnHcivvA8Jcy8J+YSzyHypOVZKay+K5qbxCIWkRr2mW+xQ8vg0+s42giTQy7tk0Nb/dLgQPMDM8pvnetAievm14DSmLMD8N5UK/PO0IFTMpqWuvvRavfOUr8dSnPhWPPfYYbrnlFnzmM5/Brbfeiq997Wu45ZZb8KpXvQpnn302vvzlL+Pqq6/Gi1/8Ylx44YUAgIsvvhjnn38+Xv/61+M973kPjh49iuuuuw5Hjhw5PT2labEdCqqSBK5W4M/y/X6DkqKgXhTrj9ZnD4AZxA4AZTFdRwc2WTVFuh9Q0qeNx/SMuVADld2T3Gtkt3dV1rpVRl5DZSB5CTNdVwdFkxBUKOtyM2Dlh6228sa7CpZB7AQlBUSD0Mr/FwkN1+flEsB0LNtTORw8J2ZSUg899BAuv/xyPPDAAzhw4AAuvPBC3HrrrfiBH/gBfOMb38Dtt9+O9773vTh+/DjOO+88XHbZZbjuuuvC98uyxCc+8QlceeWVOHz4MPbu3Ysrrrgiqatqsc2gcF73SXAgTfyz9mlPf/QxSERY68QwFhcXWwmV9fhjzIpSPDTdkXZSKx12c2eoSa37vHkqBW5pJZzl32Onh7z2zMApMxVGueLWHAiVGl+ftVh01EdpNGhvx0VDvU6egve/6RpYGjEL65EKP+8ruFGE8dmG1zLMEuIDfK2anwtFHVsr6denDeefhmFAY61dwBPeWhw7dgwHDhzAo48+iv3792/3cBaKia2ONhu05PuF30FXPAoqGyqpUQuGAvFENy5QFcRUUvvWN+caqCRDz7oJeZHHltw1r3UifZpfIZ2bCo91YKvyWXon3QpYbmgWy/GwXZEqKQ0dAlFYsTtFYaejkJPmPurzZC8W2FjD33FYL90PEK+Lu9dutDMDjxe67MvxFt31YZISmkdJAfHZJrs1I743bamANcBqCax3YA/87HTf2YGYVo63vft2Kx7vuck8a51ME4W8aQPFUdDwTWGdF6HFkNqOaLO2eRi1W24TCgvsXReFU6bXwJZI2vVdQ4IMAwLewwIwqk+depRADM1pPZZ6rex+sWTi3lM5lIE47nq1I/tmIYRJ4bxwjm1e5ZjvhaWh0uS8vk4pEA82eI2Tvj/r8TWsWXsFtV4Of6YoxntKOk86FigXGInYwWiV1G5DbZwHQ+/gZMf36KtmC6+p8qDSqiWkNWqdBgIChoUyoXmLhNVkoycHbMxCnkWQ0EPieCwiqYGeQH680LkD6a68/H6yBTkFp4nWNIW5geS40HxveTyeh99nv0CeOycuNF3nzIl+//c0z4HKW73RKvPwJh0n7zpukXq4vH5VWj0DYODyeH1EZbzIfn8bheYydTNKIDJHC/msXqeuE35+qwq0dwBaJbUDYFZ/cbSlPCuG6oT8oijmKLDSfmZAXGBUQKNAYTlKQDQVtdIDSbyC8MbWoMiUCawomAyljcQJtX6b8iva542KiDsnN9V15f3vRuVsrPyeJq0zj4dBRTWLsFdhOst5SfygEZO8Jp6ivmblM7DR6ydJRMOn6slvBwzStaHPGpDrNs3XydflGpge2M11VK2S2glY5LrhsUrf6BSIlli/nM8C46LI95PK2Wyh8wKENIB0MQYrETEsx64P9GBoNTMns1WCJWwbL1tcjCIZMAfV9HoT9LPWh3vWxbLO+w4q1OLOSRnqRelnFwFjXXhqwBDTFKHZpvlHD3BcIbN2bM8/ptes5+nLPKn9zdByghMmdrFnO6zOiOe2FWBz56KI8555SiB9hsy7MXrB9+mtnkZoldROwCJ7uvFYDDcFBWBdTzqzwEmuYT3Nw4Tarlo8B8T3NOFtrHuvFmJBv4zv12brWsToVvDaBX3RoGWfK6hAUmnwhhtzXJkLFcKlGVllI2DIrsCUSkqMkQLxeY+b4uqhU2BrCHXUeTQ0q8di/7uTXfc3c2GdGsDAdXDZzjAglZU1TtEqdy08e4vEU6yNYwbulPDlFqJVUtsEU70zTsDeAicecyVVgdDpXGUZ8wOLqlGCCCXIeRiq4296YE3nDesyC+lsRoeKcSisS8Kr1b9Z588ZjwZeWBWOvq3nHRk2RXYMm4a4FoFAu59SWYc+k0AoQp+kpNQjJMmA31doKJDH5vXyPpR+/iOb51RmVQFU3lve7g4uNBjzAnL3pv+//z1POcIuQauktgubVe9grE/0Iw0hAZFpVZnF0IJVIOn5w98zjDkPdeVthrYKTRTyzQA7suedLkgl1+R5t2rOpzCktpm5lrIGVmaYq3l+bppxMa+XKyG9Nwx9rZepAcPwF8Oy3DGALa54/CrzWAZmdId+5nEXuYXNKBQ2zoN+GUsnguGCOIbTLMxHtEpqi7FldVDdalgArpfDfedWBhtbiHnrn3lBrzIcF9tj6W7lOdmnTZPo1gCQHI52umjCTrasp72XNEiCQTViTvH+VMbnduo0t2kAcNNJdjVhc2ZVepNKKmjIWbt1+Ss+R+bWciN2wnrYzdvPt0pqt0K7dzMEEmLg3mrjZzZaVLuIokftX0YLdrdbjt1qmN3F5rZAFLzTtHc61UEhrMJau3SYIipzU8S91XKqeYehYsTQdk7wmTQf6c2iAlCmXttmQfNP+fi2I6Kwg9Aqqd0KJpCXqhg+6FaeFeU3B1wvXR3VWscpsjPWFxeGZNcJi8khNC1I5e7BixQK04adFFvVVTwPj25WN4idjqFQpk3zmAzfUWkHxl6Dt8MQ6V75HguCufV703NlyG29jHVafRsNPRpPk7qYzAP19EK9FNK822mKVkltAbal1VGTFxOYVjZ23gbcoiy9l7VIoWzhKcH1bAw9TaRvF3ZS49PTHZp70hZD45rXAn7OSU/GSYQS0r3zXK6Bz/1ZCSUucHJoHRiRK6gZlNRuC/21SmonYhFWfLeK8XiFvmQRW7RoOKW0G29CWsgCm7S+GE7ZSW0kKaS4v9RpHG7ZNEwbDmZITwlA9IjGGTNs8UW6f8hT+e+ph90vHZmiKqLSoMLScxQMx46h+TfVuo1TNFSKpQXMYDHrbxehVVLbDca/2dCVDKaB92qWKs+wGsweCmpaFAkt1yehediqcGHAbg2cubqx0FNQPJiOWFFY14VBKcPzhOlGYdamoBRUA39/TudQ3GaAc8/L+6lZgMuDqDimfZZUctqBn8y5uhDWq7RiAkbUrNlIFsq3m2FBcr+IOwho7SDD2Gr0aD++snYSeR7jlESoXYhWSW03NGbOws7KRGut763ATg0sYsstTRzTwtSiSKWpb/hcmC/pa/2XLRYb9pupb53+LFBZtnAIJQaY/d7OI4zpqU9bs8VTcA5OQ7hQ9mAgv0w5vo2SM0YoKYN3OMPzRBf2rLfNd+xtRqukthNrHVcVn3QekN8VgNo/okXliqg4elVk+/U7aRy+U7ux9aSwdR4hPQt9V61XLri6jOffSPhjnrHnAsfAeZi7nXG4ldjqQu0in0NeG7GbBpmVocktPSnJiRmLpHSAqApHQtImsoCEJUmXz9bSqPZas6BfunU8am5udP1sM1oltR1gp/JB4VoV5e1dgsKQ7tjL5eIsetK76youSvb3QwVYhh+FTaWMIx5jURjqVWdi2IX5h62kYevzqIwTAiwIbZXU7kHomGJle5pSqO4yL7kOlNCg05a5Xa6jip4Nu+Wb6byxWVEbJ0OqAq4FfAMK6wysUxStktokjGX0MS5Oj4FhpVDT4ScUKbF8bxETXD22oUF7q7K08afJ+ls0JoZfJoRomjDElpph/Ho+zWG0Ib/dCQ3vUZEYk7JhtYu6/q3HoHdl5T2dhqEH3wLzrLmB1/QZb3SZ/g1AtzrlGH+tktouLGnrItMw4a2zyri77SIseBIjmnYGZThr2XeLXhpMDhGwg4XmbajYZtm7KHQcsLH7M8cEKokZFzavT5lTsygbem6VCJXd5EWtl5Mp3KcTjPymB1SYOGd61fg5HYgR/kAkV3BtWLjIRG0WQ8DROkSePwc9Oo3QaB3WKYJWSS0Q5oH/L2433p1gMYU6D5/QVeFZ+vBaYeMOnouwvrSoMa8DooVY1nE32nEgC1FbLxU2dgEozOy1JFRWah1OSnSPG1+yFUIdreNpjpfc7wlbTZxqWC9dzrFTAUsbSNbvNtCLYkSjkDUwKZKhdHR+NigJ/xlVFvPecxpefelNyPPn0K4dVl5rldRpjH7hlNO06FaxNY56I5zAXZnUexewVXSw6rIcWNfHzZeoYOvJ1p4qKSANj3G79VmwNIgU3ry32jwLurQIuwjPywYj+7GYR0vuYLCNUFv/NXz9zDvVdWrETTOH2NGFBk1tAJQxYhGMQ40vToG1DsIuzpyKIYXmDcomg3BQxDXAL00KD+5AtEpqkWCN0azrPuRAsi8WduN99RRUTEqUYO0J4M515up0C7LyoUhahWxV05lDQRH8Xr4j8DyCtPShF1ukVPZZBcSi2jP1y+G6mu3EpNDl6Uy7535POcbdE11HQ9/z3w1GmGk+vqLypKp138KsNrFfoeEY6/GM0/UyhqtDpObUC++2SmoBMP/3vW5CJW1UtnNEI6BbIQDDNSDdGYQoFV5VOGqv7nuzKGxUSCoLK+S5tknwUlCdKr2W2I1ba+paNGOS8goG6AxCoV84JdMvU/JUabySkuOPQhLWj+c3q78Y3rd7fm76MW0TWiW1CJQ1sOxj0HvXd15nAtZDKUWW+TDuxVNY4Iy16Y9ZG9+qxnfF6FZpN+qdAiazF8WOnBenUp1KJfkO3rLteLbcoXkWEs5mYp4x9Cqfd0ZUGtPMBd1XTZnADCXqum1C2J0ZKUNRsdPW6gi0SmoR4KQrLLB/BkG/VTjuGYJrHbfwjY0TfHkwW0iRIYSqiNe90neKaidOejIOdyuYv2ui6c/T+Z2h4KCkhGAzKpy1GVgvI2nIYmczES0Qbn7TPZ9l3KGAnM8VsSCY62tS1GOtIy2nxuwosBPXawNaJbUIKL15J6KwrnsFkNK7Z823UICRMcQwGq21FlsPfZ4b9Ta0G3dI/O8Q7ARPahQWOfdpFLBWK9RtIa0ZHNesljqxKcTNsLNnH5q1XwxywJb/ZnHXsUC0SmoROPvEdo9gPFYG0fJaL6WeyU4XejjRdT9aPNiRTed2U/3QqYZF5wBzgyOwyLZYSbAllzkN5xeJEYUFiiJlzhbWlQ6MUtr0xMo6dtHICVO6GSp/d0aQRXYAWiV1OkD7gzVRbkehKoD1Anh4xfUY1CaY7Mq+ETbfNKjFsm+x+Ri1/cR2YKu2bt9pMNYrDMmjkjjB0oFR0AJ9fm5gpHm0z0uThJF3yNiBaJXUnNiWjQw3iq5YYNOEcrh9CDtUsHyJHhXj5oNN7Gm3gyJOux47RTmdzsgfgYb4uBfWuLXWqdOuLUAM44amyTT8TFZHtTPRKqnTDdMqk6oAHltyimqtjIQLhghWOzGhPSh8G6U5vKpJmwruYAuvhQf3QeM8CeGjGlgeE5pqkWLUZokMfU7jWRob2cXsyK77Za37jun0skJ394VeyULRKqkWzVj3yklbKRkA8KGCQQGYMioYAwADYGUGJbXWiVvW71R2YIvx6JfA472opBhKWvY7zBbYeSUZ82KaLeg3grzxs5Ik5lkb7PJuxYMiMxd19Kis1E95VqV94s9s9GoWhlZJ7STspN01uYU1t6jQGg0SL9iElSSKabcD0H2aGIqoCsRN6XbIPWgxGXz2ZHwyZ0Kizk6ljc+Dzb6WJobmRu5hYd2aKmug443MQUaWoALU9b3DtvVoldR2wMqCJpjU5OTZbvQq18ev8qGBvvTT04lNq3llML1yYTulYDUW8bik88+irLejhc+giGGT7g4pNt0OGE+iqY1TVjRoGELaCXN5u8GiZM0tNYHsSmBxHVzKWnqA1mlpQegRWsXnZexw78xtRqukZsBCyBJhQz8Dtx2Aja+zhmGngNYwwwL5diLqVc0ipNn1QplL2lKqMNMzjqjsJjGeNmOzOYZNCoNkgzxgd3kQk1D6DvMoAFNHY+N0VdwKzTOx1mkc1dsgzv1FbnLK59G0B5WGEwtgp/X3a5XUVoP0UmtTK4kNI3cSmEugR6WYNyxnjRQByzH4t/5Mg6CkxnxmkcKSyol91ZirU2ODn5tHgZ+qKKzr4djZBq92J0ML3yeBCgqIzWjNlMzZcamC0sb+mh0bxzSQCIaOYQfZyUCrpLYH8+w0u91YlAKtRIg1hfVmWSRNbKhRUAtyI3kvhirXPTW/Y2LeoMlKLWsXDjtd0CooB85NzgcLBC00zkNK9qEyaTH1qO/0fauy0qYMQN1FwPhBqDHHrXaG1uDOeoYzBR8/8IEP4MILL8T+/fuxf/9+HD58GJ/85CfD+6urqzhy5AjOPvts7Nu3D5dddhkefPDB5Bj3338/Lr30UuzZswcHDx7EW9/6VgwGO3cRG7wj/LRYEDRUqEnbUBMyxSLRFj7TwsrPPAh7cc2gGHdS+LbF1oHPPSgKTC/89bu6/9uoz9bZj35n0inz6ekVmqneCfP4jTCPvnu6MW8iZvKknvKUp+Dd7343vuM7vgPWWnzoQx/Ca17zGvzZn/0Zvuu7vgtXX301fv/3fx8f/ehHceDAAVx11VV47Wtfi89//vMAgKqqcOmll+LQoUP4whe+gAceeACXX345ut0ubrzxxk25wBY7DGQNArN1q+D+OgqG06ZJLhsL1J5K35mRmJEfp0Dcx6dTR7q17oRKqu8Os0pPC7AxLQXwLJ0rNGe8iI4XOs+0QWzjuRHnT+6RN23zwnCz7hvVLzLDz6bzPdlgFfGY6t1xjvcqYLD989dYazc0irPOOgu/9Eu/hB/6oR/Ck570JNxyyy34oR/6IQDAX/7lX+LZz3427rjjDrzoRS/CJz/5SfyTf/JP8M1vfhPnnHMOAODXf/3X8ba3vQ1/+7d/i16vN9U5jx07hgMHDuDRRx/F/v37NzL8iWg9qE0A8zizCPDHey7Upl4YdxCetkM2N4/jBo2zKhBrXEd5IC56bpmQf45bo2xGuI+ChluvrAx2Xj5zu/B4DzjeS/OBe/vT1Wqx+LXy93cjhch5DtfY0XNe85hafMtQHLf7yJ+xhp51TRlI7z8bd8rWMKLmUfMO69n9sN2fn+8eTMC0cnxurmFVVfjt3/5tHD9+HIcPH8add96Jfr+Pl7/85eEzz3rWs/DUpz4Vd9xxBwDgjjvuwAUXXBAUFABccsklOHbsGO65556R51pbW8OxY8eSnxanMObJCXH7gkoWWrKp2xQIluoGQnDBSrVRIORgGJNtbBaNcHx/jtZbS6HlEdN62psxhpwENKmrSpgz4qX3qtERhyS0Jx4SfxP6elCEGA4TNuV3d8Dcmpk4cffdd+Pw4cNYXV3Fvn378PGPfxznn38+7rrrLvR6PZx55pnJ58855xwcPXoUAHD06NFEQfF9vjcKN910E66//vpZh7oYhMSn/71dFquGIXbSNuRbAYb6TnSlBscCGPgakCkYUIMCWO9EOn1nDgWiAqfw/x81H3j8zVzk3Qrobt7htwx936oneD+YP9S2VMXQFUso5jnWrJ7+0PdHGDDjPs/zTrOzQFUM56P4XStkCFU+rMWsTOpJqZLsmnhudqzYZszsSX3nd34n7rrrLvzpn/4prrzySlxxxRW49957N2NsAddeey0effTR8PONb3xjU8+XYL10AvJkx/0mq2srwcLRfuE6Gm9nsd166cJmW4nKhzTWZXdhUsGVATUOoS1MMZv3lSMheGD8Gt4BVujCwe4g7Ka9CKyVcUPO9TJ27Z4HZR13ie5Wu7eTuuauAiFIogTJ30iby7LV2aCI/6/k/7qmdsAcnlna9Ho9PPOZzwQAPO95z8OXvvQlvO9978MP//APY319HY888kjiTT344IM4dOgQAODQoUP44he/mByP7D9+pglLS0tYWlqadahzw6zfIBZKMWyNlLVrc7+VW4JbUU6FbCe9pec3UUFsJQxiH7ikjYudMdwnC5udEWbtbJEUZm7/At5S6LMPifcFYMmvI4ZH1cqfFeyAMg9Kv6dSuf3ew0QwHGgQw366LhpLO7J7m4cFjXFEicK6v/2xmJe325Sf37ApVNc11tbW8LznPQ/dbhd/+Id/GN677777cP/99+Pw4cMAgMOHD+Puu+/GQw89FD5z2223Yf/+/Tj//PM3OpTFgWGgdW/hrXZi4v5EFzjhk7OPLbn/r3aihb4ZMIjFd+xirFtlbDZqTxg40Y0W71Z6U4zVc2GqMMsX2jhQQdEzXS8nfiVBZaIHUWN+b+xUgTVx7j+25OY853u/iPNxo0ZLtwL2rTsCSG8HeD/zNnTdShivjLmnG3/YQ1PzvlRMBdK1Q++JHiwL1DfqzS4YM0maa6+9Fq985Svx1Kc+FY899hhuueUWfOYzn8Gtt96KAwcO4I1vfCOuueYanHXWWdi/fz/e8pa34PDhw3jRi14EALj44otx/vnn4/Wvfz3e85734OjRo7juuutw5MiRLfWUJoL0zeAiZ94Uu0VYxCI6i83r+GzscNJ/Kz0phgbUk8hbG40CdwndKMJCy4gLwGwFvUAa/pgFvP6Cx9rhgmyjCAq9zIwB6QHHz0yTR2mxWCgxRH9GISFwaFgQMadFGVMVbgfgHYCZlNRDDz2Eyy+/HA888AAOHDiACy+8ELfeeit+4Ad+AADwy7/8yyiKApdddhnW1tZwySWX4P3vf3/4flmW+MQnPoErr7wShw8fxt69e3HFFVfgne9852KvaqPQPVlocdtOGvKzkB5zfqvmzSJVFNbt1TSo4yQivdkaIRJsEtjxXENrvSnouX1vkZVmY01YS1+LxIQv97TqVi5UNM1971XASj/uX9WZoWs7wdykAdD1ZI2lwe7tKMEtVLiRXmjV49+noXY6KOydirJ2bcvYAJrPhopH/66R0uxDPisL3dZieAPTGaObiA3XSW0HNrtOaqg2arXjwh2afDc2CsieD1dsNli0N5CkddePoTMni2larHl7hkJqnMdovXV9spPmfsi46s6xd1RVuFAToXVS00Kt/nmYdw+vAH+7132PtSsrfeDsk6dHfoqhvaZL3ez512I65HlXjRrQuCVLOO8ryMJfFv8uD6Jxugn1UtPK8bZ3n2Bk4W4IL7lPbRtILwWioKgNgMKRKTb73MQkgZwLMrKP4K25QTE76aSsh8MPs3quLGycV6FoDQrDIzZb6Kc6xvaVQ2qpJ7U4p4GSPhWg1Hdr07XHv5taJo1jq/rPhk0RVzuwB9+6iReRolVS00BbipAlU4rVsbRFFqRaObaT1kNsNmaxksmS6tZpLm2jQ11EWG0jHg+pzUC6YdxuUVD90lvTI+5RHjLSBqbA1rJdW4wHu9IDvisFYhSBykvDtgyhswaTv6m4cgNtC9EqqWmQexElpDJ8DjYS3fB5E83dyvexs3F8VAY7iZWUU16BrWUlLhpspwTERb2T7vdGUPkaPGNGz0uLqKBInAnvGQD9rRhpi1nB8DZqz0ylYeXnrm40WtZpqQfXsCqoLW6a3CqpaUEPig93Wita48JAusB71fxswF6VeienikWvFt6phq706Qt90TbQ320noRjjQRGldSQhdu3Q0GDL7NvZMDbWPuV7nwVFxIiHHY56UP7575sH/r8wD+xTrtnUobdKalp0K8dSY8I9tOfB6Dj+Y0uuvoj1JFRO/OjywDW/7FbAmauzjacNrWw9uhVw8Lj7e57egzu5CayZgviwCGLEqmdHztIBv8XGwTZdFmnLpHyTTt0I0cAZJXxeAIBBmnPeAq+qVVLTohDFFHpb+fes/EeZNSe6TlENjCuEzItHueNtrwLOWG8X7amAebymQeGEc686fY0La4DVElj1/RcZQWjn/NbBqGENbzRjONcUvCmZq3xOHeOMFRKHtgCnvZIyj90EnLE2/kOFdQqFf48/YnPLnJCARDYZ/Gu7IWTUYjROhS4Gm4kkLG2b10iLzQeJE2zvxsJd9Ywok1hyA8TeRPzcFj6/015JYbXjwm6TQhnTChhuGKZuNV9nrzkASS+801l4nQ7Yzi0jdgKY62BbHmWPbcW5W2UYUfi8IkkwLB2ofZRHjWhuqkiZZmxUWkx5bMG9bZVUZRZPqWSScuhvNNM5F9mss8XOA1mA7TMe3QB1M8D1tRl7ep3KYFsksoJV0ejeVKzBNJ4ZaBqYfVswp1slxaaMi0ZZA2eddMful66Waq2Me7rUxoUQ96+5+Hxr7e1eTENK2M1gXaEFYIthwUZDbdH5KXaHAdrcVw4+E6KSPHveTgkm7dW5xaHaVkn15mjRMy3KOrL29q4DJ7tu4az5PoD71oEnnDx9w0AtTi9o2UYgHZm4BYjFYqjsDKVz77caQA9bFp465cCGBKyzDE1mTVT03HmBtYLMbWHzlX+rpLZKQXAS0LKrjfOgWgXV4nRBopyQEokWWSSaL6mEoLSYU+w66B5TzEPZIg39heeEhBVoHr8xGCB2+bqFD61VUhuhBLP6fppQTllvTRPaFi12KpQ8FLb/QDTcFmWvUeCydZWWjbRoBluZoQRsLYSTBq0e2px5b0qKfDcDrZKaR0k93nO/1UI7XetfWrSYBfSeuGmi5jcWWRjKZsI5y7bFeHRq50HVkC478lzoTakX3CqpxcN85f2O1HD2SWDWvRaT7Zaz+HqLFi3Go6zhuvZnQq1dQ8PIWcfarYYKZNGKQbuoU0HpeUadbxOf32mppEJzUGC+Ogpu98AkcMscatFiepQ1sKf2m4maWAZSw4UBWUe1UYwKVy0KuieTYp69yhS6GzgQj69NfXne0rooziLbTLEuqhDqObcJ0jqqQIJpPanFQ5O3s85ji7StfYsWLeZDz5OJrLQLC4wyM92W6JOwGWy+StiITSFKa6OMmPX8VNw1hlsVkWnHPB7ZeJVn3XGTwo2C91u9XiqokD80adPtTWROnp5Kam/f1SgtT9mBPN9DZZF1Am1FfIvTGRRwQDQaAVFUcMpsJ60RYbbFdkL6AV8EG7bImOXYovxUQY0aB0+3SITQHqQjhT+P9Uoxfx6b6LSenkrqHxwbb52xaznrmnS/lSXfJJRWhU5WtXaIMInFVaYVpFbIvvXZtu3g1uw89tKgJW+0OPVgPMGBfeLoSQxIrLDOmOxVG9tVeVHg+mV7oLwPJxC9P8qNaZH3zQuvy2fGhTAXGW7jNjRFMayQuf285q9qM5xDWxBOTyU17mFWhVNO66XrYk5XeqlyE450cwNnXfDhsCCxKqS7cKa81GUm60h/jJ1O0ax2gEeXo4XFnlqtkmpxKoI5EM3BVMYxAA3SXQd2QucOVSJ5jkgxq0Jt+nhjGyJ6NybdOmgzPCrdgj7x3HJPyp3cPPRLwIku7Lf99MKGcXoqqXE42XE/9HS4DXpXOlNQIa2XMemrsWIqpIFYXNppWJONnTp+llt5jFM2fa88aXGWtdusbot3y2zRYqFgDVX4P6IALm3scrDdIJuXnRlY96XNo0n8mDXUp/k3NoEF0rVN5VhaoOfX/4rPRW2Fl8kx5g6d5ugW7FG1Soqgkji25DwVuuodvxvr8sA9lMoAa4VTOsdFWegDqvz/1ztR8eRsnMK6reetT36ulW6S1WM8or/b44631nGfLyywLEnNnbZ9/OkMa+Izaj3c6UChrqQkrpOdskmiUSFtnRwIisp/pqznV6qs7WoS9OotUd5s9T0Zxby0BVBLNGmBOG2UlPm79zhhsbfvK6sFVFDcPXdQOEuma6OFR++nLmJIr1/GynkgsnKqIo2rc9JZA1hZbFUBFP7vEOseMbFZpd8v015nSezaoDlm0GLLsYkx+l0LKoAaSLY6D3ToHYK8wBWIxa1aOznPmDXPo8fme8lrW3RPwrlM6kXqDr+biNNGSQUFlG9fTYt33XcmX/XeD62WwltLqz4EeLLj/uZr3A8qty4YV8+VFAAUJVDXXjn686yV0WvrVsMtlNZEgeo+VE3KqsX2o6yBbuvZzgxuLsqwOdfqdhMmFDRYud1FSA3MSZhowk6ZN03XkW+SqG2SysV7vKePklrrxGSs9QnHjnetKfyBNLdEy64yQN8rpGNLri2S9ccC3LHYLJYTmA9vyJNCJDqo4uIkJ4uJlsrywL1OJUsFNSjc69qcczvntZJCNIlsES3hRRVpnirYacL1VELoJbcDEYgeiJsB0nviFu27Gfka1hQHO6UvEKePkiI1fODDc7WwVqpiuMklY77cXpm9xhgWTKrNa//9OosbZ7kqawD4kB5ZM6F6W8dp4vG4eyYV1Lhu0dtJnghdAxrCXHqtO1XwtGgxLUz2O7wuRurphJylvGAv8PRRUie6Uckw4agxVXou3TpWi9MLerznKN+Dwv190t82PpCutxzKIobsNNxHJiBDdP0iTuSqiMn1bu0U2HrpQomFjW1iTnRjmFHPrZOiMkC5xSEmhkuZm9OFy2tUBtTphMq43MXp5D2eDiDrl4+V874pn3S6YHng5BujUwvE6aOk1jpRSdWZkgrbTGesnNo41sqJLvDIslMuJ7tOSVGxlBaoPfuo9uGdxAvzXtFax32fOS4yhIA4wUsbFdu6Z/sxpLjacYpAi4u1PoLMwMqTPjZbIVA5cadh1rSw3ss7jeGzsAufvDse9CircmfmVlrMD4b8LBByU6ezkgLi1ihMnSzqsAs92k4Gw2gqI4KAr6MQ2dN3xAV6REAkWVTZDKRQZrKwIz+Ap64XcWvmTjk6Zt3ztVjdOiZgFRpKM0AIitN6MZJXs9hc2jMVk3YHqMQ7LPwgrHx+M4oNdzqopLyODsWXLXYPAvMNuzPUR4N62usyAMrabYTo0w/2jGs3NITTR0lpHgmIhbSlBfasA8ueVXdgLbYnYk5pteM8KQBYlep3Kqeub+7Yrd13WVPVrd228WQN5haG5m7Y+oWNIrtVJGdosa823iyl+WMpCovj4N+LCjdVPtxZiffEPBhDHt0qLcKkdUnv8nQBSwUUFm3obyPQHO8QHRvbpyBCqG8XKajaAMd7kenMZgaUKaOu1VhncNeLux+7XkmZP/7PnnGm3Xtp8XsvaLlyHlTPU7/15loTlUdVZDkXxMpy9aJ0K4+u5LvIHMz7fRm4c7DIl8ekM0QPSokTtY2EirIGah9SqgrAVpFezzFuFKTvKxWeWwdowrg0MdRn/cVZGymqpwuaCCSa+2wxG3gvOf8NZC1K2F4Noa0wCPJC3t0AjZSwIJ3ztvYyalyutayBYnE56F2vpABEAR9gYj++TgWs9J3H09Rt2VjgzFXfz69wn9nTd68viedzxlpsn9SrELpTUDB16ijUByYW/HJcet6qANb8uAN1vkwbW7JTBXNRpQ+vMZykbVk2Sv/W3oSqoHIlVVhH/DD0Nk2c4FXhFCu9vd2MqohbLQCpEt9NwmyrkLBjkRIV9DNWfgMAJAQ9byguNzSant9u86KUjMXrJ+lLFdY4MtQC78fuV1Kd2pMOilivw7zQSt8pmgOrrv/VKOzpA9/+9+4Yj56M28drU9h96zFxGNh2IqyYt6lMLAzul07xUeEAkQkIH9qjkmKRcWXSHFC/iJ4eFcDARIVFRUmXPR/jJCh7L+/KQUYfj8VjA+nCtcZ5hWwjQ9IKx72bwGczKKUY1cZE+24SZlsF7YGp3hMVj9bmkahUWB9y8h9XQ2raHAuNMp63SeHtVqODBm3YlFLWddffX9R+TmNT5/XuV1J5wp7Ck00rGZ6bhKCM1obf61WxS3o+gbnjaKihKqJCKWugKOIE4HMmwYPtl3SzM4YLuY0BLRwgvsa6L2uBjiduWLhz855Ms+2BshOVuKHhx3B//PlZiFzayOoL1qgP+bFCvzaRTbkTulsvArrdQtumanHgbczXMn8z1Kddyfme8V+0mE2YhmPCrzHxHHZCScUidzHOkSvy4MWa1JPagvm9+5XUAa9U1jqRsVfWwFkn3c+s1vzKIPW6mnIMGtYblMPhstVOSjXXkAI9rLy7OrtkaG6L/fwo7ElxZi1WYQEj9UtkKbJ1i+bmmsAQS98rvfWyOdxHqEdVWsAOomIcyinYSKVnxw7+bmIm8t7lY99pyPf7oaIvkHq1LaZHYWOOQ9uV6fvcTUBDfDlmKbYNXb39/4NAVsHMUPc2PU8aiZtVIM/aJyWclSJDNqFwtwkzEdpvuukmvOAFL8AZZ5yBgwcP4gd/8Adx3333JZ95yUteAmNM8vOTP/mTyWfuv/9+XHrppdizZw8OHjyIt771rRgMZtjwbxY84SSwf83ljA6sAmefAJ54AnjScRei2yhVu+khDQoXIlvtxq0/TnZcvVX4f9f9rHacAj3Zde8f7zkm4bf2AH+/AjzWc+HF9TKt4+LEYeEv2YMMwzE0t+rPe6LrurYf98d7rAc8tuR+HlkGHl5xv/nz2FKsCWPX9X4W6iPDb62M5+A1sMchx8DrO7bkzvWtPa6r+0N7gb/d4/7PMZzsxPGz6zuLmXkdj/fc6zuRMahDUo+YocCdOOadDGXiao1g/hmWgZQ2rdHTj06toMzwc0ryXtv8DMP+dRPGsZFxrnim8tIgpgr4DLawxdlMntRnP/tZHDlyBC94wQswGAzw9re/HRdffDHuvfde7N27N3zuTW96E975zneG/+/Zsyf8XVUVLr30Uhw6dAhf+MIX8MADD+Dyyy9Ht9vFjTfeuIBLytD1BAkLR40k2aG3iTeY6yB0NpffmptStp7u9MmQnibaQyxd/q6z77CLevC2ZEHSAKzlGBq6yMMpNb0hDIf5NKSVJ7TJ4mvavkSJF8jGoL0T2RJKx920Tw3v5ygLeVqreZHIFRR/a+iorZeaDXlvvI0eY6bvZcdoOu52QMNuo94PeTzxgmaBeq5sI1fMeR83gJmU1Kc+9ank/x/84Adx8OBB3HnnnXjxi18cXt+zZw8OHTrUeIxPf/rTuPfee3H77bfjnHPOwXOf+1zccMMNeNvb3oZ3vOMd6PV6c1zGGOxfc1ZAbdzvcQSJRYGCll6GtkWq/GuqvHSeMazHhrX0nEqvYIG03ZJ6Nyc9QaTsAGtVnGQMZ9IC0snXBGO95aQxaaThSZ6fn8+ZhEB8nx4R68XW/LRj+JGhSiufLUX5UAFr41rAXfuaKLr8eoyMpWSS10alSgLNIkMWJfN/ZabQKSjKnbM30qmEaZ6RGkRAbCHWsencH/d9ICpD48OM4f05xrRZ0DWs+THKE0Y7+FkglrnMgr19dz87XnZxl4YtxIZyUo8++igA4Kyzzkpe/8hHPoIPf/jDOHToEF796lfj53/+54M3dccdd+CCCy7AOeecEz5/ySWX4Morr8Q999yD7/me7xk6z9raGtbWImHh2LFj0w+yrIe3vdhM0GKmIGfOiG2RKhH0oZEsmr0mzaGxFgtwx1mqUiUXWi95hcb+gMpo1BZK4/I6hXXH52Tkd6gM1aPi2DVGzc/Ta6iKmGdj6I9ElLIAbAX0/IIK90zi3oFh1CD0my4ht35HXbNBLBlYZIeOvN0Wd2rmPeR7OzWvdiqC97qW9aeYZBTwO0PlAg3RBt3NYDuRnz8Yj0g7wqhynnWeG+vZqXDe1DawcedWUnVd46d/+qfxfd/3fXjOc54TXv+xH/sxPO1pT8O5556LL3/5y3jb296G++67D7/7u78LADh69GiioACE/x89erTxXDfddBOuv/76eYe6tTA2WtO03hJPCWmYjAJXwxka1lDhz4XGjhJVkS5GtexU+RGdOhXYShdPrgFxYhsIaxGihIBYDyXKiQpVKdc6rrDYKRQwzBisDGALH2600TLMw43AsDDi+PU+FqKsId/luansF+XdFNbvJuuNEWNiiG8ai77F7OC6InJixTQYR6xQQkyxiYI6n8+jxk6iiM6lEMUw8rfIj40omA0U6Bq8I/xt5e9pMbeSOnLkCL7yla/gj//4j5PX3/zmN4e/L7jgAjz5yU/GRRddhK997Wt4xjOeMde5rr32WlxzzTXh/8eOHcN555033ZcfWxpuJ1RY58bO4rZqO6VJWB7EZHm/AEwRw0y2SSCbaP0b40NQSMfL4mOt8WL4bL2UMKJxjELWYmn4g6Eto39TUSEV3itFzN+t9KOSZCcLyOcLWSSljJnKrTYuzGUl7wS4c7N9irIcNTHLY+uOxGy6q10dtHsHw2mljW2atDxAk8nWj6dq2GhyI1gZxGvnuFn4fSrko/R+AjtXqTYZLurN03CahGkKrTfrHnCtMlKhDFYapE1okl98rRSji+tpo17QNs2BuZTUVVddhU984hP43Oc+h6c85SljP/vCF74QAPDVr34Vz3jGM3Do0CF88YtfTD7z4IMPAsDIPNbS0hKWlpamHp959N1CJuikffNCnsM4tt84pcMiXO7cC8SuEhSATSis8zJUYAPR2lMPigKbKyRfUPQElPrJzRGZOGXdVW0AFMAAwxskAqmwZi8utRw1fMdzWQBLoqCbFnMuEOhxaZhRc2AMq+ieWdzWgrk8npvkjX4Rwxf9IgqmSgQU70evAjpGvMU6ejOFPAN3Uc5b24z8Ap8Rr1WbD+9khIJywU4c+6jwnkYLck9+p4HMXouYGmDdIMc9zw7PjEIAp3z3/ZmUlLUWb3nLW/Dxj38cn/nMZ/D0pz994nfuuusuAMCTn/xkAMDhw4fxrne9Cw899BAOHjwIALjtttuwf/9+nH/++TMOfwTYc4reDPeSaspLNG3VThxbisfioqUHwuaxS2MSiU0EhYQp519T5VD5MFceBquzhQhErwHwk7LvBDhfq0wkIiiaahyCohGrS4ud2eop+U6m3BRW3td8WqeOzXMtogJd7UjrKMQxhN2Ty6iQEut5gvmb5+Ly9zazzkXvc2VHW/SVGBJEuY1KQecGb+9O9P7yvCiw8z0/BSMtnPMhkiHzRrcOmgUkP+0CzKSkjhw5gltuuQW/93u/hzPOOCPkkA4cOICVlRV87Wtfwy233IJXvepVOPvss/HlL38ZV199NV784hfjwgsvBABcfPHFOP/88/H6178e73nPe3D06FFcd911OHLkyEze0liwHudE102Cx3vOSinr2MT1uK8VWqpc3dSBVfddCs/HloAH98Zw2lonCk/ATZ4z1tz39/Rd/ZUmJZsor1Qyuvtuwu7zYb+BWEG6ySFp5UHw2pj0t8aFkizcWFcG7hysdSKBgZZ9YAbJ+FSoLlXueAz3UUlR0GroTAkcVCChh6BfLCvGFTevSXsnkklIlqDHyA0f6bXqcxmlk/JiYT4D9ejU4+N1a4hykXkpRWGBokFg0MNfFWua19mpY6utPf2t9wa0B+ROgxoqQJYrFaNwp+qp2jj5kxuRGnEorctrnoqKhnJmQWOfSUl94AMfAOAKdhU333wz3vCGN6DX6+H222/He9/7Xhw/fhznnXceLrvsMlx33XXhs2VZ4hOf+ASuvPJKHD58GHv37sUVV1yR1FVtGHz47NlHRdNhyx5vpXZ8Meha5m1YuP+z2JbelDZT7fvwG/uErZejk+KaB9H2LTljiCcPbUf8tRT0IACXFEX0VIKnZlOShipBNrQ1iPkptZStvKahRd4nVV5DXomF29RPNIiVY/IchXWV8SGvJUqNtVVkBK52Yu5LFZMmiHNlVdiUEp/cf6SKSi1WvZatFGraz1HnFz3snvdgbeXm2qi8xGZhJ4fI6mzdqGJKnucEL3u7oK3OmshPRubqTn4OOZTVbAF0F3PYmcN943Deeefhs5/97MTjPO1pT8Mf/MEfzHLq2TCQhZ8TE5gH6pfASRu9DXpBFJrcJp4NXmtZBRSmAy/4WQO1Xji6poazKLAT6nPmEowKl/Ghk05uOimRguE+5oFyq5fJ+p7Q1bWLun4OSJXS3r7zoNjjUMM9weIX70Wp8LUBUAOlnKPj2UFstcKOFWy7wjxTR8ZQVdF7Zfsq/p0vXl3spO3zWCRR5ApW7x+Zd/OgXzpDQOn+k0J1a94IGhSx+4gqd1sBXdlFequV1E4Nl+kcBoZDtrVBYiwBzaHe7QQ9JVOnhlFT9OVUBOXegrA7e/dRQSnDLbGWjVModdcJmD19yX14Yfd4z7nka+JhFSLI2DfPmhgONAAwcEn73Jvwpx1aLE3dHogg/C2wjui1dWrEfV0skr5mzP9Q6fYHnnAAacuDlBFF4a4KYnmQsgkLmyaoVdkxp0LPzxrnKan3xYLqlYG/d5U3Asro+VaFq/Pid+q+OwdzYgz/heclN2zgPUbAF29K7pB/KwWfSo7Kbx5BRi/82FI0WPhMuIklx6DFlmRlHu/GnOmJLgKlmPe3tMCgis9jXFNgPlsgzic+v90CWunK1KVQp4fcmLut5zNA+HyBZsNoXhjrQnmB5crzYdigPRVBY3VB2J1KKgc9lzChxaJuVBoSNgphMfmt37HZz9B5+bceA14I2zi2cGwdh5UF55lwFnD7NHnlVdcIXdMLA+RhYIbvrAGsWPeTlJQyo0ZZdom3iNSzolKzvElIw4nqNVE4837ofVJGY/K3RWi/FO5ddh/zcVsvyZquZx7BoEKRW6dQgAYqsfcgS6RKnKEe7TDPYxrE8K6WERQm7QKiUA+D919zg7sFieeByc9tI1a9fm+RYbeSc92vxxC+NOk5T7VH1xQhWoDC3Z1KSkM9Kow1VLQ8iMSAfevOOtfFXRvXUom5qrz4NuRuGiw6Ckl6NAYpZZwWIb87qoCv9h4fMBxKojJh41l6Cmz/o/vBAG7cHW/Bcd7knp4W4nZGWJ9h0sm9yOuV8gWt92Vp4DtieA+qV7m/6VWop7OnH72mPf1YY8SO6aTY07DQvX9InayMu3kVHCGF9zdnN1IJzoLEs0YcRwUxbkoXtmT+kkrpZMc920EZ84Uce/Cm/PWslcCJnvMi6aEBaQ0W6ct8Rta4692JxId5wHtbZM8wySvKXM+/Ow8oJxYNEp4AN7bVWjrRFAilGNbEiMmpAm4/ZP36HGVUzYBdqqRspE4zEc2+U0tVFIBkT+3tO8GnoSzmSbQw1yIWnap1r12ZTTYO7lXVq9w4TBmt7IEIOMLKeAFHSqCC5WKkkjIA1oXY0BVlFYr6vNLKmW6EWqONxAgZl14flWsQzhgvDChMunUM39VeSVHR9st0LHuppHzPRRoYvHYqH/VoAH+f/d9cMEB8P3g44tkBmGvLA/U06VEB7jkHD9FE75HzZ60DrEu+MyGF+B8qtNI6paYhRcAzIyWUG0gEJnp1NIZ2QwgJiNffOJcb1hP/X5v5QrqbDWMdSaaycRNRhvXD36cYw48GQ258z4ndq6RCeMhEL6JXRTLASj96UqHhp68xMsYlrvf0pbhUGoay2FSFOtG0BtS7alxkuZsvXgkXWLAiTXpcKkyG1ygMqdj4mnozMBhSVPnfeVeG8H72vXAtxn2QbzexHPl9HnppEJVnbVz+RY/NbQJC+NG/p8aEblmQCHEJI1KB6u6uRfYMKzvdRpA5gvfKfFCTpS9jD7/964X/Dh8tlSf/1u/oXACGjQMeI6fb7zTBvCjslusi27VJnpyK0Lm3AOxOJbU0cEoobArmBcLyADhz1SmrZb95oXpAto41RxbAmf54J3ouHFUV7vdaJ3o0tOyBtOjWy+wojMRqZz6lpoBGDJvReuJx+kWadwGcla7jDl5KFQU6/2YdVfgbUZAbi6HcE4V6CKMhDZfqQiKLsbCuS7J+NheOvCf0pIAYSqlMutEjoV0OtLPAqhJWypTGXdhY0My/mSNiSCzx1jpurjA0zLkxLYyNdUzqcSshIyjswilDXhu9ybqO94fMRFVmStapTGwLRQWdFzWHZ4lTK1Q0Dpr/BEYLQHqS+WXvdGXd8QxOvT5jF+aNbClo8C9o7u1OJUVBqOEvY4Ez1qOSmqUbMFvzkFlEgaIhIyC1dBPvA8MeVOkJD3yPoCDOd+YNB/LIJ29p02R9v4iECY61tEClTDaD0BJIFzEPrR0eqKS6tVOqoeWQjaE1jl+tex1v3pOPzDvmkyiElBlEL2u9jOEQMtn6hTMYqMyZk+Iz4CKnkiLbk+PUZ9etovKclRXXreN9hb8G7bJB0BjgvaR3yNeopJq+x+OSdBHudSa89TtNxKBTFYnHSAtwDKb4yI6DEomAU2/8RDCcWyU1GlRCPaFQB0FdD2t4ticpEL+TH+/AmqM4U6hQSNI6Zxx5aQCsSnNR/iRdvJFORP6/kT5r42dVwOYWZQWEvW8K+RzPpyw0Cn69D7kgZKv/GvEa2TOw8J7aMpUbfOEp0mvMixQ5XlXWVHQU1LVB7K+HmEDm/ea9pGc0kNfIsKPHUSAqLH5ee/0VFuh1oqfCsG6/mM2IIb2+rIHSKxAlntBT1vvQrQE7SOcDE+qjaqx0DgPOOMjzaJqz2y2kCWDY+Jsk/4IHizRnvJOhbcBIpjkVxp2DYezc+PbBhFmxO5XUvvUo0DSUtTxwSUrmbSjguDV5t3bbzTcxUrqVq6BeedzVUK123NbnTGjTome4KGzmlwk7zSmoEtPWQk1emO6nxM8HiwWSlwKGKeoFwl4wRliFQJZ7MnGBnOy46+Tf/TKGJMiIDCSNOob+VBknoUrEsFdOWEB2HRTS675ItjKxK4j2YuyXcVPJ0KTWX0cn86TWOjFkq1tz0OJmiJDPcNZ9d8YV21KpUuDUJjL1gKicDSQ/KvdFt5zvVKkHtsi807jQ0naGDXUfM4L3ilAPnvfmVGwptOwNl4E3tmYtIch3AGeaY6v7QOp8odE4KIDl2Q+1O5UUrVg+mFw4AvHGsfvEehkF3CQsKxOwiBRqCmYWYi4NgJ5JvYb8+AzZ5DTuJuREimCZ2FTQ5aQHhpKCkkNc0PkaoGXPrh2VD5Ox9yGF5lIVx5yHsXg+KoAmksYUtzkhcahyDjVGJs3fBa8U0SNTkgVzRvo9hgkLO9yVY1HIk+Gcg9yXKM/DDX3eh1iBmGdapKeUz7+kXi8b83ZAi8jDa4jeZ9M8PhU9EIKyosbs13FSGhhonnO7oDKrNjCP3xjX3rHVqQ6xO5WUeidAtLDXa5d071hnoYdQnQj9aeYELTvtYkxrfh1RcK+XkcDAbul1w4LScavy4CIMLjKp0nY43EfPjTVi3cp9L9C15bNamMzzmuy61qQlFPNBbHNEK3WlE3N/hlxwj6TQ1wCmljwJplt8lckUUK585X3S9oMhkClGnlMZdYnBUkRDZW3By4KWvUXmJfG3GC9KTCkzT4GfXTRIztDQYVBYiz/dzGi6ZguE7V34diDt2O1VqovArJ5PVbi6OxqWgBiP2/wQde5y7Rk7tZG1e5UU3Uv+H/Ax/66v+BblpNb4NGwadi7mDxUV8yYhNCPEjTPWgGURRE1jDluLy+sUroWNT6tp/VERBiVVR+ETQp42JUfwh8ccFE6JD8rYqke7laOMzMbSxsLSlX6mfEy8JuayKKinodlS+ShRJWcacsxKMqGXOAocgxtc/JvCjvtVdSt3nYvql6eeJq9PBa81GKKu53Nkqz2DPFyzneBz00hDyNn4zwTvXe7j6YK1TgzJM/wdcqILDvOpjJxGkaqhSlA5TamId6eSGhJs/vXAjKpTpdRkqY9D8r2G7/B8bFfECnIWVuYhsCHhO8JqzhWMnkuVUaIMRiiFJm/GIirspsnFayrkvTwUo16s3lvI53XcTVAqemMoJ/+/HX4xL44Nv2UsRv7OWZX9Yr7N5ibBAOGC1OELulM8mJ0SstoJ4+Czawr76d+JIXKaYCjsLcbhIjGLIT8KgaA1/TF2p5L6uz1xmw613CvjLA6DYeU07U0jlZlWt/FhEuapGPYLVr63+Mgcq2xslaRjUOIEh8IFp15IU24NSMN9WidFYWcQCRNNCXcdO8OjPEZhXW6N1wRI93V6I/57J7qRRMLGtiQvsJURPReGGXOl1pfvqSFAy0uvjZ8Z2EhO0HBZsCjl+ZCVSVQGsAVgOpFhddI3fD1jbbp5MQ4M/1IrGaSeIXcdBtKxsw3UTlAS24mydqFmcYITz5RGG9mRpxuqIjXscixq+lARVrIeJxkE+mzUkJyBor47ldQjy6kFTuFsjVMwQBpeoyBTr2sUVjtx4z4K2UIWR1W4mhkK6b6JxaoGUbiXEAUlD19DQUySAzGGaxAZXgrWHZE1x3BfoqTk/aawmxITjI29/mqhl7PItyPHAmJ4VTdZpLIBPOW6jtcKALW//8yBcaHxuSjZhMYAaiRba2vdWsjhyQ93F1ZDpfBzIHi8nv1o/N/dOoY6Weg7DmQdjiJAaKiVH6n99ZPiz001+bxKf900BIIHKOcNxow853weUUjoPTsVEfpwCodZIw67IQ81L0JNZaakmiIh80IjJOzsMk3LpjAHTSprZnhUu1NJAanVr8onDzfl3sYkNHkhJnsf/r2ykC4QDTVa+j0VODquaaDWShLayq5NFZOOX49T2EgqYM2GodCDE+awUpibe2ImbVVE7ywPrwIxj1d540E/D0RPSKGLTgWTKswmqruFs8aNAQY1YMSTqgHXQd7E3NygcM+P1PRxyMMsBMdRIioZvq2e1JCAMe4ZkCmqz6qpRi4X0HninPdytwjxnC1ayHw8HVHIemVR/KxybZpzaPumWZCff8av704l1au80PO1QgObKRdEzyLxbrwwyhPbCm1n09Q5WxlSpGkbpEWajYusji2Zwnu5UkEcH0+ruSh6hOpJqRDXH+0Rp9fGsKWxbkfYnJiw5D+7d901gOX1k8bPrdDVou/Ufv8uE+9zbVwdFkkZx3ux3Q/Hy4bALMimV6VMON6zwrpwKj/Ln5W+uxekmVMpsLBX92EyRbwnj/fcmJd8c9txUNIMw4hqGLDVEZ+RQeqVMtynxdcGrqzBILWI1dhSI6kp9MI5xdeXxGA6VcH7USCu31P5ehaBZd88QOc4135T55N5wTVFrx+IofxxCKE9k83l6bTn7lRSat3r7wLDCkItMd12YdT908+qkE9IDZlVp4pQc1ZKBQ95JpuFMSAPGfF6hq5DFZAIIm0umysqVWD8HTrHS96MhdF6vp6n1OuWGSywZSiUAndQOMYgqkggGRQuLHii5z7/eE92IPbn2NOPIS9r/DYj4q3wvuaTPaHiN4QHO2XMaSRejP9d2thCabXvxjcq15F7kMzD8ZA8bze7/zXitfB+sHavic2oGxrm11vY9Br5zLt1vH+hYz+Gu1Scasjn++mObu3Xq8xpvUeLVuKUYyydYI5wHGhcEDMQMHaNkjIP/79RQJbeeq/qYaE8ahdW1gMd77l6qqXB6EajIe8jrZd4TAqD/KHwfXp3OpEYr6UVpOyvnJ0GIGy/wbE05pa8wLfSjJYWlUUM4VEx0iLlBNRjUUiqZ6eNa00RSQuqoPU4TXNYPYcwaU281pAMLsSLlO+GUIZN74N6ixTQqL2iKKKCLXz+MGcQhtAaUgXUZJFqbVlQNvK89drUKxoqoOV18Ht8z6YKSqHzTmuEQriU82w6YbCjoZ5kcg/RKipj45ZChRWjXAzvRaKTyYhp77+u4RkMjF2jpLDaicKTlmj+gNjWR5WWNX4bc+/CPtZz39/Td5sedmv3N1us1CY+JIaBlLTQlRAVLWPrFWDYpK8DJ3jlQWktDRdhUKojhDCVIv/molXvIChCOGuLx6PQ7FY+Z2Kj8LYGOFm5vnZMkvZtZA2WNm5ICMRQFUMLZY3A3lOlos1y1QOpijhuICVuMJypdW9BWfvxGACoU2Vc1u773LsqUYRICRpA+r56Wf0CWO26PNbyIM4DhinJ9qQXtSpLigoyhOI8ccTU0aPkXFUGpiopC1cgznlENHkSVPJWz++VPF+bVl+RbUjlx3u9XdDnUxu4e+kV8Kz7LQWFjmFj9VRGWQN7tij0OXNeyqbktNOSgl4VwqjyVnQnC5kUIjBoZQTBaGLXAc2laENVIIv31lFoM8TE3n0G6aKyAFBGFlkSHoR4Q1w9NvVMVCDlyk0XWlACItC5CV4p3oqR3AjHU4pAHxROMAMIHduZ6yrkeg1SL4rXwvs0ajIW8p7OdwpnvX95fYx6kfpbj63KnEqH59QtQJq8R44DSJXZwMR72C/S0KXuuksDgzV5GrrT5zTkScmYrUVQLvn15XNHj6leYVUAteTyZhHKSQd8446zE0JsIRTK65xjLFyPm+FltBgPztkZbv3uUVJPOCmKB06IMj+gVHN6ORRk7LNXWKBC9KrWOq56mzv3nui677HtSAip+ePuXY9KbckrNO1EkYcdazkv4MctxA0KJypJ9aRUSemCza1y+M9qayQgFTJUwF1PMmDuhYlp0sjpETC82fPfMXDKjN9bGkSFX/jvLlVAb+A8m6UqhiYO+G1T+p72zfu1VkZlkm/8B6TeEL1HJVQopTzJc9moQKhsVwbxedCzobdpTRxPZeL955yiYgreRh2JJYGMY53HyfumpQG0Kvmc9Hf4288TRggU+hzDHEAc08DGxslLFdD1z2OaRLoWnWt3+XkVw0YQ5riJ0Yna1xwqqWZa5OzcFpsDzR/zVuucnxK7R0ntW0//vzJwC9QiLtpcYFu4fAota+akHuulYbJ96y70FxQDEBvI+tzM/rXhfYi6nmU4sE5AaDhJ8yb5Jm38m+dQzw+QnImJgp1/6/ENYvhu1MTQ9kZKDljyoa1+GZWlFglrZ2UqZQp9+HvOXoXcYLLjQ6d7+2483Qqo1tx93+MJCie7wLEl9z3d44nXrZ6NgfcUkE7+SlwMsu3y+7c0iIbCkr9v2veMz6HvxxSYn9l9V28oKHHEucF7ouFizsXA8IvDHf49hRCm0lQafG0A6+u3+jayS2sTdwIYBxJSKvG6gyFUDBtLm4mQt0RslaVeKVmp02In5LC0zGK3QTdM1UjBuMjKGOweJdUE0pMHiIJACQjWAOzhpmEhZVcZOEt6tZOG2Gjdho4Pttky0/xRUHx2OHTCEI8KrNz7KrJzBCsc4k3wujKL3Mh58rEEckHD2EN+x0RBn4d81DNVogJrfLR4WKn+S5UjLhjr7rGBr0/yiju/Xl5reHaCJlprqEHyYTe1njkXOCbuJMpnoB5qZdz7qpSGuq/7e64GRbh3qmj1wU0AH6OxaNyHx8oHc4qvlikYpKHn2szP8LPJwKa/lkUgZzw2hYtbbC+UFETDMRC0ZldQwG5XUoW/S+OslS4Auxrpyo95j4nNYxnyObaUCkxaybT4uRNuU35EhZZFDDVp6I81NroIVSEUch1K+gCcpxaa5Zo0Wd+rojfGEB2PVVjnJY6rAyp9uDNhMfofWoMU2AwDAjFPxQ4O7Pyg3hr36Fr24xuI91VlUpn3hWyuWl+HeMyIgphjYP1YV56ZepcFANRA6UkNtXGhX5I91stUMdOT0vNZAD3/zGBjaDnfcC/P2/F4/EhupIT/NxgnqnQGZexsQo86RA30u/KdfK7yvfUibRvFsSTH8wpK67U2A5zTGl6t5L7NaZ1vO3abB6WlEpx/+lxqkV9c26cbBX1DWPH5kk7t8iTGupzUY72YGD8hi9YgCnwLl2/hpoB5PY0qmKKI22iUJioha1z+RkMqeVhQQ3j0RjgJKOAr74GoQF4axLxLt4rKi8QHMvTGoVulxBEgblPCicn7QiUY6n5sVFBN94dguLa0ccfdgYmh2jrzDAgNKwQ2nA/baa0YQ12N3pkFChM9OBTxWJVxYbPgwSFVUnwN7msh3EdSzSioN8/xq+cUxpV9Prlu8SS0Vo0enwFQVqki52eLwiliIjBPTTTQGDHQkCMt4pCjsvMayJOhxgaVVMLwAxqbzrbYWiiLOS+QJ/J6Rp2/E9AqKWJUWI1eQxLeAkINDK1tXTgKFRyhiWxmyavwANKHp54LkI0r87BY+6MsPBUuRfZdYHYBowJ04BW3eiYqS+kJ5Ocfh44oRAg7DqIQGNoi+Bz4W19jnVBQcia9n/pdRXg24r3ptWqYL3g2iLToaRZgCMOaTPFm48uVso6Pc7O0TmHYOtaXaZiV31VPSkHBwnnIbve89ZoE53MN49lET0oRwuSI4WlGCFpsP4IhlK0nNb7zz06B00dJKdW6CUmuBtEatiYlFYQaHa8YmEBf5861iPsQPd5zP9o5XaFWLxvX8ti6CLVrBF+jV1VwC3ID7EH0IDpiAQe6NRe5TY83L+ix6PboKhTL2nkorL+ahlW2MnAkFDadZfeKsINukT5LkiSCJyVGAwW6KSIBIzdEcqp5nrsBgLqIioBzIgm1ibfHUgjWZ+XbwRMGUbHU/icsbvkNf51GxknFRbZgx0j+VcItOej5drIaKCAWwmv/xMICxod5Qx4uu38GMX+4aOTWNgk7QPTK2y7x2w8aWpwj2qRaDRpCywimwOmhpNb9Jn7qWeRsoJyppOQCCv38dYMopPsF0PULu+sfwMmuU1JhC/Yije1z6/naeCFRiNeWe3ZIvRh+rolQoV5WkwczTlnPAuY/+JtWbUcUAnOCHVG8k7AyiKQLAKHxK/y4B+JhJcl08eaoyKg8ARdSDeSNTElZDIeT6uz4mivLlVRgoJnIFGUvwlFKimMJhdfireWf5Us8p7FAl89XPCbNCXBuEvyb4T6OlyE+smH5WrhX/rXgJVp3/2H8uak4F6gsmrzbEDZHzJG22DnQdVJ7T5zzIve4W08qA7c/n0TlDUw3b50uVVG45lt5q1LT7SCAKLTWPH2ZXb4HoqQoUEKvNo4BcTGGbeCzMWvrJRYTA8NhSkUQ5P490ogHxpEXZoXWTCktHIi5Hyorbfg6DZizo4dWmNhOyhqEbsw1YoiK8XCCf2rNGMFcShNxoQlcYPqZJsXB7hxA2jR21A6/tDIDqYbKKovfD42H5xcDRn/n+bcmxmMerhx1/fRMQ1E4mpUDx7QoKD1ft3fpYpiM0mJnQI13ZTE3zRldPxOw+5VU39c+rXaiUB0lLA3SMI122GaYh7klg6hsWKxJ4XCi6z73yDLwrZUY7mMoLvS8Q5rrKBAT7ks+RMb6Ilq4QBT4hY2fUzJEQiKQMCOtYSAKp7Ke3OV7FPat+xCS9wQpEJnDYThGi4SnBZmHQPReGFLl8ddLYD3zeIgkdOvfsPLT1LBVPRg+m+DF8Rzi9ZQWqMpobBjEZ3yiG8N+xkbPXRdmx3shOg+SQl/x8pQ9pS21glFjo1JSRand3oMnVTQLiCQ/JgYXC5npnfaQGmV8nde3EQWiDMO1TjQ+ajM+fNpie8G1FnLkBUYqKI2wTIHdraTYLYD5DCoa/jRp99wSBSQxDcCULsdBLyYnJzCEp73cmF/RMejWDUAcj0FKIe+K8tPGoRxTYAvaVBGEJHjtxpvXmFCwM2E+z8InwUEtWwp0XseoGqxpkbQvMs6DYi7HIA3LKdSay6Ghh1E1N0FgW3fOJk8qHA8pO88yBOqNA6Wwaw6FJAAlv1DxJF6OV/wWLiekiiivudO/+d3giVLR+ddUIY6CKqC66R4hPnMfAdzQ8+a9DN08kD7jzch9tVgsmoyuDXjZu1tJ6c0Ki92MpqyyqzmtRybtaRED0buiJa15GDL+mKPShqoJHbqKCibvyk7Pg6FG1trUxtVDAcN5KAoxhhO5yHnNRr7DdkG8JxT08xZ3divgjPVh6z90IN+g1atJ1kCMMNF7yROwgbYt90fzev4tkJyQsCxHKPLcQ9HjdszwM1QlwXxj+Hwdn5F6ZSRG6JwNihRxzuZTl8/cIOZrDNI8Fw0qKjDOLYU1CC3F9DnmQiZsZ+OfAfNhHPdGw3C6w7HmNlmD14b5IhheHuWxbAfy3D6hxo6+NgV2t5IaEuQmhrxqM2zxMXRnbNoih33tNKSWCyVdvMxHaPuW0rqalbKObWnYziW3svf2XR6DLYvKOibE1eLXZ0wGnF4rf2vuI1C6eRC4vBTKtK5HczyTGFRLg5h3YXhJF0/tPaAmEsck5CSGyjjqO42AWq4xeKLivTUpFyp1/p0rJr0H/F4ugLuigNmLEIjPpbBRkJPZqaHenAyTMCLlb1X+utCt3OtC7nNZey/TRgOFc49tu7gJo9LK6WEZ/6xUKXK8QRkjKnqOfRFCkgxDGoHagmu3gYX789DnqyL2GFVjuVtt373io+c8KO3w2sprpwbZ/0dgdyspBcMiuuCbvAd96EG4CzuN4TcVfEliGsPWPT8HxBAYF30I3dXRElayhnpAIYSDNFwZBKucM8mveMkZLHaLoSLIpmPSUqPQm4b4wFqt4AxQ+Hviw7zbKuh1628FF8goz4fHGzq2idfc9LmG25uEZqn8+b1wfrmXFgAKV9wM8RBgho/J9wrE+cVnkO8ZlN+fYJSY9B4NMUQRx0hlptep904T4KO8pY0qqCFvWNbhdmJS6co8YBoCiF7uLOPRHKPx84mMz6Y0xmajqVQg95IaKefTeVLTqTKPm266CS94wQtwxhln4ODBg/jBH/xB3HfffclnVldXceTIEZx99tnYt28fLrvsMjz44IPJZ+6//35ceuml2LNnDw4ePIi3vvWtGAw2aAGc6Ma8D3eIpeexMnAhqV7lm5h2gL9fBv5+xZEbHu+57z/ei9boygA4cxU4+yRw1kngiSdcp/V9685aYashTpo1yT+RJbjsz7t/zf3etx73YdrTd+dY7sdmpNxFloy5hIll4rm0C7vuhsut29fLKFBoXS33o/WvSjgR4HI/+4U71vGuJ4DsAR5byu96M6jUaXGvl657x6NL7t5PCy7m1U6sI1sv0iajquCbro2CW3OF6uGq4FWBqMdkuJef42vcn+yMNeDAGvCEVTdPzjrp5g6ft242SS+bjNOhpsBinKjSSmpQTMoKVW+T5RYnuu5en+zK/fPnZb60Lx39gagYlFm6VMXO9fSYWfdGT0c9snlBz2mfrBM2Od4O5KHeRRxvteNkzPGeey58NvQep0HoxlLEXLs2CtDnOu0xFwU1lIBo6Op4+8Jo3oxw32c/+1kcOXIEL3jBCzAYDPD2t78dF198Me69917s3bsXAHD11Vfj93//9/HRj34UBw4cwFVXXYXXvva1+PznPw8AqKoKl156KQ4dOoQvfOELeOCBB3D55Zej2+3ixhtvnGU4Kf5mf/RyGCbjBF/xrX8o6AaF367cWzNceOzSzXCI9thrQmFle4lOvPkGaWdmKwIlsN7qmJdKPAB/bD5sFUKaZ6IR3i9iqIfx/KVB2nGC7ZtCeAype97klVCZM1w18IvM2MgonARjnQe11nEKTq9jZTA5X9UvUuKJ7uHEe5F4NHWqdJJcFuJ3iuy+U5mGcSMNw+VMTJ6PGy6uDKKnmW+LQrZnLV3wSZzRFlVGx470b1VCSfjTPzvYSNFX6rbOE863kBulQhQhHPJ5cB6vQTpXqZT0XgQvThT/TmLfMWc3i0fGebKI/aaCMimdkcDnQ9nDU9RThupo1IQ1IPMUgGuvRkMH0VDdLDRFOvT1QOAq0vRBWQ/LnBGYSUl96lOfSv7/wQ9+EAcPHsSdd96JF7/4xXj00Ufxm7/5m7jlllvwspe9DABw880349nPfjb+5E/+BC960Yvw6U9/Gvfeey9uv/12nHPOOXjuc5+LG264AW9729vwjne8A71eb5YhTYZOzpB0N3HyGLjkN8MoyWKbw4qiQGDOi8w8tsrRsJ4unqaFlFslKniC9QvJW2B0CAxiFRq+geFwTvI9GQcVHBfXNBNfvT8KzvUy7iE1SZjpRoK13AMdY1Ijlp8f8fyJtW+jcDdyLP2d/51Dw1+qHPNnGBQhlaGJf08yJIdYiA1fyJPmidKQ34WJSoyGFAkm8iugKWebjE3HKC9usfE+FrTgS+uNgCnXsobHNwoaZWqg6TxWIT8JeQi6kbmKOM+m1QIbQZ7uAFIZVTdc34yMvw3lpB599FEAwFlnnQUAuPPOO9Hv9/Hyl788fOZZz3oWnvrUp+KOO+7Ai170Itxxxx244IILcM4554TPXHLJJbjyyitxzz334Hu+53uGzrO2toa1tbXw/2PHjg0PhpsOsi6F4TMSCjQUoiHBYGnIZ4OFPsGySZQFhWUdc0d8XR8YLec83BaazUKaaYrlXmWTnTHofLIGYSvHDhZ1phT5u8CwQl7pD7vog8KF7Qrr7uW+9fEF0hqqO9mJ4x4Uzmo89Pj4+7texg0HGeYI96pqXqhKGmF9mhbZAs4oQRUVfJ6nGToehr2t4I3Z6D3pPVXiAckSesyc6EHoc+dnQgNffp7KoI4KJ1yDKGQKBwM/Hm95D6z7bm6c5OxJK/OFObEwZ8ViZoi8O4dRt2gEz9VEYsmSDyNO6xkV02qNKcAwPOWPzgveq1C3NkLe8B7rPmqsnUw8FzHEgjG8FYpKflTWMaxsIWQgK8X903l4cyupuq7x0z/90/i+7/s+POc5zwEAHD16FL1eD2eeeWby2XPOOQdHjx4Nn1EFxff5XhNuuukmXH/99eMHxE34aNmyq3noxp3lqkI3AxEoFGzWTM+64eRgqISxfI25cuFrDkUT2RRwtEq4/5U10XNRq0RdZz3OKM+PL3EiNXlw+WTmdQBeKcCd84RvT8F72amBs0803xvNl611UuXBCTzqPvPa1yVEov3A6IkmDEJ/rYGiLjH6hFBhnKKqkV53TrBQazdYpxi+b3rfc0VFJTZOWAyFeb0wsjoeGSOftaaUefzaNoRfZI7zevgs9LqH6P2IjD9A5rOcNwyxiP0iFwU+t2k7lQBufj62JIrWv753ccOaGiqoNRyvIeRcqOu18nmociusm7elKCnNT+q8VcNpK6DGDu8/IyghFK5KarrnOreSOnLkCL7yla/gj//4j+c9xNS49tprcc0114T/Hzt2DOedd176oT39qKUB8VDqVEAVDT9BiQAw3pKdhh5J5RA+KgpoVPhOv6s95AKLTxRR/l1O1MqmLYCAVFiGzfZsak1pAh/+eDp5cnTrqFg5NtLc6YU2LS6CtHlN7pLMQG9slJIKCy8TpsFqywQ474+y2hKvE9GYKP39K5CGRVRRzALrv2wR503OHOQ1JzmgbPwqcDg/1JABogdnjQthNTFUtfg7eOM2+xlxLYV136ERQPZi0lFdlZ5cZ4gWYDHKivd1FlBAhmOYmUJLC0VOfApz2YrsEDmhXhGjF0HQ+7Vq6ugRssEAIyzaRk1LJDYb4541o0MqE2d8FnMpqauuugqf+MQn8LnPfQ5PecpTwuuHDh3C+vo6HnnkkcSbevDBB3Ho0KHwmS9+8YvJ8cj+42dyLC0tYWlpArNsVNKRDwzwLY8GcF0jkGp+1hzo9w6sjX/Qemx9jTmpINzhTkYqcahrqB3rTgVBbXyXDJE+OctoIBM3CSP6CdqrmlsdqfWyVCFs8T4KS57cwHAFx0Xr8GTHfX+vZzDmCKE+zzar/H0ua/f9R5Y9CzIr0mT3c601M0gVOu9L3vCV1j+9Ac09AtFb5bMqrBP0tDrJrMzbR4kuS6AGBcOTtZzfIHYE6VauBq4roUoKJDYa5j3OCTZ8tqqUmthRfT+3dQNENTQ0zKzKKih+E5UcyT95Z5XE0yriPaJg1c/Oa8lTsM+i7EInd/GgAp19BoEd8nhzjl3Dc+w8okZUifSe0hgZGKD2BKHjvbRRMOBYpGQVz9vKbLOguW5NR/C+M/3C12Yo9J/CXYiw1uKqq67Cxz/+cfzRH/0Rnv70pyfvP+95z0O328Uf/uEfhtfuu+8+3H///Th8+DAA4PDhw7j77rvx0EMPhc/cdttt2L9/P84///xZhpOODe8IP0NQK1DrkoInhbT2gJMr91ZycKFzsmlPvUk1HnxY3LVW2+L06pTmyx+lAnP7kOQzddodYxxCLm4COjKhKPx4f9Y8WzLfxZVQJRFCfEX83loHWO3GmhGCnw8WKMQbRmpg5B5TznwLCWsTlRf/ryEvPpPk2EaEy4j7o+foy7Up/Zsd0fPtTJRtpwQTfjYPWdEL1A0k9YclDHw/98Ty+zdqetMgUDp6Mre5dhruhbIv82jALJiFUABExZl7LvOA930e6Hwg2ScZE9KQuxoNGnnQfO4qc7NFfDY7DfmtVsMyqQed3XCZyZM6cuQIbrnlFvze7/0ezjjjjJBDOnDgAFZWVnDgwAG88Y1vxDXXXIOzzjoL+/fvx1ve8hYcPnwYL3rRiwAAF198Mc4//3y8/vWvx3ve8x4cPXoU1113HY4cOTLZW5oXpY0LuFsPCyHN63DSTLP/Ea19dWO5tQGPyzZK/F3WsfKfebSh8U6wMjre+7CIwgxIc06LBO9fPQCWy3QLetYKjUIQiH51hr89mgRREOKS38u/ByAWJFskha8kFABxp1wqgJCA7qTht5DYrWVOWPFikSkXUTCaB9DzhPCscYMtbdpRgV0f1oRYcqLrlH5giNbRI2OPRRoh6glRkYd7KkJa750aVoV1yWvKY15vCDnaeL/4N69XpyePT9Yq58VGoM9hGuhzyUP+04zFGp/7QfQOK5PWx00Dhv+NBWyRRi9o7OT1fATnDHO4NN44/zX3NKf+3TTwutVrtUDoEakyLXx2ukPPpKQ+8IEPAABe8pKXJK/ffPPNeMMb3gAA+OVf/mUURYHLLrsMa2truOSSS/D+978/fLYsS3ziE5/AlVdeicOHD2Pv3r244oor8M53vnOWocwG45XOsomstXxyUBix6zi3XB8FMseopEJPNiCsYK2V0rqlRcTrKaDynA5Df4tCbbJGsnCLhSGo0o7egj6PQ+c5JQrT3GoNCsordH4OSJVaKBsAEk1X+udZWqDyz5NFrBQCfG4cR2kR2JwapgCiUlGPYkj4+PEFL0IsaFO6PCLnWMgZeiV13BdNV4VTUuslkpZYy4MYfmMvR6/34lwSRZkkz214e4g4Q6+bz1KFJDvn0yPKQ+G54qPxtci5N4ui4xrvVSmpCHAh/nEYFI5sQSYanyWN2sLP8WlDhpzn9HapWHh/GQEZ8qLK6I1zHvB2ModbGTe/F22IbhTByBNZqJ4s13PCRJ7uGmZSUtZOPujy8jJ+7dd+Db/2a7828jNPe9rT8Ad/8AeznHoxoLXFFkO0ZAFJbNeTLUEKIi2o40MqxHrl8Qya94XaDCzSwlLmIi37boWw0y2V1KjrCoqJ1rsZVlxNX1VPis+I+z9xsSdC2Ax/P1isdQzn6sdUaARiRTZ2/TCfp3rcYWyZgkjCTTYev+Y4vIbhOarCFXsqKxF1ZEapZ0YhqspH9FRyT5KckzwHfS6FvFbY6DkVdvi68nvMc6inud0IzEfIdY35vLJ9+9kHudtBWccdDGZBYYfljIa88nsPpHMyTzcoxXwnQtdGnk9sosNPeSmnT+8+ICUnlDVQFgAyC3nfesz/NIEtZ0i2GHjygfbjC9tLYPGezTjUxifgEb0T7o81jdVCq14XQhLKsdGropIad21719PFpx4Trd4mKqrWuBmkizaUCcB5JwMzvHgDg8o4L0SFrm7/YOC7Z4hh0tS1gqGvoDjldw0kneVDaCO7f8zhcAyFPBOei+ESvWcoUsEFpAJOz8HnsjJIc1z6Gb22JmIDQ9QhVFkMe7J6j/PQ53ZjTz8NhwJjGKRFJPSQpKD3EojPgAbErNe5px/rgTj/mUNU6POlMcj/a957JxgCo2CsYxTTyGqSIxpOzo2CETjNlJSEWCoTizD3rkcW0yjWDItCjy055g0To1UBrJgY1mvqrL5V6JeRHUaWmSoTFt82gSGPR337Ik2a71v3dPYZvUEy2TRMyMXIUEho0JrB+PF2a3eftc8cwx6VBQoSLCA5E3hLzsSQKMM2QeFRiUsrLf7WHFWNNEymdGztdmHlnqGI+RleCxAVroUL2ahHw5o+VT6BrSgkEp5PrVD1jijMgEgWUVBJUvE2gWHq2gDrSO9vbv1utfBU1l/TOQs7PkeqONGNRpmyZHmNmnvTmspZ2gyVNbAyhWIrrLRRQzQU1EhkqmAHO1MAvOc4IkRsESNQowhXGU4vJUXoYjZId+NtQlVEr6lfOus9bM0gQq/yk3i6e794UJDUIoiIsnaWS9M1amcJ0mWTQlJadDOOp6xd0WxIZkuIa9pkNOnQluOWPBS7IBg/uGR83jPh1iS1j4lrUbVBXPwamlGY7G/9HMehoTN2RFflO+oy83xR0z3JyQ8m+7vpmFSO6gGFcUypTJR40cSS2y5hyXyfhs3mzfGOYwLmx52VbTgPmtiUSsQo5O9TAVRKBO9fkJnTTaDTS0lRcxs4N3zfurd0RlheZFodlyp21glZiMWF1BrevyY03TkmVGCgIS6OaZpPMuEd6qgADDrAGtw4qgJYG0TviOdi0vi4D2VaxKR6Lws7zIpu5btnly68SiHD1j6TFj5DZ2Xtczf+fpgijp/XFo5DhSWGyBLcM9dFwuNz4dOLopKn1WdMDIPt6aced8dfR2WBWo5PocJnqftNAfH6QylCFXMgCh6H4VGWGwBiiJiYI1Lh2pF7nDcntnB5sJNIhaA17h4Psi4JmuspbdrSZpBd21K1eEHKsZzspk1jyZKdZV8mHqsvzwWIx2SCn8+CRogWfm8GjHXzqlfHiEF4Dy7is1W57Y2gkLlEqLfKbvxr06mf00dJUXjTip40sWvjQntrHdev7thS6ploEp3WGBOkygQjG2uaiaXsMx6ToRYKyXHj1TZC/FGvj8em17g8iCGPvu9ruNqJ4QZey0bXBGPwhXV944oiXfjT1LMU1uVxigJYty4PVFrnIdUGoXkqEMecW9v6DKx8Vl838HUqiAqQW7ZT4ebPoaydIluqolLg3KgKvyjlvOp9GUSvi55hDmNH18DlifSmHJOFuwZknsNghDUbPoOoCMP9t6LQEUOKnH+VAQaDaAQtCoH51lD2Ee7hlPmi0AFFog15k+BkTmyxUihrt7VPXj+4PIFxrGDulrJoK8FnwoVAo0ibVCuDdAJOHyXFiUya8STLi+HAQR0FhNaJNLGamOuiMmTbkiYLjLReygjN12i4jh7RWmf8mEMYysb/Az70WMfQlvYNVIya+wZRYM2LfiYUKMRD4eOUx9Gka/AITPP4citYn1NYQEgJEla/03B+3sMmQcHja7cRCrdSwqyB3iyEEbazoTKiJU8vkAZVXrtnEZVM6JCBOE94vzQknSNXcmoY6d9NsEjnqhZLLxoaYuU9UENxFkXCdaKkHSWxjAshzlsgPCvKGuiKgAemD68yWsHdoOfZzWGjCKxb/kbM12rYegqcHkrKmvnqk/atRw+AJIkQ/kC0voCoXPqeMUQLnmERGg2DwrUDYsFmJ7Pg6A5TqLPSnMV9nTrueZWDYSBN8io7bUkEXWAg1iLoZdZw8QPDuY1pcdJ3o1jtRLKJKoU1ROE6qc0Lq/GVMhza8+RjF+GllnFHlbVNP8tnN07AdmoXimmy2KlUcgu85n0u4nOmMloSg2lJPP2OJ5TQC9+37jZRzMFaPVVGWo+izzBX7HxNSRE2+zu/nzS2NFyqJB16UiS9LDIsxXAo2ZrJezMSNzj/a8gcN6n3rRESYiuZukoAoXExzbkfW8p6ZcKF+ElSmpZUshGosVf4F/haAfe8BiPWUQN2p5JSJaG5hlnBbgXrlRNOlT8GvaBQwGuAuowu7ToQmphq2IQ967iLMC1oWnWknVIZUghpvkXbJ+XXRdo2MCx4DIbb2ygm3R4Kt1H3sYm+yx583LCQrL7SH5AhCebyxoUl6KFqLVEieBu+o9ZaUBBIGXoUwANReKOEQROxIjmfeLL6ndAQ1kaBqgwxzrPSK67axFxpWY8ultacUeiwXQBVAxFklJGhSkrDwkGo+MlDIo1GBejJMWzDe8i5O0ueaBpoN4kwFsyvOLo1UFXi0Zs01EfjVLHFDgmANI0wDuwdqeFMhr7D2qvHr7NFQuUBxVLnOpcfhmsUfgA/N/Ewu1NJnezG3Wk34urmdFbuUstFqVY4/O9upni03xmPyf8zAU+hxZBiYYGun2hUdqRsK+U3vy42hOUWFfp2IZ6UYmUQq+mpNIA0Ud8UHswRapP8/0NvP4k/hzyQeKDGxBg1MIZhKaEkKiUuvjAGpGE+IKVNs1Jf70tTIS49zwIpW2+eHU6tKG8+w6b52K0cE7Jajx4U59E0wj7xbvwz7NSpslHv0kBCp0gVkxokeag6965HeWCb4XFoCFQx786zzBlrqBKIl5uESGvxJrcQIeQvCrRp7TPfzEhDmMfG5YE59vU6KqzN8gpVyS8Au1NJPboEnGEAzNDKZByWBlFZaTEvF+WgcOEcKil2r15pCMuFPnjGhS7OWBtO+u7pS5JRQlCazxg1AQJhYwa3/qyTMZRI4aM5kFFKUaFCC3Chvsd77vegiEyeFQx7XBaRSUnFrWGY2ji2mS4+zUUligYImxkCkf2mxYV5CIe/yfiiYiFZoGNiq6xR4MaKhQhxPVdTW5gcDJNNC1XAYVsHuSatkdNaMfbrS/JVGA4HBgUlijucr4i/83wqsHnWelPx90ZABRdYmAZY7wwrLvchhE0lm57jWgdJXR0952mNZGWVJm2pTExZMAKgJAqSwtgDkvtw5cfm+uFcXOlvXr5qgQpwdyopbnswLXNsFjAmzgnFnIrmqTiZRhWpao5k1CQm9Tqws0w816Kr+41NO2lbxMLWaWpRkpoa/5oKL/WAqgKwVfpcQn84f73c6ykcH6KMsmc6idShymLcZ/N5EhK//u9JDE16wE1emrFOuG128jqfJ4Vx3iMR6rkQCy45ZoaFmtbLtMPOCSqnEjQnDAwbXbVx93Nc2JQGDhHYm1N4LTR2VbYEElU+563MNyPrjN8DwDIM48fmujGn5TPsDNHZ2c9rdyqpwroJs+4tinnDAaOOrXsnMX9EggPDZKMosZ3a7WQ7LmbPSbqRfNqsKKxLzjN/AqTnZYxbu0fodhq0tLUtP1tL8fM8bp745vMCEPqkaXiKng2p3h2/ILljbO5NaUgq5PPqmNTPb2dgHPr7XcEZCFrQPI7irMQF0siHlB4mh0ynQc5wpLLhe1aeR6+OxtDyIHqoGo5hHVhVpM8+3EukYTbjPbGeEG9WJFTLWp/NxGYQGBJWI0YbNDQEaIBSmax2YoSF4HzpYbxHdbITyVFBSYlRpd1RtCs7u4KoQtMQJT+XKzQWxPe9QrNmtIzMiUScA1uI3amkWJ9y0l/epBAKE/uFTbehmAakdc8SXhtV86QMQQqNzhZvbpbfK2vcfjb0TrV/XgiN+UlL5iHraZgjM0hDdX3J6RFUaEWZdYBAqkAMHGPOmHTxaahJx05lagDYOs2bJGFDI+QKO3ysSaQONhq2QLBiiUCDn3Nxs4i1iXmY1/RQiIYwo42hynxOc76zE0kQ0iZVUjwODQfd/2xlQhh00WBLLKXwLwIq4JvuQ5Pyoozh83m8F59RbrAVttljOdkBHveNAk5K5/Om+dwtYypBn3mipBCfPY2ysorHpGFnCok4Sb5c5wi763AYXB+L2slhSuxOJRUse5N6ADlImSULrbBAze0RtsiDUYQQYpZ72epxKOgVaMEm4/cMHSixQhPwJB0wrJl3Ig91RHVq4etCbwpBGfnh53JPxSALvY35Wz0w47/M7+s5RiF4L9nnjLzP37M+S8s5YaJ3rcdX9pSG8gAJPdvRnkcgUmTvNz2nnYAkX7bI42L6sKYaOVyvWtTM8K6uhVHgd5kPY0Qhzw8CsQYvHJv3Qo7X5OkYeT2/bepB8tg0/HT+q/fdelILwFoZq7XJaGNBJK2vx3vAt/YIrdm4BR5IDwMX1pulDck8XZIJhgyoCNg6iEyc3gzjWDTWOq4rxaCIoQlArHVhv3HDuLJ2bVxq457BSn84ua7f5/UZeCXtr520f7UqKYzpafF9hhGVvVYVzlKk0qFgyZtbUtkyL6EJ8lGeL8G+h030c2W/VSaGgvU+jGJsPd5Lt4Wh0NIt2nnOpQHQM+mxlgcxwT5OsGjIVo2O4EV4Bcxow8roQ20qgpJfsIIChLRAAwlR2fD/QHyOpkg7YJC8AMRcLo0zsjVHnZPPWFmwfNaqWIoy5pj6lSNr6djIBNUaQCB6vhwToxLqkZGo0TUx+jEL6aPp2gLDEBtKuexOJcXCz6pwLVqWejEHxJqTR5aBh/amuRIKo7IGVgfxO2efmHxOhunmUVKsh1rrxONQ4VlEoTaqXmazsV66UMRa6Ypy6RFxAZEFyAWcK9ZQBI24b1K+ELmwQuLfRE8MEMvOKyj1fvg9tfoYcy+8oNHFlis0HifkwfznKLAnMcroVZL9xe8z9KK1TP0y5oKoeNTb4b1c9/c6384g72BuvCBhrRW3mZm2FZda41TiQamJJ2ARjYetpmET4Znz/3N4pqOghAnj/xhFduHcYZkFi8wDsxEIdYzdEQpKayH5d7+MDZ4p4JW4xDZHto7fNYhKheHbpvpJ7daRvx9yVYJZUh45QsQFaT5tTuxOJaXzSnMOIQyIYSEJSO5gxLHGntNM/1mFTlaNR+uCzPMOWw3m3VhnREHGxRP+zr5n5PsMG7LuC4jPA4jXVxUAyEDShYT0mVGYGP0cw1w2hgrLOnoeo2SrstKCUjPxWJ1quGeeQueWKlN9nfMu8ejkPpg63jO9pkSJmPi9Aql3qfV3s+QMaAhVxbCSDl5Ldn+2a++ozdSNRn7zunOGpxpBwUiT+a8hsalKNtAcelajufG7Mq8YmlMZRrsmkWuIzzAfl55zEaCToF7/BrA7lRSQKg21EtViKixgbbREGHaiW8zvTHU+ZDUVU4LbRD/ecyE11lYwkc1OFOOEJEGrTlvuLAJ7fKiu9LVMhbR0osUYeoShOelb+IcwqadkbWKTXP4fiBanLqjOCIHMcbG4URcnfwclJwKG4eBRi3ncmCsDWCGSqDem/ewGVr5TpONlAW9hHYOR59d+kPRUOV6On2UPvRlDNHkHkpALlfEDaUh2uwwmZW0uegj0lGsA8F6A6Ki0EFrmkt4TGiZ5fWETlJxRZz/Q8/q5ylo10sZZm1nYaOAAsYREl5/26+Q8Y2iTMi5XlhvxUB/vpc1xCzt7p3rB7lVSRLC8zbDSyYWUxpJnXYjzWiKMQ692XEjNWMD0Y/hLlcCk86+XMTy0NMMYmLwdNYlYoExrmwpK2/lwnEBKfJgVDFkE78NK4ah4HkBcTKGbhz8GBTb/DvVltCzlfGphzlsoOjSvRFFZRMWiJ1fvCohKPklQ8/gmhgYpXDTsxmeykR1ye5UnD5moFIF4Hbop5G5E8BCL6I1w/qnhoT+859a650EKf7I9/IjzkRCTGNIyT5pKT3JjWw25oDjl8yabSzomhsNVPjaVTswDtkIL98xuqE3W7lRSqrW7PoHPOD33ZQotf/xT1RAWhfBSNb3Qmjfmumcd6HTSuq7lgTt3zxMOphlDyEvYSOeeFpM8xm4F7PP3hjv/atgnD39o6GseRVXWTlgOimGjQq28XNmod8Rxaff6wCYUyzdpXTWnAA6el/9/Mg4RWjo25qiolPMuIjoXmZuoTbSaC9tsrW+EvMNt5/uFPE9E734rmpNOQqcGTBFDyIuCsY4iHjxKRAMWQNIxJHRgKXz7NQP0ikg+0PzPpLWrEZ+84XQIGXOM+pMrMNMczdFnyChHYVPvXBWwKsF5oN+z/oAG8x8Pu1VJHViLfc+6ldvGPH+oe/sujNUvfJisjBNrye8bxO3Lp8U8impFiiw5gfat+5ZK9WwCZ2kwmwdFaI3IqPN1asd2LGxMEmvoFIhCOhzPzF/Nbvyzq7Ipqgsut1aDcpAxL0tfQo6X4VMq9o2CCk4vleODdasseCRCBKGHt6fBEOH185qUecefZWnXZfwx1427Z4m3iehxFhitbNjlpFu5Hm8Giy2EnwYMjY4ifhQWKDZxTIWN90cVRNNYOnVaV6g99lTBNSH3oHi85UGqpJTZmYcaeXx6WCRf6DEVqrCUPEQDRPv8zWsAaKgeSO/hnNiVSso++V+Fv83gnc03vFNF91zrVzV0shEK5qxgPoQ00u6MCmqjCGyiCZ9jUeigjIsnr9cYtUgWAc33cMEq1NMCEKjqbpX71+xoIbiRccEMKyog5jxphRt4S11yUk1QhVTYVEnlrbfUks4FFdmTLA1g4+Jxc7upketWYN3nHruiqLYzBzbLPZi3uFgvj0aXko2UyJGPp5Dnr2HAxltm4q+QR/XHUBKG5ktnwbi6sA3Ig12ppBKMmjjLlbOCBoWzFrl1xtIgemBbpaAAZ0EdPL491ussebiydl0GqjoKlFBjgvh/xrxrM7+3Qmsvr7ngQmYsHTZtBaMI+4HJIsm3fNgo6PEkOQVJVtOr1xCpNe4eAqPn2crAjXMgFH89zp5+vF7W1jFcF6jkSL1LFHAdOzA+vLnVioH7UrFOqK6ALqLRthug7MwQakM0ljlP1ZPqWEei4fuJkSLPKDEQkSornZdNqGR9sG0SMHn7nBz8quaBgY3lSnE6KKlRMNb1qgvbe5fRgins7HmdRWC7FmOoZJ9BMAVlVThlpZZcZQCUacHgPEpBG26y6Dp4Rh61l8A8dy5cQ9hMvL1FGwGqCDUXxzBgU3iNAmgcSP0HnBFDT6hJgdC7ZVEoQ7dd8YgowFjnNt3u3ZuPx3ux/o7CW693M7eVmBfsUDNtb01rYgulnPjDtdFFmsdtmlMhdJuH+0z8CYpQ9rhThcVj86eqYw0cgNDea9L2OTmUaZp7hxswCk9fJQXEye+9aQCSXN/CUNtOwLxhFa2fAvxCkoUWvJ05QEtTPQE9FBddUlM04hqU1LFo0PK1/j+b4YGTRTY2z2FSK7rMX8f2hPAmIaFCU5giFb4L55xvALp9hvF5vknPPLQ+agijJc+U6yg7pkWqvMadLzFK5N7qazyO3msaewYIrZfI6J1WNmjOjMN44s9M990ROL2VFBAT0Ms7gLk0LbiYgckJ2mmxEaXMHFptXBPMpBJ+A2Nj4156eZ0iXXhanA1Mt5iS0NeCoOfkNgrWuOactQXQ2Xh+RQtLmxB6yBVRiBoJgdJ7YouonWSE7Vt342EpBtmMQBSw83p9i+xKwft6shu7mdDQ5VY3ObjxJyM2zAeqFzRuTtAAIktuXJ5M67jqMiqhJiJDohdNZJpySw/rCWWD2l2rhpbHgWFkK9e3QbRK6lQCN1VTa2zctiBbCYYg9tQxpKETVBXXtCitY3JRSQ1KybkUUSEEb2uCEtgsg5zXXoskZZilgg9DFlGYzausxglbzduFZrQYzscpM3KnwFi/O7SEt/KQru6aq0YK0MB0y7wGrZubF2xTVZnYp4/lA4VNc7FEZYATvrC1NpEVyxAmkCosra3TziXaQSL3kiC/gRi65z3Ry068U3ldQ4pUUIF6X8TcKZnPk5Q+maQLYPYBrZI6taDWtC6IrSR4TINQvZ+F+mYdJ6+XsX9U0ZpFHa1GVVDbdS+mCSNqPcqkYzVdxySvgG8VNoYGeW/yDiw7EUuDdCfqppCXzqmm61GSgJXvbDT/pl3ONSyphIOkwbEorjyMqSSgCqKcvIbKO4uEe4Fm44LPt5DfYS2YGIIDow7yfuPx/G+OMb+fk+YvxzHVhydj9yupRbr72w22HaqAsH+RWUB3dO4b07GL3SsmUL83AC5ghlKYTM9j+1Rk01jMGk5aBDiWvAhSvZaydvd3VDdsCjgKYLW2gUgr14R3cgxEAdWrXFhPKephGwlEQbmTvClC647yZ8yuKlzTYSNGREGtyiIoEH+dxZTzIz+nbuejrLnaxAJ81lsamYdWn6scM3wP8RmHZ2Hi+yFK4N8LbcCQEmis/6f2xlvw1gxQ0KOh4dIwv3Se5feIm4syOjKObaneX/D6Nj7Hdr+SamKEnapg2xZNeG4Uyjrq1mkR9FZAc2v62ihFaawrch4AoYARSJmEE8854RzTIknyZ6ENFZ4soh01NqXaw3+OIReGkiqTKpecMaX3kf3bGEqycMcLFjG9kR2+JpSur4pBdwjgPaZAVG+L3+nUzggrzOw53H4RFV8exg51QZnn16ldnZdFussCod5eYZ2Xp8ZN2L6Dn0E8fqiZ8woovIFhTyoJI2ZKQ70tnavqrQUPUMabd0tXqAecF9BvALteSdnOvwEAGLxjeweyKJS1ixPndTfzQvfC4QIsNkFJ5dRsImEBym+Y0fReUrOtSQXyJKVDhaJ5rEUaLxy/0n0NJisEkh3C/40jXDABXcnxYJsFBecCu7ersAr3p46e8g7XTwmCgNWwEwWoTX+Hj1mELV0MIgNvVpmp7NTgsfE9CMvPIlVYNnpKeZ6NzxNIvW+eR5mAxs8Bdokg8jwcj6UM1iZD1sj3me9SJcY11BSiNIhzNQ+ta2cMvd4FrK9dr6SmArdCV0uF1gDfX+3EUMoiC0HnQa9y4Z2NeIiDwiWCdY8ohhPYnWClP30dyCSsSe0Ow5aqCEPRLqLA1qarTfecoZVpQUKBJpcXWZtmTdyiQBcq72s+VAoCbppoMyHU5O1ZFk3bNLxJlhkJKqGY18b3eVy+fyqB47ZyX4NQxrAiUa9BmZWzzGV6sFqgzXMAfj7l3T2y8Wq4lUZLbR0JSMcLpMQX1rpxjrOujoYKSRu8zJDHKsUwEoQ6K/GyuA5zryp8R8akSmqtjAqORpCOVzFLW7kROL2VFIVE2NLBRkvTQDY3K2Jhmz7k7YJOkHlBwUgvSsMStXWvdyr390YFuTUxiUyKa65cLKKCCgLU590W0SFCFy0X+iIFNS1dVVCTCqQ1HJKE4uA9WvH4gseJ9DskBAQ2lo05mNxrVSG9GfVimw1VSDa7Xwz1KRLSwRzGFu91roCUhccx5MdOlKX/7JASMMPPk+FMKsgC0RPUUyTXY4Y9rXB8kz5rvYb8t86z/Pv0Vjk+engcfyh7cAaEPfCzjbd0HpxeSmq9dPs3hZ0wvfVKIV3a2HVct1oGpCHpDql+X1RHam65UYsnRet/QRTSRFjSE83vIRUZfwNOQRoAdT1f49yhMQCBk0vhvxFoUlxj97w09VpIWWYYjt/jvQnbkyAVWkaOo8fMha7mIRjy0dZMQx7ZFigpa4BV76kDsfHzvMit/qb3GdYMY4Dcb9UsI8arxyXlOqFoA6EX48DTs/X5MCeYe108Ho/FcHVQYtnzMBZhl+cmBZsoav+alh/kbMTaT3iGDrWZNGWbsvIKbzXmhfk14g7BqoCVgr9g+Xj6KKmTHeCxJeDv9kSmzlqZTo5u5VolLQ/cg1vpx5DQ0mA4B0QvTJlGoUZlAR7IZoILpLS+BQ0icSK33BdBMmDYbiQzCNIHMLP+Omb2PmJNoJAQA3RuDAqXjAfEAzXp/cqVFBAXsG7jQHo9a2lU6LgDxO8VXgiPUrLThjA3m/H6rT1uza12XNsja4DHT8b1NU/xfAhT1RL6QwyHUYkl98/DyGsqRHNBn99TKlW9XWH/tCLOW/VEuIU7IJ6KcWQKKgwaJToGnj83RPis9RrUA4O8zlwWt6IPr/nPaj7TeNllZYt7hgCBNPXRdF5dS7yGRbKDOYxZv/C5z30Or371q3HuuefCGIP/+l//a/L+G97wBhhjkp9XvOIVyWcefvhhvO51r8P+/ftx5pln4o1vfCMef/zxDV3IRNB7YgX4aif+sHdfv4wPmVYIbz5juDlI/VXXnVbMdmNcOMvIgue1qZXaFKPeCGaxsBLWHBbjzY06x4a+L95TnR1PhYqVuZT/Dp/PhBog159/Fot7LpsB7Yep66ovr80DVfy5d6H3Q/9uIhE0hcEmnjs7pyoPVZ5BYTaMT3NBuedrsuvKj6+vqyc+9NOwdnQO1dlP6Otn0u+Ga0Y8F5qOb4blzILn5sye1PHjx/Hd3/3d+Imf+Am89rWvbfzMK17xCtx8883h/0tLaazmda97HR544AHcdttt6Pf7+Gf/7J/hzW9+M2655ZZZhzM9TnZd2IFbG5NSCghZAFHJlPSIGmoJCGNdN/Vg/RfRkwJcS5HtIllQ0Y5qzrkycGPvF+7eMNxHK5XCYNZk8yhMCvN0ane/uDNqzpJa1MS3iALTWIQ9r8aFkZQurK/p4mQYL29MzDlVMwnuX0xCMBBhmhk8AJLCXBWEOyHsrKiNW1snu36ddbyHXkWPknNt/9p852Boiree9yQnH7DWSHeTZsiXcxxIPbBx0OdhgND1n4xKLdvQecQuKXxdPWKNGsiUD6kH5qQ4XrYfyw0+ZcaqwaS5NHqYqpTC9VDB1vE6h9a+/yw9Lb1/hXx2UUQrwcxK6pWvfCVe+cpXjv3M0tISDh061PjeX/zFX+BTn/oUvvSlL+H5z38+AODf//t/j1e96lX4t//23+Lcc8+ddUjT4UTX/Rzv+vZC2cQopFhUWTYsfhsFPph+JzLUqKQC2QJb37ZIyRBhJ9Fs8jAkyY7Jyrybhw21ETAHGGjbSAXIIsbBhTsoYqhX91aiJcs8XWGlwwVShZ9blvDj7Ph5pHkMTYIXftJZ+ESzTT0rm43TGrhOGyYlSWzls5kWjy3F9XW85+Z/t/Ib+XkhedKvvbXOfHlV3U2byAU2Q1xrfsdrKhAV7kHJm8n3Mfd8KyBQ/XlMbRmUh38rI2w6rxB6JjWYOCaDqKRIvNFzkC2X5InEqFGviQhED5VtkpPXnCg/YzAsN/xUDIaWkWMrE3fBxtPM4b5p8JnPfAYHDx7Ed37nd+LKK6/Et771rfDeHXfcgTPPPDMoKAB4+ctfjqIo8Kd/+qeNx1tbW8OxY8eSn7mQ0C/r9OHnrneSCJ/TjFfWC0kBW4WmcMLIzyINMWwHqOxD+FEm/aLGpd5KECDyfNQKnxQOyi1xVez5vdfYvirdnPiQK2V9TT2HUQpquxl7SZIe8kxt9FY5xI3Isfz6KZg11K4h+1HPMw9vTQuT/Z08U4gCQaoYcgUyat7QYGNXCEZ6kpA84rmSUKEcr5TvJU1t8/uAlFW47jvQJMpPjDFeX34eHn+RrFlsAnHiFa94BV772tfi6U9/Or72ta/h7W9/O175ylfijjvuQFmWOHr0KA4ePJgOotPBWWedhaNHjzYe86abbsL111+/sYGVnhSwpy9Wg3+PVnNXPAkLZ233JVxAYkETOAGBNPRAYgUnccduTTeHrt80bhosDYBC8gSTlNpmoVvFjhfM9QEb9xqSWDxisaQ1jjnIDuFqrCh9nAJALcTQDQFxHmlbKS56i+iRKcEmHaA/ppybc0dZl8aOTkwzl0qhAqRCa7NJPNbEkoba+OdYOy+KzWPp3W80BB6MFpueF0ijGSyv0AazBde9/J6mzEJJU2qghPdUAZv0Ga6VUb7k5I/CxnCoznMqhlzxaRcOfo4t0izirgFdmX9U2Lo/G0TxDArn4TLlAbh7tqefNkQ2BpG048fdq1JDqu9rSvdN+SynwMKV1I/8yI+Evy+44AJceOGFeMYznoHPfOYzuOiii+Y65rXXXotrrrkm/P/YsWM477zzZj9QxzqXnIKAD5qCkXFZAx9u8e93aqDXgdstdMxkDpaG/9000cwMymMr0RWq7XajJ2OhkJ8VmtcJf0Msbr+AbZEqISoYHgNo9uQKi6HtCDQ3Uli3oK18Xq3gRJkgeu/8rV4A5+a4PFRt0pIKizjmwh+TAmUzwHsaerzVTiH0Kpf/LKwnURTNhc3zgs+LTDa9b1TcwehAalTQsCwQ7/3I82D43uvz1DAiWYccQ79MP9eph+vbaIA0eTtqLBE2my8Wacicxk1tXN0cDbGm+RO8KMR7x9BioMrXSB4ajToqd87hysTw5YKw6RT0b//2b8cTn/hEfPWrX8VFF12EQ4cO4aGHHko+MxgM8PDDD4/MYy0tLQ2RL2aFfUpUcubLH4gLCkhDMvw/8zQAUFWTFxUngNZi6ETTxOJOxaLiybnwnRW8T4VfMNOOKQ9LABLSEcuT5+Cq5586D6y8rmEqQpVQUHjZs1dv3eiPP3CYb3yNCtICKKJ1rkn/UUgS8KqhIGPYxLlX5PfOXweVJnNS4XMLOm8Io2WvB4Gc1YoxR5h81kZjoAlUIPxb57WR1/TcwOhwot4f9aq012JlxKgacbMSj99Ej46NZHXe2yKOuWmNKK08Z/9Z67yoAtn6QZzDTGf0PXN6gdh0JfXXf/3X+Na3voUnP/nJAIDDhw/jkUcewZ133onnPe95AIA/+qM/Ql3XeOELX7jZw3E497FIP1eLSy3VqnBEi9pbg5NyFJzEFFpAfNAFgM5g60J924mTHWA9m1YMC8yqBKdR6swlDcSoyPM5QLpgwzisPCMbLUO1hssxY+bxa+sESQXXJodQTyzPM42yenguDRsGRZkJQ83DkOatn7WI39/s8K2Gf6oCgNS8nejGsBZDl/OG/Jq8fd1rCoihQJIMdN7VxglsyGeDN4XR7DRGWaaBsQjtq4LhZDPFgNQbyZ8RZRJbsmluzVgXEWKYsKwdYYcerHqFtQGKTvxb7xNBLzzcHwDwxIrSzymuEV0L6vmtGbfuj3eBR5anu09TYmYl9fjjj+OrX/1q+P9f/dVf4a677sJZZ52Fs846C9dffz0uu+wyHDp0CF/72tfwMz/zM3jmM5+JSy65BADw7Gc/G694xSvwpje9Cb/+67+Ofr+Pq666Cj/yIz+yecy+HHvXU2UExIdAa5chF2V3jQOFA49D4QBEK3i7NybcbNReUXDCa40K78GiOmUQ3H9It+YO99mMvud8RjrOYH0j5itmiUvlFiqh1vYsyiIUhKJZUeZEAfU6lWW2VQielChUtdDn7aEHxHvL6wyMNXlfYYDQJVzvuxor+v0aCB0eFhHtmIZwRSbrKCOIXl+/TMOY9JiG8mSZUcf7P6idsskjAjpHdK1Whbt3ej5dK4kx4OHlpD33XwELFuMzK6n/8T/+B1760peG/zNXdMUVV+ADH/gAvvzlL+NDH/oQHnnkEZx77rm4+OKLccMNNyThuo985CO46qqrcNFFF6EoClx22WX4lV/5lQVczpRY8V4NaZ59TSh6qCW7b90J13HJ1VLizJygbL3EbdAngd/jeJYH29/MdlowNABkgt6DYQNtx7IINCmAfPHk4J44IffjLXta+kqyqA0mbphHr4t/A2mISfNQ2lEiz3mp0AHSOTXu3EmezcJL3PgZWuybjT19d66BJy1Uci9I3hjVFmsc+Jya7hfgPaZBXHPMvxC5R11nzyg51wzXOw70aNSDzot46b03Xe/JrruHqx3gsV4agtMyEYsRZBzEz3RqwPqUxUo/3gPm8RLFLcfmrt8aYeJ15B5n5Sn/m4CZj/qSl7wE1o5+krfeeuvEY5x11lmbW7g7DboVcECUDvMKfXGz9/gHum893YxtEhhKKuvJPef+fiUqSE4WLvCetGnaycqKsegaMX7PEAfB4tlFb3XPeLzmbBJ6sklzTkAautGFTwGqtPSinqxYaX0q1GOgMGTohgI3F+LaO3Lqa0fqUfFvw+vMhMxmgkqoNv46JYRurFMmTddG1lnuaVKx1/IMc0EPxLqj2nhGroR9Cc1N5t5A8Chs9F7mvWdBASKlgNMA4fzvVqOjK+ulK4ZmbeejS+lWOlTyZe1YfKxDSxSz/M0asbJ296ZXRUJHiEL4L+gzUo9XlZT2+NQxn9whSmrXQqmd7DJB62OzFATbx+gEpJIaeEHDBTeLktxq0OsYKiKECAb/Av+/qByJwYSQCaIA4tCScFPG7gOyMAgmj3lUWGcoh4ThpDSAsGsq6tlCdKO8R56LY9gKBaUobKRb89ko+SAH70cwOPzr6v3o/TcYvt5AtinS5wikSqkpJNtUN8S5Oss8TWqgxHgKY4R4/WOOTbo4dyrgztlKcAht27Lv5h4k4EgU+Y69gL/nYVG4X4woIDtOvnYS71Tm9CagVVI5uhVQmrRmZQF7ojTiRNdV6fdpucEJ+zXfvWLgLaClgZtcKwvO5ywKg8IlTROFhPGEg0WBz8s2LBKGcptyinyJW9HnlqHSmAOZYcL1KCVZa3PUAFHllFj6iF5QaaZTLMZG74VWMscMxBqlrVZSwPR1eqxn0vZF8GshMGL9Z6ch3uRr1QChZVlQGjRAaEUhY4ZmHu60ir6S4wbljJiLqw2cUVQLJV4U2YmuC/Od9CG+1Y50x5H5rTk1nqcpjxaUeh09UYa5DVK6+bIf68rAyRstg+DxSdhYGiBhZwaW9ORbNA9aJdWEwgKFsLw2g/BQFY4Jc2wp1o4wR8bt3Nf9GNjCp3NiMjtwFsr2IkBF0M+8QVK0c4W0GRM5hFez19n6JYcKHXrOecI5hH3qtL1UE4IggtCJ5bPGOvafelKaR1MBRKU4a1h0ZeAECCnAFtunoKYBc6+6wR/zwAX8M6nHexxNaLxnnnk56jBWflukBJxCnhWh4Uei0WMyqeHC7xUyB9g7sl8Cjy47ebBeerlAwgSGiQs8Rx76bBoPL9DANzKo4rm1JspYF7HZ03evsxi6tEBvEA2HwB410n4NmzbXTkslZfGO8Leprx+9EJiY3AyEkI9Jux+o60yre2Bl9+AxYRMel2OfdTzzTLKhheqt02TR+tfnYXVtBFzE3Jdq1GeGwjKbMEYlUgwRPexwyHKeIdAT4bzdqQoKSPNDel+Uaj+vQTNkGE0wlJR8ot645ql0yenntJPFKBnS9Bxo1ITzI80r5uMlEUPLIlQBTjNneXzmALVDSVB8SMO0If+lRpXcM35/E3FaKqkE//tsFxZh0vyMtaymZxMWOhO8q9KIUwW41kSUFuj493tLzpM662R6PLrmJH3QMppWKZAoMmt4A0BIiNdVGtsPk5/XUI1mM20WDLyHVKeCTwWH9f/k4+IW8yHXMeZ+hEVr0xBSMhbr5hUbnvI7wPB938ii79QxXLNoUKhN+wyb8ngUbOyKAcSQbbfyTVoxed7SiqdwzfNQiuB1ID5Pzs/KF0gxGqDn1hAw69BUKBfW5XcKP8c6yAyQOrJFFd0q3TxVx0LPJCgI/7fey17lCDZs8TappRO3R1nrOKLWiW70GC1i5352AqHcWxFjR+/Dmg9ZJIZ0sWkGaKukvnmGc3FX+lFZUbDNYonyQU1LNScFlPvuKHLWTGWATteNr1+4MZJIwaLkHLS+RuVRkrGbGFagRThLr7dO7cNq6gmIoqUSmCanMApNLL1JMN6z4PYflBVqrY86VGDcTTHuXDmPcgGo0KmIdLsHLQZvylfMQjbp1ou1rdbLaAgBw+HMHCT/1EjZYgzxAWK9e6VRIt6bJuThLuayVIjy/jJ0q4cqrDDzReDymCQmcDzGpsQE7ZzPZ0Tqd9hKRcgiyiTtmNQoyQuDNRSc1LvVLmRo5L5zbS5VceuOSfOCrFJuQHk8SxYaxO796tmOmkTaH1Hv0SY5VK2S0gaQ/H+3mt6bYE0It6XfOwVdnQyant/GgEIrhBBEQCptlRajFuDp3kh57HuT3fCA3EMyEPaRjdcwrYJq8gLCIrfZQpoAFaj6HVVYTaBVWcp9HTleCJWd96FszqkoVZ4xpFKEcy2ak0o5zA0znReT51A2AioDID6Xqh5fv+XlqyNDIAr9PJQ16xgTGjka5rhJ55k+4/x1VRrh+SGNPhj5bJAHNhoRCdNtxDxJDBxRpIqyBpasM5Sp3EmCUSIMr4NdKrr1eGOBYJ6SvRNJ9893GR9VjA5EhbRWpsrJAvbQv548hg2gVVKPeuLCSXGhAaDuNysbPqDVDvDAPpfg5EKujQvFnfO4s3QOrI4+78rAvf/EbnTF10o3eVhUqguhV8XX2WqmNi5cuNpB6NJOz2FgY8hqWqZYCIvMaIar56XClrmR3pSLicgLDNOTidA3w94RoVbrPJi2dU9IHnMRd+J4+LMkdW5NWyaEPJKJglyVkxJAVgabQ+TJwbzFiW70OFQoj/O0STrhPWkir4zymnjt+iyVece/OT5rYs6RnnNBJSL3vOmeMQLAOr9Kzp0bNMFrkjEo663JCKPxFsZmR6+vwgJPOuHkj8oT5qKtSdtKHVibLmrDZ0hCxvEesFq6CMuyvy8WkV2pa4/3nHVbg4bnuAV2cKuk1ksfo/aTjtbGUpM1byIb6aSP7z68HEN9gHvo+9adkjsw4dzsEM0FxFh0T5QUkbOEaGnRMqLVT0YRBUU9RdjSyO95J92oBZp4F1NCLeSk7soOvwaIosqOsRWOJBd0KKgtYgiK1ir7n+XWthIn+LtA6ikDkd1F4bwVSupkN0YJtBBbvf5R80o9S3glAgwbQUleEDHEyWfH+zSqEJf33cjnAxljCkMrdAwHUNFDyrwhNYJYx2aQel3jPG0amoyMjENZA3v7bh51yyhXGPJniG/aDja8P/3CGU+Ubf0SMA07SOt9BaLCYriQ3dw1QrAF5JxWSamSoPBf7TRbikoXprXDOgYqqTXfZLEyzvoYF/rb03fe1KBwW7nTi9MW+ZwDSoTQuolAafZC0pg0PEAixThINGJsTmUW8J5QYM0a6guehH+dwjunbisomLS/W4npBNZGQZZgUFr+dVtEg6Ip7GkQE/qAkGYQj8WQrgVg/O+NNGmdBCpcKgsNNSvteRqoENcOGMxRWrnePBQ4pMwsADECuHU7EJUHwXs36dkr4aKJfBHugU0JF8ruM9l3wtw3cowp7xdbYVH+sOC/NjG/Nw2pJB8nr48kJ21RtTTwreLqqASrIoYIT/pcVr90n12WZ9p6UluAM9aia80aJWB0OIOucb+ID0/rXB6rgN6KL8D1CqVbNRfiFhZ44gn3Nxk4fF2T67qIg9DKwhQonDVI6CZ7k1ozhUp5O5tCaYLuiErB2rFAMeJ+0vNQcNEH9hUQNlsDMkUlr4VjGtkeQoTiZiFQ7xEFBLcu4HUwl7A0GLa8KZhotVLAVfK8yajql8CqD+0+IWN5Lgqsj+H4Sb5RavI4qHDW2hoKRUVQ7pmiKiChN/XEyJarM2MN8XM0tKw/9jihzvB4k5ej10kFCxmjHfHZtRJY7cbvUZjPMwfLGtgz5ffCfl7yWniO/lhskbQ0cPlzbm6417fjUjn1WM+FCdc67vegcPKSNZ1F1XpSWwF78evD3+bWDw/HvkdN8BB6yBYXFZgpI828Ns5TGrdYelVqOdKTGNiYhO5TkiH1pNRVJyqTho5mwUboy8GTEK9iHLQbhAqlcd9Ty1U9rzAGf/4CPiwz4zXMAz2/Ck8+R8BZ/XXDnFL6euLV6jOW9+g1z8L4mwWq+PW6cqUxColSodU9wfvi9drstXwahDGJhzDKnKfhNWk6T0M00TlXyrNqmn/JzglFzM1uJkJUBena0TIHi6godcsU9aBUWdODZ0oh1FYZ2Kf//zb5giJOeyWVYE/fWRcrg9i0MUfP9/OrjAvV8QFSGQGRAfPYUrSgTnQjdfSMtebzD9Xq2Bj2W4c0PjWRBhpyUnXcdTjUWNjpYte6iMas+alQWJeDoAU9yQhUqxtA0g4nUMiRFjDqc1ESQqD2F1L3NcWGlRuBenc6PnqR6mUHZZMJY+MvfMgy9yQAIL6ngmWzwpgrvrsAjZ8kzIrJc6pTu/WjJAiDTNH6PxjOyltFkc6d152FyIKJ0QYN+yE/j/89iqQRyiQg806+y//n3+frDIsy/0YvmmQT5oSL0t2TzQANY547uRYvA/b5a2U3iV7lvKfSe1JMNYRjmlgiwwbLhY3kjS1Eq6QUpI9TSTWhsNElPnPVTfA139KEIabVbhRYoc2Nf8j71t0kWelPX4tk/ORYKwGIIGZIjZRSjo9CoqynOweVlFJ75wWvWxf+KOj5KMxJzzXZj9K0m2Cs28uKIUK2c6nrKCA3Q6gbuV4+Z3pL3FFVlRTzhzl03dMwAQCIsAFi8eYsdWzzYKP7fun4AnXdxDA10ScxQNYJlULTM0vyZTZ6NYSGgJW4obVTidEgx9ZwZlI2gMlzR0PyDMfzmnVNbMYc7ItSBNIQc2G9LLDxPcDNoz390euqMsC6N76VpUiW8RaiVVIKxsyn2e+GHlK38k1B6zj5gThhtdWJsZFlU055Hj0ff6C/G77PhTZrmCuELza4oHj+fJfQoc+J1WqRekVBOJvJoaJRx1XW3FaQJ+ZFLQ9WBWSSE/F/d6rN9aI2C8EIyjxDAEOe5TTIHKzG+WEbPpuPIfcSQ93TtOPIlKSOj9Bw7UaiFE2gUiR9Xu+DevE6p2j0jTP8RjFo9ZhbhFZJKf7BY8ByPwoEEhlILQbi3k6lt1DOWHd/s+uDPkS6zHTDOaGWBjE8uH9E6C+HRQx9cYtutQSVoTgqST0KuusnCRe1JIpnBYkA03TB1o7LanHDpGHLacCPaXeLcV0MFoGcZamLmwJB+5/xO6pkGOs3NjI7Q10NP+Rzmjt5X7EmcE6pp94EKgitJaJXxHvDe5u3leLW7MELQjQSw296T0hDYoSWeADx+Uwy1lS5cQzdCuhl12zhnvM0HSKmwcmOi9jUJt1/jlEeJS4xTcD1xDTCqHURSgwQu5fw/g0KV56whWiVlELZUtZIN3JPgKCQ2bfuJtqyF7A1gO6So3YOCrhtARAnZm3ivlEA8Hjf/d2rRispjecTzFMED64AOp7VxwlHj23aQlTdlyaEo7D5iV4FGWSqKIHojc0K3Tl0UphwEQhEEZMuaA0fjeu4wXKGIJwlVDML3XunITzPKS1vzvec/RhITJD8FiREatJwN3NVSTjZv0/WJeT7ocNLdp+tnG/kmG3M33FczN2QmalGqyk2Fi4j8/LxnlMWVEIES2oGndg2Kq89Mw3XqlDvixEihliVabpFaJWUgN3RDd4RvSAW7651YhJSt8bWtkWlp5OFh4zhSc5Jo5a3sVEZUkhXJlJCQ54DcTHROuci0O3Pp7W21QNQa5OTeauR18XM6smVFsluwFtxHQwPJWEW/xo9gFGkD0KVEZlW/PtURiisldfoEQXlIYrMGNfnrkaa11RQgdHz1uMALg9IZZHvljxpnE23exqvJ1nj3htWhis31twouEU7ZVLeAULnlzUx/8f1TYOPu09bE9MOCv1OIGiVsN//hgVcxOxolVQTauM8pxNd96Af9/UCBpG5wwmxVAEDXwxHpcFwRAgDmGZF1S9c4W9ZA9/a4zpYVMZNxH7hPLZzH3MJTt3zhZZa5c+1VsZEaMd3WJ4EMoJ0IqogneTBWOPGbk1Mpi7C4meoch4sohNDU50Yw76jQjUaUmyK16sxktfeAPG90jrG1amWb2qCFpJSCKoXRLIELfM+e2Yi3hfW1tHYUK+yALBuYtibSktD4FRoet9zz5TKqV8MP/fCurD1NDR2xZJvVM32ZX1/TQXme7YspF2T5gHsHsEm0ko4Kfz1HO9FJjAJXNyMs2Njzd6Zq2nTASp4ysBtCPEpWiXVAFv8ArAPwD7AfPVX4sMyiKw87pSrlGB6V6HYT9zmhCRA91/qD473gL9fjnR2tqN5wmpkvC1JXsIgFgsD0nRySmWhoTXmDPIFPQ70LvlRi83tgrDZYGiGHiyvQ1tesfYstz7JjuQz4WtADJHkVr3eY+OFYWdCLd1mQzf72yhCrZrMfa2f0s9wDQTyEQ09k96PnHGn4UQWrdJ74Dph+NTKONjTT9dpLf8vdJxzPg+GsOm15PT2aVEbJxvIguyXMa/G58UO5koQ0lIM1joZxHvSqV3n99Ib2jSO6GFx3vK7WxziU7RKahKY3+DEXesAj9lITKAFszSID5k9wZjvKb0n1atiLdbyIFJD83VA5aGhOCBd5Fq/Ebqlz5B/YZdvJnzp+mtl/Sjw2vJmqIN6cgd4Xp8Kre1GUsCNNMykiX+OuUaqpLqVC1MBorTlWCHXl4WwSIzoiuDYLowiCGg4eRZPmXNx1DNmeUBp4nqZdHytmWI/OiXc8OtM+uc1VsBsc45zgutsHjAVsIitatRTKmStsoHxEjuj21iTGTZLNMNKbFC6fDYVYCnPwSCVYduIVklNQle7jxfOozrRjXtPUcDs9ftRMZ/E+il2xaalstIHzlqNbZM6VbS0AD8xirgJG5WBwniJqaERUpOnhfETWZVMyK2NWUghRNNJOzWTSbc0oY6C10dLc7vBUJwqKFrVBmltD9/npnX5FvFAmpugB5YQK/xxAosPG69JmhUnG5qFqvfIsYZwVfbZpTF1hIpxCkHnCCMFTftAKWoDVN6iP9H1PTILJJ5tWH9w3mmT8g3/z4y/ppCthfPEdK3NAl7nvEaI5t0Y5ufQGfVgSyPttr+nD6yup3krNcBI5jKI8qwj65deLftObqOeapXUJJAlBkSCAxcGBRtzOOxAXnjLuzJAxQXolVmvjsWYgRlk44RrCok0Ia/en3cSadw+H0PjeRGFeBDwSIX6uPC1HnqzihunQbC+5T42DUW9If7d1G9w6vNm59xq0IJm7hRoJinQi6DBVNi0FmfavYzGoZA51zT3FfRClYma7wg7zuLXWqhpQY8M1v89x3xdFEPT+HFw/Dwem87mRirJVfybIWl+RA0mhg4NAFuJ7HE/9v/54Y2NfYNoldQkrPSd5dmtY1w3Z8QxZAOkQqhbpxangft/3m2iNI6KToGwb915Knv9jsEMh6x7y2e1k+4SCsQJyeQ+Fc80KBjLwnBcPofm2QqLZBsJZRuO+n5hASOJ9K2A5gSIRCD6sBBbI04jUKYRdonQKNI50xtM7ue4aPDZqPfNbczzcYSx+v9rgfWiQLIIc7zqbTR55FXh8ih5jSDBEg0ai3xGSR5XIwV1mofzl5isBXZy6FaSw/I/HPs4JIo125drmnnGrX80/M8xwI+BkR49HpnBmg/N2byso6ohndZlI9Y9fbdv1TajVVKTsKfv3GEuGCYu9WFzw8F8sWs+g8JpuSFUQoYNw29k93GicV+m4z33+0TXKU5r4uTk+HTXT2OnyxHlbKfKAJiQgzDym98xhSR0x3zfZOcDMmGI6RfxJGizz6YwJhUtjH/fTvZMZxXUzF+GXCMiCWazQSGZ9DO0QDmBZBPq5zjHM0+ExthGrsEg5lQsnNfCbhpN4yprwJYpaaDpeGX2DKn88no1axBKFgr/udoA1DskMfF+MCrCe6NhylFeJZWALeL9pDwo7HTF/FzDDK1rrmiUV8vUgm5bo7nugSg9UtvrCljxN63rlWPTRodbjFZJTYDt/TxwLoBzAfMn/8m9qAKai0FJC2HhFtFrYJ5q1GSme26NmyxafW8xXLcVtvRG/JzmtgCErtuThD1zXCp4QgFgw3d53QwBDd208adrRK6strqiuOk6x51+1qEFy752YaOtKtAd5XGMC0EZOKFdIc7DJBy3gLFrrkWVyaRw89BYRXnmEYSmUPk0h6ayooIGUi9mqLZwzEGtHEc7b9QGqG1MHUwDKlvrHxDTBZPuF5WzG3yUC7nRoeFSep+b3SNyCrRKahYc7yFQrXuy3XxZx7CJzhcrk4+Tc1TylJR2i0imYD1E5eupHlmOdF02laWVznAEC0GpuLqd4Q7HTaCSo+XEnFm+zsP+O2KdWjhLUSv3pxXCynjjV1TQbBThmGOOl4+VlirzT2GscsB5GE9bTRbR/YUK6zv7Y7JQNN676Xll2q/TpPusyiTfRRqIzFggDctNc0xeDwV2r/LsWhkb1w6VCddLR4QuIyJhDiNeH/PMutHhegMNO9/eYujai9gCTaMqnD8rfWBlhtxe4QeqNXaDAhggEpqo+NVoXumnHpSBJ05khjOfRbf2W9S3SurUwslOZPRRUZFG3pj0nVEgaUU42Tcnum5xPLYE/O3e2F0ZQCh8ZWds5oQYKzfWTVotBG6CWlMUypW3+HOFwbh/p/ItmYpUaE0raBaFhF6rr8vfc+iT1FrOjmXk/a3yiGYBBRF7TlKgz8ouMzbOb+1DOWsoli3B1nwulQozUO+rGG6bZWxcJ13pCq+dWFj3RkFeWACydfoQWUSUMH9T4aliKWWeTyrX6JdpJ5kQYqMBUDZviDrLfbCIrdseW4ot11isu1S5HCiL/xkq7NTpDgr5cVkqs81oldQsSJhwW3Au1nowr5LnFfJELhAtKE1ET+qaTStZe3wxPzBqbCH2T5ajSevGZgHDjTqeacN99BTYLT25rg08pFEMvFBXhp2rpAjOhY0YDZxrVE4sfZgFnFscU/IeYg5zlvsZrg2ZkcT35Ti1n9C1N7BMkb5nDZIcqoYfqQi5RjSkOBXBRj7H8CnX1yJYf7wGes2UEcYCha996mWdPErEnFqQF6l3bPEOpx12gIbYAUM4hUCBr+GsqgA6m2RtlHVUTmudWJvEtiukDqsFyC2i9/hu7nvXJy8ETaICMdwzDpz4tMiooDbS5VmTytMI2H7pvNsQXxchQ+EQQpKidCaNz8uyZIO9TI86DwWLEzTzIin6BkJHDBXg+WfJkNOw8Lhi3W4FFHKeWXsq6n0PuVZEY4QenxlM9vaC0Jd5Fko65FyqWAYytxl10M8UFughrh/wtRG1hzyHRlDGoVtL+FgUMb2cjYJe1Ilu3Oad96Tr1yQJWPTaer4Bbh6Z2YFGV6ukZkCy1fz//I3R1vaiENhGJvWkunmYAmnIS7eEnjTptCPCKGt3FNjpmZ7FtJN8ZIGlSZPVlWnO4YR2OkaKDUVBhZyCTQVJoNdjvHBRxT/qGWt92HYt7PVyuKeadh7hsIKnjNgbclDIHMHk6yjrqKjmNUIMhgW7jm0WJplSzGk4ksGmHnRQVIXMbxsNLM5bRgV0bmqtkRpB04Z6dSNHFK67gxo7k/JZ04KlK1RWvFZrAFvFZ6bjDeHAMr2eVkntIuxbn04JbASFdftVFdYVYJ446SaibsxI+umSb4NCL2ua/aRC0lUW8Dg67cjjQIRggdAYdNLncytf97WyBmELEhUQQEqdVfBzWpScC0T+HqeIdUHz/OG7opSrIqX8bzVyNhYg9wtIatjorTB5zuLNuo7HGkcpDwp+jvneFS+HBcE0rIDUEJgk/DV3pR/jnFJWXl6Ezd/8vNK4WRJAwsS4MfC26z3LP89r4zqtxXAwiOcYdR6G7ko7OTrBnDM7vjCCwH3JwvXrREYMEbL3IQ1cA2Bp9Om2Gq2SmhcHj0vvvQ1Yl5PwhJPAgVXX+qRXxRb9LCxmId9S5RTasiipceBxlAEWtvuY4VoS4QCXGK/M+I4EVC7stEHml3a01uNzUZfy2ZzUEBQUoqLVXIV6R5Xx+Qk0K3Iu1uDVCd2fvxli3Ejeax5Yuf5AZEC8fs0t2CIm7Vl7l7MSyyIN3wVBlXkNLFpn6DQ/zjihvlwBAwug08xw4z0MhacjlARLOCjsOU8MsoJVpO3JdK6oouLcZx9LYDpmKu8t56IqQIZOqZySdTgFy5Yh/cd853P2+2RRbxOWB3HdrHSAbhGNFa7ByjgilBIUuT3QWpnWg62XwDmTh7pVaJXUvGCvq61gshU20t27laeO+kenFPRu5ZhS02yzoZa1Cvtp6i5yhO+b6J0VNl0Qem4V9hgjRCjMgmCUc6ngHFJUNvUokvPLOIwcX8H6Eyv/T0JImRLdStDqHWId2uG/1YBgR2u+z2vnfTViadcmXr/m5IDRXtA4D5zeSfBsG7waHqs2CB0jFCFfimjY6DMKnpiMaWSoVn4nc38KBZUfJ2ftAQBGNI6ehKpwa5s7DIQtYqoYDm0yqhg2pEel4BrIjQogjUj0S9jv+RczDnhr0CqpeUHBWXnriQJZuzNr0S3RrWOro2nqlwiSIKoC2COKQFvvU3GOC/MFpqB4UrSwKTQ6Zjq6cqD5Sv0LmUVMsOeCS89TIyoRZVYxXKi5hibFyevm30qWUO9gnDVND5LCT48Nub869lkZXosEPUVjAW6m9/9v7/uD5Kiuc7/unt3ZkaXdtUBoJSEBTpmAiX9UmWJZcFJJvIkiHFsGuWwITtllDCEWKWIZ7OIFEHkvVXJhHnZwSSYpkIkTYspQheKKMSkMVBywwEGFHQdhDLKIwGjlB9RqJbQ/ZqfP+6P73Hvune6Z7vm9u/ermp2dme7bt29333PPOd85xzZvyoBsXowok04sgD3o72yCCo8Ta05sMpLBqPOe2SeqMw7sm/EAgLQAkeejzHhinOX+iPcFoudNZl9gAWxndGCaNWtfkiwiyRED8zpreBYUwkibkuV2JAnBQ7RgzFOG6Vhct67iAzNxfKQfAEFBP9dJ2pRP0fc+6eeZL08QzzPLyua9GnoR6ehEXzRfTfeuKMjhqYzwwx/+EB/+8Iexdu1aeJ6HPXv2GL8TEW6++WasWbMGpVIJ4+PjePHFF41t3nzzTVx++eUYHBzE8PAwrrjiChw/frypE+k4DFKDr8kN031RXag3lgG/GgQOrAReWgm8eBLwi5OAF1cCLw8Dh4aAieXJK5wk9FWiFCrDM8CqE8CpU1FBxFPeAk4+EX0/UIcdVfGBOV+v1DhuZSb+f6YQ9T9rgbMZwTjk13QhKtJ2ok8Xs1M1ajw9ZvaKl1fbfRXtX+N4NIMNJhCEUfxH/3zkiyvNa3OndErzpKsKwAW6No+Mp0mCqkkEsw+S5t9J8GqfnfqSKMHCB0gWUHJRwb+pbPtiKpDagRT+0tTG8T9sKs4CZYoUfeTrLgPDDa0kQ3ts+uRCgHyOLKQKcozE8UrzkYl8xaw2qWWFJ47NhRvfijOzT8fP1VzGiZ+86FmaHADeLEXv0336meTnkuvMpY3NsjIwPA2snI7cBPxaMVt9n3IJen691Z/93DuM3ELqrbfewnvf+17s3Lkz8fdbb70Vd9xxB+688048/fTTeNvb3oaNGzdiZmZGbXP55ZfjueeewyOPPIJ//dd/xQ9/+ENcddVVjZ9FF0CFm0HFG0EDN5oPFptV5vz45iroXHsn+vRNJyf4eg8kTxp2sGHuTkMLC560pYPZfmVuk/9PaEP+DmtbBq/u2SkuJ0SpRckuqd+gJ+da8WtJjC++bvbvEvx1YrB2l8ATpHrB9L+lQZ43f7bZcNx+4v5C+7S10Sy+OdbMbDIMLwDympnrBY8rjdc6tiGsKvkp9fJ8+DgS8hnLMi68iJBEBtvkzXMALy7SwAQKptrXI/Z02qfaAHLreJs2bcKmTZsSfyMifO1rX8ONN96IzZs3AwC+9a1vYfXq1dizZw8uvfRSPP/883j44Yfxn//5nzj33HMBAF//+tdx0UUX4bbbbsPatWubOJ0uYaagb8qpYrQamg2A15dF/wOaoVOMyQ99oRZQxflIS5KJJNk+zVU55cO1fC6fqZCR5FdhwRoCQNyfQhgJ1HrJaeUE5xOMRJq2z4L9x9JcJlPj1O07hAnKi8xLHrQJyTa9scAs+9VCV03Unp4w0wS/9FOoZKTWcTrhmJL06SzEllBMcpL0INuT8VEy6Js8fa68HU+gTEqQFP2KD1Xtthb6KsBArEXPFYT5UY5xvG3WhZhPUUoymjf9Z7aWzuclSUU8idtChtMYKdMoJRORAjbdB/o+Cj0d3+jFY1arvhpgarfMepWan6xP91a/rsCdhKyZRformjk8F9TvYxfRUkPkwYMHMTExgfHxcfXd0NAQRkdHsXfvXlx66aXYu3cvhoeHlYACgPHxcfi+j6effhoXX3xxVbuzs7OYndXZgqemplrZ7ebBPqjQi+zKR4vRjf7GMuD/LYtu3lJMepgJo5utL4zs+h6iG0bSwGcKOu7hWFFnRO+vaDNPI0IKqH4gpcmSQj2hszks7eaVq0Xje5iMMP7OVkFYwOTqt5hseTJICqiU5iqZq0z2UQqXrKtxg5ZOWhC2urK2vbqVGl8e5qWtDduLZmXGszRXqf2G8cnbxR9l3xALniwozpv3hvTvAfq65NGqgjAKxpX3svJ7kUnEYC0jTfCUg8j8xenFZEXdpMmfn0l5P/D14tIi9aznbIaV14sXcLwIqAAIAn3vZ8meXg88h9g+3B5DS4XUxMQEAGD1apO/uHr1avXbxMQETjnlFLMThQJWrlyptrGxY8cO/PVf/3Uru9paSFXcIAZ4+maXE480y7CqzzZ1gs51xlnP2b7Ok6104DcCOSnzJIXQnKwAcyWa1AYHKRIJzSZuq1bJhWaQZOKzUWW+Evsi3jek9P3rgcclRHuUKFsL4v89ZL/uvAjw4+shFxt20LdtKuQFgTow9EQfxo1XLU5sCVinb1J7SruGea6NKkHv6eeNZYqkzNdLEybN9p6gpqedn4qDgg4sZ0El/W/1IC0livSSYtbLMdQ1MTAPWnV9ixprH3qX0iFwww03YNu2berz1NQU1q9f38UeWeBMx8zoU5MYayikb/aA4oSPcaQ/O5+Dfq3Wl8XKShUR9KECAtlRm7c6qkfaVMZ5u2TaIH5AmKggM6InYVnZ1LoIEXGBELUvGUXSFOM18JSplXc8hrVW27yS5YkihOnDmve1rZ79OWldMhiB0JpDxYv2TSNc1DuXWpPkHJt/fH0OygTkZVv1slmQr11SotAg1F5pW0uwfXCco1GxBy1NOfQii0K9IFVuW6Yx4old+qsqQkPlxR/fr7W03mayzDNDjysP+BQxXanGvQZE25XihLnyechKaedrVKwAc/NQpBfy9XmxNs9kolZgRfcLGmZBS4XUyMgIAODIkSNYs2aN+v7IkSN43/vep7b59a9/bew3Pz+PN998U+1vo1gsoljsoRBoGxVxYxssKehJjP0C7AfggnMsxKRfa15MUAwWfPw7C5BcQgqaQRWEpsDgiVM6tesRKPghlCtVFgYF6wGVzC0g+yrZNi/l1X6k0OVTCUI9CdWbRJJW0PJa8DVvRXobQLMPebJjH2FfBeAkqVnNi0GoU2il+f8o4/VQWrEX9QFCYHE75diawIUMa4GFLo8j+354uOWiRk76/fPRtvXazwtlDfG12TDIuQCRwkM+T1n2Y/M1U+bDuC8yZABoXSqlBYSWCqkzzjgDIyMjePTRR5VQmpqawtNPP40///M/BwCMjY1hcnIS+/btw/vf/34AwGOPPYYwDDE6OtrK7nQMdMa1AADvp3dqIUSVKNJ+WRlGZgjpQ5GTdmhP9NaNWBBMJEmLztRBoQ0AWljxyo8Fjc22AkwBkYa+CqpW3rUeJHv1XLPvyD6RMliQeRBCUXwX/ZBd4KmxECt6qR23EpJYIn1gPKnngWzDDkhuBEEYa1C+6X9RfY61Di7LXrduFQAI7Z77Ceh7lokafB0rfvWz0Qr4FNdkAzAQ6CStvJjM47NhzYg1vyzHLsZlf4xy70Ir9WPBX6xBmsgIwi1N7d9p5BZSx48fx0svvaQ+Hzx4ED/5yU+wcuVKbNiwAX/5l3+Jv/mbv8E73/lOnHHGGbjpppuwdu1afPSjHwUAnH322fijP/ojXHnllbjzzjtRLpdxzTXX4NJLL12YzD4JXvUuKwPzcVwTB/hx0KDM90de5BANPaDgR6lj+GGxb265L6v80iTHYBNKEj1YTn6cfVlqBXLbrBR02b96sANGORWLrH9lg8+PBWeWyUL61DzxLp30gdi21qmy/85HVFiOhZQvNDw5UWdB0nYqUFb0i9P18LXnvhtjUmO17pGZBLiKSJFjocN9YnOzDABnM6CyFPDCB9X3BU/A3G8CgNAUoCyc5mMTMsdx8ZjkvTfznF9pXptxbUJJHuStaOtRVGSQNaliwSzLE1BknqvHuF2EyC2knnnmGfze7/2e+sy+ok996lO455578MUvfhFvvfUWrrrqKkxOTuIDH/gAHn74YQwMDKh97r33XlxzzTX44Ac/CN/3sWXLFtxxxx0tOJ3uQqYV8Z66K840HN+szESzJxRmM4Vi0pPZl+V3fLNKk1wlpgXzJK4oxDD3B6KJVcWWwFy1ArF2I/Zp12SgVuE8efJkAHN8bBYYn0+Wbinnf/wuJ+Q8p2Vvy9eL5Occ/UqCpB8TNEmGJ3Hpq5HCRmq89XxASWbTRsk3vK+Mi1P3H0yGm30M7jsvNtQ5iHtRtY9qQZgkbFuN/gpUSY1WE39qoa8CFL2IxSfN0TKZdBNYaBoUwyOql8+k9zA1NYWhoSEcPXoUg4OD3e5OIrz9O3X0uKREB0IjksJmYD7SwDj1iUoaaTvPSefxkyQLCTtQlrUn1tBqPXxycuCJshWOWp5oODeZjGMJwsiUwaU1ZKYIm+GUxewlKfA8YXrQ+9lmsHqYjhOjcvA1jyX3ldPp5J3QpAnLiOOytuPrnkRz5nPjKre28JSwNUqJPMJq3texRNIfKRdU7DuyNeQk0y15Zt/Ii31zliD0qboS9mKFNPupa9xc1YVeE1JZ5/EFwe5bkFg5rU1/5TirMZu35AOm7M0VrXkNzUZ5+jhLcVJciQrwK2hGYVVsEnTSSZ8in1YW5pWcxFsFNg9xSia5Ig6YBEL6QeR+SOd6UlxWEqSmJssxwBdt5zi/AkV+kLLYV/oK+Jh5nVQyFx7vqgQSqoWxiiGCmMj92OwrhKQaV/a7waQ3y2srBURWcEohec8RBBNVtm+1nRbOYG/TV9HEBS9lv8WMrEG5SwBOSLUJNHIdEJMVvZ/eGZewEBH2/OCx+Y79DnxzsmCRNHa52palCWRJAp70GNxGKxznzcDW0KSQYuJGEhmBTUFyMs1qpkozDeWd8JgUYJsM8wo7o2+efidUm+LSJnNJxVftsIaVcIx2Te5Sa+PYKSmcWnGrtXKhJBdw3PZCFHzymVkicEKqExg5HpEo5gLTHyS1o2VlXeJ5+RyUc5+8aAUvS5nLOCoO/JUmRTk5VzwgrETO7P5Kd25ynkDtelHsl0ibMFRMjtVWBQlCw1q9836qHDiyxfAkgVmZZR+ohNrkmBQImxXsX5EaiAfAiwkSaQQRpS1Z3xOgfG9KY4I4f0oWfnnJEwxl4hOaFMMem26BE7RKooc0mw/OZmfKsdbqU35SRKvASWElA7R/XpeEX6RwQqoTWH1cF52TD66KbEdka096YNh/NQtt+gt9PdGXhZDitDW2tuLBjANJKyrXLhDMGBSGNJulwY7FgfjMggrQpAueNBns0pJ+nUbAAajs0OZA6mZMo1K7LPMChgC/UltwJJFvWOAF4jwlUadVWoOt+THZho/Bx++2qWreB94oRTkoK5aQklknhmZrLzL4np2OBR77xfi57OR5zhSiNGmSZFWsAN50crD2IoETUh0A4ZaoHHMR8Cr/Wz8ULKSA2is61gx4cuAblCdjnohUkCq0aUxNUmLfbpn90uJ/1Cof1VoTYPbZ6LvQApLMZnxMdew2CWYe6zyQptlGrwdfb8AcW+l3a9c5c5c5C4bdr25D1niSVghmZvKibT6O50rLVMEleDhtmRTAfJ6dInJIH6tkVc4WUokVvUaWaAROSHUa8gHOYjqQ9Y4qQoPiiY2Fm0ql4ul8gARRkynU7VEIeH7nHi6pPckigioGBaYpjk1XsixBiGqhDGlmIjE2/DOZ7TcLKQhDxJMz6QWALWtsGrU0rXFuRuVTRLWQqQXW5vx5fa6AyY5MOwdAa7dJJeVl0HlSHJmftBroEYSeLonDdc0kjRvQAcFcA6oQAm8T9aT4es3FjM55P9JgjvdHY7I8MIslSn9yu8+N06gxYaqvYgYel+ZRs9T8AoQTUr0OJZysWBpAT2pcqjqIV1e+rydOGZDIq/YKCyi0P/uxpCgrYSR8Jzwhq9RFcX/Uajfe1zYTqvbFcWzw+LRacTQYlCxgEsaRNSW1iudxIL1CJ/lCPh+RnHh5n1rCTbLw2Lc5Jwg93E4l1PcME3hku11SxDOhHJj12mYKOlO5LCfCVozZQuSz5TACWZJkrqArHEwXIoHGJlTO/8jEJKD9PjiC1urY/NgX6MVuX6hLzLOwWgRwQqrXkZTGX07mSWn22czBMUjKWRymr47bgSTBIVfhHMBr9ykpVRS3JydTO8gV1v7KTNii8w1hUqz5OmQVLFKgJmZ/IBiLkCzIOylKn6X0XdrsPMkWrJXVotcgr4UkcBhFNFF9/2Rpt5aGy0KP22u1LxDQC1L2hQJaI56P+1YOQKdua90xewBOSPUqWLVndpLSRoQGwvFVfcKJ60FkY0/wFciHqJmVll2kTQqPNLq7Jx4w+cDZ5z0fQKXFYU3KePBT9jfMaxB98EytIy+UCTXQ4QCsFcoFQxqkEGUfpBRSbOKUQtqON2oFuF1ZZI/vLTZVSdYhn1uzxBD7Hmkn+N5gcoSdjkxp16RNZFkIJj605lQlzD2zHhyfM49dEEaFGZvVbGTBRhmewoQqGQC8iOCEVIfBjkyvlkNTBmqy+UFCrgTlalE5dKEnRskEsleQDZ2Ap523Riof6xgQ74B+qOTx0x5apqtz/wFt0vTkyzoHToUkhQIfs5FgW9UfS/OwNams4MnLEKDcd6utZvqbpQ9VWTm8yE+jVuhNaqDz1n3bKeq21GzlYs4m6dj/Z/EB1tK8ODQCMEkN/ExWKHv2+lp9sFOrEYCKBxq7ssnGexdOSPUS+OaeKeiCh+zYTpsQpZCS4MSi0mSW1SlfC6qKL9JZaYokQFpgSN+TNFfYUMHLCSYx1T7S52+lCUh7SI3ts0AJeTF+9cYxKV0Qt8FjojQWIfR4EmqHeU1pbHxtPH2svniVLjVdqb3mhb046hSjlNl3FJMI+PzYyiCfl4E4q7hc4Kmx98R+ns6rx4LHvkYyWFgKKUDf/80K6f64qkIQAtNlnby6yZx+vQ4npLqFieXmjS5vaDbxAfrGNyYPsY9dt0lCCYUW9ZlNCtJnxMexhYKc4AJAlWKoVbTO9pfY2RU8a9s0bUMKCD/uUysmSZ7kmORh9EX8D1gUc7Etj0kYt8c/KiHeYDocXtTwYoYnU4PwIO4FaRYDdO7IJEgzKve1nvDixQb7IJsZfpltpK5plXRQfMUD+gOz70UhjGVRTgmuOF2owCQkkeUXFc+itCzwOy+Y+NiFlAVlHqyYBYqBJnTw+CxiOCHVJdDIdep/7/D/NVfYsnhimlNePiidgj1Z1YLcRD7MNbUPaOHUiw+ezBaSyOazBJI8B3tzmxUmHfqNQDrug/iAPLHb5+ATEJIw0dYROixs1cIhoy+uVeD7IivJgQt6soYhrQlcNDBLQmC+HtLUpzRzr3p/Y7ESN8DpvliIeT7gN6FR9YVRm7HmS+/a2nhbCwROSPUCgtBkWknzUp9g5MlMAhz71G4KuYS09UtNR5EJ4gkyyRSWph0Yjmfod3VMaKEg6elAtF9gtcW/SUe4J35vZGIthKbAsZN/qmMIwRMvxlU/kw5r++QaFVDsPC/HoQVcLC+QN5NAUcT08PimXZ+yIK8YwrTOONplzhs5N76eHIwbkjaH1jt+IQSGZqL/JbEhSybxpKwtAVWb1aTQZC2YhZe0gPB2nO2lL9comPAoqhiw+q1FFQtVC05I9QL4pp73qr9X5iXSNzv7D2o9rIrQ0EIhxitLJihIExcLgKCS3ZchzYf8bsQMIVnDkJkD+Lg2XT1xv/gkGhFUasGA2iwtvpbs/+FjJrXHQqyZS8QEBSmk+hEtGihlxR6E2UzAnGqLNbSkmKk0pI1RnoUCCwilhYj98/h38vqDCDrcgO9J9tsBCfcUtD9R3pd8bGkSpCCKy2r2ueyrAMNdyiHYYTgh1QOgk7+o/vdevT2+gUOhMQmtAMi2Km2XgiUfQOUzEgfLYwZKitmx20k7VyMNkpfQJ7GtTY9vFJL+n3c/jwWvWGVLSDNRroncGr9WatZp/WyUediLJtwkGAHWos82q9Mg9wgzIGvVxiJLvDcpoBZDqqM8cEKq1yATl3KBxIB0TAtgOmQ5MSlQXSCRH5ZWQaVbEqtbINIIpCDN+hCyBsCUe9l3wBQqctKWhA1O0GsIT3EMnhw4kLlZZCm4KCc21uZYw0rbnSd+SfioN45zgc4YIXO6pfnM6iEpkDggwItX7JX4ZELRT5uckSZgmxFQfK/7gIpRayeY9CHNtJLRxwtHjkdUFgDohQj3UbJBWRN1yAUnpHoNLJj4QeDKpklBoARNQ5UPCtejyjpRsXCzV3wScmVpaz4e9OSR5yGsiMmAGVEQNvxamhT3qZbMYAFRr51WgsdHHpP/D7lT9j5iXzY11VtgJMXS8aTK1yHPOXMeP8CMxeF25DUKCVH+RwBcSFKeS4BqwdUopNLWjgDnJLCpz1jsQAsqNh0GMP2pcoFgjB9pq0gniU6LBE5I9RgM01/5/+ibmksgSC2DEP2RZjeeoLKapezVc5pJTK4SWznjqz4jQQusA54UehVS+PC7MhF5ULR8O/sEYuGb5jcyMmt4ej82NfFvNrGkHuTEqnxqnp6I1WJGHJcqOnhc9S/l+uW9VtyHgKCIOe2KIZOQJmO2EKTVIgviVUXo6XGRcXT8zC6FkvdtghNSvQxZvoNZPYCeOAg6QzqgzYQy67kNI8uA9VvaSs+2zSviBH8n9skiXDiWhLe3V+7cD6bhSzKFhIfkNDBqIpH96vAEIcdLssRkgUPb780aM7PEKKg2ZRrBwNLEBNNB7yEa4yBF+0iK37JJEdwGp6firO2yv32+vl6cixFxlvFWhEkwYYX7025tRPqZOGat1jPVV4nYejJNmLRGdLuu1iKAE1I9jNQUSswMS5q0a5ncVDYHmKahNO1Jd8ScKJOQx9RnBOoKzRAwV6sylijx+CkrdplKqdsg8ZJssaprxxeDNWPSwiaEubr3YV4Te1zYDErif3lt2MRaZZJMEWayTExVIDf0/ejH2qEyfaH+vZUFktna7sVGxRpLFfZRR9hwADCJ+7mFGt9SI0tIOCG1UMETTFLizLSHw2AjWW3VPBZ0+7LIHe9mZFfP8WBKrUkeyzb3sY+mXtN2bJQHcyJuFHkyHsg+8L6A6U9Rip5n7pN0TG7LtyY/gqn9yOvK/1d8EbRraZW2EszEBNlvJspUhPbH10amGZJjndWfmBftNpexj08K4jxmc2DRlMboNTghtdCRJwYk9EyigZHiJcNxgOiOYf8ACw4meWSNjSLEZpx65jjfnJTlhC/PAajO8C79c80g9CIGF6AnrFoTJvshdAehAqKMr8VkyJqINNfJ7WSGBBYAoafNgqEXBfB6Ynz4d6VVyj7GL5m6iccYnt5fxV8F5nnJ8utSI5al67mf8jztc5bnCNSuTt2IgJot6JI1rCG9rZx8HGZKshYI6EWZQ1fhhNQCgFT1a2ZPz9WomAizmlGkmVHa3rOuOJN8W9LcZPdN/S6W/TIdja0VyrZkX5pZgVexGJFODEgDx0mxcKj6HeZY2Bk91DYwFxVyP9k2a31ZWHWShJGUIUNqkepchMaeNocnjbkMW/A8U8jx760ykZEXVd6dLZjXsBAmC6kkRl+XsZRNfBJOSC0FGIGvMey4IzUJoXqCMbQtsZou5uiDiuERx0jKfcbbqmPHx1STrtjHJ03Nr4qvsvqeB5JYUpastorWQPJMphycjZgUIdlxgNaU5DWQ2qPMHK/OhwUZJ0MNTS3FQ0S0YbKNcX7Q14M1Dc8aV/4s0whJwQVUsxKlTEzyk8l7UF0jqt62Wcz7UZLmyYHoneGhftVaQxi3tlsOjcEJqcUGJQgsIcQTnsE+gunUR/ydj8Ym91rgIGCZ5imt/9K0Z0wWVL0tm7x4Ygfy+8YYkqHF4zIfmIIwqJjjKAORa5ldWVAV4u194YtLMpUqnxSlm1J9inMlxhOuH/eJBVqxRn8IZtFDBk/kBVHCIiAzHgiovs+qNOEEzZg8MzM6H49S9msE5AEn+oDpPuDoQFTynU20QRgJ7Tk/ug4Ge1a0kRYr6NAVOCG1wFDT9CcnzzRIbYPf2ZzTzQdTEgXkytpmASYhjZmWuw/iePJ/Pob0CSmTWsK2aVA+rQSyAft7uC0+Rr3rKZFkCkyCDMauYgfKNsS4yhpiqUQPSzDZAkySa/iVtF0zUIsx6/8sGpstnDqoSTnTXjqckFqM4AmUoTQMsXJMmoyzlC9oBmkrVHZsyz7ZCFPKYsuKwI1ATWienoi5PY/NdDGkP0OmzrFpy7VQj+QiTarcvzRquJ1lhPf3EwQAo+LremWcqYJgCspCnMA4SSNnjUqmx7L7qcyVnqnVciYV80T0v7XuPTserlYCWz4Xvl4y2wNrhvb+vA3v2y7SRJ5FhwMAJ6QWLxJXssYG1X6CdgkomQnBfkCN4OKUyV720dZuJJNOaYQZz4OFo517DYBRa8nWdmTfZf/bgTQBpTQF7q9YACR1hU2ZnG9OZp8HRG46IDVvoCTIyKKcKuaKg3hFP+z+GymUMmjJjNmYnsjjPDCfHCjL9xjfGyyUChWoHJNJJB8pnGqxDJvBsWI09oOz7TvGIoQTUgsYVaY/Zt8BvbVaM7STOtvaMTws4GQ7MlhX+dhSJsW6xxK+FbmrNIey/6heiY5OQJI6bOYdIfqQKNh4e6n5QAteKYDqnYtPURaIELGPyTN9YbZ/qhZdPwtkEVBGvUVBQJo0woLHp3Th5olxaAdkDFZ8CGfiywYnpBYb8gon1nCA9iTwrKUhJUHGIdmaiuyacsKH5r55zz9rbSUbUjNsZP80SBYkQ5pkOdZNTv4EsQ8la5ScecKg1BPQH5rCqZ4wZkjWoC0wbE2vWSVzNohMlJIR6gXpSZRZKA3PRH0riGoCaRpMvUD4rGBiCJtb5wJNUJEZ6x0ywwmpRYLUFEq5GvF0dodWaGLSx4OENtOEl00A4JmOBYPUIKT20EntUR6r2eNKn5wUSJL6LeOZlFDw8vlNKr7p9/OhfTV8LEmFz4oqZiL0RNyKe0pN7J5ewPCY2RnX+TjKD4XauSwlmr3vZwtxn0iHBHDRyFgbpDVfaLz9JQonpJYy+GG3NRRpBmoGRqaIhPaUaS+eMYnM43pCOHGAq4o5gp5cWyVU84KP3YyDXWWMEJoSC2D29UjNhE268h0w/UBJ/WETF5uceEylBtHoWNr5/KSwVSZVAgoNXiMmPAD1+8iaN5skO5UxYt6P6O6suanx5vInIVBy2SsagRNSixUytUst8GRiZ7duhQmLJ03WAPi7JKQGV7KvQPyfFEPVKZ8Qg4NsmxGOMtmvnOhZGPMEL7WrgLSPLE9eOY90xm4ACPxqwWQH5GYBm7G47zbkeTQ6Xn0hEFpsw0KKxsfjmcTgq4dGLuWxIjBdiMaAA4f7Ql0Hjgsd9lWAZeUGDuDghNQig3LGWn7mVDPgQjKPKyuXNZt0UovKw0irB5sAYf8WUPLEycK5UcGcFKsl/88DKWCTxiaMG2atupH7TQpjO85PQhJDOnVPzBSiwOGyENZ8fMEYpOX/qzP9WYRICT5pHLfccgs8zzNeZ511lvp9ZmYGW7duxUknnYTly5djy5YtOHLkSKu74ZAVvMLur+g0OlkT1uY5BqPRFDiU8ALyaRPNIIm80QzszBo+TI2G44wYMhA4q48lCWoSR6x1wGSe5aHSc4wYs+/UtUkgUnBcWSPoqwDL5yJNpE+cP2ffZ3hyfBq4UHlvzeP9UeqlyYEou8Wxon5NFaPfpwuaPu/QENqiSZ1zzjn4wQ9+oA9S0If5/Oc/j+9973u4//77MTQ0hGuuuQaXXHIJnnzyyXZ0xSEr2r3yZN8Kr6zzMKl4hcybS42qEyvmsrVCbtZfJ/1QsTtOm0Y9IBRmzYpvZkDPe2xbMMgxJGgyRRhLrKxyhIWOTBulSBfCbCiveSVML8KYBT5FAek2+1GCK+XmFeLs/8uKyVgovVmKBBEHRnsULfJk4HK7YuiWCNoipAqFAkZGRqq+P3r0KO6++2788z//M37/938fAPDNb34TZ599Np566imcf/757eiOAxJiqroFNQ+kkClytdFhNBKLVbdN651NYlJTlHNc3mMnmgvjH7i0h0FAydd81ULB9hOG8QFbPWa12mtUJuTZb96PTHxlX1csrnigiz7Z4MEd0tBycx8AvPjii1i7di3e8Y534PLLL8ehQ4cAAPv27UO5XMb4+Lja9qyzzsKGDRuwd+/e1PZmZ2cxNTVlvBwWGOTEIuOf6kFSr43sEB1cnTJbqxkzm4T0Kal38VKZHyzhwdpoEihhXJip6Ym2mB7Nq/2B+ehVjM29dhxRWjYQJgMUK7ot1h4KFTP9EGuCWWuONYM82nXoRT6l2XitnvXazsZ+qBN9kUnvWH/0f9mZ9dqBlgup0dFR3HPPPXj44YfxjW98AwcPHsRv//Zv49ixY5iYmEB/fz+Gh4eNfVavXo2JiYnUNnfs2IGhoSH1Wr9+fau77dApSFNXnkBf9nV0o+ZPvYlP5cDLITilViaJC1Jw2S+7eU5rVI4L9s0GZlwOwdSSpDBE/DlJ+IZePBEXIt/K5ED0PhOz2OR5SkGlBBMJAWUJqlagnhCqdxkqMcnhRJ8+pzyYDXStKhZWs8Ls6dBStNzct2nTJvX/e97zHoyOjuK0007Dd77zHZRKpYbavOGGG7Bt2zb1eWpqygmqJtCSwN+84JinvBOV7YhPy03XbeQtMyE3l/sa58rvGdq1Y8qaMUtyVgv2Z9ltsUkS0El2Sf7m6ZRV8jxatbiox+Crd9426SavAC0H+rwB0Ccvyb6vQ260nYI+PDyMM888Ey+99BL+4A/+AHNzc5icnDS0qSNHjiT6sBjFYhHFYp4Kew49CSYd8MJV5pGTDv00s6BhJuuA6agWWqHVGdTz+BzrJYolsa0cFx+A1yJtpewDcwXdHzmJU6y9sVzljOgSHHBt08WZCNLMtePjS3DWjLxgLbIvhwl3thCZ92bi0vTdvAeXCNqunx4/fhwHDhzAmjVr8P73vx99fX149NFH1e8vvPACDh06hLGxsXZ3xcEC4Rb16go80rRlaQJkyOzkgOmbaTWBIS9kwcBaJUbSYOfds9vibewX7yOPJc2DzUKx9nzNeLM1DZnuR76Yip5YZFP2vQlVWN4nVsLW3GBzZ9b76Hh/9JqNSp3QBVeANl/a4MEdsqLlmtR1112HD3/4wzjttNPw2muvYfv27QiCAJdddhmGhoZwxRVXYNu2bVi5ciUGBwfxF3/xFxgbG3PMvqWMpLgahvTX8OdGMiO0ClUpf5Cc/bse5ERuU5ST2kk0/bVJSAehzhpejH1NLExleRPAImqg+rskn1izkKmggPzCuRDq65cHsXCKStC77BGdQsuF1KuvvorLLrsMb7zxBlatWoUPfOADeOqpp7Bq1SoAwFe/+lX4vo8tW7ZgdnYWGzduxK5du1rdDYeFgLTgUVtLYDNhNzUnwKy/BDSnwaRpjknpfjqlNbIQKlAUjyQJFXyuAEBBbfKLrNDL2kqj/eE2JKRwanRc8u43ORBpUYAOfHfoCDwi6vKTnx9TU1MYGhrC0aNHMTg42O3uLGokkitaVV00SUjJj/IQjU50rYT0v8jksrnJIJ6Os7HPn0tKAKbG0AkhxUQJPlTawmAuiFhtdtYMRhBGk7hk+TXaH9t/JUuZdMLsG3ogf3v72l/CyDqPu9x9DvkhM3MDzWUQSGJ+2aywbmtQMlaLu6ImSi/f+asyI1QdN+RBV8htJ9Ko//ZhOX9g0r6K2BEzKGxCi0zz1CiShFun0mAxZgrAss4dzqEaTkg5NA5eeftN5Pqz/QsGUaIHCBIy5xz/r5KlEgBfC9ta/bQJFiyQGDJ2qdUgL46hCgShASZxQAkZuR+AMDA/A7o+lCrFAq1Vsn9OxWS1/nQ6BtYYnZDqKpyQcqiJJOZf2+OrZGaFbgqoJG1D0arzak8pLDQjpVCu3tU+HmAKJE4ia//O2pJkTnJfbFOeJ95VrkHo0iJKg1qYAqrqXu8HcFI3euIg4YSUQ2PwmnCI12uXc73lzlPXIl+Z7IuHKP6IAPhSy4vf6znvZdVdbhPQ2ochCJuY2FUWcuHnC8VnaaZjbScIdQn2PGa0PnE86SOSiXC7baJ1WDRwQsqhcbRrImpEONnCo5VQWkGOfkkzIQsPKYAl1EcPuY4h6fAyZsg2T8rjsCmOUxY1Gghrp1Fa6IKp4rem0KdDy+GElENupAX/di27ei+aloxJ2xJMSnui5M+Zj6HUMagBsE2UnjiGobR5kaYlS8k3igWedYFwixNQPQwnpByWNiqxr6aZeJ4keBTFGwGmxmMwBKvKJ2v/jr0f72P3UQpoxUAU7Eje3tC6fKCCuJQGmwBJm/4cHHoITkg5LE3INETtDsFiQcI+ojQSBcRvbLbj7Vjw1BKkdvYH6Wfiuk4g05+klLAK4PnaFLhUMBdEBAmHnoUTUg4tQ1eYgM1C1m7qFIR1zoBHZsVeRUoQ7Ls0cghXpJVCjpl2gC7zzqZHO7lvxQf8WDgtUtNXopnaCaiehxNSDksT7KPJQxwgITQayTIhtShmw9nbzHu6pDuzAoNQ9zMpwBZxW7WEC2cuD70o9omFJDMBPU9n9V5q2pRDT8MJKYe2omfK1kvYCVAz7xe/wIKmAe3L3sXmTMhKuEqT8tKFU1YYJUAk0SL+nQkUTKZY4NpU1zL7O7QcTkg59B7aGcgrk5Y2FJCbkybOYHICm/HYfAeYpApZnkSa5IBYw2pQw6lKYyUIFfxdt2t0OTgkwAkph94C1zICzLRIrWDeMVkib9JTO1DWBxoSVIAuEyFZe5LAIRmA6pgQ6Zga5NorLRAWocISUjzerQ6MdnBoEE5IOXQMueKrpCbRqtKcjWhCaXFHzUzgMkFvEttPloIHaaHSSBYOG/b5yDRPvRZrlgHOrLf44YSUQ29BmeE8s7ieh6gQXyPgarEqd13KdraZTcJDxH5jTaMZcF2quQTHj4yvYnCZ82YygHP2CWlWlASJAunSHDJOy2lTDl2GE1IOvQWeJENEwa7MSquEURxPXrPfXKCFgZx8JWQSVikUZU67VggnPhYLzHlfCwIv7l+hIhK+UjILMAkseJJqQNn+rnJc5p0FHx+HGYRyfNIKDzo4dAhOSDl0HVUmG74r4xgWb2pH41oEm9PSBEyS2U0KJBYerQJriXw89nElHc8unVELqv819mFLJx/DSNWESHB6Yjzk710SUs6c5+CElEPvo68SVaxtBJIqbqQQiv+R1YF5HvZQbfpqNVibUsG6pBmAaRVxkzAvTHhAlKk9yZ7Jpj0u0mgLYzY/SqGtEtHGZI9Gza0ODk3ACSmH3kej8UEyA3hSQT9+l0w7JlZ0go4tBSQjDzmCTXfGdynbsvbE+fpslGOzqBwLn3RGBt8F9zp0B05IOfQ8qP+mmr+nBglLn45tRjPIAWJbgq6L1C544t1L+K6RtpTQTSJ9UKQFFQTlHTBTMMkgX1klmEvct4lA4cx5DvXghJTD4gWTAaRpyyZAsAmMtweyT8hsamPtg9MXZYEUlGmBtEk+MuN3mAHCoRdlN+d0EXbKJ0nQYJQDM7iYiyKyvHT10gAADH1JREFUybFPkCsqvuk74zYdHNoIJ6QcFjxSV+MeqtL7JGpdjUy4MuhY+bI8MeHXaEua9GwhIiHLenDclK3VyBRH3JeKZ5IkakGW62Bmn/JfkaV1IiHOCqnn67Qkh1bACSkHh0a0AYOqHn+XlY3HmdeDUAs1rvM0B8D3TUq81LgKccl3wBQYUkPKYzIsx8K24if7qmTFX6UxChNgq6j5Dg4pcELKwSEr5oX2JMFxTHl8Nxygy7FLlVjalWPVL/QiIkPFM4N5+yumMGQhQfyBv8/QDyZLsICSAhMQ/YIZZ8VsSyegHDoAJ6QclhTqmaBSSRg8Sdv1nWwfTVbI/STpgbWViqdLddgsQMVAhDbReRANZYA8H6klyTZCIazid3r7l3KeqINDc3BCysGhHjh+SHIijNIX4vssPinev1jRZr2KHyeSFRoLRPvSN+TZxxbOJ+lfq8dQZMJFxdcZMPi8uEn2TXkAPEdDd+g8nJBycKgF8rSQYsHDaYsCyzek3pEttksGx3LmCVXWHiapwRcvm6nIfbPLbtQ7L4IpoCp+xA6UPjZJosirLTo4tABOSDk4CFSZAz0Ay1t7jCqTIhMiQg8IhMmPNajAElJVDD/xHrP0yN9euxMBgFL8cnDoYTgh5eDQbRRCHe+kyBTQWctlvFJSaiKPIqFDGUx8Dg4LDE5IOTj0AticxjkKQw+okDb71cvn58xxDosUC1JIEUUP69TUVJd74uDQCGbrbxLCqvuUTwhNwT0bDr0Nnr95Pk/DghRSx44dAwCsX7++yz1xcOhNDOHL3e6Cg0MmHDt2DENDQ6m/e1RPjPUgwjDEa6+9hhUrVsDzetPGMTU1hfXr1+OVV17B4OBgt7uzqOHGurNw491ZLNbxJiIcO3YMa9euhe8nBMnHWJCalO/7OPXUU7vdjUwYHBxcVDdWL8ONdWfhxruzWIzjXUuDYqSLLwcHBwcHhy7DCSkHBwcHh56FE1JtQrFYxPbt21EsFrvdlUUPN9adhRvvzmKpj/eCJE44ODg4OCwNOE3KwcHBwaFn4YSUg4ODg0PPwgkpBwcHB4eehRNSDg4ODg49iyUppE4//XR4nlf12rp1q7EdEWHTpk3wPA979uwxfjt06BA+9KEPYdmyZTjllFNw/fXXY35+3thmdnYWf/VXf4XTTjsNxWIRp59+Onbv3m1sc//99+Oss87CwMAA3v3ud+Ohhx6q6sPNN9+MNWvWoFQqYXx8HC+++GLrBqMD6MR4f/rTn048xjnnnGO0s3PnTpx++ukYGBjA6OgofvzjHxu/z8zMYOvWrTjppJOwfPlybNmyBUeOHGntgLQZnbq/7733Xrz3ve/FsmXLsGbNGnzmM5/BG2+8YWzj7m+NZsd7586dOPvss1EqlfCbv/mb+Na3vlXVl0U53rQE8etf/5oOHz6sXo888ggBoMcff9zY7vbbb6dNmzYRAHrwwQfV9/Pz8/Rbv/VbND4+Ts8++yw99NBDdPLJJ9MNN9xg7P+Rj3yERkdH6ZFHHqGDBw/Sj370I3riiSfU708++SQFQUC33nor7d+/n2688Ubq6+ujn/3sZ2qbL3/5yzQ0NER79uyhn/70p/SRj3yEzjjjDJqenm7L2LQDnRjvyclJ4xivvPIKrVy5krZv3662ue+++6i/v592795Nzz33HF155ZU0PDxMR44cUdtcffXVtH79enr00UfpmWeeofPPP58uuOCCdg1NW9CJ8X7iiSfI933627/9W/rlL39J//Ef/0HnnHMOXXzxxWobd38/bmzXzHjv2rWLVqxYQffddx8dOHCAvv3tb9Py5cvpu9/9rtpmsY73khRSNq699lr6jd/4DQrDUH337LPP0rp16+jw4cNVN9VDDz1Evu/TxMSE+u4b3/gGDQ4O0uzsLBERff/736ehoSF64403Uo/78Y9/nD70oQ8Z342OjtKf/dmfERFRGIY0MjJCX/nKV9Tvk5OTVCwW6dvf/nZT59xNtGO8bTz44IPkeR69/PLL6rvzzjuPtm7dqj5XKhVau3Yt7dixg4iise3r66P7779fbfP8888TANq7d2/T590ttGO8v/KVr9A73vEO4zh33HEHrVu3Tn1293frxntsbIyuu+464zjbtm2jCy+8UH1erOO9JM19EnNzc/inf/onfOYzn1HJak+cOIE/+ZM/wc6dOzEyMlK1z969e/Hud78bq1evVt9t3LgRU1NTeO655wAA3/3ud3Huuefi1ltvxbp163DmmWfiuuuuw/T0tNHO+Pi40fbGjRuxd+9eAMDBgwcxMTFhbDM0NITR0VG1zUJDu8bbxt13343x8XGcdtpp6rj79u0zxtL3fYyPj6ux3LdvH8rlsrHNWWedhQ0bNrjxtsZ7bGwMr7zyCh566CEQEY4cOYIHHngAF110kdGOu79bM96zs7MYGBgw9iuVSvjxj3+Mcrms2lmM473khdSePXswOTmJT3/60+q7z3/+87jggguwefPmxH0mJiaMGwqA+jwxMQEA+OUvf4knnngC//3f/40HH3wQX/va1/DAAw/gc5/7XN12uA1+r7XNQkO7xlvitddew/e//3189rOfVd+9/vrrqFQqdce7v78fw8PDqdssNLRrvC+88ELce++9+MQnPoH+/n6MjIxgaGgIO3furNuOu79NZBnvjRs34q677sK+fftARHjmmWdw1113oVwu4/XXX6/ZzkIf7wWZBb2VuPvuu7Fp0yasXbsWQKQBPfbYY3j22WebajcMQ3ieh3vvvVdl+r399tvxsY99DLt27UKpVGq67wsR7RpviX/4h3/A8PAwPvrRj7aszYWKdo33/v37ce211+Lmm2/Gxo0bcfjwYVx//fW4+uqrcffdd7ei6wsS7Rrvm266CRMTEzj//PNBRFi9ejU+9alP4dZbb61Z5mIxYHGfXR38z//8D37wgx8YK+7HHnsMBw4cwPDwMAqFAgqFSI5v2bIFv/u7vwsAGBkZqWJ88WdW59esWYN169YZqejPPvtsEBFeffXVmu1wG/xea5uFhHaON4OIsHv3bvzpn/4p+vv71fcnn3wygiCoO95zc3OYnJxM3WYhoZ3jvWPHDlx44YW4/vrr8Z73vAcbN27Erl27sHv3bhw+fLhmO+7+zj/epVIJu3fvxokTJ/Dyyy/j0KFDOP3007FixQqsWrWqZjsLfry76hHrMrZv304jIyNULpfVd4cPH6af/exnxguAYjERaUenZIX93d/9HQ0ODtLMzIz6XCqV6NixY2qbPXv2kO/7dOLECSKKHJ1//Md/bPRpbGysytF52223qd+PHj3a847ONLRzvBmPP/44ATAYTYzzzjuPrrnmGvW5UqnQunXrqogTDzzwgNrm5z//+YIlTrRzvC+55BL6+Mc/bhzvRz/6EQGgX/3qV0Tk7m+i1t/fEr/zO79Dl112mfq8WMd7yQqpSqVCGzZsoC996Ut1t0UKZfQP//AP6Sc/+Qk9/PDDtGrVKoMyeuzYMTr11FPpYx/7GD333HP07//+7/TOd76TPvvZz6ptnnzySSoUCnTbbbfR888/T9u3b0+kjA4PD9O//Mu/0H/913/R5s2be54ymoR2jzfjk5/8JI2Ojia2e99991GxWKR77rmH9u/fT1dddRUNDw8brKqrr76aNmzYQI899hg988wzNDY2RmNjY/lPuMto93h/85vfpEKhQLt27aIDBw7QE088Qeeeey6dd955aht3fyejkfF+4YUX6B//8R/pF7/4BT399NP0iU98glauXEkHDx5U2yzW8V6yQurf/u3fCAC98MILdbe1byoiopdffpk2bdpEpVKJTj75ZPrCF75grKCIIvry+Pg4lUolOvXUU2nbtm1Ki2J85zvfoTPPPJP6+/vpnHPOoe9973vG72EY0k033USrV6+mYrFIH/zgBzP1udfQifGenJykUqlEf//3f5/a9te//nXasGED9ff303nnnUdPPfWU8fv09DR97nOfo7e//e20bNkyuvjii+nw4cPZT7RH0InxvuOOO+hd73oXlUolWrNmDV1++eX06quvGtu4+7sajYz3/v376X3vex+VSiUaHBykzZs3089//vOqthfjeLtSHQ4ODg4OPYslTZxwcHBwcOhtOCHl4ODg4NCzcELKwcHBwaFn4YSUg4ODg0PPwgkpBwcHB4eehRNSDg4ODg49CyekHBwcHBx6Fk5IOTg4ODj0LJyQcnBwcHDoWTgh5eDg4ODQs3BCysHBwcGhZ+GElIODg4NDz+L/A4BG773W/zb6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# Grab a session\n", - "engine, session = get_db(db_name)\n", - "\n", - "# Remember in the query parentheses is what we get back, in this case were asking for the raster data as a geotiff\n", - "result = session.query(func.ST_AsTiff(ImageData.raster)).filter(ImageData.type == 'depth').limit(1).all()\n", + "from snowexsql.api import RasterMeasurements, LayerMeasurements\n", + "from datetime import date\n", + "from rasterio.plot import show\n", + "from rasterio.plot import show\n", "\n", - "# Now make it more available as a python object \n", - "datasets = raster_to_rasterio(session, result)\n", "\n", - "# Plot the georeferenced image \n", - "show(datasets[0], vmax=1.2, vmin=0, cmap='winter')\n", - "\n", - "# Close the dataset\n", - "datasets[0].close()\n", - "session.close()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Lets use a few more. \n", - "\n", - "Lets try to get a raster tile on a pit!\n", - "\n", - "Checkout the documentation for \n", - "\n", - "* [`ST_Union`](https://postgis.net/docs/RT_ST_Union.html)\n", - "* [`ST_Intersects`](https://postgis.net/docs/RT_ST_Intersects.html)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# import our pits metadata table class\n", - "from snowexsql.data import SiteData\n", - "from geoalchemy2.types import Raster\n", - "import geoalchemy2.functions as gfunc\n", - "\n", - "# Grab a session\n", - "engine, session = get_db(db_name)\n", - "\n", - "# session.rollback()\n", - "\n", - "# 1. Lets choose a site we want to grab a raster tile\n", - "site_id = '5S31'\n", - "\n", - "# 2. Get the location of the pit, POSTGIS functions like to work in the text format of things so convert the point geom to text which is also in binary in the db \n", - "point = session.query(SiteData.geom).filter(SiteData.site_id == site_id).distinct().all()[0][0]\n", - "\n", - "# 3. Merge all the tiles together, note gfunc vs func. This is because ST_Union exists in two places in postgis for geom and rasters!\n", - "base = gfunc.ST_Union(ImageData.raster, _type=Raster)\n", - "\n", - "# 4. Get the merged result as a geotiff! \n", - "base = func.ST_AsTiff(base)\n", - "\n", - "# 5. Filter by uavsar interferogram data\n", - "qry = session.query(base).filter(ImageData.type == 'insar interferogram real')\n", - "\n", - "# 6. Filter by a polarization in the description \n", - "qry = qry.filter(ImageData.description.contains('Polarization = HH'))\n", - "\n", - "# 7. Isolate tiles touching the pit location\n", - "qry = qry.filter(func.ST_Intersects(ImageData.raster, point))\n", - "\n", - "print(qry.count())\n", - "\n", - "# 8. Execute, convert and plot! \n", - "result = qry.all()\n", - "datasets = raster_to_rasterio(session, result)\n", - "show(datasets[0], vmin=-0.02, vmax=0.02, cmap='Purples')\n", - "\n", - "session.close()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Discussion**\n", - "\n", - "* What is a fundamental difference do you see in using `ST_Union` vs `ST_Intersects`\n", - "* Did you notice `ST_Union` used `gfunc.` instead of `func.` ? How many `ST_Union`'s exist? \n", - "\n", - "\n", - "* [`RT_ST_Union`](https://postgis.net/docs/RT_ST_Union.html)\n", - "* [`ST_Union`](https://postgis.net/docs/ST_Union.html)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Lets work with some points and Postgis\n", - "These functions are critical to rasters use with the database. But there are plenty of very useful functions for non-raster data too! A common use is to grab points in a certain geometry of a locations like a pit.\n", - "\n", - "Lets pick a pit and grab data with a certain radius of that pit using postgis functions.\n", + "# Pick a site ID\n", + "site_id = '1N3'\n", + "df_site = LayerMeasurements.from_filter(site_id=site_id, limit=1)\n", + "print(df_site)\n", "\n", - "Checkout the documentation on:\n", + "# Pick a date \n", + "dates = RasterMeasurements.from_unique_entries([\"date\"], observers='ASO Inc.', type='depth')\n", + "print(dates)\n", "\n", - "[`ST_Buffer`](https://postgis.net/docs/ST_Buffer.html)\n" + "# Subset a raster on our buffered point!\n", + "ds = RasterMeasurements.from_area(pt=df_site.geometry[0], buffer=200, observers='ASO Inc.', type='depth', date=dates[0])\n", + "show(ds, vmin=0, vmax=0.8, cmap='winter')" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGsCAYAAAD3xFzWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZhld3Udus5056Hmnrs1gJDQiJABE8CMxg6xY8cYmzxbRDYE29iWTQaFEF6EzYvIwyZOIGACGBsRhxdebGIrJMATEIwZLJAFEmgeeh5qvHXne6b3x9q79q1Wdatbaqmn3/q+/qrqDuf8zjm3715n77XX9vI8z+Hg4ODg4ODgcAbBP90LcHBwcHBwcHA4Go6gODg4ODg4OJxxcATFwcHBwcHB4YyDIygODg4ODg4OZxwcQXFwcHBwcHA44+AIioODg4ODg8MZB0dQHBwcHBwcHM44OILi4ODg4ODgcMbBERQHBwcHBweHMw6OoDg4ODg4ODiccTgvCcpXv/pV/MRP/AS2bt0Kz/Pw2c9+9qS3kec5fu/3fg+XXHIJisUitm3bhv/r//q/Tv1iHRwcHBwczkOEp3sBpwPdbhdXX301fumXfgn/4B/8gye1jRtvvBFf+MIX8Hu/93u48sorsbS0hKWlpVO8UgcHBwcHh/MT3vk+LNDzPPz5n/85fuqnfmrtseFwiHe+8534L//lv2BlZQVXXHEF/u2//bd4+ctfDgC49957cdVVV+Gee+7Bc57znNOzcAcHBwcHh3MY52WJ54nw67/+6/jGN76BT3/60/je976Hn/3Zn8WP/diP4cEHHwQA/OVf/iUuuugi3HbbbbjwwgtxwQUX4M1vfrPLoDg4ODg4OJwiOIJyFPbs2YNPfOIT+MxnPoOXvvSluPjii/FP/+k/xUte8hJ84hOfAAA88sgj2L17Nz7zmc/gk5/8JP74j/8Y3/nOd/D617/+NK/ewcHBwcHh3MB5qUE5Hu6++26kaYpLLrlk3ePD4RDT09MAgCzLMBwO8clPfnLtdR//+Mfx/Oc/H/fff78r+zg4ODg4ODxFOIJyFDqdDoIgwHe+8x0EQbDuuVqtBgDYsmULwjBcR2Iuu+wyAMzAOILi4ODg4ODw1OAIylF43vOehzRNceTIEbz0pS/d8DV/5+/8HSRJgocffhgXX3wxAOCBBx4AAOzatesZW6uDg4ODg8O5ivOyi6fT6eChhx4CQELy/ve/H694xSswNTWFnTt34hd+4Rfw13/91/j93/99PO95z8P8/Dxuv/12XHXVVXjd616HLMvwQz/0Q6jVaviDP/gDZFmGt73tbWg0GvjCF75wmo/OwcHBwcHh7Md5SVC+8pWv4BWveMXjHn/Tm96EP/7jP0Ycx3jPe96DT37yk9i/fz9mZmbwohe9CO9+97tx5ZVXAgAOHDiA3/iN38AXvvAFVKtV/PiP/zh+//d/H1NTU8/04Tg4ODg4OJxzOC8JioODg4ODg8OZDddm7ODg4ODg4HDGwREUBwcHBwcHhzMO500XT5ZlOHDgAOr1OjzPO93LcXBwcHBwOC+R5zna7Ta2bt0K3z92nuS8ISgHDhzAjh07TvcyHBwcHBwcHADs3bsX27dvP+bz5w1BqdfrAHhCGo3GaV6Ng4ODg4PD+YnV1VXs2LFjLS4fC+cNQdGyTqPRQKPRgPe1P0L+kl86zatycHBwcHA4P/FEcovzVyQbZfC+/Z/g/e1HTvdKHBwcHBwcHI7CeUtQ8he+GegWgG4E74u3nu7lODg4ODg4OIzhvCUoAIDYB0YBUB/C+/KfwPvcfz7dK3JwcHBwcHDAeU5Q8ldfD/QiIPGBHECYwfvCrfA+/6nTvTQHBwcHB4fzGuc1QQEAVGJgpQSsFoFhCGQeEPvw/pcjKQ4ODg4ODqcL5z1ByV/5JiDIAA/MomSiKh6E8L7yx67s4+Dg4ODgcBpw3hMUAECUAVEK5B7g5/xXjflcOYF325+6jIqDg4ODg8MzCEdQIFqUQgqUY4pmARKWOODPcgKUEnhfvBXe7Z88vYt1cHBwcHA4D3DeGLU9ITwAqQcUU2ZQ4sB+KsIMCDK2JYcZ8le86bQt18HBwcHB4VyGy6CMI/WBDNSiDAP+y8Eun9QHNnWAUsJMSw54X/uj07xgBwcHBweHcxOOoAjyV13Pjp5iSk1KNWYGJfdIUoIMOFJlFmUYAvURMNOD97U/gveVPz7dy3dwcHBwcDin4Eo846iNgHYRqIxY8iklzJ4AQJDz715EXYqfm4eKB3hf/zgQZch/6C2n9RAcHBwcHBzOBbgMyhjyF7yF5Zs4oFg2zJhVme0CW9okKFs6zKqMApKYSszsSiEFJvvwvv2fTvdhODg4ODg4nPVwBOVorJRoge/l1KD4ObMk/YiP1UbA1jYw2ScxyT0+NtVnaWhiAO+Ojzp9ioODg4ODw1OAK/EcjUJKQWyesaunG/HxxGcGZbrPnwD1KtUY6BRIUCYGwL4Gsy2ZB+/+DwKjAPmVv3r6jsfBwcHBweEshMugHIX81deTgORgZqSQAtM9ZkqGIfDYBDMrrSJJS1d0KIdrwIE6N5L6ayUfTAzg/eA/utKPg4ODg4PDScARlGPBA4lH5vEsTQzMyG0UmGD2SBVoF0hYDtb52EKF//Y2SWCKKTDbg/fgB073UTk4ODg4OJwVcARlA+QvvcF0J60SMF+h/iTIgeaA2ZFWyYzdRgEfGwXMomQe39+L2BV0sAYcqtE75Z4PwbvnQ6f7EB0cHBwcHM5oOIJyLIQynwdgaadT4O+lBOgWgGJC8jEKaIW/UiIpmRgA/ZC/x1IC8nOSGc2wtIvw/uoT8P72I6fv+BwcHBwcHM5gOIJyDOQvvcGGCGYeCUsvAlaLJCmdAjDXAepDalKm+sBcl2SmmJKgNIZAc0hNSj8iqck9ZmOme8DmDrxvfBzetz52ug/XwcHBwcHhjIIjKMdD7JNgNAfMlCQ+yzzVEQW0tZg/w4zPr5QorgVEu5JTKDvTBbau0jNFt3O4Bjw8yfe2C/DudNkUBwcHBwcHhWszPh4qMQlKL7LSzsEaCUaYAYs+X1MfkZAUUuvwKUjmJReiEtAjBdtXgUcm+VhBbPVLCXCgDq/1J0AxQf7iXz7dR+7g4ODg4HBa4TIox0F+7VupJ9m2SkLh5yQZKyXp3Cmxi6eQUmOixm4TA/4D+NquiG0fnQTun2EJqD5iNiYRkjPV577aRXjf+7Ar+zg4ODg4nNdwBOWJMNMDlsokHo0BBbFTfZKS+pBZkszj4750+owCYLksJaGMWZLGkOUf1bKkMoSwG5nGpTbi6+erQOrB2/d+V/pxcHBwcDgv4QjKEyDf/E+ZBRmEJB2pZ0MECylLQOXYSIYnIpQc9FLxhbAUEmBnC9jUobZFO4PigITFA2f+VGISnzhgKSj14T3wAZdRcXBwcHA4r+AIyomgKHqSIGemBGCJplsgIdGMyCjg61Q4W47t9QtV2uAPQmZgvNzKRgCzNK2SkZrpHvUqOeihMgjh7f6D03DwDg4ODg4OzzwcQTkB5Ff+KrMng5ACWIClmVjM2HIhL4WUrxmGJCajgK+Z6fI9YcbunUHI1w9DZkxqI+pcEt/KQOpiO9sDLlvg6/Y24N33QXj3fvC0nQsHBwcHB4dnAq6L50RRSuiJUkyBzR2SjBzUl/g5CcR8hb9ri3E5YUtyDiv5hBl/KhGJfYprJwf8e7XIfQRCUpDx+eaA+/j+HFBM4CUfBlIP+TW/chpPioODg4ODw9MDl0E5QeQvvYGZklHAcsx0j5mP6oiPrRaBLR3+m+hTTxJk1K+slkgugsw6foKM/2ojc5odhHw+9vlYMaVO5UDdykezXZaIDrHd2fv2f+LUZAcHBwcHh3MIT4mgvPe974Xnefit3/qtY77mz/7sz3DddddhYmIC1WoV11xzDW699da15+M4xk033YQrr7wS1WoVW7duxfXXX48DBw6sveYrX/kKPM/b8N8dd9zxVA7h5KBdN/vrJA3DkMSkNiSh6IcUuE4NrOQT5My+ZB6zLZlHZ9mhlHl6ER/vFJhxqY/490KF226VZLqyWOWXEm53tsv3jAIAgPcdNy3ZwcHBweHcwZMu8dxxxx34yEc+gquuuuq4r5uamsI73/lOXHrppSgUCrjttttwww03YG5uDq997WvR6/Vw55134l3veheuvvpqLC8v48Ybb8RP/uRP4tvf/jYA4MUvfjEOHjy4brvvete7cPvtt+O66657sodw8pjsAytl6lCaQkqaA3bclGO+5kCdWZOydPpoF492/oSZlW+m+iQgi2WSFT8HPI/kZabH10z22aLs5yz1ZB63n/rcZilhaamUwLv7w0Ds07/FwcHBwcHhLIaX53n+xC9bj06ng2uvvRYf+tCH8J73vAfXXHMN/uAP/uCE33/ttdfida97HX73d393w+fvuOMOvOAFL8Du3buxc+fOxz0fxzG2bduG3/iN38C73vWuE9rn6uoqms0mWq0WGo3GCa/1aHjf/BgJxFwHKKXMqAxCEojemKeJ6k1qQ2Agc3jUEr+YsjS0VObrhyH1Lf2IpaPVIt+v7+lFzJrknnmrxAEzNto1VEi5ncwDdraQb/qnT/oYHRwcHBwcni6caDx+UiWet73tbXjd616HV7/61Sf1vjzPcfvtt+P+++/Hy172smO+rtVqwfM8TExMbPj8X/zFX2BxcRE33HDDMbcxHA6xurq67t8pQUEErGHOEota1Scyt2dbm/82yyDBdpGuskWxta/GNiW5PmKXTmNIkWyUmjNtOSYhKaYkK8OQrcm5/N6XLIuWhIKMf5dj4OFJeA/9B3j3fOjUHLODg4ODg8MzjJMu8Xz605/GnXfeeVLaj1arhW3btmE4HCIIAnzoQx/Ca17zmg1fOxgMcNNNN+GNb3zjMZnVxz/+cbz2ta/F9u3bj7nPW265Be9+97tPeI0nivzat8J74APMVFRiy2g0hyQWiW8twoUU2NUiqZjuM9syDM2ILU34c9cKTdl2tYDDVWZjOgUSlEJqXUKdAklM6pO4qMHbKOBzy7LI1KeINg5Y9pnt0nDOwcHBwcHhLMFJEZS9e/fixhtvxBe/+EWUSqUTfl+9Xsddd92FTqeD22+/HW9/+9tx0UUX4eUvf/m618VxjDe84Q3I8xwf/vCHN9zWvn378PnPfx7/9b/+1+Pu8x3veAfe/va3r/29urqKHTt2nPCaj4uVEjMfg4A5qDgwolAbMSPSFfKwr8HHD9f4Pu3kqQ9JMioxMzDPnee2h4F5qxRS6lPU0G1ThwQn9a17qDEUK36f3T+1kbQng793IyCuwzv0h8DkAPmu3zo158DBwcHBweFpxElpUD772c/ip3/6pxEEwdpjaZrC8zz4vr+WIXkivPnNb8bevXvx+c9/fu0xJSePPPIIvvSlL2F6enrD9/7u7/4uPvCBD2D//v2IouhEl37KNCgK7+sftyxJ7rFNeGJgmpB+SOLSLTCDMtMj8fDFoC0Hy0ATA5KMfQ0KZbe0mf3Q8lG7QFJT0U6glB0+xYQC26k+sCh/D0OSHX0uB0tKU32+JwfQHCK/+Def8vE7ODg4ODg8GZxoPD6pDMqrXvUq3H333eseu+GGG3DppZfipptuOiFyAgBZlmE4HK79reTkwQcfxJe//OVjkpM8z/GJT3wC119//UmRk6cFAxGkAtaBozqRPU1qStSyXsWxjaGZuA1DDgVcLZpzrC8aExW9rpTWT0/WDqCpvsz3SUlmaiMSmgtXWCq6sMe/M/Fb6YpId6pPy/wHPgAkPvLnvu10nkEHBwcHB4dj4qQISr1exxVXXLHusWq1iunp6bXHr7/+emzbtg233HILAGpBrrvuOlx88cUYDof43Oc+h1tvvXWthBPHMV7/+tfjzjvvxG233YY0TXHo0CEAbFEuFApr+/rSl76ERx99FG9+85uf/BGfIuSvfBO8L/8JMxYeSARymWocirtsPyIBme6TeBypsjSUe2aT3wAzJX2xx+8U+Li2EO9vkNiI3wn6EVuPxwlPbcRszXyFGZbVInDJIstKnQIwEg3LkSpFteUEeGwC3pf+BJgYuLZkBwcHB4czDqfc6n7Pnj3wfWsO6na7+LVf+zXs27cP5XIZl156KT71qU/h537u5wAA+/fvx1/8xV8AAK655pp12/ryl7+8Tqfy8Y9/HC9+8Ytx6aWXnuplPzlE0pnTjYAimNHoSWanNgKWQpZY9teBuS5/n6+Q0MSiV6mNWP45UOdj2nrcGDKrou3IUcosysSAJEVFuoARpG6BpGYYAvfN2ODBorQwFxNgucR1bOpwrZ0CvLv+0FnmOzg4ODicUXhSPihnI061BgUALeZLCYlDLzKr+sxjliMOLNOR+CzVbOrytb3IBgX2Q5KLYsJtpD5/r8Z8TtuY44CEozpiBkYHEhZStjPHPgnTSokGcrlHclMdmffKxAB4aEqEvAWKdTOP2w4yIPWRX+3IioODg4PD04On1QfFgcif8+vMbJQTK7XURvz9QIMEIBMBbS9iqWdRMiSZZzN8YiEZEwM+VonNC8UDBa6DkM/1Q+pOFitchNrlpx6JTCWm+DZKqX9pDvg6NZMDuMZWiR1Dq0Wu38vXdDDeI//+tJxPBwcHBwcHhSMoTxWJZDsuWmYZJ8r4eDm2jEZzaKWgUcCfldgyJrUR35N5zJroJOSFCkmEEiA/J8mZGFDwqr4oUWYus8OAZMUHn1cBbkG0KV3R9GzqkNwMQmlTzk342ynA++4fwrvXDSF0cHBwcDg9cCWeUwDv8O+xpFNIgeWyGbKtlMwTBTDzNU9OuQ4TTEVPoiUcLzfre82sDENmX3Suz6YuZwJlMgV5ckBy0o/MGj9KSUh0gnJtxOdjmQPUj1jW6UV0vz1c5XqAtXKPZl3y5//jU3rOHBwcHBzOT7gSzzOJ3U1gb5O/T/aB7avAxUv8OQxIIIJcrO27fF3q83Et44QZUBLNiQcjJ50Cpxh3CiQxjSGfP1jjdvyc+2kVSX5yiFOtz/cA1J7oPutjehjdN0BCUo35mJ+T8AQZiU27AO+bH4P3rY89I6fTwcHBwcHBEZRTgPwFbyFh+MEsPVAWK8xsLJeYnSgK0VgZ+zvIWLqJA8uopD5JwkqJmZJeJOJYn3+vlFim6Yd8vFMwoWx1ZO60pYTb01blODDdy0rJ/l47AI8tyZlnxMjPzZG2LNtLPXgP/4dn7sQ6ODg4OJy3OOVtxuctOgXTk5QSZjSCnPoQFcQGGbttqmLEpuWb5RLJQFnagIcB/1biknvAEHx8GIqzrLQYa9tyY2AlmaUyW5eHQmT60l2Ug/trF0hkYhXpChEJMv5ekLJR7nGtic/foxQ4WIO38DEg85D/8C+fhhPt4ODg4HA+wGVQThWCnCRgEDILsVKiZkRFquNC2JUSX6PC1Fw6cEYyZLCU8PWpXB4V1M51STB0SOFIiEzqUfuiRKQu+wozlpwA7qNd5OsqCclK7JOslBJmX8KMZCeHDCLMjeSEGQlNc8guIS+H9zcf5TBCBwcHBweHUwxHUE4R8tf8opRucst0APy9mJCMZKIR8SBZCZAE1IfSglzh4zqfpxKTwLQLJDSVmK3DSkKm+ya0jTLus5Bym0tlkozmkK8NM25XBbi5dAXN9Owglss2iTmSQYblmO9N5bGMmpS1DFAxgXfnR+D94D+ehrPu4ODg4HCuwhGUU4lexCDeGLJcUhuxRJKJtX3qGzHQ7Em3YNmKkXThJD5LNwCzG/oebROeGJBYKOkJMxPCLlRMdKvzfIKMfxcTEhnNzISZTU0GuD0dfqity6pjmeoLKerxpxKjMW2L9+U/ecZPuYODg4PDuQlHUE4h8le8yczQNOinPgmDGqX5uWUnUt/KKgsV69Q5UjUX2jBjFqMSkzQosTlctYGAsU/iotmRobQrq0HcKLDSUw7LxGiL80hEs+WYZKQ64uOZN+avEpI0xQFft2OVhEcFuaKJ8b54K7y//cgzfeodHBwcHM4xOJHsqUYxHSMKoWk6Mo+EwBPn1/qIWYmVEknIIOR7m+JnotkJwEjNIOTPIGcWBSAx6BT4mvqIniuhmMUpufDAMhJgItuVEgcXph4f6xaY8SkmpqUpJLaGRLIpOTg3qD7i9qf6fL/ucxgCR6rwvvoJYBQgf/X1z8x5d3BwcHA4p+AyKKcasU/dh5KTI1UG+x2rJAYtaSFWR9liQiFrObZyUF1m5mxfNS3KeFtwu0BSoqZsAInIQoWPDSVbU0xMNzIKzERuQcpH++s2fVlLTNrerDOBhoGVpgDzdFEB7r4G9wMISRoC21Z5DJMDp01xcHBwcHhScATlFCO/7h+TAPQithoXUuu0me4zSzExECv8gJ05vYgdNs0hn1Mx68hnoK/GfK4cm+V9MTUTOPU1GQrB8CT7UkxNb6JaFLW9H8ik5U6BJKguAwiViIwCbjcO+LjOAgLM6O1QzQYNph7XWEitFFXgnCLvwQ84kzcHBwcHh5OCK/E8HWgMLUsR+yZWTX1mNHzJVuiMnVB8TYYBsyOhBPdRAKyINf3WNt+3RkJgZZXUA3LZT3UElGR/bdGlNIa2jkhISiS+KKl4nqwW+bqCiHJ16GEltrUDzAB5OUtCYUbSU0gp2lUX3OqIpEvnEckARO8bHwf8HPkL33waLoqDg4ODw9kEl0F5GpA/+zcY+McdWVslE8nqUMCZHnUdw5Cv9wD0pKunH5E0DAOSBW0/rsS0oS8mJDhRxr/VUC311xOTxpBEpJBaqzHkbxXQtop8rBtx/yslM2frFEx7ohmbVkmGFKZGrnTQYDFZ383kQcpdcuxBBu97H3ZCWgcHBweH48JlUJ4udAs2zViJyShg4K6PqN8YyEDBWISssW9ZkcTna4ZSwskTEggPzFpMiQfK3ibJQ3No+1Yr/fmqDRMsjDnHRpmsRXQkqZSDygmfr8I6fnRac0myPYUUiKS7qDbiNsOMrwXMPA7gtgDuoxfxZyDnIszg7Xs/8u1vfyauhoODg4PDWQZHUJ4m5K/9BXh3fNQyCpmUTQ7VSAY0E6H6lMqYvqSQAJ6UcXKPwlOdiJz66zt1LlxhluOwiHFLCdCVcs5slyShVTRylPhGWDxYK/OephGn3AOqPaAj+xzI/soJ3696GC37qNOsuuIWEx4jwPWEGUXCOUiK+uGam6637/3s9rnoxmfu4jg4ODg4nPFwBOXphIpVPfBfOSERWRJb+rJkJrScomWQYko7em0Bbok+ZBQAA/EkaQV83f3TfG6qT/KT+uZ7ohmP+ohEJRW/lFBcYCf7fG0xNUfZQcjtFVMbbhilpilRHxadxKw6mkQ8U1LP2p6jjPsNhJREknUZSiYnyOmeu1qEt+8TQCWmyNjBwcHB4byHIyhPJxYrVhqJUhKTqT6Jgk4pDnJzeo0jBvmFig0dHEqHjuo+tNt4um/Os5FoS6ox9ScqpNWsTexbVkNbirW7KMw4M2gohGMUcJ1RZkJdzfD4OVCMzcRNszhBBvQL5veSe8AgAHIpNakfy+aODTmMMhIZgM8FGdAcwlv8v4HJPnL/Xz/TV8vBwcHB4QyCE8k+jchf+wvMNCQ+iYknWQV1X1XxaShzdPoRCYb6lnTE1j7MrNW3kAKbOnxcrei7EfDwlJVQGjLQrxyvtfquEY7JvrQxw4iStharp4qfc1ujgOJbLe0EmZWX5rr2eLdg9vgV8XOZGHBftRG31SkA+xvMygB0sm0OuKa5Lo+jOeDjfg4PNz+Tl8rBwcHB4QyDy6A83YhSm2czMQAemeTjq0VmPHLwuU0dIKsz+xGL0LScMPgnQiTGXWN1crFqSABmWbSkE2b0VlFnW9W4lBOSoFQGF45Cc61NPW43zM3ozc9JOLyc7cthzvVWYpKSYcC/B9KpA0i3jrjdxtKF1JPpzWrnrwRsucT1XrgCZOtPnZKU3JEVBwcHh/MOjqA8zchf+SZ493+QBOBA3bpqFisAevy7FzG7UBKbeU+yHd2CaTdSmbkz1SfJaBWllBIy0BdTc3TVzAhAIlRKgFTm7uxuctuNIQmDBxKLYQAsVq07R1GO+XfqW1YEoCttKN1EasGv7cTDEBj6QFzj2rUVWTt4osymL1dja1cOjmIoAkdUHBwcHM4/OILyTKCQ0lZ+FJAILFStrFOOSSYyDwjGtClhZiRDh/+FGXCwTnIx02PnjtrOlxLr0mkXmLmojsRNVkhQY2jbBJhhiVKbaKwZEJ3EPAilzVns+JWcdMQrRcs5ut0jVW5zuWQmbzoduR+aY63uJ/PMr+UY5GQcjqg4ODg4nD9wBOUZQH7hjfD2/xED8mLF7OZjH2hkNvlYbeUB8xYppiZ47RasTKJakOYAqHsmeC0lJAlKMhpDyVYENnRwscJ/Ks5VIe6WjmVh1OCtWxBTtgw4XLN9q7ZEZwR5OXUvkwM+1xWjOW2d9qVjxwOJi5aPpvokLScBDzc7kuLg4OBwjsMRlGcKmWc6klQIibbb1kQzEqVWIhnI1OFUiIcHy34EGVCPmbGojdZ33GjmZBSQXCyV+Z5QumaaQ5ZVlkJ23qjFvbYAx7653xZSc55dqJiHiq6lVbLBhJs7prdpDswNdyTHGPtcc3PAx/Y0mZGZ7j+p0+nhZqBVQt78F0/lqjg4ODg4nKFwBOUZQv6yG+Dd/kn+UZZW2/qQwVu9QqqxGaqpiVouxEEnDQNAIFmLhkxN1gyH+pAUcuvEmemRTGxfNbKxXAYO1iz70SoBW9riEpuSyCS+eJ8kUpoKmfUIRHw7EGIS+8zyPDrB7ddGJGFa3lEflcUKydYg5GMrJa7/WHhwmt4qu1rWmnw0mgNX9nFwcHA4R+EIyjOJYgIUpPtGDdxmeyyHqLlaDv6LA75OsyhBzhZcNV/rS0twOWbW4rAQDv172yqJz0XLj1/HZB+4bAG4Z44kYbLPDEs3MgHtzhaJx0IFeGjKOomqR2lIVqQLpzbia49USbRUUKvlq0oMzFdIaOKAx1g+BvEAgO0t/twzwXPwrKXjnlrvvg8iv/TXT/xaODg4ODic0XAE5ZmEBn91bx0GzFxEGTMaB+p8PBZNSD8ULYpnrrR1cXntR7Syr4/4utqIAX9zh1kPnSJ8qEayoN4riguX+fp7Z0ks1D/lufPMjChmu9z+YsWyK2pXH2YkTUMpR1Wl22hiwJ8r0vasJCXzSLZi3wzdjoWyjAh4zgJw96bjn9fVIvDYBLw9twIekL/mF5/c9XFwcHBwOGPg5XmeP/HLzn6srq6i2Wyi1Wqh0WictnV43/1D04i0i/wd4N8LFdNtJKIFWcu25OZxUh2RSGjp40iVZmcboSV29TM9kgh/g8sdy0Tj1aLN2tnUsedHAYcSjnzbZjI2CFGnJWceMz2xD2xrm45lrsvszCER2R6pcjt+Dlw+T5K2EZSYPTRF4vXgtGl5BiFw5WGKbL++w9qpB9K6vFRG/vd//qSvj4ODg4PD04sTjccug/JMY28DeNlu01986UIG1lj0JV4O1IYs/+jwPz8nMWkXKDK95tD6bU4MrNPHg3XitIvSPVO2Dp6pDUSpkcziaZVICkYBszmT4rkyCLlfJSa1kfm5qKGberWoPf+yOMZmOjwwsexRt2Atyqqr2QhaSvIAfG+TvVbX+J2tJC6e7GcYjpG5BN6f/jdmVN74Myd/nRwcHBwcTiuc1f0zjPzv/UOgmCKXVtn8lW9iViGWbIN27HggKZkYkCSEGfUq4+RkuUztyZEqsyQLFeDBKeCBaWCf2Mq3C2bm1i7yNcfCxUssqWxpkzA9NM3HG0Nzt4399d1Ffm4+JwD3EUtLc1U8XjwAhcxIVzeih8tiGbh3hv+Oh1TIUDGVrqXUfFM64orrSft1KqLdzV3ghw4AXg7vd7785C6Wg4ODg8NpgyMopwF58V+tf2AYsvzRD5nhKAkhURfXUsJsww4Rjq6UGNT3123g3lJZZufEzFAsVpit2du0bpqezPs5UOc24g2yF6tFEh+AQX9RCI2Kd0sJW4NnuyRPShZKCddaHZFYBTnJUZixpXihYrOCogy4azOJ1KYuMzOA7ffo9exvkOh0CjKLqMvtDwMe19Y2SVKYMevTGALPOwg8exH4+XuATgHeW78D71e//RSvnIODg4PDMwWnQTlD4P3lf2EZZKtkL0aBlThqIxqgqVbjeyIaLaYscfg5xbMLFeDRSdOFdAvmbaKEoTFkkJ/qkxhN9vk6bW+OA2lfDpidUa+SUWDCWw8kJYOQ793UITkoplzHSolEaBDy9ZNih18f8bnpHvDVXUKmpHPohfuBH8xSV6JW+/sa7DRSLYuWlHa2mFUaBsBjEzZQMZf5QoMQeMH+9Zb9ig7PiWtLdnBwcDg9cBqUswz5T7wRAODd/WE+kHpA5ltmQsmJEgjtCKqNrMW4lFh5ZqHCDIwnpmt9yZZ0ZPKwepIADOqrRRvwV5AOIxXWBhkwLNhMHhXDzva4zyAnEemJwLcoM4UqMYcjNobc1+TAZgldtgB8eytbjysxH9u+yoyNesPcO2vr184lLycpee48X79fskR//z4e8/0zJEH/61nU+kz1bZgisEZanH+Kg4ODw5kNR1DOMORX/ioAwFt5rxmr9SUT8dgEyyE7WxStautwISXJqMqE4cUyhbbLZf6tnTtDISk6bFDLL2FG3xT1Okk9ZjsGId8TZdzWcpkEQT1T+qG0FIseJRLrfbXjj32WWfY1uP6lMstU3QI7c76+g9vwwMzR1jbJTT8E/nont6mZET3GikyFnuqTiIQZ9/PQFPf1h9dxHdcdIMHaqGtpDI6oODg4OJyZcBqUMxT5xJiFezmhRqWQMkNSH5puZbVID5V9DQpkj1RlsKBMKtY5OGFG0lEam+3Ti/gzSvm+VonBfhja7B4tFyU+X1cf2XwdtbtvFSmO7RT4t58zK6L72NyhYVwxEfHvELhM2qTvnaFg9n89i2UfPd6Lli2bU465zUDIxiDkehcq3FaUUVdTToAX7+U2v7YD+Nb2Ez7fniMoDg4ODmcUnAblDIZ34PeZFWkOGOznq2zfVZfZgsy+OVJl1iHImf1oDoCeDPWrxDYsMBENSSU2jchApgyHGYO9B2ZJytIWHPskGPfOiottYlmZoTjfhhmzFf2ImY2BtPt2I2ZmtCx0LGv7jz4fuHuO773iCIW2qehOllX8q+LbjOsPM/qr7G/wnDwyyeduuOvxpnTjWC1y/U3JTmkr9xhcNsXBwcHh6cOJxmOXQTmTUY2tRNEqWdZgEIpGRdp7vZwajXJM0tAuMqj7OcnJKGBQDnKzpddA3xiaf4mf83EPFNQeqpF46CBDnREUZeZqu0m6eWIR2S6WRZeScX+axVGH3I3wI4/ZAMGv7wC+vY1C4H5EYlJISUTaBWZWXrSP+5yvcp9b28ygfH3nsUs6w9A6lPyc522pzAzPo5N23o5U4R15H7w9/+7UX08HBwcHhxOG06CcZnjz70M++8/WP6Z38M2xB9uF9d4fKyWWTHTCcSkh0aiNrDQDHTyYW0dNDiAumvOrDiIMMgZpnf9TjS07otsfhCQZA49us5nHzIxmXZKAjwcZUAAwt8EcoI0wOSDJ2NvkWg7WuL9vbePjP7yP24+kU+ieORKWIOP+dqwCP3MvUBmZrf7RULM4PT+DkGRvR4vbPVzlz8XyWreRt/ohYBAiv+4fn9hxODg4ODicMrgSzxmAE9Y/3DPHrEKLd/rIPGtL9nPTahQk05H4JBnciYlkxzUiagynk401W6LER/exUmIWpx+y/FMZMf+mhEBfH0rXT23EjEVzyCyNlz+hYBV7msDHrmU5SX1gLlwBXrqba9y1AlywwpLQYpkk6kceA646zPcfqrEctRES38iWEq1uxMdGAUmfanO0BRvg470I+Q//8olcIQcHBweHJ4BrMz5bofNnNsJz50kUtBxSkOF9gdjYK8mojWygXy+insMTUjKQLIla0w91ICHM3yTzmKnwRJi6WCEpKopJWqdAjYtmJVIhQjo0MBMr+tkeiUQ55nb8Y2Q3FDtbwBu+D3x/DvjuJuDhSR7n557NLMlSmZ1MXdHPrBapPZnpkXAslY2g5JLd0eNYKZEoHaoBWzpAz+dr1CSuF/Fvbb1WMpWDbrR/81FgFCB/yS896Uvr4ODg4HDicBmUMwRe8jskCgfqfGDrMQboaQbjYJ1BNcionVgpyRwfcZ4dhhS4RpI10PZg7cBJpStHA/Mo4PsiEd+WE76nF/F3dYKd7pOULFT4PtWujHzTmEwMSCKCsY9WJTZiNLnBPKCN8O9+mG65vYj/3vB9ZkI+eymPU9c91wUuWaRN/3Pn+d5MNDqV2EhdU2YBlTlMEKtFOw/FVFqnIzO+C3IjeTqkUMpn+YvefNLX2MHBwcHBZVDOPjwyyQCa+CzfqAnb0ShLx8lU36YeR+LgqqUL7bLRf1HKn92CEZWh6E7KsWVYZnrcZ3NAMWlHrOprI77uoFjkb+pw/wsVvq9dsHWtFq3LKBWCokZrAw+Ya534Ofntb2z8+CsfBf7HJWwpLibAv3kpCcRsz8pXAB9Lfa7Vz2loVx1xKvJkn1qTckyCpz4yiW9DFyOZjaT6ndQHwPlD3jc+DqSey6g4ODg4PE1wGZQzBN7tn+Tdem0EbGtTvHm4xjbd2Le24E1dEoslIRDFlM/rbJ1hwG0UxQ029yyTEqb0RymkJBkD6VwpJiRHqUcSMivzcXKIFX3GIF8bAfdPc5uqYQG47tS3VubpHh9PxF1WdTHNAd9bTJh52Wiy8lNB5pE0zXV57gYhSQZAwqflsz1NG2ZYTEjcIimXJb6NGqjElmXywPMDyFgAa93OX/6PTu1xODg4OJzDcG3GZxnyV13PLETmUWexUmKw7EXAStlKFotlBtCpvnXiZB51Fc2Btf2qjkX9Usrih5KDgbddZNBVV9ZIrOk3dUSDkoh+AwzESoi2tvl3p2B+J35uupMwIzHpS/lJxbvTohMJMhICNXU7lfClrRlYf36GoXm+7GmaYHcgxGogowFUJKszf1JP1jx2fHHALJEa2WUevK/8Mbwv/8mpPRYHBweH8xyOoJxJUOO16ojBW4Oidplo1412o6g4NspIaILcxKpa7onF8EwFoM0hSU+ryNJM4q8Xh9ZGJC1zXa5jYkDilEp2IsiBXS1zidWJxdrCW4lNXJv43I62JCeeBf5eRNIzXz21RGW2y58HJYOSe1yjlrEKKX8vppYhWi4b8ehHNiU58Zl1Ksfrr422KkeZkaCURMXBwcHB4dTAEZQzCPlLb2Cwr8YkFipqLSX8vR9J5kPu/psDPhZLF00/NOKg2hMVdwaZCUELYlm/WuTje5rWVjsODcpq3hal5sdy+RFOHi4lDO61EcsolZj7mZBZQa0i/wFm8FYTv5K+EKnE51qeKvpyDEMhJjrJuRJT11NKrC1ayYi2a2t5Sic/aycTYJkVhWp71B23kK6Zv3mf+8/wPv+pp34sDg4ODuc5nEj2TEPqA3lqba4qVO1LJ0vss9NnJNOGU3GTHUmL70g6adSXRN1f44CvDTOzxfdya9M9VLXBe2uusmJ5r0MChyEA0WyslFjuuWiZmRDtAkp9ZhxKCUmAtjOroNfPTYdSSEkiQulEUsdZ1Y1shEHIbR7tqxIHQKfIcliQkSBVRyQe/Wi94NjPgZ6QGG3H1m6eMKMGqBNxmz0RFudSStOfmWdziVRUG+bMuHg5vG9+DOhHyF/xplP44XBwcHA4f+AIypmGSEoQE136j0z3LEsB2N37TI9EQS3k2wFQhAX3KGNJJRT7+nJC8qF3/jpQMBXBrZ+T+FywwvJIQ9psAzFuG4nvSe4BmaxjtWjlDkUvtIGD5ZjZoCi1lt5uRNI1nhUqi+B2uWxuuDO9jc+POtqWEtO8DANgVdqst7SZFdFupe2rXPMjk1by0fOpWZPxVuOS6IBKqT2upTKdqqz71vPp50Am52BaRgPsawC5lH0KKfIXO6M3BwcHh5OBK/GcYciv+8cMrnHAVthY9CfqAjsMqdnoSKkl9aws4eU2mE9t4KuiC9FBgJlnZY6JAV+/KALRbkQRrrqrxj5JUJhZVkVdZsOMATvMKNAtJ9STtIt8T7uwNttm7fGCGL1N97kOJQmrRds2QNKyVObv2vY7Dl1/LpkLHYxYSLmfua6VZwCel+1i9JZIR5Ofmyi5mNigxcTn2gFrV07k/JbEQbc6snIVQDKl53oQ8nxqq3enANRG8O78CM3eHBwcHBxOCC6DciYilSBZjdlhEuYM2ur4qmWL+tCyITlMuFmOjYyEmXmUAGJFL66usc+gWh0xkE4JISolwHyFAbo2EsO1xLINFZnTE2QsO9VHzFzURuxA0kCv5EnbnEfijzLb5esTn8LblZJlUrR9uRfxPWvOt6mVWjSDMV8hEakNeU7UowXg+lQoHEnWQzMnQWbZIBUQj48BKIooWEtOuWdzkDyQgPWEEOk5UlHzQoXHEqVm8z/TY9tzmK2NNXATkx0cHByOD5dBOQOR/9Bb+IuWTlJ2iaAlZZLUN4fTOGBGQoPvKDDPFO3m0fbYMCOZWC7Z3b+WLqqxzaFRUlOVDEKkZm06pTgT0zLwZ6fA9dSHzMoEubUoq5NtN7L25CNVDvtLfRKKasznRgHLPNrme7hqxONgnSRAXWV1zbNd7m+qz8zJILI27YUK/5USEgQ1cdNj1BKNuudGmc0w6kqHk3btaIktBx8rSckskDLVfIWZIC/nOnas8thin5mbIAOuPbh2jU94/pKDg4PDeQpHUM5UlBLqOVKfxOCCFd6R90PTkZQSkoK1NtiYIs1IWmgTIQ+LZRIEgIE780hShiFQi61VVtuWw4x3/koaVHgbSXeOZhk8cD+RWOM/OM336JpGvpVtxo3dSollOBKxqp/r2qDBajyW6cm5//G19CKb5gzZjgcjIKloYKqS3ZivkiwsVMyQrSU+M5qN0ZJQDm6/mBjJK8c8t32Za1SNrfxzqG5W+IdrfH2UmgkeQIKygabGkRQHBweHY8MRlDMU+bN+Uzp6PN6ZdwoMwDtWKcRsDBnEV0rmPxJJZqNVsmDejxiEi6npK3KYT0kqRGdr2xxe60PqX5pDLkZFtvWRCVjnunxNJV6vE9FSSu7x/VoGGS+HqJ5F26PLMbc/MaBzbkECvBqlNYbAhcuW5dF2Zs3iNIbcngpvm0KiFirMsMx2uZ3m0LIdOuSwIIQs9YxoVaVENtW3czXdp7uvn5OQNAd2LlRsO5Js1qwIZbWTalJarhcrNmtpFAAPT61db++Dn3sGPlUODg4OZw+cBuVMRiCurIC05HbWD63b32BG5WCdwbdbsJJKIBmIVpFlk1wIxOaOGb/FPpCFJhDNPJIbDfDNAf8dC5qxUD8Tza5o9kN9WBpDyeqIJsYDMw3qfeKBZROdvBylJExqn1+JH6+lUeKwXCZRSjwg9Fg+0oGAKyXzPzlY5z5WpExUEZt7FeuWZDiitmXP9MSrJWK2SbMtlZj7LCY8V1N9IX5F215LCOVk38p0B+o29XmxwvOaevC+eCuwtwFMpPD+3eeR//ZrT9nHx8HBweFshiMoZzJU6FqXTIZqSTQQhimQFBj8nn8AaEq2pF20DISfMyh35TmAAbWQsvQQitBVSzFq3rbRoMKNkPpcZyBlIfVRqcGEpeOIxfTMEwv8xlCOwzcBq5aDiomVcVQMrOv3Za3a0bMiXix1mSmka1LDtXLMEkxtZH4manhXTMxXpSglIO0iKqTczpEqsLPF420IGZwU3ctiGbh4iWQG4PlXR9vcs2GNrciyLa0ij7Mckwz59JnxPv4XwAv3Ib/i107s/Ds4ODico3AE5QxGfumvw7v7w1LKEJ+OUBxhNZjGgQk4N3cYWLsR7+4Lkg0oSxkm8YH9dRGxJsxi9LVDRYKrlmsmBlaSURKgJRXt3gGsY0Xf6+H45MYT/UxzwOxQITUSEg1YllktWjamkFp5S43REp/EYqnMksqhmrUqD0JmNdpFEd/K/J2hEDttyR6NESU1satI15S68qrHSm3EbfVF+6KkxpcMlY4A8HKuqTG0YY3areSBa12omBeMBym5eTYoUo7Zw83AfBX57D87NR8mBwcHh7MMjqCc6ZjpkWDURtYOq79rFuJgnYFvpsdAra2uQWYlFR0eCFhmBTCH2ErMYKkZmE6BJZViYmZrhVSEtdIJVI2BIxVOO64PbVifOtWODxDUrEV9aLOEkKw/Vi9n5kEH96k+ZGLAbbaEuKiQNcipJwkzKyFlHk3SLlomMYkyHpeWkQahtRQDZlM/fvzVmMffGFoJaLpnZKw6MpO6hYrpbzSjM92TTiN5zAOzL7F0X6kxns4i0gxP4rMD6bJ54KEpYKYH774PAlGG/OLfPPWfLQcHB4czGE4ke4Yj3/JPSBQ0CGt2QglHbWSttjqJV/03PJgAVDMGKuZcKdngwWLCwKnakJGYpy2WGURXSiQk81WWOtRqX0stI986aRKf5ZZOwTxOugUzkIsDy8QcCzM9CktHY0RitcSsUEvWvbVtpCiWY4pSkotiCtw3w/JLW3Q5amqXefxbfVl0fEA/tG6mToEkYyQC3RwkLmoGp2WjimRVMo/HdOEK96mam9Rndkdn/RRSPnfRMo9B5wEdqvF9Fy0DP3TASNMgFI+YEF7yO6f6o+Xg4OBwRsNlUM4GaElBoUPtymOakuUy7+y1PJHDMhdaKlEXWV86eNTcLQ7Wm5GpJsMDic8gpI2+2rrnYLlFPT9WSny8XSDBmexTCFqVkoy2NjcHDMo6gFC7e8at8hW6/90T3J6ufaXEYwdIfMrSNdQu8DhaUuppDikiro+MvKgoNxAXXLXyL8tcoJEIcjviJNuLbBJzu0hyNAx5XKlvXVE61VjHAqiTrr5GszzaDq52/ppNWSwDN+7jPu+fsa6kvvi99EhivO4HgUqMfMdvn7rPloODg8MZCpdBOQuQN/8Fg2O7yIDXi4A9E8xoDGUacOKx1DMxZFAbJzWhiF4jaX0tClnRdlovNw1GRXQbHmQOjZCh1LcSh3a8dAtWctLuoWFAMWpRrO/VWM2Ttt/lEmf9DKT76LDoR3JvvQldLjqYRDxNehHfPwiZcegWmDmqiMnbZnGQTX2bp7NrxbImmo1RJ9pybPN6NPOkXiZaflkpcYbPlg7XnYPEozbidg9Ky7CW2tS5NvZJjCqxaYXaBa57uczjrca03x+EbB0HuL/qyM4/YGMFVPsyDODtez+8fe9/uj92Dg4ODqcVLoNytmB3k4FyqSztweBPDYqzPT5XHTGwe0UGRm2DHYamDdFyAyBZl4IZnelPdUqtxAzuas7WlJJHt2DZGTWEKyVWmtEsySBkRqAqGg8/5+/q7RKlXNdq0YSmnYLNy9nU4TYAbjPxbOjfdM9GAmjXT+Izq6Oal07B9DrqBaMt2JXYNDdl8VXpRSa4nRE/k0cmuZ/FCnD5kbFuoNh0Or3Iyl6zPe5XZyApqesUmOHRVudnLwE3fY3v0TlB2kKuXUXaqlySKdIDIy/eY38A5B7yC298xj+ODg4ODk83HEE5W7C/bhbwQc7grMP+PCkHrAopKSZAGFkgVGKhJmPl2KYRa+lEO0hU0xFk68WowHq9x0CcWlXbovNyNMAul41k9KS9ti7dMF4ODCum3Rh3XdUSkk4tXiyTmOXg9iNwO4PQOnZGgYl3KzEN0C5eojamPrIMUKKty6kZ26lfiWaD+qHNM1KvmHGjueUyMzcH6tTBrCSWmVJzNhUhV0e03u8WTEC7WCEZmeoDz17kMQ9DIzCq08k8m0mk11zdbUdjTrk54N3zIdeW7ODgcM7BlXjOEuQ//gsMxGrRrtqOpbIFMxVWBrkNwtPBfbFvlvKqO1HX10gEpCrKLCe2jyCXSci5lYZyzzqKtDyT+CzpaKkEMA0KYAMQl0vssgGs5bgXkXCpBqYxtO6f5tDEqkoAVsQpV112lQgVUiMSAM+VBvfGkGSlnBipUj+ZrmhOyglbgbetsuzi5WbWlvh0s71k0Sz426KnWS1yndMybLEf8Vw9PAU8MA3ctZnlHe0gWi4Bd89xn+0iX7Onae3UqiNaLq/vZtLSnY4C0MdGAbz7Pwjv0X//jHwWHRwcHJ4JuAzK2YRBaIE+h9nMF1ILpoAYpY0YDAfi5zEIgaUSg7k+r5mRYcDHM4/b9WDGbjpnxs+ZgfB8Eg9fSkU6y6YbcZtF0a2o/mWqz86fQWj+JQ3pMmoXub+tbTNqi0QIu7PF45mvcnsF6b5ZFv+VbsRtl0UPox0zlZgZEUAmFgMYFoXQwLQo2kZ9+RHgwSlgFJpwtVNYbwI3FNJ1qMbjXSmZg25zKBkgEen6ObMrB+rmuTLX5SylrhCXv7MXeHTCSGCYGuECSHC8nMe3v25ZGZ1zFAcmetb3iTGfd8+HgJUS8pf80tP3OXRwcHB4BuAyKGcR8ldfb26wGpjCzIbjhRmDZupRP9EcWjZkFDAIe7A7cs0kqJalKBOR1e20K3f0qc/gPSmzcrQjRTM36rWijrSZx7v/I1VqLhJ5/6aulZr83Jxk/ZylDx1GWEyYZVF7+W1tPnewxiCvWo99DXbIKAGa6Vm5BJBOI4hbrhAPnVGU+NzWg1M85m7EtRZTy+AUpVU4yLjd5lA8VXKei6m+ufz2I05f1kGGd8+ZQVwObjvMgGsOAVcfAn7qPrteasA3FCfdYmKtynUhgzqraEKyWaoR8nLLRKkeKcrgfeHWZ/4D6uDg4HAK4TIoZxu0JbcSk4g0RhZgowxIMmYdGkMGZdVLDEOgHZgeo5isd3EdSffNdM8mHye+TUbWQDpfNc2KBwb9jsy26YreopgCScyuG+1GGQhB0LZiD/wXB0Ykgsy0KN0CsLdpmpb5ipWcVsdErbrdSkwx60XLdq40q6TW9xhbS+zbUEIlAp2CCXu1U0lbllWTs1zmvmLfJhRfc8hM1/Y1mGHa0iGZm+qLj0yZWZSVkpGwlZJNSNZ1jGdGRoGVvTrSclyRziu11VdzukDOaSVeEx57f/uRNVO8/MpfPRWfPgcHB4dnDI6gnGXIX3oDvK9/nEGtKR0eGWSCMBj8NFOggwYnBwygmhlRx9leZEZj3ci6aFTHoc9PS2ZiUebTxIF115QlWGeetfyqidx0jzm65ZJNOFaL/EJK8lRIST5U5zHuiaIGc0slE4sulOlcq1bycWCkpS16lIWKlaeUCBXGshTNAddUkAxJ7Ft3z5aOiHpDG+6nWaGJAbNAqnHRUhdAwlYfmSHchHQz7WlSm3LZvImLdzdtmrS2Oqfia7NatCnIgGWwdKqzZrhGgQmOVUCr2ayRTG6uD9dE097Ke5FP/Iun4yPp4ODg8LTAEZSzEbWRZTb2NaSddWTtuEFuzrPahVMbASjw8a4Yqk30gU6R5QftmmnAphp7uWks+pHpSHSOz2rRMjDjLc/91ObzVGMG9bqUTXRA4UKFmo76iIF+JNkdbYvWrqJeBPQKlu2oJEaowsw8XIZS4jlc5TZyzzI1mhHqRTafqKbECqa9UQFu5tFXRYlVt0AipudorsttHm0wN9nnmh6cNu1PkLOjSFu9y5IBKSZAGlkLt3rO6PWpDUlMlAwpoRkGpgnSc6zPjwuFtQynJnQAvPzdwFcuQP6KN53iD6SDg4PDqYcjKGch8qt+Fd4P/qP4nsSmz6iNTGiaw0SwbSldrIlbpZywWGHwag7Nx6RVZICf7JOADMWavitlnNC3EkQsGYHZnmgtlBTk5muic3dmuwzcXm5i2qK4r85XZZifCGRzD1j2rTVZXWV12nESjulnApv4rMemrriajdD1quV8ObFyigfrelKtTSSi1e2rzMo0hKS1Sjw3g4DEcHIgrc8yi0ht85+zAHx/Dnjpbm4D4LXa1+A+tAMHWF/GKYonTHVkLdy1kWWXNLulnT25Z666ejyaxdHsytF46W543/lPQHWE/NJff5o+oQ4ODg5PHY6gnK3IPAavpTJQ9E2kqkFfhwUGIr7Ix3QNOhxPyyAq5NSsxVLZ9BWBuJhqZiOQjEXqMXDrHX1dph4nvg37C3KbqqytxaWEWpdKzMe2iAB2KDoa1X3kYDDX7E4kE5QbQzNG0yCfg89rV5G67arhWw4G7EDKH1qGUvFwKmsuJiw3XbBiLq+qXelFPC+Hqyxd/e0Wbn9LhxmV5yyIYVxqM3nU3RYgCfRWSRb7kjnR0lMpBYYwXYy2TavLbZCZ142eb8DWFsrYgGpsot1jYUUccfsRvNs/ifxV1z+5z5+Dg4PD04yn1MXz3ve+F57n4bd+67eO+Zo/+7M/w3XXXYeJiQlUq1Vcc801uPVW6zCI4xg33XQTrrzySlSrVWzduhXXX389Dhw48Lht/Y//8T/wwhe+EOVyGZOTk/ipn/qpp7L8sxr5Fb8mpmsJyUIpscGAcWCBSu3jAeucUc+TUcBywsSAAVXn2jSGRkbigM+rZbvqGxqy/ZoYoS2WrQQUZiYy1Q6WlpRL5qvcVqdA0qOli/F5QTpIL4O5q85X+Pfehh1P4jPjoO3L9ZF4g8DWph0umuHJpBy0XDaBbavIrEUckJgpuSklLLWoCFfbhh+aZufQnibXMwg5ffigWNnXh+vJCWAE0MP6rptiKm634HNKsDTTosMb+5EZxqkOZs0NOOa6n4icALwOh2pc98EavM9+Gt6X/uTJfQgdHBwcnkY86QzKHXfcgY985CO46qqrjvu6qakpvPOd78Sll16KQqGA2267DTfccAPm5ubw2te+Fr1eD3feeSfe9a534eqrr8by8jJuvPFG/ORP/iS+/e1vr23nv/23/4a3vOUt+Df/5t/gla98JZIkwT333PNkl39uQFtoczC4ApLmH/JuX0sBGsBz2N12HNhk5Ey6XBbLJvbU2Tw1GYynw/bmxQm1PuRz3YIJansRBaG1EV/rQTIfHoWuM31mH7QLZ826XbMmnmkwgsx8RdTavpgCkWRycs/m3kwMZGBfYn4u3YKJXzVTFOR8PEqBkWSYtLMoyoDigATDz4HHJqy0E4+VYapachLzt8mBEb7VIstdAH8/WOe2N7dJMFS8rERMy1D1oU2j1nMtWQ4k8ljukaCVRQzdkJJSJeaaNJv0RHhkkj+Xyja9+kgI73P/GdjbRP7Wv/dUP5UODg4OpwRenucbFKqPj06ng2uvvRYf+tCH8J73vAfXXHMN/uAP/uCE33/ttdfida97HX73d393w+fvuOMOvOAFL8Du3buxc+dOJEmCCy64AO9+97vxy7/8yye7XADA6uoqms0mWq0WGo3Gk9rGmQbvB/+RpQmAd9BRZoP2tHyhrcKA/J6xi0XLPAMZxKdW63UxKyuk1nGj03rLMkNnWYSu9aEZxamAdGLAbIISo/nqmNg2YDlDsyyqLUk9ywYAtqaheLqUJavTKoobbGyzb9S2fqrP46zE1I14OQlKSR6br5iJXCr6Fm1t9mSfShw04zJuKDdf4TmbGDB7srVtrcXadt2QduQLVniMf7uF5GGqzwwVQN2PtkinYx4yXm5lq0JqAxIBHleYWQYnzHgedCL1rGR9moPHf0iUEB2pclLyI5N8j15fnVMUSgmtW0D+z15zij+pDg4ODoYTjcdPqsTztre9Da973evw6le/+qTel+c5br/9dtx///142ctedszXtVoteJ6HiYkJAMCdd96J/fv3w/d9PO95z8OWLVvw4z/+48fNoAyHQ6yurq77d64hf+7bZG5MYuUOgJmQxGcg1OBZTqQl2bPSxuEaX6dTjQFuQ7t2NIC1JdOxUDHCo46sqRAhdVdtF7mv+ar4oEjgbRXZ9twPzRwuzGxwn2YPAOlAkSF8fm4aDJ0FpF4pYcZ256k+gz3AY4qFiGmHkGpUdAxA4vO5KOXfZdGntIrcjhK2PU16yKgOxgMzK1vb1jW0bZXbUeGs6kZKCdcGcH86xXi1KN4nYyZ77TEDuTiw7E8xMXLp5yRbRbmexcSM7oYB8P9dRGv9o1FIgW9ut0zUZB945aN0s33Bfh5r6gPPWSSJmu7B+/T/C+9/furUflgdHBwcThInTVA+/elP484778Qtt9xywu9ptVqo1WooFAp43etehw984AN4zWs2vksbDAa46aab8MY3vnGNWT3yyCMAgJtvvhn/6l/9K9x2222YnJzEy1/+ciwtLW24nVtuuQXNZnPt344dO07ySM8SjJdw1MBLSx86gTjKGHyqMf/uR+tn22i3jna76PYyj6222sKa+LwTP1Ll6xYrZjY2DBnM/ZyZlW4E/GCWZELLRqWE29KMwLjfhwfTjsSBzRBSrYwe3zAkmajENjk5GCNp6lnSDy0roERJre+LiXmoaCbGgw0dDDLrCOpH1moN8PGVEklKKm3RgxBYLfE4L1kE9jdsPk+UWSZIdTbFxDIbk31uSxxgAXDdSkRKibUO6wDCiQGvn85SCjOSJbXpPxov2sfnn7XENX1vE7M/z50Hrj3I53IAVx8GXrab+pncg3fbn7L04+Dg4HAacFIalL179+LGG2/EF7/4RZRKpRN+X71ex1133YVOp4Pbb78db3/723HRRRfh5S9/+brXxXGMN7zhDcjzHB/+8IfXHs8yfnG/853vxM/8zM8AAD7xiU9g+/bt+MxnPoO3vvWtj9vnO97xDrz97W9f+3t1dfWcJCn58/8xvK9+QrpexB8kkhJBRczUlkvMAgS5vU7Fqv2QP2sjButJCX6tklnP9yP+3JzQwr0amwdIDhKAua4IPXOgLW6pO1sM4OrlEcJKQv0ICIRMaJYgC2wOTSSalPHMh8KD6GZy616qxmY6pwSgU+A2JgaWoamNaPamxmyatVDjNrXr70c27HC/aElUCKzlltqIz1ViWtdncl4zzzQ446MAhqIDUtv8UUBSV42pL0kl86O6ojAzYqgtx7WRlcO0XTnzgB95jBmc/Q12FEH2U0y43Q+8wEpvkHP27CX+vPwISz/f3ir+OSJynukC7SK82/4USH3kf//nn5bPsIODg8NGOCmC8p3vfAdHjhzBtddeu/ZYmqb46le/ig9+8IMYDocIguBx7/N9H8961rMAANdccw3uvfde3HLLLesIipKT3bt340tf+tK6utSWLVsAAM997nPXHisWi7jooouwZ8+eDddaLBZRLBZP5vDOXjQlza9GZJs7DM6Hanxe3UVzz4KullC0fRWwEsqwaK2+vrQVr5T4XiUv6lwa+9xfLwLmOtaS3CkwM6ADDdWPRDtN1gYQShZFsyY5RCsSWKDW7IYG+xw2d0fFtK0i96XtyeoQq+3JU30+1ikAg8gmOkepdRSpiZwSA0g3lFruz1fM6+WObSRg1Ri4TjrOFiqie5E5OepFEovmBTBy1ymY5iRK7VxoOzgAdD1bj5qv6Zwhva4A8Nc7eR66EXDNYXteyee9M5Y1e2yCa7j8CLNbi2Vrs35gmuf+xXv5+MVDlps6BcADvI/+JfK3/MSp+9w6ODg4HAcnRVBe9apX4e6771732A033IBLL70UN91004bkZCNkWYbh0FoilZw8+OCD+PKXv4zp6el1r3/+85+PYrGI+++/Hy95yUvW3vPYY49h165dJ3MI5yTyq38F3rc+RtLRjah3GA9oofiilBIbCJj4QCSC0Mm+ZRs8mGGYtuSqNmS+ujY1dy3rMjGwwH/fLImDloSq0gEU5ICfWhYB4ON+aoJezXBoiUnn0wDiu+JbtkDLHfWh2e2rt4gvhMvPqXkZhcCuFcuSqP29eqSMQhsGqFkhLSeVY5KxbavAvbPiWyKToPc16JWya4WZicoY8dCxA0FmJSDABgEqpns8fiUvHoBSbEZ6Hsw9thKTiG6EQQBcsQTsaPHvQzWSjX0NEqnnHQTe8Vd87sFp4OFJ4Mce4vn62y0kK7UR8I0dwDe2MxtzpMrzc6DOcyBr9z7x34FOAflv/PhT+MQ6ODg4PDFOiqDU63VcccUV6x6rVquYnp5ee/z666/Htm3b1jQqt9xyC6677jpcfPHFGA6H+NznPodbb711rYQTxzFe//rX484778Rtt92GNE1x6NAhAGxRLhQKaDQa+JVf+RX863/9r7Fjxw7s2rUL73vf+wAAP/uzP/vUzsC5AjX5CnIGtGFgglC1qR8GQF8GAmr5QTMZxRSAtLeqFkM7Z9TcrK/zaaTFdyWw9tnVIgP2ZF9aeuWu30+MdADWPaPtv4H4uHiiSanIlOSBZ0SoWzDvkPrQ1q3ZjCgDssQ0NGslLhEHt+UY1Fdkos+1hGOEwQPJnQpgl6WE2RcCUx+ScBWlI2bXCkspSqTU00Rt+8fHDhRTI1Y6HVlJkZ6ncmIutypkVpM5FTBrq/M4HpsAfvwh+3ulBNx6NfDoBPAju4F/9VVeE8WzF/kP4H5fuM+e++G9/Adw/4drJqztiralQwGv95nPADtayF/05pP5lDo4ODicME65k+yePXvg+yZ+7Ha7+LVf+zXs27cP5XIZl156KT71qU/h537u5wAA+/fvx1/8xV8AYPlnHF/+8pfXykDve9/7EIYhfvEXfxH9fh8vfOEL8aUvfQmTk5On+hDOTuisGnUg1dKFL8LRYmI+IwBT+r5kOg4UzIF2rssgF/v2Gs2CqCV+mFkA93MG9l0rLB1o9ka7XgDzVdH3AkBDiEEOIJQOk8QD4K8va+hk4drIum+0Pbojf8e+ZUA0E5N5wISUvpZkAnFT/FK83IYK1kY83rkuBa57mnytZoE2d6wN2c+ZRYoy4DWPMPvQGDKLpCSoBssSJT6QwATBfs6MymrR3GDjwAYuFlNrAdYJxVFqdv7topXIvraT2ZArjtDNNgfP08QAeOu3ga/vYLfOePv28TBf5TgCFUDvnuD5ycVTZhAAXmDks0pBsPfNjwEPTCO//qefzKfWwcHB4Zh4Uj4oZyPORR+Uo+F97Y8YpHSy8ErJhJKFlKn62sjKEdo+rPoL7RjRqcY660Vt5FXAqkQjzExcq0RBMwUV8frwctvfcpl/jwdw3Q9gJMUDg3IOy4pou3QltlKPB/6t28jBtWQeDePq0qm0t2ktyZWYQXixwnLUeElGMz1KEHTNAIO1dhZN90lm9jZI2jTT44FrHATUuQBcg54/gOvUzistValgVzNZQWalL12buvTmHvDdTXzNNYdt+6nHa6izf8ahmpaNyIqW0/Y2+P6lshGl5bK1j891+Tn65nauabpPv5fdzTU/mvznXv+UP8MODg7nPk40HrtZPOcSEt/0AmpWFkk2Y9zmfrlk7q+5+H5E0mmifhk69G8Qcr7Msgzx29JhEO4UqE9YLdqQOg1scWA6Ct2eZgymxbOkVbKOGE/KOKkHFCTY6iTmcmxtt0FuGhnVmwDWnjsKTJiqmQjVquRjhEMN17TbRruIdMryljYHEvYjHut8hWWOYUg9yhVHKDwNM5aA1JFX/WW0vKZESks2OqQwEtO78eGKgImUNduiXUZhZtb5//sCYFeLZKs+5DTqrhDJ3CMZU+M6JZPzVe5zRbqr9NhL0nLekozOJsmgDEIjfsWE5wMgoS2mRm4P1piVmq9Sn/KxvwCiDPmbfurp/JQ7ODicJ3AE5RxC/vJ/BO+7f8jgMS1aECUD6oeSeRSnaiupllLUnEwDjtrAFyXz0hNL+Ecn2Iq8VDZ7/XLMINcYWlkn9YDQY/tsHFggn+2yFVbJyyjgfldKXFOUApkQpJkeny8nRp60K0hJhZdzH5opmha9hOpAepF5kmh2JciBJGdW4HDVykhRxmNbrNCdVctRmg3a3CE5OVzj3+qeu1KywK0uuXoOdLiirrUbAROpZS6me/xdvWu0RKUZleaA5/2Baa7/mkPm57JSNm2OHm854XuXS0YKmwPTAC2PjUAYhuYzo11OK6U1woGlspHLPU1mZ2oja/HWGUWpb+TKA7xP/RlQSJG/wenDHBwcnjwcQTnXoK6kAHUCvYhBcKbHwNsWsaMSAxWOqh9Ju8jgtFrk3bRmAtas4xNr9VWn2lQ0IFri0EnJsW+lGh1u9+C0tcqqQFVt5tdEr7LNbsSMCiCC2oxdNIFvAT4TIqTW7+2iZHEk2I4PG1RPlpZ08+xv2Ewg9RqpSrdMmLEbZlwbcpW08MZjQlctaakHSzlefz1U5KrEqCiv1S4d9W3RspI6ygLWHl5IWVLa17DOpZUSj1VN71QQvSqt9eokrK3ZQU4C2Y0sy6b+NHrdSglJiHYWXbJIM7eJAa/bA9P8HTDCuVCxbrFqbL4yhRTef/0MkHnIf96VfhwcHE4ejqCca1BtxooEoap4g+jdsAZbveNuSHdK2eN7NKtx34wNCywk1okS5OavoW2vOrBvus9ta7DPIY6swXpdh+pavLEMigbtHCQbmWeZB9VlRCm9jwfiHpsLmdnSIfFKPZuj4+dcq+pqADNG29a2MsZyicdRTK3EUx/yXPRCoCZBd7ZrpRg9x62S/a5lkwwU/ep8IdW16JTiTLQyqWQ7VNyr5ahKbF1LtRHw3y9l5uaF++Q4izbIUYcoqv6mGtt0Z+260iGMFbHzr494TNWRERwlTgDw8sc2/lxp99K+BnDZvBEz/aztbxgJHYQ8hiJJi/eNjwOtIvIf+4VT+Ul3cHA4x+E/8UsczibkL7vBJu6WJROiotTM4x30IGRWpTqy9uTDNWZZaiMG8fEhgGFus3wGgekiAP6sxgxgOtW3MEYo+tIuq+24KsnWVmbNzoz7tiixKSUsuUSpiXdVOJt5Zhy3VLZpytrR0xf9imYHVP8x3ZdW5xxoiB6jlDDDMu4b89gEM046A2h/XYzNKgzUHsxYTjMXg9COsyhdVFXJUmiJRYcTAnYuNMOhmYvKWBYm9lleWSmxHKVZkZ4Yr9VG1mmVeuu7lIop91+QtcQBX3egbhmzjhixtYr2mo0w2wV+7h7gH9xrmRwtJ2nXWHPA66XW+yX5/N07A/g5vEf//VP+fDs4OJw/cBmUcxG5J90koQlGNVhqliGRVLxmTLatMo0/MaA2ozHk61XMOZRZMaoJ0Vk/KuisCBnQkpGakmmZYrVowwGVbJTEAwWBaS6izKb0qhW/ik1VgBtmNrl3FDAYrs0jys0jZRCSUNSHJCaKYcj9d4omFNauma6QnBxA5gOPTnJf6q/SLti6NRulpMzzgFEE1IbcxmzPZgUlgZHBSmx2/ICRwdwDFqo85v/vIuCF+5nROFjn9dvcIVmZ7ZFkbJIJyVrm0WxNp0ACulq0oYRRavOWNnV4/EvSoVROqE0pJcBdk8BlC3z/RqiN6DTbKdhspocn+dwgZInoOYvs8DlcBe7cwmvwd/YCFy7Dw800eqv9y1P1aXdwcDhH4QjKOYj8hW+Gd/8HGYh10JyWENpCVMZbWHPPOktaRXOIVd8U7bZJxA8lkE6bWP1RBqYRCaVbKBZzNw36i+KPokPulMDEBSsHrRmT5esH56kfSOoDYWJGbDlIEjTgK9SsbhDSeE2FoF7Osoze+QMW1FX/oqUotcGf67Js0xia6Z1qdvTcacYjyIGBT0KhhmtaCpkQ7UhftDpBZt0/BfE68XJzgx0FzOLk4LVYLZKgFCRT1ZTz2ItsKKS2O7cLdnyxL4SywCzIoRqzMY9NcN0zPWaGDtboiHvlEX4GIPs92hxutsvHv7qL23n9D3iePnyddT1dsshrfsEKRcUq+tVpzpWYROWeOeRX/Nqp+dA7ODicc3AE5VyFtv8OQiDLLJhpcNa5PbkE0QN1Bq+Ll/j+tYyCaDuUrJRkfk/qizV7IvNtQk7L1TlAvQjoV6xFdkbu6KsSFLVFWA3RRlIC8TEm7u2T7KjLqgowVV+jrbgPTpGoFBPzaFEdh5aF2gVqT8aN6nTysQfLQgzFw0SFvhMDrmG2Z7N61MtFu1e0PKWOuprBqYrwVIWulZj70axTOEZSehEzNgCfu+II1/v9WWZxtreo80g9M5jTFmUli9pVNNtjyWpTV8zvQIIVB8xwHK7R6O0F+7m2SsxJxkoKE998VXpSEpzpWVbl21v58+pD1k31q98G/t/nck2PTnCbW6U9+d4ZjgoIMuDLF/LxqT5w+REavT0yifwf/swp/fg7ODic/XAE5RxF/kNvgff1jxsR6BQsoE8MrM10ocwg1i6akZkHBrw0YrDSFuXJvs3F6QvBacvwvYmB6RdqIwZfHYan2YTxrh0VZ3qScSnD/k6E/PTlda2ilWzUz2VFfFTG9S8H6rx7V2M0zZwEkCyFiHPbBQbvw1UL3LrmUAhNbWTBf7FiRndKXFKfxC/2LTsz3eN+p/osmRTHOpO03TnKzOtEhakYO3Yd6hilPN8v2cOMzGLZSIna6KtoWcs7mWhQyjFJYZQBEXj+9zZImIYBf75kD7ND4yZuL9xnQxY1A6but17O8tLOFoXFe+X3cWxr08E29TgpeZykJD5wzxyP60iVBEoHPF59GF7/PcjL/+pU/zdwcHA4i+EIyrmMrW1rs61KYNX5OuriOjFgIKqPpJQiGQKdO6MaitTnHbWWLFQcquWjYmrD+NRcTV1f+0JU1CofsFKK6jfUyt4D1+KB+14us4Tk5dx+MeXvmh3pRuY9sn2VwfTRSf6syR3/A9PsgFkuiRFbh+9ZLsusndy0OZphUS3L/TMkVpN9imq1tVmzMqpDCTNqMQoZtxtkpk8pitA40HMFkpAjYqBWG0l5DEA3MG2P+oxs6ohPi7xfPWQyj6MM6jJhehiIFb4QutQjUVkq29DCHCQsW9tAJ+LxaHaoVSRRneqTbGUez89qkZ8TJZ1/90GuXbuQlHj+8F6+ti/EsFuwbFAv4uNv+D6f+5ttwPc2UXD78/cA5YRlHwC5/HRwcDi/4azuz2F4C/+33VlrmWGlZF0datym2Q0t3WiAVB2GBjsVutaEQHiSGVBPkinpkGlI+7FqLcYt1nVCsupUNNDWh2bTrwMC47EsQ6dgXUhaVtH22szj3XxtRJMxNT9TvcxihcREu3pUOHqkym30pavpsgXgW9uBpRKJxj1zfF+7wOm/Vx0GHp7iOVETOM2o6Bp1btCEmKPFPlDRgYgw0lZIqfl4eJKiU800ANaRI0ZreckyC178u/KL/LcdiCB5FJplvgeel8M1y6ANA3tuus9jrsY8n4BlyHT+jhLP1GMGByBRbA7FkC83g7txbGSr3ylQ87Kl83jx7X0zwKULG35+HVFxcDg3caLx2LUZn8PIZ/65mJcJGdHshQboXmR3/40hyx6z0mrcGFqWQ+fIlMc8RXQabxwI2Um5PRXXaittIFmaSIiNCmF7EYNZc2DBW7Uxqoupj3hXf7jKQNoPGeT0WFpFEphIhLzf3czjPVSTEpase7oHXLjMwH+wxjUvl7n+/XVmeLpCgCYGLFntbvK8DSUT0CmQ6HQkoOsE4qoMIYwD634qJlxr7vF/mIpXUyF6k30e65GqeYeMQ1t3N7h1yKN3WTdOmNmIAm3rVuLYGFLQqq3f6vVSSMUALzVyksrXwJEqt5kKadvT5HGr5b165+yvM+Oi5nTjUD3OOGojZlE26gy6dMFIsqLFEpJ350ce/3oHB4fzBo6gnOtYqDBtf6TKINApMOAWpFTSl7baJRkMt6ZVye35xDdr/CgzAqEdN0pAKjKVN/VsDpAv7aw5ZKhcwsCus1603bhVBFZLZjKWetRNaAZlum/6mXJsLcl+zlkxWlZR0vLANH/G5myKHS3g4mUShF4kxE10NIdqwP3T5q2inT0TA+DKw9RULJcYzFVbA1hbdSElCfBz6cgZuwbqtluJLbtUiYHXPgS8dM/6FmiFn69pd7x7P7j+uQN1XkOA51PN6MZ9XACufZOQJtXsaEalL+Qk93hc3YiveWBaiJgIn3XsQZBbeQuw0k67aOvSktCB+safxaPJjELF2KOAn9dWce1YvK/9Ebyv/PHG73NwcDin4TQo5zjya98K7+4PMwjrbJtWiQFnJNqT1SID89qQOumq0YF8Xs6gMdU3TQlg5mK5B/iZDeXTjpJyYm2849N7iyqalY6WTV2SERWc6vwXnc2jA/syjz/V4G1Lh2s6UiVpmOtSTHqgThLy3U0kCs87yPV2C1YS0jbf+SoJlAduc9cK1znVB55/EHj+Ab73njkxf0tM9NoVs7SCHLva1KvtfCSdU0riugVgSYK8EpX68PgXsJwAF66s/enhZuCSDV6n2a4gAyIhSUUhgqk8rtb/Osl5akhyMtflMemcnYoIj5tigleSbEvqW2lIM2zjpnJ+znLQlrFyVe5ZOUqmHq/9rQgzIMmsPDTXpTbFz6krWi3C+85/AlIP+Qvecvzz5eDgcM7AEZTzAdou2xyQaOxomUhWdQT6c6ZnXiWNIcsrOjRQu3RyUFehgUrFoKlvg/yGUuLQcsUoAAaezbvRu/JuZOZwSjS0VTfMSEi0syiHlSEmBiwZHK7xMc24eJCpzkUzoTtYN8O5GSkzHKmyE2UYWEvw/oaREx2g+I0dpjkJMmmH9klKVGcy1bcSlJZrGsP1Rm7dAkmTzrIZx96mTaDetmqtxwCvUckEpMeFaorSsY6p1LNp1jqIMJROn6Uy163ZrxTmr6JTnmsja0XOPMmoyXVsF7mdfsRjg5z7UQgcaMiUbOnWmhZyrFOZx6FGfwD3d6jGdcRjrrxl6ni8H/xHIA6QX/0rT3w+HBwczmo4gnIeIH/2b8C750P8wu9F5gI61QfSzObj9CLxBJESwWSfAeMHswxEw9DaYBMPqCbmMuvnJmDVYL5aZGBSUeW4IVpjCHRyrmW+Qov0Qir+JVjvuwJYECslRqQAakp2rEqZQgzKZnsUuvYKFJ8OA97VH6rxPQ9NUZx59yYSiCAH3nQXH5vqM8O0WmR2IwtsAKBO7o2kY6kmeo12wfxUgtQyKKGUwzRroCZxSh4emyBJOFAn+bvqMPBXO5kxOYZw9LgIMq5X/V30nPVDoCpEcbXI66qdVUriYvk8dCQr1JSMT3VkoxLCbP0EZl+u31/toidKc8jszAPTLNU8PMX9T/eAaw/ymq0cdQ4AG1OQiz5npieTmcEMX5jaZ0+6yLyF/5saKwcHh3MWjqCcL1ByoGJVdfVUUzF1in1kkoF8Z4tBKvMYYFZKDFZLZQbgOACSVHxIEv6tk5QzD/A9My9TO/pcSjQ5xKgsZQpf58JsX+UddrtIsrNatLk/EzI3pxKbjmK5DFxzSKYpB6b1+M4WimJ7EdD0TZOhd+9BTgv2uzeRhDx33gze1Gwth5jR5Tx2D0BXuo+iDJiS1udixnPQEXKkgl21528O+N6haGHmKzxOgK/TFvCWHkNGozM/p6dLu/jEZaBxqHGaniNgvQ9NKTH7/14kep8xkzftjConcp217CdZMO3m8nNmr0Yikv5fzyKxmerzOI9UKaadr5Ic1kbcdnNoQyAVlXh9qQhYn0UCSPJUyCzlQW/wHqBbQD7tiIqDw7kIR1DOE+TX/Aq8w79nwtR2wUzKupFN9k18drAcqdJVVkWgNXFFXSnZAD31MNESQpTahNx2kYFYvVNaJesy0YzBXBcoHxV8taNI25tz8HU6DXh8MN5kn48tVGyNmcd2YZ1doxmYhYplXS5c5jZ/81vAax7mYy0RwHbFxyX2rdsllOxDdawLSTMv5djmHWmXU0XKHr6QG4DkqjFkuel/X0DSd8EKz5OOBNjZohj3jq0mDk49ZiJ2tox8PBnodGEtYRUTG8hYTsy0rh/JdOPEtELabq4akvtmeC52T7Cstlq08t7fe8DKWH+zje/f32BHUX3IbM7R5ONE4OcbE7VSAi/9HQBAHvyfT/78ODg4nHFwBOV8wnyFwUM7cwAL+isla/1VI7YgZ+AfBgACE6KqARdg2yon1vo7OaCW4lDV9j0s2NyaxtBmxmiWQdEPGcQTEcxeccSeG4Qm+tTOmQemjdB0IystLJWY5djUAZ53aP0+AOC3vrn+7wenJHMiOgstSaW+6Gw8E8FGmfmwqBdMMWHQXnN0TU27AfD8zFes7bcuRnidHNjVsgxQR8TM3YilqCgjYTxQB166+8lf++rY1OOlMtfREfv/KKVQOUpNvLtY4THVRkAuHjl67YqJzQaqzQKveeTxrcUArfSPBS1BHes5LQXmMOv91Od1nxjw/BRTcyWuxPD2/DugNkI+ddOTP08ODg5nDBxBOZ+gHRw6qVgzAzrnRjMA2lZ8uMqU/Ciw9tVAgoqaqAWZtQbH0pFzsMaAqkP8Et8MyioxkBXFwCznHfieJgPobM+6bLqSARkFJCETA3btjK+lVWJ5ZvcEg/+RKksK35/la7a3ua1HJqmR2Cgg7m1yvR7MT6Q5sMxH5vH3yojnbDiWNdKSjg8OFNQykQeeGw3Cmn25e46vmeyLeFdKabsn2H2UeSR3IyGDQc5sz0XLtnbtEjp6iN8TQdfi5dS+/GCWHUqaldDszL4Gz2EonUn6edA26dRjBmZKRLFH292fKI5FTtaek+c9rPeJKaQ2pdnPea201Vl8Xrz59yGf/WdPbl0ODg5nDBxBOY+QX/Mr8O74qGlLRr4RCLW4HzdKU6+UxtBajlWTkMNKPakPjED9hPqQqAFZp8C7cJ26m3tmELZaFE1EmSRkZ4sZj35kPhx7m8wo6GyYipCEe2f4WCmhZqZVZOblG9v52D+4l/sbBsyObF9lmQGgdmJZWq1VMFwWK/l+ZKJf1bSkHjtTtLyj7dE6o6iY8ryMu9sqMdHz1iqRQAEkcWFm61kp8d9iBVgQp9bZnk0O9uQ1X9tJYlBKmAW5aJnnYNMGnTFLZe6zVZTsyx4SDj+nJf2OFs//vTM85msOcR/9iPvY27DtBjkA6WAKculWyk6eJB2NTsEcazVjdrQWBbBpyLqWyT5JrZJVfU5LkAC8h/4DsH11nQuvg4PD2QVHUM43aIeEdnoMfeuoUIOx1AM2S1tolrAcMRIx5XQfWPaA0LN5K+WYd/7qOhsk5rPSHJqHxnIR6Mcs/zw2wSC9WOHdfD9ilsKXALhrhd05fRGS9mA+HB0x8moXmYXY1+B2hgHwD++mdmYYmjHYJUtGBr61ncH3WUumL9G1KinrS2trBik3+EAu5GxKtCRKYjQzof8Kieg4pAxUlRlHX7mAAXm2x3N/sCbERwSl0z0G2H0NPratTXKyWCGZKoiIWE3QUp+ZF23Fbg4ZuOOAP/c2aTyX+MwyVY/SfahQ9+ihgFN9WWfXyMIoAFbKMiNJSFuWcwjjiWKltH56sx7DwOMxqo7p4brpmQBxK/ZN46Mi6U5BnIZLJF6dAs/ppq6VoHK4+T4ODmcxHEE5z5BfeCO8vf/OAkXsm8OsdptoR0c5ZsBakWxD4o0JVcWQTaf+qm5FkUqwLyZ83eGadfnMdtcbtWk2QfUQFy5bCUHLKQsVlmpUvzJfZWBvFRnUL1hh0PVzalDmuiQ4ahq2KpNzH5i2TIK2U2sHk3azKEkbhnZMuWfnqxcBpdjcdnMY0VGBqZYmtDxx0TJLZtM9nuteZMZxql3Rtt+WOLp2Ix7jXJcdS1cc5vtaJSNf1RGvj7ZIqymdbnNiQNHwsUoqUWpkQLNdQQYkY+wjFe1QdSSzmlLLWqi3yjAwd9nx9vCVkumY1A+mMSSJPFAj6RgICVmUDq9cOo5UC6RTm0chr/Wulohv62IoJzOCaiM+NtOzrJjAERUHh7MPjqCcj5gUIzJtFx53ba3KoLuVEoPQnqYF2kLGoKntqCp0LYuIsj6yFuZSIhkPCcSRtIlqNibKpHRTs7v/nS2ZqpxZd06nYA62W9sM2Etlc2idHACvvpOEQF+/pUNioqQCMPHnL36XmYeVEteuGpt+yH969z4uIgYYMOsjE+TGYjinmZM17UlCbU2O9Xb3Gvz7EQN+fWRBfLVoos9AtrUimQH1HpnqcxRAX4TMOSRbJd1UO1rrvVOeJR1YF6yc+OcilvNwuLZeW1JOLNj76XoPlFFgHiXdiNuYGAjRy5nl0tLXQM7xoSrLRRcvM5Om2ROdezQxsGGMNRET90Mbk9ASMXNNCNO+BpB0bHrzVJ/HsAE83OxIioPDWQJHUM5D5LV/CS97N+8860NmJrS9tCJThqf6vGuPMrGsF5HkKBDR6JgfSbsATEgw2dninXA3AvxkzLgtB2a61jGUekzJqy7jugPWntopsAzTEm1GDgb0pTJT+JMDljoKKR8/ULcsSD/kNhPJ7sS+lTMUW9o87sWKtdEOQ2u/Vmt+1T6o4VkxNcJQlKBbis2kTSdCayu3drb0Q+pg1G/mkmUSwV5EAjgImR0I5T3PXjRthZKDSszAnHokI40h3xtkJGRKpMZxPHKyUReNusHqSISjJxUr9Lgi0aF0CixDqUZpsczXTA7MSbcfmhFgOQH2Ndd3QelMptzjdR4GLIe1inY91DNGvVBGcs02d/i+VgmoxcAgNnO9vmiHxrqMvNHvAlGG3PvXxz4/Dg4Opx2OoJyvWBAL+dqIpRCdgaMi2HGdip/ziz/3bJ5OSTwyNJAPx0oC0z0gq1rwUTdTDbq9iIFGRbaXLlhJ57EJEg7tZNnTZHlktcjAdqBuGZbrDjA46jqme/x9T5PHpQP31Ma/U5ASRW7DDjWw6xybbrR+GnOYmWdIY2hi2EpswwqD3AYjAjYXZxyVmAFUM1Q5zDVXDdDKMY9JiUI/ZKlFW4S7EQng5g63/9gESWRzwOuZe8D/fBbP7Y88Zi3jG+F4XTQn41OibdiqD9LPjpq5ZZ5Z51dj677RmU6xEA/1lCklJiweBmZ4p8SkOrJszqGaGQiqJb+WhPT4hiEQjGlp1DnXAzz/d4DER150QloHhzMRjqCcr3hsgl/0W9oUvk4O7M53pWQTcjXO1kZm5qWD4oYSiPT145kK9aoIx7pcdGItwEBRHQGveBQYCCnoh8Ad2xiwSgn/nhzwjnp/w4J7LQVevJd3+r2IWRSdvDsx4Hu2tq0MpKZp2kGkGZFEfDXUjyUVspXDvDgAnqeSdPlk4Ht1aCBg2hF9rR6fopwwy6EajAemmSXxcwqGG0MOI1wpkVylHo/Nh5E4wHw/dPuzPaAX8v1akrl8nutfKgPf2kbyecURySzVKD4+FoYhBbdT/Y27aY5GMQEiyXjo8MVywmzK2megQPIx1TcHWx02mQoRVBO+ODBCWITpk3wpH+rfKyXRP4lzrZJMHUKofju6BoU62OqMqCFLjV7+biAHct9lVBwcziQ4gnKeIn/BW+B982O881aHUK39q89I6jFIqvW7n/P1pYTZgMm+6QR6EXC/CDVnuxIA5OPl5RR6diRoLIgYchQwA6AZkH7I9z86QdJQTIF6n/4hh2tshQ0kk7Eizq9qxz7Ts4yIZmx05kzqAXHJyjSpZw63sc8g2Snw8fHpu4D5xajRWym1lmTVn2j3z0ZmZWsnHAyymim5b4bb2bXCstVChRb981WW3KZ7nMmj3UeADVbUNe5asaAN0Nhtf4P7mBjw3Kifi+7rWGgXgb/ewfLYjlWawh3veBSD0P6FGbAg3T5+LsQ0ZZmmH9lnaKbLOUl9Nd7zzYNGy2VaJiukRnw0S+fl0hVW5uelL46/Wo4bBRu7zmpbee4BgehmUilTeYBXcvoUB4czCY6gnM/wIGl20RuUpeTjwVxl1VRsJJqAw1V+wZdFq6L28pnHO+diAtRCa19NfQaBTEoNpYQZjkM1BjUtu8x2RTwrbqZLZb5+b4PB08+By48wgKo3SOKbXuOwtO1ODqw8oMRhtWjzggDrmFGfFvVCGS/5jJvL1UYkak0Jelry0fKOzqrZCL2IhCP1ec4aQ7YAb1vlrB2AAXe2awQmlsyOZp8U4xkqXaeSiK/voFhUfUrqI+DKI9aWfCzsaTKbtqdppZGHJ7mOqw6TWB4Pqkuqxjx/cUBCosJqNefLPWBQ4nXS86DZNCV7cWBZGYCfDy2Vpao7CazUqOUf7STTz/OxylfaWbY2Lyq3kqWcRw83A+0i8vo7jn/cDg4OTzscQTmPkb/wzTRuK0vGYSBZh07BNCOTAwa7lRJFrYnPn5MDaiEaQ97JpqBfSJixlFBKbIieJwFAOzPUpXRVBJCZZ9bqAMshhZSB3MvZknrJ4vqhg74E5iUpSwUZUEu43W7BZgil3tod8jrzuYUK1606CLWrL0gZpSpttdr9oz4ias4WZuvLLxvhu5tNHHvVYctAdSOuZW+TpOP+aQbny4/weAZi514frs/mjGM8u7EgLro6dG9ahKMH6o83cVNN0FIZuGszr6vOSVJ/E4CdTqMA+LsPPn7f39lKF1qA5niFlBkfRSEFvr2V5cOZnviUxDyuxTLX1pMyzyA0ogDYSIEg53kezxCNG+ElPj+rXemOijJrCz9W5ifIOW26KK3V+vnQa7hU5jV5ZBLeyn8HvBz5P/qpjbfl4ODwtMMRlPMdkWQRAH75H6zzMTUv29NkoBmEzJBMCGFZLbLsoYZkjQG/8FVnomLJuY7pMtSfYlnahCMpI9VGfK96V6wWuZ+ZHnDvLPCcRWYYdPqyZivUEyX3qA3R9mUlQwDJR+oDo9zaVXuRlXQAc7nV33MRdqrWRgcllmO7234iF9VFIQ26xgemmTXZ0WLA3tZmQPzOFpZ7dF/KRzKP5Z7ayITAjQ3KFgDJ4gUr3F85IZl6aGr95OReZGMO2j7Xs1Cx7pnY53VfLfIclsSx91vbSZwOioHa4SpLUvsavNapR0K5bj19DmF8aIr7UQO4K47wvC1W+LNdNM1J4gPFmJ1MgJHV1DPCoeSklFhmaXOHhG8Y8DMwJRqXfY3Hd2+p9iQ4ah+K726mFsjLqcvqFOB99C+Rv+Unjn+tHRwcnhZ4eZ4f5xbw3MHq6iqazSZarRYajcbpXs4ZBe/rH7f5Lpo298Dg0JRyiwZPnYrbLdgdu6b2p3vW0dIaE0puZMXeLjJALlQodowyBthAyjOrMl/liiMMgN/bZOLV2Z7tV8WTar8fZlKyio0sdQs0mfNg9vOtEglX5rHssKnDUkeQsWNJW3lneiYY1llF4yRpI6yUgC9czHN3+RHu/46tFLA+7yDXd/809wfw2PV46zJhOvXMyySSMomazm2EA3Weo1Jima2/3slAPdlfywR4t/0picdSmYRL9SyZEA2d+HyoylZgLfv1IuCru/hzc4ei3Kk+dTIv2nfsTI+uTT1TLlghQdHOpaF0i6muRIniRuUzNWxLPTPJS6SrqphSt7S1zeu5WLYOowuXn3h+UT8EPnM5ia2OflACG2bAVB/5P/i5Y7/fwcHhhHGi8dhlUBzWax0SuZPWVmDt7FF9SFkC/4zoUTZ1xib1+oCXWbunkpp+uM7VEwADcavIoNEq2YyVnpSEhpKx+dpOBp1qzLv8WNqPh6J/ycHgrWUcwMy8PJgeRX00YtHTxL75vqzK+yfGHEk1g1NOrENF7+SDJ+D0d27hdq49yGPX0tQ2uaM/VGNmqF1goL/iCPC/L+D51fLFKCCBuWiZ78lhQ/E2EoBWYxKjkRzri/cCz1mg++wP5ux1/Yjn+crDXGenYPqPiYE50d65hddzV4vH8Owl4IX7gf98JUlPpwC8/DErmR0PW4VYPTppZGd8fo4OYAxjy3jlMFEtILqnxEYRjLvVxnI91fDtQB34283MLKlN/rOX+Fp1ux3HapHkq1Ow1nGd+6TOt5cswvv8p4B2Afnr33D843VwcDglcATFgR09d38YCFMgi8ZcT0PLOowHZ/2Cbw6lFFExN9lRQBKjOodOgQGtJK26tRHvwAG+pi4ljPEOjUS2odub6lvmohqb06u2q2pb6WyXwWpVsjMqiFTBrwpjC3K3rdOHl8qWhfFyK2NFmbmXnuhgvDu28efVh3i87QKJw3MWTXDaF63EbI9C1k0desE8PLneU2YQmsg1FlHsdJ9ZiHaRJYy1azEAnneIJYpOAdjdpO4FAC5bgJf+Dn//0YINgMykm2lfw7xLIHbw1wLetTevP7bJPvB//m9u/6EpXkf1OFHfmY2gOhL1utE5SpEY7U2Ij0s9BuKiiZD12kapdfaoGR5gDsgV6bC6dxb47iYKmvWYgtymbgOPJycAS44rJTPZK8vnYyhC750t6qBk7ID3yL8H5rrIa/9y4+N1cHA4JXAExYFIfGsV1c4X7WCJg/WOqqo7mZYpw5WYd/oPTFs2ZrlEMrGvwWxGc2iGXs2B3Q1vaXMf2pXSLjIzo4G5QqFt/pJfesJD8Pa9n7/oHbVmSnoyobcaU6+wXLZpyZMDG4RYHjHTMdPjmnQi8xNlCABmgQ7UGDQvWiZ56okWQs/jvgY1PdOix7hgxfw6Llng79/bZNOgD9UYoKf6/Jn4DJJRZtoUDbirRR7PVYdJJJpHZVk0QGu7NLDeGn+1eGyNy9HQc7O/YeW71eLjNR+K8Kh9Tw54jeYrRoAzz8qGWl7UWUmaVUk9y5po51g1NoHt1YeAyaYRwccmeEzjJcbU52drR8seW6jwekUZSZdm74ahnZNyArzyUSO6uQcv+R3k4f95YufMwcHhpOE0KA5r8L79n0yAGIouYrzOr7NneiFQkTIKwGC4swXcO8PAU45JAsKMwWC+wqA/OWA3TiXeuEwBiGU5fTPyLf/kyR3HD/4j15H4djeuLc1KxPR3FQM3hiRLlyxatudEcfcmTmQupGx7fs4i8NAksGeCglUV3C6VeW4vm19fnohSEpfE53Z2tkhy/monRaPNgbV6a4fRbJeBuJRQwHr/NMWrVx86tnusnt8TIVwngkcnzeX2SJXHNtu1QYwbZSvGj3lfgySuLK7E6n2jNvVqnuflVkasxlZu0/bk8aze0fjspXzPi/bZZ+7PL+N1Uj1Vu0hCslokQXlk0lqgL1gBXvPIsbevLcuHa8h3/daTPZMODucVnAbF4eTRGDITMAitLVf9J9TSXs3OctjdZJCx9Vj1BWHGIDMST4xugUFCp+teuLzh7nPczP1OyL8nify5byNJqUqZZrlknTs6EE/9NepDlhkm+xSJjjuPPhHmq7xLXynxjtwD93eoZkRtYmBangtWrLzVD4FD0jG1XOZ2NndIMi5a5rl86R4T0mrJI/WF6Iivi5ZZdrVIbJScqL/L5MCC6xORk30NZhI2dU4sm3LhMtegHiq9iEG+LsZqWio8Gjo9WTNqw8DOXewD+dhcKPW7SUUcHYyJhsczKsfC1YeB/3YZs1DaGv3KR4FvbOd1uvowcN1+Pt6PWLq6ZJH7v2RxY4H3+HnU872pA+//+X+R/9zrn/i8OTg4nBAcQXEwPDbBANmVdLeX8w5eTcmGgc3n0cmxcSDzUMZbcKUrpCWP9yNu8/J5BteFCi3uFbl3yge35c99G7x7PgS0QtO4qIZByx3DkAHyqsNcr87AeSIMQpY3Hpnk+djUMf+UfQ2SD9VkzEmmY5yULVRYDgN4ruYrJgjVIKr7UcFop8D97JlgwG6VgAVfWpc760sWgAiJRaCr3Vlezmu1EQkbhNSvbOmc3CyeKKU+4+EpM2VLhaz0ItMJdQpc63h2R+cbqe9O7JuuJJXP2FCM2QKfk5S1SywV0twuHjsbB/C8X/9dZni+cgE7o+a6zPrF4jjbLvKxcgK8YP/69280z2gjkldKgJ+7Bx7uAQDnSOvgcArgCIrDGvIf/UV4f/sRBolByNLCMKQ2AyDZAJgV0TtXNdkaH/Kmg+E6CRCFzAi0ZULxoRrvhL+6C3jZbuBg/UmXcp4Q2mYcZEABZgJWSpi1mOkx6DePkTV5eIqEQx1I+9I9FGQkbi3RbeyeYPaiU+Cdel1cUuOx4XTjmY1HJ80PppSQhGxpW5fPvgZbcfshg6fOugkzmxs0EH1EbbRxZiTxSUR6kQVwJWQ6pXkcpQT4sYds4J++XrMvCxXuc2v78WJYJRibulyPGvCp/qdTAB6cBuYmqL2Z6Zl+RkclaKdYKmWdKLOuHP1cqXtslD3eYVbLQRuVYvycpnSLFV6TA3USqcuP8Fx/6ULgjfdsTHTGyclG5+0Y8HAzcKCOfOvT9Nl2cDgP4AiKw3rEPlP0pYRf/sWh2doXx4bmrRYZLAuZdb/4OYPptlXLENRGzMwUUpZEqmLnfrAOPDqJ/MIbn7ZDyV/4Znjf+DgzEDoXaLlkYt8dLWvjHce+BknEopRSkgAo9G2+TJgxI+SBpKVd4L9Iyl06vycYkbBoQG8X2WUyMSC5UOGrlkeCnOdlvso1FFL7mURm8X7pAsleMeHcIg/MEKjB3FyX10yHLnYKRiAP1njt5iv0C9nRMr3R9lWuRUXCvcjEokrS1IlWNTHa/VSV/a2UzN31UM0IWHPAz81S2T4DSjxWSmau5+f0rIlya/Gtj8zmXjuj1lxlPRuFUB3ZedRsnpfbnKn9DZ6vH32YREvP51TfdC8bQTUzJ9rJpTb6B+rw/ubTyH/q50/4M+vg4GBwBMVhHdZajjPwi7tbYBAOMwYgbR32wC9tHfDngcEjEGGsDtHTks9SmUFRg8s1h55WcrIGDcxBZu2wL9hvnR4acMdx9xwnLKut/bPFMG2xwgyKZmaOVIC5Ho9HfUT8nMRGhyCOl17qQ5YWRgEzEhpMtSPn0QmWGbriEzIKGHQ1kA5CllMAO6dqfhZmLDl1CsDFyxTiqt5lHNN96iyWyswAHRQScdGyiW6/uosDAwPpyFIb+yjjNTwoxmtVmdukmYcjVX5GepF54GhWY6rP45zp8bFSYqXAHOaNoromFccOxXRPCbISj0JqnV85LJNSSiyjpFml+hD44X3Mcj0wzTVrZmT76rG7jzLPPjMng9UixwG0mEny/uz/Aab7yH/kH53cdhwcznM4guKwMQYR0JN24ZJ4TyShZUoKKSf7IjUxo1rR65RhnTTs5Qxo7SIwOUD+T370mTsONT1Tr5Qfe2j98+2iEZRexI4cfWxiYJ03++v82Yt4x1+WKbw6TPGqwwzkj00wM7FUZmAcnyWjnh67mzZVNwdt7w/WeF63r/L9OejSWkgZ6Kb66+7M0YusO6gxZNblufOme6kfFVRHgXmIzHWBTgQMJOvSj6jN0M6Vl+3mZOrNfRNHNwckaIC1nBcl+zAKgAXRnMSSUSkl5j9TSkh4SsnGOp9KTPv9UWCeM+MlnVzKOarrGZ+1o4Jbzb7oz6PFs9MyE2jH6uMJ6UZIpUQ17gG0ETYyfpsYSHu6/F0fAUFGL5ogc/oUB4cThCMoDo+HtuKiZN4omiKf7Vr3RadgwwIzz4zPwgzwRDybeQwKD07zS/s3vwXgGSQoqqkox+uD9l2bGZS1SyPxgf9xCV8v3itrA+3UJ2MUkAjo3bc6z870GMBXi9Ip5Fsm4L4ZioMTn63HqyXb32yPRKZdsLKJztKZHBsRUB+SCAxFhJv6Fsi3tXlcP3SUuFODukI7ZGojOsxGKa/nT95n2aRWiVmcB6eZUVHPm+UySZOWdRpDM+lrSXllqk/CMpByUEUM9aqxaUlaRa5hfEKyugYnnk3Hro2MnCjBGx/MqIRBCZs+plm7dIwU6tBIzc40B0YcjoZqe9QpOIfpro71ehVfHy2kfelu/rx/xlraZa0ebnYkxcHhBOAIisPjkD/vrfD+5qP8Qm0OTVsw3ePde33EoBpm/ILWLh91CB2fndKPgOIAeO1DQH2EPHrXM3sw1djWePUhPtYpUNiqpODBaZILDeBBDrQjBp6ZHkmLpvrLsXmaaBDdtcIpuPMVni+/z2zDQoU6jG6BwxQfm2BwnOuKORl49z0MTVAbpcB1B0gWpvpmYlZKgFhcW2e73Ga7QPISpY8/7o06TcYt+i9aJkHS8swoAAoJcNkC/x2u8XgaokHa3ZT5N6CRnpZcCim3o2s8UGdmrSGlrLaQ2FhEwUtlHu9cl+/XzM7hqo1DCHIjYOMZqG/sYNlKdTPaaTYIrQyjIxvGsx5HZziO1Wqt2iQlPktlrmMUUEi7UAFe/YiVzjTLc7yJ1vMVksqJAQmPkCNPCIojKg4Ox4YjKA4boyjtxFva/FIdBiQb1ZhBB7C75NwDhiHyK37ttC55QzSGDH6Xz9tj//VyzskppuZ0W06ANFo/EVkDVeZZx8lMjwH8wSmStlJC7UfqM/AuSuurdrHkHoP7s1Ngpg8slEk+Nnf4c0vHOmNGAYNzQQzPxi3al0Wwq505OuDvW9v52ihjZuRY8PLHzxBScpJ5NIgLpPyTg2SqOWDwn+ozo6PlssizLqVqzPUkUsrb2eLjyyWe+4q499ZH1JL4YDnr0QmKfQehDacc78TR4041mwf+rA+NfCjR0HKSfh6zY6VIcHwyoV06Kv7tRfzs3LOJxEvnRilB0cGCx/NiecF+XseuTJOeHcsefXczvPIHgO2ryCvvPPY2HBzOUziC4rAh8qt/Bd73PkxBpN75LZf4Jb6jxYAJMGNQTJFP//PTudwN4T3y7wHPA16yZ/0Tc116YhQTBs5p6eLoNq1FVifkHqmyfXbHKrMh1REzSV7OID7VJ8FRwWoS8a55KHf1GlAbQ5KLZy3J1OZMBgi2uS01kAM2Nkl7eNLEug9N8T39EBiFwCBg8Jvu2TTik8GidPSUY5KHSRlF4GGNfGJyYGWM/fKZKKZjk4g9ANKdVY5tRs/RXKFTYPZnGJAcVmITvaozbHRU9kMMi/G8g+bhooREBbHjupJjkZAnErsqKVIBbuIDD8yQaE4M+LySTkBM6Z7A0K6Qclr3Sgn4/ixwOczXZqHCz9OuFrz2LcByCfnO3z7+9hwcziM4guJwbHQLDBrTfQZV7X4YhNRHJD6/ZEcBMH26F7sBqvF6vYOiMQS+u5mCzZ0t+p1cfYjHNQgl8MZGHIbSobNrheTgQN28XrqR+XC0iiRwhdSCYZDbPJhKbGWcg3WSO80CROnGpRrFdWMGbkqKco9Bs1MkYXxwmkTiRNphD9XYSn31IWZ1Yh8YlexYhwEDaTQi4WoVSVTqQ2Z8dO1BxgnUXcl81HvWvdUR6/o9TctMBDkJVSjC6ZUSz1VJnHH90bFLMOMGc0pITpVtvyKXrFlZBMhaYgpyXuvHJnjdJ6VzbaNkzSAk4QsyZqZW5VrVh5yyHEorupaeggzw2CHn1f4t8qmbTu0xOTicpXAExeHY0I6M3c31wVWt7xuSPdlxht71jQ/6W6iQlIQZM0Dq7fLwFEnKnqa189aH1hEC8I7+QA3480tpKT/bpcB0qg88u0P9SSmxltlLZM6L2s3Pdk27o8MRd7aOPd/leFAtUOrZUD3VQjw6weNTwWzqs+V5nKS1i7R51zk439nCzqFCCniZTLT2eG1V3Jr4FAfrvJx+CEwNTCNT7nFbfm4uxJpRaotfTurznBdi03W0SjzXQxEmX7xoOpSnAzr353ikJvVInoKMx/ey3SznHajzHAWZtYGXZQ5SMeFn5cIVbruU8Jztr5M4Rin1PTpJu5Qw07VYMTM7QMwNC/D2fxjw8jOzZOrg8AzCERSHYyJ/2Q0s8+gdcWFo3SmtEtAqIX/+Pz7dy9wQ3vK/ZRYAAP5qFwNmY8jgWh8Bv/cFthTfPSc+LykN2VTbkXsMHqWEpa3tq9StPDRFwvHsRQbVQchgMwqoV6jE1LvkoHV8fUiy8oNZai62tLmmjcjJKGBA83OSkPFSRe4Bd27ha2pSltrS4RpXi8xUDAN2J6Uej7ckmpWHpoAX7+V2VkoUCI8TG50IrMEzShl8Ex/IpctmYkASp1is8DV1cbOdGFgX16IIiIehTSJWwat2f1ViZl0O1fh+nXB9qjEKgG9v5TVeLnFdP7L72O7BgRyvlptmu1aOAagj0llAzSG3+Y0LeP5Tn58LgH41D02Zjkl9X1R4Xk6YldrcsfPx7EUhNg3Ay+H9f58EaiPkL3rzqT8vDg5nARxBcTg+liX9n0ouO8r4Bbq1zWB3piJKzXNDsyKRihXLDDw7Wgycf71Tgk5irbSavr/6ED1OAJIL/R2w9lWAgXn7qv3tgYSoW+A+p/rWtXKsacP7GsDfbmGgWi2SPG1tMyNzsEb32BnRmahuQwNtYwjcsY2B8KEpZocaQ96d7zrKLO6F+/j8Uhn5a36Ry/3aH3GdqQfsGDtv7QIzMAsVlqnmqyJizUnItL23Ki3JmWdC3szj8auFf3UErJT52qq0Ex+uGQHaCHubJFt+Dlx5eOPXjOPBaRK5SxZ5nu7azMyN+sbsawDf3M6uso2g85oAI1abOjwPZcl8RKlpZi5ZlJlB4ePLiRlINEPJthRSrmVeDP9SMZqLA+CwlAwjIZraAbepC+/I+5DP/bMnPnYHh3MMjqA4HBcbuV963/wY0Coif+kNz/yCTgAebgZqYw9oYFgVz45OgSl79fCojRgYKjEwG5OsLJbN32MjaOdKY+yuX7MEqlFRZ1nt9BiGfF/ubZxBUW3PjlXgDrnrf3iKd+exT33JTE8yJgkfU4Iy1SeBCkQ8e6Auni6j9TbuE4Njk4GG+K2sFrmOQSjDHkNuu1sgCRuGZghXTPgatcIfhtZyvLXN9QU5M0raoZR6JLcrJR7bRcsseR2NOAC+tU1m9PjcxlVPQFI0Y6HjByqSHeoUrB15KILkJ8rY7GlS2PqC/cff72UbdE89MglMCCnWcQOxD9QzZr/UAHG+ClRWeE5UAzUIbRK0ODd7j34MiFLk1771+Gt2cDiH4AiKw0njTE45q78EAH7J37WZBKESi6hVbPoHIYNpW4L9SonkYXLAO1z103hgmsFmU5fp+EJC0vDQFIP5JYvrLeW/uZ3W889ZpAZhGFBgXJTgffHysTUQzx1rhQ4zEp4dq9yPWscnPgNnKVlPnsoJyzjDkMFPnWpXykZyjp54DMBLfkfmJolmRM/BUpkBMoGdCxW6ermVQMKM5y/zxHMm4TlWV2E/Z2BWMlBM+C8cK/mMt0dr5kWJxPZVXptDNXqRpD6zX0fb06c+M0D9kNkZNV3TOUfqeaPjGm6/iAToFY8em7DtWmGW6FgZr+PhomV2aN03wzWUtUU8ZIlnGAAdD8gCnt/VonWD9WWAYlGygAsVEsTFCrx97wdWi8if+7aTX5ODw1kGR1Aczgl4uJnBae8023GXytSAlGNzJk18BobFsjmT7mnadNs4YFmlMWQ5Jcj53DDggLlhwEDSiyi4HUp77+UyoXeqz3JK5jGwfW0nCclL9jC4FhPxBJHW1EFIsrRRNuWCFbYkTw7M0RUgASmkRrgUR6okJQdrNuxP/UCWyhTQbkBQkPrr/UdqI2CmC+RVPl9ImVHSbIr6wqgdfZit92vRc1wfWneTtuyGGVDLqV8qJSYa1o6cb25niSZKeQwXLfMcVGKSxO9sZUYl8WmYNjHgdWgVbSKyWs974GPdAuDLMWxtmzh3UaYz//llJHYbecj4OXVDR7vyPhEOimfKQ1O8jonPczfdM8Gxis6DjNdMDd80y6dt2l2Za3S4ZufzomV4X/0EcO1B5LV/eXJrc3A4i+AIisNZDw83A1/fQUIx2yUBWajYXb46hLbGWlpVtFiOGeD21+1Ou1tgIFgqM0BM9xn858QQ7SsXMPgkPl871acupxtRuDoKgOcfYHblufPc594m13W4xozLt7faXf5cl6/Z3DETsqOnLPciywhoh804BqHMAara8XWlrKCDEg/VHj9AMBVyUpdtFlIG75meTSPuRTxPKpbuh5w2XEosu6IIMpIDLeco+ck8nh/1LdnbZIbhWUt8330zvGZ6/KOAr7lkEaj0SEa2rbI1ujok4aqPTAitnTDqM6NZKtWK9CKbZ6TTlpWk3rWZROlo/5lW6djZlWOhF7GV+DmLXF9NBirG4sasM350TMKBurSyh1z3SonPt6VlvR8AwcDI7IG6zRs6VIN36I+A1HeDCB3OSTiC4nBWw/vWx4B8uwTOiN0yE6J7qAsZSbyxmTxjJYbZHvDKRxmYHpgGvreJBCPM+Hu7wIB+xRF28GzpMKht7pCkPDjF7R+qAa97gFmXh6aZli+k1C4ofuQxBpwHp4D/+SySAC2LqEusutiOZzr2Nbj98QxGMWFmZtw35cJl/kt9mrrtlY4bdcRdKgOffxYDcTHlnf1chy3kI7XZzxg01TFVB95NDGxGkWZNyrGVPhYq1kbcGAJl6VRqlazMk0P0J+ITMzEALp3na/bXGZxH4r0yiGxScZRy+49NMHjrXKWulLC0fKLtzXNdnlvVneiwypGU2rR9fBjwehZSkqN9jfUlNuDYnT7HQyXmdVBhdOKLY3Cbn8/M4+dSDfy2tLmWQQj0C3a+IslK5SCB0TESraINdVRPlpc85qzzHc5JOILicNbC+5PPAtGkDJMDswfPXuKXfWNoU5Qn+9J1InfOrSJLMdrl86MP85/i4Sl2uiyXJfCvUNegd+W7VoA33cXfl8vMjNRGNsfmWAgypvc1gDaHzPgsVLj+PU1qThSZx4zL7gkez5YOA9dqkeWQpghed7YYvPtizX64xjv5TR3qaTxIy7KUrMKMd/nPWiJJi32SljCz8tMwZJBVl1jNhmg5Rru6AO5r9wTXcsURO++pZCs8IT86nyfI+J6WCGXvm7EMiLYmR0IwHpvgupQEaWlJ25UTX8pSPZZwdKZSd2wAY1+6rVZKwGXzVs7ZviqW/f7xJxafLHasct3dgrniHpLS22TfskiAaYqaQxLf6R5LRB0hKzpvKPN4PoWbrHUAbVqfEXODCB3OJTiC4nBWwvvUnwFVEbcmPgmItvLmEkgTKV2sFm1mUCKCzb6k1Ddymr14if8Uq0UG4Kk+icp4MJvsG9EZh/rFeLBgpKZe29psJdaSzu4Ja9keBqY3SD3rugnFe0MFs3dtBpJJ4OrDfEzbl688wuD1je0yiE/aVtUBuChlLw/cZyXm6xtDZoyGoYlJdWq1ZmqizLqXEh8odrmtna31XTh9KUXpIMBEiEXqc7+Tff4+1yVJWS7bQEf1Y0l8ruWRSfPdqY6kuyhiBkjLWh54Li9cBr65g1kHHVJ4+TzXcd8MiWFTRg6oriTzuI6t7ZP+DGL3BDNiAzlnc13LJK0WSUj8onmjKO6Zs5bphYp1NtVHkmnKqLUpJby+h2o2yNKDEatLNybD3vK/Be7YivxHf/Hkj8nB4QyCIygOZxW8T/x3fjmX5At7FPBuE7BuiNrIzLZUxDlf4eO5Z3f2VQmQx0vlJz4zExr0AMsiqKvu0bNfMk+s8GUysrbdjgKWkiYGLCk0hvy3awWoitNtu8C0/fiU3pEIT9sFmxF06QL1GPvr3F6U2ryY5x8gMfjBrJVABqHducc+59ro3XlO4SVWSsB/fw5wzSEGWz8HeoF5g2imoS+usXduYfvteJfLMCSB6Ebrz8nEgNsfyQyeRLx19teFMOVGUJpClgaiX1GyNwyB5x3iazZ1bFtBJsHdI9F4cIrn7YIVu7azXaC+2Yzu2kXg/hkSHDWbOxb60u3Vi3heghy4f5rnP5H2Zy0hBZJxUiK3UiLJUk3RD2b5nJatEh940T6aBh6s8dwDJMh/tYvb7odW1sk84PMXU+OiBGVvc31ZcLIP7GnCu+1PgUqM/JVvOvaxOTicwXAExeHsQnNg4s9exPp8RSYst4osWXiwu/fU53NxwACmKX31wpjqM3gfayKtnz8ujQ6A21qsWNZBHVjVLVR9P5ScADbL56Ep/v29Tbwbro+A788x2MY+sDwWsJfLoj8osDx08RLXHEjm4lCN5EszLIorjvDfQoV3+vvr3Lbe5QP8e3OH5KE2IpG5eNnu1IOMJGYUkDSFqbU/PzpJYrhYMXdcwAScgOlIVosM1BMD0dmkPPff3TyWjUl5XJctMBPy55fZuYzlNc9aslEBAM/rlYctw1ROmK04WOM5ne3yOqk+RfU7AD8rOqxwpse1TPe4zqUy3/+8g3xtOWFW68FpXjs/5+uC3DJDmonyJMvUHJLI9UMbkJh6LLFt6nIfuWcE7/ljs5YU1RH3uVq0z+h8hWRmtcT1Xz4vs51qXJfObPqxh5g1qsTw/vz/Qf7TP7fx59vB4QyGf7oX4OBwUmgXLaj1xPlUjbxUXKgeIXVpL86lVKKZDe3oOVQjcRkch6cfazKulzOgXbBitvSpL90WOQOUdr0AFqxf9QhdTK85xPR9mDGr0gtZGtCAGge2vVLCNa+UgP/2XAa3KGUAq44YfNUUTluLFTM9Bj8t05QSvsfPqZXY1bIyV5BRo6HTnX05/tyzYYaeCI23r1ob9jgaQyNlqc/3rso44jiw+T47W1yXl1M30ynYEL67NgsBEFKxVOb+Xrj/8ZmOK47w+DOPImWdRq3HlIhW5fuzRiK0zTgQXUynwM/SYxMkD0oI75mz6zbTI1HVbF1txPdPDEx0XUxMRJzKddRS2u4m3+vLOds9QZL87a3H/uxdsmii4Nc8DPzs94Ffu4OC7NhntmhiwDUfqTKjpaWr7at8fL4KLJfg3fFReNm7j70vB4czEC6D4nB24Y13A1/dxYzDKLCuHO0YAfil3he/EJ1JAxgRUe+R6b45iia+dco80YTco+3qZ3pS2gilJCS/a4uquqAqWblghdvIPAaSMKNQsiatvFFogVjJQRCSUFVHtOaPJaNwxRHbtwb/jfCcRaC3ygyTnhvg8ZOPK7GVwTJIWWyD7VViZl9mj9LweJL9yaUEp2REPT66Ec+LtjtvX+XzixXg5Y+RSDw8ZW3PnQKv1ZbOsYcr9iIG6CXJaoRSupqv8nrEkuHoRczUrMhnZapvpbc44HXM5Zj7Ec93t0DSpnqcfsRyjbavlxJ+xtTrZHfTWtiHATvI1L9Es0uqLzpSJZEFmCnb1+C50XJNbURicjT+3gP8pxgF/Lsfrv/sXrhMwre1vfa5cN0+DmcTHEFxOKuQF94Fb+ojzEComdqRKoOEtupqKr801lLsy+taRduYBpidLQaI+vCJyQmwsbOoBs9uxDVoxkat3zWg6XvVfOvREoOjlj7muibyLaQsCx2om7D2b7ZxgvQv/+Tarr27/pCBd3zp/dBKT0tlmwlUTkxUq+fmaHg5sydhtr7jZBxhxozCHds4r2imZ89VYmA55HqWS+vPtQeuZU/ThLXXjZU35rosH+msmvqImYCjPUoUg5DljVbRzvUL9vP47p3lse5okQg9MC2dMBn33Y24jtmeaWwemaQ53tY2yWA/IqFpDC2bsVpc30Z+0TLLddpNFAd2DnXysWZu1E+mVbLrpWZzOoYh85iVO54uRqEZwEIKjEKbwQTw/cfYhjd8Dx1pZ92MH4czF46gOJx1yK99K7wv/QkDwzBkMO5FJkzc3GGwiaXsU0yNMOg/LzcL/MM1mccjwXoQMgBrsCjHx5/bovbsudyV69223v3XxOysWwAKYx0/QQb8zXYG8ThgRsTLqQMZz07MSOvpdQfo1bGvsX7/kwNqczS9r34ZQW6tvXNdK09UR8DkUSRLhyQWUzO4A0RUG6z3XFE0hgz+390szrYjloyCDGgMgE7Rzlsn4jnpCUnycpY3Llpeb9m/Vczb7p0hAd3cYZDfJV9VR6okbCom/eZ2Zl8m+zzuILcp02oTv1qkdkWH8emwxcOzPLY9TR6Line3tpld03KWrk9F1wPJuh2oW/fPlUeAv9pJApaDIwY0o5d7Y6U/MY3b2rbMzmSfv29r83XfnwVe9eixP28A162TolXjs3uCa9QyVeKTiB2dJQOoZck9eId/D/mmf3r8fTk4nCY4guJwViJ/5ZvgffcPGTxmejQ/29qmD8qmjgxfE+fSyb6UJCS9rne4KyVrvS2kDFBqk96L+MWvepLtq9ZtAjAwqD9IMWUQLUnQUhHr9FhWoT4kmerIVNwg47r/3gPAX15imZ/dTe73R49K7asQ1WMmyHv0U7KfDLh2hUH6SImPxSJqHYQSvAe27o0EvwDXe6zyVpSulQQ83Gx+JAB1ErM9EocHp7j/ua6VsFIhbnXprNKpx5MDvvdoZB6FwJ2CkcpiSsLQLlJnMZ7BagxJZjRjtH2Vrr7bV3ktlsU9+M4tJD6XLhj5jAPLeKnWBeD5f2yCnyfNjKkYO/fMcG1Pk4TxOQs8b0pyVIy9ljkTY7utbRK4725i1mk8K6TZpL4cwzghPDqLpYMP9Thyj5/ZC1Z4Hb4/y4zgZJ9/v3Df+nO8XLZpyb0I3uAPgNRDftGNG382HBxOExxBcThrkV/9KyQpW9rAz9zLL+NNHQtg5QQojWU/6jKATYWPic+sST8EOg0G0ygj0VAHUh161xwwQM50jWCoaVbsS4pdnGA9mNHYeNCPUr62P6Yxme4B13/XMhZfupCB51hTlMsJO13+drPNvTkks1yq8fq5MVWZ0qzHf1SZZB3p2Ogu+1hYKq/XnmgG4IojNsRP5wX1IiMDmn0IPWZ46keVbQ7XeP0qMfDDe0kqdk/wevRDYKHM7WgbeTEhydHrvbljrdyaVZsccG0AiUuQs3NmT9PIoK4X4PXrFkzvMyfn7gezvI5BJp1MUkbcX2fG5NIFGy8wHFujCnivPsS1qrncPXPMlKn77vj1VcSBzXvycmZGlKeonirIgSA1w7rmQDrIpL1+qUQCpwaC+xo272e5bFmhSsxBhIUU+Zwr+zicGXAExeHsxsSAgQCgmPHo2SnjX/jq57FUNjMw9RZpFxgAuhGDQk86MAB+gd8/wy/1xlBaazsiaE1NhNspWODWibyHayQhqoPZSBMwLmx95aNmPKd34cXUSi1qXb9jlYG8PjRjNRVglmMLoP2n+F9csiXrpkQfLYwFmEVZLK9/TL1XqjGQSGuxko3UN/O7cmyalnFce5DBtC0ljHmZVaMD9LZKy/EVR+w9OtJgT5PnZabHdVRiXs/5CstCh2q85s2hndtSQkJxuEqi8f05oL/Mc/voBPdZTkgAco/HHGZc4x3bqBea6vM8pCKa1VLLkSoJinZc9UX/0g+Bl+229XfE7VhLOJG4+y6XufbpHo+rK+XDQES/Hfkc71g1Tc9QhNV3z5GchRmzSpfPk4yrADrzgBWZ/TMxgHfw95Fv+SdP8gPj4HDq4OV5fgKqwLMfq6uraDabaLVaaDQaT/wGh7MGHm7mXeLFyxsLWMfRKfALfRjSbOuiZXa4PDohwVOmDfcjs00vx0CvYL4psz3LwlRHDERqr+7l60sq6l6bebItCXA6Pfh40BLBaIyYtEqmnblrM9f6nAUJWCnX6oFBvBpbG3bpKEGsDkbcCEtlkoeFCrd3zaHHE6ujBw9mHl8/MVh/Dcb1Oapz0aCo5mOVmOubkKF4UUaSqBmY/3EJn89BwqeBe0sb+Dt7H+/kOxJdSbtIsrEiGp/ZrvnHfGM7PwPbVq2E0pDrvli2zq4tbRGiBtSVTPe473aBnwMdPdCT890c8Hc13Ltwhb/vbNk5/M5WXns9B9tXedyDkL4nL9rH67q3aRnB3RM87saQpGq5tN7PZrpPge/uJs/b5fP8bKpJ312bmQVS19xCKllAIbJBRlHvKDDzvq1t5NP//PifUQeHJ4ETjccug+JwbqAWMyB98SIG6ELKbIQGEO1oUfO2XSvr7ew1eOg049Qzp9hiCvTAwK328K0SA/RiBQg75oyqX/JKPrTt1oc52eYAwicgJ7kn7clCdPzc1lVMGMAaQwbQcrI+U6RGY0tlc5dVcjJfpY36oRrwQwdYegAYALVzZH/DhLh+vnH55+ipyH7++LEB6mKbQzJSuXUzqbGamtqVE2YJlJSMX4/L5qkJ6Yg7r2ax2sWN26oLqU1J/vKFvFZTfeqTLlixbEOY8XxMDEhymkPzURkFzFikHrMwF64AD/lGKpSIqedL5rHcs6NFncl3tvCYxh1eFT0ZaqkkRjM8CxWSjMuPGMlBjddYze2WymNlSPmcdQvW8fXIJEnO/gavx44WM1Ev3c0usJUSsyg5AAQk034OlMRuv1XhdpuDdZkz15bscDrgCIrDuQENBD9/z+Of00xBHPDueFPHAvahGks7ZTFDCzIGv0cnTPCqpYA44PPqmdIW4y11tFUdwGoRyIvWOZMwdb5mq+/BiIqHjYWpObjGWLqByjEfa5WYXdjXIKHYqLtI9Sv1Idfm58C9EwxaPRGFtosMkjtbEpwHPIZ2kYEZkM6jiJ1GjSF9NXSOzdFrHm8bVmj2Z9xATt1pAWu5HYRi1Z+azuPo7aj497J5nuOHpnjsqWd6lI3wvINcdzmxElJzAPzdB0kIWiVer2sOiWA64bndPcH9bmtzG+0idRwH6uZVMl5O/NstvF6bO2KCJ+dCHXQB88+56jDJxozH7ddHLAFN94FLFmxwYiWmj4rOaZrrSqlL5vfMSDan3iYB1rEJd22yz9eWNtfcLpDgdSVzVhvZ5OraiNtWb5hexG3peIEc8IrvBrzcERWHZxSOoDickfBu+1NmLl6wH2gOTs0XY5RaCn68HOFJa6pOi53u8d8d24Cv7+CXfiFlOeBwjaRGLeDLiQUU9cpoFXlnDIjpl/w3aw4YDHXSsmpcxgP+MOQ6tEsoyLnWXO7kCynJgJqMfW0H8NwFkoNBYLbr6jsSZeyu+e5mKzdNDLiGH9pv5RENot/abmUYzfwcrjLABaK32Negq+s4kTianCi03NMY8jxoy3KY8/gqsXXHZB6Q+Y9vad7W5mfhQN0mKr9o37HHE4xDhy2OQ9uEp6XbatxmfnOHa73yCIlgmHHNj05Y67F2gI1vtyaDDDXzs6nL9X5ru00ojsXX5TUPW5fWbZewxLNatNLfvgZJ6bOl7XypzM/KYoXXfRgC+6pWUtTy2NY28OK93Mah2npNlmbZCiWe36k+P6NKYgHuc/cEP79b29xvcwBctLK2Dm/xA8CzFx1RcXhG4AiKwxkH728+CmwXv4h7Z4BnL8Gbvvmpb3gQ8i5SA0U5sYAy3pWj+KH9vLNcKvMLuip3nnsbDJhBxuc1g9KWbXswV1k/ZxDUO9rayFqNteQxCCwTknpm5a/26doyq4P+tH35+3M8nu9s4XmqxjYZd6bH9/UjBrxSIm3T4DbUs0Sh+9tftzv9Zy/xda0S13HhCoP2lUdOrutHoR1OOqOomBox0VJSgMcPYKyNSNL+7oPH1s2cDJTYFJONJ1Grt8kooDHealH0SIEZz/Uic8gFmKX5i+ewm2epzNcXU2tbLyXAYt3cjTXLdfES8NA0W4Mzj2Wu5x3k51MF2Nr+HI5pcxLfOoB0zIHiOdJR1IvMFVjN/9TAcLxEpyJbFX1XY5rcaSdTt8DjyqW1eq4Lr3mzIykOTzv8p/Lm9773vfA8D7/1W791zNf82Z/9Ga677jpMTEygWq3immuuwa233rr2fBzHuOmmm3DllVeiWq1i69atuP7663HgwPrhWRdccAE8z1v3773vfe9TWb7DGQjvbz7KwNCTTo0o493ro5PrW2ifDEoJhZKbpZV1JO6ex8OuFSvPLJcYdCqJdXGoJkE1DTqUDmBgUvfYtQxJYHNcVGgb5nZs6rehhm8F8WjZJN4iU30GoC0dZiR2rQA/spvD4S5cJjEpJ1Zama/Y75rNyIUcxD4DonpqKHwR+uqcn9Szicn10ePbgxW7J9jt9Ojkxs+nvpV6lGwNpZV2EFg3lopqFUFmWawnQnw0yxzD13dwQvCJYhSYKHZTl5+fklz7dpEjF+6f4WvDDHjNIyQmO1ap+9hfJzkMMwb7xQrJxvj8ossWgJ+4H/j79wFvuRN4xaPMYJRF55RLFi0OmMlaKvNzuH2Va9nfIHk7VCPJUI+Uqb5NaZ4c8HM/MVhf6uoUKMS9d5Yi2oUKj7Uspnt6vr+5nZkgnfx83wxwqAYve/f67i4Hh1OMJ51BueOOO/CRj3wEV1111XFfNzU1hXe+85249NJLUSgUcNttt+GGG27A3NwcXvva16LX6+HOO+/Eu971Llx99dVYXl7GjTfeiJ/8yZ/Et7/97XXb+p3f+R285S1vWfu7Xq8fvTuHsx2qBdE7ukLKwDVfsW6YKLXx9U8Gfg74KeD7QCreHMtlfikfPRUYYODX4YSqB9nUZfA6VGMA8XIShvrIyiHjmZChkIQkADo+CYIafgFAJFqW5oDbWaxYR0W3YNORtW11qg/8yGM8X23x8ghyamwWKsxyqLX8fNUG2W1p8/VTfc68+e4m6i+2rzKATfXNr6QfAUcKRhhKiWVTAOvK0Vk0e5sMnqpdGW//BXhOhnLMUWZ6lHE9yxo5OUrjoh0uo4BB8rnz658/UqUgdq7LrIhmkBTqprtY4WuPFvRuhCgDJoZA3LEW5b58BnRb42Wm+pClJ8X137Xfrz7E69APjeCMEz31Kfm7D9IjRVu0H5uwrMZc10TGD0ybX4+2Jvcja8EupEBBWpVrIyvl1Ie87isl6/rSIYbFlJ/phQqPrToiEdahkEXJOJYSZpYuWwC2tOGl7z11ZVgHhzE8KYLS6XTwf/wf/wc++tGP4j3vec9xX/vyl7983d833ngj/uRP/gRf+9rX8NrXvhbNZhNf/OIX173mgx/8IF7wghdgz5492Llz59rj9XodmzdvfjJLdjhb4OUkJFp6GYT8kp3t8Ys0Su1u8aLlE5tXshH0C7g24pev2t2nHksbWsJQfcizF+1OtTlgoC+k/PLuRsCWod1dA+s1JKpxaRdNGJp53L+2G3cKYo8vpEydZwEhM0IYBgEHB0YpEIHBFrC7/SNV07jsbdrsmU6BpYttq8xwtIpWcloWA7RdKwzqiU8yMN1jUJzos5T02IQEtoQuve2CiXznqzIcz+e29jVIULTUVRvJiAE5/9pq7IF5XP079Xm9VST8gLSCH66RfB2q8fguWbSszzd28Dhnuzyu6R7P2YPTPKZRYJ1MlZhlilaJ1/R4KEoHkrrMbmvzGOerJKIrQsbum2EJ5Ikw7h9zuCYuxEfpaNpFm90TpUaW+yGvhToeaxlsU9dISkE+J4kQYPXiKSZrpCXHzcAVgLfn3/HchxlQOSyvk/VcsEJSHAqJ1KnPAHU4qrE6XLU1Hq7B23SzXNqbn/hcODicAJ5Uiedtb3sbXve61+HVr371Sb0vz3PcfvvtuP/++/Gyl73smK9rtVrwPA8TExPrHn/ve9+L6elpPO95z8P73vc+JMmxRXLD4RCrq6vr/jmc2fDu+6D4Mcjd87jOYals02ALqbVL7mkywN4zZwF9HJqhOBpqntUpiBunfBH3Ig6fW1vU2J385IBf4lp6ARgMtaVXvSzURVXN1jTDUR/a79pqW0y47vEyjM4KyjzTP2jmaLq/XpA6J4P0Mo/Hc+EyhZIPTgP3zDIQ5pKx2L7K8kNdOo0OSgZyoUJdzbe2mcfKhZKh2tLmcXQK3M9KiXfgD0yLX0qTj0WS6dLpy5nHYPm/L2D5AODx6t19KbHSl2ZNlJwA64dAdgokc9tXrUvmwSmey7s202Qs8+iDM9034jIr+qHU59p2tmRisWcW8U+ErdJlU40ZuH/8IWZGgswySu2iXX/1dnkiTPaZbRr/zC6XxXRPMlMLFb5Gj/2RSe5DMyGrRT4/CPncoRqPtTayKcZz3Y1J/FSfrsheLm3WAxErwzqNLl3g6y5Y4f4vWCE518wmwP8PkwOWjVoljmF4+D+c2DlwcHgCnHQG5dOf/jTuvPNO3HHHHSf8nlarhW3btmE4HCIIAnzoQx/Ca17zmg1fOxgMcNNNN+GNb3zjOgOX3/zN38S1116LqakpfP3rX8c73vEOHDx4EO9///s33M4tt9yCd7/73Sd3cA6nDd59H+QX5UJFhqB5dhcI8Itzpsc7u3IMDMSTZLVo3RWPTFAfcrDGL8uK2MzPdfklWo7Ner46AnpVfql7MNv4nS2+VluCxxFkTPOr94USqOaAwVT1D34OxJJZmZJ5KGqM1hxYqQqQbAoYkOsyZHAUyHA5iG9LZC3OUYbHQSfjPjZB4asSBiU4eheuE5KfO0+y8b1NVrKpZDbM70iVa29IEFyokKiUJGOU+CQf6sCqd/yF1Ibibekwg6O+Mt/bxIxFlIlg2DORcIb1bcjFlI8vVLie1CcxUSfUA3WWtoqynskBg6cGc186hLolHkMOvj7zeBxaxjqRydUAszC7VtY/NtWXmTYx27WXSyyrabbsWNOX20VmnvSzfbjKz/Uw5DlXgW1XvGCetUSSqeMRVovWXqwZuFHAcktNjn2jeUvy+VvTjCgHL8trh6EJcAEZ/yDzkFRwG0oWqi7ZsKZkDXWsw/461x8H8B6+FZgYIH/BW45eiYPDCeOkCMrevXtx44034otf/CJKpScQF46hXq/jrrvuQqfTwe233463v/3tuOiiix5X/onjGG94wxuQ5zk+/OEPr3vu7W9/+9rvV111FQqFAt761rfilltuQbFYfNw+3/GOd6x7z+rqKnbs2HHCa3Z4hjEx4B293p2phwbAL+OpvpUrSmLqdaDOL/CDdfF7aPBLdqZns3T6EV93/wzvKicG8rxkLNoF070kPkWHEwMGnKMJCsDS0P0zvMN89iLfG6VyJy3GW+MajTgwO3UV02oqHjBSo8ZbUcpAo9b4rRJ/HwWA561vbb1njuehlFA4e9kCMyGHa+xAWi2yvRiw81ZIeR7unWHgnu5xfYmUFJalYyQX/w0lFA9Ni4W+BCkPDLY6ublbMNFrkPNnp8brE2Yi/Exs0OA4OVBdhRLF8a6ey+etNKKzbsZFxlceFqdX0ahot9UPZvk6HWmgrqvTvSd28D0RbF/lv8zjvqLMHG4HIQP+5JieJ/H5WRwG4ggsHVWTAxK5UMivDq+84ohlxbT0tbUthnANkpBmylJbKMJWHSipyD1muJbLjy9nHe1lU0zWnxe12w9yrkk/nwfqXLsvmRd1vJ0fI5NhxlJkJYbXvgX4/izyF735qZ9zh/MOJ2V1/9nPfhY//dM/jSCwNGaapvA8D77vr2VInghvfvObsXfvXnz+859fe0zJySOPPIIvfelLmJ6ePu42vv/97+OKK67Afffdh+c85zlPuE9ndX/mwrvrD/nlGOYMilr+0LKGL3fqhYRFyX7I5/Y1mB1pyZ3z3ib1EjtWeffdLtIwaxiScOiwtdQHamJrrll+tVtvFyyI1kePv3MGmKkYhmwR1XLCYsWyPzM96+DRTMux2mOHknEY71BJpNShQbVbMHfVIOP+tRwyX+XPiQEt+5X8XCDrXqhw6N7EgNkhbe/9zhaSnucfJPlT86/dE8wqDUIGQdU43D/DIKhlDQ2ws10SIj1f8xU+ftEyj7k64lr07v6JkHu2v8m+CV33NXiOU2nFrY1ITsbP630z/PzsbAFf28nndraMLAQ51/tkdEtKLhWPTfDaL0sL+uXzzIYkvpUgtRwYpbxe7YINEfQkQ6QERgnepLjaHq6RzOjnszngNhpic6+ZjFHA6zIxEA2VZMESn69TA7iLl3j+H5oiidroc30sLFZIRNRwb6VEUquEZrXIz0x9ZEJz1b+slFiGXaggf+WbTv68O5yTeFqs7l/1qlfh7rvvXvfYDTfcgEsvvRQ33XTTCZETAMiyDMOhpUCVnDz44IP48pe//ITkBADuuusu+L6Pubm5kzkEhzMR6t+xvy6/J6zDF4S0ZB4QSoYjE/Kid2rzVQbHWAJI6vPLfYvU3w9JLjvz+IXfjxgAVqW0oa6wiS+D6QoWyNoFbmumt14PMzGwUoh6ZqjAVuf8jA8RBKybZxyaLfJyI0WAfcEj47Y00KsfiLqZavYm9XicCxUjA4qpvpm6PTZBgeyzlkhm2gXRyBRIBB6U/3eHq3z94RrPSepbF9PkALh8L7MGe5p8/WSfZLASM3BNSkB8bAIYlvkenRrcGB67/KFQEzQ9t/fOcA5ONyJhuvYgiaY64168ZPokvTZbOnxMu6xqQ57PQzXroJkc8JwfbeR29JwhgNepF3HatGqM6iPO9NnaZtks8YWQ5qZBOlyVclRiLrzlmJ/XckLhrw6B3NzhdT9UM02Svn5tthN4jgfS4aWDFldKzJ7NVy0L0xjy/9NSGSg0uYb7Zvj/YmfrxEtc6rujIwC0A2q5zGudezzfif/4a6tGeQfq8L71MbrRurKPwwnipAhKvV7HFVdcse6xarWK6enptcevv/56bNu2DbfccgsAakGuu+46XHzxxRgOh/jc5z6HW2+9da2EE8cxXv/61+POO+/EbbfdhjRNcejQIQBsUS4UCvjGN76Bb33rW3jFK16Ber2Ob3zjG/jt3/5t/MIv/AImJ4/hueBwVsD75seAOdEWTPatXKAGacUhUJZ6fVdSyJGIWcsJv6ABmfDbMiv3QzV2/mhAbElmpgd+gVdjZgFUoNn1bS6JlzOglhLLLDTHzLB2TzAgKDHatWLD5lQYu+aFknO9R5OT/5+9Pw2TJc3KA8FjZm5uvi+xR9y4W97cM6syqyqriq1KBQJKC42kHka0RIsWCCSEWl2CUUMjiVGphxbw9GiFAS0tdSOYHnoGaWigQWIrBoqlqKqsrMo9864RcW/sEb67m5uZ2/x4z3uPRdy4S9ZC5a308zzx3Bse7rZ89vl3znfO+74ndY5mFI4Ln3mppcydCTJHoxwAqkPfMj5OCkdRjGxHnmWUrNdVGdYBkPKgKHJasQYMzHp5BGFDxSGsagYqFdxfksHcPLGD++T7A80qXKtbpmtmiACPJaqT+tHczjZ1J17XHTvnAzEYpBFv1HDOoY9nzeZ7p7qYS7mJyGobnyfT6YYKpQUJgqvPLJqia9byiqnYrKI0whJHKUIwVIztOX/1VVzHZxYR+AWJat1kynPDHILAUQ5jV1XmVKLpkWKEY7JTM9snOIJAisE3Axtmo9jPyE8AFmY2rRTh2spjkcSzEuFeCecvRRgzBjcsO97NvNSed+qYyN1JpVAR3GNjhDlKsPFuSZyP/2uR+b6k5/7Wvc+Lqb0l7fOuJLu2tiaua+Sgfr8v3/3d3y0bGxtSLBbl0UcflZ/5mZ+Rb/7mbxYRkevXr8sv/MIviIjI008/feRYH/nIR+QDH/iABEEgP/uzPysf/vCHJQxDOX/+vHzP93zPEYzJ1O5TYwp/qWcS4rMKQMwrtoOlBV8BlMxGNBT42g0UoyH4WerhONfq2NldbhqNsh6amFUttM/WQgMCBokFQFzs2wVbkNlgL/KMJeJr1qMaHu3SK3JyaeNOu9fUgYgcA4vEsSxEN59pvicArhJnUR1jZ1wdw4G7qVFzRXBfX7YBGnXomWrsuZZ1/A0SkbkWMjfEgTgpsA6tkpWd2MOFxuZ8xCmIGFvnjRgl1rfLcIjdvO3cK6oxs6j3f61hZYYLh7iPamjBmisixTHGkIHMw/um9Eua+n7Jgq35Pj6/VcUYfWoZwRiDrMf2jl7vfskUZHOKleoGuC7q4nBsyfYhSPewYOJvY8UfBYrjoUCeI6aDEno4HseW+iYi+B49dIDM1r6eY72OgJKtC8aKfyFge6uCALwTQOwvS4M+yThnY9cE/lieZFZlr4Qy0mEB47/cVf2dHgKZyhgBoyPivPATImt1Sf/Ut7yxOTK1t4y9IQzK/WxTDMqb05zuD4OySkaIiDm15hC7QuIHBrrgE2zIoIRKqDdr/7GVSdh5VgR/31ENi9DDeULVWRkq4yZyTZ5+qE76AaWvniTvzgxDKiYnLoJFnBoon43FLpwfr2eli+N/9Iz2AsrsesMcnFIpwrXWRyI7FWBIrjXgXLmbr4SQrN+qaIdglTGntDp7z1yvKs21iHE8KGJc/+wrNp43VWEF93mjCqdITIynYNrG6NaSyZ3s+UWTZ3e1XEIV324eQVgvj8CTmYgzbdw7x/xQBese2zW5/90SHCl7/5xp45oZqD28f1QAbr2O8y33jkriTxzDmtASxXykOlbUnnEEAQ+ZWZT2X+4iCDksaJYs4/y7yuIpxiILPZQ7mTVhtoLZk+Nz8iPntRP3BCWfxghztxpiPpVUh4fBTyr4/j26h+zTqY4F1BSAO8mIZaFiLe2ledz/0EcgRE2aYmTg9N0S5uxiD783RpIu/u17nx9Tu+/tC4JBmdrUPu/28RUVPZtgYauEVp+nU6TIF3197FhQUogNf8D0tjcx6flId6ME1pYjY4ywvr9bB7C2EMNh+Yk1t2sV4Px7itOgZgrNT0Q8ZVn4mWzB8ZLOGzFqgohYczwROLFYAb45HYyFPtRg6yGyGNerKIkEMX7Plnu6Af7uCAKSxZ5IrmR/Z4lmrW6KpKTsFmITmcu+nxa7CCyYIShFIgdK4d6o4d+T6K/HjWDg+ggBVCmyTrvXqyaMt1+yjrvMnG1WjapdGSMjsFvGMRgksay30sX97BcxXm6KjFs2QGHWZLd89BopuHfkmYkFq0Fs8zPSLBizYfnEmkoWYsNspA6uZawlmVqI70Aj1GAlMqzWSSwkAlU7Ae59u6yBQYzgaq+kqsQ6viUtRbULoKY/cHiruu7tgpNX53CtT2/dCv5+fBfzJ0jw3AmepoBfV/V0yj3NXA5E2gVxtn9SpDmS9PT33H5uTO0tZ9MAZWpfXKuMoV3SUepiLoUMfSpYkIuRSczPDhFAcFEnq8DRnWWrAAfhOkZVJZ6EipeBHrsheH/qWDDSVBG07fLNnZ3MDvHZhT6yL/7kVtCsm4pEjvXW6QTWdfZzobQyGGDJaF0Dh9gVOX2Aazx/aCWn2IVTOCgi6Lte01YBnpU/HtIAjrTSlZ4xLlK9do7lSM/LLNNT+9bkTsRo0SJwyKUImiZP7GCMfk9p/V5qAOLjgFQRONZWAe9b7CGwoOYLn13i4HyFENmRXcXblCNrcniqi2BDBM/qwgGAvgMfz3epB+fZCfDvkztwzmyq6E1Ovsb5Ps756UWwnnZLmEfs7cRnVA0tg8I2B3slHHd+gICRpbNUTKF1pJojpUiZZan1/iG1e6GP4zH4PG6XmzbvCJI920IQca1h2ScRBLPeBFL4DNa3KlZ6Om4XZ1SeX9Vl5weWLauGBmbmd26hj/vmPGJXaGLInMQUcXtN03cJEnF++38W2SlL+k1//tbrmNpbzqYBytS+uMasxXJXQZuaPZgdmp5EO4DzyiemcUKdEMql+xPr4cO/tTR9ngqcXKr1dza/W+xhN0w1014eizcdFgGKxQi7+cbIHMtxyzoNOvHPJThJxUTamKlY11ToQEsWj+1ZpiXywHZJNH0/8BFoEaszzFlmgXZ8hzz2TGm1m7eOvAXNYi0fy4Acd2YPHkDVlbii5a7IRl0kH1l/mXduIlC4OINnS5bLxDFgLa+rFNkun7t/ZkjCnEi9Dyc89E2B9qCAIJcMHvbdIbulXcB7D4qQyH9sF9fbz4s0VQ9mtyzy/AKu9bBoWjkLfSjYRloenNHMRCG2eVgNMV8TLdHNDFE2SR28l52HWcaMNLAhbZ6B2akunv/Yw3HcFKDX2wFSH97HPbkpghVmGdfrpnFDHZW2MqrYPiLUQPO3zok8tX0Ui/LKHL6fs0MLjsYKso5cA5lfq+Oa3QTPhqq6c8iQSGNkpbGJI3KpifusaHaFWboqMEHOb/w7Sf/4t558r1N7y9g0QJnaF9cmDhZdyr1zd0cFVCcVKbsGoL1RRV2bu8RChIW3rbtHsnMSFw5lbgBnTZoryzwMdgi6HfhI6e+XrFHh67NYNMtjnK+bR8bhC21Oao0BB6ouShAu72GrgtfefR2v9fKmtnpxxgTNHjrAjn+3jN36Wt2k8inGRnwFMRWNkY1R7FqJoja69ToHvsjHTwFLcbaNMSWNlwBPEUvzH2pJ5XITn+c1pAJH2Q2Q+SD9uqwgVhEDOrsx5PxntXPzeg33tFvC/aVaZmFjP0+zaKGHc00czLFyBOfJstH1qs2XK03Mv4GP41XGOA/HmZgQiqgdFkwqfqhZLurIJJrlY8YnG7hS4I205NRBViz7Hie1klHxNkEvs4PtwLqAs2P1jap1RyYNm1mzRIOGVBCEvDKHQGmla5mP2aFm7dqm70PF3rW6sdb4rMkEOygqxTnGteyURAbaT2tugGfCkhVp+dw4dAJxNv4xguK90hSj8ha1aYAytS++BYmBKplq90LrjVOI4QDY+Iw4hcrYVEuDBM6tPFZqo+B1UnBvqpBGpiy6pzvTvjJiXljArpKON0vBpGDZG2WlfLbGBX92CMf5/AKug1gGR7D4b9TgtFZ0x73QBw7gRtUAmg/vAwi5p0qlDFCc9Cj4k+Yrm+X1WZOxj1xgPI53kWaGK1Wnv1nBdZGNUx1D5TZIRC42gam4VtdgK1PCIpzF0wwAhdFYKiGYd7FvjfNoFKWjWu+NqmE5RPB8A8147JZNYt/XIIjtEBh4PLdkeJt6CMfa9zF/qmMDhuYn9vmm0mk3qzg2gcld/UykTKThsbJftgdUboKsU7bE1AmQmWgHyOJRlDDyUKKqanlyoFTsMAenfrqDgI2Cb1Sw9ZVmvdLFvEo1o8IWAz0fv/d9C/QmDsaHAGOW9q40EWjslQyLslHDGOQTBJCtAsbrU0t4dsRUrdXxTNlaoqhaP2VlJq0pQHkVAZzzyX8l6bv+6hv9Fk3tPrdpgDK1L66tdrDboyNKHBHRf3NiWYPcxLridgLsRCNPZMJSj2BBJXum52PBZbAx9I3OyXIAuwiXIpQC2KCuHSCwCVQHxU1FnrmBDMTnQyb9XsybiDiuUVcdwX2wZwtT7BdnILp2vOy00j2KgalqFmh2iIwExbeOWyeAE1yrmxz/gwcY998+C4fzzk17f3OIoKWv3aXXa8gykYZ8tq2gzYrI3NAE8HbLcEqJK5LPULP7vsnlRwl+586aOIpucDRAyYrcLfUQGHG8EtfKfv5E5MvX4UBfnrOyAzv3nm3js22l/+6WTRjtbAsltUtNHPuwiMCQmAt2EY5czE0ykIgvYe+fO6nYpoLPXG1gHi6yhJXDOc+1TCCQZRXOlU7BxknEgrPG0NocEI8zO8Acp4rtxBFJlDJ84RBzgN8Xau2EnrLsIsNz+bopmCg+6PlFC/pYRmOpa+wh8KyPUNajOu1a3bBiHPPdEjKEb9/G++YHIuVInE//C5H6aKqf8hayaYAytS+uzWodP/RMmCuIRMa+iGhmhcBHpqznBghgQk+kqmnlQmyy4GNPZEklzUPPmBw9Hzv4qmqeXG3AkbcK5qTIpHBEpJRhqUTe7eXqT7LjvU62K/fGYslathRBrEIqAL+yodzA10zLAONCo9IubeDjOK/P4L6/fB3gSSfFTpz2qxcM1FoPjSmzXsM4vbhwNEDpBgiEzraMsRG5cERk3wyVBl2M8TyWelZmGPiWGRrlcDxed31keIiBr5LwSr8lWJrPuJBiR19WkbdNzZrMaoPJ91zHvc4OIUtfiDQAcUzYL58geIldkTmIit28vyc0W1GumKBaLUTQQ4q3l+Jc/bxl8np5lDh8DZDW6wjq3PSo6urMENfxqWWMI39/fdbGUsRKVrM967xNanUpxXO41jA9mH3qwURg35xpY87fqIrEmcxNObJnca5lwTqfBXsF1Uf4vrLLdOThfoIY9+ZN7PPXqyqKOEbgc7Vhm4Xm0ALXsYes1dNbmDvVEOfo5XGdj+0ZwDc3QelnpyzpO//aG/s+Te2+s2mAMrUvrjkpnNBGDQs4d1Ms5Uw0zVxXumVuAgeQj+HomH0Z+HAU1TEWv1hxK728ZQtqGpy0C6aPwgaF3ElyQY09U++cGR5VQ41da3C3VcEifaqDBX2zCme+U8Y1P3NDwaa6E/30kqnQPnhgDQdPsmx3YN5TKUIPGtb3ayGAjaRiMyMw9nAOlh6KKsyVCkoAVDztq5NxUpGX5xHokUlCR7zcw7gW41uBsdVQ5F038P+OCpFtVrH7zScYy+s1OJyVrogvFowwAzEzxGfHykpi7xw6OhHrc9Qq4Jl+fAXjxx40InCIzRHO2xghO5ebKIYnsfYAqYj88Su432qIMbhwgOCrEyC7QCBpLcQ4/cGqdWbuam+kvRLuk+DToW+drZ1M5oeN9CpjONwwh7IXGwJS0r4yFnnHJj5PjNFiD8HJZhXz25tY+WngKwBaWUoE1HoTBYZrFqsdYH5+5RqCBN4Xn4ObGuZrV4OS1Q7GO9CsRkPH9bVZ+4wI5sepDrI9N6q49p0ysnr1EAEIpfsHPgLD2BUpT0RencV72gWMydUGguzlHl5/ccE0VloFYzFNRMRLpxmVt4BNA5SpfXGNQmzlSFkWge3gy5GB+NjIL0hEfF0sI1302Pm4EFtfkuYI5Y/YxWJXDbHIhhqAEHgaxEjXxw5+L8TYcTKFXRkbK4WWm1hGZHYIZ7BRA8BwpwyHkTg4z/MLxiC63LT6vZvi/Wt1ZCRI1cxa4pqwl6eAzLkBzrnUw3GywQ3LGqOc0qZHcDLsN5Q6wE10VffjyR04j7U6AoNzLdMJcUSdpjronRrG5HTbsg4sH+2WcW9keMwNtK/SGOfaU7XSxb6xrR7ZP4p/+b3TCIIe371Vdr1dUP2QkWJCynCGV5rIGFBXpBThfMQ5kEKb1YKhjVTj5lITfydmYrck8v5rCIKoAHv+0CjTVBZ+eB+BQy20cuDEsbYK+cQo0EGC55VoSe6leeBaHt9FhuZGBU45N8HYrdUVqDzG+Z5dxlwpxDjmzBDPJHGBWZnRsl0xwnFnh/jbK7PWC6cTYHzZQiEVzN/DAjAuL8/hO8IAM0gwj6k+GzsiYR5jzmA4iHGfe1qSuVG1ktqrIvLuG7i+9TrO/+SOZbxeWMA8Kut4jj1cH7uKdwM8o0f2rLHi3ADjm4rIKMFcGObEWf8nU/2UL1GbBihT++IaW7dTnttLjR0xzFmdPK+AUSfF4sV6v5eaoyTlc5SDY6Fcfld3e62M43BS6HywR0/iwnlT2MoRy0ichBtIBX1xegpOpEPLZXa4ri6sEwf35isOQZSayZ5Cv3le5JteuhWAG+huP1aMRUmzF8fLA7RhDvdMlVwKu1FhdjM2SvVeCQ6WYGM3hbNiABWrY9ovwXEQIPnoHsatoEFEL2/OyVdHvKh6I+OiyL5jvZUiZbbEmgnJBUaxnRmajsyNKo7DXfpBEUFiq4Bsm5OK/GevGgOHeiOkFEfq8CJPpKSYDPbToVjYiwsiL87juU8cBAhzA7QCKEYiLy0gQ7NVwX1/xbp12hYxlWIR3AMxHgyUihpcOw4yXrSzLWTRnl2Gs2dX6IszGFs3BRZmRrEjw5y1YyjGhu3o+9ZLqT7C+TdqAMcOfYzNThl4j69ch4aLr4BcOntvYCDxyhjX0VRczpUGvm/bZW2O6CF4axVwzbEr8o4t/M6SYyr4bvkJXmePpMUe1ItLEe6nXTDwbHmM+ZEKgqTYFXnfGn4/f4jnOfARzHEDcnFGS4Gtm9gq58o/E+n7kj753XdcbqZ2f9k0QJnaF9d8dbrLPaNi+onIRBfgRHUVYtfS897EWBrVsWVW5gdYTPu+ibaxY/FhAecJ1VExUNkVEz9j1oQpbE/ZGSfZUg+OdK0Oh01HN1IWBdVo90pw8nPKaKDuQzESEd6Tg12miMjHTiGb8jVX8Duvlf1ovInROY8byyFeenLX4OUudEq4s/cUVxC7yo7xcV0ddUArXTg/ltd2ynAo2awNywi+7mjftoPU/Y0qnkekgOf5gYEjy2Mro0QNbT2Qw/Wxx0s2uGuMEMC+rsd9aktS+bBIEZfgfPTfGqV4oY9nzYaQDBa3KgY4vqHZnSd2zanWQtPoGOSRKernTUhtRnEjl2ZMOO1UF8EJA2IRa2q52sE4Hs++iUBY7/yhadRsl4ENmThw3sTdsDzCrtNOiiwXy0SRZ4HBUs9ArQw+U8G4M1tUDwG8Dj1gVypjywBNHATm7G9UjvD312fwt1fnMB/IqDrTtutqBUYtJ6i9VUBQtNrB+xMX53psF89xZogA6PFdkT88hc9o7C6nNBjtBCjDXTiwtgA7ZSuXETBeV7xNLRTn4j8XyU2mZZ8vEZsGKFP74tpiz3bh5bFSQnUnXR5jYWoXjBVBajHLFpErMs6JDLTM40+s8Vqk73HE6J6Jo7X8FA6yqucYqmOZaPljqQcHNbrDV2StjuuOXbw/VjAkyzVLPdv9EteRigUyjhg2Zb8IvEohxjVea2C3LYLryXacDXOowx/Hrkwcw804AgfGbrq5ibE/iPO5UbUuycTr9FkiGYvM9QFQnDjIOBwU4aBXugoiVk2P+b7IchH3lmQwMAwKGiO8b7VjmA5/gh1/mBPZVWBlmDOsz05ZO/JGVgrSfj6pfPjofS/3UKqpjJGFWOijhHCtjvt6YheBZjeP8WEwsF8yzRx2we77hs3geDLwmzhGFz7ThkP2UtxfNnM1O7T/D3MYs3Mty8Rt1BTj4YlsBSZrn2ViEVjMez8oIiAqaXCZiv2tQnzQAOctj/H5+QH+tlEzyjy/I8RPMYBnJpOMo9QxkGtXA4zrVZynFmKMX55Dxma9boGdp3PcS62Z5p9+HeO2Vrf+Pd08MkulCIDtLWUYPbxvc2a9juCkFprS9MP7FrgNfANijz2wwbRs5PT+oaSVv3P77+7U7gubBihT++LaKGc7IhE4P+JKWIcm0JOOgiwbviefIEhhxoUOOXWOCnUxxc+ykdawbzrCoTJiYtcCHYIljxsXyV4eTnm3ZLvRdmAlg6e38P5OYOl6ZlDcVCRSdkJljOs63cYx/cnJ5xUxDMtxy01UXEsZOMy0JC4wDNR9GXumslsfmWOMXFN2fWZTZE9TFCy59fPY/eaVZtocYjypTzNUZhSfaeQaS4v9cC7N4P2Ucj8sIhi53BRZbRvToxzhuk6SxldzGKis5kwKPnEQpDy+i1IA6enNIcac+BnieVxlq2yoJkjkAYBdjC1blDg4zuUm7v10B3OSpcXEtYwZcSipmBjZuRaChFmlWTOr8sKCCQ0ep4nnJzhPTjNTYw8ZpjCH8StHuOf6CK0i1mvA0HQDzMWzLQRQO/o8n9jFvCwL7otYkV7Rsng7ZWQiDwvWAZtZJQa2Yw+bimKEgHG9hmvnfKTy7mpH5C8+bxkwEby2VgcQ+MiDTG/V12HJ8GoDQORsRnDg4xyOWNfmm+U9F/c3Pxbn0j8X2axI+lXffts5NLU3t00DlKl9cY1KpZSmd/Nwstx1U6Wyn7eFjrX5MKfN+1KRSODwUoETSVzToKD2Cam3pP8GKlrFnWMe5aT0z/wXIiLirP877MJfnoeDo07GmXam34qD4KgrWEi3NHDZrIr8+gPANDx4ALxDJ0BHZmaAeO/lseEvRO6slSFycnAiggWbKe8s24aqriLIRvXyJlbXDuA8eT0iJuq1qpmggW804k6A4IwZl7mBnatVsNT8xIHjzE0AomVweeEAnyvGyBDMDlT/oiTS02OPcghgntjBcz5G774ZmGTHg8BNBrci2r15DGdKQDXHIa+aKlQNDrUkNDcwrBC1U5hxItvm0d1bxdYqqjOzUzYJ+KWeZTmOA3V7qhtDBdXjRgG3Q51ny10LbBolm9+TosiuayJ8pzoigWaFUs1inGvhONfqAK6S1stsULWD+16vGYiZys4UJwxzInMKZB/6CLyf3hL5X99mY0RBv6+/hOdHllbWzrSP6tYM/Fvp+4dFzINUnyEbQ27UbKzYhmCrjLE82zJRx5aW+FIR8Sfi9P6hSGV8a+Ztam96mwYoU/uiWjr3feJ0/xmcWm5iPTl2y6YFIWK7tESpj1xECxFe6+aR0mbGgyDCUc6UZvu+MYOytGWCbUc5620jYo481DT3ZhUO89VZS/3HnpWUrjRNQbUxEin4wJQ8uofF+qF97OqDxJy4iNFP37aD+yTA9o3aMIdgKTe0ICx1jKHBLAj1LiLX2FBrdTjvQoyGeIs9XOuVBhxBZWx04p0ySlDdwDQ4GAAweDzXwrmrITRISBed6POlXoYIBL4IgNwuq7BYBGxCL48y03wfz4bHOeneS9HRv1PKfquCucFyBuXu+bybQwNoH89OEatDwbGvWL89LXyUgyN9dhm/s1zlT6xfELNLi/2T++pkxfWKscgkRPaLLBeWoryJSKuM16iynLgQbGOAW4xxX4mLTMxiH/f6h6esbMOsopvavKyGIg/viTy6j2P90sMIfL7+klH/ae9bE/mdM1q6y+H4K118vzZq+P14FiybLcoGJ6Qoj3KYByIIaFoFBLJBbA0UwxwyWn0f1z0zxLPu60aD4oYEowsC22mQcn/ZNECZ2hfd0vMfEhER5/mf1CZ5CRY2CpU5Yj1MeloSoQ7Jfsn6xnAHNfStM6ybGri2oCqXMcGmmrIONOOiYmzOz/2/sTCfUn2OYmQYEkcQ4KSOyNAzUC4d3vuvIdh4xyYWzL0SAIktXfgX+5Y+p3rm2EN6mgv3vQQnw9ytjnKvZOqv2dd2y1jgS2M7fuJa2WWvhPsb+AaM3aghcIhdBAfnMyn4hT5KHJ9YsbIUsQp7JQQecwMDDGcF6vjcssZj9/IGkHXEBPQ+vmJ6Ke/YutWx+wkyWamjXY9dA2UGseEXDpX9IoJ7J1aoFJmjHOYyvYeUvsyyYFNLNGQ6TRxTPuWcnRsg0/HCAoKFYc4wEkFiomsndQ1+fRZj+tgushOOZg7nB7juX38An3t8F2WNxLHeO8ySiOBZb1VUSE4Drrkhzv+JFTzrpR6eFanF5bF93957/Wig922fsv+XNOijnW6LfOCqlTc9HSdXMuqzd7ErTWCI+HwuHJoGELtZixxVRx7l8HrevZn5RJfyEcaiFAHgy6B3ASVFp/PDIhdnpiJv94lNA5SpvWksfdtfv/l/5/mfVHVMxQ3kdBdK59FXrZF8YsJnTO9T5I1losjDLpPAzsU+3hd6cHr1EABAb4LgZailgL0Szktw5ECDlIkCXHOqKVIZ41xnW/g7a+z1EXqQvLBgkvqhh9JGWXf7bPD28P6tA8JeNiexdk7axTtijpBGJ0WMC0GgbPjW1CxVfWTMqFEO594rYXxZBsman+A+mXKnXkx1jNLMcS0TES3JTcw5D3Mo68wNMG7+BJiDhT6e6X7JnmWYA4bjd87AAS33TJE1yjjCkWYqHBGJ9DzZ4JUUcic1nAutl7fsQ6wBK6nbxBVda+DaiOMhPXvo47pWO/i3MbJST+IqK2yCY7YLVtrZ1Hl3tYFSop+I/M5ZC8gLCi6ONYPT9+G0SdP1NTgpxIbBIT3+RlXxKmNc90FRxdcSlNr6yn4bJ7jH5S7KkcTqZJWQD4sGWk9Fs2X6XaOi7lLPgvjINerynSzM4TtCXNlEz7vSxffGEQNUB4rzIQ39yR0EaoUY39/tCrJ1gZZ5mBGk1H5T9WCWeuK0fwT4lEf/67tc4NS+mDYNUKb2prT0bX9dnBd+whzufhFOgBTVQowFhw6GmAqmqAnso4LljGZkqmOt72vw0/ex+DEYYd8SJ7UMTBBb6YdN8cKciKv0VHaMPdu2PiZk4HzgKn5+6xzO/9I8ru9UxzIJlbE18NuuGJNiX3fEFw5PLgecZMcl+YMYwc/rszaG1JiZGVrWwgnwuUQdGCmoieI6Pr6CHjtP7FiAcRw78cAhHC7BpterAHryGVHMjHo1qWNdi0XwvvkBApYXFhD8NYd47XoVpSoGqa/NIpsSxMYsGSi9fJizbIWvQNts756Txmy7jFLKA4f4qYXIQlyvYY68/xre+9NPibwwj+voBHjvuRayGrXQ+tYwaKXtlgE6XqsbIPRTy8B9nO5gTIiV6eVRJvrjl5W1pvPyvRvIgBwU8V5iX4Y+fniMbqBS9i6CcZZD2HH6XEsViLcUkF3EmC70MdaxK5LTZ8uxTBzrPszg2JtYRnOo2KpCLOLqZoJtDe5kO1rKSZU5luj8iF3twaP3v1Y3Ab4sU645xGsbNZRQ5wYqOxBbF3Jq4GxWrFTWgHaMs/GPRQa+pA//zTtf59S+KDYNUKb2pjWKLjmv/xhe8JSRkdf0+oFqZiQOFup6aCqmTNt7jgExQ8WjtAv2uYljfX0qCib1E3Q9DpXqeag05+bQsASJa1TS5R6c2W+ch4T6mfatO9CzbZGPnsH5zrfwGnfGnQDO8aED0yVhynqUuztolsZA4Hj5YL8EgORNsTLXwMPUPNmumMjaRk3T86459q0KQK9rdXymE+Bvx8GfRU2tb1fwHJ7aRrBGZ+2IsUXOto5ea26Cnf1WBU5wtQMHG8QG5KW0/ctzIp9cNnxLKqZY2xyCknucGXNzYjkm5b9VgXDa1QZor/nEymfUFskGGv/lZ3Ce+T7u45U5zTpkHPpYgwzqkojg/cy4XJzB/HltVtVfyxYQJ4rbqY0QcLG/Uuog+GPpktkEUqG7eWMdXW7iPctdBCPX6obtula3oJABdS1UKvYQwU3fNxFBMoNoHJ9OgABXxATgyGYihuqgiHksYgF7L4/5eKpjGSGOjyMGeA4Skap+b9lO4sIBxr4doCw030dmp5fHfQ5zAKPXdQNAWnVfNzZjz5h7lM7XrKOz9k8kPfM9J8+XqX3RbBqgTO1Nb+lD2N044Q+ZbkU7wMJOQbWe6pdQdGu3bDv1M21l+rhWZ89lMCieg4WdUuDeBItiY4iAYb+ExfuwaMquTKNTw6Uxwmc/vagaKv7RwGKoGI33X0NaeqFvVM/9Ehb2oQ+WTyPE+biI/sqD2HU/tnc06DluFEzLvqeXByhyqAFZMYbDYafdgY/XqLNSGeP9TZVInx3C0YhY6YRBy/FL6Sn1c6NmvWlenYXDXOwBV5G4JjLWz+OYtdCYV5uKz3lMabGuYNwKMcYmdhFMkHaaKvCXnYJHWu55YQH3SwVS2igHTRdmzm5ewwg79tXOUaD0cYAne0eJjgPHgiUKEdxL6iAQIU2Zje9KqlFzuYnxK0X4G0s6BA4/qWWyjZrJ7c8O8DlvYhoil5um7loLMc47ZYxFPw9sRzE2zM2L87j3FxbwHShFcNrMupGaTH2eVgHXxgA/opP3rVVE7OK7lGSA2ZGLYGitgUDpWh3n26jhfi8cWmfyiYNrY2BKHRonxfPYKyEYOtPGvFyv4Rl4Exy3GOO+iaOKXdzD7ADXwdLTkgZg1TG+g7URvgf6fufy/yISeZJ+3V+6/Xdsan+kNg1Qpnb/2PUqFpRhzkCeXAy91Hp6+BOk94kx4GcoaLVXEhnqTo86GTNDSynvl+AgPnrGxOBEUAY41zI6KT+fT0T+xEUEEf38yV2LH9/F31+aN/VPSrdTbZU9dspjo0sSfPvaLP7PzsPE2+yV8Puq7hiPO+PfO22ZnomDnSmzKFV1EJELB0FNkEhBu34CB+imircJkFHKaWqfzAnqhhRj3N/ZFnb7zCTkExPzyitTpDGyQGqvhN+7iq04LIItwzR+q2BKosw4iZhq6pk2jnWg97RWt74w63U8GzJjrtfQH6ke2rOdOAgKGYjdLvNyO0tcyyxErsiwqBLwVQOuslVAOUImwJtY5+RhznA4FAmc0QB1twwmlZPiPt+5iXG4OIP3VceYl1eaKL8NfMz93TL+Ja3+dAdjsNIzJhWBx728tUWYaMaxl7fu4ZFrAnGcX8tdu39mwVzFHVFYsBJpo8uRseu8FGOxXUbAOSKTzsM8ZQmP2DFihx7fxTWlgnFgZtFNkYXqK05pRrV59nXeUUa/zPJlbKJ0HcUCDXwrVVXG4nzsfxIRkfS93/HG5sHUPu82DVCmdv+YI6Z/QvCcNxGpTlRJMtGARKyDLwMQCp+t18wBzw6UrlmE413qYSFe7hnttzFCmWK3pABBx/AqXNC/81mwGagQejvbVXruwAfrZHZo5ZILh1DUpC5EmLPgY6WLBfShA/z+0TMIBg4LCCD+2DU7B3fCVH/dKWOsyD6h8wg9pMGLRTjHiZMRxhvib2t1A8iykzG74faVpjo7wH2FHkpXDHYcgYPd1r9Vx6YsGiQYy1oo8rFVjP2ZNpwL9TMIhGQX4sYWnP1mBWNcVgbSxRmMX31k1O/HdxFkdj04o8sNjHWQwNlXx0eDU5ad/MmtGh0vLsAZM+g9jru5UcXfSFnvBBgbAptnBzivN8EzpmN//zXQd0XgwAlMrYwRTOyULZDluJci60LMppCbVYwpAx5Sp6sKXG2OMP4bNZGnt0zjZ/MfWVuHytiaZxJz4qbWeNGf4L3+3b+iOHiK63zXDRyX1OjGyPousVeSmyLA7Sv1uqvfh9QxwGtZy2CfXMbcID7lqS0869dmUa5qCT4/M8QcJjuNNPhqaJnSiWPSBpwHs0NjmRUjcT7yUyIikn71f3WPNz61z7dNA5Sp3T9WDUV8TTNPHJPUFlFlVoEEPBuUuWKZDjruU10DGIpYeYBgTjqW0238HFe9vNwU+cyiyNdevhUbwuAkdWxxZ/M0EStDOCkWSRE40guHIu++brV9ETj3YozXSL3dLgPb8cAhgoCNGoIWKmyyWV0nUByCUmZFwE6KPIzLVgWOdqmHz5JB9DtnMV6P7eL8GzW8Ti0NdtAlyHazAgfUCTB2K12Mb6jlG5bWXp9BxuKBQwQjlCn/nbMmDjbKwQkv9/C5qw2UIUY5oy03h0c7IHcCPIvXZjF+ZGTxerrqgLaqyJyMcjj3Qh8O7TOLCE4uHOB99VDkd0/jtSd3cK53Xz8atNBYRmD36rKCisuRZZwqY9PxIaOM+IxLSoF9Yhc4lu0KMiALirlJNXsy0IzCQRHZqQcPcH1Pb+F6Jw6ew5dvIECrhjj2Rg3B0OUmzv++a0eBwgRdD5WNw6Chlxc5UP0fMthOAmgTx/OJFdzb+datY1SKcNzLTYz9gwd2/zNDw4ltVi2wcATfnVNdy3pFWtaLPZHc2AT5CDoXQSD6quKBqGQ7cUQ6E+vezHt9aF/kkyvWF4tz7PFd7ahewPm6eZHzLXF+/d+J+BNJ/9hfvnUcpvYFtWmAMrX7wpzRD0GmuxBjYWFphzsgqsSWx8aO6QTIHOyVVAI7st0UhcGKrK27Vgoi4JF6F1kjy+Nuxl2um5pGRy3EYq4dWG/K6ZOlwOZ0eyXs5p65AQqmp8yQV+ew6PL8x7M1swPs+Kkqyp387EB32SnOOa9Mh06ARZn20L6p716cQZDCXf2cZkq46xXRbsITBFn1EbJDnUDkq9YQrKzX4Xwf3rexfeemAVOvNLDDT0VLExpoMSNQiBBEEasQxEeDQoI4D4o417yWSTwtu51u4/VXZ+0eRPB8OwGcWeRCAbgcAa/xsVUFVC5jbKqhnXNHA8S8ap5sVzTDoKUEEcN1ZAMUNrJkh+3ZAYKia3VrlHeuZaWXV+bg1J1UZGGA4+0qVfagqJmPAubRmTYC3MYIZcLnFxHI+gk+x8xIqyDSHInjf1gZM/o8sqU2R5T55BuNnmMpgu/YjSrm18dXcO5aiLnbLog8sndr0P7Ulin2rnRxj9sV+55SSXm3bAGxp2UpBqlPbyEAWuzjWOye/Ien8J5H9nFsso3yCcaAuiqNEYKfaw3MuVCDxsMiArcsJb4UYX48v2CNH9sQinOe/8kjUghT+8LbNECZ2pvenM1/JJJXjYriPTJaRCyzsNrBAkhAXN83UCoDnsi1VDbtdl2Ds8Z0dHaXyQwJ5dc9TWNTV4P9e9wUzrldMDZFXRdTqnA+uoeggxgQgga3y0fpySJ4/UoDr1N2nsf6wFW7ls0KMggPasnoWgNOphaaqu1hQbEHMZwv6dZjxQrQubxTM0wETGbtdBv9WAguJoiUO/lH9oHTGPpwQGTABDGc2KkOxuDleWRJOgHKYMThkCnzzk1raigCp/y4slI+ehZZGzohBnuXm3B8X7GOoOywgHGOXAQDzyoF+H1rIpUD09WY7+sY5JChYBDbLph0/CiHLN3cwHRODgpQ+SWbRXQ8zrUQGFVDHOtqAwEfBQXLY5FhSUsbCrxlWWrgg3qcOtY2gXiO2QE+Mz/AXGOPo/Mtm6uk4WefW6L3UIpwDwT8fmYR40HxtIGPMSRd/IFDkY+fwphms1zPLeH55iYIFsne4Xxd1LlQUiBuP28S+VeaNp7dvMiesp24MSG76FQHnzssYG51AmP4OYKsHDcvqdhcz+r13Kji/8QCff0lzK/fOWPSA34CRmHo3WQYTu0La9MAZWpvfitFpihJAag72V7Jdsu0+Ux6uzk0Ofq9ku1KqdmQzZyclN7PGvU3KGrGtHg/jwVexKjRfgLswfuvYfH83x/F4nq9ZhoeN6rol0IBLuIaCjGCDd77xBH55Yfw8+ABnPRI8Tmxi124CBb4J3asPf3pNjIltMRFUHOtgeutjLHQszTRV1r1nmZJ2PwtUGzIShfvH/kiiQZ8a3Wc66F9OK/ZgY2rCO7xXAv3Ux7j/nt5vO/BAwQR2xVTpSU4s6raJCtdfHZugOCHKrye4HztAlguAx/jsl/ETnxGaeKkwx4ULNNxtWEKtrNDkb/0GVOg5Xg7qUgu1d5EbWRAypHq6yi+gcyyXh7BXWOE50qcQ7uATFHkIlihQ6RI22N7mO8TR2Qs1qAwdiBqVwnRSLA5xOvtgnbJ1kzOBQ06gxjjSFqziGnCxC40R1j2ZLlm4iB481IDf4c5kV97wBhlTQ2gq2PrDr1bxjk8xRWdc1ByaWtQ1xiJjF08B4oEnmnj2eUVS8VAYamHa399Fu9xU2SFVroWZPRVH2enjLGMXZMYqIxNM8XVZ0Uq/fWaZUiOryGfWbQy0zs3cfzKGEE02XpselmOxNn6v4sM/Zsq2FP7wtg0QJnam9qca/9UpKSYk/2SsRu4KMUaDKQO3tMqwJEOVCuCYMgD3UUnDha2Wqjp3hyc8GEBJZTK+OZu6abybBCboyVjgZkTNpLLJ9btNXZVsEu/XidRgwuxyDe/gP/vlUR+6mnDTlCv5KltLLazQwQPWQE2N4Uzv17DTjNyRd65hR3s756GI358F8HQI3uQSV+vi3zZOpwgzZvAKWzUcO0EyrLFQCoKAnXglFIBXqcawmlsV/BcKGpHfAGbCWYdQTuA8yPAc1dLWQ8c3hpQfuAq/s3Sc8+08QzcFIHKxRkLBvdSc/YEol6vIUMzOzSsUqKOfKGP4ILWGOFzD+1bhqYyhqPcK1lzw4W+tjlQ5g3xJ/slXBfnnoj1uyGThuwpUtCJVXnwAPfS9zEmnKdZdd9TStVd7WA86qFp2cz3MefGWrp8asvmdWOEDA1p8WQcUX03y/xiJoXdtCMPAOP90lGmHNsHPLyPe1/T4LdVQHau7yPgZVbodFukPsFzCj0EADcqxiRaVlA1511XWV6bFWRYqFdEFdwPXMU1fHoJWZ22liLbgXUmj1xcD8uDNyoIiPaLmEvbZXy3vvFVA2/z+57NALGcStxbNtt0rSHOqz8u0stL+q6/eut3fGqfs00DlKm9ac25+k9Ntr0UWeO/wyIWIKaY2wVT8aT4WBAjteumWPRJcWX/HgI1R5pxIF7jWgMg0chDUHCuJVJ24ZhdzbSUNaPDviCpg7+TYSBinZWL0e2by9HKWqpZr+EaH9vDTphy7BPNCrwyB1BgYyTyDa+h/EPabnWMhXWxZ/1gsoHR1162/28pmLYxMtE7dlg+KFi5oBBjvEd6n4mDY799G+OQOljwD4oWuFGPZr6vpTMPjmZugPHerOJ+z7YMQExhOkqUhzktLQiCjIf3cZ5UrJGkr4wddvtd6eIcpAp/alnLNcpiKo9NZC7yrH/Szz+KAO5RxTEQg0N2F0tlh5r5IFamPEZgx740ZKikou0JJrjmxgjvKUZWmiFwmeJi1xrWXqAQ43UGYe+9bs/r4X0Ef2fbt2b1mLljIBbE5kwf3bNM0dwA5+jlRX7xEYCAWeoTsdJj38d34vVZ60kUZ7KXy10Ei2fauN62MsoSB8EUVZ2zrRRGOZsnjlhATpxOWcuiL1YR3IRFjA9VlQt6TzzG7ACB3WuzKNUxGGEnZj6TdgHjMjfA33t5Y5V99AyCIOrPnNRy4kYVn2Og+vA+ro/luo2aOH/wP0n6ZVNa8ufbpgHK1N68Rrotbb+Iha+omgYMVAqxLY5UuBz6SNuGOeuLwqwLu/kWVSSLNfJRDo61ObL+Nd0Af2e5ho32chORILSMB3es9VCdJ4G7J2RPRI5SkouxyP/5xZPfx0WY2iFP7gAUSTsJsMsuuhQ+y7KLnBSO9Q9PYfE+08bxKYzlipYUXNN/KUYYs+s1ZGGKMcZ8vm+1/tzEqKOhZ2wkPxH53TO4pmXVeDndOYrZoaLr7NDwQAt909BoFTC2qQDn0BghqCC9uajB58dWTQeE7KxAMx8MPERMkXi/hOC1MUJQ2M/jGI/s4b4opMe+M1QlnR0iYFnq4b4Oi7a7ZkYnVu2QsdJb3dRo5ezpRF0eqhHvlDEO1GgpRbjnsQeBtXffsJ4+J9lJ/Y9EMGeyXZJFcO6Z4dEskoiWFD2cc7NqAeWDB7gnZpAaI2SIxh6OMzPEfOgGpi1DBeehD02URMtL7QBB08dWUZZzBONaVEYPacKNEYJylpsGPrKcGzUAscMcXmP7C9KlIw2q379jIOHDgpUKO5olbBXw+cQV+WNXTx673bL1AbvawDMnK+n8IZ7RakdktSPOR/8tvmZf9e0nH2tqb9imAcrU3pTmvPrjIl5g6qUHRRNeW6tbSnupB6fJWn9zZDtEETiH3ZLVpwlMJdiTAU8hxq7qJpMnOuok2F21pqn1aojPMtjJjS0j0Q3g6Iua+iZNOOtA7qSXkrWNGsCbjRECEwqy3Yt5k6PnYUblRhXXPVRwKHElLBG0CsaI8CYY092ySs43RP6PhzCWDx3oTj3B82EDRn9iMugiIv/Zq0aZTlwEEAzomJE427bSmAhYIo/v2u65qLvn/cRUdj+9iHM+uodrv9owjZdU8BzGGWp0opmLemg9lQ6KBrasjAE6Xa9ZNoPdkbnrXlRqNrsAs5kjM2e5Cc7NkoqIsbWaQzjtToBnutTDcUZaLlrq4W8bNS2PuLjHdgFZCT85uQvyvdhxALOIyAcv2v+J2yJ2g2rNE7HMIJ37o3v4f0lZcdTuqYwN63RQxHV3NUtCdhzHnMKBE8co2rmJaf/0a9YAkT1+OD9J0WfGZamn8ymPeczs0+szhqVi1upU1yjIcwPMl9KxIE0EWa2zLcOuMSjZL+FaPb3WgY/sSz1E0CQijnwYp9R/p/bZ2zRAmdqbzpyP/lsRrwip+UR1CqpjU4pNBYtMboKF6GwLjraouxk62Ekmo8KUMxk0ed1FFyMsgM2RLbQiplLb97EgsezA6xnk8BkRbWc/MBooBeMImGQ5heyMyvjegwxSPW+3w3sjRs0H7jwfOMTv1xqQiO8pHXR2CAfZ1V3pfhFj3C6IfM1lvD/MwZHPDI3y7aZgjdRCU4EVsbIAywwicJijnIrARdbjqDzGMyQ4tRAf1diohcCVRB7G/1CBxasdvKcY2Y6ZzrETWFM94jtOdZDJaYwQHNEiDwqjSz18nnT0cmSaNHkt801ES11iGbMwZ47XSy3zNnHADJodWuaqE1hTv8hFAJpPQHFd7RjVd04zClRDPZ5BYVBxL/bssgrbaabvyR3opjy7jCyerwHEK3PIDM0NLdsVJBi3rQrmTjW05pj8bkzEwLHMegQTk573xWjY5bGynzyjq7NDMssq+QSfHWiW8/3XjJ231ENQ8LFTmKPzik/yNJDzUnyWXY9FEGDeS2+rLNtKBN9vL7O5IdZsfoBj94e3fMaRD0+DlM/RpgHK1N5U5vzaT4sUxRZ2lg3yCYIFNxUpKEXYT1SlM0UAQ3Gx5gjp162KZUcOi9ZvhnTMYU6kNsFx3BQL6MTBAritgQ+ptexS28sb7mToY2Etj/E669/FyOTZJTXth8TB37uB1eQX+3fur7PUA94ka5QhvxsNOuvMssFJKRL5misGjizEIn+wimtmeWezgoWX7IlnbuD/+UTk4QM4US7UTop7ZSaG+BNqwbCfzXEVVj+52aDNKf73RzVssgFO1iGzB48I5kPStN14RbEfiz04uLErEqTYuTtiO/yZIbIzpchAwsSyDHVJbBcMxCliYNJZddicFyJaOhMLTEc5bWDoWKYviEU6NQtaz7ZAm31x3tontAo4fqiZrUf3MY/Jftop430MzskuuTiD8x3HT8Qu2EEDH9iijB6KtANrmkeg9/OLcOaFGOcIcwY8PtvGv+t1xXWVLZsk+jy4YbjWsFYKzJLNDjFG12v4HDNSLK1ebcDZlyJkSPMJruFM28DOqYO/bdQMc3S9ZsEhmwZmMVClMQI/js3Yw9zIzq97MW4UwhzG4HTbnqubv+3HptmUz82mAcrU3lSWft1fEudT/xILwm7Z0qnMXLC5WhDjtVh/9koG5hvmTBp8qNmCMAeHXlTg5+wAu9LYtfbrfR919VJkuJXEtXKHPxFJVR2TyrVBjHMnLo43yBtAr1XA50gzDnQnnooBDndLJkfOGnq2PHKSEXzKDM/EwaIb5gBgfXEemIrtsi3Eo8w4NIfafr6Kzy32kKV4bdbYG8xGBQmEzghAPdPWbJWm+G9U7bms9gBWDDQg3Cnj9di9laUjcjQwcwTP7rB4lEUx0oAuVHZG9m9Pb6Hc4E/wrOohUvF8nmTAVMcKpB1iPpDtVQtxj4cKhn1hwYLe2YGxcSYOxuSBQ4zvrtJNmQVj35jcRERcC/J4fwyw+Nx6eSiZ9vMY04mD61irw/klDsCpjVBkSQGnF2fwt9mBBQ03qngvGw+K4Nq7eYxbeYyfvRJo4CNBoNEc4lkXYguMygqypmT/o3uSPgNmirP5j3CevRKyLQt9kQf3jc7++C6ura3YjhtVkwNY6WKuHBSNybRZtdLJQRHzf1bLdmPP9IOu1XHsR/YQ0EWeZThJNV/pmqQ9OyJny1k1zfJcnMH8uFHFsZvDu4PXs3ZaM279DDtwsY/z7pbuulmYBiqfnU0DlKm9+cxN4UiZlg9iLAzHnd0oh9IEgwqmgXt5ON2xZ7RUKqs6qQUIqWMS7qyRM5UfuwoEzNTOqZ/hCP7f9UWKHn53UgQnlTGud7cMxxgq9qCv18hOwszaiBztfDwzhMMs36UM5CeWIRnlLTtAB9PN47rW6hivtToW8qYCFQ+LeA8d/rkWnFd5DKdAXZSHdRfPbs3dwJqr0Zmfa4mca0l67m+JiC7G9RF+iGc4qQxRjG8u3Dc1TK5XTWa8MsZ1Dnw4SEfwPOshmFbZ5nXeBOdb6qmoWorxjlzDQCz14PQ+uYIxoZx7V3fAzSF25/nEAK/s9Dw7xFgw43LS8xAxuXkqBHcKmG+Rh+Bup4zAsV2w/lHU0Olr+TFIMP9vVJHRIJNlmEMmbqTlxetV4IDevo3g6nfP4J4X+qDivjKL+XegYPL6CM50oPOtHuq1uXC++yVgY962fbQMQmDrQRHBAhtDctyJ+TgoABROXM3ju9a9uJ83wDFxKhMH52XvnrGHayDAliJuInjOfNakgYuA1UZMSyq4jk6AYLIxQkBFkDeVdZ/aMtHAezVvAnzSiwsie0Uo+WabKd5tU6HmXPunIn+wKuk3f9MbvIC3pk0DlKm9+YxsCTq10DNQY+KKiAJWRSx9HyjYjYwK9tSgsy9GWDj3S0gl75XQbr2v2ha5CZzSQdGyAwdFayffDrCYcnc8yhnokqDQVCwL0BjZ70EiEgyts28QW1t4NqjbLxnIlo6dwEU6slYB700FfzvbwgJ8tm11+pZiL4hfiF3ThKmFOF6i5ZDrVQQX3JX+tU8Yu4gKsSJY7A+KUAXlwj43gLP7z1+2cctaNhi5HeuErCKak+J6PrWMz19tWBCxU8b/u3mM9bkWnqcInN2nF5XWOsL95SammzE7xJiUIpF3bAEoeaWJH8rwd/PoZ/P7qzjOWl0DHM96yBAIezcjdTs3sSaAgYJ7330Dz0jElHsHPsYvFWssGLk2V8geCTUzuF7HPIg8HIPss294DYFKO8A9lDSwH2sQHyhzbZAz9lDkosOxCM71tu2bgYEjH8acbYqVV3MTHJ/fM2rq1EYm6FeOMMbNEa6HFHgG0ddruJ4zbVz3Wh3zP3FMd4hZq+NG5tZqB2PwW+e055POEdLy2QlaxObOdgWB7WIPARNVcO9UYs1aKTK6Omn3DMBjzba+OI+A8XamLCznl/+fkv6pb7m3876FbRqgTO1NZ+m7v1OcT/wrA1FGWuv1J7q79CxYiXWh9lKR1AOI79U5/NxUGy1Yt96H9rFgL/SxmFbG5uhcBcv2fZFI0/uOZ7oXBV3wWbIpKcCWtFVKbTeVTkoNho2qyMwIC2O7YD1XRG7tLTPygLERsfQ8d9TE3ZDRMM7ZzrIQw1mxWyxlvkWw+FdDOKfQsywTGUexAlyzCpvMlBwWTDPGUfzP3ADjsNK1Ult1LE7rRwxvcjubONrVua6dZUM4GLIsssqtXiqyW8Q9s0THzMJGVeQxxXm8Nms7526AHTapybmJMbdaBWQh3rdmTunXH8BYLfXQ94hsJGIj+BwSDY5K41tLA7vlo0rFIlqCE1VAnuB42xXMgf/yM0c/+8KCAUQTR6SYYM4t9fCM3raN0sC8iPP6z+E9iYO/L3ctc0jtk6+5gRLRWt0yJ8Ocsdnc1EDn7MdDddfjWTtPS36tgpZB8yYMJ2I6LoM8rmGlax2JX5/BXOwGwDTVQny/iE+hnstSD8+PlH9iuh45hqkRwXz53Qet3LfYRwCy2gHmiG0YWM6cOAioggRj7GugXoxRnqKCby1E40aqHp9kL+v7mS0ZK1A7r5lElgRP6uElAtmDduEm88v5+Z8VWexL+uV/5fbnfIvbNECZ2pvS0mf+qjgv/AQWLLZHd1OjHUeupW2r6phTBQ0u9eCAXlzAwZiRYAOypR521fu66w/V0QeJiJcRD6PkeC3Ee5mCp9Q72Sepi38X+lj0ijEYLsRoLPfAGho2FLsguKfDAhbozao50q2KORE6xZkhrvtsW+S5RZEHD02JlY3kXpnDNe2VsMiyTi6CBd9PTB+GbCNSeCu60G5WMBa7ZbyXi/zcQMG1Y9yLlwL3cFAU+e2zyDCsdEUatylJ9fK4r92ysVbYuuBcC86UFNqDTEBSDzGOoWfMmFgzSAzieorj6OUNT7HSVeE5pRjP99EU7hMruKffOA+ncqqLjBGFvdhWgLRfR/DZ0x1cQ6sg8oerNhdXujjvYQFZOQJweaxWAeWcuYFlvhIFaDIzNK8iYWt1nHdGGVRftoF5xEBTmdDyX7xgGZf9EoKbJ3dESspEYkbDTREMEQu11MMcmWhgQ8n7mgaIQ/8mUy2Lk3CiH7ZA7UbVgplDzQIdFJERme8jWKEg2gOHCAwSV+TlAOf0UmTt3FRkNMbcZiO/5S7meDnCZ7v5kzMRhVg7OmuA+cAhGEiO4LvU1+9/KpaRoTx+X8dtdijiDq2x5ikFBP/eaVDiT7LLTZFX5hUoqziimSHG4Z2bBtxeqyNgygoj/v5pFRp0VJSxZQJ/zaE4L/0/RHITSR/+myef+y1s0wBlam9aS5/8bnGe+xdY5EjXZcYiFaM2xmJBC2nExRgBAwXauCte7WARpLop2757GvzkBM6dlNhWAYuOk9oxBho0DfJYtIMYaXd2pOVuPtBsgzfB+R7ZRzDhpCLrni2y1G1xUyxg1E2hKm6YgzNNBbs8SpxfV5pvIYbTY6Yp0mNzF+6l5sTJrnl815hHh5o1WOrZTn+o15DF9tD5hTkEQaSa3sn2S5DeJ7aA4NHYRZsCdlkelAwg6Qheq2sgGGuJJK81f1cwnitdHGunbBL9wxxAvflEJJcYPkEETCQRkX/9LjjG91+DYu+VJpycCObNwMfxiIPYqGEuLfQRTH5mEWP3qSUEjZ0AzyI3QYlEBM88l6pjzBuDjPiqyDVs0+m2yLtuYIxWugh8d8oI3BZ7Ik/silP9IbuPUmQCYcdt7IpcmsN7idWgPH4/rz2LUjwLtg84LIqUIkmrP3Dr8QY+PhdpsEe71IT4Gh32wEe5jI0geZ2fXsS8WeqZFMBmFQ6fWZl3bCkANY9/F0/A+GQti0EpRqoO7OLzw5xII2d9ga7X8G+s9/vIvvUnGiq4uzo2bM5a/WgDTtrpDkqP45yVeHfKCJa4Gfjlh/Ddz01E/uODeJYLfVPBHWnQXQ+Nzs1MbKsgzpV/JtIcStr47+58/28hmwYoU3tTW/r0d6HcI2INzfyJ9s3QUgZLPaVIJE5Mr+CRPdvN5iaabSjfLEnclGvnDpE0UT+FA6J2QmVsOIrENdwAKaksf2zUjnZGpqBbY2SdjHfLJgKXlXpnnxIq5xIIfK4FJxk7kF7nTsxLRSIH9znwLUPkpSJ5rfUz/czjEZgbuOZs6PTWFQcw30eWhMETe6xQ+G6nLOnCfyuyaswEEbE+LATEVnUcnlvScs1EpJTAERRjkbEjstTHYk0qOGm27MmSOtb9NnLNEfqKg/jkMnbZpzoqAueYJHvkIWtVCI1+Tof+7Z+CxDltvo/xudpAgMiSHktmjmYMEheOVUQxB471hSINnuye//ggri12rezGudgOcJ9XGnj/cg8BqAie83980Ngw1SZ224/u4RrvVIIgrun1WWQkWAp84BDOcldZVWxP8MChBU23CzRZ1skn+P/lpvX0cTTwLUUAnr64YIJtVxs2DwY56zG02LcyT+oggNgvIbB7avveOohnLcxZt2F23Z44IsO89UBKtEw89DGGbWX1hDk854sz1qLgD1bx3I+XKlkGutzU4HNi8/6Ty6aP83WX8Z6tCgKxCwc4j5viGuojHJvrw2ERwVvk4To3auIM/pGkK/+XNzYOX6I2DVCm9uY3R7CA5iYi49iE1oY5W2CJVaHoFYMULhw5DWrOtPH5G1VrRNYYW0+QxBUR3X35ujsMPRHX1eaEqYHwbgrHOQZEZRqcVF4ROIzmEI6GjQAdUWn8CYIDCoixKSBprqFmBCiGRkn5xLHmhYmLbMFyT4XFEmsGt1vGopg6Sn9W0bqeHttJLQtDZ8PgpBsAK8JMEpvzLRx7Pvsl1OevNnCOr1zH61ea1iGWmI65AQKz61XQhB84NNxJ4iIrwb49jRF25b932jItZGZtKoOlMsYu9WoDAUgnMPn9sad9fEoYbwYoWeG7MIefCwc4LunYbooxoTLtx0/ByZJVdrNZYM7KNedbRlv/6qsI2GaG2tk3MNwGgbPnWhgjUp6vV0XWGoaVSB2UOj61pBovei1kvMwM8Xx3S9Y36WzbWhCwwWHoIQNwuYn5X4hVmXaC+eqISOyKM/qHyj4LUQ6aG4is6vfp8V2My6UmxrqqLLMv28B7X1zA2D+3ZI07ZweYk5sVA3wXYmRIUjF6d6uA1gutwk011pt2rYFxKcS4Bn6nWgXLjgUJjtUOMGe2y1auY4+dYoYKfraNZ3WlYTIFfC7LPTzj4wEKmx+SXccAnyrWD+3j39UOwOufWMFnchO8Pszhni/N4BnUR6aq66b4Pq52FdztifPaj6Hcpsy4t6pNA5SpvfmNGgik78ae9YxpFwwESRpwN2+7ksYITsefWJfiQ8U5rHSNAhq7SI/nJwZ6ZTfYUJ1Qz4eTbOsCyFS9iC2cpJi2AziBnAY7WUbCuqadh751l13pWpM2NrQLPVuA2TGZtM7y2ByBk4KxMd83ldidslKDJ0avJmNot2R4Hu7+66GxfihJH7kIJnITlCBEREY5cZ7/Sa25N5ASJ+uKTCpiaOiUeS210Jx+WcG3pJIXI+ysl3qmI3Oqg+M8tgunfeEAmIuNGsoCbLZ3ccZ2yI2R9WlqFUQ+k1N8zOhWMCsZHFnHT+GyIDGc0XoNwnS10JpKLvUwZu0AZYNTHZynXcDzK48xFvWRSCFCENDLm65PW99zqoMsAkuIO2Wdw4Ht/lc7ygpzcP4gwRhda2jfmhGuvxuI/NoFYzGt16y771Wdp7mJSD42Ojw1ZFjSjDybF3w2sYt5XVUgqZMi4GEDTxEEIF4qUh4pld+xOeBNDPMyN4BTH+VEKiHmTUEDvr0SgvmH9uG4P7GC51jIlN3es4Gx/MNTVrIKYh1PxZsMy6b+y7nkCMoxzBS975rIEzsItl5YMBXk0BP5nTMY4/k+5movj4D4bAtB9Uvz1seLTK1ydJR+fq6FsX1yB8E71ag3aiihNoc6XlrOmxnhu1wPEdBVxiJBIs7lfyZyviWp8/c/HyvpfWfTAGVqb35jm3RHNDDQTAcplk5qcvjcdTOzQvBc7BpOoTIWuaAgVYqSsc8PacQDH7su0pQnYtTEMCeSJnBEuYkBPG82RlNa5cTBYjM/wPV3K1gg2SRupWslpu2yAUTLkZU52HE5N8GCx2ZxYy11FCNjFWxVVNvFwYLvBNYNmrLk1NGohdbMbuzhWMs9XOfFWSy2BG1mG/ttVlVPZQjwH0Xv+nnDBb08h2M1R3BG3KGyo/Selmx+7zQczdk2ru/rL8EZb9SMMk6mBnEBX7F+dG5sVnHfXd09P3Ao8icvYoyIuVmrwwltl8HgoZNiSSzS0hGbRlKiPswh4LhRNaZUouWxQohn1S5gvNsFXPN2xYTCOFfHORyvruelgmo3QClmboDP7SsOYkHv93QH90YdGje1TBgzhQc6RmneQNX7JQPANofKctHAnQHYTgUB30Ifr1GJd7tsgUQ+sb5DtHdfP/q93CtijvDz833LdIkgSBLBd6BVsO7Iyz2M2ydXMH/YMmHgi/y/3mYZTTJ8RJDNe3kOx+KcFkEw8NqsAcs5/jND6xXkiGGQaDNDPJPTHdz3Qh9zmhiTUQ7PZ72OZ71bhirtN76KOcqM1HLv6HdEBOPHMm0/j+/76bZ+L1Pr41MdWyNLlmQPi/iuztoa4sT/BBmVpb8tbyWbBihTe/MbW6yPcqYt4qjzLsRWpihq+ed6TZv7qeOlQBrxHgdFpIvZm6eXx6JKsOzIteaA7MyaOhac9BQv4qQijiNSmli3YTqekqhYl+JZIhd/ZwahFhpIjo0EHcF5CKjMa6mG4FI/wU+WXrzUM7YQFW8dB8EPmS+k11JHw0mBaSBtmQwEbwJHWxnDoR7PNmyXDaC7WcXvxCgw+xMkoGJuVRDYBbHIxLesAuXa5weQ2392Gf8/f2jnWu3gOpmJOanRHW3gG72zFpqYmohRps+08XO1YY0giSFwUgsuDxTf48dwDiKmGePp+0518HwpGb/QR3kjdpEReHLXHFMpgsOcHeA5spS1VwT+hkyfQMGy7G305esY14pmyS41cfzQw3Ux61EZ4/qHyk55cgfP/ecfxbGv1TEvzrWsxUNfA29qy3DebynomNmMXmB4H4r5PbeEYzHbwmaJiSsyjBAY5SYmAFeKcMx+HudmWYZA7RfnMV9YLpo4cNyhJ1LJZBXJ1nvwANf3+izGmKJxs8qgYiBDbAn7PbkpNgpbFev0TfMmmOcFfQYXDhDQtgs4xkYNmdO5GPOSAN4HD/BzJ3tp3jKRnUDk3MQyqfx+F2ORub5ldUtjlTnw8PcHDjEm2kna6f1DSSt/587n/RKyaYAytfvD2LwvW7KIXexcZnWnxN0T09R+YvoSfV/QqUwQCGxVjBq6WbF0OrsTEwy7p+UQgl9FTG9iryTS8uEYmXbfKZsOCRsNiqAkRdEsllJIf2TgxTIMRbRyE+sCnNcgJUiwiFIPJswZY6g0RomKjfsIkKUQ3SgHRx16NibsS8RU/UP7hqmgUc9l7CHDMvARnFAQj+ybahY8XDTHTyXR5S7GppcX+XMv49jECGSNVOS7NXXbqGG884nI9TJ20V995fbvP9c6GpDmNNgjmPN0R6QVWJDopnBWzIQ4kimzuQiGLhwgyPrdM2is1/cxLx7Zs3LQ5abhnahBkmjwOFBnVA9REoxc3D+fXSG2jA7HgyrIZKcR80QV2w/9AZ7Ly/O4nlbBtIOKWg5Z6Fs5b5Szbr3XawjevdTA5/sllAVnVN+HwcYsMz+KXVruHm2OyQwVBQRnhzjvKCeS+BbchBqwUumXvXiqY+BbRjkEo3JZSwAApN5JREFUA8yeMTCoZTI7b99G4Mj5fbWB33MJxnShjzn74jy+a3/y4tG5wWzMkzvIYJIZxJ5biz0rc97N1uq47ryWAosxykneBGDgj56xcg6DZZZy+3nMU3Zv36hhTZgd4rjNkTiD/1Hk4oykX/FX7u167mObBihTe9NbeuZ7wOQh7XVugC935BqYdewZ0yQVY1eIWAlopYsvuQj+dr1qjjUrEDZxrA4/MzTcR+SZfkcnwGurHcuQ7JStA6vIUfBnc6gS93osqtAWNOvjpdZaPnFU+0Mglc6W9PN909DgDnqjpuBdV5sXjq0U0ctbF+ZqaFkXYi/cEsaqMj4KCswGJ9TvmDhwVDsZ/A0p18wUsCQlgn9TB46nXcCYzQ2QIn8gky05bnslpNTfu3F0DsiH8Sjlw3bOfh4B6gcvwemeRLs9bpUxxoWdjikIx2aQroicatv7nBSAyq+9jBQ/yySUj89NRN5zHT8HRVBNvRTvqYwxHxY1GGgODbcwcYzKXdQsIHU/yDAhxoi4JgaolRDPghkWBk+TTGBViEXesYnjvT6LIHy5pz1xBGPHZ544CEqoAHu5iUxDLYSjZ6ayFhpuiMF7q4D766hQC/Ee16sYB18Duu0yjj/fx/dtrY4AJ59gbrOZ39u1lHW9poDsPp5xVhMlG5jQ8snR4PShA5MAeHXOxNQc0Saed7BsNo/6NMcbMd7JmE1lAPnInq0J+QTjQoYY15TlnrUlyE0QaG1W8dye2MW86wSYK7Ercr4lzto/ESnEYNV9ido0QJna/WFDX6mAocmY01FQAIk6CNwhD3NIw+/qbp9CUCzb1LW+3svfZDKgbCP2uwgWhV7+aHfgxLUuuvkEgUzkwSH31ImxtTtFvQqxNStkjZuaFo5gEW8VjJYoer9MybNb7Ng7er29vAY3E9OMYUbpsICxID2Zu3CCQiNdFJkx8iYmfU+gJhvcUfW1VRDZEyt9ERcjYqymVEzcLPSMPbLavr30vcjR2j3ZNGNPpJZ5T0+xQI/s2Wun38BcIisp9A1zlDomlU9Q9NUGHDedy9UG1FGf2oaGytBHap4A160Kdr/F2LAeN0uT6owIpqZzag4BohWBrk7sAhTM0gAxL2x4mOr7ZgdoAEi13NSxDsu9vDUgFMEuvRYimBXBd6UbYByyc5qlnErZmFezQxtvZhJF4LjX6jgHWXQHRdzTzBAOmqKIxdg2Aakj0hhAcLAxMqG712YRVDyyhyxGPcS8eWLHAvu7GRlyIgiMzrbw/yx49fzhnY9F3BLtJE2U4/bKnOHRLhwCNO0nJiC3X0KwtNDXslmCeUaRyd2y4sAUnzXUTNbcAPOvGkKDhRRx9mLarIDxk/60iIikX/+X7n6t95k5aZqmX+yL+KOwTqcj9Xpd2u221Gq1u39gam86c174CetoymZ4pHmOPaPvMnghBiTLsAlz2MGncpPSJ/WR7RInjsmq72t5Jx+bA+vnseA7ggWEaq2hp3TW1Dqqzg6ha8GOyHVF6hOYSgBvthkhhd3CnEmljz18ntoYVMYlCJiMAgITCRaOXUvDRwqgLGZKBsTUMKOTOtbxmf1W5rQMRtXd/RKwCFShZTkoIzh10+E3hwjSLs3A+eQT7MzvVrtnxoXA4ImOPRVbqRzMIO64uNYoZ+wPsmaO22ZVy36i19WxksduGWJsnQAO7d3XkVm5UQU1dbmL/jW+3nO7AMeyUzZGGTvtMuu3XjdANXVEEsd21PkE566HCFQX+0aVzfamyU0s+8bnzzYLpcieZzFSwcFEZK8MqjqDJtLnm6rJ8bZtXL8IPsPmmny2zCQRrL1TxmfbmjXhnGbmhsrDbMg49lT9N7au5KSR75UQ2Fxu4Puy1EPw90ZttwxV4//85XvvrUMjnb8dmBK0N0Gwebes3FYFn+nl8cycFPfN0iVbSoQ5K5PxWXY1IG0XNKDPQTMmr5nIYoTsXRDjO0eWETOghRiBTDFCMLbcu29E3u7VH08zKFO7f2ziWBo0FVW4dA0DwhIPRdlI1U0cLAwbNRWsMtAZAIeeMVqCRCQUbbamDpeN1kTgXFlCagdWHihHIktd7GrZL4dlIEdEBuqQ6ByISaC+yUSzDt4Ei3ZXAbz1kVEd3RT3QfrxWDEorGOP9T76PlLp9REc9WLPsjXcmZMdtNoxjEnoisT6OtPQ+cTYTkFsiyoDkkizQWPBfdZCOH8nxZh99VUEJ9ca2n8nAtD0dq3urzWwm17sWedo9u4pR8B8LPeMvu1Nbt3lZpV5X501EKaTGgYiyGSyqJ3RHCErsq8UZQKIQ2U9nT+09P/AN4ZPu2B0U1LdRXAN7JhdjCyoTFyRNLXfY9eA4OwbQ3BnZayBZWQ7/8g1LBNLP/MDe708NiYNA4BH9vH7y3OmuzKnn+kGRtndrhhIOp+YivBeScdM51EtRPBDYT463BnFmVBTpxNY5qAQKxtPM24UN2TXaH9i430nYLQI5vW1um4CXNNZuVY/Gdc0zEFzhhmmr1rDNb0+iw3IXtmYT45+/z+1jM/eLkh5dhkBO7WL2FJgt2yByVIPc4pMqXxi2ieJlpBbBcxtNpFk4Mxs6ekO7jP08L5eHuPNhoxnWzezfBRPzLYruJ9tGqBM7f6xcoQvdy20pnd00tSuiDQQoNLlcs9UP2uh0frqofbYKUH/ZE53qb28KVMSOEq5eKajmbKvZnbnsWI0ZgfYAYmYI6UeCCX0ixEWVIqzNcn+yYMO2wmspwlVTdfrmkZOrKzC9HuYs50Vd6aXm1j0gxgOszLGoj7WjBHlzjsB7rWkDpT4GmJWOI69vMg4QAqbeh2tgu30qIQpoowRweufWdQu0pqB4fWyE2+7YBTNxMUOcrNiu/1UEPDkEzz/XaVjv2PrzqWihxQzUB7juRwUNDBwLIAoqXYFM0kiCIzI9mA/lYEPx10fwYnulUx3h60A0kywScVbBlAD33BMLH9RK8RLwRpiN9xqiBIOs0PDnDYb1LFgYCJiAQsZOmSsiVj5rznEc5nri3ziFByiP8H1tAr47LW6ljvHKMuUIgTQ6zXDyMSuyEJowRLxNbMDPBc3RSYhFfyfGczcBI0d6yFeI8iW34lSZN9ldvA+3rDwJGMmaqOG+yQIu6NZkEe1/PfKnAXtLBdSjv9yEyW7cy2M01bFylW8nivNkwOUG1ULTtwU56uMMY+yx+J3k/e0X8I1MMtL0b0s7Z+lWGbfrtVVFFCDxapSo483qMyYE/6QiIikwd+7+1i+iW0aoEztvrH0wn8jzuAn4cCKiudgLZblmlSQjpcJAoKdMhYRZhfyCRbHWojFkF1dE8eyEpOMo410xxO7lsKtjnGMoe50uDM608YC2VIg5DCH9y714OBYginEpibqplj0mYmhEBZtpyxSFuzc24q5kQQLdOLYTvOgiOCpOcKiTVpsrLoY1EoZ5kTGZWVcCBa7rgYk7QDXTyo2d/iF2GT5qY9BTALFwMhEomOcHyCAYpblgUP8f2ZoIFI6DBFLWz+2J/LanNGH2aG2oNmbUQ5Mm8RFKSB2zNFTzC5rzCB0NSNGfRP2dRp7eI5U0N0vwXmzESCdDnU5chNr3shMVHOEAIxlJ2YEsr2PyhNTH6VmD59fmDNV5H7eAm8GHqnYGPB4DIYYQGYDSeJAOOcdQWZqp4w5+tSWCqtNEAz183her8/Y+RjEUdiPujwsPRWUtbNRw3NOBUDS9RpKbtn+Wac7eAbsUzU3MKArgyQ+X8oG3M38iVHiqSMycZDhZMmln7fmmAyaOQ+IG1nt4FlvV1BO2Snj+KsdzJXYhfz9mbYFf8zenWshkN2oqSSBZ7gXBjW9PAIJtrpYq+M4B7pZ6OYxfwiozY6birXJjm/A5NQxJdo7ma4LzvCHJC3ev0HKNECZ2v1l5TEWlLFiPnp5LJB7Rewyy5Fpf9AhMZC42kB2YaGPXc4rsyLPbJqTJ96D6XWWivKJYSLaBTiGfCLixiapX1DaMXfBLOWMPSyUpUj7/ExMe0FERdoqpk563LjbI4U6iHE/zPZ0A2PpsN5PIJ6Tarp/guCFuBC2hicYNXHMmRKIOXFU6VaDr+YI45O4Ios9SZvfL/K0iPMf/jeURw6Lpj8hYgyNbGO3rOUSU/cVMUVcEZE/8wp2t79z1qjdLNUxEL1WhzNkZmiYg/Nc7to5iPVgX6L5vn2+mz8KcM7OgU6AgCp2cR0sobA8MMqBYUXtClLR2Qm5qmPAecrdLzErXv6ogylFIsWc9e1xBCUgBnupA20b0l4TB+PMzIyISFH1MypjA/56qQVMzy6j1Mb+OQRrD3O4FnYenhvgvl5YsDJkbmI05NUO7nevjM9sVpBlONtSxdoGggQ+h1HOgOyhliUYZKaOSG2E7tzEwBwWRD62Cse/knmWxy2IRT5wFQq/VI6eHSKzkZvgO8f5MTvUAL6oJdKcyMDBGLEHEin09RHmRzXE+O6VcKyX5jFfgxhrwEP7CI7JZCrEWFtemzWdGILIKVEwyhmTiJuZvZIBjGeGuO/qGBmvGzUc+31rR+f1G7FifF+XfaYBytTuK0sf+JA4n/xXWAROt7HoJA6k3qkAS9DmwMcivVlBipkUXeocPLWNhWOvqsBWpSKyoy57+vAzhyqqFQgWubEnMlEn0NPUt5diIWsVTMGWjmSpB8fiZG6oENuuK3GPaqdkjTX7pi6wxdiUdEcK8CvEVmpJcgoi9q07Lhk4M0P8ZNPZpLpWtCTCmvmh4n2CPVxfW2nWM3pdZ9rGkurmwbrYL2Ec37txlCVCmzhY9AkypuN3xADA9RBjvVPG58mASdWBkwWxV0IJiCn5ILZsEVPnBD/38xj/QwXy1jWLxhLXblnLaiMr/x0Wle3iGAWd5QqWFsjimRlajyWWX4gtYZM/CnURKD30TSiMRvZY5FrpScSUlP0UgUVZyyND33Rz+HnO/X7eyn6pIBguRShJbJcRUFBYjXoo832TyCcjjFL72xVjjQVadlvtYk68NosxPNfCXOgFoBsTNHpYRC+ovGMZOpZXHjzAGI89BN1362gsYsHkShffd1JxuTko6JqwVlfGmivSjHB8EaNk75dMKE7kKE2fjB5Hn9mZtkhzC+02mHEibfywiLm60Mc5UrEWB+UIQQ6DllRM1JHvY0NI2oW7gMnfoDmD/0HESe+rjMo0QJna/WcTx+izIkqzFKtnHxatCRg7t/bySEHPDeCw+3mAYYPY+tBQoEvkKFOCAQipnKngfQS10blQKyX0bCfG4ORM29LOWc0Rlkb6uujPDnGel+fwGfZHYSfiYoxyTy+PhZhN3DZqJqldVXxA6Nku3FdGCGXWS5EtwEx/s+TBAIHZAxHskhMX9xUk4lT+b/jcM4JxfXUOTuU4YPWlebBEsjbwcZ+kVJOZQnGwSQrH5ojc7NZM6m8lhHPeLus1OVba6QRWynh0D58fafmkpEHavGAsqIy7WUHQkrhwzMSJhB4YO62CUaQZTDmpKu0qyJTZEab+qYORCu5zp2wU3lfmzfkOfWPMZAMUBhq5CfBMYxcOkeBkRwxknM1AidgY5jVDVR7j55E9zTT51vww9HCcpR7KPr28yK9esIweex01Rgjm12vWmFBEsxYDC4AW+wjOdssZDSGdUxs1fA+eX0RAESSmC7OuGItcJmspgut9dRZz7sKhfTdfm9XSp2Jh/Ane508MpBppANr38bxqYUaCYKJ6KAnuh8ylIEaW6RMrevwxxuBqA2Na1nJSmNMyXoT5dqqL4KiaASdTvoBg+tUO/r6tTC8C/Emt/kIbS0ixi0DFTSUtvPkDlWmAMrX7ztJ3f6c4v/M/W4YjcbBYMXtCCiwd7dwATb7YCr4Y3Zo+vjQDh3K2jQWFO6NUTG5+dmBy4SwdcKdKBx+n2OGyVBLEpky7X8JCXoqspMCAZr9kzm6njAXuagP3QIErLtwiho2gc2CTvPWapZWHOWs8yN40BIX2MswklgJEMFYMmpjJYaBDB8mghVYLj/Zoydrx4ITXLmJlHWYniP8hyLmgzI5RDk498oCZ4G711Vk4B4rdscHjMAeHuNoxkCzLMFnc0FbFeuA8dABnRYwNe/vslSA1/85NONKbbQc03V/Wkp0rJvxW1Wezr9e6XUHJ5EEtseyUcR0DH6n7UmTZocQxjRKKnBUnInIHVgsB3b5mDrMsH2YJYhdllZGCkEsRgMb8LjADRPZZKgA4jz30sGEJg5m7rQqc7YMHVtKqjFEaI96qpFitCwegwy70rcni8a7FWYuUbURRxX5epJAYg+rCoQFMKVo48kXyITYjpzpHg4PGCO95+7bILz2MoLEyxjMndojf8Vdn8QyWuwhiqIAbxMZQS7Ukmp9g/lXGGC+K21Ge/3IT/650sb4EMY73yP7J939xBsHwSSDhrQqez70AiE8yzgHOk25enP1/IelT3/XZHe+PyKYBytTuT3t4Hw6FlMShj38PiggkTnVEBr6kX/XtIiJQoiVTwc98yVmCYGo/zMGBzA61y63uvvVLLUPfFglHDLdBB0O2gCMmU94YKRhuaKDDcoTzFTXoSMWAjmR+NEf4/zAHB1dUJ8F+IsSkMGDITbDjIxOCWYXDIoKMpZ4JvxGUKqJNyzQYYc8hR4xV0PeN2eSlR1kJn4vdxFuI0kwTq+eTokpdlnffQJD2axcM95G45uTZ5benZRz2dSEAk5ksPntvYgq6iYtd+aHShd9/zTIg7D0zVrwG5chFLOtDmnh1bCVCPxEpagmiqSDSnbJlNeYGmKudAE0T/QQO/MKBNiycnDhkdxxLgnQTR4G9mhm6oo7yUIHJDx4geGPbAQanIoaXeXwXxwtiOPHdEjIkhwWR31+FY2ZX7IW+0V8Z3E4cU6ZtFfC3sy1c2xMZXBKzeNcaCAS/fB3je2lGO0lrkNIqYI5SJ+g9160MSQkBKvN2FejNMhxLU8s9BFAPHSBDx03CagffLzbxHMUICM60VWMmQKA90DWG33EGzSxvspu2CK6hEGOdGvjIHFGbiNnZ43YnfSBKD9RHGDOK4Z00D7LPk8bsLpWstS2H8+/+v7j/r7nypsSoTAOUqd2Xli7+bXEKP4JFiJLW9TEcG3derDWLgEmwWxL59Qewy1no46cYwYHQQQex1tbHOHbkiTRj7MRIESazhVkF1vypDeIIFlEKog18A51SWbU6FllxTR3Xn4h4euylnnUNLo8NuJubwKltl7FANUe4dvb24eJEoSyWlBIHYNXswpVlSlRDE6KrqPMsj4/qOaSCa5wZYkHLBjh3spMwKLTKWPulTCzQY4aJei+/dxpBAqXv6SjOtPHesYd/iVn5zCLGgWUeqgs3h4bToFjYUg//v141NlE3QFnqsT1rQvnyPHa3Dx0gSNquWFapOTD1XdKmt8vY5S/24fB2ythFhzk8i1EOc68QIzA6f4j3DHzsyo9rxOyXcG8D3wTfihGcLctBDCbdVKSYoMfQjRre181D0+PpLTy7uYGBn4/jnb5qzVgpAx9OfaOG/9Mx15Q2zuBBxPRlWgU0T6yFCLrqI4xdUTcP51o2Dy830cNouWvO+TceEHnvdZGvu4T5d6qLObBdFvnfHxV53zWTnW8V8JO4KEE9t2Qdnkl/P93Gd6kYi3x6Ec+cQepIgdUi1lyT3+WSlm8uHGCusVzLzGrsYm6xXFeMkCU6LFqH9ZUuvvMzQwPFLveOZkLv9j26OGONRn3NDD98YMJ7Ikd1X04KTmhU4KZ8AktahwWRzao4yx9+0wUp0wBlavevvTSvtFlPJC5ikad6rApDOZ/+F8imXJ0R+dSSgROrIRzTqa6pxxLsSAAf5eDZX4ZNvSLvqO5HkJjqJv+NPBGZ2LGCREQUIxOqMxz4lo6fG2ChyCcqGBcb1XanbHobzNaQcbRTtk6spcjAoqUIY9NVMOpGDYtxEBvz57gYFplGIljQT3Wtcd1Qa/nVEOyFUd6COhp3k9nj8niUzee1iZgKLstcBOrS3r59tAeLiDWMEzHHndNgsBNY0EH2CbFJKfEjYmPez1tm47AIJ0AGVzsQedsOHGxuAkfKsiEF37LMHdJKZweK+clkcx4aHcUxfWIFwWVlbKXHBw8MH3HcCLClNgb1MI43dcxmteojY6b0lEXWGOFY2dYEJxn71pzqIOCi6vBB0ZhQbK3QVfbPWh04pCAW+c5Pwnl+egmBw0MHYF2JWFlRBLReX/FHr89iHOcGmAvzmpWho98vivzhKQR01BipajB9qXm0bMoO37UQQQa1j3wtnx3o+0Y5ESfGtVFkrRvgONQ2YWuNft6ECz+5gtdZJp441iOsrCXk7YqB32PX+iIdN1LEjz+PyMN377BojL+xZ323yhHuu13AnOa5bmepY9dKdpubmpKx4qSc7X8qMjt403RMngYoU7t/jenl1BH5+Aq+tFVlaZxpY/f0+C4cwitzcAoE+JUio9FemkF2ZauCL+5eSeSPX4ZzzE2UCRNbqj91TE+D+hXMqHhK72VdO1C9km7eFv6y6itQxpxlI7JD6EjZ1ZjONXHxeleZCmRTNEdGxxUx+f6uamqsdLU8EZvmiYjpQ4iYU12vw4ndpEUnGE+yVfZLOGZZAyA2tOPzOChaNoNAYqrWUlGVgD0KWZXGAIEyMLtXo+PuBiIF1XGph1Z6YDC3V7JeKewaG2pwN8yZgB2p3g8e4DNbFYxjKULmhh2WiTkgI4olidkBggB2s6ZmycA3OryfKPtM6eoEFTMzweeXVaOliJ4InGA2UL3b94P02of3EXAwvc/SYO6YY7xRtee5OWsYqK4PsbvTbYwNRdYe2sd4/eLDCB6ZUWiMRP7YVYx7LcR7iH1iWcdJcby2YkUePIAOEB0onfbswLqUU7eIY1GKEOQVtCzTLhxt7Bdqhm2rgs+e6hgouRPgWuYGtukY5vB9GeUsMFivG7uuVUAwWtdjtgqqgKvZzLGC9NsBjlWMgSXr5wFEPm7DHOYv5QREcO7fPWO0bJayvBTnuNxAhqwYi5zfMur4SF8jEy5rLC2NcpZpTR0wkdg+g/pEZ1tvGmryNECZ2n1r6Xu/Q5zf+Hfa8TSE46VjKEVwCNer2GkUYiwihURk5Bkd8eKMiZOlDhbFr7liGIHq2ATIbu44lAXgRnAkBHdSLVTEKKH8myMmCEcHwMxMEGNRW+rZ59nQru+blD3ZKtQ7qYW4x8hFGWKWIEct92wqE2a5ZyySxMHOdql3MpWT+BYaMRWJ1vQPCwgAlpUyTfVesoomuugxAClHGL+hOtW2gnbLYwM5DvLWVO8ksbUrzaMdZo+bowvrRg3BQT2EU2JWiWyZgyKeVyrmmK82EMg1wE6SL183p8DsyGbVnE/iWEfn023FFJXhNJbzcLIsVx0WcZ8Mamjsqp1VKP3YKhwSy15lncOXmzjXOzfNiWVLBCK4VuIbWAYkYPzdN3Cu12ZEOqctYyNya3ByrYHzPXiAZ3CuZcGDCJ7vpRnrE/XOTSvNfOOrtz6XdkHk1x7AnHz7NoIxgouzlo9F3rWpKrf6fTqeUaiMUfZ5eR4ZvPwEWYoHDm2+LPVMS4jYNGZ+Cuq4rzQxR+f7GRDsAHPAT6xM2wmwNpT0Ox5kSiOdAN9L6qTMDUyDplWw3jqvzmmLhNbJGSs2V/QmR5lchRjfTWZxLs2IvDivGiyBZT26eZE599bvxnZF5NklBP25BOXtcy0ThiQb8VQHc+DLNrDJGeVwHxs1XHctFEe+uGWfaYAytfvbqMR6pm1qlaVI5P1XEYz89lkDk4U5XTwcc4T7JfvM2RZ2IA/tw7H2fXNKN6mfzq07T/a3CRIIbDFFHOg5Ig/HI9BSxsbicLSURBBuKnitm7fGg2HO9E7Y76UQw/G0C3CeT+5YQONP8EMQ7/MLWEQf3leMx64t6tmMCo27XhEcm8GNCM43zOH6e3mR7bzdL8G6zCit10UqLXymqjtmYhlY7kkcEdHdMgO6UQ7jJWIiVqRLB4kp8VbGJoPvTTAG1DJJHMWfpNDeKOasbwxxQgt9YBu+Yh1liFSszLPUs+aAjtgPm1Q2dJcaC2iiTaXU7pWARaiPbhXeI54gPzFBsdjF/Ngum5Q/A+DIQzDDXjYU5mNwR+NxaDNDo4+LAEdx4cBAvifhFG5UEZws9ow+W9Qgf7mHLBfLUwzO7tb0sT4CU+gPT+F4ZAGJoExyroXggNR5GvsXHXfq7Jx8UIQT7gR4/rODowFgLw/Qa31k2YeVLjIebClwvYbA43zLdFDKkQUhFELsZdaWgQ9nf71qDUXPtE21t6ug6KKWe3KTo7omx42tHJgh5Qaolz8qcEgwPDFg2b5HGzVr60AjxZrtJNh0k9+3sWAerHYQ4NHICvz/PIGA0k1FntgRp/jDIpWxpM7fv/Pz/gLYtJvx1O57c371p63L7dUGvnSOoLa81MMXfq1uGIlqaAJdpNuSebFdAWV2tWM9cbINCStjZGCGvjWG4wJTHluph4qxBNGGigcZ+JZVoTS/CN5fGSNYYUq/XTAqriM4NhU/KXveKhhepa5iVMUYwMMXF3D/L82jhn+6I/LMdXMSqYMFjg0Ab4KCFdR3p8VVRKnTRfy0C+Y8PQ3SqMLLLs/10M7VVDwEBb/YnZXiVU5qAlj5BFkLPj+m20c5PHf2GqLxefiJPaP9EpyMk8KxnlTeIGso8gxcvFPGdbMk0c/j/GHOqN/10Fol7JRxTceBjxs1SKYTS3SmjWMwoCSTzJ+oTswAYzrwsdM9LNrc2S2hT9BxgGtWWIxZjkKM45CqTduqQAsln8B5k4m02DesS+hZBoXP5WzrVq2bu9nEwbnOtSyjdLlpDQvv1aiZs1cCnqyjmZ33XD8KFH1+0ZouUv8kdcypR8pMy00QoPQ1E+KIiaYRRExQrKvlFbLM6iHOv9jThppFnGehb+0SrtfwmYlztOxEYxdsBlj9PMCvzJjRYhcbLZaBmdFd6GMT8N6NW4POsWeqvtm/cXNRjm7NZA1zJgLJcvAfngItfamHxp/e5POSUZl2M57aW8fGnqZLXaREWSs+3TFp6sjDzmaUM+ZIY6Q74xROlsHEc0uWTqe2BfUDRJCZSVzr4NsYmkIoVT3HrkghNV0W7vrbyjzYL5puBbVUKE8+zEFXg31/mEVgl2TWkCMXO1liZEqRdYtlc8FCDG2UiYNsgAiCl+u68zrdxm7zShPn7+ZREhv4WCSPlxOyRtXMhT4CwM7YmBB0/l3dUXJBJGaHmAKODRVtRazPT99XLZDU5MrbgQVYi30s1tnghEawK7EcboqAgtm0bHBCJggzWqRah77RtRNHZKLBzpIGwlS19SYiE0/ko2eMIZa1VgFBYnksstRHQJA4yFrUQmsPQCByNw+nEObgUHeUTUVGyHLvZLVhjgNLk7slozizzxSzKjNDzANmEOshzr1VwfuXezjvdtm6/L4+K/LY7slzIXUsy8XzcIwTFxienTJKhHsl6z/19ZdOPt5JFsQIPsYeMl7MXGQDL4q0zQ4w92qhZb3Ot0wojUq5r89gzegE1qohzOE+KWa4VcF3dbVjcvU5LVVtVvEsi7G2TEgw5rtlA0qvdqwMl7WxZ5lAlptaBTyLrOUmCMKuNjB2LGFvVUzD5rjlk5ODIpGjStZZY38zWjW03krnWjczWn+U+JRpgDK1+97Sb/iL4vzKz8A5B4nVmAu6GEceFq3rNcV0xFjASB30M4vpvIIQrzU0E6NBBr/UmxXFX0QmFS9iO2+WbEjNzS4G+cTUSpm+9hVwSkYQuwznE5FJzrI4bLpHx8s6NHf63CFGnsiViu22KWYXJLpg+hiHzYqVYmqaASiNsbiSfjq53UqmltVcOL6rZhqa119VBkRljHvv560BHceecvQMYooxet44mpFZ7howNqucyvNxXJ0U6X3SgVc7ltEhiysb1FTHGA8nNa2PSIOsWS1veRPLgrUUiFlQB3WoeJW5gZWmaGMP1PbZoUhVryHR7NnQF3loG2Pz6qzioHLW84gS+OUIwfarszj/SQ6pp0Ddp7bgKFN1msy2MVBmSc+fwDF/bBXfiUizfqlec+hZg0S2Rjgs4vPZrAezWlTEjV3D0nDO8SfyjsrwO4Jrbg6tPcGdbK9kANnjMvDrdQSvxFgM8pmAXQx7RKowJQCaQ+2oHYoUe5gzE8fmRy00bFOrYArE7QCijtS12dKSE7+P3TyC/lMd/Nsc4t6zY0fpAM7/tToyi8SmZW2jZlmWQmzB7d3YO8etGCt+Lj36/WV26nhZ7S8/d/JxJo44z/4rSZ/5q2/s/G/QpgHK1L40bHZoSPnYBWvnsT04u4szWDS5CA9zIlK0pmvF2NKbrQJSptSYIH2V1FR2vRXBQvHiAhb4iaO9diITASOw9pZrHRhuIjcxh0SFWqZeXVFRNbG0ezewRoZ+YtLlxMyca8Gx1UORj53CTi5xRMa+SFGsey13j7sl7OzyCqY7rQwFMhDuZHfSXGDZhRmVXh6vN0YWTCz0jwJimWInVfkkRk/2/aMcHMPsQBtH+iILA/y+o/d9oEErRetY/jnQkheF8dhrhhmbQ2VWcIyrocgowW49zKF8yCCiE1jqf7OCDNTTWzhmLw+nUw0NKM2sUi3EdewXLWPmJ6ZmzHJQboLjcheem1i56HQHc3OzCmxEeYxMAdWQ6Wh76tiqoTmmrFjdK3OY8+z+u1XB58iUSVyUlbJ4JaolU0Kem4PYxXEuNzHXtss4NtldxN9UlHHHcufd+u8wuHTT289PN0WgPfSt1FIdG4ZopYuxErGu1gTWE9w63zcl4uzY8bvETOtNCQEXgcg4h+cUecruUcBv5CF72c9DpO50Rzsr57HZId7mK9bx+VfnjoJmX5mzDNgTO7jW3fLJQR0Zc6S03y6AiR0RL/N7KrqZOQHMe5K5qcgzN8QJf0jklbkvmCLtNECZ2peGkfbYLsDB7pYNSLdfxJf5qW38XwSLJDMOVJfl7m+7Akcf5oCCL0Zw7ixdcEFxUyx4HzuFIOgdWwD70W8nJ+AcaNmFnotPSQwH4unOjIBeYmCKsSlX8m/c6foTw0dUO6gZ/9Y5OMyJ4LgdFxga9gwh3qIdmCpnKncPTu7F8ol2mi6JuEmGqaN/3ykbRoRKsszo3IsVYuszVB/BEW7k4PRYNlrsG26DWAI6Oo5zmDPsDnUvEsd0aeYG2KEv9vB6NQSIceBjriQOntu1Bo7TKsAJfuWa7cg7ASi03kSDkhKeFennC33cgyN47q/NIptH2nkptJIWswivzgFsSnG7fIKgQET7wkxsjrAJZH2Efxd7mmFxLMC+Vkcg0Qnw/aGq7fzgKFA6qzOTuMrUyuB+OPZn2rjGd24acHejZpk00mITBxTmuwUoxRj4sE+saJCXmaP1kYnnpVqSZSntVNc0ZtqBBuC+lf/YGHDoaxmuh4Di4oyC1wNrNkgwcjG23/3EAtyuMnyIrZo4OCcDK/aKWu1g3LLj6mkZKcvuolgiNVBYZv7qK/aePzyF5//kDsZ3p4z7Z5dzBjKcC9zgZDcYhdg0pd6ISnSAbLTze/9GJHYlff+33ftn78GmAcrUviQs/Yq/Is5v/S/4kn3yPBwKFxOCVhMHzoYKjOyZ8sAhXtst4X0vzaOcMDMUcXwsPgx0UkEQFLvYJc8OoBr6tZcR9PiKqaBGyr3qejCtSzYM144gyewCtbRD0CI/w515KiJezmrY3gQ7rl4e1z7KfN2p40J9kJUuFszLTatrs5Nx4oKpwizOvRiDOXbCHfhHZdhTwXWRcuwTE5QajXroYzd8t2CppSDQUgTnz/LCbgmOf7d0NPALEtMnmRlibBPHpNqdVNLH/waG9oWfsF5IvTzGhsDRcoRz0iFNHMtGBTEc3E4Z5zvT1kaWFTwLOgHiCYLEsCuOHM0ukIY+ymG++Zp5axXQPLGQGPajEyAz9rYdzD8CiYMYzpAAUNoDh1BqTR3L1pxtY8xfUur67STV+3krtfF5szzp6T1QAZhGR+6IUdQ3q7diWw6LBl5tjpAJoBDh+datOJ98gvd6qQFxgxjBCVsYHCjui+VG6vAkDnr5sOyxV0KmsagA6Hdu4j27ZTtfIca8YVD1ilKKZwci7SbKZ6UI93G5aTom6zU8j2Is0jxWpjpuWxXTNznTvvWeaY5gDCmFX4rAwuGacfN9qY3VSeXbwm1ev5utdjBXcpPPOy15GqBM7UvHenns2C43NUjQnaYjSJ2K2I6GIL4wh9T4wMcCMPQBHmXHWzYbq4+wO1mvHe3Bw8631I2gUBN7xNyLBYmJh90MIjzbtc0MbXGhw6daLpsl5hIFbKbWJJD0wof2RVqnTKuFlOc9TYFfaiKQWe7hs62CLeyzQ5E9zQ6QBeGlCPRq4e31HbIN9RLXgq5e3rrtsvcJnSsBsKRml7Q8sVvG81vo206yrk6TsvuJA00I7lpzE+BE9ks45pltPNtIn1kqcHwEBucmWORzis2geRNoUDy8j/tiVowZn8rYeixRqZiiX20dv1CDIZZN8omVFYrxUeYMjZLsiWtBzlCB2q0CguJRDgEKAapkuBwWDdTZDXB/pIKLzl0yfipjZHZ2ytozSnf73Tyu68vXLQvILB1Bt2SadfNHGzv6E2ibnGSfWYQD7eaVHRVZRoO2VwLgeHaIOdhTXAcpsSc6VwV4dvMitVRkuXNUGTlyraMzGXsi2tBP6cQc/qsNjPGDB9YfapjT7IPgmbQDZCVJ8aaadGWMTCqxUsxIdgJtHKilr6IGtzd7iWk2ab2OTFYtxO9Umd4pWzC7WcUx5wbI0DH4H+ZERhUE03ul22ciT+rXw0aCn00fKBE0lNQWI458WOQPViX9su9448c5ZtMAZWpfMpZ+w18U5z/8b/gl8oyhM/IMh1CMDOwWO6boWhlj10HQpTdB99cF3X2mju3gKLH+sVWUdGohvpyJi8WWDJXUwbk36rdqFWTNT7CQUQae112KTHr7uFVDU5DMJ6otote9X8L5LxyY5P07NrHIrde1iZqo49N0/OUZsDQW+tjh1ULbIZJFUlN6dj+P8xYjONLjOztqmbBWzsU6di0bQqo1uwyz3t5Tx+VNRHYqJqpGquxYn+UTOxnJ/FQkpxmf5hALNllPzeFRddOTjNeXSa2TqSCPCYCcLFn08yZCx59UsGtf7sGhMhhIHDhGBgL1kWUYchNc2yvzGF8Rk6fP9sg5LJo+jJta0NtRLFJPyw+Nge2MC4rfYaaqHpr6bC20Y3UDzI1H9gxbtVO2Y0sKgCfnLrM+rljmQQTzZai/+4kFCd6xUsKzy5ibSz2TvN+pWG8iGrsAe6n1BMpm0RrDo5Rqzq0zbYz/+dbRzAG7eJNGnm0WyiwrKfsd3byEyvabHWJeMGP53BKuvRQBc9IOMIdLETYopIhnLasXM/Dx++zAnjHbAjSHOH91bBo6WxqA+BP8P59gDlZDzA2KyYWefUfdFNncluoP5ZOjWJTjAFkqVBPgPcph7LPjdDcjkJp2ti3Oqz8uMjeQdPb77v04x2waoEztS8vCXIbhkWHfMDNxqosvej9vTI2ZIWq6DXUgdJ4NzZpcaWC3MhF8cZ+5br0yvPSoBgPP1S6I/O5pLA5bFdTNT7fhPPIJFtEsDoW7luPANy52rQLOle2hQ4VXPxEJlA6ZONb3I3EtzR9oCnyo1NWnFS9THRvV9bklZAqe3sKCyTQ+cS79vPUs2qjhOi7NYGzeu2EObH4AmrUj9iyCWCSv2Sa2ChBBFoOliVDxMLmJvWetjsWazIWVrtGoH9mz8S4oM+u1WTybt21jwT4s3h3bkDViESaO0X+Lkc0LSvWLGLXcTeHIKlvQ+6CuybJeN5u9lSLb+W5Wrc9NXstRBK3SEhcON4tn2KjZNRY1gKWE+dkWxu3CoZVSyMjJBoFZJkm27cGlpsgjGowQUJ44GNPmCMdkVnLoG8i775teCNs8cFfPOdEu4Dgsl21XTLCPDK2LM9ZnxxHN/CRHRQBFoJD6kXMiX75hXaevNBHgsemf6OaD3/GBbzouWWO/IoLWmUXwE8y3023LIOWTo99PNgz0Ujyr12dNC+V2VopuVX51xMqUPN9YgbaLPX2Gun4dFi1wWOxhLuxpaZrZu72SiUP6ialpO4JxfnTvaICSxSqFOROGHOYMn3cnXNhJDQ8bSmMfe+Ls/o+Szv+3t//8HWwaoEztS8rSv/B/Eudf/aI5RmITKES2VjdGSW5ircvHGWdTiM3pUchq7Kmipu6Orxdsl/zsMpzyxMEC6KUiA8WCsIYcuyg/MePxmQECAW+CAOd2OIthTqSjae7rVeu+Suecj6FMWupb7x6ap6WIfh5A3lYBn/+G17CwZ9UqRY7qJjy1hVQ3qbZsIzA7QFakoHTFvm8lJTo+byJS1EW9kCnxUEnWSaEpIiKSTIwdJYLF7qBoOjWlCAvuzBDOhkwnR5T2mjcmRlmp2FTspWR3N0AJzEtN5rurmCI2QyxoqWWo86WQmJCepwEawZ832T6aHfAnIsWRiskpC+tcy/rP0Olxd04NDWILqLq7VzJHSsE+4jzGEysntHTuVSdGMR97mNvl6GjGytHM0qkOxi1rLAuxqSHbRWQptXslgDCrY5F33TChsMSBToyrmZKJyM3Gd8yaZAHin1k0bBA7DTc0MIs8BGJshMeMCkux5QibhPXaUc2a5xcQ+FTGuGdvclS990pDG2mmuMeFY4HqwDfl4FEOz6tdUC0Yx/oVsRnilQau60YVc50BWKLjf1jAGnE7o+otg7YsAH5maADxTy0bLfmUYuGGvmYWU9xHUbO6FI+rjxAUDPL4P5sbZvtkRR6O7cgJQZIGGASTE/tGoO2dbK1+a+DH9UwxXU74Q5IGf+/OxznBpgHK1L40LXXgbGJXJBeao7hWN5orHepmBW3ev2oNUf9IdxEUxqqFcC6UgGet+dE9/L8xghNnypvYgbKWSBZ6CDIuNUVOZ2ifa3UcZ7sCIB67BnMHd3EGznqlix1iojvo84dwaOw3w+zLSQtJT6nXJzUqu5tVxwhSGiNkRILE8DfNIcZot4RrvNK8vSoor5G7YEfg0ERwDJY1Bj7KbiKGbwg0pc3O0p1AxNFswmcWVRwrNubGKIdxX2tYc8YbVbzG1HVuAudfHRvVmWWpWnjUqXmpiCRWzoldOFeyKZjNmjhwFM0Rnvns8GjDQhErXbEBYHanzezHlQYcM8sxEwcO05vg2IE6sX7edEUSR+Rsx7rr0nwdU9KZHTlafuA9i1jZhXM/iJGpWO6KfOCqMc2Ip+DOml29i/p8eznDozB72Q0s+9XzraQlAkc218GxCwpqvdREs86JA5bSnmJ/hpnySU/LjBzLMCey5Vs55YUFXCO/9zNDc5qk4l6asU7NK13r5fPInunbMIu00jWJ+yAxinIvb52V33vdsFEnGdVpaY7iRvITo6sz+GWZrx2AnXZKGUk3afr6HIY53MPt2g4k7lH13Ke3rAniScaeToX43th8B0U0aqWqMu21WUkf/psitTt//G7m3v0tt7cf+ZEfEcdx5G/9rb912/f8h//wH+SZZ56RRqMh5XJZnn76afnpn/7pm3+Poki+//u/X972trdJuVyWlZUV+dZv/Va5cePGiccLw1CefvppcRxHnnvuuc/l8qf2pWqkjTJgYHZkkLMSReIY5mOiwQwXM3+ChbA5tF0zMx/NIb6Ms0MECZebcM7dPH5/aR5BhAhAfQv63lMdlHUqY2ueVoyNdvmxVXz2+QVoXHxiBQ6N6djYwU5yrY5U8rYqVR4U8XM7u9OCeScjMJFOMlagZ6tgsuihh3vgLnS9fudj5iaq1OmZwBef0WFBd6I5E5YrajngsV3bmbJsFSvQlqyfRIGvZDHMDTD+M0NLYQcJjrfawXNsjEzS/8EDS697KcY7p4DQfGLlqiDG62SBiGBOXW3g/xcOcLx2gJLG9Zo6cdcCyU5gc0QEgRhZKwdFo6tu1DCuTaXoXqtb40OWRh7dMwbLScbWDoXYSgMs9ZWUHkzjfB/lwGqJXeucLWKaQDSWuBwxzFdzZHMjFQM/BxrgjDUgIg6GWbJRDkDs9ZoFsvxeMitTDa3UtNI1Ebu+D7wYy2OjHLRGVrq4PwoytgsW0GyXMZepzsrnR1vuohM6peyDGBuYIMYcItapFuK8p9v2Xbs0g2fPTC3H/HoN56EOi4jIxVk4+FHOSmgENxNMzVIVRQ5fnUP2b0Pn1vESc9ao8TPfN42kOxk3Em6K6CA7P0R/Z7lJREt8eZHfOStytSGpsnjSh//mnc9zj/ZZZ1A+/vGPy7/8l/9S3v72t9/xfTMzM/J3/+7flUcffVTy+bz80i/9knzbt32bLCwsyAc/+EEZDAby7LPPyg/+4A/KU089JYeHh/KhD31IvvEbv1E+8YlP3HK87/u+75OVlRX59Kc//dle+tS+xC39m39SnH/+K0Yrpax1rL8nntXKK2O8jyniLAZgq4LuqQ8cWgM5ESxAr85aCWCnjAVp4GOBJcUwN8F5q6GmaEdWbgo9BezpF5wpf0est86lZoYVMbFW77kJzs2+P6TLihguJpVbm9W9EauMcdzEsS7FZAaNPSzwudSanY00m3KpiWskyG5maDsrYidENKuiDr4YGu2Zr9VHtzJbDooie446RC3zsBxU0/R3YWyZgvU6rov9iqoKhMx2hA5iE1pzxHaNlbFIMDY8UhBZTyQGCK/M4dkvqMNqjuBQd8rWxoDZC2a71upGV31t1oCdoYJVH91D5uzxXZ1TOWBKDosGhhTBvBr6OEergHMu9251QKSLZzMPLLWIYG5SeIwlpF4ejpmsL3bj5vvZbdjTeUj8AzMCDHJiF0459OzYZL4xG7ZbQnm0HiKrFup4kon1+C4Cl0tN0wAKPcyrpR6Ck0szCKh6eWwYugHu97CA68pNMAaHBQtw1hp4f6j4p2KMrMuTO8hovjiPrubHjWrCxRhBAoUeidG41kBJjKU/f4Ks2KN7pjTN7yXp6gTlNkcGdA5i/O6leBa1EM+4XcAzYLmuHRxV1d0t3z0IuZPlJyJJbDgslv+yLTYy38m09gMi/9Vnf7q72WcVoPR6PfmWb/kW+df/+l/LD/3QD93xvR/4wAeO/P6hD31Ifuqnfko++tGPygc/+EGp1+vya7/2a0fe8+M//uPynve8R9bW1uTMmTM3X/+VX/kV+dVf/VX59//+38uv/MqvfDaXPrW3igWZL3o9NBoh0/xcaJ7att4mA13wd8sqd+6BPtcOTGb64gwwJ26K41I635uAkvnXtvG55xdscTrbtmZ922UTxiK1ORVD0Pd08T3QHTVLUZ0An2HzwMbQFmOWbzoBdleNERwmdVk+2wVrZojP75aO9ssZezjm1YaBR680cb1LPQsCmgRqhhYUeBN0hI48dAIm46Sp93+gjjiLpRHBgnyqYyUPEbyPehfUv2DPn8MirptZr4lmWMiMaoxwbwx0RAwbwoyMn1rmhHgKUqJfnRPZqOLvvTyCi1bBuhp3AoxRZWyf3SnjuooRsiEs43QDzLEHXeyuvVTnSxvOVwTXTvxGZYy5y07brYLIu2/A2f7WOSgoL/YseGWAyNKkyNGgwxHTcZnvWzC61LOggs8uSAxzIoLnOxHTQOH3LsyJ9FPMEbZciBWfw35HpcgwOFeamOvnWggeNmr423rdOkqLYFxYFlztmMor7+lyE0HG/ADfwVKEDCazMaUI8+RUR/FHOYzRA4dWolzsHQVWs6nfeg3/NkYYfxFsYGohnmfqoPw6O8A1fnIZ72sXEKCwOSbLQizxxoqten3Gugj38/jsuRayea/PWgmyPsLzqY+Otpi43MQ9Ra6BzU918Ld7FV/zMvO8FOPZclOh45z6P3hvx/o82GcVoPyNv/E35E//6T8tX/u1X3vXACVraZrKb/7mb8qrr74qP/qjP3rb97XbbXEcRxqNxs3Xtre35Tu/8zvl53/+56VUuk06M2NhGEoYWk2+0+nc83VO7f639K99gzg/+3OmGcKFgRkKdsWlDDcXuf/jYXz5Z4YoLVRD21HulQCkPN8CboW4hoKmnt++jWP4Cqx9eR5O41ITC1Q7QFDDvhfsEXSmDcdFOf3tsup7CNKs+QTn2i3jOrqBajH4uJdWwbIIX33FFvWntu+txMOAIsyZsmWk7A9HQZA93zALLC0tKpCRKd+zbVwn1Vr3FSPw2K5pb9AxccHM9iIRuZXFtKYLP7vDPnhwlCo+NzDnl/3sVhnPhHie6zVVvRyK1EZ6X/qssg482+BOdK4EctQ+sQJnMDfAfRE/UBlrKwFfFX21jFPRwOn5RQ1gHGSfaiOTo1/twJk7GmhdrxnGgiWBvZI1pktc6xM1q4yJyMNcfn4B85O0aicVqbjGNiG4l8agl1igxR7OebzpHy2rk+GK9Zwa5QBGDjWLUoqArfn0EuZSdWzYsAuHln2satBEJtepjgUL5w9Nw2ihj+B0uYu5fmnGtGjYnZhgVaqvHhSRiXroAONH4bcbVYzPzNAouWSrHG+QWR/h50YV372Fvh2/ECMgIr5tsY9j/uEpjPdvn8Uxz7VsbCMP2TcR07BpjPBsGYAFCtr2E5GeBrUPHFqfKpY61+s2/3MTsLCqilHq5THnFvoIdo9Ts29nxDZpKTMtfv/dP/MFsjccoPzsz/6sPPvss/Lxj3/8nj/Tbrfl1KlTEoaheJ4nP/ETPyFf93Vfd+J7R6ORfP/3f7/8hb/wF262YU7TVP7yX/7L8l3f9V3yzDPPyNWrV+96zh/+4R+Wf/AP/sE9X+PUvgTtoQNlVST4l6DH3ERkEuOLuFXBgtDWtPBBAQyO5S4CgvDQ6uULfXymOcTCmjoQysqlt2oGcDH0tY58cQaBDRkdY88ULduK64g0e0In3xxhYern4cyqYxOMqoytrj1WACl1EE638dp6Dbswf2I7wqygl5fiXjZqyCJ1AlNTPd22sgKxKIVY5dkDOBdmKOb7BjZkoMeMBoGELHexJxJ32jvKCGqMji6e7CJLDQzPwdhsl/Fac2R4lur4KED4tVl8hromjphGTCnC+UVu3VV6GaeddcLZwCVUp8BmkVUNLl6bVWcS4LpzCRzMfgnP4GwbQOPIg3NmQLhbsjIQA4ehBp5n2iLtvmmBLHdRfmgHNo92yiLvW7MeP+wJdK6FY1IobpjD+B7HFIgYViTyzIktdxEwnereWQ8jq9FDRlAq9tzPtPGsX5vFPEpc4FCuVw2culaXmw0lb1SRteQ8aoxE/tTrmKObVYzV/ACBT24CBzw7EKmmmMPEhPG+mYESwbP3de7nE5H3XcMzuFHF3KdO0EoXz7Q+OhrIve8a2he4Ka7n5Xnron66jWCKc/jPviLym+cxBsUIY0kBQOrzDHxkE1nejV2UoYNY5F2bNqfZEqDvGyaMc5hjxGzcbtmA6ywzU8xwq4LPneremTZcH0nq/v3b//2P0N5QgLK+vi4f+tCH5Nd+7dekUCjc8+eq1ao899xz0uv15Dd+4zfke7/3e+WBBx64pfwTRZH8+T//5yVNU/nJn/zJm6//2I/9mHS7XfmBH/iBez7nD/zAD8j3fu/33vy90+nI6dOn7/nzU7v/LX3XXxXn0j/HgkS8SWNkQka5CRzMfhFfbMqkL/ZUv8KztP1mFYv2QdEAnmzd/vguHFAnsHT1YRFO4oYuxJ0AQQpZGJ5jO1R2VWW3XZZ12O+j5Wor9J51dGVn2WKEa98pY/fUEVPUnBtg0SZuQcT6sBwWLeNAx9QqWDnpuoJ3hzkDsxb1+igoRfaLm1qvlZsAu9SURctj68NDETuCHitjUyYVgQO73MT5KGo2zMFpsB9OMcbxB76BJUc5jE2QWMZiq4JjzA2Mtho71gahFh7te0LxueM76GwGgeWlbl6koLiUl+bxnNligD11Ukdkta2BpY/nQDG2UQ47YmJ9ugF2/rtlnJ/KrqST89zU2PG0xOgnuK8NDUbzE1NmXe1YWYWfYw+cbAmNGBJSUiPFR2XBl6PcyawOZnLYfLA+0n40rgZsmn2sa7bochNzh+BbBtgTB+97p5aVrjSPipmtdnBP50ZWsnzgEN/JMIf3k35NYC7px++/ZhmZlmZXmF0KNJB9cUHF4SZ4lq/OIlA62z6q8cGAhT1zmBU8zqDbrGLOnWkroyk9+h4eh1glYsuyejWkjy/28H8q2hZjY6Flr223jMAvn+D+yhGCFb6nqaWhoY9/s3NfxCTqXXnTmJOmaXr3t8F+/ud/Xv7cn/tz4nm24CVJIo7jiOu6NzMkd7Pv+I7vkPX1dflP/+k/3XyNwcnly5flN3/zN2V2dvbm3/7sn/2z8ou/+IviOBb9J0kinufJt3zLt8hP/dRP3fWcnU5H6vW6tNvtm5mZqX3pm/P7/8YyC1sV7b7q6y58aCJh7OLaGGFBm1G2zlodCxa1QLrq5DareF0EC/lXrQGXsFO2EsS8AvWqipMY+kYZZEO6YmyZhqEvN7v5eqkFKmTUZBeUFxZMUn+/aOnqUmTMjk8vmTz2ThlYFQp7eSkCpgcOkWlhl2eWnRb6cD6pGKuCujAcKwY+xGjUQ3yWADtHr5+79oUeHCiZGX5idGICWR2x4IMA514euApKl7cLuOZH9q3cNPbw2dzESmWOGOuoOlYwpGak6rrrfOjgaIaAdPJji7dEHoKAF+ft+iIP2jE3WSt6z6sdy0axxxAZGhdnTMnzVBdzjJkQipu5qeGgTnWhP5K1bgBHtNTD/NwrYR49sYM5ya7asWMBRVaYi9oeHP8wZ3gnlkDzCYLZSoiy1cAX+fQi5taSAmhZLuJYszzoiOFOWgU8N4LD3RSvvTqnTThjy/JtVTDHvnJN5CPnMU/+zKv31s/q+UVcH4MtlkKaI5E/cfHWY7QL+C5mtX9oL83jumYHNuc/G1uvW2klG5R/csWEIKkyzDYXnHc7ZS33VnCN2eBmr4Tv2Ok2nssNzSyxXxN1eHp5PEOuI3w+miX7fPbMeaN2r/74DQUo3W5Xrl27duS1b/u2b5NHH31Uvv/7v1+efPLJezrOt3/7t8vly5flt37rt0TEgpPXX39dPvKRj8j8/PyR96+trR3BkNy4cUM++MEPys/93M/Je9/7XlldXb3rOacBylvTnB/7FXyRw5ylv5kJITCwlzdBq9wEXYDffR0HCHMiv3kOaen9Ihb+Ux3LEMQuFoyzLTg+Kn+yl8Ywh8VhtwzZ++rYdm/7JbA0SoqJmR2Y7sl2xconqx3TCcnu7rsBsCZrdWUMJNjxURI9zFk/nR3N9lCjxU8s1X2oFOpu3lhNxciyHW5qwk2OWANB9v8gi2fiaGfiCLsw4j8SBWfWQnOKIraT//3TAP2OfFtgmY1h5+HY1UVWKc31kaW0qRZK+u8oh2CC40VwqCMIHA4LRjkuRcgysWfQWNPsWYfQVS2KV+asvxDxSJwLFBBjaYiN9/jaOzchkrVdVqBwiuwKu2mHyoZZ6KuiahnP7emtuztI7qqz13sncS3O+zBnbCoGR6moVL8YtsERjDd7AjEgY+fwfKLzR4GblKjvKg6C1+ZpEFuKTAGVmTKyT+rhUTn/25Ui2K2Xc+lqA+PGztChfl8fOsD3/yS72zhxrG7XkfxejeJzBMdeaRqri3L09ZHiqgTB+OUm7oW9j6irc61u2eDYxXjlEuu/RGVf/r8xEnlt5ibV+vPRH+fzYffqj99Qiadard4ShJTLZZmdnb35+rd+67fKqVOn5Id/+IdFBFiQZ555Ri5cuCBhGMov//Ivy0//9E/fLOFEUSTf9E3fJM8++6z80i/9kiRJIltbYCXMzMxIPp8/wuQREalUkGa9cOHCPQUnU3vr2k3KMem6XQUx0uGSlUBFR2oO0F6aRyBBzQg3xe5PBAvAN76Kncl63TI1dErZTr7U9GCX3lYBr59pY0EmeLA5MvZBLw8HeKl5ct24GgKYW4ghWnamjcXssIC0MNks5cgaA8YuFsOy7qrGinuhemcvb4s2M03c/fuOBR1kLt3sH5RaQMBUO8G9pPdGrompiRjNM3FUUK1mdX+2jKdzbA5xvFQwJk5mDNbqVmYKEji2hgYwGzXrO8OdPOmcVGXtBpDGv6mAG986ztUQ84TU1VJkgeZm1RpGLowMjJpoaaxVRHCTCoKhnRLG+qEDBKSHRdzP3ABOdamH8dyq4Ppnh3cGOzMA4Ly7m9OlGi77NE0caz1AzRZ3Ys+YlhWWI7iTDjzMGUW2qMwsZqli13ReiJ0JElznXgnz8x2bVu6iZZVQU8eYWPnEMoy0M23L0MwPjo7BSVLsfK53M7ZdOOnz92KRh0xWPsFzvVE1jA77gFEgb6lnjSbZGJHU6VJkwHUR3QxMrA8VMTeO4PXtsshKV1Lv/4p+UvepfVYsnjvZ2tqauK4t8P1+X777u79bNjY2pFgsyqOPPio/8zM/I9/8zd8sIiLXr1+XX/iFXxARkaeffvrIsT7ykY/cglOZ2tTesLGL7VjT8BStGvr4QoeeYQRGOTgsEezqLjUB8Js4cLQHRaTX+3lrRPcnLmKX5qQIZtqBlQGYfSB2Ja+A3UIMh3S5qSJlLt5P8GzqAH8wymHBHeVQ1mmM4AzYb0cEizwl5ZlS9xTIl5tAiXOph2xLkIjslUX2U2tuRil6aliIWDfnytgyGJTiZpPC5R6O0fcxHks9A1xmVVR3S6b9QrwLO9rODQzvc6qDwIRaFY0RnsF2GYFO5IkstI5iKPZKJq5Gh0uKJjNi+dhKJ8z0EENDHZCtCq4/cY2myUwO7fyhSKVs2KPQE8l7Rp0txHj+PG4/j5+RAn39Ce6XDfroqLmzps5MIcYcfOBQuzffAxOLeKZ7MS8VScS6HIsY3oftG7JN/qgWmw3qOI7sk3Q7Y2Yrq9DMDEw/j+9UltUVJBYQsLQ4ylmJJBVjuWTNTcHwYmO9rDlaRrxeRVnwXrv1EovD4OSkLsB3Mz8RycRcN4N+EQR8VCZms8IgQanqVBdjxiamLyxoti20LCG7cTP7pBuYtPoDIotv7DLfrPaGSjz3s01LPG9tc37/38DxUETpwiEW6H2lrB8WDDfwletYHL5iHYvCv3/MgJtkeswPkH7/6it2kovKGEiIgUjN0bE7K4WvYhdO/lQXDr4cGfV56CPIeegACzl3Wl5qAYwIfp8dYOG+XrMsxUoXx2sOjdnhpLiXdmCUR+pWtApYJCPNDGSBmdmyhQicRzbLctxuVK1JXzHCdTCNv1UxfEZlbAq9/L8IHNZeSZkLykLYLos8uYsgkFkVdt7t5w07VB7DObUDw6X08riGSmh0aJY4Ehfv9dUZX69aeY5y7DNDgKDnBtbALtt8saqlvMTJAGFDPJedsj27+YFhAw6KViKj09usqPheBJzOeg3X/uTOrWBVBgTMXnA+vRGsBGmyLMfdDecx8A10PDs01haPVVGMz1odz7gyRvZxTuenI3CisWKU2EPIm5j+kD/R60kzOKTUNFdOYstlz383I73/XgIUlraOy9N/rvbSPNaS0x1rG/DkjgX1DK7nB1bqov3/zllnabY1GPiSlv7u5+/6/ojsC1LimdrU7lt75gYWt60KEPsiVp7YVmdUiLGAfdkGnDYXvXdtivzeaTiQ020AYh86sMWCRufoK/OkMRJxQ23BPsRiR0rxxMEOitmHlmJF2gUsoEzZtjUjEiQiL8/hmLnEwLXcabL7LrEW832UHpzUGA3UzCjEWKxJTX7g8NYW8Wt1pM2PL+bH2QhZI9tGRIOe2BzfYREZnXZBWUwTY5WwXOPoMdqKPSDANJ9YuaATHMUFsDFadsfNpmqJY43fYs9KG7NDZHVKkYFN1+uWvWHvFjfF36hn8/C+lfnY46QY4ZqSzLmpY1KIRSK9OQaE+yWR0tjAiyxJJa5eh2a9HjhEAPTKHMbuHZtaBvSNNs/WA2fab9yJMijLpTaWnQBzvK5lyXJkgOZShGCaKrKRzs2OUs7PtnG/bH0gYhkl4p++fN2o6GT+MEtRVKZRP49z1kcYLwaqiSuS3iZAYXB7NzspCDueFaHaK8fk7pyPN2bnWhBdG2gmhT23lnt4/mMdj8bw1s+SsTYzNIDr3SXB7mubBihTe0tY6v+gOPJhkT//osjvd5BJWeohyCBD5nQHYNfGsZT66bapu5Yi/H9VgXfDHLQvCLjcL5oy58A3ICIdSiEWGSo7Y7uMv59pYYHeK4El4U3goFkueEEDqqrSZ139/2FR0nf+NRERcS7/r9h1kbFyUDSQ4ezQdtq1ERxcTgF62VKRiKXzV7pGz+4G1nq9pDvcdgCHmZtYd9VijGOyPCOioNQixvVrLwMgSB2Pxb51gB74uGZKzu+W4VDIjiFLgUENA53EMfXX1BEJRdPqiUiQQnumVTDsSKBlCnau/fpLuEZSjE914CxenTUKKCX72VU2FQQFGzWRdgXj3laK+WHBxMbIHGopS+lUB9e7XTHKpxMb86c+wu65q+OTuEYVvTiDzzgpwNaDPMbXEXN2r83iPMs9CxYZ6B0vEw0VtJnXe4s9wzixpNJRMHU1NCeedfLV0CTxX1jAfWXfXxkb3udAA9QHj7GmshkNBi91sbYIoYdgMx9bGbQUmVAZFZ4PirdSgu9kbINxvGRzO82XzwWHkrVShFLhbhmA7KJimU51rMS3XxJ5+ADjqfpFqXxY5KHP/fT3m00DlKm99ezL1/Hz+iwClA9cvfP75wYiP/rrIh85B+EnYgcOitgdEuNCJzZxrEzAfjvsfUKHkDj4d62O3XZ1bCJp1HLYK2FH/sg+nBR35WdbCGyyjJ7THaP70mEVI2PmEPsy0hr90LfgZL1u2JEHD6xmTopwIUY2plUwejGvtR5asEKnfKNqIFK2EHhhAU7loX0s0GRVETSb1d34g1XtJJvAQVPOm0yHVmB9b9hV1pvgvbXw1p3y7ADOsZfXQEZMSXStjudASrCINRKsh7hXyvHPD4x5wUzBSheff33WuviS/XKlYbR2qnOuKLtqs4Ix2isZ7mOnbOWiMAfs0G4ZjjdSh0xBPYp1xa5hk55bwvXz760C7k8EweAzNxSI6VqpcquCgIhMF2b4Zof37pDJYkoF8+/TSyhPsFfQMIdnvle6FT/CRo7Hz0X6beJiDncKhpPpBhkcmQYpVQW6Hy9JZi1LixbBNdfCe2PpfD6CE9rbtzHffv+0dS/vBBYYBsC9pIt/+/N3zvvUphiUqb2lzGFq9HM1Zkj2lSpJXIKTarZEGSpcZEWwoBJ8yBJEJzDsRGWsIle+lRA2auZ8ZgdG81xtW9ffbJmqnze6cj6xxnXcHVN7ZZiDwyKFdqVrtfys8BTLIocFBElD3xwKRbrGHspVLNH0NXiZ75uKLaW3Y0eDpATZopfnTZ+hq3onIiI/97gp5H7NFRN626qY1gWZJyOlOi/1rOHjSUDK3TKub09ZNMs9PMf9IphZ22WU7i4cSNr472zOfOYnMT43Reyq+Oxa3dobDHwcl6whdkBOBYFT5FoPl7Nto7kT4MjsiwgwKAQUr9VxrFKEcxHX5KYYt9QBxXa9pkKACYKNxMVxrzXgiMs6D88f4vy+MmHIWDsomtLpG7WxJ/KrF0wWPwuQbowwZ6gNVBkDuyVi5Z2sMYjYqGHunm3jM36C9489C/o4l0ldJ9MuFdMSYsNDzuVsWekkY7nojYJhPxu7OIOs1wwC4vTR//oLf843iU0xKFOb2mdrnQAO7k5N9qjySAYNsxmJY0wVaozELrILkaelkIw2RzE2pzP04UgWezg/VU0vNZHtYMmnHWBHOTvQEkzeOhvXRoalocZCKnB+3OHfqCJTEnpGmd2ombhcKjhWU3EYoniB8y04VPbn2azAoRRjc0JzA8tMhDmR3BjBVTZLEcRwpLtlA00GsUhFr2O1I/Ke6xC0Wu7h+tiNltkl/kuHljgIPvwJnC1l6LOlDT5PN7VutFTcfHoLbe/ro1t31E/s4tgi1lF2dmjYme0KxizyDCAa5nBNsWYrDor6/LSU509EtkoIbIY5ZVAp9T03MfBueYzAYbFvgFJSxYm5OdPCuDVHRsMNHX1tiM/1VXdkt4RnQVr7U9s4zsId5vpJlgXrsvdO7Iq8Ywvnu9qw5oZ+YlmnVsGOwSCBz3OUM9yXl0I7hsYg39HnyoD7UGnaIiIjzRQyK8OMGHEkN9VbjwUn2QzOH0VgwtM++N+IPPhHdrr70qYBytSmRiN1shxZXft48zoRY9v08yZ4ttSFmBul3QkEFc1o9PO6m8whoFjpWofYkeIFtlUIqxgjiAjyJvdd11T0dsUcDEGIxGDkE8vm5BNtYe8cpV528wB7nj9E1oDaJI4YADWfoJz08D7+dv7QxiErelUeo/TDHWs+MZn5xgjZkUIMp10dZ5gRrkguQjaE98+yxqpSjc+0rbTTU+BkN4AjKcbIxPRV2yT0M9ozYiWdzSqCJjbTo9HZ814JMP2yDVz7ek2c9Ie1JOGJLGlG6HoNgcNST/vcDKzHzPwAx7lWx+slLcUx6xPEdv0dxQkt9fAM6HzHItJQHJM/wb09vov3Za0+Uu0ZsUwWmVKNIQKlYc5o9M2RKftSc4Og6etVU5LtBNagjjii4wyhaw0En9UQz2pONUeWetYl2kkts3SlKfLKLAKh2SE6gf/+aZRYaTz2cSZONtPhEauScVmJC9ZTfYT3dvMWABVjkVx4K+X4JGNwQsXjO5VzbodFuUeMyhdTvfV+tGmAMrW3lKXy4aNlntQB6HCvbE5koY/F8niJgOqUFIRKBY6bwDaCT70JFu6JY/112LyPTAeqSQ5zcIrdPLIaIgDw1kI4j2IEp3FxRsXCJkaFJZ4idk0nItH/M4viT4DtoALluRYcy8tzVstnILNfNGbIagfXW4yR6ZgZnsDoEVCSiU3JTZD1mB3Y+CVaxihHJghHKfKJg6wBHgzu4+IMMh2kmpJGLAInWoosfc8uuGMH5yRtlVLtTP83hrjGumq40Omxkd+FQxPqCzWbMcrBYbspgkJKp690cf7lHgKYC4c2dkMt80WeSGmoDlSfAxu3DXycp6oBwthFMPWV6yZcRnXiC4cn02d5zNRRuq4YiLifFwmGwCTtlLXvTd56vDRHVsbbrOA62C6B412IRbZiy9CI4PVcpvTUGCGT1BxhzJ/cOXqNvbyK0zkAfJYjayGwW7JM2e3sOMWWdhy/UkgtMGC/HRE8CwoGFuJbx5GqwWQzMXh2UrmZGjsJm3K7ICT7OrNnuYmk+R+8/T1O7a42DVCm9tazUJ1Pc2gAV3YYro9sEd4rYSEuqEYIF/vENSXaXt4Aq/sl65vBz7OEwnWvMrbmgRs1K/MECaTQCZJ9ed56/5BCTGpw5GmvFRcLNlU1yZygQJynzvh6FffNv/M8vI69Eq5tuYdF3UutMdmpLq7zUtOu3RGRCwcGwC3G1kSPJRtfgX+pXjv7rdAhUg+GYM3EMcrwtQbGbL5v4l4sofFfXkcpMoG92BWpJHg+7PDKbNBSD/dRihDM9PK683YhjNXPY9d/uSnpO5QZNfcPcA9k9DCjwMaIbCyX8Wk3WxL0fZQ5clqmaSvo1xGMD7VeypGOi5YsiDuKNCjzJ0d1PrLAaKqIstcLQcWzQ9zjzBCBx2uzBr483TaRuXMtzKffPG9qsvWRNWNc6iGYWK9jnEipZkuBzQrG5DhFfeLg/toFXEPkKmMpNaCzdxtH/0aNgcHxzQRZZTSyfvh/ZmQSV8TLZNE+D5YGf+/zdqy3uk0DlKm95SwN/p44uR9VSq6qtu6VREZ5w35kHVKnYPLUCwPr7ps6WOiZKaiPQLkd5OEY1uo4BgMRllFemcNOfKiO90DxFROlzIY5nK8xsl465bHK1quDZ0q/OjYdEEesTEUNiWqKzMFhAZmhVMtTsYsd9koXGZr1mrFC+j52o3VVQ41dEyLj2OyVcC/7JTg69gKis6L2ysC3f6tjKy+wzUArAPYkUQDjfs6Alu0CxoOCbTNDk75nHyQ3tWBkp2zsldUOSjx7JZRfdsmoOlZOcASltfet4RjHAwDStG9URSZVy65R0j2vAOC+Up/ysYnS9fJ4/0oX13SjisxGSwHHlCo/v2dgWTfFvT68j7Hk+N1JxZQNIZ/YxfwoRWCbsenj47sGtGXJg72RCOiNPNDXK2M8p7U6gsD5AT6zX0S2pKwBYeRi3nbztwYor84CCD3fx/tFsBkgi2eijKXbZUneqN2Lii7B09nPsMXF58jQmZZtvnA2DVCm9tY0MkcOi+bsyaahLDt3msRXBIlSKVPgHrxUpJHRjqiPRF5asMZvqx1zoOwiHHlgimQbocUu3ks8g5ea5oaTqgZJaOUh9vPxEysjDXzgMggOZAmkHZijX+lCxbIQw6my02qseidUf50ZwvHsaGmHjQTZobYUGb4hceCoghjnZkfloYI/3RTXvlUx8bPayBguVGYlI2e+r8ymyAS9enn8vTYxZ9L3razlJ8YcYplnt4zrnh0aUJPaMkGCzzdGGIMsrmboowS4XxKZlKFAe7pt11VS7EzsWgDLEsFeCde60sXxqRuzWbXyGanXhwVkINgz6dOLdsxaiB8q4foJMkN3srdvHwWdiuA6siq0A1Upruv4s2R3roWg2U2NNUa5+0iD04GP5/euG7jO55bAsJk9AaO1X7IyUN+3HjP7JZG5PQQm12vWbPBztc8m+5H9DJtS8llSQO8Ogcs0KPmjsWmAMrW3pKXyYXHi/x6BykYNi+92xXaUXmoy89TW6AWqR6GZBKa8Ked+vYZFvaf1+qFvypszQ2tW2AlwvLFnvVkOC6jjOylS6iLY/fpKFe7lDdDKpnn+xProOKlIPrXFNvSsiRub8cWusT1GiodwxMTQRpoNOiha075uHgs3MQ3MJF2csaZ9lHzvZtL/RQ2aUg1gVpXFNPJM6p7A0mJsgWBzBAdGmjbxG8wIMVicKAslNxEZV1TbY2KqpBMHmZHcBM/nsIjnQdAw6d/ucZqrg+zDQdGwHfnE8C7UojkoGiZpbmDZCFKjd8vWFLE8RnbiXAtBw3NL+OyfvIh5MfAxFiLaHycxKfl2AaWihw6Q5Vrs3xzrtPoDIqLUeT+xHkf5xLpxZy3MWbYjq75KejAZMF5qQcrQR8mtOcTzzycALz9zA4Ha5SbG3k0xR0LPsondPOYHsRyxC1BweYzx6/tQZb4Xy7KGTrK7yd13A9O0Of4+9guikeFEQHbioune1P7IbRqgTO2ta1yUVjsmJrVVMX0Itiwn0JXp86x1A8N4EOzKTrQU83JSbRImmWaBgoVwW3VKdktwdDdqWPy3K/hbMTZlWgYjvG42PPSVmTH0jHLLXjPMUNRDC26ozkkA4dgTEb32UiRSGFrvH+JmXpuFE5jvw9mf0uwQJctFbIyYTQi05EMJdV8zMUVlHzVGph5KACbBn2PP5PxFDKhaC/F6P4OzOSzYsSIPAmmUBRdRlk3fOufulEVmNdNUTq1fT+ihV0o9xPEnDs5bGUN6/mpDM0Viyp87ZZRuzrUQUK52VBU2xP2WInyuE4g8tousybtu4IdWFCt7nG0hGOgp1mlRGUOfXkTZ5eF93Fs142RfncP7vQkCx7ftHO2nRMs6Zj6z2EUAUhkb0HizgoBprY77SMUaRr6wgKCKnYb7xBvlRV6cx99I/ybtuRYisItc/JBpk7jAQx1XM6ZFnsjFJoK7S02R916/tZz02iyeazfA96bvWzO9s21jYi1oYDe8B5fnpCKlyLIk3h3fPbUvoE0DlKlNLWuzCurrBgZCPU5HFdFsgH59WGaZOLqgO3B4rI0zC8N+MU/sYtE8LCqIdiwiJd21O9pzJ4ST2CuZ+iWxJQw+mIkY+EfBpJS1d1M4j5FeIwG9aWLCV0MFlwYJUvF9zZg0RtYNeKuC62cpqaE0V9KsU73/agsOaeBjl71TxntXO8gE8NoPiyaqJYKghcEQMTDV0PREKDS20j0quuUIghMybtgVmAyT3ZJJvQcZ7Ail0pk5EMF7uwoYHvg41mIfz/9sC89uZmhdi4dKbaaqcLuAz3zZBo6XLV10ApH3bhhtuqPsqXwi8vFTuGcGGA8c4liJaz2XWDIbe/ibUsida/9U9VfyuM7IwzU/v4AA6nim4Lj+B+cEy0oERhdiBMf1EMHSZgVjstzDa2T3sBUCu0k7mn0kDbsTqPT9GOfwJtbV29Hs3JZqyLzzhCDlt89i08BS6JUGrvdsy/SHHt5HdomlxnqI6w1zIr+rmdHmCEHYQ/tHgbPHbFq2efPZNECZ2lvWjlCO2YE4nyiWQ6z2TnXKfh6OcqesGA/FhcwNkBEoRlh4l7vYsbULJkJVCVG2GGuJQ8T62jiCxVUEi7+fiBwqniNQcbWRZ5LovcLRUgYdrhcBpDlSwTeWokrKzljqYVdMB1MZm6AcnUcxtvJU7GaCKxEJNXV/umMBBEtiIrivoW9N+JZ7hg1J9L72NeDaLalzV8fa9UA5Zgq+GCOQidyb/UiOWHNogGMGW8wkBQn+TsAx6aarHbxGddHU0T5D6vxJxR74eH7UHwk9G4NRDs5/kEdw9PiuNV1k00YRUxjerIq8PoPAZb9kGjnZ+9iqoHyTuFYuYjsCNicku4zB2F5JZJAzef/DIthmfF6XZjCWVB8+qcEjA7KJg0yFp4BqN8U8YSARJDYGrypOipmviYNxJT091iyJrzgf9lNifyGWIyNlyp1r4RkdV3eN9bmXI2SomCl8aQ5jNTcw5VuymeYHxhQSMR2j7Yqp9J6wBkztzWvTAGVqb22jJHrqKGNFd1gsM1BXxFWw6tWGghbHIn4OjpVZFpb11+uKM0mM/vjSgsjbtrFolsdYYC/OqOBbGYt87OJ6rjRB42W24qCIYIcAUEq9B4mIq6+RMs0MA5VVmal4eB/peWY7xp7SPSeq/yAqgOaa8BodEEsvK10ch1mGUQ6O8YKCfvOJKYKe7mA8X5+BYzvb1iZyh7hHR6yMkgqOUxnjtZmh6Z8cb9yYtXwi8tQWygfExyz2jwpv+YnIXB9MrLW60W/JTipH1i+GWY3FvsgTO0rnHiPYGuUAOGYZrj4yDM52BYHgbtlAqWTgeBPs4G9U0VOJZaeBbz2L3NRYUxxDBke+0qZnhwbSpex/4poWSjGT0XrPdbx3t2yBb1YYjVYfmSqwN4GDD2Jc24vz1mAx9BBsXqtjzg196N0QeOxPQEdnSwSWcPwJxpBZk8MC7ssR/LuppTEGoO2CyG+cxxgt96wzdj9vDQjPt/BzUmdiPvduYJL4bDC42Bd5bknSp7/r9vNpam86m/bimdpb3pzDHzUWDxU395WRweZtu2Wrt+cmyipRTRL2MyEDgAt+rKWi5S6cOh3ZVgULZqRlhrEHZ+WlpkOx0sUCK4L3lyJLTzMDkLjWop2N5yYCB0DWUHOEssEwB4AscRqdAA6XPUyaIxxnX3ed1bHpw4xyOA/VZDercBDsxtzLIyA5ozX/7bKBdQnUrY9wjpJiXdgkjyBU6sYUI2MqFRTvMVIwbGMER00MTXbH/cKCNVwjLTt2LVBkdsURBA/5BOfLTY72oLncRPbh7dt43/UaHHN1bE0gRazP0nYFGIrbMUm6AUp2L81DiO891zU7kgFhilijQJa4OgHenz3uRs3oscyeUCWYWaum6pJcbeCYj+1hHK9rFuKkQOUk26pgbPp5Uzh+fQYBRauAcz65g7+1C7ivsSvymSXtd+MaU419oWaHCMTL45MBrS8smP7Pw/uYt/slZNse2ce9s+/O7Wy9jnnCjNHzi5K+7a/f2z1P7Y/Mpr14pja1ezVmCcZF62/TGFldnewIAkrnBibOlZuYCiqBpcVIpFvSbrsenAOVWImn2CvByV9tYOdKhgVZGIcFkzNncELAKJv08ZwTzRTUNduy2Lu18Rt3u4XYaMybylpi9qM+wjVR14My+spkkJfmEUj0fQvC2ODwoIhzNBXDEyR4f04zEKREL/RRhhLBuN7Er6gWi59Yea1VMNG53ZKVbpjZEcHYLfUwFjfVWT0R37MMGH1hUbNJqTKBOBbtAoKm1Y718nlpHteROnjeY88AsnvqMDcreJ3MqFJ0686+Glqw1cuL/PoDIu+/ZqJ7tPkBxqkyxrNhZidrK12MR5CYbgyZNSJG424XMG9YmjndRonxt86J/KcHRT548e7fCWZw5gbAfKzXccyxZ8ErvxujHAKV9Tqe39k25si1BoIMdnI+1UFQfFLJTgTzbGaIeUhV2NkBnnk3f3S8aNsV3CPbP9RHN9lNIiLytrvf6tTevDYNUKb2lrd09vvEGfwP+GXsGZhSxJq9dZUazL/RCbOkQVn53ESDCcUDjHJwPDcBqmKpempFDHwsxDl1jnMDS/13AwPaUqWVxmZ0QSIyzOiMzCgllPgZNhRkQFBR0CKl57sBgoPHd5EFWavjfed1B9vMvG+hbzvYa3XLaMxH+NzYgyO7UbXyxAOHBo7dqMHhEbcw8C37k9NyE2nebddaB1DjZL+EsacIWjFG8PL0FgCnzMbw+TFzErsIFkjXdlNkA0gNvtqwbMbpNhxfLcSzqIxNB6aqu/9EAdGHRYwL1Wb/2LVjWBvNjJzq4vOfWbTmhGEGdzFxVOE2QOnvAS2FuSmcPzV1OC9cvYeBj+N3AisbBQkAoQ/v2T0VY9zv9ZrI750W+Yp7zKTQVrrIKr0+g8DkdAf3fr2G4w583A+Byk9vGSi4n8f4sjPzRs16M1VDkU8vIXP3nusY872iPevZgWXajhufZZBIWvk7b+x+pnZf2DRAmdrURBAYsL8NNRcqY+zinRQ0VfZW2SkrME/ZC4lrzmy3DMfULoACudSDowkzgc9je5ZBGXu6uGv5gU0EJw4czWRsuh/+RCSNsSiPFWTInXTiWgmqXbCOvqSHknG02MNuv6rYgbYCdrcq+KmHhnOIXZSnhspqoWR9qOWJx3dNDG6vhN/ZBZq4kl7eyjTzA5QmnluCAytF+DsVdGeHhq1gEFEJcT8cW1JbCQytq+MqxgikBr5lR0aZ5Y0lHZaUyIbxlJXz1BaeNWmxncAE3NoB/sZeR8tdYwERN9MIMS9en8F9Xm5ivJ5bwvFOa4DxxA7GtXhChmRPWU8PHuC41FphQ78LBxYcDjNg2cQBLoYUbZYqOwWRRAOqzSqe1WIf1/Y7Z0Xed+3W7wFLlpF3lIlEhhGDXQa/j+oceHEBn6uFph5L2y0Z2Hu5B2BzEGs2McLnHt7H/4lZujiDsQgULO0nR5smblUkXfrbIpV7/4pP7f6zaYAytanR2Mytr7TNhb5lLohNETHtj0Js0vgDX5vijYFhcJQ1cqkJR3xWnV0+wW47nxhg1k8s2IldOF12Q+7mrRTBGnzimAMb+PaZqoqf7ZZM14P9bwjMPW4zQ8049LFjTbUMw0wP6dSkugax9cjZ16zHbhnO/BMrcN7zfRx3r4TfCValIN7cEE6nOcS5OPYEUoaeMZCYnSpHIjtiwNrcRKSu6q7zfYzTzBBOj316qHnCvjZeajTqhb71AqK+TC+PDMTYAxAzdUQuNxB8FGJTGea1lyKV2S+Z+B7P//Yty14ECQKV1Y7Iu29YGS9rngqlkZGyW8ZYVMb4fHmMDEQpsuaMzK4RKCtaRunnLTvl6LEZJIvgWJ9exPg+umcKya/NGrYpVkZRtqGfN4G+SuIiaDsoWoPL6hhZkHxyaxPAdsEwRJsVE6Fz9Lu0pFnETy/iGXA+sD3AxBF59/WjjJulu32Zp/alYNMAZWpTE5F09XvF2fjHFggcFG0RHXvYgRYj633DLsCHqiXRUeYAd/f7RVNQpTT4e67jGM0RFvjZARbgs21Tc13qwTmRVcKsQuxY75ksS4VaIfnYaJZeKlIOsejPDU7uypq18hjOdW6gLB7HaJkHRQQAZHPUVWOEbIz9EpwiRem2NQsz9IHTaBWMBTQ3wHG3KrfqXhB4vFcE3XiiWiOVMQKMdmDlt6y4WzHCNdRCw6tkBe3YvbgyxrgECnruKkC4l8d1MaAUQYbhoIgs09k2jn21AedaD9EdeeIAc8Fu1gS8PrlztBzBLr/nD2//HAY+ztcY4VnPDTBupHHHrrUnWFeqMjVsqLfDZ+1rkL1bwvsp2Ha1gfdfOMScWu5ZsJNqyXLiiESqYbNdRlnqJKMyMkHTIpgXJ8nWU2zu9Vnr4/TggbGeOgHmROoYq6wCLFG6+r13mLRTeyvYNECZ2tRoXmrS7mQhsB27iEqjKwj2dAcLPiXY+f9+Hj+XmghmblSBB1jpKo5CTOyL9Myh0nXPteC8CZQc+CiJJC5+RAyc2A1M7bY+0g7LMRZ9MmfoPO9mxxkVsYt+OSK4h6sNZEKWerimsQJ/OR57JZFISzFsfniuZSyO9Zr1h5kb4HPPLiOwye62K2NkVw6KirfRe2Am60ml/vbyFqCIwGFTrVcEAUjiiExck7T3JsbIcvQemYloFSwoYD+hXcXwiBiLZ2YIldbDgonqdfMI4B7dxXlKEYCwM0MLwo43sxtoFijboZiieizHMCh5dQ7ZGmYSTrfx+tWGCd25qWFYZobIhIxyCJJHOescnDrGopnvY7zI0CLjjCDVTiD///a+PUqq8sr3d+pUnXo/+gF0Ny8Vo+CTGEfFPNSriXHp0nGZZRaZmIlZxjhgTMa5kfGOSkyyRm/MyxgxThJ1xWTpaMYxXpMZrwrO3BVNBoVRDIoICA1009CPetepqnO++8f+dn1VdAMNNNLC/q3Forvqq/P4qmD/au/f/m38cQaRtG5dWtndxXU8sDUx7U/QZ72jZO6bxxzYPmUd4zWoC/56/88hOGIhBEUg0FDdfwer9kPKgnDwsUDfOFmAGq4DYW3+xRbrZW0ONqwDXW+K/jPmkfbcGVMLAGFoZ1NdNhiOkCalFqCuh84SBVEWjbLY0w0awainMwohLR5NuhS8h6PGyjvsmbH2rhau8pyXKcXRlv3NaJ5NUtNBngN5QNE34lwYKAUo4OUdOm9Hie5zZ9yUiniPwh5lJthNthYgx9ORiMkysH4kXTFBenuSiMz8ftIuJF3TEs4+M2x+F/RNGzULlvlbuRcwBDJTMUMUeeBfVWewNrQZApSs0n3lw0BPgc5ZCdK1ebrTi8/Z7FA6d1erDmP3cg7v/UCc2mrP2Wrcdbl9O9BEQnckKAuUqZipxO06i1MPUAaJxcl8Pc1GdXnHZIRcG7BC5rr4WvieZ2aNdsnxaP+PGzbzoGaP7Me/KI3uApGgoG6vHojT+/PnqVAXfoHWzNv/wwqOfAhBEQiawXNZvADNALF1GzGLZnNhemxQi1CLDqXEtycpWFdt4PQdVA5gEzJbUZBNubpDBmYgX2eJau/T83pQmw/4Ta28rHdhx1a2sO8o03O5sAnwvmX0Fqwf4eNUtLA1WTUzd4K+EcyypsG1jXiUr4+9LDo0SWNBseNRoGdn3EjdtLWyliCphcZsGMbC2KJD3+Dfy5hOGcej4N9WNkZx7GfiWSRkBbT7a5DuaVeM7iFeMyZj7MNh+6Y1t2pT5qs7T/vQob/VD8boOO1leq43ZRxRWbMT9uj97ihp+/4ykYFyiDIcc4aMYJln8fD7sDf0pmmv2PqenWfzYWNQx11kw1H6TA5qMbLj0d8jEWBjAJhXNq3lYd3V05ekP7EaEQRuAfc0WZ6Ro/Oy+JhF4jzssXmeT6xmdDT2GFm5HQnam1iN9qMZTetV9DaaPQQAF+57iwRHN4SgCARNUCcthjVyNwVtNv5isWFW+5woy3zb9y2gHjGOrUNRM6mXv8Hz1OMtaQqk0/NmDgxbfmfDZhIyO3xaIILBYIMy/uZccEyJZDhKay1lZgJtSxq/Eg70xZDp9hmO0nVxtqitTBbuts4+FEMmi8MiSLYkZ2JQCtE1cDttskqP1bT5XFuZyERAd/28Po3KY0NR0ya9IwGM6FZcdtNNuqZl29VGdFmtX2kv68F9njHlyoebxLA+kUYu6fA3985Sazbj+CH6MxSl43IWohYgoWp/QmctXGP1PqDdWafngP64GX7Xl6C9e8ulbE/IAzJ7MG9Tlmk954nVXoAIUDZCpGo4QoSQB1fyfpR1OZE/P4kqvdfskQMQQX61B/gfm/TQQV2GDPnUFszdR0H9GQjXaX93xsn/JeW2dswAdJ0f7h+bnGxP0mu5bPTmVHp87i7SkjSLWwWC/YAQFIFgdwxoHUdAEaFgV9hqEIi4Rh8Qq1GQZH+RcpCCtRegLEk5SOWQzRn6ptxWpgCxU39r78kbEWc+bDIg5ZAJpExaACOK5YA/tUjfckshM7WVSw0FTRKiNd29oluZucSynmr+6K6alH7JMTN8ElV6vuCYdlvOOrB3CWCGtCWqtG8ccAE6vxvUHSo+BV1uo+4q0DUnq2aQomsbl9FagIJev22IYVuZCAWTk5gWLVd0yY2zAJmK0TnY+rpZ+Mqt3kWHMiaAMUYrB2ldzQbCVSBkGRLJZJPv3fGMliWt/VV4kjWXshb00uNbU63GeXmHBKAzQLOgCrostjOmRcklOueOOF3jlrTOmpXoveksGV1Uny7BNCNdAS7caH5/u1NP9x2hLEhNa2X+PJX0UWy/z+9pRYvEQ75ppweIgDRje9J89jm7NRyFaluyj39gAsH4IARFINgdVdvM6AkowA5QcMzoQD0S0bbsdWNMVQxRkONW47BnhK48+6UcNF0pbRVTXohXjfEbO6HykMF6wJi5VW3jgXL8kAlMfUn6mwWHvkXlqVjNuNwCRgsTqxGxiOushKVIJ7A1BYS1CDeuOzyYnAAUlGdl6Vr6E0ZnwiLNrgIFx4wWWe5IGP+QugcoTZrYeh+g4JjXYtqwJjYstK0F9JDCIGVeklUigNGaISAsUg55Ris01pwW3ise4jeF2qpVxy0AAOtPDwNnbjfEzILpFmI3WS9Ae1wMAau7iZAdN0zHKoaMEHhH3AhwhyOmpHVGX2vAZwR9IrJb0qZ0lnTpvDzbB6D3XKFVuM1GgbsPA+TPb8Eh0ez2JBG79jK9nlvk82FjHMht1r4FlF36XB0/RJ/9ZvQn6LmZWTpGomqyJG2jt14gOFAIQREIdoM6ZRGsVQ8C0B4nPBdnOEoEIFOhx3tTFBSzuhQUrRsBKVug87drTo0XHMoG8BRh7qCwlfGRYO8VNgazNWHoKlBAOWknBZp8mNaVQlpzoUwpx9Hlj1rAGK7tSBjPC3ZXnbuLfFnKQdJWBEBBuhI07rbrOo3V/5QiBVluleb5NvFq62C/lPZyyWoxMbcZ12wKpuEQ7WvBMZ4pOuaiGqC9YOHrtKIx+uKyRsql/a0HzPwZwHS27AkdJXrdprbWjMAZfXQNO2MUoD2L9rDg0PnZPI6HJMarwAkVYJ5+L2bkgP87h+7X151AtQC99pQBOt+KY+iYJwzCin3TXK8CvYa1P2znX3BMp1TNpvdvVtbMigrqdl9uO+fy2zsd9BpuW+afp+fpWlZ1Q52yCACotZ7nTrH2hn17XHt0SYf9fjwLqvMWoHP8/64Egv2FEBSBYCyEtMfGsSMULAEzXbfg0H/073SYbEtniQJqQP+TKmizNxaRchqddRA8T4VdRdmSnb/9N0ojVfoWPdZUXzYt684brYyyzBwX1zb+FgWdweE5PjFtYvbnKbSeCRa3DXu6e+c/Z9PPXL7KO0bbweUSNlvjUsVgjJ7rKFFGxfaNsd3u5YRElV5nwUwY5lZuHvIXrZn5SPUAfXtPufTanfHWjIml6FptZUzMtqaMQyw78lapdGap/03PWxm6jpA2RRuMtU6H3p4E5lg0GXlnnN7/oE/HZDM5C3StNdu0WbNnSkQ7AJ/R19pBxVkXW5nOIJ77U20yycsFTDs1QHvrBinTlHfIiTXvkN9Id95k4roLwIx3zPne7jQlQ4CyUr1pIo2ZiinruLYePmk1vGVU+u+BGGS+jeB9gxAUgWAMqFP/Bpa600yBVaAAwkFzIE7fjtMVClZukIJ9zTbfgAPK2HnzQL9SiAIXa0VqAWOhz+WZkE/HsBWl0R3PlCaqNmVluCuGBa0B3aHjeMBADAALe3UJhx1nWTTLZQtl0bl604Crzdq4vPHcHLrO3hTda0EHwoE47QmXGXJhureiYxxjjxkhItGdJyJRD1AWgX02RiJGy5HQ5neA0a9kXCO45ewC28pPK5jMEZuwcddK0KdAnaxSNoQFyZxF2NhmWnR5qjFnZXpTugXco/vzLXO/Fct0L3HXkheg4/HMmU9uoGtgB9igT0Geu4Hay6Pbu7l1vGQBsbq20NddZHm9J67+b7r5tSzgdm3au5XT6bNSCgGvzKR9OXmncbtl1GxgzhCsdT8h/VIa9H7kw/S3oz/f8RpQdcUsTXBYIQRFINgTOBBziy5AQYMFsSycTLqtxlyMvA4i3O3ToYlLWFvXs+hyKGpm8yjLuLZOKxrTsmKIAqetSOPAtvj1IF2jZxnywS28MU2MYJnyCdv2s219XWdKZmbpfgZjdG9Fh8SabMs/bycFZwXSIETqQNwyWpWpRW1hbhkNSUABI2FgRp6yUOzIym3baZdIQlWLY4ejRvNRCRrHUi6vhDzSyPQlqQykLKNn4bEBAJHKXNhogKo2EaVdMe2Aq8zcGsDoN9rLdK/VNtobxzNlHS67JarA+e8Zo7eC06opYUO73hS9bliX7QohyqbVbOAvtpn1/Lnyrdb5SFy6yoXpcZ5EDRBhyYXNJOxjh4mEvNNB19SfoC6jkGecdTkTdOqO0Z/zGTnaM8eDOvZr5vH0OP+dCASHCEJQBII9QE37n7C2P0j/0fsWBTTXBuq20X0kqvTYcBToybUadiXd0eLFZnSUgA4YIaqvyxGsvZhaIMLAeoO69iiJa3fUgmPm1ViKvnkndKB3dZlAgYjN1hRlHrh9lUnAccOU9g8o46baUTLuox/tJRv9XXEKvAOanLA+450OCnDvZYikDEVNuaYYoscqQdJP1EtEXt7u1KWQ4mjvkrpj5g1VdYs1a2qKjhHE1gL0jb8eoICcDxt9kK+JUylE2S3WV3QXtEmYZwZC7owREQz6dG0JnbX50CCde2eMiMvaKfR3c8cMm/St7zCdVTNy9HimQhmjjhKdpxqkvfct4P+cCFywyZTIuAuJJyVHa3RPHSV6X9/L6M4wy7Ssb2yj1+TCRkg7I0f79NEtZubQUJR+7iyZ7BRjRwJY1wH1iWuB1IH8CxEIDi2EoAgEe0O01uSNoQWmbGTFHTylEIkKo9r0KloztuvloMlkNHdf7NBumikXiFWN/oPLBQyeTsvByYJpo+UZJ2w0lg/T845H2Yl0xWgcOkraFl+3SWfDQFdRD4jTpmzDUVN+4QGD2Qjgho15Wi6sS1K6y2MgTsezQIGyHqBr2ZwxDrnc4VJ06O8PDdI6LhuxMDgbof3gCcxs2e9btD9Vm/bfDRpbeG7b5rkxPAuINStlfe6ugnFoZfHp9iTQVYAK3Q4AsKxv0jGaSQiLVjk7NqBdcsN1Ov7mDJXHhnUmrR4gH5SRCJ3v2BFTzvItsspnwsujAHY1iVTby3Sv/D51FWhfojWTteMSYRZ6Pk+KMinpiiEr/RZda3uZyAnra6o2VLtuA56m/wgEkxRCUASCvYFbdNkrBKBv5/ytHqAg01Y2QYlT/nXdOswiSS73dJTo2z7bq9dtAHVjuV4P0DmKITNDhlP0jmdS/ZE6pezZJ6MUolT9lJIxc2OrfG515pbRNl06mVY0Pi+ceWCLdJ7My/fBWpntSW2xHjXnYjv8rSkiC2zQVgqRMRsLLqM1OgdnDyzQmpTbqrFg+/igb1prWceTDxPB6kvSc0ktHt3QTs9PLRJR6c6bUk0pZCz3awEiZmxVvzuyEQr2bnB0i+3UImWAyiEiImkXWBWj673gPa0BitM+sAU/f36OH6JyzEjEiGvzOhsyXXviuEHTcu3aZk7QQAzYkiHC4usSI0+8zurum+Zhffz+V4LApgzUCV/dn0+9QDApYCml1L6XffCRy+WQTqeRzWaRSkk+UzB+WKt1madmUxBhnUjQp2/Nxw1TALYVBU7AeE3UtI9JzTbtpCyaZHCnBGBEtMoyxMHV5YNmksKdM7uj4FDgbnaB5WwEG88pmOca+g6fdB3RupmozEQlWqP7HYwZbQxrHXbF9KA7j3xEuGMo6Bu7+L6kCaRtZVNS8S3S9KR1B8lQlF6b0tkf3hO+FiZLLGBt3q+KJhODMaPZsBVlmfK67Tvh0mv5/QhrD5ZQE+kbL9Z1Ups0l/C2pmiv2Ob9xeOIRETr9JmZUqJ97CwRoWLCuzltdD+sVZqeJ3IVqesZOlUivpxlmVY0978zRoTo1AE6tiYp4t4qmMwYbzyWDIpAsC94FmA1ZVKggJgmCxyQt6VM50bIMwLLaN2k+HnezO4INH1HiNUMKWF9xjRtO85i2KptPC92B5d+tmnzNhsU6HjOChMSLn1Ea9pSvgZM0RqIgCJRZ7RGAZi7bXp0GeWNabrMoO8poW3w3+40k2856/HWFD24zqPyQ16TF+5AKejWYvaOiVfNdF+GaxPham8SGTseZY6qNpXeAjrzxJ1QzdmisM5eZSPm/liQXHCMx8v+oHlODYNJA0A28/8522hr+DPRLFhl7VJM60o428JTox3POOU2l/6UZTqzeB7UW51Ql31u/+5BIJjkEIIiEOwD6szrYf33T5sesEjAykHfDZr2TNZNKMsEU85msNZirLJCM1IuALfpZw0ugdR0l89YBIVdWbkddn1HQ3vQCGwcwCN1k8kohyh45sL0Db27QMGPg2d7U6lj7i7KGHAAZX+YgPbPUBaQqQNvafFtxQYqIRIDHzti7okzObkwZRgs3XHSl6A9jGvn2LRrRKis7anqvRmJaE2KR4SIfWa47NQ8mZedVTljlaiSTwkfEyDCsHtZZ3cwOeTjAmYmEsNSVM7ZGadrj9cM0eMSUr8uQ3UXjBi2vaznC1Xp3sr6s9NcvuHOn1gNas5NwJy9X65A8EGFEBSBYDzgabUJj4Kao7UQ0wrAu3FTBqnZFIg4iFRtrXuwSbvhBo1ugn0n9hchj0jPYMw4qDYjF6aAmHKBj2w31+Ho7pVhXTao2Ma4rRw0rrONeT5BEoFOLQL/bzZlQLrzRtNRClFJY3vSeKHMzNIxXdsMERyI0z7x9ONQE1lIuURAphVMu7WtryeqCRl3Q3H2h+3zqzbdx+ysadlm35FIna6JM1FKe6mUQ3Q+S5mOo20pU7ZrHro3FlgHA9B9NRMT1isxAWXfljlDxrclGzY2/eUQXX9Nd2QlqvTYSEQPe0zRfXQVgB0JqGn/cz8/KALBBxtCUASCcUD9xZdhrXnATCzm6bDvZUxAiulyCZuORepmJgtb2VugMgeXA7oKFGCbvyEXHPMtvVkgy8hGTEmg4FDphYMmT2HmEgH7o7Dbqq0oe6BA18KOpUHflAy2pOn3Nm0s9k4HvXYgTtfSk6fAvLGNSFp7WXukWCZDUQ5S8I3UiWhkIzo7UTHmcVzFidb0ROWwmZB8/JAJ5IyBOB3PgnY8rZt5N44HRAEco7UnVZuuw/b1XB9NPgKa/IxETMfLhjZ6H5nM7Y7dsyqcBWPDPC4RWaD9zkaos+aYEXpvh6K6q8o1HUP4JlntR2ukZ2kWxvI+ehbUiTfSOcWTRHAUQgiKQDBehHVnSaSuh7nBlHMqQWNdz0LakQh96wco8PAAwG1aFGb7ZiZOQNGx2Wa9P2FKRixujeg240qQAthwlLIFlSAFdCYyPMNnJELf4Hn6MgtvAaOH4MGEeugbfIuC6UiYjs+6mrxDupS2MgX7fJjWDUbpODwTJqJJw9SSmXQ8I0fXyV1Q3DbM5aVoncSiAUVko7Nk2o5DHmVoHI9KTwFFBCyr253rAXofAor2JuUCtgekm3QlvkVdPe90mHJJ8xC+M/dATADgtR66hliN9i4fpveBxwrYyszNcTzz570M8IdZlBni92N20zl5Xk9Vd+ocR2ZrLc6tHQfwGRUIjiAIQREIxgl1wlfpm28zuI24GDJGbgoUsJJVIFMyk4z5G3fDpVRnSUYiFFxzPlBJayFskDo3onrttqCea6PMsL9onY6bd4B320m7wOZlRcfM4eHhhEEfCGiy4mt3WW6/rdlGzDus7fnzAVNK4fbcroKZVxOySbxp+5TdGInQnkwtGmv6pGtm7LBImIfYcdv1zpghSaWQmc3TUSKywo6qmzK0h7aee8PEJKAo2Nu+tqpvIiZ8f0yclNaf8CDHup5xsyNhDPP+u4uOXw4aUuTaQCFK6zr0NaW0dwxgupTy+l6rtpkYrdAoHTU+P/lIYyijuuCvD8GnVSD44EMIikBwMAgoE/QKIRME28vGFKxqU4Ash0j3YenXcZnAAq0J+YDnAxXHOMAymeFSDGDKQ5UgBV/WbKiIyUDEtSMqQOSDBbFcjlKWyZiEdLs0G8HxoEE2+OrJU7BNN3mV8Ld/SxOErgL9YQ1JWJecojpzkwvTulQF8EHXE6vRcQsOCW85YxL2mjpdgkCiRPfFotHuPBFC7vZxPNPl0zw4kDUuJS0AZvt9nsA8pAnHBZta3XwrQcpyFRzK/szIGdI0I0flG3ah5WxPUNF7sSNusmjxGu0ju/RqKHzTlGwyE/IpFAiOSAhBEQgOBNwuyi2yPNSOyz29aQpiIZ0xYOt3zqYAFKy5hJOu0DGTrjZd02Ucno4c1yWLctC4q7IdPWci2PG2pOcHMXnyLSCi9SiVIH37j2jdR7RuTNfCHh0/rDMkVZuyIXx/7JTK7brNZIDBOgpXZxCYiEzPE8mIam+PUoh+DuuyVj5sNCKuDQwm6Pw9eT0ZWhMXLjGxPqVq03Gm5s019KZNdsXxTJdPZ4n2OOwRmdmaAnI10tKcoK3tubtnSI8L4IwODxRMaFM4W5nOJp4bFK2bwZHrOoCI9jyZPSK+JALBAUAIikCwH1D4JqxVD1LQ7clTkOdZObmQGQLIHheuLoMEfdKVsFFbwTH29nXdxaEsCurFJrITrhOhsPS6kA8E6pSFSFbpTz1AmYJiyAhIuQzE7c5BnzxRajaREPYMKYeoZJGu0NqQR39ndbtyTXfKcLcKd9DsqfuI5+SUQ3Tv8RplZtglt6RJmgJdL2d5eGbPljT9zX4wA3Hav0RVl6KadDO+Rdfo6swSt/SyoRsP1eMRA0NRyvJwmzMbtM3Ott7DKQPAiYN0fezHUg4ZoSzfO5dyeNpy04RqddrfHNTnTCAQCEERCPYfRZ3u709Q8C6FjA9HNmy+hb/aY2zPWYswZ5iyBZz6rwcoGBcdylAM60zGrhgF44BqFZ9y6WRQTzl26kDNMbbyc4bpfG1lCvrlkGnX9QJA3TOEgUsm/HysRoTEt4h87dTtwRvaiTTwADvOHr2XoWvoyROJUjCeIq5uuR6xjY0+m44BtFeubVxgN6fpuHG9JhemoB9s6sLhYYSROv3OGQwL5LkSq9N+u7YZCZDWWSpLETEpNw153KGHDD5/HHDaDroPLoGFPCCj95ozNpva6B6544YFzrrE18iSJA7R504gOMogBEUg2E+oj18L68VfUtCL1YweY1jPlClqTchHe4HVXZpY6G/XCkQeQj4ZdDX7gnDwjuqOES/QGtADioJlLWAEnrmIFod6dLztSbO+or1EuFW5FDKaDwumvFPWmQyrSI/tSNC6TEUPINS6jY4SEYddMePlsrGN7q+jj57jziQWAbOAmAN/vAq4ek3FJnFvW4UeD1eNO21bxYh8K0E6Ty5M2ZTBqBkpoECPZyrm/D0lo/mpB+iYXoCIG2BapHtTtF9RPV8ooC3p2TeFvWyGI0Qg2SWYSQkANetvD+EnTSA4uiEERSA4EHhWqx17OUjlHTdIRm5x2whMUzozEq/SzBR2nd3URsGzroW1ZT0c0A2aUgT7i3gWPR6p088hfYxyCIjxnCAYLUveoUDL5aOILid5ukw0GKVrq9q01guQMHR2Vk8gdmgdaysG4nQtXoBKILkwZVTO3E7rbe2b0p+g8/iWIRhlrdHoKrZ6myRdILmNMjX1gOkICntGgJoP07W2l80xi465p+bMk6XM0MKaLvuEPXKxjWgNTzZCz3UV6Jwzc0R24jXTGs6DHdPN3T+gjpuZQkgEgvcLQlAEggOA+tQ1sN79sXEqjdeAvGVMyRQomJ+8kwIot9Wyb0ikDkzPUebC1pqRtjoF1GGt8+gq0Gt4sJ2tzPBBSxmxJ7vBKssE8+EIEQy2WU+5RIym6CGD6You8eiZOLb2EdmeJL+OXTHjanrssBHNbksCGYeuodlLhBHS1vUp17QAs3ura9P9sDGcp8lTtEZdPMNRow9hzQv7vjAh9AKmzMJdP9wqzJOYB+KtOhnPAgL6/chUaL8jWtAK0HtYDOmBiTZdTznY0Je0eJMIBIL3DUJQBIIDhQUTaHkg3ECciENUm3fVI8ZcrKq1DB16mu9ObZGPgFkfr2m31TBlD4I+fft3te+JAx2kAxR0AT2Xx6fgy8P22CDO0Z05bWUiJTsSrdqOgAIyPEhQe6Ns1dbvZZ1FyIXp3IMxEo9WgvRzLkxZjRm5Vnt3ztzEatpxt2l4YsEh8sOTjqdpN9Wa1qpUgqZbSVl0DJ5IvC2pdSWuabEOe60C4by2jGdxL4tzfRBx4/bkZpFvuG5KcLtiUM7tQNf78PkRCAR7hRAUgeBA0VkygZTtz2M17UHiUPCdUqSgOhCnAMqC15ptXs/zeyI107qcqBphLetEWHjKhmeckQj5lOlgkW7aNQ6z7FS6sU1PRi6a9t9IncgIe45sbqMgfsIgZSfayjS5uKNsvFJY78JiVHaDPW6YjhGuA8EAXUdSz5aJ1I1mhPetL2laeO2ImYPTO4XKYJUQHYt1LMN6Pg1Ax7KVyTz1JYyRnLKAoQiRl5ImIxZ0acsDlNM65E+jIXDtPHQfF4FAsH8QgiIQHCBU+u9hFb9PwTvV9K3etyjz0KZdXS1Q0H+9i4SmgzEyG7MVkNTaE98isy/OXDTPZWkWxfIsGR903lrA+HKUgsang0tKnSWja3kvQ8Sg4NDjljKBvLMEzO8nHQp3Jw3GSBfiW1T64Y4dngOUdEnkytkT7u4pB4no5MPG16QeMB4kpZDJsgxFiYgFPcp+tFWINFV1l86gtsrnycTsSVK1gbjOXnGmpqK1O2xxn3Dpvj3LZGh0+7b4kggEkx9CUASCgwFnOaq2ForqgYHZMLCyR2tN8hREZ49QgOVuGMB0i7BlvoIp9/AsHl+LZHlmYEABBd2qnKgCNd2KXLOp7BNoGpaX1cP8etNEAKYPal1KlUot3Pq7JU0dLH0JOv8ZfbRue5LIS0+eXl+1jT+Ib5GOo+gYozo2MwOIwEDvza4YkQXuSuIW6rBnBhe6unQ0pURlH84OsSNsPWA8X3jv+xLA9jQRKbbXByhr5EcMeaoFoKZ+A5hyCD8LAoFgQiEERSA4CKj038Pa+gMKhDVdgilqy/v3MsYXJKm9MxzPDJhjm/mCYzQgCJjgzVOHuezDYlk3SMcLhoxZWdExNvSuJiDpiraBd4ionLRLe6doMzbulgkoo8s4dYDs2nfF6LxzdwGruomg1AMAfCI83QU6R7Jq2nHHAnfYsNU7txyznb2lqJwDz4hX38uQMDdRBTpcyqhMLQJrp5g25nyYSlBBnzQqnhYId5S1VqdIWhKBQPCBhRAUgeBgkXdIaMqlBku3G7PxV0R7i/Tk6XFLGX2E9tOArcsW0JkJnlPTVJZoZEZ4yF+iSmSnojuJglqLMqVI63r1wJfpOQrw2SahbjlIRGhWlsiI4wHr20lLMqVEpKCm23BP30ECVdbYMJkajJG2pb1Mx9kT2AulJ28EshFtee9bdFwmcinXCFttRffFnUG5MJVwAHp9vGZ8UhwPCCoo+w69n4fijRYIBO8nhKAIBAcJNe9GWCt/RhmFaB1IaOIR9IFYlbQlnCXxLfIaKQdNmywTmkiddCRsOV/TQTuoMyiAbqvVIs9mm3qeSTN7hAI5l5L6krpsoicMs3ttKWSs5AsOZSdm5IB1nTQ4r71M9zOirzFaJ8KyK2ZcVCO6FGUrYIdHmYyxEK7TJGJurV7XST9z4oVt70M+EAgZMjK1SC62c4aopBVQlI1JaxO3rSmo028w5xGBq0BwREEIikAwEYjrbEZeC1AdbX0f8qgcEa5TCSLkA5szFJRn5ogA8MRfS8/x4cwKTy3mKcRVPdumBFrDWYZI3bQO83rfog6crgIdcyhKhKWsBbG2IkFq1Qa6h+j1/QnKrgzG6O+BOJVwWJjbVaBrL+mOmLYyEZaRCJ2X5wWl3FZDtoSe5VMKafv9IFCLmQGC7PXCglYu39haNBwAEZagD/WR69+3t1QgEBxeCEERCCYA6qTFsLZ/H4jrksNIhMoe5ZARwSoY3w7PMoGdZ/lw+cf2tR4FRi8C0HG5NFRwjLfIYIy6cViE2l6mklLKNZkVgF7HupPmgXx9umuns2SyK1OKRLrYBr9mE4GJ1oy4dVCXa8pBwAkRCbJApaQ5w+b6ASI3BYd+PmsbkZ982AwyrNqkldmcoTV1rcVJulDh24A5h/gNFAgEkw5CUASCCYLq+TsAgDX4XQrqWZ6T41NmBQCmDVMmhV1hfYtaiG2tS2EhrW8Zv5SKDUQ8EoB6uu3YDVKLbUDR6/MOtQiHtZ17Ttu3hzQh4pIOX9eUIhEmxzOEhocRJrWlva1LQm7QDENkh9VElTp/uNsmH6YyTTai24N1N84xI8YEjbUv0TplUryAGa7IupvT+6FOWnxY3j+BQDC5IARFIJhoFBzKGHD2JBem4GsrIhi5sPE3aW6f5Sm8A3H6m8tEySodMxcmozVbafKhu2CyYcrGBBRlMXYkSOuRqhER4Tbi7gIRnuOHzCBBnhzMfii2rwcEQrcOQxvMgdbxwMIhrQXZkiaCFNbX2p2nPfAtmlC8OQ18aoPZm6g2h8tU6H7jNWBbEuqc697/90kgEExqCEERCCYatu5KSVQpCE/P099dBSqTVHT2I1pr6ljxTcYjq0s/vkWvKweJpLCTai4MxD2TfYjUSeOxLUX2+fEqkQwmMe9qQsATiit69gwPwktWiViMRCi7k64QcSqHGkPyYCsqxURr1AK8M659VfJEtMIeXZfjkXfKtAIRrbQLvHAcZVNmZUlbMiNHRmkJvV8zD8N7JBAIJj2EoAgEEww142ZY/p2t046HotSBUnC0SyzMAMBE1XT4lLRPSEC7wzq6y8ezgN4MlXk4U8ITe6s2kYltSfIt2REnArJTO8EeN9w6ZViB9CZDUcpoVG0S1KZcIFY3WRVbe7FE9WycaQW6h76kmRyc0IZvAWWGFLIVf8ol4qR9YVTbksPwbggEgg8qhKAIBIcCLCytayt6DuoxLTJN6um+AS2KzTvG58T2DZngeTesFeHyD08BtkDrdySohDMYJb+RgD4nW8y3VYi4+J4p1/iWMW5Lu3R9eUevLxNRYbIxRZdwADMsMFaja6gHgLyeq8NTnF0b6vKFh/ENEAgEH3QIQREIDgFU4n/Beu2fiIhYoCwCz+tJVInAJKtEPjZniIjMyJmSi6eN2aaUiHRwRiNS19OLtTfJ2510joJDBCblEtnoT1BbMZuzTS3ShfUljB5GWcap1guSv0rVpnO6Nh3L8SgzU7ONxXzIozJSQJFRm69dXBNVqMs+d5h2XCAQHGkQgiIQHCrkHW1nr1tt3SAREvY4qeihgJE6aUMsmFbfkM6glPU/UXZcDfqmM8jSmRjfIr3JSKR1bk2zBX02QqSovWwmL9uKiFNRZz58rVGp2saVNq8zLWz+NncX8OcpwLEjRFxmZ6GO/dr7vLECgeBogBAUgeAQQZ3/RVgv/JKIh6dn5qQrhpyUtd4kXSHS4XhESNhoDTDkwQsAtm7X5TbkgQS18e5IAFXdcpypkFjWtwBbe6DYWrMSr9K1wKfHhzWhmaL1KO1lIjylEJ0v7dK6zWnK+mTKQG8K6vwv0nXMfr93VCAQHE0QgiIQHEpwdoSdVR1tyDZbz8BpLwO7tOCVh/axtb0XICGtsmidgukMcrTx20hE+5s4wAiVWRourAHttaJAxCMbITIUAGVOlEVlJQtmcvLmDNnzdxeIqMwegZr99cO0eQKB4GiGEBSB4FAiU6EMhWcRERjW1vZDUSINAGk/eNCgqztzuDTkW0YsG9JtviOaaEwtUoYl71BZZu4u6rKp2UCsQgTFAhGTNj1bJxc2JR7HIxKkQLqXwSidcyQKNe9GIHN4tkwgEAgAISgCwSGFOmURrLX3ExHIaH+Rbu0R4tr0d2dJz+IBERnXpgGD9YAR1fI8H+gBgm6QSjtdBTrmthT5j1Rtspkv69dtTekZOXFaF63r6cVaWMvzfYohqDO+cji3SiAQCFogBEUgONQIe0BNEVHoKFEnDXuIhD0iJL4eFhhSQDVEmhJbi2JzmpyEfOrKAYxWZChKmZLOEpGYUwaAdR1GKOsFgI9s1+ZsmpDoFmZ1yqLDuy8CgUCwFwhBEQgONQLa1KyzRFmLkE9lF3Z2TeqhfvkwlVuidUNaeCYPl3x68tTaW7NpbbpisiRJl7QlJw6SM2w+TO3GymqUeVS7mKUJBIIPBoSgCASHGjOzRBZqtmnb9S3T4ttRokxKokqZknyYiMdIxNjet5eJ3NTr5A67sY2IjAUzeI+7dDpKwHsZqDOvB47V15A8TPcuEAgEB4jAwbz47rvvhmVZ+PrXv77HNU899RTOPPNMZDIZxONxzJ8/H48++mjj+VqthiVLluDUU09FPB5HT08PvvCFL2D79u0tx7n88ssxa9YsRCIRdHd345prrhm1RiCYlAj6RD76ElSiyTVlNhw9w2YkYkSx9QCtn5WlNuJ0hTQlbPRW08Zr3O0TrdPfyoI69W+gev6OyIlAIBB8gHHABGXlypV48MEHcdppp+11XXt7O/7hH/4Br7zyCt544w1ce+21uPbaa/Hcc88BAEqlElatWoXbb78dq1atwlNPPYV169bh8ssvbznOBRdcgCeeeALr1q3Dv/zLv2DDhg34zGc+c6CXLxC8v9gZow4bgMovbWUqy5S12LUcpHk4TE7emEalm3KQhLDROmVXajZlUnimTkARKfn4tVCn33BYb1EgEAgmEpZSSu17WSsKhQLOOOMMLFu2DN/5zncwf/58/OhHPxr368844wxceuml+Pa3vz3m8ytXrsRZZ52FzZs3Y9asWWOueeaZZ/CXf/mXcF0XoVBon+fM5XJIp9PIZrNIpVLjvlaBYCJg/enn9ENNd/PEaqbcE69SZqTgkPB1fj/9zB08aZdelyZhrEreenhvRiAQCA4C443HB5RBWbx4MS699FJcdNFF+/U6pRRefPFFrFu3Dp/4xCf2uC6bzcKyLGQymTGfHxoawq9//Wuce+65eyQnrusil8u1/BEIDiuCPpETx9Mzd1wzl2ckQmQlG6GW4aBPbcNvTINK3grVvgTKvkPIiUAgOGqw3yLZxx9/HKtWrcLKlSvH/ZpsNovp06fDdV3Yto1ly5bhk5/85JhrK5UKlixZgoULF45iVkuWLMFPfvITlEolnHPOOXj22Wf3eM677roLd95557ivUSA4lFBnXwfrPx+mzh2eClwP0M/hOpC0yJ8kXaH1M24GZhzGCxYIBILDjP0q8fT29uLMM8/E888/39CenH/++fss8fi+j40bN6JQKODFF1/Et7/9bTz99NM4//zzW9bVajVcddVV2Lp1K1566aVRBGXXrl0YGhrC5s2bceeddyKdTuPZZ5+FZVmjzum6LlzXbfyey+Uwc+ZMKfEIDhusNQ9Q2YaHB/oWCWUBwPah5ouGRCAQHPkYb4lnvwjK008/jSuvvBK2bTce8zwPlmUhEAg0MiT7wnXXXYfe3t6GUBYgcnL11Vdj48aNWL58OTo6OvZ6jK1bt2LmzJl4+eWXsWDBgn2eUzQogskA67V/otJO2JMZNwKB4KjEeOPxfpV4LrzwQqxZs6blsWuvvRZz587FkiVLxkVOAMqoNGc3mJysX78eK1as2Cc54WMAaDmOQDDZoT4i7b8CgUAwHuwXQUkmkzjllFNaHovH4+jo6Gg8/oUvfAHTp0/HXXfdBYC0IGeeeSbmzJkD13Xx+9//Ho8++igeeOABAEROPvOZz2DVqlV49tln4Xke+vv7AVCLsuM4+NOf/oSVK1fiYx/7GNra2rBhwwbcfvvtmDNnzriyJwAJdAGIWFYgEAgEgsMIjsP7KuBMuJPsli1bEAiY5qBisYhFixZh69atiEajmDt3Ln71q1/hs5/9LABg27ZteOaZZwAA8+fPbznWihUrcP755yMWi+Gpp57C0qVLUSwW0d3djU9/+tO47bbbEA6Hx3Vd+XweADBz5swJuEuBQCAQCAQHg3w+j3Q6vcfnD8gH5YMI3/exfft2JJPJMUW1hwIszO3t7RXdy0FA9nFiIPs4MZB9nBjIPk4MPoj7qJRCPp9HT09PS0Jjdxw1s3gCgQBmzDg8fZupVOoD88GZzJB9nBjIPk4MZB8nBrKPE4MP2j7uLXPCOKhZPAKBQCAQCASHAkJQBAKBQCAQTDoIQTmECIfDWLp06biFvIKxIfs4MZB9nBjIPk4MZB8nBkfyPh41IlmBQCAQCAQfHEgGRSAQCAQCwaSDEBSBQCAQCASTDkJQBAKBQCAQTDoIQREIBAKBQDDpcFQTlGOOOQaWZY36s3jx4pZ1SilccsklsCwLTz/9dMtzN910Ez7ykY8gHA6PsupnvPHGG/j4xz+OSCSCmTNn4rvf/e6oNU8++STmzp2LSCSCU089Fb///e9HXcMdd9yB7u5uRKNRXHTRRVi/fv1B3f9E4WD38fXXX8fChQsxc+ZMRKNRzJs3D/fee++o87z00ks444wzEA6Hcfzxx+ORRx4Zteb+++/HMcccg0gkgrPPPhv/9V//1fJ8pVLB4sWL0dHRgUQigauuugo7duyYkH04WBzsPg4ODuLTn/40enp6EA6HMXPmTNx4442j5k/JPhL29u+aMTg4iBkzZsCyLIyMjLQ8J/tI2Ns+jvX6xx9/vGWN7CNhX5/HRx55BKeddhoikQimTp066vVHZJxRRzEGBgZUX19f48/zzz+vAKgVK1a0rPvBD36gLrnkEgVA/eu//mvLc1/96lfVT37yE3XNNdeo008/fdQ5stmsmjZtmvqrv/or9eabb6rHHntMRaNR9eCDDzbW/OEPf1C2bavvfve7au3ateq2225ToVBIrVmzprHm7rvvVul0Wj399NPq9ddfV5dffrk69thjVblcnsgtOSAc7D7+4he/UDfddJN66aWX1IYNG9Sjjz6qotGouu+++xprNm7cqGKxmLr55pvV2rVr1X333ads21b//u//3ljz+OOPK8dx1EMPPaT+/Oc/qy9/+csqk8moHTt2NNbccMMNaubMmerFF19Ur776qjrnnHPUueeee8j2Zn9wsPs4NDSkli1bplauXKnee+899cILL6gTTzxRLVy4sLFG9tFgb/+uGVdccUVjzfDwcONx2UeDve0jAPXwww+3HKf5/yzZR4O97eP3v/991dPTo37961+rd999V73++uvqt7/9beP5IzXOHNUEZXd87WtfU3PmzFG+7zceW716tZo+fbrq6+vb639kS5cuHZOgLFu2TLW1tSnXdRuPLVmyRJ144omN36+++mp16aWXtrzu7LPPVl/5yleUUkr5vq+6urrUPffc03h+ZGREhcNh9dhjjx3IrR5SHMw+MhYtWqQuuOCCxu+33HKLOvnkk1vWfPazn1UXX3xx4/ezzjpLLV68uPG753mqp6dH3XXXXUop2rNQKKSefPLJxpq33npLAVCvvPLKAd3rocRE7OO9996rZsyY0fhd9pEwnn1ctmyZOu+889SLL744iqDIPhL2tY/7+ozKPhL2to9DQ0MqGo2qF154YY/HPFLjzFFd4mlGtVrFr371K3zpS19qDBMslUr43Oc+h/vvvx9dXV0HdNxXXnkFn/jEJ+A4TuOxiy++GOvWrcPw8HBjzUUXXdTyuosvvhivvPIKAGDTpk3o7+9vWZNOp3H22Wc31kwWTNQ+ZrNZtLe3N37f1x5Vq1W89tprLWsCgQAuuuiixprXXnsNtVqtZc3cuXMxa9asI3Ift2/fjqeeegrnnXde4zHZx/Ht49q1a/Gtb30Lv/zlL8ccZib7OP7P4+LFi9HZ2YmzzjoLDz30EFST9Zbs47738fnnn4fv+9i2bRvmzZuHGTNm4Oqrr0Zvb29jzZEaZ4SgaDz99NMYGRnBF7/4xcZjf/u3f4tzzz0XV1xxxQEft7+/H9OmTWt5jH/v7+/f65rm55tfN9aayYKJ2MeXX34Z//zP/4zrr7++8die9iiXy6FcLmPXrl3wPG+f++g4DjKZzB7XTBYczD4uXLgQsVgM06dPRyqVws9//vPGc7KP+95H13WxcOFC3HPPPZg1a9aYa2Qfx/d5/Na3voUnnngCzz//PK666iosWrQI9913X+N52cd97+PGjRvh+z7+8R//ET/60Y/wm9/8BkNDQ/jkJz+JarUK4MiNM0fNNON94Re/+AUuueQS9PT0AACeeeYZLF++HKtXrz7MV/bBwsHu45tvvokrrrgCS5cuxac+9alDeamTGgezjz/84Q+xdOlSvPPOO7j11ltx8803Y9myZYf6kiclDmQfb731VsybNw+f//zn36/LnPQ40M/j7bff3vj5wx/+MIrFIu655x7cdNNNh/R6JysOZB9930etVsOPf/zjxv+Jjz32GLq6urBixQpcfPHF78u1Hw5IBgXA5s2b8cILL+C6665rPLZ8+XJs2LABmUwGwWAQwSBxuauuugrnn3/+uI/d1dU1Sk3Ov3M6b09rmp9vft1YayYDDnYf165diwsvvBDXX389brvttpbn9rRHqVQK0WgUnZ2dsG17n/tYrVZHdWMcafvY1dWFuXPn4vLLL8eDDz6IBx54AH19fY3nZB/3vo/Lly/Hk08+2Xj+wgsvBAB0dnZi6dKlAGQfD/T/x7PPPhtbt26F67oAZB/Hs4/d3d0AgJNOOqnxuilTpqCzsxNbtmwBcATHmcOifJlkWLp0qerq6lK1Wq3xWF9fn1qzZk3LHwDq3nvvVRs3bhzzGHsTyVar1cZjt9566yjx0mWXXdbyugULFowSL33ve99rPJ/NZiedSPZg9vHNN99UU6dOVd/4xjfGPPYtt9yiTjnllJbHFi5cOEpMd+ONNzZ+9zxPTZ8+fZSY7je/+U1jzdtvvz3pxHQT8Xlk/Md//IcCoDZt2qSUkn0czz6+++67Lc8/9NBDCoB6+eWXG50jso8H9nn8zne+o9ra2hq/yz7uex/XrVunALSIZAcHB1UgEFDPPfecUurIjTNHPUHxPE/NmjVLLVmyZJ9rMYYiff369Wr16tXqK1/5ijrhhBPU6tWr1erVqxtq6pGRETVt2jR1zTXXqDfffFM9/vjjKhaLjWr/CgaD6nvf+55666231NKlS8ds/8pkMuq3v/2teuONN9QVV1wxadqMlTq4fVyzZo2aMmWK+vznP9/SjjcwMNBYw+2I3/jGN9Rbb72l7r///jHbEcPhsHrkkUfU2rVr1fXXX68ymYzq7+9vrLnhhhvUrFmz1PLly9Wrr76qFixYoBYsWDAxmzABOJh9/N3vfqceeughtWbNGrVp0yb17LPPqnnz5qmPfvSjjTWyj6Mx1r/rZqxYsWKPbcayjwa77+Mzzzyjfvazn6k1a9ao9evXq2XLlqlYLKbuuOOOxhrZx9EY6/N4xRVXqJNPPln94Q9/UGvWrFGXXXaZOumkkxqE5EiNM0c9QXnuuecUALVu3bp9rh3rg3PeeecpAKP+8DdWpZR6/fXX1cc+9jEVDofV9OnT1d133z3q2E888YQ64YQTlOM46uSTT1a/+93vWp73fV/dfvvtatq0aSocDqsLL7xwXNf8fuFg9nHp0qVj7uHs2bNbXrdixQo1f/585TiOOu6449TDDz886tj33XefmjVrlnIcR5111lnqj3/8Y8vz5XJZLVq0SLW1talYLKauvPJK1dfXdyC3fEhwMPu4fPlytWDBApVOp1UkElEf+tCH1JIlS1oCq1Kyj7vjQAgKPy77aLD7Pv7bv/2bmj9/vkokEioej6vTTz9d/fSnP1We57W8TvaxFWN9HrPZrPrSl76kMpmMam9vV1deeaXasmVLy5ojMc5YSjX1fAkEAoFAIBBMAohIViAQCAQCwaSDEBSBQCAQCASTDkJQBAKBQCAQTDoIQREIBAKBQDDpIARFIBAIBALBpIMQFIFAIBAIBJMOQlAEAoFAIBBMOghBEQgEAoFAMOkgBEUgEAgEAsGkgxAUgUAgEAgEkw5CUAQCgUAgEEw6CEERCAQCgUAw6fD/AYCleYX0YMGxAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "from snowexsql.data import PointData\n", - "from snowexsql.conversions import query_to_geopandas\n", - "import matplotlib.pyplot as plt \n", + "from snowexsql.api import RasterMeasurements, LayerMeasurements\n", + "from shapely.geometry import Polygon\n", + "import geopandas as gpd\n", "\n", "\n", - "# Pick a pit ID\n", - "site_id = '1N3'\n", - "\n", - "# Pick a distance around the pit to collect data in meters\n", - "buffer_dist = 50\n", - "\n", - "# Grab a session\n", - "engine, session = get_db(db_name)\n", - "\n", - "# Grab our pit location by provided site id from the site details table\n", - "qry = session.query(SiteData.geom).filter(SiteData.site_id == site_id)\n", - "\n", - "# convert qry to df for easy plotting \n", - "site_df = query_to_geopandas(qry, engine)\n", - "\n", - "# Also execute it for the normal db usage\n", - "site_geom = qry.all()[0][0]\n", + "# Lets form a triangle using site IDs\n", + "site_id = ['2S6', '2C2', '8N45']\n", "\n", - "# Create a polygon buffered by our distance centered on the pit\n", - "qry = session.query(func.ST_Buffer(site_geom, buffer_dist))\n", + "# Grab the unique locations for these \n", + "locations = LayerMeasurements.from_unique_entries(['easting', 'northing'],\n", + " site_id=site_id)\n", "\n", - "# Execute for other querying\n", - "buffered_pit = qry.all()[0][0]\n", - "\n", - "# Filter by the dataset type depth\n", - "qry = session.query(PointData).filter(PointData.type == 'depth').filter(PointData.instrument.in_(['magnaprobe','mesa']))\n", - "\n", - "# Grab all the point data in the buffer\n", - "qry = qry.filter(func.ST_Within(PointData.geom, buffered_pit))\n", - "df = query_to_geopandas(qry, engine)\n", - "\n", - "session.close()\n", - "\n", - "# plot it with style!\n", - "fig, ax = plt.subplots(figsize=(8,8))\n", - "ax = df.plot(ax=ax, column='value', cmap='cool')\n", - "site_df.plot(ax=ax, marker='^', markersize=100, color='green')\n", - "ax.legend([\"Depth\", \"Pit\"])\n" + "triangle = Polygon(locations)\n", + "ds = RasterMeasurements.from_area(shp=triangle, observers='ASO Inc.', type='depth',\n", + " date=date(2020, 2, 2))\n", + "print(ds)\n", + "show(ds, vmin=0, vmax=1, cmap='winter')" ] }, { @@ -250,13 +139,10 @@ "metadata": {}, "source": [ "## Recap\n", - "\n", - "Postgis functions are awesome but can be finicky. So go slow with them.\n", + "Isolating raster datasets can enable users to build out workflows using minimal data from snowex. \n", "\n", "**You should know**\n", - "* Where to find PostGIS functions \n", - "* When to use geoalchemy2 over sqlachemy functions call \n", - "* How to chain together commands " + "* How `RasterMeasurements.from_*` differ from `PointMeasurements.from*` or `LayerMeasurements.from*`" ] } ], @@ -276,7 +162,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.4" + "version": "3.10.14" } }, "nbformat": 4, From 62328619848ed0024e93e0fa5e54b8c8324e8dbe Mon Sep 17 00:00:00 2001 From: micah johnson Date: Sat, 10 Aug 2024 21:37:54 -0600 Subject: [PATCH 11/21] removed exporting of data --- .../snowex_database/6_exporting_data.ipynb | 129 ------------------ 1 file changed, 129 deletions(-) delete mode 100644 book/tutorials/snowex_database/6_exporting_data.ipynb diff --git a/book/tutorials/snowex_database/6_exporting_data.ipynb b/book/tutorials/snowex_database/6_exporting_data.ipynb deleted file mode 100644 index dc74c95..0000000 --- a/book/tutorials/snowex_database/6_exporting_data.ipynb +++ /dev/null @@ -1,129 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "female-farming", - "metadata": {}, - "source": [ - "# Exporting Data \n", - "You may want to export your queried data from the database. In this section we talk about how!\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "painted-mountain", - "metadata": {}, - "outputs": [], - "source": [ - "# Import the function to get connect to the db\n", - "from snowexsql.db import get_db\n", - "from snowexsql.data import SiteData, PointData, LayerData, ImageData\n", - "\n", - "# This is what you will use for all of hackweek to access the db\n", - "db_name = 'snow:hackweek@db.snowexdata.org/snowex'" - ] - }, - { - "cell_type": "markdown", - "id": "metallic-underground", - "metadata": {}, - "source": [ - "## Shapefiles and CSVs\n", - "The following can be done with ANY SiteData, PointData, or LayerData query. \n", - "\n", - "**Note**: Shapefiles do not support datetime object so they must be converted to strings before writing." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "pleasant-liabilities", - "metadata": {}, - "outputs": [], - "source": [ - "# import the hand method for converting queries to dataframes\n", - "from snowexsql.conversions import query_to_geopandas\n", - "\n", - "# Grab a session\n", - "engine, session = get_db(db_name)\n", - "\n", - "qry = session.query(SiteData.geom).limit(10)\n", - "\n", - "df = query_to_geopandas(qry, engine)\n", - "\n", - "# Write to shapefile\n", - "df.to_file('site_data.shp')\n", - "\n", - "# Write to a csv\n", - "df.to_csv('site_data.csv')\n", - "\n", - "session.close()" - ] - }, - { - "cell_type": "markdown", - "id": "contemporary-composer", - "metadata": {}, - "source": [ - "## Rasters" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "thrown-coverage", - "metadata": {}, - "outputs": [], - "source": [ - "# import the handy function to convert raster db results to rasterio\n", - "from snowexsql.conversions import raster_to_rasterio\n", - "\n", - "# Import the SQL function to access PostGIS functions\n", - "from sqlalchemy.sql import func\n", - "\n", - "# Import rasterio for Writing\n", - "import rasterio \n", - "\n", - "# Grab a session\n", - "engine, session = get_db(db_name)\n", - "\n", - "# Query 1 raster tile and convert it to a geotiff\n", - "result = session.query(func.ST_AsTiff(ImageData.raster)).limit(1).all()\n", - "\n", - "# Convert the dataset to a rasterio dataset\n", - "dataset = raster_to_rasterio(session, result)\n", - "\n", - "# Copy the profile/tiff metadata (not to be confused with the database metadata)\n", - "profile = dataset[0].profile\n", - "\n", - "# Write to a file \n", - "with rasterio.open('raster.tif', 'w', **profile) as dst:\n", - " dst.write(dataset[0].read(1), 1)\n", - "\n", - "session.close()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.4" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} From ddb0336fda54ba774ee865d18ff7f1295e0238c4 Mon Sep 17 00:00:00 2001 From: Micah Johnson Date: Thu, 15 Aug 2024 15:20:29 +0000 Subject: [PATCH 12/21] Polishing up tutorial on cryo --- .../1_getting_started_example.ipynb | 50 +- .../2_database_structure.ipynb | 12 +- .../snowex_database/3_forming_queries.ipynb | 1402 ++++++++++++++++- .../4_get_spiral_example.ipynb | 65 +- .../5_plot_raster_example.ipynb | 37 +- .../tutorials/snowex_database/8_wrap_up.ipynb | 28 +- 6 files changed, 1479 insertions(+), 115 deletions(-) diff --git a/book/tutorials/snowex_database/1_getting_started_example.ipynb b/book/tutorials/snowex_database/1_getting_started_example.ipynb index 9b115a6..4220218 100644 --- a/book/tutorials/snowex_database/1_getting_started_example.ipynb +++ b/book/tutorials/snowex_database/1_getting_started_example.ipynb @@ -6,10 +6,18 @@ "source": [ "# SnowEx Database Introduction\n", "\n", - "SnowEx has introduced a a unique opportunity to study SWE in a way thats unprecedented, but with more data comes new challenges. \n", + " \n", + "__Tutorial Author Micah'__: [Micah Sandusky](https://github.com/micah-prime)\n", "\n", + "__Tutorial Author Micah_o__: [Micah Johnson](https://github.com/micahjohnson150)\n", "\n", - "\"Grand\n", + "[SnowEx](https://snow.nasa.gov/campaigns/snowex) has introduced a unique opportunity to study SWE in a way thats unprecedented, but with more data comes new challenges. \n", + "\n", + "![examples](./images/data_examples.png)\n", + "\n", + "\n", + "\n", "\n", "**The SnowEx database is a resource that shortcuts the time it takes to ask cross dataset questions**\n", "\n", @@ -38,8 +46,6 @@ "* Snow off DEM from USGS 3DEP \n", "* And almost all the associated metadata\n", "\n", - "\"snowex\n", - "\n", "## Technically, what is it?\n", "\n", "* PostgreSQL database\n", @@ -52,9 +58,10 @@ "### So whats the catch?\n", "New tech can create barriers...\n", "\n", - "\n", - "\n", - "\n", + "```{figure} ./images/pits_not_bits.jpg\n", + ":scale: 30 %\n", + ":alt: pits not bits\n", + "```\n", "\n", "### TL;DR Do less wrangling, do more crunching. " ] @@ -76,6 +83,13 @@ "execution_count": 2, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/jovyan/event-page-2024/book/tutorials/snowex_database\n" + ] + }, { "data": { "text/html": [ @@ -300,7 +314,7 @@ " 747974.439978\n", " 3134.3\n", " 12\n", - " POINT (747974.44 4324012.402)\n", + " POINT (747974.440 4324012.402)\n", " ...\n", " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", @@ -372,7 +386,7 @@ " 747981.436157\n", " 3133.1\n", " 12\n", - " POINT (747981.436 4324010.4)\n", + " POINT (747981.436 4324010.400)\n", " ...\n", " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", @@ -412,10 +426,10 @@ "4 747984.260913 3150.1 12 POINT (747984.261 4324058.267) ... \n", ".. ... ... ... ... ... \n", "195 747972.708423 3134.6 12 POINT (747972.708 4324012.348) ... \n", - "196 747974.439978 3134.3 12 POINT (747974.44 4324012.402) ... \n", + "196 747974.439978 3134.3 12 POINT (747974.440 4324012.402) ... \n", "197 747977.072289 3133.8 12 POINT (747977.072 4324011.374) ... \n", "198 747979.704601 3134.2 12 POINT (747979.705 4324010.346) ... \n", - "199 747981.436157 3133.1 12 POINT (747981.436 4324010.4) ... \n", + "199 747981.436157 3133.1 12 POINT (747981.436 4324010.400) ... \n", "\n", " date time_created time_updated id \\\n", "0 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4070 \n", @@ -465,7 +479,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAG+CAYAAADvFq2EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIDklEQVR4nO2de3QU5f3/37u5B0ggQC5ggHDRANFSRATDRTAYKir2y7d+oYBiMSoFL+CvQqyIBTFiTwtqUS4iKAjY2ipaKR4BRRITsSBqCCJCEhBIkCQkmEASsvP7I866O9mZfWZ2dueZmc/rnJxDZmdmJzMP7/ncns/jEARBAEEQBOHGafQFEARB8AYJI0EQhAQSRoIgCAkkjARBEBJIGAmCICSQMBIEQUggYSQIgpBAwkgQBCGBhJEgCEICCSNBEIQEywljY2MjBg0aBIfDgYMHDyrue//996NPnz6IiYlB165dMXHiRHzzzTfuz7/88ktMmTIFqampiImJQf/+/fH888/Lnq+goADh4eEYNGiQpmvfsGEDrrnmGkRHRyMxMRGzZ8/WdB6CIALDVMJ44403YsOGDYr7PPbYY+jWrRvT+a699lqsX78ehw8fxgcffABBEHDzzTejpaUFALB//34kJiZi06ZNOHToEP74xz8iNzcXf/vb39qc6/z587jrrrtw0003qf67AOCvf/0r/vjHP2LBggU4dOgQdu7ciezsbE3nIggiQAQTMXr0aGH9+vWyn2/fvl1IT08XDh06JAAQvvjiC1Xn//LLLwUAwnfffSe7z+9//3thzJgxbbb/3//9n/DEE08IixYtEn7xi194fdbS0iI888wzQq9evYTo6GjhmmuuEf7xj3+4P6+urhZiYmKEnTt3qrpegiCCg6ksRiUqKyuRk5ODjRs3IjY2VvXx9fX1WL9+PdLS0pCamiq7X21tLRISEry2rV+/HsePH8eiRYt8HpOXl4fXX38dq1atwqFDhzB37lxMmzYNe/bsAQB8+OGHcLlcOHXqFPr3748rrrgCd955J06ePKn67yAIInAsIYyCIGDGjBl44IEHMGTIEFXHvvTSS2jfvj3at2+P//znP/jwww8RGRnpc99PP/0Ub775Ju677z73tqNHj2LBggXYtGkTwsPD2xzT2NiIZ555Bq+++iqys7PRu3dvzJgxA9OmTcPq1asBAMePH4fL5cIzzzyDFStW4K233kJ1dTXGjRuHpqYmVX8PQRA6YLTJqsTSpUuFdu3auX+cTqcQFRXlta28vFx4/vnnhczMTOHy5cuCIAhCaWkpsyt9/vx54dtvvxX27Nkj3HbbbcLgwYOFixcvttnv66+/Frp06SIsWbLEve3y5cvCkCFDhJdfftm9TepKFxcXCwC8rrldu3ZCRESEMHToUPffCUD44IMP3MedPXtWcDqdwo4dO9TeNoIgAoRrYayqqhKOHj3q/hk6dKiwbNkyr23Nzc3CxIkTBafTKYSFhbl/AAhhYWHCXXfdxfx9jY2NQmxsrLB582av7YcOHRISExOFxx9/3Gt7TU2N+3vEH4fD4d62a9cuoaioSAAgfPzxx17XffToUeHEiROCIAjCq6++KgAQTp486XX+xMREYc2aNRrvHkEQWmnr+3FEQkKCVzwvJiYGiYmJ6Nu3r9d+L7zwAp5++mn376dPn0Z2djbefPNNXH/99czfJ7S+KNDY2OjedujQIYwdOxZ33303li5d6rV/XFwcvv76a69tL730Enbv3o233noLaWlpcLlciIqKwokTJzB69Gif35uZmQkAOHLkCK644goAQHV1Nc6dO4eePXsyXz9BEPrAtTCy0qNHD6/f27dvDwDo06ePW2hOnTqFm266Ca+//jqGDh2K48eP480338TNN9+Mrl274vvvv8ezzz6LmJgY3HLLLQCA4uJijB07FtnZ2Zg3bx4qKioAAGFhYejatSucTicyMjK8vjsxMRHR0dFe2//f//t/mDt3LlwuF0aMGIHa2loUFBQgLi4Od999N6688kpMnDgRDz/8MNasWYO4uDjk5uYiPT0dY8aMCdp9IwjCN5YQRhaam5tx5MgRNDQ0AACio6Oxd+9erFixAjU1NUhKSsKoUaPw6aefIjExEQDw1ltv4YcffsCmTZuwadMm97l69uyJsrIy5u9esmQJunbtiry8PBw/fhwdO3bE4MGD8fjjj7v3ef311zF37lxMmDABTqcTo0ePxo4dOxAREaHPDSAIghmHINBiWARBEJ5YolyHIAhCT0gYCYIgJHAXY3S5XDh9+jQ6dOgAh8Nh9OUQBGERBEHAhQsX0K1bNzidyjYhd8J4+vRpxSl5BEEQgXDy5El3tYoc3Aljhw4dALRefFxcnMFXQxCEVairq0NqaqpbY5TgThhF9zkuLo6EkSAI3WEJ0VHyhSAIQgIJI0EQhAQSRoIgCAkkjARBEBJIGAmCICSQMBIEQUggYSQIgpBAwkgQBCGBuwJvgvBFi0vAvtJqnL1wCYkdojE0LQFhTppLTwQHEkaCe3YUn8Gf3ivBmdpL7m0p8dFYdNsAjM9IMfDKCKtCrjTBNTuKz2DWpgNeoggAFbWXMGvTAewoPmPQlRFWhoSR4JYWl4A/vVcCXy3mxW1/eq8ELS5qQk/oC7nSBLfsK61uYyl6IgA4U3sJ+0qrMbxPZwDssUiKWRJKkDAS3CAVq4rai0zHnb3QKp6ssUiKWRL+4G4xrLq6OsTHx6O2tpbajtkIX2KV0C4S1fVNfo/dkjMMtRebMGvTgTZut2gDvjxtMMZnpLhjlv72I6yHGm2hGCNhOHIJlho/ouhAq6V3bc9OTLHIpssuW8YsW1wCCo9VYdvBUyg8VmW5vy8YkCtNGApLgsUXooW36LYB2F9ewxSL3FhYxrRf0fEqOB0O1fFHHuOWFDbQBgkjYSj+EiwiCe0iUF3f7P492eM/97aDp5i+q7y6gWm/2W8cwPmLP38Xi5DwKEByYQOx1InCBvKQMBKGIiZO/LHw1oFIjov2aY0ldohmOkfPhFim/TxFEfAvJDwKkD9L3IHWsMG4AcmGW7U8QjFGwlBYRS05LhrD+3TGxEHdMbxPZ6//zEPTEpASHw25/95iLHL68F6K+8mhFH80stZSKXbIWuq0oaCUYo4+IIuRMBRR1CpqL/kUFwda3eahaQmy5whzOrDotgGYtekAHPCOTXrGIiPDnbL7+UMu/uhyCaprLYHA6y39ue6slviS9w/jlfxSijlKoHIdwnBEVxTwLWqsrmggdYwdYyNwvsHbhfZFx5gIL1db+rscz08ehImDugd8nSnx0bj9FylY80mpYslRfEwkpqwt8ntd0uOsLI5qtIWEkeACvZIXWi0xl0vA1HWf6fK3+GJLzjAM79OZuY5SaT9/2frk+Gjs+cMYjP7zR7KWuNxx+fPHWjbmqEZbyJUmuGB8RgrGDUgOuNwlzOnwcllZ92txCYouvVY8QwGsCZGx6UmaSpjEz8/UXsL+8hpVYYNAS5WsBgkjwQ2sohas79Yaf5TDM74Z5nSg8FiVLvWWLJy9cAkTB3XHy9MGt7HEldBSqmRFKCtNED8xPiMFL08bjOR470x5x9gIpuM7xnjvlxwf7RW3Y02IsNZbKiFm+8dnpCB//lgsnNCf6Ti5UiW7tXcji5EwFN5mi/hy6VnjjyunDlZ0Q/Wut/SFryx+mNOBGZlpeCW/VHWowK41jySMhO6wih2Ps0UA9fFHUYyG9e6sKByspUnTh/fSJGJS1136NwVaqiQtObIy5EoTurKj+AxGLNuNKWuL8PDWg5iytggjlu1u44qZqTO3KCoA2hSHK4mR1vOI9ZZy+zkA3D8qDSkSl1/quksJNFTAGgqwAlSuQ+gGaylKi0vAiGW7ZRMCvJaO6GXh6tU3UmsYQmupklhyZFaojpEIOWrEbl9pNVPxMY//EfWKifLUaVx8dv5cfN5eVGqhOkYi5KhZhoDVJePRddOrpEhrvWUwYJ1SaWZRVAvFGAldUCN2rNlZ1v2IwJGLP/qLW1oVshgJXVAjdno0jiD0R6/ZR1aALEZCF1hbf4n/0fTI8hL6I7ruvtq72QkSRkIX1IoduW4Ez1BWmtCMr4zphyUVqkpaeJv5Ynes/DwoK00EHaUaO7Ekh+U/l5GNIwhveJ2JZARkMRKqobWZrYcdnimtK00EDSPXOCGCAz3TtpAwEm3QY5GlfaXVIbhSQg/ombaFYoyEF3otssTjrBXCN/RM20IWI+GGpeMNzVqxHvRM20LCSABgjzNd27MTcyE3YQ7UFOfbBRJGAgB7nElcZAmgWStWgWYitYWEkUCLS0DBdz8w7Xv2wiWatWJBlJ7pI1lXovGyq00izspQHaPN8ZVsUcKzR6KVZ0nYFc9nWnauHlv2nUBFXaP7czMXfFMdI8GEXLLFF77iTNRwwHqIzzQq3IkVO496iSLA59ITwYCE0aYoJVuk2DXOZFeo4JuE0bb4S7Z4QrFDe8GaiCs6XhW6iwoxJIwWRmkGC2ux7pwxfZE/fyyJoo1gHRuz37CuS00zXyyKvxksrMW6mX27kPtsM1jHxvmLzZi16YAlvQmyGC0IywwWKuol5PA3NqRYMd5IwmgxWAPnAKiol/CJZ8G3P6zaYIKE0eQ0XXZh3d7jeHJbMdbtPY78Iz8wd0qhQm1CDnFsdIyJYNrfag0mKMZoYvK2l2Dt3lJo8WLEgUwrwxFyjM9IQYeoCExd95nffa3WYIKE0aTkbS/B6k9KNR/vOZBpeQFCjmF9OttyqVtypU1I02UX1u7VJoqUVCHUYNcGEySMJmRjYZkm91nEigOZCB4ssWilmlkzQq60CSmvbtB0XMeYCDw76WpKqhCqUYpFW3F1QRJGE9IzIVbTcSunDkZm3y46Xw2hhJU6EPmKRcutLijWzJq1uoGE0YRMH94LS7cfZnanxQD5sN6UYAklVrSkPPFXM+tAa83suAHJpnsZUIzRhESGO5EzMo1pXysHyHmGZfaR2bHy6oIkjJziL5ide8sA3D8qDf60joq1Q49d2nZZeXVBcqU5hNUFy71lAB69OR0bC8tQXt2Angmx+O31PXHw5HlLxLTMgjSO6HIJzG27nA6HaZ+VlVcXpKUNOEMumC3+dyHrTz3BTID4eol1jInA+YvNfo+V7me2+GOLS8CIZbv9Fn/nzx/LheCr0RYSRo4QB5qctcHbQAsFSqLGInjBTIDIvcS0YsaXn3gPAHjdBx7/FjXaQq40R6gJZtthCp+SqAHwK3jBLCVRszQEK2bM5IrF39JnkRwfjcnX9XCvLmi2MAEJI0dYOZitFiVRe+AnC0WKp+CNG5Ac1FISNUtDqEF8+W0oKMWMzDRTiIm0+FtcXXD5zm/d+5gtTKAqK93S0oKFCxciLS0NMTEx6NOnD5YsWQJPb1wQBDz55JNISUlBTEwMsrKycPToUd0v3IpYOZitBpasri88M75Fx6o0lZKwTm1jfTlJ23Z1jGVr47Xk/cMYsWy3acp6rLa6oCqLcdmyZXj55Zfx2muvYeDAgfjvf/+Le+65B/Hx8XjooYcAAM899xxeeOEFvPbaa0hLS8PChQuRnZ2NkpISREdb+z90oIidk+3WyURtVlcJUfA+PXaOaX9PgVMTj2R9Oa2cOtgr8+xyCUxtvADzzR6xUsG3KmH89NNPMXHiREyYMAEA0KtXL2zZsgX79u0D0GotrlixAk888QQmTpwIAHj99deRlJSEd955B5MnT25zzsbGRjQ2/vx2qaur0/zHmB2xk8msTQfggO9gttUKteWyuoGyobCMaT9R4NTGI1lfYsN6e6+33XTZBacDTLOWzCYmVoqRq3Klb7jhBuzatQvfftsaO/jyyy+Rn5+PX/3qVwCA0tJSVFRUICsry31MfHw8rr/+ehQWFvo8Z15eHuLj490/qampWv8WUyJ13cYNSLZNV2252SEspS7+qG9sUfzcs/2aloJsre249pfXqOqMZKbZI1aKkauyGBcsWIC6ujqkp6cjLCwMLS0tWLp0KaZOnQoAqKioAAAkJSV5HZeUlOT+TEpubi7mzZvn/r2urs424qjkuuXPH2uZ5gO+CEZWVy2icBWqiEd6WjpKGVm5RINWUTCDmFgpRq5KGP/+97/jjTfewObNmzFw4EAcPHgQjzzyCLp164a7775b0wVERUUhKipK07FmxqpdSVjRmtX1DDFIww2sJLSLwDO//rn9WiCWjtqlIbSKghnExEoxclWu9B/+8AcsWLAAkydPxtVXX43p06dj7ty5yMvLAwAkJycDACorK72Oq6ysdH9GWGsurdYGpVqzusnx0Vg1bTBW+Qg3sGZ8F9460OulE6ilI2ZkJw7qjuF9Oita9mqXJjVTx3UrdftWZTE2NDTA6fTW0rCwMLhcLgBAWloakpOTsWvXLgwaNAhAq2v82WefYdasWfpcsQWwSpA6kFklWrO6ntaY1FJjzfgmx3l/dygtHaUEm6/vBcwjJoC28AKPqBLG2267DUuXLkWPHj0wcOBAfPHFF/jrX/+K3/3udwAAh8OBRx55BE8//TT69evnLtfp1q0b7rjjjmBcv+locQko+O4Hpn15jisFGgrQmtX1RNo4tcUlaBK4UFcDyImHNFttNjERscLKk6rmSl+4cAELFy7E22+/jbNnz6Jbt26YMmUKnnzySURGRgJoLdlZtGgR1qxZg/Pnz2PEiBF46aWXcOWVVzJ9h5XnSvuysJTYkjOMS4tRrzndwZhnG8g5Q91YVlq/eW3PTthfXmNaMeEdaiLBIWoaDvDeLKLwWBWmrC3yux+LsAdDjAI5p5WWIiC8oSYSnKGmNIXHuJJULCpqLzIdV/DdOb/CEgy3K5Bz0hrb+uE5brq0jwIE4Fx9oyleOCSMIUBNaQpvcSVf1ldCu0imY//20Xf454Hv/f49wRAjKwucGaxaf2Ej3ptKkDCGANYkypwxfTF33JXcDHI597+mvon5HHapywwVZlhgiyVsxPu4oDVfQgBraUpm3y7ciKLWDjdy+5qlLpNnzLDAFmvYiPdxQcIYAvwV9fJYxKtnv0EzzfflFbNMClAzbngeFySMIcCMMwKCUUPJc10m72hdqlTrzCStaHnGPI4LijGGCLPNCAjG3FwzzPflFS3zuY2IR2p5xjyOCxLGEGKmGQH+ZqaowUzNA3hF7Xxuo5qUqBk3PI8LcqVDjJqGA0bC4v77+kwKr6ECs6EmTm1kPFJp3HjC+7ggYSTcqGmaK9fhRjrGrdhg1wjUxKm1xiP1QgwbSceGJ7yPC3KlCQDam+ZKQwM03zd4sMSpeWlSIg0bmW3mC82VDgAzzEBgQS4exeOi6YT8uLNKk5JgQXOlQ4AZZiCwYKWV3eyCr+mOapqUAECn2Agukx68QDFGDZhhBgIrRsejiMDRsn6O0W5iqOsr1UIWo0qsZmFZaWU3u6JlltL5hmbDOsSbwdsii1ElVrOwrLSym10x08qDZvG2SBhVYjULy4zzuAlvzLLyoFnmewMkjKqxmoVlxnnchDdmWXnQTN4WCaNKzGBhqQ1syxXk8l6ES7TCOttE/FwA8KuM1hrDUFpnZvK2KPmiklCvKKcWrYFtM83jJtrCuvKgwwEIAvBqQRleLSgLadLDTN4WFXj7gKVwm8fMGhVqE3IrD+4sqcC6grI2+4dybIirS/pb3jZYi8DRKoEBoEbweJr5oteSpoT14GlsBGPJXFbUaAvFGD1QW0rAU6ccMwW2idDC09hQimc/knUlGi+7uCj4phjjT5i9cNtMgW0itLA+84q60IwNaTy77Fw9tuw7geU7v3XvY3RYiizGn+DpraoFMwW2idDC+syX/PtQyAqsRW8rKtyJFTuPoqKu0etzowu+SRh/wuwWlxnKiAhjYK1zrK5vDqkY8VzwTcL4E2a3uKhQm5BDTZ0jEDox4tlLI2H8CStYXFSoTcghjo1O7SIV9wulGPHspVHy5Sd4L9xmhQq1CTnGZ6TgYlML5v79S7/7hkKMePbSSBg9MNsSp3L4amRKEACQHB/DtF8oxOjanp3azMyR4nS07hdqSBglkMVFWBl/y5uGcknT/eU1iqIItIrm/vKakL/oSRh9QBYXYVV4ChnxHGOk5IuJ4b09PMEfLS4B8TGRuCezV5tETKiTdBRjNAE8zXtmgccmFgQbRo01X2MmoV0Efj2oO7IGJId8zPPk1kshYYT5REaui444W8BqpTlme2kpYdRYkxszNfXNeLWgDNcZcE95cuul2L67jtladfHUKSUUmO2lpYRRY433MbOj+AyeerfEa652MJ4xdddhhOcpSXLwPFtAb8yycBILRo41c4wZ77/baHvN1q60mgHDS5aa50yenpix25Gny9+lfRQgAOfqG5HYIRqXL7sMG2s8jxk5K7qyrtHQsJCthZHnASMHz5k8PdH60tIajww0junL5feE9UzBGGu8jhmeX362FkZeB4wSPGfy9ETLS0trPDLQOKac1eMJq2MYjLHG65jh2WOzdYzRjI0j7NJFR+1LS2s8MtA4ppLVo4ZgjjVexwzPHputhZHXAaOEWKD7u8xe6NQuwuszK3XRUfPS0prY0CMh4s/qYSXYS5ry2HmJZ4/N1q408POAeerdQ15dhJPiovDU7QO5EhnfBbqRuGNQN4wzoEA3mKipcSs8VqXJJWN15YqOV8HpcPiMP+phzYh/X7CXNOWtDwCvLj5AwuiBnM3IB/IFuk1YX1BmSlH0l/Bg7Xak1SVjPW72Gwdw/mKz+3dP4dLDmglloT5PfQB4LvC2vTDKlwvwM4uE5+ydVlgTHixWjlaXjPU4T1EEvIVr3IBkRatHC2Z9plpgefkZMfPJ1sJoFsHhOXunBbVTGv1ZOVpdMn/HySEdG3JWTyDo+Ux5n1Kp9PIzauaTrZMv5pgRwHf2Ti3BmAGiNYmmdi0U6bWKY0MuseF1HRp1KNBnuqP4DEYs240pa4vw8NaDmLK2CCOW7eZu1pCvNdqNnPlka4vRLILDc/ZOLcGyfrV2X5c7rmNsBM43NPs8xhNxbEitHunMl9M1DXj0ra+Y/x6RQJ6pmZuNGO3N2VoYzSI4PGfv1BLMl5HWrKuv41wuAVPXfeb3Oz3HhpLLX3hM3d8S6DM1WlgCxejwka2F0SyCw3P2Ti3BfhlpzbpKj2txCbqODTXxTD2eqdHCEihGe3O2jjGaqcBbdPmS4qK8tifFRXHtEkkxy2wjvceGmnimHkXXRgtLoBjtzdlaGAE+ZwQow3e9pT/M+DLSa2yI54uPjWjzWfuoMMzM7IUtOcOQP39swOPOaGEJFKNfoLZvVCvCe0mD2Rrq+sNMDWj1HBs7is/ggU0H2mzX+zmKzWn9hQJ4bmgsjnnAd/hI7b1Soy0kjCaA9w7MWuH9ZaQ3oX6OeguLEeRtL8HavaVey6w6HUDOyDTk3jJA1bmog7fFMEu9pVp81a5ZmVA+R55WA9TKjuIzWPNJaZu1p10CsOaTUqpjtDtmD6QTrUJV8N05pn31KOrmaTVALbC0c6M6Rptj9kC63fHX3VtKMIq6jVwNUAtGlxuRK20CjM7Q6UmLS0DhsSpsO3gKhcequFpoLBjITWvzRaDP0YyLu8lhtJdEFqNJmHxdKpbvPNpmO28lLkqYKROtB2q6e1NRtzdGe0kkjBzima0tO9eALftOeK2564m/ucC8YOZ5u1pR091bj+dotJWlJ6KX5O/+1dQ3Kn6uFVsLI4/lImriUXOzrsScsX0Nv2Z/GDlvV2lJ02t7dsL+8pqgPX9WAZozpg/mjrsq4O822srSkzCnAwsnDMDvN7et+fRkyfuHkZ2Rovu4sa0w8ujWsaw2J+IAsPXzE5gztm+wLytgjHLx/L1knA54lYLo/fxZBSizb1dd/mObZe4/K9IyI18EKzRgy+SLkX3e5FC72pyZaheNcPFYkh7SHITezz/USTMzTbdkwcjQgO2EkdfMndbV5swQLwq1i6d1SVO9n3+ohcoKRd2eGBkasJ0rzWvmTqvAmSFeFGoXL5AlTfV8/k2XXThVcxGjruyKAydqcOHSZfdneifNrFDULeXanp3ahDukOB2t++mN7YSR18ydWoEzU7wo2P0kpUm0itqLgV5ywM/f1xxfB4Cx6V1x78g+ugqVVYq6pewvr1EURaBVNPeX1+huxNhOGHnN3IW6kakeKGX1pZ+NG5CsaekBf8ittR0ogTz/vO0lWP1JaZvtAoBd3/yAvontdfuPbPZO3UoYacTYThh5ztzJFXFL4aF2USmrD0D2s/z5Y3Vt4SW31rZWAn3+TZddWLu3rSh6snZvKR69OR2R4YGH+HkNDemBkUaM6idz6tQpTJs2DZ07d0ZMTAyuvvpq/Pe//3V/LggCnnzySaSkpCAmJgZZWVk4etT/f/ZQwWPmTlzJTU4Uk+OiMDerH56fPEi3RqaBoJTVf2DTATygkPH/sKRCl446LEk0tejx/DcWljG5fxsLyzSdXwqvoSE9MHIqrCphrKmpQWZmJiIiIvCf//wHJSUl+Mtf/oJOnX4Ofj733HN44YUXsGrVKnz22Wdo164dsrOzcekSPw+Gp67d/spK5mZdiYIFN+HhrCu5aM+lVZD0zviyJlgS2rXtli0ivY16PP/y6gZd9/MHr6EhPTDSiFHlSi9btgypqalYv369e1taWpr734IgYMWKFXjiiScwceJEAMDrr7+OpKQkvPPOO5g8ebJOlx04WleU0xN/ZSU8FnHzkvFltYAW3joQyXHRIZv50jMhVtf9/MFzaEgPtC6LGyiqhPHdd99FdnY2fvOb32DPnj3o3r07fv/73yMnJwcAUFpaioqKCmRlZbmPiY+Px/XXX4/CwkKfwtjY2IjGxp/nO9bV1Wn9W1SjdUU5vTBjfEgPl0yPc7BaQMlx0Yr3Tu/7On14Lyzdfthvicn04b10+T4rrSAphxFGjCpX+vjx43j55ZfRr18/fPDBB5g1axYeeughvPbaawCAiooKAEBSUpLXcUlJSe7PpOTl5SE+Pt79k5qaquXvMCVmjA/p4ZLpcQ5eW7FFhjuRMzJNcZ+ckWm6JF5EeAoNBYtQd3tXZTG6XC4MGTIEzzzzDADgl7/8JYqLi7Fq1Srcfffdmi4gNzcX8+bNc/9eV1cXVHHkqXGEGeNDasqKpOjp1hlpKfkbQ+JaJHqtVcICD6EhK6FKGFNSUjBggPdD7d+/P/75z38CAJKTkwEAlZWVSEn5+S1VWVmJQYMG+TxnVFQUoqKifH6mN7w1jjBjfMifIAk+/i3+DugrVnLxp07tIvD0xIygPFPWMZR7ywA8enM6NhaWoby6AT0TYjF9eC9dLUUpRoeGQkmwDRxVTykzMxNHjhzx2vbtt9+iZ8+eAFoTMcnJydi1a5f787q6Onz22WcYPny4DperHR4bR/BYOgT477Kt5LqtmjYYq0Lo1o3PSMHCCQO8irqr65ux5P3Duj9TtWMoMtyJmSN7Y/HEDMwc2TuoomgnxPK2KWuL8PDWg5iytggjlu3W9XmrWj71888/xw033IA//elPuPPOO7Fv3z7k5ORgzZo1mDp1KoDWzPWzzz6L1157DWlpaVi4cCG++uorlJSUIDrav0sYjOVTeV9+dEfxGTz17iFU1P2chEqOi8JTtw8MuSWrxqpWM/MlWG5dqNbb5n0M2YVAnrcabVHlSl933XV4++23kZubi8WLFyMtLQ0rVqxwiyIAPPbYY6ivr8d9992H8+fPY8SIEdixYweTKAYLc2R/5WzG0KG2y7aS6xYKty6U0+HMMYasTSift+opgbfeeituvfVW2c8dDgcWL16MxYsXB3RhesJz9ldOjCrrQtvy3wxzbqVWqMslhEyseB5DdiGULydbzJXmNfvLkxjxbhH5cvE7xsjPavEklHWTPFUQWIlQrssN2EQYec3+8iRGPFtEclb1+YvNTMfrWTfJ2xhSgqfStEAI5brcIrYQRl5nB/AkRrxaRFq7cQPWqZvUAm+laVpRuw6SXs/bNvUDPM4O4EmMhqYloGOssmvaMTaCO6taDi1iFUiZEk8zTHgsTdNCqNfl9sQWFqMIb7MDzOaeGXGXWK3ljjERXq612iYDrBYWb2NICk9x60AJ9brcnthKGAG+Zgfw5J7tK63G+QblmF1NQ3PIky+s1vLKqYPhdDg0iZWeZUpGw1PcOlBCvS63J7ZxpXmFF/eMp3inJ6zNIob17qypyQCvq0ZqhdfnqIVQr8vtie0sRh7hwT3jKd7pSbCtaitZWAC/z1ELRoaayGLkhFC3VZLCSxsvXwmQYFrVFXXWsbAAfp6jHpimgzdhXXiId/pLgOhtVe8oPoMl/z7EtK8ZLCyAj+eoJ0Z18FbVRCIUBKOJBOEfsRh4Z0kF3j54CtX1PydiQlH/FqpmEP6+T4rZmkOIz/HDkgq8c/A0qj1WTDRjHaOIHsXqQWsiQegLLzMT5NZmvmNQN4wbkBz06wp1iQlrfZzZLCzfzzECvx7UHVkheI7BJNSVALYRxqbLrpA2DfUHLzMTlNZmXl9QFpL/TKFMgLS4BGwoKGVcYTASS38dnIa3eiP/HJvxakEZrjOxKBqBLYQxb3tJmzbzS7cfDlqbeX+orZsLFrwUA1fUXmTaL9AEiNo5t09M6G8KUeTlOeoBL16U5YUxb3sJVn9S2ma7S4B7eyjFkadBzEOpyo7iM1jy/mGmfQNJgKiZcyuSHB+j+ftCCQ/PUQ948aIAi5frNF12Ye3etqLoydq9pWi67ArRFakbxMHG6GJgUaw8EwS+CLTERG0jCjOVtIS6HVew4G1+t6WFcWNhmeL6vkCr5bixsCwk1wMYL0aeGFkMrFasglnE7YmZEi7i2id/++g7pv15LTnicfaRpYWxvLpB1/30gKeZCUYWA7OKVafYcKaYq1JnHDUvGd465cghZ2H5gncLmCcvSsTSMcaeCbG67qcHPHXU8SwGliNYlhOrWLkE/9/tLzbF+pJZOKE/ZmSmcW8pGtmOKxjw5EWJWNpinD68F/yNBaejdb9QwduSqeMzUnDfqLQ298npAO4blRY0y4lVrGovNivGmFhiU6yWsRlEEVDfjot3C5gnL0rE0sIYGe5Ezsg0xX1yRqaFvJ6Rl446QKuwrPmktE0sVhCANZ+UBi3o7U+spPiKMbHGpgBw9TJioemyC+v2HseT24qxbu9xrwShmnZc+fPHci2KAJ/zuy3tSgM/l+JI6xidDhhWxwjw0VHHyNIhFjfe81p8lZuoiU0ZNedWC/7qbo1sxxUMeJzfbXlhBFrF8dGb07ma+QIY3/DU6Po3UawW/PNrpoWtCr77wevloTY2xcPLyB8sdbePje/PTZxaD1pcAuJjInFPZq8287uNenHZQhiBVrd65sjeRl8GV/AQ9B6fkYIO0RGY+spnfvf920fH8M8Dp1QnVTz3M/plpARr3e2jN6dzZ2Fphdf53ZaOMfKCv0WWjIKXoPew3p2Z441akipmsZzU1N3yFKfWilziTJzfXXuxyTBxt5TFyMs8S094muYkhZfSIaUYkxRp7NMqlhOgvu7WDKEBOXiaGusLy1iM4iyAKWuL8PDWg5iytggjlu02dKlI3qY5SeGpdEjOAvKFr6SKmS0nES11t0Z3ftcKj0XdnlhCGHkUIB6nOflCTliS4qLwSFY/NF52hcz9H5+Rgvz5YzFnTF+m/T2TKvnzx2JLzjA8P3kQtuQMM0WZihQe626DBQ/xbSVM70rzapIbnfFVg9QlKzvXgC37TmD5zqPufULl/oc5Hcjs24Vp/q9ZkiqsiHW3vrLSIkbU3QYDXuLbcpj+DvNqkoeqx6BeiMISFe7Eip3ftlkkKpTWt9WSKp74S8Tl3jIA98vMRLp/lHF1t3rD+zM2vcXIo0keqh6DesOL9c1jwa8esCbieK271RPen7Hp7zRvJnmoegwGA56sbyslVQD1cXCx7nbxxAzMHNnblKIoZx2L2xsvu/BI1pVIiuPvGZveYhyaloCOsRE43yA/c6JjbERIBCiUPQaDAW/Wt5nLUTzhxRIPJXLW8e2/SMG7X57xnpYZF4W5Wf3Qq0s7bp6x6YWRhVDdYtauJwntIvDMr6/mzurhzfoGzJlUkdbTugTBNIk4PZBbRuJM7SWfiaXKukas2HkUL08bzM3fb3ph3FdarWgtAkBNQ3NIBh2rJbXw1oHciSLAT8G3mfFlKXWMiWA6lpdEXCCo9ZoAPq1m8wUuJPDk/rFaUslx/CRcPOGp4NuMyMURWRpkAHwl4rSiplekJ0YXdEsxvTDy5P7xXoLAAkvSg9e530aixVISMcO4YCVQA4QXq9n0rjRP7p+/Ob8CgMnXpQb9OgJFKenB89xvI9FqKVnNEg/UAOHFaja9xcib++dvzu/ynUcNn8PNgq85uDxOvQwleiy4JY038lCaoidilYhaeLOaTW8xik0uf5fZC28fPIXq+p/jOUY1uRQtrr/t/g7Ld37b5nNRSMz0H8KOJSee6LXg1srfDobT6TB1+ZHe8Gg1m1oYfTe5jMQdg7phnIFNLkW2fn7C53YzComZ5n7rjVz5iecLbtyAZKaQzjATdcBRS4tLwIaCUr9VIlJ4XF7CtMIoN1hr6puwvqDMcFG0mpDwlP0PJWosZZ6nuAUbX0aKEnPG9EG/pA7cWs2mjDGaoaUXq0AUfPeDKbK6PGX/Q4mWBbesMo2RFbnYsxKZfbty3UPSlBajGawxVoGQrmPCKzxl/0OJFRfc0hO1ZUpmGSemtBjN4NapWTfZDFld1uw/AEvVOAay4BbPFpFeqClTMlNIwZTCaAa3TklIpPDi/vvDn6sIgLvlJQLFCkX7wUSN8WGmkIIpXWmzuHVyi7z7ggf3nwU5V/HDkgq/mVsz/IeQwnvfQKNhNT4WTuiPGZlpprlPprQY/VljAoBbMlr/8xptgWldx4RnpK4iAO6TYYFg16QKC6wWtZlEETCpxQjIW2NOR+vau+sKyrCuoIyL6Wpa1zExC2ZIhgWK3ZIqrFjVojalxSjiuTrc7zJ7AUCbBct5SWxYOVZlhmSYHtgpqaIGK1rUprUYRcKcDgxNS8C8vx/0+Tkvs0ys+mYFzJEMI4KL1SxqU1uMIjytVaKEFd+sgLWtYYIdK1nUprcYAXO5clZ7swLWtoalyxSY/VkRbFhCGM3myplxHRN/yCXDPBsEmE1kqPekfbGEMJqlrtHqWKnBLUtHHR6vm9AHS8QYeWtWa2es0ODWDE1KiOBiCWEEaK0SXjGDyEjHRdHxKlMk84jgYQlXWsRKrpxV4L342+7LnRK+sZQwAr4TGxQvMg6eKwbkxoWdljvVgtmSaFqwnDBK4XGtEjsMLBFeKwYCXe7Ursk8u3helhfGomPs8SK9XTlfAvhhSYUtBpYIrxUDtNypeuzkeVlaGHcUn8GCf37NtK/erpzP2FVshM+Fgqw4sER4Kv72fFEdrfyR6ZiOMRFerjWPCzeFAh49r2BiWWGUe7vJoacrJxu7klk9zYoDyxO54u/EDpEY2a8rPj1WhVM1FzF9eC9EhgenUELtYk0itNxpK7wn0fTGksKoJn6ktyunNXZltYElRVox8GFJJbZ/fQZvHTjl3mfp9sPIGZmG3FsG6Prdal+SgD2WO1UDz0m0YGCZOkZP1MaP9HTltMauRKwysHwhVgyUnK7Fv78606ZFnEsAVn9SirztJbp9p5YXlZ3jiHLwmkQLFpYURlZx6RgToXtcL1Bhs8rAkqPpsgtr95Yq7rN2bymaLrt0+T4tLyqzdzsKBnbroGRJV5pVXFZOHYzMvl0M+W4pdikB2VhY1sZSlOISgCX/PoSnbs/wabF5JlG6tIsCHMC5Hxt9xgBZX1S8LwBvNDwl0UKBJYWRtURkWG/9Y3n+vtsXVhxYcpRXNzDtt7HoBHYePtsmA+wviSItfWJ9UWX27WrJ2G4gSMvNxg1I9ttBySpYUhiNfLv5+24Bbct2rDiw5OiZEMu8r7SMiSWJIj2G1zpK3lEq5M6fP9byExQCijE+++yzcDgceOSRR9zbLl26hNmzZ6Nz585o3749Jk2ahMrKykCvUzVGdstW+u5V0wZj/xPjsCVnGJ6fPAhbcoYhf/5YW4giAEwf3gus/4c8m0w0XXYxJVGkjSmo85J6/HVD+rCkwjKduuVwCIKgqa3J559/jjvvvBNxcXEYM2YMVqxYAQCYNWsW3n//fWzYsAHx8fGYM2cOnE4nCgoKmM5bV1eH+Ph41NbWIi4uTsuleWHk9Ds7Tf1TQ972Eqz+RDkBI2XhhP5Y8v5hVcdsyRnmdo/tMpUtUFpcAkYs2y0bqhAt7Pz5Y003ltVoiyZX+scff8TUqVOxdu1aPP300+7ttbW1WLduHTZv3oyxY8cCANavX4/+/fujqKgIw4YNa3OuxsZGNDY2el28nhjZLduKnbr1QKxTXLu31G8iRoQ1NumJZ+LFiktKBAO7FXLLocmVnj17NiZMmICsrCyv7fv370dzc7PX9vT0dPTo0QOFhYU+z5WXl4f4+Hj3T2pqqpZLshR26BuZe8sAfLPkV5g+rAfT/mpikyLSxIuVFmsKFnYr5JZDtcW4detWHDhwAJ9//nmbzyoqKhAZGYmOHTt6bU9KSkJFRYXP8+Xm5mLevHnu3+vq6mwtjnZy+SLDnXjq9gzsPHzWb3Jk+vBeeCW/lCnbTwkV7ditkFsOVRbjyZMn8fDDD+ONN95AdLQ+NyYqKgpxcXFeP6GCN8vMbEsA6AFrciQy3Cm7n9wxZBGqx26F3HKoEsb9+/fj7NmzGDx4MMLDwxEeHo49e/bghRdeQHh4OJKSktDU1ITz5897HVdZWYnk5GQ9rztgdhSfwYhluzFlbREe3noQU9YWYcSy3YaJjxmWAAgWrBUEcvspHUOog7L4rajKSl+4cAHl5eVe2+655x6kp6dj/vz5SE1NRdeuXbFlyxZMmjQJAHDkyBGkp6ejsLDQZ/JFit5ZaV/I1cOJj9qI/1iFx6owZW2R3/08M61KmDEjznrNama+EN6w3mMrhnSClpXu0KEDMjIyvLa1a9cOnTt3dm+fOXMm5s2bh4SEBMTFxeHBBx/E8OHDmUQxFPDaV441mF1Re9HvPmYd1KxZfMr2a0PNuLB7Fl/3JhLLly/HrbfeikmTJmHUqFFITk7Gv/71L72/RjNqyhFCCWswe8n7hxXdfTvGKQn/aBkXds7iByyMH3/8sbu4GwCio6OxcuVKVFdXo76+Hv/617+4ii/yWo7gL+gtUlPfJDuQ7RynJOShcaEeS7YdU4LXcgTPoLcSSgOZ1RreUFBK/wlsBK9eEs/YThh5LkcQs64J7ZTXNZYbyKxW7pL3DxuagSf0R6n0jFcviWcs2V1HCdbOO0BrpjjUgefxGSm42OzC3DcP+t1XOpDVWLlWXoDLbvhLqvDqJfGM7YQRkF+cSWz/BaDNRPpQZnWT47QNZDW9IK2+AJddYFnSdNyAZGq9phLbudIi4zNSkD9/bJv2XwAMz+pqdfeVinN9QbElc8OaVAFARdsqsa0wAm3LEQBwkb0LZPYBy+wQKRW1F7maGkmwoSapYmR/UjNiS1daDp5aLvlz95UGslicu6GglKmH4ZL3D6O6vsn9uxmKwQmgok5dUsXuRdtqIGH0gLfsXSADOczpwIzMNKaONJ6iCFBixgzsKD6DJf8+xLSvZyyaZg2xYWtXWgqP2btAZh+ojTmKUNEv34gJl+r6ZsX97NIJJxiQMHrAc42jVuRiS1prJQljUUq4eEJJlcAgV9oDq66d68slr6i7pKlWkgg+Sh1w/MXBRRLaRWLprzMoFKIREkYJckmPpLgoTBnaA42XXSg8VmW6oLU0tlR4rIrpOCr6DS3+irVZX1RPTOhPohgAJIw+kFpYZecasGXfCSzfedS9j9kzt7TeMn+wFGuzvqiS42P0v0AbQTFGGUQLKyrciRU7v21TGmH2Nl5aaiV5WwrCSrAWa1/bs5Pl4uA8QhajArw2tdULNbWSZm1+axZYa2j3l9dYMg7OGySMCrAO1qJjVcjs1yV0F6YjLLWSLC4eiaN2WlwCCr47x7Tv2QuXMHFQd83F/wQbJIwKsAa6Z28+gGcnXW3aAalU9Gt1q9lofFniSogxRprFElwoxqgAa6D7/MVmU8cblaAmp8FDbrkBX/iKHdp56YFgQ8KoAOtyAyJWnCnC2zRJq8BaqA1Q7NAISBgVYF1uALCu5cTjNEkrwFqoDVAHHCOgGKMfxMztgn9+jfMXleemAtaznKjesS1a1r+W7sc6TuaM6YO5464iSzHEkDAyMD4jBR2iIzD1lc/87ms1y8mq0yS1wlq2pNdyA5l9u9rm3vIEudKMDOvd2baFtdTktBXWtZlZ9rNiwxIrQRYjI3a3nOxeHsJatjQ2PYm5vMnO44l3yGJUgZzl1KldBFb+9peWt5zsXB7CWra0sbCMlhuwAGQxqmR8RgpcLuCJbcXuztfV9c1Y8v5hOJ0OGswhgjUBovUc0s9YlxEor25g2o+WG+AbEkaV7Cg+g9mbaXqcL/QQKxb0mLetdA4AbT7z19hXpGdCLNN+tNwA3zgEQeCqIrmurg7x8fGora1FXFyc0ZfjRYtLaLPetCdi6Ur+/LG2e+OHqsmE3Lxt8W6zvJiUzqH1P4P47Pf8YQxG//kjv+VNdhwjRqNGWyjGyEiLS8CGglKaHucD1mxtoLC25lKafcRyDn8otWmLDHfSGs4WgISRgR3FZzBi2W6mpUgB6xV5K6GHWLGix7xtNTNO5OjULtLrd2myhJIq5odijH6Qc7uUsFqRtxKsYvXp0XP49uwFlFc3oGdCLKYP74XI8LbvZT1miyjtp8dLa+GE/kiOj1GMpVJSxdyQMCqgZqI/YM/pcaxCc9f6fV73cen2w8gZmYbcW36ei67XbBGl/fR4aSXHxzAlSyipYl7IlVZAjdtl1/gRq9BIXy4uAVj9SSnytpcACN1sEbUdk9Sen7AGJIwKqHG7OrWLwO8yeyE+JtJyrceUCERoAGDt3lJcbGphilMCCDixwbLWTSDnJ6wBCaMCrNZQh+hwVNc3Y11BGaasLcKIZbst2bTWF0pCw4JLAJ7ZrtzBWu/ZIkrnWDVtMFZR4sT2UB2jAmLdolxNmhxqauqsgq/4YGxEGBqaW/weO7JfF+w96n/Nk+cnD8LEQd0BhH7mCyVOzI8abaHkiwJKjSOUsONaKL6ysMWnarF0u/8Sp16dY7H3qN/ddJ8tonQOSpzYG3Kl/SDndvmbImbHYm9pk4m7b+gFf+8EpwN4/JYB1IKL4AqyGBnwZQ1V1F3C3DcP+j3WTsXeUiLDncgZmYbVn5TK7pMzMg0xkWHUgovgCrIYGZFaQ8lxtBYKC7m3DMD9o9LaWI5OB3D/qJ/rGGm2CMETlHzRiL/EDDUL8KbpsgsbC8sCmvlCEIFAyZcQYPeO3mqJDHdi5sjefvejpAfBA+RKBwC5fwRhTchiDBBqFkAQ1oOEUQfI/SMIa0GuNEEQhASyGIMAZVYJwtyQMOpMqNY+IQgieJArrSOhWvuEIIjgQsKoE6Fc+4QgiOBCwqgTeizURBAEH5Aw6oQeCzURBMEHJIw6ocdCTQRB8AEJo07osVATQRB8QMKoEyyLLFFTCYIwBySMOiLXVKJTuwis/O0vqY6RIEwCCaPOjM9IwcIJA5DQLtK9rbq+GUveP0x1jARhEkgYdWZH8RnM3nwA1fVNXtupyJsgzAMJo45QkTdBWAMSRh2hIm+CsAYkjDpCRd4EYQ1IGHWEirwJwhqQMOoIFXkThDUgYdQRKvImCGtAwqgztHIgQZgf6uAdBGjlQIIwNySMQYJWDiQI80KuNEEQhARVwpiXl4frrrsOHTp0QGJiIu644w4cOXLEa59Lly5h9uzZ6Ny5M9q3b49JkyahsrJS14smCIIIJqqEcc+ePZg9ezaKiorw4Ycform5GTfffDPq6+vd+8ydOxfvvfce/vGPf2DPnj04ffo0/ud//kf3CycIgggWDkEQNE/c/eGHH5CYmIg9e/Zg1KhRqK2tRdeuXbF582b87//+LwDgm2++Qf/+/VFYWIhhw4b5PWddXR3i4+NRW1uLuLg4rZdGEAThhRptCSjGWFtbCwBISGgtWN6/fz+am5uRlZXl3ic9PR09evRAYWGhz3M0Njairq7O64cgCMJINAujy+XCI488gszMTGRkZAAAKioqEBkZiY4dO3rtm5SUhIqKCp/nycvLQ3x8vPsnNTVV6yVZghaXgMJjVdh28BQKj1VRJx6CMADN5TqzZ89GcXEx8vPzA7qA3NxczJs3z/17XV2dbcVxR/EZ/Om9Eq8OPSnx0Vh02wAqDCeIEKLJYpwzZw7+/e9/46OPPsIVV1zh3p6cnIympiacP3/ea//KykokJyf7PFdUVBTi4uK8fuzIjuIzmLXpQJu2ZdTgliBCjyphFAQBc+bMwdtvv43du3cjLS3N6/Nrr70WERER2LVrl3vbkSNHcOLECQwfPlyfK7Yg1OCWIPhClSs9e/ZsbN68Gdu2bUOHDh3cccP4+HjExMQgPj4eM2fOxLx585CQkIC4uDg8+OCDGD58OFNG2q6oaXBLs2kIIvioEsaXX34ZAHDjjTd6bV+/fj1mzJgBAFi+fDmcTicmTZqExsZGZGdn46WXXtLlYq0KNbglCL5QJYwsJY/R0dFYuXIlVq5cqfmi7AY1uCUIvqC50hxADW4Jgi9IGDmAGtwSBF+QMHICNbglCH6gfowcQQ1uCYIPSBg5gxrcEoTxkCtNEAQhgSxGzmlxCeRaE0SIIWHkGGoqQRDGQK40p1BTCYIwDhJGDqGmEgRhLCSMHKKmqQRBEPpDwsgh1FSCIIyFhJFDqKkEQRgLCSOHUFMJgjAWEkYOoaYSBGEsJIycItdUolO7CPwusxfiYyIpK00QQcIhsHSfDSFqFsW2A+LMlw9LKvDOwdOorm9yf0bF3gTBjhptIYuRc8KcDtRebML6gjIvUQSo2JsgggVNCeQcf8XeDrQWe48bkKxLzFFpbjbN2ybsAgkj5+ixgiCroCnNzQZA87YJ20DCyDmBFnuzNqIQ52ZLLdOK2kt4YNMBn+cWXXnqME5YDYoxck4gxd6sjShY5mb7guZtE1aFhJFztBZ7q2lE4c9dV8LXvO0Wl4DCY1XYdvAUCo9VkWgSpoNcac4Ri71nbToAB7wtOKVibzWxST3mXIvnoB6ShBUgi9EEaFlBUE1sUo8514kdoqmHJGEZyGI0CWpXEFQTmxTd9YraS4oxRV840CrQ1/bshNF//ihkZUUEEUxIGE2EmhUE/YmdKGiiuCq564KPf4u/A62u/P7yGtVlRVQzSfAKCaNFURubFN11aXwwWaGOMdkjdrjt4Cmm62KJRfr6LopTEqGE5kpbHLXJEK1WXOGxKkxZW+T3erbkDEPtxSafNZNSAZd+BoBqJgnNqNEWshgtjtrYpJK7rvQZq+vuLxYpB8UpiVBCWWkbIAraxEHdMbxP56CICmsPSX+xSCVorRsiVJAwErrBUlakZ80kQQQLcqUJXfHnuutVM0kQwYSEkdCdQGKRSniWGBFEMCFXmggpLLFIpc9orRsiFJAwEiFHKRa5atpgrFI5/ZEg9IbqGAnDoJkvRCihOkbCFGitmSSIYEOuNEEQhAQSRoIgCAkkjARBEBJIGAmCICSQMBIEQUggYSQIgpBAwkgQBCGBhJEgCEICCSNBEIQE7ma+iDMU6+rqDL4SgiCshKgpLLOguRPGCxcuAABSU1MNvhKCIKzIhQsXEB8fr7gPd00kXC4XTp8+jQ4dOsDhME/TgLq6OqSmpuLkyZPU/EIDdP+0Q/eODUEQcOHCBXTr1g1Op3IUkTuL0el04oorrjD6MjQTFxdHgzMA6P5ph+6df/xZiiKUfCEIgpBAwkgQBCGBhFEnoqKisGjRIkRFRRl9KaaE7p926N7pD3fJF4IgCKMhi5EgCEICCSNBEIQEEkaCIAgJJIwEQRASSBh1pLGxEYMGDYLD4cDBgwe9Pvvqq68wcuRIREdHIzU1Fc8995wxF8kZZWVlmDlzJtLS0hATE4M+ffpg0aJFaGpq8tqP7p88K1euRK9evRAdHY3rr78e+/btM/qSTA8Jo4489thj6NatW5vtdXV1uPnmm9GzZ0/s378ff/7zn/HUU09hzZo1BlwlX3zzzTdwuVxYvXo1Dh06hOXLl2PVqlV4/PHH3fvQ/ZPnzTffxLx587Bo0SIcOHAAv/jFL5CdnY2zZ88afWnmRiB0Yfv27UJ6erpw6NAhAYDwxRdfuD976aWXhE6dOgmNjY3ubfPnzxeuuuoqA66Uf5577jkhLS3N/TvdP3mGDh0qzJ492/17S0uL0K1bNyEvL8/AqzI/ZDHqQGVlJXJycrBx40bExsa2+bywsBCjRo1CZGSke1t2djaOHDmCmpqaUF6qKaitrUVCQoL7d7p/vmlqasL+/fuRlZXl3uZ0OpGVlYXCwkIDr8z8kDAGiCAImDFjBh544AEMGTLE5z4VFRVISkry2ib+XlFREfRrNBPfffcdXnzxRdx///3ubXT/fHPu3Dm0tLT4vDd2vi96QMIow4IFC+BwOBR/vvnmG7z44ou4cOECcnNzjb5krmC9f56cOnUK48ePx29+8xvk5OQYdOUEwWHbMV549NFHMWPGDMV9evfujd27d6OwsLDNPNUhQ4Zg6tSpeO2115CcnIzKykqvz8Xfk5OTdb1uXmC9fyKnT5/GmDFjcMMNN7RJqtjx/rHQpUsXhIWF+bw3dr4vumB0kNPslJeXC19//bX754MPPhAACG+99ZZw8uRJQRB+Th40NTW5j8vNzaXkwU98//33Qr9+/YTJkycLly9fbvM53T95hg4dKsyZM8f9e0tLi9C9e3dKvgQICaPOlJaWtslKnz9/XkhKShKmT58uFBcXC1u3bhViY2OF1atXG3ehnPD9998Lffv2FW666Sbh+++/F86cOeP+EaH7J8/WrVuFqKgoYcOGDUJJSYlw3333CR07dhQqKiqMvjRTQ8KoM76EURAE4csvvxRGjBghREVFCd27dxeeffZZYy6QM9avXy8A8PnjCd0/eV588UWhR48eQmRkpDB06FChqKjI6EsyPdR2jCAIQgJlpQmCICSQMBIEQUggYSQIgpBAwkgQBCGBhJEgCEICCSNBEIQEEkaCIAgJJIwEQRASSBgJgmDm448/lu2W9Pnnn/s9XhAE/OpXv4LD4cA777zj9dnnn3+Om266CR07dkSnTp2QnZ2NL7/8UtX1zZgxo811jR8/XtU5ABJGgiB8cOONN2LDhg1ttt9www04c+aM18+9996LtLQ02X6knqxYsQIOh6PN9h9//BHjx49Hjx498NlnnyE/Px8dOnRAdnY2mpubVV37+PHjva5vy5Ytqo4HSBgJglBBZGQkkpOT3T+dO3fGtm3bcM899/gUPE8OHjyIv/zlL3j11VfbfPbNN9+guroaixcvxlVXXYWBAwdi0aJFqKysRHl5uXu//Px8jBw5EjExMUhNTcVDDz2E+vp6r3NFRUV5XWOnTp1U/50kjARBaObdd99FVVUV7rnnHsX9Ghoa8Nvf/hYrV6702SvyqquuQufOnbFu3To0NTXh4sWLWLduHfr3749evXoBAI4dO4bx48dj0qRJ+Oqrr/Dmm28iPz8fc+bM8TrXxx9/jMTERFx11VWYNWsWqqqqVP9d1ESCIIg23HjjjZgxY4bfZsO33HILAGD79u2K+91///1oaWnBK6+8AgBwOBx4++23cccdd7j3KS4uxh133IHS0lIAQL9+/fDBBx+gZ8+eAIB7770XYWFhWL16tfuY/Px8jB49GvX19YiOjsbWrVsRGxuLtLQ0HDt2DI8//jjat2+PwsJChIWFsd8AQ3v7EATBBUuXLhXatWvn/nE6nUJUVJTXtvLycq9jTp48KTidTuGtt95SPPe2bduEvn37ChcuXHBvAyC8/fbb7t8bGhqEoUOHCnfddZewb98+obCwUJg0aZIwcOBAoaGhQRAEQRgyZIgQGRnpdU2xsbECAKGkpMTndx87dkwAIOzcuVPV/SBhJAhCqKqqEo4ePer+GTp0qLBs2TKvbc3NzV7HLF68WOjatatXZ3VfPPzww4LD4RDCwsLcPwAEp9MpjB49WhAEQXjllVeExMREoaWlxX1cY2OjEBsbK2zZskUQBEFIT08XHnzwQa9rEn88l9aV0qVLF2HVqlWq7get+UIQBBISEryWrI2JiUFiYiL69u3rc39BELB+/XrcddddiIiIUDz3ggULcO+993ptu/rqq7F8+XLcdtttAFpjkE6n0yuBI/7ucrkAAIMHD0ZJSYnsNfni+++/R1VVFVJSUpiPASj5QhCEBnbv3o3S0tI2gge0rvaYnp6Offv2AWhdsCwjI8PrBwB69OiBtLQ0AMC4ceNQU1OD2bNn4/Dhwzh06BDuuecehIeHY8yYMQCA+fPn49NPP8WcOXNw8OBBHD16FNu2bXMnX3788Uf84Q9/QFFREcrKyrBr1y5MnDgRffv2RXZ2tqq/j4SRIAjVrFu3DjfccAPS09PbfNbc3IwjR46goaGB+Xzp6el477338NVXX2H48OEYOXIkTp8+jR07dritvWuuuQZ79uzBt99+i5EjR+KXv/wlnnzySXTr1g0AEBYWhq+++gq33347rrzySsycORPXXnst9u7d22YVT39QVpogCEICWYwEQRASSBgJgiAkkDASBEFIIGEkCIKQQMJIEAQhgYSRIAhCAgkjQRCEBBJGgiAICSSMBEEQEkgYCYIgJJAwEgRBSPj/bnC3WnMY3QkAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAG+CAYAAADvFq2EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHw0lEQVR4nO2de3wU5b3/P7u5kYQkEDDZBCIJEsslWgQvRK5yE0FB8VWPiNYrgsARsKdAaq2xChRqkRYVIVK0UMDf0SK0phQ83CEUJMbKRUBIgkIiQmISE8ht5/dHnHV3dmf2mdnZnWdmv+/Xi5dmd3Z3svPkM9/7YxMEQQBBEAThwm70CRAEQfAGCSNBEIQEEkaCIAgJJIwEQRASSBgJgiAkkDASBEFIIGEkCIKQQMJIEAQhgYSRIAhCAgkjQRCEBMsJoyAIuOuuu2Cz2fDhhx8qHrtixQrceOONSExMRGJiInJzc/HPf/7T9XxzczPmzZuHG264AfHx8UhPT8fPf/5zXLhwIeDP9sV3332HGTNmIC0tDe3atUOvXr1QWFio+n0IgggMUwnjsGHD8M477yges2zZMthsNqb369q1K373u9/hk08+wSeffILhw4djwoQJOHbsGACgoaEBxcXFeOGFF1BcXIy//e1vOHXqFMaPHx/wZ0tpamrCqFGjUFZWhvfffx8nT55EQUEBunTpoun9CIIIAMFEDB06VFizZo3s8yUlJULXrl2FiooKAYCwadMm1Z/RsWNH4e2335Z9/tChQwIAoby8XNVnf/3118IDDzwgdOjQQUhOThbGjx8vlJaWup5fsWKF0L17d6GpqUn1ORMEoS+mshiVaGhowKRJk/D666/D4XCofn1rays2btyI+vp65Obmyh5XU1MDm82GDh06MH92Q0MD7rjjDrRv3x579uzBvn370L59e4wZMwZNTU0AgC1btiA3NxczZsxAamoqcnJysHDhQrS2tqr+XQiCCIxIo09AL+bMmYPbb78dEyZMUPW6zz//HLm5ubh69Srat2+PTZs2oXfv3j6PvXr1KubPn4+HHnoIiYmJzJ+9ceNG2O12vP322y5Xe82aNejQoQN27dqF0aNH4+zZs9ixYwcmT56MwsJCnD59GjNmzEBLSwt+85vfqPqdCIIIEKNNViUWLFggxMfHu/7Z7XYhJibG47E9e/YImzdvFnr06CHU1dW5XgtGV7qxsVE4ffq0cPjwYWH+/PlC586dhWPHjnkd19TUJEyYMEG46aabhJqaGtfjLJ89ffp0ISIiwuO84+PjBZvNJrz55puCIAhCdna2kJGRIbS0tLhe94c//EFwOBxqvjKCIHSAa4tx2rRpeOCBB1w/T548Gffffz8mTpzoeqxLly7Iy8vDmTNnPNxbALj//vsxePBg7Nq1S/YzoqOj0aNHDwDAzTffjMOHD+OPf/wjVq5c6TqmubkZDzzwAEpLS7Fjxw4Pa3HHjh1+P9vpdKJ///7461//6vX511xzDQAgLS0NUVFRiIiIcD3Xq1cvVFZWoqmpCdHR0fJfFEEQusK1MCYnJyM5Odn1c2xsLFJSUlxCJjJ//nw89dRTHo/dcMMNeO2113DPPfeo+kxBENDY2Oj6WRTF06dPY+fOnejUqZPqz+7Xrx/ee+89pKSkeIiqOwMHDsT69evhdDpht7eFfk+dOoW0tDQSRYIINUabrGrwl5V2Bz5c6eHDhwvLly93/ZyXlyfs2bNHKC0tFf7zn/8Iv/rVrwS73S5s27ZNEARBaG5uFsaPHy907dpVKCkpESoqKlz/GhsbmT+7vr5eyM7OFoYNGybs2bNHOHv2rLBr1y7h2WefFb766itBEATh3LlzQvv27YWZM2cKJ0+eFP7xj38IKSkpwiuvvML25RAEoRtcW4x6c+bMGVy6dMn18zfffINHHnkEFRUVSEpKwo033oitW7di1KhRAICvv/4aW7ZsAQD07dvX47127tyJYcOGMX1uXFwc9uzZg3nz5mHixImoq6tDly5dMGLECJcFmZGRgW3btmHOnDm48cYb0aVLF8yaNQvz5s0L/BcnCEIVNkGgzbAIgiDcsUwdI0EQhF6QMBIEQUjgLsbodDpx4cIFJCQkaO47JgiCkCIIAurq6pCenu6q/JCDO2G8cOECMjIyjD4NgiAsyldffYWuXbsqHsOdMCYkJABoO3m5mj+CIAi11NbWIiMjw6UxSnAnjKL7LM5IJAiC0BOWEB0lXwiCICSQMBIEQUggYSQIgpBAwkgQBCGBhJEgCEICCSNBEIQEEkaCIAgJJIwEQRASuCvwJghftDoFHCqtwsW6q0hJaIdbs5IRYadeeiI4kDAS3LP1aAVe+vtxVNRcdT2WltQOL97TG2Ny0gw8M8KqkCtNcM3WoxV4Zl2xhygCQGXNVTyzrhhbj1YYdGaElSFhJLil1Sngpb8fh68R8+JjL/39OFqdNISe0BdypQluOVRa5WUpuiMAqKi5ikOlVci9rm33RtZYJMUsCSVIGAlukIpVZc0VptddrGsTT9ZYJMUsCX9wtxlWbW0tkpKSUFNTQ2PHwghfYpUcH42q+ia/r90wZQBqrjThmXXFXm63aAOueLgfxuSkuWKW/o4jrIcabaEYI2E4cgmWaj+iaEObpde/W0emWGRTizMsY5atTgFFZy5jc8l5FJ25bLnfLxiQK00YCkuCxReihffiPb1xpLyaKRa5tqiM6biDZy/DbrOpjj/yGLeksIE2SBgJQ/GXYBFJjo9CVX2z62eH2x/35pLzTJ9VXtXAdNyMvxbjuys/fhaLkPAoQHJhA7HUicIG8pAwEoYiJk788cLdfeBIbOfTGktJaMf0Ht2S45iOcxdFwL+Q8ChA/ixxG9rCBqN6Owy3anmEYoyEobCKmiOxHXKv64QJfbsg97pOHn/Mt2YlIy2pHeT+vMVY5CO5mYrHyaEUfzSy1lIpdsha6vTO/lKKOfqALEbCUERRq6y56lNcbGhzm2/NSpZ9jwi7DS/e0xvPrCuGDZ6xSfdYZHSkXfY4f8jFH51OQXWtJRB4vaU/153VEn/5oxN4e18pxRwlULkOYTiiKwr4FjVWVzSQOsYOcVH4rsHThfZFh9goD1db+rMcf3ywLyb07RLweaYltcP4n6Zh1Z5SxZKjpNhoTCo46Pe8pK+zsjiq0RYSRoIL9EpeaLXEnE4Bk1f/W5ffxRcbpgxA7nWdmOsolY7zl613JLXD7l/egaG/3ylricu9bt+84ZaNOarRFnKlCS4Yk5OGUb0dAZe7RNhtHi4r63GtTkHRpdeKeyiANSEyvGeqphIm8fmKmqs4Ul6tKmwQaKmS1SBhJLiBVdSC9dla449yuMc3I+w2FJ25rEu9JQsX665iQt8uWPFwPy9LXAktpUpWhLLSBPEDY3LSsOLhfnAkeWbKO8RFMb2+Q6zncY6kdh5xO9aECGu9pRJitn9MThr2zRuOF8b1YnqdXKlSuI13I4uRMBTeukV8ufSs8cc3JvdTdEP1rrf0ha8sfoTdhscGZuHtfaWqQwXhWvNIwkgEBRbB47FbBFAffxTFaED3TorCwVqa9EhupiYRk7ru0t8p0FIlacmRlSFXmtCdrUcrMGjxDkwqOIhZG0swqeAgBi3e4eGOmWkytygqALyKw5XESOv7iPWWcsfZAEwdkoU0icsvdd2lBBoqYA0FWAEq1yF0haUcZVRvBwYt3iGbEOC1dEQvC1evuZFawxBaS5XEkiOzQuU6hCGwlqMkxERp6hYxGr1Kiljfx99xWrP4WkMFSt1HVoOEkdAN1v7corOXmN6PR9dNr5IirfWWwYC1pZIn6z3YUIyR0A12IWP7A2PN4hKBIxd/9Be3tCpkMRK6wSpkudd1wgfFX5Prxhl6hQqsAFmMhG6wjv8a0L2TLlleQn9E193XeLdwgoSR0A01ZS3kuhE8Q+U6hGa0zgpkeQ/CGKx8Pahchwg6/sSPNVZl5OAIwhNeO5GMgCxGQjW0N7P1CIdrSvtKE0HDyD1OiOBA19QbEkbCCz02WTpUWhWCMyX0gK6pNxRjJDzQa5MlHrtWCN/QNfWGLEbCBcvEG9YibupaMQ90Tb0hYSQAsMeZ+nfryFTETV0r5oG1MD+crikJIwGAPc4kbrIEUNeKVdBr3qSVIGEk0OoUsP/Lb5mOvVh3lbpWLIjSNZ098no0tji9EnFWhuoYwxxfyRYl3IeVWrlLIlxxv6Zll+qx4dA5VNY2up43c8E31TESTMglW3zhK85EAwesh3hNYyLtWPbxaQ9RBPjceiIYkDCGKUrJFinhGmcKV6jgm4QxbPGXbHGHYofhBWsi7uDZy6E7qRBDwmhhlDpYWIt1Z97RA/vmDSdRDCNY18aMv1rXpabOF4vir4OFtVh3YI/O5D6HGaxr47srzXhmXbElvQmyGC0ISwcLFfUScvhbG1KsGG8kYbQYrIFzAFTUS/jEveDbH1YdMEHCaAGaWpxYvfcsfrP5KF7cfJR5UgoVahNyiGujQ2wU0/FWGzBBMUaTs6jwOAr2lkKtJyMuZNoZjpBjTE4aEmKiMHn1v/0ea7UBEySMJmZR4XGs3FOq6bXuC5m2FyDkGHBdJ6QltQu7rW7JlTYpTS1OFOxVL4qUVCHUEK4DJkgYTcraojLV7rOIFRcyETxYY9FKdbNmg1xpk1Je1aD6NR1io/C7+2+gpAqhGn+xaKvtMEjCaFK6Jcepfs0bk/thYI/OQTgbQg4rTSCSi0XL7TAo1s2ascKBhNGkPJKbiQWFJ5jcaTFAPqA7JVhCidWsKF/4q5u1oa1udlRvh6luCBRjNCnRkXZMGZzl9zgrB8h5hqX7yApYdYdBEkZOYQlk543tjalDsqCkd1SsHXrCaWyXVXcYJFeaQ9S4YHlje+MXo3tibVEZyqsakNExDj1TE1B1pcn0MS2zII0jOp0C89guu81m6vijVXcYpK0NOEMukC3+uZD1p55gJkB83cQ6xEbhuyvNfl8rPc6M8cdWp4BBi3f4LQDfN2+44aKvRltIGDlCXGRy1gZPiyxUKIkai+AFMwEidxPTillvfuL3AMDju+Dt91GjLeRKc4SaQHY4tPApiRoAv4IXzDISNVtDsGLWLK5YAC69Hsnx0ZjQNx1JsdFodQqm+X0ASr5whVUD2VpQyupOW1eMaX4yvsFOgKjZGkIN4s3vnf2lpkrOjMlJw755w7FhygA8OTATyfFRuFzfhD/vL8OkgoMYtHiHqTLxqoSxpaUFv/71r5GVlYXY2Fh0794dv/3tb+F0Ol3HCIKA/Px8pKenIzY2FsOGDcOxY8d0P3ErYtVAtlpYRM0X7oJ38MxlTWUkrG1trDcn6diuDnFsY7xe/uiE6cQkwm5DzZU2Mayq94yxmq1MSZUrvXjxYrz11lt499130adPH3zyySd4/PHHkZSUhFmzZgEAlixZgqVLl+Kdd97B9ddfj1deeQWjRo3CyZMnkZCQEJRfwiqIk5PDbZKJ2qyuEqLgHThziel4d4FTE49kvTm9MbmfR+bZ6RSYxngB5uscsVKxtyphLCoqwoQJEzBu3DgAQGZmJjZs2IBPPvkEQJu1uGzZMjz//POYOHEiAODdd99Famoq1q9fj6lTp3q9Z2NjIxobf9y7tra2VvMvY3bESSbPrCuGDb4D2VYr1JbL6gbKO0VlTMeJAqc2Hsl6ExvQ3XO/7aYWJ+w2MHUsmU1MrBQjV+VKDxo0CP/3f/+HU6dOAQA+++wz7Nu3D2PHjgUAlJaWorKyEqNHj3a9JiYmBkOHDsWBAwd8vueiRYuQlJTk+peRkaH1dzElUtdtVG9H2EzVlosjspS6+KO+sVXxeffxa1rikVrHcR0pr1Y1FclMnSNWipGrshjnzZuHmpoa9OzZExEREWhtbcWCBQswadIkAEBlZSUAIDU11eN1qampKC8v9/meeXl5eO6551w/19bWho04Krlu++YNt8zwAV8EI6urFlG4ilTEI90tHblsrEOhHEirKJhBTKwUI1cljO+99x7WrVuH9evXo0+fPigpKcHs2bORnp6ORx991HWczeb5BywIgtdjIjExMYiJidFw6ubGihNJ1KA1q+seYpCGG1hJjo/Cwvt+HL8WiKWjdmsIraJgBjGxUoxclTD+8pe/xPz58/Hggw8CAG644QaUl5dj0aJFePTRR+FwOAC0WY5paT/+UV+8eNHLigxnrBSk1tpVoiar6+5aOxTqGDvEReG7Bv9u+At39/G46QRq6ajZGsKfeEgxk5hYKUauShgbGhpgt3uGJSMiIlzlOllZWXA4HNi+fTtuuukmAEBTUxN2796NxYsX63TK5scqQepAukq0ZnXdhVdqqbFmfB2Jnp8dSktHSTx8fS5gHjEBtIUXeESVMN5zzz1YsGABrr32WvTp0weffvopli5diieeeAJAmws9e/ZsLFy4ENnZ2cjOzsbChQsRFxeHhx56KCi/gBmprLnCdBzPcaVAQwFas7ruSC21VqegSeBCbenIiYc0W202MRGxws6Tqnql6+rq8MILL2DTpk24ePEi0tPTMWnSJPzmN79BdHQ0gLZ44ksvvYSVK1eiuroat912G9544w3k5OQwfYbVe6W3Hq3ArzYdRVV9k99jN0wZwKXFqFdPdzB6bAN5z1APlpWGIfp364gj5dWmFRPeoSESnMI6dID3YRFFZy5jUsFBv8exCHswxCiQ97TSVgSEJzREgkPUlqfwFFeSigVrKGD/l5f8Cksw3K5A3pP22NYP93XTuX0MIACX6htNccMhYQwRrOUp0lISo/FlfSXHRzO99vWdX+KD4q/9WmrBECMrC5wZrFpf68Yd3mdPkjCGCNZEirSUxEjkXP9qhvioSLjUZYYKM2ywxRIy4n1d0NixEMFaniItJTEKrRNu5I61yh4nRmKGDbZYQ0a8rwsSxhAhlqfIOTzuvbs8oOe8QTP1+/KKWTbYUrNueF4XJIwhQuvQAaMIRg0lz3WZvKN1m1LW+ZJ6oeUa87guKMYYQszUFRCM3lwz9PvyipZ+biPikVquMY/rgoQxxJilK0BtT68SZur35RW1/dxGDSlRs254XhfkShuAWEoyoW8X5F4n3/JmJCyuv6/npPAYJjAjamLURsYjldaNO7yvCxJGwoWaoblvPdwPb/l4TrrGrThg1wjUxKi1xiP1QgwZSdeGO7yvC3KlCQDah+ZKwwLU7xs8WGPUPAwpkYaMzNb5Qr3SAWCGDgQW5OJRvG2YTrShtO6sMKQkWFCvdAgwQwcCC1YamhsuyLU7sg4pAYCOcVFcJj14gWKMGjBDBwIrRsejCH1QO6TEaDcx1PWVaiGLUSVWs7CstLNbOKO2U+m7hmbDJsSbwdsii1ElVrOwrLSzWzhjlo4Ts3hbJIwqsZqFZbYebsI3Zug4MUu/N0DCqBqrWVhm6+EmfOPvBueOUTc7M3lbJIwqMYOFpTawLVeQy3sRLvEjajpOBAB35bTVGIbSOjOTt0XJF5Xwvneu1sC2WXq4CXnkCsDdsdkAQQD+vL8Mf95fFtKkh5m8LSrw9gFL4TaPmTUq1CYA33ut7PjiG6zeX+Z1bCjXhri7pL/tbYO1CRztEhgAagSPp84XvbY0JawHT2sjGFvmsqJGWyjG6IbaUgKepuSYKbBNhBae1oZSPHv2yOvR2OLkouCbYow/YPbCbTMFtonQwnrNK2tDszak8eyyS/XYcOgcXvv4lOsYo8NSZDH+AE93VS2YKbBNhBbWa/7yP46FrMBa9LZiIu1Y9vFpVNY2ejxvdME3CeMPmN3iMkMZEWEMrDWOVfXNIRUjngu+SRh/wOwWFxVqE3Kw1jiKhEqMePbSSBh/wAoWFxVqE3KIa6NjfLTicaEUI569NEq+/ADvhdusUKE2IceYnDRcaWrFnP/3md9jQyFGPHtpJIxumGl7UyXkBpkShCMplum4UIhR/24dYbcBSl673dZ2XKghYZRAFhdhZfxtbxrKLU2PlFcriiLQJppHyqtDfqMnYfQBWVyEVeEpZMRzjJGSLyaG9/HwBH+0OgUkxUbj8YGZXomYUCfpKMZoAnjqe2aBxyEWBBtGrTVfayY5Pgr39e2Ckb0dIV/zPLn1UkgYYT6RkZuiI3YLWLE0x2w3LjmMWmtya6a6vhl/3l+GWwz4Pnly66WE/XQds43q4mlSSqgw241LDqPWGu9rZuvRCuRvOe7Rqx2M60vTdRjhuSVJDp67BYKBWTZP8oeRa80ca8bz9zbaXgtrV1rNguElS81zJk9vzDbxyNeA2Ev1jUhJaIeWFqdha43nNSNnRX9T22hoWCishZHnBSMHz5k8vdFy49Iaiww0hunL3XeH9Z2CsdZ4XTM83/jCWhh5XTBK8JzJ0xu1Ny6tschAY5hyVo87rI5hMNYar2uGZ48trGOMZhwcEU5TdNTcuLTGIgONYSpZPWoI5lrjdc3w7LGFtTDyumCUEAt0nxiYiY7xUR7PWW2KDuuNq3+3jpoSG3okRPxZPawEe0tTHicv8eyxhbUrDfy4YPK3HPOYIpyaGIP88X24EhnfBbrRuLdvOkYZUKAbbFjr3I6UV2tyyVhduYNnL8Nus/mMP+phzYi/W7C3NOVtDgCvLj5AwuiGnM3IB/IFuk1Ys7/MlKLIkvBgmXi0ueQ80+dJRYxV1Gb8tRjfXWl2/ewuXHpYM6Es1OdpDgDPBd5hL4zy5QL8dJHwnL3TipqEhz9LR6tLxvo6d1EEPIVrVG+HotWjBbNeUy2w3PiM6HoKa2E0i+DwnL3TgpaWRiVLR6tL5u91ckjXhpzVEwh6XlPe2ymVbnxGdT2FdfLFHB0BfGfv1BKMDhCtSTS1e6FIz1VcG3KJDY/z0KhDgV7TrUcrMGjxDkwqOIhZG0swqeAgBi3ewV3HkK892o3segpri9EsgsNz9k4twbJ+tU5fl3tdh7gofNfQ7PM17ohrQ2r1SDtfLlQ34Bfv/4f59xEJ5JqaediI0d5cWAujWQSH5+ydWoJ5M9KadfX1OqdTwOTV//b7me5rQ8ndLzqj7ncJ9JoaLSyBYnT4KKyF0SyCw3P2Ti3BvhlpzbpKX9fqFHRdG2rimXpcU6OFJVCM9ubCOsZopgJv0eVLTYzxeDw1MYZrl0iKWbqN9F4bauKZehRdGy0sgWK0NxfWwgjw2RGgDN/1lv4w481Ir7Uhvl9SXJTXc+1jIvDkwExsmDIA++YND3jdGS0sgWL0DTTsB9WK8F7SYLaBuv4w0/BZPdfG1qMVmLau2Otxva+jOJzWXyiA54HG4poHvMugbFD/XanRFhJGE8D7BGat8H4z0ptQX0c5YTHTzXTr0QrM/9vnXhUCHeKi8LuJNwRNGMPelTYDZqm3VIuv2jUrE8rryNNugIHiq2yqpqE5qLWMYZ2VNgtmD6QTbUK1/8tLTMfqUdTN026AWhFLjnwR7JIjEkYTYPZAerjjb7q3lGAUdRu5G6BWjCw5IlfaBBidodOTVqeAojOXsbnkPIrOXOZqo7FgINfW5otAr6MZN3dTwkhPiSxGk/DgLRl47ePTXo/zVuKihJky0XqgZro3FXV7Y6SnRMLIIe7Z2rJLDdhw6JzHnrvu+OsF5gUz9+1qRc10bz2uo9Vi0bdmJfvtWe8YFxUUTynshZG3khE18ag5I6/HzOE9uLcUjezblV7f/t064kh5tc9BD3pfe1YBmnnHdZgz6icBf3Y4xqKDFRQIa2HkzbVj2W1OxAZg4+FzmDm8R7BPK2CMcvF8XV+7DZALsel97VkFaGCPa3QRZLP0/rNyqLTK74Sj7xqaKfmiJ0bOevOF2t3mzFS7aISLJ3d9lfIOel/7UCfNzNRuyYKRoYGwFEYes3dad5szQ7wo1C6e1i1N9b72oRYqKxV1A5R8CTk8Zu+0CpwZ4kWhdvEC2dJUz2vf1OLE+eorGHL9NSg+V426qy2u5/ROmlmlqNud/t06KoY+gLbQSP9uHXX/7LAURh6zd2oFzkzxomDPk5QmWCprrgR6ygFf+0WFx1Gwt9Tjj9oGYHjPa/DU4Ot0FSorFXW7c6S8WlEUgTbRPFJerbsBE5bCyGP2LtSDTPVAKaMvfW5Ub4emrQf8IbfXdqAEcu0XFR7Hyj2lXo8LAP7vi2/RI6W9bn/IZp/UrQQVeIcYXrN3ckXcUnioXVTK6AOQfW7fvOG6jvCS22tbK4Fe+6YWJwr2eouiOwV7S/GL0T0RHRl4iJ/HsJBeGGnAqL4y58+fx8MPP4xOnTohLi4Offv2xZEjR1zPC4KA/Px8pKenIzY2FsOGDcOxY8d0PelA4S17J+7kJieKjsQYzBmZjT8+2Fe3QaaBoJTRn7auGNMUsv3bj1fqMlGHJYGmFj2u/dqiMib3b21Rmab3l8JjWEgvjGyFVSWM1dXVGDhwIKKiovDPf/4Tx48fxx/+8Ad06NDBdcySJUuwdOlSvP766zh8+DAcDgdGjRqFuro6vc89IHiZ3O2vl3bOyOuxf/4IzBp5PRfjubQKkt4ZX9YES3K857Rspa9Oj2tfXtWg63H+4DEspBdGGjCqXOnFixcjIyMDa9ascT2WmZnp+n9BELBs2TI8//zzmDhxIgDg3XffRWpqKtavX4+pU6fqc9Y6oXVXOb3wV1bCYxE3LxlfVgvohbv7wJHYLmSdL92S43Q9zh+8hoX0Quu2uIGiShi3bNmCO++8Ez/72c+we/dudOnSBdOnT8eUKVMAAKWlpaisrMTo0aNdr4mJicHQoUNx4MABn8LY2NiIxsZG18+1tbVafxdNaN1VTg/MGB/SwyXT4z1YLSBHYjuv7y6Y3+UjuZlYUHjCb4nJI7mZunyelXaQlMMIA0aVK3327FmsWLEC2dnZ+Ne//oVp06bh2WefxV/+8hcAQGVlJQAgNTXV43Wpqamu56QsWrQISUlJrn8ZGRlafg9TYsb4kB4umR7vwesotuhIO6YMzlI8ZsrgLF0SLyK8hIWCSainvauyGJ1OJ26++WYsXLgQAHDTTTfh2LFjWLFiBX7+85+7jrPZPE9aEASvx0Ty8vLw3HPPuX6ura0NujjyMjjCjPEhNWVFUvR064y0lPytn7yxbXExaR2j3dYmiuLzemJ0WMhqqBLGtLQ09O7teVF79eqFDz74AADgcDgAtFmOaWk/3qUuXrzoZUWKxMTEICYmxudzwYCnwRFmjA/5EyTBx/+LPwP6ipVc/KljfBRemZATlOvJun7yxvbGL0b3xNqiMpRXNaBbchweyc3U1VKUYmRYKNQE27hRdZUGDhyIkydPejx26tQpdOvWDQCQlZUFh8OB7du3u55vamrC7t27cfvtt+twuoHB2+AI3sqGRPxN2VZy3d56uB/eCqFbNyYnDS+M6+1R1F1V34yXPzqh+/VUu36iI+14cnB3/HZCDp4c3D2oohhOiOVtkwoOYtbGEkwqOIhBi3foer1VbZ96+PBh3H777XjppZfwwAMP4NChQ5gyZQpWrVqFyZMnA2jLXC9atAhr1qxBdnY2Fi5ciF27duHkyZNISEjw+xnB2j6V5y1I5fpcX5mQg7E3pht+LnIWtZrOl2C5daHab5vn9RNOBHK91WiLKlf6lltuwaZNm5CXl4ff/va3yMrKwrJly1yiCABz587FlStXMH36dFRXV+O2227Dtm3bmEQxmPCcAR6TkwanE/j15qOo+qFrQ7R67HZbyGsqWadsK7luoXDrQtkOx/P6CRdCeb1VtwTefffduPvuu2Wft9lsyM/PR35+fiDnpTs8Z4C3Hq3AjPXGjv03Q8+t1Ap1OoWQiRXP6ydcCOXNKWx6pXnNAPMiSLxbRL5c/A6xUQqv+JFQ1k3yVEFgJUK5LzcQRsLIawaYF0Hi2SKSc/G/u6I89l5Ez7pJ3taPEryUpQVKKPflFgkbYeS1Q4AXQeLVItI6jRuwTt2kFngqSwsEtfsg6XW9w6p+gMcOAV4ESdyqUokOQdqqUgmtvdlaxCqQMiWeOkx4K0vTSqj35XYnbCxGEd46BMzkohnxDbFayh1iozxca7VDBlgtLN7WjxReYtZ6EOp9ud0JO2EE+OoQ4MVFY9mqsjpIW1UqwWopvzG5H+w2myax0rNMyWh4iVnrQaj35XYnrFxpXuHBReMl1imFdVjEgO6dNA0Z4HHHyEDg9TpqIdT7crsTlhYjjxjtovES65QSbIvaShYWwO911IKRYSayGDki1KOV3OFljJevBEgwLerKWutYWAA/11EPTDPBm7AuPMQ6/SVA9Laotx6twMv/YNuPyAwWFsDHddQToyZ4qxoiEQqCNUSCUEYsBv74eCU2lZxHVf2PiZhQ1L+FahiEv8+TYrbhEOJ13H68Eh+WXHD13gPmrGMU0aNYPWhDJAh94aUzQW5v5nv7pmNUb0fQzyvUJSas9XFms7DkpjTd17cLRobgOgaTUFcChI0wNrU4Qzo01B+8dCYo7c28Zn9ZSP6YQp0AOXj2MuMOg9FYcF9wBt7qjfx1bMaf95fhFhOLohGEhTAuKjzuNWZ+QeGJoI2Z94faurlgwUsxcGXNFabj9EiAbD1agfkffM507K/H9TKFKPJyHfWAFy/K8sK4qPA4Vu4p9XrcKcD1eCjFkadFzEOpytajFXj5oxNMxwaaAFHTdwsAjqTYgD4vVPBwHfWAFy8KsHi5TlOLEwV7vUXRnYK9pWhqcYbojNQt4mBjdDGwKFTuCQJf6FFiorbv1iwlLaEexxUseOvvtrQwri0qU9zfF2izHNcWlYXkfADjxcgdI4uB1U7NCTQBonYYhRkSLuLeJ6/v/JLpeF5LjnjsPrK0MJZXNeh6nB7w1JlgZDEwq1AltIvAGw/d5NeV8jcZh3kYRVwUV5Ny5JCzsHzBuwXMkxclYukYY7fkOF2P0wOepum4FwPLESzLiVWo6q62+t37hiU2xTyMYlI/DMzuzHSsURg5jisY8ORFiVjaYnwkNxP+1oLd1nZcqOBty9QxOWl4ekiW1/dktwFPD8kKmuWkxiJWijOxxqaYh1FwnJwQUTuOi3cLmCcvSsTSwhgdaceUwVmKx0wZnBXyekYepumIbD1agVV7Sr1isYIArNpTGrSgtz+h8jiXH/4rjTOpiU3xdkPyR1OLE6v3nsVvNh/F6r1nPRKEasZx7Zs3nGtRBPjs77a0Kw38WIojrWO022BYHSNg/DQdwNjSIaWeXl/4KjlRW6ZiVN+tWvzV3Ro5jisY8NjfbXlhBNrE8Reje3LV+QIYP/DU6Po3OaFSwr0YXEtsiocbkhIsdbdzx/TiJk6tB61OAUmx0Xh8YKZXf7dRN62wEEagza1+cnB3o0+DK3gIeotC9c7+UqZC75c/OoHY6AiMyUnTHJsy+oYkB2vd7S9G9+TOwtIKr/3dlo4x8oK/UhKj4CXoHWG34bGBWUwxx+r6JldShcfYVCCoqbvlKU6tFbnEmdjfXXOlyTBxt5TFyEufpTs8tTlJMVvpEOAd+7SK5QSor7vlPSygBE+tsb6wjMUodgFMKjiIWRtLMKngIAYt3mHoVpG8tTlJ4S1TK1pByfHK27i6xz6tYDmJaKm7NXLqeyDwWNTtjiUsRl6m1bjD+x1RRC4BkpoYg0m3XovGFieKzlwOmSUyJicNV5qdmPNeid9jxdinmS0ndx7JzcSCwhOK7nSo626DBQ/xbSVML4y8CpDRGV81SIWl7FIDNhw6h9c+Pu06JpTuvyNRfeyT14SKGsS6W19ZaREj6m6DAS/xbTlM/w3zapKHcsagHojCEhNpx7KPT3ltEhVK999qSRV3/CXi8sb2xlSZTqSpQ4yru9Ub3q+x6S1GHk3yUM4Y1BNerG8eC371gDURx2vdrZ7wfo1N/03zZpKHcsag3vBkfVspqQKoT8SJdbe/nZCDJwd3N6UoKlnH7kXdHeOjPV7HwzU2vcV4a1YyOsRF4buGZtljOsRFhUSAQj1jUG94s76tklThxRIPJUrWMQAui7rdMb0wshCqr5h16klyfBQW3ncDd1YPb9Y3YM6kirSe1ikIpknE6YFSlcg0mTpV3jbtMr0wHiqtUrQWAaC6oTkki47Vknrh7j7ciSLAV8G3WfFlKXWIVa7LFOElERcILBOPfMGb5Wy+wIUEntw/VkuKtRwl1PBW8G025OKI311RvnGL8JSI04raLSTcMbqo2x3TCyNP7h/vJQgssCQ9eO39NhK18WV3zLAuWNHDAOHBcja9K82T++dvxqAA4MFbMoJ+HoGilPTguffbSLRaSlazxPUwQHiwnE1vMfLm/slZXCKvfXza8B5uFnz14PLe+x1slCxl5s22JPFGHkpT9ESsEtECT5az6S1GsR7qiYGZ2FRyHlX1P8ZzjBpyKVpcr+/4Eq99fMrreSN7uLUSjiUn7vizlJk323qoH+x2m6nLj/SAx6Jud0wtjL6HXEbj3r7pGMVBPdTGw+d8Pm5GITFT77fesAwpGdXbwRTSGWCiCThaOHj2st8qEQDoGB/NxaRuOUwrjHKLtbq+CWv2lxkuilYTEp6y/6FEjaXMc4tbKNh6tALzP/ic6dgXxvWCIymWW8vZlDFGNbvDGQWrQOz/8ltTZHV5yv6HEjU3OKu1MapBNFRYS5McSbFcz5E0pcVoBmuMVSBe33kGHxSf58qN8AVP2f9QotZStkoboxrUlCqZZZ2Y0mI0g1unZt9kM2R1WbP/ACxV46jFUjbrVG2tqC1VMkNIwZTCaAa3TklIpPDi/vvDn6sIgLvtJQLFCkX7wYa5VCkuyjQhBVMKo1kWq7+aRnd4aodSYkxOGvbNG44NUwbgjw/2xYYpA7Bv3nAAsGSNI291sjzCXKo0yRyiCJhUGP1ZYwKAsTltcR6jLTBRSGbe0YPpeDNkdaWuIgDuk2GBEM5JFRZYDZUBJqi+EDFl8gWQ38TJbmvbe3f1/jKs3l/GRbtahN2GgT064/WdX/o91oxZXTMkwwIlHJMqrPA+jVsLprQYRdzduicGZgKA1w5rvLhyZnH/tWCGZJgehFtSRQ1Ws6pNazGKRNhtuDUrGc/9vxKfz/PSZWLFu6qIGZJhRPCxklVtaotRhKe9SpSw2l1VxMrWMKEOq1jVprcYAXO5cla6q4pY2RqWblNg9mtFsGEJYTSbK2fGfUz8IZcMcx8OYDaRodmT4YslhDFc29V4w0oDblkm6vB43oQ+WCLGSEW4/GCFAbdmGFJCBBdLCCNAe5XwihlERrouDp69bIpkHhE8LOFKi1jJlbMKvBd/h/t2p4RvLCWMgO/EBsWLjIPnigG5dRFO251qwWxJNC1YThil8LpXSTgsLoDfioFAtzsN12ReuHhelhfGg2fY40V6u3Jy4hcuiwvgt2KAtjtVTzh5XpYWRjV7UOjtysmJ3/ifpmHVntKwWFwAX8Xf7jeq0998z/SaDrFRHq41b5s2hQpePa9gYVlhlLu7yaGnKyf32RU1V7FyT6nP11hxcYnIFX+nJERjcPY1OHDmMs5XX8EjuZmIjgxOoYSvGxULtN1pG7wn0fTGksJo5B4UgcSurLa43JFWDGw//g0KP6/A+8XnXccsKDyBKYOzkDe2t66frfYmCYTPdqes8JxECwaWqWN0x8g9KLTGrtyxyuKSIlYMHL9Qg3/8p8JrRJxTAFbuKcWiwuO6faaWG1U4xxHl4DWJFiwsKYzMe1DE6r8HhR6iZpXF5YumFicK9voOJ4gU7C1FU4tTl8/TcqMy+7SjYBBuE5Qs6Uoz70ExuR8G9uhsyGf7IhzKQNYWlXlZilKcAvDyP44hf3yOT4vNPYnSOT4GsAGXvm/0GQNkvVHNvOM6ZKcmhHUcUQmekmihwJLCyFoiMqC7/nE8f5/tfg5WX1y+KK9qYDpu7cFz+PjERa8MsL8kirTsifVGNbDHNZaL6waKtNxsVG+H3wlKVsGSwmjk3Y3ls58ekoUtn1VYfnH5oltyHPOx0hImliSK9DW81lHyjlKt7b55wy3fnBBQjHHRokWw2WyYPXu26zFBEJCfn4/09HTExsZi2LBhOHbsWKDnqRojp2X7++y8sb19bkFqdVEEgEdyM8H6N+Q+ZKKpxcmURJEOpqDJS+rxNw1p+/FKS0zpVkKzxXj48GGsWrUKN954o8fjS5YswdKlS/HOO+/g+uuvxyuvvIJRo0bh5MmTSEhICPiE1WDktGx/n23FYbUsREfaMWVwlmw9pxSxhGltURlzEkVa9sQyRJdoI9wKueXQJIzff/89Jk+ejIKCArzyyiuuxwVBwLJly/D8889j4sSJAIB3330XqampWL9+PaZOner1Xo2NjWhsbHT9XFtbq+WUZDFSgMJV/Pwh1ikW7C31m4gRYY1NuuOeeLHilhLBINwKueXQ5ErPmDED48aNw8iRIz0eLy0tRWVlJUaPHu16LCYmBkOHDsWBAwd8vteiRYuQlJTk+peRkaHllCxFOMyNzBvbG1+8fBceGXAt0/FqYpMi0sSLVTZqCibhVsgth2qLcePGjSguLsbhw4e9nqusrAQApKamejyempqK8vJyn++Xl5eH5557zvVzbW1tWItjOA2YiI60I398Dj4+cdFvcuSR3Ey8va/Ub7bf/TWUUFFPuBVyy6HKYvzqq68wa9YsrFu3Du3ayX8xNpvnnVgQBK/HRGJiYpCYmOjxL1TwZpmZbQsAPWBNjkRH2mWPk3sNWYTqCbdCbjlUCeORI0dw8eJF9O/fH5GRkYiMjMTu3bvxpz/9CZGRkS5LUbQcRS5evOhlRRrN1qMVGLR4ByYVHMSsjSWYVHAQgxbvMEx8zLAFQLBgrSCQO07pNYQ6KIvfhk0QBOa/tLq6Oi+X+PHHH0fPnj0xb9489OnTB+np6ZgzZw7mzp0LAGhqakJKSgoWL17sM/kipba2FklJSaipqQma9ShXDydeaiP+sIrOXMakgoN+j9swZQBT0NuMg3BZz1lN5wvhDcv3bMWQjhptURVjTEhIQE5Ojsdj8fHx6NSpk+vx2bNnY+HChcjOzkZ2djYWLlyIuLg4PPTQQyp/jeDAazkCazC7suaK32PMuqhZs/iU7dcO69oI9yy+7p0vc+fOxZUrVzB9+nRUV1fjtttuw7Zt20JewygHr+UIrMHslz86gdjoCFmBC6cpy4Q61K6NcL4BBTxdZ9euXVi2bJnrZ5vNhvz8fFRUVODq1avYvXu3l5VpJLyWI/gLeotU1zfJJmLCOU5JKENrQx2WHDumBK/lCO5BbyWUFjGrNfzO/lL6Awgz1HhKRBgKI8/lCGLWNTleeV9juUXMauW+/NEJQzPwhP74Kz3j1VPiFUtO11GCdfIO0JYpNqLH+kqzE3PeK/F7rHQRq7FyKeZoHVgSKrx6SrwSdhYj4L9uDoChNY6ORG2LmDVOCVBcySqwNgXw7CnxSFgKI9Amjr5GfwEwvPtE6yJWKs71BcWVzI2ahAoVbqsjbIUR8B4qAICLzF0gi5ilO0RKZc0VrlojCTbUJlSMnFFqNsIuxqgETzWOgcwQFItz39lfipc/OuH3s17+6ASq6ptcP5uhGJwAKmvVJ1TCvXCbFRJGN3jL3AWyiCPsNjw2MItpIo27KAKUmDEDW49W4OV/sE3Glxu/RsgT1q60FB4zd4HMEFQbcxShxAzfiAmXqvpmxeMooaIdEkY3rJi5k4sraa2VJIxFKeHiDiVUAoNcaTesuneuL5e8svaqplpJIvgoTb/xFwcXSY6PxoL7cigUohESRglySY/UxBhMuvVaNLY4UXTmsukC1tK4UtGZy0yvo4Lf0OKvWJv1RvXrcb1IFAOAhNEHUgur7FIDNhw6h9c+Pu06xuyZW9pvmT9Ypt+w3qgcSbH6n2AYQTFGGUQLKybSjmUfn/IqjTD7dgNaaiV52wrCSrAWa/fv1tFycXAeIYtRAV6H2uqFmlpJsw6/NQusNbRHyqstGQfnDRJGBVgX68EzlzEwu3PoTkxHWGolafht8FFTrD2hbxfNxf8EGySMCrAGumesL8bv7r/BtAtSqeDX6lYzD2gp1qYOluBCMUYFWAPd311pNnW8UQkacBpcAinWDqT4n1CGhFEBNWO8AGt2ivDWJmklqFibX0gYFWDdbgCwruXEY5ukVVBTrE1x3NBCwugHMXPbIVa5hU7EapaTFdskA4W1bEmv7QaoWDv0UPKFgTE5aUhoF4XJb//b77FWs5ys2iapFdayJT23G6Bi7dBDFiMjA7p3ClvLiQactsG6jQBtN2B+yGJkJNwtp3AvD2EtWxreM1VVeVM4rymeIYtRBXKWU8f4KLzx0E2Wt5zCuTyEtWxpbVEZbTdgAchiVMmYnDQ4ncCvNx91Tb6uqm/Gyx+dgN1uo4UcIpRGc+nxHtLnWDtTyqsamI6j7Qb4hoRRJVuPVmDGemqP84UeYsWCHn3bSu8BwOs5f4N9RbolxzEdR9sN8I1NEASuKpJra2uRlJSEmpoaJCYmGn06HrQ6BQxavEPWVRJHde2bNzzs7vahGjIh17ctftssNyal99D6xyBe+92/vANDf7/T7zi3cFwjRqNGWyjGyEirU8A7+0upPc4HrFnYQFGzj3Ig7+EPpTFt0ZF22r/ZApAwMrD1aAUGLd7BtBUpYL0ibyX0ECtW9OjbZu02UaJjfLTHz9JECSVUzA/FGP0g53YpYbUibyVYxerA6Us4dbEO5VUN6JYch0dyMxEd6X1fVopT6tG3rcdN64VxveBIilWMpVJCxdyQMCrA2uQvEo7bAbAKzc/XHPL4HhcUnsCUwVnIG/tjL7q/OKUefdt63LQcSbFMiRJKqJgXcqUVUON2hWv8iFVopDcXpwCs3FOKRYXHAbDFKfXoFFE7MUnt+xPWgIRRATVuV8f4KDwxMBNJsdGWGz2mRCBCAwAFe0txpamVKU4JIODEBsteN4G8P2ENSBgVYLWGEtpFoqq+Gav3l2FSwUEMWrzDkkNrfaEkNCw4BWBh4XHmpIoeiQ2l93jr4X54ixInYQ/VMSog1i3K1aTJoaamzir4ig/GRUWgobnV72sHZ3fG3tOX/B73xwf7YkLfLgBC3/lCiRPzo0ZbKPmigFKTvxLhuBeKryzs0fM1WFDov8Qps1Mc9p72e5iHBa9HYkPpPShxEt6QK+0HObfLX4tYOBZ7S4dMPHp7JvzdE+w24Fdje9P4LYIryGJkwJc1VFl7FXPeK/H72nAq9pYSHWnHlMFZWLmnVPaYKYOzEBsdQeO3CK4gi5ERqTXkSKS9UFjIG9sbU4dkeVmOdhswdciPdYzULULwBCVfNOIvMUPDAjxpanFibVFZQJ0vBBEIlHwJATR9WR3RkXY8Obi73+Mo6UHwALnSAUDuH0FYE7IYA4SGBRCE9SBh1AFy/wjCWpArTRAEIYEsxiBAmVWCMDckjDoTqr1PCIIIHuRK60io9j4hCCK4kDDqRCj3PiEIIriQMOqEHhs1EQTBBySMOqHHRk0EQfABCaNO6LFRE0EQfEDCqBN6bNREEAQfkDDqBMsmSzRUgiDMAQmjjsgNlegYH4U3HrqJ6hgJwiSQMOrMmJw0vDCuN5Ljo12PVdU34+WPTlAdI0GYBBJGndl6tAIz1hejqr7J43Eq8iYI80DCqCNU5E0Q1oCEUUeoyJsgrAEJo45QkTdBWAMSRh2hIm+CsAYkjDpCRd4EYQ1IGHWEirwJwhqQMOoM7RxIEOaHJngHAdo5kCDMDQljkKCdAwnCvJArTRAEIUGVMC5atAi33HILEhISkJKSgnvvvRcnT570OEYQBOTn5yM9PR2xsbEYNmwYjh07putJEwRBBBNVwrh7927MmDEDBw8exPbt29HS0oLRo0ejvr7edcySJUuwdOlSvP766zh8+DAcDgdGjRqFuro63U+eIAgiGNgEQdDcuPvtt98iJSUFu3fvxpAhQyAIAtLT0zF79mzMmzcPANDY2IjU1FQsXrwYU6dO9fuetbW1SEpKQk1NDRITE7WeGkEQhAdqtCWgGGNNTQ0AIDm5rWC5tLQUlZWVGD16tOuYmJgYDB06FAcOHPD5Ho2NjaitrfX4RxAEYSSahVEQBDz33HMYNGgQcnJyAACVlZUAgNTUVI9jU1NTXc9JWbRoEZKSklz/MjIytJ6SJWh1Cig6cxmbS86j6MxlmsRDEAaguVxn5syZ+M9//oN9+/Z5PWezedbrCYLg9ZhIXl4ennvuOdfPtbW1YSuOW49W4KW/H/eY0JOW1A4v3tObCsMJIoRoshj/+7//G1u2bMHOnTvRtWtX1+MOhwMAvKzDixcvelmRIjExMUhMTPT4F45sPVqBZ9YVe40towG3BBF6VAmjIAiYOXMm/va3v2HHjh3IysryeD4rKwsOhwPbt293PdbU1ITdu3fj9ttv1+eMLQgNuCUIvlDlSs+YMQPr16/H5s2bkZCQ4LIMk5KSEBsbC5vNhtmzZ2PhwoXIzs5GdnY2Fi5ciLi4ODz00ENB+QWsgJoBt9RNQxDBR5UwrlixAgAwbNgwj8fXrFmDxx57DAAwd+5cXLlyBdOnT0d1dTVuu+02bNu2DQkJCbqcsBWhAbcEwReqhJGl5NFmsyE/Px/5+flazynsoAG3BMEX1CvNATTgliD4goSRA2jALUHwBQkjJ9CAW4LgB5rHyBE04JYg+ICEkTNowC1BGA+50gRBEBLIYuScVqdArjVBhBgSRo6hoRIEYQzkSnMKDZUgCOMgYeQQGipBEMZCwsghaoZKEAShPySMHEJDJQjCWEgYOYSGShCEsZAwcggNlSAIYyFh5BAaKkEQxkLCyClyQyVSE2Mwe2Q2GluctIsgQQQJm8AyfTaEqNkUOxxw73wpu9SADYfOobKWCr4JQi1qtIUsRs4Rh0rERNqx7ONTHqIIUME3QQQDagk0Af4Kvm1oK/ge1dsRcNxRqTeb+raJcIGE0QQEuosgq6Ap9WYDoL5tImwgYTQBgRR8sw6iEHuzpVZpZc1VTFtX7PPzRDeeJowTVoNijCZAa8E36yAKlt5sX1DfNmFVSBhNgJaCbzWDKPy56kr46ttudQooOnMZm0vOU0kRYUrIlTYBYsH3M+uKYYOnFSdX8K0mLqlHz7X4HjRDkrACZDGaBLW7CKqJS+rRc52S0I5mSBKWgSxGE6FmF0E1cUnRVa+suaoYU/SFDW3i3L9bRwz9/c6QlBQRRLAhYTQZrLsI+hM7UdBEYVVy1QUf/y/+DLS58UfKqzWVFMmVElHNJGEkJIwWRW1cUnTVpfFBh0Ido8Mtdri55DzTebm7+HLxyPE/TcOWzyooTkkYBvVKWxy1yRCtnS9FZy5jUsFBv+ezYcoA5F7XSbZuUg5RzKlmktCKGm0hi9HiqIlLAsquutJzalx3pVIiOShOSYQSykqHAaKgTejbBbnXdQqKqKiZIam1bpL2uiFCBQkjoRusJUWB1k3SXjdEsCFXmtAVFtc90LpJ2uuGCDYkjITu+Csp0lo36R6nJIhgQq40EXKU4pFy0F43RCghYSQMQS4emZbUDlOHZCGNsfWRIIIB1TEShkKdL0SooDpGwjTIxSNZWx8JIhiQK00QBCGBhJEgCEICCSNBEIQEEkaCIAgJJIwEQRASSBgJgiAkkDASBEFIIGEkCIKQQMJIEAQhgbvOF7FDsba21uAzIQjCSoiawtIFzZ0w1tXVAQAyMjIMPhOCIKxIXV0dkpKSFI/hboiE0+nEhQsXkJCQAJvNPEMDamtrkZGRga+++oqGX2iAvj/t0HfHhiAIqKurQ3p6Oux25Sgidxaj3W5H165djT4NzSQmJtLiDAD6/rRD351//FmKIpR8IQiCkEDCSBAEIYGEUSdiYmLw4osvIiYmxuhTMSX0/WmHvjv94S75QhAEYTRkMRIEQUggYSQIgpBAwkgQBCGBhJEgCEICCaOONDY2om/fvrDZbCgpKfF47ty5c7jnnnsQHx+Pzp0749lnn0VTU5MxJ8oRZWVlePLJJ5GVlYXY2Fhcd911ePHFF72+G/r+5HnzzTeRlZWFdu3aoX///ti7d6/Rp2R6uOt8MTNz585Feno6PvvsM4/HW1tbMW7cOFxzzTXYt28fLl++jEcffRSCIGD58uUGnS0ffPHFF3A6nVi5ciV69OiBo0ePYsqUKaivr8err74KgL4/Jd577z3Mnj0bb775JgYOHIiVK1firrvuwvHjx3HttdcafXrmRSB0obCwUOjZs6dw7NgxAYDw6aefejxnt9uF8+fPux7bsGGDEBMTI9TU1BhwtnyzZMkSISsry/UzfX/y3HrrrcK0adM8HuvZs6cwf/58g87IGpArrQPffPMNpkyZgrVr1yIuLs7r+aKiIuTk5CA9Pd312J133onGxkYcOXIklKdqCmpqapCcnOz6mb4/3zQ1NeHIkSMYPXq0x+OjR4/GgQMHDDora0DCGCCCIOCxxx7DtGnTcPPNN/s8prKyEqmpqR6PdezYEdHR0aisrAzFaZqGM2fOYPny5Zg2bZrrMfr+fHPp0iW0trZ6fTepqalh/b3oAQmjDPn5+bDZbIr/PvnkEyxfvhy1tbXIy8tTfD9fI9QEQTDVaDU1sH5/7ly4cAFjxozBz372Mzz11FMez4Xb96cG6XdA30vgUPJFhpkzZ+LBBx9UPCYzMxOvvPIKDh486NWnevPNN2Py5Ml499134XA48O9//9vj+erqajQ3N3vd7a0C6/cncuHCBdxxxx3Izc3FqlWrPI4Lx++Phc6dOyMiIsLLOrx48WJYfy+6YGyI0/yUl5cLn3/+uevfv/71LwGA8P777wtfffWVIAg/Jg8uXLjget3GjRspefADX3/9tZCdnS08+OCDQktLi9fz9P3Jc+uttwrPPPOMx2O9evWi5EuAkDDqTGlpqVdWuqWlRcjJyRFGjBghFBcXCx9//LHQtWtXYebMmcadKCecP39e6NGjhzB8+HDh66+/FioqKlz/ROj7k2fjxo1CVFSUsHr1auH48ePC7Nmzhfj4eKGsrMzoUzM1JIw640sYBaHNshw3bpwQGxsrJCcnCzNnzhSuXr1qzElyxJo1awQAPv+5Q9+fPG+88YbQrVs3ITo6WujXr5+we/duo0/J9NDYMYIgCAmUlSYIgpBAwkgQBCGBhJEgCEICCSNBEIQEEkaCIAgJJIwEQRASSBgJgiAkkDASBEFIIGEkCIKZsrIy2WlJ//u//8v0HosWLYLNZsPs2bM9Hv/+++8xc+ZMdO3aFbGxsejVqxdWrFih6vx27drl89y++OILVe9D03UIgvBi2LBheOyxx/DYY495PJ6RkYGKigqPx1atWoUlS5bgrrvu8vu+hw8fxqpVq3DjjTd6PTdnzhzs3LkT69atQ2ZmJrZt24bp06cjPT0dEyZMUHX+J0+eRGJiouvna665RtXryWIkCIKZiIgIOBwOj3+bNm3Cf/3Xf6F9+/aKr/3+++8xefJkFBQUoGPHjl7PFxUV4dFHH8WwYcOQmZmJp59+Gj/96U895nbW1NTg6aefRkpKChITEzF8+HCvPZYAICUlxeMcIyIiVP2eJIwEQWjmyJEjKCkpwZNPPun32BkzZmDcuHEYOXKkz+cHDRqELVu24Pz58xAEATt37sSpU6dw5513AmgbwDtu3DhUVlaisLAQR44cQb9+/TBixAhUVVV5vNdNN92EtLQ0jBgxAjt37lT9e5ErTRCEZlavXo1evXrh9ttvVzxu48aNKC4uxuHDh2WP+dOf/oQpU6aga9euiIyMhN1ux9tvv41BgwYBAHbu3InPP/8cFy9edA2GfvXVV/Hhhx/i/fffx9NPP420tDSsWrUK/fv3R2NjI9auXYsRI0Zg165dGDJkCPsvZuxwH4IgeGDBggVCfHy865/dbhdiYmI8HtuzZ4/HaxoaGoSkpCTh1VdfVXzvc+fOCSkpKUJJSYnrsaFDhwqzZs3yOO73v/+9cP311wtbtmwRPvvsM2H58uVC+/bthe3btwuC0LZ7pN1u9zgn8Vznzp0r+/l33323cM8996j6PmjsGEEQqKqq8nBHJ0+ejPvvvx8TJ050PdalSxfExsa6fl67di2efPJJnD9/XjG58eGHH+K+++7ziPO1trbCZrPBbrejsbERTU1NSEpKwqZNmzBu3DjXcU899RS+/vprbN26FYsXL8by5cuxa9cur8/o0KEDOnfu7PPzFyxYgHXr1uHEiRNM3wVArjRBEACSk5M9tqyNjY1FSkoKevToIfua1atXY/z48X4zviNGjMDnn3/u8djjjz+Onj17Yt68eYiIiEBzczOam5tht3umPSIiIuB0OgEA/fr1Q2VlJSIjIz32C/LHp59+irS0NObjARJGgiA08OWXX2LPnj0oLCz0+fyIESNw3333YebMmUhISEBOTo7H8/Hx8ejUqZPr8cTERAwdOhS//OUvERsbi27dumH37t34y1/+gqVLlwIARo4cidzcXNx7771YvHgxfvKTn+DChQsoLCzEvffei5tvvhnLli1DZmYm+vTpg6amJqxbtw4ffPABPvjgA1W/HwkjQRCq+fOf/4wuXbpg9OjRPp8/c+YMLl26pOo9N27ciLy8PEyePBlVVVXo1q0bFixY4Npj3GazobCwEM8//zyeeOIJfPvtt3A4HBgyZIhrV8Smpib8z//8D86fP4/Y2Fj06dMHH330EcaOHavqXCjGSBAEIYHqGAmCICSQMBIEQUggYSQIgpBAwkgQBCGBhJEgCEICCSNBEIQEEkaCIAgJJIwEQRASSBgJgiAkkDASBEFIIGEkCIKQ8P8BRBX4Di79ipEAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -475,6 +489,7 @@ } ], "source": [ + " import os\n", "from snowexsql.api import PointMeasurements\n", "df = PointMeasurements.from_filter(type=\"depth\", instrument=\"magnaprobe\", limit=200)\n", "df.plot()\n", @@ -485,7 +500,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Old Ways / Database Experts \n", + "### Old Ways / Advanced Users \n", "Advanced queries can be made using SQL or SQAlchemy under the hood. \n", "\n", "See previous presentations\n", @@ -494,6 +509,13 @@ "* [Hackweek 2021](https://snowex-2021.hackweek.io/tutorials/database/index.html)\n", "* [Hackweek 2022](https://snowex-2022.hackweek.io/tutorials/database/index.html)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -512,7 +534,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.14" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/2_database_structure.ipynb b/book/tutorials/snowex_database/2_database_structure.ipynb index 71daabd..b3e7bca 100644 --- a/book/tutorials/snowex_database/2_database_structure.ipynb +++ b/book/tutorials/snowex_database/2_database_structure.ipynb @@ -20,8 +20,14 @@ "\n", "Data in the database lives in 1 of 4 places. \n", "\n", - "\"table_structure\"\n", "\n", + "```{figure} ./images/structure.png\n", + ":scale: 50 %\n", + ":alt: Structure of the snowex db\n", + "\n", + "Layout of the database tables\n", + "\n", + "```\n", "\n", "The 4th table is a table detailing the site informations. Lots and lots of metadata for which the API has not been written yet.\n", "\n", @@ -48,7 +54,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 2, "id": "8fd4e693", "metadata": {}, "outputs": [ @@ -145,7 +151,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.14" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/3_forming_queries.ipynb b/book/tutorials/snowex_database/3_forming_queries.ipynb index 99bf281..0e6f791 100644 --- a/book/tutorials/snowex_database/3_forming_queries.ipynb +++ b/book/tutorials/snowex_database/3_forming_queries.ipynb @@ -13,22 +13,602 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
depthsite_idpit_idbottom_depthcommentssample_asample_bsample_cvalueflags...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
037.0Banner SnotelIDBRBS_20191218_100027.0NoneNoneNoneNone167.0AD...2019-12-182024-08-13 17:49:44.561044+00:00None2178928https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
147.0Bogus UpperIDBRBU_20191219_100037.0None232.0237.0-9999-3176.6666666666665AD...2019-12-192024-08-13 17:48:18.956152+00:00None2162916https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
237.0Bogus UpperIDBRBU_20191219_100027.0None249.0252.0-9999-3166.0AD...2019-12-192024-08-13 17:48:18.956152+00:00None2162917https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
327.0Bogus UpperIDBRBU_20191219_100017.0None286.0296.0-9999-3139.0AD...2019-12-192024-08-13 17:48:18.956152+00:00None2162918https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
417.0Bogus UpperIDBRBU_20191219_10007.0None268.0265.0-9999-3155.3333333333335AD...2019-12-192024-08-13 17:48:18.956152+00:00None2162919https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
547.0Bogus UpperIDBRBU_20191219_100037.0NoneNoneNoneNone234.5AD...2019-12-192024-08-13 17:48:19.004814+00:00None2162920https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
637.0Bogus UpperIDBRBU_20191219_100027.0NoneNoneNoneNone250.5AD...2019-12-192024-08-13 17:48:19.004814+00:00None2162921https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
727.0Bogus UpperIDBRBU_20191219_100017.0NoneNoneNoneNone291.0AD...2019-12-192024-08-13 17:48:19.004814+00:00None2162922https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
817.0Bogus UpperIDBRBU_20191219_10007.0NoneNoneNoneNone266.5AD...2019-12-192024-08-13 17:48:19.004814+00:00None2162923https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
921.0Banner OpenIDBRBO_20191218_142411.0NoneNoneNoneNone228.0AD...2019-12-182024-08-13 17:49:47.341833+00:00None2179263https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
1011.0Banner OpenIDBRBO_20191218_14241.0NoneNoneNoneNone243.0AD...2019-12-182024-08-13 17:49:47.341833+00:00None2179264https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
1121.0Banner OpenIDBRBO_20191218_142411.0None228.0-9999-9999-6590.0AD...2019-12-182024-08-13 17:49:47.428257+00:00None2179269https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
1211.0Banner OpenIDBRBO_20191218_14241.0None243.0-9999-9999-6585.0AD...2019-12-182024-08-13 17:49:47.428257+00:00None2179270https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
1327.0Banner SnotelIDBRBS_20191218_100017.0NoneNoneNoneNone229.5AD...2019-12-182024-08-13 17:49:44.561044+00:00None2178929https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
1417.0Banner SnotelIDBRBS_20191218_10007.0NoneNoneNoneNone253.5AD...2019-12-182024-08-13 17:49:44.561044+00:00None2178930https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
1537.0Banner SnotelIDBRBS_20191218_100027.0None173.0161.0-9999-3221.6666666666665AD...2019-12-182024-08-13 17:49:44.656838+00:00None2178937https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
1627.0Banner SnotelIDBRBS_20191218_100017.0None226.0233.0-9999-3180.0AD...2019-12-182024-08-13 17:49:44.656838+00:00None2178938https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
1717.0Banner SnotelIDBRBS_20191218_10007.0None248.0259.0-9999-3164.0AD...2019-12-182024-08-13 17:49:44.656838+00:00None2178939https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
\n", + "

18 rows × 29 columns

\n", + "
" + ], "text/plain": [ - "" + " depth site_id pit_id bottom_depth comments \\\n", + "0 37.0 Banner Snotel IDBRBS_20191218_1000 27.0 None \n", + "1 47.0 Bogus Upper IDBRBU_20191219_1000 37.0 None \n", + "2 37.0 Bogus Upper IDBRBU_20191219_1000 27.0 None \n", + "3 27.0 Bogus Upper IDBRBU_20191219_1000 17.0 None \n", + "4 17.0 Bogus Upper IDBRBU_20191219_1000 7.0 None \n", + "5 47.0 Bogus Upper IDBRBU_20191219_1000 37.0 None \n", + "6 37.0 Bogus Upper IDBRBU_20191219_1000 27.0 None \n", + "7 27.0 Bogus Upper IDBRBU_20191219_1000 17.0 None \n", + "8 17.0 Bogus Upper IDBRBU_20191219_1000 7.0 None \n", + "9 21.0 Banner Open IDBRBO_20191218_1424 11.0 None \n", + "10 11.0 Banner Open IDBRBO_20191218_1424 1.0 None \n", + "11 21.0 Banner Open IDBRBO_20191218_1424 11.0 None \n", + "12 11.0 Banner Open IDBRBO_20191218_1424 1.0 None \n", + "13 27.0 Banner Snotel IDBRBS_20191218_1000 17.0 None \n", + "14 17.0 Banner Snotel IDBRBS_20191218_1000 7.0 None \n", + "15 37.0 Banner Snotel IDBRBS_20191218_1000 27.0 None \n", + "16 27.0 Banner Snotel IDBRBS_20191218_1000 17.0 None \n", + "17 17.0 Banner Snotel IDBRBS_20191218_1000 7.0 None \n", + "\n", + " sample_a sample_b sample_c value flags ... date \\\n", + "0 None None None 167.0 AD ... 2019-12-18 \n", + "1 232.0 237.0 -9999 -3176.6666666666665 AD ... 2019-12-19 \n", + "2 249.0 252.0 -9999 -3166.0 AD ... 2019-12-19 \n", + "3 286.0 296.0 -9999 -3139.0 AD ... 2019-12-19 \n", + "4 268.0 265.0 -9999 -3155.3333333333335 AD ... 2019-12-19 \n", + "5 None None None 234.5 AD ... 2019-12-19 \n", + "6 None None None 250.5 AD ... 2019-12-19 \n", + "7 None None None 291.0 AD ... 2019-12-19 \n", + "8 None None None 266.5 AD ... 2019-12-19 \n", + "9 None None None 228.0 AD ... 2019-12-18 \n", + "10 None None None 243.0 AD ... 2019-12-18 \n", + "11 228.0 -9999 -9999 -6590.0 AD ... 2019-12-18 \n", + "12 243.0 -9999 -9999 -6585.0 AD ... 2019-12-18 \n", + "13 None None None 229.5 AD ... 2019-12-18 \n", + "14 None None None 253.5 AD ... 2019-12-18 \n", + "15 173.0 161.0 -9999 -3221.6666666666665 AD ... 2019-12-18 \n", + "16 226.0 233.0 -9999 -3180.0 AD ... 2019-12-18 \n", + "17 248.0 259.0 -9999 -3164.0 AD ... 2019-12-18 \n", + "\n", + " time_created time_updated id \\\n", + "0 2024-08-13 17:49:44.561044+00:00 None 2178928 \n", + "1 2024-08-13 17:48:18.956152+00:00 None 2162916 \n", + "2 2024-08-13 17:48:18.956152+00:00 None 2162917 \n", + "3 2024-08-13 17:48:18.956152+00:00 None 2162918 \n", + "4 2024-08-13 17:48:18.956152+00:00 None 2162919 \n", + "5 2024-08-13 17:48:19.004814+00:00 None 2162920 \n", + "6 2024-08-13 17:48:19.004814+00:00 None 2162921 \n", + "7 2024-08-13 17:48:19.004814+00:00 None 2162922 \n", + "8 2024-08-13 17:48:19.004814+00:00 None 2162923 \n", + "9 2024-08-13 17:49:47.341833+00:00 None 2179263 \n", + "10 2024-08-13 17:49:47.341833+00:00 None 2179264 \n", + "11 2024-08-13 17:49:47.428257+00:00 None 2179269 \n", + "12 2024-08-13 17:49:47.428257+00:00 None 2179270 \n", + "13 2024-08-13 17:49:44.561044+00:00 None 2178929 \n", + "14 2024-08-13 17:49:44.561044+00:00 None 2178930 \n", + "15 2024-08-13 17:49:44.656838+00:00 None 2178937 \n", + "16 2024-08-13 17:49:44.656838+00:00 None 2178938 \n", + "17 2024-08-13 17:49:44.656838+00:00 None 2178939 \n", + "\n", + " doi date_accessed instrument type \\\n", + "0 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "1 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "2 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "3 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "4 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "5 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "6 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "7 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "8 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "9 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "10 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "11 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "12 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "13 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "14 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "15 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "16 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "17 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", + "\n", + " units observers \n", + "0 None None \n", + "1 None None \n", + "2 None None \n", + "3 None None \n", + "4 None None \n", + "5 None None \n", + "6 None None \n", + "7 None None \n", + "8 None None \n", + "9 None None \n", + "10 None None \n", + "11 None None \n", + "12 None None \n", + "13 None None \n", + "14 None None \n", + "15 None None \n", + "16 None None \n", + "17 None None \n", + "\n", + "[18 rows x 29 columns]" ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdQAAAGsCAYAAABkVlbAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuPklEQVR4nO3de1TVdb7/8dcG5CIKKuIFBu8lpaKYhaI205LJlB91nE62kDTpYjbMyUsXxDA1L9iNsZo0c3kpL1GezDOTppmNU5YhgpaO5Y0SIs3MBPGCAp/fHx33aYciGz9x6/lY67tW+7Pf3w+fN9tvr/Xd+7u/OIwxRgAA4Ip41PYCAABoCAhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsaHCB+uGHHyouLk4hISFyOBxas2aN23MYY/Tss8/q6quvlo+Pj0JDQzVr1iz7iwUANBhetb0A206dOqWePXvqnnvu0Z/+9KdqzTFu3Di99957evbZZ9WjRw8dP35cx48ft7xSAEBD4mjIN8d3OBx6++239R//8R/OsZKSEj3++ON6/fXXdeLECXXv3l1PPfWU/vCHP0iSvvjiC0VERGj37t3q2rVr7SwcAFDvNLi3fC/nL3/5i7Zu3aqMjAx9/vnnuuOOO3TLLbdo//79kqR//OMf6tSpk9555x117NhRHTp00H333ccZKgCgUr+pQM3Ly9OSJUu0atUqDRw4UJ07d9YjjzyiAQMGaMmSJZKk3NxcHTp0SKtWrdJrr72mpUuXKjs7W//5n/9Zy6sHANRlDe4z1Mrs2rVLZWVluvrqq13GS0pKFBQUJEkqLy9XSUmJXnvtNWfdokWLdN1112nv3r28DQwAuKjfVKAWFxfL09NT2dnZ8vT0dHmuSZMmkqS2bdvKy8vLJXSvueYaST+d4RKoAICL+U0FamRkpMrKynT06FENHDjwojX9+/dXaWmpDh48qM6dO0uS9u3bJ0lq3759ja0VAFC/NLirfIuLi3XgwAFJPwVoenq6brrpJrVo0ULt2rXTXXfdpY8//ljPPfecIiMj9f3332vTpk2KiIhQbGysysvLdf3116tJkyaaO3euysvLlZSUpICAAL333nu13B0AoK5qcIG6efNm3XTTTRXG7777bi1dulTnz5/XzJkz9dprr6mgoEAtW7ZU3759NX36dPXo0UOS9O233+q//uu/9N5778nf319DhgzRc889pxYtWtR0OwCAeqLBBSoAALXhir42M2fOHDkcDo0fP/6SNefPn9eTTz6pzp07y9fXVz179tT69etdamzcLhAAgNpU7UDNysrSggULFBERUWldamqqFixYoBdffFF79uzR2LFjNWzYMO3YscNZc+F2gS+99FJ1lwMAQK2q1lu+xcXF6t27t+bNm6eZM2eqV69emjt37kVrQ0JC9PjjjyspKck5dvvtt8vPz0/Lly+vuKCL3C6wKsrLy/Xtt9+qadOmcjgcbu0LAMAFxhidPHlSISEh8vCo+nlntb42k5SUpNjYWMXExGjmzJmV1paUlMjX19dlzM/PT1u2bKnOj3aZt6SkxPm4oKBA11577RXNCQDABfn5+frd735X5Xq3AzUjI0M5OTnKysqqUv3gwYOVnp6uG2+8UZ07d9amTZu0evVqlZWVufujXaSlpWn69OkVxvPz8xUQEHBFcwMAfruKiooUFhampk2burWfW4Gan5+vcePGaePGjRXOOi/l+eef1/3336/w8HA5HA517txZiYmJWrx4sVsL/aWUlBRNnDjR+fjCLyAgIIBABQBcMXc/PnTroqTs7GwdPXpUvXv3lpeXl7y8vPSvf/1LL7zwgry8vC561hkcHKw1a9bo1KlTOnTokL788ks1adJEnTp1cmuhv+Tj4+MMT0IUAFDb3DpDHTRokHbt2uUylpiYqPDwcCUnJ1e4P+7P+fr6KjQ0VOfPn9dbb72l4cOHV2/FAADUQW4FatOmTdW9e3eXMX9/fwUFBTnHR40apdDQUKWlpUmSMjMzVVBQoF69eqmgoEDTpk1TeXm5HnvsMeccP79doCR99dVX2rlzp/N2gQAA1HXWb46fl5fncpnx2bNnlZqaqtzcXDVp0kRDhw7VsmXL1KxZM2fN9u3bXW4XeOGz0Qu3CwQAoK5rMLceLCoqUmBgoAoLC/k8FQBQbdXNkyu69SAAAPgJgQoAgAUEKgAAFli/KAkAgJp05MRZ/b8XP1TR2VIF+Hrpnf+6UW2aVe3mQzYRqACAeuuaKe/qzPly5+Njp86r75xNckj6ak5sja6Ft3wBAPXSL8P054ykDpPW1uh6CFQAQL1z5MTZS4bpz4WnvlsDq/kJgQoAqHf+34sfVqnubGm5jpw4+yuv5icEKgCg3ik6W1rl2qqG75UiUAEA9U6Ab9WvqXUnfK8EgQoAqHfe+a8bq1zrTvheCQIVAFDvtGnmq6r++W93wvdKEKgAgHqpKt8z9WvkUWM3eSBQAQD11tdzYuXrdfEo82vkoS9mDKmxtXCnJABAvfblzCF14vaDBCoAoN5r08xX26fcXKtr4C1fAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAAC64oUOfMmSOHw6Hx48dfsub8+fN68skn1blzZ/n6+qpnz55av359hbqXXnpJHTp0kK+vr6KiorRt27YrWRoAADWq2oGalZWlBQsWKCIiotK61NRULViwQC+++KL27NmjsWPHatiwYdqxY4ez5o033tDEiRM1depU5eTkqGfPnho8eLCOHj1a3eUBAFCjqhWoxcXFSkhI0MKFC9W8efNKa5ctW6bJkydr6NCh6tSpkx588EENHTpUzz33nLMmPT1d999/vxITE3Xttdfq5ZdfVuPGjbV48eLqLA8AgBpXrUBNSkpSbGysYmJiLltbUlIiX19flzE/Pz9t2bJFknTu3DllZ2e7zOXh4aGYmBht3bq10nmLiopcNgAAaovbgZqRkaGcnBylpaVVqX7w4MFKT0/X/v37VV5ero0bN2r16tU6fPiwJOnYsWMqKytT69atXfZr3bq1jhw5csl509LSFBgY6NzCwsLcbQUAAGvcCtT8/HyNGzdOK1asqHDWeSnPP/+8rrrqKoWHh8vb21t/+ctflJiYKA+PK7vAOCUlRYWFhc4tPz//iuYDAOBKuJVq2dnZOnr0qHr37i0vLy95eXnpX//6l1544QV5eXmprKyswj7BwcFas2aNTp06pUOHDunLL79UkyZN1KlTJ0lSy5Yt5enpqe+++85lv++++05t2rS55Fp8fHwUEBDgsgEAUFvcCtRBgwZp165d2rlzp3Pr06ePEhIStHPnTnl6el5yX19fX4WGhqq0tFRvvfWWbrvtNkmSt7e3rrvuOm3atMlZW15erk2bNqlfv37VbAsAgJrl5U5x06ZN1b17d5cxf39/BQUFOcdHjRql0NBQ52esmZmZKigoUK9evVRQUKBp06apvLxcjz32mHOOiRMn6u6771afPn10ww03aO7cuTp16pQSExOvtD8AAGqEW4FaFXl5eS6fj549e1apqanKzc1VkyZNNHToUC1btkzNmjVz1tx55536/vvv9cQTT+jIkSPq1auX1q9fX+FCJQAA6iqHMcbU9iJsKCoqUmBgoAoLC/k8FQBQbdXNE+7lCwCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhAoAIAYAGBCgCABQQqAAAWEKgAAFhwRYE6Z84cORwOjR8/vtK6uXPnqmvXrvLz81NYWJgmTJigs2fPOp8/efKkxo8fr/bt28vPz0/R0dHKysq6kqUBAFCjvKq7Y1ZWlhYsWKCIiIhK61auXKlJkyZp8eLFio6O1r59+zR69Gg5HA6lp6dLku677z7t3r1by5YtU0hIiJYvX66YmBjt2bNHoaGh1V0iAAA1plpnqMXFxUpISNDChQvVvHnzSms/+eQT9e/fXyNGjFCHDh108803Kz4+Xtu2bZMknTlzRm+99Zaefvpp3XjjjerSpYumTZumLl26aP78+dVZHgAANa5agZqUlKTY2FjFxMRctjY6OlrZ2dnOAM3NzdW6des0dOhQSVJpaanKysrk6+vrsp+fn5+2bNlyyXlLSkpUVFTksgEAUFvcfss3IyNDOTk5Vf6Mc8SIETp27JgGDBggY4xKS0s1duxYTZ48WZLUtGlT9evXTzNmzNA111yj1q1b6/XXX9fWrVvVpUuXS86blpam6dOnu7t8AAB+FW6doebn52vcuHFasWJFhTPKS9m8ebNmz56tefPmKScnR6tXr9batWs1Y8YMZ82yZctkjFFoaKh8fHz0wgsvKD4+Xh4el15eSkqKCgsLnVt+fr47rQAAYJXDGGOqWrxmzRoNGzZMnp6ezrGysjI5HA55eHiopKTE5TlJGjhwoPr27atnnnnGObZ8+XKNGTNGxcXFLqF56tQpFRUVqW3btrrzzjtVXFystWvXVmltRUVFCgwMVGFhoQICAqraEgAALqqbJ2695Tto0CDt2rXLZSwxMVHh4eFKTk6uEKaSdPr06Qpnmhfqfpnl/v7+8vf3148//qgNGzbo6aefdmd5AADUGrcCtWnTpurevbvLmL+/v4KCgpzjo0aNUmhoqNLS0iRJcXFxSk9PV2RkpKKionTgwAFNmTJFcXFxzmDdsGGDjDHq2rWrDhw4oEcffVTh4eFKTEy00SMAAL+6an8P9VLy8vJczkhTU1PlcDiUmpqqgoICBQcHKy4uTrNmzXLWFBYWKiUlRd98841atGih22+/XbNmzVKjRo1sLw8AgF+FW5+h1mV8hgoAsKG6ecK9fAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACy4okCdM2eOHA6Hxo8fX2nd3Llz1bVrV/n5+SksLEwTJkzQ2bNnnc+XlZVpypQp6tixo/z8/NS5c2fNmDFDxpgrWR4AADXGq7o7ZmVlacGCBYqIiKi0buXKlZo0aZIWL16s6Oho7du3T6NHj5bD4VB6erok6amnntL8+fP16quvqlu3btq+fbsSExMVGBiohx56qLpLBACgxlQrUIuLi5WQkKCFCxdq5syZldZ+8skn6t+/v0aMGCFJ6tChg+Lj45WZmelSc9tttyk2NtZZ8/rrr2vbtm3VWR4AADWuWm/5JiUlKTY2VjExMZetjY6OVnZ2tjMcc3NztW7dOg0dOtSlZtOmTdq3b58k6bPPPtOWLVs0ZMiQS85bUlKioqIilw0AgNri9hlqRkaGcnJylJWVVaX6ESNG6NixYxowYICMMSotLdXYsWM1efJkZ82kSZNUVFSk8PBweXp6qqysTLNmzVJCQsIl501LS9P06dPdXT4AAL8Kt85Q8/PzNW7cOK1YsUK+vr5V2mfz5s2aPXu25s2bp5ycHK1evVpr167VjBkznDVvvvmmVqxYoZUrVyonJ0evvvqqnn32Wb366quXnDclJUWFhYXOLT8/351WAACwymHcuJR2zZo1GjZsmDw9PZ1jZWVlcjgc8vDwUElJictzkjRw4ED17dtXzzzzjHNs+fLlGjNmjIqLi+Xh4aGwsDBNmjRJSUlJzpqZM2dq+fLl+vLLL6u0tqKiIgUGBqqwsFABAQFVbQkAABfVzRO33vIdNGiQdu3a5TKWmJio8PBwJScnVwhTSTp9+rQ8PFxPhC/UXcjyS9WUl5e7szwAAGqNW4HatGlTde/e3WXM399fQUFBzvFRo0YpNDRUaWlpkqS4uDilp6crMjJSUVFROnDggKZMmaK4uDhnsMbFxWnWrFlq166dunXrph07dig9PV333HOPjR4BAPjVVft7qJeSl5fncraZmpoqh8Oh1NRUFRQUKDg42BmgF7z44ouaMmWK/vznP+vo0aMKCQnRAw88oCeeeML28gAA+FW49RlqXcZnqAAAG6qbJ9zLFwAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALCAQAUAwAICFQAACwhUAAAsIFABALDgigJ1zpw5cjgcGj9+fKV1c+fOVdeuXeXn56ewsDBNmDBBZ8+edT7foUMHORyOCltSUtKVLA8AgBrjVd0ds7KytGDBAkVERFRat3LlSk2aNEmLFy9WdHS09u3bp9GjR8vhcCg9Pd05V1lZmXOf3bt3649//KPuuOOO6i4PAIAaVa0z1OLiYiUkJGjhwoVq3rx5pbWffPKJ+vfvrxEjRqhDhw66+eabFR8fr23btjlrgoOD1aZNG+f2zjvvqHPnzvr9739fneUBAFDjqhWoSUlJio2NVUxMzGVro6OjlZ2d7QzQ3NxcrVu3TkOHDr1o/blz57R8+XLdc889cjgcl5y3pKRERUVFLhsAALXF7bd8MzIylJOTo6ysrCrVjxgxQseOHdOAAQNkjFFpaanGjh2ryZMnX7R+zZo1OnHihEaPHl3pvGlpaZo+fbq7ywcA4Ffh1hlqfn6+xo0bpxUrVsjX17dK+2zevFmzZ8/WvHnzlJOTo9WrV2vt2rWaMWPGResXLVqkIUOGKCQkpNJ5U1JSVFhY6Nzy8/PdaQUAAKscxhhT1eI1a9Zo2LBh8vT0dI6VlZXJ4XDIw8NDJSUlLs9J0sCBA9W3b18988wzzrHly5drzJgxKi4ulofH/2X6oUOH1KlTJ61evVq33XabW40UFRUpMDBQhYWFCggIcGtfAAAuqG6euPWW76BBg7Rr1y6XscTERIWHhys5OblCmErS6dOnXUJTkrPul1m+ZMkStWrVSrGxse4sCwCAWudWoDZt2lTdu3d3GfP391dQUJBzfNSoUQoNDVVaWpokKS4uTunp6YqMjFRUVJQOHDigKVOmKC4uziWAy8vLtWTJEt19993y8qr2t3kAAKgV1pMrLy/P5Yw0NTVVDodDqampKigoUHBwsOLi4jRr1iyX/d5//33l5eXpnnvusb0kAAB+dW59hlqX8RkqAMCG6uYJ9/IFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCw4IoCdc6cOXI4HBo/fnyldXPnzlXXrl3l5+ensLAwTZgwQWfPnnWpKSgo0F133aWgoCD5+fmpR48e2r59+5UsDwCAGuNV3R2zsrK0YMECRUREVFq3cuVKTZo0SYsXL1Z0dLT27dun0aNHy+FwKD09XZL0448/qn///rrpppv07rvvKjg4WPv371fz5s2ruzwAAGpUtQK1uLhYCQkJWrhwoWbOnFlp7SeffKL+/ftrxIgRkqQOHTooPj5emZmZzpqnnnpKYWFhWrJkiXOsY8eO1VkaAAC1olpv+SYlJSk2NlYxMTGXrY2OjlZ2dra2bdsmScrNzdW6des0dOhQZ83f//539enTR3fccYdatWqlyMhILVy4sNJ5S0pKVFRU5LIBAFBb3D5DzcjIUE5OjrKysqpUP2LECB07dkwDBgyQMUalpaUaO3asJk+e7KzJzc3V/PnzNXHiRE2ePFlZWVl66KGH5O3trbvvvvui86alpWn69OnuLh8AgF+FW2eo+fn5GjdunFasWCFfX98q7bN582bNnj1b8+bNU05OjlavXq21a9dqxowZzpry8nL17t1bs2fPVmRkpMaMGaP7779fL7/88iXnTUlJUWFhoXPLz893pxUAAKxy6ww1OztbR48eVe/evZ1jZWVl+vDDD/W3v/1NJSUl8vT0dNlnypQpGjlypO677z5JUo8ePXTq1CmNGTNGjz/+uDw8PNS2bVtde+21Lvtdc801euutty65Fh8fH/n4+LizfAAAfjVuBeqgQYO0a9cul7HExESFh4crOTm5QphK0unTp+Xh4XoifKHOGCNJ6t+/v/bu3etSs2/fPrVv396d5QEAUGvcCtSmTZuqe/fuLmP+/v4KCgpyjo8aNUqhoaFKS0uTJMXFxSk9PV2RkZGKiorSgQMHNGXKFMXFxTmDdcKECYqOjtbs2bM1fPhwbdu2Ta+88opeeeUVGz0CAPCrq/b3UC8lLy/P5Yw0NTVVDodDqampKigoUHBwsOLi4jRr1ixnzfXXX6+3335bKSkpevLJJ9WxY0fNnTtXCQkJtpcHAMCvwmEuvO9azxUVFSkwMFCFhYUKCAio7eUAAOqp6uYJ9/IFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALCBQAQCwgEAFAMACAhUAAAsIVAAALLiiQJ0zZ44cDofGjx9fad3cuXPVtWtX+fn5KSwsTBMmTNDZs2edz0+bNk0Oh8NlCw8Pv5KlAQBQo7yqu2NWVpYWLFigiIiISutWrlypSZMmafHixYqOjta+ffs0evRoORwOpaenO+u6deum999///8W5lXtpQEAUOOqlVrFxcVKSEjQwoULNXPmzEprP/nkE/Xv318jRoyQJHXo0EHx8fHKzMx0XYiXl9q0aVOd5QAAUOuq9ZZvUlKSYmNjFRMTc9na6OhoZWdna9u2bZKk3NxcrVu3TkOHDnWp279/v0JCQtSpUyclJCQoLy+v0nlLSkpUVFTksgEAUFvcPkPNyMhQTk6OsrKyqlQ/YsQIHTt2TAMGDJAxRqWlpRo7dqwmT57srImKitLSpUvVtWtXHT58WNOnT9fAgQO1e/duNW3a9KLzpqWlafr06e4uHwCAX4VbZ6j5+fkaN26cVqxYIV9f3yrts3nzZs2ePVvz5s1TTk6OVq9erbVr12rGjBnOmiFDhuiOO+5QRESEBg8erHXr1unEiRN68803LzlvSkqKCgsLnVt+fr47rQAAYJXDGGOqWrxmzRoNGzZMnp6ezrGysjI5HA55eHiopKTE5TlJGjhwoPr27atnnnnGObZ8+XKNGTNGxcXF8vC4eKZff/31iomJUVpaWpXWVlRUpMDAQBUWFiogIKCqLQEA4KK6eeLWW76DBg3Srl27XMYSExMVHh6u5OTkCmEqSadPn64QmhfqLpXlxcXFOnjwoEaOHOnO8gAAqDVuBWrTpk3VvXt3lzF/f38FBQU5x0eNGqXQ0FDnmWVcXJzS09MVGRmpqKgoHThwQFOmTFFcXJwzWB955BHFxcWpffv2+vbbbzV16lR5enoqPj7eRo8AAPzqrH/ZMy8vz+WMNDU1VQ6HQ6mpqSooKFBwcLDi4uI0a9YsZ80333yj+Ph4/fDDDwoODtaAAQP06aefKjg42PbyAAD4Vbj1GWpdxmeoAAAbqpsn3MsXAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAut/baY+yzt2Wrc8/y+dOV8uv0YeWj/u92rXsnFtLwsAUA8QqP+ry+S1Ki3/v8enz5frxmf/KS8P6cDs2NpbGACgXuAtX1UM058rLf/peQAAKvObD9S8Y6cvGaYXlJb/VAcAwKX85gP1luf/ZbUOAPDb9JsP1DPnL3N66mYdAOC36TcfqH6NqvYrqGodAOC36TefEuvH/d5qHQDgt+k3H6jtWjaW12V+C14e4vuoAIBK/eYDVfrpe6aXClW+hwoAqApu7PC/DsyO5U5JAIBqI1B/pl3LxtozY0htLwMAUA/xli8AABYQqAAAWECgAgBgAYEKAIAFBCoAABYQqAAAWECgAgBgAYEKAIAFBCoAABY0mDslGWMkSUVFRbW8EgBAfXYhRy7kSlU1mED94YcfJElhYWG1vBIAQENw8uRJBQYGVrm+wQRqixYtJEl5eXlu/QLqg6KiIoWFhSk/P18BAQG1vRxrGmpfUsPtraH2JTXc3ujLfcYYnTx5UiEhIW7t12AC1cPjp4+DAwMDG9Q/mp8LCAhokL011L6khttbQ+1Lari90Zd7qnNixkVJAABYQKACAGBBgwlUHx8fTZ06VT4+PrW9FOsaam8NtS+p4fbWUPuSGm5v9FVzHMbd64IBAEAFDeYMFQCA2kSgAgBgAYEKAIAFBCoAABbUWKBOmzZNDofDZQsPD5ckff311xWeu7CtWrXKOUdeXp5iY2PVuHFjtWrVSo8++qhKS0tdfs7mzZvVu3dv+fj4qEuXLlq6dGmFtbz00kvq0KGDfH19FRUVpW3btrk8f/bsWSUlJSkoKEhNmjTR7bffru+++65avUnSkSNHNHLkSLVp00b+/v7q3bu33nrrLZc5jh8/roSEBAUEBKhZs2a69957VVxc7FLz+eefa+DAgfL19VVYWJiefvrpCmtZtWqVwsPD5evrqx49emjdunUuzxtj9MQTT6ht27by8/NTTEyM9u/fX62+Dh48qGHDhik4OFgBAQEaPnx4hd9TXexLkgoKCnTXXXcpKChIfn5+6tGjh7Zv3+7WfPW1t9WrV+vmm29WUFCQHA6Hdu7cWWGOqhwDNXU8VqWv8+fPKzk5WT169JC/v79CQkI0atQoffvtty5z1NfXbNq0aQoPD5e/v7+aN2+umJgYZWZm1vneLtfXz40dO1YOh0Nz586t831dkqkhU6dONd26dTOHDx92bt9//70xxpjS0lKX8cOHD5vp06ebJk2amJMnTzprunfvbmJiYsyOHTvMunXrTMuWLU1KSorzZ+Tm5prGjRubiRMnmj179pgXX3zReHp6mvXr1ztrMjIyjLe3t1m8eLH597//be6//37TrFkz89133zlrxo4da8LCwsymTZvM9u3bTd++fU10dHS1ejPGmD/+8Y/m+uuvN5mZmebgwYNmxowZxsPDw+Tk5DhrbrnlFtOzZ0/z6aefmo8++sh06dLFxMfHO58vLCw0rVu3NgkJCWb37t3m9ddfN35+fmbBggXOmo8//th4enqap59+2uzZs8ekpqaaRo0amV27djlr5syZYwIDA82aNWvMZ599Zm699VbTsWNHc+bMGbf6Ki4uNp06dTLDhg0zn3/+ufn888/NbbfdZq6//npTVlZWp/s6fvy4ad++vRk9erTJzMw0ubm5ZsOGDebAgQNuzVdfe3vttdfM9OnTzcKFC40ks2PHjgrzXO4YqMnjsSp9nThxwsTExJg33njDfPnll2br1q3mhhtuMNddd53LPPX1NVuxYoXZuHGjOXjwoNm9e7e59957TUBAgDl69Gid7a0qfV2wevVq07NnTxMSEmL++te/1vnX7FJqNFB79uxZ5fpevXqZe+65x/l43bp1xsPDwxw5csQ5Nn/+fBMQEGBKSkqMMcY89thjplu3bi7z3HnnnWbw4MHOxzfccINJSkpyPi4rKzMhISEmLS3NGPPTgdmoUSOzatUqZ80XX3xhJJmtW7dWqzd/f3/z2muvuYy1aNHCLFy40BhjzJ49e4wkk5WV5Xz+3XffNQ6HwxQUFBhjjJk3b55p3ry5s1djjElOTjZdu3Z1Ph4+fLiJjY11+TlRUVHmgQceMMYYU15ebtq0aWOeeeYZ5/MnTpwwPj4+5vXXX3errw0bNhgPDw9TWFjoMpfD4TAbN26s030lJyebAQMGXLSvqs5XX3v7ua+++uqigVqVY6Cmjsfq9HXBtm3bjCRz6NAhY0zDeM0uKCwsNJLM+++/X2d7q2pf33zzjQkNDTW7d+827du3dwnUuthXZWr0M9T9+/crJCREnTp1UkJCgvLy8i5al52drZ07d+ree+91jm3dulU9evRQ69atnWODBw9WUVGR/v3vfztrYmJiXOYaPHiwtm7dKkk6d+6csrOzXWo8PDwUExPjrMnOztb58+ddasLDw9WuXTtnjbu9RUdH64033tDx48dVXl6ujIwMnT17Vn/4wx+c627WrJn69Onj3CcmJkYeHh7Ot3W2bt2qG2+8Ud7e3i697d27Vz/++GOV+v/qq6905MgRl5rAwEBFRUVdsrdL9VVSUiKHw+HypWpfX195eHhoy5Ytdbqvv//97+rTp4/uuOMOtWrVSpGRkVq4cKHz+arMV197q4qqHAM1dTxeSV+FhYVyOBxq1qyZcz0N4TU7d+6cXnnlFQUGBqpnz551treq9FVeXq6RI0fq0UcfVbdu3Sr0Whf7qkyNBWpUVJSWLl2q9evXa/78+frqq680cOBAnTx5skLtokWLdM011yg6Oto5duTIEZeDV5Lz8ZEjRyqtKSoq0pkzZ3Ts2DGVlZVdtObnc3h7ezsPwovVuNvbm2++qfPnzysoKEg+Pj564IEH9Pbbb6tLly7On9mqVSuXOb28vNSiRYvL9laV/n/+/M/3u1xvlfXVt29f+fv7Kzk5WadPn9apU6f0yCOPqKysTIcPH67TfeXm5mr+/Pm66qqrtGHDBj344IN66KGH9Oqrr1Z5vvraW1VU5RioqeOxun2dPXtWycnJio+Pd944vb6/Zu+8846aNGkiX19f/fWvf9XGjRvVsmXLOttbVfp66qmn5OXlpYceeqjC76Wu9lWZGvtrM0OGDHH+d0REhKKiotS+fXu9+eabLmeiZ86c0cqVKzVlypSaWtoVu1xvU6ZM0YkTJ/T++++rZcuWWrNmjYYPH66PPvpIPXr0qMWVV+5yfa1atUoPPvigXnjhBXl4eCg+Pl69e/d2/uWfuqq8vFx9+vTR7NmzJUmRkZHavXu3Xn75Zd199921vLor01B7c6ev8+fPa/jw4TLGaP78+bWxXLdUtbebbrpJO3fu1LFjx7Rw4UINHz5cmZmZFQKnrrhcX9nZ2Xr++eeVk5Mjh8NRy6u1o9b+z9esWTNdffXVOnDggMv4f//3f+v06dMaNWqUy3ibNm0qXGV44XGbNm0qrQkICJCfn59atmwpT0/Pi9b8fI5z587pxIkTl6xxp7eDBw/qb3/7mxYvXqxBgwapZ8+emjp1qvr06aOXXnrJ+TOPHj3qMkdpaamOHz9+2d6q0v/Pn//5fu729svX7Oabb9bBgwd19OhRHTt2TMuWLVNBQYE6depUp/tq27atrr32Wpexa665xvl2dlXmq6+9VUVVjoGaOh7d7etCmB46dEgbN250+bNe9f018/f3V5cuXdS3b18tWrRIXl5eWrRoUZ3t7XJ9ffTRRzp69KjatWsnLy8veXl56dChQ3r44YfVoUOHOttXZWotUIuLi3Xw4EG1bdvWZXzRokW69dZbFRwc7DLer18/7dq1y+WXe+GAufCi9evXT5s2bXLZb+PGjerXr58kydvbW9ddd51LTXl5uTZt2uSsue6669SoUSOXmr179yovL89Z405vp0+flqQKZ22enp4qLy93rvvEiRPKzs52Pv/BBx+ovLxcUVFRzpoPP/xQ58+fd+mta9euat68eZX679ixo9q0aeNSU1RUpMzMzCr1dqnXrGXLlmrWrJk++OADHT16VLfeemud7qt///7au3evy9i+ffvUvn37Ks9XX3uriqocAzV1PLrT14Uw3b9/v95//30FBQW51De016y8vFwlJSV1trfL9TVy5Eh9/vnn2rlzp3MLCQnRo48+qg0bNtTZvipV5cuXrtDDDz9sNm/ebL766ivz8ccfm5iYGNOyZUuXy773799vHA6Heffddyvsf+Ey/Ztvvtns3LnTrF+/3gQHB1/0Mv1HH33UfPHFF+all1666GX6Pj4+ZunSpWbPnj1mzJgxplmzZi5XK44dO9a0a9fOfPDBB2b79u2mX79+pl+/ftXq7dy5c6ZLly5m4MCBJjMz0xw4cMA8++yzxuFwmLVr1zrnuOWWW0xkZKTJzMw0W7ZsMVdddZXLpeEnTpwwrVu3NiNHjjS7d+82GRkZpnHjxhUuDffy8jLPPvus+eKLL8zUqVMveml4s2bNzP/8z/84v+pyqUvDL/eaLV682GzdutUcOHDALFu2zLRo0cJMnDjRZY662Ne2bduMl5eXmTVrltm/f79ZsWKFady4sVm+fLlb89XX3n744QezY8cOs3btWiPJZGRkmB07dpjDhw87ay53DNTk8ViVvs6dO2duvfVW87vf/c7s3LnT5ateP7/6sz6+ZsXFxSYlJcVs3brVfP3112b79u0mMTHR+Pj4mN27d9fZ3qryb/GXfnmVb13sqzI1Fqh33nmnadu2rfH29jahoaHmzjvvrPB9pJSUFBMWFubyPcaf+/rrr82QIUOMn5+fadmypXn44YfN+fPnXWr++c9/ml69ehlvb2/TqVMns2TJkgrzvPjii6Zdu3bG29vb3HDDDebTTz91ef7MmTPmz3/+s2nevLlp3LixGTZsmMv/bNztbd++feZPf/qTadWqlWncuLGJiIio8DWaH374wcTHx5smTZqYgIAAk5iY6PwO7gWfffaZGTBggPHx8TGhoaFmzpw5Fdby5ptvmquvvtp4e3ubbt26uYS2MT9dHj5lyhTTunVr4+PjYwYNGmT27t1brb6Sk5NN69atTaNGjcxVV11lnnvuOVNeXl7n+zLGmH/84x+me/fuxsfHx4SHh5tXXnnF7fnqa29LliwxkipsU6dOddZU5RioqeOxKn1d+ArQxbZ//vOfzrr6+JqdOXPGDBs2zISEhBhvb2/Ttm1bc+utt5pt27a5zFEXe7vcv8Vfulig1sW+LoU/3wYAgAV1+3JMAADqCQIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsIBABQDAAgIVAAALCFQAACwgUAEAsOD/A9LIyavcv8fFAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAGsCAYAAACLlD3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtMElEQVR4nO3dfVjVdZ7/8dcB5EbkRnESUBJrmtQQMksNtRulqNDKZksb05VLTVscpNzWmLUbm4qc0jEt2WS0ItloMHO6MVN/282QNyDohlpqqYGIOpmCrHFE+Pz+aD3bSUUOfpKbno/rOtcVX97n8HnXNM8O54AOY4wRAAA4b17NfQAAANoKogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJW0uqp9++qlGjBihyMhIORwOrVixwuPHMMbo+eef129+8xv5+fkpKipKzzzzjP3DAgDaFJ/mPoBt//M//6O4uDglJyfrt7/9bZMeY9q0aVq9erWef/559enTR5WVlfr2228tnxQA0NY42vIv1Hc4HHr77bd15513uq6dOHFCM2fOVE5Ojo4ePaqYmBjNnj1bN9xwgyTpiy++UGxsrLZu3arLL7+8eQ4OAGiV2ty3f88lOTlZn332mXJzc/X555/r7rvv1i233KJdu3ZJkt59911dcskleu+999SjRw9FR0dr4sSJ+u6775r55ACAlu4XFdWvv/5ab7zxhvLy8jRkyBBdeuml+td//VcNHjxYr7zyiiRp9+7d+uabb5SXl6fs7Gy9+uqrKioq0j/90z818+kBAC1dm3tNtSHFxcUyxug3v/mN23Wn06mwsDBJUn19vZxOp7Kzs11zixcvVr9+/bRjxw6+JQwAOKtfVFTr6+vl7e2toqIieXt7u32uQ4cOkqSIiAj5+Pi4hbdXr16SpNLSUqIKADirX1RU+/btq7q6Oh06dEhDhgw548ygQYN08uRJff3117r00kslSTt37pQkde/e/YKdFQDQ+rS5d/9WV1frq6++kvRDROfOnasbb7xRnTp10sUXX6z77rtPn332mebMmaO+ffvq22+/1X/913+pT58+uu2221RfX69rrrlGHTp00Lx581RfX6+UlBQFBwdr9erVzbwdAKAla3NR/fjjj3XjjTeedv2f//mf9eqrr6q2tlZPPfWUsrOzVV5errCwMF177bWaNWuW+vTpI0nav3+/fv/732v16tUKDAzUrbfeqjlz5qhTp04Xeh0AQCvS5qIKAEBzOa8fqcnIyJDD4VBaWlqDcy+99JJ69eqlgIAAXX755crOznb7/LZt2/Tb3/5W0dHRcjgcmjdv3vkcCwCAZtHkNyoVFhZq0aJFio2NbXAuMzNT6enpysrK0jXXXKOCggJNmjRJHTt21IgRIyRJx48f1yWXXKK7775bDz74YFOPBABAs2pSVKurqzVmzBhlZWXpqaeeanD29ddf1+TJkzVq1ChJ0iWXXKINGzZo9uzZrqhec801uuaaayRJjzzySFOOpPr6eu3fv19BQUFyOBxNegwAAIwxOnbsmCIjI+Xl5dk3dJsU1ZSUFCUlJSkhIeGcUXU6nfL393e7FhAQoIKCAtXW1qpdu3ZNOYKcTqecTqfr4/LycvXu3btJjwUAwE+VlZWpW7duHt3H46jm5uaquLhYhYWFjZpPTEzUX/7yF91555266qqrVFRUpCVLlqi2tlbffvutIiIiPD2CpB9ez501a9Zp18vKyhQcHNykxwQAoKqqSlFRUQoKCvL4vh5FtayszPXHov302efZPProozpw4IAGDhwoY4y6dOmi8ePH609/+tNpv9XIE+np6XrooYdcH5/6mxAcHExUAQDnrSkvJXr0zeKioiIdOnRI/fr1k4+Pj3x8fPTJJ59o/vz58vHxUV1d3Wn3CQgI0JIlS3T8+HHt3btXpaWlio6OVlBQkDp37uzxgU/x8/NzBZSQAgBaAo+eqQ4bNkwlJSVu15KTk9WzZ0/NmDGjwWee7dq1c31vOjc3V8OHD/f4BWAAAFoyj6IaFBSkmJgYt2uBgYEKCwtzXU9PT1d5ebnrZ1F37typgoICDRgwQEeOHNHcuXO1detWvfbaa67HOHHihLZv3+766/Lycm3ZskUdOnTQr3/96/NaEACAC8X6U8WKigqVlpa6Pq6rq9OcOXMUFxenm266STU1NVq3bp2io6NdM/v371ffvn3Vt29fVVRU6Pnnn1ffvn01ceJE28cDAOBn02Z+TWFVVZVCQkJUWVnJ66sAgCY7n57woiYAAJYQVQAALCGqAABY0uRfqA8AQEtQXXNSD765WaVHvtfFHQP051F91cG/efJGVAEArdbtL/5dn++rcn2848AxxTzxoXpdFKAPHhp6wc/Dt38BAK3ST4P6Y18c+l6//sP7F/hERBUA0ApV15w8a1BPOVkv9XtyzQU60Q+IKgCg1Xnwzc2Nmjt8/IS+qz7xM5/m/xBVAECrU3rk+0bPjl607mc8iTuiCgBodS7uGNDo2UPHeKYKAMBZ/XlU30bPXhTk+zOexB1RBQC0Oh38fdTrosY9W829P/5nPs3/IaoAgFbpg4eGyuccFftVB1916sAzVQAAzumrZ5IU1v7M0fxVB18Vzrzpgp6H36gEAGjVih67Sd9Vn9DoRet06NgJXRTkq9z74y/oM9RTiCoAoNXr1MFXqx+6obmPwbd/AQCwhagCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJecV1YyMDDkcDqWlpTU499JLL6lXr14KCAjQ5Zdfruzs7NNm3nrrLfXu3Vt+fn7q3bu33n777fM5GgAAF1yTo1pYWKhFixYpNja2wbnMzEylp6friSee0LZt2zRr1iylpKTo3Xffdc2sX79eo0aN0tixY/Xf//3fGjt2rO655x5t3LixqccDAOCCcxhjjKd3qq6u1lVXXaWFCxfqqaee0pVXXql58+adcTY+Pl6DBg3Sc88957qWlpamTZs2KT8/X5I0atQoVVVV6YMPPnDN3HLLLerYsaPeeOONRp2pqqpKISEhqqysVHBwsKcrAQAg6fx60qRnqikpKUpKSlJCQsI5Z51Op/z9/d2uBQQEqKCgQLW1tZJ+eKZ68803u80kJiZq3bp1DT5uVVWV2w0AgObkcVRzc3NVXFysjIyMRs0nJibqL3/5i4qKimSM0aZNm7RkyRLV1tbq22+/lSQdOHBAXbp0cbtfly5ddODAgbM+bkZGhkJCQly3qKgoT1cBAMAqj6JaVlamadOmaenSpac9+zybRx99VLfeeqsGDhyodu3a6Y477tD48eMlSd7e3q45h8Phdj9jzGnXfiw9PV2VlZWuW1lZmSerAABgnUdRLSoq0qFDh9SvXz/5+PjIx8dHn3zyiebPny8fHx/V1dWddp+AgAAtWbJEx48f1969e1VaWqro6GgFBQWpc+fOkqTw8PDTnpUeOnTotGevP+bn56fg4GC3GwAAzcmjqA4bNkwlJSXasmWL63b11VdrzJgx2rJli9szz59q166dunXrJm9vb+Xm5mr48OHy8vrhy1977bVas2aN2/zq1asVHx/fhJUAAGgePp4MBwUFKSYmxu1aYGCgwsLCXNfT09NVXl7u+lnUnTt3qqCgQAMGDNCRI0c0d+5cbd26Va+99prrMaZNm6brrrtOs2fP1h133KG//e1vWrt2revdwQAAtAbWf6NSRUWFSktLXR/X1dVpzpw5iouL00033aSamhqtW7dO0dHRrpn4+Hjl5ubqlVdeUWxsrF599VW9+eabGjBggO3jAQDws2nSz6m2RPycKgDAhgv+c6oAAOB0RBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJacV1QzMjLkcDiUlpbW4FxOTo7i4uLUvn17RUREKDk5WYcPH3Z9vra2Vk8++aQuvfRS+fv7Ky4uTqtWrTqfowEAcME1OaqFhYVatGiRYmNjG5zLz8/XuHHjNGHCBG3btk15eXkqLCzUxIkTXTMzZ87Uyy+/rAULFmj79u2aMmWKRo4cqc2bNzf1eAAAXHBNimp1dbXGjBmjrKwsdezYscHZDRs2KDo6WqmpqerRo4cGDx6syZMna9OmTa6Z119/XX/4wx9022236ZJLLtEDDzygxMREzZkzpynHAwCgWTQpqikpKUpKSlJCQsI5Z+Pj47Vv3z6tXLlSxhgdPHhQy5YtU1JSkmvG6XTK39/f7X4BAQHKz88/6+M6nU5VVVW53QAAaE4eRzU3N1fFxcXKyMho1Hx8fLxycnI0atQo+fr6Kjw8XKGhoVqwYIFrJjExUXPnztWuXbtUX1+vNWvW6G9/+5sqKirO+rgZGRkKCQlx3aKiojxdBQAAqzyKallZmaZNm6alS5ee9szybLZv367U1FQ99thjKioq0qpVq7Rnzx5NmTLFNfPCCy/osssuU8+ePeXr66upU6cqOTlZ3t7eZ33c9PR0VVZWum5lZWWerAIAgHUOY4xp7PCKFSs0cuRIt9jV1dXJ4XDIy8tLTqfztBCOHTtWNTU1ysvLc13Lz8/XkCFDtH//fkVERLiu19TU6PDhw4qMjNQjjzyi9957T9u2bWvU2aqqqhQSEqLKykoFBwc3diUAANycT098PBkeNmyYSkpK3K4lJyerZ8+emjFjxhmfWR4/flw+Pu5f5tTcT3vu7++vrl27qra2Vm+99ZbuueceT44HAECz8iiqQUFBiomJcbsWGBiosLAw1/X09HSVl5crOztbkjRixAhNmjRJmZmZSkxMVEVFhdLS0tS/f39FRkZKkjZu3Kjy8nJdeeWVKi8v1xNPPKH6+nr927/9m40dAQC4IDyKamNUVFSotLTU9fH48eN17Ngxvfjii5o+fbpCQ0M1dOhQzZ492zVTU1OjmTNnavfu3erQoYNuu+02vf766woNDbV9PAAAfjYevabakvGaKgDAhvPpCb/7FwAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhyXlHNyMiQw+FQWlpag3M5OTmKi4tT+/btFRERoeTkZB0+fNhtZt68ebr88ssVEBCgqKgoPfjgg6qpqTmf4wEAcEE1OaqFhYVatGiRYmNjG5zLz8/XuHHjNGHCBG3btk15eXkqLCzUxIkTXTM5OTl65JFH9Pjjj+uLL77Q4sWL9eabbyo9Pb2pxwMA4IJrUlSrq6s1ZswYZWVlqWPHjg3ObtiwQdHR0UpNTVWPHj00ePBgTZ48WZs2bXLNrF+/XoMGDdLvfvc7RUdH6+abb9a9997rNgMAQEvXpKimpKQoKSlJCQkJ55yNj4/Xvn37tHLlShljdPDgQS1btkxJSUmumcGDB6uoqEgFBQWSpN27d2vlypVuMz/ldDpVVVXldgMAoDn5eHqH3NxcFRcXq7CwsFHz8fHxysnJ0ahRo1RTU6OTJ0/q9ttv14IFC1wzo0eP1j/+8Q8NHjxYxhidPHlSDzzwgB555JGzPm5GRoZmzZrl6fEBAPjZePRMtaysTNOmTdPSpUvl7+/fqPts375dqampeuyxx1RUVKRVq1Zpz549mjJlimvm448/1tNPP62FCxequLhYy5cv13vvvac//vGPZ33c9PR0VVZWum5lZWWerAIAgHUOY4xp7PCKFSs0cuRIeXt7u67V1dXJ4XDIy8tLTqfT7XOSNHbsWNXU1CgvL891LT8/X0OGDNH+/fsVERGhIUOGaODAgXruuedcM0uXLtX999+v6upqeXmdu/1VVVUKCQlRZWWlgoODG7sSAABuzqcnHn37d9iwYSopKXG7lpycrJ49e2rGjBmnBVWSjh8/Lh8f9y9zau5Uz48fP35aOL29vWWMkQfNBwCgWXkU1aCgIMXExLhdCwwMVFhYmOt6enq6ysvLlZ2dLUkaMWKEJk2apMzMTCUmJqqiokJpaWnq37+/IiMjXTNz585V3759NWDAAH311Vd69NFHdfvtt58x1AAAtEQev1HpXCoqKlRaWur6ePz48Tp27JhefPFFTZ8+XaGhoRo6dKhmz57tmpk5c6YcDodmzpyp8vJy/epXv9KIESP09NNP2z4eAAA/G49eU23JeE0VAGDD+fSE3/0LAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJacV1QzMjLkcDiUlpbW4FxOTo7i4uLUvn17RUREKDk5WYcPH3Z9/oYbbpDD4TjtlpSUdD7HAwDggmpyVAsLC7Vo0SLFxsY2OJefn69x48ZpwoQJ2rZtm/Ly8lRYWKiJEye6ZpYvX66KigrXbevWrfL29tbdd9/d1OMBAHDBNSmq1dXVGjNmjLKystSxY8cGZzds2KDo6GilpqaqR48eGjx4sCZPnqxNmza5Zjp16qTw8HDXbc2aNWrfvj1RBQC0Kk2KakpKipKSkpSQkHDO2fj4eO3bt08rV66UMUYHDx7UsmXLGvzW7uLFizV69GgFBgaedcbpdKqqqsrtBgBAc/I4qrm5uSouLlZGRkaj5uPj45WTk6NRo0bJ19dX4eHhCg0N1YIFC844X1BQoK1bt7p9e/hMMjIyFBIS4rpFRUV5ugoAAFZ5FNWysjJNmzZNS5culb+/f6Pus337dqWmpuqxxx5TUVGRVq1apT179mjKlClnnF+8eLFiYmLUv3//Bh83PT1dlZWVrltZWZknqwAAYJ3DGGMaO7xixQqNHDlS3t7ermt1dXVyOBzy8vKS0+l0+5wkjR07VjU1NcrLy3Ndy8/P15AhQ7R//35FRES4rh8/flwRERF68sknNW3aNI8WqaqqUkhIiCorKxUcHOzRfQEAOOV8euLjyfCwYcNUUlLidi05OVk9e/bUjBkzTguq9EMofXzcv8ypuZ/2/K9//aucTqfuu+8+T44FAECL4FFUg4KCFBMT43YtMDBQYWFhruvp6ekqLy9Xdna2JGnEiBGaNGmSMjMzlZiYqIqKCqWlpal///6KjIx0e6zFixfrzjvvVFhY2PnsBABAs/Aoqo1RUVGh0tJS18fjx4/XsWPH9OKLL2r69OkKDQ3V0KFDNXv2bLf77dy5U/n5+Vq9erXtIwEAcEF49JpqS8ZrqgAAG86nJ/zuXwAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGDJeUU1IyNDDodDaWlpDc7l5OQoLi5O7du3V0REhJKTk3X48GG3maNHjyolJUURERHy9/dXr169tHLlyvM5HgAAF1STo1pYWKhFixYpNja2wbn8/HyNGzdOEyZM0LZt25SXl6fCwkJNnDjRNXPixAnddNNN2rt3r5YtW6YdO3YoKytLXbt2berxAAC44Hyacqfq6mqNGTNGWVlZeuqppxqc3bBhg6Kjo5WamipJ6tGjhyZPnqw//elPrpklS5bou+++07p169SuXTtJUvfu3ZtyNAAAmk2TnqmmpKQoKSlJCQkJ55yNj4/Xvn37tHLlShljdPDgQS1btkxJSUmumXfeeUfXXnutUlJS1KVLF8XExOiZZ55RXV3dWR/X6XSqqqrK7QYAQHPyOKq5ubkqLi5WRkZGo+bj4+OVk5OjUaNGydfXV+Hh4QoNDdWCBQtcM7t379ayZctUV1enlStXaubMmZozZ46efvrpsz5uRkaGQkJCXLeoqChPVwEAwCqPolpWVqZp06Zp6dKl8vf3b9R9tm/frtTUVD322GMqKirSqlWrtGfPHk2ZMsU1U19fr4suukiLFi1Sv379NHr0aP37v/+7MjMzz/q46enpqqysdN3Kyso8WQUAAOscxhjT2OEVK1Zo5MiR8vb2dl2rq6uTw+GQl5eXnE6n2+ckaezYsaqpqVFeXp7rWn5+voYMGaL9+/crIiJC119/vdq1a6e1a9e6Zj744APddtttcjqd8vX1PefZqqqqFBISosrKSgUHBzd2JQAA3JxPTzx6o9KwYcNUUlLidi05OVk9e/bUjBkzTguqJB0/flw+Pu5f5tTcqZ4PGjRI//mf/6n6+np5ef3w5Hnnzp2KiIhoVFABAGgJPPr2b1BQkGJiYtxugYGBCgsLU0xMjKQfvi07btw4131GjBih5cuXKzMzU7t379Znn32m1NRU9e/fX5GRkZKkBx54QIcPH9a0adO0c+dOvf/++3rmmWeUkpJicVUAAH5eTfqRmoZUVFSotLTU9fH48eN17Ngxvfjii5o+fbpCQ0M1dOhQzZ492zUTFRWl1atX68EHH1RsbKy6du2qadOmacaMGbaPBwDAz8aj11RbMl5TBQDYcD494Xf/AgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAl5xXVjIwMORwOpaWlNTiXk5OjuLg4tW/fXhEREUpOTtbhw4ddn3/11VflcDhOu9XU1JzP8QAAuKCaHNXCwkItWrRIsbGxDc7l5+dr3LhxmjBhgrZt26a8vDwVFhZq4sSJbnPBwcGqqKhwu/n7+zf1eAAAXHBNimp1dbXGjBmjrKwsdezYscHZDRs2KDo6WqmpqerRo4cGDx6syZMna9OmTW5zDodD4eHhbjcAAFqTJkU1JSVFSUlJSkhIOOdsfHy89u3bp5UrV8oYo4MHD2rZsmVKSkpym6uurlb37t3VrVs3DR8+XJs3b27wcZ1Op6qqqtxuAAA0J4+jmpubq+LiYmVkZDRqPj4+Xjk5ORo1apR8fX0VHh6u0NBQLViwwDXTs2dPvfrqq3rnnXf0xhtvyN/fX4MGDdKuXbvO+rgZGRkKCQlx3aKiojxdBQAAqxzGGNPY4bKyMl199dVavXq14uLiJEk33HCDrrzySs2bN++M99m+fbsSEhL04IMPKjExURUVFXr44Yd1zTXXaPHixWe8T319va666ipdd911mj9//hlnnE6nnE6n6+OqqipFRUWpsrJSwcHBjV0JAAA3VVVVCgkJaVJPPIrqihUrNHLkSHl7e7uu1dXVyeFwyMvLS06n0+1zkjR27FjV1NQoLy/PdS0/P19DhgzR/v37FRERccavNWnSJO3bt08ffPBBo852Pn8TAAA45Xx64uPJ8LBhw1RSUuJ2LTk5WT179tSMGTNOC6okHT9+XD4+7l/m1NzZem6M0ZYtW9SnTx9PjgcAQLPyKKpBQUGKiYlxuxYYGKiwsDDX9fT0dJWXlys7O1uSNGLECE2aNEmZmZmub/+mpaWpf//+ioyMlCTNmjVLAwcO1GWXXaaqqirNnz9fW7Zs0UsvvWRjRwAALgiPotoYFRUVKi0tdX08fvx4HTt2TC+++KKmT5+u0NBQDR06VLNnz3bNHD16VPfff78OHDigkJAQ9e3bV59++qn69+9v+3gAAPxsPHpNtSXjNVUAgA3n0xN+9y8AAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsMT6n1LTmh04WqPhCz5VVc1JBfv76L3fX6fwUP/mPhYAoJUgqv+r16Mf6PvaetfH3/5PrQY++/8U0M5LX/zx1mY8GQCgteDbvzo9qD/2fW29ej36wQU+EQCgNfrFR/XA0ZqzBvWU72vrdeBozQU6EQCgtfrFR3X4gk+tzgEAfrl+8VGtqjlpdQ4A8Mv1i49qsH/j3qvV2DkAwC/XLz6q7/3+OqtzAIBfrl98VMND/RXQruG/DQHtvPh5VQDAOf3ioypJX/zx1rOGlZ9TBQA0Fi8U/q8v/ngrv1EJAHBeiOqPhIf6a9OjNzf3MQAArRTf/gUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAkjbzG5WMMZKkqqqqZj4JAKA1O9WRU13xRJuJ6rFjxyRJUVFRzXwSAEBbcOzYMYWEhHh0H4dpSopboPr6eu3YsUO9e/dWWVmZgoODm/tI1lRVVSkqKoq9WpG2ultb3Utqu7u11b2kn283Y4yOHTumyMhIeXl59ippm3mm6uXlpa5du0qSgoOD29z/eCT2ao3a6m5tdS+p7e7WVveSfp7dPH2GegpvVAIAwBKiCgCAJW0qqn5+fnr88cfl5+fX3Eexir1an7a6W1vdS2q7u7XVvaSWuVubeaMSAADNrU09UwUAoDkRVQAALCGqAABYQlQBALDkgkX1iSeekMPhcLuFh4e7Pv/Tz526Pffcc64Zp9Op3//+9+rcubMCAwN1++23a9++fW5f58iRIxo7dqxCQkIUEhKisWPH6ujRo24zpaWlGjFihAIDA9W5c2elpqbqxIkTbjMlJSW6/vrrFRAQoK5du+rJJ5884++BPNde1dXVmjp1qrp166aAgAD16tVLmZmZbo/REvdqzG4HDx7U+PHjFRkZqfbt2+uWW27Rrl27WsVu5eXluu+++xQWFqb27dvryiuvVFFRkevzxhg98cQTioyMVEBAgG644QZt27atTey2fPlyJSYmqnPnznI4HNqyZctpj9ESd2tor9raWs2YMUN9+vRRYGCgIiMjNW7cOO3fv79V7yX98O9hz549FRgYqI4dOyohIUEbN25s8Xs1Zrcfmzx5shwOh+bNm9cqdjsrc4E8/vjj5oorrjAVFRWu26FDh1yf//H1iooKs2TJEuNwOMzXX3/tmpkyZYrp2rWrWbNmjSkuLjY33nijiYuLMydPnnTN3HLLLSYmJsasW7fOrFu3zsTExJjhw4e7Pn/y5EkTExNjbrzxRlNcXGzWrFljIiMjzdSpU10zlZWVpkuXLmb06NGmpKTEvPXWWyYoKMg8//zzHu81ceJEc+mll5qPPvrI7Nmzx7z88svG29vbrFixokXvda7d6uvrzcCBA82QIUNMQUGB+fLLL839999vLr74YlNdXd2id/vuu+9M9+7dzfjx483GjRvNnj17zNq1a81XX33lmnn22WdNUFCQeeutt0xJSYkZNWqUiYiIMFVVVa1+t+zsbDNr1iyTlZVlJJnNmzef9jgtbbdz7XX06FGTkJBg3nzzTfPll1+a9evXmwEDBph+/fq16r2MMSYnJ8esWbPGfP3112br1q1mwoQJJjg42O3/Z1raXo3d7ZS3337bxMXFmcjISPPnP/+5Rf8zO5cLGtW4uLhGz99xxx1m6NChro+PHj1q2rVrZ3Jzc13XysvLjZeXl1m1apUxxpjt27cbSWbDhg2umfXr1xtJ5ssvvzTGGLNy5Urj5eVlysvLXTNvvPGG8fPzM5WVlcYYYxYuXGhCQkJMTU2NayYjI8NERkaa+vp6j/a64oorzJNPPul27aqrrjIzZ85s0Xuda7cdO3YYSWbr1q2uaydPnjSdOnUyWVlZLXq3GTNmmMGDB59xL2N++A+G8PBw8+yzz7qu1dTUmJCQEPMf//EfrXq3H9uzZ88Zo9oSd/Nkr1MKCgqMJPPNN9+0qb0qKyuNJLN27doWu5cnu+3bt8907drVbN261XTv3t0tqi11t4Zc0NdUd+3apcjISPXo0UOjR4/W7t27zzh38OBBvf/++5owYYLrWlFRkWpra3XzzTe7rkVGRiomJkbr1q2TJK1fv14hISEaMGCAa2bgwIEKCQlxm4mJiVFkZKRrJjExUU6n0/VtifXr1+v66693+4HixMRE7d+/X3v37vVor8GDB+udd95ReXm5jDH66KOPtHPnTiUmJrb4vRrazel0SpL8/f1ds97e3vL19VV+fn6L3u2dd97R1VdfrbvvvlsXXXSR+vbtq6ysLNfn9+zZowMHDrid28/PT9dff73rTK11t8Zoibs1Za/Kyko5HA6Fhoa2mb1OnDihRYsWKSQkRHFxcS12r8buVl9fr7Fjx+rhhx/WFVdccdq+LXW3hlywqA4YMEDZ2dn68MMPlZWVpQMHDig+Pl6HDx8+bfa1115TUFCQ7rrrLte1AwcOyNfXVx07dnSb7dKliw4cOOCaueiii057vIsuushtpkuXLm6f79ixo3x9fRucOfXxqZnG7jV//nz17t1b3bp1k6+vr2655RYtXLhQgwcPbtF7nWu3nj17qnv37kpPT9eRI0d04sQJPfvsszpw4IAqKipa9G67d+9WZmamLrvsMn344YeaMmWKUlNTlZ2d7TZ/psf78ddrjbs1RkvczdO9ampq9Mgjj+h3v/ud6xett+a93nvvPXXo0EH+/v7685//rDVr1qhz584tdq/G7jZ79mz5+PgoNTX1tLO15N0acsH+lJpbb73V9dd9+vTRtddeq0svvVSvvfaaHnroIbfZJUuWaMyYMW7Pgs7GGCOHw+H6+Md/bXPG/O+L1T+9fq695s+frw0bNuidd95R9+7d9emnn+pf/uVfFBERoYSEhBa7V2N2e+uttzRhwgR16tRJ3t7eSkhIcLtPS92tvr5eV199tZ555hlJUt++fbVt2zZlZmZq3LhxDT7emc7RGndriubczZO9amtrNXr0aNXX12vhwoVtYq8bb7xRW7Zs0bfffqusrCzdc8892rhx4xlj0hL2asxuRUVFeuGFF1RcXHzOf69a2m4NabYfqQkMDFSfPn1Oe7fo3//+d+3YsUMTJ050ux4eHq4TJ07oyJEjbtcPHTrk+q+J8PBwHTx48LSv9Y9//MNt5qf/1XHkyBHV1tY2OHPo0CFJpz97aWiv77//Xn/4wx80d+5cjRgxQrGxsZo6dapGjRql559/vlXt9dPdJKlfv37asmWLjh49qoqKCq1atUqHDx9Wjx49WvRuERER6t27t9u1Xr16qbS01PVY0un/dfrTc7fG3RqjJe7W2L1qa2t1zz33aM+ePVqzZo3bHwfWmvcKDAzUr3/9aw0cOFCLFy+Wj4+PFi9e3GL3asxuf//733Xo0CFdfPHF8vHxkY+Pj7755htNnz5d0dHRLXq3hjRbVJ1Op7744gtFRES4XV+8eLH69evner3glH79+qldu3Zas2aN61pFRYW2bt2q+Ph4SdK1116ryspKFRQUuGY2btyoyspKt5mtW7e6vkUpSatXr5afn5/69evnmvn000/d3m69evVqRUZGuv5hN2av2tpa1dbWnvaH3Hp7e6u+vr5V7fXT3X4sJCREv/rVr7Rr1y5t2rRJd9xxR4vebdCgQdqxY4fbtZ07d6p79+6SpB49eig8PNzt3CdOnNAnn3ziOlNr3a0xWuJujdnrVFB37dqltWvXKiwsrE3sdSbGGNf7GlriXo3ZbezYsfr888+1ZcsW1y0yMlIPP/ywPvzwwxa9W4Ma/Zam8zR9+nTz8ccfm927d5sNGzaY4cOHm6CgILN3717XTGVlpWnfvr3JzMw842NMmTLFdOvWzaxdu9YUFxeboUOHnvGt1bGxsWb9+vVm/fr1pk+fPmd8a/WwYcNMcXGxWbt2renWrZvbW6uPHj1qunTpYu69915TUlJili9fboKDg8/41upz7XX99debK664wnz00Udm9+7d5pVXXjH+/v5m4cKFLXqvxuz217/+1Xz00Ufm66+/NitWrDDdu3c3d911V4v/Z1ZQUGB8fHzM008/bXbt2mVycnJM+/btzdKlS10zzz77rAkJCTHLly83JSUl5t577z3jj9S0xt0OHz5sNm/ebN5//30jyeTm5prNmzebioqKFrvbufaqra01t99+u+nWrZvZsmWL24+BOZ3OVrtXdXW1SU9PN+vXrzd79+41RUVFZsKECcbPz8/tnfctba/G7HYmP333b0vdrSEXLKqnfs6vXbt2JjIy0tx1111m27ZtbjMvv/yyCQgIMEePHj3jY3z//fdm6tSpplOnTiYgIMAMHz7clJaWus0cPnzYjBkzxgQFBZmgoCAzZswYc+TIEbeZb775xiQlJZmAgADTqVMnM3XqVLe3URtjzOeff26GDBli/Pz8THh4uHniiSfO+Lbqc+1VUVFhxo8fbyIjI42/v7+5/PLLzZw5c9weqyXu1ZjdXnjhBdOtWzfTrl07c/HFF5uZM2e6/R9YS97t3XffNTExMcbPz8/07NnTLFq0yO3z9fX15vHHHzfh4eHGz8/PXHfddaakpKRN7PbKK68YSafdHn/88Ra9W0N7nfrxoDPdPvroo1a71/fff29GjhxpIiMjja+vr4mIiDC33367KSgocHuMlrjXuXY7kzNFtaXudjb80W8AAFjC7/4FAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJb8f4bXK/iZP7/QAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -48,9 +628,9 @@ " date_less_equal=datetime(2020, 1, 1),\n", " date_greater_equal=datetime(2019, 12, 1),\n", ")\n", + "df.plot()\n", "\n", - "df\n", - "df.plot()" + "df" ] }, { @@ -62,22 +642,399 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
depthsite_idpit_idbottom_depthcommentssample_asample_bsample_cvalueflags...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
084.01C5COGM1C5_20200212NoneNoneNoneNoneNone45.6None...2020-02-122024-08-13 17:57:56.560918+00:00None2184545https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
179.01C5COGM1C5_20200212NoneNoneNoneNoneNone38.2None...2020-02-122024-08-13 17:57:56.560918+00:00None2184546https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
274.01C5COGM1C5_20200212NoneNoneNoneNoneNone24.5None...2020-02-122024-08-13 17:57:56.560918+00:00None2184547https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
369.01C5COGM1C5_20200212NoneNoneNoneNoneNone23.5None...2020-02-122024-08-13 17:57:56.560918+00:00None2184548https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
464.01C5COGM1C5_20200212NoneNoneNoneNoneNone22.4None...2020-02-122024-08-13 17:57:56.560918+00:00None2184549https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
..................................................................
15528.01C1COGM1C1_20200131NoneNoneNoneNoneNone13.1None...2020-01-312024-08-13 17:58:01.182985+00:00None2186850https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneJuha Lemmetyinen & Ioanna Merkouriadi
15623.01C1COGM1C1_20200131NoneNoneNoneNoneNone10.1None...2020-01-312024-08-13 17:58:01.182985+00:00None2186851https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneJuha Lemmetyinen & Ioanna Merkouriadi
15718.01C1COGM1C1_20200131NoneNoneNoneNoneNone10.6None...2020-01-312024-08-13 17:58:01.182985+00:00None2186852https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneJuha Lemmetyinen & Ioanna Merkouriadi
15813.01C1COGM1C1_20200131NoneNoneNoneNoneNone10.5None...2020-01-312024-08-13 17:58:01.182985+00:00None2186853https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneJuha Lemmetyinen & Ioanna Merkouriadi
1598.01C1COGM1C1_20200131NoneNoneNoneNoneNone13.2None...2020-01-312024-08-13 17:58:01.182985+00:00None2186854https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneJuha Lemmetyinen & Ioanna Merkouriadi
\n", + "

160 rows × 29 columns

\n", + "
" + ], "text/plain": [ - "" + " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", + "0 84.0 1C5 COGM1C5_20200212 None None None None \n", + "1 79.0 1C5 COGM1C5_20200212 None None None None \n", + "2 74.0 1C5 COGM1C5_20200212 None None None None \n", + "3 69.0 1C5 COGM1C5_20200212 None None None None \n", + "4 64.0 1C5 COGM1C5_20200212 None None None None \n", + ".. ... ... ... ... ... ... ... \n", + "155 28.0 1C1 COGM1C1_20200131 None None None None \n", + "156 23.0 1C1 COGM1C1_20200131 None None None None \n", + "157 18.0 1C1 COGM1C1_20200131 None None None None \n", + "158 13.0 1C1 COGM1C1_20200131 None None None None \n", + "159 8.0 1C1 COGM1C1_20200131 None None None None \n", + "\n", + " sample_c value flags ... date time_created \\\n", + "0 None 45.6 None ... 2020-02-12 2024-08-13 17:57:56.560918+00:00 \n", + "1 None 38.2 None ... 2020-02-12 2024-08-13 17:57:56.560918+00:00 \n", + "2 None 24.5 None ... 2020-02-12 2024-08-13 17:57:56.560918+00:00 \n", + "3 None 23.5 None ... 2020-02-12 2024-08-13 17:57:56.560918+00:00 \n", + "4 None 22.4 None ... 2020-02-12 2024-08-13 17:57:56.560918+00:00 \n", + ".. ... ... ... ... ... ... \n", + "155 None 13.1 None ... 2020-01-31 2024-08-13 17:58:01.182985+00:00 \n", + "156 None 10.1 None ... 2020-01-31 2024-08-13 17:58:01.182985+00:00 \n", + "157 None 10.6 None ... 2020-01-31 2024-08-13 17:58:01.182985+00:00 \n", + "158 None 10.5 None ... 2020-01-31 2024-08-13 17:58:01.182985+00:00 \n", + "159 None 13.2 None ... 2020-01-31 2024-08-13 17:58:01.182985+00:00 \n", + "\n", + " time_updated id doi \\\n", + "0 None 2184545 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "1 None 2184546 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "2 None 2184547 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "3 None 2184548 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "4 None 2184549 https://doi.org/10.5067/SNMM6NGGKWIT \n", + ".. ... ... ... \n", + "155 None 2186850 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "156 None 2186851 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "157 None 2186852 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "158 None 2186853 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "159 None 2186854 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "\n", + " date_accessed instrument type units \\\n", + "0 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", + "1 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", + "2 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", + "3 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", + "4 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", + ".. ... ... ... ... \n", + "155 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", + "156 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", + "157 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", + "158 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", + "159 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", + "\n", + " observers \n", + "0 Kate Hale \n", + "1 Kate Hale \n", + "2 Kate Hale \n", + "3 Kate Hale \n", + "4 Kate Hale \n", + ".. ... \n", + "155 Juha Lemmetyinen & Ioanna Merkouriadi \n", + "156 Juha Lemmetyinen & Ioanna Merkouriadi \n", + "157 Juha Lemmetyinen & Ioanna Merkouriadi \n", + "158 Juha Lemmetyinen & Ioanna Merkouriadi \n", + "159 Juha Lemmetyinen & Ioanna Merkouriadi \n", + "\n", + "[160 rows x 29 columns]" ] }, - "execution_count": 6, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAAGsCAYAAADAPO4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtN0lEQVR4nO3deXhUVZ7G8TchC2GpCsGskAAuLEGQFgZSYrtG0hgVNYzLIB2exgUNLkRQaRG61QYGZ0TpJiLTLO7Y6GArCnYARYWAkAaFgJHVBEMFFZMClRDImT/s3KEkQIoESE6+n+e5z2Pd87vnnnso8+beqnsTZIwxAgAA1gg+0wMAAAD1i3AHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMk0y3CsqKtSrVy8FBQVp/fr1x6296667dM455ygiIkLR0dEaNGiQvvjiC6f9s88+06233qrExERFRESoW7duevbZZ/36GDZsmIKCgo5aunfvHvDY586dq549e6p58+aKiYlRVlZWwH0AAOxmXbhfdtllmjt37nFrHnroISUkJNSqv969e2vOnDnavHmz3n//fRljNGDAAB0+fFiSlJ+fr5iYGL388ssqKCjQo48+qrFjx+ovf/mL08ezzz6r3bt3O0txcbGioqL07//+7wEd29NPP61HH31UjzzyiAoKCrRkyRKlpaUF1AcAoAkwlrn00kvNnDlzjtn+3nvvma5du5qCggIjyaxbty6g/j/77DMjyWzduvWYNffcc4+5/PLLj9m+YMECExQUZHbu3OmsO3z4sJk4caLp2LGjad68uenZs6eZP3++0753714TERFhlixZEtB4AQBNj3Vn7sdTWlqqO+64Qy+99JJatGgR8PY//PCD5syZo06dOikxMfGYdeXl5YqKijpm+6xZs5SamqoOHTo46yZNmqQXX3xRM2bMUEFBgUaNGqXbbrtNy5cvlyTl5uaqqqpKX3/9tbp166b27dvrpptuUnFxccDHAQCwW5MJd2OMhg0bphEjRqhPnz4BbZuTk6NWrVqpVatWWrRokXJzcxUWFlZj7cqVK/X666/rzjvvrLG9pKREixYt0u233+6sq6io0MSJEzV79mylpaXp7LPP1rBhw3Tbbbfp+eeflyRt375dVVVVmjhxop555hm98cYb2rt3r6666iodPHgwoOMBAFjuTF86qKs//elPpmXLls4SHBxswsPD/dZ99dVX5tlnnzX9+/c3hw4dMsYYs2PHjlpfli8rKzNffvmlWb58ubn22mvNhRdeaH766aej6jZs2GDOOuss88QTTxyzr4kTJ5q2bduaiooKZ93GjRuNJL8xt2zZ0oSGhpq+ffs6xynJvP/++852e/bsMcHBwWbx4sW1nS4AQBMQcoZ/t6izESNG6KabbnJeDxkyRBkZGbrxxhuddQkJCVq2bJny8vIUHh7ut32fPn00ZMgQvfDCC8fch9vtltvt1nnnnaeUlBS1adNGCxYs0K233urUbNq0SVdeeaXuvPNOjRs3rsZ+jDGaPXu2hg4d6nfmv3//fknSu+++q3bt2vltUz3e+Ph4SVJycrLTFh0drbPOOktFRUXHHDsAoOlp9OEeFRXl9/l2RESEYmJidO655/rVTZs2TU8++aTzuqSkRGlpaXr99dfVr1+/Wu/PGCNjjCoqKpx1BQUFuuKKK5SZmak//elPx9x2+fLl2rp1q4YPH+63Pjk5WeHh4SoqKtKll15a47b9+/eXJBUWFqp9+/aSpL179+rbb7/1++weAIBGH+61lZSU5Pe6VatWkqRzzjnHCcuvv/5aV155pV588UX17dtX27dv1+uvv64BAwYoOjpau3bt0uTJkxUREaGrr75akrRx40ZdccUVSktLU3Z2trxerySpWbNmio6O9tvnrFmz1K9fP51//vl+61u3bq3Ro0dr1KhRqqqq0sUXX6zy8nKtWLFCLpdLmZmZ6ty5swYNGqT7779fM2fOlMvl0tixY9W1a1ddfvnlp2TOAACNU5MJ99qorKxUYWGhfvzxR0lS8+bN9fHHH+uZZ57R999/r9jYWF1yySVauXKlYmJiJElvvPGGvvnmG7388st6+eWXnb46dOignTt3Oq/Ly8v15ptvHvWAm2pPPPGEoqOjNWnSJG3fvl2RkZG68MIL9fvf/96pefHFFzVq1Cilp6crODhYl156qRYvXqzQ0NBTMBsAgMYqyBhjzvQgAABA/Qn4Vrivv/5at912m9q2bauIiAj16NFDa9euddqNMRo/frzi4+MVERGh1NRUbdmyxa+PvXv3asiQIXK5XIqMjNTw4cOdL5UBAIC6CSjcv//+e/Xv31+hoaFatGiRNm3apP/+7/9WmzZtnJopU6Zo2rRpmjFjhlavXq2WLVsqLS1NBw4ccGqGDBmigoIC5ebmauHChfroo4+OeV84AAAITECX5R955BGtWLFCH3/8cY3txhglJCTowQcf1OjRoyX9/FlzbGys5s6dq1tuuUWbN29WcnKy1qxZ4zxMZvHixbr66qu1a9euWj3zvaqqSiUlJWrdurWCgoJqO3wAABotY4z27dunhIQEBQef4Nw8kJviu3XrZh544AEzePBgEx0dbXr16mVmzpzptG/btq3GB8Nccskl5r777jPGGDNr1iwTGRnp115ZWWmaNWtm/vd//7dW4yguLjaSWFhYWFhYmtxSXFx8wpwM6Nvy27dv13PPPafs7Gz9/ve/15o1a3TfffcpLCxMmZmZzm1gsbGxftvFxsY6bV6v1/mmebWQkBBFRUU5Nb9UUVHhd1+5+dfFhuLiYrlcrkAOAQCARsnn8ykxMVGtW7c+YW1A4V5VVaU+ffpo4sSJkqRf/epX2rhxo2bMmKHMzMyTG20tTJo0SX/84x+PWu9yuQh3AECTUpuPowP6Ql18fLzf408lqVu3bs7jT+Pi4iT9/NfXjlRaWuq0xcXFac+ePX7thw4d0t69e52aXxo7dqzKy8udhb+EBgDAsQUU7v3791dhYaHfui+//NJ5/GmnTp0UFxenpUuXOu0+n0+rV6+Wx+ORJHk8HpWVlSk/P9+pWbZsmaqqqo75GNjw8HDnLJ2zdQAAji+gy/KjRo3SRRddpIkTJ+qmm27Sp59+qpkzZ2rmzJmSfr5U8MADD+jJJ5/Ueeedp06dOumxxx5TQkKCrr/+ekk/n+n/5je/0R133KEZM2aosrJSI0eO1C233FKrb8oDAIDjC/gJdQsXLtTYsWO1ZcsWderUSdnZ2brjjjucdmOMJkyYoJkzZ6qsrEwXX3yxcnJy1LlzZ6dm7969GjlypN555x0FBwcrIyND06ZNc573fiI+n09ut1vl5eWcxQMAmoRAsq9RPn6WcAcANDWBZF/Aj58FAAANG+EOAIBlCHcAACzT5P+e+w0T39U63/+//pVLWvD79DM3IAAA6qhJn7l3fMQ/2CVpne/n9QAANFZNNtxPFOAEPACgsWqS4X7DxNoFd23rAABoSJpkuP/yUnxd6wAAaEiaZLgDAGAzwh0AAMs0yXD/VS2fWFvbOgAAGpImGe61vY+d+90BAI1Rkwx3Sdo5+fjBfaJ2AAAaqiYb7tLPAf7LS++/chHsAIDGrck/fpZL7wAA2zTpM3cAAGxEuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUCCvc//OEPCgoK8lu6du3qtB84cEBZWVlq27atWrVqpYyMDJWWlvr1UVRUpPT0dLVo0UIxMTEaM2aMDh06VD9HAwAAFBLoBt27d9eSJUv+v4OQ/+9i1KhRevfddzV//ny53W6NHDlSN954o1asWCFJOnz4sNLT0xUXF6eVK1dq9+7d+u1vf6vQ0FBNnDixHg4HAAAEHO4hISGKi4s7an15eblmzZqlV199VVdccYUkac6cOerWrZtWrVqllJQU/eMf/9CmTZu0ZMkSxcbGqlevXnriiSf08MMP6w9/+IPCwsLqfkQAADRxAX/mvmXLFiUkJOjss8/WkCFDVFRUJEnKz89XZWWlUlNTndquXbsqKSlJeXl5kqS8vDz16NFDsbGxTk1aWpp8Pp8KCgqOuc+Kigr5fD6/BQAA1CygcO/Xr5/mzp2rxYsX67nnntOOHTv061//Wvv27ZPX61VYWJgiIyP9tomNjZXX65Ukeb1ev2Cvbq9uO5ZJkybJ7XY7S2JiYiDDBgCgSQnosvzAgQOd/+7Zs6f69eunDh066G9/+5siIiLqfXDVxo4dq+zsbOe1z+cj4AEAOIY63QoXGRmpzp07a+vWrYqLi9PBgwdVVlbmV1NaWup8Rh8XF3fUt+erX9f0OX618PBwuVwuvwUAANSsTuG+f/9+bdu2TfHx8erdu7dCQ0O1dOlSp72wsFBFRUXyeDySJI/How0bNmjPnj1OTW5urlwul5KTk+syFAAA8C8BXZYfPXq0rr32WnXo0EElJSWaMGGCmjVrpltvvVVut1vDhw9Xdna2oqKi5HK5dO+998rj8SglJUWSNGDAACUnJ2vo0KGaMmWKvF6vxo0bp6ysLIWHh5+SAwQAoKkJKNx37dqlW2+9Vd99952io6N18cUXa9WqVYqOjpYkTZ06VcHBwcrIyFBFRYXS0tKUk5PjbN+sWTMtXLhQd999tzwej1q2bKnMzEw9/vjj9XtUAAA0YUHGGHOmBxEon88nt9ut8vJyPn8HADQJgWQfz5YHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGCZOoX75MmTFRQUpAceeMBZd+DAAWVlZalt27Zq1aqVMjIyVFpa6rddUVGR0tPT1aJFC8XExGjMmDE6dOhQXYYCAAD+5aTDfc2aNXr++efVs2dPv/WjRo3SO++8o/nz52v58uUqKSnRjTfe6LQfPnxY6enpOnjwoFauXKkXXnhBc+fO1fjx40/+KAAAgOOkwn3//v0aMmSI/ud//kdt2rRx1peXl2vWrFl6+umndcUVV6h3796aM2eOVq5cqVWrVkmS/vGPf2jTpk16+eWX1atXLw0cOFBPPPGEpk+froMHD9bPUQEA0ISdVLhnZWUpPT1dqampfuvz8/NVWVnpt75r165KSkpSXl6eJCkvL089evRQbGysU5OWliafz6eCgoIa91dRUSGfz+e3AACAmoUEusG8efP0z3/+U2vWrDmqzev1KiwsTJGRkX7rY2Nj5fV6nZojg726vbqtJpMmTdIf//jHQIcKAECTFNCZe3Fxse6//3698sorat68+aka01HGjh2r8vJyZykuLj5t+wYAoLEJKNzz8/O1Z88eXXjhhQoJCVFISIiWL1+uadOmKSQkRLGxsTp48KDKysr8tistLVVcXJwkKS4u7qhvz1e/rq75pfDwcLlcLr8FAADULKBwv/LKK7VhwwatX7/eWfr06aMhQ4Y4/x0aGqqlS5c62xQWFqqoqEgej0eS5PF4tGHDBu3Zs8epyc3NlcvlUnJycj0dFgAATVdAn7m3bt1a559/vt+6li1bqm3bts764cOHKzs7W1FRUXK5XLr33nvl8XiUkpIiSRowYICSk5M1dOhQTZkyRV6vV+PGjVNWVpbCw8Pr6bAAAGi6Av5C3YlMnTpVwcHBysjIUEVFhdLS0pSTk+O0N2vWTAsXLtTdd98tj8ejli1bKjMzU48//nh9DwUAgCYpyBhjzvQgAuXz+eR2u1VeXs7n7wCAJiGQ7OPZ8gAAWKbeL8sDqD9vryrSfW9tcF5Pu76HrktJOoMjAtAYcFkeaKA6PvLuMdt2Tk4/jSMB0BBwWR5o5I4X7LVpB9C0Ee5AA/P2qqJ6rQPQ9BDuQANz5Gfs9VEHoOkh3AEAsAzhDgCAZQh3oIGZdn2Peq0D0PQQ7kADU9v72LnfHcCxEO5AA3Si+9i5zx3A8RDuQAO1c3L6UZfep13fg2AHcEI8fhZowK5LSeLyO4CAceYOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALBNypgcAAI3FhqJyXZfziYykIElv33OxeiS5z/SwgKMQ7gBQCx0fedfvtZF0bc4nkqSdk9PPwIiAY+OyPACcwC+DPdB24HQj3AHgODYUlddrHXA6EO4AcBzX/evSe33VAacD4Q4Ax2HquQ44HQh3ADiOoHquA04Hwh0AjuPtey6u1zrgdCDcAeA4ansfO/e7oyEh3AHgBE50Hzv3uaOh4SE2AFALOyen84Q6NBqEOwDUUo8kt3Zwlo5GgMvyAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWCSjcn3vuOfXs2VMul0sul0sej0eLFi1y2g8cOKCsrCy1bdtWrVq1UkZGhkpLS/36KCoqUnp6ulq0aKGYmBiNGTNGhw4dqp+jAQAAgYV7+/btNXnyZOXn52vt2rW64oorNGjQIBUUFEiSRo0apXfeeUfz58/X8uXLVVJSohtvvNHZ/vDhw0pPT9fBgwe1cuVKvfDCC5o7d67Gjx9fv0cFAEATFmSMMXXpICoqSk899ZQGDx6s6Ohovfrqqxo8eLAk6YsvvlC3bt2Ul5enlJQULVq0SNdcc41KSkoUGxsrSZoxY4YefvhhffPNNwoLC6vVPn0+n9xut8rLy+VyueoyfAAAGoVAsu+kP3M/fPiw5s2bpx9++EEej0f5+fmqrKxUamqqU9O1a1clJSUpLy9PkpSXl6cePXo4wS5JaWlp8vl8ztl/TSoqKuTz+fwWAABQs4DDfcOGDWrVqpXCw8M1YsQILViwQMnJyfJ6vQoLC1NkZKRffWxsrLxeryTJ6/X6BXt1e3XbsUyaNElut9tZEhMTAx02AABNRsDh3qVLF61fv16rV6/W3XffrczMTG3atOlUjM0xduxYlZeXO0txcfEp3R8AAI1ZSKAbhIWF6dxzz5Uk9e7dW2vWrNGzzz6rm2++WQcPHlRZWZnf2Xtpaani4uIkSXFxcfr000/9+qv+Nn11TU3Cw8MVHh4e6FABAGiS6nyfe1VVlSoqKtS7d2+FhoZq6dKlTlthYaGKiork8XgkSR6PRxs2bNCePXucmtzcXLlcLiUnJ9d1KAAAQAGeuY8dO1YDBw5UUlKS9u3bp1dffVUffvih3n//fbndbg0fPlzZ2dmKioqSy+XSvffeK4/Ho5SUFEnSgAEDlJycrKFDh2rKlCnyer0aN26csrKyODMHAKCeBBTue/bs0W9/+1vt3r1bbrdbPXv21Pvvv6+rrrpKkjR16lQFBwcrIyNDFRUVSktLU05OjrN9s2bNtHDhQt19993yeDxq2bKlMjMz9fjjj9fvUQEA0ITV+T73M4H73AEATc1puc8dAAA0TIQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgmYDCfdKkSfq3f/s3tW7dWjExMbr++utVWFjoV3PgwAFlZWWpbdu2atWqlTIyMlRaWupXU1RUpPT0dLVo0UIxMTEaM2aMDh06VPejAQAAgYX78uXLlZWVpVWrVik3N1eVlZUaMGCAfvjhB6dm1KhReueddzR//nwtX75cJSUluvHGG532w4cPKz09XQcPHtTKlSv1wgsvaO7cuRo/fnz9HRUAAE1YkDHGnOzG33zzjWJiYrR8+XJdcsklKi8vV3R0tF599VUNHjxYkvTFF1+oW7duysvLU0pKihYtWqRrrrlGJSUlio2NlSTNmDFDDz/8sL755huFhYWdcL8+n09ut1vl5eVyuVwnO3wAABqNQLKvTp+5l5eXS5KioqIkSfn5+aqsrFRqaqpT07VrVyUlJSkvL0+SlJeXpx49ejjBLklpaWny+XwqKCiocT8VFRXy+Xx+CwAAqNlJh3tVVZUeeOAB9e/fX+eff74kyev1KiwsTJGRkX61sbGx8nq9Ts2RwV7dXt1Wk0mTJsntdjtLYmLiyQ4bAADrnXS4Z2VlaePGjZo3b159jqdGY8eOVXl5ubMUFxef8n0CANBYhZzMRiNHjtTChQv10UcfqX379s76uLg4HTx4UGVlZX5n76WlpYqLi3NqPv30U7/+qr9NX13zS+Hh4QoPDz+ZoQIA0OQEdOZujNHIkSO1YMECLVu2TJ06dfJr7927t0JDQ7V06VJnXWFhoYqKiuTxeCRJHo9HGzZs0J49e5ya3NxcuVwuJScn1+VYAACAAjxzz8rK0quvvqq///3vat26tfMZudvtVkREhNxut4YPH67s7GxFRUXJ5XLp3nvvlcfjUUpKiiRpwIABSk5O1tChQzVlyhR5vV6NGzdOWVlZnJ0DAFAPAroVLigoqMb1c+bM0bBhwyT9/BCbBx98UK+99poqKiqUlpamnJwcv0vuX331le6++259+OGHatmypTIzMzV58mSFhNTudw1uhQMANDWBZF+d7nM/Uwh3AEBTc9rucwcAAA0P4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFgm4HD/6KOPdO211yohIUFBQUF66623/NqNMRo/frzi4+MVERGh1NRUbdmyxa9m7969GjJkiFwulyIjIzV8+HDt37+/TgcCAAB+FnC4//DDD7rgggs0ffr0GtunTJmiadOmacaMGVq9erVatmyptLQ0HThwwKkZMmSICgoKlJubq4ULF+qjjz7SnXfeefJHAQAAHEHGGHPSGwcFacGCBbr++usl/XzWnpCQoAcffFCjR4+WJJWXlys2NlZz587VLbfcos2bNys5OVlr1qxRnz59JEmLFy/W1VdfrV27dikhIeGE+/X5fHK73SovL5fL5TrZ4QMA0GgEkn31+pn7jh075PV6lZqa6qxzu93q16+f8vLyJEl5eXmKjIx0gl2SUlNTFRwcrNWrV9fYb0VFhXw+n98CAABqVq/h7vV6JUmxsbF+62NjY502r9ermJgYv/aQkBBFRUU5Nb80adIkud1uZ0lMTKzPYQMAYJVG8W35sWPHqry83FmKi4vP9JAAAGiw6jXc4+LiJEmlpaV+60tLS522uLg47dmzx6/90KFD2rt3r1PzS+Hh4XK5XH4LAACoWb2Ge6dOnRQXF6elS5c663w+n1avXi2PxyNJ8ng8KisrU35+vlOzbNkyVVVVqV+/fvU5HAAAmqSQQDfYv3+/tm7d6rzesWOH1q9fr6ioKCUlJemBBx7Qk08+qfPOO0+dOnXSY489poSEBOcb9d26ddNvfvMb3XHHHZoxY4YqKys1cuRI3XLLLbX6pjwAADi+gMN97dq1uvzyy53X2dnZkqTMzEzNnTtXDz30kH744QfdeeedKisr08UXX6zFixerefPmzjavvPKKRo4cqSuvvFLBwcHKyMjQtGnT6uFwAABAne5zP1O4zx0A0NScsfvcAQDAmUe4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyAf/JVwAAcHyrvvxOt8xe5bye97sUpXRue9r2T7gDAFCPOj7y7lHrqoN+5+T00zIGLssDAFBPagr2QNrrC+EOAEA9WPXld/VaVxeEOwAA9eDIz9jro64uCHcAACxDuAMAYBnCHQCAejDvdyn1WlcXhDsAAPWgtvexn4773Ql3AADqyYnuYz9d97nzEBsAAOrRzsnpPKEOAADbpHRue9rO0mvCZXkAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAs0yifUGeMkST5fL4zPBIAAE6P6syrzsDjaZThvm/fPklSYmLiGR4JAACn1759++R2u49bE2Rq8ytAA1NVVaWSkhK1bt1aQUFBAW3r8/mUmJio4uJiuVyuUzTCho05YA6qMQ/MgcQcSI1jDowx2rdvnxISEhQcfPxP1RvlmXtwcLDat29fpz5cLleD/Qc8XZgD5qAa88AcSMyB1PDn4ERn7NX4Qh0AAJYh3AEAsEyTC/fw8HBNmDBB4eHhZ3ooZwxzwBxUYx6YA4k5kOybg0b5hToAAHBsTe7MHQAA2xHuAABYhnAHAMAyhDsAAJZpcOHesWNHBQUFHbVkZWX51RljNHDgQAUFBemtt97yaysqKlJ6erpatGihmJgYjRkzRocOHXLaP/zwwxr34fV6/fqZPn26OnbsqObNm6tfv3769NNP/doPHDigrKwstW3bVq1atVJGRoZKS0sbxRxIUkVFhR599FF16NBB4eHh6tixo2bPnu1XM3/+fHXt2lXNmzdXjx499N577x01hvHjxys+Pl4RERFKTU3Vli1bGsUcDBs2rMZ9dO/e3a8f298Hr7zyii644AK1aNFC8fHx+t3vfqfvvvvOr8bm94H0879xt27dFBERoS5duujFF188aixnag7qax7uu+8+9e7dW+Hh4erVq1eN+/n888/161//Ws2bN1diYqKmTJlyVE1jfi+caA4OHDigYcOGqUePHgoJCdH1119f41g+/PBDXXjhhQoPD9e5556ruXPnHlVzop8bp5xpYPbs2WN2797tLLm5uUaS+eCDD/zqnn76aTNw4EAjySxYsMBZf+jQIXP++eeb1NRUs27dOvPee++Zs846y4wdO9ap+eCDD4wkU1hY6Levw4cPOzXz5s0zYWFhZvbs2aagoMDccccdJjIy0pSWljo1I0aMMImJiWbp0qVm7dq1JiUlxVx00UWNYg6MMea6664z/fr1M7m5uWbHjh1m5cqV5pNPPnHaV6xYYZo1a2amTJliNm3aZMaNG2dCQ0PNhg0bnJrJkycbt9tt3nrrLfPZZ5+Z6667znTq1Mn89NNPDX4OysrK/PZRXFxsoqKizIQJE5wa298Hn3zyiQkODjbPPvus2b59u/n4449N9+7dzQ033ODU2P4+yMnJMa1btzbz5s0z27ZtM6+99ppp1aqVefvttxvEHNTHPBhjzL333mv+8pe/mKFDh5oLLrjgqH2Ul5eb2NhYM2TIELNx40bz2muvmYiICPP88883iHk4HXOwf/9+M2LECDNz5kyTlpZmBg0adFTN9u3bTYsWLUx2drbZtGmT+fOf/2yaNWtmFi9e7NTU5ufGqdbgwv2X7r//fnPOOeeYqqoqZ926detMu3btzO7du4/6B3zvvfdMcHCw8Xq9zrrnnnvOuFwuU1FRYYz5/3D//vvvj7nfvn37mqysLOf14cOHTUJCgpk0aZIx5udgCA0NNfPnz3dqNm/ebCSZvLy8uh62n1MxB4sWLTJut9t89913x9zvTTfdZNLT0/3W9evXz9x1113GGGOqqqpMXFyceeqpp5z2srIyEx4ebl577bU6HfMvnYo5+KUFCxaYoKAgs3PnTmed7e+Dp556ypx99tl++5k2bZpp166d89r294HH4zGjR4/22092drbp37+/87ohzYExgc/DkSZMmFBjsOXk5Jg2bdr4/f/x8MMPmy5dujivG9I8nIo5OFJmZmaN4f7QQw+Z7t27+627+eabTVpamvP6RD83TocGd1n+SAcPHtTLL7+s3/3ud84fiPnxxx/1H//xH5o+fbri4uKO2iYvL089evRQbGyssy4tLU0+n08FBQV+tb169VJ8fLyuuuoqrVixwm+/+fn5Sk1NddYFBwcrNTVVeXl5kqT8/HxVVlb61XTt2lVJSUlOTX04VXPw9ttvq0+fPpoyZYratWunzp07a/To0frpp5/8+jny+Kr7qT6+HTt2yOv1+tW43W7169evUczBL82aNUupqanq0KGDs1/b3wcej0fFxcV67733ZIxRaWmp3njjDV199dV+/dj8PqioqFDz5s39touIiNCnn36qyspKp5+GMAfSyc1DbeTl5emSSy5RWFiYsy4tLU2FhYX6/vvvnZqGMA+nag5q40RzUJufG6dDgw73t956S2VlZRo2bJizbtSoUbrooos0aNCgGrfxer1+/yNLcl5Xf6YeHx+vGTNm6M0339Sbb76pxMREXXbZZfrnP/8pSfr22291+PDhGvup7sPr9SosLEyRkZHHrKkPp2oOtm/frk8++UQbN27UggUL9Mwzz+iNN97QPffcc8J+jpyDI/uuqaY+nKo5OFJJSYkWLVqk22+/3VnXFN4H/fv31yuvvKKbb75ZYWFhiouLk9vt1vTp00/Yjy3vg7S0NP31r39Vfn6+jDFau3at/vrXv6qyslLffvvtcfs53XMgndw81EZt5qqhzMOpmoPaONYc+Hw+/fTTT7X6uXE6NOi/Cjdr1iwNHDhQCQkJkn4+21y2bJnWrVtXp367dOmiLl26OK8vuugibdu2TVOnTtVLL71Up77r26mag6qqKgUFBemVV15x/srQ008/rcGDBysnJ0cRERF1Hnt9OVVzcKQXXnhBkZGRx/wCzZl2quZg06ZNuv/++zV+/HilpaVp9+7dGjNmjEaMGKFZs2bVx9Drzamag8cee0xer1cpKSkyxig2NlaZmZmaMmXKCf+s5plwOv5/aOiYgxNreO/cf/nqq6+0ZMkSvzOpZcuWadu2bYqMjFRISIhCQn7+3SQjI0OXXXaZJCkuLu6obypXvz7epZq+fftq69atkqSzzjpLzZo1q7Gf6j7i4uJ08OBBlZWVHbOmrk7lHMTHx6tdu3Z+fz6wW7duMsZo165dx+3nyDk4su+aaurqdLwPjDGaPXu2hg4d6ndJsim8DyZNmqT+/ftrzJgx6tmzp9LS0pSTk6PZs2dr9+7dx+3HlvdBRESEZs+erR9//FE7d+5UUVGROnbsqNatWys6Ovq4/ZzOOZBOfh5qozZz1RDm4VTOQW0caw5cLpciIiJq9XPjdGiw4T5nzhzFxMQoPT3dWffII4/o888/1/r1651FkqZOnao5c+ZI+vkzxA0bNmjPnj3Odrm5uXK5XEpOTj7m/tavX6/4+HhJUlhYmHr37q2lS5c67VVVVVq6dKk8Ho8kqXfv3goNDfWrKSwsVFFRkVNTV6dyDvr376+SkhLt37/fqfnyyy8VHBys9u3bO/0ceXzV/VQfX6dOnRQXF+dX4/P5tHr16kYxB9WWL1+urVu3avjw4X7rm8L74Mcffzzq7LRZs2aSfv6lp7qfpvA+CA0NVfv27dWsWTPNmzdP11xzjTM3DWEO6jIPteHxePTRRx853zOQfj7GLl26qE2bNk7NmZ6HUzkHtXGiOajNz43T4rR9dS8Ahw8fNklJSebhhx8+Ya2OcevLgAEDzPr1683ixYtNdHS0360vU6dONW+99ZbZsmWL2bBhg7n//vtNcHCwWbJkiVMzb948Ex4ebubOnWs2bdpk7rzzThMZGen3rdsRI0aYpKQks2zZMrN27Vrj8XiMx+NpFHOwb98+0759ezN48GBTUFBgli9fbs477zxz++23OzUrVqwwISEh5r/+67/M5s2bzYQJE2q87SUyMtL8/e9/N59//rkZNGhQvd3+c6rnoNptt91m+vXrV2O/tr8P5syZY0JCQkxOTo7Ztm2b+eSTT0yfPn1M3759nRrb3weFhYXmpZdeMl9++aVZvXq1ufnmm01UVJTZsWNHg5mDus6DMcZs2bLFrFu3ztx1112mc+fOZt26dWbdunXOt+PLyspMbGysGTp0qNm4caOZN2+eadGixVG3wjXW90Jt5sAYYwoKCsy6devMtddeay677DKnplr1rXBjxowxmzdvNtOnT6/xVrgT/dw41RpkuL///vvOfegnUtM/4M6dO83AgQNNRESEOeuss8yDDz5oKisrnfb//M//NOecc45p3ry5iYqKMpdddplZtmzZUX3/+c9/NklJSSYsLMz07dvXrFq1yq/9p59+Mvfcc49p06aNadGihbnhhhvM7t27T+6gf+FUz4ExP9+ylZqaaiIiIkz79u1Ndna2+fHHH/1q/va3v5nOnTubsLAw0717d/Puu+/6tVdVVZnHHnvMxMbGmvDwcHPllVfWasy1cTrmoKyszERERJiZM2ces2/b3wfTpk0zycnJJiIiwsTHx5shQ4aYXbt2+dXY/D7YtGmT6dWrl4mIiDAul8sMGjTIfPHFF0f1fSbnwJi6z8Oll15qJB21HPlLzGeffWYuvvhiEx4ebtq1a2cmT558VN+N+b1Qmzno0KFDjTVH+uCDD0yvXr1MWFiYOfvss82cOXOO2v+Jfm6cavzJVwAALNNgP3MHAAAnh3AHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALDM/wHbeIXxqk8/cwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAAGsCAYAAADAPO4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAArEklEQVR4nO3de3BUZZ7/8U9DSExi0uRCumkIGteMhSaog1NAnFlQbrJidNFChUWnxFocLhKFBdEdRWtNAHcAZykpURa8jBNXx7jsiEpYMcoia0hgJ+AKXrgkJG0UQydg7ITk+f3hcn52LpCGCMmT96vqVNnP+Z7T53zt4pNz+pzTLmOMEQAAsEav870BAACgcxHuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWKZHhrsxRhMmTJDL5dKbb755ytrVq1dryJAhio+PV3x8vEaMGKG3337bmd/Y2KiFCxcqMzNTsbGx8vl8uuuuu1RZWenUHDhwQC6Xq83ptddeC2vbjx49qlmzZql///664IILNHjwYG3cuDGsdQAA7GZduI8aNUrr168/Zc3KlSvlcrk6tL6BAwdqyZIl2rFjh3bs2KHrr79eN998s/bs2SNJ+u6771RaWqrf/va3Ki0t1RtvvKF9+/YpOzvbWUdqaqqqqqpCpscff1yxsbGaMGFCh/etoaFBY8eO1YEDB/T6669r7969eu655zRgwIAOrwMA0AMYy4wcOdKsW7eu3fm7du0yAwcONFVVVUaSKSgoCPs9EhISzPPPP9/u/I8//thIMgcPHmy35qqrrjL33HNPyFhFRYWZPHmy6du3r0lMTDTZ2dlm//79zvzVq1ebSy65xDQ0NIS9zQCAnsO6I/dT+e6773TnnXdq1apV8nq9YS/f1NSk/Px8HT9+XCNGjGi3LhAIyOVyqW/fvm3OLykp0a5duzR9+vSQbbvuuut04YUX6oMPPtDWrVt14YUX6oYbblBDQ4MkacOGDRoxYoRmzZolj8ejjIwM5ebmqqmpKex9AQDYK+J8b8C59MADDygrK0s333xzWMuVlZVpxIgR+v7773XhhReqoKBAl19+eZu133//vR566CFNmTJF8fHxbdasXbtWgwcPVlZWljOWn5+vXr166fnnn3e+Mli3bp369u2r999/X+PGjdOXX36p9957T1OnTtXGjRv12WefadasWTpx4oQeffTRsPYJAGCvbh/uubm5ys3NdV7X19dr+/btmj17tjP29ttvq6amRu+995527twZ9ntcdtll2rVrl44ePao//elPuvvuu1VUVNQq4BsbG3XHHXeoublZzzzzTJvrqq+v1yuvvKLf/va3IeMlJSX6/PPPFRcXFzL+/fff64svvpAkNTc3KyUlRWvWrFHv3r01dOhQVVZW6qmnniLcAQCObh/u9913nyZPnuy8njp1qm699VZNmjTJGRswYIAWLVqkL774otWp8ltvvVW/+tWv9P7777f7HpGRkbr00kslSddcc42Ki4v19NNP69lnn3VqGhsbNXnyZO3fv1/vvfdeu0ftr7/+ur777jvdddddIePNzc0aOnSo/vCHP7Rapl+/fpKk/v37q0+fPurdu7czb/DgwfL7/WpoaFBkZGS7+wAA6Dm6fbgnJiYqMTHReR0dHa2UlBQnjE966KGHdO+994aMZWZmasWKFbrpppvCek9jjILBoPP6ZLB/9tln2rJli5KSktpddu3atcrOznYC+6Sf//znevXVV5WSktLuHwbXXnutXnnlFTU3N6tXrx8ul9i3b5/69+9PsAMAHD3mgjqv16uMjIyQSZIGDRqktLQ0p2706NFatWqV8/rhhx/Whx9+qAMHDqisrEyPPPKI3n//fU2dOlWSdOLECd12223asWOH/vCHP6ipqUl+v985mv6xzz//XB988EGrPzKkH844JCcn6+abb9aHH36o/fv3q6ioSHPnzlVFRYUk6Te/+Y2OHDmiuXPnat++fXrrrbeUm5urWbNmdXq/AADdV7c/cu9sX3zxhb755hvn9VdffaVp06apqqpKbrdbQ4YM0TvvvKOxY8dKkioqKrRhwwZJ0lVXXRWyri1btmjUqFHO63/913/VgAEDNG7cuFbvGxMTow8++EALFy7UpEmTVFdXpwEDBmj06NHOkXxqaqo2bdqkBx54QEOGDNGAAQM0d+5cLVy4sJO7AADozlzGGHO+NwIAAHSesE/LHz58WH/3d3+npKQkxcTE6KqrrlJJSYkz3xijxYsXy+fzKTo6WqNGjXKe5nZSMBjUnDlzlJycrNjYWGVnZzunngEAwNkJK9xramp07bXXqk+fPnr77bf1ySef6He/+13IFejLli3T8uXLtWrVKhUXF8vr9Wrs2LGqq6tzanJyclRQUKD8/Hxt3bpVx44d08SJE3kYCwAAnSCs0/IPPfSQ/uu//ksffvhhm/ONMfL5fMrJyXG+Bw4Gg/J4PFq6dKlmzJihQCCgfv366aWXXtLtt98uSaqsrFRqaqo2btyo8ePHn3Y7mpubVVlZqbi4uA4/Ix4AgO7MGKO6ujr5fD7njqlTFXfY4MGDTU5OjrnttttMv379zFVXXWXWrFnjzP/iiy+MJFNaWhqyXHZ2trnrrruMMcb853/+p5Fkvv3225CaIUOGmEcffbRD21FeXm4kMTExMTEx9bipvLz8tDkZ1tXyX375pVavXq0HH3xQDz/8sD7++GPdf//9ioqK0l133SW/3y9J8ng8Ict5PB4dPHhQkuT3+xUZGamEhIRWNSeXbykYDIbcV27+72RDeXl5u/eEAwBgk9raWqWmprZ6kmlbwgr35uZmXXPNNc7jXq+++mrt2bNHq1evDnniWstT5caY054+P1VNXl6eHn/88VbjJ39jHQCAnqIjX0eHdUFd//79Wz1PffDgwTp06JAkOb+01vIIvLq62jma93q9amhoUE1NTbs1LS1atEiBQMCZysvLw9lsAAB6lLDC/dprr9XevXtDxvbt26eLLrpIkpSWliav16vCwkJnfkNDg4qKipxfQBs6dKj69OkTUlNVVaXdu3eH/Eraj0VFRTlH6RytAwBwamGdlj/5k6m5ubmaPHmyPv74Y61Zs0Zr1qyR9MOpgpycHOXm5io9PV3p6enKzc1VTEyMpkyZIklyu92aPn265s2bp6SkJCUmJmr+/PnKzMzUmDFjOn8PAQDoYcIK91/84hcqKCjQokWL9MQTTygtLU0rV650nrMuSQsWLFB9fb1mzpypmpoaDRs2TJs2bQq5AGDFihWKiIjQ5MmTVV9fr9GjR2v9+vUhv3YGAADOTLd8/Gxtba3cbrcCgQCn6AEAPUI42ddjfhUOAICegnAHAMAyhDsAAJbh99wl/W3uW9pZ+/9fXx0vFTx84/nbIAAAzkKPP3K/+KHQYJeknbU/jAMA0B316HA/XYAT8ACA7qjHhvvf5nYsuDtaBwBAV9Fjw73lqfizrQMAoKvoseEOAICtCHcAACzTY8P96g4+tbajdQAAdBU9Ntw7eh8797sDALqbHhvuknRgyamD+3TzAQDoinp0uEs/BHjLU+9XxxPsAIDui8fPilPvAAC79PgjdwAAbEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZcIK98WLF8vlcoVMXq/XmW+M0eLFi+Xz+RQdHa1Ro0Zpz549IesIBoOaM2eOkpOTFRsbq+zsbFVUVHTO3gAAgPCP3K+44gpVVVU5U1lZmTNv2bJlWr58uVatWqXi4mJ5vV6NHTtWdXV1Tk1OTo4KCgqUn5+vrVu36tixY5o4caKampo6Z48AAOjhIsJeICIi5Gj9JGOMVq5cqUceeUSTJk2SJL3wwgvyeDx65ZVXNGPGDAUCAa1du1YvvfSSxowZI0l6+eWXlZqaqs2bN2v8+PFnuTsAACDsI/fPPvtMPp9PaWlpuuOOO/Tll19Kkvbv3y+/369x48Y5tVFRURo5cqS2bdsmSSopKVFjY2NIjc/nU0ZGhlPTlmAwqNra2pAJAAC0LaxwHzZsmF588UW9++67eu655+T3+5WVlaUjR47I7/dLkjweT8gyHo/Hmef3+xUZGamEhIR2a9qSl5cnt9vtTKmpqeFsNgAAPUpY4T5hwgTdeuutyszM1JgxY/TWW29J+uH0+0kulytkGWNMq7GWTlezaNEiBQIBZyovLw9nswEA6FHO6la42NhYZWZm6rPPPnO+h295BF5dXe0czXu9XjU0NKimpqbdmrZERUUpPj4+ZAIAAG07q3APBoP63//9X/Xv319paWnyer0qLCx05jc0NKioqEhZWVmSpKFDh6pPnz4hNVVVVdq9e7dTAwAAzk5YV8vPnz9fN910kwYNGqTq6mr90z/9k2pra3X33XfL5XIpJydHubm5Sk9PV3p6unJzcxUTE6MpU6ZIktxut6ZPn6558+YpKSlJiYmJmj9/vnOaHwAAnL2wwr2iokJ33nmnvvnmG/Xr10/Dhw/X9u3bddFFF0mSFixYoPr6es2cOVM1NTUaNmyYNm3apLi4OGcdK1asUEREhCZPnqz6+nqNHj1a69evV+/evTt3zwAA6KFcxhhzvjciXLW1tXK73QoEAnz/DgDoEcLJPp4tDwCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMmcV7nl5eXK5XMrJyXHGjDFavHixfD6foqOjNWrUKO3ZsydkuWAwqDlz5ig5OVmxsbHKzs5WRUXF2WwKAAD4P2cc7sXFxVqzZo2GDBkSMr5s2TItX75cq1atUnFxsbxer8aOHau6ujqnJicnRwUFBcrPz9fWrVt17NgxTZw4UU1NTWe+JwAAQNIZhvuxY8c0depUPffcc0pISHDGjTFauXKlHnnkEU2aNEkZGRl64YUX9N133+mVV16RJAUCAa1du1a/+93vNGbMGF199dV6+eWXVVZWps2bN3fOXgEA0IOdUbjPmjVLN954o8aMGRMyvn//fvn9fo0bN84Zi4qK0siRI7Vt2zZJUklJiRobG0NqfD6fMjIynJqWgsGgamtrQyYAANC2iHAXyM/PV2lpqYqLi1vN8/v9kiSPxxMy7vF4dPDgQacmMjIy5Ij/ZM3J5VvKy8vT448/Hu6mAgDQI4V15F5eXq65c+fq5Zdf1gUXXNBuncvlCnltjGk11tKpahYtWqRAIOBM5eXl4Ww2AAA9SljhXlJSourqag0dOlQRERGKiIhQUVGRfv/73ysiIsI5Ym95BF5dXe3M83q9amhoUE1NTbs1LUVFRSk+Pj5kAgAAbQsr3EePHq2ysjLt2rXLma655hpNnTpVu3bt0iWXXCKv16vCwkJnmYaGBhUVFSkrK0uSNHToUPXp0yekpqqqSrt373ZqAADAmQvrO/e4uDhlZGSEjMXGxiopKckZz8nJUW5urtLT05Wenq7c3FzFxMRoypQpkiS3263p06dr3rx5SkpKUmJioubPn6/MzMxWF+gBAIDwhX1B3eksWLBA9fX1mjlzpmpqajRs2DBt2rRJcXFxTs2KFSsUERGhyZMnq76+XqNHj9b69evVu3fvzt4cAAB6HJcxxpzvjQhXbW2t3G63AoEA378DAHqEcLKPZ8sDAGCZTj8tD6DzbNh+SPe/Wea8/v0tmcoePug8bhGA7oDT8kAXdfFDb7U778CSG8/hlgDoCjgtD3Rzpwr2jswH0LMR7kAXs2H7oU6tA9DzEO5AF/Pj79g7ow5Az0O4AwBgGcIdAADLEO5AF/P7WzI7tQ5Az0O4A11MR+9j5353AO0h3IEu6HT3sXOfO4BTIdyBLurAkhtbnXr//S2ZBDuA0+Lxs0AXlj18EKffAYSNI3cAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgmYjzvQEA0F2UHQoo+5mtMpJckjbM/KUyB7nP92YBrRDuANABFz/0VshrI+mmZ7ZKkg4sufE8bBHQPk7LA8BptAz2cOcD5xrhDgCnUHYo0Kl1wLlAuAPAKWT/36n3zqoDzgXCHQBOwXRyHXAuEO4AcAquTq4DzgXCHQBOYcPMX3ZqHXAuEO4AcAodvY+d+93RlRDuAHAap7uPnfvc0dXwEBsA6IADS27kCXXoNgh3AOigzEFu7ecoHd0Ap+UBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACwTVrivXr1aQ4YMUXx8vOLj4zVixAi9/fbbznxjjBYvXiyfz6fo6GiNGjVKe/bsCVlHMBjUnDlzlJycrNjYWGVnZ6uioqJz9gYAAIQX7gMHDtSSJUu0Y8cO7dixQ9dff71uvvlmJ8CXLVum5cuXa9WqVSouLpbX69XYsWNVV1fnrCMnJ0cFBQXKz8/X1q1bdezYMU2cOFFNTU2du2cAAPRQLmOMOZsVJCYm6qmnntI999wjn8+nnJwcLVy4UNIPR+kej0dLly7VjBkzFAgE1K9fP7300ku6/fbbJUmVlZVKTU3Vxo0bNX78+A69Z21trdxutwKBgOLj489m8wEA6BbCyb4z/s69qalJ+fn5On78uEaMGKH9+/fL7/dr3LhxTk1UVJRGjhypbdu2SZJKSkrU2NgYUuPz+ZSRkeHUtCUYDKq2tjZkAgAAbQs73MvKynThhRcqKipK9913nwoKCnT55ZfL7/dLkjweT0i9x+Nx5vn9fkVGRiohIaHdmrbk5eXJ7XY7U2pqaribDQBAjxF2uF922WXatWuXtm/frt/85je6++679cknnzjzXS5XSL0xptVYS6erWbRokQKBgDOVl5eHu9kAAPQYYYd7ZGSkLr30Ul1zzTXKy8vTlVdeqaefflper1eSWh2BV1dXO0fzXq9XDQ0NqqmpabemLVFRUc4V+icnAADQtrO+z90Yo2AwqLS0NHm9XhUWFjrzGhoaVFRUpKysLEnS0KFD1adPn5Caqqoq7d6926kBAABnJyKc4ocfflgTJkxQamqq6urqlJ+fr/fff1/vvPOOXC6XcnJylJubq/T0dKWnpys3N1cxMTGaMmWKJMntdmv69OmaN2+ekpKSlJiYqPnz5yszM1Njxoz5SXYQAICeJqxw/+qrrzRt2jRVVVXJ7XZryJAheueddzR27FhJ0oIFC1RfX6+ZM2eqpqZGw4YN06ZNmxQXF+esY8WKFYqIiNDkyZNVX1+v0aNHa/369erdu3fn7hkAAD3UWd/nfj5wnzsAoKc5J/e5AwCArolwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALBNWuOfl5ekXv/iF4uLilJKSoltuuUV79+4NqTHGaPHixfL5fIqOjtaoUaO0Z8+ekJpgMKg5c+YoOTlZsbGxys7OVkVFxdnvDQAACC/ci4qKNGvWLG3fvl2FhYU6ceKExo0bp+PHjzs1y5Yt0/Lly7Vq1SoVFxfL6/Vq7Nixqqurc2pycnJUUFCg/Px8bd26VceOHdPEiRPV1NTUeXsGAEAP5TLGmDNd+Ouvv1ZKSoqKior013/91zLGyOfzKScnRwsXLpT0w1G6x+PR0qVLNWPGDAUCAfXr108vvfSSbr/9dklSZWWlUlNTtXHjRo0fP/6071tbWyu3261AIKD4+Pgz3XwAALqNcLLvrL5zDwQCkqTExERJ0v79++X3+zVu3DinJioqSiNHjtS2bdskSSUlJWpsbAyp8fl8ysjIcGpaCgaDqq2tDZkAAEDbzjjcjTF68MEH9ctf/lIZGRmSJL/fL0nyeDwhtR6Px5nn9/sVGRmphISEdmtaysvLk9vtdqbU1NQz3WwAAKx3xuE+e/Zs/eUvf9Ef//jHVvNcLlfIa2NMq7GWTlWzaNEiBQIBZyovLz/TzQYAwHpnFO5z5szRhg0btGXLFg0cONAZ93q9ktTqCLy6uto5mvd6vWpoaFBNTU27NS1FRUUpPj4+ZAIAAG0LK9yNMZo9e7beeOMNvffee0pLSwuZn5aWJq/Xq8LCQmesoaFBRUVFysrKkiQNHTpUffr0CampqqrS7t27nRoAAHDmIsIpnjVrll555RX9+7//u+Li4pwjdLfbrejoaLlcLuXk5Cg3N1fp6elKT09Xbm6uYmJiNGXKFKd2+vTpmjdvnpKSkpSYmKj58+crMzNTY8aM6fw9BACghwkr3FevXi1JGjVqVMj4unXr9Otf/1qStGDBAtXX12vmzJmqqanRsGHDtGnTJsXFxTn1K1asUEREhCZPnqz6+nqNHj1a69evV+/evc9ubwAAwNnd536+cJ87AKCnOWf3uQMAgK6HcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACwTdrh/8MEHuummm+Tz+eRyufTmm2+GzDfGaPHixfL5fIqOjtaoUaO0Z8+ekJpgMKg5c+YoOTlZsbGxys7OVkVFxVntCAAA+EHY4X78+HFdeeWVWrVqVZvzly1bpuXLl2vVqlUqLi6W1+vV2LFjVVdX59Tk5OSooKBA+fn52rp1q44dO6aJEyeqqanpzPcEAABIklzGGHPGC7tcKigo0C233CLph6N2n8+nnJwcLVy4UNIPR+kej0dLly7VjBkzFAgE1K9fP7300ku6/fbbJUmVlZVKTU3Vxo0bNX78+NO+b21trdxutwKBgOLj48908wEA6DbCyb5O/c59//798vv9GjdunDMWFRWlkSNHatu2bZKkkpISNTY2htT4fD5lZGQ4NS0Fg0HV1taGTAAAoG2dGu5+v1+S5PF4QsY9Ho8zz+/3KzIyUgkJCe3WtJSXlye32+1MqampnbnZAABY5Se5Wt7lcoW8Nsa0GmvpVDWLFi1SIBBwpvLy8k7bVgAAbNOp4e71eiWp1RF4dXW1czTv9XrV0NCgmpqadmtaioqKUnx8fMgEAADa1qnhnpaWJq/Xq8LCQmesoaFBRUVFysrKkiQNHTpUffr0CampqqrS7t27nRoAAHDmIsJd4NixY/r888+d1/v379euXbuUmJioQYMGKScnR7m5uUpPT1d6erpyc3MVExOjKVOmSJLcbremT5+uefPmKSkpSYmJiZo/f74yMzM1ZsyYztszAAB6qLDDfceOHbruuuuc1w8++KAk6e6779b69eu1YMEC1dfXa+bMmaqpqdGwYcO0adMmxcXFOcusWLFCERERmjx5surr6zV69GitX79evXv37oRdAgCgZzur+9zPF+5zBwD0NOftPncAAHD+Ee4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsEzYP/kKAABObfu+I7rjX7c7r/PvGa7hP0s6Z+9PuAMA0IkufuitVmMng/7AkhvPyTZwWh4AgE7SVrCHM7+zEO4AAHSC7fuOdGrd2SDcAQDoBD/+jr0z6s4G4Q4AgGUIdwAALEO4AwDQCfLvGd6pdWeDcAcAoBN09D72c3G/O+EOAEAnOd197OfqPnceYgMAQCc6sORGnlAHAIBthv8s6ZwdpbeF0/IAAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYpls+oc4YI0mqra09z1sCAMC5cTLzTmbgqXTLcK+rq5MkpaamnuctAQDg3Kqrq5Pb7T5ljct05E+ALqa5uVmVlZWKi4uTy+UKa9na2lqlpqaqvLxc8fHxP9EWdn30gR5I9ECiBxI9kLpHD4wxqqurk8/nU69ep/5WvVseuffq1UsDBw48q3XEx8d32f+B5xJ9oAcSPZDogUQPpK7fg9MdsZ/EBXUAAFiGcAcAwDI9LtyjoqL02GOPKSoq6nxvynlFH+iBRA8keiDRA8m+HnTLC+oAAED7etyROwAAtiPcAQCwDOEOAIBlCHcAACzT5cL94osvlsvlajXNmjWrVe2MGTPkcrm0cuXKkPFgMKg5c+YoOTlZsbGxys7OVkVFxWnf56GHHgqpOXTokG666SbFxsYqOTlZ999/vxoaGkJqysrKNHLkSEVHR2vAgAF64oknOvTc367QA0l66623NGzYMEVHRys5OVmTJk3qMT14//3323wPl8ul4uLiHtEDSdq3b59uvvlmJScnKz4+Xtdee622bNkSUmN7D0pLSzV27Fj17dtXSUlJ+vu//3sdO3asS/Sgs/qwZs0ajRo1SvHx8XK5XDp69GirZWtqajRt2jS53W653W5NmzatVV13/ix0pAdPPvmksrKyFBMTo759+7a5Lefzs9Bhpouprq42VVVVzlRYWGgkmS1btoTUFRQUmCuvvNL4fD6zYsWKkHn33XefGTBggCksLDSlpaXmuuuuM1deeaU5ceKEU3PRRReZJ554IuS96urqnPknTpwwGRkZ5rrrrjOlpaWmsLDQ+Hw+M3v2bKcmEAgYj8dj7rjjDlNWVmb+9Kc/mbi4OPPP//zP3aIHr7/+uklISDCrV682e/fuNZ9++ql57bXXekwPgsFgyHtUVVWZe++911x88cWmubm5R/TAGGMuvfRS8zd/8zfmf/7nf8y+ffvMzJkzTUxMjKmqquoRPTh8+LBJSEgw9913n/n000/Nxx9/bLKyssytt97qrON89qCz+rBixQqTl5dn8vLyjCRTU1PT6n1uuOEGk5GRYbZt22a2bdtmMjIyzMSJE7tEH85VDx599FGzfPly8+CDDxq3291q/vn+LHRUlwv3lubOnWv+6q/+yvnH1hhjKioqzIABA8zu3bvNRRddFPI/8OjRo6ZPnz4mPz/fGTt8+LDp1auXeeedd5yxlsu1tHHjRtOrVy9z+PBhZ+yPf/yjiYqKMoFAwBhjzDPPPGPcbrf5/vvvnZq8vDzj8/lCtvds/RQ9aGxsNAMGDDDPP/98u+9rew9aamhoMCkpKeaJJ55wxmzvwddff20kmQ8++MCpqa2tNZLM5s2be0QPnn32WZOSkmKampqcmp07dxpJ5rPPPutyPTiTPvzYli1b2gy2Tz75xEgy27dvd8Y++ugjI8l8+umnxpiu1Yefogc/tm7dujbDvSv14FS63Gn5H2toaNDLL7+se+65x/mBmObmZk2bNk3/8A//oCuuuKLVMiUlJWpsbNS4ceOcMZ/Pp4yMDG3bti2kdunSpUpKStJVV12lJ598MuS0ykcffaSMjAz5fD5nbPz48QoGgyopKXFqRo4cGfLQg/Hjx6uyslIHDhzo0j0oLS3V4cOH1atXL1199dXq37+/JkyYoD179vSYHrS0YcMGffPNN/r1r3/tjNneg6SkJA0ePFgvvviijh8/rhMnTujZZ5+Vx+PR0KFDe0QPgsGgIiMjQ36IIzo6WpK0devWLtUD6cz60BEfffSR3G63hg0b5owNHz5cbrfb6VVX6cNP1YOO6Co9OJ0uHe5vvvmmjh49GvKP7dKlSxUREaH777+/zWX8fr8iIyOVkJAQMu7xeOT3+53Xc+fOVX5+vrZs2aLZs2dr5cqVmjlzZsh6PB5PyDoSEhIUGRnprKetmpOvf/xeZ+On6sGXX34pSVq8eLH+8R//UX/+85+VkJCgkSNH6ttvv213/2zqQUtr167V+PHjQ35K2PYeuFwuFRYWaufOnYqLi9MFF1ygFStW6J133nG+b7S9B9dff738fr+eeuopNTQ0qKamRg8//LAkqaqqqt39Ox89kM6sDx3h9/uVkpLSajwlJeWU+9hdPgudpav04HS69K/CrV27VhMmTHD+QiopKdHTTz+t0tLSsH/q1RgTsswDDzzg/PeQIUOUkJCg2267zTmal9Tme7RcT8sa838XTIS7fe35qXrQ3NwsSXrkkUd06623SpLWrVungQMH6rXXXtOMGTPa3Q9bevBjFRUVevfdd/Vv//ZvrebZ3ANjjGbOnKmUlBR9+OGHio6O1vPPP6+JEyequLhY/fv3b3c/bOnBFVdcoRdeeEEPPvigFi1apN69e+v++++Xx+NR7969nWW6Qg+kzu1DS2eyjx2p6cqfhTPRFXpwOl32yP3gwYPavHmz7r33Xmfsww8/VHV1tQYNGqSIiAhFRETo4MGDmjdvni6++GJJktfrdf76/rHq6upWf0n92PDhwyVJn3/+ubOeln9h1dTUqLGx0VlPWzXV1dWSdMr36qifsgcn/9G+/PLLnflRUVG65JJLdOjQoXb3z6Ye/Ni6deuUlJSk7OzskHHbe/Dee+/pz3/+s/Lz83Xttdfq5z//uZ555hlFR0frhRde6BE9kKQpU6bI7/fr8OHDOnLkiBYvXqyvv/5aaWlpXaYHZ9OHjvB6vfrqq69ajX/99den3Mfu8lnoLF2hBx1yTr7ZPwOPPfaY8Xq9prGx0Rn75ptvTFlZWcjk8/nMwoULnQs+Tl5A8+qrrzrLVVZWnvJCKmOM+Y//+A8jyRw8eNAY8/8vmqisrHRq8vPzW1000bdvXxMMBp2aJUuWdNpFEz9lDwKBgImKigq5oO7kBWXPPvtsj+jBSc3NzSYtLc3Mmzev1fvb3oMNGzaYXr16hdwpYowxP/vZz8yTTz7ZI3rQlrVr15qYmBjngquu0IOz6cOPne6Cuv/+7/92xrZv397mBXXd8bPQkR782OkuqDvfn4XT6ZLh3tTUZAYNGmQWLlx42tq2roi87777zMCBA83mzZtNaWmpuf7660Nufdm2bZtZvny52blzp/nyyy/Nq6++anw+n8nOznbWcfJ2h9GjR5vS0lKzefNmM3DgwJDbHY4ePWo8Ho+58847TVlZmXnjjTdMfHx8p9zu8FP3wJgfrjYdMGCAeffdd82nn35qpk+fblJSUsy3337bY3pgjDGbN282kswnn3zSar229+Drr782SUlJZtKkSWbXrl1m7969Zv78+aZPnz5m165dPaIHxhjzL//yL6akpMTs3bvXrFq1ykRHR5unn37amX++e2DM2fehqqrK7Ny50zz33HPOHRI7d+40R44ccWpuuOEGM2TIEPPRRx+Zjz76yGRmZrZ5K1x3/Sx0pAcHDx40O3fuNI8//ri58MILzc6dO83OnTudP4DPdw86qkuG+7vvvmskmb179562tq3/gfX19Wb27NkmMTHRREdHm4kTJ5pDhw4580tKSsywYcOM2+02F1xwgbnsssvMY489Zo4fPx6ynoMHD5obb7zRREdHm8TERDN79uyQWxuMMeYvf/mL+dWvfmWioqKM1+s1ixcv7pS/zH7qHhjzw5H6vHnzTEpKiomLizNjxowxu3fvDqmxvQfGGHPnnXearKysdtdtew+Ki4vNuHHjTGJioomLizPDhw83GzduDKmxvQfTpk0ziYmJJjIy0gwZMsS8+OKLrdZ9PntgzNn34bHHHjOSWk3r1q1zao4cOWKmTp1q4uLiTFxcnJk6dWqro9vu/FnoSA/uvvvuNmt+fD/9+f4sdAQ/+QoAgGW67AV1AADgzBDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACW+X+521U49HqkWgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -94,9 +1051,8 @@ "# Find some SSA measurements within a distance of a known point\n", "df = LayerMeasurements.from_area(pt=Point(740820.624625,4.327326e+06), crs=26912, buffer=500,\n", " type='specific_surface_area')\n", - "\n", - "df\n", - "df.plot()" + "df.plot()\n", + "df" ] }, { @@ -109,7 +1065,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -120,7 +1076,7 @@ "\n", "Available Instruments = Mala 1600 MHz GPR, None, Mala 800 MHz GPR, pulse EKKO Pro multi-polarization 1 GHz GPR, pit ruler, mesa, magnaprobe, camera\n", "\n", - "Available Dates = 2020-05-28, 2020-01-09, 2020-05-23, 2020-01-04, 2019-11-29, 2019-10-20, 2019-11-30, 2020-04-17, 2020-02-19, 2020-02-26, 2020-02-03, 2020-05-05, 2019-10-05, 2019-12-29, 2020-06-02, 2019-10-28, 2020-01-30, 2020-05-22, 2020-03-09, 2019-12-09, 2019-12-28, 2020-02-24, 2020-03-17, 2020-04-01, 2020-05-14, 2019-10-29, 2019-10-14, 2019-10-02, 2020-01-31, 2020-04-18, 2020-04-29, 2020-04-26, 2019-10-12, 2020-02-23, 2020-01-22, 2020-01-01, 2019-11-21, 2020-05-10, 2020-02-12, 2020-05-06, 2019-11-19, 2019-10-25, 2019-11-02, 2020-02-08, 2020-04-14, 2020-04-02, 2019-11-16, 2020-04-07, 2019-12-27, 2019-10-01, 2020-04-16, 2020-06-08, 2019-12-13, 2019-10-17, 2019-10-22, 2020-04-21, 2020-01-03, 2019-12-12, 2019-12-08, 2020-01-25, 2020-02-29, 2019-11-24, 2019-10-18, 2020-05-09, 2020-03-22, 2019-11-06, 2019-12-16, 2020-01-15, 2019-11-22, 2019-10-13, 2019-11-10, 2019-12-06, 2020-02-04, 2020-03-07, 2019-10-31, 2020-04-06, 2020-05-03, 2019-12-10, 2020-05-26, 2019-12-02, 2020-02-14, 2020-02-13, 2020-05-11, 2019-12-01, 2020-01-19, 2019-11-28, 2020-01-17, 2019-12-17, 2019-12-25, 2019-12-14, 2019-10-24, 2020-02-01, 2020-03-11, 2020-02-09, 2020-05-12, 2020-05-25, 2020-03-29, 2020-04-24, 2019-12-11, 2020-01-10, 2020-06-05, 2019-10-10, 2020-04-13, 2020-03-23, 2020-04-23, 2020-05-24, 2019-11-08, 2019-12-26, 2019-12-15, 2020-05-07, 2020-02-28, 2019-11-03, 2020-04-04, 2019-11-27, 2020-03-15, 2020-01-16, 2019-11-23, 2019-10-08, 2019-11-14, 2020-02-15, 2020-02-11, 2019-11-13, 2020-04-30, 2019-10-26, 2020-03-06, 2020-05-31, 2020-03-04, 2019-10-04, 2020-05-16, 2020-04-03, 2019-10-06, 2019-10-09, 2020-03-12, 2019-11-12, 2019-11-01, 2020-03-10, 2020-02-21, 2019-10-30, 2020-06-01, 2020-03-20, 2020-03-03, 2019-11-07, 2020-01-06, 2019-12-22, 2020-01-11, 2019-11-11, 2019-11-05, 2020-01-13, 2019-12-18, 2019-12-30, 2020-05-04, 2020-04-20, 2020-02-22, 2020-05-08, 2020-01-24, 2019-12-24, 2020-04-22, 2020-03-31, 2020-01-08, 2019-11-04, 2020-02-06, 2020-03-05, 2020-03-14, 2020-06-09, 2020-02-20, 2020-04-05, 2020-06-03, 2019-10-16, 2020-04-15, 2019-12-03, 2020-05-30, 2019-11-09, 2020-04-28, 2020-01-12, 2020-05-20, 2020-05-02, 2020-01-28, 2020-02-05, 2020-01-21, 2019-12-19, 2019-10-07, 2020-03-28, 2020-02-10, 2020-03-02, 2019-09-29, 2019-11-15, 2020-01-02, 2020-05-27, 2020-02-18, 2019-10-11, 2019-12-21, 2020-04-09, 2019-09-30, 2020-01-05, 2019-10-27, 2020-04-10, 2020-03-16, 2020-03-21, 2020-02-02, 2020-04-08, 2020-02-25, 2020-01-29, 2019-12-04, 2019-11-26, 2020-03-19, 2020-01-20, 2020-02-27, 2019-12-31, 2020-03-30, 2020-04-25, 2020-01-26, 2020-01-14, 2020-03-01, 2020-02-17, 2020-05-21, 2019-10-23, 2020-04-11, 2019-10-21, 2019-11-25, 2020-04-12, 2020-03-13, 2020-05-01, 2020-03-08, 2020-05-19, 2020-03-27, 2019-11-17, 2020-04-19, 2020-01-23, 2020-05-15, 2020-02-16, 2019-10-19, 2020-05-29, 2020-03-24, 2019-12-07, 2020-02-07, 2020-03-18, 2020-05-17, 2020-05-13, 2019-12-20, 2019-12-23, 2020-06-07, 2020-01-07, 2020-05-18, 2019-12-05, 2019-11-20, 2020-06-06, 2019-11-18, 2020-06-10, 2020-01-27, 2020-01-18, 2020-06-04, 2020-04-27, 2020-03-25, 2019-10-15, 2020-03-26, 2019-10-03\n", + "Available Dates = 2020-05-28, 2020-01-09, 2020-05-23, 2020-01-04, 2019-11-29, 2019-10-20, 2019-11-30, 2020-04-17, 2020-02-19, 2020-02-26, 2020-02-03, 2020-05-05, 2019-10-05, 2019-12-29, 2020-06-02, 2019-10-28, 2020-01-30, 2020-05-22, 2020-03-09, 2019-12-09, 2019-12-28, 2020-02-24, 2020-03-17, 2020-04-01, 2020-05-14, 2019-10-29, 2019-10-14, 2019-10-02, 2020-01-31, 2020-04-18, 2020-04-29, 2020-04-26, 2019-10-12, 2020-02-23, 2020-01-22, 2020-01-01, 2019-11-21, 2020-05-10, 2020-02-12, 2020-05-06, 2019-11-19, 2019-10-25, 2019-11-02, 2020-02-08, 2020-04-14, 2020-04-02, 2019-11-16, 2020-04-07, 2019-12-27, 2019-10-01, 2020-04-16, 2020-06-08, 2019-12-13, 2019-10-17, 2019-10-22, 2020-04-21, 2020-01-03, 2019-12-12, 2019-12-08, 2020-01-25, 2020-02-29, 2019-11-24, 2019-10-18, 2020-05-09, 2020-03-22, 2019-11-06, 2019-12-16, 2020-01-15, 2019-11-22, 2019-10-13, 2019-11-10, 2019-12-06, 2020-02-04, 2020-03-07, 2019-10-31, 2020-04-06, 2020-05-03, 2019-12-10, 2020-05-26, 2019-12-02, 2020-02-14, 2020-02-13, 2020-05-11, 2019-12-01, 2020-01-19, 2019-11-28, 2020-01-17, 2019-12-17, 2019-12-25, 2019-12-14, 2019-10-24, 2020-02-01, 2020-03-11, 2020-02-09, 2020-05-12, 2020-05-25, 2020-03-29, 2020-04-24, 2019-12-11, 2020-01-10, 2020-06-05, 2019-10-10, 2020-04-13, 2020-03-23, 2020-04-23, 2020-05-24, 2019-11-08, 2019-12-26, 2019-12-15, 2020-05-07, 2020-02-28, 2019-11-03, 2020-04-04, 2019-11-27, 2020-03-15, 2020-01-16, 2019-11-23, 2019-10-08, 2019-11-14, 2020-02-15, 2020-02-11, 2019-11-13, 2020-04-30, 2019-10-26, 2020-03-06, 2020-05-31, 2020-03-04, 2019-10-04, 2020-05-16, 2020-04-03, 2019-10-06, 2019-10-09, 2020-03-12, 2019-11-12, 2019-11-01, 2020-03-10, 2020-02-21, 2019-10-30, 2020-06-01, 2020-03-20, 2020-03-03, 2019-11-07, 2020-01-06, 2019-12-22, 2020-01-11, 2019-11-11, 2019-11-05, 2020-01-13, 2019-12-18, 2019-12-30, 2020-05-04, 2020-04-20, 2020-02-22, 2020-05-08, 2020-01-24, 2019-12-24, 2020-04-22, 2020-03-31, 2020-01-08, 2019-11-04, 2020-02-06, 2020-03-05, 2020-03-14, 2020-06-09, 2020-02-20, 2020-04-05, 2020-06-03, 2019-10-16, 2020-04-15, 2019-12-03, 2020-05-30, 2019-11-09, 2020-04-28, 2020-01-12, 2020-05-20, 2020-05-02, 2020-02-05, 2020-01-28, 2020-01-21, 2019-12-19, 2019-10-07, 2020-03-28, 2020-02-10, 2020-03-02, 2019-09-29, 2019-11-15, 2020-01-02, 2020-05-27, 2020-02-18, 2019-10-11, 2019-12-21, 2020-04-09, 2019-09-30, 2020-01-05, 2019-10-27, 2020-04-10, 2020-03-16, 2020-03-21, 2020-02-02, 2020-04-08, 2020-02-25, 2020-01-29, 2019-12-04, 2019-11-26, 2020-03-19, 2020-01-20, 2020-02-27, 2019-12-31, 2020-03-30, 2020-04-25, 2020-01-26, 2020-01-14, 2020-03-01, 2020-02-17, 2020-05-21, 2019-10-23, 2020-04-11, 2019-10-21, 2019-11-25, 2020-04-12, 2020-03-13, 2020-05-01, 2020-03-08, 2020-05-19, 2020-03-27, 2019-11-17, 2020-04-19, 2020-01-23, 2020-05-15, 2020-02-16, 2019-10-19, 2020-05-29, 2020-03-24, 2019-12-07, 2020-02-07, 2020-03-18, 2020-05-17, 2020-05-13, 2019-12-20, 2019-12-23, 2020-06-07, 2020-01-07, 2020-05-18, 2019-12-05, 2019-11-20, 2020-06-06, 2019-11-18, 2020-06-10, 2020-01-27, 2020-01-18, 2020-06-04, 2020-04-27, 2020-03-25, 2019-10-15, 2020-03-26, 2019-10-03\n", "\n", "Available sites = None, Grand Mesa\n" ] @@ -156,7 +1112,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -182,7 +1138,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -199,11 +1155,11 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mLargeQueryCheckException\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[24], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msnowexsql\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapi\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m PointMeasurements\n\u001b[1;32m 2\u001b[0m \u001b[38;5;66;03m# Ask the DB for a huge query.\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m df \u001b[38;5;241m=\u001b[39m \u001b[43mPointMeasurements\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_filter\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mtype\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtwo_way_travel\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 4\u001b[0m df\n", - "File \u001b[0;32m~/projects/snowex/snowexsql/snowexsql/api.py:246\u001b[0m, in \u001b[0;36mPointMeasurements.from_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 244\u001b[0m session\u001b[38;5;241m.\u001b[39mclose()\n\u001b[1;32m 245\u001b[0m LOG\u001b[38;5;241m.\u001b[39merror(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFailed query for PointData\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 246\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 248\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m df\n", - "File \u001b[0;32m~/projects/snowex/snowexsql/snowexsql/api.py:241\u001b[0m, in \u001b[0;36mPointMeasurements.from_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 239\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 240\u001b[0m qry \u001b[38;5;241m=\u001b[39m session\u001b[38;5;241m.\u001b[39mquery(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMODEL)\n\u001b[0;32m--> 241\u001b[0m qry \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mextend_qry\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqry\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 242\u001b[0m df \u001b[38;5;241m=\u001b[39m query_to_geopandas(qry, engine)\n\u001b[1;32m 243\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n", - "File \u001b[0;32m~/projects/snowex/snowexsql/snowexsql/api.py:139\u001b[0m, in \u001b[0;36mBaseDataset.extend_qry\u001b[0;34m(cls, qry, check_size, **kwargs)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mk\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m is not an allowed filter\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 138\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_size:\n\u001b[0;32m--> 139\u001b[0m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_check_size\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqry\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 141\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m qry\n", - "File \u001b[0;32m~/projects/snowex/snowexsql/snowexsql/api.py:80\u001b[0m, in \u001b[0;36mBaseDataset._check_size\u001b[0;34m(cls, qry, kwargs)\u001b[0m\n\u001b[1;32m 78\u001b[0m count \u001b[38;5;241m=\u001b[39m qry\u001b[38;5;241m.\u001b[39mcount()\n\u001b[1;32m 79\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m count \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMAX_RECORD_COUNT \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlimit\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m kwargs:\n\u001b[0;32m---> 80\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m LargeQueryCheckException(\n\u001b[1;32m 81\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mQuery will return \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mcount\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m number of records,\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 82\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m but we have a default max of \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMAX_RECORD_COUNT\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 83\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m If you want to proceed, set the \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlimit\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m filter\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 84\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m to the desired number of records.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 85\u001b[0m )\n", + "Cell \u001b[0;32mIn[6], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msnowexsql\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapi\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m PointMeasurements\n\u001b[1;32m 2\u001b[0m \u001b[38;5;66;03m# Ask the DB for a huge query.\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m df \u001b[38;5;241m=\u001b[39m \u001b[43mPointMeasurements\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_filter\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mtype\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtwo_way_travel\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 4\u001b[0m df\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# Throws an exception, try adding the limit keyword arg in the function\u001b[39;00m\n", + "File \u001b[0;32m/srv/conda/envs/notebook/lib/python3.11/site-packages/snowexsql/api.py:246\u001b[0m, in \u001b[0;36mPointMeasurements.from_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 244\u001b[0m session\u001b[38;5;241m.\u001b[39mclose()\n\u001b[1;32m 245\u001b[0m LOG\u001b[38;5;241m.\u001b[39merror(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFailed query for PointData\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 246\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 248\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m df\n", + "File \u001b[0;32m/srv/conda/envs/notebook/lib/python3.11/site-packages/snowexsql/api.py:241\u001b[0m, in \u001b[0;36mPointMeasurements.from_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 239\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 240\u001b[0m qry \u001b[38;5;241m=\u001b[39m session\u001b[38;5;241m.\u001b[39mquery(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMODEL)\n\u001b[0;32m--> 241\u001b[0m qry \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mextend_qry\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqry\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 242\u001b[0m df \u001b[38;5;241m=\u001b[39m query_to_geopandas(qry, engine)\n\u001b[1;32m 243\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n", + "File \u001b[0;32m/srv/conda/envs/notebook/lib/python3.11/site-packages/snowexsql/api.py:139\u001b[0m, in \u001b[0;36mBaseDataset.extend_qry\u001b[0;34m(cls, qry, check_size, **kwargs)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mk\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m is not an allowed filter\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 138\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_size:\n\u001b[0;32m--> 139\u001b[0m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_check_size\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqry\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 141\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m qry\n", + "File \u001b[0;32m/srv/conda/envs/notebook/lib/python3.11/site-packages/snowexsql/api.py:80\u001b[0m, in \u001b[0;36mBaseDataset._check_size\u001b[0;34m(cls, qry, kwargs)\u001b[0m\n\u001b[1;32m 78\u001b[0m count \u001b[38;5;241m=\u001b[39m qry\u001b[38;5;241m.\u001b[39mcount()\n\u001b[1;32m 79\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m count \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMAX_RECORD_COUNT \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlimit\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m kwargs:\n\u001b[0;32m---> 80\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m LargeQueryCheckException(\n\u001b[1;32m 81\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mQuery will return \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mcount\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m number of records,\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 82\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m but we have a default max of \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMAX_RECORD_COUNT\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 83\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m If you want to proceed, set the \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlimit\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m filter\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 84\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m to the desired number of records.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 85\u001b[0m )\n", "\u001b[0;31mLargeQueryCheckException\u001b[0m: Query will return 2296512 number of records, but we have a default max of 1000. If you want to proceed, set the 'limit' filter to the desired number of records." ] } @@ -230,36 +1186,388 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 7, "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "Failed query for PointData\n" - ] - }, - { - "ename": "LargeQueryCheckException", - "evalue": "Query will return 8696 number of records, but we have a default max of 1000. If you want to proceed, set the 'limit' filter to the desired number of records.", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mLargeQueryCheckException\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[25], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msnowexsql\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapi\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m LayerMeasurements\n\u001b[1;32m 2\u001b[0m ssa_instruments \u001b[38;5;241m=\u001b[39m [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIS3-SP-15-01US\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIRIS\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIS3-SP-11-01F\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[0;32m----> 3\u001b[0m \u001b[43mLayerMeasurements\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_filter\u001b[49m\u001b[43m(\u001b[49m\u001b[43minstrument\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mssa_instruments\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/projects/snowex/snowexsql/snowexsql/api.py:246\u001b[0m, in \u001b[0;36mPointMeasurements.from_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 244\u001b[0m session\u001b[38;5;241m.\u001b[39mclose()\n\u001b[1;32m 245\u001b[0m LOG\u001b[38;5;241m.\u001b[39merror(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFailed query for PointData\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 246\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 248\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m df\n", - "File \u001b[0;32m~/projects/snowex/snowexsql/snowexsql/api.py:241\u001b[0m, in \u001b[0;36mPointMeasurements.from_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 239\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 240\u001b[0m qry \u001b[38;5;241m=\u001b[39m session\u001b[38;5;241m.\u001b[39mquery(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMODEL)\n\u001b[0;32m--> 241\u001b[0m qry \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mextend_qry\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqry\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 242\u001b[0m df \u001b[38;5;241m=\u001b[39m query_to_geopandas(qry, engine)\n\u001b[1;32m 243\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n", - "File \u001b[0;32m~/projects/snowex/snowexsql/snowexsql/api.py:139\u001b[0m, in \u001b[0;36mBaseDataset.extend_qry\u001b[0;34m(cls, qry, check_size, **kwargs)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mk\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m is not an allowed filter\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 138\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_size:\n\u001b[0;32m--> 139\u001b[0m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_check_size\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqry\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 141\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m qry\n", - "File \u001b[0;32m~/projects/snowex/snowexsql/snowexsql/api.py:80\u001b[0m, in \u001b[0;36mBaseDataset._check_size\u001b[0;34m(cls, qry, kwargs)\u001b[0m\n\u001b[1;32m 78\u001b[0m count \u001b[38;5;241m=\u001b[39m qry\u001b[38;5;241m.\u001b[39mcount()\n\u001b[1;32m 79\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m count \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMAX_RECORD_COUNT \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlimit\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m kwargs:\n\u001b[0;32m---> 80\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m LargeQueryCheckException(\n\u001b[1;32m 81\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mQuery will return \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mcount\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m number of records,\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 82\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m but we have a default max of \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMAX_RECORD_COUNT\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 83\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m If you want to proceed, set the \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlimit\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m filter\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 84\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m to the desired number of records.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 85\u001b[0m )\n", - "\u001b[0;31mLargeQueryCheckException\u001b[0m: Query will return 8696 number of records, but we have a default max of 1000. If you want to proceed, set the 'limit' filter to the desired number of records." - ] + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
depthsite_idpit_idbottom_depthcommentssample_asample_bsample_cvalueflags...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
091.02C12COGM2C12_20200212NoneNoneNoneNoneNone45.02None...2020-02-122022-06-30 22:37:00.759127+00:00None12524https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01FreflectanceNoneKate Hale
186.02C12COGM2C12_20200212NoneNoneNoneNoneNone39.82None...2020-02-122022-06-30 22:37:00.759127+00:00None12525https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01FreflectanceNoneKate Hale
281.02C12COGM2C12_20200212NoneNoneNoneNoneNone37.85None...2020-02-122022-06-30 22:37:00.759127+00:00None12526https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01FreflectanceNoneKate Hale
376.02C12COGM2C12_20200212NoneNoneNoneNoneNone35.11None...2020-02-122022-06-30 22:37:00.759127+00:00None12527https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01FreflectanceNoneKate Hale
471.02C12COGM2C12_20200212NoneNoneNoneNoneNone34.86None...2020-02-122022-06-30 22:37:00.759127+00:00None12528https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01FreflectanceNoneKate Hale
..................................................................
9572.02C13COGM2C13_20200212NoneNoneNoneNoneNone40.5None...2020-02-122022-06-30 22:37:00.946617+00:00None12619https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
9667.02C13COGM2C13_20200212NoneNoneNoneNoneNone22.6None...2020-02-122022-06-30 22:37:00.946617+00:00None12620https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
9762.02C13COGM2C13_20200212NoneNoneNoneNoneNone26.6None...2020-02-122022-06-30 22:37:00.946617+00:00None12621https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
9857.02C13COGM2C13_20200212NoneNoneNoneNoneNone24.3None...2020-02-122022-06-30 22:37:00.946617+00:00None12622https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
9952.02C13COGM2C13_20200212NoneNoneNoneNoneNone26.0None...2020-02-122022-06-30 22:37:00.946617+00:00None12623https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
\n", + "

100 rows × 29 columns

\n", + "
" + ], + "text/plain": [ + " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", + "0 91.0 2C12 COGM2C12_20200212 None None None None \n", + "1 86.0 2C12 COGM2C12_20200212 None None None None \n", + "2 81.0 2C12 COGM2C12_20200212 None None None None \n", + "3 76.0 2C12 COGM2C12_20200212 None None None None \n", + "4 71.0 2C12 COGM2C12_20200212 None None None None \n", + ".. ... ... ... ... ... ... ... \n", + "95 72.0 2C13 COGM2C13_20200212 None None None None \n", + "96 67.0 2C13 COGM2C13_20200212 None None None None \n", + "97 62.0 2C13 COGM2C13_20200212 None None None None \n", + "98 57.0 2C13 COGM2C13_20200212 None None None None \n", + "99 52.0 2C13 COGM2C13_20200212 None None None None \n", + "\n", + " sample_c value flags ... date time_created \\\n", + "0 None 45.02 None ... 2020-02-12 2022-06-30 22:37:00.759127+00:00 \n", + "1 None 39.82 None ... 2020-02-12 2022-06-30 22:37:00.759127+00:00 \n", + "2 None 37.85 None ... 2020-02-12 2022-06-30 22:37:00.759127+00:00 \n", + "3 None 35.11 None ... 2020-02-12 2022-06-30 22:37:00.759127+00:00 \n", + "4 None 34.86 None ... 2020-02-12 2022-06-30 22:37:00.759127+00:00 \n", + ".. ... ... ... ... ... ... \n", + "95 None 40.5 None ... 2020-02-12 2022-06-30 22:37:00.946617+00:00 \n", + "96 None 22.6 None ... 2020-02-12 2022-06-30 22:37:00.946617+00:00 \n", + "97 None 26.6 None ... 2020-02-12 2022-06-30 22:37:00.946617+00:00 \n", + "98 None 24.3 None ... 2020-02-12 2022-06-30 22:37:00.946617+00:00 \n", + "99 None 26.0 None ... 2020-02-12 2022-06-30 22:37:00.946617+00:00 \n", + "\n", + " time_updated id doi date_accessed \\\n", + "0 None 12524 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", + "1 None 12525 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", + "2 None 12526 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", + "3 None 12527 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", + "4 None 12528 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", + ".. ... ... ... ... \n", + "95 None 12619 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", + "96 None 12620 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", + "97 None 12621 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", + "98 None 12622 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", + "99 None 12623 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", + "\n", + " instrument type units observers \n", + "0 IS3-SP-11-01F reflectance None Kate Hale \n", + "1 IS3-SP-11-01F reflectance None Kate Hale \n", + "2 IS3-SP-11-01F reflectance None Kate Hale \n", + "3 IS3-SP-11-01F reflectance None Kate Hale \n", + "4 IS3-SP-11-01F reflectance None Kate Hale \n", + ".. ... ... ... ... \n", + "95 IS3-SP-11-01F specific_surface_area None Kate Hale \n", + "96 IS3-SP-11-01F specific_surface_area None Kate Hale \n", + "97 IS3-SP-11-01F specific_surface_area None Kate Hale \n", + "98 IS3-SP-11-01F specific_surface_area None Kate Hale \n", + "99 IS3-SP-11-01F specific_surface_area None Kate Hale \n", + "\n", + "[100 rows x 29 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ "from snowexsql.api import LayerMeasurements\n", "ssa_instruments = [\"IS3-SP-15-01US\", \"IRIS\", \"IS3-SP-11-01F\"]\n", - "LayerMeasurements.from_filter(instrument=ssa_instruments)" + "LayerMeasurements.from_filter(instrument=ssa_instruments, limit=100)" ] }, { @@ -272,7 +1580,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -658,7 +1966,7 @@ "[100 rows x 23 columns]" ] }, - "execution_count": 26, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -701,7 +2009,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.14" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/4_get_spiral_example.ipynb b/book/tutorials/snowex_database/4_get_spiral_example.ipynb index ccf1f6f..8978104 100644 --- a/book/tutorials/snowex_database/4_get_spiral_example.ipynb +++ b/book/tutorials/snowex_database/4_get_spiral_example.ipynb @@ -26,7 +26,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -44,7 +44,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -97,22 +97,22 @@ " 67.0\n", " 1N1\n", " COGM1N1_20200208\n", - " 57.0\n", + " 66.0\n", + " None\n", + " None\n", " None\n", - " 217.0\n", - " 213.0\n", - " NaN\n", - " 215.0\n", + " None\n", + " < 1 mm\n", " None\n", " ...\n", " 2020-02-08\n", - " 2022-06-30 22:28:48.330383+00:00\n", + " 2024-08-13 17:45:17.466548+00:00\n", " None\n", - " 11536\n", + " 2141594\n", " https://doi.org/10.5067/DUD2VZEVBJ7S\n", " 2022-06-30\n", " None\n", - " density\n", + " grain_size\n", " None\n", " None\n", " \n", @@ -123,21 +123,21 @@ ], "text/plain": [ " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", - "0 67.0 1N1 COGM1N1_20200208 57.0 None 217.0 213.0 \n", + "0 67.0 1N1 COGM1N1_20200208 66.0 None None None \n", "\n", - " sample_c value flags ... date time_created \\\n", - "0 NaN 215.0 None ... 2020-02-08 2022-06-30 22:28:48.330383+00:00 \n", + " sample_c value flags ... date time_created \\\n", + "0 None < 1 mm None ... 2020-02-08 2024-08-13 17:45:17.466548+00:00 \n", "\n", - " time_updated id doi date_accessed \\\n", - "0 None 11536 https://doi.org/10.5067/DUD2VZEVBJ7S 2022-06-30 \n", + " time_updated id doi date_accessed \\\n", + "0 None 2141594 https://doi.org/10.5067/DUD2VZEVBJ7S 2022-06-30 \n", "\n", - " instrument type units observers \n", - "0 None density None None \n", + " instrument type units observers \n", + "0 None grain_size None None \n", "\n", "[1 rows x 29 columns]" ] }, - "execution_count": 6, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -162,7 +162,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -389,7 +389,7 @@ " 740531.910061\n", " 3035.700000\n", " 12\n", - " POINT (740531.91 4324303.583)\n", + " POINT (740531.910 4324303.583)\n", " ...\n", " 2020-02-08\n", " 2022-06-30 22:56:52.635035+00:00\n", @@ -437,7 +437,7 @@ " 740529.975057\n", " 3035.500000\n", " 12\n", - " POINT (740529.975 4324310.19)\n", + " POINT (740529.975 4324310.190)\n", " ...\n", " 2020-02-08\n", " 2022-06-30 22:56:52.635035+00:00\n", @@ -501,9 +501,9 @@ "4 740510.844183 3033.300000 12 POINT (740510.844 4324284.052) \n", ".. ... ... ... ... \n", "106 740533.709339 3035.200000 12 POINT (740533.709 4324301.416) \n", - "107 740531.910061 3035.700000 12 POINT (740531.91 4324303.583) \n", + "107 740531.910061 3035.700000 12 POINT (740531.910 4324303.583) \n", "108 740531.808265 3036.100000 12 POINT (740531.808 4324306.913) \n", - "109 740529.975057 3035.500000 12 POINT (740529.975 4324310.19) \n", + "109 740529.975057 3035.500000 12 POINT (740529.975 4324310.190) \n", "110 740501.915674 3029.909912 12 POINT (740501.916 4324292.667) \n", "\n", " ... date time_created time_updated id \\\n", @@ -548,7 +548,7 @@ "[111 rows x 23 columns]" ] }, - "execution_count": 7, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -571,7 +571,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "metadata": { "tags": [ "nbsphinx-gallery", @@ -582,16 +582,16 @@ { "data": { "text/plain": [ - "Text(38.347222222222214, 0.5, 'Northing [m]')" + "Text(38.097222222222214, 0.5, 'Northing [m]')" ] }, - "execution_count": 8, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAG1CAYAAAAGD9vIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDTElEQVR4nOzdd5xU1dnA8d+903d2Z7Y32MbSmwgiAoIKCAIqlkhU3oglYgxq0MQWNVhjSaJIFDXGYEFii2JFRFBBQKT33mF7nW3T7/vHsiPD7szOsrM7M7vn+37mjdx75t4zZec+95TnSIqiKAiCIAiCIAiNyKGugCAIgiAIQrgSgZIgCIIgCIIPIlASBEEQBEHwQQRKgiAIgiAIPohASRAEQRAEwQcRKAmCIAiCIPggAiVBEARBEAQfRKAkCIIgCILggwiUBEEQBEEQfBCBkiC0gxtvvJHs7OxQVyPksrOzufHGG0Ny7sOHDyNJEn//+99Dcv6W+v7775Ekie+//96zLZK/R5Ik8eijj4a6GoLQYiJQ6oSqq6uZPXs2l1xyCfHx8UiSxJtvvtlk2Z9//pnf//73DBkyBI1GgyRJPo/7yiuvcM0115CZmYkkSS26IDZcFCRJYsGCBU2WGTlyJJIk0b9//4CPG2ncbjdvv/02w4YNIz4+npiYGHr27MkNN9zATz/9FOrqRYSvvvpKXJDP0MKFC5kzZ06oq9Gs2tpaHn30Ua8gsjlPPfUUl19+OSkpKX6DthtvvBFJkhg4cCBNrfAlSRJ33HGH17bW/PYJ4U8ESp1QSUkJjz/+OLt27eKss87yW/arr77i3//+N5Ik0a1bN79ln332WZYvX06/fv1Qq9VnVDe9Xs/ChQsbbT98+DCrV69Gr9ef0XEjxV133cX06dNJS0vj0Ucf5dlnn2XixIn89NNPfP3116GuXkT46quveOyxx0JdjYgUSYHSY4891qJA6eGHH2bdunWcffbZAZXftm0bH3/8cUBlg/HbJ4Qv8Yl2QmlpaeTn55Oamsr69esZOnSoz7K33347999/PwaDgTvuuIO9e/f6LPvDDz947qiio6PPqG6TJk3is88+o6SkhMTERM/2hQsXkpKSQo8ePSgvLz+jY4e7wsJC5s2bx6233sq//vUvr31z5syhuLg4RDUThMh36NAhsrOzKSkpISkpyW9Zg8FARkYGjz/+OFdddZXflnQIzm+fEL5Ei1InpNPpSE1NDahsSkoKBoMhoLJZWVnN/qA0Z8qUKeh0Oj788EOv7QsXLmTq1KmoVKpGz5k/fz5jxowhOTkZnU5H3759eeWVVxqVy87O5tJLL+XHH3/k3HPPRa/X061bN95++22vco8++miTr+PNN99EkiQOHz7s2fbpp58yefJk0tPT0el05Obm8sQTT+ByuVr82g8dOoSiKIwcObLRPkmSSE5OblSXVatWcc8995CUlITRaOTKK69sMqCaN28e/fr1Q6fTkZ6ezsyZM6moqPDsnzt3LiqVymvbP/7xDyRJ4p577vFsc7lcxMTEcP/99/t9LYqi8OSTT9K1a1eioqK46KKL2LFjR5NlKyoqmDVrFhkZGeh0Orp3786zzz6L2+32lDl1fNELL7xAVlYWBoOBCy64gO3bt3vK3Xjjjbz88sue96zhcbp//etf5ObmotPpGDp0KOvWrfPaX1BQwE033UTXrl3R6XSkpaUxZcoUr8/el927dzN16lSSkpIwGAz06tWLhx56yKvMpk2bmDhxIiaTiejoaMaOHXvGXatut5s5c+bQr18/9Ho9KSkp3HbbbU3eUCxevJgLLriAmJgYTCYTQ4cO9bTgXnjhhXz55ZccOXLE876dOh7KZrMxe/Zsunfvjk6nIyMjg/vuuw+bzeZ1DpvNxt13301SUhIxMTFcfvnlHD9+PKDXYrfb+ctf/sKQIUMwm80YjUZGjRrFd9995ylz+PBhT6Dz2GOPeeraXHdrS8Z2ybLMww8/zNatW/nkk0+aLR+M3z4hfIkWJSGsREVFMWXKFP773/9y++23A7BlyxZ27NjBv//9b7Zu3droOa+88gr9+vXj8ssvR61W8/nnn/P73/8et9vNzJkzvcru37+fX/3qV9xyyy1Mnz6d//znP9x4440MGTKEfv36tbi+b775JtHR0dxzzz1ER0ezfPly/vKXv2CxWPjb3/7WomNlZWUB8OGHH3LNNdcQFRXV7HPuvPNO4uLimD17NocPH2bOnDnccccdvP/++54yjz76KI899hjjxo3j9ttvZ8+ePbzyyiusW7eOVatWodFoGDVqFG63mx9//JFLL70UgJUrVyLLMitXrvQca9OmTVRXVzN69Gi/9frLX/7Ck08+yaRJk5g0aRIbN25k/Pjx2O12r3K1tbVccMEFnDhxgttuu43MzExWr17Ngw8+SH5+fqNuoLfffpuqqipmzpyJ1WrlxRdfZMyYMWzbts0TIOTl5bF06VLeeeedJuu2cOFCqqqquO2225Akieeee46rrrqKgwcPotFoALj66qvZsWMHd955J9nZ2RQVFbF06VKOHj3q94K7detWRo0ahUajYcaMGWRnZ3PgwAE+//xznnrqKQB27NjBqFGjMJlM3HfffWg0Gl577TUuvPBCfvjhB4YNG+b3vT3dbbfdxptvvslNN93EXXfdxaFDh3jppZfYtGmT5/OF+u/qzTffTL9+/XjwwQeJjY1l06ZNfP3111x//fU89NBDVFZWcvz4cV544QUAT+uI2+3m8ssv58cff2TGjBn06dOHbdu28cILL7B3714WLVrkqc9vf/tbFixYwPXXX8+IESNYvnw5kydPDui1WCwW/v3vf3Pddddx6623UlVVxRtvvMGECRP4+eefGTRoEElJSbzyyivcfvvtXHnllVx11VUADBw4sEXvW3Ouv/56nnjiCR5//HGuvPJKEQh1ZorQqa1bt04BlPnz5zdbdubMmUqgXxmj0ahMnz494Hp89913CqB8+OGHyhdffKFIkqQcPXpUURRFuffee5Vu3bopiqIoF1xwgdKvXz+v59bW1jY63oQJEzzPaZCVlaUAyooVKzzbioqKFJ1Op/zxj3/0bJs9e3aTr3P+/PkKoBw6dMjvuW+77TYlKipKsVqtnm3Tp09XsrKy/LwD9W644QYFUOLi4pQrr7xS+fvf/67s2rXLZ13GjRunuN1uz/a7775bUalUSkVFhef1abVaZfz48YrL5fKUe+mllxRA+c9//qMoiqK4XC7FZDIp9913n6IoiuJ2u5WEhATlmmuuUVQqlVJVVaUoiqI8//zziizLSnl5uc/X0HDOyZMne9Xtz3/+swJ4fS+eeOIJxWg0Knv37vU6xgMPPKCoVCrPd+DQoUMKoBgMBuX48eOecmvXrlUA5e677/Zs8/U9bThGQkKCUlZW5tn+6aefKoDy+eefK4qiKOXl5Qqg/O1vf/P5Gn0ZPXq0EhMToxw5csRr+6nvwxVXXKFotVrlwIEDnm15eXlKTEyMMnr0aM+2hr+J7777zrPt9O/RypUrFUB59913vc739ddfe22vqKhQYmJilGHDhil1dXU+6zZ58uQmv6fvvPOOIsuysnLlSq/tr776qgIoq1atUhRFUTZv3qwAyu9//3uvctdff70CKLNnz2507FM5nU7FZrN5bSsvL1dSUlKUm2++2bOtuLg4oOM1pbnnTp8+XTEajYqiKMpbb72lAMrHH3/s2Q8oM2fO9Hn8lv72CeFPdL0JYWf8+PHEx8fz3nvvoSgK7733Htddd53P8qd2DVZWVlJSUsIFF1zAwYMHqays9Crbt29fRo0a5fl3UlISvXr14uDBg2dU11PPXVVVRUlJCaNGjaK2tpbdu3e3+Hjz58/npZdeIicnh08++YQ//elP9OnTh7Fjx3LixIlG5WfMmOF1pztq1ChcLhdHjhwB4Ntvv8VutzNr1ixk+Zc/91tvvRWTycSXX34J1Hc1jBgxghUrVgCwa9cuSktLeeCBB1AUhTVr1gD1rUz9+/cnNjbW52toOOedd97pVbdZs2Y1Kvvhhx8yatQo4uLiKCkp8TzGjRuHy+Xy1KfBFVdcQZcuXTz/Pvfccxk2bBhfffWVz/qc7te//jVxcXGefzd8Hxq+AwaDAa1Wy/fff9+i8XDFxcWsWLGCm2++mczMTK99De+Dy+Xim2++4YorrvCaHJGWlsb111/Pjz/+iMViCficH374IWazmYsvvtjr/RsyZAjR0dGeLqulS5dSVVXFAw880GhCRCAtJR9++CF9+vShd+/eXucZM2YMgOc8DZ/DXXfd5fX8pj77pqhUKrRaLVDfilVWVobT6eScc85h48aNAR0jmKZNm0aPHj14/PHHm5wBJ3QOIlASwo5Go+Gaa65h4cKFrFixgmPHjnH99df7LL9q1SrGjRuH0WgkNjaWpKQk/vznPwM0CpROv4ABxMXFnfEA8R07dnDllVdiNpsxmUwkJSXxf//3f02eOxCyLDNz5kw2bNhASUkJn376KRMnTmT58uVce+21jcqf/noaAoCG19MQMPXq1curnFarpVu3bp79UB8wbNiwgbq6OlauXElaWhqDBw/mrLPO8nS//fjjj16BZlMajtmjRw+v7UlJSV4BCsC+ffv4+uuvSUpK8nqMGzcOgKKiIq/ypx8ToGfPngGNHWrQ3Hum0+l49tlnWbx4MSkpKYwePZrnnnuOgoICv8dtCLT8pa8oLi6mtra20ecB0KdPH9xuN8eOHQv4tezbt4/KykqSk5MbvYfV1dWe9+/AgQPN1q258+zYsaPROXr27An88jkdOXIEWZbJzc31en5Tr9eXt956i4EDB6LX60lISCApKYkvv/zyjP6eWkulUvHwww+zefNmr+5FoXMRY5SEsHT99dfz6quv8uijj3LWWWfRt2/fJssdOHCAsWPH0rt3b55//nkyMjLQarV89dVXvPDCC14DgoEmB4MDXneLvu6wTx+gXVFRwQUXXIDJZOLxxx8nNzcXvV7Pxo0buf/++xudu6USEhK4/PLLufzyyz3jV44cOeIZyxTo6wnU+eefj8PhYM2aNaxcudITEI0aNYqVK1eye/duiouLmw2UWsLtdnPxxRdz3333Nbm/4UIcTIG8Z7NmzeKyyy5j0aJFLFmyhEceeYSnn36a5cuXBzy9vD243W6Sk5N59913m9zf3OyulpxnwIABPP/8803uz8jICMp5FixYwI033sgVV1zBvffeS3JyMiqViqefftoT7LW3adOmecYqXXHFFSGpgxBaIlASwtL5559PZmYm33//Pc8++6zPcp9//jk2m43PPvvMq6Xg1FkyLdXQwlBRUeHVxXRq6wvUJ8ksLS3l448/9hrcfOjQoTM+ty/nnHMOP/zwA/n5+V6BUnMayu7Zs8erq8dut3Po0CFPyw3Ud2NptVpWrlzJypUruffeewEYPXo0r7/+OsuWLfP8O5Bz7tu3z+ucxcXFjVrucnNzqa6u9qqHP/v27Wu0be/evV4DrIM16DY3N5c//vGP/PGPf2Tfvn0MGjSIf/zjHz4Toja81lNn4Z0uKSmJqKgo9uzZ02jf7t27kWW5RUFHbm4u3377LSNHjvQ7O7WhhWf79u10797dZzlf711ubi5btmxh7Nixft/frKws3G43Bw4c8GpFaur1NuWjjz6iW7dufPzxx17nmT17dkD1bAsNrUo33ngjn376abudVwgfoutNCEuSJDF37lxmz57Nb37zG5/lGloHTm0NqKysZP78+Wd87oaLyqnjY2pqanjrrbeaPbfdbmfevHlndN6CggJ27tzZaLvdbmfZsmXIsuz3IteUcePGodVqmTt3rlc933jjDSorK71mI+n1eoYOHcp///tfjh496tWiVFdXx9y5c8nNzSUtLa3Zc2o0Gv75z396nbOpRIZTp05lzZo1LFmypNG+iooKnE6n17ZFixZ5jdX6+eefWbt2LRMnTvRsMxqNnuefidraWqxWq9e23NxcYmJiGk2FP1VSUhKjR4/mP//5D0ePHvXa1/A+qFQqxo8fz6effurVXVhYWMjChQs5//zzMZlMAdd16tSpuFwunnjiiUb7nE6n5z0YP348MTExPP30041e26mfkdFobLKLa+rUqZw4cYLXX3+90b66ujpqamoAPJ/D3LlzvcoEmsSyqb+ptWvXesbINWiYEXqmn3FL/d///R/du3cXiUw7KdGi1Em99NJLVFRUkJeXB9S3zDTkOrnzzjsxm81AfStKwzTr9evXA/Dkk08C9XePpwYxn3/+OVu2bAHA4XCwdetWT9nLL7+8xdN3p0yZwpQpU/yWGT9+PFqtlssuu4zbbruN6upqXn/9dZKTk8nPz2/R+U49ZmZmJrfccgv33nsvKpWK//znPyQlJXldAEeMGEFcXBzTp0/nrrvuQpIk3nnnnTMe9Hn8+HHOPfdcxowZw9ixY0lNTaWoqIj//ve/bNmyhVmzZnkl4QxEUlISDz74II899hiXXHIJl19+OXv27GHevHkMHTrUM56qwahRo3jmmWcwm80MGDAAgOTkZHr16sWePXsCWpohKSmJP/3pTzz99NNceumlTJo0iU2bNrF48eJG9b/33nv57LPPuPTSSz1pGmpqati2bRsfffQRhw8f9npO9+7dOf/887n99tux2WzMmTOHhIQEr667IUOGAPUDiidMmIBKpWpyfJcve/fuZezYsUydOpW+ffuiVqv55JNPKCwsbPY4c+fO5fzzz2fw4MHMmDGDnJwcDh8+zJdffsnmzZuB+r+fpUuXcv755/P73/8etVrNa6+9hs1m47nnngu4ngAXXHABt912G08//TSbN29m/PjxaDQa9u3bx4cffsiLL77Ir371K0wmEy+88AK//e1vGTp0KNdffz1xcXFs2bKF2tpaz03AkCFDeP/997nnnnsYOnQo0dHRXHbZZfzmN7/hgw8+4He/+x3fffcdI0eOxOVysXv3bj744AOWLFnCOeecw6BBg7juuuuYN28elZWVjBgxgmXLlrF///6AXs+ll17Kxx9/zJVXXsnkyZM5dOgQr776Kn379qW6utpTzmAw0LdvX95//3169uxJfHw8/fv39zsG65133uHIkSPU1tYC9TdCDb9Pv/nNb/y21KpUKh566CFuuummJvcH+7cv3Fit1kapPc6UVquNvBUWQjHVTgi9hqnyTT1Onf7eMEW5qccFF1zgdczp06f7LNtc+oFT0wP401R6gM8++0wZOHCgotfrlezsbOXZZ59V/vOf/zR6LVlZWcrkyZObPObpr2XDhg3KsGHDFK1Wq2RmZirPP/98k+kBVq1apZx33nmKwWBQ0tPTlfvuu09ZsmRJs9O6m2KxWJQXX3xRmTBhgtK1a1dFo9EoMTExyvDhw5XXX3/daxp3Q13WrVvndYymppQrSn06gN69eysajUZJSUlRbr/99ian+H/55ZcKoEycONFr+29/+1sFUN544w2/r6GBy+VSHnvsMSUtLU0xGAzKhRdeqGzfvl3JyspqNHW6qqpKefDBB5Xu3bsrWq1WSUxMVEaMGKH8/e9/V+x2u6Iov0zt/9vf/qb84x//UDIyMhSdTqeMGjVK2bJli9fxnE6ncueddypJSUmKJEmeVAGnHuN0nDJdvKSkRJk5c6bSu3dvxWg0KmazWRk2bJjywQcfBPTat2/frlx55ZVKbGysotfrlV69eimPPPKIV5mNGzcqEyZMUKKjo5WoqCjloosuUlavXu1VJpD0AA3+9a9/KUOGDFEMBoMSExOjDBgwQLnvvvuUvLw8r3KfffaZMmLECMVgMCgmk0k599xzlf/+97+e/dXV1cr111+vxMbGKoDXuex2u/Lss88q/fr1U3Q6nRIXF6cMGTJEeeyxx5TKykpPubq6OuWuu+5SEhISFKPRqFx22WXKsWPHAprO73a7lb/+9a9KVlaWotPplLPPPlv54osvmnzdq1evVoYMGaJotdqAjn3BBRf4/H06/T1uSA9wKofDoeTm5jaZHqA1v33hrq6uTkGj9/n6WvpITU1tlKIi3EmKIuY8CoIQ3g4fPkxOTg5/+9vf+NOf/hTq6ghCp2GxWDCbzUiDrwCVpnUHczlQNi6isrKyRV3MoSa63gRBEARB8E+lQVK3LlCK1FYZESgJgiAIguCfJNU/WnuMCCQCJUEQBEEQ/JMkkFo5UV4ESoIgCG0jOztbLCEhCEJIiEBJEARBEAT/JDkILUqRmbpRBEqCIAiCIPgnxigJ4cLtdpOXl0dMTEy7pukXBEEQIouiKFRVVZGeno4sR2ZrTSQQgVKYycvLC9oCk4IgCELHd+zYMbp27dq2JxFdb0K4iImJAeq/+JGUkEsQBEFoXxaLhYyMDM91o02JQEkIFw3dbSaTSQRKgiAIQrPEMI22JQIlQRAEQRD8kmQJSW5lQCZLEZmdWwRKgiAIgiD4J7reBEEQBEEQfOjEgVJk1loQBEEQBKEdiBYlQRAEQRD8EwknBUEQBEEQfBBdb4IgCIIgCMLpRIuSIIQRt6IgR2jztCAIHZgkBaFFKTJ/20SgJAghZne6+XpXAd/sKqS42o5OLTM8J57LB6TTJdYQ6uoJgiCIMUqCIISG1eHi8cW7OFhS40nEZnO6WbG/hFUHS3loQm/6pIoM7YIgCKEixigJQgh9tOkEh0prGmWrdSvgdCs8v3wfTpc7JHUTBEHwaBjM3dpHBIrMWgtCB2B3uvl2TxFuHzn9FQUsVifrjpa3b8UEQRAaCUaQFJkhh+h6E4QQKamxUedw+S2jkiQOldYwPCehnWrVedXanOw6XkmxxYpKlshJjiYnJQZVa9e3EgQhoolASRBCRB3ABVhBQSOH912Y0+XG7nSjVcuoVf7rWltrp6bWgQTExOjQ6cLjJ2hvXiXfbMnHrShIABLsOlGJOUrDledmYorShrqKghBaYjC3IAjtLSlaR5pJT77F6rOMW4HBmbGtOo+iKOwprCbPUoderWJQVzNR2tb/6VfW2lm3v4Q9eRZcbgVZgp7pJs7tnkSs0TuwsNmcHDlaQV2dw2t7TIyOzIxY1OrQBYP55bUs2ZznGSemeP4fWOocfPLzUf5vdK5oWRI6t06ccFIESoIQIpIkceVZ6cxbebDJ/bIEvZJjyE2MPuNz7CuqZt7KA+RV/hKMaVQSl/ZPY+rgrmecs6m82sYHaw5jd7pRTgYVbgX25Fk4WFjNr87LItGkB8DpdLP/QClOZ+NB6VVVNg4eKqVH90SkEN1tbjhYChI0GlFP/TixyloHBwur6JEmZh8KnVgnDpQis9aC0EFc0COJa87uAtQHRqf+b1Z8FPeM7XHGxz5SVstji3c2arFyuBQ+2ZLH22uPnPGxv92W7xUkNVAUcLjcLN2a79lWUlrTZJDUoK7OSWWl71a1tqQoCoeKqhu9jlNJwMHCqnarkyAI4UW0KAlCiP3q7K6M6JbA8r3F5FdaMWhUDM+J5+yuscit6O75YOMxXG7FZxCweGchk/qlkRyja9Fxy6pt5JfX+dyvKFBssVJUaSXZrKfcT9kG5eV1xIYguaai4DdIgvqGJpevqYmC0FmIMUqCIIRSutnA/w3NDNrxamxONhytaKo3yUOWYNXBEq48q0uLjl1WZQusXLWNZLPeb2tSA0cAZdqCLEvEGrVU1Nh9lpHA040oCJ1WJ+56E4GSIHRA1Tan3yAJ6sdIVdY5W3zsQAdeq1X1d49ajQqrzf95dFpVi+sRLGdlxfHDzkLfBSTo19Uc0LEOFVXw6tLNfLpuHzani3Nz0/j9hLO5oG/wgmBBENqXCJQEoQMyGTTIEj6TWUL9ArwJxpZPe+8SH4VGJePwkzFcLUtkJBgBSEiI4kSexe8x4xOiWlyPUxVU1rF6fykHiqvrZ9+lxjAiN5GE6Oa7FQdkxnGkuIbDxdVe2yWpvltu3IA0jHpNs8dZvv0IU577Hw6X29NVV1Bew8c/7+X+KcN48trRZ/biBCEcdOIWpcistSAIftWPc0rA3xAnCRiV2/JElhqVzJBmnjcoJx6dpr6VKD4+CoPe9z2Z2awn+gwCtgZrD5byjyV7+OlgCYUWK/mVVlbsLea5xbvZkVfZ7PNlWeLSIV25oG8K5qhfAqLMRCNXDcukT9fYZo9RXm3lqr9/gt3p9hrP5HTXB5PPfrqWT9fta/mLE4RwIUvBeUQgESgJQgc1dXBX9BqVz9+mqwd1IfYMEykOzU1gUHY8UN/yIp8yznNAZizn9UzylJVlidzcBOLjDF5jOWVZIjk5mqzM2DNODXC8rJaP1h9Dwbv1TFHApSi8vfow5X7GH51al7Oy45l+YXd+P6EXd1zSmylDM+l6slWsOW+v2E6t3YHbx8hwlSwx56v1AR1LEIR6K1as4LLLLiM9PR1Jkli0aJHXfkVR+Mtf/kJaWhoGg4Fx48axb5/3DUlZWRnTpk3DZDIRGxvLLbfcQnW1d+txc0SgJAgdVKpJzxOX9qNXcozX9hidmhvPy+LqQS0bxH0qSZIY3TeFGy7IZWhuIr27mDknN4HfjO7GRf3TGuVnUqlkMjJi6dsnhdxu8XTPTaBf3xTSUmNalT9p5b5ivxNp3IrCmgMlLTqmWiW3eLbhj7uP+93vcius3nMCpbkpdoIQpiRJQpLkVj5a9ndVU1PDWWedxcsvv9zk/ueee465c+fy6quvsnbtWoxGIxMmTMBq/SXdyLRp09ixYwdLly7liy++YMWKFcyYMaNF9RBjlAShA+saa+DRyX3Jq6wjv9KKXqOiV3J0s0uNBCrWqPVqPWqOWi0THcC4oUDtLazyOw5LUerLTAraGZsWyO9/hM6MFoR6IRijNHHiRCZOnNjkPkVRmDNnDg8//DBTpkwB4O233yYlJYVFixZx7bXXsmvXLr7++mvWrVvHOeecA8A///lPJk2axN///nfS09MDqodoURKETiDdbGBIZhz90kxBC5KEX1zQN7PJzN4NVLLE6D4ZIcs+LgjhxGKxeD1stsBSjpzq0KFDFBQUMG7cOM82s9nMsGHDWLNmDQBr1qwhNjbWEyQBjBs3DlmWWbt2bcDnEr+YgiBErNykaL/jQ2UJcpPPfAmYQP3fqH6YonQ+l4RxuRXunjy0zeshCG2mIeFkax9ARkYGZrPZ83j66adbXJ2CggIAUlJSvLanpKR49hUUFJCcnOy1X61WEx8f7ykTCNH1JghCxBrVM4nNxyr8lhmRm9jm9TBH6Vh071Vc9uxH1NqcnkHdalnC6VZ4fOr5TDy7W5vXQxDaTBC73o4dO4bJ9MvaiTpd8Lrj24IIlARBiFhZCUauOLsLizad8MobJUv1PWHXD8sKKJdSMJzfuys7n/8t/162hU/X78fmcHJu9zR+N/5shuamtUsdBKHNBDFQMplMXoHSmUhNTQWgsLCQtLRf/r4KCwsZNGiQp0xRUZHX85xOJ2VlZZ7nB0IESoIgRLTzeySRmWBk1b7ikwknJXqlxjCyexKp5vZdeiQtLppHfjWSR341sl3PKwidTU5ODqmpqSxbtswTGFksFtauXcvtt98OwPDhw6moqGDDhg0MGTIEgOXLl+N2uxk2bFjA5xKBkiAEQXmVjRMlNThdbkxGLZlBnFkmNC8zPorMYVmhroYgdFwhWBS3urqa/fv3e/596NAhNm/eTHx8PJmZmcyaNYsnn3ySHj16kJOTwyOPPEJ6ejpXXHEFAH369OGSSy7h1ltv5dVXX8XhcHDHHXdw7bXXBjzjDUSgJAit4nC6WbOjkPyyWs9vgKLApn0lDOuTTNekth9ILAiC0OZCkB5g/fr1XHTRRZ5/33PPPQBMnz6dN998k/vuu4+amhpmzJhBRUUF559/Pl9//TV6/S8tye+++y533HEHY8eORZZlrr76aubOnduyaisiA1pYsVgsmM1mKisrW92HK7S97zfnUVRe53Nm+Jiz00mKNbRrnQRB6Bza43rRcA7V1Y8jaVrXla04rLj+95eIu76JFiVBOEOlFiuF5XU+90vAjsPlXDhIBEpC0+wOF5+u28PKnUdRUBjdN4spQ3uhPblOniCEjU68KK4IlAThDB0vqvGsMN8UBSgsr8PhdKNRR+YPhNB2thwu5PK//pe88mo0J8ezvbpkA+lx0Xz64LUMygl8Vo4gtLkQjFEKF+LXWxDOkMPlDqicM8ByQudRVFnD+McWUFhZA9R/lxq+T4Un9xWd3CcIQmiJQEkQzlBMlMZna1IDjUpCJ7pRhNO88e0mKmqsuJpYqM7lVqistfHGt5tCUDNB8CGImbkjjQiUBOEMZafG+F0+QwK6pZtavBK90PF9tGanJ3t3U9yKwgerd7RjjQShOVKQHpFHjFESOjVFUSguryO/pAaH002UXk2X5GjMAWRz1mlUDOmZxLo9xY32SUB0lIa+WXFtUGsh0lVb7QGUcbRDTQRBaI4IlIROy+F0sWFXEZXVv1y0yirhWGE1GSnR9MmJb3a1927pJvRaFTsOl1NWVb8CtkqW6JZmol9OnJi9JDRpQFYKR4srcTbR9QaglmUGZiU3uU8QQiMYXWeiRUkQIsrWfSVYqr3v7BsuW8cKq4nSa8hObz7XR3qikfREI3U2J06XgkGnElm5Bb9+N34In/68x+d+p9vN7yYMaccaCUIzJCkI6QEiM1ASv+ZCp1Rd66CkwuozUSTAobxKv+NITmfQqYmJ0oggSWjW2IE53DZ+MOB9j93w37eOO5txA7u1e70EwScxmFsQOpeSCt+JIhvYHW6qa8U4ESH4JEnin7+dyCu3TaJ7Wrxne/e0eObNmMTLMyY12+0rCEL7EF1vQqcUaEuR28cYEkFoLUmS+O24wdwy9mxKq+oD94QYgwiQhDAVjFlrkfndFoGS0CmZo7XNlpEliDZo2qE2QmcmSRKJpqhQV0MQ/BOZuQWhc4k36YnS+79P6JIcjVosPSIIgtCpiauA0ClJksSgnkmoVVKTjcExURp6ZoocSIIgCECnHswtut6ETivGqGXEWekcybeQV1yD0+lGr1OTkRpNRkqMmL0mRDSn2813+0pYsruQWruLHknRTD27C13MhlBXTYhIYoySIHRKBp2a3tnx9M6Ob76wIESIoiobN7y7gb3F1agkcCuwdE8RL/94kEfG92b6uZmhrqIgRAxxyywIgtCBKIrCLe9t5EBJDQAupT6RqkupD5geW7KbZXuLQltJIfJ04q43ESgJgiB0IKsPl7GjoAqXjxQYsgQv/3ionWslRDwRKAmCIAgdwfJ9xahl3xcktwKbT1RSWSeSqQpCIMQYJUEQhA7E7nQHVs4VWLnO4GB+KW8u/ZmjReUkmIxcf9FghvTICHW1wowYzC0IYc/tcuNyuFEAtUZGFrPSBKGRvqkmnO7jfsskGLXERzWfdLWjUxSFR95azLPvf4ssy/WXcQle/OQHrho5kLfvm4ZeK5LOAiLhZDh45plnkCSJWbNmebbddttt5ObmYjAYSEpKYsqUKezevduzf8uWLVx33XVkZGRgMBjo06cPL774os9zrFq1CrVazaBBg7y2v/LKKwwcOBCTyYTJZGL48OEsXrzYq8y//vUvLrzwQkwmE5IkUVFR0ej4ZWVlTJs2DZPJRGxsLLfccgvV1dVn9H4Iv3C7FWotVmoqrFhr7Nhq7NRUWKm1WMUSI4Jwmsv7p2LUqnzeu8sS3HBOBio/3XOdxcuf/cgz739bP9jd7cbpduM82dK2aPU27nr549BWMJxIcnAeESgsar1u3Tpee+01Bg4c6LV9yJAhzJ8/n127drFkyRIURWH8+PG4XC4ANmzYQHJyMgsWLGDHjh089NBDPPjgg7z00kuNzlFRUcENN9zA2LFjG+3r2rUrzzzzDBs2bGD9+vWMGTOGKVOmsGPHDk+Z2tpaLrnkEv785z/7fB3Tpk1jx44dLF26lC+++IIVK1YwY8aMM31bBOrv+OosVlyOxt0ELoeb2korSoDrtglCZ2DUqnnxqoGoZMkrGJKov6EfmhnHjBHZIatfuHC6XDz93lKf+92KwptLfyavtLIdayWEI0kJ8VWmurqawYMHM2/ePJ588kkGDRrEnDlzmiy7detWzjrrLPbv309ubm6TZWbOnMmuXbtYvny51/Zrr72WHj16oFKpWLRoEZs3b/Zbr/j4eP72t79xyy23eG3//vvvueiiiygvLyc2NtazfdeuXfTt25d169ZxzjnnAPD1118zadIkjh8/Tnp6uv834iSLxYLZbKayshKTyRTQczoyh9WJtcbut4zOqEGrF83jgnCqHfkWXltzmCW7CnG4FbrGGrhhaAa/OScTnViah592Heb8e+Y2W+7Vu67htxOHt0ONWq49rhcN51Dd8DKStnXJShV7Ha63Z0bc9S3kY5RmzpzJ5MmTGTduHE8++aTPcjU1NcyfP5+cnBwyMnwPsqusrCQ+3jt54Pz58zl48CALFizwew4Al8vFhx9+SE1NDcOHB/7HsWbNGmJjYz1BEsC4ceOQZZm1a9dy5ZVXNvk8m82GzWbz/NtisQR8zs7AYXM2X8bqFIGSIJymX5qJuVcNRFEUXIqCWhbB0anq7M3P+pMlKaBynYEkSUiddIxSSAOl9957j40bN7Ju3TqfZebNm8d9991HTU0NvXr1YunSpWi1TQ9CXL16Ne+//z5ffvmlZ9u+fft44IEHWLlyJWq175e7bds2hg8fjtVqJTo6mk8++YS+ffsG/FoKCgpITk722qZWq4mPj6egoMDn855++mkee+yxgM/T2QQyBkkRk3cEwSdJklBH6AWqLfXJSEGWJNx+OlXcikL/7LR2rJUQjkJ2i3Hs2DH+8Ic/8O6776LX632WmzZtGps2beKHH36gZ8+eTJ06FavV2qjc9u3bmTJlCrNnz2b8+PFAfevQ9ddfz2OPPUbPnj391qdXr15s3ryZtWvXcvvttzN9+nR27tzZuhcZgAcffJDKykrP49ixY21+zkgiq5r/gZcCKCMIgnCq1HgTV4wYgMpHS5tKlshNS+DCgd3buWZhqhMnnAxZi9KGDRsoKipi8ODBnm0ul4sVK1bw0ksvYbPZUKlUmM1mzGYzPXr04LzzziMuLo5PPvmE6667zvO8nTt3MnbsWGbMmMHDDz/s2V5VVcX69evZtGkTd9xxBwButxtFUVCr1XzzzTeMGTMGAK1WS/fu9X8QQ4YMYd26dbz44ou89tprAb2e1NRUioq8lwVwOp2UlZWRmprq83k6nQ6dThfQOTojjU6Ny+F/jJJWF/IeZEEQItCc269k3d6j5JVacLl/aZpWyTJ6rZoF9/+m9d1NHUUnTg8QsivM2LFj2bZtm9e2m266id69e3P//fejUqkaPUdRFBRF8RrTs2PHDsaMGcP06dN56qmnvMqbTKZG55g3bx7Lly/no48+Iicnx2f93G6313maM3z4cCoqKtiwYQNDhgwBYPny5bjdboYNGxbwcQRvaq0KlVrG5SOJnqyWUesaf1cEQRCak55gZu3cu3n2g+X85+ufqKqzoVGr+PUFg3jg1+PonZES6ioKYSBkgVJMTAz9+/f32mY0GklISKB///4cPHiQ999/n/Hjx5OUlMTx48d55plnMBgMTJo0CajvbhszZgwTJkzgnnvu8YwFUqlUJCUlIctyo3MkJyej1+u9tj/44INMnDiRzMxMqqqqWLhwId9//z1LlizxlCkoKKCgoID9+/cD9WOaYmJiyMzMJD4+nj59+nDJJZdw66238uqrr+JwOLjjjju49tprA57xJjQmSRIGkw5bjR2HzeW1T61ToTdqxR2fIAhnLDk2hn/MmMJzt1xGVZ0No16LRi1uvhoTmbnDjl6vZ+XKlcyZM4fy8nJSUlIYPXo0q1ev9gya/uijjyguLmbBggUsWLDA89ysrCwOHz4c8LmKioq44YYbyM/Px2w2M3DgQJYsWcLFF1/sKfPqq696DboePXo0UD+j7sYbbwTg3Xff5Y477mDs2LHIsszVV1/N3LnNTz8V/JMkCX20Dl2U4mlZUqllJJEwTxCEIFGpZGKjWzf9vUPrxF1vIc+jJHgTeZSEjk5RFBwOFy6XgkolodWG7f2aIIS19syjpL75X0HJo+T8z4yIu76JXyhBENpNXZ2D8tJaHI5fulE1WhXx8VHoDSIXliCErYbU7q09RgQSGcgEQWgXdbV2igqqvIIkAIfdRWFBFXV1IrGfIIQvKUiPyCMCJUEQ2pyiKJSW1votU1ZSI9btE4RwJfIoCUJoOOwurFYHCqDTqdGJnEgdks3q9JnioYHT6cZud4nvQIjV2J3U2l3EGjRoVOJeWhDEL5IQEi6Xm5LiGqyndbdotSqSkqNRa8T03I7E2UyQdGo5kX81NDYdr+CfKw/yw/4SFMCoVfHrs7sy8/wc4qKaXjZK6EQ68aw3cbsgtDtFUSgsqGoUJAHY7S4K8i24XGIBt45EFeAyMyqR8iEklu8rZupb61h5oD5IAqixu3jr56Nc9Z+1lNX6z44vdAZykB6RR7QoCe2utsaOw+7yud/lUqiusmGOFTlNOgq9QYMsS34XOVapJHT6wH6SFEXBUmWjts6BLEmYTXr0Pp5rs7s4WlhFfkkNLpcbc7SOrDQTCWbfa0x2Jjani3sWbcPtVjj903EpCscrrPzju/08NTnwRcIFoSMRgZLQ7qqrm18aRgRK7cvtrl8eSJalFmc6VxQFu81JTY0dxQ1qjUx0jA7VKeNbJEkiNt5AWYnvAd2x8VEBnbu6xs7Bw2U4HL+0Oh7PsxBr1pOdGet13opqG2u3FeA4pYWy1uokr6SGbl3M9MmO6/SZ3ZfsLsJidfrc71IUPt6ax58v7olR5LzqvDpx15v41gvtzuVqfmaTv5YHoZ6iKOwuqGJHfiVuN+QkGjk7IxZ1Cwbg1tU6qKysw3byQinLEjEmPSazHjmAbjC3W6G4sArraRfaivI64hOiiDH90moTE6MHBcrLajl1cpskS8THRxEd3fzgJKvVwd79JTQ1Oa6i0sqBQ2X0yE1AkiRcbjc/7/AOkgBPq8nBE5WYjVq6JEc3e96ObG9RNWpZwunnb87mdHOiwkrPTv5enUpRFKprrRh0WtSdYckTESgJQvvRqGW/XW9Qv0SJ4FtpjY2XvtvPiYo66of/SHy7WyFGr+b3F3QnN6n5C1pVlY2ykhqvbW63QmVFHdY6B8mpMc0GS8VF1Y2CpAZlpbWoVDJRxl8GAseY9BijddTVOXA53ajUMlEGTcDL0eQXVjcZJHleU7Wd6ho7MdE68ktqsDv8j3U7cKKy0wdKUVpVQGkZorSdIBgIQGV1LX9/93Ne++RbSiur0ahUXHXRuTwwfQoDu2eFunpCGxBXI6HdRcc033IQE0CZzsrhcvP80r3kV9YB4FLqu0cAqq1OXli2l+Iq/92bLqe7UZB0KpvNSZXF6vcYdpuzyQH5p6qoqGu0TZYljEYtJrMeo1EbcJCkKArlTRzvdGXl9WVKK63Nprez1NhxdvKJA+N7JeOvkVcCeiVH00WM6aLcUs3IW//Cs29/RmllNQAOl4v/fbeW825+mO837gxxDduSSDgpCO1Gb9BgiPK9XIVWpwqoG6azWn+kjOJqG031lCiA0+Vm2e5Cv8cIZJxYlcXqt6Whtrb5TNoOuyvg1ADNURT8tiY18MyYVIjU3+V21T0pmvG9kvEVryrAXaNzO/1YLoCHXn2fvUfzcbm9v9NOlxuH08V1D7+Iw+l7vFdkC0ayyZZ9h6qqqpg1axZZWVkYDAZGjBjBunXrPPsVReEvf/kLaWlpGAwGxo0bx759+4L8ukWgJISAJEkkJUdjMusbdVlHR2tJSTUF3MrQGa0/Uu7358atwLrDZX6P0VzXJ9SPJfMXmASaRTtY2bYliYDGX+lODjiON+ubDaxiojQtGtPVUf3jiv5ckJsIgFqWUMsSslT/349e0puJfVJCXMPQq6618taXPzQKkhq4FYWicgufrdzQzjVrJyHIzP3b3/6WpUuX8s4777Bt2zbGjx/PuHHjOHHiBADPPfccc+fO5dVXX2Xt2rUYjUYmTJiA1eq/NbylxBglISQkSSIuPgpzrAG73QlKfbJJWVy0mmV1uBpN4z6drZlWnEADUX+/a5oAkoJKEl6z0FpDkiQSE6MoKKz2Wy4xIQqA9EQjOw+V4fDzXnTrYm60rbC8jv3HKymrsiHLEl0TjXTvYsLYgRftNWrVvHHdYLblW/hyRwFVNifZ8VFcNTCdBKNINglwMK8Qq91/K6pGpWLb/qNcfdGwdqpVx1VXV8f//vc/Pv30U0aPHg3Ao48+yueff84rr7zCE088wZw5c3j44YeZMmUKAG+//TYpKSksWrSIa6+9Nmh1EYGSEFKyLKHXd9wLUFtIjzVwoLi6ya43qG/cTjH5H08SFaWhuplxTAaDxm93S5RRS1lprd8Wo+gYXUCz5wKVkhRNeUUdNlvTLWKpKdGeJVBUKplz+6bw044Cr5mWEvXdSVlpMXQ9ZSC3oihsPVjG7qMVSNIv3Xx7jlWw70QlowamkRLXsVNWDEgzMSDNFOpqhCWDrvmA0a0oAZWLTMEYY1T/fIvF4rVVp9OhOy0lv9PpxOVyodd7/5YZDAZ+/PFHDh06REFBAePGjfPsM5vNDBs2jDVr1gQ1UBK374IQYUZ3T/IZJEF9EHBRryS/x9AbNGiamcVkjvUfbMmyRGKy0ed+jUYOei4stVqmd48kEuINXq1dGo1MZlcz6akxXuXjTHouHNyVHhmxRBs06HUqkuOjGNYvhf7dErwCwRMlNew+WgF4j4VSAJdb4cdt+dgdzXdZCh1T966p9MhI9RsquNxuLh99TrvVqV0FsestIyMDs9nseTz99NONThcTE8Pw4cN54oknyMvLw+VysWDBAtasWUN+fj4FBQUApKR4dwunpKR49gWLaFEShDCyv6iKH/eVcKikGlmS6J1qYlTPJNJPCTgy4qOY2C+VxTsa/xhIQN90E+d1S/B7HkmSSEmNoaigCvtp45UkCRKSotEF0NIXFaUlNc1EZUUddSdnwEmyREyMDrNZ3yZdqWq1THZmHF3TzdjsTmRJQq9X+2z9MujU9MqKo1dWnN/j7jla6Xe/06VwuKCKnhmxZ1p1IYJJksRDN13FjY/Pa3K/SpaZOHwQfbK7tHPNIs+xY8cwmX5puTy9NanBO++8w80330yXLl1QqVQMHjyY6667jg0b2nccmAiUBCFMfLuzgK+3FyBLeFqMNhwpY/2RMq4flsXZmb9c6K8Y1IUUk56vdxRQcHIav0mv5qJeyUzom4pabj5AUalkUtNNWK1O6mrtKCfHiRmjtcgBPL+BTq8mOTWmVdm9z4RaLaNWB6ebQ1EUSppJhwBQXGmlZ0ZQTilEoN9MHEVecRkPvfo+8snvuCRJOF0uLhjch3cemxniGrYdWWr937Vy8vkmk8krUPIlNzeXH374gZqaGiwWC2lpafz617+mW7dupKamAlBYWEhaWprnOYWFhQwaNKhV9TydCJQEIQzsK6zi6+31LUSndqs1/Pd/1x4hKyGKeGP9nZckSYzITWR4twQq6xy4FIVYg7bFi8pKkoTBoMEQhIHK9WORxGzFzqKoysbCDcf4encRNqebs9JN3DA0k8EdvMXt/humcO3FI3jzyx/Yf7wAszGKX188gvPP6tWhUygEIzH3mf48GI1GjEYj5eXlLFmyhOeee46cnBxSU1NZtmyZJzCyWCysXbuW22+/vZUV9SYCJUEIAyv3Fnu1JJ1OAX46UMqkgele2yVJIjaqow4ebT+SJJEUq6ekwup3RmFyCwdz250u3G7QaeQOdRHdeKyCaQvWU2t3eb6zh8pq+d/WfO65MJe7L+we2gq2say0JGb/9lehrkaHt2TJEhRFoVevXuzfv597772X3r17c9NNNyFJErNmzeLJJ5+kR48e5OTk8Mgjj5Cens4VV1wR1HqIQEkQwsChkhr/A7QVOFDsf1q80Dq9M2JZWeF7EKhGLZOdEuNz/6mOFFez6UApBScziUfp1AzIimNgdnyLW/3CTY3NyfSFG72CJKgf8A7w/PcH6JtqYkLv5BDVUGgLwex6C1RlZSUPPvggx48fJz4+nquvvpqnnnoKjaa+Bfy+++6jpqaGGTNmUFFRwfnnn8/XX3/daKZca4lASRDCQCC/H3IHapEIR+mJRvrnxLP9UJlXegAJUKkkRg9MQxPAGoTbj5Tz465Cr16GWpuTtXuLOV5aw6QhGREdLH2yLZ8KP0vXqCR4bfUhESh1MHIQut6UFj5/6tSpTJ061ed+SZJ4/PHHefzxx1tXsWaIQEkQwkCv1Bi2HKvwmxupV2pgrRnCmeuXHUdqvIH9JyoptdhQnUw42S3dhEHX/M9lVZ2DVbvql49p6qM8UVrLzqPlDMiOD3LN28+aw2V+u4ldCqw/WoHLrUR0QCgIDUSgJAjtoM7mpKrWgVolERuja9Q6NKpnMptP5vA5nUT90h3DmpnyLwRHgklPQjMJO33Zfbyi2TLbIzxQCmRFGoWGpWtEoNRRSEHoemv9aPDQEIGSILShGquDTftKOFFS69lm0Knolx1Pbvov02Mz46OYOjSDD9YdQzrlbr0+SJK4+fwcYkQG87BXVm1rdnmZyloHbkWJ2K7UczNj+aKJHF4NZAnOSjeLNfQ6mFB0vYULESgJQhupszn5dsMJbKcldKyzuVi/pxibw0XfU5IgDs1JIDsxmjUHSjhYXI1KluiVWp880tSB1xnrSNSy7FkixRdZkiK6neXqs7rw7PJ9jQZzN3ArMGNEdrvXS2hbokVJEFrI6nCxeGcBX+8qpLjaRpRGxYU9krh8QBrJMcGdcRCpdhwux2b3vYDt9oNl5KTGeI19SYrRcfkgkdk3UuWkRLMv3+JzvyTVl4nkVAExejX/uW4wNyzYgMPlpmEZPZUs4XIr3DYim8l9U/wfRBAiiAiUhBarsTt5+PMdHCmr9QQBNfb6wOm7vcU8eVk/chJ8rwHWGbhcbg4XVPltWVCAwwVV9GlmaQ0hcmQnxxBr1FJ5MtN5UwblRP5Ys+HZ8Xx3x/m8s+4Yi3cVYj2ZcPLGczMZKcbSdUii600QWuCdn49ytLy2URDgVsDqdPHct3t4eerZETsGIxhsTrcnr4wvkgQ1Vmc71UhoD7IscenQDL5af4yyarvnwqIo9WPNxp2VTpK5Y7S4do018ODFPXnw4p6hrorQHkKQRylciEBJaJFau5Ple4t8Tg12K1BgsbEtr5KzusS2a93CiSbAgaw6jaqNayK0t2i9hmtG5nCspIYjxdW43AqJJj09001o1eLzFoRIIwIloUWOV9ThcPlvKZEl2F9c07kDJbVMl8Qo8koat7w1UBTITIlu13oJ7UOSJDKToslMEp9vR1ZeY8VSZyfFFIVe27Evp7JU/2iVyGxQEoGS0DKBtJQogLqDJ5qz2Z0UltRiszvRaFQkx0cRddrMtH7Z8eSX1vocq5KVEo3ZKNZpE4RI8+PePJ745GeW7zwOgEGrZvqoPjxyxVCSTVEhrl3bCMast0idxCACJaFFMuOiiDVo/C5hoCh02BXEFUXhSJ6Fo3n1M5sapoIfzbOQmmikR3ac58cgLkbHhYPS+WlnIbU2l6esBOSkxzC4R1KIXoUgtK1qq4OlO45TWeege4qJkd1TIvYiebrPNx7imn9+5bWtzu7k9e+289Xmw6yefQ0p5o4ZLHVWIlASWkQlS1x5VjrzfzrS5H5ZgkFdY8mI65g/FHlF1Z4gCbzz5RSU1KBSSeRm/jKLLSnWwKXDsygoq8NSa0etkklPiApoOQxBiDSKovDsV1t45svN1Nh/majQI8XM6zeOYmSP1BDWrvWsdic3vb4Ut1tp1KXuciucKK/m4Q/X8Ppvx4akfm2pM3e9idSpQotd1j+Nyf3qf/Aa/nAa/rd7UjR3X9QjRDVrW2634hUkNSWvqBqH0zvBpCRJpCVE0SsjltwA1wwTOiZFUSgoq2XN7kJWbM9n88FSaqy+W2cjzexFG3jkk/VeQRLAgSILE/7xFesPF4eoZsHx8foD9akffOx3uRUWrtmDpc7ervVqD5L0S/fbmT9C/SrOjPjFFlpMkiR+OyKHsb2SWbq7kAKLjRi9mlG5iZzdNbbDLoRZVWPH4XT7LaMoUFZhJSWxc+eREhqzO1ws25xHQUVd/QXj5NV284FShvZMol+E59MqqKzlucVbmtznVhScbpj9yXq+vHtiO9csePbkl6NRyThcvn8H7E43R0osDMhIbMeaCW1JBErCGctJMDJjZLdQV6PduNz+g6RfygWwaqjQ6Xy/LZ/Cijqg8cKyP+8tJkqnJic1JgQ1C44P1h08uRBu01xuhaU7TlBYWRuxY3ii9RrcAawKHK3veJM0RNebIAjNigpwUdoog7j/ELyVVlk5Ueo7VQTA5kOlfgONcFdkqUMl+7+kKEBxtbV9KtQGrhiS6/dGSJJgQEYC2YmRG/D60vputyCsFRciIlAShGYoioLD6UIlS8TG6PyW1evUmKP9lxE6n6NFNc2Oz6iotkd0pvb0WCPOZlpdJQlSI3j6fI/UWH49rIfPVQcUBWZfOSxiAwJ/ZH5pVTrjR6hfxBmK1HoLQptTFIXSslp27ilm6/ZCtu4oRHG60anlJluQZVmid7f4DvkjKbSOy+0OqNchkrttpw7thtpPi5JKlrh0YCaJEb5o9uu/HcuV59QPOVDLEhqVjCSBVi0z78YLmTKk8wxH6CxEH4Eg+JBXUEVBYbXXNqfTjVqS0Bk0VFkdnrEmiXEGstJNGKM63tgEofXionU+l/1poFZJGPWR+5OcGKPn8SuG8OD/1jXap5Il9BoVT1w1NAQ1Cy6DVs17d0xk27ESPvp5P5V1dnKTzUwb0Yv46MgOAv2RJan163dG6E1k5P5VCkIbqq11NAqSTuVyuumTE09MjA61SkYV4NpuQueUlRyNVi1j9zFrUjpZZu/xSpwuN7FGLV2SoiNuBukfLxmIUa/hic82Ulz1y1ikIVmJvPyb8+nXJbJn9p1qQEZip5rZVp8eoPXHiEQiUBKEJhSX1gRQppbEBJEGQGieWiVz4cA0vt10AgXvWW8S9WsDHi2o4nhhNUj1+3UaFSP7p5IWHzljeiRJ4vaL+vLbUb35cV8BFqud7snmDhUgCZ2PCJQEoQl1fpZoaWCN4IG3QvvrkmBk8rmZbD1UxtGiahTqgyGDRqa2zoEkSfWz4k4GUTaHi+83n2D8ORkkmCKrS0ejlrmoT3qoqyEEkeh6EwTBixxAV5ocYd0iQuglmvSMOSsdt1vB6XZjqbGzZP1xnxcQRYHth8u4YKAIOoTQEl1vgiB4iYvVU1Vl81smPtbQTrUROhpZltDKKo4WVSNJjRNQNlCA48U1OF1u1GIcXMQ6XlHHv1YdYtHWPGwON0MyY/nd+d0Y3b3zjHGKZCJQEoSTHA4XlRVWHA4XsgxajYzd0fTgW1mWSE4S45OE1vE1uPt0IlCKXKsPlnLpq6upc7hxnYyIj1XU8dHmPP40tgdPXdo3IlKKSEHoelMi4HU2RQRKQqenKAqlJbWUlHgP4NbIMiqdRJ2tfpHbhuW5VCqJ7jnx6MTitkIrxRg0+E3XDWhUMlq1qn0qJARVtc3JlNd/otbh8koP4Tz5j78v28eQjFiuHtQlRDUMXGfuehO3KEKnV1FhbRQkNZCRSIzVk5xoJDExiuzMWAb2SyVaZN8WgqBbmsnvfgnI7WIS4+Ei1H/XH8NS5/CZQ0uWYM53+9u3UkKLiVtioVOrb03ynwqgrs5JbnczGo24qxeCy6BTc3aPRDbuK2m0TwKMeg39s+Pbv2JCUKw4UIosgctHoORWYO2RchwuN5ow71oNxqw30fUmCBHIZnXiDGCcSHW1jbi4yMlnI0SOPplx6LUqth8qw1Jbn5ZCliRyUmMY1D0BnQjQI1aExgVN6sxdbyJQEjo1d4CrtTez1qcgtEpOqonslBiq6hw4XQrRBrUYl9QBjOqWwPsbjvvcr5IkhmbFhn1rEnTuFqXw/3QEoQ1ptYHdK+h04qIltC1JkjBFaYmP0YkgqYO47pwMzAYNvoaYuRSFP1zYvX0rJbSYCJSETk2tlomJ8T8wW62WMRrFYreCILRMtE7NZzOGE6VVoTolWFKfjJzuv7hnRMx4g1+63lr7iESi603o9FJSoqmrczQ5VkmSIL2LOSLynAhCuKuotbPyQAkFlTYMGpmh2fH0TI7u0H9f5+XEs/3P43h99WE+3ZpPncPFkIxYfnd+DufnRk7CSdH1FgaeeeYZJEli1qxZnm233XYbubm5GAwGkpKSmDJlCrt37/bs37JlC9dddx0ZGRkYDAb69OnDiy++6PMcq1atQq1WM2jQIK/tr7zyCgMHDsRkMmEymRg+fDiLFy/2KmO1Wpk5cyYJCQlER0dz9dVXU1hY6FXm6NGjTJ48maioKJKTk7n33ntxOsV6YOFOrVGRnRNPXLzBaxp2jElHdk48UVGaENZOEOpnZ7pcbpRTxtQ5XW6OltVypLQGq8MVwtoFZumuQu7+aAv/23SC1QdLWLaniL9+vZtnluyh1t6xfyfTzQZmT+zDxvvHsOvhi1kwfWhEBUmdXVi0KK1bt47XXnuNgQMHem0fMmQI06ZNIzMzk7KyMh599FHGjx/PoUOHUKlUbNiwgeTkZBYsWEBGRgarV69mxowZqFQq7rjjDq9jVVRUcMMNNzB27NhGAU7Xrl155pln6NGjB4qi8NZbbzFlyhQ2bdpEv379ALj77rv58ssv+fDDDzGbzdxxxx1cddVVrFq1CgCXy8XkyZNJTU1l9erV5Ofnc8MNN6DRaPjrX//ahu+eEAxqtUxKSgzJydG4XQqSLIncNULIWa1Oikuqqay0AvUZ4eNiDewsq+WHfcXU2usDJLUscW63BCYPSAvLWXLrj5Sx4Oejnn+fOoVib1EVL/9wgHsv7tX+FRMC1plnvUmKEuC0nzZSXV3N4MGDmTdvHk8++SSDBg1izpw5TZbdunUrZ511Fvv37yc3N7fJMjNnzmTXrl0sX77ca/u1115Ljx49UKlULFq0iM2bN/utV3x8PH/729+45ZZbqKysJCkpiYULF/KrX/0KgN27d9OnTx/WrFnDeeedx+LFi7n00kvJy8sjJSUFgFdffZX777+f4uJitNrAxrhYLBbMZjOVlZWYTP6T0QmC0HHV1to5dLis0TpwiqJQ7XDx5cEyrK5fuoslCTLiorj9ou5hNYtKURQe+XwHx8vr/CYhf/yyfmTFixQcLdEe14uGc5z11Beo9K1btsllrWHLQ5dG3PUt5H9NM2fOZPLkyYwbN85vuZqaGubPn09OTg4ZGRk+y1VWVhIf752gbf78+Rw8eJDZs2c3Wx+Xy8V7771HTU0Nw4cPB2DDhg04HA6vOvbu3ZvMzEzWrFkDwJo1axgwYIAnSAKYMGECFouFHTt2+DyfzWbDYrF4PQRB6NwUReHY8YomF8uVJAmjRsXQ1JjTngNHy2r5+WBpO9UyMOW1Do41EyTJEmw8Wt5udRKElghpoPTee++xceNGnn76aZ9l5s2bR3R0NNHR0SxevJilS5f6bJ1ZvXo177//PjNmzPBs27dvHw888AALFixArfbd07ht2zaio6PR6XT87ne/45NPPqFv374AFBQUoNVqiY2N9XpOSkoKBQUFnjKnBkkN+xv2+fL0009jNps9D39BoCAInUN1jR2HjwWZ4WRCSrMenapxX8aaMAuUAln4V5Ik7C6RrCycyVJwHpEoZIHSsWPH+MMf/sC7776LXq/3WW7atGls2rSJH374gZ49ezJ16lSsVmujctu3b2fKlCnMnj2b8ePHA/WtQ9dffz2PPfYYPXv29FufXr16sXnzZtauXcvtt9/O9OnT2blzZ+teZAAefPBBKisrPY9jx461+TkFQQhvVmvzg5tlScLURB6w8hp7W1TpjMUbtejU/i81LrdC11hDO9VIOBOSJAXlEYlCNph7w4YNFBUVMXjwYM82l8vFihUreOmll7DZbKhUKk9LS48ePTjvvPOIi4vjk08+4brrrvM8b+fOnYwdO5YZM2bw8MMPe7ZXVVWxfv16Nm3a5Bnc7XbXzxxRq9V88803jBkzBgCtVkv37vWJv4YMGcK6det48cUXee2110hNTcVut1NRUeHVqlRYWEhqaioAqamp/Pzzz16vsWHQeEOZpuh0OnQ6scBqaymKgt3mwn5y9oxOrw44maQghJtA77xdTfTNGcJsMLdWLTO6RyLLdhc1uTisRH2dh4o17YQwFbIrydixY9m2bZvXtptuuonevXtz//33o1I1/mNXFAVFUbDZbJ5tO3bsYMyYMUyfPp2nnnrKq7zJZGp0jnnz5rF8+XI++ugjcnJyfNbP7XZ7zjNkyBA0Gg3Lli3j6quvBmDPnj0cPXrUM45p+PDhPPXUUxQVFZGcnAzA0qVLMZlMni68SOJwurG73Bg0qrCf/eV0uCgtqcF5WleFVqsiPsmIKowGtgpCIGJidOQXVPncrygKtU435ae1PEkSnJMTfgHHVYO6sDPfQn6l1StYkiWQkPjd6G5oxd9pWJOC0HXmDu9LiU8hC5RiYmLo37+/1zaj0UhCQgL9+/fn4MGDvP/++4wfP56kpCSOHz/OM888g8FgYNKkSUB9d9uYMWOYMGEC99xzj2cskEqlIikpCVmWG50jOTkZvV7vtf3BBx9k4sSJZGZmUlVVxcKFC/n+++9ZsmQJAGazmVtuuYV77rmH+Ph4TCYTd955J8OHD+e8884DYPz48fTt25ff/OY3PPfccxQUFPDwww8zc+bMiGoxyiuvZcXuIvYWVKFQfzc4OCuOUb2SidKFXwuNy+WmuLAadxO3qna7i5LCapJTY5DCPNgThFNptWrMZr0nLcDpJElia3G11wBpWYIorZqR3cMvP0+UVs3DE/vw1fYClu8posbuQpJgUNdYLhuYRrfE6FBXUWhGMBJOtvb5oRJ+V76T9Ho9K1euZM6cOZSXl5OSksLo0aNZvXq1p8Xmo48+ori4mAULFrBgwQLPc7Oysjh8+HDA5yoqKuKGG24gPz8fs9nMwIEDWbJkCRdffLGnzAsvvIAsy1x99dXYbDYmTJjAvHnzPPtVKhVffPEFt99+O8OHD8doNDJ9+nQef/zx1r8Z7eRAURULVx9G4Zc8J3anm7UHS9lTUMUtF+RiDLNgqbba3mSQ1MDpdFNba8cYHTnBqiAAdEk343IpVFfbGu07VmtnT3kdEoBUP+MtOUbPDSOyidGHZ4LUKK2aXw3uylVnd6HO7kKrlsMqjYHgn0zrW5Qi9dMOKI/SmUxZj6QcCeEkVHmUXG43zy/eTZ3d1eQ0XkmCQZlxXD64a7vVKRCFeZYmlx45lVanJilF3LEKkUdRFOrqHFRWWnG63Gi1KuJiDWi1avIr69hXWIXbDVkJUWQnGiN2sKxwZtozj9KwZ79CbWhdHiVnXQ1r75/UMfMoxcbGEhcXF/AjPj6egwcPtnXdhSDak19FrY8gCervWLceqwi7pRL8tSb9UkZMOxYikyRJREVpSUszkdE1lpTkGM8khTSzgdE9k7mwdzI5SR17vTQh9Bq63lr7CJTL5eKRRx4hJycHg8FAbm4uTzzxhNcyPoqi8Je//IW0tDQMBgPjxo1j3759QX/tAfejfPTRR40SOTZFURTPGCIhchRZrMgSTc5KaeByK1TU2kk1h880XpVaxm33H7ypm5maLAiC0JYUReHLrcd5eflONhwpRauSuWxQJneM7UO/9LhQVy8gMq3vOmvJ85999lleeeUV3nrrLfr168f69eu56aabMJvN3HXXXQA899xzzJ07l7feeoucnBweeeQRJkyYwM6dO/2mHWqpgAKlrKwsRo8eTUJCQkAH7datGxpNePaTC03TqOQmswA3VS6cGKN1VJTVNltGEAQhFBRF4Z73f+bl5btQyRKuk3ejb63ax1ur9vHB7WO49CyRaPh0q1evZsqUKUyePBmA7Oxs/vvf/3rS8CiKwpw5c3j44YeZMmUKAG+//TYpKSksWrSIa6+9Nmh1Ceiqd+jQoYCDJKifjSYyTEeW3mkmv0sMACREa4k3BrZmXXuJMmrQ+hlgbojSoNOH1wB0QRA6j482HObl5bsAPEESgNOt4HIrXP+v7ymuanp2YzgJZsLJ05ftOjXlT4MRI0awbNky9u7dC8CWLVv48ccfmThxIlAflxQUFHgtLWY2mxk2bJhnabFgEVcQAYCEGB19u5jYdcLiM2C6oHdK2I2DkCSJxGQjlgorNdU2T6uYJEtEx+iIMenCrs6C0FYsVgf/25LHlzsLqbW76Jcaw7RzMhjUxRzqqnVa//x2J7Ik4W6iyV4B7E4Xb67ax72XDGj/yrVAMJYgaXj+6Q0ps2fP5tFHH/Xa9sADD2CxWOjduzcqlQqXy8VTTz3FtGnTgF+WBmtq6TB/y4adiTMKlNatW8d3331HUVFRo4Gyzz//fFAqJrS/KYMzcLiOsq+gyvOFVhRAgov7pzEgIzaU1fNJkiTMcQZizHqczvrxShqNSgRIQqeyr7iaX7+1jpLq+iVMFGBnYRXvbTrBXaO7ce+YHqGtYCekKAo/HyppMkhq4FbgpwNF7Vir0Dt27JjXrLemcg1+8MEHvPvuuyxcuJB+/fqxefNmZs2aRXp6OtOnT2/P6rY8UPrrX//Kww8/TK9evUhJ8W5hEBemyKZVy1w/PJu88lq2H6/E6nARb9QyKCuO6DDNzXIqWZbEsiVCp+RwufnNgg2U1Ti8WoQbunrmrjhIz6RopgxIC00FOzGVDG4/800kCdRhNvazKcFsUTKZTM2mB7j33nt54IEHPGONBgwYwJEjR3j66aeZPn26Z2mwwsJC0tJ++V4XFhYyaNCg1lX0NC2+qrz44ov85z//4cYbbwxqRYTwkR4XRXpcVKirIQhCgJbuKeKEjyzeUH+BemXVIREotTNJkhjTJ51vd+Z5jU/yosDYPuH/ubR3Zu7a2lpk2TuAVKlUnl6snJwcUlNTWbZsmScwslgsnoXtg6nFgZIsy4wcOTKolRAEQRDO3MqDZahlCaePi7FbgR0FVVisDkwR0Drckdwzvj9Ltp9ocp9KkjBHabl+WG471yr8XXbZZTz11FNkZmbSr18/Nm3axPPPP8/NN98M1Aehs2bN4sknn6RHjx6e9ADp6elcccUVQa1Li9v77r77bl5++eWgVkIQBEE4c4EkXgV8t2oIbeai3mnMuXYYEqCWTx2qAjEGDV/NujgyhjYE6RGof/7zn/zqV7/i97//PX369OFPf/oTt912G0888YSnzH333cedd97JjBkzGDp0KNXV1Xz99ddBzaEEAS5hciq3283kyZPZu3cvffv2bZQv6eOPPw5qBTubUC1hEkkstXb2nKjEUmNHo5bJTomha6IxYhdcFITW+mDTCf746Xaf+yUgM87AyrtGheVY0tIqG5sOl3G4qBq3otA1wcjZ2fGkxYVPctvW2p1fwb9+2MPPh4rRa9RcelYGN4zoTrzxzPO8tecSJhe/8A2aVi5h4qirYend4yPu+tbirre77rqL7777josuuoiEhISw/KMTOq4th0rZuL8U6eRCoJIEB/KriI/RMWFwF/RiMLfQCV3WP5UnvtmDxepoMru+Atw6PDssf6/35ln4YtNxAE96j915lew6UcmFfVMY0i3wHH7hrHdaLM9fOyzU1ThjwRzMHWlafFV56623+N///ufJlimED5db4XBBFftPVFJV60CjlslMjqZnhhljBDTtNudAvoWN+0uBX35QG/63vNrGsi15TDonIywvBoLQlgwaFf+57mz+750N2JxuXCf/MFQSuBS4amAavzkn/JIAV9ba+XLT8UarAjT8+/udhaTGGugSLyaXCKHT4kApPj6e3Fwx8CzcuNwKK7bkUVTxy8wXl93FvhOVHMy3cNGgdOJNwe23bU+KorDlUJmf/VBUYaXEYiUpjNaiE4T2MjQzjm9/P5I3fz7KFzsKqHO46J0SzY3nZnJJ7xTkMLyd33qk3O/SSZIEGw+VikApDLT3rLdw0uJA6dFHH2X27NnMnz+fqCjx5Q0XOw+XewVJDRQFXC6FH7cVcOnwrLD8sQxEjc1JZY3dbxlJgmPFNSJQEjqtjDgDj0zoxSMTeoW6KgE5Vlrrd+kkRakvI4Reey+KG05aHCjNnTuXAwcOkJKSQnZ2dqPB3Bs3bgxa5YTAuNwK+09U+tyvAHV2F/mltXRJat1gvFAJZFaPhJjVIwiCIARXiwOlYOcnEFqv1urA7nT7LSNJUGqxRmygZNSr0ahlHH5ep1uBBNOZzyARBKF9ZSUZKaio89mqJEmQlRiZv1kdjeh6a4HZs2e3RT2EVgh08HIkDnJWFIVaqxOXS6FnuomdRyua/FGVAK1GJis5ur2rKAjCGRqYGce6A6U+W4IVBQbndIxZb5FOzHoTIppRr8aoV1NjdfosoyiQGh9ZY3fyi6s5eLwSq61+oSRJgrQYPQXVVq8p0JJUf6dy0cB0VHKk9oILQvDU2V2U1tiJ0qqIN2pDXR2fYgwaLh/SlU/XH0dB8Qzsbkj/cfGAtA6VS0mITAEFSvHx8ezdu5fExMSADpqZmcnKlSvJyspqVeWEwEiSRO/MWDbsLfGxH2KjtSSaI2fW2+ETFg4cq/Dapij1X9gss4ESq4MqqxOVLJGTEsOA7Dhio0W3m9C5ldfa+WjjcX46VOZZzqRbopGrBnVhQBdziGvXtG4pMdx8US5bjpRzqKga5WTCyUFZcSRG8EzdjkZ0vTWjoqKCxYsXYzYH9odWWlqKy+VnuWQh6HLTTVTVOdh7rNJzN9YgWq9h1IC0iOl6s9qcjYKkU7lcCmdlxtE9MzZiXpMgtLXyWjuPfrGzUdLJQyU1/P3bvfxuVDeGh2nyRnOUltF9UhjdJyXUVRF8EF1vAZg+fXpb1kNoJUmSOLt7IlnJ0RzIr8JSY0erlslIjiYjORpVBH1D84trmi2TV1RN98zYtq+MIESIjzYebzIzd8M/5685zOCMWHQaVbvXTRAiWUCBktvtf0aVED7iTfqITiwJUOdnrFUDp0vB6VLQqCMnABSEtlJnd/HTobImly9pYHO6WXu4jNE9ktqvYkKHUZ9HqZVdb8GpSrsTg7mFsKNW1/85NpcRKZJayQShLZXW2D1jknxRyRKFVbZ2qpHQ0UhB6HqL1JESkRrgCR1YSkKU3yBJApLjDRGbZVwQgi1K23x3mqIoGES3m3CGGgZzt/YRiUSLkhAWrFYnZWW1WK0OZFkiIUZLaZWPJUskyA7TGTyCEArxRi3dEo0cKqnxeZPhVmBoVly71ksQOgIRKHUSiqJQabFRW+dAlsBs0mMwaJp/YjsoLKqmoKDKa5sEJBo1lNXWD05t6IrTamT6d08kJoxzwwhCKFw1qAt//3Zvk/skYHi3BFIifPyiEDpi1pvQoVXX2Dl4uAyH45dB+SfyqzDF6MjJikOtDl0PbEVFXaMgyUOBVLMeQ4wORYHoKA0JcYaIbb4VhLY0oIuZ343qxvw1h7E53ahkCUVRcCv1QdLNI7JDXUUhgok8Si1gsVia3C5JEjqdDq1W3OmHE6vVyb4DpU0uKmupsrH/YCm9eiSGLB9RUVG13/12u4uuJj0xMSKZpCA0Z3i3BAZnxLL2cBkFFitRWjVDs+JES5IgtEKLA6XYWP9J/rp27cqNN97I7NmzkcVyEiFXUFTVZJDUoKbWQVWVDVMIfkidTndAqQAsVTYRKAlCgHQalUgBIASddPLR2mNEohYHSm+++SYPPfQQN954I+eeey4AP//8M2+99RYPP/wwxcXF/P3vf0en0/HnP/856BUWAqcoCuUV1mbLlVXUhSRQUpTmEgC0rJwgCILQNsQYpRZ46623+Mc//sHUqVM92y677DIGDBjAa6+9xrJly8jMzOSpp54SgVIY8Nea1MDlCk0golbLqNUyTqf/hKZRYTLoXBAEQeh8WhworV69mldffbXR9rPPPps1a9YAcP7553P06NHW105oFUmS0Ghkr0HcTdEFkIOlLUiSRGKi0fdgbkCWJWJjxerhgtCRud0KW49VsO5gKcVVNrRqiX5dYhmWm0C8WOw6LMgEYTB3hHa+tXgQUUZGBm+88Uaj7W+88QYZGRlA/aK4cXEiX0c4SEowNlsmMSGqHWrStKREI9HRTU8AkCTIzo4TiSUFoQNzuRXeX3uETzceJ7+iDofLTY3NxbpDpby6fB9HS5tf+1Foew1db619RKIWtyj9/e9/55prrmHx4sUMHToUgPXr17N7924++ugjANatW8evf/3r4NZUOCPJSUbKK+p8DppOTYlGrw9d15YsS3TLiaesrJaSklqsNmd9K5JZT1KSMaR1EwSh7f20v4S9J1uVTx0EoCj1azq+99MR7rmkN2qVmBwkhEaLA6XLL7+c3bt389prr7F3b31ys4kTJ7Jo0SKys7MBuP3224NaSeHMqVQyvXokciLfQklpLQ3jorUaFakp0SFtTWogSRIJCUYSAmj9EgSh41AUhbUHSnzvp37B3515lQzMEL0UoSQjBWFR3MhsUjqjhJM5OTk888wzwa6L0EZUKpnMrrF0STNhs7mQZNDr1CHLnSREHqvdRUWNDZUskxCjE92hQlBUW51UNZMiRJbgRFmdCJRCTMx6a6GKigp+/vlnioqKcLu9BwrfcMMNQamYEHwqlUxUlGi+FgJXZ3eyencR+/MtntbIKJ2Kwd0S6ZfpP6eaIDQn0IA7Ui+wTTlcVsv6o+UADM+Op0uETFaRgpCZO1J/L1ocKH3++edMmzaN6upqTCaT1wuXJEkESoLQQVjtLj5Zc4Qqq4NTU1nV2lz8uKuQGquDYb2SQ1dBIeJFaVUkm3QUWWw+y7gVyE2JacdatY2SGhuzPt7Gt3uKPWOxJOCy/qn8fUp/zCINSthqcfPCH//4R26++Waqq6upqKigvLzc8ygrK2uLOgqdiNvlxuVyiySTYWDL4TKq6ryDpFNtOlRGRY29fSsldCiSJDHSTxZxWYLEaB25ydHtWKvgq7E7ueLfa1m+r8R7wDrw5Y4Cpr65Dnsz+eRCrTPPemtxoHTixAnuuusuoqJCPwhY6Dhqa+0U5Fk4drSC4ycfFeV1ASXMFIJPURR2HivH37svSbDneEV7VUnooAZkxDKqV32w1HAhbbiemgwapo3IjtgumwbvbzzB/uIaXE38nrkU2Hyiks+254egZoFrWBS3tY9I1OKutwkTJrB+/Xq6devWFvUROqEqi5Wy0lqvbW63QmVFHdY6B8mpMWLwcDtzuhVszSQqRQFLnaN9KtTJ7Sqs4tNteWzLq0SWJIZkxDJlQDo5HWCmqCRJjOmbSt90MxsOl1FYaUWnUdG3i4n+XWLRqCN/XOXCDcf97pcleG/jCX41qEs71UhoiRYHSpMnT+bee+9l586dDBgwAI3Gu1/18ssvD1rlhI7P6XQ3CpJOZbM5qbJYMUfIgMeOQi1LqGSpyTtgDwn0Icrq3pl8vOUEr685jEqScJ3sB/12TzHf7CniTxf1YEzPjjFOLDXWwOQOGigUVtv8ts66FSioan5dzlCSOYMuqCaOEYlaHCjdeuutADz++OON9kmShMvlan2thE6jusr3IM4GVRYrJrM+4pvfI4kkSXRPM7E3r9LnGCVFge5ppvatWCezs8DC62sOA3iCpFP/+x/f7aN3SgzpZnEjEc66mPQUV/kOlmQJuoT5ZyhJUqt/gyP1N7zFAZ7b7fb5EEGS0FIOR/PfGZdL8XmxFtrO2d0SUMlSkyniJCAj0UiqaOlrU59uy292AOyXOwvapzLCGbv+nK7NtihdP6Rru9VHaJlIbQkTOohAB/dF6I1IRIs1arn83EyiT05bPvUj6JYaw/hBXSL2DjFSbMurxF/vp1uBrScq269Cwhm5ZlAXBqSZUDXx9yJLcF5WHJP6poSgZoHrzLPeAup6mzt3LjNmzECv1zN37ly/Ze+6666gVEzoHKKMGqqr/Xe/GaI04oIcIslmA9eP7sbx0lpKq6yoZZnMJCOmqKYXMhaCK5CvfaTOJGqK1eFiT2EVTrdCRpyB5Bh9qKsUFAaNiv/dfC4PfrGTRVvzcJ0MfjWyxDVnd+HJyX3QhPladhK0egGSSP2mBhQovfDCC0ybNg29Xs8LL7zgs5wkSSJQElpEb9Cg0aqw25zU2V3U2Zy4FAW1LBGl06DTyGIgd4hJkkRGopGMxMifYRVpBneN5bt9xZ4L6+lkCQZnxLZrndqC263wyZYTLNlZiO2UfEL900zcNCKbxGhdCGsXHGaDhnnXnMWjl/Rm4/EKJAnOyYgjwShuOsJdQIHSoUOHmvxvIbLY7E5KSmuxO9xoNTKJCVHotGe0ik3QSJJEfKKR7buLcJzyA+l0KVgdNkzRWjRiZpXQSU0ZmM6yvcVN7pMAlSQxqW9q+1aqDfxnzWFW7m+8OO7OAgtPfLWLxy7rR2wHyVydHKPjkj7h3c3WlGDkQYrU1s/wbusTgkJRFI6cqGTjtgKO5lkoLKnmaJ6FjdsKOHK8IuRZsA8eLfcKkk5lqbZzLM/SzjUShPDQPTGauy/qgXTa+A5Zqk/h8PCE3iRFeGvLkbLaJoMkqB+DZbE6WBzmyRg7AzlIj0jU4uYEl8vFm2++ybJly5pcFHf58uVBq5wQHHmFVeQVVHn+fWpclFdYjUol0zVE07zrrA4q/azzBFBQVE3X1BhUYd6HLwht4eJeyfRJieGLHflsy6tEkiTOyYhjUt9UkmMiO0gC+HF/CbKEz0HrbgV+2FfCtedkiLGKISRJrZ9UE6kfX4sDpT/84Q+8+eabTJ48mf79+4svbphzud2cyK/yW+ZEQRVpydEhCUQqA8ij5HYr1NQ6MHWAi4IgnImusQZ+N7JjroZQXmtvNv1HncOFw62gVYnrjdD+Whwovffee3zwwQdMmjSpLeojBJmlyuY/uzInlwupshEfgkHTgfb6KX6zkAiCEKnMBg2S5P+3QKeW0UTq3PJTOF1uPt+ez8J1RymqstEt0ciN52Uzunti2Dc6SEEYoxTur9GXFgdKWq2W7t27t0VdhDbg8jVd5vRyIVp8Nia6+RkfkgRGg5gZIggd0cjcBL7dXeRzvyzB6B7hH0g0p6LWzqWv/MjPR8o9y9GsO1LGu+uOMnVwV978zVDUYTy8oDOnB2jxp/LHP/6RF198MeQDgIXAGPSBxcJRAZYLtugoLdHNTI9NSYii2mKlrKQGS0UdTqfIAC8IHUW3xGiGZcc3eRGVJYjSqpnYL/Jn9t3y7no2HKsAflmCxnnyBvXDjcd54utdoapa2MrOzvYsnXLqY+bMmQBYrVZmzpxJQkIC0dHRXH311RQWFga9HgEFSldddZXnsWrVKt59911yc3O57LLLvPZdddVVZ1yRZ555BkmSmDVrlmfbbbfdRm5uLgaDgaSkJKZMmcLu3bs9+7ds2cJ1111HRkYGBoOBPn368OKLL/o8x6pVq1Cr1QwaNMhr+9NPP83QoUOJiYkhOTmZK664gj179niVOXDgAFdeeSVJSUmYTCamTp3a6AMpKytj2rRpmEwmYmNjueWWW6iurj7j9yQYjFFajFH+p9VGGTQYQ5hAsGdOPFpN4xQAkgRp8VFoJZmaajt1tQ6qLDYK86qoqgzvBSQFoTUcTjfFljqqrY5QV6VdzDg/h3G9k1Gf1r2Wk2DkkYl9SDBG9vjEA8XVfL4t32fLvQK8/MN+6uzhexPYkB6gtY+WWLduHfn5+Z7H0qVLAbjmmmsAuPvuu/n888/58MMP+eGHH8jLy2tVHOJLQM0IZrPZ699XXnllUCuxbt06XnvtNQYOHOi1fciQIUybNo3MzEzKysp49NFHGT9+PIcOHUKlUrFhwwaSk5NZsGABGRkZrF69mhkzZqBSqbjjjju8jlVRUcENN9zA2LFjGwU4P/zwAzNnzmTo0KE4nU7+/Oc/M378eHbu3InRaKSmpobx48dz1llneWb1PfLII1x22WX89NNPyHJ9vDlt2jTPh+lwOLjpppuYMWMGCxcuDOr71VK52fFs312Eu4k/UlmW6J4dF4Ja/UKnUzOwbwpFJdUUldTidLrR6VQkxOig6awBWCqtyCoZYwBdd4IQKSpqbHzw81F2FVZ5kkymGLVMGpjO2dnxoa1cG1KrZP5vWBZXnNWFHQUWHC43mXFRZMZHhbpqQbF8bxES+B1pabE62XCsnPNzE9urWi0SillvSUlJXv9+5plnyM3N5YILLqCyspI33niDhQsXMmbMGADmz59Pnz59+OmnnzjvvPNaV9lTSEqI+9Cqq6sZPHgw8+bN48knn2TQoEHMmTOnybJbt27lrLPOYv/+/eTm5jZZZubMmezatatRmoJrr72WHj16oFKpWLRoEZs3b/ZZp+LiYpKTk/nhhx8YPXo033zzDRMnTqS8vByTqX4afWVlJXFxcXzzzTeMGzeOXbt20bdvX9atW8c555wDwNdff82kSZM4fvw46enpAb0fFosFs9lMZWWl51zBUGd1cCzPQml5nWdbQpyBrmkmosIwkZvD7qKowP9sPZVaJiUtJuLHLggCQHmNjecW76bGx0LRVw1M58IO0AXVGb2y4gCzPtrc7JSUb+4YxYU9kwM+bltdL5o6x8ML16CPim7Vsay11Tx5/XCOHTvmVV+dTodO57/V0G63k56ezj333MOf//xnli9fztixYykvLyc2NtZTLisri1mzZnH33Xe3qq6navEYpTFjxlBRUdFou8Vi8UR1LTFz5kwmT57MuHHj/Jarqalh/vz55OTkkJGR4bNcZWUl8fHed17z58/n4MGDzJ49O6A6VVbWLzLZcBybzYYkSV4fpF6vR5ZlfvzxRwDWrFlDbGysJ0gCGDduHLIss3btWp/nstlsWCwWr0dbMOg19OyWwLmD0jm7fyrnDkqnZ7eEsAySAKx1zXc5uJxunD4SVQpCpFm45ojPIAng02151Nqc7VgjIVjOzY5vNkjSqmQGdoltj+qckWAmnMzIyMBsNnseTz/9dLPnX7RoERUVFdx4440AFBQUoNVqvYIkgJSUFAoKClr1Wk/X4kDp+++/x263N9putVpZuXJli4713nvvsXHjRr9v0rx584iOjiY6OprFixezdOlStNqmu1tWr17N+++/z4wZMzzb9u3bxwMPPMCCBQtQq5vvaXS73cyaNYuRI0fSv39/AM477zyMRiP3338/tbW11NTU8Kc//QmXy0V+fn3G2IKCApKTve8E1Go18fHxfj+0p59+2usL4y8IDAaVSkavU4d98saAGzrFnAKhA6i1OdlX4n88o0uB5TuDewEQ2seQzDgGZ8Si8pHiQCVLXH9OBvFhvO5bMMcoHTt2jMrKSs/jwQcfbPb8b7zxBhMnTgy4dyaYAr5abt26la1btwKwc+dOz7+3bt3Kpk2beOONN+jSpUvAJz527Bh/+MMfePfdd9Hrfa8QPW3aNDZt2sQPP/xAz549mTp1KlZr44G827dvZ8qUKcyePZvx48cD9VnEr7/+eh577DF69uwZUL1mzpzJ9u3bee+99zzbkpKS+PDDD/n888+Jjo7GbDZTUVHB4MGDPeOTztSDDz7o9YU5duxYq47XUQSyvpsk1Xe/CUKkK6ys85mZuoEE5FeISQyR6t0bh5EUrUN1ylCBhin3/dJM/O2qs0JWt/ZmMpm8Hs11ux05coRvv/2W3/72t55tqamp2O32Rj1chYWFpKYGt4s64DnhgwYN8kzNa6qLzWAw8M9//jPgE2/YsIGioiIGDx7s2eZyuVixYgUvvfQSNpsNlUrlaWnp0aMH5513HnFxcXzyySdcd911nuft3LmTsWPHMmPGDB5++GHP9qqqKtavX8+mTZs8g7vdbjeKoqBWq/nmm2+8Xssdd9zBF198wYoVK+jatatXfcePH8+BAwcoKSlBrVYTGxtLamoq3brVZ8tNTU2lqMg7F4jT6aSsrMzvhxZI32xnpDdokGWpyQHoDaKMWuQOkIROEPQBLE6tAFpxYxCxcpOiWX//WF5ZeZC31x6mrMZORlwUt47M4ebhORh1oV2gvDmhzKM0f/58kpOTmTx5smfbkCFD0Gg0LFu2jKuvvhqAPXv2cPToUYYPH97KmnoL+JM5dOgQiqLQrVs3fv75Z6/R6FqtluTkZFSqwFd5Hzt2LNu2bfPadtNNN9G7d2/uv//+Jo+lKAqKomCz/bLsxY4dOxgzZgzTp0/nqaee8ipvMpkanWPevHksX76cjz76iJycHM9x77zzTj755BO+//57z/amJCbWz0hYvnw5RUVFXH755QAMHz6ciooKNmzYwJAhQzxl3G43w4YNC/RtEU6SJIn4RCMlRU13R6g1MqZY3y2RghBJ0mINmLQqLM1MDx+Wm9BONRLaQnKMntmT+jJ7Ut9QV6XF5NMWZj7TY7SU2+1m/vz5TJ8+3Wv4jNls5pZbbuGee+4hPj4ek8nEnXfeyfDhw4M64w1aEChlZWXhcDiYPn06CQkJZGVlterEMTExnjFADYxGIwkJCfTv35+DBw/y/vvvM378eJKSkjh+/DjPPPMMBoPBs3zK9u3bGTNmDBMmTOCee+7xjAVSqVQkJSUhy3KjcyQnJ6PX6722z5w5k4ULF/Lpp58SExPjOY7ZbMZgqF/Wo2HaYVJSEmvWrOEPf/gDd999N7169QKgT58+XHLJJdx66628+uqrOBwO7rjjDq699tqQ9Kl2BDq9muTUGKosVupq6wd3y7KEMVpLtEkvWpOEiOFwuTlYWEW11YlRpyY3NQbNaeMEx/VJ5eMtJ3weIzVaR+90s8/9gtCWGnqUWnuMlvr22285evQoN998c6N9L7zwArIsc/XVV2Oz2ZgwYQLz5s1rVR2b0qK2Po1GwyeffMJf/vKXoFfkdHq9npUrVzJnzhzKy8tJSUlh9OjRrF692jNo+qOPPqK4uJgFCxawYMECz3OzsrI4fPhwwOd65ZVXALjwwgu9ts+fP98zwn7Pnj08+OCDlJWVkZ2dzUMPPdRo+uG7777LHXfcwdixYz0f3ty5c1v+4gUPjVZFfKLxZGtiQy4PESAJkWPr0XJ+2FmI3en25NLRqGRG9Un2yo10Yd8UDhVXszmvEoVfuikUwKRRcdXZgY8BFYSOYvz48T4n9+j1el5++WVefvnlNq1Di/MoTZ8+nUGDBgU1R4Hwi/bIiyEIQvvYcbyCrzfn+dx/8YA0BmbVJ3zNK6/lrRUHUVBwueuXuZAArVx/J69WSdx+ca+wH8sitJ/2zKP01/fXBiWP0p9/PSzirm8t/ovr0aMHjz/+OKtWrWLIkCEYjUav/XfddVfQKicIghCp3G6FFbv8rzu1cncR/U5OG19/oBRZArcioZZBfcrQVwVwuhS2HCljRAsSEgpCsISq6y0ctDhQeuONN4iNjWXDhg1s2LDBa58kSSJQEgRBAI6X1VJr8z842+pwcbSkmpzkGA4WVftNEaAAB4uqRaAUQmW1dj7YdII9RdVEaVVM6pPCiJz4iA0AhMC0OFA6dOhQW9RDEAShQwl0gdOGcu4Asqc2l2upIyi2WCmqtKKSJTISjWHT1fjR5hPc/cl2HG63JxfSv9ccYUhXM+/85hwSwjhZZDCEatZbOGjVN7BheJOIpgVBELyZAlweqKFcRnwUB4qq8TVqVAIyEzrGIrFNqaixs2TzCQorf0mqKQF9upq5sF8q6hCuJvDjwVLu+GirJ5R1nvIhbc6zcMOCDXwx47wOfS2UOIOlPJo4RiQ6o9f99ttvM2DAAAwGAwaDgYEDB/LOO+8Eu25CkCmKQl5pDRv3FrN+dxH7jldg87O2lCAIZy41Vt/skhQmg4Yu8fXBz9DcRJ9BEtTP+Bx0yiy5jqTa6uDDNYcpsnhnHleAXccr+XLj8cCXNWoDL3x/wGdriMutsP5YBT8dLm/fSgntpsWB0vPPP8/tt9/OpEmT+OCDD/jggw+45JJL+N3vfscLL7zQFnUUgqDW6mTp+uP8tKOQI4VVHCuqZtvBMhb/dITjxf7XmBIEoeUkSWLcgDRkqek7aUmqn/XW0AqRnRTNqN7Jnn2nlpMkuGxwV2KjOmb3zuZDZVgdriYDRQU4UlzDibLadq8XQI3NyY8HS3H5idPUssSXHXwdvobB3K19RKIWd73985//5JVXXuGGG27wbLv88svp168fjz76qEgbEIbcisKP2/KpsdYnbTz1x8itwM+7iojSqYk3iUzXghBMGYlGrjkvi+93Fnp1KSWZdFzYN5XMRO9Zw+f3SiYjPop1B0s5XlaLLEnkpkRzTrcEUsyG9q5+u9l5vKLZ1rTdJyrpmmD0XaiN1DkDHGvmcLdxTUJLpvVdb5G6AE+LA6X8/HxGjBjRaPuIESPIz88PSqWE4MovraW6zuFzvyTB3mMVnNcvuAsJCoIAXROM/N+obpRW26g5mZk7Icb3+o5ZSdFkJbUuX00kURQFazNBhqJArc3ZTjXyFmfQEh+loazW92+oy63QO6XzfGadTYsDvO7du/PBBx802v7+++/To0ePoFRKCK78khq/g+gUBfLLakM6BkAQOrqEaB2ZiUa/QVJnJEkSUVr/64RKEsQEODg+2FSyxI3nZvqdsaVRyVwzqGNnTpf4pRv4jB+hfhFnqMUtSo899hi//vWvWbFiBSNHjgRg1apVLFu2rMkASgg9l1tpduKxouBZIkQQBKE99c+MY93+Ep+/U4oCfbvGtmeVvNwxuhvL95WwNa/SK0WDSqofvjDnqgHEhiiQay+yJCG38gLR2ueHSotblK6++mrWrl1LYmIiixYtYtGiRSQmJvLzzz9z5ZVXtkUdhVYyB5Dfw6hXh+0is3aHiyN5FjbvLmLzriIOn7BgF7P1BKHDGJQdT4xB4/NGrVcXEymxoRujZdSq+fiWc7nnwu5e+ZJGdkvgfzefy9VndfyFz6UgPSLRGeVRGjJkiNcitEJ4y0qNYdfRcr+DJXO7hOeq5GWVVrbsKcZ9ym1caaWVQycqGdgzkYQQ/ngKghAceq2Ka4Zn8d2OAg4W/jILV6OSGJQdz7AeSSGsXT2jVs29Y3twz0XdqbQ60KlljNrwSIYptC3xKXcCBp2as3sksnFviWf18lOlxBnolhZ+CxRabU627C7G3USE53YrbN1TzHlnpWPQi6+xIEQ6o17DpUMyqKpzUGKpz8ydFheFRh1ec6VUskR8B03T4E9n7noL+Aojy3KzORAkScLpDM3MBMG/7FQTUToNe49VUFRRB0CUTk1uFxO56eaw7HY7XljdZJDUwK3A8cIqepxcfV0QhMgXY9CEbOC24JtYwiQAn3zyic99a9asYe7cubjdHTuPRKRLjjOQHGfA7VZwKwoqObwTgJWU1wVURgRKgiAIQlsJOFCaMmVKo2179uzhgQce4PPPP2fatGk8/vjjQa2c0DZkWUKOgGF1/lqTWlJGEARBaJ1gDMYO/6tO086o8zcvL49bb72VAQMG4HQ62bx5M2+99RZZWVnBrp/QiZmjtX7/sCTAHC1y0giCILS1hjFKrX1EohYFSpWVldx///10796dHTt2sGzZMj7//HP69+/fVvUTOrGM1Bi/+Z+Uk2UEQQgPbrdCXnktR0tqqAlRJm1BCLaAu96ee+45nn32WVJTU/nvf//bZFecIASTKVpH98xY9h+t8NreMHMvN8OMWWQ5FoSQUxSF9QdLWbOvxBMgSRL0Tjcxrn8a0XoxODvSNWTXbu0xIlHAgdIDDzyAwWCge/fuvPXWW7z11ltNlvv444+DVjlByEo3EWPUcjTfQrnFBgrEmnRkpsWIHEpCyLndCi6XG0mSUKnCe3JEW/p+ZyE/7S/x2qYosDvPQl55HTeOziVKJ9J4RDKJ1i9qG6l/HQF/c2+44YZO+yMghFa8WU+8WR/qagiCh9vtxlJhpbbG7knkqtbImMx6DJ0sx05pta1RkNRAUcBS52Dt/hIuEotuCxEq4EDpzTffbMNqCIIgRAa3W6G4sBrnaSveOx1uykpqMce6iTZ1nsB+29FyJAmfmf8VBTYfKePCviniZjuC1Xe9te7zi9SPP7xSngqCIIS5aou1UZB0qsoKKy5n58kpV1HraJzu/zRWhxuHS6TyiGRykB6RSHQaC4IgBEhRFGqq7c2Wq62xE9NJuoujtCq/LUpQv+yHRhVZzQlut0JZRR11VgeyLBMfa+jUyyVJUuvH4EVqi2Ln/dSFiON0ubE73WjVMmpVpN6bCJFMURSvBZp9cThd7VCb8NCvaywbDpX53C9J0K+rOaIukuUVdew7XIbLpXhm2R49UUlCnIHc7HhUkboWh3BGRKAkhL3KGjs7DpVxvLgGhfr1gjJToumfHY9RrAkltKNAL/aRmljvTKTHGeieEs2BwupGPXCSBGpZ5rweSSGp25moqrax+0Cp59+nvqbS8joUpYxeuQntX7EQ68zpAcRtuYCiKLjsLuzVdmxVNuzVdpw2J0oYLA9SVmVj6frjniAJ6hfDPVJYzTfrj1NV23w3iCAEiyRJ6A3N3192pplvkiRxxdBM+nWN/WXbyf+NjdIybWQOCRGUQf9YnsXv/rKKOmrqHO1Um/AhxigJnZaiKDhqHCindCcoioLL5sJld6E1apFC1MysKAprdxbidiuN7lQVBRxON+v3FHPR2V1CUj+h43G7FWqqbTidbmSVhNGoQ632/nmPMeux1lX7PIZWp0KrU7V1VcOKRiVz2ZCuXNA3mf0F1TjdblJMejITjRHV5eZ0uqmssjVbrrSsFmMXczvUSAgHIlDq5Jx1Tq8gyYsCjjoHWmNo7o5LLTYstb7v3BSgqMJKVa2DmCjRBdfRKIqCtc6Bta4+07NWq8Jg1CK3UeBeZbFSWlLjNSi5rKQWk1lPfEKU54Kv1apJSDJSVlrb6G9Hp1cTH2HBQTCZDFoG58SHuhpnzOVufraiJIHL1XlmNTYQg7mFTklxK7ibmcasuBTcLjdyCAZPW2oC61az1NpFoNTBOBwuSotqvC5ItTVQWVFHfKIRfZDHptVU2ygprmlyn6XSiiRBfILRs01v0JDWxURdrQOHw4UkSRgMGjTaztWS1NFo1CpkWfI7YF9RQN8Js4yLMUpCp+QO8K5ICVH+E3WA04nFDLiOxe1WKCmqbvKuXVGgtLgGhyN4s8oURaGsrNZvmcoKa6P6SJJElFGLOdaAyawXQVIHIMsSSQlRfstIEiQ2U0boWMQVphML92bQ1Pgomutl0aplEjtJvprOoq7WjruZ4Lw6gHEkgXLYXX4TSDaoDbCFU4hsGWkmdH6C3uyMWDTqzhcUd+bB3JFabyEIpABbbGR1aL4mWo2Knl3NKIqC3eWmwuag1OqgzOag1ulCURT6ZsWJnCYdTJ2fcWktKRMoVwB5kYCA8id1RC63wrHSGg4WVVHZCWaZajQq+vdOJikhyquryKBX07NbAqlJ0aGrXAg1jFFq7SMSdb6OVsFDkiRkjYzbz920pJZCNusNoH+3eHblWyg/tQVBAYfbhQOFtETRBN7RBJSWIoipKzSawG4E1JrO1YqgKArrD5ayam8xdfZfujq7JUcz4ax0YjtwCgStRkX37HiyM2Kx2ZyoVDI6rSpiL/RC64gWpU5OrVf7bFmSZAlNiBM6bj1STpGPbhab080XG4+HRb4nIXg0AQQkwQxa1GoVhma+57IsEdXJJgys2F3Et9sLvIIkgEPF1by14gCWTpBLSK2SMUZp0evUnT5IkoL0iEQiUOrkJElCE6VBbagPmCRZQlJJqA1qNEZNSH8c3IrCxoO+l0ZQFCix2Mgrr2vHWgltzRjTfHLC6CbKOBwuystqKSqooriomtoaO263m7oaOxUlNZQVVVNZWoutztEouI5PNPpNO5CYHN2pLpQVtXZW7y1ucp+iQJ3d5XO/0DHJUnAekUh0vQlIkoRKo0IVZl0LlloHNTan3zKSBMdKaugSL7rgwp2iKDhsLqy1ds/gaY1OhT5K6zVjTKNRYYrVY6mwNnkcQ5QGw2mtO5UVdZSVes9cq6myEWXQeC0n4na5cNhdaLQqTPGGU3IjqUjvYqastIbaU8Y/6XQq4uKNjc7X0W0/VuF3oVtFgW1Hy7l4QCoqWdxvdwYij5IghKFAutTqF6wUXW/hTlEUaqts2Oq8A1+HzYXDVkdUjA79KcFIjEmPWq2i2mLFfrLrR6WWiY7RYYzWev3g1lTbGgVJUJ/rxtfPssPuosZiI/qUGZMarYqUNBMupxuny40sSwF1A3ZEljqHZzFYX5xuBavdjVEvAiWhYxOBkhC2TFFa9BoVVj85c9wKpMWK1qRw57C7GgVJp6qtsqHRqlCdMsOyoeWoYbZZfcK7xqFPRRNdr7LUfH4ta62DqBhdoy43lVr2qkdnFKVVNXv7IUugC3AgfLhwuxWqqqzYrC4kGWJidOj1nau18EwFY4xRZLYniTFKQhhTyRIDs+J87pckMEVpyEoy+iwjhAdrANP5rT4GB8uyhCw33ezvcro9LU6nUqnkgFoknUFMXNmR9Osa63dioSRB73RzRCV7ra62sX9fCfl5VZSV1VJaUsvhQ+UcO1rRKZckaSkpCOOTIrTnTQRKwpmprrFz8FgFew6VcSSvEmszY4nO1NDuiZ5A6NS/MQnQqVVcNqRrxPZ7dyauAAISZxMBT3NEt2vbSDLp6Z8R2+Q+CVDLEiN7JrVrnVqjrs7B8WOVTebCqqmxc+J4pZg9K/gkut6EFnG7FXYfLKWkvM4TuCjAkRMWstJNZKabghq4qGSJy4ZksDffwraj5VTU2NGqZXqlmxmQFYexE6651FGdyddGpZKbXJvL5XIjaZv/bnS23EgtMWlQF/QamY2Hyjj17Y2L1nLZ4K4kmiInI35pSdPr+DWorXVQV+cgqgPnhmotMZhbEAK070gZJSfHhJx+/3Ukz4JGoyI9ObiZa2VZoncXM727mIN6XKH9aHRq7Fb/rY6aMwh6JUkixqSnssJ7nJJbAafLjcpHlx2APkrjNyVAZ6eSJS4ekM7InskcKKzC4VJIMunoGh8VURc8t1uhurr5jOJVFpsIlPwIxRilEydOcP/997N48WJqa2vp3r078+fP55xzzgHqJ4nMnj2b119/nYqKCkaOHMkrr7xCjx49WllTb6LrTQiYze6ksMT/4qFH8yyiCVtoRN/M9HpJAt0ZJjeNjTOgayLIstqcuH18F9VaFUZT8/maBIjSqRmQGcfgnHgyEowRFSRBgJne6bxL1ISr8vJyRo4ciUajYfHixezcuZN//OMfxMX9Mm71ueeeY+7cubz66qusXbsWo9HIhAkTsFqbTi1ypkSLkhCwUh95bU5ld7iornUQYxR3ZsIv1BoV0WY91ZWNv0OSBDFxhjNu3ZFlidR0E5ZKKxaLFZezfmBulFGLKVaP4lKw1Tlwu5X6pSiiNOj0ItNyZ9EwGaC5QEjrZyFcITgJI1vy/GeffZaMjAzmz5/v2ZaTk+P5b0VRmDNnDg8//DBTpkwB4O233yYlJYVFixZx7bXXtq6yp9Y7aEcSOrxA77jEnZnQFK1eTWxiFAajFrVWhUarIipGiznR2OqxQrIsERtnIDMrjuxu8WR3iyc5NQa9XoPBqCU20Uh8cjTmhCj0htBmnBfalyRJxMUZmi1njo2cMVehIAXp/wAsFovXw2ZrvEzVZ599xjnnnMM111xDcnIyZ599Nq+//rpn/6FDhygoKGDcuHGebWazmWHDhrFmzZqgvnYRKAkBiwqwa8SgFw2VQtNklYwhWospzkBMnAF9lDbo44QieZVyoW3EJ0T5bTFKSYlGrRYtSu0lIyMDs9nseTz99NONyhw8eNAz3mjJkiXcfvvt3HXXXbz11lsAFBQUAJCSkuL1vJSUFM++YBFXNCFgcSYdOq0Km59p3IlxBrRiJpEgCGFEpZLJyo6jpLiGioo6T44onU5NYmIUMRE0gy9UpCDkQWp4/rFjxzCZTJ7tOl3j8YJut5tzzjmHv/71rwCcffbZbN++nVdffZXp06e3riItJAIlIWCSJNG7WwLb9hTRVO+aVqMiNzO23eslCILQHJVKJiU1hqTkaJwOF1InXqLmTMgEYYzSyf81mUxegVJT0tLS6Nu3r9e2Pn368L///Q+A1NRUAAoLC0lLS/OUKSwsZNCgQa2r6GlE15vQIuYYHWf3TSEp3uCZ6inLEunJ0Qzul4IugNw1giAIoSLLElqdWgRJLRTMMUqBGDlyJHv27PHatnfvXrKysoD6gd2pqaksW7bMs99isbB27VqGDx8enBd9kriqCS1mjNLSJzcRd46C0+VGo5bFmBBBEAQhaO6++25GjBjBX//6V6ZOncrPP//Mv/71L/71r38B9T0cs2bN4sknn6RHjx7k5OTwyCOPkJ6ezhVXXBHUuohASThjsiyhlcVdmSAIQkcXzDFKgRg6dCiffPIJDz74II8//jg5OTnMmTOHadOmecrcd9991NTUMGPGDCoqKjj//PP5+uuv0euDO+ZMUkR2wLBisVgwm81UVlY224crCIIgdF7tcb1oOMfi73ZgjI5p1bFqqquYeFG/iLu+iRYlocOqszupqHGgUUskROtE96AgdEBOl5vjxTVUVtuQZYm0hCgSTHrx9y4EjQiUhKCzO1xY7S50GhW6EGS7rbY6+GFnIXvyLZ5pwOYoDSN6JtG3a2y710cQwpWiKBEdUBSU1fLzrkKcLsXTrbPveCVxMTqG90tFL7JtB42MhNzK1d5a+/xQCZtZb88884xncFaD2267jdzcXAwGA0lJSUyZMoXdu3d79m/ZsoXrrruOjIwMDAYDffr04cUXX/R5jlWrVqFWqxtNHXz66acZOnQoMTExJCcnc8UVVzQabV9QUMBvfvMbUlNTMRqNDB482DNNsUFZWRnTpk3DZDIRGxvLLbfcQnV19Zm/KRGmqtbOup2FfLP2KCs2nWDpz0f5aVs+FVWNs662lRqbk4WrDnsFSQCVtQ4Wb85j/YHSdquLIIQjm93FrsNlLPnpCF+uOsySn46w81AZVrv/RYvDTUW1jTU7CnC66v/QFQXP33xFlY1V2/LFupNB1DBGqbWPSBQWgdK6det47bXXGDhwoNf2IUOGMH/+fHbt2sWSJUtQFIXx48fjctUnPNywYQPJycksWLCAHTt28NBDD/Hggw/y0ksvNTpHRUUFN9xwA2PHjm2074cffmDmzJn89NNPLF26FIfDwfjx46mpqfGUueGGG9izZw+fffYZ27Zt46qrrmLq1Kls2rTJU2batGns2LGDpUuX8sUXX7BixQpmzJgRrLcprFlq7Py4OY+iMu9Fc0sqrazamkdpZZ2PZwbXT/uKqbY68PX7uGJ3ITXNrGIvCB1VndXJys0nOHi8EsfJNfEcTjeHTlSyclMetVZHiGsYuL3HKsDH37kCVNbYKSxvn98doWML+WDu6upqBg8ezLx583jyyScZNGgQc+bMabLs1q1bOeuss9i/fz+5ublNlpk5cya7du1i+fLlXtuvvfZaevTogUqlYtGiRWzevNlnnf6/vTuPb7JK9wD+e7Pv6d50p7S0ZUeQpeg4CAwIjMNoZ1TkKm7jVhwQr4Ir4wo6jruAo1z0CgjKCF4ZNxyggIBAKVq2UmiBlu5bkjbNfu4fsZHQbLRpmzTPl0/utW9O3vfNmTfJ857znHPq6+sRFxeHgoICXHPNNQAAhUKBlStX4rbbbnOWi46Oxssvv4x77rkHJ06cwJAhQ3Dw4EFceeWVAIBvvvkGM2fORGVlJRITE/2qj1BN5v7hpyo0e2k5kkkEuHZMco8289vsDO98e9J5h+kOB+DqnDiMy4zpsfMgJFjtL65Go9boNr7gAESqJJg4IsHNs8GFMYYte8o93hABjtaL1DgFxmTH9d6J9bLeTObetvN4QJK5fzdpSMj9vvV5i1J+fj5mzZrlsrCdO21tbVizZg3S09ORkpLisZxWq0VUVJTLtjVr1qCsrAxLly7165y0Wi0AuOxn4sSJ2LhxI5qammC327FhwwYYjUZMmjQJALBv3z5EREQ4gyQAmDp1Kng8Hn788UePxzKZTJ0WCAw1rQaz1yAJAAxGK5p0nVeOD6R2s9VrkAQ4vjy1BnOPngchwait3YIGD0ES4GiFadIZ0RoCn4+Lu9m8lfH1fUD8x+O4gDxCUZ8GShs2bMDhw4fdLojXYcWKFVAoFFAoFPj666+xbds2iEQit2X37t2LjRs3unR3lZaWYsmSJVi7di0EAt+563a7HQsXLsRVV12FYcOGObd/+umnsFgsiI6Ohlgsxn333YfNmzcjMzMTgCOHKS7O9c5FIBAgKirK6wJ9y5Ytc1kc0FsQGKza2v3ryvK3XFeJ/VzUUkIz8pIwpG3zLwDStgZ/oMTjcZCKvX+OOQBKmX8LeRPiTZ8FShUVFViwYAHWrVvndXKouXPnoqioCAUFBcjKysJNN90Eo7Fzy8TRo0cxe/ZsLF26FNOmTQMA2Gw23HrrrXj22WeRlZXl13nl5+fj6NGj2LBhg8v2p59+Gi0tLfj+++9x6NAhLFq0CDfddBOKi4sv41139vjjj0Or1TofFRUV3dpfXxAI/LtLEAh69nITCnjIiFd4TRi0MyA7Se33PptaTThU3ogDZY2obqF8BxK6/F2ni9fdBb16ycBE759jBmCAJnS6d4JeIBK5Q+PS6qTPpgcoLCxEXV0dRo8e7dxms9mwa9cuvPPOOzCZTODz+c6WlkGDBmHChAmIjIzE5s2bMWfOHOfrjh8/jilTpuDee+/FU0895dyu1+tx6NAhFBUVYf78+QAcLUaMMQgEAnz33XeYPHmys/z8+fOdSdjJycnO7WfOnME777yDo0ePYujQoQCAkSNHYvfu3Xj33XexatUqaDQa1NXVubxHq9WKpqYm5+J97ojFYrcrJ4eSSJUEIiEPZovdYxk+j0NchLRbx2k3WXGqWofWdgukIj4yE1RQyVxbF3OzYlFe1waAdepi4ABkJigR58dK4e1mG7YUVuBUjd5le1KkFHljUxEpd9+qSUiwilZLweNxsLtb0foXPA6IjgjsrMY9JTNRheqGNjR56PYfMTAaMgnNgBMol7tWm6d9hKI+u4qmTJnSqTXmzjvvRE5ODhYvXgw+v3OzKmMMjDGYTL9+MI4dO4bJkydj3rx5ePHFF13Kq1SqTsdYsWIFtm/fjk2bNiE9Pd2534ceegibN2/Gzp07nds7GAyOkVw8nmuLCJ/Ph93uCA5yc3PR0tKCwsJCjBkzBgCwfft22O12jB8/3u96CUU8jkN2aiSKvQy9z0hWd6tFqaisEQdK6wHmuDNhDDhQ2oChKRG4aki8s+87Xi1F3vhUfFVUiTaTzVkWAAYnqfE7PxJVbXaGtT+Uo9rNSL2qlnas2XUG908eBJmYvoRJz+sYb9PdgRBCAQ8DElQou6D1WCZVo4TIzy7svsbn83D1iASUnG9BWbXOOYovQiFCdmokkmLkfXyG/QuP879V0ts+QlGffdMrlUqXHCAAkMvliI6OxrBhw1BWVoaNGzdi2rRpiI2NRWVlJZYvXw6pVIqZM2cCcHS3TZ48GdOnT8eiRYucuUB8Ph+xsbHg8XidjhEXFweJROKyPT8/H+vXr8cXX3wBpVLp3I9arYZUKkVOTg4yMzNx33334dVXX0V0dDS2bNninAYAAAYPHozrrrsOf/nLX7Bq1SpYLBbMnz8ft9xyi98j3kJZWoIKVhvDyXNNYBcFM4AjSBqUEtHlfR+vaMGPp+qdf1+cxHmsogUCPofcnHjnttQYOe6dkoWyulY0tpog5HHI0CihlvnXCnSySosqD91sjAGtRisOlTfhmpz+O5qG9C3GGCrq23CqogWNOhM4DoiPlCInJQLxUbIu7zcnLRLtJiuqG9qcn9GO/6+JlmFIenQA30XPE/B5GJoehcFpkTCabeDzuD6Z5Jb0b0F7SyyRSLB792688cYbaG5uRnx8PK655hrs3bvXmTS9adMm1NfXY+3atVi7dq3ztWlpaTh79qzfx1q5ciUAOEewdVizZg3uuOMOCIVCfPXVV1iyZAmuv/56tLa2IjMzEx999JEzaAOAdevWYf78+ZgyZQp4PB7y8vLw1ltvdb0SQkxGshop8QpUNbTBaLJCJOQjMVYOiajrl5mdMRw6Xe+1TPG5ZlwxMMZlFl4ej0OmRolMXP5w1p8rWsDB4xQtYACOnGumQIn0CMYYikobUHpB5+yoYAyobWpHTVM7rhgUjawuzjDP43EYnR2LliQVKmtbHTPoi/hIiVMgQhm6y/zweBx1s/Ww3l4UN5j0+TxKxFWozqPUU2pb2rF5/zmf5SYPT0DWZSRpe/PBztO44GOiOrGAhyXXDw3I8Qi5WFVDG3YXex4pCwDXjUuBmvLkwl5vzqO0a08JFN2cR6m1VY9rrs4Oud+3Pp9HiRBvzFbPCeJdKeePCJnI552PmoYdkx5yqlLrNeWVA3DmQujNt0ZIqKK2ShLU/A1IIhSBu7u+YkAkjnlJeAWAMX7mcjDG0Kgz4WyNHiarDXKJABkJKij9zJci4adZb/LY7Qs4un4be3jyVkIuRcnchAQplUyE5GgZLjQZPM7Eq5QKkdSNBNdLDYxVYHCiCieqOt+1cxwQr5LgitRIn/ux2uz44WgNKn9JnO349Tt2thlD0iIxKiM6ZHNCSM/xZ/Zifqj+4vjJZrOjrtEAvcEMHschSi1BpFpCn5c+FM45StT1RoLe1UM0EAl4nT5kHOdI4rx2eEJAv0A5jkPe2FRcnRUL0UVTGvB5HEalRuKO3wyE0I+pDg6crENlg2NhZcYccVJHrHf8XDNKKr23WpHwlBQr9/mDktiPh743adux/0gVSs81o7a+DdX1rTha2oDCozUwmmhBa9L7qEWJBL0IuQh5uQNwsLQBZ2p06JgvLyVGjrGZsYhVB36CPD6Pw5ShGlyTHYeqlnbYGYNGLYHUzxF8BqMF5ZdMVnmpY2ebkJWkDpmZkEnvGJSsRlm1+xwkDo4Z7tMTupdUG6zaDGYcK21wth4z5/9xrBf5c0k9rhymoc9MH6AJJwkJciqZCFNGJuI3Q+PRbrZBIuRD3AtrtgkFPKR14e69oyXJG6PZhia9CTE9EOiR0KWWi3D1MA1+OFbbaRZtoYCH345M6JVrvy9U1ui9LnZrNFnR0NyOuOjAdbUTPwViCZLQjJMoUCKhRSTgh8TMwTYvy0S4lgvcaD3SfyTGyPGH3DSUVevQqDOC4zjER0qRFq/0q9s3VNX7mJYDABqaDRQokV5FgRIhPSBS4Xv9Pg6guXCIR2IRH4PTfA8a6E+8rUN3OWVI4IVzMjcFSoT0gPhIKRRSIdraLW6HenMckBKr8GvWcsYY2trMaG5uh8lkBZ/HQamSICJC2q318wgJNjKJAAaj94RtmZTmMOsL4ZyjRN+ypN9ijKGq2YAztXrU9/K8MxzH4ephGvD5XOfRegBkYgGuzIr1uR/GGKqr9ais0KKt1QyrxQ6TyYaG+jaUlzXC6ONHhZBQkhjvO0k9Ibb/jvgLZh0tSt19hCJqUSL9UkmVDtuPVaPFYHFui1dLMG1EIpIDOOeSN9EqCWaMTcWxs004W6uHnQFCPg+ZSSoMSYv0qzWppbkdOq37IM9mY6isaEFGJs3HRPoHTYwcjS3taPZwzQ9MUUMqoRYl0rsoUCL9zrHKFvxfYWWn7XVaI9bvKcetV6f3WrCkkouQO1SD8YPjYbMzCPic30ENYwxNTQavZaxWO1r1ZihVvnOiCAl2PB6HoZkxuFCrx4XaVpgtNgCAUi5CSoISMZGUxN1XOM7/7y5v+whFFCiRfsVqs+O7n6vdPscA2BnD90erccc1Gb16Xjwed9lzv1itdlgsvkfFGQwUKPUGxhhsFjtsVhsADgIRH3wPOWI2mx2GVjMMBjOYnUEg5EOhFEMsEYTsj0Vv4fE4pCSokKxRwmK1g8dxlIsXBMJ4dgAKlEj/UlbXCuMvd6HuMADVze1o1JsQrQzu4MLvL5VQ/fZxw2yxQddmBgCoFeLLHgpvNtvQ3GyAvtUExgC5XISoKBkk4u591dmsNrTrHUGP81jtFvAFPEiUYpcg2GK2oaGu1WV0ls1mhclohVQuRGSUjIIlP3AcB1E/nS+KhBYKlEi/omu3+C70S7lgD5T4Ah6EQp7PViVZABbYtVptMJls4PE4SALU6mGz2dHc3I6mZgOsFjv4Ag6RETJERck6tRBYbXacLG9CVUObc8JBHschOV6BrLRIv9Y20+tNOF/R7DJhoclkRVOTAYmJKkR1sdvGbrPDoDW5f49WO9p1Rsh+WYeMMYbG+laPQ9jb2ywQicxQBPm1R8ilaHoAQvoJmci/O1CZOPjvVDmOQ1SUDLW1rR7LCAQ8KBRdD5QsFhuqa3TQ6X4NBAQCHuLiFF0OLABHt2H52SaYLlqby25hqKtvRVOzAQPToyD6JZndbmc4dLwW2lazyz7sjOF8jR5t7RaMGRznNXizWGydgqSLVVXpIJEIuzS03OxjZKHdxmC12CAUCWBst8Bm8z7PT6vOBLlCRK1KJKSEc44SdfySfiVTo4KQ7/3DGK0QI04VGsuGRERKofawxAmfzyElNaLLXz4Wiw1nyhpdgiTAEeRUVelQV+85QPOlukbnEiRduv+KixYErqpv7RQkXaxRa0Sdjxmbm5oNXpe+AIDGRt/Lyrhj8WMhVqvJ0d1rMnnu9u1gs9lh9xFMEUKCBwVKpF8RCXi4ZnC81zKTh2pC5s6G4zhoEpRISVFDoRBBKORBLBYgNk6OgQOjIe5G7k19QxusVs/denV1rbB4yffyxGq1QetheHeH9nYL2o2ObtLKOt8BWWWt9wWGW70EWr+Wcd995pMfMQ3zFaURWG12VNW1oqSsEafKm1DfZKBZtklIoK430u+MHRgNDsCuk3UwXxQIyMUCTB+RgExNaK28znEc5Aox5H4si+Ivu52hudn71AMA0NzSjrhYxWXtu93PSTDbDRZIJUK0+9Fi0+5HS01P4XicSxK3Ozye455TLBagTe89IOPzeeD5aPXsb5q1Rhw/3eBcA5EDUNPQBrGIj+FZsTTbdgigHCVC+hGO4zA2Iwaj0qJwpk4Pg8kKlUyEgbGKyx6i31/Z7XafXVWAYwTX5fK3hju+NEVCPsw+EtbFQu+N33K5CO0+EvnlXVxXTyQRwGTwvm+hxPFVKpEKwOdzXvOUFCpxyLRoBoKh3YKjpfUu11vHf5rMNvxcUoexwxPA51MHBwlOdGWSfkso4CEnUY3R6dHIjFdSkHSRjhYQXzzNE+SNVCr0KxCQyx0tZEl+tFglxXkvExUp9bmP6KiuLX0hlAjA8/IjLpQInPXEcRyi4zwH5DK5EPJuJN+Hogu1eq/dl2aLHbWNvls3SR/7JZm7O49QbVKiQImQMMTjcVD5MUllhIdEcm/4fB6ifcx8rlKJIfplhGJynAJSscBtSxQHQCkTQhPtPcgRiQRISVZ7fF4Tr+xyixLHcZCpxc5WI+d2HgexXAixzLXbSCjkIy5BCVWEBEIhzzHXklSA6Fg5IsJwDqWG5nafaV6NfnQDk77FBegRiqjrjZAwFRergF5v8tgFp1ZJIOniulrx8QqYzVbo3OTrSKVCJCX+GtQIBDyMHxaPn0sb0HTJCLyYSCmGZUT71RqoVkshFgvQ2GRAa8eEkzIRoqNl3Z5riuM4SOQiiGVCx4g1zhFsegp6+HwelCoJlCEyurIn+ZOwbaOk7qDHIQDTA4RoqESBEiEXYYzBzuDXBIehTiIRYkBaFCorW2C5ZPRbRIQUiQmqLu+b4zikpESgzWBGc3M7zGYbhAIeIiKkUCo75+iIRQKMHapBq8GCFr1jxFyUWgLZZQZqEolrEBZoHMeBL+j/10YgyWVC6LyMSuQAKAIwaSohPYUCJUIAVDQb8O2xGhw+3wyrnSFaLsK12XG4NjsOwn6cZCqXi5CVFYvWVjNMJit4PA5KpRjCACwdwXEcFHIxFHL/R+spZEIoZDQCqj9JjFNC19ro8XkGIMFHDhrpezTqjZAwdqxKi3d2nna2JgFAY5sZ/zpciSMVLVg4JQuifrwoJ8c5giMlLatBekBslBSNLTLUN7nPQ0pPVkNO0wMEvXAOlPrvtz8hfjBZbfjn7jLY7b8GSR0YgDP1rfjmWHWfnBsh/QHHccgZGIXMtEhIL0qIVylEGJoZg5RudPES0huoRYmEtUPnmtHuZfZpBmDHqXrMGp4YFnlLhPQEjuOQGKdAQqzckdzNAXw/p6ggwcExaq27ydyhia5UEtYqmgw+A6A2kxU6H5MZEkJ84zgOfD6PgqRQFMbzA9DVSsKagMf5tU6XIMyWnCCEEOJAgRIJa8OTIzrlJl2MA5AWJYOyi/MJEUJIf9CRzN3dRyiiQImEtaw4BQZEy+Cp940BmDksoVfPiRBCgg0XoH+X429/+1unZVBycnKczxuNRuTn5yM6OhoKhQJ5eXmora0N9FunQImEN47jMH/SICSqHWuFdQRMHOdoTfrz6GRckRrZdydISC9jjKFBa8T5ulbUtbT71TVNSE8ZOnQoqqurnY89e/Y4n3v44Yfx5Zdf4rPPPkNBQQGqqqpw4403BvwcaNQbCXsqqRBPzRyCny9oUVTRDKPFhgS1FFdnxiBGQXMLkfBR3WTAwZI66A2/Dl6QiQUYPSgGafHKPjwz0tf6ah4lgUAAjUbTabtWq8Xq1auxfv16TJ48GQCwZs0aDB48GPv378eECRO6d7IXn0PA9kRICOPxOIxKicColIi+PhVC+kRNkwE7ii50WsDWYLJiz9EaMAYM0FCwFK46ur66uw8A0Ol0LtvFYjHEYvc3paWlpUhMTIREIkFubi6WLVuG1NRUFBYWwmKxYOrUqc6yOTk5SE1Nxb59+wIaKFHXGyGEhDnGGA6dqu8UJF3s0Kl6vxa4Jf1TIGcHSElJgVqtdj6WLVvm9pjjx4/Hhx9+iG+++QYrV65EeXk5fvOb30Cv16OmpgYikQgREREur4mPj0dNTU1A3zu1KBFCSJhrbjVB2+Z54VoAMFlsqG4yIClG3ktnRfqriooKqFS/zsjuqTVpxowZzv8eMWIExo8fj7S0NHz66aeQSqU9fp4dqEWJEELCnMFkDWg50v8EcnoAlUrl8vAUKF0qIiICWVlZOH36NDQaDcxmM1paWlzK1NbWus1p6g4KlAgJEMYYKupb8Z/Dlfis4Az+tbsMB07WQefjTp2QviYV+de5IBXxe/hMSLC6dJh+Vx/d0draijNnziAhIQFjxoyBUCjEf/7zH+fzJSUlOH/+PHJzc7v7dl1Q1xshAcAYw4GTdThdpQMHOHM9TldpcaZKh9+OTEBiNHVZkOAUpRRDKRVC72WpHpGAh4RoWS+eFQl3//3f/43rr78eaWlpqKqqwtKlS8Hn8zFnzhyo1WrcfffdWLRoEaKioqBSqfDQQw8hNzc3oIncAAVKhAREeY0ep6scIzkuTndlDGBg2PVzNW68Oh0iId2Rk8AwmW1oaTUBACKV4m5dWxzHYUxWLHb+VOWxzBWDYmiNNtKrKisrMWfOHDQ2NiI2NhZXX3019u/fj9jYWADA66+/Dh6Ph7y8PJhMJkyfPh0rVqwI+HlwjGYTCyo6nQ5qtRpardYl2Y0Et69+PI/mX360PBkzKAY5NHkl6SaL1Y6jZxpQVd/mDMo5DkiJU2DIwGgI+F0PZirqW3GwpA7tJptzm1jIwxWZMchIVHfzzEmg9cbvRccxSk+ch1LZvWPo9ToMGpwacr9v1KJESDfZ7cxnkAQADVpjL5wN6c9sdjv2F1dD12bu1HJ5vrYVre0WTBieAF4Xc0FSYhVIipGjrrkdbUYrJCI+NFEy8D2t8UNIGKBAiZDu8uM3hAPA0Y8N6abKulavw/ibdCbUNBqQ2I0h/DyOgyaKcpGIq0BOOBlqqMOZkG7icRziIqRe4yUGQBPZe/N+kP6pokbvRxmdzzKEXK5ATg8QaihQIiQAhqRFepzVmAMgEfJprSzSbe1mm+8yJt9lCLlcXID+hSIKlAgJgKQYOa7IjAHQ+a5JJORh8hVJ3UqyJQQAxH6MbBPTXEeEBBTlKBESIEPSIpEYLcOpSi2a9EbweTykxMoxMEFF0wKQgEiJV+JYWaPPMoQEWiC6zkK1640CJUICKEIhxricuL4+DdJPpcQrcK5ah7Z2S6euXg6ASi5CAq3FRnpIiMY53UZ9AYQQEiIEfB5yhycg1s3AgPhoGSYM19BQfkICjFqUCCEkhIhFfIwbqkFbuwXNOiPAAdEqKaQS+jonPSiM+97ok0VIiOmYTD9U5yQhgSGXCiGXCvv6NEiY4ND9rrdQ/caiQImQEFFaq8fOkjqU1urBAKRGyfCbrFiMTI6goIkQQnoIBUqEhIA9pfXYUnQBPA6w/5LFe77JgLX7zuHsoDbMHpVEwRIhpOeEcZMSJXMTEuRqdUZsKboA4NcgCXCs7wUAe0obcKKaZmMmhPQcLkCPUBQ0gdLy5cvBcRwWLlzo3HbfffchIyMDUqkUsbGxmD17Nk6ePOl8/qeffsKcOXOQkpICqVSKwYMH48033/R4jB9++AECgQCjRo1y2b5s2TKMHTsWSqUScXFx+OMf/4iSkhLn82fPnnWuc3Pp47PPPnOWO3/+PGbNmgWZTIa4uDg8+uijsFqt3a8cEtb2nW6At4FMPM4RLJHQYjBa0dJqgtlKM2kTEsyCouvt4MGDeO+99zBixAiX7WPGjMHcuXORmpqKpqYm/O1vf8O0adNQXl4OPp+PwsJCxMXFYe3atUhJScHevXtx7733gs/nY/78+S77amlpwe23344pU6agtrbW5bmCggLk5+dj7NixsFqteOKJJzBt2jQcP34ccrkcKSkpqK6udnnNP//5T/z973/HjBkzAAA2mw2zZs2CRqPB3r17UV1djdtvvx1CoRAvvfRSD9QaCRfnmgwuLUmXsjOgosnQeydEuqW6sQ3F5U1o1jsWt+U4IC1OgREZ0ZCKg+IrmZBOwnlRXI51DKHpI62trRg9ejRWrFiBF154AaNGjcIbb7zhtuzPP/+MkSNH4vTp08jIyHBbJj8/HydOnMD27dtdtt9yyy0YNGgQ+Hw+tmzZgiNHjng8p/r6esTFxaGgoADXXHON2zJXXHEFRo8ejdWrVwMAvv76a/z+979HVVUV4uPjAQCrVq3C4sWLUV9fD5FI5KMmHHQ6HdRqNbRaLVQqlV+vIf3bu9tLUd7Q5rWMUiLA0j8M66UzIl11tkaPH0/UddrOAZCI+PjdlckULBG/9cbvRccxzp+pgkrZvWPo9DqkZiSG3O9bn3e95efnY9asWZg6darXcm1tbVizZg3S09ORkpLisZxWq0VUVJTLtjVr1qCsrAxLly7165y0Wi0AdNpPh8LCQhw5cgR33323c9u+ffswfPhwZ5AEANOnT4dOp8OxY8c8HstkMkGn07k8CLnY0ES11759HgcMS1J3+zi6dguOnG/G4bNNqNMZL/v1LW1m7DhWg/e+P4V3vy3BZ/vP4XSNHn18LxY0LFY7DpXUu32OATBabPjZx/IkhPSVjmmUuvsIRX1667JhwwYcPnwYBw8e9FhmxYoVeOyxx9DW1obs7Gxs27bNY+vM3r17sXHjRvz73/92bistLcWSJUuwe/duCAS+367dbsfChQtx1VVXYdgw93foq1evxuDBgzFx4kTntpqaGpcgCYDz75qaGo/HW7ZsGZ599lmf50XC17j0KPznRC2MVhvcxRwcOFyVGdvl/ZutNmw5fAE/nW92WRYjPUaOP49LRYTMd2toRUMbPj9wHjbGnOdY0diG8w1tGJ4Sgd+NSAjZZvdAqahrhc1LHypjwPnaVoweFAuhoM/vYQkhv+izT2NFRQUWLFiAdevWQSKReCw3d+5cFBUVoaCgAFlZWbjppptgNHa+2z169Chmz56NpUuXYtq0aQAceUO33nornn32WWRlZfl1Xvn5+Th69Cg2bNjg9vn29nasX7/epTWpOx5//HFotVrno6KiIiD7Jf2HTCzAvb/NgPSShXU5AAIeh9uvGgCN2vNnyBs7Y/joh3L8VNHcae2wc41teG/HaRhM3gckmK02bDlUAZuduQRyHf9dXNGCY5XaLp1ff6Jvt/i8o7YzoN1HfRPSN8J33FuftSgVFhairq4Oo0ePdm6z2WzYtWsX3nnnHZhMJvD5fKjVaqjVagwaNAgTJkxAZGQkNm/ejDlz5jhfd/z4cUyZMgX33nsvnnrqKed2vV6PQ4cOoaioyJncbbfbwRiDQCDAd999h8mTJzvLz58/H1u3bsWuXbuQnJzs9rw3bdoEg8GA22+/3WW7RqPBgQMHXLZ1JI1rNBqP9SAWiyEWi31VFwlzKVEyPDlrCArPNaO0Tg+7nWFAjBzj0qMh70ZOy6lqPcrr3ec/2ZmjO27/mUZMHhLvtgwAnLighdlq93qcwrJGDEuJ6PJ59gdCAQ+dolE3BNSaRIJQGK9g0neB0pQpU1BcXOyy7c4770ROTg4WL14MPp/f6TWMMTDGYDKZnNuOHTuGyZMnY968eXjxxRddyqtUqk7HWLFiBbZv345NmzYhPT3dud+HHnoImzdvxs6dO53b3Vm9ejX+8Ic/IDbWtasjNzcXL774Iurq6hAX51g9ftu2bVCpVBgyZIgfNUKId2IhHxMzYzAxMyZg+zx8vgkcB7ddeoDjd/3QWe+BUlVTu9d9AECD3gSLzQ4hP3yDgJRYOYrLmryWiVaJIaNkbkKCSp99IpVKZaccILlcjujoaAwbNgxlZWXYuHEjpk2bhtjYWFRWVmL58uWQSqWYOXMmAEd32+TJkzF9+nQsWrTImQvE5/MRGxsLHo/X6RhxcXGQSCQu2/Pz87F+/Xp88cUXUCqVzv2o1WpIpb+u0n369Gns2rULX331Vaf3M23aNAwZMgS33XYbXnnlFdTU1OCpp55Cfn4+tRiRoKVvt3gNcACgzUdXkL93iSF6M9kJYwzt7RbYbHYIBHxIJAK/8q+UMhHS4hU4V9vqscywdPcDSAghfSdob+8kEgl2796NmTNnIjMzEzfffDOUSiX27t3rbLHZtGkT6uvrsXbtWiQkJDgfY8eOvaxjrVy5ElqtFpMmTXLZz8aNG13K/c///A+Sk5OdOVAX4/P52Lp1K/h8PnJzc/Ff//VfuP322/Hcc891vRII6WERMpHXySwBQOVj4dXUGLnXYIsDkBAhheAyWpMYY7Db7IEdMccYYLUDJqvjYbYCNrv3prBL6HRGlJc14kKlFjXVelRWtODc2Sa0tZn9ev3YnDikxSsA/JKx8UvdC/gccofEQxMlu9x3RUiv6Lheu/Xo6zfRRX0+jxJxRfMokd50ulaP/9ld5vF5DsD04Qm4JjvOYxmrzY4PtjuSvj19mfzhymQM0vi+nu02O0wGC6zmX2erFoj4EEmF4Hcnd4cxwORhBmweBwh5PpvGdFojamv1Hp9PSlZD5scIQQDQGyyorG+FxWaHUipESpzisgJJQoDenUfpQnl1t4+h0+mQlJ4Qcr9v9MkkJIxlxCkwOFHl9k6PxwHRSjHGDYz2ug8Bn4e88amQiC4ZlffLTq/KjvUrSLJZ7WjTGl2CJACwmm0waI2w+UgY94gxwOxlmRA7A2ze7xftdob6es9dZgBQX9fqdwuYUibE4LRIjBgYjfQEFQVJJOhxAfoXiihrkJAwxnEc5kxIw7fF1fjxTCOsv8zzwwEYnKjG7NHJkAg7D6y4VKxKgrsmZeJYZQtKq3Ww2BniVRKMHBCJeLXU5+sBwNhm9joqzNhqgkwtufz5mBh8jzaz2gG+52E9BoMZdm/ryAAwm20wm20QUzI26Y8CMbo/NOMkCpQICXcCHg+zRiZhyhANzjW0wc4YEiNlUPvITbqURMTHmIHRGOOjBcodm9UOu48WI7uNwW61g+9H4Ob6Qj+zCxg8fpFb/WzNslrtoLEbhPQvFCgRQgAAEiEf2Ql9kzdgt/kXiNhtDPzLi98uK1nbE3+7xmgOJNJfhXGDEgVKhJC+53d3Wle+aXmczxwkX/uWyUXg8Tiv3W8iER8i0WW2dhESKsI4UqLbH0JIn+MLeX59iQq6Eojw/BiXLPA+6o3H4xATK/e6i5hYRdivZ0f6r3BO5qZAiRDS5ziOg9hHTpRI6t/Ejm52DnjLa+LBkcjtg1otRXy8EvxLygoEPCQmqSCX+zc1ACEktFDXGyEkKAglAjDGYG7vPBO4UOyYS6nLeBwg5ju64Gz2XxO3BbxfWpz8C8BUagmUKjEMBsfM3EIBDxKpkFqSSL9Ha70RQkgf4zgOYpkIQrEAFrMNzM7AcRyEYj54gZhniOMAAecIjrp5ntR6REj4oECJEBJUeHwexFLKCiCEBAcKlAghhBDiFcdx3e5iDtUuarptI4QQQgjxgAIlQgghhBAPqOuNEEIIIV7RqDdCCCGEEA/CeGJu6nojhBBCCPGEWpQIIYQQ4l0Y971RoEQIIYQQr8K5640CJUIIIYR4F8aREgVKQYYxBgDQ6XR9fCaEEEKCWcfvRMfvRn+2fPlyPP7441iwYAHeeOMNAIDRaMQjjzyCDRs2wGQyYfr06VixYgXi4+MDemwKlIKMXq8HAKSkpPTxmRBCCAkFer0earW6R4/B/fKvu/voioMHD+K9997DiBEjXLY//PDD+Pe//43PPvsMarUa8+fPx4033ogffvihW+d5KQqUgkxiYiIqKiqgVCoDOt27TqdDSkoKKioqoFKpArbfUEP14ED14ED14ED14BBq9cAYg16vR2JiYo8fq69yuVtbWzF37ly8//77eOGFF5zbtVotVq9ejfXr12Py5MkAgDVr1mDw4MHYv38/JkyY0L2TvQgFSkGGx+MhOTm5x/avUqlC4gugp1E9OFA9OFA9OFA9OIRSPfR0S1JPuDS1RCwWQywWuy2bn5+PWbNmYerUqS6BUmFhISwWC6ZOnerclpOTg9TUVOzbty+ggRLNo0QIIYSQXpOSkgK1Wu18LFu2zG25DRs24PDhw26fr6mpgUgkQkREhMv2+Ph41NTUBPR8qUWJEEIIIV4Fsuvt0q5Nd61JFRUVWLBgAbZt2waJRNK9A3cTtSiFCbFYjKVLl3ps3gwXVA8OVA8OVA8OVA8OVA+9o6Nrs+Phrr4LCwtRV1eH0aNHQyAQQCAQoKCgAG+99RYEAgHi4+NhNpvR0tLi8rra2lpoNJqAni/HwmFcISGEEEIum06ng1qtRktNY7fztnQ6HSI00dBqtT73pdfrce7cOZdtd955J3JycrB48WKkpKQgNjYWn3zyCfLy8gAAJSUlyMnJCXiOEnW9EUIIIcSr3h71plQqMWzYMJdtcrkc0dHRzu133303Fi1ahKioKKhUKjz00EPIzc0NaJAEUKBECCGEEB8CMQlyoCdSfv3118Hj8ZCXl+cy4WSgUdcbIYQQQtwyGo1IT08P2EgyjUaD8vLyPk/QvhwUKBFCCCHEI6PRCLPZHJB9iUSikAqSABr1FjQGDBgAjuM6PfLz813KMcYwY8YMcByHLVu2uDx3/vx5zJo1CzKZDHFxcXj00UdhtVrdHu+HH36AQCDAqFGjXLbbbDY8/fTTSE9Ph1QqRUZGBp5//nmXtYQYY3jmmWeQkJAAqVSKqVOnorS0tF/Vg16vx8KFC5GWlgapVIqJEyfi4MGDnc4hlOth586dbo9x6Z3ju+++iwEDBkAikWD8+PE4cOCAy/NGoxH5+fmIjo6GQqFAXl4eamtr+1U97Nq1C9dffz0SExPdHqPjHPr79bBs2TKMHTsWSqUScXFx+OMf/4iSkhKX44TD9bBy5UqMGDHCOWorNzcXX3/9da/VQ2+TSCSdRqp19RFqQRJAgVLQOHjwIKqrq52Pbdu2AQD+/Oc/u5R744033C5tYrPZMGvWLJjNZuzduxcfffQRPvzwQzzzzDOdyra0tOD222/HlClTOj338ssvY+XKlXjnnXdw4sQJvPzyy3jllVfw9ttvO8u88soreOutt7Bq1Sr8+OOPkMvlmD59OoxGY3erIWjq4Z577sG2bdvw8ccfo7i4GNOmTcPUqVNx4cIFZ5n+Ug8lJSUux4qLi3M+t3HjRixatAhLly7F4cOHMXLkSEyfPh11dXXOMg8//DC+/PJLfPbZZygoKEBVVRVuvPHGbtdBMNVDW1sbRo4ciXfffdfjuYbD9VBQUID8/Hzs378f27Ztg8ViwbRp09DW1uYsEw7XQ3JyMpYvX47CwkIcOnQIkydPxuzZs3Hs2LFeqQfSyxgJSgsWLGAZGRnMbrc7txUVFbGkpCRWXV3NALDNmzc7n/vqq68Yj8djNTU1zm0rV65kKpWKmUwml33ffPPN7KmnnmJLly5lI0eOdHlu1qxZ7K677nLZduONN7K5c+cyxhiz2+1Mo9Gwv//9787nW1pamFgsZp988kl333YnfVEPBoOB8fl8tnXrVpfyo0ePZk8++SRjrH/Uw44dOxgA1tzc7PG448aNY/n5+c6/bTYbS0xMZMuWLWOMOd6zUChkn332mbPMiRMnGAC2b9++7r7tTvqqHi526TEYC5/r4VJ1dXUMACsoKGCMhef10CEyMpJ98MEHjLHerwfSs6hFKQiZzWasXbsWd911l/OuyGAw4NZbb8W7777rdjKtffv2Yfjw4YiPj3dumz59OnQ6nctdzpo1a1BWVoalS5e6PfbEiRPxn//8B6dOnQIA/PTTT9izZw9mzJgBACgvL0dNTY3L+jpqtRrjx4/Hvn37uv/mL9JX9WC1WmGz2To1EUulUuzZswdA/6kHABg1ahQSEhLwu9/9zmXVbbPZjMLCQpf3yOPxMHXqVOd79LXeUiD1VT34IxyuB3e0Wi0AICoqCkB4Xg82mw0bNmxAW1sbcnNzAfRuPZCeR9MDBKEtW7agpaUFd9xxh3Pbww8/jIkTJ2L27NluX1NTU+Py4Qfg/Lujb720tBRLlizB7t27IRC4/59+yZIl0Ol0yMnJAZ/Ph81mw4svvoi5c+e67MvdsQK9vk5f1YNSqURubi6ef/55DB48GPHx8fjkk0+wb98+ZGZmuuwrlOshISEBq1atwpVXXgmTyYQPPvgAkyZNwo8//ojRo0ejoaEBNpvN7X5Onjzp3FdvrbfUV/Xgj3C4Hi5lt9uxcOFCXHXVVc55bcLpeiguLkZubi6MRiMUCgU2b96MIUOGOPfVW/VAeh4FSkFo9erVmDFjBhITEwEA//d//4ft27ejqKioy/u02Wy49dZb8eyzzyIrK8tjuU8//RTr1q3D+vXrMXToUBw5cgQLFy5EYmIi5s2b1+Xjd0Vf1sPHH3+Mu+66C0lJSeDz+Rg9ejTmzJmDwsLCLh+7q3qiHgAgOzsb2dnZzr8nTpyIM2fO4PXXX8fHH3/crX33BKoHh2Cph/z8fBw9etTZytrb+roesrOzceTIEWi1WmzatAnz5s1DQUGBM1gi/Qd1vQWZc+fO4fvvv8c999zj3LZ9+3acOXMGERERzjVvACAvLw+TJk0C4Jib4tIRFR1/azQa6PV6HDp0CPPnz3fu47nnnsNPP/0EgUCA7du3AwAeffRRLFmyBLfccguGDx+O2267DQ8//LBz9eaO5mx3xwrk+jp9XQ8ZGRkoKChAa2srKioqcODAAVgsFgwcOLBf1IMn48aNw+nTpwEAMTEx4PP5Xt+jRqPplfWW+rIe/BEO18PF5s+fj61bt2LHjh1ITk52bg+n60EkEiEzMxNjxozBsmXLMHLkSLz55pvOffXWOmSkF/R1khRxtXTpUqbRaJjFYnFuq66uZsXFxS4PAOzNN99kZWVljLFfkxRra2udr3vvvfeYSqViRqOR2Wy2Tvt44IEHWHZ2NisuLmatra2MMcaioqLYihUrXM7ppZdeYoMGDWKM/Zq0+uqrrzqf12q1AU9a7et6uFRTUxNTq9Xsvffe6xf14MnUqVPZDTfc4Px73LhxbP78+c6/bTYbS0pK6pTMvWnTJmeZkydPBjxpta/r4WLwkszd368Hu93O8vPzWWJiIjt16lSn8uF4PXS49tpr2bx58xhjvVcPpHdQoBREbDYbS01NZYsXL/ZZ9tIva6vVyoYNG8amTZvGjhw5wr755hsWGxvLHn/8cY/7cDfqbd68eSwpKYlt3bqVlZeXs88//5zFxMSwxx57zFlm+fLlLCIign3xxRfs559/ZrNnz2bp6emsvb39st+zO8FQD9988w37+uuvWVlZGfvuu+/YyJEj2fjx45nZbHaWCfV6eP3119mWLVtYaWkpKy4uZgsWLGA8Ho99//33zjIbNmxgYrGYffjhh+z48ePs3nvvZRERES6jhu6//36WmprKtm/fzg4dOsRyc3NZbm5uQOqAseCoB71ez4qKilhRUREDwF577TVWVFTEzp075ywTDtfDAw88wNRqNdu5cyerrq52PgwGg7NMOFwPS5YsYQUFBay8vJz9/PPPbMmSJYzjOPbdd985y/R0PZDeQ4FSEPn2228ZAFZSUuKzrLu72rNnz7IZM2YwqVTKYmJi2COPPOJyx3UpdwGCTqdjCxYsYKmpqUwikbCBAweyJ5980mVovd1uZ08//TSLj49nYrGYTZkyxa9z9lcw1MPGjRvZwIEDmUgkYhqNhuXn57OWlhaXMqFeDy+//DLLyMhgEomERUVFsUmTJrHt27d32vfbb7/NUlNTmUgkYuPGjWP79+93eb69vZ09+OCDLDIykslkMnbDDTew6urqrr1pN4KhHjqGjF/66GhBYCw8rgd3dQCArVmzxlkmHK6Hu+66i6WlpTGRSMRiY2PZlClTXIIkxnq+HkjvoSVMCCGEEEI8oGRuQgghhBAPKFAihBBCCPGAAiVCCCGEEA8oUCKEEEII8YACJUIIIYQQDyhQIoQQQgjxgAIlQgghhBAPKFAihPS5SZMmYeHChT1+nAEDBoDjOHAc12kdrss1adIk576OHDkSkPMjhAQfCpQIIU533HGH88f/4sd1110XkP3v3LnTbZDy+eef4/nnnw/IMXx57rnnUF1dDbVa3a39fP755zhw4ECAzooQEqwEfX0ChJDgct1112HNmjUu28RicY8eMyoqqkf3fzGlUhmQFdyjoqKg0+kCcEaEkGBGLUqEEBdisRgajcblERkZ6Xz+tddew/DhwyGXy5GSkoIHH3wQra2tzufPnTuH66+/HpGRkZDL5Rg6dCi++uornD17Ftdeey0AIDIyEhzH4Y477gDQuettwIABeOmll3DXXXdBqVQiNTUV//znP13Oc+/evRg1ahQkEgmuvPJKbNmypUvdYB9++CEiIiKwdetWZGdnQyaT4U9/+hMMBgM++ugjDBgwAJGRkfjrX/8Km812eZVJCAl51KJECLksPB4Pb731FtLT01FWVoYHH3wQjz32GFasWAEAyM/Ph9lsxq5duyCXy3H8+HEoFAqkpKTgX//6F/Ly8lBSUgKVSgWpVOrxOP/4xz/w/PPP44knnsCmTZvwwAMP4Le//S2ys7Oh0+lw/fXXY+bMmVi/fj3OnTvXrRwng8GAt956Cxs2bIBer8eNN96IG264AREREfjqq69QVlaGvLw8XHXVVbj55pu7fBxCSOihQIkQ4mLr1q1QKBQu25544gk88cQTANCp5eeFF17A/fff7wyUzp8/j7y8PAwfPhwAMHDgQGf5ji62uLg4REREeD2PmTNn4sEHHwQALF68GK+//jp27NiB7OxsrF+/HhzH4f3334dEIsGQIUNw4cIF/OUvf+nSe7ZYLFi5ciUyMjIAAH/605/w8ccfo7a2FgqFAkOGDMG1116LHTt2UKBESJihQIkQ4uLaa6/FypUrXbZdnEP0/fffY9myZTh58iR0Oh2sViuMRiMMBgNkMhn++te/4oEHHsB3332HqVOnIi8vDyNGjLjs87j4NRzHQaPRoK6uDgBQUlKCESNGQCKROMuMGzfuso/RQSaTOYMkAIiPj8eAAQNcAsb4+Hjn8Qkh4YNylAghLuRyOTIzM10eHYHS2bNn8fvf/x4jRozAv/71LxQWFuLdd98FAJjNZgDAPffcg7KyMtx2220oLi7GlVdeibfffvuyz0MoFLr8zXEc7HZ7N9+d/8fqzeMTQoIXBUqEEL8VFhbCbrfjH//4ByZMmICsrCxUVVV1KpeSkoL7778fn3/+OR555BG8//77AACRSAQA3U6Kzs7ORnFxMUwmk3PbwYMHu7VPQghxhwIlQogLk8mEmpoal0dDQwMAIDMzExaLBW+//TbKysrw8ccfY9WqVS6vX7hwIb799luUl5fj8OHD2LFjBwYPHgwASEtLA8dx2Lp1K+rr611Gy12OW2+9FXa7Hffeey9OnDiBb7/9Fq+++ioAR8sPIYQECgVKhBAX33zzDRISElweV199NQBg5MiReO211/Dyyy9j2LBhWLduHZYtW+byepvNhvz8fAwePBjXXXcdsrKynIneSUlJePbZZ7FkyRLEx8dj/vz5XTpHlUqFL7/8EkeOHMGoUaPw5JNP4plnngEAl7wlQgjpLo4xxvr6JAghpLvWrVuHO++8E1qt1uO0AwMGDMDChQsDtlzK2bNnkZ6ejqKiIowaNSog+ySEBBdqUSKEhKT//d//xZ49e1BeXo4tW7Zg8eLFuOmmm7zOzQQ4phpQKBTQarXdOv6MGTMwdOjQbu2DEBL8aHoAQkhIqqmpwTPPPIOamhokJCTgz3/+M1588UWvrykoKIDFYgHgWMqkOz744AO0t7cDAFJTU7u1L0JI8KKuN0IIIYQQD6jrjRBCCCHEAwqUCCGEEEI8oECJEEIIIcQDCpQIIYQQQjygQIkQQgghxAMKlAghhBBCPKBAiRBCCCHEAwqUCCGEEEI8oECJEEIIIcSD/weXsfKoqrRFtAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGzCAYAAAA/lFPrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/t0lEQVR4nOzdd3zU9f3A8df39spOyIAMNrIREBCVKSioVK0L/QnWUqnW2RaLtopVQalV3FaLguIeOKsCDhRBZIuAzAAJ2fOSS3Lz8/sj5MiR5HKZl0s+zz6umO/3c9/73Pp+3/cZ748ihBBIkiRJkiRJ9VIFuwKSJEmSJEkdmQyWJEmSJEmS/JDBkiRJkiRJkh8yWJIkSZIkSfJDBkuSJEmSJEl+yGBJkiRJkiTJDxksSZIkSZIk+SGDJUmSJEmSJD9ksCRJkiRJkuSHDJa6oLKyMhYsWMC0adOIi4tDURQWLVpUb9kNGzbw+9//npEjR6LX61EUhaNHj9ZbdtmyZVx22WX07NkTRVGYOHFiwHX69ttvURQFRVFYsWJFvWUmT56MoiikpaUFfNyOYsWKFX5fu9o2b97MpZdeSkpKCnq9nvj4eMaNG8ef//zntq9oG2vK69ASixcv5sMPP2zw8bdu3dqmj99aFi1ahKIoPtsmTpzYpO9WU73xxhssW7asTY6dlpbG3LlzW+14zz33XIPni/p8+umnXH/99QwZMgStVlvnta1R+3y0adOmOvvnzp2LxWLx2daUc6UUemSw1AUVFhby4osvYrfb+c1vfuO37FdffcW6detISUnh7LPP9lv2hRde4NixY0yePJm4uLhm1S0sLIzly5fX2Z6ens63335LeHh4s44bKj777DPOPvtsrFYrS5cuZc2aNTz55JOMHz+et99+O9jVCxkNBUtS49oyWGptTQ2WVq9ezY8//sjAgQMZNmxYQPdZsGBBQOWacq6UQo8Mlrqg1NRUiouLWb9+PUuWLPFb9h//+AdHjx5l9erVzJw502/ZvXv3sm3bNpYvX063bt2aVberrrqKDRs2cPDgQZ/tL7/8Mt27d2f8+PHNOm6oWLp0KT179uTLL7/k6quvZsKECVx99dU89thjHD9+PNjVk6SQ9tJLL3HgwAHefvttxo4d22j5Cy64gA0bNvDJJ580WrYp50op9MhgqQuqaV4OhEoV+EekKWUbcv7555OcnMzLL7/s3ebxeFi5ciVz5syp9zGeffZZzjvvPLp164bZbGbIkCEsXboUp9PpU27ixIkMHjyYLVu2cO6552IymejVqxePPPIIHo/HW66hrqKapvlvv/3Wu23t2rXMmjWLHj16YDAY6NOnDzfddBMFBQXNev6FhYXExsai0Wjq7Dv9uaelpXHRRRfxxRdfcOaZZ2I0GhkwYIDPa1fjl19+YdasWURFRWEwGBg+fDgrV6707hdCEB8fzy233OLd5na7iYqKQqVSkZub693++OOPo9FoKCkp8ftcfvzxR8aPH4/BYCApKYmFCxfWeU9qvP3224wbNw6z2YzFYmH69Ons2LHDp0xN18eePXuYMmUKZrOZuLg4/vSnP1FRUeEtpygKNpuNlStXej/rp3dblZWV8cc//pHY2FhiYmK47LLLyMrK8inz9ddfM3HiRGJiYjAajaSkpHD55Zf7PFZD3njjDcaNG4fFYsFisTB8+PA6LaYvv/wyw4YNw2AwEB0dzaWXXsq+ffsaPXZ9HA4HDz30EAMGDECv1xMXF8cNN9xAfn5+k+o2ceJEPvvsM44dO+Z97WqfKwJ9HKfTyYIFC0hISMBkMnHOOefw008/Bfx8HnjgAcaMGUN0dDTh4eGceeaZLF++nNrrvqelpbFnzx7Wr1/vrWdjXfRNPUfNnTuXgQMHsnDhQtxud6seWwot8t2VOhSVSsXcuXN59dVXvSenNWvWkJmZyQ033FDvfQ4fPszs2bN57bXX+PTTT7nxxhv517/+xU033VSnbE5ODtdeey3XXXcdH3/8MRdeeCELFy5k1apVzarv4cOHGTduHM8//zxr1qzhvvvuY/PmzZxzzjkNBgb+jBs3js2bN3PbbbexefPmRo+xa9cu/vznP3PnnXfy0UcfMXToUG688Ua+++47b5n9+/dz9tlns2fPHp566ik++OADBg4cyNy5c1m6dClQHWBMnjyZdevWee+3detWSkpKMBgMfPXVV97t69atY+TIkURGRjZYr7179zJlyhRKSkpYsWIFL7zwAjt27OChhx6qU3bx4sVcc801DBw4kHfeeYfXXnuNsrIyzj33XPbu3etT1ul0MmPGDKZMmcKHH37In/70J/7zn/9w1VVXects2rQJo9HIjBkz2LRpE5s2beK5557zOc7vf/97tFotb7zxBkuXLuXbb7/luuuu8+4/evQoM2fORKfT8fLLL/PFF1/wyCOPYDabcTgcft+T++67j2uvvZakpCRWrFjB6tWrmTNnDseOHfOWWbJkCTfeeCODBg3igw8+4Mknn+Tnn39m3LhxdVpVG+PxeJg1axaPPPIIs2fP5rPPPuORRx5h7dq1TJw4kcrKyoDr9txzzzF+/HgSEhK8r13NmJ2mPM68efN47LHHuP766/noo4+4/PLLueyyyyguLg7oOR09epSbbrqJd955hw8++IDLLruMW2+9lQcffNBbZvXq1fTq1YsRI0Z467l69eomvXaNUavVLFmyhD179vj8uJC6ICF1afn5+QIQ999/f6Nl//WvfwlApKenN1p20KBBYsKECQHX45tvvhGAePfdd8WRI0eEoiji008/FUIIccUVV4iJEycKIYSYOXOmSE1NbfA4brdbOJ1O8eqrrwq1Wi2Kioq8+yZMmCAAsXnzZp/7DBw4UEyfPt379yuvvFLv86yp4zfffFPvY3s8HuF0OsWxY8cEID766KNGj3m6goICcc455whAAEKr1Yqzzz5bLFmyRJSVlfmUTU1NFQaDQRw7dsy7rbKyUkRHR4ubbrrJu+3qq68Wer1eHD9+3Of+F154oTCZTKKkpEQIIcR///tfAXjLPfTQQ2LAgAHikksuETfccIMQQgiHwyHMZrO45557/D6Pq666ShiNRpGTk+Pd5nK5xIABA3xeh+PHjwuNRiNuvfVWn/uXlZWJhIQEceWVV3q3zZkzRwDiySef9Cn78MMPC0Bs2LDBu81sNos5c+bUqVfN+3DzzTf7bF+6dKkARHZ2thBCiPfee08AYufOnX6f5+mOHDki1Gq1uPbaaxssU1xcLIxGo5gxY4bP9uPHjwu9Xi9mz57t3Xb//feL00/TEyZM8PluvfnmmwIQ77//vk+5LVu2CEA899xzAddNiIa/Y4E+zr59+wQg7rzzTp9yr7/+ugDqfV/8qflO//Of/xQxMTHC4/F49zX1PFPbLbfcUue1rVH7fCSEEOecc47o0aOHqKysFEJUfxbNZnODx27KuVIKDbJlSepwevbsycSJE3n55ZcpLCzko48+4ne/+12D5Xfs2MEll1xCTEwMarUarVbL9ddfj9vt5sCBAz5lExISOOuss3y2DR061OdXf1Pk5eUxf/58kpOT0Wg0aLVaUlNTAZrVpRITE8P333/Pli1beOSRR5g1axYHDhxg4cKFDBkypE733vDhw0lJSfH+bTAY6Nevn8/z+frrr5kyZQrJyck+9507dy4VFRXeloOpU6cCeFuX1q5dy/nnn8/UqVNZu3YtUN1qY7PZvGUb8s033zBlyhTi4+O929RqtU8LEMCXX36Jy+Xi+uuvx+VyeW8Gg4EJEyb4dHnWuPbaa33+nj17tvcxA3XJJZf4/D106FAA7+s2fPhwdDodf/jDH1i5ciVHjhwJ6Lhr167F7Xb7dGeebtOmTVRWVtaZFZacnMzkyZN9WvEC8emnnxIZGcnFF1/s8xoOHz6chIQE72sYSN1a43Fq3ofT36crr7yy3u7l+nz99ddMnTqViIgI73f6vvvuo7CwkLy8vGbVvyUeffRRMjMzefLJJ9v9saWOQQZLUod044038sknn/D4449jNBr57W9/W2+548ePc+6553LixAmefPJJb6Dx7LPPAvh0DUB1MHI6vV5fp1wgPB4P06ZN44MPPmDBggV89dVX/PTTT/z444/1PnZTjBo1irvvvpt3332XrKws7rzzTo4ePertNqsRyPMpLCwkMTGxTrmkpCTvfqge+N+7d2/WrVvnDaJqgqXMzEz279/PunXrMBqNjc72KSwsJCEhoc7207fVjIUaPXo0Wq3W5/b222/XCQ41Gk2d51xzzJrnEYjTj6HX64FT71nN69CtWzduueUWevfuTe/evRu9WNaM3enRo0eDZWrq2dB70pTnAdWvYUlJCTqdrs5rmJOT430NA6lbazxOTf1Pf6/re+/q89NPPzFt2jSgekD2Dz/8wJYtW7j33nuBln2vmuvss8/mN7/5DY888kjAXYlS5xJYmC9J7eyyyy7jlltu4ZFHHmHevHkYjcZ6y3344YfYbDY++OADb4sOwM6dO5v92AaDAQC73e6z/fQL9y+//MKuXbtYsWIFc+bM8W4/dOhQsx+7Plqtlvvvv58nnniCX375pcn3j4mJITs7u872mgHNsbGx3m1Tpkzho48+Yv369Xg8HiZOnEhYWBhJSUmsXbuWdevWce6553qDC3+PmZOTU2f76dtqHvu9997zef8a4nK5KCws9Lno1hwzkAtxU5x77rmce+65uN1utm7dytNPP80dd9xBfHw8V199db33qUmZkZmZWaclr0ZNPRt6T2q/H4GoGaT+xRdf1Ls/LCws4Lq1xuPUPL+cnBy6d+/u3V/z3jXmrbfeQqvV8umnn3q/i0DQU0EsWbKEwYMHs3jx4qDWQwoO2bIkdUhGo5H77ruPiy++mD/+8Y8NlquZqVP74i2E4KWXXmr2Y9fMqPn55599tn/88ceNPjbAf/7zn2Y/dn0XUDjVpVfTGtQUU6ZM4euvv64z2+vVV1/FZDL5TKGeOnUqubm5LFu2jLFjx3ovgFOmTGH16tVs2bKl0S44gEmTJvHVV1/5zKJzu911ckVNnz4djUbD4cOHGTVqVL23073++us+f7/xxhsAPjPemttaWB+1Ws2YMWO8rZXbt29vsOy0adNQq9U8//zzDZYZN24cRqOxzqSCzMxMb5dpU1x00UUUFhbidrvrff369+8fcN2g4dcu0MepeR9Of5/eeecdXC5Xo89HURQ0Gg1qtdq7rbKyktdeey3guraFAQMG8Lvf/Y6nn35apvHogmTLUhf1+eefY7PZKCsrA6pnL7333nsAzJgxA5PJBFQ33a9fvx6A3bt3e+8bFxdHXFwcEyZM8B5z69at3un2VqsVIYT3mKNHjw6o5aC2u+66i7vuustvmfPPPx+dTsc111zDggULqKqq4vnnn29RU/no0aPp378/f/nLX3C5XERFRbF69Wo2bNjgU27AgAH07t2bv/3tbwghiI6O5pNPPvGO72mO6dOn06NHDy6++GIGDBiAx+Nh586d/Pvf/8ZisXD77bc3+Zj3338/n376KZMmTeK+++4jOjqa119/nc8++4ylS5cSERHhLVuTJX3NmjU88MAD3u1Tp071tp4FEiz9/e9/5+OPP2by5Mncd999mEwmnn32WWw2m0+5tLQ0/vnPf3Lvvfdy5MgRLrjgAqKiosjNzeWnn37CbDb71EOn0/Hvf/+b8vJyRo8ezcaNG3nooYe48MILOeecc7zlhgwZwrfffssnn3xCYmIiYWFh3ot5IF544QW+/vprZs6cSUpKClVVVd6UDP6ef1paGvfccw8PPvgglZWVXHPNNURERLB3714KCgp44IEHiIyM5B//+Af33HMP119/Pddccw2FhYU88MADGAwG7r///oDrCXD11Vfz+uuvM2PGDG6//XbOOusstFotmZmZfPPNN8yaNYtLL700oLrVvHYffPABzz//PCNHjkSlUjFq1KiAH+eMM87guuuuY9myZWi1WqZOncovv/zCY489FlBS2ZkzZ/L4448ze/Zs/vCHP1BYWMhjjz1Wb2vmkCFDeOutt3j77bfp1asXBoOBIUOGNHjsY8eOsWXLFqB6JivgPUelpaXVG5zXtmjRIl5//XW++eYbzGazz76mnCtDUVVVVaMzQQOh0+l8WgxDRpAHmEtBkpqa6p1xdfqt9gyOmlkh9d1On4VSM1upvtsrr7zitz6nzz5pSH0zdT755BMxbNgwYTAYRPfu3cVf//pX8fnnn9eZuTZhwgQxaNCgOsecM2dOnWMeOHBATJs2TYSHh4u4uDhx6623is8++6zOMffu3SvOP/98ERYWJqKiosQVV1whjh8/XmeGYaCz4d5++20xe/Zs0bdvX2GxWIRWqxUpKSni//7v/8TevXt9yqampoqZM2fWOcbps6WEEGL37t3i4osvFhEREUKn04lhw4Y1+J6MGDFCAOKHH37wbjtx4oQA6sxG8ueHH34QY8eOFXq9XiQkJIi//vWv4sUXX6z3dfjwww/FpEmTRHh4uNDr9SI1NVX89re/FevWrfOWqZmB9PPPP4uJEycKo9EooqOjxR//+EdRXl7uc7ydO3eK8ePHC5PJ5PNZrXkftmzZ4lP+9JmOmzZtEpdeeqlITU0Ver1exMTEiAkTJoiPP/44oOf+6quvitGjRwuDwSAsFosYMWJEndf7v//9rxg6dKjQ6XQiIiJCzJo1S+zZs8enTCCz4YQQwul0iscee8z7PbBYLGLAgAHipptuEgcPHmxS3YqKisRvf/tbERkZKRRF8Xn8QB/HbreLP//5z6Jbt27CYDCIsWPHik2bNonU1NSAZsO9/PLLon///kKv14tevXqJJUuWiOXLl9f57Bw9elRMmzZNhIWFCcDvTFkhTr3/9d1q18vf+eiee+4RQJ3ZcE05V4aayspKgdbQ4PNryi0hIcE7qzCUKELUyvIlSZLUQc2dO5f33nuP8vLyYFdFkroUq9VKREQEypm/AbW2+QdyOxHbP6S0tDTklq6S3XCSJEmSJDVOrUXRND9YCuWWGRksSZIkSZLUOEWpvrXk/iFKzoaTJCkkrFixQnbBSVIwKQooqhbcZLAkSZIkSZLUKcluOEmSJEmSGlfTQtSS+4coGSxJkiRJktS4LjxmSQZLHYzH4yErK4uwsDBvhmhJkiRJqo8QgrKyMpKSklCpQrflpqOTwVIHk5WV1ax1myRJkqSuKyMjo9mLJAdMdsNJHUXNWlwZGRkhl7RLkiRJal9Wq5Xk5GTvtaNNyWBJ6ihqut7Cw8NlsCRJkiQFRA7baFsyWJIkSZIkqVGKSkFRtSAoUykhm8VbBkuSJEmSJDVOdsNJkiRJkiT50YWDpdCtuSRJkiRJUjuQLUuSJEmSJDVOJqWUJEmSJEnyQ3bDSZIkSZIkSfWRLUuS1MF4hEAVws3VkiR1UorSwpal0D2vyWBJkjqAQpudT3/J4duD+VQ43EQYtEwd0I0ZgxKw6OXXVJKkDkCOWZIkKVhOlFRy32d7qXC48JzM2FZa5WT1rhN8f7iABy8aRKRRG9xKSpIkdWFyzJIkBZEQgqe+PeQTKNXwCCgot7N8Y3pwKidJklRbzQDvltxClGxZkqQgOlxg42hRRYP7PQK2HC+mqMJBtEnXjjWTJEk6XUsDHhksSZLUDOmFtkbLCAHHiypksNQOisrt7M0soazShVGnpn9SBAmRBrlIqSR1cTJYkqQg0qgC+6WlVXfsX2ROlwen24NBp/Y7k08IQVmZHbvdjVqtEB5uQKMJ/nMTQvD9vjx2Hi2qHoMqAAV+PlZMr3gLFwzvjqaDvweS1ObkAG9JkoJhWI8IFKW69aghRq2avnGWFj2O0+3h5xOllFQ6iTbpGNo9AnVLVg8/6URRBVsOFXC8oLqFTK9VMSQlilG9Y9Bp1D5lrWVVZGSU4nJ5vNsUpZTYWDOJCWFBbb3Znl7EzqNFQK334uS/6bnlfLsnh6lDk4JTOUnqKLpwUkoZLElSEEWbdJzXO5bvDhc0GDBdNDgBXQtaX745kMdrPx3H5nB7t0UYtdwwNpVxPWOafdyD2Va+2HHCZ5vd6WHb4UKO5pVz+dhU9NrqgKnc5iA9vbjOMYSA/HwbQgi6J0U0uy4t4fYIth0uaHC/APZlljK2XxwWg5yVKHVhXThYCt2aS1In8fuzezKse3WgUNPYU/Pv5H5xXDase7OP/c2BPF7YkO4TKAGUVjpZ9s0hfjrZmtJUdqebtbuyEHgbYLwEUFhmZ+vhQu+2nByr3+MVFFTgdLr9lmkruSWVVDk9fssI4Fh+4+PLJEnqnGTLkiQFmU6j4m/n92dfThnfHS6grMpJjFnPxL5x9Io1N/u4TreHVVsy/JZ59adjjEqNanLG8ANZVlyn5zqoRQC7jxcztl8cHrcHm83Z6DFLSiqJa2F3Y3P4ex4+5dz+AypJ6vTkmCVJkoJJURQGJoYzMDG81Y7584lSyu0uv2Xyyx0czCunf3xYk45dWG5HpVAnN1RtDpeHCrsr4JNMsIKRGIuOmjHd/sSFG9qjOpLUcXXhbjgZLElSJ2Wtarw1pynlagt0dp5WrUIT4EBynTY4pyOzQUuv+DCO5JXVO25MASItOhKjjAEdb9OBEzy3Zgc//JqJRq1i5pm9+eO0EfRLjG7dikuS1G5ksCRJnVS0ObC8TIGWq61XfBjbjhQ2uF8BEqKMGHTVA7wjwvWUWu0Nl1cgMrL5LTdCCA7klrHpcCG51iqMWjXDUyIZnRaDUadu9P4TB8WTZ62ivMrpEzApSnXAd8Hw7gHN1lv60Wbufes7NCoVLk91S9nza3bwn7U7efuOWVw8qk+zn6MkBV0XblkK3ZpLkuTX4MQIv2vKKUD3CAO9Ypo+Lioh0kD3aFODQxAEcFafWO/fiYnhqPy0MCUlhqNuZh4jjxC8veU4L313hL1ZpeSX2TleVMHHO7P41xf7KChrOEirYTZouXp8Gmf2jEF/cuahWqUwqEckV4/vGVAX3De/HOPet74D8AZKUD3bzuX2cPWTH5NVVN6s5yhJHYJKafktRMlgSZI6KbVK4Xfj0urdp1DdanLDuLRm5TdSFIWZI3uQGGk6+XftmXwKU4ckklprsLZer6Fvn1gsFt9WLJ1WTUpyJLEtGMi+4WA+W49WpyU4fQxVud3F8g1H8PhLZHWSUadh/IBu/OH8fvxxen9unt6fyUMSiQyw5e2pz7c12OUoqB6TtfzrXQEdS5Kkat999x0XX3wxSUlJKIrChx9+6LNfCMGiRYtISkrCaDQyceJE9uzZ41PGbrdz6623Ehsbi9ls5pJLLiEzM7NJ9ZDBkiR1YmPSovnr1H50C9P7bE+KMHDP9AEMaUFuI4NWzeVjU/jt2FSGpUZzRo9Izj2jGzdO6cPA5Mi65Q0aeveK4YwBcfTuFU3fPrEMGBBHVIBjgerj8QjW789veL+A/DI7B3PLAj6moiho1aomB5Hr92X4nVnnEYLv9vmfnShJHZmiKCiKqgW3pv8ws9lsDBs2jGeeeabe/UuXLuXxxx/nmWeeYcuWLSQkJHD++edTVnbqO3/HHXewevVq3nrrLTZs2EB5eTkXXXQRbnfg6UrkmCVJ6uRGpUQxMjmSQ/k2SquqM3j3jDG1SsZsRVFIijaRFG0K+D46nQadrnVOPcUVDkor/Q9QVylwOK+c/gmtN9OwPoG8mnKNOSmkBWHM0oUXXsiFF15Y7z4hBMuWLePee+/lsssuA2DlypXEx8fzxhtvcNNNN1FaWsry5ct57bXXmDp1KgCrVq0iOTmZdevWMX369IDqIVuWJKkLUBSFvt0sjEqJolesuctdtAPLpNQykwen+p35p1IUJg9ObYeaSFLHZrVafW52e+PjCuuTnp5OTk4O06ZN827T6/VMmDCBjRs3ArBt2zacTqdPmaSkJAYPHuwtEwgZLEmSFLKiTDrCDP5bqTwCerZgTFSgbp8xqsFuOEUBvVbNDROHtHk9JKnN1CSlbMkNSE5OJiIiwntbsmRJs6qTk5MDQHx8vM/2+Ph4776cnBx0Oh1RUVENlgmE7IaTJClkqVQK5/aN43+7s+vdryjVAdWANu6CAzhnQA+emDOFO1d+hUaleAMntap6DNT7f/4N8ZFtH7RJUptppW64jIwMwsNPfSf1en1D9wjssKe1lAshGm09D6RMbTJYkiQppE3o343M4gp+zixFUfDmSVIAk07N787p5TdtQWv60wVncu4ZPXhh7Q42/JqJTq1mxpm9mTdlGCmxbR+wSVKbaqVgKTw83CdYaq6EhASguvUoMTHRuz0vL8/b2pSQkIDD4aC4uNindSkvL4+zzz474MeSwZIkSSFNrVK4blwae06UsvFQAXlldgxaNSNSIhnbKxZLI910rW1Yajee/31gg0YlSWq+nj17kpCQwNq1axkxYgQADoeD9evX8+ijjwIwcuRItFota9eu5corrwQgOzubX375haVLlwb8WDJYkqRW4BGCnKIK8kuqAIiLMJAQY2ryArVS86gUhSE9IhnSIzLYVZGkzisIC+mWl5dz6NAh79/p6ens3LmT6OhoUlJSuOOOO1i8eDF9+/alb9++LF68GJPJxOzZswGIiIjgxhtv5M9//jMxMTFER0fzl7/8hSFDhnhnxwVCBkuS1EJWm4Pvd2dTXunyngt+PQ5mg4bzhiYS3ozlRCRJkjqcIKQO2Lp1K5MmTfL+fddddwEwZ84cVqxYwYIFC6isrOTmm2+muLiYMWPGsGbNGsLCTi0O/sQTT6DRaLjyyiuprKxkypQprFixArW68aWQvFUXIoDUtlK7sVqtREREUFpa2ip9ulLbsjvdfLE5A7vLXWcRVoXqDNUXjklGrw38SylJkhSo9rhm1DyG+vJ/omhbsIajswr3+/eF5PVNtixJUgukZ1upctafBVZQHUwdybJyRmpUvWUkqbi8kte//4W9GfmY9VpmndWf8QOSu1wuLCkEdOGFdGWwJEktcCy38YVRj+WWy2BJqteb3//CH57/FLvLhUalQgDLPt3MOWck8/5fryQ6rPlLwUhSqwvCmKWOInTDPEnqAJwuT6NlXO7Gy0hdzze705nz9IdUOV0IAU63x/tZ2bQ/k8v/9Q5ylIQkdQwyWJKkFogw6/yuCaYoyAHeUr0Wf7ChwdmSbo9gw74MNu5v2sroktSmWimDdyiSwZIktUDv7uF+1x0TAvokhdZARqntlVXa+faXY7gbWB4FQKNWsfrHX9uxVpLUGKUVbqFJjlmSujyX20N2vo38kko8QhBp0dOjmwWDvvGvR2K0idR4S4Njl1LiLSTGmFq7ylKIq7A7Gy2jADa7o+0rI0lSo2SwJHVpVpuDbXtzcdQae1RYUsWRzFIG94khKc7i9/6KojDmjG5EhenZn1FCpb16ZpxRp6Z/ciR9kyPkrCapjpgwE1FmA8W2qgbLuDweBibHtWOtJKkxLe1KC91zoQyWpC7L5fbUCZRqCGD3oUJMBi2RYf4XeVQUpTow6hFBZZULAKNBI7N3Sw3SqFXcNG0k//poY4NdcXqNhuvOG9LONZMkPxSlhakDQvecKMcsSV1Wdr6t3kCphgIcy7YGfDyVomA2ajEbtTJQkhp196XjGZLSDfVpi/yqVQqKAv/540yiLDJ1gNSByAHektT15JdU+t0vgPxi/2UkqbksRh1f//N6/jrrbKLMp7IinzswhS//cS2zz5WtSpLUUchuOKnL8viZieQtI/PcSG0ozKjnwdmTuP+qCRRYKzDptYSb/Hf7SlLwtHRGW+i2LMlgSeqyIix6CksbHmALEGGWFy6p7WnUKhKi/E8mkKSgkxm8Janr6RFvafR3TkpiWCMlJEmSpM5OBktSl2XUaxjcJwaov3G4RzcLCTJHkiRJUrUuPMBbdsNJXVpSnAWTQcvRLCv5JZUIIQg360hNDCchxiRzJEkhrczu4sPdWWw5VoJAcFZqFL8ZkkRYAAlXJakuOWZJkrqsyDA9w/vL5H9S57I1o5gb39xBmd1FTXaC/+3N5bGvD/Hfq0cwOiUquBWUpBAiu+EkSZI6mRxrFXPf2I7NUZ0k1SOqbwKwOVzc8MZ2sq3+JzdIUh1duBtOBkuSJEmdzBvbMqlyuqkvO4ZHQJXLzRvbMtq/YlJok8GSJEmS1Fms2Z9Xb6BUwyNgza957VchSQpxcsySJElSJ2N3uRstU+VnqZ+uRgjBxr1Hefe7HZTYquidGMPcaWeRHCfHdfmSA7wlqcMTQuBxeXC7BYoCaq0alSp0v3yS1FaGJEWQWVrV4CK9apXC0KTwdq5Vx1RWUcUVD61g3Y4DaNQqqpP2Cx58fQ2LfzeTv/x2crCr2HHIpJTBt2TJEhRF4Y477vBuW7RoEQMGDMBsNhMVFcXUqVPZvHmzd39RURG33nor/fv3x2QykZKSwm233UZpaWm9j2G32xk+fDiKorBz507v9sLCQi644AKSkpLQ6/UkJyfzpz/9Cav11CKqVVVVzJ07lyFDhqDRaPjNb35T72OsX7+ekSNHYjAY6NWrFy+88EKLXhepmtvlwVZaRYXVjt3moKrcga24kqpyO0IuSSJJPv5vVHKDgRKA2yP4v9Ep7VijjmvOY2/wza6DALjcHtweD26PwCMEf1v+KW98vS3INexAFFXLbyGqQ9R8y5YtvPjiiwwdOtRne79+/XjmmWfYvXs3GzZsIC0tjWnTppGfnw9AVlYWWVlZPPbYY+zevZsVK1bwxRdfcOONN9b7OAsWLCApKanOdpVKxaxZs/j44485cOAAK1asYN26dcyfP99bxu12YzQaue2225g6dWq9x09PT2fGjBmce+657Nixg3vuuYfbbruN999/v7kvjQR43B4qSqsQ7ronf6fdTVW5Iwi1kqSOa3RKFH86pxcAtRtfa/77lnN6cpZMHcC+47l8vOmXBgNLRYGH3lgjf5BJwe+GKy8v59prr+Wll17ioYce8tk3e/Zsn78ff/xxli9fzs8//8yUKVMYPHiwTyDSu3dvHn74Ya677jpcLhcazamn9/nnn7NmzRref/99Pv/8c5/jRkVF8cc//tH7d2pqKjfffDP/+te/vNvMZjPPP/88AD/88AMlJSV1nssLL7xASkoKy5YtA+CMM85g69atPPbYY1x++eVNe2EkL3uF0+9+l8ON2+VBrekQsb8kdQh3TerDoMQw/rvpGNszSwAY3j2C349N44Iz4oNbuQ7i4x9/Qa1SGgyWhIADJ/I5lFVA3+4yF5scsxREt9xyCzNnzmTq1Kl1gqXaHA4HL774IhEREQwbNqzBcqWlpYSHh/sESrm5ucybN48PP/wQk6nx5SuysrL44IMPmDBhQpOey6ZNm5g2bZrPtunTp7N8+XKcTidarbbOfex2O3a73ft37a4/qXqcksvR+GBVl92FWqNrhxpJUuiYPiCe6QPivcGAWo7x81Fpd57M0u+/5ajS4f8HW1ehKErLVjWQY5aa56233mL79u0sWbKkwTKffvopFosFg8HAE088wdq1a4mNja23bGFhIQ8++CA33XSTd5sQgrlz5zJ//nxGjRrltz7XXHMNJpOJ7t27Ex4ezn//+98mPZ+cnBzi431/scXHx+NyuSgoKKj3PkuWLCEiIsJ7S05ObtJjdnaBtn57ZDO5JDVIrVJkoFSPIWmJuNz+ZwXqtRp6xke3U42kjipowVJGRga33347q1atwmAwNFhu0qRJ7Ny5k40bN3LBBRdw5ZVXkpdXNz+I1Wpl5syZDBw4kPvvv9+7/emnn8ZqtbJw4cJG6/TEE0+wfft2PvzwQw4fPsxdd93V5Od1etRd09fdUDS+cOFCSktLvbeMDJkorrZAf4jIWXGSJDXVxWMHERdhQdXAiUatUnH91FGEmRq+RnUpMill+9u2bRt5eXmMHDkSjUaDRqNh/fr1PPXUU2g0Gtzu6q4Xs9lMnz59GDt2LMuXL0ej0bB8+XKfY5WVlXHBBRdgsVhYvXq1T3fX119/zY8//oher0ej0dCnTx8ARo0axZw5c3yOk5CQwIABA5g1axb/+c9/eP7558nOzg74OSUkJJCTk+OzLS8vD41GQ0xMTL330ev1hIeH+9ykUxRFQRvAop+BlJEkSapNp9Xw+t/+D41ahVrlezlUqxT6JMXy8A0zg1S7DqgLB0tBu8JMmTKF3bt3+2y74YYbGDBgAHfffTdqtbre+wkh6ozxmT59Onq9no8//rhOK9VTTz3lMxYqKyuL6dOn8/bbbzNmzJgG61fTIlT7sRozbtw4PvnkE59ta9asYdSoUfWOV5ICozNqcDlcDXbJ6QwaVGo5uFuSpKabPLwvG5fdwaNvr+ODH37G7RFEWYzMmzGOBVdMIdJiDHYVpQ4gaMFSWFgYgwcP9tlmNpuJiYlh8ODB2Gw2Hn74YS655BISExMpLCzkueeeIzMzkyuuuAKoblGaNm0aFRUVrFq1CqvV6h0gHRcXh1qtJiXFN5eIxWIBqmfO9ejRA4D//e9/5ObmMnr0aCwWC3v37mXBggWMHz+etLQ073337t2Lw+GgqKiIsrIyb66m4cOHAzB//nyeeeYZ7rrrLubNm8emTZtYvnw5b775Zmu/fF2KSq3CFGGgyubA7aw1vkABvVGL1iBblSRJar7hvbvz5j1zcDhdVDqchBn1qFTyB1hdcjZch6NWq/n1119ZuXIlBQUFxMTEMHr0aL7//nsGDRoEVHfl1SSprOleq5Genu4T6PhjNBp56aWXuPPOO7Hb7SQnJ3PZZZfxt7/9zafcjBkzOHbsmPfvESNGAKdaoXr27Mn//vc/7rzzTp599lmSkpJ46qmnZNqAVqBSqzCFG/C4PXjcAhRQa1Qtm5khSZJUi06rQaftsJfF4OvCGbwVIbNtdShWq5WIiAhvCgRJ6oyqu9Oru1a1WjUamSNLkpqlPa4ZNY+h+d2LKLrmd0sKRyWul/8Qktc3GUJLktRuhBCUWe2UllTiqZUI0GjSEh1jQqOpf6yiJEkdgEILW5ZarSbtTv6ckySp3ZSWVFJcVOETKAFUVjjJybLicvnPeSNJUjAprXALTTJYkiSpXbicbkpLqhrc73YLrCWV7VgjSZKapAunDpDBkhRUQgiqKp1YS6sos1bJloVOrDyABY/Ly+1y0dIgE0JQUumk0OaQ74UknSTHLElB47C7yM8r9w2QCiswm3VEx5plVu5OxuVqfI0/IcDjEajV8r1vb0IIPv4lh/9sTOfXvHIAukcYuGFMKnNGp8jlUqQuPRtOBktSUDidbnKyrfUmmrTZHHg8grh4i0wN0ImoA0wcKoPk4Hj820M8uyHdZ1TJidIqHl6zn20ZJTx9+dAGlwWRugoVLeuQCt3OLBksSUFhLa3yu0huZaUTh92F3iAzn3cWZosOa2nDY5YATGZdwAGy2+2hpLQKh8ONRqMiKtLYYAqCMpuDozlWCk+OmeoWZSQ1MRyzUX6+AH7JtvLshnQATv9aCuDzfbl8tieHiwcntnvdJKkjkMGS1O6EENjKG19GprzcIYOldiKEwOMR1fNVVEqTW/SEEFRUOKmqdAKg12swmXU+rUQ6XfW2Clv9Y5cUBSIiA8vhkl9gIzPL6jOrLuNEKQnxYSSe1iKZkVvGroMFKJwKBGyVTtKzrZzZvxuJseYmPdfO6I1tGahVCm5P/b9gVAq8tjVDBktdneyGk6T2IwR+W5VqnD69XKrL6faw7Vgxx4psaFQqhvaIoE9c4N2XQgjKy+xYS08Nrtdq1YRHGjAH2MrjdLjJzSnD7T419qy8zE5xUQVx8RYMtQLe2DgzRSqF8jLfYFmjURHbzYJO13iepcKiCo5nltbzXCA7pwxFgcT4MABKy+3sOlhQvb922ZP/t31/HpMsPTB18aB8X25Zg4ESgEfAgZPjmKRT3G4PFVV2zF1leRQZLElS+1GU6nEpjQVDMquzf7/mWHnhu8NUONyoVQpCCL7cm0NqtIk/TepLRCNdTEIICvNt2E5r6XE63RTm23A63ERFm/wew+PxkJNjrV6Cps4+QV5OGUndI9Boq4MgRVGIiTUTGWWkssKJEAKtVo3eoAkoMBNCcCLb6rdMTk453WLNqNUq0rOsPi1KdQ8IR7PLGNgzutHH7swseo3/1wkwBhDIdhUHjmfz6Ksf8eaaH7A7XUSYjdx4yWQW/N8lxEWFVmZqKTDyaiS1O0VRsITpGy1nsTRepqvKKqnkqa8PUumonmHm9ghqYs+M4gqe+Gq/35YCqE4EeXqgVJu1tAp7lcvvMcrLHPUGSjWEgLKyul2uarUKS5iesHADBqM24JYwW4UTp9N/egmPEJRaqx+zoKTSbwAgTpbp6i44I97v66RWFGYOTGi3+nRk2349wui597Dqi++xO6u/H6W2Sp58+3POuuFesvKLglzDtiSTUkpSuwqPMKD203IUFm5AK3/JNmjN3hw8QtR7gfMIyCqp4ufMEr/HKLP6H2wdSJmGxh/V5i8ga6raXX2tUQ4C6xLu7H4zJJGEMD3qeoJWlQI6jcKc0clBqFnHIoTg2vueptLuwHXaZ8zt8ZBVUMQdT6wMUu3aQ0sTUjY9WCorK+OOO+4gNTUVo9HI2WefzZYtW7z7hRAsWrSIpKQkjEYjEydOZM+ePa34nKvJYEkKCrVaRWJiOCaTb1eRSqUQFW0kKrr5izV2BVuPFeOv4UilwLbjxX6P4XA0nveosTKeACIN0Ypjz/S6wEYO6E8G2jERBr+nZwWIizS0vGIhzqzT8Pr/jaL7yddCo1LQnBycH27QsvLakSRH+e+S7QrW79jHwYwc3J76g3GX28OH67eSU1jSvhVrL0HI4P373/+etWvX8tprr7F7926mTZvG1KlTOXHiBABLly7l8ccf55lnnmHLli0kJCRw/vnnU1ZW1qpPXY5ZkoJGrVERFx+G2+3B6XCjKKDTBzZ2pSsTQuBopOXEI6DK6T/QUVQKfiMuGs95pNOpcTYSULVmC6HBoMFs0mKrcDb8eFoVYSe7eXsmRXAi3+b3mKmJvmNMPB7B8bxyDmdZsVU50WvV9EwIo2diONpOPI6uZ4yZr24+h28O5rMhvRCXRzCyRyQzBsajlwscA7D70HFUiuL3R4Lb42Hf0RMkxES2X8U6qcrKSt5//30++ugjzjvvPAAWLVrEhx9+yPPPP8+DDz7IsmXLuPfee7nssssAWLlyJfHx8bzxxhvcdNNNrVYXGSxJQadWq1AbO+9FqLUpikK3MD159YwFqqFSICHCf4uJ2RxY3iN/wsIN2BpZxiQ8vHVbblJ6RPLrwYIGl+JITY70BtyRYXoG947hl8OFPgOYa0LA4f3jfHItudwevtuVTX6t16XS7mbHoUIOZJYyeUR3TIbOe9pUqxSm9u/G1P7dgl2VDsmg1wbUmmrU+//ehK6Wjjuqvq/V6jtJQ6/Xo9fXHaPqcrlwu90YDL7nEKPRyIYNG0hPTycnJ4dp06b5HGvChAls3LixVYMleYWSpBA0sV83v6csj4Bz+8T5PUZYuN5vq7hKpWCx+D/p6/Uawv0EZSazDqOpdaflm0xaBvSL9bYe1TCbtPTrE0PEacFZWmI45w5Pons3C0a9BpNeQ0pCGOed2Z3ucRafsj8fLvIJlGqrsLvYtDe3VZ+LFFpmjBvRaGtrt6hwRg3o1U41amet1A2XnJxMRESE97ZkyZJ6Hy4sLIxx48bx4IMPkpWVhdvtZtWqVWzevJns7GxycnIAiI+P97lffHy8d19r6bw/kSQpBLk9gh3Hi9l0uID8MjsGrZozU6M4u3cs4bVaQCb0i2N7RjGH88p9BnnXtJ5cOrw78Y206Gg0auITwsnLLauTxkGtVtEtIQxVAEuUREYZ0enUlJZWebvkNBoV4REGLGH6NulWNRm19Osdg8PhxumszuCt1zd8Oouw6Bnez3/w6HR5OOwnLYEQUFBaRXG5nSg5U7NL6t4tmusvPI9X//ddgy1Mf7t+FhrZbelXRkYG4eGnur/ra1Wq8dprr/G73/2O7t27o1arOfPMM5k9ezbbt2/3ljn9HCOEaPXzjgyWJKmDcLk9vPJDOvtzyrxBT4XDzVf7ctl4qICbJ/UhIaJ64LtWreKOyf34fE823x7Iw2avDlKSIo1cODiRs9ICyxukN2jokRyJrcLhTRNgMGoxmQKfzq8oCmaLHrNFj8ftQVDdKtUeY890OnVAiSwDUVxuDygRakFJlQyWurBn//o7istsfPTdVjRqdXV3sFI9A/Ov113MbVddGOwqthmV0rLvtTh53/DwcJ9gyZ/evXuzfv16bDYbVquVxMRErrrqKnr27ElCQnU6i5ycHBITT2WXz8vLq9Pa1FIyWJKkDmLdvlwO5FTP4PDJNn1ysPYrG9K5e8YZ3sVMdRoVs4Z1Z+aQREornGjUKsIDTO5Ym6JSsFj0rZLXKpCWqI5KTitoun25Zbz603E2Hy9GrShM7hvHdaOSSY7qvLNZDXodHzz6Z7bsPczrX26gsLSMlPhYbrhoIn2SO3cuqpYm8G7Jl8xsNmM2mykuLubLL79k6dKl3oBp7dq1jBgxAgCHw8H69et59NFHW1DRumSwJEkdgMvt4YeDBQ0mBvQIKLQ5OJhbRv8E319kGpWKGNnS0WKRFr3f9dFqdGtCICCEwO70oCig13aurpnXtmRw72d7UdV6zQ7ml/PfH4/x36uHM6mv/27PUDd6YG9GD+wd7Gp0el9++SVCCPr378+hQ4f461//Sv/+/bnhhhtQFIU77riDxYsX07dvX/r27cvixYsxmUzMnj27VeshgyVJ6gAKyh1UNjLVX6VAeoGtTrAktQ6tRkWf7uHsz6i77hyczMkUZSSikRmCUJ1/as+xYn4+VkzZycWFY8P1DO8ZQ5/E0H//tmeUcO9nexHgE1y6BXjcHua9vZMNt51LQivPhJSCq7W64ZqitLSUhQsXkpmZSXR0NJdffjkPP/wwWm31GM4FCxZQWVnJzTffTHFxMWPGjGHNmjWEhYU1u571kcGSJHUAjUywqVVOdha1pSG9Yii1OcgpqqyzVprFpGXcwMan1AshWLcriyM5vknxCq121u3KosTmYFSf2NateDv774/HfFqUahNUL/D8xrZM7prUp/0rJ7UZVQu74UQz7nvllVdy5ZVXNrhfURQWLVrEokWLml+xAITuAANJ6kRiLXrCG8nf4xHQt5vFbxmpZdQqhXOHJjJ+cDzx0UbCjFpiIwyM7h/HtFE9MASQQfxQdlmdQAlOBV5bDxVQEMBSMx3ZhiOFfrsrPQK+P1LYjjWSpLYlW5YkqZ1YKxxU2d0Y9WrCTL5dOSqVwsT+3fh4V1a991UpkBhhJC3W3B5V7dJUikKPOAs94poXmP5yvKhOq1RtigJ7M0o4b1DoDgYOZAEbueZe56O0sBuuZaPDg0sGS5LUxvKKK9l5uIDislOZrqPC9IzoE0Nc5KnBwuf0iyPHWsVP6UXUrERSc9GNMum44ZyecimYEFBU5vAbTAgBhX6yr4eCsalRrN2fj7uBiEilwLiegaWvkEJHMLrhOgoZLElSG8otqmD9z9l1fmUXl9n5ZmcWE4cleWdXqRSFK0YlMzItmh8PF5BntWPUqRmREsWIlCh0nXhdss5Eo1ZoZKw+WnUIXzWA349L44tf8+rdpwBqReG6kT3at1JSm5MtS5LUDHlldj75JYtvD+Zjc7iJM+uZfkY8Fw5KwNjJpkk3hxCCrQfyG+yOEAK27s/nwjHJ3hOQoij0jrPQu5ldQFLw9U4IY09Gid9uqF4hPqNxTGoU/5jWnwfX7PdJt6BWKSjAs78dRvfIzptrSep6ZLAkNUt6oY1/fLqHSqfbu3B9XrmdVVuO893hAh6+eBDmAAbDdmYFpVWUV7r8limrdFJktRPTyKK3UugYkhrNvsxSPELU6Y5TFDDpNPTtBOkD/nB2GqNTInll83E2HytGo1aY1CeWuWel0EcG+52S7IaTpCYQQvCvdQd8AiXvPiCjuIKVm49x87ldO2Gbrcp/oOQtZ3cR08Z1kdpPhFnHzFHJfLE9E4fL4724CAEWg5aZo5LRdpIu1RE9IhnRIzLY1ZDaSxDyLHUUMliSmmx3lpVsP1OfPQK+PZjPnDGpXbp1KdCMzfpOcuGUTkmKNvF/k/pwONtKbkkliqKQHGsmNc7S6Kr1kiR1PF33SiY12+GCcu9srYY43YLM4kr6x7duFtVQ0i3KiE6jwuHyNFhGr1X7zIiTOg+tWsWAHpEMkC0vnZYQgpzSCtweQWKkCbWqc//wUSmBJ9CtVwj/TpDBktRkGpUqoBwqmhCf8dOYMpuDgqIKXG4PRoOW+BgT2lqtSWqVwtDeMWzdn9/gMYb2jpYtDZIUYoQQvLrhV/712Tb2Z5cAkBBh4tZpw7jzguFoNZ1zgktLZ8OFcuoTGSxJTTYiOZKXf/RfJsKgJS26cyZQdLs97DtcSFFplfeHkgDSM0vokxJFYq0s272TwvF4BD8fKcTlFt68SRq1wrDeMfTqBAN9Jak+J4ptrN+fjdsjGNOrG/0SIoJdpVZzzzubeOx/230aSnJKK/j7e5vYdDCb926f0elbmboaGSxJTdYj0sjI5Eh2ZJY02BV36bAk1J20xeTXI0UUlVaP2ar99IWAg8eK0WrVxNZamb5vjwh6JoZxosDmzeCdFGtGo5YnU6nzKatycPOrP/DOliN4ajVBTzkjiZdvnEBSZGj/iNqanstj/9sO1M1kLgR8uvMob246wHXjB7R/5dpYV+6Gk2drqVnunNSXfnHV45Fqvjw1vW4XDoznkiGJQapZ27JVOiksqfRb5lhW3VXrNWoVqfFh9E+JJCU+TAZKXZjb4+FItpUNe3L4/pcc9meW4PQzri2UuNweLl72Je9u9Q2UANbvz2biI59SUhHa2ctf+noPGj8Rg0pReP6r3e1Yo/ajKKe64pp3C/YzaD7ZsiQ1i1mv4aGLB7Ezs4TvDhdQVuUiPlzP+f3j6dWJ1y8rKK5otIytwkmV3YVBL79ekq/icjtrtmdSYXd7LxyHsq1sOVjA1GFJJESbglvBFvpk5zF+OJRb7z6XR3CssIz/rv+Vv1w4rJ1r1nr2nCjE5XcRYcGvWcXtWCOpPcizudRsapXCyJQoRqZEBbsq7cbjFihK44uEevxNFZS6JLvTzRdbM7GfXAul9mfI6fKwZscJLh2XWmeR5VDy2saDqBWlwTXjPAJe3rA/pIOlcKOu0XOAuZP+UJLdcJIkBcRk1DYaKKkUBb2uc86GkZrvUJaVKqe7wUV2PUKwN6OkPavU6rJLKxoMlGrk+cnRFgouH93H7zlArVK4amy/9qtQO2pZF1wL15ULMhksSVIAhBA4nW4iw/WoG0mJEB9rQi3HJEmnOZZX7ne/EHA013+Zji452uJ3YocCJEWGdlfjNeP6kRoTVu+4JbWiYNRquGXq0CDUrO2pONW61KxbsJ9AC4Ry3SWpzXk8gqycMn7ek8vPe3L5ZW8e4QYtDcVLBr2GtO6dZ4q01Hpc7sYHcbs9oT3Qe+45/byL6jbk9xNCe5aYSa9l7cJL6ZMQCVQnH9We/HEUE2bg8wWzSIuTKUE6m87ZsSpJrcDjERw8XEi5zeGz3eFwY9CoUWtVWCucQHXTe0KcmZSk8E6bkE5qmZhwPUXl9ga7cBQg2qJv1zq1tgsGJzNtcA/W7cmsk1ZErVLonxDB787pH5zKtaKeceHseng26/YcZ90vGbg8gjG947l0VG90nfj7r1IUVC3pSgvhbjgZLElSA/ILbHUCpdrcTg+jBsejVqvRalQyE7fk14AekRw4YW1wvwASo03sTi9CoXq5nLgIQ0iN81CpFN6/ZSp3v/MTy7//FfvJlAhqlcJlI9N4+trxWAzaINeydahUCtOGpDJtSGqwq9JuqlMHtOz+oUoGS5LUgPwCW6Nlikuq6C6zcEsBiAk3MKJXDDuOFHozudem16jYfaTQG3SLIxBl0XPe0EQsxtAJMAxaDU9eezaLfjOSHw/n4fJ4GJkWG/LJKKWuTQZLklQPIQR2h7vRclVVrnaojdRZDO8dQ6RFx+6jxRScnBUWbtLidLhxezwoiuLTTVdis7N2eyYXjUkJue7dKLOeC4cmB7saUiuS3XCSJNURSD4l2fUmNVVafBhp8WG43J7qJXJOlLLjUAH1JaERAiqqXBzJLqN/cmS711WSapPdcJIk+VAUhcgIA8Ul/nPCREUY2qlGUmdTs+RNek7D45hqpOdYZbAU4nZklPDc90f4/nABapXCBWfEM//cXvSNszR+ZynoZLAkSScJIaiqcmG1VuFxC4x6DaUKDS4WbDBoiJDBktRCDmfj6QICKSN1XM9+d5g7P9iNRqV4l0o5UpjOCz+k8+bcs0JmLU2lhd1wIoSblmSeJUmiOk1AZmYpx44WU1xUSWlpFaUlVRh1GnSa6q9J7a+50ailX++YkJqpJHVM4Sat31UgFCDMFDoDvCVfP6YXcecH1Qvr1l5Tzu0RuNyCa1b8REYAa052BDXdcC25hSoZLEkSkJ1lxVZef5oArVpFfKyJ2FgT3eLM9O0dwxn9YtFqQ2vArdQx9e0e0eASKFA9a66vTHQasp7+7nC92b6h+r31eOCljUfbtU5S08luOKnLczhclJXZ/ZaxV7noJVuSpDbQo5uF7rFmTjSQqiI5rnq/FJq+OZDv06J0OrcQfHMwvx1r1HwtnQ0nu+EkKYSVlzWceLKG0+nBEUAqAUlqKpWicN6QRIb0jPZ2+QLotSqG9orhnMEJMkgPYYG8daHy7nblbjjZsiR1eZ7G8gOcJBpZ80qSmkulUhjaK4ZBadFYbQ5QINyk87sorRQaJvaNY/WurAZbl9SKwqR+ce1cq+aRLUuS1IXp9QH8ZlBAq5NjlKS2pVYpRIXpibLoZaDUSdx6Xu8GAyWF6vf89+PS2rVOUtPJYEnq8iwWHWq1/69CeLi+0TKSJEmnG9szmicvH4oCPgO91SoFjVrhzRtGkxxlCl4Fm0B2w0lSF6YoCkndw8nMKKk3Y7dWq6Jbt7D2r5gkdULHiyrYeKSQsion0WYd5/SOJT68c+cr++O5vRjXM5oXNqTz3aFTSSlvOqcnfUIoKaXshusAlixZgqIo3HHHHd5tixYtYsCAAZjNZqKiopg6dSqbN2/27i8qKuLWW2+lf//+mEwmUlJSuO222ygtLa33Mex2O8OHD0dRFHbu3OndXlhYyAUXXEBSUhJ6vZ7k5GT+9Kc/YbX6ZtbdvXs3EyZMwGg00r17d/75z38iTru6rl+/npEjR2IwGOjVqxcvvPBCy18cqc2ZzTpS06IIC9N7t6lUCtHRJtLSotFoOsxXReqiPB6B2+3xOedUOFwcLbCRWVyBu4OPqXN5PPzn+yP845M9fLk3h41HCvl0dzYLVu/mra0Zdc6lnc3wHpG8cPUI9v79fHbfM5V/XTokpAKlrq5DtCxt2bKFF198kaFDh/ps79evH8888wy9evWisrKSJ554gmnTpnHo0CHi4uLIysoiKyuLxx57jIEDB3Ls2DHmz59PVlYW7733Xp3HWbBgAUlJSezatctnu0qlYtasWTz00EPExcVx6NAhbrnlFoqKinjjjTcAsFqtnH/++UyaNIktW7Zw4MAB5s6di9ls5s9//jMA6enpzJgxg3nz5rFq1Sp++OEHbr75ZuLi4rj88svb6NWTWovBoKV7jwg8HoEQApVKkbOQpKArK7OTX1BORYUTAJ1WTViEge+OFbH9WAnuk0FGmEHD5AHxnNM3tkN+bt/cksGmI4VA3az4n+/JIdygYcbg0Mhk3VV15bXhFBHkcL68vJwzzzyT5557joceeojhw4ezbNmyestarVYiIiJYt24dU6ZMqbfMu+++y3XXXYfNZkOjORULfv7559x11128//77DBo0iB07djB8+PAG6/XUU0/xr3/9i4yMDACef/55Fi5cSG5uLnp9devDI488wtNPP01mZiaKonD33Xfz8ccfs2/fPu9x5s+fz65du9i0aVNAr0fNcywtLSU8PDyg+0iS1DkVFtrIzimrs10IQUaZnW8ySuoktJzQL46Lh3dvnwoGqKzKye3v7PIGdvUx69Q8eeVwtHJsYJO0xzWj5jGGPfwpakPzc365q2zsuveikLy+Bf1TecsttzBz5kymTp3qt5zD4eDFF1+sfsOGDWuwXM2bUDtQys3NZd68ebz22muYTI0PpMvKyuKDDz5gwoQJ3m2bNm1iwoQJ3kAJYPr06WRlZXH06FFvmWnTpvkca/r06WzduhWn01nvY9ntdqxWq89NkiTJ4XDVGyhB9Ti75DA9fSKNdfatP5BPTmllW1evSX4+Ueo3UAKwOdwcyi9vpxpJUtMENVh666232L59O0uWLGmwzKefforFYsFgMPDEE0+wdu1aYmNj6y1bWFjIgw8+yE033eTdJoRg7ty5zJ8/n1GjRvmtzzXXXIPJZKJ79+6Eh4fz3//+17svJyeH+Ph4n/I1f+fk5Pgt43K5KCgoqPcxlyxZQkREhPeWnJzst46SJHUNRcWNBzxnxNT98adS4Kf0oraoUrM53IEtBOxwyQWDOzKV0vJbqApasJSRkcHtt9/OqlWrMBgangkxadIkdu7cycaNG7ngggu48sorycvLq1POarUyc+ZMBg4cyP333+/d/vTTT2O1Wlm4cGGjdXriiSfYvn07H374IYcPH+auu+7y2X/6OICaHsza2wMpU9vChQspLS313mq6/SRJ6tqqqupvja6hKAqR9eQI8wgosjWelb49JUcGNjW+ez0tZVLHoShKi2+hKmjB0rZt28jLy2PkyJFoNBo0Gg3r16/nqaeeQqPR4HZXLy1hNpvp06cPY8eOZfny5Wg0GpYvX+5zrLKyMi644AIsFgurV69Gqz21QvfXX3/Njz/+iF6vR6PR0KdPHwBGjRrFnDlzfI6TkJDAgAEDmDVrFv/5z394/vnnyc7O9u6raUGqURO01bQmNVRGo9EQExNT7+ug1+sJDw/3uUnNI4SgssJBWWkV5WV23PJXqhTCVAH8DK+va0ulgKmDJVDtHWcmKcLQYMuCSoGh3SOItejrLyBJQRa02XBTpkxh9+7dPttuuOEGBgwYwN13341aXf+XXQiB3X5q0VOr1cr06dPR6/V8/PHHdVqpnnrqKR566CHv31lZWUyfPp23336bMWPGNFi/mhahmscaN24c99xzDw6HA51OB8CaNWtISkoiLS3NW+aTTz7xOc6aNWsYNWqUTwAXKqqcbjwegVGn7vC/CKoqnRQXVuCpNc2mtLgSk1lHZLSxw9dfkk4XFmbAam14gWePEByrZ79HwIiUqLasWpMpisL883qz+PN9ONwen9lwKgXCDFrmjE0NXgWlgCgt7ErzhPBpOGjBUlhYGIMHD/bZZjabiYmJYfDgwdhsNh5++GEuueQSEhMTKSws5LnnniMzM5MrrrgCqG5RmjZtGhUVFaxatcpngHRcXBxqtZqUlBSfx7BYqvNa9O7dmx49egDwv//9j9zcXEaPHo3FYmHv3r0sWLCA8ePHewOh2bNn88ADDzB37lzuueceDh48yOLFi7nvvvu8F+L58+fzzDPPcNdddzFv3jw2bdrE8uXLefPNN9vsdWwLe06U8sOBPLJLqgCIMGoZ2yeWs3rFBPRrt73Zq1wU5te/YnuFzQEIomLkqu1SaIkIN5CXV47TWXcB55ofc3sLfT/3igK9Yi306dbx8vekRpt44KJBfLI7ix/Ti3B5BDq1ivP6xnLRkESiTLpgV1FqREuTUrbkvsHWIfIs1UetVvPrr7+ycuVKCgoKiImJYfTo0Xz//fcMGjQIqO7Kq0lSWdO9ViM9Pd0b6DTGaDTy0ksvceedd2K320lOTuayyy7jb3/7m7dMREQEa9eu5ZZbbmHUqFFERUVx1113+Yxr6tmzJ//73/+48847efbZZ0lKSuKpp54KqRxL63/N5dt9eT6rYJdWOvlydzbHC2389qyUDveBt5ZW+d1fYXMSFu5Go+1YXROS5I9KpZCWFsWxo8U4TguYFJXClpwyiqpc1blrBAhgcFIEV52V0mFbUhMiDMw7pxc3nJ1GldODUauWa+CFEBUta1kK+vT7Fggoz1JzprPLsTfNE8w8S7mlVbzw9UG/ZS4d2YOhHaiJ3+32kHOi8c9neISBsIjOvaSC1DkJISgrs1NWZkcIgdGoJTLSiKJSOJRXzoniSjQqhTMSw4kNk2N+upr2zLM05tH/oTE2v5XeVWlj890zOm+epcjISKKiogK+RUdHc+TIkbauu9TKth0t9PurQQF+OpmBt6MQAS7x4OngS0FIUkMURSE83ED37hH06BFJTIwZtVqFSlHoFx/GpAHdOLdfnAyUpDZX0w3XkltTuFwu/v73v9OzZ0+MRiO9evXin//8Jx7Pqck7QggWLVpEUlISRqORiRMnsmfPntZ+6oF3w7333ntER0c3Wk4IwYwZM1pUKSk4ckur6ixDUJsA8ssaHnAaDKoAs/2q5dpukiQFUZXTxcofDvHSd/s5VlhOtFnPdeP6MH/iAOLCQqPVW0XLutKaet9HH32UF154gZUrVzJo0CC2bt3KDTfcQEREBLfffjsAS5cu5fHHH2fFihX069ePhx56iPPPP5/9+/cTFtZ6C6AHFCylpqZy3nnnNTj9/XS9evUKydlfXZ0ugIBC08HGF6hUCkaTlsoK/zlpTGb5eZQkKTjKqpxc8MSXbE2vTk4sqB4L+vCnu3hp/X6+WXAhvbuFVrdUe9i0aROzZs1i5syZAKSlpfHmm2+ydetWoLpxZtmyZdx7771cdtllAKxcuZL4+HjeeOMNnwTVLRVQoJeenh5woATwyy+/yEzUIeiMpAi/+1UKDOrhv0wwREQa/c7Si4wyolLJliVJkoLjnve3sv1YIQJ81vLzCEF+eRXXvPgtQV6mNSCtlZTy9CW+aqcDqu2cc87hq6++4sCBAwDs2rWLDRs2eHuv0tPTycnJ8VlmTK/XM2HCBDZu3Niqz73DzoaT2t/gHpGs/zWPsionp39vFar7q8f0rn+pmWBSa1TEJYRRWlxJVeWpFiaNRkV4pAGjnJIsdSEZxZWs2prBxqNFKMA5vWK4blQPkiJkduxgKK1wsOKHg7gbGOPg9gh2Hi9iS3oBZ/WKa+faNU1Llyypue/pjSn3338/ixYtqlP+7rvvprS0lAEDBqBWq3G73Tz88MNcc801wKmlxupbZuzYsWPNr2g9mhUs/fTTT3z77bfk5eX5DLQCePzxx1ulYlL702lUzDmnJ6s2HqXY5vB+sD0C9FoVV41JJaaDZtjVaFTExJlxuz24XR4UlYJGo+qwU6glqS38b28Ot7z3M0II3CevzbuySnlhYzr/uXI45/fvFtwKdkG/nCjG3shqAioFfjyS1+GDpdaSkZHhMxuu9gL1tb399tusWrWKN954g0GDBrFz507uuOMOkpKSfFbgqG+ZsdY+9zc5WFq8eDF///vf6d+/P/Hx8X7XRZNCT7RFz5/O78fBnDIO5ZbhEdAj2sjg7pFoQ2CQtFqtQh3goG9J6kwO5Zdz83s/4/GI07p6QLgFN72zk29uOYfU6MDWaZNaRyB5pASgCYGhAq3VshTo0l5//etf+dvf/sbVV18NwJAhQzh27BhLlixhzpw5JCQkANUtTImJid775eXl1WltaqkmB0tPPvkkL7/8MnPnzm3Vikgdh0pR6J8YTv9EOeBQkkLFyi0Z3uSUpxOAxwOvbc3g79P6t3fVurThKdFEGLWUVjY8CUUImHRGYoP7O4r2zuBdUVFRZ7ypWq329mj17NmThIQE1q5dy4gRIwBwOBysX7+eRx99tNn1rE+TQ1mVSsX48eNbtRKSJElSy3xzML/ehXVruIXgm4MF7VgjCcCg1XDrlIE0FCaoVQrTBiZxRmJke1YrJFx88cU8/PDDfPbZZxw9epTVq1fz+OOPc+mllwLVvVl33HEHixcvZvXq1fzyyy/MnTsXk8nE7NmzW7UuTW5ZqlnKY9myZa1aEUmSJKn5GhpA7FMmBGZcdUb3zBzGgZxS3tl6FI1KweURqBUFtxAM6R7Fyt+fF+wqBqS98yw9/fTT/OMf/+Dmm28mLy+PpKQkbrrpJu677z5vmQULFlBZWcnNN99McXExY8aMYc2aNa2aYwkCXO6kNo/Hw8yZMzlw4AADBw6sk0/pgw8+aNUKdjXBXO4kVAghyC2p5HB2GVUOFyaDhr5JEcSGh0ZiN0lqC3eu3s3q3dkNBk1qlcI1I7qz5OJB7VyzxgkhOF5gY8fRYvJKK1GrVfRNCGN4WjThxs6RI00Iwbf7c1j+/QGO5FuJsxiZPbYXl56Zik7T/HUr23O5k/OfWIO2BcudOCttrL1zWkhe35rcsnTrrbfyzTffMGnSJGJiYuSgbqldudwevv05m4wCG4pS3devKPBrRil9k8I5e2B8h1voV5Law5yzUnhvV1aD+z0ewfVnpbRjjQIjhODbvblsTy/yfqcBth4uZMfRIi4/K4UeMc2/QHcUiqIwaUAikwZ0/LFJDWmtAd6hqMnB0quvvsr777/vzagpdSxVDjeHTpSSnl2G3enGqNfQOymc3knhITGbrTE//ppHRoENOHVSrfn3YJYVs0HDiA6YC0qS2trw7hE8cMEA7v/iV9QqxdvCpFYpeDyCJRcN5Iz41u2aaA37s6xsTy8C8MnvJgC3W7B6SwY3Te3botYXSWqpJgdL0dHR9O7duy3qIrVQeaWTr7efoMrh9s6IKa90sutwIek5ViaP6I5eG7onnAq7i0NZVr9l9hwrYUhaNBqZPkDqgn43NpVh3SNY/uMxNqYXoigK5/SK4caxqQzv3vGy7wNsPVKIQsOz+BwuD3szSxme1vjapFLbau/ZcB1Jk4OlRYsWcf/99/PKK69gMsl8HR3Jj3tzfQKl2spsTrYfLGDcwNbNPdGesgor6n1utTndHvJKqkiKkZ9NqWsamRzJyOTIYFcjIG6PILe0ym8ZBThRVCGDpQ6gvQd4dyRNDpaeeuopDh8+THx8PGlpaXUGeG/fvr3VKicFrrjcTqG1/vV1oPoXWkZeOSP6xGDQheYqN54AZvsAuD3+s+VKktQxhG47g9TVNPmq+Zvf/KYNqiG1VJGfQKmGEFBS7iAhOjSDpejwwJZaiQ7rmEuySJLkS6VSSIw0klNS2WCrsQCSY0N/gHdnILvhmuD+++9vi3pILRToZzAUP6tuj6Ci0olerSImTE9Rmb3eE6uiVJ9UzYbOMdVYkrqC0b1j+HhbZr37FECvVXNGBx1v1dXI2XBSyIuPanxFcbVKISaEchF5PIL0zFIyc8twnVwVNEKtQhg0FNtdPjNnFMCs1zDujNAdkyVJram00klZlYtIkxaLvuOe6vsmhjO2byw/HizwSR2gAFqNisvOSkErJ2xIQRbQNyg6OpoDBw4QGxvYlOyUlBS+//57UlNTW1Q5KXBmg5YecWZO5NsabM7u2yMiZGaJeYRg1/58ik4b/OlyCyxaDZEmHRnWKpwuDwatmn49IhiUEoVBF7qz/SSpNRzKL+f9HSfYm109c1SlwJnJUVxxZg8SIjrmj6Xx/bvRs5uFnUeLyS2tRKNS0TcxjCEpUZg7cKDX1chuuEaUlJTw+eefExERWFNoYWEhbre7RRWTmu6sAd34zpFNQWmVdypuzb894swM6Rk6s0nyCivqBEq1uZweLhjenZhIg0yMKkkn7c228ti6A9RemMEjYHtGMXuyrdw34wySIhtvhQ6GpCgTSVFyFmtHJrvhAjBnzpy2rIfUCrQaFZNGJJFdWMHRnDKqHG7MBg09E8PpFmJBxYnc8sbL5JUTG0D3oyR1BR4h+O8P6Xg8ok7rskeA3eVm5eZjLJw+ICj1k6RQFlCw5JFTsUOGSlHoHmume4jPHqmocjZeprLxMpLUVezNtlJoczS43yPg15wy8sqq6BbWMbvjpI6tOs9SC7rhWq8q7S6U6y51YtoAljbQauXHV5Jq5Fj9J3eskRtAmhFJqo+inOqKa84thDo36pBXG6lDSgigZSyQMpLUVRgDXMrIKCdBSM1UM8C7JbdQJacZSB2CEAKbzUFRcSVOpxu1WoVRp653+RYF0OvVMliSpFqG94hEo1Jw+cl0H2XS0itGfm8kqalksNSFuN0eikuqcDhcaDRqoiINaDvAwroej+DYsWKsZb7dA2aNCoNaRXGl02ehTYtZx9B+sSGTBkGS2oNZr+HCQQl8sju7wTKXDe+OKpSnJElBJWfDSZ1efqGNzBNWPB7hDTwyTpQS381C98SwoM6Uy8qy1gmUaqgVSIs3oz65nl1UuIFwiy6kZvZJUnu5bER3nG4PX+7NBaW628TjEahVCleO7MF5feOCXUUphMk8S01gtVrr3a4oCnq9Hp1O1+JKSa2rqLiS4xml3r9rN9Ln5pWjKNA9Mbz9Kwa4XB6Kiiv8lrGVOxg0MAq1bEmSJL9UisI1o1OYPjCBn44WYa1yEmPWM7ZntEzuKEkt0ORvT2RkpN9f9T169GDu3Lncf//9qFTy4hZsQghOZNcf4NbIzSsnPs6CRtP+71e5ze6zbEl9hIDycgcRHTT7sCR1NNFmHRcMSgh2NaRORjl5a8n9Q1WTg6UVK1Zw7733MnfuXM466yyEEGzZsoWVK1fy97//nfz8fB577DH0ej333HNPW9RZaoLKSicOh/9s6kJAqbWKmOj2z54rAkzhJRqLqCRJkqQ2JccsNcHKlSv597//zZVXXunddskllzBkyBD+85//8NVXX5GSksLDDz8sg6UOoGYB2sa43cFJPGoyaQMqZzQGVk6SJEmSWluTg6VNmzbxwgsv1Nk+YsQINm3aBMA555zD8ePHW147qcX0AeZU0euCM55Br9dgsegoL28483CYRY9ejreQpE6t0uFma3oh248WYbO7sBi0nJkWzaie0Rg6wKxdqTp7d4sGeIdwR1yTB6n06NGD5cuX19m+fPlykpOTgeqFdKOiolpeO6nF9HoNYRb/g+41GhXh4fp2qlFdyT0iG8zGrdWqSE4ObAFnSZJCU1mlkxe/Ocg3e3MpqXDidAuKbQ6+3pPDS98cojyA5Y+ktteS7N0t7cILtib/XH/ssce44oor+Pzzzxk9ejSKorBlyxZ+/fVX3nvvPQC2bNnCVVdd1eqVlZonuXsEvx4swNNAsrq0FP+D9tuaTqemX984CgpsFBZV4HJ50GhUxESbiI01B2XguSRJ7eej7ZlYK511EtAKoLjCwac7TnD1uLQg1EySqjU5WLrkkkvYv38/L7zwAgcOHEAIwYUXXsiHH35IWloaAH/84x9bu55SCxiNWgb0i+VElpXSWutCmU1auieGExYWvFalGhqNioSEMBISwoJdFUmS2lFRuZ3DeeUN7hcC9ueUUVrhIMIkU9MEkwqlhQvphm7TUrMGgqSlpfHII4+0dl2kNmQ0aOnTKwan043T6UajUaEL0jglKTRZKxzY7C6MWjWRluAH2FLncKK4MqByWcWVMlgKMjkbrolKSkr46aefyMvLw+PxnUV1/fXXt0rFpLah1ao7xBInUujIL61i46+5ZNe6qMWG6Rk7oBs95DpjUgsFegHtLMu0CCHYnlnKofxyzHoNE/vEYgmRCSxKCzN4h/LKC01+hz755BOuvfZabDYbYWG+y2QoiiKDJUnqRPJKK/lo8/E6490Kyux8tiWDC87sQWo3S5BqJ3UGaXEWVAr4Wf8XtUohpRME5jtPlHLb+z+zv1a3o0Gr4pZzevGXSX06TUDYGTV55Oyf//xnfve731FWVkZJSQnFxcXeW1FRUVvUUepChBC43R7cbo9MRNkBfL83F49H1Bl4C9WDb9fvycEj3yepBcx6DUNTohoczaIAZ6ZGYQwwDUpH9WtuGb/572YO5vuOz6pyevj3N4d44Mtfg1SzwHXl2XBNDpZOnDjBbbfdhsnU/tmepc5LCIG1tIoTmaVkHi8h83gJ2SdKKS+zy6ApSIrK7eSXVtUbKNWosLs4UWBrtzpJndOMoUmkxVW3HNV0VtT82zvewrQhiUGqWetZ+tVBHG5Pgy1o//nhKBkBjt8KlpqFdFtyC1VN7oabPn06W7dupVevXm1RH6kLEkJQkF9Ohc03l4rT6aGwwIbT6SYqCEuxdHVllYHltrEGWE5qPrdH8MORQj7bm83x4krMOjUT+8QxY1AC0Z1g0LNWo+L/xvfkUG4Zu46XYK10Em7UMjw1it7dLCE91gWgrMrJ5/ty/XY1Kgp88HMWt0/o3X4VkwLW5GBp5syZ/PWvf2Xv3r0MGTIErdZ3GYpLLrmk1SondQ0VNkedQKk2a2kVJrNOZvFuZ4FmTTaEePdIR+f2CB5e8yubjhZ5x/aUVDp5c3sGH/+SzaOXDKZnJxjPoygKfRPC6ZsQHuyqtLqiCqffQAlArSjkldv9FwoyFc3ojjrt/qGqyVefefPmAfDPf/6zzj5FUXC7/S/aKkmnKytr/ARRZq1CHycHErenbhEGLAYN5VWuBsto1AopsfJ9aUvv7TzBj0erx4PWvuB6BNgcLhZ9vo+XZ49EHcoDQjq5GLMOtUrB7SdicgtBYrihHWvVdIqitKiVL5RbCJsc6Hk8ngZvMlCSmsPpaPxz4wigjNS6FEVhbP9ufsuM6hOLVmZYbzNuj+DD3VkNjhvzCMgrt7M1o7hd6yU1jUWv4eJBCY0GtJcPS2qnGklNJc9yUtAF8msjlAcGhrI+ieFMHJyAVl19qqh5G9QqhTH94hiWFh3E2nV+eeV2ShoZE6ZWKezJtrZTjaTmuntKX0xaNeoGzmW3T+jd4VuWuvJsuIC64Z566in+8Ic/YDAYeOqpp/yWve2221qlYlLXYbbosJZWNVpGCo4BPSLpnRjO0dxyyqucGHVqesaHoZfJTdtcQL9mRef6MVFc4SC9wIZKUejTzRIyCRsb0yvWzKd/GMtfPvyFLRkl3u2RRi13TuzNTWenBa1ugVJO3lpy/1AV0KfwiSee4Nprr8VgMPDEE080WE5RFBksSU0WFq6nzFqFyy2osLuocrpBCLQaNWa9BoNejVkurxFUWrWKvkmdb+BtRxcXpifOoiO/3NFgGbcQDOse0Y61ahvlVS5W/HiUrceKvd2OGpXCeX1juWZ0Cjp16HeEDIgP49ObxrE/r4zDBTbMOg1j06LQa+QPj44uoGApPT293v+WQk+5zUFRSSVuj8Bk0BAbbUId5JOQRqPGEmHkQHohtVMqOd0uKuwueiSEycy2UpekUhQuH9adF36o/7yrUqB7hDHkg6Uqp5vFX+4j+7S8Xi6P4Jv9+eSV2fnzlH6d5jzQv1sY/buF3qLhLc2VFMotoJ2jfVNqlMvt4cCRQkqt1TPPFKV6Ne+jmaX0To0iNoh5jNxuD4ePFdNQ7snMnDIsFj1RER27P1+S2sLFgxM5WlTBF/tyUSvgFtXdGQKIMel4YMbAkL4IAaw/mE9WSf0JUAXwS5aVn0+UMjw5sp1rJtUmUwc0gdvtZsWKFXz11Vf1LqT79ddft1rlpNYhhODA4UJKa03RrwlMPB7BwfQitFo1EWHB6eoqKKrA5fb4LZOVWyaDJalLUikKt53Xm0l94vhsbw7HiiuwnExKOblfHCZd6P/mXX+wwG+meJUC3x3Kl8FSkCnKqUkezb1/qGryt+z2229nxYoVzJw5k8GDB4d03oSuorzC4RMo1Scz20pEWFw71chXY3UDsJ5c9kR+3qSuSFEUhnaPYGiId7c1pLii4TFZUJ0iodDPuC1JamtNDpbeeust3nnnHWbMmNEW9ZHaQFFxpbfZviHWMjsutwdNEMYvyaXfJKlrizBoqfCTS02lQKRJ2+D+UFJa6WTVT8f47JdsqlweRiZH8vvxvegf3/HHMCktHLMUyj92mxws6XQ6+vTp0xZ1kdqIv6yxtXncAoIwKSPMoqOoxP8CkhazNqS/aJIkNey8vrG8sy3Tb/LNc/sEp+W7Nf18opQLnvmOQlt1K5kANqUX8tS3h3jit8O4+byOfW3tyqkDmtyM8Oc//5knn3xSrgQfQowGjd9WJQC1WkGjDc7wu7gYc6OzXLpFmSgqtFFUYKO8zI4nwABQkqSOb2K/OOLC9PUmLVQp0LebhREhPl6pwuFixnPfU1zhRHCqpd/tEQjgjvd28dX+3CDWsONJS0vzLrFS+3bLLbcA1eNxFy1aRFJSEkajkYkTJ7Jnz542qUtAV8fLLrvMe/vhhx94/fXX6d27NxdffLHPvssuu6zZFVmyZAmKonDHHXd4ty1atIgBAwZgNpuJiopi6tSpbN682bu/qKiIW2+9lf79+2MymUhJSeG2226jtLS03sew2+0MHz4cRVHYuXOnd/uuXbu45pprSE5Oxmg0csYZZ/Dkk0/Wuf8777zD8OHDMZlMpKam8q9//atOmfXr1zNy5EgMBgO9evXihRdeaPZr0lrios2NDqyLjzUHbUaNVqOif6+YeuuoVatIjjPjsruptDmprHBSWlxJzolSquRq91InVmF3kVdaid3Z+Zf6Mek03HvBAAYm+ubyUikwpmcMf5naL+TXvnt3eyZ5ZXbcDTQ0qFUKT3x9sJ1r1TQ1qQNacmuKLVu2kJ2d7b2tXbsWgCuuuAKApUuX8vjjj/PMM8+wZcsWEhISOP/88ykrK2v15x5QN1xEhO+gwksvvbRVK7FlyxZefPFFhg4d6rO9X79+PPPMM/Tq1YvKykqeeOIJpk2bxqFDh4iLiyMrK4usrCwee+wxBg4cyLFjx5g/fz5ZWVm89957dR5nwYIFJCUlsWvXLp/t27ZtIy4ujlWrVpGcnMzGjRv5wx/+gFqt5k9/+hMAn3/+Oddeey1PP/0006ZNY9++ffz+97/HaDR6y6SnpzNjxgzmzZvHqlWr+OGHH7j55puJi4vj8ssvb9XXrCk0GhW9U6M4dLT+9aOMBg3dE4ObcDAywsCwgfHk5JVTVFKJR4DFpCXcoK13sJUQUJhvo1tiGFqZSVrqRA7lWPlweybHT2a1V4DeMSZ+OyqFpCCm+GhrkSYdfz2/PznWKg7nl6NSFAYkhBFl6hzZ+9f+eir1Q33cHsG6X3PxeESHzSfV3rPh4uJ8u14feeQRevfuzYQJExBCsGzZMu69915vQ83KlSuJj4/njTfe4Kabbmp+ReuhiCD3p5WXl3PmmWfy3HPP8dBDDzF8+HCWLVtWb1mr1UpERATr1q1jypQp9ZZ59913ue6667DZbGg0p2LBzz//nLvuuov333+fQYMGsWPHDoYPH95gvW655Rb27dvnTYUwe/ZsnE4n7777rrfMsmXL+Pe//83x48dRFIW7776bjz/+mH379nnLzJ8/n127drFp06aAXo+a51haWkp4eOsGMCWlVWRmWyk72V+uUinEx5rpkRiOpgMuhlpeZqe02P9YJrNFR2QnvoBIXcvu48Us35hOfb3MWpXCbVP6khpraf+KSS129cs/snrXiUYntFQuu6xJrWhtec04/TH+/sYmDKbmf/6qKsp5aPY4MjIyfOqq1+vR6/2nrnE4HCQlJXHXXXdxzz33cOTIEXr37s327dsZMWKEt9ysWbOIjIxk5cqVza5nfZp8hZw8eTIlJSV1tlutViZPntzkCtxyyy3MnDmTqVOn+i3ncDh48cUXiYiIYNiwYQ2Wq/nA1A6UcnNzmTdvHq+99homU2AX1tLSUqKjTy0SarfbMRh88/wYjUYyMzM5duwYAJs2bWLatGk+ZaZPn87WrVtxOuvvMrLb7VitVp9bW4mMMDB4QDdGDUvkzMEJjB6WRFpyZIcMlICAutkqK2RXnNQ5eDwe3th8vN5ACcDpEby28Wi71klqPWelRvsd4KxSYESPyA7d3ahqhRtAcnIyERER3tuSJUsafewPP/yQkpIS5s6dC0BOTg4A8fHxPuXi4+O9+1pTk6+S3377LQ5H3XwXVVVVfP/990061ltvvcX27dv9vlCffvopFovFuy7d2rVriY2NrbdsYWEhDz74oE/zmxCCuXPnMn/+fEaNGhVQvTZt2sQ777zjc5zp06fzwQcf8NVXX+HxeDhw4IC3BSw7OxuofvPqe+NcLhcFBQX1PtaSJUt8PjTJyckB1bEltBo1er2mwzb11hABDOKWEw2kzmLnsWJsLv/jk/JsDo4X2NqpRlJrun5MKjq1qsGAySPg1okdezZca41ZysjIoLS01HtbuHBho4+9fPlyLrzwQpKSkny2nz5Luq3y8QWcOuDnn3/2/vfevXt9Ije3280XX3xB9+7dA37gjIwMbr/9dtasWVOnxaa2SZMmsXPnTgoKCnjppZe48sor2bx5M926dfMpZ7VamTlzJgMHDuT+++/3bn/66aexWq0BvRkAe/bsYdasWdx3332cf/753u3z5s3j8OHDXHTRRTidTsLDw7n99ttZtGgRavWpMTP1vXH1ba+xcOFC7rrrLp/n0R4BUyjQ6tQ4/OReqSkjSZ3B8cKKgModKygnJdbcxrWRWlusRc8bN4zhyuU/AtXr3gHecUy/G5fGtaNTglnFdhMeHt6kLsNjx46xbt06PvjgA++2hIQEoLqRIjEx0bs9Ly+vTqNFawg4WKqZRaYoSr3dbUajkaeffjrgB962bRt5eXmMHDnSu83tdvPdd9/xzDPPYLfbUavVmM1m+vTpQ58+fRg7dix9+/Zl+fLlPsFPWVkZF1xwARaLhdWrV6PVnkpe9vXXX/Pjjz/W6Q8dNWoU1157rU+/5t69e5k8eTLz5s3j73//u095RVF49NFHWbx4MTk5OcTFxfHVV18B1dMbofrNO735Ly8vD41GQ0xMTL2vQyB9tV2VOUyPrZGsvZYgLdEiSa1NH2B3uEFOaAhZFw1J4qcFU3hm/SE+3JWFw+1hRI9IbpnQh0uHJXX4XHLByrP0yiuv0K1bN2bOnOnd1rNnTxISEli7dq13zJLD4WD9+vU8+uijLahl/QIOltLT0xFC0KtXL3766SefUeo6nY5u3br5tLA0ZsqUKezevdtn2w033MCAAQO4++67GzyWEAK7/dTyGFarlenTp6PX6/n444/rtFI99dRTPPTQQ96/s7KymD59Om+//TZjxozxbt+zZw+TJ09mzpw5PPzwww3WW61We1vQ3nzzTcaNG+dt5Ro3bhyffPKJT/k1a9YwatQonwBOCoxWqyY80oC1pKre/UaTFoNRvq5S5zCmTyxf7Mv1mxNNo1IYmhLVbnWSWt/gpAheuGYkL1wzsvHCHYxKod5cWE25f1N5PB5eeeUV5syZ4zMWuSbV0OLFi+nbty99+/Zl8eLFmEwmZs+e3fxKNiDgYCk1NRWn08n1119PdHQ0qampLXrgsLAwBg8e7LPNbDYTExPD4MGDsdlsPPzww1xyySUkJiZSWFjIc889R2ZmpjfHQllZGdOmTaOiooJVq1b5DJCOi4tDrVaTkuLbrGmxVI/k7927Nz169ACqA6VJkyYxbdo07rrrLm/rkFqt9gaFBQUFvPfee0ycOJGqqipeeeUV3n33XdavX+899vz583nmmWe46667mDdvHps2bWL58uW8+eabLXqturKwcANarZoyaxUOe3WXnEarwhKmx2TWdfhfYpJUw2Z3cSS3DKfLQ3SYntRYs8/nN9qiZ2A3C3vyyhs8xpjUKPSyZUkKkprepZbcv6nWrVvH8ePH+d3vfldn34IFC6isrOTmm2+muLiYMWPGsGbNGsLCWn/pmCYtd6LVavnoo4+47777Wr0ip1Or1fz666+sXLmSgoICYmJiGD16NN9//z2DBg0CqrvyapJUnr4ES3p6urd7rDHvvvsu+fn5vP7667z++uve7ampqRw9etT798qVK/nLX/6CEIJx48bx7bffctZZZ3n39+zZk//973/ceeedPPvssyQlJfHUU08FNcdSZ2AwVrcgNTb+S5I6IrdH8O2eHHYdL0YIvOs0hhu1XDg8iR4xp8Yf3XBebx77fB85J9N71F7TMd6kY/qQxNMPL0md2rRp0xqcyKMoCosWLWLRokVtXo8m51m64YYbGDJkiM+gZKn1tEfODEmS2s8XO0+wJ7PuqgIK1bnOZo/vSbeI6uEDPx0q4Ks9OYDA6RG4BagVBa2ioKggPsLA3PN6yx8Mkld75lla/PbmFudZuueqMSF5fWvyQrp9+vThwQcfZOPGjYwcORKz2XdWxm233dZqlZMkSQplheX2egMlqG4x8gjBxgP5/GZ0Mh4h2HyoJsWIglalUHtEnhCQU1LFieJKeshErFIQBKMbrqNocrD03//+l8jISLZt28a2bdt89imKIoMlSZKkk349UYqi0GDWZiHgcG4ZDpebskoX5XaX3+MpChzNL5fBUhAdLrDxzo4T5JbZ6Ram58rhSfSJk1nVO7smB0vp6eltUQ9JkqROp9Lh9hl31JAqpwdPACMiFAioXCjzCEFmYQXWCgdGnZqUOAtadfBXGfB4BH//316W/3gctUrxvq9Prj/MnLOSWXLRoA6dfbs1BGM2XEfR5GCpNjngVpIkqWHhRm2ja4GpVQpGnRqTTo1Bq6LK6WmwrEfQqVuVjuaV8/Uv2ZRXnWph02lUjOkbx/C0qKBea5749hDLfzwOVA/ar+3VnzKIMupYeH6/YFSt3Sg0Y9mP0+4fqpr1vF999VWGDBmC0WjEaDQydOhQXnvttdaum9QGnC4PR7KsbP01j23788jIK6/zxZckqXUM7BHh9wqhKHBG9wi0ahUatYoze8Y0WFxRINKko2cn7fI5XmDjk60ZPoESgMPl4ft9uexILwpSzcDmcPHshoZ7VQTwn43pjXajSqGryS1Ljz/+OP/4xz/405/+xPjx4xFC8MMPPzB//nwKCgq4884726KeUivIK67kx705uNzCe0I+lluOQafmnCGJhJt1Qa2fJHU2FoOW8f27seHXvDr7FAWMWjXj+p1K8Du+XxxZxRUczbf5dN8pVGfu/u2YlE7bkr/hV/8JOX88kM/glEh0mvbPM7UxvQhbI0svVTo9fHe4kBkDW3+pjY5CDvBugqeffprnn3+e66+/3rtt1qxZDBo0iEWLFslgqYMqr3Sy8Zcc73iH2iclu8PN9z9nMW10CtoAl1yQJCkwY/rEYtSq2XQw36fVpGechcmDEwivlYVeo1Zx1dg0fsksYcfRIorKHei1Kgb3iOTMntFYDJ0zY31RuZ0Cq91vGZdHcDi3nDO6R7RTrU6pdPoPlJpaLlSpaFk3XChfXZocLGVnZ3P22WfX2X722WeTnZ3dKpWSWt/hE6UNJvYSgN3p4XhuGb2DcCKSpM5uaGoUg1MiySutwuHyEGXWEdbAUj2qk0uadKVlTSoC6L5SgMogdXP17xZY1+eA+M7ZRSo1I9Dr06cP77zzTp3tb7/9Nn379m2VSkmtLzPf1uiMnKwCW7vURZK6IpWikBBpJCXW3GCg1FUF0mImAizXFvp3C2N0ciTqBnqR1IrCiO4RDEoIrUSLTaVQ3X3c7Fuwn0ALNLll6YEHHuCqq67iu+++Y/z48SiKwoYNG/jqq6/qDaKkjsETwCBulxzoLUlSEESadSRGGckprmzwR51Oo6JXEFtunrhsCBe9+CNldpfPpBi1SsGsU7PssiFBq1t7USkKqhaMO2rJfYOtyS1Ll19+OZs3byY2NpYPP/yQDz74gNjYWH766ScuvfTStqij1AoiLP4HbytAZCNlgslW6eTgsWK2783j5/35ZOfb5Cw+SepEzj0jvnoAsZ/9miDmW+obZ2HNH8/m6hHd0Z2sh06tcOXwJNbePJ4B8a2/eGtHo7TCLVQ1K8/SyJEjWbVqVWvXRWpDvZPCKSitanC/AHomdswm5KMnrBzOKPGZHZRfXMmRzBLOPCMeo6FF6cIkSeoAEiKNXD42hW/35JBfa7C3xaBhfP9u9O8A4ylTo008fukQHrl4EFa7k3C9Fp2cFNMlyKtMF5EUayYl3sLx3PJ69w9MiyLSom/nWjUur6iCwxklQN0syHa7m52/5jF2WGJIT0mVJKlaYpSJa87pRYG1CmulE6NOTUKkscN9v3UaFbGajne+bGtduRsu4GBJpVI1+oFVFAWXSybl6ogURWFkvzhiwg0cOlFKWYUTgOgwPf2SI0mKNTdyhOA4esLa4D4BVFS5KCypIjbK2H6VkiSpTcWGG4gNNwS7GtJp5HInAVi9enWD+zZu3MjTTz/d4NR0qWNQFIWeieH0TAzH5fagKKBWddwmZKfLQ5nN4beMokBhSaUMliRJkqQ2E3CwNGvWrDrbfv31VxYuXMgnn3zCtddey4MPPtiqlZPaTjAHSgYqoOBbVK+XJUmSJLWtlg7SDuGGpeYl1MzKymLevHkMHToUl8vFzp07WblyJSkpKa1dP6kL02pU6HX+lzYQQHgHnsUnSZLUWdSMWWrJLVQ1KVgqLS3l7rvvpk+fPuzZs4evvvqKTz75hMGDB7dV/aQuTFEUkhP8T8dVqxUSYjrvKuySFGrsTjcZhTYyiypwuj3Bro4ktYqAu+GWLl3Ko48+SkJCAm+++Wa93XKS1NqSE8IosVZRUOKb9kA5+X9D+8WhDoEuRUnq7BwuD9/syeHn48XeBLc6jYpRPWM4Z0A31KE8ulcCTmXibsn9Q1XAwdLf/vY3jEYjffr0YeXKlaxcubLech988EGrVU6SVCqFIf3jyMm3kZFThq3SiVqlEBdtIiUxHItJLhshBZfH7cHtEahUSpcN3F1uD29tTCerpJLaQw0dLg8bD+ZTUG7nstHJHS4FgNQ0Ci1bDDeU3/2Ag6Xrr79eftCloFApCkndLCQFuJilJLUHp9ONtaSSqspT6VL0Bg3hkQZ0uq6Vwu6XzBJOFFc2uP9AtpUjeeX07gJZrqXOKeBv9IoVK9qwGpIkSaHD6XCTn1vG6RM27VUu8nPKiY23oNd3nYBpx9Eiv/sVBXYdK5bBUoir7oZrfqNJKLe3dM02Y0mSpBYoLqqoEyjVVlJY0aXyzpWeTHLbECGguJGcaVLHp2qFW6jqOj99JEmSWoHT6cbpcPst43J5cDjcXaZ1yahTU+nnNVEAk95/GpCOyOlyU1hUicPlRqdVExNlQtuF14JTFKWFLUuh27TUNb7JUqfhcLpxewR6rRqVnF0jBYHL6T9Qql2uqwRLQ5OjWL8vt876jTUEMCQ5qj2r1CJCCDKzyziRbUVQ3X0kBBzNKCE5KYKkeEtIX/ilpusa32Qp5GUV2th7tJjCk6uR6zQq+nSP4IzUyJDIRi51HoEG6V0pmB+eFsW29ELK7a463ZOKArFhegYkhQencs2QnVtOZvapdSlrnpMQcPxEKWqVQkIXnHDSlVMHyKuMBIDwCFxVLhzlDuxldhw2B26nu0OMuzicZeX7n3O8gRJUT0nee6yYb3Zm4ZKJ76R2pNNrGg2EFAX0hq6T1sKo03Ddub1IiKi7RmNqrJnZZ/cMmR81bo/HJ1CqT0a2FU8XXGdJjlmSujSP24PT5jtAU7gFrkoXikZBa9QGrcm50u5i24H8BvcXWe0cyChlYFroNPFLHZvL5cZW7sDjEWi0asxmnU9wpCgKYREGSv1MlbeEG7pUyxJApEnH3Am9yS6uJLOoAkWBtFgzseGGYFetSUqtdtyNBEIulwdruZ3IEHtuUvPJYKmLE0Lg9DOTRbgEbocbTZDGXqTn1J2efbqDJ0o5IzVSjiHohDweDxU2Z/WAagUMBi0Go6ZN3mshBIUFNspqtWACFCoQG2fBEqb3bjNbdAiPwFpadfphsITrCQvX19neVSRGGUmMqtvCFCrcAbZUB1quM5EDvKUuy+Py0OCozJPcDjdqnTooH3SrzYGC/ypWOdy43AKtJnS/iFJdlRVOigttPsFyRbkDjUZFTDcLmlaelVRfoATV41Ty88pRqRRM5upFm2tal0wWHZUVTtwuDyq1gsmkQ92FZ0t1BoYAfxgGWq4zkWOWpC5LuAPodxc0GlC1FY1aFVCOfLnuVOficLgoKrDV26rocnkoyCtv1fF0Lpe73kCptuKiijrb1GoVljA9EVFGwsINMlDqBCxmXaOBkMmoxWzStVONpI5AfrOlDq1HnNlvN5yiQFKMqcuND+nsyhsJXNwuD5WNJEJsClt54wkTHQ43zgDTBkihS1EUeqdFNdgKolIUeqd2zTGScoC31GWpNCrcjSTYQyFoKyDGRxmJCtNTbK2i0u2hyu3BI0CtgFGjRq9SGNhFT1ydWWVl44FQVaXT2y3WUoHObOqKM6AAqpxusosrURRIiDRi0IZegsmmCLfoGdy/G8dOlGItOxW4R4brSeke0WVbleSYJanLUtQKikpB+LkIaPRtM6A2EIqicNYZ3Xj7h3TsrlMDKl0C7A4XCREGIixd88TVWQkhAur29feZbSptgBf/1h4n1dE5XB6+3pPNz8dLvDPE1CqFYSlRTB6cgDZE0gE0h8WsY1C/uOoWRZcbrVaNrpMHiVLDOu8nXQqIoihoTdoGW45UWhUqbXA/Jt/tzcXRwMyTnNIqNvlJLSCFHkVRAgpKNLrWu3CZzDqURrpyTWYt6k4cHJzO7fHwzqaj7Dxa7DOV3u0R7DhaxDubjjU6xb4z0OnUmE06GShxqpOhJbdQ1XW++VKDFJWCzqJDY9B4W5pUGhVak7Z6WxCbTktsDo7ml/sdt7T7eDEOlxxL0pnUnqbfEPNpLYpCCOxVTgryy8nNKaOwwIbd7sLt9mArs1Ocb6MorxxrcSVOh8vnviqVQmycucHHUqkUomMa3t8Z7TthJaOoot5GPgEcL7Sxv5HkjVLnolJafgtVshtOAqp/zat1atSt+Gu9NWQW2hot43ILckurSO5iF7NQJITAXumkqsKJxy1QFNAZtBhMWp+ZZCaLjspKJ/YqV73HiYgyotGc+qwKIcjPLcd22sr2tjI7RoPW5xetw+3CUeXCaNZhrpUPyWLRo1IpFBdW4Kg1js9k1hEdYwq4q66z2HmsyG/aDgXYdbSIgd0j2rFWUjDJMUuS1EEF3Mjf+XsDQp4QgrKiSly1xp4JAfZKJ/YqJ+FRRjQnAxJFUYiJM2Mrs1NeZsd9MsWFTq8mLNyAwei7lEhhga1OoARg1GuqH6Sek3SlzYFGq0Jf61gmkw6TSYfT6a7O4K1Rdamut9pKK5x+v1YCKKlofBahJHUGMliSOrTEyMYzAasUhTi57ECHV1nu8AmUfAgoK6kiMtbk/fWpKAqWcAPmMH11vAP1jityuz315kjSnmyp8vdrttLm8AmWvPftYq1I9THrNVgbmZVoDsHEjC6XB6u1CpfTg1qjIjxcL9/vALV03FHotivJYEnq4GLDDSRGGckpqax33JICDOgejqGDdR9KvoQQVDVy4RUegdPuRmfwPS1VN/03fL+G0gwEkqjU5fQghAjp7oG2MiQlkuyShte/AxiaEjppO6qXs6mgoMC3az8/r5zoGBNxcWb5OWiE0sJxR6H88nbN9mWpxYQQFJZUcvBYMQfSi8jKK8fVRmslXTC8O5YGVnDvFmHgvIHxbfK4UutxuxtfVgeqM2k3VSsm8pZqGZIcRbRFV+8FTlEgNkzPoB6R7V6v5iourqwTKNUoKqygsLBuhnZJqiFblqQmq7K7+OVAPhVVLm+zak6BjSMZJZzRO4aYALrOmiLMqGX2OT3Zk1HCnswSKu1uwo1aBqdEMqB7RPWSKFKHpgTYAB9oudr0DbQquj0CTSMNjhqtSrYmNECnUXHd+F58vD2Do/m+QUZarIWLR/bwdnV2dB6PoCDf/2SRwgIb0dFyNQB/5ABvSQqQxyP4eX8+VfbqWUritH17DxUwYmA8llbOcKvXqjmzVwxn9opp1eNK7UOlVlCplEYzYGv1Te9O1ek16PVq7HbfVimny4Neq/bbzWZspQzgnZXZoOGas3tSWGbneKENBUiOMRMTQGqHjqSywtnoZ08IsNkchIXYc2tPwRizdOLECe6++24+//xzKisr6devH8uXL2fkyJFAdS/HAw88wIsvvkhxcTFjxozh2WefZdCgQS2oaV2h8bNA6jAKiiu9gVK9BGTmlLVfhaSQoCgKhkYCE41W5Z0N11Rx3cLqbRGo9PNZNZp1dcZHSfWLCdMzIi2a4WnRIRcoAXg8gQ0R8LTRUAKpeYqLixk/fjxarZbPP/+cvXv38u9//5vIyEhvmaVLl/L444/zzDPPsGXLFhISEjj//PMpK2vd65A8U0hNUljiv19fUB1QSdLp9EYNHreHqnoWwFVrVFgimz+jUatT0z05gtKSKsqsVQhRnUjSEqbHEqbH6XDjqHIhhECjVWM0adGG4EwuqXl0usDea538TPjV0sSSTb3vo48+SnJyMq+88op3W1pamve/hRAsW7aMe++9l8suuwyAlStXEh8fzxtvvMFNN93U/MqeRrYsSU1Sk+/GH49HVK/vJUm1KIqCKUxPeLQRvVGLRqdGp9dgiTAQHm1EpWrZ6UijURMTaya1ZzRpvaJJSYsiOtaMTq/BHKYnKs5MdDcL4VFGGSh1MXqDBkMjrYg6nbrRMl2d0gr/A7BarT43u71u6g+Ajz/+mFGjRnHFFVfQrVs3RowYwUsvveTdn56eTk5ODtOmTfNu0+v1TJgwgY0bN7bqc5fBktQkZlP9s9JqMwV5iRSpY9No1ZjD9YRHGbFEGtC18uelZhCq/AxKtSUkhjX4mVAUSEwKl5+ZdpKcnExERIT3tmTJknrLHTlyhOeff56+ffvy5ZdfMn/+fG677TZeffVVAHJycgCIj/edER0fH+/d11pkGC01SUKchYxs/33BSfFh7VQbSZKkwBgMWtJ6RpGfX0552anM4xaLjtg4M4YG0pNIpyhKy3Il1dw3IyOD8PBw73a9vv5xcB6Ph1GjRrF48WIARowYwZ49e3j++ee5/vrrax3Xt1JtkTtNBktSkxj1GnqnRHL4eEm9+6PCDSTEyjXaJEnqePR6DT16ROJ2e3C5PGjUKp81CSX/VLRwzNLJf8PDw32CpYYkJiYycOBAn21nnHEG77//PgAJCQlAdQtTYmKit0xeXl6d1qaWkp8Sqcm6x4cxqG8s4bVWfdfr1PTsEcGgvrEyT4kkSR2aWq1Cr9fIQKmJWmvMUqDGjx/P/v37fbYdOHCA1NRUAHr27ElCQgJr16717nc4HKxfv56zzz675U+4FtmyJDVLTKSRmEgjLnf1chEatUzuJ0mSJLWeO++8k7PPPpvFixdz5ZVX8tNPP/Hiiy/y4osvAtXdb3fccQeLFy+mb9++9O3bl8WLF2MymZg9e3ar1kUGS1KLyOzZkiRJXUNrjVkK1OjRo1m9ejULFy7kn//8Jz179mTZsmVce+213jILFiygsrKSm2++2ZuUcs2aNYSFte7YWUXIOd4ditVqJSIigtLS0oD6dCVJkqSuqz2uGTWP8fk3ezBbmh+E2MrLuHDSoJC8vsmWJalTs1Y4sNldmPUawlt5CRZJkjqGSruLjLxyKuwu9Fo1yd0sWIxydpvUemSwJLWJyioXLrcHg14TlMU2s4srWL8vjxNFpzKOd482MeGMbiRGmdq9PpLUEdV0LITqeEMhBPszSth3tBjByW4eAfuOFZOWEMbwvrGoQvS5dUQqFFQtWB2uJfcNtg4z4GTJkiXewVo1Fi1axIABAzCbzURFRTF16lQ2b97s3V9UVMStt95K//79MZlMpKSkcNttt1FaWlrvY9jtdoYPH46iKOzcudO7fdeuXVxzzTUkJydjNBo544wzePLJJ+vc/8svv2Ts2LGEhYURFxfH5ZdfTnp6uk+Z9evXM3LkSAwGA7169eKFF15o2QsTYnKLKvhuxwm+2prB+h0nWLv5GDsP5FPl8LOeXCvLLKrgrY3HyCryXZol6+T2zCL/S7ZIUmdntTnYsT+Pzzcd47MfjvL11gyOnCjF3chisx1NenYZe08GSlC9GG7Nfx/NKeOXI4XBqlqnVDNmqSW3UNUhgqUtW7bw4osvMnToUJ/t/fr145lnnmH37t1s2LCBtLQ0pk2bRn5+PgBZWVlkZWXx2GOPsXv3blasWMEXX3zBjTfeWO/jLFiwgKSkpDrbt23bRlxcHKtWrWLPnj3ce++9LFy4kGeeecZb5siRI8yaNYvJkyezc+dOvvzySwoKCrzr0UB16vUZM2Zw7rnnsmPHDu655x5uu+02b06Izi4jt4wte3Ox2k4lfPMIOJFXzoadWe0SMAkhWPtzFkIITj/ti9P2S1JXlFdcwfc7T5CVb8NzMjiqqHKxN72In/bk4A5w0dlg8wjBvmPFfsscybJid7rbqUZSZxb0Ad7l5eWceeaZPPfcczz00EMMHz6cZcuW1Vu2ZpDZunXrmDJlSr1l3n33Xa677jpsNhsazalexs8//5y77rqL999/n0GDBrFjxw6GDx/eYL1uueUW9u3bx9dffw3Ae++9xzXXXIPdbveuYfXJJ58wa9Ys7HY7Wq2Wu+++m48//ph9+/Z5jzN//nx27drFpk2bAno9QnWAt9PlYe1Px70n39MpQHJCGEP7xLZpPbKLK3jjh6ONlps9Pk12x0ldjsvtYd1Px3H5WeOxX0ok/VKi2rFWzVNYWsX6XVmNlhvZP47UTryqQHsO8F777d4WD/A+f+LAkLu+QQdoWbrllluYOXMmU6dO9VvO4XDw4osvEhERwbBhwxosV/Mm1A6UcnNzmTdvHq+99homU2AXyNLSUqKjo71/jxo1CrVazSuvvILb7aa0tJTXXnuNadOmodVWDyTctGmTz4J+ANOnT2fr1q04nXVXWofqrsHTFxUMRVn55Q0GSlDdqpOZV47L3ba/WkvqWdG+JeUkqTPJyrf5DZQAjmZbQ6LlNdBzSVufc7oSlaK0+BaqghosvfXWW2zfvr3BRfQAPv30UywWCwaDgSeeeIK1a9cSG1t/60RhYSEPPvggN910k3ebEIK5c+cyf/58Ro0aFVC9Nm3axDvvvONznLS0NNasWcM999yDXq8nMjKSzMxM3nrrLW+ZnJycehf0c7lcFBQU1PtYS5Ys8VlQMDk5OaA6djS2Smej/dEej8DuaNsmcYNWHVA5Y4DlJKkzKbXZG/2eOpyeNv+etgZLAIt6A3IWrNQqghYsZWRkcPvtt7Nq1SoMBkOD5SZNmsTOnTvZuHEjF1xwAVdeeSV5eXl1ylmtVmbOnMnAgQO5//77vduffvpprFYrCxcuDKhee/bsYdasWdx3332cf/753u05OTn8/ve/Z86cOWzZsoX169ej0+n47W9/6/MrrL4F/erbXmPhwoWUlpZ6bxkZGQHVs6PRaFTUGSRUX7k2TmKZHGNqNGAyaNUkB7h+nRCC4wU2fjpcwLb0IkorHI3fSZI6qEB/2YfCkkVmg5ZukUa/86tMBg2xEQ1fX6Qmaung7o7/sWpQ0FIHbNu2jby8PEaOHOnd5na7+e6773jmmWew2+2o1WrMZjN9+vShT58+jB07lr59+7J8+XKf4KesrIwLLrgAi8XC6tWrvd1iAF9//TU//vhjnVWNR40axbXXXsvKlSu92/bu3cvkyZOZN28ef//7333KP/vss4SHh7N06VLvtlWrVpGcnMzmzZsZO3YsCQkJ5OTk+NwvLy8PjUZDTExMva+DXq9vcMXlUJIYa+ZAA4vr1ogO16PXtaxFp6jMzuEcKw6Xhwizjr6J4ehrBUcatYrx/eP46pecBo8xvn8c6gAuBrmlVby/5Tj5ZXbvNgUYkhzJRcO7ByUlgiS1RHy0ifQs/139kRYduhBpeR3eN5Zvd5zA6fL4/FZTqP6BOrp/t5BNi9ARNWd9t9PvH6qCFixNmTKF3bt3+2y74YYbGDBgAHfffTdqdf1fViEEdvupi5fVamX69Ono9Xo+/vjjOq1UTz31FA899JD376ysLKZPn87bb7/NmDFjvNv37NnD5MmTmTNnDg8//HCdx62oqKhTp5q/PSdnj4wbN45PPvnEp8yaNWsYNWqUTwDXGYX9f3t3Ht9Ulf8N/HOz72m6Jd1bKFBogaoo4DJYUFaX5xH1JzqO6DMMCIiIM+IyijujP8cFEWdUZmRYxA0dF0bAAUQHdJC1rIKkpbQN3ZM0TbOe54/QSGi2tmmaNN83r8zYe0/uPT2E5JuzfI9MhIxUOWobLAHL9GTSqNPlxtbyWpwymD3fUuBZabfrWB2uGqZFUXaSt2xpfjJcbobvjtXB6WbgcZ6yAh6HK4rSUZqfHPA+HVosdrz77c+wOX3nOzAA5VUtaLM7cfvYfHojJlHBGIvIay1FLYFKLoLZYg/YETzwvH9LsU4hFaLs4iwcrWzGmbpWdEyb1KXIMDRPgyRF/H8RjSU8zvPoyfPjVZ8FS0qlEiUlJT7H5HI5UlJSUFJSAovFgueeew433HADMjIy0NjYiBUrVuDMmTO45ZZbAHh6lCZOnIi2tjasWbPGZ4J0Wloa+Hw+cnNzfe6hUCgAAAMHDkR2djYAT6BUVlaGiRMnYtGiRd7eIT6fj7S0NADAtGnT8Morr+Dpp5/GjBkzYDab8eijjyIvLw8XXXQRAM/Kt+XLl2PRokWYNWsWdu3ahZUrV+K9997rpVaMLaWDUsEBqDkXMHGcJ+8Jn89h5KA0pCZJu33tbeW10BvMAHxzqbjcDNsPGSAVCZCXrvCWv2RACkpykvBTrcmbwXvwBb1QwfznRD3sTjf8zXNlAE6ebUVVYxtywxzOI6SrnC43TlabcLLaCEu7EwI+h9x0BYbkJnV7Hg7HcbhsmBbfHzKg1frLIodzuRwxrCAZGXH2mpZLhBg1JB2lhamwO1wQCvjU60siLmYzePP5fBw7dgyrVq1CQ0MDUlJScOmll+Lbb79FcXExAM9QXkeSysLCQp/n6/V65Ofnh3WvDz/8EPX19Vi7di3Wrl3rPZ6Xl4eKigoAwPjx47Fu3Tq8+OKLePHFFyGTyTB27Fh89dVXkEo9QUBBQQE2btyIBx54AG+88QYyMzOxbNkyTJ8+vYetER/4fB4uLkrHYKsDhgYLnC43FFIhMlLl4PdgrlKLxY6fzwVK/nAAfjzZ4BMsAYBYyMfwbvRmMcZw4HQLguXn43HAwaoWCpZIr3A43di+vwZN5w0BO10MeoMZlWdbMW5kBtK6+eVDIhbgVxdn4WxjGwyNntVxSpkQuTolZJL47QEX8Hm0sXcvi/ZGurGkz/MsEV/xmmepN+071Yj//lQfcv74HeMGQhmB/aBcboZn/3koZLmhmSrcOjqvx/cj5EL7TzbgpypjwNe8RMjH9ZfnxcVEbNK7oplnacd3x6HoQZ6l1lYzfnXlkLj8fKMwnMQ8u9Md1jcShzMy+VT4PA6yEBPReRygpo06SS9wudz4ucYU9MtBu8OFmsbA8wMJIZEVs8NwhHRIkouCDokBnqXOCmnkXs4X5yfjPyfq/c5ZAjwTxi8KY6I44MkvVd1gQXWjZ3uJZKUYBV2YP0USi6XdGTJxJMd5VoZmpymCliMkkmiCNyExbIBOie+OnIUjQCZejgMGZ6ggEkQu+Lh8UCoOnzHCaLX7DdQuLUhGuip0/pZWqwNb91XD3JG0kwF6gxn7fm7ElcU65KTThx3xFe7QGj+eJ4CEwWZ34mxDG9ptTggEPKSnyKCgBJN9KpHnLNEwHIl5Qj4PZcN18JfTjOMAuViAywanRfSeUpEA94wbgKGZap9/4FIhH9cU6zBlZOcNmS/kcjP8e281Wts9q47OX8XndjN8W16LRlN7ROtN4p9cIoA8RC8pY4i7VWtdcbrGhB8O1KKi2oizDRZUG8zYe/gsjpxsCLqtEiG9hXqWSFwYoFPhukv5+PFkA2qbrQA8c4uGZKkxqjAVMnHkX8oKiRA3X5aL1nYH6s02CHgcMjVS8Hnhfceoqmv1Bkp+ccDR0824siQjQjUm/QHHcRiWp8HuY/X+zwNIVUuQrOyfOYRq61tRUW30/nx+aNTQbMWJyiYMKfCf5Jf0LkpKSUgcyEqRIytFDqvdCYfTDalYAGEUlgorJEIourGk+kx9qzd/jT+MAVV1loglHCT9R4FOCYvViSOVzd58ZR2vpSSFCFeU6Pq6ir2CMYbTITKMn21oQ36WGmIRfXxFXU+3LInjtzl6tZG4IxUJII2DqQsuNwuZ7sBNmTuIHxzHYfiAZORpFThVa4K5zQGhgIfcdAV0KbK43r09GIvVEdYmvo0tVmSmd38JOyFdRcESIb0kSSFGdYMlaMCklomoV4kEpJKLUFqY2tfViBpXiFWAXS1HIiuRJ3hTsERILynMUuFQRVPQMoNz1GFdy+1mMBnb0WK0wulwQyjkQZ0khUolocSEpN+QSsL7SJJTjrM+kchzlmg1HOnXnC43KhtacarODLM1yGTrXiCXCHHZkHQA/ofqs1JlKMwMHSy5XG5UVjTBYDCj3eqE0+mG1eqEodaM05XNcAVIqUBIvBEJ+UhLDr6Ni0jIh0YdOm0HibyOnqWePOIV9SyRfokxhp0/1eOHkw2wncvszQEYpFNi0sjMbk3Y7o5B2WoopAIcqWyG4dwqPoVEgCE5SRicnRRWr1BtrQk2m/95HO3tTpw1mJGZFV4PFSGxbkCOBkazHXZH59c8xwFDB6bQ0DWJOgqWSL+06UAN9lU2+xxjAE6cNcOw4xTuHjewV9IN+JORIkdGihwutxtuNyDgc2G/2TscLrSa7UHLmEw2pGtdEEQwKSchfUUs4uPiYi1O15hgaLB48yqlaqTIzVRRYso+xHHhv3cFen68omCJ9DtnjdZOgVIHxgBzuwO7f27EuGHaqNaLz+Ohq5kO2trCGzq0Wp1QKilY6m2MMThtLrjdbnAcB4GID16Av1SHwwWL2Yb2difAALGED4VSAmGIfQeJZ6itME+DATlJcLrc4PO5sPObkd6TwJkDKFgi/c/B0y3gcQi4nxxjwL7KpqgHS90Rz28u3dXW7oDF6oSAz0GtFHd5mXyb1YGmJgusVid4PECllECjkUEg6NmHraPdiXaLby+frc0BoZgPsdx3VWObxY7mxjbfelncaLM4kJQshVzRPxNKRhqPx0HEo+CS9D0Klki/Y7Y6Qm68a7W74HIz8GN8JZlUFt7cKmkEVgfZbJ7J4wIBD+IIDVHa7S40NllgNLbD7WIQiflITpZBkyTt1CVvsTpw5FQjmkw27zGRkIeB2UnI0SrC6sKvq2tFXX2rzzGrtRX1DRYU5Cd3u50cts6B0i/nXADngETuGR5yOFydAqXztTRZIRTxIaKkiiTOUOoAQvoRmZgftGcJAEQCXlzsgC0U8qFUimE22wKWUanEPeo1sbTZYTCYYT1vtaBUIoBOp4Jc3v35IVarA/qKJp+9vNrbnaipMcFobEdersY7wb2t3YHvyw2dVvbZHW4c1TfB6XRjQHbwSewmU3unQKmD281QUdmEIYPTu5xqgTEGW4jhUEe7EyKpEDweB0uQv6sOFrMNohR6+yXxJZHnLNEgMOl3irOTggZKHAcMz0mKm3+4ugxlwJ4eiUQAra77mYwtFjv0+iafQAkArO1O6Cua0Noa+oPfH8YYKk83B9z01GKxo/68wOZkVQtcLnfABJ4nq1pCZnZuaLAEPe9yMbQYrUHL+ON2MbAwNm912p0AAFu7M2TZcMoQQmIHBUuk38lOlqFQq/Q734fjALGAj9FxlBWZz+chL18DXYYSUqkQQiEPMpkQGZkq5OVrwO/m/niMMVTXGIOWqak1gXVjSxaz2QanM3j+p6amNrjdDE6XG4bGtqCZzhmA2iDBEGMMbWHk0bIEGEoLKszf31ssPmLwPtFuc6Ky2ohjpxpxsrIZRrOtW68vQqKN+oFJv8NxHP7vpTnYdLAG5VUtPp91aUoJbrwkG+o4W37M43FISpIiKSl4wr6usFodsIforbHbXWizOiDvYnuFE7i43AwOhwsuxkLGIxwHWG190xvDhRmMdgzviSVCOB3Be+TEYWaq7k+qak3Qn/klOOcA1NS1IkklxrDCVAiisCk26Rmas0RIPyPg8zDtomyMG6rFqbpWuNwMWrUEGX4mFicqh5+kf37L2V2ArGvXDreJOQ4Q8kOvdmIMEAsDl+M4DhKJwLNMPwhZN4JkHo8DX8iDyxGkp4wDBOdSAigUopDzlhTKxMpAfbbB4hMoAfD2JLaYbDh+qhHFg9KiXzFCwkShPOnXFBIhRuRqcFF+MjI1MgqUzhPu8F13hvkU8tBL44VCvuch4CEtjB6zjFR50POpKcHP83gckrq5TYZELgo6vCZR/JI6QCDkQ5MSOLpMSpYmVK4lxhgqQwz3Nra0h9UbSfrYuQne3X3Ec9cSBUuEJCi5XBQyEOLzuW6tiJPJhJCEGGpKS5V7A4zC3KSgqxNztIqQm6yq1RIkB9hXjOOA3Nykbs/v4vF5kKsl4At5nY5LVWIIL0gDIJOLkJ6hhFwhgkDAg0DAg1whQrpOmXA5lqw2J9oDbNdzvsaWrk++J9HFReARr2gYjpAExXEcdFoFqmtMActo05VdXmrfce28XA30FU1+50WlJMug0fwS2KjkIowapkX5yUafuUkcB+RnqDAoNymse2boVFAqJWhqbIO13QGO46BWiZGcLOtxXiMenweZSgK327M6juMQMHs34Ok5S0ru4vhlPxRoReT5OM4zh43ENg49TB0Qx+ESBUuEXMB9brZxVzNHxyONRgY3A86eNft8qHUEUsk9+LAXCvkoHJgKk6kdLUYr3C4GsVgATbIMMj/JITUqCa66KBPNJhss7Q7weTykaSQQdmHPO47joFSIoezF3hsej0NcJOmKERKxABwXfFEhY4A8AolVCektFCwRcs7+qhZsPmrAz3WtYAAGpMpx7VAtLs7V9Ou5TinJMmiSJDCZbN4M3kqluNtDVufr6io+juOQrJYguZtzi0jsEfB50KXKUVsfOPWDUMBDSgRXepLeQavhCElwXxyswWcHazzfgM8d0zda8NdvT2FysQ43XZTdp/XrbTweL6JpCQg5X362Gi1mG6wXrFbkzv3P0IEp3RruJdGVyMESTfAmCe9UQys+O1gDwHeooOO/vzpswDFD4Hk9hJDghAI+LhqqRU6G0ptPiQOQmizFRcO0SFJRTyKJbdSzRBLe9uN1QfeS43HAtuN1KNKpolsxQvoRgYCHguwk5Gep4XIz8DiOepPijGdFW08meMcvCpZIwqtobAu6l5ybAZVBdpEnhISP4zgI+PH8sZnAerr+P47/2mkYjiQ8YRhv3PTmTgghiYuCJZLwSnM0QSce8jjg4lxN9CpECCExqGOCd08e8YqCJZLwfjUoDWI+z28PMQeAz+MwjvatIoQkOC4Cf7riySef7LRlik6n855njOHJJ59EZmYmpFIprr76ahw+fDjSvzYACpYIgVoqxP0TBkN6br+u84flxQIeFpQNQkqCbVFBEpvL7UZtUxuq6lrR0hp8U2BCelNxcTFqa2u9j/Lycu+5F198ES+//DKWL1+O3bt3Q6fT4dprr4XZbI54PWiCNyEABqYp8Kf/OwLf6xvx01kzGAMGpSswZkAKZD3cJoOQeMEYw/GqFpTrm2B3ur3HU1RijC7SQqOkLw2JrC/yLAkEAp/epA6MMbz66qt47LHHcNNNNwEAVq1aBa1Wi3Xr1mH27Nndr6gf1LNEyDkSIR9XD07H764aiNm/GojxRVoKlEhCOVTRhD0nGnwCJQBoMtmweU8VjBZ7H9WMxIILh8S68wAAk8nk87DZAvdenjhxApmZmSgoKMBtt92GU6dOAQD0ej0MBgMmTpzoLSsWizFu3Djs3Lkz4r87BUuEEEJgtTlRrm/ye44BcLkYDvzcGN1KkZjCReABADk5OVCr1d7H0qVL/d5v9OjR+Mc//oFNmzbh7bffhsFgwOWXX47GxkYYDAYAgFar9XmOVqv1nosk+tpMCCEEFeeGnwNhAM7Ut8LucEEkDH9zY0IuVFVVBZXqlyS/YrH/4d0pU6Z4/3v48OEYO3YsBg4ciFWrVmHMmDEA0GnfTsZYr+zlST1LhBBCYLU5Q84pYQDaHa6o1IfEnkilDlCpVD6PQMHSheRyOYYPH44TJ0545zFd2ItUV1fXqbcpEihYIiSCnC43jle14IvvK/HBNz/js50VOFTRBBt9wJAYJxEJftlFOggx9SolrEjNWeoum82Go0ePIiMjAwUFBdDpdNiyZYv3vN1uxzfffIPLL7+8p79qJxQsERIhdqcLm/ecwY8/1cNoscPhdMNsdeDAz43Y+MNptFodfV1FQgLK1yqDxkocgKxUOQVLJGp+//vf45tvvoFer8cPP/yAm2++GSaTCXfddRc4jsPChQvx/PPP45NPPsGhQ4cwc+ZMyGQy3H777RGvC81ZIiRC9vxUjxaz/1UdVrsT/zlswKRROVGuFenPWtvsaLU6IODzoFFJwO/BxrQyiQDD8jQ4Utnc6RwHgMfjMHJASg9qS0jXnDlzBjNmzEBDQwPS0tIwZswYfP/998jLywMAPPTQQ7BarZg7dy6am5sxevRobN68GUqlMuJ14RgLNqWPRJvJZIJarYbRaPSZAEdim83hwsffngo6QRYApl6WS7lqSI+Z2+w4eKIBzecF50IBD4NyklCQqer2cAdjDIcqmnGkognO83aXVsmEGDtMh1S1pMd1J5EVjc+MjnucOHoaSmX372E2mzBoaG5cfr5RzxIhEdBktoUMlACg3milYIn0iMXqwH8O1MDl8n3BOZxuHNE3weF0Y0he9/Yy5DgOwwuSUZSTBENTGxwuN5QyIVJVkl5ZYURIvKBgiZAICPdjhEcfOKSHjlc2w+ViAecXnahqQZ5OCYm4+2/vQgEPOemKbj+f9E89naQdzwE3TfAmJAJSwpwvotVIo1Ab0l85XW7UNlpCLlo7U98alfqQxBKp1AHxiIIlQiJAKOBhcHZSwPMcgOw0OZQyUdTqRPofu8MVcriX44B2G6WqIJHHReBPvKJgiZAIGTkwBdmpcgC/DMt1/L9GKcbYoZFPlEYSi1AQxrJ9BohFtLyfkEiiOUuERAifx+FXIzJgaGrDyRoTWq0OSEV8FGSokJOmAK8Hy7oJATw9mLoUGc42tgUcimMAstLk0awWSRA9HUqL52E4CpYIiSCO45CRIkdGCn1Ykd4xOFeD+mYrXG7/4VJ+hhIyiTDKtSKJIo7jnR6hYThCCIkjKrkIY4dnQCH1DYh4PA6DcpJQTIkjCYk46lkihJA4k6QUY9zFWWgx29BqdYDP5yE9SQqBgL7/kl6UwONwFCwREocYY3Gds4T0HMdx0Kgk0KgoqzaJDg49G4aL53csCpYIiRNuN8PuiiZ8d6IeBmM7+DwOwzJVuHpIOnJpjhQhhPQaCpYIiQNuN8Pq7ytQfsYIDp4VT043w6FqI8qrjfj1mHyMzEnq41oSQvq1BO5aogFuQuLAD/pGlJ8xAoDPknE3AxgD1v1QidZ2Z99UjhCSELgIPOJVzARLS5cuBcdxWLhwoffYk08+iaKiIsjlcmg0GlxzzTX44YcfvOebmppw3333YciQIZDJZMjNzcWCBQtgNBr93sNms6G0tBQcx2H//v3e4wcOHMCMGTOQk5MDqVSKoUOH4rXXXvN57pNPPundF+f8h1zuO/zxzTff4JJLLoFEIsGAAQPwl7/8peeNQxLetz/VBz3vGaJrjFJtSCS4GYO5zQ6TxR4wDQAhJDbExDDc7t278dZbb2HEiBE+xwcPHozly5djwIABsFqteOWVVzBx4kScPHkSaWlpqKmpQU1NDV566SUMGzYMlZWVmDNnDmpqavDRRx91us9DDz2EzMxMHDhwwOf4nj17kJaWhjVr1iAnJwc7d+7E7373O/D5fMyfPx8A8Pvf/x5z5szxed6ECRNw6aWXen/W6/WYOnUqZs2ahTVr1uA///kP5s6di7S0NEyfPj1SzUUSjNPlRp3ZFrLcmWZrFGpDeooxhp/OGHH8dAusds+2JCIBD4VZagzL14S1xyAhfSGRN9LlGAu101Dvam1txcUXX4wVK1bg2WefRWlpKV599VW/ZU0mE9RqNb7++mtMmDDBb5kPP/wQv/71r2GxWCAQ/BIL/utf/8KiRYvw8ccfo7i4GPv27UNpaWnAes2bNw9Hjx7F1q1b/Z4/cOAASktLsWPHDlx11VUAgMWLF+Ozzz7D0aNHveXmzJmDAwcOYNeuXSFawvd3NBqNUKlUYT2H9G9uN8Pijw4E3TyVxwEX5WowY3Re1OpFuo4xhh+P1+NUrdnveZ1GiqtGZFC2dxK2aHxmdNzj9M81UCm7fw+T2YTcgZlx+fnW58Nw8+bNw7Rp03DNNdcELWe32/HWW29BrVZj5MiRAct1/CWcHyidPXsWs2bNwurVqyGTycKql9FoRHJycsDz77zzDgYPHuwNlABg165dmDhxok+5SZMm4ccff4TD4fB7HZvNBpPJ5PMg5Hw8HochOiWCfX66GTA0o+dvPrUtVuypaML+081obff/mg3mTKMFn/1YhTc3H8ebW47jX/urcdZIPV4dGoztAQMlADA0W1FZ1xrFGhESvo40Sz15xKs+HYZbv3499u7di927dwcs88UXX+C2225DW1sbMjIysGXLFqSmpvot29jYiGeeeQazZ8/2HmOMYebMmZgzZw5GjRqFioqKkPXatWsXPvjgA3z55Zd+z9tsNqxduxYPP/ywz3GDwQCt1nezVK1WC6fTiYaGBmRkZHS61tKlS/HUU0+FrBNJbFcXpeOYwf+HLI8D1FIhSrLU3b5+Y6sNH/z3NKqa2nyue0l+Mq4rzYKQH/p71e6fG7DjaB04zjPpHACOVhtx5IwRk0dmophW6+HnGpNP+/hzstqIAp0yepUihITUZz1LVVVVuP/++7FmzRpIJIGTqpWVlWH//v3YuXMnJk+ejFtvvRV1dXWdyplMJkybNg3Dhg3DkiVLvMdff/11mEwmPPLII2HV6/Dhw7jxxhvxxBNP4Nprr/VbZsOGDTCbzfjNb37T6dyFY7Ido5yBxmofeeQRGI1G76OqqiqsepLEUpiuxK2jcny+nXW8olRSIWaPK4QgjIDGH5PVgb9sO4Hq5jaf424G/KhvwnvfVyLUaH11Uxt2HPX8uzy/aMd/bzpQg6bW0POu+juTxR40UAKA1rau9+gREh2Jux6uz3qW9uzZg7q6OlxyySXeYy6XCzt27MDy5cths9nA5/Mhl8tRWFiIwsJCjBkzBoMGDcLKlSt9gh+z2YzJkydDoVDgk08+gVD4y55JW7duxffffw+xWOxz/1GjRuGOO+7AqlWrvMeOHDmC8ePHY9asWfjjH/8YsO7vvPMOrrvuOuh0Op/jOp0OBoPB51hdXR0EAgFSUvzv1yQWizvVjRB/LhuQgsE6JX441YjqFiuEfB6GZaowMjup24ESAHz3Uz3a7C6/H+IMwLFaEyoaLChIUwS8xl59U/AeEw44UNmMsmJdgAKJQSTkhyxDW5aQWJXAu530XbA0YcIElJeX+xy7++67UVRUhMWLF4PP9/+mwhiDzfbLN1STyYRJkyZBLBbjs88+69RLtWzZMjz77LPen2tqajBp0iS8//77GD16tPf44cOHMX78eNx111147rnnAtZbr9dj27Zt+OyzzzqdGzt2LD7//HOfY5s3b8aoUaN8AjhCuitJJsKkks7DuT2xp7IpaG8HjwP2nW4OGiydabIEvQZjnvlMiS43XYGzQVYtcgDytYHbmRDSN/osWFIqlSgpKfE5JpfLkZKSgpKSElgsFjz33HO44YYbkJGRgcbGRqxYsQJnzpzBLbfcAsDTozRx4kS0tbVhzZo1PhOk09LSwOfzkZub63MPhcLzRjRw4EBkZ2cD8ARKZWVlmDhxIhYtWuTtHeLz+UhLS/N5/t/+9jdkZGRgypQpnX6nOXPmYPny5Vi0aBFmzZqFXbt2YeXKlXjvvfci0GKERB5jzLt8PRA3Q8iEl7wwvjLG87LhC7lcblitDjAGiMV8iEThvZXmahU4eroZFquz0+pGDoDwXAoBQkhsiYk8S/7w+XwcO3YMq1atQkNDA1JSUnDppZfi22+/RXFxMQDPUF5HksrCwkKf5+v1euTn54d1rw8//BD19fVYu3Yt1q5d6z2el5fnMyHc7Xbj3XffxcyZM/32fBUUFGDjxo144IEH8MYbbyAzMxPLli2jHEskZnEcB7lYAIstcDDUMYE8mPw0OQ6fMQbsXeIAFKR3rceEuZlnw2Bez3K7+F6UAU63JwIEPL8cn4egSw19ns7Q2GBBS4vV53eVSoXQapUQioIPswn4PJSVZuHb8lq0tNq9wxKMATKJAFcO10Eqjtm3ZZLgOPRwGC5iNYm+Ps+zRHxRniUSbZsP1eKb43VBh9Hmjh+E7OTAaTfqTe1YveNUwFxQfB6H/1dWCGWIoAsAnA4X7G0OuJxu7zGhRACxVAiuJ/mHXG7A4fZ/TsDzPEIw1JpgDpAglM/nkJungUAQel4SYwwNxnacbfYEXalqMXTJsn7V+0aiI5p5lqr1tT26h8lkQlZBRlx+vtFMQkIS3JWD0qCWCgN2rpTmaoIGSgCQppJgykVZnSaAcvAESv9nVE5YgZLD5oTVZPMJlADA0e6ExdgO1t1tQRgLHCgBvr1NAbS3OwIGSgDgcjE0N4WXU4rjOKQlSVFSkIzhA5KRkSKnQInEPC4Cf+IV9fcSkuBkYgHmlA3Cp3vP4FjtL0lRRXwexham4powV7ANzVIjI0mKA5XNqGq0gMdxyEuTY0SuJqxAibkZ2lvtQc/brA5I5KKw6uPDFUaQ5XQDQYbRzKbQqQ9MpnakplHgQ/qpnq7+j+N/FhQsEUKgkgrxmysK0NJmR22LFXweh7xUOcRhDCmdL0kuwrhh2tAF/XDYg08iBzw9TGKZsOvBiCtIr1KHED1LTmfoa7jdDIzF9xJpQkhnFCwRQrySZCIkybrRcxMB7nB6f+DpYeL40Y9Gwsl/5NloNAqVIaQPJHDHEs1ZIoTEhnCDjG4NcYUzMTzEu6FSFTp5rFotoSE40n8lbgJvCpYIIbFBEEauIr6A170VceFkxQ6RBV0iEUKpDBww8fkcNBppV2tGSNxI5AneFCwRQmICX8ADXxj8LUkUxkRxvzgOCHZtAS9ksAQAWp0SSRppp14wiUSA7BwNBGFsZ0IIiT80Z4kQEjOkSjGsZhtcfpb5SxQiCEIkfQyKz/METS73L6vjeJwnUAqzt4rjOKSlKZCcLIO1zQHGGERiAcSUSJIkANobjhBCYgDHcZCpJHA53XDanWAM4PE5CEWCniWk7MDjAB4f6OFWjXw+D4ogQ3KEkP6FgiVCSMzhC3jgC/pmVR4hhFyIgiVCCCGEhORJjdH9Ht54XilKE7wJIYQQQoKgYIkQQgghJAgahiOEEEJISLQajhBCCCEkCNruhBBCCCGE+EU9S4QQQggJLYHH4ShYIoQQQkhIiTwMR8ESIYQQQkJL4GiJgqUYw5hnzyqTydTHNSGEEBLrOj4rOj47+rOlS5fi0Ucfxf33349XX30VgOf3fuqpp/DWW2+hubkZo0ePxhtvvIHi4uKI3puCpRhjNpsBADk5OX1cE0IIIfHCbDZDrVb36j24c3968vzu2r17N9566y2MGDHC5/iLL76Il19+Ge+++y4GDx6MZ599Ftdeey2OHz8OpVLZ7ftdiIKlGJOZmYmqqioolcqIp4Y3mUzIyclBVVUVVCpVRK8dT6gdPKgdPKgdPKgdPOKtHRhjMJvNyMzM7PV79dX87tbWVtxxxx14++238eyzz3qPM8bw6quv4rHHHsNNN90EAFi1ahW0Wi3WrVuH2bNnd7+yF6BgKcbweDxkZ2f36j1UKlVcvAn0NmoHD2oHD2oHD2oHj3hqh97uUYq0C6eZiMViiMXigOXnzZuHadOm4ZprrvEJlvR6PQwGAyZOnOhzrXHjxmHnzp0RDZYozxIhhBBCoiYnJwdqtdr7WLp0acCy69evx969e/2WMRgMAACtVutzXKvVes9FCvUsEUIIISSkSA3DXTjEGahXqaqqCvfffz82b94MiUQS5Lq+lWKMRXwaCwVLCUQsFmPJkiVBuzsTAbWDB7WDB7WDB7WDB7VD7wt3iHPPnj2oq6vDJZdc4j3mcrmwY8cOLF++HMePHwfg6WHKyMjwlqmrq+vU29RTHEuE9YaEEEII6RaTyQS1Wo0WQ2OP5nGZTCYk6VJgNBrDuo7ZbEZlZaXPsbvvvhtFRUVYvHgxiouLkZmZiQceeAAPPfQQAMButyM9PR0vvPACTfAmhBBCSHRFezWcUqlESUmJzzG5XI6UlBTv8YULF+L555/HoEGDMGjQIDz//POQyWS4/fbbu19RPyhYIoQQQkhIPU2W3BvJlh966CFYrVbMnTvXm5Ry8+bNEc2xBNAwHCGEEEKCaG9vR0FBQURWmOl0Ouj1+qATtmMRBUuEEEIICaq9vR12u73H1xGJRHEXKAGUZymm5Ofng+O4To958+Z1Kjt79mxwHOfdH6eDzWbDfffdh9TUVMjlctxwww04c+aM3/vZbDaUlpaC4zjs37/f59zu3bsxYcIEJCUlQaPRYOLEiZ3KlJeXY9y4cZBKpcjKysLTTz8dkf2JYqkd/v3vf+Pyyy+HUqlERkYGFi9eDKfT6VOmN9ohWm3g7z4PP/ywT5nTp0/j+uuvh1wuR2pqKhYsWNDpTTPeXwvhtMP999+PSy65BGKxGKWlpX7r29/b4cCBA5gxYwZycnIglUoxdOhQvPbaawnXDo2NjZg8eTIyMzMhFouRk5OD+fPndxpm6q126AsSicS7iq0nj3gMlAAAjMSMuro6Vltb631s2bKFAWDbtm3zKffJJ5+wkSNHsszMTPbKK6/4nJszZw7LyspiW7ZsYXv37mVlZWVs5MiRzOl0drrfggUL2JQpUxgAtm/fPu9xk8nENBoNmzlzJjt27Bg7dOgQmz59OktPT2d2u50xxpjRaGRarZbddtttrLy8nH388cdMqVSyl156qd+0w4EDB5hIJGJPPfUUO3HiBNu+fTsrKipiDz74oLdMb7VDtNogLy+PPf300z73MpvN3vNOp5OVlJSwsrIytnfvXrZlyxaWmZnJ5s+f3+ttEEvtwBhj9913H1u+fDm788472ciRIzvVNRHaYeXKley+++5j27dvZz///DNbvXo1k0ql7PXXX0+odmhqamIrVqxgu3fvZhUVFezrr79mQ4YMYTNmzIhKO5Doo2Apht1///1s4MCBzO12e4+dOXOGZWVlsUOHDrG8vDyfN4KWlhYmFArZ+vXrvceqq6sZj8djX331lc+1N27cyIqKitjhw4c7BQm7d+9mANjp06e9xw4ePMgAsJMnTzLGGFuxYgVTq9Wsvb3dW2bp0qUsMzPTp76R0Fft8Mgjj7BRo0b5lP/kk0+YRCJhJpOJMRa9duitNrjweRfauHEj4/F4rLq62nvsvffeY2KxmBmNRsZY/3gthGqH8y1ZssRvsJRo7dBh7ty5rKyszPtzorbDa6+9xrKzs70/R7MdSO+jYbgYZbfbsWbNGtxzzz3eTKRutxt33nkn/vCHP6C4uLjTc/bs2QOHw+GzT05mZiZKSkqwc+dO77GzZ89i1qxZWL16NWQyWafrDBkyBKmpqVi5ciXsdjusVitWrlyJ4uJi5OXlAQB27dqFcePG+SRumzRpEmpqalBRURGpZujTdrDZbJ26jKVSKdrb27Fnzx4A0WmH3mwDAHjhhReQkpKC0tJSPPfccz5DbLt27UJJSYnPJp2TJk2CzWaLahsAfdsO4UjUdjAajUhOTvb+nIjtUFNTgw0bNmDcuHHeY9FqBxIdFCzFqE8//RQtLS2YOXOm99gLL7wAgUCABQsW+H2OwWCASCSCRqPxOX7+PjmMMcycORNz5szBqFGj/F5HqVRi+/btWLNmDaRSKRQKBTZt2oSNGzdCIBB47+VvP56Oc5HSl+0wadIk7Ny5E++99x5cLheqq6u9mzjW1tZ679Xb7dBbbQB45uGsX78e27Ztw/z58/Hqq69i7ty5Pte58PfTaDQQiUTe68T7awEI3Q7hSMR22LVrFz744AOf5H+J1A4zZsyATCZDVlYWVCoV3nnnHZ97RaMdSHRQnqUYtXLlSkyZMsX7jX7Pnj147bXXsHfv3i7vecPO2yfn9ddfh8lkwiOPPBKwvNVqxT333IMrrrjCGyi89NJLmDp1Knbv3g2pVArA/348/o73RF+2w8SJE/G///u/mDNnDu68806IxWI8/vjj+O6778Dn873lersdeqsNAOCBBx7w/veIESOg0Whw8803e79VA/5/jwuvE8+vBSC8dghHIrXD4cOHceONN+KJJ57Atdde63MuUdrhlVdewZIlS3D8+HE8+uijWLRoEVasWOE9H412INFBPUsxqLKyEl9//TV++9vfeo99++23qKurQ25uLgQCAQQCASorK/Hggw8iPz8fgCd/hd1uR3Nzs8/1zt8nZ+vWrfj+++8hFoshEAhQWFgIABg1ahTuuusuAMC6detQUVGBv//977j00ksxZswYrFu3Dnq9Hv/85z+997rw21FdXR2AzjtAx2s7AMCiRYvQ0tKC06dPo6GhATfeeCMAoKCgICrt0Jtt4M+YMWMAACdPngz4+zU3N8PhcHivE++vBX8ubIdwJFI7HDlyBOPHj8esWbPwxz/+0edcIrWDTqdDUVERbrzxRvz1r3/Fm2++6e11jkY7kCjqg3lSJIQlS5YwnU7HHA6H91hDQwMrLy/3eWRmZrLFixezY8eOMcZ+mbz4/vvve59XU1PjM3mxsrLS5xqbNm1iANhHH33EqqqqGGOMLVu2jOl0Op9JiA6Hg8nlcrZ27VrGmGfyYlJSErPZbN4yf/rTnyI6ebGv28Gfxx9/nOXk5HhXzvR2O/RmG/jz+eefMwCssrKSMfbLBO+amhpvmfXr13ea4B3Pr4Vw2uHCugSa4J0I7XDo0CGWnp7O/vCHP/h9TqK0w4V27NjBADC9Xs8Yi047kOihYCnGuFwulpubyxYvXhyyrL8VG3PmzGHZ2dns66+/Znv37mXjx48PuGSeMcb0en2nVWBHjx5lYrGY3XvvvezIkSPs0KFD7Ne//jVTq9XeD82Wlham1WrZjBkzWHl5OduwYQNTqVQRWxYbC+3AGGMvvvgiO3jwIDt06BB7+umnmVAoZJ988on3fG+2Q2+3wc6dO9nLL7/M9u3bx06dOsXef/99lpmZyW644QbvNTpSB0yYMIHt3buXff311yw7O9sndUC8vxbCaQfGGDtx4gTbt28fmz17Nhs8eDDbt28f27dvn/fDMBHa4dChQywtLY3dcccdPsvq6+rqvGUSoR2+/PJL9re//Y2Vl5czvV7PvvzyS1ZcXMyuuOKKqLUDiS4KlmJMRw/H8ePHQ5b190ZgtVrZ/PnzWXJyMpNKpey6667zSQFwoUBBwubNm9kVV1zB1Go102g0bPz48WzXrl0+ZQ4ePMiuuuoqJhaLmU6nY08++WTEvjHFSjuUlZUxtVrNJBIJGz16NNu4cWOn5/ZWO/R2G+zZs4eNHj3a+/sNGTKELVmyhFksFp/rVFZWsmnTpjGpVMqSk5PZ/PnzfZZDMxbfr4Vw22HcuHEMQKdHR08CY/2/HZYsWeK3DfLy8nzu1d/bYevWrWzs2LHeMoMGDWKLFy9mzc3NPvfqzXYg0UXbnRBCCCGEBEETvAkhhBBCgqBgiRBCCCEkCAqWCCGEEEKCoGCJEEIIISQICpYIIYQQQoKgYIkQQgghJAgKlgghhBBCgqBgiRASE66++mosXLiw1++Tn58PjuPAcRxaWlp6dK2rr77ae639+/dHpH6EkNhDwRIhxMfMmTO9AcD5j8mTJ0fk+tu3b/cbqGzYsAHPPPNMRO4RytNPP43a2lqo1eoeXWfDhg3473//G6FaEUJilaCvK0AIiT2TJ0/G3//+d59jYrG4V++ZnJzcq9c/n1KphE6n6/F1kpOTYTKZIlAjQkgso54lQkgnYrEYOp3O56HRaLznX375ZQwfPhxyuRw5OTmYO3cuWltbvecrKytx/fXXQ6PRQC6Xo7i4GBs3bkRFRQXKysoAABqNBhzHYebMmQA6D8Pl5+fj+eefxz333AOlUonc3Fy89dZbPvXcuXMnSktLIZFIMGrUKHz66afdGhJ79913kZSUhC+++AJDhgyBTCbDzTffDIvFglWrViE/Px8ajQb33XcfXC5X1xqTEBL3qGeJENJlPB4Py5YtQ35+PvR6PebOnYuHHnoIK1asAADMmzcPdrsdO3bsgFwux5EjR6BQKJCTk4OPP/4Y06dPx/Hjx6FSqSCVSgPe589//jOeeeYZPProo/joo49w77334le/+hWKiopgNptx/fXXY+rUqVi3bh0qKyt7NOepra0Ny5Ytw/r162E2m3HTTTfhpptuQlJSEjZu3IhTp05h+vTpuPLKK/E///M/3b4PIST+ULBECOnkiy++gEKh8Dm2ePFiPP744wDgE5QUFBTgmWeewb333usNlk6fPo3p06dj+PDhAIABAwZ4y3cMt6WnpyMpKSloPaZOnYq5c+d67//KK69g+/btKCoqwtq1a8FxHN5++21IJBIMGzYM1dXVmDVrVrd+Z4fDgTfffBMDBw4EANx8881YvXo1zp49C4VCgWHDhqGsrAzbtm2jYImQBEPBEiGkk7KyMrz55ps+x86fU7Rt2zY8//zzOHLkCEwmE5xOJ9rb22GxWCCXy7FgwQLce++92Lx5M6655hpMnz4dI0aM6HI9zn8Ox3HQ6XSoq6sDABw/fhwjRoyARCLxlrnsssu6fI8OMpnMGygBgFarRX5+vk/QqNVqvfcnhCQOmrNECOlELpejsLDQ59ERLFVWVmLq1KkoKSnBxx9/jD179uCNN94A4OmdAYDf/va3OHXqFO68806Ul5dj1KhReP3117tcD6FQ6PMzx3Fwu90AAMYYOI7zOc8Y6/I9gt0r2P0JIYmDgiVCSJf8+OOPcDqd+POf/4wxY8Zg8ODBqKmp6VQuJycHc+bMwYYNG/Dggw/i7bffBgCIRCIA6PFE6aKiIhw8eBA2m82nboQQEmkULBFCOrHZbDAYDD6PhoYGAMDAgQPhdDrx+uuv49SpU1i9ejX+8pe/+Dx/4cKF2LRpE/R6Pfbu3YutW7di6NChAIC8vDxwHIcvvvgC9fX1PqvouuL222+H2+3G7373Oxw9ehSbNm3CSy+9BACdepwIIaQnKFgihHTy1VdfISMjw+dx5ZVXAgBKS0vx8ssv44UXXkBJSQnWrl2LpUuX+jzf5XJh3rx5GDp0KCZPnowhQ4Z4J39nZWXhqaeewsMPPwytVov58+d3q44qlQqff/459u/fj9LSUjz22GN44oknAMBnHhMhhPQUx3oyyE8IITFk7dq1uPvuu2E0GgOmJMjPz8fChQsjtrVKRUUFCgoKsG/fPpSWlkbkmoSQ2EI9S4SQuPWPf/wD3333HfR6PT799FMsXrwYt956a9DcTYAnDYFCoYDRaOzR/adMmYLi4uIeXYMQEvsodQAhJG4ZDAY88cQTMBgMyMjIwC233ILnnnsu6HO++eYb76o9pVLZo/u/8847sFqtAIDc3NweXYsQErtoGI4QQgghJAgahiOEEEIICYKCJUIIIYSQIChYIoQQQggJgoIlQgghhJAgKFgihBBCCAmCgiVCCCGEkCAoWCKEEEIICYKCJUIIIYSQIChYIoQQQggJ4v8DGk8o+anjb2cAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -630,6 +630,13 @@ "\n", "If you don't feel comfortable with these, you are probably not alone, let's discuss it!\n" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -648,7 +655,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.14" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/5_plot_raster_example.ipynb b/book/tutorials/snowex_database/5_plot_raster_example.ipynb index dcdf0cf..cb83fce 100644 --- a/book/tutorials/snowex_database/5_plot_raster_example.ipynb +++ b/book/tutorials/snowex_database/5_plot_raster_example.ipynb @@ -16,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -24,16 +24,16 @@ "output_type": "stream", "text": [ " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", - "0 67.0 1N3 COGM1N3_20200211 57.0 None None None \n", + "0 67.0 1N3 COGM1N3_20200211 64.0 None None None \n", "\n", - " sample_c value flags ... date time_created \\\n", - "0 None 242.5 None ... 2020-02-11 2022-06-30 22:28:50.782395+00:00 \n", + " sample_c value flags ... date time_created \\\n", + "0 None < 1 mm None ... 2020-02-11 2024-08-13 17:45:41.685272+00:00 \n", "\n", - " time_updated id doi date_accessed \\\n", - "0 None 12277 https://doi.org/10.5067/DUD2VZEVBJ7S 2022-06-30 \n", + " time_updated id doi date_accessed \\\n", + "0 None 2147814 https://doi.org/10.5067/DUD2VZEVBJ7S 2022-06-30 \n", "\n", - " instrument type units observers \n", - "0 None density None None \n", + " instrument type units observers \n", + "0 None grain_size None None \n", "\n", "[1 rows x 29 columns]\n", "[datetime.date(2020, 2, 2), datetime.date(2020, 2, 13)]\n" @@ -41,7 +41,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAGsCAYAAABn4VjoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9f7RmV10fjr/2Oc/z3HtnJjMhgcmQEhDBCpFEFCjMsguBYAKkLPwQV/2BJFQKNZ3w1aRFDMZKiCR8sJ8KVkHb2oCFLF2wpK6iEBJdQIUoNDUSEk0L2AYlkygxmWRm7r3Pc87+/rH3a+/X3s95ft7n/pg757XWnXvn+XHOPufs/f75er+3sdZatGjRokWLFjsQxXYPoEWLFi1atBiFVkm1aNGiRYsdi1ZJtWjRokWLHYtWSbVo0aJFix2LVkm1aNGiRYsdi1ZJtWjRokWLHYtWSbVo0aJFix2LVkm1aNGiRYsdi1ZJtWjRokWLHYtWSbVo0aJFix2L01JJra2t4bnPfS6MMbjrrrvGfvZf/It/gWc84xlYWVnBk570JLzmNa/BX/7lX4b3//zP/xw/+qM/ivPOOw8rKyt49rOfjfe9730jj/f5z38enU4Hz33uc+ca+wc/+EFceOGFWF5exsGDB3HkyJG5jtOiRYsWpwJ2nZJ6yUtegg9+8INjP/MzP/MzOPfcc6c63vOe9zzcfPPN+Iu/+AvceuutsNbi4osvRlVVAIA777wTBw8exIc//GHcc889+Lmf+zlce+21+NVf/dWhYz3yyCO4/PLLcdFFF818XQDw7/7dv8PP/dzP4Wd/9mdxzz334Pbbb8cll1wy17FatGjR4pSA3WX4/u//fnvzzTePfP8P/uAP7LOe9Sx7zz33WAD2z/7sz2Y6/p//+Z9bAParX/3qyM/8y3/5L+1LX/rSodd/+Id/2F533XX2F37hF+x3f/d3J+9VVWVvvPFG+23f9m12eXnZXnjhhfajH/1oeP/hhx+2Kysr9vbbb59pvC1atGhxKmPXeVLj8OCDD+JNb3oT/st/+S/Ys2fPzN8/fvw4br75Zjz96U/HeeedN/Jzjz76KM4666zktZtvvhlf//rX8Qu/8AuN37npppvwW7/1W/j1X/913HPPPbj66qvx4z/+4/jsZz8LALjttttQ1zX+5m/+Bs9+9rPxlKc8Bf/0n/5TfOMb35j5Olq0aNHiVMFpo6SstXjDG96An/zJn8Tzn//8mb77/ve/H/v27cO+ffvwyU9+Erfddht6vV7jZ7/whS/gd37nd/DmN785vPa///f/xs/+7M/iwx/+MDqdztB31tbWcOONN+I//+f/jEsuuQTf/u3fjje84Q348R//cfzGb/wGAODrX/866rrGjTfeiPe+97342Mc+hocffhg/8AM/gPX19Zmup0WLFi1OGWy3K7dRvOtd77J79+4NP0VR2KWlpeS1//t//6993/veZ7/v+77PDgYDa621f/VXfzV1uO+RRx6x/+t//S/72c9+1r761a+23/u932tPnjw59Lm7777bPvGJT7Q33HBDeG0wGNjnP//59gMf+EB4LQ/3feUrX7EAkjHv3bvXdrtd+4/+0T8K1wnA3nrrreF7Dz30kC2Kwn7qU5+a9ba1aNGixSkBY+2pvenhww8/jIcffjj8/3Wvex0uu+wyvPa1rw2vfdu3fRt+6Id+CP/tv/03GGPC61VVoSxLvO51r8OHPvShqc63vr6OJzzhCfhP/+k/4Ud/9EfD6/feey9e+tKX4p//83+Od73rXeH1Rx55BE94whNQlmV4ra5rWGtRliU+/elPY+/evXjRi16Ez3zmM/gH/+AfJOdbWlrCeeedh5tvvhk/8RM/gW984xt4ylOeEt4/55xz8Iu/+It405veNNX4W7Ro0eJUwnDs6RTDWWedleR/VlZWcPDgQTzzmc9MPvcrv/Ir+MVf/MXw/29+85u45JJL8Du/8zt44QtfOPX5rLWw1mJtbS28ds899+BlL3sZrrjiikRBAcD+/ftx9913J6+9//3vxx/90R/hYx/7GJ7+9KejrmssLS3h/vvvx/d///c3nvf7vu/7AAD33XdfUFIPP/ww/u7v/g5Pe9rTph5/ixYtWpxKOOWV1LR46lOfmvx/3759AIBnPOMZQej/zd/8DS666CL81m/9Fv7RP/pH+PrXv47f+Z3fwcUXX4wnPelJ+Ou//mu8+93vxsrKCl71qlcBAL7yla/gZS97GS655BJcc801OHr0KACgLEs86UlPQlEUeM5znpOc++DBg1heXk5e/9f/+l/j6quvRl3X+Mf/+B/j0Ucfxec//3ns378fV1xxBf7hP/yHeM1rXoOf+qmfwn/4D/8B+/fvx7XXXotnPetZeOlLX7pp961FixYtthOnjZKaBv1+H/fddx9OnDgBAFheXsZ//+//He9973vx93//9zjnnHPw4he/GF/4whdw8OBBAMDHPvYx/O3f/i0+/OEP48Mf/nA41tOe9jT8n//zf6Y+9w033IAnPelJuOmmm/D1r38dZ555Jr73e78Xb3/728Nnfuu3fgtXX301Lr30UhRFge///u/Hpz71KXS73cXcgBYtWrTYYTjlc1ItWrRo0WL34rShoLdo0aJFi1MPrZJq0aJFixY7FqdkTqqua3zzm9/EGWeckVDKW7Ro0aLFqQFrLR577DGce+65KIrR/tIpqaS++c1vjm1L1KJFixYtTg3ktZ85TkkldcYZZwBwF7d///5tHk2LFi1atJgVx44dw3nnnRfk+SickkqKIb79+/e3SqpFixYtTmFMStmckkqqRYudBvN/3wsUFujU7vdKH1geAFx/xgKldb83gpMd4O/2ApUBVjtAv3TneeKJeM4mWAMc7wK1AU52Yc/51xsbR4sWW4RWSbVosQiUtVNCpVdSVE4WzX/Pi6UK2LfulFSnBtZLoFcB3cqdvzbu/MR66V5bL4FB4ZRVWW9wEC1abB02REF/97vfDWMMfvqnfzq8trq6iiNHjuDss8/Gvn37cNlll+HBBx9Mvnf//ffj0ksvxZ49e3Dw4EG89a1vxWAwwgJs0eJUABVUOcZjsib+rJfAsSXgkWX3+7El4PGee28cCuuUlP7s6UcPriqAtY7zuB5eAR7aC/zdHnfstY5TVEVbv9/i1MHcntSXvvQl/MZv/AYuvPDC5PWrr74av//7v4+PfvSjOHDgAK666iq89rWvxec//3kArvP4pZdeikOHDuELX/gCHnjgAVx++eXodru48cYbN3Y1LVrMCYN3eAUC97v2f1fGhdSAqEAo4/n5qgBKOOXUqX1or3ZekyorHg9wymJQuPPwc4V1yqtbjVckZQ0Y70nVxp23oGI07hy1/CQX6rw889hN7jg9f67VjvupCuBEF1jz10yvsCOf9cexB986x51u0WI2zKWkHn/8cbzuda/Df/yP/zHpLP7oo4/iN3/zN3HLLbfgZS97GQC3I+2zn/1s/Mmf/Ale9KIX4dOf/jTuvfde3H777TjnnHPw3Oc+FzfccAPe9ra34R3veMfIzQRbtNhUVFQa/u+qcEpFBT2ViYFXFF4xFAP3u2Odgmk6dm2AgQHWO06JDAqnkHLP6XE//zu1yy/pb6LwSmlPPyoOvl9bp1SpBAGvdP34rVduSwOgW0clujKIn6cisgbo+/H1C/dj/PttyLDFFmGucN+RI0dw6aWX4uUvf3ny+p133ol+v5+8/qxnPQtPfepTcccddwAA7rjjDlxwwQU455xzwmcuueQSHDt2DPfcc0/j+dbW1nDs2LHkp0WLhaI2TgivezLCWuk8C+ZyqiJ6KMwtlbUX+BWwXDUrKMApAnpcqx3nqZzsumOvy7lOdlz47+EV9/Posvv/iRENhAvrlFQnUxgDr1CYgwKidwgAnSp6fDrGTh1DldSdVeHuR1/GuObH3aLFFmBmT+q3f/u38T//5//El770paH3jh49il6vhzPPPDN5/ZxzzglbWBw9ejRRUHyf7zXhpptuwvXXXz/rUFu0AOBDeeNQFZIvQvSe1MuxcCZd7kBM41XUEoJTRWez37WJHh3gPls0hOzGwcrYC5sOOLw2ZpwhlIn494jTm6/+SlS0eg6FV+T2/CPTX0OLFoKZPKlvfOMb+Kmf+il85CMfwfLy8maNaQjXXnstHn300fDzjW98Y8vO3eI0gOahBkUMx1Um/ekXwpJDGmYbBTLr1juOuECvhMfgeXnu1Y4L+TEv1BelNQ10vIV1ocLlgfO46HUx7Df03SJ6jVRYVMLGpoqc4D3gcfna0sBR4s9YB846Of34W7TIMJMndeedd+Khhx7C937v94bXqqrC5z73Ofzqr/4qbr31Vqyvr+ORRx5JvKkHH3wQhw4dAgAcOnQIX/ziF5Pjkv3Hz+RYWlrC0tLSLENtscthjt2UCtpu5XIso0Ju04AeCD2XnChh5HPIXht1vCoLFVKB5N/juZn7KUr/PRvfm6bGKnhm/hwliQ5wTtUoT0o9MP0Iz1nAjZvH5zGpxKxx+TB45Ui2Y7cCVgYwj9+YPp/s+q35hcnX1uK0xEye1EUXXYS7774bd911V/h5/vOfj9e97nXh7263iz/8wz8M37nvvvtw//334/DhwwCAw4cP4+6778ZDDz0UPnPbbbdh//79OP/88xd0WS12PUKobAHHosA0ItDJljPqKdhYlEu22zjFsS6eEL0lg1RAMyJHz6VTO2FOzycnOIxCbZynRmKGhu6MJ3QsD9zxetVwiJJj7RdRwRX6IzVgquj4udLnx5b77hw8T1e+w1xXIKDIT4sWIzCTJ3XGGWcMbYW+d+9enH322eH1N77xjbjmmmtw1llnYf/+/XjLW96Cw4cP40UvehEA4OKLL8b555+P17/+9XjPe96Do0eP4rrrrsORI0dab6nF9AiMOxFwG6n/CQLURtON9Gsel4KfAn/c+dZLF7Kz3nNSD6WwqUeibMJODRgfotvTj4plEk4IEUOVInNpS9VoanttUgp6baISo0LV3JkqWlU+rNUyXmEZf686VVR0rUJqMSMW3nHil3/5l1EUBS677DKsra3hkksuwfvf//7wflmW+MQnPoErr7wShw8fxt69e3HFFVfgne9856KH0uIUhjnxrpT+raE3FZZ8bUMn04Nlr6lgNf4fVVyjUJmoeJQYoedSRaUKDHVaGDyN8mVOKyd8ELkHlH9Pa6vCtSK9dnquenj1jjhmhvtCKyj53AgYe/1EBWYnEWBa7EqcktvHHzt2DAcOHMCjjz7aNpjdpTDHboq5HOZjgqAUL4rejuak5vGo6E2wcLfOlIcVYd6tHRmgidW31nEhs7XOcEEsae5KksjRq2Lo7Iy1SHbojci1VT5E93gvtkAi0WLJe3xlHbtSKKxx3+N4VzuRLFGIciltvA8505DKSPsWargUiKSKxFuV50llrsqtAa2S2l2YVo63vfta7ExQ+JLe3CS8DNkAAIykV6cJj+WgkCWLTT24yrjTWMS2QrVxXSZyPLoUi3TpOWmnBgrnvng+3dqFxErr2HAs3l0aROJDrhysAdZ9DRPrryp/DzTnE+5Vw1hPdoDHeuKBIZItqHD4Ozm3jEdrq/LPJt4vUgIIw39U3IAnYMixWrRAq6Ra7ACEOib2tFvtRIYaYd0nU9hIRmiiR8+KwisoCkp2amCIL/kZETqrM8HMsUG8Eb6XeISIjLhOLY1qbbw34T5gmDkIOR+/x9BbrmQ4zvD9TLmVdWzrpN8PhzFpTooUdX42hGPtcJi2Nu5arX92tbwOAEU9ks41st7NsyJt7+eb329xSqNVUi22Hwz3AMJ0E4UTlIX8HxgOG9EbGLVdxSQUFjC1eApWSA8W6MHTqutmS18JBUFZ+LFpKyRS0Rku7DmaNkrfvSJnDWrRr+aOGFoMHoofH0kdywN3XD0We/NpSHJQRDZhYd13cm+UYUR9Lrz/eZcKHTfbTOlrlQEYvaxMvCfdGoC/D6WZPmxLb7XFrkSrpFpsPyqRboFs4P+vbX2AjDjhlQePMW+IiMcu/Ikp8HmukEupXYhvXC0WBXfwwGxUKkpSqKQbeVdCe72sT1/elUKLbUkb13OzTRPzUAqGUE92ooJTBcEw35JXbswXaeizqftFE2tPx930/9DA1yvLygBWWjz1/X0e5bW2OG3QKqkWWwbzP38j1s50K+DMVS9ImxIm/FIW7jIAIFZ7KDZdoCBTGrq10ePhGDojzmW891KJIvLDDeFIhsOKWnJAopRYwAsM3xZ6ZwPEcFp+3UpkUNCD0X5+Ghossp9AVGHos/DjlGvS7ydj5f/FGwoNbuW7VOLGOuWvyq4yQF26001JhtFwYEuy2D1olVSLrcOgiHkXNi5dz7wf7ZtnEJll+jHNh6iyGkWzJkJOJMv1kOCggpbvdyugKOJrkyz7/WvxuOtlDGfpPk51nSoSJUfoZ5nvoYcDpOG9wvoQGeI1MWxX0iP0x14tnccSCBI2bTLLMCPDmQQVKMc4yIwGJU7ofaYxIb+cVyb33BrXm9AM3P9ZNA3Eui2eg/eDhc28L5o3az2uXYlWSbXYFJi/el9kja2Vrut30nrHxuS9QkNbAJJ6JYaaQqsfEUpKmR4FhtsoWMP5MNaZC21/ZhGCxrqwGcNltQFQAx3mo2wkJ4TQJvznrfQFLJzXxWsLPfSQvqYelNZWhZ6Evmcg7y9DkvQKSZYYpeh5DtRxnEDzPVdPNIG/HoZo6ZiVtVNWpSjNQeHmDMemSorKmwordASJeT6Dd3jmo3HHObYE+7SfnuLBtdhpaJVUi82BhbTnEU+FbX+UwUbBqaAlnuSEkHogtKKB+JmyQcDqmPiTn2uckuLx5wGFf1n4c1ROUTWF5ICUqt6VTg2AD9lJ7VjSakg8QfbYUwKKRVS28L+V8NCtmr0ihXZv1zBhE5qOUSKeO8A65RK+58dKJZ0bEGEMoiRpfJR1JLfQOKqK4dxdi1MKrZJqsTmoTbRkudGeQeyOXYpVzHBeaIxqMzKDR5PXkNQf2QlKSj05DfFtcqioVztSgELJCHru0lOwte5IyQZkCAJe2ct94L0IW30IPd34z1u48KUqAv4e1SMwMPKycKkq0GlgrBuvNU4x5ZtJqlItvZJOFK3xrED/Pa2ho8FT+ZZS9MS491VT4XSLUwLtk2uxIRh7fWyiOiiA4z0nGGwZrXl6PPR0QqiLykEtafGeoGE/pF6D5mzUE5pGaDZ5UrNCafCToAqE5zLWKZFAo7fpfUq+Y1Mvps7uV34NfF/DqSH/ZKJhoEW74zwoPS9p5R0Z26ww3nvKnymQMj2VdKEsQQ15hjEWMQ/HsZK84kOu5q5fj8q4sJ7EU8Ge+69mv4YWW4ZWSbXYGELbHOtyKRQ2ZR2EQCIMV7wnZRCt39og5CpCcS6QhPtyr4k/TS13RoFhIE2yzyNklUoOpCSCJm+EublEyfqwG4Ck+eooZREYgybeIyAqtI6QJSyigUCowdAbxFzQOOXEa8sVAgkegDNQwtb1okD5mubegNRL1u9YRIXCsarC5rXqnMnZkwrey7IGuoj3jfmrwvpu7W191U5Hq6RabBxlnRIQ6DGxqLbHHnLWCUgKBm28CkTBpKEwa6NwouCjoKcQmhaj2vzMCjL32P6IIc1SrHRuVRFCZfSaKLBtbKs0zXUMjCM/kIihMpmEgk6djqcSBcTXO7Xb6n5a5cznqkqAmyMmnkwWDqTxoN5ub+BCnzwuvUnWSWnBcN5xA4iGT2n9JpTeWx8UseeiepacLwyZsrs7c280mFrsaLRKqsVUMH/3nrTotJN5DFROxqaCgsIiMLFsGsYJLYess+4TAey1nnaWaApvzXQhEzyHaUChTcEXyCEm0sc78joFcjKObEyToLvlashTWxKF6zMx55SHGct6tutXT0qvN99+JCn4RSxWtnChOANHHqG3rcXZdXYfiSQfiTQMWvO+yfzRmjmL1HgakP1nxWt1yqqp3VJbZ7Vz0CqpFtMjbAfhhYF2XlBSA3MctIaXB8DefrOgruVvUFHlr9lo/QYF4cdDltc0FHR+bhowRKdeTt5LkMqn9C+wJqqQe2DgiRDiWYT7hVTBjMJ6Gb0NIDLxVvrN95XHZ+H0uDBiv4w99Bg+Y+d19Y60pdOaeJE8pEGss+J1WcQGuMBwt4rCuvfZmkmNn/y+Wzmmkl/CM7DiadW+M4gP7677kKSen6HnWTzxFtuCVkm1mB4WPmdAISxej1q6unNtWQ/3jyOMdUqG3gFPkheiMnxICvWAXox/08q5Q33RBrHuhWuncjkNVYAUkBxb4c836LjvUWD3DIY2+9PvTSMgGVokOYXbeHRq161j1H2Fme74Jzux1VLo8N6PoVolH3AMZMup0OdW8Un9mf/uSS9m8o4WhY3HY//AZamDovLOWzMxd8lz8PxkjOp9KC2w4hmT3HVY69Ra7Hi0SqrFEMzjN6YvDAqX6KdMyuWihlmC11OnAqkJgTGG5uQ3kIYR9Vz6Hc1laXeGjaCwPjSF5tCi1iXl4LiS+9XghTG0ObYuSYSznle9sqHzm+FnNO74yobT8Js+Ez0ez633oJTnHsZr056KnTr24yNyEkwpSorGCnyojudhqI4Ki9c7bq5xSihDcQwaO66vdWCXrhv/xRYLR6ukWgxjT18WsxcOocNAZilrHz124A6CRizmJqyXcWPAISGs4bLsGCpI891v+bl59pRSdMYoWSNCVcNPldyv/LrzLTyoWIEYqgx/27TOjL+B6IGN8wJ0HKMU9sB7Rvws+/oZAGsybj4L9Zr0mAw9FjY2tuV1AEC3jN7N3nVg33o8f21cnoreGhvbqhcVrqlI76k1rkUTlanezyb0peMGP9svxzcLztF6XtuCVkm1GEZIThtnwVbeYgWiRR2sdYPEzO5WqaIZ5W0Aw01YASkQVaXVIHw0ga8KNS/2nderyhUjQS8mWPKIghIYDlNC3s89P8h38lyVsgI11DVubISSEJraOVFBDcr4WaWP9wugkNxakZ27Rswd6dYi7JCREzmIFTEcOnUMHXd9HoueVhNyBcFiZ95/7SqfI+/UwRZVA+NCudNi3FxusWlolVQLACPCGxoKagrxNYWqWCQ5DhQYTbVG1sKFd/znTIOSoXeluSEqAerMQAsXJUevS18bVRwLOVZyPzDcBYEo5dr1HAVEQdnIYtSO5Lx33YxizdooHd8oYcm8ku4MTMVNb4c1TsxD6fnVg83zR6wx48fzMVGZ6WaJAJxGGzTn4Mg07BdxjLNAC6AnfZeevbXO8CpsbJk0Q1mCWftFl2NbL2EPvnW28baYC62SajEarIUJXgok6Y3xobxRWO3Ebtz9YrjBLOnDqiCarOjCuhY5qjTgx8q2QJqgD8xEk3bbZqcMRbeWjQdFSWs+gwJez83Ql7EudBVCU/64NaJyY9se3cSwsC7UulS517V+SD0ZhvuqIiqPE900PEhlXIqXws+SFJI/Oo49NGwVRaXeHDuxczwck+akwjEnKBBeM0khmwGLuN0HnyMQCSA0rFgqMSqsV8uzy+dMi01Dq6ROY4zcjpvIQ1nDB5gNVBRUFgzXDR2XCpFezpQCgTkyVar6W8OC6hXl1OgaUVHmx1dFM+RdIq1bCt/X8J8I+8CcM1FIVxVQ1/HeqBLPvVaGY3lPB3IsC+e10ZPieFVZczhBkct51EvR3FnTfRk1vmlBL2ejRdbjoNcExHnAPBzgFffAsQFHQYw2841fjh571+2ubM/+mc27htMUrZJq0QxamXktjIUTjLSoSTGfBhQMpAJriKexMLSIdGFNchu41wYi2GpE706t+hDKKQBbxxAgBS5DPnp+hsK0awIQP09vjQpE66Jy0gjzIaxFYl1S2BfKn7OUcXMPq7pyXSM0rKi0bNRAXcYddlX5UyFVSBVOcv2ZAcJnkocgNfynz0jvlzW+UHvONkObSUpgTRSf28BESn2Ya750oDJxfuX5MfWs+UxpELSkik1Dq6RaNGO1Azzei/H+kAj3i1pDVAUms+k0zLXWQSg2DUWjAFjzpN4DW+SElkgicDt1Gnap5fVeleYqTI1Qk8VwGb0VKmPt2D5gG6cq5plUCaxLAWqvil7U8iDLyUDyb0XcCJHHIlW9EAXFrdyB1KviZ6lE2AqIeSj+X6z94Enl+SV6l8HrotIx8fvMT+m99x9JFOF6GYU6a+c22tVjMxDIHYVT/mudYXYoQ9CFdWzE5YZ5XYmRwR6GJHG0WDhaJXWawPztL7kOBSuD8fUkhIbHNHSllnSfIapR8R8dQBYnaqqJUjS1zaEQzcNRiqTbg7ynIS09tXYu0HCghgnzcSkbTllshYwpr+dqqj3Kx6z1QpVxq7MqnGFQl+kxIWNL7g/i9Vj4683uH+T+8bnQs9KQWF6bRtDr0zzVTlRKo8DWUQpVutybKn/2o6asPE/zyLvdGlsatK2VFoRWSZ0uYK3LWhlrWsYVkbJpJ7+XKzZ9n6GO7hgKMZDWHgGIhbKZAlOoBxCse3++niTDmS8a59Vp3RUQFU7oQyfKZ+Dp0dqjMISLCud9rZex9VAJUVQ2KrzKAOudaHEb3gdRcCRqlHWsI1LCwaAATiKSKHgshpyaqOoW8XUSH6h4VUDTky3hvDYD7xHVw/ed4Psh7Gli6DYYMztYcSUGA1KjgeFcU7jnskca0BbWPRc+L911WUOiLRaKVkmdLjCIi4oLahT1VgkOQBReQBQ87AJuIJ2/q8nFkerhGBWCSL0ZPZeOMfeOZinGZPgKSL0nDfnw+oPAl+8H5V04Zb/ajZ+hws0VGkND/SK954VxP8a6kNK4PnKd2rVnQikKVI6fFxLzOkJTWhPp6aU/t0WqVPU6km4hI+5l4SV82O0X6bMZVaO1E5AQYMQDpefMec/NE8MOxrJuWNtF4oV6wvDHaQmAC0GrpHYxzN/+UsZoQlQIebhKkXsvSbeJTHjnhasTByWKIvGobCQ+KPOMn5v2+NOCIR8KHobGhkJe8puWtx5j3NhU6QYvJj/WlBfWsY74wWdGJVPCeXwQlhpbBTFnl1v4HFc5YfxAfBbj6OFNimgnKidCiQ9cE8lvpPdEryWvH2PjWu2S4e+psmfb0N/8aJXUboYmcxPqtXXtaPiZHIWENAZFrMHRuiitjyGxoTOFV7M8iHU8wfPwwjaHWugh/DTTHWg+JoVOWTvvrz9IyQydOtY5MYRFIcZ72LEABrGuhr3mwnkQyRL0dmAj63C9jB0fen6b9KZ7QHS9l9oX0kdPBK0qQ+YIeW6D6MFxXATJK6rIqiLS8PtyT+gxb5UConG0aObcameYbKI5PQO4vB2GjTh677wn3DOM+4eFObODlfQphlZJ7WZQmGkYiAJMw0ZNC4pCt4Jn5JUpKYDCTRuLThPeIIMt7/SgBAT+P7Df7DARYlEINHVRQCReNBWnBs/CJ8DUgs7DXUo+4VtU7EYKavME/ThQQFrE3nU6LlWKhXVsu6bx09Pic8775dki8zhMfP6zhFjnBbfwAOLcWtS52c09FEojjSyosdH0aDo1UHkDkPc3FECjVVALRqukdhnM6i9G4ZKDa6c2TggUFlivm4kGe/qRMt0v4uLjouUOu9weYZYdb7v1cNI6sM0QFzkVqdY0FQzTYXZhQCXdke91PW2cyf9BEQkgCQnCf56Kmwq6K0I+DxHluYo8t0ZPd1bvhN/TsCGVYuiJh3Qe6OGpNDsi/PP7FLwKO1xou9W5Jnr/vM6NnpvzjLR53id66pqTa4IafnzmTYZKcsp3AIMCtvNvNjb20xCtktptoJCqvRRTwRkYbAD6UqjbpKQ6NfCEk/Hv491UePWq2PV6WbaE5+Idp7Cm7VBOb4BjDvsdmRh6nMXD0j2Z+J2ukD3WOu4zVEDGRs+E19Wp3arh9+kZ5vsTUfEUiApPd8Xt1LEGpzeYXsED8Tzj2g1pRwuG+FSwUkmGdkHi9akHuyRhwlCflYULNxN89oBXzEW8l/OC3+8h0v15f5TcwmbJChp4mutTUsW457iILWROQ7RKapcgJGkLg7BzbhPUwqanwh5wo7A0SHvMAV5Jad7Gn5PHZR5kI1av1jZxB14qKHpTs1RQKpOvKYzTE+8pFNNaoC6igE6S4yLQmq6TYy8swkaRirCtxYjxbATG+g4QNobqyDCkl9fkIam3HXZZ9gy+CtHQUc9zK4Qv2XL0qDYCzp+SpQAmPt9SPMcmDzOhrusxpz319Y1zpSVWjEarpHYbChutW1p9tY8LBVYYEDb0I5XZNCxKYt+626Zca4rKetiLYQ0PQ4kdv3XDRvZ2Ym0TtwoJ+Smknsk0oJKtCjS279EQnB6WyoahofB5/1vZYcp2ZA1SYR2NH4iKiVucGzRb7BuFUux5PlXA+fno9QHu3uQhLyo9IBYY8xo3A2UNFAXCgwhe6QJICYFE4u8NFY8pYi5SqeQGMnf8/OE2I9yQsZ4y3N3mq2ZGq6R2K3qaYPfSJyw8xLg8FUuN8T34KNxGMdBIVT/ZjQXDnTIK8nkVlXo1FIxNm+JNAwoZhvRGUacNUo+r1DEwNIaYx7By7I58TrcypxIbeOZcLgwXibVO+ow5lqZtTxSqYMeNiwp2ErRIdlbhTA9dj7Eo1hwZeUSN6BVqCJmhZSAN+yrpgp59d9GucAuiVVKnMCZ2MW9aN1pjQwFGAbpR0ANRxhnPt1HkdU0bQWByYbTQ03syVAvmtRfHwUPkBaxJ4TGiMOR+RpuhoFSB0mvjc95qJKc0s48hD+cu6hroGYfnaaJi5r1SL9nY9BkrLNC80GZDW1M1GjPVRH/gAx/AhRdeiP3792P//v04fPgwPvnJT4b3X/KSl8AYk/z85E/+ZHKM+++/H5deein27NmDgwcP4q1vfSsGgw1u9d2iGcqSY9iJ9S5LnvjQXZA1T4+H9VVk/JGEsFGEmqwNHIvfz1sd0Qtc7biasMd7ft8rHyrt1ul94uf1h921w5YZQt3Wa+C936wwmQryvJPGVkJzePPWVnWr2OCX+cJFQMsLkh8bw4A05Ki4OJc7WSh0s4yNFgEzeVJPecpT8O53vxvf8R3fAWstPvShD+E1r3kN/uzP/gzf9V3fBQB405vehHe+853hO3v27Al/V1WFSy+9FIcOHcIXvvAFPPDAA7j88svR7XZx4403LuiSWgyBgiosTMRkeJPVPy+42Lvi8WyUiaWYJAzyHEOuCAoMFwXrHkzsbB7yXUgVWgGfk0MkDwBIm5XW4inBW+hY7H2eBCb4C4uRuxtv5rmBxXjPmwX1lAjdMiZvzcXPFjbmrXKva1GKiiSXFgEzKalXv/rVyf/f9a534QMf+AD+5E/+JCipPXv24NChQ43f//SnP417770Xt99+O8455xw897nPxQ033IC3ve1teMc73oFerzfnZexumIf/X4l/AziwOj31N9TB2Fi4aoFQvDorjXsS2CaGC3je/NGsUOaV3itVkIG0INfLz+f97ahoknOMOjeiYDFIhcx2CGtlXDKntlWoRbifKhinFDRUahBZmpqjXFQ41Xtwpn4nUBvY7s9v/Ji7AHO3QKyqCr/927+N48eP4/Dhw+H1j3zkI3jiE5+I5zznObj22mtx4sSJ8N4dd9yBCy64AOecc0547ZJLLsGxY8dwzz33jDzX2toajh07lvycVmB4gkWms9SmLA1cYS5/2Mx0T9+x9vb0Y0uXRWCpiufatz79hojzgmy90PS1AxzvuZDd8W76WbY7yj07No1d7UTih9YMKWymCPNGtFrYq6FAdtfeCiz757sycH9vRYcIwHujxTBRZ6dD85xqvOj/CdYFrsi66VZpgfi8CPuOta6UYmbixN13343Dhw9jdXUV+/btw8c//nGcf/75AIAf+7Efw9Oe9jSce+65+PKXv4y3ve1tuO+++/C7v/u7AICjR48mCgpA+P/Ro0dHnvOmm27C9ddfP+tQdw8C+WDO+DcV0FYIDaUqbwWoTHRbenbJqI0T1OOEtHpQfS9kgeYcyFAjUibVJbxJBViZmJxX72LR8mcndRqvCtePsKyB7uSP7ziEVlwTPqfzaZridcW45xXqz7C13u8Ox8xK6ju/8ztx11134dFHH8XHPvYxXHHFFfjsZz+L888/H29+85vD5y644AI8+clPxkUXXYSvfe1reMYznjH3IK+99lpcc8014f/Hjh3DeeedN/fxThWY9Rv89uki5ObxfU8Vi3YeGAyz6xSTLt0ipRMnisikocO8mSuZXUWd5ieM9XVoJj3PqK7zwOzCbieCnRd2itKcBSFkJ89onEFBw7GQ/08DDQ0nr/P5Ixg8pr4+HPd0ZvzNrKR6vR6e+cxnAgCe97zn4Utf+hLe97734Td+4zeGPvvCF74QAPDVr34Vz3jGM3Do0CF88YtfTD7z4IMPAsDIPBYALC0tYWlpadahnvoItU5mfobUdiJnty2CPp5jUk5gUohNCRMDyUlVxuXt+iWwVkcllf9omEgJEkrO4DhYCAqkBcODMlrQS4PIJJv2+oF4rxfdMXwW0JMskDLkRiFvjrudbYMK6563qaUAeszYSyFaANOtTQ0P6zoYaqSM7X2OOwwbrpOq6xpra2uN7911110AgCc/+ckAgMOHD+Nd73oXHnroIRw8eBAAcNttt2H//v0hZHi6Y6j2SeuathrjLP9poLvFEk2dxTeCnKiQQ8NyTdAWUXnHcivvA8Jcy8J+YSzyHypOVZKay+K5qbxCIWkRr2mW+xQ8vg0+s42giTQy7tk0Nb/dLgQPMDM8pvnetAievm14DSmLMD8N5UK/PO0IFTMpqWuvvRavfOUr8dSnPhWPPfYYbrnlFnzmM5/Brbfeiq997Wu45ZZb8KpXvQpnn302vvzlL+Pqq6/Gi1/8Ylx44YUAgIsvvhjnn38+Xv/61+M973kPjh49iuuuuw5Hjhw5PT2labEdCqqSBK5W4M/y/X6DkqKgXhTrj9ZnD4AZxA4AZTFdRwc2WTVFuh9Q0qeNx/SMuVADld2T3Gtkt3dV1rpVRl5DZSB5CTNdVwdFkxBUKOtyM2Dlh6228sa7CpZB7AQlBUSD0Mr/FwkN1+flEsB0LNtTORw8J2ZSUg899BAuv/xyPPDAAzhw4AAuvPBC3HrrrfiBH/gBfOMb38Dtt9+O9773vTh+/DjOO+88XHbZZbjuuuvC98uyxCc+8QlceeWVOHz4MPbu3Ysrrrgiqatqsc2gcF73SXAgTfyz9mlPf/QxSERY68QwFhcXWwmV9fhjzIpSPDTdkXZSKx12c2eoSa37vHkqBW5pJZzl32Onh7z2zMApMxVGueLWHAiVGl+ftVh01EdpNGhvx0VDvU6egve/6RpYGjEL65EKP+8ruFGE8dmG1zLMEuIDfK2anwtFHVsr6denDeefhmFAY61dwBPeWhw7dgwHDhzAo48+iv3792/3cBaKia2ONhu05PuF30FXPAoqGyqpUQuGAvFENy5QFcRUUvvWN+caqCRDz7oJeZHHltw1r3UifZpfIZ2bCo91YKvyWXon3QpYbmgWy/GwXZEqKQ0dAlFYsTtFYaejkJPmPurzZC8W2FjD33FYL90PEK+Lu9dutDMDjxe67MvxFt31YZISmkdJAfHZJrs1I743bamANcBqCax3YA/87HTf2YGYVo63vft2Kx7vuck8a51ME4W8aQPFUdDwTWGdF6HFkNqOaLO2eRi1W24TCgvsXReFU6bXwJZI2vVdQ4IMAwLewwIwqk+depRADM1pPZZ6rex+sWTi3lM5lIE47nq1I/tmIYRJ4bxwjm1e5ZjvhaWh0uS8vk4pEA82eI2Tvj/r8TWsWXsFtV4Of6YoxntKOk86FigXGInYwWiV1G5DbZwHQ+/gZMf36KtmC6+p8qDSqiWkNWqdBgIChoUyoXmLhNVkoycHbMxCnkWQ0EPieCwiqYGeQH680LkD6a68/H6yBTkFp4nWNIW5geS40HxveTyeh99nv0CeOycuNF3nzIl+//c0z4HKW73RKvPwJh0n7zpukXq4vH5VWj0DYODyeH1EZbzIfn8bheYydTNKIDJHC/msXqeuE35+qwq0dwBaJbUDYFZ/cbSlPCuG6oT8oijmKLDSfmZAXGBUQKNAYTlKQDQVtdIDSbyC8MbWoMiUCawomAyljcQJtX6b8iva542KiDsnN9V15f3vRuVsrPyeJq0zj4dBRTWLsFdhOst5SfygEZO8Jp6ivmblM7DR6ydJRMOn6slvBwzStaHPGpDrNs3XydflGpge2M11VK2S2glY5LrhsUrf6BSIlli/nM8C46LI95PK2Wyh8wKENIB0MQYrETEsx64P9GBoNTMns1WCJWwbL1tcjCIZMAfV9HoT9LPWh3vWxbLO+w4q1OLOSRnqRelnFwFjXXhqwBDTFKHZpvlHD3BcIbN2bM8/ptes5+nLPKn9zdByghMmdrFnO6zOiOe2FWBz56KI8555SiB9hsy7MXrB9+mtnkZoldROwCJ7uvFYDDcFBWBdTzqzwEmuYT3Nw4Tarlo8B8T3NOFtrHuvFmJBv4zv12brWsToVvDaBX3RoGWfK6hAUmnwhhtzXJkLFcKlGVllI2DIrsCUSkqMkQLxeY+b4uqhU2BrCHXUeTQ0q8di/7uTXfc3c2GdGsDAdXDZzjAglZU1TtEqdy08e4vEU6yNYwbulPDlFqJVUtsEU70zTsDeAicecyVVgdDpXGUZ8wOLqlGCCCXIeRiq4296YE3nDesyC+lsRoeKcSisS8Kr1b9Z588ZjwZeWBWOvq3nHRk2RXYMm4a4FoFAu59SWYc+k0AoQp+kpNQjJMmA31doKJDH5vXyPpR+/iOb51RmVQFU3lve7g4uNBjzAnL3pv+//z1POcIuQauktgubVe9grE/0Iw0hAZFpVZnF0IJVIOn5w98zjDkPdeVthrYKTRTyzQA7suedLkgl1+R5t2rOpzCktpm5lrIGVmaYq3l+bppxMa+XKyG9Nwx9rZepAcPwF8Oy3DGALa54/CrzWAZmdId+5nEXuYXNKBQ2zoN+GUsnguGCOIbTLMxHtEpqi7FldVDdalgArpfDfedWBhtbiHnrn3lBrzIcF9tj6W7lOdmnTZPo1gCQHI52umjCTrasp72XNEiCQTViTvH+VMbnduo0t2kAcNNJdjVhc2ZVepNKKmjIWbt1+Ss+R+bWciN2wnrYzdvPt0pqt0K7dzMEEmLg3mrjZzZaVLuIokftX0YLdrdbjt1qmN3F5rZAFLzTtHc61UEhrMJau3SYIipzU8S91XKqeYehYsTQdk7wmTQf6c2iAlCmXttmQfNP+fi2I6Kwg9Aqqd0KJpCXqhg+6FaeFeU3B1wvXR3VWscpsjPWFxeGZNcJi8khNC1I5e7BixQK04adFFvVVTwPj25WN4idjqFQpk3zmAzfUWkHxl6Dt8MQ6V75HguCufV703NlyG29jHVafRsNPRpPk7qYzAP19EK9FNK822mKVkltAbal1VGTFxOYVjZ23gbcoiy9l7VIoWzhKcH1bAw9TaRvF3ZS49PTHZp70hZD45rXAn7OSU/GSYQS0r3zXK6Bz/1ZCSUucHJoHRiRK6gZlNRuC/21SmonYhFWfLeK8XiFvmQRW7RoOKW0G29CWsgCm7S+GE7ZSW0kKaS4v9RpHG7ZNEwbDmZITwlA9IjGGTNs8UW6f8hT+e+ph90vHZmiKqLSoMLScxQMx46h+TfVuo1TNFSKpQXMYDHrbxehVVLbDca/2dCVDKaB92qWKs+wGsweCmpaFAkt1yehediqcGHAbg2cubqx0FNQPJiOWFFY14VBKcPzhOlGYdamoBRUA39/TudQ3GaAc8/L+6lZgMuDqDimfZZUctqBn8y5uhDWq7RiAkbUrNlIFsq3m2FBcr+IOwho7SDD2Gr0aD++snYSeR7jlESoXYhWSW03NGbOws7KRGut763ATg0sYsstTRzTwtSiSKWpb/hcmC/pa/2XLRYb9pupb53+LFBZtnAIJQaY/d7OI4zpqU9bs8VTcA5OQ7hQ9mAgv0w5vo2SM0YoKYN3OMPzRBf2rLfNd+xtRqukthNrHVcVn3QekN8VgNo/okXliqg4elVk+/U7aRy+U7ux9aSwdR4hPQt9V61XLri6jOffSPhjnrHnAsfAeZi7nXG4ldjqQu0in0NeG7GbBpmVocktPSnJiRmLpHSAqApHQtImsoCEJUmXz9bSqPZas6BfunU8am5udP1sM1oltR1gp/JB4VoV5e1dgsKQ7tjL5eIsetK76youSvb3QwVYhh+FTaWMIx5jURjqVWdi2IX5h62kYevzqIwTAiwIbZXU7kHomGJle5pSqO4yL7kOlNCg05a5Xa6jip4Nu+Wb6byxWVEbJ0OqAq4FfAMK6wysUxStktokjGX0MS5Oj4FhpVDT4ScUKbF8bxETXD22oUF7q7K08afJ+ls0JoZfJoRomjDElpph/Ho+zWG0Ib/dCQ3vUZEYk7JhtYu6/q3HoHdl5T2dhqEH3wLzrLmB1/QZb3SZ/g1AtzrlGH+tktouLGnrItMw4a2zyri77SIseBIjmnYGZThr2XeLXhpMDhGwg4XmbajYZtm7KHQcsLH7M8cEKokZFzavT5lTsygbem6VCJXd5EWtl5Mp3KcTjPymB1SYOGd61fg5HYgR/kAkV3BtWLjIRG0WQ8DROkSePwc9Oo3QaB3WKYJWSS0Q5oH/L2433p1gMYU6D5/QVeFZ+vBaYeMOnouwvrSoMa8DooVY1nE32nEgC1FbLxU2dgEozOy1JFRWah1OSnSPG1+yFUIdreNpjpfc7wlbTZxqWC9dzrFTAUsbSNbvNtCLYkSjkDUwKZKhdHR+NigJ/xlVFvPecxpefelNyPPn0K4dVl5rldRpjH7hlNO06FaxNY56I5zAXZnUexewVXSw6rIcWNfHzZeoYOvJ1p4qKSANj3G79VmwNIgU3ry32jwLurQIuwjPywYj+7GYR0vuYLCNUFv/NXz9zDvVdWrETTOH2NGFBk1tAJQxYhGMQ40vToG1DsIuzpyKIYXmDcomg3BQxDXAL00KD+5AtEpqkWCN0azrPuRAsi8WduN99RRUTEqUYO0J4M515up0C7LyoUhahWxV05lDQRH8Xr4j8DyCtPShF1ukVPZZBcSi2jP1y+G6mu3EpNDl6Uy7535POcbdE11HQ9/z3w1GmGk+vqLypKp138KsNrFfoeEY6/GM0/UyhqtDpObUC++2SmoBMP/3vW5CJW1UtnNEI6BbIQDDNSDdGYQoFV5VOGqv7nuzKGxUSCoLK+S5tknwUlCdKr2W2I1ba+paNGOS8goG6AxCoV84JdMvU/JUabySkuOPQhLWj+c3q78Y3rd7fm76MW0TWiW1CJQ1sOxj0HvXd15nAtZDKUWW+TDuxVNY4Iy16Y9ZG9+qxnfF6FZpN+qdAiazF8WOnBenUp1KJfkO3rLteLbcoXkWEs5mYp4x9Cqfd0ZUGtPMBd1XTZnADCXqum1C2J0ZKUNRsdPW6gi0SmoR4KQrLLB/BkG/VTjuGYJrHbfwjY0TfHkwW0iRIYSqiNe90neKaidOejIOdyuYv2ui6c/T+Z2h4KCkhGAzKpy1GVgvI2nIYmczES0Qbn7TPZ9l3KGAnM8VsSCY62tS1GOtIy2nxuwosBPXawNaJbUIKL15J6KwrnsFkNK7Z823UICRMcQwGq21FlsPfZ4b9Ta0G3dI/O8Q7ARPahQWOfdpFLBWK9RtIa0ZHNesljqxKcTNsLNnH5q1XwxywJb/ZnHXsUC0SmoROPvEdo9gPFYG0fJaL6WeyU4XejjRdT9aPNiRTed2U/3QqYZF5wBzgyOwyLZYSbAllzkN5xeJEYUFiiJlzhbWlQ6MUtr0xMo6dtHICVO6GSp/d0aQRXYAWiV1OkD7gzVRbkehKoD1Anh4xfUY1CaY7Mq+ETbfNKjFsm+x+Ri1/cR2YKu2bt9pMNYrDMmjkjjB0oFR0AJ9fm5gpHm0z0uThJF3yNiBaJXUnNiWjQw3iq5YYNOEcrh9CDtUsHyJHhXj5oNN7Gm3gyJOux47RTmdzsgfgYb4uBfWuLXWqdOuLUAM44amyTT8TFZHtTPRKqnTDdMqk6oAHltyimqtjIQLhghWOzGhPSh8G6U5vKpJmwruYAuvhQf3QeM8CeGjGlgeE5pqkWLUZokMfU7jWRob2cXsyK77Za37jun0skJ394VeyULRKqkWzVj3yklbKRkA8KGCQQGYMioYAwADYGUGJbXWiVvW71R2YIvx6JfA472opBhKWvY7zBbYeSUZ82KaLeg3grzxs5Ik5lkb7PJuxYMiMxd19Kis1E95VqV94s9s9GoWhlZJ7STspN01uYU1t6jQGg0SL9iElSSKabcD0H2aGIqoCsRN6XbIPWgxGXz2ZHwyZ0Kizk6ljc+Dzb6WJobmRu5hYd2aKmug443MQUaWoALU9b3DtvVoldR2wMqCJpjU5OTZbvQq18ev8qGBvvTT04lNq3llML1yYTulYDUW8bik88+irLejhc+giGGT7g4pNt0OGE+iqY1TVjRoGELaCXN5u8GiZM0tNYHsSmBxHVzKWnqA1mlpQegRWsXnZexw78xtRqukZsBCyBJhQz8Dtx2Aja+zhmGngNYwwwL5diLqVc0ipNn1QplL2lKqMNMzjqjsJjGeNmOzOYZNCoNkgzxgd3kQk1D6DvMoAFNHY+N0VdwKzTOx1mkc1dsgzv1FbnLK59G0B5WGEwtgp/X3a5XUVoP0UmtTK4kNI3cSmEugR6WYNyxnjRQByzH4t/5Mg6CkxnxmkcKSyol91ZirU2ODn5tHgZ+qKKzr4djZBq92J0ML3yeBCgqIzWjNlMzZcamC0sb+mh0bxzSQCIaOYQfZyUCrpLYH8+w0u91YlAKtRIg1hfVmWSRNbKhRUAtyI3kvhirXPTW/Y2LeoMlKLWsXDjtd0CooB85NzgcLBC00zkNK9qEyaTH1qO/0fauy0qYMQN1FwPhBqDHHrXaG1uDOeoYzBR8/8IEP4MILL8T+/fuxf/9+HD58GJ/85CfD+6urqzhy5AjOPvts7Nu3D5dddhkefPDB5Bj3338/Lr30UuzZswcHDx7EW9/6VgwGO3cRG7wj/LRYEDRUqEnbUBMyxSLRFj7TwsrPPAh7cc2gGHdS+LbF1oHPPSgKTC/89bu6/9uoz9bZj35n0inz6ekVmqneCfP4jTCPvnu6MW8iZvKknvKUp+Dd7343vuM7vgPWWnzoQx/Ca17zGvzZn/0Zvuu7vgtXX301fv/3fx8f/ehHceDAAVx11VV47Wtfi89//vMAgKqqcOmll+LQoUP4whe+gAceeACXX345ut0ubrzxxk25wBY7DGQNArN1q+D+OgqG06ZJLhsL1J5K35mRmJEfp0Dcx6dTR7q17oRKqu8Os0pPC7AxLQXwLJ0rNGe8iI4XOs+0QWzjuRHnT+6RN23zwnCz7hvVLzLDz6bzPdlgFfGY6t1xjvcqYLD989dYazc0irPOOgu/9Eu/hB/6oR/Ck570JNxyyy34oR/6IQDAX/7lX+LZz3427rjjDrzoRS/CJz/5SfyTf/JP8M1vfhPnnHMOAODXf/3X8ba3vQ1/+7d/i16vN9U5jx07hgMHDuDRRx/F/v37NzL8iWg9qE0A8zizCPDHey7Upl4YdxCetkM2N4/jBo2zKhBrXEd5IC56bpmQf45bo2xGuI+ChluvrAx2Xj5zu/B4DzjeS/OBe/vT1Wqx+LXy93cjhch5DtfY0XNe85hafMtQHLf7yJ+xhp51TRlI7z8bd8rWMKLmUfMO69n9sN2fn+8eTMC0cnxurmFVVfjt3/5tHD9+HIcPH8add96Jfr+Pl7/85eEzz3rWs/DUpz4Vd9xxBwDgjjvuwAUXXBAUFABccsklOHbsGO65556R51pbW8OxY8eSnxanMObJCXH7gkoWWrKp2xQIluoGQnDBSrVRIORgGJNtbBaNcHx/jtZbS6HlEdN62psxhpwENKmrSpgz4qX3qtERhyS0Jx4SfxP6elCEGA4TNuV3d8Dcmpk4cffdd+Pw4cNYXV3Fvn378PGPfxznn38+7rrrLvR6PZx55pnJ58855xwcPXoUAHD06NFEQfF9vjcKN910E66//vpZh7oYhMSn/71dFquGIXbSNuRbAYb6TnSlBscCGPgakCkYUIMCWO9EOn1nDgWiAqfw/x81H3j8zVzk3Qrobt7htwx936oneD+YP9S2VMXQFUso5jnWrJ7+0PdHGDDjPs/zTrOzQFUM56P4XStkCFU+rMWsTOpJqZLsmnhudqzYZszsSX3nd34n7rrrLvzpn/4prrzySlxxxRW49957N2NsAddeey0effTR8PONb3xjU8+XYL10AvJkx/0mq2srwcLRfuE6Gm9nsd166cJmW4nKhzTWZXdhUsGVATUOoS1MMZv3lSMheGD8Gt4BVujCwe4g7Ka9CKyVcUPO9TJ27Z4HZR13ie5Wu7eTuuauAiFIogTJ30iby7LV2aCI/6/k/7qmdsAcnlna9Ho9PPOZzwQAPO95z8OXvvQlvO9978MP//APY319HY888kjiTT344IM4dOgQAODQoUP44he/mByP7D9+pglLS0tYWlqadahzw6zfIBZKMWyNlLVrc7+VW4JbUU6FbCe9pec3UUFsJQxiH7ikjYudMdwnC5udEWbtbJEUZm7/At5S6LMPifcFYMmvI4ZH1cqfFeyAMg9Kv6dSuf3ew0QwHGgQw366LhpLO7J7m4cFjXFEicK6v/2xmJe325Sf37ApVNc11tbW8LznPQ/dbhd/+Id/GN677777cP/99+Pw4cMAgMOHD+Puu+/GQw89FD5z2223Yf/+/Tj//PM3OpTFgWGgdW/hrXZi4v5EFzjhk7OPLbn/r3aihb4ZMIjFd+xirFtlbDZqTxg40Y0W71Z6U4zVc2GqMMsX2jhQQdEzXS8nfiVBZaIHUWN+b+xUgTVx7j+25OY853u/iPNxo0ZLtwL2rTsCSG8HeD/zNnTdShivjLmnG3/YQ1PzvlRMBdK1Q++JHiwL1DfqzS4YM0maa6+9Fq985Svx1Kc+FY899hhuueUWfOYzn8Gtt96KAwcO4I1vfCOuueYanHXWWdi/fz/e8pa34PDhw3jRi14EALj44otx/vnn4/Wvfz3e85734OjRo7juuutw5MiRLfWUJoL0zeAiZ94Uu0VYxCI6i83r+GzscNJ/Kz0phgbUk8hbG40CdwndKMJCy4gLwGwFvUAa/pgFvP6Cx9rhgmyjCAq9zIwB6QHHz0yTR2mxWCgxRH9GISFwaFgQMadFGVMVbgfgHYCZlNRDDz2Eyy+/HA888AAOHDiACy+8ELfeeit+4Ad+AADwy7/8yyiKApdddhnW1tZwySWX4P3vf3/4flmW+MQnPoErr7wShw8fxt69e3HFFVfgne9852KvaqPQPVlocdtOGvKzkB5zfqvmzSJVFNbt1TSo4yQivdkaIRJsEtjxXENrvSnouX1vkZVmY01YS1+LxIQv97TqVi5UNM1971XASj/uX9WZoWs7wdykAdD1ZI2lwe7tKMEtVLiRXmjV49+noXY6KOydirJ2bcvYAJrPhopH/66R0uxDPisL3dZieAPTGaObiA3XSW0HNrtOaqg2arXjwh2afDc2CsieD1dsNli0N5CkddePoTMni2larHl7hkJqnMdovXV9spPmfsi46s6xd1RVuFAToXVS00Kt/nmYdw+vAH+7132PtSsrfeDsk6dHfoqhvaZL3ez512I65HlXjRrQuCVLOO8ryMJfFv8uD6Jxugn1UtPK8bZ3n2Bk4W4IL7lPbRtILwWioKgNgMKRKTb73MQkgZwLMrKP4K25QTE76aSsh8MPs3quLGycV6FoDQrDIzZb6Kc6xvaVQ2qpJ7U4p4GSPhWg1Hdr07XHv5taJo1jq/rPhk0RVzuwB9+6iReRolVS00BbipAlU4rVsbRFFqRaObaT1kNsNmaxksmS6tZpLm2jQ11EWG0jHg+pzUC6YdxuUVD90lvTI+5RHjLSBqbA1rJdW4wHu9IDvisFYhSBykvDtgyhswaTv6m4cgNtC9EqqWmQexElpDJ8DjYS3fB5E83dyvexs3F8VAY7iZWUU16BrWUlLhpspwTERb2T7vdGUPkaPGNGz0uLqKBInAnvGQD9rRhpi1nB8DZqz0ylYeXnrm40WtZpqQfXsCqoLW6a3CqpaUEPig93Wita48JAusB71fxswF6VeienikWvFt6phq706Qt90TbQ320noRjjQRGldSQhdu3Q0GDL7NvZMDbWPuV7nwVFxIiHHY56UP7575sH/r8wD+xTrtnUobdKalp0K8dSY8I9tOfB6Dj+Y0uuvoj1JFRO/OjywDW/7FbAmauzjacNrWw9uhVw8Lj7e57egzu5CayZgviwCGLEqmdHztIBv8XGwTZdFmnLpHyTTt0I0cAZJXxeAIBBmnPeAq+qVVLTohDFFHpb+fes/EeZNSe6TlENjCuEzItHueNtrwLOWG8X7amAebymQeGEc686fY0La4DVElj1/RcZQWjn/NbBqGENbzRjONcUvCmZq3xOHeOMFRKHtgCnvZIyj90EnLE2/kOFdQqFf48/YnPLnJCARDYZ/Gu7IWTUYjROhS4Gm4kkLG2b10iLzQeJE2zvxsJd9Ywok1hyA8TeRPzcFj6/015JYbXjwm6TQhnTChhuGKZuNV9nrzkASS+801l4nQ7Yzi0jdgKY62BbHmWPbcW5W2UYUfi8IkkwLB2ofZRHjWhuqkiZZmxUWkx5bMG9bZVUZRZPqWSScuhvNNM5F9mss8XOA1mA7TMe3QB1M8D1tRl7ep3KYFsksoJV0ejeVKzBNJ4ZaBqYfVswp1slxaaMi0ZZA2eddMful66Waq2Me7rUxoUQ96+5+Hxr7e1eTENK2M1gXaEFYIthwUZDbdH5KXaHAdrcVw4+E6KSPHveTgkm7dW5xaHaVkn15mjRMy3KOrL29q4DJ7tu4az5PoD71oEnnDx9w0AtTi9o2UYgHZm4BYjFYqjsDKVz77caQA9bFp465cCGBKyzDE1mTVT03HmBtYLMbWHzlX+rpLZKQXAS0LKrjfOgWgXV4nRBopyQEokWWSSaL6mEoLSYU+w66B5TzEPZIg39heeEhBVoHr8xGCB2+bqFD61VUhuhBLP6fppQTllvTRPaFi12KpQ8FLb/QDTcFmWvUeCydZWWjbRoBluZoQRsLYSTBq0e2px5b0qKfDcDrZKaR0k93nO/1UI7XetfWrSYBfSeuGmi5jcWWRjKZsI5y7bFeHRq50HVkC478lzoTakX3CqpxcN85f2O1HD2SWDWvRaT7Zaz+HqLFi3Go6zhuvZnQq1dQ8PIWcfarYYKZNGKQbuoU0HpeUadbxOf32mppEJzUGC+Ogpu98AkcMscatFiepQ1sKf2m4maWAZSw4UBWUe1UYwKVy0KuieTYp69yhS6GzgQj69NfXne0rooziLbTLEuqhDqObcJ0jqqQIJpPanFQ5O3s85ji7StfYsWLeZDz5OJrLQLC4wyM92W6JOwGWy+StiITSFKa6OMmPX8VNw1hlsVkWnHPB7ZeJVn3XGTwo2C91u9XiqokD80adPtTWROnp5Kam/f1SgtT9mBPN9DZZF1Am1FfIvTGRRwQDQaAVFUcMpsJ60RYbbFdkL6AV8EG7bImOXYovxUQY0aB0+3SITQHqQjhT+P9Uoxfx6b6LSenkrqHxwbb52xaznrmnS/lSXfJJRWhU5WtXaIMInFVaYVpFbIvvXZtu3g1uw89tKgJW+0OPVgPMGBfeLoSQxIrLDOmOxVG9tVeVHg+mV7oLwPJxC9P8qNaZH3zQuvy2fGhTAXGW7jNjRFMayQuf285q9qM5xDWxBOTyU17mFWhVNO66XrYk5XeqlyE450cwNnXfDhsCCxKqS7cKa81GUm60h/jJ1O0ax2gEeXo4XFnlqtkmpxKoI5EM3BVMYxAA3SXQd2QucOVSJ5jkgxq0Jt+nhjGyJ6NybdOmgzPCrdgj7x3HJPyp3cPPRLwIku7Lf99MKGcXoqqXE42XE/9HS4DXpXOlNQIa2XMemrsWIqpIFYXNppWJONnTp+llt5jFM2fa88aXGWtdusbot3y2zRYqFgDVX4P6IALm3scrDdIJuXnRlY96XNo0n8mDXUp/k3NoEF0rVN5VhaoOfX/4rPRW2Fl8kx5g6d5ugW7FG1Soqgkji25DwVuuodvxvr8sA9lMoAa4VTOsdFWegDqvz/1ztR8eRsnMK6reetT36ulW6S1WM8or/b44631nGfLyywLEnNnbZ9/OkMa+Izaj3c6UChrqQkrpOdskmiUSFtnRwIisp/pqznV6qs7WoS9OotUd5s9T0Zxby0BVBLNGmBOG2UlPm79zhhsbfvK6sFVFDcPXdQOEuma6OFR++nLmJIr1/GynkgsnKqIo2rc9JZA1hZbFUBFP7vEOseMbFZpd8v015nSezaoDlm0GLLsYkx+l0LKoAaSLY6D3ToHYK8wBWIxa1aOznPmDXPo8fme8lrW3RPwrlM6kXqDr+biNNGSQUFlG9fTYt33XcmX/XeD62WwltLqz4EeLLj/uZr3A8qty4YV8+VFAAUJVDXXjn686yV0WvrVsMtlNZEgeo+VE3KqsX2o6yBbuvZzgxuLsqwOdfqdhMmFDRYud1FSA3MSZhowk6ZN03XkW+SqG2SysV7vKePklrrxGSs9QnHjnetKfyBNLdEy64yQN8rpGNLri2S9ccC3LHYLJYTmA9vyJNCJDqo4uIkJ4uJlsrywL1OJUsFNSjc69qcczvntZJCNIlsES3hRRVpnirYacL1VELoJbcDEYgeiJsB0nviFu27Gfka1hQHO6UvEKePkiI1fODDc7WwVqpiuMklY77cXpm9xhgWTKrNa//9OosbZ7kqawD4kB5ZM6F6W8dp4vG4eyYV1Lhu0dtJnghdAxrCXHqtO1XwtGgxLUz2O7wuRurphJylvGAv8PRRUie6Uckw4agxVXou3TpWi9MLerznKN+Dwv190t82PpCutxzKIobsNNxHJiBDdP0iTuSqiMn1bu0U2HrpQomFjW1iTnRjmFHPrZOiMkC5xSEmhkuZm9OFy2tUBtTphMq43MXp5D2eDiDrl4+V874pn3S6YHng5BujUwvE6aOk1jpRSdWZkgrbTGesnNo41sqJLvDIslMuJ7tOSVGxlBaoPfuo9uGdxAvzXtFax32fOS4yhIA4wUsbFdu6Z/sxpLjacYpAi4u1PoLMwMqTPjZbIVA5cadh1rSw3ss7jeGzsAufvDse9CircmfmVlrMD4b8LBByU6ezkgLi1ihMnSzqsAs92k4Gw2gqI4KAr6MQ2dN3xAV6REAkWVTZDKRQZrKwIz+Ap64XcWvmTjk6Zt3ztVjdOiZgFRpKM0AIitN6MZJXs9hc2jMVk3YHqMQ7LPwgrHx+M4oNdzqopLyODsWXLXYPAvMNuzPUR4N62usyAMrabYTo0w/2jGs3NITTR0lpHgmIhbSlBfasA8ueVXdgLbYnYk5pteM8KQBYlep3Kqeub+7Yrd13WVPVrd228WQN5haG5m7Y+oWNIrtVJGdosa823iyl+WMpCovj4N+LCjdVPtxZiffEPBhDHt0qLcKkdUnv8nQBSwUUFm3obyPQHO8QHRvbpyBCqG8XKajaAMd7kenMZgaUKaOu1VhncNeLux+7XkmZP/7PnnGm3Xtp8XsvaLlyHlTPU7/15loTlUdVZDkXxMpy9aJ0K4+u5LvIHMz7fRm4c7DIl8ekM0QPSokTtY2EirIGah9SqgrAVpFezzFuFKTvKxWeWwdowrg0MdRn/cVZGymqpwuaCCSa+2wxG3gvOf8NZC1K2F4Noa0wCPJC3t0AjZSwIJ3ztvYyalyutayBYnE56F2vpABEAR9gYj++TgWs9J3H09Rt2VjgzFXfz69wn9nTd68viedzxlpsn9SrELpTUDB16ijUByYW/HJcet6qANb8uAN1vkwbW7JTBXNRpQ+vMZykbVk2Sv/W3oSqoHIlVVhH/DD0Nk2c4FXhFCu9vd2MqohbLQCpEt9NwmyrkLBjkRIV9DNWfgMAJAQ9byguNzSant9u86KUjMXrJ+lLFdY4MtQC78fuV1Kd2pMOilivw7zQSt8pmgOrrv/VKOzpA9/+9+4Yj56M28drU9h96zFxGNh2IqyYt6lMLAzul07xUeEAkQkIH9qjkmKRcWXSHFC/iJ4eFcDARIVFRUmXPR/jJCh7L+/KQUYfj8VjA+nCtcZ5hWwjQ9IKx72bwGczKKUY1cZE+24SZlsF7YGp3hMVj9bmkahUWB9y8h9XQ2raHAuNMp63SeHtVqODBm3YlFLWddffX9R+TmNT5/XuV1J5wp7Ck00rGZ6bhKCM1obf61WxS3o+gbnjaKihKqJCKWugKOIE4HMmwYPtl3SzM4YLuY0BLRwgvsa6L2uBjiduWLhz855Ms+2BshOVuKHhx3B//PlZiFzayOoL1qgP+bFCvzaRTbkTulsvArrdQtumanHgbczXMn8z1Kddyfme8V+0mE2YhmPCrzHxHHZCScUidzHOkSvy4MWa1JPagvm9+5XUAa9U1jqRsVfWwFkn3c+s1vzKIPW6mnIMGtYblMPhstVOSjXXkAI9rLy7OrtkaG6L/fwo7ElxZi1WYQEj9UtkKbJ1i+bmmsAQS98rvfWyOdxHqEdVWsAOomIcyinYSKVnxw7+bmIm8t7lY99pyPf7oaIvkHq1LaZHYWOOQ9uV6fvcTUBDfDlmKbYNXb39/4NAVsHMUPc2PU8aiZtVIM/aJyWclSJDNqFwtwkzEdpvuukmvOAFL8AZZ5yBgwcP4gd/8Adx3333JZ95yUteAmNM8vOTP/mTyWfuv/9+XHrppdizZw8OHjyIt771rRgMZtjwbxY84SSwf83ljA6sAmefAJ54AnjScRei2yhVu+khDQoXIlvtxq0/TnZcvVX4f9f9rHacAj3Zde8f7zkm4bf2AH+/AjzWc+HF9TKt4+LEYeEv2YMMwzE0t+rPe6LrurYf98d7rAc8tuR+HlkGHl5xv/nz2FKsCWPX9X4W6iPDb62M5+A1sMchx8DrO7bkzvWtPa6r+0N7gb/d4/7PMZzsxPGz6zuLmXkdj/fc6zuRMahDUo+YocCdOOadDGXiao1g/hmWgZQ2rdHTj06toMzwc0ryXtv8DMP+dRPGsZFxrnim8tIgpgr4DLawxdlMntRnP/tZHDlyBC94wQswGAzw9re/HRdffDHuvfde7N27N3zuTW96E975zneG/+/Zsyf8XVUVLr30Uhw6dAhf+MIX8MADD+Dyyy9Ht9vFjTfeuIBLytD1BAkLR40k2aG3iTeY6yB0NpffmptStp7u9MmQnibaQyxd/q6z77CLevC2ZEHSAKzlGBq6yMMpNb0hDIf5NKSVJ7TJ4mvavkSJF8jGoL0T2RJKx920Tw3v5ygLeVqreZHIFRR/a+iorZeaDXlvvI0eY6bvZcdoOu52QMNuo94PeTzxgmaBeq5sI1fMeR83gJmU1Kc+9ank/x/84Adx8OBB3HnnnXjxi18cXt+zZw8OHTrUeIxPf/rTuPfee3H77bfjnHPOwXOf+1zccMMNeNvb3oZ3vOMd6PV6c1zGGOxfc1ZAbdzvcQSJRYGCll6GtkWq/GuqvHSeMazHhrX0nEqvYIG03ZJ6Nyc9QaTsAGtVnGQMZ9IC0snXBGO95aQxaaThSZ6fn8+ZhEB8nx4R68XW/LRj+JGhSiufLUX5UAFr41rAXfuaKLr8eoyMpWSS10alSgLNIkMWJfN/ZabQKSjKnbM30qmEaZ6RGkRAbCHWsencH/d9ICpD48OM4f05xrRZ0DWs+THKE0Y7+FkglrnMgr19dz87XnZxl4YtxIZyUo8++igA4Kyzzkpe/8hHPoIPf/jDOHToEF796lfj53/+54M3dccdd+CCCy7AOeecEz5/ySWX4Morr8Q999yD7/me7xk6z9raGtbWImHh2LFj0w+yrIe3vdhM0GKmIGfOiG2RKhH0oZEsmr0mzaGxFgtwx1mqUiUXWi95hcb+gMpo1BZK4/I6hXXH52Tkd6gM1aPi2DVGzc/Ta6iKmGdj6I9ElLIAbAX0/IIK90zi3oFh1CD0my4ht35HXbNBLBlYZIeOvN0Wd2rmPeR7OzWvdiqC97qW9aeYZBTwO0PlAg3RBt3NYDuRnz8Yj0g7wqhynnWeG+vZqXDe1DawcedWUnVd46d/+qfxfd/3fXjOc54TXv+xH/sxPO1pT8O5556LL3/5y3jb296G++67D7/7u78LADh69GiioACE/x89erTxXDfddBOuv/76eYe6tTA2WtO03hJPCWmYjAJXwxka1lDhz4XGjhJVkS5GtexU+RGdOhXYShdPrgFxYhsIaxGihIBYDyXKiQpVKdc6rrDYKRQwzBisDGALH2600TLMw43AsDDi+PU+FqKsId/luansF+XdFNbvJuuNEWNiiG8ai77F7OC6InJixTQYR6xQQkyxiYI6n8+jxk6iiM6lEMUw8rfIj40omA0U6Bq8I/xt5e9pMbeSOnLkCL7yla/gj//4j5PX3/zmN4e/L7jgAjz5yU/GRRddhK997Wt4xjOeMde5rr32WlxzzTXh/8eOHcN555033ZcfWxpuJ1RY58bO4rZqO6VJWB7EZHm/AEwRw0y2SSCbaP0b40NQSMfL4mOt8WL4bL2UMKJxjELWYmn4g6Eto39TUSEV3itFzN+t9KOSZCcLyOcLWSSljJnKrTYuzGUl7wS4c7N9irIcNTHLY+uOxGy6q10dtHsHw2mljW2atDxAk8nWj6dq2GhyI1gZxGvnuFn4fSrko/R+AjtXqTYZLurN03CahGkKrTfrHnCtMlKhDFYapE1okl98rRSji+tpo17QNs2BuZTUVVddhU984hP43Oc+h6c85SljP/vCF74QAPDVr34Vz3jGM3Do0CF88YtfTD7z4IMPAsDIPNbS0hKWlpamHp959N1CJuikffNCnsM4tt84pcMiXO7cC8SuEhSATSis8zJUYAPR2lMPigKbKyRfUPQElPrJzRGZOGXdVW0AFMAAwxskAqmwZi8utRw1fMdzWQBLoqCbFnMuEOhxaZhRc2AMq+ieWdzWgrk8npvkjX4Rwxf9IgqmSgQU70evAjpGvMU6ejOFPAN3Uc5b24z8Ap8Rr1WbD+9khIJywU4c+6jwnkYLck9+p4HMXouYGmDdIMc9zw7PjEIAp3z3/ZmUlLUWb3nLW/Dxj38cn/nMZ/D0pz994nfuuusuAMCTn/xkAMDhw4fxrne9Cw899BAOHjwIALjtttuwf/9+nH/++TMOfwTYc4reDPeSaspLNG3VThxbisfioqUHwuaxS2MSiU0EhYQp519T5VD5MFceBquzhQhErwHwk7LvBDhfq0wkIiiaahyCohGrS4ud2eop+U6m3BRW3td8WqeOzXMtogJd7UjrKMQxhN2Ty6iQEut5gvmb5+Ly9zazzkXvc2VHW/SVGBJEuY1KQecGb+9O9P7yvCiw8z0/BSMtnPMhkiHzRrcOmgUkP+0CzKSkjhw5gltuuQW/93u/hzPOOCPkkA4cOICVlRV87Wtfwy233IJXvepVOPvss/HlL38ZV199NV784hfjwgsvBABcfPHFOP/88/H6178e73nPe3D06FFcd911OHLkyEze0liwHudE102Cx3vOSinr2MT1uK8VWqpc3dSBVfddCs/HloAH98Zw2lonCk/ATZ4z1tz39/Rd/ZUmJZsor1Qyuvtuwu7zYb+BWEG6ySFp5UHw2pj0t8aFkizcWFcG7hysdSKBgZZ9YAbJ+FSoLlXueAz3UUlR0GroTAkcVCChh6BfLCvGFTevSXsnkklIlqDHyA0f6bXqcxmlk/JiYT4D9ejU4+N1a4hykXkpRWGBokFg0MNfFWua19mpY6utPf2t9wa0B+ROgxoqQJYrFaNwp+qp2jj5kxuRGnEorctrnoqKhnJmQWOfSUl94AMfAOAKdhU333wz3vCGN6DX6+H222/He9/7Xhw/fhznnXceLrvsMlx33XXhs2VZ4hOf+ASuvPJKHD58GHv37sUVV1yR1FVtGHz47NlHRdNhyx5vpXZ8Meha5m1YuP+z2JbelDZT7fvwG/uErZejk+KaB9H2LTljiCcPbUf8tRT0IACXFEX0VIKnZlOShipBNrQ1iPkptZStvKahRd4nVV5DXomF29RPNIiVY/IchXWV8SGvJUqNtVVkBK52Yu5LFZMmiHNlVdiUEp/cf6SKSi1WvZatFGraz1HnFz3snvdgbeXm2qi8xGZhJ4fI6mzdqGJKnucEL3u7oK3OmshPRubqTn4OOZTVbAF0F3PYmcN943Deeefhs5/97MTjPO1pT8Mf/MEfzHLq2TCQhZ8TE5gH6pfASRu9DXpBFJrcJp4NXmtZBRSmAy/4WQO1Xji6poazKLAT6nPmEowKl/Ghk05uOimRguE+5oFyq5fJ+p7Q1bWLun4OSJXS3r7zoNjjUMM9weIX70Wp8LUBUAOlnKPj2UFstcKOFWy7wjxTR8ZQVdF7Zfsq/p0vXl3spO3zWCRR5ApW7x+Zd/OgXzpDQOn+k0J1a94IGhSx+4gqd1sBXdlFequV1E4Nl+kcBoZDtrVBYiwBzaHe7QQ9JVOnhlFT9OVUBOXegrA7e/dRQSnDLbGWjVModdcJmD19yX14Yfd4z7nka+JhFSLI2DfPmhgONAAwcEn73Jvwpx1aLE3dHogg/C2wjui1dWrEfV0skr5mzP9Q6fYHnnAAacuDlBFF4a4KYnmQsgkLmyaoVdkxp0LPzxrnKan3xYLqlYG/d5U3Asro+VaFq/Pid+q+OwdzYgz/heclN2zgPUbAF29K7pB/KwWfSo7Kbx5BRi/82FI0WPhMuIklx6DFlmRlHu/GnOmJLgKlmPe3tMCgis9jXFNgPlsgzic+v90CWunK1KVQp4fcmLut5zNA+HyBZsNoXhjrQnmB5crzYdigPRVBY3VB2J1KKgc9lzChxaJuVBoSNgphMfmt37HZz9B5+bceA14I2zi2cGwdh5UF55lwFnD7NHnlVdcIXdMLA+RhYIbvrAGsWPeTlJQyo0ZZdom3iNSzolKzvElIw4nqNVE4837ofVJGY/K3RWi/FO5ddh/zcVsvyZquZx7BoEKRW6dQgAYqsfcgS6RKnKEe7TDPYxrE8K6WERQm7QKiUA+D919zg7sFieeByc9tI1a9fm+RYbeSc92vxxC+NOk5T7VH1xQhWoDC3Z1KSkM9Kow1VLQ8iMSAfevOOtfFXRvXUom5qrz4NuRuGiw6Ckl6NAYpZZwWIb87qoCv9h4fMBxKojJh41l6Cmz/o/vBAG7cHW/Bcd7knp4W4nZGWJ9h0sm9yOuV8gWt92Vp4DtieA+qV7m/6VWop7OnH72mPf1YY8SO6aTY07DQvX9InayMu3kVHCGF9zdnN1IJzoLEs0YcRwUxbkoXtmT+kkrpZMc920EZ84Uce/Cm/PWslcCJnvMi6aEBaQ0W6ct8Rta4692JxId5wHtbZM8wySvKXM+/Ow8oJxYNEp4AN7bVWjrRFAilGNbEiMmpAm4/ZP36HGVUzYBdqqRspE4zEc2+U0tVFIBkT+3tO8GnoSzmSbQw1yIWnap1r12ZTTYO7lXVq9w4TBmt7IEIOMLKeAFHSqCC5WKkkjIA1oXY0BVlFYr6vNLKmW6EWqONxAgZl14flWsQzhgvDChMunUM39VeSVHR9st0LHuppHzPRRoYvHYqH/VoAH+f/d9cMEB8P3g44tkBmGvLA/U06VEB7jkHD9FE75HzZ60DrEu+MyGF+B8qtNI6paYhRcAzIyWUG0gEJnp1NIZ2QwgJiNffOJcb1hP/X5v5QrqbDWMdSaaycRNRhvXD36cYw48GQ258z4ndq6RCeMhEL6JXRTLASj96UqHhp68xMsYlrvf0pbhUGoay2FSFOtG0BtS7alxkuZsvXgkXWLAiTXpcKkyG1ygMqdj4mnozMBhSVPnfeVeG8H72vXAtxn2QbzexHPl9HnppEJVnbVz+RY/NbQJC+NG/p8aEblmQCHEJI1KB6u6uRfYMKzvdRpA5gvfKfFCTpS9jD7/964X/Dh8tlSf/1u/oXACGjQMeI6fb7zTBvCjslusi27VJnpyK0Lm3AOxOJbU0cEoobArmBcLyADhz1SmrZb95oXpAto41RxbAmf54J3ouHFUV7vdaJ3o0tOyBtOjWy+wojMRqZz6lpoBGDJvReuJx+kWadwGcla7jDl5KFQU6/2YdVfgbUZAbi6HcE4V6CKMhDZfqQiKLsbCuS7J+NheOvCf0pIAYSqlMutEjoV0OtLPAqhJWypTGXdhY0My/mSNiSCzx1jpurjA0zLkxLYyNdUzqcSshIyjswilDXhu9ybqO94fMRFVmStapTGwLRQWdFzWHZ4lTK1Q0Dpr/BEYLQHqS+WXvdGXd8QxOvT5jF+aNbClo8C9o7u1OJUVBqOEvY4Ez1qOSmqUbMFvzkFlEgaIhIyC1dBPvA8MeVOkJD3yPoCDOd+YNB/LIJ29p02R9v4iECY61tEClTDaD0BJIFzEPrR0eqKS6tVOqoeWQjaE1jl+tex1v3pOPzDvmkyiElBlEL2u9jOEQMtn6hTMYqMyZk+Iz4CKnkiLbk+PUZ9etovKclRXXreN9hb8G7bJB0BjgvaR3yNeopJq+x+OSdBHudSa89TtNxKBTFYnHSAtwDKb4yI6DEomAU2/8RDCcWyU1GlRCPaFQB0FdD2t4ticpEL+TH+/AmqM4U6hQSNI6Zxx5aQCsSnNR/iRdvJFORP6/kT5r42dVwOYWZQWEvW8K+RzPpyw0Cn69D7kgZKv/GvEa2TOw8J7aMpUbfOEp0mvMixQ5XlXWVHQU1LVB7K+HmEDm/ea9pGc0kNfIsKPHUSAqLH5ee/0VFuh1oqfCsG6/mM2IIb2+rIHSKxAlntBT1vvQrQE7SOcDE+qjaqx0DgPOOMjzaJqz2y2kCWDY+Jsk/4IHizRnvJOhbcBIpjkVxp2DYezc+PbBhFmxO5XUvvUo0DSUtTxwSUrmbSjguDV5t3bbzTcxUrqVq6BeedzVUK123NbnTGjTome4KGzmlwk7zSmoEtPWQk1emO6nxM8HiwWSlwKGKeoFwl4wRliFQJZ7MnGBnOy46+Tf/TKGJMiIDCSNOob+VBknoUrEsFdOWEB2HRTS675ItjKxK4j2YuyXcVPJ0KTWX0cn86TWOjFkq1tz0OJmiJDPcNZ9d8YV21KpUuDUJjL1gKicDSQ/KvdFt5zvVKkHtsi807jQ0naGDXUfM4L3ilAPnvfmVGwptOwNl4E3tmYtIch3AGeaY6v7QOp8odE4KIDl2Q+1O5UUrVg+mFw4AvHGsfvEehkF3CQsKxOwiBRqCmYWYi4NgJ5JvYb8+AzZ5DTuJuREimCZ2FTQ5aQHhpKCkkNc0PkaoGXPrh2VD5Ox9yGF5lIVx5yHsXg+KoAmksYUtzkhcahyDjVGJs3fBa8U0SNTkgVzRvo9hgkLO9yVY1HIk+Gcg9yXKM/DDX3eh1iBmGdapKeUz7+kXi8b83ZAi8jDa4jeZ9M8PhU9EIKyosbs13FSGhhonnO7oDKrNjCP3xjX3rHVqQ6xO5WUeidAtLDXa5d071hnoYdQnQj9aeYELTvtYkxrfh1RcK+XkcDAbul1w4LScavy4CIMLjKp0nY43EfPjTVi3cp9L9C15bNamMzzmuy61qQlFPNBbHNEK3WlE3N/hlxwj6TQ1wCmljwJplt8lckUUK585X3S9oMhkClGnlMZdYnBUkRDZW3By4KWvUXmJfG3GC9KTCkzT4GfXTRIztDQYVBYiz/dzGi6ZguE7V34diDt2O1VqovArJ5PVbi6OxqWgBiP2/wQde5y7Rk7tZG1e5UU3Uv+H/Ax/66v+BblpNb4NGwadi7mDxUV8yYhNCPEjTPWgGURRE1jDluLy+sUroWNT6tp/VERBiVVR+ETQp42JUfwh8ccFE6JD8rYqke7laOMzMbSxsLSlX6mfEy8JuayKKinodlS+ShRJWcacsxKMqGXOAocgxtc/JvCjvtVdSt3nYvql6eeJq9PBa81GKKu53Nkqz2DPFyzneBz00hDyNn4zwTvXe7j6YK1TgzJM/wdcqILDvOpjJxGkaqhSlA5TamId6eSGhJs/vXAjKpTpdRkqY9D8r2G7/B8bFfECnIWVuYhsCHhO8JqzhWMnkuVUaIMRiiFJm/GIirspsnFayrkvTwUo16s3lvI53XcTVAqemMoJ/+/HX4xL44Nv2UsRv7OWZX9Yr7N5ibBAOGC1OELulM8mJ0SstoJ4+Czawr76d+JIXKaYCjsLcbhIjGLIT8KgaA1/TF2p5L6uz1xmw613CvjLA6DYeU07U0jlZlWt/FhEuapGPYLVr63+Mgcq2xslaRjUOIEh8IFp15IU24NSMN9WidFYWcQCRNNCXcdO8OjPEZhXW6N1wRI93V6I/57J7qRRMLGtiQvsJURPReGGXOl1pfvqSFAy0uvjZ8Z2EhO0HBZsCjl+ZCVSVQGsAVgOpFhddI3fD1jbbp5MQ4M/1IrGaSeIXcdBtKxsw3UTlAS24mydqFmcYITz5RGG9mRpxuqIjXscixq+lARVrIeJxkE+mzUkJyBor47ldQjy6kFTuFsjVMwQBpeoyBTr2sUVjtx4z4K2UIWR1W4mhkK6b6JxaoGUbiXEAUlD19DQUySAzGGaxAZXgrWHZE1x3BfoqTk/aawmxITjI29/mqhl7PItyPHAmJ4VTdZpLIBPOW6jtcKALW//8yBcaHxuSjZhMYAaiRba2vdWsjhyQ93F1ZDpfBzIHi8nv1o/N/dOoY6Weg7DmQdjiJAaKiVH6n99ZPiz001+bxKf900BIIHKOcNxow853weUUjoPTsVEfpwCodZIw67IQ81L0JNZaakmiIh80IjJOzsMk3LpjAHTSprZnhUu1NJAanVr8onDzfl3sYkNHkhJnsf/r2ykC4QDTVa+j0VODquaaDWShLayq5NFZOOX49T2EgqYM2GodCDE+awUpibe2ImbVVE7ywPrwIxj1d540E/D0RPSKGLTgWTKswmqruFs8aNAQY1YMSTqgHXQd7E3NygcM+P1PRxyMMsBMdRIioZvq2e1JCAMe4ZkCmqz6qpRi4X0HninPdytwjxnC1ayHw8HVHIemVR/KxybZpzaPumWZCff8av704l1au80PO1QgObKRdEzyLxbrwwyhPbCm1n09Q5WxlSpGkbpEWajYusji2Zwnu5UkEcH0+ruSh6hOpJqRDXH+0Rp9fGsKWxbkfYnJiw5D+7d901gOX1k8bPrdDVou/Ufv8uE+9zbVwdFkkZx3ux3Q/Hy4bALMimV6VMON6zwrpwKj/Ln5W+uxekmVMpsLBX92EyRbwnj/fcmJd8c9txUNIMw4hqGLDVEZ+RQeqVMtynxdcGrqzBILWI1dhSI6kp9MI5xdeXxGA6VcH7USCu31P5ehaBZd88QOc4135T55N5wTVFrx+IofxxCKE9k83l6bTn7lRSat3r7wLDCkItMd12YdT908+qkE9IDZlVp4pQc1ZKBQ95JpuFMSAPGfF6hq5DFZAIIm0umysqVWD8HTrHS96MhdF6vp6n1OuWGSywZSiUAndQOMYgqkggGRQuLHii5z7/eE92IPbn2NOPIS9r/DYj4q3wvuaTPaHiN4QHO2XMaSRejP9d2thCabXvxjcq15F7kMzD8ZA8bze7/zXitfB+sHavic2oGxrm11vY9Br5zLt1vH+hYz+Gu1Scasjn++mObu3Xq8xpvUeLVuKUYyydYI5wHGhcEDMQMHaNkjIP/79RQJbeeq/qYaE8ahdW1gMd77l6qqXB6EajIe8jrZd4TAqD/KHwfXp3OpEYr6UVpOyvnJ0GIGy/wbE05pa8wLfSjJYWlUUM4VEx0iLlBNRjUUiqZ6eNa00RSQuqoPU4TXNYPYcwaU281pAMLsSLlO+GUIZN74N6ixTQqL2iKKKCLXz+MGcQhtAaUgXUZJFqbVlQNvK89drUKxoqoOV18Ht8z6YKSqHzTmuEQriU82w6YbCjoZ5kcg/RKipj45ZChRWjXAzvRaKTyYhp77+u4RkMjF2jpLDaicKTlmj+gNjWR5WWNX4bc+/CPtZz39/Td5sedmv3N1us1CY+JIaBlLTQlRAVLWPrFWDYpK8DJ3jlQWktDRdhUKojhDCVIv/molXvIChCOGuLx6PQ7FY+Z2Kj8LYGOFm5vnZMkvZtZA2WNm5ICMRQFUMLZY3A3lOlos1y1QOpijhuICVuMJypdW9BWfvxGACoU2Vc1u773LsqUYRICRpA+r56Wf0CWO26PNbyIM4DhinJ9qQXtSpLigoyhOI8ccTU0aPkXFUGpiopC1cgznlENHkSVPJWz++VPF+bVl+RbUjlx3u9XdDnUxu4e+kV8Kz7LQWFjmFj9VRGWQN7tij0OXNeyqbktNOSgl4VwqjyVnQnC5kUIjBoZQTBaGLXAc2laENVIIv31lFoM8TE3n0G6aKyAFBGFlkSHoR4Q1w9NvVMVCDlyk0XWlACItC5CV4p3oqR3AjHU4pAHxROMAMIHduZ6yrkeg1SL4rXwvs0ajIW8p7OdwpnvX95fYx6kfpbj63KnEqH59QtQJq8R44DSJXZwMR72C/S0KXuuksDgzV5GrrT5zTkScmYrUVQLvn15XNHj6leYVUAteTyZhHKSQd8446zE0JsIRTK65xjLFyPm+FltBgPztkZbv3uUVJPOCmKB06IMj+gVHN6ORRk7LNXWKBC9KrWOq56mzv3nui677HtSAip+ePuXY9KbckrNO1EkYcdazkv4MctxA0KJypJ9aRUSemCza1y+M9qayQgFTJUwF1PMmDuhYlp0sjpETC82fPfMXDKjN9bGkSFX/jvLlVAb+A8m6UqhiYO+G1T+p72zfu1VkZlkm/8B6TeEL1HJVQopTzJc9moQKhsVwbxedCzobdpTRxPZeL955yiYgreRh2JJYGMY53HyfumpQG0Kvmc9Hf4288TRggU+hzDHEAc08DGxslLFdD1z2OaRLoWnWt3+XkVw0YQ5riJ0Yna1xwqqWZa5OzcFpsDzR/zVuucnxK7R0ntW0//vzJwC9QiLtpcYFu4fAota+akHuulYbJ96y70FxQDEBvI+tzM/rXhfYi6nmU4sE5AaDhJ8yb5Jm38m+dQzw+QnImJgp1/6/ENYvhu1MTQ9kZKDljyoa1+GZWlFglrZ2UqZQp9+HvOXoXcYLLjQ6d7+2483Qqo1tx93+MJCie7wLEl9z3d44nXrZ6NgfcUkE7+SlwMsu3y+7c0iIbCkr9v2veMz6HvxxSYn9l9V28oKHHEucF7ouFizsXA8IvDHf49hRCm0lQafG0A6+u3+jayS2sTdwIYBxJSKvG6gyFUDBtLm4mQt0RslaVeKVmp02In5LC0zGK3QTdM1UjBuMjKGOweJdUE0pMHiIJACQjWAOzhpmEhZVcZOEt6tZOG2Gjdho4Pttky0/xRUHx2OHTCEI8KrNz7KrJzBCsc4k3wujKL3Mh58rEEckHD2EN+x0RBn4d81DNVogJrfLR4WKn+S5UjLhjr7rGBr0/yiju/Xl5reHaCJlprqEHyYTe1njkXOCbuJMpnoB5qZdz7qpSGuq/7e64GRbh3qmj1wU0AH6OxaNyHx8oHc4qvlikYpKHn2szP8LPJwKa/lkUgZzw2hYtbbC+UFETDMRC0ZldQwG5XUoW/S+OslS4Auxrpyo95j4nNYxnyObaUCkxaybT4uRNuU35EhZZFDDVp6I81NroIVSEUch1K+gCcpxaa5Zo0Wd+rojfGEB2PVVjnJY6rAyp9uDNhMfofWoMU2AwDAjFPxQ4O7Pyg3hr36Fr24xuI91VlUpn3hWyuWl+HeMyIgphjYP1YV56ZepcFANRA6UkNtXGhX5I91stUMdOT0vNZAD3/zGBjaDnfcC/P2/F4/EhupIT/NxgnqnQGZexsQo86RA30u/KdfK7yvfUibRvFsSTH8wpK67U2A5zTGl6t5L7NaZ1vO3abB6WlEpx/+lxqkV9c26cbBX1DWPH5kk7t8iTGupzUY72YGD8hi9YgCnwLl2/hpoB5PY0qmKKI22iUJioha1z+RkMqeVhQQ3j0RjgJKOAr74GoQF4axLxLt4rKi8QHMvTGoVulxBEgblPCicn7QiUY6n5sVFBN94dguLa0ccfdgYmh2jrzDAgNKwQ2nA/baa0YQ12N3pkFChM9OBTxWJVxYbPgwSFVUnwN7msh3EdSzSioN8/xq+cUxpV9Prlu8SS0Vo0enwFQVqki52eLwiliIjBPTTTQGDHQkCMt4pCjsvMayJOhxgaVVMLwAxqbzrbYWiiLOS+QJ/J6Rp2/E9AqKWJUWI1eQxLeAkINDK1tXTgKFRyhiWxmyavwANKHp54LkI0r87BY+6MsPBUuRfZdYHYBowJ04BW3eiYqS+kJ5Ocfh44oRAg7DqIQGNoi+Bz4W19jnVBQcia9n/pdRXg24r3ptWqYL3g2iLToaRZgCMOaTPFm48uVso6Pc7O0TmHYOtaXaZiV31VPSkHBwnnIbve89ZoE53MN49lET0oRwuSI4WlGCFpsP4IhlK0nNb7zz06B00dJKdW6CUmuBtEatiYlFYQaHa8YmEBf5861iPsQPd5zP9o5XaFWLxvX8ti6CLVrBF+jV1VwC3ID7EH0IDpiAQe6NRe5TY83L+ix6PboKhTL2nkorL+ahlW2MnAkFDadZfeKsINukT5LkiSCJyVGAwW6KSIBIzdEcqp5nrsBgLqIioBzIgm1ibfHUgjWZ+XbwRMGUbHU/icsbvkNf51GxknFRbZgx0j+VcItOej5drIaKCAWwmv/xMICxod5Qx4uu38GMX+4aOTWNgk7QPTK2y7x2w8aWpwj2qRaDRpCywimwOmhpNb9Jn7qWeRsoJyppOQCCv38dYMopPsF0PULu+sfwMmuU1JhC/Yije1z6/naeCFRiNeWe3ZIvRh+rolQoV5WkwczTlnPAuY/+JtWbUcUAnOCHVG8k7AyiKQLAKHxK/y4B+JhJcl08eaoyKg8ARdSDeSNTElZDIeT6uz4mivLlVRgoJnIFGUvwlFKimMJhdfireWf5Us8p7FAl89XPCbNCXBuEvyb4T6OlyE+smH5WrhX/rXgJVp3/2H8uak4F6gsmrzbEDZHzJG22DnQdVJ7T5zzIve4W08qA7c/n0TlDUw3b50uVVG45lt5q1LT7SCAKLTWPH2ZXb4HoqQoUEKvNo4BcTGGbeCzMWvrJRYTA8NhSkUQ5P490ogHxpEXZoXWTCktHIi5Hyorbfg6DZizo4dWmNhOyhqEbsw1YoiK8XCCf2rNGMFcShNxoQlcYPqZJsXB7hxA2jR21A6/tDIDqYbKKovfD42H5xcDRn/n+bcmxmMerhx1/fRMQ1E4mpUDx7QoKD1ft3fpYpiM0mJnQI13ZTE3zRldPxOw+5VU39c+rXaiUB0lLA3SMI122GaYh7klg6hsWKxJ4XCi6z73yDLwrZUY7mMoLvS8Q5rrKBAT7ks+RMb6Ilq4QBT4hY2fUzJEQiKQMCOtYSAKp7Ke3OV7FPat+xCS9wQpEJnDYThGi4SnBZmHQPReGFLl8ddLYD3zeIgkdOvfsPLT1LBVPRg+m+DF8Rzi9ZQWqMpobBjEZ3yiG8N+xkbPXRdmx3shOg+SQl/x8pQ9pS21glFjo1JSRand3oMnVTQLiCQ/JgYXC5npnfaQGmV8nde3EQWiDMO1TjQ+ajM+fNpie8G1FnLkBUYqKI2wTIHdraTYLYD5DCoa/jRp99wSBSQxDcCULsdBLyYnJzCEp73cmF/RMejWDUAcj0FKIe+K8tPGoRxTYAvaVBGEJHjtxpvXmFCwM2E+z8InwUEtWwp0XseoGqxpkbQvMs6DYi7HIA3LKdSay6Ghh1E1N0FgW3fOJk8qHA8pO88yBOqNA6Wwaw6FJAAlv1DxJF6OV/wWLiekiiivudO/+d3giVLR+ddUIY6CKqC66R4hPnMfAdzQ8+a9DN08kD7jzch9tVgsmoyuDXjZu1tJ6c0Ki92MpqyyqzmtRybtaRED0buiJa15GDL+mKPShqoJHbqKCibvyk7Pg6FG1trUxtVDAcN5KAoxhhO5yHnNRr7DdkG8JxT08xZ3divgjPVh6z90IN+g1atJ1kCMMNF7yROwgbYt90fzev4tkJyQsCxHKPLcQ9HjdszwM1QlwXxj+Hwdn5F6ZSRG6JwNihRxzuZTl8/cIOZrDNI8Fw0qKjDOLYU1CC3F9DnmQiZsZ+OfAfNhHPdGw3C6w7HmNlmD14b5IhheHuWxbAfy3D6hxo6+NgV2t5IaEuQmhrxqM2zxMXRnbNoih33tNKSWCyVdvMxHaPuW0rqalbKObWnYziW3svf2XR6DLYvKOibE1eLXZ0wGnF4rf2vuI1C6eRC4vBTKtK5HczyTGFRLg5h3YXhJF0/tPaAmEsck5CSGyjjqO42AWq4xeKLivTUpFyp1/p0rJr0H/F4ugLuigNmLEIjPpbBRkJPZqaHenAyTMCLlb1X+utCt3OtC7nNZey/TRgOFc49tu7gJo9LK6WEZ/6xUKXK8QRkjKnqOfRFCkgxDGoHagmu3gYX789DnqyL2GFVjuVtt373io+c8KO3w2sprpwbZ/0dgdyspBcMiuuCbvAd96EG4CzuN4TcVfEliGsPWPT8HxBAYF30I3dXRElayhnpAIYSDNFwZBKucM8mveMkZLHaLoSLIpmPSUqPQm4b4wFqt4AxQ+Hviw7zbKuh1628FF8goz4fHGzq2idfc9LmG25uEZqn8+b1wfrmXFgAKV9wM8RBgho/J9wrE+cVnkO8ZlN+fYJSY9B4NMUQRx0hlptep904T4KO8pY0qqCFvWNbhdmJS6co8YBoCiF7uLOPRHKPx84mMz6Y0xmajqVQg95IaKefTeVLTqTKPm266CS94wQtwxhln4ODBg/jBH/xB3HfffclnVldXceTIEZx99tnYt28fLrvsMjz44IPJZ+6//35ceuml2LNnDw4ePIi3vvWtGAw2aAGc6Ma8D3eIpeexMnAhqV7lm5h2gL9fBv5+xZEbHu+57z/ei9boygA4cxU4+yRw1kngiSdcp/V9685aYashTpo1yT+RJbjsz7t/zf3etx73YdrTd+dY7sdmpNxFloy5hIll4rm0C7vuhsut29fLKFBoXS33o/WvSjgR4HI/+4U71vGuJ4DsAR5byu96M6jUaXGvl657x6NL7t5PCy7m1U6sI1sv0iajquCbro2CW3OF6uGq4FWBqMdkuJef42vcn+yMNeDAGvCEVTdPzjrp5g6ft242SS+bjNOhpsBinKjSSmpQTMoKVW+T5RYnuu5en+zK/fPnZb60Lx39gagYlFm6VMXO9fSYWfdGT0c9snlBz2mfrBM2Od4O5KHeRRxvteNkzPGeey58NvQep0HoxlLEXLs2CtDnOu0xFwU1lIBo6Op4+8Jo3oxw32c/+1kcOXIEL3jBCzAYDPD2t78dF198Me69917s3bsXAHD11Vfj93//9/HRj34UBw4cwFVXXYXXvva1+PznPw8AqKoKl156KQ4dOoQvfOELeOCBB3D55Zej2+3ixhtvnGU4Kf5mf/RyGCbjBF/xrX8o6AaF367cWzNceOzSzXCI9thrQmFle4lOvPkGaWdmKwIlsN7qmJdKPAB/bD5sFUKaZ6IR3i9iqIfx/KVB2nGC7ZtCeAype97klVCZM1w18IvM2MgonARjnQe11nEKTq9jZTA5X9UvUuKJ7uHEe5F4NHWqdJJcFuJ3iuy+U5mGcSMNw+VMTJ6PGy6uDKKnmW+LQrZnLV3wSZzRFlVGx470b1VCSfjTPzvYSNFX6rbOE863kBulQhQhHPJ5cB6vQTpXqZT0XgQvThT/TmLfMWc3i0fGebKI/aaCMimdkcDnQ9nDU9RThupo1IQ1IPMUgGuvRkMH0VDdLDRFOvT1QOAq0vRBWQ/LnBGYSUl96lOfSv7/wQ9+EAcPHsSdd96JF7/4xXj00Ufxm7/5m7jlllvwspe9DABw880349nPfjb+5E/+BC960Yvw6U9/Gvfeey9uv/12nHPOOXjuc5+LG264AW9729vwjne8A71eb5YhTYZOzpB0N3HyGLjkN8MoyWKbw4qiQGDOi8w8tsrRsJ4unqaFlFslKniC9QvJW2B0CAxiFRq+geFwTvI9GQcVHBfXNBNfvT8KzvUy7iE1SZjpRoK13AMdY1Ijlp8f8fyJtW+jcDdyLP2d/51Dw1+qHPNnGBQhlaGJf08yJIdYiA1fyJPmidKQ34WJSoyGFAkm8iugKWebjE3HKC9usfE+FrTgS+uNgCnXsobHNwoaZWqg6TxWIT8JeQi6kbmKOM+m1QIbQZ7uAFIZVTdc34yMvw3lpB599FEAwFlnnQUAuPPOO9Hv9/Hyl788fOZZz3oWnvrUp+KOO+7Ai170Itxxxx244IILcM4554TPXHLJJbjyyitxzz334Hu+53uGzrO2toa1tbXw/2PHjg0PhpsOsi6F4TMSCjQUoiHBYGnIZ4OFPsGySZQFhWUdc0d8XR8YLec83BaazUKaaYrlXmWTnTHofLIGYSvHDhZ1phT5u8CwQl7pD7vog8KF7Qrr7uW+9fEF0hqqO9mJ4x4Uzmo89Pj4+7texg0HGeYI96pqXqhKGmF9mhbZAs4oQRUVfJ6nGToehr2t4I3Z6D3pPVXiAckSesyc6EHoc+dnQgNffp7KoI4KJ1yDKGQKBwM/Hm95D6z7bm6c5OxJK/OFObEwZ8ViZoi8O4dRt2gEz9VEYsmSDyNO6xkV02qNKcAwPOWPzgveq1C3NkLe8B7rPmqsnUw8FzHEgjG8FYpKflTWMaxsIWQgK8X903l4cyupuq7x0z/90/i+7/s+POc5zwEAHD16FL1eD2eeeWby2XPOOQdHjx4Nn1EFxff5XhNuuukmXH/99eMHxE34aNmyq3noxp3lqkI3AxEoFGzWTM+64eRgqISxfI25cuFrDkUT2RRwtEq4/5U10XNRq0RdZz3OKM+PL3EiNXlw+WTmdQBeKcCd84RvT8F72amBs0803xvNl611UuXBCTzqPvPa1yVEov3A6IkmDEJ/rYGiLjH6hFBhnKKqkV53TrBQazdYpxi+b3rfc0VFJTZOWAyFeb0wsjoeGSOftaaUefzaNoRfZI7zevgs9LqH6P2IjD9A5rOcNwyxiP0iFwU+t2k7lQBufj62JIrWv753ccOaGiqoNRyvIeRcqOu18nmociusm7elKCnNT+q8VcNpK6DGDu8/IyghFK5KarrnOreSOnLkCL7yla/gj//4j+c9xNS49tprcc0114T/Hzt2DOedd176oT39qKUB8VDqVEAVDT9BiQAw3pKdhh5J5RA+KgpoVPhOv6s95AKLTxRR/l1O1MqmLYCAVFiGzfZsak1pAh/+eDp5cnTrqFg5NtLc6YU2LS6CtHlN7pLMQG9slJIKCy8TpsFqywQ474+y2hKvE9GYKP39K5CGRVRRzALrv2wR503OHOQ1JzmgbPwqcDg/1JABogdnjQthNTFUtfg7eOM2+xlxLYV136ERQPZi0lFdlZ5cZ4gWYDHKivd1FlBAhmOYmUJLC0VOfApz2YrsEDmhXhGjF0HQ+7Vq6ugRssEAIyzaRk1LJDYb4541o0MqE2d8FnMpqauuugqf+MQn8LnPfQ5PecpTwuuHDh3C+vo6HnnkkcSbevDBB3Ho0KHwmS9+8YvJ8cj+42dyLC0tYWlpArNsVNKRDwzwLY8GcF0jkGp+1hzo9w6sjX/Qemx9jTmpINzhTkYqcahrqB3rTgVBbXyXDJE+OctoIBM3CSP6CdqrmlsdqfWyVCFs8T4KS57cwHAFx0Xr8GTHfX+vZzDmCKE+zzar/H0ua/f9R5Y9CzIr0mT3c601M0gVOu9L3vCV1j+9Ac09AtFb5bMqrBP0tDrJrMzbR4kuS6AGBcOTtZzfIHYE6VauBq4roUoKJDYa5j3OCTZ8tqqUmthRfT+3dQNENTQ0zKzKKih+E5UcyT95Z5XE0yriPaJg1c/Oa8lTsM+i7EInd/GgAp19BoEd8nhzjl3Dc+w8okZUifSe0hgZGKD2BKHjvbRRMOBYpGQVz9vKbLOguW5NR/C+M/3C12Yo9J/CXYiw1uKqq67Cxz/+cfzRH/0Rnv70pyfvP+95z0O328Uf/uEfhtfuu+8+3H///Th8+DAA4PDhw7j77rvx0EMPhc/cdttt2L9/P84///xZhpOODe8IP0NQK1DrkoInhbT2gJMr91ZycKFzsmlPvUk1HnxY3LVW2+L06pTmyx+lAnP7kOQzddodYxxCLm4COjKhKPx4f9Y8WzLfxZVQJRFCfEX83loHWO3GmhGCnw8WKMQbRmpg5B5TznwLCWsTlRf/ryEvPpPk2EaEy4j7o+foy7Up/Zsd0fPtTJRtpwQTfjYPWdEL1A0k9YclDHw/98Ty+zdqetMgUDp6Mre5dhruhbIv82jALJiFUABExZl7LvOA930e6Hwg2ScZE9KQuxoNGnnQfO4qc7NFfDY7DfmtVsMyqQed3XCZyZM6cuQIbrnlFvze7/0ezjjjjJBDOnDgAFZWVnDgwAG88Y1vxDXXXIOzzjoL+/fvx1ve8hYcPnwYL3rRiwAAF198Mc4//3y8/vWvx3ve8x4cPXoU1113HY4cOTLZW5oXpY0LuFsPCyHN63DSTLP/Ea19dWO5tQGPyzZK/F3WsfKfebSh8U6wMjre+7CIwgxIc06LBO9fPQCWy3QLetYKjUIQiH51hr89mgRREOKS38u/ByAWJFskha8kFABxp1wqgJCA7qTht5DYrWVOWPFikSkXUTCaB9DzhPCscYMtbdpRgV0f1oRYcqLrlH5giNbRI2OPRRoh6glRkYd7KkJa750aVoV1yWvKY15vCDnaeL/4N69XpyePT9Yq58VGoM9hGuhzyUP+04zFGp/7QfQOK5PWx00Dhv+NBWyRRi9o7OT1fATnDHO4NN44/zX3NKf+3TTwutVrtUDoEakyLXx2ukPPpKQ+8IEPAABe8pKXJK/ffPPNeMMb3gAA+OVf/mUURYHLLrsMa2truOSSS/D+978/fLYsS3ziE5/AlVdeicOHD2Pv3r244oor8M53vnOWocwG45XOsomstXxyUBix6zi3XB8FMseopEJPNiCsYK2V0rqlRcTrKaDynA5Df4tCbbJGsnCLhSGo0o7egj6PQ+c5JQrT3GoNCsordH4OSJVaKBsAEk1X+udZWqDyz5NFrBQCfG4cR2kR2JwapgCiUlGPYkj4+PEFL0IsaFO6PCLnWMgZeiV13BdNV4VTUuslkpZYy4MYfmMvR6/34lwSRZkkz214e4g4Q6+bz1KFJDvn0yPKQ+G54qPxtci5N4ui4xrvVSmpCHAh/nEYFI5sQSYanyWN2sLP8WlDhpzn9HapWHh/GQEZ8qLK6I1zHvB2ModbGTe/F22IbhTByBNZqJ4s13PCRJ7uGmZSUtZOPujy8jJ+7dd+Db/2a7828jNPe9rT8Ad/8AeznHoxoLXFFkO0ZAFJbNeTLUEKIi2o40MqxHrl8Qya94XaDCzSwlLmIi37boWw0y2V1KjrCoqJ1rsZVlxNX1VPis+I+z9xsSdC2Ax/P1isdQzn6sdUaARiRTZ2/TCfp3rcYWyZgkjCTTYev+Y4vIbhOarCFXsqKxF1ZEapZ0YhqspH9FRyT5KckzwHfS6FvFbY6DkVdvi68nvMc6inud0IzEfIdY35vLJ9+9kHudtBWccdDGZBYYfljIa88nsPpHMyTzcoxXwnQtdGnk9sosNPeSmnT+8+ICUnlDVQFgAyC3nfesz/NIEtZ0i2GHjygfbjC9tLYPGezTjUxifgEb0T7o81jdVCq14XQhLKsdGropIad21719PFpx4Trd4mKqrWuBmkizaUCcB5JwMzvHgDg8o4L0SFrm7/YOC7Z4hh0tS1gqGvoDjldw0kneVDaCO7f8zhcAyFPBOei+ESvWcoUsEFpAJOz8HnsjJIc1z6Gb22JmIDQ9QhVFkMe7J6j/PQ53ZjTz8NhwJjGKRFJPSQpKD3EojPgAbErNe5px/rgTj/mUNU6POlMcj/a957JxgCo2CsYxTTyGqSIxpOzo2CETjNlJSEWCoTizD3rkcW0yjWDItCjy055g0To1UBrJgY1mvqrL5V6JeRHUaWmSoTFt82gSGPR337Ik2a71v3dPYZvUEy2TRMyMXIUEho0JrB+PF2a3eftc8cwx6VBQoSLCA5E3hLzsSQKMM2QeFRiUsrLf7WHFWNNEymdGztdmHlnqGI+RleCxAVroUL2ahHw5o+VT6BrSgkEp5PrVD1jijMgEgWUVBJUvE2gWHq2gDrSO9vbv1utfBU1l/TOQs7PkeqONGNRpmyZHmNmnvTmspZ2gyVNbAyhWIrrLRRQzQU1EhkqmAHO1MAvOc4IkRsESNQowhXGU4vJUXoYjZId+NtQlVEr6lfOus9bM0gQq/yk3i6e794UJDUIoiIsnaWS9M1amcJ0mWTQlJadDOOp6xd0WxIZkuIa9pkNOnQluOWPBS7IBg/uGR83jPh1iS1j4lrUbVBXPwamlGY7G/9HMehoTN2RFflO+oy83xR0z3JyQ8m+7vpmFSO6gGFcUypTJR40cSS2y5hyXyfhs3mzfGOYwLmx52VbTgPmtiUSsQo5O9TAVRKBO9fkJnTTaDTS0lRcxs4N3zfurd0RlheZFodlyp21glZiMWF1BrevyY03TkmVGCgIS6OaZpPMuEd6qgADDrAGtw4qgJYG0TviOdi0vi4D2VaxKR6Lws7zIpu5btnly68SiHD1j6TFj5DZ2Xtczf+fpgijp/XFo5DhSWGyBLcM9dFwuNz4dOLopKn1WdMDIPt6aced8dfR2WBWo5PocJnqftNAfH6QylCFXMgCh6H4VGWGwBiiJiYI1Lh2pF7nDcntnB5sJNIhaA17h4Psi4JmuspbdrSZpBd21K1eEHKsZzspk1jyZKdZV8mHqsvzwWIx2SCn8+CRogWfm8GjHXzqlfHiEF4Dy7is1W57Y2gkLlEqLfKbvxr06mf00dJUXjTip40sWvjQntrHdev7thS6ploEp3WGBOkygQjG2uaiaXsMx6ToRYKyXHj1TZC/FGvj8em17g8iCGPvu9ruNqJ4QZey0bXBGPwhXV944oiXfjT1LMU1uVxigJYty4PVFrnIdUGoXkqEMecW9v6DKx8Vl838HUqiAqQW7ZT4ebPoaydIluqolLg3KgKvyjlvOp9GUSvi55hDmNH18DlifSmHJOFuwZknsNghDUbPoOoCMP9t6LQEUOKnH+VAQaDaAQtCoH51lD2Ee7hlPmi0AFFog15k+BkTmyxUihrt7VPXj+4PIFxrGDulrJoK8FnwoVAo0ibVCuDdAJOHyXFiUya8STLi+HAQR0FhNaJNLGamOuiMmTbkiYLjLReygjN12i4jh7RWmf8mEMYysb/Az70WMfQlvYNVIya+wZRYM2LfiYUKMRD4eOUx9Gka/AITPP4citYn1NYQEgJEla/03B+3sMmQcHja7cRCrdSwqyB3iyEEbazoTKiJU8vkAZVXrtnEZVM6JCBOE94vzQknSNXcmoY6d9NsEjnqhZLLxoaYuU9UENxFkXCdaKkHSWxjAshzlsgPCvKGuiKgAemD68yWsHdoOfZzWGjCKxb/kbM12rYegqcHkrKmvnqk/atRw+AJIkQ/kC0voCoXPqeMUQLnmERGg2DwrUDYsFmJ7Pg6A5TqLPSnMV9nTrueZWDYSBN8io7bUkEXWAg1iLoZdZw8QPDuY1pcdJ3o1jtRLKJKoU1ROE6qc0Lq/GVMhza8+RjF+GllnFHlbVNP8tnN07AdmoXimmy2KlUcgu85n0u4nOmMloSg2lJPP2OJ5TQC9+37jZRzMFaPVVGWo+izzBX7HxNSRE2+zu/nzS2NFyqJB16UiS9LDIsxXAo2ZrJezMSNzj/a8gcN6n3rRESYiuZukoAoXExzbkfW8p6ZcKF+ElSmpZUshGosVf4F/haAfe8BiPWUQN2p5JSJaG5hlnBbgXrlRNOlT8GvaBQwGuAuowu7ToQmphq2IQ967iLMC1oWnWknVIZUghpvkXbJ+XXRdo2MCx4DIbb2ygm3R4Kt1H3sYm+yx583LCQrL7SH5AhCebyxoUl6KFqLVEieBu+o9ZaUBBIGXoUwANReKOEQROxIjmfeLL6ndAQ1kaBqgwxzrPSK67axFxpWY8ultacUeiwXQBVAxFklJGhSkrDwkGo+MlDIo1GBejJMWzDe8i5O0ueaBpoN4kwFsyvOLo1UFXi0Zs01EfjVLHFDgmANI0wDuwdqeFMhr7D2qvHr7NFQuUBxVLnOpcfhmsUfgA/N/Ewu1NJnezG3Wk34urmdFbuUstFqVY4/O9upni03xmPyf8zAU+hxZBiYYGun2hUdqRsK+U3vy42hOUWFfp2IZ6UYmUQq+mpNIA0Ud8UHswRapP8/0NvP4k/hzyQeKDGxBg1MIZhKaEkKiUuvjAGpGE+IKVNs1Jf70tTIS49zwIpW2+eHU6tKG8+w6b52K0cE7Jajx4U59E0wj7xbvwz7NSpslHv0kBCp0gVkxokeag6965HeWCb4XFoCFQx786zzBlrqBKIl5uESGvxJrcQIeQvCrRp7TPfzEhDmMfG5YE59vU6KqzN8gpVyS8Au1NJPboEnGEAzNDKZByWBlFZaTEvF+WgcOEcKil2r15pCMuFPnjGhS7OWBtO+u7pS5JRQlCazxg1AQJhYwa3/qyTMZRI4aM5kFFKUaFCC3Chvsd77vegiEyeFQx7XBaRSUnFrWGY2ji2mS4+zUUligYImxkCkf2mxYV5CIe/yfiiYiFZoGNiq6xR4MaKhQhxPVdTW5gcDJNNC1XAYVsHuSatkdNaMfbrS/JVGA4HBgUlijucr4i/83wqsHnWelPx90ZABRdYmAZY7wwrLvchhE0lm57jWgdJXR0952mNZGWVJm2pTExZMAKgJAqSwtgDkvtw5cfm+uFcXOlvXr5qgQpwdyopbnswLXNsFjAmzgnFnIrmqTiZRhWpao5k1CQm9Tqws0w816Kr+41NO2lbxMLWaWpRkpoa/5oKL/WAqgKwVfpcQn84f73c6ykcH6KMsmc6idShymLcZ/N5EhK//u9JDE16wE1emrFOuG128jqfJ4Vx3iMR6rkQCy45ZoaFmtbLtMPOCSqnEjQnDAwbXbVx93Nc2JQGDhHYm1N4LTR2VbYEElU+563MNyPrjN8DwDIM48fmujGn5TPsDNHZ2c9rdyqpwroJs+4tinnDAaOOrXsnMX9EggPDZKMosZ3a7WQ7LmbPSbqRfNqsKKxLzjN/AqTnZYxbu0fodhq0tLUtP1tL8fM8bp745vMCEPqkaXiKng2p3h2/ILljbO5NaUgq5PPqmNTPb2dgHPr7XcEZCFrQPI7irMQF0siHlB4mh0ynQc5wpLLhe1aeR6+OxtDyIHqoGo5hHVhVpM8+3EukYTbjPbGeEG9WJFTLWp/NxGYQGBJWI0YbNDQEaIBSmax2YoSF4HzpYbxHdbITyVFBSYlRpd1RtCs7u4KoQtMQJT+XKzQWxPe9QrNmtIzMiUScA1uI3amkWJ9y0l/epBAKE/uFTbehmAakdc8SXhtV86QMQQqNzhZvbpbfK2vcfjb0TrV/XgiN+UlL5iHraZgjM0hDdX3J6RFUaEWZdYBAqkAMHGPOmHTxaahJx05lagDYOs2bJGFDI+QKO3ysSaQONhq2QLBiiUCDn3Nxs4i1iXmY1/RQiIYwo42hynxOc76zE0kQ0iZVUjwODQfd/2xlQhh00WBLLKXwLwIq4JvuQ5Pyoozh83m8F59RbrAVttljOdkBHveNAk5K5/Om+dwtYypBn3mipBCfPY2ysorHpGFnCok4Sb5c5wi763AYXB+L2slhSuxOJRUse5N6ADlImSULrbBAze0RtsiDUYQQYpZ72epxKOgVaMEm4/cMHSixQhPwJB0wrJl3Ig91RHVq4etCbwpBGfnh53JPxSALvY35Wz0w47/M7+s5RiF4L9nnjLzP37M+S8s5YaJ3rcdX9pSG8gAJPdvRnkcgUmTvNz2nnYAkX7bI42L6sKYaOVyvWtTM8K6uhVHgd5kPY0Qhzw8CsQYvHJv3Qo7X5OkYeT2/bepB8tg0/HT+q/fdelILwFoZq7XJaGNBJK2vx3vAt/YIrdm4BR5IDwMX1pulDck8XZIJhgyoCNg6iEyc3gzjWDTWOq4rxaCIoQlArHVhv3HDuLJ2bVxq457BSn84ua7f5/UZeCXtr520f7UqKYzpafF9hhGVvVYVzlKk0qFgyZtbUtkyL6EJ8lGeL8G+h030c2W/VSaGgvU+jGJsPd5Lt4Wh0NIt2nnOpQHQM+mxlgcxwT5OsGjIVo2O4EV4Bcxow8roQ20qgpJfsIIChLRAAwlR2fD/QHyOpkg7YJC8AMRcLo0zsjVHnZPPWFmwfNaqWIoy5pj6lSNr6djIBNUaQCB6vhwToxLqkZGo0TUx+jEL6aPp2gLDEBtKuexOJcXCz6pwLVqWejEHxJqTR5aBh/amuRIKo7IGVgfxO2efmHxOhunmUVKsh1rrxONQ4VlEoTaqXmazsV66UMRa6Ypy6RFxAZEFyAWcK9ZQBI24b1K+ELmwQuLfRE8MEMvOKyj1fvg9tfoYcy+8oNHFlis0HifkwfznKLAnMcroVZL9xe8z9KK1TP0y5oKoeNTb4b1c9/c6384g72BuvCBhrRW3mZm2FZda41TiQamJJ2ARjYetpmET4Znz/3N4pqOghAnj/xhFduHcYZkFi8wDsxEIdYzdEQpKayH5d7+MDZ4p4JW4xDZHto7fNYhKheHbpvpJ7daRvx9yVYJZUh45QsQFaT5tTuxOJaXzSnMOIQyIYSEJSO5gxLHGntNM/1mFTlaNR+uCzPMOWw3m3VhnREHGxRP+zr5n5PsMG7LuC4jPA4jXVxUAyEDShYT0mVGYGP0cw1w2hgrLOnoeo2SrstKCUjPxWJ1quGeeQueWKlN9nfMu8ejkPpg63jO9pkSJmPi9Aql3qfV3s+QMaAhVxbCSDl5Ldn+2a++ozdSNRn7zunOGpxpBwUiT+a8hsalKNtAcelajufG7Mq8YmlMZRrsmkWuIzzAfl55zEaCToF7/BrA7lRSQKg21EtViKixgbbREGHaiW8zvTHU+ZDUVU4LbRD/ecyE11lYwkc1OFOOEJEGrTlvuLAJ7fKiu9LVMhbR0osUYeoShOelb+IcwqadkbWKTXP4fiBanLqjOCIHMcbG4URcnfwclJwKG4eBRi3ncmCsDWCGSqDem/ewGVr5TpONlAW9hHYOR59d+kPRUOV6On2UPvRlDNHkHkpALlfEDaUh2uwwmZW0uegj0lGsA8F6A6Ki0EFrmkt4TGiZ5fWETlJxRZz/Q8/q5ylo10sZZm1nYaOAAsYREl5/26+Q8Y2iTMi5XlhvxUB/vpc1xCzt7p3rB7lVSRLC8zbDSyYWUxpJnXYjzWiKMQ692XEjNWMD0Y/hLlcCk86+XMTy0NMMYmLwdNYlYoExrmwpK2/lwnEBKfJgVDFkE78NK4ah4HkBcTKGbhz8GBTb/DvVltCzlfGphzlsoOjSvRFFZRMWiJ1fvCohKPklQ8/gmhgYpXDTsxmeykR1ye5UnD5moFIF4Hbop5G5E8BCL6I1w/qnhoT+859a650EKf7I9/IjzkRCTGNIyT5pKT3JjWw25oDjl8yabSzomhsNVPjaVTswDtkIL98xuqE3W7lRSqrW7PoHPOD33ZQotf/xT1RAWhfBSNb3Qmjfmumcd6HTSuq7lgTt3zxMOphlDyEvYSOeeFpM8xm4F7PP3hjv/atgnD39o6GseRVXWTlgOimGjQq28XNmod8Rxaff6wCYUyzdpXTWnAA6el/9/Mg4RWjo25qiolPMuIjoXmZuoTbSaC9tsrW+EvMNt5/uFPE9E734rmpNOQqcGTBFDyIuCsY4iHjxKRAMWQNIxJHRgKXz7NQP0ikg+0PzPpLWrEZ+84XQIGXOM+pMrMNMczdFnyChHYVPvXBWwKsF5oN+z/oAG8x8Pu1VJHViLfc+6ldvGPH+oe/sujNUvfJisjBNrye8bxO3Lp8U8impFiiw5gfat+5ZK9WwCZ2kwmwdFaI3IqPN1asd2LGxMEmvoFIhCOhzPzF/Nbvyzq7Ipqgsut1aDcpAxL0tfQo6X4VMq9o2CCk4vleODdasseCRCBKGHt6fBEOH185qUecefZWnXZfwx1427Z4m3iehxFhitbNjlpFu5Hm8Giy2EnwYMjY4ifhQWKDZxTIWN90cVRNNYOnVaV6g99lTBNSH3oHi85UGqpJTZmYcaeXx6WCRf6DEVqrCUPEQDRPv8zWsAaKgeSO/hnNiVSso++V+Fv83gnc03vFNF91zrVzV0shEK5qxgPoQ00u6MCmqjCGyiCZ9jUeigjIsnr9cYtUgWAc33cMEq1NMCEKjqbpX71+xoIbiRccEMKyog5jxphRt4S11yUk1QhVTYVEnlrbfUks4FFdmTLA1g4+Jxc7upketWYN3nHruiqLYzBzbLPZi3uFgvj0aXko2UyJGPp5Dnr2HAxltm4q+QR/XHUBKG5ktnwbi6sA3Ig12ppBKMmjjLlbOCBoWzFrl1xtIgemBbpaAAZ0EdPL491ussebiydl0GqjoKlFBjgvh/xrxrM7+3Qmsvr7ngQmYsHTZtBaMI+4HJIsm3fNgo6PEkOQVJVtOr1xCpNe4eAqPn2crAjXMgFH89zp5+vF7W1jFcF6jkSL1LFHAdOzA+vLnVioH7UrFOqK6ALqLRthug7MwQakM0ljlP1ZPqWEei4fuJkSLPKDEQkSornZdNqGR9sG0SMHn7nBz8quaBgY3lSnE6KKlRMNb1qgvbe5fRgins7HmdRWC7FmOoZJ9BMAVlVThlpZZcZQCUacHgPEpBG26y6Dp4Rh61l8A8dy5cQ9hMvL1FGwGqCDUXxzBgU3iNAmgcSP0HnBFDT6hJgdC7ZVEoQ7dd8YgowFjnNt3u3ZuPx3ux/o7CW693M7eVmBfsUDNtb01rYgulnPjDtdFFmsdtmlMhdJuH+0z8CYpQ9rhThcVj86eqYw0cgNDea9L2OTmUaZp7hxswCk9fJQXEye+9aQCSXN/CUNtOwLxhFa2fAvxCkoUWvJ05QEtTPQE9FBddUlM04hqU1LFo0PK1/j+b4YGTRTY2z2FSK7rMX8f2hPAmIaFCU5giFb4L55xvALp9hvF5vknPPLQ+agijJc+U6yg7pkWqvMadLzFK5N7qazyO3msaewYIrZfI6J1WNmjOjMN44s9M990ROL2VFBAT0Ms7gLk0LbiYgckJ2mmxEaXMHFptXBPMpBJ+A2Nj4156eZ0iXXhanA1Mt5iS0NeCoOfkNgrWuOactQXQ2Xh+RQtLmxB6yBVRiBoJgdJ7YouonWSE7Vt342EpBtmMQBSw83p9i+xKwft6shu7mdDQ5VY3ObjxJyM2zAeqFzRuTtAAIktuXJ5M67jqMiqhJiJDohdNZJpySw/rCWWD2l2rhpbHgWFkK9e3QbRK6lQCN1VTa2zctiBbCYYg9tQxpKETVBXXtCitY3JRSQ1KybkUUSEEb2uCEtgsg5zXXoskZZilgg9DFlGYzausxglbzduFZrQYzscpM3KnwFi/O7SEt/KQru6aq0YK0MB0y7wGrZubF2xTVZnYp4/lA4VNc7FEZYATvrC1NpEVyxAmkCosra3TziXaQSL3kiC/gRi65z3Ry068U3ldQ4pUUIF6X8TcKZnPk5Q+maQLYPYBrZI6taDWtC6IrSR4TINQvZ+F+mYdJ6+XsX9U0ZpFHa1GVVDbdS+mCSNqPcqkYzVdxySvgG8VNoYGeW/yDiw7EUuDdCfqppCXzqmm61GSgJXvbDT/pl3ONSyphIOkwbEorjyMqSSgCqKcvIbKO4uEe4Fm44LPt5DfYS2YGIIDow7yfuPx/G+OMb+fk+YvxzHVhydj9yupRbr72w22HaqAsH+RWUB3dO4b07GL3SsmUL83AC5ghlKYTM9j+1Rk01jMGk5aBDiWvAhSvZaydvd3VDdsCjgKYLW2gUgr14R3cgxEAdWrXFhPKephGwlEQbmTvClC647yZ8yuKlzTYSNGREGtyiIoEH+dxZTzIz+nbuejrLnaxAJ81lsamYdWn6scM3wP8RmHZ2Hi+yFK4N8LbcCQEmis/6f2xlvw1gxQ0KOh4dIwv3Se5feIm4syOjKObaneX/D6Nj7Hdr+SamKEnapg2xZNeG4Uyjrq1mkR9FZAc2v62ihFaawrch4AoYARSJmEE8854RzTIknyZ6ENFZ4soh01NqXaw3+OIReGkiqTKpecMaX3kf3bGEqycMcLFjG9kR2+JpSur4pBdwjgPaZAVG+L3+nUzggrzOw53H4RFV8exg51QZnn16ldnZdFussCod5eYZ2Xp8ZN2L6Dn0E8fqiZ8woovIFhTyoJI2ZKQ70tnavqrQUPUMabd0tXqAecF9BvALteSdnOvwEAGLxjeweyKJS1ixPndTfzQvfC4QIsNkFJ5dRsImEBym+Y0fReUrOtSQXyJKVDhaJ5rEUaLxy/0n0NJisEkh3C/40jXDABXcnxYJsFBecCu7ersAr3p46e8g7XTwmCgNWwEwWoTX+Hj1mELV0MIgNvVpmp7NTgsfE9CMvPIlVYNnpKeZ6NzxNIvW+eR5mAxs8Bdokg8jwcj6UM1iZD1sj3me9SJcY11BSiNIhzNQ+ta2cMvd4FrK9dr6SmArdCV0uF1gDfX+3EUMoiC0HnQa9y4Z2NeIiDwiWCdY8ohhPYnWClP30dyCSsSe0Ow5aqCEPRLqLA1qarTfecoZVpQUKBJpcXWZtmTdyiQBcq72s+VAoCbppoMyHU5O1ZFk3bNLxJlhkJKqGY18b3eVy+fyqB47ZyX4NQxrAiUa9BmZWzzGV6sFqgzXMAfj7l3T2y8Wq4lUZLbR0JSMcLpMQX1rpxjrOujoYKSRu8zJDHKsUwEoQ6K/GyuA5zryp8R8akSmqtjAqORpCOVzFLW7kROL2VFIVE2NLBRkvTQDY3K2Jhmz7k7YJOkHlBwUgvSsMStXWvdyr390YFuTUxiUyKa65cLKKCCgLU590W0SFCFy0X+iIFNS1dVVCTCqQ1HJKE4uA9WvH4gseJ9DskBAQ2lo05mNxrVSG9GfVimw1VSDa7Xwz1KRLSwRzGFu91roCUhccx5MdOlKX/7JASMMPPk+FMKsgC0RPUUyTXY4Y9rXB8kz5rvYb8t86z/Pv0Vjk+engcfyh7cAaEPfCzjbd0HpxeSmq9dPs3hZ0wvfVKIV3a2HVct1oGpCHpDql+X1RHam65UYsnRet/QRTSRFjSE83vIRUZfwNOQRoAdT1f49yhMQCBk0vhvxFoUlxj97w09VpIWWYYjt/jvQnbkyAVWkaOo8fMha7mIRjy0dZMQx7ZFigpa4BV76kDsfHzvMit/qb3GdYMY4Dcb9UsI8arxyXlOqFoA6EX48DTs/X5MCeYe108Ho/FcHVQYtnzMBZhl+cmBZsoav+alh/kbMTaT3iGDrWZNGWbsvIKbzXmhfk14g7BqoCVgr9g+Xj6KKmTHeCxJeDv9kSmzlqZTo5u5VolLQ/cg1vpx5DQ0mA4B0QvTJlGoUZlAR7IZoILpLS+BQ0icSK33BdBMmDYbiQzCNIHMLP+Omb2PmJNoJAQA3RuDAqXjAfEAzXp/cqVFBAXsG7jQHo9a2lU6LgDxO8VXgiPUrLThjA3m/H6rT1uza12XNsja4DHT8b1NU/xfAhT1RL6QwyHUYkl98/DyGsqRHNBn99TKlW9XWH/tCLOW/VEuIU7IJ6KcWQKKgwaJToGnj83RPis9RrUA4O8zlwWt6IPr/nPaj7TeNllZYt7hgCBNPXRdF5dS7yGRbKDOYxZv/C5z30Or371q3HuuefCGIP/+l//a/L+G97wBhhjkp9XvOIVyWcefvhhvO51r8P+/ftx5pln4o1vfCMef/zxDV3IRNB7YgX4aif+sHdfv4wPmVYIbz5juDlI/VXXnVbMdmNcOMvIgue1qZXaFKPeCGaxsBLWHBbjzY06x4a+L95TnR1PhYqVuZT/Dp/PhBog159/Fot7LpsB7Yep66ovr80DVfy5d6H3Q/9uIhE0hcEmnjs7pyoPVZ5BYTaMT3NBuedrsuvKj6+vqyc+9NOwdnQO1dlP6Otn0u+Ga0Y8F5qOb4blzILn5sye1PHjx/Hd3/3d+Imf+Am89rWvbfzMK17xCtx8883h/0tLaazmda97HR544AHcdttt6Pf7+Gf/7J/hzW9+M2655ZZZhzM9TnZd2IFbG5NSCghZAFHJlPSIGmoJCGNdN/Vg/RfRkwJcS5HtIllQ0Y5qzrkycGPvF+7eMNxHK5XCYNZk8yhMCvN0ane/uDNqzpJa1MS3iALTWIQ9r8aFkZQurK/p4mQYL29MzDlVMwnuX0xCMBBhmhk8AJLCXBWEOyHsrKiNW1snu36ddbyHXkWPknNt/9p852Boiree9yQnH7DWSHeTZsiXcxxIPbBx0OdhgND1n4xKLdvQecQuKXxdPWKNGsiUD6kH5qQ4XrYfyw0+ZcaqwaS5NHqYqpTC9VDB1vE6h9a+/yw9Lb1/hXx2UUQrwcxK6pWvfCVe+cpXjv3M0tISDh061PjeX/zFX+BTn/oUvvSlL+H5z38+AODf//t/j1e96lX4t//23+Lcc8+ddUjT4UTX/Rzv+vZC2cQopFhUWTYsfhsFPph+JzLUqKQC2QJb37ZIyRBhJ9Fs8jAkyY7Jyrybhw21ETAHGGjbSAXIIsbBhTsoYqhX91aiJcs8XWGlwwVShZ9blvDj7Ph5pHkMTYIXftJZ+ESzTT0rm43TGrhOGyYlSWzls5kWjy3F9XW85+Z/t/Ib+XkhedKvvbXOfHlV3U2byAU2Q1xrfsdrKhAV7kHJm8n3Mfd8KyBQ/XlMbRmUh38rI2w6rxB6JjWYOCaDqKRIvNFzkC2X5InEqFGviQhED5VtkpPXnCg/YzAsN/xUDIaWkWMrE3fBxtPM4b5p8JnPfAYHDx7Ed37nd+LKK6/Et771rfDeHXfcgTPPPDMoKAB4+ctfjqIo8Kd/+qeNx1tbW8OxY8eSn7mQ0C/r9OHnrneSCJ/TjFfWC0kBW4WmcMLIzyINMWwHqOxD+FEm/aLGpd5KECDyfNQKnxQOyi1xVez5vdfYvirdnPiQK2V9TT2HUQpquxl7SZIe8kxt9FY5xI3Isfz6KZg11K4h+1HPMw9vTQuT/Z08U4gCQaoYcgUyat7QYGNXCEZ6kpA84rmSUKEcr5TvJU1t8/uAlFW47jvQJMpPjDFeX34eHn+RrFlsAnHiFa94BV772tfi6U9/Or72ta/h7W9/O175ylfijjvuQFmWOHr0KA4ePJgOotPBWWedhaNHjzYe86abbsL111+/sYGVnhSwpy9Wg3+PVnNXPAkLZ233JVxAYkETOAGBNPRAYgUnccduTTeHrt80bhosDYBC8gSTlNpmoVvFjhfM9QEb9xqSWDxisaQ1jjnIDuFqrCh9nAJALcTQDQFxHmlbKS56i+iRKcEmHaA/ppybc0dZl8aOTkwzl0qhAqRCa7NJPNbEkoba+OdYOy+KzWPp3W80BB6MFpueF0ijGSyv0AazBde9/J6mzEJJU2qghPdUAZv0Ga6VUb7k5I/CxnCoznMqhlzxaRcOfo4t0izirgFdmX9U2Lo/G0TxDArn4TLlAbh7tqefNkQ2BpG048fdq1JDqu9rSvdN+SynwMKV1I/8yI+Evy+44AJceOGFeMYznoHPfOYzuOiii+Y65rXXXotrrrkm/P/YsWM477zzZj9QxzqXnIKAD5qCkXFZAx9u8e93aqDXgdstdMxkDpaG/9000cwMymMr0RWq7XajJ2OhkJ8VmtcJf0Msbr+AbZEqISoYHgNo9uQKi6HtCDQ3Uli3oK18Xq3gRJkgeu/8rV4A5+a4PFRt0pIKizjmwh+TAmUzwHsaerzVTiH0Kpf/LKwnURTNhc3zgs+LTDa9b1TcwehAalTQsCwQ7/3I82D43uvz1DAiWYccQ79MP9eph+vbaIA0eTtqLBE2my8Wacicxk1tXN0cDbGm+RO8KMR7x9BioMrXSB4ajToqd87hysTw5YKw6RT0b//2b8cTn/hEfPWrX8VFF12EQ4cO4aGHHko+MxgM8PDDD4/MYy0tLQ2RL2aFfUpUcubLH4gLCkhDMvw/8zQAUFWTFxUngNZi6ETTxOJOxaLiybnwnRW8T4VfMNOOKQ9LABLSEcuT5+Cq5586D6y8rmEqQpVQUHjZs1dv3eiPP3CYb3yNCtICKKJ1rkn/UUgS8KqhIGPYxLlX5PfOXweVJnNS4XMLOm8Io2WvB4Gc1YoxR5h81kZjoAlUIPxb57WR1/TcwOhwot4f9aq012JlxKgacbMSj99Ej46NZHXe2yKOuWmNKK08Z/9Z67yoAtn6QZzDTGf0PXN6gdh0JfXXf/3X+Na3voUnP/nJAIDDhw/jkUcewZ133onnPe95AIA/+qM/Ql3XeOELX7jZw3E497FIP1eLSy3VqnBEi9pbg5NyFJzEFFpAfNAFgM5g60J924mTHWA9m1YMC8yqBKdR6swlDcSoyPM5QLpgwzisPCMbLUO1hssxY+bxa+sESQXXJodQTyzPM42yenguDRsGRZkJQ83DkOatn7WI39/s8K2Gf6oCgNS8nejGsBZDl/OG/Jq8fd1rCoihQJIMdN7VxglsyGeDN4XR7DRGWaaBsQjtq4LhZDPFgNQbyZ8RZRJbsmluzVgXEWKYsKwdYYcerHqFtQGKTvxb7xNBLzzcHwDwxIrSzymuEV0L6vmtGbfuj3eBR5anu09TYmYl9fjjj+OrX/1q+P9f/dVf4a677sJZZ52Fs846C9dffz0uu+wyHDp0CF/72tfwMz/zM3jmM5+JSy65BADw7Gc/G694xSvwpje9Cb/+67+Ofr+Pq666Cj/yIz+yecy+HHvXU2UExIdAa5chF2V3jQOFA49D4QBEK3i7NybcbNReUXDCa40K78GiOmUQ3H9It+YO99mMvud8RjrOYH0j5itmiUvlFiqh1vYsyiIUhKJZUeZEAfU6lWW2VQielChUtdDn7aEHxHvL6wyMNXlfYYDQJVzvuxor+v0aCB0eFhHtmIZwRSbrKCOIXl+/TMOY9JiG8mSZUcf7P6idsskjAjpHdK1Whbt3ej5dK4kx4OHlpD33XwELFuMzK6n/8T/+B1760peG/zNXdMUVV+ADH/gAvvzlL+NDH/oQHnnkEZx77rm4+OKLccMNNyThuo985CO46qqrcNFFF6EoClx22WX4lV/5lQVczpRY8V4NaZ59TSh6qCW7b90J13HJ1VLizJygbL3EbdAngd/jeJYH29/MdlowNABkgt6DYQNtx7IINCmAfPHk4J44IffjLXta+kqyqA0mbphHr4t/A2mISfNQ2lEiz3mp0AHSOTXu3EmezcJL3PgZWuybjT19d66BJy1Uci9I3hjVFmsc+Jya7hfgPaZBXHPMvxC5R11nzyg51wzXOw70aNSDzot46b03Xe/JrruHqx3gsV4agtMyEYsRZBzEz3RqwPqUxUo/3gPm8RLFLcfmrt8aYeJ15B5n5Sn/m4CZj/qSl7wE1o5+krfeeuvEY5x11lmbW7g7DboVcECUDvMKfXGz9/gHum893YxtEhhKKuvJPef+fiUqSE4WLvCetGnaycqKsegaMX7PEAfB4tlFb3XPeLzmbBJ6sklzTkAautGFTwGqtPSinqxYaX0q1GOgMGTohgI3F+LaO3Lqa0fqUfFvw+vMhMxmgkqoNv46JYRurFMmTddG1lnuaVKx1/IMc0EPxLqj2nhGroR9Cc1N5t5A8Chs9F7mvWdBASKlgNMA4fzvVqOjK+ulK4ZmbeejS+lWOlTyZe1YfKxDSxSz/M0asbJ296ZXRUJHiEL4L+gzUo9XlZT2+NQxn9whSmrXQqmd7DJB62OzFATbx+gEpJIaeEHDBTeLktxq0OsYKiKECAb/Av+/qByJwYSQCaIA4tCScFPG7gOyMAgmj3lUWGcoh4ThpDSAsGsq6tlCdKO8R56LY9gKBaUobKRb89ko+SAH70cwOPzr6v3o/TcYvt5AtinS5wikSqkpJNtUN8S5Oss8TWqgxHgKY4R4/WOOTbo4dyrgztlKcAht27Lv5h4k4EgU+Y69gL/nYVG4X4woIDtOvnYS71Tm9CagVVI5uhVQmrRmZQF7ojTiRNdV6fdpucEJ+zXfvWLgLaClgZtcKwvO5ywKg8IlTROFhPGEg0WBz8s2LBKGcptyinyJW9HnlqHSmAOZYcL1KCVZa3PUAFHllFj6iF5QaaZTLMZG74VWMscMxBqlrVZSwPR1eqxn0vZF8GshMGL9Z6ch3uRr1QChZVlQGjRAaEUhY4ZmHu60ir6S4wbljJiLqw2cUVQLJV4U2YmuC/Od9CG+1Y50x5H5rTk1nqcpjxaUeh09UYa5DVK6+bIf68rAyRstg+DxSdhYGiBhZwaW9ORbNA9aJdWEwgKFsLw2g/BQFY4Jc2wp1o4wR8bt3Nf9GNjCp3NiMjtwFsr2IkBF0M+8QVK0c4W0GRM5hFez19n6JYcKHXrOecI5hH3qtL1UE4IggtCJ5bPGOvafelKaR1MBRKU4a1h0ZeAECCnAFtunoKYBc6+6wR/zwAX8M6nHexxNaLxnnnk56jBWflukBJxCnhWh4Uei0WMyqeHC7xUyB9g7sl8Cjy47ebBeerlAwgSGiQs8Rx76bBoPL9DANzKo4rm1JspYF7HZ03evsxi6tEBvEA2HwB410n4NmzbXTkslZfGO8Leprx+9EJiY3AyEkI9Jux+o60yre2Bl9+AxYRMel2OfdTzzTLKhheqt02TR+tfnYXVtBFzE3Jdq1GeGwjKbMEYlUgwRPexwyHKeIdAT4bzdqQoKSPNDel+Uaj+vQTNkGE0wlJR8ot645ql0yenntJPFKBnS9Bxo1ITzI80r5uMlEUPLIlQBTjNneXzmALVDSVB8SMO0If+lRpXcM35/E3FaKqkE//tsFxZh0vyMtaymZxMWOhO8q9KIUwW41kSUFuj493tLzpM662R6PLrmJH3QMppWKZAoMmt4A0BIiNdVGtsPk5/XUI1mM20WDLyHVKeCTwWH9f/k4+IW8yHXMeZ+hEVr0xBSMhbr5hUbnvI7wPB938ii79QxXLNoUKhN+wyb8ngUbOyKAcSQbbfyTVoxed7SiqdwzfNQiuB1ID5Pzs/KF0gxGqDn1hAw69BUKBfW5XcKP8c6yAyQOrJFFd0q3TxVx0LPJCgI/7fey17lCDZs8TappRO3R1nrOKLWiW70GC1i5352AqHcWxFjR+/Dmg9ZJIZ0sWkGaKukvnmGc3FX+lFZUbDNYonyQU1LNScFlPvuKHLWTGWATteNr1+4MZJIwaLkHLS+RuVRkrGbGFagRThLr7dO7cNq6gmIoqUSmCanMApNLL1JMN6z4PYflBVqrY86VGDcTTHuXDmPcgGo0KmIdLsHLQZvylfMQjbp1ou1rdbLaAgBw+HMHCT/1EjZYgzxAWK9e6VRIt6bJuThLuayVIjy/jJ0q4cqrDDzReDymCQmcDzGpsQE7ZzPZ0Tqd9hKRcgiyiTtmNQoyQuDNRSc1LvVLmRo5L5zbS5VceuOSfOCrFJuQHk8SxYaxO796tmOmkTaH1Hv0SY5VK2S0gaQ/H+3mt6bYE0It6XfOwVdnQyant/GgEIrhBBEQCptlRajFuDp3kh57HuT3fCA3EMyEPaRjdcwrYJq8gLCIrfZQpoAFaj6HVVYTaBVWcp9HTleCJWd96FszqkoVZ4xpFKEcy2ak0o5zA0znReT51A2AioDID6Xqh5fv+XlqyNDIAr9PJQ16xgTGjka5rhJ55k+4/x1VRrh+SGNPhj5bJAHNhoRCdNtxDxJDBxRpIqyBpasM5Sp3EmCUSIMr4NdKrr1eGOBYJ6SvRNJ9893GR9VjA5EhbRWpsrJAvbQv548hg2gVVKPeuLCSXGhAaDuNysbPqDVDvDAPpfg5EKujQvFnfO4s3QOrI4+78rAvf/EbnTF10o3eVhUqguhV8XX2WqmNi5cuNpB6NJOz2FgY8hqWqZYCIvMaIar56XClrmR3pSLicgLDNOTidA3w94RoVbrPJi2dU9IHnMRd+J4+LMkdW5NWyaEPJKJglyVkxJAVgabQ+TJwbzFiW70OFQoj/O0STrhPWkir4zymnjt+iyVece/OT5rYs6RnnNBJSL3vOmeMQLAOr9Kzp0bNMFrkjEo663JCKPxFsZmR6+vwgJPOuHkj8oT5qKtSdtKHVibLmrDZ0hCxvEesFq6CMuyvy8WkV2pa4/3nHVbg4bnuAV2cKuk1ksfo/aTjtbGUpM1byIb6aSP7z68HEN9gHvo+9adkjsw4dzsEM0FxFh0T5QUkbOEaGnRMqLVT0YRBUU9RdjSyO95J92oBZp4F1NCLeSk7soOvwaIosqOsRWOJBd0KKgtYgiK1ir7n+XWthIn+LtA6ikDkd1F4bwVSupkN0YJtBBbvf5R80o9S3glAgwbQUleEDHEyWfH+zSqEJf33cjnAxljCkMrdAwHUNFDyrwhNYJYx2aQel3jPG0amoyMjENZA3v7bh51yyhXGPJniG/aDja8P/3CGU+Ubf0SMA07SOt9BaLCYriQ3dw1QrAF5JxWSamSoPBf7TRbikoXprXDOgYqqTXfZLEyzvoYF/rb03fe1KBwW7nTi9MW+ZwDSoTQuolAafZC0pg0PEAixThINGJsTmUW8J5QYM0a6guehH+dwjunbisomLS/W4npBNZGQZZgUFr+dVtEg6Ip7GkQE/qAkGYQj8WQrgVg/O+NNGmdBCpcKgsNNSvteRqoENcOGMxRWrnePBQ4pMwsADECuHU7EJUHwXs36dkr4aKJfBHugU0JF8ruM9l3wtw3cowp7xdbYVH+sOC/NjG/Nw2pJB8nr48kJ21RtTTwreLqqASrIoYIT/pcVr90n12WZ9p6UluAM9aia80aJWB0OIOucb+ID0/rXB6rgN6KL8D1CqVbNRfiFhZ44gn3Nxk4fF2T67qIg9DKwhQonDVI6CZ7k1ozhUp5O5tCaYLuiErB2rFAMeJ+0vNQcNEH9hUQNlsDMkUlr4VjGtkeQoTiZiFQ7xEFBLcu4HUwl7A0GLa8KZhotVLAVfK8yajql8CqD+0+IWN5Lgqsj+H4Sb5RavI4qHDW2hoKRUVQ7pmiKiChN/XEyJarM2MN8XM0tKw/9jihzvB4k5ej10kFCxmjHfHZtRJY7cbvUZjPMwfLGtgz5ffCfl7yWniO/lhskbQ0cPlzbm6417fjUjn1WM+FCdc67vegcPKSNZ1F1XpSWwF78evD3+bWDw/HvkdN8BB6yBYXFZgpI828Ns5TGrdYelVqOdKTGNiYhO5TkiH1pNRVJyqTho5mwUboy8GTEK9iHLQbhAqlcd9Ty1U9rzAGf/4CPiwz4zXMAz2/Ck8+R8BZ/XXDnFL6euLV6jOW9+g1z8L4mwWq+PW6cqUxColSodU9wfvi9drstXwahDGJhzDKnKfhNWk6T0M00TlXyrNqmn/JzglFzM1uJkJUBena0TIHi6godcsU9aBUWdODZ0oh1FYZ2Kf//zb5giJOeyWVYE/fWRcrg9i0MUfP9/OrjAvV8QFSGQGRAfPYUrSgTnQjdfSMtebzD9Xq2Bj2W4c0PjWRBhpyUnXcdTjUWNjpYte6iMas+alQWJeDoAU9yQhUqxtA0g4nUMiRFjDqc1ESQqD2F1L3NcWGlRuBenc6PnqR6mUHZZMJY+MvfMgy9yQAIL6ngmWzwpgrvrsAjZ8kzIrJc6pTu/WjJAiDTNH6PxjOyltFkc6d152FyIKJ0QYN+yE/j/89iqQRyiQg806+y//n3+frDIsy/0YvmmQT5oSL0t2TzQANY547uRYvA/b5a2U3iV7lvKfSe1JMNYRjmlgiwwbLhY3kjS1Eq6QUpI9TSTWhsNElPnPVTfA139KEIabVbhRYoc2Nf8j71t0kWelPX4tk/ORYKwGIIGZIjZRSjo9CoqynOweVlFJ75wWvWxf+KOj5KMxJzzXZj9K0m2Cs28uKIUK2c6nrKCA3Q6gbuV4+Z3pL3FFVlRTzhzl03dMwAQCIsAFi8eYsdWzzYKP7fun4AnXdxDA10ScxQNYJlULTM0vyZTZ6NYSGgJW4obVTidEgx9ZwZlI2gMlzR0PyDMfzmnVNbMYc7ItSBNIQc2G9LLDxPcDNoz390euqMsC6N76VpUiW8RaiVVIKxsyn2e+GHlK38k1B6zj5gThhtdWJsZFlU055Hj0ff6C/G77PhTZrmCuELza4oHj+fJfQoc+J1WqRekVBOJvJoaJRx1XW3FaQJ+ZFLQ9WBWSSE/F/d6rN9aI2C8EIyjxDAEOe5TTIHKzG+WEbPpuPIfcSQ93TtOPIlKSOj9Bw7UaiFE2gUiR9Xu+DevE6p2j0jTP8RjFo9ZhbhFZJKf7BY8ByPwoEEhlILQbi3k6lt1DOWHd/s+uDPkS6zHTDOaGWBjE8uH9E6C+HRQx9cYtutQSVoTgqST0KuusnCRe1JIpnBYkA03TB1o7LanHDpGHLacCPaXeLcV0MFoGcZamLmwJB+5/xO6pkGOs3NjI7Q10NP+Rzmjt5X7EmcE6pp94EKgitJaJXxHvDe5u3leLW7MELQjQSw296T0hDYoSWeADx+Uwy1lS5cQzdCuhl12zhnvM0HSKmwcmOi9jUJt1/jlEeJS4xTcD1xDTCqHURSgwQu5fw/g0KV56whWiVlELZUtZIN3JPgKCQ2bfuJtqyF7A1gO6So3YOCrhtARAnZm3ivlEA8Hjf/d2rRispjecTzFMED64AOp7VxwlHj23aQlTdlyaEo7D5iV4FGWSqKIHojc0K3Tl0UphwEQhEEZMuaA0fjeu4wXKGIJwlVDML3XunITzPKS1vzvec/RhITJD8FiREatJwN3NVSTjZv0/WJeT7ocNLdp+tnG/kmG3M33FczN2QmalGqyk2Fi4j8/LxnlMWVEIES2oGndg2Kq89Mw3XqlDvixEihliVabpFaJWUgN3RDd4RvSAW7651YhJSt8bWtkWlp5OFh4zhSc5Jo5a3sVEZUkhXJlJCQ54DcTHROuci0O3Pp7W21QNQa5OTeauR18XM6smVFsluwFtxHQwPJWEW/xo9gFGkD0KVEZlW/PtURiisldfoEQXlIYrMGNfnrkaa11RQgdHz1uMALg9IZZHvljxpnE23exqvJ1nj3htWhis31twouEU7ZVLeAULnlzUx/8f1TYOPu09bE9MOCv1OIGiVsN//hgVcxOxolVQTauM8pxNd96Af9/UCBpG5wwmxVAEDXwxHpcFwRAgDmGZF1S9c4W9ZA9/a4zpYVMZNxH7hPLZzH3MJTt3zhZZa5c+1VsZEaMd3WJ4EMoJ0IqogneTBWOPGbk1Mpi7C4meoch4sohNDU50Yw76jQjUaUmyK16sxktfeAPG90jrG1amWb2qCFpJSCKoXRLIELfM+e2Yi3hfW1tHYUK+yALBuYtibSktD4FRoet9zz5TKqV8MP/fCurD1NDR2xZJvVM32ZX1/TQXme7YspF2T5gHsHsEm0ko4Kfz1HO9FJjAJXNyMs2Njzd6Zq2nTASp4ysBtCPEpWiXVAFv8ArAPwD7AfPVX4sMyiKw87pSrlGB6V6HYT9zmhCRA91/qD473gL9fjnR2tqN5wmpkvC1JXsIgFgsD0nRySmWhoTXmDPIFPQ70LvlRi83tgrDZYGiGHiyvQ1tesfYstz7JjuQz4WtADJHkVr3eY+OFYWdCLd1mQzf72yhCrZrMfa2f0s9wDQTyEQ09k96PnHGn4UQWrdJ74Dph+NTKONjTT9dpLf8vdJxzPg+GsOm15PT2aVEbJxvIguyXMa/G58UO5koQ0lIM1joZxHvSqV3n99Ib2jSO6GFx3vK7WxziU7RKahKY3+DEXesAj9lITKAFszSID5k9wZjvKb0n1atiLdbyIFJD83VA5aGhOCBd5Fq/Ebqlz5B/YZdvJnzp+mtl/Sjw2vJmqIN6cgd4Xp8Kre1GUsCNNMykiX+OuUaqpLqVC1MBorTlWCHXl4WwSIzoiuDYLowiCGg4eRZPmXNx1DNmeUBp4nqZdHytmWI/OiXc8OtM+uc1VsBsc45zgutsHjAVsIitatRTKmStsoHxEjuj21iTGTZLNMNKbFC6fDYVYCnPwSCVYduIVklNQle7jxfOozrRjXtPUcDs9ftRMZ/E+il2xaalstIHzlqNbZM6VbS0AD8xirgJG5WBwniJqaERUpOnhfETWZVMyK2NWUghRNNJOzWTSbc0oY6C10dLc7vBUJwqKFrVBmltD9/npnX5FvFAmpugB5YQK/xxAosPG69JmhUnG5qFqvfIsYZwVfbZpTF1hIpxCkHnCCMFTftAKWoDVN6iP9H1PTILJJ5tWH9w3mmT8g3/z4y/ppCthfPEdK3NAl7nvEaI5t0Y5ufQGfVgSyPttr+nD6yup3krNcBI5jKI8qwj65deLftObqOeapXUJJAlBkSCAxcGBRtzOOxAXnjLuzJAxQXolVmvjsWYgRlk44RrCok0Ia/en3cSadw+H0PjeRGFeBDwSIX6uPC1HnqzihunQbC+5T42DUW9If7d1G9w6vNm59xq0IJm7hRoJinQi6DBVNi0FmfavYzGoZA51zT3FfRClYma7wg7zuLXWqhpQY8M1v89x3xdFEPT+HFw/Dwem87mRirJVfybIWl+RA0mhg4NAFuJ7HE/9v/54Y2NfYNoldQkrPSd5dmtY1w3Z8QxZAOkQqhbpxangft/3m2iNI6KToGwb915Knv9jsEMh6x7y2e1k+4SCsQJyeQ+Fc80KBjLwnBcPofm2QqLZBsJZRuO+n5hASOJ9K2A5gSIRCD6sBBbI04jUKYRdonQKNI50xtM7ue4aPDZqPfNbczzcYSx+v9rgfWiQLIIc7zqbTR55FXh8ih5jSDBEg0ai3xGSR5XIwV1mofzl5isBXZy6FaSw/I/HPs4JIo125drmnnGrX80/M8xwI+BkR49HpnBmg/N2byso6ohndZlI9Y9fbdv1TajVVKTsKfv3GEuGCYu9WFzw8F8sWs+g8JpuSFUQoYNw29k93GicV+m4z33+0TXKU5r4uTk+HTXT2OnyxHlbKfKAJiQgzDym98xhSR0x3zfZOcDMmGI6RfxJGizz6YwJhUtjH/fTvZMZxXUzF+GXCMiCWazQSGZ9DO0QDmBZBPq5zjHM0+ExthGrsEg5lQsnNfCbhpN4yprwJYpaaDpeGX2DKn88no1axBKFgr/udoA1DskMfF+MCrCe6NhylFeJZWALeL9pDwo7HTF/FzDDK1rrmiUV8vUgm5bo7nugSg9UtvrCljxN63rlWPTRodbjFZJTYDt/TxwLoBzAfMn/8m9qAKai0FJC2HhFtFrYJ5q1GSme26NmyxafW8xXLcVtvRG/JzmtgCErtuThD1zXCp4QgFgw3d53QwBDd208adrRK6strqiuOk6x51+1qEFy752YaOtKtAd5XGMC0EZOKFdIc7DJBy3gLFrrkWVyaRw89BYRXnmEYSmUPk0h6ayooIGUi9mqLZwzEGtHEc7b9QGqG1MHUwDKlvrHxDTBZPuF5WzG3yUC7nRoeFSep+b3SNyCrRKahYc7yFQrXuy3XxZx7CJzhcrk4+Tc1TylJR2i0imYD1E5eupHlmOdF02laWVznAEC0GpuLqd4Q7HTaCSo+XEnFm+zsP+O2KdWjhLUSv3pxXCynjjV1TQbBThmGOOl4+VlirzT2GscsB5GE9bTRbR/YUK6zv7Y7JQNN676Xll2q/TpPusyiTfRRqIzFggDctNc0xeDwV2r/LsWhkb1w6VCddLR4QuIyJhDiNeH/PMutHhegMNO9/eYujai9gCTaMqnD8rfWBlhtxe4QeqNXaDAhggEpqo+NVoXumnHpSBJ05khjOfRbf2W9S3SurUwslOZPRRUZFG3pj0nVEgaUU42Tcnum5xPLYE/O3e2F0ZQCh8ZWds5oQYKzfWTVotBG6CWlMUypW3+HOFwbh/p/ItmYpUaE0raBaFhF6rr8vfc+iT1FrOjmXk/a3yiGYBBRF7TlKgz8ouMzbOb+1DOWsoli3B1nwulQozUO+rGG6bZWxcJ13pCq+dWFj3RkFeWACydfoQWUSUMH9T4aliKWWeTyrX6JdpJ5kQYqMBUDZviDrLfbCIrdseW4ot11isu1S5HCiL/xkq7NTpDgr5cVkqs81oldQsSJhwW3Au1nowr5LnFfJELhAtKE1ET+qaTStZe3wxPzBqbCH2T5ajSevGZgHDjTqeacN99BTYLT25rg08pFEMvFBXhp2rpAjOhY0YDZxrVE4sfZgFnFscU/IeYg5zlvsZrg2ZkcT35Ti1n9C1N7BMkb5nDZIcqoYfqQi5RjSkOBXBRj7H8CnX1yJYf7wGes2UEcYCha996mWdPErEnFqQF6l3bPEOpx12gIbYAUM4hUCBr+GsqgA6m2RtlHVUTmudWJvEtiukDqsFyC2i9/hu7nvXJy8ETaICMdwzDpz4tMiooDbS5VmTytMI2H7pvNsQXxchQ+EQQpKidCaNz8uyZIO9TI86DwWLEzTzIin6BkJHDBXg+WfJkNOw8Lhi3W4FFHKeWXsq6n0PuVZEY4QenxlM9vaC0Jd5Fko65FyqWAYytxl10M8UFughrh/wtRG1hzyHRlDGoVtL+FgUMb2cjYJe1Ilu3Oad96Tr1yQJWPTaer4Bbh6Z2YFGV6ukZkCy1fz//I3R1vaiENhGJvWkunmYAmnIS7eEnjTptCPCKGt3FNjpmZ7FtJN8ZIGlSZPVlWnO4YR2OkaKDUVBhZyCTQVJoNdjvHBRxT/qGWt92HYt7PVyuKeadh7hsIKnjNgbclDIHMHk6yjrqKjmNUIMhgW7jm0WJplSzGk4ksGmHnRQVIXMbxsNLM5bRgV0bmqtkRpB04Z6dSNHFK67gxo7k/JZ04KlK1RWvFZrAFvFZ6bjDeHAMr2eVkntIuxbn04JbASFdftVFdYVYJ446SaibsxI+umSb4NCL2ua/aRC0lUW8Dg67cjjQIRggdAYdNLncytf97WyBmELEhUQQEqdVfBzWpScC0T+HqeIdUHz/OG7opSrIqX8bzVyNhYg9wtIatjorTB5zuLNuo7HGkcpDwp+jvneFS+HBcE0rIDUEJgk/DV3pR/jnFJWXl6Ezd/8vNK4WRJAwsS4MfC26z3LP89r4zqtxXAwiOcYdR6G7ko7OTrBnDM7vjCCwH3JwvXrREYMEbL3IQ1cA2Bp9Om2Gq2SmhcHj0vvvQ1Yl5PwhJPAgVXX+qRXxRb9LCxmId9S5RTasiipceBxlAEWtvuY4VoS4QCXGK/M+I4EVC7stEHml3a01uNzUZfy2ZzUEBQUoqLVXIV6R5Xx+Qk0K3Iu1uDVCd2fvxli3Ejeax5Yuf5AZEC8fs0t2CIm7Vl7l7MSyyIN3wVBlXkNLFpn6DQ/zjihvlwBAwug08xw4z0MhacjlARLOCjsOU8MsoJVpO3JdK6oouLcZx9LYDpmKu8t56IqQIZOqZySdTgFy5Yh/cd853P2+2RRbxOWB3HdrHSAbhGNFa7ByjgilBIUuT3QWpnWg62XwDmTh7pVaJXUvGCvq61gshU20t27laeO+kenFPRu5ZhS02yzoZa1Cvtp6i5yhO+b6J0VNl0Qem4V9hgjRCjMgmCUc6ngHFJUNvUokvPLOIwcX8H6Eyv/T0JImRLdStDqHWId2uG/1YBgR2u+z2vnfTViadcmXr/m5IDRXtA4D5zeSfBsG7waHqs2CB0jFCFfimjY6DMKnpiMaWSoVn4nc38KBZUfJ2ftAQBGNI6ehKpwa5s7DIQtYqoYDm0yqhg2pEel4BrIjQogjUj0S9jv+RczDnhr0CqpeUHBWXnriQJZuzNr0S3RrWOro2nqlwiSIKoC2COKQFvvU3GOC/MFpqB4UrSwKTQ6Zjq6cqD5Sv0LmUVMsOeCS89TIyoRZVYxXKi5hibFyevm30qWUO9gnDVND5LCT48Nub869lkZXosEPUVjAW6m9/9v7/uD5Kiuc7/unt3ZkaXdtUBoJSEBTpmAiX9UmWJZcFJJvIkiHFsGuWwITtllDCEWKWIZ7OIFEHkvVXJhHnZwSSYpkIkTYspQheKKMSkMVBywwEGFHQdhDLKIwGjlB9RqJbQ/ZqfP+6P73Hvune6Z7vm9u/ermp2dme7bt29333PPOd85xzZvyoBsXowok04sgD3o72yCCo8Ta05sMpLBqPOe2SeqMw7sm/EAgLQAkeejzHhinOX+iPcFoudNZl9gAWxndGCaNWtfkiwiyRED8zpreBYUwkibkuV2JAnBQ7RgzFOG6Vhct67iAzNxfKQfAEFBP9dJ2pRP0fc+6eeZL08QzzPLyua9GnoR6ehEXzRfTfeuKMjhqYzwwx/+EB/+8Iexdu1aeJ6HPXv2GL8TEW6++WasWbMGpVIJ4+PjePHFF41t3nzzTVx++eUYHBzE8PAwrrjiChw/frypE+k4DFKDr8kN031RXag3lgG/GgQOrAReWgm8eBLwi5OAF1cCLw8Dh4aAieXJK5wk9FWiFCrDM8CqE8CpU1FBxFPeAk4+EX0/UIcdVfGBOV+v1DhuZSb+f6YQ9T9rgbMZwTjk13QhKtJ2ok8Xs1M1ajw9ZvaKl1fbfRXtX+N4NIMNJhCEUfxH/3zkiyvNa3OndErzpKsKwAW6No+Mp0mCqkkEsw+S5t9J8GqfnfqSKMHCB0gWUHJRwb+pbPtiKpDagRT+0tTG8T9sKs4CZYoUfeTrLgPDDa0kQ3ts+uRCgHyOLKQKcozE8UrzkYl8xaw2qWWFJ47NhRvfijOzT8fP1VzGiZ+86FmaHADeLEXv0336meTnkuvMpY3NsjIwPA2snI7cBPxaMVt9n3IJen691Z/93DuM3ELqrbfewnvf+17s3Lkz8fdbb70Vd9xxB+688048/fTTeNvb3oaNGzdiZmZGbXP55ZfjueeewyOPPIJ//dd/xQ9/+ENcddVVjZ9FF0CFm0HFG0EDN5oPFptV5vz45iroXHsn+vRNJyf4eg8kTxp2sGHuTkMLC560pYPZfmVuk/9PaEP+DmtbBq/u2SkuJ0SpRckuqd+gJ+da8WtJjC++bvbvEvx1YrB2l8ATpHrB9L+lQZ43f7bZcNx+4v5C+7S10Sy+OdbMbDIMLwDympnrBY8rjdc6tiGsKvkp9fJ8+DgS8hnLMi68iJBEBtvkzXMALy7SwAQKptrXI/Z02qfaAHLreJs2bcKmTZsSfyMifO1rX8ONN96IzZs3AwC+9a1vYfXq1dizZw8uvfRSPP/883j44Yfxn//5nzj33HMBAF//+tdx0UUX4bbbbsPatWubOJ0uYaagb8qpYrQamg2A15dF/wOaoVOMyQ99oRZQxflIS5KJJNk+zVU55cO1fC6fqZCR5FdhwRoCQNyfQhgJ1HrJaeUE5xOMRJq2z4L9x9JcJlPj1O07hAnKi8xLHrQJyTa9scAs+9VCV03Unp4w0wS/9FOoZKTWcTrhmJL06SzEllBMcpL0INuT8VEy6Js8fa68HU+gTEqQFP2KD1Xtthb6KsBArEXPFYT5UY5xvG3WhZhPUUoymjf9Z7aWzuclSUU8idtChtMYKdMoJRORAjbdB/o+Cj0d3+jFY1arvhpgarfMepWan6xP91a/rsCdhKyZRformjk8F9TvYxfRUkPkwYMHMTExgfHxcfXd0NAQRkdHsXfvXlx66aXYu3cvhoeHlYACgPHxcfi+j6effhoXX3xxVbuzs7OYndXZgqemplrZ7ebBPqjQi+zKR4vRjf7GMuD/LYtu3lJMepgJo5utL4zs+h6iG0bSwGcKOu7hWFFnRO+vaDNPI0IKqH4gpcmSQj2hszks7eaVq0Xje5iMMP7OVkFYwOTqt5hseTJICqiU5iqZq0z2UQqXrKtxg5ZOWhC2urK2vbqVGl8e5qWtDduLZmXGszRXqf2G8cnbxR9l3xALniwozpv3hvTvAfq65NGqgjAKxpX3svJ7kUnEYC0jTfCUg8j8xenFZEXdpMmfn0l5P/D14tIi9aznbIaV14sXcLwIqAAIAn3vZ8meXg88h9g+3B5DS4XUxMQEAGD1apO/uHr1avXbxMQETjnlFLMThQJWrlyptrGxY8cO/PVf/3Uru9paSFXcIAZ4+maXE480y7CqzzZ1gs51xlnP2b7Ok6104DcCOSnzJIXQnKwAcyWa1AYHKRIJzSZuq1bJhWaQZOKzUWW+Evsi3jek9P3rgcclRHuUKFsL4v89ZL/uvAjw4+shFxt20LdtKuQFgTow9EQfxo1XLU5sCVinb1J7SruGea6NKkHv6eeNZYqkzNdLEybN9p6gpqedn4qDgg4sZ0El/W/1IC0livSSYtbLMdQ1MTAPWnV9ixprH3qX0iFwww03YNu2berz1NQU1q9f38UeWeBMx8zoU5MYayikb/aA4oSPcaQ/O5+Dfq3Wl8XKShUR9KECAtlRm7c6qkfaVMZ5u2TaIH5AmKggM6InYVnZ1LoIEXGBELUvGUXSFOM18JSplXc8hrVW27yS5YkihOnDmve1rZ79OWldMhiB0JpDxYv2TSNc1DuXWpPkHJt/fH0OygTkZVv1slmQr11SotAg1F5pW0uwfXCco1GxBy1NOfQii0K9IFVuW6Yx4old+qsqQkPlxR/fr7W03mayzDNDjysP+BQxXanGvQZE25XihLnyechKaedrVKwAc/NQpBfy9XmxNs9kolZgRfcLGmZBS4XUyMgIAODIkSNYs2aN+v7IkSN43/vep7b59a9/bew3Pz+PN998U+1vo1gsoljsoRBoGxVxYxssKehJjP0C7AfggnMsxKRfa15MUAwWfPw7C5BcQgqaQRWEpsDgiVM6tesRKPghlCtVFgYF6wGVzC0g+yrZNi/l1X6k0OVTCUI9CdWbRJJW0PJa8DVvRXobQLMPebJjH2FfBeAkqVnNi0GoU2il+f8o4/VQWrEX9QFCYHE75diawIUMa4GFLo8j+354uOWiRk76/fPRtvXazwtlDfG12TDIuQCRwkM+T1n2Y/M1U+bDuC8yZABoXSqlBYSWCqkzzjgDIyMjePTRR5VQmpqawtNPP40///M/BwCMjY1hcnIS+/btw/vf/34AwGOPPYYwDDE6OtrK7nQMdMa1AADvp3dqIUSVKNJ+WRlGZgjpQ5GTdmhP9NaNWBBMJEmLztRBoQ0AWljxyo8Fjc22AkwBkYa+CqpW3rUeJHv1XLPvyD6RMliQeRBCUXwX/ZBd4KmxECt6qR23EpJYIn1gPKnngWzDDkhuBEEYa1C+6X9RfY61Di7LXrduFQAI7Z77Ceh7lokafB0rfvWz0Qr4FNdkAzAQ6CStvJjM47NhzYg1vyzHLsZlf4xy70Ir9WPBX6xBmsgIwi1N7d9p5BZSx48fx0svvaQ+Hzx4ED/5yU+wcuVKbNiwAX/5l3+Jv/mbv8E73/lOnHHGGbjpppuwdu1afPSjHwUAnH322fijP/ojXHnllbjzzjtRLpdxzTXX4NJLL12YzD4JXvUuKwPzcVwTB/hx0KDM90de5BANPaDgR6lj+GGxb265L6v80iTHYBNKEj1YTn6cfVlqBXLbrBR02b96sANGORWLrH9lg8+PBWeWyUL61DzxLp30gdi21qmy/85HVFiOhZQvNDw5UWdB0nYqUFb0i9P18LXnvhtjUmO17pGZBLiKSJFjocN9YnOzDABnM6CyFPDCB9X3BU/A3G8CgNAUoCyc5mMTMsdx8ZjkvTfznF9pXptxbUJJHuStaOtRVGSQNaliwSzLE1BknqvHuF2EyC2knnnmGfze7/2e+sy+ok996lO455578MUvfhFvvfUWrrrqKkxOTuIDH/gAHn74YQwMDKh97r33XlxzzTX44Ac/CN/3sWXLFtxxxx0tOJ3uQqYV8Z66K840HN+szESzJxRmM4Vi0pPZl+V3fLNKk1wlpgXzJK4oxDD3B6KJVcWWwFy1ArF2I/Zp12SgVuE8efJkAHN8bBYYn0+Wbinnf/wuJ+Q8p2Vvy9eL5Occ/UqCpB8TNEmGJ3Hpq5HCRmq89XxASWbTRsk3vK+Mi1P3H0yGm30M7jsvNtQ5iHtRtY9qQZgkbFuN/gpUSY1WE39qoa8CFL2IxSfN0TKZdBNYaBoUwyOql8+k9zA1NYWhoSEcPXoUg4OD3e5OIrz9O3X0uKREB0IjksJmYD7SwDj1iUoaaTvPSefxkyQLCTtQlrUn1tBqPXxycuCJshWOWp5oODeZjGMJwsiUwaU1ZKYIm+GUxewlKfA8YXrQ+9lmsHqYjhOjcvA1jyX3ldPp5J3QpAnLiOOytuPrnkRz5nPjKre28JSwNUqJPMJq3texRNIfKRdU7DuyNeQk0y15Zt/Ii31zliD0qboS9mKFNPupa9xc1YVeE1JZ5/EFwe5bkFg5rU1/5TirMZu35AOm7M0VrXkNzUZ5+jhLcVJciQrwK2hGYVVsEnTSSZ8in1YW5pWcxFsFNg9xSia5Ig6YBEL6QeR+SOd6UlxWEqSmJssxwBdt5zi/AkV+kLLYV/oK+Jh5nVQyFx7vqgQSqoWxiiGCmMj92OwrhKQaV/a7waQ3y2srBURWcEohec8RBBNVtm+1nRbOYG/TV9HEBS9lv8WMrEG5SwBOSLUJNHIdEJMVvZ/eGZewEBH2/OCx+Y79DnxzsmCRNHa52palCWRJAp70GNxGKxznzcDW0KSQYuJGEhmBTUFyMs1qpkozDeWd8JgUYJsM8wo7o2+efidUm+LSJnNJxVftsIaVcIx2Te5Sa+PYKSmcWnGrtXKhJBdw3PZCFHzymVkicEKqExg5HpEo5gLTHyS1o2VlXeJ5+RyUc5+8aAUvS5nLOCoO/JUmRTk5VzwgrETO7P5Kd25ynkDtelHsl0ibMFRMjtVWBQlCw1q9836qHDiyxfAkgVmZZR+ohNrkmBQImxXsX5EaiAfAiwkSaQQRpS1Z3xOgfG9KY4I4f0oWfnnJEwxl4hOaFMMem26BE7RKooc0mw/OZmfKsdbqU35SRKvASWElA7R/XpeEX6RwQqoTWH1cF52TD66KbEdka096YNh/NQtt+gt9PdGXhZDitDW2tuLBjANJKyrXLhDMGBSGNJulwY7FgfjMggrQpAueNBns0pJ+nUbAAajs0OZA6mZMo1K7LPMChgC/UltwJJFvWOAF4jwlUadVWoOt+THZho/Bx++2qWreB94oRTkoK5aQklknhmZrLzL4np2OBR77xfi57OR5zhSiNGmSZFWsAN50crD2IoETUh0A4ZaoHHMR8Cr/Wz8ULKSA2is61gx4cuAblCdjnohUkCq0aUxNUmLfbpn90uJ/1Cof1VoTYPbZ6LvQApLMZnxMdew2CWYe6zyQptlGrwdfb8AcW+l3a9c5c5c5C4bdr25D1niSVghmZvKibT6O50rLVMEleDhtmRTAfJ6dInJIH6tkVc4WUokVvUaWaAROSHUa8gHOYjqQ9Y4qQoPiiY2Fm0ql4ul8gARRkynU7VEIeH7nHi6pPckigioGBaYpjk1XsixBiGqhDGlmIjE2/DOZ7TcLKQhDxJMz6QWALWtsGrU0rXFuRuVTRLWQqQXW5vx5fa6AyY5MOwdAa7dJJeVl0HlSHJmftBroEYSeLonDdc0kjRvQAcFcA6oQAm8T9aT4es3FjM55P9JgjvdHY7I8MIslSn9yu8+N06gxYaqvYgYel+ZRs9T8AoQTUr0OJZysWBpAT2pcqjqIV1e+rydOGZDIq/YKCyi0P/uxpCgrYSR8Jzwhq9RFcX/Uajfe1zYTqvbFcWzw+LRacTQYlCxgEsaRNSW1iudxIL1CJ/lCPh+RnHh5n1rCTbLw2Lc5Jwg93E4l1PcME3hku11SxDOhHJj12mYKOlO5LCfCVozZQuSz5TACWZJkrqArHEwXIoHGJlTO/8jEJKD9PjiC1urY/NgX6MVuX6hLzLOwWgRwQqrXkZTGX07mSWn22czBMUjKWRymr47bgSTBIVfhHMBr9ykpVRS3JydTO8gV1v7KTNii8w1hUqz5OmQVLFKgJmZ/IBiLkCzIOylKn6X0XdrsPMkWrJXVotcgr4UkcBhFNFF9/2Rpt5aGy0KP22u1LxDQC1L2hQJaI56P+1YOQKdua90xewBOSPUqWLVndpLSRoQGwvFVfcKJ60FkY0/wFciHqJmVll2kTQqPNLq7Jx4w+cDZ5z0fQKXFYU3KePBT9jfMaxB98EytIy+UCTXQ4QCsFcoFQxqkEGUfpBRSbOKUQtqON2oFuF1ZZI/vLTZVSdYhn1uzxBD7Hmkn+N5gcoSdjkxp16RNZFkIJj605lQlzD2zHhyfM49dEEaFGZvVbGTBRhmewoQqGQC8iOCEVIfBjkyvlkNTBmqy+UFCrgTlalE5dKEnRskEsleQDZ2Ap523Riof6xgQ74B+qOTx0x5apqtz/wFt0vTkyzoHToUkhQIfs5FgW9UfS/OwNams4MnLEKDcd6utZvqbpQ9VWTm8yE+jVuhNaqDz1n3bKeq21GzlYs4m6dj/Z/EB1tK8ODQCMEkN/ExWKHv2+lp9sFOrEYCKBxq7ssnGexdOSPUS+OaeKeiCh+zYTpsQpZCS4MSi0mSW1SlfC6qKL9JZaYokQFpgSN+TNFfYUMHLCSYx1T7S52+lCUh7SI3ts0AJeTF+9cYxKV0Qt8FjojQWIfR4EmqHeU1pbHxtPH2svniVLjVdqb3mhb046hSjlNl3FJMI+PzYyiCfl4E4q7hc4Kmx98R+ns6rx4LHvkYyWFgKKUDf/80K6f64qkIQAtNlnby6yZx+vQ4npLqFieXmjS5vaDbxAfrGNyYPsY9dt0lCCYUW9ZlNCtJnxMexhYKc4AJAlWKoVbTO9pfY2RU8a9s0bUMKCD/uUysmSZ7kmORh9EX8D1gUc7Etj0kYt8c/KiHeYDocXtTwYoYnU4PwIO4FaRYDdO7IJEgzKve1nvDixQb7IJsZfpltpK5plXRQfMUD+gOz70UhjGVRTgmuOF2owCQkkeUXFc+itCzwOy+Y+NiFlAVlHqyYBYqBJnTw+CxiOCHVJdDIdep/7/D/NVfYsnhimlNePiidgj1Z1YLcRD7MNbUPaOHUiw+ezBaSyOazBJI8B3tzmxUmHfqNQDrug/iAPLHb5+ATEJIw0dYROixs1cIhoy+uVeD7IivJgQt6soYhrQlcNDBLQmC+HtLUpzRzr3p/Y7ESN8DpvliIeT7gN6FR9YVRm7HmS+/a2nhbCwROSPUCgtBkWknzUp9g5MlMAhz71G4KuYS09UtNR5EJ4gkyyRSWph0Yjmfod3VMaKEg6elAtF9gtcW/SUe4J35vZGIthKbAsZN/qmMIwRMvxlU/kw5r++QaFVDsPC/HoQVcLC+QN5NAUcT08PimXZ+yIK8YwrTOONplzhs5N76eHIwbkjaH1jt+IQSGZqL/JbEhSybxpKwtAVWb1aTQZC2YhZe0gPB2nO2lL9comPAoqhiw+q1FFQtVC05I9QL4pp73qr9X5iXSNzv7D2o9rIrQ0EIhxitLJihIExcLgKCS3ZchzYf8bsQMIVnDkJkD+Lg2XT1xv/gkGhFUasGA2iwtvpbs/+FjJrXHQqyZS8QEBSmk+hEtGihlxR6E2UzAnGqLNbSkmKk0pI1RnoUCCwilhYj98/h38vqDCDrcgO9J9tsBCfcUtD9R3pd8bGkSpCCKy2r2ueyrAMNdyiHYYTgh1QOgk7+o/vdevT2+gUOhMQmtAMi2Km2XgiUfQOUzEgfLYwZKitmx20k7VyMNkpfQJ7GtTY9vFJL+n3c/jwWvWGVLSDNRroncGr9WatZp/WyUediLJtwkGAHWos82q9Mg9wgzIGvVxiJLvDcpoBZDqqM8cEKq1yATl3KBxIB0TAtgOmQ5MSlQXSCRH5ZWQaVbEqtbINIIpCDN+hCyBsCUe9l3wBQqctKWhA1O0GsIT3EMnhw4kLlZZCm4KCc21uZYw0rbnSd+SfioN45zgc4YIXO6pfnM6iEpkDggwItX7JX4ZELRT5uckSZgmxFQfK/7gIpRayeY9CHNtJLRxwtHjkdUFgDohQj3UbJBWRN1yAUnpHoNLJj4QeDKpklBoARNQ5UPCtejyjpRsXCzV3wScmVpaz4e9OSR5yGsiMmAGVEQNvxamhT3qZbMYAFRr51WgsdHHpP/D7lT9j5iXzY11VtgJMXS8aTK1yHPOXMeP8CMxeF25DUKCVH+RwBcSFKeS4BqwdUopNLWjgDnJLCpz1jsQAsqNh0GMP2pcoFgjB9pq0gniU6LBE5I9RgM01/5/+ibmksgSC2DEP2RZjeeoLKapezVc5pJTK4SWznjqz4jQQusA54UehVS+PC7MhF5ULR8O/sEYuGb5jcyMmt4ej82NfFvNrGkHuTEqnxqnp6I1WJGHJcqOnhc9S/l+uW9VtyHgKCIOe2KIZOQJmO2EKTVIgviVUXo6XGRcXT8zC6FkvdtghNSvQxZvoNZPYCeOAg6QzqgzYQy67kNI8uA9VvaSs+2zSviBH8n9skiXDiWhLe3V+7cD6bhSzKFhIfkNDBqIpH96vAEIcdLssRkgUPb780aM7PEKKg2ZRrBwNLEBNNB7yEa4yBF+0iK37JJEdwGp6firO2yv32+vl6cixFxlvFWhEkwYYX7025tRPqZOGat1jPVV4nYejJNmLRGdLuu1iKAE1I9jNQUSswMS5q0a5ncVDYHmKahNO1Jd8ScKJOQx9RnBOoKzRAwV6sylijx+CkrdplKqdsg8ZJssaprxxeDNWPSwiaEubr3YV4Te1zYDErif3lt2MRaZZJMEWayTExVIDf0/ejH2qEyfaH+vZUFktna7sVGxRpLFfZRR9hwADCJ+7mFGt9SI0tIOCG1UMETTFLizLSHw2AjWW3VPBZ0+7LIHe9mZFfP8WBKrUkeyzb3sY+mXtN2bJQHcyJuFHkyHsg+8L6A6U9Rip5n7pN0TG7LtyY/gqn9yOvK/1d8EbRraZW2EszEBNlvJspUhPbH10amGZJjndWfmBftNpexj08K4jxmc2DRlMboNTghtdCRJwYk9EyigZHiJcNxgOiOYf8ACw4meWSNjSLEZpx65jjfnJTlhC/PAajO8C79c80g9CIGF6AnrFoTJvshdAehAqKMr8VkyJqINNfJ7WSGBBYAoafNgqEXBfB6Ynz4d6VVyj7GL5m6iccYnt5fxV8F5nnJ8utSI5al67mf8jztc5bnCNSuTt2IgJot6JI1rCG9rZx8HGZKshYI6EWZQ1fhhNQCgFT1a2ZPz9WomAizmlGkmVHa3rOuOJN8W9LcZPdN/S6W/TIdja0VyrZkX5pZgVexGJFODEgDx0mxcKj6HeZY2Bk91DYwFxVyP9k2a31ZWHWShJGUIUNqkepchMaeNocnjbkMW/A8U8jx760ykZEXVd6dLZjXsBAmC6kkRl+XsZRNfBJOSC0FGIGvMey4IzUJoXqCMbQtsZou5uiDiuERx0jKfcbbqmPHx1STrtjHJ03Nr4qvsvqeB5JYUpastorWQPJMphycjZgUIdlxgNaU5DWQ2qPMHK/OhwUZJ0MNTS3FQ0S0YbKNcX7Q14M1Dc8aV/4s0whJwQVUsxKlTEzyk8l7UF0jqt62Wcz7UZLmyYHoneGhftVaQxi3tlsOjcEJqcUGJQgsIcQTnsE+gunUR/ydj8Ym91rgIGCZ5imt/9K0Z0wWVL0tm7x4Ygfy+8YYkqHF4zIfmIIwqJjjKAORa5ldWVAV4u194YtLMpUqnxSlm1J9inMlxhOuH/eJBVqxRn8IZtFDBk/kBVHCIiAzHgiovs+qNOEEzZg8MzM6H49S9msE5AEn+oDpPuDoQFTynU20QRgJ7Tk/ug4Ge1a0kRYr6NAVOCG1wFDT9CcnzzRIbYPf2ZzTzQdTEgXkytpmASYhjZmWuw/iePJ/Pob0CSmTWsK2aVA+rQSyAft7uC0+Rr3rKZFkCkyCDMauYgfKNsS4yhpiqUQPSzDZAkySa/iVtF0zUIsx6/8sGpstnDqoSTnTXjqckFqM4AmUoTQMsXJMmoyzlC9oBmkrVHZsyz7ZCFPKYsuKwI1ATWienoi5PY/NdDGkP0OmzrFpy7VQj+QiTarcvzRquJ1lhPf3EwQAo+LremWcqYJgCspCnMA4SSNnjUqmx7L7qcyVnqnVciYV80T0v7XuPTserlYCWz4Xvl4y2wNrhvb+vA3v2y7SRJ5FhwMAJ6QWLxJXssYG1X6CdgkomQnBfkCN4OKUyV720dZuJJNOaYQZz4OFo517DYBRa8nWdmTfZf/bgTQBpTQF7q9YACR1hU2ZnG9OZp8HRG46IDVvoCTIyKKcKuaKg3hFP+z+GymUMmjJjNmYnsjjPDCfHCjL9xjfGyyUChWoHJNJJB8pnGqxDJvBsWI09oOz7TvGIoQTUgsYVaY/Zt8BvbVaM7STOtvaMTws4GQ7MlhX+dhSJsW6xxK+FbmrNIey/6heiY5OQJI6bOYdIfqQKNh4e6n5QAteKYDqnYtPURaIELGPyTN9YbZ/qhZdPwtkEVBGvUVBQJo0woLHp3Th5olxaAdkDFZ8CGfiywYnpBYb8gon1nCA9iTwrKUhJUHGIdmaiuyacsKH5r55zz9rbSUbUjNsZP80SBYkQ5pkOdZNTv4EsQ8la5ScecKg1BPQH5rCqZ4wZkjWoC0wbE2vWSVzNohMlJIR6gXpSZRZKA3PRH0riGoCaRpMvUD4rGBiCJtb5wJNUJEZ6x0ywwmpRYLUFEq5GvF0dodWaGLSx4OENtOEl00A4JmOBYPUIKT20EntUR6r2eNKn5wUSJL6LeOZlFDw8vlNKr7p9/OhfTV8LEmFz4oqZiL0RNyKe0pN7J5ewPCY2RnX+TjKD4XauSwlmr3vZwtxn0iHBHDRyFgbpDVfaLz9JQonpJYy+GG3NRRpBmoGRqaIhPaUaS+eMYnM43pCOHGAq4o5gp5cWyVU84KP3YyDXWWMEJoSC2D29UjNhE268h0w/UBJ/WETF5uceEylBtHoWNr5/KSwVSZVAgoNXiMmPAD1+8iaN5skO5UxYt6P6O6suanx5vInIVBy2SsagRNSixUytUst8GRiZ7duhQmLJ03WAPi7JKQGV7KvQPyfFEPVKZ8Qg4NsmxGOMtmvnOhZGPMEL7WrgLSPLE9eOY90xm4ACPxqwWQH5GYBm7G47zbkeTQ6Xn0hEFpsw0KKxsfjmcTgq4dGLuWxIjBdiMaAA4f7Ql0Hjgsd9lWAZeUGDuDghNQig3LGWn7mVDPgQjKPKyuXNZt0UovKw0irB5sAYf8WUPLEycK5UcGcFKsl/88DKWCTxiaMG2atupH7TQpjO85PQhJDOnVPzBSiwOGyENZ8fMEYpOX/qzP9WYRICT5pHLfccgs8zzNeZ511lvp9ZmYGW7duxUknnYTly5djy5YtOHLkSKu74ZAVvMLur+g0OlkT1uY5BqPRFDiU8ALyaRPNIIm80QzszBo+TI2G44wYMhA4q48lCWoSR6x1wGSe5aHSc4wYs+/UtUkgUnBcWSPoqwDL5yJNpE+cP2ffZ3hyfBq4UHlvzeP9UeqlyYEou8Wxon5NFaPfpwuaPu/QENqiSZ1zzjn4wQ9+oA9S0If5/Oc/j+9973u4//77MTQ0hGuuuQaXXHIJnnzyyXZ0xSEr2r3yZN8Kr6zzMKl4hcybS42qEyvmsrVCbtZfJ/1QsTtOm0Y9IBRmzYpvZkDPe2xbMMgxJGgyRRhLrKxyhIWOTBulSBfCbCiveSVML8KYBT5FAek2+1GCK+XmFeLs/8uKyVgovVmKBBEHRnsULfJk4HK7YuiWCNoipAqFAkZGRqq+P3r0KO6++2788z//M37/938fAPDNb34TZ599Np566imcf/757eiOAxJiqroFNQ+kkClytdFhNBKLVbdN651NYlJTlHNc3mMnmgvjH7i0h0FAydd81ULB9hOG8QFbPWa12mtUJuTZb96PTHxlX1csrnigiz7Z4MEd0tBycx8AvPjii1i7di3e8Y534PLLL8ehQ4cAAPv27UO5XMb4+Lja9qyzzsKGDRuwd+/e1PZmZ2cxNTVlvBwWGOTEIuOf6kFSr43sEB1cnTJbqxkzm4T0Kal38VKZHyzhwdpoEihhXJip6Ym2mB7Nq/2B+ehVjM29dhxRWjYQJgMUK7ot1h4KFTP9EGuCWWuONYM82nXoRT6l2XitnvXazsZ+qBN9kUnvWH/0f9mZ9dqBlgup0dFR3HPPPXj44YfxjW98AwcPHsRv//Zv49ixY5iYmEB/fz+Gh4eNfVavXo2JiYnUNnfs2IGhoSH1Wr9+fau77dApSFNXnkBf9nV0o+ZPvYlP5cDLITilViaJC1Jw2S+7eU5rVI4L9s0GZlwOwdSSpDBE/DlJ+IZePBEXIt/K5ED0PhOz2OR5SkGlBBMJAWUJqlagnhCqdxkqMcnhRJ8+pzyYDXStKhZWs8Ls6dBStNzct2nTJvX/e97zHoyOjuK0007Dd77zHZRKpYbavOGGG7Bt2zb1eWpqygmqJtCSwN+84JinvBOV7YhPy03XbeQtMyE3l/sa58rvGdq1Y8qaMUtyVgv2Z9ltsUkS0El2Sf7m6ZRV8jxatbiox+Crd9426SavAC0H+rwB0Ccvyb6vQ260nYI+PDyMM888Ey+99BL+4A/+AHNzc5icnDS0qSNHjiT6sBjFYhHFYp4Kew49CSYd8MJV5pGTDv00s6BhJuuA6agWWqHVGdTz+BzrJYolsa0cFx+A1yJtpewDcwXdHzmJU6y9sVzljOgSHHBt08WZCNLMtePjS3DWjLxgLbIvhwl3thCZ92bi0vTdvAeXCNqunx4/fhwHDhzAmjVr8P73vx99fX149NFH1e8vvPACDh06hLGxsXZ3xcEC4Rb16go80rRlaQJkyOzkgOmbaTWBIS9kwcBaJUbSYOfds9vibewX7yOPJc2DzUKx9nzNeLM1DZnuR76Yip5YZFP2vQlVWN4nVsLW3GBzZ9b76Hh/9JqNSp3QBVeANl/a4MEdsqLlmtR1112HD3/4wzjttNPw2muvYfv27QiCAJdddhmGhoZwxRVXYNu2bVi5ciUGBwfxF3/xFxgbG3PMvqWMpLgahvTX8OdGMiO0ClUpf5Cc/bse5ERuU5ST2kk0/bVJSAehzhpejH1NLExleRPAImqg+rskn1izkKmggPzCuRDq65cHsXCKStC77BGdQsuF1KuvvorLLrsMb7zxBlatWoUPfOADeOqpp7Bq1SoAwFe/+lX4vo8tW7ZgdnYWGzduxK5du1rdDYeFgLTgUVtLYDNhNzUnwKy/BDSnwaRpjknpfjqlNbIQKlAUjyQJFXyuAEBBbfKLrNDL2kqj/eE2JKRwanRc8u43ORBpUYAOfHfoCDwi6vKTnx9TU1MYGhrC0aNHMTg42O3uLGokkitaVV00SUjJj/IQjU50rYT0v8jksrnJIJ6Os7HPn0tKAKbG0AkhxUQJPlTawmAuiFhtdtYMRhBGk7hk+TXaH9t/JUuZdMLsG3ogf3v72l/CyDqPu9x9DvkhM3MDzWUQSGJ+2aywbmtQMlaLu6ImSi/f+asyI1QdN+RBV8htJ9Ko//ZhOX9g0r6K2BEzKGxCi0zz1CiShFun0mAxZgrAss4dzqEaTkg5NA5eeftN5Pqz/QsGUaIHCBIy5xz/r5KlEgBfC9ta/bQJFiyQGDJ2qdUgL46hCgShASZxQAkZuR+AMDA/A7o+lCrFAq1Vsn9OxWS1/nQ6BtYYnZDqKpyQcqiJJOZf2+OrZGaFbgqoJG1D0arzak8pLDQjpVCu3tU+HmAKJE4ia//O2pJkTnJfbFOeJ95VrkHo0iJKg1qYAqrqXu8HcFI3euIg4YSUQ2PwmnCI12uXc73lzlPXIl+Z7IuHKP6IAPhSy4vf6znvZdVdbhPQ2ochCJuY2FUWcuHnC8VnaaZjbScIdQn2PGa0PnE86SOSiXC7baJ1WDRwQsqhcbRrImpEONnCo5VQWkGOfkkzIQsPKYAl1EcPuY4h6fAyZsg2T8rjsCmOUxY1Gghrp1Fa6IKp4rem0KdDy+GElENupAX/di27ei+aloxJ2xJMSnui5M+Zj6HUMagBsE2UnjiGobR5kaYlS8k3igWedYFwixNQPQwnpByWNiqxr6aZeJ4keBTFGwGmxmMwBKvKJ2v/jr0f72P3UQpoxUAU7Eje3tC6fKCCuJQGmwBJm/4cHHoITkg5LE3INETtDsFiQcI+ojQSBcRvbLbj7Vjw1BKkdvYH6Wfiuk4g05+klLAK4PnaFLhUMBdEBAmHnoUTUg4tQ1eYgM1C1m7qFIR1zoBHZsVeRUoQ7Ls0cghXpJVCjpl2gC7zzqZHO7lvxQf8WDgtUtNXopnaCaiehxNSDksT7KPJQxwgITQayTIhtShmw9nbzHu6pDuzAoNQ9zMpwBZxW7WEC2cuD70o9omFJDMBPU9n9V5q2pRDT8MJKYe2omfK1kvYCVAz7xe/wIKmAe3L3sXmTMhKuEqT8tKFU1YYJUAk0SL+nQkUTKZY4NpU1zL7O7QcTkg59B7aGcgrk5Y2FJCbkybOYHICm/HYfAeYpApZnkSa5IBYw2pQw6lKYyUIFfxdt2t0OTgkwAkph94C1zICzLRIrWDeMVkib9JTO1DWBxoSVIAuEyFZe5LAIRmA6pgQ6Zga5NorLRAWocISUjzerQ6MdnBoEE5IOXQMueKrpCbRqtKcjWhCaXFHzUzgMkFvEttPloIHaaHSSBYOG/b5yDRPvRZrlgHOrLf44YSUQ29BmeE8s7ieh6gQXyPgarEqd13KdraZTcJDxH5jTaMZcF2quQTHj4yvYnCZ82YygHP2CWlWlASJAunSHDJOy2lTDl2GE1IOvQWeJENEwa7MSquEURxPXrPfXKCFgZx8JWQSVikUZU67VggnPhYLzHlfCwIv7l+hIhK+UjILMAkseJJqQNn+rnJc5p0FHx+HGYRyfNIKDzo4dAhOSDl0HVUmG74r4xgWb2pH41oEm9PSBEyS2U0KJBYerQJriXw89nElHc8unVELqv819mFLJx/DSNWESHB6Yjzk710SUs6c5+CElEPvo68SVaxtBJIqbqQQiv+R1YF5HvZQbfpqNVibUsG6pBmAaRVxkzAvTHhAlKk9yZ7Jpj0u0mgLYzY/SqGtEtHGZI9Gza0ODk3ACSmH3kej8UEyA3hSQT9+l0w7JlZ0go4tBSQjDzmCTXfGdynbsvbE+fpslGOzqBwLn3RGBt8F9zp0B05IOfQ8qP+mmr+nBglLn45tRjPIAWJbgq6L1C544t1L+K6RtpTQTSJ9UKQFFQTlHTBTMMkgX1klmEvct4lA4cx5DvXghJTD4gWTAaRpyyZAsAmMtweyT8hsamPtg9MXZYEUlGmBtEk+MuN3mAHCoRdlN+d0EXbKJ0nQYJQDM7iYiyKyvHT10gAADH1JREFUybFPkCsqvuk74zYdHNoIJ6QcFjxSV+MeqtL7JGpdjUy4MuhY+bI8MeHXaEua9GwhIiHLenDclK3VyBRH3JeKZ5IkakGW62Bmn/JfkaV1IiHOCqnn67Qkh1bACSkHh0a0AYOqHn+XlY3HmdeDUAs1rvM0B8D3TUq81LgKccl3wBQYUkPKYzIsx8K24if7qmTFX6UxChNgq6j5Dg4pcELKwSEr5oX2JMFxTHl8Nxygy7FLlVjalWPVL/QiIkPFM4N5+yumMGQhQfyBv8/QDyZLsICSAhMQ/YIZZ8VsSyegHDoAJ6QclhTqmaBSSRg8Sdv1nWwfTVbI/STpgbWViqdLddgsQMVAhDbReRANZYA8H6klyTZCIazid3r7l3KeqINDc3BCysGhHjh+SHIijNIX4vssPinev1jRZr2KHyeSFRoLRPvSN+TZxxbOJ+lfq8dQZMJFxdcZMPi8uEn2TXkAPEdDd+g8nJBycKgF8rSQYsHDaYsCyzek3pEttksGx3LmCVXWHiapwRcvm6nIfbPLbtQ7L4IpoCp+xA6UPjZJosirLTo4tABOSDk4CFSZAz0Ay1t7jCqTIhMiQg8IhMmPNajAElJVDD/xHrP0yN9euxMBgFL8cnDoYTgh5eDQbRRCHe+kyBTQWctlvFJSaiKPIqFDGUx8Dg4LDE5IOTj0AticxjkKQw+okDb71cvn58xxDosUC1JIEUUP69TUVJd74uDQCGbrbxLCqvuUTwhNwT0bDr0Nnr95Pk/DghRSx44dAwCsX7++yz1xcOhNDOHL3e6Cg0MmHDt2DENDQ6m/e1RPjPUgwjDEa6+9hhUrVsDzetPGMTU1hfXr1+OVV17B4OBgt7uzqOHGurNw491ZLNbxJiIcO3YMa9euhe8nBMnHWJCalO/7OPXUU7vdjUwYHBxcVDdWL8ONdWfhxruzWIzjXUuDYqSLLwcHBwcHhy7DCSkHBwcHh56FE1JtQrFYxPbt21EsFrvdlUUPN9adhRvvzmKpj/eCJE44ODg4OCwNOE3KwcHBwaFn4YSUg4ODg0PPwgkpBwcHB4eehRNSDg4ODg49iyUppE4//XR4nlf12rp1q7EdEWHTpk3wPA979uwxfjt06BA+9KEPYdmyZTjllFNw/fXXY35+3thmdnYWf/VXf4XTTjsNxWIRp59+Onbv3m1sc//99+Oss87CwMAA3v3ud+Ohhx6q6sPNN9+MNWvWoFQqYXx8HC+++GLrBqMD6MR4f/rTn048xjnnnGO0s3PnTpx++ukYGBjA6OgofvzjHxu/z8zMYOvWrTjppJOwfPlybNmyBUeOHGntgLQZnbq/7733Xrz3ve/FsmXLsGbNGnzmM5/BG2+8YWzj7m+NZsd7586dOPvss1EqlfCbv/mb+Na3vlXVl0U53rQE8etf/5oOHz6sXo888ggBoMcff9zY7vbbb6dNmzYRAHrwwQfV9/Pz8/Rbv/VbND4+Ts8++yw99NBDdPLJJ9MNN9xg7P+Rj3yERkdH6ZFHHqGDBw/Sj370I3riiSfU708++SQFQUC33nor7d+/n2688Ubq6+ujn/3sZ2qbL3/5yzQ0NER79uyhn/70p/SRj3yEzjjjDJqenm7L2LQDnRjvyclJ4xivvPIKrVy5krZv3662ue+++6i/v592795Nzz33HF155ZU0PDxMR44cUdtcffXVtH79enr00UfpmWeeofPPP58uuOCCdg1NW9CJ8X7iiSfI933627/9W/rlL39J//Ef/0HnnHMOXXzxxWobd38/bmzXzHjv2rWLVqxYQffddx8dOHCAvv3tb9Py5cvpu9/9rtpmsY73khRSNq699lr6jd/4DQrDUH337LPP0rp16+jw4cNVN9VDDz1Evu/TxMSE+u4b3/gGDQ4O0uzsLBERff/736ehoSF64403Uo/78Y9/nD70oQ8Z342OjtKf/dmfERFRGIY0MjJCX/nKV9Tvk5OTVCwW6dvf/nZT59xNtGO8bTz44IPkeR69/PLL6rvzzjuPtm7dqj5XKhVau3Yt7dixg4iise3r66P7779fbfP8888TANq7d2/T590ttGO8v/KVr9A73vEO4zh33HEHrVu3Tn1293frxntsbIyuu+464zjbtm2jCy+8UH1erOO9JM19EnNzc/inf/onfOYzn1HJak+cOIE/+ZM/wc6dOzEyMlK1z969e/Hud78bq1evVt9t3LgRU1NTeO655wAA3/3ud3Huuefi1ltvxbp163DmmWfiuuuuw/T0tNHO+Pi40fbGjRuxd+9eAMDBgwcxMTFhbDM0NITR0VG1zUJDu8bbxt13343x8XGcdtpp6rj79u0zxtL3fYyPj6ux3LdvH8rlsrHNWWedhQ0bNrjxtsZ7bGwMr7zyCh566CEQEY4cOYIHHngAF110kdGOu79bM96zs7MYGBgw9iuVSvjxj3+Mcrms2lmM473khdSePXswOTmJT3/60+q7z3/+87jggguwefPmxH0mJiaMGwqA+jwxMQEA+OUvf4knnngC//3f/40HH3wQX/va1/DAAw/gc5/7XN12uA1+r7XNQkO7xlvitddew/e//3189rOfVd+9/vrrqFQqdce7v78fw8PDqdssNLRrvC+88ELce++9+MQnPoH+/n6MjIxgaGgIO3furNuOu79NZBnvjRs34q677sK+fftARHjmmWdw1113oVwu4/XXX6/ZzkIf7wWZBb2VuPvuu7Fp0yasXbsWQKQBPfbYY3j22WebajcMQ3ieh3vvvVdl+r399tvxsY99DLt27UKpVGq67wsR7RpviX/4h3/A8PAwPvrRj7aszYWKdo33/v37ce211+Lmm2/Gxo0bcfjwYVx//fW4+uqrcffdd7ei6wsS7Rrvm266CRMTEzj//PNBRFi9ejU+9alP4dZbb61Z5mIxYHGfXR38z//8D37wgx8YK+7HHnsMBw4cwPDwMAqFAgqFSI5v2bIFv/u7vwsAGBkZqWJ88WdW59esWYN169YZqejPPvtsEBFeffXVmu1wG/xea5uFhHaON4OIsHv3bvzpn/4p+vv71fcnn3wygiCoO95zc3OYnJxM3WYhoZ3jvWPHDlx44YW4/vrr8Z73vAcbN27Erl27sHv3bhw+fLhmO+7+zj/epVIJu3fvxokTJ/Dyyy/j0KFDOP3007FixQqsWrWqZjsLfry76hHrMrZv304jIyNULpfVd4cPH6af/exnxguAYjERaUenZIX93d/9HQ0ODtLMzIz6XCqV6NixY2qbPXv2kO/7dOLECSKKHJ1//Md/bPRpbGysytF52223qd+PHj3a847ONLRzvBmPP/44ATAYTYzzzjuPrrnmGvW5UqnQunXrqogTDzzwgNrm5z//+YIlTrRzvC+55BL6+Mc/bhzvRz/6EQGgX/3qV0Tk7m+i1t/fEr/zO79Dl112mfq8WMd7yQqpSqVCGzZsoC996Ut1t0UKZfQP//AP6Sc/+Qk9/PDDtGrVKoMyeuzYMTr11FPpYx/7GD333HP07//+7/TOd76TPvvZz6ptnnzySSoUCnTbbbfR888/T9u3b0+kjA4PD9O//Mu/0H/913/R5s2be54ymoR2jzfjk5/8JI2Ojia2e99991GxWKR77rmH9u/fT1dddRUNDw8brKqrr76aNmzYQI899hg988wzNDY2RmNjY/lPuMto93h/85vfpEKhQLt27aIDBw7QE088Qeeeey6dd955aht3fyejkfF+4YUX6B//8R/pF7/4BT399NP0iU98glauXEkHDx5U2yzW8V6yQurf/u3fCAC98MILdbe1byoiopdffpk2bdpEpVKJTj75ZPrCF75grKCIIvry+Pg4lUolOvXUU2nbtm1Ki2J85zvfoTPPPJP6+/vpnHPOoe9973vG72EY0k033USrV6+mYrFIH/zgBzP1udfQifGenJykUqlEf//3f5/a9te//nXasGED9ff303nnnUdPPfWU8fv09DR97nOfo7e//e20bNkyuvjii+nw4cPZT7RH0InxvuOOO+hd73oXlUolWrNmDV1++eX06quvGtu4+7sajYz3/v376X3vex+VSiUaHBykzZs3089//vOqthfjeLtSHQ4ODg4OPYslTZxwcHBwcOhtOCHl4ODg4NCzcELKwcHBwaFn4YSUg4ODg0PPwgkpBwcHB4eehRNSDg4ODg49CyekHBwcHBx6Fk5IOTg4ODj0LJyQcnBwcHDoWTgh5eDg4ODQs3BCysHBwcGhZ+GElIODg4NDz+L/A4BG773W/zb6AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAGsCAYAAABn4VjoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e7BtV10mDD9jznXZ+1xykpOY5BySyoslWtKB7q+DpaFtCbcg1RgUytCtZUs33UW3IW0ktBhsfEO/mNBYr+iL1fm88BGFpkJ1K4ot0kBhSFEU1RA7JWAVokY6eUmMYnKue++11pzj+2OMZ4xnjDXXda99OfvMp2qfvc+6zDnmmGP+rs/vN4y11qJFixYtWrTYhyj2egAtWrRo0aLFJLRKqkWLFi1a7Fu0SqpFixYtWuxbtEqqRYsWLVrsW7RKqkWLFi1a7Fu0SqpFixYtWuxbtEqqRYsWLVrsW7RKqkWLFi1a7Fu0SqpFixYtWuxbtEqqRYsWLVrsW1yUSspai1e+8pUwxuB3f/d3p372vvvuw/Of/3xccskluOSSS3DjjTfiD//wD8P7w+EQb33rW/G85z0Phw8fxsmTJ/HP//k/xze+8Y1tn7sJzzzzDG677TacOHECa2tr+M7v/E587GMfW/g4LVq0aHEh4MApqZtuugn333//1M/80i/9Eowxcx3vmmuuwbve9S588YtfxBe/+EW85CUvwatf/Wp85StfAQCcP38ef/zHf4y3v/3t+OM//mP8zu/8Dv7sz/4Mt9xyy7bPnWMwGODlL385/uqv/gr/7b/9N3z1q1/Fr//6r+NZz3rWUsdr0aJFi30Pe8Dwohe9yL7//e+f+P4jjzxir7nmGvvEE09YAPYjH/nIwue47LLL7G/8xm9MfP9//s//aQHYr3/96wud+/HHH7e33nqrvfTSS+3x48ftLbfcYh999NHw/n333We/9Vu/1Q4Gg4XH3KJFixYXIg6cJzUN58+fxz/7Z/8Mv/Irv4Krr7564e9XVYUHHngA586dw4033jjxc6dOnYIxBpdeeunc5z5//jxe/OIX48iRI3jooYfw2c9+FkeOHMH3f//3YzAYAAA++tGP4sYbb8Rtt92Gq666Ctdffz3uueceVFW18LW0aNGixYWAzl4PYDfxUz/1U3jhC1+IV7/61Qt970tf+hJuvPFGbG5u4siRI/jIRz6C5z73uY2f3dzcxM/8zM/gR37kR3DJJZfMfe4HHngARVHgN37jN0I48P3vfz8uvfRSPPjgg7j55pvxl3/5l/j0pz+NH/3RH8XHPvYxfO1rX8Ntt92G0WiEn/u5n1vomlq0aNHiQsAFr6Tuuece3HPPPeH/Gxsb+PznP483velN4bU//MM/xNNPP41Pf/rT+F//638tfI7v+I7vwCOPPIJnnnkGv/3bv40f//Efx2c+85kxRTUcDvFP/+k/RV3X+M//+T+H1z/60Y/OPPfDDz+MP//zP8fRo0eT1zc3N/EXf/EXAIC6rnHllVfi137t11CWJW644QZ84xvfwC/8wi+0SqpFixYHEhe8kvo3/+bf4NZbbw3//9Ef/VG89rWvxWte85rw2rOe9Szcdddd+Iu/+IskBAcAr33ta/GP//E/xoMPPjjxHL1eD9/2bd8GAHjBC16AL3zhC/jlX/5l/Oqv/mr4zHA4xK233opHH30Un/70pxMv6tOf/vTMc9d1jRtuuAH/5b/8l7Hzf8u3fAsA4MSJE+h2uyjLMrz3nd/5nXjyyScxGAzQ6/UmT1SLFi1aXIC44JXU8ePHcfz48fD/9fV1XHnllUGpED/zMz+Df/Wv/lXy2vOe9zy85z3vwQ/8wA8sdE5rLba2tsL/qaC+9rWv4Y/+6I9w+eWXL3zuf/gP/yE+/OEP48orr0wUnOIf/aN/hA996EOo6xpF4dKJf/Znf4YTJ060CqpFixYHE3vN3Fg1ZrH7FGhg2L3kJS+x733ve8P/77rrLvvQQw/ZRx991P7Jn/yJfdvb3maLorCf+MQnrLXWDodDe8stt9hrrrnGPvLII/aJJ54IP1tbW3Of+9y5c/Y5z3mOvemmm+xDDz1k//Iv/9I++OCD9t/9u39nH3vsMWuttf/7f/9ve+TIEfumN73JfvWrX7X//b//d3vllVfad77znfNNTosWLVpcYLjgPalV4y/+4i/wt3/7t+H/f/3Xf40f+7EfwxNPPIFjx47h+c9/Pj7+8Y/j5S9/OQDg8ccfx0c/+lEAwD/4B/8gOdYf/dEf4aabbprrvIcOHcJDDz2Et771rXjNa16DM2fO4FnPehZe+tKXBs/q2muvxSc+8Qn81E/9FJ7//OfjWc96Fn7yJ38Sb33rW7d/4S1atGixD2GstXavB9GiRYsWLVo04aKqk2rRokWLFhcWWiXVokWLFi32LS7InFRd1/jGN76Bo0ePLt0Hr0WLFi1a7B2stThz5gxOnjwZ2MpNuCCV1De+8Q1ce+21ez2MFi1atGixTTz22GO45pprJr5/QSopdmV47LHHJtYUtWjRokWL/YvTp0/j2muvHeuyk+OCVFIM8XGPpxYtWrRocWFiVsrmglRSLVrsN5iv/xJQWKBTu9/rQ2BtBPD5MxYorfu9HWx0gL89DFQG2OwAw9Kd54rz8ZxNsAY41wVqA2x0Ya96y/bG0aLFLqFVUi1arAJl7ZRQ6ZUUlZNF89/Lol8BRwZOSXVqYFACvQroVu78tXHnJwale21QAqPCKauy3uYgWrTYPWyLgn7vvffCGIM77rgjvGatxd13342TJ09ifX0dN910U9jFltja2sLtt9+OK664AocPH8Ytt9yCxx9/fDtDadFib0EFVU7xmKyJP4MSON0Hnllzv8/0gbM99940FNYpKf05NIweXFUAWx3ncf3dOvDUYeBvD7ljb3Wcoira+v0WFw6W9qS+8IUv4Nd+7dfw/Oc/P3n93e9+N37xF38R999/P779278d73znO/Hyl78cX/3qV0OC7I477sDv//7v44EHHsDll1+OO++8E6961avw8MMPJx2+W7TYLRjc7RUI3O/a/10ZF1IDogKhjOfnqwIo4ZRTp/ahvdp5TaqseDzAKYtR4c7DzxXWKa9uNV2RlDVgvCdVG3fegorRuHPU8pNcqPPyzJl73XF6/lybHfdTFcD5LrDlr5leYUc+649jr/z3S8x0ixaLYSkldfbsWfzoj/4ofv3Xfx3vfOc7w+vWWvzSL/0SfvZnfzZslfGbv/mbuOqqq/ChD30Ib3zjG3Hq1Cm8733vwwc+8AG87GUvAwB88IMfxLXXXotPfepTeMUrXrGCy2rRYkFUVBr+76pwSkUFPZWJgVcUXjEUI/e7Y52CaTp2bYCRAQYdp0RGhVNIued01nez79Quv6S/icIrpUPDqDj4fm2dUqUSBLzS9eO3Xrn1R0C3jkp0fRQ/T0VkDTD04xsW7sf499uQYYtdwlLhvttuuw3/5J/8k6BkiEcffRRPPvkkbr755vBav9/Hi170Inzuc58D4Db3Gw6HyWdOnjyJ66+/Pnwmx9bWFk6fPp38tGixUtTGCeGBJyNslc6zYC6nKqKHwtxSWXuBXwFrVbOCApwioMe12XGeykbXHXsg59rouPDf3627n1Nr7v/nu83HLaxTUp1MYYy8QmEOCojeIQB0qujx6Rg7dQxVUndWhZuPoYxxy4+7RYtdwMKe1AMPPIA//uM/xhe+8IWx95588kkAwFVXXZW8ftVVV+HrX/96+Eyv18Nll1029hl+P8e9996Ld7zjHYsOtUULAD6UNw1VIfkiRO9JvRwLZ9LlDsQ8XkUtIThVdDb7XZvo0QHus0VDyG4arIy9sOmAw2tTxhlCmYh/Tzi9+fP/JypaPYfCK3L73Nvmv4YWLQQLeVKPPfYYfvInfxIf/OAHsba2NvFzOe/dWjuTCz/tM3fddRdOnToVfh577LFFht2ixXRoHmpUxHBcZdKfYSEsOaRhtkkgs27QccQFeiU8Bs/Lc292XMiPeaGhKK15oOMtrAsVro2cx0Wvi2G/se8W0WukwqISNjZV5ATngMfla/2Ro8QfHQDHN+Yff4sWGRbypB5++GE89dRTuOGGG8JrVVXhoYcewq/8yq/gq1/9KgDnLZ04cSJ85qmnngre1dVXX43BYICnn3468aaeeuopvPCFL2w8b7/fR7/fX2SoLQ44zOl7U0HbrVyOZVLIbR7QA6HnkhMljHwO2WuTjldloUIqkPx7PDdzP0Xpv2fje/PUWAXPzJ+jJNEBzqma5EmpB6Yf4TkLuHHz+DwmlZg1Lh8GrxzJduxWwPoI5uw96f3Jrt+a/3P2tbW4KLGQJ/XSl74UX/rSl/DII4+Enxe84AX40R/9UTzyyCP41m/9Vlx99dX45Cc/Gb4zGAzwmc98JiigG264Ad1uN/nME088gS9/+csTlVSLFmMIobIVHIsC04hAJ1vOqKdgY1Eu2W7TFMdAPCF6SwapgGZEjp5Lp3bCnJ5PTnCYhNo4T43EDA3dGU/oWBu54/Wq8RAlxzosooIr9EdqwFTR8XOlz4+tDd05eJ6ufIe5rkBAkZ8WLSZgIU/q6NGjuP7665PXDh8+jMsvvzy8fscdd+Cee+7Bc57zHDznOc/BPffcg0OHDuFHfuRHAADHjh3DG97wBtx55524/PLLcfz4cbzlLW/B8573vDEiRosWExEYdyLgtlP/EwSojaYb6dc8LgU/Bf608w1KF7Kz3nNSD6WwqUeibMJODRgfojs0jIplFs4LEUOVInNp/Woytb02KQW9NlGJUaFq7kwVrSof1moZr7CMn6tOFRVdq5BaLIiVd5z46Z/+aWxsbOAnfuIn8PTTT+O7v/u78YlPfCJpIvie97wHnU4Ht956KzY2NvDSl74U999/f1sj1SLAnP/5lP6toTcVlnxtWyfTg2WvqWA1/h9VXJNQmah4lBih51JFpQoMdVoYPI/yZU4rJ3wQuQeUf09rq8K1Ir12eq56ePWOOGaG+0IrKPncBBj7jpkKzM4iwLQ4kLggt48/ffo0jh07hlOnTrUNZg8ozOl7Yy6H+ZggKMWLorejOallPCp6EyzcrTPlYUWYd2tHBmhi9W11XMhsqzNeEEuau5IkcvSqGDo7uhXJDr0JubbKh+jO9mILJBIt+t7jK+vYlUJhjfsex7vZiWSJQpRLaeM85ExDKiPtW6jhUiCSKhJvVe4nlbkqtwa0SupgYV453vbua7E/QeFLenOT8DJkAwAwkl6dJzyWg0KWLDb14CrjTmMR2wrVxnWZyHGqH4t06TlppwYK56F4Pt3ahcRK69hwLN7tjyLxIVcO1gADX8PE+qvKz4HmfMJcNYx1owOc6YkHhki2oMLh7+TcMh6trco/m3i/SAkgDP9RcQOegCHHatECrZJqsQ8Q6pjY026zExlqhHWfTGEjGaGJHr0oCq+gKCjZqYEhvuRnQuiszgQzxwbxRvhe4hEiMuI6tTSqtXFuwjxgnDkIOR+/x9BbrmQ4zvD9TLmVdWzrpN8PhzFpTooUdX42hGPteJi2Nu5arb93tbwOAEU9kc41sd7NsyJt7+3N77e4oNEqqRZ7D4Z7AGG6icIJykL+D4yHjegNTNquYhYKC5haPAUrpAcL9OBp1XWzpa+EgqAs/Ni0FRKp6AwX9hxNG6XvXpGzBrXoV3NHDC0GD8WPj6SOtZE7rh6Lvfk0JDkqIpuwsO47uTfKMKLeF85/3qVCx802U/paZQBGLysT56RbA/DzUJr5w7b0VlscSLRKqsXeoxLpFsgG/v/a1gfIiBNeefAYy4aIeOzCn5gCn+cKuZTahfim1WJRcAcPzEaloiSFSrqRdyW018v69OVdKbTYlrRxPTfbNDEPpWAIdaMTFZwqCIb5+l65MV+koc+m7hdNrD0dd9P/QwNfrywrA1hp8TT08zzJa21x0aBVUi12DeaPfzXWznQr4NJNL0ibEib8UhbuMgAgVnsoNl2hIFMaurXR4+EYOhPOZbz3Uoki8sMN4UiGw4packCilFjAC4xPC72zEWI4Lb9uJTIo6MFoPz8NDRbZTyCqMPRZ+HHKNen3k7Hy/+INhQa38l0qcWOd8ldlVxmgLt3p5iTDaDiwJVkcHLRKqsXuYVTEvAsblw4y70f75hlEZpl+TPMhqqwm0ayJkBPJcj0kOKig5fvdCiiK+Nosy/6SrXjcQRnDWbqPU12nikTJEfpZ5nvo4QBpeK+wPkSGeE0M25X0CP2xN0vnsQSChE2bzDLMyHAmQQXKMY4yo0GJEzrPNCbkl/PKZM6tcb0Jzcj9n0XTQKzb4jk4Hyxs5rxo3qz1uA4kWiXVYkdgHv3lyBrbKl3X76T1jo3Je4WGtgAk9UoMNYVWPyKUlDI9CQy3UbCG82GqMxfa/iwiBI11YTOGy2oDoAY6zEfZSE4IoU34z1vpC1g4r4vXFnroIX1NPSitrQo9CX3PQM4vQ5L0CkmWmKToeQ7UcZxA85yrJ5rAXw9DtHTMytopq1KU5qhwa4ZjUyVF5U2FFTqCxDyfwd2e+WjccU73Ya+7Y44b12K/oVVSLXYGFtKeRzwVtv1RBhsFp4KWeJITQuqB0IoG4mfKBgGrY+JPfq5pSorHXwYU/mXhz1E5RdUUkgNSqnpXOjUAPmQntWNJqyHxBNljTwkoFlHZwv9WwkO3avaKFNq9XcOETWg6Rol47gDrlEv4nh8rlXRuQIQxiJKk8VHWkdxC46gqxnN3LS4otEqqxc6gNtGS5UZ7BrE7dilWMcN5oTGqzcgMHk1eQ1J/ZGcoKfXkNMS3w6GiXu1IAQolI+i5S0/B1rojJRuQIQh4ZS/zwLkIW30IPd34z1u48KUqAv6e1CMwMPKycKkq0HlgrBuvNU4x5ZtJqlItvZJOFK3xrED/Pa2ho8FT+ZZS9MS491VT4XSLCwLtnWuxLRj7jthEdVQA53pOMNgyWvP0eOjphFAXlYNa0uI9QcN+SL0GzdmoJzSP0GzypBaF0uBnQRUIz2WsUyKBRm/TeUq+Y1Mvps7mK78Gvq/h1JB/MtEw0KLdaR6Unpe08o6MbVEY7z3l9xRImZ5KulCWoIY8wxiLmIfjWEle8SFX88j/NyrjwnoSTwV78s7Fr6HFrqFVUi22h9A2x7pcCoVNWQchkAjDde9JGUTrtzYIuYpQnAsk4b7ca+JPU8udSWAYSJPsywhZpZIDKYmgyRthbi5Rsj7sBiBpvjpJWQTGoIlzBESF1hGyhEU0EAg1GHqjmAuappx4bblCIMEDcAZK2LpeFChf09wbkHrJ+h2LqFA4VlXYvFZdMzl7UsG5LGugizhvzF8V1ndrb+ur9jtaJdVi+yjrlIBAj4lFtT32kLNOQFIwaONVIAomDYVZG4UTBR8FPYXQvJjU5mdRkLnH9kcMaZZipXOrihAqo9dEgW1jW6V5rmNkHPmBRAyVySQUdOp0PJUoIL7eqd1W9/MqZ95XVQLcHDHxZLJwII0H9XZ7Ixf65HHpTbJOSguG844bQDR8Sus3ofTe+qiIPRfVs+R6YciU3d2Ze6PB1GJfo1VSLeaC+dt3p0WnncxjoHIyNhUUFBaBiWXTME5oOWSddZ8IYK/1tLNEU3hroQuZ4TnMAwptCr5ADjGRPt6R1ymQk3FkY5oF3S1XQ57akihcn4k5pzzMWNaLXb96Unq9+fYjScEvYrGyhQvFGTjyCL1tLc6us3kkknwk0jBozXmT9aM1cxap8TQi+8+K1+qUVVO7pbbOav+gVVIt5kfYDsILA+28oKQG5jhoDa+NgMPDZkFdy9+gospfs9H6DQrCj4csr3ko6PzcPGCITr2cvJcglU/pX2BNVCFzYOCJEOJZhPlCqmAmYVBGbwOITLz1YfO88vgsnJ4WRhyWsYcew2fsvK7ekbZ02hIvkoc0iHVWvC6L2AAXGO9WUVj3PlszqfGTz7uVYyr5JdwDK55W7TuD+PDuwIck9fwMPS/iibfYE7RKqsX8sPA5Awph8XrU0tWda8t6vH8cYaxTMvQOeJK8EJXhQ1KoR/Ri/JtWzh3qi7aJgReuncrlNFQBUkBybIU/36jjvkeB3TMY2+xPvzePgGRokeQUbuPRqV23jknzCjPf8Tc6sdVS6PA+jKFaJR9wDGTLqdDnVvFJ/Zn/7oYXM3lHi8LG47F/4JrUQVF5562ZmLvkOXh+MkZ1HkoLrHvGJHcd1jq1FvserZJqMQZz9p70hVHhEv2USblc1DBL8HrqVCA1ITDG0Jz8BtIwop5Lv6O5LO3OsB0U1oem0Bxa1LqkHBxXMl8NXhhDm1PrkkQ463nVKxs7vxm/R9OOr2w4Db/pPdHj8dw6B6Xc9zBem/ZU7NSxHx+Rk2BKUVI0VuBDdTwPQ3VUWLzeaWuNS0IZilPQ2HF9qwPb/w/Tv9hi5WiVVItxHBrKw+yFQ+gwkFnK2kePHbiDoBGLuQmDMm4MOCaENVyWHUMFab77LT+3zJ5Sis4UJWtEqGr4qZL5yq8738KDihWIocrwt03rzPgbiB7YNC9AxzFJYY+8Z8TPsq+fAbAl4+a9UK9Jj8nQY2FjY1teBwB0y+jdHB4ARwbx/LVxeSp6a2xsq15UuKYinVNrXIsmKlOdzyYMpeMGPzsspzcLztF6XnuCVkm1GEdIThtnwVbeYgWiRR2sdYPEzO5WqaKZ5G0A401YASkQVaXVIHw0ga8KNS/2XdaryhUjQS8mWPKIghIYD1NC3s89P8h38lyVsgI11DVtbISSEJraOVFBjcr4WaWPDwugkNxakZ27Rswd6dYi7JCREzmIdTEcOnUMHXd9HoueVhNyBcFiZ86/dpXPkXfqYIuqkXGh3HkxbS232DG0SqoFgAnhDQ0FNYX4mkJVLJKcBgqMploja+HCO/5zpkHJ0LvS3BCVAHVmoIWLkqPXpa9NKo6FHCuZD4x3QSBKuXY9RwFRUDayGLUjOeeum1GsWRul45skLJlX0p2Bqbjp7bDGiXkoPb96sHn+iDVm/Hg+Jioz3SwRgNNoo+YcHJmGwyKOcRFoAfSs79Kzt9YZXoWNLZMWKEswW+90ObZBCXvlv19svC2WQqukWkwGa2GClwJJemN6KG8SNjuxG/ewGG8wS/qwKogmK7qwrkWOKg34sbItkCboAzPRpN222SlD0a1l40FR0prPoIDXczP0ZawLXYXQlD9ujajc2LZHNzEsrAu19iv3utYPqSfDcF9VROVxvpuGB6mMS/FS+FmSQvJbx7GHhq2iqNSbYyd2jodj0pxUOOYMBcJrJilkJ2ARt/vgfQQiAYSGFUslJoX1arl3+ZppsWNoldRFjInbcRN5KGv8AIuBioLKguG6seNSIdLLmVMgMEemSlV/a1hQvaKcGl0jKsr8+KpoxrxLpHVL4fsa/hNhH5hzJgrpqgLqOs6NKvHca2U4lnM6kmNZOK+NnhTHq8qawwmKXM6jXormzprmZdL45gW9nO0WWU+DXhMQ1wHzcIBX3CPHBpwEMdrMY++JHnvX7a5sL//pnbuGixStkmrRDFqZeS2MhROMtKhJMZ8HFAykAmuIp7EwtIh0YU1yG7jXRiLYakTvTq36EMopAFvHECAFLkM+en6GwrRrAhA/T2+NCkTronLSCPMhrEViXVLYF8qfs5Rxcw+runJdIzSsqLRs1EBdxh12VflTIVVIFU5y/ZkBwnuShyA1/Kf3SOfLGl+ovWSboZ0kJbAmivdtZCKlPqw1XzpQmbi+8vyYeta8pzQIWlLFjqFVUi2asdkBzvZivD8kwv1DrSGqArPZdBrm2uogFJuGolEArHlS74EtckJLJBG4nToNu9Tyeq9KcxWmRqjJYriM3gqVsXZsH7GNUxXzTKoEBlKA2quiF7U2ynIykPxbETdC5LFIVS9EQXErdyD1qvhZKhG2AmIeiv8Xaz94Unl+id5l8LqodEz8PvNTOvf+I4kiHJRRqLN2brtdPXYCgdxROOW/1RlnhzIEXVjHRlxrWNeVGBnsYUgSR4uVo1VSFwnM3/yC61CwPppeT0JoeExDV2pJDxmimhT/0QFkcaKmmihFU9scCtE8HKVIuj3IexrS0lNr5wINB2qYMB+XsuGUxVbImPJ6rqbao3zMWi9UGfd0VoUzDOoyPSZkbMn8IF6Phb/ebP4g88f7Qs9KQ2J5bRpBr0/zVPtRKU0CW0cpVOlyb6r83k9asnI/zTPvcs9Yf9S2VloRWiV1sYC1LltlrGmZVkTKpp38Xq7Y9H2GOrpTKMRAWnsEIBbKZgpMoR5AsO79+XqSDGe+aJpXp3VXQFQ4oQ+dKJ+Rp0drj8IQLiqc9zUoY+uhEqKobFR4lQEGnWhxG86DKDgSNco61hEp4WBUABuIJAoeiyGnJqq6RXydxAcqXhXQ9GRLOK/NwHtE9fi8E3w/hD1NDN0GY2YfK67EYEBqNDCcawp3Xw5JA9rCuvvC+6W7LmtItMVK0SqpiwUG8aHiAzWJeqsEByAKLyAKHnYBN5DO39Xs4kj1cIwKQaTejJ5Lx5h7R4sUYzJ8BaTek4Z8eP1B4Mv3g/IunLLf7MbPUOHmCo2hoWGRznlh3I+xLqQ0rY9cp3btmVCKApXj54XEvI7QlNZEenrpz22RKlW9jqRbyIS5LLyED7v9Ir03k2q09gMSAox4oPScue65eWLYwVieG9Z2kXihnjD8cVoC4ErQKqkDDPM3v5AxmhAVQh6uUuTeS9JtIhPeeeHqzEGJokg8KhuJD8o84+fmPf68YMiHgoehsbGQl/ym5a3HmDY2VbrBi8mPNeeFdawjfvCeUcmUcB4fhKXGVkHM2eUWPsdVzhg/EO/FNHp4kyLaj8qJUOIDn4nkN9I50WvJ68fYuFa7ZPg5VfZsG/pbHq2SOsjQZG5CvbauHQ0/k6OQkMaoiDU4Whel9TEkNnTm8GrWRrGOJ3geXtjmUAs9hJ8WmoHmY1LolLXz/oajlMzQqWOdE0NYFGKcw44FMIp1New1F86DSJagtwMbWYeDMnZ86Plt0pvmgOh6L3UopI+eCFpVhswR8twG0YPjuAiSV1SRVUWk4Q9lTugx75YConG0aubcZmecbKI5PQO4vB3GjTh675wT7hnG/cPCmtnHSvoCQ6ukDjIozDQMRAGmYaOmB4pCt4Jn5JUpKYDCTRuLzhPeIIMt7/SgBAT+P7Df7DgRYlUINHVRQCReNBWnBs/CJ8DUgs7DXUo+4VtU7EYKavME/TRQQFrE3nU6LlWKhXVsu6bx09Pifc775dki8zhMvP+LhFiXBbfwAOLaWtW52c09FEojjSyosdF0azo1UHkDkPMbCqDRKqgVo1VSBwxm851RuOTgs1MbJwQKCwzqZqLBoWGkTA+L+PDxoeUOu9weYZEdb7v1eNI6sM0QH3IqUq1pKhimw+LCgEq6I9/reto4k/+jIhJAEhKE/zwVNxV0V4R8HiLKcxV5bo2e7qLeCb+nYUMqxdATD+k60MNTaXZE+OfzFLwKO15ou9u5Jnr/vM7tnpvrjLR5zhM9dc3JNUENP97zJkMlOeXdwKiA7fzc9sZ+EaJVUgcNFFK1l2IqOAODDcBQCnWblFSnBi7biH+f66bCq1fFrtdrsiU8H95pCmveDuX0BjjmsN+RiaHHRTws3ZOJ3+kK2WOr4z5DBWRs9Ex4XZ3aPTX8Pj3DfH8iKp4CUeHprridOtbg9EbzK3ggnmdauyHtaMEQnwpWKsnQLki8PvVg+xImDPVZWbhwJ8F7D3jFXMS5XBb8fg+R7s/5UXILmyUraOBprk9JFdPu4yq2kLkI0SqpA4KQpC0Mws65TVALm54Ke8BNQn+U9pgDvJLSvI0/J4/LPMh2rF6tbeIOvFRQ9KYWqaBUJl9TGKcn3lMoprVAXUQBnSTHRaA1XSfHXliEjSIVYVuLCePZDoz1HSBsDNWRYUgvr8lDUm877LLsGXwVoqGjnuduCF+y5ehRbQdcPyVLAUy8v6V4jk0eZkJd12POe+p3NK6VllgxGa2SOmgobLRuafXVPi4UWGFA2NCPVGbT8FASRwZum3KtKSrrcS+GNTwMJXb81g3b2duJtU3cKiTkp5B6JvOASrYq0Ni+R0NwelgqG4aGwuf9b2WHKduRNUiFdTR+ICombnFu0GyxbxdKsef5VAHn56PXB7i5yUNeVHpALDDmNe4EyhooCoQbEbzSFZASAonEzw0VjyliLlKp5Aaydvz64TYj3JCxnjPc3earFkarpA4qeppg99InPHiIcXkqlhrTe/BRuE1ioJGqvtGNBcOdMgryZRWVejUUjE2b4s0DChmG9CZRpw1Sj6vUMTA0hpjHsHLsjnxOtzKnEht55lwuDFeJrU56jzmWpm1PFKpgp42LCnYWtEh2UeFMD12PsSrWHBl5RI3oFWoImaFlIA37KumCnn131a5wC6JVUhcwZnYxb3putMaGAowCdLugB6KMM55vu8jrmraDwOTCZKGnczJWC+a1F8fBQ+QFrEnhMaIw5H5GO6GgVIHSa+N93m0kpzSLjyEP567qGugZh/tpomLmXKmXbGx6jxUWaH7QFkNbUzUZC9VE33fffXj+85+PSy65BJdccgluvPFG/OEf/mF4//Wvfz2MMcnP93zP9yTH2Nrawu23344rrrgChw8fxi233ILHH398NVfTIoWy5Bh2Yr1L3xMfuiuy5unxsL6KjD+SELaLUJO1jWPx+3mrI3qBmx1XE3a25/e98qHSbp3OEz+vP+yuHbbMEOq2XgPnfqfCZCrI804auwnN4S1bW9WtYoNf5gtXAS0vSH5sDAPSkKPi4lruZKHQnTI2WgQspKSuueYavOtd78IXv/hFfPGLX8RLXvISvPrVr8ZXvvKV8Jnv//7vxxNPPBF+PvaxjyXHuOOOO/CRj3wEDzzwAD772c/i7NmzeNWrXoWq2oXai4sV9G4o6Lue9LA2ku0vVvCg8WEnhTsoqRUJ5FnCThVO06Z0BcaLglkDtiEKaqMbc2vB67TRK6Tg5665ibJqCAflYa+d9mq0Bq1pc8OdPrcSMPYjjB1XMqHWTwwR/SwVW8emxIpVK6q9MCj2ORYK9/3AD/xA8v+f//mfx3333YfPf/7z+Ht/7+8BAPr9Pq6++urG7586dQrve9/78IEPfAAve9nLAAAf/OAHce211+JTn/oUXvGKVyxzDQce5u/+k8S/ARzbnJ/6G+pgbCxctUAoXl2Uxj0LbBPDsMmy+aNFocwrnStVkIG0INfLz+f97RiSS84x6dyISs8gjf7shbBWxiVzaruFWoT7hYJpekFDpQaRpak5ylWFU71yN/V/BGoD23379o95ALB0TqqqKvzX//pfce7cOdx4443h9QcffBBXXnklLr30UrzoRS/Cz//8z+PKK68EADz88MMYDoe4+eabw+dPnjyJ66+/Hp/73OcmKqmtrS1sbW2F/58+fXrZYV+Y0DAEuz3Mi/4orW3aaYXBUFauIHYKQcGYWOvCbdR7FXBJXDfJtvGKvLN5twLWbCSWKGymCIE075ZvdghEwbZs2GtRNO2BtBtg812tDbsQoHlO4y0OK+8pWBeYb+XRWcG1aj1e61AFLKykvvSlL+HGG2/E5uYmjhw5go985CN47nOfCwB45StfiR/+4R/Gddddh0cffRRvf/vb8ZKXvAQPP/ww+v0+nnzySfR6PVx22WXJMa+66io8+eSTE89577334h3veMeiQz04CEJwybACldpuCA2lKu8GqKR0W3p2yaiNYyxOa6WjHtSwAAZesTQp9LFGpCYqpBAW8kqwMjE5r97FqoXPfuo0XhWuH2FZA929HswSIJtv1nTqepqneF0x7X6F+jPsrve7z7GwkvqO7/gOPPLII3jmmWfw27/92/jxH/9xfOYzn8Fzn/tcvO51rwufu/766/GCF7wA1113Hf7gD/4Ar3nNayYe01oLk29CJrjrrrvw5je/Ofz/9OnTuPbaaxcd+gUHM/i//PbpGh9f4kAXikW7DAzG2XWKWZduMZ4/CorIpKHDvJmr9QMo6pQVZqyvQzPpeSZ1nQcWF3b7Ecy37ReluQhCyE7u0TSDgoZjIf+fBxoaTl7n/UcweEz9jnDci5nxt7CS6vV6+LZv+zYAwAte8AJ84QtfwC//8i/jV3/1V8c+e+LECVx33XX42te+BgC4+uqrMRgM8PTTTyfe1FNPPYUXvvCFE8/Z7/fR7/cXHeqFj1DrZHYvVLRKNJEGVi2EZ+UEZiWi2Q2bnhhzUpVxebthCWzVUUnlPxomUkq7kjM4DpIsgLRgeFRGC7o/mhyWnHT9QJzr3QixTgI9yQIpQ24S8ua4e9k2qLDufhsJ403zZjjPTXtpTUIeItbXk0bK2Nv7uM+w7Topa22SL1J885vfxGOPPYYTJ04AAG644QZ0u1188pOfxK233goAeOKJJ/DlL38Z7373u7c7lAOBsdonrWvabUyz/OeB7hZLrJLtB4wTFXJoWK4J2iIq71hu5X0gCqQ87BfGIv+h4lQlmeey8nxaYYGyiNe0yDwFj2+b92w7yO/FJK+BaGp+u1cIHmBmeMzzvXkRPH3b8BriXDXcvyAXhuVFR6hYSEm97W1vwytf+Upce+21OHPmDB544AE8+OCD+PjHP46zZ8/i7rvvxmtf+1qcOHECf/VXf4W3ve1tuOKKK/BDP/RDAIBjx47hDW94A+68805cfvnlOH78ON7ylrfgec97XmD7tWjAXigoVtgDaQX+It8fNigpCupVsf5offYAmFHsAFAW83V0YJNVU6T7ASV92nhMz5gLNVDZnOReI7u9q7LWrTLyGioDyUuY+bo6KJqEoEJZlzsBKz9stZU33lWwJ+B+UFJAWmLA/68SGq7PWzIB87FsL+Rw8JJYSEn99V//NX7sx34MTzzxBI4dO4bnP//5+PjHP46Xv/zl2NjYwJe+9CX81m/9Fp555hmcOHECL37xi/HhD38YR48eDcd4z3veg06ng1tvvRUbGxt46Utfivvvvx9luegT2WJHQOE88ElwIE38k6V2aDj5GCQibHViGIsPF1sJlfX0YyyKUjw03ZF2VisddnNnqEmt+7x5KgVuaSWc5d9jp4e844SBU2YqjHLFrTkQKjW+vmgNzqSP0mjQ3o6rhnqdPAXnv+kaWBqxSG0QFX7eV3C7COOzDa9lWCTEB/heh34tFHVsraRfnzecfxGGAY21dgV3eHdx+vRpHDt2DKdOncIll1yy18NZKWa2Otpp0JIfFr6YVTwKKhsqqUkPDAXi+W58QFUQU0kdGezMNVBJhp51M/IiZ/rumrc6sQiYX1kbuWulwmMd2KZ8lt5JtwLWGprFcjxsV6RKSkOHQBRW7E5R2Pk2+mOXi0mfV3r4dhr+TsOgdD9AvC7uXrvdglceL3TZl+OtuuvDLCW0jJIC4r1NdmtGfG/eDR2tATZLYNCBPfYz831nH2JeOd727juoONtzi3ltBgU7RxOFvGkDxUnQ8E1hnRehxZDajmintnmYtFtuEwoLHB6IwinTa2BLJO36riFBhgEB72EBmNSnTj1KIIbmtEOEeq0jn5/qm8m1T8pAnHa92pF9pxDCpHBeOMe2rHLM98LSUGly3sqt2UA82OY1zvr+osfXsGbtFdSgHP9MUUz3lHSddCxQrjASsY/RKqmDhto4D4bewUbH9+irFguvqfKg0qolpDXpOQ0EBIwLZULzFgmryUZPDtiehbyIIKGHxPFYRFIDPYH8eKFzB9Jdefn9ZAtyCk4TrWkKcwPJcaF5bnk8noffZ79AnjsnLjRd58KJfv/3PPeBylu90Srz8GYdJ+86bpF6uLx+VVo9A2Dk8nhDRGW8G8Xr80JzmboZJRCZo4V8Vq9TnxN+fhHD8wJHq6T2AczmO1fXJWCsTsg/FMUSBVZUVJrkpeCYJgwpLCcJiKaiVnogiVcQ3tgdFJkygRUFk6G0kTih1m9TfqUQoUNFxJ2Tm+q6AotwyjGT9zH9fhDLeBhUVIsIexWmi5xX+/7Z/DXxFPU1K5+BjV4/SSIaPlVPfi9gkD4beq8BuW7TfJ18Xa6B6YGDXEfVKqn9gFU+NzxWWSMUk9ISG5bLWWB8KPL9pHI2W+i8ACENIH0Yg5WIGJZj1wd6MLSamZPZLcESto2XLS4mkQyYg2p6vQn6WevDPQOxrPO+gwq1uHNShnpR+tlVwFgXnhoxxDRHaLZp/dEDnFbIrB3b84/pNet5hrJOaj8ZWk5w3sQu9n3fyqgz4b7tBrgPV1HEdc88JZDeQ+bdGL3g+/RWLyK0Smo/YJWdj3kshpuCArCu27dZ4SLXsJ7mYUJtVy2eA+J7mvA21r1XC7FgWMb3a7N7LWJ0K3gK1p0QCLTscwUVSCoN3nBjjitzoUK4NCOrbAcM2RWYU0mJMVIg3u9pS1w9dApsDaFOOo+GZvVY7EK/0XV/MxfWqQGMXAeXvQwDUllZ4xStctfCvbdIPMXaOGbgfglf7iJaJbVHMNV/jAuwt8KFx1xJVSB0OldZxvzAqmqUIEIJch6G6vibHljTecNzmYV0dqJDxTQU1iXh1erfqfPnjEcDL6wKR9/W804MmyI7hk1DXKtAoN3PqaxDn0kgFKHPUlLqEZJkwO8rNBTIY/N6OQ+lX//I1jmVWVUAlfeW97qDCw3GvIDcven/738vU45wQNAqqb3CTtU7GOsT/UhDSEBkWrFD+HYXvQokPX/4e4Ex56GuvM3QbqGJQr4T6PgQVN7pglRyTZ53q+Z8CkNqO5lrKWtgfYG1mufn5hkX83q5EtK5YehrUKYGDMNfDMty3ye2uOLxq8xjGRnXfLgJzOOucgubSShsXAfDMpZOBMMFcQwXWZiPaJXULmPX6qC61bgAHJTjfefWR9t7EPPWP8uCXmU4LvbG0t3Nc7JPmybRrQEgORztdNGE/WxZzzuXNEiCQTVhTXF+KuNzO7IlTPDWvOJmVxM2Z1alN6ukgoactbuXv+J9ZG4tN2JnPA8Hefv5VkkdVGj3boZAQgzcW238zHaLaldR9Kj9y2jBHnTLsVuNs7vY3BaIgnee9k4XOiiEVVhrlw5TRGVuirj7c0417zBUjBjazgk+s9YjvVlUAMrUa9spaP4pH99eRBT2EVoldVDBBHK/iuGDbuVZUWXc4G+j4+pQyho4OlhdGJJdJyxmh9C0IJW7B69SKMwbdlLsVlfxPDy6U90g9jvGQpk2zWMyfEelHRh7Dd4OQ6SH5XssCOYGok33lSG3QRnrtIY2Gno0nmZ1MVkG6umFeimkebeLFK2S2gXsSaujJi8mMK1s7LwNuIey9F7WKoWyhacE14sx9DSRvlfYT41PL3Zo7klbDE1rXgv4NSc9GWcRSkj3znO5Bj73ZyWUuMLFoXVgRK6gFlBSBy301yqp/YhVWPHdKsbjFfqSRWzRouGU0m6/CWkhD9is54vhlP3URpJCivtLXcThlh3DvOFghvSUAESPaJoxwxZfpPuHPJX/nnrYw9KRKaoiKg0qLD1HwXDsFJp/U63bNEVDpVhawIxW8/wdILRKaq/B+DcbupLBNPJeTb/yDKvR4qGgpocioeX6JDQPWxUuDNitgUs3txd6CooH8xErCuu6MChleJkw3SQs2hSUgmrk5+diDsXtBLj2vLyfmwW4NoqKY957SSWnHfjJnKsLYb1KKyZgQs2ajWShfLsZFiQPi7iDgNYOMoytRo/24ytrJ5GXMU5JhDqAaJXUXkNj5izsrEy01obeCuzUwCo2J9bEMS1MLYpUmvq2z4Xlkr7Wf9litWG/hfrW6c8KlWULh1BigMXndhlhTE993potnoJrcB7ChbIHA/llzvFtl5wxQUkZ3O0Mz/Nd2ONvXe7Ye4xWSe0ltjquKj7pPCC/KwC1v0WryhVRcfSqyPYbdtI4fKd2Y+tJYesyQnoR+q5ar3zg6jKefzvhj2XGngscA+dhHnTG4W5itwu1i3wNeW3EbhpkVoYmt/SkJCdmLJLSAaIqHAlJm8gCEpYkXT57lia111oEw9I9x5PW5nafnz1Gq6T2AuxUPipcq6K8vUtQGNIde61cnUVPenddxYeS/f1QAZbhR2FTKeOIx1gVxnrVmRh2Yf5hN2nYej8q44QAC0JbJXVwEDqmWNmephSqu6xLPgdKaNBly9wun6OKng275Zv5vLFFURsnQ6oCrgV8AwrrDKwLFK2S2iFMZfQxLk6PgWGlUNPhFxQpsXxvFQtcPbaxQXursrTxp8n6WzVmhl9mhGiaMMaWWmD8ej7NYbQhv4MJDe9RkRiTsmG1i7r+rcegd2XlPV2GoQffCvOsuYHX9BlvdJnh/wV0qwuO8dcqqb1CX1sXmYYFb51Vxt1tV2HBkxjRtDMow1lrvlt0fzQ7RMAOFpq3oWJbZO+i0HHAxu7PHBOoJBZ8sHl9ypxaRNnQc6tEqBwkL2pQzqZwX0ww8pseUGHimulV09d0IEb4A5FcwWfDwkUmarMaAo7WIfL8OejRaYRG67AuELRKaoUwT/zfcbvx7gyLKdR5+ISuCs/Sh9cKG3fwXIX1pUWNeR0QLcSyjrvRTgNZiNp6qbCxC0BhFq8lobJS63BWonva+JKtEOpoHc9zvGS+Z2w1caFhULqcY6cC+ttI1h800ItiRKOQZ2BWJEPp6PxsUBL+M6oslp1zGl5D6U3I8+fQrh1WXmuV1EWMYeGU07zoVrE1jnojXMBdWdSHV7BVdLDqshxY18fN+1Sw9WxrT5UUkIbHuN36IuiPIoU37622zANdWoRdhJdlg5H9WCyjJfcx2Eaorf8av37mneo6NeLmWUPs6EKDpjYAyhixCMahxhfnwFYHYRdnLsWQQvMGZZNBOCriM8AvzQoP7kO0SmqVYI3Ros99yIFkXyzs9vvqKaiYlCjB2hPAnevSzfkeyMqHImkVslVNZwkFRfB7+Y7AywjS0odebJFS2RcVEKtqzzQsx+tq9hKzQpcXM+2e+z3lmDYn+hyNfc9/Nxhhpvn4isqTqga+hVltYr9CwzHW0xmngzKGq0Ok5sIL77ZKagUwX/8lt6CSNip7OaIJ0K0QgPEakO4CQpQKryoctVf3vVkVtisklYUV8lx7JHgpqC6UXkvsxq01dS2aMUt5BQN0AaEwLJySGZYpeao0XknJ8SchCevH85vNd4b37aGfnX9Me4RWSa0CZQ2s+Rj04cH+60zAeiilyDIfxr14Cgsc3Zr/mLXxrWp8V4xulXaj3i9gMntV7MhlcSHVqVSS7+CU7cW95Q7Ni5BwdhLLjKFX+bwzotKYZy3ovmrKBGYoUZ/bJoTdmZEyFBX77VmdgFZJrQJcdIUFLllA0O8WznmG4FbHPfjGxgW+NlospMgQQlXE614fOkW1Hxc9GYcHFczfNdH0l+n8zlBwUFJCsJkUztoJDMpIGrLY30xEC4TJb5rzRcYdCsh5XxELgvl8zYp6bHWk5dSUHQX24/PagFZJrQJKb96PKKzrXgGk9O5F8y0UYGQMMYxGa63F7kPv53a9De3GHRL/+wT7wZOahFWufRoFrNUKdVtIawanNaulTmwKcTPs7NmHZuudQQ7Y8udWdx0rRKukVoHLz+/1CKZjfRQtr0Ep9Ux2vtDD+a770eLBjmw6d5Dqhy40rDoHmBscgUW2y0qCLbnMRbi+SIwoLFAUKXO2sK50YJLSpidW1rGLRk6Y0s1Q+bszgSyyD9AqqYsB2h+siXI7CVUBDArg79Zdj0Ftgsmu7Nth882DWiz7FjuPSdtP7AV2a+v2/QZjvcKQPCqJEywdmAQt0OfnRkaaR/u8NEkYeYeMfYhWSS2JPdnIcLvoigU2TyiH24ewQwXLl+hRMW4+2sGedvso4nTgsV+U08WM/BZoiI97YU171jp12rUFiGHc0DSZhp/J6qj2J1oldbFhXmVSFcCZvlNUW2UkXDBEsNmJCe1R4dsoLeFVzdpUcB9beC08uA8a10kIH9XA2pTQVIsUkzZLZOhzHs/S2MguZkd23S9r4Dum08sK3d1XeiUrRaukWjRj4JWTtlIyAOBDBaMCMGVUMAYARsD6AkpqqxO3rN+v7MAW0zEsgbO9qKQYSlrzO8wW2H8lGctini3ot4O88bOSJJZ5Ntjl3YoHRWYu6uhRWamf8qxKe8VPb/dqVoZWSe0n7KfdNbmFNbeo0BoNEi/YhJUkinm3A9B9mhiKqArETen2yRy0mA3eezI+mTMhUWe/0saXwU5fSxNDcztzWFj3TJU10PFG5igjS1AB6vO9z7b1aJXUXsDKA00wqcnFs9foVa6PX+VDA0Ppp6cLm1bz+mh+5cJ2SsFqLOJxSedfRFnvRQufURHDJt19Umy6FzCeRFMbp6xo0DCEtB/W8l6DRcmaW2oC2ZXA6jq4lLX0AK3T0oLQI7SK98vY8d6Ze4xWSS2AlZAlwoZ+Bm47ABtfZw3DfgGtYYYF8u1E1KtaREiz64Uyl7SlVGHmZxxR2c1iPO3EZnMMmxQGyQZ5wMHyIGah9B3mUQCmjsbGxaq4FZpnYq3TNKq3QVz7q9zklPejaQ8qDScWwH7r79cqqd0G6aXWplYSG0buJzCXQI9KsWxYzhopApZj8G/9mQdBSU35zCqFJZUT+6oxV6fGBj+3jAK/UFFY18Oxswde7X6GFr7PAhUUEJvRmjmZs9NSBaWN/TU7No5pJBEMHcM+spOBVkntDZbZaXavsSoFWokQawrrLfKQNLGhJkEtyO3kvRiqHHhqfsfEvEGTlVrWLhx2saBVUA5cm1wPFghaaJqHlOxDZdJi6knfGfpWZaVNGYC6i4Dxg1BjjlvtjD2D++seLhR8vO+++/D85z8fl1xyCS655BLceOON+MM//MPwvrUWd999N06ePIn19XXcdNNN+MpXvpIcY2trC7fffjuuuOIKHD58GLfccgsef/zx1VzNDsDg7vDTYkXQUKEmbUNNyBwPibbwmRdWfpZB2ItrAcW4n8K3LXYPvO9BUWB+4a/f1f3fJn22zn70O7NOmS9Pr9BM9R9hzt4Dc+pd8415B7GQkrrmmmvwrne9C1/84hfxxS9+ES95yUvw6le/Oiiid7/73fjFX/xF/Mqv/Aq+8IUv4Oqrr8bLX/5ynDlzJhzjjjvuwEc+8hE88MAD+OxnP4uzZ8/iVa96FarqIq0uv9hA1mC3dnVVPd89vS8dLJrA/av4s9FxNHlgvuSysWlbmGVBxcqNIfsjRxxZqxyNvu+vh1ve7zOr9KIAm9Nym4tFYP0aWfR7k8D8XCAFTVkTzM1qjlbHlWNYxmsdlK4EgM8Ga9by9a6F+Ko4c+o767P2QdcPY63d1lN0/Phx/MIv/AL+5b/8lzh58iTuuOMOvPWtbwXgvKarrroK/+k//Se88Y1vxKlTp/At3/It+MAHPoDXve51AIBvfOMbuPbaa/Gxj30Mr3jFK+Y65+nTp3Hs2DGcOnUKl1xyyXaGPxOtB7UDYB5nEQF+tuceQPXCqCjm7ZDNzeO4QeOiCsQa11EeiIqRWybkn+PWKDsR7qOVzK1X1kf7L5+5VzjbA8710nzg4eF8tVosfq38/G6nEDnP4YYmsQ3H0zymFt8yFMftPvJ7rKFnfaYMpPefjTtlaxhR86h5h/VsPmz37cvNwQzMK8eX5hpWVYUHHngA586dw4033ohHH30UTz75JG6++ebwmX6/jxe96EX43Oc+BwB4+OGHMRwOk8+cPHkS119/ffhME7a2tnD69Onkp8UFjGVyQty+oJIHLdnUbQ4ES3UbnlQIT9ooEHLQEmUbm1UjHN9Gj61FhJZHlHY+T3snxpCTgGZ1VQlrxpeh0ACa1B8zCe0xvCe/CX09KEKMhwmbIgz7YG0tTJz40pe+hBtvvBGbm5s4cuQIPvKRj+C5z31uUDJXXXVV8vmrrroKX//61wEATz75JHq9Hi677LKxzzz55JMTz3nvvffiHe94x6JDXQ1C4tP/3iuLVanr+2kb8t0At9I+35UaHAtg5GtA5mBAjQpg0Il0+s4SCkQFTuH/P2k98Pg7+ZB3K6C7c4ffNQx9q57g/WD5MFO/isQEllAsc6xFPf2x7y9Ijsq30Jm1nqtiPB/F71ohQ6jyYS1mZVJPSpVk18Rzs2PFHmNhT+o7vuM78Mgjj+Dzn/88/u2//bf48R//cfzpn/5peN9k9SLW2rHXcsz6zF133YVTp06Fn8cee2zRYS8PxnoZ5yWrazfBwtFh4Toa72Wx3aB0YbPdROVDGgPZXZhxdWVATUNoC1Ms5n3lSAgemP4M7wMrdOVgdxDmO1aBrTJuyDkoY9fuZVDWcZfo7v7IqewINHcVCEESJUj+Rtpclq3ORkX8fyX/12dqH6zhhaVNr9fDt33btwEAXvCCF+ALX/gCfvmXfznkoZ588kmcOHEifP6pp54K3tXVV1+NwWCAp59+OvGmnnrqKbzwhS+ceM5+v49+v7/oUJeGGfxfYqEU49ZIWbs297u5JTiFAwAUsp30rp5/BcSDZWAQ+8AlbVzsguE+ebDZGWHRzhZJYebeP8C7Cr33rHdbBfr+OWJ4VK38RcEOKMug9HsqlXvvPcwEw4EGMeynz0VjaUc2t3lY0BhgxGOYcCzm5e0e5ee3bQpZa7G1tYVnP/vZuPrqq/HJT34yvDcYDPCZz3wmKKAbbrgB3W43+cwTTzyBL3/5y1OV1K6DYaCBt/A2OzFxf74LnPfJ2TN99//NTrTQdwIGsfiOXYx1q4ydRm0cYeB8N1q8u+lNMVbPB1OFWf6gTQMVFD3TwYIMrsoIYwrLe2MXCqyJa/9M3615rvdhEdfjdo2WbgUcGTgCyH5glC3b0HU3YbwyJiOWP+yhqXlfKqYC6bND70lZgqvwZleMhSTN2972Nrzyla/EtddeizNnzuCBBx7Agw8+iI9//OMwxuCOO+7APffcg+c85zl4znOeg3vuuQeHDh3Cj/zIjwAAjh07hje84Q248847cfnll+P48eN4y1veguc973l42ctetiMXuBRYtxNc5MybYrcIi1hEZ7FzHZ+NHU/676YnxdCAehJ5a6NJ4C6h20V40DLiArBYQS+Qhj8WAa+/4LH2uSDbLoJCLzNjQHrA8TPtDs27DyWG6M8kJAQODQsi5rQoY6rC7QC8D7CQkvrrv/5r/NiP/RieeOIJHDt2DM9//vPx8Y9/HC9/+csBAD/90z+NjY0N/MRP/ASefvppfPd3fzc+8YlP4OjRo+EY73nPe9DpdHDrrbdiY2MDL33pS3H//fejLPfR3sW6JwstbttJQ34W0mPOb9W8U6SKwrqaolEdFxHpzdYIkWCHwI7nGlrrzUHPHXqLrDTba8Ja1s5qZMKXe1p1fV3SPPPeq4D1Ydy/qrNA13aCuUkDoOvJGv3Rwe0owS1UuJFeaNXj36ehdjEo7P2KsnZty9gAmveGikf/rpHS7EM+Kwvd1mJ4A/MZozuIbddJ7QV2uk5qrDZqs+PCHZp8NzYKyJ4PV+w0Bp6ZM5KkddePobMki2lebHl7hkJqmsfIgsiNTpr7IeOqu8TeUSzmJbROal6o1b8M8+7v1oG/Oey+x9qV9SFw+cbFkZ9iaK/pUnd6/bWYD3neVaMGNG7JEs77Chobw4bM7dE43YF6qXnleNu7TzCxcDeEl9yn9gyklwJRUNQGQOHIFDt9bmKWQM4FGdlH8NbcqFicdFLW4+GHRT1XFjYuq1C0BoXhEZs96Bc6pvaVQ2qpJ7U4F4GSvhCg1Hdr02ePfze1TJrGVvWfDZsibnZgr/z3O3gRKVolNQ+0wzVZMqVYHf1dsiDVyrGdtB5ip7GIlUyWVLdOc2nbHeoqwmrb8XhIbQbSDeMOioIalt6anjBHechIG5gCu8t2bTEd7EoP+K4UiFEEKi8N2zKEzhpM/qbiyg20XUSrpOZB7kWUkMrwJdhIdMOXTTR3K5cfodRnbmC3aemzkFNegd1lJa4abKcExId6P833dlD5GjxjJq9Li6igSJwJ7xkAw90YaYtFwfA2as9MpWHl165uNFrWaakHn2FVULvcNLlVUvOCHhRv7rxWtMaFgfQBZ2PVZdCrUu/kQrHo1cK70NCVPn2hL9o2+rvtJxRTPCiitI4kxK4dGhpsmX37G8bG2qd877OgiBjxsONRD8o//33zxP8d1oG95s07OvRWSc2LbuVYaky4h/Y8mBzHP9N39UWsJ6Fy4kfXRq75ZbcCLt1cbDxtaGX30a2AK8+5v5fpPbifm8CaOYgPqyBGbHp25KR+dC12BmzTZZG2TMo36dSNEA2cUcL7BQAYpTnnXfCqWiU1LwpRTKG3lX/Pyn+UWXO+6xTVyLhCyLx4lDve9irg6KB9aC8ELOM1jQonnHvVxWtcWANslsCm77/ICEK75ncPRg1reKMZ47mm4E3JWuV96hhnrJA4tAu46JWUOXMvcHRr+ocK6xQK/55+xOaWOSEBiWwx+NcOQsioxWRcCF0MdhJJWNo2PyMtdh4kTrC9Gwt31TOiTGLJDRB7E/Fzu3j/Lnolhc2OC7vNCmXMK2CM9R0Jsu+wQ4I2gGQvvItZeF0M2MstI/YDmOtgWx5lj+3GuVtlGFH4vCJJMCwdqH2UR43oYRnDgOz6T6XFlMcuzG2rpCqzekolk5Rjf6OZzrnKZp0t9h/IAmzv8eQGqDsBPl87safXhQy2RSIrWBWN7k3FGkzjmYGmgdm3C2u6VVJsyrhqlDVwfMMde1i6WqqtMu7pUhsXQrxky8XnW2vv4GIeUsJBBusKLQBbjAs2Gmqrzk+xOwzQ5r5y8J4QleTZ83ZKMGmvzl0O1bZKqrdEi555UdaRtXd4AGx03YOz5fsAHhkAl21cvGGgFhcXtGwjkI5M3ALEYjVUdobSufdbDaCHXQtPXXBgQwLWWYYmsyYqeu68wFpB5raw88q/VVK7pSC4CGjZ1cZ5UK2CanGxIFFOSIlEqywSzR+phKC0mlMcOOgeU8xD2SIN/YX7hIQVaM7eEwwQu/YfVj60VklthxLM6vt5QjllvTtNaFu02K9Q8lDY/gPRcFuVvUaBy9ZVWjbSohlsZYYSsLUQThq0emhz5r0pKfLdCbRKahkldbbnfquFdrHWv7RosQjoPXHTRM1vrLIwlM2Ec5Zti+no1M6DqiFdduS+0JtSL7hVUquH+fJ/dqSGyzeARXelT7ZbzuLrLVq0mI6yhuvanwm19hkaR8461m41VCCrVgzaRZ0KSs8z6Xw7eP8uSiUVmoMCy9VRcLsHJoFb5lCLFvOjrIFDtd9M1MQykBouDMg6qu1iUrhqVdA9mRTL7FWm0N3AgXh8berL85bWRXFW2WaKdVGFUM+5TZDWUQUSTOtJrR6avF10HVukbe1btGixHHqeTGSlXVhglJn5tkSfhZ1g81XCRmwKUVobZcSi56firjHeqohMO+bxyMarPOuOmxRuF5xv9XqpoEL+0KRNt3eQOXlxKqnDQ1ejtDZnB/J8D5VV1gm0FfEtLmZQwAHRaAREUcEps/30jAizLbYT0g/4ItiwRcYixxblpwpq0jh4ulUihPYgHSn8eaxXivn92EGn9eJUUs86Pd06Y9dy1jXpfit93ySUVoUuVrV2iLCIxVWmFaRWyJHBYtt2cGt2Hrs/askbLS48GE9wYJ84ehIjEiusMyZ71fZ2VV4V+PyyPVDehxOI3h/lxrzI++aF1+Uz00KYqwy3cRuaohhXyNx+XvNXtRnPoa0IF6eSmnYzq8Ipp0HpupjTle5XbsGRbm7grAveHBYkVoV0F86Ul7rMZB3pj7HzKZrNDnBqLVpY7KnVKqkWFyKYA9EcTGUcA9Ag3XVgP3TuUCWS54gUiyrUpo83tiGid2PSrYN2wqPSLegTzy33pNzJzVO/AJzvwv4fd6xsGBenkpqGjY77oafDbdC70pmCCmlQxqSvxoqpkEZicWmnYU02dur4WW7lMU3ZDL3ypMVZ1m6zul3eLbNFi5WCNVTh/4gCuLSxy8Feg2xedmZg3Zc2jybxY9FQn+bf2AQWSJ9tKsfSAj3//K/7XNRueJkcY+7QaY5uxR5Vq6QIKonTfeep0FXv+N1Y10buplQG2Cqc0jknykJvUOX/P+hExZOzcQrrtp63Pvm5VbpFVk/xiP72kDveVsd9vrDAmiQ199v28RczrIn3qPVw5wOFupKS+Jzsl00SjQpp6+RAUFT+M2W9vFJlbVeToFdvifJmt+dkEvPSFkAt0aQV4qJRUuZv3+2ExeGhr6wWUEFx99xR4SyZro0WHr2fuoghvWEZK+eByMqpijSuzkVnDWDlYasKoPB/h1j3hIXNKv1hmfY6S2LXBs0xgxa7jh2M0R9YUAHUQLLVeaBD7xPkBa5ALG7V2sllxqx5Hj0230te26U5CecyqRepO/zuIC4aJRUUUL59NS3ege9Mvum9H1othbeWNn0IcKPj/uZr3A8qty4YV8+VFAAUJVDXXjn682yV0WvrVuMtlLZEgeo+VE3KqsXeo6yBbuvZLgxuLsqwOZ/VvSZMKGiwcruLkBpYkjDRhP2ybpquI98kUdsklav3eC8eJbXViclY6xOOHe9aU/gDaW6Jll1lgKFXSKf7ri2S9ccC3LHYLJYLmDdvzJNCJDqo4uIiJ4uJlsrayL1OJUsFNSrc69qccy/XtZJCNIlsES3hVRVpXijYb8L1QkLoJbcPEYgeiJsB0nviFu0HGfkzrCkOdkpfIS4eJUVq+MiH52phrVTFeJNLxny5vTJ7jTEsmFSb1/77dRY3znJV1gDwIT2yZkL1to7TxONx90wqqGndoveSPBG6BjSEufRa96vgadFiXpjsd3hdjNSLCTlLecVe4MWjpM53o5JhwlFjqvRcunWsFqcXdLbnKN+jwv294aeNN6TrLYeyiCE7DfeRCcgQ3bCIC7kqYnK9WzsFNihdKLGwsU3M+W4MM+q5dVFUBih3OcTEcClzc/rg8hqVAXUxoTIud3ExeY8XA8j65W3lum/KJ10sWBs5+cbo1Apx8SiprU5UUnWmpMI20xkrpzaOtXK+Czyz5pTLRtcpKSqW0gK1Zx/VPryTeGHeK9rquO8zx0WGEBAXeGmjYht4th9Dipsdpwi0uFjrI8gMrDzpY6cVApUTdxpmTQvrvbzTGD4Lu/LFu+9Bj7Iq92dupcXyYMjPAiE3dTErKSBujcLUyaoOu9Kj7WcwjKYyIgj4OgqRQ0NHXKBHBESSRZWtQAplJgs78gN46noRt2bulJNj1j1fi9WtYwJWoaE0A4SgOK0XI3k1i52lPVMxaXeASrzDwg/Cyud3othwv4NKyuvoUHzZ4uAgMN9wMEN9NKjnvS4DoKzdRog+/WCP3rWtIVw8SkrzSEAspC0tcGgArHlW3bGt2J6IOaXNjvOkAGBTqt+pnLq+uWO3dt9lTVW3dtvGkzWYWxiau2HrFzaK7FaRnKHFvtp4s5Tmj6UoLI6Df68q3FT5cGcl3hPzYAx5dKu0CJPWJb3LiwUsFVBYtKG/7UBzvGN0bOydggihvgOkoGoDnOtFpjObGVCmTLpWY53BXa9uPg68kjKf/f95xpl276XF772gtcp5UD1P/dbJtSYqj6rIci6IleXqRelWHl3Jd5E5mPf7MnDnYJEvj0lniB6UEidqGwkVZQ3UPqRUFYCtIr2eY9wuSN9XKjy3DtCEcWliqM/6i7M2UlQvFjQRSDT32WIxcC65/g3kWZSwvRpCu2EQ5IW8BwEaKWFBOtdt7WXUtFxrWQPF6nLQB15JAYgCPsDEfnydClgfOo+nqduyscClm76fX+E+c2joXu+L53N0K7ZP6lUI3SkomDp1FOojEwt+OS49b1UAW37cgTpfpo0t2amCuajSh9cYTtK2LNulf2tvQlVQuZIqrCN+GHqbJi7wqnCKld7eQUZVxK0WgFSJHyRhtltI2LFIiQr6GSu/AQASgl42FJcbGk3376B5UUrG4vWT9KUKaxoZaoXzcfCVVKf2pIMi1uswL7Q+dIrm2KbrfzUJh4bAtz7tjnFqI24fr01hjwxi4jCw7URYMW9TmVgYPCyd4qPCASITED60RyXFIuPKpDmgYRE9PSqAkYkKi4qSLns+xllQ9l7elYOMPh6LxwbSB9ca5xWyjQxJKxz3QQLvzaiUYlQbE+0HSZjtFrQHpnpPVDxam0eiUmF9yMl/XA2peXMsNMp43iaFd1CNDhq0YVNKea67fn5R+zWNHV3XB19J5Ql7Ck82rWR4bhaCMtoaf69XxS7p+QLmjqOhhqqICqWsgaKIC4D3mQQPtl/Szc4YLuQ2BrRwgPga676sBTqeuGHhzs05mWfbA2UnKnFDw49hfvz5WYhc2sjqC9aoD/mxQr82kU25H7pbrwK63ULbpmp14DTmzzJ/M9SnXcn5nvFftFhMmIZjwj9j4jnsh5KKVe5inCNX5MGLNakntQvr++ArqWNeqWx1ImOvrIHjG+5nUWt+fZR6XU05Bg3rjcrxcNlmJ6Waa0iBHlbeXZ1dMjS3xX5+FPakOLMWq7CAkfolshTZukVzc01giGXold6gbA73EepRlRawo6gYx3IKNlLp2bGDv5uYiZy7fOz7Dfl+P1T0BVKvtsX8KGzMcWi7Mn2fuwloiC/HIsW2oau3/38QyCqYGereo/tJI3GnCuRZ+6SEs1JkyA4U7jZhIUL7vffei+/6ru/C0aNHceWVV+IHf/AH8dWvfjX5zOtf/3oYY5Kf7/me70k+s7W1hdtvvx1XXHEFDh8+jFtuuQWPP/749q+mCZdtAJdsuZzRsU3g8vPAFeeBbznnQnTbpWo33aRR4UJkm9249cdGx9Vbhf933c9mxynQja57/1zPMQm/eQh4eh0403PhxUGZ1nFx4bDwl+xBhuEYmtv05z3fdV3bz/njnekBZ/ru55k14O/W3W/+nOnHmjB2XR9moT4y/LbKeA5eA3sccgy8vtN9d65vHnJd3Z86DPzNIfd/jmGjE8fPru8sZuZ1nO251/cjY1CHpB4xQ4H7ccz7GcrE1RrB/DMsAyltWqOnH51bQZnx+5Tkvfb4Hob962aMYzvjXPdM5f4opgp4D3axxdlCSuozn/kMbrvtNnz+85/HJz/5SYxGI9x88804d+5c8rnv//7vxxNPPBF+PvaxjyXv33HHHfjIRz6CBx54AJ/97Gdx9uxZvOpVr0JV7UDIp+sJEv2R/+1/ejs4wXwO6AlpPkr/VmKF/s2Qnj5PTa1HjJyHwjAcu0iFY1AumYLh/+nV6Xva0FbDfPkOoprQzhPYun1JPpamn6ppfuQ4ebhRv5e/vxeCJFdQ/K3z1jYDXgz0Vhap12k8BhbPIel3ms69V17UrH2bdD87bfu2CDjnZYPc2cUlvFC47+Mf/3jy//e///248sor8fDDD+P7vu/7wuv9fh9XX3114zFOnTqF973vffjABz6Al73sZQCAD37wg7j22mvxqU99Cq94xSsWvYbpuGTLWQG1cb+nESRWBS4KehnaFqnyr6ky0XXOsB4b1tJzKr2yBdJ2S+rdbHiCSNkBtqq4yBjOLOVBn1Zca3yOqKMxaaThSZ6fn8+ZhEB8nx4R68W2/LJj+JGhSiufLYsoWKiAc8U9LIEtEVz59RgZS8kkr43KiwSaVYYsSub/ykyhM1xS7p+9kS4kzHOP1CAComDu2HTtT/s+IExMH2YM7y8xpp2CPsOaH6M8YbSDnwVimcsiODx089nxsou7NOwitpWTOnXqFADg+PHjyesPPvggrrzySlx66aV40YtehJ//+Z/HlVdeCQB4+OGHMRwOcfPNN4fPnzx5Etdffz0+97nPNSqpra0tbG1FwsLp06fnH2RZj297sZNgKICCnDkjtkWqRNCHRrJI6ckU9JpDYy0W4I7Tr1IlF1oveYXG/oAFxhWTFto2obDu+FyM/A6VYe6p8NhFdg56DVUR82wM/ZGIUhaArYCef6DCnEncOzCMGoR+0yWosjJTrtkglgysskNH3m6LOzVzDvnefs2rXYhQT7vJy5hlFPA7Y+UCci8t0r/3+v7l5w/GI9KOMKqcF13nxnp2KhzBaw/YuEsrKWst3vzmN+N7v/d7cf3114fXX/nKV+KHf/iHcd111+HRRx/F29/+drzkJS/Bww8/jH6/jyeffBK9Xg+XXXZZcryrrroKTz75ZOO57r33XrzjHe9Ydqi7C2OjNU3rLfGUMB7+0eLEPLmrwp8PGjtKVEX6MKplp8qP6NSpwFa6eHINiAvbQFiLECUExHooUU5UqEq51nGFh51CAeMhvMoAtvDkCxstwzzcCDSHPPJ5LERZQ77Lc1PZr8q7KazfTdYbI8ZExuM8Fn2LxcHnisiJFfNgGrFCCTHFDgrqfD1PGjuJIrqWQhTDyN8iP7ajYLZRoGtwd/jbyt/zYmkl9aY3vQl/8id/gs9+9rPJ66973evC39dffz1e8IIX4LrrrsMf/MEf4DWvec3E41lrYfLdLj3uuusuvPnNbw7/P336NK699tr5BnqmP95OqLDOjV3EbdV2SrOwNor5oGHhGG5Kkx0TyEbi3saHoJCOl8XHWuPF8NmglDCicYxC1mJp+IOhLaN/U1EhFd7rRSxWXh9GJclOFpDPF/KQaPyayq02LsxlveJUBcr2Kcpy1MQsj607ErPprnZ10O4dDKeVNrZp0vIAzVVZP56qYaPJ7WB9FK+d42bh94XQv0/nE9i/SrXJcFFvnobTLMxTaL1Tc8BnlZEKZbDSIG1Ck/zia6UYXXyetusF7dEaWEpJ3X777fjoRz+Khx56CNdcc83Uz544cQLXXXcdvva1rwEArr76agwGAzz99NOJN/XUU0/hhS98YeMx+v0++v3+3OMzp94lZIJO2jcv5DmMY/tNUzpMPnLnXiB2laAAbEJhnZehAhuI1p56UCGhSQGdLaSQvMzo470q0plZd1UbAAUwwvgGiUAqrNmLSy1HDd/xXBZAXxR008OcCwR6XBpmzIkerOfinlnc1oK5PJ6bnTSGRQxfDIsomCoRUJyPXgV0jHiLdfRmCrkH7qKct7YT+QXeI16rNh/ezwgF5YL9OPZJ4T2NFuSe/H4Dmb0WMTXAukGOe5kdnhmFAC747vsLKSlrLW6//XZ85CMfwYMPPohnP/vZM7/zzW9+E4899hhOnDgBALjhhhvQ7XbxyU9+ErfeeisA4IknnsCXv/xlvPvd717iEhrAnlP0ZriXVFNeommrduJ0Px6LDy09EDaP7U9JJDYRFBIGmn9NlUPlw1x5GKzOHkQgeg2AX5RDJ8D5WmUiEUHRVOMQFI1YXVrszFZPyXcy5aaw8r7m0zp1bJ5rERXoZkdaRyGOIeyeXEaFlFjPM8zfPBeXv7eTdS46z5WdbNFXYkgQ5R4qBV0bnN796P3leVFg/3t+CkZauOZDJEPWjW4dtAhIfjoAWEhJ3XbbbfjQhz6E3/u938PRo0dDDunYsWNYX1/H2bNncffdd+O1r30tTpw4gb/6q7/C2972NlxxxRX4oR/6ofDZN7zhDbjzzjtx+eWX4/jx43jLW96C5z3veYHtt22wHud81y2Csz1npZR1bOJ6ztcK9StXN3Vs032XwvNMH/jrwzGcttWJwhNwi+folvv+oaGrv9KkZBPllUpGd99N2H0+7DcSK0g3OWQXCaXjMulvjQslWbixro/cOVjrRAIDLfvADJLxqVDtV+54DPdRSVHQauhMCRxUIKGHoH9Y1o0rbt6S9k4kk5AsQY+RGz7Sa9X7Mkkn5cXCvAfq0anHx+vWEOUq81KKwgJFg8Cgh78p1jSvs1PHVluHhrvvDWgPyP0GNVSALFcqRuF+1VO1cfInNyI14lBal9e8EBUN5cyKxr6QkrrvvvsAADfddFPy+vvf/368/vWvR1mW+NKXvoTf+q3fwjPPPIMTJ07gxS9+MT784Q/j6NGj4fPvec970Ol0cOutt2JjYwMvfelLcf/996MsV1Q6zZvPnn1UNB227PFWascXg25l3oaF+z+LbelNaTPVoQ+/sU/YoJycFNc8iLZvyRlDPDldfuuvpaAHAbikKKKnEjw1m5I0klop/7dBzE+ppWzlNQ0tcp5UeY15JRZuUz/RIFaOyXMU1lXGh7yWKDVrovK1cHPO3JcqJk0Q58qqsCklPpl/pIpKLVa9lt0UatrPUdcXPeye92Bt5dbapLzETmE/h8jq7LlRxZTczxle9l4hr1/KyU9G1up+vg85lNVsAXRXc9iFw33TsL6+jv/xP/7HzOOsra3hve99L9773vcucvr5MZIHPycmMA80LIENG70NekEUmtwmng1ea3kKKExHXvCzBmpQOLqmhrMosBPqc+YSTAqX8aaTTm46KZGC4T7mgXKrl8n6ntDVtYu6fg5IldLhofOg2ONQwz3B4hfvRanwtQFQA6Wco+PZQWy1wqJhtl1hnqkjY6iq6L2yfRX/zh9efdhJ2+exSKLIFazOH5l3y2BYOkNA6f6zQnVb3ggaFbH7iCp3WwHdMhpVu62k9mu4TNcwMB6yrSV8EYwR7K/roadk6tQwaoq+XIig3FsRDmbvPiooZbgl1rJxCqXuOgFzaCi5Dy/szvacS74lHlYhgox986yJ4UADACOXtM+9CX/asYdFval8cQbhb4EBotfWqRH3dbFI+pox/0OlOxx5wgGkLQ+aOyCoglgbpWzCwqYJalV2zKnQ87PGeUrqfbGgen3k567yRkAZPd+qcHVe/E49dOdgTozhv3C/ZMJG3mMEfPGm5A75t1LwqeSo/JYRZPTCT/ejwcJ7wk0sOQYttiQr81w35kzPdxEoxZzf0gKjKt6PaU2BeW+BuJ54/w4KaKUrU5dCnR5yY+62Xs4A4f0Fmg2jZWGsC+UFlivPh3GD9kIEjdUV4WAqqRz0XMKCFou6UWlI2CiExeS3fsdmP2Pn5d96DHghbOPYwrF1HFYeOM+Es4Dbp8krr7pG6JpeGCAPAzN8Zw1gxbqfpaSUGTXJsku8RaSeFZWa5SQhDSeq10ThzPnQeVJGY/K3RdhMMcxdNo/5uK2XZE3Xs4xgUKHIrVMoQAOV2HuQJVIlHto/Falg5XJgeFfLCAqTdgFRqIfB+dfc4EFB4nlg9n3bjlWv31tl2K3kWvfPYwhfmvScF9qta4oQrUDhHkwlpaEeFcYaKlobRWLAkYGzzvXhro1rqcRcVV58G3I3DRYdhSQ9GoOUMk6LkN+dVMBXe48PGA8lUZmw8Sw9Bbb/0f1gADfujrfguG5yT08LcTsTrM+w6GQu8nql/IHWeemPfEcM70H1Kvc3vQr1dA4No9d0aBhrjNgxnRR7Gha69w+pk5Vxk1fBEVI4vzm7kUpwESSeNeI4KohxU7qwJfOXVEobHXdvR2XMF3LswZvy17NVAud7zoukhwakNVikL/MeWeOudz8SH5YB57bI7mGSV5S1nn93GVBOrBokPAFubJu1dKIpEEoxrIkRkwsF3H7I+udzklG1AA6okrKROs1ENPtO9asoAMmeOjx0gk9DWcyTaGGuRSw6VeteuzKbbBzcq6pXuXGYMlrZIxFwhJXxAo6UQAXLh5FKygAYCLGhK8oqFPV5pZUz3Qi1RhuJETIuvT4q1yCcMV0YUJh0hdJeeyVFRTss07EcppLyPRdpYPDaqXzUowH8PPu/+cAA8f3g4YhnB2CpLQ/U06RHBbj7HDxEE71Hrp+tDjCQfGdCCvE/VGildUpNQ4qAZ0ZKKDeQCEz06mgMHYQQEhCvv3EtNzxP/H9tlgvp7jSMdSSZysZNRBnWD39fYAw/Ggy58b0kDq6SCuEhE72IXhXJAOvD6EmFhp++xsgYl7g+NJTiUmkYymJTFepE0zOg3lXjQ5a7+eKV8AELVqRJj0uFyfAahSEVG19TbwYGY4oq/zvvyhDez74XrsW4D/LtJpYjv89D90dRedbG5V/02NwmIIQf/XtqTOiWBYkQlzAiFaju7lpk97Cy820EmSN4r8wHNVn6Mvbw279e+O/w1lJ58m/9jq4FYNw44DFyuv1+E8yrwkG5LrJdm+TJhQhdeyvAwVRS/ZFTQmFTMC8Q1kbApZtOWa35zQvVA7J1rDmyAC71xzvfc+GoqnC/tzrRo6FlD6RFt15mR2EkVjvzKTUFNGLYjNYTjzMs0rwL4Kx0HXfwUqoo0Pk366jC34iC3FiM5Z4o1EMYDWm4VB8kshgL67ok62dz4cg5oScFxFBKZdKNHgntcqCdBTaVsFKmNO7CxoJm/s0cEUNiibfWcWuFoWGujXlhbKxjUo9bCRlBYRdOGfLa6E3WdZwfMhNVmSlZpzKxLRQVdF7UHO4lLqxQ0TRo/hOYLADpSeaXvd+VdcczOPX6jF2ZN7KroMG/orV3MJUUBaGGv4wFjg6iklqkGzBb8+jeSmr18maopZt4Hxj3oEpPeOB7BAVxvjNvOJBHvnhLmybrh0UkTHCspQUqZbIZhJZA+hDz0NrhgUqqWzulGloO2Rha4/jVutfx5j35yLxjPolCSJlB9LK411W4D97D3epEZc6cFO8BH3IqKbI9OU69d90qKs9FWXHdOs4r/DVolw2CxgDnkt4hX6OSavoej0vSRZjrTHjrd5qIQRcqEo+RFuAUzPGRfQclEgEX3viJYDi3SmoyqIR6QqEOgroe1/BsT1Igfic/3rEtR3GmUKGQpHXOOHJ/BGxKc1H+JF28kS5E/r+RPmvjZ1XA5hZlBYS9bwr5HM+nLDQKfp2HXBCy1X+NeI3sGVh4T22Nyg2+8BTpNeZFihyvKmsqOgrq2iD210NMIHO+OZf0jEbyGhl29DgKRIXFz2uvv8ICvU70VBjWHRaLGTGk15c1UHoFosQTeso6D90asKN0PTChPqnGStcw4IyDPI+mObuDQpoAxo2/WfIveLBIc8b7GdoGjGSaC2HcORjGzo1vH0xYFAdTSR0ZRIGmoay1kUtSMm9DAcetybu1226+iZHSrVwF9fpZV0O12XFbnzOhTYue4aKwmV8m7DSnoEpMWws1eWG6nxI/HywWSF4KGKeoFwh7wRhhFQJZ7snEB2Sj466Tfw/LGJIgIzKQNOoY+lNlnIQqEcNeOWEB2XVQSA98kWxlYlcQ7cU4LOOmkqFJrb+OTuZJbXViyFa35qDFzRAh7+Gi++5MK7alUqXAqU1k6gFRORtIflTmRbec71SpB7bKvNO00NJehg11HzOCc0WoB8+5uRBbCq15w2Xkja1FSwjyHcCZ5tjtPpC6Xmg0jgpgbfFDHUwlRSuWNyYXjkCcOHafGJRRwM3CmjIBi0ihpmBmIWZ/BPRM6jXkx2fIJqdxNyEnUgTLxKaCLic9MJQUlBziA50/A7Ts2bWj8mEy9j6k0OxXccx5GIvnowJoImnMMc0JiUOVc7LFfO6hIvXIlGTBnJF+j2HCwo535VgV8mQ41yD3JcrzcGOf9yFWIOaZVukp5esvqdfLxrwX0CLy8Bqi99m0ji9ED4SgrKix+HVsSAMDzXPuFVRm1Qbm7D3x2Tu9OdchDqaSUu8EiBb2oHZJ9451FnoI1YnQn2dN0LLTLsa05geIgntQRgIDu6XXDQ+UjluVBx/C4CKTKm3Hw3303Fgj1q3c9wJdWz6rhck8r8mua0taQjEfxDZHtFLXOzH3Z8gF90gKfQ1gasmTYL6HrzKZAsqVr7xP2n4wBDLFyHMqoy4xWIpoqGyt+LGgZW+ReUn8LcaLElPKzFPgZ1cNkjM0dBgU1upPtzCartkCYXsXvh1IO3ZvleoqsKjnUxWu7o6GJSDG4x7fRF27fPaMndvIOrhKiu4l/w/4mH/XV3yLclJrfB42DTsX84eKinmTEJoR4sbRLWBNBFHTmMPW4vI6hWth491qev6oCIOSqqPwCSFPm5Ij+MNjjgqnxEdlbNWj3cpRRmZjaWNh6fowUz4mXhNzWRTU89BsqXyUqJIzDTlmJZnQS5wEjsENLv5NYcf9qrqVu85V9ctTT5PXp4LXGoxR1/M1stueQR6u2UvwvmmkIeRs/GeC9y7zeLFgqxND8gx/h5zoisN8KiPnUaRqqBJUTnMq4oOppMYEm389MKPqVCk1WerTkHyv4Ts8H9sVsYKchZV5CGxM+E6wmnMFo+dSZZQogwlKocmbsYgKu2lx8ZoKeS8PxagXq3ML+byOuwlKRW8M5eT/t+Mv5sWx4beMxcjfOatyWCy32dwsGCBckDp8QXeKB7NfQlb7YRy8d01hP/07MUQuEoyFvcU4XCUWMeQnIRC05j/GwVRSf3sobtOhlntlnMVhMK6c5p00UplpdRsfJmGeimG/YOV7i4/MscrGVkk6BiVOcCh84NQLacqtAWm4T+ukKOwMImGiKeGuY2d4lMcorMut8ZoA6b5Ob8R/73w3kkjY2JbkBbYyoufCMGOu1IbyPTUEaHnptfEzIxvJCRouCxal3B+yMonKALYATCcyrDZ8w9ejW/Oti2lg+JdaySD1DLnrMJCOnW2g9oOS2EuUtQs1ixOceKY02siOvNhQFalhl2NVy4eKsJLncZZBoPdGDckFKOoHU0k9s5Za4BTO1jgFA6ThNQoy9bomYbMTN+6jkC3k4agKVzNDIT00sVjVIAr3EqKg5OZrKIhJciDGcA0iw0vBuiOy5hjuS5SUvN8UdlNigrGx118t9HIW+XbkWEAMr+omi1Q2gKdc1/FaAaD2888cGB803hclm9AYQI1ka22tWws5PPnh7sJqqBR+DQSP17Mfjf+7W8dQJwt9p4Gsw0kECA218iO1v35S/LmpJu9X6a+bhkDwAOW8wZiR+5yvIwoJnbMLEaEPp3CYNeJwEPJQyyLUVGZKqikSsiw0QsLOLvO0bApr0KSyZoFbdTCVFJBa/ap88nBT7m3MQpMXYrL34d8rC+kC0VCjpd9TgaPjmgdqrSShrezaVDHp+PU4hY2kAtZsGAo9OGEOK4W5uSdm0lZF9M7y8CoQ83iVNx7080D0hBT60KlgUoXZRHW3cNa4McCoBox4UjXgOsibmJsbFe7+kZo+DXmYheA4SkQlw7fVkxoTMMbdAzJF9V411cjlAjpPnHMuD4oQz9mihazHixGFPK8sil9Urs1zDm3ftAjy8y/49YOppHqVF3q+VmhkM+WC6Fkk3o0XRnliW6HtbJo6ZytDijRtg7RIs/Ehq2NLpvBerlQQx8fTai6KHqF6UirE9Ud7xOm1MWxprNsRNicm9P1nDw9cA1heP2n83ApdLfpO7ffvMnGea+PqsEjKONeL7X44XjYEZkE2vSplwnHOCuvCqfwsf9aHbi5IM6dSYGGv7sNkijgnZ3tuzH3f3HYalDTDMKIaBmx1xHtkkHqlDPdp8bWBK2swSC1iNbbUSGoKvXBN8fW+GEwXKjgfBeLzeyFfzyqw5psH6Brns9/U+WRZ8Jmi1w/EUP40hNCeydbyfNrzYCopte71d4FxBaGWmG67MGn+9LMq5BNSQ2bVqSLUnJVSwUOeyWZhDMhNRryesetQBSSCSJvL5opKFRh/h87xkjdjYbSer+cp9bplBgtsGQqlwB0VjjGIKhJIRoULC57vuc+f7ckOxP4ch4Yx5GWN32ZEvBXOa77YEyp+Q3iwU8acRuLF+N+ljS2UNodufJNyHbkHyTwcD8nzdrP5rxGvhfPB2r0mNqNuaJhfb2HTa+Q979Zx/kLHfox3qbjQkK/3ix3d2j+vsqZ1jlatxCnHWDrBHOE00LggFiBgHBglZf7uP0UBWXrrvarHhfKkXVhZD3Su5+qp+qPJjUZD3kdaL/GYFAb5TeH79O50ITFeSytI2V85Ow1A2H6DY2nMLXmBb6UZLS0qixjCo2KkRcoFqMeikFTPThvXmiKSFlRB63Ga1rB6DmHRmnitIRlciBcp3w2hDJvOg3qLFNCovaIoooItfP4wZxCG0BpSBdRkkWptWVA2cr/12tQrGiug5XXwe3zPpgpKoetOa4RCuJTrbD5hsK+hnmQyh2gVlbFxS6HCilEuhvcq0clkxLzzr8/wAgbGgVFS2OxE4UlLNL9BbOujSssav425d2HP9Nz3Dw3dpofd2v3NFiu1iTeJYSAlLXQlREXL2HoFGDbp68AJXrlRWkvDhzAo1QlCmEqRf/OhVe8gKEI4a4vHo9DsVj5nYqPwtgbYqFxfOyZJhzayBksbNyQEYqiKoYWyRmDvqVLRZrnqgVRFHDeQEjcYztS6t6Cs/XgMANSpMi5r933uXZUoQqQEDSB9X72sYQFsdl0ea20U1wHDlGR70ovalEeKCjKE4jxxxNTRo+RaVQamKikLVyDOdUQ0eRJU8lbP75U8X5tXX5FtSOXHud4r6P2pDdxcegW86H5LQaFj3Fi9kFHWwKFdCn0unJeyKTntoqSgV4UwqrwV3clCJoUIDFoZQTCa2HVAcynaUBXI4r11FNoMMbF3n0H6UFkAKCOLLAkPQrwhPj029UxUIOXKTR+0oAREoHMTvFK8FSO5EY6nFIE+KpxgBhA6tjPXVcj1GqReFK+F8zRpMRbynq53Cmedv7w+Rr1I/a3HVmVOpcNz6hYgTd4jxwGkymxk4hwOizR0qbvu0sBgTZ6G7vQ+jXlSMmZrEZRLfn352tFjqldYFUAtubxFhHLSAd+44+yHEFsIhfI6lxgLn8ed8DJaTAfX7AJTf3CU1GUbonjghCjzA0o1p5dDQcY+e4UFKkSvaqvjqre5c+/5rvse246EkJo/7uFBVGp9r9C0E0UedqzlvIAftxA3KJyoJNWTUiWlD2xulcN/VlsjAamQoQLuepIBcy9MTJNGTo+A4c2e/46BU2b8Xn8UFX7hv9uvgN7IeTb9KoYmjvltU4ae9s352iqjMsk3/gNSb4jeoxIqlFKe5LlsVCBUtuujeD/o2dDbtCaOpzJx/rmmqJiCt1FHYkkg41jncXLetDSAViXvk/4Of/t1wgiBQu9jWAOIYxrZ2Di5XwFdfz/mSaRr0bl2l19WMWwHYY2bGJ2ofc2hkmrmRc7ObbEz0Pwxp1rX/Jw4OErqyCD9//rIPaAW8aHNBbaFy6fQsmZO6kwvDZMdGbjQX1AMQGwg63Mzl2yN70PU9SzDkXUCQsNJmjfJN2nj3zyHen6A5ExMFOz8W49vEMN3kxaGtjdSckDfh7aGZVSWWiSsnZWplCn04eecvQq5wWTHh04PD914uhVQbbl5P+QJChtd4HTffU/3eOJ1q2dj4D0FpIu/EheDbLt8/vqjaCj0/bxp3zPeh6EfU2B+ZvOu3lBQ4ohrg3Oi4WKuxcDwi8Md/z2HEKbSVBp8bQDr67eGNrJLaxN3ApgGElIq8bqDIVSMG0s7iZC3RGyVpV4pWanzYj/ksLTM4qBBN0zVSMG0yMoUHBwl1QTSk0eIgkAJCNYA7OGmYSFlVxk4S3qzk4bYaN2Gjg+22TLT/FFQfHY8dMIQjwqs3PsqsnMEKxziTfC6MovcyHnysQRyQcPYQ37HREGfh3zUM1WiAmt8tHhYqf79yhEXjHVzbODrk7zizq+X1xrunaCJ1hpqkHzYTa1nrgWOiTuJ8h6oh1oZ974qpbHu637O1aAIc6eKVm/cDPA2GovGfXisfDCn+GqZgkEaeq7N8gw/mwxs/mtZBXLGY1O4uMXeQklBNBwDQWtxBQUcdCVV+FmaZq10AdjNSFc+4z0mNo9lyOd0PxWYtJJp8XMn3Kb8iAotixhq0tAfa2z0IVSFUMh1KOkDcJ5aaJZr0mR9r4reGEN0PFZhnZc4rQ6o9OHOhMXof2gNUmAzDAjEPBU7OLDzg3pr3KNrzY9vJN5XlUllzgvZXLW+DvGYEQUxx8D6sa7cM/UuCwCogdKTGmrjQr8kewzKVDHTk9LzWQA9f89gY2g533Avz9vxePxIbqSE/zcYJ6p0RmXsbEKPOkQN9LvynXyt8r1BkbaN4liS43kFpfVaOwGuaQ2vVjJvS1rne46D5kFpqQTXn96XWuQXn+2LjYK+Laz7fEmndnkSY11O6kwvJsbPy0NrEAW+hcu3cFPAvJ5GFUxRxG00ShOVkDUuf6MhlTwsqCE8eiNcBBTwlfdAVCD3RzHv0q2i8iLxgQy9aehWKXEEiNuUcGFyXqgEQ92PjQqqaX4IhmtLG3fcHZkYqq0zz4DQsEJgw/mwndaKMdTV6J1ZoDDRg0MRj1UZFzYLHhxSJcXX4L4Wwn0k1UyCevMcv3pOYVzZ55PrFk9Ca9Xo8RkAZZUqcn62KJwiJgLz1EQDjREDDTnSIg45KrusgTwbamxQSSUMP6Cx6WyL3YWymPMCeSKvZ9T1OwOtkiImhdXoNSThLSDUwNDa1gdHoYIjNJHNLHkVHkB689RzAbJxZR4Wa3+UhafCpci+CywuYFSAjrziVs9EZSk9gfz809ARhQhhx0EUAkNbBO8Df+trrBMKSs6k86nfVYR7I96bXquG+YJng0iLnucBDGFYkynebHy5UtbxcW2W1ikMW8f6Mg2z8rvqSSkoWLgO2e2eU69JcN7XMJ4d9KQUIUyOGJ5mhKDF3iMYQtnzpMZ3/tk5cPEoKaVaNyHJ1SBaw9akpIJQo+MVAxPoA+5ci7gP0dme+9HO6Qq1etm4lsfWh1C7RvA1elUFtyA3wCFED6IjFnCgW/Mht+nxlgU9Ft0eXYViWTsPhfVX87DK1keOhMKms+xeEXbQLdJ7SZJE8KTEaKBAN0UkYOSGSE41z3M3AFAXURFwTSShNvH2WArB+qx8O3jCICqW2v+Eh1t+w1+nkXFScZEt2DGSf5VwSw56vp2sBgqIhfDaP7GwgPFh3pCHy+bPIOYPV43c2iZhB4heedslfu9BQ4trRJtUq0FDaBnBHLg4lNTAb+KnnkXOBsqZSkouoNDPXzeIQnpYAF3/YHf9DdjoOiUVtmAv0tg+t56vjRcShXhtuWeH1Ivh55oIFeplNXkw05T1ImD+g79p1XZEITAn2BHFOwvro0i6ABAav8KPeyQeVpJMF2+OiozKE3Ah1UDeyJSUxXg4qc6Or7myXEkFBpqJTFH2IpykpDiWUHgt3lr+Wb7EcxoLdHl/xWPSnADXJsG/Ge7jeBniIxuWr4W58q8FL9G6+Yfx56biXKGyaPJuQ9gcMUfaYv9An5Pae+JcF7nH3XpSGbj9+Swqb2C6eeu0X0Xhmm/lrUpNt4MAotDa8vRldvkeiZKiQAm92jgGxIcxbAOfjVlbL7GYGBgPUyqCIPfvkUY8Mo68sCi0Zkpp4UDM/VBZacPXecCcHT20wsR2UtYgdGOuEUNUjIcT/FNrxgjmUpqIC03gA6afaVIc7M4BpE1jJ+3wSyszkGqorLL4/dh4eH4xYPR3nn9rYjzm4cpJ10/PNBSFo1k5cEyrgtLzdXuXLsbJKC32B9R4VxZz05rR52cGDr6SGvrap81OFKqThKVBGqbRDtsM8zC3ZBCVDYs1KRzOd93nnlkDvrkew30MxYWed0hzHQViwr3vQ2SsL6KFC0SBX9j4OSVDJCQCCTPSGgaicCrr2V2+J+HIwIeQvCdIgcgcDsMxWiQ8L8g8BKL3wpAqjz8ogUHm8RBJ6Na/YeWnqWGrejC8N8GL4znE6yktUJXR2DCI9/h8N4b9jI2euz6YHe+F6DpICn3Fy1P2lLbUCkaNjUpJFaV2ew+eVNEsIJL8mBhcLGSmd9pDapTxdV7fdhSIMgy3OtH4qM308GmLvQWftZAjLzBRQWmEZQ4cbCXFbgHMZ1DR8KdJu+eWKCCJaQCmdDkOejE5OYEhPO3lxvyKjkG3bgDieAxSCnlXlJ82DuWYAlvQpoogJMFrN968xoSCnQnzZR58EhzUsqVA53VMqsGaF0n7IuM8KOZyDNKwnEKtuRwaephUcxMEtnXnbPKkwvGQsvMsQ6DeOFAKu+ZQSAJQ8gsVT+LleMVv4XJCqojymjv9m98NnigVnX9NFeIkqAKqm+YI8Z77COC27jfnMnTzQHqPdyL31WK1aDK6tuFlH2wlpZMVHnYzmbLKrua0Hpm0p0UMRO+KlrTmYcj4Y45KG6omdOgqKpi8Kzs9D4YaWWtTG1cPBYznoSjEGE7kQ85rNvIdtgvinFDQL1vc2a2Ao4Nx6z90IN+m1atJ1kCMMNF7yROwgbYt86N5Pf8WSE5IWJYTFHnuoehxO2b8HqqSYL4xfL6O90i9MhIjdM0GRYq4ZvOly3tuEPM1BmmeiwYVFRjXlsIahJZieh9zIRO2s/H3gPkwjnu7YTjd4Vhzm6zBa8N8EQwvT/JY9gJ5bp9QY0dfmwMHW0mNCXITQ161Gbf4GLozNm2Rw752GlLLhZI+vMxHaPuW0rqalbKObWnYziW3sg8PXR6DLYvKOibE1eLXe0wGnF4rf2vuI1C6eRC4vBTKtK5HczyzGFT9Ucy7MLykD0/tPaAmEscs5CSGyjjqO42AWq4xeKLivTUpFyp1/p0rJp0Dfi8XwF1RwOxFCMT7UtgoyMns1FBvToZJGJHytyp/fdCtzHUh81zW3su00UDh2mPbLm7CqLRyeljG3ytVihxvUMaIip5jX4WQJMOQRqC24DpoYOH+MvT5qog9RtVY7lZ7N1e89VwHpR1/tvLaqVH2/wk42EpKwbCIPvBN3oPe9CDchZ3G8JsKviQxjXHrnp8DYgiMD30I3dXRElayhnpAIYSDNFwZBKucM8mveMkZLHaLsSLIpmPSUqPQm4f4wFqt4AxQ+Hviw7LbKuh1628FH5BJng+PN3ZsE6+56XMN05uEZqn8+b1wfplLCwCFK26GeAgw48fkewXi+uI9yPcMyucnGCUmnaMxhijiGKnM9Dp17jQBPslb2q6CGvOG5TncS8wqXVkGTEMA0ctdZDyaYzR+PZHx2ZTG2Gk0lQrkXlIj5Xw+T2o+VeZx77334ru+67tw9OhRXHnllfjBH/xBfPWrX03HYi3uvvtunDx5Euvr67jpppvwla98JfnM1tYWbr/9dlxxxRU4fPgwbrnlFjz++OOLDGUc57sx78MdYul5rI9cSKpX+SamHeDpNeDpdUduONtz3z/bi9bo+gi4dBO4fAM4vgFccd51Wj8ycNYKWw1x0WxJ/okswTV/3ku23O8jg7gP06GhO8faMDYj5S6yZMwlTCwTz6Vd2HU3XG7dPiijQKF1tTaM1r8q4USAy3wOC3esc11PADkEnOnns94MKnVa3IPSde841XdzPy/4MG92Yh3ZoEibjKqCb7o2Cm7NFaqHq4JXBaIek+Fefo6vcX+yo1vAsS3gsk23To5vuLXD+62bTdLLJuN0rCmwGCeqtJIaFJOyQtXbZLnF+a6b642uzJ8/L/OlQ+noD0TFoMzSfhU719NjZt0bPR31yJYFPacj8pywyfFeIA/1ruJ4mx0nY8713H3hvaH3OA9CN5Yi5tq1UYDe13mPuSqooQREQ1fHOxRG806E+z7zmc/gtttuw3d913dhNBrhZ3/2Z3HzzTfjT//0T3H48GEAwLvf/W784i/+Iu6//358+7d/O975znfi5S9/Ob761a/i6NGjAIA77rgDv//7v48HHngAl19+Oe6880686lWvwsMPP4yyXDI58v9eEr0chsm4wNd96x8KulHhtyv35+KDxy7dDIdoj70mFFa2l+jEyTdIOzNbESiB9VbHvFTiAfhj82arENI8E43wYRFDPYzn90dpxwm2bwrhMaTueZNXQmXOcNXIP2TGRkbhLBjrPKitjlNweh3ro9n5qmGREk90DyfOReLR1KnSSXJZiN8psnmnMg3jRhqGy5mYPB83XFwfRU8z3xaFbM9auuCTOKMtqoyOHenfqoSS8Ke/d7CRoq/UbV0nXG8hN0qFKEI45PPgPF6DdK1SKelcBC9OFP9+Yt8xZ7eIR8Z1sor9poIyKZ2RwPtD2cNT1HOG6mjUhGdA1ikA116Nhg6iobpTaIp06OuBwFWk6YOyHpc5E7CQkvr4xz+e/P/9738/rrzySjz88MP4vu/7Plhr8Uu/9Ev42Z/9WbzmNa8BAPzmb/4mrrrqKnzoQx/CG9/4Rpw6dQrve9/78IEPfAAve9nLAAAf/OAHce211+JTn/oUXvGKVywypNnQxRmS7iYuHgOX/GYYJXnYlrCiKBCY8yIzj61yNKynD0/Tg5RbJSp4gvULyVtgcggMYhUavoHxcE7yPRkHFRwfrnkWvnp/FJyDMu4hNUuY6UaCtcyBjjGpEcvPj3j+xNq3UbgbOZb+zv/OoeEvVY75PQyKkMrQxL9nGZJjLMSGL+RJ80RpyO/CRCVGQ4oEE/kV0JSzTcamY5QXd9l4nwpa8KX1RsCcz7KGx7cLGmVqoOk6ViE/C3kIupG5irjO5tUC20Ge7gBSGVU3XN+CjL9t5aROnToFADh+/DgA4NFHH8WTTz6Jm2++OXym3+/jRS96ET73uc/hjW98Ix5++GEMh8PkMydPnsT111+Pz33uc41KamtrC1tbW+H/p0+fHh8MNx1kXQrDZyQUaChEQ4LB0pDPBgt9hmWTKAsKyzrmjvi63jBaznm4LTSbhTTTFMu9yhY7Y9D5Yg3CVo4dLOpMKfJ3gXGFvD4cd9FHhQvbFdbN5ZHB9AJpDdVtdOK4R4WzGq8+O31+B2XccJBhjjBXVfODqqQR1qdpkS3gjBJUUcHneZqx42Hc2wremI3ek86pEg9IltBj5kQPQu87PxMa+PLzVAZ1VDjhGkQhUzgY+PF4y3tk3Xdz4yRnT1pZL8yJhTUrFjND5N0ljLpVI3iuJhJL+j6MOK9nVMyrNeYAw/CUP7ouOFehbm2CvOEc6z5qrJ1MPBcxxIIxvBuKSn5U1jGsbCFkICvF/fN5eEsrKWst3vzmN+N7v/d7cf311wMAnnzySQDAVVddlXz2qquuwte//vXwmV6vh8suu2zsM/x+jnvvvRfveMc7pg+Im/DRsmVX89CNO8tVhW4GIlAo2KyZn3XDxcFQCWP5GnPlg685FE1kU8DRKuH+V9ZEz0WtEnWd9TiTPD++xIXU5MHli5nXAXilAHfO8749BeeyUwOXn2+eG82XbXVS5cEFPGmeee0DCZFoPzB6ogmD0F9roKhLjD4hVBinqGqk150TLNTaDdYpxudN5z1XVFRi04TFWJjXCyOr45Ex8l5rSpnHr21D+EXWOK+H90Kve4zej8j4A2Q9y3nDEIvYL3JV4H2bt1MJ4Nbnmb4oWv/64dUNa26ooNZwvIaQc6Gu18r7ocqtsG7dlqKkND+p61YNp92AGjucf0ZQQihcldR893VpJfWmN70Jf/Inf4LPfvaz42M1Jvm/tXbstRzTPnPXXXfhzW9+c/j/6dOnce2116YfOjSMWhoQD6VOBVTR8BOUCADjLdl56JFUDuGjooAmhe/0u9pDLrD4RBHl3+VCrWzaAghIhWXYbM+m1pQm8OGPp4snR7eOipVjI82dXmjTw0WQNq/JXZIZ6I1NUlLhwcuEabDaMgHO+VFWW+J1IhoTpZ+/AmlYRBXFIrD+yxZx3eTMQV5zkgPKxq8Ch+tDDRkgenDWuBBWUwpXi7+DN26znwnXUlj3HRoBZC8mHdVV6cl1hmgBVqOsOK+LgAIyHMMsFFpaKXLiU1jLVmSHyAn1ihi9CILeP6umjh4hGwwwwqJt1LREYqcx7V4zOqQyccF7sZSSuv322/HRj34UDz30EK655prw+tVXXw3AeUsnTpwIrz/11FPBu7r66qsxGAzw9NNPJ97UU089hRe+8IWN5+v3++j3ZzDLJiUdecMA3/JoBNc1AqnmZ82Bfu/Y1vQbrcfW15iTCsId7mSkEoe6htqx7lQQ1MZ3yRDpk7OMRrJwkzCiX6C9qrnVkVov/Qphi/dJ6HtyA8MVHBetw42O+/5hz2DMEUJ9nm1W+Xkua/f9Z9Y8CzIr0mT3c601M0gVOuclb/hK65/egOYegeit8l4V1gl6Wp1kVubto0SXJVCDguHJWs5vEDuCdCtXA9eVUCUFEhsNc45zgg3vrSqlJnbU0K9t3QBRDQ0NM6uyCorfRCVH8k/eWSXxtIo4RxSs+tllLXkK9kWUXejkLh5UoLMvILBDHm/JsWt4jp1H1Igqkc4pjZGRAWpPEDrXSxsFA45FSlbxsq3Mdgqa69Z0BOed6Re+tkCh/xzuQoS1Fm9605vwO7/zO/j0pz+NZz/72cn7z372s3H11Vfjk5/8ZHhtMBjgM5/5TFBAN9xwA7rdbvKZJ554Al/+8pcnKqm5xoa7w88Y1ArUuqTgSSGtPeDiyr2VHHzQudi0p96sGg/eLO5aq21xenVK8+WPUoG5fUjymTrtjjENIRc3Ax1ZUBR+nJ8tz5bMd3ElVEmEEF8Rv7fVATa7sWaE4OeDBQrxhpEaGLnHlDPfQsLaROXF/2vIi/ckObYR4TJhfvQcQ7k2pX+zI3q+nYmy7ZRgws/mISt6gbqBpP6whIHv555YPn+TljcNAqWjJ2ubz07DXCj7Mo8GLIJFCAVAVJy557IMOO/LQNcDyT7JmJCG3NVo0MiD5nM3mZst4r3Zb8inWg3LpB50ccNlIU/qtttuw4c+9CH83u/9Ho4ePRpySMeOHcP6+jqMMbjjjjtwzz334DnPeQ6e85zn4J577sGhQ4fwIz/yI+Gzb3jDG3DnnXfi8ssvx/Hjx/GWt7wFz3ve8wLbb+UobXyAu/W4ENK8DhfNPPsf0dpXN5ZbG/C4bKPE32UdK/+ZRxsb7wwro+O9D4sozIA057RKcP7qEbBWplvQs1ZoEoJA9E9n+NujSRAFIS75vfx7AGJBskVS+EpCARB3yqUCCAnoThp+C4ndWtaEFS8WmXIRBaN5AD1PCM8aN9jSph0V2PVhS4gl57tO6QeGaB09MvZYpBGinhAVeZhTEdI6d2pYFdYlrymPeb0h5GjjfPFvXq8uTx6frFWui+1A78M80PuSh/znGYs1PveD6B1WJq2PmwcM/xsL2CKNXtDYyev5CK4Z5nBpvHH9a+5pSf27Y+B1q9dqgdAjUmVa+Ox8h15ISd13330AgJtuuil5/f3vfz9e//rXAwB++qd/GhsbG/iJn/gJPP300/ju7/5ufOITnwg1UgDwnve8B51OB7feeis2Njbw0pe+FPfff//yNVKzYLzSWTORtZYvDgojdh3nluuTQOYYlVToyQaEJ1hrpbRuaRXxegqoPKfD0N+qUJuskSzcw8IQVGknb0Gfx6HznBKFaW61BgXlFTo/B6RKLZQNAImmK/39LC1Q+fvJIlYKAd43jqO0CGxODVMAUamoRzEmfPz4ghchFrQpXR6RayzkDL2SOueLpqvCKalBiaQl1tooht/Yy9HrvbiWRFEmyXMb3h4jztDr5r1UIcnO+fSI8lB4rvhofK1y7S2i6PiM96qUVAS4EP80jApHtiATjfeSRm3h1/i8IUOuc3q7VCycX0ZAxryoMnrjXAecTuZwK+PW96oN0e0iGHkiC9WT5fOcMJHnu4aFlJS1sw9qjMHdd9+Nu+++e+Jn1tbW8N73vhfvfe97Fzn99kFriy2GaMkCktiuZ1uCFERaUMebVIj1yuMZNO8LtRNYpYWlzEVa9t0KYadbKqlJ1xUUE613M664mr6qnhTvEfd/4sOeCGEz/v1gsdYxnKsfU6ERiBXZ2PXDvJ/qcYexZQoiCTfZePya4/AahueoClfsqaxE1JEZpZ4ZhagqH9FTyZwkOSe5D3pfCnmtsNFzKuz4deVzzHOop7nXCMxHyHVN+byyfYfZB7nbQVnHHQwWQWHH5YyGvPK5B9I1macblGK+H6HPRp5PbKLDz3kpF0/vPiAlJ5Q1UBYAMgv5yCDmf5rAljMkW4w8+UD78YXtJbB6z2YaauMT8IjeCffHmsdqoVWvD0ISyrHRq6KSmnZthwfpw6ceE63eJiqq1rgZpA9tKBOA805GZvzhDQwq47wQFbq6/YOB754hhklT1wqGvoLilN81kHSWD6GNbP6Yw+EYCrknPBfDJTpnKFLBBaQCTs/B+7I+SnNc+hm9tiZiA0PUIVRZjHuyOsd56HOvcWiYhkOBKQzSIhJ6SFLQuQTiPaABseh1HhrGeiCuf+YQFXp/aQzy/5r33g+GwCQY6xjFNLKa5IiGk3OjYAIuMiUlIZbKxCLMw4PIYprEmmFR6Om+Y94wMVoVwLqJYb2mzuq7hWEZ2WFkmakyYfFtExjyOOXbF2nS/MjA09kX9AbJZNMwIR9GhkJCg9YMxo+3W7t51j5zDHtUFihIsIDkTOAtORNDogzbBIVHJS6ttPhbc1Q10jCZ0rG124WVOUMR8zO8FiAqXAsXslGPhjV9qnwCW1FIJDyfWqHqHVGYAZEsoqCSpOJtAsPUtQEGSOc3t353W3gq66/pnIWdniNVnO9Go0xZsrxGzb1pTeUibYbKGlifQ7EVVtqoIRoKaiQyVbCPnSkA3nOcECK2iBGoSYSrDBeXkiL0YTZId+NtQlVEr2lYOus9bM0gQq/yi3iHUmszQUFSiyAiytpZLk3XqJ0lSJdNCklp0S04nrJ2RbMhmS0hrnmT0aRDW45b8lDsgmD84JLxec+EW5PUPiauRdUG8eHX0IzCZH/r5zgODZ2xI7oq30mXmeeLmuYkJz+Y7O+mY1I5qgcUxjGnMlHiRRNLbq+EJfN9GjZbNsc7jQmYH3dRtuEyaGJTKhGjkL8vBFApEZy/IDPnW0AXl5Ki5jZwbviRgbd0JlheZFqdkyp21glZiMWF1Bq+ZEtoukssqMBAQ3w45mk+yYR3qKMCMOoAW3DjqApgaxS9I56LSeNzPpRpEZPqvSzssCi6le+eXbrwKoUMW/vMevAZOitrn7vx82GKOH5eWzgOFZYYIn24e64PCY/PB59eFJU8rT5jYhjs0DD1uDv+OioL1HJ8ChXeS91vCojXH0oRqpgDUfA4DI+y3AAQQ8TEHJEK147Mcd6c2MLlwTaQCkFr3ByPsi4JmuspbdrSZpRdW79avSDlWDa6adNYsmQX2ZeJxxrKfQHiMZng572gEaKF3zsBY9266tUxYhDeg4v47FZuezsoZC0R6q2yG//WfOrn4lFSFN60omct7Nq40N5Wx/WrO91PPRNNotMaY4JUmWBkY82zsJR9xmMy1EIhOW282kaIP+r18dj0GtdGMeQx9H0NNzsx3MBr2e4zwRh8YV3fuKJIH/x56lkK6/I4RQEMrMsDldZ5SLVBaJ4KxDHn1rbeAyuf1dcNfJ0KogLklu1UuPl9KGunyPpVVApcG1XhH0o5r3pfBtHromeYw9jJNXB5Ir0px2ThrgGZ5zCaYM2GzyAqwjD/VhQ6YkiR668ywGgUjaBVITDfGso+whzOmS8KHVAk2pA3CU7WxC4rhbJ2W/vk9YNrMxjHCuZuKYt2E7wnfBBoFGmTamWQzsDFo6S4kEkznmV5MRw4qqOA0DqRJlYTc11Uhmxb0mSBkdZLGaH5Gg3X0SPa6kwfcwhD2fh/wIce6xja0r6Biklr3yAKrGUxzIQChXgofJzzOJp0DR6BaR5fbgXrfQoPEFKChNXvNJyfc9gkKHh87TZC4VZKmDXQm4UwwnY2VEa05OkF0qDKa/csopIJHTIQ1wnnS0PSOXIlp4aR/t0Ei3StarH0qqEhVs6BGoqLKBI+J0raURLLtBDisgXCi6Ksga4IeGD+8CqjFdwNepndHLaLwLrlb8R8rYat58DFoaSsWa4+6cggegAkSYTwB6L1BUTlMvSMIVrwDIvQaBgVrh0QCzY7mQVHd5hCnZXmLO7r1HHPqxwMA2mSV9lpfRF0gYFYi6CXVcOHHxjPbcyLDd+NYrMTySaqFLYQheusNi+sxlfKcGjPk49dhJdaxh1V1jb9LO/dNAHbqV0opslip1LJLfCa81zE+0xl1BeDqS+efscTSuiFHxm4TRRzsFZPlZHWo+g9zBU7X1NShM3+zueTxpaGS5WkQ0+KpJdVhqUYDiVbM3lvQeIG138NWeMm9b41QkLsJlNXCSA0LuY595l+1isTLsRPktK8pJLtQI29wr/A1wq4+zWa8Bw14GAqKVUSmmtYFOxWMKiccKr8MegFhQJeA9RldGkHQGhiqmET9qzjLsK0oGnVkXZKZUghpPkWbZ+UXxdp28C44DEYb2+jmDU9FG6T5rGJvssefNywkKy+0h+QIQnm8qaFJeihai1RIngbvqPWWlAQSBl6FMAjUXiThEETsSI5n3iy+p3QENZGgaoMMa6z0iuu2sRcaVlPLpbWnFHosF0AVQMRZJKRoUpKw8JBqPjFQyKNRgXoyTFswznk2l0kTzQPtJtEGAuWVxzdGqgq8ehNGuqjcarYZYcEQJpGmAb2jtRwJkPf4dmrpz9nq4TKA4qlzn9w+WG4RuHH8LMzD3MwldRGN+5Oux1XN6ezcpdaPpRqhcP/7maKR/ud8Zj8PxPwFFoMKRYW6PqFRmVHyrZSfvPrYkNYblGhbxfiSSnWR7GankoDSBP1TeHBHKE2yf8/9PaT+HPIA4kHakyMUQNTGJYSSqJS4sMXxoA0zAektGlW6uu8NBXi0vMskLL1ltnh1Iry5j1sWo/dyjEhq0H0oLiO5hH2iXfj72GnTpWNepcGEjpFqpjUIMlD1bl3PckD2wmPQ0OgimV3nmXOWEOVQLzcJERaize5iwghf1GgTc8+882MNIR1bFwemGMf1FFh7ZRXqEp+BTiYSupUHzhqACzQymQa+qOorLSYlw/lqHDhHCopdq9ebwjLhT54xoUujm6NJ30PDSXJKCEozWdMWgCBsLGAW398I4YSKXw0BzJJKSpUaAEu1He2536PisjkWce4x2URmZRU3BqGqY1jm+nDp7moRNEAYTNDILLftLgwD+HwNxlfVCwkC3RMbJU1CdxYsRAhrudqaguTg2GyeaEKOGzrINekNXJaK8Z+fUm+CuPhwKCgRHGH8xXxd55PBXbOWm8q/t4OqOACC9MAg8644nIfQthUsuk+bnWQ1NXRc57XSFZWadKWysSUBSMASqIgKYw9ILkPV35sPj9ci+vDnctXrVABHkwlxW0P5mWOLQLGxLmgmFPRPBUX06QiVc2RTFrEpF4HdpaJ51p1db+xaSdti1jYOk8tSlJT419T4aUeUFUAtkrvS+gP56+Xez2F40OUUXZPZ5E6VFlM+2y+TkLi1/89i6FJD7jJSzPWCbedTl7n66QwznskQj0XYsElx8ywUNPzMu+wc4LKhQTNCQPjRldt3HxOC5vSwCECe3MOr4XGrsqWQKLK17yV9WbkOeP3ALAMw/ixuW7MafkMO0N09vf9OphKqrBuwQy8RbFsOGDSsXXvJOaPSHBgmGwSJbZTu51sp8XsuUi3k09bFIV1yXnmT4D0vIxxa/cI3U6Dlra25WdrKX6ex80T37xfAEKfNA1P0bMh1bvjH0hukpl7UxqSCvm8Oib18+kMjEM/3xWcgaAFzdMozkpcII18TOlhdsh0HuQMRyobvmflfvTqaAytjaKHquEY1oFVRXrvw1wiDbMZ74n1hHizLqFa1vrsJHaCwJCwGjHZoKEhQAOUymSzEyMsBNdLD9M9qo1OJEcFJSVGlXZH0a7s7AqiCk1DlPxcrtBYED/0Cs2ayTIyJxJxDewiDqaSYn3Khr+8WSEUJvYLm25DMQ9I614kvDap5kkZghQanV3e3CyfK2vcfjb0TrV/XgiN+UVL5iHraZgjM0hDdUPJ6RFUaEWZdYBAqkAMHGPOmPTh01CTjp3K1ACwdZo3ScKGRsgVdvxYs0gdbDRsgWDFEoEGv+TDzSLWJuZhXtNDIRrCjDaGKvM1zfXOTiRBSJtUSfE4NBx0/7P1GWHQVYMtsZTCvwqogG+ahyblRRnD+3O2F+9RbrAVttlj2egAZ32jgA3pfN60nrtlTCXoPU+UFOK9p1FWVvGYNOxMIREnyZfrGmF3HQ6Dz8eqdnKYEwdTSQXL3qQeQA5SZslCKyxQc3uEXfJgFCGEmOVednscCnoFWrDJ+D1DB0qs0AQ8SQcMa+adyEMdUZ1a+PqgN4WgjPzwc7mnYpCF3qb8rR6Y8V/m9/UckxC8l+xzRt7n70XvpeWaMNG71uMre0pDeYCEnu1kzyMQKbL3m+7TfkCSL1vlcTF/WFONHD6vWtTM8K4+C5PA7zIfxohCnh8EYg1eODbnQo7X5OkYeT2fNvUgeWwafrr+1ftuPakVYKuM1dpktLEgktbX2R7wzUNCazbuAQ+kh5EL6y3ShmSZLskEQwZUBGwdRCZOb4FxrBpbHdeVYlTE0AQg1rqw37hhXFm7Ni61cfdgfTieXNfv8/oMvJL2107av1qVFMb0tPg+w4jKXqsKZylS6VCw5M0tqWyZl9AE+STPl2Dfwyb6ubLfKhNDwToPkxhbZ3vptjAUWrpFO8/ZHwE9kx5rbRQT7NMEi4Zs1egIXoRXwIw2rE8+1I4iKPkVKyhASAs0kBCVDf8PxPtoirQDBskLQMzl0jgjW3PSOXmPlQXLe62KpShjjmlYObKWjo1MUK0BBKLnyzExKqEeGYkaXROjH4uQPpquLTAMsa2Uy8FUUiz8rArXoqXfizkg1pw8swY8dTjNlVAYlTWwOYrfufz87HMyTLeMkmI91FYnHocKzyIKtUn1MjuNQelCEVulK8qlR8QHiCxAPsC5Yg1F0Ij7JuUPIh+skPg30RMDxLLzCkq9H35PrT7G3AsvaPRhyxUajxPyYP5zFNizGGX0Ksn+4vcZetFapmEZc0FUPOrtcC4Hfq7z7QzyDubGCxLWWnGbmXlbcak1TiUelJp4AhbReNhtGjYR7jn/v4RnOglKmDD+j0lkF64dllmwyDwwG4FQx9idoKC0FpJ/D8vY4JkCXolLbHNk6/hdg6hUGL5tqp/Ubh35+yFXJVgk5ZEjRFyQ5tOWxMFUUrquNOcQwoAYF5KA5A4mHGvqOc38n1XoYtV4tD6Qed5ht8G8G+uMKMj48IS/s+8Z+T7Dhqz7AuL9AOL1VQUAMpD0QUJ6zyhMjH6OYS4bQ4VlHT2PSbJVWWlBqZl4rE413jNPoWtLlam+znWXeHQyD6aOc6bXlCgRE79XIPUutf5ukZwBDaGqGFfSwWvJ5mev9o7aSd1o5DevO2d4qhEUjDRZ/xoSm6tkA82hZzWaG78r64qhOZVhtGsSuYZ4D/Nx6TlXAToJ6vVvAwdTSQGp0lArUS2mwgLWRkuEYSe6xfzOXOdDVlMxJ7hN9NmeC6mxtoKJbHaimCYkCVp12nJnFTjkQ3Wlr2UqpKUTLcbQIwzNSd/C34RZPSVrE5vk8v9AtDj1gepMEMgcF4sb9eHk76DkRMAwHDzpYZ425soAVogk6o1pP7uRle8U6XhZwFtYx2Dk+bUfJD1VjpfjZ9lDb8EQTd6BJORCZfxAGpLdK4NJWZurHgI95RoAvBcgOiothJa1pHNCwySvL2yCkjPq7Ad6Xr9WWatG2jhrMwsbDRwglpDo46f9OrnOGNqkjMuV5XY81LO9tDluYRfvVC84uEqKCJa3GVc6uZDSWPKiD+Kylgjj0JsdF1IzFjDDGP5SJTDr/IMyhof6C4yBydtJi4gFyrS2qaC0nQ/HCaTEh0XBkEXwPqwUjornAcSHKXTz8MegwObfob6MlqWcTy3MZQtFx9aVKCqLqFj05OpdAVHJJwlqHt/E0CCFi4bdeE+2s0Nur/LkIROVIhCvQzeFPIgIHmIRvRGuPzU89Idzbq27H6TwJ9vDTzgfCTGJIS3rpKn0JDe21ZALilM+b7K1pGNiOFzlY1PpxDJgK7QwZ3ZbbbIOppJSrd31CXzG6bkvU2j54++qhrAohPvV/EJr2ZjroQHQ6aR1XWsjd+6eJxzMM4aQl7CRzj0vZnmM3Qo44ueGO/9q2CcPf2joaxlFVdZOWI6KcaNCrbxc2ah3xHFp9/rAJhTLN2ldtaQADp6X/38yDhFaOjbmqKiU8y4iuhaZm6hNtJoL22ytb4e8w23nh4XcT0Tvfjeak85CpwZMEUPIq4KxjiIePEpEAxZA0jEkdGApfPs1A/SKSD7Q/M+sZ1cjPnnD6RAy5hj1J1dgpjmao/eQUY7Cpt65KmBVgstAv2f9AQ2WPx4OqpI6thX7nnUrt415flMPD10Ya1j4MFkZF1bf7xvE7cvnxTKKal2KLLmAjgx8S6V6MYHTHy3mQRFaIzLpfJ3asR0LG5PEGjoFopAOxzPLV7Mbf++qbInqA5dbq0E5yJjXpC8hx8vwKRX7dkEFp5fK8cG6pyx4JEIEoYd3qMEQ4fXzmpR5x581addl/DEHxs1Z4m0iepwFJisbdjnpVq7Hm8FqC+HnAUOjk4gfhQWKHRxTYeP8qIJoGkunTusKtceeKrgm5B4Uj7c2SpWUMjvzUCOPTw+L5As9pkIVlpKHaIBon79lDQAN1QPpHC6JA6mk7Ik7w99m9B+bJ7xTRfdc61c1dLIdCuaiYD6ENNLuggpquwhsohmfY1HoqIwPT16vMekhWQU038MHVqGeFoBAVXdPuX/NThaC2xkXzLiiAmLOk1a4gbfUJSfVBFVIhU2VVN56Sy3pXFCRPcnSADYunra2mxq57gYGPvfYFUW1lzmwReZg2eJivTwaXUo2UiJHPp5C7r+GARunzMRfIY/qj6EkDM2XLoJpdWHbkAcHUkklmLRw1ipnBY0KZy1y64z+KHpgu6WgAGdBXXlub6zXRfJwZe26DFR1FCihxgTx/4x512Z5b4XWXl5zwQeZsXTYtBWMIuwHJg9JvuXDdkGPJ8kpSLKaXr2GSK1xcwhMXmfrIzfOkVD89TiHhvF6WVvHcF2gkiP1LlHAdezA9PDmbisG7kvFOqG6ArqIRttBgLIzQ6gN0VjmOlVPqmMdiYbvJ0aK3KPEQESqrHRdNqGS54Ntk4DZ2+fk4Fc1DwxsL1eKi0FJTYKxrldd2N67jBZMYRfP66wCe/Uwhkr2BQRTUFaFU1ZqyVUGQJkWDC6jFLThJouug2fkUXsJzHPnwjWEzcTbW7URoIpQc3EMAzaF1yiApoHUf8AZMfSEmhQIvVsWhTJ02xWPiAKMdW7z7d698zjbi/V3FN56vTu5rcSyYIeaeXtrWhNbKOXEHz4bXaR53KY1FUK3ebjPxJ+gCGWPO1VYPDZ/qjrWwAEI7b1mbZ+TQ5mmuXe4DaPw4lVSQFz83psGIMn1XQy17QcsG1bR+inAP0jyoAVvZwnQ0lRPQA/Fhy6pKZpwDUrqWDVo+Vr/n53wwMkim5rnMKkVXeavY29CeLOQUKEpTJEK35VzzrcB3T7D+DzfrHseWh81hNGSe8rnKDumRaq8pp0vMUpkbvU1HkfnmsaeAULrJTJ655UNmjPjMK746fm+OwEXt5ICYgJ6bR8wl+YFH2ZgdoJ2XmxHKTOHVhvXBDOphN/G2Ni4l15ep0gfPC3OBuZ7mJLQ14qg5+Q2Cta45py1BdDZfn5FC0ubEHrIFVGIGgmB0ntii6j9ZIQdGbjxsBSDbEYgCthlvb5VdqXgvG50YzcTGrrc6iYHN/5kxIb5QPWCpq0JGkBkyU3Lk2kdV11GJdREZEj0oolMU27pYT2hbFS7a9XQ8jQwjGzl+raJVkldSOCmamqNTdsWZDfBEMShOoY0dIGq4poXpXVMLiqpUSk5lyIqhOBtzVACO2WQ89prkaQMs1TwYcgiCrNlldU0Yat5u9CMFuP5OGVG7hcY63eHlvBWHtLVXXPVSAEamG6Z16B1c8uCbaoqE/v0sXygsGkulqgMcN4XttYmsmIZwgRShaW1ddq5RDtI5F4S5DcQQ/ecE73sxDuV1zWkSAUVqPdFzJ2S+TxL6ZNJugJmH9AqqQsLak3rA7GbBI95EKr3s1DfouPk9TL2jypas6ij1agKaq/mYp4wotajzDpW03XM8gr4VmFjaJBzk3dg2Y/oj9KdqJtCXrqmmq5HSQJWvrPd/Jt2OdewpBIOkgbHorjyMKaSgCqIcvIaKu8sEuYCzcYF728hv8OzYGIIDow6yPuNx/O/OcZ8PmetX45jrg/PxsFXUqt09/cabDtUAWH/IrOC7ujcN6ZjV7tXTKB+bwN8gBlKYTI9j+1Tkc1jMWs4aRXgWPIiSPVaytrN76Ru2BRwFMBqbQORVq4J7+QYiAKqV7mwnlLUwzYSiIJyP3lThNYd5feYXVX4TIeNGBEFtSqLoED8dRZzro/8nLqdj7LmahML8FlvaWQdWr2vcszwPcR7HO6Fie+HKIF/L7QBQ0qgsf6f2htvwVszQEGPhoZLw/rSdZbPETcXZXRkGttSvb/g9W1/jR18JdXECLtQwbYtmvDcLpR11K3TIujdgObW9LVJitJYV+Q8AkIBI5AyCWeec8Y55kWS5M9CGyo8WUQ7aWxKtYf/HEMuDCVVJlUuOWNK55H92xhKsnDHCxYxvZF9/kwoXV8Vg+4QwDmmQFRvi9/p1M4IK8ziOdxhERVfHsYOdUGZ59epXZ2XRbrLAqHeXmGdl6fGTdi+g59BPH6omfMKKLyBcU8qCSNmSkO9LV2r6q0FD1DGm3dLV6gHnBfQbwMHXknZzs8BAAzu3tuBrApl7eLEed3NstC9cPgAFjugpHJqNpGwAOU3zGR6L6nZ1qQCeZbSoULRPNYqjReOX+m+BrMVAskO4f/GES6YgK7keLDNgoJrgd3bVViF+amjp7zP9VOCIGA17EQBatPf4WMWYUsXg8jAW1RmKjs1eGx8D8Lys0gVlo2eUp5n4/0EUu+b51EmoPFrgF0iiDwPx2Mpg7XJkDXyfea7VInxGWoKURrEtZqH1rUzhl7vCp6vA6+k5gK3QldLhdYA39/sxFDKKgtBl0GvcuGd7XiIo8IlgnWPKIYT2J1gfTh/HcgsbEntDsOWqghD0S6iwNamq01zztDKvCChQJPLq6xNsyZuUaAPKuc1HyoFATdNtJkQavL2LIumbRreJMuMBJVQzGvj+zwu37+QwHFbmdcglDGuSNRrUGblImuZHqwWaPMcgF9PeXePbLwabqXRUltHAtLxAinxhbVuXOOsq6OhQtIGLzPksUoxjAShzkq8LD6HuVcVviNjUiW1VUYFRyNIx6tYpK3cBFzcSopCImzpYKOlaSCbmxWxsE1v8l5BF8iyoGCkF6Vhidq61zuV+3u7gtyamEQmxTVXLhZRQQUB6vNuq+gQoQ8tH/RVCmpauqqgZhVIazgkCcXBe7Ti8QWPE+l3SAgIbCwbczC516pCeifqxXYaqpBsNl8M9SkS0sESxhbnOldAysLjGPJjJ8rSf3ZMCZjx+8lwJhVkgegJ6imS6zHjnlY4vknvtV5D/lvXWf59eqscHz08jj+UPTgDwh77mcYpXQYXl5IalG7/prATprdeKaRLG7uO61bLgDQk3SfV76vqSM0tN2rxpGj9r4hCmghLeqL5HFKR8TfgFKQBUNfLNc4dGwMQOLkU/tuBJsU1ds9LU6+FlGWG4fg9zk3YngSp0DJyHD1mLnQ1D8GQj7ZmGvPIdkFJWQNsek8diI2fl0Vu9Te9z7BmGANkvlWzTBivHpeU64SiDYRejCNPz9b7w5xg7nXxeDwWw9VBiWX3w1iEXZ6bFGyiqP1rWn6QsxFrv+AZOtRm0pRtysorvNWYF+bXiDsEqwJWCv6K5ePFo6Q2OsCZPvC3hyJTZ6tMF0e3cq2S1kbuxq0PY0ioPxrPAdELU6ZRqFFZgQeyk+ADUlrfggaROJFb7qsgGTBsN5EZBOkDmFl/HbN4H7EmUEiIAbo0RoVLxgPigZp0vnIlBcQHWLdxIL2etTQqdNwB4vcKL4QnKdl5Q5g7zXj95iH3zG12XNsja4CzG/H5WqZ4PoSpagn9IYbDqMSS+fMw8poK0VzQ53NKparTFfZPK+K6VU+EW7gD4qkYR6agwqBRomPg+XNDhPdar0E9MMjrzGVxK/rwmv+s5jONl11WtrhnCBBIUx9N59VnidewSnYwh7HoFx566CH8wA/8AE6ePAljDH73d383ef/1r389jDHJz/d8z/ckn9na2sLtt9+OK664AocPH8Ytt9yCxx9/fFsXMhP0nlgBvtmJP+zdNyzjTaYVwslnDDcHqb/qutOK2WtMC2cZeeB5bWqlNsWot4NFLKyENYfVeHOTzrGt74v3VGfHU6FiZS3lv8PnM6EGyPXnn8Xq7stOQPth6nM1lNeWgSr+3LvQ+dC/m0gETWGwmefOzqnKQ5VnUJgN49NcUO75muy68uPr6+qJj/00PDu6hursJ/T1M+l3wzUjngtNxzfjcmbFa3NhT+rcuXP4+3//7+Nf/It/gde+9rWNn/n+7/9+vP/97w//7/V6yft33HEHfv/3fx8PPPAALr/8ctx555141atehYcffhhluUNdLze6LuzArY1JKQWELICoZEp6RA21BISxrpt6sP6L6EkBrqXIXpEsqGgnNedcH7mxDws3Nwz30UqlMFg02TwJs8I8ndrNF3dGzVlSq1r4FlFgGouw59W0MJLShfU1fTgZxssbE3NN1UyC+xeTEAxEmGYGD4CkMFcF4X4IOytq456tja5/zjreQ6+iR8m1dsnWcudgaIpTzznJyQesNdLdpBny5RoHUg9sGvR+GCB0/SejUss2dB2xSwpfV49Yoway5EPqgTkpjpftx3KDT5mxajBpLo0epiqlcD1UsHW8zrFn33+WnpbOXyGfXRXRSrCwknrlK1+JV77ylVM/0+/3cfXVVze+d+rUKbzvfe/DBz7wAbzsZS8DAHzwgx/Etddei0996lN4xSteseiQ5sP5rvs51/XthbKFUUixqLJsWPw2Cbwxw05kqFFJBbIFdr9tkZIhwk6i2eJhSJIdk5V5twwbajtgDjDQtpEKkFWMgw/uqIihXt1biZYs83SFlQ4XSBV+blnCj7Pj15HmMTQJXvhFZ+ETzTb1rGw2TmvgOm2YlCSxm/dmXpzpx+frXM+t/27lN/LzQnLDP3tbneXyqrqbNpELbIa4tvyO11QgKtyDkjez5zH3fCsgUP15TG0ZlId/KyNsOq8QeiY1mDgmg6ikSLzRc5Atl+SJxKhRr4kIRA+VbZKT15woP2MwLjf8UgyGlpFjKxN3xcbTwuG+efDggw/iyiuvxLd/+7fjX//rf42nnnoqvPfwww9jOBzi5ptvDq+dPHkS119/PT73uc81Hm9rawunT59OfpZCQr+s05ufu95JInxJM15ZLyQF7BaawgkTP4s0xLAXoLIP4UdZ9Ksal3orQYDI/VErfFY4KLfEVbHnc6+xfVW6OfEhV8r6mnoOkxTUXjP2kiQ95J7a6K1yiNuRY/n1UzBrqF1D9pPuZx7emhcm+zu5pxAFglQx5Apk0rqhwcauEIz0JCF5xHMloUI5XinfS5ra5vOAlFU48B1oEuUnxhivLz8Pj79K1ix2gDjxyle+Ej/8wz+M6667Do8++ije/va34yUveQkefvhh9Pt9PPnkk+j1erjsssuS71111VV48sknG49577334h3veMf2BlZ6UsChoVgN/j1azV3xJCyctT2UcAGJBU3gAgTS0AOJFVzEHbs73Ry6ftO4edAfAYWEWWcptZ1Ct4odL5jrA7bvNSSxeMRiSWscc5AdwtVYUfo4BYBaiKEbAuI60rZSfOgtokemBJt0gP6Ycm6uHWVdGjs5Mc1cKoUKkAqtnSbxWBNLGmrj72PtvCg2j6V3v90QeDBabHpeII1msLxCG8wWfO7l9zxlFkqaUgMlvKcK2KT3cKuM8iUnfxQ2hkN1nVMx5IpPu3Dwc2yRZhF3DejK+qPC1v3ZIIpnVDgPlykPwM3ZoWHaENkYRNKOH3evSg2poa8pPTLnvZwDK1dSr3vd68Lf119/PV7wghfguuuuwx/8wR/gNa95zcTvWWth6EJnuOuuu/DmN785/P/06dO49tprFx9cxzqXnIKAN5qCkXFZAx9u8e93aqDXgdstdMpiDpaG/9200MwCymM30RWq7V6jJ2OhkF8UmtcJf0Msbv8A2yJVQlQwPAbQ7MkVFmPbEWhupLDugbbyebWCE2WC6L3zt3oBXJvT8lC1SUsqLOKYC39MCpSdAOc09HirnULoVS7/WVhPoiiaC5uXBe8XmWw6b1TcwehAalTQsCwQ537ieTA+93o/NYxI1iHHMCzTz3Xq8fo2GiBN3o4aS4TN1otFGjKncVMbVzdHQ6xp/QQvCnHuGFoMVPkayU2jUUflzjVcmRi+XBF2nIJ+4sQJXHfddfja174GALj66qsxGAzw9NNPJ97UU089hRe+8IWNx+j3++j3t1coY6+JSs78yX3xgQLSkAz/zzwNAFTV7IeKC0BrMXShaWJxv2JV8eRc+C4KzlPhH5h5x5SHJQAJ6YjlyXPwqeefug6svK5hKkKVUFB42b1Xb93ojz9wWG98jQrSAiiida5J/0lIEvCqoSBj2MG1V+Rz56+DSpM5qfC5FZ03hNGy14NAzmrFmCNMPmujMdAEKhD+revayGt6bmByOFHnR70q7bVYGTGqJkxW4vGb6NGxkayue1vEMTc9I0orz9l/1jovqkD2/CCuYaYzhp45vULsuJL65je/icceewwnTpwAANxwww3odrv45Cc/iVtvvRUA8MQTT+DLX/4y3v3ud+/0cBxOnon0c7W41FKtCke0qL01OCtHwUVMoQXEG10A6Ix2L9S3l9joAINsWTEssKgSnEepM5c0EqMiz+cA6QMbxmHlHtloGao1XE4ZM49fWydIKrg2OYR6YnmeaZLVw3Np2DAoykwYah6GNG/9rEX8/k6HbzX8UxUApObtfDeGtRi6XDbk1+Tt615TQAwFkmSg6642TmBDPhu8KUxmpzHKMg+MRWhfFQwnmykGpN5Ifo8ok9iSTXNrxrqIEMOEZe0IO/Rg1SusDVB04t86TwS98DA/AOCJFaVfU3xG9FlQz2/LuOf+XBd4Zm2+eZoTCyups2fP4s///M/D/x999FE88sgjOH78OI4fP467774br33ta3HixAn81V/9Fd72trfhiiuuwA/90A8BAI4dO4Y3vOENuPPOO3H55Zfj+PHjeMtb3oLnPe95ge234zg8SJUREG8CrV2GXJTdNQ0UDjwOhQMQreC93phwp1F7RcEFrzUqnINVdcoguP+Qbs0d5tlMnnPeIx1nsL79mEN8aE7kFiqh1vYiyiIUhKJZUeZEAfU6lWW2WwielChUtdCX7aEHxLnldQbGmryvMEDoEq7zrsaKfr8GQoeHVUQ75iFckck6yQii1zcs0zAmPaaxPFlm1HH+R7VTNnlEQNeIPqtV4eZOz6fPSmIMeHg5aU/eCZycftmLYmEl9cUvfhEvfvGLw/+ZK/rxH/9x3HffffjSl76E3/qt38IzzzyDEydO4MUvfjE+/OEP4+jRo+E773nPe9DpdHDrrbdiY2MDL33pS3H//ffvXI1UjnXv1ZDmOdSEoodaskcGTrhOS66WEmfmAmXrJW6DPgv8HsezNtr7ZrbzgqEBIBP0HgwbaDuWVaBJAeQPTw7uiRNyP96yp6WvJIvaYOaGefS6+DeQhpg0D6UdJfKclwodIF1T086d5NksvMSNn6HFvtM4NHTnGnnSQiVzQfLGpLZY08D71DRfgPeYRvGZY/6FyD3qOrtHybkWuN5poEejHnRexEvvvel6N7puDjc7wJleGoLTMhGLCWQcxM90asD6lMX6MM4B83iJ4pZjc9dvjTDxOnKPs/KU/x2Asdau6rbsGk6fPo1jx47h1KlTuOSSSxb+fuO2HcwrDMXNZjHikUG6Gdsq8fR6VJBcLHzAe9KmaT8rK465RlbBnn3GWGcgrNKb4lxpY1oVgCFPg2brXR989m2sCmDg10GXFOAp89/URYG0YVVSDN1Q4OZCXMcwDyhohj40zXBfXrtS1ssXzy6D2vjrlBC6sXEuc5B1lt8jKvZa7qHOaX6fa+MZuRL21fd5LGVdcp6oPCmgp5FUZl17ICIYVzu22YlMR96PbjU5srDVAZ46HGs7T/XTrXQ6NfAt54Fjm25Oj26NG9CqtEYmyrRTa7GZQVPbJL1H6vFyLg4P3Vrq1Ola/ZvDwJke7Lf+5NxTNa8cv3h6982CUjvZZYLWx04pCLaP0QVIgT/y1iAfuJ1SkqsAvY6xIkLEa2L4jP9fVY7EYEbIBDFJzaEl4aaM3QdkYRDMHvOksM5YDgnjSWkAYddU1IuF6CZ5jzwXx7AKMswiULq1Cv1JzxHngwQAXot6Pzr/BuPXG8g2RXofgdRgagrJNtUNca0usk6TGiheS6Z0la496diki3OnAu6crQSH0LYt+27uQQKORJHv2Av4OQ8PhfvFiAKy4+TPTuKdypreAbRKKke3AkqT1qysYE+URpzvOktrSIsTTthv+e4VI0826I/c4lpfcT5nVRgVLmmaKCRMJxysCrxftuEhYSi3KafIl7gVfR6CUhpzIDPMuB6lJKv3pQaIKqfE0kfMMZVmPsVibAyhlXVqGQOxRmm3lRQwf50e65m0fRH8sxAYsf6z8xBv8mfVAKFlWVAaNEBoRSHz/jMPd15FX8lxg3JGzMXVBs4oqmPOWpXv+a4L8234EN9mR7rjyPpuKgZuyqMFpV5HT5RhboOUbr7mx8pIh5ZB8PgkbPRHKTszsKRnT9EyaJVUEwoLFMLy2gnCQ1U4JszpfqwdYY6M27kP/BjYwqdzfjY7cBHK9ipARTDMvEFStHOFtBMLmUy9PH/D1i85VOjQc84TzkxamzptL9WEIIggdGL5rLGO/aeelObRVABRKeqGhvNgfeQECCnAFnunoOYBc6+6wR/zwAX8PamnexxNaJwzz7ycdBgrvy1SAk4h94rQ8CPR6DGZ1HDh9wpZA+wdOSxdKO50383H6b4QJjBOXOA5NL+FCePhBRr4RgZVPLfWRBnrIjaHhu51FkOXFuiNouEQ2KNG2q9hx9baRamkrOSkTP2OyQ8CE5M7gRDyMWn3A3WdaXWPrOwePCVswuNy7IuOZ5lFNvageus0eWj968uwurYDPsTcl2rSZ8bCMjswRiVSjBE97HjIcpkh0BPhut2vCgoQr9uk86JU+2UNmjHDaIahpOQT9ca11ksfOf2cdrKYJEOa7gONmnB+RKZmHhGg0ZOXRagCnGfN8vjMAWqHkqD4kIZpGWEo5Tx67/j9HcRFqaQSfO1yFxZh4pRJSK2lWTWY4N2URpwqwLUmorRAx7/f6ztP6vhGejy65iR90DKaVykwqbpoeANASIjXVRrbD4uf11BNZjPtFAy8h1Sngk8Fh/X/5OPiFvMh1zFlPsJDa9MQUjIW69YVG57yO8D4vG/noe/UMVyzalCozXsPm/J4FGzsigHEkG238k1aMXvd0oqncM3zUIrgdSDeT67PyhdIMRqg59YQMOvQVCgX1uV3Cr/GOsgMkDqyRRXdKt08VcdCzyQoCP+3zmWvcqQFtnib1dKJxJ6tjiNqne9Gj9Eidu5nJxDKvXUxdnQetnzIIjGkix0zQFsl9Y2jzsVdH0ZlRcG2iCXKGzUv1ZzMrK0GZpiel+y1TteNb1i4MZJIwaLkHLS+JuVRkrGbGFagRbhIr7dO7cNq6gmIoqUSmCenMAmzWHpNMN6z4PYflBVqrU86VGDczTHuXDlPcgGo0KmIdLsHLQZvylcsQjbp1qu1rQZlNISA8XBmDmV7KluMIT5ArHevNErEuWlCHu5iLkuFKOeXoVs9VGGFmS8Cl8ckMYHjYfkJj6Gd83mPyAYMW6kIWYT3ikQFNUrywmANBSf1brULGRqZdz6b/Spu3TFrXZBVyg0oz2XJQoPYvV8920mLSPsj6hztkEPVKiltAMn/d6v5vQnWhHBb+sNz0NXJoOn5bQwotEIIQQSk0ohpMWoBnu6NlMe+d9gND8g9JANhH9l4DfMqqCYvIDzkNnuQZkAFqn5HFVYTaFWWMq8TxwuhsnMeyuacCi16ACGGVIpwrkVzUimHtWHm82LyHMp2QGUAxPtS1dPrt7x8dWQIRKGfh7IWHaPmPClDkzVu0nWm9zh/XZVGuH9Iow9GPhvkgY1GRMJ0m7BOEgNHFKmirIG+dYYylTtJMEqE4XWwS0W3nm4sEMxTsnci6f75LuOTitGBqJC2ylQ5WcBe/ZbZY9gGWiV1yhMXNsSFBoB62KxseIM2O8ATR1yCkw9ybVwo7qqzztI5tjn5vOsj9/4V3eiKb5Vu8bCoVB+EXhVfZ6uZ2rhwIeswwqL1eSyGrOZlioWwyIJmuHpeKmyZG+nN+TAReYFhejIR+mbcOyLUal0G87buCcljPsSdOB7+9KXOrWnLhJBHMlGQq3JSAsj6aHc6lzBvcb4bPQ4VytM8bZJOOCdN5JVJXhOvXe+lMu/4N8dnTcw50nMuqERkzpvmjBEAayJJgcfJDZrgNckYlPXWZITReAtjs5Ofr8K62qdDw1SeMBdtTdpW6tjWfFEb3kMSMs71gM3SRVjW/LxYRHalPnuc80HpPLBRw33cBTu4VVKD0seo/aKjtdFvsuZNZCNt+Pju363FUB/gbvqRgVNyx2acmx2i+QAxFq2FhUTOEqKlRcuIVj8ZRRQU9RxhSyO/l110kx7QxLuYE2ohJ3VXdvw1QBRVdozdcCT5QJME01Qoyv5nubWtxAn+LpB6ykBkd1E474aS2ujGKAE99XwrkUnrSj1LeCUCjBtBSV4QMcTJe8d5SjwosfY570Y+H8gYcxhaoWM4gIoeUuYNqRHEOjaD1Oua5mnT0GRkZBrK2hXLVgbollGuMOTPEN+8HWw4P8PCGU+UbcMSMA07SOu8AlFhMVzIbu4aIdgFck6rpFRJUPhvdpotRaUL09phHQOV1JZvslgZZ31MC/0dGjpvalS4rdzpxWmLfK4BJUJo3USgNHshaUwaHiCRYhokGjE1p7IIOCcUWIuG+oIn4V+n8M6p2woKJu3vVmI+gbVdkCUYlJZ/3RbRoGgKexrEhD4gpBnEYzGkawEY/3s7TVpngQqXykJDzUp7ngcqxMPOzzbmKK1cbx4KHFNmFoAYAdy6HYjKg+Dczbr3SrhoIl+EObAp4ULZfSb7Tlj7Ro4x53yxFRblDwv+axPze/OQSvJx8vpIctIWVf2RbxVXRyVYFTFEuOFzWcPSfXZN7mnrSe0Cjm5F15o1SsDkcAZd42ERb57WuZypgN66L8D1CqVbNRfiFha44rz7W1vrUAjkyUm1pvMwBQpnDRK6yd6sXU5CpbxdTKE0QXdEpWDtWKCYMJ/0PBR86AP7CgibrQGZopLXwjGNbA8hQnGnEKj3iAKCWxfwOphL6I/GLW8KJlqtFHCV3G8yqoYlsOlDu5dlLM9VgfUxHD/JN0pNngYVzlpbQ6GoCMo9U1QFJPSmnhjZcnVmrCF+joaW9ceeJtQZHm/ycvQ6qWAhY7QTPrtVApvd+D0K82XWYFkDh+b8XtjPS14L99EfqysNAg4PEDY3POxbHKmcOtNzYcKtjvs9Kpy8ZE1nUbWe1G7A3vxj4W/zPz44HvuetMBD6CF7uKjATBlp5rVxntK0h6VXpZYjPYmRjUnoISUZUk9KXXWiMmnoaBFsh74cPAnxKqZBu0GoUJr2PbVc1fMKY/DnL+DDMgtewzLQ86vw5H0EnNVfN6wppa8nXq3eY3mPXvMijL9FoIpfrytXGpOQKBVa3TO8L16vzV7Ll0EYk3gIk8x5Gl6zlvM8RBNdc6Xcq6b1l+ycUMTc7E4iRFWQPjta5mARFaVumaIelCprevBMKYTaKgP77H+3wxcUcdErqQSHhs66WB851l3Tw9jz/fwq40J1vIFURkBkwJzpRwvqfDdSR49OaPY5VqtjY9hvgLj46SkkOak67jocaizsfLFrfYimPPNzobAuB0ELepYRqFY3gKQdTqCQIy1g1PuiJIRA7S+k7muODSu3A/XudHz0ItXLDsomE8bGX/iYZe5JAEB8TwXLToUx1313ARo/SZgVs9dUp3bPj5IgDDJF6/9gOCtvFUU6d153pg2MGW3QsB/y8/jfk0gaoUwCsu7ku/x//n2+zrAo82/0okk2YU64KN2c7ARoGPPcybV4GXDEXyu7SfQq5z2V3pNiqiEc08QSGe5cUNhI3thFtEpKQfo4lVQTChtd4ks33QLf8i1NGGLa7EaBFdrc+Jt8ZOAWyfpw/lok4xfHVglABDFDaqSUcnwUEuzuPAtUUkrtXRa8bn3wJ0HPR2FOeq7JfpSm3QRj3V5WDBGynUtdRwG5E0LdyPXyPtNb4o6qqqSYP8yhzz0NEwCACBsgFm8uUse2DLbbqV7HF6jrJoapiSGJAfKcUCk03bMkX2ajV0NoCFiJG1o7lRgNcmwNZyZlA5i9djQkz3A8r1mfiZ1Yg0NRikAaYi5s7L7O9wC3jg4NJz9XlXE7AWx2UpYiWca7iFZJKRgzn2e/G3pI3co3Ba3j4gfigtVWJ8ZGlk0553n0fPyB/m74Ph+0RcNcIXyxzQeK5893CR37nFitFqlXFISzmR0qmnRcZc3tBnliWdRyY1VAJjkR/3en2lkvaqcQjKDMMwQw5lnOg8zBalwftuGz+RhyLzHUPc07jkxJ6vgIDdduJ0rRBCpF0ud1HtSL1zVFo2+a4TeJQavH3CW0SkrxrDPA2jAKBBIZSC0G4t5OpbdQjg7c3+z6oDeRLjPdcC6o/iiGB+fd58cihr64RbdagspQnJSkngTd9ZOEi1oSxYuCRIB5umBrx2W1uGHSsOU84Me0u8W0LgarQM6y1IebAkH7n/E7qmQY6zc2MjtDXQ0/5HOa+3lfsSZwTamn3gQqiGQPLhufHVUGeVspbs0evCBEIzH8pveENCRGaIkHEO/PLGNNlRvH0K2AXnbNFu4+z9MhYh5sdFzEpjbp/nOM8ihxiWkCPk9MI0x6LkKJAWL3Es7fqHDlCbuIVkkplC1ljXQj9wQICpkjA7fQ1ryArQF0+47aOSrgtgVAXJi1iftGAcDZofu7V01WUhrPJ5inCB5cAXQ8q48Ljh7bvIWoui9NCEdh5xO9CjLIVFEC0RtbFLpz6Kww4SoQiCImfaA1fDSt4wbLGYJwllDNInTv/YZwP+e0vLnec/ZjIDFB8luQEKlJw93MVSXhZP8+WZeQ74cOL9k8WznfxDHbmL/juJi7ITNTjVZTbC9cRubl2Z5TFlRCBEtqRp3YNiqvPTMN16pQ74sRIoZYlWm6S2iVlIDd0Q3ujl4Qi3e3OjEJqVtja9ui0tPJwk3G+CLnolHL29ioDCmkKxMpoSHPgfgw0TrnQ6Dbny+ys2uTF8DFvNvI62IW9eRK66xqYjeug+GhJMziX6MHMIn0QagyItOKf1/ICIW18ho9oqA8RJEZ4/rc1UjzmgoqMHreehzA5QGpLFR4zzPOpumex+tJnnHvDSvDlRtrbhfcop0yKe8AoevLmpj/4/NNg4+7T1sT0w4K/U4gaJWwL3r9Ci5icbRKqgm1cZ7T+a670Wd9vYBBZO5wQfQrYOSL4ag0GI4IYQDTrKiGhSv8LWvgm4dcB4vKuIU4LJzHdvKMS3Dqni+01Cp/rq0yJkI7vsPyLJARpAtRBeksD8YaN3ZrYjJ1FRY/Q5XLYBWdGJrqxBj2nRSq0ZBiU7xejZG89gaI75XWMa4utHxTE7SQlEJQvSCSJWiZD9kzE3FeWFtHY0O9ygLAwMSwN5WWhsCp0HTec8+UymlYjN/3wrqw9Tw0dkXfN6pm+7Khv6YCy91bFtJuSfMAdo9gE2klnBT+es71IhOYBC5uxtmxsWbv0s206QAVPGXgHoT4FK2SaoAt/k/gCIAjgPnz/yfeLIPIyuNOuUoJpncViv3EbU5IAnT/pf7gXA94ei3S2dmO5rLNyHjrS17CIBYLA9J0ck5loaE15gzyB3oa6F3yoxY72wVhp8HQDD1YXoe2vGLtWW59kh3Je8LXgBgiya16nWPjhWFnRi3dTkM3+9suQq2arH2tn9LP8BkI5CMaeiadj5xxp+FEFq3Se+BzwvCplXGwp58+p7X8v9BxLnk/GMKm15LT2+dFbZxsIAtyWMa8Gu8XO5grQUhLMVjrZBDnpFO7zu+lN7RpHNHD4rrld3c5xKdoldQsML/BhbvVAc7YSEygBdMfxZvMnmDM95Tek+pVsRZrbRSpoflzQOWhoTggfci1fiN0S18g/8Iu30z40vXXyvpJ4LXlzVBH9ewO8Lw+FVp7jaSAG2mYSRP/HHONVEl1KxemAkRpy7FCri8LYZEY0RXBsVeYRBDQcPIinjLX4qR7zPKA0sTnZdbxtWaK/eiUcMOvM+mf11gBi605rgk+Z8uAqYBVbFWjnlIhzyobGPfZGd3GmsywWaIZV2Kj0uWzqQBLuQ8GqQzbQ7RKaha62n28cB7V+W7ce4oC5rDfj4r5JNZPsSs2LZX1IXB8M7ZN6lTR0gL8wijiJmxUBgrjJaaGRkhNnhfGL2RVMiG3NuVBCiGaTtqpmUy6/ow6Cl4fLc29BkNxqqBoVRuktT18n5vW5VvEA2lugh5YQqzwxwksPmy/JmlRbDQ0C1XvkWMN4arss/0pdYSKaQpB1wgjBU37QClqA1Teoj/f9T0yCySebXj+4LzTJuUb/p8Zf00hWwvniemztgh4ncsaIZp3Y5ifQ2fUgy2NtNv+oSGwOUjzVmqAkcxlEOVZR55ferXsO7mHeqpVUrNAlhgQCQ58MCjYmMNhB/LCW96VASo+gF6Z9epYjBmYQTYuuKaQSBPy6v1lF5HG7fMxNJ4XUYgHAY9UqE8LX+uhd6q4cR4E61vmsWko6g3x76Z+g3OfNzvnboMWNHOnQDNJgV4EDabCprU48+5lNA2FrLmmta+gF6pM1HxH2GkWv9ZCzQt6ZLD+7yXW66oYmsaPg+Pn8dh0NjdSSa7i3wxJ8yNqMDF0aADYSmSP+7E/9LrtjX2baJXULKwPneXZrWNcN2fEMWQDpEKoW6cWp4H7f95tojSOik6BcGTgPJXDfsdghkMG3vLZ7KS7hAJxQTK5T8UzDwrGsjAel8+hebbCItlGQtmGk75fWMBIIn03oDkBIhGIPizE1ojzCJR5hF0iNIp0zfRGs/s5rhq8N+p9cxvzfBxhrP7/WmC9KpAswhyvehtNHnlVuDxKXiNIsESDxiLvUZLH1UhBnebh/CUmzwI7OXQryWH5H459GhLFmu3LNc8649Y/Gv7nGODHwEiPHo/MYM2H5mxe1lHVkE7rshHroaHbt2qP0SqpWTg0dO4wHxgmLvVmc8PB/GHXfAaF01pDqIQMG4bfyO7jQuO+TOd67vf5rlOc1sTFyfHprp/GzpcjytlOlQEwIwdh5De/YwpJ6E75vsnOB2TCEPM/xLOgzT6bwphUtDD+fTvbM11UUDN/GXKNiCSYnQaFZNLP0ALlDJJNqJ/jGs88ERpj27kGg5hTsXBeC7tpNI2rrAFbpqSBpuOV2T2k8svr1axBKFko/OdqA1DvkMTE+WBUhHOjYcpJXiWVgC3ifFIeFHa+Yn4+wwyta65oklfL1IJuW6O57pEoPVLb6wpY95PW9cqxaaPDXUarpGbA9t4OnARwEjCf/w33ogpoPgxKWggPbhG9BuapJi1muufWuMWi1fcW43VbYUtvxM9pbgtA6Lo9S9gzx6WCJxQANnyX180Q0NikTT9dI3JltdsVxU3XOe30iw4tWPa1CxvtVoHuJI9jWgjKwAntCnEdJuG4FYxdcy2qTGaFm8fGKsozjyA0hcrnOTSVFRU0kHoxY7WFUw5q5TjaeaM2QG1j6mAeUNlaf4OYLpg1X1TObvBRLuRGh4ZL6X3udI/IOdAqqUVwrodAte7JdvNlHcMmul6sLD4uzknJU1LaLSKZgvUQla+nemYt0nXZVJZWOsMRLASl4up2xjscN4FKjpYTc2b5cx723xHr1MJZilq5P68QVsYbv6KCZrsIx5xyvHystFSZfwpjlQMuw3jabbKI7i9UWN/ZH7OFovHeTc8r02GdJt0XVSb5LtJAZMYCaVhunmPyeiiwe5Vn18rY+OxQmfB56YjQZUQkrGHE62OeWTc6HDTQsPPtLcauvYgt0DSqwvWzPgTWF8jtFX6gWmM3KoARIqGJil+N5vVh6kEZeOJEZjjzXnRrv0V9q6QuLGx0IqOPioo08sak74ICSSvCyb4533UPx5k+8DeHY3dlAKHwlZ2xmRNirNxYt2i1ELgJak1RKFfe4s8VBuP+ncq3ZCpSoTWvoFkVEnqtvi5/L6FPUms5O5aR93fLI1oEFETsOUmBvii7zNi4vrUP5aKhWLYE2/K5VCrMQL2vYrhtkbHxOelKV3jtxMK6NwrywgKQrdPHyCKihPmbCk8VSynrfFa5xrBMO8mEEBsNgLJ5Q9RF5sEitm47048t11is269cDpTF/wwVdup0B4X8uCyV2WO0SmoRJEy4XTgXaz2YV8nzCnkiF4gWlCaiZ3XNppWsPb6YH5g0thD7J8vRpHVji4DhRh3PvOE+egrslp5c1zZu0iQGXqgrw/5VUgTXwnaMBq41KieWPiwCri2OKXkPMYe5yHyGa0NmJPF9OU7tF3TtDSxTpO9ZgySHquFHKkI+IxpSnItgI59j+JTP1ypYf7wGes2UEcYCha996mWdPErEnFqQF6l3bHG30w77QEPsgyFcQKDA13BWVQCdHbI2yjoqp61OrE1i2xVSh9UC5BbRh3w398OD2Q+CJlGBGO6ZBi58WmRUUNvp8qxJ5XkE7LB03m2Ir4uQoXAIIUlROrPG52VZssFepkedh4LVCZplkRR9A6Ejhgrw/LNkyGlYeFqxbrcCCjnPoj0Vdd5DrhXRGKHHZ0azvb0g9GWdhZIOOZcqlpGsbUYd9DOFBXqIzw/42oTaQ55DIyjT0K0lfCyKmF7OdkEv6nw3bvPOOen6Z5IELHptPd8AN4/M7EOjq1VSCyDZav6Pf3Wytb0qBLaRST2pbh6mQBry0i2hZy067YgwydqdBHZ6pmcx7yKfWGBp0mR1ZZpzOKGdjpFiQ1FQIadgU0ES6PWYLlxU8U+6x1oftlcP9qAc76mmnUc4rOApI/aGHBWyRjD7Oso6KqpljRCDccGuY1uESaYUcxqOZLCpBx0UVSHr20YDi+uWUQFdm1prpEbQvKFe3cgRhevuoMbOrHzWvGDpCpUVr9UawFbxnul4QziwTK+nVVIHCEcG8ymB7aCwbr+qwroCzPMbbiHqxoykn/Z9GxR6WfPsJxWSrvIAT6PTTjwORAgWCI1BZ30+t/J1XytrELYgUQEBpNRZBT+nRcm5QOTvaYpYH2ieP3xXlHJVpJT/3UbOxgJkvoCkho3eCpPnLN6s63isaZTyoOCXWO9d8XJYEEzDCkgNgVnCX3NX+jGuKWXl5UXY/M3PK42bJQEkTEwbA6dd5yz/PK+Nz2kthoNBPMek8zB0V9rZ0QnmnNnxhREE7ksWrl8XMmKIkL0PaeAaAP3Jp9tttEpqWVx5TnrvbcO6nIXLNoBjm671Sa+KLfpZWMxCvn7lFNqaKKlp4HGUARa2+1jgWhLhAJcYr8z0jgRULuy0QeaXdrTW4/OhLuWzOakhKChERau5CvWOKuPzE2hW5HxYg1cndH/+ZohxO3mvZWDl+gORAfH6Nbdgi5i0Z+1dzkosizR8FwRV5jWwaJ2h0/w404T6WgWMLIBOM8ONcxgKTycoCZZwUNhznRhkBatI25PpWlFFxbXPPpbAfMxUzi3XoipAhk6pnJLncA6WLUP6Z3znc/b7ZFFvE9ZG8blZ7wDdIhorfAYr44hQSlDk9kBbZVoPNiiBq2YPdbfQKqllwV5Xu8FkK2yku3crTx31t04p6N3KMaXm2WZDLWsV9vPUXeQI3zfROyts+kDouVXYY4oQoTALglHOpYJzTFHZ1KNIzi/jMHJ8BetPrPw/CSFlSnQ3Qat3jHVox/9WA4Idrfk+r53zasTSrk28fs3JAZO9oGkeOL2T4Nk2eDU8Vm0QOkYoQr4U0bDRexQ8MRnTxFCt/E7W/hwKKj9OztoDAExoHD0LVeGebe4wELaIqWI4tMmoYtiQHpWCz0BuVABpRGJYwv5/3rjggHcHrZJaFhSclbeeKJC1O7MW3RLdOrY6mqd+iSAJoiqAQ6IItPU+Fee0MF9gCoonRQubQqNj5qMrB5qv1L+QWcQEey649Dw1ohJRZhXDhZpraFKcvG7+rWQJ9Q6mWdP0ICn89NiQ+dWxL8rwWiXoKRoLcDO9PLypBdk0RkJIxytgg/haTlDhPNFzYshIi1FHJh2TnTEPzM0YALBRgej1hDCezLN+H/67gHvetPsCFXDe0YE0a3pfShZRcsTaKHYNnwed2nlTut2OkhAMnMG4yDZMZ/y+dVUBbPr6yKIEyk58rpu8qcK61wsbn2fentLLmUPDdK3WxpGOznedvNrYv6pggUylw0MPPYQf+IEfwMmTJ2GMwe/+7u8m71trcffdd+PkyZNYX1/HTTfdhK985SvJZ7a2tnD77bfjiiuuwOHDh3HLLbfg8ccf39aF7DoSUkMRyQ0bXbcv1DcPAf/vJcBf/P/b+/YYOYqr31/3zO54F9bveNdrDBgCUoIJSvjDxChyeMsJj8hIEaAPEQVuQA4BhAmIkHtxuAQS8oWHwkcuShCYIEJEEiJEEGArhIBIBLEhMSQ2RBATG6/Mw/basJ6dnT73j+5Tdaqme6Z73rtbP2l2Zme6q6uru+vUOed3zpkL/Gsu8OY84I15wJtzgX/PBt6ZBYwcHL/CiUNPOUyhMvsA8ImPgUNGw4KICz4C5n8cfj+jBjuq7APjvl6pcdzKgejzgXzY/7QFzg4IxiG/xvJhkbaPe3QxO1WjxtNjZq94ebXdU9b+NY5HM9hgArkgjP/onQh9cX0T2twpndI86aoCcDldm0fG08RB1SSC2QdJ828neLXPTn1JlGDhA8QLKLmo4N9Utn0xFUjtQAp/aWrj+B82FaeBMkWKPvJ1l4HhhlaSoj02fXIhQD5HFlJ5OUbieH0ToYl8oKhNamnhiWNz4caPoszsY9FzNZ5y4icvfJb2zAA+7Avfx3r0M8nPJdeZSxqb/hIwewyYOxa6Cfg1UKy8T7kEPb8+6k1/7m1GZiH10Ucf4bjjjsPdd98d+/ttt92G22+/HXfffTdefvllDA0N4bTTTsO+ffvUNldddRUee+wxPPLII3jhhRewf/9+nHnmmSiXOx/dnBaU/z+gwndBM75rPlhsVhn3o5srr3Ptfdyjbzo5wdd6IHnSsIMNM3caWljwpC0dzPYrdZv8OaYN+TusbRm8umenuJwQpRYlu6R+g56cq8WvxTG++LrZv0vw17HB2h0CT5DqBdP/lgR53vy/zYbj9mP3F9qnrY2m8c2xZmaTYXgBkNXMXCt4XGm81rENYVXOTqmX58PHkZDPWJpx4UWEJDLYJm+eA3hxkQQmUDDVvhaxp90+1TqQWcdbuXIlVq5cGfsbEeHOO+/EDTfcgFWrVgEA1q1bh8HBQTz88MO49NJLsXfvXtx33334xS9+gVNPPRUA8NBDD2Hx4sXYsGEDzjjjjAZOp0M4kNc35WghXA0Vc8D7/eFnQDN0ChH5oSfQAqowEWpJMpEk26e5Kqd8uA4ez2YqZMT5VViwBgAQ9ScfhAK1VnJaOcH5BCORpu2z4PWHNJfJ1Dg1+w5hgvJC85IHbUKyTW8sMEt+pdBVE7WnJ8wkwS/9FCoZqXWcdjimJH06DbElEJOcJD3I9mR8lAz6Jk+fK2/HEyiTEiRFv+xDVbuthp4yMCPSosfzwvwoxzjaNu1CzKcwJRlNmP4zW0vn85KkIp7EbSHDaYyUaZTiiUg5Nt3n9H0UeDq+0YvGrFp9NcDUbpn1KjU/WZ/uo15dgTsOaTOL9JY1c3g8V7uPHURTDZFvv/02RkZGcPrpp6vvCoUCVqxYgRdffBGXXnopNm7ciFKpZGwzPDyMpUuX4sUXX4wVUsViEcWizhY8OjrazG43DvZBBV5oV95bCG/0D/qB9/rDm7cvIj0cCMKbrScI7foewhtG0sAP5HXcw76CzojeW9ZmnnqEFFD5QEqTJQV6QmdzWNLNK1eLxvcwGWH8na2CsIDJ1G8x2fJkEBdQKc1VMleZ7KMULmlX4wYtnbQgbHZlbXt1KzW+LMxLWxu2F83KjGdprlL7DaKTt4s/yr4hEjxpUJgw7w3p3wP0dcmiVeWCMBhX3svK70UmEYO1jCTBU8qF5i9OLyYr6sZN/vxMyvuBrxeXFqllPWczrLxevIDjRUAZQC6n7/002dNrgecQ24fbZWiqkBoZGQEADA6a/MXBwUFs27ZNbdPb24s5c+ZUbMP727j11lvxve99r5ldbS6kKm4QAzx9s8uJR5plWNVnmzpB5zrjrOdsX+fJVjrw64GclHmSQmBOVoC5Eo1rg4MUiYRmE7VVreRCI4gz8dmoMF+JfRHtG1Dy/rXA4xKgNUqUrQXxZw/przsvAvzoesjFhh30bZsKeUGgDgw90QdR4xWLE1sC1uib1J6SrmGWa6NK0Hv6eWOZIinztdKESbO9J6jpSeen4qCgA8tZUEn/Wy1IS4kivSSY9TIMdVXMmAB94ttNaqx1aAmlw/PMUSSiiu9sVNvm+uuvx9VXX63+Hx0dxeLFixvvaLPAmY6Z0acmMdZQSN/sOYoSPkaR/ux8zvVqtb4kVlaqiKAPFRDIjtqs1VE90qYyztsl0wbxA8JEBZkRPQ79JVPrIoTEBULYvmQUSVNMjXshFmrlHY1htdU2r2R5oghg+rAmfG2rZ39OUpcMRiC05lD2wn2TCBe1zqXaJDnO5h9fn4MyAXnpVr1sFuRrF5coNBdor7StJdg+OM7RqNiDlqYceKFFoVaQKrct0xjxxC79VWWhofLij+/XalpvI1nmmaHHlQd8CpmuVOVeA8Lt+qKEufJ5SEtp52tUKAPjE1CkF/L1ebE2z2SiZmCg8wUN06CpQmpoaAhAqC0tXLhQfb9r1y6lXQ0NDWF8fBy7d+82tKldu3Zh+fLlse0WCgUUCl0UAm2jLG5sgyUFPYmxX4D9AFxwjoWY9GtNiAmKwYKPf2cBkklIQTOocoEpMHjilE7tWgQKfgjlSpWFQd56QCVzC0i/SrbNS1m1Hyl0+VRygZ6Eak0icStoeS34mjcjvQ2g2Yc82bGPsKcMcJLUtObFXKBTaCX5/yjl9VBasRf2AUJgcTulyJrAhQyrgYUujyP7fni45aJGTvq9E+G2tdrPCmUN8bXZMJdxASKFh3ye0uzH5mumzAdRX2TIANC8VEqTCJnZfdWwZMkSDA0NYf369eq78fFxPPfcc0oAHX/88ejp6TG22blzJ1577bVEIdXtoCVXgpauDv9hIdRbDiPt+0tRWYKyGfcDmKtI6cdh+7dk6uQFE0nSolN1UJggAC2sJAtIplLiuCHuYy1wyWmONekNqjti5XnX7Du0/ystWJBJ6rj8zofpg0nTHiDGUWhXzYZ09Mex0bKAr7M0IdmvLOAJ0oPwldjvKRhosn+K2SkWR9K/Ywed24u3ZsGnqOTHhL6X7ec2LTgvXiFFajI+dkE8Q30Tug31XUm32WAhQsJa9ZoMyKxJ7d+/H//617/U/2+//TZeffVVzJ07F4ceeiiuuuoq3HLLLTjqqKNw1FFH4ZZbbkF/fz8uuOACAMCsWbNw8cUXY82aNZg3bx7mzp2La665Bscee6xi+01a8Kq3vwRMRHFNHODHAkDm+yMvdIgGHpD3w9Qx/LDYN7fct0cIEjspJ5tQ4ujByp9DOvuy1Arktmkp6LJ/tWAHjHIqFln/ygafHwuaNJOF9Kl54l066XNi22qnqgQGwsJybHbyhdDncUur4cVtpwJlRb84XQ9fe+67MSZVVusemUmAK4gUGRY63Cc2N8sAcDYDKkuBpzVn+75g4cX9JgAITIFJ4VeYiEzIHMfFY5L13sxyfn0T2oxrE0qyIKsg8SgsMsiaVCFvluXJUWieq8W4nYLILKT++te/4qSTTlL/s6/ooosuwgMPPIBrr70WY2NjWL16NXbv3o1ly5bhmWeewcDAgNrnjjvuQD6fx1e/+lWMjY3hlFNOwQMPPIBcrtk0qfZCphXx/vLzaDUU3azMRLMnFGYzSU1HZl+W3/HNKled5YgWLLUFOxaG4YtVujSbScEkyQCtmgxsjSTgyQDm+NgsMD6fNN1Szv/oXU7IWU7L3pavF8n/M/QrDpJ+TNAkGZ7Epa9GChu+5kBtH1Cc2bRe8g3vK+PipMYqGW72MbjvvNhQ5yDuRdU+KgVhnLBtNnrLUCU1mk38qYaeMlDwQhafNEfLZNINYLJoTjY8olr5TLoPo6OjmDVrFvbu3YuZM2d2ujux8P7xPzp6XFKic0IjksJmxkSogXHqE5U00naek87jJ0kWEnagLGtPrKFVe/jk5MATZTMctTzRcG4yGceSC0JTBpfWkJkibLNRGrOXNJ3yhOlB78fjAaSbpMeixKgcfM1jyX3ldDpZJzSebPneYNjN8HWPoznzuXGVW1t4StgapUQWYTXh61gi6Y+UCyr2HdkacpwPjDyzb+RFvjlLEPpUWQl7qkIl24W4xo1VXeg2IZV2Hu/ehE2THXPHtOmvFGU1ZvOWfMBYYLCtuVAO1f6DxnWW4ri4EhXgl9eMworYJGjflk+hTysN80pO4s0Cm4c4JZNcEeeYBEL6QeR+SOd6XFxWHKSmJssxwBdtZzi/PAFeAJTEvtJXxMfM6iyRufB4VyWQUCmMVQwRxETuR2ZfISTVuAZaU5G+KXltpYBIC04pJO85gmCiyvattpPCGextesqauOAl7DeVkTYodxrACakWgYauAUKyI7y//b+ohIWvJwl+8Nh8x34HvjlZsEgau1xty9IEsiQBT3oMbkMysToBW0OTQooZgpKqz2BTkJxM05qpkkxDWSc8j6DK03NzSiOpc/KUrDhCpSkuaTKXVHzVDmtYMcdo1eQutTaOnZLCqRm3WjMXSnIBx21PRsEnn5lpAiek2oGh/SGJYjxn+oOkdtRf0iWeDx6Hcu6TF67gZSlzGUfFgb/SpCgn57IHBOXQmd1b7sxNzhOoXS+K/RJJE4aKybHaKiNGaFird95PlQNHuhieODC7q+QD5UCbHOMCYdOC/StSA/EAeBFBIokgorQl63sClO9NaUwQ50/xwi8reYKhTHxCk2LYY9MpcIJWSfSQZvOZxfTpgFhr9alhdl3d4KSwJO793gldEn6KwgmpdmBwvy46Jx9cFdkOTXe1wf6rIrTpL/D1RF8SQorT1tjaigczDiSpqFyrQDBjUBjSbJYEOxYH4n8WVIAmXdjUanZpSb9OPeAAVHZocyB1I6ZRqV2WeAFDgF+uLjjiyDcs8HLiPCVRp1lag635MdmGj8HH77SpasIHPugLc1CWLSEls07MKlZfZPA9OxYJPPaL8XPZzvM8kA/TpEmSVaEMeGPxwdpTBE5ItQGEtWE55gLglW/SDwULKaB2XJFBE+fvLa1IBalCm8bUJCX27ZTZz/Z3Sb8O+05srQkw+2z0XWgBSbFLKnNCC807PNZZIE2z9V4Pvt6AObbS79aqc+YucxYMu1+dhqzxJK0QzMzkRdtEFIidlKmCS/Bw2jIpgPk820XkkD5Wyaos5hOJFd1GlqgHTki1G/IBTmM6kPWOykKD4omNhZtKpeLpfIAEUZMp0O1RAHh++x4uqT3JIoIqBgWmKY5NVzIoNEClUIY0M5EYG/6ZzPYbhRSEAaLJmfQCwJY1No1amtY4N6PyKaJSyFQDa3P+hD5XwGRHJp0DoLXbuJLyMug8Lo7Mj1sNdAkCT5fE4bpmksYNRL7hQNeAygfAQaKeFF+v8YjROeGHGsz+3nBMDs6ZxRKlP7nV58Zp1Jgw1RMlp+bM6H0TqFpqfhLCCaluhx3JL+3/PKlxqepctLryfT1xyoBEXrWXWUCh9dmPJUVZCSPhO+EJWaUuivqjVrvRvraZULUvjmODx6fZiqPBoGQBEzOOrCmpVTyPA+kVupEBAtl8RHLi5X2qCTfJwmPf5rgg9HA75UDfM0zgke12SBFPhVLOrNd2IK8zlctyImzFKOZDny2HEciSJON5XeFgLB8KNDahcv5HJiYBrffBEbRWx+bHnpxe7PYEusQ8C6spACekuh1xafzlZB6XsoXNHByDpJzFQfLquBWIExxyFc4BvHafAiGYjPghz5xM7SBXWPsrM2GTzjeASbHm65BWsEiBGpv9gWAsQtIg66QofZbSd2mz8yRbsFpWi26DvBaSwGEU0UTl/ZOm3WoaLgs9bq/ZvkBAL0jZFwpojXgi6lspBzrk6uYdswvghFS3glV7ZicpbURoIBxf1SOcuB5ENvYYX4F8iBpZadlF2qTwSKK7e+IBkw+cfd4TOai0OKxJGQ9+wv6GeQ2iD56pdWSFMqHmdDgAa4VywZAEKUTZBymFFJs4pZC2442aAW5XFtnje4tNVZJ1yOfWKDHEvkdaCb43mBxhpyNT2jVpE1kagokPrTlVCHPPrAfH58xjlwvCfJaNajayYKMMT2FClQwAnkJwQqrNYEemV82hKQM12fwgIVeCcrWoHLrQE6NkAtkryLpOwNPOWyOVj3UMiHdAP1Ty+EkPLdPVuf+ANml68mWdA6dCkkKBj1lPsK3qj6V52JpUWvDkZQhQ7rvVViP9TdOHiqwcXuinUSv0BjXQCeu+bRd1W2q2cjFnk3Tsz2l8gNU0Lw6NAExSAz+TZUqfvb5aH+zUagSg7IE+/78abLx74YRUN4Fv7gN5XfCQHdtJE6IUUhKcWFSazNI65atBVfFFMitNkQRICwzpe5LmChsqeDnGJKbaR/L8rTQBaQ+psn0aKCEvxq/WOMalC+I2eEyUxiKEHk9CrTCvKY2Nr42nj9UTrdKlpiu116ywF0ftYpQy+44iEgGfH1sZ5PPCWfvlAk+NvSf283RePRY89jWSwcJSSAH6/m9USPdGVRVyATBW0smrG8zp1+1wQqpTGDnYvNHlDc0mPkDf+MbkIfax6zZJKKHQpD6zSUH6jPg4tlCQE1wOoYkMqF60zvaX2NkVPGvbJG1DCgg/6lMzJkme5JjkYfRFfAYsirnYlsckiNrjH5UQrzMdDi9qeDHDk6lBeBD3gjSLATp3ZBykGZX7Wkt48WKDfZCNDL/MNlLTtEo6KL7sAb05s+8FIYxlUU4JrjidL8MkJJHlFxXPorQs8DsvmPjY+YQFZRYMFIFCThM6eHymMJyQ6hBo6Br12dv5Y3OFLYsnJjnl5YPSLtiTVTXITeTDXFX7gBZO3fjgyWwhsWw+SyDJc7A3t1lh0qFfD6TjPhcdkCd2+xx8AgISJtoaQoeFrVo4pPTFNQt8X6QlOXBBT9YwpDWBa2KlSQjM10Oa+pRm7lXubyxWogY43RcLMc8H/AY0qp4gbDPSfOnT36y/rUkCJ6S6AbnAZFpJ81KPYOTJTAIc+9RqCrmEtPVLTUeRCaIJMs4UlqQdGI5n6Hd1TGihIOnpQLhfzmqLf5OOcE/8Xs/Emg9MgWMn/1THEIInWoyrfsYd1vbJ1Sug2HleikILgkDfL3EHlsX4eHyTrk9JkFcMYVpjHO0y5/WcG19PVfSQtDm01vHzATDrQPhZEhvSZBKPy9qSo0qzmhSarAWz8JIWEN6Os730ZBoFEx6FFQMGP5pSsVDV4IRUN4Bv6gmv8ntlXiJ9s7P/oNrDqggNTRRivLJkgoI0cbEAyJXT+zKk+ZDfjZghxGsYMnMAH9emq8fuF51EPYJKLRhQnaXF15L9P3zMuPZYiDVyiZigIIVUL8JFAyWs2HNBOhMwp9piDS0uZioJSWOUZaHAAkJpIWL/LP6drP4ggg434HuS/XZAzD0F7U+U9yUfW5oEKRfGZTX6XPaUgdkdyiHYZjgh1QWg+deqz97226MbOBAak9AKgHSr0lYpWPIBVD4jcbAsZqC4mB27naRzNdIgeTF9Etva9Ph6Ien/WffzWPCKVbaENBNlmsit8WumZp3Uz3qZh91owo2DEWAt+myzOg1yjzADslZtLLLEe4MCaiqkOsoCJ6S6DTJxKRdIzJGOaQFMhywnJgUqCyTyw9IsqHRLYnULhBqBFKRpH0LWAJhyL/sOmEJFTtqSsMEJeg3hKY7BkwMHMjeKNAUX5cTG2hxrWEm788QvCR+1xnE8pzNGyJxuST6zWogLJM4R4EUr9nJ0MoHop03OSBKwjQgovtd9QMWotRJM+pBmWsno44UjxyMqCwD0QoT7KNmgrIk6ZIITUt0GFkz8IHBl07ggUIKmocoHhetRpZ2oWLjZKz4JubK0NR8PevLI8hCWxWTAjCgIG341TYr7VE1msICo1U4zweMjj8mfA+6UvY/Yl01NtRYYcbF0PKnydchyzpzHDzBjcbgdeY0CQpj/EQAXkpTnkkOl4KoXUmlrRYBzHNjUZyx2oAUVmw5zMP2pcoFgjB9pq0g7iU5TBE5IdRkM01/p/+qbmksgSC2DEP6RZjeeoNKapezVc5JJTK4Smznjqz4jRgusAZ4UuhVS+PC7MhF5ULR8O/sEIuGb5DcyMmt4ej82NfFvNrGkFuTEqnxqnp6I1WJGHJfKOnhc9S/h+mW9VtyHHEERc1oVQyYhTcZsIUiqRZaLVhWBp8dFxtHxMzsdSt63CE5IdTNk+Q5m9QB64iDoDOmANhPKrOc2jCwD1m9JKz3bNq+IE/yd2CeNcOFYEt7eXrlzP5iGL8kUEh7i08CoiUT2q80ThBwvyRKTBQ5tvzdrzMwSo1ylKdMIBpYmJpgOeg/hGOcStI+4+C2bFMFtcHoqztou+9vj6+vFuRgRZRlvRpgEE1a4P63WRqSfiWPWqj1TPeWQrSfThElrRKfrak0BOCHVxUhMocTMsLhJu5rJTWVzgGkaStKedEfMiTIOWUx9RqCu0AwBc7UqY4lij5+wYpeplDoNEi/JFqu4dnwxWDMmLWwCmKt7H+Y1sceFzaAkPstrwybWCpNkgjCTZWIqArmh70c/0g6V6Qu17600kMzWVi82ytZYqrCPGsKGA4BJ3M9N1PimG1lCwgmpyQqeYOISZyY9HAYbyWqr6rGg25dF7ng3I7t6hgdTak3yWLa5j300tZq2Y6M8mBNxvciS8UD2gfcFTH+KUvQ8c5+4Y3JbvjX5EUztR15X/lz2RdCupVXaSjATE2S/mShTFtofXxuZZkiOdVp/Yla02lzGPj4piLOYzYEpUxqj2+CE1GRHlhiQwDOJBkaKlxTHAcI7hv0DLDiY5JE2NooQmXFqmeN8c1KWE748B6Ayw7v0zzWCwAsZXICesKpNmOyH0B2ECogyvhaTIWsi0lwnt5MZElgABJ42CwZeGMDrifHh35VWKfsYvWTqJh5jeHp/FX+VM89Lll+XGrEsXc/9lOdpn7M8R6B6dep6BFQxr0vWsIZ0UCn+OMyUZC0Q0Isyh47CCalJAKnqV82enqlRMRGmNaNIM6O0vaddccb5tqS5ye6b+l0s+2U6GlsrlG3JvjSyAq9gMSKZGJAEjpNi4VDxO8yxsDN6qG1gLirkfrJt1vrSsOokCSMuQ4bUItW5CI09aQ6PG3MZtuB5ppDj35tlIiMvrLxbzJvXMB/EC6k4Rl+HMZ1NfBJOSE0HGIGvEey4IzUJoXKCMbQtsZouZOiDiuERx4jLfcbbqmNHx1STrtjHJ03Nr4ivsvqeBZJYUpKstrLWQLJMphycjYgUIdlxgNaU5DWQ2qPMHK/OhwUZJ0MNTC3FQ0i0YbKNcX7Q14M1Dc8aV/5fphGSgguoZCVKmRjnJ5P3oLpGVLlto5jwwyTNe2aE7wwPtavWGsK4ud1yqA9OSE01KEFgCSGe8Az2EUynPqLvfNQ3uVcDBwHLNE9J/ZemPWOyoMpt2eTFEzuQ3TfGkAwtHpeJnCkIc2VzHGUgcjWzKwuqfLS9L3xxcaZS5ZOiZFOqT1GuxGjC9aM+sUArVOkPwSx6yOCJPC9KWOTIjAcCKu+zCk04RjMmz8yMzsejhP3qAXnAxz3AWA+wd0ZY8p1NtLkgFNrjfngdDPasaCMpVtChI3BCapKhqulPTp5JkNoGv7M5p5MPpiQKyJW1zQKMQxIzLXMfxPHkZz6G9Akpk1rMtklQPq0YsgH7e7gtPkat6ykRZwqMgwzGrmAHyjbEuMoaYolED0sw2QJMkmv4FbddI1CLMetzGo3NFk5t1KScaS8ZTkhNRfAEylAahlg5xk3GacoXNIKkFSo7tmWfbAQJZbFlReB6oCY0T0/E3J7HZroI0p8hU+fYtOVqqEVykSZV7l8SNdzOMsL7+zECgFH2db0yzlRBMAVlPkpgHKeRs0Yl02PZ/VTmSs/UajmTinki+mO1e8+Oh6uWwJbPha+XzPbAmqG9P2/D+7aKNJFl0eEAwAmpqYvYlayxQaWfoFUCSmZCsB9QI7g4YbKXfbS1G8mkUxphyvNg4WjnXgNg1FqytR3Zd9n/ViBJQClNgfsrFgBxXWFTJuebk9nnAZGbDkjMGygJMrIop4q54iBe0Q+7/0YKpRRaMqMY0RN5nGdMxAfK8j3G9wYLpXwZKsdkHMlHCqdqLMNGsK8Qjv3MYuuOMQXhhNQkRoXpj9l3QHet1gztpMa2dgwPCzjZjgzWVT62hEmx5rGEb0XuKs2h7D+qVaKjHZCkDpt5Rwj/iRVsvL3UfKAFrxRAtc7FpzALRIDIx+SZvjDbP1WNrp8Gsggoo9aiIEeaNMKCx6dk4eaJcWgFZAxWdAhn4ksHJ6SmGrIKJ9ZwgNYk8KymIcVBxiHZmorsmnLCB+a+Wc8/bW0lG1IzrGf/JEgWJEOaZDnWTU7+BLEPxWuUnHnCoNQT0BuYwqmWMGZI1qAtMGxNr1Els5gLTZSSEerlkpMos1CafSDsW15UE0jSYGoFwqcFE0PY3Dqe0wQVmbHeITWckJoiSEyhlKkRT2d3aIYmJn08iGkzSXjZBACe6VgwSA1Cag/t1B7lsRo9rvTJSYEkqd8ynkkJBS+b36Tsm34/H9pXw8eSVPi0qGAmQk/Ezbin1MTu6QUMj5mdcZ2Po/xQqJ7LUqLR+76Yj/pEOiSAi0ZG2iAtXFN/+9MUTkhNZ/DDbmso0gzUCIxMETHtKdNeNGMSmcf1hHDiAFcVcwQ9uTZLqGYFH7sRB7vKGCE0JRbA7OuRmgmbdOU7YPqB4vrDJi42OfGYSg2i3rG08/lJYatMqgTk67xGTHgAaveRNW82SbYrY8SEH9LdWXNT483lTwKgz2WvqAdOSE1VyNQu1cCTiZ3duhkmLJ40WQPg7+KQGFzJvgLxOS6Gql0+IQYH2TYiHGWyXznRszDmCV5qVznSPrIseeU80hm7ASDnVwomOyA3DdiMxX23Ic+j3vHqCYDAYhvmEzQ+Hs84Bl8t1HMp9xWAsXw4Bhw43BPoOnBc6LCnDPSX6jiAgxNSUwzKGWv5mRPNgJPJPK6sXNZs0k4tKgsjrRZsAoT9W47iJ04WzvUK5rhYLfk5C6SAjRubIGqYtep67jcpjO04PwlJDGnXPXEgHwYOl4Sw5uMLxiAd/J329GcKIiH4pH6sXbsWnucZr6GhIfU7EWHt2rUYHh5GX18fvvjFL+L1119vdjcc0oJX2L1lnUYnbcLaLMdg1JsCh2JeQDZtohHEkTcagZ1Zw4ep0XCcEUMGAqf1scRBTeKItA6YzLMsVHqOEWP2nbo2MUQKjiurBz1l4ODxUBPpEefP2fcZnhyfOi5U1ltzf2+YemnPjDC7xb6Cfo0Wwt/H8po+71AXWqJJHXPMMdiwYYP6P5fTF+m2227D7bffjgceeABHH300br75Zpx22mnYunUrBgYGWtEdhzRo9cqTfSu8ss7CpOIVMm8uNap2rJhL1gq5UX+d9ENF7jhtGvWAQJg1y76ZAT3rsW3BIMeQoMkUQSSx0soRFjoybZQiXQizobzm5SC5CGMa+BQGpNvsRwmulJtViLP/Ly32RELpw75QEHFgtEfhIk8GLrcqhm6aoCVCKp/PG9oTg4hw55134oYbbsCqVasAAOvWrcPg4CAefvhhXHrppa3ojgNiYqo6BTUPJJApMrXRZtQTi1WzTeudTWJSU5RzXNZjx5oLox+4tIdBQMnWfMVCwfYTBtEBmz1m1dqrVyZk2W/CD018JV9XLC57oC/9V50Hd0hC0819APDmm29ieHgYS5YswXnnnYe33noLAPD2229jZGQEp59+utq2UChgxYoVePHFFxPbKxaLGB0dNV4OkwxyYpHxT7UgqddGdog2rk6ZrdWImU1C+pTUu3ipzA+W8GBtNA4UMy7M1PREW0yP5tX+jInwVYjMvXYcUVI2ECYDFMq6LdYe8mUz/RBrgmlrjjWCLNp14IU+pWK0Vk97bYuRH+rjntCkt683/FxyZr1WoOlCatmyZXjwwQfx9NNP42c/+xlGRkawfPlyfPDBBxgZGQEADA4OGvsMDg6q3+Jw6623YtasWeq1ePHiZnfboV2Qpq4sgb7s6+hEzZ9aE5/KgZdBcEqtTBIXpOCyX3bznNaoFBXsK+bMuByCqSVJYYjo/zjhG3jRRJwPfSt7ZoTvByIWmzxPKaiUYCIhoCxB1QzUEkK1LkM5Ijl83KPPKQuKOV2rioVVUZg9HZqKppv7Vq5cqT4fe+yx+PznP48jjzwS69atwwknnAAA8DzzLiKiiu8krr/+elx99dXq/9HRUSeoGkBTAn+zgmOesk5UtiM+KTddp5G1zITcXO5rnCu/p2jXjilrxCzJWS3Yn2W3xSZJQCfZJfmbp1NWyfNo1uKiFoOv1nnbpJusArSU0+cNgP5rVfp9HTKj5RT0gw46CMceeyzefPNNfOUrXwEAjIyMYOHChWqbXbt2VWhXEoVCAYVClgp7Dl0JJh3wwlXmkZMO/SSzoGEma4PpqBqaodUZ1PPoHGsliiWxrRwXH4DXJG2l5APjed0fOYlTpL2xXOWM6BIccG3TxZkI0si14+NLcNaMrGAtsieDCbeYD817B6LS9J28B6cJWq6fFotF/POf/8TChQuxZMkSDA0NYf369er38fFxPPfcc1i+fHmru+JggbBWvToCjzRtWZoAGTI7OWD6ZppNYMgKWTCwWomRJNh59+y2eBv7xfvIY0nzYKNQrD1fM95sTUOm+5EvpqLHFtmUfW9AFZb3iZWwNTPY3Jn2PtrfG76KYakTWn4x6Jzz6jy4Q1o0XZO65pprcNZZZ+HQQw/Frl27cPPNN2N0dBQXXXQRPM/DVVddhVtuuQVHHXUUjjrqKNxyyy3o7+/HBRdc0OyuOEwWxMXVMKS/hv+vJzNCs1CR8gfx2b9rQU7kNkU5rp1Y01+LhHQu0FnDC5GviYWpLG8CWEQNVH4X5xNrFDIVFJBdOOcDff2yIBJOYQl6lz2iXWi6kNq+fTvOP/98vP/++/jEJz6BE044AX/5y19w2GGHAQCuvfZajI2NYfXq1di9ezeWLVuGZ555xsVITUckBY/aWgKbCTupOQFm/SWgMQ0mSXOMS/fTLq2RhVCewngkSajgcwUAylUnv8gKvayt1NsfbkNCCqd6xyXrfntmhFoUoAPfHdoCj4g6/ORnx+joKGbNmoW9e/di5syZne7OlEYsuaJZ1UXjhJT8Vx6i3omumZD+F5lcNjMZxNNxNvb5c0kJwNQY2iGkmCjBh0paGIznQlabnTWDkQvCSVyy/Ortj+2/kqVM2mH2DTyQf2Pr2p/GSDuPu9x9DtkhM3MDjWUQiGN+2aywTmtQMlaLu6ImSi/b+asyI1QZN+RBV8htJZKo//ZhOX9g3L6K2BExKGxCi0zzVC/ihFu70mAxDuSB/vYdzqESTkg51A9eefsN5Pqz/QsGUaILCBIy5xx/VslSCYCvhW21ftoECxZIDBm71GyQF8VQ5QShASZxQAkZuR+AIGf+D+j6UKoUC7RWyf45FZPV/NNpG1hjdEKqo3BCyqEq4ph/LY+vkpkVOimg4rQNRavOqj0lsNCMlEKZelf9eIApkDiJrP07a0uSOcl9sU15nnhXuQahS4soDWpyCqiKe70XwLxO9MRBwgkph/rgNeAQr9Uu53rLnKeuSb4y2RcPYfwRAfCllhe913Ley6q73CagtQ9DEDYwsass5MLPF4j/pZmOtZ1coEuwZzGj9YjjSR+RTITbaROtw5SBE1IO9aNVE1E9wskWHs2E0goy9EuaCVl4SAEsof71kOkYkg4vY4Zs86Q8DpviOGVRvYGwdhqlyS6Yyn5zCn06NB1OSDlkRlLwb8eyq3ejacmYtC3BpLQniv8/9TGUOgY1ALaJ0hPHMJQ2L9S0ZCn5ejHJsy4Q1joB1cVwQspheqMc+WoaieeJg0dhvBFgajwGQ7CifLL279j78T52H6WAVgxEwY7k7Q2tywfKiEppsAmQtOnPwaGL4ISUw/SETEPU6hAsFiTsI0oiUUD8xmY73o4FTzVBamd/kH4mrusEMv1JSgkrA56vTYHTBeO5kCDh0LVwQsqhaegIE7BRyNpN7YKwzhnwyKzYq0gJgn2XRA7hirRSyDHTDtBl3tn0aCf3LfuAHwmnKWr6ijVTOwHV9XBCymF6gn00WYgDJIRGPVkmpBbFbDh7mwlPl3RnVmAu0P2MC7BF1FY14cKZywMvjH1iIclMQM/TWb2nmzbl0NVwQsqhpeiasvUSdgLU1PtFL7CgqUP7snexOROyEq7SpLxk4ZQWRgkQSbSIfmcCBZMpJrk21bHM/g5NhxNSDt2HVgbyyqSldQXkZqSJM5icwGY8Nt8BJqlClieRJjkg0rDq1HAq0lgJQgV/1+kaXQ4OMXBCyqG7wLWMADMtUjOYd0yWyJr01A6U9YG6BBWgy0RI1p4kcEgGoDomRDqmOrn2SguERaiwhBSPd7MDox0c6oQTUg5tQ6b4KqlJNKs0Zz2aUFLcUSMTuEzQG8f2k6XgQVqo1JOFw4Z9PjLNU7fFmqWAM+tNfTgh5dBdUGY4zyyu5yEsxFcPuFqsyl2XsJ1tZpPwELLfWNNoBFyXajzG8SPjqxhc5ryRDOCcfUKaFSVBIk+6NIeM03LalEOH4YSUQ3eBJ8kAYbArs9LKQRjHk9XsN57TwkBOvhIyCasUijKnXTOEEx+LBeaErwWBF/UvXxYJXymeBRgHFjxxNaBsf1cpKvPOgo+PwwxCOT5JhQcdHNoEJ6QcOo4Kkw3flVEMizd6a/1aBJvTkgRMnNlNCiQWHs0Ca4l8PPZxxR3PLp1RDar/VfZhSycfw0jVhFBwemI85O8dElLOnOfghJRD96OnHFasrQeSKm6kEIo+yOrAPA97qDR9NRusTalgXdIMwKSKuHGYECY8IMzUHmfPZNMeF2m0hTGbH6XQVoloI7JHveZWB4cG4ISUQ/ej3vggmQE8rqAfv0umHRMr2kHHlgKSkYUcwaY747uEbVl74nx9NkqRWVSOhU86I4PvgnsdOgMnpBy6HtT7v6v+nhgkLH06thnNIAeIbQm6LlKr4Il3L+a7etpSQjeO9EGhFpQXlHfATMEkg3xllWAucd8iAoUz5znUghNSDlMXTAaQpi2bAMEmMN4eSD8hs6mNtQ9OX5QGUlAmBdLG+ciM32EGCAdemN2c00XYKZ8kQYNRypnBxVwUkU2OPYJcUfZN3xm36eDQQjgh5TDpkbga91CR3idW66pnwpVBx8qX5YkJv0pb0qRnCxEJWdaD46ZsrUamOOK+lD2TJFENslwHM/uU/4osrRMxcVZIPF+nJTk0A05IOTjUow0YVPXou7RsPM68ngu0UOM6T+MAfN+kxEuNKx+VfAdMgSE1pCwmw1IkbMt+vK9KVvxVGqMwATaLmu/gkAAnpBwc0mJCaE8SHMeUxXfDAbocu1SOpF0ppipRZwAACsxJREFUUv0CLyQylD0zmLe3bApDFhLE//D3KfrBZAkWUFJgAqJfMOOsmG3pBJRDG+CElMO0Qi0TVCIJgydpu76T7aNJC7mfJD2wtlL2dKkOmwWoGIjQJjoPoqEUkOcjtSTZRiCEVfROc67LeKIODo3BCSkHh1rg+CHJiTBKX4jv0/ikeP9CWZv1yn6USFZoLBDtS9+QZx9bOJ+kf60WQ5EJF2VfZ8Dg8+Im2TflAfAcDd2h/XBCysGhGsjTQooFD6ctylm+IfWOdLFdMjiWM0+osvYwSQ2+eNlMRe6bXXaj1nkRTAFV9kN2oPSxSRJFVm3RwaEJcELKwUGgwhzoATi4uceoMCkyISLwgJww+bEGlbOEVAXDT7xHLD3yb6zeiRyAvujl4NDFcELKwaHTyAc63kmRKaCzlst4pbjURB6FQodSmPgcHCYZnJBycOgGsDmNcxQGHlAmbfarlc/PmeMcpigmpZAiCh/W0dHRDvfEwaEeFGtvEsCq+5RNCI3CPRsO3Q2ev3k+T8KkFFL79u0DACxevLjDPXFw6E7Mwg863QUHh1TYt28fZs2alfi7R7XEWBciCAK8++67GBgYgOd1p41jdHQUixcvxn/+8x/MnDmz092Z8nDj3V648W4vpuJ4ExH27duH4eFh+H5MkHyESalJ+b6PQw45pNPdSIWZM2dOmZtqMsCNd3vhxru9mGrjXU2DYiSLLwcHBwcHhw7DCSkHBwcHh66FE1ItQqFQwI033ohCodDprkwLuPFuL9x4txfTebwnJXHCwcHBwWF6wGlSDg4ODg5dCyekHBwcHBy6Fk5IOTg4ODh0LZyQcnBwcHDoWkxLIXX44YfD87yK1ze/+c2KbS+99FJ4noc777zT+L5YLOJb3/oW5s+fj4MOOghnn302tm/fXrH/73//eyxbtgx9fX2YP38+Vq1aZfz+zjvv4KyzzsJBBx2E+fPn44orrsD4+LixzebNm7FixQr09fVh0aJFuOmmm2rmu+omtGO8//jHP8Yew/M8vPzyy2o7N94mGrm/33jjDZxzzjmYP38+Zs6ciRNPPBHPPvussY0bbxONjPemTZtw2mmnYfbs2Zg3bx6+8Y1vYP/+/cY2U3K8aRpi165dtHPnTvVav349AaBnn33W2O6xxx6j4447joaHh+mOO+4wfrvsssto0aJFtH79etq0aROddNJJdNxxx9HExITa5te//jXNmTOHfvrTn9LWrVtpy5Yt9Oijj6rfJyYmaOnSpXTSSSfRpk2baP369TQ8PEyXX3652mbv3r00ODhI5513Hm3evJl+85vf0MDAAP33f/93S8amFWjHeBeLReMYO3fupEsuuYQOP/xwCoKAiNx4N/v+/uQnP0lf+tKX6G9/+xu98cYbtHr1aurv76edO3cSkRvvZo73jh07aM6cOXTZZZfRli1b6KWXXqLly5fTueeeq9qYquM9LYWUjSuvvJKOPPJINZkREW3fvp0WLVpEr732Gh122GHGTbVnzx7q6emhRx55RH23Y8cO8n2fnnrqKSIiKpVKtGjRIvr5z3+eeNwnn3ySfN+nHTt2qO9++ctfUqFQoL179xIR0T333EOzZs2iAwcOqG1uvfVWGh4eNvo7mdCK8bYxPj5OCxYsoJtuukl958a7eeP93nvvEQD605/+pLYZHR0lALRhwwYicuPdzPG+9957acGCBVQul9U2r7zyCgGgN998k4im7nhPS3OfxPj4OB566CF8/etfV8lqgyDAhRdeiG9/+9s45phjKvbZuHEjSqUSTj/9dPXd8PAwli5dihdffBFAqJrv2LEDvu/js5/9LBYuXIiVK1fi9ddfV/v8+c9/xtKlSzE8PKy+O+OMM1AsFrFx40a1zYoVK4wgvjPOOAPvvvsu/v3vfzd1LNqBVo23jccffxzvv/8+vva1r6nv3Hg3b7znzZuHT33qU3jwwQfx0UcfYWJiAvfeey8GBwdx/PHHA3Dj3czxLhaL6O3tNRKx9vWFZZVfeOEFAFN3vKe9kPrd736HPXv2GJPZD3/4Q+TzeVxxxRWx+4yMjKC3txdz5swxvh8cHMTIyAgA4K233gIArF27Ft/97nfxxBNPYM6cOVixYgU+/PBD1c7g4KDRxpw5c9Db26vaiduG/+dtJhNaNd427rvvPpxxxhlGORc33iGaMd6e52H9+vV45ZVXMDAwgBkzZuCOO+7AU089hdmzZ6t23Hg3Z7xPPvlkjIyM4Ec/+hHGx8exe/dufOc73wEA7Ny5U7UzFcd72gup++67DytXrlSrj40bN+Kuu+7CAw88kLkMCBEZqycAuOGGG3Duuefi+OOPx/333w/P8/Doo4+qfeKOIduJ24YiJ2e3limphlaNt8T27dvx9NNP4+KLL674zY13c8abiLB69WosWLAAzz//PF566SWcc845OPPMM9WkCbjxbtZ4H3PMMVi3bh1+/OMfo7+/H0NDQzjiiCMwODiIXC6n9pmK4z2thdS2bduwYcMGXHLJJeq7559/Hrt27cKhhx6KfD6PfD6Pbdu2Yc2aNTj88MMBAENDQ2o1I7Fr1y61Klm4cCEA4NOf/rT6vVAo4IgjjsA777yj2rFXL7t370apVFLtxG2za9cuAKhYEXU7WjneEvfffz/mzZuHs88+2/jejXfzxvsPf/gDnnjiCTzyyCM48cQT8bnPfQ733HMP+vr6sG7dOtWOG+/m3d8XXHABRkZGsGPHDnzwwQdYu3Yt3nvvPSxZskS1MyXHuyOesC7BjTfeSENDQ1QqldR377//Pm3evNl4DQ8P03XXXUdbtmwhIu3o/NWvfqX2e/fddw1H5969e6lQKBjECXbm33vvvUSkHZ3vvvuu2uaRRx6pcHTOnj2bisWi2uYHP/hBVzs6k9DK8WYEQUBLliyhNWvWVBzfjXfzxvvxxx8n3/dp3759xjGPPvpo+v73v09EbryJmn9/S9x3333U399Pu3fvJqKpO97TVkiVy2U69NBD6brrrqu5rc3GIQopo4cccght2LCBNm3aRCeffHIFRffKK6+kRYsW0dNPP01btmyhiy++mBYsWEAffvghEWnK6CmnnEKbNm2iDRs20CGHHGJQRvfs2UODg4N0/vnn0+bNm+m3v/0tzZw5s6spo3Fox3gTEW3YsIEA0D/+8Y+Kdt14x6Oe8X7vvfdo3rx5tGrVKnr11Vdp69atdM0111BPTw+9+uqrROTGOwn13t8/+clPaOPGjbR161a6++67qa+vj+666y71+1Qd72krpJ5++mkCQFu3bq25bdxNNTY2RpdffjnNnTuX+vr66Mwzz6R33nnH2GZ8fJzWrFlDCxYsoIGBATr11FPptddeM7bZtm0bffnLX6a+vj6aO3cuXX755QY9lIjo73//O33hC1+gQqFAQ0NDtHbt2q5d9SShHeNNRHT++efT8uXLE9t2412Jesf75ZdfptNPP53mzp1LAwMDdMIJJ9CTTz5pbOPGuxL1jveFF15Ic+fOpd7eXvrMZz5DDz74YEXbU3G8XakOBwcHB4euxbQmTjg4ODg4dDeckHJwcHBw6Fo4IeXg4ODg0LVwQsrBwcHBoWvhhJSDg4ODQ9fCCSkHBwcHh66FE1IODg4ODl0LJ6QcHBwcHLoWTkg5ODg4OHQtnJBycHBwcOhaOCHl4ODg4NC1cELKwcHBwaFr8f8BieTap781IbUAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -55,7 +55,7 @@ "" ] }, - "execution_count": 4, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -83,19 +83,19 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\n" + "\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGsCAYAAAD3xFzWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZhld3Udus5056Hmnrs1gJDQiJABE8CMxg6xY8cYmzxbRDYE29iWTQaFEF6EzYvIwyZOIGACGBsRhxdebGIrJMATEIwZLJAFEmgeeh5qvHXne6b3x9q79q1Wdatbaqmn3/q+/qrqDuf8zjm3715n77XX9vI8z+Hg4ODg4ODgcAbBP90LcHBwcHBwcHA4Go6gODg4ODg4OJxxcATFwcHBwcHB4YyDIygODg4ODg4OZxwcQXFwcHBwcHA44+AIioODg4ODg8MZB0dQHBwcHBwcHM44OILi4ODg4ODgcMbBERQHBwcHBweHMw6OoDg4ODg4ODiccTgvCcpXv/pV/MRP/AS2bt0Kz/Pw2c9+9qS3kec5fu/3fg+XXHIJisUitm3bhv/r//q/Tv1iHRwcHBwczkOEp3sBpwPdbhdXX301fumXfgn/4B/8gye1jRtvvBFf+MIX8Hu/93u48sorsbS0hKWlpVO8UgcHBwcHh/MT3vk+LNDzPPz5n/85fuqnfmrtseFwiHe+8534L//lv2BlZQVXXHEF/u2//bd4+ctfDgC49957cdVVV+Gee+7Bc57znNOzcAcHBwcHh3MY52WJ54nw67/+6/jGN76BT3/60/je976Hn/3Zn8WP/diP4cEHHwQA/OVf/iUuuugi3HbbbbjwwgtxwQUX4M1vfrPLoDg4ODg4OJwiOIJyFPbs2YNPfOIT+MxnPoOXvvSluPjii/FP/+k/xUte8hJ84hOfAAA88sgj2L17Nz7zmc/gk5/8JP74j/8Y3/nOd/D617/+NK/ewcHBwcHh3MB5qUE5Hu6++26kaYpLLrlk3ePD4RDT09MAgCzLMBwO8clPfnLtdR//+Mfx/Oc/H/fff78r+zg4ODg4ODxFOIJyFDqdDoIgwHe+8x0EQbDuuVqtBgDYsmULwjBcR2Iuu+wyAMzAOILi4ODg4ODw1OAIylF43vOehzRNceTIEbz0pS/d8DV/5+/8HSRJgocffhgXX3wxAOCBBx4AAOzatesZW6uDg4ODg8O5ivOyi6fT6eChhx4CQELy/ve/H694xSswNTWFnTt34hd+4Rfw13/91/j93/99PO95z8P8/Dxuv/12XHXVVXjd616HLMvwQz/0Q6jVaviDP/gDZFmGt73tbWg0GvjCF75wmo/OwcHBwcHh7Md5SVC+8pWv4BWveMXjHn/Tm96EP/7jP0Ycx3jPe96DT37yk9i/fz9mZmbwohe9CO9+97tx5ZVXAgAOHDiA3/iN38AXvvAFVKtV/PiP/zh+//d/H1NTU8/04Tg4ODg4OJxzOC8JioODg4ODg8OZDddm7ODg4ODg4HDGwREUBwcHBwcHhzMO500XT5ZlOHDgAOr1OjzPO93LcXBwcHBwOC+R5zna7Ta2bt0K3z92nuS8ISgHDhzAjh07TvcyHBwcHBwcHADs3bsX27dvP+bz5w1BqdfrAHhCGo3GaV6Ng4ODg4PD+YnV1VXs2LFjLS4fC+cNQdGyTqPRQKPRgPe1P0L+kl86zatycHBwcHA4P/FEcovzVyQbZfC+/Z/g/e1HTvdKHBwcHBwcHI7CeUtQ8he+GegWgG4E74u3nu7lODg4ODg4OIzhvCUoAIDYB0YBUB/C+/KfwPvcfz7dK3JwcHBwcHDAeU5Q8ldfD/QiIPGBHECYwfvCrfA+/6nTvTQHBwcHB4fzGuc1QQEAVGJgpQSsFoFhCGQeEPvw/pcjKQ4ODg4ODqcL5z1ByV/5JiDIAA/MomSiKh6E8L7yx67s4+Dg4ODgcBpw3hMUAECUAVEK5B7g5/xXjflcOYF325+6jIqDg4ODg8MzCEdQIFqUQgqUY4pmARKWOODPcgKUEnhfvBXe7Z88vYt1cHBwcHA4D3DeGLU9ITwAqQcUU2ZQ4sB+KsIMCDK2JYcZ8le86bQt18HBwcHB4VyGy6CMI/WBDNSiDAP+y8Eun9QHNnWAUsJMSw54X/uj07xgBwcHBweHcxOOoAjyV13Pjp5iSk1KNWYGJfdIUoIMOFJlFmUYAvURMNOD97U/gveVPz7dy3dwcHBwcDin4Eo846iNgHYRqIxY8iklzJ4AQJDz715EXYqfm4eKB3hf/zgQZch/6C2n9RAcHBwcHBzOBbgMyhjyF7yF5Zs4oFg2zJhVme0CW9okKFs6zKqMApKYSszsSiEFJvvwvv2fTvdhODg4ODg4nPVwBOVorJRoge/l1KD4ObMk/YiP1UbA1jYw2ScxyT0+NtVnaWhiAO+Ojzp9ioODg4ODw1OAK/EcjUJKQWyesaunG/HxxGcGZbrPnwD1KtUY6BRIUCYGwL4Gsy2ZB+/+DwKjAPmVv3r6jsfBwcHBweEshMugHIX81deTgORgZqSQAtM9ZkqGIfDYBDMrrSJJS1d0KIdrwIE6N5L6ayUfTAzg/eA/utKPg4ODg4PDScARlGPBA4lH5vEsTQzMyG0UmGD2SBVoF0hYDtb52EKF//Y2SWCKKTDbg/fgB073UTk4ODg4OJwVcARlA+QvvcF0J60SMF+h/iTIgeaA2ZFWyYzdRgEfGwXMomQe39+L2BV0sAYcqtE75Z4PwbvnQ6f7EB0cHBwcHM5oOIJyLIQynwdgaadT4O+lBOgWgGJC8jEKaIW/UiIpmRgA/ZC/x1IC8nOSGc2wtIvw/uoT8P72I6fv+BwcHBwcHM5gOIJyDOQvvcGGCGYeCUsvAlaLJCmdAjDXAepDalKm+sBcl2SmmJKgNIZAc0hNSj8iqck9ZmOme8DmDrxvfBzetz52ug/XwcHBwcHhjIIjKMdD7JNgNAfMlCQ+yzzVEQW0tZg/w4zPr5QorgVEu5JTKDvTBbau0jNFt3O4Bjw8yfe2C/DudNkUBwcHBwcHhWszPh4qMQlKL7LSzsEaCUaYAYs+X1MfkZAUUuvwKUjmJReiEtAjBdtXgUcm+VhBbPVLCXCgDq/1J0AxQf7iXz7dR+7g4ODg4HBa4TIox0F+7VupJ9m2SkLh5yQZKyXp3Cmxi6eQUmOixm4TA/4D+NquiG0fnQTun2EJqD5iNiYRkjPV577aRXjf+7Ar+zg4ODg4nNdwBOWJMNMDlsokHo0BBbFTfZKS+pBZkszj4750+owCYLksJaGMWZLGkOUf1bKkMoSwG5nGpTbi6+erQOrB2/d+V/pxcHBwcDgv4QjKEyDf/E+ZBRmEJB2pZ0MECylLQOXYSIYnIpQc9FLxhbAUEmBnC9jUobZFO4PigITFA2f+VGISnzhgKSj14T3wAZdRcXBwcHA4r+AIyomgKHqSIGemBGCJplsgIdGMyCjg61Q4W47t9QtV2uAPQmZgvNzKRgCzNK2SkZrpHvUqOeihMgjh7f6D03DwDg4ODg4OzzwcQTkB5Ff+KrMng5ACWIClmVjM2HIhL4WUrxmGJCajgK+Z6fI9YcbunUHI1w9DZkxqI+pcEt/KQOpiO9sDLlvg6/Y24N33QXj3fvC0nQsHBwcHB4dnAq6L50RRSuiJUkyBzR2SjBzUl/g5CcR8hb9ri3E5YUtyDiv5hBl/KhGJfYprJwf8e7XIfQRCUpDx+eaA+/j+HFBM4CUfBlIP+TW/chpPioODg4ODw9MDl0E5QeQvvYGZklHAcsx0j5mP6oiPrRaBLR3+m+hTTxJk1K+slkgugsw6foKM/2ojc5odhHw+9vlYMaVO5UDdykezXZaIDrHd2fv2f+LUZAcHBwcHh3MIT4mgvPe974Xnefit3/qtY77mz/7sz3DddddhYmIC1WoV11xzDW699da15+M4xk033YQrr7wS1WoVW7duxfXXX48DBw6sveYrX/kKPM/b8N8dd9zxVA7h5KBdN/vrJA3DkMSkNiSh6IcUuE4NrOQT5My+ZB6zLZlHZ9mhlHl6ER/vFJhxqY/490KF226VZLqyWOWXEm53tsv3jAIAgPcdNy3ZwcHBweHcwZMu8dxxxx34yEc+gquuuuq4r5uamsI73/lOXHrppSgUCrjttttwww03YG5uDq997WvR6/Vw55134l3veheuvvpqLC8v48Ybb8RP/uRP4tvf/jYA4MUvfjEOHjy4brvvete7cPvtt+O66657sodw8pjsAytl6lCaQkqaA3bclGO+5kCdWZOydPpoF492/oSZlW+m+iQgi2WSFT8HPI/kZabH10z22aLs5yz1ZB63n/rcZilhaamUwLv7w0Ds07/FwcHBwcHhLIaX53n+xC9bj06ng2uvvRYf+tCH8J73vAfXXHMN/uAP/uCE33/ttdfida97HX73d393w+fvuOMOvOAFL8Du3buxc+fOxz0fxzG2bduG3/iN38C73vWuE9rn6uoqms0mWq0WGo3GCa/1aHjf/BgJxFwHKKXMqAxCEojemKeJ6k1qQ2Agc3jUEr+YsjS0VObrhyH1Lf2IpaPVIt+v7+lFzJrknnmrxAEzNto1VEi5ncwDdraQb/qnT/oYHRwcHBwcni6caDx+UiWet73tbXjd616HV7/61Sf1vjzPcfvtt+P+++/Hy172smO+rtVqwfM8TExMbPj8X/zFX2BxcRE33HDDMbcxHA6xurq67t8pQUEErGHOEota1Scyt2dbm/82yyDBdpGuskWxta/GNiW5PmKXTmNIkWyUmjNtOSYhKaYkK8OQrcm5/N6XLIuWhIKMf5dj4OFJeA/9B3j3fOjUHLODg4ODg8MzjJMu8Xz605/GnXfeeVLaj1arhW3btmE4HCIIAnzoQx/Ca17zmg1fOxgMcNNNN+GNb3zjMZnVxz/+cbz2ta/F9u3bj7nPW265Be9+97tPeI0nivzat8J74APMVFRiy2g0hyQWiW8twoUU2NUiqZjuM9syDM2ILU34c9cKTdl2tYDDVWZjOgUSlEJqXUKdAklM6pO4qMHbKOBzy7LI1KeINg5Y9pnt0nDOwcHBwcHhLMFJEZS9e/fixhtvxBe/+EWUSqUTfl+9Xsddd92FTqeD22+/HW9/+9tx0UUX4eUvf/m618VxjDe84Q3I8xwf/vCHN9zWvn378PnPfx7/9b/+1+Pu8x3veAfe/va3r/29urqKHTt2nPCaj4uVEjMfg4A5qDgwolAbMSPSFfKwr8HHD9f4Pu3kqQ9JMioxMzDPnee2h4F5qxRS6lPU0G1ThwQn9a17qDEUK36f3T+1kbQng793IyCuwzv0h8DkAPmu3zo158DBwcHBweFpxElpUD772c/ip3/6pxEEwdpjaZrC8zz4vr+WIXkivPnNb8bevXvx+c9/fu0xJSePPPIIvvSlL2F6enrD9/7u7/4uPvCBD2D//v2IouhEl37KNCgK7+sftyxJ7rFNeGJgmpB+SOLSLTCDMtMj8fDFoC0Hy0ATA5KMfQ0KZbe0mf3Q8lG7QFJT0U6glB0+xYQC26k+sCh/D0OSHX0uB0tKU32+JwfQHCK/+Def8vE7ODg4ODg8GZxoPD6pDMqrXvUq3H333eseu+GGG3DppZfipptuOiFyAgBZlmE4HK79reTkwQcfxJe//OVjkpM8z/GJT3wC119//UmRk6cFAxGkAtaBozqRPU1qStSyXsWxjaGZuA1DDgVcLZpzrC8aExW9rpTWT0/WDqCpvsz3SUlmaiMSmgtXWCq6sMe/M/Fb6YpId6pPy/wHPgAkPvLnvu10nkEHBwcHB4dj4qQISr1exxVXXLHusWq1iunp6bXHr7/+emzbtg233HILAGpBrrvuOlx88cUYDof43Oc+h1tvvXWthBPHMV7/+tfjzjvvxG233YY0TXHo0CEAbFEuFApr+/rSl76ERx99FG9+85uf/BGfIuSvfBO8L/8JMxYeSARymWocirtsPyIBme6TeBypsjSUe2aT3wAzJX2xx+8U+Li2EO9vkNiI3wn6EVuPxwlPbcRszXyFGZbVInDJIstKnQIwEg3LkSpFteUEeGwC3pf+BJgYuLZkBwcHB4czDqfc6n7Pnj3wfWsO6na7+LVf+zXs27cP5XIZl156KT71qU/h537u5wAA+/fvx1/8xV8AAK655pp12/ryl7+8Tqfy8Y9/HC9+8Ytx6aWXnuplPzlE0pnTjYAimNHoSWanNgKWQpZY9teBuS5/n6+Q0MSiV6mNWP45UOdj2nrcGDKrou3IUcosysSAJEVFuoARpG6BpGYYAvfN2ODBorQwFxNgucR1bOpwrZ0CvLv+0FnmOzg4ODicUXhSPihnI061BgUALeZLCYlDLzKr+sxjliMOLNOR+CzVbOrytb3IBgX2Q5KLYsJtpD5/r8Z8TtuY44CEozpiBkYHEhZStjPHPgnTSokGcrlHclMdmffKxAB4aEqEvAWKdTOP2w4yIPWRX+3IioODg4PD04On1QfFgcif8+vMbJQTK7XURvz9QIMEIBMBbS9iqWdRMiSZZzN8YiEZEwM+VonNC8UDBa6DkM/1Q+pOFitchNrlpx6JTCWm+DZKqX9pDvg6NZMDuMZWiR1Dq0Wu38vXdDDeI//+tJxPBwcHBwcHhSMoTxWJZDsuWmYZJ8r4eDm2jEZzaKWgUcCfldgyJrUR35N5zJroJOSFCkmEEiA/J8mZGFDwqr4oUWYus8OAZMUHn1cBbkG0KV3R9GzqkNwMQmlTzk342ynA++4fwrvXDSF0cHBwcDg9cCWeUwDv8O+xpFNIgeWyGbKtlMwTBTDzNU9OuQ4TTEVPoiUcLzfre82sDENmX3Suz6YuZwJlMgV5ckBy0o/MGj9KSUh0gnJtxOdjmQPUj1jW6UV0vz1c5XqAtXKPZl3y5//jU3rOHBwcHBzOT7gSzzOJ3U1gb5O/T/aB7avAxUv8OQxIIIJcrO27fF3q83Et44QZUBLNiQcjJ50Cpxh3CiQxjSGfP1jjdvyc+2kVSX5yiFOtz/cA1J7oPutjehjdN0BCUo35mJ+T8AQZiU27AO+bH4P3rY89I6fTwcHBwcHBEZRTgPwFbyFh+MEsPVAWK8xsLJeYnSgK0VgZ+zvIWLqJA8uopD5JwkqJmZJeJOJYn3+vlFim6Yd8vFMwoWx1ZO60pYTb01blODDdy0rJ/l47AI8tyZlnxMjPzZG2LNtLPXgP/4dn7sQ6ODg4OJy3OOVtxuctOgXTk5QSZjSCnPoQFcQGGbttqmLEpuWb5RLJQFnagIcB/1biknvAEHx8GIqzrLQYa9tyY2AlmaUyW5eHQmT60l2Ug/trF0hkYhXpChEJMv5ekLJR7nGtic/foxQ4WIO38DEg85D/8C+fhhPt4ODg4HA+wGVQThWCnCRgEDILsVKiZkRFquNC2JUSX6PC1Fw6cEYyZLCU8PWpXB4V1M51STB0SOFIiEzqUfuiRKQu+wozlpwA7qNd5OsqCclK7JOslBJmX8KMZCeHDCLMjeSEGQlNc8guIS+H9zcf5TBCBwcHBweHUwxHUE4R8tf8opRucst0APy9mJCMZKIR8SBZCZAE1IfSglzh4zqfpxKTwLQLJDSVmK3DSkKm+ya0jTLus5Bym0tlkozmkK8NM25XBbi5dAXN9Owglss2iTmSQYblmO9N5bGMmpS1DFAxgXfnR+D94D+ehrPu4ODg4HCuwhGUU4lexCDeGLJcUhuxRJKJtX3qGzHQ7Em3YNmKkXThJD5LNwCzG/oebROeGJBYKOkJMxPCLlRMdKvzfIKMfxcTEhnNzISZTU0GuD0dfqity6pjmeoLKerxpxKjMW2L9+U/ecZPuYODg4PDuQlHUE4h8le8yczQNOinPgmDGqX5uWUnUt/KKgsV69Q5UjUX2jBjFqMSkzQosTlctYGAsU/iotmRobQrq0HcKLDSUw7LxGiL80hEs+WYZKQ64uOZN+avEpI0xQFft2OVhEcFuaKJ8b54K7y//cgzfeodHBwcHM4xOJHsqUYxHSMKoWk6Mo+EwBPn1/qIWYmVEknIIOR7m+JnotkJwEjNIOTPIGcWBSAx6BT4mvqIniuhmMUpufDAMhJgItuVEgcXph4f6xaY8SkmpqUpJLaGRLIpOTg3qD7i9qf6fL/ucxgCR6rwvvoJYBQgf/X1z8x5d3BwcHA4p+AyKKcasU/dh5KTI1UG+x2rJAYtaSFWR9liQiFrObZyUF1m5mxfNS3KeFtwu0BSoqZsAInIQoWPDSVbU0xMNzIKzERuQcpH++s2fVlLTNrerDOBhoGVpgDzdFEB7r4G9wMISRoC21Z5DJMDp01xcHBwcHhScATlFCO/7h+TAPQithoXUuu0me4zSzExECv8gJ05vYgdNs0hn1Mx68hnoK/GfK4cm+V9MTUTOPU1GQrB8CT7UkxNb6JaFLW9H8ik5U6BJKguAwiViIwCbjcO+LjOAgLM6O1QzQYNph7XWEitFFXgnCLvwQ84kzcHBwcHh5OCK/E8HWgMLUsR+yZWTX1mNHzJVuiMnVB8TYYBsyOhBPdRAKyINf3WNt+3RkJgZZXUA3LZT3UElGR/bdGlNIa2jkhISiS+KKl4nqwW+bqCiHJ16GEltrUDzAB5OUtCYUbSU0gp2lUX3OqIpEvnEckARO8bHwf8HPkL33waLoqDg4ODw9kEl0F5GpA/+zcY+McdWVslE8nqUMCZHnUdw5Cv9wD0pKunH5E0DAOSBW0/rsS0oS8mJDhRxr/VUC311xOTxpBEpJBaqzHkbxXQtop8rBtx/yslM2frFEx7ohmbVkmGFKZGrnTQYDFZ383kQcpdcuxBBu97H3ZCWgcHBweH48JlUJ4udAs2zViJyShg4K6PqN8YyEDBWISssW9ZkcTna4ZSwskTEggPzFpMiQfK3ibJQ3No+1Yr/fmqDRMsjDnHRpmsRXQkqZSDygmfr8I6fnRac0myPYUUiKS7qDbiNsOMrwXMPA7gtgDuoxfxZyDnIszg7Xs/8u1vfyauhoODg4PDWQZHUJ4m5K/9BXh3fNQyCpmUTQ7VSAY0E6H6lMqYvqSQAJ6UcXKPwlOdiJz66zt1LlxhluOwiHFLCdCVcs5slyShVTRylPhGWDxYK/OephGn3AOqPaAj+xzI/soJ3696GC37qNOsuuIWEx4jwPWEGUXCOUiK+uGam6637/3s9rnoxmfu4jg4ODg4nPFwBOXphIpVPfBfOSERWRJb+rJkJrScomWQYko7em0Bbok+ZBQAA/EkaQV83f3TfG6qT/KT+uZ7ohmP+ohEJRW/lFBcYCf7fG0xNUfZQcjtFVMbbhilpilRHxadxKw6mkQ8U1LP2p6jjPsNhJREknUZSiYnyOmeu1qEt+8TQCWmyNjBwcHB4byHIyhPJxYrVhqJUhKTqT6Jgk4pDnJzeo0jBvmFig0dHEqHjuo+tNt4um/Os5FoS6ox9ScqpNWsTexbVkNbirW7KMw4M2gohGMUcJ1RZkJdzfD4OVCMzcRNszhBBvQL5veSe8AgAHIpNakfy+aODTmMMhIZgM8FGdAcwlv8v4HJPnL/Xz/TV8vBwcHB4QyCE8k+jchf+wvMNCQ+iYknWQV1X1XxaShzdPoRCYb6lnTE1j7MrNW3kAKbOnxcrei7EfDwlJVQGjLQrxyvtfquEY7JvrQxw4iStharp4qfc1ujgOJbLe0EmZWX5rr2eLdg9vgV8XOZGHBftRG31SkA+xvMygB0sm0OuKa5Lo+jOeDjfg4PNz+Tl8rBwcHB4QyDy6A83YhSm2czMQAemeTjq0VmPHLwuU0dIKsz+xGL0LScMPgnQiTGXWN1crFqSABmWbSkE2b0VlFnW9W4lBOSoFQGF45Cc61NPW43zM3ozc9JOLyc7cthzvVWYpKSYcC/B9KpA0i3jrjdxtKF1JPpzWrnrwRsucT1XrgCZOtPnZKU3JEVBwcHh/MOjqA8zchf+SZ493+QBOBA3bpqFisAevy7FzG7UBKbeU+yHd2CaTdSmbkz1SfJaBWllBIy0BdTc3TVzAhAIlRKgFTm7uxuctuNIQmDBxKLYQAsVq07R1GO+XfqW1YEoCttKN1EasGv7cTDEBj6QFzj2rUVWTt4osymL1dja1cOjmIoAkdUHBwcHM4/OILyTKCQ0lZ+FJAILFStrFOOSSYyDwjGtClhZiRDh/+FGXCwTnIx02PnjtrOlxLr0mkXmLmojsRNVkhQY2jbBJhhiVKbaKwZEJ3EPAilzVns+JWcdMQrRcs5ut0jVW5zuWQmbzoduR+aY63uJ/PMr+UY5GQcjqg4ODg4nD9wBOUZQH7hjfD2/xED8mLF7OZjH2hkNvlYbeUB8xYppiZ47RasTKJakOYAqHsmeC0lJAlKMhpDyVYENnRwscJ/Ks5VIe6WjmVh1OCtWxBTtgw4XLN9q7ZEZwR5OXUvkwM+1xWjOW2d9qVjxwOJi5aPpvokLScBDzc7kuLg4OBwjsMRlGcKmWc6klQIibbb1kQzEqVWIhnI1OFUiIcHy34EGVCPmbGojdZ33GjmZBSQXCyV+Z5QumaaQ5ZVlkJ23qjFvbYAx7653xZSc55dqJiHiq6lVbLBhJs7prdpDswNdyTHGPtcc3PAx/Y0mZGZ7j+p0+nhZqBVQt78F0/lqjg4ODg4nKFwBOUZQv6yG+Dd/kn+UZZW2/qQwVu9QqqxGaqpiVouxEEnDQNAIFmLhkxN1gyH+pAUcuvEmemRTGxfNbKxXAYO1iz70SoBW9riEpuSyCS+eJ8kUpoKmfUIRHw7EGIS+8zyPDrB7ddGJGFa3lEflcUKydYg5GMrJa7/WHhwmt4qu1rWmnw0mgNX9nFwcHA4R+EIyjOJYgIUpPtGDdxmeyyHqLlaDv6LA75OsyhBzhZcNV/rS0twOWbW4rAQDv172yqJz0XLj1/HZB+4bAG4Z44kYbLPDEs3MgHtzhaJx0IFeGjKOomqR2lIVqQLpzbia49USbRUUKvlq0oMzFdIaOKAx1g+BvEAgO0t/twzwXPwrKXjnlrvvg8iv/TXT/xaODg4ODic0XAE5ZmEBn91bx0GzFxEGTMaB+p8PBZNSD8ULYpnrrR1cXntR7Syr4/4utqIAX9zh1kPnSJ8qEayoN4riguX+fp7Z0ks1D/lufPMjChmu9z+YsWyK2pXH2YkTUMpR1Wl22hiwJ8r0vasJCXzSLZi3wzdjoWyjAh4zgJw96bjn9fVIvDYBLw9twIekL/mF5/c9XFwcHBwOGPg5XmeP/HLzn6srq6i2Wyi1Wqh0WictnV43/1D04i0i/wd4N8LFdNtJKIFWcu25OZxUh2RSGjp40iVZmcboSV29TM9kgh/g8sdy0Tj1aLN2tnUsedHAYcSjnzbZjI2CFGnJWceMz2xD2xrm45lrsvszCER2R6pcjt+Dlw+T5K2EZSYPTRF4vXgtGl5BiFw5WGKbL++w9qpB9K6vFRG/vd//qSvj4ODg4PD04sTjccug/JMY28DeNlu01986UIG1lj0JV4O1IYs/+jwPz8nMWkXKDK95tD6bU4MrNPHg3XitIvSPVO2Dp6pDUSpkcziaZVICkYBszmT4rkyCLlfJSa1kfm5qKGberWoPf+yOMZmOjwwsexRt2Atyqqr2QhaSvIAfG+TvVbX+J2tJC6e7GcYjpG5BN6f/jdmVN74Myd/nRwcHBwcTiuc1f0zjPzv/UOgmCKXVtn8lW9iViGWbIN27HggKZkYkCSEGfUq4+RkuUztyZEqsyQLFeDBKeCBaWCf2Mq3C2bm1i7yNcfCxUssqWxpkzA9NM3HG0Nzt4399d1Ffm4+JwD3EUtLc1U8XjwAhcxIVzeih8tiGbh3hv+Oh1TIUDGVrqXUfFM64orrSft1KqLdzV3ghw4AXg7vd7785C6Wg4ODg8NpgyMopwF58V+tf2AYsvzRD5nhKAkhURfXUsJsww4Rjq6UGNT3123g3lJZZufEzFAsVpit2du0bpqezPs5UOc24g2yF6tFEh+AQX9RCI2Kd0sJW4NnuyRPShZKCddaHZFYBTnJUZixpXihYrOCogy4azOJ1KYuMzOA7ffo9exvkOh0CjKLqMvtDwMe19Y2SVKYMevTGALPOwg8exH4+XuATgHeW78D71e//RSvnIODg4PDMwWnQTlD4P3lf2EZZKtkL0aBlThqIxqgqVbjeyIaLaYscfg5xbMLFeDRSdOFdAvmbaKEoTFkkJ/qkxhN9vk6bW+OA2lfDpidUa+SUWDCWw8kJYOQ793UITkoplzHSolEaBDy9ZNih18f8bnpHvDVXUKmpHPohfuBH8xSV6JW+/sa7DRSLYuWlHa2mFUaBsBjEzZQMZf5QoMQeMH+9Zb9ig7PiWtLdnBwcDg9cBqUswz5T7wRAODd/WE+kHpA5ltmQsmJEgjtCKqNrMW4lFh5ZqHCDIwnpmt9yZZ0ZPKwepIADOqrRRvwV5AOIxXWBhkwLNhMHhXDzva4zyAnEemJwLcoM4UqMYcjNobc1+TAZgldtgB8eytbjysxH9u+yoyNesPcO2vr184lLycpee48X79fskR//z4e8/0zJEH/61nU+kz1bZgisEZanH+Kg4ODw5kNR1DOMORX/ioAwFt5rxmr9SUT8dgEyyE7WxStautwISXJqMqE4cUyhbbLZf6tnTtDISk6bFDLL2FG3xT1Okk9ZjsGId8TZdzWcpkEQT1T+qG0FIseJRLrfbXjj32WWfY1uP6lMstU3QI7c76+g9vwwMzR1jbJTT8E/nont6mZET3GikyFnuqTiIQZ9/PQFPf1h9dxHdcdIMHaqGtpDI6oODg4OJyZcBqUMxT5xJiFezmhRqWQMkNSH5puZbVID5V9DQpkj1RlsKBMKtY5OGFG0lEam+3Ti/gzSvm+VonBfhja7B4tFyU+X1cf2XwdtbtvFSmO7RT4t58zK6L72NyhYVwxEfHvELhM2qTvnaFg9n89i2UfPd6Lli2bU465zUDIxiDkehcq3FaUUVdTToAX7+U2v7YD+Nb2Ez7fniMoDg4ODmcUnAblDIZ34PeZFWkOGOznq2zfVZfZgsy+OVJl1iHImf1oDoCeDPWrxDYsMBENSSU2jchApgyHGYO9B2ZJytIWHPskGPfOiottYlmZoTjfhhmzFf2ImY2BtPt2I2ZmtCx0LGv7jz4fuHuO773iCIW2qehOllX8q+LbjOsPM/qr7G/wnDwyyeduuOvxpnTjWC1y/U3JTmkr9xhcNsXBwcHh6cOJxmOXQTmTUY2tRNEqWdZgEIpGRdp7vZwajXJM0tAuMqj7OcnJKGBQDnKzpddA3xiaf4mf83EPFNQeqpF46CBDnREUZeZqu0m6eWIR2S6WRZeScX+axVGH3I3wI4/ZAMGv7wC+vY1C4H5EYlJISUTaBWZWXrSP+5yvcp9b28ygfH3nsUs6w9A6lPyc522pzAzPo5N23o5U4R15H7w9/+7UX08HBwcHhxOG06CcZnjz70M++8/WP6Z38M2xB9uF9d4fKyWWTHTCcSkh0aiNrDQDHTyYW0dNDiAumvOrDiIMMgZpnf9TjS07otsfhCQZA49us5nHzIxmXZKAjwcZUAAwt8EcoI0wOSDJ2NvkWg7WuL9vbePjP7yP24+kU+ieORKWIOP+dqwCP3MvUBmZrf7RULM4PT+DkGRvR4vbPVzlz8XyWreRt/ohYBAiv+4fn9hxODg4ODicMrgSzxmAE9Y/3DPHrEKLd/rIPGtL9nPTahQk05H4JBnciYlkxzUiagynk401W6LER/exUmIWpx+y/FMZMf+mhEBfH0rXT23EjEVzyCyNlz+hYBV7msDHrmU5SX1gLlwBXrqba9y1AlywwpLQYpkk6kceA646zPcfqrEctRES38iWEq1uxMdGAUmfanO0BRvg470I+Q//8olcIQcHBweHJ4BrMz5bofNnNsJz50kUtBxSkOF9gdjYK8mojWygXy+insMTUjKQLIla0w91ICHM3yTzmKnwRJi6WCEpKopJWqdAjYtmJVIhQjo0MBMr+tkeiUQ55nb8Y2Q3FDtbwBu+D3x/DvjuJuDhSR7n557NLMlSmZ1MXdHPrBapPZnpkXAslY2g5JLd0eNYKZEoHaoBWzpAz+dr1CSuF/Fvbb1WMpWDbrR/81FgFCB/yS896Uvr4ODg4HDicBmUMwRe8jskCgfqfGDrMQboaQbjYJ1BNcionVgpyRwfcZ4dhhS4RpI10PZg7cBJpStHA/Mo4PsiEd+WE76nF/F3dYKd7pOULFT4PtWujHzTmEwMSCKCsY9WJTZiNLnBPKCN8O9+mG65vYj/3vB9ZkI+eymPU9c91wUuWaRN/3Pn+d5MNDqV2EhdU2YBlTlMEKtFOw/FVFqnIzO+C3IjeTqkUMpn+YvefNLX2MHBwcHBZVDOPjwyyQCa+CzfqAnb0ShLx8lU36YeR+LgqqUL7bLRf1HKn92CEZWh6E7KsWVYZnrcZ3NAMWlHrOprI77uoFjkb+pw/wsVvq9dsHWtFq3LKBWCokZrAw+Ya534Ofntb2z8+CsfBf7HJWwpLibAv3kpCcRsz8pXAB9Lfa7Vz2loVx1xKvJkn1qTckyCpz4yiW9DFyOZjaT6ndQHwPlD3jc+DqSey6g4ODg4PE1wGZQzBN7tn+Tdem0EbGtTvHm4xjbd2Le24E1dEoslIRDFlM/rbJ1hwG0UxQ029yyTEqb0RymkJBkD6VwpJiRHqUcSMivzcXKIFX3GIF8bAfdPc5uqYQG47tS3VubpHh9PxF1WdTHNAd9bTJh52Wiy8lNB5pE0zXV57gYhSQZAwqflsz1NG2ZYTEjcIimXJb6NGqjElmXywPMDyFgAa93OX/6PTu1xODg4OJzDcG3GZxnyV13PLETmUWexUmKw7EXAStlKFotlBtCpvnXiZB51Fc2Btf2qjkX9Usrih5KDgbddZNBVV9ZIrOk3dUSDkoh+AwzESoi2tvl3p2B+J35uupMwIzHpS/lJxbvTohMJMhICNXU7lfClrRlYf36GoXm+7GmaYHcgxGogowFUJKszf1JP1jx2fHHALJEa2WUevK/8Mbwv/8mpPRYHBweH8xyOoJxJUOO16ojBW4Oidplo1412o6g4NspIaILcxKpa7onF8EwFoM0hSU+ryNJM4q8Xh9ZGJC1zXa5jYkDilEp2IsiBXS1zidWJxdrCW4lNXJv43I62JCeeBf5eRNIzXz21RGW2y58HJYOSe1yjlrEKKX8vppYhWi4b8ehHNiU58Zl1Ksfrr422KkeZkaCURMXBwcHB4dTAEZQzCPlLb2Cwr8YkFipqLSX8vR9J5kPu/psDPhZLF00/NOKg2hMVdwaZCUELYlm/WuTje5rWVjsODcpq3hal5sdy+RFOHi4lDO61EcsolZj7mZBZQa0i/wFm8FYTv5K+EKnE51qeKvpyDEMhJjrJuRJT11NKrC1ayYi2a2t5Sic/aycTYJkVhWp71B23kK6Zv3mf+8/wPv+pp34sDg4ODuc5nEj2TEPqA3lqba4qVO1LJ0vss9NnJNOGU3GTHUmL70g6adSXRN1f44CvDTOzxfdya9M9VLXBe2uusmJ5r0MChyEA0WyslFjuuWiZmRDtAkp9ZhxKCUmAtjOroNfPTYdSSEkiQulEUsdZ1Y1shEHIbR7tqxIHQKfIcliQkSBVRyQe/Wi94NjPgZ6QGG3H1m6eMKMGqBNxmz0RFudSStOfmWdziVRUG+bMuHg5vG9+DOhHyF/xplP44XBwcHA4f+AIypmGSEoQE136j0z3LEsB2N37TI9EQS3k2wFQhAX3KGNJJRT7+nJC8qF3/jpQMBXBrZ+T+FywwvJIQ9psAzFuG4nvSe4BmaxjtWjlDkUvtIGD5ZjZoCi1lt5uRNI1nhUqi+B2uWxuuDO9jc+POtqWEtO8DANgVdqst7SZFdFupe2rXPMjk1by0fOpWZPxVuOS6IBKqT2upTKdqqz71vPp50Am52BaRgPsawC5lH0KKfIXO6M3BwcHh5OBK/GcYciv+8cMrnHAVthY9CfqAjsMqdnoSKkl9aws4eU2mE9t4KuiC9FBgJlnZY6JAV+/KALRbkQRrrqrxj5JUJhZVkVdZsOMATvMKNAtJ9STtIt8T7uwNttm7fGCGL1N97kOJQmrRds2QNKyVObv2vY7Dl1/LpkLHYxYSLmfua6VZwCel+1i9JZIR5Ofmyi5mNigxcTn2gFrV07k/JbEQbc6snIVQDKl53oQ8nxqq3enANRG8O78CM3eHBwcHBxOCC6DciYilSBZjdlhEuYM2ur4qmWL+tCyITlMuFmOjYyEmXmUAGJFL66usc+gWh0xkE4JISolwHyFAbo2EsO1xLINFZnTE2QsO9VHzFzURuxA0kCv5EnbnEfijzLb5esTn8LblZJlUrR9uRfxPWvOt6mVWjSDMV8hEakNeU7UowXg+lQoHEnWQzMnQWbZIBUQj48BKIooWEtOuWdzkDyQgPWEEOk5UlHzQoXHEqVm8z/TY9tzmK2NNXATkx0cHByOD5dBOQOR/9Bb+IuWTlJ2iaAlZZLUN4fTOGBGQoPvKDDPFO3m0fbYMCOZWC7Z3b+WLqqxzaFRUlOVDEKkZm06pTgT0zLwZ6fA9dSHzMoEubUoq5NtN7L25CNVDvtLfRKKasznRgHLPNrme7hqxONgnSRAXWV1zbNd7m+qz8zJILI27YUK/5USEgQ1cdNj1BKNuudGmc0w6kqHk3btaIktBx8rSckskDLVfIWZIC/nOnas8thin5mbIAOuPbh2jU94/pKDg4PDeQpHUM5UlBLqOVKfxOCCFd6R90PTkZQSkoK1NtiYIs1IWmgTIQ+LZRIEgIE780hShiFQi61VVtuWw4x3/koaVHgbSXeOZhk8cD+RWOM/OM336JpGvpVtxo3dSollOBKxqp/r2qDBajyW6cm5//G19CKb5gzZjgcjIKloYKqS3ZivkiwsVMyQrSU+M5qN0ZJQDm6/mBjJK8c8t32Za1SNrfxzqG5W+IdrfH2UmgkeQIKygabGkRQHBweHY8MRlDMU+bN+Uzp6PN6ZdwoMwDtWKcRsDBnEV0rmPxJJZqNVsmDejxiEi6npK3KYT0kqRGdr2xxe60PqX5pDLkZFtvWRCVjnunxNJV6vE9FSSu7x/VoGGS+HqJ5F26PLMbc/MaBzbkECvBqlNYbAhcuW5dF2Zs3iNIbcngpvm0KiFirMsMx2uZ3m0LIdOuSwIIQs9YxoVaVENtW3czXdp7uvn5OQNAd2LlRsO5Js1qwIZbWTalJarhcrNmtpFAAPT61db++Dn3sGPlUODg4OZw+cBuVMRiCurIC05HbWD63b32BG5WCdwbdbsJJKIBmIVpFlk1wIxOaOGb/FPpCFJhDNPJIbDfDNAf8dC5qxUD8Tza5o9kN9WBpDyeqIJsYDMw3qfeKBZROdvBylJExqn1+JH6+lUeKwXCZRSjwg9Fg+0oGAKyXzPzlY5z5WpExUEZt7FeuWZDiitmXP9MSrJWK2SbMtlZj7LCY8V1N9IX5F215LCOVk38p0B+o29XmxwvOaevC+eCuwtwFMpPD+3eeR//ZrT9nHx8HBweFshiMoZzJU6FqXTIZqSTQQhimQFBj8nn8AaEq2pF20DISfMyh35TmAAbWQsvQQitBVSzFq3rbRoMKNkPpcZyBlIfVRqcGEpeOIxfTMEwv8xlCOwzcBq5aDiomVcVQMrOv3Za3a0bMiXix1mSmka1LDtXLMEkxtZH4manhXTMxXpSglIO0iKqTczpEqsLPF420IGZwU3ctiGbh4iWQG4PlXR9vcs2GNrciyLa0ij7Mckwz59JnxPv4XwAv3Ib/i107s/Ds4ODico3AE5QxGfumvw7v7w1LKEJ+OUBxhNZjGgQk4N3cYWLsR7+4Lkg0oSxkm8YH9dRGxJsxi9LVDRYKrlmsmBlaSURKgJRXt3gGsY0Xf6+H45MYT/UxzwOxQITUSEg1YllktWjamkFp5S43REp/EYqnMksqhmrUqD0JmNdpFEd/K/J2hEDttyR6NESU1satI15S68qrHSm3EbfVF+6KkxpcMlY4A8HKuqTG0YY3areSBa12omBeMBym5eTYoUo7Zw83AfBX57D87NR8mBwcHh7MMjqCc6ZjpkWDURtYOq79rFuJgnYFvpsdAra2uQWYlFR0eCFhmBTCH2ErMYKkZmE6BJZViYmZrhVSEtdIJVI2BIxVOO64PbVifOtWODxDUrEV9aLOEkKw/Vi9n5kEH96k+ZGLAbbaEuKiQNcipJwkzKyFlHk3SLlomMYkyHpeWkQahtRQDZlM/fvzVmMffGFoJaLpnZKw6MpO6hYrpbzSjM92TTiN5zAOzL7F0X6kxns4i0gxP4rMD6bJ54KEpYKYH774PAlGG/OLfPPWfLQcHB4czGE4ke4Yj3/JPSBQ0CGt2QglHbWSttjqJV/03PJgAVDMGKuZcKdngwWLCwKnakJGYpy2WGURXSiQk81WWOtRqX0stI986aRKf5ZZOwTxOugUzkIsDy8QcCzM9CktHY0RitcSsUEvWvbVtpCiWY4pSkotiCtw3w/JLW3Q5amqXefxbfVl0fEA/tG6mToEkYyQC3RwkLmoGp2WjimRVMo/HdOEK96mam9Rndkdn/RRSPnfRMo9B5wEdqvF9Fy0DP3TASNMgFI+YEF7yO6f6o+Xg4OBwRsNlUM4GaElBoUPtymOakuUy7+y1PJHDMhdaKlEXWV86eNTcLQ7Wm5GpJsMDic8gpI2+2rrnYLlFPT9WSny8XSDBmexTCFqVkoy2NjcHDMo6gFC7e8at8hW6/90T3J6ufaXEYwdIfMrSNdQu8DhaUuppDikiro+MvKgoNxAXXLXyL8tcoJEIcjviJNuLbBJzu0hyNAx5XKlvXVE61VjHAqiTrr5GszzaDq52/ppNWSwDN+7jPu+fsa6kvvi99EhivO4HgUqMfMdvn7rPloODg8MZCpdBOQuQN/8Fg2O7yIDXi4A9E8xoDGUacOKx1DMxZFAbJzWhiF4jaX0tClnRdlovNw1GRXQbHmQOjZCh1LcSh3a8dAtWctLuoWFAMWpRrO/VWM2Ttt/lEmf9DKT76LDoR3JvvQldLjqYRDxNehHfPwiZcegWmDmqiMnbZnGQTX2bp7NrxbImmo1RJ9pybPN6NPOkXiZaflkpcYbPlg7XnYPEozbidg9Ky7CW2tS5NvZJjCqxaYXaBa57uczjrca03x+EbB0HuL/qyM4/YGMFVPsyDODtez+8fe9/uj92Dg4ODqcVLoNytmB3k4FyqSztweBPDYqzPT5XHTGwe0UGRm2DHYamDdFyAyBZl4IZnelPdUqtxAzuas7WlJJHt2DZGTWEKyVWmtEsySBkRqAqGg8/5+/q7RKlXNdq0YSmnYLNy9nU4TYAbjPxbOjfdM9GAmjXT+Izq6Oal07B9DrqBaMt2JXYNDdl8VXpRSa4nRE/k0cmuZ/FCnD5kbFuoNh0Or3Iyl6zPe5XZyApqesUmOHRVudnLwE3fY3v0TlB2kKuXUXaqlySKdIDIy/eY38A5B7yC298xj+ODg4ODk83HEE5W7C/bhbwQc7grMP+PCkHrAopKSZAGFkgVGKhJmPl2KYRa+lEO0hU0xFk68WowHq9x0CcWlXbovNyNMAul41k9KS9ti7dMF4ODCum3Rh3XdUSkk4tXiyTmOXg9iNwO4PQOnZGgYl3KzEN0C5eojamPrIMUKKty6kZ26lfiWaD+qHNM1KvmHGjueUyMzcH6tTBrCSWmVJzNhUhV0e03u8WTEC7WCEZmeoDz17kMQ9DIzCq08k8m0mk11zdbUdjTrk54N3zIdeW7ODgcM7BlXjOEuQ//gsMxGrRrtqOpbIFMxVWBrkNwtPBfbFvlvKqO1HX10gEpCrKLCe2jyCXSci5lYZyzzqKtDyT+CzpaKkEMA0KYAMQl0vssgGs5bgXkXCpBqYxtO6f5tDEqkoAVsQpV112lQgVUiMSAM+VBvfGkGSlnBipUj+ZrmhOyglbgbetsuzi5WbWlvh0s71k0Sz426KnWS1yndMybLEf8Vw9PAU8MA3ctZnlHe0gWi4Bd89xn+0iX7Onae3UqiNaLq/vZtLSnY4C0MdGAbz7Pwjv0X//jHwWHRwcHJ4JuAzK2YRBaIE+h9nMF1ILpoAYpY0YDAfi5zEIgaUSg7k+r5mRYcDHM4/b9WDGbjpnxs+ZgfB8Eg9fSkU6y6YbcZtF0a2o/mWqz86fQWj+JQ3pMmoXub+tbTNqi0QIu7PF45mvcnsF6b5ZFv+VbsRtl0UPox0zlZgZEUAmFgMYFoXQwLQo2kZ9+RHgwSlgFJpwtVNYbwI3FNJ1qMbjXSmZg25zKBkgEen6ObMrB+rmuTLX5SylrhCXv7MXeHTCSGCYGuECSHC8nMe3v25ZGZ1zFAcmetb3iTGfd8+HgJUS8pf80tP3OXRwcHB4BuAyKGcR8ldfb26wGpjCzIbjhRmDZupRP9EcWjZkFDAIe7A7cs0kqJalKBOR1e20K3f0qc/gPSmzcrQjRTM36rWijrSZx7v/I1VqLhJ5/6aulZr83Jxk/ZylDx1GWEyYZVF7+W1tPnewxiCvWo99DXbIKAGa6Vm5BJBOI4hbrhAPnVGU+NzWg1M85m7EtRZTy+AUpVU4yLjd5lA8VXKei6m+ufz2I05f1kGGd8+ZQVwObjvMgGsOAVcfAn7qPrteasA3FCfdYmKtynUhgzqraEKyWaoR8nLLRKkeKcrgfeHWZ/4D6uDg4HAK4TIoZxu0JbcSk4g0RhZgowxIMmYdGkMGZdVLDEOgHZgeo5isd3EdSffNdM8mHye+TUbWQDpfNc2KBwb9jsy26YreopgCScyuG+1GGQhB0LZiD/wXB0Ykgsy0KN0CsLdpmpb5ipWcVsdErbrdSkwx60XLdq40q6TW9xhbS+zbUEIlAp2CCXu1U0lbllWTs1zmvmLfJhRfc8hM1/Y1mGHa0iGZm+qLj0yZWZSVkpGwlZJNSNZ1jGdGRoGVvTrSclyRziu11VdzukDOaSVeEx57f/uRNVO8/MpfPRWfPgcHB4dnDI6gnGXIX3oDvK9/nEGtKR0eGWSCMBj8NFOggwYnBwygmhlRx9leZEZj3ci6aFTHoc9PS2ZiUebTxIF115QlWGeetfyqidx0jzm65ZJNOFaL/EJK8lRIST5U5zHuiaIGc0slE4sulOlcq1bycWCkpS16lIWKlaeUCBXGshTNAddUkAxJ7Ft3z5aOiHpDG+6nWaGJAbNAqnHRUhdAwlYfmSHchHQz7WlSm3LZvImLdzdtmrS2Oqfia7NatCnIgGWwdKqzZrhGgQmOVUCr2ayRTG6uD9dE097Ke5FP/Iun4yPp4ODg8LTAEZSzEbWRZTb2NaSddWTtuEFuzrPahVMbASjw8a4Yqk30gU6R5QftmmnAphp7uWks+pHpSHSOz2rRMjDjLc/91ObzVGMG9bqUTXRA4UKFmo76iIF+JNkdbYvWrqJeBPQKlu2oJEaowsw8XIZS4jlc5TZyzzI1mhHqRTafqKbECqa9UQFu5tFXRYlVt0AipudorsttHm0wN9nnmh6cNu1PkLOjSFu9y5IBKSZAGlkLt3rO6PWpDUlMlAwpoRkGpgnSc6zPjwuFtQynJnQAvPzdwFcuQP6KN53iD6SDg4PDqYcjKGch8qt+Fd4P/qP4nsSmz6iNTGiaw0SwbSldrIlbpZywWGHwag7Nx6RVZICf7JOADMWavitlnNC3EkQsGYHZnmgtlBTk5muic3dmuwzcXm5i2qK4r85XZZifCGRzD1j2rTVZXWV12nESjulnApv4rMemrriajdD1quV8ObFyigfrelKtTSSi1e2rzMo0hKS1Sjw3g4DEcHIgrc8yi0ht85+zAHx/Dnjpbm4D4LXa1+A+tAMHWF/GKYonTHVkLdy1kWWXNLulnT25Z666ejyaxdHsytF46W543/lPQHWE/NJff5o+oQ4ODg5PHY6gnK3IPAavpTJQ9E2kqkFfhwUGIr7Ix3QNOhxPyyAq5NSsxVLZ9BWBuJhqZiOQjEXqMXDrHX1dph4nvg37C3KbqqytxaWEWpdKzMe2iAB2KDoa1X3kYDDX7E4kE5QbQzNG0yCfg89rV5G67arhWw4G7EDKH1qGUvFwKmsuJiw3XbBiLq+qXelFPC+Hqyxd/e0Wbn9LhxmV5yyIYVxqM3nU3RYgCfRWSRb7kjnR0lMpBYYwXYy2TavLbZCZ142eb8DWFsrYgGpsot1jYUUccfsRvNs/ifxV1z+5z5+Dg4PD04yn1MXz3ve+F57n4bd+67eO+Zo/+7M/w3XXXYeJiQlUq1Vcc801uPVW6zCI4xg33XQTrrzySlSrVWzduhXXX389Dhw48Lht/Y//8T/wwhe+EOVyGZOTk/ipn/qpp7L8sxr5Fb8mpmsJyUIpscGAcWCBSu3jAeucUc+TUcBywsSAAVXn2jSGRkbigM+rZbvqGxqy/ZoYoS2WrQQUZiYy1Q6WlpRL5qvcVqdA0qOli/F5QTpIL4O5q85X+Pfehh1P4jPjoO3L9ZF4g8DWph0umuHJpBy0XDaBbavIrEUckJgpuSklLLWoCFfbhh+aZufQnibXMwg5ffigWNnXh+vJCWAE0MP6rptiKm634HNKsDTTosMb+5EZxqkOZs0NOOa6n4icALwOh2pc98EavM9+Gt6X/uTJfQgdHBwcnkY86QzKHXfcgY985CO46qqrjvu6qakpvPOd78Sll16KQqGA2267DTfccAPm5ubw2te+Fr1eD3feeSfe9a534eqrr8by8jJuvPFG/ORP/iS+/e1vr23nv/23/4a3vOUt+Df/5t/gla98JZIkwT333PNkl39uQFtoczC4ApLmH/JuX0sBGsBz2N12HNhk5Ey6XBbLJvbU2Tw1GYynw/bmxQm1PuRz3YIJansRBaG1EV/rQTIfHoWuM31mH7QLZ826XbMmnmkwgsx8RdTavpgCkWRycs/m3kwMZGBfYn4u3YKJXzVTFOR8PEqBkWSYtLMoyoDigATDz4HHJqy0E4+VYapachLzt8mBEb7VIstdAH8/WOe2N7dJMFS8rERMy1D1oU2j1nMtWQ4k8ljukaCVRQzdkJJSJeaaNJv0RHhkkj+Xyja9+kgI73P/GdjbRP7Wv/dUP5UODg4OpwRenucbFKqPj06ng2uvvRYf+tCH8J73vAfXXHMN/uAP/uCE33/ttdfida97HX73d393w+fvuOMOvOAFL8Du3buxc+dOJEmCCy64AO9+97vxy7/8yye7XADA6uoqms0mWq0WGo3Gk9rGmQbvB/+RpQmAd9BRZoP2tHyhrcKA/J6xi0XLPAMZxKdW63UxKyuk1nGj03rLMkNnWYSu9aEZxamAdGLAbIISo/nqmNg2YDlDsyyqLUk9ywYAtqaheLqUJavTKoobbGyzb9S2fqrP46zE1I14OQlKSR6br5iJXCr6Fm1t9mSfShw04zJuKDdf4TmbGDB7srVtrcXadt2QduQLVniMf7uF5GGqzwwVQN2PtkinYx4yXm5lq0JqAxIBHleYWQYnzHgedCL1rGR9moPHf0iUEB2pclLyI5N8j15fnVMUSgmtW0D+z15zij+pDg4ODoYTjcdPqsTztre9Da973evw6le/+qTel+c5br/9dtx///142ctedszXtVoteJ6HiYkJAMCdd96J/fv3w/d9PO95z8OWLVvw4z/+48fNoAyHQ6yurq77d64hf+7bZG5MYuUOgJmQxGcg1OBZTqQl2bPSxuEaX6dTjQFuQ7t2NIC1JdOxUDHCo46sqRAhdVdtF7mv+ar4oEjgbRXZ9twPzRwuzGxwn2YPAOlAkSF8fm4aDJ0FpF4pYcZ256k+gz3AY4qFiGmHkGpUdAxA4vO5KOXfZdGntIrcjhK2PU16yKgOxgMzK1vb1jW0bZXbUeGs6kZKCdcGcH86xXi1KN4nYyZ77TEDuTiw7E8xMXLp5yRbRbmexcSM7oYB8P9dRGv9o1FIgW9ut0zUZB945aN0s33Bfh5r6gPPWSSJmu7B+/T/C+9/furUflgdHBwcThInTVA+/elP484778Qtt9xywu9ptVqo1WooFAp43etehw984AN4zWs2vksbDAa46aab8MY3vnGNWT3yyCMAgJtvvhn/6l/9K9x2222YnJzEy1/+ciwtLW24nVtuuQXNZnPt344dO07ySM8SjJdw1MBLSx86gTjKGHyqMf/uR+tn22i3jna76PYyj6222sKa+LwTP1Ll6xYrZjY2DBnM/ZyZlW4E/GCWZELLRqWE29KMwLjfhwfTjsSBzRBSrYwe3zAkmajENjk5GCNp6lnSDy0roERJre+LiXmoaCbGgw0dDDLrCOpH1moN8PGVEklKKm3RgxBYLfE4L1kE9jdsPk+UWSZIdTbFxDIbk31uSxxgAXDdSkRKibUO6wDCiQGvn85SCjOSJbXpPxov2sfnn7XENX1vE7M/z50Hrj3I53IAVx8GXrab+pncg3fbn7L04+Dg4HAacFIalL179+LGG2/EF7/4RZRKpRN+X71ex1133YVOp4Pbb78db3/723HRRRfh5S9/+brXxXGMN7zhDcjzHB/+8IfXHs8yfnG/853vxM/8zM8AAD7xiU9g+/bt+MxnPoO3vvWtj9vnO97xDrz97W9f+3t1dfWcJCn58/8xvK9+QrpexB8kkhJBRczUlkvMAgS5vU7Fqv2QP2sjButJCX6tklnP9yP+3JzQwr0amwdIDhKAua4IPXOgLW6pO1sM4OrlEcJKQv0ICIRMaJYgC2wOTSSalPHMh8KD6GZy616qxmY6pwSgU+A2JgaWoamNaPamxmyatVDjNrXr70c27HC/aElUCKzlltqIz1ViWtdncl4zzzQ446MAhqIDUtv8UUBSV42pL0kl86O6ojAzYqgtx7WRlcO0XTnzgB95jBmc/Q12FEH2U0y43Q+8wEpvkHP27CX+vPwISz/f3ir+OSJynukC7SK82/4USH3kf//nn5bPsIODg8NGOCmC8p3vfAdHjhzBtddeu/ZYmqb46le/ig9+8IMYDocIguBx7/N9H8961rMAANdccw3uvfde3HLLLesIipKT3bt340tf+tK6utSWLVsAAM997nPXHisWi7jooouwZ8+eDddaLBZRLBZP5vDOXjQlza9GZJs7DM6Hanxe3UVzz4KullC0fRWwEsqwaK2+vrQVr5T4XiUv6lwa+9xfLwLmOtaS3CkwM6ADDdWPRDtN1gYQShZFsyY5RCsSWKDW7IYG+xw2d0fFtK0i96XtyeoQq+3JU30+1ikAg8gmOkepdRSpiZwSA0g3lFruz1fM6+WObSRg1Ri4TjrOFiqie5E5OepFEovmBTBy1ymY5iRK7VxoOzgAdD1bj5qv6Zwhva4A8Nc7eR66EXDNYXteyee9M5Y1e2yCa7j8CLNbi2Vrs35gmuf+xXv5+MVDlps6BcADvI/+JfK3/MSp+9w6ODg4HAcnRVBe9apX4e6771732A033IBLL70UN91004bkZCNkWYbh0FoilZw8+OCD+PKXv4zp6el1r3/+85+PYrGI+++/Hy95yUvW3vPYY49h165dJ3MI5yTyq38F3rc+RtLRjah3GA9oofiilBIbCJj4QCSC0Mm+ZRs8mGGYtuSqNmS+ujY1dy3rMjGwwH/fLImDloSq0gEU5ICfWhYB4ON+aoJezXBoiUnn0wDiu+JbtkDLHfWh2e2rt4gvhMvPqXkZhcCuFcuSqP29eqSMQhsGqFkhLSeVY5KxbavAvbPiWyKToPc16JWya4WZicoY8dCxA0FmJSDABgEqpns8fiUvHoBSbEZ6Hsw9thKTiG6EQQBcsQTsaPHvQzWSjX0NEqnnHQTe8Vd87sFp4OFJ4Mce4vn62y0kK7UR8I0dwDe2MxtzpMrzc6DOcyBr9z7x34FOAflv/PhT+MQ6ODg4PDFOiqDU63VcccUV6x6rVquYnp5ee/z666/Htm3b1jQqt9xyC6677jpcfPHFGA6H+NznPodbb711rYQTxzFe//rX484778Rtt92GNE1x6NAhAGxRLhQKaDQa+JVf+RX863/9r7Fjxw7s2rUL73vf+wAAP/uzP/vUzsC5AjX5CnIGtGFgglC1qR8GQF8GAmr5QTMZxRSAtLeqFkM7Z9TcrK/zaaTFdyWw9tnVIgP2ZF9aeuWu30+MdADWPaPtv4H4uHiiSanIlOSBZ0SoWzDvkPrQ1q3ZjCgDssQ0NGslLhEHt+UY1Fdkos+1hGOEwQPJnQpgl6WE2RcCUx+ScBWlI2bXCkspSqTU00Rt+8fHDhRTI1Y6HVlJkZ6ncmIutypkVpM5FTBrq/M4HpsAfvwh+3ulBNx6NfDoBPAju4F/9VVeE8WzF/kP4H5fuM+e++G9/Adw/4drJqztiralQwGv95nPADtayF/05pP5lDo4ODicME65k+yePXvg+yZ+7Ha7+LVf+zXs27cP5XIZl156KT71qU/h537u5wAA+/fvx1/8xV8AYPlnHF/+8pfXykDve9/7EIYhfvEXfxH9fh8vfOEL8aUvfQmTk5On+hDOTuisGnUg1dKFL8LRYmI+IwBT+r5kOg4UzIF2rssgF/v2Gs2CqCV+mFkA93MG9l0rLB1o9ka7XgDzVdH3AkBDiEEOIJQOk8QD4K8va+hk4drIum+0Pbojf8e+ZUA0E5N5wISUvpZkAnFT/FK83IYK1kY83rkuBa57mnytZoE2d6wN2c+ZRYoy4DWPMPvQGDKLpCSoBssSJT6QwATBfs6MymrR3GDjwAYuFlNrAdYJxVFqdv7topXIvraT2ZArjtDNNgfP08QAeOu3ga/vYLfOePv28TBf5TgCFUDvnuD5ycVTZhAAXmDks0pBsPfNjwEPTCO//qefzKfWwcHB4Zh4Uj4oZyPORR+Uo+F97Y8YpHSy8ErJhJKFlKn62sjKEdo+rPoL7RjRqcY660Vt5FXAqkQjzExcq0RBMwUV8frwctvfcpl/jwdw3Q9gJMUDg3IOy4pou3QltlKPB/6t28jBtWQeDePq0qm0t2ktyZWYQXixwnLUeElGMz1KEHTNAIO1dhZN90lm9jZI2jTT44FrHATUuQBcg54/gOvUzistValgVzNZQWalL12buvTmHvDdTXzNNYdt+6nHa6izf8ahmpaNyIqW0/Y2+P6lshGl5bK1j891+Tn65nauabpPv5fdzTU/mvznXv+UP8MODg7nPk40HrtZPOcSEt/0AmpWFkk2Y9zmfrlk7q+5+H5E0mmifhk69G8Qcr7Msgzx29JhEO4UqE9YLdqQOg1scWA6Ct2eZgymxbOkVbKOGE/KOKkHFCTY6iTmcmxtt0FuGhnVmwDWnjsKTJiqmQjVquRjhEMN17TbRruIdMryljYHEvYjHut8hWWOYUg9yhVHKDwNM5aA1JFX/WW0vKZESks2OqQwEtO78eGKgImUNduiXUZhZtb5//sCYFeLZKs+5DTqrhDJ3CMZU+M6JZPzVe5zRbqr9NhL0nLekozOJsmgDEIjfsWE5wMgoS2mRm4P1piVmq9Sn/KxvwCiDPmbfurp/JQ7ODicJ3AE5RxC/vJ/BO+7f8jgMS1aECUD6oeSeRSnaiupllLUnEwDjtrAFyXz0hNL+Ecn2Iq8VDZ7/XLMINcYWlkn9YDQY/tsHFggn+2yFVbJyyjgfldKXFOUApkQpJkeny8nRp60K0hJhZdzH5opmha9hOpAepF5kmh2JciBJGdW4HDVykhRxmNbrNCdVctRmg3a3CE5OVzj3+qeu1KywK0uuXoOdLiirrUbAROpZS6me/xdvWu0RKUZleaA5/2Baa7/mkPm57JSNm2OHm854XuXS0YKmwPTAC2PjUAYhuYzo11OK6U1woGlspHLPU1mZ2oja/HWGUWpb+TKA7xP/RlQSJG/wenDHBwcnjwcQTnXoK6kAHUCvYhBcKbHwNsWsaMSAxWOqh9Ju8jgtFrk3bRmAtas4xNr9VWn2lQ0IFri0EnJsW+lGh1u9+C0tcqqQFVt5tdEr7LNbsSMCiCC2oxdNIFvAT4TIqTW7+2iZHEk2I4PG1RPlpZ08+xv2Ewg9RqpSrdMmLEbZlwbcpW08MZjQlctaakHSzlefz1U5KrEqCiv1S4d9W3RspI6ygLWHl5IWVLa17DOpZUSj1VN71QQvSqt9eokrK3ZQU4C2Y0sy6b+NHrdSglJiHYWXbJIM7eJAa/bA9P8HTDCuVCxbrFqbL4yhRTef/0MkHnIf96VfhwcHE4ejqCca1BtxooEoap4g+jdsAZbveNuSHdK2eN7NKtx34wNCywk1okS5OavoW2vOrBvus9ta7DPIY6swXpdh+pavLEMigbtHCQbmWeZB9VlRCm9jwfiHpsLmdnSIfFKPZuj4+dcq+pqADNG29a2MsZyicdRTK3EUx/yXPRCoCZBd7ZrpRg9x62S/a5lkwwU/ep8IdW16JTiTLQyqWQ7VNyr5ahKbF1LtRHw3y9l5uaF++Q4izbIUYcoqv6mGtt0Z+260iGMFbHzr494TNWRERwlTgDw8sc2/lxp99K+BnDZvBEz/aztbxgJHYQ8hiJJi/eNjwOtIvIf+4VT+Ul3cHA4x+E/8UsczibkL7vBJu6WJROiotTM4x30IGRWpTqy9uTDNWZZaiMG8fEhgGFus3wGgekiAP6sxgxgOtW3MEYo+tIuq+24KsnWVmbNzoz7tiixKSUsuUSpiXdVOJt5Zhy3VLZpytrR0xf9imYHVP8x3ZdW5xxoiB6jlDDDMu4b89gEM046A2h/XYzNKgzUHsxYTjMXg9COsyhdVFXJUmiJRYcTAnYuNMOhmYvKWBYm9lleWSmxHKVZkZ4Yr9VG1mmVeuu7lIop91+QtcQBX3egbhmzjhixtYr2mo0w2wV+7h7gH9xrmRwtJ2nXWHPA66XW+yX5/N07A/g5vEf//VP+fDs4OJw/cBmUcxG5J90koQlGNVhqliGRVLxmTLatMo0/MaA2ozHk61XMOZRZMaoJ0Vk/KuisCBnQkpGakmmZYrVowwGVbJTEAwWBaS6izKb0qhW/ik1VgBtmNrl3FDAYrs0jys0jZRCSUNSHJCaKYcj9d4omFNauma6QnBxA5gOPTnJf6q/SLti6NRulpMzzgFEE1IbcxmzPZgUlgZHBSmx2/ICRwdwDFqo85v/vIuCF+5nROFjn9dvcIVmZ7ZFkbJIJyVrm0WxNp0ACulq0oYRRavOWNnV4/EvSoVROqE0pJcBdk8BlC3z/RqiN6DTbKdhspocn+dwgZInoOYvs8DlcBe7cwmvwd/YCFy7Dw800eqv9y1P1aXdwcDhH4QjKOYj8hW+Gd/8HGYh10JyWENpCVMZbWHPPOktaRXOIVd8U7bZJxA8lkE6bWP1RBqYRCaVbKBZzNw36i+KPokPulMDEBSsHrRmT5esH56kfSOoDYWJGbDlIEjTgK9SsbhDSeE2FoF7Osoze+QMW1FX/oqUotcGf67Js0xia6Z1qdvTcacYjyIGBT0KhhmtaCpkQ7UhftDpBZt0/BfE68XJzgx0FzOLk4LVYLZKgFCRT1ZTz2ItsKKS2O7cLdnyxL4SywCzIoRqzMY9NcN0zPWaGDtboiHvlEX4GIPs92hxutsvHv7qL23n9D3iePnyddT1dsshrfsEKRcUq+tVpzpWYROWeOeRX/Nqp+dA7ODicc3AE5VyFtv8OQiDLLJhpcNa5PbkE0QN1Bq+Ll/j+tYyCaDuUrJRkfk/qizV7IvNtQk7L1TlAvQjoV6xFdkbu6KsSFLVFWA3RRlIC8TEm7u2T7KjLqgowVV+jrbgPTpGoFBPzaFEdh5aF2gVqT8aN6nTysQfLQgzFw0SFvhMDrmG2Z7N61MtFu1e0PKWOuprBqYrwVIWulZj70axTOEZSehEzNgCfu+II1/v9WWZxtreo80g9M5jTFmUli9pVNNtjyWpTV8zvQIIVB8xwHK7R6O0F+7m2SsxJxkoKE998VXpSEpzpWVbl21v58+pD1k31q98G/t/nck2PTnCbW6U9+d4ZjgoIMuDLF/LxqT5w+REavT0yifwf/swp/fg7ODic/XAE5RxF/kNvgff1jxsR6BQsoE8MrM10ocwg1i6akZkHBrw0YrDSFuXJvs3F6QvBacvwvYmB6RdqIwZfHYan2YTxrh0VZ3qScSnD/k6E/PTlda2ilWzUz2VFfFTG9S8H6rx7V2M0zZwEkCyFiHPbBQbvw1UL3LrmUAhNbWTBf7FiRndKXFKfxC/2LTsz3eN+p/osmRTHOpO03TnKzOtEhakYO3Yd6hilPN8v2cOMzGLZSIna6KtoWcs7mWhQyjFJYZQBEXj+9zZImIYBf75kD7ND4yZuL9xnQxY1A6but17O8tLOFoXFe+X3cWxr08E29TgpeZykJD5wzxyP60iVBEoHPF59GF7/PcjL/+pU/zdwcHA4i+EIyrmMrW1rs61KYNX5OuriOjFgIKqPpJQiGQKdO6MaitTnHbWWLFQcquWjYmrD+NRcTV1f+0JU1CofsFKK6jfUyt4D1+KB+14us4Tk5dx+MeXvmh3pRuY9sn2VwfTRSf6syR3/A9PsgFkuiRFbh+9ZLsusndy0OZphUS3L/TMkVpN9imq1tVmzMqpDCTNqMQoZtxtkpk8pitA40HMFkpAjYqBWG0l5DEA3MG2P+oxs6ohPi7xfPWQyj6MM6jJhehiIFb4QutQjUVkq29DCHCQsW9tAJ+LxaHaoVSRRneqTbGUez89qkZ8TJZ1/90GuXbuQlHj+8F6+ti/EsFuwbFAv4uNv+D6f+5ttwPc2UXD78/cA5YRlHwC5/HRwcDi/4azuz2F4C/+33VlrmWGlZF0datym2Q0t3WiAVB2GBjsVutaEQHiSGVBPkinpkGlI+7FqLcYt1nVCsupUNNDWh2bTrwMC47EsQ6dgXUhaVtH22szj3XxtRJMxNT9TvcxihcREu3pUOHqkym30pavpsgXgW9uBpRKJxj1zfF+7wOm/Vx0GHp7iOVETOM2o6Bp1btCEmKPFPlDRgYgw0lZIqfl4eJKiU800ANaRI0ZreckyC178u/KL/LcdiCB5FJplvgeel8M1y6ANA3tuus9jrsY8n4BlyHT+jhLP1GMGByBRbA7FkC83g7txbGSr3ylQ87Kl83jx7X0zwKULG35+HVFxcDg3caLx2LUZn8PIZ/65mJcJGdHshQboXmR3/40hyx6z0mrcGFqWQ+fIlMc8RXQabxwI2Um5PRXXaittIFmaSIiNCmF7EYNZc2DBW7Uxqoupj3hXf7jKQNoPGeT0WFpFEphIhLzf3czjPVSTEpase7oHXLjMwH+wxjUvl7n+/XVmeLpCgCYGLFntbvK8DSUT0CmQ6HQkoOsE4qoMIYwD634qJlxr7vF/mIpXUyF6k30e65GqeYeMQ1t3N7h1yKN3WTdOmNmIAm3rVuLYGFLQqq3f6vVSSMUALzVyksrXwJEqt5kKadvT5HGr5b165+yvM+Oi5nTjUD3OOGojZlE26gy6dMFIsqLFEpJ350ce/3oHB4fzBo6gnOtYqDBtf6TKINApMOAWpFTSl7baJRkMt6ZVye35xDdr/CgzAqEdN0pAKjKVN/VsDpAv7aw5ZKhcwsCus1603bhVBFZLZjKWetRNaAZlum/6mXJsLcl+zlkxWlZR0vLANH/G5myKHS3g4mUShF4kxE10NIdqwP3T5q2inT0TA+DKw9RULJcYzFVbA1hbdSElCfBz6cgZuwbqtluJLbtUiYHXPgS8dM/6FmiFn69pd7x7P7j+uQN1XkOA51PN6MZ9XACufZOQJtXsaEalL+Qk93hc3YiveWBaiJgIn3XsQZBbeQuw0k67aOvSktCB+safxaPJjELF2KOAn9dWce1YvK/9Ebyv/PHG73NwcDin4TQo5zjya98K7+4PMwjrbJtWiQFnJNqT1SID89qQOumq0YF8Xs6gMdU3TQlg5mK5B/iZDeXTjpJyYm2849N7iyqalY6WTV2SERWc6vwXnc2jA/syjz/V4G1Lh2s6UiVpmOtSTHqgThLy3U0kCs87yPV2C1YS0jbf+SoJlAduc9cK1znVB55/EHj+Ab73njkxf0tM9NoVs7SCHLva1KvtfCSdU0riugVgSYK8EpX68PgXsJwAF66s/enhZuCSDV6n2a4gAyIhSUUhgqk8rtb/Osl5akhyMtflMemcnYoIj5tigleSbEvqW2lIM2zjpnJ+znLQlrFyVe5ZOUqmHq/9rQgzIMmsPDTXpTbFz6krWi3C+85/AlIP+Qvecvzz5eDgcM7AEZTzAdou2xyQaOxomUhWdQT6c6ZnXiWNIcsrOjRQu3RyUFehgUrFoKlvg/yGUuLQcsUoAAaezbvRu/JuZOZwSjS0VTfMSEi0syiHlSEmBiwZHK7xMc24eJCpzkUzoTtYN8O5GSkzHKmyE2UYWEvw/oaREx2g+I0dpjkJMmmH9klKVGcy1bcSlJZrGsP1Rm7dAkmTzrIZx96mTaDetmqtxwCvUckEpMeFaorSsY6p1LNp1jqIMJROn6Uy163ZrxTmr6JTnmsja0XOPMmoyXVsF7mdfsRjg5z7UQgcaMiUbOnWmhZyrFOZx6FGfwD3d6jGdcRjrrxl6ni8H/xHIA6QX/0rT3w+HBwczmo4gnIeIH/2b8C750P8wu9F5gI61QfSzObj9CLxBJESwWSfAeMHswxEw9DaYBMPqCbmMuvnJmDVYL5aZGBSUeW4IVpjCHRyrmW+Qov0Qir+JVjvuwJYECslRqQAakp2rEqZQgzKZnsUuvYKFJ8OA97VH6rxPQ9NUZx59yYSiCAH3nQXH5vqM8O0WmR2IwtsAKBO7o2kY6kmeo12wfxUgtQyKKGUwzRroCZxSh4emyBJOFAn+bvqMPBXO5kxOYZw9LgIMq5X/V30nPVDoCpEcbXI66qdVUriYvk8dCQr1JSMT3VkoxLCbP0EZl+u31/toidKc8jszAPTLNU8PMX9T/eAaw/ymq0cdQ4AG1OQiz5npieTmcEMX5jaZ0+6yLyF/5saKwcHh3MWjqCcL1ByoGJVdfVUUzF1in1kkoF8Z4tBKvMYYFZKDFZLZQbgOACSVHxIEv6tk5QzD/A9My9TO/pcSjQ5xKgsZQpf58JsX+UddrtIsrNatLk/EzI3pxKbjmK5DFxzSKYpB6b1+M4WimJ7EdD0TZOhd+9BTgv2uzeRhDx33gze1Gwth5jR5Tx2D0BXuo+iDJiS1udixnPQEXKkgl21528O+N6haGHmKzxOgK/TFvCWHkNGozM/p6dLu/jEZaBxqHGaniNgvQ9NKTH7/14kep8xkzftjConcp217CdZMO3m8nNmr0Yikv5fzyKxmerzOI9UKaadr5Ic1kbcdnNoQyAVlXh9qQhYn0UCSPJUyCzlQW/wHqBbQD7tiIqDw7kIR1DOE+TX/Aq8w79nwtR2wUzKupFN9k18drAcqdJVVkWgNXFFXSnZAD31MNESQpTahNx2kYFYvVNaJesy0YzBXBcoHxV8taNI25tz8HU6DXh8MN5kn48tVGyNmcd2YZ1doxmYhYplXS5c5jZ/81vAax7mYy0RwHbFxyX2rdsllOxDdawLSTMv5djmHWmXU0XKHr6QG4DkqjFkuel/X0DSd8EKz5OOBNjZohj3jq0mDk49ZiJ2tox8PBnodGEtYRUTG8hYTsy0rh/JdOPEtELabq4akvtmeC52T7Cstlq08t7fe8DKWH+zje/f32BHUX3IbM7R5ONE4OcbE7VSAi/9HQBAHvyfT/78ODg4nHFwBOV8wnyFwUM7cwAL+isla/1VI7YgZ+AfBgACE6KqARdg2yon1vo7OaCW4lDV9j0s2NyaxtBmxmiWQdEPGcQTEcxeccSeG4Qm+tTOmQemjdB0IystLJWY5djUAZ53aP0+AOC3vrn+7wenJHMiOgstSaW+6Gw8E8FGmfmwqBdMMWHQXnN0TU27AfD8zFes7bcuRnidHNjVsgxQR8TM3YilqCgjYTxQB166+8lf++rY1OOlMtfREfv/KKVQOUpNvLtY4THVRkAuHjl67YqJzQaqzQKveeTxrcUArfSPBS1BHes5LQXmMOv91Od1nxjw/BRTcyWuxPD2/DugNkI+ddOTP08ODg5nDBxBOZ+gHRw6qVgzAzrnRjMA2lZ8uMqU/Ciw9tVAgoqaqAWZtQbH0pFzsMaAqkP8Et8MyioxkBXFwCznHfieJgPobM+6bLqSARkFJCETA3btjK+lVWJ5ZvcEg/+RKksK35/la7a3ua1HJqmR2Cgg7m1yvR7MT6Q5sMxH5vH3yojnbDiWNdKSjg8OFNQykQeeGw3Cmn25e46vmeyLeFdKabsn2H2UeSR3IyGDQc5sz0XLtnbtEjp6iN8TQdfi5dS+/GCWHUqaldDszL4Gz2EonUn6edA26dRjBmZKRLFH292fKI5FTtaek+c9rPeJKaQ2pdnPea201Vl8Xrz59yGf/WdPbl0ODg5nDBxBOY+QX/Mr8O74qGlLRr4RCLW4HzdKU6+UxtBajlWTkMNKPakPjED9hPqQqAFZp8C7cJ26m3tmELZaFE1EmSRkZ4sZj35kPhx7m8wo6GyYipCEe2f4WCmhZqZVZOblG9v52D+4l/sbBsyObF9lmQGgdmJZWq1VMFwWK/l+ZKJf1bSkHjtTtLyj7dE6o6iY8ryMu9sqMdHz1iqRQAEkcWFm61kp8d9iBVgQp9bZnk0O9uQ1X9tJYlBKmAW5aJnnYNMGnTFLZe6zVZTsyx4SDj+nJf2OFs//vTM85msOcR/9iPvY27DtBjkA6WAKculWyk6eJB2NTsEcazVjdrQWBbBpyLqWyT5JrZJVfU5LkAC8h/4DsH11nQuvg4PD2QVHUM43aIeEdnoMfeuoUIOx1AM2S1tolrAcMRIx5XQfWPaA0LN5K+WYd/7qOhsk5rPSHJqHxnIR6Mcs/zw2wSC9WOHdfD9ilsKXALhrhd05fRGS9mA+HB0x8moXmYXY1+B2hgHwD++mdmYYmjHYJUtGBr61ncH3WUumL9G1KinrS2trBik3+EAu5GxKtCRKYjQzof8Kieg4pAxUlRlHX7mAAXm2x3N/sCbERwSl0z0G2H0NPratTXKyWCGZKoiIWE3QUp+ZF23Fbg4ZuOOAP/c2aTyX+MwyVY/SfahQ9+ihgFN9WWfXyMIoAFbKMiNJSFuWcwjjiWKltH56sx7DwOMxqo7p4brpmQBxK/ZN46Mi6U5BnIZLJF6dAs/ppq6VoHK4+T4ODmcxHEE5z5BfeCO8vf/OAkXsm8OsdptoR0c5ZsBakWxD4o0JVcWQTaf+qm5FkUqwLyZ83eGadfnMdtcbtWk2QfUQFy5bCUHLKQsVlmpUvzJfZWBvFRnUL1hh0PVzalDmuiQ4ahq2KpNzH5i2TIK2U2sHk3azKEkbhnZMuWfnqxcBpdjcdnMY0VGBqZYmtDxx0TJLZtM9nuteZMZxql3Rtt+WOLp2Ix7jXJcdS1cc5vtaJSNf1RGvj7ZIqymdbnNiQNHwsUoqUWpkQLNdQQYkY+wjFe1QdSSzmlLLWqi3yjAwd9nx9vCVkumY1A+mMSSJPFAj6RgICVmUDq9cOo5UC6RTm0chr/Wulohv62IoJzOCaiM+NtOzrJjAERUHh7MPjqCcj5gUIzJtFx53ba3KoLuVEoPQnqYF2kLGoKntqCp0LYuIsj6yFuZSIhkPCcSRtIlqNibKpHRTs7v/nS2ZqpxZd06nYA62W9sM2Etlc2idHACvvpOEQF+/pUNioqQCMPHnL36XmYeVEteuGpt+yH969z4uIgYYMOsjE+TGYjinmZM17UlCbU2O9Xb3Gvz7EQN+fWRBfLVoos9AtrUimQH1HpnqcxRAX4TMOSRbJd1UO1rrvVOeJR1YF6yc+OcilvNwuLZeW1JOLNj76XoPlFFgHiXdiNuYGAjRy5nl0tLXQM7xoSrLRRcvM5Om2ROdezQxsGGMNRET90Mbk9ASMXNNCNO+BpB0bHrzVJ/HsAE83OxIioPDWQJHUM5D5LV/CS97N+8860NmJrS9tCJThqf6vGuPMrGsF5HkKBDR6JgfSbsATEgw2dninXA3AvxkzLgtB2a61jGUekzJqy7jugPWntopsAzTEm1GDgb0pTJT+JMDljoKKR8/ULcsSD/kNhPJ7sS+lTMUW9o87sWKtdEOQ2u/Vmt+1T6o4VkxNcJQlKBbis2kTSdCayu3drb0Q+pg1G/mkmUSwV5EAjgImR0I5T3PXjRthZKDSszAnHokI40h3xtkJGRKpMZxPHKyUReNusHqSISjJxUr9Lgi0aF0CixDqUZpsczXTA7MSbcfmhFgOQH2Ndd3QelMptzjdR4GLIe1inY91DNGvVBGcs02d/i+VgmoxcAgNnO9vmiHxrqMvNHvAlGG3PvXxz4/Dg4Opx2OoJyvWBAL+dqIpRCdgaMi2HGdip/ziz/3bJ5OSTwyNJAPx0oC0z0gq1rwUTdTDbq9iIFGRbaXLlhJ57EJEg7tZNnTZHlktcjAdqBuGZbrDjA46jqme/x9T5PHpQP31Ma/U5ASRW7DDjWw6xybbrR+GnOYmWdIY2hi2EpswwqD3AYjAjYXZxyVmAFUM1Q5zDVXDdDKMY9JiUI/ZKlFW4S7EQng5g63/9gESWRzwOuZe8D/fBbP7Y88Zi3jG+F4XTQn41OibdiqD9LPjpq5ZZ5Z51dj677RmU6xEA/1lCklJiweBmZ4p8SkOrJszqGaGQiqJb+WhPT4hiEQjGlp1DnXAzz/d4DER150QloHhzMRjqCcr3hsgl/0W9oUvk4O7M53pWQTcjXO1kZm5qWD4oYSiPT145kK9aoIx7pcdGItwEBRHQGveBQYCCnoh8Ad2xiwSgn/nhzwjnp/w4J7LQVevJd3+r2IWRSdvDsx4Hu2tq0MpKZp2kGkGZFEfDXUjyUVspXDvDgAnqeSdPlk4Ht1aCBg2hF9rR6fopwwy6EajAemmSXxcwqGG0MOI1wpkVylHo/Nh5E4wHw/dPuzPaAX8v1akrl8nutfKgPf2kbyecURySzVKD4+FoYhBbdT/Y27aY5GMQEiyXjo8MVywmzK2megQPIx1TcHWx02mQoRVBO+ODBCWITpk3wpH+rfKyXRP4lzrZJMHUKofju6BoU62OqMqCFLjV7+biAHct9lVBwcziQ4gnKeIn/BW+B982O881aHUK39q89I6jFIqvW7n/P1pYTZgMm+6QR6EXC/CDVnuxIA5OPl5RR6diRoLIgYchQwA6AZkH7I9z86QdJQTIF6n/4hh2tshQ0kk7Eizq9qxz7Ts4yIZmx05kzqAXHJyjSpZw63sc8g2Snw8fHpu4D5xajRWym1lmTVn2j3z0ZmZWsnHAyymim5b4bb2bXCstVChRb981WW3KZ7nMmj3UeADVbUNe5asaAN0Nhtf4P7mBjw3Kifi+7rWGgXgb/ewfLYjlWawh3veBSD0P6FGbAg3T5+LsQ0ZZmmH9lnaKbLOUl9Nd7zzYNGy2VaJiukRnw0S+fl0hVW5uelL46/Wo4bBRu7zmpbee4BgehmUilTeYBXcvoUB4czCY6gnM/wIGl20RuUpeTjwVxl1VRsJJqAw1V+wZdFq6L28pnHO+diAtRCa19NfQaBTEoNpYQZjkM1BjUtu8x2RTwrbqZLZb5+b4PB08+By48wgKo3SOKbXuOwtO1ODqw8oMRhtWjzggDrmFGfFvVCGS/5jJvL1UYkak0Jelry0fKOzqrZCL2IhCP1ec4aQ7YAb1vlrB2AAXe2awQmlsyOZp8U4xkqXaeSiK/voFhUfUrqI+DKI9aWfCzsaTKbtqdppZGHJ7mOqw6TWB4Pqkuqxjx/cUBCosJqNefLPWBQ4nXS86DZNCV7cWBZGYCfDy2Vpao7CazUqOUf7STTz/OxylfaWbY2Lyq3kqWcRw83A+0i8vo7jn/cDg4OTzscQTmPkb/wzTRuK0vGYSBZh07BNCOTAwa7lRJFrYnPn5MDaiEaQ97JpqBfSJixlFBKbIieJwFAOzPUpXRVBJCZZ9bqAMshhZSB3MvZknrJ4vqhg74E5iUpSwUZUEu43W7BZgil3tod8jrzuYUK1606CLWrL0gZpSpttdr9oz4ias4WZuvLLxvhu5tNHHvVYctAdSOuZW+TpOP+aQbny4/weAZi514frs/mjGM8u7EgLro6dG9ahKMH6o83cVNN0FIZuGszr6vOSVJ/E4CdTqMA+LsPPn7f39lKF1qA5niFlBkfRSEFvr2V5cOZnviUxDyuxTLX1pMyzyA0ogDYSIEg53kezxCNG+ElPj+rXemOijJrCz9W5ifIOW26KK3V+vnQa7hU5jV5ZBLeyn8HvBz5P/qpjbfl4ODwtMMRlPMdkWQRAH75H6zzMTUv29NkoBmEzJBMCGFZLbLsoYZkjQG/8FVnomLJuY7pMtSfYlnahCMpI9VGfK96V6wWuZ+ZHnDvLPCcRWYYdPqyZivUEyX3qA3R9mUlQwDJR+oDo9zaVXuRlXQAc7nV33MRdqrWRgcllmO7234iF9VFIQ26xgemmTXZ0WLA3tZmQPzOFpZ7dF/KRzKP5Z7ayITAjQ3KFgDJ4gUr3F85IZl6aGr95OReZGMO2j7Xs1Cx7pnY53VfLfIclsSx91vbSZwOioHa4SpLUvsavNapR0K5bj19DmF8aIr7UQO4K47wvC1W+LNdNM1J4gPFmJ1MgJHV1DPCoeSklFhmaXOHhG8Y8DMwJRqXfY3Hd2+p9iQ4ah+K726mFsjLqcvqFOB99C+Rv+Unjn+tHRwcnhZ4eZ4f5xbw3MHq6iqazSZarRYajcbpXs4ZBe/rH7f5Lpo298Dg0JRyiwZPnYrbLdgdu6b2p3vW0dIaE0puZMXeLjJALlQodowyBthAyjOrMl/liiMMgN/bZOLV2Z7tV8WTar8fZlKyio0sdQs0mfNg9vOtEglX5rHssKnDUkeQsWNJW3lneiYY1llF4yRpI6yUgC9czHN3+RHu/46tFLA+7yDXd/809wfw2PV46zJhOvXMyySSMomazm2EA3Weo1Jima2/3slAPdlfywR4t/0picdSmYRL9SyZEA2d+HyoylZgLfv1IuCru/hzc4ei3Kk+dTIv2nfsTI+uTT1TLlghQdHOpaF0i6muRIniRuUzNWxLPTPJS6SrqphSt7S1zeu5WLYOowuXn3h+UT8EPnM5ia2OflACG2bAVB/5P/i5Y7/fwcHhhHGi8dhlUBzWax0SuZPWVmDt7FF9SFkC/4zoUTZ1xib1+oCXWbunkpp+uM7VEwADcavIoNEq2YyVnpSEhpKx+dpOBp1qzLv8WNqPh6J/ycHgrWUcwMy8PJgeRX00YtHTxL75vqzK+yfGHEk1g1NOrENF7+SDJ+D0d27hdq49yGPX0tQ2uaM/VGNmqF1goL/iCPC/L+D51fLFKCCBuWiZ78lhQ/E2EoBWYxKjkRzri/cCz1mg++wP5ux1/Yjn+crDXGenYPqPiYE50d65hddzV4vH8Owl4IX7gf98JUlPpwC8/DErmR0PW4VYPTppZGd8fo4OYAxjy3jlMFEtILqnxEYRjLvVxnI91fDtQB34283MLKlN/rOX+Fp1ux3HapHkq1Ow1nGd+6TOt5cswvv8p4B2Afnr33D843VwcDglcATFgR09d38YCFMgi8ZcT0PLOowHZ/2Cbw6lFFExN9lRQBKjOodOgQGtJK26tRHvwAG+pi4ljPEOjUS2odub6lvmohqb06u2q2pb6WyXwWpVsjMqiFTBrwpjC3K3rdOHl8qWhfFyK2NFmbmXnuhgvDu28efVh3i87QKJw3MWTXDaF63EbI9C1k0desE8PLneU2YQmsg1FlHsdJ9ZiHaRJYy1azEAnneIJYpOAdjdpO4FAC5bgJf+Dn//0YINgMykm2lfw7xLIHbw1wLetTevP7bJPvB//m9u/6EpXkf1OFHfmY2gOhL1utE5SpEY7U2Ij0s9BuKiiZD12kapdfaoGR5gDsgV6bC6dxb47iYKmvWYgtymbgOPJycAS44rJTPZK8vnYyhC750t6qBk7ID3yL8H5rrIa/9y4+N1cHA4JXAExYFIfGsV1c4X7WCJg/WOqqo7mZYpw5WYd/oPTFs2ZrlEMrGvwWxGc2iGXs2B3Q1vaXMf2pXSLjIzo4G5QqFt/pJfesJD8Pa9n7/oHbVmSnoyobcaU6+wXLZpyZMDG4RYHjHTMdPjmnQi8xNlCABmgQ7UGDQvWiZ56okWQs/jvgY1PdOix7hgxfw6Llng79/bZNOgD9UYoKf6/Jn4DJJRZtoUDbirRR7PVYdJJJpHZVk0QGu7NLDeGn+1eGyNy9HQc7O/YeW71eLjNR+K8Kh9Tw54jeYrRoAzz8qGWl7UWUmaVUk9y5po51g1NoHt1YeAyaYRwccmeEzjJcbU52drR8seW6jwekUZSZdm74ahnZNyArzyUSO6uQcv+R3k4f95YufMwcHhpOE0KA5r8L79n0yAGIouYrzOr7NneiFQkTIKwGC4swXcO8PAU45JAsKMwWC+wqA/OWA3TiXeuEwBiGU5fTPyLf/kyR3HD/4j15H4djeuLc1KxPR3FQM3hiRLlyxatudEcfcmTmQupGx7fs4i8NAksGeCglUV3C6VeW4vm19fnohSEpfE53Z2tkhy/monRaPNgbV6a4fRbJeBuJRQwHr/NMWrVx86tnusnt8TIVwngkcnzeX2SJXHNtu1QYwbZSvGj3lfgySuLK7E6n2jNvVqnuflVkasxlZu0/bk8aze0fjspXzPi/bZZ+7PL+N1Uj1Vu0hCslokQXlk0lqgL1gBXvPIsbevLcuHa8h3/daTPZMODucVnAbF4eTRGDITMAitLVf9J9TSXs3OctjdZJCx9Vj1BWHGIDMST4xugUFCp+teuLzh7nPczP1OyL8nify5byNJqUqZZrlknTs6EE/9NepDlhkm+xSJjjuPPhHmq7xLXynxjtwD93eoZkRtYmBangtWrLzVD4FD0jG1XOZ2NndIMi5a5rl86R4T0mrJI/WF6Iivi5ZZdrVIbJScqL/L5MCC6xORk30NZhI2dU4sm3LhMtegHiq9iEG+LsZqWio8Gjo9WTNqw8DOXewD+dhcKPW7SUUcHYyJhsczKsfC1YeB/3YZs1DaGv3KR4FvbOd1uvowcN1+Pt6PWLq6ZJH7v2RxY4H3+HnU872pA+//+X+R/9zrn/i8OTg4nBAcQXEwPDbBANmVdLeX8w5eTcmGgc3n0cmxcSDzUMZbcKUrpCWP9yNu8/J5BteFCi3uFbl3yge35c99G7x7PgS0QtO4qIZByx3DkAHyqsNcr87AeSIMQpY3Hpnk+djUMf+UfQ2SD9VkzEmmY5yULVRYDgN4ruYrJgjVIKr7UcFop8D97JlgwG6VgAVfWpc760sWgAiJRaCr3Vlezmu1EQkbhNSvbOmc3CyeKKU+4+EpM2VLhaz0ItMJdQpc63h2R+cbqe9O7JuuJJXP2FCM2QKfk5S1SywV0twuHjsbB/C8X/9dZni+cgE7o+a6zPrF4jjbLvKxcgK8YP/69280z2gjkldKgJ+7Bx7uAQDnSOvgcArgCIrDGvIf/UV4f/sRBolByNLCMKQ2AyDZAJgV0TtXNdkaH/Kmg+E6CRCFzAi0ZULxoRrvhL+6C3jZbuBg/UmXcp4Q2mYcZEABZgJWSpi1mOkx6DePkTV5eIqEQx1I+9I9FGQkbi3RbeyeYPaiU+Cdel1cUuOx4XTjmY1HJ80PppSQhGxpW5fPvgZbcfshg6fOugkzmxs0EH1EbbRxZiTxSUR6kQVwJWQ6pXkcpQT4sYds4J++XrMvCxXuc2v78WJYJRibulyPGvCp/qdTAB6cBuYmqL2Z6Zl+RkclaKdYKmWdKLOuHP1cqXtslD3eYVbLQRuVYvycpnSLFV6TA3USqcuP8Fx/6ULgjfdsTHTGyclG5+0Y8HAzcKCOfOvT9Nl2cDgP4AiKw3rEPlP0pYRf/sWh2doXx4bmrRYZLAuZdb/4OYPptlXLENRGzMwUUpZEqmLnfrAOPDqJ/MIbn7ZDyV/4Znjf+DgzEDoXaLlkYt8dLWvjHce+BknEopRSkgAo9G2+TJgxI+SBpKVd4L9Iyl06vycYkbBoQG8X2WUyMSC5UOGrlkeCnOdlvso1FFL7mURm8X7pAsleMeHcIg/MEKjB3FyX10yHLnYKRiAP1njt5iv0C9nRMr3R9lWuRUXCvcjEokrS1IlWNTHa/VSV/a2UzN31UM0IWHPAz81S2T4DSjxWSmau5+f0rIlya/Gtj8zmXjuj1lxlPRuFUB3ZedRsnpfbnKn9DZ6vH32YREvP51TfdC8bQTUzJ9rJpTb6B+rw/ubTyH/q50/4M+vg4GBwBMVhHdZajjPwi7tbYBAOMwYgbR32wC9tHfDngcEjEGGsDtHTks9SmUFRg8s1h55WcrIGDcxBZu2wL9hvnR4acMdx9xwnLKut/bPFMG2xwgyKZmaOVIC5Ho9HfUT8nMRGhyCOl17qQ5YWRgEzEhpMtSPn0QmWGbriEzIKGHQ1kA5CllMAO6dqfhZmLDl1CsDFyxTiqt5lHNN96iyWyswAHRQScdGyiW6/uosDAwPpyFIb+yjjNTwoxmtVmdukmYcjVX5GepF54GhWY6rP45zp8bFSYqXAHOaNoromFccOxXRPCbISj0JqnV85LJNSSiyjpFml+hD44X3Mcj0wzTVrZmT76rG7jzLPPjMng9UixwG0mEny/uz/Aab7yH/kH53cdhwcznM4guKwMQYR0JN24ZJ4TyShZUoKKSf7IjUxo1rR65RhnTTs5Qxo7SIwOUD+T370mTsONT1Tr5Qfe2j98+2iEZRexI4cfWxiYJ03++v82Yt4x1+WKbw6TPGqwwzkj00wM7FUZmAcnyWjnh67mzZVNwdt7w/WeF63r/L9OejSWkgZ6Kb66+7M0YusO6gxZNblufOme6kfFVRHgXmIzHWBTgQMJOvSj6jN0M6Vl+3mZOrNfRNHNwckaIC1nBcl+zAKgAXRnMSSUSkl5j9TSkh4SsnGOp9KTPv9UWCeM+MlnVzKOarrGZ+1o4Jbzb7oz6PFs9MyE2jH6uMJ6UZIpUQ17gG0ETYyfpsYSHu6/F0fAUFGL5ogc/oUB4cThCMoDo+HtuKiZN4omiKf7Vr3RadgwwIzz4zPwgzwRDybeQwKD07zS/s3vwXgGSQoqqkox+uD9l2bGZS1SyPxgf9xCV8v3itrA+3UJ2MUkAjo3bc6z870GMBXi9Ip5Fsm4L4ZioMTn63HqyXb32yPRKZdsLKJztKZHBsRUB+SCAxFhJv6Fsi3tXlcP3SUuFODukI7ZGojOsxGKa/nT95n2aRWiVmcB6eZUVHPm+UySZOWdRpDM+lrSXllqk/CMpByUEUM9aqxaUlaRa5hfEKyugYnnk3Hro2MnCjBGx/MqIRBCZs+plm7dIwU6tBIzc40B0YcjoZqe9QpOIfpro71ehVfHy2kfelu/rx/xlraZa0ebnYkxcHhBOAIisPjkD/vrfD+5qP8Qm0OTVsw3ePde33EoBpm/ILWLh91CB2fndKPgOIAeO1DQH2EPHrXM3sw1djWePUhPtYpUNiqpODBaZILDeBBDrQjBp6ZHkmLpvrLsXmaaBDdtcIpuPMVni+/z2zDQoU6jG6BwxQfm2BwnOuKORl49z0MTVAbpcB1B0gWpvpmYlZKgFhcW2e73Ga7QPISpY8/7o06TcYt+i9aJkHS8swoAAoJcNkC/x2u8XgaokHa3ZT5N6CRnpZcCim3o2s8UGdmrSGlrLaQ2FhEwUtlHu9cl+/XzM7hqo1DCHIjYOMZqG/sYNlKdTPaaTYIrQyjIxvGsx5HZziO1Wqt2iQlPktlrmMUUEi7UAFe/YiVzjTLc7yJ1vMVksqJAQmPkCNPCIojKg4Ox4YjKA4boyjtxFva/FIdBiQb1ZhBB7C75NwDhiHyK37ttC55QzSGDH6Xz9tj//VyzskppuZ0W06ANFo/EVkDVeZZx8lMjwH8wSmStlJC7UfqM/AuSuurdrHkHoP7s1Ngpg8slEk+Nnf4c0vHOmNGAYNzQQzPxi3al0Wwq505OuDvW9v52ihjZuRY8PLHzxBScpJ5NIgLpPyTg2SqOWDwn+ozo6PlssizLqVqzPUkUsrb2eLjyyWe+4q499ZH1JL4YDnr0QmKfQehDacc78TR4041mwf+rA+NfCjR0HKSfh6zY6VIcHwyoV06Kv7tRfzs3LOJxEvnRilB0cGCx/NiecF+XseuTJOeHcsefXczvPIHgO2ryCvvPPY2HBzOUziC4rAh8qt/Bd73PkxBpN75LZf4Jb6jxYAJMGNQTJFP//PTudwN4T3y7wHPA16yZ/0Tc116YhQTBs5p6eLoNq1FVifkHqmyfXbHKrMh1REzSV7OID7VJ8FRwWoS8a55KHf1GlAbQ5KLZy3J1OZMBgi2uS01kAM2Nkl7eNLEug9N8T39EBiFwCBg8Jvu2TTik8GidPSUY5KHSRlF4GGNfGJyYGWM/fKZKKZjk4g9ANKdVY5tRs/RXKFTYPZnGJAcVmITvaozbHRU9kMMi/G8g+bhooREBbHjupJjkZAnErsqKVIBbuIDD8yQaE4M+LySTkBM6Z7A0K6Qclr3Sgn4/ixwOczXZqHCz9OuFrz2LcByCfnO3z7+9hwcziM4guJwbHQLDBrTfQZV7X4YhNRHJD6/ZEcBMH26F7sBqvF6vYOiMQS+u5mCzZ0t+p1cfYjHNQgl8MZGHIbSobNrheTgQN28XrqR+XC0iiRwhdSCYZDbPJhKbGWcg3WSO80CROnGpRrFdWMGbkqKco9Bs1MkYXxwmkTiRNphD9XYSn31IWZ1Yh8YlexYhwEDaTQi4WoVSVTqQ2Z8dO1BxgnUXcl81HvWvdUR6/o9TctMBDkJVSjC6ZUSz1VJnHH90bFLMOMGc0pITpVtvyKXrFlZBMhaYgpyXuvHJnjdJ6VzbaNkzSAk4QsyZqZW5VrVh5yyHEorupaeggzw2CHn1f4t8qmbTu0xOTicpXAExeHY0I6M3c31wVWt7xuSPdlxht71jQ/6W6iQlIQZM0Dq7fLwFEnKnqa189aH1hEC8I7+QA3480tpKT/bpcB0qg88u0P9SSmxltlLZM6L2s3Pdk27o8MRd7aOPd/leFAtUOrZUD3VQjw6weNTwWzqs+V5nKS1i7R51zk439nCzqFCCniZTLT2eG1V3Jr4FAfrvJx+CEwNTCNT7nFbfm4uxJpRaotfTurznBdi03W0SjzXQxEmX7xoOpSnAzr353ikJvVInoKMx/ey3SznHajzHAWZtYGXZQ5SMeFn5cIVbruU8Jztr5M4Rin1PTpJu5Qw07VYMTM7QMwNC/D2fxjw8jOzZOrg8AzCERSHYyJ/2Q0s8+gdcWFo3SmtEtAqIX/+Pz7dy9wQ3vK/ZRYAAP5qFwNmY8jgWh8Bv/cFthTfPSc+LykN2VTbkXsMHqWEpa3tq9StPDRFwvHsRQbVQchgMwqoV6jE1LvkoHV8fUiy8oNZai62tLmmjcjJKGBA83OSkPFSRe4Bd27ha2pSltrS4RpXi8xUDAN2J6Uej7ckmpWHpoAX7+V2VkoUCI8TG50IrMEzShl8Ex/IpctmYkASp1is8DV1cbOdGFgX16IIiIehTSJWwat2f1ViZl0O1fh+nXB9qjEKgG9v5TVeLnFdP7L72O7BgRyvlptmu1aOAagj0llAzSG3+Y0LeP5Tn58LgH41D02Zjkl9X1R4Xk6YldrcsfPx7EUhNg3Ay+H9f58EaiPkL3rzqT8vDg5nARxBcTg+liX9n0ouO8r4Bbq1zWB3piJKzXNDsyKRihXLDDw7Wgycf71Tgk5irbSavr/6ED1OAJIL/R2w9lWAgXn7qv3tgYSoW+A+p/rWtXKsacP7GsDfbmGgWi2SPG1tMyNzsEb32BnRmahuQwNtYwjcsY2B8KEpZocaQ96d7zrKLO6F+/j8Uhn5a36Ry/3aH3GdqQfsGDtv7QIzMAsVlqnmqyJizUnItL23Ki3JmWdC3szj8auFf3UErJT52qq0Ex+uGQHaCHubJFt+Dlx5eOPXjOPBaRK5SxZ5nu7azMyN+sbsawDf3M6uso2g85oAI1abOjwPZcl8RKlpZi5ZlJlB4ePLiRlINEPJthRSrmVeDP9SMZqLA+CwlAwjIZraAbepC+/I+5DP/bMnPnYHh3MMjqA4HBcbuV963/wY0Coif+kNz/yCTgAebgZqYw9oYFgVz45OgSl79fCojRgYKjEwG5OsLJbN32MjaOdKY+yuX7MEqlFRZ1nt9BiGfF/ubZxBUW3PjlXgDrnrf3iKd+exT33JTE8yJgkfU4Iy1SeBCkQ8e6Auni6j9TbuE4Njk4GG+K2sFrmOQSjDHkNuu1sgCRuGZghXTPgatcIfhtZyvLXN9QU5M0raoZR6JLcrJR7bRcsseR2NOAC+tU1m9PjcxlVPQFI0Y6HjByqSHeoUrB15KILkJ8rY7GlS2PqC/cff72UbdE89MglMCCnWcQOxD9QzZr/UAHG+ClRWeE5UAzUIbRK0ODd7j34MiFLk1771+Gt2cDiH4AiKw0njTE45q78EAH7J37WZBKESi6hVbPoHIYNpW4L9SonkYXLAO1z103hgmsFmU5fp+EJC0vDQFIP5JYvrLeW/uZ3W889ZpAZhGFBgXJTgffHysTUQzx1rhQ4zEp4dq9yPWscnPgNnKVlPnsoJyzjDkMFPnWpXykZyjp54DMBLfkfmJolmRM/BUpkBMoGdCxW6ermVQMKM5y/zxHMm4TlWV2E/Z2BWMlBM+C8cK/mMt0dr5kWJxPZVXptDNXqRpD6zX0fb06c+M0D9kNkZNV3TOUfqeaPjGm6/iAToFY8em7DtWmGW6FgZr+PhomV2aN03wzWUtUU8ZIlnGAAdD8gCnt/VonWD9WWAYlGygAsVEsTFCrx97wdWi8if+7aTX5ODw1kGR1Aczgl4uJnBae8023GXytSAlGNzJk18BobFsjmT7mnadNs4YFmlMWQ5Jcj53DDggLlhwEDSiyi4HUp77+UyoXeqz3JK5jGwfW0nCclL9jC4FhPxBJHW1EFIsrRRNuWCFbYkTw7M0RUgASmkRrgUR6okJQdrNuxP/UCWyhTQbkBQkPrr/UdqI2CmC+RVPl9ImVHSbIr6wqgdfZit92vRc1wfWneTtuyGGVDLqV8qJSYa1o6cb25niSZKeQwXLfMcVGKSxO9sZUYl8WmYNjHgdWgVbSKyWs974GPdAuDLMWxtmzh3UaYz//llJHYbecj4OXVDR7vyPhEOimfKQ1O8jonPczfdM8Gxis6DjNdMDd80y6dt2l2Za3S4ZufzomV4X/0EcO1B5LV/eXJrc3A4i+AIisNZDw83A1/fQUIx2yUBWajYXb46hLbGWlpVtFiOGeD21+1Ou1tgIFgqM0BM9xn858QQ7SsXMPgkPl871acupxtRuDoKgOcfYHblufPc594m13W4xozLt7faXf5cl6/Z3DETsqOnLPciywhoh804BqHMAara8XWlrKCDEg/VHj9AMBVyUpdtFlIG75meTSPuRTxPKpbuh5w2XEosu6IIMpIDLeco+ck8nh/1LdnbZIbhWUt8330zvGZ6/KOAr7lkEaj0SEa2rbI1ujok4aqPTAitnTDqM6NZKtWK9CKbZ6TTlpWk3rWZROlo/5lW6djZlWOhF7GV+DmLXF9NBirG4sasM350TMKBurSyh1z3SonPt6VlvR8AwcDI7IG6zRs6VIN36I+A1HeDCB3OSTiC4nBWw/vWx4B8uwTOiN0yE6J7qAsZSbyxmTxjJYbZHvDKRxmYHpgGvreJBCPM+Hu7wIB+xRF28GzpMKht7pCkPDjF7R+qAa97gFmXh6aZli+k1C4ofuQxBpwHp4D/+SySAC2LqEusutiOZzr2Nbj98QxGMWFmZtw35cJl/kt9mrrtlY4bdcRdKgOffxYDcTHlnf1chy3kI7XZzxg01TFVB95NDGxGkWZNyrGVPhYq1kbcGAJl6VRqlazMk0P0J+ITMzEALp3na/bXGZxH4r0yiGxScZRy+49NMHjrXKWulLC0fKLtzXNdnlvVneiwypGU2rR9fBjwehZSkqN9jfUlNuDYnT7HQyXmdVBhdOKLY3Cbn8/M4+dSDfy2tLmWQQj0C3a+IslK5SCB0TESraINdVRPlpc85qzzHc5JOILicNbC+5PPAtGkDJMDswfPXuKXfWNoU5Qn+9J1InfOrSJLMdrl86MP85/i4Sl2uiyXJfCvUNegd+W7VoA33cXfl8vMjNRGNsfmWAgypvc1gDaHzPgsVLj+PU1qThSZx4zL7gkez5YOA9dqkeWQpghed7YYvPtizX64xjv5TR3qaTxIy7KUrMKMd/nPWiJJi32SljCz8tMwZJBVl1jNhmg5Rru6AO5r9wTXcsURO++pZCs8IT86nyfI+J6WCGXvm7EMiLYmR0IwHpvgupQEaWlJ25UTX8pSPZZwdKZSd2wAY1+6rVZKwGXzVs7ZviqW/f7xJxafLHasct3dgrniHpLS22TfskiAaYqaQxLf6R5LRB0hKzpvKPN4PoWbrHUAbVqfEXODCB3OJTiC4nBWwvvUnwFVEbcmPgmItvLmEkgTKV2sFm1mUCKCzb6k1Ddymr14if8Uq0UG4Kk+icp4MJvsG9EZh/rFeLBgpKZe29psJdaSzu4Ja9keBqY3SD3rugnFe0MFs3dtBpJJ4OrDfEzbl688wuD1je0yiE/aVtUBuChlLw/cZyXm6xtDZoyGoYlJdWq1ZmqizLqXEh8odrmtna31XTh9KUXpIMBEiEXqc7+Tff4+1yVJWS7bQEf1Y0l8ruWRSfPdqY6kuyhiBkjLWh54Li9cBr65g1kHHVJ4+TzXcd8MiWFTRg6oriTzuI6t7ZP+DGL3BDNiAzlnc13LJK0WSUj8onmjKO6Zs5bphYp1NtVHkmnKqLUpJby+h2o2yNKDEatLNybD3vK/Be7YivxHf/Hkj8nB4QyCIygOZxW8T/x3fjmX5At7FPBuE7BuiNrIzLZUxDlf4eO5Z3f2VQmQx0vlJz4zExr0AMsiqKvu0bNfMk+s8GUysrbdjgKWkiYGLCk0hvy3awWoitNtu8C0/fiU3pEIT9sFmxF06QL1GPvr3F6U2ryY5x8gMfjBrJVABqHducc+59ro3XlO4SVWSsB/fw5wzSEGWz8HeoF5g2imoS+usXduYfvteJfLMCSB6Ebrz8nEgNsfyQyeRLx19teFMOVGUJpClgaiX1GyNwyB5x3iazZ1bFtBJsHdI9F4cIrn7YIVu7azXaC+2Yzu2kXg/hkSHDWbOxb60u3Vi3heghy4f5rnP5H2Zy0hBZJxUiK3UiLJUk3RD2b5nJatEh940T6aBh6s8dwDJMh/tYvb7odW1sk84PMXU+OiBGVvc31ZcLIP7GnCu+1PgUqM/JVvOvaxOTicwXAExeHsQnNg4s9exPp8RSYst4osWXiwu/fU53NxwACmKX31wpjqM3gfayKtnz8ujQ6A21qsWNZBHVjVLVR9P5ScADbL56Ep/v29Tbwbro+A788x2MY+sDwWsJfLoj8osDx08RLXHEjm4lCN5EszLIorjvDfQoV3+vvr3Lbe5QP8e3OH5KE2IpG5eNnu1IOMJGYUkDSFqbU/PzpJYrhYMXdcwAScgOlIVosM1BMD0dmkPPff3TyWjUl5XJctMBPy55fZuYzlNc9aslEBAM/rlYctw1ROmK04WOM5ne3yOqk+RfU7AD8rOqxwpse1TPe4zqUy3/+8g3xtOWFW68FpXjs/5+uC3DJDmonyJMvUHJLI9UMbkJh6LLFt6nIfuWcE7/ljs5YU1RH3uVq0z+h8hWRmtcT1Xz4vs51qXJfObPqxh5g1qsTw/vz/Qf7TP7fx59vB4QyGf7oX4OBwUmgXLaj1xPlUjbxUXKgeIXVpL86lVKKZDe3oOVQjcRkch6cfazKulzOgXbBitvSpL90WOQOUdr0AFqxf9QhdTK85xPR9mDGr0gtZGtCAGge2vVLCNa+UgP/2XAa3KGUAq44YfNUUTluLFTM9Bj8t05QSvsfPqZXY1bIyV5BRo6HTnX05/tyzYYaeCI23r1ob9jgaQyNlqc/3rso44jiw+T47W1yXl1M30ynYEL67NgsBEFKxVOb+Xrj/8ZmOK47w+DOPImWdRq3HlIhW5fuzRiK0zTgQXUynwM/SYxMkD0oI75mz6zbTI1HVbF1txPdPDEx0XUxMRJzKddRS2u4m3+vLOds9QZL87a3H/uxdsmii4Nc8DPzs94Ffu4OC7NhntmhiwDUfqTKjpaWr7at8fL4KLJfg3fFReNm7j70vB4czEC6D4nB24Y13A1/dxYzDKLCuHO0YAfil3he/EJ1JAxgRUe+R6b45iia+dco80YTco+3qZ3pS2gilJCS/a4uquqAqWblghdvIPAaSMKNQsiatvFFogVjJQRCSUFVHtOaPJaNwxRHbtwb/jfCcRaC3ygyTnhvg8ZOPK7GVwTJIWWyD7VViZl9mj9LweJL9yaUEp2REPT66Ec+LtjtvX+XzixXg5Y+RSDw8ZW3PnQKv1ZbOsYcr9iIG6CXJaoRSupqv8nrEkuHoRczUrMhnZapvpbc44HXM5Zj7Ec93t0DSpnqcfsRyjbavlxJ+xtTrZHfTWtiHATvI1L9Es0uqLzpSJZEFmCnb1+C50XJNbURicjT+3gP8pxgF/Lsfrv/sXrhMwre1vfa5cN0+DmcTHEFxOKuQF94Fb+ojzEComdqRKoOEtupqKr801lLsy+taRduYBpidLQaI+vCJyQmwsbOoBs9uxDVoxkat3zWg6XvVfOvREoOjlj7muibyLaQsCx2om7D2b7ZxgvQv/+Tarr27/pCBd3zp/dBKT0tlmwlUTkxUq+fmaHg5sydhtr7jZBxhxozCHds4r2imZ89VYmA55HqWS+vPtQeuZU/ThLXXjZU35rosH+msmvqImYCjPUoUg5DljVbRzvUL9vP47p3lse5okQg9MC2dMBn33Y24jtmeaWwemaQ53tY2yWA/IqFpDC2bsVpc30Z+0TLLddpNFAd2DnXysWZu1E+mVbLrpWZzOoYh85iVO54uRqEZwEIKjEKbwQTw/cfYhjd8Dx1pZ92MH4czF46gOJx1yK99K7wv/QkDwzBkMO5FJkzc3GGwiaXsU0yNMOg/LzcL/MM1mccjwXoQMgBrsCjHx5/bovbsudyV69223v3XxOysWwAKYx0/QQb8zXYG8ThgRsTLqQMZz07MSOvpdQfo1bGvsX7/kwNqczS9r34ZQW6tvXNdK09UR8DkUSRLhyQWUzO4A0RUG6z3XFE0hgz+390szrYjloyCDGgMgE7Rzlsn4jnpCUnycpY3Llpeb9m/Vczb7p0hAd3cYZDfJV9VR6okbCom/eZ2Zl8m+zzuILcp02oTv1qkdkWH8emwxcOzPLY9TR6Line3tpld03KWrk9F1wPJuh2oW/fPlUeAv9pJApaDIwY0o5d7Y6U/MY3b2rbMzmSfv29r83XfnwVe9eixP28A162TolXjs3uCa9QyVeKTiB2dJQOoZck9eId/D/mmf3r8fTk4nCY4guJwViJ/5ZvgffcPGTxmejQ/29qmD8qmjgxfE+fSyb6UJCS9rne4KyVrvS2kDFBqk96L+MWvepLtq9ZtAjAwqD9IMWUQLUnQUhHr9FhWoT4kmerIVNwg47r/3gPAX15imZ/dTe73R49K7asQ1WMmyHv0U7KfDLh2hUH6SImPxSJqHYQSvAe27o0EvwDXe6zyVpSulQQ83Gx+JAB1ErM9EocHp7j/ua6VsFIhbnXprNKpx5MDvvdoZB6FwJ2CkcpiSsLQLlJnMZ7BagxJZjRjtH2Vrr7bV3ktlsU9+M4tJD6XLhj5jAPLeKnWBeD5f2yCnyfNjKkYO/fMcG1Pk4TxOQs8b0pyVIy9ljkTY7utbRK4725i1mk8K6TZpL4cwzghPDqLpYMP9Thyj5/ZC1Z4Hb4/y4zgZJ9/v3Df+nO8XLZpyb0I3uAPgNRDftGNG382HBxOExxBcThrkV/9KyQpW9rAz9zLL+NNHQtg5QQojWU/6jKATYWPic+sST8EOg0G0ygj0VAHUh161xwwQM50jWCoaVbsS4pdnGA9mNHYeNCPUr62P6Yxme4B13/XMhZfupCB51hTlMsJO13+drPNvTkks1yq8fq5MVWZ0qzHf1SZZB3p2Ogu+1hYKq/XnmgG4IojNsRP5wX1IiMDmn0IPWZ46keVbQ7XeP0qMfDDe0kqdk/wevRDYKHM7WgbeTEhydHrvbljrdyaVZsccG0AiUuQs3NmT9PIoK4X4PXrFkzvMyfn7gezvI5BJp1MUkbcX2fG5NIFGy8wHFujCnivPsS1qrncPXPMlKn77vj1VcSBzXvycmZGlKeonirIgSA1w7rmQDrIpL1+qUQCpwaC+xo272e5bFmhSsxBhIUU+Zwr+zicGXAExeHsxsSAgQCgmPHo2SnjX/jq57FUNjMw9RZpFxgAuhGDQk86MAB+gd8/wy/1xlBaazsiaE1NhNspWODWibyHayQhqoPZSBMwLmx95aNmPKd34cXUSi1qXb9jlYG8PjRjNRVglmMLoP2n+F9csiXrpkQfLYwFmEVZLK9/TL1XqjGQSGuxko3UN/O7cmyalnFce5DBtC0ljHmZVaMD9LZKy/EVR+w9OtJgT5PnZabHdVRiXs/5CstCh2q85s2hndtSQkJxuEqi8f05oL/Mc/voBPdZTkgAco/HHGZc4x3bqBea6vM8pCKa1VLLkSoJinZc9UX/0g+Bl+229XfE7VhLOJG4+y6XufbpHo+rK+XDQES/Hfkc71g1Tc9QhNV3z5GchRmzSpfPk4yrADrzgBWZ/TMxgHfw95Fv+SdP8gPj4HDq4OV5fgKqwLMfq6uraDabaLVaaDQaT/wGh7MGHm7mXeLFyxsLWMfRKfALfRjSbOuiZXa4PDohwVOmDfcjs00vx0CvYL4psz3LwlRHDERqr+7l60sq6l6bebItCXA6Pfh40BLBaIyYtEqmnblrM9f6nAUJWCnX6oFBvBpbG3bpKEGsDkbcCEtlkoeFCrd3zaHHE6ujBw9mHl8/MVh/Dcb1Oapz0aCo5mOVmOubkKF4UUaSqBmY/3EJn89BwqeBe0sb+Dt7H+/kOxJdSbtIsrEiGp/ZrvnHfGM7PwPbVq2E0pDrvli2zq4tbRGiBtSVTPe473aBnwMdPdCT890c8Hc13Ltwhb/vbNk5/M5WXns9B9tXedyDkL4nL9rH67q3aRnB3RM87saQpGq5tN7PZrpPge/uJs/b5fP8bKpJ312bmQVS19xCKllAIbJBRlHvKDDzvq1t5NP//PifUQeHJ4ETjccug+JwbqAWMyB98SIG6ELKbIQGEO1oUfO2XSvr7ew1eOg049Qzp9hiCvTAwK328K0SA/RiBQg75oyqX/JKPrTt1oc52eYAwicgJ7kn7clCdPzc1lVMGMAaQwbQcrI+U6RGY0tlc5dVcjJfpY36oRrwQwdYegAYALVzZH/DhLh+vnH55+ipyH7++LEB6mKbQzJSuXUzqbGamtqVE2YJlJSMX4/L5qkJ6Yg7r2ax2sWN26oLqU1J/vKFvFZTfeqTLlixbEOY8XxMDEhymkPzURkFzFikHrMwF64AD/lGKpSIqedL5rHcs6NFncl3tvCYxh1eFT0ZaqkkRjM8CxWSjMuPGMlBjddYze2WymNlSPmcdQvW8fXIJEnO/gavx44WM1Ev3c0usJUSsyg5AAQk034OlMRuv1XhdpuDdZkz15bscDrgCIrDuQENBD9/z+Of00xBHPDueFPHAvahGks7ZTFDCzIGv0cnTPCqpYA44PPqmdIW4y11tFUdwGoRyIvWOZMwdb5mq+/BiIqHjYWpObjGWLqByjEfa5WYXdjXIKHYqLtI9Sv1Idfm58C9EwxaPRGFtosMkjtbEpwHPIZ2kYEZkM6jiJ1GjSF9NXSOzdFrHm8bVmj2Z9xATt1pAWu5HYRi1Z+azuPo7aj497J5nuOHpnjsqWd6lI3wvINcdzmxElJzAPzdB0kIWiVer2sOiWA64bndPcH9bmtzG+0idRwH6uZVMl5O/NstvF6bO2KCJ+dCHXQB88+56jDJxozH7ddHLAFN94FLFmxwYiWmj4rOaZrrSqlL5vfMSDan3iYB1rEJd22yz9eWNtfcLpDgdSVzVhvZ5OraiNtWb5hexG3peIEc8IrvBrzcERWHZxSOoDickfBu+1NmLl6wH2gOTs0XY5RaCn68HOFJa6pOi53u8d8d24Cv7+CXfiFlOeBwjaRGLeDLiQUU9cpoFXlnDIjpl/w3aw4YDHXSsmpcxgP+MOQ6tEsoyLnWXO7kCynJgJqMfW0H8NwFkoNBYLbr6jsSZeyu+e5mKzdNDLiGH9pv5RENot/abmUYzfwcrjLABaK32Negq+s4kTianCi03NMY8jxoy3KY8/gqsXXHZB6Q+Y9vad7W5mfhQN0mKr9o37HHE4xDhy2OQ9uEp6XbatxmfnOHa73yCIlgmHHNj05Y67F2gI1vtyaDDDXzs6nL9X5ru00ojsXX5TUPW5fWbZewxLNatNLfvgZJ6bOl7XypzM/KYoXXfRgC+6pWUtTy2NY28OK93Mah2npNlmbZCiWe36k+P6NKYgHuc/cEP79b29xvcwBctLK2Dm/xA8CzFx1RcXhG4AiKwxkH728+CmwXv4h7Z4BnL8Gbvvmpb3gQ8i5SA0U5sYAy3pWj+KH9vLNcKvMLuip3nnsbDJhBxuc1g9KWbXswV1k/ZxDUO9rayFqNteQxCCwTknpm5a/26doyq4P+tH35+3M8nu9s4XmqxjYZd6bH9/UjBrxSIm3T4DbUs0Sh+9tftzv9Zy/xda0S13HhCoP2lUdOrutHoR1OOqOomBox0VJSgMcPYKyNSNL+7oPH1s2cDJTYFJONJ1Grt8kooDHealH0SIEZz/Uic8gFmKX5i+ewm2epzNcXU2tbLyXAYt3cjTXLdfES8NA0W4Mzj2Wu5x3k51MF2Nr+HI5pcxLfOoB0zIHiOdJR1IvMFVjN/9TAcLxEpyJbFX1XY5rcaSdTt8DjyqW1eq4Lr3mzIykOTzv8p/Lm9773vfA8D7/1W791zNf82Z/9Ga677jpMTEygWq3immuuwa233rr2fBzHuOmmm3DllVeiWq1i69atuP7663HgwPrhWRdccAE8z1v3773vfe9TWb7DGQjvbz7KwNCTTo0o493ro5PrW2ifDEoJhZKbpZV1JO6ex8OuFSvPLJcYdCqJdXGoJkE1DTqUDmBgUvfYtQxJYHNcVGgb5nZs6rehhm8F8WjZJN4iU30GoC0dZiR2rQA/spvD4S5cJjEpJ1Zama/Y75rNyIUcxD4DonpqKHwR+uqcn9Szicn10ePbgxW7J9jt9Ojkxs+nvpV6lGwNpZV2EFg3lopqFUFmWawnQnw0yxzD13dwQvCJYhSYKHZTl5+fklz7dpEjF+6f4WvDDHjNIyQmO1ap+9hfJzkMMwb7xQrJxvj8ossWgJ+4H/j79wFvuRN4xaPMYJRF55RLFi0OmMlaKvNzuH2Va9nfIHk7VCPJUI+Uqb5NaZ4c8HM/MVhf6uoUKMS9d5Yi2oUKj7Uspnt6vr+5nZkgnfx83wxwqAYve/f67i4Hh1OMJ51BueOOO/CRj3wEV1111XFfNzU1hXe+85249NJLUSgUcNttt+GGG27A3NwcXvva16LX6+HOO+/Eu971Llx99dVYXl7GjTfeiJ/8yZ/Et7/97XXb+p3f+R285S1vWfu7Xq8fvTuHsx2qBdE7ukLKwDVfsW6YKLXx9U8Gfg74KeD7QCreHMtlfikfPRUYYODX4YSqB9nUZfA6VGMA8XIShvrIyiHjmZChkIQkADo+CYIafgFAJFqW5oDbWaxYR0W3YNORtW11qg/8yGM8X23x8ghyamwWKsxyqLX8fNUG2W1p8/VTfc68+e4m6i+2rzKATfXNr6QfAUcKRhhKiWVTAOvK0Vk0e5sMnqpdGW//BXhOhnLMUWZ6lHE9yxo5OUrjoh0uo4BB8rnz658/UqUgdq7LrIhmkBTqprtY4WuPFvRuhCgDJoZA3LEW5b58BnRb42Wm+pClJ8X137Xfrz7E69APjeCMEz31Kfm7D9IjRVu0H5uwrMZc10TGD0ybX4+2Jvcja8EupEBBWpVrIyvl1Ie87isl6/rSIYbFlJ/phQqPrToiEdahkEXJOJYSZpYuWwC2tOGl7z11ZVgHhzE8KYLS6XTwf/wf/wc++tGP4j3vec9xX/vyl7983d833ngj/uRP/gRf+9rX8NrXvhbNZhNf/OIX173mgx/8IF7wghdgz5492Llz59rj9XodmzdvfjJLdjhb4OUkJFp6GYT8kp3t8Ys0Su1u8aLlE5tXshH0C7g24pev2t2nHksbWsJQfcizF+1OtTlgoC+k/PLuRsCWod1dA+s1JKpxaRdNGJp53L+2G3cKYo8vpEydZwEhM0IYBgEHB0YpEIHBFrC7/SNV07jsbdrsmU6BpYttq8xwtIpWcloWA7RdKwzqiU8yMN1jUJzos5T02IQEtoQuve2CiXznqzIcz+e29jVIULTUVRvJiAE5/9pq7IF5XP079Xm9VST8gLSCH66RfB2q8fguWbSszzd28Dhnuzyu6R7P2YPTPKZRYJ1MlZhlilaJ1/R4KEoHkrrMbmvzGOerJKIrQsbum2EJ5Ikw7h9zuCYuxEfpaNpFm90TpUaW+yGvhToeaxlsU9dISkE+J4kQYPXiKSZrpCXHzcAVgLfn3/HchxlQOSyvk/VcsEJSHAqJ1KnPAHU4qrE6XLU1Hq7B23SzXNqbn/hcODicAJ5Uiedtb3sbXve61+HVr371Sb0vz3PcfvvtuP/++/Gyl73smK9rtVrwPA8TExPrHn/ve9+L6elpPO95z8P73vc+JMmxRXLD4RCrq6vr/jmc2fDu+6D4Mcjd87jOYals02ALqbVL7mkywN4zZwF9HJqhOBpqntUpiBunfBH3Ig6fW1vU2J385IBf4lp6ARgMtaVXvSzURVXN1jTDUR/a79pqW0y47vEyjM4KyjzTP2jmaLq/XpA6J4P0Mo/Hc+EyhZIPTgP3zDIQ5pKx2L7K8kNdOo0OSgZyoUJdzbe2mcfKhZKh2tLmcXQK3M9KiXfgD0yLX0qTj0WS6dLpy5nHYPm/L2D5AODx6t19KbHSl2ZNlJwA64dAdgokc9tXrUvmwSmey7s202Qs8+iDM9034jIr+qHU59p2tmRisWcW8U+ErdJlU40ZuH/8IWZGgswySu2iXX/1dnkiTPaZbRr/zC6XxXRPMlMLFb5Gj/2RSe5DMyGrRT4/CPncoRqPtTayKcZz3Y1J/FSfrsheLm3WAxErwzqNLl3g6y5Y4f4vWCE518wmwP8PkwOWjVoljmF4+D+c2DlwcHgCnHQG5dOf/jTuvPNO3HHHHSf8nlarhW3btmE4HCIIAnzoQx/Ca17zmg1fOxgMcNNNN+GNb3zjOgOX3/zN38S1116LqakpfP3rX8c73vEOHDx4EO9///s33M4tt9yCd7/73Sd3cA6nDd59H+QX5UJFhqB5dhcI8Itzpsc7u3IMDMSTZLVo3RWPTFAfcrDGL8uK2MzPdfklWo7Ner46AnpVfql7MNv4nS2+VluCxxFkTPOr94USqOaAwVT1D34OxJJZmZJ5KGqM1hxYqQqQbAoYkOsyZHAUyHA5iG9LZC3OUYbHQSfjPjZB4asSBiU4eheuE5KfO0+y8b1NVrKpZDbM70iVa29IEFyokKiUJGOU+CQf6sCqd/yF1Ibibekwg6O+Mt/bxIxFlIlg2DORcIb1bcjFlI8vVLie1CcxUSfUA3WWtoqynskBg6cGc186hLolHkMOvj7zeBxaxjqRydUAszC7VtY/NtWXmTYx27WXSyyrabbsWNOX20VmnvSzfbjKz/Uw5DlXgW1XvGCetUSSqeMRVovWXqwZuFHAcktNjn2jeUvy+VvTjCgHL8trh6EJcAEZ/yDzkFRwG0oWqi7ZsKZkDXWsw/461x8H8B6+FZgYIH/BW45eiYPDCeOkCMrevXtx44034otf/CJKpScQF46hXq/jrrvuQqfTwe233463v/3tuOiiix5X/onjGG94wxuQ5zk+/OEPr3vu7W9/+9rvV111FQqFAt761rfilltuQbFYfNw+3/GOd6x7z+rqKnbs2HHCa3Z4hjEx4B293p2phwbAL+OpvpUrSmLqdaDOL/CDdfF7aPBLdqZns3T6EV93/wzvKicG8rxkLNoF070kPkWHEwMGnKMJCsDS0P0zvMN89iLfG6VyJy3GW+MajTgwO3UV02oqHjBSo8ZbUcpAo9b4rRJ/HwWA561vbb1njuehlFA4e9kCMyGHa+xAWi2yvRiw81ZIeR7unWHgnu5xfYmUFJalYyQX/w0lFA9Ni4W+BCkPDLY6ublbMNFrkPNnp8brE2Yi/Exs0OA4OVBdhRLF8a6ey+etNKKzbsZFxlceFqdX0ahot9UPZvk6HWmgrqvTvSd28D0RbF/lv8zjvqLMHG4HIQP+5JieJ/H5WRwG4ggsHVWTAxK5UMivDq+84ohlxbT0tbUthnANkpBmylJbKMJWHSipyD1muJbLjy9nHe1lU0zWnxe12w9yrkk/nwfqXLsvmRd1vJ0fI5NhxlJkJYbXvgX4/izyF735qZ9zh/MOJ2V1/9nPfhY//dM/jSCwNGaapvA8D77vr2VInghvfvObsXfvXnz+859fe0zJySOPPIIvfelLmJ6ePu42vv/97+OKK67Afffdh+c85zlPuE9ndX/mwrvrD/nlGOYMilr+0LKGL3fqhYRFyX7I5/Y1mB1pyZ3z3ib1EjtWeffdLtIwaxiScOiwtdQHamJrrll+tVtvFyyI1kePv3MGmKkYhmwR1XLCYsWyPzM96+DRTMux2mOHknEY71BJpNShQbVbMHfVIOP+tRwyX+XPiQEt+5X8XCDrXqhw6N7EgNkhbe/9zhaSnucfJPlT86/dE8wqDUIGQdU43D/DIKhlDQ2ws10SIj1f8xU+ftEyj7k64lr07v6JkHu2v8m+CV33NXiOU2nFrY1ITsbP630z/PzsbAFf28nndraMLAQ51/tkdEtKLhWPTfDaL0sL+uXzzIYkvpUgtRwYpbxe7YINEfQkQ6QERgnepLjaHq6RzOjnszngNhpic6+ZjFHA6zIxEA2VZMESn69TA7iLl3j+H5oiidroc30sLFZIRNRwb6VEUquEZrXIz0x9ZEJz1b+slFiGXaggf+WbTv68O5yTeFqs7l/1qlfh7rvvXvfYDTfcgEsvvRQ33XTTCZETAMiyDMOhpUCVnDz44IP48pe//ITkBADuuusu+L6Pubm5kzkEhzMR6t+xvy6/J6zDF4S0ZB4QSoYjE/Kid2rzVQbHWAJI6vPLfYvU3w9JLjvz+IXfjxgAVqW0oa6wiS+D6QoWyNoFbmumt14PMzGwUoh6ZqjAVuf8jA8RBKybZxyaLfJyI0WAfcEj47Y00KsfiLqZavYm9XicCxUjA4qpvpm6PTZBgeyzlkhm2gXRyBRIBB6U/3eHq3z94RrPSepbF9PkALh8L7MGe5p8/WSfZLASM3BNSkB8bAIYlvkenRrcGB67/KFQEzQ9t/fOcA5ONyJhuvYgiaY64168ZPokvTZbOnxMu6xqQ57PQzXroJkc8JwfbeR29JwhgNepF3HatGqM6iPO9NnaZtks8YWQ5qZBOlyVclRiLrzlmJ/XckLhrw6B3NzhdT9UM02Svn5tthN4jgfS4aWDFldKzJ7NVy0L0xjy/9NSGSg0uYb7Zvj/YmfrxEtc6rujIwC0A2q5zGudezzfif/4a6tGeQfq8L71MbrRurKPwwnipAhKvV7HFVdcse6xarWK6enptcevv/56bNu2DbfccgsAakGuu+46XHzxxRgOh/jc5z6HW2+9da2EE8cxXv/61+POO+/EbbfdhjRNcejQIQBsUS4UCvjGN76Bb33rW3jFK16Ber2Ob3zjG/jt3/5t/MIv/AImJ4/hueBwVsD75seAOdEWTPatXKAGacUhUJZ6fVdSyJGIWcsJv6ABmfDbMiv3QzV2/mhAbElmpgd+gVdjZgFUoNn1bS6JlzOglhLLLDTHzLB2TzAgKDHatWLD5lQYu+aFknO9R5OT/5+9Pw2TJc3KA8FjZm5uvi+xR9y4W97cM6syqyqriq1KBQJKC42kHka0RIsWCCSEWl2CUUMjiVGphxbw9GiFAS0tdSOYHnoGaWigQWIrBoqlqKqsrMo9864RcW/sEb67m5uZ2/x4z3uPRdy4S9ZC5a308zzx3Bse7rZ89vl3znfO+74ndY5mFI4Ln3mppcydCTJHoxwAqkPfMj5OCkdRjGxHnmWUrNdVGdYBkPKgKHJasQYMzHp5BGFDxSGsagYqFdxfksHcPLGD++T7A80qXKtbpmtmiACPJaqT+tHczjZ1J17XHTvnAzEYpBFv1HDOoY9nzeZ7p7qYS7mJyGobnyfT6YYKpQUJgqvPLJqia9byiqnYrKI0whJHKUIwVIztOX/1VVzHZxYR+AWJat1kynPDHILAUQ5jV1XmVKLpkWKEY7JTM9snOIJAisE3Axtmo9jPyE8AFmY2rRTh2spjkcSzEuFeCecvRRgzBjcsO97NvNSed+qYyN1JpVAR3GNjhDlKsPFuSZyP/2uR+b6k5/7Wvc+Lqb0l7fOuJLu2tiaua+Sgfr8v3/3d3y0bGxtSLBbl0UcflZ/5mZ+Rb/7mbxYRkevXr8sv/MIviIjI008/feRYH/nIR+QDH/iABEEgP/uzPysf/vCHJQxDOX/+vHzP93zPEYzJ1O5TYwp/qWcS4rMKQMwrtoOlBV8BlMxGNBT42g0UoyH4WerhONfq2NldbhqNsh6amFUttM/WQgMCBokFQFzs2wVbkNlgL/KMJeJr1qMaHu3SK3JyaeNOu9fUgYgcA4vEsSxEN59pvicArhJnUR1jZ1wdw4G7qVFzRXBfX7YBGnXomWrsuZZ1/A0SkbkWMjfEgTgpsA6tkpWd2MOFxuZ8xCmIGFvnjRgl1rfLcIjdvO3cK6oxs6j3f61hZYYLh7iPamjBmisixTHGkIHMw/um9Eua+n7Jgq35Pj6/VcUYfWoZwRiDrMf2jl7vfskUZHOKleoGuC7q4nBsyfYhSPewYOJvY8UfBYrjoUCeI6aDEno4HseW+iYi+B49dIDM1r6eY72OgJKtC8aKfyFge6uCALwTQOwvS4M+yThnY9cE/lieZFZlr4Qy0mEB47/cVf2dHgKZyhgBoyPivPATImt1Sf/Ut7yxOTK1t4y9IQzK/WxTDMqb05zuD4OySkaIiDm15hC7QuIHBrrgE2zIoIRKqDdr/7GVSdh5VgR/31ENi9DDeULVWRkq4yZyTZ5+qE76AaWvniTvzgxDKiYnLoJFnBoon43FLpwfr2eli+N/9Iz2AsrsesMcnFIpwrXWRyI7FWBIrjXgXLmbr4SQrN+qaIdglTGntDp7z1yvKs21iHE8KGJc/+wrNp43VWEF93mjCqdITIynYNrG6NaSyZ3s+UWTZ3e1XEIV324eQVgvj8CTmYgzbdw7x/xQBese2zW5/90SHCl7/5xp45oZqD28f1QAbr2O8y33jkriTxzDmtASxXykOlbUnnEEAQ+ZWZT2X+4iCDksaJYs4/y7yuIpxiILPZQ7mTVhtoLZk+Nz8iPntRP3BCWfxghztxpiPpVUh4fBTyr4/j26h+zTqY4F1BSAO8mIZaFiLe2ledz/0EcgRE2aYmTg9N0S5uxiD783RpIu/u17nx9Tu+/tC4JBmdrUPu/28RUVPZtgYauEVp+nU6TIF3197FhQUogNf8D0tjcx6flId6ME1pYjY4ywvr9bB7C2EMNh+Yk1t2sV4Px7itOgZgrNT0Q8ZVn4mWzB8ZLOGzFqgohYczwROLFYAb45HYyFPtRg6yGyGNerKIkEMX7Plnu6Af7uCAKSxZ5IrmR/Z4lmrW6KpKTsFmITmcu+nxa7CCyYIShFIgdK4d6o4d+T6K/HjWDg+ggBVCmyTrvXqyaMt1+yjrvMnG1WjapdGSMjsFvGMRgksay30sX97BcxXm6KjFs2QGHWZLd89BopuHfkmYkFq0Fs8zPSLBizYfnEmkoWYsNspA6uZawlmVqI70Aj1GAlMqzWSSwkAlU7Ae59u6yBQYzgaq+kqsQ6viUtRbULoKY/cHiruu7tgpNX53CtT2/dCv5+fBfzJ0jw3AmepoBfV/V0yj3NXA5E2gVxtn9SpDmS9PT33H5uTO0tZ9MAZWpfXKuMoV3SUepiLoUMfSpYkIuRSczPDhFAcFEnq8DRnWWrAAfhOkZVJZ6EipeBHrsheH/qWDDSVBG07fLNnZ3MDvHZhT6yL/7kVtCsm4pEjvXW6QTWdfZzobQyGGDJaF0Dh9gVOX2Aazx/aCWn2IVTOCgi6Lte01YBnpU/HtIAjrTSlZ4xLlK9do7lSM/LLNNT+9bkTsRo0SJwyKUImiZP7GCMfk9p/V5qAOLjgFQRONZWAe9b7CGwoOYLn13i4HyFENmRXcXblCNrcniqi2BDBM/qwgGAvgMfz3epB+fZCfDvkztwzmyq6E1Ovsb5Ps756UWwnnZLmEfs7cRnVA0tg8I2B3slHHd+gICRpbNUTKF1pJojpUiZZan1/iG1e6GP4zH4PG6XmzbvCJI920IQca1h2ScRBLPeBFL4DNa3KlZ6Om4XZ1SeX9Vl5weWLauGBmbmd26hj/vmPGJXaGLInMQUcXtN03cJEnF++38W2SlL+k1//tbrmNpbzqYBytS+uMasxXJXQZuaPZgdmp5EO4DzyiemcUKdEMql+xPr4cO/tTR9ngqcXKr1dza/W+xhN0w1014eizcdFgGKxQi7+cbIHMtxyzoNOvHPJThJxUTamKlY11ToQEsWj+1ZpiXywHZJNH0/8BFoEaszzFlmgXZ8hzz2TGm1m7eOvAXNYi0fy4Acd2YPHkDVlbii5a7IRl0kH1l/mXduIlC4OINnS5bLxDFgLa+rFNkun7t/ZkjCnEi9Dyc89E2B9qCAIJcMHvbdIbulXcB7D4qQyH9sF9fbz4s0VQ9mtyzy/AKu9bBoWjkLfSjYRloenNHMRCG2eVgNMV8TLdHNDFE2SR28l52HWcaMNLAhbZ6B2akunv/Yw3HcFKDX2wFSH97HPbkpghVmGdfrpnFDHZW2MqrYPiLUQPO3zok8tX0Ui/LKHL6fs0MLjsYKso5cA5lfq+Oa3QTPhqq6c8iQSGNkpbGJI3KpifusaHaFWboqMEHOb/w7Sf/4t558r1N7y9g0QJnaF9cmDhZdyr1zd0cFVCcVKbsGoL1RRV2bu8RChIW3rbtHsnMSFw5lbgBnTZoryzwMdgi6HfhI6e+XrFHh67NYNMtjnK+bR8bhC21Oao0BB6ouShAu72GrgtfefR2v9fKmtnpxxgTNHjrAjn+3jN36Wt2k8inGRnwFMRWNkY1R7FqJoja69ToHvsjHTwFLcbaNMSWNlwBPEUvzH2pJ5XITn+c1pAJH2Q2Q+SD9uqwgVhEDOrsx5PxntXPzeg33tFvC/aVaZmFjP0+zaKGHc00czLFyBOfJstH1qs2XK03Mv4GP41XGOA/HmZgQiqgdFkwqfqhZLurIJJrlY8YnG7hS4I205NRBViz7Hie1klHxNkEvs4PtwLqAs2P1jap1RyYNm1mzRIOGVBCEvDKHQGmla5mP2aFm7dqm70PF3rW6sdb4rMkEOygqxTnGteyURAbaT2tugGfCkhVp+dw4dAJxNv4xguK90hSj8ha1aYAytS++BYmBKplq90LrjVOI4QDY+Iw4hcrYVEuDBM6tPFZqo+B1UnBvqpBGpiy6pzvTvjJiXljArpKON0vBpGDZG2WlfLbGBX92CMf5/AKug1gGR7D4b9TgtFZ0x73QBw7gRtUAmg/vAwi5p0qlDFCc9Cj4k+Yrm+X1WZOxj1xgPI53kWaGK1Wnv1nBdZGNUx1D5TZIRC42gam4VtdgK1PCIpzF0wwAhdFYKiGYd7FvjfNoFKWjWu+NqmE5RPB8A8147JZNYt/XIIjtEBh4PLdkeJt6CMfa9zF/qmMDhuYn9vmm0mk3qzg2gcld/UykTKThsbJftgdUboKsU7bE1AmQmWgHyOJRlDDyUKKqanlyoFTsMAenfrqDgI2Cb1Sw9ZVmvdLFvEo1o8IWAz0fv/d9C/QmDsaHAGOW9q40EWjslQyLslHDGOQTBJCtAsbrU0t4dsRUrdXxTNlaoqhaP2VlJq0pQHkVAZzzyX8l6bv+6hv9Fk3tPrdpgDK1L66tdrDboyNKHBHRf3NiWYPcxLridgLsRCNPZMJSj2BBJXum52PBZbAx9I3OyXIAuwiXIpQC2KCuHSCwCVQHxU1FnrmBDMTnQyb9XsybiDiuUVcdwX2wZwtT7BdnILp2vOy00j2KgalqFmh2iIwExbeOWyeAE1yrmxz/gwcY998+C4fzzk17f3OIoKWv3aXXa8gykYZ8tq2gzYrI3NAE8HbLcEqJK5LPULP7vsnlRwl+586aOIpucDRAyYrcLfUQGHG8EtfKfv5E5MvX4UBfnrOyAzv3nm3js22l/+6WTRjtbAsltUtNHPuwiMCQmAt2EY5czE0ykIgvYe+fO6nYpoLPXG1gHi6yhJXDOc+1TCCQZRXOlU7BxknEgrPG0NocEI8zO8Acp4rtxBFJlDJ84RBzgN8Xau2EnrLsIsNz+bopmCg+6PlFC/pYRmOpa+wh8KyPUNajOu1a3bBiHPPdEjKEb9/G++YHIuVInE//C5H6aKqf8hayaYAytS+uzWodP/RMmCuIRMa+iGhmhcBHpqznBghgQk+kqmnlQmyy4GNPZEklzUPPmBw9Hzv4qmqeXG3AkbcK5qTIpHBEpJRhqUTe7eXqT7LjvU62K/fGYslathRBrEIqAL+yodzA10zLAONCo9IubeDjOK/P4L6/fB3gSSfFTpz2qxcM1FoPjSmzXsM4vbhwNEDpBgiEzraMsRG5cERk3wyVBl2M8TyWelZmGPiWGRrlcDxed31keIiBr5LwSr8lWJrPuJBiR19WkbdNzZrMaoPJ91zHvc4OIUtfiDQAcUzYL58geIldkTmIit28vyc0W1GumKBaLUTQQ4q3l+Jc/bxl8np5lDh8DZDW6wjq3PSo6urMENfxqWWMI39/fdbGUsRKVrM967xNanUpxXO41jA9mH3qwURg35xpY87fqIrEmcxNObJnca5lwTqfBXsF1Uf4vrLLdOThfoIY9+ZN7PPXqyqKOEbgc7Vhm4Xm0ALXsYes1dNbmDvVEOfo5XGdj+0ZwDc3QelnpyzpO//aG/s+Te2+s2mAMrUvrjkpnNBGDQs4d1Ms5Uw0zVxXumVuAgeQj+HomH0Z+HAU1TEWv1hxK728ZQtqGpy0C6aPwgaF3ElyQY09U++cGR5VQ41da3C3VcEifaqDBX2zCme+U8Y1P3NDwaa6E/30kqnQPnhgDQdPsmx3YN5TKUIPGtb3ayGAjaRiMyMw9nAOlh6KKsyVCkoAVDztq5NxUpGX5xHokUlCR7zcw7gW41uBsdVQ5F038P+OCpFtVrH7zScYy+s1OJyVrogvFowwAzEzxGfHykpi7xw6OhHrc9Qq4Jl+fAXjxx40InCIzRHO2xghO5ebKIYnsfYAqYj88Su432qIMbhwgOCrEyC7QCBpLcQ4/cGqdWbuam+kvRLuk+DToW+drZ1M5oeN9CpjONwwh7IXGwJS0r4yFnnHJj5PjNFiD8HJZhXz25tY+WngKwBaWUoE1HoTBYZrFqsdYH5+5RqCBN4Xn4ObGuZrV4OS1Q7GO9CsRkPH9bVZ+4wI5sepDrI9N6q49p0ysnr1EAEIpfsHPgLD2BUpT0RencV72gWMydUGguzlHl5/ccE0VloFYzFNRMRLpxmVt4BNA5SpfXGNQmzlSFkWge3gy5GB+NjIL0hEfF0sI1302Pm4EFtfkuYI5Y/YxWJXDbHIhhqAEHgaxEjXxw5+L8TYcTKFXRkbK4WWm1hGZHYIZ7BRA8BwpwyHkTg4z/MLxiC63LT6vZvi/Wt1ZCRI1cxa4pqwl6eAzLkBzrnUw3GywQ3LGqOc0qZHcDLsN5Q6wE10VffjyR04j7U6AoNzLdMJcUSdpjronRrG5HTbsg4sH+2WcW9keMwNtK/SGOfaU7XSxb6xrR7ZP4p/+b3TCIIe371Vdr1dUP2QkWJCynCGV5rIGFBXpBThfMQ5kEKb1YKhjVTj5lITfydmYrck8v5rCIKoAHv+0CjTVBZ+eB+BQy20cuDEsbYK+cQo0EGC55VoSe6leeBaHt9FhuZGBU45N8HYrdUVqDzG+Z5dxlwpxDjmzBDPJHGBWZnRsl0xwnFnh/jbK7PWC6cTYHzZQiEVzN/DAjAuL8/hO8IAM0gwj6k+GzsiYR5jzmA4iHGfe1qSuVG1ktqrIvLuG7i+9TrO/+SOZbxeWMA8Kut4jj1cH7uKdwM8o0f2rLHi3ADjm4rIKMFcGObEWf8nU/2UL1GbBihT++IaW7dTnttLjR0xzFmdPK+AUSfF4sV6v5eaoyTlc5SDY6Fcfld3e62M43BS6HywR0/iwnlT2MoRy0ichBtIBX1xegpOpEPLZXa4ri6sEwf35isOQZSayZ5Cv3le5JteuhWAG+huP1aMRUmzF8fLA7RhDvdMlVwKu1FhdjM2SvVeCQ6WYGM3hbNiABWrY9ovwXEQIPnoHsatoEFEL2/OyVdHvKh6I+OiyL5jvZUiZbbEmgnJBUaxnRmajsyNKo7DXfpBEUFiq4Bsm5OK/GevGgOHeiOkFEfq8CJPpKSYDPbToVjYiwsiL87juU8cBAhzA7QCKEYiLy0gQ7NVwX1/xbp12hYxlWIR3AMxHgyUihpcOw4yXrSzLWTRnl2Gs2dX6IszGFs3BRZmRrEjw5y1YyjGhu3o+9ZLqT7C+TdqAMcOfYzNThl4j69ch4aLr4BcOntvYCDxyhjX0VRczpUGvm/bZW2O6CF4axVwzbEr8o4t/M6SYyr4bvkJXmePpMUe1ItLEe6nXTDwbHmM+ZEKgqTYFXnfGn4/f4jnOfARzHEDcnFGS4Gtm9gq58o/E+n7kj753XdcbqZ2f9k0QJnaF9d8dbrLPaNi+onIRBfgRHUVYtfS897EWBrVsWVW5gdYTPu+ibaxY/FhAecJ1VExUNkVEz9j1oQpbE/ZGSfZUg+OdK0Oh01HN1IWBdVo90pw8nPKaKDuQzESEd6Tg12miMjHTiGb8jVX8Duvlf1ovInROY8byyFeenLX4OUudEq4s/cUVxC7yo7xcV0ddUArXTg/ltd2ynAo2awNywi+7mjftoPU/Y0qnkekgOf5gYEjy2Mro0QNbT2Qw/Wxx0s2uGuMEMC+rsd9aktS+bBIEZfgfPTfGqV4oY9nzYaQDBa3KgY4vqHZnSd2zanWQtPoGOSRKernTUhtRnEjl2ZMOO1UF8EJA2IRa2q52sE4Hs++iUBY7/yhadRsl4ENmThw3sTdsDzCrtNOiiwXy0SRZ4HBUs9ArQw+U8G4M1tUDwG8Dj1gVypjywBNHATm7G9UjvD312fwt1fnMB/IqDrTtutqBUYtJ6i9VUBQtNrB+xMX53psF89xZogA6PFdkT88hc9o7C6nNBjtBCjDXTiwtgA7ZSuXETBeV7xNLRTn4j8XyU2mZZ8vEZsGKFP74tpiz3bh5bFSQnUnXR5jYWoXjBVBajHLFpErMs6JDLTM40+s8Vqk73HE6J6Jo7X8FA6yqucYqmOZaPljqQcHNbrDV2StjuuOXbw/VjAkyzVLPdv9EteRigUyjhg2Zb8IvEohxjVea2C3LYLryXacDXOowx/Hrkwcw804AgfGbrq5ibE/iPO5UbUuycTr9FkiGYvM9QFQnDjIOBwU4aBXugoiVk2P+b7IchH3lmQwMAwKGiO8b7VjmA5/gh1/mBPZVWBlmDOsz05ZO/JGVgrSfj6pfPjofS/3UKqpjJGFWOijhHCtjvt6YheBZjeP8WEwsF8yzRx2we77hs3geDLwmzhGFz7ThkP2UtxfNnM1O7T/D3MYs3Mty8Rt1BTj4YlsBSZrn2ViEVjMez8oIiAqaXCZiv2tQnzQAOctj/H5+QH+tlEzyjy/I8RPMYBnJpOMo9QxkGtXA4zrVZynFmKMX55Dxma9boGdp3PcS62Z5p9+HeO2Vrf+Pd08MkulCIDtLWUYPbxvc2a9juCkFprS9MP7FrgNfANijz2wwbRs5PT+oaSVv3P77+7U7gubBihT++LaKGc7IhE4P+JKWIcm0JOOgiwbviefIEhhxoUOOXWOCnUxxc+ykdawbzrCoTJiYtcCHYIljxsXyV4eTnm3ZLvRdmAlg6e38P5OYOl6ZlDcVCRSdkJljOs63cYx/cnJ5xUxDMtxy01UXEsZOMy0JC4wDNR9GXumslsfmWOMXFN2fWZTZE9TFCy59fPY/eaVZtocYjypTzNUZhSfaeQaS4v9cC7N4P2Ucj8sIhi53BRZbRvToxzhuk6SxldzGKis5kwKPnEQpDy+i1IA6enNIcac+BnieVxlq2yoJkjkAYBdjC1blDg4zuUm7v10B3OSpcXEtYwZcSipmBjZuRaChFmlWTOr8sKCCQ0ep4nnJzhPTjNTYw8ZpjCH8StHuOf6CK0i1mvA0HQDzMWzLQRQO/o8n9jFvCwL7otYkV7Rsng7ZWQiDwvWAZtZJQa2Yw+bimKEgHG9hmvnfKTy7mpH5C8+bxkwEby2VgcQ+MiDTG/V12HJ8GoDQORsRnDg4xyOWNfmm+U9F/c3Pxbn0j8X2axI+lXffts5NLU3t00DlKl9cY1KpZSmd/Nwstx1U6Wyn7eFjrX5MKfN+1KRSODwUoETSVzToKD2Cam3pP8GKlrFnWMe5aT0z/wXIiLirP877MJfnoeDo07GmXam34qD4KgrWEi3NHDZrIr8+gPANDx4ALxDJ0BHZmaAeO/lseEvRO6slSFycnAiggWbKe8s24aqriLIRvXyJlbXDuA8eT0iJuq1qpmggW804k6A4IwZl7mBnatVsNT8xIHjzE0AomVweeEAnyvGyBDMDlT/oiTS02OPcghgntjBcz5G774ZmGTHg8BNBrci2r15DGdKQDXHIa+aKlQNDrUkNDcwrBC1U5hxItvm0d1bxdYqqjOzUzYJ+KWeZTmOA3V7qhtDBdXjRgG3Q51ny10LbBolm9+TosiuayJ8pzoigWaFUs1inGvhONfqAK6S1stsULWD+16vGYiZys4UJwxzInMKZB/6CLyf3hL5X99mY0RBv6+/hOdHllbWzrSP6tYM/Fvp+4dFzINUnyEbQ27UbKzYhmCrjLE82zJRx5aW+FIR8Sfi9P6hSGV8a+Ztam96mwYoU/uiWjr3feJ0/xmcWm5iPTl2y6YFIWK7tESpj1xECxFe6+aR0mbGgyDCUc6UZvu+MYOytGWCbUc5620jYo481DT3ZhUO89VZS/3HnpWUrjRNQbUxEin4wJQ8uofF+qF97OqDxJy4iNFP37aD+yTA9o3aMIdgKTe0ICx1jKHBLAj1LiLX2FBrdTjvQoyGeIs9XOuVBhxBZWx04p0ySlDdwDQ4GAAweDzXwrmrITRISBed6POlXoYIBL4IgNwuq7BYBGxCL48y03wfz4bHOeneS9HRv1PKfquCucFyBuXu+bybQwNoH89OEatDwbGvWL89LXyUgyN9dhm/s1zlT6xfELNLi/2T++pkxfWKscgkRPaLLBeWoryJSKuM16iynLgQbGOAW4xxX4mLTMxiH/f6h6esbMOsopvavKyGIg/viTy6j2P90sMIfL7+klH/ae9bE/mdM1q6y+H4K118vzZq+P14FiybLcoGJ6Qoj3KYByIIaFoFBLJBbA0UwxwyWn0f1z0zxLPu60aD4oYEowsC22mQcn/ZNECZ2hfd0vMfEhER5/mf1CZ5CRY2CpU5Yj1MeloSoQ7Jfsn6xnAHNfStM6ybGri2oCqXMcGmmrIONOOiYmzOz/2/sTCfUn2OYmQYEkcQ4KSOyNAzUC4d3vuvIdh4xyYWzL0SAIktXfgX+5Y+p3rm2EN6mgv3vQQnw9ytjnKvZOqv2dd2y1jgS2M7fuJa2WWvhPsb+AaM3aghcIhdBAfnMyn4hT5KHJ9YsbIUsQp7JQQecwMDDGcF6vjcssZj9/IGkHXEBPQ+vmJ6Ke/YutWx+wkyWamjXY9dA2UGseEXDpX9IoJ7J1aoFJmjHOYyvYeUvsyyYFNLNGQ6TRxTPuWcnRsg0/HCAoKFYc4wEkFiomsndQ1+fRZj+tgushOOZg7nB7juX38An3t8F2WNxLHeO8ySiOBZb1VUSE4Drrkhzv+JFTzrpR6eFanF5bF93957/Wig922fsv+XNOijnW6LfOCqlTc9HSdXMuqzd7ErTWCI+HwuHJoGELtZixxVRx7l8HrevZn5RJfyEcaiFAHgy6B3ASVFp/PDIhdnpiJv94lNA5SpvWksfdtfv/l/5/mfVHVMxQ3kdBdK59FXrZF8YsJnTO9T5I1losjDLpPAzsU+3hd6cHr1EABAb4LgZailgL0Szktw5ECDlIkCXHOqKVIZ41xnW/g7a+z1EXqQvLBgkvqhh9JGWXf7bPD28P6tA8JeNiexdk7axTtijpBGJ0WMC0GgbPjW1CxVfWTMqFEO594rYXxZBsman+A+mXKnXkx1jNLMcS0TES3JTcw5D3Mo68wNMG7+BJiDhT6e6X7JnmWYA4bjd87AAS33TJE1yjjCkWYqHBGJ9DzZ4JUUcic1nAutl7fsQ6wBK6nbxBVda+DaiOMhPXvo47pWO/i3MbJST+IqK2yCY7YLVtrZ1Hl3tYFSop+I/M5ZC8gLCi6ONYPT9+G0SdP1NTgpxIbBIT3+RlXxKmNc90FRxdcSlNr6yn4bJ7jH5S7KkcTqZJWQD4sGWk9Fs2X6XaOi7lLPgvjINerynSzM4TtCXNlEz7vSxffGEQNUB4rzIQ39yR0EaoUY39/tCrJ1gZZ5mBGk1H5T9WCWeuK0fwT4lEf/67tc4NS+mDYNUKb2prT0bX9dnBd+whzufhFOgBTVQowFhw6GmAqmqAnso4LljGZkqmOt72vw0/ex+DEYYd8SJ7UMTBBb6YdN8cKciKv0VHaMPdu2PiZk4HzgKn5+6xzO/9I8ru9UxzIJlbE18NuuGJNiX3fEFw5PLgecZMcl+YMYwc/rszaG1JiZGVrWwgnwuUQdGCmoieI6Pr6CHjtP7FiAcRw78cAhHC7BpterAHryGVHMjHo1qWNdi0XwvvkBApYXFhD8NYd47XoVpSoGqa/NIpsSxMYsGSi9fJizbIWvQNts756Txmy7jFLKA4f4qYXIQlyvYY68/xre+9NPibwwj+voBHjvuRayGrXQ+tYwaKXtlgE6XqsbIPRTy8B9nO5gTIiV6eVRJvrjl5W1pvPyvRvIgBwU8V5iX4Y+fniMbqBS9i6CcZZD2HH6XEsViLcUkF3EmC70MdaxK5LTZ8uxTBzrPszg2JtYRnOo2KpCLOLqZoJtDe5kO1rKSZU5luj8iF3twaP3v1Y3Ab4sU645xGsbNZRQ5wYqOxBbF3Jq4GxWrFTWgHaMs/GPRQa+pA//zTtf59S+KDYNUKb2pjWKLjmv/xhe8JSRkdf0+oFqZiQOFup6aCqmTNt7jgExQ8WjtAv2uYljfX0qCib1E3Q9DpXqeag05+bQsASJa1TS5R6c2W+ch4T6mfatO9CzbZGPnsH5zrfwGnfGnQDO8aED0yVhynqUuztolsZA4Hj5YL8EgORNsTLXwMPUPNmumMjaRk3T86459q0KQK9rdXymE+Bvx8GfRU2tb1fwHJ7aRrBGZ+2IsUXOto5ea26Cnf1WBU5wtQMHG8QG5KW0/ctzIp9cNnxLKqZY2xyCknucGXNzYjkm5b9VgXDa1QZor/nEymfUFskGGv/lZ3Ce+T7u45U5zTpkHPpYgwzqkojg/cy4XJzB/HltVtVfyxYQJ4rbqY0QcLG/Uuog+GPpktkEUqG7eWMdXW7iPctdBCPX6obtula3oJABdS1UKvYQwU3fNxFBMoNoHJ9OgABXxATgyGYihuqgiHksYgF7L4/5eKpjGSGOjyMGeA4Skap+b9lO4sIBxr4doCw030dmp5fHfQ5zAKPXdQNAWnVfNzZjz5h7lM7XrKOz9k8kPfM9J8+XqX3RbBqgTO1Nb+lD2N044Q+ZbkU7wMJOQbWe6pdQdGu3bDv1M21l+rhWZ89lMCieg4WdUuDeBItiY4iAYb+ExfuwaMquTKNTw6Uxwmc/vagaKv7RwGKoGI33X0NaeqFvVM/9Ehb2oQ+WTyPE+biI/sqD2HU/tnc06DluFEzLvqeXByhyqAFZMYbDYafdgY/XqLNSGeP9TZVInx3C0YhY6YRBy/FL6Sn1c6NmvWlenYXDXOwBV5G4JjLWz+OYtdCYV5uKz3lMabGuYNwKMcYmdhFMkHaaKvCXnYJHWu55YQH3SwVS2igHTRdmzm5ewwg79tXOUaD0cYAne0eJjgPHgiUKEdxL6iAQIU2Zje9KqlFzuYnxK0X4G0s6BA4/qWWyjZrJ7c8O8DlvYhoil5um7loLMc47ZYxFPw9sRzE2zM2L87j3FxbwHShFcNrMupGaTH2eVgHXxgA/opP3rVVE7OK7lGSA2ZGLYGitgUDpWh3n26jhfi8cWmfyiYNrY2BKHRonxfPYKyEYOtPGvFyv4Rl4Exy3GOO+iaOKXdzD7ADXwdLTkgZg1TG+g7URvgf6fufy/yISeZJ+3V+6/Xdsan+kNg1Qpnb/2PUqFpRhzkCeXAy91Hp6+BOk94kx4GcoaLVXEhnqTo86GTNDSynvl+AgPnrGxOBEUAY41zI6KT+fT0T+xEUEEf38yV2LH9/F31+aN/VPSrdTbZU9dspjo0sSfPvaLP7PzsPE2+yV8Puq7hiPO+PfO22ZnomDnSmzKFV1EJELB0FNkEhBu34CB+imircJkFHKaWqfzAnqhhRj3N/ZFnb7zCTkExPzyitTpDGyQGqvhN+7iq04LIItwzR+q2BKosw4iZhq6pk2jnWg97RWt74w63U8GzJjrtfQH6ke2rOdOAgKGYjdLvNyO0tcyyxErsiwqBLwVQOuslVAOUImwJtY5+RhznA4FAmc0QB1twwmlZPiPt+5iXG4OIP3VceYl1eaKL8NfMz93TL+Ja3+dAdjsNIzJhWBx728tUWYaMaxl7fu4ZFrAnGcX8tdu39mwVzFHVFYsBJpo8uRseu8FGOxXUbAOSKTzsM8ZQmP2DFihx7fxTWlgnFgZtFNkYXqK05pRrV59nXeUUa/zPJlbKJ0HcUCDXwrVVXG4nzsfxIRkfS93/HG5sHUPu82DVCmdv+YI6Z/QvCcNxGpTlRJMtGARKyDLwMQCp+t18wBzw6UrlmE413qYSFe7hnttzFCmWK3pABBx/AqXNC/81mwGagQejvbVXruwAfrZHZo5ZILh1DUpC5EmLPgY6WLBfShA/z+0TMIBg4LCCD+2DU7B3fCVH/dKWOsyD6h8wg9pMGLRTjHiZMRxhvib2t1A8iykzG74faVpjo7wH2FHkpXDHYcgYPd1r9Vx6YsGiQYy1oo8rFVjP2ZNpwL9TMIhGQX4sYWnP1mBWNcVgbSxRmMX31k1O/HdxFkdj04o8sNjHWQwNlXx0eDU5ad/MmtGh0vLsAZM+g9jru5UcXfSFnvBBgbAptnBzivN8EzpmN//zXQd0XgwAlMrYwRTOyULZDluJci60LMppCbVYwpAx5Sp6sKXG2OMP4bNZGnt0zjZ/MfWVuHytiaZxJz4qbWeNGf4L3+3b+iOHiK63zXDRyX1OjGyPousVeSmyLA7Sv1uqvfh9QxwGtZy2CfXMbcID7lqS0869dmUa5qCT4/M8QcJjuNNPhqaJnSiWPSBpwHs0NjmRUjcT7yUyIikn71f3WPNz61z7dNA5Sp3T9WDUV8TTNPHJPUFlFlVoEEPBuUuWKZDjruU10DGIpYeYBgTjqW0238HFe9vNwU+cyiyNdevhUbwuAkdWxxZ/M0EStDOCkWSRE40guHIu++brV9ETj3YozXSL3dLgPb8cAhgoCNGoIWKmyyWV0nUByCUmZFwE6KPIzLVgWOdqmHz5JB9DtnMV6P7eL8GzW8Ti0NdtAlyHazAgfUCTB2K12Mb6jlG5bWXp9BxuKBQwQjlCn/nbMmDjbKwQkv9/C5qw2UIUY5oy03h0c7IHcCPIvXZjF+ZGTxerrqgLaqyJyMcjj3Qh8O7TOLCE4uHOB99VDkd0/jtSd3cK53Xz8atNBYRmD36rKCisuRZZwqY9PxIaOM+IxLSoF9Yhc4lu0KMiALirlJNXsy0IzCQRHZqQcPcH1Pb+F6Jw6ew5dvIECrhjj2Rg3B0OUmzv++a0eBwgRdD5WNw6Chlxc5UP0fMthOAmgTx/OJFdzb+datY1SKcNzLTYz9gwd2/zNDw4ltVi2wcATfnVNdy3pFWtaLPZHc2AT5CDoXQSD6quKBqGQ7cUQ6E+vezHt9aF/kkyvWF4tz7PFd7ahewPm6eZHzLXF+/d+J+BNJ/9hfvnUcpvYFtWmAMrX7wpzRD0GmuxBjYWFphzsgqsSWx8aO6QTIHOyVVAI7st0UhcGKrK27Vgoi4JF6F1kjy+Nuxl2um5pGRy3EYq4dWG/K6ZOlwOZ0eyXs5p65AQqmp8yQV+ew6PL8x7M1swPs+Kkqyp387EB32SnOOa9Mh06ARZn20L6p716cQZDCXf2cZkq46xXRbsITBFn1EbJDnUDkq9YQrKzX4Xwf3rexfeemAVOvNLDDT0VLExpoMSNQiBBEEasQxEeDQoI4D4o417yWSTwtu51u4/VXZ+0eRPB8OwGcWeRCAbgcAa/xsVUFVC5jbKqhnXNHA8S8ap5sVzTDoKUEEcN1ZAMUNrJkh+3ZAYKia3VrlHeuZaWXV+bg1J1UZGGA4+0qVfagqJmPAubRmTYC3MYIZcLnFxHI+gk+x8xIqyDSHInjf1gZM/o8sqU2R5T55BuNnmMpgu/YjSrm18dXcO5aiLnbLog8sndr0P7Ulin2rnRxj9sV+55SSXm3bAGxp2UpBqlPbyEAWuzjWOye/Ien8J5H9nFsso3yCcaAuiqNEYKfaw3MuVCDxsMiArcsJb4UYX48v2CNH9sQinOe/8kjUghT+8LbNECZ2pvenM1/JJJXjYriPTJaRCyzsNrBAkhAXN83UCoDnsi1VDbtdl2Ds8Z0dHaXyQwJ5dc9TWNTV4P9e9wUzrldMDZFXRdTqnA+uoeggxgQgga3y0fpySJ4/UoDr1N2nsf6wFW7ls0KMggPasnoWgNOphaaqu1hQbEHMZwv6dZjxQrQubxTM0wETGbtdBv9WAguJoiUO/lH9oHTGPpwQGTABDGc2KkOxuDleWRJOgHKYMThkCnzzk1raigCp/y4slI+ehZZGzohBnuXm3B8X7GOoOywgHGOXAQDzyoF+H1rIpUD09WY7+sY5JChYBDbLph0/CiHLN3cwHRODgpQ+SWbRXQ8zrUQGFVDHOtqAwEfBQXLY5FhSUsbCrxlWWrgg3qcOtY2gXiO2QE+Mz/AXGOPo/Mtm6uk4WefW6L3UIpwDwT8fmYR40HxtIGPMSRd/IFDkY+fwphms1zPLeH55iYIFsne4Xxd1LlQUiBuP28S+VeaNp7dvMiesp24MSG76FQHnzssYG51AmP4OYKsHDcvqdhcz+r13Kji/8QCff0lzK/fOWPSA34CRmHo3WQYTu0La9MAZWpvfitFpihJAag72V7Jdsu0+Ux6uzk0Ofq9ku1KqdmQzZyclN7PGvU3KGrGtHg/jwVexKjRfgLswfuvYfH83x/F4nq9ZhoeN6rol0IBLuIaCjGCDd77xBH55Yfw8+ABnPRI8Tmxi124CBb4J3asPf3pNjIltMRFUHOtgeutjLHQszTRV1r1nmZJ2PwtUGzIShfvH/kiiQZ8a3Wc66F9OK/ZgY2rCO7xXAv3Ux7j/nt5vO/BAwQR2xVTpSU4s6raJCtdfHZugOCHKrye4HztAlguAx/jsl/ETnxGaeKkwx4ULNNxtWEKtrNDkb/0GVOg5Xg7qUgu1d5EbWRAypHq6yi+gcyyXh7BXWOE50qcQ7uATFHkIlihQ6RI22N7mO8TR2Qs1qAwdiBqVwnRSLA5xOvtgnbJ1kzOBQ06gxjjSFqziGnCxC40R1j2ZLlm4iB481IDf4c5kV97wBhlTQ2gq2PrDr1bxjk8xRWdc1ByaWtQ1xiJjF08B4oEnmnj2eUVS8VAYamHa399Fu9xU2SFVroWZPRVH2enjLGMXZMYqIxNM8XVZ0Uq/fWaZUiOryGfWbQy0zs3cfzKGEE02XpselmOxNn6v4sM/Zsq2FP7wtg0QJnam9qca/9UpKSYk/2SsRu4KMUaDKQO3tMqwJEOVCuCYMgD3UUnDha2Wqjp3hyc8GEBJZTK+OZu6abybBCboyVjgZkTNpLLJ9btNXZVsEu/XidRgwuxyDe/gP/vlUR+6mnDTlCv5KltLLazQwQPWQE2N4Uzv17DTjNyRd65hR3s756GI358F8HQI3uQSV+vi3zZOpwgzZvAKWzUcO0EyrLFQCoKAnXglFIBXqcawmlsV/BcKGpHfAGbCWYdQTuA8yPAc1dLWQ8c3hpQfuAq/s3Sc8+08QzcFIHKxRkLBvdSc/YEol6vIUMzOzSsUqKOfKGP4ILWGOFzD+1bhqYyhqPcK1lzw4W+tjlQ5g3xJ/slXBfnnoj1uyGThuwpUtCJVXnwAPfS9zEmnKdZdd9TStVd7WA86qFp2cz3MefGWrp8asvmdWOEDA1p8WQcUX03y/xiJoXdtCMPAOP90lGmHNsHPLyPe1/T4LdVQHau7yPgZVbodFukPsFzCj0EADcqxiRaVlA1511XWV6bFWRYqFdEFdwPXMU1fHoJWZ22liLbgXUmj1xcD8uDNyoIiPaLmEvbZXy3vvFVA2/z+57NALGcStxbNtt0rSHOqz8u0stL+q6/eut3fGqfs00DlKm9ac25+k9Ntr0UWeO/wyIWIKaY2wVT8aT4WBAjteumWPRJcWX/HgI1R5pxIF7jWgMg0chDUHCuJVJ24ZhdzbSUNaPDviCpg7+TYSBinZWL0e2by9HKWqpZr+EaH9vDTphy7BPNCrwyB1BgYyTyDa+h/EPabnWMhXWxZ/1gsoHR1162/28pmLYxMtE7dlg+KFi5oBBjvEd6n4mDY799G+OQOljwD4oWuFGPZr6vpTMPjmZugPHerOJ+z7YMQExhOkqUhzktLQiCjIf3cZ5UrJGkr4wddvtd6eIcpAp/alnLNcpiKo9NZC7yrH/Szz+KAO5RxTEQg0N2F0tlh5r5IFamPEZgx740ZKikou0JJrjmxgjvKUZWmiFwmeJi1xrWXqAQ43UGYe+9bs/r4X0Ef2fbt2b1mLljIBbE5kwf3bNM0dwA5+jlRX7xEYCAWeoTsdJj38d34vVZ60kUZ7KXy10Ei2fauN62MsoSB8EUVZ2zrRRGOZsnjlhATpxOWcuiL1YR3IRFjA9VlQt6TzzG7ACB3WuzKNUxGGEnZj6TdgHjMjfA33t5Y5V99AyCIOrPnNRy4kYVn2Og+vA+ro/luo2aOH/wP0n6ZVNa8ufbpgHK1N68Rrotbb+Iha+omgYMVAqxLY5UuBz6SNuGOeuLwqwLu/kWVSSLNfJRDo61ObL+Nd0Af2e5ho32chORILSMB3es9VCdJ4G7J2RPRI5SkouxyP/5xZPfx0WY2iFP7gAUSTsJsMsuuhQ+y7KLnBSO9Q9PYfE+08bxKYzlipYUXNN/KUYYs+s1ZGGKMcZ8vm+1/tzEqKOhZ2wkPxH53TO4pmXVeDndOYrZoaLr7NDwQAt909BoFTC2qQDn0BghqCC9uajB58dWTQeE7KxAMx8MPERMkXi/hOC1MUJQ2M/jGI/s4b4opMe+M1QlnR0iYFnq4b4Oi7a7ZkYnVu2QsdJb3dRo5ezpRF0eqhHvlDEO1GgpRbjnsQeBtXffsJ4+J9lJ/Y9EMGeyXZJFcO6Z4dEskoiWFD2cc7NqAeWDB7gnZpAaI2SIxh6OMzPEfOgGpi1DBeehD02URMtL7QBB08dWUZZzBONaVEYPacKNEYJylpsGPrKcGzUAscMcXmP7C9KlIw2q379jIOHDgpUKO5olbBXw+cQV+WNXTx673bL1AbvawDMnK+n8IZ7RakdktSPOR/8tvmZf9e0nH2tqb9imAcrU3pTmvPrjIl5g6qUHRRNeW6tbSnupB6fJWn9zZDtEETiH3ZLVpwlMJdiTAU8hxq7qJpMnOuok2F21pqn1aojPMtjJjS0j0Q3g6Iua+iZNOOtA7qSXkrWNGsCbjRECEwqy3Yt5k6PnYUblRhXXPVRwKHElLBG0CsaI8CYY092ySs43RP6PhzCWDx3oTj3B82EDRn9iMugiIv/Zq0aZTlwEEAzomJE427bSmAhYIo/v2u65qLvn/cRUdj+9iHM+uodrv9owjZdU8BzGGWp0opmLemg9lQ6KBrasjAE6Xa9ZNoPdkbnrXlRqNrsAs5kjM2e5Cc7NkoqIsbWaQzjtToBnutTDcUZaLlrq4W8bNS2PuLjHdgFZCT85uQvyvdhxALOIyAcv2v+J2yJ2g2rNE7HMIJ37o3v4f0lZcdTuqYwN63RQxHV3NUtCdhzHnMKBE8co2rmJaf/0a9YAkT1+OD9J0WfGZamn8ymPeczs0+szhqVi1upU1yjIcwPMl9KxIE0EWa2zLcOuMSjZL+FaPb3WgY/sSz1E0CQijnwYp9R/p/bZ2zRAmdqbzpyP/lsRrwip+UR1CqpjU4pNBYtMboKF6GwLjraouxk62Ekmo8KUMxk0ed1FFyMsgM2RLbQiplLb97EgsezA6xnk8BkRbWc/MBooBeMImGQ5heyMyvjegwxSPW+3w3sjRs0H7jwfOMTv1xqQiO8pHXR2CAfZ1V3pfhFj3C6IfM1lvD/MwZHPDI3y7aZgjdRCU4EVsbIAywwicJijnIrARdbjqDzGMyQ4tRAf1diohcCVRB7G/1CBxasdvKcY2Y6ZzrETWFM94jtOdZDJaYwQHNEiDwqjSz18nnT0cmSaNHkt801ES11iGbMwZ47XSy3zNnHADJodWuaqE1hTv8hFAJpPQHFd7RjVd04zClRDPZ5BYVBxL/bssgrbaabvyR3opjy7jCyerwHEK3PIDM0NLdsVJBi3rQrmTjW05pj8bkzEwLHMegQTk573xWjY5bGynzyjq7NDMssq+QSfHWiW8/3XjJ231ENQ8LFTmKPzik/yNJDzUnyWXY9FEGDeS2+rLNtKBN9vL7O5IdZsfoBj94e3fMaRD0+DlM/RpgHK1N5U5vzaT4sUxRZ2lg3yCYIFNxUpKEXYT1SlM0UAQ3Gx5gjp162KZUcOi9ZvhnTMYU6kNsFx3BQL6MTBAritgQ+ptexS28sb7mToY2Etj/E669/FyOTZJTXth8TB37uB1eQX+3fur7PUA94ka5QhvxsNOuvMssFJKRL5misGjizEIn+wimtmeWezgoWX7IlnbuD/+UTk4QM4US7UTop7ZSaG+BNqwbCfzXEVVj+52aDNKf73RzVssgFO1iGzB48I5kPStN14RbEfiz04uLErEqTYuTtiO/yZIbIzpchAwsSyDHVJbBcMxCliYNJZddicFyJaOhMLTEc5bWDoWKYviEU6NQtaz7ZAm31x3tontAo4fqiZrUf3MY/Jftop430MzskuuTiD8x3HT8Qu2EEDH9iijB6KtANrmkeg9/OLcOaFGOcIcwY8PtvGv+t1xXWVLZsk+jy4YbjWsFYKzJLNDjFG12v4HDNSLK1ebcDZlyJkSPMJruFM28DOqYO/bdQMc3S9ZsEhmwZmMVClMQI/js3Yw9zIzq97MW4UwhzG4HTbnqubv+3HptmUz82mAcrU3lSWft1fEudT/xILwm7Z0qnMXLC5WhDjtVh/9koG5hvmTBp8qNmCMAeHXlTg5+wAu9LYtfbrfR919VJkuJXEtXKHPxFJVR2TyrVBjHMnLo43yBtAr1XA50gzDnQnnooBDndLJkfOGnq2PHKSEXzKDM/EwaIb5gBgfXEemIrtsi3Eo8w4NIfafr6Kzy32kKV4bdbYG8xGBQmEzghAPdPWbJWm+G9U7bms9gBWDDQg3Cnj9di9laUjcjQwcwTP7rB4lEUx0oAuVHZG9m9Pb6Hc4E/wrOohUvF8nmTAVMcKpB1iPpDtVQtxj4cKhn1hwYLe2YGxcSYOxuSBQ4zvrtJNmQVj35jcRERcC/J4fwyw+Nx6eSiZ9vMY04mD61irw/klDsCpjVBkSQGnF2fwt9mBBQ03qngvGw+K4Nq7eYxbeYyfvRJo4CNBoNEc4lkXYguMygqypmT/o3uSPgNmirP5j3CevRKyLQt9kQf3jc7++C6ura3YjhtVkwNY6WKuHBSNybRZtdLJQRHzf1bLdmPP9IOu1XHsR/YQ0EWeZThJNV/pmqQ9OyJny1k1zfJcnMH8uFHFsZvDu4PXs3ZaM279DDtwsY/z7pbuulmYBiqfnU0DlKm9+cxN4UiZlg9iLAzHnd0oh9IEgwqmgXt5ON2xZ7RUKqs6qQUIqWMS7qyRM5UfuwoEzNTOqZ/hCP7f9UWKHn53UgQnlTGud7cMxxgq9qCv18hOwszaiBztfDwzhMMs36UM5CeWIRnlLTtAB9PN47rW6hivtToW8qYCFQ+LeA8d/rkWnFd5DKdAXZSHdRfPbs3dwJqr0Zmfa4mca0l67m+JiC7G9RF+iGc4qQxRjG8u3Dc1TK5XTWa8MsZ1Dnw4SEfwPOshmFbZ5nXeBOdb6qmoWorxjlzDQCz14PQ+uYIxoZx7V3fAzSF25/nEAK/s9Dw7xFgw43LS8xAxuXkqBHcKmG+Rh+Bup4zAsV2w/lHU0Olr+TFIMP9vVJHRIJNlmEMmbqTlxetV4IDevo3g6nfP4J4X+qDivjKL+XegYPL6CM50oPOtHuq1uXC++yVgY962fbQMQmDrQRHBAhtDctyJ+TgoABROXM3ju9a9uJ83wDFxKhMH52XvnrGHayDAliJuInjOfNakgYuA1UZMSyq4jk6AYLIxQkBFkDeVdZ/aMtHAezVvAnzSiwsie0Uo+WabKd5tU6HmXPunIn+wKuk3f9MbvIC3pk0DlKm9+YxsCTq10DNQY+KKiAJWRSx9HyjYjYwK9tSgsy9GWDj3S0gl75XQbr2v2ha5CZzSQdGyAwdFayffDrCYcnc8yhnokqDQVCwL0BjZ70EiEgyts28QW1t4NqjbLxnIlo6dwEU6slYB700FfzvbwgJ8tm11+pZiL4hfiF3ThKmFOF6i5ZDrVQQX3JX+tU8Yu4gKsSJY7A+KUAXlwj43gLP7z1+2cctaNhi5HeuErCKak+J6PrWMz19tWBCxU8b/u3mM9bkWnqcInN2nF5XWOsL95SammzE7xJiUIpF3bAEoeaWJH8rwd/PoZ/P7qzjOWl0DHM96yBAIezcjdTs3sSaAgYJ7330Dz0jElHsHPsYvFWssGLk2V8geCTUzuF7HPIg8HIPss294DYFKO8A9lDSwH2sQHyhzbZAz9lDkosOxCM71tu2bgYEjH8acbYqVV3MTHJ/fM2rq1EYm6FeOMMbNEa6HFHgG0ddruJ4zbVz3Wh3zP3FMd4hZq+NG5tZqB2PwW+e055POEdLy2QlaxObOdgWB7WIPARNVcO9UYs1aKTK6Omn3DMBjzba+OI+A8XamLCznl/+fkv6pb7m3876FbRqgTO1NZ+m7v1OcT/wrA1FGWuv1J7q79CxYiXWh9lKR1AOI79U5/NxUGy1Yt96H9rFgL/SxmFbG5uhcBcv2fZFI0/uOZ7oXBV3wWbIpKcCWtFVKbTeVTkoNho2qyMwIC2O7YD1XRG7tLTPygLERsfQ8d9TE3ZDRMM7ZzrIQw1mxWyxlvkWw+FdDOKfQsywTGUexAlyzCpvMlBwWTDPGUfzP3ADjsNK1Ult1LE7rRwxvcjubONrVua6dZUM4GLIsssqtXiqyW8Q9s0THzMJGVeQxxXm8Nms7526AHTapybmJMbdaBWQh3rdmTunXH8BYLfXQ94hsJGIj+BwSDY5K41tLA7vlo0rFIlqCE1VAnuB42xXMgf/yM0c/+8KCAUQTR6SYYM4t9fCM3raN0sC8iPP6z+E9iYO/L3ctc0jtk6+5gRLRWt0yJ8Ocsdnc1EDn7MdDddfjWTtPS36tgpZB8yYMJ2I6LoM8rmGlax2JX5/BXOwGwDTVQny/iE+hnstSD8+PlH9iuh45hqkRwXz53Qet3LfYRwCy2gHmiG0YWM6cOAioggRj7GugXoxRnqKCby1E40aqHp9kL+v7mS0ZK1A7r5lElgRP6uElAtmDduEm88v5+Z8VWexL+uV/5fbnfIvbNECZ2pvS0mf+qjgv/AQWLLZHd1OjHUeupW2r6phTBQ0u9eCAXlzAwZiRYAOypR521fu66w/V0QeJiJcRD6PkeC3Ee5mCp9Q72Sepi38X+lj0ijEYLsRoLPfAGho2FLsguKfDAhbozao50q2KORE6xZkhrvtsW+S5RZEHD02JlY3kXpnDNe2VsMiyTi6CBd9PTB+GbCNSeCu60G5WMBa7ZbyXi/zcQMG1Y9yLlwL3cFAU+e2zyDCsdEUatylJ9fK4r92ysVbYuuBcC86UFNqDTEBSDzGOoWfMmFgzSAzieorj6OUNT7HSVeE5pRjP99EU7hMruKffOA+ncqqLjBGFvdhWgLRfR/DZ0x1cQ6sg8oerNhdXujjvYQFZOQJweaxWAeWcuYFlvhIFaDIzNK8iYWt1nHdGGVRftoF5xEBTmdDyX7xgGZf9EoKbJ3dESspEYkbDTREMEQu11MMcmWhgQ8n7mgaIQ/8mUy2Lk3CiH7ZA7UbVgplDzQIdFJERme8jWKEg2gOHCAwSV+TlAOf0UmTt3FRkNMbcZiO/5S7meDnCZ7v5kzMRhVg7OmuA+cAhGEiO4LvU1+9/KpaRoTx+X8dtdijiDq2x5ikFBP/eaVDiT7LLTZFX5hUoqziimSHG4Z2bBtxeqyNgygoj/v5pFRp0VJSxZQJ/zaE4L/0/RHITSR/+myef+y1s0wBlam9aS5/8bnGe+xdY5EjXZcYiFaM2xmJBC2nExRgBAwXauCte7WARpLop2757GvzkBM6dlNhWAYuOk9oxBho0DfJYtIMYaXd2pOVuPtBsgzfB+R7ZRzDhpCLrni2y1G1xUyxg1E2hKm6YgzNNBbs8SpxfV5pvIYbTY6Yp0mNzF+6l5sTJrnl815hHh5o1WOrZTn+o15DF9tD5hTkEQaSa3sn2S5DeJ7aA4NHYRZsCdlkelAwg6Qheq2sgGGuJJK81f1cwnitdHGunbBL9wxxAvflEJJcYPkEETCQRkX/9LjjG91+DYu+VJpycCObNwMfxiIPYqGEuLfQRTH5mEWP3qSUEjZ0AzyI3QYlEBM88l6pjzBuDjPiqyDVs0+m2yLtuYIxWugh8d8oI3BZ7Ik/silP9IbuPUmQCYcdt7IpcmsN7idWgPH4/rz2LUjwLtg84LIqUIkmrP3Dr8QY+PhdpsEe71IT4Gh32wEe5jI0geZ2fXsS8WeqZFMBmFQ6fWZl3bCkANY9/F0/A+GQti0EpRqoO7OLzw5xII2d9ga7X8G+s9/vIvvUnGiq4uzo2bM5a/WgDTtrpDkqP45yVeHfKCJa4Gfjlh/Ddz01E/uODeJYLfVPBHWnQXQ+Nzs1MbKsgzpV/JtIcStr47+58/28hmwYoU3tTW/r0d6HcI2INzfyJ9s3QUgZLPaVIJE5Mr+CRPdvN5iaabSjfLEnclGvnDpE0UT+FA6J2QmVsOIrENdwAKaksf2zUjnZGpqBbY2SdjHfLJgKXlXpnnxIq5xIIfK4FJxk7kF7nTsxLRSIH9znwLUPkpSJ5rfUz/czjEZgbuOZs6PTWFQcw30eWhMETe6xQ+G6nLOnCfyuyaswEEbE+LATEVnUcnlvScs1EpJTAERRjkbEjstTHYk0qOGm27MmSOtb9NnLNEfqKg/jkMnbZpzoqAueYJHvkIWtVCI1+Tof+7Z+CxDltvo/xudpAgMiSHktmjmYMEheOVUQxB471hSINnuye//ggri12rezGudgOcJ9XGnj/cg8BqAie83980Ngw1SZ224/u4RrvVIIgrun1WWQkWAp84BDOcldZVWxP8MChBU23CzRZ1skn+P/lpvX0cTTwLUUAnr64YIJtVxs2DwY56zG02LcyT+oggNgvIbB7avveOohnLcxZt2F23Z44IsO89UBKtEw89DGGbWX1hDk854sz1qLgD1bx3I+XKlkGutzU4HNi8/6Ty6aP83WX8Z6tCgKxCwc4j5viGuojHJvrw2ERwVvk4To3auIM/pGkK/+XNzYOX6I2DVCm9uY3R7CA5iYi49iE1oY5W2CJVaHoFYMULhw5DWrOtPH5G1VrRNYYW0+QxBUR3X35ujsMPRHX1eaEqYHwbgrHOQZEZRqcVF4ROIzmEI6GjQAdUWn8CYIDCoixKSBprqFmBCiGRkn5xLHmhYmLbMFyT4XFEmsGt1vGopg6Sn9W0bqeHttJLQtDZ8PgpBsAK8JMEpvzLRx7Pvsl1OevNnCOr1zH61ea1iGWmI65AQKz61XQhB84NNxJ4iIrwb49jRF25b932jItZGZtKoOlMsYu9WoDAUgnMPn9sad9fEoYbwYoWeG7MIefCwc4LunYbooxoTLtx0/ByZJVdrNZYM7KNedbRlv/6qsI2GaG2tk3MNwGgbPnWhgjUp6vV0XWGoaVSB2UOj61pBovei1kvMwM8Xx3S9Y36WzbWhCwwWHoIQNwuYn5X4hVmXaC+eqISOyKM/qHyj4LUQ6aG4is6vfp8V2My6UmxrqqLLMv28B7X1zA2D+3ZI07ZweYk5sVA3wXYmRIUjF6d6uA1gutwk011pt2rYFxKcS4Bn6nWgXLjgUJjtUOMGe2y1auY4+dYoYKfraNZ3WlYTIFfC7LPTzj4wEKmx+SXccAnyrWD+3j39UOwOufWMFnchO8Pszhni/N4BnUR6aq66b4Pq52FdztifPaj6Hcpsy4t6pNA5SpvfmNGgik78ae9YxpFwwESRpwN2+7ksYITsefWJfiQ8U5rHSNAhq7SI/nJwZ6ZTfYUJ1Qz4eTbOsCyFS9iC2cpJi2AziBnAY7WUbCuqadh751l13pWpM2NrQLPVuA2TGZtM7y2ByBk4KxMd83ldidslKDJ0avJmNot2R4Hu7+66GxfihJH7kIJnITlCBEREY5cZ7/Sa25N5ASJ+uKTCpiaOiUeS210Jx+WcG3pJIXI+ysl3qmI3Oqg+M8tgunfeEAmIuNGsoCbLZ3ccZ2yI2R9WlqFUQ+k1N8zOhWMCsZHFnHT+GyIDGc0XoNwnS10JpKLvUwZu0AZYNTHZynXcDzK48xFvWRSCFCENDLm65PW99zqoMsAkuIO2Wdw4Ht/lc7ygpzcP4gwRhda2jfmhGuvxuI/NoFYzGt16y771Wdp7mJSD42Ojw1ZFjSjDybF3w2sYt5XVUgqZMi4GEDTxEEIF4qUh4pld+xOeBNDPMyN4BTH+VEKiHmTUEDvr0SgvmH9uG4P7GC51jIlN3es4Gx/MNTVrIKYh1PxZsMy6b+y7nkCMoxzBS975rIEzsItl5YMBXk0BP5nTMY4/k+5movj4D4bAtB9Uvz1seLTK1ydJR+fq6FsX1yB8E71ag3aiihNoc6XlrOmxnhu1wPEdBVxiJBIs7lfyZyviWp8/c/HyvpfWfTAGVqb35jm3RHNDDQTAcplk5qcvjcdTOzQvBc7BpOoTIWuaAgVYqSsc8PacQDH7su0pQnYtTEMCeSJnBEuYkBPG82RlNa5cTBYjM/wPV3K1gg2SRupWslpu2yAUTLkZU52HE5N8GCx2ZxYy11FCNjFWxVVNvFwYLvBNYNmrLk1NGohdbMbuzhWMs9XOfFWSy2BG1mG/ttVlVPZQjwH0Xv+nnDBb08h2M1R3BG3KGyo/Selmx+7zQczdk2ru/rL8EZb9SMMk6mBnEBX7F+dG5sVnHfXd09P3Ao8icvYoyIuVmrwwltl8HgoZNiSSzS0hGbRlKiPswh4LhRNaZUouWxQohn1S5gvNsFXPN2xYTCOFfHORyvruelgmo3QClmboDP7SsOYkHv93QH90YdGje1TBgzhQc6RmneQNX7JQPANofKctHAnQHYTgUB30Ifr1GJd7tsgUQ+sb5DtHdfP/q93CtijvDz833LdIkgSBLBd6BVsO7Iyz2M2ydXMH/YMmHgi/y/3mYZTTJ8RJDNe3kOx+KcFkEw8NqsAcs5/jND6xXkiGGQaDNDPJPTHdz3Qh9zmhiTUQ7PZ72OZ71bhirtN76KOcqM1HLv6HdEBOPHMm0/j+/76bZ+L1Pr41MdWyNLlmQPi/iuztoa4sT/BBmVpb8tbyWbBihTe/MbW6yPcqYt4qjzLsRWpihq+ed6TZv7qeOlQBrxHgdFpIvZm6eXx6JKsOzIteaA7MyaOhac9BQv4qQijiNSmli3YTqekqhYl+JZIhd/ZwahFhpIjo0EHcF5CKjMa6mG4FI/wU+WXrzUM7YQFW8dB8EPmS+k11JHw0mBaSBtmQwEbwJHWxnDoR7PNmyXDaC7WcXvxCgw+xMkoGJuVRDYBbHIxLesAuXa5weQ2392Gf8/f2jnWu3gOpmJOanRHW3gG72zFpqYmohRps+08XO1YY0giSFwUgsuDxTf48dwDiKmGePp+0518HwpGb/QR3kjdpEReHLXHFMpgsOcHeA5spS1VwT+hkyfQMGy7G305esY14pmyS41cfzQw3Ux61EZ4/qHyk55cgfP/ecfxbGv1TEvzrWsxUNfA29qy3DebynomNmMXmB4H4r5PbeEYzHbwmaJiSsyjBAY5SYmAFeKcMx+HudmWYZA7RfnMV9YLpo4cNyhJ1LJZBXJ1nvwANf3+izGmKJxs8qgYiBDbAn7PbkpNgpbFev0TfMmmOcFfQYXDhDQtgs4xkYNmdO5GPOSAN4HD/BzJ3tp3jKRnUDk3MQyqfx+F2ORub5ldUtjlTnw8PcHDjEm2kna6f1DSSt/587n/RKyaYAytfvD2LwvW7KIXexcZnWnxN0T09R+YvoSfV/QqUwQCGxVjBq6WbF0OrsTEwy7p+UQgl9FTG9iryTS8uEYmXbfKZsOCRsNiqAkRdEsllJIf2TgxTIMRbRyE+sCnNcgJUiwiFIPJswZY6g0RomKjfsIkKUQ3SgHRx16NibsS8RU/UP7hqmgUc9l7CHDMvARnFAQj+ybahY8XDTHTyXR5S7GppcX+XMv49jECGSNVOS7NXXbqGG884nI9TJ20V995fbvP9c6GpDmNNgjmPN0R6QVWJDopnBWzIQ4kimzuQiGLhwgyPrdM2is1/cxLx7Zs3LQ5abhnahBkmjwOFBnVA9REoxc3D+fXSG2jA7HgyrIZKcR80QV2w/9AZ7Ly/O4nlbBtIOKWg5Z6Fs5b5Szbr3XawjevdTA5/sllAVnVN+HwcYsMz+KXVruHm2OyQwVBQRnhzjvKCeS+BbchBqwUumXvXiqY+BbRjkEo3JZSwAApN5JREFUA8yeMTCoZTI7b99G4Mj5fbWB33MJxnShjzn74jy+a3/y4tG5wWzMkzvIYJIZxJ5biz0rc97N1uq47ryWAosxykneBGDgj56xcg6DZZZy+3nMU3Zv36hhTZgd4rjNkTiD/1Hk4oykX/FX7u167mObBihTe9NbeuZ7wOQh7XVugC935BqYdewZ0yQVY1eIWAlopYsvuQj+dr1qjjUrEDZxrA4/MzTcR+SZfkcnwGurHcuQ7JStA6vIUfBnc6gS93osqtAWNOvjpdZaPnFU+0Mglc6W9PN909DgDnqjpuBdV5sXjq0U0ctbF+ZqaFkXYi/cEsaqMj4KCswGJ9TvmDhwVDsZ/A0p18wUsCQlgn9TB46nXcCYzQ2QIn8gky05bnslpNTfu3F0DsiH8Sjlw3bOfh4B6gcvwemeRLs9bpUxxoWdjikIx2aQroicatv7nBSAyq+9jBQ/yySUj89NRN5zHT8HRVBNvRTvqYwxHxY1GGgODbcwcYzKXdQsIHU/yDAhxoi4JgaolRDPghkWBk+TTGBViEXesYnjvT6LIHy5pz1xBGPHZ544CEqoAHu5iUxDLYSjZ6ayFhpuiMF7q4D766hQC/Ee16sYB18Duu0yjj/fx/dtrY4AJ59gbrOZ39u1lHW9poDsPp5xVhMlG5jQ8snR4PShA5MAeHXOxNQc0Saed7BsNo/6NMcbMd7JmE1lAPnInq0J+QTjQoYY15TlnrUlyE0QaG1W8dye2MW86wSYK7Ercr4lzto/ESnEYNV9ido0QJna/WFDX6mAocmY01FQAIk6CNwhD3NIw+/qbp9CUCzb1LW+3svfZDKgbCP2uwgWhV7+aHfgxLUuuvkEgUzkwSH31ImxtTtFvQqxNStkjZuaFo5gEW8VjJYoer9MybNb7Ng7er29vAY3E9OMYUbpsICxID2Zu3CCQiNdFJkx8iYmfU+gJhvcUfW1VRDZEyt9ERcjYqymVEzcLPSMPbLavr30vcjR2j3ZNGNPpJZ5T0+xQI/s2Wun38BcIisp9A1zlDomlU9Q9NUGHDedy9UG1FGf2oaGytBHap4A160Kdr/F2LAeN0uT6owIpqZzag4BohWBrk7sAhTM0gAxL2x4mOr7ZgdoAEi13NSxDsu9vDUgFMEuvRYimBXBd6UbYByyc5qlnErZmFezQxtvZhJF4LjX6jgHWXQHRdzTzBAOmqKIxdg2Aakj0hhAcLAxMqG712YRVDyyhyxGPcS8eWLHAvu7GRlyIgiMzrbw/yx49fzhnY9F3BLtJE2U4/bKnOHRLhwCNO0nJiC3X0KwtNDXslmCeUaRyd2y4sAUnzXUTNbcAPOvGkKDhRRx9mLarIDxk/60iIikX/+X7n6t95k5aZqmX+yL+KOwTqcj9Xpd2u221Gq1u39gam86c174CetoymZ4pHmOPaPvMnghBiTLsAlz2MGncpPSJ/WR7RInjsmq72t5Jx+bA+vnseA7ggWEaq2hp3TW1Dqqzg6ha8GOyHVF6hOYSgBvthkhhd3CnEmljz18ntoYVMYlCJiMAgITCRaOXUvDRwqgLGZKBsTUMKOTOtbxmf1W5rQMRtXd/RKwCFShZTkoIzh10+E3hwjSLs3A+eQT7MzvVrtnxoXA4ImOPRVbqRzMIO64uNYoZ+wPsmaO22ZVy36i19WxksduGWJsnQAO7d3XkVm5UQU1dbmL/jW+3nO7AMeyUzZGGTvtMuu3XjdANXVEEsd21PkE566HCFQX+0aVzfamyU0s+8bnzzYLpcieZzFSwcFEZK8MqjqDJtLnm6rJ8bZtXL8IPsPmmny2zCQRrL1TxmfbmjXhnGbmhsrDbMg49lT9N7au5KSR75UQ2Fxu4Puy1EPw90ZttwxV4//85XvvrUMjnb8dmBK0N0Gwebes3FYFn+nl8cycFPfN0iVbSoQ5K5PxWXY1IG0XNKDPQTMmr5nIYoTsXRDjO0eWETOghRiBTDFCMLbcu29E3u7VH08zKFO7f2ziWBo0FVW4dA0DwhIPRdlI1U0cLAwbNRWsMtAZAIeeMVqCRCQUbbamDpeN1kTgXFlCagdWHihHIktd7GrZL4dlIEdEBuqQ6ByISaC+yUSzDt4Ei3ZXAbz1kVEd3RT3QfrxWDEorGOP9T76PlLp9REc9WLPsjXcmZMdtNoxjEnoisT6OtPQ+cTYTkFsiyoDkkizQWPBfdZCOH8nxZh99VUEJ9ca2n8nAtD0dq3urzWwm17sWedo9u4pR8B8LPeMvu1Nbt3lZpV5X501EKaTGgYiyGSyqJ3RHCErsq8UZQKIQ2U9nT+09P/AN4ZPu2B0U1LdRXAN7JhdjCyoTFyRNLXfY9eA4OwbQ3BnZayBZWQ7/8g1LBNLP/MDe708NiYNA4BH9vH7y3OmuzKnn+kGRtndrhhIOp+YivBeScdM51EtRPBDYT463BnFmVBTpxNY5qAQKxtPM24UN2TXaH9i430nYLQI5vW1um4CXNNZuVY/Gdc0zEFzhhmmr1rDNb0+iw3IXtmYT45+/z+1jM/eLkh5dhkBO7WL2FJgt2yByVIPc4pMqXxi2ieJlpBbBcxtNpFk4Mxs6ekO7jP08L5eHuPNhoxnWzezfBRPzLYruJ9tGqBM7f6xcoQvdy20pnd00tSuiDQQoNLlcs9UP2uh0frqofbYKUH/ZE53qb28KVMSOEq5eKajmbKvZnbnsWI0ZgfYAYmYI6UeCCX0ixEWVIqzNcn+yYMO2wmspwlVTdfrmkZOrKzC9HuYs50Vd6aXm1j0gxgOszLGoj7WjBHlzjsB7rWkDpT4GmJWOI69vMg4QAqbeh2tgu30qIQpoowRweufWdQu0pqB4fWyE2+7YBTNxMUOcrNiu/1UEPDkEzz/XaVjv2PrzqWihxQzUB7juRwUNDBwLIAoqXYFM0kiCIzI9mA/lYEPx10fwYnulUx3h60A0kywScVbBlAD33BMLH9RK8RLwRpiN9xqiBIOs0PDnDYb1LFgYCJiAQsZOmSsiVj5rznEc5nri3ziFByiP8H1tAr47LW6ljvHKMuUIgTQ6zXDyMSuyEJowRLxNbMDPBc3RSYhFfyfGczcBI0d6yFeI8iW34lSZN9ldvA+3rDwJGMmaqOG+yQIu6NZkEe1/PfKnAXtLBdSjv9yEyW7cy2M01bFylW8nivNkwOUG1ULTtwU56uMMY+yx+J3k/e0X8I1MMtL0b0s7Z+lWGbfrtVVFFCDxapSo483qMyYE/6QiIikwd+7+1i+iW0aoEztvrH0wn8jzuAn4cCKiudgLZblmlSQjpcJAoKdMhYRZhfyCRbHWojFkF1dE8eyEpOMo410xxO7lsKtjnGMoe50uDM608YC2VIg5DCH9y714OBYginEpibqplj0mYmhEBZtpyxSFuzc24q5kQQLdOLYTvOgiOCpOcKiTVpsrLoY1EoZ5kTGZWVcCBa7rgYk7QDXTyo2d/iF2GT5qY9BTALFwMhEomOcHyCAYpblgUP8f2ZoIFI6DBFLWz+2J/LanNGH2aG2oNmbUQ5Mm8RFKSB2zNFTzC5rzCB0NSNGfRP2dRp7eI5U0N0vwXmzESCdDnU5chNr3shMVHOEAIxlJ2YEsr2PyhNTH6VmD59fmDNV5H7eAm8GHqnYGPB4DIYYQGYDSeJAOOcdQWZqp4w5+tSWCqtNEAz183her8/Y+RjEUdiPujwsPRWUtbNRw3NOBUDS9RpKbtn+Wac7eAbsUzU3MKArgyQ+X8oG3M38iVHiqSMycZDhZMmln7fmmAyaOQ+IG1nt4FlvV1BO2Snj+KsdzJXYhfz9mbYFf8zenWshkN2oqSSBZ7gXBjW9PAIJtrpYq+M4B7pZ6OYxfwiozY6birXJjm/A5NQxJdo7ma4LzvCHJC3ev0HKNECZ2v1l5TEWlLFiPnp5LJB7Rewyy5Fpf9AhMZC42kB2YaGPXc4rsyLPbJqTJ96D6XWWivKJYSLaBTiGfCLixiapX1DaMXfBLOWMPSyUpUj7/ExMe0FERdoqpk563LjbI4U6iHE/zPZ0A2PpsN5PIJ6Tarp/guCFuBC2hicYNXHMmRKIOXFU6VaDr+YI45O4Ios9SZvfL/K0iPMf/jeURw6Lpj8hYgyNbGO3rOUSU/cVMUVcEZE/8wp2t79z1qjdLNUxEL1WhzNkZmiYg/Nc7to5iPVgX6L5vn2+mz8KcM7OgU6AgCp2cR0sobA8MMqBYUXtClLR2Qm5qmPAecrdLzErXv6ogylFIsWc9e1xBCUgBnupA20b0l4TB+PMzIyISFH1MypjA/56qQVMzy6j1Mb+OQRrD3O4FnYenhvgvl5YsDJkbmI05NUO7nevjM9sVpBlONtSxdoGggQ+h1HOgOyhliUYZKaOSG2E7tzEwBwWRD62Cse/knmWxy2IRT5wFQq/VI6eHSKzkZvgO8f5MTvUAL6oJdKcyMDBGLEHEin09RHmRzXE+O6VcKyX5jFfgxhrwEP7CI7JZCrEWFtemzWdGILIKVEwyhmTiJuZvZIBjGeGuO/qGBmvGzUc+31rR+f1G7FifF+XfaYBytTuK0sf+JA4n/xXWAROt7HoJA6k3qkAS9DmwMcivVlBipkUXeocPLWNhWOvqsBWpSKyoy57+vAzhyqqFQgWubEnMlEn0NPUt5diIWsVTMGWjmSpB8fiZG6oENuuK3GPaqdkjTX7pi6wxdiUdEcK8CvEVmpJcgoi9q07Lhk4M0P8ZNPZpLpWtCTCmvmh4n2CPVxfW2nWM3pdZ9rGkurmwbrYL2Ec37txlCVCmzhY9AkypuN3xADA9RBjvVPG58mASdWBkwWxV0IJiCn5ILZsEVPnBD/38xj/QwXy1jWLxhLXblnLaiMr/x0Wle3iGAWd5QqWFsjimRlajyWWX4gtYZM/CnURKD30TSiMRvZY5FrpScSUlP0UgUVZyyND33Rz+HnO/X7eyn6pIBguRShJbJcRUFBYjXoo832TyCcjjFL72xVjjQVadlvtYk68NosxPNfCXOgFoBsTNHpYRC+ovGMZOpZXHjzAGI89BN1362gsYsHkShffd1JxuTko6JqwVlfGmivSjHB8EaNk75dMKE7kKE2fjB5Hn9mZtkhzC+02mHEibfywiLm60Mc5UrEWB+UIQQ6DllRM1JHvY0NI2oW7gMnfoDmD/0HESe+rjMo0QJna/WcTx+izIkqzFKtnHxatCRg7t/bySEHPDeCw+3mAYYPY+tBQoEvkKFOCAQipnKngfQS10blQKyX0bCfG4ORM29LOWc0Rlkb6uujPDnGel+fwGfZHYSfiYoxyTy+PhZhN3DZqJqldVXxA6Nku3FdGCGXWS5EtwEx/s+TBAIHZAxHskhMX9xUk4lT+b/jcM4JxfXUOTuU4YPWlebBEsjbwcZ+kVJOZQnGwSQrH5ojc7NZM6m8lhHPeLus1OVba6QRWynh0D58fafmkpEHavGAsqIy7WUHQkrhwzMSJhB4YO62CUaQZTDmpKu0qyJTZEab+qYORCu5zp2wU3lfmzfkOfWPMZAMUBhq5CfBMYxcOkeBkRwxknM1AidgY5jVDVR7j55E9zTT51vww9HCcpR7KPr28yK9esIweex01Rgjm12vWmFBEsxYDC4AW+wjOdssZDSGdUxs1fA+eX0RAESSmC7OuGItcJmspgut9dRZz7sKhfTdfm9XSp2Jh/Ane508MpBppANr38bxqYUaCYKJ6KAnuh8ylIEaW6RMrevwxxuBqA2Na1nJSmNMyXoT5dqqL4KiaASdTvoBg+tUO/r6tTC8C/Emt/kIbS0ixi0DFTSUtvPkDlWmAMrX7ztJ3f6c4v/M/W4YjcbBYMXtCCiwd7dwATb7YCr4Y3Zo+vjQDh3K2jQWFO6NUTG5+dmBy4SwdcKdKBx+n2OGyVBLEpky7X8JCXoqspMCAZr9kzm6njAXuagP3QIErLtwiho2gc2CTvPWapZWHOWs8yN40BIX2MswklgJEMFYMmpjJYaBDB8mghVYLj/Zoydrx4ITXLmJlHWYniP8hyLmgzI5RDk498oCZ4G711Vk4B4rdscHjMAeHuNoxkCzLMFnc0FbFeuA8dABnRYwNe/vslSA1/85NONKbbQc03V/Wkp0rJvxW1Wezr9e6XUHJ5EEtseyUcR0DH6n7UmTZocQxjRKKnBUnInIHVgsB3b5mDrMsH2YJYhdllZGCkEsRgMb8LjADRPZZKgA4jz30sGEJg5m7rQqc7YMHVtKqjFEaI96qpFitCwegwy70rcni8a7FWYuUbURRxX5epJAYg+rCoQFMKVo48kXyITYjpzpHg4PGCO95+7bILz2MoLEyxjMndojf8Vdn8QyWuwhiqIAbxMZQS7Ukmp9g/lXGGC+K21Ge/3IT/650sb4EMY73yP7J939xBsHwSSDhrQqez70AiE8yzgHOk25enP1/IelT3/XZHe+PyKYBytTuT3t4Hw6FlMShj38PiggkTnVEBr6kX/XtIiJQoiVTwc98yVmCYGo/zMGBzA61y63uvvVLLUPfFglHDLdBB0O2gCMmU94YKRhuaKDDcoTzFTXoSMWAjmR+NEf4/zAHB1dUJ8F+IsSkMGDITbDjIxOCWYXDIoKMpZ4JvxGUKqJNyzQYYc8hR4xV0PeN2eSlR1kJn4vdxFuI0kwTq+eTokpdlnffQJD2axcM95G45uTZ5benZRz2dSEAk5ksPntvYgq6iYtd+aHShd9/zTIg7D0zVrwG5chFLOtDmnh1bCVCPxEpagmiqSDSnbJlNeYGmKudAE0T/QQO/MKBNiycnDhkdxxLgnQTR4G9mhm6oo7yUIHJDx4geGPbAQanIoaXeXwXxwtiOPHdEjIkhwWR31+FY2ZX7IW+0V8Z3E4cU6ZtFfC3sy1c2xMZXBKzeNcaCAS/fB3je2lGO0lrkNIqYI5SJ+g9160MSQkBKvN2FejNMhxLU8s9BFAPHSBDx03CagffLzbxHMUICM60VWMmQKA90DWG33EGzSxvspu2CK6hEGOdGvjIHFGbiNnZ43YnfSBKD9RHGDOK4Z00D7LPk8bsLpWstS2H8+/+v7j/r7nypsSoTAOUqd2Xli7+bXEKP4JFiJLW9TEcG3derDWLgEmwWxL59Qewy1no46cYwYHQQQex1tbHOHbkiTRj7MRIESazhVkF1vypDeIIFlEKog18A51SWbU6FllxTR3Xn4h4euylnnUNLo8NuJubwKltl7FANUe4dvb24eJEoSyWlBIHYNXswpVlSlRDE6KrqPMsj4/qOaSCa5wZYkHLBjh3spMwKLTKWPulTCzQY4aJei+/dxpBAqXv6SjOtPHesYd/iVn5zCLGgWUeqgs3h4bToFjYUg//v141NlE3QFnqsT1rQvnyPHa3Dx0gSNquWFapOTD1XdKmt8vY5S/24fB2ythFhzk8i1EOc68QIzA6f4j3DHzsyo9rxOyXcG8D3wTfihGcLctBDCbdVKSYoMfQjRre181D0+PpLTy7uYGBn4/jnb5qzVgpAx9OfaOG/9Mx15Q2zuBBxPRlWgU0T6yFCLrqI4xdUTcP51o2Dy830cNouWvO+TceEHnvdZGvu4T5d6qLObBdFvnfHxV53zWTnW8V8JO4KEE9t2Qdnkl/P93Gd6kYi3x6Ec+cQepIgdUi1lyT3+WSlm8uHGCusVzLzGrsYm6xXFeMkCU6LFqH9ZUuvvMzQwPFLveOZkLv9j26OGONRn3NDD98YMJ7Ikd1X04KTmhU4KZ8AktahwWRzao4yx9+0wUp0wBlavevvTSvtFlPJC5ikad6rApDOZ/+F8imXJ0R+dSSgROrIRzTqa6pxxLsSAAf5eDZX4ZNvSLvqO5HkJjqJv+NPBGZ2LGCREQUIxOqMxz4lo6fG2ChyCcqGBcb1XanbHobzNaQcbRTtk6spcjAoqUIY9NVMOpGDYtxEBvz57gYFplGIljQT3Wtcd1Qa/nVEOyFUd6COhp3k9nj8niUzee1iZgKLstcBOrS3r59tAeLiDWMEzHHndNgsBNY0EH2CbFJKfEjYmPez1tm47AIJ0AGVzsQedsOHGxuAkfKsiEF37LMHdJKZweK+clkcx4aHcUxfWIFwWVlbKXHBw8MH3HcCLClNgb1MI43dcxmteojY6b0lEXWGOFY2dYEJxn71pzqIOCi6vBB0ZhQbK3QVfbPWh04pCAW+c5Pwnl+egmBw0MHYF2JWFlRBLReX/FHr89iHOcGmAvzmpWho98vivzhKQR01BipajB9qXm0bMoO37UQQQa1j3wtnx3o+0Y5ESfGtVFkrRvgONQ2YWuNft6ECz+5gtdZJp441iOsrCXk7YqB32PX+iIdN1LEjz+PyMN377BojL+xZ323yhHuu13AnOa5bmepY9dKdpubmpKx4qSc7X8qMjt403RMngYoU7t/jenl1BH5+Aq+tFVlaZxpY/f0+C4cwitzcAoE+JUio9FemkF2ZauCL+5eSeSPX4ZzzE2UCRNbqj91TE+D+hXMqHhK72VdO1C9km7eFv6y6itQxpxlI7JD6EjZ1ZjONXHxeleZCmRTNEdGxxUx+f6uamqsdLU8EZvmiYjpQ4iYU12vw4ndpEUnGE+yVfZLOGZZAyA2tOPzOChaNoNAYqrWUlGVgD0KWZXGAIEyMLtXo+PuBiIF1XGph1Z6YDC3V7JeKewaG2pwN8yZgB2p3g8e4DNbFYxjKULmhh2WiTkgI4olidkBggB2s6ZmycA3OryfKPtM6eoEFTMzweeXVaOliJ4InGA2UL3b94P02of3EXAwvc/SYO6YY7xRtee5OWsYqK4PsbvTbYwNRdYe2sd4/eLDCB6ZUWiMRP7YVYx7LcR7iH1iWcdJcby2YkUePIAOEB0onfbswLqUU7eIY1GKEOQVtCzTLhxt7Bdqhm2rgs+e6hgouRPgWuYGtukY5vB9GeUsMFivG7uuVUAwWtdjtgqqgKvZzLGC9NsBjlWMgSXr5wFEPm7DHOYv5QREcO7fPWO0bJayvBTnuNxAhqwYi5zfMur4SF8jEy5rLC2NcpZpTR0wkdg+g/pEZ1tvGmryNECZ2n1r6Xu/Q5zf+Hfa8TSE46VjKEVwCNer2GkUYiwihURk5Bkd8eKMiZOlDhbFr7liGIHq2ATIbu44lAXgRnAkBHdSLVTEKKH8myMmCEcHwMxMEGNRW+rZ59nQru+blD3ZKtQ7qYW4x8hFGWKWIEct92wqE2a5ZyySxMHOdql3MpWT+BYaMRWJ1vQPCwgAlpUyTfVesoomuugxAClHGL+hOtW2gnbLYwM5DvLWVO8ksbUrzaMdZo+bowvrRg3BQT2EU2JWiWyZgyKeVyrmmK82EMg1wE6SL183p8DsyGbVnE/iWEfn023FFJXhNJbzcLIsVx0WcZ8Mamjsqp1VKP3YKhwSy15lncOXmzjXOzfNiWVLBCK4VuIbWAYkYPzdN3Cu12ZEOqctYyNya3ByrYHzPXiAZ3CuZcGDCJ7vpRnrE/XOTSvNfOOrtz6XdkHk1x7AnHz7NoIxgouzlo9F3rWpKrf6fTqeUaiMUfZ5eR4ZvPwEWYoHDm2+LPVMS4jYNGZ+Cuq4rzQxR+f7GRDsAHPAT6xM2wmwNpT0Ox5kSiOdAN9L6qTMDUyDplWw3jqvzmmLhNbJGSs2V/QmR5lchRjfTWZxLs2IvDivGiyBZT26eZE599bvxnZF5NklBP25BOXtcy0ThiQb8VQHc+DLNrDJGeVwHxs1XHctFEe+uGWfaYAytfvbqMR6pm1qlaVI5P1XEYz89lkDk4U5XTwcc4T7JfvM2RZ2IA/tw7H2fXNKN6mfzq07T/a3CRIIbDFFHOg5Ig/HI9BSxsbicLSURBBuKnitm7fGg2HO9E7Y76UQw/G0C3CeT+5YQONP8EMQ7/MLWEQf3leMx64t6tmMCo27XhEcm8GNCM43zOH6e3mR7bzdL8G6zCit10UqLXymqjtmYhlY7kkcEdHdMgO6UQ7jJWIiVqRLB4kp8VbGJoPvTTAG1DJJHMWfpNDeKOasbwxxQgt9YBu+Yh1liFSszLPUs+aAjtgPm1Q2dJcaC2iiTaXU7pWARaiPbhXeI54gPzFBsdjF/Ngum5Q/A+DIQzDDXjYU5mNwR+NxaDNDo4+LAEdx4cBAvifhFG5UEZws9ow+W9Qgf7mHLBfLUwzO7tb0sT4CU+gPT+F4ZAGJoExyroXggNR5GvsXHXfq7Jx8UIQT7gR4/rODowFgLw/Qa31k2YeVLjIebClwvYbA43zLdFDKkQUhFELsZdaWgQ9nf71qDUXPtE21t6ug6KKWe3KTo7omx42tHJgh5Qaolz8qcEgwPDFg2b5HGzVr60AjxZrtJNh0k9+3sWAerHYQ4NHICvz/PIGA0k1FntgRp/jDIpWxpM7fv/Pz/gLYtJvx1O57c371p63L7dUGvnSOoLa81MMXfq1uGIlqaAJdpNuSebFdAWV2tWM9cbINCStjZGCGvjWG4wJTHluph4qxBNGGigcZ+JZVoTS/CN5fGSNYYUq/XTAqriM4NhU/KXveKhhepa5iVMUYwMMXF3D/L82jhn+6I/LMdXMSqYMFjg0Ab4KCFdR3p8VVRKnTRfy0C+Y8PQ3SqMLLLs/10M7VVDwEBb/YnZXiVU5qAlj5BFkLPj+m20c5PHf2GqLxefiJPaP9EpyMk8KxnlTeIGso8gxcvFPGdbMk0c/j/GHOqN/10Fol7JRxTceBjxs1SKYTS3SmjWMwoCSTzJ+oTswAYzrwsdM9LNrc2S2hT9BxgGtWWIxZjkKM45CqTduqQAsln8B5k4m02DesS+hZBoXP5WzrVq2bu9nEwbnOtSyjdLlpDQvv1aiZs1cCnqyjmZ33XD8KFH1+0ZouUv8kdcypR8pMy00QoPQ1E+KIiaYRRExQrKvlFbLM6iHOv9jThppFnGehb+0SrtfwmYlztOxEYxdsBlj9PMCvzJjRYhcbLZaBmdFd6GMT8N6NW4POsWeqvtm/cXNRjm7NZA1zJgLJcvAfngItfamHxp/e5POSUZl2M57aW8fGnqZLXaREWSs+3TFp6sjDzmaUM+ZIY6Q74xROlsHEc0uWTqe2BfUDRJCZSVzr4NsYmkIoVT3HrkghNV0W7vrbyjzYL5puBbVUKE8+zEFXg31/mEVgl2TWkCMXO1liZEqRdYtlc8FCDG2UiYNsgAiCl+u68zrdxm7zShPn7+ZREhv4WCSPlxOyRtXMhT4CwM7YmBB0/l3dUXJBJGaHmAKODRVtRazPT99XLZDU5MrbgQVYi30s1tnghEawK7EcboqAgtm0bHBCJggzWqRah77RtRNHZKLBzpIGwlS19SYiE0/ko2eMIZa1VgFBYnksstRHQJA4yFrUQmsPQCByNw+nEObgUHeUTUVGyHLvZLVhjgNLk7slozizzxSzKjNDzANmEOshzr1VwfuXezjvdtm6/L4+K/LY7slzIXUsy8XzcIwTFxienTJKhHsl6z/19ZdOPt5JFsQIPsYeMl7MXGQDL4q0zQ4w92qhZb3Ot0wojUq5r89gzegE1qohzOE+KWa4VcF3dbVjcvU5LVVtVvEsi7G2TEgw5rtlA0qvdqwMl7WxZ5lAlptaBTyLrOUmCMKuNjB2LGFvVUzD5rjlk5ODIpGjStZZY38zWjW03krnWjczWn+U+JRpgDK1+97Sb/iL4vzKz8A5B4nVmAu6GEceFq3rNcV0xFjASB30M4vpvIIQrzU0E6NBBr/UmxXFX0QmFS9iO2+WbEjNzS4G+cTUSpm+9hVwSkYQuwznE5FJzrI4bLpHx8s6NHf63CFGnsiViu22KWYXJLpg+hiHzYqVYmqaASiNsbiSfjq53UqmltVcOL6rZhqa119VBkRljHvv560BHceecvQMYooxet44mpFZ7howNqucyvNxXJ0U6X3SgVc7ltEhiysb1FTHGA8nNa2PSIOsWS1veRPLgrUUiFlQB3WoeJW5gZWmaGMP1PbZoUhVryHR7NnQF3loG2Pz6qzioHLW84gS+OUIwfarszj/SQ6pp0Ddp7bgKFN1msy2MVBmSc+fwDF/bBXfiUizfqlec+hZg0S2Rjgs4vPZrAezWlTEjV3D0nDO8SfyjsrwO4Jrbg6tPcGdbK9kANnjMvDrdQSvxFgM8pmAXQx7RKowJQCaQ+2oHYoUe5gzE8fmRy00bFOrYArE7QCijtS12dKSE7+P3TyC/lMd/Nsc4t6zY0fpAM7/tToyi8SmZW2jZlmWQmzB7d3YO8etGCt+Lj36/WV26nhZ7S8/d/JxJo44z/4rSZ/5q2/s/G/QpgHK1L40bHZoSPnYBWvnsT04u4szWDS5CA9zIlK0pmvF2NKbrQJSptSYIH2V1FR2vRXBQvHiAhb4iaO9diITASOw9pZrHRhuIjcxh0SFWqZeXVFRNbG0ezewRoZ+YtLlxMyca8Gx1UORj53CTi5xRMa+SFGsey13j7sl7OzyCqY7rQwFMhDuZHfSXGDZhRmVXh6vN0YWTCz0jwJimWInVfkkRk/2/aMcHMPsQBtH+iILA/y+o/d9oEErRetY/jnQkheF8dhrhhmbQ2VWcIyrocgowW49zKF8yCCiE1jqf7OCDNTTWzhmLw+nUw0NKM2sUi3EdewXLWPmJ6ZmzHJQboLjcheem1i56HQHc3OzCmxEeYxMAdWQ6Wh76tiqoTmmrFjdK3OY8+z+u1XB58iUSVyUlbJ4JaolU0Kem4PYxXEuNzHXtss4NtldxN9UlHHHcufd+u8wuHTT289PN0WgPfSt1FIdG4ZopYuxErGu1gTWE9w63zcl4uzY8bvETOtNCQEXgcg4h+cUecruUcBv5CF72c9DpO50Rzsr57HZId7mK9bx+VfnjoJmX5mzDNgTO7jW3fLJQR0Zc6S03y6AiR0RL/N7KrqZOQHMe5K5qcgzN8QJf0jklbkvmCLtNECZ2peGkfbYLsDB7pYNSLdfxJf5qW38XwSLJDMOVJfl7m+7Akcf5oCCL0Zw7ixdcEFxUyx4HzuFIOgdWwD70W8nJ+AcaNmFnotPSQwH4unOjIBeYmCKsSlX8m/c6foTw0dUO6gZ/9Y5OMyJ4LgdFxga9gwh3qIdmCpnKncPTu7F8ol2mi6JuEmGqaN/3ykbRoRKsszo3IsVYuszVB/BEW7k4PRYNlrsG26DWAI6Oo5zmDPsDnUvEsd0aeYG2KEv9vB6NQSIceBjriQOntu1Bo7TKsAJfuWa7cg7ASi03kSDkhKeFennC33cgyN47q/NIptH2nkptJIWswivzgFsSnG7fIKgQET7wkxsjrAJZH2Efxd7mmFxLMC+Vkcg0Qnw/aGq7fzgKFA6qzOTuMrUyuB+OPZn2rjGd24acHejZpk00mITBxTmuwUoxRj4sE+saJCXmaP1kYnnpVqSZSntVNc0ZtqBBuC+lf/YGHDoaxmuh4Di4oyC1wNrNkgwcjG23/3EAtyuMnyIrZo4OCcDK/aKWu1g3LLj6mkZKcvuolgiNVBYZv7qK/aePzyF5//kDsZ3p4z7Z5dzBjKcC9zgZDcYhdg0pd6ISnSAbLTze/9GJHYlff+33ftn78GmAcrUviQs/Yq/Is5v/S/4kn3yPBwKFxOCVhMHzoYKjOyZ8sAhXtst4X0vzaOcMDMUcXwsPgx0UkEQFLvYJc8OoBr6tZcR9PiKqaBGyr3qejCtSzYM144gyewCtbRD0CI/w515KiJezmrY3gQ7rl4e1z7KfN2p40J9kJUuFszLTatrs5Nx4oKpwizOvRiDOXbCHfhHZdhTwXWRcuwTE5QajXroYzd8t2CppSDQUgTnz/LCbgmOf7d0NPALEtMnmRlibBPHpNqdVNLH/waG9oWfsF5IvTzGhsDRcoRz0iFNHMtGBTEc3E4Z5zvT1kaWFTwLOgHiCYLEsCuOHM0ukIY+ymG++Zp5axXQPLGQGPajEyAz9rYdzD8CiYMYzpAAUNoDh1BqTR3L1pxtY8xfUur67STV+3krtfF5szzp6T1QAZhGR+6IUdQ3q7diWw6LBl5tjpAJoBDh+datOJ98gvd6qQFxgxjBCVsYHCjui+VG6vAkDnr5sOyxV0KmsagA6Hdu4j27ZTtfIca8YVD1ilKKZwci7SbKZ6UI93G5aTom6zU8j2Is0jxWpjpuWxXTNznTvvWeaY5gDCmFX4rAwuGacfN9qY3VSeXbwm1ev5utdjBXcpPPOy15GqBM7UvHenns2C43NUjQnaYjSJ2K2I6GIL4wh9T4wMcCMPQBHmXHWzYbq4+wO1mvHe3Bw8631I2gUBN7xNyLBYmJh90MIjzbtc0MbXGhw6daLpsl5hIFbKbWJJD0wof2RVqnTKuFlOc9TYFfaiKQWe7hs62CLeyzQ5E9zQ6QBeGlCPRq4e31HbIN9RLXgq5e3rrtsvcJnSsBsKRml7Q8sVvG81vo206yrk6TsvuJA00I7lpzE+BE9ks45pltPNtIn1kqcHwEBucmWORzis2geRNoUDy8j/tiVowZn8rYeixRqZiiX20dv1CDIZZN8omVFYrxUeYMjZLsiWtBzlCB2q0CguJRDgEKAapkuBwWDdTZDXB/pIKLzl0yfipjZHZ2ytozSnf73Tyu68vXLQvILB1Bt2SadfNHGzv6E2ibnGSfWYQD7eaVHRVZRoO2VwLgeHaIOdhTXAcpsSc6VwV4dvMitVRkuXNUGTlyraMzGXsi2tBP6cQc/qsNjPGDB9YfapjT7IPgmbQDZCVJ8aaadGWMTCqxUsxIdgJtHKilr6IGtzd7iWk2ab2OTFYtxO9Umd4pWzC7WcUx5wbI0DH4H+ZERhUE03ul22ciT+rXw0aCn00fKBE0lNQWI458WOQPViX9su9448c5ZtMAZWpfMpZ+w18U5z/8b/gl8oyhM/IMh1CMDOwWO6boWhlj10HQpTdB99cF3X2mju3gKLH+sVWUdGohvpyJi8WWDJXUwbk36rdqFWTNT7CQUQae112KTHr7uFVDU5DMJ6otote9X8L5LxyY5P07NrHIrde1iZqo49N0/OUZsDQW+tjh1ULbIZJFUlN6dj+P8xYjONLjOztqmbBWzsU6di0bQqo1uwyz3t5Tx+VNRHYqJqpGquxYn+UTOxnJ/FQkpxmf5hALNllPzeFRddOTjNeXSa2TqSCPCYCcLFn08yZCx59UsGtf7sGhMhhIHDhGBgL1kWUYchNc2yvzGF8Rk6fP9sg5LJo+jJta0NtRLFJPyw+Nge2MC4rfYaaqHpr6bC20Y3UDzI1H9gxbtVO2Y0sKgCfnLrM+rljmQQTzZai/+4kFCd6xUsKzy5ibSz2TvN+pWG8iGrsAe6n1BMpm0RrDo5Rqzq0zbYz/+dbRzAG7eJNGnm0WyiwrKfsd3byEyvabHWJeMGP53BKuvRQBc9IOMIdLETYopIhnLasXM/Dx++zAnjHbAjSHOH91bBo6WxqA+BP8P59gDlZDzA2KyYWefUfdFNncluoP5ZOjWJTjAFkqVBPgPcph7LPjdDcjkJp2ti3Oqz8uMjeQdPb77v04x2waoEztS8vCXIbhkWHfMDNxqosvej9vTI2ZIWq6DXUgdJ4NzZpcaWC3MhF8cZ+5br0yvPSoBgPP1S6I/O5pLA5bFdTNT7fhPPIJFtEsDoW7luPANy52rQLOle2hQ4VXPxEJlA6ZONb3I3EtzR9oCnyo1NWnFS9THRvV9bklZAqe3sKCyTQ+cS79vPUs2qjhOi7NYGzeu2EObH4AmrUj9iyCWCSv2Sa2ChBBFoOliVDxMLmJvWetjsWazIWVrtGoH9mz8S4oM+u1WTybt21jwT4s3h3bkDViESaO0X+Lkc0LSvWLGLXcTeHIKlvQ+6CuybJeN5u9lSLb+W5Wrc9NXstRBK3SEhcON4tn2KjZNRY1gKWE+dkWxu3CoZVSyMjJBoFZJkm27cGlpsgjGowQUJ44GNPmCMdkVnLoG8i775teCNs8cFfPOdEu4Dgsl21XTLCPDK2LM9ZnxxHN/CRHRQBFoJD6kXMiX75hXaevNBHgsemf6OaD3/GBbzouWWO/IoLWmUXwE8y3023LIOWTo99PNgz0Ujyr12dNC+V2VopuVX51xMqUPN9YgbaLPX2Gun4dFi1wWOxhLuxpaZrZu72SiUP6ialpO4JxfnTvaICSxSqFOROGHOYMn3cnXNhJDQ8bSmMfe+Ls/o+Szv+3t//8HWwaoEztS8rSv/B/Eudf/aI5RmITKES2VjdGSW5ircvHGWdTiM3pUchq7Kmipu6Orxdsl/zsMpzyxMEC6KUiA8WCsIYcuyg/MePxmQECAW+CAOd2OIthTqSjae7rVeu+Suecj6FMWupb7x6ap6WIfh5A3lYBn/+G17CwZ9UqRY7qJjy1hVQ3qbZsIzA7QFakoHTFvm8lJTo+byJS1EW9kCnxUEnWSaEpIiKSTIwdJYLF7qBoOjWlCAvuzBDOhkwnR5T2mjcmRlmp2FTspWR3N0AJzEtN5rurmCI2QyxoqWWo86WQmJCepwEawZ832T6aHfAnIsWRiskpC+tcy/rP0Olxd04NDWILqLq7VzJHSsE+4jzGEysntHTuVSdGMR97mNvl6GjGytHM0qkOxi1rLAuxqSHbRWQptXslgDCrY5F33TChsMSBToyrmZKJyM3Gd8yaZAHin1k0bBA7DTc0MIs8BGJshMeMCkux5QibhPXaUc2a5xcQ+FTGuGdvclS990pDG2mmuMeFY4HqwDfl4FEOz6tdUC0Yx/oVsRnilQau60YVc50BWKLjf1jAGnE7o+otg7YsAH5maADxTy0bLfmUYuGGvmYWU9xHUbO6FI+rjxAUDPL4P5sbZvtkRR6O7cgJQZIGGASTE/tGoO2dbK1+a+DH9UwxXU74Q5IGf+/OxznBpgHK1L40LXXgbGJXJBeao7hWN5orHepmBW3ev2oNUf9IdxEUxqqFcC6UgGet+dE9/L8xghNnypvYgbKWSBZ6CDIuNUVOZ2ifa3UcZ7sCIB67BnMHd3EGznqlix1iojvo84dwaOw3w+zLSQtJT6nXJzUqu5tVxwhSGiNkRILE8DfNIcZot4RrvNK8vSoor5G7YEfg0ERwDJY1Bj7KbiKGbwg0pc3O0p1AxNFswmcWVRwrNubGKIdxX2tYc8YbVbzG1HVuAudfHRvVmWWpWnjUqXmpiCRWzoldOFeyKZjNmjhwFM0Rnvns8GjDQhErXbEBYHanzezHlQYcM8sxEwcO05vg2IE6sX7edEUSR+Rsx7rr0nwdU9KZHTlafuA9i1jZhXM/iJGpWO6KfOCqMc2Ip+DOml29i/p8eznDozB72Q0s+9XzraQlAkc218GxCwpqvdREs86JA5bSnmJ/hpnySU/LjBzLMCey5Vs55YUFXCO/9zNDc5qk4l6asU7NK13r5fPInunbMIu00jWJ+yAxinIvb52V33vdsFEnGdVpaY7iRvITo6sz+GWZrx2AnXZKGUk3afr6HIY53MPt2g4k7lH13Ke3rAniScaeToX43th8B0U0aqWqMu21WUkf/psitTt//G7m3v0tt7cf+ZEfEcdx5G/9rb912/f8h//wH+SZZ56RRqMh5XJZnn76afnpn/7pm3+Poki+//u/X972trdJuVyWlZUV+dZv/Va5cePGiccLw1CefvppcRxHnnvuuc/l8qf2pWqkjTJgYHZkkLMSReIY5mOiwQwXM3+ChbA5tF0zMx/NIb6Ms0MECZebcM7dPH5/aR5BhAhAfQv63lMdlHUqY2ueVoyNdvmxVXz2+QVoXHxiBQ6N6djYwU5yrY5U8rYqVR4U8XM7u9OCeScjMJFOMlagZ6tgsuihh3vgLnS9fudj5iaq1OmZwBef0WFBd6I5E5YrajngsV3bmbJsFSvQlqyfRIGvZDHMDTD+M0NLYQcJjrfawXNsjEzS/8EDS697KcY7p4DQfGLlqiDG62SBiGBOXW3g/xcOcLx2gJLG9Zo6cdcCyU5gc0QEgRhZKwdFo6tu1DCuTaXoXqtb40OWRh7dMwbLScbWDoXYSgMs9ZWUHkzjfB/lwGqJXeucLWKaQDSWuBwxzFdzZHMjFQM/BxrgjDUgIg6GWbJRDkDs9ZoFsvxeMitTDa3UtNI1Ebu+D7wYy2OjHLRGVrq4PwoytgsW0GyXMZepzsrnR1vuohM6peyDGBuYIMYcItapFuK8p9v2Xbs0g2fPTC3H/HoN56EOi4jIxVk4+FHOSmgENxNMzVIVRQ5fnUP2b0Pn1vESc9ao8TPfN42kOxk3Em6K6CA7P0R/Z7lJREt8eZHfOStytSGpsnjSh//mnc9zj/ZZZ1A+/vGPy7/8l/9S3v72t9/xfTMzM/J3/+7flUcffVTy+bz80i/9knzbt32bLCwsyAc/+EEZDAby7LPPyg/+4A/KU089JYeHh/KhD31IvvEbv1E+8YlP3HK87/u+75OVlRX59Kc//dle+tS+xC39m39SnH/+K0Yrpax1rL8nntXKK2O8jyniLAZgq4LuqQ8cWgM5ESxAr85aCWCnjAVp4GOBJcUwN8F5q6GmaEdWbgo9BezpF5wpf0est86lZoYVMbFW77kJzs2+P6TLihguJpVbm9W9EauMcdzEsS7FZAaNPSzwudSanY00m3KpiWskyG5maDsrYidENKuiDr4YGu2Zr9VHtzJbDooie446RC3zsBxU0/R3YWyZgvU6rov9iqoKhMx2hA5iE1pzxHaNlbFIMDY8UhBZTyQGCK/M4dkvqMNqjuBQd8rWxoDZC2a71upGV31t1oCdoYJVH91D5uzxXZ1TOWBKDosGhhTBvBr6OEergHMu9251QKSLZzMPLLWIYG5SeIwlpF4ejpmsL3bj5vvZbdjTeUj8AzMCDHJiF0459OzYZL4xG7ZbQnm0HiKrFup4kon1+C4Cl0tN0wAKPcyrpR6Ck0szCKh6eWwYugHu97CA68pNMAaHBQtw1hp4f6j4p2KMrMuTO8hovjiPrubHjWrCxRhBAoUeidG41kBJjKU/f4Ks2KN7pjTN7yXp6gTlNkcGdA5i/O6leBa1EM+4XcAzYLmuHRxV1d0t3z0IuZPlJyJJbDgslv+yLTYy38m09gMi/9Vnf7q72WcVoPR6PfmWb/kW+df/+l/LD/3QD93xvR/4wAeO/P6hD31Ifuqnfko++tGPygc/+EGp1+vya7/2a0fe8+M//uPynve8R9bW1uTMmTM3X/+VX/kV+dVf/VX59//+38uv/MqvfDaXPrW3igWZL3o9NBoh0/xcaJ7att4mA13wd8sqd+6BPtcOTGb64gwwJ26K41I635uAkvnXtvG55xdscTrbtmZ922UTxiK1ORVD0Pd08T3QHTVLUZ0An2HzwMbQFmOWbzoBdleNERwmdVk+2wVrZojP75aO9ssZezjm1YaBR680cb1LPQsCmgRqhhYUeBN0hI48dAIm46Sp93+gjjiLpRHBgnyqYyUPEbyPehfUv2DPn8MirptZr4lmWMiMaoxwbwx0RAwbwoyMn1rmhHgKUqJfnRPZqOLvvTyCi1bBuhp3AoxRZWyf3SnjuooRsiEs43QDzLEHXeyuvVTnSxvOVwTXTvxGZYy5y07brYLIu2/A2f7WOSgoL/YseGWAyNKkyNGgwxHTcZnvWzC61LOggs8uSAxzIoLnOxHTQOH3LsyJ9FPMEbZciBWfw35HpcgwOFeamOvnWggeNmr423rdOkqLYFxYFlztmMor7+lyE0HG/ADfwVKEDCazMaUI8+RUR/FHOYzRA4dWolzsHQVWs6nfeg3/NkYYfxFsYGohnmfqoPw6O8A1fnIZ72sXEKCwOSbLQizxxoqten3Gugj38/jsuRayea/PWgmyPsLzqY+Otpi43MQ9Ra6BzU918Ld7FV/zMvO8FOPZclOh45z6P3hvx/o82GcVoPyNv/E35E//6T8tX/u1X3vXACVraZrKb/7mb8qrr74qP/qjP3rb97XbbXEcRxqNxs3Xtre35Tu/8zvl53/+56VUuk06M2NhGEoYWk2+0+nc83VO7f639K99gzg/+3OmGcKFgRkKdsWlDDcXuf/jYXz5Z4YoLVRD21HulQCkPN8CboW4hoKmnt++jWP4Cqx9eR5O41ITC1Q7QFDDvhfsEXSmDcdFOf3tsup7CNKs+QTn2i3jOrqBajH4uJdWwbIIX33FFvWntu+txMOAIsyZsmWk7A9HQZA93zALLC0tKpCRKd+zbVwn1Vr3FSPw2K5pb9AxccHM9iIRuZXFtKYLP7vDPnhwlCo+NzDnl/3sVhnPhHie6zVVvRyK1EZ6X/qssg482+BOdK4EctQ+sQJnMDfAfRE/UBlrKwFfFX21jFPRwOn5RQ1gHGSfaiOTo1/twJk7GmhdrxnGgiWBvZI1pktc6xM1q4yJyMNcfn4B85O0aicVqbjGNiG4l8agl1igxR7OebzpHy2rk+GK9Zwa5QBGDjWLUoqArfn0EuZSdWzYsAuHln2satBEJtepjgUL5w9Nw2ihj+B0uYu5fmnGtGjYnZhgVaqvHhSRiXroAONH4bcbVYzPzNAouWSrHG+QWR/h50YV372Fvh2/ECMgIr5tsY9j/uEpjPdvn8Uxz7VsbCMP2TcR07BpjPBsGYAFCtr2E5GeBrUPHFqfKpY61+s2/3MTsLCqilHq5THnFvoIdo9Ts29nxDZpKTMtfv/dP/MFsjccoPzsz/6sPPvss/Lxj3/8nj/Tbrfl1KlTEoaheJ4nP/ETPyFf93Vfd+J7R6ORfP/3f7/8hb/wF262YU7TVP7yX/7L8l3f9V3yzDPPyNWrV+96zh/+4R+Wf/AP/sE9X+PUvgTtoQNlVST4l6DH3ERkEuOLuFXBgtDWtPBBAQyO5S4CgvDQ6uULfXymOcTCmjoQysqlt2oGcDH0tY58cQaBDRkdY88ULduK64g0e0In3xxhYern4cyqYxOMqoytrj1WACl1EE638dp6Dbswf2I7wqygl5fiXjZqyCJ1AlNTPd22sgKxKIVY5dkDOBdmKOb7BjZkoMeMBoGELHexJxJ32jvKCGqMji6e7CJLDQzPwdhsl/Fac2R4lur4KED4tVl8hromjphGTCnC+UVu3VV6GaeddcLZwCVUp8BmkVUNLl6bVWcS4LpzCRzMfgnP4GwbQOPIg3NmQLhbsjIQA4ehBp5n2iLtvmmBLHdRfmgHNo92yiLvW7MeP+wJdK6FY1IobpjD+B7HFIgYViTyzIktdxEwnereWQ8jq9FDRlAq9tzPtPGsX5vFPEpc4FCuVw2culaXmw0lb1SRteQ8aoxE/tTrmKObVYzV/ACBT24CBzw7EKmmmMPEhPG+mYESwbP3de7nE5H3XcMzuFHF3KdO0EoXz7Q+OhrIve8a2he4Ka7n5Xnron66jWCKc/jPviLym+cxBsUIY0kBQOrzDHxkE1nejV2UoYNY5F2bNqfZEqDvGyaMc5hjxGzcbtmA6ywzU8xwq4LPneremTZcH0nq/v3b//2P0N5QgLK+vi4f+tCH5Nd+7dekUCjc8+eq1ao899xz0uv15Dd+4zfke7/3e+WBBx64pfwTRZH8+T//5yVNU/nJn/zJm6//2I/9mHS7XfmBH/iBez7nD/zAD8j3fu/33vy90+nI6dOn7/nzU7v/LX3XXxXn0j/HgkS8SWNkQka5CRzMfhFfbMqkL/ZUv8KztP1mFYv2QdEAnmzd/vguHFAnsHT1YRFO4oYuxJ0AQQpZGJ5jO1R2VWW3XZZ12O+j5Wor9J51dGVn2WKEa98pY/fUEVPUnBtg0SZuQcT6sBwWLeNAx9QqWDnpuoJ3hzkDsxb1+igoRfaLm1qvlZsAu9SURctj68NDETuCHitjUyYVgQO73MT5KGo2zMFpsB9OMcbxB76BJUc5jE2QWMZiq4JjzA2Mtho71gahFh7te0LxueM76GwGgeWlbl6koLiUl+bxnNligD11Ukdkta2BpY/nQDG2UQ47YmJ9ugF2/rtlnJ/KrqST89zU2PG0xOgnuK8NDUbzE1NmXe1YWYWfYw+cbAmNGBJSUiPFR2XBl6PcyawOZnLYfLA+0n40rgZsmn2sa7bochNzh+BbBtgTB+97p5aVrjSPipmtdnBP50ZWsnzgEN/JMIf3k35NYC7px++/ZhmZlmZXmF0KNJB9cUHF4SZ4lq/OIlA62z6q8cGAhT1zmBU8zqDbrGLOnWkroyk9+h4eh1glYsuyejWkjy/28H8q2hZjY6Flr223jMAvn+D+yhGCFb6nqaWhoY9/s3NfxCTqXXnTmJOmaXr3t8F+/ud/Xv7cn/tz4nm24CVJIo7jiOu6NzMkd7Pv+I7vkPX1dflP/+k/3XyNwcnly5flN3/zN2V2dvbm3/7sn/2z8ou/+IviOBb9J0kinufJt3zLt8hP/dRP3fWcnU5H6vW6tNvtm5mZqX3pm/P7/8YyC1sV7b7q6y58aCJh7OLaGGFBm1G2zlodCxa1QLrq5DareF0EC/lXrQGXsFO2EsS8AvWqipMY+kYZZEO6YmyZhqEvN7v5eqkFKmTUZBeUFxZMUn+/aOnqUmTMjk8vmTz2ThlYFQp7eSkCpgcOkWlhl2eWnRb6cD6pGKuCujAcKwY+xGjUQ3yWADtHr5+79oUeHCiZGX5idGICWR2x4IMA514euApKl7cLuOZH9q3cNPbw2dzESmWOGOuoOlYwpGak6rrrfOjgaIaAdPJji7dEHoKAF+ft+iIP2jE3WSt6z6sdy0axxxAZGhdnTMnzVBdzjJkQipu5qeGgTnWhP5K1bgBHtNTD/NwrYR49sYM5ya7asWMBRVaYi9oeHP8wZ3gnlkDzCYLZSoiy1cAX+fQi5taSAmhZLuJYszzoiOFOWgU8N4LD3RSvvTqnTThjy/JtVTDHvnJN5CPnMU/+zKv31s/q+UVcH4MtlkKaI5E/cfHWY7QL+C5mtX9oL83jumYHNuc/G1uvW2klG5R/csWEIKkyzDYXnHc7ZS33VnCN2eBmr4Tv2Ok2nssNzSyxXxN1eHp5PEOuI3w+miX7fPbMeaN2r/74DQUo3W5Xrl27duS1b/u2b5NHH31Uvv/7v1+efPLJezrOt3/7t8vly5flt37rt0TEgpPXX39dPvKRj8j8/PyR96+trR3BkNy4cUM++MEPys/93M/Je9/7XlldXb3rOacBylvTnB/7FXyRw5ylv5kJITCwlzdBq9wEXYDffR0HCHMiv3kOaen9Ihb+Ux3LEMQuFoyzLTg+Kn+yl8Ywh8VhtwzZ++rYdm/7JbA0SoqJmR2Y7sl2xconqx3TCcnu7rsBsCZrdWUMJNjxURI9zFk/nR3N9lCjxU8s1X2oFOpu3lhNxciyHW5qwk2OWANB9v8gi2fiaGfiCLsw4j8SBWfWQnOKIraT//3TAP2OfFtgmY1h5+HY1UVWKc31kaW0qRZK+u8oh2CC40VwqCMIHA4LRjkuRcgysWfQWNPsWYfQVS2KV+asvxDxSJwLFBBjaYiN9/jaOzchkrVdVqBwiuwKu2mHyoZZ6KuiahnP7emtuztI7qqz13sncS3O+zBnbCoGR6moVL8YtsERjDd7AjEgY+fwfKLzR4GblKjvKg6C1+ZpEFuKTAGVmTKyT+rhUTn/25Ui2K2Xc+lqA+PGztChfl8fOsD3/yS72zhxrG7XkfxejeJzBMdeaRqri3L09ZHiqgTB+OUm7oW9j6irc61u2eDYxXjlEuu/RGVf/r8xEnlt5ibV+vPRH+fzYffqj99Qiadard4ShJTLZZmdnb35+rd+67fKqVOn5Id/+IdFBFiQZ555Ri5cuCBhGMov//Ivy0//9E/fLOFEUSTf9E3fJM8++6z80i/9kiRJIltbYCXMzMxIPp8/wuQREalUkGa9cOHCPQUnU3vr2k3KMem6XQUx0uGSlUBFR2oO0F6aRyBBzQg3xe5PBAvAN76Kncl63TI1dErZTr7U9GCX3lYBr59pY0EmeLA5MvZBLw8HeKl5ct24GgKYW4ghWnamjcXssIC0MNks5cgaA8YuFsOy7qrGinuhemcvb4s2M03c/fuOBR1kLt3sH5RaQMBUO8G9pPdGrompiRjNM3FUUK1mdX+2jKdzbA5xvFQwJk5mDNbqVmYKEji2hgYwGzXrO8OdPOmcVGXtBpDGv6mAG986ztUQ84TU1VJkgeZm1RpGLowMjJpoaaxVRHCTCoKhnRLG+qEDBKSHRdzP3ABOdamH8dyq4Ppnh3cGOzMA4Ly7m9OlGi77NE0caz1AzRZ3Ys+YlhWWI7iTDjzMGUW2qMwsZqli13ReiJ0JElznXgnz8x2bVu6iZZVQU8eYWPnEMoy0M23L0MwPjo7BSVLsfK53M7ZdOOnz92KRh0xWPsFzvVE1jA77gFEgb6lnjSbZGJHU6VJkwHUR3QxMrA8VMTeO4PXtsshKV1Lv/4p+UvepfVYsnjvZ2tqauK4t8P1+X777u79bNjY2pFgsyqOPPio/8zM/I9/8zd8sIiLXr1+XX/iFXxARkaeffvrIsT7ykY/cglOZ2tTesLGL7VjT8BStGvr4QoeeYQRGOTgsEezqLjUB8Js4cLQHRaTX+3lrRPcnLmKX5qQIZtqBlQGYfSB2Ja+A3UIMh3S5qSJlLt5P8GzqAH8wymHBHeVQ1mmM4AzYb0cEizwl5ZlS9xTIl5tAiXOph2xLkIjslUX2U2tuRil6aliIWDfnytgyGJTiZpPC5R6O0fcxHks9A1xmVVR3S6b9QrwLO9rODQzvc6qDwIRaFY0RnsF2GYFO5IkstI5iKPZKJq5Gh0uKJjNi+dhKJ8z0EENDHZCtCq4/cY2myUwO7fyhSKVs2KPQE8l7Rp0txHj+PG4/j5+RAn39Ce6XDfroqLmzps5MIcYcfOBQuzffAxOLeKZ7MS8VScS6HIsY3oftG7JN/qgWmw3qOI7sk3Q7Y2Yrq9DMDEw/j+9UltUVJBYQsLQ4ylmJJBVjuWTNTcHwYmO9rDlaRrxeRVnwXrv1EovD4OSkLsB3Mz8RycRcN4N+EQR8VCZms8IgQanqVBdjxiamLyxoti20LCG7cTP7pBuYtPoDIotv7DLfrPaGSjz3s01LPG9tc37/38DxUETpwiEW6H2lrB8WDDfwletYHL5iHYvCv3/MgJtkeswPkH7/6it2kovKGEiIgUjN0bE7K4WvYhdO/lQXDr4cGfV56CPIeegACzl3Wl5qAYwIfp8dYOG+XrMsxUoXx2sOjdnhpLiXdmCUR+pWtApYJCPNDGSBmdmyhQicRzbLctxuVK1JXzHCdTCNv1UxfEZlbAq9/L8IHNZeSZkLykLYLos8uYsgkFkVdt7t5w07VB7DObUDw6X08riGSmh0aJY4Ehfv9dUZX69aeY5y7DNDgKDnBtbALtt8saqlvMTJAGFDPJedsj27+YFhAw6KViKj09usqPheBJzOeg3X/uTOrWBVBgTMXnA+vRGsBGmyLMfdDecx8A10PDs01haPVVGMz1odz7gyRvZxTuenI3CisWKU2EPIm5j+kD/R60kzOKTUNFdOYstlz383I73/XgIUlraOy9N/rvbSPNaS0x1rG/DkjgX1DK7nB1bqov3/zllnabY1GPiSlv7u5+/6/ojsC1LimdrU7lt75gYWt60KEPsiVp7YVmdUiLGAfdkGnDYXvXdtivzeaTiQ020AYh86sMWCRufoK/OkMRJxQ23BPsRiR0rxxMEOitmHlmJF2gUsoEzZtjUjEiQiL8/hmLnEwLXcabL7LrEW832UHpzUGA3UzCjEWKxJTX7g8NYW8Wt1pM2PL+bH2QhZI9tGRIOe2BzfYREZnXZBWUwTY5WwXOPoMdqKPSDANJ9YuaATHMUFsDFadsfNpmqJY43fYs9KG7NDZHVKkYFN1+uWvWHvFjfF36hn8/C+lfnY46QY4ZqSzLmpY1KIRSK9OQaE+yWR0tjAiyxJJa5eh2a9HjhEAPTKHMbuHZtaBvSNNs/WA2fab9yJMijLpTaWnQBzvK5lyXJkgOZShGCaKrKRzs2OUs7PtnG/bH0gYhkl4p++fN2o6GT+MEtRVKZRP49z1kcYLwaqiSuS3iZAYXB7NzspCDueFaHaK8fk7pyPN2bnWhBdG2gmhT23lnt4/mMdj8bw1s+SsTYzNIDr3SXB7mubBihTe0tY6v+gOPJhkT//osjvd5BJWeohyCBD5nQHYNfGsZT66bapu5Yi/H9VgXfDHLQvCLjcL5oy58A3ICIdSiEWGSo7Y7uMv59pYYHeK4El4U3goFkueEEDqqrSZ139/2FR0nf+NRERcS7/r9h1kbFyUDSQ4ezQdtq1ERxcTgF62VKRiKXzV7pGz+4G1nq9pDvcdgCHmZtYd9VijGOyPCOioNQixvVrLwMgSB2Pxb51gB74uGZKzu+W4VDIjiFLgUENA53EMfXX1BEJRdPqiUiQQnumVTDsSKBlCnau/fpLuEZSjE914CxenTUKKCX72VU2FQQFGzWRdgXj3laK+WHBxMbIHGopS+lUB9e7XTHKpxMb86c+wu65q+OTuEYVvTiDzzgpwNaDPMbXEXN2r83iPMs9CxYZ6B0vEw0VtJnXe4s9wzixpNJRMHU1NCeedfLV0CTxX1jAfWXfXxkb3udAA9QHj7GmshkNBi91sbYIoYdgMx9bGbQUmVAZFZ4PirdSgu9kbINxvGRzO82XzwWHkrVShFLhbhmA7KJimU51rMS3XxJ5+ADjqfpFqXxY5KHP/fT3m00DlKm99ezL1/Hz+iwClA9cvfP75wYiP/rrIh85B+EnYgcOitgdEuNCJzZxrEzAfjvsfUKHkDj4d62O3XZ1bCJp1HLYK2FH/sg+nBR35WdbCGyyjJ7THaP70mEVI2PmEPsy0hr90LfgZL1u2JEHD6xmTopwIUY2plUwejGvtR5asEKnfKNqIFK2EHhhAU7loX0s0GRVETSb1d34g1XtJJvAQVPOm0yHVmB9b9hV1pvgvbXw1p3y7ADOsZfXQEZMSXStjudASrCINRKsh7hXyvHPD4x5wUzBSheff33WuviS/XKlYbR2qnOuKLtqs4Ix2isZ7mOnbOWiMAfs0G4ZjjdSh0xBPYp1xa5hk55bwvXz760C7k8EweAzNxSI6VqpcquCgIhMF2b4Zof37pDJYkoF8+/TSyhPsFfQMIdnvle6FT/CRo7Hz0X6beJiDncKhpPpBhkcmQYpVQW6Hy9JZi1LixbBNdfCe2PpfD6CE9rbtzHffv+0dS/vBBYYBsC9pIt/+/N3zvvUphiUqb2lzGFq9HM1Zkj2lSpJXIKTarZEGSpcZEWwoBJ8yBJEJzDsRGWsIle+lRA2auZ8ZgdG81xtW9ffbJmqnze6cj6xxnXcHVN7ZZiDwyKFdqVrtfys8BTLIocFBElD3xwKRbrGHspVLNH0NXiZ75uKLaW3Y0eDpATZopfnTZ+hq3onIiI/97gp5H7NFRN626qY1gWZJyOlOi/1rOHjSUDK3TKub09ZNMs9PMf9IphZ22WU7i4cSNr472zOfOYnMT43Reyq+Oxa3dobDHwcl6whdkBOBYFT5FoPl7Nto7kT4MjsiwgwKAQUr9VxrFKEcxHX5KYYt9QBxXa9pkKACYKNxMVxrzXgiMs6D88f4vy+MmHIWDsomtLpG7WxJ/KrF0wWPwuQbowwZ6gNVBkDuyVi5Z2sMYjYqGHunm3jM36C9489C/o4l0ldJ9MuFdMSYsNDzuVsWekkY7nojYJhPxu7OIOs1wwC4vTR//oLf843iU0xKFOb2mdrnQAO7k5N9qjySAYNsxmJY0wVaozELrILkaelkIw2RzE2pzP04UgWezg/VU0vNZHtYMmnHWBHOTvQEkzeOhvXRoalocZCKnB+3OHfqCJTEnpGmd2ombhcKjhWU3EYoniB8y04VPbn2azAoRRjc0JzA8tMhDmR3BjBVTZLEcRwpLtlA00GsUhFr2O1I/Ke6xC0Wu7h+tiNltkl/kuHljgIPvwJnC1l6LOlDT5PN7VutFTcfHoLbe/ro1t31E/s4tgi1lF2dmjYme0KxizyDCAa5nBNsWYrDor6/LSU509EtkoIbIY5ZVAp9T03MfBueYzAYbFvgFJSxYm5OdPCuDVHRsMNHX1tiM/1VXdkt4RnQVr7U9s4zsId5vpJlgXrsvdO7Iq8Ywvnu9qw5oZ+YlmnVsGOwSCBz3OUM9yXl0I7hsYg39HnyoD7UGnaIiIjzRQyK8OMGHEkN9VbjwUn2QzOH0VgwtM++N+IPPhHdrr70qYBytSmRiN1shxZXft48zoRY9v08yZ4ttSFmBul3QkEFc1o9PO6m8whoFjpWofYkeIFtlUIqxgjiAjyJvdd11T0dsUcDEGIxGDkE8vm5BNtYe8cpV528wB7nj9E1oDaJI4YADWfoJz08D7+dv7QxiErelUeo/TDHWs+MZn5xgjZkUIMp10dZ5gRrkguQjaE98+yxqpSjc+0rbTTU+BkN4AjKcbIxPRV2yT0M9ozYiWdzSqCJjbTo9HZ814JMP2yDVz7ek2c9Ie1JOGJLGlG6HoNgcNST/vcDKzHzPwAx7lWx+slLcUx6xPEdv0dxQkt9fAM6HzHItJQHJM/wb09vov3Za0+Uu0ZsUwWmVKNIQKlYc5o9M2RKftSc4Og6etVU5LtBNagjjii4wyhaw0En9UQz2pONUeWetYl2kkts3SlKfLKLAKh2SE6gf/+aZRYaTz2cSZONtPhEauScVmJC9ZTfYT3dvMWABVjkVx4K+X4JGNwQsXjO5VzbodFuUeMyhdTvfV+tGmAMrW3lKXy4aNlntQB6HCvbE5koY/F8niJgOqUFIRKBY6bwDaCT70JFu6JY/112LyPTAeqSQ5zcIrdPLIaIgDw1kI4j2IEp3FxRsXCJkaFJZ4idk0nItH/M4viT4DtoALluRYcy8tzVstnILNfNGbIagfXW4yR6ZgZnsDoEVCSiU3JTZD1mB3Y+CVaxihHJghHKfKJg6wBHgzu4+IMMh2kmpJGLAInWoosfc8uuGMH5yRtlVLtTP83hrjGumq40Omxkd+FQxPqCzWbMcrBYbspgkJKp690cf7lHgKYC4c2dkMt80WeSGmoDlSfAxu3DXycp6oBwthFMPWV6yZcRnXiC4cn02d5zNRRuq4YiLifFwmGwCTtlLXvTd56vDRHVsbbrOA62C6B412IRbZiy9CI4PVcpvTUGCGT1BxhzJ/cOXqNvbyK0zkAfJYjayGwW7JM2e3sOMWWdhy/UkgtMGC/HRE8CwoGFuJbx5GqwWQzMXh2UrmZGjsJm3K7ICT7OrNnuYmk+R+8/T1O7a42DVCm9tazUJ1Pc2gAV3YYro9sEd4rYSEuqEYIF/vENSXaXt4Aq/sl65vBz7OEwnWvMrbmgRs1K/MECaTQCZJ9ed56/5BCTGpw5GmvFRcLNlU1yZygQJynzvh6FffNv/M8vI69Eq5tuYdF3UutMdmpLq7zUtOu3RGRCwcGwC3G1kSPJRtfgX+pXjv7rdAhUg+GYM3EMcrwtQbGbL5v4l4sofFfXkcpMoG92BWpJHg+7PDKbNBSD/dRihDM9PK683YhjNXPY9d/uSnpO5QZNfcPcA9k9DCjwMaIbCyX8Wk3WxL0fZQ5clqmaSvo1xGMD7VeypGOi5YsiDuKNCjzJ0d1PrLAaKqIstcLQcWzQ9zjzBCBx2uzBr483TaRuXMtzKffPG9qsvWRNWNc6iGYWK9jnEipZkuBzQrG5DhFfeLg/toFXEPkKmMpNaCzdxtH/0aNgcHxzQRZZTSyfvh/ZmQSV8TLZNE+D5YGf+/zdqy3uk0DlKm95SwN/p44uR9VSq6qtu6VREZ5w35kHVKnYPLUCwPr7ps6WOiZKaiPQLkd5OEY1uo4BgMRllFemcNOfKiO90DxFROlzIY5nK8xsl465bHK1quDZ0q/OjYdEEesTEUNiWqKzMFhAZmhVMtTsYsd9koXGZr1mrFC+j52o3VVQ41dEyLj2OyVcC/7JTg69gKis6L2ysC3f6tjKy+wzUArAPYkUQDjfs6Alu0CxoOCbTNDk75nHyQ3tWBkp2zsldUOSjx7JZRfdsmoOlZOcASltfet4RjHAwDStG9URSZVy65R0j2vAOC+Up/ysYnS9fJ4/0oX13SjisxGSwHHlCo/v2dgWTfFvT68j7Hk+N1JxZQNIZ/YxfwoRWCbsenj47sGtGXJg72RCOiNPNDXK2M8p7U6gsD5AT6zX0S2pKwBYeRi3nbztwYor84CCD3fx/tFsBkgi2eijKXbZUneqN2Lii7B09nPsMXF58jQmZZtvnA2DVCm9tY0MkcOi+bsyaahLDt3msRXBIlSKVPgHrxUpJHRjqiPRF5asMZvqx1zoOwiHHlgimQbocUu3ks8g5ea5oaTqgZJaOUh9vPxEysjDXzgMggOZAmkHZijX+lCxbIQw6my02qseidUf50ZwvHsaGmHjQTZobYUGb4hceCoghjnZkfloYI/3RTXvlUx8bPayBguVGYlI2e+r8ymyAS9enn8vTYxZ9L3razlJ8YcYplnt4zrnh0aUJPaMkGCzzdGGIMsrmboowS4XxKZlKFAe7pt11VS7EzsWgDLEsFeCde60sXxqRuzWbXyGanXhwVkINgz6dOLdsxaiB8q4foJMkN3srdvHwWdiuA6siq0A1Upruv4s2R3roWg2U2NNUa5+0iD04GP5/euG7jO55bAsJk9AaO1X7IyUN+3HjP7JZG5PQQm12vWbPBztc8m+5H9DJtS8llSQO8Ogcs0KPmjsWmAMrW3pKXyYXHi/x6BykYNi+92xXaUXmoy89TW6AWqR6GZBKa8Ked+vYZFvaf1+qFvypszQ2tW2AlwvLFnvVkOC6jjOylS6iLY/fpKFe7lDdDKpnn+xProOKlIPrXFNvSsiRub8cWusT1GiodwxMTQRpoNOiha075uHgs3MQ3MJF2csaZ9lHzvZtL/RQ2aUg1gVpXFNPJM6p7A0mJsgWBzBAdGmjbxG8wIMVicKAslNxEZV1TbY2KqpBMHmZHcBM/nsIjnQdAw6d/ucZqrg+zDQdGwHfnE8C7UojkoGiZpbmDZCFKjd8vWFLE8RnbiXAtBw3NL+OyfvIh5MfAxFiLaHycxKfl2AaWihw6Q5Vrs3xzrtPoDIqLUeT+xHkf5xLpxZy3MWbYjq75KejAZMF5qQcrQR8mtOcTzzycALz9zA4Ha5SbG3k0xR0LPsondPOYHsRyxC1BweYzx6/tQZb4Xy7KGTrK7yd13A9O0Of4+9guikeFEQHbioune1P7IbRqgTO2ta1yUVjsmJrVVMX0Itiwn0JXp86x1A8N4EOzKTrQU83JSbRImmWaBgoVwW3VKdktwdDdqWPy3K/hbMTZlWgYjvG42PPSVmTH0jHLLXjPMUNRDC26ozkkA4dgTEb32UiRSGFrvH+JmXpuFE5jvw9mf0uwQJctFbIyYTQi05EMJdV8zMUVlHzVGph5KACbBn2PP5PxFDKhaC/F6P4OzOSzYsSIPAmmUBRdRlk3fOufulEVmNdNUTq1fT+ihV0o9xPEnDs5bGUN6/mpDM0Viyp87ZZRuzrUQUK52VBU2xP2WInyuE4g8tousybtu4IdWFCt7nG0hGOgp1mlRGUOfXkTZ5eF93Fs142RfncP7vQkCx7ftHO2nRMs6Zj6z2EUAUhkb0HizgoBprY77SMUaRr6wgKCKnYb7xBvlRV6cx99I/ybtuRYisItc/JBpk7jAQx1XM6ZFnsjFJoK7S02R916/tZz02iyeazfA96bvWzO9s21jYi1oYDe8B5fnpCKlyLIk3h3fPbUvoE0DlKlNLWuzCurrBgZCPU5HFdFsgH59WGaZOLqgO3B4rI0zC8N+MU/sYtE8LCqIdiwiJd21O9pzJ4ST2CuZ+iWxJQw+mIkY+EfBpJS1d1M4j5FeIwG9aWLCV0MFlwYJUvF9zZg0RtYNeKuC62cpqaE0V9KsU73/agsOaeBjl71TxntXO8gE8NoPiyaqJYKghcEQMTDV0PREKDS20j0quuUIghMybtgVmAyT3ZJJvQcZ7Ail0pk5EMF7uwoYHvg41mIfz/9sC89uZmhdi4dKbaaqcLuAz3zZBo6XLV10ApH3bhhtuqPsqXwi8vFTuGcGGA8c4liJaz2XWDIbe/ibUsida/9U9VfyuM7IwzU/v4AA6nim4Lj+B+cEy0oERhdiBMf1EMHSZgVjstzDa2T3sBUCu0k7mn0kDbsTqPT9GOfwJtbV29Hs3JZqyLzzhCDlt89i08BS6JUGrvdsy/SHHt5HdomlxnqI6w1zIr+rmdHmCEHYQ/tHgbPHbFq2efPZNECZ2lvWjlCO2YE4nyiWQ6z2TnXKfh6OcqesGA/FhcwNkBEoRlh4l7vYsbULJkJVCVG2GGuJQ8T62jiCxVUEi7+fiBwqniNQcbWRZ5LovcLRUgYdrhcBpDlSwTeWokrKzljqYVdMB1MZm6AcnUcxtvJU7GaCKxEJNXV/umMBBEtiIrivoW9N+JZ7hg1J9L72NeDaLalzV8fa9UA5Zgq+GCOQidyb/UiOWHNogGMGW8wkBQn+TsAx6aarHbxGddHU0T5D6vxJxR74eH7UHwk9G4NRDs5/kEdw9PiuNV1k00YRUxjerIq8PoPAZb9kGjnZ+9iqoHyTuFYuYjsCNicku4zB2F5JZJAzef/DIthmfF6XZjCWVB8+qcEjA7KJg0yFp4BqN8U8YSARJDYGrypOipmviYNxJT091iyJrzgf9lNifyGWIyNlyp1r4RkdV3eN9bmXI2SomCl8aQ5jNTcw5VuymeYHxhQSMR2j7Yqp9J6wBkztzWvTAGVqb22jJHrqKGNFd1gsM1BXxFWw6tWGghbHIn4OjpVZFpb11+uKM0mM/vjSgsjbtrFolsdYYC/OqOBbGYt87OJ6rjRB42W24qCIYIcAUEq9B4mIq6+RMs0MA5VVmal4eB/peWY7xp7SPSeq/yAqgOaa8BodEEsvK10ch1mGUQ6O8YKCfvOJKYKe7mA8X5+BYzvb1iZyh7hHR6yMkgqOUxnjtZmh6Z8cb9yYtXwi8tQWygfExyz2jwpv+YnIXB9MrLW60W/JTipH1i+GWY3FvsgTO0rnHiPYGuUAOGYZrj4yDM52BYHgbtlAqWTgeBPs4G9U0VOJZaeBbz2L3NRYUxxDBke+0qZnhwbSpex/4poWSjGT0XrPdbx3t2yBb1YYjVYfmSqwN4GDD2Jc24vz1mAx9BBsXqtjzg196N0QeOxPQEdnSwSWcPwJxpBZk8MC7ssR/LuppTEGoO2CyG+cxxgt96wzdj9vDQjPt/BzUmdiPvduYJL4bDC42Bd5bknSp7/r9vNpam86m/bimdpb3pzDHzUWDxU395WRweZtu2Wrt+cmyipRTRL2MyEDgAt+rKWi5S6cOh3ZVgULZqRlhrEHZ+WlpkOx0sUCK4L3lyJLTzMDkLjWop2N5yYCB0DWUHOEssEwB4AscRqdAA6XPUyaIxxnX3ed1bHpw4xyOA/VZDercBDsxtzLIyA5ozX/7bKBdQnUrY9wjpJiXdgkjyBU6sYUI2MqFRTvMVIwbGMER00MTXbH/cKCNVwjLTt2LVBkdsURBA/5BOfLTY72oLncRPbh7dt43/UaHHN1bE0gRazP0nYFGIrbMUm6AUp2L81DiO891zU7kgFhilijQJa4OgHenz3uRs3oscyeUCWYWaum6pJcbeCYj+1hHK9rFuKkQOUk26pgbPp5Uzh+fQYBRauAcz65g7+1C7ivsSvymSXtd+MaU419oWaHCMTL45MBrS8smP7Pw/uYt/slZNse2ce9s+/O7Wy9jnnCjNHzi5K+7a/f2z1P7Y/Mpr14pja1ezVmCcZF62/TGFldnewIAkrnBibOlZuYCiqBpcVIpFvSbrsenAOVWImn2CvByV9tYOdKhgVZGIcFkzNncELAKJv08ZwTzRTUNduy2Lu18Rt3u4XYaMybylpi9qM+wjVR14My+spkkJfmEUj0fQvC2ODwoIhzNBXDEyR4f04zEKREL/RRhhLBuN7Er6gWi59Yea1VMNG53ZKVbpjZEcHYLfUwFjfVWT0R37MMGH1hUbNJqTKBOBbtAoKm1Y718nlpHteROnjeY88AsnvqMDcreJ3MqFJ0686+Glqw1cuL/PoDIu+/ZqJ7tPkBxqkyxrNhZidrK12MR5CYbgyZNSJG424XMG9YmjndRonxt86J/KcHRT548e7fCWZw5gbAfKzXccyxZ8ErvxujHAKV9Tqe39k25si1BoIMdnI+1UFQfFLJTgTzbGaIeUhV2NkBnnk3f3S8aNsV3CPbP9RHN9lNIiLytrvf6tTevDYNUKb2lrd09vvEGfwP+GXsGZhSxJq9dZUazL/RCbOkQVn53ESDCcUDjHJwPDcBqmKpempFDHwsxDl1jnMDS/13AwPaUqWVxmZ0QSIyzOiMzCgllPgZNhRkQFBR0CKl57sBgoPHd5EFWavjfed1B9vMvG+hbzvYa3XLaMxH+NzYgyO7UbXyxAOHBo7dqMHhEbcw8C37k9NyE2nebddaB1DjZL+EsacIWjFG8PL0FgCnzMbw+TFzErsIFkjXdlNkA0gNvtqwbMbpNhxfLcSzqIxNB6aqu/9EAdGHRYwL1Wb/2LVjWBvNjJzq4vOfWbTmhGEGdzFxVOE2QOnvAS2FuSmcPzV1OC9cvYeBj+N3AisbBQkAoQ/v2T0VY9zv9ZrI750W+Yp7zKTQVrrIKr0+g8DkdAf3fr2G4w583A+Byk9vGSi4n8f4sjPzRs16M1VDkU8vIXP3nusY872iPevZgWXajhufZZBIWvk7b+x+pnZf2DRAmdrURBAYsL8NNRcqY+zinRQ0VfZW2SkrME/ZC4lrzmy3DMfULoACudSDowkzgc9je5ZBGXu6uGv5gU0EJw4czWRsuh/+RCSNsSiPFWTInXTiWgmqXbCOvqSHknG02MNuv6rYgbYCdrcq+KmHhnOIXZSnhspqoWR9qOWJx3dNDG6vhN/ZBZq4kl7eyjTzA5QmnluCAytF+DsVdGeHhq1gEFEJcT8cW1JbCQytq+MqxgikBr5lR0aZ5Y0lHZaUyIbxlJXz1BaeNWmxncAE3NoB/sZeR8tdYwERN9MIMS9en8F9Xm5ivJ5bwvFOa4DxxA7GtXhChmRPWU8PHuC41FphQ78LBxYcDjNg2cQBLoYUbZYqOwWRRAOqzSqe1WIf1/Y7Z0Xed+3W7wFLlpF3lIlEhhGDXQa/j+oceHEBn6uFph5L2y0Z2Hu5B2BzEGs2McLnHt7H/4lZujiDsQgULO0nR5smblUkXfrbIpV7/4pP7f6zaYAytanR2Mytr7TNhb5lLohNETHtj0Js0vgDX5vijYFhcJQ1cqkJR3xWnV0+wW47nxhg1k8s2IldOF12Q+7mrRTBGnzimAMb+PaZqoqf7ZZM14P9bwjMPW4zQ8049LFjTbUMw0wP6dSkugax9cjZ16zHbhnO/BMrcN7zfRx3r4TfCValIN7cEE6nOcS5OPYEUoaeMZCYnSpHIjtiwNrcRKSu6q7zfYzTzBBOj316qHnCvjZeajTqhb71AqK+TC+PDMTYAxAzdUQuNxB8FGJTGea1lyKV2S+Z+B7P//Yty14ECQKV1Y7Iu29YGS9rngqlkZGyW8ZYVMb4fHmMDEQpsuaMzK4RKCtaRunnLTvl6LEZJIvgWJ9exPg+umcKya/NGrYpVkZRtqGfN4G+SuIiaDsoWoPL6hhZkHxyaxPAdsEwRJsVE6Fz9Lu0pFnETy/iGXA+sD3AxBF59/WjjJulu32Zp/alYNMAZWpTE5F09XvF2fjHFggcFG0RHXvYgRYj633DLsCHqiXRUeYAd/f7RVNQpTT4e67jGM0RFvjZARbgs21Tc13qwTmRVcKsQuxY75ksS4VaIfnYaJZeKlIOsejPDU7uypq18hjOdW6gLB7HaJkHRQQAZHPUVWOEbIz9EpwiRem2NQsz9IHTaBWMBTQ3wHG3KrfqXhB4vFcE3XiiWiOVMQKMdmDlt6y4WzHCNdRCw6tkBe3YvbgyxrgECnruKkC4l8d1MaAUQYbhoIgs09k2jn21AedaD9EdeeIAc8Fu1gS8PrlztBzBLr/nD2//HAY+ztcY4VnPDTBupHHHrrUnWFeqMjVsqLfDZ+1rkL1bwvsp2Ha1gfdfOMScWu5ZsJNqyXLiiESqYbNdRlnqJKMyMkHTIpgXJ8nWU2zu9Vnr4/TggbGeOgHmROoYq6wCLFG6+r13mLRTeyvYNECZ2tRoXmrS7mQhsB27iEqjKwj2dAcLPiXY+f9+Hj+XmghmblSBB1jpKo5CTOyL9Myh0nXPteC8CZQc+CiJJC5+RAyc2A1M7bY+0g7LMRZ9MmfoPO9mxxkVsYt+OSK4h6sNZEKWerimsQJ/OR57JZFISzFsfniuZSyO9Zr1h5kb4HPPLiOwye62K2NkVw6KirfRe2Am60ml/vbyFqCIwGFTrVcEAUjiiExck7T3JsbIcvQemYloFSwoYD+hXcXwiBiLZ2YIldbDgonqdfMI4B7dxXlKEYCwM0MLwo43sxtoFijboZiieizHMCh5dQ7ZGmYSTrfx+tWGCd25qWFYZobIhIxyCJJHOescnDrGopnvY7zI0CLjjCDVTiD///a+PUqq8sr3d+pUnXo/+gF0Ny8Vo+CTGEfFPNSriXHp0nGZZRaZmIlZxjhgTMa5kfGOSkyyRm/MyxgxThJ1xWTpaMYxXpMZrwrO3BVNBoVRDIoICA1009CPetepqnO++8f+dn1VdAMNNNLC/q3Forvqq/P4qmD/au/f/m38cQaRtG5dWtndxXU8sDUx7U/QZ72jZO6bxxzYPmUd4zWoC/56/88hOGIhBEUg0FDdfwer9kPKgnDwsUDfOFmAGq4DYW3+xRbrZW0ONqwDXW+K/jPmkfbcGVMLAGFoZ1NdNhiOkCalFqCuh84SBVEWjbLY0w0awainMwohLR5NuhS8h6PGyjvsmbH2rhau8pyXKcXRlv3NaJ5NUtNBngN5QNE34lwYKAUo4OUdOm9Hie5zZ9yUiniPwh5lJthNthYgx9ORiMkysH4kXTFBenuSiMz8ftIuJF3TEs4+M2x+F/RNGzULlvlbuRcwBDJTMUMUeeBfVWewNrQZApSs0n3lw0BPgc5ZCdK1ebrTi8/Z7FA6d1erDmP3cg7v/UCc2mrP2Wrcdbl9O9BEQnckKAuUqZipxO06i1MPUAaJxcl8Pc1GdXnHZIRcG7BC5rr4WvieZ2aNdsnxaP+PGzbzoGaP7Me/KI3uApGgoG6vHojT+/PnqVAXfoHWzNv/wwqOfAhBEQiawXNZvADNALF1GzGLZnNhemxQi1CLDqXEtycpWFdt4PQdVA5gEzJbUZBNubpDBmYgX2eJau/T83pQmw/4Ta28rHdhx1a2sO8o03O5sAnwvmX0Fqwf4eNUtLA1WTUzd4K+EcyypsG1jXiUr4+9LDo0SWNBseNRoGdn3EjdtLWyliCphcZsGMbC2KJD3+Dfy5hOGcej4N9WNkZx7GfiWSRkBbT7a5DuaVeM7iFeMyZj7MNh+6Y1t2pT5qs7T/vQob/VD8boOO1leq43ZRxRWbMT9uj97ihp+/4ykYFyiDIcc4aMYJln8fD7sDf0pmmv2PqenWfzYWNQx11kw1H6TA5qMbLj0d8jEWBjAJhXNq3lYd3V05ekP7EaEQRuAfc0WZ6Ro/Oy+JhF4jzssXmeT6xmdDT2GFm5HQnam1iN9qMZTetV9DaaPQQAF+57iwRHN4SgCARNUCcthjVyNwVtNv5isWFW+5woy3zb9y2gHjGOrUNRM6mXv8Hz1OMtaQqk0/NmDgxbfmfDZhIyO3xaIILBYIMy/uZccEyJZDhKay1lZgJtSxq/Eg70xZDp9hmO0nVxtqitTBbuts4+FEMmi8MiSLYkZ2JQCtE1cDttskqP1bT5XFuZyERAd/28Po3KY0NR0ya9IwGM6FZcdtNNuqZl29VGdFmtX2kv68F9njHlyoebxLA+kUYu6fA3985Sazbj+CH6MxSl43IWohYgoWp/QmctXGP1PqDdWafngP64GX7Xl6C9e8ulbE/IAzJ7MG9Tlmk954nVXoAIUDZCpGo4QoSQB1fyfpR1OZE/P4kqvdfskQMQQX61B/gfm/TQQV2GDPnUFszdR0H9GQjXaX93xsn/JeW2dswAdJ0f7h+bnGxP0mu5bPTmVHp87i7SkjSLWwWC/YAQFIFgdwxoHUdAEaFgV9hqEIi4Rh8Qq1GQZH+RcpCCtRegLEk5SOWQzRn6ptxWpgCxU39r78kbEWc+bDIg5ZAJpExaACOK5YA/tUjfckshM7WVSw0FTRKiNd29oluZucSynmr+6K6alH7JMTN8ElV6vuCYdlvOOrB3CWCGtCWqtG8ccAE6vxvUHSo+BV1uo+4q0DUnq2aQomsbl9FagIJev22IYVuZCAWTk5gWLVd0yY2zAJmK0TnY+rpZ+Mqt3kWHMiaAMUYrB2ldzQbCVSBkGRLJZJPv3fGMliWt/VV4kjWXshb00uNbU63GeXmHBKAzQLOgCrostjOmRcklOueOOF3jlrTOmpXoveksGV1Uny7BNCNdAS7caH5/u1NP9x2hLEhNa2X+PJX0UWy/z+9pRYvEQ75ppweIgDRje9J89jm7NRyFaluyj39gAsH4IARFINgdVdvM6AkowA5QcMzoQD0S0bbsdWNMVQxRkONW47BnhK48+6UcNF0pbRVTXohXjfEbO6HykMF6wJi5VW3jgXL8kAlMfUn6mwWHvkXlqVjNuNwCRgsTqxGxiOushKVIJ7A1BYS1CDeuOzyYnAAUlGdl6Vr6E0ZnwiLNrgIFx4wWWe5IGP+QugcoTZrYeh+g4JjXYtqwJjYstK0F9JDCIGVeklUigNGaISAsUg55Ris01pwW3ise4jeF2qpVxy0AAOtPDwNnbjfEzILpFmI3WS9Ae1wMAau7iZAdN0zHKoaMEHhH3AhwhyOmpHVGX2vAZwR9IrJb0qZ0lnTpvDzbB6D3XKFVuM1GgbsPA+TPb8Eh0ez2JBG79jK9nlvk82FjHMht1r4FlF36XB0/RJ/9ZvQn6LmZWTpGomqyJG2jt14gOFAIQREIdoM6ZRGsVQ8C0B4nPBdnOEoEIFOhx3tTFBSzuhQUrRsBKVug87drTo0XHMoG8BRh7qCwlfGRYO8VNgazNWHoKlBAOWknBZp8mNaVQlpzoUwpx9Hlj1rAGK7tSBjPC3ZXnbuLfFnKQdJWBEBBuhI07rbrOo3V/5QiBVluleb5NvFq62C/lPZyyWoxMbcZ12wKpuEQ7WvBMZ4pOuaiGqC9YOHrtKIx+uKyRsql/a0HzPwZwHS27AkdJXrdprbWjMAZfXQNO2MUoD2L9rDg0PnZPI6HJMarwAkVYJ5+L2bkgP87h+7X151AtQC99pQBOt+KY+iYJwzCin3TXK8CvYa1P2znX3BMp1TNpvdvVtbMigrqdl9uO+fy2zsd9BpuW+afp+fpWlZ1Q52yCACotZ7nTrH2hn17XHt0SYf9fjwLqvMWoHP8/64Egv2FEBSBYCyEtMfGsSMULAEzXbfg0H/073SYbEtniQJqQP+TKmizNxaRchqddRA8T4VdRdmSnb/9N0ojVfoWPdZUXzYt684brYyyzBwX1zb+FgWdweE5PjFtYvbnKbSeCRa3DXu6e+c/Z9PPXL7KO0bbweUSNlvjUsVgjJ7rKFFGxfaNsd3u5YRElV5nwUwY5lZuHvIXrZn5SPUAfXtPufTanfHWjIml6FptZUzMtqaMQyw78lapdGap/03PWxm6jpA2RRuMtU6H3p4E5lg0GXlnnN7/oE/HZDM5C3StNdu0WbNnSkQ7AJ/R19pBxVkXW5nOIJ77U20yycsFTDs1QHvrBinTlHfIiTXvkN9Id95k4roLwIx3zPne7jQlQ4CyUr1pIo2ZiinruLYePmk1vGVU+u+BGGS+jeB9gxAUgWAMqFP/Bpa600yBVaAAwkFzIE7fjtMVClZukIJ9zTbfgAPK2HnzQL9SiAIXa0VqAWOhz+WZkE/HsBWl0R3PlCaqNmVluCuGBa0B3aHjeMBADAALe3UJhx1nWTTLZQtl0bl604Crzdq4vPHcHLrO3hTda0EHwoE47QmXGXJhureiYxxjjxkhItGdJyJRD1AWgX02RiJGy5HQ5neA0a9kXCO45ewC28pPK5jMEZuwcddK0KdAnaxSNoQFyZxF2NhmWnR5qjFnZXpTugXco/vzLXO/Fct0L3HXkheg4/HMmU9uoGtgB9igT0Geu4Hay6Pbu7l1vGQBsbq20NddZHm9J67+b7r5tSzgdm3au5XT6bNSCgGvzKR9OXmncbtl1GxgzhCsdT8h/VIa9H7kw/S3oz/f8RpQdcUsTXBYIQRFINgTOBBziy5AQYMFsSycTLqtxlyMvA4i3O3ToYlLWFvXs+hyKGpm8yjLuLZOKxrTsmKIAqetSOPAtvj1IF2jZxnywS28MU2MYJnyCdv2s219XWdKZmbpfgZjdG9Fh8SabMs/bycFZwXSIETqQNwyWpWpRW1hbhkNSUABI2FgRp6yUOzIym3baZdIQlWLY4ejRvNRCRrHUi6vhDzSyPQlqQykLKNn4bEBAJHKXNhogKo2EaVdMe2Aq8zcGsDoN9rLdK/VNtobxzNlHS67JarA+e8Zo7eC06opYUO73hS9bliX7QohyqbVbOAvtpn1/Lnyrdb5SFy6yoXpcZ5EDRBhyYXNJOxjh4mEvNNB19SfoC6jkGecdTkTdOqO0Z/zGTnaM8eDOvZr5vH0OP+dCASHCEJQBII9QE37n7C2P0j/0fsWBTTXBuq20X0kqvTYcBToybUadiXd0eLFZnSUgA4YIaqvyxGsvZhaIMLAeoO69iiJa3fUgmPm1ViKvnkndKB3dZlAgYjN1hRlHrh9lUnAccOU9g8o46baUTLuox/tJRv9XXEKvAOanLA+450OCnDvZYikDEVNuaYYoscqQdJP1EtEXt7u1KWQ4mjvkrpj5g1VdYs1a2qKjhHE1gL0jb8eoICcDxt9kK+JUylE2S3WV3QXtEmYZwZC7owREQz6dG0JnbX50CCde2eMiMvaKfR3c8cMm/St7zCdVTNy9HimQhmjjhKdpxqkvfct4P+cCFywyZTIuAuJJyVHa3RPHSV6X9/L6M4wy7Ssb2yj1+TCRkg7I0f79NEtZubQUJR+7iyZ7BRjRwJY1wH1iWuB1IH8CxEIDi2EoAgEe0O01uSNoQWmbGTFHTylEIkKo9r0KloztuvloMlkNHdf7NBumikXiFWN/oPLBQyeTsvByYJpo+UZJ2w0lg/T845H2Yl0xWgcOkraFl+3SWfDQFdRD4jTpmzDUVN+4QGD2Qjgho15Wi6sS1K6y2MgTsezQIGyHqBr2ZwxDrnc4VJ06O8PDdI6LhuxMDgbof3gCcxs2e9btD9Vm/bfDRpbeG7b5rkxPAuINStlfe6ugnFoZfHp9iTQVYAK3Q4AsKxv0jGaSQiLVjk7NqBdcsN1Ov7mDJXHhnUmrR4gH5SRCJ3v2BFTzvItsspnwsujAHY1iVTby3Sv/D51FWhfojWTteMSYRZ6Pk+KMinpiiEr/RZda3uZyAnra6o2VLtuA56m/wgEkxRCUASCvYFbdNkrBKBv5/ytHqAg01Y2QYlT/nXdOswiSS73dJTo2z7bq9dtAHVjuV4P0DmKITNDhlP0jmdS/ZE6pezZJ6MUolT9lJIxc2OrfG515pbRNl06mVY0Pi+ceWCLdJ7My/fBWpntSW2xHjXnYjv8rSkiC2zQVgqRMRsLLqM1OgdnDyzQmpTbqrFg+/igb1prWceTDxPB6kvSc0ktHt3QTs9PLRJR6c6bUk0pZCz3awEiZmxVvzuyEQr2bnB0i+3UImWAyiEiImkXWBWj673gPa0BitM+sAU/f36OH6JyzEjEiGvzOhsyXXviuEHTcu3aZk7QQAzYkiHC4usSI0+8zurum+Zhffz+V4LApgzUCV/dn0+9QDApYCml1L6XffCRy+WQTqeRzWaRSkk+UzB+WKt1madmUxBhnUjQp2/Nxw1TALYVBU7AeE3UtI9JzTbtpCyaZHCnBGBEtMoyxMHV5YNmksKdM7uj4FDgbnaB5WwEG88pmOca+g6fdB3RupmozEQlWqP7HYwZbQxrHXbF9KA7j3xEuGMo6Bu7+L6kCaRtZVNS8S3S9KR1B8lQlF6b0tkf3hO+FiZLLGBt3q+KJhODMaPZsBVlmfK67Tvh0mv5/QhrD5ZQE+kbL9Z1Ups0l/C2pmiv2Ob9xeOIRETr9JmZUqJ97CwRoWLCuzltdD+sVZqeJ3IVqesZOlUivpxlmVY0978zRoTo1AE6tiYp4t4qmMwYbzyWDIpAsC94FmA1ZVKggJgmCxyQt6VM50bIMwLLaN2k+HnezO4INH1HiNUMKWF9xjRtO85i2KptPC92B5d+tmnzNhsU6HjOChMSLn1Ea9pSvgZM0RqIgCJRZ7RGAZi7bXp0GeWNabrMoO8poW3w3+40k2856/HWFD24zqPyQ16TF+5AKejWYvaOiVfNdF+GaxPham8SGTseZY6qNpXeAjrzxJ1QzdmisM5eZSPm/liQXHCMx8v+oHlODYNJA0A28/8522hr+DPRLFhl7VJM60o428JTox3POOU2l/6UZTqzeB7UW51Ql31u/+5BIJjkEIIiEOwD6szrYf33T5sesEjAykHfDZr2TNZNKMsEU85msNZirLJCM1IuALfpZw0ugdR0l89YBIVdWbkddn1HQ3vQCGwcwCN1k8kohyh45sL0Db27QMGPg2d7U6lj7i7KGHAAZX+YgPbPUBaQqQNvafFtxQYqIRIDHzti7okzObkwZRgs3XHSl6A9jGvn2LRrRKis7anqvRmJaE2KR4SIfWa47NQ8mZedVTljlaiSTwkfEyDCsHtZZ3cwOeTjAmYmEsNSVM7ZGadrj9cM0eMSUr8uQ3UXjBi2vaznC1Xp3sr6s9NcvuHOn1gNas5NwJy9X65A8EGFEBSBYDzgabUJj4Kao7UQ0wrAu3FTBqnZFIg4iFRtrXuwSbvhBo1ugn0n9hchj0jPYMw4qDYjF6aAmHKBj2w31+Ho7pVhXTao2Ma4rRw0rrONeT5BEoFOLQL/bzZlQLrzRtNRClFJY3vSeKHMzNIxXdsMERyI0z7x9ONQE1lIuURAphVMu7WtryeqCRl3Q3H2h+3zqzbdx+ysadlm35FIna6JM1FKe6mUQ3Q+S5mOo20pU7ZrHro3FlgHA9B9NRMT1isxAWXfljlDxrclGzY2/eUQXX9Nd2QlqvTYSEQPe0zRfXQVgB0JqGn/cz8/KALBBxtCUASCcUD9xZdhrXnATCzm6bDvZUxAiulyCZuORepmJgtb2VugMgeXA7oKFGCbvyEXHPMtvVkgy8hGTEmg4FDphYMmT2HmEgH7o7Dbqq0oe6BA18KOpUHflAy2pOn3Nm0s9k4HvXYgTtfSk6fAvLGNSFp7WXukWCZDUQ5S8I3UiWhkIzo7UTHmcVzFidb0ROWwmZB8/JAJ5IyBOB3PgnY8rZt5N44HRAEco7UnVZuuw/b1XB9NPgKa/IxETMfLhjZ6H5nM7Y7dsyqcBWPDPC4RWaD9zkaos+aYEXpvh6K6q8o1HUP4JlntR2ukZ2kWxvI+ehbUiTfSOcWTRHAUQgiKQDBehHVnSaSuh7nBlHMqQWNdz0LakQh96wco8PAAwG1aFGb7ZiZOQNGx2Wa9P2FKRixujeg240qQAthwlLIFlSAFdCYyPMNnJELf4Hn6MgtvAaOH4MGEeugbfIuC6UiYjs+6mrxDupS2MgX7fJjWDUbpODwTJqJJw9SSmXQ8I0fXyV1Q3DbM5aVoncSiAUVko7Nk2o5DHmVoHI9KTwFFBCyr253rAXofAor2JuUCtgekm3QlvkVdPe90mHJJ8xC+M/dATADgtR66hliN9i4fpveBxwrYyszNcTzz570M8IdZlBni92N20zl5Xk9Vd+ocR2ZrLc6tHQfwGRUIjiAIQREIxgl1wlfpm28zuI24GDJGbgoUsJJVIFMyk4z5G3fDpVRnSUYiFFxzPlBJayFskDo3onrttqCea6PMsL9onY6bd4B320m7wOZlRcfM4eHhhEEfCGiy4mt3WW6/rdlGzDus7fnzAVNK4fbcroKZVxOySbxp+5TdGInQnkwtGmv6pGtm7LBImIfYcdv1zpghSaWQmc3TUSKywo6qmzK0h7aee8PEJKAo2Nu+tqpvIiZ8f0yclNaf8CDHup5xsyNhDPP+u4uOXw4aUuTaQCFK6zr0NaW0dwxgupTy+l6rtpkYrdAoHTU+P/lIYyijuuCvD8GnVSD44EMIikBwMAgoE/QKIRME28vGFKxqU4Ash0j3YenXcZnAAq0J+YDnAxXHOMAymeFSDGDKQ5UgBV/WbKiIyUDEtSMqQOSDBbFcjlKWyZiEdLs0G8HxoEE2+OrJU7BNN3mV8Ld/SxOErgL9YQ1JWJecojpzkwvTulQF8EHXE6vRcQsOCW85YxL2mjpdgkCiRPfFotHuPBFC7vZxPNPl0zw4kDUuJS0AZvt9nsA8pAnHBZta3XwrQcpyFRzK/szIGdI0I0flG3ah5WxPUNF7sSNusmjxGu0ju/RqKHzTlGwyE/IpFAiOSAhBEQgOBNwuyi2yPNSOyz29aQpiIZ0xYOt3zqYAFKy5hJOu0DGTrjZd02Ucno4c1yWLctC4q7IdPWci2PG2pOcHMXnyLSCi9SiVIH37j2jdR7RuTNfCHh0/rDMkVZuyIXx/7JTK7brNZIDBOgpXZxCYiEzPE8mIam+PUoh+DuuyVj5sNCKuDQwm6Pw9eT0ZWhMXLjGxPqVq03Gm5s019KZNdsXxTJdPZ4n2OOwRmdmaAnI10tKcoK3tubtnSI8L4IwODxRMaFM4W5nOJp4bFK2bwZHrOoCI9jyZPSK+JALBAUAIikCwH1D4JqxVD1LQ7clTkOdZObmQGQLIHheuLoMEfdKVsFFbwTH29nXdxaEsCurFJrITrhOhsPS6kA8E6pSFSFbpTz1AmYJiyAhIuQzE7c5BnzxRajaREPYMKYeoZJGu0NqQR39ndbtyTXfKcLcKd9DsqfuI5+SUQ3Tv8RplZtglt6RJmgJdL2d5eGbPljT9zX4wA3Hav0RVl6KadDO+Rdfo6swSt/SyoRsP1eMRA0NRyvJwmzMbtM3Ott7DKQPAiYN0fezHUg4ZoSzfO5dyeNpy04RqddrfHNTnTCAQCEERCPYfRZ3u709Q8C6FjA9HNmy+hb/aY2zPWYswZ5iyBZz6rwcoGBcdylAM60zGrhgF44BqFZ9y6WRQTzl26kDNMbbyc4bpfG1lCvrlkGnX9QJA3TOEgUsm/HysRoTEt4h87dTtwRvaiTTwADvOHr2XoWvoyROJUjCeIq5uuR6xjY0+m44BtFeubVxgN6fpuHG9JhemoB9s6sLhYYSROv3OGQwL5LkSq9N+u7YZCZDWWSpLETEpNw153KGHDD5/HHDaDroPLoGFPCCj95ozNpva6B6544YFzrrE18iSJA7R504gOMogBEUg2E+oj18L68VfUtCL1YweY1jPlClqTchHe4HVXZpY6G/XCkQeQj4ZdDX7gnDwjuqOES/QGtADioJlLWAEnrmIFod6dLztSbO+or1EuFW5FDKaDwumvFPWmQyrSI/tSNC6TEUPINS6jY4SEYddMePlsrGN7q+jj57jziQWAbOAmAN/vAq4ek3FJnFvW4UeD1eNO21bxYh8K0E6Ty5M2ZTBqBkpoECPZyrm/D0lo/mpB+iYXoCIG2BapHtTtF9RPV8ooC3p2TeFvWyGI0Qg2SWYSQkANetvD+EnTSA4uiEERSA4EHhWqx17OUjlHTdIRm5x2whMUzozEq/SzBR2nd3URsGzroW1ZT0c0A2aUgT7i3gWPR6p088hfYxyCIjxnCAYLUveoUDL5aOILid5ukw0GKVrq9q01guQMHR2Vk8gdmgdaysG4nQtXoBKILkwZVTO3E7rbe2b0p+g8/iWIRhlrdHoKrZ6myRdILmNMjX1gOkICntGgJoP07W2l80xi465p+bMk6XM0MKaLvuEPXKxjWgNTzZCz3UV6Jwzc0R24jXTGs6DHdPN3T+gjpuZQkgEgvcLQlAEggOA+tQ1sN79sXEqjdeAvGVMyRQomJ+8kwIot9Wyb0ikDkzPUebC1pqRtjoF1GGt8+gq0Gt4sJ2tzPBBSxmxJ7vBKssE8+EIEQy2WU+5RIym6CGD6You8eiZOLb2EdmeJL+OXTHjanrssBHNbksCGYeuodlLhBHS1vUp17QAs3ura9P9sDGcp8lTtEZdPMNRow9hzQv7vjAh9AKmzMJdP9wqzJOYB+KtOhnPAgL6/chUaL8jWtAK0HtYDOmBiTZdTznY0Je0eJMIBIL3DUJQBIIDhQUTaHkg3ECciENUm3fVI8ZcrKq1DB16mu9ObZGPgFkfr2m31TBlD4I+fft3te+JAx2kAxR0AT2Xx6fgy8P22CDO0Z05bWUiJTsSrdqOgAIyPEhQe6Ns1dbvZZ1FyIXp3IMxEo9WgvRzLkxZjRm5Vnt3ztzEatpxt2l4YsEh8sOTjqdpN9Wa1qpUgqZbSVl0DJ5IvC2pdSWuabEOe60C4by2jGdxL4tzfRBx4/bkZpFvuG5KcLtiUM7tQNf78PkRCAR7hRAUgeBA0VkygZTtz2M17UHiUPCdUqSgOhCnAMqC15ptXs/zeyI107qcqBphLetEWHjKhmeckQj5lOlgkW7aNQ6z7FS6sU1PRi6a9t9IncgIe45sbqMgfsIgZSfayjS5uKNsvFJY78JiVHaDPW6YjhGuA8EAXUdSz5aJ1I1mhPetL2laeO2ImYPTO4XKYJUQHYt1LMN6Pg1Ax7KVyTz1JYyRnLKAoQiRl5ImIxZ0acsDlNM65E+jIXDtPHQfF4FAsH8QgiIQHCBU+u9hFb9PwTvV9K3etyjz0KZdXS1Q0H+9i4SmgzEyG7MVkNTaE98isy/OXDTPZWkWxfIsGR903lrA+HKUgsang0tKnSWja3kvQ8Sg4NDjljKBvLMEzO8nHQp3Jw3GSBfiW1T64Y4dngOUdEnkytkT7u4pB4no5MPG16QeMB4kpZDJsgxFiYgFPcp+tFWINFV1l86gtsrnycTsSVK1gbjOXnGmpqK1O2xxn3Dpvj3LZGh0+7b4kggEkx9CUASCgwFnOaq2ForqgYHZMLCyR2tN8hREZ49QgOVuGMB0i7BlvoIp9/AsHl+LZHlmYEABBd2qnKgCNd2KXLOp7BNoGpaX1cP8etNEAKYPal1KlUot3Pq7JU0dLH0JOv8ZfbRue5LIS0+eXl+1jT+Ib5GOo+gYozo2MwOIwEDvza4YkQXuSuIW6rBnBhe6unQ0pURlH84OsSNsPWA8X3jv+xLA9jQRKbbXByhr5EcMeaoFoKZ+A5hyCD8LAoFgQiEERSA4CKj038Pa+gMKhDVdgilqy/v3MsYXJKm9MxzPDJhjm/mCYzQgCJjgzVOHuezDYlk3SMcLhoxZWdExNvSuJiDpiraBd4ionLRLe6doMzbulgkoo8s4dYDs2nfF6LxzdwGruomg1AMAfCI83QU6R7Jq2nHHAnfYsNU7txyznb2lqJwDz4hX38uQMDdRBTpcyqhMLQJrp5g25nyYSlBBnzQqnhYId5S1VqdIWhKBQPCBhRAUgeBgkXdIaMqlBku3G7PxV0R7i/Tk6XFLGX2E9tOArcsW0JkJnlPTVJZoZEZ4yF+iSmSnojuJglqLMqVI63r1wJfpOQrw2SahbjlIRGhWlsiI4wHr20lLMqVEpKCm23BP30ECVdbYMJkajJG2pb1Mx9kT2AulJ28EshFtee9bdFwmcinXCFttRffFnUG5MJVwAHp9vGZ8UhwPCCoo+w69n4fijRYIBO8nhKAIBAcJNe9GWCt/RhmFaB1IaOIR9IFYlbQlnCXxLfIaKQdNmywTmkiddCRsOV/TQTuoMyiAbqvVIs9mm3qeSTN7hAI5l5L6krpsoicMs3ttKWSs5AsOZSdm5IB1nTQ4r71M9zOirzFaJ8KyK2ZcVCO6FGUrYIdHmYyxEK7TJGJurV7XST9z4oVt70M+EAgZMjK1SC62c4aopBVQlI1JaxO3rSmo028w5xGBq0BwREEIikAwEYjrbEZeC1AdbX0f8qgcEa5TCSLkA5szFJRn5ogA8MRfS8/x4cwKTy3mKcRVPdumBFrDWYZI3bQO83rfog6crgIdcyhKhKWsBbG2IkFq1Qa6h+j1/QnKrgzG6O+BOJVwWJjbVaBrL+mOmLYyEZaRCJ2X5wWl3FZDtoSe5VMKafv9IFCLmQGC7PXCglYu39haNBwAEZagD/WR69+3t1QgEBxeCEERCCYA6qTFsLZ/H4jrksNIhMoe5ZARwSoY3w7PMoGdZ/lw+cf2tR4FRi8C0HG5NFRwjLfIYIy6cViE2l6mklLKNZkVgF7HupPmgXx9umuns2SyK1OKRLrYBr9mE4GJ1oy4dVCXa8pBwAkRCbJApaQ5w+b6ASI3BYd+PmsbkZ982AwyrNqkldmcoTV1rcVJulDh24A5h/gNFAgEkw5CUASCCYLq+TsAgDX4XQrqWZ6T41NmBQCmDVMmhV1hfYtaiG2tS2EhrW8Zv5SKDUQ8EoB6uu3YDVKLbUDR6/MOtQiHtZ17Ttu3hzQh4pIOX9eUIhEmxzOEhocRJrWlva1LQm7QDENkh9VElTp/uNsmH6YyTTai24N1N84xI8YEjbUv0TplUryAGa7IupvT+6FOWnxY3j+BQDC5IARFIJhoFBzKGHD2JBem4GsrIhi5sPE3aW6f5Sm8A3H6m8tEySodMxcmozVbafKhu2CyYcrGBBRlMXYkSOuRqhER4Tbi7gIRnuOHzCBBnhzMfii2rwcEQrcOQxvMgdbxwMIhrQXZkiaCFNbX2p2nPfAtmlC8OQ18aoPZm6g2h8tU6H7jNWBbEuqc697/90kgEExqCEERCCYatu5KSVQpCE/P099dBSqTVHT2I1pr6ljxTcYjq0s/vkWvKweJpLCTai4MxD2TfYjUSeOxLUX2+fEqkQwmMe9qQsATiit69gwPwktWiViMRCi7k64QcSqHGkPyYCsqxURr1AK8M659VfJEtMIeXZfjkXfKtAIRrbQLvHAcZVNmZUlbMiNHRmkJvV8zD8N7JBAIJj2EoAgEEww142ZY/p2t046HotSBUnC0SyzMAMBE1XT4lLRPSEC7wzq6y8ezgN4MlXk4U8ITe6s2kYltSfIt2REnArJTO8EeN9w6ZViB9CZDUcpoVG0S1KZcIFY3WRVbe7FE9WycaQW6h76kmRyc0IZvAWWGFLIVf8ol4qR9YVTbksPwbggEgg8qhKAIBIcCLCytayt6DuoxLTJN6um+AS2KzTvG58T2DZngeTesFeHyD08BtkDrdySohDMYJb+RgD4nW8y3VYi4+J4p1/iWMW5Lu3R9eUevLxNRYbIxRZdwADMsMFaja6gHgLyeq8NTnF0b6vKFh/ENEAgEH3QIQREIDgFU4n/Beu2fiIhYoCwCz+tJVInAJKtEPjZniIjMyJmSi6eN2aaUiHRwRiNS19OLtTfJ2510joJDBCblEtnoT1BbMZuzTS3ShfUljB5GWcap1guSv0rVpnO6Nh3L8SgzU7ONxXzIozJSQJFRm69dXBNVqMs+d5h2XCAQHGkQgiIQHCrkHW1nr1tt3SAREvY4qeihgJE6aUMsmFbfkM6glPU/UXZcDfqmM8jSmRjfIr3JSKR1bk2zBX02QqSovWwmL9uKiFNRZz58rVGp2saVNq8zLWz+NncX8OcpwLEjRFxmZ6GO/dr7vLECgeBogBAUgeAQQZ3/RVgv/JKIh6dn5qQrhpyUtd4kXSHS4XhESNhoDTDkwQsAtm7X5TbkgQS18e5IAFXdcpypkFjWtwBbe6DYWrMSr9K1wKfHhzWhmaL1KO1lIjylEJ0v7dK6zWnK+mTKQG8K6vwv0nXMfr93VCAQHE0QgiIQHEpwdoSdVR1tyDZbz8BpLwO7tOCVh/axtb0XICGtsmidgukMcrTx20hE+5s4wAiVWRourAHttaJAxCMbITIUAGVOlEVlJQtmcvLmDNnzdxeIqMwegZr99cO0eQKB4GiGEBSB4FAiU6EMhWcRERjW1vZDUSINAGk/eNCgqztzuDTkW0YsG9JtviOaaEwtUoYl71BZZu4u6rKp2UCsQgTFAhGTNj1bJxc2JR7HIxKkQLqXwSidcyQKNe9GIHN4tkwgEAgAISgCwSGFOmURrLX3ExHIaH+Rbu0R4tr0d2dJz+IBERnXpgGD9YAR1fI8H+gBgm6QSjtdBTrmthT5j1Rtspkv69dtTekZOXFaF63r6cVaWMvzfYohqDO+cji3SiAQCFogBEUgONQIe0BNEVHoKFEnDXuIhD0iJL4eFhhSQDVEmhJbi2JzmpyEfOrKAYxWZChKmZLOEpGYUwaAdR1GKOsFgI9s1+ZsmpDoFmZ1yqLDuy8CgUCwFwhBEQgONQLa1KyzRFmLkE9lF3Z2TeqhfvkwlVuidUNaeCYPl3x68tTaW7NpbbpisiRJl7QlJw6SM2w+TO3GymqUeVS7mKUJBIIPBoSgCASHGjOzRBZqtmnb9S3T4ttRokxKokqZknyYiMdIxNjet5eJ3NTr5A67sY2IjAUzeI+7dDpKwHsZqDOvB47V15A8TPcuEAgEB4jAwbz47rvvhmVZ+PrXv77HNU899RTOPPNMZDIZxONxzJ8/H48++mjj+VqthiVLluDUU09FPB5HT08PvvCFL2D79u0tx7n88ssxa9YsRCIRdHd345prrhm1RiCYlAj6RD76ElSiyTVlNhw9w2YkYkSx9QCtn5WlNuJ0hTQlbPRW08Zr3O0TrdPfyoI69W+gev6OyIlAIBB8gHHABGXlypV48MEHcdppp+11XXt7O/7hH/4Br7zyCt544w1ce+21uPbaa/Hcc88BAEqlElatWoXbb78dq1atwlNPPYV169bh8ssvbznOBRdcgCeeeALr1q3Dv/zLv2DDhg34zGc+c6CXLxC8v9gZow4bgMovbWUqy5S12LUcpHk4TE7emEalm3KQhLDROmVXajZlUnimTkARKfn4tVCn33BYb1EgEAgmEpZSSu17WSsKhQLOOOMMLFu2DN/5zncwf/58/OhHPxr368844wxceuml+Pa3vz3m8ytXrsRZZ52FzZs3Y9asWWOueeaZZ/CXf/mXcF0XoVBon+fM5XJIp9PIZrNIpVLjvlaBYCJg/enn9ENNd/PEaqbcE69SZqTgkPB1fj/9zB08aZdelyZhrEreenhvRiAQCA4C443HB5RBWbx4MS699FJcdNFF+/U6pRRefPFFrFu3Dp/4xCf2uC6bzcKyLGQymTGfHxoawq9//Wuce+65eyQnrusil8u1/BEIDiuCPpETx9Mzd1wzl2ckQmQlG6GW4aBPbcNvTINK3grVvgTKvkPIiUAgOGqw3yLZxx9/HKtWrcLKlSvH/ZpsNovp06fDdV3Yto1ly5bhk5/85JhrK5UKlixZgoULF45iVkuWLMFPfvITlEolnHPOOXj22Wf3eM677roLd95557ivUSA4lFBnXwfrPx+mzh2eClwP0M/hOpC0yJ8kXaH1M24GZhzGCxYIBILDjP0q8fT29uLMM8/E888/39CenH/++fss8fi+j40bN6JQKODFF1/Et7/9bTz99NM4//zzW9bVajVcddVV2Lp1K1566aVRBGXXrl0YGhrC5s2bceeddyKdTuPZZ5+FZVmjzum6LlzXbfyey+Uwc+ZMKfEIDhusNQ9Q2YaHB/oWCWUBwPah5ouGRCAQHPkYb4lnvwjK008/jSuvvBK2bTce8zwPlmUhEAg0MiT7wnXXXYfe3t6GUBYgcnL11Vdj48aNWL58OTo6OvZ6jK1bt2LmzJl4+eWXsWDBgn2eUzQogskA67V/otJO2JMZNwKB4KjEeOPxfpV4LrzwQqxZs6blsWuvvRZz587FkiVLxkVOAMqoNGc3mJysX78eK1as2Cc54WMAaDmOQDDZoT4i7b8CgUAwHuwXQUkmkzjllFNaHovH4+jo6Gg8/oUvfAHTp0/HXXfdBYC0IGeeeSbmzJkD13Xx+9//Ho8++igeeOABAEROPvOZz2DVqlV49tln4Xke+vv7AVCLsuM4+NOf/oSVK1fiYx/7GNra2rBhwwbcfvvtmDNnzriyJwAJdAGIWFYgEAgEgsMIjsP7KuBMuJPsli1bEAiY5qBisYhFixZh69atiEajmDt3Ln71q1/hs5/9LABg27ZteOaZZwAA8+fPbznWihUrcP755yMWi+Gpp57C0qVLUSwW0d3djU9/+tO47bbbEA6Hx3Vd+XweADBz5swJuEuBQCAQCAQHg3w+j3Q6vcfnD8gH5YMI3/exfft2JJPJMUW1hwIszO3t7RXdy0FA9nFiIPs4MZB9nBjIPk4MPoj7qJRCPp9HT09PS0Jjdxw1s3gCgQBmzDg8fZupVOoD88GZzJB9nBjIPk4MZB8nBrKPE4MP2j7uLXPCOKhZPAKBQCAQCASHAkJQBAKBQCAQTDoIQTmECIfDWLp06biFvIKxIfs4MZB9nBjIPk4MZB8nBkfyPh41IlmBQCAQCAQfHEgGRSAQCAQCwaSDEBSBQCAQCASTDkJQBAKBQCAQTDoIQREIBAKBQDDpcFQTlGOOOQaWZY36s3jx4pZ1SilccsklsCwLTz/9dMtzN910Ez7ykY8gHA6PsupnvPHGG/j4xz+OSCSCmTNn4rvf/e6oNU8++STmzp2LSCSCU089Fb///e9HXcMdd9yB7u5uRKNRXHTRRVi/fv1B3f9E4WD38fXXX8fChQsxc+ZMRKNRzJs3D/fee++o87z00ks444wzEA6Hcfzxx+ORRx4Zteb+++/HMcccg0gkgrPPPhv/9V//1fJ8pVLB4sWL0dHRgUQigauuugo7duyYkH04WBzsPg4ODuLTn/40enp6EA6HMXPmTNx4442j5k/JPhL29u+aMTg4iBkzZsCyLIyMjLQ8J/tI2Ns+jvX6xx9/vGWN7CNhX5/HRx55BKeddhoikQimTp066vVHZJxRRzEGBgZUX19f48/zzz+vAKgVK1a0rPvBD36gLrnkEgVA/eu//mvLc1/96lfVT37yE3XNNdeo008/fdQ5stmsmjZtmvqrv/or9eabb6rHHntMRaNR9eCDDzbW/OEPf1C2bavvfve7au3ateq2225ToVBIrVmzprHm7rvvVul0Wj399NPq9ddfV5dffrk69thjVblcnsgtOSAc7D7+4he/UDfddJN66aWX1IYNG9Sjjz6qotGouu+++xprNm7cqGKxmLr55pvV2rVr1X333ads21b//u//3ljz+OOPK8dx1EMPPaT+/Oc/qy9/+csqk8moHTt2NNbccMMNaubMmerFF19Ur776qjrnnHPUueeee8j2Zn9wsPs4NDSkli1bplauXKnee+899cILL6gTTzxRLVy4sLFG9tFgb/+uGVdccUVjzfDwcONx2UeDve0jAPXwww+3HKf5/yzZR4O97eP3v/991dPTo37961+rd999V73++uvqt7/9beP5IzXOHNUEZXd87WtfU3PmzFG+7zceW716tZo+fbrq6+vb639kS5cuHZOgLFu2TLW1tSnXdRuPLVmyRJ144omN36+++mp16aWXtrzu7LPPVl/5yleUUkr5vq+6urrUPffc03h+ZGREhcNh9dhjjx3IrR5SHMw+MhYtWqQuuOCCxu+33HKLOvnkk1vWfPazn1UXX3xx4/ezzjpLLV68uPG753mqp6dH3XXXXUop2rNQKKSefPLJxpq33npLAVCvvPLKAd3rocRE7OO9996rZsyY0fhd9pEwnn1ctmyZOu+889SLL744iqDIPhL2tY/7+ozKPhL2to9DQ0MqGo2qF154YY/HPFLjzFFd4mlGtVrFr371K3zpS19qDBMslUr43Oc+h/vvvx9dXV0HdNxXXnkFn/jEJ+A4TuOxiy++GOvWrcPw8HBjzUUXXdTyuosvvhivvPIKAGDTpk3o7+9vWZNOp3H22Wc31kwWTNQ+ZrNZtLe3N37f1x5Vq1W89tprLWsCgQAuuuiixprXXnsNtVqtZc3cuXMxa9asI3Ift2/fjqeeegrnnXde4zHZx/Ht49q1a/Gtb30Lv/zlL8ccZib7OP7P4+LFi9HZ2YmzzjoLDz30EFST9Zbs47738fnnn4fv+9i2bRvmzZuHGTNm4Oqrr0Zvb29jzZEaZ4SgaDz99NMYGRnBF7/4xcZjf/u3f4tzzz0XV1xxxQEft7+/H9OmTWt5jH/v7+/f65rm55tfN9aayYKJ2MeXX34Z//zP/4zrr7++8die9iiXy6FcLmPXrl3wPG+f++g4DjKZzB7XTBYczD4uXLgQsVgM06dPRyqVws9//vPGc7KP+95H13WxcOFC3HPPPZg1a9aYa2Qfx/d5/Na3voUnnngCzz//PK666iosWrQI9913X+N52cd97+PGjRvh+z7+8R//ET/60Y/wm9/8BkNDQ/jkJz+JarUK4MiNM0fNNON94Re/+AUuueQS9PT0AACeeeYZLF++HKtXrz7MV/bBwsHu45tvvokrrrgCS5cuxac+9alDeamTGgezjz/84Q+xdOlSvPPOO7j11ltx8803Y9myZYf6kiclDmQfb731VsybNw+f//zn36/LnPQ40M/j7bff3vj5wx/+MIrFIu655x7cdNNNh/R6JysOZB9930etVsOPf/zjxv+Jjz32GLq6urBixQpcfPHF78u1Hw5IBgXA5s2b8cILL+C6665rPLZ8+XJs2LABmUwGwWAQwSBxuauuugrnn3/+uI/d1dU1Sk3Ov3M6b09rmp9vft1YayYDDnYf165diwsvvBDXX389brvttpbn9rRHqVQK0WgUnZ2dsG17n/tYrVZHdWMcafvY1dWFuXPn4vLLL8eDDz6IBx54AH19fY3nZB/3vo/Lly/Hk08+2Xj+wgsvBAB0dnZi6dKlAGQfD/T/x7PPPhtbt26F67oAZB/Hs4/d3d0AgJNOOqnxuilTpqCzsxNbtmwBcATHmcOifJlkWLp0qerq6lK1Wq3xWF9fn1qzZk3LHwDq3nvvVRs3bhzzGHsTyVar1cZjt9566yjx0mWXXdbyugULFowSL33ve99rPJ/NZiedSPZg9vHNN99UU6dOVd/4xjfGPPYtt9yiTjnllJbHFi5cOEpMd+ONNzZ+9zxPTZ8+fZSY7je/+U1jzdtvvz3pxHQT8Xlk/Md//IcCoDZt2qSUkn0czz6+++67Lc8/9NBDCoB6+eWXG50jso8H9nn8zne+o9ra2hq/yz7uex/XrVunALSIZAcHB1UgEFDPPfecUurIjTNHPUHxPE/NmjVLLVmyZJ9rMYYiff369Wr16tXqK1/5ijrhhBPU6tWr1erVqxtq6pGRETVt2jR1zTXXqDfffFM9/vjjKhaLjWr/CgaD6nvf+55666231NKlS8ds/8pkMuq3v/2teuONN9QVV1wxadqMlTq4fVyzZo2aMmWK+vznP9/SjjcwMNBYw+2I3/jGN9Rbb72l7r///jHbEcPhsHrkkUfU2rVr1fXXX68ymYzq7+9vrLnhhhvUrFmz1PLly9Wrr76qFixYoBYsWDAxmzABOJh9/N3vfqceeughtWbNGrVp0yb17LPPqnnz5qmPfvSjjTWyj6Mx1r/rZqxYsWKPbcayjwa77+Mzzzyjfvazn6k1a9ao9evXq2XLlqlYLKbuuOOOxhrZx9EY6/N4xRVXqJNPPln94Q9/UGvWrFGXXXaZOumkkxqE5EiNM0c9QXnuuecUALVu3bp9rh3rg3PeeecpAKP+8DdWpZR6/fXX1cc+9jEVDofV9OnT1d133z3q2E888YQ64YQTlOM46uSTT1a/+93vWp73fV/dfvvtatq0aSocDqsLL7xwXNf8fuFg9nHp0qVj7uHs2bNbXrdixQo1f/585TiOOu6449TDDz886tj33XefmjVrlnIcR5111lnqj3/8Y8vz5XJZLVq0SLW1talYLKauvPJK1dfXdyC3fEhwMPu4fPlytWDBApVOp1UkElEf+tCH1JIlS1oCq1Kyj7vjQAgKPy77aLD7Pv7bv/2bmj9/vkokEioej6vTTz9d/fSnP1We57W8TvaxFWN9HrPZrPrSl76kMpmMam9vV1deeaXasmVLy5ojMc5YSjX1fAkEAoFAIBBMAohIViAQCAQCwaSDEBSBQCAQCASTDkJQBAKBQCAQTDoIQREIBAKBQDDpIARFIBAIBALBpIMQFIFAIBAIBJMOQlAEAoFAIBBMOghBEQgEAoFAMOkgBEUgEAgEAsGkgxAUgUAgEAgEkw5CUAQCgUAgEEw6CEERCAQCgUAw6fD/AYCleYX0YMGxAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGsCAYAAAAYBjfoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZhlZ3UdjK8z3XmosedRQkJCMwgwYBkDghgTf3Zs7JgvDlgOBjuAwY4To/ziWPjTA46QDYkF2AiMETYmnxObxP6SQLCtgBCDEJMkhMZWz0PNt+58pt8fa+/at1rVrW7RUk/vep5+qurWuee855zbtdfZe+21vTzPczg4ODg4ODg4nGHwT/cCHBwcHBwcHBzWgiMpDg4ODg4ODmckHElxcHBwcHBwOCPhSIqDg4ODg4PDGQlHUhwcHBwcHBzOSDiS4uDg4ODg4HBGwpEUBwcHBwcHhzMSjqQ4ODg4ODg4nJFwJMXBwcHBwcHhjIQjKQ4ODg4ODg5nJM5LkvLFL34RP/ETP4FNmzbB8zx89rOfPel95HmOW2+9FRdffDGKxSK2bt2K9773vad+sQ4ODg4ODucpwtO9gNOBTqeDq666CjfccAN+5md+5mnt453vfCc+//nP49Zbb8UVV1yBpaUlzM7OnuKVOjg4ODg4nL/wzvcBg57n4a//+q/xUz/1UyuvDYdD/Lt/9+/w53/+51hcXMTll1+O//Af/gN+9Ed/FADw4IMP4sorr8T999+P5z73uadn4Q4ODg4ODuc4zstyz1PhhhtuwJe//GV85jOfwXe/+1387M/+LH7sx34MjzzyCADgb/7mb3DBBRfgb//2b7Fz507s2LEDb37zmzE/P3+aV+7g4ODg4HDuwJGUo/DYY4/hL/7iL/CXf/mXuO6663DhhRfiN3/zN/HDP/zD+MQnPgEAePzxx7F792785V/+Je644w786Z/+Ke699168/vWvP82rd3BwcHBwOHdwXmpSjodvfvObyPMcF1988arXB4MBJicnAQBZlmEwGOCOO+5Y2e7jH/84XvCCF+Chhx5yJSAHBwcHB4dTAEdSjkKWZQiCAPfeey+CIFj1u1qtBgDYuHEjwjBcRWQuvfRSAMCePXscSXFwcHBwcDgFcCTlKFxzzTVI0xRHjhzBddddt+Y2L3vZy5AkCR577DFceOGFAICHH34YALB9+/Znba0ODg4ODg7nMs7L7p52u41HH30UAEnJH/zBH+AVr3gFJiYmsG3bNvzCL/wCvvzlL+P3f//3cc0112B2dhZ///d/jyuuuAI//uM/jizL8MIXvhC1Wg0f/OAHkWUZ3va2t6HRaODzn//8aT47BwcHBweHcwPnJUm588478YpXvOJJr7/pTW/Cn/7pnyKOY9x888244447sH//fkxOTuIlL3kJ3vOe9+CKK64AABw4cADveMc78PnPfx7VahWvfe1r8fu///uYmJh4tk/HwcHBwcHhnMR5SVIcHBwcHBwczny4FmQHBwcHBweHMxKOpDg4ODg4ODickTivunuyLMOBAwdQr9fhed7pXo6Dg4ODg8N5hzzPsby8jE2bNsH3j58rOa9IyoEDB7B169bTvQwHBwcHB4fzHnv37sWWLVuOu815RVLq9ToAXphGo3GaV+Pg4ODg4HD+odVqYevWrSsx+Xg4r0iKlngajQYajQa8u/4E+Q//0mlelYODg4ODw/mHE5FdnN/C2SiD942PwvvWH5/ulTg4ODg4ODgchfOapOQvfjPQKQCdCN7//tTpXo6Dg4ODg4PDCM5rkgIAiH1gGAD1Abx/+CS8//Hnp3tFDg4ODg4ODnAkBfn1bwS6EZD4QA4gzOB9/lPwPvdnp3tpDg4ODg4O5zXOe5ICAKjEwGIJaBWBQQhkHhD78P6XIyoODg4ODg6nC46kAMhf+SYgyAAPzKZkojjuh/Du/FNXAnJwcHBwcDgNcCRFEWVAlAK5B/g5/1Vj/q6cwPvbT7vMioODg4ODw7MIR1IE+fVvBAopUI4ppAVIWuKAX8sJUErg/e9Pwfu7O07vYh0cHBwcHM4DnFdmbk8JD0DqAcWUmZQ4sK+KMAOCjC3LYYb8FW86bct1cHBwcHA4l+EyKUcj9YEM1KYMAv7Lwe6f1AfWt4FSwoxLDnh3/clpXrCDg4ODg8O5CUdSRpC/6o3s9Cmm1KhUY2ZSco9EJciAI1VmUwYhUB8CU114d/0JvDv/9HQv38HBwcHB4ZyCK/ccjdoQWC4ClSHLP6WEWRQACHL+3I2oU/Fz81jxAO/ujwNRhvyFv3xaT8HBwcHBweFcgMukHIX8Rb/MUk4cUEAbZsyuTHeAjcskKRvbzK4MAxKZSswsSyEFxnvwvvHR030aDg4ODg4OZz0cSVkLiyXa5Xs5NSl+zmxJL+JrtSGwaRkY75Gc5B5fm+ixTDTWh3fP7U6v4uDg4ODg8APAlXvWQiGlSDbP2O3Tifh64jOTMtnjV4D6lWoMtAskKWN9YF+DWZfMg/fQbcAwQH7Fr56+83FwcHBwcDgL4TIpayC//o0kITmYISmkwGSXGZNBCDwxxgzLUpHEpSO6lMM14ECdO0n9lfIPxvrwvvchVwZycHBwcHA4CTiScjx4IPnIPF6psb6ZvQ0DE9EeqQLLBZKWg3W+Nlvhv71NkphiCkx34T3yh6f7rBwcHBwcHM4KOJJyDOTX3WA6lKUSMFOhHiXIgWafWZKlkpm/DQO+NgyYTck8vr8bsVvoYA04VKO3yv0fhnf/h0/3KTo4ODg4OJzRcCTleAhlng/AMk+7wO9LCdApAMWEBGQY0DZ/sURiMtYHeiG/j6Uc5OckNJppWS7C+9In4H3rj0/f+Tk4ODg4OJzBcCTlOMivu8EGD2YeSUs3AlpFEpV2AVjXBuoDalQmesC6DglNMSVJaQyA5oAalV5EYpN7zMpMdoENbXhf+Ti8r33sdJ+ug4ODg4PDGQVHUp4KsU+S0ewzY5L4LPlUhxTV1mJ+DTP+frFEwS0gWpac4tmpDrCpRU8V3c/hGvDYON+7XID3TZdVcXBwcHBwULgW5KdCJSZJ6UZW5jlYI8kIM2DO5zb1IUlJIbXOn4JkYHIhKwE9VLClBTw+ztcKYsFfSoADdXhLnwSKCfKX/ovTfeYODg4ODg6nFS6T8hTIn/9W6ks2t0gq/JxEY7EkHT0ldvcUUmpO1PxtrM9/ALftiAB31zjw0BTLQfUhszKJEJ2JHo+1XIT33Y+4EpCDg4ODw3kNR1JOBFNdYL5M8tHoUyQ70SMxqQ+YLck8vu5LB9AwABbKUh7KmC1pDFgKUm1LKoMLO5FpXmpDbj9TBVIP3r4/cGUgBwcHB4fzEo6knADyDb/JbEg/JPFIPRs8WEhZDirHRjQ8EaXkoNeKL6SlkADbloD1bWpdtGMoDkhaPHBGUCUm+YkDloVSH97Df+gyKw4ODg4O5xUcSTlRFEVfEuTMmAAs13QKJCWaGRkG3E7FtOXYtp+t0jK/HzIT4+VWQgKYrVkqGbGZ7FK/koMeK/0Q3u4PnoaTd3BwcHBwePbhSMoJIr/iV5lF6YcUxQIs08Ri2JYLgSmk3GYQkpwMA24z1eF7woxdPf2Q2w9CZk5qQ+peEt9KQup2O90FLp3ldnsb8L5/G7wHbztt18LBwcHBweHZgOvuORmUEnqmFFNgQ5tEIwf1Jn5OEjFT4ffaflxO2K6cw8o/YcavSkZin4Lb8T5/bhV5jECICjL+vtnnMR5YBxQTeMlHgNRDfvWvnMaL4uDg4ODg8MzAZVJOAvl1NzBjMgxYmpnsMgNSHfK1VhHY2Oa/sR71JUFGPUurRIIRZNYJFGT8VxuaI20/5O9jn68VU+pWDtStlDTdYbnoEFuhvW98lNOWHRwcHBwcziH8QCTlfe97HzzPw7ve9a5jbnPXXXfhZS97GSYnJ1Eul3HJJZfgAx/4wKptbr/9dlx33XUYHx/H+Pg4rr/+enz9619ftc2OHTvged6T/r3tbW/7QU7h5KHdOPvrJA6DkOSkNiCp6IUUvU70rfwT5MzCZB6zLplHB9qBlHy6EV9vF5h5qQ/582yF+14qyVRmsdUvJdzvdIfvGQYAAO9eN2XZwcHBweHcwdMu99xzzz346Ec/iiuvvPK421WrVbz97W/HlVdeiWq1irvuugtvfetbUa1W8Za3vAUAcOedd+INb3gDXvrSl6JUKuGWW27Ba17zGjzwwAPYvHnzyvHSNF3Z7/33349Xv/rV+Nmf/dmnewpPD+M9YLFMXUpTiEmzz06ccsxtDtSZPSlLB5B292hHUJhZKWeiRxIyVyZh8XPA80hgprrcZrzH9mU/Z9kn87j/1Oc+SwnLTKUE3n0fAWKf/i4ODg4ODg5nMbw8z/On3mw12u02nv/85+PDH/4wbr75Zlx99dX44Ac/eMLv/+mf/mlUq1V86lOfWvP3aZpifHwct912G974xjeuuc273vUu/O3f/i0eeeQReJ53QsdttVpoNptYWlpCo9E44fUeDe+rHyOJWNcGSikzK/2QJKI74nmi+pPaAOjL3B61zy+mLBPNl7n9IKTepRexjNQq8v36nm7E7EnumfdKHDBzo91EhZT7yTxg2xLy9b/5tM/RwcHBwcHhmcDJxOKnVe5529vehte97nW4/vrrT/q93/rWt3D33Xfj5S9/+TG36Xa7iOMYExMTa/5+OBziz/7sz/BLv/RLxyUog8EArVZr1b9TgoKIWsOc5Ra1tU9kzs/mZf7bIMMHl4t0ny2KBX41tunK9SG7dxoDCmej1BxsyzFJSTElYRmEbFvO5fueZFu0PBRk/LkcA4+Nw3v0P8G7/8On5pwdHBwcHByeZZx0ueczn/kMvvnNb+Kee+45qfdt2bIFMzMzSJIEN910E9785jcfc9t3v/vd2Lx58zFJ0Gc/+1ksLi7iF3/xF497zPe97314z3vec1LrPBHkz38rvIf/kBmLSmyZjeaA5CLxrX24kALbl0gsJnvMugxCM2tLE37dvkjjtu1LwOEqszLtAklKIbXuoXaBRCb1SV7UBG4Y8HcLssjUp7A2DlgCmu7QlM7BwcHBweEswUmRlL179+Kd73wnPv/5z6NUKp3Ugb70pS+h3W7jq1/9Kt797nfjOc95Dt7whjc8abtbbrkFf/EXf4E777zzmMf4+Mc/jte+9rXYtGnTcY9544034jd+4zdWfm61Wti6detJrfuYWCwxA9IPmI+KAyMLtSEzIx0hEPsafP1wje/TDp/6gESjEjMT87wZ7nsQmPdKIaVeRU3f1rdJclLfuooaA7Ht99kVVBtK6zL4fScC4jq8Q38EjPeRb3/XqbkGDg4ODg4OzyBOSpPy2c9+Fv/kn/wTBEGw8lqapvA8D77vYzAYrPrdsXDzzTfjU5/6FB566KFVr9966624+eab8YUvfAHXXnvtmu/dvXs3LrjgAvzVX/0VfvInf/JElw7g1GlSFN7dH7dsSe6xhXisbxqRXkjy0ikwkzLVJfnwxcQtB0tCY30SjX0Nimc3LjMLoqWk5QKJTUU7hFJ2/hQTim4nesCc/DwISXj0dzlYXpro8T05gOYA+YW/9gOfv4ODg4ODw8niZGLxSWVSXvWqV+G+++5b9doNN9yASy65BL/1W791QgQFAPI8x2AwWPXa+9//ftx888343Oc+d0yCAgCf+MQnsG7dOrzuda87maU/M+iLSBWwzhzVjexpUmOi9vYqmG0MzOhtEHKQYKtoDrO+aE5UCLtYWj11WTuDJnoyDygloakNSWp2LrJstLPLnzPxY+mIcHeiR3v9h/8QSHzkz3uWW7gdHBwcHBxOECdFUur1Oi6//PJVr1WrVUxOTq68fuONN2L//v244447AAAf+tCHsG3bNlxyySUA6Jty66234h3veMfKPm655Rb89m//Nj796U9jx44dOHToEACgVquhVqutbJdlGT7xiU/gTW96E8Lw9Jvl5q98E7x/+CQzFx5IBnKZhhyKC20vIgmZ7JF8HKmyTJR7ZqnfADMmPbHSbxf4urYX72+Q3IgfCnoR25JHSU9tyKzNTIWZllYRuHiOJaZ2ARiKpuVIlULbcgI8MQbv7z8JjPVdy7KDg4ODwxmHUx7pDx48iD179qz8nGUZbrzxRuzatQthGOLCCy/E7/3e7+Gtb7Wg+OEPfxjD4RCvf/3rV+3rd37nd3DTTTet/PyFL3wBe/bswS/90i+d6mU/fUTSsdOJgCKY2ehG/F1tCMyHLLfsrwPrOvx+pkJSE4t+pTZkKehAna9pW3JjwOyKtipHKbMpY30SFRXuAkaSOgUSm0EIfH/KhhUWpb25mAALJa5jfZtrbRfgffuPnL2+g4ODg8MZhaflk3K24lRrUgDQjr6UkDx0I7O1zzxmO+LAMh6Jz7LN+g637UY2XLAXkmAUE+4j9fl9NebvtMU5Dkg6qkNmYnSIYSFlq3PskzQtlmgyl3skONWhebOM9YFHJ0TcW6CAN/O47yADUh/5VY6wODg4ODicejzjPikOhvy5b2eGo5xY2aU25PcHGiQBmYhquxHLPnOSKck8m/kTC9EY6/O1SmxeKR4oeu2H/F0vpA5lrsJFqLV+6pHMVGIKcqOUephmn9up4RzANS6V2EnUKnL9Xr6ii/Ee/4+n5Xo6ODg4ODgoHEk5FUgk63HBAks6UcbXy7FlNpoDKwsNA36txJY5qQ35nsxj9kQnKM9WSCSUBPk5ic5YnyJY9U2JMnOjHQQkLD74exXlFkSr0inwWOvbJDj9UFqYcxMDtwvwvvNH8B50gwsdHBwcHE4PXLnnFME7fCvLO4UUWCibadtiyTxTADNo8+Sy6wDCVPQlWs7xcrPJ1wzLIGQWRucAre9whlAm05PH+yQovchs9KOUpEQnL9eG/H0sc4N6EUs83YguuYerXA+wUvrR7Ev+grec0mvm4ODg4HD+wZV7Tgd2N4G9TX4/3gO2tIAL5/l1EJBEBLnY4He4XerzdS3phBlQEg2KByMo7QKnH7cLJDKNAX9/UDqf/JzHWSqSAOUQR1uf7wGoRdFj1kf0MXpsgKSkGvM1PyfpCTKSm+UCvK9+DN7XPvasXE4HBwcHBwdHUk4R8hf9MknD96bpkTJXYYZjocQsRVHIxuLIz0HGMk4cWGYl9UkUFkvMmHQjEcz6/HmxxJJNL+Tr7YKJZ6tDc7EtJdyftjHHgelgFkv288oJeGxXzjwjR35uzrVl2V/qwXvsPz17F9bBwcHB4bzF6TcbOZfQLpi+pJQwsxHk1IuoSDbI2IVTFbM2LeUslEgIytIiPAj4s5KX3AMG4OuDUBxopf1YW5obfSvPzJfZ1jwQMtOTrqMcPN5ygWQmVuGukJEg4/cFKSHlHtea+Pw+SoGDNXizHwMyD/lL/sVpuNAODg4ODucDXCblVCLISQT6IbMRiyVqSFS4OiqOXSxxGxWr5tKZM5TBhKWE26dyi1Rku65DkqGDDYdCZlKPWhglI3U5Vpix/ATwGMtFbldJSFhin4SllDALE2YkPDlkeGFuRCfMSGqaA3YPeTm8r9/OAYYODg4ODg6nGI6knELkr/7nUsbJLeMB8PtiQkKSiWbEg2QnQCJQH0h7coWv6zyfSkwSs1wgqanEbCtWIjLZM/FtlPGYhZT7nC+TaDQH3DbMuF8V5ebSLTTVtZNYKNsE50iGH5ZjvjeV1zJqVFYyQcUE3jf/GN73PnQarrqDg4ODw7kKR1JONboRA3ljwNJJbchySSY2+Klv5ECzKJ2CZS2G0p2T+CzjAMxy6Hu0hXisT3KhxCfMTBw7WzEhrs7/CTL+XExIZjRDE2Y2bRng/nRgorY1q65loifEqMuvSo5GtC7eP3zyWb/kDg4ODg7nJhxJOcXIX/EmM0zTwJ/6JA1qpubnlqVIfSuxzFasg+dI1dxqw4zZjEpM4qDk5nDVhgjGPsmLZkkG0sqsJnLDwMpQOSwjo+3PQxHSlmMSkuqQr2feiP9KSOIUB9xua4ukR0W6opHx/ven4H3rj5/tS+/g4ODgcI7BCWefCRTTEbIQmsYj80gKPHGIrQ+ZnVgskYj0Q763KX4nmqUAjNj0Q34NcmZTAJKDdoHb1If0ZAnFUE4JhgeWlAAT3i6WOOww9fhap8DMTzExbU0hsTUkklXJwTlD9SH3P9Hj+/WYgxA4UoX3xU8AwwD59W98dq67g4ODg8M5BZdJeSYQ+9SBKEE5UmXA39oiOViS9mJ1ni0mFLeWYysN1WXGzpaWaVNGW4aXCyQmatwGkIzMVvjaQLI2xcR0JMPAjOZmpZS0v25Tm7XcpK3POkNoEFiZCjDPFxXl7mvwOIAQpQGwucVzGO87rYqDg4ODw9OCIynPAPJr30IS0I3YhlxIrQNnssdsxVhfbPMDdux0I3beNAf8nQpchz6DfTXm78qx2eMXUzOKU9+TgZAMT7IwxdT0J6pNUYv8vkxobhdIhOoytFDJyDDgfuOAr+vsIMDM4A7VbDhh6nGNhdTKUgXONfIe+UNnBOfg4ODgcFJw5Z5nCo2BZSti3wSsqc/Mhi9ZC53JE4rvySBgliSUAD8MgEWxsd+0zPetEBFYiSX1gFyOUx0CJTnesuhUGgNbRyREJRLflFQ8UVpFblcQoa4OSqzEtnaAmSAvZ3kozEh8CimFvOqWWx2SeOn8Ihma6H3l44CfI3/xm0/DTXFwcHBwOJvgMinPEPKL3sHgP+rculQy4awOEpzqUucxCLm9B6Ar3T69iMRhEJAwaGtyJaZlfTEhyYky/qyma6m/mpw0BiQjhdTakCE/q6h2qcjXOhGPv1gyA7d2wbQomrlZKslgw9QIlg4nLCaru5w8SOlLzj3I4H33I05c6+Dg4OBwXLhMyjOJTsGmICs5GQYM3vUh9Rx9GUIYi7g19i07kvjcZiDlnDwhifDA7MWEeKTsbZJANAd2bLXdn6naAMLCiMNslMlaRFeSSmmonPD3VVgnkE55LknWp5ACkXQd1YbcZ5hxW8AM5gDuC+AxuhG/BnItwgzevj9AvuU3no274eDg4OBwlsGRlGcQ+T/6BXj33G6ZhUxKKIdqJASakVC9SmVEb1JIAE9KOrlHMapOUk791R08OxeZ7TgsAt1SAnSktDPdIVFYKhpBSnwjLR6szXlP08hT7gHVLtCWY/bleOWE71d9jJaA1JFW3XOLCc8R4HrCjMLhHCRGvXDFddfb9wfsArrgnc/ezXFwcHBwOOPhSMozDRWweuC/ckIyMi8W9mXJUGhpRUsixZTW9doevCR6kWEA9MWzZCngdg9N8ncTPRKg1DdfFM181IckK6n4qYTiFjve47bF1Jxn+yH3V0xtIGKUmsZEfVp0grPqahLxVEk9a4mOMh43EGISSfZlIBmdIKfLbqsIb98ngEpM4bGDg4ODw3kPR1KeacxVrEwSpSQnEz2SBZ1uHOTmCBtHDPSzFRtUOJDOHdWBaCfyZM8caiPRmlRj6lFUXKvZm9i37Ia2G2vXUZhxxtBASMcw4DqjzMS7munxc6AYm9GbZnOCDOgVzA8m94B+AORSdlK/lg1tG4wYZSQzAH8XZEBzAG/uFmC8h9z/nWf7bjk4ODg4nEFwwtlnGPk/+gVmHBKf5MST7IK6tKogNZS5O72IJEN9TdpigR9m1gZcSIH1bb6utvWdCHhswsopDRkCWI5X2oBXSMd4T1qcYWRJ247Vc8XPua9hQEGulnmCzEpN6zr2eqdgVvoV8XsZ6/NYtSH31S4A+xvMzgB0vG32uaZ1HZ5Hs8/X/Rwebno2b5WDg4ODwxkGl0l5NhClNv9mrA88Ps7XW0VmPnLwd+vbQFZnFiQW8Wk5IQFIhEyMusvqxGPVlADMtmh5J8zovaIOuKp5KSckQqkMOxyG5m6betxvmJsZnJ+TdHg5W5vDnOutxCQmg4A/96WDB5AuHnHFjaU7qStTn9X6X0nYQonr3bkIZKsvnRKV3BEWBwcHh/MOjqQ8C8hf+SZ4D91GEnCgbt02cxUAXf7cjZhlKIklvSdZj07BtBypzOiZ6JFoLBWlrBIy2BdTc37VDAlAMlRKgFTm9Oxuct+NAUmDB5KLQQDMVa1rR1GO+XPqW3YEoHttKF1GatevrcaDEBj4QFzj2rVNWTt7osymNldja2UOjmIpAkdWHBwcHM4/OJLybKGQ0oJ+GJAMzFatxFOOSSgyDwhGtCphZkRDBwaGGXCwToIx1WVHj1rUlxLr3lkuMINRHYrrrBChxsD2CTDTEqU2CVkzITrBuR9KC7RY9ytBaYuXipZ2dL9HqtznQsmM4HSqci80Z1s9TuaZn8sxCMooHFlxcHBwOH/gSMqzhHznO+Ht/xMG5bmKWdPHPtDIbGKyWtAD5j1STE0E2ylYyUS1Ic0+UPdMBFtKSBSUaDQGkrUIbFDhXIX/VLCr4tyNbcvGqAlcpyDGbRlwuGbHVq2JzhTycupgxvv8XUfM6LSt2pdOHg8kL1pKmuiRuJwEPNzkiIqDg4PDOQ5HUp5NZJ7pSlIhJdqKWxMNSZRauaQv04pTIR8eLAsSZEA9ZuaiNlzdiaMZlGFAgjFf5ntC6aZpDlhimQ/ZkaN2+NoeHPvmkltIzaF2tmIeK7qWpZINM9zQNv1Ns2+uuUM5x9jnmpt9vranyczMZO9pXU4PNwFLJeTNd/8gd8XBwcHB4QyFIynPIvIfuQHe393BH8rShlsfMICrl0g1NtM1NVrLhTzohGIACCR70ZBpy5rpUJ+SQm4dOlNdEootLSMcC2XgYM2yIEslYOOyuMmmJDOJL94oiZSpQmY/AhHk9oWcxD6zPbvGuP/akERMSz3qszJXIeHqh3xtscT1HwuPTNJ7ZfuStS0fjWbflYAcHBwczlE4kvJso5gABenKUZO36S5LI2rAloP/4oDbaTYlyNmeqwZtPWkXLsfMXhwW0qE/b26R/Fyw8OR1jPeAS2eB+9eRKIz3mGnpRCaq3bZE8jFbAR6dsA6j6lGakkXpzqkNue2RKsmWimy1lFWJgZkKSU0c8BzLxyAfALBliV/3jPEaPGf+uJfW+/5tyC95+4nfCwcHBweHMxqOpDzbUAKgLq+DgBmMKGNm40Cdr8eiEemFok3xzL22Lm6wvYi29/Uht6sNGfQ3tJn90OnDh2okDOrNoti5wO0fnCa5UH+V580wQ6KY7nD/cxXLsqi1fZiROA2kNFWVLqSxPr8uSku0EpXMI+GKfTN9OxbKMk7gubPAfeuPf11bReCJMXh7PgV4QP7qf/707o+Dg4ODwxkDL8/z/Kk3OzfQarXQbDaxtLSERqNx2tbhfeePTDOyXOT3AH+erZiOIxFtyErWJTcPlOqQZELLIEeqNERbC0tibT/VJZHw17jlsUxCbhVtNs/6tv1+GHCQ4dC3fSYjwxN1ynLmMeMT+8DmZdO1rOswS3NIhLdHqtyPnwOXzZCorQUlZ49OkHw9Mmnann4IXHGYwtu7t1qrdV/amufLyH/y50/6/jg4ODg4PHM4mVjsMimnA3sbwI/sNj3G3+9kcI1Fb+LlQG3AUpAODPRzkpPlAoWnVx9avc+xvnUAebAOneWidNWUrbNnYg2haiSze5ZKJAbDgFmdcfFk6Yc8rpKT2tD8XtT0Tb1c1Mp/QZxlMx04mFgWqVOw9mXV2awFLSt5AL673rbVNd67ieTFk+MMwhFCl8D79H9lZuUNP3Py98nBwcHB4bTC2eKfBuT/+P8GiilyaaPNX/kmZhdiyTpoJ48HEpOxPolCmFG/MkpQFsrUohypMlsyWwEemQAengT2iQX9csEM35aL3OZYuHCe5ZWNyyRNj07y9cbAXHBjf3XXkZ+bDwrAY8TS7lwVDxgPQCEz4tWJ6PEyVwYenOK/4yEVQlRMpZspNV+VtrjnetKanYqQd0MHeOEBwMvh/e4/PL2b5eDg4OBw2uBIymlCXvx3q18YhCyF9EJmOkpCStTttZQw67BVxKSLJQb2/XUb0jdfllk7MTMVcxVmbfY2rcumK/OBDtS5j3iNLEarSPIDMPDPCalRQW8pYdvwdIcESglDKeFaq0OSqyAnQQozthvPVmy2UJQB395AMrW+wwwNYMc9ej37GyQ77YLMLupw/4OA57VpmUQpzJj9aQyAaw4CF80BP38/0C7Ae+u98H71Gz/gnXNwcHBweLbgNClnELy/+QuWRDZJFmMYWLmjNqRJmmo3vitC0mLKcoefU1A7WwF2jZtOpFMw7xMlDY0BA/1Ej+RovMfttPU5DqS1OWCWRr1MhoGJcT2QmPRDvnd9mwShmHIdiyWSoX7I7cfFOr8+5O8mu8AXtwuhko6iF+8HvjdNnYna8u9rsANJtS1aXtq2xOzSIACeGLMhjLnMI+qHwIv2r7b3V7R5TVzLsoODg8OzD6dJOUuR/8QbAADefR/hC6kHZL5lKJSgKInQTqHa0NqPS4mVamYrzMR4YszWk6xJWyYWq2cJwMDeKtpQwIJ0HqnYNsiAQcFm+KhAdrrLYwY5yUhXRL9FmUFUiTlQsTHgscb7Nnvo0lngG5vYllyJ+dqWFjM36h3z4LStXzuavJzE5Hkz3H6/ZIt+8vs854emSIT+13Oo/Zno2QBGYIW4OH8VBwcHhzMbjqScgciv+FUAgLf4e2a+1pOMxBNjLI1sW6KQVduKCymJRlUmE8+VKb5dKPNn7egZCFHRAYVaigkz+qqoF0rqMevRD/meKOO+FsokCeqp0gul3Vj0KZHY9Kt1f+yz5LKvwfXPl1my6hTYsXP3Vu7DAzNIm5ZJcHoh8OVt3KdmSPQcKzJNeqJHMhJmPM6jEzzWH13LdVx7gCRrrW6mETiy4uDg4HBmwmlSzmDkYyN27+WEmpVCykxJfWA6llaRHiv7GhTNHqnKMEKZcKxzc8KMxKM0MguoG/FrlPJ9SyUG/EFos360dJT43K4+tHk8ao2/VKRgtl3gz37O7IgeY0ObpnLFRATBA+BSaaF+cIoi2v/1HJaA9HwvWLCsTjnmPgMhHP2Q652tcF9RRp1NOQFeupf7vGsr8LUtJ3y9PUdSHBwcHM4oOE3KGQ7vwO8zO9LsM+DPVNnaq260BZmVc6TK7EOQMwvS7ANdGQRYiW3AYCKakkpsmpG+TCcOMwZ8D8yWlKVlOPZJMh6cFrfbxLIzA3HIDTNmLXoRMxx9aQXuRMzQaInoWDb4t78AuG8d33v5EYpvU9GhLKggWAW5GdcfZvRf2d/gNXl8nL+74dtPNq4bRavI9TclS6Vt3iNwWRUHBweHZwYnE4tdJuVMRzW2csVSybIH/VA0K9L66+XUbJRjEoflIgO7n5OgDAMG5iA3C3sN9o2B+Zv4OV/3QJHtoRrJhw4/1JlCUWbut+ulyycW4e1cWXQqGY+n2Rx10l0LL3/Chg7evRX4xmaKg3sRyUkhJRlZLjDD8kP7eMyZKo+5aZmZlLu3Hbu8Mwitc8nPed3my8z07Bq363akCu/I++Ht+cCpv58ODg4ODicMp0k5A+DNvB/59L9e/Zo+yTdHXlwurPYGWSyxfKKTkUsJyUZtaGUa6LDC3DptcgBx0RxidXhhkDFQ67ygamxZEt1/PyTR6Ht0pc08Zmg0+5IEfD3IgAKAdWvMDVoL430Sjb1NruVgjcf72ma+/pJ93H8kHUT3ryNpCTIeb2sL+JkHgcrQLPiPhhrK6fXphyR8W5e438NVfp0rr3Qhea0PA/0Q+bVvObHzcHBwcHA4ZXDlnjMEJ6yHuH8dswtLfOJH5lnLsp+bdqMgGY/EJ9HgQUw4O6oZUfM4nYisWRMlP3qMxRKzOb2QpaDKkLk4JQW6fSjdQLUhMxfNAbM1Xv6UIlbsaQIfez5LS+oTs3MRuG4317h9EdixyPLQXJlE6uVPAFce5vsP1ViaWguJb4RLyVYn4mvDgMRPtTrang3w9W6E/CX/4kTukIODg4PDceBakM926LyatfC8GZIFLY0UZOBfIJb3SjRqQxsC2I2o7/CEmPQlW6I29gMdYgjzP8k8Ziw8EavOVUiMimKk1i5Q86LZiVTIkA4azMS2frpLMlGOuR//GFkOxbYl4OceAB5YB3xnPfDYOM/zf1zEbMl8mR1OHdHTtIrUokx1STrmy0ZScsny6HkslkiWDtWAjW2g63MbNZLrRvxZ27KVUOWga+3XbweGAfIf/qWnfWsdHBwcHE4cLpNyBsFLfpdk4UCdL2w6xtA9zWQcrDOwBhm1FIslmfsjDrWDkKLXSLIH2jqsnTmpdOtocB4GfF8kgtxywvd0I36vjrGTPRKT2Qrfp1qWoW+ak7E+iUQw8vGqxEaOxteYH7QWPvASuup2I/77uQeYEfnsJTxPXfe6DnDxHC39nzfD92ai2anERuyaMjuozAGEaBXtOhRTaauOzBwvyI3o6WBDKaXlP/Tmk77HDg4ODuc7XCblbMXj4wyiic9Sjhq1HY2ydKJM9GxaciROr1rG0O4b/Rel/NopGFkZiA6lHFumZarLYzb7FJi2xda+NuR2B8VOf32bx5+t8H3LBVtXq2jdR6mQFDVj63vAuqUTvya//pW1X3/lLuD/u5jtxsUEeO91JBHTXStlAXwt9blWP6fpXXXIacrjPWpPyjFJnvrMJL4NaoxklpLqeVIfAOcVeV/5OJB6LrPi4ODg8AzBZVLOIHh/dwef2mtDYPMyBZ2Ha2zhjX1rGV7fIbmYFxJRTPl7ncUzCLiPorjG5p5lVMKU/imFlESjLx0txYQEKfVIRKZlnk4Osa3PGOhrQ+ChSe5TNS0A15361uY82eXribjQqk6m2ed7iwkzMGtNZP5BkHkkTus6vHb9kEQDIOnTUtqepg1ALCYkb5GUzhLfxhJUYss2eeD1AWSEgLV15z/6i6f2PBwcHBzOUbgW5LMU+aveyGxE5lF3sVhiwOxGwGLZyhdzZQbRiZ516GQedRbNvrUEq65F/VTK4peSg8F3ucjAq+6tkdjYr2+LJiURPQcYjJUUbVrmz+2C+aH4uelQwozkpCelKBX0TopuJMhICtT47VTCl5ZnYPX1GYTmCbOnaSLevpCrvowRUOGszghKPVnzyPnFAbNFanaXefDu/FN4//DJU3suDg4ODuc5HEk506DmbNUhA7gGRu0+0W4c7VJRwWyUkdQEuQlYtfQTiymaikKbAxKfpSLLNIm/WjBaG5K4rOtwHWN9kqdUshRBDmxfMjdZnXSs7b2V2AS3ic/9aLty4lnw70YkPjPVU0tWpjv8elAyKbnHNWpJq5Dy+2JqmaKFspGPXmTTlROf2adyvPreaBtzlBkRSklWHBwcHBxODRxJOcOQX3cDA341JrlQoWsp4fe9SDIgkgVo9vlaLN01vdDIg2pRVPAZZCYOLYi9favI1/c0reV2FBqY1eAtSs2v5bIjnFhcShjga0OWVCoxjzMms4WWivwHmAlcTfxMekKmEp9r+UHRk3MYCDnRCdCVmDqfUmIt00pItJVbS1U6MVo7nADLsChU66MuuoV0xSDO+x9/Du9zf/aDn4uDg4PDeQ4nnD0TkfpAnloLrIpXe9LhEvvsABrKlOJUXGeH0v47lA4b9S1Rl9g44LZhZhb6Xm4tvIeqNqxvxX1W7PF1sOAgBCAajsUSSz8XLDAjot1Bqc/MQykhEdBWZxX5+rnpUgopiUQoHUrqTKs6krXQD7nPo31X4gBoF1kaCzKSpOqQ5KMXrRYh+znQFSKjrdra5RNm1AS1I+6zK2LjXMpq+jXzbI6RCm3DnJkXL4f31Y8BvQj5K950Cj8cDg4ODucPHEk5ExFJOWKsQ3+Sya5lKwB7ip/qkiyo3fxyABRhAT7KWF4Jxeq+nJCAaAZAhxCmIsL1c5KfHYsslTSkBTcQc7eh+KLkHpDJOlpFK30ouqENKSzHzApFqbX7diISr9HsUFlEuAtlc82d6q59fdT5tpSYBmYQAC1pwd64zOyIdjFtaXHNj49b+Uevp2ZPRtuQS6ILKqX2upbNdBqzHluvp58DmVyDSRkjsK8B5FICKqTIX+rM4BwcHBxOBq7ccwYiv/YtDLBxwDbZWPQo6hY7CKnhaEvZJfWsROHlNsxPLeOrohPR4YGZZyWPsT63nxPRaCeiMFddWGOfRCjMLLuibrRhxqAdZhTtlhPqS5aLfM9yYWUWzsrrBTGDm+xxHUoUWkXbN0DiMl/m99oSPApdfy4ZDB2mWEh5nHUdK9UAvC5bxAwukU4nPzehcjGx4YyJz7UD1sqcyPUtidNudWilK4CESq91P+T11DbwdgGoDeF9849pCOfg4ODgcEJwmZQzFakEymrMzpMwZ+BWZ1gtYdQHlhXJYWLOcmyEJMzMwwQQ23pxf419BtbqkMF0QkhRKQFmKgzStaGYsiWWdajIXJ8gYwmqPmQGozZkZ5IGeyVQ2gI9FP+U6Q63T3yKcRdLllHR1uZuxPesOOSmVnbRTMZMhWSkNuA1UQ8XgOtT8XAk2Q/NoASZZYVUVDw6MqAoQmEtP+WezU3yQBLWFVKk10iFzrMVnkuU2kiAqS5bosNsZQSCm7Ts4ODgcHy4TMoZivyFv8xvtIySsnsES1IySX1zQo0DZiY0AA8D81TRLh9tnQ0zEoqFkmUBtIxRjW1ujRKbqmQSIjV00+nGmRibgV/bBa6nPmB2JsitfVkdbzuRtS4fqXJAYOqTVFRj/m4YsOSjLcCHq0Y+DtZJBNR9Vtc83eHxJnrMoPQja+GerfBfKSFJUKM3PUct16jLbpTZzKOOdD5pN4+W23LwtZKUzwIpWc1UmBHycq5ja4vnFvvM4AQZ8PyDK/f4hOc1OTg4OJyncCTlTEYpob4j9UkOdizyybwXmq6klJAYrLTIxhRuRtJemwiBmCuTJAAM3plHojIIgVpsbbTa0hxmzAAocVAxbiRdO5pt8MDjRGKj/8gk36NrGvpWwhk1fysllulIxNZ+XceGE1bjkYxPzuOPrqUb2RRoyH48GAlJRRNTlSzHTJWEYbZipm1L4kOjWRktD+Xg/ouJEb1yzGvbkzlI1dhKQYfqZpt/uMbto9SM8gCSlDU0No6oODg4OBwbjqScwcif82vS6ePxCb1dYBDe2qI4szFgIF8smT9JJBmOpZIF9F7EQFxMTW+Rw3xMUiE7m5bNCbY+oB6mOeBiVHhbH5qodV2H21Ti1boRLavkHt+vJZHR0ojqW7R1uhxz/2N9OuwWJMirmVpjAOxcsGyPtjprNqcx4P5UjNsUIjVbYaZlusP9NAeW9dDBiAUhZalnZKsq5bKJnl2ryR5dgP2cpKTZt2uhAtyhZLWmRTyrHVbj0o49V7HZTMMAeGxi5X57t/2PZ+FT5eDg4HD2wGlSznQE4t4KSLtue/Wgu/0NZlYO1hmAOwUrrwSSiVgqsoSSC4nY0DZzuNgHstBEo5lHgqNBvtnnv2NBMxfqd6JZFs2CqE9LYyDZHdHIeGDGQb1RPLCEohObo5SkSa32K/GTtTVKHhbKJEuJB4QeS0k6RHCxZP4oB+s8xqKUjCpiia8C3pIMVNSW7amueLlEzDpp1qUS85jFhNdqoifkr2j7WxJSOd6zkt2Buk2LnqvwuqYevP/9KWBvAxhL4X3gc8h//R+dso+Pg4ODw9kMR1LOdKj4tS4ZDdWWaDAMUyApMAC+4ADQlKzJctEyEX7OwNyR3wEMqoWUZYhQxK9allGDt7WGG66F1Oc6AykRqc9KDSY2HUUsxmie2OU3BnIevolatTRUTKykowJhXb8va9VOn0XxaqnLDCJdk5qylWOWY2pD8ztRU7xiYr4rRSkHaXdRIeV+jlSBbUs834YQwnHRwcyVgQvnSWgAXn91vs09G/C4FFnWZanI8yzHJEQ+fWi8j/934MX7kF/+L0/s+js4ODico3Ak5QxHfsnb4d33ESlriI9HKM6xGlDjwESdG9oMrp2IT/kFyQqUpSST+MD+ughbE2Yzetq5IgFWSzdjfSvPKBHQ8op29QDWyaLv9XB8guOJnqbZZ5aokBoRifos0bSKlpUppFbqUvO0xCe5mC+zvHKoZm3M/ZDZjeWiCHJlXs9AyJ22aw9HyJIa3VWkm0rde9WDpTbkvnqihVFi40umSscFeDnX1BjYgEftYvLAtc5WzCvGg5TfPBsuKefs4SZgpop8+l+fmg+Tg4ODw1kGR1LOBkx1STJqQ2uV1e81G3GwzuA31WWw1jbYILPyig4cBCzDApiTbCVmwNRMTLvA8koxMUO2QipiW+kQqsbAkQqnJNcHNuBPHW1Hhw5q9qI+sNlDSFafq5czA6HD/lQvMtbnPpeEvKi4NcipLwkzKydlHo3ULlggOYkynpeWlPqhtRsDZmk/ev7VmOffGFg5aLJrhKw6NCO72YrpcTSzM9mVDiR5zQOzMLF0Zal5ns4u0kxP4rMz6dIZ4NEJYKoL7/u3AVGG/MJfO/WfLQcHB4czGE44exYg3/ivSBY0EGuWQklHbWhtuDrBV/05PJgoVDMHKvBcLNmwwmLC4KlakaEYrM2VGUgXSyQlM1WWPdSWX8suQ986bBKfpZd2wTxQOgUzmYsDy8gcC1Ndik2HI2SiVWJ2aEnWvWnZiFEs5xSlJBjFFPj+FEsxy6LTUeO7zOPP6tuiowZ6oXU5tQskGkMR7eYgeVHDOC0hVSS7knk8p52LPKZqcFKfWR6dDVRI+bsLFngOOj/oUI3vu2ABeOEBI079UDxkQnjJ757qj5aDg4PDGQ2XSTlboOUFhQ7CK49oTBbKfMLXUkUOy2Bo2UTdZn3p7FEDuDhYbVimGg0PJD/9kJb7agGfg6UX9QRZLPH15QJJzniP4tCqlGe07bnZZ2DWoYXa9TNqq6/Q4+8e4/507YslnjtA8lOWbqLlAs9jSco+zQGFxfWhERgV6gbilqu2/2WZIzQUkW5bHGe7kU1wXi6SIA1CnlfqW7eUTkPWEQLquKvbaLZHW8XV+l+zKnNl4J37eMyHpqxbqSd+MF0SGa9zG1CJkW/99VP32XJwcHA4Q+EyKWcJ8ua7GSCXiwx63QjYM8bMxkCmCCceyz5jAwa2UWITihA2krbYohAWbbX1ctNkVETH4UHm1gghSn0rd2gnTKdg5SftKhoEFKgWxSZfzdc8aQleKHE2UF+6kg6LniT3VhvV5aKLScTzpBvx/f2QmYdOgRmkihjBbRCn2dS3+TvbFy17olkZdawtxzbfRzNQ6nWipZjFEmf+bGxz3TlIPmpD7vegtBNr2U0dbmOf5KgSm3ZoucB1L5R5vtWYVv39kG3lAI9XHdr1B2wEgWphBgG8fX8Ab98fPNMfOwcHB4fTCpdJOZuwu8lgOV+W1mHwqwbG6S5/Vx0yuHtFBkdtkR2EphXR0gMg2ZeCmaHpV3VUrcQM8Grg1pTyR6dgWRo1jSslVqbRbEk/ZGagKpoPP+f36v0SpVxXq2ji03bB5uusb3MfAPeZeDYocLJr4wO0Gyjxmd1RDUy7YPod9YrR9uxKbBqcsviudCMT4U6J38nj4zzOXAW47MhIl1Bsup1uZCWw6S6PqzOTlNi1C8z0aBv0RfPAb93F9+hcIW0v124jbWMuyfTpvhEY74kPArmHfOc7n/WPo4ODg8MzDUdSzibsr5tdfJAzQOuAQE9KAy0hJsUECCMLhkou1IisHNsUYy2jaGeJajyCbLVAFVit/+iLo6tqXXS+jgbZhbIRja603talS8bLgUHFtByj7qxaTtJpx3NlkrMc3H8E7qcfWifPMDBBbyWmSdqF89TK1IeWCUq0rTk18zv1M9GsUC+0+UfqJTNqRrdQZgbnQJ26mMXEMlRq4KbC5OqQNv2dgolq5yokJBM94KI5nvMgNBKjup3MsxlGes/VBXc44qibA979H3Ytyw4ODuccXLnnLEL+2l9gMFY7d9V6zJctoKnYMshteJ4O+4t9s59XHYq6w0YiKlWhZjmxYwS5TFDOrUyUe9ZppKWaxGd5R8smgGlSABuauFBi9w1g7cjdiKRLNTGNgXUFNQcmYFUSsCiOuurGq2SokBqZAHitNMA3BiQs5cSIlfrNdESDUk7YJry5xRKMl5uhW+LT9fbiObPrXxZ9TavIdU7KgMZexGv12ATw8CTw7Q0s9Whn0UIJuG8dj7lc5DZ7mtZqrbqihfLqLict4+nYAH1tGMB76DZ4u/7js/JZdHBwcHg24DIpZxv6oQX7HGZJX0gtoAJipjZkQOyL30c/BOZLDOj6e82QDAK+nnncrwczf9O5NH7OTITnk3z4UjbS2TediPssio5F9TATPXYE9UPzN2lI99FykcfbtGxmbpGIY7ct8XxmqtxfQbpyFsSfpRNx32XRx2gnTSVmZgSQSccABkUhNTBtirZYX3YEeGQCGIYmZm0XVhvFDYR4HarxfBdL5rTbHEgmSIS7fs4sy4G6ebKs63D2UkfIy8v2ArvGjAiGqZEugCTHy3l+++uWndG5SHFgQmh9n5j3efd/GFgsIf/hX3rmPocODg4OzwJcJuUsQ379G801VoNTmNlAvTBj4Ew96imaA8uKDAMGYg/2ZK4ZBdW2FGWSsrqiduTJPvUZwMdlto52qmgGR71Y1Lk285gFOFKlBiOR96/vWNnJz81x1s9ZBtEBhsWE2Ra1ot+8zN8drDHQq/ZjX4OdM0qCprpWOgGkAwniqivkQ2caJT739cgEz7kTca3F1DI5RWkjDjLutzkQz5Wc12KiZ27AvYhTm3X44X3rzEQuB/cdZsDVh4CrDgE/9X27X2rSNxDH3WJibcx1IYQ622hMslqqGfJyy0ipPinK4H3+U8/+B9TBwcHhFMJlUs5GaLtuJSYZaQwtyEYZkGTMPjQGDMyqnxiEwHJg+oxistrtdShdOZNdm5ic+DZRWYPpTNU0LB4Y+NsyC6cj+otiCiQxu3G0S6UvJEFbjj3wXxwYmQgy06Z0CsDepmlcZipWfmqNCF11v5WYAtcLFuxaaXZJbfIxspbYt0GGSgbaBRP7ageTtjOrRmehzGPFvk02vvqQGbPtazDTtLFNQjfRE5+ZMrMpiyUjYoslm6ys6xjNkAwDK4G1pR25Ih1ZasGvBnaBXNNKvCJG9r71xyvGefkVv3oqPn0ODg4OzxocSTkLkV93A7y7P87A1pTOjwwyeRgMgJox0OGE430GUc2QqDNtNzIzsk5k3TWq69DfT0qGYk7m2cSBdd2UJWBnnrUDq9HcZJf5uoWSTUZWO/1CSgJVSElAVPcx6pmiJnTzJROQzpbpcKu283FgxGVZ9CmzFStVKRkqjGQrmn2uqSCZkti3rp+NbRH6hjYQULNDY31mg1TzomUvgKStPjTTuDHpctrTpFbl0hkTHO9u2hRqbYNOxfemVbTpyYBlsnQatGa6hoGJkFVUq1mtoUx8rg9WhNTe4u8hH3v3M/GRdHBwcHhG4EjK2Yra0DIc+xrS6jq0Vt0gN4da7c6pDQEU+HpHTNfGekC7yFKEdtM0YNOQvdw0F73IdCU696dVtEzMaDt0L7V5PtWYgb0uJRQdajhbocajPmSwH0qWR1umtduoGwHdgmU9KomRqjAzj5eBlHsOV7mP3LOMjWaGupHNM6opuYJpcVSUm3n0XVFy1SmQjOk1WtfhPo82oRvvcU2PTJoWKMjZaaRt4GXJhBQTII2svVs9afT+1AYkJ0qIlNQMAtMI6TXW34+Kh7Ukp0Z1ALz8PcCdO5C/4k2n+APp4ODgcOrhSMpZivzKX4X3vQ+JL0pseo3a0MSnOUwYuyxljBXBq5QW5ioMYM2B+ZwsFRnkx3skIQOxse9ISSf0rRwRS2ZguivaCyUGufme6Jye6Q6Dt5ebwLYoLq0zVRkAKKLZ3AMWfGtbVvdZnZKchCN6msAmReu5qXuuZiV0vWpPX06stOLBuqFUexOJkHVLi9mZhhC1pRKvTT8gORzvS1u0zC5Si/3nzgIPrAOu2819ALxX+xo8hnbmAKtLOkXxjKkOrb27NrQsk2a5tOMn98x9V89HszmaZTka1+2Gd+9HgeoQ+SVvf4Y+oQ4ODg4/OBxJOZuReQxg82Wg6JtwVQO/DhgMRIyRj+gcdKCelkRU3KnZi/my6S0CcTvVDEcgmYvUY/DWJ/u6TEtOfBsQGOQ2jVnbjksJtS+VmK9tFFHsQHQ1qgPJwYCuWZ5IJi83BmaepoE+B3+v3UbqyqumcDkYtAMphWhJSgXFqay5mLD0tGPR3GBVy9KNeF0OV1nG+tZG7n9jm5mV586KqVxqM3zUBRcgEfRaJIw9yaBoGaqUAgOYTkZbqtUNN8jMC0evN2BrC2XEQDU2Ie+xsCjOub0I3t/dgfxVb3x6nz8HBweHZxg/UHfP+973Pnieh3e9613H3Oauu+7Cy172MkxOTqJcLuOSSy7BBz7wgVXb3H777bjuuuswPj6O8fFxXH/99fj617/+pH3t378fv/ALv4DJyUlUKhVcffXVuPfee3+QUzirkV/+L8WYLSFhKCU2TDAOLFip1TxgHTXqiTIMWFoY6zOo6hycxsAISRzw92rvrnqHhuy/JmZpc2UrB4WZCU+1s2VJSiczVe6rXSDx0TLG6HwhHb6XwVxYZyr8eW/DzifxmXnQ1ub6ULxDYGvTzhfN9GRSGloom+h2qcjsRRyQnCnBKSUsu6gwV1uKH51kR9GeJtfTDzm1+KDY3tcHqwkKYCTQw+punGIqrrjg75RkacZFBz72IjOVU13MimtwzHU/FUEBeB8O1bjugzV4n/0MvL//5NP7EDo4ODg8g3jamZR77rkHH/3oR3HllVced7tqtYq3v/3tuPLKK1GtVnHXXXfhrW99K6rVKt7ylrcAAO6880684Q1vwEtf+lKUSiXccssteM1rXoMHHngAmzdvBgAsLCzgZS97GV7xilfgf/7P/4l169bhsccew9jY2NM9hXMD2l6bgwEWkJT/gE/9WhbQIJ7DnrrjwCYqZ9L9Mlc2AajO8qnJMD0d0Dcjjqn1AX/XKZjIthtRJFobclsPkgHxKH6d6jELod05Kzbvmj3xTJMRZOY7ojb4xRSIJKOTezYnZ6wvQ/4S83vpFEwQqxmjIOfrUQoMJdOkHUdRBhT7JBl+DjwxZmWeeKQkU9XykxjEjfeN9LWKLH0B/P5gnfvesEySoYJmJWNakqoPbIq1XmvJdiCR13KPJK0sAumGlJcqMdekWaWnwuPj/DpftqnXR0J4/+PPgb1N5G/9xz/op9LBwcHhlMDL83yNovXx0W638fznPx8f/vCHcfPNN+Pqq6/GBz/4wRN+/0//9E+jWq3iU59a28chTVOMj4/jtttuwxvfyFT0u9/9bnz5y1/Gl770pZNd7gparRaazSaWlpbQaDSe9n7OJHjf+xDLFACfpKPMhvNpKUPbiAH5PmN3i5Z8+jK8T23Z62JoVkitE0en/JZl5s6CiF/rAzOTU1HpWJ9ZBSVHM9URAW7A0oZmW1RrknqWFQBsTQPxfClLdmepKK6xsc3KUYv7iR7PsxJTR+LlJCkleW2mYkZzqehdtO3Zk2MqedDMy6jp3EyF12yszyzKpmVrO9aW7Ia0Ku9Y5Dl+ayMJxESPmSqAOiBtn05HPGa83EpYhdSGKgI8rzCzTE6Y8TroJOtpyf40+0/+kCgpOlLlhOXHx/kevb861yiUclqngPxfv/oUf1IdHBwciJOJxU+r3PO2t70Nr3vd63D99def9Hu/9a1v4e6778bLX/7yY27T7XYRxzEmJiZWXvvv//2/49prr8XP/uzPYt26dbjmmmtw++23H/dYg8EArVZr1b9zDfnz3iZzZhIrfQDMiCQ+g6EG0HIi7cqelTkO17idTkMGuA/t5tEgtiwZj9mKkR51bk2FDKkL63KRx5qpik+KBN+lIluie6EZyIWZDfvTLAIgnSkyuM/PTZOhs4PUSyXM2Ao90WPAB3hOsZAx7RxSzYqODEh8/i5K+XNZ9CpLRe5HSdueJj1mVBfjgRmWTcvWTbS5xf2omFZ1JKWEawN4PJ1+3CqKN8qIEd/yiMlcHFgWqJgYwfRzEq6i3M9iYmZ4gwD4wgW04T8ahRT46hbLSI33gFfuouvti/bzXFMfeO4cidRkF95n/gu8//lnp/bD6uDg4HCSOGmS8pnPfAbf/OY38b73ve+k3rdlyxYUi0Vce+21eNvb3oY3v/nNx9z23e9+NzZv3ryKBD3++OP4yEc+gosuugif+9zn8Cu/8iv4tV/7Ndxxxx3H3M/73vc+NJvNlX9bt249qTWfNRgt56jJl5ZBdHJxlDEAVWP+3ItWz8LRLh7tgtH9ZR7bcLW9NfH5RH6kyu3mKmZINggZ0P2cGZZOBHxvmoRCS0ilhPvSzMCoH4gH05LEgc0cUu2Mnt8gJKGoxDZxORghaupp0gstO6BkSW3yi4l5rGhGxoMNKgwy6xTqRdaGDfD1xRKJSiot0/0QaJV4nhfPAfsbNs8nyiwjpLqbYmIZjvEe9yVOsQC4biUjpcTainVo4Vif909nL4UZCZNa+h+NH9rH3z9nnmv67npmgZ43Azz/IH+XA7jqMPAju6mnyT14f/tploEcHBwcTgNOqtyzd+9eXHvttfj85z+Pq666CgDwoz/6oydU7tm1axfa7Ta++tWv4t3vfjduu+02vOENb3jSdrfccgt+7/d+D3feeecqvUuhUMC1116Lu+++e+W1X/u1X8M999yDr3zlK2seczAYYDAwIWGr1cLWrVvPqXKPwvviJ0xrMi+Ga7kHbF+0rIkO2sthGQU/Z2DzpS24XWDgLybmk6ID9jYtMyDet85ajTWz0YtIgnIw4C2Umc2ZrTCIq9eHB/NZ6alnyUibcizZBC0DrQwSBAmWQjMJSnq05VanCBeFsFRirlUt/LXFeLbM4/vSMVNKuF4VqkaplWO0m6kg7dFa0rr8CLfZXyfRec1jPMZMlcLUYmLnoNksgNe7nJjgeLYiXUEQPUpmxnwVWbeW7rSkpLb/WjZTwrOvwSzMc2f5+4GMOkh94A9fZGU4gGu+aJ5fLzti3UthZmuY6pBkVlieyn/y55+Rz6+Dg8P5g5Mp95yUcPbee+/FkSNH8IIXvGDltTRN8cUvfhG33XYbBoMBgiBY8707d+4EAFxxxRU4fPgwbrrppieRlFtvvRXvfe978YUvfOFJgtyNGzfiec973qrXLr30UvzX//pfj7neYrGIYrF4Mqd49qIpKX81K9vQZsA+VOPvNZDlnk0m1nKKtrYCRjoGRWsD9iVIL5b43saABEYdTmOfx+tGwLq2tSu3CyQ2OgRR/Uq0A2VlaKFkUzR7kkO0I4GJgjXLoZ0/SoY06xEHLMlUYmtdVidZbV2e6PG1dgHoRzYJOkqt00iDdCiZFEiXlNrzz1SMoN2zmUMQqzFw7QGew2xFdDAyV0e9SmLRwAB8TbubVIMSpXYttFUcADqerUcN2pSg6H0FgC9v43XoRMDVh+33SkAfnLLs2RNjXMNlR0hA5srWgv3wJK/9S/fy9QsHJD3tAuAB3u1/g/yXf+LUfW4dHBwcjoOTIimvetWrcN9996167YYbbsAll1yC3/qt3zomQTkaeZ6vynAAwPvf/37cfPPN+NznPodrr732Se952ctehoceemjVaw8//DC2b99+MqdwziK/6lfgfe1jJB6diJmM0aAWZpYx0CGCiQ9EIhIdF1KRS5ePmoppu65qRWaqK9N2V7IvY30L/t+fJnnQLE1VOoOCHPBTK9cAfN1PTeSrmQ4tN+k8G0B8WXzTe2jpoz4wa371HtHsiJ9TAzMMmVGKA5au1CpfPVSGoQ0QVAdZLS2VYxKyzS3gwWnxNZEsyL4GvVS2LzJDURkhH5oJCTIrBwE2PFAx2eX5K4HxAJRiy+Zo5mkQcP/NY7QY9wPg8nlg6xJ/PlQj4djXIJm65iBwo4jOH5kEHhsHfuxRXq9vbSRhqQ2Br2wFvrIFePkTLOlFmWhySitr9z7x34B2Afk7XvsDfGIdHBwcnhonRVLq9Touv/zyVa9Vq1VMTk6uvH7jjTdi//79K1qRD33oQ9i2bRsuueQSAPRNufXWW/GOd7xjZR+33HILfvu3fxuf/vSnsWPHDhw6dAgAUKvVUKsxE/Drv/7reOlLX4r3vve9+Lmf+zl8/etfx0c/+lF89KMffZqnfg5CjcCCnEFtEJhIVC3tBwHQkyGCHqyTRT1QIK2vqs3Qjho1QOvpPBtp/10MrLW2VWTQHu9Ju688/fuJEQ/Aumq0NTgQnxcvsxJN5gF9z8hQp2DeIvWBrVuzGlEGZIlpaiLpjqmIYHhZzkHLOWM9riUcIQ0eSPBUFLtQ4us9ITH1AUlXUTplti+yrKJkSj1P1OJ/dERBMTVypVOVlRjpdSon5oar4mY1olNRs7ZBj+KJMeC1j9rPiyXgU1cBu8aAl+8G/t0XeU8UF83xH8Djvnif/e4le/kP4PEP10xs2xGtS5uiXu8v/xLYuoT8h46tL3NwcHD4QXDKHWcPHjyIPXv2rPycZRluvPFG7Nq1C2EY4sILL8Tv/d7v4a1vfevKNh/+8IcxHA7x+te/ftW+fud3fgc33XQTAOCFL3wh/vqv/xo33ngjfvd3fxc7d+7EBz/4Qfyzf/bPTvUpnL3Q2TbqVKplDF/EpMXEfEgApvdVV3KgYE616zoMdKqX0AF3QW72+WFmQdzPGdy3L7KMoFkc7YYBzHdF3wsADSEHOYBQOk8SD4C/usShE4lrQ+vK0dbptvwc+5YJ0YxM5gFjUgabl8nFTfFT8XIbRFgb8nzXdSh63dPktpoN2tC2FmU/ZzYpyoBXP84sRGPAbJISoRosW5T4QAITCfs5MyutornGxoENaSym1h6sk42j1Kz/l4tWLrtrG7Milx+h620OXqexPvDWbwB3b2UXz2hr9/EwU+XoAhVF7x7j9cnFc6YfAF5gBLRKkbD31Y8BD08if+M/eTqfWgcHB4dj4mn5pJytOBd9Uo6Gd9efMFDpROLFkoknCynT9rWhlSa0tVj1GNpJotOQdTaMWs73xLZeyUaYcX/dyMiCZgxEbAkvt+MtlPnzaBDX4wBGVDwwMOew7IiKTyuxlX088GfdRw6uJfNoKleXDqa9TWtXrsQMxHMVlqZGyzOa8VGSoGsGGLC142iyR0Kzt0HiphkfD1xjP6DuBeAa9PoBXKd2ZGnZSicwa0YryKwMpmtTN9/cA76znttcfdj2n3q8hzoraBSqcVmLsGhpbW+D758vG1laKFtr+boOP0df3cI1TfboB7O7ueJXk//T1z95/w4ODg4jeMaEsw5nARLf9ANqaBZJVmPUEn+hZC6xufiCRGIqpn4aOiiwH3IezYIM/tvYtk6gA3VmBXSwnQa3ODBdhe5PMweT4mmyVLJJwZ6UdFIPKEjA1QnO5dhacoPcNDOqPwGsdXcYmFhVMxKqXclHSIeasmUe169eJDqdeeMyhxj2Ip7rTIUlj0FIfcrlRyhGDcU8Tzt3tJNKS21KprR8o4MNIzHGGx3ICJhwWbMuOmsozMxm///sALYvkXDVB5xi3REymXskZGpup4RypspjLpZ43nruJemyWpLMznrJpPRDI3/FhNcDIKktpkZwD9aYnZqpUq/ysf8ORBnyN/3UM/kpd3BwOE/gSMo5hvxHfxHed/6IAWRStCFKCNQvJfMoWNU2Uy2rqIGZBh21jC9KBqYr9vG7xtimPF82K/5yzEDXGFiJJ/WA0GNrbRxYMJ/u0EdECcww4HEXS1xTlAKZkKSpLn9fToxAabeQEgsv5zE0YzQp+gnVhXQj8yzRLEuQA0nO7MDhqpWUooznNlehi6uWpjQrtKFNgnK4xp/VZXexZMFb24L1GmgLs661EwFjqWUwJrv8Xr1ttFylmZVmn9f94Umu/+pD5veyWDatjp5vOeF7F0pGDJt90wQtjIxLGITmQ6PdT4ulFdKB+bIRzD1NZmlq0h2mBEivjRIsD/D+7K+AQor85372mfy4Ozg4nONwJOVchLqXAtQNdCMGwqkug++yCCCVHKiYNJPsxXKRAapV5FO1ZgRWbOYTawNWR9tUNCFa7tAJy7FvZRsdiPfIpLXRqmhVLelXhLCyz07EzAogItuM3TWBb0E+EzKkNvHLRcnmSMAdHVConi1L0uWzv2EzhNSLpCpdNGHGLplRrciV0t4bj4hftbzVEwJUHvFzAUz4quSoKNtq9476umiJSZ1ngdUeKBfPsVtHO5oWSzxXNcZTkXRL2u7VcVjbtoOcJLITWbZt1L9GjeO2tKzj6OI5Gr6N9XnfHp7k94CRztmKdZFVY3PNLaTw/t+/BDIP+c+7MpCDg8PJw5GUcxGq1VgsmclZDnsq1oCrT94N6Vope3yPZje+P2UDBguJdagEuflvaEusDvmb7HHfGvBziHNrsFrnoToXbySTooE7BwlH5lkGQnUaUUqf5L64zOZCaDa2Sb5Sz+buqHmd6mwg53ygDmxetpLGQonnUUyt3FMf8Fp0Q6AmgXe6Y2UZvcZLJfteSygZKARWAzjVueh040y0M6lkPVTwq6WpSmzdTLUh8N8uYQbnxfvkPIs2/FEHL6oepxrbVGjtxtLBjRWx/q8PeU7VoZEcJU8A8KNPrP250q6mfQ3g0hkjZ/pZ298wItoPeQ5FEhfvKx8HlorIf+wXTuUn3cHB4RyH/9SbOJxtyH/kBpvUW5aMiApVM49P0v2Q2ZXq0FqXD9eYbakNGchHBweGuc3+6QemkwD4tRoziOk04MIIqehJK6226qpUW9ucNUsz6uui5KaUsPwSpSboVTFt5pm53HzZpjBrp09P9CyaJVA9yGRP2qBzoCH6jFLCTMuor8wTY8w86cyg/XUxP6swWHsw8znNYPRDO8+idFepU66WW3SgIWDXQjMdmsGojGRjYp+llsUSS1OaHemKOVttaB1Yqbe6e6mY8vgFWUsccLsDdcuctcWsbalo26yF6Q7wT+8HfvpBy+hoaUm7yZp93i+16S/J5+/BKcDP4e36jz/w59vBweH8gcuknKvIPekyCU1EqgFTsw2JpOU1c7K5xZT+WJ9ajcaA26vAcyCzZVQjorOBVORZEUKg5SM1LtOSRatoAwWVcJTEIwWBaTCizKb7qm2/ClBVlBtmNvF3GDAgrswvys1DpR+SVNQHJCeKQcjjt4smHtZumo4QnRxA5gO7xnks9V9ZLti6NSulxMzzgGEE1Abcx3TXZgslgRHCSmzzewAjhLkHzFZ5zl+4AHjxfmY2DtZ5/za0SVimuyQa62WyspZ8NGvTLpCEtoo2yDBKbT7T+jbPX0colBNqVUoJ8O1x4NJZvn8t1IZ0pG0XbJbTY+P8XT9kuei5c+z8OVwFvrmR9+Ble4GdC/BwE83gav/2VH3aHRwczlE4knKOIn/xm+E9dBuDsQ6n03LCspCV0fbW3LOOk6WiOcmqr4p24SS+zcpJpaMkEHGnakZC6SKKxQBOA/+c+Kfo7BklMXHBSkMr5mX56mF76heS+kCYmFlbDhIFDfoKNbTrhzRnU3Gol7NEoxkAwAK76mG0LKWW+es6LOE0BmaMpxoevXaa+QhyoO+TVKgpm5ZFxkRL0hPtTpBZV1BBvFC83FxjhwGzOTl4L1pFkpSCZKyach27kQ2S1Fbo5YKdX+wLqSwwG3KoxqzME2Nc91SXGaKDNTrnXnGEnwHIcY82kJvu8PUvbud+Xv89XqePXGvdUBfP8Z7vWLQZR0FmU6ArMcnK/euQX/4vT82H3sHB4ZyDIynnMrQ1uB8CWWYBTQO0zvnJJZAeqDOAXTjP969kFkTroYSlJPN+Ul9s3BOZhxNyyq7ODepGQK9i7bNT8mRflcCo7cNqmjaUcoiPEcFvj4RH3VhVlKl6G23TfWSCZKWYmIeL6jq0RLRcoBZl1MxOJyZ7sGzEQDxOVPw71ucaprs220e9XrSrRUtV6ryrmZyqiFFV/FqJeRzNPoUjRKUbMXMD8HeXH+F6H5hmNmfLEnUfqWcmdNq+rIRRu42muyxfre+IQR5IsuKAmY7DNZrBvWg/11aJOQFZiWHim+9KV8qDU13LrnxjE79edci6rH71G8B/eR7XtGuM+9wkrcsPTnGsQJAB/7CTr0/0gMuO0Azu8XHk//fPnNKPv4ODw9kPR1LOYeQv/GV4d3/cyMDKJOSMgVdbUGfLDGTLRTM788Cgl0Y2tTjK6BWic3R0ivGyDOwb65ueoTZkANYBeppVGO3mUcGmJ5mXMuznRAhQT7ZbKlr5Rv1edCLxqB7mQJ1P8WqephmUAJKtEMHucoEB/HDVgreuORRSUxsaAZirmBmekpfUJ/mLfcvSTHZ53IkeyyfFkY4lbYWOMvNCUbEqRs5dB0FGKa/3D+9hZmaubMRELfdVyKylnkw0KeWYxDDKgAi8/nsbJE2DgF9/eA+zRKNGby/eZ4MZNROmLrlezlLTtiWKjffK96PYvEyn29TjhOVRopL4wP3reF5HqiRROhTyqsPwejcjL/+7U/3fwMHB4SyGIynnOjYtWwtuVYKrzuNRt9exPoNRfShlFckU6Jwa1VSkPp+stXyhglEtJRVTG+CnBmzqDtsTsqK2+oCVVVTPobb3HrgWDzz2QpnlJC/n/ospv9csSScyb5ItLQbUXeP8WpMn/4cn2RmzUBKztjbfs1CW2Ty5aXU006LaloemSK7GexTaatuzZmdUlxJm1GYUMu43yEyvUhTxcaDXCiQiR8RkrTaUUhmATmBaH/UhWd8WHxd5v3rMZB7HHtRlMvUgENt8IXWpR7IyX7ZBhzlIWjYtA+2I56NZoqUiyepEj4Qr83h9WkV+TpR4/vgjXLt2Jyn5fMlebtsTctgpWFaoG/H1n3uAv/v6ZuC76ynC/fn7gXLCEhCAXL46ODic33C2+Oc4vNlb7AlbSw6LJev2UHM3zXJoGUeDpOoyNOCp+LUmJMKTDIF6lkxI50xDWpNVezFqx66TlVW3osG2PjBLfx0qGI9kG9oF607SEou23mYen+prQxqRqUGa6mfmKiQn2u2jYtIjVe6jJ91Ol84CX9sCzJdINu5fx/ctFzg1+MrDwGMTvCZqFKeZFV2jzhkaEwO12AcqOkQRRtwKKTUgj41TiKoZB8A6dcSMLS9ZhsGL/x/5Rv7r9kWkPAzNXt8Dr8vhmmXSBoH9brLHc67GvJ6AZcp0Xo+Sz9RjJgcgWWwOxLQvNxO8Uaxlwd8uUAOzsf1kQe73p4BLZtf8/Dqy4uBw7uFkYrFrQT7HkU/9GzE4E0KiWQwN0t3IsgCNAUsg09KG3BhYtkPnzpRHPEd0im8cCOFJuT8V3GqbbSDZmkjIjYpjuxEDWrNvAVy1MqqTqQ/5dH+4ymDaCxno9FyWiiQxkYh7v7OB53uoJuUsWfdkF9i5wOB/sMY1L5S5/v11Zno6QoLG+ixf7W7yug0kI9AukOy0Jajr5OKqDC6MA+uKKiZca+7xf5kKWlMhe+M9nuuRqnmLjELbetd4hMij37YunTCzcQba8q3ksTGgyFXbwtULppCKSV5qBCWVPwVHqtxnKsRtT5Pnrfb46q2zv87MixrYjUL1OaOoDZlNWatj6JJZI8qKJZaTvG/+8ZO3d3BwOG/gSMr5gNkKU/hHqgwE7QKDbkHKJj1puZ2XYXIr2pXcfp/4ZqMfZUYitBNHSUhFpvmmns0N8qXVNYcMoksY3HU2jLYiLxWBVsmMyFKPOgrNpEz2TE9Tjq1d2c85W0ZLLEpcHp7k19gcULF1CbhwgSShGwl5E13NoRrw0KR5r2jHz1gfuOIwNRYLJQZ01doA1nJdSEkE/Fw6dUbugbryVmLLMlVi4B89Cly3Z3V7tMLPV7Q83oO3rf7dgTrvIcDrqYZ1oz4vANe+XoiTang0s9ITgpJ7PK9OxG0enhQyJmJoHZEQ5FbqAqzMs1y0dWl56EB97c/i0YRGoQLtYcDP61Jx5Vy8u/4E3p1/uvb7HBwczmk4Tcp5gPz5b4V330cYiHUWzlKJQWcoWpRWkcF5ZbCddNvoED8vZ+CY6JnGBDADstwD/MwG+WmnSTmxFt/Rqb9FFdJKp8v6DgmJilB1XozO8tEhf5nHr2oCt7HNNR2pkjis61BgeqBOIvKd9SQL1xzkejsFKw9pC/BMlSTKA/e5fZHrnOgBLzgIvOAA33v/OjGIS0wI2xFDtYKcu1raq0V9JB1VSuQ6BWBeAr2Slfrg+DewnAA7F1d+9HATcPEa22nWK8iASIhSUchgKq/rmACdAD0xIEFZ1+E56VyeioiRm2KUV5KsS+pbmUgzbaPGc37O0tDGkdJV7llpSqYlr/ysCDMgyaxUtK5DrYqfU2fUKsK796NA6iF/0S8f/3o5ODicM3Ak5XyBttI2+yQbW5dMOKu6Av061TUvk8aApRYdNKjdOzmos9BgpQLR1LfhfwMpd2jpYhgAfc/m4+jTeScyAzklG9rGG2YkJdpxlMNKEmN9lg8O1/iaZl48yDToohnVHaybKd2UlByOVNmhMgisXXh/wwiKDl38ylbToASZtEr7JCaqO5noWTlKSzeNwWqzt06BxEln34xib9MmV29uWVsywHtUMlHpcaEao3Skkyr1bAq2Di8MpQNovsx1axYshfmv6HTo2tDalDNPMmtyH5eL3E8v4rlBrv0wBA40ZLq2dHFNCkHWac6jUDNAgMc7VOM64hH33jJ1Pd73PgTEAfKrfuWpr4eDg8NZDUdSzhPkF70D3v0f5h/9bmRuoRM9IM1snk43Es8QKReM9xg0vjfNYDQIrUU28YBqYm60fm6iVg3orSKDkwotR03TGgOgnXMtMxXaqRdS8TfBal8WwAJZKTEyBVBjsrUlJQsxMZvuUvzaLVCQOgj4dH+oxvc8OkHB5n3rSSKCHHjTt/naRI+ZplaRWY4ssKGBOvE3kk6mmug3lgvmtxKklkkJpTSm2QM1klMC8cQYicKBOgnglYeBL21j5uQYYtLjIsi4XvV/0WvWC4GqkMVWkfdVO66UyMXyeWhLdqgpmZ/q0MYqhNnqyc2+3L8vbadnSnPALM3DkyzbPDbB4092gecf5D1bPOoaADbSIBe9zlRXJjqDmb4wtc+edJd5s7dQc+Xg4HDOwpGU8wlKEFTAqu6fajymjrKPjzOYb1tioMo8BpnFEgPWfJlBOA6AJBWfkoQ/6wTmzAN8zwzO1Lo+l3JNDjEzS5nO1zkyW1p80l4ukvC0ijYnaEzm7FRi01UslIGrD8kU5sC0H/dupFC2GwFN3zQa+hQf5LRrv289icjzZswETg3ZcohhXc5z9wB0pCspyoAJaYsuZrwGbSFIKuJVK/9mn+8diDZmpsLzBLidtocv6TlkNEPzc3q+LBefuiQ0CjVX02sErPapKSU2KqAbif5nxAhOO6bKidxnLQFKNky7vPycWayhCKf/13NIbiZ6PM8jVQpsZ6okiLUh990c2OBIRSVeXTYCVmeTABI9FTdLqdDr3wx0CsgnHVlxcDgX4UjKeYT86l+Bd/hWE6suF8zIrBPZRODEZ2fLkSrdZ1UYWhP31MWSDd1TjxMtJ0SpTdZdLjIYq7fKUsm6TzRzsK4DlI8KwNpppK3PObidThEeHaY33uNrsxVbY+axlVhn3WgmZrZi2ZedC9znr30NePVjfG1JRLEd8XmJfeuCCSULUR3pTtIMTDm2+Uja/VSREogvBAcgwWoMWHr6PztI/HYs8jrp+IBtSxTo3rPJBMOpx4zEtiUjIE8HOpVYy1nFxIY4lhMztutFMhU5Me2QtqKrpuT7U7wWu8dYYmsVrdT3jx+2ktbXN/P9+xvsNKoPmNU5moCcCPx8bbJWSuClvwsAyIN///Svj4ODwxkHR1LON8xUGEC0YwewwL9YsrZgNWsLcgb/QQAgMHGqmnQBtq9yYm3B431qKw5V7diDgs25aQxsxoxmGxS9kIE8ERHt5Ufsd/3QhKDaUfPwpJGaTmRlhvkSsx3r28A1h1YfAwDe9dXVPz8yIRkU0V1oeSr1RXfjmTA2ysynRb1iigkD94rza2paDoDXZ6ZiLcF1Mctr58D2JcsEtUXg3IlYlooyksYDdeC63U//3ldHpiXPl7mOtowKiFKKl6PUBL1zFZ5TbQjk4qGj966Y2Cyh2jTw6sef3HYM0Hb/WNBy1LF+p2XBHGbTn/q872N9Xp9iau7FlRjeng8AtSHyid96+tfJwcHhjIEjKecbtLNDJxxrhkDn4mgmQFuOD1eZnh8G1toaSGBRo7Ugs7bhWDp1DtYYVHXwX+KbiVklBrKimJzlfBLf02QQne5a901HMiHDgERkrM9untG1LJVYqtk9RgJwpMrywgPT3GbLMvf1+Dg1E2sFxb1NrteD+Y00+5YByTx+Xxnymg1Gskda3vHBIYRaMvLAa6OBWLMw963jNuM9EfRKWW33GLuSMo8EbyiEMMiZ9blgwdau3UNHD/57KuhavJxamO9Ns3NJsxOapdnX4DUMpWNJPw/aQp16zMRMiFD2aGv8E8WxCMrK7+T3Hlb7yBRSm+7s57xX2gYtPjDezPuRT//rp7cuBweHMwaOpJxnyK/+FXj33G5ak6FvJELt8EfN1NRLpTGwdmTVKOSwsk/qA0NQT6E+JWpS1i7waVyn9eaemYi1iqKRKJOIbFti5qMXmU/H3iYzCzpLpiJE4cEpvlZKqKFZKjID85UtfO2nH+TxBgGzJFtaLDkA1FIsSBu2iojLYjvfi0wIrBqX1GPHipZ6tHVaZxoVU16XURdcJSd63ZZKJFEAiVyY2XoWS/w3VwFmxdF1umsThz3Z5q5tJAelhNmQCxZ4Ddav0TEzX+Yxl4qShdlD0uHntK/fusTr/+AUz/nqQzxGL+Ix9jZsv0EOQDqbgly6mLKTJ0pHo10wZ1vNnB2tTQFsirKuZbxHYquEVX+n5UgA3qP/CdjSWuXW6+DgcHbBkZTzEdo5oR0gA986LdSELPWADdIymiUsTQxFYDnZAxY8IPRsPks5ZgZA3WmDxHxYmgPz2FgoAr2YpaAnxhio5yp8qu9FzFb4EgS3L7Jrpyfi0i7Mp6MtZl/LRWYj9jW4n0EA/N/3UUszCM087OJ5IwRf28IA/Jx505voWpWY9aTtNYOUHnwgF4I2IdoSJTKaodB/hUR0HVISqspMpDt3MChPd3ntD9aE/IjIdLLLILuvwdc2L5OgzFVIqAoiLFajtNRnBkbbtJsDBu844Ne9TZrTJT6zTdWjdCAq3j16kOBET9bZMcIwDIDFssxUEuKW5RzceKJYLK2e+qzn0Pd4jqpreqxu+iZAXI190/yocLpdEEfiEslXu8Brur5j5agcbh6Qg8NZDEdSzkPkO98Jb+8HLFjEvjnRaheKdnqUYwatRck6JN6IeFVM23RasOpYFKkE/GLC7Q7XrPtnurPazE2zCqqP2Llg5QQtrcxWWLZRPctMlcF9qcjAvmORgdfPqUlZ1yHJUWOxlkzcfXjSMgraaq2dTdrlokRtENo55Z5dr24ElGJz5c1hZEdFp1qm0FLFBQssn012ea27kZnLqZZFW4KXxPm1E/Ec13XYyXT5Yb5vqWQErDrk/dH2aTWu032O9SkkPlZ5JUqNEGjWK8iAZISBpKIlqg5ltlNq2Qv1XhkE5kI72jq+WDJdk/rFNAYkkgdqJB59ISJz0vmVSyeSaoN02vMw5L3eviSC3LqYzslModqQr011LTsmcGTFweHsgyMp5yvGxaxMW4lH3V2rMhxvscRAtKdpwbaQMXBqq6qKX8sirKwPrb25lEjmQ4JxJC2kmpWJMinj1CwLsG1JpjFn1rXTLpjT7aZlBu35sjm5jveB679JUqDbb2yTnCixAEwQ+s+/wwzEYolrV81NL+Q/fYofFRYDDJr1oYl0YzGl0wzKihYlodYmx2prfCUAvYhBvz60QN4qmhA0kH0tSoZAvUkmehwb0BNxcw7JWkmX1dal1d4qz5HOrB2LJ/65iOU6HK6t1pqUEwv4frraI2UYmIdJJ+I+xvpC9nJmu7QM1pdrfKjK0tGFC8yoaRZF5ySN9W2AY00Exr3QRiosicC5JqRpXwNI2jb1eaLHc1gDHm5yRMXB4SyBIynnKfLav4WXvYdPoPUBMxTaelqR6cQTPT69R5nY24twchiIkHTEr2S5AIxJQNm2xCfiTgT4yYi5Ww5MdayTKPWYnledxrUHrHW1XWBJZkm0GjkY1OfLTOeP91n2KKR8/UDdsiG9kPtMJMsT+1baUGxc5nnPVazFdhBaa7ba+KsWQk3RiqmRhqIE3lJsRm46SVrbvLXjpRdSF6N+NBcvkAx2I5LAfsgsQSjvuWjOtBZKECoxg3PqkZA0BnxvkJGUKZkaxfEIylrdNeoaq+MTjp5wrNDzikSX0i6wJKWapbkytxnvm+NuLzSzwHIC7Guu7o7SGU65x/s8CFgaWyra/VBPGfVKGco929Dm+5ZKQC0G+rEZ8PVESzTSfeQN/x8gypB7v3Ps6+Pg4HDa4UjK+YxZsZuvDVkW0Zk5Kowd1a34Of/4557N3ymJh4YG88FIeWCyC2RVC0DqeqqBtxsx2Kjw9pJZK+88MUbSoR0ue5oslbSKDG4H6pZpufYAA6SuY7LL7/c0eV46pE8t/9sFKVfkNiBRg7vOvelEq6c4h5l5ijQGJpCtxDbgMMhtmCJgc3RGUYkZRDVTlcPcddUkrRzznJQs9EKWXbR9uBORBG5oc/9PjJFINvu8n7kH/M/n8Nq+/AlrJ18Lx+uuORkfE23RVr2QfnbU8C3zzGa/GltXjs6AioV8qOdMKTGx8SAwUzwlJ9WhZXUO1cxkUO37tTyk5zcIgWBEW6MOux7g+b8LJD7yohPXOjiciXAk5XzGE2P8Y79xmWLY8b49AS+WbLKuxtra0Ay/dLjcQIKRbj+asVAvi3Ck+0Un3QIMFtUh8IpdQF+IQS8E7tnMoFVK+PN4n0/W+xsW4Gsp8NK9fOLvRsym6MTesT7fs2nZSkJqrKadRZoZScR3Q/1aUiFcOcyrA+B1Kkn3Twa+VwcNAqYl0W31/BTlhNkO1WQ8PMlsiZ9TRNwYcIDhYokEK/V4bj6MyAHmC6L7n+4C3ZDv1/LMZTNc/3wZ+NpmEtDLj0iGqUZB8rEwCCnCneit3WVzNIoJEEnmQwc2lhNmVVY+AwUSkImeOd3qgMpUyKAa9cWBkcIiTK/kSylRf14siR5KHG6VaOrgQvXj0TUo1OlWZ0oNWHb08vcAOZD7LrPi4HAmwZGU8xj5i34Z3lc/xidwdRJVLYD6kKQeA6XaxPs5ty8lzAqM90w30I2Ah0S8Od2RICAfMS+n+LMtgWNWBJLDgJkAzYT0Qr5/1xiJQzEF6j36ixyusU02kIzGojjEqnX7VNcyI5q50Rk1qQfEJSvZpJ454cY+A2W7wNdHp/YC5iejZnCl1NqVVY+iXUFrGZqtXHAw0GrG5PtT3M/2RZawZiu085+psvw22eUMH+1KAmwYo65x+6IFboDmb/sbPMZYn9dG/V70WMfCchH48laWyra2aBx3vPNR9EP7F2bArHQB+bmQ05Qlm15kn6GpDucq9dSczzePGi2dacmskBr50Wydl0u3WJmfl544A2tpbhis7U6rLee5BwSio0mlZOUBXsnpVRwcziQ4knK+w4Ok3EV/UJbyjwdzn1XjsaFoBA5X+Ue+LNoVtaLPPD5BFxOgFlpra+ozEGRSdiglzHQcqjGwaQlmuiOCWnE9nS9z+70NBlA/By47wiCq3iGJb/qNw9LSO963UoGSh1bR5gsB1kmjPi7qlTJa/hk1oKsNSdaaEvi0/KOlHp1tsxa6EUlH6vOaNQZsD97c4mwegEF3umMkJpYMj2ahFKOZKl2nEom7t1JAqj4m9SFwxRFrWT4W9jSZVdvTtDLJY+Ncx5WHSS6PB9UpVWNevzggKVGxtRr45R7QL/E+6XXQrJoSvjiw7AzAz4eWzVLVoQRWdtRSkHaY6ef5WKUs7ThbmS+VW/lSrqOHm4DlIvL6jcc/bwcHh2ccjqSc58hf/Gaau5Ul89CX7EO7YBqS8T4D3mKJQtfE59fxPrURjQGfaFPQTyTMWFYoJTZ4z5MgoB0b6mbaElFk5pkNO8DSSCFlMPdytqtePLd6UKEvwXleSlRBBtQS7rdTsJlDqbfypLzKoG62wnWrLkKt7QtSUqlKy612BanPiBq4hdnqUsxa+M4GE8xeedgyUZ2Ia9nbJPF4aJIB+rIjPJ++WL/XB6uzOqMYzXLMituuDuqbFDHpgfqTjd5UIzRfBr69gfdV5yqp/wnADqhhAPz4I08+9r2b6FYL0ECvkDLzoyikwDc2sZQ41RUfk5jnNVfm2rpS8umHRhYAGz8Q5LzOo5miUbO8xOdntSNdU1FmLePHygAFOadUF6XtWj8feg/ny7wnj4/DW/xvgJcj/8WfWntfDg4OzzgcSXHgH+t2gd/nHoNOlJrB2Z4mg00/ZKZkTEhLq8gSiJqWNfr8o6+6ExVQrmubTkP9KxakhTiSklJtyPeqt0WryONMdYEHp4HnzjHToFObNWuhnim5R62ItjYrIQJIQFIfGObWytqNrLwDmBuufp+L2FO1NzpcsRzbU/dTua3OCXHQNT48yezJ1iUG7c3LDIr3bmTpR4+lnCTzWPqpDU0c3FijhAGQMO5Y5PHKCQnVoxOrJy53IxuJsOxzPbMV66qJfd73VpHXsCTOvl/bQvJ0UEzWDldZntrX4L1OPZLKVevpcXDjoxM8jprEXX6E122uwq/LRdOgJD5QjNnhBBhhTT0jHUpQSollmDa0SfoGAT8DE6J52dd4cleXalGCo46h+M4GaoO8nDqtdgHe7X+D/Jd/4vj32sHB4RmBl+f5cR4Dzy20Wi00m00sLS2h0Wic7uWcUfDu/rjNg9EUugcGiKaUXjSA6jTdTsGe3DXNP9m1TpelEfHkWrbty0UGydkKBZBRxiAbSKmmJfNYLj/CIPjd9SZone7acVVQqVb9YSblq9gIU6dAIzoPZlW/VCLpyjyWINa3WfYIMnYyaZvvVNdExDrbaJQorYXFEvD5C3ntLjvC49+ziaLWaw5yfQ9N8ngAz13Pty6TqVPPvE4iKZmoMd1aOFDnNSolluH68jYG6/HeSkbA+9tPk3zMl0m6VN+SCdnQSdGHqmwT1hJgNwK+uJ1fN7Qp1J3oUTfzQ/uOnfHRtamnyo5FkhTtaBpIF5nqTJQsrlVKU1O31DMjvUS6rYopdUyblnk/58rWebRz4annHfVC4C8vI7nVMRFKYsMMmOgh/+l/euz3Ozg4nBBOJha7TIoDMap9SOSJWtuEteNH9SJlCf5Tok9Z3x6Z8OsDXmatoEpseuEq908ADMZLRQaOpZLNZOlKeWggmZu7tjHwVGM+7cfSmjwQPUwOBnAt6QBm+OXB9CnqsxGLvib2zRemJe8fG3Eu1UxOObHOFX2iD56C239zI/fz/IM8dy1TbZYn+0M1ZoiWCwz2lx8B/s8OXl8tZQwDkpgLFvieHDZIby1RaDUmORrKub50L/DcWbrUfm+dbdeLeJ2vOMx1tgumBxnrm2PtNzfyfm5f4jlcNA+8eD/w51eQ+LQLwI8+YeWz42GTkKtd40Z4Ruft6NDGMLbMVw4T2gKig0psbMGoq20s91NN4Q7UgW9tYIZJLfUvmue26oo7ilaRBKxdsLZynROlDrkXz8H73J8BywXkr/+545+vg4PDKYEjKQ4ApNPnvo8AYQpk0Yg7amjZh9EArX/kmwMpS1TMdXYYkMio7qFdYFArSRtvbcgncYDb1KWcMdq5kcg+dH8TPctgVGNzhNVWVm05ne4wYLUkS6MiSRUBq1i2IE/dOrV4vmzZGC+3klaUmcvpiQ7Tu2czv151iOe7XCB5eO6ciVB7op2Y7lLcur5Nr5jHxld7zvRDE77GIpSd7DEbsVxkOWPlXvSBaw6xXNEuALub1MEAwKWz8NLf5fevKdjQyEy6nPY1zNsEYh3/fMB7/k2rz228B/z7/8P9PzrB+6geKOpLsxZUV6JeODp3KRIzvjHxeanHQFw0YbLe2yi1jh81zAPMKbkinVcPTgPfWU+Rs55TkNu0buDJBAVg+XGxZEZ8Zfl8DET8vW2JuigZUeA9/h+BdR3ktX+79vk6ODicEjiS4mBIfGsj1Y4Y7WyJg9XOq6pDmZTpxJWYT/wPT1pWZqFEQrGvwaxGc2CmX82+PRVvXOYxtFtlucgMjQbnCsW3+Q//0lOegrfvD/iNPllrxqQrk32rMfULC2Wbsjzet+GJ5SEzHlNdrkknOT9VpgBgNuhAjYHzggUSqK5oI/Q67mtQ4zMp+owdi+bncfEsv//uepsifajGID3R49fEZ6CMMtOqaNBtFXk+Vx4mmWgelW3RIK2t1MBqG/1W8dial6Oh12Z/w0p5reKTNSCK8Khjj/d5j2YqRoIzz0qIWmrU2UqaXUk9y55oR1k1NtHtVYeA8aaRwSfGeE6j5cbU52dr65K9Nlvh/YoyEi/N4g1CuyblBHjlLiO7uQcv+V3k4b8/sWvm4OBw0nCaFIdV8L7xURMlhqKTGK3766yabghUpKQCMCBuWwIenGLwKcckAmHGgDBTYeAf77NLpxKvXbIAxN6cvhr5xn/19M7jex/iOhLfnsq13VnJmH6vAuHGgITp4jnL+pwo7lvPSc6FlC3Rz50DHh0H9oxRxKoi3Pkyr+2lM6tLFVFK8pL43M+2JRKdL22jkLTZtzZw7Tya7jAYlxKKWh+apKD1qkPHdpnV63sipOtEsGvc3HCPVHlu0x0b3rhW1mL0nPc1SOTK4l6s3jhqaa8Ge15uJcVqbKU3bV0eze4djc9ewvf80D77zP31pbxPqq9aLpKUtIokKY+PW3v0jkXg1Y8fe//azny4hnz7u57ulXRwOG/gNCkOTx+NATMC/dBadtWfQu3v1RAthz1VBhnbklVvEGYMNEPxzOgUGCh0Ku/OhTUPn+MmHndM/j1N5M97G4lKVUo2CyXr6NEheuq/UR+w5DDeo3B01KH0qTBT5dP6YolP5h54vEM1I2tjfdP27Fi0UlcvBA5JJ9VCmfvZ0CbRuGCB1/K6PSau1fJH6gvZEd8XLblsXyK5UYKi/i/jfQuwT0VQ9jWYUVjfPrGsys4FrkE9VroRA31dzNe0bHg0dOqyZtYGgV272AfykTlS6oeTimA6GBESj2ZWjoWrDgP/9VJmo7Rt+pW7gK9s4X266jBw7X6+3otYxrp4jse/eG5t0ffoddTrvb4N7z//F+T/9PVPfd0cHBxOCI6kOKzGE2MMkh1JfXs5n+TVuGwQ2DwfnTgbBzI/ZbQ9V7pFluT1XsR9XjbDADtboR2+IvdO+bC3/Hlvg3f/h4Gl0DQvqmnQ0scgZJC88jDXqzNzngr9kKWOx8d5Pda3zV9lX4MERDUa6yTjMUrMZissjQG8VjMVE4lqINXjqIi0XeBx9owxaC+VgFlf2prbq8sXgIiLRbSrXVteznu1FhHrh9SzbGyf3OyeKKVe47EJM25LhbB0I9MNtQtc62iWR+chqS9P7JvOJJXP2EDM2wKfE5i1eywV4rxcPHZWDuB1f+N3mOm5cwc7ptZ1mP2LxZl2ucjXygnwov2r37/W/KO1iF4pAf7p/fBwPwA451oHh1MAR1IcViF/zT+H960/ZqDohywzDEJqNQASDoDZEX2CVSOu0cFwOkyunQBRyMzAskw2PlTjE/EXtwM/shs4WH/aZZ2nhLYgBxlQgBmFlRJmL6a6DPzNY2RPHpsg6VCn0p50FQUZyduS6Dh2jzGL0S7wib0ubqrxyEC70QzHrnHziyklJCIbl637Z1+Dbbq9kAFUZ+OEmc0Z6oteojZcO0OS+CQj3ciCuJIyne48ilIC/NijNiRQt9cszGyFx9y0/GSBrJKM9R2uR036VA/ULgCPTALrxqjFmeqankbHKmgHWSolniizbh39XKnLbJQ92YlWS0NrlWX8nMZ1cxXekwN1kqnLjvBa//1O4A33r012RgnKWtftGPBwE3CgjnzTM/TZdnA4D+BIisOTEftM15cSBoDiwCzwiyOD9lpFBsxCZl0xfs6AurllmYLakBmaQsrySFWs3w/WgV3jyHe+8xk7lfzFb4b3lY8zE6FzhBZKJgDeumQtvqPY1yCRmJOyShIAhZ7NowkzZoY8kLgsF/gvktKXzvsJhiQtGtSXi+w+GeuTYKgYVkslQc7rMlPlGgqpfU0is4O/ZJaEr5hwzpEHZgrUhG5dh/dMBzW2C0YiD9Z472Yq9BPZumT6oy0trkWFw93IBKRK1NSxVjUy2hVVleMtlswF9lDNSFizz8/NfNk+A0o+FktmwOfn9LSJcmv/rQ/NEl87plbcZz0bm1Ad2nXUrJ6X21yq/Q1er9c8RrKl13OiZzqYtaAamhPt8FLL/QN1eF//DPKf+vkT/sw6ODgYHElxeBJW2pEz8I93p8BAHGYMQtpW7IF/uHUooAcGkEDEsjp4T8s/82UGRg0wVx96RgnKCjQ4B5m1yr5ov3WAaNAdxX3rOJlZLfAvElO1uQozKZqhOVIB1nV5Puoz4uckNzo4cbQMUx+wzDAMmJnQgKqdOrvGWHLoiI/IMGDg1WDaD1laAeyaqkFamLH81C4AFy5QnKv6l1FM9qi7mC8zE3RQiMQFCybE/eJ2DhkMpFNLLe+jjPfwoJizVWXOk2YgjlT5GelG5pGj2Y2JHs9zqsvXSomVBXOYd4rqnFQwOxBjPiXJSj4KqXWE5bCMSimxzJJml+oD4CX7mO16eJJr1gzJltaxu5Iyzz4zJ4NWkaMDlphR8v7qPwOTPeQv/8WT24+Dw3kOR1Icjo1+BHSllbgk3hRJaBmTQsqJwEhN4Ki29TqdWCcUezmD2nIRGO8j/1evefbOQ43R1Evlxx5d/fvlopGUbsROHX1trG8dOfvr/NqN+ORflum9OoDxysMM5k+MMUMxX2ZwHJ09o54fu5s2jTcHLfIP1nhdt7T4/hx0cy2kDHYTvVVP6OhG1jXUGDD78rwZ08HUjwqsw8A8RtZ1gHYE9CX70ouo1dCOlh/ZzYnWG3ommG72SdIAa0cvShZiGACzokGJJbNSSsyfppSQ9JSStXU/lZhW/cPAPGlGyzu5lHZU5zM6m0dFuJqF0a9HC2onZYbQ1taTSelaSKVcNeoRtBbWMocb60vruvxcHwJBRq+aIHN6FQeHE4QjKQ5rQ9t0UTLvFE2XT3esK6NdsAGDmWfmaGEGeCKozTwGhkcm+Yf7174G4FkkKaqxKMerA/e3NzAwa/dG4gP/38XcXrxZVobgqY/GMCAZ0Kdwdaid6jKIt4rSQeRbRuD7UxQMJz7bklslO950l2RmuWAlFJ29Mz4yTqA+IBkYiDA39S2Yb17meb3wKMGnBnaFds7UhnSijVLez//r+5ZVWioxm/PIJDMr6omzUCZx0hJPY2BGfktSapnokbT0pTRUEdO9amzakqUi1zA6WVndhRPPpmrXhkZQlOSNDnNU0qCkTV/T7F06Qgx10KRmaZp9Iw9HQ7U+6iicw3RYx9peBdlHi2uv282vD01Zu7us1cNNjqg4OJwAHElxWBP5NW+F9/Xb+Ue1OTCtwWSXT/H1IQNrmPGPtHb/qJPo6KyVXgQU+8A/ehSoD5FHv/3snkw1tjVedYivtQsUuyoxeGSSBEODeJADyxGDz1SXxEXT/uXYPE80kG5f5PTcmQqvl99j1mG2Ql1Gp8ABjE+MMUCu64iBGfgUPghNZBulwLUHSBgmemZ0VkqAWNxdpzvc53KBBCZKn3zea3WgjNr5X7BAkqSlmmEAFBLg0ln+O1zj+TREk7S7KfNyQLM9Lb8UUu5H13igzgxbQ8pay0JkYxEKz5d5vus6fL9meA5XbXRCkBsJG81EfWUrS1iqo9EOtH5oJRkd7zCa/Tg603GsNmzVKin5mS9zHcOA4trZCnD941ZG02zP8SZhz1RILMf6JD1CkDwhKY6sODgcG46kOBwbRWk13rjMP6yDgISjGjPwAPa0nHvAIER++b88rUteE40BA+BlM/ba/3sZ5+oUU3PELSdAGq2epKzBKvOsE2WqyyD+yASJWymhFiT1GXznpC1Wu1tyjwH+ohSY6gGzZRKQDW1+3di2jplhwABdEFO0UTv3BRHxaseODgX82hZuG2XMkBwLXv7kmUNKUDKPJnKBlIJykFA1+yQAEz1mdrR0FnnWvVSNuZ5Eynrblvj6QonXviIuv/UhtSU+WNraNUYBcD+0gZajHTp63qlm9cCv9YERECUbWlrSz2N2rFQJjk8otHtHBcHdiJ+d+9eTfOmcKSUpOozweF4tL9rP+9iRKdTTI1mk72yAV/5DYEsLeeX/d+x9ODicp3AkxeGYyK/6FXjf/QhFkvoEuFDiH/KtSwyaADMHxRT55L85nctdE97j/xHwPOCH96z+xboOPTOKCYPnpHR3dJrWPquTdY9U2Vq7tcWsSHXIjJKXM5BP9EhyVMSaRHx6HsjTvQbVxoAE4znzMu05k6GDy9yXmswBaxupPTZuAt5HJ/ieXggMQ6AfMABOdm2K8clgTjp9yjEJxLiMLfCwQkAx3reSxn75TBTTkQnGHgDp2irHNtPnaL7QLjALNAhIECuxCWHVQTY6Kgsixsa45qB5vCgpUZHsqM7kWETkqQSwSoxUlJv4wMNTJJtjff5eiScgxnVPYXpXSDnle7EEPDANXAbzvZmt8PO0fQne8vuAhRLybb9+/P05OJxHcCTF4fjoFBg4JnsMrNoV0Q+pl0h8/qEdBsDk6V7sGqjGq/UPisYA+M4Giji3LdEP5apDPK9+KME3NvIwkM6d7YskCAfq5gXTicynY6lIEldILSAGuc2PqcRW0jlYJ8HTbECUrl22UVw7YvKmxCj3GDjbRZLGRyZJJk6kVfZQjW3WVx1idif2gWHJznUQMJhGQ5KupSLJSn3AzI+uPcg4ubojGZB617q62mJzv6dpGYogJ6kKRUy9WOK1KomDrj88djlm1IROScmpsvhX5JI9K4soWctNQc57/cQY7/u4dLStlbTphyR9QcYMVUvuVX3A6cyhtKlrGSrIAI+dc17tPyCf+K1Te04ODmcpHElxOD60U2N3c3WAVZv8hmRRtp6hT3+jwwFnKyQmYcZMkHq/PDZBorKnaa2+9YF1igB8sj9QA/76EtrPT3coOp3oARe1qUcpJdZOe7HMhVFr+umOaXl0oOK2pWPPgzkeVBuUejaIT7URu8Z4fiqiTX22Q48SteUiLeF1bs69G9lRVEgBL5NJ2B7vrQpeE5+CYZ2v0wuBib5pZspd7svPza1YM0vL4qeT+rzmhdh0HkslXuuBiJUvnDNdyjMBnRN0PGKTeiRQQcbz+5HdLO0dqPMaBZm1iJdlblIx4Wdl5yL3XUp4zfbXSR6jlHofncBdSpjxmquY4R0gBogFePs/Anj5mVk+dXB4FuFIisNxkf/IDSz56JNxYWBdK0slYKmE/AVvOd3LXBPewn9gNgAAvrSdQbMxYICtD4FbP8924/vWiQ9MStM21XrkHgNIKWGZa0uLOpZHJ0g6LppjYO2HDDjDgPqFSkz9Sw7azNcHJCzfm6YGY+My17QWQRkGDGp+TiIyWrbIPeCbG7lNTUpUG9tcY6vIjMUgYNdS6vF8S6JheXQCeOle7mexRNHwKLnRScIaQKOUATjxgVy6b8b6JHKKuQq3qYvr7VjfurvmRFQ8CG2CsYpgtSusEjP7cqjG9+tk7FONYQB8YxPv8UKJ63r57mO7DAdyvlp6mu5YaQagrkhnBzUH3OdXdvD6pz4/FwD9bB6dMF2T+sKoGL2cMDu1oW3X46I5ITcNwMvhfeEOoDZE/kNvPvXXxcHhLIAjKQ5PjQUpBaSS144y/hHdtMyAd6YiSs2TQ7MjkQoYyww+W5cYPL+8TQJPYm22msq/6hA9UAASDP0esNZWgMF5S8t+9kBS1CnwmBM962Y51pTifQ3gWxsZrFpFEqhNy8zMHKzRZXZKdCeq49Bg2xgA92xmMHx0glmixoBP6duPMpR78T7+fr6M/NX/nMu960+4ztQDto5ct+UCMzGzFZasZqoibM1JyrT1tyrtypln4t7M4/mr3X91CCyWuW1VWo0P14wErYW9TRIuPweuOLz2NqN4ZJJk7uI5Xqdvb2AGR31l9jWAr25ht9la0PlOgJGr9W1eh7JkQKLUNDQXz8mMofDJpcUMJJuhZF0KKdcyI6aAqZjRxQFwWMqHkZBN7Yxb34F35P3I1/3rpz53B4dzDI6kODwl1nLJ9L76MWCpiPy6G579BZ0APNwE1EZe0ODQEk+PdoHpe/X4qA0ZHCoxMB2TsMyVzf9jLWhHS2Pk6V+zBapZUQda7QAZhHxf7q2dSVGtz9YWcI88/T82waf02KfeZKormZOErylJmeiRRAUiqD1QF8+X4WrL97H+sQlBQ/xYWkWuox/KgMiQ++4USMQGoZnGFRNuo7b5g9DakTctc31BzsySdi6lHgnuYonndsECy19HIw6Ar22WmT4+93HlUxAVzVzoqIKKZInaBWtVHohI+akyN3uaFLu+aP/xj3vpGl1Vj48DY0KMdTRB7AP1jFkwNUmcqQKVRV4T1UT1Q5sgLQ7P3q6PAVGK/PlvPf6aHRzOITiS4vC0cCann9V/AgD/0H97A0lCJRahq1j690MG1GUJ+IslEojxPp901W/j4UkGnPUdpuYLCYnDoxMM6BfPrbaf/+oW2tQ/d46ahEFA0XFRAviFC8fWRDxvpE06zEh6trZ4HLWZT3wGz1KymkCVE5Z0BiEDoDraLpaN6Bw9KRmAl/yuzFkSDYleg/kyg2QCuxYqfvVyK4eEGa9f5oknTcJrrO7Dfs7grISgmPBfOFL+GW2d1gyMkoktLd6bQzV6laQ+s2BHW9mnPjNBvZBZGjVm07lI6omjox3+7gKSoFfsOjZp277IbNGxMl/HwwUL7Nz6/hTXUNb28ZDlnkEAtD0gC3h9W0XrEuvJ0MWiZANnKySJcxV4+/4AaBWRP+9tJ78mB4ezDI6kOJwz8HATA9TeSbbqzpepCSnH5mCa+AwOc2VzMN3TtKm4ccASS2PA0kqQ83eDgEPpBgGDSTeiCHcgrb+XyWTfiR5LK5nH4HbXNpKSH97DAFtMxDNE2lb7IQnTWlmVHYtsVx7vm/MrQBJSSI10KY5USUwO1mxAoPqFzJcpql2DpCD1V/uT1IbAVAfIq/x9IWVmSbMq6huj1vVhttrPRa9xfWBdT9rOG2ZALaeeqZSYkFg7db66heWaKOU5XLDAa1CJSRTv3cTMSuLTVG2sz/uwVLRJympT74GvdQqAL+ewadkEu3My1fmvLyW5W8tjxs+pIzravfepcFA8VR6d4H1MfF67ya6JkFWIHmS8Z2oKp9k+beHuyBykwzW7nhcswPviJ4DnH0Re+7cntzYHh7MIjqQ4nBPwcBNw91aSiukOSchsxZ721Ul0aaTdVYWM5ZhBbn/dnrg7BQaD+TKDxGSPBGCdmKbduYMBKPG57USPOp1ORDHrMABecIBZlufN8Jh7m1zX4RozL9/YZE/76zrcZkPbjMqOns7cjSwzoJ03o+iHMjeoaufXkRKDDlc8VHvy0MFUCEpd9llIGcCnujbFuBvxOqmAuhdySnEpsSyLIshIELS0owQo83h91Ndkb5OZhufM833fn+I90/MfBtzm4jmg0iUh2dxi23R1QNJVH5o4Wjtk1IdGs1WqHelGNv9IpzQrUf32BpKlo/1plkrHzrIcC92IbcbPneP6ajKEMRbXZp0JpCMVDtSlzT3kuhdL/P2ytLP3AiDoG6E9ULf5RIdq8A79CZD6bnihwzkJR1Icznp4X/sYkG+R4Bmxi2ZMdBB1ISSJNzLDZ6TcMN0FXrmLwenhSeC760kywozfLxcY1C8/ws6ejW0Gtg1tEpVHJrj/QzXgdQ8z+/LoJFP0hZRaBsXLn2DQeWQC+J/PIRHQEom6yarb7WjGY1+D+x/NZBQTZmhGfVV2LvBf6tP4ba904qhz7nwZ+NxzGIyLKZ/w17XZXj5US/6MgVOdVXVI3ljfZhpp9qQcWxlktmItxo0BUJYOpqWSlXxyiB5FfGTG+sAlM9xmf50BeijeLP3IJhxHKff/xBgDuM5h6kg5S0sp2vq8rsNrqzoUHXA5lLKbtpYPAt7PQkqCtK+xutwGHLsD6HioxLwPKpZOfHEWXubnM/P4uVSTv43LXEs/BHoFu16RZKdykMToyImlog2CVM+WH37C2ew7nJNwJMXhrIb3yc8C0bgMoAOzCBfN8w9+Y2DTl8d70o0iT9BLRZZltPvnNY/xn+KxCXbALJQl+C9S56BP59sXgTd9m98vlJkhqQ1t7s2xEGRM9WsQbQ6Y+ZmtcP17mtSgKDKPmZfdYzyfjW0Gr1aRpZGmiGC3LTGA98TG/XCNT/Tr29TXeJB2ZilfhRmf9p8zT6IW+yQuYWalqEHIQKtuspoV0dKMdnsBPNbuMa7l8iN23VPJWnhCgHSeT5DxPUsinv3+lGVCtG05EpLxxBjXpURIy0zaypz4UqLqspyjM5g6I0Mbe9KFtVgCLp2x0s6Wltj7+8efdHyy2NriujsFc889JGW48Z5lkwDTGDUHJL+TXZaL2kJYdD5R5vF6Cj9Z6Qxavzoz5oYXOpxLcCTF4ayF92d/BVRF8Jr4JCHa5ptLME2kjNEq2oyhREScPUmvr+VIe+E8/ylaRQbhiR7JymhAG+8Z2RmF+sl4sICkxl+bl9lmrOWd3WPWzj0ITH+QetaNE4o3h4pov70BSMaBqw7zNW1tvuIIA9hXtsjwPmlpVafgopTAPPCYlZjbNwbMHA1CE5jqtGvN2ESZdTUlPlDscF/bllZ35/SkLKXDAxMhF6nP4473+P26DonKQtmGQKpfS+JzLY+Pmy9PdShdRxEzQVri8sBruXMB+OpWZh90sOFlM1zH96dIDpsynkB1JpnHdWxaPunPIHaPMTPWl2u2rmMZpVaRpMQvmneK4v511k49W7GOp/pQMk4ZtTelhPf3UM2GX3owcnXJ2oTYW/gPwD2bkL/mn5/8OTk4nEFwJMXhrIP3if/GP9Al+aM9DPjUCViXRG1ohlwq7Jyp8PXcsyf8qgTJ46X1E58ZCg18gGUT1H336FkxmSe2+TJRWVtyhwHLSmN9lhcaA/7bvghUxRF3ucAU/uh036GIUZcLNlPoklnqM/bXub8otfkyLzhAcvC9aSuH9EN7go99zsHRp/ScYkwsloD/9lzg6kMMuH4OdAPzDtGMQ0/cZb+5ka25o90vg5AkohOtviZjfe5/KDN7EvHe2V8X0pQbSWkKYeqLnkUJ3yAErjnEbda3bV9BJgHeI9l4ZILXbcei3dvpDlDfYGZ4y0XgoSmSHDWkOxZ60gXWjXhdghx4aJLXP5HWaC0nBZJ5UjK3WCLRUo3R96b5Oy1hJT7wQ/toLHiwxmsPkCR/aTv33QutxJN5wOcupOZFScre5uoS4XgP2NOE97efBiox8le+6djn5uBwBsORFIezD82+CUK7Eev1FZnMvFRk+cKDPcWnPn8XBwximt5Xr4yJHgP4sSbZ+vmTUuoAuK+5imUf1KlVXUXVF0QJCmCzfx6d4M/fXc+n4voQeGAdA27sAwsjQXuhLHqEAktFF85zzYFkMA7VSMA006K4/Aj/zVb4xL+/zn3r0z7Anze0SSBqQ5KZCxfsiT3ISGSGAYlTmFpr9K5xksO5irnoAibqBExX0ioyWI/1RXeT8tp/Z8NIVibleV06y4zIX19q1zKWbZ4zb2MFAF7XKw5bpqmcMGtxsMZrOt3hfVK9iup5AH5WdMDhVJdrmexynfNlvv+ag9y2nDC79cgk752fc7sgtwyRZqQ8yTY1ByRzvdCGKqYey23rOzxG7hnJe8HIbCZFdchjtor2GZ2pkNC0Slz/ZTMyC6rGdemMpx97lNmjSgzvr/8z8n/yT9f+fDs4nMHwT/cCHBxOGstFC2xdcUhVsy8VHKqHSF1aj3Mpm2iGQzt9DtVIXvrH4evHmqjr5QxqOxbNwj71pQsjZ5DSbhjAAvarHqfb6dWHmMoPM2ZXuiHLBBpU48D2V0q45sUS8F+fxwAXpQxi1SEDsBrHaduxYqrLAKglm1LC9/g5tRPbl6zkFWTUbOhUaF/OP/dsAKIn4uMtLWvRHkVjYMQs9fnelowxjgObB7Rtievycupo2gUb3PftDUIChFjMl3m8F+9/csbj8iM8/8yjcFmnWOs5JaJdeWDaiIS2IAeik2kX+Fl6YowEQknh/evsvk11SVY1a1cb8v1jfRNiFxMTFqdyH7WstrvJ9/pyzXaPkSh/Y9OxP3sXz5lQ+NWPAT/7APAv76FIO/aZNRrrc81HqsxsaRlrS4uvz1SBhRK8e26Hl73n2MdycDgD4TIpDmcf3nAf8MXtzDwMA+vW0U4SgH/Ye+InojNsACMj6k0y2TPn0cS3Dpqnmqx7tLX9VFfKHKGUh+R7bV9Vt1QlLDsWuY/MYzAJM4ona9LmG4UWjJUgBCFJVXVIG/9YMguXH7FjKwFYC8+dA7otZpr02gBPnphcia0klkFKZGvsrxIzCzN9lKbHkyxQLuU4JSTqAdKJeF20FXpLi7+fqwA/+gTJxGMT1hLdLvBebWwfeyBjN2KQnpfsRihlrJkq70csmY5uxIzNonxWJnpWhosD3sdczrkX8Xp3CiRuqs/pRSzdaGt7KeFnTL1QdjetvX0QsLNM/U00y6R6oyNVklmAGbN9DV4bLd3UhiQnR+MfP8x/imHAn3vh6s/uzgWSvk3LK58L1wXkcDbBkRSHsw554bfhTfwxMxFquHakykChbbya1i+NtBv7st1S0XamQWbbEoNEffDUBAVY24FUA2gn4ho0c6M28RrU9L1q0LWrxACpZZB1HRP+FlKWiA7UTWz79c2cPP0v/q+VQ3vf/iMG39Gl90IrQ82XbYZQOTGhrV6bo+HlzKKE2epOlFGEGTML92zmfKOprv2uEgMLIdezUFp9rT1wLXuaJra9dqTUsa7DUpLOtqkPmRE42sNE0Q9Z6lgq2rV+0X6e34PTPNetSyRDD09Kh0zGY3cirmO6a5qbx8dpoLdpmYSwF5HUNAaW1WgVV7eYX7DA0p12GcWBXUOdmKwZHPWbWSrZ/VJDOh3ZkHnMzh1PJ6PQTGAhBYahzWwC+P5j7MMb3Ezn2mk3E8jhzIUjKQ5nJfLnvxXe33+SwWEQMiB3IxMrbmgz4MRSAiqmRhr0n5ebXf7hmszvkYDdDxmENWCU4+PPeVEr91yezvWpW7MANTFE6xSAwkgnUJABX9/CQB4HzIx4OXUho1mKKWlLvfYAvTz2NVYff7xPrY6m+tVPI8it7Xddx0oV1SEwfhTR0sGKxdRM8AAR2garPVkUjQEJwHc2iAPukOWjIAMafaBdtOvWjnhNukKUvJyljgsWVtv7bxKDtwenSEI3tBnot8ufqyNVkjYVmH51C7Mw4z2ed5DbdGq1lG8VqWXRAX46oPHwNM9tT5PnooLeTcvMsmlpS9enQuy+ZN8O1K0r6IojwJe2kYTl4DgCzezl3kgZUIzlNi1bhme8x+83L3O7B6aBV+069ucN4Lp1wrRqfnaPcY1askp8krGjs2UAtS25B+/wrcjX/+bxj+XgcJrgSIrDWYv8lW+C950/YgCZ6tIgbdMyfVLWt2VgmzicjvekPCGpdn3SXSxZW24hZZBSS/VuxD/+qi/Z0rIuFIDBQf1DiikDaUkClwpbJ0eyC/UBCVVbpukGGdf9jx8G/uZiywDtbvK4rzkqza/iVI8ZIW/Xn8lxMuD5iwzUR0p8LRahaz+UAN63da8lAga43mOVuqJ0pTzg4SbzKwGom5jukjw8MsHjr+tYOSsV8laXjiudljze53uPRuZRHNwuGLEspiQNy0XqLkYzWY0BCY1mjra06P67pcV7sSAuw9/cSPJzyawR0DiwzJdqXwBe/yfG+HnSDJkKtHPPTNn2NEkanzvL66ZERwXaKxk0Mb/btEwS9531zD6NZoc0q9STcxglhUdns3RYop5H7vEzu2OR9+GBaWYGx3v8+cX7Vl/jhbJNWe5G8PofBFIP+QXvXPuz4eBwmuBIisNZjfyqXyFR2bgM/MyD/IO8vm1BrJwApZEsSF2GtqkYMvGZPemFQLvBgBplJBvqVKqD8pp9BsmpjpEMNdaKfUm3i2OsBzMjGw38UcpteyOak8ku8MbvWObi73cy+Bxr+nI5YQfMtzbYnJxDMvulGq+eM1OV6c56/keVTFYRj7Weto+F+fJqLYpmAi4/YoP/dL5QNzJCoFmI0GOmp35UCedwjfevEgMv2UtisXuM96MXArNl7kdbzIsJiY7e7w1ta/PW7Np4n2sDSF6CnB01e5pGCHW9AO9fp2D6n3Vy7b43zfsYZNLhJCXF/XVmTi6ZtVEEg5E1qqj3qkNcqxrQ3b+OGTN16R29v4o4sPlQXs4MiXIV1VcFORCkZmrX7EtnmbTez5dI4tRkcF/D5gMtlC07VIk5vLCQIl/nSkAOZwYcSXE4+zHWZzAAKHA8etbK6B999fuYL5thmHqPLBcYBDoRA0NXOjMA/hF/aIp/2BsDabtti8g1NWFuu2DBWyf5Hq6RiKguZi2NwKjY9ZW7zJxOn8aLqZVd1OZ+a4vBvD4w8zUVZZZjC6K9H/C/uWRNVk2XPlosCzCbMlde/Zp6s1RjIJG2YyUcqW8GeeXYNC6jeP5BBtRlKWfMyGwbHbq3SdqRLz9i79HxB3uavC5TXa6jEvN+zlRYIjpU4z1vDuzalhKSisNVko0H1gG9BV7bXWM8ZjkhCcg9nnOYcY33bKZ+aKLH65CKkFbLLkeqJCnaidUTPUwvBH5kt62/La7IWs6JxAV4ocy1T3Z5Xh0pJQYiBG7L53hryzQ+AxFb37eOBC3MmF26bIaEXEXRmQcsyqygsT68g7+PfOO/epofGAeHUwcvz/MTUAmeG2i1Wmg2m1haWkKj0XjqNzicNfBwE58WL1xYW9Q6inaBf9QHIQ25Llhg58uuMQmgMqW4F5nFejkGugXzVZnuWjamOmQwUit2L19dXlGX28yTfUmQ06nDx4OWC4Yj5GSpZFqab2/gWp87K0Er5Vo9MJBXY2vRLh0lktVhimthvkwCMVvh/q4+9GRydfSwwszj9mP91fdgVK+juhcNjGpQVom5vjEZpBdlJIqaifn/Lubvc5D0afDeuAy8bO+THX+HojNZLpJwLIrmZ7pj/jJf2cLPwOaWlVMact/nytbxtXFZxKkBdSaTXR57ucDPgY4p6Mr1bvb5vZry7Vzk99uW7Breu4n3Xq/BlhbPux/SF+WH9vG+7m1aZnD3GM+7MSCxWiit9ruZ7FH0u7vJ63bZDD+bauT37Q3MBqm7biGVbKCQ2SCj0HcYmMHfpmXkk//m+J9RB4eTxMnEYpdJcTh3UIsZlP73BQzShZRZCQ0i2umiBm/bF1db32sA0SnIqWeOssUU6ILBW63kl0oM0nMVIGybg6r+oVcCoi25PszxNgcQPgVByT1pXRay4+e2rmLCINYYMIiWk9UZIzUjmy+bC60SlJkqLdcP1YAXHmAZAmAQ1I6S/Q0T5/r52qWgo6cp+/mTRwyo220OyUzl1uWk5mtqfFdOmC1QYjJ6Py6doUakLS6+ms1aLq7dcl1IbbryP+zkvZroUa+0Y9GyDmHG6zHWJ9FpDsxnZRgwc5F6zMbsXAQe9Y1YKBlTT5jMY+ln6xJ1J/du5DmNOsEqujIIU4mMZnpmKyQalx0xooMa77Ea4M2XR0qS8jnrFKwT7PFxEp39Dd6PrUvMSF23m91hiyVmU3IACEio/RwoiTX/UoX7bfZXZdBcy7LD6YAjKQ7nDjQY/Pz9T/6dZgzigE/J69sWtA/VWOYpi2FakDEA7hozEayWBeKAv1dPlWUx51LnW9UFtIpAXrSOmoRp9BULfg9GVjysLVbNwTXG0iVUjvnaUolZhn0Nkoq1uo5Uz1IfcG1+Djw4xsDVFaHocpGBctuSBOg+z2G5yOAMSEdSxA6kxoC+Gzr35ug1j7YUKzQLNGoypy62gLXj9kOx9U9N93H0flQQfOkMr/GjEzz31DN9ylq45iDXXU6snNTsAz/+CEnBUon36+pDIqJOeG13j/G4m5e5j+UidR0H6uZlMlpa/NZG3q8NbTHKk2uhTruA+etceZiEY8rj/utDloMme8DFszZssRLTZ0XnOq3rSNlL5v1MSVanvkwSrCMWvr3ePl8bl7nm5QJJXkcyaLWhTbyuDblv9Y7pRtyXjiLIAa/4HsDLHVlxeFbhSIrDGQvvbz/NDMaL9gPN/qn54xillo4fLU140raqU2Ynu/x3z2bg7q38w19IWRo4XCOxUbv4cmJBRb00lop8QgbEGEz+qzX7DIg6oVk1L6NBfxByHdo9FORcay5P9IWUhECNyO7aCjxvlgShH5hFu/qSRBm7br6zwUpPY32u4YX7rVSigfRrW6wkoxmgw1UGuUD0F/sadH8dJRNHExSFln4aA14HbWcOc55fJbaumcwDMv/J7c6bl/lZOFC3Scw/tO/YowxGoQMaR6EtxJPShTVqSb+hzbVecYRkMMy45l1j1pasnWGj+63J8EPNAK3vcL1f22KTjWPxfXn1Y9a99bcXs9zTKloZcF+DxPQiaUmfL/OzMlfhfR+EwL6qlRe1VLZpGXjpXu7jUG21RkuzbYUSr+9Ej59RJbIAj7l7jJ/fTcs8brMPXLC4sg5v7g+Bi+YcWXF4VuBIisMZCe/rtwNbxE/iwSngonl4kzf94Dvuh3ya1GBRTiyojHbrKF64n0+Y82X+ka7KE+jeBoNmkPH3mklZln17MPdZP2cg1Cfb2tDakLX80Q8sI5J6ZvuvVuvaTqvDAbW1+YF1PJ97N/I6VWObqDvV5ft6EYNeKZGWanAf6mmi0OPtr9sT/0Xz3G6pxHXsXGTgvuLIyXUDKbTzSWcaFVMjJ1pWCvDkoY21IYnajz9ybB3NyUDJTTFZe4K1ep8MA5rntYqiTwrMnK4bmZMuwGzNf38uu3zmy9y+mFpLeykB5urmgqzZrgvngUcn2TaceSx5XXOQn08VZWtrdDii1Ul86wzSkQiK50qnUTcy92A1CFSTw9FynQpvVQhejWmEpx1OnQLPK5e263UdeM2bHFFxeMbh/yBvft/73gfP8/Cud73rmNvcddddeNnLXobJyUmUy2Vccskl+MAHPrBqm9tvvx3XXXcdxsfHMT4+juuvvx5f//rXV21z0003wfO8Vf82bNjwgyzf4QyF9/XbGRy60sERZXyK3TW+ur326aCUUDy5Qdpch+ICejxsX7RSzUKJgaeSWHeHahRU46CD7AAGJ3WZXcmUBDb3RcW3YW7npn4cagpXEA+X9eI9MtFjENrYZmZi+yLw8t0cKLdzgeSknFiZZaZi32tWIxeCEPsMiuq5ofBF/KtzgVLPJi3Xh09uHVbsHmMX1K7xtX+f+lb2UcI1kDbbfmBdWiq0VQSZZbOeCvHRTHMEd2/lZOETxTAwoez6Dj8/Jbn3y0WOZ3hoituGGfDqx0lOtraoA9lfJ0EMMwb8uQoJx+i8o0tngZ94CPjJ7wO//E3gFbuYySiL7imXbFocMKM1X+bncEuLa9nfIIE7VCPRUA+ViZ5Ndx7v83M/1l9d9moXKM59cJrC2tkKz7Usxnx6vb+6hRkhnRj9/SngUA1e9p7VXV8ODqcYTzuTcs899+CjH/0orrzyyuNuV61W8fa3vx1XXnklqtUq7rrrLrz1rW9FtVrFW97yFgDAnXfeiTe84Q146UtfilKphFtuuQWvec1r8MADD2Dz5s0r+7rsssvwhS98YeXnIDjOHyOHsxeqDdEnu0LK4DVTsS6ZKGVXztOFnwN+Cvg+kIp3x0KZf5iPniYMMPjrQEPVh6zvMIAdqjGIeDlJQ31opZHRjMhAiEISAG2fJEFNwQAgEm1Ls8/9zFWs06JTsKnK2tI60QNe/gSv17J4fQQ5NTezFWY71IZ+pmrD7zYuc/uJHmfkfGc99RhbWgxiEz3zM+lFwJGCkYZSYlkVwLp1dHbN3iYDqGpZRluDAV6TgZxzlJk+ZVTfskJQjtK8aOfLMGCgfN7M6t8fqVIku67D7IhmkhTqujtX4bZHi3zXQpQBYwMgblv7ck8+A7qv0ZJTfcAylOKN37HvrzrE+9ALjeSMkj31MfnxR+ihou3bT4xZdmNdx4THD0+an4+2Lfcia88upEBB2phrQyvr1Ae874sl6wbTwYfFlJ/p2QrPrTokGdZBkkXJPJYSZpgunQU2LsNLf+/UlWQdHEbwtEhKu93GP/tn/wy33347br755uNue8011+Caa65Z+XnHjh34q7/6K3zpS19aISl//ud/vuo9t99+O/7Lf/kv+Lu/+zu88Y1vtMWGocuenA/wcpISLcP0Q/6hne7yj2mU2lPjBQsnNt9kLegf4dqQf4DVGj/1WObQcobqRS6asyfWZp/BvpDyD3gnAjYO7CkbWK0pUc3LctHEopnH42srcrsgVvpCzNShFhBCI6ShH3DYYJQCERhwAXvqP1I1zcveps2qaRdYxtjcYqZjqWjlpwUxSdu+yMCe+CQEk10GxrEey0pPjElwS+jmu1ww4e9MVQbq+dzXvgZJipa9akMZRyDXX9uQPTCnqz+nPu+3CocfljbxwzUSsEM1nt/Fc5b9+cpWnud0h+c12eU1e2SS5zQMrMOpErNksVTiPT0eitKZpG60m5d5jjNVktFFIWTfn2I55Kkw6i9zuCZuxUfpapaLNusnSo0w90LeC3VG1pLY+o4RlYJ8ThIhwerVU0xWiEuOm4DLAW/PB3jtwwyoHJbtZD07FkmMQyGSOi0aoC5HNVeHq7bGwzV462+SW3vTU18LB4cTwNMq97ztbW/D6173Olx//fUn/d5vfetbuPvuu/Hyl7/8mNt0u13EcYyJiYlVrz/yyCPYtGkTdu7ciZ//+Z/H448/ftxjDQYDtFqtVf8czmx4379N/BrkKXpU9zBftimyhdRaKfc0GWTvX2dBfRSaqTgaarDVLohrp/wx7kYcWLeyqJEn+vE+/5BrGQZgQNR2X/W6ULdVNWTTTEd9YN9rG24x4bpHSzI6WyjzTA+hGaTJ3mqR6joZvpd5PJ+dCxRPPjIJ3D/NYJhL5mJLi6WIunQgHZSyw2yFOpuvbTYPlp2Sqdq4zPNoF3icxRKfxB+eFD+VJl+LJOOlU5szjwHz/+xgKQHg+epTfimxMphmT5SgAKsHR7YLJHRbWtY988gEr+W3N9CILPPokzPZM/IyLXqi1Ofati3JpGPP7OSfCpuk+6YaM3i/9lFmSILMMkvLRbv/wxPM8I73mHUa/cwulMWYTzJUsxVuo+f++DiPoRmRVpG/74f83aEaz7U2tOnH6zprE/mJHt2TvVxasPsiYIZ1IF0yy+12LPL4OxZJ0DXDCfD/w3ifJaSlEkc2PPafTuwaODg8BU46k/KZz3wG3/zmN3HPPfec1Pu2bNmCmZkZJEmCm266CW9+85uPue273/1ubN68eRUJevGLX4w77rgDF198MQ4fPoybb74ZL33pS/HAAw9gcnJyzf28733vw3ve856TWqfD6YP3/dv4x3K2IoPTPHsaBPjHc6rLJ7xyDPTFs6RVtK6Lx8eoFzlY4x/MiljSr+vwD2k5Npv66hDoVvmH3YNZzG9b4rbaLjyKIGPKX70xlEQ1+wyoqofwcyCWDMuEzE9R87Rm38pWgGRVwKBcl8GEw0AG0kF8XSJrf44yPAk6UfeJMYphlTQoydGncZ2s/LwZEo7vrrfyTSWzAYBHqlx7QwLhbIVkpSSZo8QnAVGnVn3yL6Q2SG9jm5kc9Z357npmLqJMRMSeCYczrG5RLqZ8fbbC9aQ+yYk6ph6os8xVlPWM9xlANaD70jnUKfEccnD7zON5aEnrRCZeA8zGbF9c/dpET2bgxGzlXiixxKZZs2NNbV4uMgOln+3DVX6uByGvuYpuO+IV85x5Ek0dpdAqWuuxZuKGAUsvNTn3teYzyedvRUOiPLws2w5CE+UCMipC5iepCDeUbFRdsmJNyR7qCIj9da4/DuA99ilgrI/8Rb98YtfYwWENnBRJ2bt3L975znfi85//PEqlpxAbHoUvfelLaLfb+OpXv4p3v/vdeM5znoM3vOENT9rulltuwV/8xV/gzjvvXHWM1772tSvfX3HFFXjJS16CCy+8EJ/85CfxG7/xG2se88Ybb1z1u1arha1bt57Uuh2eRYz1+WSvT2nqsQHwD/JEz0oXJTH+OlDnH/GDdfGDaPAP7VTXZu/0Im730BSfLsf68nvJXCwXTAeT+BQijvUZdI4mKQDLRA9N8Unzojm+N0rliVrMuUY1G3Fg1usqsNW0PGDERs25opTBRm30l0r8fhgAnre67fX+dbwOpYRi2ktnmRE5XGNnUqvI1mPArlsh5XV4cIrBe7LL9SVSXliQTpJc/DmUVDw6KXb7Eqg8MODqxOdOwYSwQc6v7RrvT5iJGDSx4YSjBEF1FkoWR7t9LpuxMonOxhkVHl9xWBxhRbOiXVjfm+Z2Ov5A3Vknu0/t9Hsi2NLiv8zjsaLMnHD7IYP++Ii+J/H5WRwE4hwsnVbjfZK5UAiwDry8/Ihlx7QMtmlZTOMaJCLNlGW3UMSuOoRSkXvMdC2Un1zaOtrrppisvi5qzR/kXJN+Pg/UuXZfMjDqjDszQijDjGXJSgxv+X3AA9PIf+jYD6YODsfCSZGUe++9F0eOHMELXvCCldfSNMUXv/hF3HbbbRgMBscUs+7cuRMACcbhw4dx0003PYmk3HrrrXjve9+LL3zhCyckyL3iiivwyCOPHHObYrGIYrF4oqfncBrhffuPgGKJfxgXSwB8wJMgrYLPbgQU5OlZBabLBRPYLjLVjLGemVUtlGmqNZAyTDVmsN/bBGpige6B+6jEJnp9YB2D4O6xJz9B/8RDzFgMxCVUSwu1IY/Ricya3pc/8EHGDM8oRk3Ygnx150oimoxhYBoWTeMvlHh8LY3Ml/l1qUh7/41tE8BO9GwC8FjfMhF6DSd6wAsO8qsahO0eY3apH5q4MvZZ3inHFqxUM1IdkhQF8oStg+86ck1nKsxyXCBt08drXdZSX+wD961nkNfAu69Bgri5xftaTkwYG6X8Ny1mZ/UBMLue51hKjDCoBfzT0TEpwVQ8McbzX5D29IvnmBVJfLZRq4C4MeDaUn/14MFSImZyRb6u93Gyx7UervF1rUips2xjYNm4+pCdYeXYyKtmwxKfa1CTOM2QPDpBInX053otaHt2qwL4A2u5L6QktkpqVOy9sW3ic9XDiEOz9/efRP7KN538dXc4r3FSJOVVr3oV7rvvvlWv3XDDDbjkkkvwW7/1WyfcbZPnOQaD1anQ97///bj55pvxuc99Dtdee+1T7mMwGODBBx/Eddddd+In4HDmQv099tfl+4R1+ULCP8KZB4SS6chEy6FPbDNV/vGMJYikPv/Ab5R6/CHJa2ce/+j3Iv7xbUmZQ91jE1+G2YlGZbrD7w/XmHkZDa5jfSuLqKeGim51LtDo4EHAunxGoVkjL7cMA2B/5JEZGVKR72zFXE81i5N6PM9ZIQSjQVjJSilhYN01zuzGc+d4fsOAX7e0mIkAGGxLCc+9VeTatLtpvA9ctpfZgz1Nbj/eY1alEjN4jffo//HEGDAo8z06bbgxOHYpRKFGaXptH5zi3JxORKHo8w+SJKmD7oXzplfSe7Oxzde0+6o24PU8VLPOmvE+r/nRZm9HzyUCeJ+6EadUq+aoPuQMoE3LLKElvpQBc9MkHa5KaSoxt95yzM9rOaEYWAdHbmjzvh+qmUZJt1+ZBQVe4750fulwxsUSs2gzVcvGNAb8/zRfBgpNruH7U/x/sW3pxMtd6suj4wK0M2qhzHude7zeif/ke6tmegfq8L72MbrWuhKQwwnipEhKvV7H5Zdfvuq1arWKycnJlddvvPFG7N+/H3fccQcA4EMf+hC2bduGSy65BAB9U2699Va84x3vWNnHLbfcgt/+7d/Gpz/9aezYsQOHDh0CANRqNdRqDDC/+Zu/iZ/4iZ/Atm3bcOTIEdx8881otVp405scMz/b4X31Y8A6ecIf71npQE3UigOgLPX7jqSTIxG4lhP+kQZkMvCS2b4fqrEjSIPiUkkyMrCsylLRRJsd3+aYeDmDaimxDENzxDBr9xiDgpKj7Ys2oE7FsiteKTnXezRByb3VBlxHZxiC3NLnXkaZez+kaLUX2VA+L5fMgsx+CbPVnSZ7m+Ig61FcOV8Gtor2QMlZu/D/Z+9Pw2Rbs7MwcO29Y8eOecjI8cz3njvfW3OVqlRSFRoKMclg3GrbAgMGhAoMsgBjUNHQKtxlJIRAgEGiJYNtqRncrablB5tBSFCtKpVqnu48nDnPyTkz5ogde/KPd71n7cyTZ6rxnrqxniefczIyYg/f/uJb61vrfd+FQGyiuIRTfVW5FdxfksPgPL2N++T7A80uXGlqFkS1XJZGVq46rn/N7WyjBuffVPVezgdiMkgxXm/gnBMfz5oN+04OMJcKqcipHj5PBtQNFVMLEgRYX14x5de8FRVjsVFHmYTljkqEgKgc23P+7su4ji+vIPgLEs2Y5Ep1kwICwWkBY1fXLF+iaZJyhGOywzMzh44gmGIAzuCG2BP2P/ITAIh3qsjGVDRjWJ2JJJ6VC3crOH8lwpgxwGEJ8m7mZfa8M8cyLceVRUVwj60p5igByDsVcT7zCyJLI8nO/dl7nxdze0Pa11xxdmNjQ65evXrz9zRN5UMf+pBcunRJCoWCnD9/Xn7yJ39SPvjBD958z8/+7M/KbDaTH/iBHzh0rB//8R+XD3/4wyIisr6+Lj/4gz8ou7u7srS0JO95z3vkk5/8pJw9e/ZrfQtz+0YbU/arQ5Mb7ygosahYD5YZfAVVMivRUjDsIFDMhuBndYjjXGlih3exbRTLZmiCV43QPtsIDRzIcgixKjMP18FFmU35Is/YI75mP+rh4e6+Isc3wbvTLjZzIDTH4CJxLBsxKOYa9gnArMRd1GfYIddncOJuZrRdEdzXe9ZBsQ49U5c917VOwUEisthFBoe4ECcD9qFbMWwHe77Q2NCPuAURY/Hcj1GOfasKpzgo2g6+puW4Fb3/Ky0rOZw/wH3UQwvYXBEpzzCGDGYe2zNFYFLY9yoWcC2N8PnNOsboC2sIyBhoPbl7+Hr3KqY0W1Ds1CDAdVE3h2NLFhCBuwclE4ibKR4p0LIQRfQcMZ2U0MPxOLbUPxHB9+jRfWS49vQc15oIKtnmYKZ4GIK4N2sIwvsBBAHzFOnjjHM2dk0E0NFSJbMruxWUlA5KGP+1gerzDBHM1GYIGh0R57mfFbnalOx3/8H7myNze8OYk2XZHVbKby27n/bQc/vGmTP4CeAdyBQRMcfWnmB3SDzBWBd9AhAZmFAxldTkILaSCTvWiuDv26pxEXqGV4gU1Lgwwf8pZT9RR/2wUluPw1Mw05CJSY+LKDYhu/eU+lGLXThAXs+JAY7/8TPaOyi3+w0LcEyVCNfanIps1wCuvNKCg+WuvhZC3n6zpp2FVfKcMuzsVXO9rhTYMsZxv4xx/Y9fsvG8qR4ruM8bdTjGyLXuy47g/0fLJ3eyZ1dMyt3V0gnVfgdFBGLDIoJPZiTO9HDvHPMDFbV7csdaA+xU4EzZK+hMD9fMYO2xvcMicdeaON/a8LB8furg+eSzD4liQDIdK2rTOIKgh4wttgFYGyAQOShptiwXAAyU3VOORZaHKH0ye8KsBbMoR+fkf3hIO3inKP+0ppi79RDzqUKMkwZAmeD798QuslAn+xZUUyTuOCO2hcq2tBeWcP8TH8EQNWvKkQHWdyqYsytD/N6aSrbyF+59fsztgbb78cVf80zK3OZ23/aZEyqMlmJxq4VWr6djpBAY/X3sWGBSig2PwFS3l5pMfaS70klBBdQiY5Kw3r/ThH5IKYbT8hNriNctIQAYKm6Dmio0PxHxFNjq57IGR8s792PUDBGxhnoicGSxizEq6GAsj6Aa2wyRzbheR3kkiPF7vvQzCPB3RxCUrAxFChX7O8s1V5umXEo6byk2EG/+/bRYwa7MFFQikX2ld6838O9x1NijNlbqbXOKIKoSWYfe63UTz9urWKdeZtA26kbjrs2QGdip4hgMlFjiOzHA/eyVMV5uhsxbPkhh9mSnevgaKcp36JmJBaxBbPMz0mwYs2LFxBpRlmLDcGQOrmWm5ZlGiO9AKzQwNrFbx7GT+gECz36Ae9+qanAQI8Darah6sY5vRctSvRJo6w8f3KrCe7sA5eVFXOtbN29VZ35qB/MnSPDcCaimyN9Awb/VoWYwxyK9kjhbPyfSnkp2+s/dfm7M7Q1n8yBlbt98q83AfOkrrbGQQbI+EyzK5cjk6DsTBBFc2N3MhM+aUwQUiSPiOkZjJb6EypiBHrsleH/mWEDSVqG0rerNHZ50Jvjs8ghZGD+9FUjrZiKRY714+oF1q/1q6K4MCFg+uqbBQ+yKnN7HNT50YOWn2IVj2C8j8Lve0LYCnpVCHtUgjpTTE0NjYmR67RzLqZ6X2aa37FljPBGjTIvAKVciaJ48vY0x+oRS/r3MQMVHQaoicK7dEt63MkRwQU0YPrvEwflKIbIkO4q/qUbWGPHkAAGHCJ7V+X2Af8c+nu/qEA60H+DfZ7bhoNmI0UuPv8alEc75pRWwoXYqmEfsBcVnVA8tk8KWCLsVHHdpjKCRZbRMTMl1WjCG2cTHnGWvINK+l0c4HgPQo3axbfOOwNmzXQQSV1qWhRJBQOulkM1nwL5ZszLUUXttQaX8VYV2aWxZs3poAGd+55ZHuG/OI3aTJqbMSUw5d9g2/ZcgEec3/ieR7apkP/Cf3nodc3vD2TxImds335i9WBsokFOzCJ2J6U30AqPpUgOFOiKUVvdT6/nDv3U1lZ4JHF2m9Xg2zFsZYldM1dNhEQs4nRZBi+UIu/rW1JzLUcs7DjryryZAycSE3JixuKap0bGWL57ctYxL5IEFk2gqf+wj2CJ2Z1KwDAPt6E555pki66BonXxLms1aO5IJOerQHtmH+itxRmsDkfWmSDGyfjRv30Cw8NoCni3ZL6ljYFteVyWy3T6zAMyUhAWR5giOeOKbUu1+CYEumT3s00PWS69k1O3fOo1y0Kk+nH9b9WJ2qiLPLuNaD8qmpbM8gtJtpKXCBc1QlGKbh/UQ8zXRct3CBCWUzMF72bGYJc1Ig5vUscyDnyLgChSrslfBZ6qz24NUH9vDPbkZAhZmG681TQOHOis9ZVqx1USoweZHz4m8ZeswNuWlRXw/OxMLkGYKvI5cA55faeKa3cQo/5xPPQ38WCZLHZELbdxnTbMszNbVgRFyfv0XJfveP3z8vc7tDWPzIGVu33xLHSy8lIbnLo9KqU4mUnUNVHujjjo3d4ulCItvT3eRZO0kLpzK4hgOmxRYlnwY8BCIO/aR3t+rmPbKqx0snFXV/xgUkXn4epuTWTPBsaqQEpjLe9is4bV3Xcdrw6Kpsr62YKJnj+5j579Txa79atNk9SnYRrwFMRatqY1R7Fq5ojG99TrHvshnTgJbcbaHMSXFl6BPEUv5H2h55WIbn+c1ZAJnOQiQASE1u6rAVhEDP7sxpP87YwQP1xq4p50K7i/TkgubAXqaTQs9nCt1MMeqERwoS0jX6zZfLrUx/8Y+jleb4TwcZ2JEqGFzUDJZ+Ylmu1aGyIgkmu1j5icfvFIEjpTlzEF2LP8eJ7PyUfk2gS+zhL3AuodT4+ZG3boqk6LN7FnimC5PZ4KgZL2B7xQzIJ2JZu96pv9DZd+rTWOz8VmTIbZfVvqz6httV0TG2n9rcYxnwvIVKfvcPPQDcdb/NgLj3cocs/IGtXmQMrfXhwWJAS2ZdvdC66VTiuEE2CyNuIXazNRNgwQOrjpT2qPgddJzb6qVRqZAuqs71JEyZZ5bxu6SzjdPz2Qjt/tlq3ylxkW/M4HzfHYZ10FsgyNwAOsNOK4TuvNeHgEXcKNuoM3H9gCO3FVFUwYpTnYYEEqjMNqrHZO8j1xgPo52n2amK1PHv1HDdZGlU59BDTdIRF5rA2NxpakBV66cRXiLp5kAiqexbEKA78rImu3RznXtfmbKLiK2QwTPN9DMx07V5Ph9DYTYOoHBxxdXDX/TDOFcRz7mT31mYNFiap9vK9V2o45jE6w80M9EylCaHCkB5ntGFVJkn/Llpn6ADEUvQDavV8IcjzyUq+paqhwrTTtUUbXTfQRtFIWj0q2vFOwTA8yrTDMrbEcw9PH7yLdgL3UwPgQds8x3qY1gY7di2JT1BsagmCCI7JYwXl9YxbMjxupqE8+UbSjKqgVUVcbSVQUtn0IQ53zu5yV7xw/f77dobg+4zYOUuX3z7VQfuz46o8QREf23IJY9KKTWTbcfYEcaeSIpyz6CRZWsmqGPRZcBx8Q3qidLA+w+XIlQFmBTu16A4CZQnRQ3E3nnDWQivhaS6vdiXiriuEZrdQT3wR4vTLe/tgBhtqMlqBODw5gYqsF2JshMUKDrqPUDOMKrTZPuf2Qf4/4bZ+F03r5h729PELiMivj3WgPZJlKUz/YUyFkTWZyYSN5OFY4pcUWKOdr2yDdp/SjB79xhE1cxCA4HKXkhvNUhgiOOV+JaCdBPRb79Gpzoi4tWgmDH37M9fLan1OCdqomnne2ivHahjWNT9ZYYDHYfjlzMTTKTiDdhr6A7qd1mgs9cbmEerrCcVcA5z3VNRJAlFs6VfsnGScQCtNbEWiIQn9MZY45Tsj91RBKlE58/wBzg94VaPKGn7LvI8F2+bgxSxQs9u2KBH0tqLHvNPASfzSlKfHsVC0aIHeOY71SQKXzzFt63NBapRuJ86R+KNKdzfZU3kM2DlLl9862jdf3QM/GuIBKZ+SKiGRaCIZm+XhwjiAk9kbqmmEuxSYjPPJHVkUqQe8bwGPrYyddVE+VyC868WzJHRYaFIyKVHHsl8m5lMtzJjvZG2ardG7slb/myBLELmQAQyyZ0Y18zLmOMC42KvLSxj+O8uoD7/vZrAFQ6GXbktF89b0DXZmgMmmsNjNPzy4eDlEGAYOhs15gckQtnRFbORCnS5RjPY3VoJYexbxmiaQHH43U3p4aPGPu5tgOxAaj5jEsZdvZVFYLb0OxJR5tSftt13Gtngn5ApUiDEMfE/4oJApjYFVmE8NjN+3tasxbVmomuNUIEPqR/exnONSpaRm9YRLnD1yDpWhOBnZsdVmddmOA6vrCGceTvr3ZsLEWsfNUZWsdu0q4rGZ7DlZbpxexRLyYCK+dMD3P+Rl0kzmVwqpE9i3NdC9j5LNhbqDnF95XdqSMP9xPEuDcvtc9fr6tw4gzBz+WWbRjaEwteZx6yV2/dxNyphzjHsIjrfHLXQL+FFGWg7apkbze9rbl9a9o8SJnbN9+cDI5ovYFFnLsqlnVSTTk3lYpZSOEEijGcHbMwYx/Ooj7DAhgrjmVYtKxBQwOUXsn0U9jUkDtKLqqxZyqfC5PDqqmxa03xNmtYqE/2sahv1OHQt6u45nfeUACq7ki/tGpqtY/sW5PC4yzfVZj3VInQVI/1/kYIsCNp2swMzDycg2WIsop3ZYJyAJVRR+ponEzkxSUEe2SY0BmvDTGu5fhWsGw9FHnHDfy/r2JlG3XsgosJxvJ6A07nxEDEFwtImIlYmOCzM2UrsdcOnZ2IdcfulvBMP3MC49eaWnbieh33W9Tg9lQf17tfRiDHVgKZiHzvJdxvPcQYnN9HANYPkGUguLQRYpw+eco6Og+KmG+7FdwnAakT3zpiO7kMEJvv1WZwumEBJTA2EaT8fW0m8rYNfJ6Yo5UhApSNOua3l1opauwrKFrZSwTZeqmCxTWb1QswP7/jKgIF3hefg5sZBmxHA5NTfYx3oNmNlo7rKx37jAjmx8k+sj436rj27Sqye80QQQhl/sc+gsPYFammIi938J5eCWNyuYVAe22I159fNg2WbsnYTamIeNk8s/IGsHmQMrdvvlGsrRop+yKwnXw1MmBfKbYW974umJEufOyYXIqtj0l7ilJI7GLBq4dYaEMNQghGDWKk7mMHv5di7DyZzq7NjK1CK6SWGelM4BDWGwAdblfhNBIH53l22ZhFF9tWz3czvP9qE5kJ0jjzlrgm/uUpSHNxjHOuDnGcfIDDEse0oJTqKRwN+xNlDnAUA9UFeWYbDuRqE8HBua7piDiijlOd9HYDY3K6Z9kHlpJ2qrg3Mj8Wx9qHaYZz7aqq6crIWFiP7x3Gw3ziNAKhp3ZulWjvlVRfZKoYkSoc4qU2MgfUHalEOB9xD6TX5rViaGygeKGNvxNDsVMRef8VBEJUin3owOjUVCB+bA/BQyO00mDqWAuGYmL06CDB80q0PPfCEnAuT+0gU3OjBsdcSDF2V5sKXp7hfJ9fw1wpxTjmwgTPJHGBYVnQEl45wnE7E/ztpY71zukHGF+2W8gE8/egBMzLi4v4jjDIDBLMY6rUxo5IWMSYMyAOYtznrpZnbtStvPayiLzrBq7vWhPnf2bbMl/PLWMesennzMP1sRv5IMAzenwXAfNuBWPT0GziNMFcmBTEufYzc32Vb1GbBylz++Yb275TytvLjDUxKVjdvKggUifDAsb6PzvbihgddFqAc6G0/kB3fd2c83Ay6ICwp0/iwoFT/MoRy0wchyPIBH10hgpYpFMr5Ha6ri6uqYN78xWXIErbZA+if/+QyA+8cCsoN9Bdf6yYi4pmMY6WCmiTAu6ZaroUf6MS7UZsdOvdCpwsAchuBofFICpW57RXgfMgaPKJXYxbSQOJYdEclK/OeEX1SGZlkT3HejFFyniJNSNSCIx+uzAxnZkbdRyHu/X9MgLFbglZNydDN2oyc6hHQrpxpE4v8kQqitFg/x0Kij2/LPL8Ep576iBIWByjbUA5EnlhGZmazRru+73XcH5eE9WMRXAPxHwwWCprgO04yHzRznaRTfv8Ghx+L8Bce20BY+tmwMYsKJZkUrDWDeXYsB4j33ovNac4/3oDgNmJj7HZrgL/8R3XoPHiK0iXDt8bG3C8NsN1tBWnc6mF79tWVRsqegjguiVcc+yKvG0Tv7P8mAm+W36C19lTaWUIleNKhPvplQxQW51hfmSCQCl2Rd53Fb8/dIDnOfYR0HET8tqClgW7N7FWzqW/KzLyJXvmv7rjcjO3B8vmQcrcvvnmq+NdGxpN009EUl2EE9VdiF1L1XupsTfqM8uwLI2xoI58E3Zjp+ODEs4TqrNisLIjJpDG7AnT2Z6yNo6z1SGc6dUmnDad3VTZFVSt3a3A0S8q04G6EOVIRHhPDnabIiKfOomsyvdcwu+8Vvav8VKjeh41lka87Phuw2sD6Jhwh+8pziB2lTXj47r66oRODOAAWWrbrsKp5LM3LCn4urN90zbS+DfqeB6RgqCXxgaYrM6spBK1tE1BAdfHnjD5AK81RRD7qh73LZuSyYdFyrgE5+P/2OjGyyM8azaRZMC4WTMQ8g3N8jy9Y461EZqGx7iIjNGoaGJrC4ojubBg4monBwhQGBSLWCPMU32M49EsnAjE9x46MA2brSqwIqkDB04cDksl7FbtZMh2sWQUeRYcrA4N6MoANBOMO7NGzRBg7NADlqU2s0xQ6iA4Zz+kaoS/v7qAv728iPlAptWZnl1XNzDaOYHu3RICo1N9vD9xca4nd/AcFyYIgp7aEfn0SXxG43c5qQFpP0BJ7vy+tRDYrlrpjCDypuJvGqE4r/09kUI6LwF9i9g8SJnbN99WhrYbr86ULqo76uoMi1OvZGwJ0o5ZwohckVlBZKwlHz+1Zm2RvscRo4Imjtb2MzjJup5jos4l1VLI6hBOanqHr8nVJq47dvH+WAGSLN2sDm0XTJxHJhbMOGJYlb0y8CulGNd4pYVdtwiuJ9+pNiygLn8Uy5I6hqNxBE6MXXgLqbFCiPu5UbfuysTvjFgumYksjgBaTB1kHvbLcNInBgosVs2PpZHIWhn3luQwMQwMWlO871TfMB5+ip1/WBDZUbBlWDDsz3ZVO/lGVhbS/j+ZfPjwfa8NUbapzZCNWB6hnHClift6egfB5qCI8WFAsFcxTR12zx75htXgeDL4Sx2jEp/pwSl7Ge4vn8HqTOz/kwLG7FzXMnLrDcV8eCKbgUng5xlaBBvz3vfLCIoqGmBmYn+rES80xnmrM3x+aYy/rTeMTs/vCPFUDOKZ0SQTKXMM+DrQION6HedphBjjFxeRubnWtODO0znuZdaA8/e8inG72rR+P4MiMkyVCCDuTWUePbZnc+ZaEwFKIzRF6sf2LHgb+wbOnnlgiWkJyRn+dclqf/n23925PRA2D1Lm9s23acF2RiJwgMSZsC5N8CedBdk3fE8xQaDCzAudcuYcFvNiup8lJK1p33SGE2XKxK4FOwRQHjUulMMiHPNOxXalvcDKB2/dxPv7gaXumUlxM5FIWQu1Ga7rdA/H9NPjzytimJajVkhVgEuZOcy4JC4wDdSFmXmmxtucmnOMXFOAfeeGyK6mKlh+GxWxCy4qBbU9wXhSv2aijCk+08g19hb751xYwPsp+35QRkBysS1yqmcMkGqE6zpORl/NYbByqmCy8YmDQOWpHZQFSF1vTzDmxNMQ3+Mqi2VdNUMiD6DscmxZo8TBcS62ce+n+5iTLDMmrmXOiEvJxATLznURKHSUgs3synPLJkZ4lEJeTHGegmaoZh4yTWEB41eNcM/NKdpKXGsAUzMIMBfPdhFEbevzfHoH87IquC9iR4Zly+ZtV5GRPChZ52xmlxjczjxsLMoRgsZrDVw75yMVek/1Rf7As5YJE8FrV5sABx96kNmt+jssH15uAZyczwyOfZzDEev2fLPU5+L+lmbiXPh7Ihs1yb7zj912Ds3t9W3zIGVu33yjoill7N0iHC1331SzHBVtsWOtPixow79MJBI4vUzgSBLXNCqojUJaLqnBgQpbcQdZRGkp+33/uYiIONd+EbvxF5fg5KijcaaX68/iIEAaCBbTTQ1eNuoiv/YwMA6P7AP/0A/QyZmZIN57dWZ4DJE7a2mIHB+giGDRZvo7z8Kh+qsIslLDogna9QI4UF6PiAl/ndKM0Ng3inE/QIDGzMvi2M7VLVmaPnXgPAspgLUMMM/v43PlGJmCzlj1MSoiQz32tIAg5ultPOcj1O+bwUl+PAjmZIArol2fZ3CoBFlzHIqquUJ14VDLQ4tjww5RW4WZJ7Jwnti5VZCtpjo021WTi18dWrbjKHh3qLoyVFo9ahR5O9B5tjaw4KZVsfmdlkV2XBPqO9kXCTQ7lGk241wXx7nSBJiVlF9mhep93Pe1hgGbqQBNAcOwILKo4PaJj+D7rZsi//RNNkYU/fu+C3h+ZG/l7UzvsK7N2L+V2n9QxjzI9BmymeR6w8aKLQs2qxjLs10TfuxquS8TET8VZ/jXRWqzWzNwc3vd2zxImds33bLFvyjO4O/CsRVS6+GxUzWtCBHbrSVKi+RCWorw2qCI9DYzHwQWTgumSDvyjTGUpzQTgDstWC8cEXPmoaa8N+pwmi93rAwQe1ZeutQ2pdXWVKTkA2PyxC4W7Ef3sLsPEnPkIkZNfdM27pOg2/u1SQEBU2FigVjmGHOD2RDqYUSusaSuNuHASzGa6K0Mca2XWnAGtZlRjberKEcNAtPoYBDAAPJcF+euh9AoIZU01edLPQ0RiIARFLlVVfGxCFiFYRElp6URng2Pc9y9V6LDf6fs/WYNc4OlDUrj83m3JwbaPpqlInaHomTvvXZ7yvi0AGf6+TX8ztKVn1p/IWaZVkbH9+HJC/CVY5E0RBaM7BeWpbxUpFvFa1RjTlyIujHILce4r8RFRmZlhHv99Ekr4TC76GY2L+uhyGO7Ik/s4Vj/+2MIfr7vgskC0N53VeRjZ7SMV8DxTwzw/Vpv4Pej2bB81igfoJC+PC1gHoggqOmWEMwGsTVdDAvIbI18XPfCBM96pJsNCiASoC4IbueByoNl8yBlbq8Lyx76URERcZ79OW2sl2Bxo5iZI9bzZKjlEeqU7FWszwx3UhPfOsq6mQFuS6qGGROAqunrQDMvKtjm/PL/G4vzSdXvKEeGKXEEQU7miEw8A+rS6b3/CgKOt21g0dytAKTY1cV/ZWSpdKpszjykqrl430uAMinc6ix3K6YSm39tp4pFvjKz4yeulWB2K7i/sW9g2fUGgofYRYDwUC4dvzxCueOzJ6xERezCbgXBx+LYQMR5ETs+t7zx2MOigWYdMZG9z5wwPZW3bd7q3P0EGa3M0W7JrgE1g9jwDAfKihHBvRM7VInMWU4KuV5FSm1mibCt5RoyoFLHFFI5ZxfHyHg8t4yAYVIwzESQmDDbcd2GX+1gTJ/cQZbC0Qzi0hjX/WsP43NP7aDEkTjWq4fZEhE8682ais1p0LU4wfk/ewLPenWIZ0XacXVm37d3Xz8c7P3RL9j/Kxr40U73RL7rspU6PR0nV3IqtXexS21givh8zh+YRhC7YIscVlGeFvB60b2ZAUV38ynGohIB9MvAdxnlRaf/EyKvLcyF4B4Qmwcpc3tdWfamP3Xz/86zP6cqmoojKOhulA5kpFokxcTE0ZjqpxAcS0aRh90mwZ4rI7wv9OD4miFAgV6KAGaiZYHdCs5LwORYA5VUQa8F1RypzXCus138nTX35hQ9S55bNvn90EOZo6q7fjaFe2zv1gFh75vj2DzH7eYdMWdIo6Mi5oXAUDaJa2u2qjk1xtS0gHPvVjC+LInkzU9wn0y/U0+mPkOZ5qjWiYiW51Jz0JMCSjyLY4ybnwKDsDzCM92r2LMMC8B0fOwMnNDa0JRbo5wznGrGwhGRSM+TD2BJL3cyw73QhkXLQsQatJLWTZzRlRaujbgeUrcnPq7rVB//tqZW9klcZYulOGavZGWeDZ13l1soK/qJyMfOWlBeUsBxrJmckQ/HTQqvrwFKKTZMDqnzN+qKX5nhuvfLKtCWoOw2UlbcLME9rg1QmiR2J6+YfFA2IHsmmjXT7xqVd1eHFshHrtGa72RhAd8R4sxSPe+JAb43jhjIOlDcDynqz2wjWCvF+P5u1ZC1C7Tkw8wgZfnbqhezOhSn95PAqzzxZ+5ygXP7Zto8SJnb69ayN/0pcZ77WXO6e2U4AtJXSzEWHToZYiyYribYj0qXC5qZqc+03q8B0MjHAsiAhH1OnMwyMUFsZSA20gsLIq5SV9lp9mzP+p6QmfNdl/Hz0XM4/wtLuL6Tfcso1GbW9G+rZgyLPd0Znz84vjRwnB2V7w9iBECvdmwMqUGzMLHshRPgc4k6MdJTE8V5fOYEevI8vW1BxlEsxcMHcLoEoF6vA/zJZ0TBM+rZZI51OxbB+5bGCFqeW0YA2J7gtet1lK0YqL7SQVYliI1xMlbq+aRgWQtfwbf5Xj/HjdlWFWWVhw/w0wiRjbjewBx5/xW895feIvLcEq6jH+C957rIbjRC63PDwJW2UwUQ+WrTQKJfWAMO5HQfY0LszLCIktH3XlQ2m87Ld68jE7JfxnuJhZn4+OExBoHK3rsIyFkaYafqc11VKt5UkHYZY7o8wljHrkhBny3HMnGsazEDZC+1zOZEsValWMTVDQVbINzJtrWskymjLNH5Ebvas0fv/2rTRPryDLr2BK+tN1BOXRyrJEFs3cupkbNRs7JZC9oyzvrfFhn7kj32I3e+zrl9U2wepMztdW0UZnJe/R/wgqdMjaKm2vdVUyNxsFg3Q1M7ZQrfcwycGSo+pVeyz6WO9QGqKcDUT9AtOVQa6IFSoNsTwxYkrtFM14ZwaL/+EOTWz/Ru3Yme7Yl8/AzO91AXr3GH3A/gIB/dN90Spq+nhbsDaWkMBo6WEvYqAE3eFDRzDVBMTZStmgmxrTc0Ve+ac9+sAQh7tYnP9AP87SggtKxp9q0ansNbthCw0WE7YiySs93D11pIscPfrMERnurDyQaxgXspg//iosjn1gzvkokp27YnoOseZczcnFiOyf5v1iCudrkFSmwxsVIatUfywcZ/8WWcZ2mE+3hpUbMPOac+00CDuiUieD8zL68tYP680lGV2KoFxYnieBpTBF3sx5Q5CABZxmRWgTTpQdHYSBfbeM/aAAHJlaZhva40LTBkUN0IlaY9QYAz8k1okIwhGsenHyDIFTGROLKciKnaL2Mei1jQPixiPp7sW2aI4+OIgaCDRKSu31u2nji/j7HvBSgRLY2Q4RkWcZ+TAgDqTd0EkHI90s3NzDNGH2X2NfvoXP0Zyc78uePny9y+aTYPUub2QFj2KHY5TvgR07XoBVjcKbo2VH0TCnPtVG3HfqanDCDX6u6FHCbFc7C4UzbcS7EwtiYIGvYqWMAPyqYAy5Q6NV5aU3z2SyuqseIfDi4mitl4/xWkqJdHRgPdq2Bxn/hg/7RCnI8L6b9+BLvvJ3cPBz5HjaJq+fcMiwBKTjQoK8dwOuzQO/bxGnVYajO8v61y6p0JnI2IlVEYuBy9lKHSQtcb1svm5Q6c5soQOIvENSGyURHHbITGyNpQvM6TSpl1BeNWijE2sYuAgpTUTMHA7DA81dLPc8u4XyqV0qYFaL4wg3bzGqbYuZ/qHwZPHwV9steU6DhwLFiuEMG9ZA6CEVKY2Syvoho2F9sYv0qEv7G8QzDxM1oyW2+YNH9njM95qWmMXGybCmwjxDhvVzEWoyKwHuXYMDjPL+Hen1vGd6ASwXEz+0baMvV7uiVcG4P8iI7et7YSsYvvUpIDa0cuAqKrLQRLV5o433oD93v+wDqapw6ujcEpdWqcDM9jt4KA6EwP8/JaA8/AS3Hccoz7Jq4qdnEPnTGug2WoVQ3C6jN8BxtTfA/0/c7F/1kk8iT77X/o9t+xuX1DbR6kzO3Bsut1LCqTggE/uSB6mfUA8VOk+ok54GcoerVbEZnojo86GgsTSy/vVeAkPn7GBONEUBI41zWqKT9fTER+52sIJEbF47sdP7WDv7+wZCqhlHmnKit78lRnRqUkIPeVDv7PjsXE3+xW8Psp3TkedcifOG0Zn9TBDpXZlLo6iciFk6BmSKRAXj+BE3Qzxd8EyCwVNM1PRgV1Rcox7u9sF7t+ZhSKiQl+FZVB0ppaMLVbwe8DxVoclMGiYUq/WzLFUWaeRExd9UwPx9rXe7ratD4y15p4NmTMXG+gn1IztGebOggMGYzdLgNzO0tcyzBErsikrHLxdQOzsq1ANUJGwEut4/KkYLgcCgkuaJC6UwXDyslwn2/fwDi8toD31WeYl5faKMWNfcz9nSr+JeX+dB9jcGJoDCuCkYdFa6GQauZxWLSu45FrInKcX2sDu39mw1zFIVF8sBZpc8ypse68DGOxVUXQOSXDzsM8ZTmPWDJiiZ7awTVlgnFghtHNkI0aKW5pQbV79nTeUXK/ylJmbMJ1fcUGjX0rW9Vm4nzqfxQRkezdP3R/82BuX3ObBylze7DMEdNHIaDOS0XqqSpOJhqUiHX+ZRBCcbRrDXPCnbFSOctwvqtDLMZrQ6MEt6YoWexUFDToGH6Fi/qf+DxYDlQSvZ3tKHV37ION0plY6eT8AZQ3qRsRFiwAOTHAIvroPn7/+BkEBAclBBG/7YqdgztiqsRuVzFWZKXQgYQeUuLlMhxk6uTE8yb429WmgWbZAZlddEdKYe2McV+hhzIWAx5H4GS39G/1mSmQBgnGshGKfOoUxv5MDw6G+hoER7J7cWsTDn+jhjGuKjPptQWMX3NqtPCndhBoDjw4pIstjHWQwOHXZ4cDVJag/PRWDY/nl+GQGfgexeHcqONvpLP3A4wNwc6dMc7rpXjGdO7vvwJqrwicOMGqtRkCiu2qBbMc90pk3YvZSHKjjjFl0ENadV3BrO0pxn+9IfLWTdMA2vhb1gKiNrOGm8SguJk1a/RTvNe/+1cUB89wne+4geOSNt2aWp8m9lZyMwS5I6VlD/T7kDkGgq1qSexza5gbxKu8ZRPP+pUOSlddwecXJpjDZK2RIl8PLWOaOiZ7wHnQmRj7rByJ8x/+FxERyb77j9zjjc/ta23zIGVuD5bVQxFfU86pY/LbIqrgKpCLZ1MzVyzjQed9cmCgQxErFRDgSedyuoefo+qYF9siX14R+cDFW7EiDFAyxxZ4NlwTsZKEk2GhFIEzPX8g8q7rVusXgYMvx3iNtNytKrAeDx8gEFhvIHChEicb3PUDxSUonVYErKXIw7hs1uBsV4f4LJlFHzuL8XpyB+dfb+B1am2w8y6Btxs1OKF+gLE7McD4hlrKYZnt1QVkLh4+QEBCSfOPnTUBsWkBjnhtiM9dbqEkMS0Ypbk9Odw5uR/gWbzSwfiRqcXrGagT2qwjgzIt4NzLIzi1L68gQDm/j/c1Q5HfPI3XntnGud51/XDgQmNJgV2vqwo0rkaWearNTOeHTDPiNS4oPfbpHeBatmrIhCwrBifTLMpYMwv7ZWSpHtnH9b11E9ebOngO376OIK0e4tjrDQREF9s4//uuHAYPE4g9UZYOA4dhUWRf9YHIbDsOtE1cz2dP4N4e6t46RpUIx73Yxtg/sm/3vzAx3NhG3YILR/DdOTmw7FekJb7YEynMTLSPQHQRBKMvKz6IirepI9JPresz7/XRPZHPnbA+WpxjT+1oJ/YSzjcoijzUFefXflHETyX7bf/lreMwt6+rzYOUuT0w5kw/AknvUozFhWUe7oSoJludGWumHyCDsFtRuezIdlUUDyuz1u5aWYggSOph5I3sj7sZd7tuZhoejRALunZuvSm9T/YCG9rtVrCre+cN0DM9ZYy8vIiFl+c/mrXpjLHzp/ood/Sdse62M5xzSRkQ/QALM+3RPVPpfW0BgQp394uaMeHuV0S7EKcItJpTZIn6gch3XkXAcq0JB/zYno3t2zcMrHqphZ1+Jlqm0GCLmYFShECK2IUgPhwYEti5X8a5lrRk4mkJ7nQPr7/csXsQwfPtB3BokQul4GoE/ManTinIcg1jUw/tnNsaJBZVE2WrppkGLSuIGM4jH6Sw+SU7c3fGCIyuNK253rmulWFeWoRjdzKR5TGOt6M02v2yZkBKmEdneghyW1OUDJ9dQTDrJ/gcMyTdkkh7Ko7/YWXS6PPIl90cUUaUbxR7jqUIvmM36phfnzmBczdCzN1eSeTx3VsD97dsmrLviQHucatm31MqLu9ULSj2tETFQPWtmwiCVkY4Frsuf/ok3vP4Ho5NFlIxwRhQd6U1RQB0pYU5F2rgeFBG8Jany1cizI9nl61ZZA9ics6zP3dIJmFuX3+bBylzeyDM2fhbIkXVsCjfI9NFxDIMp/pYBAmSG/kGVGXQE7mW1qbdrttw3piazu82mSmhVLunKW3qbrDfj5vBQfdKxrJo6oJKtc4ndhF4EBNCIOFW9TB1WQSvX2rhdUrU81jfddmuZaOGTMIjWj660oKjaYSmfntQUixCDAdMKvZMsQN0MG/XTBNBlHk73UP/FgKOCSzljv7xPeA2Jj6cEJkxQQxHdrKPMXhxCdmSfoCSGHE5ZNC8fcMaIYrAMT+lbJWPn0X2ho6IAd/FNpzfe68hMDsoYZwjFwHB55Ue/L6rIrV9091YGukYFJCpYCDbK5nM/LSAbN3i2HRQ9ktQAybLRXQ8znURHNVDHOtyC0EfRQerM5FJRcscCsZliWrsg5acOdZigfiOzhifWRpjrrEn0kNdm6uk6OefW6L3UIlwDwQBf3kF40GBtbGPMSSV/OEDkc+cxJjms11fXMXzLaQIGMnq4Xxd0blQUXDuqGhy+pfaNp6DosiusqC4OSHr6GQfnzsoYW71A2P+OYLsHDcwmdhcz+v53Kjj/8QGfd8FzK+PnTFZAj8B0zD0bjIP5/b1tXmQMrcHwyqRKU9SJOpOtluxXTNtKZfqbk9Mun63YrtTajrkMyjHpfrzRn0OCp8xRT4qYpEXMdq0nwCL8P4rWED/tyewwF5vmMbHjTr6q1CkiziHUoyAg/eeOiL/6lH8PLIPRz1VvE7sYjcugkX+6W1rbX+6h4wJLXER2Fxp4XprMyz2LFOMlHK9q9kSNowLFCtyYoD3T32RRIO+q02c69E9OLDO2MZVBPd4rov7qc5w/8Mi3vfIPgKJrZqp1xKwWVftkhMDfHZxjACIar2e4Hy9EtgvYx/jslfGjnxBKeSkyu6XLONxuWVKt52JyB/6sinVcrydTKSQaS+jHjIh1Uj1dxTvQMbZsIgArzXFcyXuoVdCxihyEbDQKVLI7cldzPfUEZmJNTWMHQjf1UI0H2xP8HqvpN21NaNzXgPPIMY4kvIsYpoxsQtNEpZAWbpJHQRwXmaA8LAg8u8eNqZZW4Po+sy6Su9UcQ5PcUbnHJRfehrYtaYiMxfPgUKCZ3p4dkXFVjFYWB3i2l/t4D1uhuzQiYEFGiPVz9muYixj1+QHajPTVHH1WZFmf71hmZKja8iXV6zk9PYNHL82QyBNFh8bZVYjcTZ/WmTi31TLntvXx+ZBytxe9+Zc+TsiFcWg7FWM9cCFKdaAIHPwnm4JznSsWhIESO7rbjpxsLg1Qk39FuCID0oop9RmN3dNNxVqg9icLZkMzKCw+VwxsS6xsauiXvoVO442XIpF/rPn8P/disj/8lbDUlDP5C1bWHA7EwQQeZE2N4NDv97AjjNyRd6+iZ3sb56GM35qBwHR47uQVL/WFHnPNThCmpfCMaw3cO0Ez7IdQSYKDHXgmDIBfqcewnFs1fBcKHxHvAEbEOadQS+AAyToc0fLWg8f3BpUftdl/Jun7p7p4Rm4GYKV1xYsINzNzOETnHq9gUxNZ2LYpUSd+fIIAQatNcXnHt2zTE1tBme5W7GGiMsjbYmgjBziUfYquC7OPRHrj0OGDVlVpKcTu/LIPu5l5GNMOE/zKsAnlcZ7qo/xaIamdbM0wpybaRnzLZs2r1tTZGpImScTiSq9eUYYMyrswh15AB3vVQ4z6Nhq4LE93PtVDYC7JWTpRj6CXmaHTvdEmimeU+ghCLhRM4bRmgKtOe8Gyv7aqCHTQj0jquV+12Vcw5dWkd3paVmyF1hH88jF9bBUeKOGoGivjLm0VcV36/e+bIBuft/zmSCWVomDy2edrrTEefnviwyLkr3jh2/9js/tq7Z5kDK317U5l/+OSbxXImsWeFDGIsR0c69kap8UKAtipHndDAs/6a/s90Pw5lQzD8RvXGkBOBp5CAzOdUWqLpyzqxmXqmZ22Eckc/B3Mg9ErCNzObp9QzpaVcs21xq4xid3sSOmdHuq2YGXFgEUbE1Fvv8VlIJI6a3PsLiuDK1/TD44+sBF+/+mAmxbUxPGY2fm/ZKVDkoxxnuq95k4OPabtzAOmYNFf79swRv1apZGWkbz4GwWxxjvjTru92zXQMUUr6OceVjQMoMg0HhsD+fJxJpP+srkYZfgEwOcgzTiL6xp6UbZTdWZCdFFnvVb+pUnEMQ9obgGYnLI+mLZ7EAzIMTOVGcI7tjHhsyVTLSVQYprbk3xnnJkZRqCmSlAdqVlrQhKMV5nIPbu6/a8HttDAHi2d2t2jxk8BmNBbA71iV3LGC2OcY5hUeRfPg5gMMt+IlaGHPn4TrzasR5GcS6LuTZAwHimh+vtKdMscRBQUf0533ZhWrB54ogF5cTtVLVE+nwdAU5YxvhQfbmk98RjdMYI7l7poGzHgIQdnPlMeiWMy+IYfx8WjW328TMIhKhPc1x7iht1fI7B6mN7uD6W7tYb4nzyf5TsPXPK8tfa5kHK3F7fRiouba+Mxa+smgcMVkqxLZBUwpz4SOGGBeujwuwLuwCXVUiLNfNpAc61PbV+N4MAf2fphs35CqlIEFrmgzvXZqgOlGDeY7IoIofpyuVY5P/6/PHv40JMbZFntgGUpB0H4mX3XYqj5VlHTgbn+umTWMDP9HB8ime5ouUF1/RhyhHG7HoD2ZhyjDFfGlntv5AarTT0jKXkJyK/eQbXtKYaMKf7hzE8VH7tTAwftDwyjY1uCWObCXAPrSkCC1KfyxqAfuqU6YSQtRVoBoTBh4gpF+9VEMC2pggMR0Uc4/Fd3BfF9tinhuqlnQmCltUh7uugbLtsZnZi1RaZKfXVzYxyzh5Q1O2havF2FeNADZdKhHueeRBhe9cN6wF0nB3XL0kEcybfXVkE516YHM4miWh50cM5N+oWVD6yj3tiJqk1RaZo5uE4CxPMh0Fg2jNUep740ExJtNTUCxA4feoUSnSOYFzLyvQhhbg1RWDO0tPYR7ZzvQFwdljAa2yVQSp1pIH1+7cNOHxQsrJhX7OF3RI+n7giv+3y8WO3U7W+YZdbeOZkKz10gGd0qi9yqi/Ox/8xvmbf+ceOP9bc7tvmQcrcXrfmvPz3RbzAVE73yybOdrVp6e3VIRwna//tqe0UReAgdipWryZYlQBQBj2lGLurmwyf6LCjYFfWhqbZ6yE+y4CnMLPMxCCAsy9rGpwU4rwTuZOeSt7WGwB0tqYITijadi/mpYfPw8zKjTque6KAUeJMWC7olowp4aUY052qytO3RP6PRzGWj+7rjj3B82HTRj81yXQRkf/oZaNTJy6CCAZ1zEyc7VmZTATskad2bBdd1l30XmJqvF9awTmf2MW1X26ZBkwmeA6zHG060QxGM7QeTPtlA2DWZgCiXmtYVoNdlbn7XlHaNrsHswEkM2iFFOdmeUXEWFztCRx3P8AzXR3iOFMtHa0O8bf1hpZKXNxjr4TshJ8c3z35XuwoqFlE5He8Zv8njotYDqo6p2IZQjr4J3bx/4qy5ajtU5sZ9mm/jOseaLaErDmOOcUFU8fo24XUtIFGDWuayJ5AnJ+k7zPzsjrU+VTEPGYW6tUFw1Yxe3VyYPTkxTHmS+VIoCaC7NbZrmHZGJjsVXCtnl7r2EcWphkicBIRRz6MU+q/c/vKbR6kzO11ac7H/7GIV4YsfaI6BvWZKcpmgoWmkGIxOtuFsy3rroZONs1lVph+JrOmqLvpcoRFsD21xVbE1GxHPhYlliB4PeMCPiOCRXFxbBRRisoRRMnSClkbtdm9Bxqkgd5up3c/Rk0I7kAfPsDvV1qQkx8qVbQzgZMc6O50r4wx7pVEvuci3h8W4MwXJkYHdzOwSRqhqcWKWImAJQcROM1pQYXiIuuJVJ3hGRKwWooPa3A0QuBMIg/jf6Bg41N9vKcc2c6ZDrIfWCM+4j1O9pHRaU0RINEiD0qkq0N8nlT1amSaNUUt+aWiZS+xzFlYMOfrZZaBSx0whjoTy2D1A2sEGLkIQosJ6K+n+kYDXtTMAlVTj2ZSGFjci31+TcXvNOP3zDZ0VT6/hmyer0HES4vIEC1OLOsVJBi3zRrmTj20hpr8bqRigFlmP4LUZOp9MYp2daasKM+o7OyszBJLMcFnx5rtfP8VY+2tDhEYfOok5uiS4pU8Dea8DJ9lt2QRBJn30gsrz8ISwffby21wiD1bGuPYo8ktn3Hkw/NA5au0eZAyt9edOf/ul0TKYos7SwjFBAGDm4mUlD7sJ6rmmSGIoQBZe4pU7GbNsiQHZetPQ6rmpCDSSHEcN8MimjpYBLc0+CHtlt1th0XDoUx8LK7VGV5nPbwcmZS7ZKYNkTj4+yCwGv3K6M79eFaHwJ/kjZLld6NI5x1aPkCpRCLfc8kAk6VY5JOncM0s9WzUsPiSVfHOG/h/MRF5bB+OlIu1k+FemZEhHoVaMex/c1St1U9uNnVzyv/dYY2bfJCTd8rs2SOC+ZC0bVdeUyzIyhBObuaKBBl28I7YTn9hgixNJTLgMLEtE10WeyUDdooYwLSjTpvzQkTLaGLB6bSgTQ8dy/gFsUi/YYHr2S4otc8vWauFbgnHDzXD9cQe5jFZUdtVvI8BOlknry3gfEfxFLEL1tDYB9Yop5civcAa7RH8/ewKHHopxjnCgoGRz/bw77Wm4ryqllUSfR7cNFxpWdsFZss6E4zR9QY+x8wUy6yXW3D4lQiZ0mKCazjTMwB05uBv6w3DIF1vWIDIRoN5TFRlhuCPYzPzMDfy8+tejJuFsIAxON2z5+oWb/uxeVblq7N5kDK3151lv/0PifOF/ycWhZ2qpVaZwWBDtiDGa7H+7FYM4DcpmIz4RLMGYQFOvaxg0M4Yu9PYtdbtIx919kpkOJbEtdKHn4pkqqJJhdsgxrkTF8cbFw201y3hc6QgB7ojz8RAiDsVky5nTT1fKjnOCEhlpid1sPCGBYBan18CxmKraovxNDcO7Ym2rq/jcytDZCte6Rirg1mpIIEYGkGpZ3qatdJ0/426PZdTQwAYAw0Kt6t4PXZvZe+IHA7OHMGzOygfZldMNagLlbWR/9tbN1F68FM8q2aItDyfJ5kx9ZmCayeYD2SBNULc44ECZJ9btsC3MzaWTupgTB4+wPjuKBWV2TD2mSmkIuJaoMf7Y5DF5zYsQvF0VMSYpg6u42oTDjBxAFhthSKrCkJ9bQF/64wtcLhRx3vZrFAE1z4oYtyqM/zsVkARnwqCjfYEz7oUW3BUVeA15f2f2JXsnWCsOBt/C+fZrSDrsjwSeWTPqO5P7eDaeor1uFE3qYATA8yV/bIxnDbqVkbZL2P+d7SEN/NMX+hKE8d+fBdBXeRZppM09BMDk79nJ+V8aauh2Z7XFjA/btRx7Pbk7oD2vJ3WzNsoxxpcGeG8O5W7bhjmwcpXZvMgZW6vT3MzOFOm6IMYi8NRhzctoEzBwIIp4WERjnfmGWWVCqxOZkFC5pjcO2vmTOvHroIDc7V06ms4gv8PfJGyh9+dDAFKbYbr3anCOYaKRRjpNbIDMbM3Ioc7Ji9M4DSrdykJ+YllSqZFyxLQyQyKuK6rTYzX1SYW87aCFw/KeA+d/rkuHFh1BsdA3ZTHdDfPLs+DwBqy0aGf64qc60p27s+KiC7IzSl+iG84riRRjm8u3jc1Tq7XTZK8NsN1jn04SUfwPJshGFj5hndeivOtDlV4LcN4R65hIlaHcHyfO4ExofT7QHfC7Ql26cXEQLDsEN2ZYCyYeTnueYiYND2VhPslzLfIQ4C3XUXw2CtZvylq7Iy0FBkkmP836shskOEyKSAjN9VS4/U6cEFv3kKA9ZtncM/LI9B0X+pg/u0rwLw5hUMd63xrhnptLhzwXgVYmTdtHS6JEOy6X0bAwGaSHHdiQPZLAIoTZ/PUjnU9HhUNhEzcSurgvOz1M/NwDQTdUuhNBM+Zz5oUcRGw3YhxyQTX0Q8QULamCKoI/KYC71s2TVjwXs1LgVd6fllktwzF33wDxrttLNScK39H5JOnJPvPfuA+L+CNafMgZW6vTyOLgo4t9AzomLgioiBWEUvlBwqAI9OCPTjo8MsRFs+9CtLKuxW0ah+p9kUhhWPaL1uWYL9sreh7ARZU7pKnBQNiEiiaiWUDWlP7PUhEgol1BA5iaynPpnZ7FQPe0rkTzEhn1i3hvZngb2e7WITP9qxu31UsBvEMsWuaMY0Qx0u0NHK9jgCDu9MPftZYR1SSFcGCv1+GeigX98UxHN5/8qKNW97yAcnt2ChkG9GcDNfzhTV8/nLLAontKv4/KGKsz3XxPEXg8L60opTXKe6vkJquRmeCMalEIm/bBHjyUhs/lOwfFNH/5rdO4ThXmxrkeNZzhuDYuxlp3YXUGgcGCvh91w08IxFT+B37GL9MrBlh5NpcIask1AzhtSbmQeThGGSlff8rCFZ6Ae6hosH9TAP5QBlt44KxiiIXnZFFcK43bd0MDhz5MOZsW6zUWkhxfH7PqLnTmJroXzXCGLenuB7S4xlIX2/ges70cN1Xm5j/iWO6RMxeHTUyuk71MQYfPac9onSOkLLPDtIiNne2aghuV4YImqiWe6dya94qkVHZSclnEB5r1vX5JQSNtzNlZzn/6p9I9rv/4L2d9w1s8yBlbq9Ly971J8T57M8bsDLS2q+f6i7Ts4Al1sXay0QyD8C+lxfxc1OVtGRdfh/dw6K9PMKCWpuZs3MVQDvyRSJN9Tue6WKUdNFn+aaioFtSWinL3VaqKTUa1usiC1Msjr2S9WgRubUXzdQD5kbEUvXcWROHQ6bDrGA7zFIMh8Uus5QEF4EDqIdwUKFn2SYykWIFveaVOJkxOSiZpoyjeKDFMcbhxMDKbvWZON2fNPzJ7Sx1tBt0UzvShnAyZF/kFV69TGSnjHtmuY4ZhvW6yJOK+3ilYzvoQYCdNmnLhdQYXd0SshHvu2qO6dcexlitDtEniSwlYiX4HBINkCqzW8sEO9XDisYiWo4TVUpOcbytGubAf/Hlw599btlAo4kjUk4w51aHeEZv2kKZYEnEefWX8Z7Ewd/XBpZBpDbK99xAuehq0zIok4Kx3NzMgOjs30MV2KPZO0/Lf92SlkSLJh4nYjov4yKu4cTAOhm/uoC5OAiAcWqE+H4Rr0K9l9Uhnh/lAIjxevwIxkYE8+U3H7HS38oIQcipPjBIbNnA0mbqIKgKEoyxr8F6OUapikq/jRDNHqmOfJy9qO9n1mSm4O2iZhRZHjyu55cIJBF6pZuMMOdX/rnIykiyb//jtz/nG9zmQcrcXreWvfOHxXnuZ7FosbW6mxklOXIthVtX55wpkHB1CCf0/DIOxswEm5atDrG73tPdf6jOPkhEvJzAGOXJGyHey3Q8ZeHJSslc/Ls8wsJXjsF8IWZjbQg20aSlWAbBPR2UsEhv1M2ZbtbMkdAxLkxw3Wd7Il9cEXnkwBRb2XzupUVc024FCy3r5iJY9P3E9GPIQiK9t6aL7UYNY7FTxXu50C+OFXA7w714GXAQ+2WR3ziLTMOJgUjrNuWpYRH3tVM1NgvbHJzrwqGSXrufC0qaIcYx9IwxE2smiYHcUHEdw6LhK04MVJxO6cdLIzSS++wJ3NOvPwTHcnKAzBHFv9iCgJRgR/DZ031cQ7ck8ulTNhdPDHDegxKycwTl8ljdEko7i2PLgCUK2mSGaEmFxK42cd4FZVa9Zx3ziMGmsqTlP3/OMi97FQQ4z2yLVJShxMyGmyEgIjZqdYg5kmpwQ3n8hgaJE/8mgy2Pm3Cin7Bg7UbdApoDzQbtl5EZWRohYKFo2sMHCA4SV+TFAOf0MmTv3ExkOsPcZvO/tQHmeDXCZwfF4zMSpVg7QWuQ+fABmEmO4Ls00u9/JpaZoZT+SMetMxFxJ9aM86SChD9xGnT54+xiW+SlJQXPKq5oYYJxePuGgbmvNhE05cUTf+u0ihE6KtzYNRHA9kScF/6BSCGV7LEfOf7cb2CbBylze11b9sx/Jc4X/yEWOlJ5mbnIxGiPsVjgQopxOUbQQBE37o5P9bEQUgWVLeM9DYAKAgdPumy3hIXHyewYYw2cxkUs3EGMFDw72XJXH2jWwUtxvsf3EFA4mcg1zxZa6rq4GRYx6qpQPTcswKFmgt0e5dCvKwW4FMPxMeMU6bG5G/cyc+Rk3Ty1Y4ykA80erA5txz/Ra8hjfegAwwICIdJQ72R7Fcj0E2tAQGnsoqUBuzOPKwaadASvNTUYjLVcUlQMgCsYzxMDHGu7anL+kwKAvsVEpJAYXkEEDCURkV94B5zj+69A2fdSG45OBPNm7ON4xEWsNzCXlkcIKL+8grH7wioCx36AZ1FIUS4RwTMvZOoci8YsI94qcg3rdLon8o4bGKMTAwS/21UEbytDkad3xKl/xO6jEpmI2FGbuSIXFvFeYjcopT8qao+jDM+CrQYOyiKVSLL6h2493tjH5yIN+GgX2hBoo9Me+yidsXkkr/NLK5g3q0OTCdiow+kzO/O2TQWlFvHvyjGYn7zlMSnlSFWEXXx+UhBpFayP0PUG/o31fh/fs35GEwV812eG1bnaPNy0k3a6jzLkrGDl3u0qAiZuCP7Vo/juF1KRf/MInuXyyNRypxp4N0OjejMj2y2Jc+nvirQnkrV+7M73/wayeZAyt9e9ZW/9kyj9iFgTND/VPhta1mDZpxKJxInpGTy+a7vaQqpZh+rN8sRNaXfuFEkh9TM4IWor1GaGq0hcwxGQrspSyHrjcEdlir61ptYBeadqQnF5WXj2NaHCLsHB57pwlLEDmXbuyLxMJHJwn2PfMkVeJlLU2j9T0TwewbqBaw6Hju+a4gKWRsiWMIBiTxaK421XJVv+b0VOGWNBRKxvC0GydR2HL65q6SYVqSRwBuVYZOaIrI6wYJMmTgoue7hkjnXNjVxzhr7iIj63ht32yb4KxTkm3x55yF6VQqOm06n/sS9ADp22NML4XG4hSGR5j+UzRzMHiQvnKqIYBMf6SJEiT9bPv3kE1xa7VoLjXOwFuM9LLbx/bYggVATP+d88YiyZehu77id2cY13KkcQ5/RqB5kJlgUfPoDD3FG2FVsZPHxggdPtgk2WeIoJ/n+xbT2AHA1+KxHAqM8vm6jb5ZbNg3HBehKtjKzkkzkIIvYqCO7esnVvncfzFhasSzG7daeOyKRoPZMSLRlPfIxhT9k+YQHP+bUFa2fwyVN47kfLliwJXWxrAJravP/cmunn/PaLeM9mDcHY+X2cx81wDc0pjs314aCMAC7ycJ3rDXHGf0uyE//N/Y3Dt6jNg5S5PRjmCBbRQioyi02MbVKwRZbYFQpjMVDh4lHQwOZMD5+/UbfmZa2Z9RBJXBHRXZivu8TQE3FdbWiYGTDvpricY+BUpsRJ8xWB02hP4GzYPNARldFPESBQZIyNBEmBDTUzQME0ys8njjU8TFxkDdaGKj6WWAO5nSoWxsxRarQK2w312E5m2Rg6HAYogwDYEWaU2NBv+cjz2augXn+5hXN8xzW8fqltnWWJ8VgcIzi7XgeF+OEDw6EkLrIT7PPTmmJ3/onTlnEhY2tDmS21GXarl1sIQvqBSfXPPO37U8F4M0jJi+OFBfyc38dxSdV2M4wJFWw/cxKOlmyzmw0GC1a6eahrlPbvvoygbWGiHYEDw3EQTHuuizEiHfp6XeRqy7ATmYOyxxdWVQNGr4VMmIUJnu9Oxfosne1ZuwI2RQw9ZAIutjH/S7Eq2KaYr46IxK4407+urLQQpaHFscgp/T49tYNxudDGWNeVffaedbz3+WWM/RdXrdlnZ4w5uVEzEHgpRqYkE6N+d0to09At3VRtvWlXWhiXUoxr4HeqW7IsWZDgWL0Ac2araqU79uQp52jiZ3t4VpdaJmHA57I2xDM+GqSwYSJZdwzyqXb96B7+PdUHoP2zJ/CZQorXJwXc84UFPIPm1NR33Qzfx1MDBXx74rzyP6D0poy5N6rNg5S5PRhGjQRSe2PPesz0SgaMJEV4ULTdSWsKx+On1t34QHEPJwZGD41dpMqLqQFh2UU2VEc09OEoe7oIMm0vYosn6ae9AI6goAFPnqlwTVPQE9+60p4YWGM3NsELPVuE2WmZlM/qzJyBk4HJsTQyNdntqtKGU6Nek0m0UzF8D7MAzdDYQJSvj1wEFIUU5QgRkWlBnGd/TmvwLaTHycYiw4qYGjpmXksjNMdfVUAuaeblCDvs1aHpzJzs4zhP7sBxn98HBmO9gRIBG/S9tmA75dbU+jp1SyJfLiheZnorwJXMjrzzp7hZkBju6FoD4nWN0BpRrg4xZr0AJYSTfZynV8Lzq84wFs2pSClCIDAsmu5PT99zso9sAsuJ21Wdw4FlAU71lS3m4PxBgjG60tI+N1Nc/yAQ+Xfnjd10rWFdgS/rPC2kIsXYqPLUmGF5M/JsXvDZxC7mdV3BpU6GoIdNP0UQhHiZSHWqNH/H5oCXGgZmcQzHPi2I1ELMm5IGfbsVBPSP7sF5f/YEnmMpV4L7tnWM5adPWvkqiHU8FX8yqZpKMOeSIyjNMGP0visiT28j4Hpu2dSSQ0/kY2cwxksjzNVhEUHx2S4C6xeWrO8XGVzV6DA1/VwXY/vMNgJ4qlavN1BObU90vLS0tzDFd7kZIqirzUSCRJyLf1fkoa5kzo9/LVbSB87mQcrcHgxji3VHNDjQjAfpl05m0vncfTPDQkBd7BpuoTYTOa/AVQqXsS8QKcZjH7svUphTMdpiWBDJEjijQmqgz5vN1JRymTpYcJbGuP5BDYskG8udGFi5aatqoNFqZCUPdmoupFj02GBupmWPcmRsg82aar84WPSdwLpIU8KcOhuN0BrgzTwca22I63ytgwWXQM58M8CNuuqtTAAIpDDeqGg4oRcXcaz2FA6JO1V2ot7V8s0nTsPZnO3h+r7vAhzyesPo5GRwECfw3muH58ZGHfc90F30wwciv+s1jBExOFebcERbVTB76KhYHou0jMRGk5SzDwsIOm7UjUGVaKmsFOJZ9UoY714J17xVMzExztVZAcdr6nmptDoIUJZZHONze4qLWNb7Pd3HvVGnxs0sI8aM4b6OUVY0oPVexUCx7YmyXzR4ZxC2XUPQtzzCa1Ts3apaMFFMrE8R7V3XD38vd8uYI/z80sgyXiIIlETwHeiWrKvy2hDj9rkTmD9srzD2Rf7ZmyyzSeaPCLJ6Ly7iWJzTIggIXukY2JzjvzCx3kKOGCaJtjDBMzndx30vjzCniTmZFvB8rjXxrHeqUK/9vS9jjjIztTY8/B0RwfixZDsq4vt+uqffy8z6/tRn1vyS5dmDMr6rHVtDnPhnkFlZ/QvyRrJ5kDK3B8PYnn1aMO0RRx14KbaSRVlLQdcb2hBQnS9F1Ij/2C8jdcxePsMiFlYCaKeuNRRkR9fMsQBlqPgRJxNxHJFKal2K6XwqooJeim+JXPydmYRGaMA5Nh90BOchyLKoZRsCTv0EP3nq8erQWERUxnUcBEBkxJB6S50NJwPGgZRmMhO8FM62NoNTPZp12KoaaHejjt+JWWAWKEhA09ysIbgLYpHUt+wCpd2XxpDm//wa/v/QgZ3rVB/XyYzMcc3xaGPfqJ+N0ATXRIxOfaaHn8stax5JTIGTWYC5r3gfP4aDEDFNGU/fd7KP50t5+eURSh2xi8zAMzvmnCoRnGZnjOfIstZuGXgcMoACBdCyF9K3X8O41jRbdqGN44cerovZj9oM1z9R1soz23juv/IEjn2liXlxrmvtIEYafFN7hvN+U4HIzGoMA8P/UPDvi6s4FrMubLCYuCKTCMFRITWRuEqEY46KODdLNARvP7+E+cLSUerAeYeeSC2XXSSL75F9XN+rHYwxheU6yqxiMEOsCftDuRk2C5s16xBO81LM85I+g/P7CGp7JRxjvYEM6mKMeUlQ7yP7+LmTvbBkGcl+IHIutYwqv9/lWGRxZNndykwlEDz8/eEDjIl2oHaGf12y2l++83m/hWwepMztwTE2/MuXL2IXO5iO7pi4i2LK2k9Mf2LkC7qbCYKBzZrRRjdqllpnV2MCZHe1NEJArIjpUexWRLo+nCNT8NtV0ylhc0IRlKcorMWyCqmRDL5YkqHQViG17sFFDVSCBAsp9WLCgjGJKjOUq9jsj6BZitVNC3DWoWdjwj5GTNs/umcYCxr1XmYeMi1jHwEKRfPIyqnnAcVlc/5UHF0bYGyGRZHf/yKOTcxA3khTvlsjuPUGxruYiFyvYjf93Zdu//5z3cNBaUEDPgI8T/dFuoEFim4Gh8WMiCO5kpuLgOj8PgKt3zyDZnwjH/Pi8V0rDV1sG/6JGiWJBpBjdUjNEOXByMX989mVYsvscDyolkzWGjFQVLv90U/iuby4hOvplkxbqKylkeWRlfamBevye72BAN7LDJC+V0GJcEH1fxhwdJgBUizT2uBwQ01mqigy2JngvNOCXkHdLgAAosVJREFUSOJbgBNq0EpFYPbuqc+Ad5kWEBAwi8bgoJHL8Lx5C8Ej5/flFn4vJBjT5RHm7PNL+K79rtcOzw1mZZ7ZRiaTjCH26FoZWsnzbna1iesualmwHKO05KUACH/8jJV2GDCzrDsqYp6y6/t6A2tCZ4LjtqfijP+myGsLkr33j9/b9TzANg9S5vZAWHbmz4HhQ0rs4hhf8Mg1gOvMMwZKJsa6ELFy0IkBvugi+Nv1ujnXvIhY6lhdfmFiOJDIM32PfoDXTvUtU7Jdtc6tIocBoe2JyuHrsahWW9Lsj5dZW/rEUW0Qgaw629kvjUxjgzvp9YYCel1teDizssSwaN2b66FlX4jFcCsYq9rsMFAwH6BQ3yN14Ky2c3gc0rGZMWB5SgT/Zg6cT6+EMVscI13+cC5rctR2K0ivv3v98ByQD+NRyoftnKMigtTfcQGO9zhK7lGrzTAu7JBM0Tg2kHRF5GTP3udkAFl+4CLS/SyZUGq+kIp823X87JdBQ/UyvKc2w3xY0YCgPTEcQ+oYzbus2UDqgpB5QswRcU4MUmshngUzLQyg0lxwVYpF3raB473aQSC+NtQeOoKx4zNPHAQmVIq92EbGoRHC2TNj2QgNR8QAvlvC/fVVyIX4j+t1jIOvQd1WFcdfGuH7drWJIKeYYG6zAeCbtax1vaEg7RGecV4zJR+c0IrJ4QD10X2TB3h50QTXHNHGn3ewfFaP+jVHmzfeyZhVZRD5+K6tCcUE40LmGNeUtaG1MCikCLY26nhuT+9g3vUDzJXYFXmoK87VnxEpxWDbfYvaPEiZ24NjE19pgqFJntNZUCSJOgncKU8KSMnv6K6fYlEs4TS13j4s3mQ4oIQj9rsIFoZh8XBX4cS17rvFBMFM5MEpD9WRsS08hb9KsTU4ZM2bmheOYCHvloyyKHq/TM+zy+zMO3y9w6IGOKlpyjCzdFDCWJC6zN04gaKRLozMHHmpyeQTvMmmeFSH7ZZEdsXKYMTJiBjbKRMTQAs9Y5Wc6t1eJl/kcC2fLJuZJ9LIvWeo2KDHd+210/cxl8hWCn3DIGWOyeoTKH25BedNB3O5BRXVt2xBY2XiI01P0OtmDbvgcmzYj5tlSnVIBFjTQbUnANaKQHcndgEUZpmAGBg2Scz0fZ0xmgZSVTdzrDPzsGhNC0WwW2+ECGhF8F0ZBBiH/JxmWadWNUZWZ2LjzYyiCJz31SbOQXbdfhn3tDCBk6ZwYjm2jUDmiLTGECVsTU0M75UOAovHd5HNaIaYN09vW3B/NyNzTgTB0dku/p8HtD50cOdjEcdEO04z5ai9tGj4tPMHAFL7iYnM7VUQMC2PtISWYJ5RiHKnqrgwxWtNNKO1OMb8q4fQaCF9nL2bNmpgAmW/JCIi2ff9obtf6wNmTpZl2Tf7Ir5R1u/3pdlsSq/Xk0ajcfcPzO11Z85zP2udUNlAjxTQmWfUXgYwxITkmTdhATv5TG7S/aQ5td1i6pgE+56WeoqxObFREYu+I1hEqOoaekp1zawTa2cC3Qt2Um4qgp9gVYJ68w0MKf4WFkxWfebh89TOoIIugcFkGhCsSABx7FpKPlJQZTlXPiDGhpmdzLFO0ezPsqglMarz7lWATaBaLUtDOVGqm06/PUGgdmEBDqiYYId+t1o+My8EC6c69lR2pcIwA7mjAlzTgrFCyKY5aht1LQGKXlffyh87VQi29QM4tXddR4blRh201bUB+t34es+9EpzLdtWYZuzQy+zftaaBrKkzkji2sy4mOHczRLC6MjIabb6XTSG1LByfP1syVCJ7nuVIRQkTkd0qaOwMnEitb6tmx5u2cP0i+AwbcvLZMqNEAPd2FZ/tafaEc5oZHCoUs4njzFOV4Ni6mZNivltBcHOxhe/L6hAB4P3aThXqx//Ji/fei4dGqn8vMMVoL0XAebfs3GYNnxkW8cycDPfNMibbT4QFK5nxWQ40KO2VNKgvQFOmqBnJcoQsXhDjO0f2ETOhpRjBTDlCQLY2fCCE4O7HF88zKXN7sCx1LCWaiSphuoYJYbmHwm2k8SYOFof1hopaGRANIETPmC5BIhKKNmhTp8vmbCJwsCwn9QIrFVQjkdUBdrfsr8OSkCMiY3VKdBDEKFD/JNXsg5di4R4oqLc5NRqkm+E+SE2eKSaFde2Z3sfIR1q9OYWzXhla1oY7dLKGTvUNcxK6IrG+zpR0MTEWVBDbwsqgJNKs0Exwn40QAYCTYcy++zIClCst7dcTAXx6tP8N7UoLu+qVoXWcZq+fagQMyNrQqN1eeutuN6/g+3LHgJlOZpiIIJfRorZGe4rsyJ7SlwkqDpUN9dCBlQLGvjF/eiWjopIGL4JrYKftcmSBZeKKZJn9HrsGDmefGQI+azMNLiPLAESuYZtYBloa2+vVmTFsGAQ8voffX1w0XZZF/cwgMDrvVs2A08XE1IZ3KzpmOo8aIQIgivfR6S4o7oSaO/3AMgilWFl6mnmjACK7TfupjfedwNIimNdXmroRcE2H5UrzeJzTpABNGmaavvMqrunVDjYhu1VjRDn6/f/CGj57u0Dl82sI2qltxPYDO1ULTlaHmFNkUBUT00ZJtJzcLWFus/Ekg2dmTU/3cZ+hh/cNixhvNnE8272Z7aPAYr61wYNs8yBlbg+WVSN8wRuhNcqjo6a2RaTBABUx14amDtoIjfLXDLUnTwX6KIu6Wx0WTcGSYFJKyzM1zfR9PbdLjxWz0RljJyRizpR6IZTbL0dYVCng1iYrqAiqbD+wHihUP73W1JRyYiUWpuLDgu2wuEO92MbCH8RwmrUZFvaZZo4ojd4PcK8VdaLE2xDDwnEcFkVmAdLZ1PPolmzHR8VMEWWSCF7/8op2n9ZMDK+XHXx7JaNvJi52khs12/VngqCnmOD57yhV+22bdy4bPaoYguoMz2W/pMGBY0FERbUtmFESQXBEFgj7r4x9OO/mFI50t2K6PGwbkOUCTirjMoga+4ZrYimMWiJeBjYRu+jWQ5RzmCWaFLRBoY4FgxMRC1rI3CGTTcRKge0JnsviSOSzJ+EU/RTX0y3hs1eaWvqcoURTiRBEX2sYZiZ2RZZDC5iIt+mM8VzcDBmFTPB/ZjILKZpBNkO8RuAtvxOVyL7L7Px9tMnhccaM1HoD90lgdl+zIU9oKfClRQvcWTqkdP/FNsp357oYp82ala54PZfaxwcpN+oWoLgZzlebYR7lj8XvJu9pr4JrYLaXwnx5SQCWZZmFu9JU4UANGOtKmz7a1DJnTvgRERHJgr9y97F8Hds8SJnbA2XZ+f9anPHPwYmVFd/B2ixLN5kgNS8pgoLtKhYSZhmKCRbIRogFkd1gE8eyE2nO2Ua684ldS+fWZzjGRHc83CGd6WGR7Co4clLAe1eHcHIsx5RiUx11Myz8zMhQLIu2XRWpCnbwPcXgSIJFOnFsx7lfRgDVnmLhJmU2Vt0MaqlMCiKzqjIxBAveQIOSXoDrJ02bO/1SbBL+1M8gRoGCYWQo0TkujRFEMdvy8AH+vzAxYCmdhoilsJ/cFXll0ajF7Gxb0izOtAAGTuKiLBA75uwpeJc3ZhIGmhmj/gn7QM08PEcq7e5V4MDZPJCOh7odhdQaPjIj1Z4iCGMJipmBfK+kamoqpdT04fMLC6aePCpa8M3gIxMbAx6PARGDyHwwSVwI57wjyFBtVzFH37Kp4mspAqJREc/r1QU7HwM5iv9Rt4dlqJKyedYbeM6ZAFx6rYHyW77f1uk+ngH7Wi2ODfzKQInPl5ICdzM/Nbo8dUZSB5lOll9GRWuoycCZ84A4klN9POutGkor21Uc/1QfcyV2IZV/pmcBILN457oIZtcbKlfgGQ6Ggc2wiGCCbTGuNnGcfd0wDIqYPwTZ5sdNBd1k2zewcuaYYu2dTNcFZ/IRycoPbqAyD1Lm9uBZdYZFZaYYkGERi+RuGbvNamTaIHRKDCYut5BlWB5ht/NSR+SdG+boif9gqp1lo2JiGIleCc6hmIi4scnvl5SSzN0wyzozD4tlJdK+QKlpM4iokFvNVEyPGnd9pFcHMe6HWZ9BYOwd1v8JznMyTf2nCGCIE2FbeQJUE8ccKsGZqaOKuBqAtacYn8QVWRlK1v5LIm8Vcf7F/4pSyUHZ9ClEjLmRbwaXt0JiKsAippwrIvL7XsIu92NnjfbNsh2D0StNOERmiCYFONC1gZ2D2A/2MVoa2ecHxcOg5/wc6AcIqmIX18FyCksF0wKYV9S2IE2dHZTrOgacp9wFE8PiFQ87mUokUi5Ynx9HUA5iwJc50L4hJTZxMM7M0IiIlFVfozYzMLCXWdD0+TWU3dhvhwDuSQHXwo7Fi2Pc13PLVpIspEZRPtXH/e5W8ZmNGrINZ7uqbNtCoMDnMC0YuD3UEgUDzcwRaUzR1ZuYmIOSyKdOwfmfyD3LoxbEIt91GUrAVJjuTJDhKKT4znF+dCYaxJe1XFoQGTsYI/ZMIr2+OcX8qIcY390KjvXCEuZrEGMNeHQPATIZTqUYa8srHdORIbCc8gXTgjGMuKHZrRjoeGGC+67PkPm60cCx33f18Ly+HyvHD3QJaB6kzO2Bs+zhHxXncz+PheB0DwtP4kAWnkqxBHKOfSzUGzWkm0nfpQ7CW7aweOzWFeyqNEV24mUPIH7mQIW3AsFCN/NEUnUEQ02DexkWs27JlG7pTFaHcC5O7oZKse2+EvewtkreWMNv6yJbjk1xd6qgv1JsZZekoMBi37rqkpmzMMFPPrVNGmxNyyOsoR8o/ifYxfX1lIK9oNd1pmfsqUERbIy9Csbx3euH2SO01MHCT+Axnb8jBgpuhhjr7So+T2ZMpk6c7IjdCspBTM8HsWWNmEYnIHpUxPgfKLi3qdk0lrt2qlpim1op8KCsLBjH6OksXbDMQHbPwsR6MrEUQ6wJGwNSzIvg6YlvYmI0ssoi18pQIqa47GcILqpaKpn4pqvDz3Puj4pWAswEAXElQnliq4qgguJr1EtZGpmcPplilOXfqhmbLNAS3KkB5sQrHYzhuS7mwjAAFZlA0oMyekcVHcvUsdTyyD7GeOYh8L5bJ2QRCyhPDPB9J02XG4SSrglXm8pkc0XaEY4vYnTtvYqJyYkcpvCT6ePoMzvTE2lvojUHM0+klB+UMVeXRzhHJtYOoRoh0GHgkokJP/J9bCJJO38XgPl9mjP+70Wc7IHKrMyDlLk9mJY6Rq0VUQqmWH37oGyNw9jxdVhEOnpxDKc9KgIgG8TWt4YiXiKHGRQMQkjzzATvI9CNDoZaKqFnOzIGKGd6loLOa5KwTDLShb8zwXleXMRn2E+FHYzLMUo/wyIWYzZ+W2+Y/HZd8QKhZ7txX5kilGSvRLYIMxXO8geDBGYRRLBbTlzcV5CIU/t/4HPvFIzry4twLEdBrC8sgT2St7GP+yTdmowVCoilGZybI3KzyzNpwbUQDnqrqtfkWJmnH1hZ44ldfH6qpZSKBmpLgrGggu5GDYFL4sI5EzcSemDydEtGn2ZA5WSqyKvAU2ZJWAagTkYmuM/tqtF7X1oyBzzxjUmTD1IYbBRS4JtmLpwiAcuOGPA4n4kSsTEsaqaqOsPP47uacfKtYWLo4TirQ5SAhkWRXz1vmT32RmpNEdBfa1gzQxHNXowtCFoZIUDbqeY0hnROrTfwPXh2BUFFkJhuzDXFXBRy2UsRXO/LHcy58wf23Xylo2VQxcb4Kd7npwZcjTQIHfl4Xo0wJ0+Qql5KgvshoymIkW367Ak9/gxjcLmFMa1qaSksaEkvwnw7OUCAVM8BliltQID9qT7+vqUMMIL+Sbv+ehvLSbGLYMXNJCu9/oOVeZAytwfSsnf9CXE+9j9ZpiNxsGAxi0J6LJ3t4hiNwdhGvhzdmkq+sACncraHRYU7pExMmr4zNmlxlhG4Y6WTjzPsdFk2CWJTsN2rYDGvRFZeYFCzVzGHt13FIne5hXugCBYXbxHDStBBsLHetYalmCcFa1bIXjYEig5zjCWWBUQwVgycmNFhsEMnycCF1ggP93TJ29EAhdcuYiUeZimIByLwuaSMj2kBjj3ygKHgrvXlDhwEBfHYFHJSgFM81TfgLEsyeRzRZs165jy6D4dFzA17Ae1WIEv/9g0405stCjT1X9XynSsmDlfXZ7On17pVQ/nkES23bFdxHWMfafxKZFmixDENEwqhlVMRuQPbhSBvXzOIefYPswWxixLLVIHJlQjgY34XmAkiKy0TgJ5nHnresJzBDN5mDQ73kX0rb9VmKJMRf1VR7Nb5fVBll0fWmPFot+O8RcpCovDiqChSSoxZdf7AQKcUNpz6IsUQG5KT/cMBQmuK97x5S+R/fwyBY22GZ04sEb/jL3fwDNYGCGSolBvExlzLtDxaTDH/ajOMFwXwKOV/sY1/TwywvgQxjvf43vH3/9oCAuLjgMObNTyfewEVH2ecA5wng6I4e/9Qsrf8ya/seN8gmwcpc3tw7bE9OBXSFSc+/t0vI5g42RcZ+5J95x8TEYFiLRkMfu6LznIE0/xhAU6kM9HuuLoL1y+2THxbKBwxHAedDFkEjpikeWuqALmJARGrEc5X1sAjEwM/khHSnuL/kwKcXFkdBfuPEKPCoKGQYudHhgSzCwdlBBqrQxOHI1BVRBudaUDCHkWOGNtg5BvjycsOsxW+GruJvxCloCZW3yd9lbot77qBQO3fnTccSOKao2d34KGWdNgHhqBMZrT47L3UlHYTF7vzA6USv/+KZULYq2am+A1Kl4tY9ocU8vrMyoV+IlLWckRbgaXbVctuLI4xV/sBGi36CZz4+X1tcpgeO2R3HEsCdxNHwb6aIbqkzvJAwcqP7COAY4sCBqgihp95agfHC2I48p0KMiUHJZHfOgXnzG7ayyOjxjLATR1TsO2W8LezXVzb0zmcErN5V1oIBr/9Gsb3woJ2oNZApVvCHKWO0Lddt5Ik5QWo4DtQ8DdLcixTrQ0RRD26j0wdNwqn+vh+sfHnNEZQcKanGjQBgu2xrjH8jjNwZqmTXbhFcA2lGOvU2EcGidpFzNIetTvpB1GWoDnFmFEw77h5kH+eNGZ5qXitLTycX/z/4f6/59LrErMyD1Lm9sBatvIXxCn9JBYiyl83Z3Bu3IGx9iwChsFOReTXHsZuZ3mEn3IEJ0InHcRaa5/h2JEn0o6xIyN9mIwXZheIAaB2iCNYSCmaNvYNiEoF1vpM5IRrKrp+KuLpsVeH1m24OjMwbyGFY9uqYpFqT3Ht7AXEBYpiWiwvJQ4ArPnFK8+gqIcmVldTB1qdHdZ7yATXuDDBopYPcu5kx2FSaLWZ9ldJLdhjpol6MJ84jUCBMvl0Fmd6eO/Mw7/EsHx5BePAkg9ViNsTw21QUGx1iP9frxvLaBCgRPXkrjWufHEJu9xH9xEobdUsu9Qem0ovKdVbVez2V0ZwettV7KbDAp7FtIC5V4oRHD10gPeMfezOj2rI7FVwb2PfROHKERwuS0MMKN1MpJygJ9GNBt43KELz462beHaLYwNEH8U/fedVY6uMfTj29Qb+T+fcUEo5AwgR05/pltBwsREi8GpOMXZl3UCc69o8vNhGz6O1gTnoX39Y5N3XRX77Bcy/kwPMga2qyP/2hMj7rphEfbeEn8RFOeqLq9YZmtT40z18l8qxyJdW8MwZqE4VbC1iDTn5Xa5oKef8PuYaS7fMsMYu5hZLd+UI2aKDsnVmPzHAd35hYkDZteHhjOjdvkevLVhzUl8zxI/tmzifyGFdmOMCFBqVuimtwPLWQUlkoy7O2odfd4HKPEiZ24NtLywppdYTictY6Kkyq+JRzpf+IbIqlxdEvrBqgMV6COd0cmAqswRAEtRH6Xj2o2EjsMg7rAsSJKbOyX8jT0RSO1aQiIhiZkJ1iGPfUvOLYywWxURF5WKj4W5XTY+DWRsykbar1sG1EhmAtBJhbAYKUF1vYEEOYmMEHRXMIgNJBIv6yYE1u5tobb8egtUwLVpgR+OuMn9cHo8S+7w2EVPLZcmL4F3am7cO92wRsSZzIua8CxoQ9gMLPMhKIVYpI55EbMxHRctwHJThCMjs6gUib9qGky2kcKYsIVIULs/oIeW0M1YMUC6r8+j0MK7psycQYNZmVoZ8ZN/wEkeNoFtqZ1Av42gjyHx2qzk1xspQ2WWtKY6Vb2NwnLHPzck+gi6qE++XjSHFNgwDZQVdbQKXFMQif+JzcKBfWkXw8Og+2FgiVmIUAeXXVzzSqx2M4+IYc2FJszN09ntlkU+fRFBHDZK6BtQX2odLqOwM3ggRaFAbyddS2r6+b1oQcWJcG4XYBgGOQ+0TtuEYFU3c8HMn8DpLxqljPcWqWk7eqhkgPnatj9JRI3386POIPHz3DsrGBJx51qerGuG+eyXMaZ7rdpY5dq1kvbmZKR4rbsrZ+jsinfHrptPyPEiZ24NtTDVnjshnTuCLW1f2xpkedlFP7cApvLQIx0DQXyUyiu2FBWRZNmv48u5WRL73IhxkIVWGTGxp/8wxvQ3qWzCz4in1l3XuQPVMBkVb/Kuqv0DJc5aQyBqhM2U3ZDrYxMXrA2UwkGXRnhpVV8Sk/gequXFioKWK2DRRREw/QsQc67UmHNlNynSC8SSLZa+CY1Y1CGITPD6P/bJlNQguprotlVcJ4qPYVWUGYCiDs3s1Ou9BIFJSnZdmaGUIBnS7Feutwm6zoQZ4k4KJ3JEG/sg+PrNZwzhWImRw2JmZGAQypVie6IwRCLALNjVNxr5R5f1EWWlKZSfQmBkKPr+8ai2F9kTgCPPB6t2+H6TePraHoIOpfpYJC0ec4426Pc+NjmGiBj4E8U73MDYUYnt0D+P1Lx9DAMnMQmsq8tsuY9wbId5DLBRLPE6G4/UUO/LIPnSC6ETpuDtj625OXSOORSVCoFfSEk2vdLgZYKiZts0aPnuyb0DlfoBrWRzbxmNSwPdlWrDg4FrTWHfdEgLSph6zW1KlXM1qzhS43wtwrHIMbNmoCHDyUZsUMH8pNSCCc//mGaNss6zlZTjHxRYyZeVY5KFNo5VP9TUy5PLGMtO0YBnXzAFDia02qF90tvu6oS3Pg5S5PdCWvfuHxPn1X9ROqSGcL51DJYJTuF7HjqMUYyEpJSJTz6iKry2YgFnmYGH8nkuGGajPTKTs5s5D2QFuBGdCwCdVRUWMLsq/OWKicXQCzNAEMRa21aF9nk3wRr7J3pPFQj2URoh7jFyUJDoEPmrpZ0MZMmtDY5ckDna4q8PjaZ7Eu9CIsUi0xn9QQhCwpnRqqvySbZTqwscgpBph/CbqWHsK5K3ODPg4LlojvuME2S61D3emPWqOLq7rDQQIzRCOidklsmj2y3hemZhzvtxCMNcCa0m+/Zo5BmZJNurmgBLHOkGf7inGqArHsVaEo2Xp6qCM+2RgQ2M37ryS6adOwSmxBFbVOXyxjXO9fcMcWb5cIIJrJd6BJUGCyN91A+d6ZUGkf9oyNyK3BihXWjjfI/t4Bue6FkCI4PleWLC+Um/fsDLN73351ufSK4n8u4cxJ9+8hYCMgOO8FWORd2yoGq5+n45mFmozlIBeXEImr5giW/Hwgc2X1aFpDRGrxgxQSZ33pTbm6NIoB4wdYw74iZVs+wHWhop+x4NcmaQf4HtJHZXFsWnUdEvWi+flRW2n0D0+c8WGjF56mOFVivHdZDbnwoLI80uq0RJY9mNQFFl0b/1ubNVEPr+KwL+QoNR9rmvikWQpnuxjDrxnHRudaQH3sd7AdTdCceSbWwKaBylze/CNiq1neqZqWYlE3n8ZAclvnDWAWVjQBcQxZ7hXsc+c7WIn8ugenOvIN8d0kxbq3LoDZT+cIIEIF9PFgZ4j8nA8gi9lZuwOR8tKBOZmgtcGRWtWGBZMD4X9YUoxnE+vBAf6zLYFNX6KHwJ7n13GQvrYnmI+dmxhz2dWaNz9iuDYDHBEcL5JAdc/LIpsFe1+CeBlZulaU6TWxWfqunMmtoGln8QREd01M6ibFjBeIiZ0RSp1kJhib21mkvleijGg1kniKB4lgzZHuWB9ZogbWh4B6/DeayhJZGIln9WhNRR0xH7Y2LKlu9VYQCFtK912twJsQnN6qzgf8QXF1ETHYhfzY6tqsv8MgiMPAQ1731C8jwEejcehLUyMWi4CXMX5fQP+HodbuFFHgLIyNGptWQP9tSGyXSxVMUC7W6PI5hQMok+fxPHIDhJByeRcFwECafU09js66tjZcXm/DEfcD/D8O+PDQeCwCCBsc2pZiBMDZD7YfuB6A8HHQ13TSalGFohQLHGYW1vGPhz+9bo1IT3TM3XfgQKly1r6KaSHdU+OGts+MFPKTdCweFgEkQB5YsLyfZLWG9YCgkb6NVtPsFEnv28zwTw41UeQRyNb8P/zNIJKNxN5eluc8k+I1GaSOT9+5+f9dbB5F+S5fUuY86u/ZN1xL7fwxXMEtebVIb70V5uGmaiHJuJFKi4ZGVs10GlP9a2HTr6JYW2GTMzEt2ZyXGSqMyv7UFmWwNpQ8SFj37IrlPEXwftrMwQsTO/3SkbTdQTHpjIoJdK7JcOvNFWwqhwDjPj8Mu7/hSXU9E/3Rd553RxF5mCRY9PAm0BhBfrdaYEVUVp1GT+9kjlQTwM1qvWyO3QztHO1FR9BUTB2daXAlZOZSFYxQfaCz4+p92kBz529iWh8Hn5iz2ivAkfjZHCux5U6yCaKPAMcb1dx3SxPjIo4f1gwWngztLYK21Vc01Ew5HoD8urEFp3p4RgMKskw81PVkRljTMc+drwHZZs7OxX0FToKes2LjzHbUYpxHNK4aZs1aKUUEzhwMpRWRoZ9CT3LpPC5nO3eqoVzN0sdnOtc1zJLF9vW5PBejZo6uxXgy/qa4fm264fBo8+uWKNG6qNkjjn2SBlrhRRBykgzIo6YsBqBxQTKulpqIfusGeL8K0NtwlnGeZZH1lrhegOfSZ3DJSgau2czyBoVAYhl5owWu9hssSTMzO7yCBuBd6/fGnjOPFP/zf+NG4xqdGtGa1IwoUiWhj99EpT11SGahXrpV51ZmXdBntsbz2aepk5dpEdZOz7dNxnryMMOZ1owRklrqjvkDI6WAcUXVy21Tu0L6guIIEOTuNb5tzUxJVGqf85ckVJmui3c/feUkbBXNl0Laq1QynxSgO4G+wQxm8DuyqwpRy52tMTMVCLrMsuGhKUY2impg6yACAKY67oDO93DrvNSG+cfFFEeG/tYKI+WFvJGdc3lEYLA/swYEgwABrqz5KJIDA8xBhwbKt+KWF+gka9aIZlJm/cCC7JWRliw8wEKjQBYYjvcDEEFs2r5AIUMEWa2SMMOfaNyJ45IqgHPqgbDVL/1UpHUE/n4GWOO5a1bQqBYnYmsjhAUJA6yF43QWgkQnDwowjGEBTjVbWVZkSmyNjxelZjjwDLlTsXoz+xLxezKwgTzgJnEZohzb9bw/rUhzrtVte7Ar3ZEntw5fi5kjmW7eB6OceIC07NdRblwt2L9qr7vwvHHO86CGAHIzEPmixmMfPBFIbfOGHOvEVr266GuialRUffVBawZ/cDaOoQF3CcFDzdr+K6e6pu0fUHLVht1PMtyrO0VEoz5TtXA06f6VpLL28yzjCBLT90SnkXeCikCscstjB3L2Zs107g5asXk+MBI5LDidd7YD41WD60X07nuzczWNxKvMg9S5vYtYdn3/wFx/vX/Cw46SKzmXNIFOfKwcF1vKMYjxiJGWqGfW1CXFJh4paUZGQ00+MXeqCkeIzJZeRHbgbN8Q9pufkEoJqZqylS2ryBUMoXYnbiYiKQFy+awUR+dL+vS3PFzpxh5Ipdqtuum4F2Q6KLpYxw2alaWaWgmoDLDAktqanq71Uwtr8lwdHfNlDSvv67MiNoM9z4qWtM6jj2l6xnIlGP0yHE0M7M2MLBsXmGV5+O4OhlS/aQKn+pbZofsrnxgU59hPJzMtEAiDbQ6WuryUsuGdRWcWVIndaD4lcWxlaloMw+0985EpK7XkGgWbeKLPLqFsXm5o7iogvVIolx+NULA/XIH5z/OKQ0VvPuWTTjLTB0ns24Mllne81M450+dwnci0uxfptccetZUkW0UDsr4fD77wewWlXNj17A1nHP8ibzDkv2O4JrbE2tlcCfbrRho9qhk/LUmAlhiLsbFXNAuhkUijZjyAO2JduIORcpDzJnUsfnRCA3r1C2ZUnEvgPAjdW82tfzE7+OgiMD/ZB//tie49/zYUVaA8/9qExlGYtXytt6wbEsptgD3bqyeo1aOFU+XHf7+Mkt1tMT2X37x+OOkjjif/3nJ3vnD93f++7R5kDK3bx3rTAxBH7tg8zy5C4f32gIWTi7Ek4KIlK1RWzm2VGe3hPQpNShIbSVtld1yRbBYPL+MRT51tDdPZEJhBNvecq1jw1EUUnNKVLJlGtYVFV4TS8EPAmt+6Ccmc04MzbkunFszFPnUSezoEkdk5ouUxbreche5U8EOr6gAu9PKXCAz4U52J00GlmCYWRkW8XpragHF8ugwSJbpdtKYj2P65N8/LcA5dMbabNIXWR7j9229730NXClsx1LQvpa/KJ7H3jTM3Bwo44JjXA9Fpgl27WEBpUQGEv3AygAbNWSi3rqJYw6LcDz10MDTzC41QlzHXtkyZ35iqscsDRVSHJe78UJqpaPTfczNjTqwEtUZMgZUTaazHapzq4fmnPKCdi8tYs6za/BmDZ8jgyZxUWLK45eoqky5eW4QYhfHudjGXNuq4thkfRGPU1MmHkufd+vXwwDTzW4/P90MwfbEt7JLfWaYohMDjJWIdcMm2J6A16WRKRbnx47fJWZcb8oLuAhGZgU8p8hT1o+CgCMPWcxREUJ2p/vakbmIDQ/xN++9hs+/vHgYSPvSomXCnt7Gte5Ujw/syKQj3f12QUzsiHi53zPRDc0xAN/jzM1E3nlDnPAjIi8tft2Ua+dByty+dYyUyF4JTnanauC6vTK+0G/Zwv9FsFAy80AVWu4Ct2pw9mEB6PhyBAfPMgYXFTfDovepkwiE3rYJACB9d3IM7oGWX+y5AFXEcCGe7tAI8iUmphybwiX/xh2vnxpeot5HDfmj5+A0U8Fx+y4wNewxQvxFLzD1zkzuHqDcixUT7VBdEXGTHINH/75dNcwIFWeZ2bkXK8XWl6g5hTNcL8DxsYS0MjIcB7EFdHYc57BgWB7qYiSO6dYsjrFTXxni9XoIYOPYx1xJHDy3Ky0cp1uCI/yOq7Yz7weg13qpBiYVPCtS05dHuAdH8Nxf6SCrR0p6JbTyFrMJLy8CgEoBvGKCwEBE+8ikNkfYOLI5xb8rQ820OBZkX2kimOgH+P5Q/XZpfBg8ndehSVxlcOVwQBz7Mz1c49s3DMy73rCMGimziQN6892ClHIMvNhnT2igl5ujzakJ7GVanmVZ7eTANGh6gQbhvpUC2Uxw4mtJboig4rUFBbQH1qCQAOVybL/7iQW5A2X+EGuVOjgngyv2ljrVx7jlx9XTklKe9UVBRWqksOT83ZfsPZ8+ief/zDbGd7uK+2d3dAYznAvc5OQ3GaXYNKfuR006QFba+cQ/Eoldyd7/R+/9s/dg8yBlbt8ylr33j4vz0f8ZX7TPPQSnwgWFQNbEgcOhUiN7rDx8gNd2KnjfC0soLSxMRBwfCxCDnUwQCMUudsudMdRFP3ARgY+vGAtqqNyr7gdTvGTJcP0IktxuUMs8BDLyM9yhZyLiFaym7aXYeQ2LuPZp7itPnRfqh5wYYNG82LY6NzsgJy4YLMzm3IsxoGMH3bF/WLI9E1wX6cg+MUKZUawnPnbFdwuYugoMrUQIAFhq2KnA+e9UDgd/QWL6JQsTjG3imKy7k0n21J/G0D73s9Y7aVjE2BBMWo1wTjql1LGsVBDDyW1Xcb4zPW1+WcOzoCMgviBIDMviyOEsAynq0wLmm68ZuG4JDRdLiWFB+gEyZG/axvwjuDiI4RAJCqU9fABF18yxrM3ZHsb8BaW1305+fVS0shufN0uVnt4DlYJpdOaOGH19o34r1uWgbIDW9hQZAYoVPtS9FfdTTPBeLzNwbhAjQGG7g33FgbH0SJ2exEHvH5ZAdivIOJYVFP32Dbxnp2rnK8WYNwysXlK6cWcs0mujlFaJcB8X26Zzcq2B51GORdpHSlZHbbNm+idnerfeM80RjCFl8ysR2DlcM26+L7OxOq6UW7rN63ezU33MlUL6Nacsz4OUuX1r2bCIndvFtgYKuuN0BGlUEdvZENgXFpAmH/tYBCY+AKXslMsGZc0pdinXGod79rBjLnUlKObEnjL3YkFiAmM3AwnPdm8LE1tg6PSpqssGi4VEQZyZNRYk9fDRPZHuSdNyIR16V9PhF9oIZtaG+Gy3ZIt7ZyKyq1kCsiO8DMFeI7y9/kO+CV/iWuA1LFqXXvZKoYMlKJa07YqWKnaqeH7LI9tRNtVxUqI/caAZwd1rIQVuZK+CY57ZwrON9JllAudHsHAhxUJfUKwGzUuhUfHYHu6L2TFmfmoz68lERWMKg/V0/EINiFhCKSZWYijHhxk1NMq3J64FOhMFb3dLCIynBQQpBK2S+XJQNqDnIMD9kSYuOnfJBKrNkOHZrmqPKd31D4q4rm+/ZtlAZusIxCUDbVA83AzST6F9cpx9eQVOdFBU1lRkmQ3abgUg5M4Ec3CoOA/SZY91sAr6HBRFGpnIWv+wgnLkWidoMvlEtAmgUo05/JdbGONH9q2f1KSgWQjBM+kFyE6S/k3V6doMGVVip5iZ7AfabFDLYGUNcG/2HtOs0rUmMlqNEL9TjXq7agHtRh3HXBwjU8cNwKQgMq0hoN6t3D4jeVx/HzYf/Er6RomgCaW2I3HkwyKfPCXZe37o/o9zxOZByty+pSz7/j8gzr/4X/FL5BlzZ+oZLqEcGQAudkz5tTbD7oNATC9F19hl3YVmju3kKMf+qVMo7zRCfEETFwsumSuZg3OvN2/VMsibn2Axo2Q8r7sSmUz3UauHpjRZTFR7RK97r4Lzn983efy3bWChu9bUxmuizk9T8xcXwN5YHmGn1whtp0h2SUOp26MizluO4EyP7vCodcLaORfs2LWsCGnY7E7M+vtQnZeXimzXTHiNNNqZPsunt3Py+plIQTM/7QkWbbKh2pPDKqjHGa8vl2Yng0GeFIA7Wb4YFU2ojj+ZYPe+NoRTZUCQOHCODAaaU8s0FFJc20tLGF8Rk7LP99Q5KJt+jJtZ4NtXbNJQSxGtse2QS4rnYcaqGZpKbSO0Yw0CzI3Hdw1rtV21Y0sG0CfnLrM/rlgGQgTzZaK/+4kFCt6RssLn1zA3V4cmj79ds15GNHYP9jLrIZTPprUmh+nWnFtnehj/h7qHMwjs/k2Keb7BKLOtpPP3dQMTKguwM8G8YObyi6u49koEDEovwByuRNikkD6et7yezNjH752xPWO2EGhPcP76zDR2NjUI8VP8v5hgDtZDzA0KzoWefUfdDFndruoTFZPD2JSjoFkqWRP0PS1g7PPjdDcjuJp2tifOy39fZHEsWecv3vtxjtg8SJnbt56FhRzzI8fKYYbi5ABf9lHRGBwLE9R4W+pE6EBbmj251MKuJRV8ed953XpreNlhjQaeq1cS+c3TWCA2a6ijn+7BgRQTLKR5XAp3L0fBcFzwuiWcK99zh0qwfiISKFUycaxPSOJayj/QdPhEaa1vVfxMfWY02C+uImPw1k0smkzpE/cyKlqPo/UGruPCAsbm3evmxJbGoGA7Ys8iiEWKmnViWwERZDNYpggVH1NI7T1Xm1iwyWg4MTCK9eO7Nt4lZWy90sGzedMWFu2D8t2xDnkjNiF1jBpcjmxeUNZfxGjnbgZnVtuEHgh1T9b0utkgrhLZDnijbn1xilqaIpCVlrhwunl8w3rDrrGsQSzlzs92MW7nD6ysQqZOPhDMM0zyLRIutEUe14CEIPPEwZi2pzgms5MT34DfI9/0RNgSgrt7zoleCcdh6WyrZqJ+ZG69tmB9eRzRDFByWChQBEqq/+GcyLevW7fqS20EeWwUKLoB4Xd87JvOS97Y34hAdmYT/ATz7XTPMknF5PD3k00GvQzP6tWOaaXczirRrQqxjljJkuebKfh2ZajPUNevg7IFDytDzIVdLVMzi7dbMQFJPzHVbUcwzk/sHg5S8tilsGDikZOC4fXuhBM7rkliSynuM0+cnb8p2dJ/e/vP38HmQcrcvuUs+8H/izg//y/NORKrQLGyq01jmhRSa3s+yzmcUmyOj2JXM0+VN3WXfL1ku+XPr8Expw4WQS8TGSs2hDXl2EUpipmPL48RDHgpgpzb4S4mBZG+pryv161rKx10MYaCaWVkvX5onpYlRkWAe7slfP77X8Hinle1FDmsq/CWTaS9ScNly4HOGNmRklIZR76Vl+j8vFSkrAt7KVfuoeKsk0FzREQkSY01JYIFb79sOjaVCIvuwgQOhwwoR5QSWzSGRlVp2lT2pbz3IEA5zMtMEnygGCM2UCxp2WWi86WUmNiep0EaAaE3WUCaJfBTkfJUBeeUnXWua/1q6Pi4S6fGBrEGVOfdrZgzpagfcR+z1EoLXZ179dTo5zMPc7saHc5cOZphOtnHuOWNJSI2QmRriTzddrcCYGZ9JvKOGyYmljjQkXE1Y5KK3GyWx+xJHjT+5RXDCrFDcUuDs8hDMMbmecyssCxbjbBRuNY4rGnz7DKCn9oM9+ylh1V+L7W0+WaGe1w+EqyOfVMYnhbwvHol1YpxrL8RGyheauG6btQx1xmEJTr+ByWsEbczquMycMuD4hcmBhr/wppRlk8qNm7ia4Yxw32UNbtLgbnmFIHBuIj/syFivq9W5OHYjhwTKGmQQYA5sXAE397JrjZvDf64ninGywk/IlnwV+58nGNsHqTM7VvXMgcOJ3ZFCqE5iytNo8DSqW7U0CL+O68i+p/qboLiWY0QDoZy8aw9P7GL/7emcORMfxNLUNVyyfIQgcaFtsjpHCX0ahPH2aoBnMduw9zJvbYAh31igJ1iojvphw7g1NifhlmY4xaTodKyj2tudjerzxCotKbIjASJ4XHaE4zRTgXXeKl9e/VQXiN3w47AqYngGCxxjH2U4EQM7xBoepsdqfuBiKNZhS+vqIBWbIyOaQHjfrVlDR1v1PEa09iFFAFAfWY0aJaoGuFhx+ZlIpJYaSd24WDJsmBWK3XgLNpTPPPO5HCTQxErY7FpYH7HzSzIpRacM0szqQOn6aU4dqCObFQ03ZHEETnbt668NF/HlFRnRw6XInjPIlaC4dwPYmQs1gYi33XZGGjEV3CHzW7gZX2+w4LhU5jFHASWBRv6Vt4SgTNb7OPYJQW6XmijwWfqgL20q1igSa6UMtSSI8cyLIhs+lZaeW4Z18jv/cLEHCdpuhcWrMPziYH1/nl81/RvmE06MTA5/CAx+vKwaB2Z333dsFLHGVVsaY7iSIqpUdkZALPk1wvAWjupTKWbFH59DpMC7uF2LQoS97DK7ls3rXHiccYeUKX43lh++2U0d6X6Mu2VjmSP/YhI484fv5u5d3/L7e0nfuInxHEc+bN/9s/e9j0f//jH5Tu+4zuk0+lIuVyWJ554Qn7mZ37m0Ht+4Rd+Qd73vvdJu92WdrstH/jAB+TTn/70V3Xeub3BjZRSBg3MkowLVq5IHMOApBrQcEHzUyyG7YntnpkBaU/whexMEChcbMNBD4r4/YUlBBIiAPot63tP9lHiqc2s4Vo5Nkrmp07hs88uQwPjsyfg1JiajR3sKK82kVbeUkXL/TJ+bmd3WjTvZAQr0lHGCv7slkxCPfRwD9yNXmve+ZiFVBU9PRMB4zM6KOmOtGDic2UtDTy5YztUlrBiBd+SDZQoGJbshsUxxn9hYunsIMHxTvXxHFtTk/9/ZN9S7V6G8S4oSLSYWOkqiPE62SEimFOXW/j/+X0crxegvHG9oY7ctWCyH9gcEUEwRjbLftmorOsNjGtb6btXmtYskWWSJ3aN2XKcsQ1EKbYyAct+FaUO0zjfpwWwXWLXOm6LmGYQjeUuRwwD1p7a3MjEANGBBjkzDYqIi2G2bFoAOPtaw4JZfi+ZnamHVnY6MTChu5EP/BhLZdMCtEhODHB/FG3slSyo2apiLlPFlc+PtjZAB3XK3gcxNjFBjDlE7FMjxHlP9+y7dmEBz54ZW4759QbOQ50WEZHXOnDy04KV0wh4JsCaZSsKIb68iCzgus6to+XmvFEDaGlkGkp3Mm4m3AwRQn5+iP7O0pOIlvuKIh87K3K5JZmye7LHfuTO57lH+4ozKZ/5zGfk53/+5+XNb37zHd9XrVblz/yZPyNvfvObpVqtysc//nH54Ac/KNVqVX74h39YREQ++tGPyg/+4A/Ke9/7XimVSvJTP/VT8n3f933y/PPPy8mTJ7+i887tjW3Zj/wucf7evzbKKSWwY/098ax2XpvhfUwX5zEBmzV0XX34wJrOiWARerlj5YDtKhalsY9FlvTDQorz1kNN106t9BR6CuLTLznT/45YL54L7RxbIrU28YUU52afIFJpRQwnk8mtDe7ux2ozHDdxrLsxGUMzD4t8IbMGaVPNqlxo4xoJvFuY2A6LWAoRza6oky+HRonma83prYyX/bLIrqNOUUs+LA01NBVemlnG4FoT18X+RnUFR+Y7SQexibE5YrvH2kwkmBk+KYishxKDhJcW8eyX1Wm1p3Cq21VrecAsBrNeV5tGZX2lY2DPUAGsT+wig/bUjs6pAjAmB2UDSIpgXk18nKNbwjnXhrc6IVLJ8xkIll1EMDcpTsZy0rAI50w2GLt48/3sUuzpPCQegpkBBjqxC8ccenZsMuKYFdupoFTaDJFdC3U8ydB6agfBy4W2aQSFHubV6hAByoUFBFXDIjYNgwD3e1DCdRVSjMFByYKcqy28P1Q8VDlG9uWZbWQ2n19CN/SjRtXhcoxAgWKQxGxcaaE8xjKgnyI79sSuKVLze0kqO4G67amBn4MYv3sZnkUjxDPulfAMWLrrBYfVd3eqdw9E7mTFVCSJDZfFUmC+HUfuO5k1PiTyR77y093NvqIgZTgcyh/8g39QfuEXfkE+8pGP3PG9b3vb2+Rtb3vbzd/PnTsn/+Jf/Av52Mc+djNI+Sf/5J8c+swv/MIvyC//8i/Lr//6r8sf/sN/+Cs679zmdhNoGMRYAEkxZMqfi81btqwXylgX/Z2qSqN7oNb1ApOkfm0BGBQ3w3Eps++loGt+cAufe3bZFqizPWvwt1U18SzSnjMxZP1QF+B93VmzLNUP8Bk2HGxNbEFmKacfYJfVmsJpUrflK120Fib4/E7lcH+dmYdjXm4ZoPRSG9e7OrRAoE3wZmiBgZeik3TkoYMwmShtvf99dcZ5bI0IFuWTfSt/iOB91MOgPgZ7BB2Ucd3MfqWaaSFjqjXFvTHYETGsCDMzfmYZFOIrSJd+eVFkvY6/D4sIMLol64bcDzBGtZl9druK6ypHyIqwpDMIMMcecbHL9jKdLz04YBFcO/EctRnmLjt0d0si77oBh/vRc1BaXhlaAMsgkWVKkcOBhyOm87I0soB0dWiBBZ9dkBgGRQTPNxXTSOH3LiyIjDLMEbZniBWvw/5IlcgwOZfamOvnuggg1hv427WmdaIWwbiwRHiqb2qwvKeLbQQaS2N8BysRMpnMylQizJOTfcUjFTBGDx9YuXJleBhszUaA1xr4tzXF+ItgE9MI8TwzB6XYzhjX+Lk1vK9XQpDChposEbHcGyvW6tUF6z48KuKz57rI6r3asXJkc4rn05webkdxsY17ilwDoJ/s42/3KtDm5eZ5Jcaz5cZCxznz/+q9HetrYF9RkPKn//Sflt/ze36PfOADH7jvYOELX/iCfOITn7jj58bjsURRJAsLC1/VecMwlDC0Gn2/37+va53bg23ZB79fnH/+y6YpwsWBmQp206VkNxe6/+MxLAALE5QZ6qHtLHcrAFc+1AWOhTiHkqah37yFY/gKtn1xCY7jQhuLVC9AYMM+GewpdKYH50Xp/a2q6n8IUq7FBOfaqeI6BoFqNfi4l27JsgnffckW9rds3Vu5h0FFWDAFzEhZIY4CI4e+YRhYZlpRcCPTv2d7uE6quu4pZuDJHdPmoHPiopnvXSJyK7vpqi7+7Cr7yP5hGvni2Bxg/rObVTwT4nuuN1QdcyLSmOp96bPKO/F8UzzRuRLIYfvsCTiExTHui3iC2kzbDviq/KslnZoGT8+uaBDjIAvVmJp0/ak+HLqjwdb1hmEuWB7YrVgzu8S1vlIdZVJEHubys8uYn6RcO5lIzTUWCgG/NAa+xAatDHHOo40CaXkdDVesR9W0AIByqNmUSgSszZdWMZfqM8OKnT+wLGRdAycyvE72LWB46MA0jpZHCFDXBpjrFxZMq4ZdjQlgpUrrfhkZqUf3MX4Uh7tRx/gsTIyuSxbL0aaazSl+btTx3Vse2fFLMYIi4t1WRjjmp09ivH/jLI55rmtjG3nIwomYxk1rimfLICxQILefiAw1sH34wPpasex5rWnzv5CCnVVXzNKwiDm3PELAe5S2fTsj1knLmln5L939M18nu+8g5Z//838un//85+Uzn/nMfX3u1KlTsrOzI3Ecy4c//GH5oR/6odu+98d+7Mfk5MmT8oEPfOCrOu9P/MRPyF/7a3/tvq5zbt9i9ui+si0S/EsgZCEVSWN8GTdrWBR6miLeL4HZsTZAUBAeWP18eYTPtCdYXDMHYlqF7FZNAS6IvtaVX1tAcEOmx8wz5cue4jwizaLQ0benWJxGRTi0+sxEpWozq3PPFFRKnYTTPbx2rYHdmJ/azjAv+uVluJf1BrJJ/cBUV0/3rMRAbEopVin3AA6GmYqlkQEQGewxs0FwIUtf7KHEHfe2MoVa08MLKLvPUiPDczA2W1W81p4avqU+OwwafqWDz1D3xBHTkKlEOL/IrbtLL+e48444H7yE6hjYYLKuAcYrHXUoAa67kMDJ7FXwDM72AD6OPDhoBoU7FSsJMXiYaPB5pifSG5lWyNoApYheYPNouyryvqvWE4g9hM51cUyKyU0KGN+jGAMRw45EnjmytQGCppODO+tl5DV8yBTKxJ77mR6e9SsdzKPEBS7let0Aq1ebcrMJ5Y06specR62pyO9+FXN0o46xWhoj+CmkcMKdsUg9wxwmRoz3zUyUCJ69r3O/mIi87wqewY065j51hE4M8Eyb08PB3PuuoNWBm+F6Xlyy7uunewioOIf/45dE/v1DGINyhLGkSCD1e8Y+soos9cYuStJBLPKODZvTbB8w8g0jxjnMMWJWbqdqYHaWnCl4uFnD504O7kwpbk4lc3/89n//Btp9BSnXrl2TH/3RH5Vf/dVflVKpdF8n+tjHPibD4VA++clPyo/92I/JI488Ij/4gz94y/t+6qd+Sv7ZP/tn8tGPfvTmOb7S837oQx+SP//n//zN3/v9vpw+ffq+rntuD7Zl7/hhcS78PSxKxJ+0piZ2VEjhZPbK+HJTUn1lqPoWnqXwN+pYuPfLBvpk2/enduCE+oGlrg/KcBQ3dDHuBwhUyM7wHNupshsru/SyxMP+IF1X26gPrRMsO9KWI1z7dhW7qL6Y8ubiGAs3cQwi1rfloGyZBzqnbslKS9cV0DspGMC1rNdH0SmyYtzMerPcBN1lpkBanVnfHgrdEQhZm5mCqQic2MU2zkfhs0kBjoP9c8oxjj/2DUA5LWBsgsQyF5s1HGNxbJTW2LGWCY3wcJ8UCtQd3UnnMwksNQ2KIiXFqbywhOfMdgTswZM5Iqd6Glz6eA4UbJsWsDMm9mcQIAOwU8X5qQBLqjnPTQ0eT8uNfoL7WteAtJiaguupvpVY+Dn2zMmX04gpIV01UrxUHpA5LRzP9mBGhw0Lm1PtX+Nq0KZZyKZmjS62MXcIyGWQnTp439u1xHSpfVjw7FQf93RuauXLhw/wnQwLeD+p2QTrkpr8/iuWmelqloVZpkCD2eeXVUAuxbN8uYNg6WzvsAYIgxb22GF28CizbqOOOXemp0yn7PB7eBxil4g1y+vZkFq+MsT/qXxbjo2dlr+2nSqCv2KC+6tGCFj4nraWiSY+/s3PfRGTs3fldWNOlmXZ3d8G+5Vf+RX5/b//94vn2YKXJIk4jiOu60oYhof+djv7yEc+Ir/0S78kL7/88qHXf/qnf1o+8pGPyK/92q/JO9/5zq/5efv9vjSbTen1etJoNO76/rl9a5jzW//IMgybNe3a6utufGJCYuz+2ppiUVtQFs/VJhYtaoUM1NFt1PG6CBbz77wKnMJ21coRSwreqytuYuIbnZBN7MqxZRwmvnUB9jILVsi0yS8qzy2b/P5e2VLXlcgYH19aNSnt7SqwKxT/8jIETQ8fIOPC7tAsQS2P4IAyMbYFdWM4Vgx+iNlohvgsQXeOXj9378tDOFEyNvzEqMYEtzpiAQhBz8MicBaUOe+VcM2P71npaebhs4XUymaOGBupPlOApGammrr7fHT/cKaAVPMjC7hEHgKB55fs+iIP2jI32Sx6z6f6lpViTyIyN15bMMXPkwPMMWZEKIDmZoaLOjmAPkneBgGc0eoQ83O3gnn09DbmJLtxx44FFXnxLmp/cPzDguGfWA4tJghoayFKWGNf5EsrmFurCqpl6YhjzVKhI4ZD6Zbw3AgYdzO89vKiNu6MLdu3WcMc+46rIv/hIcyT3/fyvfW/enYF18eAi2WR9lTkd7526zF6JXwX89pAtBeWcF2dsc35r8SuNa3Mkg/MP3fCxCKpRsyWGJx321Ut/dZwjfkAZ7eC79jpHp7LDc0wsb8TdXqGRTxDriN8Ppot+1r22Lkfux9ffF+ZlO/93u+VZ5999tBrf/SP/lF54okn5C/9pb90T4GCiEiWZYewIiIif/Nv/k35yEc+Iv/23/7bQwHK1/K8c3uDGpVe98uWCl8biDjq4Nlavqjp1IMSHAx3sCsjOKatmqL5I9TMSzGcZOxi0fjyioHdDkpYNKhBEcRwOlMNgugUe2WRjYIC1BwtN5WRHaDIWCZYuKgjwl3+M9twVpda2mJdHefSGLvTtQEWqoOS7dYvtU3DhWJkGzWjOw401U8wKLMebmbKn3nnRsl9sntY3ipH2I0xA8EslitWqhKxHf0X2gAC5xfZ2sy6FYsAZ7E4htOhCJqvIGeqipIanBWsVESKeaLX0NeMxdhHgHC9jmwTewz5iWVEaAPVqnhp0foRjX2jMtPx0ml3S9asL3ZVqv0AQlrsxlvIEERcbSKAmnlwjMsjBDJDBSG/aevWOV0PRZ7Qa2xNbXctYkBcPxHxc5852qvFUXAmWVYsiWX6E3nGuCqk+A4FsZZONUBlx/Figp+tGn6nnP2gaL2aBoFmWkJ8p6qRYWz4/Xh8V/v5zET+o5fxrG4XoLDLL++rHmK82FE6LOD7+uj+8cc4WsrJ21M79v+80u392mkFteZbPpA+z2aa1+t4/s0p/v7iIgLyYdEyLCPfeiVdadr3ab2B8TrZt8woFYB7ilN7ZF/klQUE9S930E+n9pXf0jfa7itIqdfr8swzzxx6rVqtSqfTufn6hz70Ibl+/br84i/+ooiI/IN/8A/kzJkz8sQTT4gIdFN++qd/Wn7kR4xD/VM/9VPyV//qX5V/+k//qZw7d042N8FUqNVqUqvV7um8c5vb7ewmHZlU3oECG6moSLYClR+pSUB7YQm7EWpKuBl2gSJYBH7vy3BU15qWsaGzyncApuYHu/vSkZ3pIaAgoLA9NVbCsIgF6EL7+DpyPQRYtxQjSDrTg4M5KCFFTJYLHQI1EJpTkarurmaKg6HK57BouzZmnJgF8B0DopLRdLPfUGZBAdPuBPyS+hu5JrgmYhTQxFHRtYY5D7abdwSvtScWtJ3sH6bEXm1aySlI4NxaU4zXesP61HBHT6on1VsHAYKBm0q58a3jXA8xT0hrrURWMtioW5PJ5akBVBMNjrplBDiZICDarmCsH91HUHpQxv0sjuFYV4cYz80arr8zuTMAmgEK593dFEKpmssgM3WsTQE1XdzUnjEtLz5HwCfxOmHB6LPlWFl1U3sPdWCIpQkSXOduBfPzbRsWTNPyiqmZYwytYmKZRtqZnmVqlsaHx+A42XY+17sZWzQc9/l7schDMFpM8Fxv1A2zw75hFNFbHVpzSjZTJK26EllwKIKxYBmpkBkGxxG8vlUVOTGQzPu/o//UA2pfEbvnTraxsSFXr169+XuapvKhD31ILl26JIVCQc6fPy8/+ZM/KR/84Advvudnf/ZnZTabyQ/8wA8cOtaP//iPy4c//OGv9SXO7Y1o7H4705Q8ha0mPr7UoWeYgWkBTksEu7sLbYD+UgfOdr+M3c+oaM3rfudr2DU5GQKaXmAlAWYhiGUpKoi3FMMpXWyrkJmL9xNQmznYWU4LWHSnBZR4WlM4BPbnEcFCT/l5ptc9BfcVUih2rg6RdQkSkd2qyF5mDdEoW0+NCxHrAs2MBlUoG6E1Nlwb4hgjH+OxOjQQZl5tdadi2jDEv7AT7uLY8D8n+whOqGXRmuIZbFUR7ESeyHL3MKZit2ICbHS6NzNaZc2uxFZGmRaMYkvJ79hFQLA6xFiQwsmMDu2hA5Fa1bBIoSdS9IxWW4rx/HncURE/UwX/+inul0396KxJSaUOTSnGHHz4QLs+3wNDi/imezEvE0nEuiOLGP6HrR7yjQGpKpsP7DiO7Kt0O2OGK6/kzPLYqIjvVJ7tFSQWFDCLMS1YuSQTY7/kzc2QNWAzvrw5WlK8Xkf28167/BKbwwDluO7Bd7OjGS0G/iII+qhgzAaHQYKy1ckBxoyNT59bxvUQbD8tWBdvaqPoJiarf0hk5f4u8/Vq94VJedBtjkl5Y5vzW/8IzodCS+cPsEjvVfAGlnmGRZHvuIYF4r3XsDD8f580MCcZIEtjSEx/9yU7yWvKJEiIicjM2bGrK8WxYheO/uQATr4aGS164iPQeXQfizl3XF5mQYwIfu+MsXhfb1i24sQAx2tPjPHhZLiXXmB0SOpadEtYKCPNEOTBmnmlVBE4kHy25ajdqFtjv3KE6yAIdrNmeI3azJR8+X8ROK3dijIalJ2wVRV5ZgeBILMr7Ng7KhqWqDqDg+oFhlMZFnENtdCo0tQESVy811eHfL1ugFpKty9MkP5fHFvTu3zDxnqolGAnB44N8Vy2q/bslsaGFdgva7YiM8e3UVOBvgi4nWsNXPsz27cCWBkUMItxs2R5H9gJUmhZmrsb7mPsGxC5MzE2F4/FUtrVJp5xbYYs5KLOT0fgSGPFLLHnkJeaPpGf6vVkOVxSZposx7Ho8ue/m7F0dS9BSuzimo9K2X+19sIS1pLTfWsx8My2BfYMsJfG1vGa9v8/Zx2p2QJh7EtW+b997a7vG2BfN0zK3Ob2QNs7b2CB26wByS9ipYotdUilGIvYe9bhuLnwvWND5BOn4URO9wCSfXTfFgwaHaSvjJTWVMQNtX37BAse6capg50UsxDdEt7TK2ERZfq2p5mRIEG9ujUFvZWAW+442bWXmJKlEcoQTmZMB2pqlGIs2KQtP3xwa3v5q02k0I8u6EdZCnkjC0dEA5/YnN9BGZmdnuJ1CIDl9Yrg34nSwRuhgU6LiZUO+sFhSjCbqeV33mzEljjWLC72rMzRmSC7U4kMgHqtaVkc9npxM/yNejeP7VnJjz1RyhGuKcmdmzonpVgk0ptjULhXEanMDNDI8lTi6nVo9uvhAwRBLy1i7N62oSVB3yj1bFNwpnf/jpSBWSGzsewHmONNLVFWIwM5VyIE1FSbjXRu9pWOfraH+2WbBBHLLG1r5unbrxlNnYwgZivKykAaKW6jOcV4MVhNXJHsNkEKA9y72XGB2NHsCFVhOSZfa8jjuS6E2caaUWGPrrUhnv9Mx6M1ufWzZLItTAz0WvkaX9/rzOZBytzeMJb5f1Uc+bDIf/q8yG/1kVFZHSLQIHPmdB/6C60j6fXTPVOBrUT4/ykFxU0K0MZgg629sil4jn2Vek/NqZRikYmyNraq+PuZLhbp3QrYE14KJ83SwXMaVNWVWuvq/w/Kkr0dpVPn4j/F7otMlv2yNUTsTGzH3ZjCyRUU4JkvG4lYav/EwKjbg8Datld0p9sL4DQLqXVlLcc4Jks1IgpULWNcP3AR4F3qfKyMrHP02DdwsyNIYQexsWbIXmBgw2CHwEvKrYeiKfZEJMigTdMtGZYk0JIFO95+3wVcI+nHJ/twGC93jB5KeX92o80EgcF6Q6RXw7j3lH5+UDJBMjKKuspeOtnH9W7VjA7qxMYIak6xix7o+CSu0UhfW8BnnAwA7HER4+uIObxXOjjP2tACRgZ7R0tGk4KBMxcmCOKIeWJ5pa9A4npojjzv6Ouhyec/t4z7yr+/NjP8z74GqY8cYVPlMxsMYJpiLRRCDwFnMbaSaCUyMTMqQe+Xb6UL38nYMuNo+eZ2mjBfDS4lb5UIZcOdKnRzyoptOtm3ct9eReSxfYyn6htl8mGRR7/60z9oNg9S5vbGtG+/hp9XOwhSvuvynd+/OBb5G78m8h/OQRyKWIL9MnaJxLzQkaWOlQzYn4e9UugUEgf/Xm1i112fmZAatR52K9iZP74HR8Xd+dkugpu8nsfpvlGB6bTKkTF2iIWZas1+4luAcq1pWJJH9q2GTvpwKUZWplsy6jGvtRlawELHfKNuwFK2G3huGY7l0T0s0mHBsA1UsWVZ45OntANtAidN6e/mVB1+YH1y2I3WS/HeRnjrjrkzhoMcFjWYEVMcvdrEcyBdWMSaDzZD3Cul+5fGxt5hxuDEAJ9/tWPdf6kAeqlllHeqeJ4Y4Jo3ahij3YrhQLarVjoKC8AS7VThfCN1yhTdo6BX7BpW6YuruH7+vVvC/YkgIHznDQVnula23FR2F5kozPR1JvfulMluygTz70urKFWwt9CkgGe+W7kVT8Lmj0fPRWpu4mIO90uGmxkEOVyZBip1Bb8fLU/mLU+ZFsE1N8JbFXWPs69FgEJ78xbm22+dtq7n/cCCwwA4mGzlL3ztzvmA2hyTMrc3nDlMk361xkzJntIoiVNwMs2aKHOFC60IFlUCElmO6AeGpajNVAjLt3LCesMcUGdsSq2netYtOF+yGhWNylxMrNkdd8nUZpkU4LRIrz0xsNp+XpyKJZKDEgKliW9OhUJeMw+lK5ZrRhrALI1M7ZYy3bGjgVKCrNGLS6bfMFA9FBGRX37KlHS/55KJwW3WTAuDjJSp0qBXh9Yk8jhw5U4V17er7Jq1IZ7jXhmMra0qynjn9yVr/ZjNmS//HMbnptCd0pavNq0VwtjHcckmYufkTBA8Ra71fDnbw/PJgx6ZhREBJoUg46tNHKsS4VzEObkZxi1zoGZ6raFigQkCjsTFca+04IyrOg8fOsD5fWXIkMm2XzZF1Pu1mSfyq+dNQj8Pmm5NMWeoHVSbAcslYqWevDGQWG9g7p7t4TO+Up9nngV+nMt5SnzmHNYaYpNEzuV8iek4Y+nofgGyX4m9toDs1wKC4uyJP/P1P+frwOaYlLnN7au1fgAnd6fGfFSDJLOGWY3EMQZLMUGJInaRZYhUC6McWbO3cmyOZ+LDmawMcX6qn15oI+vB8k8vwM6yM9ZyTNE6Ijemhq3plrRfisABcqd/o46MSegZnXa9YQJ0meBY1AARxQ881IVTZT+fjRqcSjk2R7Q4tgxFWBApzBBg5bMV1NvYqRqQMohFanodp/oi33YdoldrQ1wfu9gyy8R/6dQSBwGIn8LhUrI+X+bg83Qz62JLZc63bop85gTef3Rn/fQOji1inWg7E8PSbNVMW4Sg0bCAa4o1a7Ff1uenZT0/FdmsILiZFJRZpbT4QmqA3uoMwcPKyECmpJETg3Omi3FrT42iGzr62gSfGxVx3p0KngUp72/ZwnGW7zDXj7M8gJe9emJX5G2bON/lljVE9BPLPnVLdgwGCnye04LhwLxM5O25UiQDfUefK4PuA6Vwi4hMNWPI7AwzY8SV3FR5PRKg5DM534jghKd95L8WeeQbdroH0uZBytzmljfSKquR1bmPNrwTMRbOqIgFb7cisjpATxLKwBMcKprZGBVNeGtQxM6cnWWnih/YqmJhL8cIJIKiSYM3NS29VTMnQ2AiMRnFxLI6xQSfYbdlLtiDIgCgDx0ge0DtEkcMlFpMUFp6bA9/e+jAxoFlARHc50bddq7FxCTpW1NkSUoxHHd9lmNMuCKFCFkR3j9LHKeUhnymZ2UeimANAjiTcoyMzEi1T0I/p00jVt7ZqCNwYgM+Gh0+75Wg0/es49qvNcTJfkLLE57IqmaGrjcQPKwOtS/O2HrSLI1xnCtNvF7RshyzP0Fs199X3NDqEM+ADngmIi3FNfkp7u2pHbwvb82patOIZbTIoGpNECxNCkaxb09NAZiaHARSX6+b4mw/sKZ2xBUdZQ5daakAXYhntTg2ITV2l3YyyzBdaou81EEw1Jmgg/hvnUa5lcZjH2Xo5DMeHrErObeVuGBDNad476BoQVA5FimEt9KRjzMGKFRGvlNp53bYlHvErHyzVF4fVJsHKXN7w1kmHz5c8skcABF3q+ZIlkdYMI+WC6hiSdGoTEzlca9igFQvxeKdOtaPhw3/yIC41LagparYkUf2cZ5Pn0Rgcl2d7IqqkNZDc64UnmPWgzoSif6f2RQ/BdaDSpXnunAuLy5abZ/BzF7ZGCOn+rjecoyMx8LkGKaPgK5MrEohRfajM7bxS7SkUY1MNI6y5amD7AEeDO7jtQVkPEhDJcVYBI6UCrJeZt1zZw7OSUorZd1ZCmhNcI1N1Xih42Pzv/MHJuYXalZjWoDTdjMEhpRZPzHA+deGCGLOH9jYTQqmyFqZqBPV58Bmb2Mf56lrkDBzEVB9xzUTN6OK8fmD46m1PGbmKJVXDFg8KooEE2CUtqvaJ6doPWHaUyvpbdRwHWytwPEuxSKb8WG11VFRRdu0DNWaIqPUnmLMn9k+fI3DogrYOQCBViNrN7BTsYzZ7ewo/ZZ2FM9Syiw4YH8eETwLigqW4lvHMXEx9mQ5MYB2MrmZIjsOq3K7QCT/OrNohVSy4l+9/T3O7a42D1Lm9sa0UB1Qe2KgV3Ymbk5tId6tYDEuqYYIF/zENcXaYdFArHsV67PBz7OcwrWvNrOGg+sNK/kECWTTCZx9ccl6BZFeTNpw5GlvFheLNtU3yaigiJynDvl6HffNv/M8vI7dCq5tbYiF3cusmdnJAa7zQtuu3RGR8/sGyi3H1niP5RtfwYCZXjv7s9ApUi+GAM7EMTrxlRbGbGlkAmAsp/FfXkclMhG+2BWpJXg+7AzLrNDqEPdRiRDQDIu6A3chnjUqYvd/sS3Z25QxtfjXcA9k+jCzwGaKbEaX82s32xeMfJQ8Clqy6SkQ2BGMD7VgqpGOi5YviEOKNDDz08M6IHmwNNVG2RuGQOPOBPe4MEHw8UrHAJmneyZEd66L+fTvHzLV2ebUGjiuDhFQXGtinEi3ZvuBjRrG5Ch9PXVwf70SriFylcmUGfjZu42zv19jcHB0Q0G2GY1sIP6fmZnEFfFy2bSvgWXBX/maHeuNbvMgZW5vSMuCvyJO4W8oXVfVXXcrItOiYUHyTqlfMinr5bH1gskcLPbMGDSnoOOOi3AOV5s4BoMRllReWsSOfKLOd1/xFqnSacMCztea4vXOBI7uoIx/x76l9+sz0wlxxEpW1JioZ8ggHJSQIcq0VBW72GmfGCBTc61hbJGRj11pU1VTY9fEyjg2uxXcy14Fzs5P4STpsKjNMvbt3/rMSg1sSdANgEVJFNS4VzDwZa+E8aCo28LEZPL91DJaDEi2q8ZqOdVHuWe3glLMDplWR0oLjqDM9r6rOMbRIIAU7ht1kbRuWTbKvxcVFDxSSlQxNuG6YRHvPzHANd2oI8PRVRAyZc0f2jUArZvhXh/bw1hy/O6kdsomkk/vYH5UIrDQ2CjyqR0D37L8UdOSJEG+kQdqe22G53S1iUBwaYzP7JWRNalqUBi5mLeD4q1ByssdgKOXRni/CDYEZPekymS6Xbbkfu1e1HYJqM5/hu0wvkrmzryE8/WzeZAytzeukVFyUDaHT5YNJdy54yTeIkiUZpkBB+FlIq2ctkRzKvLCsva5SeEo6UTZfTjywCChhokIzneqb/gGLzNNDidTjZLQSkXs/+MnVlIa+8BpEDDIckgvMGd/YgC1y1IMx8oOrbHqoVAldmEC57OtZR42H2Rn20pkeIfEgbMKYpybnZgnCgh1M1z7Zs0E0hpTY75QwZVMnaWRMp4iE/0aFvH3RmoOZeRbictPjFHEks9OFdfdmRh4k9ozQYLPt6YYgzzOZuKjHLhXEUmrUKo93bPrqiiWhk3iGDywRDNUvNHIN12ZjbqV0kjLPighE8EeS19asWM2QvxQMddPkCG6k7156zAQVQTXkVerHauacVPHn+W7c10Ezm5mbDJK40caoI59PL933MB1fnEVzJvOMZitvYqVhEa+9aTZq4gs7iI4ud6wBoVfrX0lWZD8Z2IXY8ZnSZG9OwQv88DkG2PzIGVub1jL5MPixP8dgpX1BhbgrZrtLL3MJOmpvTEMVK9CMwpMf1P6/XoDC/tQ6/cT3xQ6FybW4JDdXWee9XI5KKGu72RIr4tgF+wrjXhYNJArG+35qfXdcTKRYmYLbuhZ4zc28ItdY4FMFR/hiAmmTTUrtF+2Rn+DIhZvYhyYUXptwRr9UR5+kCsFlDVwyjSIOaXspqlnsvgEm5ZjCwbbUzgxUriJ52BmiAFjquyUQioyq6n2R2rqpamDDEkhxfM5KON5EEhMarh7lALrIAuxXzasRzEx/Au1avbLhlFaHFtWgrTpnao1UqzOkKU410Xg8MVVfPZ3vYZ5we7VItpPJzHZ+V4JZaNH95HtWhndHOus/iERUVq9n1hPpGIi8q7rt076sGBZj7xKK6nDZMZ4mQUqEx/lt/YEz7+YAND8zhsI1i62MfZuhjkSepZVHBQxP4jtiF0AhaszjN/Ih3rzvVieTXSc3U0afxCY5s3R97G/EI3MJ4K0ExeN+ub2Dbd5kDK3N7ZxYTrVN8GpzZrpR/ipOcmZZ6n0vA0Cw3wQAMsOthT8cjJtLCa5BoOCxXBLdUx2KnB2NxpwAFs1/K0cm4ItAxJeN5sk+srYmHhGx2VvGmYqmqEFOFTxJKhw5omIXnslEilNrFcQcTSvdOAIlkZw+Cc1S0R5cxEbI2YVAi3/UG7d14xMWVlJrampjBKUSUDozDPpfxEDrzZCvD7K4W4OSnasyIOIGiXERZR9M7KOu9tVkY5mnKqZ9fcJPfRWaYY4furgvLUZZOovtzRjJKYQul1FGedcF0Hlqb6qx4a430qEz/UDkSd3kD15xw380MpiJZCzXQQEQ8U+rSiT6EsrKME8tod7q+cc7cuLeL+XInh80/bh/ku0vHPmM4tdBCG1mYGPN2oImq42cR+ZWJPJ55YRWLFD8Yj4o6LI80v4G6nhpEQ3QgR3kYsfMnASF/ioo6rHtMgTea2NAO9CW+Td128tLb3SwXMdBPjejHxrwHe2ZwytZQ3uJvfg9pxMpBJZtsS747vn9nW0eZAyt7kdtY4C/QaBAVOPUlVFNCugXyGWXFJHF3UHTo+1cmZj2F/m6R0snAdlBdbORKSiu3dHe/SEcBS7FVPJJNaEAQgzEmP/MMCUEvhuBgcy1WskyDdLTBxrooDTIEFafqSZk9bUughv1nD9LCu1lAJLCnam91/vwimNfey2t6t476k+MgK89oOyCW+JIHBhQERMTD00vRGKkZ0YHBbmcgQBCpk47CZM5slOxWThgxyWhLLqzCCI4L0DBRGPfRxrZYTnf7aLZ7cwsW7HE6U9U324V8Jn3rOO4+XLGP1A5N3rRqnuK6uqmIh85iTumUHGwwc4VuJajyaWz2Ye/qb0cufK31F9liKuM/Jwzc8uI4g6mjE4qg/COcESE8HSpRgBcjNEwLRRw5isDfEaWT9sm8Au1I5mIUnR7gcqkz/DObzUuoE7mqXbVI2Ztx8TqPzGWWwcWBa91ML1nu2aPtFje8gysezYDHG9YUHkNzVD2p4iEHt07zCY9ojNSzivP5sHKXN7Q9shOjI7FxcTxXaI1eKpYjkqwlluVxXzoTiRxTEyA+UIi+/aADu3XsmEqmohShgzLXeIWB8cR7DAisAB+InIgeI7AhVgm3omnz4sHS5r0Ol6EYCbUxWFY1mqoqyN1SF2x3QytZmJztGBlGMrVcVuLsASkVDT+Kf7FkSwPCaC+5r41rhvbWhYkUTva0+Drp2KOnh1rgMPdGSm48sxgpnIvdm/5JC1JwZCZsDFjFKQ4O8EIZOKeqqP16hCmjnal0gDANK0xz6eH/VJQs/GYFpAADAuIkB6ascaNbLRo4gpEW/URV5dQPCyVzENnfx9bNZQyklcKx2xdQEbGpJ1xoBstyIyLlgrgIMyWGh8XhcWMJZUKT6uKSSDstRBxsJTkLWbYZ4wmAgSG4OXFTfFDFjqYFxJXY81W+Ir7of9l9iPiKXJSBl057p4RkdVYGN97tUImSpmDF9YxFgtjk0hlyynpbExiERM52irZmq+x6wBc3v92jxImdvcKJ+eOcpk0Z0WSw7UHXEVwHq5pUDGmYhfgHNltoVl/mtNxZ0kRo18YVnkTVtYOKszLLKvLagoXBULfeziei61QfFl1mK/jICHoFDKwgeJiKuvkU7NTAMVWJmxeGwPqXpmPWaeUkFT1YcQFUlzTZyNTohlmBMDHIfZhmkBzvG8AoGLiSmHnu5jPF9dgHM729PGcwe4R0espJIJjlOb4bWFiemjHG32mLdiIvKWTZQSiJdZGR0W5/ITkcURGFpXm0bNJWupGll/GWY3VkYiT28r1XuGgGtaAAiZJbnm1DA5WzUEgztVA6qSmeOl2MnfqKMHE0tQY996HLmZsak4hgyQfKVUdyYG3GWLgMQ1rZRyLrP1bdfx3p2qBb958TRac2rqwV4KJx/EuLbnl6wpY+gh4LzSxJyb+NDDIRjZT0FVZ/sElnP8FGPI7MlBCfflCP7d0DIZg9BeSeTXH8IYrQ2to/aoaE0LH+ri57iOxnzug8Dk89mUcGUk8sVVyd76J28/n+b2urN57565zU1EnIO/YeweKnPuKVODDd92qlZ/L6TKNlHNEvY/ITOAi36sZaO1ARw7ndlmDYtmpCWHmQeH5WWmU3FigEVWBO+vRJaqZiYgca29O5vVpQInQDZRe4oSwqQA0CxxG/0ATpc9T9pTHGdPd5/1menHTAs4D1VnN+pwEuziPCwiKDmjGICtqgF4Cd5tTnGOimJf2FiPwFTqypQjYzCVFP8xVYBsawpnTUxNfuf93LI1aSNlO3YtWGSWxREEEMUE5yukh3vWXGwjC/HmLbzvegPOuT6zxpEi1pdpqwZMxe0YJoMA5bsXliDW923XNUuSA2aKWHNBlrv6Ad6fP+56w6izzKJQTZjZq7bqllxu4ZhP7mIcr2s24rhg5TjbrGFsRkVTQn51AUFFt4RzPrONv/VKuK+ZK/LlVe2P4xqDjX2kOhME49XZ8SDX55ZNH+ixPczbvQqybo/v4d7Zp+d2dq2JecLM0bMrkr3pT93bPc/tG2Lz3j1zm9v9GrMFs7L1w2lNrc5O1gRBpotjE/AqpKaWSrBpORIZVLRLrwcHQcVW4it2K3D0l1vYwZJ5QXbGQcmkzxmgEETKxn48Z6oZg6ZmXVaGtzaL4663FBvFeUPZTMyCNKe4Jup+UHJfGQ7ywhKCiZFvgRibIu6XcY62YnqCBO8vaCaCdOnlEUpSIhjXm3gW1WrxEyu1dUsmTLdTsTIOMzwiGLvVIcbipoqrJ+J7lgmjPyxrVilThhDHoldC4HSqb71/XljCdWQOnvfMM9DsrjrNjRpeJ2OqEt26w6+HFnANiyK/9rDI+6+YMB9taYxxqs3wbJjhyduJAcYjSExXhowbEaN490qYNyzTnO6h3PjRcyL/9hGR3/Ha3b8TzOQsjoEBudbEMWeeBbD8bkwLCFauNfH8zvYwR660EGiwA/TJPgLj48p3IphnCxPMQ6rHdsZ45oPi4fGibdVwj2wV0ZzeZD2JiMib7n6rc3v92jxImdvcRCTr/EVxxv89fpl5BrAUsQZxA6UN8290xCxvUIK+kGpAofiAaQHO5yZoVSxtTy2JsY/FuKAOcnFsZYBBYOBbqrnS2MAuSEQmOR2SBaWLEk/DJoQMCmoKZKRM/SBAgPDUDrIhV5t430O6k23n3rc8sp3slaZlNpYifG7mwZndqFup4uEDA8yuN+D0iGMY+5YFKmjpiRTwnmttBqiBslfB2FMorRwjgHnrJkCozMrw+TGDErsIGEjldjNkBUgbvtyyrMbpHpxfI8SzqM1MJ6auWYBEQdIHZYwLVWl/25Uj2BvNkJwc4PNfXrGGhmEOh5E6qoQboAz4sJbF3AwBADV3OC9cvYexj+P3AyshBQlAoo/t2j2VY9zv9YbIJ06LvPceMyq0EwNkl15dQHByuo97v97Accc+7ofg5bduGlB4VMT4sqPzesN6OdVDkS+tIoP3bdcx5rtle9adsWXcjhqfZZBIVvvL93c/c3sgbB6kzG1utP2y9cOhJkNtht28k4HCyl4s21UF6ymrIXHNoe1U4Zx6JdAjV4dwNmEu+Hly1zIpM08XeC1FsPFg6sDZpDPTBfFTkSzGwjxT4CF31Ilr5aheyToBkzpKJtLKELv+umIJegri3azhpxka7iF2UaqaKNuF8vahliqe2jHBuN0Kfmf3aOJMhkUr2SyNUab44iqcWCXC36m025kY1oKBRC3E/XBsSXslWLSpzqscI5ga+5YlmeaWOJZ3WF4iS8ZTts5bNvGsSZntByby1gvwN/ZGWhsYO4g4mlaIefHqAu7zYhvj9cVVHO+0BhlPb2Ncy8dkSnaVDfXIPo5LLRY2ATy/bwHiJAegTRzgZEjfZtmyXxJJNKjaqONZrYxwbR87K/K+K7d+D1i+jLzDDCUyjxjwMgB+QufA88v4XCM0lVnaTsUA4GtDgJ2DWLOKET732B7+TwzTawsYi0AB1H5yuNHiZk2y1b8gUrv3r/jcHjybBylzm1ve2ABupJTO5ZFlMIhVETFtkFJsMvpjXxvpzYBpcJRNcqENZ3xWHV4xwa67mBiI1k8s4IldOF52UR4UrSzBmnzimBMb+/aZugqk7VRM94P9cgjWPWoLE808jLBzzbQkw4wPqdakwQax9dTZ0+zHThUO/bMn4MCXRjjubgW/E8BK0bzFCRxPe4JzcewJrgw9YyYxS1WNRLbFwLaFVKSpKrBLI4zTwgSOj319qInCPjheZhTr5ZH1DqL+zLCITMTMAzgzc0QuthCAlGJTI+a1VyKV5K+YQB/P/+ZNy2IECYKVU32Rd92wkl7ePBVTI1Nlp4qxqM3w+eoMmYhKZA0dmWUjeFa0pDIqWpbK0WMzUBbBsb60gvF9YteUlF/pGNYpVqZRvgmgl0J/JXERuO2XrSlmfYZsSDG5tXFgr2SYoo2aCdU5+l1a1Wzil1bwDDgf2EogdUTedf0wE2f1bl/muX0r2DxImdvc1LJTf16c9b9twcB+2RbSmYedaDmyXjnsHnygWhN9ZRRwl79XNqVVyoh/23Ucoz3FIt8ZYxE+2zPV19UhHBTZJswuxI71qsmzV6glUoyNgullItUQC//i+PhurnmrzuBgF8fK7nGMsrlfRhBAlkdTNUjI0tirwDFSuG5LszETH7iNbsnYQYtjHHezdqsuBsHIu2VQkVPVIqnNEGT0AivF5QXgyhGuoREafiUveseux7UZxiVQIPRAQcPDIq6LQaUIMg37ZWSbzvZw7MstONhmiK7KqQMMBrtgEwT7zPbh0gS7Az90cPvnMPZxvtYUz3pxjHEjxTt2rZXBNaUxU+OGejx81r4G2jsVvJ+ibpdbeP/5A8yptaEFPJmWL1NHJFKNm60qSlTHGRWUCaQWwbw4TuKegnSvdqzv0yP7xobqB5gTmWNssxqwRdmpP3+HSTu3N4LNg5S5zS1vXmYy8GQnsJW7iMqoKzD2dB+LPuXa+f9RET8X2ghobtSBDzgxUFyFmCAYqZsTpfKe68KBEzw59lEeSVz8iBhgcRCYKm5zqp2ZYyz8ZNTQgd7NjjItYhf9dURwD5dbyIisDnFNMwUDczx2KyKRlmXYMPFc19gd1xrWT2ZxjM99fg3BTX7XXZshy7JfVvyN3gMzWs8oLXhYtCBFBE6bqr4iCEISRyR1Tf7eS42p5eg9MiPRLVlgwP5DO4rpETF2z8IEaq4HJRPeGxQRxD2xg/NUIoBjFyYWiB1tgDfWbFC+szGF91iaYWDy8iKyNswonO7h9cstE8NzM8O0LEyQEZkWEChPC9ZxOHOMXbM0wniRuUUmGoGr/UDkk6cQqK1pmeWo2uu9mKfB6WYNc70ztvtmSwQvRfaxGkn23X/k/s8xt29Zmwcpc5tbzrK1/0ac6GeQDaEDcgQ7T4JSg1gkUIEwyrFPVEDsQJ3dtQYW5FDFqsiYiVyRQFQBVUsIByVgVCIXbIjFMRwpgaQEgIYFA5EmmlnwFVBaD+HAD8om+x0kujPNcB2OWF+YpdGt8v55y/cyidTR05m7GXbG/UBk7MLpDYo4b2eM+9ypWtmIYxQkyFBQdTZyoYzaLVm2gXiS5tQc9Y06gpm3bv6f7X1pkJzlde7z9df7OptmRqORBAiMEEJgmVwWly3ZgI0K+1LBqZQxhW0SsK7N5jWACyKRUBHGxNi3bHzB16FiJ4GKQ0T5VhJswIDBEgQjYcsLi0C7RjPSLL2v3/feH+ecfru1jvZBOk/VlEbdb3/L6Zbep895znNIy5Cq2nZx8aERg7ygb1usRcQs3869gCWRHRU7eFGGBNY4k/V2pyVBqRrdVz4CDBTonJUgXZvHHWByzlYn07m72nUZu5d2JPYjCWq5vXCrdeGV1u5ACxEdTlI2qKNipxl3cTanEaBMkgiW5XpazezyYZsZqrqAE7LXJdci9zwza7VMYY/if9q4nR81e+Ig/kUxpheICAW59XokQe/P73thLvk0rTnr4A+rOPGhJEWh2B0yx8UL0MwQl1uMRUibi9BjoyxMLYYpPb49RRt2zQXOHabSgBiVuYY22nSVO2dgh/j1lKgWPyPPw918wG9p8xX9izi7it19d5mey0XsJu87Vn8hehI5ToXFrqmandET9K2IVjQOVdcKSuX6xOuim4maiIzDHm324qAbbdiWV9EWpFh8LKZiIpYthumb/MYO20ET9ogAdJatmZz4nXgOiVsBdokN0j3titM9JOrWiEx8Olzftu3WXMqATc9THLr52/1onI7TVabntqStc6poeCIevd/dJbb6LxMhKIco0zFnzIqYZXaPvA/7w5YMxUps8sWhNh+xJnbSXTYeo8/kKAuUwx79OREF3gkAZ5Vt23mEu32GUvQTrxNJkPZwjwnzYI7OK4JkEY7LgMjW+T/xutXVuHvJzg0nKTbxOsWjFS3rTexOmlUEAJccOESKkxtKUhSK3WDm3Qhn4l7auMUcTASIWfZBMY791u87QCNqnV3HYnbCr3yTl2nJmzO0mc7I27kxYg+ejdgJyuIE6oBIhkBMzOQbdCFsyyXjMVrrGDtDaFvK+pnIZl8M2S6g8Rhdl2SNOstk9+5yFqIYstkcEUaKfbmQg1KIrkFabVM1eqzOBnWdZSIUAe4G+k0flcrGYraFejgJTHCbrrjupqq2nbvKZnVZ1rN0lXnYn2eNu/KRFoGsT8RRyjvyDb6n1J7VOH2MfsZidFzJRtQDJF7dkeTsRdXawo+wi+uMHLAjYQfmDSUpdn+sUtYn5AEd+zB4M45tS5dJ116ASFA2SsRqPEqkUIZdSjzKXFqUz0+yRu+1eOgARJJ/PQB8eAMPKuSSZMinlmHpSgryZyDSoPjuTJA/TLra3kkD0HW+d8feCcr2FL1WSki/66XH5+4ibUmr4FWhOAgoSVEo9oYR1nUEDJEKcY+tBYFo1eoF4nXaKMV/pBykDdsLULakHKTSyKYO+sbcWaZNYid/ex/IW2FnPmIzIeWQ3UyFuABWKCubfm+Rvu2WQnbaq5QdCkwUYnXuauE2Zym3vEUaAEyv2fR+KWxn/iRr9HwhbFtxJfsg3iaAHeyWrFHcZNMF6PzVIHeu+LTxSot1f4GuOVWzwxerrnUjrQdo49vhWnLYWSZSIQQlzkLmCpffJBvQUbG6B5evW8Sw0gZeDFPmBLDmaeUgrau7QKQGhBxLJIVwyr2HPattybD/ikzAlrLWRVvo8a3pdnO9fJhEoYOg2VEFLpHtjLNQuUTnHE7QNW7OcPasRO9NT8nqpIa4HNOKTAW45B3799d7eCrwBGVD6qyd+X0v6aXEql/e0woLx0O+bbUHiIS0YnvKfvYlyzUeg+m87QD/wBSKyUFJikKxN9RcO9MnYAA3QBtkB2/WE1G2cG9Y86piiDY6aUOOeFb8KrNiykHbrdJZsaWGRM2aw4ljqgwmbASs4VvNtR4pp4/ZzWkoRX+KCNF3qFQVr1s3XMBqY+J1IhcJzk44hnQDW9NAhIW5Ce78EIIC0MY8K0vXsiNpdSci3Owv0AbZwcLL4aT1F2l4gGHiJDb9AG2QeRbYRpjciPi2HuDBhkHKwKRqRAJjdUtCRLgc8qx2aG9zXSRWMvhvGrVcm+6/AgA4Lz8CnL/dkjMHtotIXGe9AMW4GALWTidSdto4HasYsuLg4YQV5Y5HbXlr4VD7pi8I+kRmN2dsGS1VpfPKLCCA3nODdjG3mAnuPkBQPr+FMAlpt6eI3HWV6fXSPp+PWHNBacH2HaBcpc/V6WP02W/FjiQ9NzNLx0jWbLakc8/QKxSHCiUpCsVeYOZ/Ac6ahwCwB4rM0RmPEQnoqNDjW9K0MWa5LBRrWFGp2KXLt2xJkxfClBWQ6cPSWeEa6zMh3ixiHuYyaegv0KYybydtNvkIrSuFWINhbFknzKWQesCasg0nrSeGuLDO3UW+LeUgaS0CoI26ErQuuG/02LEA04q00UobtczDSdTahwGm2eslywJjaUGuu7ShRkIU10LYeqrwvotagGIhYti+ojUDkxJHukrxbQTsvBrAdrzsC90let2GzvbMwMIhuoadcdqkPYdiWAjT+cVgTgYrJmrAeyrAWfxeDOaAn8+h+/W5Q6geoNfOH6HzPXsKHfM9o3Diy+31GtBrRAsk1v+FsO2gqrv0/s3K2tlSQW4FlpZ0KcW92U2vkZZm+X1Gnq5lzXSY+V8AAGq7lzlVosURX5+qu2d5R/yAPAem56+Ansn/u1IoDhZKUhSKfSHEHhynTtCGCdipvIUw/Wf/ZrfNuvSUaFMN8D+rAhvCibBUUuqii5D5K+I+KvbtkgVolklq9G16b9OAxdhset5qZ4xj575UXet/UeBMjsz9ibPR2e+n0XohWdJS7HFXzy9n0+9SysqHrdZDSidiyCZli9E4PdddosyK61vzu91LC8kavc6BnUwsbd4yGDBWt/OUGgH6Fp+u0mt3JtozJ46ha3WNNTrbmrZOsuLcW6MymmO+Qc87HXQdITZOG423T5XengLmODRReWeC3v+gT8cUwzkHdK1117Zgi6dKlJ2CFw61d1ZJ9sU1tmNI5gTVWoz0cgHbag1QbKtByjjlw+TYmg+TH8n0vM3ITS8Ag2/a873eY8uHAGWntmSIOHZUbImn6vLASqfpPWMytwNx6DwcxTGDkhSFYh8w53wejrnbTo81oE1ENs6RBH1LzlRow6oGacOvu/abcMBY628ZAlgK0eYl2pF6wNrtS6km5NMxXEMp9bBnyxQ1l7Iz0i0jItcAd+6EPWAkDkDEvlzOEWdaEdJKCcM4dK4tGaDKhm5S6vjZHLrOLWm61wJvhiMJiomUHHIRurdi2DrLnjJBZGJ6nshEI0DZBPHhmIhabUeSDfIAq2fpqFoRrmQZxIK+r2AzSGLUJt0sQZ8261SNsiIiUpZswjudtn1XpiFLdmZLmtvDPbo/37H3W3FsV5N0M3kBOp7MqLnsbboGcYoN+rTRS5dQV3nP1m9pKy85QLzBdvvcXZbnmFT5v+rW14qou+pS7F6ZQZ+VUghYPZPicvZO64orqLvAnDE4b3yX9EwZ0PuRj9CfYf58J+pAraqGaorjCiUpCsX+IJuxtO8CtHGISFbElKlqu3mXIM8biXQBdTN5ibDNvQgxx2J2lo9xrLtrX9EamxVDtHm6hjQPYqHfCNI1eo4lINLeG2dyBMeWUsTiXyzuG5wxmZml+xmN070VwyTgFAv/s3bSBm1AmoRoA0g4VrvSW2S7c8dqSgIGmIgAg3nKRolzq7R0Z6pEFGosmB2PWQ1IJWidTaXUEvJIMzOUopKQcay+RUYMAEQscxGrCaq5RJZ2xdkp19g5N4DVc3SV6V5rnRSbsGdLPFKCS9aAxRutGVwh3K4xEdO7LWl63TiX8AohyqrVXeBPttn18rnynfZ5SlLGykXocZlgDRBpyUXsBO1Tx4mIvNlN17QjSd1HIc868EpG6JzhPT/ngzmKWdiDOfVW+3hmkv9OFIqjBCUpCsV+YPq+Cmf7Q/Sfve/QplZ1gYZrdSDJGj02HgMGcu2mXqnqnoLGVnSXgG5YcarPpQnRYvQWiDSI/qDBHiYJdlEthO18G8fQN/Akb/ZVLhkYELnZmqYMhLS2ChE4bZxKAAFjXVe7S9al9P1byHJ/V4I23xEmKKLXeLObNrmNHURUxmK2dFMM0WOVIOkpGiUiMK/3cFmkuKe3SSNs5xPVuP1aNDbFsBXJ1gP0zb8RoE05H7F6IZ/JUylEWS7RW0wvsJGYZ4dI7owTGQz6dG1Jzt6cMUrn3hkn8vKHafRnayeNGPm91W07rgZz9HhHhTJH3SU6Ty1Isfcd4P+dCXxogy2XSXeSTFiO1emeukv0vm7s4I4xx7azv9NJr8lFrLh2MEdxev9mO6NoLEa/95RslkownATe6Ib54HVA+lD+hSgURxdKUhSKAyFWb/HOYNGpmF1JZ08pRELDGBtjxerWor0ctBmN1q6MYXbdTFeBeM3qQaR0IJCptrJBObAttjITRczI8hF6PuxRliJTsZqH7hJb6HMLdTYC9Bd5qBwbt43HbClGhhJmo0A1Yg3WchEuT3H3x0iCjueANstGgK5lU4d10pXOl2KY/jxjlNZJCUnEwtkoxUMmN4u9v+9QfGouxb8atBby0tItc2ZkdpBoWMp87v6CdXIVQer2FNBfgAndBQBwnOV0jFYiIkJWyZKNsJtupEHH39RBpbJxzqg1AuSTMhGl8506YUtbvkO2+kJ6ZWzArhbhaleZ7lXep/4CxSVWt9k7KRdmwfN80pRRyVQsYdnh0LV2lYmgiN6m5sJ0cYtwH/8oFFMUSlIUigNB2nfFSwSgb+ny7R6gjaazbDcmSf83uK1YhJNS+uku0bd+sWJvuAAa1p69EaBzFEN25oyk68OeTftHG5S+Fx+NUojS9tNK1vBNbPWlDVraSTu5jNJXtD4wkoEQO3WZ6Cv3IdqZ7Sm2Y4/Zc4l1/tY0EQYxcSuFyLxNRJixOp1DsggOaE262q65EKv5oG/bbkXXk48QyRpK0XMpFpS+3UXP9xaJrEzP27JNKWTt+esBImdia787slHa8KvBPdtve4uUCSqHiIxkqsCaOF3vhzayJihBcRC7fvn8nD5GpZmJqBXc5jkrMoM9c6pB245dde1coZE4sLmDSIvP5UaZlJ3lrpzWAX/y/leCwIYOmPfcfDCfeoViSsAxxpgDLzsxkMvlkMlkkM1mkU5rblMxeThrueRTd2kjEd1I0Kdvz6eN0ybsGto8AetFUWefk7prW01FSCmQDgrACmuNY8lDlUsJrURFOmp2RyFMm3erW6xkJcSczsA+19R7+KTziDXsJGYhK7E63e9o3GplRPuwK87D8TzyGZFOoqBvreWHUnYz7Szb8orvkMYnw50lYzF6bZqzQBITuRYhTCJqbY1XhQnFaNxqOFxD2aY8t4Qnq/RaeT8i7NESaiF+k8UbPdRCLeW8rWmKlVjCP3MaEYlYgz4z00oUx54SkSohvZsyVgck2qUZeSJY0QbP3KkR+ZVsS1/R3v/OOJGic0bo2ExU1OVVMVVxMHuxZlIUisnAcwCnJaMCA8SZMMimvC1tOzpCnhVdxho23S/zaXZHoOW7QrxuiYnoNfrYolwEsjXXemLsDikDbWODNxe02clcFiElUgaJ1dl+vg5MY01EwJDQM1anTVi6cAa4pPLbPi458D0l2TL/9R47MVeyH3+cxsPuPCpF5JnASGdKgduOxVsmUbNTgQVVl0hXV4vwOOxRBqnmUhkuwBko6ZBqzRpFOIuVjdr7E5FyIWw9YA4GrXNtBEIcALKk/+Vsq7WRz0SriFW0THHWmUjWRaZNhz3rqNtaBjSO7diS+VF/7IH52KcO7h4UiikOJSkKxSRgzv8cnNf+T8sDDolaZeOvBm3rpugojGM3VMlqiPZibyWGVqSrAKotvzOkHFLn7p+9kRRxb5VW2be6m1qE5uYmm3i0YTMa5RBtoLkIfVOfXqANUDbQrpayx9xdlDmQTVT8YwLsr2EcoKMB/JEFuRUXqIRIIHzqhL0nyejkIpRpcLgTZShJMUyww2ymaoWpovWpcWwmoqxR8YgUiQ+NlKBaJ/qKA6tkrpI18jGRYwJEGnYv8ewOIYhyXMDOUBI4hko7OxN07Ym6JXtSTtrBJanpBSuQ7SrzPKIa3VuZPzutpRzpCIrXYebcAszZ/+UqFO9WKElRKCYLmXKb9GhjC7M2oq8ArE/Ykkjdpc1INpKayzoIl7Qc1aDVUYgvxcEi5BHxGY1bp9VW5CK0KaarwPu22+sIc1fLOJcQKq41dysHrTttc/5PkIShvUXghdmUCZmetxqPUojKG9tT1itlZpaOWXXt4MGRBMVJpiaHWghDukokpK9gW7Fdvp4YkzLpkpIskFjt11y6j9lZ284tviTRBl2TZKQMe62UQ3Q+x9hOpG1pW8JrHdS3N4guBqD7aiUnol8SEiq+LnPGrK9LNmIt/cshuv46d2ola/TYRJQHRKbpPvoLwHASpu+rB/lBUSje3VCSolBMEuZPboCz7vt20rFMld3YYTelOJdOxJgs2rAzXMT23gGVPKQ00F+gTbb1m3IhbL+tt4pmBdmoLQ8UwlSGkY1TpjdLuUD8U8SV1TWURTCgaxFn06BvywebM/T3TjYfe7ObXjuSoGsZyNPm/E4nEbWuMnuoODZTUQ7SBhxtENnIRjlLUbEGc1LRidV5EnPETlY+fcxu5oKRBB3PATujNux8nLAHxACcwlqUmkvX4fo8B4gJSIAJ0ETUdsK83UnvoxC63bF7dkWyYWKqJ+UiBxTvbJQ6bk6ZoPd2LMbdVlXbSYTlZMsfq5O+pVUsK3H0HJgzb6JzqmeJ4iSEkhSF4mAQ4Y6TaIMHwMGWdipBa3Mv4tqJKH37B2jzkaGB21gs5vp2hk7A0LHFkn1H0paPRPAa5RbkSpA2sfEYZQ0qQdrUhczIzJ+JKH2Tl6nNIsYFrD5ChhnyoDj4Dm2oExE6vuhs8mHSqXSWacPPR2jdaIyOIzNkokwcekt2QvJgjq5TuqOkpVhKTbEGCUgDhghHT8m2JIc8ytSEPSpDBQyRsCy3QjcC9D4EDMUmXQVcD8i06Ex8h7p93uy2pZPWwX3n74OcAMCrA3QN8TrFLh+h90FGELjGztkJe/ZnYwfwq1mUIZL3Y3bLOWW+T407eE4jQ7Y2h9fuQ/iMKhQnEJSkKBQHAfOem+kbcCukxbgYsmZvBrRppWpAR8lOQJZv3k03U86WTERpg835QCXD4tggdXTEeO22IM/BMXZAYKxBx82HgfVdpGUQg7Ni2M7tkYGGQR8IMGHx2YVWWnPrrhX4jrOVfz5gyyrSuttfsPNtQi4JOl2fshwTUYpJb9Ha2KeqdiaPCIdl8J20ZO+MW6JUCtlZPt0lIizivLqhg2Lo8pwcIScBQxu+67OtfQs5kfsT8mRYjyLDHxs8E2c4aU31Xuun45eDlhhVXaAQo3XdfE1p9pYBbPdSnu+15tpJ0wbNMlLz85OPNgc5mg995ih8WhWKdz+UpCgUh4uAsRtfIWQ3wq6yNQ6rubRJlkOkA3H4dVIycEBrQj7g+UAlbJ1ihdBIWQawpaJKkDZg0XCYqM1EJNg5FSACIiJZKU0Zx2ZOQtxKLWZxMpxQTMAG8rThZlq8TCQL4DBJ6C/Qj2hKIlx+inEGJxehdekK4IOuJ16n4xbCJMaVzEnEa+mACQLJEt2XCEmn54kUShdQ2LPdP63DBkXzUmJRsFj1y+TmMSYdH9rQ7vpbCVK2qxCmLNBgzhKnwRyVcsStVrI+QUPvxXDCZtMSdYqjuPkyDJbb8k3HEfkUKhQnJJSkKBSHCmkllfZZGYQnpZ8tGdrIQpw5EJt4yaoAtGFLOSdToWOmqmzMxiUdmaqc4PJFOWhdWMW6XjIS4oxb4nlDQqB8B4iyPqUSpCxAlHUgsYY1Zot4dPwIZ0pqLmVF5P7EUVVaeVsJgUB0FVXOJAgZmZEnohFj749SiH6PcIkrH7GakaoLjCbp/AN5nijN5EXKTaJXqbl0nN68vYYtGZtlCXu2+6enRDGOeERotqaBXJ20Ne9hG3zp+hnj0QKS2ZEhhEk2jnON7XiSOUOxhh02+UY3EGVPlNkT6luiUBwClKQoFAcJg+Vw1jxEG+9AnjZ6ma2TC9nBgeKBUeWSSNAnnYmYuRXC1gq/wd0dxqGNvdhCeCINIhUOrwv5QKBB2YhUjX4aAcoYFENWVColIWmFDvrkmVJ3iYiIp0g5ROWLTIXWhjz6M8utzHXuoJEuFums2VdXkszVKYfo3hN1ytCIm26JiZoBXa9ke2TGz+YM/Sl+MSMJil+yxmWpFh2N79A1VjnDJO2+Yvomg/hkHMFYjLI90gItJm6zs+33MH8EOHOUrk/8WsohK56Ve5eyjkxpbplsbRZ8/rA+ZwqFQkmKQnFoKHLqf0eSNvBSyPp0ZCP22/ivB6xFumgT5oxT1kDKAI0AbcjFMGUqxjmjsStOG3LAtAtSpYwyytORww2gHrYW9HPG6XydZdr4yyHbyusFgIZnSYOUT+T5eJ1Iie8QAdvJrcNvdxFxkKF3kkXa2EHXMJAnImVgPUeq3I494VrLfTEmAyhWVde6xW7K0HETvCYXoY0/2NKdIwMMow36u2QyHJAnS7xB8a66dnxAhrNVjiFyUm4ZDDnMgwmfOg1YMEz3IeWwkAd0cKwlc7Ohk+5ROnFE9Mzlvma2JHmUPncKxUkGJSkKxSHAfOA6OM/8iDa+eN3qM8Z5Bk2RNSLv3wKs7Wdywd+yDYhAhHwy8Wr1DZENPMadJF6gfVMPGNow6wEr+sxFWTDq0fG2p+z6CnuNSBtzKWQ1IA5sqafMGQ2nSI8NJ2ldR4WHFrKOo7tE5GFX3Hq9vNNJ99c9RM9Jx5IIg0VULJt/ogZUeU3FJcFvZ4Uej9Ssi21nxQp/K0E6Ty5CWZXRmB0/YECPd1Ts+QdKVgPUCNAxvQCRN8C2T29JU7xiPI8owPb14qsiXjfjUSKR4iYsxASAmfWlo/hJUyhObihJUSgOFZ7Tbt1eDlKppxoks7eEa0Wnac6QJGo0Y0XcaTd00gbaYLFtmQcKVoO2LCH+I55Dj0cb9HuIj1EOAXGZKwSrbcmHabOVUlKUS0sel4xGY3RtNZfWegESi87O8uTiMK0TrcVIgq7FC1A5JBehzMr522m9y74qO5J0Ht+xJKPMmo3+Yrv3SaoKpLZRxqYRsJ1CEc+KUvMRutausj1mMWzvqTUD5Rg76LDOJaCIR263Udb0ZKP0XH+BzjkzR4QnUbdt4zIMMtPaFQTqxJmppEShOFZQkqJQHCLMR66Fs/5/W0fTRB3IO9a4zIA29LN30iYqLbfiKxJtADNylMFwWUPS2aBNdZx1H/0Feo0Mw3ONHVjoGCsAFddY49gNfTxKJEMs2dNVIkfTeDBhpsLlHp6h47LPyPYU+Xnsilv301PHrZB2WwroCNM1tHqNCEJsc5+u2vZgcXmtunQ/Yh7nMYGK1am7Zzxm9SKigRFfGCGFXsCWXKQbSNqIZYLzSKJdN+M5QIDfj44KxTvKIleA3sNiiIcsunQ95WBTb9LmXaJQKI4ZlKQoFIcDB3azlSFyIwkiDzE2+GpErQFZjbUN3TwFeCfb6SNg1yfq7MoaoSxC0KcsQJV9UcLgjTpAGy/Ac3x82oBlQJ+YyIW5Y6ezTMRkONmu9QgYoEOGD7J3yla2iS9zNiEXoXOPxklQWgnS77kIZTcGc+1W8JLBidfZmbdl4GIhTARIJiT3setqnbUrlaDtYjIOHUMmGW9Lsc6katuvI167aDjP9vIi+BXBrg8ib9K63Cr8jTRsOW5XHCZ8F9B/DD4/CoViv1CSolAcDnpKdjMVq/R4nT1KwrQBTyvSxjqSoE1URLB1175e5v1E67atOVmzYlvRjYgYVUzRJDMR8injIcLdTNU60Yqj6TudPFG5aFuDow0iJOJJsqmTNvL3jFKWorNME4+7y9ZLRfQvIlAV19jTxukYkQYQDNB1pHgWTbRhNSQSt6GUbe91o3ZuzpZpVBKrhOhYomsZ53k2AB3LNTYDNZS0ZnPGAcaiRGBKTEgccJnLA0y4fTAgoyl67Tl6HxeFQnFwUJKiUBwGTOZ2OMW/pw083fLt3ncoA9HJ7q8OaOP/TT+JT0fjZEjmGiDFWhTfIUMwyWC0znFpFcrK7BkfdN56wPp2lILWx0PKSz0lq3PZ2EHkoBCmxx1jN/OeEnDeDtKlSNfSaJx0Ir5DZSDp5JG5QakqCV8liyJdP+UgkZ18xPqeNALWo6QUstmWsRiRsaBHWZDOChGnGnfvjLKtvkw0Fs+SmgskOIslGZsKa3nEDj9Zpfv2HJup4dZu9S1RKKY+lKQoFIcLyXbUXBaP8pDBbAR4ZYC1J3naSGdP0CYrXTKA7SIRe30DW/qR2T0+C2dlzmDAAAVuY07WgDq3KdddKgEFWgbsZXkA4JYMkYAZo6xTqVHZRdqCN2eos2UoSedfOETrtqeIwAzk6fU11/qH+A7pOopha2YnhmcAkRhwbHbFiTBIt5K0V0c8O+ywymWkaSUqAUmWSJxjGwHrCSOxH0oC2zNEpsSKH6DskR+1BKoegOn9GjDtKH4WFArFEYWSFIXiMGEyt8PZ+i3aDOtcjimyPf7GDusbkmJvjbBnh9KJJX0hbDUhCNgNXKYVSwlIBLTVIB0vGLKGZsWwtayvMgnJVNgyPkxkZd4u9lZhwzbpogkYq9M4Z4Ss3XfF6bxzdwFrphNJaQQA+ER6phfoHKmabdXdG6TzRmzhpR1ZrO8dQ6UdeFbQurGDxLrJGtBdpcxKbxH4wzTb4pyPUDkq6JNmxWPRcHeZtTtF0pYoFIp3LZSkKBRHAvkwiU+l7OBwK7KYg0XZe2QgT487xuol2G8DLpcwwBkKmWvTUqJoZkhkMGCyRoSnwh1GQdamTCvSui08IGZGjjb5bIt4txwkMjQrS4Qk7AFvdZG2ZFqJiEGdW3TPHSbRqmhuhFCNxknr0lWm4+wL4pUykLei2Sjb4/sOHVfIXLpqxa6uofuSjqFchMo5AL0+Ubc+KmEPCBoY9685nkfjjVYoFMcSSlIUiiMAc9ZNcF75AWUWYg0gyeQj6APxGmlNJFviO+RFUg7aFlohNdEG6UrEnr7OG3eQMykAt9yy8LPV0l5m2MyeoM1cykpDKS6h8GRicbkthaztfCFMWYrBHPBGDw3b6yrT/UzwNcYaRFp2xa3bapTLUq4Bhj3KaOwNkQZNMJa26zd66HdJwIhFfsgHAiFLSHqL5HY7Z4zKWwFDWZkMG71tTcOc+7/seVT0qlCcUFCSolAcKSQ4q5FnUWqYbfJDHpUmIg0qR4R8YFMHbcwzc0QCZFKww3N/JMMi045lenGNZ+GUQGsk2xBt2LZiWe871JnTX6BjjsWItJRZJOsaEqnWXGD6GL1+R5KyLKNx+nMkQeUcEev2F+jaS9wp01km0jIRpfPKfKF0td20Lcmzf0ohtuoPAvW4HTooXjAicpVSjstC4gCItAR9mPd97pi9pQqF4vhCSYpCcYRg5t0IZ/vfAwkuP0xEqQRSDllhrIH19fAcu7nL7B8pBbk+61Ng9SMAHVfKRIWw9R4ZjVOXjghTu8pUXkpXbYYFoNeJDqV1iN8Qd/P0lGyWZVqRiJdY5tddIjGxuhW8jnLpphwEwiEiQg6orDRn3F4/QASnEKbf/8c2IkD5iB1+WHNJO7Opg9Y0WJuTqsJE7gTmHOU3UKFQTDkoSVEojiDMwFcAAM7ofbSxZ2Wujk8ZFgDoG6eMirjH+g61F7usUxFxre9YP5WKC0Q9EoV63JJcDVL7bcDQ6/Nhah+OsPV7jq3eQ0yKpLwj1zWtSKQp7FlSIwMMU2x/73J5qBq0AxTFiTVZo44g6cLJR6hkk41y6zB36ZwyYY3SRAsTa1BGxQvYgYyiwzl3B8y8G4/L+6dQKKYWlKQoFEcDhTBlDiSLkovQBuwaIhm5iPU/aW2tlem9Iwn6U0pGqRodMxchMzbXMAHh7phshLIyAUPZjOEkaT/SdSIj0mI8vUCk5/QxO3xQJg6LX4rr81BBcFsx2IQOtE6GHI6xNmRzhkhShK91ep5i4Ds02XhTBvjI2zY2MTaQ66jQ/SbqwLYUzIXXH/v3SaFQTGkoSVEojgZc7lZJ1mgjnpGnP/sLVDKpcBYkVm/pZPFt5iPLZSDfodeVg0RUxHE1FwESns1CRBuk+diWJqv9RI2IhhCZ9UwKZLJxhWfVyPC8VI3IxUSUsjyZCpGncqg5WA+uobJMrE7twTsT7LuSJ7IV8ei6wh55q/QViGxlqsDTp1FWZVaWtCaDOTJTS3K8Zh6H90ihUEx5KElRKI4CzOCX4fh3t09JHotRZ0ohzG6ysEMDkzXb+VNiH5EAu8iGufvHc4AtHVTykYyJTPqtuUQotqXI12Q4QSRkJzvGnjbePp3YgPQnYzHKbNRcEtmmq0C8YbMrLnu1xHiWTl+B7mEoZScOJ9kULmDsYEOx7U9XiTyxb4zpvO04vBsKheLdCiUpCsXRgohNG2xbLxt7nIWnKZ4KHGChbD5sfVBc3xIKmY8j2hEpBcn0YAe0fjhJ5ZzRGPmRBPicYkffWSHy4nu2dOM71twtU6Xry4d5fZnIihCOaVzOAeyAwXidrqERAPI8h0emP1ddmP959XF8AxQKxbsdSlIUiqMEk/w6nFcfJjLigLIJMt8nWSMSk6oRAdnUQWRkMGfLLx6bt00rEfGQzEa0wVOP2bvk9R46RyFMJCZdJcKxI0ktx2Lg1lukCxtKWn2McayjrRck/5WaS+esunSssEcZmrpr7ehDHpWUAobM3Hx2e03WYD72qeMUcYVCcaJBSYpCcTSRD7P1PbfhVoNESsQDpcKDBKMN0oo4sG3AIc6klPmfqTizBn3bMeRwRsZ3SH8yEW2fc9NqV5+NEjHqKtuJza4h8lTkDIjPmpWaa91r85xxEYO4ubuA308DTp0g8jI7C3Pqrcc4sAqF4mSAkhSF4ijCLP4snKd/ROTD4xk7mYolKGXWn2QqRDzCHpESMWMDLIHwAoDLrbzSojySpBbf4SRQ43bkjgoJaH0HcNkjxWUNS6JG1wKfHh9nUjON9SldZSI9pRCdL1OldZsylP3pKANb0jCLP0vXMftYR1ShUJxMUJKiUBxtSJZEHFjDbNo2m2fmdJWBXSyClUF/YoPvBUhcaxxaZ2A7hsJsDjcRZf+TMDBBJZemW2uAvVgMiHxko0SIAqAMinGoxOTATlze1EFW/tMLRFZmT8DM/uJxCp5CoTiZoSRFoTja6KhQpsJziAyMsw3+WIyIA0BaEBlOWOWOHSkT+Y4V0Ia4BXiCyUZvkTIt+TCVaObuou6bugvEK0RSHBA56eRZPLmILfeEPSJCBqSDGY3ROSdiMGfdBHQcn5ApFAoFoCRFoTjqMPO/AOcP3yMy0MH+I9PZQ6Tq0p89JZ7dAyIzVZeGEjYCVmgr83/AQwerQSrz9BfomNvS5E9Sc8mSvsyv25rmmToJWhdr8NRjFtvKPKBiCGbh0uMZKoVCoWiDkhSF4lgg4gF1Q2Shu0QdNuIxEvGIlPg8YDBkgFqINCYuC2VzTFBCPnXrAFY7MhajjElPiYjM/BHgjW4rnvUCwPu2s4EbkxJubzbzv3B846JQKBT7gZIUheJYIMDGZz0lyl6EfCrBiANsigcB5iNUeok1LHGRGT5S/hnIU9tv3aW1mYrNlqSqpDU5c5QcZPMRakU2TrPkY7rUUE2hULw7oCRFoTgWmJklwlB3bUuv79j23+4SZVSSNcqY5CNEPiai1iK/q0wEp9EgF9l3OonMOLDD+qR7p7sEbOyAOf9zwKl8DanjdO8KhUJxiAgczotXrFgBx3HwxS9+cZ9rXnzxRbz//e9Hd3c3YrEY5s6diwceeKBtzQ9+8AN84AMfQGdnJzo7O3HppZfiv//7v9vWfP/738eCBQuQTqeRTqdx0UUX4b/+678O5/IVimOHoE8EZChJ5ZpcS4YjzDNvJqJWKNsI0PpZWWoxzlRIYyJmcHU2Z5MuoFiD/jQOzDmfhxn4ChEUhUKheBfjkDMpr7zyCh5++GEsWLBgv+sSiQRuuukmLFiwAIlEAi+++CKWLl2KRCKBz32O/hN97rnncPXVV+Piiy9GNBrFfffdh4985CP4/e9/jxkzZgAABgcHce+99+L0008HAPzjP/4jrrzySqxduxZnn332od6GQnHssDNOnTeRBpVidsWJWJSDlC3pLtH8nHk7iaD8to/KQ2GPxLE7E/Taepw9U3wq9wQMzDmfP953p1AoFEccjjHGHHhZOwqFAhYuXIgHH3wQ99xzD8477zx8+9vfnvTrr7rqKiQSCfz4xz/e6/Oe56GzsxPf/e538elPf3qfx+nq6sI3v/lN/OVf/uWkzpvL5ZDJZJDNZpFOpyd9vQrFkYDz8v+lX+rc5ROv29JPokYZkkKYxLDn7aDfpbMnU6XXZUgsa1J3HN+bUSgUikPEwezFh1TuufHGG3HFFVfg0ksvPejXrl27FqtWrcKiRYv2uaZUKqFer6Orq2uvz3ueh8ceewzFYhEXXXTRPo9TrVaRy+XafhSK44qgTwQl7PGMnqqd4zMRJcKSjVI7cdCnluLf9sGk7oDpug3G/WslKAqF4qTBQZd7HnvsMaxZswavvPLKQb1ucHAQO3fuRKPRwPLly3H99dfvc+3tt9+OGTNm7EGC1q1bh4suugiVSgXJZBIrV67EvHnz9nmcFStW4O677z6o61QojhbMBdfD+eUj1NEj04QbAfo90gBSDpWAMhVaP/hlYPA4XrBCoVAcZxwUSdmyZQtuvfVW/PznP0c0Gj2oE73wwgsoFAp46aWXcPvtt+P000/H1VfvOcb9vvvuw6OPPornnntuj3OceeaZeO211zAxMYHHH38cn/nMZ/D888/vk6jccccd+PKXv9z8ey6Xw8yZMw/quhWKI4rOCs/saRkaaHhGj+vDXHbt8bs2hUKhmGI4KE3KE088gT/90z+F67rNxzzPg+M4CAQCqFarbc/tC/fccw9+/OMf44033mh7/P7778c999yDp59+Gueff/4Bj3PppZdizpw5eOihhyZ1/apJUUwFOK8+TGWeiKczcRQKxUmHg9mLDyqTcskll2DdunVtj1133XWYO3cubrvttkkRFAAwxqBarbY99s1vfhP33HMPfvazn02KoOzrOArFVId5n7YGKxQKxWRwUCQllUph/vz5bY8lEgl0d3c3H7/jjjuwbds2/OhHPwIAfO9738OsWbMwd+5cAOSbcv/99+Pmm29uHuO+++7DXXfdhX/5l3/BKaecgh07dgAAkskkkskkAODrX/86lixZgpkzZyKfz+Oxxx7Dc889hyeffHLS1y9JIxXQKhQKhUJxfCB78GQKOUfccXZoaAibN29u/t33fdxxxx3YsGEDgsEg5syZg3vvvRdLl9pBZg8++CBqtRr+7M/+rO1Yy5Ytw/LlywEAw8PDuPbaazE0NIRMJoMFCxbgySefxGWXXTbpa8vn8wCguhSFQqFQKI4z8vk8MpnMftcckk/KuxW+72P79u1IpVJwHOeon0+Eulu2bFENzGFA43hkoHE8MtA4HhloHI8c3m2xNMYgn89jYGAAgcD+nVBOqtk9gUAAg4PHvqdTrPwVhweN45GBxvHIQON4ZKBxPHJ4N8XyQBkUwWHN7lEoFAqFQqE4WlCSolAoFAqFYkpCScpRRCQSwbJlyxCJRI73pbyroXE8MtA4HhloHI8MNI5HDidyLE8q4axCoVAoFIp3DzSTolAoFAqFYkpCSYpCoVAoFIopCSUpCoVCoVAopiSUpCgUCoVCoZiSOKlJyimnnALHcfb4ufHGG/dYu3TpUjiOg29/+9ttjz/88MNYvHgx0uk0HMfBxMTEHq8dHx/Htddei0wmg0wmg2uvvXaPdZs3b8bHP/5xJBIJ9PT04JZbbkGtVmtbs27dOixatAixWAwzZszA3/zN30xq9sHRxuHGcWxsDDfffDPOPPNMxONxzJo1C7fccguy2WzbazWOFvv6PC5duhRz5sxBLBbDtGnTcOWVV+L1119vW6NxtNhXHAXGGCxZsgSO4+CJJ55oe07jaLGvOC5evHiP13/yk59sW6NxtNjf53H16tX48Ic/jEQigY6ODixevBjlcrn5/AkbR3MSY2RkxAwNDTV/nnrqKQPAPPvss23rVq5cac4991wzMDBgHnjggbbnHnjgAbNixQqzYsUKA8CMj4/vcZ7LL7/czJ8/36xatcqsWrXKzJ8/33zsYx9rPt9oNMz8+fPNhz70IbNmzRrz1FNPmYGBAXPTTTc112SzWdPX12c++clPmnXr1pnHH3/cpFIpc//99x/JkBwSDjeO69atM1dddZX56U9/atavX2+eeeYZc8YZZ5hPfOITba/XOBL293l86KGHzPPPP282bNhgXn31VfPxj3/czJw50zQajeYajSNhf3EUfOtb3zJLliwxAMzKlSvbntM4EvYXx0WLFpkbbrih7TgTExNtazSOhP3FcdWqVSadTpsVK1aY3/3ud+bNN980P/nJT0ylUmmuOVHjeFKTlN1x6623mjlz5hjf95uPbd261cyYMcP87ne/M7Nnz97nf2bPPvvsXknKH/7wBwPAvPTSS83HVq9ebQCY119/3RhjzH/+53+aQCBgtm3b1lzz6KOPmkgkYrLZrDHGmAcffNBkMpm2D+WKFSvMwMBA2/VOBRxOHAX/+q//asLhsKnX68YYjaPgYOP4m9/8xgAw69evN8ZoHAWTieNrr71mBgcHzdDQ0B4kReNIOFAcFy1aZG699dZ9HlPjSDhQHC+44AJz55137vOYJ3IcT+pyTytqtRr+6Z/+CX/xF3/RHD7o+z6uvfZafO1rX8PZZ599SMddvXo1MpkMLrjgguZjF154ITKZDFatWtVcM3/+fAwMDDTXfPSjH0W1WsWrr77aXLNo0aI2s56PfvSj2L59OzZu3HhI13Y0cKTimM1mkU6nEQzSeCmN48HHsVgs4pFHHsGpp57anPytcZxcHEulEq6++mp897vfRX9//x7Paxwn/3n853/+Z/T09ODss8/GV7/61eY0ekDjCBw4jiMjI3j55ZfR29uLiy++GH19fVi0aBFefPHF5poTOY5KUhhPPPEEJiYm8NnPfrb52De+8Q0Eg0Hccssth3zcHTt2oLe3d4/He3t7sWPHjuaavr6+tuc7OzsRDof3u0b+LmumAo5EHEdHR/G3f/u3WLp0afMxjePk4/jggw8imUwimUziySefxFNPPYVwOAxA4whMLo5f+tKXcPHFF+PKK6/c6/Max8nF8ZprrsGjjz6K5557DnfddRcef/xxXHXVVc3nNY4HjuM777wDAFi+fDluuOEGPPnkk1i4cCEuueQSvPXWWwBO7DieVFOQ94cf/vCHWLJkSZNlvvrqq/jOd76DNWvWNBnvoWJvrzfGtD1+KGsMi5kO9/qOJA43jrlcDldccQXmzZuHZcuWtT2ncZxcHK+55hpcdtllGBoawv33348///M/x69+9StEo1EAGscDxfGnP/0pfvGLX2Dt2rX7PbbG8cCfxxtuuKH5+/z583HGGWfg/PPPx5o1a7Bw4UIAGscDxdH3fQAkqr3uuusAAO9973vxzDPP4B/+4R+wYsUKACduHDWTAmDTpk14+umncf311zcfe+GFFzAyMoJZs2YhGAwiGAxi06ZN+MpXvoJTTjll0sfu7+/H8PDwHo/v3LmzyVD7+/v3YKnj4+Oo1+v7XTMyMgIAezDf44XDjWM+n8fll1+OZDKJlStXIhQKNZ/TOE4+jplMBmeccQY++MEP4t/+7d/w+uuvY+XKlQA0jpOJ4y9+8Qu8/fbb6OjoaK4BgE984hNYvHgxAI3jof7/uHDhQoRCoWYGQON44DhOnz4dADBv3ry245111lnYvHkzgBM8jsdaBDMVsWzZMtPf398UaRpjzK5du8y6devafgYGBsxtt93WFCK14kDC2Zdffrn52EsvvbRXQdP27dubax577LE9BE0dHR2mWq0219x7771TShh2OHHMZrPmwgsvNIsWLTLFYnGPY2scD+7zKKhWqyYWi5lHHnnEGKNxnEwch4aG9lgDwHznO98x77zzjjFG43ion0eJ5fPPP2+M0ThOJo6+75uBgYE9hLPnnXeeueOOO4wxJ3YcT3qS4nmemTVrlrntttsOuHZvquuhoSGzdu1a84Mf/MAAML/85S/N2rVrzejoaHPN5ZdfbhYsWGBWr15tVq9ebc4555y9toZdcsklZs2aNebpp582g4ODba1hExMTpq+vz1x99dVm3bp15t///d9NOp2eEi12xhxeHHO5nLngggvMOeecY9avX9/Wrrd766zG0WL3OL799tvm7/7u78yvf/1rs2nTJrNq1Spz5ZVXmq6uLjM8PNxcp3Fsx2S6pLCPFmSNo8XucVy/fr25++67zSuvvGI2bNhg/uM//sPMnTvXvPe979V/1/vB3j6PDzzwgEmn0+YnP/mJeeutt8ydd95potFos2vPmBM3jic9SfnZz35mAJg33njjgGv39uFZtmyZAbDHj3xzNcaY0dFRc80115hUKmVSqZS55ppr9si4bNq0yVxxxRUmFouZrq4uc9NNN7W1gRljzG9/+1vzgQ98wEQiEdPf32+WL18+Zb4lHE4cJQu1t58NGzY012kc27F7HLdt22aWLFlient7TSgUMoODg+ZTn/rUHt9sNY7tOFSSonFsx+5x3Lx5s/ngBz9ourq6TDgcNnPmzDG33HJL2xc4YzSOu2Nfn8cVK1aYwcFBE4/HzUUXXWReeOGFtudP1Dg6xkwBSz6FQqFQKBSK3aDCWYVCoVAoFFMSSlIUCoVCoVBMSShJUSgUCoVCMSWhJEWhUCgUCsWUhJIUhUKhUCgUUxJKUhQKhUKhUExJKElRKBQKhUIxJaEkRaFQKBQKxZSEkhSFQqFQKBRTEkpSFAqFQqFQTEkoSVEoFAqFQjEloSRFoVAoFArFlMT/B/e6HwLziFaoAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -109,7 +109,7 @@ "" ] }, - "execution_count": 6, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -144,6 +144,13 @@ "**You should know**\n", "* How `RasterMeasurements.from_*` differ from `PointMeasurements.from*` or `LayerMeasurements.from*`" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -162,7 +169,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.14" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/book/tutorials/snowex_database/8_wrap_up.ipynb b/book/tutorials/snowex_database/8_wrap_up.ipynb index a66f049..90da625 100644 --- a/book/tutorials/snowex_database/8_wrap_up.ipynb +++ b/book/tutorials/snowex_database/8_wrap_up.ipynb @@ -7,29 +7,43 @@ "source": [ "# Wrap up\n", "\n", - "## QGIS \n", - "\n", - "You can use the database with QGIS or ArcGIS. There are some [examples in QGIS](https://snowexsql.readthedocs.io/en/latest/qgis.html) in the documentation on that on Read the docs for the snowexsql\n", + "1. SnowEx database is going to save you time and frustration.\n", + "2. Its structured into 4 tables, points, layers, rasters and site data\n", + "3. Forming queries is best done using the new API tools `PointMeasurements`, `LayerMeasurements`, `RasterMeasurements` and their functions `from_filter` and ` from_area`\n", "\n", "\n", "## Community Software\n", "\n", - "* Open Source software means you can participate! Checkout [contributing on RTD](https://snowexsql.readthedocs.io/en/latest/contributing.html)\n", + "* Open Source software means you can participate! Checkout the repos involved:\n", + " 1. [snowexsql](https://github.com/SnowEx/snowexsql) - Access tool for querying the database.\n", + " 2. [snowex_db](https://github.com/SnowEx/snowex_db) - Source code for managing the db\n", + " 3. [insitupy](https://github.com/M3Works/insitupy) - python package for reading insitu measurements\n", + " \n", "* Can I work locally? Yep! Checkout the [python installation on RTD](https://snowexsql.readthedocs.io/en/latest/installation.html#python) If you are just doing python development you do not need to install the database.\n" ] }, { + "attachments": {}, "cell_type": "markdown", "id": "compact-mills", "metadata": {}, "source": [ - "\n", "## Acknowlegdments\n", "\n", "Big thanks to all the dedicated scientists who went out and collected these invaluable datasets. \n", "\n", - "A huge thanks to HP Marshall who gave me the opportunity to build this a couple years ago and continues to fund it. Buy him a beer or better yet volunteer for field work to hang out with him! " + "A huge thanks to HP Marshall who originally gave us the opportunity to build this a couple years ago. And thanks to Joe Meyer who pursued funding to develop it futher. Buy them a beer or better yet volunteer for field work to hang out with him! \n", + "\n", + "❄️ Go forth and snow science! ❄️" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "df844503-99b5-4f74-9eea-2b0753062012", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -48,7 +62,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.4" + "version": "3.11.9" } }, "nbformat": 4, From ecc3d6b3144efb5fdbb2c4befab797d04428adb5 Mon Sep 17 00:00:00 2001 From: Micah Johnson Date: Thu, 15 Aug 2024 15:21:17 +0000 Subject: [PATCH 13/21] migrated tutorial file name to match my current patter --- .../snowex_database/{8_wrap_up.ipynb => 6_wrap_up.ipynb} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename book/tutorials/snowex_database/{8_wrap_up.ipynb => 6_wrap_up.ipynb} (100%) diff --git a/book/tutorials/snowex_database/8_wrap_up.ipynb b/book/tutorials/snowex_database/6_wrap_up.ipynb similarity index 100% rename from book/tutorials/snowex_database/8_wrap_up.ipynb rename to book/tutorials/snowex_database/6_wrap_up.ipynb From 110d86e43711c46bdaf3c9e53eb7209df013487b Mon Sep 17 00:00:00 2001 From: Micah Johnson Date: Thu, 15 Aug 2024 17:11:52 +0000 Subject: [PATCH 14/21] added more code comments a bit expanded text for non-inperson attendees --- .../1_getting_started_example.ipynb | 10 +- .../snowex_database/3_forming_queries.ipynb | 114 +++++- .../4_get_spiral_example.ipynb | 335 +++++++++--------- .../5_plot_raster_example.ipynb | 241 ++++++++++--- .../tutorials/snowex_database/6_wrap_up.ipynb | 4 +- 5 files changed, 471 insertions(+), 233 deletions(-) diff --git a/book/tutorials/snowex_database/1_getting_started_example.ipynb b/book/tutorials/snowex_database/1_getting_started_example.ipynb index 4220218..3bb9de6 100644 --- a/book/tutorials/snowex_database/1_getting_started_example.ipynb +++ b/book/tutorials/snowex_database/1_getting_started_example.ipynb @@ -29,8 +29,8 @@ "- Connect w/ ArcGIS or QGIS!\n", "- **CITABLE** \n", "\n", - " * *2022- Estimating snow accumulation and ablation with L-band interferometric synthetic aperture radar (InSAR)*\n", - " * *2024 - Thermal infrared shadow-hiding in GOES-R ABI imagery: snow and forest temperature observations from the SnowEx 2020 Grand Mesa field campaign* \n", + " * [*2022- Estimating snow accumulation and ablation with L-band interferometric synthetic aperture radar (InSAR)*](https://tc.copernicus.org/articles/17/1997/2023/tc-17-1997-2023-discussion.html)\n", + " * [*2024 - Thermal infrared shadow-hiding in GOES-R ABI imagery: snow and forest temperature observations from the SnowEx 2020 Grand Mesa field campaign*](https://tc.copernicus.org/articles/18/2257/2024/)\n", " \n", " \n", "\n", @@ -38,8 +38,8 @@ "\n", "* Snow pits - Density, hardness profiles, grain types + sizes\n", "* Manual snow depths - TONS of depths (Can you say spirals?)\n", - "* Snow Micropenetrometer profiles - (Subsampled to every 100th)\n", - "* Snow depth + SWE rasters from ASO inc\n", + "* Snow Micropenetrometer (SMP) profiles - (Subsampled to every 100th)\n", + "* Snow depth + SWE rasters from ASO Inc.\n", "* GPR\n", "* Pit site notes\n", "* Camera Derived snow depths\n", @@ -59,7 +59,7 @@ "New tech can create barriers...\n", "\n", "```{figure} ./images/pits_not_bits.jpg\n", - ":scale: 30 %\n", + ":scale: 20 %\n", ":alt: pits not bits\n", "```\n", "\n", diff --git a/book/tutorials/snowex_database/3_forming_queries.ipynb b/book/tutorials/snowex_database/3_forming_queries.ipynb index 0e6f791..0ec8707 100644 --- a/book/tutorials/snowex_database/3_forming_queries.ipynb +++ b/book/tutorials/snowex_database/3_forming_queries.ipynb @@ -6,7 +6,13 @@ "source": [ "# Forming Queries through the API!\n", "\n", - "Get familiar with the tools available for querying the database. The simplest way is to use the api classes [`snowexsql.api.PointMeasurements`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L185) and [`snowexsql.api.LayerMeasurements`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L262). Each class has to very useful functions [`from_filter`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L192) and [`from_area`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L210)\n", + "Get familiar with the tools available for querying the database. The simplest way is to use the api classes \n", + "* [`snowexsql.api.PointMeasurements`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L185)\n", + "* [`snowexsql.api.LayerMeasurements`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L262).\n", + "\n", + "* Each class has to very useful functions\n", + " 1. [`from_filter`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L192)\n", + " 2. [`from_area`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L210)\n", "\n", "## `from_filter`" ] @@ -618,6 +624,7 @@ } ], "source": [ + "# Import in our two classes to access the db\n", "from snowexsql.api import LayerMeasurements, PointMeasurements\n", "from datetime import datetime \n", "\n", @@ -628,8 +635,11 @@ " date_less_equal=datetime(2020, 1, 1),\n", " date_greater_equal=datetime(2019, 12, 1),\n", ")\n", + "\n", + "# Plot it up!\n", "df.plot()\n", "\n", + "# Show off the dataframe\n", "df" ] }, @@ -1044,14 +1054,21 @@ } ], "source": [ + "# Import our api class\n", "from snowexsql.api import LayerMeasurements\n", - "from datetime import datetime \n", + "from datetime import datetime\n", + "\n", + "# import some gis functionality \n", "from shapely.geometry import Point \n", "\n", "# Find some SSA measurements within a distance of a known point\n", "df = LayerMeasurements.from_area(pt=Point(740820.624625,4.327326e+06), crs=26912, buffer=500,\n", " type='specific_surface_area')\n", + "\n", + "# plot it up\n", "df.plot()\n", + "\n", + "# show off the dataframe\n", "df" ] }, @@ -1060,7 +1077,12 @@ "metadata": {}, "source": [ "### How do I know what to filter on?\n", - "We got tools for that!" + "We got tools for that! Each class has a host of functions that start with `all_*` these function return the unique value in that column. \n", + "\n", + " * `all_types` - all the data types e.g. depth, swe, density...\n", + " * `all_instruments` - all instruments available in the table\n", + " * `all_dates` - all dates listed in the table\n", + " * `all_site_names` - all the site names available in the table. e.g. Grand Mesa" ] }, { @@ -1085,7 +1107,9 @@ "source": [ "from snowexsql.api import PointMeasurements\n", "\n", + "# Instatiate the class to use the properties!\n", "measurements = PointMeasurements()\n", + "\n", "# Get the unique data names/types in the table\n", "results = measurements.all_types\n", "print('Available types = {}'.format(', '.join([str(r) for r in results])))\n", @@ -1107,24 +1131,46 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Further we can gather the unique items in a query you are interested. " + "#### More specific filtering options\n", + "Sometimes we need a bit more filtering to know more about what I can filter on. Questions like \"What dates was the SMP used?\" are a bit more complicated than \"Give me all the dates for snowex\"\n", + "\n", + "The good news is, we have tool for that! `from_unique_entries` is your friend!" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "[datetime.date(2020, 2, 4), datetime.date(2020, 2, 3), datetime.date(2020, 1, 30), datetime.date(2020, 2, 1), datetime.date(2020, 2, 6), datetime.date(2020, 1, 31), datetime.date(2020, 2, 12), datetime.date(2020, 2, 8), datetime.date(2020, 2, 5), datetime.date(2020, 1, 28), datetime.date(2020, 2, 11), datetime.date(2020, 2, 10), datetime.date(2020, 1, 29)]\n" - ] + "data": { + "text/plain": [ + "[datetime.date(2020, 2, 4),\n", + " datetime.date(2020, 2, 6),\n", + " datetime.date(2020, 2, 11),\n", + " datetime.date(2020, 2, 12),\n", + " datetime.date(2020, 1, 30),\n", + " datetime.date(2020, 2, 10),\n", + " datetime.date(2020, 1, 31),\n", + " datetime.date(2020, 2, 1),\n", + " datetime.date(2020, 2, 3),\n", + " datetime.date(2020, 2, 8),\n", + " datetime.date(2020, 2, 5),\n", + " datetime.date(2020, 1, 29),\n", + " datetime.date(2020, 1, 28)]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "print(LayerMeasurements.from_unique_entries(['date'], instrument='snowmicropen'))" + "# import layer measurements\n", + "from snowexsql.api import LayerMeasurements\n", + "\n", + "# Query dates where SMP was used\n", + "LayerMeasurements.from_unique_entries(['date'], instrument='snowmicropen')" ] }, { @@ -1133,12 +1179,14 @@ "source": [ "## Query Nuances\n", "### Limit size \n", - "Try doing a large query. Something like" + "To avoid accidental large queries, we have added some bumper rails. By default if you ask for more than 1000 records then an error will pop up unless you explicitly say you want more. \n", + "\n", + "Try doing a large query. Something like the following to see the error:" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -1155,7 +1203,7 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mLargeQueryCheckException\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[6], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msnowexsql\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapi\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m PointMeasurements\n\u001b[1;32m 2\u001b[0m \u001b[38;5;66;03m# Ask the DB for a huge query.\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m df \u001b[38;5;241m=\u001b[39m \u001b[43mPointMeasurements\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_filter\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mtype\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtwo_way_travel\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 4\u001b[0m df\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# Throws an exception, try adding the limit keyword arg in the function\u001b[39;00m\n", + "Cell \u001b[0;32mIn[4], line 5\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msnowexsql\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapi\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m PointMeasurements\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Query db using a vague filter or on a huge dataset like GPR\u001b[39;00m\n\u001b[0;32m----> 5\u001b[0m df \u001b[38;5;241m=\u001b[39m \u001b[43mPointMeasurements\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_filter\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mtype\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtwo_way_travel\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 7\u001b[0m \u001b[38;5;66;03m# Show the dataframe\u001b[39;00m\n\u001b[1;32m 8\u001b[0m df\n", "File \u001b[0;32m/srv/conda/envs/notebook/lib/python3.11/site-packages/snowexsql/api.py:246\u001b[0m, in \u001b[0;36mPointMeasurements.from_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 244\u001b[0m session\u001b[38;5;241m.\u001b[39mclose()\n\u001b[1;32m 245\u001b[0m LOG\u001b[38;5;241m.\u001b[39merror(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFailed query for PointData\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 246\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 248\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m df\n", "File \u001b[0;32m/srv/conda/envs/notebook/lib/python3.11/site-packages/snowexsql/api.py:241\u001b[0m, in \u001b[0;36mPointMeasurements.from_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 239\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 240\u001b[0m qry \u001b[38;5;241m=\u001b[39m session\u001b[38;5;241m.\u001b[39mquery(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMODEL)\n\u001b[0;32m--> 241\u001b[0m qry \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mextend_qry\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqry\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 242\u001b[0m df \u001b[38;5;241m=\u001b[39m query_to_geopandas(qry, engine)\n\u001b[1;32m 243\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n", "File \u001b[0;32m/srv/conda/envs/notebook/lib/python3.11/site-packages/snowexsql/api.py:139\u001b[0m, in \u001b[0;36mBaseDataset.extend_qry\u001b[0;34m(cls, qry, check_size, **kwargs)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mk\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m is not an allowed filter\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 138\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_size:\n\u001b[0;32m--> 139\u001b[0m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_check_size\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqry\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 141\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m qry\n", @@ -1165,10 +1213,15 @@ } ], "source": [ + "# Import PointMeasurements\n", "from snowexsql.api import PointMeasurements\n", - "# Ask the DB for a huge query.\n", + "\n", + "# Query db using a vague filter or on a huge dataset like GPR\n", "df = PointMeasurements.from_filter(type='two_way_travel')\n", + "\n", + "# Show the dataframe\n", "df\n", + "\n", "# Throws an exception, try adding the limit keyword arg in the function" ] }, @@ -1176,9 +1229,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "What happened? We have put some guard rails on the db to allow you to explore without accidentall pull the entire snowex universe down. If you know you want a large query (defined as > 1000) then use the `limit = ####` option in the `from_filter` or `from_area` function.\n", + "We have added this on the db to allow you to explore without accidentally pulling the entire SnowEx universe down. If you know you want a large query (defined as > 1000) then use the `limit = ####` option in the `from_filter` or `from_area` function.\n", "\n", - "**Note** - It is better to filter using other things besides the limit because the limit is not intelligent. It will simply limit the query by the order of entries that were submitted AND fit your filter. So if you encounter this then consider how to tighten up the filter.\n", + "**Warning** - It is better to filter using other things besides the limit because the limit is not intelligent. It will simply limit the query by the order of entries that were submitted AND fits your filter. So if you encounter this then consider how to tighten up the filter.\n", "\n", "### List of Criteria\n", "You can use lists in your requests too!" @@ -1565,8 +1618,13 @@ } ], "source": [ + "# Import layer measurements\n", "from snowexsql.api import LayerMeasurements\n", + "\n", + "# Grab all the data that used the one of these instruments (hint hint SSA)\n", "ssa_instruments = [\"IS3-SP-15-01US\", \"IRIS\", \"IS3-SP-11-01F\"]\n", + "\n", + "# Query the DB (throw a limit for safety)\n", "LayerMeasurements.from_filter(instrument=ssa_instruments, limit=100)" ] }, @@ -1575,7 +1633,13 @@ "metadata": {}, "source": [ "### Greater than or Less than\n", - "Sometimes we want to isolate certain ranges of value or even dates. The `greater_equal` and `less_equal` terms can be added on to value or dates. " + "Sometimes we want to isolate certain ranges of value or even dates. The `greater_equal` and `less_equal` terms can be added on to `value` or `dates`. \n", + "\n", + "* `date_greater_equal`\n", + "* `date_less_equal`\n", + "* `value_greater_equal`\n", + "* `value_less_equal`\n", + " " ] }, { @@ -1972,9 +2036,13 @@ } ], "source": [ + "# Import the point measurements class\n", "from snowexsql.api import PointMeasurements\n", "\n", + "# Filter values > 100 cm from the pulse ecko GPR\n", "df = PointMeasurements.from_filter(value_greater_equal=100, type='depth', instrument='pulse EKKO Pro multi-polarization 1 GHz GPR', limit=100)\n", + "\n", + "# Show off the dataframe\n", "df" ] }, @@ -1988,9 +2056,17 @@ "* How to build queries using `from_filter`, `from_area`, `from_unique_entries`\n", "* Determine what values to filter on\n", "* Manage the limit error\n", - "* Filtering on greater and less than \n", + "* Filtering on greater and less than\n", + " \n", "If you don't feel comfortable with these, you are probably not alone, let's discuss it!" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/book/tutorials/snowex_database/4_get_spiral_example.ipynb b/book/tutorials/snowex_database/4_get_spiral_example.ipynb index 8978104..caf8821 100644 --- a/book/tutorials/snowex_database/4_get_spiral_example.ipynb +++ b/book/tutorials/snowex_database/4_get_spiral_example.ipynb @@ -26,13 +26,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "from snowexsql.api import PointMeasurements, LayerMeasurements\n", - "instrument = 'magnaprobe'\n", - "data_type = 'depth'\n" + "data_type = 'depth'" ] }, { @@ -44,7 +43,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -97,22 +96,22 @@ " 67.0\n", " 1N1\n", " COGM1N1_20200208\n", - " 66.0\n", + " 57.0\n", " None\n", " None\n", " None\n", " None\n", - " < 1 mm\n", + " 215.0\n", " None\n", " ...\n", " 2020-02-08\n", - " 2024-08-13 17:45:17.466548+00:00\n", + " 2024-08-13 17:45:49.052106+00:00\n", " None\n", - " 2141594\n", + " 2149762\n", " https://doi.org/10.5067/DUD2VZEVBJ7S\n", " 2022-06-30\n", " None\n", - " grain_size\n", + " density\n", " None\n", " None\n", " \n", @@ -123,21 +122,21 @@ ], "text/plain": [ " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", - "0 67.0 1N1 COGM1N1_20200208 66.0 None None None \n", + "0 67.0 1N1 COGM1N1_20200208 57.0 None None None \n", "\n", - " sample_c value flags ... date time_created \\\n", - "0 None < 1 mm None ... 2020-02-08 2024-08-13 17:45:17.466548+00:00 \n", + " sample_c value flags ... date time_created \\\n", + "0 None 215.0 None ... 2020-02-08 2024-08-13 17:45:49.052106+00:00 \n", "\n", " time_updated id doi date_accessed \\\n", - "0 None 2141594 https://doi.org/10.5067/DUD2VZEVBJ7S 2022-06-30 \n", + "0 None 2149762 https://doi.org/10.5067/DUD2VZEVBJ7S 2022-06-30 \n", "\n", - " instrument type units observers \n", - "0 None grain_size None None \n", + " instrument type units observers \n", + "0 None density None None \n", "\n", "[1 rows x 29 columns]" ] }, - "execution_count": 3, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -162,7 +161,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -214,19 +213,19 @@ " 0\n", " 1\n", " CRREL_C\n", - " 47.0\n", - " 39.03453\n", - " -108.22142\n", - " 4.324283e+06\n", - " 740504.818149\n", - " 3031.900000\n", + " 81.0\n", + " 39.03636\n", + " -108.22098\n", + " 4.324487e+06\n", + " 740536.699426\n", + " 3030.000000\n", " 12\n", - " POINT (740504.818 4324282.756)\n", + " POINT (740536.699 4324487.049)\n", " ...\n", - " 2020-02-08\n", + " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 30048\n", + " 5552\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -238,19 +237,19 @@ " 1\n", " 1\n", " CRREL_C\n", - " 50.0\n", - " 39.03454\n", - " -108.22140\n", - " 4.324284e+06\n", - " 740506.515638\n", - " 3032.200000\n", + " 96.0\n", + " 39.03636\n", + " -108.22097\n", + " 4.324487e+06\n", + " 740537.565112\n", + " 3030.000000\n", " 12\n", - " POINT (740506.516 4324283.919)\n", + " POINT (740537.565 4324487.075)\n", " ...\n", - " 2020-02-08\n", + " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 30049\n", + " 5553\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -262,19 +261,19 @@ " 2\n", " 1\n", " CRREL_C\n", - " 52.0\n", - " 39.03453\n", - " -108.22138\n", - " 4.324283e+06\n", - " 740508.280984\n", - " 3032.400000\n", + " 93.0\n", + " 39.03637\n", + " -108.22095\n", + " 4.324488e+06\n", + " 740539.262551\n", + " 3029.700000\n", " 12\n", - " POINT (740508.281 4324282.862)\n", + " POINT (740539.263 4324488.238)\n", " ...\n", - " 2020-02-08\n", + " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 30050\n", + " 5554\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -286,19 +285,19 @@ " 3\n", " 1\n", " CRREL_C\n", - " 48.0\n", - " 39.03453\n", - " -108.22137\n", - " 4.324283e+06\n", - " 740509.146693\n", - " 3033.200000\n", + " 88.0\n", + " 39.03637\n", + " -108.22092\n", + " 4.324488e+06\n", + " 740541.859610\n", + " 3032.000000\n", " 12\n", - " POINT (740509.147 4324282.889)\n", + " POINT (740541.860 4324488.318)\n", " ...\n", - " 2020-02-08\n", + " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 30051\n", + " 5555\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -310,19 +309,19 @@ " 4\n", " 1\n", " CRREL_C\n", - " 52.0\n", - " 39.03454\n", - " -108.22135\n", - " 4.324284e+06\n", - " 740510.844183\n", - " 3033.300000\n", + " 98.0\n", + " 39.03638\n", + " -108.22110\n", + " 4.324489e+06\n", + " 740526.243320\n", + " 3028.000000\n", " 12\n", - " POINT (740510.844 4324284.052)\n", + " POINT (740526.243 4324488.951)\n", " ...\n", - " 2020-02-08\n", + " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 30052\n", + " 5594\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -355,22 +354,22 @@ " ...\n", " \n", " \n", - " 106\n", + " 387\n", " 1\n", - " CRREL_C\n", - " 90.0\n", - " 39.03469\n", - " -108.22108\n", - " 4.324301e+06\n", - " 740533.709339\n", - " 3035.200000\n", + " CRREL_A\n", + " 101.0\n", + " 39.03427\n", + " -108.21925\n", + " 4.324260e+06\n", + " 740693.559835\n", + " 3031.700000\n", " 12\n", - " POINT (740533.709 4324301.416)\n", + " POINT (740693.560 4324259.641)\n", " ...\n", - " 2020-02-08\n", + " 2020-02-11\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 30154\n", + " 33950\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -379,22 +378,22 @@ " None\n", " \n", " \n", - " 107\n", + " 388\n", " 1\n", - " CRREL_C\n", - " 97.0\n", - " 39.03471\n", - " -108.22110\n", - " 4.324304e+06\n", - " 740531.910061\n", - " 3035.700000\n", + " CRREL_A\n", + " 105.0\n", + " 39.03434\n", + " -108.21924\n", + " 4.324267e+06\n", + " 740694.187866\n", + " 3031.000000\n", " 12\n", - " POINT (740531.910 4324303.583)\n", + " POINT (740694.188 4324267.437)\n", " ...\n", - " 2020-02-08\n", + " 2020-02-11\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 30155\n", + " 33951\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -403,22 +402,22 @@ " None\n", " \n", " \n", - " 108\n", + " 389\n", " 1\n", - " CRREL_C\n", + " CRREL_A\n", " 107.0\n", - " 39.03474\n", - " -108.22110\n", - " 4.324307e+06\n", - " 740531.808265\n", - " 3036.100000\n", + " 39.03436\n", + " -108.21924\n", + " 4.324270e+06\n", + " 740694.119957\n", + " 3031.000000\n", " 12\n", - " POINT (740531.808 4324306.913)\n", + " POINT (740694.120 4324269.657)\n", " ...\n", - " 2020-02-08\n", + " 2020-02-11\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 30156\n", + " 33952\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " magnaprobe\n", @@ -427,46 +426,46 @@ " None\n", " \n", " \n", - " 109\n", + " 390\n", " 1\n", - " CRREL_C\n", - " 103.0\n", - " 39.03477\n", - " -108.22112\n", - " 4.324310e+06\n", - " 740529.975057\n", - " 3035.500000\n", + " ruler\n", + " 67.0\n", + " 39.03462\n", + " -108.22145\n", + " 4.324293e+06\n", + " 740501.915674\n", + " 3029.909912\n", " 12\n", - " POINT (740529.975 4324310.190)\n", + " POINT (740501.916 4324292.667)\n", " ...\n", " 2020-02-08\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 30157\n", + " 41832\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", - " magnaprobe\n", + " pit ruler\n", " depth\n", " cm\n", " None\n", " \n", " \n", - " 110\n", + " 391\n", " 1\n", " ruler\n", - " 67.0\n", - " 39.03462\n", - " -108.22145\n", - " 4.324293e+06\n", - " 740501.915674\n", - " 3029.909912\n", + " 112.0\n", + " 39.03441\n", + " -108.21963\n", + " 4.324274e+06\n", + " 740660.187468\n", + " 3028.929932\n", " 12\n", - " POINT (740501.916 4324292.667)\n", + " POINT (740660.187 4324274.175)\n", " ...\n", - " 2020-02-08\n", + " 2020-02-11\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 41832\n", + " 41907\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", " pit ruler\n", @@ -476,48 +475,48 @@ " \n", " \n", "\n", - "

111 rows × 23 columns

\n", + "

392 rows × 23 columns

\n", "" ], "text/plain": [ " version_number equipment value latitude longitude northing \\\n", - "0 1 CRREL_C 47.0 39.03453 -108.22142 4.324283e+06 \n", - "1 1 CRREL_C 50.0 39.03454 -108.22140 4.324284e+06 \n", - "2 1 CRREL_C 52.0 39.03453 -108.22138 4.324283e+06 \n", - "3 1 CRREL_C 48.0 39.03453 -108.22137 4.324283e+06 \n", - "4 1 CRREL_C 52.0 39.03454 -108.22135 4.324284e+06 \n", + "0 1 CRREL_C 81.0 39.03636 -108.22098 4.324487e+06 \n", + "1 1 CRREL_C 96.0 39.03636 -108.22097 4.324487e+06 \n", + "2 1 CRREL_C 93.0 39.03637 -108.22095 4.324488e+06 \n", + "3 1 CRREL_C 88.0 39.03637 -108.22092 4.324488e+06 \n", + "4 1 CRREL_C 98.0 39.03638 -108.22110 4.324489e+06 \n", ".. ... ... ... ... ... ... \n", - "106 1 CRREL_C 90.0 39.03469 -108.22108 4.324301e+06 \n", - "107 1 CRREL_C 97.0 39.03471 -108.22110 4.324304e+06 \n", - "108 1 CRREL_C 107.0 39.03474 -108.22110 4.324307e+06 \n", - "109 1 CRREL_C 103.0 39.03477 -108.22112 4.324310e+06 \n", - "110 1 ruler 67.0 39.03462 -108.22145 4.324293e+06 \n", + "387 1 CRREL_A 101.0 39.03427 -108.21925 4.324260e+06 \n", + "388 1 CRREL_A 105.0 39.03434 -108.21924 4.324267e+06 \n", + "389 1 CRREL_A 107.0 39.03436 -108.21924 4.324270e+06 \n", + "390 1 ruler 67.0 39.03462 -108.22145 4.324293e+06 \n", + "391 1 ruler 112.0 39.03441 -108.21963 4.324274e+06 \n", "\n", " easting elevation utm_zone geom \\\n", - "0 740504.818149 3031.900000 12 POINT (740504.818 4324282.756) \n", - "1 740506.515638 3032.200000 12 POINT (740506.516 4324283.919) \n", - "2 740508.280984 3032.400000 12 POINT (740508.281 4324282.862) \n", - "3 740509.146693 3033.200000 12 POINT (740509.147 4324282.889) \n", - "4 740510.844183 3033.300000 12 POINT (740510.844 4324284.052) \n", + "0 740536.699426 3030.000000 12 POINT (740536.699 4324487.049) \n", + "1 740537.565112 3030.000000 12 POINT (740537.565 4324487.075) \n", + "2 740539.262551 3029.700000 12 POINT (740539.263 4324488.238) \n", + "3 740541.859610 3032.000000 12 POINT (740541.860 4324488.318) \n", + "4 740526.243320 3028.000000 12 POINT (740526.243 4324488.951) \n", ".. ... ... ... ... \n", - "106 740533.709339 3035.200000 12 POINT (740533.709 4324301.416) \n", - "107 740531.910061 3035.700000 12 POINT (740531.910 4324303.583) \n", - "108 740531.808265 3036.100000 12 POINT (740531.808 4324306.913) \n", - "109 740529.975057 3035.500000 12 POINT (740529.975 4324310.190) \n", - "110 740501.915674 3029.909912 12 POINT (740501.916 4324292.667) \n", + "387 740693.559835 3031.700000 12 POINT (740693.560 4324259.641) \n", + "388 740694.187866 3031.000000 12 POINT (740694.188 4324267.437) \n", + "389 740694.119957 3031.000000 12 POINT (740694.120 4324269.657) \n", + "390 740501.915674 3029.909912 12 POINT (740501.916 4324292.667) \n", + "391 740660.187468 3028.929932 12 POINT (740660.187 4324274.175) \n", "\n", " ... date time_created time_updated id \\\n", - "0 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30048 \n", - "1 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30049 \n", - "2 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30050 \n", - "3 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30051 \n", - "4 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30052 \n", + "0 ... 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5552 \n", + "1 ... 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5553 \n", + "2 ... 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5554 \n", + "3 ... 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5555 \n", + "4 ... 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5594 \n", ".. ... ... ... ... ... \n", - "106 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30154 \n", - "107 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30155 \n", - "108 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30156 \n", - "109 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 30157 \n", - "110 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 41832 \n", + "387 ... 2020-02-11 2022-06-30 22:56:52.635035+00:00 None 33950 \n", + "388 ... 2020-02-11 2022-06-30 22:56:52.635035+00:00 None 33951 \n", + "389 ... 2020-02-11 2022-06-30 22:56:52.635035+00:00 None 33952 \n", + "390 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 41832 \n", + "391 ... 2020-02-11 2022-06-30 22:56:52.635035+00:00 None 41907 \n", "\n", " doi date_accessed instrument type \\\n", "0 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", @@ -526,11 +525,11 @@ "3 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", "4 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", ".. ... ... ... ... \n", - "106 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "107 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "108 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "109 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "110 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", + "387 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "388 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "389 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + "390 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", + "391 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", "\n", " units observers \n", "0 cm None \n", @@ -539,16 +538,16 @@ "3 cm None \n", "4 cm None \n", ".. ... ... \n", - "106 cm None \n", - "107 cm None \n", - "108 cm None \n", - "109 cm None \n", - "110 cm None \n", + "387 cm None \n", + "388 cm None \n", + "389 cm None \n", + "390 cm None \n", + "391 cm None \n", "\n", - "[111 rows x 23 columns]" + "[392 rows x 23 columns]" ] }, - "execution_count": 5, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -558,7 +557,7 @@ "from snowexsql.api import PointMeasurements \n", "\n", "# Filter the results to within 100m within the point from our pit\n", - "df = PointMeasurements.from_area(pt=site.geometry[0], buffer=100)\n", + "df = PointMeasurements.from_area(pt=site.geometry[0], type=data_type, buffer=200)\n", "df" ] }, @@ -571,7 +570,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 19, "metadata": { "tags": [ "nbsphinx-gallery", @@ -582,16 +581,16 @@ { "data": { "text/plain": [ - "Text(38.097222222222214, 0.5, 'Northing [m]')" + "Text(128.66274298237227, 0.5, 'Northing [m]')" ] }, - "execution_count": 6, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGzCAYAAAA/lFPrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/t0lEQVR4nOzdd3zU9f3A8df39spOyIAMNrIREBCVKSioVK0L/QnWUqnW2RaLtopVQalV3FaLguIeOKsCDhRBZIuAzAAJ2fOSS3Lz8/sj5MiR5HKZl0s+zz6umO/3c9/73Pp+3/cZ748ihBBIkiRJkiRJ9VIFuwKSJEmSJEkdmQyWJEmSJEmS/JDBkiRJkiRJkh8yWJIkSZIkSfJDBkuSJEmSJEl+yGBJkiRJkiTJDxksSZIkSZIk+SGDJUmSJEmSJD9ksCRJkiRJkuSHDJa6oLKyMhYsWMC0adOIi4tDURQWLVpUb9kNGzbw+9//npEjR6LX61EUhaNHj9ZbdtmyZVx22WX07NkTRVGYOHFiwHX69ttvURQFRVFYsWJFvWUmT56MoiikpaUFfNyOYsWKFX5fu9o2b97MpZdeSkpKCnq9nvj4eMaNG8ef//zntq9oG2vK69ASixcv5sMPP2zw8bdu3dqmj99aFi1ahKIoPtsmTpzYpO9WU73xxhssW7asTY6dlpbG3LlzW+14zz33XIPni/p8+umnXH/99QwZMgStVlvnta1R+3y0adOmOvvnzp2LxWLx2daUc6UUemSw1AUVFhby4osvYrfb+c1vfuO37FdffcW6detISUnh7LPP9lv2hRde4NixY0yePJm4uLhm1S0sLIzly5fX2Z6ens63335LeHh4s44bKj777DPOPvtsrFYrS5cuZc2aNTz55JOMHz+et99+O9jVCxkNBUtS49oyWGptTQ2WVq9ezY8//sjAgQMZNmxYQPdZsGBBQOWacq6UQo8Mlrqg1NRUiouLWb9+PUuWLPFb9h//+AdHjx5l9erVzJw502/ZvXv3sm3bNpYvX063bt2aVberrrqKDRs2cPDgQZ/tL7/8Mt27d2f8+PHNOm6oWLp0KT179uTLL7/k6quvZsKECVx99dU89thjHD9+PNjVk6SQ9tJLL3HgwAHefvttxo4d22j5Cy64gA0bNvDJJ580WrYp50op9MhgqQuqaV4OhEoV+EekKWUbcv7555OcnMzLL7/s3ebxeFi5ciVz5syp9zGeffZZzjvvPLp164bZbGbIkCEsXboUp9PpU27ixIkMHjyYLVu2cO6552IymejVqxePPPIIHo/HW66hrqKapvlvv/3Wu23t2rXMmjWLHj16YDAY6NOnDzfddBMFBQXNev6FhYXExsai0Wjq7Dv9uaelpXHRRRfxxRdfcOaZZ2I0GhkwYIDPa1fjl19+YdasWURFRWEwGBg+fDgrV6707hdCEB8fzy233OLd5na7iYqKQqVSkZub693++OOPo9FoKCkp8ftcfvzxR8aPH4/BYCApKYmFCxfWeU9qvP3224wbNw6z2YzFYmH69Ons2LHDp0xN18eePXuYMmUKZrOZuLg4/vSnP1FRUeEtpygKNpuNlStXej/rp3dblZWV8cc//pHY2FhiYmK47LLLyMrK8inz9ddfM3HiRGJiYjAajaSkpHD55Zf7PFZD3njjDcaNG4fFYsFisTB8+PA6LaYvv/wyw4YNw2AwEB0dzaWXXsq+ffsaPXZ9HA4HDz30EAMGDECv1xMXF8cNN9xAfn5+k+o2ceJEPvvsM44dO+Z97WqfKwJ9HKfTyYIFC0hISMBkMnHOOefw008/Bfx8HnjgAcaMGUN0dDTh4eGceeaZLF++nNrrvqelpbFnzx7Wr1/vrWdjXfRNPUfNnTuXgQMHsnDhQtxud6seWwot8t2VOhSVSsXcuXN59dVXvSenNWvWkJmZyQ033FDvfQ4fPszs2bN57bXX+PTTT7nxxhv517/+xU033VSnbE5ODtdeey3XXXcdH3/8MRdeeCELFy5k1apVzarv4cOHGTduHM8//zxr1qzhvvvuY/PmzZxzzjkNBgb+jBs3js2bN3PbbbexefPmRo+xa9cu/vznP3PnnXfy0UcfMXToUG688Ua+++47b5n9+/dz9tlns2fPHp566ik++OADBg4cyNy5c1m6dClQHWBMnjyZdevWee+3detWSkpKMBgMfPXVV97t69atY+TIkURGRjZYr7179zJlyhRKSkpYsWIFL7zwAjt27OChhx6qU3bx4sVcc801DBw4kHfeeYfXXnuNsrIyzj33XPbu3etT1ul0MmPGDKZMmcKHH37In/70J/7zn/9w1VVXects2rQJo9HIjBkz2LRpE5s2beK5557zOc7vf/97tFotb7zxBkuXLuXbb7/luuuu8+4/evQoM2fORKfT8fLLL/PFF1/wyCOPYDabcTgcft+T++67j2uvvZakpCRWrFjB6tWrmTNnDseOHfOWWbJkCTfeeCODBg3igw8+4Mknn+Tnn39m3LhxdVpVG+PxeJg1axaPPPIIs2fP5rPPPuORRx5h7dq1TJw4kcrKyoDr9txzzzF+/HgSEhK8r13NmJ2mPM68efN47LHHuP766/noo4+4/PLLueyyyyguLg7oOR09epSbbrqJd955hw8++IDLLruMW2+9lQcffNBbZvXq1fTq1YsRI0Z467l69eomvXaNUavVLFmyhD179vj8uJC6ICF1afn5+QIQ999/f6Nl//WvfwlApKenN1p20KBBYsKECQHX45tvvhGAePfdd8WRI0eEoiji008/FUIIccUVV4iJEycKIYSYOXOmSE1NbfA4brdbOJ1O8eqrrwq1Wi2Kioq8+yZMmCAAsXnzZp/7DBw4UEyfPt379yuvvFLv86yp4zfffFPvY3s8HuF0OsWxY8cEID766KNGj3m6goICcc455whAAEKr1Yqzzz5bLFmyRJSVlfmUTU1NFQaDQRw7dsy7rbKyUkRHR4ubbrrJu+3qq68Wer1eHD9+3Of+F154oTCZTKKkpEQIIcR///tfAXjLPfTQQ2LAgAHikksuETfccIMQQgiHwyHMZrO45557/D6Pq666ShiNRpGTk+Pd5nK5xIABA3xeh+PHjwuNRiNuvfVWn/uXlZWJhIQEceWVV3q3zZkzRwDiySef9Cn78MMPC0Bs2LDBu81sNos5c+bUqVfN+3DzzTf7bF+6dKkARHZ2thBCiPfee08AYufOnX6f5+mOHDki1Gq1uPbaaxssU1xcLIxGo5gxY4bP9uPHjwu9Xi9mz57t3Xb//feL00/TEyZM8PluvfnmmwIQ77//vk+5LVu2CEA899xzAddNiIa/Y4E+zr59+wQg7rzzTp9yr7/+ugDqfV/8qflO//Of/xQxMTHC4/F49zX1PFPbLbfcUue1rVH7fCSEEOecc47o0aOHqKysFEJUfxbNZnODx27KuVIKDbJlSepwevbsycSJE3n55ZcpLCzko48+4ne/+12D5Xfs2MEll1xCTEwMarUarVbL9ddfj9vt5sCBAz5lExISOOuss3y2DR061OdXf1Pk5eUxf/58kpOT0Wg0aLVaUlNTAZrVpRITE8P333/Pli1beOSRR5g1axYHDhxg4cKFDBkypE733vDhw0lJSfH+bTAY6Nevn8/z+frrr5kyZQrJyck+9507dy4VFRXeloOpU6cCeFuX1q5dy/nnn8/UqVNZu3YtUN1qY7PZvGUb8s033zBlyhTi4+O929RqtU8LEMCXX36Jy+Xi+uuvx+VyeW8Gg4EJEyb4dHnWuPbaa33+nj17tvcxA3XJJZf4/D106FAA7+s2fPhwdDodf/jDH1i5ciVHjhwJ6Lhr167F7Xb7dGeebtOmTVRWVtaZFZacnMzkyZN9WvEC8emnnxIZGcnFF1/s8xoOHz6chIQE72sYSN1a43Fq3ofT36crr7yy3u7l+nz99ddMnTqViIgI73f6vvvuo7CwkLy8vGbVvyUeffRRMjMzefLJJ9v9saWOQQZLUod044038sknn/D4449jNBr57W9/W2+548ePc+6553LixAmefPJJb6Dx7LPPAvh0DUB1MHI6vV5fp1wgPB4P06ZN44MPPmDBggV89dVX/PTTT/z444/1PnZTjBo1irvvvpt3332XrKws7rzzTo4ePertNqsRyPMpLCwkMTGxTrmkpCTvfqge+N+7d2/WrVvnDaJqgqXMzEz279/PunXrMBqNjc72KSwsJCEhoc7207fVjIUaPXo0Wq3W5/b222/XCQ41Gk2d51xzzJrnEYjTj6HX64FT71nN69CtWzduueUWevfuTe/evRu9WNaM3enRo0eDZWrq2dB70pTnAdWvYUlJCTqdrs5rmJOT430NA6lbazxOTf1Pf6/re+/q89NPPzFt2jSgekD2Dz/8wJYtW7j33nuBln2vmuvss8/mN7/5DY888kjAXYlS5xJYmC9J7eyyyy7jlltu4ZFHHmHevHkYjcZ6y3344YfYbDY++OADb4sOwM6dO5v92AaDAQC73e6z/fQL9y+//MKuXbtYsWIFc+bM8W4/dOhQsx+7Plqtlvvvv58nnniCX375pcn3j4mJITs7u872mgHNsbGx3m1Tpkzho48+Yv369Xg8HiZOnEhYWBhJSUmsXbuWdevWce6553qDC3+PmZOTU2f76dtqHvu9997zef8a4nK5KCws9Lno1hwzkAtxU5x77rmce+65uN1utm7dytNPP80dd9xBfHw8V199db33qUmZkZmZWaclr0ZNPRt6T2q/H4GoGaT+xRdf1Ls/LCws4Lq1xuPUPL+cnBy6d+/u3V/z3jXmrbfeQqvV8umnn3q/i0DQU0EsWbKEwYMHs3jx4qDWQwoO2bIkdUhGo5H77ruPiy++mD/+8Y8NlquZqVP74i2E4KWXXmr2Y9fMqPn55599tn/88ceNPjbAf/7zn2Y/dn0XUDjVpVfTGtQUU6ZM4euvv64z2+vVV1/FZDL5TKGeOnUqubm5LFu2jLFjx3ovgFOmTGH16tVs2bKl0S44gEmTJvHVV1/5zKJzu911ckVNnz4djUbD4cOHGTVqVL23073++us+f7/xxhsAPjPemttaWB+1Ws2YMWO8rZXbt29vsOy0adNQq9U8//zzDZYZN24cRqOxzqSCzMxMb5dpU1x00UUUFhbidrvrff369+8fcN2g4dcu0MepeR9Of5/eeecdXC5Xo89HURQ0Gg1qtdq7rbKyktdeey3guraFAQMG8Lvf/Y6nn35apvHogmTLUhf1+eefY7PZKCsrA6pnL7333nsAzJgxA5PJBFQ33a9fvx6A3bt3e+8bFxdHXFwcEyZM8B5z69at3un2VqsVIYT3mKNHjw6o5aC2u+66i7vuustvmfPPPx+dTsc111zDggULqKqq4vnnn29RU/no0aPp378/f/nLX3C5XERFRbF69Wo2bNjgU27AgAH07t2bv/3tbwghiI6O5pNPPvGO72mO6dOn06NHDy6++GIGDBiAx+Nh586d/Pvf/8ZisXD77bc3+Zj3338/n376KZMmTeK+++4jOjqa119/nc8++4ylS5cSERHhLVuTJX3NmjU88MAD3u1Tp071tp4FEiz9/e9/5+OPP2by5Mncd999mEwmnn32WWw2m0+5tLQ0/vnPf3Lvvfdy5MgRLrjgAqKiosjNzeWnn37CbDb71EOn0/Hvf/+b8vJyRo8ezcaNG3nooYe48MILOeecc7zlhgwZwrfffssnn3xCYmIiYWFh3ot5IF544QW+/vprZs6cSUpKClVVVd6UDP6ef1paGvfccw8PPvgglZWVXHPNNURERLB3714KCgp44IEHiIyM5B//+Af33HMP119/Pddccw2FhYU88MADGAwG7r///oDrCXD11Vfz+uuvM2PGDG6//XbOOusstFotmZmZfPPNN8yaNYtLL700oLrVvHYffPABzz//PCNHjkSlUjFq1KiAH+eMM87guuuuY9myZWi1WqZOncovv/zCY489FlBS2ZkzZ/L4448ze/Zs/vCHP1BYWMhjjz1Wb2vmkCFDeOutt3j77bfp1asXBoOBIUOGNHjsY8eOsWXLFqB6JivgPUelpaXVG5zXtmjRIl5//XW++eYbzGazz76mnCtDUVVVVaMzQQOh0+l8WgxDRpAHmEtBkpqa6p1xdfqt9gyOmlkh9d1On4VSM1upvtsrr7zitz6nzz5pSH0zdT755BMxbNgwYTAYRPfu3cVf//pX8fnnn9eZuTZhwgQxaNCgOsecM2dOnWMeOHBATJs2TYSHh4u4uDhx6623is8++6zOMffu3SvOP/98ERYWJqKiosQVV1whjh8/XmeGYaCz4d5++20xe/Zs0bdvX2GxWIRWqxUpKSni//7v/8TevXt9yqampoqZM2fWOcbps6WEEGL37t3i4osvFhEREUKn04lhw4Y1+J6MGDFCAOKHH37wbjtx4oQA6sxG8ueHH34QY8eOFXq9XiQkJIi//vWv4sUXX6z3dfjwww/FpEmTRHh4uNDr9SI1NVX89re/FevWrfOWqZmB9PPPP4uJEycKo9EooqOjxR//+EdRXl7uc7ydO3eK8ePHC5PJ5PNZrXkftmzZ4lP+9JmOmzZtEpdeeqlITU0Ver1exMTEiAkTJoiPP/44oOf+6quvitGjRwuDwSAsFosYMWJEndf7v//9rxg6dKjQ6XQiIiJCzJo1S+zZs8enTCCz4YQQwul0iscee8z7PbBYLGLAgAHipptuEgcPHmxS3YqKisRvf/tbERkZKRRF8Xn8QB/HbreLP//5z6Jbt27CYDCIsWPHik2bNonU1NSAZsO9/PLLon///kKv14tevXqJJUuWiOXLl9f57Bw9elRMmzZNhIWFCcDvTFkhTr3/9d1q18vf+eiee+4RQJ3ZcE05V4aayspKgdbQ4PNryi0hIcE7qzCUKELUyvIlSZLUQc2dO5f33nuP8vLyYFdFkroUq9VKREQEypm/AbW2+QdyOxHbP6S0tDTklq6S3XCSJEmSJDVOrUXRND9YCuWWGRksSZIkSZLUOEWpvrXk/iFKzoaTJCkkrFixQnbBSVIwKQooqhbcZLAkSZIkSZLUKcluOEmSJEmSGlfTQtSS+4coGSxJkiRJktS4LjxmSQZLHYzH4yErK4uwsDBvhmhJkiRJqo8QgrKyMpKSklCpQrflpqOTwVIHk5WV1ax1myRJkqSuKyMjo9mLJAdMdsNJHUXNWlwZGRkhl7RLkiRJal9Wq5Xk5GTvtaNNyWBJ6ihqut7Cw8NlsCRJkiQFRA7baFsyWJIkSZIkqVGKSkFRtSAoUykhm8VbBkuSJEmSJDVOdsNJkiRJkiT50YWDpdCtuSRJkiRJUjuQLUuSJEmSJDVOJqWUJEmSJEnyQ3bDSZIkSZIkSfWRLUuS1MF4hEAVws3VkiR1UorSwpal0D2vyWBJkjqAQpudT3/J4duD+VQ43EQYtEwd0I0ZgxKw6OXXVJKkDkCOWZIkKVhOlFRy32d7qXC48JzM2FZa5WT1rhN8f7iABy8aRKRRG9xKSpIkdWFyzJIkBZEQgqe+PeQTKNXwCCgot7N8Y3pwKidJklRbzQDvltxClGxZkqQgOlxg42hRRYP7PQK2HC+mqMJBtEnXjjWTJEk6XUsDHhksSZLUDOmFtkbLCAHHiypksNQOisrt7M0soazShVGnpn9SBAmRBrlIqSR1cTJYkqQg0qgC+6WlVXfsX2ROlwen24NBp/Y7k08IQVmZHbvdjVqtEB5uQKMJ/nMTQvD9vjx2Hi2qHoMqAAV+PlZMr3gLFwzvjqaDvweS1ObkAG9JkoJhWI8IFKW69aghRq2avnGWFj2O0+3h5xOllFQ6iTbpGNo9AnVLVg8/6URRBVsOFXC8oLqFTK9VMSQlilG9Y9Bp1D5lrWVVZGSU4nJ5vNsUpZTYWDOJCWFBbb3Znl7EzqNFQK334uS/6bnlfLsnh6lDk4JTOUnqKLpwUkoZLElSEEWbdJzXO5bvDhc0GDBdNDgBXQtaX745kMdrPx3H5nB7t0UYtdwwNpVxPWOafdyD2Va+2HHCZ5vd6WHb4UKO5pVz+dhU9NrqgKnc5iA9vbjOMYSA/HwbQgi6J0U0uy4t4fYIth0uaHC/APZlljK2XxwWg5yVKHVhXThYCt2aS1In8fuzezKse3WgUNPYU/Pv5H5xXDase7OP/c2BPF7YkO4TKAGUVjpZ9s0hfjrZmtJUdqebtbuyEHgbYLwEUFhmZ+vhQu+2nByr3+MVFFTgdLr9lmkruSWVVDk9fssI4Fh+4+PLJEnqnGTLkiQFmU6j4m/n92dfThnfHS6grMpJjFnPxL5x9Io1N/u4TreHVVsy/JZ59adjjEqNanLG8ANZVlyn5zqoRQC7jxcztl8cHrcHm83Z6DFLSiqJa2F3Y3P4ex4+5dz+AypJ6vTkmCVJkoJJURQGJoYzMDG81Y7584lSyu0uv2Xyyx0czCunf3xYk45dWG5HpVAnN1RtDpeHCrsr4JNMsIKRGIuOmjHd/sSFG9qjOpLUcXXhbjgZLElSJ2Wtarw1pynlagt0dp5WrUIT4EBynTY4pyOzQUuv+DCO5JXVO25MASItOhKjjAEdb9OBEzy3Zgc//JqJRq1i5pm9+eO0EfRLjG7dikuS1G5ksCRJnVS0ObC8TIGWq61XfBjbjhQ2uF8BEqKMGHTVA7wjwvWUWu0Nl1cgMrL5LTdCCA7klrHpcCG51iqMWjXDUyIZnRaDUadu9P4TB8WTZ62ivMrpEzApSnXAd8Hw7gHN1lv60Wbufes7NCoVLk91S9nza3bwn7U7efuOWVw8qk+zn6MkBV0XblkK3ZpLkuTX4MQIv2vKKUD3CAO9Ypo+Lioh0kD3aFODQxAEcFafWO/fiYnhqPy0MCUlhqNuZh4jjxC8veU4L313hL1ZpeSX2TleVMHHO7P41xf7KChrOEirYTZouXp8Gmf2jEF/cuahWqUwqEckV4/vGVAX3De/HOPet74D8AZKUD3bzuX2cPWTH5NVVN6s5yhJHYJKafktRMlgSZI6KbVK4Xfj0urdp1DdanLDuLRm5TdSFIWZI3uQGGk6+XftmXwKU4ckklprsLZer6Fvn1gsFt9WLJ1WTUpyJLEtGMi+4WA+W49WpyU4fQxVud3F8g1H8PhLZHWSUadh/IBu/OH8fvxxen9unt6fyUMSiQyw5e2pz7c12OUoqB6TtfzrXQEdS5Kkat999x0XX3wxSUlJKIrChx9+6LNfCMGiRYtISkrCaDQyceJE9uzZ41PGbrdz6623Ehsbi9ls5pJLLiEzM7NJ9ZDBkiR1YmPSovnr1H50C9P7bE+KMHDP9AEMaUFuI4NWzeVjU/jt2FSGpUZzRo9Izj2jGzdO6cPA5Mi65Q0aeveK4YwBcfTuFU3fPrEMGBBHVIBjgerj8QjW789veL+A/DI7B3PLAj6moiho1aomB5Hr92X4nVnnEYLv9vmfnShJHZmiKCiKqgW3pv8ws9lsDBs2jGeeeabe/UuXLuXxxx/nmWeeYcuWLSQkJHD++edTVnbqO3/HHXewevVq3nrrLTZs2EB5eTkXXXQRbnfg6UrkmCVJ6uRGpUQxMjmSQ/k2SquqM3j3jDG1SsZsRVFIijaRFG0K+D46nQadrnVOPcUVDkor/Q9QVylwOK+c/gmtN9OwPoG8mnKNOSmkBWHM0oUXXsiFF15Y7z4hBMuWLePee+/lsssuA2DlypXEx8fzxhtvcNNNN1FaWsry5ct57bXXmDp1KgCrVq0iOTmZdevWMX369IDqIVuWJKkLUBSFvt0sjEqJolesuctdtAPLpNQykwen+p35p1IUJg9ObYeaSFLHZrVafW52e+PjCuuTnp5OTk4O06ZN827T6/VMmDCBjRs3ArBt2zacTqdPmaSkJAYPHuwtEwgZLEmSFLKiTDrCDP5bqTwCerZgTFSgbp8xqsFuOEUBvVbNDROHtHk9JKnN1CSlbMkNSE5OJiIiwntbsmRJs6qTk5MDQHx8vM/2+Ph4776cnBx0Oh1RUVENlgmE7IaTJClkqVQK5/aN43+7s+vdryjVAdWANu6CAzhnQA+emDOFO1d+hUaleAMntap6DNT7f/4N8ZFtH7RJUptppW64jIwMwsNPfSf1en1D9wjssKe1lAshGm09D6RMbTJYkiQppE3o343M4gp+zixFUfDmSVIAk07N787p5TdtQWv60wVncu4ZPXhh7Q42/JqJTq1mxpm9mTdlGCmxbR+wSVKbaqVgKTw83CdYaq6EhASguvUoMTHRuz0vL8/b2pSQkIDD4aC4uNindSkvL4+zzz474MeSwZIkSSFNrVK4blwae06UsvFQAXlldgxaNSNSIhnbKxZLI910rW1Yajee/31gg0YlSWq+nj17kpCQwNq1axkxYgQADoeD9evX8+ijjwIwcuRItFota9eu5corrwQgOzubX375haVLlwb8WDJYkqRW4BGCnKIK8kuqAIiLMJAQY2ryArVS86gUhSE9IhnSIzLYVZGkzisIC+mWl5dz6NAh79/p6ens3LmT6OhoUlJSuOOOO1i8eDF9+/alb9++LF68GJPJxOzZswGIiIjgxhtv5M9//jMxMTFER0fzl7/8hSFDhnhnxwVCBkuS1EJWm4Pvd2dTXunyngt+PQ5mg4bzhiYS3ozlRCRJkjqcIKQO2Lp1K5MmTfL+fddddwEwZ84cVqxYwYIFC6isrOTmm2+muLiYMWPGsGbNGsLCTi0O/sQTT6DRaLjyyiuprKxkypQprFixArW68aWQvFUXIoDUtlK7sVqtREREUFpa2ip9ulLbsjvdfLE5A7vLXWcRVoXqDNUXjklGrw38SylJkhSo9rhm1DyG+vJ/omhbsIajswr3+/eF5PVNtixJUgukZ1upctafBVZQHUwdybJyRmpUvWUkqbi8kte//4W9GfmY9VpmndWf8QOSu1wuLCkEdOGFdGWwJEktcCy38YVRj+WWy2BJqteb3//CH57/FLvLhUalQgDLPt3MOWck8/5fryQ6rPlLwUhSqwvCmKWOInTDPEnqAJwuT6NlXO7Gy0hdzze705nz9IdUOV0IAU63x/tZ2bQ/k8v/9Q5ylIQkdQwyWJKkFogw6/yuCaYoyAHeUr0Wf7ChwdmSbo9gw74MNu5v2sroktSmWimDdyiSwZIktUDv7uF+1x0TAvokhdZARqntlVXa+faXY7gbWB4FQKNWsfrHX9uxVpLUGKUVbqFJjlmSujyX20N2vo38kko8QhBp0dOjmwWDvvGvR2K0idR4S4Njl1LiLSTGmFq7ylKIq7A7Gy2jADa7o+0rI0lSo2SwJHVpVpuDbXtzcdQae1RYUsWRzFIG94khKc7i9/6KojDmjG5EhenZn1FCpb16ZpxRp6Z/ciR9kyPkrCapjpgwE1FmA8W2qgbLuDweBibHtWOtJKkxLe1KC91zoQyWpC7L5fbUCZRqCGD3oUJMBi2RYf4XeVQUpTow6hFBZZULAKNBI7N3Sw3SqFXcNG0k//poY4NdcXqNhuvOG9LONZMkPxSlhakDQvecKMcsSV1Wdr6t3kCphgIcy7YGfDyVomA2ajEbtTJQkhp196XjGZLSDfVpi/yqVQqKAv/540yiLDJ1gNSByAHektT15JdU+t0vgPxi/2UkqbksRh1f//N6/jrrbKLMp7IinzswhS//cS2zz5WtSpLUUchuOKnL8viZieQtI/PcSG0ozKjnwdmTuP+qCRRYKzDptYSb/Hf7SlLwtHRGW+i2LMlgSeqyIix6CksbHmALEGGWFy6p7WnUKhKi/E8mkKSgkxm8Janr6RFvafR3TkpiWCMlJEmSpM5OBktSl2XUaxjcJwaov3G4RzcLCTJHkiRJUrUuPMBbdsNJXVpSnAWTQcvRLCv5JZUIIQg360hNDCchxiRzJEkhrczu4sPdWWw5VoJAcFZqFL8ZkkRYAAlXJakuOWZJkrqsyDA9w/vL5H9S57I1o5gb39xBmd1FTXaC/+3N5bGvD/Hfq0cwOiUquBWUpBAiu+EkSZI6mRxrFXPf2I7NUZ0k1SOqbwKwOVzc8MZ2sq3+JzdIUh1duBtOBkuSJEmdzBvbMqlyuqkvO4ZHQJXLzRvbMtq/YlJok8GSJEmS1Fms2Z9Xb6BUwyNgza957VchSQpxcsySJElSJ2N3uRstU+VnqZ+uRgjBxr1Hefe7HZTYquidGMPcaWeRHCfHdfmSA7wlqcMTQuBxeXC7BYoCaq0alSp0v3yS1FaGJEWQWVrV4CK9apXC0KTwdq5Vx1RWUcUVD61g3Y4DaNQqqpP2Cx58fQ2LfzeTv/x2crCr2HHIpJTBt2TJEhRF4Y477vBuW7RoEQMGDMBsNhMVFcXUqVPZvHmzd39RURG33nor/fv3x2QykZKSwm233UZpaWm9j2G32xk+fDiKorBz507v9sLCQi644AKSkpLQ6/UkJyfzpz/9Cav11CKqVVVVzJ07lyFDhqDRaPjNb35T72OsX7+ekSNHYjAY6NWrFy+88EKLXhepmtvlwVZaRYXVjt3moKrcga24kqpyO0IuSSJJPv5vVHKDgRKA2yP4v9Ep7VijjmvOY2/wza6DALjcHtweD26PwCMEf1v+KW98vS3INexAFFXLbyGqQ9R8y5YtvPjiiwwdOtRne79+/XjmmWfYvXs3GzZsIC0tjWnTppGfnw9AVlYWWVlZPPbYY+zevZsVK1bwxRdfcOONN9b7OAsWLCApKanOdpVKxaxZs/j44485cOAAK1asYN26dcyfP99bxu12YzQaue2225g6dWq9x09PT2fGjBmce+657Nixg3vuuYfbbruN999/v7kvjQR43B4qSqsQ7ronf6fdTVW5Iwi1kqSOa3RKFH86pxcAtRtfa/77lnN6cpZMHcC+47l8vOmXBgNLRYGH3lgjf5BJwe+GKy8v59prr+Wll17ioYce8tk3e/Zsn78ff/xxli9fzs8//8yUKVMYPHiwTyDSu3dvHn74Ya677jpcLhcazamn9/nnn7NmzRref/99Pv/8c5/jRkVF8cc//tH7d2pqKjfffDP/+te/vNvMZjPPP/88AD/88AMlJSV1nssLL7xASkoKy5YtA+CMM85g69atPPbYY1x++eVNe2EkL3uF0+9+l8ON2+VBrekQsb8kdQh3TerDoMQw/rvpGNszSwAY3j2C349N44Iz4oNbuQ7i4x9/Qa1SGgyWhIADJ/I5lFVA3+4yF5scsxREt9xyCzNnzmTq1Kl1gqXaHA4HL774IhEREQwbNqzBcqWlpYSHh/sESrm5ucybN48PP/wQk6nx5SuysrL44IMPmDBhQpOey6ZNm5g2bZrPtunTp7N8+XKcTidarbbOfex2O3a73ft37a4/qXqcksvR+GBVl92FWqNrhxpJUuiYPiCe6QPivcGAWo7x81Fpd57M0u+/5ajS4f8HW1ehKErLVjWQY5aa56233mL79u0sWbKkwTKffvopFosFg8HAE088wdq1a4mNja23bGFhIQ8++CA33XSTd5sQgrlz5zJ//nxGjRrltz7XXHMNJpOJ7t27Ex4ezn//+98mPZ+cnBzi431/scXHx+NyuSgoKKj3PkuWLCEiIsJ7S05ObtJjdnaBtn57ZDO5JDVIrVJkoFSPIWmJuNz+ZwXqtRp6xke3U42kjipowVJGRga33347q1atwmAwNFhu0qRJ7Ny5k40bN3LBBRdw5ZVXkpdXNz+I1Wpl5syZDBw4kPvvv9+7/emnn8ZqtbJw4cJG6/TEE0+wfft2PvzwQw4fPsxdd93V5Od1etRd09fdUDS+cOFCSktLvbeMDJkorrZAf4jIWXGSJDXVxWMHERdhQdXAiUatUnH91FGEmRq+RnUpMill+9u2bRt5eXmMHDkSjUaDRqNh/fr1PPXUU2g0Gtzu6q4Xs9lMnz59GDt2LMuXL0ej0bB8+XKfY5WVlXHBBRdgsVhYvXq1T3fX119/zY8//oher0ej0dCnTx8ARo0axZw5c3yOk5CQwIABA5g1axb/+c9/eP7558nOzg74OSUkJJCTk+OzLS8vD41GQ0xMTL330ev1hIeH+9ykUxRFQRvAop+BlJEkSapNp9Xw+t/+D41ahVrlezlUqxT6JMXy8A0zg1S7DqgLB0tBu8JMmTKF3bt3+2y74YYbGDBgAHfffTdqtbre+wkh6ozxmT59Onq9no8//rhOK9VTTz3lMxYqKyuL6dOn8/bbbzNmzJgG61fTIlT7sRozbtw4PvnkE59ta9asYdSoUfWOV5ICozNqcDlcDXbJ6QwaVGo5uFuSpKabPLwvG5fdwaNvr+ODH37G7RFEWYzMmzGOBVdMIdJiDHYVpQ4gaMFSWFgYgwcP9tlmNpuJiYlh8ODB2Gw2Hn74YS655BISExMpLCzkueeeIzMzkyuuuAKoblGaNm0aFRUVrFq1CqvV6h0gHRcXh1qtJiXFN5eIxWIBqmfO9ejRA4D//e9/5ObmMnr0aCwWC3v37mXBggWMHz+etLQ073337t2Lw+GgqKiIsrIyb66m4cOHAzB//nyeeeYZ7rrrLubNm8emTZtYvnw5b775Zmu/fF2KSq3CFGGgyubA7aw1vkABvVGL1iBblSRJar7hvbvz5j1zcDhdVDqchBn1qFTyB1hdcjZch6NWq/n1119ZuXIlBQUFxMTEMHr0aL7//nsGDRoEVHfl1SSprOleq5Genu4T6PhjNBp56aWXuPPOO7Hb7SQnJ3PZZZfxt7/9zafcjBkzOHbsmPfvESNGAKdaoXr27Mn//vc/7rzzTp599lmSkpJ46qmnZNqAVqBSqzCFG/C4PXjcAhRQa1Qtm5khSZJUi06rQaftsJfF4OvCGbwVIbNtdShWq5WIiAhvCgRJ6oyqu9Oru1a1WjUamSNLkpqlPa4ZNY+h+d2LKLrmd0sKRyWul/8Qktc3GUJLktRuhBCUWe2UllTiqZUI0GjSEh1jQqOpf6yiJEkdgEILW5ZarSbtTv6ckySp3ZSWVFJcVOETKAFUVjjJybLicvnPeSNJUjAprXALTTJYkiSpXbicbkpLqhrc73YLrCWV7VgjSZKapAunDpDBkhRUQgiqKp1YS6sos1bJloVOrDyABY/Ly+1y0dIgE0JQUumk0OaQ74UknSTHLElB47C7yM8r9w2QCiswm3VEx5plVu5OxuVqfI0/IcDjEajV8r1vb0IIPv4lh/9sTOfXvHIAukcYuGFMKnNGp8jlUqQuPRtOBktSUDidbnKyrfUmmrTZHHg8grh4i0wN0ImoA0wcKoPk4Hj820M8uyHdZ1TJidIqHl6zn20ZJTx9+dAGlwWRugoVLeuQCt3OLBksSUFhLa3yu0huZaUTh92F3iAzn3cWZosOa2nDY5YATGZdwAGy2+2hpLQKh8ONRqMiKtLYYAqCMpuDozlWCk+OmeoWZSQ1MRyzUX6+AH7JtvLshnQATv9aCuDzfbl8tieHiwcntnvdJKkjkMGS1O6EENjKG19GprzcIYOldiKEwOMR1fNVVEqTW/SEEFRUOKmqdAKg12swmXU+rUQ6XfW2Clv9Y5cUBSIiA8vhkl9gIzPL6jOrLuNEKQnxYSSe1iKZkVvGroMFKJwKBGyVTtKzrZzZvxuJseYmPdfO6I1tGahVCm5P/b9gVAq8tjVDBktdneyGk6T2IwR+W5VqnD69XKrL6faw7Vgxx4psaFQqhvaIoE9c4N2XQgjKy+xYS08Nrtdq1YRHGjAH2MrjdLjJzSnD7T419qy8zE5xUQVx8RYMtQLe2DgzRSqF8jLfYFmjURHbzYJO13iepcKiCo5nltbzXCA7pwxFgcT4MABKy+3sOlhQvb922ZP/t31/HpMsPTB18aB8X25Zg4ESgEfAgZPjmKRT3G4PFVV2zF1leRQZLElS+1GU6nEpjQVDMquzf7/mWHnhu8NUONyoVQpCCL7cm0NqtIk/TepLRCNdTEIICvNt2E5r6XE63RTm23A63ERFm/wew+PxkJNjrV6Cps4+QV5OGUndI9Boq4MgRVGIiTUTGWWkssKJEAKtVo3eoAkoMBNCcCLb6rdMTk453WLNqNUq0rOsPi1KdQ8IR7PLGNgzutHH7swseo3/1wkwBhDIdhUHjmfz6Ksf8eaaH7A7XUSYjdx4yWQW/N8lxEWFVmZqKTDyaiS1O0VRsITpGy1nsTRepqvKKqnkqa8PUumonmHm9ghqYs+M4gqe+Gq/35YCqE4EeXqgVJu1tAp7lcvvMcrLHPUGSjWEgLKyul2uarUKS5iesHADBqM24JYwW4UTp9N/egmPEJRaqx+zoKTSbwAgTpbp6i44I97v66RWFGYOTGi3+nRk2349wui597Dqi++xO6u/H6W2Sp58+3POuuFesvKLglzDtiSTUkpSuwqPMKD203IUFm5AK3/JNmjN3hw8QtR7gfMIyCqp4ufMEr/HKLP6H2wdSJmGxh/V5i8ga6raXX2tUQ4C6xLu7H4zJJGEMD3qeoJWlQI6jcKc0clBqFnHIoTg2vueptLuwHXaZ8zt8ZBVUMQdT6wMUu3aQ0sTUjY9WCorK+OOO+4gNTUVo9HI2WefzZYtW7z7hRAsWrSIpKQkjEYjEydOZM+ePa34nKvJYEkKCrVaRWJiOCaTb1eRSqUQFW0kKrr5izV2BVuPFeOv4UilwLbjxX6P4XA0nveosTKeACIN0Ypjz/S6wEYO6E8G2jERBr+nZwWIizS0vGIhzqzT8Pr/jaL7yddCo1LQnBycH27QsvLakSRH+e+S7QrW79jHwYwc3J76g3GX28OH67eSU1jSvhVrL0HI4P373/+etWvX8tprr7F7926mTZvG1KlTOXHiBABLly7l8ccf55lnnmHLli0kJCRw/vnnU1ZW1qpPXY5ZkoJGrVERFx+G2+3B6XCjKKDTBzZ2pSsTQuBopOXEI6DK6T/QUVQKfiMuGs95pNOpcTYSULVmC6HBoMFs0mKrcDb8eFoVYSe7eXsmRXAi3+b3mKmJvmNMPB7B8bxyDmdZsVU50WvV9EwIo2diONpOPI6uZ4yZr24+h28O5rMhvRCXRzCyRyQzBsajlwscA7D70HFUiuL3R4Lb42Hf0RMkxES2X8U6qcrKSt5//30++ugjzjvvPAAWLVrEhx9+yPPPP8+DDz7IsmXLuPfee7nssssAWLlyJfHx8bzxxhvcdNNNrVYXGSxJQadWq1AbO+9FqLUpikK3MD159YwFqqFSICHCf4uJ2RxY3iN/wsIN2BpZxiQ8vHVbblJ6RPLrwYIGl+JITY70BtyRYXoG947hl8OFPgOYa0LA4f3jfHItudwevtuVTX6t16XS7mbHoUIOZJYyeUR3TIbOe9pUqxSm9u/G1P7dgl2VDsmg1wbUmmrU+//ehK6Wjjuqvq/V6jtJQ6/Xo9fXHaPqcrlwu90YDL7nEKPRyIYNG0hPTycnJ4dp06b5HGvChAls3LixVYMleYWSpBA0sV83v6csj4Bz+8T5PUZYuN5vq7hKpWCx+D/p6/Uawv0EZSazDqOpdaflm0xaBvSL9bYe1TCbtPTrE0PEacFZWmI45w5Pons3C0a9BpNeQ0pCGOed2Z3ucRafsj8fLvIJlGqrsLvYtDe3VZ+LFFpmjBvRaGtrt6hwRg3o1U41amet1A2XnJxMRESE97ZkyZJ6Hy4sLIxx48bx4IMPkpWVhdvtZtWqVWzevJns7GxycnIAiI+P97lffHy8d19r6bw/kSQpBLk9gh3Hi9l0uID8MjsGrZozU6M4u3cs4bVaQCb0i2N7RjGH88p9BnnXtJ5cOrw78Y206Gg0auITwsnLLauTxkGtVtEtIQxVAEuUREYZ0enUlJZWebvkNBoV4REGLGH6NulWNRm19Osdg8PhxumszuCt1zd8Oouw6Bnez3/w6HR5OOwnLYEQUFBaRXG5nSg5U7NL6t4tmusvPI9X//ddgy1Mf7t+FhrZbelXRkYG4eGnur/ra1Wq8dprr/G73/2O7t27o1arOfPMM5k9ezbbt2/3ljn9HCOEaPXzjgyWJKmDcLk9vPJDOvtzyrxBT4XDzVf7ctl4qICbJ/UhIaJ64LtWreKOyf34fE823x7Iw2avDlKSIo1cODiRs9ICyxukN2jokRyJrcLhTRNgMGoxmQKfzq8oCmaLHrNFj8ftQVDdKtUeY890OnVAiSwDUVxuDygRakFJlQyWurBn//o7istsfPTdVjRqdXV3sFI9A/Ov113MbVddGOwqthmV0rLvtTh53/DwcJ9gyZ/evXuzfv16bDYbVquVxMRErrrqKnr27ElCQnU6i5ycHBITT2WXz8vLq9Pa1FIyWJKkDmLdvlwO5FTP4PDJNn1ysPYrG9K5e8YZ3sVMdRoVs4Z1Z+aQREornGjUKsIDTO5Ym6JSsFj0rZLXKpCWqI5KTitoun25Zbz603E2Hy9GrShM7hvHdaOSSY7qvLNZDXodHzz6Z7bsPczrX26gsLSMlPhYbrhoIn2SO3cuqpYm8G7Jl8xsNmM2mykuLubLL79k6dKl3oBp7dq1jBgxAgCHw8H69et59NFHW1DRumSwJEkdgMvt4YeDBQ0mBvQIKLQ5OJhbRv8E319kGpWKGNnS0WKRFr3f9dFqdGtCICCEwO70oCig13aurpnXtmRw72d7UdV6zQ7ml/PfH4/x36uHM6mv/27PUDd6YG9GD+wd7Gp0el9++SVCCPr378+hQ4f461//Sv/+/bnhhhtQFIU77riDxYsX07dvX/r27cvixYsxmUzMnj27VeshgyVJ6gAKyh1UNjLVX6VAeoGtTrAktQ6tRkWf7uHsz6i77hyczMkUZSSikRmCUJ1/as+xYn4+VkzZycWFY8P1DO8ZQ5/E0H//tmeUcO9nexHgE1y6BXjcHua9vZMNt51LQivPhJSCq7W64ZqitLSUhQsXkpmZSXR0NJdffjkPP/wwWm31GM4FCxZQWVnJzTffTHFxMWPGjGHNmjWEhYU1u571kcGSJHUAjUywqVVOdha1pSG9Yii1OcgpqqyzVprFpGXcwMan1AshWLcriyM5vknxCq121u3KosTmYFSf2NateDv774/HfFqUahNUL/D8xrZM7prUp/0rJ7UZVQu74UQz7nvllVdy5ZVXNrhfURQWLVrEokWLml+xAITuAANJ6kRiLXrCG8nf4xHQt5vFbxmpZdQqhXOHJjJ+cDzx0UbCjFpiIwyM7h/HtFE9MASQQfxQdlmdQAlOBV5bDxVQEMBSMx3ZhiOFfrsrPQK+P1LYjjWSpLYlW5YkqZ1YKxxU2d0Y9WrCTL5dOSqVwsT+3fh4V1a991UpkBhhJC3W3B5V7dJUikKPOAs94poXmP5yvKhOq1RtigJ7M0o4b1DoDgYOZAEbueZe56O0sBuuZaPDg0sGS5LUxvKKK9l5uIDislOZrqPC9IzoE0Nc5KnBwuf0iyPHWsVP6UXUrERSc9GNMum44ZyecimYEFBU5vAbTAgBhX6yr4eCsalRrN2fj7uBiEilwLiegaWvkEJHMLrhOgoZLElSG8otqmD9z9l1fmUXl9n5ZmcWE4cleWdXqRSFK0YlMzItmh8PF5BntWPUqRmREsWIlCh0nXhdss5Eo1ZoZKw+WnUIXzWA349L44tf8+rdpwBqReG6kT3at1JSm5MtS5LUDHlldj75JYtvD+Zjc7iJM+uZfkY8Fw5KwNjJpkk3hxCCrQfyG+yOEAK27s/nwjHJ3hOQoij0jrPQu5ldQFLw9U4IY09Gid9uqF4hPqNxTGoU/5jWnwfX7PdJt6BWKSjAs78dRvfIzptrSep6ZLAkNUt6oY1/fLqHSqfbu3B9XrmdVVuO893hAh6+eBDmAAbDdmYFpVWUV7r8limrdFJktRPTyKK3UugYkhrNvsxSPELU6Y5TFDDpNPTtBOkD/nB2GqNTInll83E2HytGo1aY1CeWuWel0EcG+52S7IaTpCYQQvCvdQd8AiXvPiCjuIKVm49x87ldO2Gbrcp/oOQtZ3cR08Z1kdpPhFnHzFHJfLE9E4fL4724CAEWg5aZo5LRdpIu1RE9IhnRIzLY1ZDaSxDyLHUUMliSmmx3lpVsP1OfPQK+PZjPnDGpXbp1KdCMzfpOcuGUTkmKNvF/k/pwONtKbkkliqKQHGsmNc7S6Kr1kiR1PF33SiY12+GCcu9srYY43YLM4kr6x7duFtVQ0i3KiE6jwuHyNFhGr1X7zIiTOg+tWsWAHpEMkC0vnZYQgpzSCtweQWKkCbWqc//wUSmBJ9CtVwj/TpDBktRkGpUqoBwqmhCf8dOYMpuDgqIKXG4PRoOW+BgT2lqtSWqVwtDeMWzdn9/gMYb2jpYtDZIUYoQQvLrhV/712Tb2Z5cAkBBh4tZpw7jzguFoNZ1zgktLZ8OFcuoTGSxJTTYiOZKXf/RfJsKgJS26cyZQdLs97DtcSFFplfeHkgDSM0vokxJFYq0s272TwvF4BD8fKcTlFt68SRq1wrDeMfTqBAN9Jak+J4ptrN+fjdsjGNOrG/0SIoJdpVZzzzubeOx/230aSnJKK/j7e5vYdDCb926f0elbmboaGSxJTdYj0sjI5Eh2ZJY02BV36bAk1J20xeTXI0UUlVaP2ar99IWAg8eK0WrVxNZamb5vjwh6JoZxosDmzeCdFGtGo5YnU6nzKatycPOrP/DOliN4ajVBTzkjiZdvnEBSZGj/iNqanstj/9sO1M1kLgR8uvMob246wHXjB7R/5dpYV+6Gk2drqVnunNSXfnHV45Fqvjw1vW4XDoznkiGJQapZ27JVOiksqfRb5lhW3VXrNWoVqfFh9E+JJCU+TAZKXZjb4+FItpUNe3L4/pcc9meW4PQzri2UuNweLl72Je9u9Q2UANbvz2biI59SUhHa2ctf+noPGj8Rg0pReP6r3e1Yo/ajKKe64pp3C/YzaD7ZsiQ1i1mv4aGLB7Ezs4TvDhdQVuUiPlzP+f3j6dWJ1y8rKK5otIytwkmV3YVBL79ekq/icjtrtmdSYXd7LxyHsq1sOVjA1GFJJESbglvBFvpk5zF+OJRb7z6XR3CssIz/rv+Vv1w4rJ1r1nr2nCjE5XcRYcGvWcXtWCOpPcizudRsapXCyJQoRqZEBbsq7cbjFihK44uEevxNFZS6JLvTzRdbM7GfXAul9mfI6fKwZscJLh2XWmeR5VDy2saDqBWlwTXjPAJe3rA/pIOlcKOu0XOAuZP+UJLdcJIkBcRk1DYaKKkUBb2uc86GkZrvUJaVKqe7wUV2PUKwN6OkPavU6rJLKxoMlGrk+cnRFgouH93H7zlArVK4amy/9qtQO2pZF1wL15ULMhksSVIAhBA4nW4iw/WoG0mJEB9rQi3HJEmnOZZX7ne/EHA013+Zji452uJ3YocCJEWGdlfjNeP6kRoTVu+4JbWiYNRquGXq0CDUrO2pONW61KxbsJ9AC4Ry3SWpzXk8gqycMn7ek8vPe3L5ZW8e4QYtDcVLBr2GtO6dZ4q01Hpc7sYHcbs9oT3Qe+45/byL6jbk9xNCe5aYSa9l7cJL6ZMQCVQnH9We/HEUE2bg8wWzSIuTKUE6m87ZsSpJrcDjERw8XEi5zeGz3eFwY9CoUWtVWCucQHXTe0KcmZSk8E6bkE5qmZhwPUXl9ga7cBQg2qJv1zq1tgsGJzNtcA/W7cmsk1ZErVLonxDB787pH5zKtaKeceHseng26/YcZ90vGbg8gjG947l0VG90nfj7r1IUVC3pSgvhbjgZLElSA/ILbHUCpdrcTg+jBsejVqvRalQyE7fk14AekRw4YW1wvwASo03sTi9CoXq5nLgIQ0iN81CpFN6/ZSp3v/MTy7//FfvJlAhqlcJlI9N4+trxWAzaINeydahUCtOGpDJtSGqwq9JuqlMHtOz+oUoGS5LUgPwCW6Nlikuq6C6zcEsBiAk3MKJXDDuOFHozudem16jYfaTQG3SLIxBl0XPe0EQsxtAJMAxaDU9eezaLfjOSHw/n4fJ4GJkWG/LJKKWuTQZLklQPIQR2h7vRclVVrnaojdRZDO8dQ6RFx+6jxRScnBUWbtLidLhxezwoiuLTTVdis7N2eyYXjUkJue7dKLOeC4cmB7saUiuS3XCSJNURSD4l2fUmNVVafBhp8WG43J7qJXJOlLLjUAH1JaERAiqqXBzJLqN/cmS711WSapPdcJIk+VAUhcgIA8Ul/nPCREUY2qlGUmdTs+RNek7D45hqpOdYZbAU4nZklPDc90f4/nABapXCBWfEM//cXvSNszR+ZynoZLAkSScJIaiqcmG1VuFxC4x6DaUKDS4WbDBoiJDBktRCDmfj6QICKSN1XM9+d5g7P9iNRqV4l0o5UpjOCz+k8+bcs0JmLU2lhd1wIoSblmSeJUmiOk1AZmYpx44WU1xUSWlpFaUlVRh1GnSa6q9J7a+50ailX++YkJqpJHVM4Sat31UgFCDMFDoDvCVfP6YXcecH1Qvr1l5Tzu0RuNyCa1b8REYAa052BDXdcC25hSoZLEkSkJ1lxVZef5oArVpFfKyJ2FgT3eLM9O0dwxn9YtFqQ2vArdQx9e0e0eASKFA9a66vTHQasp7+7nC92b6h+r31eOCljUfbtU5S08luOKnLczhclJXZ/ZaxV7noJVuSpDbQo5uF7rFmTjSQqiI5rnq/FJq+OZDv06J0OrcQfHMwvx1r1HwtnQ0nu+EkKYSVlzWceLKG0+nBEUAqAUlqKpWicN6QRIb0jPZ2+QLotSqG9orhnMEJMkgPYYG8daHy7nblbjjZsiR1eZ7G8gOcJBpZ80qSmkulUhjaK4ZBadFYbQ5QINyk87sorRQaJvaNY/WurAZbl9SKwqR+ce1cq+aRLUuS1IXp9QH8ZlBAq5NjlKS2pVYpRIXpibLoZaDUSdx6Xu8GAyWF6vf89+PS2rVOUtPJYEnq8iwWHWq1/69CeLi+0TKSJEmnG9szmicvH4oCPgO91SoFjVrhzRtGkxxlCl4Fm0B2w0lSF6YoCkndw8nMKKk3Y7dWq6Jbt7D2r5gkdULHiyrYeKSQsion0WYd5/SOJT68c+cr++O5vRjXM5oXNqTz3aFTSSlvOqcnfUIoKaXshusAlixZgqIo3HHHHd5tixYtYsCAAZjNZqKiopg6dSqbN2/27i8qKuLWW2+lf//+mEwmUlJSuO222ygtLa33Mex2O8OHD0dRFHbu3OndXlhYyAUXXEBSUhJ6vZ7k5GT+9Kc/YbX6ZtbdvXs3EyZMwGg00r17d/75z38iTru6rl+/npEjR2IwGOjVqxcvvPBCy18cqc2ZzTpS06IIC9N7t6lUCtHRJtLSotFoOsxXReqiPB6B2+3xOedUOFwcLbCRWVyBu4OPqXN5PPzn+yP845M9fLk3h41HCvl0dzYLVu/mra0Zdc6lnc3wHpG8cPUI9v79fHbfM5V/XTokpAKlrq5DtCxt2bKFF198kaFDh/ps79evH8888wy9evWisrKSJ554gmnTpnHo0CHi4uLIysoiKyuLxx57jIEDB3Ls2DHmz59PVlYW7733Xp3HWbBgAUlJSezatctnu0qlYtasWTz00EPExcVx6NAhbrnlFoqKinjjjTcAsFqtnH/++UyaNIktW7Zw4MAB5s6di9ls5s9//jMA6enpzJgxg3nz5rFq1Sp++OEHbr75ZuLi4rj88svb6NWTWovBoKV7jwg8HoEQApVKkbOQpKArK7OTX1BORYUTAJ1WTViEge+OFbH9WAnuk0FGmEHD5AHxnNM3tkN+bt/cksGmI4VA3az4n+/JIdygYcbg0Mhk3VV15bXhFBHkcL68vJwzzzyT5557joceeojhw4ezbNmyestarVYiIiJYt24dU6ZMqbfMu+++y3XXXYfNZkOjORULfv7559x11128//77DBo0iB07djB8+PAG6/XUU0/xr3/9i4yMDACef/55Fi5cSG5uLnp9devDI488wtNPP01mZiaKonD33Xfz8ccfs2/fPu9x5s+fz65du9i0aVNAr0fNcywtLSU8PDyg+0iS1DkVFtrIzimrs10IQUaZnW8ySuoktJzQL46Lh3dvnwoGqKzKye3v7PIGdvUx69Q8eeVwtHJsYJO0xzWj5jGGPfwpakPzc365q2zsuveikLy+Bf1TecsttzBz5kymTp3qt5zD4eDFF1+sfsOGDWuwXM2bUDtQys3NZd68ebz22muYTI0PpMvKyuKDDz5gwoQJ3m2bNm1iwoQJ3kAJYPr06WRlZXH06FFvmWnTpvkca/r06WzduhWn01nvY9ntdqxWq89NkiTJ4XDVGyhB9Ti75DA9fSKNdfatP5BPTmllW1evSX4+Ueo3UAKwOdwcyi9vpxpJUtMENVh666232L59O0uWLGmwzKefforFYsFgMPDEE0+wdu1aYmNj6y1bWFjIgw8+yE033eTdJoRg7ty5zJ8/n1GjRvmtzzXXXIPJZKJ79+6Eh4fz3//+17svJyeH+Ph4n/I1f+fk5Pgt43K5KCgoqPcxlyxZQkREhPeWnJzst46SJHUNRcWNBzxnxNT98adS4Kf0oraoUrM53IEtBOxwyQWDOzKV0vJbqApasJSRkcHtt9/OqlWrMBgangkxadIkdu7cycaNG7ngggu48sorycvLq1POarUyc+ZMBg4cyP333+/d/vTTT2O1Wlm4cGGjdXriiSfYvn07H374IYcPH+auu+7y2X/6OICaHsza2wMpU9vChQspLS313mq6/SRJ6tqqqupvja6hKAqR9eQI8wgosjWelb49JUcGNjW+ez0tZVLHoShKi2+hKmjB0rZt28jLy2PkyJFoNBo0Gg3r16/nqaeeQqPR4HZXLy1hNpvp06cPY8eOZfny5Wg0GpYvX+5zrLKyMi644AIsFgurV69Gqz21QvfXX3/Njz/+iF6vR6PR0KdPHwBGjRrFnDlzfI6TkJDAgAEDmDVrFv/5z394/vnnyc7O9u6raUGqURO01bQmNVRGo9EQExNT7+ug1+sJDw/3uUnNI4SgssJBWWkV5WV23PJXqhTCVAH8DK+va0ulgKmDJVDtHWcmKcLQYMuCSoGh3SOItejrLyBJQRa02XBTpkxh9+7dPttuuOEGBgwYwN13341aXf+XXQiB3X5q0VOr1cr06dPR6/V8/PHHdVqpnnrqKR566CHv31lZWUyfPp23336bMWPGNFi/mhahmscaN24c99xzDw6HA51OB8CaNWtISkoiLS3NW+aTTz7xOc6aNWsYNWqUTwAXKqqcbjwegVGn7vC/CKoqnRQXVuCpNc2mtLgSk1lHZLSxw9dfkk4XFmbAam14gWePEByrZ79HwIiUqLasWpMpisL883qz+PN9ONwen9lwKgXCDFrmjE0NXgWlgCgt7ErzhPBpOGjBUlhYGIMHD/bZZjabiYmJYfDgwdhsNh5++GEuueQSEhMTKSws5LnnniMzM5MrrrgCqG5RmjZtGhUVFaxatcpngHRcXBxqtZqUlBSfx7BYqvNa9O7dmx49egDwv//9j9zcXEaPHo3FYmHv3r0sWLCA8ePHewOh2bNn88ADDzB37lzuueceDh48yOLFi7nvvvu8F+L58+fzzDPPcNdddzFv3jw2bdrE8uXLefPNN9vsdWwLe06U8sOBPLJLqgCIMGoZ2yeWs3rFBPRrt73Zq1wU5te/YnuFzQEIomLkqu1SaIkIN5CXV47TWXcB55ofc3sLfT/3igK9Yi306dbx8vekRpt44KJBfLI7ix/Ti3B5BDq1ivP6xnLRkESiTLpgV1FqREuTUrbkvsHWIfIs1UetVvPrr7+ycuVKCgoKiImJYfTo0Xz//fcMGjQIqO7Kq0lSWdO9ViM9Pd0b6DTGaDTy0ksvceedd2K320lOTuayyy7jb3/7m7dMREQEa9eu5ZZbbmHUqFFERUVx1113+Yxr6tmzJ//73/+48847efbZZ0lKSuKpp54KqRxL63/N5dt9eT6rYJdWOvlydzbHC2389qyUDveBt5ZW+d1fYXMSFu5Go+1YXROS5I9KpZCWFsWxo8U4TguYFJXClpwyiqpc1blrBAhgcFIEV52V0mFbUhMiDMw7pxc3nJ1GldODUauWa+CFEBUta1kK+vT7Fggoz1JzprPLsTfNE8w8S7mlVbzw9UG/ZS4d2YOhHaiJ3+32kHOi8c9neISBsIjOvaSC1DkJISgrs1NWZkcIgdGoJTLSiKJSOJRXzoniSjQqhTMSw4kNk2N+upr2zLM05tH/oTE2v5XeVWlj890zOm+epcjISKKiogK+RUdHc+TIkbauu9TKth0t9PurQQF+OpmBt6MQAS7x4OngS0FIUkMURSE83ED37hH06BFJTIwZtVqFSlHoFx/GpAHdOLdfnAyUpDZX0w3XkltTuFwu/v73v9OzZ0+MRiO9evXin//8Jx7Pqck7QggWLVpEUlISRqORiRMnsmfPntZ+6oF3w7333ntER0c3Wk4IwYwZM1pUKSk4ckur6ixDUJsA8ssaHnAaDKoAs/2q5dpukiQFUZXTxcofDvHSd/s5VlhOtFnPdeP6MH/iAOLCQqPVW0XLutKaet9HH32UF154gZUrVzJo0CC2bt3KDTfcQEREBLfffjsAS5cu5fHHH2fFihX069ePhx56iPPPP5/9+/cTFtZ6C6AHFCylpqZy3nnnNTj9/XS9evUKydlfXZ0ugIBC08HGF6hUCkaTlsoK/zlpTGb5eZQkKTjKqpxc8MSXbE2vTk4sqB4L+vCnu3hp/X6+WXAhvbuFVrdUe9i0aROzZs1i5syZAKSlpfHmm2+ydetWoLpxZtmyZdx7771cdtllAKxcuZL4+HjeeOMNnwTVLRVQoJeenh5woATwyy+/yEzUIeiMpAi/+1UKDOrhv0wwREQa/c7Si4wyolLJliVJkoLjnve3sv1YIQJ81vLzCEF+eRXXvPgtQV6mNSCtlZTy9CW+aqcDqu2cc87hq6++4sCBAwDs2rWLDRs2eHuv0tPTycnJ8VlmTK/XM2HCBDZu3Niqz73DzoaT2t/gHpGs/zWPsionp39vFar7q8f0rn+pmWBSa1TEJYRRWlxJVeWpFiaNRkV4pAGjnJIsdSEZxZWs2prBxqNFKMA5vWK4blQPkiJkduxgKK1wsOKHg7gbGOPg9gh2Hi9iS3oBZ/WKa+faNU1Llyypue/pjSn3338/ixYtqlP+7rvvprS0lAEDBqBWq3G73Tz88MNcc801wKmlxupbZuzYsWPNr2g9mhUs/fTTT3z77bfk5eX5DLQCePzxx1ulYlL702lUzDmnJ6s2HqXY5vB+sD0C9FoVV41JJaaDZtjVaFTExJlxuz24XR4UlYJGo+qwU6glqS38b28Ot7z3M0II3CevzbuySnlhYzr/uXI45/fvFtwKdkG/nCjG3shqAioFfjyS1+GDpdaSkZHhMxuu9gL1tb399tusWrWKN954g0GDBrFz507uuOMOkpKSfFbgqG+ZsdY+9zc5WFq8eDF///vf6d+/P/Hx8X7XRZNCT7RFz5/O78fBnDIO5ZbhEdAj2sjg7pFoQ2CQtFqtQh3goG9J6kwO5Zdz83s/4/GI07p6QLgFN72zk29uOYfU6MDWaZNaRyB5pASgCYGhAq3VshTo0l5//etf+dvf/sbVV18NwJAhQzh27BhLlixhzpw5JCQkANUtTImJid775eXl1WltaqkmB0tPPvkkL7/8MnPnzm3Vikgdh0pR6J8YTv9EOeBQkkLFyi0Z3uSUpxOAxwOvbc3g79P6t3fVurThKdFEGLWUVjY8CUUImHRGYoP7O4r2zuBdUVFRZ7ypWq329mj17NmThIQE1q5dy4gRIwBwOBysX7+eRx99tNn1rE+TQ1mVSsX48eNbtRKSJElSy3xzML/ehXVruIXgm4MF7VgjCcCg1XDrlIE0FCaoVQrTBiZxRmJke1YrJFx88cU8/PDDfPbZZxw9epTVq1fz+OOPc+mllwLVvVl33HEHixcvZvXq1fzyyy/MnTsXk8nE7NmzW7UuTW5ZqlnKY9myZa1aEUmSJKn5GhpA7FMmBGZcdUb3zBzGgZxS3tl6FI1KweURqBUFtxAM6R7Fyt+fF+wqBqS98yw9/fTT/OMf/+Dmm28mLy+PpKQkbrrpJu677z5vmQULFlBZWcnNN99McXExY8aMYc2aNa2aYwkCXO6kNo/Hw8yZMzlw4AADBw6sk0/pgw8+aNUKdjXBXO4kVAghyC2p5HB2GVUOFyaDhr5JEcSGh0ZiN0lqC3eu3s3q3dkNBk1qlcI1I7qz5OJB7VyzxgkhOF5gY8fRYvJKK1GrVfRNCGN4WjThxs6RI00Iwbf7c1j+/QGO5FuJsxiZPbYXl56Zik7T/HUr23O5k/OfWIO2BcudOCttrL1zWkhe35rcsnTrrbfyzTffMGnSJGJiYuSgbqldudwevv05m4wCG4pS3devKPBrRil9k8I5e2B8h1voV5Law5yzUnhvV1aD+z0ewfVnpbRjjQIjhODbvblsTy/yfqcBth4uZMfRIi4/K4UeMc2/QHcUiqIwaUAikwZ0/LFJDWmtAd6hqMnB0quvvsr777/vzagpdSxVDjeHTpSSnl2G3enGqNfQOymc3knhITGbrTE//ppHRoENOHVSrfn3YJYVs0HDiA6YC0qS2trw7hE8cMEA7v/iV9QqxdvCpFYpeDyCJRcN5Iz41u2aaA37s6xsTy8C8MnvJgC3W7B6SwY3Te3botYXSWqpJgdL0dHR9O7duy3qIrVQeaWTr7efoMrh9s6IKa90sutwIek5ViaP6I5eG7onnAq7i0NZVr9l9hwrYUhaNBqZPkDqgn43NpVh3SNY/uMxNqYXoigK5/SK4caxqQzv3vGy7wNsPVKIQsOz+BwuD3szSxme1vjapFLbau/ZcB1Jk4OlRYsWcf/99/PKK69gMsl8HR3Jj3tzfQKl2spsTrYfLGDcwNbNPdGesgor6n1utTndHvJKqkiKkZ9NqWsamRzJyOTIYFcjIG6PILe0ym8ZBThRVCGDpQ6gvQd4dyRNDpaeeuopDh8+THx8PGlpaXUGeG/fvr3VKicFrrjcTqG1/vV1oPoXWkZeOSP6xGDQheYqN54AZvsAuD3+s+VKktQxhG47g9TVNPmq+Zvf/KYNqiG1VJGfQKmGEFBS7iAhOjSDpejwwJZaiQ7rmEuySJLkS6VSSIw0klNS2WCrsQCSY0N/gHdnILvhmuD+++9vi3pILRToZzAUP6tuj6Ci0olerSImTE9Rmb3eE6uiVJ9UzYbOMdVYkrqC0b1j+HhbZr37FECvVXNGBx1v1dXI2XBSyIuPanxFcbVKISaEchF5PIL0zFIyc8twnVwVNEKtQhg0FNtdPjNnFMCs1zDujNAdkyVJram00klZlYtIkxaLvuOe6vsmhjO2byw/HizwSR2gAFqNisvOSkErJ2xIQRbQNyg6OpoDBw4QGxvYlOyUlBS+//57UlNTW1Q5KXBmg5YecWZO5NsabM7u2yMiZGaJeYRg1/58ik4b/OlyCyxaDZEmHRnWKpwuDwatmn49IhiUEoVBF7qz/SSpNRzKL+f9HSfYm109c1SlwJnJUVxxZg8SIjrmj6Xx/bvRs5uFnUeLyS2tRKNS0TcxjCEpUZg7cKDX1chuuEaUlJTw+eefExERWFNoYWEhbre7RRWTmu6sAd34zpFNQWmVdypuzb894swM6Rk6s0nyCivqBEq1uZweLhjenZhIg0yMKkkn7c228ti6A9RemMEjYHtGMXuyrdw34wySIhtvhQ6GpCgTSVFyFmtHJrvhAjBnzpy2rIfUCrQaFZNGJJFdWMHRnDKqHG7MBg09E8PpFmJBxYnc8sbL5JUTG0D3oyR1BR4h+O8P6Xg8ok7rskeA3eVm5eZjLJw+ICj1k6RQFlCw5JFTsUOGSlHoHmume4jPHqmocjZeprLxMpLUVezNtlJoczS43yPg15wy8sqq6BbWMbvjpI6tOs9SC7rhWq8q7S6U6y51YtoAljbQauXHV5Jq5Fj9J3eskRtAmhFJqo+inOqKa84thDo36pBXG6lDSgigZSyQMpLUVRgDXMrIKCdBSM1UM8C7JbdQJacZSB2CEAKbzUFRcSVOpxu1WoVRp653+RYF0OvVMliSpFqG94hEo1Jw+cl0H2XS0itGfm8kqalksNSFuN0eikuqcDhcaDRqoiINaDvAwroej+DYsWKsZb7dA2aNCoNaRXGl02ehTYtZx9B+sSGTBkGS2oNZr+HCQQl8sju7wTKXDe+OKpSnJElBJWfDSZ1efqGNzBNWPB7hDTwyTpQS381C98SwoM6Uy8qy1gmUaqgVSIs3oz65nl1UuIFwiy6kZvZJUnu5bER3nG4PX+7NBaW628TjEahVCleO7MF5feOCXUUphMk8S01gtVrr3a4oCnq9Hp1O1+JKSa2rqLiS4xml3r9rN9Ln5pWjKNA9Mbz9Kwa4XB6Kiiv8lrGVOxg0MAq1bEmSJL9UisI1o1OYPjCBn44WYa1yEmPWM7ZntEzuKEkt0ORvT2RkpN9f9T169GDu3Lncf//9qFTy4hZsQghOZNcf4NbIzSsnPs6CRtP+71e5ze6zbEl9hIDycgcRHTT7sCR1NNFmHRcMSgh2NaRORjl5a8n9Q1WTg6UVK1Zw7733MnfuXM466yyEEGzZsoWVK1fy97//nfz8fB577DH0ej333HNPW9RZaoLKSicOh/9s6kJAqbWKmOj2z54rAkzhJRqLqCRJkqQ2JccsNcHKlSv597//zZVXXunddskllzBkyBD+85//8NVXX5GSksLDDz8sg6UOoGYB2sa43cFJPGoyaQMqZzQGVk6SJEmSWluTg6VNmzbxwgsv1Nk+YsQINm3aBMA555zD8ePHW147qcX0AeZU0euCM55Br9dgsegoL28483CYRY9ejreQpE6t0uFma3oh248WYbO7sBi0nJkWzaie0Rg6wKxdqTp7d4sGeIdwR1yTB6n06NGD5cuX19m+fPlykpOTgeqFdKOiolpeO6nF9HoNYRb/g+41GhXh4fp2qlFdyT0iG8zGrdWqSE4ObAFnSZJCU1mlkxe/Ocg3e3MpqXDidAuKbQ6+3pPDS98cojyA5Y+ktteS7N0t7cILtib/XH/ssce44oor+Pzzzxk9ejSKorBlyxZ+/fVX3nvvPQC2bNnCVVdd1eqVlZonuXsEvx4swNNAsrq0FP+D9tuaTqemX984CgpsFBZV4HJ50GhUxESbiI01B2XguSRJ7eej7ZlYK511EtAKoLjCwac7TnD1uLQg1EySqjU5WLrkkkvYv38/L7zwAgcOHEAIwYUXXsiHH35IWloaAH/84x9bu55SCxiNWgb0i+VElpXSWutCmU1auieGExYWvFalGhqNioSEMBISwoJdFUmS2lFRuZ3DeeUN7hcC9ueUUVrhIMIkU9MEkwqlhQvphm7TUrMGgqSlpfHII4+0dl2kNmQ0aOnTKwan043T6UajUaEL0jglKTRZKxzY7C6MWjWRluAH2FLncKK4MqByWcWVMlgKMjkbrolKSkr46aefyMvLw+PxnUV1/fXXt0rFpLah1ao7xBInUujIL61i46+5ZNe6qMWG6Rk7oBs95DpjUgsFegHtLMu0CCHYnlnKofxyzHoNE/vEYgmRCSxKCzN4h/LKC01+hz755BOuvfZabDYbYWG+y2QoiiKDJUnqRPJKK/lo8/E6490Kyux8tiWDC87sQWo3S5BqJ3UGaXEWVAr4Wf8XtUohpRME5jtPlHLb+z+zv1a3o0Gr4pZzevGXSX06TUDYGTV55Oyf//xnfve731FWVkZJSQnFxcXeW1FRUVvUUepChBC43R7cbo9MRNkBfL83F49H1Bl4C9WDb9fvycEj3yepBcx6DUNTohoczaIAZ6ZGYQwwDUpH9WtuGb/572YO5vuOz6pyevj3N4d44Mtfg1SzwHXl2XBNDpZOnDjBbbfdhsnU/tmepc5LCIG1tIoTmaVkHi8h83gJ2SdKKS+zy6ApSIrK7eSXVtUbKNWosLs4UWBrtzpJndOMoUmkxVW3HNV0VtT82zvewrQhiUGqWetZ+tVBHG5Pgy1o//nhKBkBjt8KlpqFdFtyC1VN7oabPn06W7dupVevXm1RH6kLEkJQkF9Ohc03l4rT6aGwwIbT6SYqCEuxdHVllYHltrEGWE5qPrdH8MORQj7bm83x4krMOjUT+8QxY1AC0Z1g0LNWo+L/xvfkUG4Zu46XYK10Em7UMjw1it7dLCE91gWgrMrJ5/ty/XY1Kgp88HMWt0/o3X4VkwLW5GBp5syZ/PWvf2Xv3r0MGTIErdZ3GYpLLrmk1SondQ0VNkedQKk2a2kVJrNOZvFuZ4FmTTaEePdIR+f2CB5e8yubjhZ5x/aUVDp5c3sGH/+SzaOXDKZnJxjPoygKfRPC6ZsQHuyqtLqiCqffQAlArSjkldv9FwoyFc3ojjrt/qGqyVefefPmAfDPf/6zzj5FUXC7/S/aKkmnKytr/ARRZq1CHycHErenbhEGLAYN5VWuBsto1AopsfJ9aUvv7TzBj0erx4PWvuB6BNgcLhZ9vo+XZ49EHcoDQjq5GLMOtUrB7SdicgtBYrihHWvVdIqitKiVL5RbCJsc6Hk8ngZvMlCSmsPpaPxz4wigjNS6FEVhbP9ufsuM6hOLVmZYbzNuj+DD3VkNjhvzCMgrt7M1o7hd6yU1jUWv4eJBCY0GtJcPS2qnGklNJc9yUtAF8msjlAcGhrI+ieFMHJyAVl19qqh5G9QqhTH94hiWFh3E2nV+eeV2ShoZE6ZWKezJtrZTjaTmuntKX0xaNeoGzmW3T+jd4VuWuvJsuIC64Z566in+8Ic/YDAYeOqpp/yWve2221qlYlLXYbbosJZWNVpGCo4BPSLpnRjO0dxyyqucGHVqesaHoZfJTdtcQL9mRef6MVFc4SC9wIZKUejTzRIyCRsb0yvWzKd/GMtfPvyFLRkl3u2RRi13TuzNTWenBa1ugVJO3lpy/1AV0KfwiSee4Nprr8VgMPDEE080WE5RFBksSU0WFq6nzFqFyy2osLuocrpBCLQaNWa9BoNejVkurxFUWrWKvkmdb+BtRxcXpifOoiO/3NFgGbcQDOse0Y61ahvlVS5W/HiUrceKvd2OGpXCeX1juWZ0Cjp16HeEDIgP49ObxrE/r4zDBTbMOg1j06LQa+QPj44uoGApPT293v+WQk+5zUFRSSVuj8Bk0BAbbUId5JOQRqPGEmHkQHohtVMqOd0uKuwueiSEycy2UpekUhQuH9adF36o/7yrUqB7hDHkg6Uqp5vFX+4j+7S8Xi6P4Jv9+eSV2fnzlH6d5jzQv1sY/buF3qLhLc2VFMotoJ2jfVNqlMvt4cCRQkqt1TPPFKV6Ne+jmaX0To0iNoh5jNxuD4ePFdNQ7snMnDIsFj1RER27P1+S2sLFgxM5WlTBF/tyUSvgFtXdGQKIMel4YMbAkL4IAaw/mE9WSf0JUAXwS5aVn0+UMjw5sp1rJtUmUwc0gdvtZsWKFXz11Vf1LqT79ddft1rlpNYhhODA4UJKa03RrwlMPB7BwfQitFo1EWHB6eoqKKrA5fb4LZOVWyaDJalLUikKt53Xm0l94vhsbw7HiiuwnExKOblfHCZd6P/mXX+wwG+meJUC3x3Kl8FSkCnKqUkezb1/qGryt+z2229nxYoVzJw5k8GDB4d03oSuorzC4RMo1Scz20pEWFw71chXY3UDsJ5c9kR+3qSuSFEUhnaPYGiId7c1pLii4TFZUJ0iodDPuC1JamtNDpbeeust3nnnHWbMmNEW9ZHaQFFxpbfZviHWMjsutwdNEMYvyaXfJKlrizBoqfCTS02lQKRJ2+D+UFJa6WTVT8f47JdsqlweRiZH8vvxvegf3/HHMCktHLMUyj92mxws6XQ6+vTp0xZ1kdqIv6yxtXncAoIwKSPMoqOoxP8CkhazNqS/aJIkNey8vrG8sy3Tb/LNc/sEp+W7Nf18opQLnvmOQlt1K5kANqUX8tS3h3jit8O4+byOfW3tyqkDmtyM8Oc//5knn3xSrgQfQowGjd9WJQC1WkGjDc7wu7gYc6OzXLpFmSgqtFFUYKO8zI4nwABQkqSOb2K/OOLC9PUmLVQp0LebhREhPl6pwuFixnPfU1zhRHCqpd/tEQjgjvd28dX+3CDWsONJS0vzLrFS+3bLLbcA1eNxFy1aRFJSEkajkYkTJ7Jnz542qUtAV8fLLrvMe/vhhx94/fXX6d27NxdffLHPvssuu6zZFVmyZAmKonDHHXd4ty1atIgBAwZgNpuJiopi6tSpbN682bu/qKiIW2+9lf79+2MymUhJSeG2226jtLS03sew2+0MHz4cRVHYuXOnd/uuXbu45pprSE5Oxmg0csYZZ/Dkk0/Wuf8777zD8OHDMZlMpKam8q9//atOmfXr1zNy5EgMBgO9evXihRdeaPZr0lrios2NDqyLjzUHbUaNVqOif6+YeuuoVatIjjPjsruptDmprHBSWlxJzolSquRq91InVmF3kVdaid3Z+Zf6Mek03HvBAAYm+ubyUikwpmcMf5naL+TXvnt3eyZ5ZXbcDTQ0qFUKT3x9sJ1r1TQ1qQNacmuKLVu2kJ2d7b2tXbsWgCuuuAKApUuX8vjjj/PMM8+wZcsWEhISOP/88ykrK2v15x5QN1xEhO+gwksvvbRVK7FlyxZefPFFhg4d6rO9X79+PPPMM/Tq1YvKykqeeOIJpk2bxqFDh4iLiyMrK4usrCwee+wxBg4cyLFjx5g/fz5ZWVm89957dR5nwYIFJCUlsWvXLp/t27ZtIy4ujlWrVpGcnMzGjRv5wx/+gFqt5k9/+hMAn3/+Oddeey1PP/0006ZNY9++ffz+97/HaDR6y6SnpzNjxgzmzZvHqlWr+OGHH7j55puJi4vj8ssvb9XXrCk0GhW9U6M4dLT+9aOMBg3dE4ObcDAywsCwgfHk5JVTVFKJR4DFpCXcoK13sJUQUJhvo1tiGFqZSVrqRA7lWPlweybHT2a1V4DeMSZ+OyqFpCCm+GhrkSYdfz2/PznWKg7nl6NSFAYkhBFl6hzZ+9f+eir1Q33cHsG6X3PxeESHzSfV3rPh4uJ8u14feeQRevfuzYQJExBCsGzZMu69915vQ83KlSuJj4/njTfe4Kabbmp+ReuhiCD3p5WXl3PmmWfy3HPP8dBDDzF8+HCWLVtWb1mr1UpERATr1q1jypQp9ZZ59913ue6667DZbGg0p2LBzz//nLvuuov333+fQYMGsWPHDoYPH95gvW655Rb27dvnTYUwe/ZsnE4n7777rrfMsmXL+Pe//83x48dRFIW7776bjz/+mH379nnLzJ8/n127drFp06aAXo+a51haWkp4eOsGMCWlVWRmWyk72V+uUinEx5rpkRiOpgMuhlpeZqe02P9YJrNFR2QnvoBIXcvu48Us35hOfb3MWpXCbVP6khpraf+KSS129cs/snrXiUYntFQuu6xJrWhtec04/TH+/sYmDKbmf/6qKsp5aPY4MjIyfOqq1+vR6/2nrnE4HCQlJXHXXXdxzz33cOTIEXr37s327dsZMWKEt9ysWbOIjIxk5cqVza5nfZp8hZw8eTIlJSV1tlutViZPntzkCtxyyy3MnDmTqVOn+i3ncDh48cUXiYiIYNiwYQ2Wq/nA1A6UcnNzmTdvHq+99homU2AX1tLSUqKjTy0SarfbMRh88/wYjUYyMzM5duwYAJs2bWLatGk+ZaZPn87WrVtxOuvvMrLb7VitVp9bW4mMMDB4QDdGDUvkzMEJjB6WRFpyZIcMlICAutkqK2RXnNQ5eDwe3th8vN5ACcDpEby28Wi71klqPWelRvsd4KxSYESPyA7d3ahqhRtAcnIyERER3tuSJUsafewPP/yQkpIS5s6dC0BOTg4A8fHxPuXi4+O9+1pTk6+S3377LQ5H3XwXVVVVfP/990061ltvvcX27dv9vlCffvopFovFuy7d2rVriY2NrbdsYWEhDz74oE/zmxCCuXPnMn/+fEaNGhVQvTZt2sQ777zjc5zp06fzwQcf8NVXX+HxeDhw4IC3BSw7OxuofvPqe+NcLhcFBQX1PtaSJUt8PjTJyckB1bEltBo1er2mwzb11hABDOKWEw2kzmLnsWJsLv/jk/JsDo4X2NqpRlJrun5MKjq1qsGAySPg1okdezZca41ZysjIoLS01HtbuHBho4+9fPlyLrzwQpKSkny2nz5Luq3y8QWcOuDnn3/2/vfevXt9Ije3280XX3xB9+7dA37gjIwMbr/9dtasWVOnxaa2SZMmsXPnTgoKCnjppZe48sor2bx5M926dfMpZ7VamTlzJgMHDuT+++/3bn/66aexWq0BvRkAe/bsYdasWdx3332cf/753u3z5s3j8OHDXHTRRTidTsLDw7n99ttZtGgRavWpMTP1vXH1ba+xcOFC7rrrLp/n0R4BUyjQ6tQ4/OReqSkjSZ3B8cKKgModKygnJdbcxrWRWlusRc8bN4zhyuU/AtXr3gHecUy/G5fGtaNTglnFdhMeHt6kLsNjx46xbt06PvjgA++2hIQEoLqRIjEx0bs9Ly+vTqNFawg4WKqZRaYoSr3dbUajkaeffjrgB962bRt5eXmMHDnSu83tdvPdd9/xzDPPYLfbUavVmM1m+vTpQ58+fRg7dix9+/Zl+fLlPsFPWVkZF1xwARaLhdWrV6PVnkpe9vXXX/Pjjz/W6Q8dNWoU1157rU+/5t69e5k8eTLz5s3j73//u095RVF49NFHWbx4MTk5OcTFxfHVV18B1dMbofrNO735Ly8vD41GQ0xMTL2vQyB9tV2VOUyPrZGsvZYgLdEiSa1NH2B3uEFOaAhZFw1J4qcFU3hm/SE+3JWFw+1hRI9IbpnQh0uHJXX4XHLByrP0yiuv0K1bN2bOnOnd1rNnTxISEli7dq13zJLD4WD9+vU8+uijLahl/QIOltLT0xFC0KtXL3766SefUeo6nY5u3br5tLA0ZsqUKezevdtn2w033MCAAQO4++67GzyWEAK7/dTyGFarlenTp6PX6/n444/rtFI99dRTPPTQQ96/s7KymD59Om+//TZjxozxbt+zZw+TJ09mzpw5PPzwww3WW61We1vQ3nzzTcaNG+dt5Ro3bhyffPKJT/k1a9YwatQonwBOCoxWqyY80oC1pKre/UaTFoNRvq5S5zCmTyxf7Mv1mxNNo1IYmhLVbnWSWt/gpAheuGYkL1wzsvHCHYxKod5cWE25f1N5PB5eeeUV5syZ4zMWuSbV0OLFi+nbty99+/Zl8eLFmEwmZs+e3fxKNiDgYCk1NRWn08n1119PdHQ0qampLXrgsLAwBg8e7LPNbDYTExPD4MGDsdlsPPzww1xyySUkJiZSWFjIc889R2ZmpjfHQllZGdOmTaOiooJVq1b5DJCOi4tDrVaTkuLbrGmxVI/k7927Nz169ACqA6VJkyYxbdo07rrrLm/rkFqt9gaFBQUFvPfee0ycOJGqqipeeeUV3n33XdavX+899vz583nmmWe46667mDdvHps2bWL58uW8+eabLXqturKwcANarZoyaxUOe3WXnEarwhKmx2TWdfhfYpJUw2Z3cSS3DKfLQ3SYntRYs8/nN9qiZ2A3C3vyyhs8xpjUKPSyZUkKkprepZbcv6nWrVvH8ePH+d3vfldn34IFC6isrOTmm2+muLiYMWPGsGbNGsLCWn/pmCYtd6LVavnoo4+47777Wr0ip1Or1fz666+sXLmSgoICYmJiGD16NN9//z2DBg0CqrvyapJUnr4ES3p6urd7rDHvvvsu+fn5vP7667z++uve7ampqRw9etT798qVK/nLX/6CEIJx48bx7bffctZZZ3n39+zZk//973/ceeedPPvssyQlJfHUU08FNcdSZ2AwVrcgNTb+S5I6IrdH8O2eHHYdL0YIvOs0hhu1XDg8iR4xp8Yf3XBebx77fB85J9N71F7TMd6kY/qQxNMPL0md2rRp0xqcyKMoCosWLWLRokVtXo8m51m64YYbGDJkiM+gZKn1tEfODEmS2s8XO0+wJ7PuqgIK1bnOZo/vSbeI6uEDPx0q4Ks9OYDA6RG4BagVBa2ioKggPsLA3PN6yx8Mkld75lla/PbmFudZuueqMSF5fWvyQrp9+vThwQcfZOPGjYwcORKz2XdWxm233dZqlZMkSQplheX2egMlqG4x8gjBxgP5/GZ0Mh4h2HyoJsWIglalUHtEnhCQU1LFieJKeshErFIQBKMbrqNocrD03//+l8jISLZt28a2bdt89imKIoMlSZKkk349UYqi0GDWZiHgcG4ZDpebskoX5XaX3+MpChzNL5fBUhAdLrDxzo4T5JbZ6Ram58rhSfSJk1nVO7smB0vp6eltUQ9JkqROp9Lh9hl31JAqpwdPACMiFAioXCjzCEFmYQXWCgdGnZqUOAtadfBXGfB4BH//316W/3gctUrxvq9Prj/MnLOSWXLRoA6dfbs1BGM2XEfR5GCpNjngVpIkqWHhRm2ja4GpVQpGnRqTTo1Bq6LK6WmwrEfQqVuVjuaV8/Uv2ZRXnWph02lUjOkbx/C0qKBea5749hDLfzwOVA/ar+3VnzKIMupYeH6/YFSt3Sg0Y9mP0+4fqpr1vF999VWGDBmC0WjEaDQydOhQXnvttdaum9QGnC4PR7KsbP01j23788jIK6/zxZckqXUM7BHh9wqhKHBG9wi0ahUatYoze8Y0WFxRINKko2cn7fI5XmDjk60ZPoESgMPl4ft9uexILwpSzcDmcPHshoZ7VQTwn43pjXajSqGryS1Ljz/+OP/4xz/405/+xPjx4xFC8MMPPzB//nwKCgq4884726KeUivIK67kx705uNzCe0I+lluOQafmnCGJhJt1Qa2fJHU2FoOW8f27seHXvDr7FAWMWjXj+p1K8Du+XxxZxRUczbf5dN8pVGfu/u2YlE7bkr/hV/8JOX88kM/glEh0mvbPM7UxvQhbI0svVTo9fHe4kBkDW3+pjY5CDvBugqeffprnn3+e66+/3rtt1qxZDBo0iEWLFslgqYMqr3Sy8Zcc73iH2iclu8PN9z9nMW10CtoAl1yQJCkwY/rEYtSq2XQw36fVpGechcmDEwivlYVeo1Zx1dg0fsksYcfRIorKHei1Kgb3iOTMntFYDJ0zY31RuZ0Cq91vGZdHcDi3nDO6R7RTrU6pdPoPlJpaLlSpaFk3XChfXZocLGVnZ3P22WfX2X722WeTnZ3dKpWSWt/hE6UNJvYSgN3p4XhuGb2DcCKSpM5uaGoUg1MiySutwuHyEGXWEdbAUj2qk0uadKVlTSoC6L5SgMogdXP17xZY1+eA+M7ZRSo1I9Dr06cP77zzTp3tb7/9Nn379m2VSkmtLzPf1uiMnKwCW7vURZK6IpWikBBpJCXW3GCg1FUF0mImAizXFvp3C2N0ciTqBnqR1IrCiO4RDEoIrUSLTaVQ3X3c7Fuwn0ALNLll6YEHHuCqq67iu+++Y/z48SiKwoYNG/jqq6/qDaKkjsETwCBulxzoLUlSEESadSRGGckprmzwR51Oo6JXEFtunrhsCBe9+CNldpfPpBi1SsGsU7PssiFBq1t7USkKqhaMO2rJfYOtyS1Ll19+OZs3byY2NpYPP/yQDz74gNjYWH766ScuvfTStqij1AoiLP4HbytAZCNlgslW6eTgsWK2783j5/35ZOfb5Cw+SepEzj0jvnoAsZ/9miDmW+obZ2HNH8/m6hHd0Z2sh06tcOXwJNbePJ4B8a2/eGtHo7TCLVQ1K8/SyJEjWbVqVWvXRWpDvZPCKSitanC/AHomdswm5KMnrBzOKPGZHZRfXMmRzBLOPCMeo6FF6cIkSeoAEiKNXD42hW/35JBfa7C3xaBhfP9u9O8A4ylTo008fukQHrl4EFa7k3C9Fp2cFNMlyKtMF5EUayYl3sLx3PJ69w9MiyLSom/nWjUur6iCwxklQN0syHa7m52/5jF2WGJIT0mVJKlaYpSJa87pRYG1CmulE6NOTUKkscN9v3UaFbGajne+bGtduRsu4GBJpVI1+oFVFAWXSybl6ogURWFkvzhiwg0cOlFKWYUTgOgwPf2SI0mKNTdyhOA4esLa4D4BVFS5KCypIjbK2H6VkiSpTcWGG4gNNwS7GtJp5HInAVi9enWD+zZu3MjTTz/d4NR0qWNQFIWeieH0TAzH5fagKKBWddwmZKfLQ5nN4beMokBhSaUMliRJkqQ2E3CwNGvWrDrbfv31VxYuXMgnn3zCtddey4MPPtiqlZPaTjAHSgYqoOBbVK+XJUmSJLWtlg7SDuGGpeYl1MzKymLevHkMHToUl8vFzp07WblyJSkpKa1dP6kL02pU6HX+lzYQQHgHnsUnSZLUWdSMWWrJLVQ1KVgqLS3l7rvvpk+fPuzZs4evvvqKTz75hMGDB7dV/aQuTFEUkhP8T8dVqxUSYjrvKuySFGrsTjcZhTYyiypwuj3Bro4ktYqAu+GWLl3Ko48+SkJCAm+++Wa93XKS1NqSE8IosVZRUOKb9kA5+X9D+8WhDoEuRUnq7BwuD9/syeHn48XeBLc6jYpRPWM4Z0A31KE8ulcCTmXibsn9Q1XAwdLf/vY3jEYjffr0YeXKlaxcubLech988EGrVU6SVCqFIf3jyMm3kZFThq3SiVqlEBdtIiUxHItJLhshBZfH7cHtEahUSpcN3F1uD29tTCerpJLaQw0dLg8bD+ZTUG7nstHJHS4FgNQ0Ci1bDDeU3/2Ag6Xrr79eftCloFApCkndLCQFuJilJLUHp9ONtaSSqspT6VL0Bg3hkQZ0uq6Vwu6XzBJOFFc2uP9AtpUjeeX07gJZrqXOKeBv9IoVK9qwGpIkSaHD6XCTn1vG6RM27VUu8nPKiY23oNd3nYBpx9Eiv/sVBXYdK5bBUoir7oZrfqNJKLe3dM02Y0mSpBYoLqqoEyjVVlJY0aXyzpWeTHLbECGguJGcaVLHp2qFW6jqOj99JEmSWoHT6cbpcPst43J5cDjcXaZ1yahTU+nnNVEAk95/GpCOyOlyU1hUicPlRqdVExNlQtuF14JTFKWFLUuh27TUNb7JUqfhcLpxewR6rRqVnF0jBYHL6T9Qql2uqwRLQ5OjWL8vt876jTUEMCQ5qj2r1CJCCDKzyziRbUVQ3X0kBBzNKCE5KYKkeEtIX/ilpusa32Qp5GUV2th7tJjCk6uR6zQq+nSP4IzUyJDIRi51HoEG6V0pmB+eFsW29ELK7a463ZOKArFhegYkhQencs2QnVtOZvapdSlrnpMQcPxEKWqVQkIXnHDSlVMHyKuMBIDwCFxVLhzlDuxldhw2B26nu0OMuzicZeX7n3O8gRJUT0nee6yYb3Zm4ZKJ76R2pNNrGg2EFAX0hq6T1sKo03Ddub1IiKi7RmNqrJnZZ/cMmR81bo/HJ1CqT0a2FU8XXGdJjlmSujSP24PT5jtAU7gFrkoXikZBa9QGrcm50u5i24H8BvcXWe0cyChlYFroNPFLHZvL5cZW7sDjEWi0asxmnU9wpCgKYREGSv1MlbeEG7pUyxJApEnH3Am9yS6uJLOoAkWBtFgzseGGYFetSUqtdtyNBEIulwdruZ3IEHtuUvPJYKmLE0Lg9DOTRbgEbocbTZDGXqTn1J2efbqDJ0o5IzVSjiHohDweDxU2Z/WAagUMBi0Go6ZN3mshBIUFNspqtWACFCoQG2fBEqb3bjNbdAiPwFpadfphsITrCQvX19neVSRGGUmMqtvCFCrcAbZUB1quM5EDvKUuy+Py0OCozJPcDjdqnTooH3SrzYGC/ypWOdy43AKtJnS/iFJdlRVOigttPsFyRbkDjUZFTDcLmlaelVRfoATV41Ty88pRqRRM5upFm2tal0wWHZUVTtwuDyq1gsmkQ92FZ0t1BoYAfxgGWq4zkWOWpC5LuAPodxc0GlC1FY1aFVCOfLnuVOficLgoKrDV26rocnkoyCtv1fF0Lpe73kCptuKiijrb1GoVljA9EVFGwsINMlDqBCxmXaOBkMmoxWzStVONpI5AfrOlDq1HnNlvN5yiQFKMqcuND+nsyhsJXNwuD5WNJEJsClt54wkTHQ43zgDTBkihS1EUeqdFNdgKolIUeqd2zTGScoC31GWpNCrcjSTYQyFoKyDGRxmJCtNTbK2i0u2hyu3BI0CtgFGjRq9SGNhFT1ydWWVl44FQVaXT2y3WUoHObOqKM6AAqpxusosrURRIiDRi0IZegsmmCLfoGdy/G8dOlGItOxW4R4brSeke0WVbleSYJanLUtQKikpB+LkIaPRtM6A2EIqicNYZ3Xj7h3TsrlMDKl0C7A4XCREGIixd88TVWQkhAur29feZbSptgBf/1h4n1dE5XB6+3pPNz8dLvDPE1CqFYSlRTB6cgDZE0gE0h8WsY1C/uOoWRZcbrVaNrpMHiVLDOu8nXQqIoihoTdoGW45UWhUqbXA/Jt/tzcXRwMyTnNIqNvlJLSCFHkVRAgpKNLrWu3CZzDqURrpyTWYt6k4cHJzO7fHwzqaj7Dxa7DOV3u0R7DhaxDubjjU6xb4z0OnUmE06GShxqpOhJbdQ1XW++VKDFJWCzqJDY9B4W5pUGhVak7Z6WxCbTktsDo7ml/sdt7T7eDEOlxxL0pnUnqbfEPNpLYpCCOxVTgryy8nNKaOwwIbd7sLt9mArs1Ocb6MorxxrcSVOh8vnviqVQmycucHHUqkUomMa3t8Z7TthJaOoot5GPgEcL7Sxv5HkjVLnolJafgtVshtOAqp/zat1atSt+Gu9NWQW2hot43ILckurSO5iF7NQJITAXumkqsKJxy1QFNAZtBhMWp+ZZCaLjspKJ/YqV73HiYgyotGc+qwKIcjPLcd22sr2tjI7RoPW5xetw+3CUeXCaNZhrpUPyWLRo1IpFBdW4Kg1js9k1hEdYwq4q66z2HmsyG/aDgXYdbSIgd0j2rFWUjDJMUuS1EEF3Mjf+XsDQp4QgrKiSly1xp4JAfZKJ/YqJ+FRRjQnAxJFUYiJM2Mrs1NeZsd9MsWFTq8mLNyAwei7lEhhga1OoARg1GuqH6Sek3SlzYFGq0Jf61gmkw6TSYfT6a7O4K1Rdamut9pKK5x+v1YCKKlofBahJHUGMliSOrTEyMYzAasUhTi57ECHV1nu8AmUfAgoK6kiMtbk/fWpKAqWcAPmMH11vAP1jityuz315kjSnmyp8vdrttLm8AmWvPftYq1I9THrNVgbmZVoDsHEjC6XB6u1CpfTg1qjIjxcL9/vALV03FHotivJYEnq4GLDDSRGGckpqax33JICDOgejqGDdR9KvoQQVDVy4RUegdPuRmfwPS1VN/03fL+G0gwEkqjU5fQghAjp7oG2MiQlkuyShte/AxiaEjppO6qXs6mgoMC3az8/r5zoGBNxcWb5OWiE0sJxR6H88nbN9mWpxYQQFJZUcvBYMQfSi8jKK8fVRmslXTC8O5YGVnDvFmHgvIHxbfK4UutxuxtfVgeqM2k3VSsm8pZqGZIcRbRFV+8FTlEgNkzPoB6R7V6v5iourqwTKNUoKqygsLBuhnZJqiFblqQmq7K7+OVAPhVVLm+zak6BjSMZJZzRO4aYALrOmiLMqGX2OT3Zk1HCnswSKu1uwo1aBqdEMqB7RPWSKFKHpgTYAB9oudr0DbQquj0CTSMNjhqtSrYmNECnUXHd+F58vD2Do/m+QUZarIWLR/bwdnV2dB6PoCDf/2SRwgIb0dFyNQB/5ABvSQqQxyP4eX8+VfbqWUritH17DxUwYmA8llbOcKvXqjmzVwxn9opp1eNK7UOlVlCplEYzYGv1Te9O1ek16PVq7HbfVimny4Neq/bbzWZspQzgnZXZoOGas3tSWGbneKENBUiOMRMTQGqHjqSywtnoZ08IsNkchIXYc2tPwRizdOLECe6++24+//xzKisr6devH8uXL2fkyJFAdS/HAw88wIsvvkhxcTFjxozh2WefZdCgQS2oaV2h8bNA6jAKiiu9gVK9BGTmlLVfhaSQoCgKhkYCE41W5Z0N11Rx3cLqbRGo9PNZNZp1dcZHSfWLCdMzIi2a4WnRIRcoAXg8gQ0R8LTRUAKpeYqLixk/fjxarZbPP/+cvXv38u9//5vIyEhvmaVLl/L444/zzDPPsGXLFhISEjj//PMpK2vd65A8U0hNUljiv19fUB1QSdLp9EYNHreHqnoWwFVrVFgimz+jUatT0z05gtKSKsqsVQhRnUjSEqbHEqbH6XDjqHIhhECjVWM0adGG4EwuqXl0usDea538TPjV0sSSTb3vo48+SnJyMq+88op3W1pamve/hRAsW7aMe++9l8suuwyAlStXEh8fzxtvvMFNN93U/MqeRrYsSU1Sk+/GH49HVK/vJUm1KIqCKUxPeLQRvVGLRqdGp9dgiTAQHm1EpWrZ6UijURMTaya1ZzRpvaJJSYsiOtaMTq/BHKYnKs5MdDcL4VFGGSh1MXqDBkMjrYg6nbrRMl2d0gr/A7BarT43u71u6g+Ajz/+mFGjRnHFFVfQrVs3RowYwUsvveTdn56eTk5ODtOmTfNu0+v1TJgwgY0bN7bqc5fBktQkZlP9s9JqMwV5iRSpY9No1ZjD9YRHGbFEGtC18uelZhCq/AxKtSUkhjX4mVAUSEwKl5+ZdpKcnExERIT3tmTJknrLHTlyhOeff56+ffvy5ZdfMn/+fG677TZeffVVAHJycgCIj/edER0fH+/d11pkGC01SUKchYxs/33BSfFh7VQbSZKkwBgMWtJ6RpGfX0552anM4xaLjtg4M4YG0pNIpyhKy3Il1dw3IyOD8PBw73a9vv5xcB6Ph1GjRrF48WIARowYwZ49e3j++ee5/vrrax3Xt1JtkTtNBktSkxj1GnqnRHL4eEm9+6PCDSTEyjXaJEnqePR6DT16ROJ2e3C5PGjUKp81CSX/VLRwzNLJf8PDw32CpYYkJiYycOBAn21nnHEG77//PgAJCQlAdQtTYmKit0xeXl6d1qaWkp8Sqcm6x4cxqG8s4bVWfdfr1PTsEcGgvrEyT4kkSR2aWq1Cr9fIQKmJWmvMUqDGjx/P/v37fbYdOHCA1NRUAHr27ElCQgJr16717nc4HKxfv56zzz675U+4FtmyJDVLTKSRmEgjLnf1chEatUzuJ0mSJLWeO++8k7PPPpvFixdz5ZVX8tNPP/Hiiy/y4osvAtXdb3fccQeLFy+mb9++9O3bl8WLF2MymZg9e3ar1kUGS1KLyOzZkiRJXUNrjVkK1OjRo1m9ejULFy7kn//8Jz179mTZsmVce+213jILFiygsrKSm2++2ZuUcs2aNYSFte7YWUXIOd4ditVqJSIigtLS0oD6dCVJkqSuqz2uGTWP8fk3ezBbmh+E2MrLuHDSoJC8vsmWJalTs1Y4sNldmPUawlt5CRZJkjqGSruLjLxyKuwu9Fo1yd0sWIxydpvUemSwJLWJyioXLrcHg14TlMU2s4srWL8vjxNFpzKOd482MeGMbiRGmdq9PpLUEdV0LITqeEMhBPszSth3tBjByW4eAfuOFZOWEMbwvrGoQvS5dUQqFFQtWB2uJfcNtg4z4GTJkiXewVo1Fi1axIABAzCbzURFRTF16lQ2b97s3V9UVMStt95K//79MZlMpKSkcNttt1FaWlrvY9jtdoYPH46iKOzcudO7fdeuXVxzzTUkJydjNBo544wzePLJJ+vc/8svv2Ts2LGEhYURFxfH5ZdfTnp6uk+Z9evXM3LkSAwGA7169eKFF15o2QsTYnKLKvhuxwm+2prB+h0nWLv5GDsP5FPl8LOeXCvLLKrgrY3HyCryXZol6+T2zCL/S7ZIUmdntTnYsT+Pzzcd47MfjvL11gyOnCjF3chisx1NenYZe08GSlC9GG7Nfx/NKeOXI4XBqlqnVDNmqSW3UNUhgqUtW7bw4osvMnToUJ/t/fr145lnnmH37t1s2LCBtLQ0pk2bRn5+PgBZWVlkZWXx2GOPsXv3blasWMEXX3zBjTfeWO/jLFiwgKSkpDrbt23bRlxcHKtWrWLPnj3ce++9LFy4kGeeecZb5siRI8yaNYvJkyezc+dOvvzySwoKCrzr0UB16vUZM2Zw7rnnsmPHDu655x5uu+02b06Izi4jt4wte3Ox2k4lfPMIOJFXzoadWe0SMAkhWPtzFkIITj/ti9P2S1JXlFdcwfc7T5CVb8NzMjiqqHKxN72In/bk4A5w0dlg8wjBvmPFfsscybJid7rbqUZSZxb0Ad7l5eWceeaZPPfcczz00EMMHz6cZcuW1Vu2ZpDZunXrmDJlSr1l3n33Xa677jpsNhsazalexs8//5y77rqL999/n0GDBrFjxw6GDx/eYL1uueUW9u3bx9dffw3Ae++9xzXXXIPdbveuYfXJJ58wa9Ys7HY7Wq2Wu+++m48//ph9+/Z5jzN//nx27drFpk2bAno9QnWAt9PlYe1Px70n39MpQHJCGEP7xLZpPbKLK3jjh6ONlps9Pk12x0ldjsvtYd1Px3H5WeOxX0ok/VKi2rFWzVNYWsX6XVmNlhvZP47UTryqQHsO8F777d4WD/A+f+LAkLu+QQdoWbrllluYOXMmU6dO9VvO4XDw4osvEhERwbBhwxosV/Mm1A6UcnNzmTdvHq+99homU2AXyNLSUqKjo71/jxo1CrVazSuvvILb7aa0tJTXXnuNadOmodVWDyTctGmTz4J+ANOnT2fr1q04nXVXWofqrsHTFxUMRVn55Q0GSlDdqpOZV47L3ba/WkvqWdG+JeUkqTPJyrf5DZQAjmZbQ6LlNdBzSVufc7oSlaK0+BaqghosvfXWW2zfvr3BRfQAPv30UywWCwaDgSeeeIK1a9cSG1t/60RhYSEPPvggN910k3ebEIK5c+cyf/58Ro0aFVC9Nm3axDvvvONznLS0NNasWcM999yDXq8nMjKSzMxM3nrrLW+ZnJycehf0c7lcFBQU1PtYS5Ys8VlQMDk5OaA6djS2Smej/dEej8DuaNsmcYNWHVA5Y4DlJKkzKbXZG/2eOpyeNv+etgZLAIt6A3IWrNQqghYsZWRkcPvtt7Nq1SoMBkOD5SZNmsTOnTvZuHEjF1xwAVdeeSV5eXl1ylmtVmbOnMnAgQO5//77vduffvpprFYrCxcuDKhee/bsYdasWdx3332cf/753u05OTn8/ve/Z86cOWzZsoX169ej0+n47W9/6/MrrL4F/erbXmPhwoWUlpZ6bxkZGQHVs6PRaFTUGSRUX7k2TmKZHGNqNGAyaNUkB7h+nRCC4wU2fjpcwLb0IkorHI3fSZI6qEB/2YfCkkVmg5ZukUa/86tMBg2xEQ1fX6Qmaung7o7/sWpQ0FIHbNu2jby8PEaOHOnd5na7+e6773jmmWew2+2o1WrMZjN9+vShT58+jB07lr59+7J8+XKf4KesrIwLLrgAi8XC6tWrvd1iAF9//TU//vhjnVWNR40axbXXXsvKlSu92/bu3cvkyZOZN28ef//7333KP/vss4SHh7N06VLvtlWrVpGcnMzmzZsZO3YsCQkJ5OTk+NwvLy8PjUZDTExMva+DXq9vcMXlUJIYa+ZAA4vr1ogO16PXtaxFp6jMzuEcKw6Xhwizjr6J4ehrBUcatYrx/eP46pecBo8xvn8c6gAuBrmlVby/5Tj5ZXbvNgUYkhzJRcO7ByUlgiS1RHy0ifQs/139kRYduhBpeR3eN5Zvd5zA6fL4/FZTqP6BOrp/t5BNi9ARNWd9t9PvH6qCFixNmTKF3bt3+2y74YYbGDBgAHfffTdqdf1fViEEdvupi5fVamX69Ono9Xo+/vjjOq1UTz31FA899JD376ysLKZPn87bb7/NmDFjvNv37NnD5MmTmTNnDg8//HCdx62oqKhTp5q/PSdnj4wbN45PPvnEp8yaNWsYNWqUTwDXGYX9f3t3Ht9Ulf8N/HOz72m6Jd1bKFBogaoo4DJYUFaX5xH1JzqO6DMMCIiIM+IyijujP8cFEWdUZmRYxA0dF0bAAUQHdJC1rIKkpbQN3ZM0TbOe54/QSGi2tmmaNN83r8zYe0/uPT2E5JuzfI9MhIxUOWobLAHL9GTSqNPlxtbyWpwymD3fUuBZabfrWB2uGqZFUXaSt2xpfjJcbobvjtXB6WbgcZ6yAh6HK4rSUZqfHPA+HVosdrz77c+wOX3nOzAA5VUtaLM7cfvYfHojJlHBGIvIay1FLYFKLoLZYg/YETzwvH9LsU4hFaLs4iwcrWzGmbpWdEyb1KXIMDRPgyRF/H8RjSU8zvPoyfPjVZ8FS0qlEiUlJT7H5HI5UlJSUFJSAovFgueeew433HADMjIy0NjYiBUrVuDMmTO45ZZbAHh6lCZOnIi2tjasWbPGZ4J0Wloa+Hw+cnNzfe6hUCgAAAMHDkR2djYAT6BUVlaGiRMnYtGiRd7eIT6fj7S0NADAtGnT8Morr+Dpp5/GjBkzYDab8eijjyIvLw8XXXQRAM/Kt+XLl2PRokWYNWsWdu3ahZUrV+K9997rpVaMLaWDUsEBqDkXMHGcJ+8Jn89h5KA0pCZJu33tbeW10BvMAHxzqbjcDNsPGSAVCZCXrvCWv2RACkpykvBTrcmbwXvwBb1QwfznRD3sTjf8zXNlAE6ebUVVYxtywxzOI6SrnC43TlabcLLaCEu7EwI+h9x0BYbkJnV7Hg7HcbhsmBbfHzKg1frLIodzuRwxrCAZGXH2mpZLhBg1JB2lhamwO1wQCvjU60siLmYzePP5fBw7dgyrVq1CQ0MDUlJScOmll+Lbb79FcXExAM9QXkeSysLCQp/n6/V65Ofnh3WvDz/8EPX19Vi7di3Wrl3rPZ6Xl4eKigoAwPjx47Fu3Tq8+OKLePHFFyGTyTB27Fh89dVXkEo9QUBBQQE2btyIBx54AG+88QYyMzOxbNkyTJ8+vYetER/4fB4uLkrHYKsDhgYLnC43FFIhMlLl4PdgrlKLxY6fzwVK/nAAfjzZ4BMsAYBYyMfwbvRmMcZw4HQLguXn43HAwaoWCpZIr3A43di+vwZN5w0BO10MeoMZlWdbMW5kBtK6+eVDIhbgVxdn4WxjGwyNntVxSpkQuTolZJL47QEX8Hm0sXcvi/ZGurGkz/MsEV/xmmepN+071Yj//lQfcv74HeMGQhmB/aBcboZn/3koZLmhmSrcOjqvx/cj5EL7TzbgpypjwNe8RMjH9ZfnxcVEbNK7oplnacd3x6HoQZ6l1lYzfnXlkLj8fKMwnMQ8u9Md1jcShzMy+VT4PA6yEBPReRygpo06SS9wudz4ucYU9MtBu8OFmsbA8wMJIZEVs8NwhHRIkouCDokBnqXOCmnkXs4X5yfjPyfq/c5ZAjwTxi8KY6I44MkvVd1gQXWjZ3uJZKUYBV2YP0USi6XdGTJxJMd5VoZmpymCliMkkmiCNyExbIBOie+OnIUjQCZejgMGZ6ggEkQu+Lh8UCoOnzHCaLX7DdQuLUhGuip0/pZWqwNb91XD3JG0kwF6gxn7fm7ElcU65KTThx3xFe7QGj+eJ4CEwWZ34mxDG9ptTggEPKSnyKCgBJN9KpHnLNEwHIl5Qj4PZcN18JfTjOMAuViAywanRfSeUpEA94wbgKGZap9/4FIhH9cU6zBlZOcNmS/kcjP8e281Wts9q47OX8XndjN8W16LRlN7ROtN4p9cIoA8RC8pY4i7VWtdcbrGhB8O1KKi2oizDRZUG8zYe/gsjpxsCLqtEiG9hXqWSFwYoFPhukv5+PFkA2qbrQA8c4uGZKkxqjAVMnHkX8oKiRA3X5aL1nYH6s02CHgcMjVS8Hnhfceoqmv1Bkp+ccDR0824siQjQjUm/QHHcRiWp8HuY/X+zwNIVUuQrOyfOYRq61tRUW30/nx+aNTQbMWJyiYMKfCf5Jf0LkpKSUgcyEqRIytFDqvdCYfTDalYAGEUlgorJEIourGk+kx9qzd/jT+MAVV1loglHCT9R4FOCYvViSOVzd58ZR2vpSSFCFeU6Pq6ir2CMYbTITKMn21oQ36WGmIRfXxFXU+3LInjtzl6tZG4IxUJII2DqQsuNwuZ7sBNmTuIHxzHYfiAZORpFThVa4K5zQGhgIfcdAV0KbK43r09GIvVEdYmvo0tVmSmd38JOyFdRcESIb0kSSFGdYMlaMCklomoV4kEpJKLUFqY2tfViBpXiFWAXS1HIiuRJ3hTsERILynMUuFQRVPQMoNz1GFdy+1mMBnb0WK0wulwQyjkQZ0khUolocSEpN+QSsL7SJJTjrM+kchzlmg1HOnXnC43KhtacarODLM1yGTrXiCXCHHZkHQA/ofqs1JlKMwMHSy5XG5UVjTBYDCj3eqE0+mG1eqEodaM05XNcAVIqUBIvBEJ+UhLDr6Ni0jIh0YdOm0HibyOnqWePOIV9SyRfokxhp0/1eOHkw2wncvszQEYpFNi0sjMbk3Y7o5B2WoopAIcqWyG4dwqPoVEgCE5SRicnRRWr1BtrQk2m/95HO3tTpw1mJGZFV4PFSGxbkCOBkazHXZH59c8xwFDB6bQ0DWJOgqWSL+06UAN9lU2+xxjAE6cNcOw4xTuHjewV9IN+JORIkdGihwutxtuNyDgc2G/2TscLrSa7UHLmEw2pGtdEEQwKSchfUUs4uPiYi1O15hgaLB48yqlaqTIzVRRYso+xHHhv3cFen68omCJ9DtnjdZOgVIHxgBzuwO7f27EuGHaqNaLz+Ohq5kO2trCGzq0Wp1QKilY6m2MMThtLrjdbnAcB4GID16Av1SHwwWL2Yb2difAALGED4VSAmGIfQeJZ6itME+DATlJcLrc4PO5sPObkd6TwJkDKFgi/c/B0y3gcQi4nxxjwL7KpqgHS90Rz28u3dXW7oDF6oSAz0GtFHd5mXyb1YGmJgusVid4PECllECjkUEg6NmHraPdiXaLby+frc0BoZgPsdx3VWObxY7mxjbfelncaLM4kJQshVzRPxNKRhqPx0HEo+CS9D0Klki/Y7Y6Qm68a7W74HIz8GN8JZlUFt7cKmkEVgfZbJ7J4wIBD+IIDVHa7S40NllgNLbD7WIQiflITpZBkyTt1CVvsTpw5FQjmkw27zGRkIeB2UnI0SrC6sKvq2tFXX2rzzGrtRX1DRYU5Cd3u50cts6B0i/nXADngETuGR5yOFydAqXztTRZIRTxIaKkiiTOUOoAQvoRmZgftGcJAEQCXlzsgC0U8qFUimE22wKWUanEPeo1sbTZYTCYYT1vtaBUIoBOp4Jc3v35IVarA/qKJp+9vNrbnaipMcFobEdersY7wb2t3YHvyw2dVvbZHW4c1TfB6XRjQHbwSewmU3unQKmD281QUdmEIYPTu5xqgTEGW4jhUEe7EyKpEDweB0uQv6sOFrMNohR6+yXxJZHnLNEgMOl3irOTggZKHAcMz0mKm3+4ugxlwJ4eiUQAra77mYwtFjv0+iafQAkArO1O6Cua0Noa+oPfH8YYKk83B9z01GKxo/68wOZkVQtcLnfABJ4nq1pCZnZuaLAEPe9yMbQYrUHL+ON2MbAwNm912p0AAFu7M2TZcMoQQmIHBUuk38lOlqFQq/Q734fjALGAj9FxlBWZz+chL18DXYYSUqkQQiEPMpkQGZkq5OVrwO/m/niMMVTXGIOWqak1gXVjSxaz2QanM3j+p6amNrjdDE6XG4bGtqCZzhmA2iDBEGMMbWHk0bIEGEoLKszf31ssPmLwPtFuc6Ky2ohjpxpxsrIZRrOtW68vQqKN+oFJv8NxHP7vpTnYdLAG5VUtPp91aUoJbrwkG+o4W37M43FISpIiKSl4wr6usFodsIforbHbXWizOiDvYnuFE7i43AwOhwsuxkLGIxwHWG190xvDhRmMdgzviSVCOB3Be+TEYWaq7k+qak3Qn/klOOcA1NS1IkklxrDCVAiisCk26Rmas0RIPyPg8zDtomyMG6rFqbpWuNwMWrUEGX4mFicqh5+kf37L2V2ArGvXDreJOQ4Q8kOvdmIMEAsDl+M4DhKJwLNMPwhZN4JkHo8DX8iDyxGkp4wDBOdSAigUopDzlhTKxMpAfbbB4hMoAfD2JLaYbDh+qhHFg9KiXzFCwkShPOnXFBIhRuRqcFF+MjI1MgqUzhPu8F13hvkU8tBL44VCvuch4CEtjB6zjFR50POpKcHP83gckrq5TYZELgo6vCZR/JI6QCDkQ5MSOLpMSpYmVK4lxhgqQwz3Nra0h9UbSfrYuQne3X3Ec9cSBUuEJCi5XBQyEOLzuW6tiJPJhJCEGGpKS5V7A4zC3KSgqxNztIqQm6yq1RIkB9hXjOOA3Nykbs/v4vF5kKsl4At5nY5LVWIIL0gDIJOLkJ6hhFwhgkDAg0DAg1whQrpOmXA5lqw2J9oDbNdzvsaWrk++J9HFReARr2gYjpAExXEcdFoFqmtMActo05VdXmrfce28XA30FU1+50WlJMug0fwS2KjkIowapkX5yUafuUkcB+RnqDAoNymse2boVFAqJWhqbIO13QGO46BWiZGcLOtxXiMenweZSgK327M6juMQMHs34Ok5S0ru4vhlPxRoReT5OM4zh43ENg49TB0Qx+ESBUuEXMB9brZxVzNHxyONRgY3A86eNft8qHUEUsk9+LAXCvkoHJgKk6kdLUYr3C4GsVgATbIMMj/JITUqCa66KBPNJhss7Q7weTykaSQQdmHPO47joFSIoezF3hsej0NcJOmKERKxABwXfFEhY4A8AolVCektFCwRcs7+qhZsPmrAz3WtYAAGpMpx7VAtLs7V9Ou5TinJMmiSJDCZbN4M3kqluNtDVufr6io+juOQrJYguZtzi0jsEfB50KXKUVsfOPWDUMBDSgRXepLeQavhCElwXxyswWcHazzfgM8d0zda8NdvT2FysQ43XZTdp/XrbTweL6JpCQg5X362Gi1mG6wXrFbkzv3P0IEp3RruJdGVyMESTfAmCe9UQys+O1gDwHeooOO/vzpswDFD4Hk9hJDghAI+LhqqRU6G0ptPiQOQmizFRcO0SFJRTyKJbdSzRBLe9uN1QfeS43HAtuN1KNKpolsxQvoRgYCHguwk5Gep4XIz8DiOepPijGdFW08meMcvCpZIwqtobAu6l5ybAZVBdpEnhISP4zgI+PH8sZnAerr+P47/2mkYjiQ8YRhv3PTmTgghiYuCJZLwSnM0QSce8jjg4lxN9CpECCExqGOCd08e8YqCJZLwfjUoDWI+z28PMQeAz+MwjvatIoQkOC4Cf7riySef7LRlik6n855njOHJJ59EZmYmpFIprr76ahw+fDjSvzYACpYIgVoqxP0TBkN6br+u84flxQIeFpQNQkqCbVFBEpvL7UZtUxuq6lrR0hp8U2BCelNxcTFqa2u9j/Lycu+5F198ES+//DKWL1+O3bt3Q6fT4dprr4XZbI54PWiCNyEABqYp8Kf/OwLf6xvx01kzGAMGpSswZkAKZD3cJoOQeMEYw/GqFpTrm2B3ur3HU1RijC7SQqOkLw2JrC/yLAkEAp/epA6MMbz66qt47LHHcNNNNwEAVq1aBa1Wi3Xr1mH27Nndr6gf1LNEyDkSIR9XD07H764aiNm/GojxRVoKlEhCOVTRhD0nGnwCJQBoMtmweU8VjBZ7H9WMxIILh8S68wAAk8nk87DZAvdenjhxApmZmSgoKMBtt92GU6dOAQD0ej0MBgMmTpzoLSsWizFu3Djs3Lkz4r87BUuEEEJgtTlRrm/ye44BcLkYDvzcGN1KkZjCReABADk5OVCr1d7H0qVL/d5v9OjR+Mc//oFNmzbh7bffhsFgwOWXX47GxkYYDAYAgFar9XmOVqv1nosk+tpMCCEEFeeGnwNhAM7Ut8LucEEkDH9zY0IuVFVVBZXqlyS/YrH/4d0pU6Z4/3v48OEYO3YsBg4ciFWrVmHMmDEA0GnfTsZYr+zlST1LhBBCYLU5Q84pYQDaHa6o1IfEnkilDlCpVD6PQMHSheRyOYYPH44TJ0545zFd2ItUV1fXqbcpEihYIiSCnC43jle14IvvK/HBNz/js50VOFTRBBt9wJAYJxEJftlFOggx9SolrEjNWeoum82Go0ePIiMjAwUFBdDpdNiyZYv3vN1uxzfffIPLL7+8p79qJxQsERIhdqcLm/ecwY8/1cNoscPhdMNsdeDAz43Y+MNptFodfV1FQgLK1yqDxkocgKxUOQVLJGp+//vf45tvvoFer8cPP/yAm2++GSaTCXfddRc4jsPChQvx/PPP45NPPsGhQ4cwc+ZMyGQy3H777RGvC81ZIiRC9vxUjxaz/1UdVrsT/zlswKRROVGuFenPWtvsaLU6IODzoFFJwO/BxrQyiQDD8jQ4Utnc6RwHgMfjMHJASg9qS0jXnDlzBjNmzEBDQwPS0tIwZswYfP/998jLywMAPPTQQ7BarZg7dy6am5sxevRobN68GUqlMuJ14RgLNqWPRJvJZIJarYbRaPSZAEdim83hwsffngo6QRYApl6WS7lqSI+Z2+w4eKIBzecF50IBD4NyklCQqer2cAdjDIcqmnGkognO83aXVsmEGDtMh1S1pMd1J5EVjc+MjnucOHoaSmX372E2mzBoaG5cfr5RzxIhEdBktoUMlACg3milYIn0iMXqwH8O1MDl8n3BOZxuHNE3weF0Y0he9/Yy5DgOwwuSUZSTBENTGxwuN5QyIVJVkl5ZYURIvKBgiZAICPdjhEcfOKSHjlc2w+ViAecXnahqQZ5OCYm4+2/vQgEPOemKbj+f9E89naQdzwE3TfAmJAJSwpwvotVIo1Ab0l85XW7UNlpCLlo7U98alfqQxBKp1AHxiIIlQiJAKOBhcHZSwPMcgOw0OZQyUdTqRPofu8MVcriX44B2G6WqIJHHReBPvKJgiZAIGTkwBdmpcgC/DMt1/L9GKcbYoZFPlEYSi1AQxrJ9BohFtLyfkEiiOUuERAifx+FXIzJgaGrDyRoTWq0OSEV8FGSokJOmAK8Hy7oJATw9mLoUGc42tgUcimMAstLk0awWSRA9HUqL52E4CpYIiSCO45CRIkdGCn1Ykd4xOFeD+mYrXG7/4VJ+hhIyiTDKtSKJIo7jnR6hYThCCIkjKrkIY4dnQCH1DYh4PA6DcpJQTIkjCYk46lkihJA4k6QUY9zFWWgx29BqdYDP5yE9SQqBgL7/kl6UwONwFCwREocYY3Gds4T0HMdx0Kgk0KgoqzaJDg49G4aL53csCpYIiRNuN8PuiiZ8d6IeBmM7+DwOwzJVuHpIOnJpjhQhhPQaCpYIiQNuN8Pq7ytQfsYIDp4VT043w6FqI8qrjfj1mHyMzEnq41oSQvq1BO5aogFuQuLAD/pGlJ8xAoDPknE3AxgD1v1QidZ2Z99UjhCSELgIPOJVzARLS5cuBcdxWLhwoffYk08+iaKiIsjlcmg0GlxzzTX44YcfvOebmppw3333YciQIZDJZMjNzcWCBQtgNBr93sNms6G0tBQcx2H//v3e4wcOHMCMGTOQk5MDqVSKoUOH4rXXXvN57pNPPundF+f8h1zuO/zxzTff4JJLLoFEIsGAAQPwl7/8peeNQxLetz/VBz3vGaJrjFJtSCS4GYO5zQ6TxR4wDQAhJDbExDDc7t278dZbb2HEiBE+xwcPHozly5djwIABsFqteOWVVzBx4kScPHkSaWlpqKmpQU1NDV566SUMGzYMlZWVmDNnDmpqavDRRx91us9DDz2EzMxMHDhwwOf4nj17kJaWhjVr1iAnJwc7d+7E7373O/D5fMyfPx8A8Pvf/x5z5szxed6ECRNw6aWXen/W6/WYOnUqZs2ahTVr1uA///kP5s6di7S0NEyfPj1SzUUSjNPlRp3ZFrLcmWZrFGpDeooxhp/OGHH8dAusds+2JCIBD4VZagzL14S1xyAhfSGRN9LlGAu101Dvam1txcUXX4wVK1bg2WefRWlpKV599VW/ZU0mE9RqNb7++mtMmDDBb5kPP/wQv/71r2GxWCAQ/BIL/utf/8KiRYvw8ccfo7i4GPv27UNpaWnAes2bNw9Hjx7F1q1b/Z4/cOAASktLsWPHDlx11VUAgMWLF+Ozzz7D0aNHveXmzJmDAwcOYNeuXSFawvd3NBqNUKlUYT2H9G9uN8Pijw4E3TyVxwEX5WowY3Re1OpFuo4xhh+P1+NUrdnveZ1GiqtGZFC2dxK2aHxmdNzj9M81UCm7fw+T2YTcgZlx+fnW58Nw8+bNw7Rp03DNNdcELWe32/HWW29BrVZj5MiRAct1/CWcHyidPXsWs2bNwurVqyGTycKql9FoRHJycsDz77zzDgYPHuwNlABg165dmDhxok+5SZMm4ccff4TD4fB7HZvNBpPJ5PMg5Hw8HochOiWCfX66GTA0o+dvPrUtVuypaML+081obff/mg3mTKMFn/1YhTc3H8ebW47jX/urcdZIPV4dGoztAQMlADA0W1FZ1xrFGhESvo40Sz15xKs+HYZbv3499u7di927dwcs88UXX+C2225DW1sbMjIysGXLFqSmpvot29jYiGeeeQazZ8/2HmOMYebMmZgzZw5GjRqFioqKkPXatWsXPvjgA3z55Zd+z9tsNqxduxYPP/ywz3GDwQCt1nezVK1WC6fTiYaGBmRkZHS61tKlS/HUU0+FrBNJbFcXpeOYwf+HLI8D1FIhSrLU3b5+Y6sNH/z3NKqa2nyue0l+Mq4rzYKQH/p71e6fG7DjaB04zjPpHACOVhtx5IwRk0dmophW6+HnGpNP+/hzstqIAp0yepUihITUZz1LVVVVuP/++7FmzRpIJIGTqpWVlWH//v3YuXMnJk+ejFtvvRV1dXWdyplMJkybNg3Dhg3DkiVLvMdff/11mEwmPPLII2HV6/Dhw7jxxhvxxBNP4Nprr/VbZsOGDTCbzfjNb37T6dyFY7Ido5yBxmofeeQRGI1G76OqqiqsepLEUpiuxK2jcny+nXW8olRSIWaPK4QgjIDGH5PVgb9sO4Hq5jaf424G/KhvwnvfVyLUaH11Uxt2HPX8uzy/aMd/bzpQg6bW0POu+juTxR40UAKA1rau9+gREh2Jux6uz3qW9uzZg7q6OlxyySXeYy6XCzt27MDy5cths9nA5/Mhl8tRWFiIwsJCjBkzBoMGDcLKlSt9gh+z2YzJkydDoVDgk08+gVD4y55JW7duxffffw+xWOxz/1GjRuGOO+7AqlWrvMeOHDmC8ePHY9asWfjjH/8YsO7vvPMOrrvuOuh0Op/jOp0OBoPB51hdXR0EAgFSUvzv1yQWizvVjRB/LhuQgsE6JX441YjqFiuEfB6GZaowMjup24ESAHz3Uz3a7C6/H+IMwLFaEyoaLChIUwS8xl59U/AeEw44UNmMsmJdgAKJQSTkhyxDW5aQWJXAu530XbA0YcIElJeX+xy7++67UVRUhMWLF4PP9/+mwhiDzfbLN1STyYRJkyZBLBbjs88+69RLtWzZMjz77LPen2tqajBp0iS8//77GD16tPf44cOHMX78eNx111147rnnAtZbr9dj27Zt+OyzzzqdGzt2LD7//HOfY5s3b8aoUaN8AjhCuitJJsKkks7DuT2xp7IpaG8HjwP2nW4OGiydabIEvQZjnvlMiS43XYGzQVYtcgDytYHbmRDSN/osWFIqlSgpKfE5JpfLkZKSgpKSElgsFjz33HO44YYbkJGRgcbGRqxYsQJnzpzBLbfcAsDTozRx4kS0tbVhzZo1PhOk09LSwOfzkZub63MPhcLzRjRw4EBkZ2cD8ARKZWVlmDhxIhYtWuTtHeLz+UhLS/N5/t/+9jdkZGRgypQpnX6nOXPmYPny5Vi0aBFmzZqFXbt2YeXKlXjvvfci0GKERB5jzLt8PRA3Q8iEl7wwvjLG87LhC7lcblitDjAGiMV8iEThvZXmahU4eroZFquz0+pGDoDwXAoBQkhsiYk8S/7w+XwcO3YMq1atQkNDA1JSUnDppZfi22+/RXFxMQDPUF5HksrCwkKf5+v1euTn54d1rw8//BD19fVYu3Yt1q5d6z2el5fnMyHc7Xbj3XffxcyZM/32fBUUFGDjxo144IEH8MYbbyAzMxPLli2jHEskZnEcB7lYAIstcDDUMYE8mPw0OQ6fMQbsXeIAFKR3rceEuZlnw2Bez3K7+F6UAU63JwIEPL8cn4egSw19ns7Q2GBBS4vV53eVSoXQapUQioIPswn4PJSVZuHb8lq0tNq9wxKMATKJAFcO10Eqjtm3ZZLgOPRwGC5iNYm+Ps+zRHxRniUSbZsP1eKb43VBh9Hmjh+E7OTAaTfqTe1YveNUwFxQfB6H/1dWCGWIoAsAnA4X7G0OuJxu7zGhRACxVAiuJ/mHXG7A4fZ/TsDzPEIw1JpgDpAglM/nkJungUAQel4SYwwNxnacbfYEXalqMXTJsn7V+0aiI5p5lqr1tT26h8lkQlZBRlx+vtFMQkIS3JWD0qCWCgN2rpTmaoIGSgCQppJgykVZnSaAcvAESv9nVE5YgZLD5oTVZPMJlADA0e6ExdgO1t1tQRgLHCgBvr1NAbS3OwIGSgDgcjE0N4WXU4rjOKQlSVFSkIzhA5KRkSKnQInEPC4Cf+IV9fcSkuBkYgHmlA3Cp3vP4FjtL0lRRXwexham4powV7ANzVIjI0mKA5XNqGq0gMdxyEuTY0SuJqxAibkZ2lvtQc/brA5I5KKw6uPDFUaQ5XQDQYbRzKbQqQ9MpnakplHgQ/qpnq7+j+N/FhQsEUKgkgrxmysK0NJmR22LFXweh7xUOcRhDCmdL0kuwrhh2tAF/XDYg08iBzw9TGKZsOvBiCtIr1KHED1LTmfoa7jdDIzF9xJpQkhnFCwRQrySZCIkybrRcxMB7nB6f+DpYeL40Y9Gwsl/5NloNAqVIaQPJHDHEs1ZIoTEhnCDjG4NcYUzMTzEu6FSFTp5rFotoSE40n8lbgJvCpYIIbFBEEauIr6A170VceFkxQ6RBV0iEUKpDBww8fkcNBppV2tGSNxI5AneFCwRQmICX8ADXxj8LUkUxkRxvzgOCHZtAS9ksAQAWp0SSRppp14wiUSA7BwNBGFsZ0IIiT80Z4kQEjOkSjGsZhtcfpb5SxQiCEIkfQyKz/METS73L6vjeJwnUAqzt4rjOKSlKZCcLIO1zQHGGERiAcSUSJIkANobjhBCYgDHcZCpJHA53XDanWAM4PE5CEWCniWk7MDjAB4f6OFWjXw+D4ogQ3KEkP6FgiVCSMzhC3jgC/pmVR4hhFyIgiVCCCGEhORJjdH9Ht54XilKE7wJIYQQQoKgYIkQQgghJAgahiOEEEJISLQajhBCCCEkCNruhBBCCCGE+EU9S4QQQggJLYHH4ShYIoQQQkhIiTwMR8ESIYQQQkJL4GiJgqUYw5hnzyqTydTHNSGEEBLrOj4rOj47+rOlS5fi0Ucfxf33349XX30VgOf3fuqpp/DWW2+hubkZo0ePxhtvvIHi4uKI3puCpRhjNpsBADk5OX1cE0IIIfHCbDZDrVb36j24c3968vzu2r17N9566y2MGDHC5/iLL76Il19+Ge+++y4GDx6MZ599Ftdeey2OHz8OpVLZ7ftdiIKlGJOZmYmqqioolcqIp4Y3mUzIyclBVVUVVCpVRK8dT6gdPKgdPKgdPKgdPOKtHRhjMJvNyMzM7PV79dX87tbWVtxxxx14++238eyzz3qPM8bw6quv4rHHHsNNN90EAFi1ahW0Wi3WrVuH2bNnd7+yF6BgKcbweDxkZ2f36j1UKlVcvAn0NmoHD2oHD2oHD2oHj3hqh97uUYq0C6eZiMViiMXigOXnzZuHadOm4ZprrvEJlvR6PQwGAyZOnOhzrXHjxmHnzp0RDZYozxIhhBBCoiYnJwdqtdr7WLp0acCy69evx969e/2WMRgMAACtVutzXKvVes9FCvUsEUIIISSkSA3DXTjEGahXqaqqCvfffz82b94MiUQS5Lq+lWKMRXwaCwVLCUQsFmPJkiVBuzsTAbWDB7WDB7WDB7WDB7VD7wt3iHPPnj2oq6vDJZdc4j3mcrmwY8cOLF++HMePHwfg6WHKyMjwlqmrq+vU29RTHEuE9YaEEEII6RaTyQS1Wo0WQ2OP5nGZTCYk6VJgNBrDuo7ZbEZlZaXPsbvvvhtFRUVYvHgxiouLkZmZiQceeAAPPfQQAMButyM9PR0vvPACTfAmhBBCSHRFezWcUqlESUmJzzG5XI6UlBTv8YULF+L555/HoEGDMGjQIDz//POQyWS4/fbbu19RPyhYIoQQQkhIPU2W3BvJlh966CFYrVbMnTvXm5Ry8+bNEc2xBNAwHCGEEEKCaG9vR0FBQURWmOl0Ouj1+qATtmMRBUuEEEIICaq9vR12u73H1xGJRHEXKAGUZymm5Ofng+O4To958+Z1Kjt79mxwHOfdH6eDzWbDfffdh9TUVMjlctxwww04c+aM3/vZbDaUlpaC4zjs37/f59zu3bsxYcIEJCUlQaPRYOLEiZ3KlJeXY9y4cZBKpcjKysLTTz8dkf2JYqkd/v3vf+Pyyy+HUqlERkYGFi9eDKfT6VOmN9ohWm3g7z4PP/ywT5nTp0/j+uuvh1wuR2pqKhYsWNDpTTPeXwvhtMP999+PSy65BGKxGKWlpX7r29/b4cCBA5gxYwZycnIglUoxdOhQvPbaawnXDo2NjZg8eTIyMzMhFouRk5OD+fPndxpm6q126AsSicS7iq0nj3gMlAAAjMSMuro6Vltb631s2bKFAWDbtm3zKffJJ5+wkSNHsszMTPbKK6/4nJszZw7LyspiW7ZsYXv37mVlZWVs5MiRzOl0drrfggUL2JQpUxgAtm/fPu9xk8nENBoNmzlzJjt27Bg7dOgQmz59OktPT2d2u50xxpjRaGRarZbddtttrLy8nH388cdMqVSyl156qd+0w4EDB5hIJGJPPfUUO3HiBNu+fTsrKipiDz74oLdMb7VDtNogLy+PPf300z73MpvN3vNOp5OVlJSwsrIytnfvXrZlyxaWmZnJ5s+f3+ttEEvtwBhj9913H1u+fDm788472ciRIzvVNRHaYeXKley+++5j27dvZz///DNbvXo1k0ql7PXXX0+odmhqamIrVqxgu3fvZhUVFezrr79mQ4YMYTNmzIhKO5Doo2Apht1///1s4MCBzO12e4+dOXOGZWVlsUOHDrG8vDyfN4KWlhYmFArZ+vXrvceqq6sZj8djX331lc+1N27cyIqKitjhw4c7BQm7d+9mANjp06e9xw4ePMgAsJMnTzLGGFuxYgVTq9Wsvb3dW2bp0qUsMzPTp76R0Fft8Mgjj7BRo0b5lP/kk0+YRCJhJpOJMRa9duitNrjweRfauHEj4/F4rLq62nvsvffeY2KxmBmNRsZY/3gthGqH8y1ZssRvsJRo7dBh7ty5rKyszPtzorbDa6+9xrKzs70/R7MdSO+jYbgYZbfbsWbNGtxzzz3eTKRutxt33nkn/vCHP6C4uLjTc/bs2QOHw+GzT05mZiZKSkqwc+dO77GzZ89i1qxZWL16NWQyWafrDBkyBKmpqVi5ciXsdjusVitWrlyJ4uJi5OXlAQB27dqFcePG+SRumzRpEmpqalBRURGpZujTdrDZbJ26jKVSKdrb27Fnzx4A0WmH3mwDAHjhhReQkpKC0tJSPPfccz5DbLt27UJJSYnPJp2TJk2CzWaLahsAfdsO4UjUdjAajUhOTvb+nIjtUFNTgw0bNmDcuHHeY9FqBxIdFCzFqE8//RQtLS2YOXOm99gLL7wAgUCABQsW+H2OwWCASCSCRqPxOX7+PjmMMcycORNz5szBqFGj/F5HqVRi+/btWLNmDaRSKRQKBTZt2oSNGzdCIBB47+VvP56Oc5HSl+0wadIk7Ny5E++99x5cLheqq6u9mzjW1tZ679Xb7dBbbQB45uGsX78e27Ztw/z58/Hqq69i7ty5Pte58PfTaDQQiUTe68T7awEI3Q7hSMR22LVrFz744AOf5H+J1A4zZsyATCZDVlYWVCoV3nnnHZ97RaMdSHRQnqUYtXLlSkyZMsX7jX7Pnj147bXXsHfv3i7vecPO2yfn9ddfh8lkwiOPPBKwvNVqxT333IMrrrjCGyi89NJLmDp1Knbv3g2pVArA/348/o73RF+2w8SJE/G///u/mDNnDu68806IxWI8/vjj+O6778Dn873lersdeqsNAOCBBx7w/veIESOg0Whw8803e79VA/5/jwuvE8+vBSC8dghHIrXD4cOHceONN+KJJ57Atdde63MuUdrhlVdewZIlS3D8+HE8+uijWLRoEVasWOE9H412INFBPUsxqLKyEl9//TV++9vfeo99++23qKurQ25uLgQCAQQCASorK/Hggw8iPz8fgCd/hd1uR3Nzs8/1zt8nZ+vWrfj+++8hFoshEAhQWFgIABg1ahTuuusuAMC6detQUVGBv//977j00ksxZswYrFu3Dnq9Hv/85z+997rw21FdXR2AzjtAx2s7AMCiRYvQ0tKC06dPo6GhATfeeCMAoKCgICrt0Jtt4M+YMWMAACdPngz4+zU3N8PhcHivE++vBX8ubIdwJFI7HDlyBOPHj8esWbPwxz/+0edcIrWDTqdDUVERbrzxRvz1r3/Fm2++6e11jkY7kCjqg3lSJIQlS5YwnU7HHA6H91hDQwMrLy/3eWRmZrLFixezY8eOMcZ+mbz4/vvve59XU1PjM3mxsrLS5xqbNm1iANhHH33EqqqqGGOMLVu2jOl0Op9JiA6Hg8nlcrZ27VrGmGfyYlJSErPZbN4yf/rTnyI6ebGv28Gfxx9/nOXk5HhXzvR2O/RmG/jz+eefMwCssrKSMfbLBO+amhpvmfXr13ea4B3Pr4Vw2uHCugSa4J0I7XDo0CGWnp7O/vCHP/h9TqK0w4V27NjBADC9Xs8Yi047kOihYCnGuFwulpubyxYvXhyyrL8VG3PmzGHZ2dns66+/Znv37mXjx48PuGSeMcb0en2nVWBHjx5lYrGY3XvvvezIkSPs0KFD7Ne//jVTq9XeD82Wlham1WrZjBkzWHl5OduwYQNTqVQRWxYbC+3AGGMvvvgiO3jwIDt06BB7+umnmVAoZJ988on3fG+2Q2+3wc6dO9nLL7/M9u3bx06dOsXef/99lpmZyW644QbvNTpSB0yYMIHt3buXff311yw7O9sndUC8vxbCaQfGGDtx4gTbt28fmz17Nhs8eDDbt28f27dvn/fDMBHa4dChQywtLY3dcccdPsvq6+rqvGUSoR2+/PJL9re//Y2Vl5czvV7PvvzyS1ZcXMyuuOKKqLUDiS4KlmJMRw/H8ePHQ5b190ZgtVrZ/PnzWXJyMpNKpey6667zSQFwoUBBwubNm9kVV1zB1Go102g0bPz48WzXrl0+ZQ4ePMiuuuoqJhaLmU6nY08++WTEvjHFSjuUlZUxtVrNJBIJGz16NNu4cWOn5/ZWO/R2G+zZs4eNHj3a+/sNGTKELVmyhFksFp/rVFZWsmnTpjGpVMqSk5PZ/PnzfZZDMxbfr4Vw22HcuHEMQKdHR08CY/2/HZYsWeK3DfLy8nzu1d/bYevWrWzs2LHeMoMGDWKLFy9mzc3NPvfqzXYg0UXbnRBCCCGEBEETvAkhhBBCgqBgiRBCCCEkCAqWCCGEEEKCoGCJEEIIISQICpYIIYQQQoKgYIkQQgghJAgKlgghhBBCgqBgiRASE66++mosXLiw1++Tn58PjuPAcRxaWlp6dK2rr77ae639+/dHpH6EkNhDwRIhxMfMmTO9AcD5j8mTJ0fk+tu3b/cbqGzYsAHPPPNMRO4RytNPP43a2lqo1eoeXWfDhg3473//G6FaEUJilaCvK0AIiT2TJ0/G3//+d59jYrG4V++ZnJzcq9c/n1KphE6n6/F1kpOTYTKZIlAjQkgso54lQkgnYrEYOp3O56HRaLznX375ZQwfPhxyuRw5OTmYO3cuWltbvecrKytx/fXXQ6PRQC6Xo7i4GBs3bkRFRQXKysoAABqNBhzHYebMmQA6D8Pl5+fj+eefxz333AOlUonc3Fy89dZbPvXcuXMnSktLIZFIMGrUKHz66afdGhJ79913kZSUhC+++AJDhgyBTCbDzTffDIvFglWrViE/Px8ajQb33XcfXC5X1xqTEBL3qGeJENJlPB4Py5YtQ35+PvR6PebOnYuHHnoIK1asAADMmzcPdrsdO3bsgFwux5EjR6BQKJCTk4OPP/4Y06dPx/Hjx6FSqSCVSgPe589//jOeeeYZPProo/joo49w77334le/+hWKiopgNptx/fXXY+rUqVi3bh0qKyt7NOepra0Ny5Ytw/r162E2m3HTTTfhpptuQlJSEjZu3IhTp05h+vTpuPLKK/E///M/3b4PIST+ULBECOnkiy++gEKh8Dm2ePFiPP744wDgE5QUFBTgmWeewb333usNlk6fPo3p06dj+PDhAIABAwZ4y3cMt6WnpyMpKSloPaZOnYq5c+d67//KK69g+/btKCoqwtq1a8FxHN5++21IJBIMGzYM1dXVmDVrVrd+Z4fDgTfffBMDBw4EANx8881YvXo1zp49C4VCgWHDhqGsrAzbtm2jYImQBEPBEiGkk7KyMrz55ps+x86fU7Rt2zY8//zzOHLkCEwmE5xOJ9rb22GxWCCXy7FgwQLce++92Lx5M6655hpMnz4dI0aM6HI9zn8Ox3HQ6XSoq6sDABw/fhwjRoyARCLxlrnsssu6fI8OMpnMGygBgFarRX5+vk/QqNVqvfcnhCQOmrNECOlELpejsLDQ59ERLFVWVmLq1KkoKSnBxx9/jD179uCNN94A4OmdAYDf/va3OHXqFO68806Ul5dj1KhReP3117tcD6FQ6PMzx3Fwu90AAMYYOI7zOc8Y6/I9gt0r2P0JIYmDgiVCSJf8+OOPcDqd+POf/4wxY8Zg8ODBqKmp6VQuJycHc+bMwYYNG/Dggw/i7bffBgCIRCIA6PFE6aKiIhw8eBA2m82nboQQEmkULBFCOrHZbDAYDD6PhoYGAMDAgQPhdDrx+uuv49SpU1i9ejX+8pe/+Dx/4cKF2LRpE/R6Pfbu3YutW7di6NChAIC8vDxwHIcvvvgC9fX1PqvouuL222+H2+3G7373Oxw9ehSbNm3CSy+9BACdepwIIaQnKFgihHTy1VdfISMjw+dx5ZVXAgBKS0vx8ssv44UXXkBJSQnWrl2LpUuX+jzf5XJh3rx5GDp0KCZPnowhQ4Z4J39nZWXhqaeewsMPPwytVov58+d3q44qlQqff/459u/fj9LSUjz22GN44oknAMBnHhMhhPQUx3oyyE8IITFk7dq1uPvuu2E0GgOmJMjPz8fChQsjtrVKRUUFCgoKsG/fPpSWlkbkmoSQ2EI9S4SQuPWPf/wD3333HfR6PT799FMsXrwYt956a9DcTYAnDYFCoYDRaOzR/adMmYLi4uIeXYMQEvsodQAhJG4ZDAY88cQTMBgMyMjIwC233ILnnnsu6HO++eYb76o9pVLZo/u/8847sFqtAIDc3NweXYsQErtoGI4QQgghJAgahiOEEEIICYKCJUIIIYSQIChYIoQQQggJgoIlQgghhJAgKFgihBBCCAmCgiVCCCGEkCAoWCKEEEIICYKCJUIIIYSQIChYIoQQQggJ4v8DGk8o+anjb2cAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAAHFCAYAAADi2cDGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADinElEQVR4nOzdd3xUVdrA8d+dPpn0Qgok9N4FFEQEpSkorrg2dAV1XVmx4q4K7go2cJEXFRBdXVxQbKuICjZAFFEQI0WRIiChhhASkkzq1PP+MZkhk5mQBIIYeb77mZW599x7z9wk89zTNaWUQgghhBCNju5MZ0AIIYQQJ0eCuBBCCNFISRAXQgghGikJ4kIIIUQjJUFcCCGEaKQkiAshhBCNlARxIYQQopGSIC6EEEI0UhLEhRBCiEZKgvgp2Lx5MyNHjiQjIwOr1Up8fDz9+vVj0aJFIWmVUsyePZsOHTpgNptJTU3lr3/9KwUFBUHpdu7cyd/+9jd69epFbGws8fHx9O/fn3fffbdOefryyy/RNA1N01iwYEHYNBdffDGaptGiRYv6fuQzbsGCBWiaxt69e2tNu379eq688koyMjIwm80kJyfTr18/7r///tOf0dOsPvfhVEybNo3333+/xut///33p/X6DWXq1Klomha0bdCgQQwaNOi0XfONN97g2WefPS3nbtGiBePGjWuw882bN6/G74twli1bxk033UTXrl0xGo0h99av6vfRunXrQvaPGzeOyMjIoG1ff/01f/7zn+nVqxdms/lX+T1vzCSIn4LCwkLS09OZNm0aH3/8Ma+++iotWrTgT3/6E0888URQ2r/97W/cd999XHHFFSxbtoyHHnqIN954g6FDh+JyuQLpli9fzkcffcRVV13FO++8w+uvv07btm25+uqreeyxx+qct6ioKObPnx+yPSsriy+//JLo6OiT/+CNwEcffcT555+P3W5nxowZLF++nOeee47+/fvz9ttvn+nsNRo1BXFRu9MZxBtafYP4kiVL+Pbbb+nUqRPdu3ev0zEPPPBAndJ9/vnnrFy5koyMDM4///w65+mspUSDO++881R6enrg/cGDB5Ver1d33XVXULo33nhDAeqll14KbDt69Kjyer0h5xw5cqSKiIhQFRUVJ7z2F198oQD15z//WQFq586dQfv/8Y9/qGbNmqlLL71UNW/e/CQ+3Zn13//+VwEqKyvrhOkuvPBC1bp1a+VyuUL2eTye05S7X09d78OpstlsauzYsTVePzMz87Rev6FMmTJFVf+6GzhwoBo4cOBpu+bIkSNP299Y8+bNw/5cTlbnzp3rdS+q/g1NmDAh5N76+b+PLrnkEgWoDz/8MGj/2LFjlc1mq/HcTz/99K/ye96YSUn8NEhMTMRgMATef/vtt3g8HkaMGBGU7rLLLgNg8eLFQceGq5o699xzKSsr49ixY3XKw9ChQ0lPT+eVV14JbPN6vSxcuJCxY8ei04X+6J9//nkuvPBCmjRpgs1mo2vXrsyYMSOopgB81ZBdunQhMzOTAQMGEBERQatWrXjqqafwer2BdDVV+fqr2L788svAthUrVnDFFVfQrFkzLBYLbdq04fbbbycvL69On7e6/Pz8kJ+DX/XP3qJFCy677DI+/fRTzjnnHKxWKx06dAi6d34//fQTV1xxBXFxcVgsFnr06MHChQsD+5VSJCcnM2HChMA2j8dDXFwcOp2OI0eOBLbPmjULg8FAYWHhCT/Lt99+S//+/bFYLKSlpTFp0qSQn4nf22+/Tb9+/bDZbERGRjJ8+HA2bdoUlMZfhbl161YGDx6MzWYjKSmJO++8k7KyskA6TdMoLS1l4cKFgSrR6tXPxcXF/PWvfyUxMZGEhARGjx5NdnZ2UJpVq1YxaNAgEhISsFqtZGRkcNVVVwVdqyZvvPEG/fr1IzIyksjISHr06BFSw/TKK6/QvXt3LBYL8fHxXHnllWzfvr3Wc4fjdDp54oknAs1eSUlJ3HzzzRw9erReeRs0aBAfffQR+/btC9y7qn/Xdb2Oy+XigQceICUlhYiICC644AK+++67On+eRx99lPPOO4/4+Hiio6M555xzmD9/PqrKulctWrRg69atrF69OpDP2prawn1/nMi4cePo1KkTkyZNwuPxNOi5z3ZytxqA1+vF7XZz9OhR5s2bx2effcaDDz4Y2O90OgEwm81Bx/nbkn788cdar/HFF1+QlJREkyZN6pQnnU7HuHHjePXVVwN/NMuXL+fgwYPcfPPNYY/55ZdfGDNmDK+99hrLli3j1ltv5emnn+b2228PSZuTk8MNN9zAjTfeyIcffsill17KpEmTwvYHqItffvmFfv368cILL7B8+XIeeeQR1q9fzwUXXFBjwDqRfv36sX79eu6++27Wr19f6zl++OEH7r//fu677z4++OADunXrxq233spXX30VSPPzzz9z/vnns3XrVmbPns17771Hp06dGDduHDNmzAB8ge/iiy9m5cqVgeO+//57CgsLsVgsfP7554HtK1euDPR9qMm2bdsYPHgwhYWFLFiwgBdffJFNmzaFNNeAr+r7+uuvp1OnTvzvf//jtddeo7i4mAEDBrBt27agtC6XixEjRjB48GDef/997rzzTv79739z7bXXBtKsW7cOq9XKiBEjWLduHevWrWPevHlB5/nzn/+M0WjkjTfeYMaMGXz55ZfceOONgf179+5l5MiRmEwmXnnlFT799FOeeuopbDZb4O+iJo888gg33HADaWlpLFiwgCVLljB27Fj27dsXSDN9+nRuvfVWOnfuzHvvvcdzzz3Hjz/+SL9+/di1a9cJz1+d1+vliiuu4KmnnmLMmDF89NFHPPXUU6xYsYJBgwZRXl5e57zNmzeP/v37k5KSErh3/jbh+lzntttuY+bMmdx000188MEHXHXVVYwePTqkL01N9u7dy+23387//vc/3nvvPUaPHs1dd93F448/HkizZMkSWrVqRc+ePQP5XLJkSb3uXW30ej3Tp09n69atQQ+9ogGc6aqA34Pbb79dAQpQJpNJzZs3L2j/5s2bFaAef/zxoO2ff/554JgTefnllxWgnnvuuVrz4q++euedd9SePXuUpmlq2bJlSimlrr76ajVo0CClVO1VfR6PR7lcLvXqq68qvV6vjh07Ftg3cOBABaj169cHHdOpUyc1fPjwwPuaqnz9efziiy/CXtvr9SqXy6X27dunAPXBBx/Ues7q8vLy1AUXXBD4uRiNRnX++eer6dOnq+Li4qC0zZs3VxaLRe3bty+wrby8XMXHx6vbb789sO26665TZrNZ7d+/P+j4Sy+9VEVERKjCwkKllFL/+c9/FBBI98QTT6gOHTqoUaNGqZtvvlkppZTT6VQ2m01Nnjz5hJ/j2muvVVarVeXk5AS2ud1u1aFDh6D7sH//fmUwGEKabIqLi1VKSoq65pprAtvGjh0b9vfpySefVID6+uuvA9tqq06/4447grbPmDFDAerw4cNKKaXeffddBajNmzef8HNWt2fPHqXX69UNN9xQY5qCggJltVrViBEjgrbv379fmc1mNWbMmMC2ulSnv/nmmwpQixcvDkqXmZmpgMDfdV3yplTNf2N1vc727dsVoO67776gdK+//roC6l2d7v+bfuyxx1RCQkJQs119q9Orqkt1+jvvvKOUUuqCCy5QzZo1U+Xl5Uqp8NXpVUl1eu2kJN4AJk+eTGZmJh999BG33HILd955JzNnzgzs7969OxdeeCFPP/0077zzDoWFhaxdu5bx48ej1+tPWH30ySefMGHCBP74xz9y11131StfLVu2ZNCgQbzyyivk5+fzwQcfcMstt9SYftOmTYwaNYqEhAT0ej1Go5GbbroJj8fDzp07g9KmpKRw7rnnBm3r1q1bUCmpPnJzcxk/fjzp6ekYDAaMRiPNmzcHOKmq0YSEBNasWUNmZiZPPfUUV1xxBTt37mTSpEl07do1pJq+R48eZGRkBN5bLBbatWsX9HlWrVrF4MGDSU9PDzp23LhxlJWVBUpaQ4YMAQiUxlesWMHQoUMZMmQIK1asAHyl3NLS0kDamnzxxRcMHjyY5OTkwDa9Xh9UYgb47LPPcLvd3HTTTbjd7sDLYrEwcODAoKYLvxtuuCHo/ZgxYwLXrKtRo0YFve/WrRtA4L716NEDk8nEX/7yFxYuXMiePXvqdN4VK1bg8XiCmiWqW7duHeXl5SG9tNPT07n44ouDaj3qYtmyZcTGxnL55ZcH3cMePXqQkpISuId1yVtDXMf/c6j+c7rmmmvCNhOFs2rVKoYMGUJMTEzgb/qRRx4hPz+f3Nzck8r/qfjXv/7FwYMHee655371a/9eSRBvABkZGfTu3ZsRI0bwwgsv8Je//IVJkyYFtW+988479O/fn2uuuYa4uDguuugiRo8eTY8ePWjatGnY83722WeMHj2aoUOH8vrrr9c4jONEbr31VpYuXcqsWbOwWq388Y9/DJtu//79DBgwgEOHDvHcc88FAuDzzz8PEFTFB74gWZ3ZbA5JVxder5dhw4bx3nvv8cADD/D555/z3Xff8e2334a9dn307t2bBx98kHfeeYfs7Gzuu+8+9u7dG6j+9qvL58nPzyc1NTUkXVpaWmA/QPPmzWndujUrV64MBHd/ED948CA///wzK1euxGq11tr7Nj8/n5SUlJDt1bf529r79OmD0WgMer399tshDy0GgyHkM/vP6f8cdVH9HP4mI/9989+HJk2aMGHCBFq3bk3r1q1r/RL3/+00a9asxjT+fNb0M6nP5wDfPSwsLMRkMoXcw5ycnMA9rEveGuI6/vxX/1mH+9mF89133zFs2DAAXn75Zb755hsyMzN5+OGHgVP7uzpZ559/Pn/4wx946qmn6twkIE6sbo9zol7OPfdcXnzxRfbs2UNSUhIATZo04eOPPyY3N5ecnByaN2+O1Wpl3rx5YQPrZ599xh/+8AcGDhzI4sWLMZlMJ5WX0aNHM2HCBJ566iluu+02rFZr2HTvv/8+paWlvPfee4ESMPjGwp8si8UCgMPhCNpePaD89NNP/PDDDyxYsICxY8cGtu/evfukrx2O0WhkypQpPPPMM/z000/1Pj4hIYHDhw+HbPd35EpMTAxsGzx4MB988AGrV6/G6/UyaNAgoqKiSEtLY8WKFaxcuZIBAwaE9JMId82cnJyQ7dW3+a/97rvvBv38auJ2u8nPzw8KBv5z1iVA1MeAAQMYMGAAHo+H77//njlz5nDvvfeSnJzMddddF/YY/9/NwYMHQ2o+/Pz5rOlnUvXnURf+znmffvpp2P1RUVF1zltDXMf/+XJycoIe9P0/u9q89dZbGI1Gli1bFvhbBM74kMHp06fTpUsXpk2bdkbz8XshJfHT4IsvvkCn09GqVauQfU2aNKFbt27ExMTw4osvUlpayp133hmUZvny5fzhD3/gggsu4P3336/1i/5ErFYrjzzyCJdffjl//etfa0znL+VXvZZSipdffvmkr+3v4Vq9496HH35Y67UB/v3vf5/0tcN9scPxqnl/6bk+Bg8ezKpVq0J6X7/66qtERETQt2/fwLYhQ4Zw5MgRnn32Wfr27Rv4Yh48eDBLliwhMzOz1qp0gIsuuojPP/88qFe7x+MJGes+fPhwDAYDv/zyC7179w77qu71118Pev/GG28ABPVAP9nalXD0ej3nnXdeoHZn48aNNaYdNmwYer2eF154ocY0/fr1w2q1hnSmPHjwYKDpoz4uu+wy8vPz8Xg8Ye9f+/bt65w3qPne1fU6/p9D9Z/T//73P9xud62fR9M0DAYDer0+sK28vJzXXnutznk9HTp06MAtt9zCnDlz2L9//69yzd8zKYmfgr/85S9ER0dz7rnnkpycTF5eHu+88w5vv/02f//73wNP7EAgGLZu3ZrCwkI++eQT5s+fz7Rp0zjnnHMC6b7++mv+8Ic/kJKSwuTJk0NKwp06dar3RC0TJ05k4sSJJ0wzdOhQTCYT119/PQ888AAVFRW88MILp1Tl1adPH9q3b8/f/vY33G43cXFxLFmyhK+//jooXYcOHWjdujUPPfQQSini4+NZunRpoP34ZAwfPpxmzZpx+eWX06FDB7xeL5s3b+b//u//iIyM5J577qn3OadMmcKyZcu46KKLeOSRR4iPj+f111/no48+YsaMGcTExATS+mfFW758OY8++mhg+5AhQwK1DXUJ4v/4xz/48MMPufjii3nkkUeIiIjg+eefp7S0NChdixYteOyxx3j44YfZs2cPl1xyCXFxcRw5coTvvvsOm80WlA+TycT//d//UVJSQp8+fVi7di1PPPEEl156KRdccEEgXdeuXfnyyy9ZunQpqampREVFBYJMXbz44ousWrUqMLNhRUVFYOjeiT5/ixYtmDx5Mo8//jjl5eVcf/31xMTEsG3bNvLy8nj00UeJjY3ln//8J5MnT+amm27i+uuvJz8/n0cffRSLxcKUKVPqnE+A6667jtdff50RI0Zwzz33cO6552I0Gjl48CBffPEFV1xxBVdeeWWd8ua/d++99x4vvPACvXr1QqfT0bt37zpfp2PHjtx44408++yzGI1GhgwZwk8//cTMmTPr9B0wcuRIZs2axZgxY/jLX/5Cfn4+M2fODFso6Nq1K2+99RZvv/02rVq1wmKx0LVr1xrPvW/fPjIzMwHfyBIgMKtkixYtwj40VjV16lRef/11vvjiC2w2W9C+o0ePsnr1agC2bNkC+PoGJSUlkZSUxMCBA2v97GeVM92zrjF75ZVX1IABA1RiYqIyGAwqNjZWDRw4UL322mshaf/973+rjh07qoiICBUZGakGDBig3n///ZB0/l60Nb1q6tHtV703aE3C9ZxdunSp6t69u7JYLKpp06bq73//u/rkk09Crjtw4EDVuXPnkHOOHTs25Jw7d+5Uw4YNU9HR0SopKUnddddd6qOPPgo557Zt29TQoUNVVFSUiouLU1dffbXav3+/AtSUKVMC6eraO/3tt99WY8aMUW3btlWRkZHKaDSqjIwM9ac//Ult27YtKG3z5s3VyJEjQ84RbjKQLVu2qMsvv1zFxMQok8mkunfvrv773/+GzUPPnj0VoL755pvAtkOHDikgpHfwiXzzzTeqb9++ymw2q5SUFPX3v/9dvfTSS2Hvw/vvv68uuugiFR0drcxms2revLn64x//qFauXBlI4+8R/OOPP6pBgwYpq9Wq4uPj1V//+ldVUlISdL7Nmzer/v37q4iICAUE7kdNk71UH3mwbt06deWVV6rmzZsrs9msEhIS1MCBA0Mm/ajJq6++qvr06aMsFouKjIxUPXv2DLnf//nPf1S3bt2UyWRSMTEx6oorrlBbt24NSlPXyV5cLpeaOXNm4O8gMjJSdejQQd1+++1q165d9crbsWPH1B//+EcVGxurNE0Lun5dr+NwONT999+vmjRpoiwWi+rbt69at25dnSd7eeWVV1T79u2V2WxWrVq1UtOnT1fz588P+d3Zu3evGjZsmIqKilJArZPU+H/+4V5V83Wi76PJkycrIKR3uv+YcK/TOTlPY6UpVWXUvxDid2/cuHG8++67lJSUnOmsCCFOkbSJCyGEEI2UBHEhhBCikZLqdCGEEKKRkpK4EEII0UhJEBdCCCEaKQniQgghRCMlk738xni9XrKzs4mKijqpudKFEOK3QClFcXExaWlpp22N8IqKilqXtK0rk8kUND1tYyFB/DcmOzv7pOZjFkKI36IDBw6c9GIxJ1JRUYE1Og5cFQ1yvpSUFLKyshpdIJcg/hvjn2P7wIED9Z5eVQghfivsdjvp6emB77SG5nQ6wVWB1nMU6I2ndjKPi5xNH+J0OiWIi1Pjr0KPjo6WIC6EaPROe7OgwYxmOLUgrrTG2z3sN5Pz6dOno2ka9957b2Db1KlT6dChAzabjbi4OIYMGcL69esD+48dO8Zdd91F+/btiYiIICMjg7vvvpuioqKw13A4HPTo0QNN00IWFtE0LeT14osvBqXZsmULAwcOxGq10rRpUx577DGqD7NfvXo1vXr1wmKx0KpVq5BzCCGEaECa1jCvRuo3URLPzMzkpZdeolu3bkHb27Vrx9y5c2nVqhXl5eU888wzDBs2jN27d5OUlER2djbZ2dnMnDmTTp06sW/fPsaPH092dnZgRZ2qHnjgAdLS0vjhhx/C5uO///0vl1xySeB91VWp7HY7Q4cO5aKLLiIzM5OdO3cybtw4bDYb999/PwBZWVmMGDGC2267jUWLFvHNN99wxx13kJSUxFVXXdUQt0oIIURVmganWpJuxEH8jJfES0pKuOGGG3j55ZeJi4sL2jdmzBiGDBlCq1at6Ny5M7NmzcJutwfWp+7SpQuLFy/m8ssvp3Xr1lx88cU8+eSTLF26NGS93U8++YTly5czc+bMGvMSGxtLSkpK4GW1WgP7Xn/9dSoqKliwYAFdunRh9OjRTJ48mVmzZgVK4y+++CIZGRk8++yzdOzYkT//+c/ccsstJ7ymEEKIxuWrr77i8ssvJy0tDU3TeP/99wP7XC4XDz74IF27dsVms5GWlsZNN91EdnZ20DkcDgd33XUXiYmJ2Gw2Ro0axcGDB+udlzMexCdMmMDIkSNrXVvZ6XTy0ksvERMTQ/fu3WtMV1RURHR0NAbD8UqGI0eOcNttt/Haa68RERFR47F33nkniYmJ9OnThxdffBGv1xvYt27dOgYOHBi0Fu/w4cPJzs5m7969gTTDhg0LOufw4cP5/vvvcblcJ/x8QgghToKma5hXPZSWltK9e3fmzp0bsq+srIyNGzfyz3/+k40bN/Lee++xc+dORo0aFZTu3nvvZcmSJbz11lt8/fXXlJSUcNlll+HxeOqVlzNanf7WW2+xcePGwOLy4SxbtozrrruOsrIyUlNTWbFiBYmJiWHT5ufn8/jjj3P77bcHtimlGDduHOPHj6d3796BgFvd448/zuDBg7FarXz++efcf//95OXl8Y9//AOAnJwcWrRoEXRMcnJyYF/Lli3JyckJbKuaxu12k5eXR2pqash1HQ4HDocj8N5ut9d4L4QQQlTTEG3a9Tz+0ksv5dJLLw27LyYmhhUrVgRtmzNnDueeey779+8nIyODoqIi5s+fz2uvvRYowC5atIj09HRWrlzJ8OHD65yXMxbEDxw4wD333MPy5ctP2KX/oosuYvPmzeTl5fHyyy9zzTXXsH79epo0aRKUzm63M3LkSDp16sSUKVMC2+fMmYPdbmfSpEknzI8/WAP06NEDgMceeyxoe/Velv5q9Krb65KmqunTp/Poo4+eMG9CCCFOv+qFKLPZHFT7erKKiorQNI3Y2FgANmzYgMvlCqq5TUtLo0uXLqxdu7ZeQfyMVadv2LCB3NxcevXqhcFgwGAwsHr1ambPno3BYAhUKdhsNtq0aUPfvn2ZP38+BoOB+fPnB52ruLiYSy65hMjISJYsWYLReHy4wapVq/j2228xm80YDAbatGkDQO/evRk7dmyN+evbty92u50jR44AvokAcnJygtLk5uYCx0vkNaUxGAwkJCSEvc6kSZMoKioKvA4cOFDrvRNCCFGpAavT09PTiYmJCbymT59+ytmrqKjgoYceYsyYMYFhwzk5OZhMppB+YMnJySExpDZnrCQ+ePBgtmzZErTt5ptvpkOHDjz44IPo9fqwxymlQqqfhw8fjtls5sMPPwwp1c+ePZsnnngi8D47O5vhw4fz9ttvc95559WYv02bNmGxWAJPTv369WPy5Mk4nU5MJhMAy5cvJy0tLVDN3q9fP5YuXRp0nuXLl9O7d++gB4uqGupJTwghzkon0aYd9hyETrJ1qt/NLpeL6667Dq/Xy7x582pNr5Sq97j6MxbEo6Ki6NKlS9A2m81GQkICXbp0obS0lCeffJJRo0aRmppKfn4+8+bN4+DBg1x99dWArwQ+bNgwysrKWLRoEXa7PVAdkpSUhF6vJyMjI+gakZGRALRu3TowFeDSpUvJycmhX79+WK1WvvjiCx5++GH+8pe/BH6IY8aM4dFHH2XcuHFMnjyZXbt2MW3aNB555JHATR8/fjxz585l4sSJ3Hbbbaxbt4758+fz5ptvnr4bKYQQokE05CRbLpeLa665hqysLFatWhV03pSUFJxOJwUFBUGl8dzcXM4///x6Xec3MU48HL1ez44dO1i4cCF5eXkkJCTQp08f1qxZQ+fOnQFflbx/8hd/NblfVlZWSEe0mhiNRubNm8fEiRPxer20atWKxx57jAkTJgTS+DsrTJgwgd69exMXF8fEiROZOHFiIE3Lli35+OOPue+++3j++edJS0tj9uzZZ8UY8ZzCcjbsyWdPbglepWgaF0HvVgm0aBJ5prMmhPgd03Qamu4UO7bpNFTtqerMH8B37drFF198EdKc2qtXL4xGIytWrOCaa64B4PDhw/z000/MmDGjXtfSVPUpx8QZZbfbiYmJCQyVawy2Hijk402HQAP/b5NW+e/z2yVxQYfgToglDjcfbT/Cp9uPYHe4aREXwZXdUjm/RTy6RjzpghDiuNP9XeY/v+7Cm9EMplM6l3I78X713zrntaSkhN27dwPQs2dPZs2axUUXXUR8fDxpaWlcddVVbNy4kWXLlgWNWIqPjw80x/71r39l2bJlLFiwgPj4eP72t7+Rn5/Phg0bamxODuc3WxIXjUNhqZOPNx/yPcVWeRz0B/O1O4/SLCGCFkm+EvmhonLGv/MDuSWOQPJDReWsycpnSLskHr+kI/pTfaoWQojT6Pvvv+eiiy4KvPfXyI4dO5apU6fy4YcfAsdHOvl98cUXDBo0CIBnnnkGg8HANddcQ3l5OYMHD2bBggX1CuAgQVycos17j51wv6bBhj35tEiKRCnF35duJa/UEVR15VWgAZ/vPEq7xEjGnZtR0+mEECJYA3Zsq6tBgwaFrJtRVV0quC0WC3PmzGHOnDn1unZ1EsRFnTncHr4/UEixw03TaAtdUqM5eKyM6r+vBp2GRa+h0zQ8SpF9rAyATYeK2J1XGkin16BltIXmkRYsBh0epcjcncfwdomkxtY8s15VJ9ObUwjxO3IGJnv5LZEgLmqllOLdH7JZ8N1+ylzHpwRsGmOhR2Jwx7Vokx6zXlflSdS3ItzXW3PYYS9HXxnYDRr0TYkm2ni86kivaSRaDMxfvYeb+rckI9EWNj8bDhQyb80ePtuRi8vrpWNyFH/p14LrzmmGrp5V8SUONwqINOnJL3VS7HCTYDMRbTnF9YmFEL+OM1AS/y2RIC5q9cbGg/zn230h27OLKjhsr+C8pChizQYijTpMlUG0eul4V7YdzXT8D6VdbARRRn1IOp2m4fEq3vluP/de0iGkfXzJj9n89X+b0SrTAfycW8LE93/ihbVZ/Pf6c2iTdOIe8UopPtp2hAWZ+/k5twSTXiPJZgpU8es0OL9lArec15ymMdYTnksIIc6kxvv4IX4VxRVuFny3P+w+f9D7uagcHWDR605YtW1wKzQUeg3SI80n7Ile4nCzMyd4CsQjxQ7ufPcHvAo8XoVO0zDofb/Cmga7j5Zy4ZyvmfrJdrze0DYph9vDml1HueqV9Uz6aBs/55ZgNuhIiDDirdIm4FWwNiufuxf/wMHC8hrzKIT4DfAvRXpKL6lOF79Tq3/Jwx0mIPp5FRxzuPFQe9u016vokRzFrmNlGKqVsJVSeBX4143Ta5CVW0rHtONrur+54UCg9K3TtMDfXfXrvrRuHwk2M3dd2Cqw7YcDBTyzahdrDxRiNh3/tY+1GMKew6ugzOXhxbVZPDGiU9C+Y6VO1uw+So69AqtRT+/m8XRMiZK2eSHOBGkTF6Jmx8qc6HXHq65r0jkjjqNHS8Puq7oIzJ/Pa87jq3YF7fcqhafy9AZNI95iQK/Blv0FpCdE0DU9FoAfs+1B49CrBk2rUUes1YjZqMOrYGHmPq7t2ZQmUWZ2HSlm9qrdrN5XgMmgD3SGMxt0JxzO5lWQub+AoyUOkiJ9M/ct35bDWxsO4D/K7VG8uzmbprFWpozoSEp0zYv5CCFEQ5MgLk4o0WaqNYADtE2OCgriSil2FpWzJb+MvAoXmgYZkWY6tEngv2PO4fkVu3C5fZ3kPJVDzNrEWEiPCq5mz9p3jBizgYwmkZj04UvfiZEmEmymQHBWSoFBx7g3NzD7ym58tvUwO4+VohTodVrgWINOq1Pv9hx7BUmRZjL3HePN730L1Li8ip15pRwqduBV8H22nWU7chl3bgaTh7bDaqzfWE8hxEk6yzu2Nd6ci1/Fha0TMelr/jXRadCzaQztU6NJiDKj4Qvgqw4VsepQEUcrXCh8pdr9xQ7u+eAn1uw5xsjuaWiahv/5oGN8BBlRoe3kkUY9u/ceo9zhZkj7JlR/nogyG0iw+WZA8gdjTfMF6gqXl78v3cquI8UcLPaNTVdKBWoG6jpZYY7dwX/W7uE/32QBvpqDDdl2DtgdQfnxeBWvrN/HuNc34vZ4azibEKJhNcQKZo03FDbenItfRaTZwG39mofdp9N8pdnbz28JwMCuqZiMOnbbK9hZFNohzKjXsOp1TF/5MylxVgZ1bIIXiDTqSLOZwpaIdZqGphT7s+1c3iWFpjEWdBxPF28z1hiMFVBY7qLQ6QkE26rt+xXu2gNtrEnPS9/s4fMdR3FWps8pdlJY4Q5/TQVr9uTz6Y7cWs8thBCnSoK4qNUfuzfl/kFtiLUGj51ulWDjmT90o33lIicxNhNX9G3OruIKqobjOLOBjnFWOsZF0D7OSqf4CGZ/sYveLRNIijKTajMF9Q738yqFy+PFq+BIXikmvY53bzmX5ChTZeBWWMIMUwMwaGAz6Igy6ihze4ky+aq3XW5voETuVVDq9NT4EGDAV7rWa1rQH8oBe8UJ75deg0Xf17wuvFcpduTYWftLHj8eLJRSuxCnwt+x7VRfjZS0iYs6uaxzCpd0aMK6PfnklzhIjrJwXquEkMlVbBYjh4qPT6vaxGokzWYKCpQ6TSOv2MG/PttBz6YxOOyOoKDv8njJK3dR7Doe3GwGHUcKy2mdGMm3EwfxwjdZPPvlLyH51IAoow5T0IQz0DU5koIyF3llLo5VuEiMNNE6xooODYfXQ4TRgE6DwyUO8ivcVDg9dKx8ONEBaMfbz2srwXsUHCgIPzRty6FCFq3fR0GZ6/hnM+kZ3bMZA9omnfC8QogwzvI2cQniok6OFJWz/MfDHK4MTjspYsMveVzQvgk9WsQHpTXoNNxehUmnkRrhK72HKy3nFldQ7o7C6fGVjjXA6fGyv9gR0vZd6vayLPMgI3s3IzU+gvsGteEPXVO5490fKHd5AuePMuowVplwxqTTSLOZiTTqIc53jRiTnlizAZ2mUehwcczhYb+9gq8PFuJRvqFw0SY9XuUrhfvP7VWgQ2HUa9RQmw74mhmSIoNXVapwelj2wyGW/xxazV7q9PDa+n14lWJguyYh+4UQoiaN9/FD/GqO2it44+sscqqVLsscHpb/eJjvducFbR/QKgF95VCxE/EP4erYPC7QoS23zBUSwI+nV3yx5XCghN0ywcY9F7Y+3ttcA1OVCWdMOo3W0VZshuO/5k2sRuIqA7jd6eaYw8PRMidfHSgMDHMrc3rCDj3zKF87e9Moc62f6+qeTSkqd7HxQAFrf8nj+ZU/s2rn0RMe996mQ4F2d4C1e/IZt2gD58xYxYXPfcVzX/5CYbnrBGcQ4ix0yhO9NEBJ/gySkrio1Vfbj+D2Kmrqy71mey7dMuKwVLY733BOMz7fdRST7vgfhgbYjHoiDDrf/OleRanbQ5nDTfcW8Wz35nG0oJyyWqqqSyrcHMovo1nlvOrDOzRh+5FiPtyaE5iz3R/Ek60mdFXGk5v1GrbKoV9KKY45fMXpLUdLgq7h9ngpdrjRaVqg/dx/DrcXUiLN7C+qoNzlDbknep1G6wQb2YXljF30PR6l6BgbgVEH7lp6w5e7PGw5VMg5GXFMWrqNWV/sRq8ReLhYv6+Amat2sXxCfzomR53wXEKcNc7yyV4a7+OH+FWUOtz8cqQkZKWyqjxKsT27KPC+U0o0j13SEX/Y12m+EnC0UY9B861uZtBpxJgMJFmNuD2KHu2akBAXfuUyh8fLkTInWcUVZBVXsGTTIXYfKQZ8Afrega156rJOpESbA8FWp/kWY6lajR9l1AdK8RWVHeY8XsWhEmdQMNY0jcN2By6P1zckjeDhaJqm0SMlmpgwNQ39W8TRKdnG13vy8CiFzaDDZtTjVXX7kiiqcDPj813M+mJ35b09vk8pyCt1ctm/10lnOCH8zvKSeOPNufhVlJ6o8beSToOSatW8w9o34aGh7dE0jTizMdC2XH0st1GnY/mWbDRNIz1M6bLY5eFgqZMSty/oehUcKizn5a/2sGJrTuBc5zWP57qezQLHGatc63g+j7/3V9l7wjydWE16vAo2HypGAU6vL2BWDeRmg45eadFc1CqeyUPa8q/LO7H6rgu4sXc6BwrLA+ePrHxwOMFQ+yAlDhfTlv9c436PV3GgoJyllZ9dCHF2kyAuTijCXPvMY14FEebQUmnvjDjaJkXWujDK1kNFlFS4SIyxBF3P5fWSG6YN2B9KV247wq7KEjlA/9aJmCvbv8NVXVedec7f+c2o07BUi7BGvYbJoHG01Mm6vYXkFjtxer148bXLK6UwG3Rc2jmFudf04M4LW/OnPhm0TYrk423hg6uhsvahOq9SlLk9lLjcFDvdvLbxEOWuE5eyDTqNL3flnTCNEGeNs7wkLm3i4oQiLUYyEm0cyCsNqnJWSuGsbCc36zU6NI0JOVbTNAa2TeKTH7JD9nmVwuVVgclXlm/NYUS3NHq3SeSrrUcAsDs9IcdVpdPg611HaVtZgrca9dw1sA2zVu1EAcVON5FVxpEXuzzEVD5smPQ6zDoNhxfaxUew5WhJ4PNpmkaczURhqYuiCjcbD9kx6jWU8k1+85/re3Bpp5SQ/JQ43GRXm+SmuErP+ViTgbwKV+D+5Zb7hruVOD2UVHgq73ftD02+Me51m21OiN89neZ7neo5GikJ4qJWAzs24fWv90Jl8Ch0usmrcAdKuwadxoc/ZnNlj6ZYqs0ZbjaEPuG6vN6gDmw6DXYcLGRfTjEjejTl3HaJZO7Ko7yGdt8Sl4e8ChcOj5csewVdm8dxTrNYdJrGeS3ieXRkZ97bfJAdh4sD1dmapuH0KoqcbqIrA3ui1Uh2qZNOiREcLK6goMJdZU1xjcQoEw63l/4t4mmdGEnn1Cj+0DU16DO6vV5+PGTnl6MlHMwvRfNNPBvYX+b2UuJyYzPoMet1JFqMFFS4yCpxUOL2UuzwUOrwBXC9zre0qsmgC+qlXp1HQb+W8TXur87p8ZJb7MBi1JFoO3HPeiFE4yJBXNQqNS6Ca89vziebDvFzfmmgV7ef26tYueMIu3JLeGh4B0xVAneLyl7kfh6lggJ4q2gLLaIsgarmrH0FRNlMjD4vg/+u3cvREmcgrVKKrOIK8qq009vx8PcPt9I8zso1PZrSOz2ODslRTB7ekQqXh91HilnxUw72ymr5/Ao3XgXxFgNmvY6mNhPHHG6GtYjnp7xSdh4rw1lZO9CjaQwTLmjFwDaJYe/LZzuO8N9v91JaWWPQNMJEpFFPoTP4/vxir6B9bARmnW/Ym07TKHF7fT30HcdrG/yl66RoM4eO1byOeZTFwFXd02rc71fqdPPCN1m8vekQxZU/s84pUdzRvyWDZTy6+J3w9a851clepCQufufSE2wM79mUdR9tC7vfq2Bvfilf7MxleJWq5pgIE52aRrO9chlRZ5XSdftYKxmR5pD28uJSJ5t/PkrP9FhWbM8NlGuzy5xBARyOl3n3FZTz9Be70fCNU/eNH4f2qdF0bhrDnqMl5Jc4MRt0tEuJxqTXyLNX4PEqYiPNKKCkwoXRoMPp8U3nWn2a2aqW/XSYf6/NCtqm0zQijXqKXe6gXuUur2LbsVISLL4e+j8dK0UpRbkruLlAKXB5FAk2I2UONwWlof0BdBq8Pa4PZsOJq91LnW6uW5jJ7mrNINuPFDNh8Y/8Y2h7buydfsJzCNEoyIxtQtTNmt156DRqnIxFAV/8HBzEAS7v2YyisiwOFZTjqjzYatDRPKrmtbfdbi9JRj1GvQ6Xx4tHKXLKnDWm93N6vLz3YzavZu7Hq3zV+Vd2TWXCgFac2yohKG1ytSFttjCd8/zs5S5yiysoc3k5bK9g/rd7Q9J4lMKgaaRYzeRVOHFUuVFeoMjpZktuCXqDr9rcG6bGvNzpIdpqID3eSkyEkbxiJxVODzqdRmyEkbsubMWQ9rWXou95bws7j5aEPCD5szRt5c8Mbd+E5FomrhFC/LZJEBd1dqS4osYA7ne0xBGyzWLUc/OFrfn5sJ0Fa7NwexVpEb5FT6ovPeqngLxjZYzt34KF3+zFXu4MKt2G4/R4ya4yvAvA4fbyzg/ZfLL9CH86N4NtOcU4PF46J0dxVfc0OjQ58aQpx0qdLNl4kB8PFvJzQRm55S6sBh1xFkNIgCxxeYg1GTDoNFIizDg9XhxeLyhFaYWLQ3YnhRUeYm1G9EqF7Uvj8Srs5W5sZj2xESZiI3zTt9pMem4+N4M/9aq99Pzp9hzW7MmrdZ30JT9mM75/y1rPJ8Rv2lk+2YsEcVFnNpPhhCVxIKRjm59ep9GpaQztkqPYkWPHXIeB014F6XERPDCiA29vOMj2zYdOmP5omDnXwff3aTLpeadKL/ms/DI+2JrDhP4tGdsno/J6in25JezNLcHtVUSY9Xy0LYdSp4dNR0sodh3vgBZOsctDpFGPgcp52/U6copKWbfnCEXlTtKSE9HrdVQ4PZisBqwmPSWO0B74/kBu0uvolhbNHRe05NyMuBrvbXVz12TVGsAB9uSX1ul8QvymSXW6EHVzbot41u89VuN+DejXMqHG/QAD2iWx7bA9qG28xvNpYDToMOv0jO7ZlDd/OFTjA4TT7cURpke3BsRFmKge0vyTvDz/TRatEiJoHhPB6i2HsZe70DRQXsX2wjKMOo3cMmcggEPwePOqFJBT5iTeYiRCr2NffjHLtx8M7NdXjpcvd3mJMCsMOo0Ik56yMEPpdBrodfDYiI60S4o84X2qKq/EwY7cEvS68IvOVM2rzSR//kI0do338UP86ro3i6V5fESNQyoVkF/qILuw5p7V7VOiGdS+Cdllzhqr0qFytbEYC98fKODbvccoc3polWCjwuXB4faGrAFe00OBxaSvrG0Lfy29Bo98sp3Xv95DYWWbu1LwS3EFBp1v1rfs0uC2+HJ36Jzpfl4gr8JFXrmTr38JnvjFU6URvKDUhdOtiLLosZlC/wxbJ9p440+96xXAgcCDTPWpYqtTyjfvvBCNnkz2IkTd6HUa9w9px7zVv7CjykxpVf14qIhth4t5cHh7WiWGD0CXd0+jRaKNbXvyiQkzm5vHq/gqp4iffirD5fFS6vRQ7PAEz2+Ob+IV/zj0mh4sTCeotjfofOdpYjESXaVU6lWKrOJyWkZZAd/c7VUpwO7wEHuCVdqKSh2UVRtqVlpaTnSUDU3T8CooKHNh0Plmh7MadTjcXm4+tzkjOiXTLS26TlXiVbm9XjYdKgwsBavXBS/eEsi/UmTERXBe87h6nV+I36SzvE288T5+iDMiymLkweEd6JgSFVJFDb52bJfXy4tf7alxVjFN0+jWLJZrB7SidbMYdFUisFcpPjpwjB/ySnF7FaVOD/ZqARx8gbTY4Q6UPC1Gfdj8hN/oC/paZV7SI81BeS11e6hwq0BJtupqbH4lLg8FFa5AGqV8s8+5vQqTXkeJM3TO+eLSMjze4FoEt1dR5vQ1BfRtHs+DQ9rSvWlMnQO4y+Nla46dzP3HuPG1Ddy75KfALHj+gr+qnCrWf129pvHaDb3q/ZAgxG+SlMSFqJ+ichc7coprrFJWytdLfUdOMZ1So2s8j6ZptGseT6umseQXlePxKnbkl/LLFl8HNK9SFIfp+BU4vvK/OhRoGjFWY8h62y63N+yscVVL7tU7qinlqxYvdnmIMupJtZkoDtNEUOryUupyEmXSY618iFCA26OCJrzx83oVR44eIyEuBovZFJSXP3RN5dFLO56wiaEqj1fx3+/2sWjDAYoq3JQ7Pbirdd9XgMdbWVChsklBwbxrupMSXfPwPiFE4yFBXNTb4aLyGgO4nwYcLCw7YRD3Mxh0JCf4ZnZ7ecOBQA94xwnangF0Oo0yl4enL+8Gmq/E+eGWw3y07QgWow6P8i2lqggtkAeCGlDocNOsynSktsolU49WuIg06km2GjlU4qA0TMc5s17D6l+jvMr2JlERmAx6nO7ghxCPx0tuXgFGg57E6AievbYPF7RKICmy7uO1lVJM/Ww7y7YdCbyvHsCD0/vydnGbBO6+sDVd6vAzEaLROMt7pzfenIszJlwpszrFiduja5JbcnyYWE090SNMehIijMRZfa/pn+9kf0E5EUY9uSUOWiVEkBZtIT3GQqfkSEa0b4JJrxFp0BFj8q9p7psC1aBp/GKv8OW5SnVzyygLFR7FvhIH5R4v7WIjaB5lxlYZsDV8Jfgoc+isbi7lRa/X0T09/HStAC63hydHdeXKbmn1CuCF5U7e33I4EMCh5t7y1V3WOUUCuPj98beJn+qrkZKSuKi35vE2YqxGisIsExqgFJ3T6h8wEmwm9uSX4lW+nuPVRVsMGHXBa4WXOj3859u9RBh0ISVur4JD+aXc2jkVg/K1Zf+YXxI0favbq1iXY+f8lOjABDTtYq0UOFx4FZRVto9HGPWkG/QcKnVQ4VGV7eqh5XxPZb+A5onRKOCH/UdxVekcZzLo+VO/Ntx4Xqs635cjxRW8tHYv3+zND2kyqKs6xnohRCMiQVzUm16ncVnXVF7/bn/IPnuFm115pWQXO1jy+ErSY638uV9z/tK/ZaDa+USGtmvC+n0FgG/K1KqTy5gNupAA7mfWab6SdLV96ZFm+jaJQnkVJW4vaw4XBTp+BT6PBi6l+DK7kEijntbRViwGHTq0QHz2XzO33ElFZdX1iYJisctDjNFAi8RoMhKiyCkqw+FyYzEaGNgumUmXdKj1XvjlFju4+70fsVe4UIqQmet0NXXNr6ZnmOVihWj0pHe6EPU3uH0TLuuaChxfzjev1MkXe/I5aK8IBMoDheU8+ukOLvv3OkrD9Niu7vyWCXRKjvKVcjWNmCrDuCw1VOP7q7arB3eDBn2SoirzqLG9wNfjvXrs9R+naZqvpH6slKNuT0hDutursFdbtMTtVWHHY3uBQpebMo+X2AgTndPiuKRLMx4b1Y1/jOhY6wIm4KveP1xUzpw1v2CvcAUeGqrHbJ2mBVaBC0evaQxsnUDz+Iga0wjReGkN9Kq7r776issvv5y0tDQ0TeP9998P2v/ee+8xfPhwEhMT0TSNzZs3h5zD4XBw1113kZiYiM1mY9SoURw8eDAkXW0kiIuTomkaV/Vsxowru3FZ1zR6Z8SxMdsOhJZQvQo2Hyzk6c931XpevU7jiZGduLBVIpoGVqOeOKsBvRY+UEPNf37pkRb0lQ8DTo+Xw2Wu2jvkVZ7/YEF5yOcod4f2lHd4Qsdh+yl8JfwnLu/M89f1ZMrITgxok4ghzJC16r7be4wHlmxh4uIf+W5/QVBewj3MWEy6sGPlNSAjzsq/Lu9c6zWFEHVTWlpK9+7dmTt3bo37+/fvz1NPPVXjOe69916WLFnCW2+9xddff01JSQmXXXYZHk/NI3LCkep0cUqSosxc2aMp724+FFhXOxyPgle+3cekoe1qLYXaTAYmDW3Pn0ta8GN2EV4FHZpEcu/7WzhWFtoe7J+drHowjTLq8QJ6oLwO07yeDJdXUeH2YjHogvKg943m4qHB7UisR8c1h9vDq9/u48tdeUD4KnuzXodB5w1qFtA0jQizHo/HN1Y90mQgOcrM1T2aclX3NCJPsEKbEI1bQ3RMq9/xl156KZdeemmN+//0pz8BsHfv3rD7i4qKmD9/Pq+99hpDhgwBYNGiRaSnp7Ny5UqGDx9e57zIX7ZoED9mF2HUaYGlRsOxV7g5VFhBq0Rbnc6ZFGlmcLvjU4OO7JTC6xsOhAQ2he8hQU9wIHcrFfjTNNWx3bjqOasfUdOiLeVuLy6vwqzXMOgg1mKkX8t4/tA1jVYJdfusAIcKypj3xW72FlUEtoUtXWsasRYDRRXuwP3WfDtonxzJ05d3pmU9ritEo6ZpDTDE7NdtE9+wYQMul4thw4YFtqWlpdGlSxfWrl0rQVz8+kx6fa1V1UDYiVfq6g9dUvnwp8MUO9whgdztVRiqdYQ7UOKgS7wvmFkNeuLNBo45am+XB8Iuk2rS64gw6CgLM17c3zbev2UCM0d1qfdnK3e6efHL3eSXB8/TrtN8w+Dc1drddZpGnNWI2+vF6VFc26Mp/Vsm0KMes70JIYLZ7fag92azGbO57jVpdZWTk4PJZCIuLnjq4+TkZHJycmo4KjxpExcNYniHJiG9vqvSgI7JkaTFnPxMYfE2E89d2Y1mMb45zfXa8ZJqx5RoHh/ZiQ7Jx9cHL3Z5OFIlKHaMi6h7pZkGMVZDSPoUqwmjpoWdPCYtxsrkIe3q85ECMvceo9TpIVytv+0EDz5GnY7RXdO4c0BrejaLlQAuzj4NOE48PT2dmJiYwGv69Om/6kcJ1yxYGymJiwbROyOWvi3iyNxfGDL5SMcEG5e0iqdbkyiWfbOXhBgLbZrF0CSu/r2lm8dHsGDMOWw+VMTWnGL0Oo1e6bGB1b56NI3lUGE5OcUV2EwGWsZH8O2OXPbnlpBoMXJechSbjpbgqGXQtFJw70Vt+flIMZ9tP0JBZVt8q0QbfxnQkgNFFXy49TD5pS4SbCb+0CWVK7um1rvtOa/UyZHiCjbu9w2rC/f3a9TpiDJAifv4HPJa5f+N6JjMHf3rPt5ciN+f+vcuD38OOHDgANHRx+e3OB2lcICUlBScTicFBQVBpfHc3FzOP//8ep1LgrhoEJqmsehPvblq/np+yLZj0Gl4vIpLWydwTYdk3xMmvtnFjhaUk1tQTou0aJweL/YyFyajjpbJUTRNtNU6f7imafRsFkvPZrFh9zeNtdI01hp4P7BrKoUlDvbnluDyeBnRvSlFbg9bsu2s2pmLRylUleFbCrhjQGvaJUfRLjmKkV1TsZe7fDO0WY7P0Da2T8ZJ3699x8p4ds0vrM06hgK6xkcQYzZg0esodYWb3lWHSafhUop4m4kRXVLp3yK+Xp3mhPhdasBx4tHR0UFB/HTp1asXRqORFStWcM011wBw+PBhfvrpJ2bMmFGvc0kQFw0mMdLMqrsGsPLnXN7fchiDVzE4zTfBSNUqIq9SVHi8bMo6Flg0RNPgl8PFJEZbGHZOU8x1mBimPmIjzcRWC3h9Wybwx55N+fznXDYfLMSjFB2ToxnaMZnUKguE6DSN2AhT9VOetKz8Usa9tZEK1/G54UtcHqJNegw6DYteC0woU5WmaVh0GhMvakv7Ks0GQohfV0lJCbt37w68z8rKYvPmzcTHx5ORkcGxY8fYv38/2dm+xZx+/vlnwFcCT0lJISYmhltvvZX777+fhIQE4uPj+dvf/kbXrl0DvdXrSlPhZqoQZ4zdbicmJoaioqJf5YnwdNqwI5eDR0uo/hvm8HjDdg4DX6VWakIEw89pdvozeAa4PV7+uOA7sosdQdsteh29knxrjSulsDs9IYHcYtQxYWBrzkkP7gwjxG/R6f4u859fP+b/0EzW2g84AeUsx/PG/XXO65dffslFF10Usn3s2LEsWLCABQsWcPPNN4fsnzJlClOnTgWgoqKCv//977zxxhuUl5czePBg5s2bR3p6er3yLkH8N+b3FMRXfLef0org3uBKKYqcoeuDV3dF3+bER/3+qopf/mYPL2ceCLsvJcJImxhroGe8x6tweLx4gU4pUdwxqA2mOsz0JsRvwa8XxGc1UBCf2Ci/d6U6XZw2WphBzl5F3ZYxzSttlEG8pMLFTweLKK5wYTMbaJ5oY3XWMb7fX4BXKXIKymo8NqfMRbnbS1ObiXiLEYNOo2ViFBe2S6JnRpz0PBdChJAgLk6b1PgIdpcVBQXtOlX7aMeX1yxzujlW6sRq1JPwG+7EpZTi651HWfNzLlSuw5Jb6mT1oSJcXl+nvmiTnvRahtgVOT0UOct56OKmXNk1TQK3ELU5yxdAkSAuTpuWadH8csgetEBIuOVFq1MKTCYdC77JYmOVecObxVm5rFsaXeqxGldhqZMKp4dIi4FIa+ja33Xh8Sp2HrazZX8BxRVuoiwGumXE0S41OrCC2Pd7jvHVjtzAMWUuD18eLApM0qIANN9qa2addsIhbjoNLmqTJAFciLqQIC7E6RFhMdK3SzLrtx4JlKw1TcOs13CE6X0Nvqp0nV7H65kHKKk2M9uhgnJeXP0LV/RI47sDRSz8bj/5pU5SYyzc0rc5f+7XnOjKIWAH80tZ//NR8qt0IGsaH0Hf9kkkRNd9whmHy8M73+4ju6A80JP+WLGDvUdLaRYfwR/7ZqDXaazZmRt03O7CcjzVupuUVQ4daxJh5EBJ8MxsVV3ROZW4BuwNL4T4/ZIgLk6rJnERDDs3g305xeQVlQMQG2li5+FiCkqDA5lWuVJZuZ6QAA6+AFrscHPDaxupcHsC62pn5Zfx6CfbeWfzIS7t1IRIvY7IMGuxfPlzDlM/+YF9haXodTqGdEzl7sEd6NMiscb8r/jxMIcLygPXr/rfQ8fK+PynHDo2jaG82uIvh0qcIU0HLq+ioMJNnMVAU5uJw6VOqvfRbxMfwQMXt60xP0KI6hpuspfGSIK4OO3MJj3tMmJpR2xgW9uMOLbvL2THwUJKK9wY9RqtUqJpnRbNtE92hF29C+CrvQWUuYJ7t0dZDHRKjcSg01ibdYwR6fEoffCypZ/tzGbptkNBc6sv3riP9zYf4IperUiNjSA5ysxV3ZsSH2Fk1c9H+fFAIREoQidZ9VHA1gOFNA2zTre3hkEf++0OrEYdMSY9UUYLxS7f4il6HaRHW5g6sjP6ei7WIsRZTarThfj1GfU6urWMp1vL+KD5gg+HqYb2O1buIrda6d2k1+iSFoWuct3wZKsxZL3t3XnFLN12CAhe2tMWaSMiwsrXewvQ6wp9s85lHqBbcpRv7nSjnuZRJ6569ypwhhnzHm8xUBxmKJ1bKXbkl9EkwkR6tIUkg54oi4EBbZIY3KFJ0IxwQghRGwni4oyrWmK2mGoeB51XGtqOnBpjCQRwAJtBH7KIwJd7jgSVwAGiIm1YrZbA9b0KjBp0SorEq2oufYcTbTHSLD6CQwVlgYlt2sZGsNfuCJveo+BwqZMnL+9MnwyZuEWIU6LpGmAp0sa7FthvJufTp09H0zTuvffewLapU6fSoUMHbDYbcXFxDBkyhPXr1wf2Hzt2jLvuuov27dsTERFBRkYGd999N0VFRWGv4XA46NGjB5qmsXnz5rBp8vPzadasGZqmUVhYGNi+d+9eNE0LeX366adBx69evZpevXphsVho1aoVL7744knfk7NRXISJFgnhVxsLN6d6QqQpKGA7vaGrAO3JLwkK4JqmYbNZQ9IlR5qDHghK3V5qmwtJA1LjrIzonoZRrwvUyiVYjXStXDe96lX8NeV/7ttcArgQDUJroFfj9JsI4pmZmbz00kt069YtaHu7du2YO3cuW7Zs4euvv6ZFixYMGzaMo0ePApCdnU12djYzZ85ky5YtLFiwgE8//ZRbb7017HUeeOAB0tLSTpiXW2+9NSQfVa1cuZLDhw8HXhdffHFgX1ZWFiNGjGDAgAFs2rSJyZMnc/fdd7N48eK63goBXNY9/M8oNczkL9Wbjw+XOUNWUase+80mY9jhW7GW4Iopl9c3/WlNgVzToF1aNFFWI0nRFm4Z2JoOadGB63VOsHFdlxS6p0Wjq1w2tUdaDM9e2ZV7Lmwd9pxCiPoJV7g6mVdjdcar00tKSrjhhht4+eWXeeKJJ4L2jRkzJuj9rFmzmD9/Pj/++CODBw+mS5cuQQGydevWPPnkk9x444243W4MhuMf75NPPmH58uUsXryYTz75JGxeXnjhBQoLC3nkkUdqTJOQkEBKSkrYfS+++CIZGRk8++yzAHTs2JHvv/+emTNnctVVV9V6L4RPh5Robr6gJW+s30eFy4te0/CisJn0nJsew/cHiwIl6xKHB5NBFyilu5Vie2EZXeJtgfN1To7l2/1HA8fU9Aerhdl3oNRBa70Fi14XcmxilJnh3Y4/cCREmhndOwOHy0Opw43VZMBa2TzgfxBozF8WQojfnjMexCdMmMDIkSMZMmRISBCvyul08tJLLxETE0P37t1rTOef+7ZqAD9y5Ai33XYb77//PhER4dew3rZtG4899hjr169nz549NZ5/1KhRVFRU0LZtW+677z7++Mc/BvatW7eOYcOGBaUfPnw48+fPx+VyYTSGdlpyOBw4HMfbTu12e43XPpuckxFHl7QYNh8oILfYgcWop0d6LBajnj++8h1rfslHr8HhogoSI4PHVP9cVI6mQYfYCHTAoNZNWLf/aGC/y+0mnCKHm2izISjQehTsLqogzmwgwWLAatCTHGOhW0YcXdJjMRpCK7PMRn3IKmwSvIU4TaR3+pnz1ltvsXHjRjIzM2tMs2zZMq677jrKyspITU1lxYoVJCaGH9ebn5/P448/zu233x7YppRi3LhxjB8/nt69e7N3796Q4xwOB9dffz1PP/00GRkZYYN4ZGQks2bNon///uh0Oj788EOuvfZaFi5cyI033ghATk4OycnJQcclJyfjdrvJy8sjNTU15LzTp0/n0UcfrfHzn81MBh3ntkwI2f7R7f1Y8XMub3x/kCPFFUQa9ZS4PGgagY5lPxeV84u9gj90SOYP7ZJIiLXw4PsbUQrcbg9OpwujMThg55Q4aBZtgWod47xAvsNNvsPNQ8Pa07UeM8YJIU4zCeJnxoEDB7jnnntYvnw5FkvNw3guuugiNm/eTF5eHi+//DLXXHMN69evp0mTJkHp7HY7I0eOpFOnTkyZMiWwfc6cOdjtdiZNmlTjNSZNmkTHjh0DwTicxMRE7rvvvsD73r17U1BQwIwZM4KOq17iqq0addKkSUycODHoc9R3KbqzjV6ncUnHZC7p6HtgUkrxxe48Fv9wiN15pQC0S4zkjz2acmFr3wNfj1YJjDonnZfX7GLNrlw8wBGHb6Uw/6QxTo9i17Ey2sVHBPVm9//7jz2bSgAXQvymnLEgvmHDBnJzc+nVq1dgm8fj4auvvmLu3Lk4HA70ej02m402bdrQpk0b+vbtS9u2bZk/f35QUC4uLuaSSy4hMjKSJUuWBFVbr1q1im+//RazObhTVO/evbnhhhtYuHAhq1atYsuWLbz77rvA8cCbmJjIww8/XGNJuW/fvvznP/8JvE9JSSEnJycoTW5uLgaDgYSE0BIlgNlsDsmbqB9N07i4bRIXt03C6fGN2TbpQ6u5mydE8sQfegbe7y8o4/k1e3jvx8M4PV4sBh3DOyQzulsqmw8UsulgIV6vol1yFMM6JtMptXEtUSjE2UFmbDsjBg8ezJYtW4K23XzzzXTo0IEHH3wQvT78eGGlVEgb8vDhwzGbzXz44YchpfrZs2cHtbVnZ2czfPhw3n77bc477zwAFi9eTHl5eSBNZmYmt9xyC2vWrKF165p7EW/atCmoirxfv34sXbo0KM3y5cvp3bt32PZw0fDCBe+aZMRF8K9RXXhiZCdKnW4izQYMOt/xvWT4lxCNg1SnnxlRUVF06dIlaJvNZiMhIYEuXbpQWlrKk08+yahRo0hNTSU/P5958+Zx8OBBrr76asBXAh82bBhlZWUsWrQIu90e6BiWlJSEXq8nIyMj6BqRkZGAryd7s2bNAv+uKi8vD/D1Lo+NjQVg4cKFGI1GevbsiU6nY+nSpcyePZt//etfgePGjx/P3LlzmThxIrfddhvr1q1j/vz5vPnmmw1018TpYNTriLXKgiNCiMbnjPdOr4ler2fHjh0sXLiQvLw8EhIS6NOnD2vWrKFz586Ar0reP/lLmzZtgo7PysqiRYsWDZqnJ554gn379qHX62nXrh2vvPJKUHt4y5Yt+fjjj7nvvvt4/vnnSUtLY/bs2TK8TAghThff2NBTP0cjpanapqQSvyq73U5MTExgqJwQQjRGp/u7zH9+w60vo5nCDx2uK+Uswz3/tkb5vfubmLFNCCGEEPX3m61OF0IIIWolHduEEEKIRkqCuBBCCNFY6Tj1luHG27LceHMuhBBCnOWkJC6EEKLxkup0IYQQopE6y4O4VKcLIYQQjZSUxIUQQjRisgCKEEII0Ug1QHV6Iw7iUp0uhBBCNFJSEhdCCNF4neUd2ySICyGEaMTO7jZxqU4XQgghGikpiQshhGi8zvLqdCmJCyGEaLR0mtYgr/r46quvuPzyy0lLS0PTNN5///2g/Uoppk6dSlpaGlarlUGDBrF169agNA6Hg7vuuovExERsNhujRo3i4MGD9f/89T5CCCGE+I3wF8RP9VUfpaWldO/enblz54bdP2PGDGbNmsXcuXPJzMwkJSWFoUOHUlxcHEhz7733smTJEt566y2+/vprSkpKuOyyy/B4PPXKi1SnCyGEEPVw6aWXcumll4bdp5Ti2Wef5eGHH2b06NEALFy4kOTkZN544w1uv/12ioqKmD9/Pq+99hpDhgwBYNGiRaSnp7Ny5UqGDx9e57xISVwIIUSj1ZDV6Xa7PejlcDjqnZ+srCxycnIYNmxYYJvZbGbgwIGsXbsWgA0bNuByuYLSpKWl0aVLl0CaOn/+eudQCCGE+I3QaQ3zAkhPTycmJibwmj59er3zk5OTA0BycnLQ9uTk5MC+nJwcTCYTcXFxNaapK6lOF0IIIYADBw4QHR0deG82m0/6XFq1hnalVMi26uqSpjopiQshhGi0NE1rkBdAdHR00OtkgnhKSgpASIk6Nzc3UDpPSUnB6XRSUFBQY5q6kiAuhBCi0WrI6vSG0LJlS1JSUlixYkVgm9PpZPXq1Zx//vkA9OrVC6PRGJTm8OHD/PTTT4E0dSXV6UIIIUQ9lJSUsHv37sD7rKwsNm/eTHx8PBkZGdx7771MmzaNtm3b0rZtW6ZNm0ZERARjxowBICYmhltvvZX777+fhIQE4uPj+dvf/kbXrl0DvdXrSoK4EEKIRqtqdfgpnKReyb///nsuuuiiwPuJEycCMHbsWBYsWMADDzxAeXk5d9xxBwUFBZx33nksX76cqKiowDHPPPMMBoOBa665hvLycgYPHsyCBQvQ6/X1y7pSStXrCHFa2e12YmJiKCoqCupgIYQQjcnp/i7znz/uvv+hmSNO6VzKUUbBM9c0yu9daRMXQgghGimpThdCCNF4NUB1umrEC6BIEBdCCNFoNUjv8sYbwyWICyGEaLwaomPbKXeMO4OkTVwIIYRopKQkLoQQotGS6nQhhBCikfKtB36q1ekNlJkzQKrThRBCiEZKSuJCCCEaLalOF0IIIRop6Z0uhBBCiEZJSuJCCCEaLR0Nu5RoYyNBXAghRKOl0zR0v/IqZr8lUp0uhBBCNFJSEhdCCNFo+caJn/o5GisJ4kIIIRqts706XYK4EEKIRutsL4lLm7gQQgjRSElJXAghRKOlNUB1umrERXEJ4kIIIRotqU4XQgghRKMkJXEhhBCNVkP0TpfqdCGEEOIMkOp0IYQQQjRKUhIXQgjRaEl1uhBCCNFISXW6EEIIIRolKYkLIYRotM726vTfTEl8+vTpaJrGvffeG9g2depUOnTogM1mIy4ujiFDhrB+/frA/mPHjnHXXXfRvn17IiIiyMjI4O6776aoqCjsNRwOBz169EDTNDZv3hw2TX5+Ps2aNUPTNAoLC4P2bdmyhYEDB2K1WmnatCmPPfYYSqmgNKtXr6ZXr15YLBZatWrFiy++eFL3QwghRO381emn+mqsfhNBPDMzk5deeolu3boFbW/Xrh1z585ly5YtfP3117Ro0YJhw4Zx9OhRALKzs8nOzmbmzJls2bKFBQsW8Omnn3LrrbeGvc4DDzxAWlraCfNy6623huQDwG63M3ToUNLS0sjMzGTOnDnMnDmTWbNmBdJkZWUxYsQIBgwYwKZNm5g8eTJ33303ixcvru8tEUIIUQf+kvipvhqrMx7ES0pKuOGGG3j55ZeJi4sL2jdmzBiGDBlCq1at6Ny5M7NmzcJut/Pjjz8C0KVLFxYvXszll19O69atufjii3nyySdZunQpbrc76FyffPIJy5cvZ+bMmTXm5YUXXqCwsJC//e1vIftef/11KioqWLBgAV26dGH06NFMnjyZWbNmBUrjL774IhkZGTz77LN07NiRP//5z9xyyy0nvKYQQghxss54EJ8wYQIjR45kyJAhJ0zndDp56aWXiImJoXv37jWmKyoqIjo6GoPheHP/kSNHuO2223jttdeIiIgIe9y2bdt47LHHePXVV9HpQm/LunXrGDhwIGazObBt+PDhZGdns3fv3kCaYcOGBR03fPhwvv/+e1wuV9jrOhwO7HZ70EsIIUTd6LSGeTVWZzSIv/XWW2zcuJHp06fXmGbZsmVERkZisVh45plnWLFiBYmJiWHT5ufn8/jjj3P77bcHtimlGDduHOPHj6d3795hj3M4HFx//fU8/fTTZGRkhE2Tk5NDcnJy0Db/+5ycnBOmcbvd5OXlhT3v9OnTiYmJCbzS09PDphNCCBFK07QGeTVWZyyIHzhwgHvuuYdFixZhsVhqTHfRRRexefNm1q5dyyWXXMI111xDbm5uSDq73c7IkSPp1KkTU6ZMCWyfM2cOdrudSZMm1XiNSZMm0bFjR2688cYT5rn6D9pfjV51e13SVL92UVFR4HXgwIET5kEIIcSZV1xczL333kvz5s2xWq2cf/75ZGZmBvYrpZg6dSppaWlYrVYGDRrE1q1bGzwfZyyIb9iwgdzcXHr16oXBYMBgMLB69Wpmz56NwWDA4/EAYLPZaNOmDX379mX+/PkYDAbmz58fdK7i4mIuueQSIiMjWbJkCUajMbBv1apVfPvtt5jNZgwGA23atAGgd+/ejB07NpDmnXfeCeRj8ODBACQmJgYeCFJSUgIlbj//w4S/9F1TGoPBQEJCQtj7YDabiY6ODnoJIYSoG60BqtJPpiD+5z//mRUrVvDaa6+xZcsWhg0bxpAhQzh06BAAM2bMYNasWcydO5fMzExSUlIYOnQoxcXFDfr5z9g48cGDB7Nly5agbTfffDMdOnTgwQcfRK/Xhz1OKYXD4Qi8t9vtDB8+HLPZzIcffhhSqp89ezZPPPFE4H12djbDhw/n7bff5rzzzgNg8eLFlJeXB9JkZmZyyy23sGbNGlq3bg1Av379mDx5Mk6nE5PJBMDy5ctJS0ujRYsWgTRLly4Nuv7y5cvp3bt30IOFEEKIhtEQvcvre3x5eTmLFy/mgw8+4MILLwR8Q6Lff/99XnjhBR5//HGeffZZHn74YUaPHg3AwoULSU5O5o033ghq8j1VZyyIR0VF0aVLl6BtNpuNhIQEunTpQmlpKU8++SSjRo0iNTWV/Px85s2bx8GDB7n66qsBXwl82LBhlJWVsWjRoqCOYUlJSej1+pA27sjISABat25Ns2bNAv+uyt9+3bFjR2JjYwFfT/lHH32UcePGMXnyZHbt2sW0adN45JFHAlXl48ePZ+7cuUycOJHbbruNdevWMX/+fN58880GvHNCCCHOJLfbjcfjCSk0Wq1Wvv76a7KyssjJyQnq6Gw2mxk4cCBr16799YP4yfSYPtVqYb1ez44dO1i4cCF5eXkkJCTQp08f1qxZQ+fOnQFflbx/8hd/NblfVlZWoITcEGJiYlixYgUTJkygd+/exMXFMXHiRCZOnBhI07JlSz7++GPuu+8+nn/+edLS0pg9ezZXXXVVg+VDCCHEcTpOvXe5v125eqwzm81BI5L8oqKi6NevH48//jgdO3YkOTmZN998k/Xr19O2bdtAs2q4js779u07tcxWU6cgHhsbW6/ee5qmsXPnTlq1alWvzHz55ZeBf1ssFt57770Tph80aFDIjGm1adGiRa3H1HTerl278tVXX53w2IEDB7Jx48Z65UkIIcTJacjq9Oqjg6ZMmcLUqVPDHvPaa69xyy230LRpU/R6Peeccw5jxowJ+v4P19G5oXvC17k6/d133yU+Pr7WdEopRowYcUqZEkIIIepCx6n30PYff+DAgaBa5HClcL/WrVuzevVqSktLsdvtpKamcu2119KyZUtSUlIA37Dj1NTUwDG5ubkhpfNTVacg3rx5cy688MIae1hX16pVK+nIJYQQolE5mRFCNpsNm81GQUEBn332GTNmzAgE8hUrVtCzZ0/AN2HZ6tWr+de//tWgea5TEM/KyqrXSX/66aeTyowQQghRHw0xWcvJHP/ZZ5+hlKJ9+/bs3r2bv//977Rv356bb745sJjXtGnTaNu2LW3btmXatGlEREQwZsyYU8prdbIUqRBCiEarIaZNPZnji4qKmDRpEgcPHiQ+Pp6rrrqKJ598MlAL/cADD1BeXs4dd9xBQUEB5513HsuXLycqKurUMluNpurbMwz47rvv+PLLL8nNzcXr9Qbtq7qql6g/u91OTExMYA54IYRojE73d5n//BfO/BSD1XZK53KXl/LV3y5plN+79S6JT5s2jX/84x+0b9+e5OTkE045KoQQQpxOZ6ok/ltR7yD+3HPP8corrzBu3LjTkB0hhBCi7s7EjG2/JfXuma/T6ejfv//pyIsQQggh6qHeQdw/G5kQQghxpuka6NVY1bs6/W9/+xsjR46kdevWdOrUKWQ8eG2zrAkhhBANRWuA6vTG3J+r3kH8rrvu4osvvuCiiy4iISGhUX94IYQQojGrdxB/9dVXWbx4MSNHjjwd+RFCCCHqTHqn11N8fHzI0p1CCCHEmSC90+tp6tSpTJkyhbKystORHyGEEKLOpGNbPc2ePZtffvmF5ORkWrRoEdKxTZbhFEIIIX4d9Q7if/jDH05DNoQQQoj6O9ur0+sdxKdMmXI68iGEEELU29nesa0xNwUIIYQQZ7U6BfH4+Hjy8vLqfNKMjAz27dt30pkSQggh6sJfnX6qr8aqTtXphYWFfPLJJ8TExNTppPn5+Xg8nlPKmBBCCFGbs706vc5t4mPHjj2d+RBCCCFEPdUpiHu93tOdDyGEEKLefOO8T7F3esNk5Yyod+90IYQQ4rdCa4Dq9EbcJN6oH0CEEEKIs5qUxIUQQjRaMtmLEEII0UhJ73QhhBCikZKSeD3Z7faw2zVNw2w2YzKZTjlTQgghhKhdvYN4bGws2gmeWpo1a8a4ceOYMmUKOp30mxNCCHH6aJWvUz1HY1XvIL5gwQIefvhhxo0bx7nnnotSiszMTBYuXMg//vEPjh49ysyZMzGbzUyePPl05FkIIYQApE283kF84cKF/N///R/XXHNNYNuoUaPo2rUr//73v/n888/JyMjgySeflCAuhBBCnEb1ru9et24dPXv2DNnes2dP1q1bB8AFF1zA/v37Tz13QgghxAnoaIAFUBpxhXq9g3izZs2YP39+yPb58+eTnp4O+BZAiYuLO/XcCSGEECfgr04/1VdjVe/q9JkzZ3L11VfzySef0KdPHzRNIzMzkx07dvDuu+8CkJmZybXXXtvgmRVCCCHEcfUO4qNGjeLnn3/mxRdfZOfOnSiluPTSS3n//fdp0aIFAH/9618bOp9CCCFECB2nXh3emKvTT2qylxYtWvDUU081dF6EEEKIepHe6SehsLCQ7777jtzc3JBlSm+66aYGyZgQQgghTqzeQXzp0qXccMMNlJaWEhUVFTTxi6ZpEsSFEEL8arQGmHb1RBOY/dbVu3f6/fffzy233EJxcTGFhYUUFBQEXseOHTsdeRRCCCHCOtt7p9c7iB86dIi7776biIiI05EfIYQQos5OeYz4SZTk3W43//jHP2jZsiVWq5VWrVrx2GOPBTUvK6WYOnUqaWlpWK1WBg0axNatWxv649c/iA8fPpzvv/++wTMihBBCNAb/+te/ePHFF5k7dy7bt29nxowZPP3008yZMyeQZsaMGcyaNYu5c+eSmZlJSkoKQ4cOpbi4uEHzUu828ZEjR/L3v/+dbdu20bVrV4xGY9D+UaNGNVjmhBBCiBPRcRKl0TDnqI9169ZxxRVXMHLkSMA3YuvNN98MFHCVUjz77LM8/PDDjB49GvBNWZ6cnMwbb7zB7bfffoo5Pq7eQfy2224D4LHHHgvZp2kaHo/n1HMlhBBC1IGmaafcMc1/fPWlts1mM2azOST9BRdcEJgrpV27dvzwww98/fXXPPvsswBkZWWRk5PDsGHDgs41cOBA1q5de2aDePUhZUIIIcTvgX/qcL8pU6YwderUkHQPPvggRUVFdOjQAb1ej8fj4cknn+T6668HICcnB4Dk5OSg45KTk9m3b1+D5vmkxokLIYQQvwUNOdnLgQMHiI6ODmwPVwoHePvtt1m0aBFvvPEGnTt3ZvPmzdx7772kpaUxduzYQLrqNQRKqQYfzlanID579mz+8pe/YLFYmD179gnT3n333Q2SMSGEEKI2WuXrVM8BEB0dHRTEa/L3v/+dhx56iOuuuw6Arl27sm/fPqZPn87YsWNJSUkBfCXy1NTUwHG5ubkhpfNTVacg/swzz3DDDTdgsVh45plnakynaZoEcSGEEL9rZWVl6HTB3eH0en2gublly5akpKSwYsWKwNLdTqeT1atX869//atB81KnIJ6VlRX230IIIcSZdDLjvMOdoz4uv/xynnzySTIyMujcuTObNm1i1qxZ3HLLLYCvQHvvvfcybdo02rZtS9u2bZk2bRoRERGMGTPmlPJanbSJCyGEaLTOxBCzOXPm8M9//pM77riD3Nxc0tLSuP3223nkkUcCaR544AHKy8u54447KCgo4LzzzmP58uVERUWdYm6DaUopVZ8DPB4PCxYs4PPPPw+7AMqqVasaNINnG7vdTkxMDEVFRXVqmxFCiN+i0/1d5j//A69+gzki8pTO5SgrYcZN/Rvl9269S+L33HMPCxYsYOTIkXTp0qVRTxwvhBCicdM03+tUz9FY1TuIv/XWW/zvf/9jxIgRpyM/QgghRJ2d7auY1TuIm0wm2rRpczryIoQQQtRLQw4xa4xOainS5557jno2pQshhBCigdUpiI8ePTrw+uabb3j99ddp3bo1l19+edA+/0TvJ2P69OmBbvl+U6dOpUOHDthsNuLi4hgyZAjr168P7D927Bh33XUX7du3JyIigoyMDO6++26KiorCXsPhcNCjRw80TWPz5s2B7fn5+VxyySWkpaVhNptJT0/nzjvvDJpHd+/evYE5equ+Pv3006BrrF69ml69emGxWGjVqhUvvvjiSd8TIYQQJ3YmliL9LalTdXpMTEzQ+yuvvLJBM5GZmclLL71Et27dgra3a9eOuXPn0qpVK8rLy3nmmWcYNmwYu3fvJikpiezsbLKzs5k5cyadOnVi3759jB8/nuzsbN59992Q6zzwwAOkpaXxww8/BG3X6XRcccUVPPHEEyQlJbF7924mTJjAsWPHeOONN4LSrly5ks6dOwfex8fHB/6dlZXFiBEjuO2221i0aBHffPMNd9xxB0lJSVx11VUNcauEEEJUcbZ3bKv3ELOGVlJSwjnnnMO8efN44okn6NGjR2AlmOr8QwpWrlzJ4MGDw6Z55513uPHGGyktLcVgOP6M8sknnzBx4kQWL14cGJzfo0ePGvM1e/Zsnn76aQ4cOAD4SuItW7Y84XEPPvggH374Idu3bw9sGz9+PD/88APr1q078Y2o9hkb41AHIYTw+7WGmP3jjXVYTnGIWUVZCU+M6dcov3fr3SZ+8cUXU1hYGLLdbrdz8cUX1zsDEyZMYOTIkQwZMuSE6ZxOJy+99BIxMTF07969xnT+H0LVAH7kyBFuu+02XnvtNSIiImrNU3Z2Nu+99x4DBw4M2Tdq1CiaNGlC//79Q0r769atC1p6DmD48OF8//33uFyusNdyOBzY7faglxBCiLrRNdCrsap33r/88kucTmfI9oqKCtasWVOvc7311lts3LiR6dOn15hm2bJlREZGBuZtX7FiBYmJiWHT5ufn8/jjjwet1aqUYty4cYwfP57evXufMD/XX389ERERNG3alOjoaP7zn/8E9kVGRjJr1izeffddPv74YwYPHsy1117LokWLAmlycnLCLj3ndrvJy8sLe83p06cTExMTeFVfCk8IIUTNpE28jn788cfAv7dt2xZYLxV8s7h9+umnNG3atM4XPnDgAPfccw/Lly/HYrHUmO6iiy5i8+bN5OXl8fLLL3PNNdewfv16mjRpEpTObrczcuRIOnXqxJQpUwLb58yZg91uZ9KkSbXm6ZlnnmHKlCn8/PPPTJ48mYkTJzJv3jwAEhMTue+++wJpe/fuTUFBATNmzODGG28MbA+39Fy47X6TJk1i4sSJQZ9DArkQQoi6qHMQ9/fq1jQtbLW51Wplzpw5db7whg0byM3NpVevXoFtHo+Hr776irlz5+JwONDr9dhsNtq0aUObNm3o27cvbdu2Zf78+UFBubi4mEsuuYTIyEiWLFmC0WgM7Fu1ahXffvttyLqwvXv35oYbbmDhwoWBbSkpKaSkpNChQwcSEhIYMGAA//znP4OWkquqb9++QaX1lJSUoIcb8C09ZzAYSEhICHsOs9lc45q1QgghTuxsHyde5yCelZWFUopWrVrx3XffkZSUFNhnMplo0qQJer2+zhcePHgwW7ZsCdp2880306FDBx588MEaz6WUwuFwBN7b7XaGDx+O2Wzmww8/DCnVz549myeeeCLwPjs7m+HDh/P2229z3nnn1Zg/fwm66rWq27RpU1CA79evH0uXLg1Ks3z5cnr37h30YCGEEKJh6DTf61TP0VjVOYg3b94cl8vFTTfdRHx8PM2bNz+lC0dFRdGlS5egbTabjYSEBLp06UJpaSlPPvkko0aNIjU1lfz8fObNm8fBgwe5+uqrAV8JfNiwYZSVlbFo0aKgjmFJSUno9XoyMjKCrhEZ6evF2Lp1a5o1awbAxx9/zJEjR+jTpw+RkZFs27aNBx54gP79+9OiRQsAFi5ciNFopGfPnuh0OpYuXcrs2bOD1oYdP348c+fOZeLEidx2222sW7eO+fPn8+abb57SvRJCCCHCqde0q0ajkQ8++CBoubXTRa/Xs2PHDhYuXEheXh4JCQn06dOHNWvWBMZpb9iwITD5S/WpYLOysgIBuDZWq5WXX36Z++67D4fDQXp6OqNHj+ahhx4KSvfEE0+wb98+9Ho97dq145VXXglqD2/ZsiUff/wx9913H88//zxpaWnMnj1bxogLIcRp4m/mPdVzNFb1Hid+880307Vr16DOWKLhyDhxIcTvwa81Tnza2+sbZJz45GvPa5Tfu/VeAKVNmzY8/vjjrF27ll69emGz2YL233333Q2WOSGEEOJEzvaSeL2D+H/+8x9iY2PZsGEDGzZsCNqnaZoEcSGEEOJXUu8gnpWVdTryIYQQQtSb9E4/BbVNZCKEEEKcThqnPm1qY45gJ/XZX331Vbp27YrVasVqtdKtWzdee+21hs6bEEIIIU6g3iXxWbNm8c9//pM777yT/v37o5Tim2++Yfz48eTl5QVNTSqEEEKcTtKxrZ7mzJnDCy+8wE033RTYdsUVV9C5c2emTp0qQVwIIcSvpiFWITurVjE7fPgw559/fsj2888/n8OHDzdIpoQQQghRu3oH8TZt2vC///0vZPvbb79N27ZtGyRTQgghRF1ogKad4utMf4hTUO/q9EcffZRrr72Wr776iv79+6NpGl9//TWff/552OAuhBBCnC4NsR54Y15PvN4l8auuuor169eTmJjI+++/z3vvvUdiYiLfffcdV1555enIoxBCCCHCOKlx4r169WLRokUNnRchhBCiXmQ9cSGEEKKROtur0+scxHU6Xa1j6TRNw+12n3KmhBBCiLqQaVfraMmSJTXuW7t2LXPmzKGeq5oKIYQQ4hTUOYhfccUVIdt27NjBpEmTWLp0KTfccAOPP/54g2ZOCCGEOJGzvU38pCaqyc7O5rbbbqNbt2643W42b97MwoULycjIaOj8CSGEEDXyt4mf6quxqlcQLyoq4sEHH6RNmzZs3bqVzz//nKVLl9KlS5fTlT8hhBBC1KDOQXzGjBm0atWKZcuW8eabb7J27VoGDBhwOvMmhBBCnNApz9ZW+aqPFi1aBBZeqfqaMGEC4Fume+rUqaSlpWG1Whk0aBBbt249DZ++Hm3iDz30EFarlTZt2rBw4UIWLlwYNt17773XYJkTQgghTuRMrCeemZmJx+MJvP/pp58YOnQoV199NeAr9M6aNYsFCxbQrl07nnjiCYYOHcrPP/9MVFTUKeY2WJ2D+E033dSol2sTQgghGkJSUlLQ+6eeeorWrVszcOBAlFI8++yzPPzww4wePRqAhQsXkpyczBtvvMHtt9/eoHmpcxBfsGBBg15YCCGEOFW+6vBTXU/85I91Op0sWrSIiRMnomkae/bsIScnh2HDhgXSmM1mBg4cyNq1a89cEBdCCCF+axpyPXG73R603Ww2YzabT3js+++/T2FhIePGjQMgJycHgOTk5KB0ycnJ7Nu37xRzGqoxr4UuhBBCNJj09HRiYmICr+nTp9d6zPz587n00ktJS0sL2l69dkApdVqapKUkLoQQotHy9ww/1XMAHDhwgOjo6MD22krh+/btY+XKlUEdulNSUgBfiTw1NTWwPTc3N6R03hCkJC6EEKLRasghZtHR0UGv2oL4f//7X5o0acLIkSMD21q2bElKSgorVqwIbHM6naxevZrzzz+/wT+/lMSFEEI0Wg3ZJl4fXq+X//73v4wdOxaD4Xgo1TSNe++9l2nTptG2bVvatm3LtGnTiIiIYMyYMaeY01ASxIUQQoh6WrlyJfv37+eWW24J2ffAAw9QXl7OHXfcQUFBAeeddx7Lly9v8DHiIEFcCCFEI9aQbeL1MWzYsBpX7tQ0jalTpzJ16tRTylddSBAXQgjRaJ3MtKnhztFYSRAXNfJ4FYVlTjQg1mZq1Cv9CCHE75EEcRHC41Ws3XWUzD35lDt98wNHWQyc1yaRc1slhB3/6Puv7986XWj1ltPtocDuQClFbJQZi0l+9YQQp+5MdWz7rZBvUhHEqxSLv9vPriPFQduLK9ys/CmHb34+il4H0REmWsbbwOWmsNgJgM2kJ8FmIjbCSGysldi4CBSKn/YcY99hO97K5iMNSEuy0b1NIiaj/lf+hEKI35Mz1Sb+WyFBXATZfqgoJIBXVe7ylcxLHOVkF5Rj0Wu0iLSg12mUOj2UOsupcHnweBSHj5ayKduOy+PFotdh1mvoNA0F7D9Swre/5DP/p8Nc1yud2/u3IC7C9Ct9SiGE+H1ozLUI4jTYuPdYvZblq/AossucQdtyS5yUuzwYNUiKMOLyKopdHo5VuHFXFsf1Oo2mUWbaxFiY8flOBs1eQ469ogE/iRDibKA10KuxkiAuAkrKnFi9is7xEXSMs5JkNdbpF8Tu8uDyeoO2HSv1Bfam0ZbANi9Q5HQHDcsYmB6HV8HBwgrufe/HhvgYQoiziE5rmFdjJUFcUFHhYldWPht+yiHBbCDGbCDObKBdrJUeSZGY9bX/hpe7g4N4mcuLpmmYDTr0VdqbPAqclaVxnaYRbzFWbld8uj2XeWv2NOAnE0KI3zdpEz+L2YsdHMq2U1buAsBm1ONRCofbi7cy8Jr1Gh3jIticV1qvc/ufbJVSKIInRHB6FGa9b1+R0x2074EPtlLu8nL/xW1O8lMJIc4m0rFNnJUKiyr4JetY0DZN09ADEUY9ZW4PXuUrLduMemJMeooqh5uFE2EI7mUeZTHgVYqCclegV3p1ClhzoDBk+5SPt5MUaaRLajTdm8aib8x1XUKI06oh2rQb8zeMBPGzjFIKr8fL4cP2sPs1TUMphVmvC1SRe5UizmyoMYjHGPUYqgRanQaxFgMasL8otLOaQafh8Sryy12s3l8QlDeF7w/quS9+oUOTSGIsBm45vyW9m8fV+tl+yi5ize6jAAxok0SXtJhajxFCNG5aA7RpN+KCuATxs4VSCleFG5fDDQoykqPweLwUFDvIqxZoNU3DoGloeH1BVdOwVo7n1iAQaBVg1etItR0fGqbTICPWikGvY/vRUgorgqvLNcCi19iWV8rLP2RTVvmgoJQKKrGXVD4wFFW4eXbVLh4c1p6uTcMH5cNF5fxpwXq+2n008EStgAFtEnltXF/SYqwndc+EEOK3ToL4WUAphaPUiccV3PlMr9eREGPBbNJz6Ghom7dO0/AohQb07dCEthUuNu8roLjCTbTVSJemMVh1GoXFDjwehc2kJz7SRHZBORv3F+KpEpU1fE+7+4sd/N/6fRwucQRK/b7/EhTEDdUerd/6/kDYIF7icDP4uS/Zm+/Lf9Wa+3V78hn83JdkPjiUSLP8qgvxeyRt4uJ3z+Py4nZ68Hh9AbnqtKiaphEVYSIqwklxmSvoOH+HNKNBR0qCjTSdRtf00Gptr8dLaYmTslInyqtoHheB1WpkT14phaVODHqN1inRdM6IJcpqZMPREg6XOPEqBco3zasKui40jbEEvd97rIycogpSqmwHeP27ffxytIRwze5ur2LP0RJe/24ftw9ofRJ3TgjxW3e2t4nLELPfOa/HS1FBGSVlLsor3JRVuCkpc+FweqrMea6IiTQHjvFVbfuqt3U6jS5tkzhW6mDPkWIOF5ThcropK/UF7fIyJ0dziiktdqCqFKWbWIyc1yyGgS3j6Z0WQ6wGhcfKcTg8PDWqCzrNN9e6RwWXnjUg3mokMcIY8lnWZeWHbHvtu7213oNX19eeRgghGiMpif+Oeb2K/KOleKqN4QZwujx4lcJqNqBpGiaj73nO3wbu8nppmhyJyWJk2aZD5FaZTc1m0tMjNZqMuIgTZ0CBUafD6fU9MOQeLeFwbglNEm289+fzGPvaBvLLXIGObgpItJnokx4Ttnrr3U2HiDDpGd4pJbAt114RthReJQtszS5kd66dNk2iT5xfIUSj0xCTtTTmATASxH/HykocYQO4n9vtxWPwotNpeD3Hp0NNbxpDXJyFjb8c4/vth0D5xou7vQqPglKnh2/2FeBR0DK+5kCuaRoGg4ZOp6E8CpvFQHG5m9y8UszAN3f2Z322nR8OFbFi+xESbSZiLKEl8KoWfbefvi0TiLH60rVKjGR/QVnNw9iUoszh5PwnP2Ttw6MkkAvxO6NV/u9Uz9FYSXX671hZqbPWNC5/kNdrtMiIpVvnZCJsRpZ+u5+f9xdg0jT0Og29pmEx6INmb9twMLjzWk30lW3wGmAy6HzV+F7F7qxj2EqdjGwexyND29cawMHXfj5l2VbyKz/bLee3qjGAQ+WQObcLe4WLv/9vfa3nF0KIxkSC+O+QUorth4pYtv0Ib/6YzZJtOWzNLcblCS2Ve72+9b/jE2zEx1k5lFvC+h8PE2vQ0SzKTKtYC6k2E8bK+ia9pgX+7fIqDtVz0RKD3hfQ/dVXZoOO/MIKvMUOruyccuKDKx0pdvDPZVspcbgZ3aMpF7VrEnacp1IK5XGD143Hq/joxwPkFJXVK79CiN82TWuYV2MlQfx3xuP18ta3+/jfd/s5WFSB3eEmt9TJ1/sKeGfrYUqqTXOq02lYosy4PV527MojL7eEGLMBq1GPTvOVZCONOtKjzegr3/uDuAaUVTtfdUop3JWlfX9pPPBvzbc0qf8PSF9x4nMFzgnklThYseMIBr2O92+/gL7NY3095apcF48LXOVVtsHevJI6XUMI0TjoaIAFUM70hzgFjTnvIowvt+eyK8e3Hnj1WuYSh4cVu/OCttliLJSUOtnx81E8Tjcmgw6jXofVoCPWYsRYWXI2aBpxFl8XCn9JWgHmatOtVqWUwunyBvKhlPJ1YKvs/e7nD+xGnUab+IgTdjLRNK2y57xi6ZbDAFhNesb0SgdHCcpRhnKUgaME3I6Q42NlzXIhxO+IBPHfEZfHS+ae/Bp7aysgt9TJ0cr2ZJNJj8fr5eDBIox6DaNBj1Gvw6jXMOh9vxpRJkOgRB5jCu4Hqdc0mlUbtw0Ehq65PV4qqpTUNU3D4fatbuau0pBdNb9to8w1djLxB39/D/rCchfrKud/v6JnRuU0ch7fK4yYCDPtU2QqViF+T7QG+l9jJUH8dyTXXoHjBL3RwRfnsosrMFsNRMdHcPiQHbNRj9lowGTQY9DrAiVtY2Ugt1SWtvU636+6f4rUrqlRgTTVlZY7KausHvcH9TKnG68Ct9eLR1WWyL3B063GmgyMap8UWPREVaYD33rk7ipj211eL8999YvvvabDEmE74WdX5giWbcs5YRohToVSioIyJ8UVLpRS5Ngr2HesjDKnmyP2CrZlF7E3r5Rf8kp4a+NB3t50kH3HpJ/GqTjb28RliNnvSe0dxQGwRZmJS7CRk23HaNAHpj4F0BTodXqcbg9KgU5pGPUauAhUY3sV9EyLoX1SaNA0Ww2g0+Fwe3F73Ch8M6dVuNw4Pb7qdE+VwOyo1tlOp0GkghvPacr87/YHpmatWv3ul1/mYvvRMvJLnWw8UIgtKhqlFBVl1b4UNY2o6BjMFiv//Hg7bq/iyq5pdbtZQgA7j5bwxoaDZO4vwOtVGDTYdugYJQ43HZKj+csFrSj3wKuZB8iu7OwZazGQFGEi3mpEwzdMM8qkR6dplDo9/HCkhP32CjRgaPskpl/WCU3TiLUasRhrbqYSwRoiCDfmIP6bKYlPnz4dTdO49957A9umTp1Khw4dsNlsxMXFMWTIENavPz5M6NixY9x11120b9+eiIgIMjIyuPvuuykqKgp7DYfDQY8ePdA0jc2bNwe25+fnc8kll5CWlobZbCY9PZ0777wTuz14pa8tW7YwcOBArFYrTZs25bHHHgsEI7/Vq1fTq1cvLBYLrVq14sUXXzz1m1NHTaItmAwn/pEqoGVSJGVlThyVJeWqE6v4/22qDO46zVfVpJTC7vQQYzPxp0Gt6NexCfFJNpJSo0hMiSShSSRNUqOIS7ARF2elRct42rVPon37JJqkRuMCnB5fCdyfjwq3F0+12OzPib7MRYRZj9vrpXrdgqpc8zyvcprYEoe78g9ZIyomlvgmydiio4mIjCQqJpbEJslYIo6PZ39m9W6OFNevV704e7254SAj/72ONzce5OfcEnbllbIttwSMJsrdivV787n5tUzuX7yJQ0XHO1IWVrjZdayMQ8W+CYkqPIr8CjdepYgw6jg/PYZWsVYUsOLno/R8+ktaP7aClH98wp/f3MQveaHrGQhR3W8iiGdmZvLSSy/RrVu3oO3t2rVj7ty5bNmyha+//poWLVowbNgwjh71LTeZnZ1NdnY2M2fOZMuWLSxYsIBPP/2UW2+9Nex1HnjgAdLSQktgOp2OK664gg8//JCdO3eyYMECVq5cyfjx4wNp7HY7Q4cOJS0tjczMTObMmcPMmTOZNWtWIE1WVhYjRoxgwIABbNq0icmTJ3P33XezePHihrhNtTIadPTMiCXGpCfBYiDObAj0JAdfKTc11kq8xUBJYQVWswGLSR9o//bzB3KDXoeGr61dAa2bxXJ1/xZEWk2YrUbMFiN6vQ6DQY/RpEcX5jyaptEkPoK+3dPo0bEJOoOOMpeHMldoAPf3fgdfT/JYnZ68MldQKVwpRWGFm5355XiV75jiMid9MuICVfB6vZ4IWyS2qGgsERFouuP5slTOTLd0q1Sri9ptOljII59sR0Hwgj6Vv6eJsbZAMa7c4aa4LLQz5UG7gzKXr5+GV0GJyxuoYeqZEom+spOoTuer9XJ5FP/bdIj+z3zFTzUsGSyO06E1yKux0lT1ouSvrKSkhHPOOYd58+bxxBNP0KNHD5599tmwae12OzExMaxcuZLBgweHTfPOO+9w4403UlpaisFwvLXgk08+YeLEiSxevJjOnTuzadMmevToUWO+Zs+ezdNPP82BAwcAeOGFF5g0aRJHjhzBbPbNM/7UU08xZ84cDh48iKZpPPjgg3z44Yds3749cJ7x48fzww8/sG7dujrdD/9nLCoqIjq6frOLbd1XwKZf8lDqeDu0pmkUO90crXATYzUyumsqETpdldXD/G3Mvi8hP397tcPlocTtoUPrRKJsp96z+1BuCT/uOori+IgwTfOvcnZ86Jp/gpgJn+9EKd8KaRoaZS4PrsovUw3oEB/BpW0SGT+0Hfct2cLiH7JrnPzFZtaTHO372V3YKoFpIzuf8ucRv19KKa5bmMnavcfw+udEqgy0xx82FUWlFdhLfcFbp9NomhgdMm1wis1E81jfkrgakGQ1BNKsO1jEvqKKwOiNUocv4Os1yIiLYMqlHeidEUvLhBP3+fitOZXvsvqcf/mX27BFRp3SuUpLihk2qNNpy+vpdMZL4hMmTGDkyJEMGTLkhOmcTicvvfQSMTExdO/evcZ0/h9C1QB+5MgRbrvtNl577TUiImqZ7xtfCf+9995j4MCBgW3r1q1j4MCBgQAOMHz4cLKzs9m7d28gzbBhw4LONXz4cL7//ntcruAVwhra7uwiNu7OqxIYj3/RRJoM9EiL5k990omoLJVWXcVMqxyrbTZVa4fTwBphpHfX1AYJ4AApiRFYTAZ0/pngdP6x4sE1BgadRvM4K8NbxOFRYHd4KHK4gwK4zaind0oUJRVu9h8t5cmRnTinWWzY65oNOpIiTYHzm2tpdhBnN6UUD3y4lTV7juHx+krK/v4d5S5vUKncUmXUhterws5i6C+JU3kefxORv2odQpfU9CjIOlbGuNc30mX6Kq58+Vty7BV4vIr8UmetczSIs8MZ7dj21ltvsXHjRjIzM2tMs2zZMq677jrKyspITU1lxYoVJCYmhk2bn5/P448/zu233x7YppRi3LhxjB8/nt69ewcCbjjXX389H3zwAeXl5Vx++eX85z//CezLycmhRYsWQemTk5MD+1q2bElOTk5gW9U0brebvLw8UlNTQ67pcDhwOI5XwVVvh6+LohIHu/YVEGc24PYqSt2eoNKoBhSXOiktcWIvd3HUXoHL48Wg15EYaaZJtAWDXodBr+HUPMcfBHQazZvHNehau3qdjvO6prJm48Gw/fD8VeoxViM6nY5eydF4vLDhSDFHy12BNG1irfRJicZa2XO+qNxJiyaRLL7lXK5/NZONB4vweBV6nUa0xYDNrA98Dl/PehlqJmr2xoaDvL7hYI37HW4vVqOu8neq9r8PXbXJD7Qq/62oHFFSUwdOv8935dFn5pc0jbdS6vQ9FPRrEcdf+rWgd5glgs8WdfsJ1H6OxuqMFUcOHDjAPffcw6JFi7BYQsca+1100UVs3ryZtWvXcskll3DNNdeQm5sbks5utzNy5Eg6derElClTAtvnzJmD3W5n0qRJtebpmWeeYePGjbz//vv88ssvTJw4MWh/9WBWtcq6Pmmqmj59OjExMYFXenp6rfn0c3u8/PhzLpu2HcGi07AZdcSY9aTZTEQag3+0SsGWg4Xk2yswaBpmvQ6X20t2YTnbDhVV9kb3BT1/VXuzZuFXEztVERYDXVsloK82a5I/gNtMeqIr51HXaZARbeHKtknc0DGZa9olcVOnFAamxxFRpQdveWUnPaNeR4uECFJjzDSLs5AWayHSYgiq/vR4vTKsR9RIKcWLa7Nq/WL3T1zkqFIiNuh1gb4ZVcVXWRfAVFn7BL4HyoN230O8pmnH1zKo4XrHylwcKjjeeW79vgJufWsTn+44UpeP9rukq5z58VRfjdUZC+IbNmwgNzeXXr16YTAYMBgMrF69mtmzZ2MwGPB4fE+aNpuNNm3a0LdvX+bPn4/BYGD+/PlB5youLuaSSy4hMjKSJUuWYDQe/4NZtWoV3377LWazGYPBQJs2bQDo3bs3Y8eODTpPSkoKHTp04IorruDf//43L7zwAocPHw7sy8kJ7gzlf5jwl75rSmMwGEhISAh7HyZNmkRRUVHg5W+Dr4sde/I5VuTrZX28Wtz3irMYsVarMjbrdcSYDUSZ9MSYDTSxmYgw6HB6vOw5enw6Uk2n0SQ1CqPp9FXUNEmMICPeRlyECZNeh0GnYTXpaRJloUmUBU3zLU9a7vTgrByGZjPqK2eRq9aBDjiUU4yzsspy88EiiquMUa861tyjFEXlblb/EjxznRDgG+nw5saD7MotDRoKGY5/pEVJ+fGatOgIc8iDr0mvkRBx/Dup6gP21qMluCofBtweL67qvT3DsFeZntirfA/o//x4O2t+yWPVzlx+OFS3hYnE78MZq04fPHgwW7ZsCdp2880306FDBx588EH0+vDjJJVSIdXPw4cPx2w28+GHH4aU6mfPns0TTzwReJ+dnc3w4cN5++23Oe+882rMX2Acc+W1+vXrx+TJk3E6nZhMvrbV5cuXk5aWFqhm79evH0uXLg06z/Lly+ndu3fQg0VVZrM5qJ29rkrLXeRVeSI36XVEmPToNQ2PUpQ53USb9JRXebKPthqwWY14K+czd3sUMRYjqsJFSYWbCpcHm81EdIwFw2kep2ow6ImNsWDQaSTYQj+/UooDReVklzvJLnXSOtpa47nizQaUgn1HimnbLBa3V+H0KI6VujAbfQ8ICnC6j39JuuVLTlShlOKFb7KYsXLX8fbryl8RnY4aS2p5RWV4K3+XoiPM2KzBfUcseh3tE22VQzUhxuSbFdHt9fJTbik78st80xO7vVS4TjxRk1/1AO0frvnop9uJqyzxx0cY+fP5LenTPL5uN6Axa4jJWhpvQfzMBfGoqCi6dOkStM1ms5GQkECXLl0oLS3lySefZNSoUaSmppKfn8+8efM4ePAgV199NeArgQ8bNoyysjIWLVqE3W4PtCknJSWh1+vJyMgIukZkZCQArVu3plmzZgB8/PHHHDlyhD59+hAZGcm2bdt44IEH6N+/fyBAjxkzhkcffZRx48YxefJkdu3axbRp03jkkUcCT97jx49n7ty5TJw4kdtuu41169Yxf/583nzzzQa/f3kFx6uD4yonh6ja49xqNBNp9nCswoXL6ysNxFb+gWv4hqMZ9L4e6VEmA+VuJxUeL+mJv14P2KQmkbhcHpwOD97KMen+/x4tdfL94SK2V37OJIuR/ApX0JhxDYgzG4iu7JBXUFkteU6zWD77ORePV4X9YtTrNHqnx57mTycak+e/zuKxT3eE3ef1KggTyO0lFehQJMdYSYu3EWU1UuLwBGZNTLOZSI8yo9Aw6HwBXadpmPQaLo9vuGPrBCu5dgcHy+veSc1Qw+ICDvfx4H6szMXTK3fy0LD2nPM7by8/29cT/83O2KbX69mxYwcLFy4kLy+PhIQE+vTpw5o1a+jc2Tc0aMOGDYHJX/zV5H5ZWVkhHdFqYrVaefnll7nvvvtwOBykp6czevRoHnrooUCamJgYVqxYwYQJE+jduzdxcXFMnDgxqN28ZcuWfPzxx9x33308//zzpKWlMXv2bK666qpTvBuhPB6FpvnmNvf3tK7a4xx8pfOMGCt7CsppHR8R6IV+/LFTYTbqcbq9GHUaEfXogV5Y7GD/kWJKy1wYDBoJhzSaX5yEvoZpWMPR6TSaNovh/z7eTocEGwkWI+VuLzvzS9h0tIRjlUPedECUSY/NqKPM7cVd2WHNZtAFvlg1jnceurF3Oh9vr7mN0OtVXH9O3fseiN+fnbkl7DhSjNWop3vTaJ7+fOcJ03u9Ck1H0AyC5Q4XLZKiaNnk+PCmaMvxr9RmURaiqzVJWfS+9leDpmE26tEbdMRajTSLs5Jjd2CvcHOs7MQjWaIs4b+2q8d2Bbz0TRbzrolBp5PRGL9XZ3ycuAhW17GVR/JK2bEnn+So0Da4qpRSOLyKeJspMC+6v/3N4fLg9SrKHR6Olbvo1zMtaLhMTefbuiefvYeLffOoA4ZPS7A8mQ+PJ9PvwXaY61EVr5Ri6pItbCuouaNZpEHHpc0T0KpMDxtOr/ZJtEz13bPZX/3CvG+ywqYb2yedSUPa1zmP4vdj99ES7luyhfX7CgLbzAZdrWsOAIGFgJRSFJWU4/F4iTAZOK9tk6B0Gr7FgTrHRQTNfWCuDOBKKfIdbvaGmTVQKcXmQ8UU1BDIDXqNZnHWkN7uAM2jzVjD/O1FWo08N7pboLPor+XXGif+5ZodRJ7iOPGSkmIGDehQr7we+v/23jxOrrLK/38/d6u9qvct6WwQkpAQggSJoAKyizAz4IbLjDoyIiCizoCOfhVRw+hPERVFQYbBFUXFQRRZhlVBgYRA2Jfs6XQ6vVV1rbfuvc/vj1tVXdVd3QkkId3J8+ZVJH3r7rl9z3POc87nbN3KZZddxh133EEul+OQQw7hhhtu4MgjjwT8f8svf/nLXHfddQwNDXH00Ufz/e9/v+KE7inU8Gya0tIUJmTpNVnXZQ/Bq0rIEULQWEqqyeYdRrKjjUnCAaNUpw1NDcGdGnCADdtSbNhW1erUkVj/PQyAd+0Aj6/d9SxZT0puXbWFkK4xPx5CL72Xql9PMVPnkIYwUps4w7/iGZWyhD0p2TCQZmY8QMTUKtnvUUunOx7g7+sHeVn1FT/g2DyU44wfPcLjm4Zrlu+KAQdwizbZnM1QKotbSrZ0vdptdeFHwL5w8iHMSIQwNUFQ9z966flNF102TSD7K4RgaVeMrkRgXIA3bOnMmMCAhwyN4ATaBy/3p/nU/66dNElvOrO7jU9ei/b60NAQxx57LKZpcscdd/Dss8/yrW99i4aGhso63/jGN7jqqqu45ppreOyxx+jo6ODkk09mZGRkj17/lA2nKyZH1wQz2+OMJHOVrmLVSCh5rpC3XZxSQpeuCYQGuYKLEBC0dNJ5h8UH16+9r9mnlLyyJVmzzLgng7bNTwTSehxGbh0geUgziejOk/UeXz/I6o1DBDRBwtI5vDnKUMEh67hoQtBoGUTKnoUE2/Mwq6YMKjkAgO1JNvdnOHR2E09sGealHRlCpl7XMwHJb9ds5TLljR9QXH3/y6QKTiWr/NWSfGkNsn0+wvCnnXQhWNARpzFkMpQrYuqCEw5u5V3LZjCrMczRc5t5cdsIazYOkswViYdMpC745ZqtvtGY4DR0TbCwPcrc5hA7MjaOByFL59QFbfzxue047mgpqCt9Az5zkoic7UpWb0nyZE+SZTMaXtO1T2X2xZz417/+dbq7u7nxxhsry6qnb6WUXH311Xz+85/n7LPPBuCmm26ivb2dX/ziFzVaJruLMuLTmNaWMKnh7IQyo7L0v/IvfSxsYVUZNdfzKNguc2clxumn1yOdK5K3q3p1l7xwKfzuZ1KA9d9J+j6S3akRl1Lylxd9DXzbk5iaQANagiZQG/ab2RRGur7WuicluhBopTeg641qsBdKSWwPrx9AE0x4X1wJj6wfqIjBKPZ/bMfj12u2Tlp6JSeYrpFS4mRTeHYOkR2GuB8+d6XkijOW8PYlnb54kjZWeVCwsCvOwq7a8OyhXQluWbOFp3omF3YKGDrxkFl5vu97pZ+vv2MxvSMFXunPEDQ1Ht8wCJOcd8GV2J5EE/Dtu5/mg0d0csKSua8qd+VAYqzY1kTVQ7fddhunnnoq73rXu3jggQeYMWMGF1xwAeeddx7g52T19vbWKHgGAgGOO+44Hn744T1qxNW/5DTGNHXEToyQxA8lN8aDmGPCbZoQhIMm0q2/7bh9jXn/lb1wUVZ4k743nvnfofEbj2FoxGYwY1fOMet4FaNbXdsdCxmcs2IWWsnzkPg9xW3P/7hV25TryXNFd0IDXsYt9TVXHBiMFBwKjkc4oNMWD9DVGKSzMUhjxMTQa6M71ZR/zvZu8Bd4bsVn++ej53D64g4cz2PLcI4Ng9m6z9RTPUl+9vhmfvXEFral8iyb2cDX3rGEf1o6cTtcKSVFr7ZJkJSSL9/5PNtTec4/Zg6fPfEQPnncwZOed39J5dBxPe5/dhOnX/EzDvr4d/jz6pd29dZNeaoFo3bnA9Dd3V0jvnXllVfWPea6deu49tprmT9/PnfeeSfnn38+F198MT/5yU8AKnoh9RQ8x2qJ7C7KE5/GFIsubtVveTmsLkRtOYxp6jUNRsqUfy4W/AS3enNt1USC/hy668lxXnjlHARkvrMd76I5aBPM0b2yNcnDY7LHPSDjeuhe6dwleEgWNUcIGDqZoosxycSVEILBXJFUvsjWUjOJyebQNU1gKW/kgEEXgmWdMaKWge159OWKFD1JyNIJWTqDaZucPX4067ouuUwGt9z7wAwxpznCJW87hI8eM48b/r6R/3l0E/2lAWlzxOKfl3fzrytms3Ewx0W/eZInqzxuTcDZS7v4rzMX88GjZrFlOMdjm4YqkaOy8fUkZMaUR5af5+sf2cAvVm/hkmNnceujL7B1OE9XZwemPvq8255kR7ZIvjSwFUJQyPrJoz2DKf7xyl9yxxc/yAmHzd1Dd3jf8VrmtOvtA3wl0erEtok0PDzPY/ny5axcuRKAI444gmeeeYZrr72Wf/7nf67ab+2JTfZeeq0oIz6NKSfXSCnJFv361LI91YUgbOpYhoY+prFCPQq5IqGdlJjpusbsjhjrelI1c+HVCAnFDQX6bu6j4wMd477fsC3F6hd3kC66GAKcMR6zK6mZs5zX5tf1+y81l0hVPXz52oUQpGyHoaLLv/5iFQPZYqWpxESkCi6D2SLNe6ixi2Lq8tj6QX63ajPL2mJ+rgiwCFifyvNKKaekMWpRGMqXuuv5z5Rt22TTfgKkhqQlEeXRb72PGQ1+E6V/v+1p/vhs7WB0IGNz9QOvsHrLMH9dN0gyX1v/7Un43VM97EgX+MU/L+cLpy7k0Y1D3Pn8dp7elvTrzF0Pe5JQkgek8kW++Ofn2fqKXxq3NV2gu6sTQxc4nh9GL1OOag3v2F762f8de9+3f8uPL/onTls2F12VoAEQj8d3KTu9s7OTQw89tGbZokWLKm2nOzr8d19vb29Nz4y+vr5x3vnuov7lpjGG4Ru0ZN4hX2XAwf8lHbEdckUXXfdbj2bzRfqGsmzdkaanP81gKk/RKfU53gW5R4BDZjeSCFkVL7wuGmz40ga8MVm/nid5ev2g/3fEaNLaBJiaYFGX36hkZkuElO0yXHAqamuyFFYfzBcZyDs8vj1FwfHwgJHi6ACnGikljifJOh5FV4XT93ee3DzMbx7fjOv5hrncMU8TgoMSIebFfYlfAYQD/vNYHiCapkkwFALXQXML/PiSd2EZOo4neeCVgXEGvIwEHnhlgHTBqTsH70n/+/N+/QQfv2UN//v0Nk5d2M65R3YzUnQnNODlVqX+Iy0wTItQxB/k9m/vYzidJW274wy4EIKedS/hOrUDiv5khn/8xm844tIb2TwwffuWiz3036vh2GOP5YUXXqhZ9uKLLzJ79mzA1wzp6Ojg7rvvrnxv2zYPPPAAxxxzzO5fdBXKE5/GGIaGp4lJs22zRRdNg6GRPLlCVTvEUv/wXMGhKR4kEts16VdD1zg0GWJtHS+8ggf5dXmSf0nSePyoWtRAKk/ediuGNaRrOIYkU6fERwBzE8FKFm5D6QWbc7waKdky27K2H47EV7RK2b4KXMTQKmFGT0pyjke66JEIGrQoL3y/ZvNwlqvue4mRvEPE1GkPW+MSGecmQmwaKVCU0s8ZqfodEUIQCARo94aZc8wKzr7pCTz5BNGAwezWONLTJs1J0XUBkwyO73lhB0FTR9cEt67dxjFzGgnoGoVJBpeZmt9hSSAUJpdJ43ke6196idaOdpqam9FLrZizIyl2bNlEeniCPBUpeWnbEKd97des+caHMY29K7e8VxC87m3MPvWpT3HMMcewcuVK3v3ud/Poo49y3XXXcd111/m7E4JLLrmElStXMn/+fObPn8/KlSsJh8O8733v282TrUUZ8WmMlJJ0YedyjTtSeYQ3uk35tVKeNx9M5Wnv2nWxhMZjGzj014fiFSZ+2WgBjcSbatt95vKjAhaWJrA9iFsGQd0j47g4JW8pqGuEDY32WJChkQJ/WbsN23ZpCxn0TSBPmbSdynUFdcEIUHAlBddFw4WqbHVNwDsP79qljHzF9MN2PL569wvcutZvXlQRJdIES1sidFRp9etC0Boy6ckU6u5LaBq9xNm6ebQKJF1weGbLIIau0dXWOOFzpO9kCqvspZf/fHjDEJYuKops1VNG5evKjpm3rx4ieJ7H9p5tbO/ZhiFA2tlx3vf4C/TD7y9uG+Lbf/gbl/7TsZOvrwDgqKOO4tZbb+Vzn/scV1xxBXPnzuXqq6/m/e9/f2WdSy+9lFwuxwUXXFARe7nrrruIxXZPmGYsyohPYzzPb2RSJmjqtDeGaAhbICCVLbJ9OIdd9LA0QcH1asLuuoCgoWPpGslkgdbWXXsctIBG27va6n4npaRou7iOR9FzsTwBAnLZIm7JAAvht021S16FpWvjkswsTdCaCPB/q7fguhJDEyQsg6CuM1Qoki1dd8jQaAwYPDkwuq0QgkRAZ7i0fw8qbzsBLO1M8KGjZu/StSqmH5ff+Ry3V4W6y8+740lW96U5ukOjOeSXMUrplzcKIfA8SaDU1a86uOVRv2GO43oMDKdpb64/h7qzCap6TVVsVzKccwiZWkVO2fUkGdslZ49PdMtn6osWOZ6EnRpwzf8ASMl//uwenHyW/zz35J2c+dRiTya2vRre8Y538I53vGOSfQouv/xyLr/88td+YruAMuLTmOpktaZogPmletTy8oCp05YIsmlHmu1DOWzXw3Zl5YVklpJgQqZONmcDu9f8xM47pJP5SlcnAE/6L0RN+H3CIwGdTMFFl35Hp2SdjGBTE8RMDduRFZGaipdtaHQataF/AcxJBHm6P1NpkBLQNZqDgkzRJV/aR9TSOW/FHM5e2lV5QSr2LzYOZvnDM5OrBr44lOVNIT9KJIQg67i4nqRY6kdQlmGVpWxxx5l46iiTK+C6Xt26a3snSnDWBM+g60nSBZdUzplYA0JK7HyeQm5iuWJ0C1x78u/L+wNA8MWf3MHSeV284+g9Kw26NznQG6CoN9k0RtMEzQ0hAqbGwWMMOJTCiBK6WyLohkay4JJzPIqepOhJskWPVMElY7sUd1F6sh7Sk2RSeVJDObxSb2TX83AcvwTOKycVaRqHtMdLJXBgCEGTpRM3dUK639CkMaATMzTmdsTZ0DsqT1hOTKpHLGDw5q4Gxl6BoQkSAYP2sElbyOAH5xzOuW+YqQz4fsydL/SNawQylqGCQ8H1SmIoHn3ZIiOleupKUpuuIfCfoY7mOE3x8ITCQEV3TIhbShzXrcn/GIuhi52epxDVU7WjyZxSSpyizY6tGyfZWoJugF5HL11oYAT8HqvVeA5CwDdvuXfyE1NMKZQnPs3p7owzuCNdUwdeKLoMJHOMZIq+2IsmaAhb9I0U6sqzpm2XtL3rrRCr8VyPTDJfCY2Xm6sYuoZmCApFryLUIoQgETI5oruRV3akGc7aeAhMAabmJ9QkIhYzWyM8s6E2EUfihwiNqn2B7zV1lJLyTp3dxJ0bB9GgYtDLf3/Hwa0sbN+zc1GKqcdI3qm0tJ2MouthaTqrelMMj2k2IkqKgJrm9x3QNEEsHKC5Icq2/iTpbO38ebmpSXnbYrFI75YtOB5EWzsJmEbNANQyBAFD22nZpxACXS/pP3iCfHoE1y2STQ6RdUBOFC6XEkqiM1Iz/L9LF2EESiODCQaxhSxSwl+eWc/QSIbG2OvXlnh32Ffh9KmCMuLTnFjEwnRHuyXlCg6bto/Uzul5Es92mREPsjWVr2vIk5nJ2x9ORG6kgOeOzrN7Ulb6ldtFd/QAVcRDJkfMaiRnu9iOi6b5JT8NzWHiUYt7n9haSUaqxil5+eV+yqYmOKQ1il10kcDbuhuZEQ3w0NZh1iVzAMyLh3jzjARL2pQBPxDobgyVyrAktuORs0d71YcsXzdBE4K847ExlaclYtEetXyPPG3Tl7FLgkmCRNioDZNLSVdLgo29gxRsp2S4JTv6BgiFgwggl8+TyxWg6IJ0GRnYQSbS4Ce/SWhNBHfJgFcjhADpsO251aMLdRMRjvvetltlzD0PpFezrfRchOcQi0YZsT3fyI/RWSCXqtnu8zfdyQ8uOvvV3v59gtgFHYxd2cd0RRnx/QBd16D04tq6I1NjwP3wGyB8o9ccttiRsWuy1AEyhVdvxF3HT2CrGTC4EtPURo9LSe+8zpxTWS0LQGiCeNTCdjx2DNfv8AQlMRhXIpC0N4bQdQ3heBVPaEFjmAWN4XHbma+iPapi+nL6onb+6/9epC9ZwK4p75IUHI+AobFsZpwh2yFgjvajD+ga3YkgTSGT5/szeJJx4fOyvGlTPMy2/lTJQHrk7SL5QpV3LkuhbMcFO4sXilMsnUoya9MSD6Gx68pdUkpSfT21C90icmSArrZWtqXre+TSn9T31wXymRHesXwRtz+xHkTp98GxkYU0OLVz5z+5dxX/9ZG3Ew8Hd+kc9yX7oMJsSqEmB/cDyvKmmbyDU6ox9aQkX3TJFf2M9HzR87WjDa3S/cir+mRtl607MhUVuF3BLZYlHUeX+VrtJUGNqpdgea58IsJRCyEEmQn6KI/FKpWglb3+ndHYGNql/SqmN7GAwaxEaIwBH6XgeGwbzpf0sqvyR0rPbMTSmREPllr0jn+1CyGIhqoMW3l+uTpEPTZkXTVn7riSZMaXeC1HDDxPkrfrP/dSejh2gaGezXW/7xlOYwQj5ZVLf8hKlIBCprJu2DK48aKzMLIDyOFe5PA2yAyOM+BoOnnb4bnNfXWPqZhaKE98P0AzdTzbpVDK9PY8Sb5OoprtSpIFB1PXMEo6647nSzw6Eu59yh/tz2gOc9jcJloTu2b4/BfgqOddlq40dEGx5CS4ngTh186ONeaOBlv60zi9HqlUoW4ovRpLF7SEzUpiULkn+kSZvMGgQTw+9T0Kxe7Tly7w940TCJuU2DycZ2YiWKM1XkYIQVvEYig/cY5ItW2vNB8xLChOEEEacxgJjOQcUlWaB9lMmngkSEMkgGGOlr+lB/vp3/AynjPB4NYM4loRKBZ9j1rTK943TpHyb5Kha5xzzBIaoiE+ctqb+NHtf5ngXLXKCVvTRPhFzYkrpj1CE+hBA1FSTrTreNMFxyNVlbxWTt4JGDqe41U8eAEMJ/P8fW0vjVGL9qYwM9pihILjHxW9KkSt6wLH8Ut0XNdDK837WYZWKbVxXYnn+nPgCF8adutQjkyuiBBgahoaELN0UnVKz8okAv65uJ4/UBBCELQMCkV3nMxlIKAze3bjTpu7KPYPHl43MGm7USjlgOSdCRX7dE3geR4Z228vahl6JbQupaQwJgm0Ysg1AzynlFhWen6F5i8voWmC4timRa6L9DySqRGGX1hNIBJF0zTsXBa3OEmJGCBKpXKE4xj5YaRdwK3TSc1xPX7512cQus5ZRy/mR3/6mz8HXpkHF362eimC0NEY47A543sfTEUO9DlxFU7fT9BMnURzCK/kYVfjSlljwKvxpCSoCwzN/7SFTWKWTkAX5PIOG3pSrHm2l81bk2QzNrJq57qhoZcajWhCYOgCQ9dGa7ulxDC00tyjv43EN76BoMGWwSyZUmmPlP7DKISgIWhWktfG0hw2K/W16YJDdVZw0DIIBwwCpk7A1AkFDGbObFC9kw8g6omyvBa80nRy0ZVkCg52qVZcCEGm4BAKBTGMMQNbTRvt1+uVft+CsYqB0DSBqAqzV5TYCgV/IDC8HaRHIZ0ilxr2Dbg+sTSwiLcjDLN0XhpuoovOJj+B0yiVyI2em07Odrjp3jW891u/YfHcGb7Xrpulj1EzBfCOYw7H0KeHJ36gozzx/Yhg0CIUMskXa0tgxobWPekn+VRPG+rC94CrS9WiAYPWWABD03DzDju2pxGaoKExSCQaQEoIRgPkUnmKtluaX/drxJNpl3DI8Af7UqLrAksTaIaGZRkMpPJkq0KWWtVxdU3QFQ0wlC+Stt1KaL01bNIcthgpDUhGCkUiAQNDG91WlAYTEohGLQIB9YgfSMxuDJLP5ykU7FLLWY1AwMKyrBpvKxqob6DKteNjf2fyRQ9NCIquR9EDy7IIBAK4rks6nRlNIgNfYEV6YEXALE3j2FmsUrOScka4lBK7kMdzCsjkdsgma09GM8AKgmv44XHX8UNlVgQRaUBYtdNdwrA4863HctJBDXz11/ezZl1vKetrNBve8Ty8ouSFXBCsENi58Tch0sidG3K71J5Yse9Rb7j9jM6OGEOpWiNe3a3L9WTdBiKe9NtzNgQNdAGRgEFnIlTj6fqhP0n/jiz9O3ylKE33E4AKtku2UKx44eGAUSPQEgzohIImnifJZooMjMlAH+s/6ZqgJWzRFJKV/cTGvHilhO2pHI3hAGFLrxzL8yRGUKe5dXrUuSr2DOv607zzhw+Sz48+/57nkcv5Rj0WiyKEoDlsEpxgvlcIwbaR+jrqmYJDvujVDAY0TSMajTAykkbgYRgCIxRDWEEK6RGcgY14ye3IXIqMpmHE2xBWCBmM4+bTfti9KvmsBrM08DBMCEYQ4YZJr19KyQ/vfx7JQp7rGQa9Xk0IeJqBMIKIljmQTyNzSf88DAsR9gcHW4dz3PfCNk5c1DXpMacCak5csV8RjVgELL2S5FaNlPUT3lxPUizVd48UHBpCJq3RwLgG9lKON7aeK3E8j5GcXXFEIkHDV7wql+9YOoloANf1sIuj2fM158ZojXnNS1IINF1g6aPzXqYmKJbCpp6EgUyBoayvsgV+TsDRc2ZM63kuxavn/Tf8lR1p3wCPTXT0PI9cNkdzIsohOxncjRTq52NICelMDiEEpqFjlkRcdF3HNAw8XMKRGKFwSbchHiO5bpB0fsQfBDtFnIEtEGlESAHZYT+kXQ/drJlLx7GRngcTzP+OJosKfvTQK1CcpMpDq2qwEoohQvU1FNbvSPuN1xVTGmXE9zOEEHR3xXm5SvHM0jWKnltp1VnG8fy58kLV226oAK6AgzUxxoDLCTPG80W3YsDLiUDVREJmpRdymYCpQ672ReN4clwjFPA13qtrdkOmjlNwas7Hk37yHsDBsxp3qexMsf+wauMA6/vTnLGwi8O7GrF0jZFCkcc2D/LXjTsoOB6OU+TwjmjdZ6yaicZ+EonjOICgWHQQhSLRSLCSD5LNFBi2bTKZLM0tzWiaRnz2ItI965CuA2bQ96aDMf8ghsk/Hb2ApzZs55Vtg6MHNwK+Vzz2RPIpCCXqDK7LZSEemKEa0Zb6F7JrZaTTRp54DyS2TWdXXBnx/ZDmpjCuJ9m4JYnnSUKGRrbo1ni/rpQM5Ivj9MYl0JO2ebpvhMPaR7szTdaIoVAc9VwsU695yeiaqBhUt2oSvjESYEeqNqTuSontepglaVUX3zsPmeY47zwWMMgV3YpH7i+H2V0JOtuiu3KbFPsRD7+8gwvfNB9D0yoDvljA5PiD2ljSkeD6R18hV3QZztm4eZe+jI3jegQNnfaYRUvYf8bK+SJjkVJi28UaAyg9STqdIxYNIZB+iZlhUbRtUskUDY0NoGkEW7rIZ7KISEPNfLgIxljbm+Wer34UUxd84eYH+Z8HnpnYILmOP4ddNRdeqQcvq7BpOlBKWHMn8MbdIlJ6wCTGT0oyuTrz5VMQJfai2C9pa4nwhsM6mDe7gZldcRZ0N9QkqaSL7jgDDhDQ/f7KyVyRHen8pAIt9Rj7TpjoHWEZGp0N4+vQXSnJOS7ZUnLRRD2Z/a5oBvGAQdTSiVkGzdEAMzqUvOqBhpSSfM7FrDLgZTQhaA4HOO2QTgCe7cvwfF+aZK5IoaSb8GJ/lmf6MrieR89QmqHBYbLZbM2z7wsRjZkrlx7Sc/1GP15Zpa0Anks2k8HzPEAi9QCER7umVf+5cUeSc676Pe0NUb71LyciJgqvI/xadOmC5yJLn1LmaGkVbbTcqlx6VndXGhQLo6Vx9VbxbAbTEysnKqYOyhPfj9F1jdbm0fm/tpYId/x9E54cn9ymATNjARIBoxI6H84WSeWKdMRDBHdRttTzJFStWlal8l8uo+8bgOZYENPQ2JHMU3Q9DOFnlWeLoxnpOwuTaWJUWat7ZoOaBz8A2bgjg/SYMJNa1wSHdzVwxwvbSOVdEP6zb2iCWMhA1zSSeYeX+7O8vHGrnwiayZDSkjQ2N2FZFql0lqLjwjgpIt9Dd23bz0TXTd8j13SKdhHTMrG9iZ9jx5M8sX47f31hK29eOJPjl87jgWc3+c1NpC+QhGb4HvarkGnFCkEo7muij0XTwHOQxTwYgfGG3LHBtelomB6JoWKyiMKr2Md0RXniBxDxiMX87gSlAFwNs+IB4mUd8yrD6EnoSeYqdbJjKQu6lLEdb8x8HZWWjEadObawZWBoAlPzvYiiJ8fN2+/KL+js2Q1EJhDvUOzfbE/ld2rfDE1jRlOUWS1hZreE6WwIEjA1hjPFSq7GjqxdMz3jeR6D/QPsGEyRLbi+IdV0X3e8qqbacZ3SQFXzjbgV9j1kARZu7ci17rkJ7n16IwCfPXM5UuhgBvzyMjNYquEuXeBYSddqvDGtT0MJSHRAIOrvxwpDtNkvffNc31gX0v6gw7HByfs/uzaWqXPOUQdNflOnCOXs9N39TFeUET/AWHZQC/M6a0POIUMjZhl1jWXB9ejPFXlsa5JVW5NsGs7VlKwBBC2jMo51PX+OvPplks4WS52kxrcw3pHMVcrSgIpyXBnb9Sre/ETE4wHiMSWreqBiaGJynd4SDdEQhu6H3IOmRnsiSEs8QM4uC7loGEZt/20pJY49JowuSrOwZWPqyYolEOV5ac3ANE3OP2bOzk9MiMpA4sTF3Vz74RMmXA8zjNA0Yg2N6GPFWISOKA2GK1ZJNyHSCLFW34CbIT/kX54vl9IXpnHtmm5o718xn0Q4sPNznwIc6EZchdMPMDRNsOLQDnZkiryyfQQJNJRC6GON+HDeYbAw+oudczyG8kXWD2WZlQiiaxqBkv50vuiWkuh0wMHzdIKl2m3PkwwmCzTEAlimjutKRnI2fcM57DF1t/Xexcl8kcZShvvYczQMjc6OeJ2tFAcK89qi/N8k30spyToew/Zoz/vyn9GAXhl0+s9WnSfQdcCqSp8qh7kRJY9bgGZWJFeFEKAbXHnGYt79hhn8f7fcx1Bm4vllx/V40yGj9djnvHE+X753PcP9/eRzpe10A7TRgbZpWTS2tlEs2rhFByEEeVfguB4ByyDvWL6xHktZDlZK3/vWzVoLJiWa59CVCPKj+5/nugeeZ33/CA1hiw+sOJgL3raIjsT4LoGKfYcy4gcob17Uxsb+DI7nUW8qMVN0awx4GU34L79NyTymEBUjLoQ/q5QUDjObwrS3R4jFgniuREiJaepoGhRsl6HBHOt6RxACAmO8CU3A2AZURU8ymCsSsXQCejl5BxobQrS1RVWb0QOcxmiAQzpjvNiTYtB22JErUvA8TCFoDpo0B02e6k/7ksRerZkWQCJkkrVdPM/DKU7Q+EQ3odwdTAM8ifAc3xsXWmlgUE768A25pXlYhs4Fpx7Blbf+bZw2Avjz9bNa4pyydG5l2c8e30xR6nTNnEE2m2c4NUKh1CrY0HUMHQrZNKFoHMsKgBXA9TzSI3kQglgkSDBgkBoamrhxCvgDEKcwGqKX0l+mCX7y2GY2D73orwaM5It8489Pcf2Dz3PfpWewsLPhVfwL7V384dXuzolPX5QRP0BpjAZ49zGzueOJrXXbNg5PYMDL8qi6gGCprWnZO5jXFmVOa7QyRy7zju+NaxpF22XHcI5C0WVjf5rSK28clq7VVZRzPEky7yCAw+a30NIYVpKQigonLe3knlf62Z4ZbRhSQJJOF9iULvDiUJZ6XXYl5QGoJFcoQqA8X1wYLSfTdGSxAMVcTWMTaQYAAbnhMV6vQJoBUjn/XP7zn97Eoy9v4+6nNqCVytjAN+CJcIDffuafap7lv7wyQCbvEA8ZhMNBIpEQnufheR6927aTyxbQNI1gxJ8WE1XhePA9e0PXaWppIZ/NkstkcEuhcjMUxrEzft165SZIP+u9hGeE2DKcGxeTcD3JUNbmXdf+H099+eypk0R6gNeYKSN+ANOWCPHPxx3Exh1pXl43WFnu60ePN+zV+uYBrdaAH9bdwIzGUOVnTRMESolyrifpG8zieZJ03qnUnPtNJmpD5LoQGELgTDAH3tkaobUpPHVeIIopwa1P9tCXqd/xy5OS7niQlwcnrns2dY2s7SJ0A6nppdaiOT/kLDQ/4asa6fk120IDp4C0c5AZGtUiD4T5zUMJPvqWQ7AMnf/9j7O5+eHn+OHda3hp2xCJsMX73ryY809eRmdjra5B0fV7jA+M2LTErIoGfDKZolDwBwue55Ec2EGiuRWotUG5QpFoyBeLCUUihCKRUflkoKB5pPq3T3wzzeCEuhCuJ3l+W5KHXuzlrQs6J96H4nVDGfEDHCEEc9piCFfyUqkPc73f3+p8NAE19bgNYZOZTbXzZJY5mumeyRT80jMYl+XuSIlBbf1s0NAoer7wS/lcggGd2Z0JZrZHlQFX1JAvutzz/HbmxYLMjQUJGRq2J9kwkmfdSJ6iB7GAQdDQ6soOA5WEt2q9f6wwUgpw62upA36tuJ2HgU21y3Mp7rn/Qb4xv4VL33UCpqHzwbcu4YNvXbLT6wnpfoVGvujRmywQCxqELJ1UsrZczLELDPZuJRCOYFrBitRsoehiGi5BazTXxc9N8cgmB8iOpNGCEbz8eM12EYggd1rWCX9ft2PKGPE9kZg2nV8pyogrAJjdGSdg6qzbMkw279TokwOThptmNoVL2edlQ1xr5DNV8qpjDbDjSYSGXyNe5X1bukZLQ5A5JZEay9SV8VbU5ZUdaVa0xmmoKpE0NcnixjDz4kHu70mSdVxilj6hERdCEDB0dEMjbBlomsD1PLI5nfSwPTrnLUZrkivPqzlBaaOm84Wb/sRpyxcyq72ZdQNZQqbOgrbopFNBmWyusn/HhaFMkcG0XZJ8rUVKST6TppDNEIgkKJRe6emcjV10CQUMvxWvhIQoMJBOgxBYje0gPZxMEunYCE1HD8cRhkV+ZHjS+13uVjhVEKX/dncf0xVlxBUVOloitDeHyRUcXupJ8feX+ivfyapJbEltGDwcMCoGHMYb6uqxQNjSGc7WHrfoSRzPxdD8X0bDECw8qIVYtI5+tEIxhi3bRkhYtYO8Svc8XeONbTHu7xmufGfpAlPXcKUkXxw16vGSzsCoZLBGNBwgZLXRv6O/8txXH8OXT40jY60lyVOJrhmEmjswG/xQ9/E/WgWM/h7Magxx6YmH8IGjusddy7ZUnr+uH8DNFdBDscrv2byWMC8lRV3jKTSNhtZ2dN3AclzSpWZEtuNiOy4BQ+OzJx/CNX/8e2UbTdcRmoVu1ZZm+ipzO6c4Ubxd8bqj6sQVNQghCAdNls5tYsEMv3SruvCm/BIrVtVu245X83IZW9Nt6KMv16Cp122sIEv7tD2PubMaiccCyoArdkrBdhlO5WsGkdVoQtASNElYBrYnmdkQoLsxREc8wIxEkNlNIWIBvablbjVCCHRDJ9GQmPB7ABFrQQi/DWl83pKKAS+6Ek/6zUTmNYc5Ymac5rDJN+99ka/e+XzttTgu/3rzE3iagXQdnEwSz87THjWY2xymozlR11+MJhrRdb/8LGAaNMVCxMIWkaBJPBzgDbObOX1hC/1VMqrS8ybQXpATd1aruubh3ARZ/PsAVSeuUNRBCMFbF3cwqzXKM5uG6E8VEFCZ2y54siSyIdk2lKvRQZcSXNdDK3VCi4YtBpP5yn47GkJsG85h1wltHjSrgdYmVYeq2DWG0oWKIJrrSTKO3xRHE4KwoWGVwtbtYYumiDnOCOoC2mIBJDCUrV+OJYQgGAqipUbqeqpCCKQVhmySSMesSsi9LFzUFrM4pDWChMpgIxLQeWT9AH96tpe3HtTCfS/t4P9e2sHm4RzhUJCR1AgaksXNQbq7ErjA3M4WegeStdEATSMQqk30LBvzMi/1Z3h620jNOTv5DGZkvL66KIvYiCpN9rH3zDB3WYb59aCiF7+b+5iuKCOumBAhBHPbY8xtH1V429g3wqqXB0hmbDKOR0AT9KXyDGds4mGz8pKyHY+g5Xs44aBBJjfa49zQNGY2hsnaLplCEaEJGhpCdLVGCQbUI6nYdcqv3pGiy9CYssiRous39AmaRIJGXW+9/PJujVgM54oTKqQKITBMA7swmgGvmQE0K4jQSp58IAi6VQmzexIill7pXz5+yknyg4de4Qd/XYfjSgZLg4hYyCQdS/ChpR20x8P8dbuf0BYLBzlywWzWvLyZouP6Am5jOvxNdI+yriBo6uRLHQeLuTRGKAramGkITUM3jJJ4m/RL6sr3RPNr4l0JZx0+fipAsW9Qb0zFq2J2W4xZrVGSGRvb8YiGTAKmTr7gIIouslSa5nmSvO0SMHU0TdDaGCKZtkln7VLXREEsZNLZHiWeCE7rkbBi39EUD5J3vXEGvEzBlfTni6zurdMIpAoh/Az2VH50P4LRMKvnT4hXvtNDMYRuVG0vwAqTL3oEDI1yy/KuRLDGAwc/ibOplC3/cipfUTdyq+rH37u0i5kNIewxc8/NiSgnHLGA3sEUqUwOTzPYWcNQiT8w+PBbFvHDe5/2bbKU5If6CMSb0K1gTYvUhW1Rnt2W9O/AmN7ruiY45qBWjprTvJOjvn4c4GXiyogrXj1CCBqitbrKkZAJIRPP9XBLyUKaIRBaSU9JShqaw8SbQjilMLppqYxzxe5hGhq5nWRK5+toHtTdV1XGuGVoaGLUU5dSEgmHsO2i733rdXoNlH4uOB4h0/97S8TE1PzufJ4ESxN0hS1aQxZrB2tLvExdQxeSI1ujzG/wNRcCmr9NtTHXNI2ulga6WhrwpOSpnpFxKofVaAJOOLiVf1jcwXV//juOWZqu8lzywzsQmoFmGMiBzTC4hUXHLuFj7zmVT9/yeKVNucCvJDlqdjO3fOy4KfV7q0rMFIo9iKZraHq9fMmSCAwCq+73CsWrZyRfZCRf64XrAqxSp51CSWugNWT5sqQTIISoeMIBUyt54bXh74ZEFMPQGcrtPIM7Yhks7ogSsapesVISNDQaLAPH88i7nq/gCgQ0wbKWMEe1xUtz+17luDMjAdZNcO6GJpiZCLJxeOJrW9QeoysRJFNwcDc+iYy3IRo6kWYQXAeZ2oQ71OML2wADwyN8/PgF/MOybm565BVe6E0RC5qcfcQsjl/QPqUMOKg5cWXEFQrFtKVYlRypAY0Bg7Ch1XjQGcej3bPYMJKfsNmZocHijjh/3zQ0zoCXEUIQi4bJunlsR1ZtK+hKBGiJWAjhe+IzE8FKiHZGxGJBIkxryCRTdNmcKZB3JYc3RwFJ3NRpDpqVSMDY6q1Z0QBJ22FgzJSBJnw9heWzGtma6sWpU/alCdgwmGFdf5oP/nQVnhGEoR7kUE/9+6BrzO1q57a127jmwXU8unEIXROcuqiNSEiVfE5FlEukUCimLbGQian7Uh1tIbPGgINveCOGxsKq6ol6NIQsfvqBI2kOT26odAGRquTLWEDnTXMbOKglTCJkkAiZdJcMuBCCJU1h3tyRoDlokLIdXkrlK+F9DeiOBGgJmuhVioXGGCEYTQgOa4qwqCFM3NRLkQbB6YvaueqflnLfy/1YhkbQ0DA0v6+BrgkChkagdD8++bu1rNo8jGg/eNL74Lge2baFvPO/H+WhV/rJFl1GCg6/f2obb/nOQ/zk0U2Tbq94/VFGXKFQTFtMXWPprEaipoap1Q+rCiEQHswek8dhaoIFiRCnzGzgjU0R/vj4FmJm7StRE/78eNDUCFk6pqHRGrUwhG/QD58Z90WKSiFdo8oYtwQNFjf6mekC2JSulW9NWHrlnKtP29BEzfy8fx6CzrDF8tYYx3c1cN6RszjvmLls2JGuqNBpmsAyNAIlLQZdEzQETU7sbuAvLw/4bc/bD4ZwAxOlcp12+un86ukBoLaboONJpISP3byG9QPj5Vr3JfuiTvzyyy+v/JuXPx0dHZXvpZRcfvnldHV1EQqFOP7443nmmWf28JX7KCOuUCimNccuaCM+QWli+d3sScnB8VFvPG7qnDm7ieWtUVqDJk1Bk+GRAh86tJMTuxsA35sdm+AGgCbobArRHg+MGzjoVeseHA9VRJCStoszJtodt+okx5WIWnrdFsEATVGLGS1h/vu+V3jo2e0TZlY3Bw3efUgrnZEAmVJpmdANtEPfhmg7yK8HL2MGOPotx+O0HFSJCkzE9Q9vmPT7A4XFixezbdu2ymft2rWV777xjW9w1VVXcc011/DYY4/R0dHBySefzMjIyCR7fG2oOXGFQjGtCVo6IVPHLlVFWLogaukES6Fkx5NkbJek7c8pC+CEGQ0E9TGh99KfKzoT9OWKvJT0i7fqybm2hk3ilkHc1Mk4Hh6Mm0tvqpIjLtTpg1odNi9ngZfRhaAhYJB3/AQ4Kf15+8aGMC/2jbDh8S0ENIGhacyJB9mQGj/f/7ZZjf4xxigkCsNCzFuOnHU45JKgaRiRRlasOIj/eXRjJcGvHq6UPFpqlDRV2FeJbYZh1HjfZaSUXH311Xz+85/n7LPPBuCmm26ivb2dX/ziF3zsYx/brXMdi/LEFQrFtCdUygIPGRotYbNiwMH3juMBne54EF34iWYxU6/09h6xHbZnbbZlbPqyNiO2w5s6SpLDY17uYUPj6PYYx81s5Ii2GPMSYQ5titARGt8EpTocXU9optpYjpU1Lm8TNnWagibNIZNEPMRTW5MUir7IUvnc3tAeG+e1t4RM2sIWmvCrQeY3hsZ57MIwfbnYSBMugn9Y2lnTuGgiplp1yb4IpwO89NJLdHV1MXfuXN773veybt06ANavX09vby+nnHJKZd1AIMBxxx3Hww8/vKcuu8LU+tdQKBSK18C8rjiagMaQb8zHes9CCOKWzlFtMTrCFp6UuJ5kR65IuuhVMsJdCemiX5aWsGqlRQO6xjGdCZqCZs1yXQjaQiYzIoEaI7w1U6iE08fuC2DEdmvWL59DeZnjSfKuR9Hz6GoJ8/Q2X7DGGBPCbw6ZnDGvmWhpPl/gZ+lXc8Lcpgnvna4JVsxuJJnO0xUNTCp8IgScuqh9kjWmN6lUquZT7t8+lqOPPpqf/OQn3HnnnVx//fX09vZyzDHHMDAwQG9vLwDt7bX3qb29vfLdnkQZcYVCMe2Z1xmnMewb18lCo0e1xyoNfYYKzrhyrjKuhCNaYzXLDkoEMTUxzqsOGxrd0QBvaImyoCFM2Vy/ksrjSoknJZau0RSoNeTDtn/8stGWpeMWXI+eTIFN6QI9GZvNaZvHNicn9RY7IgHOXdjO2+c2saIzziGNtdn4BzWGec/i9krinSaoeO9vnNXAafObeeDFHRzWHhu76wqagHjQ4J/fOLUkV8Ue+g+gu7ubRCJR+Vx55ZV1j3n66adzzjnncNhhh3HSSSfxxz/+EfDD5pXzGvMPVt35cU+i5sQVCsW0xzQ0ZjRH6B8eFSENGBqhUtjclZJc0SUhBFnHxZM7b6fZGbYI6Rq50nx2dzRYY8B1AQcnQjQGDKSUSKAjbHJUW5SnB7NsThd4cFuSt3QkMDWYEbaQ0mao1ENAAj1Zm/aQiVXq9Ge7HttzxXHz26n8qK67U+ogWK+j2sxYkJklO6yJ2przIzriLGiOsHpbiu0ZG0vX+MI7FpFK2/zl5R1ICW1Ri5MObuaelwcq5wi+dx8LGvzxY2+iMTxB//R9xJ5UbNu8eTPxeLyyPBAITLBFLZFIhMMOO4yXXnqJf/zHfwSgt7eXzs7Oyjp9fX3jvPM9gTLiCoViv8A0tIqOdmPYwjK0Gk3wUKkByFf+4TB++dD6cdsHdEFnJEDU1PGkZCDv0B422TBSQBeMq9+enwhVwuRC+PXZ5Vrt42Y2AH4Tls05mzmNfo33HCEwLJ3BfJGC49EUsVja3UAm7zCQynPv8311r636yBKwPYmlTSRKAwe1RugdzlMY0ykwbOq8eVajf780weLWKN9e+1KNsV/QEqErFuCZvjS9IwU04c+X/7/TF9EQqp1K2N+Ix+M1RnxXKRQKPPfcc7zlLW9h7ty5dHR0cPfdd3PEEUcAYNs2DzzwAF//+tf39CkrI65QKPYPmhpC9PZniJcEYGDUyJX/DJg62VSBJbMbebDKYLaHLRaMCUG3hEw+sWwm/9+qzezIF3HK7XeBiKHRUDXvrAm/Y9nYDPWYqbPECtHVEMItuniexNQE82YkaCjpowNEgya9wzkGMjb10DWBU5Upl3E8dFNHZ3wf9LZYgIAEHTAE40rbwB+QWJrg5e0jdVsCxwIGK8qldgKOnds0pQ34ng9ST86///u/c+aZZzJr1iz6+vr46le/SiqV4l/+5V8QQnDJJZewcuVK5s+fz/z581m5ciXhcJj3ve99e/xclBFXKBT7BU2JIJGgUZOZPhYBJJM5Fs1M8NDzfZUEtrIBH7tdxND50oo5PDiYYSRtI0sGrzlo4klZCa8HjfF66+Aby4aQSSFXrHxn2y5929OMjBRo74jTO5Dhpa1JXtyRnvDadCHQhaxkvEsgWXQJaIKArqEjaU8EObQtyvBwnozt+g1UDB1TSj8EX7p+ozSvLwBd23lalMQXvJmy7Ml4+i6yZcsWzj33XPr7+2ltbWXFihX87W9/Y/bs2QBceuml5HI5LrjgAoaGhjj66KO56667iMUmzjl4rSgjrlAo9guEEMzpijPQn51wnaClE7AMTMfjbQvbeOCFHcyMjW8XqmuCsGUQtHSEgPc2hglGLX78yAZyRRe96p1fNoz1Bg6JoDmhFvtQKs8LPSkc12N7tli3DK2acjczj9GuqAVP0hgzOffoWeRSBTZtS1EsRQzKCXx+mdn4fUtgTmuU2c1hNg1kJ9SV9yQsndEw6bntS8pTKLu7j1fDzTffPPn+hODyyy/n8ssvf83ntKtMmeHVlVdeWQlDlLn88stZuHAhkUiExsZGTjrpJP7+979Xvh8cHOQTn/gECxYsIBwOM2vWLC6++GKSyWTdYxQKBZYtW4YQgjVr1lSWP/nkk5x77rl0d3cTCoVYtGgR3/nOd2q23bBhwziZPSEEf/7zn2vWe+CBBzjyyCMJBoPMmzePH/7wh7t/cxQKxS5h6ONLuQB0XdDeFKGlIUw0ZIIHh7bF+Mib5jAzUZuwZuqC5liAcEBHL3mtnifJpQp8cNkMZjaGyble5cUvxiq6lbB0X/q03neuJ9k+UsD1JHnX95Ktku75RAjhi9j8x2kLec8buzn7yJlc+LaDueTkQ2gImmzZPoJTsu6aEIQn8J6llKSLLgO2w+/XbCViGRMacCFgQUeMmU3hiU9MsU+ZEp74Y489xnXXXcfSpUtrlh9yyCFcc801zJs3j1wux7e//W1OOeUUXn75ZVpbW+np6aGnp4dvfvObHHrooWzcuJHzzz+fnp4efvOb34w7zqWXXkpXVxdPPvlkzfJVq1bR2trKz372M7q7u3n44Yf5t3/7N3Rd56KLLqpZ95577mHx4sWVn5uaRusv169fz9vf/nbOO+88fvazn/HXv/6VCy64gNbWVs4555w9casUCsUkBEPjX2lCQGtDuCJkUm1UA4bGQV0JXtwyXOmI1hAJjG9FWvrTK3q85/AuslKy+jl/Tn0igTNTFxOWFaWrytvKoi9CCBosY1y3smresqCN5miA5jE68H0D46MPcUun6MmaXuSOJ+nJ2hQ9iQCG8w6a8MP1HhKqlOM8CfPbYvzLMXMnPJ8pwb5wxacQQspJNPZeB9LpNG94wxv4wQ9+wFe/+lWWLVvG1VdfXXfdVCpFIpHgnnvu4cQTT6y7zi233MIHPvABMpkMhjH6C33HHXfw6U9/mt/+9rcsXryYJ554gmXLlk14XhdeeCHPPfcc9957L+B74nPnzp10u8suu4zbbruN5557rrLs/PPP58knn+SRRx6Z/EaMucZkMvmasiQVigOdLZuHyeWKlZ8jQZOGWGDCeXIpJf3JPNsGswRMjcZI/bKicNAgYOmV/XhS8sr2EXqGckQsvUY3HfxEt7Cp1z3utlS+0rgkW3RJlsrOwM9oHy4447zjo+c1c+rSznH7y+WKvLh+gFS2iOdJRqr2JaUk53hkHI+i67E1a1e6qNW7D0tmJAgHDAKmxtKZDcxujtRdd1fY2++y8v43vryVeGz39p8aSTH74BnT8r27z8PpF154IWeccQYnnXTSpOvZts11111HIpHg8MMPn3C98j9CtQHfvn075513Hj/96U8Jh3ctLJRMJmu87DJnnXUWbW1tHHvsseO8/UceeaRGag/g1FNP5fHHH6dYLFKPQqEwTiVIoVC8djo6YhhVoeTQBM1RpJS4rofjSuJhf+7a0jXq+TXxiFVjwMEPWc/viLNoZqJikKu3LTjexAOHqr8Hx4S9Y6bOjIhFU8AgYek0BQwObY1y6lK/5jidsRkazpFOF9jWm2LTxiHcqk5m1bsTJenW1pBJzNInNODldbcO5zj7yJmcefiM3TLgitePfRpOv/nmm1m9ejWPPfbYhOvcfvvtvPe97yWbzdLZ2cndd99NS0tL3XUHBgb4yle+UiMwL6XkQx/6EOeffz7Lly9nw4YNOz2vRx55hF//+tcVFR6AaDTKVVddxbHHHoumadx222285z3v4aabbuIDH/gA4Bf315PacxyH/v7+msL/MldeeSVf/vKXd3pOCoVi1zBMnVmzG0km86SSObQ689KO62Hbbo0xnd0eI5MbP9gOWjq6XrsPrzQAkBKawxbHHzGDwZE8m7YmcVw/VO14kqLrYdbRGg8YWqWGWxOCmKkzUhz1oDUhiJqj8/srFrSSTObZ3JPCtl1cT1L0PJojfv/zoKGTKXngIdP/e3Xtt6EJ8qUQ+mSh1+FskYG0TWts10ROpgL7qgHKVGGfGfHNmzfzyU9+krvuuotgMDjheieccAJr1qyhv7+f66+/nne/+938/e9/p62trWa9VCrFGWecwaGHHsqXvvSlyvLvfe97pFIpPve5z+3SeT3zzDP8wz/8A1/84hc5+eSTK8tbWlr41Kc+Vfl5+fLlDA0N8Y1vfKNixKG+1F695WU+97nP8elPf7rmOrq7p5asoUIx3dB1jaamME1NYeyMjVscrYV2XI9CVci5so0miEcsCraLU9V1LFCley6lpGC7lfnz8rK87dDaFqWzJcrAcI58wUHXNRpiAbZv8w1vNfGAQSo/OvcdKemeVxty8Ovaj1nURtTUeWWD3z3Mk5Ks4xIPjr6+dU0QMnVyRdcfAFg6RVdiu74ufCJgsC1bvwZ9LN6+nWFVvEr2mRFftWoVfX19HHnkkZVlruvy4IMPcs0111AoFNB1nUgkwsEHH8zBBx/MihUrmD9/PjfccEONUR4ZGeG0004jGo1y6623YpqjogT33nsvf/vb38bJ5y1fvpz3v//9NVq3zz77LG9729s477zz+MIXvrDTa1ixYgU//vGPKz93dHSME7jv6+vDMAyam5vr7iMQCOyytJ9CoXj1GAEDt+gbMCkldnG8Aa/uGR6wNJzcqJGu9uTzBaciuuK4HsNZm5F8EU+Ctn2E9pYIs7oStFZlc8+Z28TISIGRVB7XkwQsg0RDkEQyzzOvDPg5VSXDGzY1Cq5HQyzA7I4YDSELIWDT5tGKG9stt1ytrYcv9yDP2i4IgWX4/dBDlo7rSBoDJpJRWdp6BE2NpsjUklVVTM4+M+InnnhiTRN1gA9/+MMsXLiQyy67DH2CUhEpZU1nmVQqxamnnkogEOC2224b59V/97vf5atf/Wrl556eHk499VR+9atfcfTRR1eWP/PMM7ztbW/jX/7lX/ja1762S9fwxBNP1ITI3/SmN/GHP/yhZp277rqL5cuX1wwsFArF64dmaBgBHafglhqOjH4nBBilUHk5aqbrOrqukc7YlfWFoDJ/DlB0PLYMZWu8Vk/C1r4063tHMC2dQtHD86Q/CNAEmYJDtuACfkmZrgnaEiGCukY2ayOlpDEeZFZ7jORIgc1bkmySfulZwBh9H5Y138f6y0IIIpZB2NSxS6H+gKljBAwGhnJ0hE1Cuub3J69znwSwYl5z3fD/VGYfaL1MKfaZEY/FYixZsqRmWSQSobm5mSVLlpDJZPja177GWWedRWdnJwMDA/zgBz9gy5YtvOtd7wJ8D/yUU04hm83ys5/9rCYxrLW1FV3XmTVrVs0xotEoAAcddBAzZ84EfAN+wgkncMopp/DpT3+64k3ruk5rayvgd6cxTZMjjjgCTdP4wx/+wHe/+90aLdzzzz+fa665hk9/+tOcd955PPLII9xwww388pe/3At3UKFQ7CpG0EDoGm66NqRsVBVmV3u1uiZIxALkih6uJxGCmhB6Xyo3LuxsOx7D+VJWec4PlUspybkerix3DhstO3NcybZBvzTszUs6iAZNXtgyzHPrBytVU4YmMKpU1cYmzpl15vvLSm0AiYYQI9liZfmKzjgP9SRxSwpu1cxuCXPS4o6d3supx4FdYzYl6sTroes6zz//PDfddBP9/f00Nzdz1FFH8dBDD1XqtFetWlURfzn44INrtl+/fj1z5szZpWPdcsst7Nixg5///Of8/Oc/ryyfPXt2TSLcV7/6VTZu3Iiu6xxyyCH893//d818+Ny5c/nTn/7Epz71Kb7//e/T1dXFd7/7XVUjrlDsY0Sp8UggapIv1WHXqxsHf044nS2SzNh+G1FLJxowK7rptuNWstHLuJ5kKD++vrvg+VKpglFFuOrjSXzD/Jeneyl6kpil0xw0KusYdQx0OTktaztELX3SFpfhkElqZDRy2RgwOGlmAy8nc2xOF3A8ScTQWdga4R9WzMaYZl64YgrUiStqUXXiCsXeZWhHBtfxMI3xXqzrSbbuSFMojm8KYhkajbEAmYJDXypf81264JAZs42UknTJ2Jcd/rHHawybREydDUP+XHVnxCJQCu/rQlQ87ertC45bEXCxdI2mMX3Uy0a9IREkkyn6HdmqDHk9DprTSMseVmV7verEt6zftkfqxGfO7ZyW71017FIoFAcU0cTEiaR9Q9m6BhygUHQZHinglfp5VzPWM4faXt4w3oC3RCyOmJGgJzVqYKvD49Wre5LKvL2la5Xgr+169KULpAsOtuNhOx7C0JgxM0Em44fRNSFIhCfOyWlvjdA8poObYvowZcPpCoVCsTcwLYNEU4hsqlATii46Hunc+JC4lL50ad7xldTKGFptVvurZVF7zDe+VeVsrpRoFYNNZapW4kcJyscLmzoFx8OREk9C2nbJux7dnXFmtUXp68vUHMsydJqigpztUij69fFBy2DWzASJ+MRqdtMBXyJ39/cxXVFGXKFQHHCYAYNQVJKv6t+ds+trluccj4I73tN2SkbV0HyddHdM426tyjJIgKoBQ3PYImjq4zz4EdulqVT/7UqJSe38uStByNFQemPUorM9iib8GnfN8cCRFOror+uaRjSoEQ36XrlpajQkJtboUEwPlBFXKBQHJGbQoGi7uHXqxss4Xn0DXsaT/ids6uSdWsMphBhtHyr9efGy5x8qJaRFA35tdzn0nrZd4gEdo7S940nMMa3NykMFTRPM7W4gHCqFyotuVd3ZzrTZmN51VVWI0n+7u4/pipoTVygUByRCCMLxAIGwWTKs432aenPdYzEMjY7mCF1N4+eVLU1gVHUFA9+QF11fV93QNGY2jG7nAdvSNoVyPbrnYbvuuDn4SNjk0ENaCIdMcgWHp9cNUKjKjg/X6eY2lsgk8+TTCrGHPtMU5YkrFIoDFiEEgbCFFTKRnmQoa5OsSjTbFQlS15McerDfz2H7YJYXtwzTN5RDSl/+NaoLAgEDTwgKtotEUvA8PCnRhGBBa5ThXLEiw+pK2JaxsTRBxNJZPLuRzpYIruPhupJg0Kh43yNZm4ee7MEUgiVdico5JaIWqfTEMqtCQEyF0vcLlBFXKBQHPEIIhC6YM6uRF1/uJ1en5nsi9Kpwd3tTmPamMFJKhkYKbN4+Qi7vELB0ZrRFCVg6z29JsrEvzf0v9xMLGMxpCnP0rEY2D+fYPJwjV3QxNMHc9hhL5zUTDdX3mKWUPP5cH8Wih2bWKlyahk57c5jtdfqMCwHtHTFMs74q5nTjwJZ6UUZcoVAoKhiGxsJDWhkYytI/kMWRHiOFiefMAdpLLTullGTyDo7rsW5Lkp7+TGVmWgDre0dI2S6IUelX27Hpz9jMbgyxqD3G3OaI7yU3hAjX0TDPZAoMD+XI5x2ytkuylJiXL7qM5IpEq4RiIiGTWZ0xRjI2uVKiWyhsEUsEa1q1TnsOcCuujLhCoVBUoWmC1uYIrc0RHMfj4Se3UizW1xvXNcHMtigvbE3yxLoBUtkiMVMnavrNScrbuFKSLHcyq9pR+a8bh3J0NIfpbomQdSQZx8NyvRoFtf7+NEODow1MsmOy6V/aluIN82obLRm6RmM8SCNQapi+3yS0KXyUEVcoFIoJMAyNIw/t4Innt5MvuBX7JyWYhsayBW2s3TzMmnWDgG8nI6Y2ru46P0mGe5mnNg2zev0gxVJSm2loLOpuYNm8ZvI5u8aA+8eqPcam/gyRgMGCGYnKfHv5z/3ZgB/o2enKiCsUCsUkREImxyybQf9QjsFkHpAkYgHamyIMZQoVAw6+4ppWx1A6Y+Xb6pAb03O86Hg8u2GQV7YkOagpRCxg1AwOooHxc9rPbU2ydTDLnLYo0aCB60naWyJohrZfGnBQXcyUEVcoFIqdoAlBW1OYtjH64s9vSSKq5rj3pDEIaL5/6LoeYcsY592bukYiaJAck4SXyhV5auMQAAtmNdC5nySwKeqzH2U3KBQKxevLcMau6U9erKOrDmBqr+5Va5UMuBAlLfUJSt264kEiVq2RLpv6We1RFs5ufFXHVUw/lCeuUCgUr5FyM5KyifUk5FyPkF47Lx7UBZniTjXUgFLbUmo12ZN5h6aSKE01miaY3RgiY7vkpAQhCAcNZrfHaIwfGHXglYHObu5juqKMuEKhULxG5nXEWN+XrlmWKriYIVF5uZaNTENAZ7jg1hjyek522QOvpi9doCls1u0dLoQgFjRZOq8JXfUDP+BQRlyhUCheI3PaYzRGBhjOjobVPaA/5xAxNSKGjiHAMnUObk/Q2Rph044MG/vSuK6kJRHANDSe2Tg86XGyRY8NgznmNIXGGXIhBDNmJpQBP0BRRlyhUCheI7omOOOobu5cvZUdqTzlai5PgisEK5Z20t5Qq6l+WCTAYXOaKj/bRZcN29NkCw5S+oOAeh73YK5IutehJWIRDRi0JILEogHiieABbcBVdrpCoVAoXjPhgME/rpjF9uEcm/szuJ6kLRFiTlsUTdu5dbBMnbcv7+bep3oYSBX8jHQJOuMNue1KelIF5nRYzJqlktbggBdsU0ZcoVAodhchBB2NYToawztfuQ7RkMmZb5xFfypP71AO6Ul6B7MMlox6WbpVAm0NIZYvaN2DZ6+YzigjrlAoFFMAIQStiRCtCT/8ftjcJrYNZFm3LUW24BCyDOZ1xulsCdcVlDlgOcDj6cqIKxQKxRRECEFXS4Sulsi+PpUpzYEeTj9wsyEUCoVCoZjmKE9coVAoFNOXA9wVV564QqFQKKYtYg/991q58sorEUJwySWXVJZJKbn88svp6uoiFApx/PHH88wzz+yBqx2PMuIKhUKhULwGHnvsMa677jqWLl1as/wb3/gGV111Fddccw2PPfYYHR0dnHzyyYyMjOzxc1BGXKFQKBTTlnJy+u5+Xi3pdJr3v//9XH/99TQ2jtbsSym5+uqr+fznP8/ZZ5/NkiVLuOmmm8hms/ziF7/Yg1fuo4y4QqFQKBRAKpWq+RQKhQnXvfDCCznjjDM46aSTapavX7+e3t5eTjnllMqyQCDAcccdx8MPP7zHz1kZcYVCoVBMW/akJ97d3U0ikah8rrzyyrrHvPnmm1m9enXd73t7ewFob2+vWd7e3l75bk+istMVCoVCoQA2b95MPB6v/BwIBOqu88lPfpK77rqLYHDidq9jJXPr6eHvCZQRVygUCsU0Zs/VmMXj8RojXo9Vq1bR19fHkUceWVnmui4PPvgg11xzDS+88ALge+SdnZ2Vdfr6+sZ553sCFU5XKBQKxbTl9U5sO/HEE1m7di1r1qypfJYvX8773/9+1qxZw7x58+jo6ODuu++ubGPbNg888ADHHHPMHr9+5YlPMWSpKXEqldrHZ6JQKBSvnfI7rPxO29vHeb32EYvFWLJkSc2ySCRCc3NzZfkll1zCypUrmT9/PvPnz2flypWEw2He97737fa5jkUZ8SlGuY6wu7t7H5+JQqFQ7D4jIyMkEok9vl/Lsujo6KB7/tw9sr+Ojg4sy9oj+7r00kvJ5XJccMEFDA0NcfTRR3PXXXcRi8X2yP6rEXJvD5MUrwrP8+jp6SEWi+2VJIg9QSqVoru7e1wSyIGEugfqHhzo1w+T3wMpJSMjI3R1daFpe2fmNp/PY9v2HtmXZVmTJqpNVZQnPsXQNI2ZM2fu69PYJXYlCWR/R90DdQ8O9OuHie/B3vDAqwkGg9PS8O5JVGKbQqFQKBTTFGXEFQqFQqGYpigjrnjVBAIBvvSlL9UVQjhQUPdA3YMD/fpB3YOpgEpsUygUCoVimqI8cYVCoVAopinKiCsUCoVCMU1RRlyhUCgUimmKMuIKhUKhUExTlBHfD5kzZw5CiHGfCy+8cNy6H/vYxxBCcPXVV9csLxQKfOITn6ClpYVIJMJZZ53Fli1bdnqcz372szXrbNq0iTPPPJNIJEJLSwsXX3zxOIWltWvXctxxxxEKhZgxYwZXXHHFbuktT6Xrr3ceP/zhD/fq9b+e9wDgj3/8I0cffTShUIiWlhbOPvvsmu/3xTMw1e7B/vwc3H///XWPIYTgscceq6y3r56D/R6p2O/o6+uT27Ztq3zuvvtuCcj77ruvZr1bb71VHn744bKrq0t++9vfrvnu/PPPlzNmzJB33323XL16tTzhhBPk4YcfLh3Hqawze/ZsecUVV9Qca2RkpPK94zhyyZIl8oQTTpCrV6+Wd999t+zq6pIXXXRRZZ1kMinb29vle9/7Xrl27Vr529/+VsZiMfnNb35z2l+/lFIC8sYbb6xZJ5vN7tXrfz3vwW9+8xvZ2Ngor732WvnCCy/I559/Xt5yyy2V7/fVMzCV7oGU+/dzUCgUao6xbds2+dGPflTOmTNHep4npdy3z8H+jjLiBwCf/OQn5UEHHVT5hZJSyi1btsgZM2bIp59+Ws6ePbvmF3d4eFiapilvvvnmyrKtW7dKTdPkn//858qysduN5U9/+pPUNE1u3bq1suyXv/ylDAQCMplMSiml/MEPfiATiYTM5/OVda688krZ1dVVc767w766fin9l/ett9464fevx/VLuXfuQbFYlDNmzJA//vGPJzzuVHkGpNx390DK/fs5GItt27KtrU1eccUVlWVT6TnY31Dh9P0c27b52c9+xkc+8pFKQxXP8/jgBz/If/zHf7B48eJx26xatYpiscgpp5xSWdbV1cWSJUt4+OGHa9b9+te/TnNzM8uWLeNrX/taTXjskUceYcmSJXR1dVWWnXrqqRQKBVatWlVZ57jjjqsRizj11FPp6elhw4YN0/r6y1x00UW0tLRw1FFH8cMf/hDP8yrf7e3rh713D1avXs3WrVvRNI0jjjiCzs5OTj/9dJ555pma69vXz8C+vgdl9tfnYCy33XYb/f39fOhDH6q5vqnwHOyPKCO+n/P73/+e4eHhml+or3/96xiGwcUXX1x3m97eXizLorGxsWZ5e3s7vb29lZ8/+clPcvPNN3Pfffdx0UUXcfXVV3PBBRfU7Ke9vb1mH42NjViWVdlPvXXKP1cf67WyL68f4Ctf+Qq33HIL99xzD+9973v5zGc+w8qVK2uOtTevH/bePVi3bh0Al19+OV/4whe4/fbbaWxs5LjjjmNwcHDC63u9nwHYt/cA9u/nYCw33HADp556ak075anyHOyPqC5m+zk33HADp59+emUEvGrVKr7zne+wevXqV93qVEpZs82nPvWpyt+XLl1KY2Mj73znOyveKVD3GGP3M3YdWUpk2ROtWPf19X/hC1+orLNs2TIArrjiiprle/P6Ye/dg7In+fnPf55zzjkHgBtvvJGZM2dyyy238LGPfWzC63g9nwHY9/dgf34OqtmyZQt33nknv/71r8d9NxWeg/0R5Ynvx2zcuJF77rmHj370o5VlDz30EH19fcyaNQvDMDAMg40bN/KZz3yGOXPmANDR0YFt2wwNDdXsr6+vb9xIuZoVK1YA8PLLL1f2M3YEPTQ0RLFYrOyn3jp9fX0Akx5rV9jX1z/ROqlUiu3bt1eOtbeuH/buPejs7ATg0EMPrXwfCASYN28emzZtmvD6Xs9nAPb9PajH/vQcVHPjjTfS3NzMWWedVbN8KjwH+y37ZCZe8brwpS99SXZ0dMhisVhZ1t/fL9euXVvz6erqkpdddpl8/vnnpZSjySy/+tWvKtv19PRMmswipZR/+MMfJCA3btwopRxNZunp6amsc/PNN49LZmloaJCFQqGyzn/913/tkWSWfX399fje974ng8FgJXlnb16/lHv3HiSTSRkIBGqSuspJTT/60Y+klPv+GZgK96Ae+9NzUMbzPDl37lz5mc98Ztzxp8JzsL+ijPh+iuu6ctasWfKyyy7b6br1sqzPP/98OXPmTHnPPffI1atXy7e97W01ZSUPP/ywvOqqq+QTTzwh161bJ3/1q1/Jrq4uedZZZ1X2US4rOfHEE+Xq1avlPffcI2fOnFlTVjI8PCzb29vlueeeK9euXSt/97vfyXg8vttlJVPh+m+77TZ53XXXybVr18qXX35ZXn/99TIej8uLL754r1//63EPpPSznWfMmCHvvPNO+fzzz8t//dd/lW1tbXJwcFBKuW+fgalyDw6E50BKKe+55x4JyGeffXbcfvf1c7A/o4z4fsqdd94pAfnCCy/sdN16v7i5XE5edNFFsqmpSYZCIfmOd7xDbtq0qfL9qlWr5NFHHy0TiYQMBoNywYIF8ktf+pLMZDI1+9m4caM844wzZCgUkk1NTfKiiy6qKSGRUsqnnnpKvuUtb5GBQEB2dHTIyy+/fLdH3lPh+u+44w65bNkyGY1GZTgclkuWLJFXX311jTe0t65fyr1/D6T0vc7PfOYzsq2tTcZiMXnSSSfJp59+umadffUMSDk17sGB8BxIKeW5554rjznmmAn3vS+fg/0Z1YpUoVAoFIppikpsUygUCoVimqKMuEKhUCgU0xRlxBUKhUKhmKYoI65QKBQKxTRFGXGFQqFQKKYpyogrFAqFQjFNUUZcoVAoFIppijLiCsV+xvHHH88ll1yy148zZ84chBAIIRgeHt6tfR1//PGVfa1Zs2aPnJ9CcSCgjLhCsZf40Ic+VDFM1Z/TTjttj+z//vvvr2tAf/e73/GVr3xljxxjZ1xxxRVs27aNRCKxW/v53e9+x6OPPrqHzkqhOHBQrUgVir3Iaaedxo033lizLBAI7NVjNjU17dX9VxOLxejo6Njt/TQ1NZFKpfbAGSkUBxbKE1co9iKBQICOjo6aT2NjY+X7q666isMOO4xIJEJ3dzcXXHAB6XS68v3GjRs588wzaWxsJBKJsHjxYv70pz+xYcMGTjjhBAAaGxsRQvChD30IGB9OnzNnDitXruQjH/kIsViMWbNmcd1119Wc58MPP8yyZcsIBoMsX76c3//+968ptP0///M/NDQ0cPvtt7NgwQLC4TDvfOc7yWQy3HTTTcyZM4fGxkY+8YlP4Lruq7uZCoViHMoTVyj2IZqm8d3vfpc5c+awfv16LrjgAi699FJ+8IMfAHDhhRdi2zYPPvggkUiEZ599lmg0Snd3N7/97W8555xzeOGFF4jH44RCoQmP861vfYuvfOUr/Od//ie/+c1v+PjHP85b3/pWFi5cyMjICGeeeSZvf/vb+cUvfsHGjRt3a049m83y3e9+l5tvvpmRkRHOPvtszj77bBoaGvjTn/7EunXrOOecc3jzm9/Me97zntd8HIVCoYy4QrFXuf3224lGozXLLrvsMv7f//t/ADXGcu7cuXzlK1/h4x//eMWIb9q0iXPOOYfDDjsMgHnz5lXWL4fN29raaGhomPQ83v72t3PBBRdUjv/tb3+b+++/n4ULF/Lzn/8cIQTXX389wWCQQw89lK1bt3Leeee9pmsuFotce+21HHTQQQC8853v5Kc//Snbt28nGo1y6KGHcsIJJ3DfffcpI65Q7CbKiCsUe5ETTjiBa6+9tmZZ9Zz1fffdx8qVK3n22WdJpVI4jkM+nyeTyRCJRLj44ov5+Mc/zl133cVJJ53EOeecw9KlS1/1eVRvI4Sgo6ODvr4+AF544QWWLl1KMBisrPPGN77xVR+jTDgcrhhwgPb2dubMmVMzmGlvb68cX6FQvHbUnLhCsReJRCIcfPDBNZ+yEd+4cSNvf/vbWbJkCb/97W9ZtWoV3//+9wHfmwX46Ec/yrp16/jgBz/I2rVrWb58Od/73vde9XmYplnzsxACz/MAkFIihKj5fnc6FNc71mTHVygUrx1lxBWKfcTjjz+O4zh861vfYsWKFRxyyCH09PSMW6+7u5vzzz+f3/3ud3zmM5/h+uuvB8CyLIDdThBbuHAhTz31FIVCoebcFArF1EcZcYViL1IoFOjt7a359Pf3A3DQQQfhOA7f+973WLduHT/96U/54Q9/WLP9JZdcwp133sn69etZvXo19957L4sWLQJg9uzZCCG4/fbb2bFjR01W+6vhfe97H57n8W//9m8899xz3HnnnXzzm98EGOehKxSKqYUy4grFXuTPf/4znZ2dNZ83v/nNACxbtoyrrrqKr3/96yxZsoSf//znXHnllTXbu67LhRdeyKJFizjttNNYsGBBJeltxowZfPnLX+azn/0s7e3tXHTRRa/pHOPxOH/4wx9Ys2YNy5Yt4/Of/zxf/OIXAWrmyRUKxdRDyN2Z/FIoFPslP//5z/nwhz9MMpmcsHRtzpw5XHLJJXtM4nXDhg3MnTuXJ554gmXLlu2RfSoU+zvKE1coFPzkJz/hL3/5C+vXr+f3v/89l112Ge9+97snrT0Hv1wtGo2STCZ36/inn346ixcv3q19KBQHIqrETKFQ0Nvbyxe/+EV6e3vp7OzkXe96F1/72tcm3eaBBx6oZNHHYrHdOv6Pf/xjcrkcALNmzdqtfSkUBxIqnK5QKBQKxTRFhdMVCoVCoZimKCOuUCgUCsU0RRlxhUKhUCimKcqIKxQKhUIxTVFGXKFQKBSKaYoy4gqFQqFQTFOUEVcoFAqFYpqijLhCoVAoFNMUZcQVCoVCoZim/P8fAJIUR0+shwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -603,7 +602,7 @@ "source": [ "# Get the Matplotlib Axes object from the dataframe object, color the points by snow depth value\n", "ax = df.plot(column='value', legend=True, cmap='PuBu')\n", - "\n", + "site.plot(ax=ax, marker='^', color='m')\n", "# Use non-scientific notation for x and y ticks\n", "ax.ticklabel_format(style='plain', useOffset=False)\n", "\n", @@ -618,14 +617,18 @@ "metadata": {}, "source": [ "**Try This:**\n", - "Go back and add a filter to reduce to just one spiral. Do you know what instrument was used to make depth spirals?\n", + "A. Go back and add a filter to reduce to just one spiral. What would you change to reduce this?\n", + "B. Try to filtering to add more spirals. What happens?\n", "\n", "\n", "## Recap \n", - "You just plotted snow depths and reduce the scope of the data by compounding filters on it\n", + "You just plotted snow depths and reduce the scope of the data by using `from_area` on it\n", "\n", "**You should know:**\n", "\n", + "* Manual depths are neat.\n", + "* filter using from area is pretty slick.\n", + "* We can use LayerMeasurements to get site details easily. \n", "\n", "\n", "If you don't feel comfortable with these, you are probably not alone, let's discuss it!\n" diff --git a/book/tutorials/snowex_database/5_plot_raster_example.ipynb b/book/tutorials/snowex_database/5_plot_raster_example.ipynb index cb83fce..a26f870 100644 --- a/book/tutorials/snowex_database/5_plot_raster_example.ipynb +++ b/book/tutorials/snowex_database/5_plot_raster_example.ipynb @@ -4,44 +4,79 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Forming Queries with Rasters" + "# Forming Queries with Rasters\n", + "Querying the database with rasters is essentially the same as with the other two tables. A primary difference however is they are returned as a [rasterio dataset](https://rasterio.readthedocs.io/en/stable/api/rasterio.io.html#rasterio.io.DatasetReader) instead of a dataframe.\n", + " \n", + "## Grab a whole raster. \n", + "Grabbing whole rasters can be done (albeit with caution) using the `from_filter` function. \n", + "\n", + "**Note**: snowexsql will throw an error if you try to pull more than one dataset at a time. This is because this function is merging tiles together based on the query and if the dataset grids dont match the database throws a cryptic error. So we took the liberty ahead of time. \n", + "\n", + "**Try this** : To see the error in action, remove the date from the query and run it. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAFRCAYAAABkGOliAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZhlVXU+/J577jzX3FXV89zQDc0kMkUIOGvibIiahGgkEY1T8glJjK0hoIjKzyAmqIlB42w0ajCgKEqDyDxDQzc91jzeeTz3fH+8e9W61TRIQ0PT3Xs9Tz1VdYdz9jln77XX8K53Ob7v+7BixYoVK1asWLGyTwkc7AFYsWLFihUrVqy8kMUaS1asWLFixYoVK08h1liyYsWKFStWrFh5CrHGkhUrVqxYsWLFylOINZasWLFixYoVK1aeQqyxZMWKFStWrFix8hRijSUrVqxYsWLFipWnEGssWbFixYoVK1asPIVYY8mKFStWrFixYuUpxBpLVqxYsWLFihUrTyFHpLH061//Gq997WsxMDAAx3Hwwx/+cL+P4fs+Lr/8cqxevRqRSASLFi3CJZdccuAHa8WKFStWrFg5qBI82AM4GFIqlXDsscfivPPOwxvf+MZndIz3v//9uP7663H55Zdjw4YNyOVymJycPMAjtWLFihUrVqwcbHGO9Ea6juPgBz/4AV73utfNvVav1/EP//AP+K//+i/Mzs5i/fr1+NSnPoUzzzwTAPDwww/jmGOOwQMPPIA1a9YcnIFbsWLFihUrVp4XOSLTcL9LzjvvPNx888341re+hfvuuw9vfvOb8YpXvAKPPfYYAODHP/4xli9fjp/85CdYtmwZli5dine9612Ynp4+yCO3YsWKFStWrBxoscbSXrJt2zZ885vfxHe/+12cccYZWLFiBf7mb/4Gp59+Ov7jP/4DAPD4449j586d+O53v4trrrkGX/3qV3HnnXfiTW9600EevRUrVqxYsWLlQMsRiVl6Krnrrrvg+z5Wr1497/VarYauri4AQKvVQq1WwzXXXDP3ua985Ss44YQTsGXLFpuas2LFihUrVg4jscbSXtJqteC6Lu688064rjvvvWQyCQDo7+9HMBicZ1CtW7cOALBr1y5rLFmxYsWKFSuHkVhjaS857rjj4HkexsfHccYZZ+zzM6eddhqazSa2bduGFStWAAAeffRRAMCSJUuet7FasWLFihUrVp57OSKr4YrFIrZu3QqAxtFnP/tZnHXWWejs7MTixYvx9re/HTfffDM+85nP4LjjjsPk5CR+8YtfYMOGDXjVq16FVquFk046CclkEldccQVarRYuuOACpNNpXH/99Qf56qxYsWLFihUrB1KOSGPpxhtvxFlnnfWE1//0T/8UX/3qV9FoNHDxxRfjmmuuwdDQELq6unDKKafg4x//ODZs2AAAGB4exvve9z5cf/31SCQSeOUrX4nPfOYz6OzsfL4vx4oVK1asWLHyHMoRaSxZsWLFihUrVqw8XbHUAVasWLFixYoVK08hRxTAu9VqYXh4GKlUCo7jHOzhWLFixYoVK1aehvi+j0KhgIGBAQQCz3+c54gyloaHh7Fo0aKDPQwrVqxYsWLFyjOQ3bt3Y+HChc/7eZ+VsXTppZfi7/7u7/D+978fV1xxxT4/s3nzZnzkIx/BI488gnK5jCVLluD888/HBz/4wbnP/Pd//zcuueQSbN26FY1GA6tWrcKHP/xhvOMd75h3rKuuugqf/vSnMTIygqOPPhpXXHHFk5b370tSqRQA3ux0Or3/F3wISyazf5/P5Z6bcVixYsWKFSv7K/l8HosWLZrbx59vecbG0u23346rr74axxxzzFN+LpFI4L3vfS+OOeYYJBIJbN68Geeffz4SiQTe/e53AwA6Ozvx93//91i7di3C4TB+8pOf4LzzzkNvby9e/vKXAwC+/e1v4wMf+ACuuuoqnHbaafi3f/s3vPKVr8RDDz2ExYsXP60xS+otnU4fccbS/ooYVxb+b8WKFStWXihysCA0z6garlgs4vjjj8dVV12Fiy++GBs3bnzSyNK+5A1veAMSiQS+9rWvPelnjj/+eLz61a/GP/3TPwEATj75ZBx//PH44he/OPeZdevW4XWvex0uvfTSp3XefD6PTCaDXC53xBlLB2J+WcPJihUrVqwcDDnY+/czQkldcMEFePWrX41zzjlnv797991345ZbbsFLXvKSfb7v+z5uuOEGbNmyBb/3e78HAKjX67jzzjvxspe9bN5nX/ayl+GWW2550nPVajXk8/l5P0eaOM6BMZQO9LGsWLFixYqVQ0X2Ow33rW99C3fddRduv/32/frewoULMTExgWaziU2bNuFd73rXvPdzuRwGBwdRq9Xgui6uuuoqvPSlLwUATE5OwvM89PX1zftOX18fRkdHn/Scl156KT7+8Y/v1zit/G4Rg8lGmqxYsWLFypEg+2Us7d69G+9///tx/fXXIxqN7teJbrrpJhSLRdx666248MILsXLlSpx77rlz76dSKdxzzz0oFou44YYb8KEPfQjLly/HmWeeOfeZvXOVvu8/Zf7yoosuwoc+9KG5/wUgZuXASPutt4aTFStWrFg5XGW/jKU777wT4+PjOOGEE+Ze8zwPv/71r3HllVfORYX2JcuWLQMAbNiwAWNjY9i0adM8YykQCGDlypUAgI0bN+Lhhx/GpZdeijPPPBPd3d1wXfcJUaTx8fEnRJvaJRKJIBKJ7M8lHlbyfKbMrOFkxYoVK1YOV9kvzNLZZ5+N+++/H/fcc8/cz4knnoi3ve1tuOeee57UUNpbfN9HrVZ72p8Jh8M44YQT8LOf/WzeZ372s5/h1FNP3Z9LsPI8iMU2WbFixYqVw0n2K7KUSqWwfv36ea8lEgl0dXXNvX7RRRdhaGgI11xzDQDgC1/4AhYvXoy1a9cCIO/S5Zdfjve9731zx7j00ktx4oknYsWKFajX67j22mtxzTXXzKt8+9CHPoR3vOMdOPHEE3HKKafg6quvxq5du/CXf/mXz+zKrTznYrFNVqxYsWLlcJADzuA9MjKCXbt2zf3farVw0UUXYfv27QgGg1ixYgU++clP4vzzz5/7TKlUwnve8x7s2bMHsVgMa9euxde//nW89a1vnfvMW9/6VkxNTeETn/gERkZGsH79elx77bVYsmTJgb6Ew0JeSJEdx7EGkxUrVqxYOXTlGfEsHapysHkank95IRlLgDWWrFixYsXKM5eDvX8//93orFixYsWKFStWDiGxxtJhKC+0qBLwwhyTFStWrFix8nTEGktWrFixYsWKFStPIdZYsmLFihUrVqxYeQqxxtJhJi/kdNcLeWxWrFixYsXKk4k1lqxYsWLFihUrVp5CrLFk5XkVy+5txYoVK1YONbHG0mEk1gixYsWKFStWDrxYY8mKFStWrFixYuUpxBpLVg6K2CiYFStWrFg5VMQaS1asWLFixYoVK08h1lg6TMRGaqxYsWLFipXnRqyxZMWKFStWrFix8hRijSUrB01sNMyKFStWrBwKYo2lw0Cs0WHFihUrVqw8d2KNJStWrFixYsWKlaeQ4MEegJVnJ4d6VMlxAN8/2KOwYsWKFSv7EufiXwC3DQKVEPBgDzCSOiJ1tjWWrFixYsWKFStz4mAT/3jzW4DqQiDaBPpKQKoG/GDdQR3bwRJrLB3CcqhHlaxYsWLFygtLnOIlwDvfBBQiQLAFdJUBB0DIo9F0hIo1lqwcdLGpOCtWrFg5uDIXTXrnm4BqCHB9oBkApmOMKo0mgdkoEGvAcUJHnM62xtIhKjaqZMWKFStWnq3MGUkfO4uYpGIYyFaBXBTIRxhZGkoBU3GgGgSWzAKP9BzMIR8UscaSFStWrFixcgSKg03AP/w+cMcA4DtAIwCUQ0ApBKyaBooh4LFOoBzmF6JNIHCEhZSMWGPJihUrVqxYORLlD84F6i5/ChGm2XwAgwVgIgGk6sCeDOA5QKgFxBs0mEIeAPdgj/55FWssWXlBiMUtWbFixcrzI86V1wJ3DgDdPtNujg8cM8Y0W9jj73gD2JUB1kwCUzGyMnZWgMU5E11adLAv43kVaywdgnJY4ZWOmmA+PBc92COxYsWKlcNWnAs3A+ka/9m+gAZQosGoUinMyFK0CZw4zAhTwyV2KeDTcAL4fiUI1I6sqBJgjaXDSzJVTm7X5wKoucw/111O/BeanLkD6KgAD34B2LwYwJ8f7BFZsWLFymEnzl/eAfR5wK0LtbKt5gK1IKNKbov7RDMA7MhyD/HB39Emo09hTz+Tqh9x2QBrLB1C8jsjSs0A0HKArgo9CMcYTTcvBlZPAS0A9SA9g3KI3sTBkJBHb+WSG4BTdvO103fBuf5r8F/2joMzJitWrFg5zMT5xX8y3VbsAxbmmUKrmT2gFFIn2ne4f0SbwPYOINIEeso0qFJ1vt5y+AMAg3lg5TSAzoN2bc+3WGPpcBIvwMlfDTK33F0GYg1O/qPH+ZmGAfM1AozmPF8Rp4DPsQDAuglgMgH81wZg6SzQX+DrL9v2/IzFihUrVg5jcbAJ+Mlq4H+PBnIGuN1dBj55+r6d5EgTOG6E+8FslPtHNUhSyrpJxzk+9bgYTAvzsMaSlRecPC2cUjVI76DuAoUwqel7SsB5dzOc2nKAujGoxEj65bIDP9hgi+dN1YFAi9Esx6f3Ug0CC0r0VL58PPD9o4CRy/U6sQm+8H5YsWLFipX9Eufx/wf8++8DW7qpfyWV9l8bnjybUAsCd/eTqfvFe4hRaoHpuZoLhJtAR5WfLYfYJ+4IY/O2xtLhJoUwsUs14yEkGvQSuipAss7PtAyfxqophlK/dMKBOXe2yjBvV5nnTdRpOE3HgJkYMBln7nt7ll5OX4nVFpecAfzdTQdmDFasWLFyBIrz9vtY7u+9lkZPwAeyFfO7+rt7utWMOTCYp96OeKQMSNb5d8yk4qrG+ZVMwREi1lg6BGS/qt9qQWA8AWRqjORMxYBUgpO9owL0lvg3wIm/egpYNwl86OX7P7Bjxrio4g0aaAAXVLTJRVYN0jhqBoCqyzx5PgI82Av0FZXc7O/Pnmcs2eiSFStWrDw9cU7ZQ/B1LE4cUiXEqJAYO6NJOsXf+S7wljc/9cEuuomObbZKnS6tTkohOuKuTx2fqQHNAJxEA34p9Lxc58GWwMEegJUDIAGflr5IIQI83sHX4g0aTFMxGlGlMCM+S2eBtZM0lF67BfjlV/f/vCfvAY4dZYQqVeeClcqKiAFxN1x6OeEWo0krpxnpKkRoREm06+r50S3n59c807thxYoVK4e9ONgE54r/oy5P16hXB/M0cqpB4LcLgRuW0zmdjQLfORr4w0eAq3+87wOedzeNq0yVxla0SXLKHVkaXP1FYEGR5+k0mYrykWEoATay9IKXfUaVBP8D0DCJNhnhaTnKxjobZQ76lN3AihlGdMIejaeQRzbWRTkFV0s+en9kJsY0WtjjMSV6VQwrCDDSpFGUrXKsuSgXY8gDpuMEpQPA+a8FXvuojmdB0UaYrFixYmUvmevldukZwMPdNFqCLUZ/AEaD9u7dducAdbDnAI91Aa98jP8L1YzbUmjEw93U6Y93MEpVCLP1yS+X0khKNHicQgRYPwag73m8+oMnzyqydOmll8JxHHzgAx940s9s3rwZp512Grq6uhCLxbB27Vp87nOfm/eZL33pSzjjjDPQ0dGBjo4OnHPOObjtttvmfabZbOIf/uEfsGzZMsRiMSxfvhyf+MQn0Gq1ns0lHFoSNumzWJPptGSdkz1qUl8Z4110VAnurgTJqzGU4uslgxd6qAe4t48L6K5+9gX64dp9n/Psx598PMEWjaOjJoDXPwKsmOYickBjSTieQi1ipCbiwHjc5MYdjrGzzIUKAAMfBv5vJf9ePw7c30fvyRpMVqxYsQLnV18FXvF24LV/DNzfS2NmPEG9K/tAX+mJXyyGgT1pYCRF/f/TVayG/s1C9n4bTwDDKWBnhsbWo12MJnkOcailEPecoNHVyTp1f3/xeb3+gynPOLJ0++234+qrr8YxxxzzlJ9LJBJ473vfi2OOOQaJRAKbN2/G+eefj0QigXe/+90AgBtvvBHnnnsuTj31VESjUVx22WV42ctehgcffBCDg4MAgE996lP413/9V/znf/4njj76aNxxxx0477zzkMlk8P73v/+ZXsahJYk6kPJpjKRrNJTKUpXgA3CUOEwYViOGUGxrJ0OohQiQjzK0GjBVEguK+66SOHb0qZsmRpvA8hmm2u7ro0Ek4hujyW1p1KnSAqohLth1k1yAiQbDyHvSNKJe+Xbg9qvJIrthjLQHHRUge4DuoRUrVqwcqnLdCurlQgQYKABrppghuG2Qxs1wiqm4v7gT2J0Bblq8b92+KEcYRiXEY9VdYCoOjBowtxfg6w2XhTnxBveCE4fpjBcMFvW4EQArnvfbcDDE8f395+AsFos4/vjjcdVVV+Hiiy/Gxo0bccUVVzzt77/hDW9AIpHA1772tX2+73keOjo6cOWVV+JP/uRPAACvec1r0NfXh6985Stzn3vjG9+IeDz+pMfZW/L5PDKZDHK5HNLp9NMe78ESZ90kMBMFxpL64voxoBgBkjUgXeckr7pA1KNh5PiaW07XgNsHadT0lJRUrBakERNrmuhOhdGfbR1cfFMxGi8tAw68Yfn8gb3jXqb5slUaRDNRGmS9JS5ggIurGQB2ZoGxBBddsMXP+aABNWGA6J7Dv4dTeo7pT9FI2ktsWs6KFStHmjifvY76vByiESQcej1l6tyaS906lKa+jzSpU5sB4OZFwI/X6MFO3U1jKVvl3uIYp7kSMjQBpvKtEaAz/Hs7lX+pq8zf4tzORoH/Wwl/S9dzfg8O9v79jCJLF1xwAV796lfjnHPOwcUXX7xf37377rtxyy23POX3yuUyGo0GOjuV8Or000/Hv/7rv+LRRx/F6tWrce+992Lz5s1PaaTVajXUarW5//P5/H6N9aDLw1fq3+/6A+ArxwOzMUZiQh4nc9IDYCI0AwVNy4U9TuZ1EzRYJhI0UiohfjdqsESAOZahvq+5NJhe+jiNoHsWPNFYWjkNbOvk+9KpejBP4yof0RRcsg4smyF5meCYEnUu9j1pLvZ6gMngvYGCnR8Bpj5FQ65NnG98H/4fv/HA3mcrVqxYeQGKc8fVwL0LgECY+t4B9WYpRJjFrgwjP4tyjOZHmtTL8QYj80tnGf3587uBK17MohwH1MmlMJ3kQpivRZss1DllNx3fuokqjSe4n5RCwJDBJ3kB6v1S6Ak6+nCV/TaWvvWtb+Guu+7C7bffvl/fW7hwISYmJtBsNrFp0ya8613vetLPXnjhhRgcHMQ555wz99pHPvIR5HI5rF27Fq7rwvM8/PM//zPOPffcJz3OpZdeio9//OP7Nc4XijjvuA9oD5h95npii8ToKERo/GSrhvzRZwVEKcxJnqpzUQVbNFp8aJqsGeBn5e98lAtvPMHXdmX4/2CBi+atDwDfXq9jmY3Sy6mZPkFhj2OKeDR6ZqM6ht4SDaRMlYDw0aTm1hsBssvmo/w/W+V3Rbo+AtzyFW2JAgDnPgAH99sIkxUrVg5rcT75c2B8A3Vqy2G0x21pdiBTBTaOMsqUrRKyUA7RYc1H+Nq6SdLDRDzgqv/ldx/pph6ejVIH+4asOODTcY43+LmSiVTdupC4pZDH/USc6oBP3S9FOYe57JextHv3brz//e/H9ddfj2h0/7rE33TTTSgWi7j11ltx4YUXYuXKlfs0dC677DJ885vfxI033jjvHN/+9rfx9a9/Hd/4xjdw9NFH45577sEHPvABDAwM4E//9E/3ec6LLroIH/rQh+b+z+fzWLRo0X6N+2CI853vAqGVwMfPBD52I1/MVGmYlA2gz20xhRZsKZOqRHScICscKkFg2SyNpqm4VtGVQtpA0fHV0MlU+d50jJ5DaZILYlGe5/MC5FaajdIAC5mF68NU4ZkoUailFXmlEMeYaNDjqYQYyhWwerilZajwWSG3I6vVdKe+E7jgNuDKa83NYdbYVspZsWLlcBTnr3/LiI5UmXkOI/+ur9ihosEhbeukvl42y88BjPIHQIPopsWEZLQcpXLZk2b6bTpGPd0u5RCB3+kaP5+P0DCqBvlaV5l/TxlOp4B/xESW9guz9MMf/hCvf/3r4bp6gz3Pg+M4CAQCqNVq8957Mrn44ovxta99DVu2bJn3+uWXX46LL74YP//5z3HiiSfOe2/RokW48MILccEFF8w7zte//nU88sgjT2v8Bzvn+bvEcQCcez8Nh51Z4IFeTvJ//QnBeBe8SgF3gRbxPtkqJ7F0iZbKs4aJGB0zCizJcVFUQvxMIcKIjhegt+C29fzZneYCiRvg9ZIcjZzrVnCBnjyk5f8AF1czwGOkahyfD2V6LYb5+UBL6Q6SdR6/4WqOPOLx89MxYDIG7Oh44g3yN+3zvlmjyYoVK4eyONhEXfnXr6QurgXnF8zUTRQ/0aDDOB2j3g+2uAf0mvZSlSAxq+kaq4/DHr+Tj/C9gM8IVK2t5ZVnsKyShdiZNfQupjinHGLaLlvVsRXCmuUoh+D/+3HP+T062Pv3fkWWzj77bNx///3zXjvvvPOwdu1afOQjH3lahhIA+L4/D0sEAJ/+9Kdx8cUX47rrrnuCoQQQxxQIzGc6cF33kKYO2CeH0miShkTd9OMZTbGsv7+gEZgU2VPRcmikAJzobouLI+Mx5VVu0YMIGZbtijFsJPQa8JkiE8yQcDaJ1zId4zlbDnD8KI0ZL6DYJDHUGq6WrjZMk96wWcTJOsdYDBGE7oP/Rzz1eIphHq9oUohhM47qXtPT2QRc/zXgpabhru8AH38JnC/n4e954Rm/VqxYsfK7xMEm4J9eQn4jgLrPh9HpvjqfvqM0K/EG//cc6vVHupmOCxvnt2nSag5YsCOOackU2CQagFOn4SXN12WfSNUIHK+5NJKCLT2XpO7E0DJOtnP6LvibFz/v9+75lP0yllKpFNavXz/vtUQiga6urrnXL7roIgwNDeGaa8jA/IUvfAGLFy/G2rXk8dm8eTMuv/xyvO9975s7xmWXXYaPfvSj+MY3voGlS5didHQUAJBMJpFMshLsta99Lf75n/8ZixcvxtFHH427774bn/3sZ/Hnf/7nz/DSD478ztYl9/cRmNc0hlDYA25Yxt5uAZ+Tt7fEiT2WoPFSDplSfZ9/L8kB2RmGYycS5NXwAjSMmgEuRtfnImi4/L/uAnCVuCwArYbzAmZRBhmVStXm8yg1A1yw8reUqqZqNKb6C1xkQpopTN8AF+dkHBhJ0lgS46+rzOMLBkvkVW8DGp8wN9Mnnqq3BOfTYfh/+9ID+KSsWLFi5bmTOf64M85jNKgZoK6Vpueim6VDg2N0tgNG/cW5dIxxVAxTn07EGfkBNDXXXaEBFPHYaqpmmq5LcU/OdFSIN4CThrkPFEPAi4apu+/tAwpRjs93tLI6bIqFevfB7XSYyQFn8B4ZGcGuXbvm/m+1Wrjooouwfft2BINBrFixAp/85Cdx/vnnz33mqquuQr1ex5ve9KZ5x/rYxz6GTZs2AQD+5V/+BR/96Efxnve8B+Pj4xgYGMD555+Pf/zHfzzQl/CcyNPu7zYZZxi0GCY2qatsokIGYzQbJQap0xhPJTPpa03FHyUaNFDiDVZHpAwtvWe8k2qQi64a1GqGSJMG2K40P+/6fK3hcuFVTV+3qTiQjLD6YirO1xJtAHOA3k/dpaE1luBCzVZ5DXHTfLEcYldsiZBFm5qK8wJ6zWPOfGOpGQDe/Bbgu9/h/+smSaVw41I4EQ9+7elFN61YsWLlYMickXTJGSSHjDeo70thjfwnGvwdMFF6aWQr+NSsaWkifT6jzTYIhqFpCbZMKq3FfeT4EVZMF8PA9SuYdYg2gaihb2kaqoDVU8Ati6jTp2OkdBFYhQ/NLkjVdT6i4zqM5RnxLB2q8nznPPerAa7I+35LA+OG5epZVIIEWQPKi5SuKf5IwrPSzqTVZhDJ/2NJehEC9Auaz8uikvTbdEzJKgVblIvSuCmE+dNdYXXEohzf6y5zbNNRpg1Hk+r11F2e9+gJGlVZ05xRjMEZA+KPNoHOKj9TCZky1TS9pInEE+/TRzYDn/y5/l+IAN9fB1x0DvD6h4G33wf/1Hc+gwdgxYoVK8+NzBlK3zma8IrpGI2kjCEYTtdoFNVcGkzxBjMEK6eZXSiGuR/sSVN/5k1EKF1TQmLfoZ4dzHOv6C+qo7yliwbTwz3UvbEmo1T9BX53R5YOeyUI1IPqSEtf0WBLo1UZc86xBNBZgX/JGc/pvTvYmCVrLB1AeUbG0d7ibwK+fDxw4TkmMmQWQLQJxOtAskEvodukqQK+VklEmkofMGUAgBLJkQhRJaSNbue8DxPREVDhVBw4epzfSZrUnWPy3wAjW2NJGkuSgjtxmK1UJK1WCut5wobwTHBIkt6TRoyVkGKeUobmYEs3mznOxqg4ZqNc7IKnAjjGB66af//uWcByWrmdFvxtxYqVgywONlEvfms9DZLhlFa5zZr01sZR0qSUTQXx8hnq02rQOKsRHuz1D7Mt1EiK+8BslIbPqinCJ9oj/FI590i3VkLHmjRwIqbsP1nnMSbj/LxUwVWD/M6CIo0ncbTbweaJOr+XrQKfORUA8FxZFAfbWLKNdF9IcsIwgX4P9HCCuj4ncqSpQGnhIcqbhdNyGGatmIkdb2hItRim8SG56cU5vibgPB+c/Jkaf6JNfq4YNuc1gOxok+cdNwuso8qfdI2L1HfYf64W5Pk6DPdTqkZvyDXM3Tuy/F0N0puRKFbAZwXcUJpjXTKrhlW0wYEKoDFVo5IA2E37/3spcNnP+P9d/cCxY/z70S6Gk61YsWLlYMvnT6bOm0jQGc0YnrpCgI3Of28nnVnBkvaVNPov1cJegDoUAE4YAbq3tYGuXergxzvoyEpkX5qmZ2p0WicTJAr+xEuAP3qAXRLGE2pgJeuG3NLTSNdUjOPyTMZCcFSSFdgwTqNpUY6Ew4epWGPpWcoBiSaJdFaALx3Pyb1qioA8z1EPpOVw8lZCCqhzwEldMwzYLWMwZatqmESamnoTQkgBClaC9Ayk67R8N97gwok2afCMJ/h5x1AETMd4rsECsNOAxvOmx5BnjKexfho/PvRYiQYQMKWsrvFSdqVpKJXCGsmKmTEvKDEVB4cgxEiTYeRZQ6T53+t4T/70Xubk713A3kmGx8nyMVmxYuVgifOPv6KuHAyT3DEfYfR+Mk09OVggq/ZPVgHxJnDSEBuTL85Rr5dDSvo7mqSx9L2jaFw92sVo/onDbKq7M0sDJtSisy0QDolixRtsexXxgL//NfVs3ewrEt0H+D3H57luXgx88Dd8fSrOaFdPmRGqyThf/81CGncrp62xZGW+HFADqV1+toK5654SsUBegCmvZB3IlGkwTcXoLQR8GhSSIosYgJ0D7RQ9nKKhIhGmUlj5NhwozilVozcxHeO5BgrAbxdycUl/tqEUjZU1U/RQmgmGcoVcshLiMYMtoBJW3qWqqaCrBXlsCeVKNV2wBfSW+fmJhCHFjFNx+OD1Lc7RWxJjL2gwW/D53Yd6gG+up+fWXdYy2t8uBJbPwOmxBpMVK1aeP3GuvJYOoGsqxqZj1N3S8WDdBHVpss7ebQtKNHSmY9TFUmU2FSffXi6qlW+jSQKwY0062Neuou4smpYos6YNVX+BbauOGQN+vQTY2mGiUy0tmqmENKrUDs1ouIzML5slx9+OLPeFsKdExd1lGmznPM6uD299EPjlsoN1y59zscbS05RnbCBJuaekvvYlS2a1hDNV5yRM1BWoHfa4yLrLNHAKYRoaQkwmxGOOIQzzXBouvkPcT93glTor2uNHgIExgyeKGWzTrgw9k96SGkgLTGPeYIvfLYS1AiLeIIBwOMVr6C8AFUMomapzfAuK/F+wVJJ6qxt+D8/RSj6hCgibxsAzMWDQ18oLSQm6JrTcUeExbh/ksbM1hoPffh/v1939QE9pDlhpjSYrVqw8V+Jcfj11WNZE22MN6mmAutMBI/V9Jeq96SiLX7ZnqT93Zqln7+tTOEJPmXq07gKDDvX4YAH47SDwYA+jOY2Adj0QephSGPifNcCZO9Rhno3y9ZQ53vIZvicEliKpGn9mozSUYibaVGiDcSTrwPpx7RXa3gj9MBRrLD3X4psUmhhAzQANDQHrCedRPaiTsRgyhkCVC2cqzgldDCugu9KWdms5yvbacug9jCf43R0ZegwNl6BpHzRuekumTNWQlQk4POxx0osR5gW42FN1Hg9Q4rLpOBm/F+a1QS6m6HXkojS8CmFGoLJVek+JhhJoOqAxVgwDQZ/4pHSN19IMAPUIvy8RroESx18NMvq2Zopg91KY4482eZ+FYwSgobatk+e4bgWcOx+A397nzooVK1aepTjf/S6wrQPY2q28dMJpJCDskNGf0aZmAhaUuB9s7QRWTQPvugu4fUD1dU+J0Z31s9Sxj3YRs3l/r1Yb10wFXM1VLjuA52857CmarGvBz4Iio15SjRwz0AbAFOwEufc4vsI35PtHm6h+OQTszDDKNZx6IoHwYSiH/xUeADkgabdJQxS2MK8EZDNRbS1SNBwbkjeueSSmjBlrX6jlhQrA9bXliAPlTBLjLGZYwNdM0TCSnnLVID0VMdyE56gcmkdfP7dQnBbH6LVVxNUM26ss+EZAoz67MvSU1kzSsJEqi81LgD8w7W16SvSuslUaUsMpjrvpAE2XizVqUozSJHhhnmm2XJtnlJJyWY/3tKcEPNZFAKOIEGI2AlRGIyk4F22Gf+npB+ChWrFi5UgX5323AZUVSqIrBktHBegxxTbJOp3IdI262XeoH+MNRvDXTfLzI0nFjjqgTq8ENZq/K6POs9vSvaThcj+pmpYmgILDhRBYIk+5iDrXhQgd70yVDrrjAxmHTmguqhmAsYT2+fTBMQynOKbJuImYlYH1Y3CcvuesIu5gijWWnkIOODapFmSUo7PCDX3ZrBoawRYnfdAYHTFDMiYcShLVkbLNmAHvBcCFUgxzEQhWaEGRbOCrphWHtCTHVBXAxRg0zXFlAWztnF8+2s7ZJLl2gEpBqvNcn+X9nkMDTPrBJRo832CBx793AXDciFbAAZr7XlBkum0oRa+pYlJzgsmS+yHg8R4Toaq5QDNKg6ph8F1CjyDjFMB6tkpF9rKtwM2L4Wz+d/inH1rs71asWHnhiHPxLwwpr6laFoqTUggIuaovY03jJBc0Yi9UACGPjmNnhbpuNmoyDYZMco4KxnAfiX50YCL/ZX53Mq6YTtHf0tUh0dCWUgCPJS1VHJ/jzpnKNgfU4zMxjmU6pnQvxTCPmagr8aX0o5OCoJOGgQf6DsLTeO7FGktPIs8ZiBvgBJyOMSe9ekrTZMEWF1Oizs9VQrowhC+pENbwaj6qbUMa0hjR4zE6qqy+WJSjt7Jmip5L3PApSeNE1yyW/iIX38M9Wr3WcjRq1XA1JAtolVvd1UiU53BhCvA75JEbavkMo1DHjNEb2ZOm0ZaLcKFLD7ku0/suWWeYuLPC40o/o/EEF/kik/abMgu6s8LP5KKsJHmgF/jcKTznyUOkZAD4+3GDp9qRhXO6BX5bsWLl6YuDTcBVJ5m0mk89m6jTaKi5NDJ2Gw6gaJPRmsU5OoQxw5uXNpQqYwnqQGlRIjCCbZ1Mb9WMYyx7UcO0kpLIewvUp4mGOrQAo08th44ywFRgM83IU8MFyj5fc1tAGNTru9Nk9U7VgD/cwvMXTASqnSxTuJsksi/8fB2mo8TS2ef1eTyfYo2lgyk7s/xZMc1FlazrgnBb2kxRaOulU3TUGCJBw18UbQKRulICBHwaEsUwvZx6kPn0JZJK8+mJCJB6PMFxHDdCD2gkqe1LBGjtmDx4yFAMSF68YYwmzzVGWEAbOPrgtTRc4JIbqBx8EzEaSwLlICvZhCgt0eAiPnpCQY3xBnPjzQCNof4CFc9ceDhJ5TBQ4DnXTrKFQCXEVOAXTwS+/CO958tnqNCWzwL/cjKc922ae8saTlasWBFx2vXBtavohAVPaYM61KhvOyrU37NR6sD+ovbF7KoYY6Wtp1olqNjVrV2mWCcKDBS1eKdkmp5LJ4agqWBrBLSauGUMGck0FCJ0WO8c4OvrxxUeIc3XJ+PMRkhWoGSc4D1p6mIA+PO7+f18hFH82RhTbFNx6l/p2CBZCWm9FW3SQT9MxTJ470Oe06jSU8nqKeUjEnoA6Tot/EopY1QFfE2ZZQ12qe5qGDXa1D5wj3Vy8vcXtaKuHFKGVvlupsow6rYOXZx1V8O6DZdjyRrg+WTc9CtqaOQp1NJWLNLWRCrZFpjoVckQVM5GubgLEb6eMWSXK6cZdQM4zq4KjzWeYKSsq6JA9Pv66DGtnCYh5Q/WclH//nYu8E1nkpPks9fpfZ6KA+NxnveG5cBFN829ZQ0mK1aOTJkzjhouS+2XzdC5ErllETGRNZe6x/VpKC2dpd7b1kHdt3yG0aRgixEawRQNp6jHaq46o5NxwjFuXkRs6XRM4Qcth9GoVJ06uxpUGEbQdEeQ5rdVV9nAXZ9GjRhwEomqBoFfLaURJZQwvqMFNz5oSElaLd7gWHIRXt8/ngX82T3AWx7g53IRpZsJm4jZK9/Owz4HVoVl8H6ByUEzlAAaMoN5xehIlUS0CXgNrUpINLTXz0hCaQVkUYVMxGkyzvcKEX43F+H7QqFfNHxIXWUgGOQi3pnh+STqJBEk1wdg0oUSll2U5wITagNRAJ6j4MK6qxxLuai2Q8lWGXpenOPfuzOadx9PaN5c6PTjDWDDmBJbCudItkrDsr3Z4yu2Aufez5YxMzGm5IZSwLe/x2vpKmuPutN2kab/w7cAsCSWVqwcCTIvanR3PzCaAMY2UvcsyTFlL06oyKm7mdaXbgTLZ6hTu8rGqIhSF03H6NhGmmogBfz5vdwk+l41LaZWT6lzKoU+UtlcCVJvuz51asVgRgsR6l8f1P1Og7pucY7RIeF1ahmQeabGyrg/2KJjkx6gAKNa0hdOQOZ9Rb6/eBa4+sd0TB/tJtdewzjndZd7TqwJ/McPgf93MoD+5/oRPu9iI0t7yUE1lhbmydzdMtGWZoCRpJ4yF2QtqPT1wqAqzW5dnwsgZf6PNrlYSmF6EXVDMuaARhHA98YSGiL2wXMLKZpUzAm7q1TPCcN3IaL5aweMDLWHjGdiNIikO/bKaZ57PEEvSoCOEvKNmhLWYItpwXUTvK6cMRoTBkS4bIb3Kl3j+6MJ4H9Xk7tkayc9vYV5Mss+2Mu04u4M051bP6/3+8oXAec+ANy0mBGmf7l27i1rMFmxcvjInHE0GQcuOQP4iztJ5PjjNdQV2SqNhB1ZpvWDLerLldN876Rh6tH7+9ghYDwB3NkP7Mkw+jNg0lMLiiTFFTB1xOPrtw/wO3cM0KjKVKn/+ko8fjVIfSstnwTfBPDvaFPH/y8nA39zi6FcaWm0vxbUz1WCCg53fI38hD0agx0VjjEX5d/BFnVkwVTz9ZWYgnu8g7q+HDLExiHtSZo2e5PjcyzpGjGvwyngmmMPeHTpYEeWrLG0lxxUYwlQBu/eMq36REM5hKqmhLQc1oqyLhNRippyVCkD7TPtUKZjzClPxbiIl84yxeUFlCF8LEmDpBBRQ6vmamsUgAZa0KTvxhI0Wophvh4w1SCOwRHFjLdSdxmGnjbVctkqjaRdGSqOgQK9nLv7+X+myhTbQIHe1kBBjbidWSocqdp42TZ+t8vkzz9/MkPnUuFXCtGQmozzZ1dGo2Qv3g385iv8+7qVwFnbgctOo6J6/cPAy7ZZY8mKlcNInK//NyMu6Rr1aTlMIsjNi7m5DxSoB4WjTYyLzgqj0okG8OrHCITuLgOn7SYh5I4s9V/Eo85yDSZ02SwxTjsz2pqq4QJ3L6ATGfIUYxkypML5iLY3SdX4HanslcIaSZeVw9Td4ph+5lTCDY4d5XEbAYVN7Mrw2uMNpZUJe+r0dphq4ZajxJliGO5O8zMzpr2VOOvS/SHeYKpPImWBFvn3vnz8YWcs2TRcmxx0QwngohEqeWHlbudBqrucqHWXE3xRXtlYW4bddSZKj+D4Eb73q6UmajVNg2skpaDxgMlvL8rR65mNam+gqTgXTawJlMHvxBs8VjlkjLC4sn9XQlwsAkIUxvBMVSs1ek2DSOFfunWhMoS3HM3N39tH5XH8iHKO3NfHY9VdRqx+vNrwV0W0AgXg96djJmUYJH+TpBYB4NZFwHtfBVx5LZvvbhwF/uIu4JpjSdc/loTzjk0AbITJipVDUZxLbmDPtMU5rvveJB0yidp7jpL8TsbpKAlwOuCrTpNG47sy1FWuiXrf3wscP8r/h9M8nujUUoj4JkDL7rsqim8C6NhNGRhCqkWjK1Pl8WINrVaONTRtJ7jRkMfj7E5TT3/mVB4zXeO+IRipRoCR9Z+tAC64jfpYoAozMeWrq4S0K4LrU7c/1GP4mFzA8xT20DDGXKwJ1EFjDOBeJGDzDWPP12N+XsUaSy80mTEEYhFPaQFkgkteXBZST5kLQtJhwvMh5JLXrmLK6thRfmY8wVJ+aVY7bdJkWQOsXjVNT6hDyC59U+Hhzu/pBigwUPrKecbQET6OWpBG1fIZKo8pg5/a3sEFlqkBvUVeVyWkCzdTJ3OtdN++cSmPM5RmGi0X5UKumZLV3SZKJXxM0hepZrAALanYKHOR5wx+a48xripBvtZfBM5+nNG3xzuAfz0ROH0XnPUWw2TFygtZnC/+hPrkngWkDlk5DZzZlr4XGpSJOH+8AKNJMROtXzrLlJzgLeMN5b5bkqNOGChQVwgfXm+NeqIQVsB1wKf+lp6Xk3GNzu9OEyC9KAectYM6dypuHM+gYpGkMGcqpq2yIh4xQtJUPQSeRyJk598B/NuJNGgqIR17zVWjT6LssreEPK28LptoUsRUU9eCbbQFBocqbaVkHxAjKQDe+1BLsw2TcWD9GIDDi2/JGktGXhBRJYCTXaoT2hm2q0FO0IECF4zQ0Ut/Nd+UpOai5N/wDD/Htg6tmOgrciKPpLhYM9X5ZGUhQ2om1XBS7VE3dPqBlnaolohXss7/ZXEBulB3p5UH6ehxKp1EnV5aLmIq24o8h+9om5O1k8BdCwzYMMTzzESBj2zm8e/rA36xDNjSxeOYCDVqpiQ3UedrhQjH2XRZnpE07LlegMbXlS8CPvFLeoy/WkqM1PIZGpG7MsAP1wKbF8OZ/Tn8C895PmeBFStWnkScwqVc93vSBnaQpB77vZ2MxgvuciLBn3xkfnppJqZA6kyNm79Uh0n7J8/ozFiDKf97FhgSR/D4uYgaDAJ/KLbBI8Ie8IN1LBzpqJrG31CG7ZOGiYlqN7YqQcAPatSrq8xo90ABeNv93BOk08Nc89smEAHwJ/eSKuVfTqae/+P7lTzy1Y/yWFWDyUrX6BxKJbJgWKVFS8kYbQ1XjSQxBsVJFoMr7PE+TMaBy02E68LNwKL8YcfkbY0lvIAMJZEblgMrp4Czt9MAqAbVOwp5QNp4GbMxJQ4To0oYqzOGIkB6tKXqfD3gG86iiLK9egFii7rLJi1X1Co0kfbeczVTBeG2tGrDgWEch0aFgialNpLUxo4CSJdjdVZ0HGKkdFSA7goX+CPdpAH4k3v5nWaACsMBF3PdpXcDg1UCqDBDLb5fkjYyAQC+qepr0fj6j+MYql8zxdfv6Oe1L8pT+U3FqAySdTh/ewv8T5/63D97K1aszBNn9+dYhDGSokGwIsX1LOtfilpSpoPAbIL6rBwCZiPE0IhRkjdEuKUQUDBVtuma6qpWEwgZp6urQr0Qa1A3CmWAOLHCmN1wlRdJKtayVZLwShFLy6Ex11lRPNDPl5MT7oO/AdJVAFEtqmmBuvtFQ8wgtBygGVT6gLpLXKro1mUzNJRGk2rEeAH+vXaSY6yaaL/0k5NImuCNXJ96fjwBfP8o4P/brOnFoHGUxfgJeW17koGFbBxRUPqKmYMzWZ5DscbSM5FAm7nsQ2nlHWhPNfmMvLb3b5jvFcP7PseCovZjEwxRPqINdYVVuxBWL0Oq4sT4qwUZ4s2ZnkG5CBeY49MYqAaVyHIyTqVRDPO8UiEnlXCAoSXwgJik4sDPhj3lDnH9+Y19Ab73oEmdSWpPKvOEsTvg8zz5CEk0+wtUfhK5KoaB2wYJwhT27/ZxNYPKCSWVIOINSWRujrXchJonXXpDf3w/PUxpGnziMM97bx+P2VkB0jU43/ku/Le8+ZnPGytWrDwtcbCJkd1aEFgbUy6justUfswQLe5Oa+RbKmsler43N1HJ6FrB5oihkzKbfi2oYO2gwV6Ox/n7sU5+p2BaOdWCQLEt/dYM6DgSdeqR40aoz5J1/l4zqc5psq6dC8ohIOrQiIo2lVuuHKLjFm3SufMdniNR5/U7Pu+JcD4tnaGxBBCL+eM11Nd/cq8CvqXnZjU4P/0WNw7mTJRjGswDYXP/vngi8O47dWxzmCiX320YCMQ52w1uy3si7cJhINZY2h8JeRp+lDRVu+EjxkN7eFYMp70NJc9Y8PuShXlWU+Tayk89s5iFtbsQ4aJJ1rX9ifT5KZsKCikDjTdUYYhRI9GWusv3PWMYlUMKDgy11CAJe+qBCACxZqZPI0ADSCpIhF1bjCO53pAhpAz4xBVIPztRABI56y/SU9qV4dju6gfGVyrgsBLUiJtwOtUN+LHlADPmmFIt4jn0/OT+iYHYYcguv3M0029n7uB1iKcpzY+lnUC2Cqf18TlD2GKZrFg5sOJgE/CjNUBoJfVn2lRpSS+zHVnqki7TEy0XYYRd2K3DnvZck95s0l9T9N5EghXHUcN6XQlq30kHRs8bJ2smpozd31qn2BzPUbyT9N8EVD//z1rgDx/RpuNi6Ine7S0Bb3qI35EolRhIdZc65+bFTKktzCv3klSiub5e509WM9XXXaYBuWyW7xXDmk1wwOMKuN1tw8P6Du/reILRsM4KyScF71QK8/iRJvVlM6CFPG5A048+lH5Gjn8YyRFvLO1XCk7SS0IhL0bKcEojTEdNAHUDLK63RVfm+n8YabpPfp5CuG1S+kC1RZyO7wCvfEyb4Er42TWgnWaAi7MQ1jx0xvTwKRjDy3fI9iqVFp4BiIsykga50hNIqi/a25+EDDml57DNiUS7Qp4aZwEfcD1dREHDRSKlsYtzNGC2dVJ5Zav0vsbjjH4JJ0i6xtJdIZ0E2kDhMj6jPCQyVQwbgDw0wiedwKWXXbJOjFJ3WZtFnr1d2cJrQSo0aVUgka/bB2lkrZ6yBJZWrBxAmeNCihnqkukYkHQJhJ6Oqa4KeYyWCwfQTExxkuJwSXpN8JSjSZbttwJMbVWDqjMkMiNRcddnIUwroI1opa9ao80ZBVhtJn0+l+Sox3Zm6HRlTCeDkumeIN8bSvH8aye12Ka/yHNJZwXXZyFLutpWaWYyAa5PA0YwRw3DXTeeAE7ewwriaJNM3eLseo5WTEtT9EhTcaY7s4ykHz3BSr9XbuXrwRrThEtmNRMglARCmFkJtWVYmtrAPFEHm88dHnJEG0vPGKskkaKAz+qK9sXj+PQ0Wg4nYNIQJ84ZF462GOkus1x/b8lFCbL2jScB8FiALqqFeY32uD439UV5GgrXreBiHShoZURnRUvqJf0mLK0jKdNkt6H91oZTmq9OGjKyAAgKR0hTfTNR5tS7y1ysoyaHvqDIscYbanh5AX5u5TSvrasCuFO83tmoWcwBQ9wWYapu+Qx7HUkVilR8VEwaUjBMklOXUHvMgDObjmH8rmmoHuD31kxRCdzdz+u4fjlw6h6eu8fwXE3HCCT1AjRC93gElh8/Avzx/dZgsmLlAIiDTdQB9/VxPT/eQT3QW1LqkYV5IBZQwl6pvJVWTRunmS4Tx64Z0BTT7YPAPYZV+qXbtPgjYGAB8Qb1kRSqFCLajHZbB/nYLv059ZsDjivSBD57CotFRlLUXbUC9wSA4xK+uZqr1XH39fE4G0eps6UX53iCn0mY1NyrHtMWUYKTijeoV6WzgxTnvPlBdXQFV1oNGj4nX6vkfOhvcZbDHiuBT9/J6/jlMuAND3OMfSUagYLH6qrwul0TpZsx1dc+2Nhd4BflENBThuOEDxuQ9xFrLD0jQ0kWoDx8mTDtcucAJ3iyzgqKsx8Hjhs1TNhBTiwJtTYDrLSQ4/1shR7nkZ4nnv+yn9GoebCXC0AIJJsBLp6Hu2nQLM4ZYrM6jZPdaRpbPvidYpiff6SbxsKxYwYU7bEU/6EepbzvqhD3NJFgtCUeN+1RDOhPmF7XTZLkbVeGHlUzQCWQrNPgWVDUSoy04S1ZOkslMZSiclozCbxzB8e46UzgpiU0WLJV9TYl1SaLXcjg8hFec09JwY0tBwgaLzFggJczpjfTmkntkfSbRaaFTIDXvnFEy44FHya5+NGk6QPVCXzqdOAjm63BZMXKsxDnuBHgjFcy0rsoD9ywjAbIshnqHam63Z2h7lkyS/2Zj3CzTtTp4ElPNiGgHU1SR2eqGmH5xC9Zwn/BbTR6pMWSRNclclI0kZvrV/Dn8uu1Sq7mUmcBwNvuo569cSkLc0Q+fIsWtADUUz9cSwf2lY9pdOjxDu2isDBPYy/k0bH70RpWEZ/zuDrOlSDJLqtB6r9XPaaGlmQbGgHFEcWaCjBPGAC8kFPWg9ouSjICkoGQtlpuizrUCzBT4EOzK2FzzLDHZ7HHV32/I8vntyP7fEyh50WOWAbvTCb97A4mrKuz0Sf/zB8+wuhIosGJGGlqWqga5ASbNJGpWhD41vonP9YHf6N4Hx9UBl0VGiGlEAHUEwkuuO6y9uvpKXHhP9jLMS/K8/dslJO+v0jDYCitC3BRjnlvobQfSnNB787QwGo5VEp/+IipSjFg8JdvpdIaSSrIUnBZ2QoQNcbGeXczWnPngHpMnon6rJkC/vZmfmc6xoq1SpDnKRvbvmzoDoQxtx4gMVwlyPFK5YtrFrmQUkY8XqMD4MV7eA2VIL3O7jKNp5rL+xhp0nuUVjMSmXukm4aStHhpBKiAjVijyYqVpyeOA0Zojx3VQo5fL+Fr/QWNcgvNSaKhG7UQ8wqD9bAxXiRNJZxIEpX5xTLg3gVsmi2OVcNV/QtQ93VW1HF8rAv43lHAe2+jYzeSVH0n6bqQp0aJ4COH0sqSPVgA9qSoZz/4Cj3Pu+7i5wXC0Vmlnnmgl/ggIfYNtjge4dETgHjNpc4aSgMnDQEffrnpXbdHo+zSSUFgHdJTNNjSwp2eMsfz7fV07r/3HermlsmCCCyhGOYzaTncc2JNHjdbpSOeqfJ+DBlgfbzJtN7nTjlgkSXL4H0QJJM5AAdpuEAu8NSfmYyr4dIIAEljvSfr3IiF/Ey8pKPHgY/+vn7/LQ9wkY0naKE3XBokEt2oBpV0TYjBpGfavQu0K3TVVWp7gBNfyNJKJj02Eacx9oaHqTDWTfDc0SYXyY1LWU76ezt5rAUFGh91cHFNxhmu7i7zfan4yFTVSAl7wH+vI65re5bnk7z5qx8DXrKDn9vWaYCahqhye1bD7UlTCSLK0jF4pWqQXlpXmYs53qRxNZnQnnkig3mOaypGZTxQ4E8hzHtdDQJRl+PurFCh9JR4nRnTAmFWwOYh4G9fRvzBO++yUSYrVp6GOB1V4K1baYRkq9QFD/QSozOW4PrurPD3giL/TtWU/X84pak0IXMUQsdCSAtrBBP00seBNz4MdJf4veEUq2uDLUaqxKhyferE2RSww2wUjk9DqRTWqLUUj/gm9V8NKplvykAvimFGvlxfSXDXjwGvf8RUJxtHe8UMfypB5XMSkegOQH2crlFXDxTI1bSli8f6h19zjC1H8ZmCS5XIUaquRT+pGtNrkoZ840PA2++jDp2I87xLZrUQRsDedZdOsw+t5O6sAG9+C6NvIY+kmXFDt+D4UMzGoS1HpLF0QMTxFXu0Lzl6nIt3PEHPRSrNpLJKQMZSHr/YgAM/cKuhsQc3/JZDwypmlEHWMG0HW8CjnUCtS1uf9Be5CKJN9ju7bZCTf0mOhlPN5XEkryxA8UIE2DDOlBcA/HaQeAGhLThmjB7SUIpEawCbzv5gLT2PkKeVbfkIF4lU8AH8TG+JYdmfXQOccR6QrtMLijWB5dNUAg/2UqlIt+yZmDYDrgSZE5c8vUSZpIQY0EiYhOUnY8QRJOsm1WhC+emaAkZTNYbFf7GcBt9gXrEQM1Gg1s3n9ZpH+f6rHiM/yo4sFRXA6x9OAVefwBJbK1asPLW8/1au3e1ZRiYaAa7J5TN8/7RdTP9s66CBIhhQqVwTmhBAIzqVoDqjDVPg0llRULbjqw7JVoEThoEvnkTdu6BIfVMIq/NZNCkp6c8pkItEXatxpcBGKEqkcbjwK4lBkayz+W2qBnz5eOohAPjsdbzuG5bxWIMFrerrrGiUqG4A7wmjywph4PvreL/aq9BKYTVsisb5c8BjC6WK8NHNGhbwQlhpD0ohbaIeMPo/XeOxp2NaUdhwFQsbbQKf+hmPcdQ4AflveTOv96n2yENMjsg0HJAD8CzDeO18PXvLYJ6LUbydeIMLLlnXcn/5P1VTrqFclEbK9qxu5H0l4mtmo0xbAbT0vQAncaqmpGjVID9XCrM1yLJZVoAMFjiOXRlGmaSUVcCP8QaNGakym4qZKI0pzY00gRNGOJaJOBVLdxl4tIuekIS+UzVdYIAqi6YZ67JZ4LVb6BVdt5IL/JFu9QClb1MpRIOo5TAlJgBJwOTKPa16C7XojUY9KgOhLZCfY8Z4P6TLd870QJIQvVz/fX1UkAMFXnOqrr3tAF7TWx9gz6eeMvvSNVx6wV6AzzXi8ft/caeNLlmx8iTiXPwL1VWyTqX1UtroyI2jXHNTMa1CFv3kg5/prrCA5qFern3Xp+4VbGnAV3xOKaS9NqXYJlWnLvj7s+lcrp3kANM1Opq/XAacez/1p3A21YKMtE/FtVl3O62LpAUlDeg7JJishhip6arovtEIKN/SZJz8UUILEDdjlbQfwMjVIoPJWj/Ozws2Se7PVJz6Ol1TLilpWeI7NJ6mYtRtC/Pzjy9/LyiaqFSTnwH4fCZjjNSXQzTI+s0+UAkyHRhsMbJfDNNZPW4E+Mlq+F8+/oDMG5uGO1RFsDbtItGmWEN5JqS8UogapdSyXFdLX7wU4Q2SnkU5U2kgRGPJOo/dcGn0OKYKIdSiVzQR5yJZO6kEZ8tnOLkX5umtzUa5qadrSgkgIOkdWS6i2wd5/q4K023lMBfoHrMgSmGeL1NjGF2q60ItxSYJbkjG6wVoBH5zA+n3T9vFYywo8thjSRopcs3txJZCECdKJmrSatLqZTTFsZ93N8f8cLeW2zpQL8l3gGhDydkGC/zcli4FJgqHk+DRqkEaQH1FpglO3c3x/v52PpedWd6XhsFdjSWArxwP5502HWfFiojjgOuzGgROaOraDXsaAUnVqZM6K8QLdVa4duuu0rSETBqsHAYKnvYtcyM0FEaT/F4zwM/OxJSQdjaqFWW+GEs+8aCfO4X685Q9PN+MSZFJNVvL6OdGwKx3V9mvxekqh/h+3RSiDKeAh3toaACMpL9kB/X7L5eSRwlgdKnuKpljsMX7IWnFhXk60f92InDVT8gH90AvdafQtkibl8U55cxDSzkBk3Xem3CT+kyIMmNNrZgO+Hwt1KKBl6jTSS0afQ/Mp6lpmHtcc5X6ZSpusE5l3qfuMhwHh0VFnDWWDqRIyHFr1/zXs4YrQ6juAU6ohqtNCysGeBxsMV1VDBMgLa1J2onQBITcXebEjlXpUaVrCgwcTXJTl5z3Y51UANkqF287WeVMlItLmtGKxyAEaEKoJpVopZBWXAR85Xuqu1RijqmQ6KgCCVdZdAM+vZr/XU3DJNKcHzoWD0jy/BKhEiLKUAs45zFef2+JC/jePi7+3hINrUpQmXmlxFUIRH0AUZ8GVWeF39+ZUQO3aPipOirEKBVMWlHC7KNJKqPFOY5LGk8O5pUaoRyikvyXk+G8/VNzz9saTlaOVHFWTQF/tptrbjrGdH7JOETpmmKFJCLSa/CBlSA37GxVuwQAXHOiK8URbW/kCpgWSlC9IphHMdIE+Bxr0uH7q9uZknugTwf+ezu1HL8U0rTfdMzwzbXoMHZUOIbJuFbhhk3122m71CgKtehIuj6rhx0fWFjgNUiLFIDnyRhdXgqpE/tXt9PBG00q63i2ajiPDBg7uJcxIxGiRoDXKVx8+Qi/m2ho7zwxmCbihoupxXNJP7t0jXpecFElE0ESeEfI6PycyQq4LRY4LZkFkH3O5tfzJdZYej5k1vAI7V1GKSC4hXmm2vpKhrZ+llVrj3YBP1zDz4rV31kxKauKNn2MNnXjLoapjJoBLigJFZdCTJmla0pOlq5xUQKc6BINEwUjBpUQu4kIOaRUXNRcZcCVNJwAqsshoBhSgkjpyD0d09SbeGTSrkDGEzMVbHvSmqorhrU/U1dF8VvdZb3PzQBQNmDweF2xWQDHOhMzPFIm1RlvMLQuTLrCfivX3F6+fPMiEraJwdRXopcnVTQV4+lu7QS+chxZepfOWuC3lSNSnKMngJfuYJXrB15BTOZUnBt8xFMMjLQi6qwoqWHE41oUPdBb0vSa7+h6jzeU0qXmAl87iemzDeN67ITB8dSCqivDHvViK8HxvfUBbQ3VdKiHGy7gt1R/hBzyxElUTChh4gYHta0D+I6pat44QgLMitFp6ya0kjlVI6WM4KtyUf4tekyKgmINJeh1wIhTIcIIuVTgJRrGEWxqA3ZpbyJ7RtVEyxP1tp52AY3iO+Bng622wqMAzyWYMKn8jjW1Ug/QzIFQukiPUS/Acx87BmssWXl2IvwXLXDRCoBPFni2CiyfVStdIlfiGQln05iJMgmnh7B/d1YUsPxINxXFWIjKQtqkuC3+Fs4iH1zcnRV6XsJWLud2fPXswh6rwobaImlS3VermHA3CNQUjFeqzvML11TNVZJJieQIcDLWUK9GOFBmogTAF8IErkuufnsH70fJhKVNA1xkquodBlv0eh7vYNQuYYypjgrHta2D55k1bL2iqOouw8peQEGfIp0V4PRdjOI5AHo85TbZnWF/ppduA9ZOWoPJyhElzrFjwMsfN8SKplAk3NS2HdGmRrSFSy1oojVRSdWFtYIrYiLNEh2RNLlEhgWLOZjXQpp8RFNyDrRoRYwPqQj244z2SOun6RgNGM8hczZAPTIVVCyjF6Bjmo8Cfo3jbxnowMI8cN495GJ76wPkTPreUeRMWjmtLUhKYcCt8frdljq+k3HdAzqq2t8yF9XWUHVXG/eKsSlEm8LB50TV4BGKl4APeNA+b9K9YTaihqXb4vX9v5OBj9ysRpWkHaNNs2cYZ1l4qgI+x9vuQEs25RAXaywdDIk1uAh6yvSWOipc5DUXyLQMg7fxoFZNcUEJt0c1SO9ClE01yE25GGY6Skptq0EqpnyEymdxju9PxfnZWIOvB1rKhC0eRt1Eq1om952s05MRqnwJR4sCkqa+AR8oOIzczEbIHSKVGQDfFw9PKs4kSuX6WlEi6Swx3kLefNC2tFOZiikgshnQVgFeAFg4Q89QsFSiJOMNRvgm4zzvVJzPYTzBCBKgbRM8E32TCsTbBjmmB3oJsGy/rqWzfG4B34BAzTMohYk3MOBRazBZORLEOW038EePKm3HTJQcR/f1MSIs7TaGU1y3vSWu5YrBVzptaTopFPFNessxa0wwozWXRR4NoxvecZ9iaUohfk9STPI74FOn9pSpwwqGwy4XUQyPGCWCeQoYY6wUBgI1ptce6WLhSm+J+MV1E/z+e27ncaWVynRMcT+putEN0L6Yg6awxIdW8kU8TUE6ZrzXrSAFQqKhYwX0esRoEq6oREOJN4WrqRnQTg4hE2FzfabdpMuEZwyxsSSNvFN2KyUMwL1FAOxybECNOMGLFsPzaVsOYbHG0nMtibpiZJJ1xb8AmvcGNPwZ8A2pV0MntVAPFMIaQZJok5TSj6Q4+RcUlRJ/Ogb8fAUrKE4eMn3rXEZhJg0QL+QDnglrT8a0zHR7lotDFEm0aTyhkFabSHPFrgoXhdvSJrwNgw0Q0LvnaGNKUZTlEL2xhIk2SYjad2h4NFwCq9M1Aj6FTG75DBVJOUQWWjlH1Uzn/oKSc7YcpTFwTd59+QwXveMrKNHxabRKpd14gvevYfBR3Uapbs/y/W9sAC65Yf6zzlT1uZZCirPKRdgMOOwB68etwWTlsBXHATEqZ01x7QYMXmgqxrXXUaWTFmtwfc1GuY6lebUQTAqGKdoECmkaKDVXU0iSckJAcZWSRi+HgJT5XGdFo9XRplbnGh8NERPJEcyo5yhLtZTtS7Q8F2WEueUQd3njUh4jH6VuvXEpAdwfuxG4dSGhFX97M3XcB27lGMVgE2LNapC6RbiMKiFge4gR71RdvxNv0Jm7YTlhAMI5FWxpalEoaQK+ck/1lMz1hZQw03Oo30QHSmVgqqZNcQH9fcsiGl5n7eCxOirU+Y0An4tE9poBPk/BNIkRtWYSzroJ+A/voyvFISSB3/2RJ5dLL70UjuPgAx/4wJN+ZvPmzTjttNPQ1dWFWCyGtWvX4nOf+9y8z3zpS1/CGWecgY6ODnR0dOCcc87Bbbfd9oRjDQ0N4e1vfzu6uroQj8exceNG3HnnC4jXJt7gJr1iGlg6A6ycIvYoWwWCni5CATEOFLix95W4qNMGP+QFlHhxOMWJXQlqzyIJvwJUIDKBM6Z0v2Q4jxJ14MRhnv/+XuC7R1NxCK+I9BFywGP0mDJQ4TKZjNMjHEsCW7oZUdmT1rL9CROlStW0y7c0sJTSVymjlao/z0SUpuI8/u40j18xizxkUoKCJYo1iT0Qhu+lsxxvxRhGjq+/BwqM4Bw7xlTbr5YyqiPtXu7tY6UcQIW+fpyfXz5DxZKpsRrmlD0MlfeUee8iJg150U00PL9zNMuK3/UHpECo7uVzRJo8dneZKYFok0pqNsrvgREmxxpMVg4jcV73CNfvziy7EUSNEfJoF3XSZJz6ThzGXRltrN0wOs1tcZ3MRGlMDae0qEWwMgCNCHHCmgHq094S3xO9NBmnczaUZsVrzhRriKMptAJzKSZjxEQ8TdsLPkqMgowxKMRQAjSdBfA49/Ux7SYRnkaA4xhJ0tnanaZe7KxoJbM4y4Uwz50weFbhr5uIcyzf+D51ymiSn8nUFIPVXTbXn6CeFqA2YPaHqtKrlA0OVeAY4SYNWTEMo03uWR+7Efj4L6lLd2YUDpGqKUbTPJK55xPxeK8EJtJbApbmnsup97zIM44s3X777bj66qtxzDHHPOXnEokE3vve9+KYY45BIpHA5s2bcf755yORSODd7343AODGG2/Eueeei1NPPRXRaBSXXXYZXvayl+HBBx/E4OAgAGBmZgannXYazjrrLPz0pz9Fb28vtm3bhmw2+0wv4dmJ43NSC4YnaLA/zQAQAflChP8i0tQoUsjTkv2WowsebQbQZJwTXcLQtSAXkZSAeo7yA0mId1eGi663aEjUAkrEJsDvUpibuzDiJuo8fw08Tm+B3BjbOrkYxXhpB0c70OoT4UESfiVROsLxISm7uqseSz5izmnKgYVLRIwfUZrdZS6+xzuobF/1GK9rKKUh80ALcM1Y+oo0qtwWoz4VAxpP10xzyoYymDcDBq/UYMSnr8R7IiHkZTM0pvqLfHY/XUVg96NdTHkGTOrPAXBnP5+VRMFOHFal/eI9Ol9GUjScC2Hg2lUEd/YXbJTJymEhzq1fBtaupbMoRs+WbtV10vD7wV5gwxidvrDHDVwiOp6jxoXgLx/o5fpeO8Hvz0ZNnzKTJnu0SyEEEoFxfQUrf+kEHeTf3ELnqByivuwvaislcXgEAykVtNOGzqSjwv/LIeCKF8+/+GSduMSztnOdf3s9GbUlel4NMiIV9qg/yiZLIPiiyRh1zKopFoa8aIj6pBCm0dhZYXTnx2uAL/wvHc2ay9SdD9W1U3ETkQ+YKr2q0q2k6nS6+0q8zycO81xlk6Z0W/x8X0nv8aRxaL94EvD/fspjl0PcRyTTIHhXSVW6JpLeVdFeqNMxpRw4hOUZkVIWi0Ucf/zxuOqqq3DxxRdj48aNuOKKK57299/whjcgkUjga1/72j7f9zwPHR0duPLKK/Enf/InAIALL7wQN998M2666aanfZ5arYZarTb3fz6fx6JFi3BASCmdNqBbxERVgh7zvoEWqyMk3CoGh/wvvwW4LKFZIXcUigBJd0nVm3CMdJc1utNd5k+8wcnrgxP6/j56cRGPGJ1iiGNKmIqL5TOMnqQM/8Z4wvBAhZhCingKChQcUMAYhw74nvR0C/hqCLYcLk7x4HyHrz/STaUiYeXZqJJxClEnoLwh0gpF2roIwHpvDFS8wQhQugYcM8rmu5sX8x5IPn7ltPFejZclpcqLc1TWo0mOZzzBv7NVgscB/p8zindxjl7zZJzhbWnVILgrwVWsnWRkadXU/DnzUI9SFVRCbKJs2MetwWTlUBXnP/4H+NlyTaUJSWtXhbxrQ2nlRds4Sl0gdChDaUZcRJeGWjQOVk9xnQ6lGHmONumM5CP8jhSfSNWc4AyFokT0aruxtOlGOjBjCY51SzfPLZ0WMjXt+eiDztpEnBxMn/8px/tYp4Kn//ZlZP9/+300koZS2i/ON8BmiQCJ0/qxs3h9771NI++iy5fkqIeOHuf3E3XDaRfV6FW8wXsZ8HkvfdCIyUVUr+Yj1MFhj3vA1k7qquEUHbmuCnX8ea8jtcHZ23mcZF2pYASOEPJoAE/GgXf+IfDOu1jhK10V2oHfAV/Tc5UQdWQ1SCf+e0fBv27Fs5pnhyQp5QUXXIBXv/rVOOecc3DxxRfv13fvvvtu3HLLLU/5vXK5jEajgc7OzrnXfvSjH+HlL3853vzmN+NXv/oVBgcH8Z73vAd/8Rd/8aTHufTSS/Hxj398v8b3tMQR46ClC2uunB5A2OfvFjR/K9Vk7b17JDojUaa6q4A9kbJhs+4vmpYAplxWwp2lEIB4G1DPhLGlM/fqKSWGXDHNxTwZ101/wzgXw2CeCmNrJxCHhmnFi0Nb7lyux/EBx1RYNE0ZqpSZ+kE1plyf4y+EufiEKqASpAJsOfw71lRCzmYAmEhzjOc8bjyolhpfEiLvKfMad2SB/1tFg+Y1j1KhDqd4PQ/2qBKXqNxRE3w9WadhefIe3oeNozz/jix/pOFwR5XKNeATxLl2UtnEo00qLMFilELAT1ey/LgcZlsFgOdsOfSGu8pMCS4oKg2BFSuHovxsua6BjgpT1dLGacks138tSP1zxwDXr0SAok2mz7NVjULszHCjlWh1d5mO0yPdBFO/dBvfizWNnogDv1mkzWvzEY1uAdRTH/4NjY9bFgGfeAnwpR+pozNlcKFCNBlri0B3VIGv/pDj/e0g9VhfEXjHG9hI/B33UU9K1R1aQD3MgpjRpBqQS3I0ej74G3VIwx4jbC0HOHqCztVUnAZcpgb4Yer4LlNNNh0zzN8u7/GWLurHk4b1Whbl1dGuBmkYDhT4PBbneJ39BeCMP+cxb17MaNcFt1E/jsb5fDKmCtgBo3DrJkmeGWlq5W+sQf01kaCe7KjwGlN1vjecMjyADTZLxrMzlg627Hdk6Vvf+hb++Z//Gbfffjui0SjOPPPMpxVZWrhwISYmJtBsNrFp0yZ89KMffdLPXnDBBbjuuuvwwAMPIBolt4P8/tCHPoQ3v/nNuO222/CBD3wA//Zv/zYXfdpbntPIUsik1YItxeu0p9nCLY02BVtqXLW32pDPy/sSdQIUPDdrGK0XmQ1VwsVS4i6bebpm2p/UlcBNFMdxI6TbnzFlpFMxNWwSxkuS8loBT0o0S0pkJZImnEUTCa2qa7iaTpPKtZoBG3oOF5RwgUzHTLQmSqWzoMiF2c4MKy0NimF6QtMxKg1JZ2arphqwQVqCXERLYiW07QXoBQp3kxBqui1jlDWokMeS9PSOH6FyH0tSWY+k2H/OgeIWchHgdY8whC1GowAnxeCVcuWhNA3Al+zUsDfA1x7q5bOQ++k7wElDNrpk5ZARB5uA97xa+c+kzF7IdxOG+kN0yZpJdgbIR+g0FcPKIl0Mm56ODTpsEmmW6LY4SYuNweGAeqNkqFcW5pnGKodokEmk+0Mv1wH/9W95XIA603eYDgR4nnyEPHS5iGIVC2HqkcG8kjIC2mpK6FU+eTodqb+9mcZVI8D3vIDpvRbhvZiNslF6rAG8825tBn7UBPVINUg9Xwmyse7L38EGt39yL3XmjqzijaQnm3A9SeuWrgrHXndpKBXCvP/Hj9BxlOt55dvnP9BEHfj09XTupAPC0RMcy0iKurLhMiPhtrS3ZrzB/aRqUn2zUdPL1OwLEtGfjQL/sxb+z5Y/4zl3SEWWdu/ejfe///24/vrr54yXpys33XQTisUibr31Vlx44YVYuXIlzj333Cd87rLLLsM3v/lN3HjjjfPO0Wq1cOKJJ+KSSy4BABx33HF48MEH8cUvfvFJjaVIJIJIJLLP9561zEWMYPr/tEWQpB/QvP9NTt4P6GYum7d8txlow0KZ8zi+lo/mI+o1CTBSWgS4Lc2PAwZ8F+JEvrtf+5gJYaQAvKU7tedoWb5EdsTAkWiX9G6TslxpzxIx74vBUw5pzzxRep7DcGy6BrRKzLfHG1qB1nJMw0tX0175CD0lGZ8YlYI9moobgre6LkjX59jiDfIfpWsEXD7ewfcyJo+fMOHsFw8RcFkNGsClMRhTNeK/MjXtV7dhjJWEwyluDqftUi9vPMHnvCjHcw4W+J1bB8nSe1c/FVbMgL9HkzQWo00qwZ+uhLP68/BX/PVzM1+tWDlA4mAT8DcvU7zlUFqjRZL+EthAvAF05hn5GY9zLQC6psW5q4SAhsc1lYsq75xEljaO8nsJE7HZnWaUJ13jZi6pN4lupdVJntOPUhF34jDHLKmvRgBY0KChJa2lfHDsQhDZWWFE5eEe4Iyd5GTb0gV8/mQe8723qZ6rm9L/zgrPWzQRoo/+Pot+XrLT0B00eW3ZqhpUdRfI1lTnSpGLUMWIjpb7/P5X8nOf/DnhBo92KaknwPMvyhs+viT133QM+Pk1wDlt+2YpDLznNcB/fZ+VeA/3UGf2FxjxmomZzhFxPrO0wan+diGNxat+YqgYSsrdJw642yLm9MRhAM/cWDrYsl/G0p133onx8XGccILmgT3Pw69//WtceeWVqNVqcF13n99dtmwZAGDDhg0YGxvDpk2bnmAsXX755bjkkkvw85///AnA8f7+fhx11FHzXlu3bh2+//3v788lHDhpN5DafzwHCARUGcDcD8cHAg6NIMHMSBsRiV4ExGBqCx8Ls/Z4goZHusYFnKnx/bQBEwudf7SpmKd8RKn+xxMKWhSDQKJY1aCW8gpXUKI+v+y/HtQQ9RxLd42vt/dekxYoYnBJh+9EncrDdxgWFoK0ugtETVRMQIKCWxpN0ksRxnEBtUs+P+IpPUHE3H9J9UWbNKZmo1SwG0eVLVw4WrrLNFRiDYOdSFFJz0YZ7l8xzWczY6J72zr5nqT9pmO8ll0ZBb/XjRf9UA/vw7JZGlelEJVZ2lSvLJnlM5mMcxz1IHD3Aji7/pPGVE/JRpqeR3G+8X0+q3yEz2nF9Lz37bOgONgEXHgO5zTANb2gqLxthTDfkwh0yRRjVILAcJoR6d6SOlHjCSWenY4RAL5qij//vY5roxwiFnEwT+MmUdcG3493aDS/FAIck+KPNYlR2tahhSoSXRacZNVUcmWr1AlLZ3k9grmUKHvTVLP1lIFSju+nTVXc2+8zPTFN1Wx3mcd465uBz/0fo2F9Jd6Xj//S8CGZcYgxVQ5xPH0lTen1FYHvfYfHm4lqqT/A+yaUM391u0nVldsqCwNaXSfUDNK2SUhAp+LAR38F/NNL5j/gt72Rv//zBzzHrgx1WkfVMKQHgS+8iMe46CbtuBAA0G3A4wJNAWgEui1G7ZbOPidz8vmS/TKWzj77bNx///3zXjvvvPOwdu1afOQjH3lSQ2lv8X1/XnoMAD796U/j4osvxnXXXYcTTzzxCd857bTTsGXLlnmvPfroo1iyZMn+XAIAIJcDMpn9/tp8kajSnJFkjISAiQ4FzL3wzKxxoMSLwHwDK9ji9wI+iUraiRqlQk4WbcBEmgQDJYop1NL2JeIVIU3KeuExcX2Cz8WQibSBzyMmSiV8I11NPX97Q1uJevmOpt9kvFWDOxosKLeK8B9J2Fp4UKpRfjdjyOSEhBJgDr2rrF3H03W9xp6SjlWUsNzTeAPwU/NTb1IinDJpM9c3jMImXSjKfTZKhV8zESYfVCh9RYaehVF3OkZDZzilLVHSVSqLqRhLg8sh7VmVaPAn2CLlwLvu0jkkVXM7stwcclGCRL+3DnjdFjj9m+Y+ajfrAyvONT/gBpCsGz4tY5yHPOA3C/naimnOBUBpHnZmgWtXwv+r1xy0sR8scX77ZeCq16ujEvKME2QMhc4K79l4QnnRls9ww5UUfSWkPdCqQb6WrnGtdFRoMMQbTGt1VGksSNHLWJJ/x0y0ZSKhHHACQxhOMRVVMzACKadvGX2XqDM6LKnz2SgNukRdS98FuwRoz8vBPPXB8SOMrohulPFJtV+wxTGcvlP7xUVNWb7rK/whbMbSDs2QIp+hNHDvAsIMJuPUJaKDAUNcaVJvG8aoN+ZapLRF9FI13gNJ90khkjjVq6Zp8HzqdNXhIn/6ev7+jx9qSysp6nn5VuWgWjENvONedQKrQa3OE/6n+3vpaB47Bhz/XM7Q51b2y1hKpVJYv379vNcSiQS6urrmXr/oooswNDSEa665BgDwhS98AYsXL8batWsBkHfp8ssvx/ve9765Y1x22WX46Ec/im984xtYunQpRkcZck0mk0gmGRb94Ac/iFNPPRWXXHIJ3vKWt+C2227D1VdfjauvvvoZXvoBEC8wPyo0F20K0EgKBAD4ymfUToYW8Fn2LhGZdoNLFrKwU9dNJEqq0gSXI7l5OWbdNSBAE6qNNLkJeAGgs8RNe46GPgBUjcGXaCjHSMVUnsnCEKMw2tQy4FpwfvpRrqcZoIIUordMTZWONGoUpSZ5/1iDEZ2ZGEO+y2doMAi5mihZ+Z5Eo2ajGt3K1BQkHjUAxLDXRu1v0oepGhWyUDA0XA3rZwxAshTSFMBMRekHok16iVLRt3KanxcDK2FSirOGTyVm7kHYVPE0XKYOrl1FUL1g0AB6XFPGGIsYRfzj1bwug99wJr/Dv3vLNMr2pKm4N47y/uUi8Ne+97mf84egOD/9OpA0G8/OjAEeF/nmrMHaJAx3zOMdOrdGk8ArtnL+AVoddMIInH//H27WNRf+P5518C7ueRAHm8grdO06jfRmC9ouqbPCtZto6FqT9bS1k8aDAxoxvuH7GUlpQ1ohVpQmt5kojaCls9R1hQjXlBBPNgNqYE3Eef5YU/VUI0AHRCrjpDAlY+AM4wb0XAtyTnRWgGKS61cq8hoB6p6aMVSkZ6fjazeAckgr81rgepd2S5uXAH9+D8+biwAlh/jKnpIWzWTaouliuA+lTOunsBbHCB4SmA+dmI1qq5GMMcZSBreaqBsQdrONEbzJ5/fnf8gxvP9W4qXefyuLXByf839bpz78iKfQjLAHfP0YOouvfdS0k6oRMyYVvlK8IyzeeaFeqCo9zCEqB3z0IyMj2LVr19z/rVYLF110EbZv345gMIgVK1bgk5/8JM4///y5z1x11VWo1+t405veNO9YH/vYx7Bp0yYAwEknnYQf/OAHuOiii/CJT3wCy5YtwxVXXIG3ve1tB/oSnr60p91kU3YcZt48Z74xJJ8Tw6ZlFn7Y0+8F2qJNACd0PaBloGJsSQTHc4zh1Jo/0U8c5oJdmOfCjzTnk6wBgNvUVKH0VZKF0VXmxJf0l1R8iQHVbKkSknuAABfOWIJKMFPTvDlAJdIM0BDpLlNpiBe2PctzSDSps6IeVXdZDaJUTZs5SopPqBWSNVVAK2YUIB9saUPcuInyFMJUMD60P5QYf1lDJSBRNOkTN1BQZeoFqHSET0RaKgRg8FxhDa2H2zaCFTP8++fLaXid/bjeny5znV6AY5dIVt2lYTQb5TMPtxgZC/iMgOzO0BgrROCMfpX3Xp7LihlThUI5EqJTzs4raJRKewm3BYz18lmIly8s8HvSfE3mRyWkfQWbAb7/QC8LJABl1V9QVHxgIAznSz/m52IN4IZl8G8fPGjX/5zIX79SQdtiEHSXlatM+Mikm710nW85XEvtBSLi8EjaeneG6ydT4+ZbBe9th4nuCnP3bJT3/TcLCUBePwG8/uG25q7GGJbKu+kY2xOtmGFDW8FGiTQD+tyjTY5vJqYQg0hTnSeBBsQaWtiRrCsutBI0a7zJ17pMNOsLJ7HtiVS8dVSMUwneE2nRFPJ4fMF1SnFN3eV5pOqvHGJTX3lPioR6S3otsYYxHhvq1OYjGjXrLlP3lEyET+b0bIRp6L+8g1QJkma97DTg727iZ6tB7inpuklV+goNEeJNqWAE6LROxmkoLc4B8QacP70X/n8e+1zO1udMnrWxdOONN877/6tf/eq8/9/3vvfNiyLtS3bs2PG0zvWa17wGr3nNCyz83W4wNU2KqtUyhg94h+dFlXwaU/J/U9J0JjrlOkon0N7GQ3BAUiK693uROif4ZJze3LGjGvmQnL6wuTrQvL0ABsWokiaK+ZZimiTCJQZFe4Wc8Co5PtCXMyFjE8YWpl5ZTKNJHXNHlYt4e5avL8nxexMJQ9oW4UClkaSUD0/FNcUFUFlOxzQa1lkhqeRUjO+LwVYKc5yi0KVKpByisek7HOeSnCpEqcwDjPEVMkzfZa3sc0xaLx/hZ1N1JdmshOgRA7yOgQLvx90LSFtQDwBn7FKOqbDH59ZfIChdGoVWQho9m4lqarAcomHQUdF7E/YUc7GtgyFwAOgrwem8WiOFHVV+v82Y4uzc9KyXxPMpDjYxZfObhabf31GKmRDjv+4SyyLRiLDHe9POjC99/KQnWME8z20dfG59RZ1fQhkhkYVchM9gcQ5YMQPnj6cJ4g34wCm74a9/z8G9Sc9CnL/+rYKlpa2I8Lf1lHg/UnXO84nE/Ca3EU/T/3KfHShms6/I9b89C6yeVgdqKg5EPcUAxhvAmik+018s4/Gl6kvSY64P/M9artOX7OR7U3Fu7l0VHkOeb6zJtSsRmLDH9fVoF9e49K4T/Sbj3tapVCcCiRCjaa7Xmkc+OwC4c4AGg6TXJPIiONVCWMHjYmgIOFwc1K6KqTaMqGEoe0B3mZCHZoC0CiWT9moEgBh0/BJhE4zsphup+8Qg3JkF7hjkT7zB99/9Wp7rngX83ECBY3/P7apzcxFTeOMZaIQBfUvnB6liTpoipEhTDclDUA7tuNgLQXyTPpNUmywkaTIozLRNx1TGAXNNZuZwS8b4kN/tdARpU40l/eFk4gGKx5GoUV+JntrWTlYf5CNAvKZkl5Im86GpvJgBMUrKKmI8EAkLi3ITb8Y3426P6gjIuhngwpe8tRh9qbpWt4nB9qslPGeXWfCZqonCgUpN2rIMFLSVQT5C5SbpwVSdChbmO7NBfq5kDCHfUc9p0oTcyyEFPYoXFG/oBiihfHlWtSCNUEnx9ZY0P796Emia+9IM0DBNGKzAWJLKZDQBrJyhh+uDYfaSKZvelQWu6qOB9tJtc/gY9JZYFfRwD3lpakFyOwHcAKRUeM0UlfGjXWT9ld5XYa+tZ1OTYx9KAVs7mEqQzcz1eXxpRVEMw6n/mHO1swqcunt+ulCm/EEyqOa1h/nGBpMGO00NZ9kUAG5Eshl6jok+1hVUL+zFYaPMu42xffsgjQGZG6NJ4PYBPpsTRvjcpcfjMWM8x6Nd2vOs5gLf3EBczElDQKIOJ3kF7/O7Xwt/OvZ837ZnJM7VP+b9WWJSKpJ6csBrljR7qMVo8kSC9yrSnH8gacdRCutzkPRQtsp1IUZosKVUHIUwnR4BZotzsGqKn/ubWziO3pI2Ib9jgOfcOEqG/AtuUxoTQPGh0SbQDJvel0ZvVUwBi7TzSNY18jyW4DoYS9KoWTKrBrbnKDxBHJu8qcD+h1/PL6KRrILoFjGaAK3Wk8a6XWUzfxvaEFgMKKl4rgX5+p0DpvE5dM7mjGHVMIbedEwrhQHVWaEWI9ylEPvO/edGZiY+diPndE+JeliuoxJSnSpEmRMJGkVCpTAb5ToSQH6m2uZ4+89uYh5EOWKNJd9n5mu/RZhppaw10pyvpAEtg/ed+YuhBRpD5QCrtxwAjRbgugoQbOcKkk1cuJaylTaQta+gQDFY1k4yUhBrKr1+tMkIRjPAaItwZkSM51YJasVdyONGIkbTbEzTbbK4xRAKtPhd4VKqB6lUpHy2XXZm6OG9Yivwy6U0Pqbi3JR6SwzjOz6vYzpGryTY4vUsnaUx1QgwgiDGXM7gR5bNUKFsifKYUjr7SDef05pJ5SU5Zoyf2dahIWohkhQlWQ2qQTqWYHnweALojhAj5DsM72dqNORCDaAeZcpGetdJy4f2qsT7e4lzKoc0KiU9AnengStfROPn1Y9q6P34EX5nJMV5J/2uHujl9zorLAuejhFzsDBPDMJUDBhPKrCzlDZpgiANMGnt0lVR5VsyNBNCd1EPEg9y9wJuULMxXk9XGU7hS3zOfQb3k4sqt8ui3AEzpuaMo5YD/HAtUDyWz1WM+ZIB8fvQzUrSKFFPiQ5L4bbO8T7nVcth2fO2Dt7HbFWdnB1ZQyJo5v/iHJ/HzgwrIQH+vzDPuVlzGWHKR7SZ8q0LuW4HC8Ddxvh+48NwnOPnX6T/wmp342AT8JlTgckO5fIRpmnRBc0AsDrHNSJR4od7TNd7g1mR0nYxsiIe17XoIQd8LmGPTl6qpjxxkSajOFs7yTEklao9JeBvfsNjStNxqV4bShGsfOkZWq1WCmmUV1oc5SPsZpBocByuzwKNmZhGdUT/SIHJVIzjWzVlouEd1BnSQ26gwPHszPJcwRZL+XMm/SWtqjor2idTKAE849CIgygwiI4qjy/7wMI8vz+eAD7y0ic+uLO2E0ANKEwjXVNW7qBH0H3NgMCrLrG1ovtPHCZ5bsaA5JN13gcfGlUqhtVglgIjidRVglw3D3fzWaVrJiuwlxF8CMszandyqMrepFbPyFhqFwHMSc8zqXKYjc4nrHSg5exSkeC2qBjEIBIA9Vw/ORPluHkRcOsiPed5d2u+WgDOpTA3tnqQ/0tEakFROYIe6tGqj06TMhDiNEAjPm4b+FlYuYULSojTpBJC2rS08zQB8wkiZSx1l5vryhluwPcsMN22Td5cgKGjScMsPsbWBGsneW9vWaQtUFyfhozQAgzmtQXMYIHKqRzixrZslobKeIKfGSjwOLcuVKyRlPyGWkx/HTXBTW9LNxd/sk6CtniDzXjXTfJaFueURX06psDTrooy3T7eQYPm/l4eZ/UU76NU3wkx32RcezStmGZn8b3lrn5uIHvSrGR57RZ6uz9brpV1MzFibKJNenxjCdMbqkYlXzDcMlK9JJ7eo13aikV6PQV8BcqL0luY55zJRYwhFqZSlbYTPSXOu4EC78PD3YYE1QDsz94OhLx5BsITGgrvygDfP4pjmDUA0b4S18eujBqZHVUq/+kY76PwkcWaOl4HNNAX5jknfr2Ez6+/wM3F8WlojiZNlLbFcTs+59xslP//zS2MKOxLhKn5twsZhUrWtYdWOxebsDkLWeI77+J92nTjnLN10KN2XzmeKTVZ3xK1KYcUN5it0vEYSfHZJ+u8Tzuy2pIj7GnqXlI+IYNRHE1qo2ypthV2/Yd7+JwHTXRv2Qw/N5KiESF6MWogA31FroHtWbYf+fxPueayZm6IHhajTXquiZG3Ylr7yxVMOrWzouD18QTPvWyG66Is1WxNZggE3yadAXzHVFeaKL5w2gmJ8XTMUBxAdWasyc96JrW2oDifwkWA7S2HjtW+jCWABtNJQ1otHG0aYsoI+aAA4Kdf5zVNmBS0UDx4BmaQj/DeCUlovKGVd3JfhU8v2lQIxkiKfTK3dbIdSneZz1p6gAor+tZO4OvHwBdc037IwSaltMbSM5GOinarBrhgV01rzvbnyw0Y15tvUEiJqOszypQwEyjWYKVEsG1hhz0qXyFJE3nHvWrYjBqcQMBnmLi3xHHNRpn+6S+qIpM0RClERbckR2/DgYaORdEFW/MxBj60g7SEXz2Hi1hIKqUiQojfxGgD+B3hMHrto/xuOQSc/1q9rgVFtilpBmgorZzmYiuHaBx0VniOQoSvSzpuKM0xHz2uacBaUNOYEY+Gj/SgEsxVtsqNXLp1txuuDxicz7IZJYxLmZSDDxLsHT2unt/SWd6f4RQVMWDAq2kqobDHa7q7n/derj/UolfrgEqkq6IVJDWXCutND6khJHLnADfyXITpt+NHGO1alKfBs62ThtzKaU01VIPc7LZ1KO+WNCCW6AugvQy9AL31RIPXkawrKLoQUSXYUVEGdkmJCHdOZ4XvS7sGwU9EmvM5V65fwQ0r3uCGK610Bgpa3ViIMC34SDfv39JZnY8CoO8vaCpSgNxJA+y+qx84ZQ/HdFe/pmRmowbrBP6/rYNGVFeZ5xhNMr1Td9ky44Rh5bzpL/B7uahGYB7tovG1K8NNZnHOtKBwga1dPE7OGMey3sRoGEvQWHiwh0YvGAF/rmXOUPrqRq7DyTgNEKkw7S6zglNwjzUTddzeoQ255ZlLejzS5DHkGgX3WArRSFk6y/twyyKeb2Fe019SBu+AzkU1aJrAFjmWlsPvFoyDumoa+INzaQhI9V3SRGLdtiiU5yiwuqfE+TUV5333HT6zapDvLcmpwSVp2x4TBZeUfSPAzgiVoEbIpDR/d1or9xbmeaxYkzpIqtymYzyvGCidFYU4/Nnr+Exe+Rjw53crIbDgVatBXvcr3v7EB7p6ihxKAA0c6c/WUeF3hI37DW/V7/SUgH//H8VUTca5boUHatU0DeM9aU17V0J8fzhFnVQOAmfu5LHWTHEfvKeP6+m4UY67HALu6of/78ft9zy1xtLzKAc8stQuwrQtG954Qtm4BRgpuW0xmACypYZbWqkm7VGCJjIDaGNKCX3mI1TUhQg3j5bDjWpxjgtiKs6FH20wkpOLqFcb8LWaqhjm776SLpJUjcpQyjxjTb43mjTRq7aolkTTAj6Vi+BbBGAsOfJSmApJSvp/uWzf93DFNPDlH3Gzv7NfvbZ0jYu7p0TjULzZvpIBo0eokHrK2uxSwt9ynYIl8wK8R/1FbkpLZ7XtiNDzCwOu9LETNvNSiAr210vYBHdbJ+8toBt8tqqKXxrzdlT5/O4cUGNVMFzyI+0KaiadKbikpAGgbhwFXrJj/v2qBhmhu3eB4diqcp5VglSSk3F+f+ks52XCGDwLTPpsNspncowJ30/FOT4x/CohzqlfLuX5d2c4B8RYyphzJhp8Ni2Hxk5Pmfd47SSfgWC0Yk2tsJQy/Z+t4DGjBuuSNPi2VF297HwEuGGZAltPGtboh1RLdZe1PYbgTXZk+QxWT/G13RntBF8xGJCOCq9HcEmn7OH9F2b23hI3ygd6eb633wf8/nY+y/E48PJtyluzvYPnE+zbI9089oIi79NslJ+ZiGu390qQ+I5yiJ9bOqtVU4kG/H/6vWekjvZHnPfczmt46eOcY79daCrLWsQUiWE7FeNcawZ4j7wAU1O+w89L0UQ7QS/A+SD91xbn1IgRfGPdBW5aDPx4zRMH95nr+ExHk1zvAO9t0DhqEZPinInSIXrRHmA0xfV74Tl0GM69XyOOUiQhjtyivEai664awp1t0WEhwV02q5F2qQQTzGQlRKdXjF7RgVI9KboH4DOfMcUhq6d4DnGAFxQ1tbUwz3soOKRdGc7xcohrS5yZv3zNvh/sP/1COa2Wz2ivy78/m/fkxXuoB5sB3pNKiGPqLem9EjB/IczvCx+epN2GUty/+guMyP9iGXt5bus0xT+uFlVkq3MRYf8P/2i/56k1lp5Hec6MpQVFTuo5rhyDf5mKQ5vuemogBVu6yBN17bETMEaSLMaACXc2A2wTIBO6BbO5mAuQ6oRYgx5AugrkTb65p8w0VTm0V/l/QA05iRZJK5SpmPKQRIxRNJ6YD9DuLnODfqyLBl9fiVGO4RS/LxEVgJviI91cXAI83FvOfhy4aDOjPT9eY1qG5JVUTtIki/LcTKRBYy3IjWwmSmUfb/AYdwwoN5NswM0A79V4QvtVnbpbeU/MBoViGHO97sYS6p2tmOG5ZePMVjUN13A5D1ZN8Z7HGlQw2zu03cCKaTIU3zHAcwhwPt7gsVM1vrY7w/M83mGihm3X3FekUpIKOpGHeoDNi5WOQoyMERMK35nlXFs3yfeXzBqshEkJ1FxlThfwZzHMDeKhHiru/gKfQz6ihrukFzyHBlnLocd9zuO8jmiTz0MqkZJ13tuJhJJ/3rCc11ky2LJMjcpY2N4H89yMbx9kCxvB9A0UaMhMJPi3D+0rGG2SCf3aVWrMF8MKjpW5GWlqOftsVNN5Uq7eXebzGU7xuTcDjIC+6jHeix+spUMiHGFSfbl5sRpPglmRlNBQylROtRiBWD2lRIrTMS0+iDc4B3tKNBBXT8Ff8oH9002/Q5wrr9WUWabKNOmQwZxMxxhJkD5gAZ/rbCTJdJRgh5bOauqxGeD8+ekqRgy/+BMa2g/3cB4cM8b51FmhITOeIEbq0S4O6N//h8+7GeB5xaiVohaJcMs67i9yPGfuMFhGowvHExpBCrZMSX6A82RhnoaVNB1flFe9LbxAnqMktDK/ZW5MJDQzsGaK4xW28nyERo2ksGejXNeCT5L5KcznYjhu6eI8EMdUMJT9Rb72WKfyVXUb/TJhgOftEfo/egB4233KTfV4B+9/I8BU+InDwO//KZm/v3gSP/+KrVx7Uj3q+Px7LMF5IJFPMapkv5H9bdksxzGcMvi1bv72nPlAcCEdzlThX3jOfs/Vg20sHbEAb+BZgLz3FkmdiAjAe8ksF5Bspq2Wkks2zQbdihiCs6AaSpKOC5pwLcyilfBnqq4hctmAAJNW84HpOBcooGmWBUXNjwugt+4CvqtgRtn4O6pKBimeouSvZQxZ4ymvmlJPrBSm0hOK/GyViveOwd99D6dixAvtyNIwKJkqte4yf5bOEvcjmJjhFL2XgK8VG79cSmNgoEClMschEuX4BJzqO7zOhXmmCsYSDBML55NEI1ZPqfcrx0vWFc8hpHpC+d/hUoHszKqyHE1ok8mHejQKkq0SeF8NUUlHm4aVOG42l26N3ki7FN/h63f1U4lVQsS9ADSgjprgPdyZVdJPabgcb3BDXpzj/1u6+b1Os0l3VmjwegHe12ZAn7FguCohGoKAcsBEm2o4SpHCmkmOQ7zrBUXOw7AxFLZ3KCHpjqyWa794D/8XPFrIpKSlNc66CeXw8QIapZJUQV9RCT+FIDFV5zONNjk3HWMQS9Q24s3nFxN8nZCQSpRk6Sxff7SLRkAzAPzBFuCv7gB+upLVeScPETMyUKBRt2ZK13ohrFHEviKvbywJvPkh1R3GN0LYowe+YobXsmGcn5mKwZm8TB0IPHOMk/OTb/B6TiiycGR3hs9ue1bXlVR8RZpAuM7Neeks8Xu/WqIs3sUwjarekjolL95Dw0j6h+3I0kj49RLOM2FOl9QSwGa3wogdNGlUoRUph7TSKlXn2s1HGB0+ZowRjX87US/wlY9xHUnvTOk/Kbq6r8h1vm6SBoA4CMK4LxFRSWdfv8IYTQEtAgm2mPYW/KE4nH0mldkwGYFgS4kahW087NEok4h/b4kGpQ+tZpXCHXkWLYfrTyrLusucQ+3yrfXUF393kxr5D5qCkA1jNJQAbZciVYAAxyiUK9L+ZSaqOK/BAv9uuBxTpqrPXMDtLYcGnpxbMinNgLZhmXkSh/kFLkd0ZAk4QMbSvkRSVcJRUgzrZPId3WQE+CjpLEnZRUyUp6OiizdnokWhFsu7peKq6epC7SlxoS2Z5aa0ctrk04v8nlTtSSWb8IVIukoqUgSsPhNVfqfusjLkPthLxRFrKB9Rd5lNFfdXekoKCpRU2EScSuj0XVy44k0NpXkPuipK4paoc8y3LuTGv2KGntiqaUOP0FDPTrw/ASjHGxpajja1QXCsQeK7NZMKYpSeSoKZEuxPzlTPLDeb20yM5xe282CL+CehJMhWDe9K0HCSGAXlmmjZzqxusqunOOZCWPEMC4omxRXRSEY7waVILso0nbRnaAY4PsGkvHSbgjQrJh2Sj/C9UshQJHiK9ZKy93gd6K7QuAj4NCQ7Kozy+I7y70iadEeWHq5wrsjck6KEgM9NZ80UMUPSt68UVuWdrXKjmI4pC7JUhEq/qw1jVOiCt5uK01j1HUYPJuJ8XtIyI1tVMKvvcAwy76X6S6JFWzu1lUQhQoOut0Qgvoznm+tpMBXD3EiSdY7ZaVOxe9I0Oh431zkdpZP04ZcxWvXybfxcR0XxOak65+ueNO/lcIpG9MZR4K0PzB366RpODjYpZURPide5pdv0W/N4zxsur0Giji1HuYEyNc4hSWnOsdV7WhklrNLNgDpoo0mt0CxENNX1HxuBR3qAy35GvRVv8Fpdn45XxkRwpSoP0IjHY13ApjOfeJGvf5gcZmJ8ZKu8pvEEn92xY7yP6yY4xlxUdaHwEwnGTu5/wGfj2otuUr3uQCNfUpgj90vmqGuiTtJ2Spj5BTA/kuL8kqo8cV5FV4Q8xaeunuLclQhbwAfe96onXv/qKeDDt/DvfITgd5GLbqKxKSDytEmlewF+NmxS4vUgDX+ARulkXPcCwTNJ9qFkcIK70/Pf35Xh9yU1PZEA/uM4ztf9tDwOdmTpiDeWRA640SSMtsEWNxWJZrT375GNRij/xVCS5rODeaYSTh4i6d5YUhu0SgRKDJWWw8iSlHyvH+dicnxg+awSTibryoXS3tOtneMjYpQeQMUpzK3CCD4RB/53NY/dU2Zo969f+czv1am7SXmQaPDal89QiY8nqFBmoxpS35VRcL20qkjVeY+7Kqy08x1T7t3QNgjSYmXUGAKivKtBbqTCyC2pj0pQgaiirIQuohngfeyoAAtK3PgE5yTpsi1dNNZKISr+roqC3qWsutCW3hTqhJCnuJdq0ET06nyugpHorPD5CkFn2ONYAwYvsShPw0Hk8Q7g5sX8WwznapCG6N7pvJmYetpS4WaiGhg3m7zr01gbzOu9CnvcfDaO8l7fsoj3K9rkb2EEFk+6GVAFK4zqghGTezWeUIqFvhLn7XDKVOSYDS1hUiOlNmdEqDXyEY14SBQkF9UWHVIMUAopEDxd03SelM4Lk7sPvSfFMMfWX6AnfeyoOjm/WcRNI9bk5r+gqBujtABxfV73VJzH+c1CHqe/oC19CmEtmpDPxhvczBxom5DZKK/3j+9nOqpN9jagHGziXBY9UjX4NgFQO9AyetEZ7RW9MzHFOtZdnY9ijLstrawS3dRV1nkjGDyJLrQcPqNKCDhlN4/VTkeSN5H3T55OWo3jRjVStDsDXLwPTFdfkUzUUi0JaFNcqeDsrPAZATzmZJwOaNPVFFjNVaC7RIi+dxTpDHJRLeYQeIMDk6aLcy4k6oqpazk0+uJNjSQHW7z/Q2nO3fbeoWJgy1gqIa7BZbOcA0J667aAH61h9ej+yD/9gsa4GDuSNXAA9BZJPSK8dtMxPj8pdBHHOVXX1LYYUbNR5YTqqqiBFW7SsP3BOp2bh5ixdESn4dpFHtwBN5okkhTygJhJ30hqS8KZPhRrEva4yadqDD+/4WEaI+vHuVB3ZrT9iRCueeYcxYih5W9qSHk8wUUm/BjhJuC4WikWbCnbraT/xKsW3EZXWb3DiqN4n0e7qHBOGH7m90c4SgDTKsSlIpUS3o6qSS3GNLUn5JLizc5G+XdfScGJg3k1RCVKI2kb8RZ7x+hhJwyYeEo2CYPDmYkCTobHHUobzIbZLIQ0LtIkFknC+4UIn9+iPM89h1fxNPSe9/Xv8QSvWRRQpKmprumY4XipA3VP55Mw9lYNrmfNJDAZAyYTGsXZnWaVnJTxLyjSCAV4P3dlmG5J13ivHWikUz4n0lcEVkH5qySqUIgY3q0WjbONo/z8aJIGwfYO5fmSxsvSCkeMJDEEMjWNPOQj2rahnXQ11OKzaJhNOQhlLHfMRixYKwHsSmSqGDZpRrPAxViru7z/fSXF4QVbrGhruBoBEAO7FDbzNGhIRtPcBLZnidlbOktDsq/Ie3VXP8e1YobPQ7BKghUTo3DlNN/b3qHGqRibMZPaKYRpDEvFqqSWhO7hhuVMeaVqvP8X/wJOfNP8Z3nHAJ+9HFsiKcLXlq2qYSeRg9noXB888gOZ9SpNrNuLE/IRXhugG/9Ysq3NUkvpR4TMd9X0/DRZMcx7E20AcRPtOWrCpJUbyuu0L0NJzhfxuEZdn9d5Xx+5ut5zO9A9y3MNFHSjX1DkvMpFeZ35CNOiEnH3weP8wRaFQEjhiDg5cq6IZyrljG52YHR2S1NqYmSIThIsVNw4R9WQHlsi+J3g2HxoxWeqDrzuEa7FYphwDjiMKLfLyilWY4pICjBk9gHBTyYbPHesQf0nuEmZF5Em73+qprx7Yhg3A4prnI22kRLXWBjwo30A+A8hscbSXnLAjCYJF4tyaAQU0wGYprUBbRci5a2CoeioEv9wojFEVkwTjPdINw0mOU7DTPKmq4sv7M3vzyb5bscnN4gs0Kbxhkyz1nnkk9LTrhbUkvnZqPYukxYCwjH1TGU4BZyxUyvExhM85/YOE/XJqWEnrVMEPJ5ocFw7swoo7ClrtGEyrg00JfoWrytz8+IcjcSiSfd0msqoGqgMZTMV7ICkAqXqTbxC2aRF2c8YYPC2Dl6j7+jGP5ZU3h3H15B3Z4WbxniC4xpJaosAqUwRgksJ77e3P5gjjPN53ZNxplZWTDNiIQBuaSY6WDD9txylhxDair0Z6AUjEW9ww89FGYWrmY2mHAIe6mV0ZWsnKRJ2ZzQ6IgpT+LrkXBJRBXheIQcVD1fSWxLVaZm5Wm1TW75DLqZ4Axic5brYk9bKo0KE3rzQZrTzmNVcPmfHPG+p6JMquW2d3HA7K0qvkKnyusYS+txCHq+75tJIXZSn8bVxlJvNcEqjGEtmgQUFAxJ2OP9SNTXU3RbPLZQCE3FznaAj8ECvVi1JH8X+Ah0rAfWXQzS+vnM0f8vcbwQUnyXcR+kaDTwhil06y/sQNdGzoZTiTcRZSTQ0VSTRKal+K4W0pD9m1mfIU1qVVJ0G/f+tpI46boTgdWkxI2zbdZeGUcQ4fq97hMfsMDgZiZQ+mfz7cTT6wx7X/F0DfEZfPp7X95YHOScGC7zHXWUg7SlOStJhQtArWKVsFXMNxNM1roNyCEj4QMDTnpBeiMcIeaqD6wE1MCV9LMZqogE0zDqOGGeg5RryS6MjQi2+L5QXrg8ETbT/HfcqbYbvAL8dnI/hkjZWYhRLBFBSiK6v0drRhH4vU2PfzckEx9Iyjr/oI4DXIM8/WVfuurDHCPNYUulYDmGxxtKTSHuI8BkZTlItJIA4QKkEgCfSvvcXNFyZrDOX/qaH5n9mySxLe7+xgYtSMEuVEJWM5NklXSTVRIKRCbVtUNIVWjhTFud0Q5UeR45PxS2ekGygslAkL52tAh/8DRsw7o/Id9/wMCsyRpPc4EshXtP9vaa0fZTKO2bC1P0FBZ8Ww8rALMpiJEWFuiNLZbgwD0SqQCSowMZ6UNuI/HYhn9HR41rtJV5Ry+GGIZ7xgqJ6vfUgNxkh1ROllo+okdVZ0bJhB7yfYoxKmrBkFKxwliyZ1VRHpwHfFsKaMqsEaRRu7eT/j3RzU1oxo4ZTw+VzFXxVR5Wpl0yN4Nve0jyg8Bwp4HiCz2AyznEtzrGy7f4+Q7hZVsC/gKHv62MaINYglu3ocb7fXabRl2jw+QWaWmXUcpR6QO7HgqJuwLKGpPLNbelakhYQzYBpIwQeR1LHiQZQbnCuL8xrOkwY5oPGIBEDqO6qlyy8QP1FwwIdpjFeDPMeSRQn4nFeCPlfvMHIwW8XAluqnHen7AZO281nsDPDeyHl04tzHGumxijoqmk+41BLo1uzUT7by0/lddzVy3O2MyInGkxjv+oxGjqxpuFtM3gRSX3d0a/YnUjTrAmDI2k5vL6JuDZnzUe4fnantcWF4ISkL1k2MJ/FX56rVNiKc7V2kmtEKDp+vJoRt2pQyR6FosSHYigFkyfGvOhGMdaeSrZ26vpol9sG+fvs7TxWpqZs4q2GEnFKNLhhotA1V/VBV1lTskNpOkdiADUCWsEnldBCi9F0uaZcnwZItE1fCEWKRC8l2i5Gc6XtHsu5JRLbX9R0rWQxTt3NNSzpuXsXAFf8H88pBnDe4LBiTSBm0qOTcU1/DhSoa1sOMJzWXnJSfBFtch0hptXVBYOvXFDk/b9h+VM/p0NIrLH0NOSARZt8h8odoHIKeZyQO7NMZW3p5sI8aQh49526YNrlz+4hy24hou05xLsXMsZFeeOVGWUoHgXATWFBgUpsOAXkgho1CvhUkOJ9x5pU7AJ8FNyHYISKYVa39JTVKPvYWU/vXvztzcC5D9D7lvx8usbrEG87WWfp92xM8+oiXkBZkn1oi4IHevm9PWkueGnjEvY0LddjgOSOzw1uxTQ3mkqIHrr0zxPOIulO31nRNgBSMbc9O7/Uu7PCYwk3VjEMNGPEMA0UzLlN1MP19RlJSwcHPJekZKVvVSlsUmZVPs92W3s8QaUWa2gFnMzV4ZTimJYYgHTNJTP8jiyPJ+BVB5qWagY4jsc7aGQJdinWMGlBk6KqGEzW8hl+b9kMP3f8iG4AbkuxXgGTwhD2YNenYRFr8Jiy0bQcphSEDV5S1oCmawWHEvE4T4WHqdaW2jthGLhpCcfUW+Z3p+LKNj1HvBpgNFNSUjMxbjijCeC2hTS2JCUc8fiM3Rbn6bSJQiyZ1fRaLsKNYnGOc3zZjLbj2d7BOQeYzQbKfSVSDplKuDHgLW8Gvv/tJ0879ZYYQWoGGEURo3HlNM8JAGunTOoxpJHgsMf7LVVmEwnirSSCOhVXwz8S4LVKL0XH10jubJTjH0rxsyFjzEm0s2LSXCMpzuPvHg3846+A39vJeSyRUGHzTjR4/6X4QnSPzM9SSCOye8stXwFOfee+3xP5zHXUJ5GmYfn2qC+FBFeixAFfI5Ih86ylOk2ieCFPK2QlKlYK8963M2Dnoor9qrmAb/R3xKPhJA5iT4nXLqSXQs6ZqKthI1E7oTmRNJno8GiTn1+U12v+3ndMxwaHRlbd0XtQMevFM2teqo8dn59NNKhfKiGuR4nMi7Mk/FqVIB0CSal/6YSnfAyynx4qqGlrLO2HHHBcU8PlwlgzyfTYS3bSK3/zQ6pE9yVVl5NXlFbJAGQBTt6JOMt7BcsknCMRj9/rrNCbbbjcpMNmI0ybyoyztuuCTXiKMWnninqsiyH0Nz2kzUdXTwHf/i47Vj8Zn1L7tX/tGOaxl86q1+o5TH/EGoyAjCU0bVhzgZTB7vgwG51RXFKGLEbhPQuUx+fWhYrlGsxTkUlPvwkDQHyk2xgADcXxSCg5MqNtUwQDFGsqe7gX4Hk8E0GS9KcYAIvyHPtEgkpRFKdsBqMGRCqebi7CjWrVNJXegiIV4UxMvcpgi5t5vKHG0ESCis6HpuwkKnjzIho0G0e1AmwkZTxJV0ke4w3FQshzEXDqkInYdZW1ukdScxJdk0jZT1bTeOgrAbkYX4s1TVi/TgUrz1t4vITuwnM4V6Vxs3jpwPzWO2K8HjfK8Y8ltZ2PVF3dvJhzIx8BJj2W4fcX+JyrJqo6keA5jxnT/l1CatpR5fWlakouGvC1r5n0G1s2y6iFROukemtLF+df2GPF4im7df4LmL8U5pyKCC4wpPcCAHZ/1jDkb6JhKpgnMS5cX41kAUwvzHMNCKB6d5pGmtxP6WlWMumiZoDs+r9ewiiY6BJZx9JKprtsuJZSHH+mysrIiTijatJOJ10zzbcDNBCDLdKM3G4iO0K30R7RkzXaMFFaH4rZiZaVy6gcYjXbx24EPn7mfL1y7SrgSz9So0Hmo6Sw3vUHwIdfTvLbXRnl6hJnStaxVN6Jo+kFtH2NGO9hE3mSYohaUPviSYWuGNJd5fn6SRqww6Pur7palBAx90AqOtM1Gt11V/FcE3HMNUR3fOWGi7XNIZHLfsb5EGzR+ekvcGzrJqhXpPpWqqWbAc5LH9qeS9LzYlgDGk2PN4DRCLArzedSiOx/luEQEFsN9yzlWRtOYiSsmCZu4bdf1rLUJ5MXv0ujFI93ELQpE3hxjspkwxiNjnhDG1iunWTI9qQh7dslHetP3U2lHvGItZE0hBglQqS5apppmX87kX3SVsxQMUiPPAHDfvDl8wGF7fKPv9IGrnkDEhaPvv1+rppip/cdWS7SdE3LqcUjHk8wTVUME9/1WCc3QuntJi0nXKP8Oio06jLGS9yR1fJW4UpxwM2hr2gICg1QU6JWUhVSiGhFXqam7QqmYortEMI+6a8l0aqy2aTE4MiYarapOD1N8QrluYqSFQ+37mpjYcFxrZrS6q26y81ye1bb3tzZz2MkjUExktJUaHuLCelbOJDXKMG6CX63p8z58Fgnv5+tci5Ox3hdK2Zo7N02yPNLQ01Jk0rEMtrghjGW5GeEEFIiVvJZAbkCfF2wN+UwjbE9aU3VbOniPBgs6Oa0N/ndP/2C90eeraSUJY0tDajFcBxNcm4L5USkyWdVDnPtDeZ57RtHNa1XCilthGy+wh11/AhZwPeWapDzeGdGe90tmyEPEKDzpF2aAW3RIQUCd/XTAN6RpTEfafL5LMnREctH6OgI6WcpRL0Qa5Ivygvw81JtKpQk/QXtNdlbJEv2SJJOxvpxji1V53U+2sX7sKCoEcCZGI3RbNWkGz0aWfkIN37BvxXD2jfOd5TpvrcNnC8UBVu6SGgp8unrtQJV5o1EcQE+d2mjtDvNdRpqqfMi/SElDVh31QmIN7TF0uKc6oShtDZUB/idrgp1SW+Jz1JSa4L5KRgnpqOi5J9ikDUCOgZxFoRLr6vCMQZbHLs4hB1V1Tntc0SiT+IQFSLKW1YPKtZtKjafSHNXhmNJ1jnXCyby3FXmvGo5quuEoHZhnt/rLu93ZfTTtUBsNdwhLs862iTGQjjD1NTvMpQA4NYvA3/8Ri3rFzA5wAmbrBNHIiH4gQIwHaEiEzp9qdIQvM/9fYrn2DDG9yT8O5HQXmLdButx/h3cLL52LA0C3wFGEkp4+Kf3AtetJJPxvsQzYeCQmYLSD0+83kaAG+FggemIQpgps5hgGBy+JlGnldM0Zo4b0Y2qxyirrgppFfJR7dsUyPH+1FytXBHMSCmkTLW9JU0/rJjhBjET5WtC+NlboQLNmIoWaWdRCdFwOGuHcvxIe4FySPEdhTCP2VmhoTSRoBGRi1JBiaGRqXGs7e0opCKn5XDziDeU3TxV50YYbPH+LMrx2ezMMOIjLRQEXyXRrc4K753wwezKMEKzOMcNXZRqos5jjCYNON5EOF80xHMfNUGvPdTiHCxETOqmpHM/WedGJRGs7pJWDzVMSrAS4vsOGEWSKJlEjASAu8o4HLszNAYa7hPnXcDn/BZQcsRchwONqk3FgL4K/75jgAaIOALCrh9tci4cO6rGJqDFAqEWn3Eu0uZsmPn9ydNZ4v/iPTquaJPG7qopfe3RLgJk0zUaB8MpJRmVDabl0BDJR2jQvngP16UYL7LZCi5osMDNdVuHjuf6Ffq5k4eUA0r6lcUb1BtCpvrNDbyHG8Z5/l0Zzm0h+4w2gUSJ8+ykYeXskgbCF93E423P8r5LJZboAc/hGHyHjs1AgetD+LAEn5OpAR/ZDHzqdH7X9ckHtG6SxnglpFWRkibPR7j+wx4pVXantWptOsb1nqgr95jra0sjMVgnEqqnPYdRIemVKb3/ukyEUfiiEnUTjTI4H4EQJBraU1EoFFpN7bHpQNd3zdUmxJLCk0iXGPi1oFbvdZcZtUrVTSGQ0XHRJtD06exMxXgcaYsiTaGTdeofcWZiDRrG8llJCQ4W+JwrQT6nJ2u98mSyYhos83vhizWWXggiOJH33vb0Pn/pGaQROH7EtBsx6QzJmTcDQDGun89FuFCbxgC5aQmNim6DNxCG67lwssvFstCkdqpBrZS4s58GkNsiMPukIXo4HRXiIh7vUIDn2++j8jckZHOyZJbKYjqmjL2RpkmdBKlcp2K8nkTdNMNsqhEkHs90jEo0F6ExcPouxd8sylEZS9mtYF9CBqdx49L5XDKrp6hIH+0yytjlBjAZV7K+TJUbTU+Z/y/M8zqlDF5wU0tnaYj54DF+sUwVztZO83xCNN7CnrZk8AJ8LWQ8x6PHtZx4QZFGwPYslZQAx5fkVDEKYaFUSaWM0t+R5LWtmqaB11vi7wUFKsSiATH7YKRkYYFjErB4OTQ/CiMFAsJW3M5gH/IYsQQUwyUG5joT2RxK856um9TGyGKI1IOaXiuEtTJsNGnY4k26bPNiPqfjR1hGnqhrmihd470ZST5x7fz92cCmGzlXhO/G9ZlivHYVn92OLDep1z/M7/SV+H4xxIifsBMDHIdEoZbPcDx39Rt26Anet3FjQE8mGL3tLXHN7MwqH9hA4YkNk4VFXmRhnud1W1rMUA0qXnAsyZ51PSUa9sJyvTOrEU3HZ0RhJMk1UAyr0SMYNYkiZGqaJh1KmShuGnj5Vl7jSEo39BOHuYlL77LxhEamuyraN/Jff6JFDlNxBdfnI3x+Mg9eNMRn+ItlfCafO4Ub60sf5++1k/z8Nzbo/ekzjuDD3ZxboZZifFxfnZ6BglKIrJ5SZw/QXmwSMckYnE+/eT5jxjEQMLY0/pU10mucjGLYdAdIaqsWIbtM1vn9QkSdJNHdMRPBijfUGZBCkXgDSFZNOqwNV1kMc617znxW+1abQ9lh1qGkantK1IPTMWAqqNHfukl7dpeB+03EXdLvJw7rtQI8tuDSgP03lK76ialqtMbSESV7hxL3O9L0Rw/87s+86m2ctMeOcQFt7+DEf/lWTlppRFnd67FKX65ChFVJY0lgT8psniWt/ugqc+IPVmmEPdhLPNWGMSWHvLfP9BxLMhUnEYuwx9SLYChqQW5wG8ZJEPevJ+p48pH5i0wUpnhHQmR20jAVxObFNPIkJSicQak670Vzgspkayc344k4DYtaUJWDABNrUUP4WVCAqjAOS7WSRAo8h9EsHxyT9G4azGsHcWk5MB7nM0nW1XhtuIqZEFyScAt1lxUYOhvleEIen1XA5wYznuCm4ECrbhKN+eH8cJOflb5uq6cYaZiM0xCSsLwQNOYiCh6thHgfyyHjSZqNdTKhneIFzNlXUgCp77D9hXAfCSFhIWIiM3GTugoxRVMK83wODG0ClBB0zRTPszPLzU6ipOEm79+YwXkM5nmeu/v5/zmP857syGoD00aAxQ9S8fRksulM4AO3Kut5w6URWndpeBXCGkFZMW2wNA3d0JbkaDQPpThuSc3uyDKiG/GUvXg4xe8FfF6DdG4fThFXOJRSsPAdA7zXAyb6I0a0SKTJ1NyytmvxzeYuVBgAx1IIGyCxibp2VPiZB3r5HCvmmUs3eanoy0X4rKNNpUOQeZqPMCImHD3iZB09rn3LBCckvcW2dDP6tmqaY+uoGKyLR6dJcDm9Ja7FWxdyfoykqFdevIeG5QW3sYHxUJoGWzOguKEP/sbcswq55vpK86u9slVlIxdsUchT8HqgTXmHWhq1KYf4ubrLSJxQaeQjuhb7Srz/ksqXNihTMW2TE/aUGkIA33PV0gFNGQrOTlLQ0aZWlQo9STnE/+8c4BpfklMnQXSJgNCF7kB6g/YXtbJXiGH7iqqHJeWarXKedFQ0Qn/yEOe242uUt535/MmKD55K6kGgowpnzRT8LU8C2XgBiTWWniPZL+qBxTn2mNqX3LIIuOgcAi/3lvEEf29eTODoK7YShPzH99Pzu2E58NotVMITCSqlqTgXxGm7qMB2p4Gjy+qZ7EmrsgW0aaKEeuMNVabVoPm82eATDVMm75ATRwgLW3vdgFzUABPBY89GqVirQW1w2gwwrTQRp4G2JEcFM2NSj50VLn7xhqQR7lCKSl5azUSb3KybAVZXtQI0LgAtoT1qgsoxXVNCPQl/x4yymoibaFWHNiDurFLpCIZoNmI8PuPZCamngH0XlIBahmNaNqtszUWDc+moqLGYrXJe7MhqVZykpRyf1w4wEuX6qpR3ZOmZxgyAWfiGqkbp+eBxRozSvGeBln6HWkq4V3M14tJV1nRmyOP7UlYthHSdFT4jKfGfiGvLhnYcRcN89ugJPvN7+zS9I4zlnkNMkA/dyMZNKnhbJw3IxwxoWCpyvABw2Wl8/+nIA728R8J+LkDxlsNxjaQ4jsECz7t8xqR1gjSsZC1Emrz35SCjTrsyXEvn/SHHtCgHvPNu3nvppyfAeQDIdfB55yM0MlZM85q3dXBtpU3qVUghV07zNYlCSdqqFOK4BcO3MM9nsCet2KGZGNeq6+v/0kBX1ngtyHWXqekz7C9yUx1Lcv5PxrUCcdWUaX3k8Ll+7sU87kdu5jNdMktANUBQdV+JHEClMJ0wSRm7rjZuzVT59540j3HUhMG3JXjfOyscQ8EYO6NJ3vMHe3l/pmOm9Y6ZP91lPhshAM3UgNU57cUoRLRyP0MGEyVUL1Mmurwzo3gmoYxoBJUnT6gmqibas3SW98xtm6elsDqvUh0nPTubBq8k61Z4sdpTqa7Pud9bUg6/Uoj3Q15zfNW9PvjMZK5Ls2GpXpNqZ6EbEUdMjLNs1aTvuzhnpC2KrJttncCVL3rydXbqbo0SSqPikZQ6tx0V5SB7gYs1lp4H+Z2G09Hj84GIAPDZU4htmEg89cHdFif/T9ZoePQLL9LqoR+v4cRcMc0FMBUz1SsJLopV01xYD/Vwwf/RA/QgZqMki+wrUVFIZMMzaScf/LxgppoBKpB2jpyaC+RSWl0jUg0qWLIF9VbEKPCMYbC1UzlgNozr+EMtjm9PmptQR9UAIz2DGUoo4WLNpfJdUFVQtnjrS3LEOFy7igpZiC4jTaBgsEshD8jWaDAIZ1HToVEigNTVU0ry5hnvTojbBguGqA3atVx6zwFUWO39k+IGW+IaTAHA42VqjCpUzKY4FTNGmolSxZrKAu2A1y1KfOks/x8y92si0XavnfkkmV0mxTCU5vg3jvKcwymg1AR66uRcyZmoQtBTJnlhYx9LcgwyF4ItnS9iZBcivJfSbX4wr/g9L6QcU8LXkwDHc9Z2nustb37qdfFUcvQ4ox3SKHckxfmzZsq0pInSmRDyTWlaPJLkvJSWNtKAuGzUqNAXvOLtaqQ2XAKiMzX+fdSERjMbLv8Wo116E8pGFfa4PjsqvFdTGUYUxODtKfGzYrR6ASWWfayT901a1Kyb5LU1A0Bxrw0+4CvR5YxJy0q1nGfA/NuznBtTMWXNB4CfruI9lA3z9J3A399EffNQD/BPL+HrF9zG+70roxVtghGSykdJZz/Uw+fTYVK/j3dwTi3KcUyJBo1BSZdJr7+Ar/pSsF2eYygSgurU7E5rX0kfSm4rqXCpsg23uK67yjQW7+43tCCOOiPynGImLQpouno8YfSScRg6qkCtynkl61SMiJDHZxjxFE83UNC0pOcALePEJOpcr4J1moqZDIGne4CQt+aiqhsHctTFyTqPvSvD97NVU4Xo8vvCwTZQUEoJua6yceoyNYPhqj/5Ojt5Dxsad5dNI+QI77WA13MRpUw4BMQaS8+z7BMQ/tNV2j06F/nd3nGyrgvTC+jGKFJum3yRpunjY/AEp+9WYLhMft9hA89imGmTvhJwwzJ+ZluHkq1JaaxUqUg4txTWVIzjA3B0g3ykm0DvdpFmux//JaMzHSZELjl3SfW4BvQYbVJhdVR1cwV4HYUwNxS3RZr+yTjvz4IiF3khrJEP2eB2ZjRdIM2Bp+IKOhV8h+eYDtpFpoWG0rxfuzNU/IIPknYOAvAUQG9/UckPU3WNmgV8fndbp8GauaokmwHMsaiLAR1pU4JCGlg0YGrp1zcVM1VmRmlL36iwp9V6O2L8TqVtrghjddPgKWSzEA4jMfYe7+C9arp6z9qxcjmDPeqs0DgV4LnnACGfzWKlTBzgZtPXMqXzIY0qyjOS+5ipadm6lE6/8w+fen08lSydJb+PbHCuMbzj4PmkB9ZRE8rXJUDngK/szkLMJ1EZebZdZRoGl5k5PpoEPn8y8JaHiBGLN7QXXb2lwObZqGmfY+ZBw6Uhc8cA17BsrKmaNruWDVkiEoLbkjY6YY+fawZokC3zgGwFiJloRM3Mt5DBzUmaVcrupe2OcA9JCjla1UjT50/We5utsnmt9MIcLADvvIvfOXGYYxBW64iJZCYaGqWZjnHefu8o/gDA/7dZo8eSYsrUuK46qkpjIWlDSaF1lTUiKmtT0luARuqmY1xDTsjwDnlq5EuLpM4K7/+6Ca3m9KG95oTyoRRWJ9WBptTb15RgH4NhLff3ApyHgH6/p6QOpGCdxDnL1Dj2QpjcYdIkfNpECn2zriWV12Xwf8MpjnfFjEaopTtBO9VJ3eU9kS4InqOUMaLbQh7ghZ9IrnzCsEnNt1jYItV4ss84RrePJulkCknwISDWWDpI8kSMU//T/3J79Rsw31DaW3pLDINOGTC0pJlEQTUDjA4sn2FE6bcL6RFEm5zQYnxIpMABN9to84kNeQFTrQJN25WfwmsQcjf5rOABqkFTol3Tnk1Rj5/ZOMpx+Y56dTNGiU7FtKeclPVLmxlp9dFb1g1eSOeEhE7y+BJ1izcMUNNsPNEmUDPekONrdZqQNSbq3MzKIb6eqinIejKujUaFfLMYnk8YWgxrM1Yheos0tZoG0P5c7dxTjg/s6OB45krhXa1cSZnvFsLA518EvO82JejsKypuRNJvtbi2muku834vndWWMkK7IGkKB7y+0aRiyhJ1XqP0G5RokmwuqbqW2EtjZNnQXF/7yMUN+LlpDEfZ3PfG5T0d6SsCf/1b3pN8RBvVCut1+/0XIlbpBxgozy8fl15oxbCmcR7tImP32+6nIbytk98fKPD37gxL7hcUuGEVIoZU1TyzPhOZkkiAVFAJ543MA4lalUM0jCRdLDw9sqHJNQt3TiPA6ijZ5IN1nh9QI6C/YOadp4UNIU/XSKrOe9RbeiIB7UlDdFykka7jM1Kdi2ozbJm/YvwOpXg+6XvX3hZj4yjwryex4q2r0kaeGQeGk5yPq6aNgWCML8E/CSGqANBrrlKJSOVXp0lbTxtHQzCTgMIEXJ+g6sk4z1c2Rn07o7xUq4mzKHNeyHA9R3FEgBbbGL+SFbmu6lcxcmUcUlBRM5GicohrMNakznNgmnFDn7W0aZG2Qk1XeeEqQYUyiL6VyK+0vRIwe9lELH1fnWQB5FcMqH3tpHaOeKMpipB1Pp5Q4syQp9xMvSWeX9Kfh4BYY+kFIvuFcdrbWHoySdS1cqoYpnefj9AwWjupFRdegB70UIoh6tVT2mNLSm+lP1vMLLZmAHAD2kJFFIb8ALpQn/SijXEkBGzCBlsyANuGCQe3R8GWzdLjFeUjCkHC0r0GG7Ijq20Iwp5uSqun1QgSo07GKxVdQqAooN5HunmMFTPapiMX1bJ6aUkgQEwxjgR3IEy4bkvTJnVXUwdSul9ztRO4GAdCcDdY4OYlxIsLivMZhaViUTxTKYmXKhrp8j6c1mcSbPG4wvtUCSoYXqI8ct+FoTtqvNhK0PQZqwEZcw3TMQVu9xeVXiBb47wSA1CetyhikUYAaBlD03OAQEDD956jQPSP/Qr4m5c9vTUgEm2yCm5hnhvR7jTHGvC5Ccqmmq3SA9+T1oiClI7HGloA0DKpWNk0gi1iSZbP8Bm9Yis/J8Z4KUzcx2ScRnsprNVpEv2V1GyoBYSNIdqb5/2YifE9wfjtyM5vceT4xlAPa6/HmsG+BFtqeEkUTAgMi2E1GgXzAvD1abMRBwLaAqjDRNgyVcVMikgVluNzfRTCSu4p3EGCYZM0jBfj74d6iL2U60zXaCS959WKDRP+JWnLIU2HN4xzLQ8UuFbn+g1CcXNjCUaeFuaVoFF00GwUcCuGTsXcdzF2JEoi/TYlZZQ0ulOMJFlPLXNM1+hLSa1KxwHBHkraT1jk8xFtwOvApPR9BYKLseEYozsyTTzYcMpE9lvalw3QNliA8jV5DtBRU6LRuHmWsrZ8h3O2p2yM+7T2NZUxpxvK2SQ64IO/4ZilF6Zg6Byfv+XchZhGQBflqcNyUWBxDo6TecEzeVtj6QUov9NwctoW0b4kXWM6LVXjopONqmXSSotzjDZ1VhhJykX4mZBHz3NrJxfN7oyJkNS1lYZwcDRcZTEWvA6gpJLile0dphX525upbLYZhTcb5eILGu95oGC4TkJAuqq8NWMJYnOEKHDGVHz1lLn46i5Lhx3oOIWUbTCv5eKSypSqvIbL1hajKS0JDpo0yWScnq2wIUv13ByepmGwTp4xEGv8TN5s8tIHrs+E1keSJrQNINBS8sWUMbr2pBWEnqnSQIw3jCFplM/ScRo6gkvpL9LrlefgtrR5ppQgd1aAK6/V89UDNBiEPkFC8IJlEY6gdRPcmIRGoGY2+WRdgfWpmjIECyfXYJ4RQfmMNPEUI0kY0iXlJ5gbAIhVyTkVarWBj11uphvGfvciapdLbiDeK9pk1FDSecKyLASiktIJtrgGls9oNZLcS+mtmItqhKZkooTZKqvpxhP8rETKUnUa2GmzpnxHiSd7S3rvh8zc6zCRD9mgpOlvtsp5J+B6MTrb2xGVjNErkePHOxTc23QU8ydp6ZBxNPJh7dMnKfbHOxTf4oNjlnYk++KD29rJeSKUBbK2hPlfImZhT9s0AYwG3bhUuxAAwBf+l+vg6h/z/3KI15Y1qbfBCHXH/X2aEl4xo3QFcl7hSxLCVSG/jDU5v4VKJG+MJ7ekfQYFa1gL8pqlhVLdpVEq7U4kAin8dUKeKVHfsAfAU8dDIuIikrKLVNr0kUQv3bZWUxXeR8FERpucow93U2864JoRnKdU/QmwWyJukqqfSGiqv52de/049YJE2KPmXiUahCNINEycWDEWxSjyAlrhJ6nPfITzJ1sF3KBGz0aTwLn3K1fWC1issfQCl30aTq99lBPz9kFONpG+Ig2JVdMEWIZaxDwIiVjY4wZ57wJ6wYN5KsJgiykDwRlt6eLGvmLa9BFyVUlIRU/U4D1KYaAaoQKTxr6Anu/J2raMJ4wxEtTwrmuUjmAyhHvJd/TcvkPvcWdWu3lviWsoW0CaS2aZUpDUUE+ZRqJsTNMxKrKHuwnwffWjQL5Xy/YlQiU8R0tn+X+6RgNNDLfJOO/VeIKvJ02aRKgCBgocSzvoUzApTfNwhUV7w7i2HRF+FKnmy9S4aQ+nFIQr0Y2xBDE2iOlzko7mkiqVdGjUYIBKIeI07u2jwl2U4+uizMcThgahrGXQwocllVLSJkPmQ7pGrMX3jiIoeO0kx7qlSwkgpQQ94AMR0MiKNTQKt3KamxWgEThp3yAphlwUKFxCsPOZf/bUC+g/f6BKfU9aK8J6ykrVMBNTwyfe4L10fM6xjaOMtDq+Eo4Kd5ekIxfmeWxhiz9hmOtL+uGJkQVwPowludEn6+RlGszz87WgGmOS7puJ0gvf1sH3pZ9XrKGVVZmaErBOxYnJGyhoSkWqqjJVTdWVQkpXIdEiwQQNFoCKQ2qQNZOs1BXgfy2ohIv+JsDZpPd6Z5bti951p87PyRiw3tzPWePYSOpqOmZ425bMf2Z/cwurgKXydt0E554wfe/I8rirpjnun62gMSyEqkIKm2jQgeorKTfSlEkX9xkjtatCI1VS53lTeNBXUkqUYMsQL4Z0LVXbjTBZx+a3F1Bd5RujIVvRnorSnzEArZJsBkyU3+F8SDQ0yiQGT8uhwX3isPZqlMIaQDMOQgXjtRRHKU7BzozBMjU4XmGdlyhwy1HuNR/zWcyDLRqJMvczNTWQxpM8R2eF81t0XCGs45N0vBhgtyzid//8bmssWTmwoobTGjjYBPxgHb2/kSQVVSWova2+f5Qq/46K8qqsn+D74wkq+NGk9iiTdhwRg1FImEUhVXCSMhLuHekZJ/n29tC2lOC+ZCcNjUvPAD7/U6XCDxoDIdgCENVzd1QYJekuc5GWwjRIpB2HhMUlJeiaUK94T30l5QeStBygBt/2rNLyL87xt+BLtnXwWs7Yqa1kxHP67SB/Hz1BZZyuUWlFmzRWekumhDzE+zWY5yYsLSIAKhFJuWRquml1NFitVDHpq18so2fbVeZYt2eBU/bwGNMxKrKtnSyVlk7ye9J8XqJYpZLG8fkdH9q3TMqlj5rguKWzerykSrscUsPl7n6tVBIMWyOgESrZ5KUJ57kPAI9nuQkVIoprEiC3tKtxoNiNWNNwV6U0VZyp8XMS7i+EeY1jCVIenDS078apyTobz97fpzgN6dGXraphJilYwfgMFBQLJ5vgdFRbsUgT6WKY62Y2SsOobCJuQ2mmk/qj5rpb2u8P0IidEJR+ez2f45Ic5470tEubKF0lRGqI4KxWEUnhgDBcSzVoyOMcmI4B/7MW+KvbOQaJCkkhQdisHakkE2B1Z4XHlGqvZB34yv9Qr4yZyKWk4VZOPzkUoBlQo275DNdvR0WJGAMmvV93920oAXQufr6cXFoTceDRtaYazOF96KiQfbsY5vx9yQ7e/xuWAUtzxFzKPREW9UxNjSbZ+AVft2yG/9+7gJ8thzRiu3SWz1qKIqQaUlJb1SCNnlBLozSSbqy6rOzMVhmxnm0qc7dn0p5S3QfQcRFnSxwQ6QQg0ahEA4CZz1Op+UBugTBIOrcRUFqXVB341RLyVknqVvBKkuoPezzvzYt4zQKsH0npM5TUZLRJktbhtNKnyNqWyOeehBZFtNOTCCeUEOx+e73hGVy/7zn1AhHbG+4wEAebgF8uoyGSjzBUOhWnsqkG1Wh4qEc3DSktLYU19B4xi7PhmmaxDWVslVCwtNFI1jVqIWFooRUQDE0zQA9GmpZKaNbxgfe9CnjbfVS8WVMNVwgrMZrgKXIRZSoWwst4Q9M1UkbcUVHDaSLBqJIontsGSRopLOShFnmp1kzx+EtywG0DwK4sS8YBKvyRJCM51SDTCylTnTJoonGZKo0ZqawSSoXxBO9btEnvtxzieLwAPx9tYq4xpXhfxbB2s28EeL6uMiMPpbDZHKE9AbNVRsXclnJnAdoaRaoK665yy5wwzHvzSLehNchrr6cVM0q30AyYqqOqYhNE6UkYX+6jGMWyec1Gzf1o8L4vnzFGrsdUgWBiBKA+WOC57lnAaxPgtMzbRTk15qdjTHN94iWcO+0gUWEmF694ySzvmXjm4jj4xhDoKmtkUl6TlNqP1/B4YU+rt4StfSrOMQ6YcQt5YinMaxAaDEnZrpkiW76kfYUHSVKXtyyi0Z6tavsdqRAKtpgel2fbXdYWMYI7kSrVjgrnzj0LgI/+PvC5/wM++Ar2YVyYV7xZqKXGqWAZow3lGZuI06CajDOK4TvKtB1rcD4IU/XODHXMog+pMuorAm95kGM9bpSfuaufqZ1Bo1MW5oGrT2Dkam85/w46Ib9YRiJE2diFIqVsjJOwh7mmwOJACCdROcR7sTinz1jmqzgXu9Oapk9X2SHg1oU0DAXiEGsoIacX4DpImihJqq7rVnSgzCUxFgCm2QVCIOtb2p3I3Bos8DgjSc4rYfQWLFndpaHRVeE1+VA+vPGERvVlnQLzx1wK03BbklPAPsD7KVQEmZqmbr93lEa780Y/Nk00deU0jbddmfkFHO3O7WyUvIDrJgy9iIn2z0SpQ4ItbcUlbZVO2Q3/T17/VNvcQd+/rbF0GIiDTfxjJAUMfJh/y6Z03AhLOGejpmN4TBtvSuNYiRC0V4XVXV0sohCkfUWyrhiOOV4laClwpEllK+1KxNsRfIWk3MYSCprMGXxPb1n5b3IRBZdLVClT1c1DNnUBki7KczwS+g15XJS/HdRNLm4W/Bse5jjuGKDS2TBGHNdtg3xdUi7C1QQo187ymfkkdnK/fUeVey7KSNXayfltQzyD25Do3WyEivXYMa3CKoe4ye7MKBi9HKIXnKzTwBH2ZElRjSQ1DZqtMhIQa/A9wbusnmKrGwH1njxExT0ZN6DRpmI5xJNNGVxSIcLj5SO8BqnKEvCqD01V9hdZWbl2khtlyFOQbqypnrQwRwu2RkgtRbnHm4q7k7nwm0XA148hn49UZsUaikNL1mlMSmm74PvidRoB3WU6E6MpQxjanE/IurWT9/rU3UzBbe1UjJKkUiNNGpdC2vdwN+f6GTsZXRKcSdGk+ASbdONSbg7SeFaqC+9ewKhHPmJY2T2tohKmdtmoxxNaui5relFeDdThlKZMZU4Wwkok6Jgow+Icn2EuyohG3Dg1R5nIs0TDhFVacHx39xsKiYBpPxMANv4lP/uOe4HXPUKn7JFupXzIVjnGdsMnXePGedE5ql9EvvwjbthrJ7ku8xGeU5pnS5q5EOYaiBnnYCJuaACgfQsn49QxoRbv+0CBa7yjwuNXQopD3NqpTWPFyROjR3BgzYBWFMtadltaidZeZl8K65oOeTR2ls5yvOUQ8MulNBi/8X3F/0lEUprwjiZ5/fJ8hlJ6L3zwPWmgK7pbdLbMwVLYtHQBn0NnhbplKs7xBlscW8ZEqLd1GsyTqyzkPcYYEkM+HzHVkk0ae5kan8GeNPCfxxJSIA7M50/WqsvXPcJ7sT2rvHzpGvCBW+H/3nlPuc8d7P3bpuEOA/HFWOoHnDlyxIDh/whReUkUY3FOK4H6igpenUuhgYaCLEQH6oFJ+FVI5CK+llo3XHobM0aB95W0fLzmKuHaaML0aapzgxHOmsmY4UepmAohD8hAQZEyvo6q5syzVV7XjiyV8/+uoiI4Ydh45Rkq0JXT5nwm9bR2kp/vMCmmbSaVuSPLsU/FOd65MnajJB7vUOUqvFXAfNyCcKE4PhXMaJIbkvSVK4Xm47+kD1PI0/TKcIr3RXiKhDtFuqNLtY4850KYBhygqYZGQCOGoaB2Nz9tF1MckvKZjmkz3WoQKJtQvHjhNRfoqWhpe1/J9MGLzQ+tC7EhQCW6bIbPtaPC+9lwlclb+nIBOi9kY2052qSzEeDmETfz86EeGkqApm/WTjCF6UMJPSWy2VnRsvtKCAiY8/9mkZZfz0aBu0z08LT/n70/D7fkvKqD8V1Vp06d+Zw739tzqzW0NVmT5wEbG+NgIDiYgEMgkBBMgh2D8xGs8BHaiYL5ySbw+xLgC0owOGATcBgTwBOWLXmUJdmyZrXU852nM586NX1/rL3urqvJkrGRkLuep5/uvvecGt563/3uvfbaa5/GxvDgFErYGyHmytgT2VKEYbmGVkE7TYBTcPtmlE/2D75f5Jc/jPM0Q6t0mhjCmSCyNDXAHGyEmBf1sRUE0EkqJvg8HX9y74hciYBPdnwS35nv4Tk6gaW8pgcWiLC0nb0Xq2PMy2uX4FSwHYqvc2Clindz8Qbu9655pHI6ARzJ1LGebyLWHHpyiKKE2T7WwkLX1nW/aL3PZvtIzf/iy0WOT9l5igk4hGzZMzHE2pxTFIIcOmoqzeqcpEJ0rwjHmynKgQYTn9uHnxUTvKsgQQrv7ll85mDb5g5TxnSE5ntwhP1EeVFVE7QkkjssQCR2to8giM6Kl7MNiQuplv91pcgfXoafPzwBuzTwMTZs9EuBUfJEJ4Ymv9ArwrbttFepGLJN2RQns3ZWrKaLXKCuZxp2z0yvjT3M/U4A21zWdbeuNpQI71bZECs6jNRJ299GJeiDU7iH/37N7s2KGQZmJ2IXDmwjFMd5rKTOs+k47yw91458KTbJkFctw8B4KQxnIYUxuHfGjO7MwIiFQWzCdBsVE3VkU1OiSSyXH3so+z1XN3HKyaFp+FC80RGIUJJTVBvDkIpgkTdDg6EZJYlgETJSYi6dsgaTQ0Q2Lz0Do/7wBAwz8+gPTcJwf/cDWuGVSytulWGkjmxCg+VL89jkHIHz1taU0tTQ+rlNDa3CzhEYnroSXxPHSpvZ/PLwFjbF2IVxo1PAqqeqbpKPTCDFtF9Rta2S8ZbIAykmiHiJEpDP8NIzlpYheboR4p1uByKn5sE9eckZ2enkzvQrkUJKEBRSfO/gtvUGI4k5U7QvU+4KS9oLCt8XE8yBL88BpSsmaHr7wLSNObVp6Czu6SIN0tAKpE5gMgauGH9qf8fmav64fwZ/jmziWn3lsTSKmvpLzaHf2zE5C7Z7WeiZDpKfWFPlKU3rciOc7WsVZBGNhushnuOf3y7yyUOYl2/8AdzTv/52OAGXrxqqVIqwlh6ZwDmHPtZmJQKP5PN7rcVN7GK9klNSUKTh6Lq2qsld6+iayNs/b2tkQp1ytgRZqu9u3yGC+bVYt+bElRhOxLkG5t92Ce91oYd59YnDpjjO1kGUXSikIn/wh3iu6hiOYLeI53IyjHkxAZJx1bJpgVGM1E9EfuJ2kfddBQ7ei86CezQxQtCzWbZedKFnfQbJd+wWwZ0px3AS9nfMQd4um8zG3g7Q24cmsZHP9zCv7p7Fe2YAQ6mN5ghjQsmR7ZLISmqK4QtdSyuyqlYEn6UiP+0BJRwGPhCV+YJVkIlgvu0IshaMlH1Gg5hqZAUKvSLeS31s8g2UMGgHWgmYWMBEcV2uNxHLGmxUrHXOhDqA2yWrtKxlCMI2y1Y5R7FMN4Nd+/NLRN77EVyH+lVXLRvf6dEHOYrTA6MJeBkQ72f5cd5Zeq4fvSIMQqx8n9HIiHwkSKcOjPNGGQvh8LamtiLj5kwNYXjyOfE1jTzvm1YtHFdkqm9pgdWqojRFNQACJ+DoOq6/rnnr0DMBuYcnLeo7smnpPvKjVqvGK+grqfbBKWwyTME4gj/sEJ85SAf1i4b6aDQjM8pzme9hA+BG5qcKE6dGbK1E+HlLuUqSgVtU0nTR1ND4PNz8WS3GCHOhh/FdqZpC9dTQIsITE2jHsVIzwiaFK9kzrZCKpLrpP28dmyfL8pdquNbejqaBStZ65YFpbI5hwYi8Q9+qEEVM/oDEfzfDOfLq22MPRnRP1zg2RKKm+/gO9adCD2MrYmlXOsKNEPdY0Q1osaGtETS1WFF+C0vnn0iGQsRI+q2RyI/eaSkykv/5XF+Zw+epWnzRhrWgYaqgEolEIar4NsrYzFiF52W20T4ygfM1dU395p+L/Ph34RwfPmLzdVhAWlUE435iAv8+0Da+FtO1nQDvflPXIp1Erpc8YVwEY7Zc0407xjqpqQO+oQUGkaebvCIMYQHjWdZgqL4tkngIbu6bUURGUYypAc55fFJks6D9BR3Md09T3o3QChpYecdK17ubstOI+UvzWFNLNawDoqPkx4hAyuTz+/Dv//hxW4Mk3VPHidVa+zrY4NsuUnoi4GldvIH3Q5RMRHZa6NB+FVK8nyNbeE5HsBaLCRyP41NqD9QROLKJoCOIMQYnW5bW5DUoSeGIyHZjt05SObZqwBefxbUSx3hgi3Wr6PNTONihZ4UFRLvWKphHTO+7GeZGr4j3zTQpm9wyheplJnFCOQ4ns2xBIUXwuF2y9XmmqRW5vtl82sHrFi2d66Vqp9SW7O1aMU/+GHvQ7frUvKWKm6G20xkIpPSfncd5Z+mb4TjbUDTBN60SVtywwoI9eqqRlaY7avymByaaR5h6vWLR73YJRrOYwFkJPSA81FnKixhyge9UbHg4N8tKe2WrXiHpvK/Oy5UrQEpOt7DYqQ8UekZMP9kyePpgW+QFiwb/L9eMmEjdFS/D2LBCjJo17KNFsbZA0SJGWOyrlrhGbB74xkOZVnTsoUnZ6Xe3r2PquV4m0tV7PrIJQ8pWH7FGhF5mnc8boSk9OxqRrVcMLSglMDY9TUcQTcnEyJ+1MQz0ZWtAApdqOGd1bM5WJzB+BsmZYQGbKqvpRgWMw1wP983Uz94umgXf6Vq/qaFvgnsi+rOC8VcaoUXrInhHxRQps10pR8fEIZ/s2C6J/MpLdv/sN/43/v7cPiOWX7Fi4nsilvKkxALvqxIhZUEHmpuRk4u6GyGQk0PbIj/yJXz+yBY2mUvXVFPIg4ryYt0UyYlIkBT/onOmUXS2rjzABJ9nufrJFpztd30C72RBkVhKPmyVTOKB1yDPhOXs3LjJUST/jeuN1a0s/6fKeaDvozmy1HjkmZhnIdUuAUXTFyJ/rhSL/OWFUDifGZi9KMeWinz0MTE0R5mK+4XUVK6p/F4di/zL78R3vu8ebOCFFKmjSMeA/fuqY6z3sQf7tdCDTQhijD2FHUmQ3i4BLV2r6rUzI0bTtuUVu/f0cP5E0cGwoM2Iuzg3+ZlepsLAuvYenMLvqaM18BEYhQUjrlM5nSKoWyXjgYYFXFcE91+KRcaKelUUjY4cnPtUE3bJy/DMqYNA5pyirRdt4npcj3M9nHOtYpwuypIQiZ8e4BonWnDwH2+tXrJuaBJR+wNt3E+3qA7nc9RZeve73y3/9t/+W3n7298uv/qrv/q4n7n11lvlZ3/2Z+X++++XwWAgBw8elLe85S3y0z/90zufuemmm+T973+/3H333SIicu2118ov/uIvygtf+MKv+brnj9zhpYjO2G9t6FvKIdNNgmkUEeU7aX6bbTpWqiq+OMbf3SKiMkr0uxkm/nxXKx/Ku3U/MgcaT06G7+3pasSSatVbydSuxbFI80xT+UGxERTrGmVTeydx8DlfjcqpFr5LleRGiM2LFUxUDd8q4fcrej8aBO6kIqkHwh5PIlYGy15hrYGVA69V8XctFCkOzWkZ+KZ1taN3FFuEzEaurDJiyo/k9tWqdaVnybOrqYBOyZwktq5JHWzY9TGevTqWnWa5nQDowP42np2yAhTvYyUiKyHXKniGxMX4UHNlpapq5iM8M8v6aUjpfESu9akT2a12zGaiqSIVdEIj12QpKHoq3pMLsT7R8dpHrAw71U1/vmeNkc80kXIMNc1EpKOiJOh9HWvTImKpjtrYemst1XCfK1WRV53UKFujZiIwrJBkWi0vIcHf3TWHeTg1RMqIyC2JtgNFAdcrqJJky5zYBWk9DIwQfsk67nejomiGa+uUa3izjECEWlCdklV1stx8sW5zgL3KGKRQKZzVVUw3OWJItpthzEaKpmRiQRfXh+ci5bauVW13K/rX1LGjrhX1g9hPbeyCI1Qf49zFROQ7HoIDtFq1+yI3sKn3X0qAOq1XjI946wGbm+TNieD9vvIUHJ9hwfqwkV+XeOZc+joHtksIgCZGsBd02BLXqnqDHOKVCdDEZTHbwJZIxQSVgX0fRSkUm1yuGT8vdUxniv07OWcoQHm6aeK42yWtbI5N8mNDx57vn/wv9o5jJTMrWxNHJFYHhw3VI30+ptwffRzehu1hoElSOvW78qnJZ+HxNTtLt912m/zmb/6mXHnllU/6uWq1Km9961vlyiuvlGq1Krfeequ85S1vkWq1Kj/+4z8uIiI333yzvPnNb5aXvvSlUiqV5MYbb5TXve51cs8998jevXu/puueP3IH8+q1sUhJNy1q/9BB8hNDLvKwNRGopTqE8yaG2GzCgnb1Vqi+kCqq4mLBydDQFnbNDn0Y5NSxZqzsg8aUXDGx9IsjtlBTBzly8nWIcKXqWF2wheckD4il/w8pcZTaPeyVtaFVeJGLVB51nChCxyoYShVw86+O7b69TMvnRSulNE0wG1uJ/XxPy+tTqxwj0kW0gKgWUQpH4ISQ2B0k2oZB74sd46eGSrBMRVYVoWiNdlcpCr8/xnWWarLTo6kaYVyINrDdDHvSiY6/xIaAsLXGZhlzaK6H62+XECFyE6A2zNhT4cnYDGLsWpEAnQeOJb/Dzu7sCP+1dCa/Zknkx+6wVPKlazZfOD59Jaxy0+HYrda05L6A67OrO79H0b3Qw0b0qpNwbkYFrIfa2KofuY6GPlS0Q09kbmTvhmldCp3u65hqe69oQQ7JvGsVIKydkjmW0wNwj5g2ben82env5Vi5PdEKOlFpKtILcA8LGsRQnLE5MiSQiuuVSKQQWkrQzfSeSrZJZ46Ip+sxFaAkl6xb6xpWMMbqXF24iUCoWxT5tRdaleKwoNo+iSFmrFAtpJgftTGaF7MSjKKUJZ2rvCcnMy2k2lidec9s3WZZBTMF6SQ2MKaDnOgmz7Fj/0VXbSrtJ2VD+mr7SPJnf7xKZOm9jbJqahUwlgMf6eSrl4x3ef+UEeBf+4gJek4of5ICkSwMoF3Mq4T3itY6qhsgKJvp43fs35ZHGv3EUPTlGt5FIbWKYqYPqePEytggMVt68YY1Pqc8xuFtnPuF58CZdcRa37jZs5rk/TU5S71eT37wB39QbrrpJrnhhhue9LNXX321XH311Tv/P3TokPzRH/2R3HLLLTvO0u/93u/t+s5NN90kH/rQh+TjH/+4/PAP//DXdN1v2iOIdzfWLUciqQuybJBYLzX2I3PE9Fci15wFOk0H2yL72nA6PrcPC4Rdv0lOPrJlfdjIN+JCzac5SDL0U0tFVSMrlc53wBYxvsFSDX8fnzSdIqbuqKp95Qru62AbUdbQF/nsPozFuTrufbUK0q2XWp6eUgYPT8KxYeqLGxPL3rtFkW7JCNGJK+LHJmLHnD5L7UXwmXpo0H2QiMSpaY6w35afwplYqVpUNipYNSHTgm4m0nWtueZ6xbrPUwyObTYoMsdUTnOkSJpvpGkaNeqkBDF4Tfc2YAxJJO372BCIHu3pwvBt6eZCKYmtMsaeqSu+H0eMIMwqvfrYNmBufiyppvI0n51I11NpnntwW+RHvyTyJ5eI3PhRU1n2U6ueIhmXxH06yU4m4ivad980yp83tTBib9fG08tMtygq2/yeGmjFYmppWzbaJZJScA3JYdHD1MBK9NmTjbxC6pJtVrDmQnUul5qWzikmJvUQxJamjVx1XAuG9GSZzdUKkQ0df26EbLPhKG+MHC3yX24+BOFRkqE3y8bNGvqmNeWlJvVBAdy9HWswPD0wZJtCtnN9kRv+WsvjlUdGFNZPzdEnSuJmVgVJJLyr6CmRFvK0ON8jD/flJ6bLdeUKgqk8eumpnTrXsIDQzcyh5rrlPY09Q2b43slRon3TGGQHgWWfNdo68sNOtsw5vGIVztJDUyJ/7ziUud0MDi55WEwHMvVKocqwAId13MEarUSwIY3Q1jD3gL4Gj+QVrlYtUPUT47iyQMfLsLfQjlEbLSzgXN/1gMh/uwbz9iVn8W4pCzPXwzM2Q6B8boZ3cqb5lLa5Z+L4mpyln/zJn5Q3vOEN8trXvvZpOy133nmnfOYzn3nS7w0GA4miSCYnJ/9G1w3DUMLQyJCdTudp3evfyWOuD6PAprAXbZpwWSUyKJplqVxcFBVzxBAhCgH6CYiwbgZCa2sEct/eLjbgPV0YwLtnYSw3KtZ3i0ahoIaYApRsczLTx3nY84gw833T4HCsViydcd+06X0wVTU9gLG5YwER+XxPyahlg3UpJsh2EFesaHon07LuEe6Lpebsh8eS7ciDoScBnBwkEdtoyQtgq5A9XeM0VSMr36VY5zDWFi2upXWYclqtWsRZDxVB8IwHxJLmxboKJ5ZMIVnEIk/JnZdplb5vBO8vzdu8mdDKvSBBZRarYrjZ7e0iYp8cAqEhIf5ky6rKlhWNSVykVKiDtFLdTQ53BARqESP5svIrdWBw3QxO7mIdiEMhFfniwlef/46gHPyN9+H/RCzHHozynq7xloIEz02NMUesYpRI2sUb+D/lL2LXNm0RvI+DbSCvbLJLzsl6xRzgYoJ5RrRoo2IkajfTlFNqTXwHPsaSzZxPtsC74cY211NdHnWu6EQRBWXzZCIYO+OT2XzoFy04iFw4j5UI66mq6MFWyYoKvEzky7PoDvDDX5YdZfazOWR26GPONENDjGlz+NwkSRONJpoR6BhtKB9xq4xxJ/m6HFnQVR0rgT+XIq9Gxr0qx7LTZoZ2Lt+Qmy1bmKoiEsx16uizUVuO/c7KEe4vci0NR0mGTCzAao1g28jHo03p+4YwHdq2dPtyDTyiQ9twKI9PmhP8uodF3ng/gsa+b45QfWxFN5XI+kayf2OmwUgjBDXgXAM/mxrgHhfrmDtcm546lRw3OrELPeM1imDMmYJnCo6Vo0Ti/UTknhmkR0l9ONi2Cr5P78f9n6trhkKvwxTss/B42s7S7//+78sdd9wht91229P63r59+2RtbU3iOJZjx47Jj/3Yjz3hZ9/5znfK3r175bWvfe3f6Lrvfve75V3vetfTus+/88dMH5VYp1uYoPdPA00Z+KY2vK+DBePmHJR8lFOOLEVSibCp7u0CRr9i1XRoTrbwubtnrTHjTF9kQqOShyZhfKYGyp3Jwc8kgbILe7eoIpBi5MKlGpyza5dE/uRoDu1JRUZim8y+DsrVgwSRSXUMI0CxzYNtRI2sgCF/gHotexQ16Pum2M3+UfM9TV141uw1ckFCZpPc2hjn9xVOp/PUK1ofLIotiuDfUwPcJ0tn86nPaoR0TSvEuzi8bfe8I03gWl+rsGD8A5KF2YxzWMBm9tCUpmoi2yAu2EL1UzExzZRGCFI8OQhupjpAIQzgahXzYXpgzkE3QOpifxsOSSMEl6QveKc0xkxdOZk5QUxLpo5tfJR1aIYigxSk0aEv8sXdKfnHPRgZDwvgptw9i6i272McWb3ULdp3HDHiMNMmrzqJeblXOXhfmcVczRzrozUxQiHDlSu4LjXFTra0kmxoUhFMcXipaRqJ2Doc6e8dvZ98o+qpARCzUy3Mx/UKxm5PF2t6qWZcIPJjmLZqlyxVG3qoRKIsSKDrQ8R6xrEylsgrdXRYKv7bV4n8xe9i412pAXUeFayx8JxurGy0TEeimOAd3rGA89bHcJxY2MB38On9SNGsV3A+krzpTHt6z0SMRgWgocVEe/oJvkcpDKJArAZLdJ5tlnejb+SkBbG1xyFPkE7aIxMm1Eoh3IEPtIgBUSZKhE9BeSAKRgmOsYe1QweMx94O/pDwft2iBXnrFZFVtTUsMCCXc6tp6XryS8kxDT1Uy55omS1je5PFOt5ZITXHrxKJ9BwrCqD8SRBbZ4BOIJJFeC/8/9gzDmCoaNqwgErNbtEc0LMN2AkvM/4kdaPo2D2Lj6flLJ05c0be/va3y0c+8hEplUpP60K33HKL9Ho9+dznPifvfOc75cILL5Q3v/nNj/ncjTfeKB/84Afl5ptv3rnG13rd66+/Xt7xjnfs/L/T6cj+/fuf1n3/nTu8DJvXBVuIJpbrWCx7u9ZV/PgkJu6clgiXYyy87ZK1u6hEmPyLdSzOfhEbT+QausN+cxtlbJSRaw1y/9s1lg78d5+09iUPTmFhU0gucfHdl5w1pfHVKhbpkU0Y5emB9aOiOnai0SirSBoh/u2lSAtetYzvbZe0aa5YaoeNLCdGMIAXbGFzrof4Hvkji3WMFbVaJoeG2E2MzNGhyi71iiiIODFSfk5sPIXTTeNtzAzgyJE7wTJhEZFqYnA30zhsdJzqs6QZ7n2pju9Qj4fEdhLPaSAv2rDWMWtVjGNLI3neMyt72D5moNEq+4ft68CAn2naBtktinRbFn0u1zBuTOtcsGWSDJQaIOzfKxpXY2qIZ31gWlXOY3BH5nu47p9/QOS7/tFXXwOLGq2yNUPkmkAigwIiS+S08LmJypF3Ndc3J44O/kIX8+2RCYzJrQeQXlipYjPtBCroqans1gibKdtRXLtoqvbFBOdg+oHBzHoFSOrYQ+Nsd8ucufme9STcKGPNFhJTqr50Dedrjuydn2yZA8UxoIjkFasmzNgtAg0I9T1w7nzqIBCl//rncFqDGGuTumZzPVVpT4y4TdRrpYbn2tPF+D04BVkGOt/zPay91MG5WOxR0PlPR4lSF+zt5jR2V0p+dh/QaM5n2opQU8X1McZqrqeOWoRxro5FXN84OQwgiXjVx0B8Cimepx6C1sD1T1RJRFOaBTxHV53W2b5xJCkOSv06osEkoZPzSe4eU6vkK6aOIfdjD4UAn99rQUfswpHe31HOptILvjyH877qpLVxyhwUBtBnI39QBM7Phq55pnrvmzFS/9DHe+X45YVjr1jFe6Ud5znpgG+VZafh+sAHojTwsSeJPGt5S0+r3cmf/MmfyBvf+EbxPG/nZ0mSiOM44rquhGG463dPdNxwww3yP/7H/5AHHnhg18/f+973yg033CAf+9jH5Lrrrvu6X/eZlkv/2zicSzbMABOyPtGy8nSWYpOLMznEYmZlDtM/xydNrTqIrTLJEUNUKF63UoWTwQ3nF169+6be+xEVsUuxMFOBYBz1S3j92b41Ol2qwcHbLMMIimBxN0JrgTEqIDXRL1rLg3ZgVW8lzfcHurGsV2HU8umwfDQY6GJmXp2NbsOCQfAsgycXhmgXeVYrNRCdSXxnFNnQqqepoaEfxQSGohEaqXRYsNYaVOTlBkd4PJ9GObSNMvNbDuL9VTX1lYoRTtmBvRSZA8emxWzh8OCUqY4njvF62FqDFW3ktrUDM+yMnMkNmRhaPzDqXDHC5/wh0nK2YaXReZ4bof3IxTzzMoznq06qOvb1+Oy7PqE95RQZcTJrmHvnvKGK5PKxXQYdJiJKo4KpgPeKmC/9IhwXEcxfqlOzvcSBtqUhTzexFrpFew9hwbS8WCFH9e3IM6fsrjlc7+IN6DGVIzjAty9gfnx6v+kw9YtYm1MD3BvlHkSwcc32LYCJPAuCamMj04qoU1gSqZHHUrTyb+pyjT3jDO3tmEgt+USdwFKGFeWyHWhjTqxXMGYkPHeLeL5qhOdiqxainSzTZ+9JFlJQkJGOHNHJeoixWdJAhXIMm2XbuIlA0daxoILPxsbPVHLPF16wuo1oINNLdJgZ4LiZCUrSthDxzlfNZfoMdJDZR64UI9VJ+QdqLw0LGBNywMiTc8QQ32pk5H2uQ6b/OSfaJYzll+cxD3eKBkQ5VK7xtIIYa2dqgHfHNkuxi7HO9+rsKl2iNcLc2lYQ48VngUB+8iBSahduAKlm43Km9kn8fngSwcdWGbb20wdEOsHjOkvP9P79tJCl17zmNfKVr3xl189+9Ed/VI4ePSo/+7M/+5QcFhGRLMt2cYlERN7znvfIDTfcIB/+8Id3OUpfz+t+UxzDgml6tANM0LFrcDfl+qeGWLj9Ipp5LtWw+I6uYwHv65hDkS8HLyYiTU0ZEQ5e6Fp/rZ//1sfe04mWoQb5KjE/UT0l3SR7RSs7bitnpjrGBrBVwsZ0ooXvlCOrSpkYGem5OkbEz35lJ1u2ubF1QTUCYsAN0hFLBaUOUluN0FSIqU/DCi8aU2oQObGRJ8sxjBLJ42cahjSw9cJWycjs9TE2kdBThK6D71bHVpmWr2wjsdRXDsj904gev/c+bKqnWubMsmLugi08TzewSj9q6ySadiHBOd+PLywYIbaQiniOEZ7JM+oX7XlFRDJFL771BP7PDWylZu0hKHY6MbJ5xnQRN3MiBpNDzOGluqlSVyORT70P6ASrjFipVBtbg1Py9TqBSEOwGbACiBvFYt04faxga4RwYILEUI7NMtJ4F2wZH4ZcpOWayD//bpz3P33YEDa2nmHKYrNsm1ZrBLTm2x5GT7mPHoHDe2ICDUhJgL58Fec43cR1yQ1yxJqWLtax7qeGuIeHJjFm6xUbG6aUIl1/M0MjTc/0RcZNE8Vkak4EiNDUEPPizgVroHt423SJmiHSrb2ifb/vG++RzuLDk7j3a5aMm0fO2lrFggE/sbRcJio9UMC9VoaKnPpWVHKgbYUARPYYuLGAhOgGEUU6zUGC83eL2mJpZMrgJHSHBWgUjQoaKKnTlVeILyuRe+CrXEQKiETE7N7BbePGORkcz7WK8ZYmRsYvc0WkXbTAJoisnJ9OIPmI3aL1yXMyUATogO7tqNp3iOdcqeF7rDw81VLld11nQYK1Rrs4PdAG1tO7e/N5mfHpyAuc71mzaHKPUtfaaVFyhXZjTxfoL7tKFBORF5wT+fgFT7C5PbPH03KW6vW6XH755bt+Vq1WZWpqaufn119/vZw7d07e//73i4jIr/3ar8mBAwfk6NGjIgLdpfe+973ytre9beccN954o/z8z/+8fOADH5BDhw7J8vKyiIjUajWp1WpP6brnDz3ONLEIZ/vgUoQeSooptEYZ+qWapYaOriMC7/vom8XUwfTANhUR02h6YNrSSPUQBv5kU+TvPyBy/S0i734FPh/EIr/0MVx3vaJlt7G1X8inIRjxsJ/Y9ABR61JN9YxCQOwDhX9JjA49nLcR2ibiZiJDdbRErKKHjlgphpFyM0Dyl2xgzD67T8mZoZaPawqAujNeBlRjpZbL0RdUBTyAkRC9RrmPcR341pIg04ixHYDTQ6LmfdNW0kuNq5MtVcQe4Jy8j9bI8v13zeEevud+GDEqUZOvwRY2bFrKNhr9It7bA1O7q83YdLQZGpIgYpIB44KlzAYF20y6gY11oDwTImkk1vqJKWlzL2YzTjaBrauD3y+aDkvimsIxeRSf3WctdCgiuOPgeZiPqYN3LILNvZjgntbUMUpczLuZvqWQMsf4Ko0Q72B/2/gzG2WRWg2bylYFQUYjRHsTHu/4dpFf+SuspylFFRfrcJL2dtCa5pEJ9OfbLol84Aro+FAIlu9vtQp0LvKwlsuRyG17sKa/4yF8tzES2eta+59hAecppPjutKJPU0O8/7y0xPFJvIv9m1ryrfybPGpKXaP1Cs6fCZy2izZwj0t1CJw+NIl3ea6B8zLoIKJajkTmUhOu5ObKzZ7l/BTMZZHKQs+csB2uoWM8Ls53opQPTeA+pwaY00c2Te2cqexqZNc70DaEjAFV5sBhmh7geRfrxqVxBPOT6TBHZKdR8dgz0jp5Q5TD2C5YepfpMvIK2WicjhArQYl20ykh942oaN8XSWpI0f7BZXjm2T6uR/SHyPJoiHdDJI1BnJdLSXcDoD1MpbLYZ6kusljTtZ3A4WVzafYWdQR8VvZVPLxl62FygPHZKAPlp3wB2wiljnE7/XS3o/4sO56Ws/RUjqWlJTl9+vTO/9M0leuvv15OnDghhUJBjhw5Ir/0S78kb3nLW3Y+8+u//usyHo/lTW96065z/cIv/IIcO3bs632Lz/0j1U2ZeX/Cssxppw7QplKCzYAReD1EbyYRbXipKEDoWRTmpRCeLMcK8Woqb1hAdPySM+Aokdh7YgLGh4JmdLyGvsigYe0o6iFUryeGMCrcwDeVbBp62GTIRyjFVsYfu1iQbBp56RocCS7GgQ9jwcqRXhER+0OTIo9MAvpd0A1zrYrqH5J4RwXtf5ba70n2pDMkgnEQMRJw30d382sX1VF0gQKxIS0Vx9kDigZxqY5rTQ4Ndue4bZUx5iSi7+liM9wqG8JG9KoUG1oSu/j5WsV0s6j6S4i/EsHYsVEuuRgUyFuuiYxKIhJhPnmpiCeGOjqiaUVNnT40BcQw9qxMnjIFTImkqSmwU+MpcVXCIbXqGpakD3ykjlgyzeolptM4bnOKfpxpWNsTL8O7SxzMSTp3Xqqq4oLUwdjDHL52yXhyHM/MQZUfv1dIdztKIiI//0lLS9y+YArsrCijc71dwsbuZeYUhZ5VJz1vHc/C/nwLPThKdPDYo+9cA2v30DbmBBuiXqJo5akmNsKFrlXfpQ7GuBvgO+fqQMzqY0NriPLynfR9U11+eMLasNwzg7mRObAl5NrwfTDQ8CNrAMt2HuStsFUOtcbKMe6J2j+Tw91pWhHZ6bUmYk5B4uAZj2zBTqxWEdjQEWdzcSng3HM9a1jNP0xzk6/Ea3mpVaKx7QrXgZ8g7U3V/dg3JL4amV7XsGCabOTP0c7sSIZ4QJV6RUOZChqkZo6J9fop1vMtBwzdohPKliZL6uSkFYwLRWiZbqQ0QiOEU8n3I2NF2Bta9RZa4HLZKpz+dgnXP9nSHp+BXZ/8uws3FS3zDbWkXV7omtNFceOZvrWjeRYeT4uz9Hf9eKZznn8bB5FfEUFVSXNkSqyckNwoUzUuz1/BohkWLJrsqrGcGNrP/vowNFZERH78dhhCtmLoFrUMtGwNS5mKoBo2I0MKwTHVQ9G7qSG+K2JVU6tV3NsjE1hkJY3egsTSOV6GxVgPEdG3RjBea1UQDim8SHIiuUaHtkW+uMfy8lMDGydq8nSLuYhckaiFnvVyG3lApeiAMJfPJrELPdtYa2Pb2Mn32ipZZ3VyGWYGu8VCySXr5VIFrRGMU+qYwjEb9LKNRiG1KhYR2VF/pjgmK+a8FGgaCbdnG8blYbPjmYER46mxwmvS6BdSbE5M7xA14JjkHZxQ5wAd0EwwDnU13I1QydcFExVk1CxivLtSYg4AxziIDaUhurVZBgdufxtOLM9HOQsqG2+X4Cgd2cRc+MqsdbxnJRsrDt0Mv+OcrI1FXnHaWto8OIW/WbmWODhf5uD/2yVsJqGHMed5SIoPEpyDCKOXwglaL4Nsu1nGe6FjTbL9tqZV97eNu8S+cSR1VyOgg73AWmKIYP2dbNkmyUKHyDUxWqr/L9bhQFy2pmRqfTel2FDQqqayK5ri53qkkCGbvHYDc06qyunqFoGWVMd4z6FnWl1ElA7SQdMgLFZUkKllfp4VqkQO+0XrM1kbazun2KohqYTNCjamBHeKHhxb1yLmbHmZFWl4GVAWpt5ix1LNRO5YaViKtarUMbmDdmn3GtuRc1Di9cMTVnixp4v3Q+dju2QaUJtls71jXU/nGlZZWBsDZZtWtHzg4/+bZcx3todJXKT6H50mm+3DMbpsFeP9sQswn/d2wGVleq9XtEpFqpgzIGYlX+qI3HpAssfRVHum9++vO7J0/ngWHVpdIH2NwOoaTRdSkaIiDJkj8uCkVmW5Bp9Tf+aXX2pGLH/85rUib3hQ5P95kcgvftzSciRqsqx8p/VDhuuPPUTxhFtLsUkVpGJNHPuaR29q6oQbcuKagF3BM8VoGoXlGn4238N5L9pUtemiRWCZOmw07vUxPsvGpX3fft/RP9VIJM7gtHkpeqC5mbXI8FPca0tRtDMNI0QmLlIX1GciMbrQN72YxLUxp+5L7IrMaNrNETM0p1oiw74JHQ71nKmmqbbKhiRul7BB1MfG62opyuRkKgroKjogNh7UgyHvJHbhbByfMC0WkropZyCCNA2vU0xUKygGshKLEl31OtyEtkswtDTQIkZwZVlxdWxl+yy5zmviiKOkVVekr8+/v2NE27CgY+UbyjXXw5ylGvveLqLxhycsldgM4dAQ/SSvidwxNvrdLKsoZWAE4umBEeMzwQbVzQUuJPczlUgUJnKNHL6/bWXdGxUEJHfPquPXMbI8CdyVWKTUM0X+WiQSJ4besVS8E2jPNQ/PNVSuFluysBy9OcLn1zTFzAICN8Oc3i7B4SCHzxFbq2xnkwnu//5pcwYjT6RXsLQjWxdxE/UyBBIbmgLd8o33xcbbIkgl18d4Bo4Z06heJjLMRCIlKjuigZSDd06dIB5jTyTSVGQpxjzKo9PUKttR9Hd3t+hIXBFJRYLMdIgoHTD0Te+JQYjk7CBlRUjuZrBJZyxxzQlnSntiZEr6xW1rZMzCnGICp7EdQKuNmQWiVuzvF8RGA2iEstOiyc0stecp2phH93isarDzvDWs4VecEvmzSzDf62MEwalyRqmZt1yzKuZHJqxCdq0i0hqJ49SedRVx552l59rBKITy/mPdSFnVRqJkbaRVWI6lefzE1FfdzIznEx3/52L8/UsvF/mXt8HJKibGfeAC23bNeO70+8oQ2TKaiF3A15TvZ1ToZNh09naM/8LNm9E8I9HYNW4Oq0Ro3OgokgTsZNYjj44ceRF0QiqucQoyQZqwHRjM3Ap3VwtSwFLEOsrvKDCXcxV4Cc5FngTTTXly69jDxrhRMcNX142ApOS9HXvfrGphyjWIcQ/N0Er0aUQLBSsfLySWNiQaEEX2HtkS4/gkHNDEFfmtq0HEvHTNNkmmwyjEF+o843zKxJSiOU/HuQ186JtKsiM5h1g3i0JqBFtRg802LTyYjmmXjOt2+Sq+S04Nq9pIzp4aWMuZiRGChqEPxffnrcOJdjLj2dFBnBnohhJYWoaIk4gVMRBxYyDiZSJZquXf6qBnYogqHcT8Bl2NTEGZCCv7tFFtmdVQIpZ+Z9pIxCq1xh7QJPbnYiqrHOHzVKAeFezcRAU7AdY4U+cNRXJPtizFREHK2MU7OLqO76/ULC3ErvVEikRMyd3JpfDoUDD11S4ZSuWIzrnEEGcq6Y89a9hNBKcS4b0enzSHINH1TQXu2BXxHUOJ6bRmknNq1GYQbWcBBAUcJWfPKDRKh56BiYj9nE43RUUzx1KOTIU7sptCwQ4AjRBzdLtkTvsDU7hHtqFhhSar4og602aQ/O0nuAa5UZ3AHN12YKgbK5YfvS+sVUX++zUi/+ZW3JOboWCB4qlEt8kd479Z+UsntxYByV6pPXa/eYaP887Sc+0gjNwIzQDkDc/QFxHNaRMi5wIspCJRZiKCNLRf7WCZKuFkGtthAYufvaoYUY8KuskLBDXYfJNOHst1iS4wxVZILaJkRQUj1bELLgpLhmngmI7JN+J0Y1SMpI7IrBIeM8EGxg2hEmHMjmwBRRLBPdRDENwHRZyDhHGS3xkVltX4r1askSujR1bZUeeH7RBGBUSCFM8LCyJrHj5PrlGedE3CM3klfOd0TJiyo2NIhyOfzqQ0wGZZnUeN/khWDWJT82Z6hikvNt3lxh16uF5YsMbLFDvMvzdukBT5pKYL74ubCzfAtaqJpXITId+Ff3PjYSp0pWZOxVwPKOvJFq7PqrGtssjmyJyZfhGfX+iKdKaxuZOrVND52FXEjmXoXirSU85YWzcQvm86Is1QZTLU0eC9rVTh0IoYusi1R/4S05lh0bhh+zt4J0QaKpG95+rY0jmOroHEwVrjPdOhqI+Nn0Pb4Kvjm6TmsLFgQFxbT5yHB9rmIBMdCmKRTFPrfNdLNX2Pik7UFKFiU16SqMt6L2z/wfddinEuoj60W5NDOLprVeNLEQEhJ48BSeRZCw+mxIky0+n3UpGRb/M034qFY5S4IlmMe2GRg4g5M2x3whQ312LkwrkjavxouYFMMA5MkYvgO+OCBb8i9l78xLibm2WT0OB9cz2MPaMsMBCbHMLhZ3p3XAAqySreHXukVYrUS/JTBAFPFER3A8yr+Z7Iax7B/TRHRqxnStzXwHS9YoKhBXXGgljkrnmxSpBnx3HeWXquHXNK/vRTI/NNDTEBmc7yUouWqTuSOYCPabTYquSpHrErEgZW+h15ltOn0WZjyq2yEZCL6jTQKCUOeEAU8ON6Icm2kMJAM7qi41Ufg6tBrkEpxnOzIeR6xUqJXR/jRKIro2hu9oSdy5Eu3sTScUwvlSO7PitYyIOpjlX0MdDO7kUYJaYZGGVy3EPP1GzPNGzDpOYK03eRZwgW+9htlYCYsMUCUY9OgJQY+4eJWBl0ObKUVuzimWcGIAN3AiufZoqoVzQDWYpF3vFZe+eZ2D0yvbK/bWrsvG8+CwUGncycKWpk9X3T1/Ey6EKJnn+7hPnDtAjVzBkMcEMjeuOlmGf3zII0f6ppm/xM37h8S3WgOkQCF+s47yXrmDOLdRMgJfeNPAuuD/bxY/k4O7qv1IyfQ8eUvbBY0ZiJdrJ3LX0VuSIFx5AzyheUY7yPiSHQzdSxVFfiimwFqp0VGveF/LKRi3kiYuhuENtcGBV2p40otVEPcf28YnXiwOlol7DuKLo69E3YlgULJJ3vIKoDjHkptqDIySEsboZ54Kgz8dl9Ii8+h+fe07Uy89bInDP2OSRSS5vGfopOZoKL8z0L4lpDBDwsGgkUpWWKimPhpvYuSCSn4C6LI+gMEbWpj60tSN4GEjWjthGrOEWsGpNBIlFv8rqodE7UbEvve2KEyswZreDLI9r8LukFdSVyt0YmVEz7SC6RI8YxosNHNfm8htOjj2sXDZ2nvAB5YuR8VSKVsYhENhr4LDWyWPHqZEr0rjz1/edv4TjvLD3XDi81L37swTA1NLI9V7fmoRNaHps6pnLMfmtMw5Hz9FSO2xdASnUEG2VtbBH8xNAUcRnlTQ9s8XFDDT0zQmx1MNs3jY7tElCdw1uWS49cROj7O+j5xiirW4QjQa5NdYwoiRUrjuAPSYd+inMwpUfEgnpIRBEyx5r4epmhV4SnSaAta+rET6A1slgHVL5YN4SHekArNSPoHl3HM4pY+4DZvlWLMbpb6Jp+CZ0GInr7lMsyKhjsv0OkLeLeBr6Io1yRcmSihydapnL+itMwrrN9Q1g2y6avMvBFlqvgQ+ztQD+HgnnkmohYyof3KmIbOSF9NulcqWnKVQw1uXQNxpx9A1PHNtX62IQL2bZhXrlAD0xhM7h3xqQVKCrJPoDdYLcQYU9TFgwayHFhhM2mweUIm1WvaFpc+c12YoiWFaymc3MOMtMcdNgcwXemB7LTCoJViJtlke0K5uXkEDITToYxGvomgdErmnL5FSu4LueFJEbs55iSH8Z5U4nMsSAaQeXycmSl7OTBnWtgvCeGWOdOZjaHUg6ZWDsLIqMzAzh6+zv4PYMrEZUDcfBOmLr5g8uxfi/cFKmps0PHpaRrfbOMOU+kshIZT5LIGKs+yxEaCFdi4xtRlJIUBcppOBkQZDYgzhxLx+5U9qY2H4NEZJBhXl24uduZZpqchO6dFFwO2aKaPCVQmNr09Ny0K3M9kY0Z1Uca2dp5ZCKHVKmjS+eb91BMVDLBt3ZPLBhxNMgQscDo0DZ+x4CMYsf549UnRD5x2IQ1aQ+pO8eUO3lbe7qY96RrMG0qYrIHtB3PouN8Ndxz7HCcx/khe8PRqYhcLK4DbaAAFFtcrsKYsYruX37n07v4992DxUtkhAjMxMiisu0SFjshdvJA1qrWNiSIUfVzeAvfXa2i5HRYgEEgVExuh5uhYuPouqlBkyTOTWhmgH9TC4nIF8uJWSHEdhxUF2+GQHvIOWmOLFoXweeI1jCdI2JRs+i9nG2YE9sI8dwkUZeUX8SKncSFrME9szgv04KE/WMX31uvgFRZjuGMnG6CQ8L0EyUXaKRogOkMkvsRu3C+6MSJ4BmJmD0ygWfc27FKII4Zx9jTFNDMAHPq7llz3s40wEWYGFr5PFMofV9lKpRHdrqlOlWRRaZEzFaqZvC5yc8MTGqAonlEG9mPjGMw14MjtFK1praN0KraCunuisnb95iWDPsFzvbhvGUOHBU2ms4LIpJ/NizgnU/3ja9y/zSc+DsXRP7+/abqHHvG2dosW0pvf9t4WHM9OIfkv7F5qiOmS+YneF+OYBMjN4tzZrFuKBERXV83VqI95Fl1A3yWzgm1hDqBzftKpOKhir7lU0Xc4IPYpC9m+iL/+2KM4WWrQHY2yxgTzivOtdNN0wViao0ONzfjB6dsc93XgR1hlSeRNxHjh5HnxVQY2/yQH8c0I9f3WsVsDCUvqKYd59Yy0bFCinfFCkWqtTN9LWJOd21sdILq2EjcnLt0rt0M3EIqek8PkNakHtXeDmzFwxPGF5weiDx/GWNypgnHaL1icitUBq9ENjZNXWdLdaxfCgJTumG7bA4x76sbmM1mMMg+lDN9rE8RCz7za3OtKjvtb/Z1zGaL4Pp3LOwieT/T+/d5ZOmb4ZgeoH+QlwF6HvpY0HfOoynqVcsK3buI7O9YAKrwdA8SEtkDimXoVB2+ZwbVaWca2OD2dLU5aBcGZ3/besjdNWcaIlcvAxW7dwbOSzA0w5RHKxbrQLeKKYwvDR5J0plu7owKmYvvBEYeJdHbT2DcydfZLsGhoKL5Rtma7JZj1VnxYaiKiaUE6IBcuAnEqO9bRVY5wjmmFEG7Y8GQgSNbQCaWa3gnvG4xFpnIbfJsZMlItRPgXcYu/p04uw01+Q5eatGen6j4XB0GdaZv0WdzhL59xyfNyXZSux6bf55uqhZPIHJ2P6472xe5bS/GgYghHR9H/3CzycQQHUfRidBFEcBWyT6T57V1A9ObYZsGEZUbKFgLm3KEeZPpWpjvwWmhiGMpxsayUbEy84kRnDsR43jM9a2Cii126MRShHBK0Y7fvRL3c3Qd64CpqpamTKh/xd6AnUDkk4dwvQs3cZ9zPfDw5nrmhOWRGKYN2T9w4Is01RlYq2KOXrpmKNX0ABsjEdfUwXuvh5YadsSc6Hp3N2+JDgids2qkgoMVbNQswScHiYFL7OJdUcDwTfdiXp9pYjOd6WOsNstYA3u7pmxPjt1yDdWDTMmK4B3t7WLOMiVO5ItIKgnYoxDvsKrjfraBd8GiF5KK2eSXTnxeyZ78IKYiuSZTB7aTjpgIvk/bMjXQlJxnkgnkvjVC2WmFQgoBeWTke6WOSOKbwzup9o+E7VMte3/U1HrZaazhe2ZNOZuE9JUa7o/OXy9WEnhgz8C0O1Nq+zo2D881NGUeGXp2yQZ+zw4Of+8hBLu0zxUNRE+1RNpqf9h8uhrtntueIufus4u3dN5Zeq4eXKAH2sj7hwUToquNRbIQjXZdgS6GCDa+y9awSZ5uivT/o0j15576NX//cvx92arIa05ggR5sY1GvV7DglmtQgf3EYYjskctTG5ty7pFNGNk7F/Bvwr/f9gg+R9Xu1LUUjyPYOKlMXImswmZD0zwH2zjvl+Zxn4XUhBzz/aREZKffE1MXB7fh3N07g2eZUqPJ0vjlGiD7TKyvGkuMCylW2rBgqZvaWKSkyNJyTeSOeVTI1UMlOxeAdgS60fmaSmmXkEJwMxgnogx+CkdxemB8Dpbdk/QauZr+3Ab6QKetmJiDtFm2vmizfRhskjB7mpKggcwE93iugXtphNi8KWL3lTnA+EQWEseQkPUKrsFoluridKpGDs43ofA8hTLLsfF0nAypttNNPMfhbbwnOs98/3kna+jjHqYHilYoj2i5tjutymom3ntYEBlnxktrKPcjSOD8Rx429yDGe/j3n8A4Um2efKNighYnd83hHumATA1FvvdeS4/Qkd3fxvOcbRj5d6e6SjQwEcxvokuvexjroD6WnbYsItZrkOkRck+CBHOPml9T6vDwnZOXF8RADS7eALIRu7Ap08qRO9M0yQY/wVwoJlh3lbFxJrdKcAj/yRsxVm/5ovWtZNPlB6ZMFoRoJFvy0DFthHrPAc7NakZWfxGtKivXkc2EWyOgfeUYm/dsDzaJ5PR82ioTrINMrCk37QTT9xzXfDHNYt3GZ0O5N9R8orjvSs24bER7YtcaVGdi6BirRutjU6SfGOE9dwL8+8A2rlcbw0F/ZMIoGAykNsqWvt/RtYpEYs0IhAXY66U65pQInrmTS48RJdwoW5pus4x1wIOI3ctP23jcP43nvmgbz75ZRlDILAEbBLNKb09X0Kfo2XGcT8M9xw6nESICXq1aN3VCmyJGlKzopGTJ/dDHhH79ceMcfeeDQDe+5wcsLfB4x9s+j78v2ML5WiNce7mmvaHUITrQBuS6VoHRP9XEYpvt4/zHJyG4V1fDyiaN9dDE5A60TciPJEwnw8bG5piephBm+pYvr40RZe/vgJfzmf1YrAs9Iw5PjMwAe2o4yUUg+dZPcmq7BRi09aqhO4SpKWq5rwMEb7sk8gN34/lD5RUVE2xuVFkm9yXysOk3QoOxvdTy/NQ12qioirCibPvbpoHEUv5MjCRKLRUqqtOZ4jnZw4yd3mmQ2UKDz0hyOPkXO33uQjguKzWMXTHBptgMRT5xCHPyYBtOeeJaIQIreyLPBErZiZ7VSnR4WMqdfz9OZmlSP4EzyZTgZhnPRQHEdgnXCHIbL1MKdKZaiiptVKzpKCtDa3re0INI60ZF5L9dg9/9v//b0g1TQ0tDhkriDRI4ags9jAW5Y+3A5hidRTbi3Szj9xduYu6KWOuR2tgq6Khn5mZAYacHuwsTUgfn9LLdooDrFdMoo5N5eBtzZKmOczmCd9YMEXi98Jzd76Y6760Rfne6iXlLbksnMFFDRwzVYjd7jpeIcbXIb6Omlp9g3RCVSRwLiCaHuEfqge3pGidmu2TjyZTTfM9aK4113jLVnk+33XwISN9Pf3Z32pwpbdoA9sZjOrKvjnZ1bFISdEDy1Y6U/BCx1Cafd7uE8Z/vWVDBc9MOveQMULVTTXOY/ATBL9sAOZkRt5my/sJeOJP7NaXeHFmlNJEs8kjXKrDhrJBlap+VrcwYrFceK1T5hgfR9JoUgk5gLYqaI+OTsXL28/tQPcc2MMcnRX7/cslyVXfP9P593ll6jh3OzMBUnAn7b5cQbf7JUXyooOmnxgjoDFM5kaYF2Cz1DQ9Z49H//CJDTESwmV+wBUNxyTqimNg1TRh2fu8VTVMkLGAB/fVhq0ih2u25BgwWSc8bFRPCE0ELFWoeFVKD2ckPCT2riOF9siqnV9RnynCv1y3CqH92P56BLVVI/uX9UtMpcY34fPEGoqF7ZoxcSVIrofnYtTYLMwOkKFhye2gbv+9rFLlaBVpFUu13PGTVJ7WxiSmGBYyNm1nVyGbZDFsxsWfJC0wWUmycjTDXcsZBqpLIC0vDqR+TOBh7GsiBb1Uq3Nv4WVZX0qCSDM90Kr/TDkz9mSk1blZfmRO5eklTfcol29M1ZyBxrBKSUD3RJSqfs6dZ6mB8GqGN6Rf3IB2WuJjPfooxiDzjbzHdlDlYB/s6+P5DU3hvrMYUsSaxdyyIfPAK/OymPzMnkkgAnf3U2d0upDlSXpY6lCtV2zzJG+oVsZa+PIe1EcSYe93ANiBy4qgELTqmp1pAhw60tUWObsTzPcyr5ZqlqOohUJVOAMRro6IyH66hq8MC7mGphhTx7AD3wAq3dsk0mxbrmDtEcE62VHJjbBsk+XK0FXlHlarS9bEhYrRN1Oxaq2KMZ5QLxnlGovrervLAXKzzbmABBisdh8rhXK3iWbZLuJcgsUq1qgY8p5vmcHd1/FgtSvFLVuhRpmO9gu/s6eL+2V+RvEOmoDgea1UtVhibMO/Q392iiU5PbYwMQCawQfUQtowVo3l5DSJ9bOAdJLBlCz1T8id6XYptjCljsrdr6bzaGGNGJzXycK4/PWp2+o334e/IQ3Uc5SkytcfUiqOGV+xi/jEo4bnedK/Iv/6MZC/+sZ1TP9P79/k03HPt8BMsCpFcXyofSMplq0aqJNG4EsEQXrEi8oeXitw/Y1Uip5pYOF+ex0ZcGwNKJSJTH5uw5aFtqwSjM8CNMnNhNLkIr120NibrFRizvR2k5UTQEuJ3rtr9XP/+WxCtHN428q+ISNc35drJoUWsjOaZQmDp96Jyn6qRcVwIeQ9ypEdC5uTmsLJkvYJnCj1EXpNDi06J2MQO0DKSn195CsbgbAPPTW2lyhiGrJDCADdCReUKIl5o9+Vm1jJkJ23l4N+ZAAE407Du7nxuOm/LNWsGy6qnrZKlk/K8JieG8ayHptNFA8+NrJDiZ8UExNNCZmrB5xp49ocmYbwvX8UYz/Z3axORCE+dl7tnYZTrY0OO3Az6k3RC6HDv7eD37cAaDTPK53z/4h7c67WLaF6buNblfkN5JUzVUlWZVU73T5uidTER6fl4RjpjYQER+h9ehvNcfwvum0iSCMaPBGpq88wq0tnPIXd0yNn4tKpIBXt1iZjsx1wfTiV1apgyJrmYkgV09tdzjs96xSpR66GJFTqKRBUTvK8LtnC99YpxG8lDrI6Rar67hrTr6Saao3Lce0Xj6hFhocPFprdz4e5yeZLA6eRulbQFTsXWwtizYo7JITbwTAwd9ZUQ72UYm2ICe8TUep6fuFQDwbwZWj+8ky1NuaqT4SXWHiZxcS6itDUlPa9WrXIxERFPjLzMSt6hj3MTsSNhm410RfA3uXddDeou2jAKgCPg7TliqE7sIlgbFeBU3HzIAl7eI3WM9nSVTF0xonwhNe07N7afO2IoUF44MnUgQnuuYV0PBj7GiOuPBwV8GSQcn5SdhsGRKzLtYWy8zCRREgfPfPesnedDl+LPswjKOe8sPdcOttPgwfTZqkZRD0ybcaIWSuSJ/NWFKjswtu/cNYfU1ckW8voiWMz1EBP+zy7Bz376s1auy/RBngCZuRbFp4IFta9jUDZ1R4YFbAjfex8W7B8/b/ezTQ9MciCfhguVtJg6OC8jODpVrBxi2T1JmPs7MBqMGnd6OLlGoHTFdEoW6zj3atX6ibECa7UKI7qni5JERpyxi2tQaK5bNJKsl4qUlaTqCDao00383xMbMzdRjgydlhwCkegmM5+LFKtjU94eKvmX2jFURmepPVWb88TpvCieiPEqSCKlFkwhQZUbU51nmpoGiyz1w3YrbK3Ad8ceWYlrjYX9FBw1kpVjV8TxRTzXuBL5c9XGhoqQnF8dwxG4f9oEKq9bspJ+cvbGnqkmF1I8y9QQz3f/tGnv+AnaXiz0RMqJpWryGmTvfoXIb/+JdbBPHUORZvra586zYIFCjJRP4IaeijlbIiB3M70204eTSHLtXN/QvWJiTnLs4jk4R0+1rCUJUSmmivP6WyImReCIpTQnYvsc7ciBNmzCdgmBzbSiWLUx3gE5dCQwU/qDKDC5VHRI2dS4FItMBybDkDrgiXmpSFGMU+OnVn3Kwo2TLQQPJQe2gM5IIQWSRJSSHEk3w7OWlGPGqtSdVjo6phsVkWOvws/+04ctZd8aWfEGA4hiAm2wbmCVcuQ8kuweuRDsZIEHm3S3dO6daeL8Mzm+oCM4V69oEgfFBIHIl+cRDImYGCpRLDrvzVxatBuYbAoFNYkGb5fMeZnrmyTHcg3I7L4ObGVYgNO0WN/t4JQjfPaSdTz/vTO4ztTAUuUbgu9etQxbF7smOXOwLY8+HEeeNW1PzjtLz7WDpfFPdBA1ElHFaX/37/Oq3ZGHyGDgw2h0NaroBlhcLz0DxGqjIjJSDhRLh8lF8BQF4eYtAg4PW6M0QtMR2i5Zc8hLNkRedBbf/8x+fO93rhL5x3ep5ooaZva4YrVK6kDNO3WtUo0bEEvFeW0/NRJnIRYpiSE53Mi2NWJlxMxx2yiL7IktDXSihY2JxmlUsEhyIxfVM0VI3Rdu1vs64BzRieBn6Hzk1Xj5PUL5FBB1MhCj+Tk6SSRmpmJRfSH3OYpDUszRyUT8XHotcWDwWFb+4JS1KWiODDVi9E+CJgm2LNFmyo48Ej9VTkxmIoksse/7UFLmRkRic5pZevmuOXMeKCVQVyeVfbPumUVZ+0IX4zDQd8dGqETbBj42qkpkqVW2wegEhp6wA/2VK1gbt+8R+e4HLOVBzZzJoZ2fquSjAjbHfR2tBvIMuXMyyAfws+fqIo+0jPt00QacACIknBPses+y+iDBnMwE85GK2TMD5SYWjPtTTPAZpsCWahbsMFjwUxHRd/bwBDZDku0LqQkjUsOIKVYRC4Qiz1KoW2UtT68Zv7E2trEioZlabHM9fHboW8o0ckUCx/h1UwMEGKEGW2caNueIsojgGuQR9ouG5tU1QOwGWsWXmiNfHYu8/JTIrQd3K3RT1Z33S0I42yl1A+tB2CsaSjn0Fbkdm+jkyNHxTExri2uEBRrUSCNydnjbpBPCAoR8Y00zkyvWCazdE7lYcz2ci6RzjhOrfushkLRCCqcmdg3VpEitp47mnQtWqCACBJ3q6GeahizSjpC3tVXGOMwMMJ/6ikgylfwsPc47S9/sx2wf6aBTLdM5iYv4e2KIn4sYoZPHUh3OzGf2Y5P0Ckb2FYEoGqUE2InbT6HV0VbyJUUxeW4/1SqWMhbWt57A7+gsicBwNkfYIANdXNQOYZS3g1o4ptXDRVsf51oPaPRMfkDsWNku4X8RI16LYFH3i0aeJ/mzW4RR6RXteSpjESmItZLxdrdr8HMcHFalscyaatTlHILE5yIqtanVY4WebVhsoMpycpaze6mVhFPLibA906XcTHZUhgX3xH5kTBee083ITe1dEq73UjjDIrins3UtJU/MEeAY0xkVMfJrV9M344I59hn/qOO1XjHRxQu2dhczsDknieMrmvZcq2LzoGYS9X9KYtVWrN7i5lLX1MFWCe88cg11K8cg7MeuyHc9sFt/ij32uNH11Vklb4eVSIURns9PzMHg3KCDs1LDBkhtKk8sxRLEIq6itv7IUmlUSafWD1FOEXWqxbgt90+ps6SoGx37so7BRy/AeL/onAUCiWN/s4JrpWq8v0qUE6TUd1ofGz9OxNDDsWe0AXK26IiQY1aOLSDgWiJfi7bpQNsKU/Z0zQmmo8RKNRYFZNHuczT1XTRC2WkJ4ici5VTkux8EypcXY2QFF50QBgn8QxX1zIHjnjpWlJAn2dOJrOr9VMbmZDIAYYqNa3dmgOc73TTe00ZZJNQ0PlPkTFO2SxZMTYzwrrlmiS5xzjKFSgfcEREvNieVNuZUa7ejND0A+urrHKQ0SH6sHN/I7g9PgPvJ9lxUZr90DYjUs/A47yw91w8SBJlaoiHgQilHiBpKCdIP1RyvIa+jMd8zQrIIjPU9MyKvfcTy9F5ugTii6JJrUWMUWeWVCBbOqRau0RxpO4iRSFOs1xQdIh6tkemNeJmRR5keETEj7anRZosQGjR2hi9rqomltP2i6X3Q0ZoYmVFlm4Be0bSZuLkyRx8kpgJO3hPRBRJYd9q+lGwDYjRIY7SDpDimDUVjHXoimabzCIsT1SACxKOsaBpbtdABIbGWYnxEJUhGZrl1ITVl6FIM2H2nf1xic6GQwlgWc/NormdjygiXKugk5BOBI8rF9FuU2xQ5bzPBzzoBiNcH2tichwWRwLMSbPJ+vBRR8nYJpejtksigh8/FDnhIIrt7+nHu+Im9O1Y6MVXIpqMTochPfc64eiQIs4XIZklkuY6fH9rGvVUiRdzEeEd08EVszNlyJnY1iAisDHxDUzd8RlYCsmEzUzdTA+M9iZjDxFYzgd4vkaRM4PRQDoBaaaeb2KBPtiCkyYpCPxWRyM5PZybybP3T6c+/Ty+DQ7Naxdix2tERQwi7JcxDErAZTHixldTTmU8Fn6E0BcnLLNFPc/OLqv95kclRAeuadmDgGwrOVPo7PqtInqI+5BN5ic1rFnow7ZY4ImNNxbKizeecy6XvKD/gZEDEQ8/um/aMekSHt02KhURwOq3FRLWhhtbMmHwvBhcMDDiehRz6OTXUAoGmOfekG7CfZSooyCAFQwT388/uwP1QtoCpfaJKeaS7FMPu035QG2tPF4VIA+V6PcuO887Sc+1g5ZQIJuolG5icZxvYXFojRGAPTgHBYXk/y5IJozZD6wm2WFd4Xg3v1AAaTdzYHTHjkC/V3ahYGTOrkZzMqry6ReuJFnowePUxjAvJvDN9kfd8RORnXifyI1+Cc8C0hYj9m41WqTQ88MEDoEPkCO43ciw6JcF2u4TnLMW4ZzqW3Kg5lnkNHlZzJA7um+ktlt9TNTdzUDlYjkV6iXE3ekUYpdTBOyJJd6wwfyIGd+9Uq6nTxmhyoQfht5MtEa8o4iQWlTrQxgAAnktJREFUue+QsjWKZRsBomylnDOUT510Aryz+Z45yOQCRR7SHZ1AURYHCBCd4dYIZGiK8c33TLW8GRpfiWkLGtCiOpjVyJAK8lb8zPgvfKbaGOm1xRoMPNMhjVARQzEHNBPrN9cWK3ogKZ1pNvbxovxDJdI2LDp/6FDM9IHGskqxXzQRQ84baiStV/H+iompc2eOiadS04cBTCZaFq8bTCEFL2W7hGfjuPWLcL52UFEXDs1aRXWlHPCbFuvmKOeJyIXE3gXnADk4rFRiY9/XnMAz3TcNaYDvegDfW69jLEr67qgBNFLHnSrad8+aDeLYpuqoEtFlMQbXI50uL9beikqAv2gTazr2tBAjxpzv+yJlvuOS2UIGSok6wLFr6VdeM3GNy5dFRrYnx4/ClfxsITGHnsUIsSs77XGYhh1qCpDvlnNl7JrTytRdfWxOBBHy1Zo5UxR19VJrkUNkiOuEQTErmXnf7GtHBfRuEbYyj5wSAaNkA6VcIhfnKSn3k07n/7p0tzjqO281XijTxENfeWKOjQllFNgR4eEJC3T5/scJJAT+8LIn7kH3DB3nnaXn2nF0HaQ/EUzIOxbsd6ebWGyXr8LwbJZAYH5wCmkKCpodnxQ5xfOtwQlZq1q0RaFAVhjtNMVNLbXip5AIWKzjs//iNixYijkOfePxEOXqKY+grRstq3vcTOQ//LURkxPHoqLIExkW4ZCQE0RJgmJqCzFyrZKFDW6pJ0SD7Aj+pjMRuyIDz4xar4jxJNpw5YpFfSx5p3bIhDoM6xW7B5JxyUlpl6xaxRFLYYpY9EiHqz42raSd6LuI8a2PrYx/uWYaK47oxuNAdJDEUPIU+G+m9LjRhZ7Ipeq4nqsDGmfVVjkSWZ+3uVCIjay7XsHmfNmacWWObGI+DdXYc/Mg+iACR/3CTVzrZAucEmq5sJTfT0y1fK2qpPyKIZWRJ7LlWsqmkBhSUUygAt9X7h1lGfKRdSOEgzvwdyOD6xVDEg5tWwPmlSruuTCyqk7qyFD24Og6qk9ZIUTngMEF+wLO9vF5KiaXYkU09X3SSRexlApTgUy3bJRF1qfw7PvbuF+mw9wMm3SQQ+qobzPWeUunUATPs1LDOtnfgWN3cFvk1ScxnhdvoKKsFhlqy413VMA4Ezl839Ui7/4YNl32NiRqOtdHEHemadWmU0PTJ5rrId0/37Mmy0RMyGuiY8Lek4e3VFLDFan2zEZwHGIXqS4icbWxSBKY+jzTgBS+3KhYZdtSDe+F6BNtYBBbmljEAhu2f2EhC9NrDAbaip4xLTszwP2zQIGtl8oR1mA9xHshF4vCl746KLz+dsl4cyWd42cbGpREhlgT2SYyPCrY7+nkPDSJuXpk0wRe2VdRBFp8909jP7lgS3mBRUub8j0xqOW1H5zCc7GHKIteiH61RjvO0rOF5H3eWXquHW+615ylxzvaJUzuhS4MjyMQmXtwCmjR1BCbGyuc7p/B5H1kws5BIm+9h/OdaGGhs4lvM9RKmJE5S3fNYUN5waJVGu3vwCDGrkVLFIsjB2SlCmRqXwf3ulhHBM20EyP6IIFBX+hqu4cKjLGIlWrTsWBZfN83Lg83XEY4Itpk1be0E5v69ovYMGigI0+5MYLPBLFIOTNphbAg8un99gx+Aqe1EWqVVWQpmdgxHsHAh5OzWoUhpyDi1MAI1GtVI9OTsM4GsyLqaKQihQibDYnw0wOMx5fmDWViSqgSIc11PIORFrGS+4emrPSe1TecE+0ADkU9FNmf4r5Tx3SsWLnE9IKvc6wc2Ub6qy8W+aEvwxGlfpKIOT2upoZ6RYx7KcZ7YmqmHIkc1BRrqDwujgGrsbpFBA6M/N0MSMxC16QxDm9hgyF/aEdSQp3uF52THdXxpTqq8n77Ktzr2z6PgIRoAdFGOr3TGrn/6VGM2TVLJj5KkT8/tUq6TKzyc7GOSH9YEGk46OfICqpGCPSYrV0ysTm9I1Qotj6IkGxWRMZKOObcaIRYT11FGtnCaKUKh7ZbBEJAcVURjANV4jNH5FwRFWTTA4zd/dOwL9wI/UTkUwfhEP7YHYbePDSJ79w5D3tyMDbi+cmWOQuzfRWhzezPnq7I5/YBARXZ3S+QFWmuvvPMMa0kouLVsdm+XtHmWpDsliVhOrs6xlwbFvAeWkOcn8Kb5OQxgEodTeWmVsG4WsUcYCC2VcJ50wDvgJIqd88a+jP0tQK2gGszzUaHjCgQe3WOCrAVM2uYV4VU09K+OansK1iJ8L1uUSRTztRcz4KLf/U56x9H7batkmnAzfWwdqY1DczCEYrNiiivKWdXDrQN/SLv7ll2nBelfI4djhwTmf43Vu2QPwjpEjYnX+TCDZG/dxyfuWPBlJ7vmtstRFkdo7yTkR91gK5b1IqSAIvI0aimHEPv5v5pfP+qZVT1kPu0p2uRvYjBypTTjx1ELJHC2DMDS/utVWAoGUG11DGb7RtZsqrVItUx7o+pO0bkrEhaVkdnZmC9okTMoHKFEIFwBBsII3xHTKk5X1ZeinG++2bMUPAcfmrRLsXd2Li3Osa4sS/YK08pt0SRJ1ZRhZ5VeJFcvFNy7VmF1qgAlCPWjZ4plpsPYcMj8ZvijxSomxhZivFcHY7QegUbVt6xLKQWpV++apsNOSLrFTwTy5cppTA9gLF/YArXvvHleL4f+RL0kfwUKTUvw9g1Q/Dk9nVgjEUM/WLaqhOY4T7QRrTL8vxCzoGbUq4TZSSamq5aU0dltm9OQX0MJ8FPsaldumapoRMTIv/m23avs+tvgTNNVKMTWHqC3LT1CpyE1gjjND2wZ9go4/muWgZKx82jkOI+TrUwd+b6xikhkkGk1k+M1M732i+aTk4xwe+6Ol61sfVgnO9h7Ij88ZozfUu3c6ypJ3a2gfnI+UNh0Mkh1vkDU5qSzTkaA9+q89hPbqMCOQIRzNnWyBrw9ovGeWOKjKgTeV9BjDYqP3gXBHD7RfyenEpy7fLrlBpRJGJvB5aqIsLcKyKwIXr24JR2QtC182eXYD2JiPz8J02f6lQLfQdLsaV793UQLJ1p4hrbJcypuR4c7stXzfGjzAarXyl5sVbBs7PVyC+8Gt0XLtowu05C+2oV15gaml1yMlPD39vFuzpXN3TUzUxParuE+TwxMmmOc3W8S+qkJS7Wmp/Alm2X8W/KSLCaNM/NXK0A+drbMVSMTtXvXYmARo8se+b37/PI0nPxWL9R5KqfeCzCNN+zCLkaiRRj/D0zAGnvj4/CAG+VTFJgT9e0lZojwPmvPgEH4I4FbKC9IhyQ2/aItEJs9I93fGkef77/biw8asVUI+MB0aCT4LpcM1FCLwOqEmsunVFIVUmmF2wZnM60HvsbbZfw74mRwfEcC0LVWyXjbLGihGraTC2KGAogYsRoLxUpFHb3VyrFpqdDYrqfYkPYDqwH1IWbcApXq9hUppVMe8EWNi3yE/LkbxHbtDIH72VUMsRqbwf3cq4Bw/+Z/YDMN5QYerqJcXr5afzNyis6Bdsl3M/YE3nxWRjzyMX7vnIF5314wjgiLPsux1bqPdez1jbbJdskT7ZQ8bKni830PS/bPU/6vpFXa2PwLu6dwfs8soXzHWjjmqtVGG0S8fs6b0cFlPWTq3L7Agz+wbYGA/p+J4d23YUuzrtaBZ+MyM5m2bRr2FCYqOa6BiW/88fGPwliK4PeKossT2HeL3SRyvryPK5xRN/7Djoamw7Yck3ko0eweb34rOrUOHgPrREQAEpHsApRBO9nqYb3zBTb9Ahze7NsDj3J6leswKnYqFhahgKW3Kwmh1h37MfWDqyP18QI84+EcFZttkv2HCs1OLmtEfhL8z2VH0itepOoo5/ASeR8zxwTj22NDEWlEvRG2SQE3EzEc0U++CFTvGbQRG5Y4uH6TA+tVYx8z9SXI8bRISrKCsqpIdbIBVvmWBdScPV4HN7G78428O5IA2DLpvUynqM6tnXCVkavPIX1cc0Svs+UHZ+fHMTqGGswc2wOM5VOx4M8QjrRDEqpsM42WGMPa3G+h3fHykYS8KcHsNWjgsi//nZ853vvtea8vP9M4DDu09TtqGBEdjYxj1xzjBe6Fig8PLlbduE8svTMHs+0Z/q3dThyTP9x7LG/bITKqQjhJLA30P3TMOLzPZF9bRFxgDqwbUczBPxfSLFIGSFWIiyctSqELb/a8Wv/B6mcfR3A7WxfwoaZ+V5nncDaZFCEsjWyFJOf2Pf8BBwKpnhOqaHPHHtG8jyIKBUT4z/RIHJDpxPC8l1HLA20t4NNgOcIYkthxa6lh1httli3KpwDbTNShOgvX8Xn759GQ91D2yIvOYv/E15nVEzyq4ilQ9k2hBA8id372xivr8yhN9urTuI6X5lTiH6I6L0a2cZPNXQ6EuQfEWXLq1gfn8Q4F1JEp4x8v+0Ra1paTKB2TcG745P480THgbbI992DqJZoV7sEB6AcG6F+Xwdj+pCei5VMdI5PtfBMh7dhlB+ZwHwi2sHUK1G0boB7djNswKmDc1YiVcUvI2LeKuv7OWOI1WLdUCPyPrjJ0nn1UzgfjqYqNiq2WZNAzxRPV3ljUwOMGdMT0wNLA2+W8axhAWOTOlDT3t/GeJ1uwvlhiixSFJKVUSxUoNo1eSgvPYMNj+uEfLq+j+/lpQPYBYCaRMOCVX0RQahGuM/FOj5HThJL6/d0jTA/yqWqyMPa04W9oLYWqzfJrYlc6yiwWbaNm8+zXUIw01BqAFHjizZFPnxE5HnrsHfkslGFf7lmqA4rupgef8e3Q4j3gi2TChDZjZCvVHGPW2XcSzuwlFU+je5muAfyNs/VrWKNB8eTXDL2tqNEQTXC9a5ZUnJ41QKsWeXYrVYxDiTyn2riHtjyZrZvkirUXGLAQpT2hlfiftwMAe9cH+NVH2sqPUDALILAxE/NiV6rWruVmvKZghjv7bP7TAZkVLC1StRurSLZhy59xvfv88jSc/DI5BgcpuzYYx0mVnkVld/CJq4UnFyu4fczfSzIA20sdP786DoWCTtRTw+w4JarMNRnmvKEx9E1kVsPILr/yqxt8N2SVY9QnbqqETqrPKiMnFcnrypSlIluBDlHYWpoJdJEeUgMpQYIDRAdHZaojwoiI1HStSs7zTwZRTH1VUwMWqYjRacqzztiyuNg25pWnmpZCximuC7cRKR/1xx+R05UMREpjQ29GbrmKDHanxyacjqdmuUa7p3SBp88BMNIATgSO/1EJC0a56FfNBE9tj7oFc3wiphsA9+ZnyASboQiX5oTme/j2SIPBn5YMNL2kx2nmyK//FKRl50W+Qf3icRKRKYj6GeWSmMLm2YIwz7wc5VLjm0etTG4cg9P6OaX2XMQaSMxOXHxPkqxSKQVaGVFJuZ7cB6nBuqsxMbxqujGSL4d21UcnzTHtRIZYb8R4npsa0KnmK1BiGh6qUXbyzXw/OqaMsm3yBn6lmYWUcmEeQsAqG0lgvtmcQXJtJnO/wensGkt16y6jw44UazaGA702EPgND2w3l5cT1V1RKkI7WbWFJvO1bw6OEvKiZoY4pk5Xwu6juohrkGFffJ9amPcN9XKad/Ksb0Lvhsqb9M+nGgZmbhdMgFKOkWzfU2bKd+RKaytksi//wSejWrwzaHxdpjqnh5izqxVYD/JMQpijO1qZk70vTOwqytVzK8HpuAAB4npQtFBLEcIfB6YFvmJL4IXuqDpOFa45bW8+A4ZVFLVPkhgy8gTZfsb8peI4FXHRpfgkTroifjWL+C8LJShCObRdaNvrFRxPmpftQMLvgsp7NzQx+/LMeZDIdVAyYXTxdTxM3ycd5aeo8fjOkxOJnJoS3kNLsp3J5UnE3lAkpbqMFgH2yC5rlXNQWHJO88lYkZ4vo8IiY1FH++4ehnnvmNBpFNECfC+junPsDUCOR0se54YYdGsKZkzcaylQN+3VCJbifA7m2URiXYrDLMaZ6ekfYR7WquYg8O+ZHnnrKZ8rZWqGURWklFmgRD4uTq+U4oRwTZHMEqLdePIrFTx976O6b2wZcuURqLkVLC5JzdEClqyIo1KyKw+oRNF57ARgsT/6QNm9DgmNEphQZseZ9ZShtpBX5kDOuOnuVYnKVJiRzS6XlOn45olM3ZsKvotJ208R4UnR5Z4fPoAnvlbT9gmWY5wjcwxJePaGCRYL4MA5pmmRaXcePmOD7RN8iF1rPqN6GAxETlbxTN1izj3JevYjGnUWQY+MbJU0dmG8bboWBBh5NwWsTLtemhNTwuZOTOUcCBSESW7+4p1i5hb/aJx0QoavdfHeLZ2ySrvOAeZRmR6xo9MYXxyuLsCLyzYuDKAoEM1M7B0dOZgg22O4ACyUrU5wnzt+zZfWYDBas7DWzY29dAQajezlGSNiEkN64bODPlGmQPH+t4ZpCZjF07GFUqsZ4qI4xQkcIAyB/SDe2Y1peVZijxz4KTQrlGDiXwjjicRZCczpJWNfN0MPDbqxrFNSSaYQ1T5FsF1L9rEvz+3D4j18Un7HJ05Vg97qbWsErE01tnGbi2rzLEWJ3RwHbHCjGok4kYWjGUOUt2s4uwVRRpjnHdYs8Apf7zxPqM6EE1cq4Br9E++BAfuBecwnzbKmIN557UcWeEEq+SWaggincxS6lslkSNb4sz3RFa+utn4Rh7nnaXn8LHLYZp4pzoLmYg4KO/sFVFGe7BtE5i6S6tVGKF2SWRmy6L3dsmg1xefRWR53SI4Iax8e6Jju2QISjWCUVivGBrCsmgShNnY8oEpkyhgo1SK/5FHJILPdgI814vOQbqA1UzcqEUMKegXcw6IaElzYto/mWDRTmiqZr2Sc7x0Y+sE0EQh+Zppi9Sxtifsin5oG4Z0o2wb+uTQymrzsglUHidR009MMJFG0RHcw9AHQpLvD1aKbXNiGmFvB993xIzwPTNGfme5tKPpoFlFF/e3rSrokg2LvolUuJ5V3NChCj1zIsuxRZ/c/J/Kcd80nBUK91FaghsZHVkiGfs7qmdVtHLkvi/ypQV8px6aA8pUhqNzgo1tD23jD6s3g5bNsWEBc5wpBFdQ13ywba0weDhimx3bgHR1LB6cQmBBpCn0RLIAG0U5MpVxoqDsoUa+UVsj+NrYFMszsTXkpQgmigk2GzrCbC3Ed8B0CCs2KbbJgMHLcF5y9lgNuFLFxjryDK0hX4sbYJDAIWpr4MIUIlFgEpbdzPSzdho7uzZnaiECJWowsQCEvDtWsTI9m59f1F1LHUPR6Ez+zOtEfvHjuNaGpp5dMeL3Z/ZbM+9fuBlzh8Ue3UB5nGOTYaB+WTvAexYR8YbWk47P1/dFHNekQs5pepIITbtkDhpRS2ovdQIgYjy6gSHE1CtiM/CiztkgMQSfzmLooc/hqKC6dgN7Z0wNswWJiPGKeLz+uPZR1P/7ichUKPIrLzHJlIGPwIlq4e2SSpgMsIbWK4ZQ1scmvUJnLW/D+C7FeypW4xt2nHeWvlmOrV8SecU/hTPUHMFJKqSoNkrU0BVS6MLcPWfk0FjJmg1NA21pZFzIsNAvWccCuGgTKBQ7q7NaKX/85UUi/+rzpgVEoT5GfyOmkcQMoggiWKbnEo0A28rrYDXGqIDnoqxAXg5ARKPRZDdfiRVsTKeR+0NSsJca2jUqAIm4ZF2FJTWCCxJsZuQSjQow9KxSIuHcERFnhLETMTTrZAuIBzve94pWHUShP1Y4ha7dIx0homFZUXu8Cf5OYmuRQJ2i1ghOD6ujRKyqjq05IkUBpgbWE41pxcRFJL/QxXkpalhMLEVHJypyRaqhaUFRL+biDZHwEZGPXfDV5ywRFnIiqCJOdIEpyq2ylca7GZw0onXUvqLTQYeSDjE3ZUbggTq7XmqpTBYF1MfYkKeVSxSQSza2iiwiFHS2me7Ni1aK6HxqmOMZ5ZyOdskKBxLH5BUqOje5SdNBywSfZduN9YqirkVL17Isn84mBSRFbFOiHhHbztBZomAmuXiZfrYZmhAkq1SJAhZSE/A80zBSdznGvFgv54ojEqtWKyZYF0GC8S+mIsHIVMrJ+6Gg7d4Ofn5iwipie0Vs2nT+WeG6WcL1l2vY8DmnggROGZ03L0Mq8sINkeNTlsrn+BE9pCI1qz7pnLGf4mIdP5vvGa+M75+oVL8OdHm2j8CT3MkgMXSyNYJtq0YiRzcw34PEqAGU02ClXykWKY7NkeI64FjMR8ZtilyRRoLA5CtzqERlYELKBgOQaxdhq/Z1rGtAObaAZqELe7lSAw+MRQjsV7hWNT7VUFH4qiK/oSfiunpuzwLTyBPJUpFDbZGTTwGR/gYe552l5/iRyTERUdL3Lb8l8vx/gcXWGmFRhR4mcCXCRn54W+R0CxP1xAQ2GHI6KpHmvAMs9tMt/XwT5zvYxqLZ1wFUnO/pxmOtglRfEIP7NDm01hLcYKj/wtL0uZ51vXd0wfd9I9HO90y3g/yLM43dfCJyivLK3F4qkhQMEaAAIgbODN+oYAJyrPhyM0gbFJXEGxaMxNwc2YbKNiVjT8QNrOceozJWurD3EseX5MvQsyoj/p/OJJ0hNzGnKHJxT67YM2eOKVAT/eH7dMTK/Bmhi5jjV41EBgVTXSdsL+ocMmquj0XcriF/Q+XtUDCzNjZJh2YIxOP2PU8+eSdGiGApiDn2TDWZzVfJxchrRJGfRlSHUTodvMQR6QWWEuFnuR4iF4R1Vz+/VbJ2E3u6+LOzsaYiG1XbMDMxdE4cS4Vy3myU8bnjE2iFcvmqOXbs5cZ0KEnfmdhcZwo41I16q2S9xSg0SnVxSjZwTvNZySMa+uZ0R56lEfMcPjpkTmaK2LWxCXuy/Y/j2bNzLClUGarTySpBOp55bl/iikhq8y5x4Cixyi/LLKgpFJR3twkb4qVY71MDkUFgsh5BLFKMjDDdKYmEipy86V4EMdThinWdDjwTFP2J20Xed5WluDc0FUcHguNKjqOIjRVJ4ge3Nd2a2jzoFc1xnxyaGHAQ452SY8W/vdRQr8NbQD4ZyLFqmRQEFr8UYxG3YFpx1UikUzB5hLLyQfPzQjKrLgzUCQ7Uvp1uokCkGmlDX1+rfiNLBX/P/SIfvhDnKCbICLD6sR3AiSLXbaCpSQaJLGLxEysg4LVYMXzzeWfp/PG3cOyk5H77T0S+7/sseosdtKxwUzg+tbHIgW1EAWsVi4RYIRG7iID8BAv9oUksvquXka5hWe51i/jMJw/ZTXzLSavScDIQbrtFq9Cgc0OSbCXC4j+0/Vgidt5x42eJNFUjENfZm60sKoYoIsXMZAj4N1EKlvZ7apQZ2a9UYWjZwmVfRwUtNQoVsTJuOllMXeSJkbyOn2KcaOzYV0rENqzIhdEnh6QytntlRM42IERC2DjTETPQecFJonelkb3Xvm8l206GCsnaWKP6xPSEiFo0R/Y7J7N2EUxRUNGcc4bQv/oO4icisz2Uh381Z2lygHFarln6xVHnj1VqO61Y1NFkTzs+k4iVlpPkO/KtuouIJQ13VVO7FFtcryBC5hgQSSP5PfJE/uAyVcyORb79OMYv8kwV+8QE5vq3nrDNsJtznNmPkFwzLzMuDOf5cg3rIEiwiRHtSV1DiEiiJ6GajgpTsTMD2/iZjoo8kXFmqR/OV6azWL4fuyKpOjZMQXHOEVF0xCq3ON+WlPOyWMdGTwHaPd2ccXJMb6lfNG2qRoj/lyPB4hV1gGNzLkisnxzpmlaHsh2ITGsQkTk4R2sEpyp2TV+sNbTqQ0eMFM0U+b/+rKF3dIiJcrEcn46Ql8JZSxQxIXF/uabIVhn3NdI1PzHCPCO/ar4HRJ6BRSu3TntFKw7IRNPpoaVNiUjR8Rnn0u3kdrKAgb0KiZoPfCC+l62Zs8QiBs5JERM73UGrdJ6eblr/PkoVbJVEZn1NQSvCXoosSCThvTHC+x4VROpaKMDiieoY41WNrDDmGTzOO0vfREcmx8S5+hgg6D+/xKDWiuaJNyqAtaeHSLMxOqVhYFkpyYyHt7GhPzwJz39/x6or+r5pwvzpUdwA+SzUBcmrErPj9dA3Y7tRsdJu6rAwPUbEpFsEB+T5K5YCYSpAxFJVzM8HsaXhqOrM64WeyERk+Xsng7jaqRbOFSTWDmSrDCSOZecbZUOejk/iGmsVwNbkIInYhi5iVUmOaDPYxEii2yWk6Nol7BPk5FDx3BHbEMmpocM3zKURYxdjON/DBsGIvx7CKPEceUSgoihF5IpIwUQRq5HIQ3tguCaH1s1+kHM8HNG0bo70vlwzZGS2j+s/b13kXZ8AsfUvL3qCCevgWs9bw73dsWCpwYEv0qnhXo9s2hgQ8WE6Je9gs4EoN4FCLs26UcF393cMnSE3rTWyFhJDph8ivN/YFfn8PrvnV5yyNEwlwmc/dgFkIF5y1jqzTw8wLkRWOAf8VEnSBSOU892I4Lss0a9EUAOvh7tlB1giz3NyLTR1jVHRmsReP7PNKO+QE3ElMkeNrzsXIH7Icn6ivr0iKlv57CJYBwe3zdmgYzfw7XupY5s8/90uWZHG3shSm/kegWzpcqplfQx7gZHP6QjwPpmuZ2AyPZBdPQJZtEIB0EpkbWlKyiVbrxhR33MMOaUiOlN7UwM4itQ+apeQeow9vLOjGwguyc9i6T2ri1kFzPZLDEpKMRCaTCygKyZwZChIK4JnaYQi3kgdNJ0HK1XYSr5fInm0R7RnvH4xwTMQQTrTwPmYBgwLuJ+TLUNeWTnKakfqzS30jA/bCRAozPcwvg9OGSqWuMYpHRWUJ1Z8fBvxt3icd5a+yY5MjonzX45h0n5+n2kMkZTXCcxoMIIjWsBKOFZmbZSBMlEfI3XgPG2XsEjunYERePNXYHjIpWAlWuyKSGI5a/IH6mNTBN8sw2hScZZVFCIwxGwpsV5RyDg0ByLRlE8xNsLjVlkF2TTtQT4DN/3ZPv69VNudnnEzLOxzDRiEsW5MhJZZzk6Hj520YxefdxOcc1K5FEs1GK+D2xiPVJ+zmFilXCWyNjPkmTA1MipYyo/VcfmyeDa6ZerNiY2nQnSgNdqtv8PUXt8HCsHGxsMCNqTT6ihQnZoOGx1BEdtIROxe2bLkdBPjdWgbTt+osBt5fPRBfSUKUB5dh8PExqAU2xPRCprMHAOOfylGtE4l7yC2d94cKQlfN90JrRCjXAQ3i4s2tGJQU9YjTQPdN4P396Z7RT50Ka67WcY5yzGu/19eiGcWsZ59ItjI7p7FPV24aSmdXc6dh+s2RkAjmPo52MY7olMYuyJjB+ltXzfOpbohcQs9bOanm9iMOZ/HLkQaKS9RjYyrWA+BTgx1i2BD460S0JC7ZzFfn7+M359rGEme/Bo3Eyn3cD/XLeJc9bFpLtFpYSps6MOBcDOscwY6IibYSZ7OdgkOKOcg+7pNjPAeGQgSAVysWyq7V4S9uHoZNmwHEXNVy0lMIywT44RRXoFcuo2KqYbTLtL53agglXuqaUj5RZtYVzzHVhnr4FQTtmXgG+KYOnhnkQuhXz53J8A99pVnR8e0pLwipt3oGDL4TBy0tRl5aDEz17PWI2xmTuewHuL+iUptaFBF+00+FeVmyhECxINtcwD3t7HOzzSN05k51vqnNTJbRB0sOvFeJtKMDUVk1d4zfJx3lr4Jj0yOifNbx0S+7x9ikrP6gIZ67IlIBtXhIMaEZURGcqwIECU3w4b+FxfJjsBaY2T8i9jLVWHkqjoYFVFZtzG2tAnRF1ZoUZDvnhkYveoYC72uFUJDX6TYU4RAnQ62wBBREcgxHKbIteiU+X6W4fd1HFoDg9CrkQlGHmjjc9R14YY18GEYDrStfcdyDcbyknVzNplmKMe4/9TB5vrwJIw920cc3sJ9zfcsBdkuwVgNfOXtOCIxUySOoQl+zpFkZR51bYIY7/viDUN5Qk3BblYMhWC1IFGXvV1852wDJf3dwDbDfGPeIBHxXEsp0dgyfcfovxNgDPk8j3dcuQKtpdWqlajTsXcz48/sb+Pz5CRlIiKOSResVeDoxS7mxYkJfG+jDC7W0LcU4dRQm8AWTNyykIB/99Ck9r3q4zlnBiIvPY2x2Nex+77pWggWPm9d5P/+Vova3/UJI9IXE5G1ApynL88bMsD5zrWWOaYvtlrBvOhXTA/HT7C+yIFhym6lhucjP2Sub+R3IiZEK1aq1rSa/ch4TaY+y7G1rqCKemtkOkdfnrO5kDhwZChuOjk0aYaK2hEqOTO95QiuTwSWHLX1CuZ9O7DNtakoKVPavaI9GxFROhx0pBb084t1cH+2ypA4+Y6HsP4a6tyymTYJ921FeKaGJo9AR4z6W2EOLfMTrHuid+UYTsdCFylYVoWNCto/sYNnIM9yWACCFXn4HIsvmLYTsVTwDpdMTMAydayasqkpvG6AuXr7Ap57Yiiype+Y3Rr66lgOfUu9b5eMj8br5gnwTirihxifSoRrcK5RpfuLezDHDm2bXhYDHRZU9IsYH+49i3UTt3UzjGlHHeFaKNJ7ko3tG3ycd5a+SY9Mjolz7cdgBNaqWGQ75F5NfxxoAx4d5eBZOkoiJuN/cNt0PRiVexkWzFAQ0V60IRL4BrcHigJMD4wQSw2loW9ps8SBo7K/bQuOG25tbD21RGBk8qgVDWrqWCm1m2mkl5nDwghyb8eQFvbNSgfYDC/ewP/Z/6hXhEFkSSzL+gN1QhLXyrTJOyL5kwaez5E42MgD5chkDp6TZcOZKDF6ZBU+zZFJLXBjzcPjPEdDK4kYyVLAbmqo1SoePj8xFPECKxOeHMJZZlNNIhSvexgbDBESGm0SkSl5wOhzqW5ii8MCOFEH2rjOiYnHn5zXLEGjhe0hBj7eKQnOc31r58JUnSNG2CYKutCDMX7BOfztJ0jZ3b4H7y7y8G5q6nyTJyRijvS4gOtNDa0dCJ3B+T7mfSMUOXazoRE/87rHPtPkUCs59dwzfaS/HV1H1fFueYvq2HSNKmORhRT9x840sVavXQI6QMHVXmIiiufq+P25upVot1KTnGC6OnXsvupa0j01tAqmzDGkLnWQWprWuT0xxDzwMji2X54X6RaMf8jNLnUwnzqBORIcDy9TZ7hkgcPlq/j9g1NwDqcG+N3ds7AHbOhLZJSyIz3fUohBbCR26jdFLubMpI+1c/0thnZQ2Z9oVr9owQ2LSQY+3vN9M3g28oyYJmJ6e3pgMhu9IkjRM308+7kG5l01wrvLBIFVbYx55KdGOt/bxbO3S/jOwFenJrHgY7FuSLKb+3ujjD/zPVz77lms5a0yxvblp00qYr5nTcypObZaNaeHB7l6IurE5BxvciyrmhL/zH6M/+QQ8/WhSQ3ylKPZDG0NRS7s+54u7sFLMS4slqmOje4RPrPuynln6Zv5+DefFnnnrSLf9sPIp1OcckHddz8VuVA/W4oxoWksROzvsCBS0dTU5Nii/0IKo/bQFKILRrN+ao7LUt3g+ekBNgZyIxbruJ/K2FAXipuxKmtUENnWTW5PFxvB/raKOoqIJEYKZhRIY+9lpuvBezuyicicKRs2/xxlVt5MY8kGkgtdiwKrYzhXjBZJGj5XNyeOm2Ypts2K5f3VsUVzlFRgZM8WFER16GhVxyYU2fdFSrrJlWNsemerVrnVHCnC0oLhumgD48yUY1iwFjSpAzSJ6Z6RphjYq4ulzSKW9uJnSfqkM7WD3qnD7KfgtL39cyL//xfvnpfkXtER9TIrLiikOK+bWa8scrPIO+P82CybYyZi1XjXLFp7k82yVTJ2AqRmdlIwjvH1ztXxncTB5v7IhApzblpjUnIuHu/gPRDx+9I80tQ/cDdKtjkX2ZGeqSYvRRufcUFT0kMj2w8VCUnFNudqhHQPU5TzPWzIdIIncs5MO8C7PrQt8v7n4/rXLFk3e85R6kSRo8dgghWVd80p507nKSubekWspVsOYsOfGIkU1MGjUCbfFZ/n0/shLHl4C+dZrBtqGbnY+Nmke+xhbHq+KW4z5TPfw30PfazdXhG25tC2poNGeB/doojUjDBeTERkbOMTaDp1o4KAabuE4JINg5l6dATziYHS2MPnn78M5+FkC/9/2ZZx5JZrJmUwKmCuNkdmF1jIUFei++mmaW0RZV2pWmNsNwP6Uky0gbDatfmeOUoimLOU2GALEx5//37jTDKlG3qmFp+vkMxzAsce3imbICeuSNPB+JVirJmHJzBO8z0E2PdP47wiWj2rjiDnnqdI/JmGOu9PvLz+No7zztI38ZG5v4AKuY++X8Q5hsVw7aKlJvpF5PFTB5UwEyORF55FWmKtaidiuwWKBObl7CvKKfrIEZGXncHvmYKjGBvJmhtlXLc+Fun6OG8+HUBHh6W5JNiS69PORSYtzYFTa4kCel4msqdt/BxyX5wMztZQUYzWSAntJEdmRvYlelGNRE77xlNhSkrEKnD4syCxaC52VRnd2V31QuFCVseR2L5SNcVyQthHNk1eQMQieaY0eJ2xh/dKzarUwTXCAn5+sqWOjGc9+FgFed2iGUE23vziHhj0Q9tW/h27In3XUigXbuJc3SI2gC19L5XYyOSZYEwv3BT55Q9bg04RbH6nm7g/Eo8T19Ik1ywhYr1qGX2ltsrYpKYHpvK8XBMZJtZShKrA6xUgNr46y2cbcIS8DI4j00Pknx3cxgbNFO1SDde7aAP3ce8Mgov9HZzr37368RcbOXGZiEQFlFRfuIn72dexHoSN0ByDsYcIfqsk8smD2rusi2elYnigDvxorJWNgvc3ObTS69bIUAOS85myPttAavaiTXCYiPY0QkMEKb8w8NGuiAdL/y/Ygk2gWjOdZjq9RI4KKc5NRfA9XTgNaxWTPWiFOMdFm7Z+85pgrA5LdB4TGfJTRf/UNmyVwAVqhghmqhHm8L3KM/MEc4waUxtlE17sBIYiUvhyowwtokIKR47pJHLAeP+nm5irR9cwLz56xJ4jSCzl1RpZw+zpAQKQn3zDExvrUizyK3+FMVivYNwYOHYDnP/QtpG5Z/t4zr46ifmDCv3kWuWPPz0q8t6PWPFBdWxFPhMjjCF1mPLV0iSgU46CwWkztLlC+7pVEunP4FmYWaCoL6symQ6MPFz/YBtO49YTD9E3+nC/+kee+Hj3u98tjuPIT/3UTz3hZ2699VZ52cteJlNTU1Iul+Xo0aPyK7/yK7s+c9NNN8krXvEKmZiYkImJCXnta18rX/jCFx5zrRe84AVSr9dldnZWvud7vkceeOCBv8ntnz/EdJig8j0ECvSZ/UhVrFZhQNcqMDIPT8B5ImFXBIvlux7Agjw+qeiIRvB+ikV7xQrIuUEMKJyVWRQLFLHqt+OT+B2FBllBRz6Gn9hmS8Il+TqskpvrW+UNN6hqhOse3sLmtNAzQblM8NnpAe6PQoVdjbypYUJkhCmacgT+xvTARP2GPgzgYt26ZycO7ptVRfnWK70iNuBe0TgBrNKjUOiCcpf2dvC9jTJSWH3f0pdBYpotjO5pvD+3z0p916oY53N1/Jnt4xyr+rNF/bNSxTvtBiZEWB0jpUVHyVenrBypJpA6edslGw/qZ7EhKasqmSrbKuN5//0nRP7DXwNpevVJS63RQS3FcBBbI5H/pWTqv7oQ/790De+AUW8egdrXwfUyTeeeaeLZ2AZmXwdOyyXrstPGg9WeowLm/bK+n4UurnVk0xAroqT18IkdJSw0zDfOHY6PnxoiU1LkMPQMgRr6uO99HfBe6BRmYujEesVQFRHMF44ze7RdsGU9vsaaer1gCw7nK07h389bz/GnBH9qY5z3s/vhKFEYkjyS2MW90WloaVqSBQY8CinGfaxrpBvg/kksZkqLOk5rFaBSLLCgphNRE3KIKCC50MWYHNq2Zrzk7jDQqo2Rlsqn/+pjBFlrVTjFD06B40YSOsVryWcTwf2vVWytPDKBddYr4rxXLwHx+uvD+DzV073UqgpFcL6G8n7yjtIPfRlrQQTtqX70TvRhI/Ibu5gzW2VbR5UIdpNFDYUUc+Nky/hOPH75pUZjeLzj/3qdyHtfqkrfsaHMLN5JHIz3ZWtKAK9oV4KiVe8xbUcFeUdyYp+bGE9SKtjMnPzU1DFHyVVU8GwD3K1n8PiakaXbbrtNfvM3f1OuvPLKJ/1ctVqVt771rXLllVdKtVqVW2+9Vd7ylrdItVqVH//xHxcRkZtvvlne/OY3y0tf+lIplUpy4403yute9zq55557ZO/evSIi8slPflJ+8id/Ul7wghdIHMfycz/3c/K6171O7r33XqlWq092C+ePr3LsaDCd/FWR+f/LCNgXboh8br998EzTctFU6HYykU8cxsJbrSIvnzgwFrWxOQWNEEZouyQy37WIzpfdWkTs+0XHohxZB/GhD3E69ipi5Ul+kY0KiK4yMaImW5Mw+ukGVqZNgz49gJP1+b0G/RMlojaJI8Zr2du1dBirOooJzn26ie8d3IbBYhNQIj8itgn4iaoUx/YcFIM807B+TYy8Dm3D4K/UjGy5o7mjaAjVejfK2EjZo+pcAxsbG1P6CTYJOlx7u6pbU8J7emAKTi6NLdMLTNMV1ZnN88NYos93t1GxSJPE5Mmhic2xmm9P18jrk0MYZvbIEoFhpeNMEUKmChZ6prtEzpmbmf4SDfdKFZvcbN94bkEMpCmv4VRMDJ062cLnKHmxWcY8XK8Yl4vcqSc7fvr1+vdntew7tQrPgW9VQo5A5ytLzdH0MgQR+ztwmJkGY7rOT/Sdq6OVuqZ0zvQS5zA5bltlK6kf+PYsAyX30qEfFkwWo1c0/Soqd08M4WCQCM5UHdOuFJyk3ALHltVd7QDnpJwIHTC2LcoXEQSJBSbdwIjpp5vYgPPILlvGOGK6W6ljqtOtkSFv1bFxiXi9+th4PLynkW/rN48+xS6cxEvXRF56BvezXMP3D7QRUE0MsQZZrr9TNVcWefcrbJ78/fvx+UIq8mN3aJXi2JpQU4yyPobDsqGo3GINc5/XiF3TD3u8Bta/9sInn68vP20tpgop1s3Qt8AxdTD21y7hZ1+ZE4nEimIywTuiqjmDTHYQoJAtZSDONnbLoGRiVI5qhPF7ho+vyVnq9Xrygz/4g3LTTTfJDTfc8KSfvfrqq+Xqq6/e+f+hQ4fkj/7oj+SWW27ZcZZ+7/d+b9d3brrpJvnQhz4kH//4x+WHf/iHRUTkr/7qr3Z95n3ve5/Mzs7K7bffLq985aPyrnqEYShhaBOl0+k89Yf8Jjt2HKZPvU/kO34QC4+loSKa99aoYn8bC5BEvjvnrSKokFoE4KVWvk6Rxq0S0KrZgaFPFBfMN6lkpcSWZ/2nGH0mmtemgjM5EuTQkMvEahFqDhFBYuqKYm58Pqo187sipnGTuCKSGBn9wSnlu3jWr03EDGHkwYAMfBONZPUPc/JMKdJAFFJDiahQztJZdlonD8kVLWnWjXCgS5nG2xGLzsiR8FLA/RSQI7I1OTT4vB7iM1tlq85yM9lpi0MRx1FBpFQQCXR90ckgAsfUKhEZkkG7Og+qkaIhBUDsmeDnoYf77ATWoJOb8+kmvvf647ivfNUVS5AdsRRk6iDlxXuLXdP8IceGjjrTCdz0IxfI2sCHk5IJNsC1qo1xWR1LPxH5h9/31Bbar7xE5D9+HOdbqpuw5fQAelITQ1NSDxJsphRUvGsO16IWFHlVTC+T/8Z2EkwlFxORysgQITre985g3boZnq2qzhG5T8cnFRl1jWtHRXmW96eONeklj4ZrpjY2zSTODWpdMb1ejUQqAwueEk0zZYL7netZqjx2RSq+qVoPfeNGPTxpaT6iqo7gfgPlzgxr+NlWCQ7yVsnmPR2xrZK18WGrHKJa2yW8s+Ua5mLsYm5fsAWHnSKdrD5lFdhsH++Ra6AdiIRVbRuVirzorL1HcuZok5LcuLLNDB3RSzZETqizuFY1JCaPBmXO7r5u+ePomsj9M/b/q5aVQyaaSvdM6oFIYEMr2roBRGNDDZ6IjlLIl6k1os2smusE0OIiysm0Jiuy+UfEUGqmhDlvn6Hja3KWfvInf1Le8IY3yGtf+9qv6iw9+rjzzjvlM5/5zJN+bzAYSBRFMjk5+YSfabfbIiJP+pl3v/vd8q53vetp3d8385HJMXEuPiZy/P8R+Z4fAJm7EcKIB4lCocpFmRiajADbNVy4YdEqq7io88GWGSQJipjInJeJlEJDJaj7kwkWV3NkKq8k8HopEBkahLIiWXRa2NOLZfBUxnYk59C4puVRjYyITK5P/h4p7T/b13J0jR5ZxUSCKgUHT1eAZDRCSxEyBRe7uyv2iIh4KZAzkoqLyW4nK3N0Q1EHgs7IhG6KJMIGiZWpO5nstEHxU6vwObxt2jZ+AkO4qkTwQ9tW5jsqqAyEmgo6WVslOIzVyEp/8+AKz82mro0Q8yKI7ecDX6SVWFVlT51sVudslE11nMUHc1tWUcX5QvK6iFX2sZKOMgBEqRZ6pvHDXlnFRGSs8yIvhVAba1+/zByNTIDsicCZpYDhUzkuX4EIIhGNjYppccUuzptvC0Pnf66Pfy/XRBJ9DyyXZ2GBSE5PpwwEKnGxke7tGmeKfQHJBaHY4HZJUahEpC8mr+FmIpHzWBSXAoic02Ndd7GLii0qaROxo+hsO7A1G3kibmzIX15LbQdRHOO+/RRrjSRgant1AhMLzRwTofQyvFOmxjmeJKzz/bFAYaGLnxM9C10rVuCmvVm21OCRTXyPz8W2MaeauL9L1jG2fUWmfucqQ6mGBaw/kqlff9z4k+3Axpp2oBma/hMLY041kcoqaMBJG+Ollh5PXUgRsGKx78OpPLiNZ/2H94Lzd+cCnJcrVqzatqVI47m6NS7nvWdlm3drqVUuR57Z6UzfEYtTOJYisI9s0kvnno71VhlrcnKI512rqONVUHmHp7bUvhHH03aWfv/3f1/uuOMOue22257W9/bt2ydra2sSx7EcO3ZMfuzHfuwJP/vOd75T9u7dK6997Wsf9/dZlsk73vEOefnLXy6XX375E57n+uuvl3e84x07/+90OrJ///4n/Pz5I3f83C0iP/V6pGGmBqp5ohvHWhXtPxa6MB6jAibzJevqpAxt8pPjUIuwGbDBbFjY3Y/MF0utJY4p+4YePs/KKKayiEiJGNpUiaxvGwnN3FS4UFPHuE15qYQ8/0REdtqhkC/Fxr3clKcHpgTNKJl9xyjy56eK2hSsrDlLLWXGNBpJ9K4jopeXaoTolxsWS77pZNE5YTUO9Z4GvrWS6DjGY2H1T+SZmKXnWrkyx5YSCCKy00qFOkfkobAyb5mOzGi3Q8cebhxzplSqGqHP9tAbiorBQ1+fyTVuGnkqPEIP8602xhzj+fm+2BKFgndBjGuw7Pu+GdsMOaZESJhCoyNw/zScDRGcjzyQamRRs59gXMLCbm7OEx2Xr4r8y9tkp1VGV1Ezqq0nWjVKfgvRRvKLqCmVuCaiKQKNLc4/alaVI+PYULjVzSz1yXYsDD6YWs4cVFORPE71/HZg1VaOwHljQEPnmWNJFNgVFGlw7pLXFcQ2V5mi5/2zCpGoD3W+SBJmrzQWM/A8TOlslM0eMJ1NG+KoHWF7nK2ypdWJdHUC5beJIdQDRXgLKe6rERo/iwUR/aI9N4Up5/oa8AQi//My2E8Re0csEvFTkTQxAUlWGAaxcUOJtvupKdD3i8axoxNZ1JR0c2SIeuTi8//oK3iP73mZyPffjfYwAx/z8kDbdNxEzG45gmf8qwshgTAfWyVgoJQDFkQQwSYPlBIfLEAgEZ3cUKKKIqbezSbXxcSKO0ox5m1f7cffFWfpzJkz8va3v10+8pGPSKlUeloXuuWWW6TX68nnPvc5eec73ykXXnihvPnNb37M52688Ub54Ac/KDfffPMTXuOtb32r3HXXXXLrrbc+6TWDIJAgCJ70M+eP3cdO490XHBP5F7ehMSJJmaFnUCsj/lFuCm2VAVOTr8TWGWmeP5HAkIsAyRiISOQbDFuJDH0irMzoj2mq2tiMNx2FfG+26li7nTeRZqDuEO+3mHNAaHC7RZF5wecaoYlxMgVHnRNK8F+8gUXOzZabG2UBLt6wlg5rFSPvihiJmxuMiOw0CSbviEgDeRc76Iln0V8hxXhulZWf4+FaJHmTW0MImxwtCgcSzl+p4d8H2kbcJteEZfPVsVUA1ccwyIe3YRwpfUCjPvCtdJtVdw9PmFLxwbZu6AMr0WbljSO474lRrt+Vi82zNrZKK6Ylqfq7WlWkagSnYnpoqNp2WZu9ZkBHJ4ePdaI5Nza0/HlfB5snnQ6WirN9xf6eSQl8+MKvvrD+xW14P3y+dsk2aaqnL9eMuCyCTeXwFp6xkIoUM6sKzMTQh6FvBQKVCPdOfaAjm1ZCzkAi04ChHlohBNEZEbxbOpDjsaVWM8H910OrMkx1XZZSC47oQLrZbgRsrGk1EbwTrsE8QkWl7q2SbapTA9lpUkyHnM4d53B1bA24w4JIPzOkTdRWsAw/djHnyMmiRIEjOBed+9g1KQK23WEjZ6pZO56hVeRBjQoif3mhyPfeJ/KFPbvb4YiA2/Ttx82+jQKrUE1FpJYZisxAgmlVP7XeelzLkWvvdravaLpnHRk21KHMRORnPq2tfRQtKyqq3fet4tPNNJhSZGmprinEBPOPTvRa1XiIq1VTXxedJ5S42JkXGmxGroj4Vuk49BW5HxvZn8KfDKbJfXoGj6flLN1+++2yuroq11577c7PkiSRT33qU/Jf/st/kTAMxfMeP694+PBhERG54oorZGVlRY4dO/YYZ+m9732v/OIv/qJ87GMfe0Li+Nve9jb5sz/7M/nUpz4l+/bte9zPnD/+5kcmx8T5x8ewQH/nKhivDS0VZfXRH162+0tLdXMayDkpKXrAtM5aBdVfeXi2FOOzVA6eGpgMwWzf0BFGipND2VGvJrrE3HiviM346iXjW5AjRGhfxHgFrjpDm2VDTuiwOWI8K6Za6qH2R9L0SX1sURBVuFnFxlRefYy0RFn5RUQi8pEkK4ESPWeHJGx1ChwRyVxzGMllIImZxokaRKLP2/OBRFD/iY4G0S5yiyaHBut76oQNc7yw1Srui2mvlkZ/JDhzw8sE93O2YQKHZd0A+0XwYLZLKA2nQ11ILX3SL1oJPTfLrZJIXEFKqRniHXSLeNcnWyCuF2NEstRe4gYTJNigE3WCKduwXrES9inlCXWLKIGvjXHdvR38m2R5lqkTPZvtYyz+84u++oKik5KKVRlVIjwPtbqaoUkIkDcVenAcPU29kCAvgn+zhJvpcHaVX6viu/M9c44mh4aiDvxc658ixqioHKlhAWuwkHNm6DyMCjj3wTZ+fqZhaWQRPB/nI9uP0JFxBJ8rxRYIcGycDGhU4igPzzE+IW2FCO4535KJlY9MP1Hbi3OJDgU3bPKrWA05NTAeUE/5dMtVK6C4bhF/tkuY083QGvjm+ZGO4J7YougvLwIq/wePynwcaIu8+oQhy0S4d6gFGhS1A1sfjqsyLg7m6+QQf1MDjS1mBr6uFU19DgpG+qd8AQnh2wFI6WyFs1zD90ceJD6CBA7Zb19l74iabyRluynOd3R9twNbG1takPZLxPiEQWKEbT/F3DvbEKmKzUnyXGlz93f+bjlLr3nNa+QrX/nKrp/96I/+qBw9elR+9md/9gkdpUcfWZbtIl6LiLznPe+RG264QT784Q/Ldddd97jfedvb3iZ//Md/LDfffPOO83X++MYdmRwT5zuPwTj95rWImpZqENS7dE3kunMiX9xrX9gsi1y2CgNEzZ1u0ZrSchOKXYPYScQk7ylxYTRJvu0VsUmwj1KvaFU3aW6BkpAdJBDBu3pJ5PvuFfn4YVvchO+TFCT0TBAZss0HK49ONnZXuHHDpFErxWi9wqoVruFmCOPx2X1WnUN1cD81XtSoYPB0ROMmdn99Hy0k/ASbEjlgFIFjuS17lIkYpO2lUFNmKmpqaONNRDDO3QudM6JXJNrSYWGqLFHng04n05Z0IvPk9cQ1YUM/Ne2oqj4DI/mycsBEzAHhfbNdRTGBUnYlxjx4ZAJzbLOM8V+q62YemOAiHUDOj8TBJkXnel03h06gCMG2tsQIrDKuExhXi0KgWBT43d2KPh1sI1p/z8uefDGxuozl6Ie3MN4PTuHnz1uHw0Q0gdVrSzVLEVWVz5QoClUbWzrb1bTZ/jYc26U6UKV1DXA2y7juxMhSsqtVXJuk6JMtkRcsqpZPFfcyOcR6djM4OExJlmJ8fl43ul4R6dVSYhpRrKyj9k9DnUG2rqGz4GVIJ7IcvxEaKZzoRCWCU7xdMl7izppXDhadvtWqVcASeRqrA7pWtYo9ksnpeK1Wca9TQ5FL122zZ9qbc52BXCk2RyTTd7xUg8CnCMj8jz4SR1seRcZHSjRlxYqxjQoChZpW6W1qerEcW7B474wp24vguei0FlLlaw6sufe5Bp5PxLTXgtjI7FNK1l6ehBr8StWoDP/iNryLhyctIJ0YInj50rzIi88qF7GAsd3bRQ9HFo+wPx8LVpiuY5p9aoj1uV5BxXQ7MNvLYKaQPr4u1N/i8bScpXq9/hiOULValampqZ2fX3/99XLu3Dl5//vfLyIiv/ZrvyYHDhyQo0ePigh0l9773vfK2972tp1z3HjjjfLzP//z8oEPfEAOHToky8vLIiJSq9WkVquJCEjlH/jAB+RP//RPpV6v73ym2WxKuVz+Wp79/PEUjkyOifOPjsEo/9bVmMjbJSP18aBabqjcHXGwONjgMnFMj4WaP2HBRCAdMePHtIcXi/geNjB2q2fEwrYEREVEZKe/0rCARXzxBn7OlgSMbuloDX3jAlF8jZU3LGNvhqYPdLaB/P3Yg+Oxt4Nn+OIenGNvB58ln+TQtgm1RYoedIsi9+y3KhWmHNmyJBUYGrbneGjKouJGCKNaHWPlEtXZ0wXPpjbGn6uXDEXZ20W0mLgg4ZLTs1LFxvu5ffjZJevGNesXYYydDKnMrRIqfpi+cnRMR2IbCdMjech8S41tOcZYzPfs/bFbO0UqSagde0YUD2LcA3uYve9q/Px/X4y/f/6TiGpDzyqWKpE6Xq71FySXhGk+bjiLdSApxycxfhdvIAggkkhnlwR59mOjU/nwJN7PRRsiN/0Z5mm3KPJD/2D3ItqRXnBsExj6hlwxxdcMTWYhcS2t88U9KjLYhpyDCDYQpuJajq3HYQHz9KplrL/MwfOsVzAme7t4l0Th2M8rUdRiYoiNba1iVXUTIzzDIxPG3aJm2kpNkYI21u1INLBwLUgip8gRoB11x1AfERO8fHBKnWV16h6aUp5TIuL2dwuGsvqO3B+moFi8QYefaax8T7KVKrg6kYf7e2gKjsSersgrT+H7f3AZ3q+IyLs/hvlCnuDUQOT61z7WWL7xPpE/ft4TG9OrlqHoTWczczBmbJ80MbR3ktedIjk/9OD0iOBZH5iCUylizk8hVeFHTRczOOiqsz308R4XenDK2PJkbxcOOCVhrl1Cc+i3fgHjTsHfuaHI7165WyqD/DYGwg9N4lmYFm2NVO4gxH3RxvaL+N2Fmxhrykuw+IP2eraP9/PV5Dm+wcfTcpaeyrG0tCSnT5/e+X+apnL99dfLiRMnpFAoyJEjR+SXfumX5C1vecvOZ379139dxuOxvOlNb9p1rl/4hV+QY8eOiYjIb/zGb4iIyKte9apdn3nf+94nP/IjP/L1fozzR+7I5Jg4P3oMzhJbDaxrlcI1S9jch0osXqmJ7OuKOOnuRp5sCnqmiejvwSkjWJKQyj5Om2XLnVOVebsEyD+vkUPdFm7SRAROtVBhwrYh3PSYH2d1B7vPpw6M+acOWlon33uO93d4GxtsM0SUTR7R999txo36L1zoJILettecs6uWjTi8Vba0F1GLtQoi9J08v0a+/aLIZpojQqbWwoX9rKjQzE73XgqkLnJEUg9GjxWGJ1owhHNaFs0Ifr2CDeWaJTgjj0wYj4rPzEqnNGfAyPFohqYuTCeGpFRunDtSEWLzqRuIDB17X/WxyG9eI3LrwcdOymM34z7Y2JXEa/b4orElKZxFCEzF+imcm2oEh+mhSTjY3JxYAp3nlBUTjNMjE1bscPEmuCysrqxEIn/+gdwmLYbghUVs0Kk6MN0iNoGLNpH6Yf87VkhSxLE6xlw927BxZyXq0Md9sFfbbXuw+dy5AGfmknX8O3EwX9i+56G6NlntK4FaUZZTTUUaNJ27WbFGrss1W2OVGt7PliJA3aLyntRxaWoQsF7RlF5qlWY8TkxYaokbLnWnWE1JTsxKFeiDl3PCCykKQw624fCyQW+o65C8F6aliHYv12RHqHa7hE386iUrJBGB/Rj4OPfU0CpbZxTlfLzjyRwlEcyvL81jLH/4y+bsObruL94wBJB9JqkXtVgHt5OVfn9xIewtq2U7AZ6DKc3mSKSmQUYhhU363Ry1ZWIoMirh3cSuyAcvN0dMBMKvb/+cyUa0RvjsL7/0sc/FFB3X4XbJCgsi1/hde7oiQQ/FFvdNY95Xx+B0HZ+EA7uni2t1A6QKyzFUxb+4R0Q6Tz6+3+DDybLsmU0E/i0enU5Hms2mtNttaTQaX/0L54+dw5FjMDLf+/1wKEIPEfWgCP0XHkEs8i2noAj9pQX87OINQPT1MRZ0WIBRDhJ1fDIYIFZ1iOB3i0os3NfZ3a2bZfUiVlHXDrStgiIoz19BRd+vv8DKlakiHRbMyL/0jPVO6vs58UuxlBdLzSMPm+/MAL/fKqNv3bhgJGU29n1wysi1hdQcLn5uvWIwN7WL5nogF59ugiQ/LODeSHpk2oKEUi8zeYCBb2kskuAj5TqsVRA9v+SMQfxOBlXm9TL0WhgVkvDuZth0V6t4z0wBkudV0vEnwbSv6VE3xWfJCVqsgyRaSoxrwRTbQhcOwGYZyBMRyEoMw3zDK83pyx+/+HFDJUYFzI2KFg+QfHqmAaO8VUYLn0PbRs6eGRi/o13Snn5K0G0H2CjZSJnIFjclOtuMmqmUPHbxfqcHiMrvmdHNdWAbOKUQSDZeqSKiPtUCL+bQtinUs8s7U9OVCM780XV8ZrtkxQZME9Jx5uYoYt3j96ujQVTwbB2BC51rR6wTPJFB9sxj6X/m5NKmohynCtatiJWwM/27XcI6Jyl6tYpnmenjPNRIorYZU2ORq30iI6u0IoJM5IXtf9ifcatkHEERvNe+b5WLTHn5OkdWaiaKOjPA5t0u4Vnm+qonJNp6qbi7Gu0nvvNpWs/cMd8Tee0ju4MOtrfZ14HDcaKF91kP7dmp0n7JBuzvsCBy07Ui33uvFa3M9dE4m4g/ZS0GvvVffON9+Js0iP9+zePf5+uPw6HyU4x5JzD+Uv54yxet7yB1u7iWmZZka6zWCPbhwWmR2xdwzukB5klTeYj5NlqPOToi8szt3193ZOn88dw8MjkmzvwxkU//d5G9/xpGsj5GtJc/qpGlQni46WPJsbUxHJtA8/CsDPN1U1rSTXarrITSbSMHihiqQZL0WgXfoZTBXB8G5oJNOAoUQGTkePkqFipTWA9N4R7Y5JHlzPybKaLjk4iI2YxyXIDBPbhtysjdIowRxdxIMKZDRnSDKt50/DbLIqt6//N9E14kQlUPjbtEtWmqgA99bMalWLk2nkkqFJVQuVSHE7Jcw7XWKkg79Yq4z6kB4PmUKdSStaZg/7qCImVeZGga0RI3BdLyAFFDrXK5ZMN6leVboty5YHOkV7SU6EisxP7xjn/7GpH//BfGzxgrKZUkajfD+6+PRT52AZz5C7YwbtXIqqeYviukcFDPNPD/PzmK+VEPwYUSESllVl1IcjxJs5esg8O0WsVc9TKM62zfUCSiiq6iVpkDgi2J7ZQRoFPGvlunmxAq/Ow+3M/ds+bMsGy+HFt12r6OySOEnhUKTIwwTzsBnnOpJjvNiUeaaitFQJEo3cAqvR0xWP3sTN/WxVzPeHx+IlJ1TZojiM15Hxas1UhtbI6ZiAlWuhkQabZMYnVeObbqrF5RU3yxSD3Bv7tFK9JgKrsZYs47YmmtZo7flygaM/bgsDZH1raHqtmsWB34Ij/3Gpt//7+Pivzstz2pvXzM8eavYE6IWJUa0eeNslbROtYwnHypnhK7yTNjn8WbrsX/KcDpZpZ2pBNdiq35+LWLcGCDBAHBXN/0wvLHax6B85iKOr6hFXnwKCb43CMTIv81xy++ZB33QSHdc3XM35MtI2s/+qA93qg8vfF8Bo7zztL54ykfOyrf535ZxDmGRcB2EDw2yyIfvcCqY0SwEIqpbfKVSESUazAoAHXIO1n9IiBYaqGcaVizSVYltUa7VaJLiVWm7G+LfNeDiF6W6wZjd5W0yz5SkYuNlO1dIg+bXZ43Q2LhxMgiYBowpuo2KmbsWVEjgg16q2RciWpkrRMcMS4LNz0RbNJ937RszjZM+dfLpTl2IPwMf+/p4ntrVXPCMsec01MtaOgwmvNSwOCzfWtZ0C+a00oOgp+YlhPRjsQxQik3fpaM04F4aAqb1VoFKMZFm7hHViQlDjao5RoQrF7RlMrj7LEpvkcf2yWtGMtthJQ7IBLITfSlp3Adltpvls1BCQvW5PORCVM6/4uLgPaQB+Vk1pyVCtfkjA18M/qlGHN0uWYq7GcbKocw1FSTopS1MVKyd89iXlJZnfN4qMgOe3Kxms3LjAzs6JyrjTHfqC/kpSJTmn7kmmTzVjrrB9qYZw9P6OaqTgJ7GrK6csfxdi2dxnQYUzDVCM4GuXZ7upayJwm5FOPcQYzxagdmJ5iCZ5oxcSzdTtFNOhBMvxdSnIeSIbQL5ACxSs1LgTwyMNkoW9FEW9NX9bGlv+nUVsdYN3lH6bsewLP9m1tFbnz5E89PHi8/DTTwRWe1Cq1kRO3Nsok9Ugdr5FmatT8yO0P0UwT3+v13W/FJ6hgdgc5kPcQz0taUYhQV1MYiw0mMwf97Hf5/2So+e64h8vEL7N7//SeAfm6WsUZFMIe//WFQLx6c2v2sD0zjz3P0OO8snT+e1rHjMGXH4DA93vHoKGKtatpKiWsGbr0CA10YGQm3V9RqJUWJ/ATfJambVUoiprFTUs7LmkYn1y4BLSpHMGxbuY2spAanXbIUBaNnR7AJJWUrWyaniRUk873dApa9ohn8IDZuFbVZ5nrG5RBR8qvsLu8fKwKwVLdGv/0iDB4rddj/i6KaTJ6TG3R4G0Z4q4w/kwPZaYniZnCUarqhsWyXzgLFBZnyELE0CwnfLE2n9hJ7iZFkz+j9gWmgbgtdONK1scjecHfahZVRlQgOCcuNafRTx9JRT3T8/LeK/N+fwn3yvoqRbd6OiOzpify9h0xkkyTtOIYDws01dkU6VaQPhj6ccnJHmLpiX8PpAVCLMw2bBySiBwnGd61qelRsCTLwjWBOdWkRzO3nrxjixmq+oqJFU0NwOtgQdl/HtGfyPQt5lDQFRmdnoWeOGAngm2WIEhKRIgI29kQiURXxsc1/ViWxp1ttbBVaHCfyE9uBBQwXbUB+oBzbvbGsf7VqDlgmIq5rFaIFJUBXxxC/TXLzgenBsGDVgkybzylXsJpoM2BFGmf6GAdWxbE6loUGYw+cNSpL59u4NEdoZMvigpec1WbMNahi3zWH8xzeBurM47JVPMOeDtZbN7A0MPXUpgem7SRijujJlmmMUbcsrxIfxJgHRKVEcK9EwFnpSg5Xr6jNl9VBI2J23SLEJi9dw9y/e1bkX/09u86/ezW4gatV4zttlUV+//InXpfP4eO8s3T+eNrHU3KYHn10i4oMVYwTs1KFUWOfODpKqxUzAiIwDhsVRYV6+GxfKz7GHn5PrtHFGzAMK1UYgfungSrRIYo8I5BnykkiAXi7ZJyUiaHB1uQMpA6u39fKFLbHYCqI5fHFBI7bwMe1a2PVSsrMOWHKUURL8MdwMNg/iRV5VCVnqi4vkyBi/A2iY6wCGvmm9h0kIlesGiJAdIxVh9WyKa6TC0R+kgjufau8e6yoZcTSZDqbdKDm+kBXSOCtj621CFMBJJSXY5FQnUkac5Kjn+y44ZUo2w8SvGdyXZqhCRgeaOM+SPb3MtzLaXK0NB3S9+GcTipPY2/XULbU0a7qAfReDrQxDmcaqnUV4T0s16ydy8QQ99OtmlNFjR4iO1TWZnUmq+A4hlQ9HxZECkVz4Mlbo+NBx3W1inUyNYAzeKJlRGtWXRZSPCMdBjq6TINS88tPcM681Mdcz3hCc33rFVmO4Tx0gt2VZ2eaCC7ojFFXaatsqVv29RPBzzhPvAxzmONFxIoOPecpHSi2SJnv2bUcQXBEXTGi2uwrt1YV+SVFh773XrxXN9OegAXcy2YZadBPbGMMWGxSiZDaqkSYC03lUrEa9BWnYfPKsaXIiZiJrpdqhHRXRVTjqGC8RDezRr6sHh6GIv3InK21Kt61I1YoctUy0OnFusjNh6yX2/QA9yOCa7/zVlTm5Y+RB8cyzxs69qqvsgi/eY7zztL542s6dhymA20YZm6sjz7yKsndAIu471tVjqMETBrsrRIqcIjEiODf2yWRQ1smcNcrwpBta1XRlm74eztWcXX7Hq06CmCkmDphSbOT4RyOaBfxXFkrYfhmaM7QdklkoJE8uVZEhtjGoKLIDUXk1iu7O6CzX1leZ4bVT5QcIK+jG+CzVEHOl+hTxdtPwRXqFY1UKaKSBVqNUo1Mz8rJgJJEyvVohZrOESvLFjEdJ6YOH54UmVLUiXot3PxTx/rOJY7JRZDnwCabbJNAteqxp6KFkRHVqcw+Koh854MW0T/esdC11EopFvF0DkY5R5gOApEItuYg/yavvM5mso6+exJv2b9t7OH/tbFIbdNScM0R/n2mYekyClaSwM60j5tZyme5pirYkb0jOsWc9+sV2+ypup44pjc2qaRykmlTB2uM85lcs1V12pojq2wMYpHp0PRvyKcb+CKeByeOzlPi2rtZr5oEBUVSKX1B9CY/17c1Fc0+hKwU5MG0ExX/RXBPiQOnzM1MoDNzzMETgTPgpYa87OsYt9ARK9RIHasejTWt+J9fmJtLPeNJ0aYMilZl+z33Y06cbuLz7K93aNv0nF5xandvO6avhwWg1bQ7fGY3sTUcekB5PrsfqDd7SlLZnGtr5IEnSRTWzbCGLl0T+ee3W9PcI28XedcnRP7xXbvXzA+8CUjlox0lEZHXnBD50B8AORp7IvfMAjkb+I/97Dfhcd5ZOn98zUcmx8SZPYeF+lcXPv6HLt4w/QwSG0XsbxrHnjo8q1WD+EWsJUAjhFHItx3p+4YaiSCiYmrlgSmRTxyCsaUzU0xE9rhwukqJ/bwdIPLjZkjnbbNiaSdGaKxmaw0tgqVRGxYsbcjIXXwjtLNZLg1m3jnJxPgVjaGlogjFU/mbDgAj/lKMTSByRRJ/d2sXRvl9P6dm7mGjrkbmKESutS0RMccs8kSyyFo4UM35TNN4HXwON7L/k1dFp5Uq3Rzvvm8OCzlQPA8b4PaKIt/2CObD/7n48efWv/q8koIF6VZen2OTiZFdRSzFFSmnw0vxXhsh7om9rmpjUx7eKGOOESHjfC3FcIrbgfUOO7KFcWQqsTWyxr2sfsocoJ5bZUOVmJopJLvRtHaAlEwlshYbB9tGjp4c4ne9ojkbEyPwqnhu8qAenIIDwD5+Zxt4rwe3gcZUI2u3kjoiY9/6L1YicwBSB6rwq1WRS1ctVUaEhc5MHv083cScKMYirr77vGYSUTUiXVxnjohkfUOgmE7Nz30/FUkSQ91CXY8knRP9pG4bqxyZphIR+YG74WSQS8bm29sljE/iqGijOsSO4Bosieez50VQJRfgENEmr5HFLyzQKOg8/Ikvirz3peAHbZXxnhtKVCeaSMmR7ZLp1v3Ql1GptlrF/z94Bfh3j3aUREx89PGOYgKdqVeewv8fmhK59YDIZ/aDo/TIhPExvwmP887S+eNvdGS37RUREef774a0Pw2EiAnSlSMrhWfFEw8SlMPC7jLT/DHdB5eH6Ac3XML+PC5bxYIuJkbcZrTO1JsINtZSYrwPEXXKUmww4li/se0A0X8xAUTtZIpU6fcY3TGqZlVZIwScH7vg8bzwnN0POQNUxWbKiwKNQ9+qkVhezK7qeeeK8DyJ4mwlQeeADWNjVyTJRNYDkDhn+/g+DTXHhUgZmwiLWLUUSdB0EiimOPIsJeelIvUY73Ai2U1mJ6F1tWqbxsjLKVF7tmEyRbdRRmXOEx10jkgAzvR9VFIbV4qCPrrz+eFtzCE2bnUypJLodKRi6dfTTZzrQBtOBTV8mNo62cIm9UpFFu6chzNCCQA2XSYP7f5pnOfiDcwVOmMj3zbcjqKw1C9qhLgu21rsNAv2rQpspo/S8YsSrAM6tywrp6Ptpyb06aWQz2AKy0tNPTvffohq7r0i+E4jH/3d/MQq90Qwt6Zja6hK/a8gxjivVdBHjn3IMscQoIGPOcx0Lecl9buIRItYhRwdSZa3c0Pn+w4L1uuNvKXtEmzSW79gQUDsIvVWia3yrBMYMlYbi/RcQyA/v8/ub7aPopLa2KrTggQ/Z/VuJtqzrgCZCa4ZBghsfv3wJOZGIbV2JfUQP2uO8LlugHGcGsKxet46yOZPhXBO0clffbHIT33uyT97eAvo7RvvwzjdOwO9uNv2oHjm5MRXv95z6DjvLJ0/vi5H9j8vF6f7ELRtGOmuVUAaPLqGDWOrhMqQu2fti8UUEgLrlcfX1KmOrbqLGkwDH5/NO1bXLcIY7e2K/PUh/P3wJAws0w4i1vspr+pdD60XHCNYN7PWHkwjTNaw0Qx8bExs30JHZ+xBVHGsRv2RCUN56kpy7gYgfVYjRI8sj47UKTnVwt8vOGfEWKY4mIITwb/LsUXQRK/yiE0mKngZa7l/hvu+fBUbwcmWiIxFip7B/SLGpaFg3ldmrW2GmwFJbJfg7DiiJOdcZQ6jbipSs0XFVhnfI3qSOprq8kyIrx1gM1pPsUm/4UE4Z49uHfEb/9t4HkSBWP0nmXFCqH7OHnXcGJ3USPoiOM/UAO+ZFZaRq6nGxNIv5LUVY6RgyIUaFfB8ItjE7p3B+Ruh8enumQGX5QWLhlB2AlUy9+DQ8n2vV+BsU8LheWtWyHDfNFCFHacpgWN1cBvXme/h533fyMGZqHyGL3LFCsaV/eH6Rfy+NsY89RM4Fp3AtIpGBYwFm+ySzE15DUfMGeO1eL3WyFAR8pI4B/h5R/8w7Ud+EcVSWQDiJ0b2LscWMHQDpN6I8iQO5pEjhlwy2Fir7FbmX+iqE1y0KkovAypHFGZPF997eNLEQXmsVrGm6WhftIn5QpHIbs4xHBW0EbJj8ygT08USQaD34jP4XeKqxEOi1aqCdN2BNmzqxy6Qr3o4x0T+65+L/I/nAykSEflfz3uss0Q0Onatqo7q9bGH9/jqE0g3Rh7s+b0z6AJw216M93P4OO8snT++fsdf/J7IP/peLKD1Si5KTK2aJ0/cFrEo/lTzsedjh/BaBOPGdhmpWOWbCIzG1UswrH94GTYNwvLbJRN2pDLwo5WENyrGZaopQZsVMfz8lm54FA685aDIdzyE7+xovygngV3g2wHI630fMPa+Dsbl/inoKM30jZtAePvSNSNwhh6M9KMdssyxcvawYFVeFNpkWwNullTxntZ7uW9a0ylF2WnPUkpMLJK6OJVIG61qqvJDl6IPFAUWGyGc0nJkm9nBNgzyVcv4Xmtkiryl2CrNhurkTAzxjqmB88UF/H9KeV8nJnDOD/wvPO+b34TPEf1iinKzYpstkb6hjuNYN5zpgSE3dOi5kXOjWK7B8fB0E3/VSfDg6qGJiS7XcL/bZcyHftFaiix0UQW2XLWNXUS7yntAT/d0rTKuVzTV9EyUg6NpqE7RWo6kDn73mf3WeuPCTYv416pQh7562VLOMwMTbWQ1I8ndTCGJIGVNJzJxMd6hh/lKEVfyhsYegh0653QCypoOPNfYrYzvqkMYKMLbVJQkSCyd5og5536G856rw6kaZHb/dGxdUefawxzrFU3PiePEjbsTKK9naAgk2zVdtWzVZ4e3EYBRFoRVf15qPeM+euSJbR8FeEUgOrmnA24X+XtbZUNMHbG5MfJNWuKf327n+Nx+XPv77oWj/MU9In9+CYLCizaA+ogA9aHmUv7IjuFv5xiq9n78dvzhzx5PFZ8VimPP9NNiOkxKUaAdolO1pwuZltcfx2dOtOA4fWn+Ocd1Ou8snT++bkcmx8T5wDGR734zjNUl6zBirziNXP/+NqKQy1dE7p7Dl5zMEKD8cWgLMO8bHoRWSSVCdcdGReRs09Jgh7ZgPPMGg80oebCqRASbRWNsIn49rdx6ZAIGglok5FGw8occkeWaqYk/PGEoUiY4Jwm8M31szmsVGLgHpmGsZwam3UQkh84Qe1oVMjgU9bGl6JhSIVcjdUTSHNE1dq0jOKvjWLFHFIrqxZFuMgtdpBy6RUTC2wHGcq5nSs2NUOSaZTh3m2W8x8Pbprs0qeTi5RrSS6x43Cqb5k/q4FrkLZFXkjgmCsmmq6UYshFTQ+tPRmSgNRL5wbtwjk8csqavRM1EdiNLIobajD2R4xNATERMl0kE93p8EuXjR7awAcz38CyZAzS0G0DtvBpBz8gRU1KXvshhUcfVw/xb6GlqWR2vK1eUs5YBfWWbiVIM5I7q60ztdQNryTPUFDW5Ub2iiVLWxnBYCyn+vVzDe5wYGc+OCN58T52VsaGRq1U4Cxfo5kuNIlaNUaqCKdXjk6YTREXsxbrJcDAlTNmJdgnjy/MPC+akE6FiYMBmuM2RVUzuzGtFpoiWehnSiG1NuZHTV0sw/0434cBesYq5TCSaQVAnwLPTaSa3qR1g3PwUz8S05Uce5ShdtYygjOuqGuGdkg82MzACfOKaov56BWO7r4PzPjAlIh6uSZSSR+LiOt/2MO73UnWavusfQWfpP3wCjtOPf9fu79FR4jH1qFT2wW0g2L97pfGaTrVUvqSmqvyeOUixa45T7ABlyjtM/B0R6esWQSCPXczZExMIFv+OH+edpfPH1//4sw8CXXjdD8FILdYNor58Vfv86PHodNp8D+qwf3aJyHs/AsQp37SSqYILN7ChPF7ePHWM2yCCDaSYwAhPDWHcmqmpEXcC01Q5MQHy9kIPBpvoTOihOmR/G8auOTJtE+qnlBU5aY1goGMXkT5TSwe3Td2b5Govg1NFByYTnG9msFvt202xQdPhYAopcXF/RzZNaTn0tBIux/Ho+yKdGuD7nqYFKpp2CnQzqum51ip4D8VE5E8vMdSF5BJXTGW4XcL93jUHh/OyNSMEbyiJue/DcaCsQkGJw55jm2FpZE092yXMmRMTmDMHt7ExkzsyM4BDxxJuIoAilt7hZhw7xl26cwEbTk2dWXLGSjHQozMNfG+zLPLp/UA0n6+l2CKaPlKOzKig3KMxzkmkqz62SsqTLRv/sw3cz4kWdMD6RTgeZxuYzxND21gLKdCEfR3Mm+UqSNSsAn14EuumNQLSt7+DOXbvDM7/3Q/gmrGLcdzTRRBAsc7Yxdo53cRmfaCN726VRb79OK7LylA6Kv2iSSOMfHPsRdNqnUDbqChKkjp4rrk+HEVqUPl0mH1DSfn+yOHxFR3tFnGfIua0lBT9ZMqsFOPf1Uh7HqqzOdMXedkZUyyn3ACFZL0U98pqytsXjFvXL2JeDIpY789bh8PMe2uEcHraJXMY2DNwsY7xO9C2vnvd4u62Ivs6Im+8H7bi+++2cXu0CGve6blmSeQND4n84aVQmP+fl6MX3bs+YZ/5gbtFfuRLT3wOHi88B+foN14g8qZ7rT3Q2AMySKdoB1l6lHPEytA8ykQbwYCO34nUEeRx1ZLN4We4Me7TPc73hjt/fN0PR47hH+99qcjPvA6GLy9UuVfTUW/9gsh/u8bUj191Egq5Lzwn8iPfY7D40z1efBYoQR5devFZoBskvEYe0mHsvt0JoMlCjZxCporBio6IY6J3RTWYZ3Rj4AZQSPFsF29gA2kHRvyeHKKKbKGLyqSlOtIsIthQ9nR3l3DTwPC8NFw8MoHDQk4Jm9XSMRj4Zoxo3Nh1nvycL+7F/VywhfFar+A5YwdE12KCyqdCZmRkloWTN0JBTaJEvOfZPq6zUcGmOTMAByPy8N1yjMi+G8DR2ypjs7loAw7QmSaehyTjg9vmaB1ow6kierRRMeFRpmqIqJHnI4JNdE/X+q3x83QyV6rGQzs+aRvD9ADptvnebvHOdoAxIOpBIdJHJuB8NEIrLogUOSKHK995fnqgjU9znC86NizbZ9r50wdMQLJXhCP3uodNwoNSA72iyDWLpnXEDZ3vTgTXOzGBc1MkdL0Czg1Tq+SSMRXFg4UbLCpIHaxXco2o55RoirUb4B3ePQtb8Gg9LyezVjQkVbNfGludeJnJJqxp1Sz7u3mZ9SG8ahlzeqmO9SFiqe7IhXNJdIlyGxdsGsIogjELEpCsHf3/1BBOzf62NeSlUO5KTYMnF+e7aBPz7/A2nu03XoDz/vPbRd7zUUs7P97hHNM1fuzxf/+nR1H99idH7Wfv/hgQ+Ecm8K7/6Z1PfP7fvVLkh/4B/v3nHwD6dscC3m++WTPtxqMRJKbmHu04Ecl+9O/vUY4qSexEEaPcd5/S0ZFnsjfceWfp/PENOXYcpn/696GVQ5JxPUT1TV834S/s/ZvlthshjNXlq4jgLtgCl+hnXrf7cxduYiPuBErAnRZ5ZFLkhWeBTnUC3KPIblXueqidxwfY4BPHtGVEbBMZKlH80jWkch6Yws8STYHM9bQViFaT3TVnlSl+gpQSeQKZGK+GmzAjNkZzbNobu9iEl+o4VybmxLA8O/JMtqGh5eT1ENwCqmm7yllxRTlM6mS0Rpq+GVmjVIoUNkK0kRj60LQ63UTl4recgrNIonSQGHrA5yFnpqq8KD+FoZ/pWzl2KbaUCtN5UwNEw2xG21NeEyvbqJNEYjAdA5KUmbISMcSwE2ADv2TdxksE7+vTB/CZuT7Qhrk+HMdhwXoQNkZGNp4cWiUmNYvYE5DaRETTpgZAHuiY8L64yQx9bNZhQVXvC3g/yzWTvOA9vPgsHKabD8EJet3DmF/7OrLT6Hi1Cr5ffWzq4iQws0Kxr8hnEGMsYxeOKIntfmKVdZzbK1X8XR2bZlKQIKXDebNYB9JTSLH22EOPXCXKTGyV7B5YeBEkWDPrFfxhMNAN9GdlkwM4um5cpLyTzE2d84hq3VwPnQBIIYVb66E1AxbB9y7aMC0oOssrmraa7cNOlGLYtC/NYwzPNnYXrly2KvLDX8YYzvZQWTgxNL0sEXOWVt5j6XAe/N3jHW+8Dw6Tl2HOvv44UL3HO3ief/V5kdc/JLLYwDtaqj2xs/QYx0ltUvw43KbYNZvEg/y5r/l4Zp2l82m488c35NgRrfytP0Vk8QVIDMh1i9bz7FTrb36hYQGGppDCUTrXQKPVRx/HJ/GnOcImQH7R1BAcKBpgESNJN7WCjWXa3CBi3XwWukCSjsQwqpkDQ/XwhMoGOJayWlceTyoiB3WzJH8mdoEA7G8rUbtsyAIdM7ZuYHXK0Df15rMN42xM6GZM2QZC+74L5GxqAIN+34yhbKkIbtQR8TXtMvKsUepyFRwh6twQPQgSGPjJAd7lUt34Gpeu4b2wAigTc5o2lCRNYjVL37cDkyigwzjTt5YxFFo83TRnhIT8Qrq7LYuXgtNVjvHZ5QreVSPE990MacKwYE7yVhnXYtl8ORaZ76Jac65nDuyd8/ZuMNlFkjE2m8/tw8adVyhvhCYO2Q6ANhAZJG+Kgo+OWMop0zmXJaZz1C3aM7spSMTLNWu7ccGWOsJ7ML9uX8B74HcdfdVU617omaxGEOf0wDLj4zVD/H/dwfrZKhnPrKFFGLN9ODtEjOhwRrlU24OTOJfIbnJ46pjwLDvYO5m1OAqS3QrX7EfI9S8ZeJGVSFsOlY303feRTuOz7fTNGxrZvaVraK5vPRHprHWKKkdQxly8YMtQqdhFEDY9AO3g11741e3ViQkEj2xBMznE9acGuD75RT/9WTi3lCP44BUonskf2TGIWL70n+H/f/w8aJK9/jjQ2g9cAZv3D+577H3QnnzsAmtwzL6HbJOyUw2nqHTs7XaYKL3CzySO/f7RHFTO8b/Dx3ln6fzxDTt2HKbP32SRzCcOf30vwvYlm2WLRB9vofJol/CnkCKiY4XW2VykkjgiviA62yF5FhBVb1asa/qplnFW9nVMK4qSAU4mErpWAbZSNW5FJjD0oWdEWTaTFQFasT6B35O4zfYbo4Ju4H11fKaNz8HmutzIWX3DRrysKmJZeGuEzVMEmwgdxL4Pzs6nDu5WUxeRnWbHfcEmdOkanLTMwcb90SP4c92iyMtOG3JConVrhHcVeSinpxEtpNq+IYNKsUPnIbHPDHykMakH1SsijUAhSKan3AznZxpvrWJE52KC659sWZPmQop395LInjOI0beNJHpWCE6McD42ZiapfrtkjgdL+pmiE5EdLaO6bsjtknFmiK64Gn1z/tRDkZqmOKeGcHhWarjXQobzUZOpmODdzfTtXqh1NNPHXCWPjeKc5P0s1XTOpEa+F1FekWCOUMbDEcxJR98HS82JklEItJx77lFBJQocI7CzIpJEeabzOH6ktJDUTqmN2hjrfOBb0HFkC8++pCjOvg4+S7X5UmJzjqnQgQ8kqhRbpS2bXrO6s5SAd/jhC8GzSR0EGl/cY9w0olpP5Rj4QLDyB4UnZwbG5/yVl+B575oDovVoOsJ/+jD+/rYfsp81lVD+lxfieS5bw/OvViF4mT8uXUMQe++MyJfnMV5nmqYVtwtRImKU+1neWYq/8U5Qlol0OiLN5jf8Uk94nHeWzh/f0ONr6iPHDYZcpqmBacGETzJlu8Fjm/g+0UED3iuaCB2PxDWVcObiK5EZ71SsiicqYfNitE/9mSI3AU07UVRvnFhvtUB5P3QkTrRE9nWtumZmYB3pKQLZKwLBmVEHbKOMe8trCuV5OyIWRQbKGaLz1M85QeQRNdRxG1QQBZdjbIID36r7/NQi66qmc+qhyLecxHfOKqT/xT1A2a5dgrYP21zM9YyX4mRA4CZH+HkeDeN7ShzcP1OJ6xVzdmMXyFdeDZnq8NwY3Qwpqs0y7u3CTYxBPVShUcHGFHpwxJzM+hBO96zVDVuGMGXWGuE5GyE20NYIaT6mlrxMSc2JOfAUHeV76xZNYyd1RDwxFezY1b6BqelGZSJyNudcEhUbe0jTbSk6QyeKnKr6GM9F9JRcKJbTs2LrXB33V46s592oYGKLYcHSVxtlfI6SDCyGiF3VTlLUrDbG/VBbiP8nqsjK1JYixEx9EXVbrYBUnomtp1DfbTG2xr+pAxtAcVOuhzzXiY6an+Adn21YNwDOO1YK3jsDRPziDcz7Mw0EDzxSx2zU3+SgJtWjkfbfvgp/P14lWWuEIpirls3hfPUJBCuf3Sfy4DTudbaPoGCrLHL9Lfb9l5w1LtHdsxhbtq3qFh8rFfC0uEVf+/FsJgWdd5bOH9/w42k5TFMDbILF1KpyvBR8gNUqNkqqPfPgRsjU1VM9ugGUeK9afiwJnQfVsMsxIqzmyGBpojirFdzjjPKaipqicJXwvVnGhs4Nj8RednanLtNqFeRT9gnLp//6RSPaLtWRsjutsPmEEmlZjk4xP6YaHZGdpqhMDxFxCgtGci1pqudcA9+7/haQQQ+0cZ/FxH4Xu9ica5E5Knu7GMv7ZlBN9vAk3t/HLsC9liOgYS11TlMH3/eVDEwRy3zbFfZy40ZGZ4iIiDu2hqtBYugEtXTYxmWha/pLmeA68z04EV3lVZE7VY5MA2ngY1zZ026tqkKfilAdnzSxxeoYzxcqmsO+h14m4iQm3EiNomJi6AgdDD53nqPm67W81M7BaspiIpJGaJUigs0x8jCHWiOMQSnOOcwJrkOUgOkt8kwSF/NmWMDvHDHxVvbCq2tF6kYFyEwmxkGjo8h3yHZAvNeh8rp8fZ7Qs9QYeweOPTjdF2xiLW2XTL3cS82BIz9qqLwuNh8upHBu8r3VWB0pigZRluORCW1AXMY9lhJL+RJtJoXg2XT81tVw9I+uI9ijmvm+DhyhVggnaLmGd3N8Eu/uP/w1vv+y0yiuEQHSFcQI+kJvdwHEN+h4NjtFT3Scd5bOH38rx47D9PHfEXnNP9n9y0Nb0D4i16YaKYGziMiRPdq6RRi4PV1s2jzmtUrNzUyo8ake2yXo3Mz1RRZdM+w8RsppcTJsatUIG2bqikSOIQUrNSOGTg9A8Gbj1HaOHMuNcay8EBKQRYzHEbvo8zYqiOzpaem9h35dXd2Ep4dwwiaG9hxTA6vmokNRjjGGvqaKRsrhCD0Y2HJsVX+pK7KtaNuFWyL/7E6RTx6CE0hdn8mhtZOY17QLkTb2iyvFaMq5r2OKxw9O4T7nFKlhdRnHp6woSyUy5XA/+//aO/foqKq773/P3CeTyeSekISEmxokgAIWwVpa9QEtXlp7URal1hbF9Yiiti6gT22jVfFCq3201GK7+tZ6wXe9Wt+31aVglQpPwAKBykUUFAiE3AhJJpNJ5rrfP357z56ZTAYSICHy+6yVleTMPtd9ztnf+e3fRRe/VdvPDNLg3CRz5qiIM+UPZUA74aopObW+ikZTA39mUIuefL+2yGUGtdhqd1CfOkM0DdYmI/RESPtq+K0UwalyEQEyEajQ6QtMgq6TIei6K0fvTrsuvKxCrwHtCK9y1SjLjopoU1YX9bdJ3qvFPhJSnTagrFuX1lHTKiYhE27K6dxOO90LjjANrCq/WBTaL84e0QVmVeJHl4PWa3Nooe8O6mABdVwqG7kS/zYpSo9l6D5R+bgiJsAkrYOHs8jvRpUrUs9G/ECuitBGTLS9bosWwrk9wK076O89BWS1aczU5WM67BQB+nmunqobTqhM3MpCltNDlrnsAE3h5/nJmvtxPgWw+GzA45dRfz37FllX49mb37/35kkyHEVRX7BYYgYNgWoYV1QD391FdeQAitYo6NIlMkIyYi4svwUrE7U1QgNK1CChpKqNByw0EKtIq9xu7WiYqnxKKloz6EWf203TKsl0yRdsgV9PB6mXvtdBEWGqwKU1Qk7BH+cDmQGahsoM6jDrTukwao3QeWcH6HMleuwR+pbbZSOLVTROwKkwa1XYNisgE1120XVQiQL3FNA1yApoQRA2Af4ADUSq2n2Rjz5vcNNxNcjBsMxLA+y9c8hfQgkHc5SsT3aLnn5whugYmzJpsHKFdMmJS46SpazeTefT5CILU1Mm5cm68oCsuWVLrNsGJIkNU6KFoFA6pJZ00r465D0SH22jIoyUr4+6Jzqlv5jPRgIp309iWFnblHVSGPIbe0Bb3ira6TrsLKT1M4MU0WQW2oemza77Uok3c5QG9bAU2CrbtEv2h/LtUfl9DHldM0J0Pp/lAkdkfyvfJFXsWWWlN0VJ3DRm6vQQITNdq3q3nlrqsdAIZpV+UurLgEpoqQrJlnQm1jXz2eja5fvp+RQGOTsr3x2fDWgP6ygvR5juY1XKxhMgoTmqne6n1gxt4XEHaNvqC49FWu6UcHbI7R7IpnNUPleqwKwtonN5jT1O+/rmxzqS7KJGslS9P4qKw9a76Vg67YlT0cORkHzPJb/rMoM6HcWYNnrnhMzkhH4kC5i3K7H9KQilL5IgSgeLJWZQEagGXgWM/w3grg/ppbi7gL7ZNLvo5dfkopfqBS0Uug0k5kwCtF+Kyk3jDJM4sUSBkJVe5pMbaQrpbxec+MD6qsQN0Mu5zUkDf5f0Nyn1kkjw2YBsCxCI6OkoTw/5uxR1UTbq1gxtcWl16tpU7gDgl1FJ2T00gLU7SAy2ZPQOvY1H1YS6sIUGgguOySznFeT4W9JJ23cHtSApBA0UKk9Ut5X2kexwKkDrXtAqS5NYdURbgZ8EnnJw7rTLMGs/+UhUdNA32g4HiTHlAO+10zUb3U5Wg9YMmgb4j8/JJwSg6+az6Sk2a1RPTanK7MqPIkeGe0dMWhgon6YeMx3jxCYaMOOrve8pIDHSbZERUD5KOljkI+HbY9HO1SpiTEBGYYXpXNVUn/KxUs7OAH1W59G5hpQ/mTWS6Iid162ddgVoWaeh72VVxy4iLaldsg+URUrVnOuwkVVJOZHXeej4i316ak0l83SFAHP8+UT0dlQRW3Xe1qg+B5U/SpWSUeesyrCo65nbTfdBxAR8kkMW2BGdWgSFTfQlQvm/FQW1s7aKFlRtJzbpfYw/Rl86MqSAtEbpvsrrpj5Q12Okl575VIxu0yVCAF1gd2M5cONNfT9nAOUw6rbSs9App/pUuolDnkQr99lCfLBIMv+3kq7nADhXhFEqWCwxQwI9dNMBAMb0enp5KWdWr52cD+uzThxlol4IJZ207v48/VmziyI9sqSIOu4c2MEqi0eXVYbVmvXUm1quLDZ1HrKaXL2PQoTbHSQwrFESXMedOiT6aBZwVG5f5aM55NFTM5MbZTLLLKA5UwvEePYU0O9ksVfvJkE2qp1yUKmirs4wDa6f5eiXvPLnMARF0Ew9SgNeh51qkVUe074ihzy0LeWwezCbBt8xbWTab80gP6fJTfqFPbGJ9tPukIKrS1tj/roGuHQhiahxERKZqpAqQNda+bWo3Epq2mZPgbZwee2IFb4d0Unrr6kiQTSpCfj5P4G/n68TQion+wwpSlozpCOwnApWy6PQU3z78vSgPbqNhKgnoDOVq6hBlZBTZVlXP8Kg6Tqvnbat8nN1Wcka5A7oUh9qulBZjpR1Ut3HwtAWqRE+usYhM90rFR3Udnch5b+6uIHa+Wza/0lNjynLks+m82g5wnTN7SYdgamciFUUohJNFR005ZwtrUMHs/U06IzDJGgMQRaoYh9dt89zaP3sHsq5NrFJizKFKp9yprCHgYJweqHkCAPdD/f9ecQETL09tVja9Ad9/yvB2m3VfdptSazf6LWTEEuu2eYO6MCI04kqN5WCc1kQpYPFEjPkiA+1A6Ux0ksvz/8p1wObp+fEUScqKikVXju9eMu8iSkC0qFytigH4ICFBqfPculzJZTU9EZjJg0KDtlmayntr8BPg2K7gxI2FvtokG9POp/kit3f2QP8u4icpfNl2LfKaRQ2U1j+k2t1aPiPrqdBSEXUtDnp52A2JSo0BAmYHcWJ+1Hm+tFtNO2knIsLu2g9JUzU4Dq6Lc7pXUZCmQRZERxhmg5yhMm5VCUwVJaXqmY67+0jSAhmBYAZPyJxsHYsXYORHSS68rpp+yrEXjkOZ0a1gL64UWYJl9M9ZV7a/sZyEnXCIMvihS20jQ0V5Ndx3nEdNZjTrVMKuGTEWNhE/daSQVNujW5yZg9a6JhGemnb1ihNDYXMtJ/cbi3ozFG6d0ImHfFljlIo+IQWupZj2mQf55PIzgpo534BXZtQpSM4v5Wus4rEtEbIkuMOkpBTRVsPeeh+b3dQmQxDCpNjGdQP9ojOf3Qwm45dZeRWUX5q6lZNjypfugK/TnmR0wOgjfbZ5KL+yZapJzJCOimqOuZ9ufRMLf2fRCtPKgYqlALy2ILmxJIb6rc6j+QgkVT0WKhMifIxDEkr5n9dmbr9HVt1Bvb/nq5TZahSPPElQuKPRYXmq3cLQH2mcj6dIVgU9Q/O4M2cVRjq/fXlOho8u6w0yL89jpaPO659aPpTCsUQOsGkCtM/0cvSFaSXm5qKKZIWA2XFyQySFaZNhvCfTnN8Tjf59Owp0DXCWjJk3TU5nZfTQ9dpTwGJjPosEgZ/O5+sagZSv2xVNnN1PT4u0Hl+DOgQ81Y5oI89TkLgvdGyNESbzsfSJvui1EuffZ5DVr4WFwBBU5UV7XSMXVZg5hHgknqKztlSSjXQrjxAYdJH3TTQewLk9F8gfYpUdGROt7Q6gfajpoxUnp/CLrJQZQb1N/W9+XQeE5vIuvHPUfo62MMknMYe17l9OuV0YW43WWZc0tlbRcnZI3qaVRVhtUV0lmxlffH06CzcWQGy9D01g/Y7/yPavt9KfSZA7f027bSuousiJpkgM0TCp3aEHmQ9AZ3Z+vMcElPHMmibMw5LH7OIzgumfKdcQfq7tgTYOoLSVVQeo3squ0f7aJmjsoivm851VLuOllPJPLMC9AVATZ1OaAYqW+ka2iI0XfxpHll4pzQAi7ae2nOhogRV5J6KvOu2aFETL5SUQFHJZNX6fitw03dOvL//+kCvr6Z7n5vWu90Ne3U7tf+gCYC0EEYhU1mY9HHGlw5RBaYHkeE28g/1+M2WJeasQj/A5KtkGNC+OzndVO/qeAZ9G08llvqyHgmDRI0qWHoyqFQCypLSJqfxKtrp5dbg1oOvOUr7Dpt6W4lSMaJTl2oxCxpwph8hYTjtKL2Qt40gS9JRN/nhmIWuvzWhhdY5nEWDVp2HBqgdRcBXDpHIUNmY9+fS9eqSA96BbDqGj6WvWFT6uDiks3ZGkKZXlIN0u4POa1Q7DcpqAP08h170RV06bDtg0bmjeqT1oaSTrEq7CmnK5tNcajO5kcTHujFUE3BzGU3RCYOEYYuLBIFynt5RTIKo2AdA0HUWhiyCLJ3dW2UOJuWz4wnQNFxWgP6es1/XRwuZSfhuLKfzdUtn2LCJREmPhQTXjCPad6jATwKxToo6lQPpkyJdXNgQdD0mNpEwfWGyFkoA8NIk4A//j/q3x0L9bY1o0X3cqY9XgK7FUTfdK2Ve6i91L6rr7grR/oNmILtZWwbPb9XRjuo+NUfJr62inbb9mYwIm9CsczmpRJCHs6hPR3aQRc2Q042f5NH1dwfpWpR3AN/6uLfFqPIY3UeNmdrxvT+o9A2AFiPKKiOgxZLK3q4sOakSKMaXC0qOek3Fj2pllJ1Vi6XXLkzdtsGtj6XHTM9RwKzL56hUB+o40iXOPY0MN0F0NsNiiTmrSXzYnTAMGUU36yDw3d0kCraU6qKS6abZgmYqbeLp0fljBkJy8ricbp3u4GSia5whnfTQZ6XMue124B+jabB/bTwd684isgDtz6UBq8wry8VYSXgofyF3gCwqW0spEqnbStNOqlzC5EadcLDTTtaFrSXanyIrIAVRBv09po0ExufSP6dN+sh0WXWx1YhB+/LZdS4jT0APWvl+GvjbHLQdv5WE0Zg2LTIOZJMAm9JAwmhCi47ecgcSi6wWBMn35vMcEhnKr8cToOm4Qp/ODq0q05d56XpHDFklXkY/OWSkVbFPR7h1W4D9OZRTp9AHFPqBmQd0PiyVmfrjfH2+yiFZFWdVkXXCIOFx1zXAjhGp74GF19Pv5RvoOJxhEmOtGTSl1e6ga2cSJDiOZJHw8Vt1fi3l+6ZC8HO7dZh9g5v8gfzWuOls6ZxugrxvgnTfNLlIPOV269Qdx52UDXukN650DWi675CHjuFQNpXXAOiZEgawdKM+xzYnCTFVqiW5vEwybU4d5JDnp+3bIjqBbCRJbMRKa5hou8lTbvFJFdW6gM4XlY45++mejBdeajotmWIfXatI3HRdfGHZk83ufYqwMDqz8DQcM2yJTdmVdJJ4Gi8jwn4y+/TuSEVhFXbRN2RVEFgVi+1wyCgdmWQwuTyIosxLg5WK2gubddVylbJgVLvMKWPIvEeOxDwwqmadKo2RGaLBO2SmAcwaoUF1hI8Gh26rnio64iZx47XTfkd2UDtlbQubdOLPIul3ktNNYq7HDHzpKA2apVKE1HnI/6gxk0SQyl9zYYv2nzIJEnzFPhIbLTJ5YV43TRU5wmTd2penr2nQrCuTAzIyLqJrrTW46biEobOdq2mmzCBZrcIm6aBroWkpVdrm0zzZNs63yCQFgnIwHtVOy3cX0rU0BB0XoBN9ZktxEDTrWmmqLt3ldcDt1+ncUifizn+Rg7dy4u2wk0VHOdKHzNIiJHSR4KNunUvKa6f1Z9bRvfFZLvWtCjrolIEBGSGdCNVn03X7lAUkr5tEXsREAl0JKpXuwmvXYf/HMqQYjguaGHscWL6RLDJqHx+W0fbfG03X7NpPKZQ/FZtGUv8V+fR9CNCxfesmYGEtWU2VtUgJxVAK8ZRcDDZeaHXZKAghHTMP63poansBS+9ACkPotBCDIIrOndG6N0M9frNliRm26BeHG8BEEk/WCL1sL2yhl/+WkhMX7FXZjfvCa6dBJn47Kmxe0W2hAXl0GyV+PJCtI5ga3DSYqWmtfbna/0EgMQroYLbOF+QI9646rqLxVJ2vrpDMnu0l8RIyywSBARJbxx1kNcju1tXiy7xknbJHyFJ15796J6k7FXosNJivGwv8s4IEW7NLR4FlBmkwbnXS9FxjJk2/+a1kYSvtlKUx5OtJ1cMzCS04ATrXjKAWEWETWWhKvTSANUifN5Xp2RIFLj2ifYW8du2QnRGivvLZSKyUdtJ9pCLnVOh+0EwCQkVvqaSYtggJwbFtwMLrEqMyT8Rx6X/mDNGArKxwYRNNu6oyLiof0kWNZGk6kE2+XK4g3fcBC9AT0XmcVI6j7B4SLNYIbU/lA7NHaKow36+jGVMd2958stRtKaEvBiqNhDWqAwIAEmmrp9K99429tH1LVFt7mzKpTV9iqdlF17DNQfsNmYEF39S+PJ9Jv6ywIS1JcUJJiWslluItSx+W0jHM/kxbfDLjRGMqjmZqoRS/n2SUYD7NnMui6GyFxRLzhYFeMGYAmQAyYWTJcGZDUMj2N/bSYPrsl/TgDWjfnnR+DCeqORcy0zdhlTgzasgQbOnD02GnfdoiJ05hoKaelBN7spgLmgHDSlYhVd7EEdGfl3dQQsgRPl2Hq7yDfKL6gUB1v9oDoCztjjANvou29u3QWzuCotOcIfq/3UGD9nGnri+mrqEqgxEy6fp1gEwWChqQ8/0kygJm2kaBn9ZpzKTB2yTIClLso7YZocSBX9WkU7XHOqSwa3XGZYeHdH6Oagdrl7SEhWV03bydvavDp0MV0u2Q1j6Vmwmge1f1v4p0M0CWndJOnRy1zKvzSSnrm6p1ZhJAVFC7Yxl0nXO7SaRWHutbuChyu8nKopJHbi4ji5tKi6CmcBX/KqVSHBkh8vUyCeoPaxQ4KFNr9IUrSNPLjjDwy1m0LGBJTC7amCl9k+Knx/oQSxvKEy1fb1RSQEbYTNOvEQPYW5D6WBrdWmydQVgUDR9YLDFfWEQsL5EBoAzGU7tpUBkvnaNb1HRCBr2QT8bpUxFv/VHrqeK7itYM7XR6Ih+JZM47rnMEuQPA9Z8A0+u1v0dRF/mJ9IOBiJ/+cjL7MFBNfkpTGlI3+FhGsLU7dKV5QE6BmrUgEIYOT1fJH1WaB9X3jZnkvB0ya8FkQFu4AO27FTTTfZARovV9sj9VIeW8buoLFXqvrFkCQLtT+8ScDCoybd5OfS6q3IuaXlNldqKGToTYY6H7osyrk3lm95DIUwk6VQ02VSpGlXyJGiQiK4+Rn9cFx07+eCc2kZhRea52Fmlrnz2cGMn1zjgSpE4pBFVR4FbpqL5pJE3BJjOqHXjrPNpHfCb97+7WGfDr3UmRZHFRb/Fi6aOiRMsvQNe4wa3XixjanypsSvxC0p93wUnAomj4w2KJOWcQ986hP+YBxnnHtTleDSj9wRPQCSaTyffraZtUn1/YQn5W1oieFrBGqWq4yuHyyTMnPp9BED9nghMe93j6ZSS3a3PS1FOzS9dVa3OQqIoaukixKgzbaSdhowSEI6yFkUp0qQZZAZkFXIqObqu2WMT79qjknWqAViVElPXpZLhnMwkPV4gEuyruq/xw1H6V1UlZboJmugbZPXS+5R1ktVTn22XVZVhUcklA+/7YIrKUkImuYxQkJJUl60SMaaNtKEfyaIn2LwsmWT9fnkhWp2v2a0udz0piZ9uI1GJpdDudq9dOU8NKwPqt2vIWL5LirUjx/kV1nr79Bs9gtm0WRF9sWCwx5yRiX26vZUaBX2fbPRFqKi3ekmSJUgj89/9NA+G/ZZZcv5UGNmGQs/OX6/o+rp9KsTRMhdDppJeoypE/cRioJp8aNUAqq4PKd/P1fTJ8W/r/CGj/nS4Zlu4IU391yWktVdLCHaQfW4QG+aZMEhZZ0rqk8iqpqSElTtJRvZ6OQZXLAHSmZ0uUPguaafv2CC1XwidiIt+zqQ26SLNafixDOyJ3qu06Kc2G10Z+dFGDxLtKtpoVIOFT0kkW13w//S7wk6hSBM26yHBhF5XBsUXIz2rtGPLlUw7Qsc4zgL9MJmHnkSkywiay7OwpIOvh+CTLlnK2P+yh6xw14hJMSjEUNtGUZyp/olanLJHSTyvuAGBhdO7BYolhJKIlI/a3cfMu4NWq9Cvk+8kaNFUm20vOOvwfnw1b689wQaAaqAT9pKCXdepQNjn8HsugyvSdMtWBKuvhlEklvXbqX08PiRoBEgj2CE0LOsN6ekllA++ypb9nfvYBiZPtxSRQDmZrq6YBsvRETTp/kNq+2kfEACY20xRyTg9gkSVUXCHyyQuZtJN4a4bO2XQsQxa6lY7T7U4qtRMyaT8sJZwKpFgq9knh1EViR6Up6LHQ/ka309+ZQfINqh1BQig+Isxno2Sj3/tI+qHJ4AN7GFg7jpzTx8Y5lfdYaL8fllJQAuQ0Z3xEWvL0W7yVCTit+YtYEDHxnJJYWrFiBX76059iyZIlePrpp1O22bhxI5YuXYq9e/fC7/ejoqICixYtwr333htr8/zzz+OFF17Arl27AABTp07Fo48+ii996UsJ21q1ahWefPJJNDQ0YMKECXj66adx+eWXn8opMExKxJoqYM2JWmUAmCB/rjrjx8T0n15itUL+JGFs/gMJJBWN5rfG5TuSDuORuOk4JRzy/ZSPxxkih/qWDOCX78l0CxZdjFaAcgdlyqzcn+bpDOTmKIkkA5QOImSWAk2mRjicRUKkooPWv6D15Jz145NcHo8TTsdlyL+KOmt1As25eprRESbhn9NNoizPTz5yxT4ST0qcWKTYMUsH+01lvR2mG9yUi2l0mxZsUZDVVfncZQXougUstD/lV2SLpC4PcpphUcScDAMWS1u2bMHq1asxaVL6fBUulwuLFy/GpEmT4HK5sHHjRixatAgulwu33347AGD9+vWYN28eZs6cCYfDgSeeeAKzZ8/G7t27UVpKdcNeffVV3HPPPVi1ahUuu+wy/P73v8c111yDPXv2oLy8fKCnwTAMA3HpwrSfG6gG/nYB8H8upCmqwi5dW668Q6eVCJkpZ1SuzFbd5tBTVsekIMjuAdqyZWJNkw4UcIbJ0qV8sMyyxMv23+sD2VpCkXAnQ063zprtt0qrkhRILVIIKjGlijw3u3Qep/25JFSUxS27h8RSYRcJw4IuHS1W0gl8pY5E00fFiUWf9xTQNgJmnQ1+Z0jnJ8oK0P6joClNlQn+NMOiiDkVBpSU0ufzYcqUKVi1ahUefvhhXHTRRX1allJx4403wuVy4S9/+UvKzyORCHJycvDss8/i+9//PgBg+vTpmDJlCn73u9/F2o0fPx7f+MY3sGLFipPa71AntWIYZnjSazoPoKiuT/JIMDS7KC9T7Qga/I87damLiKEjw1SJkcMyhN4RJgGRESJn7S7pBH1BK/C/3qA2v59G+YuUJcYVIsFmlWVMnDK9glPWDXTKyEBPDwkcd1AXhlY5qVQkoYr6a3HpJJPH4qbwOqQDfbtDZkCX/lA2WSOvsIuiBF1BEn9Rg7Z50AMcTHIwU8V9AWo//hj58GXI7OjdFvq8ZuQZKQfCYml4M9Tj94Dk+5133om5c+fiqquuwsMPP9yvdbdv346ampq06/n9foRCIeTmkhNuMBjEtm3bsGzZsoR2s2fPRk1NTZ/bCQQCCAS0o6LX6+3XsTIMwwC9p/OM7b+n6LDcbhIsz08F3jyPwvLVdJHKF2WRouaCYyRmdhdSaoifbqDIsMZMShERnxSy004pAjwB4LI62s/nObqgskp5oaLHVPRlfF4gc1SLJ2cYsIWBDPm/smQpYaXSAtgjVCOwJExWIhXx57PR/o47KdFpu7ROtbgSrgs8PbQ9c5SEVHz2+fjAiS4bTcUddevw/XaHjkI8lb5iUcScAfotltasWYPa2lps2bKlX+uVlZWhpaUF4XAY1dXVWLiwb7P3smXLUFpaiquuIj+QY8eOIRKJoKioKKFdUVERGhv7Tqq2YsUKPPjgg/06ToZhmBMhLl5EfxQBxnWfkpixRClruUpVkN0NlMlIM2uURMSITuCpt3UwwMwUIfSALP0iv+hVNVO6CeXoHe/orMLrA9KXqttKFhpVmqTNSRYhZSFShWm7ZLb0hky9TiCpfIjKG2USOgmlyoSusssH4vYtDNpPx0lEkwK0j/h8Sv25/iyImEGmX2Lp8OHDWLJkCdauXQuH4yQfCMmGDRvg8/mwefNmLFu2DOPGjcO8efN6tXviiSfwyiuvYP369b32YRhGwv9CiF7L4lm+fDnuu+++2P9erxcjR47s13EzDMOkQ/zt/F7LDANkGdpVRPXWFnxEZW62F1NCx7HHyf+ozqNLhqiM2+qVluzMbMQpBJWbCaDfsSi6uMg5JaQSwu5Nuu5gJE54CUOXcLEZQDScuB2VkuAMZ7ROhkURc7bQL7G0bds2NDc3Y+rUqbFlkUgEH3zwAZ599lkEAgGYzalNqKNHjwYATJw4EU1NTaiuru4lllauXIlHH30U7777boLjeH5+Psxmcy8rUnNzcy9rUzx2ux12u73PzxmGYc4EiYN8IQyDoyXTwaKIOdvp19eEK6+8Ejt37sSOHTtiP9OmTcP8+fOxY8eOPoVSMkKIBF8iAHjyySfxy1/+Em+//TamTZuW8JnNZsPUqVOxbt26hOXr1q3DzJkz+3MKDMMwg44QvX/ORVJdh3P1WjDDi35ZltxuN6qqEpOuuVwu5OXlxZYvX74c9fX1eOGFFwAAv/3tb1FeXo7KSsoat3HjRqxcuRJ33XVXbBtPPPEEHnjgAbz88ssYNWpUzIKUmZmJzMxMAMB9992HBQsWYNq0aZgxYwZWr16Nuro63HHHHQM8dYZhmKEjWSSk8SgYVrD4Yb6InPZkFg0NDair0+UcotEoli9fjgMHDsBisWDs2LF47LHHsGjRolibVatWIRgM4tvf/nbCtn7xi1+guroaAHDTTTehtbUVDz30EBoaGlBVVYW33noLFRUpMswxDMMMM4ajeGJhxJwrDCjP0nBlqPM0MAzDDJShEk/nzgjBnM0M9fjNteEYhmGGASxaGGboGNw4UIZhGIZhmGEGiyWGYRiGYZg0sFhiGIZhGIZJA4slhmEYhmGYNLBYYhiGYRiGSQOLJYZhGIZhmDSwWGIYhmEYhkkDiyWGYRiGYZg0sFhiGIZhGIZJA4slhmEYhmGYNLBYYhiGYRiGSQOLJYZhGIZhmDSwWGIYhmEYhkkDiyWGYRiGYZg0sFhiGIZhGIZJA4slhmEYhmGYNLBYYhiGYRiGSQOLJYZhGIZhmDSwWGIYhmEYhkkDiyWGYRiGYZg0sFhiGIZhGIZJA4slhmEYhmGYNLBYYhiGYRiGSQOLJYZhGIZhmDSwWGIYhmEYhkkDiyWGYRiGYZg0sFhiGIZhGIZJA4slhmEYhmGYNLBYYhiGYRiGSQOLJYZhGIZhmDSwWGIYhmEYhkkDiyWGYRiGYZg0nJJYWrFiBQzDwD333NNnm40bN+Kyyy5DXl4enE4nKisr8dRTTyW02b17N771rW9h1KhRMAwDTz/9dK/thMNh/OxnP8Po0aPhdDoxZswYPPTQQ4hGo6dyCgzDMAzDMGmxDHTFLVu2YPXq1Zg0aVLadi6XC4sXL8akSZPgcrmwceNGLFq0CC6XC7fffjsAwO/3Y8yYMfjOd76De++9N+V2Hn/8cTz33HP485//jAkTJmDr1q249dZb4fF4sGTJkoGeBsMwDMMwTFoGJJZ8Ph/mz5+P559/Hg8//HDathdffDEuvvji2P+jRo3C66+/jg0bNsTE0iWXXIJLLrkEALBs2bKU29m0aRNuuOEGzJ07N7adV155BVu3bh3IKTAMwzAMw5wUA5qGu/POOzF37lxcddVV/V53+/btqKmpwaxZs/q13pe//GX84x//wKeffgoA+Pe//42NGzfi61//ep/rBAIBeL3ehB+GYRiGYZj+0G/L0po1a1BbW4stW7b0a72ysjK0tLQgHA6juroaCxcu7Nf6S5cuRUdHByorK2E2mxGJRPDII49g3rx5fa6zYsUKPPjgg/3aD8MwDMMwTDz9EkuHDx/GkiVLsHbtWjgcjn7taMOGDfD5fNi8eTOWLVuGcePGpRU6ybz66qt48cUX8fLLL2PChAnYsWMH7rnnHpSUlOCWW25Juc7y5ctx3333xf73er0YOXJkv46bYRiGYZhzm36JpW3btqG5uRlTp06NLYtEIvjggw/w7LPPIhAIwGw2p1x39OjRAICJEyeiqakJ1dXV/RJL999/P5YtW4abb745tp1Dhw5hxYoVfYolu90Ou91+0vtgGIZhGIZJpl9i6corr8TOnTsTlt16662orKzE0qVL+xRKyQghEAgE+rNr+P1+mEyJLlZms5lTBzAMwzAMc0bpl1hyu92oqqpKWOZyuZCXlxdbvnz5ctTX1+OFF14AAPz2t79FeXk5KisrAVDepZUrV+Kuu+6KbSMYDGLPnj2xv+vr67Fjxw5kZmZi3LhxAIDrrrsOjzzyCMrLyzFhwgRs374dv/71r/HDH/5wgKfOMAzDMAxzYgacZ6kvGhoaUFdXF/s/Go1i+fLlOHDgACwWC8aOHYvHHnsMixYtirU5evRoQnqBlStXYuXKlZg1axbWr18PAHjmmWfwwAMP4D//8z/R3NyMkpISLFq0CD//+c9P9ykwDMMwDMPEMIQQYqgPYrDwer3weDzo6OhAVlbWUB8OwzAMwzAnwVCP31wbjmEYhmEYJg0slhiGYRiGYdLAYolhGIZhGCYNLJYYhmEYhmHScNqj4c5mlC8714hjGIZhmOGDGreHKibtnBJLnZ2dAMAlTxiGYRhmGNLZ2QmPxzPo+z2nUgdEo1EcPXoUbrcbhmEM9eGcVlTdu8OHD3NahGEC99nwg/ts+MF9NvxI1WdCCHR2dqKkpKRXNY/B4JyyLJlMJpSVlQ31YZxRsrKy+IUwzOA+G35wnw0/uM+GH8l9NhQWJQU7eDMMwzAMw6SBxRLDMAzDMEwaWCx9QbDb7fjFL34Bu90+1IfCnCTcZ8MP7rPhB/fZ8ONs7LNzysGbYRiGYRimv7BliWEYhmEYJg0slhiGYRiGYdLAYolhGIZhGCYNLJYYhmEYhmHSwGKJYRiGYRgmDSyWBolRo0bBMIxeP3feeWevtosWLYJhGHj66acTlgcCAdx1113Iz8+Hy+XC9ddfjyNHjiS0aWtrw4IFC+DxeODxeLBgwQK0t7cntKmrq8N1110Hl8uF/Px83H333QgGgwltdu7ciVmzZsHpdKK0tBQPPfTQkBUwHCpOR5999atf7bX+zTffnNCG++z0caI++8EPftDrs0svvTRhG/ycDS6no8/4ORtcTubd+PHHH+P666+Hx+OB2+3GpZdeirq6utjnw+45E8yg0NzcLBoaGmI/69atEwDE+++/n9Dur3/9q5g8ebIoKSkRTz31VMJnd9xxhygtLRXr1q0TtbW14mtf+5qYPHmyCIfDsTZXX321qKqqEjU1NaKmpkZUVVWJa6+9NvZ5OBwWVVVV4mtf+5qora0V69atEyUlJWLx4sWxNh0dHaKoqEjcfPPNYufOneK1114TbrdbrFy58oxcm7OV09Fns2bNErfddlvCdtrb2xPacJ+dPk7UZ7fccou4+uqrE9q0trYmbIOfs8HldPQZP2eDy4n6bP/+/SI3N1fcf//9ora2Vnz22Wfi73//u2hqaoptY7g9ZyyWhoglS5aIsWPHimg0Glt25MgRUVpaKnbt2iUqKioSBt729nZhtVrFmjVrYsvq6+uFyWQSb7/9thBCiD179ggAYvPmzbE2mzZtEgDE3r17hRBCvPXWW8JkMon6+vpYm1deeUXY7XbR0dEhhBBi1apVwuPxiJ6enlibFStWiJKSkoTjPdfob58JQS/xJUuW9LlN7rMzS3Kf3XLLLeKGG27osz0/Z0NPf/tMCH7OhprkPrvpppvE9773vT7bD8fnjKfhhoBgMIgXX3wRP/zhD2EYBgAgGo1iwYIFuP/++zFhwoRe62zbtg2hUAizZ8+OLSspKUFVVRVqamoAAJs2bYLH48H06dNjbS699FJ4PJ6ENlVVVSgpKYm1mTNnDgKBALZt2xZrM2vWrITsqXPmzMHRo0dx8ODB03chhhED6TPFSy+9hPz8fEyYMAE/+clP0NnZGfuM++zMkarPAGD9+vUoLCzE+eefj9tuuw3Nzc2xz/g5G1oG0mcKfs6GhuQ+i0ajePPNN3H++edjzpw5KCwsxPTp0/HGG2/E1hmOzxmLpSHgjTfeQHt7O37wgx/Elj3++OOwWCy4++67U67T2NgIm82GnJychOVFRUVobGyMtSksLOy1bmFhYUKboqKihM9zcnJgs9nStlH/qzbnGgPpMwCYP38+XnnlFaxfvx4PPPAAXnvtNdx4442xz7nPzhyp+uyaa67BSy+9hPfeew+/+tWvsGXLFlxxxRUIBAIA+DkbagbSZwA/Z0NJcp81NzfD5/Phsccew9VXX421a9fim9/8Jm688Ub885//BDA8nzPLSbdkTht//OMfcc0118TU8LZt2/Cb3/wGtbW1Cd+mTgYhRMI6qdY/HW2EdIbr7/F9URhon912222xv6uqqnDeeedh2rRpqK2txZQpUwBwn50pkvsMAG666abY31VVVZg2bRoqKirw5ptvJgyuyfBzNjgMtM/4ORs6kvssGo0CAG644Qbce++9AICLLroINTU1eO655zBr1qw+t3U2P2dsWRpkDh06hHfffRcLFy6MLduwYQOam5tRXl4Oi8UCi8WCQ4cO4cc//jFGjRoFACguLkYwGERbW1vC9pqbm2Mqubi4GE1NTb322dLSktAmWU23tbUhFAqlbaPM3skK/VxgoH2WiilTpsBqtWLfvn0AuM/OFKn6LBUjRoxARUVFQn/wczY0DLTPUsHP2eCQqs/y8/NhsVhw4YUXJrQdP358LBpuOD5nLJYGmT/96U8oLCzE3LlzY8sWLFiAjz76CDt27Ij9lJSU4P7778c777wDAJg6dSqsVivWrVsXW6+hoQG7du3CzJkzAQAzZsxAR0cH/vWvf8XafPjhh+jo6Ehos2vXLjQ0NMTarF27Fna7HVOnTo21+eCDDxLCL9euXYuSkpK0QuCLykD7LBW7d+9GKBTCiBEjAHCfnSlS9VkqWltbcfjw4Vh/8HM2dAy0z1LBz9ngkKrPbDYbLrnkEnzyyScJbT/99FNUVFQAGKbP2Um7gjOnTCQSEeXl5WLp0qUnbJsqsuqOO+4QZWVl4t133xW1tbXiiiuuSBlqOWnSJLFp0yaxadMmMXHixJShlldeeaWora0V7777rigrK0sItWxvbxdFRUVi3rx5YufOneL1118XWVlZ51x4rBCn1mf79+8XDz74oNiyZYs4cOCAePPNN0VlZaW4+OKLuc/OIH31WWdnp/jxj38sampqxIEDB8T7778vZsyYIUpLS4XX64214+ds8DmVPuPnbGhI9258/fXXhdVqFatXrxb79u0TzzzzjDCbzWLDhg2xNsPtOWOxNIi88847AoD45JNPTtg2lVjq7u4WixcvFrm5ucLpdIprr71W1NXVJbRpbW0V8+fPF263W7jdbjF//nzR1taW0ObQoUNi7ty5wul0itzcXLF48eKEsEohhPjoo4/E5ZdfLux2uyguLhbV1dXnZGjsqfRZXV2d+MpXviJyc3OFzWYTY8eOFXfffXevHDHcZ6eXvvrM7/eL2bNni4KCAmG1WkV5ebm45ZZbej1D/JwNPqfSZ/ycDQ0nejf+8Y9/FOPGjRMOh0NMnjxZvPHGGwmfD7fnzBDiHEs9yjAMwzAM0w/YZ4lhGIZhGCYNLJYYhmEYhmHSwGKJYRiGYRgmDSyWGIZhGIZh0sBiiWEYhmEYJg0slhiGYRiGYdLAYolhGIZhGCYNLJYYhmEYhmHSwGKJYRiGYRgmDSyWGIZhGIZh0sBiiWEYhmEYJg3/H1d4A7viXYRoAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "(50.000101089121436, 50.000101089121436)" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# import in the raster measurments class\n", + "from snowexsql.api import RasterMeasurements\n", + "from datetime import datetime \n", + "\n", + "# Pick a date\n", + "dt = datetime(2020, 2, 13)\n", + "\n", + "# Query db filtering to swe on a certain date surveyed by ASO\n", + "ds = RasterMeasurements.from_filter(observers='ASO Inc.', date=dt, type='swe')\n", + "\n", + "# Plot it up!\n", + "show(ds[0], vmin=0.1, vmax=0.4, cmap='winter')\n", + "\n", + "# Note the resolution!\n", + "ds[0].res" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Let's get part of raster dataset centered on a point" + "\n", + "### Let's get part of raster dataset centered on a point\n", + "\n", + "More reasonably, we often want chucks of rasters given an point or area of interest. Below is an example of how to do this off of a point. " ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 47, "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", - "0 67.0 1N3 COGM1N3_20200211 64.0 None None None \n", - "\n", - " sample_c value flags ... date time_created \\\n", - "0 None < 1 mm None ... 2020-02-11 2024-08-13 17:45:41.685272+00:00 \n", - "\n", - " time_updated id doi date_accessed \\\n", - "0 None 2147814 https://doi.org/10.5067/DUD2VZEVBJ7S 2022-06-30 \n", - "\n", - " instrument type units observers \n", - "0 None grain_size None None \n", - "\n", - "[1 rows x 29 columns]\n", - "[datetime.date(2020, 2, 2), datetime.date(2020, 2, 13)]\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAGsCAYAAABn4VjoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e7BtV10mDD9jznXZ+1xykpOY5BySyoslWtKB7q+DpaFtCbcg1RgUytCtZUs33UW3IW0ktBhsfEO/mNBYr+iL1fm88BGFpkJ1K4ot0kBhSFEU1RA7JWAVokY6eUmMYnKue++11pzj+2OMZ4xnjDXXda99OfvMp2qfvc+6zDnmmGP+rs/vN4y11qJFixYtWrTYhyj2egAtWrRo0aLFJLRKqkWLFi1a7Fu0SqpFixYtWuxbtEqqRYsWLVrsW7RKqkWLFi1a7Fu0SqpFixYtWuxbtEqqRYsWLVrsW7RKqkWLFi1a7Fu0SqpFixYtWuxbtEqqRYsWLVrsW1yUSspai1e+8pUwxuB3f/d3p372vvvuw/Of/3xccskluOSSS3DjjTfiD//wD8P7w+EQb33rW/G85z0Phw8fxsmTJ/HP//k/xze+8Y1tn7sJzzzzDG677TacOHECa2tr+M7v/E587GMfW/g4LVq0aHEh4MApqZtuugn333//1M/80i/9Eowxcx3vmmuuwbve9S588YtfxBe/+EW85CUvwatf/Wp85StfAQCcP38ef/zHf4y3v/3t+OM//mP8zu/8Dv7sz/4Mt9xyy7bPnWMwGODlL385/uqv/gr/7b/9N3z1q1/Fr//6r+NZz3rWUsdr0aJFi30Pe8Dwohe9yL7//e+f+P4jjzxir7nmGvvEE09YAPYjH/nIwue47LLL7G/8xm9MfP9//s//aQHYr3/96wud+/HHH7e33nqrvfTSS+3x48ftLbfcYh999NHw/n333We/9Vu/1Q4Gg4XH3KJFixYXIg6cJzUN58+fxz/7Z/8Mv/Irv4Krr7564e9XVYUHHngA586dw4033jjxc6dOnYIxBpdeeunc5z5//jxe/OIX48iRI3jooYfw2c9+FkeOHMH3f//3YzAYAAA++tGP4sYbb8Rtt92Gq666Ctdffz3uueceVFW18LW0aNGixYWAzl4PYDfxUz/1U3jhC1+IV7/61Qt970tf+hJuvPFGbG5u4siRI/jIRz6C5z73uY2f3dzcxM/8zM/gR37kR3DJJZfMfe4HHngARVHgN37jN0I48P3vfz8uvfRSPPjgg7j55pvxl3/5l/j0pz+NH/3RH8XHPvYxfO1rX8Ntt92G0WiEn/u5n1vomlq0aNHiQsAFr6Tuuece3HPPPeH/Gxsb+PznP483velN4bU//MM/xNNPP41Pf/rT+F//638tfI7v+I7vwCOPPIJnnnkGv/3bv40f//Efx2c+85kxRTUcDvFP/+k/RV3X+M//+T+H1z/60Y/OPPfDDz+MP//zP8fRo0eT1zc3N/EXf/EXAIC6rnHllVfi137t11CWJW644QZ84xvfwC/8wi+0SqpFixYHEhe8kvo3/+bf4NZbbw3//9Ef/VG89rWvxWte85rw2rOe9Szcdddd+Iu/+IskBAcAr33ta/GP//E/xoMPPjjxHL1eD9/2bd8GAHjBC16AL3zhC/jlX/5l/Oqv/mr4zHA4xK233opHH30Un/70pxMv6tOf/vTMc9d1jRtuuAH/5b/8l7Hzf8u3fAsA4MSJE+h2uyjLMrz3nd/5nXjyyScxGAzQ6/UmT1SLFi1aXIC44JXU8ePHcfz48fD/9fV1XHnllUGpED/zMz+Df/Wv/lXy2vOe9zy85z3vwQ/8wA8sdE5rLba2tsL/qaC+9rWv4Y/+6I9w+eWXL3zuf/gP/yE+/OEP48orr0wUnOIf/aN/hA996EOo6xpF4dKJf/Znf4YTJ060CqpFixYHE3vN3Fg1ZrH7FGhg2L3kJS+x733ve8P/77rrLvvQQw/ZRx991P7Jn/yJfdvb3maLorCf+MQnrLXWDodDe8stt9hrrrnGPvLII/aJJ54IP1tbW3Of+9y5c/Y5z3mOvemmm+xDDz1k//Iv/9I++OCD9t/9u39nH3vsMWuttf/7f/9ve+TIEfumN73JfvWrX7X//b//d3vllVfad77znfNNTosWLVpcYLjgPalV4y/+4i/wt3/7t+H/f/3Xf40f+7EfwxNPPIFjx47h+c9/Pj7+8Y/j5S9/OQDg8ccfx0c/+lEAwD/4B/8gOdYf/dEf4aabbprrvIcOHcJDDz2Et771rXjNa16DM2fO4FnPehZe+tKXBs/q2muvxSc+8Qn81E/9FJ7//OfjWc96Fn7yJ38Sb33rW7d/4S1atGixD2GstXavB9GiRYsWLVo04aKqk2rRokWLFhcWWiXVokWLFi32LS7InFRd1/jGN76Bo0ePLt0Hr0WLFi1a7B2stThz5gxOnjwZ2MpNuCCV1De+8Q1ce+21ez2MFi1atGixTTz22GO45pprJr5/QSopdmV47LHHJtYUtWjRokWL/YvTp0/j2muvHeuyk+OCVFIM8XGPpxYtWrRocWFiVsrmglRSLVrsN5iv/xJQWKBTu9/rQ2BtBPD5MxYorfu9HWx0gL89DFQG2OwAw9Kd54rz8ZxNsAY41wVqA2x0Ya96y/bG0aLFLqFVUi1arAJl7ZRQ6ZUUlZNF89/Lol8BRwZOSXVqYFACvQroVu78tXHnJwale21QAqPCKauy3uYgWrTYPWyLgn7vvffCGIM77rgjvGatxd13342TJ09ifX0dN910U9jFltja2sLtt9+OK664AocPH8Ytt9yCxx9/fDtDadFib0EFVU7xmKyJP4MSON0Hnllzv8/0gbM99940FNYpKf05NIweXFUAWx3ncf3dOvDUYeBvD7ljb3Wcoira+v0WFw6W9qS+8IUv4Nd+7dfw/Oc/P3n93e9+N37xF38R999/P779278d73znO/Hyl78cX/3qV0OC7I477sDv//7v44EHHsDll1+OO++8E6961avw8MMPJx2+W7TYLRjc7RUI3O/a/10ZF1IDogKhjOfnqwIo4ZRTp/ahvdp5TaqseDzAKYtR4c7DzxXWKa9uNV2RlDVgvCdVG3fegorRuHPU8pNcqPPyzJl73XF6/lybHfdTFcD5LrDlr5leYUc+649jr/z3S8x0ixaLYSkldfbsWfzoj/4ofv3Xfx3vfOc7w+vWWvzSL/0SfvZnfzZslfGbv/mbuOqqq/ChD30Ib3zjG3Hq1Cm8733vwwc+8AG87GUvAwB88IMfxLXXXotPfepTeMUrXrGCy2rRYkFUVBr+76pwSkUFPZWJgVcUXjEUI/e7Y52CaTp2bYCRAQYdp0RGhVNIued01nez79Quv6S/icIrpUPDqDj4fm2dUqUSBLzS9eO3Xrn1R0C3jkp0fRQ/T0VkDTD04xsW7sf499uQYYtdwlLhvttuuw3/5J/8k6BkiEcffRRPPvkkbr755vBav9/Hi170Inzuc58D4Db3Gw6HyWdOnjyJ66+/Pnwmx9bWFk6fPp38tGixUtTGCeGBJyNslc6zYC6nKqKHwtxSWXuBXwFrVbOCApwioMe12XGeykbXHXsg59rouPDf3627n1Nr7v/nu83HLaxTUp1MYYy8QmEOCojeIQB0qujx6Rg7dQxVUndWhZuPoYxxy4+7RYtdwMKe1AMPPIA//uM/xhe+8IWx95588kkAwFVXXZW8ftVVV+HrX/96+Eyv18Nll1029hl+P8e9996Ld7zjHYsOtUULAD6UNw1VIfkiRO9JvRwLZ9LlDsQ8XkUtIThVdDb7XZvo0QHus0VDyG4arIy9sOmAw2tTxhlCmYh/Tzi9+fP/JypaPYfCK3L73Nvmv4YWLQQLeVKPPfYYfvInfxIf/OAHsba2NvFzOe/dWjuTCz/tM3fddRdOnToVfh577LFFht2ixXRoHmpUxHBcZdKfYSEsOaRhtkkgs27QccQFeiU8Bs/Lc292XMiPeaGhKK15oOMtrAsVro2cx0Wvi2G/se8W0WukwqISNjZV5ATngMfla/2Ro8QfHQDHN+Yff4sWGRbypB5++GE89dRTuOGGG8JrVVXhoYcewq/8yq/gq1/9KgDnLZ04cSJ85qmnngre1dVXX43BYICnn3468aaeeuopvPCFL2w8b7/fR7/fX2SoLQ44zOl7U0HbrVyOZVLIbR7QA6HnkhMljHwO2WuTjldloUIqkPx7PDdzP0Xpv2fje/PUWAXPzJ+jJNEBzqma5EmpB6Yf4TkLuHHz+DwmlZg1Lh8GrxzJduxWwPoI5uw96f3Jrt+a/3P2tbW4KLGQJ/XSl74UX/rSl/DII4+Enxe84AX40R/9UTzyyCP41m/9Vlx99dX45Cc/Gb4zGAzwmc98JiigG264Ad1uN/nME088gS9/+csTlVSLFmMIobIVHIsC04hAJ1vOqKdgY1Eu2W7TFMdAPCF6SwapgGZEjp5Lp3bCnJ5PTnCYhNo4T43EDA3dGU/oWBu54/Wq8RAlxzosooIr9EdqwFTR8XOlz4+tDd05eJ6ufIe5rkBAkZ8WLSZgIU/q6NGjuP7665PXDh8+jMsvvzy8fscdd+Cee+7Bc57zHDznOc/BPffcg0OHDuFHfuRHAADHjh3DG97wBtx55524/PLLcfz4cbzlLW/B8573vDEiRosWExEYdyLgtlP/EwSojaYb6dc8LgU/Bf608w1KF7Kz3nNSD6WwqUeibMJODRgfojs0jIplFs4LEUOVInNp/Woytb02KQW9NlGJUaFq7kwVrSof1moZr7CMn6tOFRVdq5BaLIiVd5z46Z/+aWxsbOAnfuIn8PTTT+O7v/u78YlPfCJpIvie97wHnU4Ht956KzY2NvDSl74U999/f1sj1SLAnP/5lP6toTcVlnxtWyfTg2WvqWA1/h9VXJNQmah4lBih51JFpQoMdVoYPI/yZU4rJ3wQuQeUf09rq8K1Ir12eq56ePWOOGaG+0IrKPncBBj7jpkKzM4iwLQ4kLggt48/ffo0jh07hlOnTrUNZg8ozOl7Yy6H+ZggKMWLorejOallPCp6EyzcrTPlYUWYd2tHBmhi9W11XMhsqzNeEEuau5IkcvSqGDo7uhXJDr0JubbKh+jO9mILJBIt+t7jK+vYlUJhjfsex7vZiWSJQpRLaeM85ExDKiPtW6jhUiCSKhJvVe4nlbkqtwa0SupgYV453vbua7E/QeFLenOT8DJkAwAwkl6dJzyWg0KWLDb14CrjTmMR2wrVxnWZyHGqH4t06TlppwYK56F4Pt3ahcRK69hwLN7tjyLxIVcO1gADX8PE+qvKz4HmfMJcNYx1owOc6YkHhki2oMLh7+TcMh6trco/m3i/SAkgDP9RcQOegCHHatECrZJqsQ8Q6pjY026zExlqhHWfTGEjGaGJHr0oCq+gKCjZqYEhvuRnQuiszgQzxwbxRvhe4hEiMuI6tTSqtXFuwjxgnDkIOR+/x9BbrmQ4zvD9TLmVdWzrpN8PhzFpTooUdX42hGPteJi2Nu5arb93tbwOAEU9kc41sd7NsyJt7+3N77e4oNEqqRZ7D4Z7AGG6icIJykL+D4yHjegNTNquYhYKC5haPAUrpAcL9OBp1XWzpa+EgqAs/Ni0FRKp6AwX9hxNG6XvXpGzBrXoV3NHDC0GD8WPj6SOtZE7rh6Lvfk0JDkqIpuwsO47uTfKMKLeF85/3qVCx802U/paZQBGLysT56RbA/DzUJr5w7b0VlscSLRKqsXeoxLpFsgG/v/a1gfIiBNeefAYy4aIeOzCn5gCn+cKuZTahfim1WJRcAcPzEaloiSFSrqRdyW018v69OVdKbTYlrRxPTfbNDEPpWAIdaMTFZwqCIb5+l65MV+koc+m7hdNrD0dd9P/QwNfrywrA1hp8TT08zzJa21x0aBVUi12DeaPfzXWznQr4NJNL0ibEib8UhbuMgAgVnsoNl2hIFMaurXR4+EYOhPOZbz3Uoki8sMN4UiGw4packCilFjAC4xPC72zEWI4Lb9uJTIo6MFoPz8NDRbZTyCqMPRZ+HHKNen3k7Hy/+INhQa38l0qcWOd8ldlVxmgLt3p5iTDaDiwJVkcHLRKqsXuYVTEvAsblw4y70f75hlEZpl+TPMhqqwm0ayJkBPJcj0kOKig5fvdCiiK+Nosy/6SrXjcQRnDWbqPU12nikTJEfpZ5nvo4QBpeK+wPkSGeE0M25X0CP2xN0vnsQSChE2bzDLMyHAmQQXKMY4yo0GJEzrPNCbkl/PKZM6tcb0Jzcj9n0XTQKzb4jk4Hyxs5rxo3qz1uA4kWiXVYkdgHv3lyBrbKl3X76T1jo3Je4WGtgAk9UoMNYVWPyKUlDI9CQy3UbCG82GqMxfa/iwiBI11YTOGy2oDoAY6zEfZSE4IoU34z1vpC1g4r4vXFnroIX1NPSitrQo9CX3PQM4vQ5L0CkmWmKToeQ7UcZxA85yrJ5rAXw9DtHTMytopq1KU5qhwa4ZjUyVF5U2FFTqCxDyfwd2e+WjccU73Ya+7Y44b12K/oVVSLXYGFtKeRzwVtv1RBhsFp4KWeJITQuqB0IoG4mfKBgGrY+JPfq5pSorHXwYU/mXhz1E5RdUUkgNSqnpXOjUAPmQntWNJqyHxBNljTwkoFlHZwv9WwkO3avaKFNq9XcOETWg6Rol47gDrlEv4nh8rlXRuQIQxiJKk8VHWkdxC46gqxnN3LS4otEqqxc6gNtGS5UZ7BrE7dilWMcN5oTGqzcgMHk1eQ1J/ZGcoKfXkNMS3w6GiXu1IAQolI+i5S0/B1rojJRuQIQh4ZS/zwLkIW30IPd34z1u48KUqAv6e1CMwMPKycKkq0HlgrBuvNU4x5ZtJqlItvZJOFK3xrED/Pa2ho8FT+ZZS9MS491VT4XSLCwLtnWuxLRj7jthEdVQA53pOMNgyWvP0eOjphFAXlYNa0uI9QcN+SL0GzdmoJzSP0GzypBaF0uBnQRUIz2WsUyKBRm/TeUq+Y1Mvps7mK78Gvq/h1JB/MtEw0KLdaR6Unpe08o6MbVEY7z3l9xRImZ5KulCWoIY8wxiLmIfjWEle8SFX88j/NyrjwnoSTwV78s7Fr6HFrqFVUi22h9A2x7pcCoVNWQchkAjDde9JGUTrtzYIuYpQnAsk4b7ca+JPU8udSWAYSJPsywhZpZIDKYmgyRthbi5Rsj7sBiBpvjpJWQTGoIlzBESF1hGyhEU0EAg1GHqjmAuappx4bblCIMEDcAZK2LpeFChf09wbkHrJ+h2LqFA4VlXYvFZdMzl7UsG5LGugizhvzF8V1ndrb+ur9jtaJdVi+yjrlIBAj4lFtT32kLNOQFIwaONVIAomDYVZG4UTBR8FPYXQvJjU5mdRkLnH9kcMaZZipXOrihAqo9dEgW1jW6V5rmNkHPmBRAyVySQUdOp0PJUoIL7eqd1W9/MqZ95XVQLcHDHxZLJwII0H9XZ7Ixf65HHpTbJOSguG844bQDR8Sus3ofTe+qiIPRfVs+R6YciU3d2Ze6PB1GJfo1VSLeaC+dt3p0WnncxjoHIyNhUUFBaBiWXTME5oOWSddZ8IYK/1tLNEU3hroQuZ4TnMAwptCr5ADjGRPt6R1ymQk3FkY5oF3S1XQ57akihcn4k5pzzMWNaLXb96Unq9+fYjScEvYrGyhQvFGTjyCL1tLc6us3kkknwk0jBozXmT9aM1cxap8TQi+8+K1+qUVVO7pbbOav+gVVIt5kfYDsILA+28oKQG5jhoDa+NgMPDZkFdy9+gospfs9H6DQrCj4csr3ko6PzcPGCITr2cvJcglU/pX2BNVCFzYOCJEOJZhPlCqmAmYVBGbwOITLz1YfO88vgsnJ4WRhyWsYcew2fsvK7ekbZ02hIvkoc0iHVWvC6L2AAXGO9WUVj3PlszqfGTz7uVYyr5JdwDK55W7TuD+PDuwIck9fwMPS/iibfYE7RKqsX8sPA5Awph8XrU0tWda8t6vH8cYaxTMvQOeJK8EJXhQ1KoR/Ri/JtWzh3qi7aJgReuncrlNFQBUkBybIU/36jjvkeB3TMY2+xPvzePgGRokeQUbuPRqV23jknzCjPf8Tc6sdVS6PA+jKFaJR9wDGTLqdDnVvFJ/Zn/7oYXM3lHi8LG47F/4JrUQVF5562ZmLvkOXh+MkZ1HkoLrHvGJHcd1jq1FvserZJqMQZz9p70hVHhEv2USblc1DBL8HrqVCA1ITDG0Jz8BtIwop5Lv6O5LO3OsB0U1oem0Bxa1LqkHBxXMl8NXhhDm1PrkkQ463nVKxs7vxm/R9OOr2w4Db/pPdHj8dw6B6Xc9zBem/ZU7NSxHx+Rk2BKUVI0VuBDdTwPQ3VUWLzeaWuNS0IZilPQ2HF9qwPb/w/Tv9hi5WiVVItxHBrKw+yFQ+gwkFnK2kePHbiDoBGLuQmDMm4MOCaENVyWHUMFab77LT+3zJ5Sis4UJWtEqGr4qZL5yq8738KDihWIocrwt03rzPgbiB7YNC9AxzFJYY+8Z8TPsq+fAbAl4+a9UK9Jj8nQY2FjY1teBwB0y+jdHB4ARwbx/LVxeSp6a2xsq15UuKYinVNrXIsmKlOdzyYMpeMGPzsspzcLztF6XnuCVkm1GEdIThtnwVbeYgWiRR2sdYPEzO5WqaKZ5G0A401YASkQVaXVIHw0ga8KNS/2XdaryhUjQS8mWPKIghIYD1NC3s89P8h38lyVsgI11DVtbISSEJraOVFBjcr4WaWPDwugkNxakZ27Rswd6dYi7JCREzmIdTEcOnUMHXd9HoueVhNyBcFiZ86/dpXPkXfqYIuqkXGh3HkxbS232DG0SqoFgAnhDQ0FNYX4mkJVLJKcBgqMploja+HCO/5zpkHJ0LvS3BCVAHVmoIWLkqPXpa9NKo6FHCuZD4x3QSBKuXY9RwFRUDayGLUjOeeum1GsWRul45skLJlX0p2Bqbjp7bDGiXkoPb96sHn+iDVm/Hg+Jioz3SwRgNNoo+YcHJmGwyKOcRFoAfSs79Kzt9YZXoWNLZMWKEswW+90ObZBCXvlv19svC2WQqukWkwGa2GClwJJemN6KG8SNjuxG/ewGG8wS/qwKogmK7qwrkWOKg34sbItkCboAzPRpN222SlD0a1l40FR0prPoIDXczP0ZawLXYXQlD9ujajc2LZHNzEsrAu19iv3utYPqSfDcF9VROVxvpuGB6mMS/FS+FmSQvJbx7GHhq2iqNSbYyd2jodj0pxUOOYMBcJrJilkJ2ARt/vgfQQiAYSGFUslJoX1arl3+ZppsWNoldRFjInbcRN5KGv8AIuBioLKguG6seNSIdLLmVMgMEemSlV/a1hQvaKcGl0jKsr8+KpoxrxLpHVL4fsa/hNhH5hzJgrpqgLqOs6NKvHca2U4lnM6kmNZOK+NnhTHq8qawwmKXM6jXormzprmZdL45gW9nO0WWU+DXhMQ1wHzcIBX3CPHBpwEMdrMY++JHnvX7a5sL//pnbuGixStkmrRDFqZeS2MhROMtKhJMZ8HFAykAmuIp7EwtIh0YU1yG7jXRiLYakTvTq36EMopAFvHECAFLkM+en6GwrRrAhA/T2+NCkTronLSCPMhrEViXVLYF8qfs5Rxcw+runJdIzSsqLRs1EBdxh12VflTIVVIFU5y/ZkBwnuShyA1/Kf3SOfLGl+ovWSboZ0kJbAmivdtZCKlPqw1XzpQmbi+8vyYeta8pzQIWlLFjqFVUi2asdkBzvZivD8kwv1DrSGqArPZdBrm2uogFJuGolEArHlS74EtckJLJBG4nToNu9Tyeq9KcxWmRqjJYriM3gqVsXZsH7GNUxXzTKoEBlKA2quiF7U2ynIykPxbETdC5LFIVS9EQXErdyD1qvhZKhG2AmIeiv8Xaz94Unl+id5l8LqodEz8PvNTOvf+I4kiHJRRqLN2brtdPXYCgdxROOW/1RlnhzIEXVjHRlxrWNeVGBnsYUgSR4uVo1VSFwnM3/yC61CwPppeT0JoeExDV2pJDxmimhT/0QFkcaKmmihFU9scCtE8HKVIuj3IexrS0lNr5wINB2qYMB+XsuGUxVbImPJ6rqbao3zMWi9UGfd0VoUzDOoyPSZkbMn8IF6Phb/ebP4g88f7Qs9KQ2J5bRpBr0/zVPtRKU0CW0cpVOlyb6r83k9asnI/zTPvcs9Yf9S2VloRWiV1sYC1LltlrGmZVkTKpp38Xq7Y9H2GOrpTKMRAWnsEIBbKZgpMoR5AsO79+XqSDGe+aJpXp3VXQFQ4oQ+dKJ+Rp0drj8IQLiqc9zUoY+uhEqKobFR4lQEGnWhxG86DKDgSNco61hEp4WBUABuIJAoeiyGnJqq6RXydxAcqXhXQ9GRLOK/NwHtE9fi8E3w/hD1NDN0GY2YfK67EYEBqNDCcawp3Xw5JA9rCuvvC+6W7LmtItMVK0SqpiwUG8aHiAzWJeqsEByAKLyAKHnYBN5DO39Xs4kj1cIwKQaTejJ5Lx5h7R4sUYzJ8BaTek4Z8eP1B4Mv3g/IunLLf7MbPUOHmCo2hoWGRznlh3I+xLqQ0rY9cp3btmVCKApXj54XEvI7QlNZEenrpz22RKlW9jqRbyIS5LLyED7v9Ir03k2q09gMSAox4oPScue65eWLYwVieG9Z2kXihnjD8cVoC4ErQKqkDDPM3v5AxmhAVQh6uUuTeS9JtIhPeeeHqzEGJokg8KhuJD8o84+fmPf68YMiHgoehsbGQl/ym5a3HmDY2VbrBi8mPNeeFdawjfvCeUcmUcB4fhKXGVkHM2eUWPsdVzhg/EO/FNHp4kyLaj8qJUOIDn4nkN9I50WvJ68fYuFa7ZPg5VfZsG/pbHq2SOsjQZG5CvbauHQ0/k6OQkMaoiDU4Whel9TEkNnTm8GrWRrGOJ3geXtjmUAs9hJ8WmoHmY1LolLXz/oajlMzQqWOdE0NYFGKcw44FMIp1New1F86DSJagtwMbWYeDMnZ86Plt0pvmgOh6L3UopI+eCFpVhswR8twG0YPjuAiSV1SRVUWk4Q9lTugx75YConG0aubcZmecbKI5PQO4vB3GjTh675wT7hnG/cPCmtnHSvoCQ6ukDjIozDQMRAGmYaOmB4pCt4Jn5JUpKYDCTRuLzhPeIIMt7/SgBAT+P7Df7DgRYlUINHVRQCReNBWnBs/CJ8DUgs7DXUo+4VtU7EYKavME/TRQQFrE3nU6LlWKhXVsu6bx09Pifc775dki8zhMvP+LhFiXBbfwAOLaWtW52c09FEojjSyosdF0azo1UHkDkPMbCqDRKqgVo1VSBwxm851RuOTgs1MbJwQKCwzqZqLBoWGkTA+L+PDxoeUOu9weYZEdb7v1eNI6sM0QH3IqUq1pKhimw+LCgEq6I9/reto4k/+jIhJAEhKE/zwVNxV0V4R8HiLKcxV5bo2e7qLeCb+nYUMqxdATD+k60MNTaXZE+OfzFLwKO15ou9u5Jnr/vM7tnpvrjLR5zhM9dc3JNUENP97zJkMlOeXdwKiA7fzc9sZ+EaJVUgcNFFK1l2IqOAODDcBQCnWblFSnBi7biH+f66bCq1fFrtdrsiU8H95pCmveDuX0BjjmsN+RiaHHRTws3ZOJ3+kK2WOr4z5DBWRs9Ex4XZ3aPTX8Pj3DfH8iKp4CUeHprridOtbg9EbzK3ggnmdauyHtaMEQnwpWKsnQLki8PvVg+xImDPVZWbhwJ8F7D3jFXMS5XBb8fg+R7s/5UXILmyUraOBprk9JFdPu4yq2kLkI0SqpA4KQpC0Mws65TVALm54Ke8BNQn+U9pgDvJLSvI0/J4/LPMh2rF6tbeIOvFRQ9KYWqaBUJl9TGKcn3lMoprVAXUQBnSTHRaA1XSfHXliEjSIVYVuLCePZDoz1HSBsDNWRYUgvr8lDUm877LLsGXwVoqGjnuduCF+y5ehRbQdcPyVLAUy8v6V4jk0eZkJd12POe+p3NK6VllgxGa2SOmgobLRuafXVPi4UWGFA2NCPVGbT8FASRwZum3KtKSrrcS+GNTwMJXb81g3b2duJtU3cKiTkp5B6JvOASrYq0Ni+R0NwelgqG4aGwuf9b2WHKduRNUiFdTR+ICombnFu0GyxbxdKsef5VAHn56PXB7i5yUNeVHpALDDmNe4EyhooCoQbEbzSFZASAonEzw0VjyliLlKp5Aaydvz64TYj3JCxnjPc3earFkarpA4qeppg99InPHiIcXkqlhrTe/BRuE1ioJGqvtGNBcOdMgryZRWVejUUjE2b4s0DChmG9CZRpw1Sj6vUMTA0hpjHsHLsjnxOtzKnEht55lwuDFeJrU56jzmWpm1PFKpgp42LCnYWtEh2UeFMD12PsSrWHBl5RI3oFWoImaFlIA37KumCnn131a5wC6JVUhcwZnYxb3putMaGAowCdLugB6KMM55vu8jrmraDwOTCZKGnczJWC+a1F8fBQ+QFrEnhMaIw5H5GO6GgVIHSa+N93m0kpzSLjyEP567qGugZh/tpomLmXKmXbGx6jxUWaH7QFkNbUzUZC9VE33fffXj+85+PSy65BJdccgluvPFG/OEf/mF4//Wvfz2MMcnP93zP9yTH2Nrawu23344rrrgChw8fxi233ILHH398NVfTIoWy5Bh2Yr1L3xMfuiuy5unxsL6KjD+SELaLUJO1jWPx+3mrI3qBmx1XE3a25/e98qHSbp3OEz+vP+yuHbbMEOq2XgPnfqfCZCrI804auwnN4S1bW9WtYoNf5gtXAS0vSH5sDAPSkKPi4lruZKHQnTI2WgQspKSuueYavOtd78IXv/hFfPGLX8RLXvISvPrVr8ZXvvKV8Jnv//7vxxNPPBF+PvaxjyXHuOOOO/CRj3wEDzzwAD772c/i7NmzeNWrXoWq2oXai4sV9G4o6Lue9LA2ku0vVvCg8WEnhTsoqRUJ5FnCThVO06Z0BcaLglkDtiEKaqMbc2vB67TRK6Tg5665ibJqCAflYa+d9mq0Bq1pc8OdPrcSMPYjjB1XMqHWTwwR/SwVW8emxIpVK6q9MCj2ORYK9/3AD/xA8v+f//mfx3333YfPf/7z+Ht/7+8BAPr9Pq6++urG7586dQrve9/78IEPfAAve9nLAAAf/OAHce211+JTn/oUXvGKVyxzDQce5u/+k8S/ARzbnJ/6G+pgbCxctUAoXl2Uxj0LbBPDsMmy+aNFocwrnStVkIG0INfLz+f97RiSS84x6dyISs8gjf7shbBWxiVzaruFWoT7hYJpekFDpQaRpak5ylWFU71yN/V/BGoD23379o95ALB0TqqqKvzX//pfce7cOdx4443h9QcffBBXXnklLr30UrzoRS/Cz//8z+PKK68EADz88MMYDoe4+eabw+dPnjyJ66+/Hp/73OcmKqmtrS1sbW2F/58+fXrZYV+Y0DAEuz3Mi/4orW3aaYXBUFauIHYKQcGYWOvCbdR7FXBJXDfJtvGKvLN5twLWbCSWKGymCIE075ZvdghEwbZs2GtRNO2BtBtg812tDbsQoHlO4y0OK+8pWBeYb+XRWcG1aj1e61AFLKykvvSlL+HGG2/E5uYmjhw5go985CN47nOfCwB45StfiR/+4R/Gddddh0cffRRvf/vb8ZKXvAQPP/ww+v0+nnzySfR6PVx22WXJMa+66io8+eSTE89577334h3veMeiQz04CEJwybACldpuCA2lKu8GqKR0W3p2yaiNYyxOa6WjHtSwAAZesTQp9LFGpCYqpBAW8kqwMjE5r97FqoXPfuo0XhWuH2FZA929HswSIJtv1nTqepqneF0x7X6F+jPsrve7z7GwkvqO7/gOPPLII3jmmWfw27/92/jxH/9xfOYzn8Fzn/tcvO51rwufu/766/GCF7wA1113Hf7gD/4Ar3nNayYe01oLk29CJrjrrrvw5je/Ofz/9OnTuPbaaxcd+gUHM/i//PbpGh9f4kAXikW7DAzG2XWKWZduMZ4/CorIpKHDvJmr9QMo6pQVZqyvQzPpeSZ1nQcWF3b7Ecy37ReluQhCyE7u0TSDgoZjIf+fBxoaTl7n/UcweEz9jnDci5nxt7CS6vV6+LZv+zYAwAte8AJ84QtfwC//8i/jV3/1V8c+e+LECVx33XX42te+BgC4+uqrMRgM8PTTTyfe1FNPPYUXvvCFE8/Z7/fR7/cXHeqFj1DrZHYvVLRKNJEGVi2EZ+UEZiWi2Q2bnhhzUpVxebthCWzVUUnlPxomUkq7kjM4DpIsgLRgeFRGC7o/mhyWnHT9QJzr3QixTgI9yQIpQ24S8ua4e9k2qLDufhsJ403zZjjPTXtpTUIeItbXk0bK2Nv7uM+w7Topa22SL1J885vfxGOPPYYTJ04AAG644QZ0u1188pOfxK233goAeOKJJ/DlL38Z7373u7c7lAOBsdonrWvabUyz/OeB7hZLrJLtB4wTFXJoWK4J2iIq71hu5X0gCqQ87BfGIv+h4lQlmeey8nxaYYGyiNe0yDwFj2+b92w7yO/FJK+BaGp+u1cIHmBmeMzzvXkRPH3b8BriXDXcvyAXhuVFR6hYSEm97W1vwytf+Upce+21OHPmDB544AE8+OCD+PjHP46zZ8/i7rvvxmtf+1qcOHECf/VXf4W3ve1tuOKKK/BDP/RDAIBjx47hDW94A+68805cfvnlOH78ON7ylrfgec97XmD7tWjAXigoVtgDaQX+It8fNigpCupVsf5offYAmFHsAFAW83V0YJNVU6T7ASV92nhMz5gLNVDZnOReI7u9q7LWrTLyGioDyUuY+bo6KJqEoEJZlzsBKz9stZU33lWwJ+B+UFJAWmLA/68SGq7PWzIB87FsL+Rw8JJYSEn99V//NX7sx34MTzzxBI4dO4bnP//5+PjHP46Xv/zl2NjYwJe+9CX81m/9Fp555hmcOHECL37xi/HhD38YR48eDcd4z3veg06ng1tvvRUbGxt46Utfivvvvx9luegT2WJHQOE88ElwIE38k6V2aDj5GCQibHViGIsPF1sJlfX0YyyKUjw03ZF2VisddnNnqEmt+7x5KgVuaSWc5d9jp4e844SBU2YqjHLFrTkQKjW+vmgNzqSP0mjQ3o6rhnqdPAXnv+kaWBqxSG0QFX7eV3C7COOzDa9lWCTEB/heh34tFHVsraRfnzecfxGGAY21dgV3eHdx+vRpHDt2DKdOncIll1yy18NZKWa2Otpp0JIfFr6YVTwKKhsqqUkPDAXi+W58QFUQU0kdGezMNVBJhp51M/IiZ/rumrc6sQiYX1kbuWulwmMd2KZ8lt5JtwLWGprFcjxsV6RKSkOHQBRW7E5R2Pk2+mOXi0mfV3r4dhr+TsOgdD9AvC7uXrvdglceL3TZl+OtuuvDLCW0jJIC4r1NdmtGfG/eDR2tATZLYNCBPfYz831nH2JeOd727juoONtzi3ltBgU7RxOFvGkDxUnQ8E1hnRehxZDajmintnmYtFtuEwoLHB6IwinTa2BLJO36riFBhgEB72EBmNSnTj1KIIbmtEOEeq0jn5/qm8m1T8pAnHa92pF9pxDCpHBeOMe2rHLM98LSUGly3sqt2UA82OY1zvr+osfXsGbtFdSgHP9MUUz3lHSddCxQrjASsY/RKqmDhto4D4bewUbH9+irFguvqfKg0qolpDXpOQ0EBIwLZULzFgmryUZPDtiehbyIIKGHxPFYRFIDPYH8eKFzB9Jdefn9ZAtyCk4TrWkKcwPJcaF5bnk8noffZ79AnjsnLjRd58KJfv/3PPeBylu90Srz8GYdJ+86bpF6uLx+VVo9A2Dk8nhDRGW8G8Xr80JzmboZJRCZo4V8Vq9TnxN+fhHD8wJHq6T2AczmO1fXJWCsTsg/FMUSBVZUVJrkpeCYJgwpLCcJiKaiVnogiVcQ3tgdFJkygRUFk6G0kTih1m9TfqUQoUNFxJ2Tm+q6AotwyjGT9zH9fhDLeBhUVIsIexWmi5xX+/7Z/DXxFPU1K5+BjV4/SSIaPlVPfi9gkD4beq8BuW7TfJ18Xa6B6YGDXEfVKqn9gFU+NzxWWSMUk9ISG5bLWWB8KPL9pHI2W+i8ACENIH0Yg5WIGJZj1wd6MLSamZPZLcESto2XLS4mkQyYg2p6vQn6WevDPQOxrPO+gwq1uHNShnpR+tlVwFgXnhoxxDRHaLZp/dEDnFbIrB3b84/pNet5hrJOaj8ZWk5w3sQu9n3fyqgz4b7tBrgPV1HEdc88JZDeQ+bdGL3g+/RWLyK0Smo/YJWdj3kshpuCArCu27dZ4SLXsJ7mYUJtVy2eA+J7mvA21r1XC7FgWMb3a7N7LWJ0K3gK1p0QCLTscwUVSCoN3nBjjitzoUK4NCOrbAcM2RWYU0mJMVIg3u9pS1w9dApsDaFOOo+GZvVY7EK/0XV/MxfWqQGMXAeXvQwDUllZ4xStctfCvbdIPMXaOGbgfglf7iJaJbVHMNV/jAuwt8KFx1xJVSB0OldZxvzAqmqUIEIJch6G6vibHljTecNzmYV0dqJDxTQU1iXh1erfqfPnjEcDL6wKR9/W804MmyI7hk1DXKtAoN3PqaxDn0kgFKHPUlLqEZJkwO8rNBTIY/N6OQ+lX//I1jmVWVUAlfeW97qDCw3GvIDcven/738vU45wQNAqqb3CTtU7GOsT/UhDSEBkWrFD+HYXvQokPX/4e4Ex56GuvM3QbqGJQr4T6PgQVN7pglRyTZ53q+Z8CkNqO5lrKWtgfYG1mufn5hkX83q5EtK5YehrUKYGDMNfDMty3ye2uOLxq8xjGRnXfLgJzOOucgubSShsXAfDMpZOBMMFcQwXWZiPaJXULmPX6qC61bgAHJTjfefWR9t7EPPWP8uCXmU4LvbG0t3Nc7JPmybRrQEgORztdNGE/WxZzzuXNEiCQTVhTXF+KuNzO7IlTPDWvOJmVxM2Z1alN6ukgoactbuXv+J9ZG4tN2JnPA8Hefv5VkkdVGj3boZAQgzcW238zHaLaldR9Kj9y2jBHnTLsVuNs7vY3BaIgnee9k4XOiiEVVhrlw5TRGVuirj7c0417zBUjBjazgk+s9YjvVlUAMrUa9spaP4pH99eRBT2EVoldVDBBHK/iuGDbuVZUWXc4G+j4+pQyho4OlhdGJJdJyxmh9C0IJW7B69SKMwbdlLsVlfxPDy6U90g9jvGQpk2zWMyfEelHRh7Dd4OQ6SH5XssCOYGok33lSG3QRnrtIY2Gno0nmZ1MVkG6umFeimkebeLFK2S2gXsSaujJi8mMK1s7LwNuIey9F7WKoWyhacE14sx9DSRvlfYT41PL3Zo7klbDE1rXgv4NSc9GWcRSkj3znO5Bj73ZyWUuMLFoXVgRK6gFlBSBy301yqp/YhVWPHdKsbjFfqSRWzRouGU0m6/CWkhD9is54vhlP3URpJCivtLXcThlh3DvOFghvSUAESPaJoxwxZfpPuHPJX/nnrYw9KRKaoiKg0qLD1HwXDsFJp/U63bNEVDpVhawIxW8/wdILRKaq/B+DcbupLBNPJeTb/yDKvR4qGgpocioeX6JDQPWxUuDNitgUs3txd6CooH8xErCuu6MChleJkw3SQs2hSUgmrk5+diDsXtBLj2vLyfmwW4NoqKY957SSWnHfjJnKsLYb1KKyZgQs2ajWShfLsZFiQPi7iDgNYOMoytRo/24ytrJ5GXMU5JhDqAaJXUXkNj5izsrEy01obeCuzUwCo2J9bEMS1MLYpUmvq2z4Xlkr7Wf9litWG/hfrW6c8KlWULh1BigMXndhlhTE993potnoJrcB7ChbIHA/llzvFtl5wxQUkZ3O0Mz/Nd2ONvXe7Ye4xWSe0ltjquKj7pPCC/KwC1v0WryhVRcfSqyPYbdtI4fKd2Y+tJYesyQnoR+q5ar3zg6jKefzvhj2XGngscA+dhHnTG4W5itwu1i3wNeW3EbhpkVoYmt/SkJCdmLJLSAaIqHAlJm8gCEpYkXT57lia111oEw9I9x5PW5nafnz1Gq6T2AuxUPipcq6K8vUtQGNIde61cnUVPenddxYeS/f1QAZbhR2FTKeOIx1gVxnrVmRh2Yf5hN2nYej8q44QAC0JbJXVwEDqmWNmephSqu6xLPgdKaNBly9wun6OKng275Zv5vLFFURsnQ6oCrgV8AwrrDKwLFK2S2iFMZfQxLk6PgWGlUNPhFxQpsXxvFQtcPbaxQXursrTxp8n6WzVmhl9mhGiaMMaWWmD8ej7NYbQhv4MJDe9RkRiTsmG1i7r+rcegd2XlPV2GoQffCvOsuYHX9BlvdJnh/wV0qwuO8dcqqb1CX1sXmYYFb51Vxt1tV2HBkxjRtDMow1lrvlt0fzQ7RMAOFpq3oWJbZO+i0HHAxu7PHBOoJBZ8sHl9ypxaRNnQc6tEqBwkL2pQzqZwX0ww8pseUGHimulV09d0IEb4A5FcwWfDwkUmarMaAo7WIfL8OejRaYRG67AuELRKaoUwT/zfcbvx7gyLKdR5+ISuCs/Sh9cKG3fwXIX1pUWNeR0QLcSyjrvRTgNZiNp6qbCxC0BhFq8lobJS63BWonva+JKtEOpoHc9zvGS+Z2w1caFhULqcY6cC+ttI1h800ItiRKOQZ2BWJEPp6PxsUBL+M6oslp1zGl5D6U3I8+fQrh1WXmuV1EWMYeGU07zoVrE1jnojXMBdWdSHV7BVdLDqshxY18fN+1Sw9WxrT5UUkIbHuN36IuiPIoU37622zANdWoRdhJdlg5H9WCyjJfcx2Eaorf8av37mneo6NeLmWUPs6EKDpjYAyhixCMahxhfnwFYHYRdnLsWQQvMGZZNBOCriM8AvzQoP7kO0SmqVYI3Ros99yIFkXyzs9vvqKaiYlCjB2hPAnevSzfkeyMqHImkVslVNZwkFRfB7+Y7AywjS0odebJFS2RcVEKtqzzQsx+tq9hKzQpcXM+2e+z3lmDYn+hyNfc9/Nxhhpvn4isqTqga+hVltYr9CwzHW0xmngzKGq0Ok5sIL77ZKagUwX/8lt6CSNip7OaIJ0K0QgPEakO4CQpQKryoctVf3vVkVtisklYUV8lx7JHgpqC6UXkvsxq01dS2aMUt5BQN0AaEwLJySGZYpeao0XknJ8SchCevH85vNd4b37aGfnX9Me4RWSa0CZQ2s+Rj04cH+60zAeiilyDIfxr14Cgsc3Zr/mLXxrWp8V4xulXaj3i9gMntV7MhlcSHVqVSS7+CU7cW95Q7Ni5BwdhLLjKFX+bwzotKYZy3ovmrKBGYoUZ/bJoTdmZEyFBX77VmdgFZJrQJcdIUFLllA0O8WznmG4FbHPfjGxgW+NlospMgQQlXE614fOkW1Hxc9GYcHFczfNdH0l+n8zlBwUFJCsJkUztoJDMpIGrLY30xEC4TJb5rzRcYdCsh5XxELgvl8zYp6bHWk5dSUHQX24/PagFZJrQJKb96PKKzrXgGk9O5F8y0UYGQMMYxGa63F7kPv53a9De3GHRL/+wT7wZOahFWufRoFrNUKdVtIawanNaulTmwKcTPs7NmHZuudQQ7Y8udWdx0rRKukVoHLz+/1CKZjfRQtr0Ep9Ux2vtDD+a770eLBjmw6d5Dqhy40rDoHmBscgUW2y0qCLbnMRbi+SIwoLFAUKXO2sK50YJLSpidW1rGLRk6Y0s1Q+bszgSyyD9AqqYsB2h+siXI7CVUBDArg79Zdj0Ftgsmu7Nth882DWiz7FjuPSdtP7AV2a+v2/QZjvcKQPCqJEywdmAQt0OfnRkaaR/u8NEkYeYeMfYhWSS2JPdnIcLvoigU2TyiH24ewQwXLl+hRMW4+2sGedvso4nTgsV+U08WM/BZoiI97YU171jp12rUFiGHc0DSZhp/J6qj2J1oldbFhXmVSFcCZvlNUW2UkXDBEsNmJCe1R4dsoLeFVzdpUcB9beC08uA8a10kIH9XA2pTQVIsUkzZLZOhzHs/S2MguZkd23S9r4Dum08sK3d1XeiUrRaukWjRj4JWTtlIyAOBDBaMCMGVUMAYARsD6AkpqqxO3rN+v7MAW0zEsgbO9qKQYSlrzO8wW2H8lGctini3ot4O88bOSJJZ5Ntjl3YoHRWYu6uhRWamf8qxKe8VPb/dqVoZWSe0n7KfdNbmFNbeo0BoNEi/YhJUkinm3A9B9mhiKqArETen2yRy0mA3eezI+mTMhUWe/0saXwU5fSxNDcztzWFj3TJU10PFG5igjS1AB6vO9z7b1aJXUXsDKA00wqcnFs9foVa6PX+VDA0Ppp6cLm1bz+mh+5cJ2SsFqLOJxSedfRFnvRQufURHDJt19Umy6FzCeRFMbp6xo0DCEtB/W8l6DRcmaW2oC2ZXA6jq4lLX0AK3T0oLQI7SK98vY8d6Ze4xWSS2AlZAlwoZ+Bm47ABtfZw3DfgGtYYYF8u1E1KtaREiz64Uyl7SlVGHmZxxR2c1iPO3EZnMMmxQGyQZ5wMHyIGah9B3mUQCmjsbGxaq4FZpnYq3TNKq3QVz7q9zklPejaQ8qDScWwH7r79cqqd0G6aXWplYSG0buJzCXQI9KsWxYzhopApZj8G/9mQdBSU35zCqFJZUT+6oxV6fGBj+3jAK/UFFY18Oxswde7X6GFr7PAhUUEJvRmjmZs9NSBaWN/TU7No5pJBEMHcM+spOBVkntDZbZaXavsSoFWokQawrrLfKQNLGhJkEtyO3kvRiqHHhqfsfEvEGTlVrWLhx2saBVUA5cm1wPFghaaJqHlOxDZdJi6knfGfpWZaVNGYC6i4Dxg1BjjlvtjD2D++seLhR8vO+++/D85z8fl1xyCS655BLceOON+MM//MPwvrUWd999N06ePIn19XXcdNNN+MpXvpIcY2trC7fffjuuuOIKHD58GLfccgsef/zx1VzNDsDg7vDTYkXQUKEmbUNNyBwPibbwmRdWfpZB2ItrAcW4n8K3LXYPvO9BUWB+4a/f1f3fJn22zn70O7NOmS9Pr9BM9R9hzt4Dc+pd8415B7GQkrrmmmvwrne9C1/84hfxxS9+ES95yUvw6le/Oiiid7/73fjFX/xF/Mqv/Aq+8IUv4Oqrr8bLX/5ynDlzJhzjjjvuwEc+8hE88MAD+OxnP4uzZ8/iVa96FarqIq0uv9hA1mC3dnVVPd89vS8dLJrA/av4s9FxNHlgvuSysWlbmGVBxcqNIfsjRxxZqxyNvu+vh1ve7zOr9KIAm9Nym4tFYP0aWfR7k8D8XCAFTVkTzM1qjlbHlWNYxmsdlK4EgM8Ga9by9a6F+Ko4c+o767P2QdcPY63d1lN0/Phx/MIv/AL+5b/8lzh58iTuuOMOvPWtbwXgvKarrroK/+k//Se88Y1vxKlTp/At3/It+MAHPoDXve51AIBvfOMbuPbaa/Gxj30Mr3jFK+Y65+nTp3Hs2DGcOnUKl1xyyXaGPxOtB7UDYB5nEQF+tuceQPXCqCjm7ZDNzeO4QeOiCsQa11EeiIqRWybkn+PWKDsR7qOVzK1X1kf7L5+5VzjbA8710nzg4eF8tVosfq38/G6nEDnP4YYmsQ3H0zymFt8yFMftPvJ7rKFnfaYMpPefjTtlaxhR86h5h/VsPmz37cvNwQzMK8eX5hpWVYUHHngA586dw4033ohHH30UTz75JG6++ebwmX6/jxe96EX43Oc+BwB4+OGHMRwOk8+cPHkS119/ffhME7a2tnD69Onkp8UFjGVyQty+oJIHLdnUbQ4ES3UbnlQIT9ooEHLQEmUbm1UjHN9Gj61FhJZHlHY+T3snxpCTgGZ1VQlrxpeh0ACa1B8zCe0xvCe/CX09KEKMhwmbIgz7YG0tTJz40pe+hBtvvBGbm5s4cuQIPvKRj+C5z31uUDJXXXVV8vmrrroKX//61wEATz75JHq9Hi677LKxzzz55JMTz3nvvffiHe94x6JDXQ1C4tP/3iuLVanr+2kb8t0At9I+35UaHAtg5GtA5mBAjQpg0Il0+s4SCkQFTuH/P2k98Pg7+ZB3K6C7c4ffNQx9q57g/WD5MFO/isQEllAsc6xFPf2x7y9Ijsq30Jm1nqtiPB/F71ohQ6jyYS1mZVJPSpVk18Rzs2PFHmNhT+o7vuM78Mgjj+Dzn/88/u2//bf48R//cfzpn/5peN9k9SLW2rHXcsz6zF133YVTp06Fn8cee2zRYS8PxnoZ5yWrazfBwtFh4Toa72Wx3aB0YbPdROVDGgPZXZhxdWVATUNoC1Ms5n3lSAgemP4M7wMrdOVgdxDmO1aBrTJuyDkoY9fuZVDWcZfo7v7IqewINHcVCEESJUj+Rtpclq3ORkX8fyX/12dqH6zhhaVNr9fDt33btwEAXvCCF+ALX/gCfvmXfznkoZ588kmcOHEifP6pp54K3tXVV1+NwWCAp59+OvGmnnrqKbzwhS+ceM5+v49+v7/oUJeGGfxfYqEU49ZIWbs297u5JTiFAwAUsp30rp5/BcSDZWAQ+8AlbVzsguE+ebDZGWHRzhZJYebeP8C7Cr33rHdbBfr+OWJ4VK38RcEOKMug9HsqlXvvPcwEw4EGMeynz0VjaUc2t3lY0BhgxGOYcCzm5e0e5ee3bQpZa7G1tYVnP/vZuPrqq/HJT34yvDcYDPCZz3wmKKAbbrgB3W43+cwTTzyBL3/5y1OV1K6DYaCBt/A2OzFxf74LnPfJ2TN99//NTrTQdwIGsfiOXYx1q4ydRm0cYeB8N1q8u+lNMVbPB1OFWf6gTQMVFD3TwYIMrsoIYwrLe2MXCqyJa/9M3615rvdhEdfjdo2WbgUcGTgCyH5glC3b0HU3YbwyJiOWP+yhqXlfKqYC6bND70lZgqvwZleMhSTN2972Nrzyla/EtddeizNnzuCBBx7Agw8+iI9//OMwxuCOO+7APffcg+c85zl4znOeg3vuuQeHDh3Cj/zIjwAAjh07hje84Q248847cfnll+P48eN4y1veguc973l42ctetiMXuBRYtxNc5MybYrcIi1hEZ7FzHZ+NHU/676YnxdCAehJ5a6NJ4C6h20V40DLiArBYQS+Qhj8WAa+/4LH2uSDbLoJCLzNjQHrA8TPtDs27DyWG6M8kJAQODQsi5rQoY6rC7QC8D7CQkvrrv/5r/NiP/RieeOIJHDt2DM9//vPx8Y9/HC9/+csBAD/90z+NjY0N/MRP/ASefvppfPd3fzc+8YlP4OjRo+EY73nPe9DpdHDrrbdiY2MDL33pS3H//fejLPfR3sW6JwstbttJQ34W0mPOb9W8U6SKwrqaolEdFxHpzdYIkWCHwI7nGlrrzUHPHXqLrDTba8Ja1s5qZMKXe1p1fV3SPPPeq4D1Ydy/qrNA13aCuUkDoOvJGv3Rwe0owS1UuJFeaNXj36ehdjEo7P2KsnZty9gAmveGikf/rpHS7EM+Kwvd1mJ4A/MZozuIbddJ7QV2uk5qrDZqs+PCHZp8NzYKyJ4PV+w0Bp6ZM5KkddePobMki2lebHl7hkJqmsfIgsiNTpr7IeOqu8TeUSzmJbROal6o1b8M8+7v1oG/Oey+x9qV9SFw+cbFkZ9iaK/pUnd6/bWYD3neVaMGNG7JEs77Chobw4bM7dE43YF6qXnleNu7TzCxcDeEl9yn9gyklwJRUNQGQOHIFDt9bmKWQM4FGdlH8NbcqFicdFLW4+GHRT1XFjYuq1C0BoXhEZs96Bc6pvaVQ2qpJ7U4F4GSvhCg1Hdr02ePfze1TJrGVvWfDZsibnZgr/z3O3gRKVolNQ+0wzVZMqVYHf1dsiDVyrGdtB5ip7GIlUyWVLdOc2nbHeoqwmrb8XhIbQbSDeMOioIalt6anjBHechIG5gCu8t2bTEd7EoP+K4UiFEEKi8N2zKEzhpM/qbiyg20XUSrpOZB7kWUkMrwJdhIdMOXTTR3K5cfodRnbmC3aemzkFNegd1lJa4abKcExId6P833dlD5GjxjJq9Li6igSJwJ7xkAw90YaYtFwfA2as9MpWHl165uNFrWaakHn2FVULvcNLlVUvOCHhRv7rxWtMaFgfQBZ2PVZdCrUu/kQrHo1cK70NCVPn2hL9o2+rvtJxRTPCiitI4kxK4dGhpsmX37G8bG2qd877OgiBjxsONRD8o//33zxP8d1oG95s07OvRWSc2LbuVYaky4h/Y8mBzHP9N39UWsJ6Fy4kfXRq75ZbcCLt1cbDxtaGX30a2AK8+5v5fpPbifm8CaOYgPqyBGbHp25KR+dC12BmzTZZG2TMo36dSNEA2cUcL7BQAYpTnnXfCqWiU1LwpRTKG3lX/Pyn+UWXO+6xTVyLhCyLx4lDve9irg6KB9aC8ELOM1jQonnHvVxWtcWANslsCm77/ICEK75ncPRg1reKMZ47mm4E3JWuV96hhnrJA4tAu46JWUOXMvcHRr+ocK6xQK/55+xOaWOSEBiWwx+NcOQsioxWRcCF0MdhJJWNo2PyMtdh4kTrC9Gwt31TOiTGLJDRB7E/Fzu3j/Lnolhc2OC7vNCmXMK2CM9R0Jsu+wQ4I2gGQvvItZeF0M2MstI/YDmOtgWx5lj+3GuVtlGFH4vCJJMCwdqH2UR43oYRnDgOz6T6XFlMcuzG2rpCqzekolk5Rjf6OZzrnKZp0t9h/IAmzv8eQGqDsBPl87safXhQy2RSIrWBWN7k3FGkzjmYGmgdm3C2u6VVJsyrhqlDVwfMMde1i6WqqtMu7pUhsXQrxky8XnW2vv4GIeUsJBBusKLQBbjAs2Gmqrzk+xOwzQ5r5y8J4QleTZ83ZKMGmvzl0O1bZKqrdEi555UdaRtXd4AGx03YOz5fsAHhkAl21cvGGgFhcXtGwjkI5M3ALEYjVUdobSufdbDaCHXQtPXXBgQwLWWYYmsyYqeu68wFpB5raw88q/VVK7pSC4CGjZ1cZ5UK2CanGxIFFOSIlEqywSzR+phKC0mlMcOOgeU8xD2SIN/YX7hIQVaM7eEwwQu/YfVj60VklthxLM6vt5QjllvTtNaFu02K9Q8lDY/gPRcFuVvUaBy9ZVWjbSohlsZYYSsLUQThq0emhz5r0pKfLdCbRKahkldbbnfquFdrHWv7RosQjoPXHTRM1vrLIwlM2Ec5Zti+no1M6DqiFdduS+0JtSL7hVUquH+fJ/dqSGyzeARXelT7ZbzuLrLVq0mI6yhuvanwm19hkaR8461m41VCCrVgzaRZ0KSs8z6Xw7eP8uSiUVmoMCy9VRcLsHJoFb5lCLFvOjrIFDtd9M1MQykBouDMg6qu1iUrhqVdA9mRTL7FWm0N3AgXh8berL85bWRXFW2WaKdVGFUM+5TZDWUQUSTOtJrR6avF10HVukbe1btGixHHqeTGSlXVhglJn5tkSfhZ1g81XCRmwKUVobZcSi56firjHeqohMO+bxyMarPOuOmxRuF5xv9XqpoEL+0KRNt3eQOXlxKqnDQ1ejtDZnB/J8D5VV1gm0FfEtLmZQwAHRaAREUcEps/30jAizLbYT0g/4ItiwRcYixxblpwpq0jh4ulUihPYgHSn8eaxXivn92EGn9eJUUs86Pd06Y9dy1jXpfit93ySUVoUuVrV2iLCIxVWmFaRWyJHBYtt2cGt2Hrs/askbLS48GE9wYJ84ehIjEiusMyZ71fZ2VV4V+PyyPVDehxOI3h/lxrzI++aF1+Uz00KYqwy3cRuaohhXyNx+XvNXtRnPoa0IF6eSmnYzq8Ipp0HpupjTle5XbsGRbm7grAveHBYkVoV0F86Ul7rMZB3pj7HzKZrNDnBqLVpY7KnVKqkWFyKYA9EcTGUcA9Ag3XVgP3TuUCWS54gUiyrUpo83tiGid2PSrYN2wqPSLegTzy33pNzJzVO/AJzvwv4fd6xsGBenkpqGjY77oafDbdC70pmCCmlQxqSvxoqpkEZicWmnYU02dur4WW7lMU3ZDL3ypMVZ1m6zul3eLbNFi5WCNVTh/4gCuLSxy8Feg2xedmZg3Zc2jybxY9FQn+bf2AQWSJ9tKsfSAj3//K/7XNRueJkcY+7QaY5uxR5Vq6QIKonTfeep0FXv+N1Y10buplQG2Cqc0jknykJvUOX/P+hExZOzcQrrtp63Pvm5VbpFVk/xiP72kDveVsd9vrDAmiQ199v28RczrIn3qPVw5wOFupKS+Jzsl00SjQpp6+RAUFT+M2W9vFJlbVeToFdvifJmt+dkEvPSFkAt0aQV4qJRUuZv3+2ExeGhr6wWUEFx99xR4SyZro0WHr2fuoghvWEZK+eByMqpijSuzkVnDWDlYasKoPB/h1j3hIXNKv1hmfY6S2LXBs0xgxa7jh2M0R9YUAHUQLLVeaBD7xPkBa5ALG7V2sllxqx5Hj0230te26U5CecyqRepO/zuIC4aJRUUUL59NS3ege9Mvum9H1othbeWNn0IcKPj/uZr3A8qty4YV8+VFAAUJVDXXjn682yV0WvrVuMtlLZEgeo+VE3KqsXeo6yBbuvZLgxuLsqwOZ/VvSZMKGiwcruLkBpYkjDRhP2ybpquI98kUdsklav3eC8eJbXViclY6xOOHe9aU/gDaW6Jll1lgKFXSKf7ri2S9ccC3LHYLJYLmDdvzJNCJDqo4uIiJ4uJlsrayL1OJUsFNSrc69qccy/XtZJCNIlsES3hVRVpXijYb8L1QkLoJbcPEYgeiJsB0nviFu0HGfkzrCkOdkpfIS4eJUVq+MiH52phrVTFeJNLxny5vTJ7jTEsmFSb1/77dRY3znJV1gDwIT2yZkL1to7TxONx90wqqGndoveSPBG6BjSEufRa96vgadFiXpjsd3hdjNSLCTlLecVe4MWjpM53o5JhwlFjqvRcunWsFqcXdLbnKN+jwv294aeNN6TrLYeyiCE7DfeRCcgQ3bCIC7kqYnK9WzsFNihdKLGwsU3M+W4MM+q5dVFUBih3OcTEcClzc/rg8hqVAXUxoTIud3ExeY8XA8j65W3lum/KJ10sWBs5+cbo1Apx8SiprU5UUnWmpMI20xkrpzaOtXK+Czyz5pTLRtcpKSqW0gK1Zx/VPryTeGHeK9rquO8zx0WGEBAXeGmjYht4th9Dipsdpwi0uFjrI8gMrDzpY6cVApUTdxpmTQvrvbzTGD4Lu/LFu+9Bj7Iq92dupcXyYMjPAiE3dTErKSBujcLUyaoOu9Kj7WcwjKYyIgj4OgqRQ0NHXKBHBESSRZWtQAplJgs78gN46noRt2bulJNj1j1fi9WtYwJWoaE0A4SgOK0XI3k1i52lPVMxaXeASrzDwg/Cyud3othwv4NKyuvoUHzZ4uAgMN9wMEN9NKjnvS4DoKzdRog+/WCP3rWtIVw8SkrzSEAspC0tcGgArHlW3bGt2J6IOaXNjvOkAGBTqt+pnLq+uWO3dt9lTVW3dtvGkzWYWxiau2HrFzaK7FaRnKHFvtp4s5Tmj6UoLI6Df68q3FT5cGcl3hPzYAx5dKu0CJPWJb3LiwUsFVBYtKG/7UBzvGN0bOydggihvgOkoGoDnOtFpjObGVCmTLpWY53BXa9uPg68kjKf/f95xpl276XF772gtcp5UD1P/dbJtSYqj6rIci6IleXqRelWHl3Jd5E5mPf7MnDnYJEvj0lniB6UEidqGwkVZQ3UPqRUFYCtIr2eY9wuSN9XKjy3DtCEcWliqM/6i7M2UlQvFjQRSDT32WIxcC65/g3kWZSwvRpCu2EQ5IW8BwEaKWFBOtdt7WXUtFxrWQPF6nLQB15JAYgCPsDEfnydClgfOo+nqduyscClm76fX+E+c2joXu+L53N0K7ZP6lUI3SkomDp1FOojEwt+OS49b1UAW37cgTpfpo0t2amCuajSh9cYTtK2LNulf2tvQlVQuZIqrCN+GHqbJi7wqnCKld7eQUZVxK0WgFSJHyRhtltI2LFIiQr6GSu/AQASgl42FJcbGk3376B5UUrG4vWT9KUKaxoZaoXzcfCVVKf2pIMi1uswL7Q+dIrm2KbrfzUJh4bAtz7tjnFqI24fr01hjwxi4jCw7URYMW9TmVgYPCyd4qPCASITED60RyXFIuPKpDmgYRE9PSqAkYkKi4qSLns+xllQ9l7elYOMPh6LxwbSB9ca5xWyjQxJKxz3QQLvzaiUYlQbE+0HSZjtFrQHpnpPVDxam0eiUmF9yMl/XA2peXMsNMp43iaFd1CNDhq0YVNKea67fn5R+zWNHV3XB19J5Ql7Ck82rWR4bhaCMtoaf69XxS7p+QLmjqOhhqqICqWsgaKIC4D3mQQPtl/Szc4YLuQ2BrRwgPga676sBTqeuGHhzs05mWfbA2UnKnFDw49hfvz5WYhc2sjqC9aoD/mxQr82kU25H7pbrwK63ULbpmp14DTmzzJ/M9SnXcn5nvFftFhMmIZjwj9j4jnsh5KKVe5inCNX5MGLNakntQvr++ArqWNeqWx1ImOvrIHjG+5nUWt+fZR6XU05Bg3rjcrxcNlmJ6Waa0iBHlbeXZ1dMjS3xX5+FPakOLMWq7CAkfolshTZukVzc01giGXold6gbA73EepRlRawo6gYx3IKNlLp2bGDv5uYiZy7fOz7Dfl+P1T0BVKvtsX8KGzMcWi7Mn2fuwloiC/HIsW2oau3/38QyCqYGereo/tJI3GnCuRZ+6SEs1JkyA4U7jZhIUL7vffei+/6ru/C0aNHceWVV+IHf/AH8dWvfjX5zOtf/3oYY5Kf7/me70k+s7W1hdtvvx1XXHEFDh8+jFtuuQWPP/749q+mCZdtAJdsuZzRsU3g8vPAFeeBbznnQnTbpWo33aRR4UJkm9249cdGx9Vbhf933c9mxynQja57/1zPMQm/eQh4eh0403PhxUGZ1nFx4bDwl+xBhuEYmtv05z3fdV3bz/njnekBZ/ru55k14O/W3W/+nOnHmjB2XR9moT4y/LbKeA5eA3sccgy8vtN9d65vHnJd3Z86DPzNIfd/jmGjE8fPru8sZuZ1nO251/cjY1CHpB4xQ4H7ccz7GcrE1RrB/DMsAyltWqOnH51bQZnx+5Tkvfb4Hob962aMYzvjXPdM5f4opgp4D3axxdlCSuozn/kMbrvtNnz+85/HJz/5SYxGI9x88804d+5c8rnv//7vxxNPPBF+PvaxjyXv33HHHfjIRz6CBx54AJ/97Gdx9uxZvOpVr0JV7UDIp+sJEv2R/+1/ejs4wXwO6AlpPkr/VmKF/s2Qnj5PTa1HjJyHwjAcu0iFY1AumYLh/+nV6Xva0FbDfPkOoprQzhPYun1JPpamn6ppfuQ4ebhRv5e/vxeCJFdQ/K3z1jYDXgz0Vhap12k8BhbPIel3ms69V17UrH2bdD87bfu2CDjnZYPc2cUlvFC47+Mf/3jy//e///248sor8fDDD+P7vu/7wuv9fh9XX3114zFOnTqF973vffjABz6Al73sZQCAD37wg7j22mvxqU99Cq94xSsWvYbpuGTLWQG1cb+nESRWBS4KehnaFqnyr6ky0XXOsB4b1tJzKr2yBdJ2S+rdbHiCSNkBtqq4yBjOLOVBn1Zca3yOqKMxaaThSZ6fn8+ZhEB8nx4R68W2/LJj+JGhSiufLYsoWKiAc8U9LIEtEVz59RgZS8kkr43KiwSaVYYsSub/ykyhM1xS7p+9kS4kzHOP1CAComDu2HTtT/s+IExMH2YM7y8xpp2CPsOaH6M8YbSDnwVimcsiODx089nxsou7NOwitpWTOnXqFADg+PHjyesPPvggrrzySlx66aV40YtehJ//+Z/HlVdeCQB4+OGHMRwOcfPNN4fPnzx5Etdffz0+97nPNSqpra0tbG1FwsLp06fnH2RZj297sZNgKICCnDkjtkWqRNCHRrJI6ckU9JpDYy0W4I7Tr1IlF1oveYXG/oAFxhWTFto2obDu+FyM/A6VYe6p8NhFdg56DVUR82wM/ZGIUhaArYCef6DCnEncOzCMGoR+0yWosjJTrtkglgysskNH3m6LOzVzDvnefs2rXYhQT7vJy5hlFPA7Y+UCci8t0r/3+v7l5w/GI9KOMKqcF13nxnp2KhzBaw/YuEsrKWst3vzmN+N7v/d7cf3114fXX/nKV+KHf/iHcd111+HRRx/F29/+drzkJS/Bww8/jH6/jyeffBK9Xg+XXXZZcryrrroKTz75ZOO57r33XrzjHe9Ydqi7C2OjNU3rLfGUMB7+0eLEPLmrwp8PGjtKVEX6MKplp8qP6NSpwFa6eHINiAvbQFiLECUExHooUU5UqEq51nGFh51CAeMhvMoAtvDkCxstwzzcCDSHPPJ5LERZQ77Lc1PZr8q7KazfTdYbI8ZExuM8Fn2LxcHnisiJFfNgGrFCCTHFDgrqfD1PGjuJIrqWQhTDyN8iP7ajYLZRoGtwd/jbyt/zYmkl9aY3vQl/8id/gs9+9rPJ66973evC39dffz1e8IIX4LrrrsMf/MEf4DWvec3E41lrYfLdLj3uuusuvPnNbw7/P336NK699tr5BnqmP95OqLDOjV3EbdV2SrOwNor5oGHhGG5Kkx0TyEbi3saHoJCOl8XHWuPF8NmglDCicYxC1mJp+IOhLaN/U1EhFd7rRSxWXh9GJclOFpDPF/KQaPyayq02LsxlveJUBcr2Kcpy1MQsj607ErPprnZ10O4dDKeVNrZp0vIAzVVZP56qYaPJ7WB9FK+d42bh94XQv0/nE9i/SrXJcFFvnobTLMxTaL1Tc8BnlZEKZbDSIG1Ck/zia6UYXXyetusF7dEaWEpJ3X777fjoRz+Khx56CNdcc83Uz544cQLXXXcdvva1rwEArr76agwGAzz99NOJN/XUU0/hhS98YeMx+v0++v3+3OMzp94lZIJO2jcv5DmMY/tNUzpMPnLnXiB2laAAbEJhnZehAhuI1p56UCGhSQGdLaSQvMzo470q0plZd1UbAAUwwvgGiUAqrNmLSy1HDd/xXBZAXxR008OcCwR6XBpmzIkerOfinlnc1oK5PJ6bnTSGRQxfDIsomCoRUJyPXgV0jHiLdfRmCrkH7qKct7YT+QXeI16rNh/ezwgF5YL9OPZJ4T2NFuSe/H4Dmb0WMTXAukGOe5kdnhmFAC747vsLKSlrLW6//XZ85CMfwYMPPohnP/vZM7/zzW9+E4899hhOnDgBALjhhhvQ7XbxyU9+ErfeeisA4IknnsCXv/xlvPvd717iEhrAnlP0ZriXVFNeommrduJ0Px6LDy09EDaP7U9JJDYRFBIGmn9NlUPlw1x5GKzOHkQgeg2AX5RDJ8D5WmUiEUHRVOMQFI1YXVrszFZPyXcy5aaw8r7m0zp1bJ5rERXoZkdaRyGOIeyeXEaFlFjPM8zfPBeXv7eTdS46z5WdbNFXYkgQ5R4qBV0bnN796P3leVFg/3t+CkZauOZDJEPWjW4dtAhIfjoAWEhJ3XbbbfjQhz6E3/u938PRo0dDDunYsWNYX1/H2bNncffdd+O1r30tTpw4gb/6q7/C2972NlxxxRX4oR/6ofDZN7zhDbjzzjtx+eWX4/jx43jLW96C5z3veYHtt22wHud81y2Csz1npZR1bOJ6ztcK9StXN3Vs032XwvNMH/jrwzGcttWJwhNwi+folvv+oaGrv9KkZBPllUpGd99N2H0+7DcSK0g3OWQXCaXjMulvjQslWbixro/cOVjrRAIDLfvADJLxqVDtV+54DPdRSVHQauhMCRxUIKGHoH9Y1o0rbt6S9k4kk5AsQY+RGz7Sa9X7Mkkn5cXCvAfq0anHx+vWEOUq81KKwgJFg8Cgh78p1jSvs1PHVluHhrvvDWgPyP0GNVSALFcqRuF+1VO1cfInNyI14lBal9e8EBUN5cyKxr6QkrrvvvsAADfddFPy+vvf/368/vWvR1mW+NKXvoTf+q3fwjPPPIMTJ07gxS9+MT784Q/j6NGj4fPvec970Ol0cOutt2JjYwMvfelLcf/996MsV1Q6zZvPnn1UNB227PFWascXg25l3oaF+z+LbelNaTPVoQ+/sU/YoJycFNc8iLZvyRlDPDldfuuvpaAHAbikKKKnEjw1m5I0klop/7dBzE+ppWzlNQ0tcp5UeY15JRZuUz/RIFaOyXMU1lXGh7yWKDVrovK1cHPO3JcqJk0Q58qqsCklPpl/pIpKLVa9lt0UatrPUdcXPeye92Bt5dbapLzETmE/h8jq7LlRxZTczxle9l4hr1/KyU9G1up+vg85lNVsAXRXc9iFw33TsL6+jv/xP/7HzOOsra3hve99L9773vcucvr5MZIHPycmMA80LIENG70NekEUmtwmng1ea3kKKExHXvCzBmpQOLqmhrMosBPqc+YSTAqX8aaTTm46KZGC4T7mgXKrl8n6ntDVtYu6fg5IldLhofOg2ONQwz3B4hfvRanwtQFQA6Wco+PZQWy1wqJhtl1hnqkjY6iq6L2yfRX/zh9efdhJ2+exSKLIFazOH5l3y2BYOkNA6f6zQnVb3ggaFbH7iCp3WwHdMhpVu62k9mu4TNcwMB6yrSV8EYwR7K/roadk6tQwaoq+XIig3FsRDmbvPiooZbgl1rJxCqXuOgFzaCi5Dy/szvacS74lHlYhgox986yJ4UADACOXtM+9CX/asYdFval8cQbhb4EBotfWqRH3dbFI+pox/0OlOxx5wgGkLQ+aOyCoglgbpWzCwqYJalV2zKnQ87PGeUrqfbGgen3k567yRkAZPd+qcHVe/E49dOdgTozhv3C/ZMJG3mMEfPGm5A75t1LwqeSo/JYRZPTCT/ejwcJ7wk0sOQYttiQr81w35kzPdxEoxZzf0gKjKt6PaU2BeW+BuJ54/w4KaKUrU5dCnR5yY+62Xs4A4f0Fmg2jZWGsC+UFlivPh3GD9kIEjdUV4WAqqRz0XMKCFou6UWlI2CiExeS3fsdmP2Pn5d96DHghbOPYwrF1HFYeOM+Es4Dbp8krr7pG6JpeGCAPAzN8Zw1gxbqfpaSUGTXJsku8RaSeFZWa5SQhDSeq10ThzPnQeVJGY/K3RdhMMcxdNo/5uK2XZE3Xs4xgUKHIrVMoQAOV2HuQJVIlHto/Falg5XJgeFfLCAqTdgFRqIfB+dfc4EFB4nlg9n3bjlWv31tl2K3kWvfPYwhfmvScF9qta4oQrUDhHkwlpaEeFcYaKlobRWLAkYGzzvXhro1rqcRcVV58G3I3DRYdhSQ9GoOUMk6LkN+dVMBXe48PGA8lUZmw8Sw9Bbb/0f1gADfujrfguG5yT08LcTsTrM+w6GQu8nql/IHWeemPfEcM70H1Kvc3vQr1dA4No9d0aBhrjNgxnRR7Gha69w+pk5Vxk1fBEVI4vzm7kUpwESSeNeI4KohxU7qwJfOXVEobHXdvR2XMF3LswZvy17NVAud7zoukhwakNVikL/MeWeOudz8SH5YB57bI7mGSV5S1nn93GVBOrBokPAFubJu1dKIpEEoxrIkRkwsF3H7I+udzklG1AA6okrKROs1ENPtO9asoAMmeOjx0gk9DWcyTaGGuRSw6VeteuzKbbBzcq6pXuXGYMlrZIxFwhJXxAo6UQAXLh5FKygAYCLGhK8oqFPV5pZUz3Qi1RhuJETIuvT4q1yCcMV0YUJh0hdJeeyVFRTss07EcppLyPRdpYPDaqXzUowH8PPu/+cAA8f3g4YhnB2CpLQ/U06RHBbj7HDxEE71Hrp+tDjCQfGdCCvE/VGildUpNQ4qAZ0ZKKDeQCEz06mgMHYQQEhCvv3EtNzxP/H9tlgvp7jSMdSSZysZNRBnWD39fYAw/Ggy58b0kDq6SCuEhE72IXhXJAOvD6EmFhp++xsgYl7g+NJTiUmkYymJTFepE0zOg3lXjQ5a7+eKV8AELVqRJj0uFyfAahSEVG19TbwYGY4oq/zvvyhDez74XrsW4D/LtJpYjv89D90dRedbG5V/02NwmIIQf/XtqTOiWBYkQlzAiFaju7lpk97Cy820EmSN4r8wHNVn6Mvbw279e+O/w1lJ58m/9jq4FYNw44DFyuv1+E8yrwkG5LrJdm+TJhQhdeyvAwVRS/ZFTQmFTMC8Q1kbApZtOWa35zQvVA7J1rDmyAC71xzvfc+GoqnC/tzrRo6FlD6RFt15mR2EkVjvzKTUFNGLYjNYTjzMs0rwL4Kx0HXfwUqoo0Pk366jC34iC3FiM5Z4o1EMYDWm4VB8kshgL67ok62dz4cg5oScFxFBKZdKNHgntcqCdBTaVsFKmNO7CxoJm/s0cEUNiibfWcWuFoWGujXlhbKxjUo9bCRlBYRdOGfLa6E3WdZwfMhNVmSlZpzKxLRQVdF7UHO4lLqxQ0TRo/hOYLADpSeaXvd+VdcczOPX6jF2ZN7KroMG/orV3MJUUBaGGv4wFjg6iklqkGzBb8+jeSmr18maopZt4Hxj3oEpPeOB7BAVxvjNvOJBHvnhLmybrh0UkTHCspQUqZbIZhJZA+hDz0NrhgUqqWzulGloO2Rha4/jVutfx5j35yLxjPolCSJlB9LK411W4D97D3epEZc6cFO8BH3IqKbI9OU69d90qKs9FWXHdOs4r/DVolw2CxgDnkt4hX6OSavoej0vSRZjrTHjrd5qIQRcqEo+RFuAUzPGRfQclEgEX3viJYDi3SmoyqIR6QqEOgroe1/BsT1Igfic/3rEtR3GmUKGQpHXOOHJ/BGxKc1H+JF28kS5E/r+RPmvjZ1XA5hZlBYS9bwr5HM+nLDQKfp2HXBCy1X+NeI3sGVh4T22Nyg2+8BTpNeZFihyvKmsqOgrq2iD210NMIHO+OZf0jEbyGhl29DgKRIXFz2uvv8ICvU70VBjWHRaLGTGk15c1UHoFosQTeso6D90asKN0PTChPqnGStcw4IyDPI+mObuDQpoAxo2/WfIveLBIc8b7GdoGjGSaC2HcORjGzo1vH0xYFAdTSR0ZRIGmoay1kUtSMm9DAcetybu1226+iZHSrVwF9fpZV0O12XFbnzOhTYue4aKwmV8m7DSnoEpMWws1eWG6nxI/HywWSF4KGKeoFwh7wRhhFQJZ7snEB2Sj466Tfw/LGJIgIzKQNOoY+lNlnIQqEcNeOWEB2XVQSA98kWxlYlcQ7cU4LOOmkqFJrb+OTuZJbXViyFa35qDFzRAh7+Gi++5MK7alUqXAqU1k6gFRORtIflTmRbec71SpB7bKvNO00NJehg11HzOCc0WoB8+5uRBbCq15w2Xkja1FSwjyHcCZ5tjtPpC6Xmg0jgpgbfFDHUwlRSuWNyYXjkCcOHafGJRRwM3CmjIBi0ihpmBmIWZ/BPRM6jXkx2fIJqdxNyEnUgTLxKaCLic9MJQUlBziA50/A7Ts2bWj8mEy9j6k0OxXccx5GIvnowJoImnMMc0JiUOVc7LFfO6hIvXIlGTBnJF+j2HCwo535VgV8mQ41yD3JcrzcGOf9yFWIOaZVukp5esvqdfLxrwX0CLy8Bqi99m0ji9ED4SgrKix+HVsSAMDzXPuFVRm1Qbm7D3x2Tu9OdchDqaSUu8EiBb2oHZJ9451FnoI1YnQn2dN0LLTLsa05geIgntQRgIDu6XXDQ+UjluVBx/C4CKTKm3Hw3303Fgj1q3c9wJdWz6rhck8r8mua0taQjEfxDZHtFLXOzH3Z8gF90gKfQ1gasmTYL6HrzKZAsqVr7xP2n4wBDLFyHMqoy4xWIpoqGyt+LGgZW+ReUn8LcaLElPKzFPgZ1cNkjM0dBgU1upPtzCartkCYXsXvh1IO3ZvleoqsKjnUxWu7o6GJSDG4x7fRF27fPaMndvIOrhKiu4l/w/4mH/XV3yLclJrfB42DTsX84eKinmTEJoR4sbRLWBNBFHTmMPW4vI6hWth491qev6oCIOSqqPwCSFPm5Ij+MNjjgqnxEdlbNWj3cpRRmZjaWNh6fowUz4mXhNzWRTU89BsqXyUqJIzDTlmJZnQS5wEjsENLv5NYcf9qrqVu85V9ctTT5PXp4LXGoxR1/M1stueQR6u2UvwvmmkIeRs/GeC9y7zeLFgqxND8gx/h5zoisN8KiPnUaRqqBJUTnMq4oOppMYEm389MKPqVCk1WerTkHyv4Ts8H9sVsYKchZV5CGxM+E6wmnMFo+dSZZQogwlKocmbsYgKu2lx8ZoKeS8PxagXq3ML+byOuwlKRW8M5eT/t+Mv5sWx4beMxcjfOatyWCy32dwsGCBckDp8QXeKB7NfQlb7YRy8d01hP/07MUQuEoyFvcU4XCUWMeQnIRC05j/GwVRSf3sobtOhlntlnMVhMK6c5p00UplpdRsfJmGeimG/YOV7i4/MscrGVkk6BiVOcCh84NQLacqtAWm4T+ukKOwMImGiKeGuY2d4lMcorMut8ZoA6b5Ob8R/73w3kkjY2JbkBbYyoufCMGOu1IbyPTUEaHnptfEzIxvJCRouCxal3B+yMonKALYATCcyrDZ8w9ejW/Oti2lg+JdaySD1DLnrMJCOnW2g9oOS2EuUtQs1ixOceKY02siOvNhQFalhl2NVy4eKsJLncZZBoPdGDckFKOoHU0k9s5Za4BTO1jgFA6ThNQoy9bomYbMTN+6jkC3k4agKVzNDIT00sVjVIAr3EqKg5OZrKIhJciDGcA0iw0vBuiOy5hjuS5SUvN8UdlNigrGx118t9HIW+XbkWEAMr+omi1Q2gKdc1/FaAaD2888cGB803hclm9AYQI1ka22tWws5PPnh7sJqqBR+DQSP17Mfjf+7W8dQJwt9p4Gsw0kECA218iO1v35S/LmpJu9X6a+bhkDwAOW8wZiR+5yvIwoJnbMLEaEPp3CYNeJwEPJQyyLUVGZKqikSsiw0QsLOLvO0bApr0KSyZoFbdTCVFJBa/ap88nBT7m3MQpMXYrL34d8rC+kC0VCjpd9TgaPjmgdqrSShrezaVDHp+PU4hY2kAtZsGAo9OGEOK4W5uSdm0lZF9M7y8CoQ83iVNx7080D0hBT60KlgUoXZRHW3cNa4McCoBox4UjXgOsibmJsbFe7+kZo+DXmYheA4SkQlw7fVkxoTMMbdAzJF9V411cjlAjpPnHMuD4oQz9mihazHixGFPK8sil9Urs1zDm3ftAjy8y/49YOppHqVF3q+VmhkM+WC6Fkk3o0XRnliW6HtbJo6ZytDijRtg7RIs/Ehq2NLpvBerlQQx8fTai6KHqF6UirE9Ud7xOm1MWxprNsRNicm9P1nDw9cA1heP2n83ApdLfpO7ffvMnGea+PqsEjKONeL7X44XjYEZkE2vSplwnHOCuvCqfwsf9aHbi5IM6dSYGGv7sNkijgnZ3tuzH3f3HYalDTDMKIaBmx1xHtkkHqlDPdp8bWBK2swSC1iNbbUSGoKvXBN8fW+GEwXKjgfBeLzeyFfzyqw5psH6Brns9/U+WRZ8Jmi1w/EUP40hNCeydbyfNrzYCopte71d4FxBaGWmG67MGn+9LMq5BNSQ2bVqSLUnJVSwUOeyWZhDMhNRryesetQBSSCSJvL5opKFRh/h87xkjdjYbSer+cp9bplBgtsGQqlwB0VjjGIKhJIRoULC57vuc+f7ckOxP4ch4Yx5GWN32ZEvBXOa77YEyp+Q3iwU8acRuLF+N+ljS2UNodufJNyHbkHyTwcD8nzdrP5rxGvhfPB2r0mNqNuaJhfb2HTa+Q979Zx/kLHfox3qbjQkK/3ix3d2j+vsqZ1jlatxCnHWDrBHOE00LggFiBgHBglZf7uP0UBWXrrvarHhfKkXVhZD3Su5+qp+qPJjUZD3kdaL/GYFAb5TeH79O50ITFeSytI2V85Ow1A2H6DY2nMLXmBb6UZLS0qixjCo2KkRcoFqMeikFTPThvXmiKSFlRB63Ga1rB6DmHRmnitIRlciBcp3w2hDJvOg3qLFNCovaIoooItfP4wZxCG0BpSBdRkkWptWVA2cr/12tQrGiug5XXwe3zPpgpKoetOa4RCuJTrbD5hsK+hnmQyh2gVlbFxS6HCilEuhvcq0clkxLzzr8/wAgbGgVFS2OxE4UlLNL9BbOujSssav425d2HP9Nz3Dw3dpofd2v3NFiu1iTeJYSAlLXQlREXL2HoFGDbp68AJXrlRWkvDhzAo1QlCmEqRf/OhVe8gKEI4a4vHo9DsVj5nYqPwtgbYqFxfOyZJhzayBksbNyQEYqiKoYWyRmDvqVLRZrnqgVRFHDeQEjcYztS6t6Cs/XgMANSpMi5r933uXZUoQqQEDSB9X72sYQFsdl0ea20U1wHDlGR70ovalEeKCjKE4jxxxNTRo+RaVQamKikLVyDOdUQ0eRJU8lbP75U8X5tXX5FtSOXHud4r6P2pDdxcegW86H5LQaFj3Fi9kFHWwKFdCn0unJeyKTntoqSgV4UwqrwV3clCJoUIDFoZQTCa2HVAcynaUBXI4r11FNoMMbF3n0H6UFkAKCOLLAkPQrwhPj029UxUIOXKTR+0oAREoHMTvFK8FSO5EY6nFIE+KpxgBhA6tjPXVcj1GqReFK+F8zRpMRbynq53Cmedv7w+Rr1I/a3HVmVOpcNz6hYgTd4jxwGkymxk4hwOizR0qbvu0sBgTZ6G7vQ+jXlSMmZrEZRLfn352tFjqldYFUAtubxFhHLSAd+44+yHEFsIhfI6lxgLn8ed8DJaTAfX7AJTf3CU1GUbonjghCjzA0o1p5dDQcY+e4UFKkSvaqvjqre5c+/5rvse246EkJo/7uFBVGp9r9C0E0UedqzlvIAftxA3KJyoJNWTUiWlD2xulcN/VlsjAamQoQLuepIBcy9MTJNGTo+A4c2e/46BU2b8Xn8UFX7hv9uvgN7IeTb9KoYmjvltU4ae9s352iqjMsk3/gNSb4jeoxIqlFKe5LlsVCBUtuujeD/o2dDbtCaOpzJx/rmmqJiCt1FHYkkg41jncXLetDSAViXvk/4Of/t1wgiBQu9jWAOIYxrZ2Di5XwFdfz/mSaRr0bl2l19WMWwHYY2bGJ2ofc2hkmrmRc7ObbEz0Pwxp1rX/Jw4OErqyCD9//rIPaAW8aHNBbaFy6fQsmZO6kwvDZMdGbjQX1AMQGwg63Mzl2yN70PU9SzDkXUCQsNJmjfJN2nj3zyHen6A5ExMFOz8W49vEMN3kxaGtjdSckDfh7aGZVSWWiSsnZWplCn04eecvQq5wWTHh04PD914uhVQbbl5P+QJChtd4HTffU/3eOJ1q2dj4D0FpIu/EheDbLt8/vqjaCj0/bxp3zPeh6EfU2B+ZvOu3lBQ4ohrg3Oi4WKuxcDwi8Md/z2HEKbSVBp8bQDr67eGNrJLaxN3ApgGElIq8bqDIVSMG0s7iZC3RGyVpV4pWanzYj/ksLTM4qBBN0zVSMG0yMoUHBwl1QTSk0eIgkAJCNYA7OGmYSFlVxk4S3qzk4bYaN2Gjg+22TLT/FFQfHY8dMIQjwqs3PsqsnMEKxziTfC6MovcyHnysQRyQcPYQ37HREGfh3zUM1WiAmt8tHhYqf79yhEXjHVzbODrk7zizq+X1xrunaCJ1hpqkHzYTa1nrgWOiTuJ8h6oh1oZ974qpbHu637O1aAIc6eKVm/cDPA2GovGfXisfDCn+GqZgkEaeq7N8gw/mwxs/mtZBXLGY1O4uMXeQklBNBwDQWtxBQUcdCVV+FmaZq10AdjNSFc+4z0mNo9lyOd0PxWYtJJp8XMn3Kb8iAotixhq0tAfa2z0IVSFUMh1KOkDcJ5aaJZr0mR9r4reGEN0PFZhnZc4rQ6o9OHOhMXof2gNUmAzDAjEPBU7OLDzg3pr3KNrzY9vJN5XlUllzgvZXLW+DvGYEQUxx8D6sa7cM/UuCwCogdKTGmrjQr8kewzKVDHTk9LzWQA9f89gY2g533Avz9vxePxIbqSE/zcYJ6p0RmXsbEKPOkQN9LvynXyt8r1BkbaN4liS43kFpfVaOwGuaQ2vVjJvS1rne46D5kFpqQTXn96XWuQXn+2LjYK+Laz7fEmndnkSY11O6kwvJsbPy0NrEAW+hcu3cFPAvJ5GFUxRxG00ShOVkDUuf6MhlTwsqCE8eiNcBBTwlfdAVCD3RzHv0q2i8iLxgQy9aehWKXEEiNuUcGFyXqgEQ92PjQqqaX4IhmtLG3fcHZkYqq0zz4DQsEJgw/mwndaKMdTV6J1ZoDDRg0MRj1UZFzYLHhxSJcXX4L4Wwn0k1UyCevMcv3pOYVzZ55PrFk9Ca9Xo8RkAZZUqcn62KJwiJgLz1EQDjREDDTnSIg45KrusgTwbamxQSSUMP6Cx6WyL3YWymPMCeSKvZ9T1OwOtkiImhdXoNSThLSDUwNDa1gdHoYIjNJHNLHkVHkB689RzAbJxZR4Wa3+UhafCpci+CywuYFSAjrziVs9EZSk9gfz809ARhQhhx0EUAkNbBO8Df+trrBMKSs6k86nfVYR7I96bXquG+YJng0iLnucBDGFYkynebHy5UtbxcW2W1ikMW8f6Mg2z8rvqSSkoWLgO2e2eU69JcN7XMJ4d9KQUIUyOGJ5mhKDF3iMYQtnzpMZ3/tk5cPEoKaVaNyHJ1SBaw9akpIJQo+MVAxPoA+5ci7gP0dme+9HO6Qq1etm4lsfWh1C7RvA1elUFtyA3wCFED6IjFnCgW/Mht+nxlgU9Ft0eXYViWTsPhfVX87DK1keOhMKms+xeEXbQLdJ7SZJE8KTEaKBAN0UkYOSGSE41z3M3AFAXURFwTSShNvH2WArB+qx8O3jCICqW2v+Eh1t+w1+nkXFScZEt2DGSf5VwSw56vp2sBgqIhfDaP7GwgPFh3pCHy+bPIOYPV43c2iZhB4heedslfu9BQ4trRJtUq0FDaBnBHLg4lNTAb+KnnkXOBsqZSkouoNDPXzeIQnpYAF3/YHf9DdjoOiUVtmAv0tg+t56vjRcShXhtuWeH1Ivh55oIFeplNXkw05T1ImD+g79p1XZEITAn2BHFOwvro0i6ABAav8KPeyQeVpJMF2+OiozKE3Ah1UDeyJSUxXg4qc6Or7myXEkFBpqJTFH2IpykpDiWUHgt3lr+Wb7EcxoLdHl/xWPSnADXJsG/Ge7jeBniIxuWr4W58q8FL9G6+Yfx56biXKGyaPJuQ9gcMUfaYv9An5Pae+JcF7nH3XpSGbj9+Swqb2C6eeu0X0Xhmm/lrUpNt4MAotDa8vRldvkeiZKiQAm92jgGxIcxbAOfjVlbL7GYGBgPUyqCIPfvkUY8Mo68sCi0Zkpp4UDM/VBZacPXecCcHT20wsR2UtYgdGOuEUNUjIcT/FNrxgjmUpqIC03gA6afaVIc7M4BpE1jJ+3wSyszkGqorLL4/dh4eH4xYPR3nn9rYjzm4cpJ10/PNBSFo1k5cEyrgtLzdXuXLsbJKC32B9R4VxZz05rR52cGDr6SGvrap81OFKqThKVBGqbRDtsM8zC3ZBCVDYs1KRzOd93nnlkDvrkew30MxYWed0hzHQViwr3vQ2SsL6KFC0SBX9j4OSVDJCQCCTPSGgaicCrr2V2+J+HIwIeQvCdIgcgcDsMxWiQ8L8g8BKL3wpAqjz8ogUHm8RBJ6Na/YeWnqWGrejC8N8GL4znE6yktUJXR2DCI9/h8N4b9jI2euz6YHe+F6DpICn3Fy1P2lLbUCkaNjUpJFaV2ew+eVNEsIJL8mBhcLGSmd9pDapTxdV7fdhSIMgy3OtH4qM308GmLvQWftZAjLzBRQWmEZQ4cbCXFbgHMZ1DR8KdJu+eWKCCJaQCmdDkOejE5OYEhPO3lxvyKjkG3bgDieAxSCnlXlJ82DuWYAlvQpoogJMFrN968xoSCnQnzZR58EhzUsqVA53VMqsGaF0n7IuM8KOZyDNKwnEKtuRwaephUcxMEtnXnbPKkwvGQsvMsQ6DeOFAKu+ZQSAJQ8gsVT+LleMVv4XJCqojymjv9m98NnigVnX9NFeIkqAKqm+YI8Z77COC27jfnMnTzQHqPdyL31WK1aDK6tuFlH2wlpZMVHnYzmbLKrua0Hpm0p0UMRO+KlrTmYcj4Y45KG6omdOgqKpi8Kzs9D4YaWWtTG1cPBYznoSjEGE7kQ85rNvIdtgvinFDQL1vc2a2Ao4Nx6z90IN+m1atJ1kCMMNF7yROwgbYt86N5Pf8WSE5IWJYTFHnuoehxO2b8HqqSYL4xfL6O90i9MhIjdM0GRYq4ZvOly3tuEPM1BmmeiwYVFRjXlsIahJZieh9zIRO2s/H3gPkwjnu7YTjd4Vhzm6zBa8N8EQwvT/JY9gJ5bp9QY0dfmwMHW0mNCXITQ161Gbf4GLozNm2Rw752GlLLhZI+vMxHaPuW0rqalbKObWnYziW3sg8PXR6DLYvKOibE1eLXe0wGnF4rf2vuI1C6eRC4vBTKtK5HczyzGFT9Ucy7MLykD0/tPaAmEscs5CSGyjjqO42AWq4xeKLivTUpFyp1/p0rJp0Dfi8XwF1RwOxFCMT7UtgoyMns1FBvToZJGJHytyp/fdCtzHUh81zW3su00UDh2mPbLm7CqLRyeljG3ytVihxvUMaIip5jX4WQJMOQRqC24DpoYOH+MvT5qog9RtVY7lZ7N1e89VwHpR1/tvLaqVH2/wk42EpKwbCIPvBN3oPe9CDchZ3G8JsKviQxjXHrnp8DYgiMD30I3dXRElayhnpAIYSDNFwZBKucM8mveMkZLHaLsSLIpmPSUqPQm4f4wFqt4AxQ+Hviw7LbKuh1628FH5BJng+PN3ZsE6+56XMN05uEZqn8+b1wfplLCwCFK26GeAgw48fkewXi+uI9yPcMyucnGCUmnaMxhijiGKnM9Dp17jQBPslb2q6CGvOG5TncS8wqXVkGTEMA0ctdZDyaYzR+PZHx2ZTG2Gk0lQrkXlIj5Xw+T2o+VeZx77334ru+67tw9OhRXHnllfjBH/xBfPWrX03HYi3uvvtunDx5Euvr67jpppvwla98JfnM1tYWbr/9dlxxxRU4fPgwbrnlFjz++OOLDGUc57sx78MdYul5rI9cSKpX+SamHeDpNeDpdUduONtz3z/bi9bo+gi4dBO4fAM4vgFccd51Wj8ycNYKWw1x0WxJ/okswTV/3ku23O8jg7gP06GhO8faMDYj5S6yZMwlTCwTz6Vd2HU3XG7dPiijQKF1tTaM1r8q4USAy3wOC3esc11PADkEnOnns94MKnVa3IPSde841XdzPy/4MG92Yh3ZoEibjKqCb7o2Cm7NFaqHq4JXBaIek+Fefo6vcX+yo1vAsS3gsk23To5vuLXD+62bTdLLJuN0rCmwGCeqtJIaFJOyQtXbZLnF+a6b642uzJ8/L/OlQ+noD0TFoMzSfhU719NjZt0bPR31yJYFPacj8pywyfFeIA/1ruJ4mx0nY8713H3hvaH3OA9CN5Yi5tq1UYDe13mPuSqooQREQ1fHOxRG806E+z7zmc/gtttuw3d913dhNBrhZ3/2Z3HzzTfjT//0T3H48GEAwLvf/W784i/+Iu6//358+7d/O975znfi5S9/Ob761a/i6NGjAIA77rgDv//7v48HHngAl19+Oe6880686lWvwsMPP4yyXDI58v9eEr0chsm4wNd96x8KulHhtyv35+KDxy7dDIdoj70mFFa2l+jEyTdIOzNbESiB9VbHvFTiAfhj82arENI8E43wYRFDPYzn90dpxwm2bwrhMaTueZNXQmXOcNXIP2TGRkbhLBjrPKitjlNweh3ro9n5qmGREk90DyfOReLR1KnSSXJZiN8psnmnMg3jRhqGy5mYPB83XFwfRU8z3xaFbM9auuCTOKMtqoyOHenfqoSS8Ke/d7CRoq/UbV0nXG8hN0qFKEI45PPgPF6DdK1SKelcBC9OFP9+Yt8xZ7eIR8Z1sor9poIyKZ2RwPtD2cNT1HOG6mjUhGdA1ikA116Nhg6iobpTaIp06OuBwFWk6YOyHpc5E7CQkvr4xz+e/P/9738/rrzySjz88MP4vu/7Plhr8Uu/9Ev42Z/9WbzmNa8BAPzmb/4mrrrqKnzoQx/CG9/4Rpw6dQrve9/78IEPfAAve9nLAAAf/OAHce211+JTn/oUXvGKVywypNnQxRmS7iYuHgOX/GYYJXnYlrCiKBCY8yIzj61yNKynD0/Tg5RbJSp4gvULyVtgcggMYhUavoHxcE7yPRkHFRwfrnkWvnp/FJyDMu4hNUuY6UaCtcyBjjGpEcvPj3j+xNq3UbgbOZb+zv/OoeEvVY75PQyKkMrQxL9nGZJjLMSGL+RJ80RpyO/CRCVGQ4oEE/kV0JSzTcamY5QXd9l4nwpa8KX1RsCcz7KGx7cLGmVqoOk6ViE/C3kIupG5irjO5tUC20Ge7gBSGVU3XN+CjL9t5aROnToFADh+/DgA4NFHH8WTTz6Jm2++OXym3+/jRS96ET73uc/hjW98Ix5++GEMh8PkMydPnsT111+Pz33uc41KamtrC1tbW+H/p0+fHh8MNx1kXQrDZyQUaChEQ4LB0pDPBgt9hmWTKAsKyzrmjvi63jBaznm4LTSbhTTTFMu9yhY7Y9D5Yg3CVo4dLOpMKfJ3gXGFvD4cd9FHhQvbFdbN5ZHB9AJpDdVtdOK4R4WzGq8+O31+B2XccJBhjjBXVfODqqQR1qdpkS3gjBJUUcHneZqx42Hc2wremI3ek86pEg9IltBj5kQPQu87PxMa+PLzVAZ1VDjhGkQhUzgY+PF4y3tk3Xdz4yRnT1pZL8yJhTUrFjND5N0ljLpVI3iuJhJL+j6MOK9nVMyrNeYAw/CUP7ouOFehbm2CvOEc6z5qrJ1MPBcxxIIxvBuKSn5U1jGsbCFkICvF/fN5eEsrKWst3vzmN+N7v/d7cf311wMAnnzySQDAVVddlXz2qquuwte//vXwmV6vh8suu2zsM/x+jnvvvRfveMc7pg+Im/DRsmVX89CNO8tVhW4GIlAo2KyZn3XDxcFQCWP5GnPlg685FE1kU8DRKuH+V9ZEz0WtEnWd9TiTPD++xIXU5MHli5nXAXilAHfO8749BeeyUwOXn2+eG82XbXVS5cEFPGmeee0DCZFoPzB6ogmD0F9roKhLjD4hVBinqGqk150TLNTaDdYpxudN5z1XVFRi04TFWJjXCyOr45Ex8l5rSpnHr21D+EXWOK+H90Kve4zej8j4A2Q9y3nDEIvYL3JV4H2bt1MJ4Nbnmb4oWv/64dUNa26ooNZwvIaQc6Gu18r7ocqtsG7dlqKkND+p61YNp92AGjucf0ZQQihcldR893VpJfWmN70Jf/Inf4LPfvaz42M1Jvm/tXbstRzTPnPXXXfhzW9+c/j/6dOnce2116YfOjSMWhoQD6VOBVTR8BOUCADjLdl56JFUDuGjooAmhe/0u9pDLrD4RBHl3+VCrWzaAghIhWXYbM+m1pQm8OGPp4snR7eOipVjI82dXmjTw0WQNq/JXZIZ6I1NUlLhwcuEabDaMgHO+VFWW+J1IhoTpZ+/AmlYRBXFIrD+yxZx3eTMQV5zkgPKxq8Ch+tDDRkgenDWuBBWUwpXi7+DN26znwnXUlj3HRoBZC8mHdVV6cl1hmgBVqOsOK+LgAIyHMMsFFpaKXLiU1jLVmSHyAn1ihi9CILeP6umjh4hGwwwwqJt1LREYqcx7V4zOqQyccF7sZSSuv322/HRj34UDz30EK655prw+tVXXw3AeUsnTpwIrz/11FPBu7r66qsxGAzw9NNPJ97UU089hRe+8IWN5+v3++j3ZzDLJiUdecMA3/JoBNc1AqnmZ82Bfu/Y1vQbrcfW15iTCsId7mSkEoe6htqx7lQQ1MZ3yRDpk7OMRrJwkzCiX6C9qrnVkVov/Qphi/dJ6HtyA8MVHBetw42O+/5hz2DMEUJ9nm1W+Xkua/f9Z9Y8CzIr0mT3c601M0gVOuclb/hK65/egOYegeit8l4V1gl6Wp1kVubto0SXJVCDguHJWs5vEDuCdCtXA9eVUCUFEhsNc45zgg3vrSqlJnbU0K9t3QBRDQ0NM6uyCorfRCVH8k/eWSXxtIo4RxSs+tllLXkK9kWUXejkLh5UoLMvILBDHm/JsWt4jp1H1Igqkc4pjZGRAWpPEDrXSxsFA45FSlbxsq3Mdgqa69Z0BOed6Re+tkCh/xzuQoS1Fm9605vwO7/zO/j0pz+NZz/72cn7z372s3H11Vfjk5/8ZHhtMBjgM5/5TFBAN9xwA7rdbvKZJ554Al/+8pcnKqm5xoa7w88Y1ArUuqTgSSGtPeDiyr2VHHzQudi0p96sGg/eLO5aq21xenVK8+WPUoG5fUjymTrtjjENIRc3Ax1ZUBR+nJ8tz5bMd3ElVEmEEF8Rv7fVATa7sWaE4OeDBQrxhpEaGLnHlDPfQsLaROXF/2vIi/ckObYR4TJhfvQcQ7k2pX+zI3q+nYmy7ZRgws/mISt6gbqBpP6whIHv555YPn+TljcNAqWjJ2ubz07DXCj7Mo8GLIJFCAVAVJy557IMOO/LQNcDyT7JmJCG3NVo0MiD5nM3mZst4r3Zb8inWg3LpB50ccNlIU/qtttuw4c+9CH83u/9Ho4ePRpySMeOHcP6+jqMMbjjjjtwzz334DnPeQ6e85zn4J577sGhQ4fwIz/yI+Gzb3jDG3DnnXfi8ssvx/Hjx/GWt7wFz3ve8wLbb+UobXyAu/W4ENK8DhfNPPsf0dpXN5ZbG/C4bKPE32UdK/+ZRxsb7wwro+O9D4sozIA057RKcP7qEbBWplvQs1ZoEoJA9E9n+NujSRAFIS75vfx7AGJBskVS+EpCARB3yqUCCAnoThp+C4ndWtaEFS8WmXIRBaN5AD1PCM8aN9jSph0V2PVhS4gl57tO6QeGaB09MvZYpBGinhAVeZhTEdI6d2pYFdYlrymPeb0h5GjjfPFvXq8uTx6frFWui+1A78M80PuSh/znGYs1PveD6B1WJq2PmwcM/xsL2CKNXtDYyev5CK4Z5nBpvHH9a+5pSf27Y+B1q9dqgdAjUmVa+Ox8h15ISd13330AgJtuuil5/f3vfz9e//rXAwB++qd/GhsbG/iJn/gJPP300/ju7/5ufOITnwg1UgDwnve8B51OB7feeis2Njbw0pe+FPfff//yNVKzYLzSWTORtZYvDgojdh3nluuTQOYYlVToyQaEJ1hrpbRuaRXxegqoPKfD0N+qUJuskSzcw8IQVGknb0Gfx6HznBKFaW61BgXlFTo/B6RKLZQNAImmK/39LC1Q+fvJIlYKAd43jqO0CGxODVMAUamoRzEmfPz4ghchFrQpXR6RayzkDL2SOueLpqvCKalBiaQl1tooht/Yy9HrvbiWRFEmyXMb3h4jztDr5r1UIcnO+fSI8lB4rvhofK1y7S2i6PiM96qUVAS4EP80jApHtiATjfeSRm3h1/i8IUOuc3q7VCycX0ZAxryoMnrjXAecTuZwK+PW96oN0e0iGHkiC9WT5fOcMJHnu4aFlJS1sw9qjMHdd9+Nu+++e+Jn1tbW8N73vhfvfe97Fzn99kFriy2GaMkCktiuZ1uCFERaUMebVIj1yuMZNO8LtRNYpYWlzEVa9t0KYadbKqlJ1xUUE613M664mr6qnhTvEfd/4sOeCGEz/v1gsdYxnKsfU6ERiBXZ2PXDvJ/qcYexZQoiCTfZePya4/AahueoClfsqaxE1JEZpZ4ZhagqH9FTyZwkOSe5D3pfCnmtsNFzKuz4deVzzHOop7nXCMxHyHVN+byyfYfZB7nbQVnHHQwWQWHH5YyGvPK5B9I1macblGK+H6HPRp5PbKLDz3kpF0/vPiAlJ5Q1UBYAMgv5yCDmf5rAljMkW4w8+UD78YXtJbB6z2YaauMT8IjeCffHmsdqoVWvD0ISyrHRq6KSmnZthwfpw6ceE63eJiqq1rgZpA9tKBOA805GZvzhDQwq47wQFbq6/YOB754hhklT1wqGvoLilN81kHSWD6GNbP6Yw+EYCrknPBfDJTpnKFLBBaQCTs/B+7I+SnNc+hm9tiZiA0PUIVRZjHuyOsd56HOvcWiYhkOBKQzSIhJ6SFLQuQTiPaABseh1HhrGeiCuf+YQFXp/aQzy/5r33g+GwCQY6xjFNLKa5IiGk3OjYAIuMiUlIZbKxCLMw4PIYprEmmFR6Om+Y94wMVoVwLqJYb2mzuq7hWEZ2WFkmakyYfFtExjyOOXbF2nS/MjA09kX9AbJZNMwIR9GhkJCg9YMxo+3W7t51j5zDHtUFihIsIDkTOAtORNDogzbBIVHJS6ttPhbc1Q10jCZ0rG124WVOUMR8zO8FiAqXAsXslGPhjV9qnwCW1FIJDyfWqHqHVGYAZEsoqCSpOJtAsPUtQEGSOc3t353W3gq66/pnIWdniNVnO9Go0xZsrxGzb1pTeUibYbKGlifQ7EVVtqoIRoKaiQyVbCPnSkA3nOcECK2iBGoSYSrDBeXkiL0YTZId+NtQlVEr2lYOus9bM0gQq/yi3iHUmszQUFSiyAiytpZLk3XqJ0lSJdNCklp0S04nrJ2RbMhmS0hrnmT0aRDW45b8lDsgmD84JLxec+EW5PUPiauRdUG8eHX0IzCZH/r5zgODZ2xI7oq30mXmeeLmuYkJz+Y7O+mY1I5qgcUxjGnMlHiRRNLbq+EJfN9GjZbNsc7jQmYH3dRtuEyaGJTKhGjkL8vBFApEZy/IDPnW0AXl5Ki5jZwbviRgbd0JlheZFqdkyp21glZiMWF1Bq+ZEtoukssqMBAQ3w45mk+yYR3qKMCMOoAW3DjqApgaxS9I56LSeNzPpRpEZPqvSzssCi6le+eXbrwKoUMW/vMevAZOitrn7vx82GKOH5eWzgOFZYYIn24e64PCY/PB59eFJU8rT5jYhjs0DD1uDv+OioL1HJ8ChXeS91vCojXH0oRqpgDUfA4DI+y3AAQQ8TEHJEK147Mcd6c2MLlwTaQCkFr3ByPsi4JmuspbdrSZpRdW79avSDlWDa6adNYsmQX2ZeJxxrKfQHiMZng572gEaKF3zsBY9266tUxYhDeg4v47FZuezsoZC0R6q2yG//WfOrn4lFSFN60omct7Nq40N5Wx/WrO91PPRNNotMaY4JUmWBkY82zsJR9xmMy1EIhOW282kaIP+r18dj0GtdGMeQx9H0NNzsx3MBr2e4zwRh8YV3fuKJIH/x56lkK6/I4RQEMrMsDldZ5SLVBaJ4KxDHn1rbeAyuf1dcNfJ0KogLklu1UuPl9KGunyPpVVApcG1XhH0o5r3pfBtHromeYw9jJNXB5Ir0px2ThrgGZ5zCaYM2GzyAqwjD/VhQ6YkiR668ywGgUjaBVITDfGso+whzOmS8KHVAk2pA3CU7WxC4rhbJ2W/vk9YNrMxjHCuZuKYt2E7wnfBBoFGmTamWQzsDFo6S4kEkznmV5MRw4qqOA0DqRJlYTc11Uhmxb0mSBkdZLGaH5Gg3X0SPa6kwfcwhD2fh/wIce6xja0r6Biklr3yAKrGUxzIQChXgofJzzOJp0DR6BaR5fbgXrfQoPEFKChNXvNJyfc9gkKHh87TZC4VZKmDXQm4UwwnY2VEa05OkF0qDKa/csopIJHTIQ1wnnS0PSOXIlp4aR/t0Ei3StarH0qqEhVs6BGoqLKBI+J0raURLLtBDisgXCi6Ksga4IeGD+8CqjFdwNepndHLaLwLrlb8R8rYat58DFoaSsWa4+6cggegAkSYTwB6L1BUTlMvSMIVrwDIvQaBgVrh0QCzY7mQVHd5hCnZXmLO7r1HHPqxwMA2mSV9lpfRF0gYFYi6CXVcOHHxjPbcyLDd+NYrMTySaqFLYQheusNi+sxlfKcGjPk49dhJdaxh1V1jb9LO/dNAHbqV0opslip1LJLfCa81zE+0xl1BeDqS+efscTSuiFHxm4TRRzsFZPlZHWo+g9zBU7X1NShM3+zueTxpaGS5WkQ0+KpJdVhqUYDiVbM3lvQeIG138NWeMm9b41QkLsJlNXCSA0LuY595l+1isTLsRPktK8pJLtQI29wr/A1wq4+zWa8Bw14GAqKVUSmmtYFOxWMKiccKr8MegFhQJeA9RldGkHQGhiqmET9qzjLsK0oGnVkXZKZUghpPkWbZ+UXxdp28C44DEYb2+jmDU9FG6T5rGJvssefNywkKy+0h+QIQnm8qaFJeihai1RIngbvqPWWlAQSBl6FMAjUXiThEETsSI5n3iy+p3QENZGgaoMMa6z0iuu2sRcaVlPLpbWnFHosF0AVQMRZJKRoUpKw8JBqPjFQyKNRgXoyTFswznk2l0kTzQPtJtEGAuWVxzdGqgq8ehNGuqjcarYZYcEQJpGmAb2jtRwJkPf4dmrpz9nq4TKA4qlzn9w+WG4RuHH8LMzD3MwldRGN+5Oux1XN6ezcpdaPpRqhcP/7maKR/ud8Zj8PxPwFFoMKRYW6PqFRmVHyrZSfvPrYkNYblGhbxfiSSnWR7GankoDSBP1TeHBHKE2yf8/9PaT+HPIA4kHakyMUQNTGJYSSqJS4sMXxoA0zAektGlW6uu8NBXi0vMskLL1ltnh1Iry5j1sWo/dyjEhq0H0oLiO5hH2iXfj72GnTpWNepcGEjpFqpjUIMlD1bl3PckD2wmPQ0OgimV3nmXOWEOVQLzcJERaize5iwghf1GgTc8+882MNIR1bFwemGMf1FFh7ZRXqEp+BTiYSupUHzhqACzQymQa+qOorLSYlw/lqHDhHCopdq9ebwjLhT54xoUujm6NJ30PDSXJKCEozWdMWgCBsLGAW398I4YSKXw0BzJJKSpUaAEu1He2536PisjkWce4x2URmZRU3BqGqY1jm+nDp7moRNEAYTNDILLftLgwD+HwNxlfVCwkC3RMbJU1CdxYsRAhrudqaguTg2GyeaEKOGzrINekNXJaK8Z+fUm+CuPhwKCgRHGH8xXxd55PBXbOWm8q/t4OqOACC9MAg8644nIfQthUsuk+bnWQ1NXRc57XSFZWadKWysSUBSMASqIgKYw9ILkPV35sPj9ci+vDnctXrVABHkwlxW0P5mWOLQLGxLmgmFPRPBUX06QiVc2RTFrEpF4HdpaJ51p1db+xaSdti1jYOk8tSlJT419T4aUeUFUAtkrvS+gP56+Xez2F40OUUXZPZ5E6VFlM+2y+TkLi1/89i6FJD7jJSzPWCbedTl7n66QwznskQj0XYsElx8ywUNPzMu+wc4LKhQTNCQPjRldt3HxOC5vSwCECe3MOr4XGrsqWQKLK17yV9WbkOeP3ALAMw/ixuW7MafkMO0N09vf9OphKqrBuwQy8RbFsOGDSsXXvJOaPSHBgmGwSJbZTu51sp8XsuUi3k09bFIV1yXnmT4D0vIxxa/cI3U6Dlra25WdrKX6ex80T37xfAEKfNA1P0bMh1bvjH0hukpl7UxqSCvm8Oib18+kMjEM/3xWcgaAFzdMozkpcII18TOlhdsh0HuQMRyobvmflfvTqaAytjaKHquEY1oFVRXrvw1wiDbMZ74n1hHizLqFa1vrsJHaCwJCwGjHZoKEhQAOUymSzEyMsBNdLD9M9qo1OJEcFJSVGlXZH0a7s7AqiCk1DlPxcrtBYED/0Cs2ayTIyJxJxDewiDqaSYn3Khr+8WSEUJvYLm25DMQ9I614kvDap5kkZghQanV3e3CyfK2vcfjb0TrV/XgiN+UVL5iHraZgjM0hDdUPJ6RFUaEWZdYBAqkAMHGPOmPTh01CTjp3K1ACwdZo3ScKGRsgVdvxYs0gdbDRsgWDFEoEGv+TDzSLWJuZhXtNDIRrCjDaGKvM1zfXOTiRBSJtUSfE4NBx0/7P1GWHQVYMtsZTCvwqogG+ahyblRRnD+3O2F+9RbrAVttlj2egAZ32jgA3pfN60nrtlTCXoPU+UFOK9p1FWVvGYNOxMIREnyZfrGmF3HQ6Dz8eqdnKYEwdTSQXL3qQeQA5SZslCKyxQc3uEXfJgFCGEmOVednscCnoFWrDJ+D1DB0qs0AQ8SQcMa+adyEMdUZ1a+PqgN4WgjPzwc7mnYpCF3qb8rR6Y8V/m9/UckxC8l+xzRt7n70XvpeWaMNG71uMre0pDeYCEnu1kzyMQKbL3m+7TfkCSL1vlcTF/WFONHD6vWtTM8K4+C5PA7zIfxohCnh8EYg1eODbnQo7X5OkYeT2fNvUgeWwafrr+1ftuPakVYKuM1dpktLEgktbX2R7wzUNCazbuAQ+kh5EL6y3ShmSZLskEQwZUBGwdRCZOb4FxrBpbHdeVYlTE0AQg1rqw37hhXFm7Ni61cfdgfTieXNfv8/oMvJL2107av1qVFMb0tPg+w4jKXqsKZylS6VCw5M0tqWyZl9AE+STPl2Dfwyb6ubLfKhNDwToPkxhbZ3vptjAUWrpFO8/ZHwE9kx5rbRQT7NMEi4Zs1egIXoRXwIw2rE8+1I4iKPkVKyhASAs0kBCVDf8PxPtoirQDBskLQMzl0jgjW3PSOXmPlQXLe62KpShjjmlYObKWjo1MUK0BBKLnyzExKqEeGYkaXROjH4uQPpquLTAMsa2Uy8FUUiz8rArXoqXfizkg1pw8swY8dTjNlVAYlTWwOYrfufz87HMyTLeMkmI91FYnHocKzyIKtUn1MjuNQelCEVulK8qlR8QHiCxAPsC5Yg1F0Ij7JuUPIh+skPg30RMDxLLzCkq9H35PrT7G3AsvaPRhyxUajxPyYP5zFNizGGX0Ksn+4vcZetFapmEZc0FUPOrtcC4Hfq7z7QzyDubGCxLWWnGbmXlbcak1TiUelJp4AhbReNhtGjYR7jn/v4RnOglKmDD+j0lkF64dllmwyDwwG4FQx9idoKC0FpJ/D8vY4JkCXolLbHNk6/hdg6hUGL5tqp/Ubh35+yFXJVgk5ZEjRFyQ5tOWxMFUUrquNOcQwoAYF5KA5A4mHGvqOc38n1XoYtV4tD6Qed5ht8G8G+uMKMj48IS/s+8Z+T7Dhqz7AuL9AOL1VQUAMpD0QUJ6zyhMjH6OYS4bQ4VlHT2PSbJVWWlBqZl4rE413jNPoWtLlam+znWXeHQyD6aOc6bXlCgRE79XIPUutf5ukZwBDaGqGFfSwWvJ5mev9o7aSd1o5DevO2d4qhEUjDRZ/xoSm6tkA82hZzWaG78r64qhOZVhtGsSuYZ4D/Nx6TlXAToJ6vVvAwdTSQGp0lArUS2mwgLWRkuEYSe6xfzOXOdDVlMxJ7hN9NmeC6mxtoKJbHaimCYkCVp12nJnFTjkQ3Wlr2UqpKUTLcbQIwzNSd/C34RZPSVrE5vk8v9AtDj1gepMEMgcF4sb9eHk76DkRMAwHDzpYZ425soAVogk6o1pP7uRle8U6XhZwFtYx2Dk+bUfJD1VjpfjZ9lDb8EQTd6BJORCZfxAGpLdK4NJWZurHgI95RoAvBcgOiothJa1pHNCwySvL2yCkjPq7Ad6Xr9WWatG2jhrMwsbDRwglpDo46f9OrnOGNqkjMuV5XY81LO9tDluYRfvVC84uEqKCJa3GVc6uZDSWPKiD+Kylgjj0JsdF1IzFjDDGP5SJTDr/IMyhof6C4yBydtJi4gFyrS2qaC0nQ/HCaTEh0XBkEXwPqwUjornAcSHKXTz8MegwObfob6MlqWcTy3MZQtFx9aVKCqLqFj05OpdAVHJJwlqHt/E0CCFi4bdeE+2s0Nur/LkIROVIhCvQzeFPIgIHmIRvRGuPzU89Idzbq27H6TwJ9vDTzgfCTGJIS3rpKn0JDe21ZALilM+b7K1pGNiOFzlY1PpxDJgK7QwZ3ZbbbIOppJSrd31CXzG6bkvU2j54++qhrAohPvV/EJr2ZjroQHQ6aR1XWsjd+6eJxzMM4aQl7CRzj0vZnmM3Qo44ueGO/9q2CcPf2joaxlFVdZOWI6KcaNCrbxc2ah3xHFp9/rAJhTLN2ldtaQADp6X/38yDhFaOjbmqKiU8y4iuhaZm6hNtJoL22ytb4e8w23nh4XcT0Tvfjeak85CpwZMEUPIq4KxjiIePEpEAxZA0jEkdGApfPs1A/SKSD7Q/M+sZ1cjPnnD6RAy5hj1J1dgpjmao/eQUY7Cpt65KmBVgstAv2f9AQ2WPx4OqpI6thX7nnUrt415flMPD10Ya1j4MFkZF1bf7xvE7cvnxTKKal2KLLmAjgx8S6V6MYHTHy3mQRFaIzLpfJ3asR0LG5PEGjoFopAOxzPLV7Mbf++qbInqA5dbq0E5yJjXpC8hx8vwKRX7dkEFp5fK8cG6pyx4JEIEoYd3qMEQ4fXzmpR5x581addl/DEHxs1Z4m0iepwFJisbdjnpVq7Hm8FqC+HnAUOjk4gfhQWKHRxTYeP8qIJoGkunTusKtceeKrgm5B4Uj7c2SpWUMjvzUCOPTw+L5As9pkIVlpKHaIBon79lDQAN1QPpHC6JA6mk7Ik7w99m9B+bJ7xTRfdc61c1dLIdCuaiYD6ENNLuggpquwhsohmfY1HoqIwPT16vMekhWQU038MHVqGeFoBAVXdPuX/NThaC2xkXzLiiAmLOk1a4gbfUJSfVBFVIhU2VVN56Sy3pXFCRPcnSADYunra2mxq57gYGPvfYFUW1lzmwReZg2eJivTwaXUo2UiJHPp5C7r+GARunzMRfIY/qj6EkDM2XLoJpdWHbkAcHUkklmLRw1ipnBY0KZy1y64z+KHpgu6WgAGdBXXlub6zXRfJwZe26DFR1FCihxgTx/4x512Z5b4XWXl5zwQeZsXTYtBWMIuwHJg9JvuXDdkGPJ8kpSLKaXr2GSK1xcwhMXmfrIzfOkVD89TiHhvF6WVvHcF2gkiP1LlHAdezA9PDmbisG7kvFOqG6ArqIRttBgLIzQ6gN0VjmOlVPqmMdiYbvJ0aK3KPEQESqrHRdNqGS54Ntk4DZ2+fk4Fc1DwxsL1eKi0FJTYKxrldd2N67jBZMYRfP66wCe/Uwhkr2BQRTUFaFU1ZqyVUGQJkWDC6jFLThJouug2fkUXsJzHPnwjWEzcTbW7URoIpQc3EMAzaF1yiApoHUf8AZMfSEmhQIvVsWhTJ02xWPiAKMdW7z7d698zjbi/V3FN56vTu5rcSyYIeaeXtrWhNbKOXEHz4bXaR53KY1FUK3ebjPxJ+gCGWPO1VYPDZ/qjrWwAEI7b1mbZ+TQ5mmuXe4DaPw4lVSQFz83psGIMn1XQy17QcsG1bR+inAP0jyoAVvZwnQ0lRPQA/Fhy6pKZpwDUrqWDVo+Vr/n53wwMkim5rnMKkVXeavY29CeLOQUKEpTJEK35VzzrcB3T7D+DzfrHseWh81hNGSe8rnKDumRaq8pp0vMUpkbvU1HkfnmsaeAULrJTJ655UNmjPjMK746fm+OwEXt5ICYgJ6bR8wl+YFH2ZgdoJ2XmxHKTOHVhvXBDOphN/G2Ni4l15ep0gfPC3OBuZ7mJLQ14qg5+Q2Cta45py1BdDZfn5FC0ubEHrIFVGIGgmB0ntii6j9ZIQdGbjxsBSDbEYgCthlvb5VdqXgvG50YzcTGrrc6iYHN/5kxIb5QPWCpq0JGkBkyU3Lk2kdV11GJdREZEj0oolMU27pYT2hbFS7a9XQ8jQwjGzl+raJVkldSOCmamqNTdsWZDfBEMShOoY0dIGq4poXpXVMLiqpUSk5lyIqhOBtzVACO2WQ89prkaQMs1TwYcgiCrNlldU0Yat5u9CMFuP5OGVG7hcY63eHlvBWHtLVXXPVSAEamG6Z16B1c8uCbaoqE/v0sXygsGkulqgMcN4XttYmsmIZwgRShaW1ddq5RDtI5F4S5DcQQ/ecE73sxDuV1zWkSAUVqPdFzJ2S+TxL6ZNJugJmH9AqqQsLak3rA7GbBI95EKr3s1DfouPk9TL2jypas6ij1agKaq/mYp4wotajzDpW03XM8gr4VmFjaJBzk3dg2Y/oj9KdqJtCXrqmmq5HSQJWvrPd/Jt2OdewpBIOkgbHorjyMKaSgCqIcvIaKu8sEuYCzcYF728hv8OzYGIIDow6yPuNx/O/OcZ8PmetX45jrg/PxsFXUqt09/cabDtUAWH/IrOC7ujcN6ZjV7tXTKB+bwN8gBlKYTI9j+1Tkc1jMWs4aRXgWPIiSPVaytrN76Ru2BRwFMBqbQORVq4J7+QYiAKqV7mwnlLUwzYSiIJyP3lThNYd5feYXVX4TIeNGBEFtSqLoED8dRZzro/8nLqdj7LmahML8FlvaWQdWr2vcszwPcR7HO6Fie+HKIF/L7QBQ0qgsf6f2htvwVszQEGPhoZLw/rSdZbPETcXZXRkGttSvb/g9W1/jR18JdXECLtQwbYtmvDcLpR11K3TIujdgObW9LVJitJYV+Q8AkIBI5AyCWeec8Y55kWS5M9CGyo8WUQ7aWxKtYf/HEMuDCVVJlUuOWNK55H92xhKsnDHCxYxvZF9/kwoXV8Vg+4QwDmmQFRvi9/p1M4IK8ziOdxhERVfHsYOdUGZ59epXZ2XRbrLAqHeXmGdl6fGTdi+g59BPH6omfMKKLyBcU8qCSNmSkO9LV2r6q0FD1DGm3dLV6gHnBfQbwMHXknZzs8BAAzu3tuBrApl7eLEed3NstC9cPgAFjugpHJqNpGwAOU3zGR6L6nZ1qQCeZbSoULRPNYqjReOX+m+BrMVAskO4f/GES6YgK7keLDNgoJrgd3bVViF+amjp7zP9VOCIGA17EQBatPf4WMWYUsXg8jAW1RmKjs1eGx8D8Lys0gVlo2eUp5n4/0EUu+b51EmoPFrgF0iiDwPx2Mpg7XJkDXyfea7VInxGWoKURrEtZqH1rUzhl7vCp6vA6+k5gK3QldLhdYA39/sxFDKKgtBl0GvcuGd7XiIo8IlgnWPKIYT2J1gfTh/HcgsbEntDsOWqghD0S6iwNamq01zztDKvCChQJPLq6xNsyZuUaAPKuc1HyoFATdNtJkQavL2LIumbRreJMuMBJVQzGvj+zwu37+QwHFbmdcglDGuSNRrUGblImuZHqwWaPMcgF9PeXePbLwabqXRUltHAtLxAinxhbVuXOOsq6OhQtIGLzPksUoxjAShzkq8LD6HuVcVviNjUiW1VUYFRyNIx6tYpK3cBFzcSopCImzpYKOlaSCbmxWxsE1v8l5BF8iyoGCkF6Vhidq61zuV+3u7gtyamEQmxTVXLhZRQQUB6vNuq+gQoQ8tH/RVCmpauqqgZhVIazgkCcXBe7Ti8QWPE+l3SAgIbCwbczC516pCeifqxXYaqpBsNl8M9SkS0sESxhbnOldAysLjGPJjJ8rSf3ZMCZjx+8lwJhVkgegJ6imS6zHjnlY4vknvtV5D/lvXWf59eqscHz08jj+UPTgDwh77mcYpXQYXl5IalG7/prATprdeKaRLG7uO61bLgDQk3SfV76vqSM0tN2rxpGj9r4hCmghLeqL5HFKR8TfgFKQBUNfLNc4dGwMQOLkU/tuBJsU1ds9LU6+FlGWG4fg9zk3YngSp0DJyHD1mLnQ1D8GQj7ZmGvPIdkFJWQNsek8diI2fl0Vu9Te9z7BmGANkvlWzTBivHpeU64SiDYRejCNPz9b7w5xg7nXxeDwWw9VBiWX3w1iEXZ6bFGyiqP1rWn6QsxFrv+AZOtRm0pRtysorvNWYF+bXiDsEqwJWCv6K5ePFo6Q2OsCZPvC3hyJTZ6tMF0e3cq2S1kbuxq0PY0ioPxrPAdELU6ZRqFFZgQeyk+ADUlrfggaROJFb7qsgGTBsN5EZBOkDmFl/HbN4H7EmUEiIAbo0RoVLxgPigZp0vnIlBcQHWLdxIL2etTQqdNwB4vcKL4QnKdl5Q5g7zXj95iH3zG12XNsja4CzG/H5WqZ4PoSpagn9IYbDqMSS+fMw8poK0VzQ53NKparTFfZPK+K6VU+EW7gD4qkYR6agwqBRomPg+XNDhPdar0E9MMjrzGVxK/rwmv+s5jONl11WtrhnCBBIUx9N59VnidewSnYwh7HoFx566CH8wA/8AE6ePAljDH73d383ef/1r389jDHJz/d8z/ckn9na2sLtt9+OK664AocPH8Ytt9yCxx9/fFsXMhP0nlgBvtmJP+zdNyzjTaYVwslnDDcHqb/qutOK2WtMC2cZeeB5bWqlNsWot4NFLKyENYfVeHOTzrGt74v3VGfHU6FiZS3lv8PnM6EGyPXnn8Xq7stOQPth6nM1lNeWgSr+3LvQ+dC/m0gETWGwmefOzqnKQ5VnUJgN49NcUO75muy68uPr6+qJj/00PDu6hursJ/T1M+l3wzUjngtNxzfjcmbFa3NhT+rcuXP4+3//7+Nf/It/gde+9rWNn/n+7/9+vP/97w//7/V6yft33HEHfv/3fx8PPPAALr/8ctx555141atehYcffhhluUNdLze6LuzArY1JKQWELICoZEp6RA21BISxrpt6sP6L6EkBrqXIXpEsqGgnNedcH7mxDws3Nwz30UqlMFg02TwJs8I8ndrNF3dGzVlSq1r4FlFgGouw59W0MJLShfU1fTgZxssbE3NN1UyC+xeTEAxEmGYGD4CkMFcF4X4IOytq456tja5/zjreQ6+iR8m1dsnWcudgaIpTzznJyQesNdLdpBny5RoHUg9sGvR+GCB0/SejUss2dB2xSwpfV49Yoway5EPqgTkpjpftx3KDT5mxajBpLo0epiqlcD1UsHW8zrFn33+WnpbOXyGfXRXRSrCwknrlK1+JV77ylVM/0+/3cfXVVze+d+rUKbzvfe/DBz7wAbzsZS8DAHzwgx/Etddei0996lN4xSteseiQ5sP5rvs51/XthbKFUUixqLJsWPw2Cbwxw05kqFFJBbIFdr9tkZIhwk6i2eJhSJIdk5V5twwbajtgDjDQtpEKkFWMgw/uqIihXt1biZYs83SFlQ4XSBV+blnCj7Pj15HmMTQJXvhFZ+ETzTb1rGw2TmvgOm2YlCSxm/dmXpzpx+frXM+t/27lN/LzQnLDP3tbneXyqrqbNpELbIa4tvyO11QgKtyDkjez5zH3fCsgUP15TG0ZlId/KyNsOq8QeiY1mDgmg6ikSLzRc5Atl+SJxKhRr4kIRA+VbZKT15woP2MwLjf8UgyGlpFjKxN3xcbTwuG+efDggw/iyiuvxLd/+7fjX//rf42nnnoqvPfwww9jOBzi5ptvDq+dPHkS119/PT73uc81Hm9rawunT59OfpZCQr+s05ufu95JInxJM15ZLyQF7BaawgkTP4s0xLAXoLIP4UdZ9Ksal3orQYDI/VErfFY4KLfEVbHnc6+xfVW6OfEhV8r6mnoOkxTUXjP2kiQ95J7a6K1yiNuRY/n1UzBrqF1D9pPuZx7emhcm+zu5pxAFglQx5Apk0rqhwcauEIz0JCF5xHMloUI5XinfS5ra5vOAlFU48B1oEuUnxhivLz8Pj79K1ix2gDjxyle+Ej/8wz+M6667Do8++ije/va34yUveQkefvhh9Pt9PPnkk+j1erjsssuS71111VV48sknG49577334h3veMf2BlZ6UsChoVgN/j1azV3xJCyctT2UcAGJBU3gAgTS0AOJFVzEHbs73Ry6ftO4edAfAYWEWWcptZ1Ct4odL5jrA7bvNSSxeMRiSWscc5AdwtVYUfo4BYBaiKEbAuI60rZSfOgtokemBJt0gP6Ycm6uHWVdGjs5Mc1cKoUKkAqtnSbxWBNLGmrj72PtvCg2j6V3v90QeDBabHpeII1msLxCG8wWfO7l9zxlFkqaUgMlvKcK2KT3cKuM8iUnfxQ2hkN1nVMx5IpPu3Dwc2yRZhF3DejK+qPC1v3ZIIpnVDgPlykPwM3ZoWHaENkYRNKOH3evSg2poa8pPTLnvZwDK1dSr3vd68Lf119/PV7wghfguuuuwx/8wR/gNa95zcTvWWth6EJnuOuuu/DmN785/P/06dO49tprFx9cxzqXnIKAN5qCkXFZAx9u8e93aqDXgdstdMpiDpaG/9200MwCymM30RWq7V6jJ2OhkF8UmtcJf0Msbv8A2yJVQlQwPAbQ7MkVFmPbEWhupLDugbbyebWCE2WC6L3zt3oBXJvT8lC1SUsqLOKYC39MCpSdAOc09HirnULoVS7/WVhPoiiaC5uXBe8XmWw6b1TcwehAalTQsCwQ537ieTA+93o/NYxI1iHHMCzTz3Xq8fo2GiBN3o4aS4TN1otFGjKncVMbVzdHQ6xp/QQvCnHuGFoMVPkayU2jUUflzjVcmRi+XBF2nIJ+4sQJXHfddfja174GALj66qsxGAzw9NNPJ97UU089hRe+8IWNx+j3++j3t1coY6+JSs78yX3xgQLSkAz/zzwNAFTV7IeKC0BrMXShaWJxv2JV8eRc+C4KzlPhH5h5x5SHJQAJ6YjlyXPwqeefug6svK5hKkKVUFB42b1Xb93ojz9wWG98jQrSAiiida5J/0lIEvCqoSBj2MG1V+Rz56+DSpM5qfC5FZ03hNGy14NAzmrFmCNMPmujMdAEKhD+revayGt6bmByOFHnR70q7bVYGTGqJkxW4vGb6NGxkayue1vEMTc9I0orz9l/1jovqkD2/CCuYaYzhp45vULsuJL65je/icceewwnTpwAANxwww3odrv45Cc/iVtvvRUA8MQTT+DLX/4y3v3ud+/0cBxOnon0c7W41FKtCke0qL01OCtHwUVMoQXEG10A6Ix2L9S3l9joAINsWTEssKgSnEepM5c0EqMiz+cA6QMbxmHlHtloGao1XE4ZM49fWydIKrg2OYR6YnmeaZLVw3Np2DAoykwYah6GNG/9rEX8/k6HbzX8UxUApObtfDeGtRi6XDbk1+Tt615TQAwFkmSg6642TmBDPhu8KUxmpzHKMg+MRWhfFQwnmykGpN5Ifo8ok9iSTXNrxrqIEMOEZe0IO/Rg1SusDVB04t86TwS98DA/AOCJFaVfU3xG9FlQz2/LuOf+XBd4Zm2+eZoTCyups2fP4s///M/D/x999FE88sgjOH78OI4fP467774br33ta3HixAn81V/9Fd72trfhiiuuwA/90A8BAI4dO4Y3vOENuPPOO3H55Zfj+PHjeMtb3oLnPe95ge234zg8SJUREG8CrV2GXJTdNQ0UDjwOhQMQreC93phwp1F7RcEFrzUqnINVdcoguP+Qbs0d5tlMnnPeIx1nsL79mEN8aE7kFiqh1vYiyiIUhKJZUeZEAfU6lWW2WwielChUtdCX7aEHxLnldQbGmryvMEDoEq7zrsaKfr8GQoeHVUQ75iFckck6yQii1zcs0zAmPaaxPFlm1HH+R7VTNnlEQNeIPqtV4eZOz6fPSmIMeHg5aU/eCZycftmLYmEl9cUvfhEvfvGLw/+ZK/rxH/9x3HffffjSl76E3/qt38IzzzyDEydO4MUvfjE+/OEP4+jRo+E773nPe9DpdHDrrbdiY2MDL33pS3H//ffvXI1UjnXv1ZDmOdSEoodaskcGTrhOS66WEmfmAmXrJW6DPgv8HsezNtr7ZrbzgqEBIBP0HgwbaDuWVaBJAeQPTw7uiRNyP96yp6WvJIvaYOaGefS6+DeQhpg0D6UdJfKclwodIF1T086d5NksvMSNn6HFvtM4NHTnGnnSQiVzQfLGpLZY08D71DRfgPeYRvGZY/6FyD3qOrtHybkWuN5poEejHnRexEvvvel6N7puDjc7wJleGoLTMhGLCWQcxM90asD6lMX6MM4B83iJ4pZjc9dvjTDxOnKPs/KU/x2Asdau6rbsGk6fPo1jx47h1KlTuOSSSxb+fuO2HcwrDMXNZjHikUG6Gdsq8fR6VJBcLHzAe9KmaT8rK465RlbBnn3GWGcgrNKb4lxpY1oVgCFPg2brXR989m2sCmDg10GXFOAp89/URYG0YVVSDN1Q4OZCXMcwDyhohj40zXBfXrtS1ssXzy6D2vjrlBC6sXEuc5B1lt8jKvZa7qHOaX6fa+MZuRL21fd5LGVdcp6oPCmgp5FUZl17ICIYVzu22YlMR96PbjU5srDVAZ46HGs7T/XTrXQ6NfAt54Fjm25Oj26NG9CqtEYmyrRTa7GZQVPbJL1H6vFyLg4P3Vrq1Ola/ZvDwJke7Lf+5NxTNa8cv3h6982CUjvZZYLWx04pCLaP0QVIgT/y1iAfuJ1SkqsAvY6xIkLEa2L4jP9fVY7EYEbIBDFJzaEl4aaM3QdkYRDMHvOksM5YDgnjSWkAYddU1IuF6CZ5jzwXx7AKMswiULq1Cv1JzxHngwQAXot6Pzr/BuPXG8g2RXofgdRgagrJNtUNca0usk6TGiheS6Z0la496diki3OnAu6crQSH0LYt+27uQQKORJHv2Av4OQ8PhfvFiAKy4+TPTuKdypreAbRKKke3AkqT1qysYE+URpzvOktrSIsTTthv+e4VI0826I/c4lpfcT5nVRgVLmmaKCRMJxysCrxftuEhYSi3KafIl7gVfR6CUhpzIDPMuB6lJKv3pQaIKqfE0kfMMZVmPsVibAyhlXVqGQOxRmm3lRQwf50e65m0fRH8sxAYsf6z8xBv8mfVAKFlWVAaNEBoRSHz/jMPd15FX8lxg3JGzMXVBs4oqmPOWpXv+a4L8234EN9mR7rjyPpuKgZuyqMFpV5HT5RhboOUbr7mx8pIh5ZB8PgkbPRHKTszsKRnT9EyaJVUEwoLFMLy2gnCQ1U4JszpfqwdYY6M27kP/BjYwqdzfjY7cBHK9ipARTDMvEFStHOFtBMLmUy9PH/D1i85VOjQc84TzkxamzptL9WEIIggdGL5rLGO/aeelObRVABRKeqGhvNgfeQECCnAFnunoOYBc6+6wR/zwAX8PamnexxNaJwzz7ycdBgrvy1SAk4h94rQ8CPR6DGZ1HDh9wpZA+wdOSxdKO50383H6b4QJjBOXOA5NL+FCePhBRr4RgZVPLfWRBnrIjaHhu51FkOXFuiNouEQ2KNG2q9hx9baRamkrOSkTP2OyQ8CE5M7gRDyMWn3A3WdaXWPrOwePCVswuNy7IuOZ5lFNvageus0eWj968uwurYDPsTcl2rSZ8bCMjswRiVSjBE97HjIcpkh0BPhut2vCgoQr9uk86JU+2UNmjHDaIahpOQT9ca11ksfOf2cdrKYJEOa7gONmnB+RKZmHhGg0ZOXRagCnGfN8vjMAWqHkqD4kIZpGWEo5Tx67/j9HcRFqaQSfO1yFxZh4pRJSK2lWTWY4N2URpwqwLUmorRAx7/f6ztP6vhGejy65iR90DKaVykwqbpoeANASIjXVRrbD4uf11BNZjPtFAy8h1Sngk8Fh/X/5OPiFvMh1zFlPsJDa9MQUjIW69YVG57yO8D4vG/noe/UMVyzalCozXsPm/J4FGzsigHEkG238k1aMXvd0oqncM3zUIrgdSDeT67PyhdIMRqg59YQMOvQVCgX1uV3Cr/GOsgMkDqyRRXdKt08VcdCzyQoCP+3zmWvcqQFtnib1dKJxJ6tjiNqne9Gj9Eidu5nJxDKvXUxdnQetnzIIjGkix0zQFsl9Y2jzsVdH0ZlRcG2iCXKGzUv1ZzMrK0GZpiel+y1TteNb1i4MZJIwaLkHLS+JuVRkrGbGFagRbhIr7dO7cNq6gmIoqUSmCenMAmzWHpNMN6z4PYflBVqrU86VGDczTHuXDlPcgGo0KmIdLsHLQZvylcsQjbp1qu1rQZlNISA8XBmDmV7KluMIT5ArHevNErEuWlCHu5iLkuFKOeXoVs9VGGFmS8Cl8ckMYHjYfkJj6Gd83mPyAYMW6kIWYT3ikQFNUrywmANBSf1brULGRqZdz6b/Spu3TFrXZBVyg0oz2XJQoPYvV8920mLSPsj6hztkEPVKiltAMn/d6v5vQnWhHBb+sNz0NXJoOn5bQwotEIIQQSk0ohpMWoBnu6NlMe+d9gND8g9JANhH9l4DfMqqCYvIDzkNnuQZkAFqn5HFVYTaFWWMq8TxwuhsnMeyuacCi16ACGGVIpwrkVzUimHtWHm82LyHMp2QGUAxPtS1dPrt7x8dWQIRKGfh7IWHaPmPClDkzVu0nWm9zh/XZVGuH9Iow9GPhvkgY1GRMJ0m7BOEgNHFKmirIG+dYYylTtJMEqE4XWwS0W3nm4sEMxTsnci6f75LuOTitGBqJC2ylQ5WcBe/ZbZY9gGWiV1yhMXNsSFBoB62KxseIM2O8ATR1yCkw9ybVwo7qqzztI5tjn5vOsj9/4V3eiKb5Vu8bCoVB+EXhVfZ6uZ2rhwIeswwqL1eSyGrOZlioWwyIJmuHpeKmyZG+nN+TAReYFhejIR+mbcOyLUal0G87buCcljPsSdOB7+9KXOrWnLhJBHMlGQq3JSAsj6aHc6lzBvcb4bPQ4VytM8bZJOOCdN5JVJXhOvXe+lMu/4N8dnTcw50nMuqERkzpvmjBEAayJJgcfJDZrgNckYlPXWZITReAtjs5Ofr8K62qdDw1SeMBdtTdpW6tjWfFEb3kMSMs71gM3SRVjW/LxYRHalPnuc80HpPLBRw33cBTu4VVKD0seo/aKjtdFvsuZNZCNt+Pju363FUB/gbvqRgVNyx2acmx2i+QAxFq2FhUTOEqKlRcuIVj8ZRRQU9RxhSyO/l110kx7QxLuYE2ohJ3VXdvw1QBRVdozdcCT5QJME01Qoyv5nubWtxAn+LpB6ykBkd1E474aS2ujGKAE99XwrkUnrSj1LeCUCjBtBSV4QMcTJe8d5SjwosfY570Y+H8gYcxhaoWM4gIoeUuYNqRHEOjaD1Oua5mnT0GRkZBrK2hXLVgbollGuMOTPEN+8HWw4P8PCGU+UbcMSMA07SOu8AlFhMVzIbu4aIdgFck6rpFRJUPhvdpotRaUL09phHQOV1JZvslgZZ31MC/0dGjpvalS4rdzpxWmLfK4BJUJo3USgNHshaUwaHiCRYhokGjE1p7IIOCcUWIuG+oIn4V+n8M6p2woKJu3vVmI+gbVdkCUYlJZ/3RbRoGgKexrEhD4gpBnEYzGkawEY/3s7TVpngQqXykJDzUp7ngcqxMPOzzbmKK1cbx4KHFNmFoAYAdy6HYjKg+Dczbr3SrhoIl+EObAp4ULZfSb7Tlj7Ro4x53yxFRblDwv+axPze/OQSvJx8vpIctIWVf2RbxVXRyVYFTFEuOFzWcPSfXZN7mnrSe0Cjm5F15o1SsDkcAZd42ERb57WuZypgN66L8D1CqVbNRfiFha44rz7W1vrUAjkyUm1pvMwBQpnDRK6yd6sXU5CpbxdTKE0QXdEpWDtWKCYMJ/0PBR86AP7CgibrQGZopLXwjGNbA8hQnGnEKj3iAKCWxfwOphL6I/GLW8KJlqtFHCV3G8yqoYlsOlDu5dlLM9VgfUxHD/JN0pNngYVzlpbQ6GoCMo9U1QFJPSmnhjZcnVmrCF+joaW9ceeJtQZHm/ycvQ6qWAhY7QTPrtVApvd+D0K82XWYFkDh+b8XtjPS14L99EfqysNAg4PEDY3POxbHKmcOtNzYcKtjvs9Kpy8ZE1nUbWe1G7A3vxj4W/zPz44HvuetMBD6CF7uKjATBlp5rVxntK0h6VXpZYjPYmRjUnoISUZUk9KXXWiMmnoaBFsh74cPAnxKqZBu0GoUJr2PbVc1fMKY/DnL+DDMgtewzLQ86vw5H0EnNVfN6wppa8nXq3eY3mPXvMijL9FoIpfrytXGpOQKBVa3TO8L16vzV7Ll0EYk3gIk8x5Gl6zlvM8RBNdc6Xcq6b1l+ycUMTc7E4iRFWQPjta5mARFaVumaIelCprevBMKYTaKgP77H+3wxcUcdErqQSHhs66WB851l3Tw9jz/fwq40J1vIFURkBkwJzpRwvqfDdSR49OaPY5VqtjY9hvgLj46SkkOak67jocaizsfLFrfYimPPNzobAuB0ELepYRqFY3gKQdTqCQIy1g1PuiJIRA7S+k7muODSu3A/XudHz0ItXLDsomE8bGX/iYZe5JAEB8TwXLToUx1313ARo/SZgVs9dUp3bPj5IgDDJF6/9gOCtvFUU6d153pg2MGW3QsB/y8/jfk0gaoUwCsu7ku/x//n2+zrAo82/0okk2YU64KN2c7ARoGPPcybV4GXDEXyu7SfQq5z2V3pNiqiEc08QSGe5cUNhI3thFtEpKQfo4lVQTChtd4ks33QLf8i1NGGLa7EaBFdrc+Jt8ZOAWyfpw/lok4xfHVglABDFDaqSUcnwUEuzuPAtUUkrtXRa8bn3wJ0HPR2FOeq7JfpSm3QRj3V5WDBGynUtdRwG5E0LdyPXyPtNb4o6qqqSYP8yhzz0NEwCACBsgFm8uUse2DLbbqV7HF6jrJoapiSGJAfKcUCk03bMkX2ajV0NoCFiJG1o7lRgNcmwNZyZlA5i9djQkz3A8r1mfiZ1Yg0NRikAaYi5s7L7O9wC3jg4NJz9XlXE7AWx2UpYiWca7iFZJKRgzn2e/G3pI3co3Ba3j4gfigtVWJ8ZGlk0553n0fPyB/m74Ph+0RcNcIXyxzQeK5893CR37nFitFqlXFISzmR0qmnRcZc3tBnliWdRyY1VAJjkR/3en2lkvaqcQjKDMMwQw5lnOg8zBalwftuGz+RhyLzHUPc07jkxJ6vgIDdduJ0rRBCpF0ud1HtSL1zVFo2+a4TeJQavH3CW0SkrxrDPA2jAKBBIZSC0G4t5OpbdQjg7c3+z6oDeRLjPdcC6o/iiGB+fd58cihr64RbdagspQnJSkngTd9ZOEi1oSxYuCRIB5umBrx2W1uGHSsOU84Me0u8W0LgarQM6y1IebAkH7n/E7qmQY6zc2MjtDXQ0/5HOa+3lfsSZwTamn3gQqiGQPLhufHVUGeVspbs0evCBEIzH8pveENCRGaIkHEO/PLGNNlRvH0K2AXnbNFu4+z9MhYh5sdFzEpjbp/nOM8ihxiWkCPk9MI0x6LkKJAWL3Es7fqHDlCbuIVkkplC1ljXQj9wQICpkjA7fQ1ryArQF0+47aOSrgtgVAXJi1iftGAcDZofu7V01WUhrPJ5inCB5cAXQ8q48Ljh7bvIWoui9NCEdh5xO9CjLIVFEC0RtbFLpz6Kww4SoQiCImfaA1fDSt4wbLGYJwllDNInTv/YZwP+e0vLnec/ZjIDFB8luQEKlJw93MVSXhZP8+WZeQ74cOL9k8WznfxDHbmL/juJi7ITNTjVZTbC9cRubl2Z5TFlRCBEtqRp3YNiqvPTMN16pQ74sRIoZYlWm6S2iVlIDd0Q3ujl4Qi3e3OjEJqVtja9ui0tPJwk3G+CLnolHL29ioDCmkKxMpoSHPgfgw0TrnQ6Dbny+ys2uTF8DFvNvI62IW9eRK66xqYjeug+GhJMziX6MHMIn0QagyItOKf1/ICIW18ho9oqA8RJEZ4/rc1UjzmgoqMHreehzA5QGpLFR4zzPOpumex+tJnnHvDSvDlRtrbhfcop0yKe8AoevLmpj/4/NNg4+7T1sT0w4K/U4gaJWwL3r9Ci5icbRKqgm1cZ7T+a670Wd9vYBBZO5wQfQrYOSL4ag0GI4IYQDTrKiGhSv8LWvgm4dcB4vKuIU4LJzHdvKMS3Dqni+01Cp/rq0yJkI7vsPyLJARpAtRBeksD8YaN3ZrYjJ1FRY/Q5XLYBWdGJrqxBj2nRSq0ZBiU7xejZG89gaI75XWMa4utHxTE7SQlEJQvSCSJWiZD9kzE3FeWFtHY0O9ygLAwMSwN5WWhsCp0HTec8+UymlYjN/3wrqw9Tw0dkXfN6pm+7Khv6YCy91bFtJuSfMAdo9gE2klnBT+es71IhOYBC5uxtmxsWbv0s206QAVPGXgHoT4FK2SaoAt/k/gCIAjgPnz/yfeLIPIyuNOuUoJpncViv3EbU5IAnT/pf7gXA94ei3S2dmO5rLNyHjrS17CIBYLA9J0ck5loaE15gzyB3oa6F3yoxY72wVhp8HQDD1YXoe2vGLtWW59kh3Je8LXgBgiya16nWPjhWFnRi3dTkM3+9suQq2arH2tn9LP8BkI5CMaeiadj5xxp+FEFq3Se+BzwvCplXGwp58+p7X8v9BxLnk/GMKm15LT2+dFbZxsIAtyWMa8Gu8XO5grQUhLMVjrZBDnpFO7zu+lN7RpHNHD4rrld3c5xKdoldQsML/BhbvVAc7YSEygBdMfxZvMnmDM95Tek+pVsRZrbRSpoflzQOWhoTggfci1fiN0S18g/8Iu30z40vXXyvpJ4LXlzVBH9ewO8Lw+FVp7jaSAG2mYSRP/HHONVEl1KxemAkRpy7FCri8LYZEY0RXBsVeYRBDQcPIinjLX4qR7zPKA0sTnZdbxtWaK/eiUcMOvM+mf11gBi605rgk+Z8uAqYBVbFWjnlIhzyobGPfZGd3GmsywWaIZV2Kj0uWzqQBLuQ8GqQzbQ7RKaha62n28cB7V+W7ce4oC5rDfj4r5JNZPsSs2LZX1IXB8M7ZN6lTR0gL8wijiJmxUBgrjJaaGRkhNnhfGL2RVMiG3NuVBCiGaTtqpmUy6/ow6Cl4fLc29BkNxqqBoVRuktT18n5vW5VvEA2lugh5YQqzwxwksPmy/JmlRbDQ0C1XvkWMN4arss/0pdYSKaQpB1wgjBU37QClqA1Teoj/f9T0yCySebXj+4LzTJuUb/p8Zf00hWwvniemztgh4ncsaIZp3Y5ifQ2fUgy2NtNv+oSGwOUjzVmqAkcxlEOVZR55ferXsO7mHeqpVUrNAlhgQCQ58MCjYmMNhB/LCW96VASo+gF6Z9epYjBmYQTYuuKaQSBPy6v1lF5HG7fMxNJ4XUYgHAY9UqE8LX+uhd6q4cR4E61vmsWko6g3x76Z+g3OfNzvnboMWNHOnQDNJgV4EDabCprU48+5lNA2FrLmmta+gF6pM1HxH2GkWv9ZCzQt6ZLD+7yXW66oYmsaPg+Pn8dh0NjdSSa7i3wxJ8yNqMDF0aADYSmSP+7E/9LrtjX2baJXULKwPneXZrWNcN2fEMWQDpEKoW6cWp4H7f95tojSOik6BcGTgPJXDfsdghkMG3vLZ7KS7hAJxQTK5T8UzDwrGsjAel8+hebbCItlGQtmGk75fWMBIIn03oDkBIhGIPizE1ojzCJR5hF0iNIp0zfRGs/s5rhq8N+p9cxvzfBxhrP7/WmC9KpAswhyvehtNHnlVuDxKXiNIsESDxiLvUZLH1UhBnebh/CUmzwI7OXQryWH5H459GhLFmu3LNc8649Y/Gv7nGODHwEiPHo/MYM2H5mxe1lHVkE7rshHroaHbt2qP0SqpWTg0dO4wHxgmLvVmc8PB/GHXfAaF01pDqIQMG4bfyO7jQuO+TOd67vf5rlOc1sTFyfHprp/GzpcjytlOlQEwIwdh5De/YwpJ6E75vsnOB2TCEPM/xLOgzT6bwphUtDD+fTvbM11UUDN/GXKNiCSYnQaFZNLP0ALlDJJNqJ/jGs88ERpj27kGg5hTsXBeC7tpNI2rrAFbpqSBpuOV2T2k8svr1axBKFko/OdqA1DvkMTE+WBUhHOjYcpJXiWVgC3ifFIeFHa+Yn4+wwyta65oklfL1IJuW6O57pEoPVLb6wpY95PW9cqxaaPDXUarpGbA9t4OnARwEjCf/w33ogpoPgxKWggPbhG9BuapJi1muufWuMWi1fcW43VbYUtvxM9pbgtA6Lo9S9gzx6WCJxQANnyX180Q0NikTT9dI3JltdsVxU3XOe30iw4tWPa1CxvtVoHuJI9jWgjKwAntCnEdJuG4FYxdcy2qTGaFm8fGKsozjyA0hcrnOTSVFRU0kHoxY7WFUw5q5TjaeaM2QG1j6mAeUNlaf4OYLpg1X1TObvBRLuRGh4ZL6X3udI/IOdAqqUVwrodAte7JdvNlHcMmul6sLD4uzknJU1LaLSKZgvUQla+nemYt0nXZVJZWOsMRLASl4up2xjscN4FKjpYTc2b5cx723xHr1MJZilq5P68QVsYbv6KCZrsIx5xyvHystFSZfwpjlQMuw3jabbKI7i9UWN/ZH7OFovHeTc8r02GdJt0XVSb5LtJAZMYCaVhunmPyeiiwe5Vn18rY+OxQmfB56YjQZUQkrGHE62OeWTc6HDTQsPPtLcauvYgt0DSqwvWzPgTWF8jtFX6gWmM3KoARIqGJil+N5vVh6kEZeOJEZjjzXnRrv0V9q6QuLGx0IqOPioo08sak74ICSSvCyb4533UPx5k+8DeHY3dlAKHwlZ2xmRNirNxYt2i1ELgJak1RKFfe4s8VBuP+ncq3ZCpSoTWvoFkVEnqtvi5/L6FPUms5O5aR93fLI1oEFETsOUmBvii7zNi4vrUP5aKhWLYE2/K5VCrMQL2vYrhtkbHxOelKV3jtxMK6NwrywgKQrdPHyCKihPmbCk8VSynrfFa5xrBMO8mEEBsNgLJ5Q9RF5sEitm47048t11is269cDpTF/wwVdup0B4X8uCyV2WO0SmoRJEy4XTgXaz2YV8nzCnkiF4gWlCaiZ3XNppWsPb6YH5g0thD7J8vRpHVji4DhRh3PvOE+egrslp5c1zZu0iQGXqgrw/5VUgTXwnaMBq41KieWPiwCri2OKXkPMYe5yHyGa0NmJPF9OU7tF3TtDSxTpO9ZgySHquFHKkI+IxpSnItgI59j+JTP1ypYf7wGes2UEcYCha996mWdPErEnFqQF6l3bHG30w77QEPsgyFcQKDA13BWVQCdHbI2yjoqp61OrE1i2xVSh9UC5BbRh3w398OD2Q+CJlGBGO6ZBi58WmRUUNvp8qxJ5XkE7LB03m2Ir4uQoXAIIUlROrPG52VZssFepkedh4LVCZplkRR9A6Ejhgrw/LNkyGlYeFqxbrcCCjnPoj0Vdd5DrhXRGKHHZ0azvb0g9GWdhZIOOZcqlpGsbUYd9DOFBXqIzw/42oTaQ55DIyjT0K0lfCyKmF7OdkEv6nw3bvPOOen6Z5IELHptPd8AN4/M7EOjq1VSCyDZav6Pf3Wytb0qBLaRST2pbh6mQBry0i2hZy067YgwydqdBHZ6pmcx7yKfWGBp0mR1ZZpzOKGdjpFiQ1FQIadgU0ES6PWYLlxU8U+6x1oftlcP9qAc76mmnUc4rOApI/aGHBWyRjD7Oso6KqpljRCDccGuY1uESaYUcxqOZLCpBx0UVSHr20YDi+uWUQFdm1prpEbQvKFe3cgRhevuoMbOrHzWvGDpCpUVr9UawFbxnul4QziwTK+nVVIHCEcG8ymB7aCwbr+qwroCzPMbbiHqxoykn/Z9GxR6WfPsJxWSrvIAT6PTTjwORAgWCI1BZ30+t/J1XytrELYgUQEBpNRZBT+nRcm5QOTvaYpYH2ieP3xXlHJVpJT/3UbOxgJkvoCkho3eCpPnLN6s63isaZTyoOCXWO9d8XJYEEzDCkgNgVnCX3NX+jGuKWXl5UXY/M3PK42bJQEkTEwbA6dd5yz/PK+Nz2kthoNBPMek8zB0V9rZ0QnmnNnxhREE7ksWrl8XMmKIkL0PaeAaAP3Jp9tttEpqWVx5TnrvbcO6nIXLNoBjm671Sa+KLfpZWMxCvn7lFNqaKKlp4HGUARa2+1jgWhLhAJcYr8z0jgRULuy0QeaXdrTW4/OhLuWzOakhKChERau5CvWOKuPzE2hW5HxYg1cndH/+ZohxO3mvZWDl+gORAfH6Nbdgi5i0Z+1dzkosizR8FwRV5jWwaJ2h0/w404T6WgWMLIBOM8ONcxgKTycoCZZwUNhznRhkBatI25PpWlFFxbXPPpbAfMxUzi3XoipAhk6pnJLncA6WLUP6Z3znc/b7ZFFvE9ZG8blZ7wDdIhorfAYr44hQSlDk9kBbZVoPNiiBq2YPdbfQKqllwV5Xu8FkK2yku3crTx31t04p6N3KMaXm2WZDLWsV9vPUXeQI3zfROyts+kDouVXYY4oQoTALglHOpYJzTFHZ1KNIzi/jMHJ8BetPrPw/CSFlSnQ3Qat3jHVox/9WA4Idrfk+r53zasTSrk28fs3JAZO9oGkeOL2T4Nk2eDU8Vm0QOkYoQr4U0bDRexQ8MRnTxFCt/E7W/hwKKj9OztoDAExoHD0LVeGebe4wELaIqWI4tMmoYtiQHpWCz0BuVABpRGJYwv5/3rjggHcHrZJaFhSclbeeKJC1O7MW3RLdOrY6mqd+iSAJoiqAQ6IItPU+Fee0MF9gCoonRQubQqNj5qMrB5qv1L+QWcQEey649Dw1ohJRZhXDhZpraFKcvG7+rWQJ9Q6mWdP0ICn89NiQ+dWxL8rwWiXoKRoLcDO9PLypBdk0RkJIxytgg/haTlDhPNFzYshIi1FHJh2TnTEPzM0YALBRgej1hDCezLN+H/67gHvetPsCFXDe0YE0a3pfShZRcsTaKHYNnwed2nlTut2OkhAMnMG4yDZMZ/y+dVUBbPr6yKIEyk58rpu8qcK61wsbn2fentLLmUPDdK3WxpGOznedvNrYv6pggUylw0MPPYQf+IEfwMmTJ2GMwe/+7u8m71trcffdd+PkyZNYX1/HTTfdhK985SvJZ7a2tnD77bfjiiuuwOHDh3HLLbfg8ccf39aF7DoSUkMRyQ0bXbcv1DcPAf/vJcBf/P/b+/YYOYqr31/3zO54F9bveNdrDBgCUoIJSvjDxChyeMsJj8hIEaAPEQVuQA4BhAmIkHtxuAQS8oWHwkcuShCYIEJEEiJEEGArhIBIBLEhMSQ2RBATG6/Mw/basJ6dnT73j+5Tdaqme6Z73rtbP2l2Zme6q6uru+vUOed3zpkL/Gsu8OY84I15wJtzgX/PBt6ZBYwcHL/CiUNPOUyhMvsA8ImPgUNGw4KICz4C5n8cfj+jBjuq7APjvl6pcdzKgejzgXzY/7QFzg4IxiG/xvJhkbaPe3QxO1WjxtNjZq94ebXdU9b+NY5HM9hgArkgjP/onQh9cX0T2twpndI86aoCcDldm0fG08RB1SSC2QdJ828neLXPTn1JlGDhA8QLKLmo4N9Utn0xFUjtQAp/aWrj+B82FaeBMkWKPvJ1l4HhhlaSoj02fXIhQD5HFlJ5OUbieH0ToYl8oKhNamnhiWNz4caPoszsY9FzNZ5y4icvfJb2zAA+7Avfx3r0M8nPJdeZSxqb/hIwewyYOxa6Cfg1UKy8T7kEPb8+6k1/7m1GZiH10Ucf4bjjjsPdd98d+/ttt92G22+/HXfffTdefvllDA0N4bTTTsO+ffvUNldddRUee+wxPPLII3jhhRewf/9+nHnmmSiXOx/dnBaU/z+gwndBM75rPlhsVhn3o5srr3Ptfdyjbzo5wdd6IHnSsIMNM3caWljwpC0dzPYrdZv8OaYN+TusbRm8umenuJwQpRYlu6R+g56cq8WvxTG++LrZv0vw17HB2h0CT5DqBdP/lgR53vy/zYbj9mP3F9qnrY2m8c2xZmaTYXgBkNXMXCt4XGm81rENYVXOTqmX58PHkZDPWJpx4UWEJDLYJm+eA3hxkQQmUDDVvhaxp90+1TqQWcdbuXIlVq5cGfsbEeHOO+/EDTfcgFWrVgEA1q1bh8HBQTz88MO49NJLsXfvXtx33334xS9+gVNPPRUA8NBDD2Hx4sXYsGEDzjjjjAZOp0M4kNc35WghXA0Vc8D7/eFnQDN0ChH5oSfQAqowEWpJMpEk26e5Kqd8uA4ez2YqZMT5VViwBgAQ9ScfhAK1VnJaOcH5BCORpu2z4PWHNJfJ1Dg1+w5hgvJC85IHbUKyTW8sMEt+pdBVE7WnJ8wkwS/9FCoZqXWcdjimJH06DbElEJOcJD3I9mR8lAz6Jk+fK2/HEyiTEiRFv+xDVbuthp4yMCPSosfzwvwoxzjaNu1CzKcwJRlNmP4zW0vn85KkIp7EbSHDaYyUaZTiiUg5Nt3n9H0UeDq+0YvGrFp9NcDUbpn1KjU/WZ/uo15dgTsOaTOL9JY1c3g8V7uPHURTDZFvv/02RkZGcPrpp6vvCoUCVqxYgRdffBGXXnopNm7ciFKpZGwzPDyMpUuX4sUXX4wVUsViEcWizhY8OjrazG43DvZBBV5oV95bCG/0D/qB9/rDm7cvIj0cCMKbrScI7foewhtG0sAP5HXcw76CzojeW9ZmnnqEFFD5QEqTJQV6QmdzWNLNK1eLxvcwGWH8na2CsIDJ1G8x2fJkEBdQKc1VMleZ7KMULmlX4wYtnbQgbHZlbXt1KzW+LMxLWxu2F83KjGdprlL7DaKTt4s/yr4hEjxpUJgw7w3p3wP0dcmiVeWCMBhX3svK70UmEYO1jCTBU8qF5i9OLyYr6sZN/vxMyvuBrxeXFqllPWczrLxevIDjRUAZQC6n7/002dNrgecQ24fbZWiqkBoZGQEADA6a/MXBwUFs27ZNbdPb24s5c+ZUbMP727j11lvxve99r5ldbS6kKm4QAzx9s8uJR5plWNVnmzpB5zrjrOdsX+fJVjrw64GclHmSQmBOVoC5Eo1rg4MUiYRmE7VVreRCI4gz8dmoMF+JfRHtG1Dy/rXA4xKgNUqUrQXxZw/przsvAvzoesjFhh30bZsKeUGgDgw90QdR4xWLE1sC1uib1J6SrmGWa6NK0Hv6eWOZIinztdKESbO9J6jpSeen4qCgA8tZUEn/Wy1IS4kivSSY9TIMdVXMmAB94ttNaqx1aAmlw/PMUSSiiu9sVNvm+uuvx9VXX63+Hx0dxeLFixvvaLPAmY6Z0acmMdZQSN/sOYoSPkaR/ux8zvVqtb4kVlaqiKAPFRDIjtqs1VE90qYyztsl0wbxA8JEBZkRPQ79JVPrIoTEBULYvmQUSVNMjXshFmrlHY1htdU2r2R5oghg+rAmfG2rZ39OUpcMRiC05lD2wn2TCBe1zqXaJDnO5h9fn4MyAXnpVr1sFuRrF5coNBdor7StJdg+OM7RqNiDlqYceKFFoVaQKrct0xjxxC79VWWhofLij+/XalpvI1nmmaHHlQd8CpmuVOVeA8Lt+qKEufJ5SEtp52tUKAPjE1CkF/L1ebE2z2SiZmCg8wUN06CpQmpoaAhAqC0tXLhQfb9r1y6lXQ0NDWF8fBy7d+82tKldu3Zh+fLlse0WCgUUCl0UAm2jLG5sgyUFPYmxX4D9AFxwjoWY9GtNiAmKwYKPf2cBkklIQTOocoEpMHjilE7tWgQKfgjlSpWFQd56QCVzC0i/SrbNS1m1Hyl0+VRygZ6Eak0icStoeS34mjcjvQ2g2Yc82bGPsKcMcJLUtObFXKBTaCX5/yjl9VBasRf2AUJgcTulyJrAhQyrgYUujyP7fni45aJGTvq9E+G2tdrPCmUN8bXZMJdxASKFh3ye0uzH5mumzAdRX2TIANC8VEqTCJnZfdWwZMkSDA0NYf369eq78fFxPPfcc0oAHX/88ejp6TG22blzJ1577bVEIdXtoCVXgpauDv9hIdRbDiPt+0tRWYKyGfcDmKtI6cdh+7dk6uQFE0nSolN1UJggAC2sJAtIplLiuCHuYy1wyWmONekNqjti5XnX7Du0/ystWJBJ6rj8zofpg0nTHiDGUWhXzYZ09Mex0bKAr7M0IdmvLOAJ0oPwldjvKRhosn+K2SkWR9K/Ywed24u3ZsGnqOTHhL6X7ec2LTgvXiFFajI+dkE8Q30Tug31XUm32WAhQsJa9ZoMyKxJ7d+/H//617/U/2+//TZeffVVzJ07F4ceeiiuuuoq3HLLLTjqqKNw1FFH4ZZbbkF/fz8uuOACAMCsWbNw8cUXY82aNZg3bx7mzp2La665Bscee6xi+01a8Kq3vwRMRHFNHODHAkDm+yMvdIgGHpD3w9Qx/LDYN7fct0cIEjspJ5tQ4ujByp9DOvuy1Arktmkp6LJ/tWAHjHIqFln/ygafHwuaNJOF9Kl54l066XNi22qnqgQGwsJybHbyhdDncUur4cVtpwJlRb84XQ9fe+67MSZVVusemUmAK4gUGRY63Cc2N8sAcDYDKkuBpzVn+75g4cX9JgAITIFJ4VeYiEzIHMfFY5L13sxyfn0T2oxrE0qyIKsg8SgsMsiaVCFvluXJUWieq8W4nYLILKT++te/4qSTTlL/s6/ooosuwgMPPIBrr70WY2NjWL16NXbv3o1ly5bhmWeewcDAgNrnjjvuQD6fx1e/+lWMjY3hlFNOwQMPPIBcrtk0qfZCphXx/vLzaDUU3azMRLMnFGYzSU1HZl+W3/HNKled5YgWLLUFOxaG4YtVujSbScEkyQCtmgxsjSTgyQDm+NgsMD6fNN1Szv/oXU7IWU7L3pavF8n/M/QrDpJ+TNAkGZ7Epa9GChu+5kBtH1Cc2bRe8g3vK+PipMYqGW72MbjvvNhQ5yDuRdU+KgVhnLBtNnrLUCU1mk38qYaeMlDwQhafNEfLZNINYLJoTjY8olr5TLoPo6OjmDVrFvbu3YuZM2d2ujux8P7xPzp6XFKic0IjksJmxkSogXHqE5U00naek87jJ0kWEnagLGtPrKFVe/jk5MATZTMctTzRcG4yGceSC0JTBpfWkJkibLNRGrOXNJ3yhOlB78fjAaSbpMeixKgcfM1jyX3ldDpZJzSebPneYNjN8HWPoznzuXGVW1t4StgapUQWYTXh61gi6Y+UCyr2HdkacpwPjDyzb+RFvjlLEPpUWQl7qkIl24W4xo1VXeg2IZV2Hu/ehE2THXPHtOmvFGU1ZvOWfMBYYLCtuVAO1f6DxnWW4ri4EhXgl9eMworYJGjflk+hTysN80pO4s0Cm4c4JZNcEeeYBEL6QeR+SOd6XFxWHKSmJssxwBdtZzi/PAFeAJTEvtJXxMfM6iyRufB4VyWQUCmMVQwRxETuR2ZfISTVuAZaU5G+KXltpYBIC04pJO85gmCiyvattpPCGextesqauOAl7DeVkTYodxrACakWgYauAUKyI7y//b+ohIWvJwl+8Nh8x34HvjlZsEgau1xty9IEsiQBT3oMbkMysToBW0OTQooZgpKqz2BTkJxM05qpkkxDWSc8j6DK03NzSiOpc/KUrDhCpSkuaTKXVHzVDmtYMcdo1eQutTaOnZLCqRm3WjMXSnIBx21PRsEnn5lpAiek2oGh/SGJYjxn+oOkdtRf0iWeDx6Hcu6TF67gZSlzGUfFgb/SpCgn57IHBOXQmd1b7sxNzhOoXS+K/RJJE4aKybHaKiNGaFird95PlQNHuhieODC7q+QD5UCbHOMCYdOC/StSA/EAeBFBIokgorQl63sClO9NaUwQ50/xwi8reYKhTHxCk2LYY9MpcIJWSfSQZvOZxfTpgFhr9alhdl3d4KSwJO793gldEn6KwgmpdmBwvy46Jx9cFdkOTXe1wf6rIrTpL/D1RF8SQorT1tjaigczDiSpqFyrQDBjUBjSbJYEOxYH4n8WVIAmXdjUanZpSb9OPeAAVHZocyB1I6ZRqV2WeAFDgF+uLjjiyDcs8HLiPCVRp1lag635MdmGj8HH77SpasIHPugLc1CWLSEls07MKlZfZPA9OxYJPPaL8XPZzvM8kA/TpEmSVaEMeGPxwdpTBE5ItQGEtWE55gLglW/SDwULKaB2XJFBE+fvLa1IBalCm8bUJCX27ZTZz/Z3Sb8O+05srQkw+2z0XWgBSbFLKnNCC807PNZZIE2z9V4Pvt6AObbS79aqc+YucxYMu1+dhqzxJK0QzMzkRdtEFIidlKmCS/Bw2jIpgPk820XkkD5Wyaos5hOJFd1GlqgHTki1G/IBTmM6kPWOykKD4omNhZtKpeLpfIAEUZMp0O1RAHh++x4uqT3JIoIqBgWmKY5NVzIoNEClUIY0M5EYG/6ZzPYbhRSEAaLJmfQCwJY1No1amtY4N6PyKaJSyFQDa3P+hD5XwGRHJp0DoLXbuJLyMug8Lo7Mj1sNdAkCT5fE4bpmksYNRL7hQNeAygfAQaKeFF+v8YjROeGHGsz+3nBMDs6ZxRKlP7nV58Zp1Jgw1RMlp+bM6H0TqFpqfhLCCaluhx3JL+3/PKlxqepctLryfT1xyoBEXrWXWUCh9dmPJUVZCSPhO+EJWaUuivqjVrvRvraZULUvjmODx6fZiqPBoGQBEzOOrCmpVTyPA+kVupEBAtl8RHLi5X2qCTfJwmPf5rgg9HA75UDfM0zgke12SBFPhVLOrNd2IK8zlctyImzFKOZDny2HEciSJON5XeFgLB8KNDahcv5HJiYBrffBEbRWx+bHnpxe7PYEusQ8C6spACekuh1xafzlZB6XsoXNHByDpJzFQfLquBWIExxyFc4BvHafAiGYjPghz5xM7SBXWPsrM2GTzjeASbHm65BWsEiBGpv9gWAsQtIg66QofZbSd2mz8yRbsFpWi26DvBaSwGEU0UTl/ZOm3WoaLgs9bq/ZvkBAL0jZFwpojXgi6lspBzrk6uYdswvghFS3glV7ZicpbURoIBxf1SOcuB5ENvYYX4F8iBpZadlF2qTwSKK7e+IBkw+cfd4TOai0OKxJGQ9+wv6GeQ2iD56pdWSFMqHmdDgAa4VywZAEKUTZBymFFJs4pZC2442aAW5XFtnje4tNVZJ1yOfWKDHEvkdaCb43mBxhpyNT2jVpE1kagokPrTlVCHPPrAfH58xjlwvCfJaNajayYKMMT2FClQwAnkJwQqrNYEemV82hKQM12fwgIVeCcrWoHLrQE6NkAtkryLpOwNPOWyOVj3UMiHdAP1Ty+EkPLdPVuf+ANml68mWdA6dCkkKBj1lPsK3qj6V52JpUWvDkZQhQ7rvVViP9TdOHiqwcXuinUSv0BjXQCeu+bRd1W2q2cjFnk3Tsz2l8gNU0Lw6NAExSAz+TZUqfvb5aH+zUagSg7IE+/78abLx74YRUN4Fv7gN5XfCQHdtJE6IUUhKcWFSazNI65atBVfFFMitNkQRICwzpe5LmChsqeDnGJKbaR/L8rTQBaQ+psn0aKCEvxq/WOMalC+I2eEyUxiKEHk9CrTCvKY2Nr42nj9UTrdKlpiu116ywF0ftYpQy+44iEgGfH1sZ5PPCWfvlAk+NvSf283RePRY89jWSwcJSSAH6/m9USPdGVRVyATBW0smrG8zp1+1wQqpTGDnYvNHlDc0mPkDf+MbkIfax6zZJKKHQpD6zSUH6jPg4tlCQE1wOoYkMqF60zvaX2NkVPGvbJG1DCgg/6lMzJkme5JjkYfRFfAYsirnYlsckiNrjH5UQrzMdDi9qeDHDk6lBeBD3gjSLATp3ZBykGZX7Wkt48WKDfZCNDL/MNlLTtEo6KL7sAb05s+8FIYxlUU4JrjidL8MkJJHlFxXPorQs8DsvmPjY+YQFZRYMFIFCThM6eHymMJyQ6hBo6Br12dv5Y3OFLYsnJjnl5YPSLtiTVTXITeTDXFX7gBZO3fjgyWwhsWw+SyDJc7A3t1lh0qFfD6TjPhcdkCd2+xx8AgISJtoaQoeFrVo4pPTFNQt8X6QlOXBBT9YwpDWBa2KlSQjM10Oa+pRm7lXubyxWogY43RcLMc8H/AY0qp4gbDPSfOnT36y/rUkCJ6S6AbnAZFpJ81KPYOTJTAIc+9RqCrmEtPVLTUeRCaIJMs4UlqQdGI5n6Hd1TGihIOnpQLhfzmqLf5OOcE/8Xs/Emg9MgWMn/1THEIInWoyrfsYd1vbJ1Sug2HleikILgkDfL3EHlsX4eHyTrk9JkFcMYVpjHO0y5/WcG19PVfSQtDm01vHzATDrQPhZEhvSZBKPy9qSo0qzmhSarAWz8JIWEN6Os730ZBoFEx6FFQMGP5pSsVDV4IRUN4Bv6gmv8ntlXiJ9s7P/oNrDqggNTRRivLJkgoI0cbEAyJXT+zKk+ZDfjZghxGsYMnMAH9emq8fuF51EPYJKLRhQnaXF15L9P3zMuPZYiDVyiZigIIVUL8JFAyWs2HNBOhMwp9piDS0uZioJSWOUZaHAAkJpIWL/LP6drP4ggg434HuS/XZAzD0F7U+U9yUfW5oEKRfGZTX6XPaUgdkdyiHYZjgh1QWg+deqz97226MbOBAak9AKgHSr0lYpWPIBVD4jcbAsZqC4mB27naRzNdIgeTF9Etva9Ph6Ien/WffzWPCKVbaENBNlmsit8WumZp3Uz3qZh91owo2DEWAt+myzOg1yjzADslZtLLLEe4MCaiqkOsoCJ6S6DTJxKRdIzJGOaQFMhywnJgUqCyTyw9IsqHRLYnULhBqBFKRpH0LWAJhyL/sOmEJFTtqSsMEJeg3hKY7BkwMHMjeKNAUX5cTG2hxrWEm788QvCR+1xnE8pzNGyJxuST6zWogLJM4R4EUr9nJ0MoHop03OSBKwjQgovtd9QMWotRJM+pBmWsno44UjxyMqCwD0QoT7KNmgrIk6ZIITUt0GFkz8IHBl07ggUIKmocoHhetRpZ2oWLjZKz4JubK0NR8PevLI8hCWxWTAjCgIG341TYr7VE1msICo1U4zweMjj8mfA+6UvY/Yl01NtRYYcbF0PKnydchyzpzHDzBjcbgdeY0CQpj/EQAXkpTnkkOl4KoXUmlrRYBzHNjUZyx2oAUVmw5zMP2pcoFgjB9pq0g7iU5TBE5IdRkM01/p/+qbmksgSC2DEP6RZjeeoNKapezVc5JJTK4Smznjqz4jRgusAZ4UuhVS+PC7MhF5ULR8O/sEIuGb5DcyMmt4ej82NfFvNrGkFuTEqnxqnp6I1WJGHJfKOnhc9S/h+mW9VtyHHEERc1oVQyYhTcZsIUiqRZaLVhWBp8dFxtHxMzsdSt63CE5IdTNk+Q5m9QB64iDoDOmANhPKrOc2jCwD1m9JKz3bNq+IE/yd2CeNcOFYEt7eXrlzP5iGL8kUEh7i08CoiUT2q80ThBwvyRKTBQ5tvzdrzMwSo1ylKdMIBpYmJpgOeg/hGOcStI+4+C2bFMFtcHoqztou+9vj6+vFuRgRZRlvRpgEE1a4P63WRqSfiWPWqj1TPeWQrSfThElrRKfrak0BOCHVxUhMocTMsLhJu5rJTWVzgGkaStKedEfMiTIOWUx9RqCu0AwBc7UqY4lij5+wYpeplDoNEi/JFqu4dnwxWDMmLWwCmKt7H+Y1sceFzaAkPstrwybWCpNkgjCTZWIqArmh70c/0g6V6Qu17600kMzWVi82ytZYqrCPGsKGA4BJ3M9N1PimG1lCwgmpyQqeYOISZyY9HAYbyWqr6rGg25dF7ng3I7t6hgdTak3yWLa5j300tZq2Y6M8mBNxvciS8UD2gfcFTH+KUvQ8c5+4Y3JbvjX5EUztR15X/lz2RdCupVXaSjATE2S/mShTFtofXxuZZkiOdVp/Yla02lzGPj4piLOYzYEpUxqj2+CE1GRHlhiQwDOJBkaKlxTHAcI7hv0DLDiY5JE2NooQmXFqmeN8c1KWE748B6Ayw7v0zzWCwAsZXICesKpNmOyH0B2ECogyvhaTIWsi0lwnt5MZElgABJ42CwZeGMDrifHh35VWKfsYvWTqJh5jeHp/FX+VM89Lll+XGrEsXc/9lOdpn7M8R6B6dep6BFQxr0vWsIZ0UCn+OMyUZC0Q0Isyh47CCalJAKnqV82enqlRMRGmNaNIM6O0vaddccb5tqS5ye6b+l0s+2U6GlsrlG3JvjSyAq9gMSKZGJAEjpNi4VDxO8yxsDN6qG1gLirkfrJt1vrSsOokCSMuQ4bUItW5CI09aQ6PG3MZtuB5ppDj35tlIiMvrLxbzJvXMB/EC6k4Rl+HMZ1NfBJOSE0HGIGvEey4IzUJoXKCMbQtsZouZOiDiuERx4jLfcbbqmNHx1STrtjHJ03Nr4ivsvqeBZJYUpKstrLWQLJMphycjYgUIdlxgNaU5DWQ2qPMHK/OhwUZJ0MNTC3FQ0i0YbKNcX7Q14M1Dc8aV/5fphGSgguoZCVKmRjnJ5P3oLpGVLlto5jwwyTNe2aE7wwPtavWGsK4ud1yqA9OSE01KEFgCSGe8Az2EUynPqLvfNQ3uVcDBwHLNE9J/ZemPWOyoMpt2eTFEzuQ3TfGkAwtHpeJnCkIc2VzHGUgcjWzKwuqfLS9L3xxcaZS5ZOiZFOqT1GuxGjC9aM+sUArVOkPwSx6yOCJPC9KWOTIjAcCKu+zCk04RjMmz8yMzsejhP3qAXnAxz3AWA+wd0ZY8p1NtLkgFNrjfngdDPasaCMpVtChI3BCapKhqulPTp5JkNoGv7M5p5MPpiQKyJW1zQKMQxIzLXMfxPHkZz6G9Akpk1rMtklQPq0YsgH7e7gtPkat6ykRZwqMgwzGrmAHyjbEuMoaYolED0sw2QJMkmv4FbddI1CLMetzGo3NFk5t1KScaS8ZTkhNRfAEylAahlg5xk3GacoXNIKkFSo7tmWfbAQJZbFlReB6oCY0T0/E3J7HZroI0p8hU+fYtOVqqEVykSZV7l8SNdzOMsL7+zECgFH2db0yzlRBMAVlPkpgHKeRs0Yl02PZ/VTmSs/UajmTinki+mO1e8+Oh6uWwJbPha+XzPbAmqG9P2/D+7aKNJFl0eEAwAmpqYvYlayxQaWfoFUCSmZCsB9QI7g4YbKXfbS1G8mkUxphyvNg4WjnXgNg1FqytR3Zd9n/ViBJQClNgfsrFgBxXWFTJuebk9nnAZGbDkjMGygJMrIop4q54iBe0Q+7/0YKpRRaMqMY0RN5nGdMxAfK8j3G9wYLpXwZKsdkHMlHCqdqLMNGsK8Qjv3MYuuOMQXhhNQkRoXpj9l3QHet1gztpMa2dgwPCzjZjgzWVT62hEmx5rGEb0XuKs2h7D+qVaKjHZCkDpt5Rwj/iRVsvL3UfKAFrxRAtc7FpzALRIDIx+SZvjDbP1WNrp8Gsggoo9aiIEeaNMKCx6dk4eaJcWgFZAxWdAhn4ksHJ6SmGrIKJ9ZwgNYk8KymIcVBxiHZmorsmnLCB+a+Wc8/bW0lG1IzrGf/JEgWJEOaZDnWTU7+BLEPxWuUnHnCoNQT0BuYwqmWMGZI1qAtMGxNr1Els5gLTZSSEerlkpMos1CafSDsW15UE0jSYGoFwqcFE0PY3Dqe0wQVmbHeITWckJoiSEyhlKkRT2d3aIYmJn08iGkzSXjZBACe6VgwSA1Cag/t1B7lsRo9rvTJSYEkqd8ynkkJBS+b36Tsm34/H9pXw8eSVPi0qGAmQk/Ezbin1MTu6QUMj5mdcZ2Po/xQqJ7LUqLR+76Yj/pEOiSAi0ZG2iAtXFN/+9MUTkhNZ/DDbmso0gzUCIxMETHtKdNeNGMSmcf1hHDiAFcVcwQ9uTZLqGYFH7sRB7vKGCE0JRbA7OuRmgmbdOU7YPqB4vrDJi42OfGYSg2i3rG08/lJYatMqgTk67xGTHgAaveRNW82SbYrY8SEH9LdWXNT483lTwKgz2WvqAdOSE1VyNQu1cCTiZ3duhkmLJ40WQPg7+KQGFzJvgLxOS6Gql0+IQYH2TYiHGWyXznRszDmCV5qVznSPrIseeU80hm7ASDnVwomOyA3DdiMxX23Ic+j3vHqCYDAYhvmEzQ+Hs84Bl8t1HMp9xWAsXw4Bhw43BPoOnBc6LCnDPSX6jiAgxNSUwzKGWv5mRPNgJPJPK6sXNZs0k4tKgsjrRZsAoT9W47iJ04WzvUK5rhYLfk5C6SAjRubIGqYtep67jcpjO04PwlJDGnXPXEgHwYOl4Sw5uMLxiAd/J329GcKIiH4pH6sXbsWnucZr6GhIfU7EWHt2rUYHh5GX18fvvjFL+L1119vdjcc0oJX2L1lnUYnbcLaLMdg1JsCh2JeQDZtohHEkTcagZ1Zw4ep0XCcEUMGAqf1scRBTeKItA6YzLMsVHqOEWP2nbo2MUQKjiurBz1l4ODxUBPpEefP2fcZnhyfOi5U1ltzf2+YemnPjDC7xb6Cfo0Wwt/H8po+71AXWqJJHXPMMdiwYYP6P5fTF+m2227D7bffjgceeABHH300br75Zpx22mnYunUrBgYGWtEdhzRo9cqTfSu8ss7CpOIVMm8uNap2rJhL1gq5UX+d9ENF7jhtGvWAQJg1y76ZAT3rsW3BIMeQoMkUQSSx0soRFjoybZQiXQizobzm5SC5CGMa+BQGpNvsRwmulJtViLP/Ly32RELpw75QEHFgtEfhIk8GLrcqhm6aoCVCKp/PG9oTg4hw55134oYbbsCqVasAAOvWrcPg4CAefvhhXHrppa3ojgNiYqo6BTUPJJApMrXRZtQTi1WzTeudTWJSU5RzXNZjx5oLox+4tIdBQMnWfMVCwfYTBtEBmz1m1dqrVyZk2W/CD018JV9XLC57oC/9V50Hd0hC0819APDmm29ieHgYS5YswXnnnYe33noLAPD2229jZGQEp59+utq2UChgxYoVePHFFxPbKxaLGB0dNV4OkwxyYpHxT7UgqddGdog2rk6ZrdWImU1C+pTUu3ipzA+W8GBtNA4UMy7M1PREW0yP5tX+jInwVYjMvXYcUVI2ECYDFMq6LdYe8mUz/RBrgmlrjjWCLNp14IU+pWK0Vk97bYuRH+rjntCkt683/FxyZr1WoOlCatmyZXjwwQfx9NNP42c/+xlGRkawfPlyfPDBBxgZGQEADA4OGvsMDg6q3+Jw6623YtasWeq1ePHiZnfboV2Qpq4sgb7s6+hEzZ9aE5/KgZdBcEqtTBIXpOCyX3bznNaoFBXsK+bMuByCqSVJYYjo/zjhG3jRRJwPfSt7ZoTvByIWmzxPKaiUYCIhoCxB1QzUEkK1LkM5Ijl83KPPKQuKOV2rioVVUZg9HZqKppv7Vq5cqT4fe+yx+PznP48jjzwS69atwwknnAAA8DzzLiKiiu8krr/+elx99dXq/9HRUSeoGkBTAn+zgmOesk5UtiM+KTddp5G1zITcXO5rnCu/p2jXjilrxCzJWS3Yn2W3xSZJQCfZJfmbp1NWyfNo1uKiFoOv1nnbpJusArSU0+cNgP5rVfp9HTKj5RT0gw46CMceeyzefPNNfOUrXwEAjIyMYOHChWqbXbt2VWhXEoVCAYVClgp7Dl0JJh3wwlXmkZMO/SSzoGEma4PpqBqaodUZ1PPoHGsliiWxrRwXH4DXJG2l5APjed0fOYlTpL2xXOWM6BIccG3TxZkI0si14+NLcNaMrGAtsieDCbeYD817B6LS9J28B6cJWq6fFotF/POf/8TChQuxZMkSDA0NYf369er38fFxPPfcc1i+fHmru+JggbBWvToCjzRtWZoAGTI7OWD6ZppNYMgKWTCwWomRJNh59+y2eBv7xfvIY0nzYKNQrD1fM95sTUOm+5EvpqLHFtmUfW9AFZb3iZWwNTPY3Jn2PtrfG76KYakTWn4x6Jzz6jy4Q1o0XZO65pprcNZZZ+HQQw/Frl27cPPNN2N0dBQXXXQRPM/DVVddhVtuuQVHHXUUjjrqKNxyyy3o7+/HBRdc0OyuOEwWxMXVMKS/hv+vJzNCs1CR8gfx2b9rQU7kNkU5rp1Y01+LhHQu0FnDC5GviYWpLG8CWEQNVH4X5xNrFDIVFJBdOOcDff2yIBJOYQl6lz2iXWi6kNq+fTvOP/98vP/++/jEJz6BE044AX/5y19w2GGHAQCuvfZajI2NYfXq1di9ezeWLVuGZ555xsVITUckBY/aWgKbCTupOQFm/SWgMQ0mSXOMS/fTLq2RhVCewngkSajgcwUAylUnv8gKvayt1NsfbkNCCqd6xyXrfntmhFoUoAPfHdoCj4g6/ORnx+joKGbNmoW9e/di5syZne7OlEYsuaJZ1UXjhJT8Vx6i3omumZD+F5lcNjMZxNNxNvb5c0kJwNQY2iGkmCjBh0paGIznQlabnTWDkQvCSVyy/Ortj+2/kqVM2mH2DTyQf2Pr2p/GSDuPu9x9DtkhM3MDjWUQiGN+2aywTmtQMlaLu6ImSi/b+asyI1QZN+RBV8htJZKo//ZhOX9g3L6K2BExKGxCi0zzVC/ihFu70mAxDuSB/vYdzqESTkg51A9eefsN5Pqz/QsGUaILCBIy5xx/VslSCYCvhW21ftoECxZIDBm71GyQF8VQ5QShASZxQAkZuR+AIGf+D+j6UKoUC7RWyf45FZPV/NNpG1hjdEKqo3BCyqEq4ph/LY+vkpkVOimg4rQNRavOqj0lsNCMlEKZelf9eIApkDiJrP07a0uSOcl9sU15nnhXuQahS4soDWpyCqiKe70XwLxO9MRBwgkph/rgNeAQr9Uu53rLnKeuSb4y2RcPYfwRAfCllhe913Ley6q73CagtQ9DEDYwsass5MLPF4j/pZmOtZ1coEuwZzGj9YjjSR+RTITbaROtw5SBE1IO9aNVE1E9wskWHs2E0goy9EuaCVl4SAEsof71kOkYkg4vY4Zs86Q8DpviOGVRvYGwdhqlyS6Yyn5zCn06NB1OSDlkRlLwb8eyq3ejacmYtC3BpLQniv8/9TGUOgY1ALaJ0hPHMJQ2L9S0ZCn5ejHJsy4Q1joB1cVwQspheqMc+WoaieeJg0dhvBFgajwGQ7CifLL279j78T52H6WAVgxEwY7k7Q2tywfKiEppsAmQtOnPwaGL4ISUw/SETEPU6hAsFiTsI0oiUUD8xmY73o4FTzVBamd/kH4mrusEMv1JSgkrA56vTYHTBeO5kCDh0LVwQsqhaegIE7BRyNpN7YKwzhnwyKzYq0gJgn2XRA7hirRSyDHTDtBl3tn0aCf3LfuAHwmnKWr6ijVTOwHV9XBCymF6gn00WYgDJIRGPVkmpBbFbDh7mwlPl3RnVmAu0P2MC7BF1FY14cKZywMvjH1iIclMQM/TWb2nmzbl0NVwQsqhpeiasvUSdgLU1PtFL7CgqUP7snexOROyEq7SpLxk4ZQWRgkQSbSIfmcCBZMpJrk21bHM/g5NhxNSDt2HVgbyyqSldQXkZqSJM5icwGY8Nt8BJqlClieRJjkg0rDq1HAq0lgJQgV/1+kaXQ4OMXBCyqG7wLWMADMtUjOYd0yWyJr01A6U9YG6BBWgy0RI1p4kcEgGoDomRDqmOrn2SguERaiwhBSPd7MDox0c6oQTUg5tQ6b4KqlJNKs0Zz2aUFLcUSMTuEzQG8f2k6XgQVqo1JOFw4Z9PjLNU7fFmqWAM+tNfTgh5dBdUGY4zyyu5yEsxFcPuFqsyl2XsJ1tZpPwELLfWNNoBFyXajzG8SPjqxhc5ryRDOCcfUKaFSVBIk+6NIeM03LalEOH4YSUQ3eBJ8kAYbArs9LKQRjHk9XsN57TwkBOvhIyCasUijKnXTOEEx+LBeaErwWBF/UvXxYJXymeBRgHFjxxNaBsf1cpKvPOgo+PwwxCOT5JhQcdHNoEJ6QcOo4Kkw3flVEMizd6a/1aBJvTkgRMnNlNCiQWHs0Ca4l8PPZxxR3PLp1RDar/VfZhSycfw0jVhFBwemI85O8dElLOnOfghJRD96OnHFasrQeSKm6kEIo+yOrAPA97qDR9NRusTalgXdIMwKSKuHGYECY8IMzUHmfPZNMeF2m0hTGbH6XQVoloI7JHveZWB4cG4ISUQ/ej3vggmQE8rqAfv0umHRMr2kHHlgKSkYUcwaY747uEbVl74nx9NkqRWVSOhU86I4PvgnsdOgMnpBy6HtT7v6v+nhgkLH06thnNIAeIbQm6LlKr4Il3L+a7etpSQjeO9EGhFpQXlHfATMEkg3xllWAucd8iAoUz5znUghNSDlMXTAaQpi2bAMEmMN4eSD8hs6mNtQ9OX5QGUlAmBdLG+ciM32EGCAdemN2c00XYKZ8kQYNRypnBxVwUkU2OPYJcUfZN3xm36eDQQjgh5TDpkbga91CR3idW66pnwpVBx8qX5YkJv0pb0qRnCxEJWdaD46ZsrUamOOK+lD2TJFENslwHM/uU/4osrRMxcVZIPF+nJTk0A05IOTjUow0YVPXou7RsPM68ngu0UOM6T+MAfN+kxEuNKx+VfAdMgSE1pCwmw1IkbMt+vK9KVvxVGqMwATaLmu/gkAAnpBwc0mJCaE8SHMeUxXfDAbocu1SOpF0ppipRZwAACsxJREFUUv0CLyQylD0zmLe3bApDFhLE//D3KfrBZAkWUFJgAqJfMOOsmG3pBJRDG+CElMO0Qi0TVCIJgydpu76T7aNJC7mfJD2wtlL2dKkOmwWoGIjQJjoPoqEUkOcjtSTZRiCEVfROc67LeKIODo3BCSkHh1rg+CHJiTBKX4jv0/ikeP9CWZv1yn6USFZoLBDtS9+QZx9bOJ+kf60WQ5EJF2VfZ8Dg8+Im2TflAfAcDd2h/XBCysGhGsjTQooFD6ctylm+IfWOdLFdMjiWM0+osvYwSQ2+eNlMRe6bXXaj1nkRTAFV9kN2oPSxSRJFVm3RwaEJcELKwUGgwhzoATi4uceoMCkyISLwgJww+bEGlbOEVAXDT7xHLD3yb6zeiRyAvujl4NDFcELKwaHTyAc63kmRKaCzlst4pbjURB6FQodSmPgcHCYZnJBycOgGsDmNcxQGHlAmbfarlc/PmeMcpigmpZAiCh/W0dHRDvfEwaEeFGtvEsCq+5RNCI3CPRsO3Q2ev3k+T8KkFFL79u0DACxevLjDPXFw6E7Mwg863QUHh1TYt28fZs2alfi7R7XEWBciCAK8++67GBgYgOd1p41jdHQUixcvxn/+8x/MnDmz092Z8nDj3V648W4vpuJ4ExH27duH4eFh+H5MkHyESalJ+b6PQw45pNPdSIWZM2dOmZtqMsCNd3vhxru9mGrjXU2DYiSLLwcHBwcHhw7DCSkHBwcHh66FE1ItQqFQwI033ohCodDprkwLuPFuL9x4txfTebwnJXHCwcHBwWF6wGlSDg4ODg5dCyekHBwcHBy6Fk5IOTg4ODh0LZyQcnBwcHDoWkxLIXX44YfD87yK1ze/+c2KbS+99FJ4noc777zT+L5YLOJb3/oW5s+fj4MOOghnn302tm/fXrH/73//eyxbtgx9fX2YP38+Vq1aZfz+zjvv4KyzzsJBBx2E+fPn44orrsD4+LixzebNm7FixQr09fVh0aJFuOmmm2rmu+omtGO8//jHP8Yew/M8vPzyy2o7N94mGrm/33jjDZxzzjmYP38+Zs6ciRNPPBHPPvussY0bbxONjPemTZtw2mmnYfbs2Zg3bx6+8Y1vYP/+/cY2U3K8aRpi165dtHPnTvVav349AaBnn33W2O6xxx6j4447joaHh+mOO+4wfrvsssto0aJFtH79etq0aROddNJJdNxxx9HExITa5te//jXNmTOHfvrTn9LWrVtpy5Yt9Oijj6rfJyYmaOnSpXTSSSfRpk2baP369TQ8PEyXX3652mbv3r00ODhI5513Hm3evJl+85vf0MDAAP33f/93S8amFWjHeBeLReMYO3fupEsuuYQOP/xwCoKAiNx4N/v+/uQnP0lf+tKX6G9/+xu98cYbtHr1aurv76edO3cSkRvvZo73jh07aM6cOXTZZZfRli1b6KWXXqLly5fTueeeq9qYquM9LYWUjSuvvJKOPPJINZkREW3fvp0WLVpEr732Gh122GHGTbVnzx7q6emhRx55RH23Y8cO8n2fnnrqKSIiKpVKtGjRIvr5z3+eeNwnn3ySfN+nHTt2qO9++ctfUqFQoL179xIR0T333EOzZs2iAwcOqG1uvfVWGh4eNvo7mdCK8bYxPj5OCxYsoJtuukl958a7eeP93nvvEQD605/+pLYZHR0lALRhwwYicuPdzPG+9957acGCBVQul9U2r7zyCgGgN998k4im7nhPS3OfxPj4OB566CF8/etfV8lqgyDAhRdeiG9/+9s45phjKvbZuHEjSqUSTj/9dPXd8PAwli5dihdffBFAqJrv2LEDvu/js5/9LBYuXIiVK1fi9ddfV/v8+c9/xtKlSzE8PKy+O+OMM1AsFrFx40a1zYoVK4wgvjPOOAPvvvsu/v3vfzd1LNqBVo23jccffxzvv/8+vva1r6nv3Hg3b7znzZuHT33qU3jwwQfx0UcfYWJiAvfeey8GBwdx/PHHA3Dj3czxLhaL6O3tNRKx9vWFZZVfeOEFAFN3vKe9kPrd736HPXv2GJPZD3/4Q+TzeVxxxRWx+4yMjKC3txdz5swxvh8cHMTIyAgA4K233gIArF27Ft/97nfxxBNPYM6cOVixYgU+/PBD1c7g4KDRxpw5c9Db26vaiduG/+dtJhNaNd427rvvPpxxxhlGORc33iGaMd6e52H9+vV45ZVXMDAwgBkzZuCOO+7AU089hdmzZ6t23Hg3Z7xPPvlkjIyM4Ec/+hHGx8exe/dufOc73wEA7Ny5U7UzFcd72gup++67DytXrlSrj40bN+Kuu+7CAw88kLkMCBEZqycAuOGGG3Duuefi+OOPx/333w/P8/Doo4+qfeKOIduJ24YiJ2e3limphlaNt8T27dvx9NNP4+KLL674zY13c8abiLB69WosWLAAzz//PF566SWcc845OPPMM9WkCbjxbtZ4H3PMMVi3bh1+/OMfo7+/H0NDQzjiiCMwODiIXC6n9pmK4z2thdS2bduwYcMGXHLJJeq7559/Hrt27cKhhx6KfD6PfD6Pbdu2Yc2aNTj88MMBAENDQ2o1I7Fr1y61Klm4cCEA4NOf/rT6vVAo4IgjjsA777yj2rFXL7t370apVFLtxG2za9cuAKhYEXU7WjneEvfffz/mzZuHs88+2/jejXfzxvsPf/gDnnjiCTzyyCM48cQT8bnPfQ733HMP+vr6sG7dOtWOG+/m3d8XXHABRkZGsGPHDnzwwQdYu3Yt3nvvPSxZskS1MyXHuyOesC7BjTfeSENDQ1QqldR377//Pm3evNl4DQ8P03XXXUdbtmwhIu3o/NWvfqX2e/fddw1H5969e6lQKBjECXbm33vvvUSkHZ3vvvuu2uaRRx6pcHTOnj2bisWi2uYHP/hBVzs6k9DK8WYEQUBLliyhNWvWVBzfjXfzxvvxxx8n3/dp3759xjGPPvpo+v73v09EbryJmn9/S9x3333U399Pu3fvJqKpO97TVkiVy2U69NBD6brrrqu5rc3GIQopo4cccght2LCBNm3aRCeffHIFRffKK6+kRYsW0dNPP01btmyhiy++mBYsWEAffvghEWnK6CmnnEKbNm2iDRs20CGHHGJQRvfs2UODg4N0/vnn0+bNm+m3v/0tzZw5s6spo3Fox3gTEW3YsIEA0D/+8Y+Kdt14x6Oe8X7vvfdo3rx5tGrVKnr11Vdp69atdM0111BPTw+9+uqrROTGOwn13t8/+clPaOPGjbR161a6++67qa+vj+666y71+1Qd72krpJ5++mkCQFu3bq25bdxNNTY2RpdffjnNnTuX+vr66Mwzz6R33nnH2GZ8fJzWrFlDCxYsoIGBATr11FPptddeM7bZtm0bffnLX6a+vj6aO3cuXX755QY9lIjo73//O33hC1+gQqFAQ0NDtHbt2q5d9SShHeNNRHT++efT8uXLE9t2412Jesf75ZdfptNPP53mzp1LAwMDdMIJJ9CTTz5pbOPGuxL1jveFF15Ic+fOpd7eXvrMZz5DDz74YEXbU3G8XakOBwcHB4euxbQmTjg4ODg4dDeckHJwcHBw6Fo4IeXg4ODg0LVwQsrBwcHBoWvhhJSDg4ODQ9fCCSkHBwcHh66FE1IODg4ODl0LJ6QcHBwcHLoWTkg5ODg4OHQtnJBycHBwcOhaOCHl4ODg4NC1cELKwcHBwaFr8f8BieTap781IbUAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGsCAYAAACFPUORAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOtElEQVR4nO3dfXRV5Z02/usASUjCSSDEvJGgOGKXNYgCVgGrQRQaX9BiF6KMylNFfQQsBVqN0w7YmUWsjkUffKBYMb5h43Q0ylJEg7zJcnwGkiIv/gaQokJJQC3kJCEkB3L//nA49niur5xNCLCT67NW1iL32Wefve+9T25O7ivfO+CccxAREfGJLqf6AERERLzQwCUiIr6igUtERHxFA5eIiPiKBi4REfEVDVwiIuIrGrhERMRXNHCJiIivaOASERFf0cAlIiK+0ikHLucciouLEQgE8Prrr3/ntgsWLMAFF1yAtLQ0pKWlYejQoXj77bcjj4fDYTzwwAMYMGAAUlNTkZeXh9tvvx179uxp82szBw4cwOTJk5Gbm4vu3bvjvPPOw9KlSz3vR0TErzrcwFVUVITnnnvuO7d54oknEAgE4tpffn4+HnnkEaxfvx7r16/HlVdeiRtuuAFbtmwBABw8eBDV1dX49a9/jerqarz22mvYtm0bxowZ0+bX/raWlhZcffXV+PTTT/Ef//Ef2Lp1K/7whz+gT58+x7U/ERFfch3MFVdc4crKyszHN2zY4PLz811NTY0D4CoqKjy/Rq9evdwzzzxjPv5f//VfDoD77LPPPL327t273bhx41zPnj1dRkaGGzNmjNu5c2fk8QULFrizzz7btbS0eD5mEZGOosN94vouBw8exC233IKnnnoKOTk5np9/5MgRlJeXo7GxEUOHDjW3q6urQyAQQM+ePeN+7YMHD2LEiBHo0aMH1qxZg7Vr16JHjx740Y9+hJaWFgDAkiVLMHToUEyePBnZ2dkoLCzEnDlzcOTIEc/nIiLiV91O9QGcTD//+c8xbNgw3HDDDZ6et2nTJgwdOhSHDh1Cjx49UFFRge9///t020OHDuHBBx/ErbfeirS0tLhfu7y8HF26dMEzzzwT+VViWVkZevbsiVWrVmHUqFH4y1/+ghUrVmDChAlYunQptm/fjsmTJ+Pw4cP453/+Z0/nJCLiV74fuObMmYM5c+ZEvm9qasKHH36IKVOmRNrefvtt7N+/HytWrMCf//xnz6/xve99Dxs2bMCBAwfw6quv4o477sDq1atjBq9wOIzx48ejtbUV8+fPj7QvWbLkmK9dVVWFTz75BMFgMKr90KFD2LFjBwCgtbUVWVlZePrpp9G1a1cMHjwYe/bswWOPPaaBS0Q6Dd8PXPfeey/GjRsX+X7ChAm46aabMHbs2Ehbnz59UFJSgh07dkT9+g4AbrrpJvzwhz/EqlWrzNdITEzEOeecAwAYMmQI1q1bhyeffBILFy6MbBMOhzFu3Djs3LkTK1asiPq0tWLFimO+dmtrKwYPHozFixfHvP4ZZ5wBAMjNzUVCQgK6du0aeey8885DbW0tWlpakJiYaHeUiEgH4fuBKyMjAxkZGZHvk5OTkZWVFRlojnrwwQdx1113RbUNGDAAc+fOxfXXX+/pNZ1zaG5ujnx/dNDavn07Vq5cid69e3t+7UGDBuGVV15BVlZW1KD394YPH46XX34Zra2t6NLl6+nJbdu2ITc3V4OWiHQepzodcqIdK1X490CSfVdeeaWbN29e5PuSkhK3Zs0at3PnTrdx40b30EMPuS5durh3333XOedcOBx2Y8aMcfn5+W7Dhg2upqYm8tXc3Bz3azc2Nrr+/fu7oqIit2bNGveXv/zFrVq1yt1///1u165dzjnnPv/8c9ejRw83ZcoUt3XrVvfmm2+6rKws96//+q/xdY6ISAfg+09cJ9qOHTvw5ZdfRr7fu3cvbrvtNtTU1CA9PR0XXHABli1bhquvvhoAsHv3bixZsgQAcOGFF0bta+XKlSgqKorrdVNSUrBmzRo88MADGDt2LOrr69GnTx+MHDky8gmsoKAA7777Ln7+85/jggsuQJ8+ffCzn/0MDzzwQNtPXETEJwLOOXeqD0JERCRenervuERExP80cImIiK/4co6rtbUVe/bsQTAYPO66fyIicuo451BfX4+8vLxISjpevhy49uzZg4KCglN9GCIi0ka7du1Cfn6+p+f4cuA6Wl1i165d5t88iYjI6SsUCqGgoCCmWlA8fDlwHf314NE1skRExJ+OZ7pH4QwREfEVX37iEjlVAl8+GtvYavyPMZEsN2NtezAhtq2BlPFKPsyfn0TarW2bu8Y0uaxf8G1FTkP6xCUiIr6igUtERHxFA5eIiPiKBi4REfEVDVwiIuIrShWK7wXeeSm2MbUlts0ZiT62PkLPQ3zbPqStW6t1aLG6GosxsH2wtkPGW5a1u+bYNgBIiE07Bnb/rm3HZbS7ng/ybUXaQJ+4RETEVzRwiYiIr2jgEhERX9HAJSIivqJwhpxSgY9+zx8gAQL8LZlvm0ragiSccdj4f1oTeRtYdT9ZyaZwbAklAEAXEsRgbQDQQvbBykCx7QCgiWybHObbWu0M6zMPNVEDu+bGNjaSYwVo37hzp8b/YtJpePrEtWDBAlxwwQWRquxDhw7F22+/HXncOYfZs2cjLy8PycnJKCoqwpYtW6L20dzcjKlTpyIzMxOpqakYM2YMdu/efWLORkREOjxPA1d+fj4eeeQRrF+/HuvXr8eVV16JG264ITI4Pfroo/jd736Hp556CuvWrUNOTg6uvvpq1NfXR/Yxbdo0VFRUoLy8HGvXrkVDQwOuu+46HDlC/octIiLyLQHnnPG7i/hkZGTgsccew09/+lPk5eVh2rRpeOCBBwB8/ekqOzsbv/3tb3HPPfegrq4OZ5xxBl588UXcfPPNAL5ZzXjp0qUYPXp0XK8ZCoWQnp6Ouro6rcflcyfkV4VMW39VmG78DVROQ2xb2Nivl18Vsr/DOtA9ts3LrwrPPMC3TSPnxirRWxKMv+PqStrZcelXhYK2/Rw/7nDGkSNHUF5ejsbGRgwdOhQ7d+5EbW0tRo0aFdkmKSkJV1xxBT744AMAQFVVFcLhcNQ2eXl5KCwsjGzDNDc3IxQKRX2JiEjn5Hng2rRpE3r06IGkpCTce++9qKiowPe//33U1tYCALKzs6O2z87OjjxWW1uLxMRE9OrVy9yGKS0tRXp6euSroKDA62GLiEgH4TlV+L3vfQ8bNmzAgQMH8Oqrr+KOO+7A6tWrI49/exlm59wxl2Y+1jYlJSWYPn165PtQKKTB6zRGk2QA//VfunELsl/fWb9mY2WU2K+tAsbz2X57NfFt2T6sX52xxR29pBVZf/UgvwIFgEayrZV2ZL8WtBa4ZL/WSzEWqGQLZ9Z7eC0isP5p/sCR2P9zu0vuinu/4m+eP3ElJibinHPOwZAhQ1BaWoqBAwfiySefRE5ODgDEfHLat29f5FNYTk4OWlpasH//fnMbJikpKZJkPPolIiKdU5v/ANk5h+bmZvTr1w85OTmorKyMPNbS0oLVq1dj2LBhAIDBgwcjISEhapuamhps3rw5so2IiMh38fSrwoceegjFxcUoKChAfX09ysvLsWrVKixbtgyBQADTpk3DnDlz0L9/f/Tv3x9z5sxBSkoKbr31VgBAeno67rzzTsyYMQO9e/dGRkYGZs6ciQEDBuCqq65qlxMUEZGOxdPAtXfvXtx2222oqalBeno6LrjgAixbtgxXX301AOCXv/wlmpqacN9992H//v245JJL8O677yIYDEb2MXfuXHTr1g3jxo1DU1MTRo4cieeeew5duxq/jxcREfk7bf47rlNBf8d18tE1rwBePujs/bFtAND7YGxbQxLf9ouU2La9PeI/hnSynlaqUeqIhTOSPQQQrNAHez1rWxak2EtqWbG/iwKAwyTw0MM4XxZcYeWlAP63b9bfuLFt68j1bTb+vxwi21o/nVgghl0bgIZk3IX3GjuWk+WU/B2XiIjIqaCBS0REfEUDl4iI+IoGLhER8RUNXCIi4itaSLKTC3zxWGwjS5j1Yqs1gpdb6maVQCKpryNG8o2VBfqSJA0BoDtJALK2XiRpCPAyTFbFd5ZgZOdlsRJ1R8hBsAr3VtkrlrJjJaMAu8I8w5J6Vt+w+4ZVvbf6i6VOG42q9awbWB8CNCEa2P272O2MxKbrrwr1pxt94hIREV/RwCUiIr6igUtERHxFA5eIiPiKwhmdRODAI/yBbmRCO4UEEPLq438x9nyABwus9aVYKIAFIwAeTGDz9KwkEUDXdkKzhwADKy9l7fdAd76tIwecRkorsdAJwPsm0QjJsLXOrHJJbO0uqzxUvOEM6xxYf1mBCxZyMctpxfn/c7Z+GoDA5vkxba7wvvj2Ke1Cn7hERMRXNHCJiIivaOASERFf0cAlIiK+ooFLRER8RanCDihQRxKErIQSwBfvY9taSUFW3skqS+RFJin/Y6UC2eux5JrVB40kDfeVUV6KpdysBSpZUs8qh8XSe+y4rEQeK73FFowEeIKRvT4A/C05ts0qJcWOjfWNlQ5l19da0JNdB3MhSdJO+9voA/IeCfzXH+im7geT+D7khNInLhER8RUNXCIi4isauERExFc0cImIiK8onOFjgfC/8AcSycR1nVFqiJXOYZPvVjCC8bKtJaMp/v2yUkEMKz9k7dea6GfBBmt9K1bOipVxsvbLAghWwIRdR2tbFtpgZbMAHmywAibsfFk/WsfFMj3WNWPna2WC2PVlbdZxsfeD0QeB6oWxjca9pLJRx0+fuERExFc0cImIiK9o4BIREV/RwCUiIr6icMZpJoDZ/IEwCQBYFQzYcklHjHWvWNUJNkdthgLIcbEJ/ROBVYcAgERSiYEFNtg6VAAQJH1jrRPG9mtVCmHrQ1kVSFiFCFY5wwqosG2dUQmCBV/OaOTbphr9wLDrbt2jDKviYgVf6H1rXAcWpGCFUczwj3HvM9ZaZURg27yYNnfu1PhfqxPTJy4REfEVDVwiIuIrGrhERMRXNHCJiIivaOASERFfUarwFKIJQqt8EUuNpRmld1jiykrJsXaWILRK7wRIcs0qCdRW1jpO7HhZEMxDOMws+ZTooYyTFywRx66NtW4WK4FkrcfFmq37jt1LVnJuP1m7K/1QbJuVrGTXx7rv6kkC0TpflqK01jVjWLKRJSAB3l9WGpa0Bz57gm7qzpzG99FJ6ROXiIj4iqeBq7S0FBdffDGCwSCysrJw4403YuvWrVHbBAIB+vXYY49FtikqKop5fPz48SfmjEREpEPzNHCtXr0akydPxocffojKykocPnwYo0aNQmPjN3+8WFNTE/X17LPPIhAI4Kabbora16RJk6K2W7iQVFUWERH5Fk9zXMuWLYv6vqysDFlZWaiqqsLll18OAMjJyYna5o033sCIESNw9tlnR7WnpKTEbCsiInIsbQpn1NXVAQAyMjLo43v37sVbb72F559/PuaxxYsX46WXXkJ2djaKi4sxa9YsBINBup/m5mY0N38zAR4Khdpy2KcPNiHeYnwIZgEEq9RQW7H9WhPqVoihPVhlpxgv52CVgmLYpH47XQbKCiCwskQJxoGx+855KFvlpQwUu2RWeIe9llXyiR0uK4sG8DBJKrkXWNktAOhJAiZW4ILdSyxYBfByacY9Gvjk/8S0uXPu5/vtBI574HLOYfr06bjssstQWFhIt3n++ecRDAYxduzYqPYJEyagX79+yMnJwebNm1FSUoKPPvoIlZWVdD+lpaV4+OGHj/dQRUSkAznugWvKlCnYuHEj1q5da27z7LPPYsKECejePXr13UmTJkX+XVhYiP79+2PIkCGorq7GoEGDYvZTUlKC6dOnR74PhUIoKCg43kMXEREfO66Ba+rUqViyZAnWrFmD/Px8us3777+PrVu34pVXXjnm/gYNGoSEhARs376dDlxJSUlISjL+bkJERDoVTwOXcw5Tp05FRUUFVq1ahX79+pnbLlq0CIMHD8bAgQOPud8tW7YgHA4jNzfXy+GIiEgn5Gngmjx5Ml5++WW88cYbCAaDqK2tBQCkp6cjOfmbv5oPhUL405/+hMcffzxmHzt27MDixYtxzTXXIDMzEx9//DFmzJiBiy66CMOHD2/j6YiISEfnaeBasGABgK//gPjvlZWVYeLEiZHvy8vL4ZzDLbfcErOPxMREvPfee3jyySfR0NCAgoICXHvttZg1axa6djVSQR1AoPlfYxvDpPutxFV7lVFqq5N5XFaKkqXkWGLLKpfE2q3kHEujWQsQtkffWIt0Zh6MbbP6iyUjrWNlSU7rfNkxeOHIa1nn6yXNSkuCkb5JMPqAtVsLZLIut0pk1XlYOLOtfdvBeP5VYTzuvvtu3H333fSxgoICrF692svLioiIRKhWoYiI+IoGLhER8RUNXCIi4itaj+sEC9Q9YjxCuppNEPstnHEyWZPnbEKbreNkld6pJ+EMK9gQIsdgrRnFyvdY66JZpZziPa62rglmldNir9deZb6C5BzYewQAvkyJbbPWFGPXgZ2DVTKKscpDMVY4gwVPrHXCyLEFts2LaXPnTo3/uHxMn7hERMRXNHCJiIivaOASERFf0cAlIiK+ooFLRER8RanCNghsnh/b2NMoK8RSXyyZdDqkB1lKjy1UCPCFAq3kW1vTaFaZHRIwo+dglQ+iJZCMbZPItlbakaUYWRrO2m9GU2yb1YfsOsSbVATsa8bKMFmsBGBbWClM1g913WPbAOAAaWdlvryUvbLEm2AE+D3q5bVIWjFQ9TTd1A3mlYz8Sp+4RETEVzRwiYiIr2jgEhERX9HAJSIivqJwRluwyW8rAMCCGFbYoD14WYuKrbdkTd6zYII1yZ1IwgZeWKWV4mVlFdj5hoyJfibFKNPDJt+t8j8MuzZegi/WullsW6vUENuHVRop3hJmJ6KsGQsLWSW9WJ+z51t9wN7TXsJKFrat9Xz2eqzElRHIYUEyV3iffWynOX3iEhERX9HAJSIivqKBS0REfEUDl4iI+IrCGXEIfLCIP5DhYSdNpKvZX8mHjf9LsIlYVm0B4BPqf0tu+37jZQUI2qrZuF3Zy7E+OGgEVFiIwtJEJvqtcEYyqaLgZd0rdlxWlY4Q6Rt2rAAPQVhVL1iQg1WHAADWjfVJ8b9WKqmS0c3YtoWtb8c3pftlx2WFTqzzZdj1td4OLHBhBWrY+5TdM63GOXi5x31An7hERMRXNHCJiIivaOASERFf0cAlIiK+ooFLRER8RanCeFhlelhSh639A/ByMqkkrWSVkmEJMSv9x0rUWGnFriSZlBxn6R6AJ5usc2CJqROx/hhLg7EEopWsYsdlraEUb/oPAFiI0UqoxVsuycJSZ9Z1aPZQdordt1aysRs5N/Z8K2XnZW03xlp/jCX9WLk1q1wbW5PMujbsOjrjxyw7LqusGXufsmOw3ufkPWKlpd2wO/k+TiP6xCUiIr6igUtERHxFA5eIiPiKBi4REfEVhTO+JfBGeWxj2AhcsNCGNZmc1hzbdsbB+A+MBQC6GCWMWKkh67jYxDObIO5mTFyzUICXYEPPQ3xbhp2XhQUTrFJDrA+swAULgnQl1xbwtt4a6xsWgmj2EDDxsjaUdX+wUIAVVmJ9zu4Fds8A3gJILNhkhTNYeSd2vtb9QdfNMrZlgQvrOrC+td478a5r5iXMYpWX8gH/HrmIiHRKGrhERMRXNHCJiIiveBq4SktLcfHFFyMYDCIrKws33ngjtm7dGrXNxIkTEQgEor4uvfTSqG2am5sxdepUZGZmIjU1FWPGjMHu3bvbfjYiItLheRq4Vq9ejcmTJ+PDDz9EZWUlDh8+jFGjRqGxsTFqux/96EeoqamJfC1dujTq8WnTpqGiogLl5eVYu3YtGhoacN111+HIEQ+T2SIi0il5ShUuW7Ys6vuysjJkZWWhqqoKl19+eaQ9KSkJOTk5dB91dXVYtGgRXnzxRVx11VUAgJdeegkFBQVYvnw5Ro8e7fUcjkvg5Vf5A0lkLGepJICXd7KSbywtxNJZVjKKpdmsRQkbPZT0iTcx5aX8kFXWiLV7SRVaEknyzEupIrqgn5HeY/uw0lmsb70kLllAzFpMk52Dl1SjVSqoniRXrdJI7BwayPOtVCETNBKb7H60rm86ucfamsK0SjOxdus9zdpZuTWAp3rZveCl3BpL0wII/Hlh7KYX3cP3e4q0aY6rrq4OAJCREb0U8KpVq5CVlYVzzz0XkyZNwr59+yKPVVVVIRwOY9SoUZG2vLw8FBYW4oMPPqCv09zcjFAoFPUlIiKd03EPXM45TJ8+HZdddhkKCwsj7cXFxVi8eDFWrFiBxx9/HOvWrcOVV16J5uav/+dUW1uLxMRE9OrVK2p/2dnZqK2tpa9VWlqK9PT0yFdBQcHxHraIiPjccf8B8pQpU7Bx40asXbs2qv3mm2+O/LuwsBBDhgzBmWeeibfeegtjx4419+ecQyDAP7qWlJRg+vTpke9DoZAGLxGRTuq4PnFNnToVS5YswcqVK5Gfn/+d2+bm5uLMM8/E9u3bAQA5OTloaWnB/v37o7bbt28fsrOz6T6SkpKQlpYW9SUiIp2Tp09czjlMnToVFRUVWLVqFfr163fM53z11VfYtWsXcnNzAQCDBw9GQkICKisrMW7cOABATU0NNm/ejEcfffQ4TuE4BVt4O5sEtUrcsAntgNGlbB9sgtmavGflcKzyPyzIYVWCSWbrhJG+YWEHgE/wNhgTxCzMkmmUvWKvZ/UNm+xPJ5P6VpiFtVt9y0oNWYEJds2skjystBE7X+scWDDBCsmEyX6tsAF7PWu/DOsDFvgAeDjCOi4WmOrVxLelQR3SB92Ma8Peu1Ygh/WXl9JKVpCD3eOsLJkVfKHreRnvJ6uc1WnE08A1efJkvPzyy3jjjTcQDAYjc1Lp6elITk5GQ0MDZs+ejZtuugm5ubn49NNP8dBDDyEzMxM//vGPI9veeeedmDFjBnr37o2MjAzMnDkTAwYMiKQMRURELJ4GrgULFgAAioqKotrLysowceJEdO3aFZs2bcILL7yAAwcOIDc3FyNGjMArr7yCYDAY2X7u3Lno1q0bxo0bh6amJowcORLPPfccunY1/pcrIiLyPzz/qvC7JCcn45133jnmfrp374558+Zh3rx5Xl5eREREtQpFRMRfNHCJiIivdN6FJK10FkvfWGVn6kiyySoPxRJAbFurZJSXxezYttb5Ml4WqGMhKKs8FEvfsdQZwJNgLJUIAF+lxLaxsldWCSS2yKdVAomlKPcbx/W35Ng2K/XVm6Qrsxpj21gK1OIlDWslI72U6bKu5bdZpZnYfWMlGFni0rpH2X7ZdTzooZyWlXBlqUCrDBM7Buu+Y33L7iWzvBTpG+tnAlsL8/97im7qzpvC99HO9IlLRER8RQOXiIj4igYuERHxFQ1cIiLiK50inBGoeCW20VpviU3wWhPiZ5AJdWtCPESCGGzbXsaEKZu897KWlTX5ziaZWZs1oc4mg63yUGyS3CqtxEr9WH3LQhBfkMCGNXnPwhnWmlOsfA97favdOgbWjyyYYD3fS3+xSXlWIgvgwSRrUp8dGyvpZV1zdo9aQR8WTLLKQ7H7mQUbrPOyAlMM63MrF8XOwXqfsj5j70nr/mDhMIsVPDmN6BOXiIj4igYuERHxFQ1cIiLiKxq4RETEVzRwiYiIr3SKVKFZcoVhoRwrqZNhLFzHfEUSZixVlGnskyXfrBJGLNlkpYrYubFtrcSWl/JQLKlnpcZYu5VWjHfBRasP2O3RYrwW64cGY2FE1g/W+bL9shJX1q3cRJ7PFhQFeILRur515BgOGvcdu77svWeWGvKwgCG7F6z0L1uk08sijOx4G41rztLDVooy3tcC+H3D2qw+9LI2JCs71fX0+oxzeh2NiIjIMWjgEhERX9HAJSIivqKBS0REfKVzhDNSW2LbrIlYxgp39CD7Pdsow9S3LraNlQ+yJlfZejxs4hzgYQGr/A+bpE70EEBgh8vK/ABAmARPehlhFLZ+kBWGYefAJsmtAIKXkj5e1oxiE+3WtvE+3zoHL/cz61trHSd2DOy+Bfh1YG3W81mYpbvxfmLvvbb2rYUdrxV28LJOGAtBeAlRsHvRy3lZ2PEa90fg87kxba7vz9t+DMegT1wiIuIrGrhERMRXNHCJiIivaOASERFf6VDhjMDSxfyBHmTS1qqiwCa/zTWU2NpdxgQxm0hlr8VCBQDQSMIVXra1JsQZNsG73wiCsH60qkOwiWsrNMKO16oUwiomsNCHWbGBtFlhFFaxwaro4ciOrXNgx8Am7621klJJn1vbsol2q8oGq8jhpfoHC414qZBhvfe8BDHYGldst9aac+y+sTIQrG+t02XvU2s9LtZn7D3i5R63+jCR3M9BEoYBgNwG3t7O9IlLRER8RQOXiIj4igYuERHxFQ1cIiLiKxq4RETEVzpUqpCuXwTwtaxY4gvgKaguRmqMJZ6s9B5L+7Akl5fnW2kltg+zJJCRPPs2lqAEeHLNOgeW1LOSkfVkWyslx7alaxXxp9P0npWcC3hImLFrZvUjS6OyhJr1fJZstI6LlhoztmX3qNU37H3GyqUdNBKbjHW+9eS+6eYhdeqllBW776z3E7uXrL5lPz/M9bTiXF/O+pnAXqunUU6rNynZZr33vCRETyB94hIREV/RwCUiIr6igUtERHxFA5eIiPiKp3BGaWkpXnvtNfz3f/83kpOTMWzYMPz2t7/F9773PQBAOBzGr371KyxduhR/+ctfkJ6ejquuugqPPPII8vLyIvspKirC6tWro/Z98803o7y8vG1nY5VsYRPMX6TwbVnJFWutIlYyhU0aA0ADKe/iZeKbTY5aJVvYxDEr3QPwc2P7tSZhWbjCKqfFtv3KuA5s7a1U43zZfv+WHNtmBXJYGSYrFMDarUn9OnJc1kR9Kukz9lrW2nBsWy/rQFnbsmCDFYJg+2DvyQQjFMCuj7X+GOvbJOO42PpwXsIstOST0V/s/Wu9HxjrHJrJPti9YP0MDJLgDGsD+Np/u9L4tuy+O5dveiJ5+sS1evVqTJ48GR9++CEqKytx+PBhjBo1Co2NjQCAgwcPorq6Gr/+9a9RXV2N1157Ddu2bcOYMWNi9jVp0iTU1NREvhYuXHhizkhERDo0T5+4li1bFvV9WVkZsrKyUFVVhcsvvxzp6emorKyM2mbevHn4wQ9+gM8//xx9+/aNtKekpCAnJ6cNhy4iIp1Rm+a46uq+Xo4+IyPjO7cJBALo2bNnVPvixYuRmZmJ888/HzNnzkR9fb25j+bmZoRCoagvERHpnI77D5Cdc5g+fTouu+wyFBYW0m0OHTqEBx98ELfeeivS0r75HemECRPQr18/5OTkYPPmzSgpKcFHH30U82ntqNLSUjz88MPHe6giItKBHPfANWXKFGzcuBFr166lj4fDYYwfPx6tra2YP39+1GOTJk2K/LuwsBD9+/fHkCFDUF1djUGDBsXsq6SkBNOnT498HwqFUFBQcLyHLiIiPnZcA9fUqVOxZMkSrFmzBvn5+TGPh8NhjBs3Djt37sSKFSuiPm0xgwYNQkJCArZv304HrqSkJCQlGWm9v5dupJVYoo6lkgDgMEnv9DAWUTtIkkm1Pfi2LD3HEn3pRtLHWqCSSSXHayUjWYopjfRjgrHgI+tbq6QPS2xa6U6WKmwlbQBPZ7I2a3FIlhCzrjlLo7GUHsAXybQWbGQLdbK0opWMZCE3a4FLLwuggtwLVgLRkXuJLoBo9IF1j8bLSnd+Se4xVu6IlawCeFLQ6gOW6LUSqtY+4t2WJY2t+7YXOV8vKV1zodHY8w18+gTd1J01je/jOHgauJxzmDp1KioqKrBq1Sr069cvZpujg9b27duxcuVK9O7d+5j73bJlC8LhMHJzc70cjoiIdEKeBq7Jkyfj5ZdfxhtvvIFgMIja2loAQHp6OpKTk3H48GH85Cc/QXV1Nd58800cOXIksk1GRgYSExOxY8cOLF68GNdccw0yMzPx8ccfY8aMGbjoooswfPjwE3+GIiLSoXgauBYsWADg6z8g/ntlZWWYOHEidu/ejSVLlgAALrzwwqhtVq5ciaKiIiQmJuK9997Dk08+iYaGBhQUFODaa6/FrFmz0LWrhz/UExGRTsnzrwq/y1lnnXXMbQoKCmKqZoiIiMSrY63HZU2ussnGRGMimE2uspIvFmsSk5VnCZPut0q+sOd7KdNjTdSzEjHdyTFYx8XO1woQsMlzq29ZkMIqs9NItmVrdLHtAB4KsM6XTYiz0AnArw8LzgC8b6zyYQy7jtaaUS2kz831x9hrGX3D7jFWqsgKRrH7xgqNsOvT1bjHaUDEw71orUXF0Oto3Hfs+lj/72fbHiYbW89nAaKvSFk0gJdLs0pvseCJl5+Xx0lFdkVExFc0cImIiK9o4BIREV/RwCUiIr6igUtERHylY6UKreQcS/qwki8AkES6hJVAAngZFesYWMmnvank9Y3nM9YCdSxxZSV9WOqrkZQqslJ2XspLsRJIVgLxACmBZDkUZ7Kxp1EyqgdJrlmL7LEU5WEPizta2C6slCzDXspKuB4iKTcr6ccWFbXu8XjTZNbzad8a/7dmr2UtspnGkrPkGKy0pBcsfcfue8BbspG9T1m5NauME3st67jYOVj3Mnv/e0lhHid94hIREV/RwCUiIr6igUtERHxFA5eIiPhKxwpnWOstsYl6a+2uLmSS2gomsMnzzIN8WzZpyuY7rcAFm1y1Jt/ZBK81yc0mYtnzrUlfVk7Hmshl/WiVkvFS8ontg13zRCMUwIIY1rpoLMRgBUxYWKCbcQ4sGMDO13otdt9YfcvCLCnWGltxvpbVztpY+AfgZauskk+sG6wSV9a9/23WebHreMg4BxYqskqCsePy8v73kP2hrDJfbE0va1sW3lE4Q0REJJoGLhER8RUNXCIi4isauERExFc0cImIiK/4OlWYvnUh0OPvFj1r6Mk3ZKVNWBoGALp7KHFDE3Ue0jfZjbFtVukddg5WiootGuclcWWVgmFYgshL8s0q08O29VLSiyW5rNcKkhQVW4wT4IlLK0XFjsu6DmwX7P6yns/uWysJysoHWWk2lkz0stgpS4da59CVXAcrkcdSbtbCqmwfLP1nlVtj97OVYLaSnIyXBRdZypUlozOMsmbspaz0L7sXrJ9rLAlq3R8nkD5xiYiIr2jgEhERX9HAJSIivqKBS0REfMXX4Qz0CAPBv5tI7G1MTLLJWasMDFuny1q7i01MWgECNmHJJjytAAFjTXKziWerPAyboGWT3F4CF9a27Bis02UT19ZkNrsOIXJcLLQCAH9L5u0MC2JYk9HscK0AQbzrS1lhBXYdrdAIK6PUZARyWAjBCnKwMAnrA6t0FwsFmWW6PKw5x9atCpAQVG8jgMD6y3qfsuCLdd/R4Iqx33QS5GIBFes6snCYdR1ayPF2s9575Gejl59hx0mfuERExFc0cImIiK9o4BIREV/RwCUiIr7i73DGkS7RAYXcer4dC0x4qQ5Rb1SzYJOjGcaEeDfSHiL7tSaYWTubCAaMdaCMiWc2+e1lbpWGCoz/D7FtzdAIOV5rMpmFI9iaQlZohB3XfiOwwSa5rb5l52Bty9rZcVnXhgUQLKzog1UZgQWTrAASuzy0eogVMGH95SHMYp0Duz/YdbQqZ7BAjVUho5F0rrUtC32wNf4AXt2Fvc+tnx9equmw90lX4+caez0WDgOAnrz5eOgTl4iI+IoGLhER8RUNXCIi4isauERExFc0cImIiK/4OlVY1/c+pKWlRb4PfD6Xb9iLlIJKJSkdANjbI7atlrQBPKljlZ1iiSeWCmRJQ4CnlcJGqpCV+rHSbCwxxfZrlchK8PBabB9WCSSaKuSb0jRYH3J9rdQYYyWjGkka1Sr5xFJj1hpIrJ2VVjpsldMi7dY1Y4laK43G7iWz9BYra0bOy0olsjXQrGvG9mul5JriTLOy0mHWMVj3Yk6D8QDBUoFWmS5WysnLeoDs54qVlmbXkaUaAZ6YrDPeOyeQPnGJiIiveBq4SktLcfHFFyMYDCIrKws33ngjtm7dGrWNcw6zZ89GXl4ekpOTUVRUhC1btkRt09zcjKlTpyIzMxOpqakYM2YMdu/e3fazERGRDs/TwLV69WpMnjwZH374ISorK3H48GGMGjUKjY3fVC5+9NFH8bvf/Q5PPfUU1q1bh5ycHFx99dWor//mj4OnTZuGiooKlJeXY+3atWhoaMB1112HI0faf8lnERHxN09zXMuWLYv6vqysDFlZWaiqqsLll18O5xyeeOIJ/NM//RPGjh0LAHj++eeRnZ2Nl19+Gffccw/q6uqwaNEivPjii7jqqqsAAC+99BIKCgqwfPlyjB49+gSdmoiIdERtCmfU1dUBADIyMgAAO3fuRG1tLUaNGhXZJikpCVdccQU++OAD3HPPPaiqqkI4HI7aJi8vD4WFhfjggw/owNXc3Izm5m9KoYRCIX5AWzN5+5kHYtusAAFbI6fOmMSk4YyDfNtMEtpgE5vs9QEemPA0cW2tH0SOgQUTrElfFq6wysOwfVhlmFiwwJq4Zu3WRHu8WMmoE8Fay8oKUnybVQIp4CFAwEIMZqkgdgxW+TByHdq6ppgV3mHHZZ1DvNdyv1WqiJS9st57rG/2pfJt2XvdOlbWzl7LKlW2JxjbZt2LfcjPV1YiC+A/A7sb255Axx3OcM5h+vTpuOyyy1BYWAgAqK2tBQBkZ2dHbZudnR15rLa2FomJiejVq5e5zbeVlpYiPT098lVQUHC8hy0iIj533APXlClTsHHjRvzxj3+MeSwQiP6fj3Mupu3bvmubkpIS1NXVRb527dp1vIctIiI+d1wD19SpU7FkyRKsXLkS+fn5kfacnBwAiPnktG/fvsinsJycHLS0tGD//v3mNt+WlJSEtLS0qC8REemcPA1czjlMmTIFr732GlasWIF+/fpFPd6vXz/k5OSgsrIy0tbS0oLVq1dj2LBhAIDBgwcjISEhapuamhps3rw5so2IiIjFUzhj8uTJePnll/HGG28gGAxGPlmlp6cjOTkZgUAA06ZNw5w5c9C/f3/0798fc+bMQUpKCm699dbItnfeeSdmzJiB3r17IyMjAzNnzsSAAQMiKUMRERGLp4FrwYIFAICioqKo9rKyMkycOBEA8Mtf/hJNTU247777sH//flxyySV49913EQx+k2qZO3cuunXrhnHjxqGpqQkjR47Ec889h65djZRLvKzSTKwMS1cj+cJKo1glTFgqiJWMAnjKjZVcsdJlLEFkJq48LBrHXo8uUGlcGzYtyUrGAPwcrGSTlRCLF+sDq4wTS7lZJcGyGmPbrDJO9eT+sEp6pZL7kR1DorHQoBesVJCVZmXXzDpftl92Ga2ST0FyblaSlN03VlqRlbhKJPcHSw8CvBSV9T5l5+vlHm9raTZrgVz2nrbeYtb1Ydi5HfKwSO9x8jRwOWctV/uNQCCA2bNnY/bs2eY23bt3x7x58zBv3jwvLy8iIqJahSIi4i8auERExFc0cImIiK/4ej2uGKxUCWCsp+NhHSgrBMHarRAEa2evZZV8YaWRrDJObNLXKsPEghRszaevUvjzWTksq2/TPEy+s3OwtmWTyWzimpXYAvhEO1v/CAD+RkrqWOtxfUH6zApnsJI6vUkfpBvhDDapb5XTYn1r3ePsWloBAnYO7NpY60CxYIEVNqChEeO42FpS7H2WboQzvGDvSSvswPrcvA5xvr71HmHXxkvIxgrvkECcu+Qu4+BOHH3iEhERX9HAJSIivqKBS0REfEUDl4iI+IoGLhER8ZWOlSosMFKFjJW4YuWhLF4WO2QpqAyyuKSV2GKJOCslx9qttCMLFvUkyTVrAUOWQLRSdqxvrBQV61urb1g5LXa+1vNZSR8LSytaz2evZx0D2y9NonpInVkpu0yy2Cl7fYtVwoidG7sXrHJenu5bdt9ZC6uy4yLbWoslsnvUKgPHSo15uT+sFCVbIJI93/r5w36uWT8D6esb5/s3o72d6ROXiIj4igYuERHxFQ1cIiLiKxq4RETEVzpWOMPLpK+13hJbF8kqw8T2ax0DKwXDJq5ZWSSAT7qaa2x5KP/DdCfH0JMESaz9eilbY01Gs3601ktipXoCpKyQFbxhx9VoHBcLjVghCFbqx5rU70L2wcICVgCBlaiyroMVQmC83OOsHBbjZW0463xZ39J15MDLbLFgAwutWMfF1loD+HvaWp/OS6mxA+QcWFCHBb4A/jPMWqWKvaet4/IS6jmB9IlLRER8RQOXiIj4igYuERHxFQ1cIiLiKxq4RETEVzpWqpCVWwF4iZouRkpmb2psm5UEY0m/g0aXNpIUUneS7rLK6bDnWykqK/XFsOQZLZFzAso4WQlChiWbrDQca2cL37HEKGAvfMmw80029uul3BFb7DC3Pv7nf0HuW+v+YIk8qxSVlzQqu3dZcs5KFbLrYKw5SfvBSvo1k/ckuxcPGO9zVu7IKuPE+ta6770sOtmD9Bm7ba3ryN6T1qV1ZFsrhc2u70mgT1wiIuIrGrhERMRXNHCJiIivaOASERFf6VDhDFd4H20P/L9nYhutkj5fpsS2WZOr6aQ0khWu2E8m6oMe/t/AJtrN8lJxTuQCfEKclXGx1oHyUoqKhWesckmsRA3rb+vY2HWwJq5bPazdxcpOWWsgsYl2q6wQwybvrfuLXUdr4pyFEKxQACtBZgV12PuEBSPMezHONoD3jVV+iN2P7HzNdcbIAVv9xd6nVliJ3Tde3qfsvrfKS7F+ZH0I8H60rnkvo8RUO9MnLhER8RUNXCIi4isauERExFc0cImIiK90qHCG6SuyTpC1thNrtya5m0j3WROxbNI2kbQlGKEA1t5qTJiyY7ACEww7LyuAwFiTvmySO+Bhv9ZaZaxv2QSzFWZhzeaaYqxvjf2yfVj7ZdUZrIotDLs/rKoXdN0r4zqwMIl1Dix8w9bT8lKNw3ot9j718p7OaoxtsypnsGOwghxsW+u9w+6bQ0YQjIXJWLUVq79Ys/Vzjb2fjOoyViCuvekTl4iI+IoGLhER8RUNXCIi4iueB641a9bg+uuvR15eHgKBAF5//fWoxwOBAP167LHHItsUFRXFPD5+/Pg2n4yIiHR8ngeuxsZGDBw4EE899RR9vKamJurr2WefRSAQwE033RS13aRJk6K2W7hw4fGdgYiIdCqeU4XFxcUoLi42H8/JyYn6/o033sCIESNw9tlnR7WnpKTEbNtuQmRRHyuhdgZJUVmlhryUYWIlhA6R7j9irYsU5z4BnjCzEkSs5BJLTFnnxc7BS4kbaw01dg5WOoslrthxWWV6GCs1xq45K2sE8OO1joElXxnrOrI1yaxyPKyclnVcXtKkDEvOsXQpwO8xdh0Bvh5WXij+bdn1tc6Vlq2ykqQs/eshRWlty8o7sXvBOi6WCrR+frB7wXpPnyLtOse1d+9evPXWW7jzzjtjHlu8eDEyMzNx/vnnY+bMmaivJ4vm/Y/m5maEQqGoLxER6Zza9e+4nn/+eQSDQYwdOzaqfcKECejXrx9ycnKwefNmlJSU4KOPPkJlZSXdT2lpKR5++OH2PFQREfGJdh24nn32WUyYMAHdu0f/Yd+kSZMi/y4sLET//v0xZMgQVFdXY9CgQTH7KSkpwfTp0yPfh0IhFBQUtN+Bi4jIaavdBq73338fW7duxSuvvHLMbQcNGoSEhARs376dDlxJSUlISiLzVCIi0um028C1aNEiDB48GAMHDjzmtlu2bEE4HEZubm67HIsb/5OYtsCq5/jGLKyQbUxyW2tUMfWJsW2NpM0qH9RAtrUmYlPbOPlO1xTiT6esfmGhAC9rWVlrDTGHSd+wUlYAn3i2QiMtpP2wEeTwch0Ytr6VFc5IJeEM67XYcVklwdgxsNcCeGkldo96KZfE7hkASCbHwEIY1jGwwIXVB+xnQsBDOS1rv17WjGPvScZ4Ohw5BitwwY7h9MpmeB+4Ghoa8Mknn0S+37lzJzZs2ICMjAz07dsXwNe/yvvTn/6Exx9/POb5O3bswOLFi3HNNdcgMzMTH3/8MWbMmIGLLroIw4cPb8OpiIhIZ+B54Fq/fj1GjBgR+f7o3NMdd9yB5557DgBQXl4O5xxuueWWmOcnJibivffew5NPPomGhgYUFBTg2muvxaxZs9C1a5z/qxARkU7L88BVVFQE5777c+Pdd9+Nu+++mz5WUFCA1atXe31ZERERAKpVKCIiPqOBS0REfKVzLCTJWEkf1m5VbGEJIlZ6B4h/0TdrMTu62KERIWKpPuu3uyxBxI7V6i8v6S7GKkvESt80GYvssevAygqZ5XRYeSnjOrJSVFYC0SorxrAEIDsvK2XHkoJW6rQ2SLY1joudr5UKZPc+W7CxzvjTFnbfWItDsr61EpcsveulhBHrRis5y96/1nuaJWqtnx+snS3SmWIlK0kbSyoDtG/c9yfzbU8RfeISERFf0cAlIiK+ooFLRER8RQOXiIj4SqcNZ7iRt9P2wJqy2EarLBFb48aa84239I21thMrYZRgvBgrGxU2JtTZ5DcLALDSPwAPFXTzsK6RFZhgxxs29htviMEqp8Um6llABeDnZpV8YsEGC1sHjh2DVfaKhRX2kBAGwCflvZSiSjT+v8uCPixwYZ0DOwYrjMLCCl5CI6yEEns/W+3W+2l3WvzHxa5ZktE3rG9ZYIqtTQfwe9x671nHcBrRJy4REfEVDVwiIuIrGrhERMRXNHCJiIivaOASERFf6bSpQhNLEFoLELLElFVGhQV4WCrISlF1I8dwyEogkv2yskYAL13DEkhW2SvWbpUaYvu1yjixBCDrA4D3g5fr6GVRQS8LXLIkppU6jTclZ5UaYgkxLwsYWok6kG2tMkx0wcY2LlVklWZi52b1DTsG1gdWyo4dg5U0ziYlrv6WzLdlrARia5yJXOt9zq6Ncb7ugv9tHNzpQ5+4RETEVzRwiYiIr2jgEhERX9HAJSIivqJwxre4S++KaQtUPc03ZiEIq6wQDTGQNqv0Dlv3qt5Y14gdgzWZ7KEqEcUmk5OMSXJ2btaEOGu3tqXXgbR5CY2wEjsAvw5W+R+r/E68WJjEWvuLBUSs/gqSUkPW+bJgg7XuFdsHu++sAAG7P6y13dgtZl1fdo+yQI8V7mDrXrE2gJ8DWysN4OuEWdeXBX3Ya1lhloMeAkg+4N8jFxGRTkkDl4iI+IoGLhER8RUNXCIi4isKZ8TDmmRnk9GpZPLe2geb1D9kTFxnNMW2nUH+Sh/gk/LWpC3btplVYTAmvtnkvRUEYbysX2YdA8MqQVhVHNgktTX5TtcJM/7/xypyWOfLrgM7XataCpu8t0IBrFqJdX+wa2lN6rPQBl1zyuhbdgwtxmuxYIMVRmHHy/rgQHf+/OyG2DbrHmfBE9YHAA+DWMfA7n1aXSb+AJK7/A6+rQ/oE5eIiPiKBi4REfEVDVwiIuIrGrhERMRXNHCJiIivKFUYB3f5/6Ltgc3zYxuTjLQRSwvRtXeM5FuYJMSCRmqMscrssOQbS0wlWOv8kDZrbSeWFLTK9NCknpHutJJ232alzlg6lPULwK+ZlzJd1vpjLJHHrkOih/WWrHJJ7Hit+5atE1ZnlBpjZadYH1j3Yoi8R6xry66DlYxkadIdGbFtXxnrZrH37vn7+LbpZK0y1oeAt3Xz2D3Krrn13rPuUZ/SJy4REfEVDVwiIuIrGrhERMRXNHCJiIiveA5nrFmzBo899hiqqqpQU1ODiooK3HjjjZHHJ06ciOeffz7qOZdccgk+/PDDyPfNzc2YOXMm/vjHP6KpqQkjR47E/PnzkZ+ff/xncir0JBOx1lpFbKKdBRCsCWarnaFrWRmhj7jXsjJeK0Qm6q0JdXYO1sQ1XePKWpspzrW7rDALK51jhSjYdbSuuZc1xVgYhPVXD+Mc2LZWKSq2rVVOi5WSsq4ZK23EzjdkhCDi7QOAB0HYvQgAfw3GtrEghnV/7CfhjC9T+LasG72UKrNKSbFScqxrjP5yg+6J/xh8wPMnrsbGRgwcOBBPPfWUuc2PfvQj1NTURL6WLl0a9fi0adNQUVGB8vJyrF27Fg0NDbjuuutw5IiHGnciItIpef7EVVxcjOLi4u/cJikpCTk5OfSxuro6LFq0CC+++CKuuuoqAMBLL72EgoICLF++HKNHj/Z6SCIi0om0yxzXqlWrkJWVhXPPPReTJk3Cvn3f/M1DVVUVwuEwRo0aFWnLy8tDYWEhPvjgA7q/5uZmhEKhqC8REemcTvjAVVxcjMWLF2PFihV4/PHHsW7dOlx55ZVobv7699+1tbVITExEr169op6XnZ2N2tpaus/S0lKkp6dHvgoKCk70YYuIiE+c8MoZN998c+TfhYWFGDJkCM4880y89dZbGDt2rPk85xwCAT6JWVJSgunTp0e+D4VCGrxERDqpdi/5lJubizPPPBPbt28HAOTk5KClpQX79++P+tS1b98+DBs2jO4jKSkJSUlGYugUcvnTY9oCn8/lG/ckC0GyMi5WAomVcrHSe2wfLB0G8NQXSxVayTmWBLO2ZWVnrJJPrPQNW3gP4EkstqlV9oaW3jFey8s1Y9ua+21j6S2WJrNKM9HEpoElBfONX9WztCG7R62kIFtgki0Yae3XSmweYotskmPtfZA/v4m8Fi3XBqC2R2ybtXAm6y+rTBe7R8l17GjpQUu7/x3XV199hV27diE3NxcAMHjwYCQkJKCysjKyTU1NDTZv3mwOXCIiIkd5/sTV0NCATz75JPL9zp07sWHDBmRkZCAjIwOzZ8/GTTfdhNzcXHz66ad46KGHkJmZiR//+McAgPT0dNx5552YMWMGevfujYyMDMycORMDBgyIpAxFREQsngeu9evXY8SIEZHvj8493XHHHViwYAE2bdqEF154AQcOHEBubi5GjBiBV155BcHgN38EOHfuXHTr1g3jxo2L/AHyc889h65dPfwKQ0REOiXPA1dRURGcs6s4vPPOO8fcR/fu3TFv3jzMmzfP68uLiEgnp/W4TjDX9+e0PfDJ/4ltDJKJb2vinE1os0ljgJe+sfbLSud4KS/Fnm+9FgtHWEEOto6TNcnNjqGOlOmxAioMC1YAPDRivYtYoCZgVIdh23opzcTuBWtNMdZf1nVgx8CuDcCDJ+xesF6LBS6sW5H1VzcPoQ9HXoutuwXwUlBWSMZLmS8v5dJYEGPonXzbTkBFdkVExFc0cImIiK9o4BIREV/RwCUiIr6igUtERHxFqcKTxJ1zf0xbYOOC2A2tRB9LJnlZdJKl4SwsCWY9n5UE8lLyyUr6sWOwFlFkrGNgWGklq29Z8sx6LZZM7EUWHwXiPzcvC1G2GMfFjtdawJAlX1kqEQAaSHkm1o1WmS/G2pbdS1Y5LVaiiiX6rCQpK8PEUo0AUE/2a91LHhaddJf9lO+jk9InLhER8RUNXCIi4isauERExFc0cImIiK8onHEKuQv+d0xbYMPvjY3JpK0VmGBrDVmlc9jaW3SS3Zgk70KOwSqHwya/vZS4stZAijeM4mXy3Sq942XtLta3zcY5sONlQQxWfgjgYQUrcMGCCX2MNbayGmPbmoxADTs3Ft5hAQYAaCD7PWz0VwrpL+v+YOtesb6xMiPhON8jAL9vrHXgWHuyhxBVJ6ZPXCIi4isauERExFc0cImIiK9o4BIREV/RwCUiIr6iVOFpxl14L20PrH86trHVw+KQZiqQJOLYwntW4oql4azXYmnHAx4SiFaZHZZMZIk867hYmR1r0UqWULNKPqV4WLCRtbNzsJKkCaRvrNdi52ulFenzjf2ypB47B5bSA/jin9Y5sFvBSqiy+4al/9j9CfBFOs1rTvZh7ZcclvX+l2j6xCUiIr6igUtERHxFA5eIiPiKBi4REfEVhTN8wg25O6Yt8OEzfGM2cWyVO2KT50lkkt0KBbAJcSvYkEoCAD2N9aloMMEIZxwi58v6wFr7qysp32Otj2WV76H79VC2ivUjCwVYfcDWzbLCLGx9KuuasfCOsWYUTfA0kr79LJ0/nZVROhFrZDF0/TIPJcU83AduoAIXJ5o+cYmIiK9o4BIREV/RwCUiIr6igUtERHxF4Qwfc5feRdsD//UH0mhMXLNJaroOlDEZzapRWOtAscCEFYJgQQprop5h+QF2XgCflLcCCOx4rawCSD+Y4Yw4wyTsegE8XMHW0gL4emlWJQh2vNY5sH2wwIX1fC9rZHlZb83qs3ifz6qKsMAGADcgdo09OfH0iUtERHxFA5eIiPiKBi4REfEVDVwiIuIrGrhERMRXlCrsgNwPJsW0meWh2LpEXcn6QVYqkZW+scrhsHJFRjqLYmsdAUB9Unz79ZI6O2wcl7UWFd3Ww3pa8ZYrstZ2yiYJQrYuGxD/+mUAL9nE7hmAl2Fi1yynIf7jsvqL3WNWMpJdd1ZqzEqSknSnG3on31ZOCn3iEhERX/E8cK1ZswbXX3898vLyEAgE8Prrr0ceC4fDeOCBBzBgwACkpqYiLy8Pt99+O/bs2RO1j6KiIgQCgaiv8ePHt/lkRESk4/M8cDU2NmLgwIF46qmnYh47ePAgqqur8etf/xrV1dV47bXXsG3bNowZMyZm20mTJqGmpibytXDhwuM7AxER6VQ8z3EVFxejuLiYPpaeno7Kysqotnnz5uEHP/gBPv/8c/Tt2zfSnpKSgpycHK8vLyIinVy7hzPq6uoQCATQs2fPqPbFixfjpZdeQnZ2NoqLizFr1iwEg0G6j+bmZjQ3f7PeUChE1hOS72SVh2ICVU+TRmNjFgCwJsnZpL4VSmAhCGu/9PnkgFl5KoAHANiaZADADtcKmLByR17W+WLbWuuXsX4MkdAKwI/Xur70mhnbxvt86zqwc7MCJlbZqHiR0Im7ODbUJKendh24Dh06hAcffBC33nor0tLSIu0TJkxAv379kJOTg82bN6OkpAQfffRRzKe1o0pLS/Hwww+356GKiIhPtNvAFQ6HMX78eLS2tmL+/PlRj02a9M3/bAoLC9G/f38MGTIE1dXVGDRoUMy+SkpKMH369Mj3oVAIBQUF7XXoIiJyGmuXgSscDmPcuHHYuXMnVqxYEfVpixk0aBASEhKwfft2OnAlJSUhKcn4tYeIiHQqJ3zgOjpobd++HStXrkTv3r2P+ZwtW7YgHA4jNzf3RB+OiIh0MJ4HroaGBnzyySeR73fu3IkNGzYgIyMDeXl5+MlPfoLq6mq8+eabOHLkCGprawEAGRkZSExMxI4dO7B48WJcc801yMzMxMcff4wZM2bgoosuwvDhw0/cmYmISIcUcM55qLkDrFq1CiNGjIhpv+OOOzB79mz069ePPm/lypUoKirCrl278I//+I/YvHkzGhoaUFBQgGuvvRazZs1CRkZGXMcQCoWQnp6Ourq6Y/4aUtpX4OP/G9vYRBZABHgSzCoP1Uj2wUpGATx9xxJ9VoKRhdys1Brbh5UqZMnITGNxxx6kNFI6SdlZiT6WorRKM7F0prXYYjNbZNNId7JuYMdgLTTK0oa9mvi2rB+Mkk3u7J/xfcgp1Zaf454/cRUVFeG7xrpjjYMFBQVYvXq115cVEREBoFqFIiLiMxq4RETEVzRwiYiIr2g9LmkT9/3JcW8bWPtsbKO1BhILC1jbsjWf2KQ+W+8JoOstmeWl2DFY64T1PhjblmusRRUkARNWisoKUbAwiXUOrB9YCMN6vf3d+bYsdMH6xjqHA2S/X6bwbcn1dUPu5ttKh6NPXCIi4isauERExFc0cImIiK9o4BIREV/RwCUiIr6iVKGcNO6yn8a9beC9F9r2YizhZpVLYmWcWKIP4Im8YHNsGwD0JslGayHJFvJ/yC6kzUpWhj38H5SV07LKdLGSTVaKkp0bK+NklKJyo/+R71fkW/SJS0REfEUDl4iI+IoGLhER8RUNXCIi4isKZ8hpyY28vU3PD2yfF9uYYKwD1Y0EMVKNAAILciQba4qxtcZYeSkACCXFtrV6KC/VSNYfqydtAF+rzCoPlUoCF8Z6Wq7wPr4PkRNMn7hERMRXNHCJiIivaOASERFf0cAlIiK+ooFLRER8RalC6ZBc/6mn+hCowO7f8QdY2pCECl3fn/PnZx7/MYn4jT5xiYiIr2jgEhERX9HAJSIivuLLOS7nvq5eEAqFTvGRiHhUf4i3N5EqG2SOS/e8dBRH7+WjP8+98OXAVV9fDwAoKCg4xUcicnKl44FTfQgiJ1R9fT3S09M9PSfgjme4O8VaW1uxZ88eBINBBALW6oByVCgUQkFBAXbt2oW0tLRTfTgdmvr65FFfnxzt1c/OOdTX1yMvLw9d2KKp38GXn7i6dOmC/Pz8U30YvpOWlqY3+Emivj551NcnR3v0s9dPWkcpnCEiIr6igUtERHxFA1cnkJSUhFmzZiEpiaz5JCeU+vrkUV+fHKdjP/synCEiIp2XPnGJiIivaOASERFf0cAlIiK+ooFLRER8RQPXaeCss85CIBCI+Zo8eXLMtvfccw8CgQCeeOKJqPbm5mZMnToVmZmZSE1NxZgxY7B79+7I46tWraKvEQgEsG7dush2n3/+Oa6//nqkpqYiMzMT999/P1paWqJea9OmTbjiiiuQnJyMPn364De/+c1x1Rs7FU6nvmaP//73v496Lb/29cnoZwDYtm0bbrjhBmRmZiItLQ3Dhw/HypUro7bRPf2N9u7rk3ZPOznl9u3b52pqaiJflZWVDoBbuXJl1HYVFRVu4MCBLi8vz82dOzfqsXvvvdf16dPHVVZWuurqajdixAg3cOBAd/jwYeecc83NzVGvUVNT4+666y531llnudbWVuecc4cPH3aFhYVuxIgRrrq62lVWVrq8vDw3ZcqUyOvU1dW57OxsN378eLdp0yb36quvumAw6P7t3/6tXfvoRDld+to55wC4srKyqO0OHjwYedzPfX0y+tk558455xx3zTXXuI8++sht27bN3XfffS4lJcXV1NQ453RP/7327mvnTt49rYHrNPSzn/3M/cM//EPUD7ndu3e7Pn36uM2bN7szzzwz6sY7cOCAS0hIcOXl5ZG2v/71r65Lly5u2bJl9DVaWlpcVlaW+81vfhNpW7p0qevSpYv761//Gmn74x//6JKSklxdXZ1zzrn58+e79PR0d+jQocg2paWlLi8vL+p4/eJU9bVzX7/JKyoqzGPrSH3dHv38xRdfOABuzZo1kW1CoZAD4JYvX+6c0z191Mnoa+dO3j2tXxWeZlpaWvDSSy/hpz/9aaSAcGtrK2677Tb84he/wPnnnx/znKqqKoTDYYwaNSrSlpeXh8LCQnzwwQf0dZYsWYIvv/wSEydOjLT953/+JwoLC5GXlxdpGz16NJqbm1FVVRXZ5oorroj6Y8TRo0djz549+PTTT9ty6ifdqezro6ZMmYLMzExcfPHF+P3vf4/W1tbIYx2lr9urn3v37o3zzjsPL7zwAhobG3H48GEsXLgQ2dnZGDx4MADd08DJ6+ujTsY97csiux3Z66+/jgMHDkT9kPvtb3+Lbt264f7776fPqa2tRWJiInr16hXVnp2djdraWvqcRYsWYfTo0VFLw9TW1iI7Oztqu169eiExMTGyn9raWpx11lkxr3P0sX79+sV1nqeDU9nXAPAv//IvGDlyJJKTk/Hee+9hxowZ+PLLL/GrX/0q8lodoa/bq58DgQAqKytxww03IBgMokuXLsjOzsayZcvQs2fPyH50T5+cvgZO3j2tges0s2jRIhQXF0f+h1hVVYUnn3wS1dXVnpdwcc7R5+zevRvvvPMO/v3f/z3mMbb9t/fz7W3c/0ys+m2JmVPd10ffzABw4YUXAgB+85vfRLV3hL5ur352zuG+++5DVlYW3n//fSQnJ+OZZ57Bddddh3Xr1iE3NxeA7umT2dcn657WrwpPI5999hmWL1+Ou+66K9L2/vvvY9++fejbty+6deuGbt264bPPPsOMGTMi/3PJyclBS0sL9u/fH7W/ffv2xfxvEwDKysrQu3dvjBkzJqo9Jycn5lPD/v37EQ6HI/th2+zbtw8A6Gudrk51XzOXXnopQqEQ9u7dG3ktv/d1e/bzihUr8Oabb6K8vBzDhw/HoEGDMH/+fCQnJ+P555+P7Ef39Mnpa6a97mkNXKeRsrIyZGVl4dprr4203Xbbbdi4cSM2bNgQ+crLy8MvfvELvPPOOwCAwYMHIyEhAZWVlZHn1dTUYPPmzRg2bFjUazjnUFZWhttvvx0JCQlRjw0dOhSbN29GTU1NpO3dd99FUlJS5PfYQ4cOxZo1a6LixO+++y7y8vJifgVwOjvVfc38+c9/Rvfu3SO/eukIfd2e/Xzw4EEAiFmEsEuXLpF5Fd3TJ6+vmXa7p+OOcUi7OnLkiOvbt6974IEHjrntt1NBzn0dZ83Pz3fLly931dXV7sorr4yJszrn3PLlyx0A9/HHH8fs92h0eOTIka66utotX77c5efnR0WHDxw44LKzs90tt9ziNm3a5F577TWXlpbmm+iwc6dHXy9ZssQ9/fTTbtOmTe6TTz5xf/jDH1xaWpq7//77I9v4va/bu5+/+OIL17t3bzd27Fi3YcMGt3XrVjdz5kyXkJDgNmzY4JzTPc20V1+fzHtaA9dp4p133nEA3NatW4+5Lbvxmpqa3JQpU1xGRoZLTk521113nfv8889jnnvLLbe4YcOGmfv+7LPP3LXXXuuSk5NdRkaGmzJlSlR01TnnNm7c6H74wx+6pKQkl5OT42bPnu2r2PDp0Ndvv/22u/DCC12PHj1cSkqKKywsdE888YQLh8NR2/m5r09GP69bt86NGjXKZWRkuGAw6C699FK3dOnSqG10T0drr74+mfe0ljURERFf0RyXiIj4igYuERHxFQ1cIiLiKxq4RETEVzRwiYiIr2jgEhERX9HAJSIivqKBS0REfEUDl4iI+IoGLhER8RUNXCIi4isauERExFf+fzlJuff0hBCaAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -49,50 +84,169 @@ "metadata": {}, "output_type": "display_data" }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(3.000000000007304, 3.000000000007304)\n", + "[datetime.date(2020, 2, 2), datetime.date(2020, 2, 13)]\n" + ] + }, { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
depthsite_idpit_idbottom_depthcommentssample_asample_bsample_cvalueflags...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
067.01N3COGM1N3_20200211NoneNoneNoneNoneNone-11.8None...2020-02-112024-08-15 16:29:34.025587+00:00None2230897https://doi.org/10.5067/DUD2VZEVBJ7S2022-06-30NonetemperatureNoneNone
\n", + "

1 rows × 29 columns

\n", + "
" + ], "text/plain": [ - "" + " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", + "0 67.0 1N3 COGM1N3_20200211 None None None None \n", + "\n", + " sample_c value flags ... date time_created \\\n", + "0 None -11.8 None ... 2020-02-11 2024-08-15 16:29:34.025587+00:00 \n", + "\n", + " time_updated id doi date_accessed \\\n", + "0 None 2230897 https://doi.org/10.5067/DUD2VZEVBJ7S 2022-06-30 \n", + "\n", + " instrument type units observers \n", + "0 None temperature None None \n", + "\n", + "[1 rows x 29 columns]" ] }, - "execution_count": 1, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ + "# Import in the Raster and Layer measurement classes\n", "from snowexsql.api import RasterMeasurements, LayerMeasurements\n", "from datetime import date\n", "from rasterio.plot import show\n", - "from rasterio.plot import show\n", - "\n", "\n", "# Pick a site ID\n", "site_id = '1N3'\n", "df_site = LayerMeasurements.from_filter(site_id=site_id, limit=1)\n", - "print(df_site)\n", "\n", - "# Pick a date \n", + "# Grab available dates\n", "dates = RasterMeasurements.from_unique_entries([\"date\"], observers='ASO Inc.', type='depth')\n", - "print(dates)\n", "\n", "# Subset a raster on our buffered point!\n", - "ds = RasterMeasurements.from_area(pt=df_site.geometry[0], buffer=200, observers='ASO Inc.', type='depth', date=dates[0])\n", - "show(ds, vmin=0, vmax=0.8, cmap='winter')" + "ds = RasterMeasurements.from_area(pt=df_site.geometry[0], buffer=100, observers='ASO Inc.', type='depth', date=dates[0])\n", + "\n", + "# Plot it up!\n", + "show(ds, vmin=0, vmax=1, cmap='winter')\n", + "\n", + "# Note the resolution\n", + "print(ds.res)\n", + "\n", + "# Show the site df and available dates. \n", + "print(dates)\n", + "\n", + "# Show off the location dataframe\n", + "df_site" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 48, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\n" + "Lidar snow depth = 0.74m\n" ] - }, + } + ], + "source": [ + "# Demo a useful function from rasterio! \n", + "\n", + "# grab the xy as a tuple e.g. (x,y)\n", + "xy = (df_site.geometry[0].x, df_site.geometry[0].y)\n", + "\n", + "# Use the rasterio sample function and the grab the sample\n", + "sd = [s[0] for s in ds.sample([xy])][0]\n", + "\n", + "# Print it out nice and neat!\n", + "print(f\"Lidar snow depth = {sd:0.2f}m\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGsCAYAAAAYBjfoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZhlZ3UdjK8z3XmosedRQkJCMwgwYBkDghgTf3Zs7JgvDlgOBjuAwY4To/ziWPjTA46QDYkF2AiMETYmnxObxP6SQLCtgBCDEJMkhMZWz0PNt+58pt8fa+/at1rVrW7RUk/vep5+qurWuee855zbtdfZe+21vTzPczg4ODg4ODg4nGHwT/cCHBwcHBwcHBzWgiMpDg4ODg4ODmckHElxcHBwcHBwOCPhSIqDg4ODg4PDGQlHUhwcHBwcHBzOSDiS4uDg4ODg4HBGwpEUBwcHBwcHhzMSjqQ4ODg4ODg4nJFwJMXBwcHBwcHhjIQjKQ4ODg4ODg5nJM5LkvLFL34RP/ETP4FNmzbB8zx89rOfPel95HmOW2+9FRdffDGKxSK2bt2K9773vad+sQ4ODg4ODucpwtO9gNOBTqeDq666CjfccAN+5md+5mnt453vfCc+//nP49Zbb8UVV1yBpaUlzM7OnuKVOjg4ODg4nL/wzvcBg57n4a//+q/xUz/1UyuvDYdD/Lt/9+/w53/+51hcXMTll1+O//Af/gN+9Ed/FADw4IMP4sorr8T999+P5z73uadn4Q4ODg4ODuc4zstyz1PhhhtuwJe//GV85jOfwXe/+1387M/+LH7sx34MjzzyCADgb/7mb3DBBRfgb//2b7Fz507s2LEDb37zmzE/P3+aV+7g4ODg4HDuwJGUo/DYY4/hL/7iL/CXf/mXuO6663DhhRfiN3/zN/HDP/zD+MQnPgEAePzxx7F792785V/+Je644w786Z/+Ke699168/vWvP82rd3BwcHBwOHdwXmpSjodvfvObyPMcF1988arXB4MBJicnAQBZlmEwGOCOO+5Y2e7jH/84XvCCF+Chhx5yJSAHBwcHB4dTAEdSjkKWZQiCAPfeey+CIFj1u1qtBgDYuHEjwjBcRWQuvfRSAMCePXscSXFwcHBwcDgFcCTlKFxzzTVI0xRHjhzBddddt+Y2L3vZy5AkCR577DFceOGFAICHH34YALB9+/Znba0ODg4ODg7nMs7L7p52u41HH30UAEnJH/zBH+AVr3gFJiYmsG3bNvzCL/wCvvzlL+P3f//3cc0112B2dhZ///d/jyuuuAI//uM/jizL8MIXvhC1Wg0f/OAHkWUZ3va2t6HRaODzn//8aT47BwcHBweHcwPnJUm588478YpXvOJJr7/pTW/Cn/7pnyKOY9x888244447sH//fkxOTuIlL3kJ3vOe9+CKK64AABw4cADveMc78PnPfx7VahWvfe1r8fu///uYmJh4tk/HwcHBwcHhnMR5SVIcHBwcHBwczny4FmQHBwcHBweHMxKOpDg4ODg4ODickTivunuyLMOBAwdQr9fhed7pXo6Dg4ODg8N5hzzPsby8jE2bNsH3j58rOa9IyoEDB7B169bTvQwHBwcHB4fzHnv37sWWLVuOu815RVLq9ToAXphGo3GaV+Pg4ODg4HD+odVqYevWrSsx+Xg4r0iKlngajQYajQa8u/4E+Q//0mlelYODg4ODw/mHE5FdnN/C2SiD942PwvvWH5/ulTg4ODg4ODgchfOapOQvfjPQKQCdCN7//tTpXo6Dg4ODg4PDCM5rkgIAiH1gGAD1Abx/+CS8//Hnp3tFDg4ODg4ODnAkBfn1bwS6EZD4QA4gzOB9/lPwPvdnp3tpDg4ODg4O5zXOe5ICAKjEwGIJaBWBQQhkHhD78P6XIyoODg4ODg6nC46kAMhf+SYgyAAPzKZkojjuh/Du/FNXAnJwcHBwcDgNcCRFEWVAlAK5B/g5/1Vj/q6cwPvbT7vMioODg4ODw7MIR1IE+fVvBAopUI4ppAVIWuKAX8sJUErg/e9Pwfu7O07vYh0cHBwcHM4DnFdmbk8JD0DqAcWUmZQ4sK+KMAOCjC3LYYb8FW86bct1cHBwcHA4l+EyKUcj9YEM1KYMAv7Lwe6f1AfWt4FSwoxLDnh3/clpXrCDg4ODg8O5CUdSRpC/6o3s9Cmm1KhUY2ZSco9EJciAI1VmUwYhUB8CU114d/0JvDv/9HQv38HBwcHB4ZyCK/ccjdoQWC4ClSHLP6WEWRQACHL+3I2oU/Fz81jxAO/ujwNRhvyFv3xaT8HBwcHBweFcgMukHIX8Rb/MUk4cUEAbZsyuTHeAjcskKRvbzK4MAxKZSswsSyEFxnvwvvHR030aDg4ODg4OZz0cSVkLiyXa5Xs5NSl+zmxJL+JrtSGwaRkY75Gc5B5fm+ixTDTWh3fP7U6v4uDg4ODg8APAlXvWQiGlSDbP2O3Tifh64jOTMtnjV4D6lWoMtAskKWN9YF+DWZfMg/fQbcAwQH7Fr56+83FwcHBwcDgL4TIpayC//o0kITmYISmkwGSXGZNBCDwxxgzLUpHEpSO6lMM14ECdO0n9lfIPxvrwvvchVwZycHBwcHA4CTiScjx4IPnIPF6psb6ZvQ0DE9EeqQLLBZKWg3W+Nlvhv71NkphiCkx34T3yh6f7rBwcHBwcHM4KOJJyDOTX3WA6lKUSMFOhHiXIgWafWZKlkpm/DQO+NgyYTck8vr8bsVvoYA04VKO3yv0fhnf/h0/3KTo4ODg4OJzRcCTleAhlng/AMk+7wO9LCdApAMWEBGQY0DZ/sURiMtYHeiG/j6Uc5OckNJppWS7C+9In4H3rj0/f+Tk4ODg4OJzBcCTlOMivu8EGD2YeSUs3AlpFEpV2AVjXBuoDalQmesC6DglNMSVJaQyA5oAalV5EYpN7zMpMdoENbXhf+Ti8r33sdJ+ug4ODg4PDGQVHUp4KsU+S0ewzY5L4LPlUhxTV1mJ+DTP+frFEwS0gWpac4tmpDrCpRU8V3c/hGvDYON+7XID3TZdVcXBwcHBwULgW5KdCJSZJ6UZW5jlYI8kIM2DO5zb1IUlJIbXOn4JkYHIhKwE9VLClBTw+ztcKYsFfSoADdXhLnwSKCfKX/ovTfeYODg4ODg6nFS6T8hTIn/9W6ks2t0gq/JxEY7EkHT0ldvcUUmpO1PxtrM9/ALftiAB31zjw0BTLQfUhszKJEJ2JHo+1XIT33Y+4EpCDg4ODw3kNR1JOBFNdYL5M8tHoUyQ70SMxqQ+YLck8vu5LB9AwABbKUh7KmC1pDFgKUm1LKoMLO5FpXmpDbj9TBVIP3r4/cGUgBwcHB4fzEo6knADyDb/JbEg/JPFIPRs8WEhZDirHRjQ8EaXkoNeKL6SlkADbloD1bWpdtGMoDkhaPHBGUCUm+YkDloVSH97Df+gyKw4ODg4O5xUcSTlRFEVfEuTMmAAs13QKJCWaGRkG3E7FtOXYtp+t0jK/HzIT4+VWQgKYrVkqGbGZ7FK/koMeK/0Q3u4PnoaTd3BwcHBwePbhSMoJIr/iV5lF6YcUxQIs08Ri2JYLgSmk3GYQkpwMA24z1eF7woxdPf2Q2w9CZk5qQ+peEt9KQup2O90FLp3ldnsb8L5/G7wHbztt18LBwcHBweHZgOvuORmUEnqmFFNgQ5tEIwf1Jn5OEjFT4ffaflxO2K6cw8o/YcavSkZin4Lb8T5/bhV5jECICjL+vtnnMR5YBxQTeMlHgNRDfvWvnMaL4uDg4ODg8MzAZVJOAvl1NzBjMgxYmpnsMgNSHfK1VhHY2Oa/sR71JUFGPUurRIIRZNYJFGT8VxuaI20/5O9jn68VU+pWDtStlDTdYbnoEFuhvW98lNOWHRwcHBwcziH8QCTlfe97HzzPw7ve9a5jbnPXXXfhZS97GSYnJ1Eul3HJJZfgAx/4wKptbr/9dlx33XUYHx/H+Pg4rr/+enz9619ftc2OHTvged6T/r3tbW/7QU7h5KHdOPvrJA6DkOSkNiCp6IUUvU70rfwT5MzCZB6zLplHB9qBlHy6EV9vF5h5qQ/582yF+14qyVRmsdUvJdzvdIfvGQYAAO9eN2XZwcHBweHcwdMu99xzzz346Ec/iiuvvPK421WrVbz97W/HlVdeiWq1irvuugtvfetbUa1W8Za3vAUAcOedd+INb3gDXvrSl6JUKuGWW27Ba17zGjzwwAPYvHnzyvHSNF3Z7/33349Xv/rV+Nmf/dmnewpPD+M9YLFMXUpTiEmzz06ccsxtDtSZPSlLB5B292hHUJhZKWeiRxIyVyZh8XPA80hgprrcZrzH9mU/Z9kn87j/1Oc+SwnLTKUE3n0fAWKf/i4ODg4ODg5nMbw8z/On3mw12u02nv/85+PDH/4wbr75Zlx99dX44Ac/eMLv/+mf/mlUq1V86lOfWvP3aZpifHwct912G974xjeuuc273vUu/O3f/i0eeeQReJ53QsdttVpoNptYWlpCo9E44fUeDe+rHyOJWNcGSikzK/2QJKI74nmi+pPaAOjL3B61zy+mLBPNl7n9IKTepRexjNQq8v36nm7E7EnumfdKHDBzo91EhZT7yTxg2xLy9b/5tM/RwcHBwcHhmcDJxOKnVe5529vehte97nW4/vrrT/q93/rWt3D33Xfj5S9/+TG36Xa7iOMYExMTa/5+OBziz/7sz/BLv/RLxyUog8EArVZr1b9TgoKIWsOc5Ra1tU9kzs/mZf7bIMMHl4t0ny2KBX41tunK9SG7dxoDCmej1BxsyzFJSTElYRmEbFvO5fueZFu0PBRk/LkcA4+Nw3v0P8G7/8On5pwdHBwcHByeZZx0ueczn/kMvvnNb+Kee+45qfdt2bIFMzMzSJIEN910E9785jcfc9t3v/vd2Lx58zFJ0Gc/+1ksLi7iF3/xF497zPe97314z3vec1LrPBHkz38rvIf/kBmLSmyZjeaA5CLxrX24kALbl0gsJnvMugxCM2tLE37dvkjjtu1LwOEqszLtAklKIbXuoXaBRCb1SV7UBG4Y8HcLssjUp7A2DlgCmu7QlM7BwcHBweEswUmRlL179+Kd73wnPv/5z6NUKp3Ugb70pS+h3W7jq1/9Kt797nfjOc95Dt7whjc8abtbbrkFf/EXf4E777zzmMf4+Mc/jte+9rXYtGnTcY9544034jd+4zdWfm61Wti6detJrfuYWCwxA9IPmI+KAyMLtSEzIx0hEPsafP1wje/TDp/6gESjEjMT87wZ7nsQmPdKIaVeRU3f1rdJclLfuooaA7Ht99kVVBtK6zL4fScC4jq8Q38EjPeRb3/XqbkGDg4ODg4OzyBOSpPy2c9+Fv/kn/wTBEGw8lqapvA8D77vYzAYrPrdsXDzzTfjU5/6FB566KFVr9966624+eab8YUvfAHXXnvtmu/dvXs3LrjgAvzVX/0VfvInf/JElw7g1GlSFN7dH7dsSe6xhXisbxqRXkjy0ikwkzLVJfnwxcQtB0tCY30SjX0Nimc3LjMLoqWk5QKJTUU7hFJ2/hQTim4nesCc/DwISXj0dzlYXpro8T05gOYA+YW/9gOfv4ODg4ODw8niZGLxSWVSXvWqV+G+++5b9doNN9yASy65BL/1W791QgQFAPI8x2AwWPXa+9//ftx888343Oc+d0yCAgCf+MQnsG7dOrzuda87maU/M+iLSBWwzhzVjexpUmOi9vYqmG0MzOhtEHKQYKtoDrO+aE5UCLtYWj11WTuDJnoyDygloakNSWp2LrJstLPLnzPxY+mIcHeiR3v9h/8QSHzkz3uWW7gdHBwcHBxOECdFUur1Oi6//PJVr1WrVUxOTq68fuONN2L//v244447AAAf+tCHsG3bNlxyySUA6Jty66234h3veMfKPm655Rb89m//Nj796U9jx44dOHToEACgVquhVqutbJdlGT7xiU/gTW96E8Lw9Jvl5q98E7x/+CQzFx5IBnKZhhyKC20vIgmZ7JF8HKmyTJR7ZqnfADMmPbHSbxf4urYX72+Q3IgfCnoR25JHSU9tyKzNTIWZllYRuHiOJaZ2ARiKpuVIlULbcgI8MQbv7z8JjPVdy7KDg4ODwxmHUx7pDx48iD179qz8nGUZbrzxRuzatQthGOLCCy/E7/3e7+Gtb7Wg+OEPfxjD4RCvf/3rV+3rd37nd3DTTTet/PyFL3wBe/bswS/90i+d6mU/fUTSsdOJgCKY2ehG/F1tCMyHLLfsrwPrOvx+pkJSE4t+pTZkKehAna9pW3JjwOyKtipHKbMpY30SFRXuAkaSOgUSm0EIfH/KhhUWpb25mAALJa5jfZtrbRfgffuPnL2+g4ODg8MZhaflk3K24lRrUgDQjr6UkDx0I7O1zzxmO+LAMh6Jz7LN+g637UY2XLAXkmAUE+4j9fl9NebvtMU5Dkg6qkNmYnSIYSFlq3PskzQtlmgyl3skONWhebOM9YFHJ0TcW6CAN/O47yADUh/5VY6wODg4ODicejzjPikOhvy5b2eGo5xY2aU25PcHGiQBmYhquxHLPnOSKck8m/kTC9EY6/O1SmxeKR4oeu2H/F0vpA5lrsJFqLV+6pHMVGIKcqOUephmn9up4RzANS6V2EnUKnL9Xr6ii/Ee/4+n5Xo6ODg4ODgoHEk5FUgk63HBAks6UcbXy7FlNpoDKwsNA36txJY5qQ35nsxj9kQnKM9WSCSUBPk5ic5YnyJY9U2JMnOjHQQkLD74exXlFkSr0inwWOvbJDj9UFqYcxMDtwvwvvNH8B50gwsdHBwcHE4PXLnnFME7fCvLO4UUWCibadtiyTxTADNo8+Sy6wDCVPQlWs7xcrPJ1wzLIGQWRucAre9whlAm05PH+yQovchs9KOUpEQnL9eG/H0sc4N6EUs83YguuYerXA+wUvrR7Ev+grec0mvm4ODg4HD+wZV7Tgd2N4G9TX4/3gO2tIAL5/l1EJBEBLnY4He4XerzdS3phBlQEg2KByMo7QKnH7cLJDKNAX9/UDqf/JzHWSqSAOUQR1uf7wGoRdFj1kf0MXpsgKSkGvM1PyfpCTKSm+UCvK9+DN7XPvasXE4HBwcHBwdHUk4R8hf9MknD96bpkTJXYYZjocQsRVHIxuLIz0HGMk4cWGYl9UkUFkvMmHQjEcz6/HmxxJJNL+Tr7YKJZ6tDc7EtJdyftjHHgelgFkv288oJeGxXzjwjR35uzrVl2V/qwXvsPz17F9bBwcHB4bzF6TcbOZfQLpi+pJQwsxHk1IuoSDbI2IVTFbM2LeUslEgIytIiPAj4s5KX3AMG4OuDUBxopf1YW5obfSvPzJfZ1jwQMtOTrqMcPN5ygWQmVuGukJEg4/cFKSHlHtea+Pw+SoGDNXizHwMyD/lL/sVpuNAODg4ODucDXCblVCLISQT6IbMRiyVqSFS4OiqOXSxxGxWr5tKZM5TBhKWE26dyi1Rku65DkqGDDYdCZlKPWhglI3U5Vpix/ATwGMtFbldJSFhin4SllDALE2YkPDlkeGFuRCfMSGqaA3YPeTm8r9/OAYYODg4ODg6nGI6knELkr/7nUsbJLeMB8PtiQkKSiWbEg2QnQCJQH0h7coWv6zyfSkwSs1wgqanEbCtWIjLZM/FtlPGYhZT7nC+TaDQH3DbMuF8V5ebSLTTVtZNYKNsE50iGH5ZjvjeV1zJqVFYyQcUE3jf/GN73PnQarrqDg4ODw7kKR1JONboRA3ljwNJJbchySSY2+Klv5ECzKJ2CZS2G0p2T+CzjAMxy6Hu0hXisT3KhxCfMTBw7WzEhrs7/CTL+XExIZjRDE2Y2bRng/nRgorY1q65loifEqMuvSo5GtC7eP3zyWb/kDg4ODg7nJhxJOcXIX/EmM0zTwJ/6JA1qpubnlqVIfSuxzFasg+dI1dxqw4zZjEpM4qDk5nDVhgjGPsmLZkkG0sqsJnLDwMpQOSwjo+3PQxHSlmMSkuqQr2feiP9KSOIUB9xua4ukR0W6opHx/ven4H3rj5/tS+/g4ODgcI7BCWefCRTTEbIQmsYj80gKPHGIrQ+ZnVgskYj0Q763KX4nmqUAjNj0Q34NcmZTAJKDdoHb1If0ZAnFUE4JhgeWlAAT3i6WOOww9fhap8DMTzExbU0hsTUkklXJwTlD9SH3P9Hj+/WYgxA4UoX3xU8AwwD59W98dq67g4ODg8M5BZdJeSYQ+9SBKEE5UmXA39oiOViS9mJ1ni0mFLeWYysN1WXGzpaWaVNGW4aXCyQmatwGkIzMVvjaQLI2xcR0JMPAjOZmpZS0v25Tm7XcpK3POkNoEFiZCjDPFxXl7mvwOIAQpQGwucVzGO87rYqDg4ODw9OCIynPAPJr30IS0I3YhlxIrQNnssdsxVhfbPMDdux0I3beNAf8nQpchz6DfTXm78qx2eMXUzOKU9+TgZAMT7IwxdT0J6pNUYv8vkxobhdIhOoytFDJyDDgfuOAr+vsIMDM4A7VbDhh6nGNhdTKUgXONfIe+UNnBOfg4ODgcFJw5Z5nCo2BZSti3wSsqc/Mhi9ZC53JE4rvySBgliSUAD8MgEWxsd+0zPetEBFYiSX1gFyOUx0CJTnesuhUGgNbRyREJRLflFQ8UVpFblcQoa4OSqzEtnaAmSAvZ3kozEh8CimFvOqWWx2SeOn8Ihma6H3l44CfI3/xm0/DTXFwcHBwOJvgMinPEPKL3sHgP+rculQy4awOEpzqUucxCLm9B6Ar3T69iMRhEJAwaGtyJaZlfTEhyYky/qyma6m/mpw0BiQjhdTakCE/q6h2qcjXOhGPv1gyA7d2wbQomrlZKslgw9QIlg4nLCaru5w8SOlLzj3I4H33I05c6+Dg4OBwXLhMyjOJTsGmICs5GQYM3vUh9Rx9GUIYi7g19i07kvjcZiDlnDwhifDA7MWEeKTsbZJANAd2bLXdn6naAMLCiMNslMlaRFeSSmmonPD3VVgnkE55LknWp5ACkXQd1YbcZ5hxW8AM5gDuC+AxuhG/BnItwgzevj9AvuU3no274eDg4OBwlsGRlGcQ+T/6BXj33G6ZhUxKKIdqJASakVC9SmVEb1JIAE9KOrlHMapOUk791R08OxeZ7TgsAt1SAnSktDPdIVFYKhpBSnwjLR6szXlP08hT7gHVLtCWY/bleOWE71d9jJaA1JFW3XOLCc8R4HrCjMLhHCRGvXDFddfb9wfsArrgnc/ezXFwcHBwOOPhSMozDRWweuC/ckIyMi8W9mXJUGhpRUsixZTW9doevCR6kWEA9MWzZCngdg9N8ncTPRKg1DdfFM181IckK6n4qYTiFjve47bF1Jxn+yH3V0xtIGKUmsZEfVp0grPqahLxVEk9a4mOMh43EGISSfZlIBmdIKfLbqsIb98ngEpM4bGDg4ODw3kPR1KeacxVrEwSpSQnEz2SBZ1uHOTmCBtHDPSzFRtUOJDOHdWBaCfyZM8caiPRmlRj6lFUXKvZm9i37Ia2G2vXUZhxxtBASMcw4DqjzMS7munxc6AYm9GbZnOCDOgVzA8m94B+AORSdlK/lg1tG4wYZSQzAH8XZEBzAG/uFmC8h9z/nWf7bjk4ODg4nEFwwtlnGPk/+gVmHBKf5MST7IK6tKogNZS5O72IJEN9TdpigR9m1gZcSIH1bb6utvWdCHhswsopDRkCWI5X2oBXSMd4T1qcYWRJ247Vc8XPua9hQEGulnmCzEpN6zr2eqdgVvoV8XsZ6/NYtSH31S4A+xvMzgB0vG32uaZ1HZ5Hs8/X/Rwebno2b5WDg4ODwxkGl0l5NhClNv9mrA88Ps7XW0VmPnLwd+vbQFZnFiQW8Wk5IQFIhEyMusvqxGPVlADMtmh5J8zovaIOuKp5KSckQqkMOxyG5m6betxvmJsZnJ+TdHg5W5vDnOutxCQmg4A/96WDB5AuHnHFjaU7qStTn9X6X0nYQonr3bkIZKsvnRKV3BEWBwcHh/MOjqQ8C8hf+SZ4D91GEnCgbt02cxUAXf7cjZhlKIklvSdZj07BtBypzOiZ6JFoLBWlrBIy2BdTc37VDAlAMlRKgFTm9Oxuct+NAUmDB5KLQQDMVa1rR1GO+XPqW3YEoHttKF1GatevrcaDEBj4QFzj2rVNWTt7osymNldja2UOjmIpAkdWHBwcHM4/OJLybKGQ0oJ+GJAMzFatxFOOSSgyDwhGtCphZkRDBwaGGXCwToIx1WVHj1rUlxLr3lkuMINRHYrrrBChxsD2CTDTEqU2CVkzITrBuR9KC7RY9ytBaYuXipZ2dL9HqtznQsmM4HSqci80Z1s9TuaZn8sxCMooHFlxcHBwOH/gSMqzhHznO+Ht/xMG5bmKWdPHPtDIbGKyWtAD5j1STE0E2ylYyUS1Ic0+UPdMBFtKSBSUaDQGkrUIbFDhXIX/VLCr4tyNbcvGqAlcpyDGbRlwuGbHVq2JzhTycupgxvv8XUfM6LSt2pdOHg8kL1pKmuiRuJwEPNzkiIqDg4PDOQ5HUp5NZJ7pSlIhJdqKWxMNSZRauaQv04pTIR8eLAsSZEA9ZuaiNlzdiaMZlGFAgjFf5ntC6aZpDlhimQ/ZkaN2+NoeHPvmkltIzaF2tmIeK7qWpZINM9zQNv1Ns2+uuUM5x9jnmpt9vranyczMZO9pXU4PNwFLJeTNd/8gd8XBwcHB4QyFIynPIvIfuQHe393BH8rShlsfMICrl0g1NtM1NVrLhTzohGIACCR70ZBpy5rpUJ+SQm4dOlNdEootLSMcC2XgYM2yIEslYOOyuMmmJDOJL94oiZSpQmY/AhHk9oWcxD6zPbvGuP/akERMSz3qszJXIeHqh3xtscT1HwuPTNJ7ZfuStS0fjWbflYAcHBwczlE4kvJso5gABenKUZO36S5LI2rAloP/4oDbaTYlyNmeqwZtPWkXLsfMXhwW0qE/b26R/Fyw8OR1jPeAS2eB+9eRKIz3mGnpRCaq3bZE8jFbAR6dsA6j6lGakkXpzqkNue2RKsmWimy1lFWJgZkKSU0c8BzLxyAfALBliV/3jPEaPGf+uJfW+/5tyC95+4nfCwcHBweHMxqOpDzbUAKgLq+DgBmMKGNm40Cdr8eiEemFok3xzL22Lm6wvYi29/Uht6sNGfQ3tJn90OnDh2okDOrNoti5wO0fnCa5UH+V580wQ6KY7nD/cxXLsqi1fZiROA2kNFWVLqSxPr8uSku0EpXMI+GKfTN9OxbKMk7gubPAfeuPf11bReCJMXh7PgV4QP7qf/707o+Dg4ODwxkDL8/z/Kk3OzfQarXQbDaxtLSERqNx2tbhfeePTDOyXOT3AH+erZiOIxFtyErWJTcPlOqQZELLIEeqNERbC0tibT/VJZHw17jlsUxCbhVtNs/6tv1+GHCQ4dC3fSYjwxN1ynLmMeMT+8DmZdO1rOswS3NIhLdHqtyPnwOXzZCorQUlZ49OkHw9Mmnann4IXHGYwtu7t1qrdV/amufLyH/y50/6/jg4ODg4PHM4mVjsMimnA3sbwI/sNj3G3+9kcI1Fb+LlQG3AUpAODPRzkpPlAoWnVx9avc+xvnUAebAOneWidNWUrbNnYg2haiSze5ZKJAbDgFmdcfFk6Yc8rpKT2tD8XtT0Tb1c1Mp/QZxlMx04mFgWqVOw9mXV2awFLSt5AL673rbVNd67ieTFk+MMwhFCl8D79H9lZuUNP3Py98nBwcHB4bTC2eKfBuT/+P8GiilyaaPNX/kmZhdiyTpoJ48HEpOxPolCmFG/MkpQFsrUohypMlsyWwEemQAengT2iQX9csEM35aL3OZYuHCe5ZWNyyRNj07y9cbAXHBjf3XXkZ+bDwrAY8TS7lwVDxgPQCEz4tWJ6PEyVwYenOK/4yEVQlRMpZspNV+VtrjnetKanYqQd0MHeOEBwMvh/e4/PL2b5eDg4OBw2uBIymlCXvx3q18YhCyF9EJmOkpCStTttZQw67BVxKSLJQb2/XUb0jdfllk7MTMVcxVmbfY2rcumK/OBDtS5j3iNLEarSPIDMPDPCalRQW8pYdvwdIcESglDKeFaq0OSqyAnQQozthvPVmy2UJQB395AMrW+wwwNYMc9ej37GyQ77YLMLupw/4OA57VpmUQpzJj9aQyAaw4CF80BP38/0C7Ae+u98H71Gz/gnXNwcHBweLbgNClnELy/+QuWRDZJFmMYWLmjNqRJmmo3vitC0mLKcoefU1A7WwF2jZtOpFMw7xMlDY0BA/1Ej+RovMfttPU5DqS1OWCWRr1MhoGJcT2QmPRDvnd9mwShmHIdiyWSoX7I7cfFOr8+5O8mu8AXtwuhko6iF+8HvjdNnYna8u9rsANJtS1aXtq2xOzSIACeGLMhjLnMI+qHwIv2r7b3V7R5TVzLsoODg8OzD6dJOUuR/8QbAADefR/hC6kHZL5lKJSgKInQTqHa0NqPS4mVamYrzMR4YszWk6xJWyYWq2cJwMDeKtpQwIJ0HqnYNsiAQcFm+KhAdrrLYwY5yUhXRL9FmUFUiTlQsTHgscb7Nnvo0lngG5vYllyJ+dqWFjM36h3z4LStXzuavJzE5Hkz3H6/ZIt+8vs854emSIT+13Oo/Zno2QBGYIW4OH8VBwcHhzMbjqScgciv+FUAgLf4e2a+1pOMxBNjLI1sW6KQVduKCymJRlUmE8+VKb5dKPNn7egZCFHRAYVaigkz+qqoF0rqMevRD/meKOO+FsokCeqp0gul3Vj0KZHY9Kt1f+yz5LKvwfXPl1my6hTYsXP3Vu7DAzNIm5ZJcHoh8OVt3KdmSPQcKzJNeqJHMhJmPM6jEzzWH13LdVx7gCRrrW6mETiy4uDg4HBmwmlSzmDkYyN27+WEmpVCykxJfWA6llaRHiv7GhTNHqnKMEKZcKxzc8KMxKM0MguoG/FrlPJ9SyUG/EFos360dJT43K4+tHk8ao2/VKRgtl3gz37O7IgeY0ObpnLFRATBA+BSaaF+cIoi2v/1HJaA9HwvWLCsTjnmPgMhHP2Q652tcF9RRp1NOQFeupf7vGsr8LUtJ3y9PUdSHBwcHM4oOE3KGQ7vwO8zO9LsM+DPVNnaq260BZmVc6TK7EOQMwvS7ANdGQRYiW3AYCKakkpsmpG+TCcOMwZ8D8yWlKVlOPZJMh6cFrfbxLIzA3HIDTNmLXoRMxx9aQXuRMzQaInoWDb4t78AuG8d33v5EYpvU9GhLKggWAW5GdcfZvRf2d/gNXl8nL+74dtPNq4bRavI9TclS6Vt3iNwWRUHBweHZwYnE4tdJuVMRzW2csVSybIH/VA0K9L66+XUbJRjEoflIgO7n5OgDAMG5iA3C3sN9o2B+Zv4OV/3QJHtoRrJhw4/1JlCUWbut+ulyycW4e1cWXQqGY+n2Rx10l0LL3/Chg7evRX4xmaKg3sRyUkhJRlZLjDD8kP7eMyZKo+5aZmZlLu3Hbu8Mwitc8nPed3my8z07Bq363akCu/I++Ht+cCpv58ODg4ODicMp0k5A+DNvB/59L9e/Zo+yTdHXlwurPYGWSyxfKKTkUsJyUZtaGUa6LDC3DptcgBx0RxidXhhkDFQ67ygamxZEt1/PyTR6Ht0pc08Zmg0+5IEfD3IgAKAdWvMDVoL430Sjb1NruVgjcf72ma+/pJ93H8kHUT3ryNpCTIeb2sL+JkHgcrQLPiPhhrK6fXphyR8W5e438NVfp0rr3Qhea0PA/0Q+bVvObHzcHBwcHA4ZXDlnjMEJ6yHuH8dswtLfOJH5lnLsp+bdqMgGY/EJ9HgQUw4O6oZUfM4nYisWRMlP3qMxRKzOb2QpaDKkLk4JQW6fSjdQLUhMxfNAbM1Xv6UIlbsaQIfez5LS+oTs3MRuG4317h9EdixyPLQXJlE6uVPAFce5vsP1ViaWguJb4RLyVYn4mvDgMRPtTrang3w9W6E/CX/4kTukIODg4PDceBakM926LyatfC8GZIFLY0UZOBfIJb3SjRqQxsC2I2o7/CEmPQlW6I29gMdYgjzP8k8Ziw8EavOVUiMimKk1i5Q86LZiVTIkA4azMS2frpLMlGOuR//GFkOxbYl4OceAB5YB3xnPfDYOM/zf1zEbMl8mR1OHdHTtIrUokx1STrmy0ZScsny6HkslkiWDtWAjW2g63MbNZLrRvxZ27KVUOWga+3XbweGAfIf/qWnfWsdHBwcHE4cLpNyBsFLfpdk4UCdL2w6xtA9zWQcrDOwBhm1FIslmfsjDrWDkKLXSLIH2jqsnTmpdOtocB4GfF8kgtxywvd0I36vjrGTPRKT2Qrfp1qWoW+ak7E+iUQw8vGqxEaOxteYH7QWPvASuup2I/77uQeYEfnsJTxPXfe6DnDxHC39nzfD92ai2anERuyaMjuozAGEaBXtOhRTaauOzBwvyI3o6WBDKaXlP/Tmk77HDg4ODuc7XCblbMXj4wyiic9Sjhq1HY2ydKJM9GxaciROr1rG0O4b/Rel/NopGFkZiA6lHFumZarLYzb7FJi2xda+NuR2B8VOf32bx5+t8H3LBVtXq2jdR6mQFDVj63vAuqUTvya//pW1X3/lLuD/u5jtxsUEeO91JBHTXStlAXwt9blWP6fpXXXIacrjPWpPyjFJnvrMJL4NaoxklpLqeVIfAOcVeV/5OJB6LrPi4ODg8AzBZVLOIHh/dwef2mtDYPMyBZ2Ha2zhjX1rGV7fIbmYFxJRTPl7ncUzCLiPorjG5p5lVMKU/imFlESjLx0txYQEKfVIRKZlnk4Osa3PGOhrQ+ChSe5TNS0A15361uY82eXribjQqk6m2ed7iwkzMGtNZP5BkHkkTus6vHb9kEQDIOnTUtqepg1ALCYkb5GUzhLfxhJUYss2eeD1AWSEgLV15z/6i6f2PBwcHBzOUbgW5LMU+aveyGxE5lF3sVhiwOxGwGLZyhdzZQbRiZ516GQedRbNvrUEq65F/VTK4peSg8F3ucjAq+6tkdjYr2+LJiURPQcYjJUUbVrmz+2C+aH4uelQwozkpCelKBX0TopuJMhICtT47VTCl5ZnYPX1GYTmCbOnaSLevpCrvowRUOGszghKPVnzyPnFAbNFanaXefDu/FN4//DJU3suDg4ODuc5HEk506DmbNUhA7gGRu0+0W4c7VJRwWyUkdQEuQlYtfQTiymaikKbAxKfpSLLNIm/WjBaG5K4rOtwHWN9kqdUshRBDmxfMjdZnXSs7b2V2AS3ic/9aLty4lnw70YkPjPVU0tWpjv8elAyKbnHNWpJq5Dy+2JqmaKFspGPXmTTlROf2adyvPreaBtzlBkRSklWHBwcHBxODRxJOcOQX3cDA341JrlQoWsp4fe9SDIgkgVo9vlaLN01vdDIg2pRVPAZZCYOLYi9favI1/c0reV2FBqY1eAtSs2v5bIjnFhcShjga0OWVCoxjzMms4WWivwHmAlcTfxMekKmEp9r+UHRk3MYCDnRCdCVmDqfUmIt00pItJVbS1U6MVo7nADLsChU66MuuoV0xSDO+x9/Du9zf/aDn4uDg4PDeQ4nnD0TkfpAnloLrIpXe9LhEvvsABrKlOJUXGeH0v47lA4b9S1Rl9g44LZhZhb6Xm4tvIeqNqxvxX1W7PF1sOAgBCAajsUSSz8XLDAjot1Bqc/MQykhEdBWZxX5+rnpUgopiUQoHUrqTKs6krXQD7nPo31X4gBoF1kaCzKSpOqQ5KMXrRYh+znQFSKjrdra5RNm1AS1I+6zK2LjXMpq+jXzbI6RCm3DnJkXL4f31Y8BvQj5K950Cj8cDg4ODucPHEk5ExFJOWKsQ3+Sya5lKwB7ip/qkiyo3fxyABRhAT7KWF4Jxeq+nJCAaAZAhxCmIsL1c5KfHYsslTSkBTcQc7eh+KLkHpDJOlpFK30ouqENKSzHzApFqbX7diISr9HsUFlEuAtlc82d6q59fdT5tpSYBmYQAC1pwd64zOyIdjFtaXHNj49b+Uevp2ZPRtuQS6ILKqX2upbNdBqzHluvp58DmVyDSRkjsK8B5FICKqTIX+rM4BwcHBxOBq7ccwYiv/YtDLBxwDbZWPQo6hY7CKnhaEvZJfWsROHlNsxPLeOrohPR4YGZZyWPsT63nxPRaCeiMFddWGOfRCjMLLuibrRhxqAdZhTtlhPqS5aLfM9yYWUWzsrrBTGDm+xxHUoUWkXbN0DiMl/m99oSPApdfy4ZDB2mWEh5nHUdK9UAvC5bxAwukU4nPzehcjGx4YyJz7UD1sqcyPUtidNudWilK4CESq91P+T11DbwdgGoDeF9849pCOfg4ODgcEJwmZQzFakEymrMzpMwZ+BWZ1gtYdQHlhXJYWLOcmyEJMzMwwQQ23pxf419BtbqkMF0QkhRKQFmKgzStaGYsiWWdajIXJ8gYwmqPmQGozZkZ5IGeyVQ2gI9FP+U6Q63T3yKcRdLllHR1uZuxPesOOSmVnbRTMZMhWSkNuA1UQ8XgOtT8XAk2Q/NoASZZYVUVDw6MqAoQmEtP+WezU3yQBLWFVKk10iFzrMVnkuU2kiAqS5bosNsZQSCm7Ts4ODgcHy4TMoZivyFv8xvtIySsnsES1IySX1zQo0DZiY0AA8D81TRLh9tnQ0zEoqFkmUBtIxRjW1ujRKbqmQSIjV00+nGmRibgV/bBa6nPmB2JsitfVkdbzuRtS4fqXJAYOqTVFRj/m4YsOSjLcCHq0Y+DtZJBNR9Vtc83eHxJnrMoPQja+GerfBfKSFJUKM3PUct16jLbpTZzKOOdD5pN4+W23LwtZKUzwIpWc1UmBHycq5ja4vnFvvM4AQZ8PyDK/f4hOc1OTg4OJyncCTlTEYpob4j9UkOdizyybwXmq6klJAYrLTIxhRuRtJemwiBmCuTJAAM3plHojIIgVpsbbTa0hxmzAAocVAxbiRdO5pt8MDjRGKj/8gk36NrGvpWwhk1fysllulIxNZ+XceGE1bjkYxPzuOPrqUb2RRoyH48GAlJRRNTlSzHTJWEYbZipm1L4kOjWRktD+Xg/ouJEb1yzGvbkzlI1dhKQYfqZpt/uMbto9SM8gCSlDU0No6oODg4OBwbjqScwcif82vS6ePxCb1dYBDe2qI4szFgIF8smT9JJBmOpZIF9F7EQFxMTW+Rw3xMUiE7m5bNCbY+oB6mOeBiVHhbH5qodV2H21Ti1boRLavkHt+vJZHR0ojqW7R1uhxz/2N9OuwWJMirmVpjAOxcsGyPtjprNqcx4P5UjNsUIjVbYaZlusP9NAeW9dDBiAUhZalnZKsq5bKJnl2ryR5dgP2cpKTZt2uhAtyhZLWmRTyrHVbj0o49V7HZTMMAeGxi5X57t/2PZ+FT5eDg4HD2wGlSznQE4t4KSLtue/Wgu/0NZlYO1hmAOwUrrwSSiVgqsoSSC4nY0DZzuNgHstBEo5lHgqNBvtnnv2NBMxfqd6JZFs2CqE9LYyDZHdHIeGDGQb1RPLCEohObo5SkSa32K/GTtTVKHhbKJEuJB4QeS0k6RHCxZP4oB+s8xqKUjCpiia8C3pIMVNSW7amueLlEzDpp1qUS85jFhNdqoifkr2j7WxJSOd6zkt2Buk2LnqvwuqYevP/9KWBvAxhL4X3gc8h//R+dso+Pg4ODw9kMR1LOdKj4tS4ZDdWWaDAMUyApMAC+4ADQlKzJctEyEX7OwNyR3wEMqoWUZYhQxK9allGDt7WGG66F1Oc6AykRqc9KDSY2HUUsxmie2OU3BnIevolatTRUTKykowJhXb8va9VOn0XxaqnLDCJdk5qylWOWY2pD8ztRU7xiYr4rRSkHaXdRIeV+jlSBbUs834YQwnHRwcyVgQvnSWgAXn91vs09G/C4FFnWZanI8yzHJEQ+fWi8j/934MX7kF/+L0/s+js4ODico3Ak5QxHfsnb4d33ESlriI9HKM6xGlDjwESdG9oMrp2IT/kFyQqUpSST+MD+ughbE2Yzetq5IgFWSzdjfSvPKBHQ8op29QDWyaLv9XB8guOJnqbZZ5aokBoRifos0bSKlpUppFbqUvO0xCe5mC+zvHKoZm3M/ZDZjeWiCHJlXs9AyJ22aw9HyJIa3VWkm0rde9WDpTbkvnqihVFi40umSscFeDnX1BjYgEftYvLAtc5WzCvGg5TfPBsuKefs4SZgpop8+l+fmg+Tg4ODw1kGR1LOBkx1STJqQ2uV1e81G3GwzuA31WWw1jbYILPyig4cBCzDApiTbCVmwNRMTLvA8koxMUO2QipiW+kQqsbAkQqnJNcHNuBPHW1Hhw5q9qI+sNlDSFafq5czA6HD/lQvMtbnPpeEvKi4NcipLwkzKydlHo3ULlggOYkynpeWlPqhtRsDZmk/ev7VmOffGFg5aLJrhKw6NCO72YrpcTSzM9mVDiR5zQOzMLF0Zal5ns4u0kxP4rMz6dIZ4NEJYKoL7/u3AVGG/MJfO/WfLQcHB4czGE44exYg3/ivSBY0EGuWQklHbWhtuDrBV/05PJgoVDMHKvBcLNmwwmLC4KlakaEYrM2VGUgXSyQlM1WWPdSWX8suQ986bBKfpZd2wTxQOgUzmYsDy8gcC1Ndik2HI2SiVWJ2aEnWvWnZiFEs5xSlJBjFFPj+FEsxy6LTUeO7zOPP6tuiowZ6oXU5tQskGkMR7eYgeVHDOC0hVSS7knk8p52LPKZqcFKfWR6dDVRI+bsLFngOOj/oUI3vu2ABeOEBI079UDxkQnjJ757qj5aDg4PDGQ2XSTlboOUFhQ7CK49oTBbKfMLXUkUOy2Bo2UTdZn3p7FEDuDhYbVimGg0PJD/9kJb7agGfg6UX9QRZLPH15QJJzniP4tCqlGe07bnZZ2DWoYXa9TNqq6/Q4+8e4/507YslnjtA8lOWbqLlAs9jSco+zQGFxfWhERgV6gbilqu2/2WZIzQUkW5bHGe7kU1wXi6SIA1CnlfqW7eUTkPWEQLquKvbaLZHW8XV+l+zKnNl4J37eMyHpqxbqSd+MF0SGa9zG1CJkW/99VP32XJwcHA4Q+EyKWcJ8ua7GSCXiwx63QjYM8bMxkCmCCceyz5jAwa2UWITihA2krbYohAWbbX1ctNkVETH4UHm1gghSn0rd2gnTKdg5SftKhoEFKgWxSZfzdc8aQleKHE2UF+6kg6LniT3VhvV5aKLScTzpBvx/f2QmYdOgRmkihjBbRCn2dS3+TvbFy17olkZdawtxzbfRzNQ6nWipZjFEmf+bGxz3TlIPmpD7vegtBNr2U0dbmOf5KgSm3ZoucB1L5R5vtWYVv39kG3lAI9XHdr1B2wEgWphBgG8fX8Ab98fPNMfOwcHB4fTCpdJOZuwu8lgOV+W1mHwqwbG6S5/Vx0yuHtFBkdtkR2EphXR0gMg2ZeCmaHpV3VUrcQM8Grg1pTyR6dgWRo1jSslVqbRbEk/ZGagKpoPP+f36v0SpVxXq2ji03bB5uusb3MfAPeZeDYocLJr4wO0Gyjxmd1RDUy7YPod9YrR9uxKbBqcsviudCMT4U6J38nj4zzOXAW47MhIl1Bsup1uZCWw6S6PqzOTlNi1C8z0aBv0RfPAb93F9+hcIW0v124jbWMuyfTpvhEY74kPArmHfOc7n/WPo4ODg8MzDUdSzibsr5tdfJAzQOuAQE9KAy0hJsUECCMLhkou1IisHNsUYy2jaGeJajyCbLVAFVit/+iLo6tqXXS+jgbZhbIRja603talS8bLgUHFtByj7qxaTtJpx3NlkrMc3H8E7qcfWifPMDBBbyWmSdqF89TK1IeWCUq0rTk18zv1M9GsUC+0+UfqJTNqRrdQZgbnQJ26mMXEMlRq4KbC5OqQNv2dgolq5yokJBM94KI5nvMgNBKjup3MsxlGes/VBXc44qibA979H3Ytyw4ODuccXLnnLEL+2l9gMFY7d9V6zJctoKnYMshteJ4O+4t9s59XHYq6w0YiKlWhZjmxYwS5TFDOrUyUe9ZppKWaxGd5R8smgGlSABuauFBi9w1g7cjdiKRLNTGNgXUFNQcmYFUSsCiOuurGq2SokBqZAHitNMA3BiQs5cSIlfrNdESDUk7YJry5xRKMl5uhW+LT9fbiObPrXxZ9TavIdU7KgMZexGv12ATw8CTw7Q0s9Whn0UIJuG8dj7lc5DZ7mtZqrbqihfLqLict4+nYAH1tGMB76DZ4u/7js/JZdHBwcHg24DIpZxv6oQX7HGZJX0gtoAJipjZkQOyL30c/BOZLDOj6e82QDAK+nnncrwczf9O5NH7OTITnk3z4UjbS2TediPssio5F9TATPXYE9UPzN2lI99FykcfbtGxmbpGIY7ct8XxmqtxfQbpyFsSfpRNx32XRx2gnTSVmZgSQSccABkUhNTBtirZYX3YEeGQCGIYmZm0XVhvFDYR4HarxfBdL5rTbHEgmSIS7fs4sy4G6ebKs63D2UkfIy8v2ArvGjAiGqZEugCTHy3l+++uWndG5SHFgQmh9n5j3efd/GFgsIf/hX3rmPocODg4OzwJcJuUsQ379G801VoNTmNlAvTBj4Ew96imaA8uKDAMGYg/2ZK4ZBdW2FGWSsrqiduTJPvUZwMdlto52qmgGR71Y1Lk285gFOFKlBiOR96/vWNnJz81x1s9ZBtEBhsWE2Ra1ot+8zN8drDHQq/ZjX4OdM0qCprpWOgGkAwniqivkQ2caJT739cgEz7kTca3F1DI5RWkjDjLutzkQz5Wc12KiZ27AvYhTm3X44X3rzEQuB/cdZsDVh4CrDgE/9X27X2rSNxDH3WJibcx1IYQ622hMslqqGfJyy0ipPinK4H3+U8/+B9TBwcHhFMJlUs5GaLtuJSYZaQwtyEYZkGTMPjQGDMyqnxiEwHJg+oxistrtdShdOZNdm5ic+DZRWYPpTNU0LB4Y+NsyC6cj+otiCiQxu3G0S6UvJEFbjj3wXxwYmQgy06Z0CsDepmlcZipWfmqNCF11v5WYAtcLFuxaaXZJbfIxspbYt0GGSgbaBRP7ageTtjOrRmehzGPFvk02vvqQGbPtazDTtLFNQjfRE5+ZMrMpiyUjYoslm6ys6xjNkAwDK4G1pR25Ih1ZasGvBnaBXNNKvCJG9r71xyvGefkVv3oqPn0ODg4OzxocSTkLkV93A7y7P87A1pTOjwwyeRgMgJox0OGE430GUc2QqDNtNzIzsk5k3TWq69DfT0qGYk7m2cSBdd2UJWBnnrUDq9HcZJf5uoWSTUZWO/1CSgJVSElAVPcx6pmiJnTzJROQzpbpcKu283FgxGVZ9CmzFStVKRkqjGQrmn2uqSCZkti3rp+NbRH6hjYQULNDY31mg1TzomUvgKStPjTTuDHpctrTpFbl0hkTHO9u2hRqbYNOxfemVbTpyYBlsnQatGa6hoGJkFVUq1mtoUx8rg9WhNTe4u8hH3v3M/GRdHBwcHhG4EjK2Yra0DIc+xrS6jq0Vt0gN4da7c6pDQEU+HpHTNfGekC7yFKEdtM0YNOQvdw0F73IdCU696dVtEzMaDt0L7V5PtWYgb0uJRQdajhbocajPmSwH0qWR1umtduoGwHdgmU9KomRqjAzj5eBlHsOV7mP3LOMjWaGupHNM6opuYJpcVSUm3n0XVFy1SmQjOk1WtfhPo82oRvvcU2PTJoWKMjZaaRt4GXJhBQTII2svVs9afT+1AYkJ0qIlNQMAtMI6TXW34+Kh7Ukp0Z1ALz8PcCdO5C/4k2n+APp4ODgcOrhSMpZivzKX4X3vQ+JL0pseo3a0MSnOUwYuyxljBXBq5QW5ioMYM2B+ZwsFRnkx3skIQOxse9ISSf0rRwRS2ZguivaCyUGufme6Jye6Q6Dt5ebwLYoLq0zVRkAKKLZ3AMWfGtbVvdZnZKchCN6msAmReu5qXuuZiV0vWpPX06stOLBuqFUexOJkHVLi9mZhhC1pRKvTT8gORzvS1u0zC5Si/3nzgIPrAOu2819ALxX+xo8hnbmAKtLOkXxjKkOrb27NrQsk2a5tOMn98x9V89HszmaZTka1+2Gd+9HgeoQ+SVvf4Y+oQ4ODg4/OBxJOZuReQxg82Wg6JtwVQO/DhgMRIyRj+gcdKCelkRU3KnZi/my6S0CcTvVDEcgmYvUY/DWJ/u6TEtOfBsQGOQ2jVnbjksJtS+VmK9tFFHsQHQ1qgPJwYCuWZ5IJi83BmaepoE+B3+v3UbqyqumcDkYtAMphWhJSgXFqay5mLD0tGPR3GBVy9KNeF0OV1nG+tZG7n9jm5mV586KqVxqM3zUBRcgEfRaJIw9yaBoGaqUAgOYTkZbqtUNN8jMC0evN2BrC2XEQDU2Ie+xsCjOub0I3t/dgfxVb3x6nz8HBweHZxg/UHfP+973Pnieh3e9613H3Oauu+7Cy172MkxOTqJcLuOSSy7BBz7wgVXb3H777bjuuuswPj6O8fFxXH/99fj617/+pH3t378fv/ALv4DJyUlUKhVcffXVuPfee3+QUzirkV/+L8WYLSFhKCU2TDAOLFip1TxgHTXqiTIMWFoY6zOo6hycxsAISRzw92rvrnqHhuy/JmZpc2UrB4WZCU+1s2VJSiczVe6rXSDx0TLG6HwhHb6XwVxYZyr8eW/DzifxmXnQ1ub6ULxDYGvTzhfN9GRSGloom+h2qcjsRRyQnCnBKSUsu6gwV1uKH51kR9GeJtfTDzm1+KDY3tcHqwkKYCTQw+punGIqrrjg75RkacZFBz72IjOVU13MimtwzHU/FUEBeB8O1bjugzV4n/0MvL//5NP7EDo4ODg8g3jamZR77rkHH/3oR3HllVced7tqtYq3v/3tuPLKK1GtVnHXXXfhrW99K6rVKt7ylrcAAO6880684Q1vwEtf+lKUSiXccssteM1rXoMHHngAmzdvBgAsLCzgZS97GV7xilfgf/7P/4l169bhsccew9jY2NM9hXMD2l6bgwEWkJT/gE/9WhbQIJ7DnrrjwCYqZ9L9Mlc2AajO8qnJMD0d0Dcjjqn1AX/XKZjIthtRJFobclsPkgHxKH6d6jELod05Kzbvmj3xTJMRZOY7ojb4xRSIJKOTezYnZ6wvQ/4S83vpFEwQqxmjIOfrUQoMJdOkHUdRBhT7JBl+DjwxZmWeeKQkU9XykxjEjfeN9LWKLH0B/P5gnfvesEySoYJmJWNakqoPbIq1XmvJdiCR13KPJK0sAumGlJcqMdekWaWnwuPj/DpftqnXR0J4/+PPgb1N5G/9xz/op9LBwcHhlMDL83yNovXx0W638fznPx8f/vCHcfPNN+Pqq6/GBz/4wRN+/0//9E+jWq3iU59a28chTVOMj4/jtttuwxvfyFT0u9/9bnz5y1/Gl770pZNd7gparRaazSaWlpbQaDSe9n7OJHjf+xDLFACfpKPMhvNpKUPbiAH5PmN3i5Z8+jK8T23Z62JoVkitE0en/JZl5s6CiF/rAzOTU1HpWJ9ZBSVHM9URAW7A0oZmW1RrknqWFQBsTQPxfClLdmepKK6xsc3KUYv7iR7PsxJTR+LlJCkleW2mYkZzqehdtO3Zk2MqedDMy6jp3EyF12yszyzKpmVrO9aW7Ia0Ku9Y5Dl+ayMJxESPmSqAOiBtn05HPGa83EpYhdSGKgI8rzCzTE6Y8TroJOtpyf40+0/+kCgpOlLlhOXHx/kevb861yiUclqngPxfv/oUf1IdHBwciJOJxU+r3PO2t70Nr3vd63D99def9Hu/9a1v4e6778bLX/7yY27T7XYRxzEmJiZWXvvv//2/49prr8XP/uzPYt26dbjmmmtw++23H/dYg8EArVZr1b9zDfnz3iZzZhIrfQDMiCQ+g6EG0HIi7cqelTkO17idTkMGuA/t5tEgtiwZj9mKkR51bk2FDKkL63KRx5qpik+KBN+lIluie6EZyIWZDfvTLAIgnSkyuM/PTZOhs4PUSyXM2Ao90WPAB3hOsZAx7RxSzYqODEh8/i5K+XNZ9CpLRe5HSdueJj1mVBfjgRmWTcvWTbS5xf2omFZ1JKWEawN4PJ1+3CqKN8qIEd/yiMlcHFgWqJgYwfRzEq6i3M9iYmZ4gwD4wgW04T8ahRT46hbLSI33gFfuouvti/bzXFMfeO4cidRkF95n/gu8//lnp/bD6uDg4HCSOGmS8pnPfAbf/OY38b73ve+k3rdlyxYUi0Vce+21eNvb3oY3v/nNx9z23e9+NzZv3ryKBD3++OP4yEc+gosuugif+9zn8Cu/8iv4tV/7Ndxxxx3H3M/73vc+NJvNlX9bt249qTWfNRgt56jJl5ZBdHJxlDEAVWP+3ItWz8LRLh7tgtH9ZR7bcLW9NfH5RH6kyu3mKmZINggZ0P2cGZZOBHxvmoRCS0ilhPvSzMCoH4gH05LEgc0cUu2Mnt8gJKGoxDZxORghaupp0gstO6BkSW3yi4l5rGhGxoMNKgwy6xTqRdaGDfD1xRKJSiot0/0QaJV4nhfPAfsbNs8nyiwjpLqbYmIZjvEe9yVOsQC4biUjpcTainVo4Vif909nL4UZCZNa+h+NH9rH3z9nnmv67npmgZ43Azz/IH+XA7jqMPAju6mnyT14f/tploEcHBwcTgNOqtyzd+9eXHvttfj85z+Pq666CgDwoz/6oydU7tm1axfa7Ta++tWv4t3vfjduu+02vOENb3jSdrfccgt+7/d+D3feeecqvUuhUMC1116Lu+++e+W1X/u1X8M999yDr3zlK2seczAYYDAwIWGr1cLWrVvPqXKPwvviJ0xrMi+Ga7kHbF+0rIkO2sthGQU/Z2DzpS24XWDgLybmk6ID9jYtMyDet85ajTWz0YtIgnIw4C2Umc2ZrTCIq9eHB/NZ6alnyUibcizZBC0DrQwSBAmWQjMJSnq05VanCBeFsFRirlUt/LXFeLbM4/vSMVNKuF4VqkaplWO0m6kg7dFa0rr8CLfZXyfRec1jPMZMlcLUYmLnoNksgNe7nJjgeLYiXUEQPUpmxnwVWbeW7rSkpLb/WjZTwrOvwSzMc2f5+4GMOkh94A9fZGU4gGu+aJ5fLzti3UthZmuY6pBkVlieyn/y55+Rz6+Dg8P5g5Mp95yUcPbee+/FkSNH8IIXvGDltTRN8cUvfhG33XYbBoMBgiBY8707d+4EAFxxxRU4fPgwbrrppieRlFtvvRXvfe978YUvfOFJgtyNGzfiec973qrXLr30UvzX//pfj7neYrGIYrF4Mqd49qIpKX81K9vQZsA+VOPvNZDlnk0m1nKKtrYCRjoGRWsD9iVIL5b43saABEYdTmOfx+tGwLq2tSu3CyQ2OgRR/Uq0A2VlaKFkUzR7kkO0I4GJgjXLoZ0/SoY06xEHLMlUYmtdVidZbV2e6PG1dgHoRzYJOkqt00iDdCiZFEiXlNrzz1SMoN2zmUMQqzFw7QGew2xFdDAyV0e9SmLRwAB8TbubVIMSpXYttFUcADqerUcN2pSg6H0FgC9v43XoRMDVh+33SkAfnLLs2RNjXMNlR0hA5srWgv3wJK/9S/fy9QsHJD3tAuAB3u1/g/yXf+LUfW4dHBwcjoOTIimvetWrcN9996167YYbbsAll1yC3/qt3zomQTkaeZ6vynAAwPvf/37cfPPN+NznPodrr732Se952ctehoceemjVaw8//DC2b99+MqdwziK/6lfgfe1jJB6diJmM0aAWZpYx0CGCiQ9EIhIdF1KRS5ePmoppu65qRWaqK9N2V7IvY30L/t+fJnnQLE1VOoOCHPBTK9cAfN1PTeSrmQ4tN+k8G0B8WXzTe2jpoz4wa371HtHsiJ9TAzMMmVGKA5au1CpfPVSGoQ0QVAdZLS2VYxKyzS3gwWnxNZEsyL4GvVS2LzJDURkhH5oJCTIrBwE2PFAx2eX5K4HxAJRiy+Zo5mkQcP/NY7QY9wPg8nlg6xJ/PlQj4djXIJm65iBwo4jOH5kEHhsHfuxRXq9vbSRhqQ2Br2wFvrIFePkTLOlFmWhySitr9z7x34B2Afk7XvsDfGIdHBwcnhonRVLq9Touv/zyVa9Vq1VMTk6uvH7jjTdi//79K1qRD33oQ9i2bRsuueQSAPRNufXWW/GOd7xjZR+33HILfvu3fxuf/vSnsWPHDhw6dAgAUKvVUKsxE/Drv/7reOlLX4r3vve9+Lmf+zl8/etfx0c/+lF89KMffZqnfg5CjcCCnEFtEJhIVC3tBwHQkyGCHqyTRT1QIK2vqs3Qjho1QOvpPBtp/10MrLW2VWTQHu9Ju688/fuJEQ/Aumq0NTgQnxcvsxJN5gF9z8hQp2DeIvWBrVuzGlEGZIlpaiLpjqmIYHhZzkHLOWM9riUcIQ0eSPBUFLtQ4us9ITH1AUlXUTplti+yrKJkSj1P1OJ/dERBMTVypVOVlRjpdSon5oar4mY1olNRs7ZBj+KJMeC1j9rPiyXgU1cBu8aAl+8G/t0XeU8UF83xH8Djvnif/e4le/kP4PEP10xs2xGtS5uiXu8v/xLYuoT8h46tL3NwcHD4QXDKHWcPHjyIPXv2rPycZRluvPFG7Nq1C2EY4sILL8Tv/d7v4a1vfevKNh/+8IcxHA7x+te/ftW+fud3fgc33XQTAOCFL3wh/vqv/xo33ngjfvd3fxc7d+7EBz/4Qfyzf/bPTvUpnL3Q2TbqVKplDF/EpMXEfEgApvdVV3KgYE616zoMdKqX0AF3QW72+WFmQdzPGdy3L7KMoFkc7YYBzHdF3wsADSEHOYBQOk8SD4C/usShE4lrQ+vK0dbptvwc+5YJ0YxM5gFjUgabl8nFTfFT8XIbRFgb8nzXdSh63dPktpoN2tC2FmU/ZzYpyoBXP84sRGPAbJISoRosW5T4QAITCfs5MyutornGxoENaSym1h6sk42j1Kz/l4tWLrtrG7Milx+h620OXqexPvDWbwB3b2UXz2hr9/EwU+XoAhVF7x7j9cnFc6YfAF5gBLRKkbD31Y8BD08if+M/eTqfWgcHB4dj4mn5pJytOBd9Uo6Gd9efMFDpROLFkoknCynT9rWhlSa0tVj1GNpJotOQdTaMWs73xLZeyUaYcX/dyMiCZgxEbAkvt+MtlPnzaBDX4wBGVDwwMOew7IiKTyuxlX088GfdRw6uJfNoKleXDqa9TWtXrsQMxHMVlqZGyzOa8VGSoGsGGLC142iyR0Kzt0HiphkfD1xjP6DuBeAa9PoBXKd2ZGnZSicwa0YryKwMpmtTN9/cA76znttcfdj2n3q8hzoraBSqcVmLsGhpbW+D758vG1laKFtr+boOP0df3cI1TfboB7O7ueJXk//T1z95/w4ODg4jeMaEsw5nARLf9ANqaBZJVmPUEn+hZC6xufiCRGIqpn4aOiiwH3IezYIM/tvYtk6gA3VmBXSwnQa3ODBdhe5PMweT4mmyVLJJwZ6UdFIPKEjA1QnO5dhacoPcNDOqPwGsdXcYmFhVMxKqXclHSIeasmUe169eJDqdeeMyhxj2Ip7rTIUlj0FIfcrlRyhGDcU8Tzt3tJNKS21KprR8o4MNIzHGGx3ICJhwWbMuOmsozMxm///sALYvkXDVB5xi3REymXskZGpup4RypspjLpZ43nruJemyWpLMznrJpPRDI3/FhNcDIKktpkZwD9aYnZqpUq/ysf8ORBnyN/3UM/kpd3BwOE/gSMo5hvxHfxHed/6IAWRStCFKCNQvJfMoWNU2Uy2rqIGZBh21jC9KBqYr9vG7xtimPF82K/5yzEDXGFiJJ/WA0GNrbRxYMJ/u0EdECcww4HEXS1xTlAKZkKSpLn9fToxAabeQEgsv5zE0YzQp+gnVhXQj8yzRLEuQA0nO7MDhqpWUooznNlehi6uWpjQrtKFNgnK4xp/VZXexZMFb24L1GmgLs661EwFjqWUwJrv8Xr1ttFylmZVmn9f94Umu/+pD5veyWDatjp5vOeF7F0pGDJt90wQtjIxLGITmQ6PdT4ulFdKB+bIRzD1NZmlq0h2mBEivjRIsD/D+7K+AQor85372mfy4Ozg4nONwJOVchLqXAtQNdCMGwqkug++yCCCVHKiYNJPsxXKRAapV5FO1ZgRWbOYTawNWR9tUNCFa7tAJy7FvZRsdiPfIpLXRqmhVLelXhLCyz07EzAogItuM3TWBb0E+EzKkNvHLRcnmSMAdHVConi1L0uWzv2EzhNSLpCpdNGHGLplRrciV0t4bj4hftbzVEwJUHvFzAUz4quSoKNtq9476umiJSZ1ngdUeKBfPsVtHO5oWSzxXNcZTkXRL2u7VcVjbtoOcJLITWbZt1L9GjeO2tKzj6OI5Gr6N9XnfHp7k94CRztmKdZFVY3PNLaTw/t+/BDIP+c+7MpCDg8PJw5GUcxGq1VgsmclZDnsq1oCrT94N6Vope3yPZje+P2UDBguJdagEuflvaEusDvmb7HHfGvBziHNrsFrnoToXbySTooE7BwlH5lkGQnUaUUqf5L64zOZCaDa2Sb5Sz+buqHmd6mwg53ygDmxetpLGQonnUUyt3FMf8Fp0Q6AmgXe6Y2UZvcZLJfteSygZKARWAzjVueh040y0M6lkPVTwq6WpSmzdTLUh8N8uYQbnxfvkPIs2/FEHL6oepxrbVGjtxtLBjRWx/q8PeU7VoZEcJU8A8KNPrP250q6mfQ3g0hkjZ/pZ298wItoPeQ5FEhfvKx8HlorIf+wXTuUn3cHB4RyH/9SbOJxtyH/kBpvUW5aMiApVM49P0v2Q2ZXq0FqXD9eYbakNGchHBweGuc3+6QemkwD4tRoziOk04MIIqehJK6226qpUW9ucNUsz6uui5KaUsPwSpSboVTFt5pm53HzZpjBrp09P9CyaJVA9yGRP2qBzoCH6jFLCTMuor8wTY8w86cyg/XUxP6swWHsw8znNYPRDO8+idFepU66WW3SgIWDXQjMdmsGojGRjYp+llsUSS1OaHemKOVttaB1Yqbe6e6mY8vgFWUsccLsDdcuctcWsbalo26yF6Q7wT+8HfvpBy+hoaUm7yZp93i+16S/J5+/BKcDP4e36jz/w59vBweH8gcuknKvIPekyCU1EqgFTsw2JpOU1c7K5xZT+WJ9ajcaA26vAcyCzZVQjorOBVORZEUKg5SM1LtOSRatoAwWVcJTEIwWBaTCizKb7qm2/ClBVlBtmNvF3GDAgrswvys1DpR+SVNQHJCeKQcjjt4smHtZumo4QnRxA5gO7xnks9V9ZLti6NSulxMzzgGEE1Abcx3TXZgslgRHCSmzzewAjhLkHzFZ5zl+4AHjxfmY2DtZ5/za0SVimuyQa62WyspZ8NGvTLpCEtoo2yDBKbT7T+jbPX0colBNqVUoJ8O1x4NJZvn8t1IZ0pG0XbJbTY+P8XT9kuei5c+z8OVwFvrmR9+Ble4GdC/BwE83gav/2VH3aHRwczlE4knKOIn/xm+E9dBuDsQ6n03LCspCV0fbW3LOOk6WiOcmqr4p24SS+zcpJpaMkEHGnakZC6SKKxQBOA/+c+Kfo7BklMXHBSkMr5mX56mF76heS+kCYmFlbDhIFDfoKNbTrhzRnU3Gol7NEoxkAwAK76mG0LKWW+es6LOE0BmaMpxoevXaa+QhyoO+TVKgpm5ZFxkRL0hPtTpBZV1BBvFC83FxjhwGzOTl4L1pFkpSCZKyach27kQ2S1Fbo5YKdX+wLqSwwG3KoxqzME2Nc91SXGaKDNTrnXnGEnwHIcY82kJvu8PUvbud+Xv89XqePXGvdUBfP8Z7vWLQZR0FmU6ArMcnK/euQX/4vT82H3sHB4ZyDIynnMrQ1uB8CWWYBTQO0zvnJJZAeqDOAXTjP969kFkTroYSlJPN+Ul9s3BOZhxNyyq7ODepGQK9i7bNT8mRflcCo7cNqmjaUcoiPEcFvj4RH3VhVlKl6G23TfWSCZKWYmIeL6jq0RLRcoBZl1MxOJyZ7sGzEQDxOVPw71ucaprs220e9XrSrRUtV6ryrmZyqiFFV/FqJeRzNPoUjRKUbMXMD8HeXH+F6H5hmNmfLEnUfqWcmdNq+rIRRu42muyxfre+IQR5IsuKAmY7DNZrBvWg/11aJOQFZiWHim+9KV8qDU13LrnxjE79edci6rH71G8B/eR7XtGuM+9wkrcsPTnGsQJAB/7CTr0/0gMuO0Azu8XHk//fPnNKPv4ODw9kPR1LOYeQv/GV4d3/cyMDKJOSMgVdbUGfLDGTLRTM788Cgl0Y2tTjK6BWic3R0ivGyDOwb65ueoTZkANYBeppVGO3mUcGmJ5mXMuznRAhQT7ZbKlr5Rv1edCLxqB7mQJ1P8WqephmUAJKtEMHucoEB/HDVgreuORRSUxsaAZirmBmekpfUJ/mLfcvSTHZ53IkeyyfFkY4lbYWOMvNCUbEqRs5dB0FGKa/3D+9hZmaubMRELfdVyKylnkw0KeWYxDDKgAi8/nsbJE2DgF9/eA+zRKNGby/eZ4MZNROmLrlezlLTtiWKjffK96PYvEyn29TjhOVRopL4wP3reF5HqiRROhTyqsPwejcjL/+7U/3fwMHB4SyGIynnOjYtWwtuVYKrzuNRt9exPoNRfShlFckU6Jwa1VSkPp+stXyhglEtJRVTG+CnBmzqDtsTsqK2+oCVVVTPobb3HrgWDzz2QpnlJC/n/ospv9csSScyb5ItLQbUXeP8WpMn/4cn2RmzUBKztjbfs1CW2Ty5aXU006LaloemSK7GexTaatuzZmdUlxJm1GYUMu43yEyvUhTxcaDXCiQiR8RkrTaUUhmATmBaH/UhWd8WHxd5v3rMZB7HHtRlMvUgENt8IXWpR7IyX7ZBhzlIWjYtA+2I56NZoqUiyepEj4Qr83h9WkV+TpR4/vgjXLt2Jyn5fMlebtsTctgpWFaoG/H1n3uAv/v6ZuC76ynC/fn7gXLCEhCAXL46ODic33C2+Oc4vNlb7AlbSw6LJev2UHM3zXJoGUeDpOoyNOCp+LUmJMKTDIF6lkxI50xDWpNVezFqx66TlVW3osG2PjBLfx0qGI9kG9oF607SEou23mYen+prQxqRqUGa6mfmKiQn2u2jYtIjVe6jJ91Ol84CX9sCzJdINu5fx/ctFzg1+MrDwGMTvCZqFKeZFV2jzhkaEwO12AcqOkQRRtwKKTUgj41TiKoZB8A6dcSMLS9ZhsGL/x/5Rv7r9kWkPAzNXt8Dr8vhmmXSBoH9brLHc67GvJ6AZcp0Xo+Sz9RjJgcgWWwOxLQvNxO8Uaxlwd8uUAOzsf1kQe73p4BLZtf8/Dqy4uBw7uFkYrFrQT7HkU/9GzE4E0KiWQwN0t3IsgCNAUsg09KG3BhYtkPnzpRHPEd0im8cCOFJuT8V3GqbbSDZmkjIjYpjuxEDWrNvAVy1MqqTqQ/5dH+4ymDaCxno9FyWiiQxkYh7v7OB53uoJuUsWfdkF9i5wOB/sMY1L5S5/v11Zno6QoLG+ixf7W7yug0kI9AukOy0Jajr5OKqDC6MA+uKKiZca+7xf5kKWlMhe+M9nuuRqnmLjELbetd4hMij37YunTCzcQba8q3ksTGgyFXbwtULppCKSV5qBCWVPwVHqtxnKsRtT5Pnrfb46q2zv87MixrYjUL1OaOoDZlNWatj6JJZI8qKJZaTvG/+8ZO3d3BwOG/gSMr5gNkKU/hHqgwE7QKDbkHKJj1puZ2XYXIr2pXcfp/4ZqMfZUYitBNHSUhFpvmmns0N8qXVNYcMoksY3HU2jLYiLxWBVsmMyFKPOgrNpEz2TE9Tjq1d2c85W0ZLLEpcHp7k19gcULF1CbhwgSShGwl5E13NoRrw0KR5r2jHz1gfuOIwNRYLJQZ01doA1nJdSEkE/Fw6dUbugbryVmLLMlVi4B89Cly3Z3V7tMLPV7Q83oO3rf7dgTrvIcDrqYZ1oz4vANe+XoiTang0s9ITgpJ7PK9OxG0enhQyJmJoHZEQ5FbqAqzMs1y0dWl56EB97c/i0YRGoQLtYcDP61Jx5Vy8u/4E3p1/uvb7HBwczmk4Tcp5gPz5b4V330cYiHUWzlKJQWcoWpRWkcF5ZbCddNvoED8vZ+CY6JnGBDADstwD/MwG+WmnSTmxFt/Rqb9FFdJKp8v6DgmJilB1XozO8tEhf5nHr2oCt7HNNR2pkjis61BgeqBOIvKd9SQL1xzkejsFKw9pC/BMlSTKA/e5fZHrnOgBLzgIvOAA33v/OjGIS0wI2xFDtYKcu1raq0V9JB1VSuQ6BWBeAr2Slfrg+DewnAA7F1d+9HATcPEa22nWK8iASIhSUchgKq/rmACdAD0xIEFZ1+E56VyeioiRm2KUV5KsS+pbmUgzbaPGc37O0tDGkdJV7llpSqYlr/ysCDMgyaxUtK5DrYqfU2fUKsK796NA6iF/0S8f/3o5ODicM3Ak5XyBttI2+yQbW5dMOKu6Av061TUvk8aApRYdNKjdOzmos9BgpQLR1LfhfwMpd2jpYhgAfc/m4+jTeScyAzklG9rGG2YkJdpxlMNKEmN9lg8O1/iaZl48yDToohnVHaybKd2UlByOVNmhMgisXXh/wwiKDl38ylbToASZtEr7JCaqO5noWTlKSzeNwWqzt06BxEln34xib9MmV29uWVsywHtUMlHpcaEao3Skkyr1bAq2Di8MpQNovsx1axYshfmv6HTo2tDalDNPMmtyH5eL3E8v4rlBrv0wBA40ZLq2dHFNCkHWac6jUDNAgMc7VOM64hH33jJ1Pd73PgTEAfKrfuWpr4eDg8NZDUdSzhPkF70D3v0f5h/9bmRuoRM9IM1snk43Es8QKReM9xg0vjfNYDQIrUU28YBqYm60fm6iVg3orSKDkwotR03TGgOgnXMtMxXaqRdS8TfBal8WwAJZKTEyBVBjsrUlJQsxMZvuUvzaLVCQOgj4dH+oxvc8OkHB5n3rSSKCHHjTt/naRI+ZplaRWY4ssKGBOvE3kk6mmug3lgvmtxKklkkJpTSm2QM1klMC8cQYicKBOgnglYeBL21j5uQYYtLjIsi4XvV/0WvWC4GqkMVWkfdVO66UyMXyeWhLdqgpmZ/q0MYqhNnqyc2+3L8vbadnSnPALM3DkyzbPDbB4092gecf5D1bPOoaADbSIBe9zlRXJjqDmb4wtc+edJd5s7dQc+Xg4HDOwpGU8wlKEFTAqu6fajymjrKPjzOYb1tioMo8BpnFEgPWfJlBOA6AJBWfkoQ/6wTmzAN8zwzO1Lo+l3JNDjEzS5nO1zkyW1p80l4ukvC0ijYnaEzm7FRi01UslIGrD8kU5sC0H/dupFC2GwFN3zQa+hQf5LRrv289icjzZswETg3ZcohhXc5z9wB0pCspyoAJaYsuZrwGbSFIKuJVK/9mn+8diDZmpsLzBLidtocv6TlkNEPzc3q+LBefuiQ0CjVX02sErPapKSU2KqAbif5nxAhOO6bKidxnLQFKNky7vPycWayhCKf/13NIbiZ6PM8jVQpsZ6okiLUh990c2OBIRSVeXTYCVmeTABI9FTdLqdDr3wx0CsgnHVlxcDgX4UjKeYT86l+Bd/hWE6suF8zIrBPZRODEZ2fLkSrdZ1UYWhP31MWSDd1TjxMtJ0SpTdZdLjIYq7fKUsm6TzRzsK4DlI8KwNpppK3PObidThEeHaY33uNrsxVbY+axlVhn3WgmZrZi2ZedC9znr30NePVjfG1JRLEd8XmJfeuCCSULUR3pTtIMTDm2+Uja/VSREogvBAcgwWoMWHr6PztI/HYs8jrp+IBtSxTo3rPJBMOpx4zEtiUjIE8HOpVYy1nFxIY4lhMztutFMhU5Me2QtqKrpuT7U7wWu8dYYmsVrdT3jx+2ktbXN/P9+xvsNKoPmNU5moCcCPx8bbJWSuClvwsAyIN///Svj4ODwxkHR1LON8xUGEC0YwewwL9YsrZgNWsLcgb/QQAgMHGqmnQBtq9yYm3B431qKw5V7diDgs25aQxsxoxmGxS9kIE8ERHt5Ufsd/3QhKDaUfPwpJGaTmRlhvkSsx3r28A1h1YfAwDe9dXVPz8yIRkU0V1oeSr1RXfjmTA2ysynRb1iigkD94rza2paDoDXZ6ZiLcF1Mctr58D2JcsEtUXg3IlYlooyksYDdeC63U//3ldHpiXPl7mOtowKiFKKl6PUBL1zFZ5TbQjk4qGj966Y2Cyh2jTw6sef3HYM0Hb/WNBy1LF+p2XBHGbTn/q872N9Xp9iau7FlRjeng8AtSHyid96+tfJwcHhjIEjKecbtLNDJxxrhkDn4mgmQFuOD1eZnh8G1toaSGBRo7Ugs7bhWDp1DtYYVHXwX+KbiVklBrKimJzlfBLf02QQne5a901HMiHDgERkrM9untG1LJVYqtk9RgJwpMrywgPT3GbLMvf1+Dg1E2sFxb1NrteD+Y00+5YByTx+Xxnymg1Gskda3vHBIYRaMvLAa6OBWLMw963jNuM9EfRKWW33GLuSMo8EbyiEMMiZ9blgwdau3UNHD/57KuhavJxamO9Ns3NJsxOapdnX4DUMpWNJPw/aQp16zMRMiFD2aGv8E8WxCMrK7+T3Hlb7yBRSm+7s57xX2gYtPjDezPuRT//rp7cuBweHMwaOpJxnyK/+FXj33G5ak6FvJELt8EfN1NRLpTGwdmTVKOSwsk/qA0NQT6E+JWpS1i7waVyn9eaemYi1iqKRKJOIbFti5qMXmU/H3iYzCzpLpiJE4cEpvlZKqKFZKjID85UtfO2nH+TxBgGzJFtaLDkA1FIsSBu2iojLYjvfi0wIrBqX1GPHipZ6tHVaZxoVU16XURdcJSd63ZZKJFEAiVyY2XoWS/w3VwFmxdF1umsThz3Z5q5tJAelhNmQCxZ4Ddav0TEzX+Yxl4qShdlD0uHntK/fusTr/+AUz/nqQzxGL+Ix9jZsv0EOQDqbgly6mLKTJ0pHo10wZ1vNnB2tTQFsirKuZbxHYquEVX+n5UgA3qP/CdjSWuXW6+DgcHbBkZTzEdo5oR0gA986LdSELPWADdIymiUsTQxFYDnZAxY8IPRsPks5ZgZA3WmDxHxYmgPz2FgoAr2YpaAnxhio5yp8qu9FzFb4EgS3L7Jrpyfi0i7Mp6MtZl/LRWYj9jW4n0EA/N/3UUszCM087OJ5IwRf28IA/Jx505voWpWY9aTtNYOUHnwgF4I2IdoSJTKaodB/hUR0HVISqspMpDt3MChPd3ntD9aE/IjIdLLLILuvwdc2L5OgzFVIqAoiLFajtNRnBkbbtJsDBu844Ne9TZrTJT6zTdWjdCAq3j16kOBET9bZMcIwDIDFssxUEuKW5RzceKJYLK2e+qzn0Pd4jqpreqxu+iZAXI190/yocLpdEEfiEslXu8Brur5j5agcbh6Qg8NZDEdSzkPkO98Jb+8HLFjEvjnRaheKdnqUYwatRck6JN6IeFVM23RasOpYFKkE/GLC7Q7XrPtnurPazE2zCqqP2Llg5QQtrcxWWLZRPctMlcF9qcjAvmORgdfPqUlZ1yHJUWOxlkzcfXjSMgraaq2dTdrlokRtENo55Z5dr24ElGJz5c1hZEdFp1qm0FLFBQssn012ea27kZnLqZZFW4KXxPm1E/Ec13XYyXT5Yb5vqWQErDrk/dH2aTWu032O9SkkPlZ5JUqNEGjWK8iAZISBpKIlqg5ltlNq2Qv1XhkE5kI72jq+WDJdk/rFNAYkkgdqJB59ISJz0vmVSyeSaoN02vMw5L3eviSC3LqYzslModqQr011LTsmcGTFweHsgyMp5yvGxaxMW4lH3V2rMhxvscRAtKdpwbaQMXBqq6qKX8sirKwPrb25lEjmQ4JxJC2kmpWJMinj1CwLsG1JpjFn1rXTLpjT7aZlBu35sjm5jveB679JUqDbb2yTnCixAEwQ+s+/wwzEYolrV81NL+Q/fYofFRYDDJr1oYl0YzGl0wzKihYlodYmx2prfCUAvYhBvz60QN4qmhA0kH0tSoZAvUkmehwb0BNxcw7JWkmX1dal1d4qz5HOrB2LJ/65iOU6HK6t1pqUEwv4frraI2UYmIdJJ+I+xvpC9nJmu7QM1pdrfKjK0tGFC8yoaRZF5ySN9W2AY00Exr3QRiosicC5JqRpXwNI2jb1eaLHc1gDHm5yRMXB4SyBIynnKfLav4WXvYdPoPUBMxTaelqR6cQTPT69R5nY24twchiIkHTEr2S5AIxJQNm2xCfiTgT4yYi5Ww5MdayTKPWYnledxrUHrHW1XWBJZkm0GjkY1OfLTOeP91n2KKR8/UDdsiG9kPtMJMsT+1baUGxc5nnPVazFdhBaa7ba+KsWQk3RiqmRhqIE3lJsRm46SVrbvLXjpRdSF6N+NBcvkAx2I5LAfsgsQSjvuWjOtBZKECoxg3PqkZA0BnxvkJGUKZkaxfEIylrdNeoaq+MTjp5wrNDzikSX0i6wJKWapbkytxnvm+NuLzSzwHIC7Guu7o7SGU65x/s8CFgaWyra/VBPGfVKGco929Dm+5ZKQC0G+rEZ8PVESzTSfeQN/x8gypB7v3Ps6+Pg4HDa4UjK+YxZsZuvDVkW0Zk5Kowd1a34Of/4557N3ymJh4YG88FIeWCyC2RVC0DqeqqBtxsx2Kjw9pJZK+88MUbSoR0ue5oslbSKDG4H6pZpufYAA6SuY7LL7/c0eV46pE8t/9sFKVfkNiBRg7vOvelEq6c4h5l5ijQGJpCtxDbgMMhtmCJgc3RGUYkZRDVTlcPcddUkrRzznJQs9EKWXbR9uBORBG5oc/9PjJFINvu8n7kH/M/n8Nq+/AlrJ18Lx+uuORkfE23RVr2QfnbU8C3zzGa/GltXjs6AioV8qOdMKTGx8SAwUzwlJ9WhZXUO1cxkUO37tTyk5zcIgWBEW6MOux7g+b8LJD7yohPXOjiciXAk5XzGE2P8Y79xmWLY8b49AS+WbLKuxtra0Ay/dLjcQIKRbj+asVAvi3Ck+0Un3QIMFtUh8IpdQF+IQS8E7tnMoFVK+PN4n0/W+xsW4Gsp8NK9fOLvRsym6MTesT7fs2nZSkJqrKadRZoZScR3Q/1aUiFcOcyrA+B1Kkn3Twa+VwcNAqYl0W31/BTlhNkO1WQ8PMlsiZ9TRNwYcIDhYokEK/V4bj6MyAHmC6L7n+4C3ZDv1/LMZTNc/3wZ+NpmEtDLj0iGqUZB8rEwCCnCneit3WVzNIoJEEnmQwc2lhNmVVY+AwUSkImeOd3qgMpUyKAa9cWBkcIiTK/kSylRf14siR5KHG6VaOrgQvXj0TUo1OlWZ0oNWHb08vcAOZD7LrPi4HAmwZGU8xj5i34Z3lc/xidwdRJVLYD6kKQeA6XaxPs5ty8lzAqM90w30I2Ah0S8Od2RICAfMS+n+LMtgWNWBJLDgJkAzYT0Qr5/1xiJQzEF6j36ixyusU02kIzGojjEqnX7VNcyI5q50Rk1qQfEJSvZpJ454cY+A2W7wNdHp/YC5iejZnCl1NqVVY+iXUFrGZqtXHAw0GrG5PtT3M/2RZawZiu085+psvw22eUMH+1KAmwYo65x+6IFboDmb/sbPMZYn9dG/V70WMfCchH48laWyra2aBx3vPNR9EP7F2bArHQB+bmQ05Qlm15kn6GpDucq9dSczzePGi2dacmskBr50Wydl0u3WJmfl544A2tpbhis7U6rLee5BwSio0mlZOUBXsnpVRwcziQ4knK+w4Ok3EV/UJbyjwdzn1XjsaFoBA5X+Ue+LNoVtaLPPD5BFxOgFlpra+ozEGRSdiglzHQcqjGwaQlmuiOCWnE9nS9z+70NBlA/By47wiCq3iGJb/qNw9LSO963UoGSh1bR5gsB1kmjPi7qlTJa/hk1oKsNSdaaEvi0/KOlHp1tsxa6EUlH6vOaNQZsD97c4mwegEF3umMkJpYMj2ahFKOZKl2nEom7t1JAqj4m9SFwxRFrWT4W9jSZVdvTtDLJY+Ncx5WHSS6PB9UpVWNevzggKVGxtRr45R7QL/E+6XXQrJoSvjiw7AzAz4eWzVLVoQRWdtRSkHaY6ef5WKUs7ThbmS+VW/lSrqOHm4DlIvL6jcc/bwcHh2ccjqSc58hf/Gaau5Ul89CX7EO7YBqS8T4D3mKJQtfE59fxPrURjQGfaFPQTyTMWFYoJTZ4z5MgoB0b6mbaElFk5pkNO8DSSCFlMPdytqtePLd6UKEvwXleSlRBBtQS7rdTsJlDqbfypLzKoG62wnWrLkKt7QtSUqlKy612BanPiBq4hdnqUsxa+M4GE8xeedgyUZ2Ia9nbJPF4aJIB+rIjPJ++WL/XB6uzOqMYzXLMituuDuqbFDHpgfqTjd5UIzRfBr69gfdV5yqp/wnADqhhAPz4I08+9r2b6FYL0ECvkDLzoyikwDc2sZQ41RUfk5jnNVfm2rpS8umHRhYAGz8Q5LzOo5miUbO8xOdntSNdU1FmLePHygAFOadUF6XtWj8feg/ny7wnj4/DW/xvgJcj/8WfWntfDg4OzzgcSXHgH+t2gd/nHoNOlJrB2Z4mg00/ZKZkTEhLq8gSiJqWNfr8o6+6ExVQrmubTkP9KxakhTiSklJtyPeqt0WryONMdYEHp4HnzjHToFObNWuhnim5R62ItjYrIQJIQFIfGObWytqNrLwDmBuufp+L2FO1NzpcsRzbU/dTua3OCXHQNT48yezJ1iUG7c3LDIr3bmTpR4+lnCTzWPqpDU0c3FijhAGQMO5Y5PHKCQnVoxOrJy53IxuJsOxzPbMV66qJfd73VpHXsCTOvl/bQvJ0UEzWDldZntrX4L1OPZLKVevpcXDjoxM8jprEXX6E122uwq/LRdOgJD5QjNnhBBhhTT0jHUpQSollmDa0SfoGAT8DE6J52dd4cleXalGCo46h+M4GaoO8nDqtdgHe7X+D/Jd/4vj32sHB4RmBl+f5cR4Dzy20Wi00m00sLS2h0Wic7uWcUfDu/rjNg9EUugcGiKaUXjSA6jTdTsGe3DXNP9m1TpelEfHkWrbty0UGydkKBZBRxiAbSKmmJfNYLj/CIPjd9SZone7acVVQqVb9YSblq9gIU6dAIzoPZlW/VCLpyjyWINa3WfYIMnYyaZvvVNdExDrbaJQorYXFEvD5C3ntLjvC49+ziaLWaw5yfQ9N8ngAz13Pty6TqVPPvE4iKZmoMd1aOFDnNSolluH68jYG6/HeSkbA+9tPk3zMl0m6VN+SCdnQSdGHqmwT1hJgNwK+uJ1fN7Qp1J3oUTfzQ/uOnfHRtamnyo5FkhTtaBpIF5nqTJQsrlVKU1O31DMjvUS6rYopdUyblnk/58rWebRz4annHfVC4C8vI7nVMRFKYsMMmOgh/+l/euz3Ozg4nBBOJha7TIoDMap9SOSJWtuEteNH9SJlCf5Tok9Z3x6Z8OsDXmatoEpseuEq908ADMZLRQaOpZLNZOlKeWggmZu7tjHwVGM+7cfSmjwQPUwOBnAt6QBm+OXB9CnqsxGLvib2zRemJe8fG3Eu1UxOObHOFX2iD56C239zI/fz/IM8dy1TbZYn+0M1ZoiWCwz2lx8B/s8OXl8tZQwDkpgLFvieHDZIby1RaDUmORrKub50L/DcWbrUfm+dbdeLeJ2vOMx1tgumBxnrm2PtNzfyfm5f4jlcNA+8eD/w51eQ+LQLwI8+YeWz42GTkKtd40Z4Ruft6NDGMLbMVw4T2gKig0psbMGoq20s91NN4Q7UgW9tYIZJLfUvmue26oo7ilaRBKxdsLZynROlDrkXz8H73J8BywXkr/+545+vg4PDKYEjKQ4ApNPnvo8AYQpk0Yg7amjZh9EArX/kmwMpS1TMdXYYkMio7qFdYFArSRtvbcgncYDb1KWcMdq5kcg+dH8TPctgVGNzhNVWVm05ne4wYLUkS6MiSRUBq1i2IE/dOrV4vmzZGC+3klaUmcvpiQ7Tu2czv151iOe7XCB5eO6ciVB7op2Y7lLcur5Nr5jHxld7zvRDE77GIpSd7DEbsVxkOWPlXvSBaw6xXNEuALub1MEAwKWz8NLf5fevKdjQyEy6nPY1zNsEYh3/fMB7/k2rz228B/z7/8P9PzrB+6geKOpLsxZUV6JeODp3KRIzvjHxeanHQFw0YbLe2yi1jh81zAPMKbkinVcPTgPfWU+Rs55TkNu0buDJBAVg+XGxZEZ8Zfl8DET8vW2JuigZUeA9/h+BdR3ktX+79vk6ODicEjiS4mBIfGsj1Y4Y7WyJg9XOq6pDmZTpxJWYT/wPT1pWZqFEQrGvwaxGc2CmX82+PRVvXOYxtFtlucgMjQbnCsW3+Q//0lOegrfvD/iNPllrxqQrk32rMfULC2Wbsjzet+GJ5SEzHlNdrkknOT9VpgBgNuhAjYHzggUSqK5oI/Q67mtQ4zMp+owdi+bncfEsv//uepsifajGID3R49fEZ6CMMtOqaNBtFXk+Vx4mmWgelW3RIK2t1MBqG/1W8dial6Oh12Z/w0p5reKTNSCK8Khjj/d5j2YqRoIzz0qIWmrU2UqaXUk9y55oR1k1NtHtVYeA8aaRwSfGeE6j5cbU52dr65K9Nlvh/YoyEi/N4g1CuyblBHjlLiO7uQcv+V3k4b8/sWvm4OBw0nCaFIdV8L7xURMlhqKTGK3766yabghUpKQCMCBuWwIenGLwKcckAmHGgDBTYeAf77NLpxKvXbIAxN6cvhr5xn/19M7jex/iOhLfnsq13VnJmH6vAuHGgITp4jnL+pwo7lvPSc6FlC3Rz50DHh0H9oxRxKoi3Pkyr+2lM6tLFVFK8pL43M+2JRKdL22jkLTZtzZw7Tya7jAYlxKKWh+apKD1qkPHdpnV63sipOtEsGvc3HCPVHlu0x0b3rhW1mL0nPc1SOTK4l6s3jhqaa8Ge15uJcVqbKU3bV0eze4djc9ewvf80D77zP31pbxPqq9aLpKUtIokKY+PW3v0jkXg1Y8fe//azny4hnz7u57ulXRwOG/gNCkOTx+NATMC/dBadtWfQu3v1RAthz1VBhnbklVvEGYMNEPxzOgUGCh0Ku/OhTUPn+MmHndM/j1N5M97G4lKVUo2CyXr6NEheuq/UR+w5DDeo3B01KH0qTBT5dP6YolP5h54vEM1I2tjfdP27Fi0UlcvBA5JJ9VCmfvZ0CbRuGCB1/K6PSau1fJH6gvZEd8XLblsXyK5UYKi/i/jfQuwT0VQ9jWYUVjfPrGsys4FrkE9VroRA31dzNe0bHg0dOqyZtYGgV272AfykTlS6oeTimA6GBESj2ZWjoWrDgP/9VJmo7Rt+pW7gK9s4X266jBw7X6+3otYxrp4jse/eG5t0ffoddTrvb4N7z//F+T/9PVPfd0cHBxOCI6kOKzGE2MMkh1JfXs5n+TVuGwQ2DwfnTgbBzI/ZbQ9V7pFluT1XsR9XjbDADtboR2+IvdO+bC3/Hlvg3f/h4Gl0DQvqmnQ0scgZJC88jDXqzNzngr9kKWOx8d5Pda3zV9lX4MERDUa6yTjMUrMZissjQG8VjMVE4lqINXjqIi0XeBx9owxaC+VgFlf2prbq8sXgIiLRbSrXVteznu1FhHrh9SzbGyf3OyeKKVe47EJM25LhbB0I9MNtQtc62iWR+chqS9P7JvOJJXP2EDM2wKfE5i1eywV4rxcPHZWDuB1f+N3mOm5cwc7ptZ1mP2LxZl2ucjXygnwov2r37/W/KO1iF4pAf7p/fBwPwA451oHh1MAR1IcViF/zT+H960/ZqDohywzDEJqNQASDoDZEX2CVSOu0cFwOkyunQBRyMzAskw2PlTjE/EXtwM/shs4WH/aZZ2nhLYgBxlQgBmFlRJmL6a6DPzNY2RPHpsg6VCn0p50FQUZyduS6Dh2jzGL0S7wib0ubqrxyEC70QzHrnHziyklJCIbl637Z1+Dbbq9kAFUZ+OEmc0Z6oteojZcO0OS+CQj3ciCuJIyne48ilIC/NijNiRQt9cszGyFx9y0/GSBrJKM9R2uR036VA/ULgCPTALrxqjFmeqankbHKmgHWSolniizbh39XKnLbJQ92YlWS0NrlWX8nMZ1cxXekwN1kqnLjvBa//1O4A33r012RgnKWtftGPBwE3CgjnzTM/TZdnA4D+BIisOTEftM15cSBoDiwCzwiyOD9lpFBsxCZl0xfs6AurllmYLakBmaQsrySFWs3w/WgV3jyHe+8xk7lfzFb4b3lY8zE6FzhBZKJgDeumQtvqPY1yCRmJOyShIAhZ7NowkzZoY8kLgsF/gvktKXzvsJhiQtGtSXi+w+GeuTYKgYVkslQc7rMlPlGgqpfU0is4O/ZJaEr5hwzpEHZgrUhG5dh/dMBzW2C0YiD9Z472Yq9BPZumT6oy0trkWFw93IBKRK1NSxVjUy2hVVleMtlswF9lDNSFizz8/NfNk+A0o+FktmwOfn9LSJcmv/rQ/NEl87plbcZz0bm1Ad2nXUrJ6X21yq/Q1er9c8RrKl13OiZzqYtaAamhPt8FLL/QN1eF//DPKf+vkT/sw6ODgYHElxeBJW2pEz8I93p8BAHGYMQtpW7IF/uHUooAcGkEDEsjp4T8s/82UGRg0wVx96RgnKCjQ4B5m1yr5ov3WAaNAdxX3rOJlZLfAvElO1uQozKZqhOVIB1nV5Puoz4uckNzo4cbQMUx+wzDAMmJnQgKqdOrvGWHLoiI/IMGDg1WDaD1laAeyaqkFamLH81C4AFy5QnKv6l1FM9qi7mC8zE3RQiMQFCybE/eJ2DhkMpFNLLe+jjPfwoJizVWXOk2YgjlT5GelG5pGj2Y2JHs9zqsvXSomVBXOYd4rqnFQwOxBjPiXJSj4KqXWE5bCMSimxzJJml+oD4CX7mO16eJJr1gzJltaxu5Iyzz4zJ4NWkaMDlphR8v7qPwOTPeQv/8WT24+Dw3kOR1Icjo1+BHSllbgk3hRJaBmTQsqJwEhN4Ki29TqdWCcUezmD2nIRGO8j/1evefbOQ43R1Evlxx5d/fvlopGUbsROHX1trG8dOfvr/NqN+ORflum9OoDxysMM5k+MMUMxX2ZwHJ09o54fu5s2jTcHLfIP1nhdt7T4/hx0cy2kDHYTvVVP6OhG1jXUGDD78rwZ08HUjwqsw8A8RtZ1gHYE9CX70ouo1dCOlh/ZzYnWG3ommG72SdIAa0cvShZiGACzokGJJbNSSsyfppSQ9JSStXU/lZhW/cPAPGlGyzu5lHZU5zM6m0dFuJqF0a9HC2onZYbQ1taTSelaSKVcNeoRtBbWMocb60vruvxcHwJBRq+aIHN6FQeHE4QjKQ5rQ9t0UTLvFE2XT3esK6NdsAGDmWfmaGEGeCKozTwGhkcm+Yf7174G4FkkKaqxKMerA/e3NzAwa/dG4gP/38XcXrxZVobgqY/GMCAZ0Kdwdaid6jKIt4rSQeRbRuD7UxQMJz7bklslO950l2RmuWAlFJ29Mz4yTqA+IBkYiDA39S2Yb17meb3wKMGnBnaFds7UhnSijVLez//r+5ZVWioxm/PIJDMr6omzUCZx0hJPY2BGfktSapnokbT0pTRUEdO9amzakqUi1zA6WVndhRPPpmrXhkZQlOSNDnNU0qCkTV/T7F06Qgx10KRmaZp9Iw9HQ7U+6iicw3RYx9peBdlHi2uv282vD01Zu7us1cNNjqg4OJwAHElxWBP5NW+F9/Xb+Ue1OTCtwWSXT/H1IQNrmPGPtHb/qJPo6KyVXgQU+8A/ehSoD5FHv/3snkw1tjVedYivtQsUuyoxeGSSBEODeJADyxGDz1SXxEXT/uXYPE80kG5f5PTcmQqvl99j1mG2Ql1Gp8ABjE+MMUCu64iBGfgUPghNZBulwLUHSBgmemZ0VkqAWNxdpzvc53KBBCZKn3zea3WgjNr5X7BAkqSlmmEAFBLg0ln+O1zj+TREk7S7KfNyQLM9Lb8UUu5H13igzgxbQ8pay0JkYxEKz5d5vus6fL9meA5XbXRCkBsJG81EfWUrS1iqo9EOtH5oJRkd7zCa/Tg603GsNmzVKin5mS9zHcOA4trZCnD941ZG02zP8SZhz1RILMf6JD1CkDwhKY6sODgcG46kOBwbRWk13rjMP6yDgISjGjPwAPa0nHvAIER++b88rUteE40BA+BlM/ba/3sZ5+oUU3PELSdAGq2epKzBKvOsE2WqyyD+yASJWymhFiT1GXznpC1Wu1tyjwH+ohSY6gGzZRKQDW1+3di2jplhwABdEFO0UTv3BRHxaseODgX82hZuG2XMkBwLXv7kmUNKUDKPJnKBlIJykFA1+yQAEz1mdrR0FnnWvVSNuZ5Eynrblvj6QonXviIuv/UhtSU+WNraNUYBcD+0gZajHTp63qlm9cCv9YERECUbWlrSz2N2rFQJjk8otHtHBcHdiJ+d+9eTfOmcKSUpOozweF4tL9rP+9iRKdTTI1mk72yAV/5DYEsLeeX/d+x9ODicp3AkxeGYyK/6FXjf/QhFkvoEuFDiH/KtSwyaADMHxRT55L85nctdE97j/xHwPOCH96z+xboOPTOKCYPnpHR3dJrWPquTdY9U2Vq7tcWsSHXIjJKXM5BP9EhyVMSaRHx6HsjTvQbVxoAE4znzMu05k6GDy9yXmswBaxupPTZuAt5HJ/ieXggMQ6AfMABOdm2K8clgTjp9yjEJxLiMLfCwQkAx3reSxn75TBTTkQnGHgDp2irHNtPnaL7QLjALNAhIECuxCWHVQTY6Kgsixsa45qB5vCgpUZHsqM7kWETkqQSwSoxUlJv4wMNTJJtjff5eiScgxnVPYXpXSDnle7EEPDANXAbzvZmt8PO0fQne8vuAhRLybb9+/P05OJxHcCTF4fjoFBg4JnsMrNoV0Q+pl0h8/qEdBsDk6V7sGqjGq/UPisYA+M4Giji3LdEP5apDPK9+KME3NvIwkM6d7YskCAfq5gXTicynY6lIEldILSAGuc2PqcRW0jlYJ8HTbECUrl22UVw7YvKmxCj3GDjbRZLGRyZJJk6kVfZQjW3WVx1idif2gWHJznUQMJhGQ5KupSLJSn3AzI+uPcg4ubojGZB617q62mJzv6dpGYogJ6kKRUy9WOK1KomDrj88djlm1IROScmpsvhX5JI9K4soWctNQc57/cQY7/u4dLStlbTphyR9QcYMVUvuVX3A6cyhtKlrGSrIAI+dc17tPyCf+K1Te04ODmcpHElxOD60U2N3c3WAVZv8hmRRtp6hT3+jwwFnKyQmYcZMkHq/PDZBorKnaa2+9YF1igB8sj9QA/76EtrPT3coOp3oARe1qUcpJdZOe7HMhVFr+umOaXl0oOK2pWPPgzkeVBuUejaIT7URu8Z4fiqiTX22Q48SteUiLeF1bs69G9lRVEgBL5NJ2B7vrQpeE5+CYZ2v0wuBib5pZspd7svPza1YM0vL4qeT+rzmhdh0HkslXuuBiJUvnDNdyjMBnRN0PGKTeiRQQcbz+5HdLO0dqPMaBZm1iJdlblIx4Wdl5yL3XUp4zfbXSR6jlHofncBdSpjxmquY4R0gBogFePs/Anj5mVk+dXB4FuFIisNxkf/IDSz56JNxYWBdK0slYKmE/AVvOd3LXBPewn9gNgAAvrSdQbMxYICtD4FbP8924/vWiQ9MStM21XrkHgNIKWGZa0uLOpZHJ0g6LppjYO2HDDjDgPqFSkz9Sw7azNcHJCzfm6YGY+My17QWQRkGDGp+TiIyWrbIPeCbG7lNTUpUG9tcY6vIjMUgYNdS6vF8S6JheXQCeOle7mexRNHwKLnRScIaQKOUATjxgVy6b8b6JHKKuQq3qYvr7VjfurvmRFQ8CG2CsYpgtSusEjP7cqjG9+tk7FONYQB8YxPv8UKJ63r57mO7DAdyvlp6mu5YaQagrkhnBzUH3OdXdvD6pz4/FwD9bB6dMF2T+sKoGL2cMDu1oW3X46I5ITcNwMvhfeEOoDZE/kNvPvXXxcHhLIAjKQ5PjQUpBaSS144y/hHdtMyAd6YiSs2TQ7MjkQoYyww+W5cYPL+8TQJPYm22msq/6hA9UAASDP0esNZWgMF5S8t+9kBS1CnwmBM962Y51pTifQ3gWxsZrFpFEqhNy8zMHKzRZXZKdCeq49Bg2xgA92xmMHx0glmixoBP6duPMpR78T7+fr6M/NX/nMu960+4ztQDto5ct+UCMzGzFZasZqoibM1JyrT1tyrtypln4t7M4/mr3X91CCyWuW1VWo0P14wErYW9TRIuPweuOLz2NqN4ZJJk7uI5Xqdvb2AGR31l9jWAr25ht9la0PlOgJGr9W1eh7JkQKLUNDQXz8mMofDJpcUMJJuhZF0KKdcyI6aAqZjRxQFwWMqHkZBN7Yxb34F35P3I1/3rpz53B4dzDI6kODwl1nLJ9L76MWCpiPy6G579BZ0APNwE1EZe0ODQEk+PdoHpe/X4qA0ZHCoxMB2TsMyVzf9jLWhHS2Pk6V+zBapZUQda7QAZhHxf7q2dSVGtz9YWcI88/T82waf02KfeZKormZOErylJmeiRRAUiqD1QF8+X4WrL97H+sQlBQ/xYWkWuox/KgMiQ++4USMQGoZnGFRNuo7b5g9DakTctc31BzsySdi6lHgnuYonndsECy19HIw6Ar22WmT4+93HlUxAVzVzoqIKKZInaBWtVHohI+akyN3uaFLu+aP/xj3vpGl1Vj48DY0KMdTRB7AP1jFkwNUmcqQKVRV4T1UT1Q5sgLQ7P3q6PAVGK/PlvPf6aHRzOITiS4vC0cCann9V/AgD/0H97A0lCJRahq1j690MG1GUJ+IslEojxPp901W/j4UkGnPUdpuYLCYnDoxMM6BfPrbaf/+oW2tQ/d46ahEFA0XFRAviFC8fWRDxvpE06zEh6trZ4HLWZT3wGz1KymkCVE5Z0BiEDoDraLpaN6Bw9KRmAl/yuzFkSDYleg/kyg2QCuxYqfvVyK4eEGa9f5oknTcJrrO7Dfs7grISgmPBfOFL+GW2d1gyMkoktLd6bQzV6laQ+s2BHW9mnPjNBvZBZGjVm07lI6omjox3+7gKSoFfsOjZp277IbNGxMl/HwwUL7Nz6/hTXUNb28ZDlnkEAtD0gC3h9W0XrEuvJ0MWiZANnKySJcxV4+/4AaBWRP+9tJ78mB4ezDI6kOJwz8HATA9TeSbbqzpepCSnH5mCa+AwOc2VzMN3TtKm4ccASS2PA0kqQ83eDgEPpBgGDSTeiCHcgrb+XyWTfiR5LK5nH4HbXNpKSH97DAFtMxDNE2lb7IQnTWlmVHYtsVx7vm/MrQBJSSI10KY5USUwO1mxAoPqFzJcpql2DpCD1V/uT1IbAVAfIq/x9IWVmSbMq6huj1vVhttrPRa9xfWBdT9rOG2ZALaeeqZSYkFg7db66heWaKOU5XLDAa1CJSRTv3cTMSuLTVG2sz/uwVLRJympT74GvdQqAL+ewadkEu3My1fmvLyW5W8tjxs+pIzravfepcFA8VR6d4H1MfF67ya6JkFWIHmS8Z2oKp9k+beHuyBykwzW7nhcswPviJ4DnH0Re+7cntzYHh7MIjqQ4nBPwcBNw91aSiukOSchsxZ721Ul0aaTdVYWM5ZhBbn/dnrg7BQaD+TKDxGSPBGCdmKbduYMBKPG57USPOp1ORDHrMABecIBZlufN8Jh7m1zX4RozL9/YZE/76zrcZkPbjMqOns7cjSwzoJ03o+iHMjeoaufXkRKDDlc8VHvy0MFUCEpd9llIGcCnujbFuBvxOqmAuhdySnEpsSyLIshIELS0owQo83h91Ndkb5OZhufM833fn+I90/MfBtzm4jmg0iUh2dxi23R1QNJVH5o4Wjtk1IdGs1WqHelGNv9IpzQrUf32BpKlo/1plkrHzrIcC92IbcbPneP6ajKEMRbXZp0JpCMVDtSlzT3kuhdL/P2ytLP3AiDoG6E9ULf5RIdq8A79CZD6bnihwzkJR1Icznp4X/sYkG+R4Bmxi2ZMdBB1ISSJNzLDZ6TcMN0FXrmLwenhSeC760kywozfLxcY1C8/ws6ejW0Gtg1tEpVHJrj/QzXgdQ8z+/LoJFP0hZRaBsXLn2DQeWQC+J/PIRHQEom6yarb7WjGY1+D+x/NZBQTZmhGfVV2LvBf6tP4ba904qhz7nwZ+NxzGIyLKZ/w17XZXj5US/6MgVOdVXVI3ljfZhpp9qQcWxlktmItxo0BUJYOpqWSlXxyiB5FfGTG+sAlM9xmf50BeijeLP3IJhxHKff/xBgDuM5h6kg5S0sp2vq8rsNrqzoUHXA5lLKbtpYPAt7PQkqCtK+xutwGHLsD6HioxLwPKpZOfHEWXubnM/P4uVSTv43LXEs/BHoFu16RZKdykMToyImlog2CVM+WH37C2ew7nJNwJMXhrIb3yc8C0bgMoAOzCBfN8w9+Y2DTl8d70o0iT9BLRZZltPvnNY/xn+KxCXbALJQl+C9S56BP59sXgTd9m98vlJkhqQ1t7s2xEGRM9WsQbQ6Y+ZmtcP17mtSgKDKPmZfdYzyfjW0Gr1aRpZGmiGC3LTGA98TG/XCNT/Tr29TXeJB2ZilfhRmf9p8zT6IW+yQuYWalqEHIQKtuspoV0dKMdnsBPNbuMa7l8iN23VPJWnhCgHSeT5DxPUsinv3+lGVCtG05EpLxxBjXpURIy0zaypz4UqLqspyjM5g6I0Mbe9KFtVgCLp2x0s6Wltj7+8efdHyy2NriujsFc889JGW48Z5lkwDTGDUHJL+TXZaL2kJYdD5R5vF6Cj9Z6Qxavzoz5oYXOpxLcCTF4ayF92d/BVRF8Jr4JCHa5ptLME2kjNEq2oyhREScPUmvr+VIe+E8/ylaRQbhiR7JymhAG+8Z2RmF+sl4sICkxl+bl9lmrOWd3WPWzj0ITH+QetaNE4o3h4pov70BSMaBqw7zNW1tvuIIA9hXtsjwPmlpVafgopTAPPCYlZjbNwbMHA1CE5jqtGvN2ESZdTUlPlDscF/bllZ35/SkLKXDAxMhF6nP4473+P26DonKQtmGQKpfS+JzLY+Pmy9PdShdRxEzQVri8sBruXMB+OpWZh90sOFlM1zH96dIDpsynkB1JpnHdWxaPunPIHaPMTPWl2u2rmMZpVaRpMQvmneK4v511k49W7GOp/pQMk4ZtTelhPf3UM2GX3owcnXJ2oTYW/gPwD2bkL/mn5/8OTk4nEFwJMXhrIP3if/GP9Al+aM9DPjUCViXRG1ohlwq7Jyp8PXcsyf8qgTJ46X1E58ZCg18gGUT1H336FkxmSe2+TJRWVtyhwHLSmN9lhcaA/7bvghUxRF3ucAU/uh036GIUZcLNlPoklnqM/bXub8otfkyLzhAcvC9aSuH9EN7go99zsHRp/ScYkwsloD/9lzg6kMMuH4OdAPzDtGMQ0/cZb+5ka25o90vg5AkohOtviZjfe5/KDN7EvHe2V8X0pQbSWkKYeqLnkUJ3yAErjnEbda3bV9BJgHeI9l4ZILXbcei3dvpDlDfYGZ4y0XgoSmSHDWkOxZ60gXWjXhdghx4aJLXP5HWaC0nBZJ5UjK3WCLRUo3R96b5Oy1hJT7wQ/toLHiwxmsPkCR/aTv33QutxJN5wOcupOZFScre5uoS4XgP2NOE97efBiox8le+6djn5uBwBsORFIezD82+CUK7Eev1FZnMvFRk+cKDPcWnPn8XBwximt5Xr4yJHgP4sSbZ+vmTUuoAuK+5imUf1KlVXUXVF0QJCmCzfx6d4M/fXc+n4voQeGAdA27sAwsjQXuhLHqEAktFF85zzYFkMA7VSMA006K4/Aj/zVb4xL+/zn3r0z7Anze0SSBqQ5KZCxfsiT3ISGSGAYlTmFpr9K5xksO5irnoAibqBExX0ioyWI/1RXeT8tp/Z8NIVibleV06y4zIX19q1zKWbZ4zb2MFAF7XKw5bpqmcMGtxsMZrOt3hfVK9iup5AH5WdMDhVJdrmexynfNlvv+ag9y2nDC79cgk752fc7sgtwyRZqQ8yTY1ByRzvdCGKqYey23rOzxG7hnJe8HIbCZFdchjtor2GZ2pkNC0Slz/ZTMyC6rGdemMpx97lNmjSgzvr/8z8n/yT9f+fDs4nMHwT/cCHBxOGstFC2xdcUhVsy8VHKqHSF1aj3Mpm2iGQzt9DtVIXvrH4evHmqjr5QxqOxbNwj71pQsjZ5DSbhjAAvarHqfb6dWHmMoPM2ZXuiHLBBpU48D2V0q45sUS8F+fxwAXpQxi1SEDsBrHaduxYqrLAKglm1LC9/g5tRPbl6zkFWTUbOhUaF/OP/dsAKIn4uMtLWvRHkVjYMQs9fnelowxjgObB7Rtievycupo2gUb3PftDUIChFjMl3m8F+9/csbj8iM8/8yjcFmnWOs5JaJdeWDaiIS2IAeik2kX+Fl6YowEQknh/evsvk11SVY1a1cb8v1jfRNiFxMTFqdyH7WstrvJ9/pyzXaPkSh/Y9OxP3sXz5lQ+NWPAT/7APAv76FIO/aZNRrrc81HqsxsaRlrS4uvz1SBhRK8e26Hl73n2MdycDgD4TIpDmcf3nAf8MXtzDwMA+vW0U4SgH/Ye+InojNsACMj6k0y2TPn0cS3Dpqnmqx7tLX9VFfKHKGUh+R7bV9Vt1QlLDsWuY/MYzAJM4ona9LmG4UWjJUgBCFJVXVIG/9YMguXH7FjKwFYC8+dA7otZpr02gBPnphcia0klkFKZGvsrxIzCzN9lKbHkyxQLuU4JSTqAdKJeF20FXpLi7+fqwA/+gTJxGMT1hLdLvBebWwfeyBjN2KQnpfsRihlrJkq70csmY5uxIzNonxWJnpWhosD3sdczrkX8Xp3CiRuqs/pRSzdaGt7KeFnTL1QdjetvX0QsLNM/U00y6R6oyNVklmAGbN9DV4bLd3UhiQnR+MfP8x/imHAn3vh6s/uzgWSvk3LK58L1wXkcDbBkRSHsw554bfhTfwxMxFquHakykChbbya1i+NtBv7st1S0XamQWbbEoNEffDUBAVY24FUA2gn4ho0c6M28RrU9L1q0LWrxACpZZB1HRP+FlKWiA7UTWz79c2cPP0v/q+VQ3vf/iMG39Gl90IrQ82XbYZQOTGhrV6bo+HlzKKE2epOlFGEGTML92zmfKOprv2uEgMLIdezUFp9rT1wLXuaJra9dqTUsa7DUpLOtqkPmRE42sNE0Q9Z6lgq2rV+0X6e34PTPNetSyRDD09Kh0zGY3cirmO6a5qbx8dpoLdpmYSwF5HUNAaW1WgVV7eYX7DA0p12GcWBXUOdmKwZHPWbWSrZ/VJDOh3ZkHnMzh1PJ6PQTGAhBYahzWwC+P5j7MMb3Ezn2mk3E8jhzIUjKQ5nJfLnvxXe33+SwWEQMiB3IxMrbmgz4MRSAiqmRhr0n5ebXf7hmszvkYDdDxmENWCU4+PPeVEr91yezvWpW7MANTFE6xSAwkgnUJABX9/CQB4HzIx4OXUho1mKKWlLvfYAvTz2NVYff7xPrY6m+tVPI8it7Xddx0oV1SEwfhTR0sGKxdRM8AAR2garPVkUjQEJwHc2iAPukOWjIAMafaBdtOvWjnhNukKUvJyljgsWVtv7bxKDtwenSEI3tBnot8ufqyNVkjYVmH51C7Mw4z2ed5DbdGq1lG8VqWXRAX46oPHwNM9tT5PnooLeTcvMsmlpS9enQuy+ZN8O1K0r6IojwJe2kYTl4DgCzezl3kgZUIzlNi1bhme8x+83L3O7B6aBV+069ucN4Lp1wrRqfnaPcY1askp8krGjs2UAtS25B+/wrcjX/+bxj+XgcJrgSIrDWYv8lW+C950/YgCZ6tIgbdMyfVLWt2VgmzicjvekPCGpdn3SXSxZW24hZZBSS/VuxD/+qi/Z0rIuFIDBQf1DiikDaUkClwpbJ0eyC/UBCVVbpukGGdf9jx8G/uZiywDtbvK4rzkqza/iVI8ZIW/Xn8lxMuD5iwzUR0p8LRahaz+UAN63da8lAga43mOVuqJ0pTzg4SbzKwGom5jukjw8MsHjr+tYOSsV8laXjiudljze53uPRuZRHNwuGLEspiQNy0XqLkYzWY0BCY1mjra06P67pcV7sSAuw9/cSPJzyawR0DiwzJdqXwBe/yfG+HnSDJkKtHPPTNn2NEkanzvL66ZERwXaKxk0Mb/btEwS9531zD6NZoc0q9STcxglhUdns3RYop5H7vEzu2OR9+GBaWYGx3v8+cX7Vl/jhbJNWe5G8PofBFIP+QXvXPuz4eBwmuBIisNZjfyqXyFR2bgM/MyD/IO8vm1BrJwApZEsSF2GtqkYMvGZPemFQLvBgBplJBvqVKqD8pp9BsmpjpEMNdaKfUm3i2OsBzMjGw38UcpteyOak8ku8MbvWObi73cy+Bxr+nI5YQfMtzbYnJxDMvulGq+eM1OV6c56/keVTFYRj7Weto+F+fJqLYpmAi4/YoP/dL5QNzJCoFmI0GOmp35UCedwjfevEgMv2UtisXuM96MXArNl7kdbzIsJiY7e7w1ta/PW7Np4n2sDSF6CnB01e5pGCHW9AO9fp2D6n3Vy7b43zfsYZNLhJCXF/XVmTi6ZtVEEg5E1qqj3qkNcqxrQ3b+OGTN16R29v4o4sPlQXs4MiXIV1VcFORCkZmrX7EtnmbTez5dI4tRkcF/D5gMtlC07VIk5vLCQIl/nSkAOZwYcSXE4+zHWZzAAKHA8etbK6B999fuYL5thmHqPLBcYBDoRA0NXOjMA/hF/aIp/2BsDabtti8g1NWFuu2DBWyf5Hq6RiKguZi2NwKjY9ZW7zJxOn8aLqZVd1OZ+a4vBvD4w8zUVZZZjC6K9H/C/uWRNVk2XPlosCzCbMlde/Zp6s1RjIJG2YyUcqW8GeeXYNC6jeP5BBtRlKWfMyGwbHbq3SdqRLz9i79HxB3uavC5TXa6jEvN+zlRYIjpU4z1vDuzalhKSisNVko0H1gG9BV7bXWM8ZjkhCcg9nnOYcY33bKZ+aKLH65CKkFbLLkeqJCnaidUTPUwvBH5kt62/La7IWs6JxAV4ocy1T3Z5Xh0pJQYiBG7L53hryzQ+AxFb37eOBC3MmF26bIaEXEXRmQcsyqygsT68g7+PfOO/epofGAeHUwcvz/MTUAmeG2i1Wmg2m1haWkKj0XjqNzicNfBwE58WL1xYW9Q6inaBf9QHIQ25Llhg58uuMQmgMqW4F5nFejkGugXzVZnuWjamOmQwUit2L19dXlGX28yTfUmQ06nDx4OWC4Yj5GSpZFqab2/gWp87K0Er5Vo9MJBXY2vRLh0lktVhimthvkwCMVvh/q4+9GRydfSwwszj9mP91fdgVK+juhcNjGpQVom5vjEZpBdlJIqaifn/Lubvc5D0afDeuAy8bO+THX+HojNZLpJwLIrmZ7pj/jJf2cLPwOaWlVMact/nytbxtXFZxKkBdSaTXR57ucDPgY4p6Mr1bvb5vZry7Vzk99uW7Breu4n3Xq/BlhbPux/SF+WH9vG+7m1aZnD3GM+7MSCxWiit9ruZ7FH0u7vJ63bZDD+bauT37Q3MBqm7biGVbKCQ2SCj0HcYmMHfpmXkk//m+J9RB4eTxMnEYpdJcTh3UIsZlP73BQzShZRZCQ0i2umiBm/bF1db32sA0SnIqWeOssUU6ILBW63kl0oM0nMVIGybg6r+oVcCoi25PszxNgcQPgVByT1pXRay4+e2rmLCINYYMIiWk9UZIzUjmy+bC60SlJkqLdcP1YAXHmAZAmAQ1I6S/Q0T5/r52qWgo6cp+/mTRwyo220OyUzl1uWk5mtqfFdOmC1QYjJ6Py6doUakLS6+ms1aLq7dcl1IbbryP+zkvZroUa+0Y9GyDmHG6zHWJ9FpDsxnZRgwc5F6zMbsXAQe9Y1YKBlTT5jMY+ln6xJ1J/du5DmNOsEqujIIU4mMZnpmKyQalx0xooMa77Ea4M2XR0qS8jnrFKwT7PFxEp39Dd6PrUvMSF23m91hiyVmU3IACEio/RwoiTX/UoX7bfZXZdBcy7LD6YAjKQ7nDjQY/Pz9T/6dZgzigE/J69sWtA/VWOYpi2FakDEA7hozEayWBeKAv1dPlWUx51LnW9UFtIpAXrSOmoRp9BULfg9GVjysLVbNwTXG0iVUjvnaUolZhn0Nkoq1uo5Uz1IfcG1+Djw4xsDVFaHocpGBctuSBOg+z2G5yOAMSEdSxA6kxoC+Gzr35ug1j7YUKzQLNGoypy62gLXj9kOx9U9N93H0flQQfOkMr/GjEzz31DN9ylq45iDXXU6snNTsAz/+CEnBUon36+pDIqJOeG13j/G4m5e5j+UidR0H6uZlMlpa/NZG3q8NbTHKk2uhTruA+etceZiEY8rj/utDloMme8DFszZssRLTZ0XnOq3rSNlL5v1MSVanvkwSrCMWvr3ePl8bl7nm5QJJXkcyaLWhTbyuDblv9Y7pRtyXjiLIAa/4HsDLHVlxeFbhSIrDGQvvbz/NDMaL9gPN/qn54xillo4fLU140raqU2Ynu/x3z2bg7q38w19IWRo4XCOxUbv4cmJBRb00lop8QgbEGEz+qzX7DIg6oVk1L6NBfxByHdo9FORcay5P9IWUhECNyO7aCjxvlgShH5hFu/qSRBm7br6zwUpPY32u4YX7rVSigfRrW6wkoxmgw1UGuUD0F/sadH8dJRNHExSFln4aA14HbWcOc55fJbaumcwDMv/J7c6bl/lZOFC3Scw/tO/YowxGoQMaR6EtxJPShTVqSb+hzbVecYRkMMy45l1j1pasnWGj+63J8EPNAK3vcL1f22KTjWPxfXn1Y9a99bcXs9zTKloZcF+DxPQiaUmfL/OzMlfhfR+EwL6qlRe1VLZpGXjpXu7jUG21RkuzbYUSr+9Ej59RJbIAj7l7jJ/fTcs8brMPXLC4sg5v7g+Bi+YcWXF4VuBIisMZCe/rtwNbxE/iwSngonl4kzf94Dvuh3ya1GBRTiyojHbrKF64n0+Y82X+ka7KE+jeBoNmkPH3mklZln17MPdZP2cg1Cfb2tDakLX80Q8sI5J6ZvuvVuvaTqvDAbW1+YF1PJ97N/I6VWObqDvV5ft6EYNeKZGWanAf6mmi0OPtr9sT/0Xz3G6pxHXsXGTgvuLIyXUDKbTzSWcaFVMjJ1pWCvDkoY21IYnajz9ybB3NyUDJTTFZe4K1ep8MA5rntYqiTwrMnK4bmZMuwGzNf38uu3zmy9y+mFpLeykB5urmgqzZrgvngUcn2TaceSx5XXOQn08VZWtrdDii1Ul86wzSkQiK50qnUTcy92A1CFSTw9FynQpvVQhejWmEpx1OnQLPK5e263UdeM2bHFFxeMbh/yBvft/73gfP8/Cud73rmNvcddddeNnLXobJyUmUy2Vccskl+MAHPrBqm9tvvx3XXXcdxsfHMT4+juuvvx5f//rXV21z0003wfO8Vf82bNjwgyzf4QyF9/XbGRy60sERZXyK3TW+ur326aCUUDy5Qdpch+ICejxsX7RSzUKJgaeSWHeHahRU46CD7AAGJ3WZXcmUBDb3RcW3YW7npn4cagpXEA+X9eI9MtFjENrYZmZi+yLw8t0cKLdzgeSknFiZZaZi32tWIxeCEPsMiuq5ofBF/KtzgVLPJi3Xh09uHVbsHmMX1K7xtX+f+lb2UcI1kDbbfmBdWiq0VQSZZbOeCvHRTHMEd2/lZOETxTAwoez6Dj8/Jbn3y0WOZ3hoituGGfDqx0lOtraoA9lfJ0EMMwb8uQoJx+i8o0tngZ94CPjJ7wO//E3gFbuYySiL7imXbFocMKM1X+bncEuLa9nfIIE7VCPRUA+ViZ5Ndx7v83M/1l9d9moXKM59cJrC2tkKz7Usxnx6vb+6hRkhnRj9/SngUA1e9p7VXV8ODqcYTzuTcs899+CjH/0orrzyyuNuV61W8fa3vx1XXnklqtUq7rrrLrz1rW9FtVrFW97yFgDAnXfeiTe84Q146UtfilKphFtuuQWvec1r8MADD2Dz5s0r+7rsssvwhS98YeXnIDjOHyOHsxeqDdEnu0LK4DVTsS6ZKGVXztOFnwN+Cvg+kIp3x0KZf5iPniYMMPjrQEPVh6zvMIAdqjGIeDlJQ31opZHRjMhAiEISAG2fJEFNwQAgEm1Ls8/9zFWs06JTsKnK2tI60QNe/gSv17J4fQQ5NTezFWY71IZ+pmrD7zYuc/uJHmfkfGc99RhbWgxiEz3zM+lFwJGCkYZSYlkVwLp1dHbN3iYDqGpZRluDAV6TgZxzlJk+ZVTfskJQjtK8aOfLMGCgfN7M6t8fqVIku67D7IhmkhTqujtX4bZHi3zXQpQBYwMgblv7ck8+A7qv0ZJTfcAylOKN37HvrzrE+9ALjeSMkj31MfnxR+ihou3bT4xZdmNdx4THD0+an4+2Lfcia88upEBB2phrQyvr1Ae874sl6wbTwYfFlJ/p2QrPrTokGdZBkkXJPJYSZpgunQU2LsNLf+/UlWQdHEbwtEhKu93GP/tn/wy33347br755uNue8011+Caa65Z+XnHjh34q7/6K3zpS19aISl//ud/vuo9t99+O/7Lf/kv+Lu/+zu88Y1vtMWGocuenA/wcpISLcP0Q/6hne7yj2mU2lPjBQsnNt9kLegf4dqQf4DVGj/1WObQcobqRS6asyfWZp/BvpDyD3gnAjYO7CkbWK0pUc3LctHEopnH42srcrsgVvpCzNShFhBCI6ShH3DYYJQCERhwAXvqP1I1zcveps2qaRdYxtjcYqZjqWjlpwUxSdu+yMCe+CQEk10GxrEey0pPjElwS+jmu1ww4e9MVQbq+dzXvgZJipa9akMZRyDXX9uQPTCnqz+nPu+3CocfljbxwzUSsEM1nt/Fc5b9+cpWnud0h+c12eU1e2SS5zQMrMOpErNksVTiPT0eitKZpG60m5d5jjNVktFFIWTfn2I55Kkw6i9zuCZuxUfpapaLNusnSo0w90LeC3VG1pLY+o4RlYJ8ThIhwerVU0xWiEuOm4DLAW/PB3jtwwyoHJbtZD07FkmMQyGSOi0aoC5HNVeHq7bGwzV462+SW3vTU18LB4cTwNMq97ztbW/D6173Olx//fUn/d5vfetbuPvuu/Hyl7/8mNt0u13EcYyJiYlVrz/yyCPYtGkTdu7ciZ//+Z/H448/ftxjDQYDtFqtVf8czmx4379N/BrkKXpU9zBftimyhdRaKfc0GWTvX2dBfRSaqTgaarDVLohrp/wx7kYcWLeyqJEn+vE+/5BrGQZgQNR2X/W6ULdVNWTTTEd9YN9rG24x4bpHSzI6WyjzTA+hGaTJ3mqR6joZvpd5PJ+dCxRPPjIJ3D/NYJhL5mJLi6WIunQgHZSyw2yFOpuvbTYPlp2Sqdq4zPNoF3icxRKfxB+eFD+VJl+LJOOlU5szjwHz/+xgKQHg+epTfimxMphmT5SgAKsHR7YLJHRbWtY988gEr+W3N9CILPPokzPZM/IyLXqi1Ofati3JpGPP7OSfCpuk+6YaM3i/9lFmSILMMkvLRbv/wxPM8I73mHUa/cwulMWYTzJUsxVuo+f++DiPoRmRVpG/74f83aEaz7U2tOnH6zprE/mJHt2TvVxasPsiYIZ1IF0yy+12LPL4OxZJ0DXDCfD/w3ifJaSlEkc2PPafTuwaODg8BU46k/KZz3wG3/zmN3HPPfec1Pu2bNmCmZkZJEmCm266CW9+85uPue273/1ubN68eRUJevGLX4w77rgDF198MQ4fPoybb74ZL33pS/HAAw9gcnJyzf28733vw3ve856TWqfD6YP3/dv4x3K2IoPTPHsaBPjHc6rLJ7xyDPTFs6RVtK6Lx8eoFzlY4x/MiljSr+vwD2k5Npv66hDoVvmH3YNZzG9b4rbaLjyKIGPKX70xlEQ1+wyoqofwcyCWDMuEzE9R87Rm38pWgGRVwKBcl8GEw0AG0kF8XSJrf44yPAk6UfeJMYphlTQoydGncZ2s/LwZEo7vrrfyTSWzAYBHqlx7QwLhbIVkpSSZo8QnAVGnVn3yL6Q2SG9jm5kc9Z357npmLqJMRMSeCYczrG5RLqZ8fbbC9aQ+yYk6ph6os8xVlPWM9xlANaD70jnUKfEccnD7zON5aEnrRCZeA8zGbF9c/dpET2bgxGzlXiixxKZZs2NNbV4uMgOln+3DVX6uByGvuYpuO+IV85x5Ek0dpdAqWuuxZuKGAUsvNTn3teYzyedvRUOiPLws2w5CE+UCMipC5iepCDeUbFRdsmJNyR7qCIj9da4/DuA99ilgrI/8Rb98YtfYwWENnBRJ2bt3L975znfi85//PEqlpxAbHoUvfelLaLfb+OpXv4p3v/vdeM5znoM3vOENT9rulltuwV/8xV/gzjvvXHWM1772tSvfX3HFFXjJS16CCy+8EJ/85CfxG7/xG2se88Ybb1z1u1arha1bt57Uuh2eRYz1+WSvT2nqsQHwD/JEz0oXJTH+OlDnH/GDdfGDaPAP7VTXZu/0Im730BSfLsf68nvJXCwXTAeT+BQijvUZdI4mKQDLRA9N8Unzojm+N0rliVrMuUY1G3Fg1usqsNW0PGDERs25opTBRm30l0r8fhgAnre67fX+dbwOpYRi2ktnmRE5XGNnUqvI1mPArlsh5XV4cIrBe7LL9SVSXliQTpJc/DmUVDw6KXb7Eqg8MODqxOdOwYSwQc6v7RrvT5iJGDSx4YSjBEF1FkoWR7t9LpuxMonOxhkVHl9xWBxhRbOiXVjfm+Z2Ov5A3Vknu0/t9Hsi2NLiv8zjsaLMnHD7IYP++Ii+J/H5WRwE4hwsnVbjfZK5UAiwDry8/Ihlx7QMtmlZTOMaJCLNlGW3UMSuOoRSkXvMdC2Un1zaOtrrppisvi5qzR/kXJN+Pg/UuXZfMjDqjDszQijDjGXJSgxv+X3AA9PIf+jYD6YODsfCSZGUe++9F0eOHMELXvCCldfSNMUXv/hF3HbbbRgMBscUs+7cuRMACcbhw4dx0003PYmk3HrrrXjve9+LL3zhCyckyL3iiivwyCOPHHObYrGIYrF4oqfncBrhffuPgGKJfxgXSwB8wJMgrYLPbgQU5OlZBabLBRPYLjLVjLGemVUtlGmqNZAyTDVmsN/bBGpige6B+6jEJnp9YB2D4O6xJz9B/8RDzFgMxCVUSwu1IY/Ricya3pc/8EHGDM8oRk3Ygnx150oimoxhYBoWTeMvlHh8LY3Ml/l1qUh7/41tE8BO9GwC8FjfMhF6DSd6wAsO8qsahO0eY3apH5q4MvZZ3inHFqxUM1IdkhQF8oStg+86ck1nKsxyXCBt08drXdZSX+wD961nkNfAu69Bgri5xftaTkwYG6X8Ny1mZ/UBMLue51hKjDCoBfzT0TEpwVQ8McbzX5D29IvnmBVJfLZRq4C4MeDaUn/14MFSImZyRb6u93Gyx7UervF1rUips2xjYNm4+pCdYeXYyKtmwxKfa1CTOM2QPDpBInX053otaHt2qwL4A2u5L6QktkpqVOy9sW3ic9XDiEOz9/efRP7KN538dXc4r3FSJOVVr3oV7rvvvlWv3XDDDbjkkkvwW7/1WyfcbZPnOQaD1anQ97///bj55pvxuc99Dtdee+1T7mMwGODBBx/Eddddd+In4HDmQv099tfl+4R1+ULCP8KZB4SS6chEy6FPbDNV/vGMJYikPv/Ab5R6/CHJa2ce/+j3Iv7xbUmZQ91jE1+G2YlGZbrD7w/XmHkZDa5jfSuLqKeGim51LtDo4EHAunxGoVkjL7cMA2B/5JEZGVKR72zFXE81i5N6PM9ZIQSjQVjJSilhYN01zuzGc+d4fsOAX7e0mIkAGGxLCc+9VeTatLtpvA9ctpfZgz1Nbj/eY1alEjN4jffo//HEGDAo8z06bbgxOHYpRKFGaXptH5zi3JxORKHo8w+SJKmD7oXzplfSe7Oxzde0+6o24PU8VLPOmvE+r/nRZm9HzyUCeJ+6EadUq+aoPuQMoE3LLKElvpQBc9MkHa5KaSoxt95yzM9rOaEYWAdHbmjzvh+qmUZJt1+ZBQVe4750fulwxsUSs2gzVcvGNAb8/zRfBgpNruH7U/x/sW3pxMtd6suj4wK0M2qhzHude7zeif/ke6tmegfq8L72MbrWuhKQwwnipEhKvV7H5Zdfvuq1arWKycnJlddvvPFG7N+/H3fccQcA4EMf+hC2bduGSy65BAB9U2699Va84x3vWNnHLbfcgt/+7d/Gpz/9aezYsQOHDh0CANRqNdRqDDC/+Zu/iZ/4iZ/Atm3bcOTIEdx8881otVp405scMz/b4X31Y8A6ecIf71npQE3UigOgLPX7jqSTIxG4lhP+kQZkMvCS2b4fqrEjSIPiUkkyMrCsylLRRJsd3+aYeDmDaimxDENzxDBr9xiDgpKj7Ys2oE7FsiteKTnXezRByb3VBlxHZxiC3NLnXkaZez+kaLUX2VA+L5fMgsx+CbPVnSZ7m+Ig61FcOV8Gtor2QMlZu/D/Z+9Pw2Rbs7MwcO29Y8eOecjI8cz3njvfW3OVqlRSFRoKMclg3GrbAgMGhAoMsgBjUNHQKtxlJIRAgEGiJYNtqRncrablB5tBSFCtKpVqnu48nDnPyTkz5ogde/KPd71n7cyTZ6rxnrqxniefczIyYg/f/uJb61vrfd+FQGyiuIRTfVW5FdxfksPgPL2N++T7A80uXGlqFkS1XJZGVq46rn/N7WyjBuffVPVezgdiMkgxXm/gnBMfz5oN+04OMJcKqcipHj5PBtQNFVMLEgRYX14x5de8FRVjsVFHmYTljkqEgKgc23P+7su4ji+vIPgLEs2Y5Ep1kwICwWkBY1fXLF+iaZJyhGOywzMzh44gmGIAzuCG2BP2P/ITAIh3qsjGVDRjWJ2JJJ6VC3crOH8lwpgxwGEJ8m7mZfa8M8cyLceVRUVwj60p5igByDsVcT7zCyJLI8nO/dl7nxdze0Pa11xxdmNjQ65evXrz9zRN5UMf+pBcunRJCoWCnD9/Xn7yJ39SPvjBD958z8/+7M/KbDaTH/iBHzh0rB//8R+XD3/4wyIisr6+Lj/4gz8ou7u7srS0JO95z3vkk5/8pJw9e/ZrfQtz+0YbU/arQ5Mb7ygosahYD5YZfAVVMivRUjDsIFDMhuBndYjjXGlih3exbRTLZmiCV43QPtsIDRzIcgixKjMP18FFmU35Is/YI75mP+rh4e6+Isc3wbvTLjZzIDTH4CJxLBsxKOYa9gnArMRd1GfYIddncOJuZrRdEdzXe9ZBsQ49U5c917VOwUEisthFBoe4ECcD9qFbMWwHe77Q2NCPuAURY/Hcj1GOfasKpzgo2g6+puW4Fb3/Ky0rOZw/wH3UQwvYXBEpzzCGDGYe2zNFYFLY9yoWcC2N8PnNOsboC2sIyBhoPbl7+Hr3KqY0W1Ds1CDAdVE3h2NLFhCBuwclE4ibKR4p0LIQRfQcMZ2U0MPxOLbUPxHB9+jRfWS49vQc15oIKtnmYKZ4GIK4N2sIwvsBBAHzFOnjjHM2dk0E0NFSJbMruxWUlA5KGP+1gerzDBHM1GYIGh0R57mfFbnalOx3/8H7myNze8OYk2XZHVbKby27n/bQc/vGmTP4CeAdyBQRMcfWnmB3SDzBWBd9AhAZmFAxldTkILaSCTvWiuDv26pxEXqGV4gU1Lgwwf8pZT9RR/2wUluPw1Mw05CJSY+LKDYhu/eU+lGLXThAXs+JAY7/8TPaOyi3+w0LcEyVCNfanIps1wCuvNKCg+WuvhZC3n6zpp2FVfKcMuzsVXO9rhTYMsZxv4xx/Y9fsvG8qR4ruM8bdTjGyLXuy47g/0fLJ3eyZ1dMyt3V0gnVfgdFBGLDIoJPZiTO9HDvHPMDFbV7csdaA+xU4EzZK+hMD9fMYO2xvcMicdeaON/a8LB8furg+eSzD4liQDIdK2rTOIKgh4wttgFYGyAQOShptiwXAAyU3VOORZaHKH0ye8KsBbMoR+fkf3hIO3inKP+0ppi79RDzqUKMkwZAmeD798QuslAn+xZUUyTuOCO2hcq2tBeWcP8TH8EQNWvKkQHWdyqYsytD/N6aSrbyF+59fsztgbb78cVf80zK3OZ23/aZEyqMlmJxq4VWr6djpBAY/X3sWGBSig2PwFS3l5pMfaS70klBBdQiY5Kw3r/ThH5IKYbT8hNriNctIQAYKm6Dmio0PxHxFNjq57IGR8s792PUDBGxhnoicGSxizEq6GAsj6Aa2wyRzbheR3kkiPF7vvQzCPB3RxCUrAxFChX7O8s1V5umXEo6byk2EG/+/bRYwa7MFFQikX2ld6838O9x1NijNlbqbXOKIKoSWYfe63UTz9urWKdeZtA26kbjrs2QGdip4hgMlFjiOzHA/eyVMV5uhsxbPkhh9mSnevgaKcp36JmJBaxBbPMz0mwYs2LFxBpRlmLDcGQOrmWm5ZlGiO9AKzQwNrFbx7GT+gECz36Ae9+qanAQI8Darah6sY5vRctSvRJo6w8f3KrCe7sA5eVFXOtbN29VZ35qB/MnSPDcCaimyN9Awb/VoWYwxyK9kjhbPyfSnkp2+s/dfm7M7Q1n8yBlbt98q83AfOkrrbGQQbI+EyzK5cjk6DsTBBFc2N3MhM+aUwQUiSPiOkZjJb6EypiBHrsleH/mWEDSVqG0rerNHZ50Jvjs8ghZGD+9FUjrZiKRY714+oF1q/1q6K4MCFg+uqbBQ+yKnN7HNT50YOWn2IVj2C8j8Lve0LYCnpVCHtUgjpTTE0NjYmR67RzLqZ6X2aa37FljPBGjTIvAKVciaJ48vY0x+oRS/r3MQMVHQaoicK7dEt63MkRwQU0YPrvEwflKIbIkO4q/qUbWGPHkAAGHCJ7V+X2Af8c+nu/qEA60H+DfZ7bhoNmI0UuPv8alEc75pRWwoXYqmEfsBcVnVA8tk8KWCLsVHHdpjKCRZbRMTMl1WjCG2cTHnGWvINK+l0c4HgPQo3axbfOOwNmzXQQSV1qWhRJBQOulkM1nwL5ZszLUUXttQaX8VYV2aWxZs3poAGd+55ZHuG/OI3aTJqbMSUw5d9g2/ZcgEec3/ieR7apkP/Cf3nodc3vD2TxImds335i9WBsokFOzCJ2J6U30AqPpUgOFOiKUVvdT6/nDv3U1lZ4JHF2m9Xg2zFsZYldM1dNhEQs4nRZBi+UIu/rW1JzLUcs7DjryryZAycSE3JixuKap0bGWL57ctYxL5IEFk2gqf+wj2CJ2Z1KwDAPt6E555pki66BonXxLms1aO5IJOerQHtmH+itxRmsDkfWmSDGyfjRv30Cw8NoCni3ZL6ljYFteVyWy3T6zAMyUhAWR5giOeOKbUu1+CYEumT3s00PWS69k1O3fOo1y0Kk+nH9b9WJ2qiLPLuNaD8qmpbM8gtJtpKXCBc1QlGKbh/UQ8zXRct3CBCWUzMF72bGYJc1Ig5vUscyDnyLgChSrslfBZ6qz24NUH9vDPbkZAhZmG681TQOHOis9ZVqx1USoweZHz4m8ZeswNuWlRXw/OxMLkGYKvI5cA55faeKa3cQo/5xPPQ38WCZLHZELbdxnTbMszNbVgRFyfv0XJfveP3z8vc7tDWPzIGVu33xLHSy8lIbnLo9KqU4mUnUNVHujjjo3d4ulCItvT3eRZO0kLpzK4hgOmxRYlnwY8BCIO/aR3t+rmPbKqx0snFXV/xgUkXn4epuTWTPBsaqQEpjLe9is4bV3Xcdrw6Kpsr62YKJnj+5j579Txa79atNk9SnYRrwFMRatqY1R7Fq5ojG99TrHvshnTgJbcbaHMSXFl6BPEUv5H2h55WIbn+c1ZAJnOQiQASE1u6rAVhEDP7sxpP87YwQP1xq4p50K7i/TkgubAXqaTQs9nCt1MMeqERwoS0jX6zZfLrUx/8Y+jleb4TwcZ2JEqGFzUDJZ+Ylmu1aGyIgkmu1j5icfvFIEjpTlzEF2LP8eJ7PyUfk2gS+zhL3AuodT4+ZG3boqk6LN7FnimC5PZ4KgZL2B7xQzIJ2JZu96pv9DZd+rTWOz8VmTIbZfVvqz6httV0TG2n9rcYxnwvIVKfvcPPQDcdb/NgLj3cocs/IGtXmQMrfXhwWJAS2ZdvdC66VTiuEE2CyNuIXazNRNgwQOrjpT2qPgddJzb6qVRqZAuqs71JEyZZ5bxu6SzjdPz2Qjt/tlq3ylxkW/M4HzfHYZ10FsgyNwAOsNOK4TuvNeHgEXcKNuoM3H9gCO3FVFUwYpTnYYEEqjMNqrHZO8j1xgPo52n2amK1PHv1HDdZGlU59BDTdIRF5rA2NxpakBV66cRXiLp5kAiqexbEKA78rImu3RznXtfmbKLiK2QwTPN9DMx07V5Ph9DYTYOoHBxxdXDX/TDOFcRz7mT31mYNFiap9vK9V2o45jE6w80M9EylCaHCkB5ntGFVJkn/Llpn6ADEUvQDavV8IcjzyUq+paqhwrTTtUUbXTfQRtFIWj0q2vFOwTA8yrTDMrbEcw9PH7yLdgL3UwPgQds8x3qY1gY7di2JT1BsagmCCI7JYwXl9YxbMjxupqE8+UbSjKqgVUVcbSVQUtn0IQ53zu5yV7xw/f77dobg+4zYOUuX3z7VQfuz46o8QREf23IJY9KKTWTbcfYEcaeSIpyz6CRZWsmqGPRZcBx8Q3qidLA+w+XIlQFmBTu16A4CZQnRQ3E3nnDWQivhaS6vdiXiriuEZrdQT3wR4vTLe/tgBhtqMlqBODw5gYqsF2JshMUKDrqPUDOMKrTZPuf2Qf4/4bZ+F03r5h729PELiMivj3WgPZJlKUz/YUyFkTWZyYSN5OFY4pcUWKOdr2yDdp/SjB79xhE1cxCA4HKXkhvNUhgiOOV+JaCdBPRb79Gpzoi4tWgmDH37M9fLan1OCdqomnne2ivHahjWNT9ZYYDHYfjlzMTTKTiDdhr6A7qd1mgs9cbmEerrCcVcA5z3VNRJAlFs6VfsnGScQCtNbEWiIQn9MZY45Tsj91RBKlE58/wBzg94VaPKGn7LvI8F2+bgxSxQs9u2KBH0tqLHvNPASfzSlKfHsVC0aIHeOY71SQKXzzFt63NBapRuJ86R+KNKdzfZU3kM2DlLl9862jdf3QM/GuIBKZ+SKiGRaCIZm+XhwjiAk9kbqmmEuxSYjPPJHVkUqQe8bwGPrYyddVE+VyC868WzJHRYaFIyKVHHsl8m5lMtzJjvZG2ardG7slb/myBLELmQAQyyZ0Y18zLmOMC42KvLSxj+O8uoD7/vZrAFQ6GXbktF89b0DXZmgMmmsNjNPzy4eDlEGAYOhs15gckQtnRFbORCnS5RjPY3VoJYexbxmiaQHH43U3p4aPGPu5tgOxAaj5jEsZdvZVFYLb0OxJR5tSftt13Gtngn5ApUiDEMfE/4oJApjYFVmE8NjN+3tasxbVmomuNUIEPqR/exnONSpaRm9YRLnD1yDpWhOBnZsdVmddmOA6vrCGceTvr3ZsLEWsfNUZWsdu0q4rGZ7DlZbpxexRLyYCK+dMD3P+Rl0kzmVwqpE9i3NdC9j5LNhbqDnF95XdqSMP9xPEuDcvtc9fr6tw4gzBz+WWbRjaEwteZx6yV2/dxNyphzjHsIjrfHLXQL+FFGWg7apkbze9rbl9a9o8SJnbN9+cDI5ovYFFnLsqlnVSTTk3lYpZSOEEijGcHbMwYx/Ooj7DAhgrjmVYtKxBQwOUXsn0U9jUkDtKLqqxZyqfC5PDqqmxa03xNmtYqE/2sahv1OHQt6u45nfeUACq7ki/tGpqtY/sW5PC4yzfVZj3VInQVI/1/kYIsCNp2swMzDycg2WIsop3ZYJyAJVRR+ponEzkxSUEe2SY0BmvDTGu5fhWsGw9FHnHDfy/r2JlG3XsgosJxvJ6A07nxEDEFwtImIlYmOCzM2UrsdcOnZ2IdcfulvBMP3MC49eaWnbieh33W9Tg9lQf17tfRiDHVgKZiHzvJdxvPcQYnN9HANYPkGUguLQRYpw+eco6Og+KmG+7FdwnAakT3zpiO7kMEJvv1WZwumEBJTA2EaT8fW0m8rYNfJ6Yo5UhApSNOua3l1opauwrKFrZSwTZeqmCxTWb1QswP7/jKgIF3hefg5sZBmxHA5NTfYx3oNmNlo7rKx37jAjmx8k+sj436rj27Sqye80QQQhl/sc+gsPYFammIi938J5eCWNyuYVAe22I159fNg2WbsnYTamIeNk8s/IGsHmQMrdvvlGsrRop+yKwnXw1MmBfKbYW974umJEufOyYXIqtj0l7ilJI7GLBq4dYaEMNQghGDWKk7mMHv5di7DyZzq7NjK1CK6SWGelM4BDWGwAdblfhNBIH53l22ZhFF9tWz3czvP9qE5kJ0jjzlrgm/uUpSHNxjHOuDnGcfIDDEse0oJTqKRwN+xNlDnAUA9UFeWYbDuRqE8HBua7piDiijlOd9HYDY3K6Z9kHlpJ2qrg3Mj8Wx9qHaYZz7aqq6crIWFiP7x3Gw3ziNAKhp3ZulWjvlVRfZKoYkSoc4qU2MgfUHalEOB9xD6TX5rViaGygeKGNvxNDsVMRef8VBEJUin3owOjUVCB+bA/BQyO00mDqWAuGYmL06CDB80q0PPfCEnAuT+0gU3OjBsdcSDF2V5sKXp7hfJ9fw1wpxTjmwgTPJHGBYVnQEl45wnE7E/ztpY71zukHGF+2W8gE8/egBMzLi4v4jjDIDBLMY6rUxo5IWMSYMyAOYtznrpZnbtStvPayiLzrBq7vWhPnf2bbMl/PLWMesennzMP1sRv5IMAzenwXAfNuBWPT0GziNMFcmBTEufYzc32Vb1GbBylz++Yb275TytvLjDUxKVjdvKggUifDAsb6PzvbihgddFqAc6G0/kB3fd2c83Ay6ICwp0/iwoFT/MoRy0wchyPIBH10hgpYpFMr5Ha6ri6uqYN78xWXIErbZA+if/+QyA+8cCsoN9Bdf6yYi4pmMY6WCmiTAu6ZaroUf6MS7UZsdOvdCpwsAchuBofFICpW57RXgfMgaPKJXYxbSQOJYdEclK/OeEX1SGZlkT3HejFFyniJNSNSCIx+uzAxnZkbdRyHu/X9MgLFbglZNydDN2oyc6hHQrpxpE4v8kQqitFg/x0Kij2/LPL8Ep576iBIWByjbUA5EnlhGZmazRru+73XcH5eE9WMRXAPxHwwWCprgO04yHzRznaRTfv8Ghx+L8Bce20BY+tmwMYsKJZkUrDWDeXYsB4j33ovNac4/3oDgNmJj7HZrgL/8R3XoPHiK0iXDt8bG3C8NsN1tBWnc6mF79tWVRsqegjguiVcc+yKvG0Tv7P8mAm+W36C19lTaWUIleNKhPvplQxQW51hfmSCQCl2Rd53Fb8/dIDnOfYR0HET8tqClgW7N7FWzqW/KzLyJXvmv7rjcjO3B8vmQcrcvvnmq+NdGxpN009EUl2EE9VdiF1L1XupsTfqM8uwLI2xoI58E3Zjp+ODEs4TqrNisLIjJpDG7AnT2Z6yNo6z1SGc6dUmnDad3VTZFVSt3a3A0S8q04G6EOVIRHhPDnabIiKfOomsyvdcwu+8Vvav8VKjeh41lka87Phuw2sD6Jhwh+8pziB2lTXj47r66oRODOAAWWrbrsKp5LM3LCn4urN90zbS+DfqeB6RgqCXxgaYrM6spBK1tE1BAdfHnjD5AK81RRD7qh73LZuSyYdFyrgE5+P/2OjGyyM8azaRZMC4WTMQ8g3N8jy9Y461EZqGx7iIjNGoaGJrC4ojubBg4monBwhQGBSLWCPMU32M49EsnAjE9x46MA2brSqwIqkDB04cDksl7FbtZMh2sWQUeRYcrA4N6MoANBOMO7NGzRBg7NADlqU2s0xQ6iA4Zz+kaoS/v7qAv728iPlAptWZnl1XNzDaOYHu3RICo1N9vD9xca4nd/AcFyYIgp7aEfn0SXxG43c5qQFpP0BJ7vy+tRDYrlrpjCDypuJvGqE4r/09kUI6LwF9i9g8SJnbN99WhrYbr86ULqo76uoMi1OvZGwJ0o5ZwohckVlBZKwlHz+1Zm2RvscRo4Imjtb2MzjJup5jos4l1VLI6hBOanqHr8nVJq47dvH+WAGSLN2sDm0XTJxHJhbMOGJYlb0y8CulGNd4pYVdtwiuJ9+pNiygLn8Uy5I6hqNxBE6MXXgLqbFCiPu5UbfuysTvjFgumYksjgBaTB1kHvbLcNInBgosVs2PpZHIWhn3luQwMQwMWlO871TfMB5+ip1/WBDZUbBlWDDsz3ZVO/lGVhbS/j+ZfPjwfa8NUbapzZCNWB6hnHClift6egfB5qCI8WFAsFcxTR12zx75htXgeDL4Sx2jEp/pwSl7Ge4vn8HqTOz/kwLG7FzXMnLrDcV8eCKbgUng5xlaBBvz3vfLCIoqGmBmYn+rES80xnmrM3x+aYy/rTeMTs/vCPFUDOKZ0SQTKXMM+DrQION6HedphBjjFxeRubnWtODO0znuZdaA8/e8inG72rR+P4MiMkyVCCDuTWUePbZnc+ZaEwFKIzRF6sf2LHgb+wbOnnlgiWkJyRn+dclqf/n23925PRA2D1Lm9s23acF2RiJwgMSZsC5N8CedBdk3fE8xQaDCzAudcuYcFvNiup8lJK1p33SGE2XKxK4FOwRQHjUulMMiHPNOxXalvcDKB2/dxPv7gaXumUlxM5FIWQu1Ga7rdA/H9NPjzytimJajVkhVgEuZOcy4JC4wDdSFmXmmxtucmnOMXFOAfeeGyK6mKlh+GxWxCy4qBbU9wXhSv2aijCk+08g19hb751xYwPsp+35QRkBysS1yqmcMkGqE6zpORl/NYbByqmCy8YmDQOWpHZQFSF1vTzDmxNMQ3+Mqi2VdNUMiD6DscmxZo8TBcS62ce+n+5iTLDMmrmXOiEvJxATLznURKHSUgs3synPLJkZ4lEJeTHGegmaoZh4yTWEB41eNcM/NKdpKXGsAUzMIMBfPdhFEbevzfHoH87IquC9iR4Zly+ZtV5GRPChZ52xmlxjczjxsLMoRgsZrDVw75yMVek/1Rf7As5YJE8FrV5sABx96kNmt+jssH15uAZyczwyOfZzDEev2fLPU5+L+lmbiXPh7Ihs1yb7zj912Ds3t9W3zIGVu33yjoill7N0iHC1331SzHBVtsWOtPixow79MJBI4vUzgSBLXNCqojUJaLqnBgQpbcQdZRGkp+33/uYiIONd+EbvxF5fg5KijcaaX68/iIEAaCBbTTQ1eNuoiv/YwMA6P7AP/0A/QyZmZIN57dWZ4DJE7a2mIHB+giGDRZvo7z8Kh+qsIslLDogna9QI4UF6PiAl/ndKM0Ng3inE/QIDGzMvi2M7VLVmaPnXgPAspgLUMMM/v43PlGJmCzlj1MSoiQz32tIAg5ultPOcj1O+bwUl+PAjmZIArol2fZ3CoBFlzHIqquUJ14VDLQ4tjww5RW4WZJ7Jwnti5VZCtpjo021WTi18dWrbjKHh3qLoyVFo9ahR5O9B5tjaw4KZVsfmdlkV2XBPqO9kXCTQ7lGk241wXx7nSBJiVlF9mhep93Pe1hgGbqQBNAcOwILKo4PaJj+D7rZsi//RNNkYU/fu+C3h+ZG/l7UzvsK7N2L+V2n9QxjzI9BmymeR6w8aKLQs2qxjLs10TfuxquS8TET8VZ/jXRWqzWzNwc3vd2zxImds33bLFvyjO4O/CsRVS6+GxUzWtCBHbrSVKi+RCWorw2qCI9DYzHwQWTgumSDvyjTGUpzQTgDstWC8cEXPmoaa8N+pwmi93rAwQe1ZeutQ2pdXWVKTkA2PyxC4W7Ef3sLsPEnPkIkZNfdM27pOg2/u1SQEBU2FigVjmGHOD2RDqYUSusaSuNuHASzGa6K0Mca2XWnAGtZlRjberKEcNAtPoYBDAAPJcF+euh9AoIZU01edLPQ0RiIARFLlVVfGxCFiFYRElp6URng2Pc9y9V6LDf6fs/WYNc4OlDUrj83m3JwbaPpqlInaHomTvvXZ7yvi0AGf6+TX8ztKVn1p/IWaZVkbH9+HJC/CVY5E0RBaM7BeWpbxUpFvFa1RjTlyIujHILce4r8RFRmZlhHv99Ekr4TC76GY2L+uhyGO7Ik/s4Vj/+2MIfr7vgskC0N53VeRjZ7SMV8DxTwzw/Vpv4Pej2bB81igfoJC+PC1gHoggqOmWEMwGsTVdDAvIbI18XPfCBM96pJsNCiASoC4IbueByoNl8yBlbq8Lyx76URERcZ79OW2sl2Bxo5iZI9bzZKjlEeqU7FWszwx3UhPfOsq6mQFuS6qGGROAqunrQDMvKtjm/PL/G4vzSdXvKEeGKXEEQU7miEw8A+rS6b3/CgKOt21g0dytAKTY1cV/ZWSpdKpszjykqrl430uAMinc6ix3K6YSm39tp4pFvjKz4yeulWB2K7i/sW9g2fUGgofYRYDwUC4dvzxCueOzJ6xERezCbgXBx+LYQMR5ETs+t7zx2MOigWYdMZG9z5wwPZW3bd7q3P0EGa3M0W7JrgE1g9jwDAfKihHBvRM7VInMWU4KuV5FSm1mibCt5RoyoFLHFFI5ZxfHyHg8t4yAYVIwzESQmDDbcd2GX+1gTJ/cQZbC0Qzi0hjX/WsP43NP7aDEkTjWq4fZEhE8682ais1p0LU4wfk/ewLPenWIZ0XacXVm37d3Xz8c7P3RL9j/Kxr40U73RL7rspU6PR0nV3IqtXexS21givh8zh+YRhC7YIscVlGeFvB60b2ZAUV38ynGohIB9MvAdxnlRaf/EyKvLcyF4B4Qmwcpc3tdWfamP3Xz/86zP6cqmoojKOhulA5kpFokxcTE0ZjqpxAcS0aRh90mwZ4rI7wv9OD4miFAgV6KAGaiZYHdCs5LwORYA5VUQa8F1RypzXCus138nTX35hQ9S55bNvn90EOZo6q7fjaFe2zv1gFh75vj2DzH7eYdMWdIo6Mi5oXAUDaJa2u2qjk1xtS0gHPvVjC+LInkzU9wn0y/U0+mPkOZ5qjWiYiW51Jz0JMCSjyLY4ybnwKDsDzCM92r2LMMC8B0fOwMnNDa0JRbo5wznGrGwhGRSM+TD2BJL3cyw73QhkXLQsQatJLWTZzRlRaujbgeUrcnPq7rVB//tqZW9klcZYulOGavZGWeDZ13l1soK/qJyMfOWlBeUsBxrJmckQ/HTQqvrwFKKTZMDqnzN+qKX5nhuvfLKtCWoOw2UlbcLME9rg1QmiR2J6+YfFA2IHsmmjXT7xqVd1eHFshHrtGa72RhAd8R4sxSPe+JAb43jhjIOlDcDynqz2wjWCvF+P5u1ZC1C7Tkw8wgZfnbqhezOhSn95PAqzzxZ+5ygXP7Zto8SJnb69ayN/0pcZ77WXO6e2U4AtJXSzEWHToZYiyYribYj0qXC5qZqc+03q8B0MjHAsiAhH1OnMwyMUFsZSA20gsLIq5SV9lp9mzP+p6QmfNdl/Hz0XM4/wtLuL6Tfcso1GbW9G+rZgyLPd0Znz84vjRwnB2V7w9iBECvdmwMqUGzMLHshRPgc4k6MdJTE8V5fOYEevI8vW1BxlEsxcMHcLoEoF6vA/zJZ0TBM+rZZI51OxbB+5bGCFqeW0YA2J7gtet1lK0YqL7SQVYliI1xMlbq+aRgWQtfwbf5Xj/HjdlWFWWVhw/w0wiRjbjewBx5/xW895feIvLcEq6jH+C957rIbjRC63PDwJW2UwUQ+WrTQKJfWAMO5HQfY0LszLCIktH3XlQ2m87Ld68jE7JfxnuJhZn4+OExBoHK3rsIyFkaYafqc11VKt5UkHYZY7o8wljHrkhBny3HMnGsazEDZC+1zOZEsValWMTVDQVbINzJtrWskymjLNH5Ebvas0fv/2rTRPryDLr2BK+tN1BOXRyrJEFs3cupkbNRs7JZC9oyzvrfFhn7kj32I3e+zrl9U2wepMztdW0UZnJe/R/wgqdMjaKm2vdVUyNxsFg3Q1M7ZQrfcwycGSo+pVeyz6WO9QGqKcDUT9AtOVQa6IFSoNsTwxYkrtFM14ZwaL/+EOTWz/Ru3Yme7Yl8/AzO91AXr3GH3A/gIB/dN90Spq+nhbsDaWkMBo6WEvYqAE3eFDRzDVBMTZStmgmxrTc0Ve+ac9+sAQh7tYnP9AP87SggtKxp9q0ansNbthCw0WE7YiySs93D11pIscPfrMERnurDyQaxgXspg//iosjn1gzvkokp27YnoOseZczcnFiOyf5v1iCudrkFSmwxsVIatUfywcZ/8WWcZ2mE+3hpUbMPOac+00CDuiUieD8zL68tYP680lGV2KoFxYnieBpTBF3sx5Q5CABZxmRWgTTpQdHYSBfbeM/aAAHJlaZhva40LTBkUN0IlaY9QYAz8k1okIwhGsenHyDIFTGROLKciKnaL2Mei1jQPixiPp7sW2aI4+OIgaCDRKSu31u2nji/j7HvBSgRLY2Q4RkWcZ+TAgDqTd0EkHI90s3NzDNGH2X2NfvoXP0Zyc78uePny9y+aTYPUub2QFj2KHY5TvgR07XoBVjcKbo2VH0TCnPtVG3HfqanDCDX6u6FHCbFc7C4UzbcS7EwtiYIGvYqWMAPyqYAy5Q6NV5aU3z2SyuqseIfDi4mitl4/xWkqJdHRgPdq2Bxn/hg/7RCnI8L6b9+BLvvJ3cPBz5HjaJq+fcMiwBKTjQoK8dwOuzQO/bxGnVYajO8v61y6p0JnI2IlVEYuBy9lKHSQtcb1svm5Q6c5soQOIvENSGyURHHbITGyNpQvM6TSpl1BeNWijE2sYuAgpTUTMHA7DA81dLPc8u4XyqV0qYFaL4wg3bzGqbYuZ/qHwZPHwV9steU6DhwLFiuEMG9ZA6CEVKY2Syvoho2F9sYv0qEv7G8QzDxM1oyW2+YNH9njM95qWmMXGybCmwjxDhvVzEWoyKwHuXYMDjPL+Hen1vGd6ASwXEz+0baMvV7uiVcG4P8iI7et7YSsYvvUpIDa0cuAqKrLQRLV5o433oD93v+wDqapw6ujcEpdWqcDM9jt4KA6EwP8/JaA8/AS3Hccoz7Jq4qdnEPnTGug2WoVQ3C6jN8BxtTfA/0/c7F/1kk8iT77X/o9t+xuX1DbR6kzO3Bsut1LCqTggE/uSB6mfUA8VOk+ok54GcoerVbEZnojo86GgsTSy/vVeAkPn7GBONEUBI41zWqKT9fTER+52sIJEbF47sdP7WDv7+wZCqhlHmnKit78lRnRqUkIPeVDv7PjsXE3+xW8Psp3TkedcifOG0Zn9TBDpXZlLo6iciFk6BmSKRAXj+BE3Qzxd8EyCwVNM1PRgV1Rcox7u9sF7t+ZhSKiQl+FZVB0ppaMLVbwe8DxVoclMGiYUq/WzLFUWaeRExd9UwPx9rXe7ratD4y15p4NmTMXG+gn1IztGebOggMGYzdLgNzO0tcyzBErsikrHLxdQOzsq1ANUJGwEut4/KkYLgcCgkuaJC6UwXDyslwn2/fwDi8toD31WeYl5faKMWNfcz9nSr+JeX+dB9jcGJoDCuCkYdFa6GQauZxWLSu45FrInKcX2sDu39mw1zFIVF8sBZpc8ypse68DGOxVUXQOSXDzsM8ZTmPWDJiiZ7awTVlgnFghtHNkI0aKW5pQbV79nTeUXK/ylJmbMJ1fcUGjX0rW9Vm4nzqfxQRkezdP3R/82BuX3ObBylze7DMEdNHIaDOS0XqqSpOJhqUiHX+ZRBCcbRrDXPCnbFSOctwvqtDLMZrQ6MEt6YoWexUFDToGH6Fi/qf+DxYDlQSvZ3tKHV37ION0plY6eT8AZQ3qRsRFiwAOTHAIvroPn7/+BkEBAclBBG/7YqdgztiqsRuVzFWZKXQgYQeUuLlMhxk6uTE8yb429WmgWbZAZlddEdKYe2McV+hhzIWAx5H4GS39G/1mSmQBgnGshGKfOoUxv5MDw6G+hoER7J7cWsTDn+jhjGuKjPptQWMX3NqtPCndhBoDjw4pIstjHWQwOHXZ4cDVJag/PRWDY/nl+GQGfgexeHcqONvpLP3A4wNwc6dMc7rpXjGdO7vvwJqrwicOMGqtRkCiu2qBbMc90pk3YvZSHKjjjFl0ENadV3BrO0pxn+9IfLWTdMA2vhb1gKiNrOGm8SguJk1a/RTvNe/+1cUB89wne+4geOSNt2aWp8m9lZyMwS5I6VlD/T7kDkGgq1qSexza5gbxKu8ZRPP+pUOSlddwecXJpjDZK2RIl8PLWOaOiZ7wHnQmRj7rByJ8x/+FxERyb77j9zjjc/ta23zIGVuD5bVQxFfU86pY/LbIqrgKpCLZ1MzVyzjQed9cmCgQxErFRDgSedyuoefo+qYF9siX14R+cDFW7EiDFAyxxZ4NlwTsZKEk2GhFIEzPX8g8q7rVusXgYMvx3iNtNytKrAeDx8gEFhvIHChEicb3PUDxSUonVYErKXIw7hs1uBsV4f4LJlFHzuL8XpyB+dfb+B1am2w8y6Btxs1OKF+gLE7McD4hlrKYZnt1QVkLh4+QEBCSfOPnTUBsWkBjnhtiM9dbqEkMS0Ypbk9Odw5uR/gWbzSwfiRqcXrGagT2qwjgzIt4NzLIzi1L68gQDm/j/c1Q5HfPI3XntnGud51/XDgQmNJgV2vqwo0rkaWearNTOeHTDPiNS4oPfbpHeBatmrIhCwrBifTLMpYMwv7ZWSpHtnH9b11E9ebOngO376OIK0e4tjrDQREF9s4//uuHAYPE4g9UZYOA4dhUWRf9YHIbDsOtE1cz2dP4N4e6t46RpUIx73Yxtg/sm/3vzAx3NhG3YILR/DdOTmw7FekJb7YEynMTLSPQHQRBKMvKz6IirepI9JPresz7/XRPZHPnbA+WpxjT+1oJ/YSzjcoijzUFefXflHETyX7bf/lreMwt6+rzYOUuT0w5kw/AknvUozFhWUe7oSoJludGWumHyCDsFtRuezIdlUUDyuz1u5aWYggSOph5I3sj7sZd7tuZhoejRALunZuvSm9T/YCG9rtVrCre+cN0DM9ZYy8vIiFl+c/mrXpjLHzp/ood/Sdse62M5xzSRkQ/QALM+3RPVPpfW0BgQp394uaMeHuV0S7EKcItJpTZIn6gch3XkXAcq0JB/zYno3t2zcMrHqphZ1+Jlqm0GCLmYFShECK2IUgPhwYEti5X8a5lrRk4mkJ7nQPr7/csXsQwfPtB3BokQul4GoE/ManTinIcg1jUw/tnNsaJBZVE2WrppkGLSuIGM4jH6Sw+SU7c3fGCIyuNK253rmulWFeWoRjdzKR5TGOt6M02v2yZkBKmEdneghyW1OUDJ9dQTDrJ/gcMyTdkkh7Ko7/YWXS6PPIl90cUUaUbxR7jqUIvmM36phfnzmBczdCzN1eSeTx3VsD97dsmrLviQHucatm31MqLu9ULSj2tETFQPWtmwiCVkY4Frsuf/ok3vP4Ho5NFlIxwRhQd6U1RQB0pYU5F2rgeFBG8Jany1cizI9nl61ZZA9ics6zP3dIJmFuX3+bBylzeyDM2fhbIkXVsCjfI9NFxDIMp/pYBAmSG/kGVGXQE7mW1qbdrttw3piazu82mSmhVLunKW3qbrDfj5vBQfdKxrJo6oJKtc4ndhF4EBNCIOFW9TB1WQSvX2rhdUrU81jfddmuZaOGTMIjWj660oKjaYSmfntQUixCDAdMKvZMsQN0MG/XTBNBlHk73UP/FgKOCSzljv7xPeA2Jj6cEJkxQQxHdrKPMXhxCdmSfoCSGHE5ZNC8fcMaIYrAMT+lbJWPn0X2ho6IAd/FNpzfe68hMDsoYZwjFwHB55Ue/L6rIrV9091YGukYFJCpYCDbK5nM/LSAbN3i2HRQ9ktQAybLRXQ8znURHNVDHOtyC0EfRQerM5FJRcscCsZliWrsg5acOdZigfiOzhifWRpjrrEn0kNdm6uk6OefW6L3UIlwDwQBf3kF40GBtbGPMSSV/OEDkc+cxJjms11fXMXzLaQIGMnq4Xxd0blQUXDuqGhy+pfaNp6DosiusqC4OSHr6GQfnzsoYW71A2P+OYLsHDcwmdhcz+v53Kjj/8QGfd8FzK+PnTFZAj8B0zD0bjIP5/b1tXmQMrcHwyqRKU9SJOpOtluxXTNtKZfqbk9Mun63YrtTajrkMyjHpfrzRn0OCp8xRT4qYpEXMdq0nwCL8P4rWED/tyewwF5vmMbHjTr6q1CkiziHUoyAg/eeOiL/6lH8PLIPRz1VvE7sYjcugkX+6W1rbX+6h4wJLXER2Fxp4XprMyz2LFOMlHK9q9kSNowLFCtyYoD3T32RRIO+q02c69E9OLDO2MZVBPd4rov7qc5w/8Mi3vfIPgKJrZqp1xKwWVftkhMDfHZxjACIar2e4Hy9EtgvYx/jslfGjnxBKeSkyu6XLONxuWVKt52JyB/6sinVcrydTKSQaS+jHjIh1Uj1dxTvQMbZsIgArzXFcyXuoVdCxihyEbDQKVLI7cldzPfUEZmJNTWMHQjf1UI0H2xP8HqvpN21NaNzXgPPIMY4kvIsYpoxsQtNEpZAWbpJHQRwXmaA8LAg8u8eNqZZW4Po+sy6Su9UcQ5PcUbnHJRfehrYtaYiMxfPgUKCZ3p4dkXFVjFYWB3i2l/t4D1uhuzQiYEFGiPVz9muYixj1+QHajPTVHH1WZFmf71hmZKja8iXV6zk9PYNHL82QyBNFh8bZVYjcTZ/WmTi31TLntvXx+ZBytxe9+Zc+TsiFcWg7FWM9cCFKdaAIHPwnm4JznSsWhIESO7rbjpxsLg1Qk39FuCID0oop9RmN3dNNxVqg9icLZkMzKCw+VwxsS6xsauiXvoVO442XIpF/rPn8P/disj/8lbDUlDP5C1bWHA7EwQQeZE2N4NDv97AjjNyRd6+iZ3sb56GM35qBwHR47uQVL/WFHnPNThCmpfCMaw3cO0Ez7IdQSYKDHXgmDIBfqcewnFs1fBcKHxHvAEbEOadQS+AAyToc0fLWg8f3BpUftdl/Jun7p7p4Rm4GYKV1xYsINzNzOETnHq9gUxNZ2LYpUSd+fIIAQatNcXnHt2zTE1tBme5W7GGiMsjbYmgjBziUfYquC7OPRHrj0OGDVlVpKcTu/LIPu5l5GNMOE/zKsAnlcZ7qo/xaIamdbM0wpybaRnzLZs2r1tTZGpImScTiSq9eUYYMyrswh15AB3vVQ4z6Nhq4LE93PtVDYC7JWTpRj6CXmaHTvdEmimeU+ghCLhRM4bRmgKtOe8Gyv7aqCHTQj0jquV+12Vcw5dWkd3paVmyF1hH88jF9bBUeKOGoGivjLm0VcV36/e+bIBuft/zmSCWVomDy2edrrTEefnviwyLkr3jh2/9js/tq7Z5kDK317U5l/+OSbxXImsWeFDGIsR0c69kap8UKAtipHndDAs/6a/s90Pw5lQzD8RvXGkBOBp5CAzOdUWqLpyzqxmXqmZ22Eckc/B3Mg9ErCNzObp9QzpaVcs21xq4xid3sSOmdHuq2YGXFgEUbE1Fvv8VlIJI6a3PsLiuDK1/TD44+sBF+/+mAmxbUxPGY2fm/ZKVDkoxxnuq95k4OPabtzAOmYNFf79swRv1apZGWkbz4GwWxxjvjTru92zXQMUUr6OceVjQMoMg0HhsD+fJxJpP+srkYZfgEwOcgzTiL6xp6UbZTdWZCdFFnvVb+pUnEMQ9obgGYnLI+mLZ7EAzIMTOVGcI7tjHhsyVTLSVQYprbk3xnnJkZRqCmSlAdqVlrQhKMV5nIPbu6/a8HttDAHi2d2t2jxk8BmNBbA71iV3LGC2OcY5hUeRfPg5gMMt+IlaGHPn4TrzasR5GcS6LuTZAwHimh+vtKdMscRBQUf0533ZhWrB54ogF5cTtVLVE+nwdAU5YxvhQfbmk98RjdMYI7l7poGzHgIQdnPlMeiWMy+IYfx8WjW328TMIhKhPc1x7iht1fI7B6mN7uD6W7tYb4nzyf5TsPXPK8tfa5kHK3F7fRiouba+Mxa+smgcMVkqxLZBUwpz4SOGGBeujwuwLuwCXVUiLNfNpAc61PbV+N4MAf2fphs35CqlIEFrmgzvXZqgOlGDeY7IoIofpyuVY5P/6/PHv40JMbZFntgGUpB0H4mX3XYqj5VlHTgbn+umTWMDP9HB8ime5ouUF1/RhyhHG7HoD2ZhyjDFfGlntv5AarTT0jKXkJyK/eQbXtKYaMKf7hzE8VH7tTAwftDwyjY1uCWObCXAPrSkCC1KfyxqAfuqU6YSQtRVoBoTBh4gpF+9VEMC2pggMR0Uc4/Fd3BfF9tinhuqlnQmCltUh7uugbLtsZnZi1RaZKfXVzYxyzh5Q1O2havF2FeNADZdKhHueeRBhe9cN6wF0nB3XL0kEcybfXVkE516YHM4miWh50cM5N+oWVD6yj3tiJqk1RaZo5uE4CxPMh0Fg2jNUep740ExJtNTUCxA4feoUSnSOYFzLyvQhhbg1RWDO0tPYR7ZzvQFwdljAa2yVQSp1pIH1+7cNOHxQsrJhX7OF3RI+n7giv+3y8WO3U7W+YZdbeOZkKz10gGd0qi9yqi/Ox/8xvmbf+ceOP9bc7tvmQcrcXrfmvPz3RbzAVE73yybOdrVp6e3VIRwna//tqe0UReAgdipWryZYlQBQBj2lGLurmwyf6LCjYFfWhqbZ6yE+y4CnMLPMxCCAsy9rGpwU4rwTuZOeSt7WGwB0tqYITijadi/mpYfPw8zKjTque6KAUeJMWC7olowp4aUY052qytO3RP6PRzGWj+7rjj3B82HTRj81yXQRkf/oZaNTJy6CCAZ1zEyc7VmZTATskad2bBdd1l30XmJqvF9awTmf2MW1X26ZBkwmeA6zHG060QxGM7QeTPtlA2DWZgCiXmtYVoNdlbn7XlHaNrsHswEkM2iFFOdmeUXEWFztCRx3P8AzXR3iOFMtHa0O8bf1hpZKXNxjr4TshJ8c3z35XuwoqFlE5He8Zv8njotYDqo6p2IZQjr4J3bx/4qy5ajtU5sZ9mm/jOseaLaErDmOOcUFU8fo24XUtIFGDWuayJ5AnJ+k7zPzsjrU+VTEPGYW6tUFw1Yxe3VyYPTkxTHmS+VIoCaC7NbZrmHZGJjsVXCtnl7r2EcWphkicBIRRz6MU+q/c/vKbR6kzO11ac7H/7GIV4YsfaI6BvWZKcpmgoWmkGIxOtuFsy3rroZONs1lVph+JrOmqLvpcoRFsD21xVbE1GxHPhYlliB4PeMCPiOCRXFxbBRRisoRRMnSClkbtdm9Bxqkgd5up3c/Rk0I7kAfPsDvV1qQkx8qVbQzgZMc6O50r4wx7pVEvuci3h8W4MwXJkYHdzOwSRqhqcWKWImAJQcROM1pQYXiIuuJVJ3hGRKwWooPa3A0QuBMIg/jf6Bg41N9vKcc2c6ZDrIfWCM+4j1O9pHRaU0RINEiD0qkq0N8nlT1amSaNUUt+aWiZS+xzFlYMOfrZZaBSx0whjoTy2D1A2sEGLkIQosJ6K+n+kYDXtTMAlVTj2ZSGFjci31+TcXvNOP3zDZ0VT6/hmyer0HES4vIEC1OLOsVJBi3zRrmTj20hpr8bqRigFlmP4LUZOp9MYp2daasKM+o7OyszBJLMcFnx5rtfP8VY+2tDhEYfOok5uiS4pU8Dea8DJ9lt2QRBJn30gsrz8ISwffby21wiD1bGuPYo8ktn3Hkw/NA5au0eZAyt9edOf/ul0TKYos7SwjFBAGDm4mUlD7sJ6rmmSGIoQBZe4pU7GbNsiQHZetPQ6rmpCDSSHEcN8MimjpYBLc0+CHtlt1th0XDoUx8LK7VGV5nPbwcmZS7ZKYNkTj4+yCwGv3K6M79eFaHwJ/kjZLld6NI5x1aPkCpRCLfc8kAk6VY5JOncM0s9WzUsPiSVfHOG/h/MRF5bB+OlIu1k+FemZEhHoVaMex/c1St1U9uNnVzyv/dYY2bfJCTd8rs2SOC+ZC0bVdeUyzIyhBObuaKBBl28I7YTn9hgixNJTLgMLEtE10WeyUDdooYwLSjTpvzQkTLaGLB6bSgTQ8dy/gFsUi/YYHr2S4otc8vWauFbgnHDzXD9cQe5jFZUdtVvI8BOlknry3gfEfxFLEL1tDYB9Yop5civcAa7RH8/ewKHHopxjnCgoGRz/bw77Wm4ryqllUSfR7cNFxpWdsFZss6E4zR9QY+x8wUy6yXW3D4lQiZ0mKCazjTMwB05uBv6w3DIF1vWIDIRoN5TFRlhuCPYzPzMDfy8+tejJuFsIAxON2z5+oWb/uxeVblq7N5kDK3151lv/0PifOF/ycWhZ2qpVaZwWBDtiDGa7H+7FYM4DcpmIz4RLMGYQFOvaxg0M4Yu9PYtdbtIx919kpkOJbEtdKHn4pkqqJJhdsgxrkTF8cbFw201y3hc6QgB7ojz8RAiDsVky5nTT1fKjnOCEhlpid1sPCGBYBan18CxmKraovxNDcO7Ym2rq/jcytDZCte6Rirg1mpIIEYGkGpZ3qatdJ0/426PZdTQwAYAw0Kt6t4PXZvZe+IHA7OHMGzOygfZldMNagLlbWR/9tbN1F68FM8q2aItDyfJ5kx9ZmCayeYD2SBNULc44ECZJ9btsC3MzaWTupgTB4+wPjuKBWV2TD2mSmkIuJaoMf7Y5DF5zYsQvF0VMSYpg6u42oTDjBxAFhthSKrCkJ9bQF/64wtcLhRx3vZrFAE1z4oYtyqM/zsVkARnwqCjfYEz7oUW3BUVeA15f2f2JXsnWCsOBt/C+fZrSDrsjwSeWTPqO5P7eDaeor1uFE3qYATA8yV/bIxnDbqVkbZL2P+d7SEN/NMX+hKE8d+fBdBXeRZppM09BMDk79nJ+V8aauh2Z7XFjA/btRx7Pbk7oD2vJ3WzNsoxxpcGeG8O5W7bhjmwcpXZvMgZW6vT3MzOFOm6IMYi8NRhzctoEzBwIIp4WERjnfmGWWVCqxOZkFC5pjcO2vmTOvHroIDc7V06ms4gv8PfJGyh9+dDAFKbYbr3anCOYaKRRjpNbIDMbM3Ioc7Ji9M4DSrdykJ+YllSqZFyxLQyQyKuK6rTYzX1SYW87aCFw/KeA+d/rkuHFh1BsdA3ZTHdDfPLs+DwBqy0aGf64qc60p27s+KiC7IzSl+iG84riRRjm8u3jc1Tq7XTZK8NsN1jn04SUfwPJshGFj5hndeivOtDlV4LcN4R65hIlaHcHyfO4ExofT7QHfC7Ql26cXEQLDsEN2ZYCyYeTnueYiYND2VhPslzLfIQ4C3XUXw2CtZvylq7Iy0FBkkmP836shskOEyKSAjN9VS4/U6cEFv3kKA9ZtncM/LI9B0X+pg/u0rwLw5hUMd63xrhnptLhzwXgVYmTdtHS6JEOy6X0bAwGaSHHdiQPZLAIoTZ/PUjnU9HhUNhEzcSurgvOz1M/NwDQTdUuhNBM+Zz5oUcRGw3YhxyQTX0Q8QULamCKoI/KYC71s2TVjwXs1LgVd6fllktwzF33wDxrttLNScK39H5JOnJPvPfuA+L+CNafMgZW6vTyOLgo4t9AzomLgioiBWEUvlBwqAI9OCPTjo8MsRFs+9CtLKuxW0ah+p9kUhhWPaL1uWYL9sreh7ARZU7pKnBQNiEiiaiWUDWlP7PUhEgol1BA5iaynPpnZ7FQPe0rkTzEhn1i3hvZngb2e7WITP9qxu31UsBvEMsWuaMY0Qx0u0NHK9jgCDu9MPftZYR1SSFcGCv1+GeigX98UxHN5/8qKNW97yAcnt2ChkG9GcDNfzhTV8/nLLAontKv4/KGKsz3XxPEXg8L60opTXKe6vkJquRmeCMalEIm/bBHjyUhs/lOwfFNH/5rdO4ThXmxrkeNZzhuDYuxlp3YXUGgcGCvh91w08IxFT+B37GL9MrBlh5NpcIask1AzhtSbmQeThGGSlff8rCFZ6Ae6hosH9TAP5QBlt44KxiiIXnZFFcK43bd0MDhz5MOZsW6zUWkhxfH7PqLnTmJroXzXCGLenuB7S4xlIX2/ges70cN1Xm5j/iWO6RMxeHTUyuk71MQYfPac9onSOkLLPDtIiNne2aghuV4YImqiWe6dya94qkVHZSclnEB5r1vX5JQSNtzNlZzn/6p9I9rv/4L2d9w1s8yBlbq9Ly971J8T57M8bsDLS2q+f6i7Ts4Al1sXay0QyD8C+lxfxc1OVtGRdfh/dw6K9PMKCWpuZs3MVQDvyRSJN9Tue6WKUdNFn+aaioFtSWinL3VaqKTUa1usiC1Msjr2S9WgRubUXzdQD5kbEUvXcWROHQ6bDrGA7zFIMh8Uus5QEF4EDqIdwUKFn2SYykWIFveaVOJkxOSiZpoyjeKDFMcbhxMDKbvWZON2fNPzJ7Sx1tBt0UzvShnAyZF/kFV69TGSnjHtmuY4ZhvW6yJOK+3ilYzvoQYCdNmnLhdQYXd0SshHvu2qO6dcexlitDtEniSwlYiX4HBINkCqzW8sEO9XDisYiWo4TVUpOcbytGubAf/Hlw599btlAo4kjUk4w51aHeEZv2kKZYEnEefWX8Z7Ewd/XBpZBpDbK99xAuehq0zIok4Kx3NzMgOjs30MV2KPZO0/Lf92SlkSLJh4nYjov4yKu4cTAOhm/uoC5OAiAcWqE+H4Rr0K9l9Uhnh/lAIjxevwIxkYE8+U3H7HS38oIQcipPjBIbNnA0mbqIKgKEoyxr8F6OUapikq/jRDNHqmOfJy9qO9n1mSm4O2iZhRZHjyu55cIJBF6pZuMMOdX/rnIykiyb//jtz/nG9zmQcrcXreWvfOHxXnuZ7FosbW6mxklOXIthVtX55wpkHB1CCf0/DIOxswEm5atDrG73tPdf6jOPkhEvJzAGOXJGyHey3Q8ZeHJSslc/Ls8wsJXjsF8IWZjbQg20aSlWAbBPR2UsEhv1M2ZbtbMkdAxLkxw3Wd7Il9cEXnkwBRb2XzupUVc024FCy3r5iJY9P3E9GPIQiK9t6aL7UYNY7FTxXu50C+OFXA7w714GXAQ+2WR3ziLTMOJgUjrNuWpYRH3tVM1NgvbHJzrwqGSXrufC0qaIcYx9IwxE2smiYHcUHEdw6LhK04MVJxO6cdLIzSS++wJ3NOvPwTHcnKAzBHFv9iCgJRgR/DZ031cQ7ck8ulTNhdPDHDegxKycwTl8ljdEko7i2PLgCUK2mSGaEmFxK42cd4FZVa9Zx3ziMGmsqTlP3/OMi97FQQ4z2yLVJShxMyGmyEgIjZqdYg5kmpwQ3n8hgaJE/8mgy2Pm3Cin7Bg7UbdApoDzQbtl5EZWRohYKFo2sMHCA4SV+TFAOf0MmTv3ExkOsPcZvO/tQHmeDXCZwfF4zMSpVg7QWuQ+fABmEmO4Ls00u9/JpaZoZT+SMetMxFxJ9aM86SChD9xGnT54+xiW+SlJQXPKq5oYYJxePuGgbmvNhE05cUTf+u0ihE6KtzYNRHA9kScF/6BSCGV7LEfOf7cb2CbBylze11b9sx/Jc4X/yEWOlJ5mbnIxGiPsVjgQopxOUbQQBE37o5P9bEQUgWVLeM9DYAKAgdPumy3hIXHyewYYw2cxkUs3EGMFDw72XJXH2jWwUtxvsf3EFA4mcg1zxZa6rq4GRYx6qpQPTcswKFmgt0e5dCvKwW4FMPxMeMU6bG5G/cyc+Rk3Ty1Y4ykA80erA5txz/Ra8hjfegAwwICIdJQ72R7Fcj0E2tAQGnsoqUBuzOPKwaadASvNTUYjLVcUlQMgCsYzxMDHGu7anL+kwKAvsVEpJAYXkEEDCURkV94B5zj+69A2fdSG45OBPNm7ON4xEWsNzCXlkcIKL+8grH7wioCx36AZ1FIUS4RwTMvZOoci8YsI94qcg3rdLon8o4bGKMTAwS/21UEbytDkad3xKl/xO6jEpmI2FGbuSIXFvFeYjcopT8qao+jDM+CrQYOyiKVSLL6h2493tjH5yIN+GgX2hBoo9Me+yidsXkkr/NLK5g3q0OTCdiow+kzO/O2TQWlFvHvyjGYn7zlMSnlSFWEXXx+UhBpFayP0PUG/o31fh/fs35GEwV812eG1bnaPNy0k3a6jzLkrGDl3u0qAiZuCP7Vo/juF1KRf/MInuXyyNRypxp4N0OjejMj2y2Jc+nvirQnkrV+7M73/wayeZAyt9e9ZW/9kyj9iFgTND/VPhta1mDZpxKJxInpGTy+a7vaQqpZh+rN8sRNaXfuFEkh9TM4IWor1GaGq0hcwxGQrspSyHrjcEdlir61ptYBeadqQnF5WXj2NaHCLsHB57pwlLEDmXbuyLxMJHJwn2PfMkVeJlLU2j9T0TwewbqBaw6Hju+a4gKWRsiWMIBiTxaK421XJVv+b0VOGWNBRKxvC0GydR2HL65q6SYVqSRwBuVYZOaIrI6wYJMmTgoue7hkjnXNjVxzhr7iIj63ht32yb4KxTkm3x55yF6VQqOm06n/sS9ADp22NML4XG4hSGR5j+UzRzMHiQvnKqIYBMf6SJEiT9bPv3kE1xa7VoLjXOwFuM9LLbx/bYggVATP+d88YiyZehu77id2cY13KkcQ5/RqB5kJlgUfPoDD3FG2FVsZPHxggdPtgk2WeIoJ/n+xbT2AHA1+KxHAqM8vm6jb5ZbNg3HBehKtjKzkkzkIIvYqCO7esnVvncfzFhasSzG7daeOyKRoPZMSLRlPfIxhT9k+YQHP+bUFa2fwyVN47kfLliwJXWxrAJravP/cmunn/PaLeM9mDcHY+X2cx81wDc0pjs314aCMAC7ycJ3rDXHGf0uyE//N/Y3Dt6jNg5S5PRjmCBbRQioyi02MbVKwRZbYFQpjMVDh4lHQwOZMD5+/UbfmZa2Z9RBJXBHRXZivu8TQE3FdbWiYGTDvpricY+BUpsRJ8xWB02hP4GzYPNARldFPESBQZIyNBEmBDTUzQME0ys8njjU8TFxkDdaGKj6WWAO5nSoWxsxRarQK2w312E5m2Rg6HAYogwDYEWaU2NBv+cjz2augXn+5hXN8xzW8fqltnWWJ8VgcIzi7XgeF+OEDw6EkLrIT7PPTmmJ3/onTlnEhY2tDmS21GXarl1sIQvqBSfXPPO37U8F4M0jJi+OFBfyc38dxSdV2M4wJFWw/cxKOlmyzmw0GC1a6eahrlPbvvoygbWGiHYEDw3EQTHuuizEiHfp6XeRqy7ATmYOyxxdWVQNGr4VMmIUJnu9Oxfosne1ZuwI2RQw9ZAIutjH/S7Eq2KaYr46IxK4407+urLQQpaHFscgp/T49tYNxudDGWNeVffaedbz3+WWM/RdXrdlnZ4w5uVEzEHgpRqYkE6N+d0to09At3VRtvWlXWhiXUoxr4HeqW7IsWZDgWL0Ac2araqU79uQp52jiZ3t4VpdaJmHA57I2xDM+GqSwYSJZdwzyqXb96B7+PdUHoP2zJ/CZQorXJwXc84UFPIPm1NR33Qzfx1MDBXx74rzyP6D0poy5N6rNg5S5PRhGjQRSe2PPesz0SgaMJEV4ULTdSWsKx+On1t34QHEPJwZGD41dpMqLqQFh2UU2VEc09OEoe7oIMm0vYosn6ae9AI6goAFPnqlwTVPQE9+60p4YWGM3NsELPVuE2WmZlM/qzJyBk4HJsTQyNdntqtKGU6Nek0m0UzF8D7MAzdDYQJSvj1wEFIUU5QgRkWlBnGd/TmvwLaTHycYiw4qYGjpmXksjNMdfVUAuaeblCDvs1aHpzJzs4zhP7sBxn98HBmO9gRIBG/S9tmA75dbU+jp1SyJfLiheZnorwJXMjrzzp7hZkBju6FoD4nWN0BpRrg4xZr0AJYSTfZynV8Lzq84wFs2pSClCIDAsmu5PT99zso9sAsuJ21Wdw4FlAU71lS3m4PxBgjG60tI+N1Nc/yAQ+Xfnjd10rWFdgS/rPC2kIsXYqPLUmGF5M/JsXvDZxC7mdV3BpU6GoIdNP0UQhHiZSHWqNH/H5oCXGgZmcQzHPi2I1ELMm5IGfbsVBPSP7sF5f/YEnmMpV4L7tnWM5adPWvkqiHU8FX8yqZpKMOeSIyjNMGP0visiT28j4Hpu2dSSQ0/kY2cwxksjzNVhEUHx2S4C6xeWrO8XGVzV6DA1/VwXY/vMNgJ4qlavN1BObU90vLS0tzDFd7kZIqirzUSCRJyLf1fkoa5kzo9/LVbSB87mQcrcHgxji3VHNDjQjAfpl05m0vncfTPDQkBd7BpuoTYTOa/AVQqXsS8QKcZjH7svUphTMdpiWBDJEjijQmqgz5vN1JRymTpYcJbGuP5BDYskG8udGFi5aatqoNFqZCUPdmoupFj02GBupmWPcmRsg82aar84WPSdwLpIU8KcOhuN0BrgzTwca22I63ytgwWXQM58M8CNuuqtTAAIpDDeqGg4oRcXcaz2FA6JO1V2ot7V8s0nTsPZnO3h+r7vAhzyesPo5GRwECfw3muH58ZGHfc90F30wwciv+s1jBExOFebcERbVTB76KhYHou0jMRGk5SzDwsIOm7UjUGVaKmsFOJZ9UoY714J17xVMzExztVZAcdr6nmptDoIUJZZHONze4qLWNb7Pd3HvVGnxs0sI8aM4b6OUVY0oPVexUCx7YmyXzR4ZxC2XUPQtzzCa1Ts3apaMFFMrE8R7V3XD38vd8uYI/z80sgyXiIIlETwHeiWrKvy2hDj9rkTmD9srzD2Rf7ZmyyzSeaPCLJ6Ly7iWJzTIggIXukY2JzjvzCx3kKOGCaJtjDBMzndx30vjzCniTmZFvB8rjXxrHeqUK/9vS9jjjIztTY8/B0RwfixZDsq4vt+uqffy8z6/tRn1vyS5dmDMr6rHVtDnPhnkFlZ/QvyRrJ5kDK3B8PYnn1aMO0RRx14KbaSRVlLQdcb2hBQnS9F1Ij/2C8jdcxePsMiFlYCaKeuNRRkR9fMsQBlqPgRJxNxHJFKal2K6XwqooJeim+JXPydmYRGaMA5Nh90BOchyLKoZRsCTv0EP3nq8erQWERUxnUcBEBkxJB6S50NJwPGgZRmMhO8FM62NoNTPZp12KoaaHejjt+JWWAWKEhA09ysIbgLYpHUt+wCpd2XxpDm//wa/v/QgZ3rVB/XyYzMcc3xaGPfqJ+N0ATXRIxOfaaHn8stax5JTIGTWYC5r3gfP4aDEDFNGU/fd7KP50t5+eURSh2xi8zAMzvmnCoRnGZnjOfIstZuGXgcMoACBdCyF9K3X8O41jRbdqGN44cerovZj9oM1z9R1soz23juv/IEjn2liXlxrmvtIEYafFN7hvN+U4HIzGoMA8P/UPDvi6s4FrMubLCYuCKTCMFRITWRuEqEY46KODdLNARvP7+E+cLSUerAeYeeSC2XXSSL75F9XN+rHYwxheU6yqxiMEOsCftDuRk2C5s16xBO81LM85I+g/P7CGp7JRxjvYEM6mKMeUlQ7yP7+LmTvbBkGcl+IHIutYwqv9/lWGRxZNndykwlEDz8/eEDjIl2oHaGf12y2l++83m/hWwepMztwTE2/MuXL2IXO5iO7pi4i2LK2k9Mf2LkC7qbCYKBzZrRRjdqllpnV2MCZHe1NEJArIjpUexWRLo+nCNT8NtV0ylhc0IRlKcorMWyCqmRDL5YkqHQViG17sFFDVSCBAsp9WLCgjGJKjOUq9jsj6BZitVNC3DWoWdjwj5GTNs/umcYCxr1XmYeMi1jHwEKRfPIyqnnAcVlc/5UHF0bYGyGRZHf/yKOTcxA3khTvlsjuPUGxruYiFyvYjf93Zdu//5z3cNBaUEDPgI8T/dFuoEFim4Gh8WMiCO5kpuLgOj8PgKt3zyDZnwjH/Pi8V0rDV1sG/6JGiWJBpBjdUjNEOXByMX989mVYsvscDyolkzWGjFQVLv90U/iuby4hOvplkxbqKylkeWRlfamBevye72BAN7LDJC+V0GJcEH1fxhwdJgBUizT2uBwQ01mqigy2JngvNOCXkHdLgAAosVJREFUSOJbgBNq0EpFYPbuqc+Ad5kWEBAwi8bgoJHL8Lx5C8Ej5/flFn4vJBjT5RHm7PNL+K79rtcOzw1mZZ7ZRiaTjCH26FoZWsnzbna1iesualmwHKO05KUACH/8jJV2GDCzrDsqYp6y6/t6A2tCZ4LjtqfijP+myGsLkr33j9/b9TzANg9S5vZAWHbmz4HhQ0rs4hhf8Mg1gOvMMwZKJsa6ELFy0IkBvugi+Nv1ujnXvIhY6lhdfmFiOJDIM32PfoDXTvUtU7Jdtc6tIocBoe2JyuHrsahWW9Lsj5dZW/rEUW0Qgaw629kvjUxjgzvp9YYCel1teDizssSwaN2b66FlX4jFcCsYq9rsMFAwH6BQ3yN14Ky2c3gc0rGZMWB5SgT/Zg6cT6+EMVscI13+cC5rctR2K0ivv3v98ByQD+NRyoftnKMigtTfcQGO9zhK7lGrzTAu7JBM0Tg2kHRF5GTP3udkAFl+4CLS/SyZUGq+kIp823X87JdBQ/UyvKc2w3xY0YCgPTEcQ+oYzbus2UDqgpB5QswRcU4MUmshngUzLQyg0lxwVYpF3raB473aQSC+NtQeOoKx4zNPHAQmVIq92EbGoRHC2TNj2QgNR8QAvlvC/fVVyIX4j+t1jIOvQd1WFcdfGuH7drWJIKeYYG6zAeCbtax1vaEg7RGecV4zJR+c0IrJ4QD10X2TB3h50QTXHNHGn3ewfFaP+jVHmzfeyZhVZRD5+K6tCcUE40LmGNeUtaG1MCikCLY26nhuT+9g3vUDzJXYFXmoK87VnxEpxWDbfYvaPEiZ24NjE19pgqFJntNZUCSJOgncKU8KSMnv6K6fYlEs4TS13j4s3mQ4oIQj9rsIFoZh8XBX4cS17rvFBMFM5MEpD9WRsS08hb9KsTU4ZM2bmheOYCHvloyyKHq/TM+zy+zMO3y9w6IGOKlpyjCzdFDCWJC6zN04gaKRLozMHHmpyeQTvMmmeFSH7ZZEdsXKYMTJiBjbKRMTQAs9Y5Wc6t1eJl/kcC2fLJuZJ9LIvWeo2KDHd+210/cxl8hWCn3DIGWOyeoTKH25BedNB3O5BRXVt2xBY2XiI01P0OtmDbvgcmzYj5tlSnVIBFjTQbUnANaKQHcndgEUZpmAGBg2Scz0fZ0xmgZSVTdzrDPzsGhNC0WwW2+ECGhF8F0ZBBiH/JxmWadWNUZWZ2LjzYyiCJz31SbOQXbdfhn3tDCBk6ZwYjm2jUDmiLTGECVsTU0M75UOAovHd5HNaIaYN09vW3B/NyNzTgTB0dku/p8HtD50cOdjEcdEO04z5ai9tGj4tPMHAFL7iYnM7VUQMC2PtISWYJ5RiHKnqrgwxWtNNKO1OMb8q4fQaCF9nL2bNmpgAmW/JCIi2ff9obtf6wNmTpZl2Tf7Ir5R1u/3pdlsSq/Xk0ajcfcPzO11Z85zP2udUNlAjxTQmWfUXgYwxITkmTdhATv5TG7S/aQ5td1i6pgE+56WeoqxObFREYu+I1hEqOoaekp1zawTa2cC3Qt2Um4qgp9gVYJ68w0MKf4WFkxWfebh89TOoIIugcFkGhCsSABx7FpKPlJQZTlXPiDGhpmdzLFO0ezPsqglMarz7lWATaBaLUtDOVGqm06/PUGgdmEBDqiYYId+t1o+My8EC6c69lR2pcIwA7mjAlzTgrFCyKY5aht1LQGKXlffyh87VQi29QM4tXddR4blRh201bUB+t34es+9EpzLdtWYZuzQy+zftaaBrKkzkji2sy4mOHczRLC6MjIabb6XTSG1LByfP1syVCJ7nuVIRQkTkd0qaOwMnEitb6tmx5u2cP0i+AwbcvLZMqNEAPd2FZ/tafaEc5oZHCoUs4njzFOV4Ni6mZNivltBcHOxhe/L6hAB4P3aThXqx//Ji/fei4dGqn8vMMVoL0XAebfs3GYNnxkW8cycDPfNMibbT4QFK5nxWQ40KO2VNKgvQFOmqBnJcoQsXhDjO0f2ETOhpRjBTDlCQLY2fCCE4O7HF88zKXN7sCx1LCWaiSphuoYJYbmHwm2k8SYOFof1hopaGRANIETPmC5BIhKKNmhTp8vmbCJwsCwn9QIrFVQjkdUBdrfsr8OSkCMiY3VKdBDEKFD/JNXsg5di4R4oqLc5NRqkm+E+SE2eKSaFde2Z3sfIR1q9OYWzXhla1oY7dLKGTvUNcxK6IrG+zpR0MTEWVBDbwsqgJNKs0Exwn40QAYCTYcy++zIClCst7dcTAXx6tP8N7UoLu+qVoXWcZq+fagQMyNrQqN1eeutuN6/g+3LHgJlOZpiIIJfRorZGe4rsyJ7SlwkqDpUN9dCBlQLGvjF/eiWjopIGL4JrYKftcmSBZeKKZJn9HrsGDmefGQI+azMNLiPLAESuYZtYBloa2+vVmTFsGAQ8voffX1w0XZZF/cwgMDrvVs2A08XE1IZ3KzpmOo8aIQIgivfR6S4o7oSaO/3AMgilWFl6mnmjACK7TfupjfedwNIimNdXmroRcE2H5UrzeJzTpABNGmaavvMqrunVDjYhu1VjRDn6/f/CGj57u0Dl82sI2qltxPYDO1ULTlaHmFNkUBUT00ZJtJzcLWFus/Ekg2dmTU/3cZ+hh/cNixhvNnE8272Z7aPAYr61wYNs8yBlbg+WVSN8wRuhNcqjo6a2RaTBABUx14amDtoIjfLXDLUnTwX6KIu6Wx0WTcGSYFJKyzM1zfR9PbdLjxWz0RljJyRizpR6IZTbL0dYVCng1iYrqAiqbD+wHihUP73W1JRyYiUWpuLDgu2wuEO92MbCH8RwmrUZFvaZZo4ojd4PcK8VdaLE2xDDwnEcFkVmAdLZ1PPolmzHR8VMEWWSCF7/8op2n9ZMDK+XHXx7JaNvJi52khs12/VngqCnmOD57yhV+22bdy4bPaoYguoMz2W/pMGBY0FERbUtmFESQXBEFgj7r4x9OO/mFI50t2K6PGwbkOUCTirjMoga+4ZrYimMWiJeBjYRu+jWQ5RzmCWaFLRBoY4FgxMRC1rI3CGTTcRKge0JnsviSOSzJ+EU/RTX0y3hs1eaWvqcoURTiRBEX2sYZiZ2RZZDC5iIt+mM8VzcDBmFTPB/ZjILKZpBNkO8RuAtvxOVyL7L7Px9tMnhccaM1HoD90lgdl+zIU9oKfClRQvcWTqkdP/FNsp357oYp82ala54PZfaxwcpN+oWoLgZzlebYR7lj8XvJu9pr4JrYLaXwnx5SQCWZZmFu9JU4UANGOtKmz7a1DJnTvgRERHJgr9y97F8Hds8SJnbA2XZ+f9anPHPwYmVFd/B2ixLN5kgNS8pgoLtKhYSZhmKCRbIRogFkd1gE8eyE2nO2Ua684ldS+fWZzjGRHc83CGd6WGR7Co4clLAe1eHcHIsx5RiUx11Myz8zMhQLIu2XRWpCnbwPcXgSIJFOnFsx7lfRgDVnmLhJmU2Vt0MaqlMCiKzqjIxBAveQIOSXoDrJ02bO/1SbBL+1M8gRoGCYWQo0TkujRFEMdvy8AH+vzAxYCmdhoilsJ/cFXll0ajF7Gxb0izOtAAGTuKiLBA75uwpeJc3ZhIGmhmj/gn7QM08PEcq7e5V4MDZPJCOh7odhdQaPjIj1Z4iCGMJipmBfK+kamoqpdT04fMLC6aePCpa8M3gIxMbAx6PARGDyHwwSVwI57wjyFBtVzFH37Kp4mspAqJREc/r1QU7HwM5iv9Rt4dlqJKyedYbeM6ZAFx6rYHyW77f1uk+ngH7Wi2ODfzKQInPl5ICdzM/Nbo8dUZSB5lOll9GRWuoycCZ84A4klN9POutGkor21Uc/1QfcyV2IZV/pmcBILN457oIZtcbKlfgGQ6Ggc2wiGCCbTGuNnGcfd0wDIqYPwTZ5sdNBd1k2zewcuaYYu2dTNcFZ/IRycoPbqAyD1Lm9uBZdYZFZaYYkGERi+RuGbvNamTaIHRKDCYut5BlWB5ht/NSR+SdG+boif9gqp1lo2JiGIleCc6hmIi4scnvl5SSzN0wyzozD4tlJdK+QKlpM4iokFvNVEyPGnd9pFcHMe6HWZ9BYOwd1v8JznMyTf2nCGCIE2FbeQJUE8ccKsGZqaOKuBqAtacYn8QVWRlK1v5LIm8Vcf7F/4pSyUHZ9ClEjLmRbwaXt0JiKsAippwrIvL7XsIu92NnjfbNsh2D0StNOERmiCYFONC1gZ2D2A/2MVoa2ecHxcOg5/wc6AcIqmIX18FyCksF0wKYV9S2IE2dHZTrOgacp9wFE8PiFQ87mUokUi5Ynx9HUA5iwJc50L4hJTZxMM7M0IiIlFVfozYzMLCXWdD0+TWU3dhvhwDuSQHXwo7Fi2Pc13PLVpIspEZRPtXH/e5W8ZmNGrINZ7uqbNtCoMDnMC0YuD3UEgUDzcwRaUzR1ZuYmIOSyKdOwfmfyD3LoxbEIt91GUrAVJjuTJDhKKT4znF+dCYaxJe1XFoQGTsYI/ZMIr2+OcX8qIcY390KjvXCEuZrEGMNeHQPATIZTqUYa8srHdORIbCc8gXTgjGMuKHZrRjoeGGC+67PkPm60cCx33f18Ly+HyvHD3QJaB6kzO2Bs+zhHxXncz+PheB0DwtP4kAWnkqxBHKOfSzUGzWkm0nfpQ7CW7aweOzWFeyqNEV24mUPIH7mQIW3AsFCN/NEUnUEQ02DexkWs27JlG7pTFaHcC5O7oZKse2+EvewtkreWMNv6yJbjk1xd6qgv1JsZZekoMBi37rqkpmzMMFPPrVNGmxNyyOsoR8o/ifYxfX1lIK9oNd1pmfsqUERbIy9Csbx3euH2SO01MHCT+Axnb8jBgpuhhjr7So+T2ZMpk6c7IjdCspBTM8HsWWNmEYnIHpUxPgfKLi3qdk0lrt2qlpim1op8KCsLBjH6OksXbDMQHbPwsR6MrEUQ6wJGwNSzIvg6YlvYmI0ssoi18pQIqa47GcILqpaKpn4pqvDz3Puj4pWAswEAXElQnliq4qgguJr1EtZGpmcPplilOXfqhmbLNAS3KkB5sQrHYzhuS7mwjAAFZlA0oMyekcVHcvUsdTyyD7GeOYh8L5bJ2QRCyhPDPB9J02XG4SSrglXm8pkc0XaEY4vYnTtvYqJyYkcpvCT6ePoMzvTE2lvojUHM0+klB+UMVeXRzhHJtYOoRoh0GHgkokJP/J9bCJJO38XgPl9mjP+70Wc7IHKrMyDlLk9mJY6Rq0VUQqmWH37oGyNw9jxdVhEOnpxDKc9KgIgG8TWt4YiXiKHGRQMQkjzzATvI9CNDoZaKqFnOzIGKGd6loLOa5KwTDLShb8zwXleXMRn2E+FHYzLMUo/wyIWYzZ+W2+Y/HZd8QKhZ7txX5kilGSvRLYIMxXO8geDBGYRRLBbTlzcV5CIU/t/4HPvFIzry4twLEdBrC8sgT2St7GP+yTdmowVCoilGZybI3KzyzNpwbUQDnqrqtfkWJmnH1hZ44ldfH6qpZSKBmpLgrGggu5GDYFL4sI5EzcSemDydEtGn2ZA5WSqyKvAU2ZJWAagTkYmuM/tqtF7X1oyBzzxjUmTD1IYbBRS4JtmLpwiAcuOGPA4n4kSsTEsaqaqOsPP47uacfKtYWLo4TirQ5SAhkWRXz1vmT32RmpNEdBfa1gzQxHNXowtCFoZIUDbqeY0hnROrTfwPXh2BUFFkJhuzDXFXBRy2UsRXO/LHcy58wf23Xylo2VQxcb4Kd7npwZcjTQIHfl4Xo0wJ0+Qql5KgvshoymIkW367Ak9/gxjcLmFMa1qaSksaEkvwnw7OUCAVM8BliltQID9qT7+vqUMMIL+Sbv+ehvLSbGLYMXNJCu9/oOVeZAytwfSsnf9CXE+9j9ZpiNxsGAxi0J6LJ3t4hiNwdhGvhzdmkq+sACncraHRYU7pExMmr4zNmlxlhG4Y6WTjzPsdFk2CWJTsN2rYDGvRFZeYFCzVzGHt13FIne5hXugCBYXbxHDStBBsLHetYalmCcFa1bIXjYEig5zjCWWBUQwVgycmNFhsEMnycCF1ggP93TJ29EAhdcuYiUeZimIByLwuaSMj2kBjj3ygKHgrvXlDhwEBfHYFHJSgFM81TfgLEsyeRzRZs165jy6D4dFzA17Ae1WIEv/9g0405stCjT1X9XynSsmDlfXZ7On17pVQ/nkES23bFdxHWMfafxKZFmixDENEwqhlVMRuQPbhSBvXzOIefYPswWxixLLVIHJlQjgY34XmAkiKy0TgJ5nHnresJzBDN5mDQ73kX0rb9VmKJMRf1VR7Nb5fVBll0fWmPFot+O8RcpCovDiqChSSoxZdf7AQKcUNpz6IsUQG5KT/cMBQmuK97x5S+R/fwyBY22GZ04sEb/jL3fwDNYGCGSolBvExlzLtDxaTDH/ajOMFwXwKOV/sY1/TwywvgQxjvf43vH3/9oCAuLjgMObNTyfewEVH2ecA5wng6I4e/9Qsrf8ya/seN8gmwcpc3tw7bE9OBXSFSc+/t0vI5g42RcZ+5J95x8TEYFiLRkMfu6LznIE0/xhAU6kM9HuuLoL1y+2THxbKBwxHAedDFkEjpikeWuqALmJARGrEc5X1sAjEwM/khHSnuL/kwKcXFkdBfuPEKPCoKGQYudHhgSzCwdlBBqrQxOHI1BVRBudaUDCHkWOGNtg5BvjycsOsxW+GruJvxCloCZW3yd9lbot77qBQO3fnTccSOKao2d34KGWdNgHhqBMZrT47L3UlHYTF7vzA6USv/+KZULYq2am+A1Kl4tY9ocU8vrMyoV+IlLWckRbgaXbVctuLI4xV/sBGi36CZz4+X1tcpgeO2R3HEsCdxNHwb6aIbqkzvJAwcqP7COAY4sCBqgihp95agfHC2I48p0KMiUHJZHfOgXnzG7ayyOjxjLATR1TsO2W8LezXVzb0zmcErN5V1oIBr/9Gsb3woJ2oNZApVvCHKWO0Lddt5Ik5QWo4DtQ8DdLcixTrQ0RRD26j0wdNwqn+vh+sfHnNEZQcKanGjQBgu2xrjH8jjNwZqmTXbhFcA2lGOvU2EcGidpFzNIetTvpB1GWoDnFmFEw77h5kH+eNGZ5qXitLTycX/z/4f6/59LrErMyD1Lm9sBatvIXxCn9JBYiyl83Z3Bu3IGx9iwChsFOReTXHsZuZ3mEn3IEJ0InHcRaa5/h2JEn0o6xIyN9mIwXZheIAaB2iCNYSCmaNvYNiEoF1vpM5IRrKrp+KuLpsVeH1m24OjMwbyGFY9uqYpFqT3Ht7AXEBYpiWiwvJQ4ArPnFK8+gqIcmVldTB1qdHdZ7yATXuDDBopYPcu5kx2FSaLWZ9ldJLdhjpol6MJ84jUCBMvl0Fmd6eO/Mw7/EsHx5BePAkg9ViNsTw21QUGx1iP9frxvLaBCgRPXkrjWufHEJu9xH9xEobdUsu9Qem0ovKdVbVez2V0ZwettV7KbDAp7FtIC5V4oRHD10gPeMfezOj2rI7FVwb2PfROHKERwuS0MMKN1MpJygJ9GNBt43KELz462beHaLYwNEH8U/fedVY6uMfTj29Qb+T+fcUEo5AwgR05/pltBwsREi8GpOMXZl3UCc69o8vNhGz6O1gTnoX39Y5N3XRX77Bcy/kwPMga2qyP/2hMj7rphEfbeEn8RFOeqLq9YZmtT40z18l8qxyJdW8MwZqE4VbC1iDTn5Xa5oKef8PuYaS7fMsMYu5hZLd+UI2aKDsnVmPzHAd35hYkDZteHhjOjdvkevLVhzUl8zxI/tmzifyGFdmOMCFBqVuimtwPLWQUlkoy7O2odfd4HKPEiZ24NtLywppdYTictY6Kkyq+JRzpf+IbIqlxdEvrBqgMV6COd0cmAqswRAEtRH6Xj2o2EjsMg7rAsSJKbOyX8jT0RSO1aQiIhiZkJ1iGPfUvOLYywWxURF5WKj4W5XTY+DWRsykbar1sG1EhmAtBJhbAYKUF1vYEEOYmMEHRXMIgNJBIv6yYE1u5tobb8egtUwLVpgR+OuMn9cHo8S+7w2EVPLZcmL4F3am7cO92wRsSZzIua8CxoQ9gMLPMhKIVYpI55EbMxHRctwHJThCMjs6gUib9qGky2kcKYsIVIULs/oIeW0M1YMUC6r8+j0MK7psycQYNZmVoZ8ZN/wEkeNoFtqZ1Av42gjyHx2qzk1xspQ2WWtKY6Vb2NwnLHPzck+gi6qE++XjSHFNgwDZQVdbQKXFMQif+JzcKBfWkXw8Og+2FgiVmIUAeXXVzzSqx2M4+IYc2FJszN09ntlkU+fRFBHDZK6BtQX2odLqOwM3ggRaFAbyddS2r6+b1oQcWJcG4XYBgGOQ+0TtuEYFU3c8HMn8DpLxqljPcWqWk7eqhkgPnatj9JRI3386POIPHz3DsrGBJx51qerGuG+eyXMaZ7rdpY5dq1kvbmZKR4rbsrZ+jsinfHrptPyPEiZ24NtTDVnjshnTuCLW1f2xpkedlFP7cApvLQIx0DQXyUyiu2FBWRZNmv48u5WRL73IhxkIVWGTGxp/8wxvQ3qWzCz4in1l3XuQPVMBkVb/Kuqv0DJc5aQyBqhM2U3ZDrYxMXrA2UwkGXRnhpVV8Sk/gequXFioKWK2DRRREw/QsQc67UmHNlNynSC8SSLZa+CY1Y1CGITPD6P/bJlNQguprotlVcJ4qPYVWUGYCiDs3s1Ou9BIFJSnZdmaGUIBnS7Feutwm6zoQZ4k4KJ3JEG/sg+PrNZwzhWImRw2JmZGAQypVie6IwRCLALNjVNxr5R5f1EWWlKZSfQmBkKPr+8ai2F9kTgCPPB6t2+H6TePraHoIOpfpYJC0ec4426Pc+NjmGiBj4E8U73MDYUYnt0D+P1Lx9DAMnMQmsq8tsuY9wbId5DLBRLPE6G4/UUO/LIPnSC6ETpuDtj625OXSOORSVCoFfSEk2vdLgZYKiZts0aPnuyb0DlfoBrWRzbxmNSwPdlWrDg4FrTWHfdEgLSph6zW1KlXM1qzhS43wtwrHIMbNmoCHDyUZsUMH8pNSCCc//mGaNss6zlZTjHxRYyZeVY5KFNo5VP9TUy5PLGMtO0YBnXzAFDia02qF90tvu6oS3Pg5S5PdCWvfuHxPn1X9ROqSGcL51DJYJTuF7HjqMUYyEpJSJTz6iKry2YgFnmYGH8nkuGGajPTKTs5s5D2QFuBGdCwCdVRUWMLsq/OWKicXQCzNAEMRa21aF9nk3wRr7J3pPFQj2URoh7jFyUJDoEPmrpZ0MZMmtDY5ckDna4q8PjaZ7Eu9CIsUi0xn9QQhCwpnRqqvySbZTqwscgpBph/CbqWHsK5K3ODPg4LlojvuME2S61D3emPWqOLq7rDQQIzRCOidklsmj2y3hemZhzvtxCMNcCa0m+/Zo5BmZJNurmgBLHOkGf7inGqArHsVaEo2Xp6qCM+2RgQ2M37ryS6adOwSmxBFbVOXyxjXO9fcMcWb5cIIJrJd6BJUGCyN91A+d6ZUGkf9oyNyK3BihXWjjfI/t4Bue6FkCI4PleWLC+Um/fsDLN73351ufSK4n8u4cxJ9+8hYCMgOO8FWORd2yoGq5+n45mFmozlIBeXEImr5giW/Hwgc2X1aFpDRGrxgxQSZ33pTbm6NIoB4wdYw74iZVs+wHWhop+x4NcmaQf4HtJHZXFsWnUdEvWi+flRW2n0D0+c8WGjF56mOFVivHdZDbnwoLI80uq0RJY9mNQFFl0b/1ubNVEPr+KwL+QoNR9rmvikWQpnuxjDrxnHRudaQH3sd7AdTdCceSbWwKaBylze/CNiq1neqZqWYlE3n8ZAclvnDWAWVjQBcQxZ7hXsc+c7WIn8ugenOvIN8d0kxbq3LoDZT+cIIEIF9PFgZ4j8nA8gi9lZuwOR8tKBOZmgtcGRWtWGBZMD4X9YUoxnE+vBAf6zLYFNX6KHwJ7n13GQvrYnmI+dmxhz2dWaNz9iuDYDHBEcL5JAdc/LIpsFe1+CeBlZulaU6TWxWfqunMmtoGln8QREd01M6ibFjBeIiZ0RSp1kJhib21mkvleijGg1kniKB4lgzZHuWB9ZogbWh4B6/DeayhJZGIln9WhNRR0xH7Y2LKlu9VYQCFtK912twJsQnN6qzgf8QXF1ETHYhfzY6tqsv8MgiMPAQ1731C8jwEejcehLUyMWi4CXMX5fQP+HodbuFFHgLIyNGptWQP9tSGyXSxVMUC7W6PI5hQMok+fxPHIDhJByeRcFwECafU09js66tjZcXm/DEfcD/D8O+PDQeCwCCBsc2pZiBMDZD7YfuB6A8HHQ13TSalGFohQLHGYW1vGPhz+9bo1IT3TM3XfgQKly1r6KaSHdU+OGts+MFPKTdCweFgEkQB5YsLyfZLWG9YCgkb6NVtPsFEnv28zwTw41UeQRyNb8P/zNIJKNxN5eluc8k+I1GaSOT9+5+f9dbB5F+S5fUuY86u/ZN1xL7fwxXMEtebVIb70V5uGmaiHJuJFKi4ZGVs10GlP9a2HTr6JYW2GTMzEt2ZyXGSqMyv7UFmWwNpQ8SFj37IrlPEXwftrMwQsTO/3SkbTdQTHpjIoJdK7JcOvNFWwqhwDjPj8Mu7/hSXU9E/3Rd553RxF5mCRY9PAm0BhBfrdaYEVUVp1GT+9kjlQTwM1qvWyO3QztHO1FR9BUTB2daXAlZOZSFYxQfaCz4+p92kBz529iWh8Hn5iz2ivAkfjZHCux5U6yCaKPAMcb1dx3SxPjIo4f1gwWngztLYK21Vc01Ew5HoD8urEFp3p4RgMKskw81PVkRljTMc+drwHZZs7OxX0FToKes2LjzHbUYpxHNK4aZs1aKUUEzhwMpRWRoZ9CT3LpPC5nO3eqoVzN0sdnOtc1zJLF9vW5PBejZo6uxXgy/qa4fm264fBo8+uWKNG6qNkjjn2SBlrhRRBykgzIo6YsBqBxQTKulpqIfusGeL8K0NtwlnGeZZH1lrhegOfSZ3DJSgau2czyBoVAYhl5owWu9hssSTMzO7yCBuBd6/fGnjOPFP/zf+NG4xqdGtGa1IwoUiWhj99EpT11SGahXrpV51ZmXdBntsbz2aepk5dpEdZOz7dNxnryMMOZ1owRklrqjvkDI6WAcUXVy21Tu0L6guIIEOTuNb5tzUxJVGqf85ckVJmui3c/feUkbBXNl0Laq1QynxSgO4G+wQxm8DuyqwpRy52tMTMVCLrMsuGhKUY2impg6yACAKY67oDO93DrvNSG+cfFFEeG/tYKI+WFvJGdc3lEYLA/swYEgwABrqz5KJIDA8xBhwbKt+KWF+gka9aIZlJm/cCC7JWRliw8wEKjQBYYjvcDEEFs2r5AIUMEWa2SMMOfaNyJ45IqgHPqgbDVL/1UpHUE/n4GWOO5a1bQqBYnYmsjhAUJA6yF43QWgkQnDwowjGEBTjVbWVZkSmyNjxelZjjwDLlTsXoz+xLxezKwgTzgJnEZohzb9bw/rUhzrtVte7Ar3ZEntw5fi5kjmW7eB6OceIC07NdRblwt2L9qr7vwvHHO86CGAHIzEPmixmMfPBFIbfOGHOvEVr266GuialRUffVBawZ/cDaOoQF3CcFDzdr+K6e6pu0fUHLVht1PMtyrO0VEoz5TtXA06f6VpLL28yzjCBLT90SnkXeCikCscstjB3L2Zs107g5asXk+MBI5LDidd7YD41WD60X07nuzczWNxKvMg9S5vYtYdn3/wFx/vX/Cw46SKzmXNIFOfKwcF1vKMYjxiJGWqGfW1CXFJh4paUZGQ00+MXeqCkeIzJZeRHbgbN8Q9pufkEoJqZqylS2ryBUMoXYnbiYiKQFy+awUR+dL+vS3PFzpxh5Ipdqtuum4F2Q6KLpYxw2alaWaWgmoDLDAktqanq71Uwtr8lwdHfNlDSvv67MiNoM9z4qWtM6jj2l6xnIlGP0yHE0M7M2MLBsXmGV5+O4OhlS/aQKn+pbZofsrnxgU59hPJzMtEAiDbQ6WuryUsuGdRWcWVIndaD4lcWxlaloMw+0985EpK7XkGgWbeKLPLqFsXm5o7iogvVIolx+NULA/XIH5z/OKQ0VvPuWTTjLTB0ns24Mllne81M450+dwnci0uxfptccetZUkW0UDsr4fD77wewWlXNj17A1nHP8ibzDkv2O4JrbE2tlcCfbrRho9qhk/LUmAlhiLsbFXNAuhkUijZjyAO2JduIORcpDzJnUsfnRCA3r1C2ZUnEvgPAjdW82tfzE7+OgiMD/ZB//tie49/zYUVaA8/9qExlGYtXytt6wbEsptgD3bqyeo1aOFU+XHf7+Mkt1tMT2X37x+OOkjjif/3nJ3vnD93f++7R5kDK3bx3rTAxBH7tg8zy5C4f32gIWTi7Ek4KIlK1RWzm2VGe3hPQpNShIbSVtld1yRbBYPL+MRT51tDdPZEJhBNvecq1jw1EUUnNKVLJlGtYVFV4TS8EPAmt+6Ccmc04MzbkunFszFPnUSezoEkdk5ouUxbreche5U8EOr6gAu9PKXCAz4U52J00GlmCYWRkW8XpragHF8ugwSJbpdtKYj2P65N8/LcA5dMbabNIXWR7j9229730NXClsx1LQvpa/KJ7H3jTM3Bwo44JjXA9Fpgl27WEBpUQGEv3AygAbNWSi3rqJYw6LcDz10MDTzC41QlzHXtkyZ35iqscsDRVSHJe78UJqpaPTfczNjTqwEtUZMgZUTaazHapzq4fmnPKCdi8tYs6za/BmDZ8jgyZxUWLK45eoqky5eW4QYhfHudjGXNuq4thkfRGPU1MmHkufd+vXwwDTzW4/P90MwfbEt7JLfWaYohMDjJWIdcMm2J6A16WRKRbnx47fJWZcb8oLuAhGZgU8p8hT1o+CgCMPWcxREUJ2p/vakbmIDQ/xN++9hs+/vHgYSPvSomXCnt7Gte5Ujw/syKQj3f12QUzsiHi53zPRDc0xAN/jzM1E3nlDnPAjIi8tft2Ua+dByty+dYyUyF4JTnanauC6vTK+0G/Zwv9FsFAy80AVWu4Ct2pw9mEB6PhyBAfPMgYXFTfDovepkwiE3rYJACB9d3IM7oGWX+y5AFXEcCGe7tAI8iUmphybwiX/xh2vnxpeot5HDfmj5+A0U8Fx+y4wNewxQvxFLzD1zkzuHqDcixUT7VBdEXGTHINH/75dNcwIFWeZ2bkXK8XWl6g5hTNcL8DxsYS0MjIcB7EFdHYc57BgWB7qYiSO6dYsjrFTXxni9XoIYOPYx1xJHDy3Ky0cp1uCI/yOq7Yz7weg13qpBiYVPCtS05dHuAdH8Nxf6SCrR0p6JbTyFrMJLy8CgEoBvGKCwEBE+8ikNkfYOLI5xb8rQ820OBZkX2kimOgH+P5Q/XZpfBg8ndehSVxlcOVwQBz7Mz1c49s3DMy73rCMGimziQN6892ClHIMvNhnT2igl5ujzakJ7GVanmVZ7eTANGh6gQbhvpUC2Uxw4mtJboig4rUFBbQH1qCQAOVybL/7iQW5A2X+EGuVOjgngyv2ljrVx7jlx9XTklKe9UVBRWqksOT83ZfsPZ8+ief/zDbGd7uK+2d3dAYznAvc5OQ3GaXYNKfuR006QFba+cQ/Eoldyd7/R+/9s/dg8yBlbt8ylr33j4vz0f8ZX7TPPQSnwgWFQNbEgcOhUiN7rDx8gNd2KnjfC0soLSxMRBwfCxCDnUwQCMUudsudMdRFP3ARgY+vGAtqqNyr7gdTvGTJcP0IktxuUMs8BDLyM9yhZyLiFaym7aXYeQ2LuPZp7itPnRfqh5wYYNG82LY6NzsgJy4YLMzm3IsxoGMH3bF/WLI9E1wX6cg+MUKZUawnPnbFdwuYugoMrUQIAFhq2KnA+e9UDgd/QWL6JQsTjG3imKy7k0n21J/G0D73s9Y7aVjE2BBMWo1wTjql1LGsVBDDyW1Xcb4zPW1+WcOzoCMgviBIDMviyOEsAynq0wLmm68ZuG4JDRdLiWFB+gEyZG/axvwjuDiI4RAJCqU9fABF18yxrM3ZHsb8BaW1305+fVS0shufN0uVnt4DlYJpdOaOGH19o34r1uWgbIDW9hQZAYoVPtS9FfdTTPBeLzNwbhAjQGG7g33FgbH0SJ2exEHvH5ZAdivIOJYVFP32Dbxnp2rnK8WYNwysXlK6cWcs0mujlFaJcB8X26Zzcq2B51GORdpHSlZHbbNm+idnerfeM80RjCFl8ysR2DlcM26+L7OxOq6UW7rN63ezU33MlUL6Nacsz4OUuX1r2bCIndvFtgYKuuN0BGlUEdvZENgXFpAmH/tYBCY+AKXslMsGZc0pdinXGod79rBjLnUlKObEnjL3YkFiAmM3AwnPdm8LE1tg6PSpqssGi4VEQZyZNRYk9fDRPZHuSdNyIR16V9PhF9oIZtaG+Gy3ZIt7ZyKyq1kCsiO8DMFeI7y9/kO+CV/iWuA1LFqXXvZKoYMlKJa07YqWKnaqeH7LI9tRNtVxUqI/caAZwd1rIQVuZK+CY57ZwrON9JllAudHsHAhxUJfUKwGzUuhUfHYHu6L2TFmfmoz68lERWMKg/V0/EINiFhCKSZWYijHhxk1NMq3J64FOhMFb3dLCIynBQQpBK2S+XJQNqDnIMD9kSYuOnfJBKrNkOHZrmqPKd31D4q4rm+/ZtlAZusIxCUDbVA83AzST6F9cpx9eQVOdFBU1lRkmQ3abgUg5M4Ec3CoOA/SZY91sAr6HBRFGpnIWv+wgnLkWidoMvlEtAmgUo05/JdbGONH9q2f1KSgWQjBM+kFyE6S/k3V6doMGVVip5iZ7AfabFDLYGUNcG/2HtOs0rUmMlqNEL9TjXq7agHtRh3HXBwjU8cNwKQgMq0hoN6t3D4jeVx/HzYf/Er6RomgCaW2I3HkwyKfPCXZe37o/o9zxOZByty+pSz7/j8gzr/4X/FL5BlzZ+oZLqEcGQAudkz5tTbD7oNATC9F19hl3YVmju3kKMf+qVMo7zRCfEETFwsumSuZg3OvN2/VMsibn2Axo2Q8r7sSmUz3UauHpjRZTFR7RK97r4Lzn983efy3bWChu9bUxmuizk9T8xcXwN5YHmGn1whtp0h2SUOp26MizluO4EyP7vCodcLaORfs2LWsCGnY7E7M+vtQnZeXimzXTHiNNNqZPsunt3Py+plIQTM/7QkWbbKh2pPDKqjHGa8vl2Yng0GeFIA7Wb4YFU2ojj+ZYPe+NoRTZUCQOHCODAaaU8s0FFJc20tLGF8Rk7LP99Q5KJt+jJtZ4NtXbNJQSxGtse2QS4rnYcaqGZpKbSO0Yw0CzI3Hdw1rtV21Y0sG0CfnLrM/rlgGQgTzZaK/+4kFCt6RssLn1zA3V4cmj79ds15GNHYP9jLrIZTPprUmh+nWnFtnehj/h7qHMwjs/k2Keb7BKLOtpPP3dQMTKguwM8G8YObyi6u49koEDEovwByuRNikkD6et7yezNjH752xPWO2EGhPcP76zDR2NjUI8VP8v5hgDtZDzA0KzoWefUfdDFndruoTFZPD2JSjoFkqWRP0PS1g7PPjdDcjuJp2tifOy39fZHEsWecv3vtxjtg8SJnbt56FhRzzI8fKYYbi5ABf9lHRGBwLE9R4W+pE6EBbmj251MKuJRV8ed953XpreNlhjQaeq1cS+c3TWCA2a6ijn+7BgRQTLKR5XAp3L0fBcFzwuiWcK99zh0qwfiISKFUycaxPSOJayj/QdPhEaa1vVfxMfWY02C+uImPw1k0smkzpE/cyKlqPo/UGruPCAsbm3evmxJbGoGA7Ys8iiEWKmnViWwERZDNYpggVH1NI7T1Xm1iwyWg4MTCK9eO7Nt4lZWy90sGzedMWFu2D8t2xDnkjNiF1jBpcjmxeUNZfxGjnbgZnVtuEHgh1T9b0utkgrhLZDnijbn1xilqaIpCVlrhwunl8w3rDrrGsQSzlzs92MW7nD6ysQqZOPhDMM0zyLRIutEUe14CEIPPEwZi2pzgms5MT34DfI9/0RNgSgrt7zoleCcdh6WyrZqJ+ZG69tmB9eRzRDFByWChQBEqq/+GcyLevW7fqS20EeWwUKLoB4Xd87JvOS97Y34hAdmYT/ATz7XTPMknF5PD3k00GvQzP6tWOaaXczirRrQqxjljJkuebKfh2ZajPUNevg7IFDytDzIVdLVMzi7dbMQFJPzHVbUcwzk/sHg5S8tilsGDikZOC4fXuhBM7rkliSynuM0+cnb8p2dJ/e/vP38HmQcrcvuUs+8H/izg//y/NORKrQLGyq01jmhRSa3s+yzmcUmyOj2JXM0+VN3WXfL1ku+XPr8Expw4WQS8TGSs2hDXl2EUpipmPL48RDHgpgpzb4S4mBZG+pryv161rKx10MYaCaWVkvX5onpYlRkWAe7slfP77X8Hinle1FDmsq/CWTaS9ScNly4HOGNmRklIZR76Vl+j8vFSkrAt7KVfuoeKsk0FzREQkSY01JYIFb79sOjaVCIvuwgQOhwwoR5QSWzSGRlVp2lT2pbz3IEA5zMtMEnygGCM2UCxp2WWi86WUmNiep0EaAaE3WUCaJfBTkfJUBeeUnXWua/1q6Pi4S6fGBrEGVOfdrZgzpagfcR+z1EoLXZ179dTo5zMPc7saHc5cOZphOtnHuOWNJSI2QmRriTzddrcCYGZ9JvKOGyYmljjQkXE1Y5KK3GyWx+xJHjT+5RXDCrFDcUuDs8hDMMbmecyssCxbjbBRuNY4rGnz7DKCn9oM9+ylh1V+L7W0+WaGe1w+EqyOfVMYnhbwvHol1YpxrL8RGyheauG6btQx1xmEJTr+ByWsEbczquMycMuD4hcmBhr/wppRlk8qNm7ia4Yxw32UNbtLgbnmFIHBuIj/syFivq9W5OHYjhwTKGmQQYA5sXAE397JrjZvDf64ninGywk/IlnwV+58nGNsHqTM7VvXMgcOJ3ZFCqE5iytNo8DSqW7U0CL+O68i+p/qboLiWY0QDoZy8aw9P7GL/7emcORMfxNLUNVyyfIQgcaFtsjpHCX0ahPH2aoBnMduw9zJvbYAh31igJ1iojvphw7g1NifhlmY4xaTodKyj2tudjerzxCotKbIjASJ4XHaE4zRTgXXeKl9e/VQXiN3w47AqYngGCxxjH2U4EQM7xBoepsdqfuBiKNZhS+vqIBWbIyOaQHjfrVlDR1v1PEa09iFFAFAfWY0aJaoGuFhx+ZlIpJYaSd24WDJsmBWK3XgLNpTPPPO5HCTQxErY7FpYH7HzSzIpRacM0szqQOn6aU4dqCObFQ03ZHEETnbt668NF/HlFRnRw6XInjPIlaC4dwPYmQs1gYi33XZGGjEV3CHzW7gZX2+w4LhU5jFHASWBRv6Vt4SgTNb7OPYJQW6XmijwWfqgL20q1igSa6UMtSSI8cyLIhs+lZaeW4Z18jv/cLEHCdpuhcWrMPziYH1/nl81/RvmE06MTA5/CAx+vKwaB2Z333dsFLHGVVsaY7iSIqpUdkZALPk1wvAWjupTKWbFH59DpMC7uF2LQoS97DK7ls3rXHiccYeUKX43lh++2U0d6X6Mu2VjmSP/YhI484fv5u5d3/L7e0nfuInxHEc+bN/9s/e9j0f//jH5Tu+4zuk0+lIuVyWJ554Qn7mZ37m0Ht+4Rd+Qd73vvdJu92WdrstH/jAB+TTn/70V3Xeub3BjZRSBg3MkowLVq5IHMOApBrQcEHzUyyG7YntnpkBaU/whexMEChcbMNBD4r4/YUlBBIiAPot63tP9lHiqc2s4Vo5Nkrmp07hs88uQwPjsyfg1JiajR3sKK82kVbeUkXL/TJ+bmd3WjTvZAQr0lHGCv7slkxCPfRwD9yNXmve+ZiFVBU9PRMB4zM6KOmOtGDic2UtDTy5YztUlrBiBd+SDZQoGJbshsUxxn9hYunsIMHxTvXxHFtTk/9/ZN9S7V6G8S4oSLSYWOkqiPE62SEimFOXW/j/+X0crxegvHG9oY7ctWCyH9gcEUEwRjbLftmorOsNjGtb6btXmtYskWWSJ3aN2XKcsQ1EKbYyAct+FaUO0zjfpwWwXWLXOm6LmGYQjeUuRwwD1p7a3MjEANGBBjkzDYqIi2G2bFoAOPtaw4JZfi+ZnamHVnY6MTChu5EP/BhLZdMCtEhODHB/FG3slSyo2apiLlPFlc+PtjZAB3XK3gcxNjFBjDlE7FMjxHlP9+y7dmEBz54ZW4759QbOQ50WEZHXOnDy04KV0wh4JsCaZSsKIb68iCzgus6to+XmvFEDaGlkGkp3Mm4m3AwRQn5+iP7O0pOIlvuKIh87K3K5JZmye7LHfuTO57lH+4ozKZ/5zGfk53/+5+XNb37zHd9XrVblz/yZPyNvfvObpVqtysc//nH54Ac/KNVqVX74h39YREQ++tGPyg/+4A/Ke9/7XimVSvJTP/VT8n3f933y/PPPy8mTJ7+i887tjW3Zj/wucf7evzbKKSWwY/098ax2XpvhfUwX5zEBmzV0XX34wJrOiWARerlj5YDtKhalsY9FlvTDQorz1kNN106t9BR6CuLTLznT/45YL54L7RxbIrU28YUU52afIFJpRQwnk8mtDe7ux2ozHDdxrLsxGUMzD4t8IbMGaVPNqlxo4xoJvFuY2A6LWAoRza6oky+HRonma83prYyX/bLIrqNOUUs+LA01NBVemlnG4FoT18X+RnUFR+Y7SQexibE5YrvH2kwkmBk+KYishxKDhJcW8eyX1Wm1p3Cq21VrecAsBrNeV5tGZX2lY2DPUAGsT+wig/bUjs6pAjAmB2UDSIpgXk18nKNbwjnXhrc6IVLJ8xkIll1EMDcpTsZy0rAI50w2GLt48/3sUuzpPCQegpkBBjqxC8ccenZsMuKYFdupoFTaDJFdC3U8ydB6agfBy4W2aQSFHubV6hAByoUFBFXDIjYNgwD3e1DCdRVSjMFByYKcqy28P1Q8VDlG9uWZbWQ2n19CN/SjRtXhcoxAgWKQxGxcaaE8xjKgnyI79sSuKVLze0kqO4G67amBn4MYv3sZnkUjxDPulfAMWLrrBYfVd3eqdw9E7mTFVCSJDZfFUmC+HUfuO5k1PiTyR77y093NvqIgZTgcyh/8g39QfuEXfkE+8pGP3PG9b3vb2+Rtb3vbzd/PnTsn/+Jf/Av52Mc+djNI+Sf/5J8c+swv/MIvyC//8i/Lr//6r8sf/sN/+Cs679zmdhNoGMRYAEkxZMqfi81btqwXylgX/Z2qSqN7oNb1ApOkfm0BGBQ3w3Eps++loGt+cAufe3bZFqizPWvwt1U18SzSnjMxZP1QF+B93VmzLNUP8Bk2HGxNbEFmKacfYJfVmsJpUrflK120Fib4/E7lcH+dmYdjXm4ZoPRSG9e7OrRAoE3wZmiBgZeik3TkoYMwmShtvf99dcZ5bI0IFuWTfSt/iOB91MOgPgZ7BB2Ucd3MfqWaaSFjqjXFvTHYETGsCDMzfmYZFOIrSJd+eVFkvY6/D4sIMLol64bcDzBGtZl9druK6ypHyIqwpDMIMMcecbHL9jKdLz04YBFcO/EctRnmLjt0d0si77oBh/vRc1BaXhlaAMsgkWVKkcOBhyOm87I0soB0dWiBBZ9dkBgGRQTPNxXTSOH3LiyIjDLMEbZniBWvw/5IlcgwOZfamOvnuggg1hv427WmdaIWwbiwRHiqb2qwvKeLbQQaS2N8BysRMpnMylQizJOTfcUjFTBGDx9YuXJleBhszUaA1xr4tzXF+ItgE9MI8TwzB6XYzhjX+Lk1vK9XQpDChposEbHcGyvW6tUF6z48KuKz57rI6r3asXJkc4rn05webkdxsY17ilwDoJ/s42/3KtDm5eZ5Jcaz5cZCxznz/+q9HetrYF9RkPKn//Sflt/ze36PfOADH7jvYOELX/iCfOITn7jj58bjsURRJAsLC1/VecMwlDC0Gn2/37+va53bg23ZB79fnH/+y6YpwsWBmQp206VkNxe6/+MxLAALE5QZ6qHtLHcrAFc+1AWOhTiHkqah37yFY/gKtn1xCY7jQhuLVC9AYMM+GewpdKYH50Xp/a2q6n8IUq7FBOfaqeI6BoFqNfi4l27JsgnffckW9rds3Vu5h0FFWDAFzEhZIY4CI4e+YRhYZlpRcCPTv2d7uE6quu4pZuDJHdPmoHPiopnvXSJyK7vpqi7+7Cr7yP5hGvni2Bxg/rObVTwT4nuuN1QdcyLSmOp96bPKO/F8UzzRuRLIYfvsCTiExTHui3iC2kzbDviq/KslnZoGT8+uaBDjIAvVmJp0/ak+HLqjwdb1hmEuWB7YrVgzu8S1vlIdZVJEHubys8uYn6RcO5lIzTUWCgG/NAa+xAatDHHOo40CaXkdDVesR9W0AIByqNmUSgSszZdWMZfqM8OKnT+wLGRdAycyvE72LWB46MA0jpZHCFDXBpjrFxZMq4ZdjQlgpUrrfhkZqUf3MX4Uh7tRx/gsTIyuSxbL0aaazSl+btTx3Vse2fFLMYIi4t1WRjjmp09ivH/jLI55rmtjG3nIwomYxk1rimfLICxQILefiAw1sH34wPpasex5rWnzv5CCnVVXzNKwiDm3PELAe5S2fTsj1knLmln5L939M18nu+8g5Z//838un//85+Uzn/nMfX3u1KlTsrOzI3Ecy4c//GH5oR/6odu+98d+7Mfk5MmT8oEPfOCrOu9P/MRPyF/7a3/tvq5zbt9i9ui+si0S/EsgZCEVSWN8GTdrWBR6miLeL4HZsTZAUBAeWP18eYTPtCdYXDMHYlqF7FZNAS6IvtaVX1tAcEOmx8wz5cue4jwizaLQ0benWJxGRTi0+sxEpWozq3PPFFRKnYTTPbx2rYHdmJ/azjAv+uVluJf1BrJJ/cBUV0/3rMRAbEopVin3AA6GmYqlkQEQGewxs0FwIUtf7KHEHfe2MoVa08MLKLvPUiPDczA2W1W81p4avqU+OwwafqWDz1D3xBHTkKlEOL/IrbtLL+e48444H7yE6hjYYLKuAcYrHXUoAa67kMDJ7FXwDM72AD6OPDhoBoU7FSsJMXiYaPB5pifSG5lWyNoApYheYPNouyryvqvWE4g9hM51cUyKyU0KGN+jGAMRw45EnjmytQGCppODO+tl5DV8yBTKxJ77mR6e9SsdzKPEBS7let0Aq1ebcrMJ5Y06specR62pyO9+FXN0o46xWhoj+CmkcMKdsUg9wxwmRoz3zUyUCJ69r3O/mIi87wqewY065j51hE4M8Eyb08PB3PuuoNWBm+F6Xlyy7uunewioOIf/45dE/v1DGINyhLGkSCD1e8Y+soos9cYuStJBLPKODZvTbB8w8g0jxjnMMWJWbqdqYHaWnCl4uFnD504O7kwpbk4lc3/89n//Btp9BSnXrl2TH/3RH5Vf/dVflVKpdF8n+tjHPibD4VA++clPyo/92I/JI488Ij/4gz94y/t+6qd+Sv7ZP/tn8tGPfvTmOb7S837oQx+SP//n//zN3/v9vpw+ffq+rntuD7Zl7/hhcS78PSxKxJ+0piZ2VEjhZPbK+HJTUn1lqPoWnqXwN+pYuPfLBvpk2/enduCE+oGlrg/KcBQ3dDHuBwhUyM7wHNupshsru/SyxMP+IF1X26gPrRMsO9KWI1z7dhW7qL6Y8ubiGAs3cQwi1rfloGyZBzqnbslKS9cV0DspGMC1rNdH0SmyYtzMerPcBN1lpkBanVnfHgrdEQhZm5mCqQic2MU2zkfhs0kBjoP9c8oxjj/2DUA5LWBsgsQyF5s1HGNxbJTW2LGWCY3wcJ8UCtQd3UnnMwksNQ2KIiXFqbywhOfMdgTswZM5Iqd6Glz6eA4UbJsWsDMm9mcQIAOwU8X5qQBLqjnPTQ0eT8uNfoL7WteAtJiaguupvpVY+Dn2zMmX04gpIV01UrxUHpA5LRzP9mBGhw0Lm1PtX+Nq0KZZyKZmjS62MXcIyGWQnTp439u1xHSpfVjw7FQf93RuauXLhw/wnQwLeD+p2QTrkpr8/iuWmelqloVZpkCD2eeXVUAuxbN8uYNg6WzvsAYIgxb22GF28CizbqOOOXemp0yn7PB7eBxil4g1y+vZkFq+MsT/qXxbjo2dlr+2nSqCv2KC+6tGCFj4nraWiSY+/s3PfRGTs3fldWNOlmXZ3d8G+5Vf+RX5/b//94vn2YKXJIk4jiOu60oYhof+djv7yEc+Ir/0S78kL7/88qHXf/qnf1o+8pGPyK/92q/JO9/5zq/5efv9vjSbTen1etJoNO76/rl9a5jzW//IMgybNe3a6utufGJCYuz+2ppiUVtQFs/VJhYtaoUM1NFt1PG6CBbz77wKnMJ21coRSwreqytuYuIbnZBN7MqxZRwmvnUB9jILVsi0yS8qzy2b/P5e2VLXlcgYH19aNSnt7SqwKxT/8jIETQ8fIOPC7tAsQS2P4IAyMbYFdWM4Vgx+iNlohvgsQXeOXj9378tDOFEyNvzEqMYEtzpiAQhBz8MicBaUOe+VcM2P71npaebhs4XUymaOGBupPlOApGammrr7fHT/cKaAVPMjC7hEHgKB55fs+iIP2jI32Sx6z6f6lpViTyIyN15bMMXPkwPMMWZEKIDmZoaLOjmAPkneBgGc0eoQ83O3gnn09DbmJLtxx44FFXnxLmp/cPzDguGfWA4tJghoayFKWGNf5EsrmFurCqpl6YhjzVKhI4ZD6Zbw3AgYdzO89vKiNu6MLdu3WcMc+46rIv/hIcyT3/fyvfW/enYF18eAi2WR9lTkd7526zF6JXwX89pAtBeWcF2dsc35r8SuNa3Mkg/MP3fCxCKpRsyWGJx321Ut/dZwjfkAZ7eC79jpHp7LDc0wsb8TdXqGRTxDriN8Ppot+1r22Lkfux9ffF+ZlO/93u+VZ5999tBrf/SP/lF54okn5C/9pb90T4GCiEiWZYewIiIif/Nv/k35yEc+Iv/23/7bQwHK1/K8c3uDGpVe98uWCl8biDjq4Nlavqjp1IMSHAx3sCsjOKatmqL5I9TMSzGcZOxi0fjyioHdDkpYNKhBEcRwOlMNgugUe2WRjYIC1BwtN5WRHaDIWCZYuKgjwl3+M9twVpda2mJdHefSGLvTtQEWqoOS7dYvtU3DhWJkGzWjOw401U8wKLMebmbKn3nnRsl9sntY3ipH2I0xA8EslitWqhKxHf0X2gAC5xfZ2sy6FYsAZ7E4htOhCJqvIGeqipIanBWsVESKeaLX0NeMxdhHgHC9jmwTewz5iWVEaAPVqnhp0foRjX2jMtPx0ml3S9asL3ZVqv0AQlrsxlvIEERcbSKAmnlwjMsjBDJDBSG/aevWOV0PRZ7Qa2xNbXctYkBcPxHxc5852qvFUXAmWVYsiWX6E3nGuCqk+A4FsZZONUBlx/Figp+tGn6nnP2gaL2aBoFmWkJ8p6qRYWz4/Xh8V/v5zET+o5fxrG4XoLDLL++rHmK82FE6LOD7+uj+8cc4WsrJ21M79v+80u392mkFteZbPpA+z2aa1+t4/s0p/v7iIgLyYdEyLCPfeiVdadr3ab2B8TrZt8woFYB7ilN7ZF/klQUE9S930E+n9pXf0jfa7itIqdfr8swzzxx6rVqtSqfTufn6hz70Ibl+/br84i/+ooiI/IN/8A/kzJkz8sQTT4gIdFN++qd/Wn7kR4xD/VM/9VPyV//qX5V/+k//qZw7d042N8FUqNVqUqvV7um8c5vb7ewmHZlU3oECG6moSLYClR+pSUB7YQm7EWpKuBl2gSJYBH7vy3BU15qWsaGzyncApuYHu/vSkZ3pIaAgoLA9NVbCsIgF6EL7+DpyPQRYtxQjSDrTg4M5KCFFTJYLHQI1EJpTkarurmaKg6HK57BouzZmnJgF8B0DopLRdLPfUGZBAdPuBPyS+hu5JrgmYhTQxFHRtYY5D7abdwSvtScWtJ3sH6bEXm1aySlI4NxaU4zXesP61HBHT6on1VsHAYKBm0q58a3jXA8xT0hrrURWMtioW5PJ5akBVBMNjrplBDiZICDarmCsH91HUHpQxv0sjuFYV4cYz80arr8zuTMAmgEK593dFEKpmssgM3WsTQE1XdzUnjEtLz5HwCfxOmHB6LPlWFl1U3sPdWCIpQkSXOduBfPzbRsWTNPyiqmZYwytYmKZRtqZnmVqlsaHx+A42XY+17sZWzQc9/l7schDMFpM8Fxv1A2zw75hFNFbHVpzSjZTJK26EllwKIKxYBmpkBkGxxG8vlUVOTGQzPu/o//UA2pfEbvnTraxsSFXr169+XuapvKhD31ILl26JIVCQc6fPy8/+ZM/KR/84Advvudnf/ZnZTabyQ/8wA8cOtaP//iPy4c//OGv9SXO7Y1o7H4705Q8ha0mPr7UoWeYgWkBTksEu7sLbYD+UgfOdr+M3c+oaM3rfudr2DU5GQKaXmAlAWYhiGUpKoi3FMMpXWyrkJmL9xNQmznYWU4LWHSnBZR4WlM4BPbnEcFCT/l5ptc9BfcVUih2rg6RdQkSkd2qyF5mDdEoW0+NCxHrAs2MBlUoG6E1Nlwb4hgjH+OxOjQQZl5tdadi2jDEv7AT7uLY8D8n+whOqGXRmuIZbFUR7ESeyHL3MKZit2ICbHS6NzNaZc2uxFZGmRaMYkvJ79hFQLA6xFiQwsmMDu2hA5Fa1bBIoSdS9IxWW4rx/HncURE/UwX/+inul0396KxJSaUOTSnGHHz4QLs+3wNDi/imezEvE0nEuiOLGP6HrR7yjQGpKpsP7DiO7Kt0O2OGK6/kzPLYqIjvVJ7tFSQWFDCLMS1YuSQTY7/kzc2QNWAzvrw5WlK8Xkf28167/BKbwwDluO7Bd7OjGS0G/iII+qhgzAaHQYKy1ckBxoyNT59bxvUQbD8tWBdvaqPoJiarf0hk5f4u8/Vq94VJedBtjkl5Y5vzW/8IzodCS+cPsEjvVfAGlnmGRZHvuIYF4r3XsDD8f580MCcZIEtjSEx/9yU7yWvKJEiIicjM2bGrK8WxYheO/uQATr4aGS164iPQeXQfizl3XF5mQYwIfu+MsXhfb1i24sQAx2tPjPHhZLiXXmB0SOpadEtYKCPNEOTBmnmlVBE4kHy25ajdqFtjv3KE6yAIdrNmeI3azJR8+X8ROK3dijIalJ2wVRV5ZgeBILMr7Ng7KhqWqDqDg+oFhlMZFnENtdCo0tQESVy811eHfL1ugFpKty9MkP5fHFvTu3zDxnqolGAnB44N8Vy2q/bslsaGFdgva7YiM8e3UVOBvgi4nWsNXPsz27cCWBkUMItxs2R5H9gJUmhZmrsb7mPsGxC5MzE2F4/FUtrVJp5xbYYs5KLOT0fgSGPFLLHnkJeaPpGf6vVkOVxSZposx7Ho8ue/m7F0dS9BSuzimo9K2X+19sIS1pLTfWsx8My2BfYMsJfG1vGa9v8/Zx2p2QJh7EtW+b997a7vG2BfN0zK3Ob2QNs7b2CB26wByS9ipYotdUilGIvYe9bhuLnwvWND5BOn4URO9wCSfXTfFgwaHaSvjJTWVMQNtX37BAse6capg50UsxDdEt7TK2ERZfq2p5mRIEG9ujUFvZWAW+442bWXmJKlEcoQTmZMB2pqlGIs2KQtP3xwa3v5q02k0I8u6EdZCnkjC0dEA5/YnN9BGZmdnuJ1CIDl9Yrg34nSwRuhgU6LiZUO+sFhSjCbqeV33mzEljjWLC72rMzRmSC7U4kMgHqtaVkc9npxM/yNejeP7VnJjz1RyhGuKcmdmzonpVgk0ptjULhXEanMDNDI8lTi6nVo9uvhAwRBLy1i7N62oSVB3yj1bFNwpnf/jpSBWSGzsewHmONNLVFWIwM5VyIE1FSbjXRu9pWOfraH+2WbBBHLLG1r5unbrxlNnYwgZivKykAaKW6jOcV4MVhNXJHsNkEKA9y72XGB2NHsCFVhOSZfa8jjuS6E2caaUWGPrrUhnv9Mx6M1ufWzZLItTAz0WvkaX9/rzOZBytzeMJb5f1Uc+bDIf/q8yG/1kVFZHSLQIHPmdB/6C60j6fXTPVOBrUT4/ykFxU0K0MZgg629sil4jn2Vek/NqZRikYmyNraq+PuZLhbp3QrYE14KJ83SwXMaVNWVWuvq/w/Kkr0dpVPn4j/F7otMlv2yNUTsTGzH3ZjCyRUU4JkvG4lYav/EwKjbg8Datld0p9sL4DQLqXVlLcc4Jks1IgpULWNcP3AR4F3qfKyMrHP02DdwsyNIYQexsWbIXmBgw2CHwEvKrYeiKfZEJMigTdMtGZYk0JIFO95+3wVcI+nHJ/twGC93jB5KeX92o80EgcF6Q6RXw7j3lH5+UDJBMjKKuspeOtnH9W7VjA7qxMYIak6xix7o+CSu0UhfW8BnnAwA7HER4+uIObxXOjjP2tACRgZ7R0tGk4KBMxcmCOKIeWJ5pa9A4npojjzv6Ouhyec/t4z7yr+/NjP8z74GqY8cYVPlMxsMYJpiLRRCDwFnMbaSaCUyMTMqQe+Xb6UL38nYMuNo+eZ2mjBfDS4lb5UIZcOdKnRzyoptOtm3ct9eReSxfYyn6htl8mGRR7/60z9oNg9S5vbGtG+/hp9XOwhSvuvynd+/OBb5G78m8h/OQRyKWIL9MnaJxLzQkaWOlQzYn4e9UugUEgf/Xm1i112fmZAatR52K9iZP74HR8Xd+dkugpu8nsfpvlGB6bTKkTF2iIWZas1+4luAcq1pWJJH9q2GTvpwKUZWplsy6jGvtRlawELHfKNuwFK2G3huGY7l0T0s0mHBsA1UsWVZ45OntANtAidN6e/mVB1+YH1y2I3WS/HeRnjrjrkzhoMcFjWYEVMcvdrEcyBdWMSaDzZD3Cul+5fGxt5hxuDEAJ9/tWPdf6kAeqlllHeqeJ4Y4Jo3ahij3YrhQLarVjoKC8AS7VThfCN1yhTdo6BX7BpW6YuruH7+vVvC/YkgIHznDQVnula23FR2F5kozPR1JvfulMluygTz70urKFWwt9CkgGe+W7kVT8Lmj0fPRWpu4mIO90uGmxkEOVyZBip1Bb8fLU/mLU+ZFsE1N8JbFXWPs69FgEJ78xbm22+dtq7n/cCCwwA4mGzlL3ztzvmA2hyTMrc3nDlMk361xkzJntIoiVNwMs2aKHOFC60IFlUCElmO6AeGpajNVAjLt3LCesMcUGdsSq2netYtOF+yGhWNylxMrNkdd8nUZpkU4LRIrz0xsNp+XpyKJZKDEgKliW9OhUJeMw+lK5ZrRhrALI1M7ZYy3bGjgVKCrNGLS6bfMFA9FBGRX37KlHS/55KJwW3WTAuDjJSp0qBXh9Yk8jhw5U4V17er7Jq1IZ7jXhmMra0qynjn9yVr/ZjNmS//HMbnptCd0pavNq0VwtjHcckmYufkTBA8Ra71fDnbw/PJgx6ZhREBJoUg46tNHKsS4VzEObkZxi1zoGZ6raFigQkCjsTFca+04IyrOg8fOsD5fWXIkMm2XzZF1Pu1mSfyq+dNQj8Pmm5NMWeoHVSbAcslYqWevDGQWG9g7p7t4TO+Up9nngV+nMt5SnzmHNYaYpNEzuV8iek4Y+nofgGyX4m9toDs1wKC4uyJP/P1P+frwOaYlLnN7au1fgAnd6fGfFSDJLOGWY3EMQZLMUGJInaRZYhUC6McWbO3cmyOZ+LDmawMcX6qn15oI+vB8k8vwM6yM9ZyTNE6Ijemhq3plrRfisABcqd/o46MSegZnXa9YQJ0meBY1AARxQ881IVTZT+fjRqcSjk2R7Q4tgxFWBApzBBg5bMV1NvYqRqQMohFanodp/oi33YdoldrQ1wfu9gyy8R/6dQSBwGIn8LhUrI+X+bg83Qz62JLZc63bop85gTef3Rn/fQOji1inWg7E8PSbNVMW4Sg0bCAa4o1a7Ff1uenZT0/FdmsILiZFJRZpbT4QmqA3uoMwcPKyECmpJETg3Omi3FrT42iGzr62gSfGxVx3p0KngUp72/ZwnGW7zDXj7M8gJe9emJX5G2bON/lljVE9BPLPnVLdgwGCnye04LhwLxM5O25UiQDfUefK4PuA6Vwi4hMNWPI7AwzY8SV3FR5PRKg5DM534jghKd95L8WeeQbdroH0uZBytzmljfSKquR1bmPNrwTMRbOqIgFb7cisjpATxLKwBMcKprZGBVNeGtQxM6cnWWnih/YqmJhL8cIJIKiSYM3NS29VTMnQ2AiMRnFxLI6xQSfYbdlLtiDIgCgDx0ge0DtEkcMlFpMUFp6bA9/e+jAxoFlARHc50bddq7FxCTpW1NkSUoxHHd9lmNMuCKFCFkR3j9LHKeUhnymZ2UeimANAjiTcoyMzEi1T0I/p00jVt7ZqCNwYgM+Gh0+75Wg0/es49qvNcTJfkLLE57IqmaGrjcQPKwOtS/O2HrSLI1xnCtNvF7RshyzP0Fs199X3NDqEM+ADngmIi3FNfkp7u2pHbwvb82patOIZbTIoGpNECxNCkaxb09NAZiaHARSX6+b4mw/sKZ2xBUdZQ5daakAXYhntTg2ITV2l3YyyzBdaou81EEw1Jmgg/hvnUa5lcZjH2Xo5DMeHrErObeVuGBDNad476BoQVA5FimEt9KRjzMGKFRGvlNp53bYlHvErHyzVF4fVJsHKXN7w1kmHz5c8skcABF3q+ZIlkdYMI+WC6hiSdGoTEzlca9igFQvxeKdOtaPhw3/yIC41LagparYkUf2cZ5Pn0Rgcl2d7IqqkNZDc64UnmPWgzoSif6f2RQ/BdaDSpXnunAuLy5abZ/BzF7ZGCOn+rjecoyMx8LkGKaPgK5MrEohRfajM7bxS7SkUY1MNI6y5amD7AEeDO7jtQVkPEhDJcVYBI6UCrJeZt1zZw7OSUorZd1ZCmhNcI1N1Xih42Pzv/MHJuYXalZjWoDTdjMEhpRZPzHA+deGCGLOH9jYTQqmyFqZqBPV58Bmb2Mf56lrkDBzEVB9xzUTN6OK8fmD46m1PGbmKJVXDFg8KooEE2CUtqvaJ6doPWHaUyvpbdRwHWytwPEuxSKb8WG11VFRRdu0DNWaIqPUnmLMn9k+fI3DogrYOQCBViNrN7BTsYzZ7ewo/ZZ2FM9Syiw4YH8eETwLigqW4lvHMXEx9mQ5MYB2MrmZIjsOq3K7QCT/OrNohVSy4l+9/T3O7a42D1Lm9sa0UB1Qe2KgV3Ymbk5tId6tYDEuqYYIF/zENcXaYdFArHsV67PBz7OcwrWvNrOGg+sNK/kECWTTCZx9ccl6BZFeTNpw5GlvFheLNtU3yaigiJynDvl6HffNv/M8vI7dCq5tbYiF3cusmdnJAa7zQtuu3RGR8/sGyi3H1niP5RtfwYCZXjv7s9ApUi+GAM7EMTrxlRbGbGlkAmAsp/FfXkclMhG+2BWpJXg+7AzLrNDqEPdRiRDQDIu6A3chnjUqYvd/sS3Z25QxtfjXcA9k+jCzwGaKbEaX82s32xeMfJQ8Clqy6SkQ2BGMD7VgqpGOi5YviEOKNDDz08M6IHmwNNVG2RuGQOPOBPe4MEHw8UrHAJmneyZEd66L+fTvHzLV2ebUGjiuDhFQXGtinEi3ZvuBjRrG5Ch9PXVwf70SriFylcmUGfjZu42zv19jcHB0Q0G2GY1sIP6fmZnEFfFy2bSvgWXBX/maHeuNbvMgZW5vSMuCvyJO4W8oXVfVXXcrItOiYUHyTqlfMinr5bH1gskcLPbMGDSnoOOOi3AOV5s4BoMRllReWsSOfKLOd1/xFqnSacMCztea4vXOBI7uoIx/x76l9+sz0wlxxEpW1JioZ8ggHJSQIcq0VBW72GmfGCBTc61hbJGRj11pU1VTY9fEyjg2uxXcy14Fzs5P4STpsKjNMvbt3/rMSg1sSdANgEVJFNS4VzDwZa+E8aCo28LEZPL91DJaDEi2q8ZqOdVHuWe3glLMDplWR0oLjqDM9r6rOMbRIIAU7ht1kbRuWTbKvxcVFDxSSlQxNuG6YRHvPzHANd2oI8PRVRAyZc0f2jUArZvhXh/bw1hy/O6kdsomkk/vYH5UIrDQ2CjyqR0D37L8UdOSJEG+kQdqe22G53S1iUBwaYzP7JWRNalqUBi5mLeD4q1ByssdgKOXRni/CDYEZPekymS6Xbbkfu1e1HYJqM5/hu0wvkrmzryE8/WzeZAytzeukVFyUDaHT5YNJdy54yTeIkiUZpkBB+FlIq2ctkRzKvLCsva5SeEo6UTZfTjywCChhokIzneqb/gGLzNNDidTjZLQSkXs/+MnVlIa+8BpEDDIckgvMGd/YgC1y1IMx8oOrbHqoVAldmEC57OtZR42H2Rn20pkeIfEgbMKYpybnZgnCgh1M1z7Zs0E0hpTY75QwZVMnaWRMp4iE/0aFvH3RmoOZeRbictPjFHEks9OFdfdmRh4k9ozQYLPt6YYgzzOZuKjHLhXEUmrUKo93bPrqiiWhk3iGDywRDNUvNHIN12ZjbqV0kjLPighE8EeS19asWM2QvxQMddPkCG6k7156zAQVQTXkVerHauacVPHn+W7c10Ezm5mbDJK40caoI59PL933MB1fnEVzJvOMZitvYqVhEa+9aTZq4gs7iI4ud6wBoVfrX0lWZD8Z2IXY8ZnSZG9OwQv88DkG2PzIGVub1jL5MPixP8dgpX1BhbgrZrtLL3MJOmpvTEMVK9CMwpMf1P6/XoDC/tQ6/cT3xQ6FybW4JDdXWee9XI5KKGu72RIr4tgF+wrjXhYNJArG+35qfXdcTKRYmYLbuhZ4zc28ItdY4FMFR/hiAmmTTUrtF+2Rn+DIhZvYhyYUXptwRr9UR5+kCsFlDVwyjSIOaXspqlnsvgEm5ZjCwbbUzgxUriJ52BmiAFjquyUQioyq6n2R2rqpamDDEkhxfM5KON5EEhMarh7lALrIAuxXzasRzEx/Au1avbLhlFaHFtWgrTpnao1UqzOkKU410Xg8MVVfPZ3vYZ5we7VItpPJzHZ+V4JZaNH95HtWhndHOus/iERUVq9n1hPpGIi8q7rt076sGBZj7xKK6nDZMZ4mQUqEx/lt/YEz7+YAND8zhsI1i62MfZuhjkSepZVHBQxP4jtiF0AhaszjN/Ih3rzvVieTXSc3U0afxCY5s3R97G/EI3MJ4K0ExeN+ub2Dbd5kDK3N7ZxYTrVN8GpzZrpR/ipOcmZZ6n0vA0Cw3wQAMsOthT8cjJtLCa5BoOCxXBLdUx2KnB2NxpwAFs1/K0cm4ItAxJeN5sk+srYmHhGx2VvGmYqmqEFOFTxJKhw5omIXnslEilNrFcQcTSvdOAIlkZw+Cc1S0R5cxEbI2YVAi3/UG7d14xMWVlJrampjBKUSUDozDPpfxEDrzZCvD7K4W4OSnasyIOIGiXERZR9M7KOu9tVkY5mnKqZ9fcJPfRWaYY4furgvLUZZOovtzRjJKYQul1FGedcF0Hlqb6qx4a430qEz/UDkSd3kD15xw380MpiJZCzXQQEQ8U+rSiT6EsrKME8tod7q+cc7cuLeL+XInh80/bh/ku0vHPmM4tdBCG1mYGPN2oImq42cR+ZWJPJ55YRWLFD8Yj4o6LI80v4G6nhpEQ3QgR3kYsfMnASF/ioo6rHtMgTea2NAO9CW+Td128tLb3SwXMdBPjejHxrwHe2ZwytZQ3uJvfg9pxMpBJZtsS747vn9nW0eZAyt7kdtY4C/QaBAVOPUlVFNCugXyGWXFJHF3UHTo+1cmZj2F/m6R0snAdlBdbORKSiu3dHe/SEcBS7FVPJJNaEAQgzEmP/MMCUEvhuBgcy1WskyDdLTBxrooDTIEFafqSZk9bUughv1nD9LCu1lAJLCnam91/vwimNfey2t6t476k+MgK89oOyCW+JIHBhQERMTD00vRGKkZ0YHBbmcgQBCpk47CZM5slOxWThgxyWhLLqzCCI4L0DBRGPfRxrZYTnf7aLZ7cwsW7HE6U9U324V8Jn3rOO4+XLGP1A5N3rRqnuK6uqmIh85iTumUHGwwc4VuJajyaWz2Ye/qb0cufK31F9liKuM/Jwzc8uI4g6mjE4qg/COcESE8HSpRgBcjNEwLRRw5isDfEaWT9sm8Au1I5mIUnR7gcqkz/DObzUuoE7mqXbVI2Ztx8TqPzGWWwcWBa91ML1nu2aPtFje8gysezYDHG9YUHkNzVD2p4iEHt07zCY9ojNSzivP5sHKXN7Q9shOjI7FxcTxXaI1eKpYjkqwlluVxXzoTiRxTEyA+UIi+/aADu3XsmEqmohShgzLXeIWB8cR7DAisAB+InIgeI7AhVgm3omnz4sHS5r0Ol6EYCbUxWFY1mqoqyN1SF2x3QytZmJztGBlGMrVcVuLsASkVDT+Kf7FkSwPCaC+5r41rhvbWhYkUTva0+Drp2KOnh1rgMPdGSm48sxgpnIvdm/5JC1JwZCZsDFjFKQ4O8EIZOKeqqP16hCmjnal0gDANK0xz6eH/VJQs/GYFpAADAuIkB6ascaNbLRo4gpEW/URV5dQPCyVzENnfx9bNZQyklcKx2xdQEbGpJ1xoBstyIyLlgrgIMyWGh8XhcWMJZUKT6uKSSDstRBxsJTkLWbYZ4wmAgSG4OXFTfFDFjqYFxJXY81W+Ir7of9l9iPiKXJSBl057p4RkdVYGN97tUImSpmDF9YxFgtjk0hlyynpbExiERM52irZmq+x6wBc3v92jxImdvcKJ+eOcpk0Z0WSw7UHXEVwHq5pUDGmYhfgHNltoVl/mtNxZ0kRo18YVnkTVtYOKszLLKvLagoXBULfeziei61QfFl1mK/jICHoFDKwgeJiKuvkU7NTAMVWJmxeGwPqXpmPWaeUkFT1YcQFUlzTZyNTohlmBMDHIfZhmkBzvG8AoGLiSmHnu5jPF9dgHM729PGcwe4R0espJIJjlOb4bWFiemjHG32mLdiIvKWTZQSiJdZGR0W5/ITkcURGFpXm0bNJWupGll/GWY3VkYiT28r1XuGgGtaAAiZJbnm1DA5WzUEgztVA6qSmeOl2MnfqKMHE0tQY996HLmZsak4hgyQfKVUdyYG3GWLgMQ1rZRyLrP1bdfx3p2qBb958TRac2rqwV4KJx/EuLbnl6wpY+gh4LzSxJyb+NDDIRjZT0FVZ/sElnP8FGPI7MlBCfflCP7d0DIZg9BeSeTXH8IYrQ2to/aoaE0LH+ri57iOxnzug8Dk89mUcGUk8sVVyd76J28/n+b2urN57565zU1EnIO/YeweKnPuKVODDd92qlZ/L6TKNlHNEvY/ITOAi36sZaO1ARw7ndlmDYtmpCWHmQeH5WWmU3FigEVWBO+vRJaqZiYgca29O5vVpQInQDZRe4oSwqQA0CxxG/0ATpc9T9pTHGdPd5/1menHTAs4D1VnN+pwEuziPCwiKDmjGICtqgF4Cd5tTnGOimJf2FiPwFTqypQjYzCVFP8xVYBsawpnTUxNfuf93LI1aSNlO3YtWGSWxREEEMUE5yukh3vWXGwjC/HmLbzvegPOuT6zxpEi1pdpqwZMxe0YJoMA5bsXliDW923XNUuSA2aKWHNBlrv6Ad6fP+56w6izzKJQTZjZq7bqllxu4ZhP7mIcr2s24rhg5TjbrGFsRkVTQn51AUFFt4RzPrONv/VKuK+ZK/LlVe2P4xqDjX2kOhME49XZ8SDX55ZNH+ixPczbvQqybo/v4d7Zp+d2dq2JecLM0bMrkr3pT93bPc/tG2Lz3j1zm9v9GrMFs7L1w2lNrc5O1gRBpotjE/AqpKaWSrBpORIZVLRLrwcHQcVW4it2K3D0l1vYwZJ5QXbGQcmkzxmgEETKxn48Z6oZg6ZmXVaGtzaL4663FBvFeUPZTMyCNKe4Jup+UHJfGQ7ywhKCiZFvgRibIu6XcY62YnqCBO8vaCaCdOnlEUpSIhjXm3gW1WrxEyu1dUsmTLdTsTIOMzwiGLvVIcbipoqrJ+J7lgmjPyxrVilThhDHoldC4HSqb71/XljCdWQOnvfMM9DsrjrNjRpeJ2OqEt26w6+HFnANiyK/9rDI+6+YMB9taYxxqs3wbJjhyduJAcYjSExXhowbEaN490qYNyzTnO6h3PjRcyL/9hGR3/Ha3b8TzOQsjoEBudbEMWeeBbD8bkwLCFauNfH8zvYwR660EGiwA/TJPgLj48p3IphnCxPMQ6rHdsZ45oPi4fGibdVwj2wV0ZzeZD2JiMib7n6rc3v92jxImdvcRCTr/EVxxv89fpl5BrAUsQZxA6UN8290xCxvUIK+kGpAofiAaQHO5yZoVSxtTy2JsY/FuKAOcnFsZYBBYOBbqrnS2MAuSEQmOR2SBaWLEk/DJoQMCmoKZKRM/SBAgPDUDrIhV5t430O6k23n3rc8sp3slaZlNpYifG7mwZndqFup4uEDA8yuN+D0iGMY+5YFKmjpiRTwnmttBqiBslfB2FMorRwjgHnrJkCozMrw+TGDErsIGEjldjNkBUgbvtyyrMbpHpxfI8SzqM1MJ6auWYBEQdIHZYwLVWl/25Uj2BvNkJwc4PNfXrGGhmEOh5E6qoQboAz4sJbF3AwBADV3OC9cvYexj+P3AyshBQlAoo/t2j2VY9zv9YbIJ06LvPceMyq0EwNkl15dQHByuo97v97Accc+7ofg5bduGlB4VMT4sqPzesN6OdVDkS+tIoP3bdcx5rtle9adsWXcjhqfZZBIVvvL93c/c3sgbB6kzG1utP2y9cOhJkNtht28k4HCyl4s21UF6ymrIXHNoe1U4Zx6JdAjV4dwNmEu+Hly1zIpM08XeC1FsPFg6sDZpDPTBfFTkSzGwjxT4CF31Ilr5aheyToBkzpKJtLKELv+umIJegri3azhpxka7iF2UaqaKNuF8vahliqe2jHBuN0Kfmf3aOJMhkUr2SyNUab44iqcWCXC36m025kY1oKBRC3E/XBsSXslWLSpzqscI5ga+5YlmeaWOJZ3WF4iS8ZTts5bNvGsSZntByby1gvwN/ZGWhsYO4g4mlaIefHqAu7zYhvj9cVVHO+0BhlPb2Ncy8dkSnaVDfXIPo5LLRY2ATy/bwHiJAegTRzgZEjfZtmyXxJJNKjaqONZrYxwbR87K/K+K7d+D1i+jLzDDCUyjxjwMgB+QufA88v4XCM0lVnaTsUA4GtDgJ2DWLOKET732B7+TwzTawsYi0AB1H5yuNHiZk2y1b8gUrv3r/jcHjybBylzm1ve2ABupJTO5ZFlMIhVETFtkFJsMvpjXxvpzYBpcJRNcqENZ3xWHV4xwa67mBiI1k8s4IldOF52UR4UrSzBmnzimBMb+/aZugqk7VRM94P9cgjWPWoLE808jLBzzbQkw4wPqdakwQax9dTZ0+zHThUO/bMn4MCXRjjubgW/E8BK0bzFCRxPe4JzcewJrgw9YyYxS1WNRLbFwLaFVKSpKrBLI4zTwgSOj319qInCPjheZhTr5ZH1DqL+zLCITMTMAzgzc0QuthCAlGJTI+a1VyKV5K+YQB/P/+ZNy2IECYKVU32Rd92wkl7ePBVTI1Nlp4qxqM3w+eoMmYhKZA0dmWUjeFa0pDIqWpbK0WMzUBbBsb60gvF9YteUlF/pGNYpVqZRvgmgl0J/JXERuO2XrSlmfYZsSDG5tXFgr2SYoo2aCdU5+l1a1Wzil1bwDDgf2EogdUTedf0wE2f1bl/muX0r2DxImdvc1LJTf16c9b9twcB+2RbSmYedaDmyXjnsHnygWhN9ZRRwl79XNqVVyoh/23Ucoz3FIt8ZYxE+2zPV19UhHBTZJswuxI71qsmzV6glUoyNgullItUQC//i+PhurnmrzuBgF8fK7nGMsrlfRhBAlkdTNUjI0tirwDFSuG5LszETH7iNbsnYQYtjHHezdqsuBsHIu2VQkVPVIqnNEGT0AivF5QXgyhGuoREafiUveseux7UZxiVQIPRAQcPDIq6LQaUIMg37ZWSbzvZw7MstONhmiK7KqQMMBrtgEwT7zPbh0gS7Az90cPvnMPZxvtYUz3pxjHEjxTt2rZXBNaUxU+OGejx81r4G2jsVvJ+ibpdbeP/5A8yptaEFPJmWL1NHJFKNm60qSlTHGRWUCaQWwbw4TuKegnSvdqzv0yP7xobqB5gTmWNssxqwRdmpP3+HSTu3N4LNg5S5zS1vXmYy8GQnsJW7iMqoKzD2dB+LPuXa+f9RET8X2ghobtSBDzgxUFyFmCAYqZsTpfKe68KBEzw59lEeSVz8iBhgcRCYKm5zqp2ZYyz8ZNTQgd7NjjItYhf9dURwD5dbyIisDnFNMwUDczx2KyKRlmXYMPFc19gd1xrWT2ZxjM99fg3BTX7XXZshy7JfVvyN3gMzWs8oLXhYtCBFBE6bqr4iCEISRyR1Tf7eS42p5eg9MiPRLVlgwP5DO4rpETF2z8IEaq4HJRPeGxQRxD2xg/NUIoBjFyYWiB1tgDfWbFC+szGF91iaYWDy8iKyNswonO7h9cstE8NzM8O0LEyQEZkWEChPC9ZxOHOMXbM0wniRuUUmGoGr/UDkk6cQqK1pmeWo2uu9mKfB6WYNc70ztvtmSwQvRfaxGkn23X/k/s8xt29Zmwcpc5tbzrK1/0ac6GeQDaEDcgQ7T4JSg1gkUIEwyrFPVEDsQJ3dtQYW5FDFqsiYiVyRQFQBVUsIByVgVCIXbIjFMRwpgaQEgIYFA5EmmlnwFVBaD+HAD8om+x0kujPNcB2OWF+YpdGt8v55y/cyidTR05m7GXbG/UBk7MLpDYo4b2eM+9ypWtmIYxQkyFBQdTZyoYzaLVm2gXiS5tQc9Y06gpm3bv6f7X1pkJzlde7z9df7OptmRqORBAiMEEJgmVwWly3ZgI0K+1LBqZQxhW0SsK7N5jWACyKRUBHGxNi3bHzB16FiJ4GKQ0T5VhJswIDBEgQjYcsLi0C7RjPSLL2v3/feH+ecfru1jvZBOk/VlEbdb3/L6Zbep895znNIy5Cq2nZx8aERg7ygb1usRcQs3869gCWRHRU7eFGGBNY4k/V2pyVBqRrdVz4CDBTonJUgXZvHHWByzlYn07m72nUZu5d2JPYjCWq5vXCrdeGV1u5ACxEdTlI2qKNipxl3cTanEaBMkgiW5XpazezyYZsZqrqAE7LXJdci9zwza7VMYY/if9q4nR81e+Ig/kUxpheICAW59XokQe/P73thLvk0rTnr4A+rOPGhJEWh2B0yx8UL0MwQl1uMRUibi9BjoyxMLYYpPb49RRt2zQXOHabSgBiVuYY22nSVO2dgh/j1lKgWPyPPw918wG9p8xX9izi7it19d5mey0XsJu87Vn8hehI5ToXFrqmandET9K2IVjQOVdcKSuX6xOuim4maiIzDHm324qAbbdiWV9EWpFh8LKZiIpYthumb/MYO20ET9ogAdJatmZz4nXgOiVsBdokN0j3titM9JOrWiEx8Olzftu3WXMqATc9THLr52/1onI7TVabntqStc6poeCIevd/dJbb6LxMhKIco0zFnzIqYZXaPvA/7w5YMxUps8sWhNh+xJnbSXTYeo8/kKAuUwx79OREF3gkAZ5Vt23mEu32GUvQTrxNJkPZwjwnzYI7OK4JkEY7LgMjW+T/xutXVuHvJzg0nKTbxOsWjFS3rTexOmlUEAJccOESKkxtKUhSK3WDm3Qhn4l7auMUcTASIWfZBMY791u87QCNqnV3HYnbCr3yTl2nJmzO0mc7I27kxYg+ejdgJyuIE6oBIhkBMzOQbdCFsyyXjMVrrGDtDaFvK+pnIZl8M2S6g8Rhdl2SNOstk9+5yFqIYstkcEUaKfbmQg1KIrkFabVM1eqzOBnWdZSIUAe4G+k0flcrGYraFejgJTHCbrrjupqq2nbvKZnVZ1rN0lXnYn2eNu/KRFoGsT8RRyjvyDb6n1J7VOH2MfsZidFzJRtQDJF7dkeTsRdXawo+wi+uMHLAjYQfmDSUpdn+sUtYn5AEd+zB4M45tS5dJ116ASFA2SsRqPEqkUIZdSjzKXFqUz0+yRu+1eOgARJJ/PQB8eAMPKuSSZMinlmHpSgryZyDSoPjuTJA/TLra3kkD0HW+d8feCcr2FL1WSki/66XH5+4ibUmr4FWhOAgoSVEo9oYR1nUEDJEKcY+tBYFo1eoF4nXaKMV/pBykDdsLULakHKTSyKYO+sbcWaZNYid/ex/IW2FnPmIzIeWQ3UyFuABWKCubfm+Rvu2WQnbaq5QdCkwUYnXuauE2Zym3vEUaAEyv2fR+KWxn/iRr9HwhbFtxJfsg3iaAHeyWrFHcZNMF6PzVIHeu+LTxSot1f4GuOVWzwxerrnUjrQdo49vhWnLYWSZSIQQlzkLmCpffJBvQUbG6B5evW8Sw0gZeDFPmBLDmaeUgrau7QKQGhBxLJIVwyr2HPattybD/ikzAlrLWRVvo8a3pdnO9fJhEoYOg2VEFLpHtjLNQuUTnHE7QNW7OcPasRO9NT8nqpIa4HNOKTAW45B3799d7eCrwBGVD6qyd+X0v6aXEql/e0woLx0O+bbUHiIS0YnvKfvYlyzUeg+m87QD/wBSKyUFJikKxN9RcO9MnYAA3QBtkB2/WE1G2cG9Y86piiDY6aUOOeFb8KrNiykHbrdJZsaWGRM2aw4ljqgwmbASs4VvNtR4pp4/ZzWkoRX+KCNF3qFQVr1s3XMBqY+J1IhcJzk44hnQDW9NAhIW5Ce78EIIC0MY8K0vXsiNpdSci3Owv0AbZwcLL4aT1F2l4gGHiJDb9AG2QeRbYRpjciPi2HuDBhkHKwKRqRAJjdUtCRLgc8qx2aG9zXSRWMvhvGrVcm+6/AgA4Lz8CnL/dkjMHtotIXGe9AMW4GALWTidSdto4HasYsuLg4YQV5Y5HbXlr4VD7pi8I+kRmN2dsGS1VpfPKLCCA3nODdjG3mAnuPkBQPr+FMAlpt6eI3HWV6fXSPp+PWHNBacH2HaBcpc/V6WP02W/FjiQ9NzNLx0jWbLakc8/QKxSHCiUpCsVeYOZ/Ac6ahwCwB4rM0RmPEQnoqNDjW9K0MWa5LBRrWFGp2KXLt2xJkxfClBWQ6cPSWeEa6zMh3ixiHuYyaegv0KYybydtNvkIrSuFWINhbFknzKWQesCasg0nrSeGuLDO3UW+LeUgaS0CoI26ErQuuG/02LEA04q00UobtczDSdTahwGm2eslywJjaUGuu7ShRkIU10LYeqrwvotagGIhYti+ojUDkxJHukrxbQTsvBrAdrzsC90let2GzvbMwMIhuoadcdqkPYdiWAjT+cVgTgYrJmrAeyrAWfxeDOaAn8+h+/W5Q6geoNfOH6HzPXsKHfM9o3Diy+31GtBrRAsk1v+FsO2gqrv0/s3K2tlSQW4FlpZ0KcW92U2vkZZm+X1Gnq5lzXSY+V8AAGq7lzlVosURX5+qu2d5R/yAPAem56+Ansn/u1IoDhZKUhSKfSHEHhynTtCGCdipvIUw/Wf/ZrfNuvSUaFMN8D+rAhvCibBUUuqii5D5K+I+KvbtkgVolklq9G16b9OAxdhset5qZ4xj575UXet/UeBMjsz9ibPR2e+n0XohWdJS7HFXzy9n0+9SysqHrdZDSidiyCZli9E4PdddosyK61vzu91LC8kavc6BnUwsbd4yGDBWt/OUGgH6Fp+u0mt3JtozJ46ha3WNNTrbmrZOsuLcW6MymmO+Qc87HXQdITZOG423T5XengLmODRReWeC3v+gT8cUwzkHdK1117Zgi6dKlJ2CFw61d1ZJ9sU1tmNI5gTVWoz0cgHbag1QbKtByjjlw+TYmg+TH8n0vM3ITS8Ag2/a873eY8uHAGWntmSIOHZUbImn6vLASqfpPWMytwNx6DwcxTGDkhSFYh8w53wejrnbTo81oE1ENs6RBH1LzlRow6oGacOvu/abcMBY628ZAlgK0eYl2pF6wNrtS6km5NMxXEMp9bBnyxQ1l7Iz0i0jItcAd+6EPWAkDkDEvlzOEWdaEdJKCcM4dK4tGaDKhm5S6vjZHLrOLWm61wJvhiMJiomUHHIRurdi2DrLnjJBZGJ6nshEI0DZBPHhmIhabUeSDfIAq2fpqFoRrmQZxIK+r2AzSGLUJt0sQZ8261SNsiIiUpZswjudtn1XpiFLdmZLmtvDPbo/37H3W3FsV5N0M3kBOp7MqLnsbboGcYoN+rTRS5dQV3nP1m9pKy85QLzBdvvcXZbnmFT5v+rW14qou+pS7F6ZQZ+VUghYPZPicvZO64orqLvAnDE4b3yX9EwZ0PuRj9CfYf58J+pAraqGaorjCiUpCsX+IJuxtO8CtHGISFbElKlqu3mXIM8biXQBdTN5ibDNvQgxx2J2lo9xrLtrX9EamxVDtHm6hjQPYqHfCNI1eo4lINLeG2dyBMeWUsTiXyzuG5wxmZml+xmN070VwyTgFAv/s3bSBm1AmoRoA0g4VrvSW2S7c8dqSgIGmIgAg3nKRolzq7R0Z6pEFGosmB2PWQ1IJWidTaXUEvJIMzOUopKQcay+RUYMAEQscxGrCaq5RJZ2xdkp19g5N4DVc3SV6V5rnRSbsGdLPFKCS9aAxRutGVwh3K4xEdO7LWl63TiX8AohyqrVXeBPttn18rnynfZ5SlLGykXocZlgDRBpyUXsBO1Tx4mIvNlN17QjSd1HIc868EpG6JzhPT/ngzmKWdiDOfVW+3hmkv9OFIqjBCUpCsV+YPq+Cmf7Q/Sfve/QplZ1gYZrdSDJGj02HgMGcu2mXqnqnoLGVnSXgG5YcarPpQnRYvQWiDSI/qDBHiYJdlEthO18G8fQN/Akb/ZVLhkYELnZmqYMhLS2ChE4bZxKAAFjXVe7S9al9P1byHJ/V4I23xEmKKLXeLObNrmNHURUxmK2dFMM0WOVIOkpGiUiMK/3cFmkuKe3SSNs5xPVuP1aNDbFsBXJ1gP0zb8RoE05H7F6IZ/JUylEWS7RW0wvsJGYZ4dI7owTGQz6dG1Jzt6cMUrn3hkn8vKHafRnayeNGPm91W07rgZz9HhHhTJH3SU6Ty1Isfcd4P+dCXxogy2XSXeSTFiO1emeukv0vm7s4I4xx7azv9NJr8lFrLh2MEdxev9mO6NoLEa/95RslkownATe6Ib54HVA+lD+hSgURxdKUhSKAyFWb/HOYNGpmF1JZ08pRELDGBtjxerWor0ctBmN1q6MYXbdTFeBeM3qQaR0IJCptrJBObAttjITRczI8hF6PuxRliJTsZqH7hJb6HMLdTYC9Bd5qBwbt43HbClGhhJmo0A1Yg3WchEuT3H3x0iCjueANstGgK5lU4d10pXOl2KY/jxjlNZJCUnEwtkoxUMmN4u9v+9QfGouxb8atBby0tItc2ZkdpBoWMp87v6CdXIVQer2FNBfgAndBQBwnOV0jFYiIkJWyZKNsJtupEHH39RBpbJxzqg1AuSTMhGl8506YUtbvkO2+kJ6ZWzArhbhaleZ7lXep/4CxSVWt9k7KRdmwfN80pRRyVQsYdnh0LV2lYmgiN6m5sJ0cYtwH/8oFFMUSlIUigNB2nfFSwSgb+ny7R6gjaazbDcmSf83uK1YhJNS+uku0bd+sWJvuAAa1p69EaBzFEN25oyk68OeTftHG5S+Fx+NUojS9tNK1vBNbPWlDVraSTu5jNJXtD4wkoEQO3WZ6Cv3IdqZ7Sm2Y4/Zc4l1/tY0EQYxcSuFyLxNRJixOp1DsggOaE262q65EKv5oG/bbkXXk48QyRpK0XMpFpS+3UXP9xaJrEzP27JNKWTt+esBImdia787slHa8KvBPdtve4uUCSqHiIxkqsCaOF3vhzayJihBcRC7fvn8nD5GpZmJqBXc5jkrMoM9c6pB245dde1coZE4sLmDSIvP5UaZlJ3lrpzWAX/y/leCwIYOmPfcfDCfeoViSsAxxpgDLzsxkMvlkMlkkM1mkU5rblMxeThrueRTd2kjEd1I0Kdvz6eN0ybsGto8AetFUWefk7prW01FSCmQDgrACmuNY8lDlUsJrURFOmp2RyFMm3erW6xkJcSczsA+19R7+KTziDXsJGYhK7E63e9o3GplRPuwK87D8TzyGZFOoqBvreWHUnYz7Szb8orvkMYnw50lYzF6bZqzQBITuRYhTCJqbY1XhQnFaNxqOFxD2aY8t4Qnq/RaeT8i7NESaiF+k8UbPdRCLeW8rWmKlVjCP3MaEYlYgz4z00oUx54SkSohvZsyVgck2qUZeSJY0QbP3KkR+ZVsS1/R3v/OOJGic0bo2ExU1OVVMVVxMHuxZlIUisnAcwCnJaMCA8SZMMimvC1tOzpCnhVdxho23S/zaXZHoOW7QrxuiYnoNfrYolwEsjXXemLsDikDbWODNxe02clcFiElUgaJ1dl+vg5MY01EwJDQM1anTVi6cAa4pPLbPi458D0l2TL/9R47MVeyH3+cxsPuPCpF5JnASGdKgduOxVsmUbNTgQVVl0hXV4vwOOxRBqnmUhkuwBko6ZBqzRpFOIuVjdr7E5FyIWw9YA4GrXNtBEIcALKk/+Vsq7WRz0SriFW0THHWmUjWRaZNhz3rqNtaBjSO7diS+VF/7IH52KcO7h4UiikOJSkKxSRgzv8cnNf+T8sDDolaZeOvBm3rpugojGM3VMlqiPZibyWGVqSrAKotvzOkHFLn7p+9kRRxb5VW2be6m1qE5uYmm3i0YTMa5RBtoLkIfVOfXqANUDbQrpayx9xdlDmQTVT8YwLsr2EcoKMB/JEFuRUXqIRIIHzqhL0nyejkIpRpcLgTZShJMUyww2ymaoWpovWpcWwmoqxR8YgUiQ+NlKBaJ/qKA6tkrpI18jGRYwJEGnYv8ewOIYhyXMDOUBI4hko7OxN07Ym6JXtSTtrBJanpBSuQ7SrzPKIa3VuZPzutpRzpCIrXYebcAszZ/+UqFO9WKElRKCYLmXKb9GhjC7M2oq8ArE/Ykkjdpc1INpKayzoIl7Qc1aDVUYgvxcEi5BHxGY1bp9VW5CK0KaarwPu22+sIc1fLOJcQKq41dysHrTttc/5PkIShvUXghdmUCZmetxqPUojKG9tT1itlZpaOWXXt4MGRBMVJpiaHWghDukokpK9gW7Fdvp4YkzLpkpIskFjt11y6j9lZ284tviTRBl2TZKQMe62UQ3Q+x9hOpG1pW8JrHdS3N4guBqD7aiUnol8SEiq+LnPGrK9LNmIt/cshuv46d2ola/TYRJQHRKbpPvoLwHASpu+rB/lBUSje3VCSolBMEuZPboCz7vt20rFMld3YYTelOJdOxJgs2rAzXMT23gGVPKQ00F+gTbb1m3IhbL+tt4pmBdmoLQ8UwlSGkY1TpjdLuUD8U8SV1TWURTCgaxFn06BvywebM/T3TjYfe7ObXjuSoGsZyNPm/E4nEbWuMnuoODZTUQ7SBhxtENnIRjlLUbEGc1LRidV5EnPETlY+fcxu5oKRBB3PATujNux8nLAHxACcwlqUmkvX4fo8B4gJSIAJ0ETUdsK83UnvoxC63bF7dkWyYWKqJ+UiBxTvbJQ6bk6ZoPd2LMbdVlXbSYTlZMsfq5O+pVUsK3H0HJgzb6JzqmeJ4iSEkhSF4mAQ4Y6TaIMHwMGWdipBa3Mv4tqJKH37B2jzkaGB21gs5vp2hk7A0LHFkn1H0paPRPAa5RbkSpA2sfEYZQ0qQdrUhczIzJ+JKH2Tl6nNIsYFrD5ChhnyoDj4Dm2oExE6vuhs8mHSqXSWacPPR2jdaIyOIzNkokwcekt2QvJgjq5TuqOkpVhKTbEGCUgDhghHT8m2JIc8ytSEPSpDBQyRsCy3QjcC9D4EDMUmXQVcD8i06Ex8h7p93uy2pZPWwX3n74OcAMCrA3QN8TrFLh+h90FGELjGztkJe/ZnYwfwq1mUIZL3Y3bLOWW+T407eE4jQ7Y2h9fuQ/iMKhQnEJSkKBQHAfOem+kbcCukxbgYsmZvBrRppWpAR8lOQJZv3k03U86WTERpg835QCXD4tggdXTEeO22IM/BMXZAYKxBx82HgfVdpGUQg7Ni2M7tkYGGQR8IMGHx2YVWWnPrrhX4jrOVfz5gyyrSuttfsPNtQi4JOl2fshwTUYpJb9Ha2KeqdiaPCIdl8J20ZO+MW6JUCtlZPt0lIizivLqhg2Lo8pwcIScBQxu+67OtfQs5kfsT8mRYjyLDHxs8E2c4aU31Xuun45eDlhhVXaAQo3XdfE1p9pYBbPdSnu+15tpJ0wbNMlLz85OPNgc5mg995ih8WhWKdz+UpCgUh4uAsRtfIWQ3wq6yNQ6rubRJlkOkA3H4dVIycEBrQj7g+UAlbJ1ihdBIWQawpaJKkDZg0XCYqM1EJNg5FSACIiJZKU0Zx2ZOQtxKLWZxMpxQTMAG8rThZlq8TCQL4DBJ6C/Qj2hKIlx+inEGJxehdekK4IOuJ16n4xbCJMaVzEnEa+mACQLJEt2XCEmn54kUShdQ2LPdP63DBkXzUmJRsFj1y+TmMSYdH9rQ7vpbCVK2qxCmLNBgzhKnwRyVcsStVrI+QUPvxXDCZtMSdYqjuPkyDJbb8k3HEfkUKhQnJJSkKBSHCmkllfZZGYQnpZ8tGdrIQpw5EJt4yaoAtGFLOSdToWOmqmzMxiUdmaqc4PJFOWhdWMW6XjIS4oxb4nlDQqB8B4iyPqUSpCxAlHUgsYY1Zot4dPwIZ0pqLmVF5P7EUVVaeVsJgUB0FVXOJAgZmZEnohFj749SiH6PcIkrH7GakaoLjCbp/AN5nijN5EXKTaJXqbl0nN68vYYtGZtlCXu2+6enRDGOeERotqaBXJ20Ne9hG3zp+hnj0QKS2ZEhhEk2jnON7XiSOUOxhh02+UY3EGVPlNkT6luiUBwClKQoFAcJg+Vw1jxEG+9AnjZ6ma2TC9nBgeKBUeWSSNAnnYmYuRXC1gq/wd0dxqGNvdhCeCINIhUOrwv5QKBB2YhUjX4aAcoYFENWVColIWmFDvrkmVJ3iYiIp0g5ROWLTIXWhjz6M8utzHXuoJEuFums2VdXkszVKYfo3hN1ytCIm26JiZoBXa9ke2TGz+YM/Sl+MSMJil+yxmWpFh2N79A1VjnDJO2+Yvomg/hkHMFYjLI90gItJm6zs+33MH8EOHOUrk/8WsohK56Ve5eyjkxpbplsbRZ8/rA+ZwqFQkmKQnFoKHLqf0eSNvBSyPp0ZCP22/ivB6xFumgT5oxT1kDKAI0AbcjFMGUqxjmjsStOG3LAtAtSpYwyytORww2gHrYW9HPG6XydZdr4yyHbyusFgIZnSYOUT+T5eJ1Iie8QAdvJrcNvdxFxkKF3kkXa2EHXMJAnImVgPUeq3I494VrLfTEmAyhWVde6xW7K0HETvCYXoY0/2NKdIwMMow36u2QyHJAnS7xB8a66dnxAhrNVjiFyUm4ZDDnMgwmfOg1YMEz3IeWwkAd0cKwlc7Ohk+5ROnFE9Mzlvma2JHmUPncKxUkGJSkKxSHAfOA6OM/8iDa+eN3qM8Z5Bk2RNSLv3wKs7Wdywd+yDYhAhHwy8Wr1DZENPMadJF6gfVMPGNow6wEr+sxFWTDq0fG2p+z6CnuNSBtzKWQ1IA5sqafMGQ2nSI8NJ2ldR4WHFrKOo7tE5GFX3Hq9vNNJ99c9RM9Jx5IIg0VULJt/ogZUeU3FJcFvZ4Uej9Ssi21nxQp/K0E6Ty5CWZXRmB0/YECPd1Ts+QdKVgPUCNAxvQCRN8C2T29JU7xiPI8owPb14qsiXjfjUSKR4iYsxASAmfWlo/hJUyhObihJUSgOFZ7Tbt1eDlKppxoks7eEa0Wnac6QJGo0Y0XcaTd00gbaYLFtmQcKVoO2LCH+I55Dj0cb9HuIj1EOAXGZKwSrbcmHabOVUlKUS0sel4xGY3RtNZfWegESi87O8uTiMK0TrcVIgq7FC1A5JBehzMr522m9y74qO5J0Ht+xJKPMmo3+Yrv3SaoKpLZRxqYRsJ1CEc+KUvMRutausj1mMWzvqTUD5Rg76LDOJaCIR263Udb0ZKP0XH+BzjkzR4QnUbdt4zIMMtPaFQTqxJmppEShOFZQkqJQHCLMR66Fs/5/W0fTRB3IO9a4zIA29LN30iYqLbfiKxJtADNylMFwWUPS2aBNdZx1H/0Feo0Mw3ONHVjoGCsAFddY49gNfTxKJEMs2dNVIkfTeDBhpsLlHp6h47LPyPYU+Xnsilv301PHrZB2WwroCNM1tHqNCEJsc5+u2vZgcXmtunQ/Yh7nMYGK1am7Zzxm9SKigRFfGCGFXsCWXKQbSNqIZYLzSKJdN+M5QIDfj44KxTvKIleA3sNiiIcsunQ95WBTb9LmXaJQKI4ZlKQoFIcDB3azlSFyIwkiDzE2+GpErQFZjbUN3TwFeCfb6SNg1yfq7MoaoSxC0KcsQJV9UcLgjTpAGy/Ac3x82oBlQJ+YyIW5Y6ezTMRkONmu9QgYoEOGD7J3yla2iS9zNiEXoXOPxklQWgnS77kIZTcGc+1W8JLBidfZmbdl4GIhTARIJiT3setqnbUrlaDtYjIOHUMmGW9Lsc6katuvI167aDjP9vIi+BXBrg8ib9K63Cr8jTRsOW5XHCZ8F9B/DD4/CoViv1CSolAcDnpKdjMVq/R4nT1KwrQBTyvSxjqSoE1URLB1175e5v1E67atOVmzYlvRjYgYVUzRJDMR8injIcLdTNU60Yqj6TudPFG5aFuDow0iJOJJsqmTNvL3jFKWorNME4+7y9ZLRfQvIlAV19jTxukYkQYQDNB1pHgWTbRhNSQSt6GUbe91o3ZuzpZpVBKrhOhYomsZ53k2AB3LNTYDNZS0ZnPGAcaiRGBKTEgccJnLA0y4fTAgoyl67Tl6HxeFQnFwUJKiUBwGTOZ2OMW/pw083fLt3ncoA9HJ7q8OaOP/TT+JT0fjZEjmGiDFWhTfIUMwyWC0znFpFcrK7BkfdN56wPp2lILWx0PKSz0lq3PZ2EHkoBCmxx1jN/OeEnDeDtKlSNfSaJx0Ir5DZSDp5JG5QakqCV8liyJdP+UgkZ18xPqeNALWo6QUstmWsRiRsaBHWZDOChGnGnfvjLKtvkw0Fs+SmgskOIslGZsKa3nEDj9Zpfv2HJup4dZu9S1RKKY+lKQoFIcLyXbUXBaP8pDBbAR4ZYC1J3naSGdP0CYrXTKA7SIRe30DW/qR2T0+C2dlzmDAAAVuY07WgDq3KdddKgEFWgbsZXkA4JYMkYAZo6xTqVHZRdqCN2eos2UoSedfOETrtqeIwAzk6fU11/qH+A7pOopha2YnhmcAkRhwbHbFiTBIt5K0V0c8O+ywymWkaSUqAUmWSJxjGwHrCSOxH0oC2zNEpsSKH6DskR+1BKoegOn9GjDtKH4WFArFEYWSFIXiMGEyt8PZ+i3aDOtcjimyPf7GDusbkmJvjbBnh9KJJX0hbDUhCNgNXKYVSwlIBLTVIB0vGLKGZsWwtayvMgnJVNgyPkxkZd4u9lZhwzbpogkYq9M4Z4Ss3XfF6bxzdwFrphNJaQQA+ER6phfoHKmabdXdG6TzRmzhpR1ZrO8dQ6UdeFbQurGDxLrJGtBdpcxKbxH4wzTb4pyPUDkq6JNmxWPRcHeZtTtF0pYoFIp3LZSkKBRHAvkwiU+l7OBwK7KYg0XZe2QgT487xuol2G8DLpcwwBkKmWvTUqJoZkhkMGCyRoSnwh1GQdamTCvSui08IGZGjjb5bIt4txwkMjQrS4Qk7AFvdZG2ZFqJiEGdW3TPHSbRqmhuhFCNxknr0lWm4+wL4pUykLei2Sjb4/sOHVfIXLpqxa6uofuSjqFchMo5AL0+Ubc+KmEPCBoY9685nkfjjVYoFMcSSlIUiiMAc9ZNcF75AWUWYg0gyeQj6APxGmlNJFviO+RFUg7aFlohNdEG6UrEnr7OG3eQMykAt9yy8LPV0l5m2MyeoM1cykpDKS6h8GRicbkthaztfCFMWYrBHPBGDw3b6yrT/UzwNcYaRFp2xa3bapTLUq4Bhj3KaOwNkQZNMJa26zd66HdJwIhFfsgHAiFLSHqL5HY7Z4zKWwFDWZkMG71tTcOc+7/seVT0qlCcUFCSolAcKSQ4q5FnUWqYbfJDHpUmIg0qR4R8YFMHbcwzc0QCZFKww3N/JMMi045lenGNZ+GUQGsk2xBt2LZiWe871JnTX6BjjsWItJRZJOsaEqnWXGD6GL1+R5KyLKNx+nMkQeUcEev2F+jaS9wp01km0jIRpfPKfKF0td20Lcmzf0ohtuoPAvW4HTooXjAicpVSjstC4gCItAR9mPd97pi9pQqF4vhCSYpCcYRg5t0IZ/vfAwkuP0xEqQRSDllhrIH19fAcu7nL7B8pBbk+61Ng9SMAHVfKRIWw9R4ZjVOXjghTu8pUXkpXbYYFoNeJDqV1iN8Qd/P0lGyWZVqRiJdY5tddIjGxuhW8jnLpphwEwiEiQg6orDRn3F4/QASnEKbf/8c2IkD5iB1+WHNJO7Opg9Y0WJuTqsJE7gTmHOU3UKFQTDkoSVEojiDMwFcAAM7ofbSxZ2Wujk8ZFgDoG6eMirjH+g61F7usUxFxre9YP5WKC0Q9EoV63JJcDVL7bcDQ6/Nhah+OsPV7jq3eQ0yKpLwj1zWtSKQp7FlSIwMMU2x/73J5qBq0AxTFiTVZo44g6cLJR6hkk41y6zB36ZwyYY3SRAsTa1BGxQvYgYyiwzl3B8y8G4/L+6dQKKYWlKQoFEcDhTBlDiSLkovQBuwaIhm5iPU/aW2tlem9Iwn6U0pGqRodMxchMzbXMAHh7phshLIyAUPZjOEkaT/SdSIj0mI8vUCk5/QxO3xQJg6LX4rr81BBcFsx2IQOtE6GHI6xNmRzhkhShK91ep5i4Ds02XhTBvjI2zY2MTaQ66jQ/SbqwLYUzIXXH/v3SaFQTGkoSVEojgZc7lZJ1mgjnpGnP/sLVDKpcBYkVm/pZPFt5iPLZSDfodeVg0RUxHE1FwESns1CRBuk+diWJqv9RI2IhhCZ9UwKZLJxhWfVyPC8VI3IxUSUsjyZCpGncqg5WA+uobJMrE7twTsT7LuSJ7IV8ei6wh55q/QViGxlqsDTp1FWZVaWtCaDOTJTS3K8Zh6H90ihUEx5KElRKI4CzOCX4fh3t09JHotRZ0ohzG6ysEMDkzXb+VNiH5EAu8iGufvHc4AtHVTykYyJTPqtuUQotqXI12Q4QSRkJzvGnjbePp3YgPQnYzHKbNRcEtmmq0C8YbMrLnu1xHiWTl+B7mEoZScOJ9kULmDsYEOx7U9XiTyxb4zpvO04vBsKheLdCiUpCsXRgohNG2xbLxt7nIWnKZ4KHGChbD5sfVBc3xIKmY8j2hEpBcn0YAe0fjhJ5ZzRGPmRBPicYkffWSHy4nu2dOM71twtU6Xry4d5fZnIihCOaVzOAeyAwXidrqERAPI8h0emP1ddmP959XF8AxQKxbsdSlIUiqMEk/w6nFcfJjLigLIJMt8nWSMSk6oRAdnUQWRkMGfLLx6bt00rEfGQzEa0wVOP2bvk9R46RyFMJCZdJcKxI0ktx2Lg1lukCxtKWn2McayjrRck/5WaS+esunSssEcZmrpr7ehDHpWUAobM3Hx2e03WYD72qeMUcYVCcaJBSYpCcTSRD7P1PbfhVoNESsQDpcKDBKMN0oo4sG3AIc6klPmfqTizBn3bMeRwRsZ3SH8yEW2fc9NqV5+NEjHqKtuJza4h8lTkDIjPmpWaa91r85xxEYO4ubuA308DTp0g8jI7C3Pqrcc4sAqF4mSAkhSF4ijCLP4snKd/ROTD4xk7mYolKGXWn2QqRDzCHpESMWMDLIHwAoDLrbzSojySpBbf4SRQ43bkjgoJaH0HcNkjxWUNS6JG1wKfHh9nUjON9SldZSI9pRCdL1OldZsylP3pKANb0jCLP0vXMftYR1ShUJxMUJKiUBxtSJZEHFjDbNo2m2fmdJWBXSyClUF/YoPvBUhcaxxaZ2A7hsJsDjcRZf+TMDBBJZemW2uAvVgMiHxko0SIAqAMinGoxOTATlze1EFW/tMLRFZmT8DM/uJxCp5CoTiZoSRFoTja6KhQpsJziAyMsw3+WIyIA0BaEBlOWOWOHSkT+Y4V0Ia4BXiCyUZvkTIt+TCVaObuou6bugvEK0RSHBA56eRZPLmILfeEPSJCBqSDGY3ROSdiMGfdBHQcn5ApFAoFoCRFoTjqMPO/AOcP3yMy0MH+I9PZQ6Tq0p89JZ7dAyIzVZeGEjYCVmgr83/AQwerQSrz9BfomNvS5E9Sc8mSvsyv25rmmToJWhdr8NRjFtvKPKBiCGbh0uMZKoVCoWiDkhSF4lgg4gF1Q2Shu0QdNuIxEvGIlPg8YDBkgFqINCYuC2VzTFBCPnXrAFY7MhajjElPiYjM/BHgjW4rnvUCwPu2s4EbkxJubzbzv3B846JQKBT7gZIUheJYIMDGZz0lyl6EfCrBiANsigcB5iNUeok1LHGRGT5S/hnIU9tv3aW1mYrNlqSqpDU5c5QcZPMRakU2TrPkY7rUUE2hULw7oCRFoTgWmJklwlB3bUuv79j23+4SZVSSNcqY5CNEPiai1iK/q0wEp9EgF9l3OonMOLDD+qR7p7sEbOyAOf9zwKl8DanjdO8KhUJxiAgczotXrFgBx3HwxS9+cZ9rXnzxRbz//e9Hd3c3YrEY5s6diwceeKBtzQ9+8AN84AMfQGdnJzo7O3HppZfiv//7v9vWfP/738eCBQuQTqeRTqdx0UUX4b/+678O5/IVimOHoE8EZChJ5ZpcS4YjzDNvJqJWKNsI0PpZWWoxzlRIYyJmcHU2Z5MuoFiD/jQOzDmfhxn4ChEUhUKheBfjkDMpr7zyCh5++GEsWLBgv+sSiQRuuukmLFiwAIlEAi+++CKWLl2KRCKBz32O/hN97rnncPXVV+Piiy9GNBrFfffdh4985CP4/e9/jxkzZgAABgcHce+99+L0008HAPzjP/4jrrzySqxduxZnn332od6GQnHssDNOnTeRBpVidsWJWJSDlC3pLtH8nHk7iaD8to/KQ2GPxLE7E/Taepw9U3wq9wQMzDmfP953p1AoFEccjjHGHHhZOwqFAhYuXIgHH3wQ99xzD8477zx8+9vfnvTrr7rqKiQSCfz4xz/e6/Oe56GzsxPf/e538elPf3qfx+nq6sI3v/lN/OVf/uWkzpvL5ZDJZJDNZpFOpyd9vQrFkYDz8v+lX+rc5ROv29JPokYZkkKYxLDn7aDfpbMnU6XXZUgsa1J3HN+bUSgUikPEwezFh1TuufHGG3HFFVfg0ksvPejXrl27FqtWrcKiRYv2uaZUKqFer6Orq2uvz3ueh8ceewzFYhEXXXTRPo9TrVaRy+XafhSK44qgTwQl7PGMnqqd4zMRJcKSjVI7cdCnluLf9sGk7oDpug3G/WslKAqF4qTBQZd7HnvsMaxZswavvPLKQb1ucHAQO3fuRKPRwPLly3H99dfvc+3tt9+OGTNm7EGC1q1bh4suugiVSgXJZBIrV67EvHnz9nmcFStW4O677z6o61QojhbMBdfD+eUj1NEj04QbAfo90gBSDpWAMhVaP/hlYPA4XrBCoVAcZxwUSdmyZQtuvfVW/PznP0c0Gj2oE73wwgsoFAp46aWXcPvtt+P000/H1VfvOcb9vvvuw6OPPornnntuj3OceeaZeO211zAxMYHHH38cn/nMZ/D888/vk6jccccd+PKXv9z8ey6Xw8yZMw/quhWKI4rOCs/saRkaaHhGj+vDXHbt8bs2hUKhmGI4KE3KE088gT/90z+F67rNxzzPg+M4CAQCqFarbc/tC/fccw9+/OMf44033mh7/P7778c999yDp59+Gueff/4Bj3PppZdizpw5eOihhyZ1/apJUUwFOK8+TGWeiKczcRQKxUmHg9mLDyqTcskll2DdunVtj1133XWYO3cubrvttkkRFAAwxqBarbY99s1vfhP33HMPfvazn02KoOzrOArFVId5n7YGKxQKxWRwUCQllUph/vz5bY8lEgl0d3c3H7/jjjuwbds2/OhHPwIAfO9738OsWbMwd+5cAOSbcv/99+Pmm29uHuO+++7DXXfdhX/5l3/BKaecgh07dgAAkskkkskkAODrX/86lixZgpkzZyKfz+Oxxx7Dc889hyeffHLS1y9JIxXQKhQKhUJxfCB78GQKOUfccXZoaAibN29u/t33fdxxxx3YsGEDgsEg5syZg3vvvRdLl9pBZg8++CBqtRr+7M/+rO1Yy5Ytw/LlywEAw8PDuPbaazE0NIRMJoMFCxbgySefxGWXXTbpa8vn8wCguhSFQqFQKI4z8vk8MpnMftcckk/KuxW+72P79u1IpVJwHOeon0+Eulu2bFENzGFA43hkoHE8MtA4HhloHI8c3m2xNMYgn89jYGAAgcD+nVBOqtk9gUAAg4PHvqdTrPwVhweN45GBxvHIQON4ZKBxPHJ4N8XyQBkUwWHN7lEoFAqFQqE4WlCSolAoFAqFYkpCScpRRCQSwbJlyxCJRI73pbyroXE8MtA4HhloHI8MNI5HDidyLE8q4axCoVAoFIp3DzSTolAoFAqFYkpCSYpCoVAoFIopCSUpCoVCoVAopiSUpCgUCoVCoZiSOKlJyimnnALHcfb4ufHGG/dYu3TpUjiOg29/+9ttjz/88MNYvHgx0uk0HMfBxMTEHq8dHx/Htddei0wmg0wmg2uvvXaPdZs3b8bHP/5xJBIJ9PT04JZbbkGtVmtbs27dOixatAixWAwzZszA3/zN30xq9sHRxuHGcWxsDDfffDPOPPNMxONxzJo1C7fccguy2WzbazWOFvv6PC5duhRz5sxBLBbDtGnTcOWVV+L1119vW6NxtNhXHAXGGCxZsgSO4+CJJ55oe07jaLGvOC5evHiP13/yk59sW6NxtNjf53H16tX48Ic/jEQigY6ODixevBjlcrn5/AkbR3MSY2RkxAwNDTV/nnrqKQPAPPvss23rVq5cac4991wzMDBgHnjggbbnHnjgAbNixQqzYsUKA8CMj4/vcZ7LL7/czJ8/36xatcqsWrXKzJ8/33zsYx9rPt9oNMz8+fPNhz70IbNmzRrz1FNPmYGBAXPTTTc112SzWdPX12c++clPmnXr1pnHH3/cpFIpc//99x/JkBwSDjeO69atM1dddZX56U9/atavX2+eeeYZc8YZZ5hPfOITba/XOBL293l86KGHzPPPP282bNhgXn31VfPxj3/czJw50zQajeYajSNhf3EUfOtb3zJLliwxAMzKlSvbntM4EvYXx0WLFpkbbrih7TgTExNtazSOhP3FcdWqVSadTpsVK1aY3/3ud+bNN980P/nJT0ylUmmuOVHjeFKTlN1x6623mjlz5hjf95uPbd261cyYMcP87ne/M7Nnz97nf2bPPvvsXknKH/7wBwPAvPTSS83HVq9ebQCY119/3RhjzH/+53+aQCBgtm3b1lzz6KOPmkgkYrLZrDHGmAcffNBkMpm2D+WKFSvMwMBA2/VOBRxOHAX/+q//asLhsKnX68YYjaPgYOP4m9/8xgAw69evN8ZoHAWTieNrr71mBgcHzdDQ0B4kReNIOFAcFy1aZG699dZ9HlPjSDhQHC+44AJz55137vOYJ3IcT+pyTytqtRr+6Z/+CX/xF3/RHD7o+z6uvfZafO1rX8PZZ599SMddvXo1MpkMLrjgguZjF154ITKZDFatWtVcM3/+fAwMDDTXfPSjH0W1WsWrr77aXLNo0aI2s56PfvSj2L59OzZu3HhI13Y0cKTimM1mkU6nEQzSeCmN48HHsVgs4pFHHsGpp57anPytcZxcHEulEq6++mp897vfRX9//x7Paxwn/3n853/+Z/T09ODss8/GV7/61eY0ekDjCBw4jiMjI3j55ZfR29uLiy++GH19fVi0aBFefPHF5poTOY5KUhhPPPEEJiYm8NnPfrb52De+8Q0Eg0Hccssth3zcHTt2oLe3d4/He3t7sWPHjuaavr6+tuc7OzsRDof3u0b+LmumAo5EHEdHR/G3f/u3WLp0afMxjePk4/jggw8imUwimUziySefxFNPPYVwOAxA4whMLo5f+tKXcPHFF+PKK6/c6/Max8nF8ZprrsGjjz6K5557DnfddRcef/xxXHXVVc3nNY4HjuM777wDAFi+fDluuOEGPPnkk1i4cCEuueQSvPXWWwBO7DieVFOQ94cf/vCHWLJkSZNlvvrqq/jOd76DNWvWNBnvoWJvrzfGtD1+KGsMi5kO9/qOJA43jrlcDldccQXmzZuHZcuWtT2ncZxcHK+55hpcdtllGBoawv33348///M/x69+9StEo1EAGscDxfGnP/0pfvGLX2Dt2rX7PbbG8cCfxxtuuKH5+/z583HGGWfg/PPPx5o1a7Bw4UIAGscDxdH3fQAkqr3uuusAAO9973vxzDPP4B/+4R+wYsUKACduHDWTAmDTpk14+umncf311zcfe+GFFzAyMoJZs2YhGAwiGAxi06ZN+MpXvoJTTjll0sfu7+/H8PDwHo/v3LmzyVD7+/v3YKnj4+Oo1+v7XTMyMgIAezDf44XDjWM+n8fll1+OZDKJlStXIhQKNZ/TOE4+jplMBmeccQY++MEP4t/+7d/w+uuvY+XKlQA0jpOJ4y9+8Qu8/fbb6OjoaK4BgE984hNYvHgxAI3jof7/uHDhQoRCoWYGQON44DhOnz4dADBv3ry245111lnYvHkzgBM8jsdaBDMVsWzZMtPf398UaRpjzK5du8y6devafgYGBsxtt93WFCK14kDC2Zdffrn52EsvvbRXQdP27dubax577LE9BE0dHR2mWq0219x7771TShh2OHHMZrPmwgsvNIsWLTLFYnGPY2scD+7zKKhWqyYWi5lHHnnEGKNxnEwch4aG9lgDwHznO98x77zzjjFG43ion0eJ5fPPP2+M0ThOJo6+75uBgYE9hLPnnXeeueOOO4wxJ3YcT3qS4nmemTVrlrntttsOuHZvquuhoSGzdu1a84Mf/MAAML/85S/N2rVrzejoaHPN5ZdfbhYsWGBWr15tVq9ebc4555y9toZdcsklZs2aNebpp582g4ODba1hExMTpq+vz1x99dVm3bp15t///d9NOp2eEi12xhxeHHO5nLngggvMOeecY9avX9/Wrrd766zG0WL3OL799tvm7/7u78yvf/1rs2nTJrNq1Spz5ZVXmq6uLjM8PNxcp3Fsx2S6pLCPFmSNo8XucVy/fr25++67zSuvvGI2bNhg/uM//sPMnTvXvPe979V/1/vB3j6PDzzwgEmn0+YnP/mJeeutt8ydd95potFos2vPmBM3jic9SfnZz35mAJg33njjgGv39uFZtmyZAbDHj3xzNcaY0dFRc80115hUKmVSqZS55ppr9si4bNq0yVxxxRUmFouZrq4uc9NNN7W1gRljzG9/+1vzgQ98wEQiEdPf32+WL18+Zb4lHE4cJQu1t58NGzY012kc27F7HLdt22aWLFlient7TSgUMoODg+ZTn/rUHt9sNY7tOFSSonFsx+5x3Lx5s/ngBz9ourq6TDgcNnPmzDG33HJL2xc4YzSOu2Nfn8cVK1aYwcFBE4/HzUUXXWReeOGFtudP1Dg6xkwBSz6FQqFQKBSK3aDCWYVCoVAoFFMSSlIUCoVCoVBMSShJUSgUCoVCMSWhJEWhUCgUCsWUhJIUhUKhUCgUUxJKUhQKhUKhUExJKElRKBQKhUIxJaEkRaFQKBQKxZSEkhSFQqFQKBRTEkpSFAqFQqFQTEkoSVEoFAqFQjEloSRFoVAoFArFlMT/B/e6HwLziFaoAAAAAElFTkSuQmCC", @@ -109,7 +263,7 @@ "" ] }, - "execution_count": 2, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -127,10 +281,13 @@ "locations = LayerMeasurements.from_unique_entries(['easting', 'northing'],\n", " site_id=site_id)\n", "\n", + "# Form a polygon object\n", "triangle = Polygon(locations)\n", + "\n", + "# Query the db for raster data in the triangle\n", "ds = RasterMeasurements.from_area(shp=triangle, observers='ASO Inc.', type='depth',\n", " date=date(2020, 2, 2))\n", - "print(ds)\n", + "# plot it up!\n", "show(ds, vmin=0, vmax=1, cmap='winter')" ] }, @@ -139,10 +296,12 @@ "metadata": {}, "source": [ "## Recap\n", - "Isolating raster datasets can enable users to build out workflows using minimal data from snowex. \n", + "Isolating raster datasets can enable users to build out workflows using only data of interest! No more downloading massive datasets (unless you want to!) \n", "\n", - "**You should know**\n", - "* How `RasterMeasurements.from_*` differ from `PointMeasurements.from*` or `LayerMeasurements.from*`" + "**You should know something about**\n", + "* How `RasterMeasurements.from_*` differ from `PointMeasurements.from*` or `LayerMeasurements.from*`\n", + "* Raster with too coarse of filtering were error out due to too many datasets.\n", + "* Rasterio datasets offer a useful sample function for point extraction\n" ] }, { diff --git a/book/tutorials/snowex_database/6_wrap_up.ipynb b/book/tutorials/snowex_database/6_wrap_up.ipynb index 90da625..4bd370d 100644 --- a/book/tutorials/snowex_database/6_wrap_up.ipynb +++ b/book/tutorials/snowex_database/6_wrap_up.ipynb @@ -17,7 +17,7 @@ "* Open Source software means you can participate! Checkout the repos involved:\n", " 1. [snowexsql](https://github.com/SnowEx/snowexsql) - Access tool for querying the database.\n", " 2. [snowex_db](https://github.com/SnowEx/snowex_db) - Source code for managing the db\n", - " 3. [insitupy](https://github.com/M3Works/insitupy) - python package for reading insitu measurements\n", + " 3. [insitupy](https://github.com/M3Works/insitupy) - **NEW** python package for reading insitu measurements files\n", " \n", "* Can I work locally? Yep! Checkout the [python installation on RTD](https://snowexsql.readthedocs.io/en/latest/installation.html#python) If you are just doing python development you do not need to install the database.\n" ] @@ -32,7 +32,7 @@ "\n", "Big thanks to all the dedicated scientists who went out and collected these invaluable datasets. \n", "\n", - "A huge thanks to HP Marshall who originally gave us the opportunity to build this a couple years ago. And thanks to Joe Meyer who pursued funding to develop it futher. Buy them a beer or better yet volunteer for field work to hang out with him! \n", + "A huge thanks to HP Marshall who originally gave us the opportunity to build this a couple years ago. And thanks to Joe Meyer who pursued funding to develop it futher. Buy them a beer or better yet volunteer for field work to hang out with them! \n", "\n", "❄️ Go forth and snow science! ❄️" ] From 71ffc128c32380f725321e9fd8537b2efab5c687 Mon Sep 17 00:00:00 2001 From: Micah Johnson Date: Thu, 15 Aug 2024 20:02:16 +0000 Subject: [PATCH 15/21] Rerun with final data upload --- .../2_database_structure.ipynb | 41 +- .../snowex_database/3_forming_queries.ipynb | 426 +++++++++--------- .../5_plot_raster_example.ipynb | 26 +- .../snowex_database/7_bonus_challenge.ipynb | 222 --------- .../snowex_database/api_intro_example.ipynb | 289 ------------ .../api_plot_pit_density_example.ipynb | 214 --------- 6 files changed, 241 insertions(+), 977 deletions(-) delete mode 100644 book/tutorials/snowex_database/7_bonus_challenge.ipynb delete mode 100644 book/tutorials/snowex_database/api_intro_example.ipynb delete mode 100644 book/tutorials/snowex_database/api_plot_pit_density_example.ipynb diff --git a/book/tutorials/snowex_database/2_database_structure.ipynb b/book/tutorials/snowex_database/2_database_structure.ipynb index b3e7bca..99ca9a9 100644 --- a/book/tutorials/snowex_database/2_database_structure.ipynb +++ b/book/tutorials/snowex_database/2_database_structure.ipynb @@ -49,45 +49,24 @@ "id": "07bf71eb", "metadata": {}, "source": [ - "### What can I use to filter a query?\n" + "### How are tables structured?\n" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "8fd4e693", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "These are the available columns in the table:\n", - " \n", - "* site_name\n", - "* site_id\n", - "* date\n", - "* instrument\n", - "* observers\n", - "* type\n", - "* utm_zone\n", - "* date_greater_equal\n", - "* date_less_equal\n", - "* value_greater_equal\n", - "* value_less_equal\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "# Import the class reflecting the points table in the db\n", - "from snowexsql.api import PointMeasurements as measurements\n", + "from snowexsql.api import LayerMeasurements as measurements\n", "\n", "# Grab one measurment to see what attributes are available\n", "df = measurements.from_filter(type=\"depth\", limit=1)\n", "\n", "# Print out the results nicely\n", - "print(\"These are the available columns in the table:\\n \\n* {}\\n\".format('\\n* '.join(measurements.ALLOWED_QRY_KWARGS)))" + "print(\"These are the available columns in the table:\\n \\n* {}\\n\".format('\\n* '.join(df.columns)))" ] }, { @@ -97,6 +76,8 @@ "source": [ "**Try this:** Using what we just did, but swap out PointMeasurements for LayerMeasurements.\n", "\n", + "Did you collect any data? What is it? What table do you think it should go in?\n", + "\n", "For more detail, checkout the readthedocs page on [database structure](https://snowexsql.readthedocs.io/en/latest/database_structure.html) to see how data gets categorized. " ] }, @@ -133,6 +114,14 @@ "\n", "If you don't feel comfortable with these, you are probably not alone, let's discuss it!" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e260d71e-c4d8-4f4f-b170-4f64f8fa56ed", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/book/tutorials/snowex_database/3_forming_queries.ipynb b/book/tutorials/snowex_database/3_forming_queries.ipynb index 0ec8707..5a8fc23 100644 --- a/book/tutorials/snowex_database/3_forming_queries.ipynb +++ b/book/tutorials/snowex_database/3_forming_queries.ipynb @@ -8,7 +8,7 @@ "\n", "Get familiar with the tools available for querying the database. The simplest way is to use the api classes \n", "* [`snowexsql.api.PointMeasurements`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L185)\n", - "* [`snowexsql.api.LayerMeasurements`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L262).\n", + "* [`snowexsql.api.LayerMeasurements`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L262)\n", "\n", "* Each class has to very useful functions\n", " 1. [`from_filter`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L192)\n", @@ -19,7 +19,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -69,30 +69,6 @@ " \n", " \n", " 0\n", - " 37.0\n", - " Banner Snotel\n", - " IDBRBS_20191218_1000\n", - " 27.0\n", - " None\n", - " None\n", - " None\n", - " None\n", - " 167.0\n", - " AD\n", - " ...\n", - " 2019-12-18\n", - " 2024-08-13 17:49:44.561044+00:00\n", - " None\n", - " 2178928\n", - " https://doi.org/10.5067/KZ43HVLZV6G4\n", - " 2024-08-13\n", - " None\n", - " density\n", - " None\n", - " None\n", - " \n", - " \n", - " 1\n", " 47.0\n", " Bogus Upper\n", " IDBRBU_20191219_1000\n", @@ -100,14 +76,14 @@ " None\n", " 232.0\n", " 237.0\n", - " -9999\n", - " -3176.6666666666665\n", + " None\n", + " 234.5\n", " AD\n", " ...\n", " 2019-12-19\n", - " 2024-08-13 17:48:18.956152+00:00\n", + " 2024-08-15 19:47:45.611639+00:00\n", " None\n", - " 2162916\n", + " 2325013\n", " https://doi.org/10.5067/KZ43HVLZV6G4\n", " 2024-08-13\n", " None\n", @@ -116,7 +92,7 @@ " None\n", " \n", " \n", - " 2\n", + " 1\n", " 37.0\n", " Bogus Upper\n", " IDBRBU_20191219_1000\n", @@ -124,14 +100,14 @@ " None\n", " 249.0\n", " 252.0\n", - " -9999\n", - " -3166.0\n", + " None\n", + " 250.5\n", " AD\n", " ...\n", " 2019-12-19\n", - " 2024-08-13 17:48:18.956152+00:00\n", + " 2024-08-15 19:47:45.611639+00:00\n", " None\n", - " 2162917\n", + " 2325014\n", " https://doi.org/10.5067/KZ43HVLZV6G4\n", " 2024-08-13\n", " None\n", @@ -140,7 +116,7 @@ " None\n", " \n", " \n", - " 3\n", + " 2\n", " 27.0\n", " Bogus Upper\n", " IDBRBU_20191219_1000\n", @@ -148,14 +124,14 @@ " None\n", " 286.0\n", " 296.0\n", - " -9999\n", - " -3139.0\n", + " None\n", + " 291.0\n", " AD\n", " ...\n", " 2019-12-19\n", - " 2024-08-13 17:48:18.956152+00:00\n", + " 2024-08-15 19:47:45.611639+00:00\n", " None\n", - " 2162918\n", + " 2325015\n", " https://doi.org/10.5067/KZ43HVLZV6G4\n", " 2024-08-13\n", " None\n", @@ -164,7 +140,7 @@ " None\n", " \n", " \n", - " 4\n", + " 3\n", " 17.0\n", " Bogus Upper\n", " IDBRBU_20191219_1000\n", @@ -172,14 +148,14 @@ " None\n", " 268.0\n", " 265.0\n", - " -9999\n", - " -3155.3333333333335\n", + " None\n", + " 266.5\n", " AD\n", " ...\n", " 2019-12-19\n", - " 2024-08-13 17:48:18.956152+00:00\n", + " 2024-08-15 19:47:45.611639+00:00\n", " None\n", - " 2162919\n", + " 2325016\n", " https://doi.org/10.5067/KZ43HVLZV6G4\n", " 2024-08-13\n", " None\n", @@ -188,7 +164,7 @@ " None\n", " \n", " \n", - " 5\n", + " 4\n", " 47.0\n", " Bogus Upper\n", " IDBRBU_20191219_1000\n", @@ -201,9 +177,9 @@ " AD\n", " ...\n", " 2019-12-19\n", - " 2024-08-13 17:48:19.004814+00:00\n", + " 2024-08-15 19:47:45.803184+00:00\n", " None\n", - " 2162920\n", + " 2325035\n", " https://doi.org/10.5067/KZ43HVLZV6G4\n", " 2024-08-13\n", " None\n", @@ -212,7 +188,7 @@ " None\n", " \n", " \n", - " 6\n", + " 5\n", " 37.0\n", " Bogus Upper\n", " IDBRBU_20191219_1000\n", @@ -225,9 +201,9 @@ " AD\n", " ...\n", " 2019-12-19\n", - " 2024-08-13 17:48:19.004814+00:00\n", + " 2024-08-15 19:47:45.803184+00:00\n", " None\n", - " 2162921\n", + " 2325036\n", " https://doi.org/10.5067/KZ43HVLZV6G4\n", " 2024-08-13\n", " None\n", @@ -236,7 +212,7 @@ " None\n", " \n", " \n", - " 7\n", + " 6\n", " 27.0\n", " Bogus Upper\n", " IDBRBU_20191219_1000\n", @@ -249,9 +225,9 @@ " AD\n", " ...\n", " 2019-12-19\n", - " 2024-08-13 17:48:19.004814+00:00\n", + " 2024-08-15 19:47:45.803184+00:00\n", " None\n", - " 2162922\n", + " 2325037\n", " https://doi.org/10.5067/KZ43HVLZV6G4\n", " 2024-08-13\n", " None\n", @@ -260,7 +236,7 @@ " None\n", " \n", " \n", - " 8\n", + " 7\n", " 17.0\n", " Bogus Upper\n", " IDBRBU_20191219_1000\n", @@ -273,9 +249,9 @@ " AD\n", " ...\n", " 2019-12-19\n", - " 2024-08-13 17:48:19.004814+00:00\n", + " 2024-08-15 19:47:45.803184+00:00\n", " None\n", - " 2162923\n", + " 2325038\n", " https://doi.org/10.5067/KZ43HVLZV6G4\n", " 2024-08-13\n", " None\n", @@ -284,22 +260,22 @@ " None\n", " \n", " \n", - " 9\n", + " 8\n", " 21.0\n", " Banner Open\n", " IDBRBO_20191218_1424\n", " 11.0\n", " None\n", - " None\n", + " 228.0\n", " None\n", " None\n", " 228.0\n", " AD\n", " ...\n", " 2019-12-18\n", - " 2024-08-13 17:49:47.341833+00:00\n", + " 2024-08-15 19:49:25.059301+00:00\n", " None\n", - " 2179263\n", + " 2340994\n", " https://doi.org/10.5067/KZ43HVLZV6G4\n", " 2024-08-13\n", " None\n", @@ -308,22 +284,22 @@ " None\n", " \n", " \n", - " 10\n", + " 9\n", " 11.0\n", " Banner Open\n", " IDBRBO_20191218_1424\n", " 1.0\n", " None\n", - " None\n", + " 243.0\n", " None\n", " None\n", " 243.0\n", " AD\n", " ...\n", " 2019-12-18\n", - " 2024-08-13 17:49:47.341833+00:00\n", + " 2024-08-15 19:49:25.059301+00:00\n", " None\n", - " 2179264\n", + " 2340995\n", " https://doi.org/10.5067/KZ43HVLZV6G4\n", " 2024-08-13\n", " None\n", @@ -332,22 +308,22 @@ " None\n", " \n", " \n", - " 11\n", + " 10\n", " 21.0\n", " Banner Open\n", " IDBRBO_20191218_1424\n", " 11.0\n", " None\n", + " None\n", + " None\n", + " None\n", " 228.0\n", - " -9999\n", - " -9999\n", - " -6590.0\n", " AD\n", " ...\n", " 2019-12-18\n", - " 2024-08-13 17:49:47.428257+00:00\n", + " 2024-08-15 19:49:25.114289+00:00\n", " None\n", - " 2179269\n", + " 2340996\n", " https://doi.org/10.5067/KZ43HVLZV6G4\n", " 2024-08-13\n", " None\n", @@ -356,22 +332,46 @@ " None\n", " \n", " \n", - " 12\n", + " 11\n", " 11.0\n", " Banner Open\n", " IDBRBO_20191218_1424\n", " 1.0\n", " None\n", + " None\n", + " None\n", + " None\n", " 243.0\n", - " -9999\n", - " -9999\n", - " -6585.0\n", " AD\n", " ...\n", " 2019-12-18\n", - " 2024-08-13 17:49:47.428257+00:00\n", + " 2024-08-15 19:49:25.114289+00:00\n", + " None\n", + " 2340997\n", + " https://doi.org/10.5067/KZ43HVLZV6G4\n", + " 2024-08-13\n", + " None\n", + " density\n", + " None\n", + " None\n", + " \n", + " \n", + " 12\n", + " 37.0\n", + " Banner Snotel\n", + " IDBRBS_20191218_1000\n", + " 27.0\n", + " None\n", + " 173.0\n", + " 161.0\n", + " None\n", + " 167.0\n", + " AD\n", + " ...\n", + " 2019-12-18\n", + " 2024-08-15 19:49:25.283128+00:00\n", " None\n", - " 2179270\n", + " 2341002\n", " https://doi.org/10.5067/KZ43HVLZV6G4\n", " 2024-08-13\n", " None\n", @@ -386,16 +386,16 @@ " IDBRBS_20191218_1000\n", " 17.0\n", " None\n", - " None\n", - " None\n", + " 226.0\n", + " 233.0\n", " None\n", " 229.5\n", " AD\n", " ...\n", " 2019-12-18\n", - " 2024-08-13 17:49:44.561044+00:00\n", + " 2024-08-15 19:49:25.283128+00:00\n", " None\n", - " 2178929\n", + " 2341003\n", " https://doi.org/10.5067/KZ43HVLZV6G4\n", " 2024-08-13\n", " None\n", @@ -410,16 +410,16 @@ " IDBRBS_20191218_1000\n", " 7.0\n", " None\n", - " None\n", - " None\n", + " 248.0\n", + " 259.0\n", " None\n", " 253.5\n", " AD\n", " ...\n", " 2019-12-18\n", - " 2024-08-13 17:49:44.561044+00:00\n", + " 2024-08-15 19:49:25.283128+00:00\n", " None\n", - " 2178930\n", + " 2341004\n", " https://doi.org/10.5067/KZ43HVLZV6G4\n", " 2024-08-13\n", " None\n", @@ -434,16 +434,16 @@ " IDBRBS_20191218_1000\n", " 27.0\n", " None\n", - " 173.0\n", - " 161.0\n", - " -9999\n", - " -3221.6666666666665\n", + " None\n", + " None\n", + " None\n", + " 167.0\n", " AD\n", " ...\n", " 2019-12-18\n", - " 2024-08-13 17:49:44.656838+00:00\n", + " 2024-08-15 19:49:25.456365+00:00\n", " None\n", - " 2178937\n", + " 2341021\n", " https://doi.org/10.5067/KZ43HVLZV6G4\n", " 2024-08-13\n", " None\n", @@ -458,16 +458,16 @@ " IDBRBS_20191218_1000\n", " 17.0\n", " None\n", - " 226.0\n", - " 233.0\n", - " -9999\n", - " -3180.0\n", + " None\n", + " None\n", + " None\n", + " 229.5\n", " AD\n", " ...\n", " 2019-12-18\n", - " 2024-08-13 17:49:44.656838+00:00\n", + " 2024-08-15 19:49:25.456365+00:00\n", " None\n", - " 2178938\n", + " 2341022\n", " https://doi.org/10.5067/KZ43HVLZV6G4\n", " 2024-08-13\n", " None\n", @@ -482,16 +482,16 @@ " IDBRBS_20191218_1000\n", " 7.0\n", " None\n", - " 248.0\n", - " 259.0\n", - " -9999\n", - " -3164.0\n", + " None\n", + " None\n", + " None\n", + " 253.5\n", " AD\n", " ...\n", " 2019-12-18\n", - " 2024-08-13 17:49:44.656838+00:00\n", + " 2024-08-15 19:49:25.456365+00:00\n", " None\n", - " 2178939\n", + " 2341023\n", " https://doi.org/10.5067/KZ43HVLZV6G4\n", " 2024-08-13\n", " None\n", @@ -506,64 +506,64 @@ ], "text/plain": [ " depth site_id pit_id bottom_depth comments \\\n", - "0 37.0 Banner Snotel IDBRBS_20191218_1000 27.0 None \n", - "1 47.0 Bogus Upper IDBRBU_20191219_1000 37.0 None \n", - "2 37.0 Bogus Upper IDBRBU_20191219_1000 27.0 None \n", - "3 27.0 Bogus Upper IDBRBU_20191219_1000 17.0 None \n", - "4 17.0 Bogus Upper IDBRBU_20191219_1000 7.0 None \n", - "5 47.0 Bogus Upper IDBRBU_20191219_1000 37.0 None \n", - "6 37.0 Bogus Upper IDBRBU_20191219_1000 27.0 None \n", - "7 27.0 Bogus Upper IDBRBU_20191219_1000 17.0 None \n", - "8 17.0 Bogus Upper IDBRBU_20191219_1000 7.0 None \n", - "9 21.0 Banner Open IDBRBO_20191218_1424 11.0 None \n", - "10 11.0 Banner Open IDBRBO_20191218_1424 1.0 None \n", - "11 21.0 Banner Open IDBRBO_20191218_1424 11.0 None \n", - "12 11.0 Banner Open IDBRBO_20191218_1424 1.0 None \n", + "0 47.0 Bogus Upper IDBRBU_20191219_1000 37.0 None \n", + "1 37.0 Bogus Upper IDBRBU_20191219_1000 27.0 None \n", + "2 27.0 Bogus Upper IDBRBU_20191219_1000 17.0 None \n", + "3 17.0 Bogus Upper IDBRBU_20191219_1000 7.0 None \n", + "4 47.0 Bogus Upper IDBRBU_20191219_1000 37.0 None \n", + "5 37.0 Bogus Upper IDBRBU_20191219_1000 27.0 None \n", + "6 27.0 Bogus Upper IDBRBU_20191219_1000 17.0 None \n", + "7 17.0 Bogus Upper IDBRBU_20191219_1000 7.0 None \n", + "8 21.0 Banner Open IDBRBO_20191218_1424 11.0 None \n", + "9 11.0 Banner Open IDBRBO_20191218_1424 1.0 None \n", + "10 21.0 Banner Open IDBRBO_20191218_1424 11.0 None \n", + "11 11.0 Banner Open IDBRBO_20191218_1424 1.0 None \n", + "12 37.0 Banner Snotel IDBRBS_20191218_1000 27.0 None \n", "13 27.0 Banner Snotel IDBRBS_20191218_1000 17.0 None \n", "14 17.0 Banner Snotel IDBRBS_20191218_1000 7.0 None \n", "15 37.0 Banner Snotel IDBRBS_20191218_1000 27.0 None \n", "16 27.0 Banner Snotel IDBRBS_20191218_1000 17.0 None \n", "17 17.0 Banner Snotel IDBRBS_20191218_1000 7.0 None \n", "\n", - " sample_a sample_b sample_c value flags ... date \\\n", - "0 None None None 167.0 AD ... 2019-12-18 \n", - "1 232.0 237.0 -9999 -3176.6666666666665 AD ... 2019-12-19 \n", - "2 249.0 252.0 -9999 -3166.0 AD ... 2019-12-19 \n", - "3 286.0 296.0 -9999 -3139.0 AD ... 2019-12-19 \n", - "4 268.0 265.0 -9999 -3155.3333333333335 AD ... 2019-12-19 \n", - "5 None None None 234.5 AD ... 2019-12-19 \n", - "6 None None None 250.5 AD ... 2019-12-19 \n", - "7 None None None 291.0 AD ... 2019-12-19 \n", - "8 None None None 266.5 AD ... 2019-12-19 \n", - "9 None None None 228.0 AD ... 2019-12-18 \n", - "10 None None None 243.0 AD ... 2019-12-18 \n", - "11 228.0 -9999 -9999 -6590.0 AD ... 2019-12-18 \n", - "12 243.0 -9999 -9999 -6585.0 AD ... 2019-12-18 \n", - "13 None None None 229.5 AD ... 2019-12-18 \n", - "14 None None None 253.5 AD ... 2019-12-18 \n", - "15 173.0 161.0 -9999 -3221.6666666666665 AD ... 2019-12-18 \n", - "16 226.0 233.0 -9999 -3180.0 AD ... 2019-12-18 \n", - "17 248.0 259.0 -9999 -3164.0 AD ... 2019-12-18 \n", + " sample_a sample_b sample_c value flags ... date \\\n", + "0 232.0 237.0 None 234.5 AD ... 2019-12-19 \n", + "1 249.0 252.0 None 250.5 AD ... 2019-12-19 \n", + "2 286.0 296.0 None 291.0 AD ... 2019-12-19 \n", + "3 268.0 265.0 None 266.5 AD ... 2019-12-19 \n", + "4 None None None 234.5 AD ... 2019-12-19 \n", + "5 None None None 250.5 AD ... 2019-12-19 \n", + "6 None None None 291.0 AD ... 2019-12-19 \n", + "7 None None None 266.5 AD ... 2019-12-19 \n", + "8 228.0 None None 228.0 AD ... 2019-12-18 \n", + "9 243.0 None None 243.0 AD ... 2019-12-18 \n", + "10 None None None 228.0 AD ... 2019-12-18 \n", + "11 None None None 243.0 AD ... 2019-12-18 \n", + "12 173.0 161.0 None 167.0 AD ... 2019-12-18 \n", + "13 226.0 233.0 None 229.5 AD ... 2019-12-18 \n", + "14 248.0 259.0 None 253.5 AD ... 2019-12-18 \n", + "15 None None None 167.0 AD ... 2019-12-18 \n", + "16 None None None 229.5 AD ... 2019-12-18 \n", + "17 None None None 253.5 AD ... 2019-12-18 \n", "\n", " time_created time_updated id \\\n", - "0 2024-08-13 17:49:44.561044+00:00 None 2178928 \n", - "1 2024-08-13 17:48:18.956152+00:00 None 2162916 \n", - "2 2024-08-13 17:48:18.956152+00:00 None 2162917 \n", - "3 2024-08-13 17:48:18.956152+00:00 None 2162918 \n", - "4 2024-08-13 17:48:18.956152+00:00 None 2162919 \n", - "5 2024-08-13 17:48:19.004814+00:00 None 2162920 \n", - "6 2024-08-13 17:48:19.004814+00:00 None 2162921 \n", - "7 2024-08-13 17:48:19.004814+00:00 None 2162922 \n", - "8 2024-08-13 17:48:19.004814+00:00 None 2162923 \n", - "9 2024-08-13 17:49:47.341833+00:00 None 2179263 \n", - "10 2024-08-13 17:49:47.341833+00:00 None 2179264 \n", - "11 2024-08-13 17:49:47.428257+00:00 None 2179269 \n", - "12 2024-08-13 17:49:47.428257+00:00 None 2179270 \n", - "13 2024-08-13 17:49:44.561044+00:00 None 2178929 \n", - "14 2024-08-13 17:49:44.561044+00:00 None 2178930 \n", - "15 2024-08-13 17:49:44.656838+00:00 None 2178937 \n", - "16 2024-08-13 17:49:44.656838+00:00 None 2178938 \n", - "17 2024-08-13 17:49:44.656838+00:00 None 2178939 \n", + "0 2024-08-15 19:47:45.611639+00:00 None 2325013 \n", + "1 2024-08-15 19:47:45.611639+00:00 None 2325014 \n", + "2 2024-08-15 19:47:45.611639+00:00 None 2325015 \n", + "3 2024-08-15 19:47:45.611639+00:00 None 2325016 \n", + "4 2024-08-15 19:47:45.803184+00:00 None 2325035 \n", + "5 2024-08-15 19:47:45.803184+00:00 None 2325036 \n", + "6 2024-08-15 19:47:45.803184+00:00 None 2325037 \n", + "7 2024-08-15 19:47:45.803184+00:00 None 2325038 \n", + "8 2024-08-15 19:49:25.059301+00:00 None 2340994 \n", + "9 2024-08-15 19:49:25.059301+00:00 None 2340995 \n", + "10 2024-08-15 19:49:25.114289+00:00 None 2340996 \n", + "11 2024-08-15 19:49:25.114289+00:00 None 2340997 \n", + "12 2024-08-15 19:49:25.283128+00:00 None 2341002 \n", + "13 2024-08-15 19:49:25.283128+00:00 None 2341003 \n", + "14 2024-08-15 19:49:25.283128+00:00 None 2341004 \n", + "15 2024-08-15 19:49:25.456365+00:00 None 2341021 \n", + "16 2024-08-15 19:49:25.456365+00:00 None 2341022 \n", + "17 2024-08-15 19:49:25.456365+00:00 None 2341023 \n", "\n", " doi date_accessed instrument type \\\n", "0 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", @@ -608,13 +608,13 @@ "[18 rows x 29 columns]" ] }, - "execution_count": 4, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAGsCAYAAACLlD3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtMElEQVR4nO3dfVjVdZ7/8dcB5EbkRnESUBJrmtQQMksNtRulqNDKZksb05VLTVscpNzWmLUbm4qc0jEt2WS0ItloMHO6MVN/282QNyDohlpqqYGIOpmCrHFE+Pz+aD3bSUUOfpKbno/rOtcVX97n8HnXNM8O54AOY4wRAAA4b17NfQAAANoKogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJW0uqp9++qlGjBihyMhIORwOrVixwuPHMMbo+eef129+8xv5+fkpKipKzzzzjP3DAgDaFJ/mPoBt//M//6O4uDglJyfrt7/9bZMeY9q0aVq9erWef/559enTR5WVlfr2228tnxQA0NY42vIv1Hc4HHr77bd15513uq6dOHFCM2fOVE5Ojo4ePaqYmBjNnj1bN9xwgyTpiy++UGxsrLZu3arLL7+8eQ4OAGiV2ty3f88lOTlZn332mXJzc/X555/r7rvv1i233KJdu3ZJkt59911dcskleu+999SjRw9FR0dr4sSJ+u6775r55ACAlu4XFdWvv/5ab7zxhvLy8jRkyBBdeuml+td//VcNHjxYr7zyiiRp9+7d+uabb5SXl6fs7Gy9+uqrKioq0j/90z818+kBAC1dm3tNtSHFxcUyxug3v/mN23Wn06mwsDBJUn19vZxOp7Kzs11zixcvVr9+/bRjxw6+JQwAOKtfVFTr6+vl7e2toqIieXt7u32uQ4cOkqSIiAj5+Pi4hbdXr16SpNLSUqIKADirX1RU+/btq7q6Oh06dEhDhgw548ygQYN08uRJff3117r00kslSTt37pQkde/e/YKdFQDQ+rS5d/9WV1frq6++kvRDROfOnasbb7xRnTp10sUXX6z77rtPn332mebMmaO+ffvq22+/1X/913+pT58+uu2221RfX69rrrlGHTp00Lx581RfX6+UlBQFBwdr9erVzbwdAKAla3NR/fjjj3XjjTeedv2f//mf9eqrr6q2tlZPPfWUsrOzVV5errCwMF177bWaNWuW+vTpI0nav3+/fv/732v16tUKDAzUrbfeqjlz5qhTp04Xeh0AQCvS5qIKAEBzOa8fqcnIyJDD4VBaWlqDcy+99JJ69eqlgIAAXX755crOznb7/LZt2/Tb3/5W0dHRcjgcmjdv3vkcCwCAZtHkNyoVFhZq0aJFio2NbXAuMzNT6enpysrK0jXXXKOCggJNmjRJHTt21IgRIyRJx48f1yWXXKK7775bDz74YFOPBABAs2pSVKurqzVmzBhlZWXpqaeeanD29ddf1+TJkzVq1ChJ0iWXXKINGzZo9uzZrqhec801uuaaayRJjzzySFOOpPr6eu3fv19BQUFyOBxNegwAAIwxOnbsmCIjI+Xl5dk3dJsU1ZSUFCUlJSkhIeGcUXU6nfL393e7FhAQoIKCAtXW1qpdu3ZNOYKcTqecTqfr4/LycvXu3btJjwUAwE+VlZWpW7duHt3H46jm5uaquLhYhYWFjZpPTEzUX/7yF91555266qqrVFRUpCVLlqi2tlbffvutIiIiPD2CpB9ez501a9Zp18vKyhQcHNykxwQAoKqqSlFRUQoKCvL4vh5FtayszPXHov302efZPProozpw4IAGDhwoY4y6dOmi8ePH609/+tNpv9XIE+np6XrooYdcH5/6mxAcHExUAQDnrSkvJXr0zeKioiIdOnRI/fr1k4+Pj3x8fPTJJ59o/vz58vHxUV1d3Wn3CQgI0JIlS3T8+HHt3btXpaWlio6OVlBQkDp37uzxgU/x8/NzBZSQAgBaAo+eqQ4bNkwlJSVu15KTk9WzZ0/NmDGjwWee7dq1c31vOjc3V8OHD/f4BWAAAFoyj6IaFBSkmJgYt2uBgYEKCwtzXU9PT1d5ebnrZ1F37typgoICDRgwQEeOHNHcuXO1detWvfbaa67HOHHihLZv3+766/Lycm3ZskUdOnTQr3/96/NaEACAC8X6U8WKigqVlpa6Pq6rq9OcOXMUFxenm266STU1NVq3bp2io6NdM/v371ffvn3Vt29fVVRU6Pnnn1ffvn01ceJE28cDAOBn02Z+TWFVVZVCQkJUWVnJ66sAgCY7n57woiYAAJYQVQAALCGqAABY0uRfqA8AQEtQXXNSD765WaVHvtfFHQP051F91cG/efJGVAEArdbtL/5dn++rcn2848AxxTzxoXpdFKAPHhp6wc/Dt38BAK3ST4P6Y18c+l6//sP7F/hERBUA0ApV15w8a1BPOVkv9XtyzQU60Q+IKgCg1Xnwzc2Nmjt8/IS+qz7xM5/m/xBVAECrU3rk+0bPjl607mc8iTuiCgBodS7uGNDo2UPHeKYKAMBZ/XlU30bPXhTk+zOexB1RBQC0Oh38fdTrosY9W829P/5nPs3/IaoAgFbpg4eGyuccFftVB1916sAzVQAAzumrZ5IU1v7M0fxVB18Vzrzpgp6H36gEAGjVih67Sd9Vn9DoRet06NgJXRTkq9z74y/oM9RTiCoAoNXr1MFXqx+6obmPwbd/AQCwhagCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJecV1YyMDDkcDqWlpTU499JLL6lXr14KCAjQ5Zdfruzs7NNm3nrrLfXu3Vt+fn7q3bu33n777fM5GgAAF1yTo1pYWKhFixYpNja2wbnMzEylp6friSee0LZt2zRr1iylpKTo3Xffdc2sX79eo0aN0tixY/Xf//3fGjt2rO655x5t3LixqccDAOCCcxhjjKd3qq6u1lVXXaWFCxfqqaee0pVXXql58+adcTY+Pl6DBg3Sc88957qWlpamTZs2KT8/X5I0atQoVVVV6YMPPnDN3HLLLerYsaPeeOONRp2pqqpKISEhqqysVHBwsKcrAQAg6fx60qRnqikpKUpKSlJCQsI5Z51Op/z9/d2uBQQEqKCgQLW1tZJ+eKZ68803u80kJiZq3bp1DT5uVVWV2w0AgObkcVRzc3NVXFysjIyMRs0nJibqL3/5i4qKimSM0aZNm7RkyRLV1tbq22+/lSQdOHBAXbp0cbtfly5ddODAgbM+bkZGhkJCQly3qKgoT1cBAMAqj6JaVlamadOmaenSpac9+zybRx99VLfeeqsGDhyodu3a6Y477tD48eMlSd7e3q45h8Phdj9jzGnXfiw9PV2VlZWuW1lZmSerAABgnUdRLSoq0qFDh9SvXz/5+PjIx8dHn3zyiebPny8fHx/V1dWddp+AgAAtWbJEx48f1969e1VaWqro6GgFBQWpc+fOkqTw8PDTnpUeOnTotGevP+bn56fg4GC3GwAAzcmjqA4bNkwlJSXasmWL63b11VdrzJgx2rJli9szz59q166dunXrJm9vb+Xm5mr48OHy8vrhy1977bVas2aN2/zq1asVHx/fhJUAAGgePp4MBwUFKSYmxu1aYGCgwsLCXNfT09NVXl7u+lnUnTt3qqCgQAMGDNCRI0c0d+5cbd26Va+99prrMaZNm6brrrtOs2fP1h133KG//e1vWrt2revdwQAAtAbWf6NSRUWFSktLXR/X1dVpzpw5iouL00033aSamhqtW7dO0dHRrpn4+Hjl5ubqlVdeUWxsrF599VW9+eabGjBggO3jAQDws2nSz6m2RPycKgDAhgv+c6oAAOB0RBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJacV1QzMjLkcDiUlpbW4FxOTo7i4uLUvn17RUREKDk5WYcPH3Z9vra2Vk8++aQuvfRS+fv7Ky4uTqtWrTqfowEAcME1OaqFhYVatGiRYmNjG5zLz8/XuHHjNGHCBG3btk15eXkqLCzUxIkTXTMzZ87Uyy+/rAULFmj79u2aMmWKRo4cqc2bNzf1eAAAXHBNimp1dbXGjBmjrKwsdezYscHZDRs2KDo6WqmpqerRo4cGDx6syZMna9OmTa6Z119/XX/4wx9022236ZJLLtEDDzygxMREzZkzpynHAwCgWTQpqikpKUpKSlJCQsI5Z+Pj47Vv3z6tXLlSxhgdPHhQy5YtU1JSkmvG6XTK39/f7X4BAQHKz88/6+M6nU5VVVW53QAAaE4eRzU3N1fFxcXKyMho1Hx8fLxycnI0atQo+fr6Kjw8XKGhoVqwYIFrJjExUXPnztWuXbtUX1+vNWvW6G9/+5sqKirO+rgZGRkKCQlx3aKiojxdBQAAqzyKallZmaZNm6alS5ee9szybLZv367U1FQ99thjKioq0qpVq7Rnzx5NmTLFNfPCCy/osssuU8+ePeXr66upU6cqOTlZ3t7eZ33c9PR0VVZWum5lZWWerAIAgHUOY4xp7PCKFSs0cuRIt9jV1dXJ4XDIy8tLTqfztBCOHTtWNTU1ysvLc13Lz8/XkCFDtH//fkVERLiu19TU6PDhw4qMjNQjjzyi9957T9u2bWvU2aqqqhQSEqLKykoFBwc3diUAANycT098PBkeNmyYSkpK3K4lJyerZ8+emjFjxhmfWR4/flw+Pu5f5tTcT3vu7++vrl27qra2Vm+99ZbuueceT44HAECz8iiqQUFBiomJcbsWGBiosLAw1/X09HSVl5crOztbkjRixAhNmjRJmZmZSkxMVEVFhdLS0tS/f39FRkZKkjZu3Kjy8nJdeeWVKi8v1xNPPKH6+nr927/9m40dAQC4IDyKamNUVFSotLTU9fH48eN17Ngxvfjii5o+fbpCQ0M1dOhQzZ492zVTU1OjmTNnavfu3erQoYNuu+02vf766woNDbV9PAAAfjYevabakvGaKgDAhvPpCb/7FwAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhyXlHNyMiQw+FQWlpag3M5OTmKi4tT+/btFRERoeTkZB0+fNhtZt68ebr88ssVEBCgqKgoPfjgg6qpqTmf4wEAcEE1OaqFhYVatGiRYmNjG5zLz8/XuHHjNGHCBG3btk15eXkqLCzUxIkTXTM5OTl65JFH9Pjjj+uLL77Q4sWL9eabbyo9Pb2pxwMA4IJrUlSrq6s1ZswYZWVlqWPHjg3ObtiwQdHR0UpNTVWPHj00ePBgTZ48WZs2bXLNrF+/XoMGDdLvfvc7RUdH6+abb9a9997rNgMAQEvXpKimpKQoKSlJCQkJ55yNj4/Xvn37tHLlShljdPDgQS1btkxJSUmumcGDB6uoqEgFBQWSpN27d2vlypVuMz/ldDpVVVXldgMAoDn5eHqH3NxcFRcXq7CwsFHz8fHxysnJ0ahRo1RTU6OTJ0/q9ttv14IFC1wzo0eP1j/+8Q8NHjxYxhidPHlSDzzwgB555JGzPm5GRoZmzZrl6fEBAPjZePRMtaysTNOmTdPSpUvl7+/fqPts375dqampeuyxx1RUVKRVq1Zpz549mjJlimvm448/1tNPP62FCxequLhYy5cv13vvvac//vGPZ33c9PR0VVZWum5lZWWerAIAgHUOY4xp7PCKFSs0cuRIeXt7u67V1dXJ4XDIy8tLTqfT7XOSNHbsWNXU1CgvL891LT8/X0OGDNH+/fsVERGhIUOGaODAgXruuedcM0uXLtX999+v6upqeXmdu/1VVVUKCQlRZWWlgoODG7sSAABuzqcnHn37d9iwYSopKXG7lpycrJ49e2rGjBmnBVWSjh8/Lh8f9y9zau5Uz48fP35aOL29vWWMkQfNBwCgWXkU1aCgIMXExLhdCwwMVFhYmOt6enq6ysvLlZ2dLUkaMWKEJk2apMzMTCUmJqqiokJpaWnq37+/IiMjXTNz585V3759NWDAAH311Vd69NFHdfvtt58x1AAAtEQev1HpXCoqKlRaWur6ePz48Tp27JhefPFFTZ8+XaGhoRo6dKhmz57tmpk5c6YcDodmzpyp8vJy/epXv9KIESP09NNP2z4eAAA/G49eU23JeE0VAGDD+fSE3/0LAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJacV1QzMjLkcDiUlpbW4FxOTo7i4uLUvn17RUREKDk5WYcPH3Z9/oYbbpDD4TjtlpSUdD7HAwDggmpyVAsLC7Vo0SLFxsY2OJefn69x48ZpwoQJ2rZtm/Ly8lRYWKiJEye6ZpYvX66KigrXbevWrfL29tbdd9/d1OMBAHDBNSmq1dXVGjNmjLKystSxY8cGZzds2KDo6GilpqaqR48eGjx4sCZPnqxNmza5Zjp16qTw8HDXbc2aNWrfvj1RBQC0Kk2KakpKipKSkpSQkHDO2fj4eO3bt08rV66UMUYHDx7UsmXLGvzW7uLFizV69GgFBgaedcbpdKqqqsrtBgBAc/I4qrm5uSouLlZGRkaj5uPj45WTk6NRo0bJ19dX4eHhCg0N1YIFC844X1BQoK1bt7p9e/hMMjIyFBIS4rpFRUV5ugoAAFZ5FNWysjJNmzZNS5culb+/f6Pus337dqWmpuqxxx5TUVGRVq1apT179mjKlClnnF+8eLFiYmLUv3//Bh83PT1dlZWVrltZWZknqwAAYJ3DGGMaO7xixQqNHDlS3t7ermt1dXVyOBzy8vKS0+l0+5wkjR07VjU1NcrLy3Ndy8/P15AhQ7R//35FRES4rh8/flwRERF68sknNW3aNI8WqaqqUkhIiCorKxUcHOzRfQEAOOV8euLjyfCwYcNUUlLidi05OVk9e/bUjBkzTguq9EMofXzcv8ypuZ/2/K9//aucTqfuu+8+T44FAECL4FFUg4KCFBMT43YtMDBQYWFhruvp6ekqLy9Xdna2JGnEiBGaNGmSMjMzlZiYqIqKCqWlpal///6KjIx0e6zFixfrzjvvVFhY2PnsBABAs/Aoqo1RUVGh0tJS18fjx4/XsWPH9OKLL2r69OkKDQ3V0KFDNXv2bLf77dy5U/n5+Vq9erXtIwEAcEF49JpqS8ZrqgAAG86nJ/zuXwAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGDJeUU1IyNDDodDaWlpDc7l5OQoLi5O7du3V0REhJKTk3X48GG3maNHjyolJUURERHy9/dXr169tHLlyvM5HgAAF1STo1pYWKhFixYpNja2wbn8/HyNGzdOEyZM0LZt25SXl6fCwkJNnDjRNXPixAnddNNN2rt3r5YtW6YdO3YoKytLXbt2berxAAC44Hyacqfq6mqNGTNGWVlZeuqppxqc3bBhg6Kjo5WamipJ6tGjhyZPnqw//elPrpklS5bou+++07p169SuXTtJUvfu3ZtyNAAAmk2TnqmmpKQoKSlJCQkJ55yNj4/Xvn37tHLlShljdPDgQS1btkxJSUmumXfeeUfXXnutUlJS1KVLF8XExOiZZ55RXV3dWR/X6XSqqqrK7QYAQHPyOKq5ubkqLi5WRkZGo+bj4+OVk5OjUaNGydfXV+Hh4QoNDdWCBQtcM7t379ayZctUV1enlStXaubMmZozZ46efvrpsz5uRkaGQkJCXLeoqChPVwEAwCqPolpWVqZp06Zp6dKl8vf3b9R9tm/frtTUVD322GMqKirSqlWrtGfPHk2ZMsU1U19fr4suukiLFi1Sv379NHr0aP37v/+7MjMzz/q46enpqqysdN3Kyso8WQUAAOscxhjT2OEVK1Zo5MiR8vb2dl2rq6uTw+GQl5eXnE6n2+ckaezYsaqpqVFeXp7rWn5+voYMGaL9+/crIiJC119/vdq1a6e1a9e6Zj744APddtttcjqd8vX1PefZqqqqFBISosrKSgUHBzd2JQAA3JxPTzx6o9KwYcNUUlLidi05OVk9e/bUjBkzTguqJB0/flw+Pu5f5tTcqZ4PGjRI//mf/6n6+np5ef3w5Hnnzp2KiIhoVFABAGgJPPr2b1BQkGJiYtxugYGBCgsLU0xMjKQfvi07btw4131GjBih5cuXKzMzU7t379Znn32m1NRU9e/fX5GRkZKkBx54QIcPH9a0adO0c+dOvf/++3rmmWeUkpJicVUAAH5eTfqRmoZUVFSotLTU9fH48eN17Ngxvfjii5o+fbpCQ0M1dOhQzZ492zUTFRWl1atX68EHH1RsbKy6du2qadOmacaMGbaPBwDAz8aj11RbMl5TBQDYcD494Xf/AgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAl5xXVjIwMORwOpaWlNTiXk5OjuLg4tW/fXhEREUpOTtbhw4ddn3/11VflcDhOu9XU1JzP8QAAuKCaHNXCwkItWrRIsbGxDc7l5+dr3LhxmjBhgrZt26a8vDwVFhZq4sSJbnPBwcGqqKhwu/n7+zf1eAAAXHBNimp1dbXGjBmjrKwsdezYscHZDRs2KDo6WqmpqerRo4cGDx6syZMna9OmTW5zDodD4eHhbjcAAFqTJkU1JSVFSUlJSkhIOOdsfHy89u3bp5UrV8oYo4MHD2rZsmVKSkpym6uurlb37t3VrVs3DR8+XJs3b27wcZ1Op6qqqtxuAAA0J4+jmpubq+LiYmVkZDRqPj4+Xjk5ORo1apR8fX0VHh6u0NBQLViwwDXTs2dPvfrqq3rnnXf0xhtvyN/fX4MGDdKuXbvO+rgZGRkKCQlx3aKiojxdBQAAqxzGGNPY4bKyMl199dVavXq14uLiJEk33HCDrrzySs2bN++M99m+fbsSEhL04IMPKjExURUVFXr44Yd1zTXXaPHixWe8T319va666ipdd911mj9//hlnnE6nnE6n6+OqqipFRUWpsrJSwcHBjV0JAAA3VVVVCgkJaVJPPIrqihUrNHLkSHl7e7uu1dXVyeFwyMvLS06n0+1zkjR27FjV1NQoLy/PdS0/P19DhgzR/v37FRERccavNWnSJO3bt08ffPBBo852Pn8TAAA45Xx64uPJ8LBhw1RSUuJ2LTk5WT179tSMGTNOC6okHT9+XD4+7l/m1NzZem6M0ZYtW9SnTx9PjgcAQLPyKKpBQUGKiYlxuxYYGKiwsDDX9fT0dJWXlys7O1uSNGLECE2aNEmZmZmub/+mpaWpf//+ioyMlCTNmjVLAwcO1GWXXaaqqirNnz9fW7Zs0UsvvWRjRwAALgiPotoYFRUVKi0tdX08fvx4HTt2TC+++KKmT5+u0NBQDR06VLNnz3bNHD16VPfff78OHDigkJAQ9e3bV59++qn69+9v+3gAAPxsPHpNtSXjNVUAgA3n0xN+9y8AAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsMT6n1LTmh04WqPhCz5VVc1JBfv76L3fX6fwUP/mPhYAoJUgqv+r16Mf6PvaetfH3/5PrQY++/8U0M5LX/zx1mY8GQCgteDbvzo9qD/2fW29ej36wQU+EQCgNfrFR/XA0ZqzBvWU72vrdeBozQU6EQCgtfrFR3X4gk+tzgEAfrl+8VGtqjlpdQ4A8Mv1i49qsH/j3qvV2DkAwC/XLz6q7/3+OqtzAIBfrl98VMND/RXQruG/DQHtvPh5VQDAOf3ioypJX/zx1rOGlZ9TBQA0Fi8U/q8v/ngrv1EJAHBeiOqPhIf6a9OjNzf3MQAArRTf/gUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAkjbzG5WMMZKkqqqqZj4JAKA1O9WRU13xRJuJ6rFjxyRJUVFRzXwSAEBbcOzYMYWEhHh0H4dpSopboPr6eu3YsUO9e/dWWVmZgoODm/tI1lRVVSkqKoq9WpG2ultb3Utqu7u11b2kn283Y4yOHTumyMhIeXl59ippm3mm6uXlpa5du0qSgoOD29z/eCT2ao3a6m5tdS+p7e7WVveSfp7dPH2GegpvVAIAwBKiCgCAJW0qqn5+fnr88cfl5+fX3Eexir1an7a6W1vdS2q7u7XVvaSWuVubeaMSAADNrU09UwUAoDkRVQAALCGqAABYQlQBALDkgkX1iSeekMPhcLuFh4e7Pv/Tz526Pffcc64Zp9Op3//+9+rcubMCAwN1++23a9++fW5f58iRIxo7dqxCQkIUEhKisWPH6ujRo24zpaWlGjFihAIDA9W5c2elpqbqxIkTbjMlJSW6/vrrFRAQoK5du+rJJ5884++BPNde1dXVmjp1qrp166aAgAD16tVLmZmZbo/REvdqzG4HDx7U+PHjFRkZqfbt2+uWW27Rrl27WsVu5eXluu+++xQWFqb27dvryiuvVFFRkevzxhg98cQTioyMVEBAgG644QZt27atTey2fPlyJSYmqnPnznI4HNqyZctpj9ESd2tor9raWs2YMUN9+vRRYGCgIiMjNW7cOO3fv79V7yX98O9hz549FRgYqI4dOyohIUEbN25s8Xs1Zrcfmzx5shwOh+bNm9cqdjsrc4E8/vjj5oorrjAVFRWu26FDh1yf//H1iooKs2TJEuNwOMzXX3/tmpkyZYrp2rWrWbNmjSkuLjY33nijiYuLMydPnnTN3HLLLSYmJsasW7fOrFu3zsTExJjhw4e7Pn/y5EkTExNjbrzxRlNcXGzWrFljIiMjzdSpU10zlZWVpkuXLmb06NGmpKTEvPXWWyYoKMg8//zzHu81ceJEc+mll5qPPvrI7Nmzx7z88svG29vbrFixokXvda7d6uvrzcCBA82QIUNMQUGB+fLLL839999vLr74YlNdXd2id/vuu+9M9+7dzfjx483GjRvNnj17zNq1a81XX33lmnn22WdNUFCQeeutt0xJSYkZNWqUiYiIMFVVVa1+t+zsbDNr1iyTlZVlJJnNmzef9jgtbbdz7XX06FGTkJBg3nzzTfPll1+a9evXmwEDBph+/fq16r2MMSYnJ8esWbPGfP3112br1q1mwoQJJjg42O3/Z1raXo3d7ZS3337bxMXFmcjISPPnP/+5Rf8zO5cLGtW4uLhGz99xxx1m6NChro+PHj1q2rVrZ3Jzc13XysvLjZeXl1m1apUxxpjt27cbSWbDhg2umfXr1xtJ5ssvvzTGGLNy5Urj5eVlysvLXTNvvPGG8fPzM5WVlcYYYxYuXGhCQkJMTU2NayYjI8NERkaa+vp6j/a64oorzJNPPul27aqrrjIzZ85s0Xuda7cdO3YYSWbr1q2uaydPnjSdOnUyWVlZLXq3GTNmmMGDB59xL2N++A+G8PBw8+yzz7qu1dTUmJCQEPMf//EfrXq3H9uzZ88Zo9oSd/Nkr1MKCgqMJPPNN9+0qb0qKyuNJLN27doWu5cnu+3bt8907drVbN261XTv3t0tqi11t4Zc0NdUd+3apcjISPXo0UOjR4/W7t27zzh38OBBvf/++5owYYLrWlFRkWpra3XzzTe7rkVGRiomJkbr1q2TJK1fv14hISEaMGCAa2bgwIEKCQlxm4mJiVFkZKRrJjExUU6n0/VtifXr1+v66693+4HixMRE7d+/X3v37vVor8GDB+udd95ReXm5jDH66KOPtHPnTiUmJrb4vRrazel0SpL8/f1ds97e3vL19VV+fn6L3u2dd97R1VdfrbvvvlsXXXSR+vbtq6ysLNfn9+zZowMHDrid28/PT9dff73rTK11t8Zoibs1Za/Kyko5HA6Fhoa2mb1OnDihRYsWKSQkRHFxcS12r8buVl9fr7Fjx+rhhx/WFVdccdq+LXW3hlywqA4YMEDZ2dn68MMPlZWVpQMHDig+Pl6HDx8+bfa1115TUFCQ7rrrLte1AwcOyNfXVx07dnSb7dKliw4cOOCaueiii057vIsuushtpkuXLm6f79ixo3x9fRucOfXxqZnG7jV//nz17t1b3bp1k6+vr2655RYtXLhQgwcPbtF7nWu3nj17qnv37kpPT9eRI0d04sQJPfvsszpw4IAqKipa9G67d+9WZmamLrvsMn344YeaMmWKUlNTlZ2d7TZ/psf78ddrjbs1RkvczdO9ampq9Mgjj+h3v/ud6xett+a93nvvPXXo0EH+/v7685//rDVr1qhz584tdq/G7jZ79mz5+PgoNTX1tLO15N0acsH+lJpbb73V9dd9+vTRtddeq0svvVSvvfaaHnroIbfZJUuWaMyYMW7Pgs7GGCOHw+H6+Md/bXPG/O+L1T+9fq695s+frw0bNuidd95R9+7d9emnn+pf/uVfFBERoYSEhBa7V2N2e+uttzRhwgR16tRJ3t7eSkhIcLtPS92tvr5eV199tZ555hlJUt++fbVt2zZlZmZq3LhxDT7emc7RGndriubczZO9amtrNXr0aNXX12vhwoVtYq8bb7xRW7Zs0bfffqusrCzdc8892rhx4xlj0hL2asxuRUVFeuGFF1RcXHzOf69a2m4NabYfqQkMDFSfPn1Oe7fo3//+d+3YsUMTJ050ux4eHq4TJ07oyJEjbtcPHTrk+q+J8PBwHTx48LSv9Y9//MNt5qf/1XHkyBHV1tY2OHPo0CFJpz97aWiv77//Xn/4wx80d+5cjRgxQrGxsZo6dapGjRql559/vlXt9dPdJKlfv37asmWLjh49qoqKCq1atUqHDx9Wjx49WvRuERER6t27t9u1Xr16qbS01PVY0un/dfrTc7fG3RqjJe7W2L1qa2t1zz33aM+ePVqzZo3bHwfWmvcKDAzUr3/9aw0cOFCLFy+Wj4+PFi9e3GL3asxuf//733Xo0CFdfPHF8vHxkY+Pj7755htNnz5d0dHRLXq3hjRbVJ1Op7744gtFRES4XV+8eLH69evner3glH79+qldu3Zas2aN61pFRYW2bt2q+Ph4SdK1116ryspKFRQUuGY2btyoyspKt5mtW7e6vkUpSatXr5afn5/69evnmvn000/d3m69evVqRUZGuv5hN2av2tpa1dbWnvaH3Hp7e6u+vr5V7fXT3X4sJCREv/rVr7Rr1y5t2rRJd9xxR4vebdCgQdqxY4fbtZ07d6p79+6SpB49eig8PNzt3CdOnNAnn3ziOlNr3a0xWuJujdnrVFB37dqltWvXKiwsrE3sdSbGGNf7GlriXo3ZbezYsfr888+1ZcsW1y0yMlIPP/ywPvzwwxa9W4Ma/Zam8zR9+nTz8ccfm927d5sNGzaY4cOHm6CgILN3717XTGVlpWnfvr3JzMw842NMmTLFdOvWzaxdu9YUFxeboUOHnvGt1bGxsWb9+vVm/fr1pk+fPmd8a/WwYcNMcXGxWbt2renWrZvbW6uPHj1qunTpYu69915TUlJili9fboKDg8/41upz7XX99debK664wnz00Udm9+7d5pVXXjH+/v5m4cKFLXqvxuz217/+1Xz00Ufm66+/NitWrDDdu3c3d911V4v/Z1ZQUGB8fHzM008/bXbt2mVycnJM+/btzdKlS10zzz77rAkJCTHLly83JSUl5t577z3jj9S0xt0OHz5sNm/ebN5//30jyeTm5prNmzebioqKFrvbufaqra01t99+u+nWrZvZsmWL24+BOZ3OVrtXdXW1SU9PN+vXrzd79+41RUVFZsKECcbPz8/tnfctba/G7HYmP333b0vdrSEXLKqnfs6vXbt2JjIy0tx1111m27ZtbjMvv/yyCQgIMEePHj3jY3z//fdm6tSpplOnTiYgIMAMHz7clJaWus0cPnzYjBkzxgQFBZmgoCAzZswYc+TIEbeZb775xiQlJZmAgADTqVMnM3XqVLe3URtjzOeff26GDBli/Pz8THh4uHniiSfO+Lbqc+1VUVFhxo8fbyIjI42/v7+5/PLLzZw5c9weqyXu1ZjdXnjhBdOtWzfTrl07c/HFF5uZM2e6/R9YS97t3XffNTExMcbPz8/07NnTLFq0yO3z9fX15vHHHzfh4eHGz8/PXHfddaakpKRN7PbKK68YSafdHn/88Ra9W0N7nfrxoDPdPvroo1a71/fff29GjhxpIiMjja+vr4mIiDC33367KSgocHuMlrjXuXY7kzNFtaXudjb80W8AAFjC7/4FAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJb8f4bXK/iZP7/QAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAGsCAYAAACLlD3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtMElEQVR4nO3de1jVZb7//9cC5CByUJwElMSaJjWEzFJD7aAUFVrZ7NLGdMulpm0cpNxtY7YdbCpySse0ZCejFcmOBjOng5n62x2GPICgO9RSSw1E1MkUZIwlwv37o+36tlKRhXdy6Pm4rnVd8eG9Fve7pnm2WAt0GGOMAADAefNq7gMAANBWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALGlzUf300081YsQIRUZGyuFwaMWKFR4/hjFGzz//vH7zm9/Iz89PUVFReuaZZ+wfFgDQpvg09wFs++c//6m4uDglJyfrt7/9bZMeY9q0aVq9erWef/559enTR5WVlfr2228tnxQA0NY42vIv1Hc4HHr77bd15513uq6dOHFCM2fOVE5Ojo4ePaqYmBjNnj1bN9xwgyTpiy++UGxsrLZu3arLL7+8eQ4OAGiV2ty3f88lOTlZn332mXJzc/X555/r7rvv1i233KJdu3ZJkt59911dcskleu+999SjRw9FR0dr4sSJ+u6775r55ACAlu4XFdWvv/5ab7zxhvLy8jRkyBBdeuml+vd//3cNHjxYr7zyiiRp9+7d+uabb5SXl6fs7Gy9+uqrKioq0r/8y7808+kBAC1dm3tNtSHFxcUyxug3v/mN23Wn06mwsDBJUn19vZxOp7Kzs11zixcvVr9+/bRjxw6+JQwAOKtfVFTr6+vl7e2toqIieXt7u32uQ4cOkqSIiAj5+Pi4hbdXr16SpNLSUqIKADirX1RU+/btq7q6Oh06dEhDhgw548ygQYN08uRJff3117r00kslSTt37pQkde/e/YKdFQDQ+rS5d/9WV1frq6++kvRDROfOnasbb7xRnTp10sUXX6z77rtPn332mebMmaO+ffvq22+/1f/8z/+oT58+uu2221RfX69rrrlGHTp00Lx581RfX6+UlBQFBwdr9erVzbwdAKAla3NR/fjjj3XjjTeedv1f//Vf9eqrr6q2tlZPPfWUsrOzVV5errCwMF177bWaNWuW+vTpI0nav3+/fv/732v16tUKDAzUrbfeqjlz5qhTp04Xeh0AQCvS5qIKAEBzOa8fqcnIyJDD4VBaWlqDcy+99JJ69eqlgIAAXX755crOznb7/LZt2/Tb3/5W0dHRcjgcmjdv3vkcCwCAZtHkNyoVFhZq0aJFio2NbXAuMzNT6enpysrK0jXXXKOCggJNmjRJHTt21IgRIyRJx48f1yWXXKK7775bDz74YFOPBABAs2pSVKurqzVmzBhlZWXpqaeeanD29ddf1+TJkzVq1ChJ0iWXXKINGzZo9uzZrqhec801uuaaayRJjzzySFOOpPr6eu3fv19BQUFyOBxNegwAAIwxOnbsmCIjI+Xl5dk3dJsU1ZSUFCUlJSkhIeGcUXU6nfL393e7FhAQoIKCAtXW1qpdu3ZNOYKcTqecTqfr4/LycvXu3btJjwUAwE+VlZWpW7duHt3H46jm5uaquLhYhYWFjZpPTEzUX/7yF91555266qqrVFRUpCVLlqi2tlbffvutIiIiPD2CpB9ez501a9Zp18vKyhQcHNykxwQAoKqqSlFRUQoKCvL4vh5FtayszPXHov302efZPProozpw4IAGDhwoY4y6dOmi8ePH609/+tNpv9XIE+np6XrooYdcH5/6mxAcHExUAQDnrSkvJXr0zeKioiIdOnRI/fr1k4+Pj3x8fPTJJ59o/vz58vHxUV1d3Wn3CQgI0JIlS3T8+HHt3btXpaWlio6OVlBQkDp37uzxgU/x8/NzBZSQAgBaAo+eqQ4bNkwlJSVu15KTk9WzZ0/NmDGjwWee7dq1c31vOjc3V8OHD/f4BWAAAFoyj6IaFBSkmJgYt2uBgYEKCwtzXU9PT1d5ebnrZ1F37typgoICDRgwQEeOHNHcuXO1detWvfbaa67HOHHihLZv3+766/Lycm3ZskUdOnTQr3/96/NaEACAC8X6U8WKigqVlpa6Pq6rq9OcOXMUFxenm266STU1NVq3bp2io6NdM/v371ffvn3Vt29fVVRU6Pnnn1ffvn01ceJE28cDAOBn02Z+TWFVVZVCQkJUWVnJ66sAgCY7n57woiYAAJYQVQAALCGqAABY0uRfqA8AQEtQXXNSD765WaVHvtfFHQP051F91cG/efJGVAEArdbtL/5dn++rcn2848AxxTzxoXpe5K9VDw274Ofh278AgFbpp0H9sS8P1ejXf3j/Ap+IqAIAWqHqmpNnDeopJ+ulfn9cc4FO9AOiCgBodR58c3Oj5g7/84S+qz7xM5/m/yGqAIBWp/TI942eHb1o3c94EndEFQDQ6lzcMaDRs4eO8UwVAICz+vOovo2evSjI92c8iTuiCgBodTr4+6jnRf6Nms29P/5nPs3/Q1QBAK3SqoeGyeccFftVB1916sAzVQAAzumrZ5IUFnjmaP6qg68KZ950Qc/Db1QCALRqRY/epO+qT2j0onU6dOyELgryVe798Rf0GeopRBUA0Op16uCr1Q/d0NzH4Nu/AADYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAkvOKakZGhhwOh9LS0hqce+mll9SrVy8FBATo8ssvV3Z29mkzb731lnr37i0/Pz/17t1bb7/99vkcDQCAC67JUS0sLNSiRYsUGxvb4FxmZqbS09P1xBNPaNu2bZo1a5ZSUlL07rvvumbWr1+vUaNGaezYsfrf//1fjR07Vvfcc482btzY1OMBAHDBOYwxxtM7VVdX66qrrtLChQv11FNP6corr9S8efPOOBsfH69Bgwbpueeec11LS0vTpk2blJ+fL0kaNWqUqqqq9MEHH7hmbrnlFnXs2FFvvPFGo85UVVWlkJAQVVZWKjg42NOVAACQdH49adIz1ZSUFCUlJSkhIeGcs06nU/7+/m7XAgICVFBQoNraWkk/PFO9+eab3WYSExO1bt26Bh+3qqrK7QYAQHPyOKq5ubkqLi5WRkZGo+YTExP1l7/8RUVFRTLGaNOmTVqyZIlqa2v17bffSpIOHDigLl26uN2vS5cuOnDgwFkfNyMjQyEhIa5bVFSUp6sAAGCVR1EtKyvTtGnTtHTp0tOefZ7No48+qltvvVUDBw5Uu3btdMcdd2j8+PGSJG9vb9ecw+Fwu58x5rRrP5aenq7KykrXrayszJNVAACwzqOoFhUV6dChQ+rXr598fHzk4+OjTz75RPPnz5ePj4/q6upOu09AQICWLFmi48ePa+/evSotLVV0dLSCgoLUuXNnSVJ4ePhpz0oPHTp02rPXH/Pz81NwcLDbDQCA5uRRVIcNG6aSkhJt2bLFdbv66qs1ZswYbdmyxe2Z50+1a9dO3bp1k7e3t3JzczV8+HB5ef3w5a+99lqtWbPGbX716tWKj49vwkoAADQPH0+Gg4KCFBMT43YtMDBQYWFhruvp6ekqLy93/Szqzp07VVBQoAEDBujIkSOaO3eutm7dqtdee831GNOmTdN1112n2bNn64477tDf/vY3rV271vXuYAAAWgPrv1GpoqJCpaWlro/r6uo0Z84cxcXF6aabblJNTY3WrVun6Oho10x8fLxyc3P1yiuvKDY2Vq+++qrefPNNDRgwwPbxAAD42TTp51RbIn5OFQBgwwX/OVUAAHA6ogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEvOK6oZGRlyOBxKS0trcC4nJ0dxcXFq3769IiIilJycrMOHD7s+X1tbqyeffFKXXnqp/P39FRcXp1WrVp3P0QAAuOCaHNXCwkItWrRIsbGxDc7l5+dr3LhxmjBhgrZt26a8vDwVFhZq4sSJrpmZM2fq5Zdf1oIFC7R9+3ZNmTJFI0eO1ObNm5t6PAAALrgmRbW6ulpjxoxRVlaWOnbs2ODshg0bFB0drdTUVPXo0UODBw/W5MmTtWnTJtfM66+/rj/84Q+67bbbdMkll+iBBx5QYmKi5syZ05TjAQDQLJoU1ZSUFCUlJSkhIeGcs/Hx8dq3b59WrlwpY4wOHjyoZcuWKSkpyTXjdDrl7+/vdr+AgADl5+ef9XGdTqeqqqrcbgAANCePo5qbm6vi4mJlZGQ0aj4+Pl45OTkaNWqUfH19FR4ertDQUC1YsMA1k5iYqLlz52rXrl2qr6/XmjVr9Le//U0VFRVnfdyMjAyFhIS4blFRUZ6uAgCAVR5FtaysTNOmTdPSpUtPe2Z5Ntu3b1dqaqoee+wxFRUVadWqVdqzZ4+mTJnimnnhhRd02WWXqWfPnvL19dXUqVOVnJwsb2/vsz5uenq6KisrXbeysjJPVgEAwDqHMcY0dnjFihUaOXKkW+zq6urkcDjk5eUlp9N5WgjHjh2rmpoa5eXlua7l5+dryJAh2r9/vyIiIlzXa2pqdPjwYUVGRuqRRx7Re++9p23btjXqbFVVVQoJCVFlZaWCg4MbuxIAAG7Opyc+ngwPGzZMJSUlbteSk5PVs2dPzZgx44zPLI8fPy4fH/cvc2rupz339/dX165dVVtbq7feekv33HOPJ8cDAKBZeRTVoKAgxcTEuF0LDAxUWFiY63p6errKy8uVnZ0tSRoxYoQmTZqkzMxMJSYmqqKiQmlpaerfv78iIyMlSRs3blR5ebmuvPJKlZeX64knnlB9fb3+4z/+w8aOAABcEB5FtTEqKipUWlrq+nj8+PE6duyYXnzxRU2fPl2hoaEaOnSoZs+e7ZqpqanRzJkztXv3bnXo0EG33XabXn/9dYWGhto+HgAAPxuPXlNtyXhNFQBgw/n0hN/9CwCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACw5r6hmZGTI4XAoLS2twbmcnBzFxcWpffv2ioiIUHJysg4fPuw2M2/ePF1++eUKCAhQVFSUHnzwQdXU1JzP8QAAuKCaHNXCwkItWrRIsbGxDc7l5+dr3LhxmjBhgrZt26a8vDwVFhZq4sSJrpmcnBw98sgjevzxx/XFF19o8eLFevPNN5Went7U4wEAcME1KarV1dUaM2aMsrKy1LFjxwZnN2zYoOjoaKWmpqpHjx4aPHiwJk+erE2bNrlm1q9fr0GDBul3v/udoqOjdfPNN+vee+91mwEAoKVrUlRTUlKUlJSkhISEc87Gx8dr3759WrlypYwxOnjwoJYtW6akpCTXzODBg1VUVKSCggJJ0u7du7Vy5Uq3mZ9yOp2qqqpyuwEA0Jx8PL1Dbm6uiouLVVhY2Kj5+Ph45eTkaNSoUaqpqdHJkyd1++23a8GCBa6Z0aNH6x//+IcGDx4sY4xOnjypBx54QI888shZHzcjI0OzZs3y9PgAAPxsPHqmWlZWpmnTpmnp0qXy9/dv1H22b9+u1NRUPfbYYyoqKtKqVau0Z88eTZkyxTXz8ccf6+mnn9bChQtVXFys5cuX67333tMf//jHsz5uenq6KisrXbeysjJPVgEAwDqHMcY0dnjFihUaOXKkvL29Xdfq6urkcDjk5eUlp9Pp9jlJGjt2rGpqapSXl+e6lp+fryFDhmj//v2KiIjQkCFDNHDgQD333HOumaVLl+r+++9XdXW1vLzO3f6qqiqFhISosrJSwcHBjV0JAAA359MTj779O2zYMJWUlLhdS05OVs+ePTVjxozTgipJx48fl4+P+5c5NXeq58ePHz8tnN7e3jLGyIPmAwDQrDyKalBQkGJiYtyuBQYGKiwszHU9PT1d5eXlys7OliSNGDFCkyZNUmZmphITE1VRUaG0tDT1799fkZGRrpm5c+eqb9++GjBggL766is9+uijuv32288YagAAWiKP36h0LhUVFSotLXV9PH78eB07dkwvvviipk+frtDQUA0dOlSzZ892zcycOVMOh0MzZ85UeXm5fvWrX2nEiBF6+umnbR8PAICfjUevqbZkvKYKALDhfHrC7/4FAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEvOK6oZGRlyOBxKS0trcC4nJ0dxcXFq3769IiIilJycrMOHD7s+f8MNN8jhcJx2S0pKOp/jAQBwQTU5qoWFhVq0aJFiY2MbnMvPz9e4ceM0YcIEbdu2TXl5eSosLNTEiRNdM8uXL1dFRYXrtnXrVnl7e+vuu+9u6vEAALjgmhTV6upqjRkzRllZWerYsWODsxs2bFB0dLRSU1PVo0cPDR48WJMnT9amTZtcM506dVJ4eLjrtmbNGrVv356oAgBalSZFNSUlRUlJSUpISDjnbHx8vPbt26eVK1fKGKODBw9q2bJlDX5rd/HixRo9erQCAwPPOuN0OlVVVeV2AwCgOXkc1dzcXBUXFysjI6NR8/Hx8crJydGoUaPk6+ur8PBwhYaGasGCBWecLygo0NatW92+PXwmGRkZCgkJcd2ioqI8XQUAAKs8impZWZmmTZumpUuXyt/fv1H32b59u1JTU/XYY4+pqKhIq1at0p49ezRlypQzzi9evFgxMTHq379/g4+bnp6uyspK162srMyTVQAAsM5hjDGNHV6xYoVGjhwpb29v17W6ujo5HA55eXnJ6XS6fU6Sxo4dq5qaGuXl5bmu5efna8iQIdq/f78iIiJc148fP66IiAg9+eSTmjZtmkeLVFVVKSQkRJWVlQoODvbovgAAnHI+PfHxZHjYsGEqKSlxu5acnKyePXtqxowZpwVV+iGUPj7uX+bU3E97/te//lVOp1P33XefJ8cCAKBF8CiqQUFBiomJcbsWGBiosLAw1/X09HSVl5crOztbkjRixAhNmjRJmZmZSkxMVEVFhdLS0tS/f39FRka6PdbixYt15513Kiws7Hx2AgCgWXgU1caoqKhQaWmp6+Px48fr2LFjevHFFzV9+nSFhoZq6NChmj17ttv9du7cqfz8fK1evdr2kQAAuCA8ek21JeM1VQCADefTE373LwAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALDkvKKakZEhh8OhtLS0BudycnIUFxen9u3bKyIiQsnJyTp8+LDbzNGjR5WSkqKIiAj5+/urV69eWrly5fkcDwCAC6rJUS0sLNSiRYsUGxvb4Fx+fr7GjRunCRMmaNu2bcrLy1NhYaEmTpzomjlx4oRuuukm7d27V8uWLdOOHTuUlZWlrl27NvV4AABccD5NuVN1dbXGjBmjrKwsPfXUUw3ObtiwQdHR0UpNTZUk9ejRQ5MnT9af/vQn18ySJUv03Xffad26dWrXrp0kqXv37k05GgAAzaZJz1RTUlKUlJSkhISEc87Gx8dr3759WrlypYwxOnjwoJYtW6akpCTXzDvvvKNrr71WKSkp6tKli2JiYvTMM8+orq7urI/rdDpVVVXldgMAoDl5HNXc3FwVFxcrIyOjUfPx8fHKycnRqFGj5Ovrq/DwcIWGhmrBggWumd27d2vZsmWqq6vTypUrNXPmTM2ZM0dPP/30WR83IyNDISEhrltUVJSnqwAAYJVHUS0rK9O0adO0dOlS+fv7N+o+27dvV2pqqh577DEVFRVp1apV2rNnj6ZMmeKaqa+v10UXXaRFixapX79+Gj16tP7zP/9TmZmZZ33c9PR0VVZWum5lZWWerAIAgHUOY4xp7PCKFSs0cuRIeXt7u67V1dXJ4XDIy8tLTqfT7XOSNHbsWNXU1CgvL891LT8/X0OGDNH+/fsVERGh66+/Xu3atdPatWtdMx988IFuu+02OZ1O+fr6nvNsVVVVCgkJUWVlpYKDgxu7EgAAbs6nJx69UWnYsGEqKSlxu5acnKyePXtqxowZpwVVko4fPy4fH/cvc2ruVM8HDRqk//7v/1Z9fb28vH548rxz505FREQ0KqgAALQEHn37NygoSDExMW63wMBAhYWFKSYmRtIP35YdN26c6z4jRozQ8uXLlZmZqd27d+uzzz5Tamqq+vfvr8jISEnSAw88oMOHD2vatGnauXOn3n//fT3zzDNKSUmxuCoAAD+vJv1ITUMqKipUWlrq+nj8+PE6duyYXnzxRU2fPl2hoaEaOnSoZs+e7ZqJiorS6tWr9eCDDyo2NlZdu3bVtGnTNGPGDNvHAwDgZ+PRa6otGa+pAgBsOJ+e8Lt/AQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMCS84pqRkaGHA6H0tLSGpzLyclRXFyc2rdvr4iICCUnJ+vw4cOuz7/66qtyOByn3Wpqas7neAAAXFBNjmphYaEWLVqk2NjYBufy8/M1btw4TZgwQdu2bVNeXp4KCws1ceJEt7ng4GBVVFS43fz9/Zt6PAAALrgmRbW6ulpjxoxRVlaWOnbs2ODshg0bFB0drdTUVPXo0UODBw/W5MmTtWnTJrc5h8Oh8PBwtxsAAK1Jk6KakpKipKQkJSQknHM2Pj5e+/bt08qVK2WM0cGDB7Vs2TIlJSW5zVVXV6t79+7q1q2bhg8frs2bNzf4uE6nU1VVVW43AACak8dRzc3NVXFxsTIyMho1Hx8fr5ycHI0aNUq+vr4KDw9XaGioFixY4Jrp2bOnXn31Vb3zzjt644035O/vr0GDBmnXrl1nfdyMjAyFhIS4blFRUZ6uAgCAVQ5jjGnscFlZma6++mqtXr1acXFxkqQbbrhBV155pebNm3fG+2zfvl0JCQl68MEHlZiYqIqKCj388MO65pprtHjx4jPep76+XldddZWuu+46zZ8//4wzTqdTTqfT9XFVVZWioqJUWVmp4ODgxq4EAICbqqoqhYSENKknHkV1xYoVGjlypLy9vV3X6urq5HA45OXlJafT6fY5SRo7dqxqamqUl5fnupafn68hQ4Zo//79ioiIOOPXmjRpkvbt26cPPvigUWc7n78JAACccj498fFkeNiwYSopKXG7lpycrJ49e2rGjBmnBVWSjh8/Lh8f9y9zau5sPTfGaMuWLerTp48nxwMAoFl5FNWgoCDFxMS4XQsMDFRYWJjrenp6usrLy5WdnS1JGjFihCZNmqTMzEzXt3/T0tLUv39/RUZGSpJmzZqlgQMH6rLLLlNVVZXmz5+vLVu26KWXXrKxIwAAF4RHUW2MiooKlZaWuj4eP368jh07phdffFHTp09XaGiohg4dqtmzZ7tmjh49qvvvv18HDhxQSEiI+vbtq08//VT9+/e3fTwAAH42Hr2m2pLxmioAwIbz6Qm/+xcAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWGL9T6lpzQ4crdHwBZ+qquakgv199N7vr1N4qH9zHwsA0EoQ1f/T69EP9H1tvevjb/9Zq4HP/n8KaOelL/54azOeDADQWvDtX50e1B/7vrZevR794AKfCADQGv3io3rgaM1Zg3rK97X1OnC05gKdCADQWv3iozp8wadW5wAAv1y/+KhW1Zy0OgcA+OX6xUc12L9x79Vq7BwA4JfrFx/V935/ndU5AMAv1y8+quGh/gpo1/DfhoB2Xvy8KgDgnH7xUZWkL/5461nDys+pAgAaixcK/88Xf7yV36gEADgvRPVHwkP9tenRm5v7GACAVopv/wIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgSZv5jUrGGElSVVVVM58EANCanerIqa54os1E9dixY5KkqKioZj4JAKAtOHbsmEJCQjy6j8M0JcUtUH19vXbs2KHevXurrKxMwcHBzX0ka6qqqhQVFcVerUhb3a2t7iW13d3a6l7Sz7ebMUbHjh1TZGSkvLw8e5W0zTxT9fLyUteuXSVJwcHBbe5/PBJ7tUZtdbe2upfUdndrq3tJP89unj5DPYU3KgEAYAlRBQDAkjYVVT8/Pz3++OPy8/Nr7qNYxV6tT1vdra3uJbXd3drqXlLL3K3NvFEJAIDm1qaeqQIA0JyIKgAAlhBVAAAsIaoAAFhywaL6xBNPyOFwuN3Cw8Ndn//p507dnnvuOdeM0+nU73//e3Xu3FmBgYG6/fbbtW/fPrevc+TIEY0dO1YhISEKCQnR2LFjdfToUbeZ0tJSjRgxQoGBgercubNSU1N14sQJt5mSkhJdf/31CggIUNeuXfXkk0+e8fdAnmuv6upqTZ06Vd26dVNAQIB69eqlzMxMt8doiXs1ZreDBw9q/PjxioyMVPv27XXLLbdo165drWK38vJy3XfffQoLC1P79u115ZVXqqioyPV5Y4yeeOIJRUZGKiAgQDfccIO2bdvWJnZbvny5EhMT1blzZzkcDm3ZsuW0x2iJuzW0V21trWbMmKE+ffooMDBQkZGRGjdunPbv39+q95J++PewZ8+eCgwMVMeOHZWQkKCNGze2+L0as9uPTZ48WQ6HQ/PmzWsVu52VuUAef/xxc8UVV5iKigrX7dChQ67P//h6RUWFWbJkiXE4HObrr792zUyZMsV07drVrFmzxhQXF5sbb7zRxMXFmZMnT7pmbrnlFhMTE2PWrVtn1q1bZ2JiYszw4cNdnz958qSJiYkxN954oykuLjZr1qwxkZGRZurUqa6ZyspK06VLFzN69GhTUlJi3nrrLRMUFGSef/55j/eaOHGiufTSS81HH31k9uzZY15++WXj7e1tVqxY0aL3Otdu9fX1ZuDAgWbIkCGmoKDAfPnll+b+++83F198samurm7Ru3333Xeme/fuZvz48Wbjxo1mz549Zu3atearr75yzTz77LMmKCjIvPXWW6akpMSMGjXKREREmKqqqla/W3Z2tpk1a5bJysoykszmzZtPe5yWttu59jp69KhJSEgwb775pvnyyy/N+vXrzYABA0y/fv1a9V7GGJOTk2PWrFljvv76a7N161YzYcIEExwc7Pb/My1tr8budsrbb79t4uLiTGRkpPnzn//cov+ZncsFjWpcXFyj5++44w4zdOhQ18dHjx417dq1M7m5ua5r5eXlxsvLy6xatcoYY8z27duNJLNhwwbXzPr1640k8+WXXxpjjFm5cqXx8vIy5eXlrpk33njD+Pn5mcrKSmOMMQsXLjQhISGmpqbGNZORkWEiIyNNfX29R3tdccUV5sknn3S7dtVVV5mZM2e26L3OtduOHTuMJLN161bXtZMnT5pOnTqZrKysFr3bjBkzzODBg8+4lzE//AdDeHi4efbZZ13XampqTEhIiPmv//qvVr3bj+3Zs+eMUW2Ju3my1ykFBQVGkvnmm2/a1F6VlZVGklm7dm2L3cuT3fbt22e6du1qtm7darp37+4W1Za6W0Mu6Guqu3btUmRkpHr06KHRo0dr9+7dZ5w7ePCg3n//fU2YMMF1raioSLW1tbr55ptd1yIjIxUTE6N169ZJktavX6+QkBANGDDANTNw4ECFhIS4zcTExCgyMtI1k5iYKKfT6fq2xPr163X99de7/UBxYmKi9u/fr71793q01+DBg/XOO++ovLxcxhh99NFH2rlzpxITE1v8Xg3t5nQ6JUn+/v6uWW9vb/n6+io/P79F7/bOO+/o6quv1t13362LLrpIffv2VVZWluvze/bs0YEDB9zO7efnp+uvv951pta6W2O0xN2asldlZaUcDodCQ0PbzF4nTpzQokWLFBISori4uBa7V2N3q6+v19ixY/Xwww/riiuuOG3flrpbQy5YVAcMGKDs7Gx9+OGHysrK0oEDBxQfH6/Dhw+fNvvaa68pKChId911l+vagQMH5Ovrq44dO7rNdunSRQcOHHDNXHTRRac93kUXXeQ206VLF7fPd+zYUb6+vg3OnPr41Exj95o/f7569+6tbt26ydfXV7fccosWLlyowYMHt+i9zrVbz5491b17d6Wnp+vIkSM6ceKEnn32WR04cEAVFRUterfdu3crMzNTl112mT788ENNmTJFqampys7Odps/0+P9+Ou1xt0aoyXu5uleNTU1euSRR/S73/3O9YvWW/Ne7733njp06CB/f3/9+c9/1po1a9S5c+cWu1djd5s9e7Z8fHyUmpp62tla8m4NuWB/Ss2tt97q+us+ffro2muv1aWXXqrXXntNDz30kNvskiVLNGbMGLdnQWdjjJHD4XB9/OO/tjlj/u/F6p9eP9de8+fP14YNG/TOO++oe/fu+vTTT/Vv//ZvioiIUEJCQovdqzG7vfXWW5owYYI6deokb29vJSQkuN2npe5WX1+vq6++Ws8884wkqW/fvtq2bZsyMzM1bty4Bh/vTOdojbs1RXPu5sletbW1Gj16tOrr67Vw4cI2sdeNN96oLVu26Ntvv1VWVpbuuecebdy48YwxaQl7NWa3oqIivfDCCyouLj7nv1ctbbeGNNuP1AQGBqpPnz6nvVv073//u3bs2KGJEye6XQ8PD9eJEyd05MgRt+uHDh1y/ddEeHi4Dh48eNrX+sc//uE289P/6jhy5Ihqa2sbnDl06JCk05+9NLTX999/rz/84Q+aO3euRowYodjYWE2dOlWjRo3S888/36r2+uluktSvXz9t2bJFR48eVUVFhVatWqXDhw+rR48eLXq3iIgI9e7d2+1ar169VFpa6nos6fT/Ov3puVvjbo3REndr7F61tbW65557tGfPHq1Zs8btjwNrzXsFBgbq17/+tQYOHKjFixfLx8dHixcvbrF7NWa3v//97zp06JAuvvhi+fj4yMfHR998842mT5+u6OjoFr1bQ5otqk6nU1988YUiIiLcri9evFj9+vVzvV5wSr9+/dSuXTutWbPGda2iokJbt25VfHy8JOnaa69VZWWlCgoKXDMbN25UZWWl28zWrVtd36KUpNWrV8vPz0/9+vVzzXz66adub7devXq1IiMjXf+wG7NXbW2tamtrT/tDbr29vVVfX9+q9vrpbj8WEhKiX/3qV9q1a5c2bdqkO+64o0XvNmjQIO3YscPt2s6dO9W9e3dJUo8ePRQeHu527hMnTuiTTz5xnam17tYYLXG3xux1Kqi7du3S2rVrFRYW1ib2OhNjjOt9DS1xr8bsNnbsWH3++efasmWL6xYZGamHH35YH374YYverUGNfkvTeZo+fbr5+OOPze7du82GDRvM8OHDTVBQkNm7d69rprKy0rRv395kZmae8TGmTJliunXrZtauXWuKi4vN0KFDz/jW6tjYWLN+/Xqzfv1606dPnzO+tXrYsGGmuLjYrF271nTr1s3trdVHjx41Xbp0Mffee68pKSkxy5cvN8HBwWd8a/W59rr++uvNFVdcYT766COze/du88orrxh/f3+zcOHCFr1XY3b761//aj766CPz9ddfmxUrVpju3bubu+66q8X/MysoKDA+Pj7m6aefNrt27TI5OTmmffv2ZunSpa6ZZ5991oSEhJjly5ebkpISc++9957xR2pa426HDx82mzdvNu+//76RZHJzc83mzZtNRUVFi93tXHvV1taa22+/3XTr1s1s2bLF7cfAnE5nq92rurrapKenm/Xr15u9e/eaoqIiM2HCBOPn5+f2zvuWtldjdjuTn777t6Xu1pALFtVTP+fXrl07ExkZae666y6zbds2t5mXX37ZBAQEmKNHj57xMb7//nszdepU06lTJxMQEGCGDx9uSktL3WYOHz5sxowZY4KCgkxQUJAZM2aMOXLkiNvMN998Y5KSkkxAQIDp1KmTmTp1qtvbqI0x5vPPPzdDhgwxfn5+Jjw83DzxxBNnfFv1ufaqqKgw48ePN5GRkcbf399cfvnlZs6cOW6P1RL3asxuL7zwgunWrZtp166dufjii83MmTPd/g+sJe/27rvvmpiYGOPn52d69uxpFi1a5Pb5+vp68/jjj5vw8HDj5+dnrrvuOlNSUtImdnvllVeMpNNujz/+eIveraG9Tv140JluH330Uavd6/vvvzcjR440kZGRxtfX10RERJjbb7/dFBQUuD1GS9zrXLudyZmi2lJ3Oxv+6DcAACzhd/8CAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEv+f9FZK/o7o/oJAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -652,7 +652,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -714,9 +714,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2024-08-13 17:57:56.560918+00:00\n", + " 2024-08-15 19:52:45.154374+00:00\n", " None\n", - " 2184545\n", + " 2346713\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -738,9 +738,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2024-08-13 17:57:56.560918+00:00\n", + " 2024-08-15 19:52:45.154374+00:00\n", " None\n", - " 2184546\n", + " 2346714\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -762,9 +762,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2024-08-13 17:57:56.560918+00:00\n", + " 2024-08-15 19:52:45.154374+00:00\n", " None\n", - " 2184547\n", + " 2346715\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -786,9 +786,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2024-08-13 17:57:56.560918+00:00\n", + " 2024-08-15 19:52:45.154374+00:00\n", " None\n", - " 2184548\n", + " 2346716\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -810,9 +810,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2024-08-13 17:57:56.560918+00:00\n", + " 2024-08-15 19:52:45.154374+00:00\n", " None\n", - " 2184549\n", + " 2346717\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -858,9 +858,9 @@ " None\n", " ...\n", " 2020-01-31\n", - " 2024-08-13 17:58:01.182985+00:00\n", + " 2024-08-15 19:52:49.654026+00:00\n", " None\n", - " 2186850\n", + " 2349018\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -882,9 +882,9 @@ " None\n", " ...\n", " 2020-01-31\n", - " 2024-08-13 17:58:01.182985+00:00\n", + " 2024-08-15 19:52:49.654026+00:00\n", " None\n", - " 2186851\n", + " 2349019\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -906,9 +906,9 @@ " None\n", " ...\n", " 2020-01-31\n", - " 2024-08-13 17:58:01.182985+00:00\n", + " 2024-08-15 19:52:49.654026+00:00\n", " None\n", - " 2186852\n", + " 2349020\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -930,9 +930,9 @@ " None\n", " ...\n", " 2020-01-31\n", - " 2024-08-13 17:58:01.182985+00:00\n", + " 2024-08-15 19:52:49.654026+00:00\n", " None\n", - " 2186853\n", + " 2349021\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -954,9 +954,9 @@ " None\n", " ...\n", " 2020-01-31\n", - " 2024-08-13 17:58:01.182985+00:00\n", + " 2024-08-15 19:52:49.654026+00:00\n", " None\n", - " 2186854\n", + " 2349022\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -984,30 +984,30 @@ "159 8.0 1C1 COGM1C1_20200131 None None None None \n", "\n", " sample_c value flags ... date time_created \\\n", - "0 None 45.6 None ... 2020-02-12 2024-08-13 17:57:56.560918+00:00 \n", - "1 None 38.2 None ... 2020-02-12 2024-08-13 17:57:56.560918+00:00 \n", - "2 None 24.5 None ... 2020-02-12 2024-08-13 17:57:56.560918+00:00 \n", - "3 None 23.5 None ... 2020-02-12 2024-08-13 17:57:56.560918+00:00 \n", - "4 None 22.4 None ... 2020-02-12 2024-08-13 17:57:56.560918+00:00 \n", + "0 None 45.6 None ... 2020-02-12 2024-08-15 19:52:45.154374+00:00 \n", + "1 None 38.2 None ... 2020-02-12 2024-08-15 19:52:45.154374+00:00 \n", + "2 None 24.5 None ... 2020-02-12 2024-08-15 19:52:45.154374+00:00 \n", + "3 None 23.5 None ... 2020-02-12 2024-08-15 19:52:45.154374+00:00 \n", + "4 None 22.4 None ... 2020-02-12 2024-08-15 19:52:45.154374+00:00 \n", ".. ... ... ... ... ... ... \n", - "155 None 13.1 None ... 2020-01-31 2024-08-13 17:58:01.182985+00:00 \n", - "156 None 10.1 None ... 2020-01-31 2024-08-13 17:58:01.182985+00:00 \n", - "157 None 10.6 None ... 2020-01-31 2024-08-13 17:58:01.182985+00:00 \n", - "158 None 10.5 None ... 2020-01-31 2024-08-13 17:58:01.182985+00:00 \n", - "159 None 13.2 None ... 2020-01-31 2024-08-13 17:58:01.182985+00:00 \n", + "155 None 13.1 None ... 2020-01-31 2024-08-15 19:52:49.654026+00:00 \n", + "156 None 10.1 None ... 2020-01-31 2024-08-15 19:52:49.654026+00:00 \n", + "157 None 10.6 None ... 2020-01-31 2024-08-15 19:52:49.654026+00:00 \n", + "158 None 10.5 None ... 2020-01-31 2024-08-15 19:52:49.654026+00:00 \n", + "159 None 13.2 None ... 2020-01-31 2024-08-15 19:52:49.654026+00:00 \n", "\n", " time_updated id doi \\\n", - "0 None 2184545 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "1 None 2184546 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "2 None 2184547 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "3 None 2184548 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "4 None 2184549 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "0 None 2346713 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "1 None 2346714 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "2 None 2346715 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "3 None 2346716 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "4 None 2346717 https://doi.org/10.5067/SNMM6NGGKWIT \n", ".. ... ... ... \n", - "155 None 2186850 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "156 None 2186851 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "157 None 2186852 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "158 None 2186853 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "159 None 2186854 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "155 None 2349018 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "156 None 2349019 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "157 None 2349020 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "158 None 2349021 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "159 None 2349022 https://doi.org/10.5067/SNMM6NGGKWIT \n", "\n", " date_accessed instrument type units \\\n", "0 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", @@ -1038,7 +1038,7 @@ "[160 rows x 29 columns]" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, @@ -1087,20 +1087,20 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Available types = swe, depth, two_way_travel\n", + "Available types = two_way_travel, snow_void, density, swe, depth\n", "\n", "Available Instruments = Mala 1600 MHz GPR, None, Mala 800 MHz GPR, pulse EKKO Pro multi-polarization 1 GHz GPR, pit ruler, mesa, magnaprobe, camera\n", "\n", - "Available Dates = 2020-05-28, 2020-01-09, 2020-05-23, 2020-01-04, 2019-11-29, 2019-10-20, 2019-11-30, 2020-04-17, 2020-02-19, 2020-02-26, 2020-02-03, 2020-05-05, 2019-10-05, 2019-12-29, 2020-06-02, 2019-10-28, 2020-01-30, 2020-05-22, 2020-03-09, 2019-12-09, 2019-12-28, 2020-02-24, 2020-03-17, 2020-04-01, 2020-05-14, 2019-10-29, 2019-10-14, 2019-10-02, 2020-01-31, 2020-04-18, 2020-04-29, 2020-04-26, 2019-10-12, 2020-02-23, 2020-01-22, 2020-01-01, 2019-11-21, 2020-05-10, 2020-02-12, 2020-05-06, 2019-11-19, 2019-10-25, 2019-11-02, 2020-02-08, 2020-04-14, 2020-04-02, 2019-11-16, 2020-04-07, 2019-12-27, 2019-10-01, 2020-04-16, 2020-06-08, 2019-12-13, 2019-10-17, 2019-10-22, 2020-04-21, 2020-01-03, 2019-12-12, 2019-12-08, 2020-01-25, 2020-02-29, 2019-11-24, 2019-10-18, 2020-05-09, 2020-03-22, 2019-11-06, 2019-12-16, 2020-01-15, 2019-11-22, 2019-10-13, 2019-11-10, 2019-12-06, 2020-02-04, 2020-03-07, 2019-10-31, 2020-04-06, 2020-05-03, 2019-12-10, 2020-05-26, 2019-12-02, 2020-02-14, 2020-02-13, 2020-05-11, 2019-12-01, 2020-01-19, 2019-11-28, 2020-01-17, 2019-12-17, 2019-12-25, 2019-12-14, 2019-10-24, 2020-02-01, 2020-03-11, 2020-02-09, 2020-05-12, 2020-05-25, 2020-03-29, 2020-04-24, 2019-12-11, 2020-01-10, 2020-06-05, 2019-10-10, 2020-04-13, 2020-03-23, 2020-04-23, 2020-05-24, 2019-11-08, 2019-12-26, 2019-12-15, 2020-05-07, 2020-02-28, 2019-11-03, 2020-04-04, 2019-11-27, 2020-03-15, 2020-01-16, 2019-11-23, 2019-10-08, 2019-11-14, 2020-02-15, 2020-02-11, 2019-11-13, 2020-04-30, 2019-10-26, 2020-03-06, 2020-05-31, 2020-03-04, 2019-10-04, 2020-05-16, 2020-04-03, 2019-10-06, 2019-10-09, 2020-03-12, 2019-11-12, 2019-11-01, 2020-03-10, 2020-02-21, 2019-10-30, 2020-06-01, 2020-03-20, 2020-03-03, 2019-11-07, 2020-01-06, 2019-12-22, 2020-01-11, 2019-11-11, 2019-11-05, 2020-01-13, 2019-12-18, 2019-12-30, 2020-05-04, 2020-04-20, 2020-02-22, 2020-05-08, 2020-01-24, 2019-12-24, 2020-04-22, 2020-03-31, 2020-01-08, 2019-11-04, 2020-02-06, 2020-03-05, 2020-03-14, 2020-06-09, 2020-02-20, 2020-04-05, 2020-06-03, 2019-10-16, 2020-04-15, 2019-12-03, 2020-05-30, 2019-11-09, 2020-04-28, 2020-01-12, 2020-05-20, 2020-05-02, 2020-02-05, 2020-01-28, 2020-01-21, 2019-12-19, 2019-10-07, 2020-03-28, 2020-02-10, 2020-03-02, 2019-09-29, 2019-11-15, 2020-01-02, 2020-05-27, 2020-02-18, 2019-10-11, 2019-12-21, 2020-04-09, 2019-09-30, 2020-01-05, 2019-10-27, 2020-04-10, 2020-03-16, 2020-03-21, 2020-02-02, 2020-04-08, 2020-02-25, 2020-01-29, 2019-12-04, 2019-11-26, 2020-03-19, 2020-01-20, 2020-02-27, 2019-12-31, 2020-03-30, 2020-04-25, 2020-01-26, 2020-01-14, 2020-03-01, 2020-02-17, 2020-05-21, 2019-10-23, 2020-04-11, 2019-10-21, 2019-11-25, 2020-04-12, 2020-03-13, 2020-05-01, 2020-03-08, 2020-05-19, 2020-03-27, 2019-11-17, 2020-04-19, 2020-01-23, 2020-05-15, 2020-02-16, 2019-10-19, 2020-05-29, 2020-03-24, 2019-12-07, 2020-02-07, 2020-03-18, 2020-05-17, 2020-05-13, 2019-12-20, 2019-12-23, 2020-06-07, 2020-01-07, 2020-05-18, 2019-12-05, 2019-11-20, 2020-06-06, 2019-11-18, 2020-06-10, 2020-01-27, 2020-01-18, 2020-06-04, 2020-04-27, 2020-03-25, 2019-10-15, 2020-03-26, 2019-10-03\n", + "Available Dates = 2020-05-28, 2020-01-09, 2021-03-19, 2020-05-23, 2020-01-04, 2019-11-29, 2019-10-20, 2019-11-30, 2021-01-28, 2020-04-17, 2021-02-19, 2020-02-19, 2020-02-26, 2020-02-03, 2020-05-05, 2019-10-05, 2019-12-29, 2020-06-02, 2019-10-28, 2020-01-30, 2020-05-22, 2020-03-09, 2019-12-09, 2019-12-28, 2020-02-24, 2020-03-17, 2021-03-18, 2020-04-01, 2020-05-14, 2019-10-29, 2019-10-14, 2019-10-02, 2020-01-31, 2020-04-18, 2020-04-29, 2020-04-26, 2019-10-12, 2021-03-03, 2021-01-15, 2020-02-23, 2020-01-22, 2020-01-01, 2019-11-21, 2020-05-10, 2023-03-13, 2020-02-12, 2020-05-06, 2019-11-19, 2019-10-25, 2019-11-02, 2020-02-08, 2020-04-14, 2020-04-02, 2019-11-16, 2020-04-07, 2021-03-21, 2021-04-21, 2023-03-15, 2020-11-25, 2019-12-27, 2021-01-27, 2019-10-01, 2020-04-16, 2020-06-08, 2019-12-13, 2019-10-17, 2019-10-22, 2021-01-22, 2020-04-21, 2020-01-03, 2019-12-12, 2019-12-08, 2021-03-05, 2020-01-25, 2020-02-29, 2019-11-24, 2019-10-18, 2021-03-04, 2021-03-24, 2021-03-16, 2020-05-09, 2020-03-22, 2019-11-06, 2019-12-16, 2020-01-15, 2019-11-22, 2019-10-13, 2019-11-10, 2019-12-06, 2020-02-04, 2020-03-07, 2019-10-31, 2020-04-06, 2020-05-03, 2019-12-10, 2020-05-26, 2019-12-02, 2021-02-09, 2020-02-14, 2020-02-13, 2020-05-11, 2019-12-01, 2020-01-19, 2019-11-28, 2020-01-17, 2019-12-17, 2021-02-17, 2021-01-07, 2021-03-31, 2019-12-25, 2019-12-14, 2019-10-24, 2020-02-01, 2020-03-11, 2021-03-23, 2020-02-09, 2020-05-12, 2020-05-25, 2020-03-29, 2020-04-24, 2019-12-11, 2020-01-10, 2020-06-05, 2020-11-20, 2019-10-10, 2020-04-13, 2020-03-23, 2020-04-23, 2020-05-24, 2019-11-08, 2021-05-05, 2021-04-06, 2019-12-26, 2019-12-15, 2020-05-07, 2021-01-20, 2020-02-28, 2019-11-03, 2020-04-04, 2019-11-27, 2021-01-14, 2020-03-15, 2020-01-16, 2019-11-23, 2023-03-14, 2019-10-08, 2019-11-14, 2020-02-15, 2020-02-11, 2023-03-12, 2019-11-13, 2020-04-30, 2019-10-26, 2020-03-06, 2021-03-17, 2020-05-31, 2020-03-04, 2021-02-24, 2019-10-04, 2020-05-16, 2020-04-03, 2019-10-06, 2021-02-25, 2019-10-09, 2020-03-12, 2019-11-12, 2019-11-01, 2020-03-10, 2020-02-21, 2019-10-30, 2020-12-17, 2023-03-07, 2020-06-01, 2020-03-20, 2020-03-03, 2019-11-07, 2020-01-06, 2021-02-11, 2019-12-22, 2020-01-11, 2019-11-11, 2019-11-05, 2020-01-13, 2023-03-16, 2019-12-18, 2019-12-30, 2020-05-04, 2020-04-20, 2021-04-14, 2023-03-09, 2023-03-08, 2020-02-22, 2020-12-18, 2020-05-08, 2020-01-24, 2019-12-24, 2020-04-22, 2020-03-31, 2020-01-08, 2019-11-04, 2020-02-06, 2021-02-18, 2020-03-05, 2021-05-27, 2020-03-14, 2021-02-04, 2020-06-09, 2021-01-21, 2020-02-20, 2020-11-23, 2020-04-05, 2021-05-07, 2020-06-03, 2019-10-16, 2020-04-15, 2021-01-26, 2019-12-03, 2020-05-30, 2019-11-09, 2021-02-16, 2020-04-28, 2020-01-12, 2020-05-20, 2023-03-10, 2020-05-02, 2020-02-05, 2020-01-28, 2020-01-21, 2019-12-19, 2019-10-07, 2020-03-28, 2020-02-10, 2021-04-28, 2020-03-02, 2019-09-29, 2019-11-15, 2020-01-02, 2020-05-27, 2020-02-18, 2019-10-11, 2019-12-21, 2021-03-10, 2020-04-09, 2019-09-30, 2020-01-05, 2019-10-27, 2020-04-10, 2021-04-23, 2020-03-16, 2020-03-21, 2020-02-02, 2020-04-08, 2020-02-25, 2020-01-29, 2021-03-22, 2019-12-04, 2021-02-10, 2021-02-03, 2019-11-26, 2020-03-19, 2020-01-20, 2020-02-27, 2019-12-31, 2020-03-30, 2020-04-25, 2020-01-26, 2020-01-14, 2020-12-08, 2020-03-01, 2020-02-17, 2021-03-02, 2020-05-21, 2019-10-23, 2020-04-11, 2019-10-21, 2020-12-16, 2019-11-25, 2020-04-12, 2020-03-13, 2021-05-20, 2020-05-01, 2021-01-13, 2020-03-08, 2020-05-19, 2020-03-27, 2019-11-17, 2020-04-19, 2020-01-23, 2021-02-23, 2020-05-15, 2020-02-16, 2019-10-19, 2020-05-29, 2020-03-24, 2019-12-07, 2020-02-07, 2020-03-18, 2020-05-17, 2020-05-13, 2019-12-20, 2019-12-23, 2020-06-07, 2020-01-07, 2021-05-17, 2021-04-07, 2020-05-18, 2019-12-05, 2019-11-20, 2020-06-06, 2020-12-09, 2023-03-11, 2021-02-02, 2019-11-18, 2020-06-10, 2020-01-27, 2020-11-16, 2020-01-18, 2020-06-04, 2020-04-27, 2020-12-01, 2020-03-25, 2019-10-15, 2020-03-26, 2021-03-09, 2019-10-03\n", "\n", - "Available sites = None, Grand Mesa\n" + "Available sites = American River Basin, Central Ag Research Center, Senator Beck, Fairbanks, None, Fraser Experimental Forest, Boise River Basin, Little Cottonwood Canyon, East River, North Slope, Jemez River, Grand Mesa, Cameron Pass, Sagehen Creek, Mammoth Lakes, Niwot Ridge\n" ] } ], @@ -1139,28 +1139,28 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[datetime.date(2020, 2, 4),\n", - " datetime.date(2020, 2, 6),\n", - " datetime.date(2020, 2, 11),\n", - " datetime.date(2020, 2, 12),\n", + " datetime.date(2020, 2, 3),\n", " datetime.date(2020, 1, 30),\n", - " datetime.date(2020, 2, 10),\n", - " datetime.date(2020, 1, 31),\n", " datetime.date(2020, 2, 1),\n", - " datetime.date(2020, 2, 3),\n", + " datetime.date(2020, 2, 6),\n", + " datetime.date(2020, 1, 31),\n", + " datetime.date(2020, 2, 12),\n", " datetime.date(2020, 2, 8),\n", " datetime.date(2020, 2, 5),\n", - " datetime.date(2020, 1, 29),\n", - " datetime.date(2020, 1, 28)]" + " datetime.date(2020, 1, 28),\n", + " datetime.date(2020, 2, 11),\n", + " datetime.date(2020, 2, 10),\n", + " datetime.date(2020, 1, 29)]" ] }, - "execution_count": 3, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -1186,7 +1186,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -1203,7 +1203,7 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mLargeQueryCheckException\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[4], line 5\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msnowexsql\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapi\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m PointMeasurements\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Query db using a vague filter or on a huge dataset like GPR\u001b[39;00m\n\u001b[0;32m----> 5\u001b[0m df \u001b[38;5;241m=\u001b[39m \u001b[43mPointMeasurements\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_filter\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mtype\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtwo_way_travel\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 7\u001b[0m \u001b[38;5;66;03m# Show the dataframe\u001b[39;00m\n\u001b[1;32m 8\u001b[0m df\n", + "Cell \u001b[0;32mIn[10], line 5\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msnowexsql\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapi\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m PointMeasurements\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Query db using a vague filter or on a huge dataset like GPR\u001b[39;00m\n\u001b[0;32m----> 5\u001b[0m df \u001b[38;5;241m=\u001b[39m \u001b[43mPointMeasurements\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_filter\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mtype\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtwo_way_travel\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 7\u001b[0m \u001b[38;5;66;03m# Show the dataframe\u001b[39;00m\n\u001b[1;32m 8\u001b[0m df\n", "File \u001b[0;32m/srv/conda/envs/notebook/lib/python3.11/site-packages/snowexsql/api.py:246\u001b[0m, in \u001b[0;36mPointMeasurements.from_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 244\u001b[0m session\u001b[38;5;241m.\u001b[39mclose()\n\u001b[1;32m 245\u001b[0m LOG\u001b[38;5;241m.\u001b[39merror(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFailed query for PointData\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 246\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 248\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m df\n", "File \u001b[0;32m/srv/conda/envs/notebook/lib/python3.11/site-packages/snowexsql/api.py:241\u001b[0m, in \u001b[0;36mPointMeasurements.from_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 239\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 240\u001b[0m qry \u001b[38;5;241m=\u001b[39m session\u001b[38;5;241m.\u001b[39mquery(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMODEL)\n\u001b[0;32m--> 241\u001b[0m qry \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mextend_qry\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqry\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 242\u001b[0m df \u001b[38;5;241m=\u001b[39m query_to_geopandas(qry, engine)\n\u001b[1;32m 243\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n", "File \u001b[0;32m/srv/conda/envs/notebook/lib/python3.11/site-packages/snowexsql/api.py:139\u001b[0m, in \u001b[0;36mBaseDataset.extend_qry\u001b[0;34m(cls, qry, check_size, **kwargs)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mk\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m is not an allowed filter\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 138\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_size:\n\u001b[0;32m--> 139\u001b[0m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_check_size\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqry\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 141\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m qry\n", diff --git a/book/tutorials/snowex_database/5_plot_raster_example.ipynb b/book/tutorials/snowex_database/5_plot_raster_example.ipynb index a26f870..ffbe525 100644 --- a/book/tutorials/snowex_database/5_plot_raster_example.ipynb +++ b/book/tutorials/snowex_database/5_plot_raster_example.ipynb @@ -71,7 +71,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -142,22 +142,22 @@ " 67.0\n", " 1N3\n", " COGM1N3_20200211\n", + " 57.0\n", " None\n", " None\n", " None\n", " None\n", - " None\n", - " -11.8\n", + " 242.5\n", " None\n", " ...\n", " 2020-02-11\n", - " 2024-08-15 16:29:34.025587+00:00\n", + " 2024-08-15 19:24:19.860106+00:00\n", " None\n", - " 2230897\n", + " 2308829\n", " https://doi.org/10.5067/DUD2VZEVBJ7S\n", " 2022-06-30\n", " None\n", - " temperature\n", + " density\n", " None\n", " None\n", " \n", @@ -167,22 +167,22 @@ "" ], "text/plain": [ - " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", - "0 67.0 1N3 COGM1N3_20200211 None None None None \n", + " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", + "0 67.0 1N3 COGM1N3_20200211 57.0 None None None \n", "\n", " sample_c value flags ... date time_created \\\n", - "0 None -11.8 None ... 2020-02-11 2024-08-15 16:29:34.025587+00:00 \n", + "0 None 242.5 None ... 2020-02-11 2024-08-15 19:24:19.860106+00:00 \n", "\n", " time_updated id doi date_accessed \\\n", - "0 None 2230897 https://doi.org/10.5067/DUD2VZEVBJ7S 2022-06-30 \n", + "0 None 2308829 https://doi.org/10.5067/DUD2VZEVBJ7S 2022-06-30 \n", "\n", - " instrument type units observers \n", - "0 None temperature None None \n", + " instrument type units observers \n", + "0 None density None None \n", "\n", "[1 rows x 29 columns]" ] }, - "execution_count": 47, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } diff --git a/book/tutorials/snowex_database/7_bonus_challenge.ipynb b/book/tutorials/snowex_database/7_bonus_challenge.ipynb deleted file mode 100644 index c6de56c..0000000 --- a/book/tutorials/snowex_database/7_bonus_challenge.ipynb +++ /dev/null @@ -1,222 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Bonus Challenge: Analyzing Pits\n", - "\n", - "LayerData, like pits, have some nuance. This challenge will give us some chance to explore the data and get some practice querying and plotting. \n", - "This can be done as a small group exercise.\n", - "\n", - "Don't forget your [cheat sheets](https://snowexsql.readthedocs.io/en/latest/cheat_sheet.html)! \n", - "\n", - "**Goal**: Get more familiar with LayerData and create a vertical profile plot of density\n", - "\n", - "**Approach**: \n", - "\n", - "1. Connect to the DB\n", - "2. Explore the data\n", - "2. Build a query filtering to the dataset you want\n", - "3. Convert to a GeoDataFrame and plot" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Process\n", - "### Step 1: Get connected" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import the function to get connect to the db\n", - "from snowexsql.db import get_db\n", - "\n", - "# Import our class for the layer data\n", - "from snowexsql.data import LayerData\n", - "\n", - "# Import a useful function to format that data into a dataframe\n", - "from snowexsql.conversions import query_to_geopandas\n", - "\n", - "# Import some tools to build dates \n", - "from datetime import date\n", - "\n", - "# This is what you will use for all of hackweek to access the db\n", - "db_name = 'snow:hackweek@db.snowexdata.org/snowex'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 2: Explore the data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from snowexsql.db import get_table_attributes\n", - "\n", - "# print the columns available\n", - "db_columns = get_table_attributes(LayerData)\n", - "print(\"These are the available columns in the table:\\n \\n* {}\\n\".format('\\n* '.join(db_columns)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Find the site names and site ids" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Connect\n", - "engine, session = get_db(db_name)\n", - "\n", - "# Find the distinct site names\n", - "result = session.query(LayerData.site_name).filter(LayerData.type == 'density').distinct().all()\n", - "site_names = [r[0] for r in result]\n", - "\n", - "# Find the distinct site_names for the site\n", - "print(site_names)\n", - "\n", - "# Close session\n", - "session.close()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Connect\n", - "engine, session = get_db(db_name)\n", - "\n", - "# We can filter to a site_name, change this to whichever value you want as the site name order may not be consistent\n", - "site_name = site_names[0]\n", - "\n", - "# Find the distinct site ids for a site_name\n", - "result = session.query(LayerData.site_id)\n", - "result = result.filter(LayerData.type == 'density')\n", - "result = result.filter(LayerData.site_name == site_name)\n", - "\n", - "result = result.distinct().all()\n", - "site_ids = [r[0] for r in result]\n", - "\n", - "# Find the distinct site_ids for the site\n", - "print(site_ids)\n", - "\n", - "# Close session\n", - "session.close()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 3: Build a query to get the values for 1 pit\n", - "\n", - "A few things to keep in mind\n", - "\n", - "* You will need to filter to one site_id and one unique date OR one pit_id\n", - "* You will need the density and depth columns to create a vertical profile" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Your code here\n", - "pass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 4: Convert to a GeoDataFrame and plot" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "nbsphinx-gallery", - "nbsphinx-thumbnail" - ] - }, - "outputs": [], - "source": [ - "# Use the query you built to build a GeoDataFrame and plot the data\n", - "# Your code here\n", - "pass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Extra: Can you get the bulk density of the snowpack?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Your code here\n", - "pass" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# a block for closing errant sessions\n", - "session.close()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.4" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/book/tutorials/snowex_database/api_intro_example.ipynb b/book/tutorials/snowex_database/api_intro_example.ipynb deleted file mode 100644 index ceca8d3..0000000 --- a/book/tutorials/snowex_database/api_intro_example.ipynb +++ /dev/null @@ -1,289 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Welcome to the API!\n", - "\n", - "**Goal**: Easy programmatic access to the database with **no user SQL**\n", - "\n", - "\n", - "## Notes\n", - "\n", - " * This is not a REST API, more of an SDK\n", - " * Current access is for *point* and *layer* data\n", - " * Funtions return **lists** or **Geopandas Dataframes**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 1. Import the classes, explore them" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# imports\n", - "from datetime import date\n", - "import geopandas as gpd\n", - "from snowexsql.api import PointMeasurements, LayerMeasurements" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# The main functions we will use are `from_area` and `from_filter` like this\n", - "df = PointMeasurements.from_filter(\n", - " date=date(2020, 5, 28), instrument='camera'\n", - ")\n", - "df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Notice:\n", - " * We did not need to manage SQL\n", - " * We got a geopandas array\n", - " * We filtered on specific attributes known to be in the database" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### How do I know what to filter by?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Find what you can filter by\n", - "print(PointMeasurements.ALLOWED_QRY_KWARGS)\n", - "print(LayerMeasurements.ALLOWED_QRY_KWARGS)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### How do I know what values work for filtering?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(PointMeasurements().all_observers)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Try it out\n", - "\n", - "* What instrument could you filter by for PointData?\n", - "* What site names could you filter by for LayerData?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notice we instantiate the class \n", - "`PointMeasurements()`\n", - "Before calling the property `.all_observers`" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Explore the points\n", - "df.crs\n", - "df.to_crs(\"EPSG:4326\").loc[:,[\"id\", \"value\", \"type\", \"geom\", \"instrument\"]].explore()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### What if I have a point or a shapefile\n", - "\n", - "Both the PointMeasurement and LayerMeasurement class have a function called `from_area`\n", - "that takes either a `shapely` polygon or a `shapely` point and a radius as well as the same\n", - "filter kwargs available in `.from_filter`\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Set up a fake shapefile\n", - "gdf = gpd.GeoDataFrame(\n", - " geometry=gpd.points_from_xy(\n", - " [743766.4794971556], [4321444.154620216], crs=\"epsg:26912\"\n", - " ).buffer(2000.0)\n", - ").set_crs(\"epsg:26912\")\n", - "\n", - "# This is the area we will filter to\n", - "gdf.explore()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Get density near the point\n", - "df = LayerMeasurements.from_area(\n", - " type=\"density\",\n", - " shp=gdf.iloc[0].geometry,\n", - ")\n", - "\n", - "df.to_crs(\"EPSG:4326\").loc[:,[\"id\", \"depth\", \"value\", \"type\", \"geom\"]].explore()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### How much filtering is enough? " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I got a `LargeQueryCheckException`\n", - "\n", - "GIVE ME THE DATA PLEASE" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "nbsphinx-gallery", - "nbsphinx-thumbnail" - ] - }, - "outputs": [], - "source": [ - "# This query will fail\n", - "df = PointMeasurements.from_filter(\n", - " instrument=\"magnaprobe\",\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Th queries will pass\n", - "df = PointMeasurements.from_filter(\n", - " instrument=\"magnaprobe\",\n", - " limit=100\n", - ")\n", - "\n", - "df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### DANGER ZONE\n", - "If you need more than 1000 points returned, you can specify so with the `limit`\n", - "\n", - "The intention is to be aware of how much data will be returned" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# DANGER ZONE\n", - "# If you need more than 1000 points returned, you can specify so with the limit\n", - "df = PointMeasurements.from_filter(\n", - " date=date(2020, 1, 28),\n", - " instrument=\"magnaprobe\",\n", - " limit=3000\n", - ")\n", - "df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# THE END\n", - "\n", - "### Go forth and explore" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.4" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/book/tutorials/snowex_database/api_plot_pit_density_example.ipynb b/book/tutorials/snowex_database/api_plot_pit_density_example.ipynb deleted file mode 100644 index 88b669b..0000000 --- a/book/tutorials/snowex_database/api_plot_pit_density_example.ipynb +++ /dev/null @@ -1,214 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Welcome to the API PT2!\n", - "\n", - "## Data Edition\n", - "\n", - "#### Goal - Filter down to the pit density we want and plot it" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 1. Imports" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# imports\n", - "from datetime import date\n", - "import geopandas as gpd\n", - "import matplotlib.pyplot as plt\n", - "from snowexsql.api import PointMeasurements, LayerMeasurements" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 2. Find the pits in the Boise River Basin" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Find site names we can use\n", - "print(LayerMeasurements().all_site_names)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Get the first 1000 measurements from the Boise River Basin Site\n", - "df = LayerMeasurements.from_filter(\n", - " type=\"density\",\n", - " site_name=\"Boise River Basin\",\n", - " limit=1000\n", - ")\n", - "\n", - "# Explore the pits so we can find an interesting site\n", - "df.loc[:, [\"site_id\", \"geom\"]].drop_duplicates().explore()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 3. Pick a point of interest" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "nbsphinx-gallery", - "nbsphinx-thumbnail" - ] - }, - "outputs": [], - "source": [ - "# We noticed there are a lot of pits (timeseries pits) for Banner Open\n", - "# Filter down to ONE timeseries\n", - "site_id = \"Banner Open\"\n", - "df = LayerMeasurements.from_filter(\n", - " type=\"density\",\n", - " site_id=site_id\n", - ").set_crs(\"epsg:26911\")\n", - "\n", - "df.loc[:, [\"site_id\", \"geom\"]].drop_duplicates().explore()\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Get the mean of each date sampled\n", - "df[\"value\"] = df[\"value\"].astype(float)\n", - "df.set_index(\"date\", inplace=True)\n", - "mean_values = df.groupby(df.index).mean()\n", - "mean_values.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Notes on this mean\n", - "\n", - "Taking this `mean` as bulk density **could be flawed** if layers are overlapping or layers vary in thickness" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# !pip install plotly\n", - "import plotly.express as px\n", - "# For rendering in readthedocs\n", - "import plotly.offline as py\n", - "py.init_notebook_mode(connected=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Plot the timeseries of mean density\n", - "fig = px.line(\n", - " mean_values, x=mean_values.index, y='value',\n", - " title=f'Mean Density - {site_id}',\n", - " labels={'value': 'Density', 'date': 'Date'}\n", - ")\n", - "\n", - "fig.update_layout(\n", - " template='plotly_dark'\n", - ")\n", - "\n", - "# Show the plot\n", - "fig.show()\n", - "\n", - "# alternative matplotlib code\n", - "# mean_values[\"value\"].plot()\n", - "# plt.title('Mean Density by Date')\n", - "# plt.xlabel('Date')\n", - "# plt.ylabel('Mean Density')\n", - "# plt.gcf().autofmt_xdate()\n", - "# plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Show more detail by using a box plot\n", - "# make sure values are floats\n", - "df[\"value\"] = df[\"value\"].astype(float)\n", - "\n", - "# make Make a box plot\n", - "fig = px.box(df, x='date', y='value', notched=True, title='Pit Density by Date')\n", - "fig.update_traces(hoverinfo='y+name')\n", - "fig.update_layout(template='plotly_dark')\n", - "\n", - "# alternative matplotlib code\n", - "# df.boxplot(by='date', column='value')\n", - "# plt.title('Density Distribution for Banner by Date')\n", - "# plt.suptitle('') # Suppress the automatic title\n", - "# plt.xlabel('Date')\n", - "# plt.ylabel('Value')\n", - "# plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.4" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} From 73cb95136c2b0409a0e64dc2073856a29b14e13c Mon Sep 17 00:00:00 2001 From: Micah Johnson Date: Fri, 16 Aug 2024 16:41:15 +0000 Subject: [PATCH 16/21] DUN --- .../1_getting_started_example.ipynb | 369 +++++---- .../2_database_structure.ipynb | 45 +- .../snowex_database/3_forming_queries.ipynb | 737 ++---------------- .../4_get_spiral_example.ipynb | 53 +- .../5_plot_raster_example.ipynb | 4 +- 5 files changed, 335 insertions(+), 873 deletions(-) diff --git a/book/tutorials/snowex_database/1_getting_started_example.ipynb b/book/tutorials/snowex_database/1_getting_started_example.ipynb index 3bb9de6..55142c3 100644 --- a/book/tutorials/snowex_database/1_getting_started_example.ipynb +++ b/book/tutorials/snowex_database/1_getting_started_example.ipynb @@ -80,16 +80,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 15, "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/home/jovyan/event-page-2024/book/tutorials/snowex_database\n" - ] - }, { "data": { "text/html": [ @@ -138,23 +131,23 @@ " \n", " 0\n", " 1\n", - " CRREL_B\n", - " 94.0\n", - " 39.03045\n", - " -108.13515\n", - " 4.324062e+06\n", - " 747987.619062\n", - " 3148.2\n", + " ruler\n", + " 83.0\n", + " 39.04496\n", + " -108.06311\n", + " 4.325871e+06\n", + " 754172.639132\n", + " 3253.169922\n", " 12\n", - " POINT (747987.619 4324061.706)\n", + " POINT (754172.639 4325871.377)\n", " ...\n", - " 2020-01-28\n", + " 2020-03-12\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 4070\n", + " 41824\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", - " magnaprobe\n", + " pit ruler\n", " depth\n", " cm\n", " None\n", @@ -162,23 +155,23 @@ " \n", " 1\n", " 1\n", - " CRREL_B\n", - " 74.0\n", - " 39.03045\n", - " -108.13516\n", - " 4.324062e+06\n", - " 747986.753289\n", - " 3148.3\n", + " ruler\n", + " 100.0\n", + " 39.04563\n", + " -108.19593\n", + " 4.325583e+06\n", + " 742673.504400\n", + " 3048.699951\n", " 12\n", - " POINT (747986.753 4324061.679)\n", + " POINT (742673.504 4325582.611)\n", " ...\n", - " 2020-01-28\n", + " 2020-01-30\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 4071\n", + " 41825\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", - " magnaprobe\n", + " pit ruler\n", " depth\n", " cm\n", " None\n", @@ -186,23 +179,23 @@ " \n", " 2\n", " 1\n", - " CRREL_B\n", - " 90.0\n", - " 39.03045\n", - " -108.13517\n", - " 4.324062e+06\n", - " 747985.887517\n", - " 3148.2\n", + " ruler\n", + " 117.0\n", + " 39.00760\n", + " -108.14791\n", + " 4.321491e+06\n", + " 746962.448982\n", + " 3087.709961\n", " 12\n", - " POINT (747985.888 4324061.652)\n", + " POINT (746962.449 4321490.615)\n", " ...\n", - " 2020-01-28\n", + " 2020-01-29\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 4072\n", + " 41826\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", - " magnaprobe\n", + " pit ruler\n", " depth\n", " cm\n", " None\n", @@ -210,23 +203,23 @@ " \n", " 3\n", " 1\n", - " CRREL_B\n", - " 87.0\n", - " 39.03044\n", - " -108.13519\n", - " 4.324060e+06\n", - " 747984.190953\n", - " 3148.6\n", + " ruler\n", + " 98.0\n", + " 39.02144\n", + " -108.16401\n", + " 4.322983e+06\n", + " 745520.203184\n", + " 3099.639893\n", " 12\n", - " POINT (747984.191 4324060.487)\n", + " POINT (745520.203 4322983.253)\n", " ...\n", - " 2020-01-28\n", + " 2020-02-09\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 4073\n", + " 41827\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", - " magnaprobe\n", + " pit ruler\n", " depth\n", " cm\n", " None\n", @@ -234,23 +227,23 @@ " \n", " 4\n", " 1\n", - " CRREL_B\n", - " 90.0\n", - " 39.03042\n", - " -108.13519\n", - " 4.324058e+06\n", - " 747984.260913\n", - " 3150.1\n", + " ruler\n", + " 92.0\n", + " 39.03404\n", + " -108.19103\n", + " 4.324309e+06\n", + " 743137.395316\n", + " 3055.590088\n", " 12\n", - " POINT (747984.261 4324058.267)\n", + " POINT (743137.395 4324309.223)\n", " ...\n", " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 4074\n", + " 41828\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", - " magnaprobe\n", + " pit ruler\n", " depth\n", " cm\n", " None\n", @@ -280,206 +273,206 @@ " ...\n", " \n", " \n", - " 195\n", + " 95\n", " 1\n", - " CRREL_B\n", - " 116.0\n", - " 39.03001\n", - " -108.13534\n", - " 4.324012e+06\n", - " 747972.708423\n", - " 3134.6\n", + " ruler\n", + " 92.0\n", + " 39.03596\n", + " -108.20975\n", + " 4.324472e+06\n", + " 741510.229315\n", + " 3030.070068\n", " 12\n", - " POINT (747972.708 4324012.348)\n", + " POINT (741510.229 4324472.430)\n", " ...\n", " 2020-01-28\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 4265\n", + " 41919\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", - " magnaprobe\n", + " pit ruler\n", " depth\n", " cm\n", " None\n", " \n", " \n", - " 196\n", + " 96\n", " 1\n", - " CRREL_B\n", - " 102.0\n", - " 39.03001\n", - " -108.13532\n", - " 4.324012e+06\n", - " 747974.439978\n", - " 3134.3\n", + " ruler\n", + " 35.0\n", + " 39.03126\n", + " -108.18948\n", + " 4.324005e+06\n", + " 743281.122092\n", + " 3060.439941\n", " 12\n", - " POINT (747974.440 4324012.402)\n", + " POINT (743281.122 4324004.792)\n", " ...\n", - " 2020-01-28\n", + " 2020-02-05\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 4266\n", + " 41920\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", - " magnaprobe\n", + " pit ruler\n", " depth\n", " cm\n", " None\n", " \n", " \n", - " 197\n", + " 97\n", " 1\n", - " CRREL_B\n", - " 109.0\n", - " 39.03000\n", - " -108.13529\n", - " 4.324011e+06\n", - " 747977.072289\n", - " 3133.8\n", + " ruler\n", + " 101.0\n", + " 39.01843\n", + " -108.15596\n", + " 4.322671e+06\n", + " 746227.685533\n", + " 3103.750000\n", " 12\n", - " POINT (747977.072 4324011.374)\n", + " POINT (746227.686 4322670.914)\n", " ...\n", - " 2020-01-28\n", + " 2020-02-01\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 4267\n", + " 41921\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", - " magnaprobe\n", + " pit ruler\n", " depth\n", " cm\n", " None\n", " \n", " \n", - " 198\n", + " 98\n", " 1\n", - " CRREL_B\n", - " 112.0\n", - " 39.02999\n", - " -108.13526\n", - " 4.324010e+06\n", - " 747979.704601\n", - " 3134.2\n", + " ruler\n", + " 102.0\n", + " 39.01437\n", + " -108.14158\n", + " 4.322259e+06\n", + " 747487.040217\n", + " 3100.860107\n", " 12\n", - " POINT (747979.705 4324010.346)\n", + " POINT (747487.040 4322259.296)\n", " ...\n", - " 2020-01-28\n", + " 2020-01-29\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 4268\n", + " 41922\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", - " magnaprobe\n", + " pit ruler\n", " depth\n", " cm\n", " None\n", " \n", " \n", - " 199\n", + " 99\n", " 1\n", - " CRREL_B\n", - " 100.0\n", - " 39.02999\n", - " -108.13524\n", - " 4.324010e+06\n", - " 747981.436157\n", - " 3133.1\n", + " ruler\n", + " 115.0\n", + " 39.03918\n", + " -108.00313\n", + " 4.325399e+06\n", + " 759385.731498\n", + " -9999.000000\n", " 12\n", - " POINT (747981.436 4324010.400)\n", + " POINT (759385.731 4325399.285)\n", " ...\n", - " 2020-01-28\n", + " 2020-02-03\n", " 2022-06-30 22:56:52.635035+00:00\n", " None\n", - " 4269\n", + " 41923\n", " https://doi.org/10.5067/9IA978JIACAR\n", " 2022-06-30\n", - " magnaprobe\n", + " pit ruler\n", " depth\n", " cm\n", " None\n", " \n", " \n", "\n", - "

200 rows × 23 columns

\n", + "

100 rows × 23 columns

\n", "" ], "text/plain": [ - " version_number equipment value latitude longitude northing \\\n", - "0 1 CRREL_B 94.0 39.03045 -108.13515 4.324062e+06 \n", - "1 1 CRREL_B 74.0 39.03045 -108.13516 4.324062e+06 \n", - "2 1 CRREL_B 90.0 39.03045 -108.13517 4.324062e+06 \n", - "3 1 CRREL_B 87.0 39.03044 -108.13519 4.324060e+06 \n", - "4 1 CRREL_B 90.0 39.03042 -108.13519 4.324058e+06 \n", - ".. ... ... ... ... ... ... \n", - "195 1 CRREL_B 116.0 39.03001 -108.13534 4.324012e+06 \n", - "196 1 CRREL_B 102.0 39.03001 -108.13532 4.324012e+06 \n", - "197 1 CRREL_B 109.0 39.03000 -108.13529 4.324011e+06 \n", - "198 1 CRREL_B 112.0 39.02999 -108.13526 4.324010e+06 \n", - "199 1 CRREL_B 100.0 39.02999 -108.13524 4.324010e+06 \n", + " version_number equipment value latitude longitude northing \\\n", + "0 1 ruler 83.0 39.04496 -108.06311 4.325871e+06 \n", + "1 1 ruler 100.0 39.04563 -108.19593 4.325583e+06 \n", + "2 1 ruler 117.0 39.00760 -108.14791 4.321491e+06 \n", + "3 1 ruler 98.0 39.02144 -108.16401 4.322983e+06 \n", + "4 1 ruler 92.0 39.03404 -108.19103 4.324309e+06 \n", + ".. ... ... ... ... ... ... \n", + "95 1 ruler 92.0 39.03596 -108.20975 4.324472e+06 \n", + "96 1 ruler 35.0 39.03126 -108.18948 4.324005e+06 \n", + "97 1 ruler 101.0 39.01843 -108.15596 4.322671e+06 \n", + "98 1 ruler 102.0 39.01437 -108.14158 4.322259e+06 \n", + "99 1 ruler 115.0 39.03918 -108.00313 4.325399e+06 \n", "\n", - " easting elevation utm_zone geom ... \\\n", - "0 747987.619062 3148.2 12 POINT (747987.619 4324061.706) ... \n", - "1 747986.753289 3148.3 12 POINT (747986.753 4324061.679) ... \n", - "2 747985.887517 3148.2 12 POINT (747985.888 4324061.652) ... \n", - "3 747984.190953 3148.6 12 POINT (747984.191 4324060.487) ... \n", - "4 747984.260913 3150.1 12 POINT (747984.261 4324058.267) ... \n", - ".. ... ... ... ... ... \n", - "195 747972.708423 3134.6 12 POINT (747972.708 4324012.348) ... \n", - "196 747974.439978 3134.3 12 POINT (747974.440 4324012.402) ... \n", - "197 747977.072289 3133.8 12 POINT (747977.072 4324011.374) ... \n", - "198 747979.704601 3134.2 12 POINT (747979.705 4324010.346) ... \n", - "199 747981.436157 3133.1 12 POINT (747981.436 4324010.400) ... \n", + " easting elevation utm_zone geom ... \\\n", + "0 754172.639132 3253.169922 12 POINT (754172.639 4325871.377) ... \n", + "1 742673.504400 3048.699951 12 POINT (742673.504 4325582.611) ... \n", + "2 746962.448982 3087.709961 12 POINT (746962.449 4321490.615) ... \n", + "3 745520.203184 3099.639893 12 POINT (745520.203 4322983.253) ... \n", + "4 743137.395316 3055.590088 12 POINT (743137.395 4324309.223) ... \n", + ".. ... ... ... ... ... \n", + "95 741510.229315 3030.070068 12 POINT (741510.229 4324472.430) ... \n", + "96 743281.122092 3060.439941 12 POINT (743281.122 4324004.792) ... \n", + "97 746227.685533 3103.750000 12 POINT (746227.686 4322670.914) ... \n", + "98 747487.040217 3100.860107 12 POINT (747487.040 4322259.296) ... \n", + "99 759385.731498 -9999.000000 12 POINT (759385.731 4325399.285) ... \n", "\n", - " date time_created time_updated id \\\n", - "0 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4070 \n", - "1 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4071 \n", - "2 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4072 \n", - "3 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4073 \n", - "4 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4074 \n", - ".. ... ... ... ... \n", - "195 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4265 \n", - "196 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4266 \n", - "197 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4267 \n", - "198 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4268 \n", - "199 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 4269 \n", + " date time_created time_updated id \\\n", + "0 2020-03-12 2022-06-30 22:56:52.635035+00:00 None 41824 \n", + "1 2020-01-30 2022-06-30 22:56:52.635035+00:00 None 41825 \n", + "2 2020-01-29 2022-06-30 22:56:52.635035+00:00 None 41826 \n", + "3 2020-02-09 2022-06-30 22:56:52.635035+00:00 None 41827 \n", + "4 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 41828 \n", + ".. ... ... ... ... \n", + "95 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 41919 \n", + "96 2020-02-05 2022-06-30 22:56:52.635035+00:00 None 41920 \n", + "97 2020-02-01 2022-06-30 22:56:52.635035+00:00 None 41921 \n", + "98 2020-01-29 2022-06-30 22:56:52.635035+00:00 None 41922 \n", + "99 2020-02-03 2022-06-30 22:56:52.635035+00:00 None 41923 \n", "\n", - " doi date_accessed instrument type \\\n", - "0 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "1 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "2 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "3 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "4 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - ".. ... ... ... ... \n", - "195 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "196 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "197 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "198 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "199 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", + " doi date_accessed instrument type \\\n", + "0 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", + "1 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", + "2 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", + "3 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", + "4 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", + ".. ... ... ... ... \n", + "95 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", + "96 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", + "97 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", + "98 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", + "99 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", "\n", - " units observers \n", - "0 cm None \n", - "1 cm None \n", - "2 cm None \n", - "3 cm None \n", - "4 cm None \n", - ".. ... ... \n", - "195 cm None \n", - "196 cm None \n", - "197 cm None \n", - "198 cm None \n", - "199 cm None \n", + " units observers \n", + "0 cm None \n", + "1 cm None \n", + "2 cm None \n", + "3 cm None \n", + "4 cm None \n", + ".. ... ... \n", + "95 cm None \n", + "96 cm None \n", + "97 cm None \n", + "98 cm None \n", + "99 cm None \n", "\n", - "[200 rows x 23 columns]" + "[100 rows x 23 columns]" ] }, - "execution_count": 2, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAG+CAYAAADvFq2EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHw0lEQVR4nO2de3wU5b3/P7u5kYQkEDDZBCIJEsslWgQvRK5yE0FB8VWPiNYrgsARsKdAaq2xChRqkRYVIVK0UMDf0SK0phQ83CEUJMbKRUBIgkIiQmISE8ht5/dHnHV3dmf2mdnZnWdmv+/Xi5dmd3Z3svPkM9/7YxMEQQBBEAThwm70CRAEQfAGCSNBEIQEEkaCIAgJJIwEQRASSBgJgiAkkDASBEFIIGEkCIKQQMJIEAQhgYSRIAhCAgkjQRCEBMsJoyAIuOuuu2Cz2fDhhx8qHrtixQrceOONSExMRGJiInJzc/HPf/7T9XxzczPmzZuHG264AfHx8UhPT8fPf/5zXLhwIeDP9sV3332HGTNmIC0tDe3atUOvXr1QWFio+n0IgggMUwnjsGHD8M477yges2zZMthsNqb369q1K373u9/hk08+wSeffILhw4djwoQJOHbsGACgoaEBxcXFeOGFF1BcXIy//e1vOHXqFMaPHx/wZ0tpamrCqFGjUFZWhvfffx8nT55EQUEBunTpoun9CIIIAMFEDB06VFizZo3s8yUlJULXrl2FiooKAYCwadMm1Z/RsWNH4e2335Z9/tChQwIAoby8XNVnf/3118IDDzwgdOjQQUhOThbGjx8vlJaWup5fsWKF0L17d6GpqUn1ORMEoS+mshiVaGhowKRJk/D666/D4XCofn1rays2btyI+vp65Obmyh5XU1MDm82GDh06MH92Q0MD7rjjDrRv3x579uzBvn370L59e4wZMwZNTU0AgC1btiA3NxczZsxAamoqcnJysHDhQrS2tqr+XQiCCIxIo09AL+bMmYPbb78dEyZMUPW6zz//HLm5ubh69Srat2+PTZs2oXfv3j6PvXr1KubPn4+HHnoIiYmJzJ+9ceNG2O12vP322y5Xe82aNejQoQN27dqF0aNH4+zZs9ixYwcmT56MwsJCnD59GjNmzEBLSwt+85vfqPqdCIIIEKNNViUWLFggxMfHu/7Z7XYhJibG47E9e/YImzdvFnr06CHU1dW5XgtGV7qxsVE4ffq0cPjwYWH+/PlC586dhWPHjnkd19TUJEyYMEG46aabhJqaGtfjLJ89ffp0ISIiwuO84+PjBZvNJrz55puCIAhCdna2kJGRIbS0tLhe94c//EFwOBxqvjKCIHSAa4tx2rRpeOCBB1w/T548Gffffz8mTpzoeqxLly7Iy8vDmTNnPNxbALj//vsxePBg7Nq1S/YzoqOj0aNHDwDAzTffjMOHD+OPf/wjVq5c6TqmubkZDzzwAEpLS7Fjxw4Pa3HHjh1+P9vpdKJ///7461//6vX511xzDQAgLS0NUVFRiIiIcD3Xq1cvVFZWoqmpCdHR0fJfFEEQusK1MCYnJyM5Odn1c2xsLFJSUlxCJjJ//nw89dRTHo/dcMMNeO2113DPPfeo+kxBENDY2Oj6WRTF06dPY+fOnejUqZPqz+7Xrx/ee+89pKSkeIiqOwMHDsT69evhdDpht7eFfk+dOoW0tDQSRYIINUabrGrwl5V2Bz5c6eHDhwvLly93/ZyXlyfs2bNHKC0tFf7zn/8Iv/rVrwS73S5s27ZNEARBaG5uFsaPHy907dpVKCkpESoqKlz/GhsbmT+7vr5eyM7OFoYNGybs2bNHOHv2rLBr1y7h2WefFb766itBEATh3LlzQvv27YWZM2cKJ0+eFP7xj38IKSkpwiuvvML25RAEoRtcW4x6c+bMGVy6dMn18zfffINHHnkEFRUVSEpKwo033oitW7di1KhRAICvv/4aW7ZsAQD07dvX47127tyJYcOGMX1uXFwc9uzZg3nz5mHixImoq6tDly5dMGLECJcFmZGRgW3btmHOnDm48cYb0aVLF8yaNQvz5s0L/BcnCEIVNkGgzbAIgiDcsUwdI0EQhF6QMBIEQUjgLsbodDpx4cIFJCQkaO47JgiCkCIIAurq6pCenu6q/JCDO2G8cOECMjIyjD4NgiAsyldffYWuXbsqHsOdMCYkJABoO3m5mj+CIAi11NbWIiMjw6UxSnAnjKL7LM5IJAiC0BOWEB0lXwiCICSQMBIEQUggYSQIgpBAwkgQBCGBhJEgCEICCSNBEIQEEkaCIAgJJIwEQRASuCvwJghftDoFHCqtwsW6q0hJaIdbs5IRYadeeiI4kDAS3LP1aAVe+vtxVNRcdT2WltQOL97TG2Ny0gw8M8KqkCtNcM3WoxV4Zl2xhygCQGXNVTyzrhhbj1YYdGaElSFhJLil1Sngpb8fh68R8+JjL/39OFqdNISe0BdypQluOVRa5WUpuiMAqKi5ikOlVci9rm33RtZYJMUsCSVIGAlukIpVZc0VptddrGsTT9ZYJMUsCX9wtxlWbW0tkpKSUFNTQ2PHwghfYpUcH42q+ia/r90wZQBqrjThmXXFXm63aAOueLgfxuSkuWKW/o4jrIcabaEYI2E4cgmWaj+iaEObpde/W0emWGRTizMsY5atTgFFZy5jc8l5FJ25bLnfLxiQK00YCkuCxReihffiPb1xpLyaKRa5tqiM6biDZy/DbrOpjj/yGLeksIE2SBgJQ/GXYBFJjo9CVX2z62eH2x/35pLzTJ9VXtXAdNyMvxbjuys/fhaLkPAoQHJhA7HUicIG8pAwEoYiJk788cLdfeBIbOfTGktJaMf0Ht2S45iOcxdFwL+Q8ChA/ixxG9rCBqN6Owy3anmEYoyEobCKmiOxHXKv64QJfbsg97pOHn/Mt2YlIy2pHeT+vMVY5CO5mYrHyaEUfzSy1lIpdsha6vTO/lKKOfqALEbCUERRq6y56lNcbGhzm2/NSpZ9jwi7DS/e0xvPrCuGDZ6xSfdYZHSkXfY4f8jFH51OQXWtJRB4vaU/153VEn/5oxN4e18pxRwlULkOYTiiKwr4FjVWVzSQOsYOcVH4rsHThfZFh9goD1db+rMcf3ywLyb07RLweaYltcP4n6Zh1Z5SxZKjpNhoTCo46Pe8pK+zsjiq0RYSRoIL9EpeaLXEnE4Bk1f/W5ffxRcbpgxA7nWdmOsolY7zl613JLXD7l/egaG/3ylricu9bt+84ZaNOarRFnKlCS4Yk5OGUb0dAZe7RNhtHi4r63GtTkHRpdeKeyiANSEyvGeqphIm8fmKmqs4Ul6tKmwQaKmS1SBhJLiBVdSC9dla449yuMc3I+w2FJ25rEu9JQsX665iQt8uWPFwPy9LXAktpUpWhLLSBPEDY3LSsOLhfnAkeWbKO8RFMb2+Q6zncY6kdh5xO9aECGu9pRJitn9MThr2zRuOF8b1YnqdXKlSuI13I4uRMBTeukV8ufSs8cc3JvdTdEP1rrf0ha8sfoTdhscGZuHtfaWqQwXhWvNIwkgEBRbB47FbBFAffxTFaED3TorCwVqa9EhupiYRk7ru0t8p0FIlacmRlSFXmtCdrUcrMGjxDkwqOIhZG0swqeAgBi3e4eGOmWkytygqALyKw5XESOv7iPWWcsfZAEwdkoU0icsvdd2lBBoqYA0FWAEq1yF0haUcZVRvBwYt3iGbEOC1dEQvC1evuZFawxBaS5XEkiOzQuU6hCGwlqMkxERp6hYxGr1Kiljfx99xWrP4WkMFSt1HVoOEkdAN1v7corOXmN6PR9dNr5IirfWWwYC1pZIn6z3YUIyR0A12IWP7A2PN4hKBIxd/9Be3tCpkMRK6wSpkudd1wgfFX5Prxhl6hQqsAFmMhG6wjv8a0L2TLlleQn9E193XeLdwgoSR0A01ZS3kuhE8Q+U6hGa0zgpkeQ/CGKx8Pahchwg6/sSPNVZl5OAIwhNeO5GMgCxGQjW0N7P1CIdrSvtKE0HDyD1OiOBA19QbEkbCCz02WTpUWhWCMyX0gK6pNxRjJDzQa5MlHrtWCN/QNfWGLEbCBcvEG9YibupaMQ90Tb0hYSQAsMeZ+nfryFTETV0r5oG1MD+crikJIwGAPc4kbrIEUNeKVdBr3qSVIGEk0OoUsP/Lb5mOvVh3lbpWLIjSNZ098no0tji9EnFWhuoYwxxfyRYl3IeVWrlLIlxxv6Zll+qx4dA5VNY2up43c8E31TESTMglW3zhK85EAwesh3hNYyLtWPbxaQ9RBPjceiIYkDCGKUrJFinhGmcKV6jgm4QxbPGXbHGHYofhBWsi7uDZy6E7qRBDwmhhlDpYWIt1Z97RA/vmDSdRDCNY18aMv1rXpabOF4vir4OFtVh3YI/O5D6HGaxr47srzXhmXbElvQmyGC0ISwcLFfUScvhbG1KsGG8kYbQYrIFzAFTUS/jEveDbH1YdMEHCaAGaWpxYvfcsfrP5KF7cfJR5UgoVahNyiGujQ2wU0/FWGzBBMUaTs6jwOAr2lkKtJyMuZNoZjpBjTE4aEmKiMHn1v/0ea7UBEySMJmZR4XGs3FOq6bXuC5m2FyDkGHBdJ6QltQu7rW7JlTYpTS1OFOxVL4qUVCHUEK4DJkgYTcraojLV7rOIFRcyETxYY9FKdbNmg1xpk1Je1aD6NR1io/C7+2+gpAqhGn+xaKvtMEjCaFK6Jcepfs0bk/thYI/OQTgbQg4rTSCSi0XL7TAo1s2ascKBhNGkPJKbiQWFJ5jcaTFAPqA7JVhCidWsKF/4q5u1oa1udlRvh6luCBRjNCnRkXZMGZzl9zgrB8h5hqX7yApYdYdBEkZOYQlk543tjalDsqCkd1SsHXrCaWyXVXcYJFeaQ9S4YHlje+MXo3tibVEZyqsakNExDj1TE1B1pcn0MS2zII0jOp0C89guu81m6vijVXcYpK0NOEMukC3+uZD1p55gJkB83cQ6xEbhuyvNfl8rPc6M8cdWp4BBi3f4LQDfN2+44aKvRltIGDlCXGRy1gZPiyxUKIkai+AFMwEidxPTillvfuL3AMDju+Dt91GjLeRKc4SaQHY4tPApiRoAv4IXzDISNVtDsGLWLK5YAC69Hsnx0ZjQNx1JsdFodQqm+X0ASr5whVUD2VpQyupOW1eMaX4yvsFOgKjZGkIN4s3vnf2lpkrOjMlJw755w7FhygA8OTATyfFRuFzfhD/vL8OkgoMYtHiHqTLxqoSxpaUFv/71r5GVlYXY2Fh0794dv/3tb+F0Ol3HCIKA/Px8pKenIzY2FsOGDcOxY8d0P3ErYtVAtlpYRM0X7oJ38MxlTWUkrG1trDcn6diuDnFsY7xe/uiE6cQkwm5DzZU2Mayq94yxmq1MSZUrvXjxYrz11lt499130adPH3zyySd4/PHHkZSUhFmzZgEAlixZgqVLl+Kdd97B9ddfj1deeQWjRo3CyZMnkZCQEJRfwiqIk5PDbZKJ2qyuEqLgHThziel4d4FTE49kvTm9MbmfR+bZ6RSYxngB5uscsVKxtyphLCoqwoQJEzBu3DgAQGZmJjZs2IBPPvkEQJu1uGzZMjz//POYOHEiAODdd99Famoq1q9fj6lTp3q9Z2NjIxobf9y7tra2VvMvY3bESSbPrCuGDb4D2VYr1JbL6gbKO0VlTMeJAqc2Hsl6ExvQ3XO/7aYWJ+w2MHUsmU1MrBQjV+VKDxo0CP/3f/+HU6dOAQA+++wz7Nu3D2PHjgUAlJaWorKyEqNHj3a9JiYmBkOHDsWBAwd8vueiRYuQlJTk+peRkaH1dzElUtdtVG9H2EzVlosjspS6+KO+sVXxeffxa1rikVrHcR0pr1Y1FclMnSNWipGrshjnzZuHmpoa9OzZExEREWhtbcWCBQswadIkAEBlZSUAIDU11eN1qampKC8v9/meeXl5eO6551w/19bWho04Krlu++YNt8zwAV8EI6urFlG4ilTEI90tHblsrEOhHEirKJhBTKwUI1cljO+99x7WrVuH9evXo0+fPigpKcHs2bORnp6ORx991HWczeb5BywIgtdjIjExMYiJidFw6ubGihNJ1KA1q+seYpCGG1hJjo/Cwvt+HL8WiKWjdmsIraJgBjGxUoxclTD+8pe/xPz58/Hggw8CAG644QaUl5dj0aJFePTRR+FwOAC0WY5paT/+UV+8eNHLigxnrBSk1tpVoiar6+5aOxTqGDvEReG7Bv9u+At39/G46QRq6ajZGsKfeEgxk5hYKUauShgbGhpgt3uGJSMiIlzlOllZWXA4HNi+fTtuuukmAEBTUxN2796NxYsX63TK5scqQepAukq0ZnXdhVdqqbFmfB2Jnp8dSktHSTx8fS5gHjEBtIUXeESVMN5zzz1YsGABrr32WvTp0weffvopli5diieeeAJAmws9e/ZsLFy4ENnZ2cjOzsbChQsRFxeHhx56KCi/gBmprLnCdBzPcaVAQwFas7ruSC21VqegSeBCbenIiYc0W202MRGxws6Tqnql6+rq8MILL2DTpk24ePEi0tPTMWnSJPzmN79BdHQ0gLZ44ksvvYSVK1eiuroat912G9544w3k5OQwfYbVe6W3Hq3ArzYdRVV9k99jN0wZwKXFqFdPdzB6bAN5z1APlpWGIfp364gj5dWmFRPeoSESnMI6dID3YRFFZy5jUsFBv8exCHswxCiQ97TSVgSEJzREgkPUlqfwFFeSigVrKGD/l5f8Cksw3K5A3pP22NYP93XTuX0MIACX6htNccMhYQwRrOUp0lISo/FlfSXHRzO99vWdX+KD4q/9WmrBECMrC5wZrFpf68Yd3mdPkjCGCNZEirSUxEjkXP9qhvioSLjUZYYKM2ywxRIy4n1d0NixEMFaniItJTEKrRNu5I61yh4nRmKGDbZYQ0a8rwsSxhAhlqfIOTzuvbs8oOe8QTP1+/KKWTbYUrNueF4XJIwhQuvQAaMIRg0lz3WZvKN1m1LW+ZJ6oeUa87guKMYYQszUFRCM3lwz9PvyipZ+biPikVquMY/rgoQxxJilK0BtT68SZur35RW1/dxGDSlRs254XhfkShuAWEoyoW8X5F4n3/JmJCyuv6/npPAYJjAjamLURsYjldaNO7yvCxJGwoWaoblvPdwPb/l4TrrGrThg1wjUxKi1xiP1QgwZSdeGO7yvC3KlCQDah+ZKwwLU7xs8WGPUPAwpkYaMzNb5Qr3SAWCGDgQW5OJRvG2YTrShtO6sMKQkWFCvdAgwQwcCC1YamhsuyLU7sg4pAYCOcVFcJj14gWKMGjBDBwIrRsejCH1QO6TEaDcx1PWVaiGLUSVWs7CstLNbOKO2U+m7hmbDJsSbwdsii1ElVrOwrLSzWzhjlo4Ts3hbJIwqsZqFZbYebsI3Zug4MUu/N0DCqBqrWVhm6+EmfOPvBueOUTc7M3lbJIwqMYOFpTawLVeQy3sRLvEjajpOBAB35bTVGIbSOjOTt0XJF5Xwvneu1sC2WXq4CXnkCsDdsdkAQQD+vL8Mf95fFtKkh5m8LSrw9gFL4TaPmTUq1CYA33ut7PjiG6zeX+Z1bCjXhri7pL/tbYO1CRztEhgAagSPp84XvbY0JawHT2sjGFvmsqJGWyjG6IbaUgKepuSYKbBNhBae1oZSPHv2yOvR2OLkouCbYow/YPbCbTMFtonQwnrNK2tDszak8eyyS/XYcOgcXvv4lOsYo8NSZDH+AE93VS2YKbBNhBbWa/7yP46FrMBa9LZiIu1Y9vFpVNY2ejxvdME3CeMPmN3iMkMZEWEMrDWOVfXNIRUjngu+SRh/wOwWFxVqE3Kw1jiKhEqMePbSSBh/wAoWFxVqE3KIa6NjfLTicaEUI569NEq+/ADvhdusUKE2IceYnDRcaWrFnP/3md9jQyFGPHtpJIxumGl7UyXkBpkShCMplum4UIhR/24dYbcBSl673dZ2XKghYZRAFhdhZfxtbxrKLU2PlFcriiLQJppHyqtDfqMnYfQBWVyEVeEpZMRzjJGSLyaG9/HwBH+0OgUkxUbj8YGZXomYUCfpKMZoAnjqe2aBxyEWBBtGrTVfayY5Pgr39e2Ckb0dIV/zPLn1UkgYYT6RkZuiI3YLWLE0x2w3LjmMWmtya6a6vhl/3l+GWwz4Pnly66WE/XQds43q4mlSSqgw241LDqPWGu9rZuvRCuRvOe7Rqx2M60vTdRjhuSVJDp67BYKBWTZP8oeRa80ca8bz9zbaXgtrV1rNguElS81zJk9vzDbxyNeA2Ev1jUhJaIeWFqdha43nNSNnRX9T22hoWCishZHnBSMHz5k8vdFy49Iaiww0hunL3XeH9Z2CsdZ4XTM83/jCWhh5XTBK8JzJ0xu1Ny6tschAY5hyVo87rI5hMNYar2uGZ48trGOMZhwcEU5TdNTcuLTGIgONYSpZPWoI5lrjdc3w7LGFtTDyumCUEAt0nxiYiY7xUR7PWW2KDuuNq3+3jpoSG3okRPxZPawEe0tTHicv8eyxhbUrDfy4YPK3HPOYIpyaGIP88X24EhnfBbrRuLdvOkYZUKAbbFjr3I6UV2tyyVhduYNnL8Nus/mMP+phzYi/W7C3NOVtDgCvLj5AwuiGnM3IB/IFuk1Ys7/MlKLIkvBgmXi0ueQ80+dJRYxV1Gb8tRjfXWl2/ewuXHpYM6Es1OdpDgDPBd5hL4zy5QL8dJHwnL3TipqEhz9LR6tLxvo6d1EEPIVrVG+HotWjBbNeUy2w3PiM6HoKa2E0i+DwnL3TgpaWRiVLR6tL5u91ckjXhpzVEwh6XlPe2ymVbnxGdT2FdfLFHB0BfGfv1BKMDhCtSTS1e6FIz1VcG3KJDY/z0KhDgV7TrUcrMGjxDkwqOIhZG0swqeAgBi3ewV3HkK892o3segpri9EsgsNz9k4twbJ+tU5fl3tdh7gofNfQ7PM17ohrQ2r1SDtfLlQ34Bfv/4f59xEJ5JqaediI0d5cWAujWQSH5+ydWoJ5M9KadfX1OqdTwOTV//b7me5rQ8ndLzqj7ncJ9JoaLSyBYnT4KKyF0SyCw3P2Ti3BvhlpzbpKX9fqFHRdG2rimXpcU6OFJVCM9ubCOsZopgJv0eVLTYzxeDw1MYZrl0iKWbqN9F4bauKZehRdGy0sgWK0NxfWwgjw2RGgDN/1lv4w481Ir7Uhvl9SXJTXc+1jIvDkwExsmDIA++YND3jdGS0sgWL0DTTsB9WK8F7SYLaBuv4w0/BZPdfG1qMVmLau2Otxva+jOJzWXyiA54HG4poHvMugbFD/XanRFhJGE8D7BGat8H4z0ptQX0c5YTHTzXTr0QrM/9vnXhUCHeKi8LuJNwRNGMPelTYDZqm3VIuv2jUrE8rryNNugIHiq2yqpqE5qLWMYZ2VNgtmD6QTbUK1/8tLTMfqUdTN026AWhFLjnwR7JIjEkYTYPZAerjjb7q3lGAUdRu5G6BWjCw5IlfaBBidodOTVqeAojOXsbnkPIrOXOZqo7FgINfW5otAr6MZN3dTwkhPiSxGk/DgLRl47ePTXo/zVuKihJky0XqgZro3FXV7Y6SnRMLIIe7Z2rJLDdhw6JzHnrvu+OsF5gUz9+1qRc10bz2uo9Vi0bdmJfvtWe8YFxUUTynshZG3khE18ag5I6/HzOE9uLcUjezblV7f/t064kh5tc9BD3pfe1YBmnnHdZgz6icBf3Y4xqKDFRQIa2HkzbVj2W1OxAZg4+FzmDm8R7BPK2CMcvF8XV+7DZALsel97VkFaGCPa3QRZLP0/rNyqLTK74Sj7xqaKfmiJ0bOevOF2t3mzFS7aISLJ3d9lfIOel/7UCfNzNRuyYKRoYGwFEYes3dad5szQ7wo1C6e1i1N9b72oRYqKxV1A5R8CTk8Zu+0CpwZ4kWhdvEC2dJUz2vf1OLE+eorGHL9NSg+V426qy2u5/ROmlmlqNud/t06KoY+gLbQSP9uHXX/7LAURh6zd2oFzkzxomDPk5QmWCprrgR6ygFf+0WFx1Gwt9Tjj9oGYHjPa/DU4Ot0FSorFXW7c6S8WlEUgTbRPFJerbsBE5bCyGP2LtSDTPVAKaMvfW5Ub4emrQf8IbfXdqAEcu0XFR7Hyj2lXo8LAP7vi2/RI6W9bn/IZp/UrQQVeIcYXrN3ckXcUnioXVTK6AOQfW7fvOG6jvCS22tbK4Fe+6YWJwr2eouiOwV7S/GL0T0RHRl4iJ/HsJBeGGnAqL4y58+fx8MPP4xOnTohLi4Offv2xZEjR1zPC4KA/Px8pKenIzY2FsOGDcOxY8d0PelA4S17J+7kJieKjsQYzBmZjT8+2Fe3QaaBoJTRn7auGNMUsv3bj1fqMlGHJYGmFj2u/dqiMib3b21Rmab3l8JjWEgvjGyFVSWM1dXVGDhwIKKiovDPf/4Tx48fxx/+8Ad06NDBdcySJUuwdOlSvP766zh8+DAcDgdGjRqFuro6vc89IHiZ3O2vl3bOyOuxf/4IzBp5PRfjubQKkt4ZX9YES3K857Rspa9Oj2tfXtWg63H+4DEspBdGGjCqXOnFixcjIyMDa9ascT2WmZnp+n9BELBs2TI8//zzmDhxIgDg3XffRWpqKtavX4+pU6fqc9Y6oXVXOb3wV1bCYxE3LxlfVgvohbv7wJHYLmSdL92S43Q9zh+8hoX0Quu2uIGiShi3bNmCO++8Ez/72c+we/dudOnSBdOnT8eUKVMAAKWlpaisrMTo0aNdr4mJicHQoUNx4MABn8LY2NiIxsZG18+1tbVafxdNaN1VTg/MGB/SwyXT4z1YLSBHYjuv7y6Y3+UjuZlYUHjCb4nJI7mZunyelXaQlMMIA0aVK3327FmsWLEC2dnZ+Ne//oVp06bh2WefxV/+8hcAQGVlJQAgNTXV43Wpqamu56QsWrQISUlJrn8ZGRlafg9TYsb4kB4umR7vwesotuhIO6YMzlI8ZsrgLF0SLyK8hIWCSainvauyGJ1OJ26++WYsXLgQAHDTTTfh2LFjWLFiBX7+85+7jrPZPE9aEASvx0Ty8vLw3HPPuX6ura0NujjyMjjCjPEhNWVFUvR064y0lPytn7yxbXExaR2j3dYmiuLzemJ0WMhqqBLGtLQ09O7teVF79eqFDz74AADgcDgAtFmOaWk/3qUuXrzoZUWKxMTEICYmxudzwYCnwRFmjA/5EyTBx/+LPwP6ipVc/KljfBRemZATlOvJun7yxvbGL0b3xNqiMpRXNaBbchweyc3U1VKUYmRYKNQE27hRdZUGDhyIkydPejx26tQpdOvWDQCQlZUFh8OB7du3u55vamrC7t27cfvtt+twuoHB2+AI3sqGRPxN2VZy3d56uB/eCqFbNyYnDS+M6+1R1F1V34yXPzqh+/VUu36iI+14cnB3/HZCDp4c3D2oohhOiOVtkwoOYtbGEkwqOIhBi3foer1VbZ96+PBh3H777XjppZfwwAMP4NChQ5gyZQpWrVqFyZMnA2jLXC9atAhr1qxBdnY2Fi5ciF27duHkyZNISEjw+xnB2j6V5y1I5fpcX5mQg7E3pht+LnIWtZrOl2C5daHab5vn9RNOBHK91WiLKlf6lltuwaZNm5CXl4ff/va3yMrKwrJly1yiCABz587FlStXMH36dFRXV+O2227Dtm3bmEQxmPCcAR6TkwanE/j15qOo+qFrQ7R67HZbyGsqWadsK7luoXDrQtkOx/P6CRdCeb1VtwTefffduPvuu2Wft9lsyM/PR35+fiDnpTs8Z4C3Hq3AjPXGjv03Q8+t1Ap1OoWQiRXP6ydcCOXNKWx6pXnNAPMiSLxbRL5c/A6xUQqv+JFQ1k3yVEFgJUK5LzcQRsLIawaYF0Hi2SKSc/G/u6I89l5Ez7pJ3taPEryUpQVKKPflFgkbYeS1Q4AXQeLVItI6jRuwTt2kFngqSwsEtfsg6XW9w6p+gMcOAV4ESdyqUokOQdqqUgmtvdlaxCqQMiWeOkx4K0vTSqj35XYnbCxGEd46BMzkohnxDbFayh1iozxca7VDBlgtLN7WjxReYtZ6EOp9ud0JO2EE+OoQ4MVFY9mqsjpIW1UqwWopvzG5H+w2myax0rNMyWh4iVnrQaj35XYnrFxpXuHBReMl1imFdVjEgO6dNA0Z4HHHyEDg9TpqIdT7crsTlhYjjxjtovES65QSbIvaShYWwO911IKRYSayGDki1KOV3OFljJevBEgwLerKWutYWAA/11EPTDPBm7AuPMQ6/SVA9Laotx6twMv/YNuPyAwWFsDHddQToyZ4qxoiEQqCNUSCUEYsBv74eCU2lZxHVf2PiZhQ1L+FahiEv8+TYrbhEOJ13H68Eh+WXHD13gPmrGMU0aNYPWhDJAh94aUzQW5v5nv7pmNUb0fQzyvUJSas9XFms7DkpjTd17cLRobgOgaTUFcChI0wNrU4Qzo01B+8dCYo7c28Zn9ZSP6YQp0AOXj2MuMOg9FYcF9wBt7qjfx1bMaf95fhFhOLohGEhTAuKjzuNWZ+QeGJoI2Z94faurlgwUsxcGXNFabj9EiAbD1agfkffM507K/H9TKFKPJyHfWAFy/K8sK4qPA4Vu4p9XrcKcD1eCjFkadFzEOpytajFXj5oxNMxwaaAFHTdwsAjqTYgD4vVPBwHfWAFy8KsHi5TlOLEwV7vUXRnYK9pWhqcYbojNQt4mBjdDGwKFTuCQJf6FFiorbv1iwlLaEexxUseOvvtrQwri0qU9zfF2izHNcWlYXkfADjxcgdI4uB1U7NCTQBonYYhRkSLuLeJ6/v/JLpeF5LjnjsPrK0MJZXNeh6nB7w1JlgZDEwq1AltIvAGw/d5NeV8jcZh3kYRVwUV5Ny5JCzsHzBuwXMkxclYukYY7fkOF2P0wOepum4FwPLESzLiVWo6q62+t37hiU2xTyMYlI/DMzuzHSsURg5jisY8ORFiVjaYnwkNxP+1oLd1nZcqOBty9QxOWl4ekiW1/dktwFPD8kKmuWkxiJWijOxxqaYh1FwnJwQUTuOi3cLmCcvSsTSwhgdaceUwVmKx0wZnBXyekYepumIbD1agVV7Sr1isYIArNpTGrSgtz+h8jiXH/4rjTOpiU3xdkPyR1OLE6v3nsVvNh/F6r1nPRKEasZx7Zs3nGtRBPjs77a0Kw38WIojrWO022BYHSNg/DQdwNjSIaWeXl/4KjlRW6ZiVN+tWvzV3Ro5jisY8NjfbXlhBNrE8Reje3LV+QIYP/DU6Po3OaFSwr0YXEtsiocbkhIsdbdzx/TiJk6tB61OAUmx0Xh8YKZXf7dRN62wEEagza1+cnB3o0+DK3gIeotC9c7+UqZC75c/OoHY6AiMyUnTHJsy+oYkB2vd7S9G9+TOwtIKr/3dlo4x8oK/UhKj4CXoHWG34bGBWUwxx+r6JldShcfYVCCoqbvlKU6tFbnEmdjfXXOlyTBxt5TFyEufpTs8tTlJMVvpEOAd+7SK5QSor7vlPSygBE+tsb6wjMUodgFMKjiIWRtLMKngIAYt3mHoVpG8tTlJ4S1TK1pByfHK27i6xz6tYDmJaKm7NXLqeyDwWNTtjiUsRl6m1bjD+x1RRC4BkpoYg0m3XovGFieKzlwOmSUyJicNV5qdmPNeid9jxdinmS0ndx7JzcSCwhOK7nSo626DBQ/xbSVML4y8CpDRGV81SIWl7FIDNhw6h9c+Pu06JpTuvyNRfeyT14SKGsS6W19ZaREj6m6DAS/xbTlM/w3zapKHcsagHojCEhNpx7KPT3ltEhVK999qSRV3/CXi8sb2xlSZTqSpQ4yru9Ub3q+x6S1GHk3yUM4Y1BNerG8eC371gDURx2vdrZ7wfo1N/03zZpKHcsag3vBkfVspqQKoT8SJdbe/nZCDJwd3N6UoKlnH7kXdHeOjPV7HwzU2vcV4a1YyOsRF4buGZtljOsRFhUSAQj1jUG94s76tklThxRIPJUrWMQAui7rdMb0wshCqr5h16klyfBQW3ncDd1YPb9Y3YM6kirSe1ikIpknE6YFSlcg0mTpV3jbtMr0wHiqtUrQWAaC6oTkki47Vknrh7j7ciSLAV8G3WfFlKXWIVa7LFOElERcILBOPfMGb5Wy+wIUEntw/VkuKtRwl1PBW8G025OKI311RvnGL8JSI04raLSTcMbqo2x3TCyNP7h/vJQgssCQ9eO39NhK18WV3zLAuWNHDAOHBcja9K82T++dvxqAA4MFbMoJ+HoGilPTguffbSLRaSlazxPUwQHiwnE1vMfLm/slZXCKvfXza8B5uFnz14PLe+x1slCxl5s22JPFGHkpT9ESsEtECT5az6S1GsR7qiYGZ2FRyHlX1P8ZzjBpyKVpcr+/4Eq99fMrreSN7uLUSjiUn7vizlJk323qoH+x2m6nLj/SAx6Jud0wtjL6HXEbj3r7pGMVBPdTGw+d8Pm5GITFT77fesAwpGdXbwRTSGWCiCThaOHj2st8qEQDoGB/NxaRuOUwrjHKLtbq+CWv2lxkuilYTEp6y/6FEjaXMc4tbKNh6tALzP/ic6dgXxvWCIymWW8vZlDFGNbvDGQWrQOz/8ltTZHV5yv6HEjU3OKu1MapBNFRYS5McSbFcz5E0pcVoBmuMVSBe33kGHxSf58qN8AVP2f9QotZStkoboxrUlCqZZZ2Y0mI0g1unZt9kM2R1WbP/ACxV46jFUjbrVG2tqC1VMkNIwZTCaAa3TklIpPDi/vvDn6sIgLvtJQLFCkX7wYa5VCkuyjQhBVMKo1kWq7+aRnd4aodSYkxOGvbNG44NUwbgjw/2xYYpA7Bv3nAAsGSNI291sjzCXKo0yRyiCJhUGP1ZYwKAsTltcR6jLTBRSGbe0YPpeDNkdaWuIgDuk2GBEM5JFRZYDZUBJqi+EDFl8gWQ38TJbmvbe3f1/jKs3l/GRbtahN2GgT064/WdX/o91oxZXTMkwwIlHJMqrPA+jVsLprQYRdzduicGZgKA1w5rvLhyZnH/tWCGZJgehFtSRQ1Ws6pNazGKRNhtuDUrGc/9vxKfz/PSZWLFu6qIGZJhRPCxklVtaotRhKe9SpSw2l1VxMrWMKEOq1jVprcYAXO5cla6q4pY2RqWblNg9mtFsGEJYTSbK2fGfUz8IZcMcx8OYDaRodmT4YslhDFc29V4w0oDblkm6vB43oQ+WCLGSEW4/GCFAbdmGFJCBBdLCCNAe5XwihlERrouDp69bIpkHhE8LOFKi1jJlbMKvBd/h/t2p4RvLCWMgO/EBsWLjIPnigG5dRFO251qwWxJNC1YThil8LpXSTgsLoDfioFAtzsN12ReuHhelhfGg2fY40V6u3Jy4hcuiwvgt2KAtjtVTzh5XpYWRjV7UOjtysmJ3/ifpmHVntKwWFwAX8Xf7jeq0998z/SaDrFRHq41b5s2hQpePa9gYVlhlLu7yaGnKyf32RU1V7FyT6nP11hxcYnIFX+nJERjcPY1OHDmMs5XX8EjuZmIjgxOoYSvGxULtN1pG7wn0fTGksJo5B4UgcSurLa43JFWDGw//g0KP6/A+8XnXccsKDyBKYOzkDe2t66frfYmCYTPdqes8JxECwaWqWN0x8g9KLTGrtyxyuKSIlYMHL9Qg3/8p8JrRJxTAFbuKcWiwuO6faaWG1U4xxHl4DWJFiwsKYzMe1DE6r8HhR6iZpXF5YumFicK9voOJ4gU7C1FU4tTl8/TcqMy+7SjYBBuE5Qs6Uoz70ExuR8G9uhsyGf7IhzKQNYWlXlZilKcAvDyP44hf3yOT4vNPYnSOT4GsAGXvm/0GQNkvVHNvOM6ZKcmhHUcUQmekmihwJLCyFoiMqC7/nE8f5/tfg5WX1y+KK9qYDpu7cFz+PjERa8MsL8kirTsifVGNbDHNZaL6waKtNxsVG+H3wlKVsGSwmjk3Y3ls58ekoUtn1VYfnH5oltyHPOx0hImliSK9DW81lHyjlKt7b55wy3fnBBQjHHRokWw2WyYPXu26zFBEJCfn4/09HTExsZi2LBhOHbsWKDnqRojp2X7++y8sb19bkFqdVEEgEdyM8H6N+Q+ZKKpxcmURJEOpqDJS+rxNw1p+/FKS0zpVkKzxXj48GGsWrUKN954o8fjS5YswdKlS/HOO+/g+uuvxyuvvIJRo0bh5MmTSEhICPiE1WDktGx/n23FYbUsREfaMWVwlmw9pxSxhGltURlzEkVa9sQyRJdoI9wKueXQJIzff/89Jk+ejIKCArzyyiuuxwVBwLJly/D8889j4sSJAIB3330XqampWL9+PaZOner1Xo2NjWhsbHT9XFtbq+WUZDFSgMJV/Pwh1ikW7C31m4gRYY1NuuOeeLHilhLBINwKueXQ5ErPmDED48aNw8iRIz0eLy0tRWVlJUaPHu16LCYmBkOHDsWBAwd8vteiRYuQlJTk+peRkaHllCxFOMyNzBvbG1+8fBceGXAt0/FqYpMi0sSLVTZqCibhVsgth2qLcePGjSguLsbhw4e9nqusrAQApKamejyempqK8vJyn++Xl5eH5557zvVzbW1tWItjOA2YiI60I398Dj4+cdFvcuSR3Ey8va/Ub7bf/TWUUFFPuBVyy6HKYvzqq68wa9YsrFu3Du3ayX8xNpvnnVgQBK/HRGJiYpCYmOjxL1TwZpmZbQsAPWBNjkRH2mWPk3sNWYTqCbdCbjlUCeORI0dw8eJF9O/fH5GRkYiMjMTu3bvxpz/9CZGRkS5LUbQcRS5evOhlRRrN1qMVGLR4ByYVHMSsjSWYVHAQgxbvMEx8zLAFQLBgrSCQO07pNYQ6KIvfhk0QBOa/tLq6Oi+X+PHHH0fPnj0xb9489OnTB+np6ZgzZw7mzp0LAGhqakJKSgoWL17sM/kipba2FklJSaipqQma9ShXDydeaiP+sIrOXMakgoN+j9swZQBT0NuMg3BZz1lN5wvhDcv3bMWQjhptURVjTEhIQE5Ojsdj8fHx6NSpk+vx2bNnY+HChcjOzkZ2djYWLlyIuLg4PPTQQyp/jeDAazkCazC7suaK32PMuqhZs/iU7dcO69oI9yy+7p0vc+fOxZUrVzB9+nRUV1fjtttuw7Zt20JewygHr+UIrMHslz86gdjoCFmBC6cpy4Q61K6NcL4BBTxdZ9euXVi2bJnrZ5vNhvz8fFRUVODq1avYvXu3l5VpJLyWI/gLeotU1zfJJmLCOU5JKENrQx2WHDumBK/lCO5BbyWUFjGrNfzO/lL6Awgz1HhKRBgKI8/lCGLWNTleeV9juUXMauW+/NEJQzPwhP74Kz3j1VPiFUtO11GCdfIO0JYpNqLH+kqzE3PeK/F7rHQRq7FyKeZoHVgSKrx6SrwSdhYj4L9uDoChNY6ORG2LmDVOCVBcySqwNgXw7CnxSFgKI9Amjr5GfwEwvPtE6yJWKs71BcWVzI2ahAoVbqsjbIUR8B4qAICLzF0gi5ilO0RKZc0VrlojCTbUJlSMnFFqNsIuxqgETzWOgcwQFItz39lfipc/OuH3s17+6ASq6ptcP5uhGJwAKmvVJ1TCvXCbFRJGN3jL3AWyiCPsNjw2MItpIo27KAKUmDEDW49W4OV/sE3Glxu/RsgT1q60FB4zd4HMEFQbcxShxAzfiAmXqvpmxeMooaIdEkY3rJi5k4sraa2VJIxFKeHiDiVUAoNcaTesuneuL5e8svaqplpJIvgoTb/xFwcXSY6PxoL7cigUohESRglySY/UxBhMuvVaNLY4UXTmsukC1tK4UtGZy0yvo4Lf0OKvWJv1RvXrcb1IFAOAhNEHUgur7FIDNhw6h9c+Pu06xuyZW9pvmT9Ypt+w3qgcSbH6n2AYQTFGGUQLKybSjmUfn/IqjTD7dgNaaiV52wrCSrAWa/fv1tFycXAeIYtRAV6H2uqFmlpJsw6/NQusNbRHyqstGQfnDRJGBVgX68EzlzEwu3PoTkxHWGolafht8FFTrD2hbxfNxf8EGySMCrAGumesL8bv7r/BtAtSqeDX6lYzD2gp1qYOluBCMUYFWAPd311pNnW8UQkacBpcAinWDqT4n1CGhFEBNWO8AGt2ivDWJmklqFibX0gYFWDdbgCwruXEY5ukVVBTrE1x3NBCwugHMXPbIVa5hU7EapaTFdskA4W1bEmv7QaoWDv0UPKFgTE5aUhoF4XJb//b77FWs5ys2iapFdayJT23G6Bi7dBDFiMjA7p3ClvLiQactsG6jQBtN2B+yGJkJNwtp3AvD2EtWxreM1VVeVM4rymeIYtRBXKWU8f4KLzx0E2Wt5zCuTyEtWxpbVEZbTdgAchiVMmYnDQ4ncCvNx91Tb6uqm/Gyx+dgN1uo4UcIpRGc+nxHtLnWDtTyqsamI6j7Qb4hoRRJVuPVmDGemqP84UeYsWCHn3bSu8BwOs5f4N9RbolxzEdR9sN8I1NEASuKpJra2uRlJSEmpoaJCYmGn06HrQ6BQxavEPWVRJHde2bNzzs7vahGjIh17ctftssNyal99D6xyBe+92/vANDf7/T7zi3cFwjRqNGWyjGyEirU8A7+0upPc4HrFnYQFGzj3Ig7+EPpTFt0ZF22r/ZApAwMrD1aAUGLd7BtBUpYL0ibyX0ECtW9OjbZu02UaJjfLTHz9JECSVUzA/FGP0g53YpYbUibyVYxerA6Us4dbEO5VUN6JYch0dyMxEd6X1fVopT6tG3rcdN64VxveBIilWMpVJCxdyQMCrA2uQvEo7bAbAKzc/XHPL4HhcUnsCUwVnIG/tjL7q/OKUefdt63LQcSbFMiRJKqJgXcqUVUON2hWv8iFVopDcXpwCs3FOKRYXHAbDFKfXoFFE7MUnt+xPWgIRRATVuV8f4KDwxMBNJsdGWGz2mRCBCAwAFe0txpamVKU4JIODEBsteN4G8P2ENSBgVYLWGEtpFoqq+Gav3l2FSwUEMWrzDkkNrfaEkNCw4BWBh4XHmpIoeiQ2l93jr4X54ixInYQ/VMSog1i3K1aTJoaamzir4ig/GRUWgobnV72sHZ3fG3tOX/B73xwf7YkLfLgBC3/lCiRPzo0ZbKPmigFKTvxLhuBeKryzs0fM1WFDov8Qps1Mc9p72e5iHBa9HYkPpPShxEt6QK+0HObfLX4tYOBZ7S4dMPHp7JvzdE+w24Fdje9P4LYIryGJkwJc1VFl7FXPeK/H72nAq9pYSHWnHlMFZWLmnVPaYKYOzEBsdQeO3CK4gi5ERqTXkSKS9UFjIG9sbU4dkeVmOdhswdciPdYzULULwBCVfNOIvMUPDAjxpanFibVFZQJ0vBBEIlHwJATR9WR3RkXY8Obi73+Mo6UHwALnSAUDuH0FYE7IYA4SGBRCE9SBh1AFy/wjCWpArTRAEIYEsxiBAmVWCMDckjDoTqr1PCIIIHuRK60io9j4hCCK4kDDqRCj3PiEIIriQMOqEHhs1EQTBBySMOqHHRk0EQfABCaNO6LFRE0EQfEDCqBN6bNREEAQfkDDqBMsmSzRUgiDMAQmjjsgNlegYH4U3HrqJ6hgJwiSQMOrMmJw0vDCuN5Ljo12PVdU34+WPTlAdI0GYBBJGndl6tAIz1hejqr7J43Eq8iYI80DCqCNU5E0Q1oCEUUeoyJsgrAEJo45QkTdBWAMSRh2hIm+CsAYkjDpCRd4EYQ1IGHWEirwJwhqQMOoM7RxIEOaHJngHAdo5kCDMDQljkKCdAwnCvJArTRAEIUGVMC5atAi33HILEhISkJKSgnvvvRcnT570OEYQBOTn5yM9PR2xsbEYNmwYjh07putJEwRBBBNVwrh7927MmDEDBw8exPbt29HS0oLRo0ejvr7edcySJUuwdOlSvP766zh8+DAcDgdGjRqFuro63U+eIAgiGNgEQdDcuPvtt98iJSUFu3fvxpAhQyAIAtLT0zF79mzMmzcPANDY2IjU1FQsXrwYU6dO9fuetbW1SEpKQk1NDRITE7WeGkEQhAdqtCWgGGNNTQ0AIDm5rWC5tLQUlZWVGD16tOuYmJgYDB06FAcOHPD5Ho2NjaitrfX4RxAEYSSahVEQBDz33HMYNGgQcnJyAACVlZUAgNTUVI9jU1NTXc9JWbRoEZKSklz/MjIytJ6SJWh1Cig6cxmbS86j6MxlmsRDEAaguVxn5syZ+M9//oN9+/Z5PWezedbrCYLg9ZhIXl4ennvuOdfPtbW1YSuOW49W4KW/H/eY0JOW1A4v3tObCsMJIoRoshj/+7//G1u2bMHOnTvRtWtX1+MOhwMAvKzDixcvelmRIjExMUhMTPT4F45sPVqBZ9YVe40towG3BBF6VAmjIAiYOXMm/va3v2HHjh3IysryeD4rKwsOhwPbt293PdbU1ITdu3fj9ttv1+eMLQgNuCUIvlDlSs+YMQPr16/H5s2bkZCQ4LIMk5KSEBsbC5vNhtmzZ2PhwoXIzs5GdnY2Fi5ciLi4ODz00ENB+QWsgJoBt9RNQxDBR5UwrlixAgAwbNgwj8fXrFmDxx57DAAwd+5cXLlyBdOnT0d1dTVuu+02bNu2DQkJCbqcsBWhAbcEwReqhJGl5NFmsyE/Px/5+flazynsoAG3BMEX1CvNATTgliD4goSRA2jALUHwBQkjJ9CAW4LgB5rHyBE04JYg+ICEkTNowC1BGA+50gRBEBLIYuScVqdArjVBhBgSRo6hoRIEYQzkSnMKDZUgCOMgYeQQGipBEMZCwsghaoZKEAShPySMHEJDJQjCWEgYOYSGShCEsZAwcggNlSAIYyFh5BAaKkEQxkLCyClyQyVSE2Mwe2Q2GluctIsgQQQJm8AyfTaEqNkUOxxw73wpu9SADYfOobKWCr4JQi1qtIUsRs4Rh0rERNqx7ONTHqIIUME3QQQDagk0Af4Kvm1oK/ge1dsRcNxRqTeb+raJcIGE0QQEuosgq6Ap9WYDoL5tImwgYTQBgRR8sw6iEHuzpVZpZc1VTFtX7PPzRDeeJowTVoNijCZAa8E36yAKlt5sX1DfNmFVSBhNgJaCbzWDKPy56kr46ttudQooOnMZm0vOU0kRYUrIlTYBYsH3M+uKYYOnFSdX8K0mLqlHz7X4HjRDkrACZDGaBLW7CKqJS+rRc52S0I5mSBKWgSxGE6FmF0E1cUnRVa+suaoYU/SFDW3i3L9bRwz9/c6QlBQRRLAhYTQZrLsI+hM7UdBEYVVy1QUf/y/+DLS58UfKqzWVFMmVElHNJGEkJIwWRW1cUnTVpfFBh0Ido8Mtdri55DzTebm7+HLxyPE/TcOWzyooTkkYBvVKWxy1yRCtnS9FZy5jUsFBv+ezYcoA5F7XSbZuUg5RzKlmktCKGm0hi9HiqIlLAsquutJzalx3pVIiOShOSYQSykqHAaKgTejbBbnXdQqKqKiZIam1bpL2uiFCBQkjoRusJUWB1k3SXjdEsCFXmtAVFtc90LpJ2uuGCDYkjITu+Csp0lo36R6nJIhgQq40EXKU4pFy0F43RCghYSQMQS4emZbUDlOHZCGNsfWRIIIB1TEShkKdL0SooDpGwjTIxSNZWx8JIhiQK00QBCGBhJEgCEICCSNBEIQEEkaCIAgJJIwEQRASSBgJgiAkkDASBEFIIGEkCIKQQMJIEAQhgbvOF7FDsba21uAzIQjCSoiawtIFzZ0w1tXVAQAyMjIMPhOCIKxIXV0dkpKSFI/hboiE0+nEhQsXkJCQAJvNPEMDamtrkZGRga+++oqGX2iAvj/t0HfHhiAIqKurQ3p6Oux25Sgidxaj3W5H165djT4NzSQmJtLiDAD6/rRD351//FmKIpR8IQiCkEDCSBAEIYGEUSdiYmLw4osvIiYmxuhTMSX0/WmHvjv94S75QhAEYTRkMRIEQUggYSQIgpBAwkgQBCGBhJEgCEICCaOONDY2om/fvrDZbCgpKfF47ty5c7jnnnsQHx+Pzp0749lnn0VTU5MxJ8oRZWVlePLJJ5GVlYXY2Fhcd911ePHFF72+G/r+5HnzzTeRlZWFdu3aoX///ti7d6/Rp2R6uOt8MTNz585Feno6PvvsM4/HW1tbMW7cOFxzzTXYt28fLl++jEcffRSCIGD58uUGnS0ffPHFF3A6nVi5ciV69OiBo0ePYsqUKaivr8err74KgL4/Jd577z3Mnj0bb775JgYOHIiVK1firrvuwvHjx3HttdcafXrmRSB0obCwUOjZs6dw7NgxAYDw6aefejxnt9uF8+fPux7bsGGDEBMTI9TU1BhwtnyzZMkSISsry/UzfX/y3HrrrcK0adM8HuvZs6cwf/58g87IGpArrQPffPMNpkyZgrVr1yIuLs7r+aKiIuTk5CA9Pd312J133onGxkYcOXIklKdqCmpqapCcnOz6mb4/3zQ1NeHIkSMYPXq0x+OjR4/GgQMHDDora0DCGCCCIOCxxx7DtGnTcPPNN/s8prKyEqmpqR6PdezYEdHR0aisrAzFaZqGM2fOYPny5Zg2bZrrMfr+fHPp0iW0trZ6fTepqalh/b3oAQmjDPn5+bDZbIr/PvnkEyxfvhy1tbXIy8tTfD9fI9QEQTDVaDU1sH5/7ly4cAFjxozBz372Mzz11FMez4Xb96cG6XdA30vgUPJFhpkzZ+LBBx9UPCYzMxOvvPIKDh486NWnevPNN2Py5Ml499134XA48O9//9vj+erqajQ3N3vd7a0C6/cncuHCBdxxxx3Izc3FqlWrPI4Lx++Phc6dOyMiIsLLOrx48WJYfy+6YGyI0/yUl5cLn3/+uevfv/71LwGA8P777wtfffWVIAg/Jg8uXLjget3GjRspefADX3/9tZCdnS08+OCDQktLi9fz9P3Jc+uttwrPPPOMx2O9evWi5EuAkDDqTGlpqVdWuqWlRcjJyRFGjBghFBcXCx9//LHQtWtXYebMmcadKCecP39e6NGjhzB8+HDh66+/FioqKlz/ROj7k2fjxo1CVFSUsHr1auH48ePC7Nmzhfj4eKGsrMzoUzM1JIw640sYBaHNshw3bpwQGxsrJCcnCzNnzhSuXr1qzElyxJo1awQAPv+5Q9+fPG+88YbQrVs3ITo6WujXr5+we/duo0/J9NDYMYIgCAmUlSYIgpBAwkgQBCGBhJEgCEICCSNBEIQEEkaCIAgJJIwEQRASSBgJgiAkkDASBEFIIGEkCIKZsrIy2WlJ//u//8v0HosWLYLNZsPs2bM9Hv/+++8xc+ZMdO3aFbGxsejVqxdWrFih6vx27drl89y++OILVe9D03UIgvBi2LBheOyxx/DYY495PJ6RkYGKigqPx1atWoUlS5bgrrvu8vu+hw8fxqpVq3DjjTd6PTdnzhzs3LkT69atQ2ZmJrZt24bp06cjPT0dEyZMUHX+J0+eRGJiouvna665RtXryWIkCIKZiIgIOBwOj3+bNm3Cf/3Xf6F9+/aKr/3+++8xefJkFBQUoGPHjl7PFxUV4dFHH8WwYcOQmZmJp59+Gj/96U895nbW1NTg6aefRkpKChITEzF8+HCvPZYAICUlxeMcIyIiVP2eJIwEQWjmyJEjKCkpwZNPPun32BkzZmDcuHEYOXKkz+cHDRqELVu24Pz58xAEATt37sSpU6dw5513AmgbwDtu3DhUVlaisLAQR44cQb9+/TBixAhUVVV5vNdNN92EtLQ0jBgxAjt37lT9e5ErTRCEZlavXo1evXrh9ttvVzxu48aNKC4uxuHDh2WP+dOf/oQpU6aga9euiIyMhN1ux9tvv41BgwYBAHbu3InPP/8cFy9edA2GfvXVV/Hhhx/i/fffx9NPP420tDSsWrUK/fv3R2NjI9auXYsRI0Zg165dGDJkCPsvZuxwH4IgeGDBggVCfHy865/dbhdiYmI8HtuzZ4/HaxoaGoSkpCTh1VdfVXzvc+fOCSkpKUJJSYnrsaFDhwqzZs3yOO73v/+9cP311wtbtmwRPvvsM2H58uVC+/bthe3btwuC0LZ7pN1u9zgn8Vznzp0r+/l33323cM8996j6PmjsGEEQqKqq8nBHJ0+ejPvvvx8TJ050PdalSxfExsa6fl67di2efPJJnD9/XjG58eGHH+K+++7ziPO1trbCZrPBbrejsbERTU1NSEpKwqZNmzBu3DjXcU899RS+/vprbN26FYsXL8by5cuxa9cur8/o0KEDOnfu7PPzFyxYgHXr1uHEiRNM3wVArjRBEACSk5M9tqyNjY1FSkoKevToIfua1atXY/z48X4zviNGjMDnn3/u8djjjz+Onj17Yt68eYiIiEBzczOam5tht3umPSIiIuB0OgEA/fr1Q2VlJSIjIz32C/LHp59+irS0NObjARJGgiA08OWXX2LPnj0oLCz0+fyIESNw3333YebMmUhISEBOTo7H8/Hx8ejUqZPr8cTERAwdOhS//OUvERsbi27dumH37t34y1/+gqVLlwIARo4cidzcXNx7771YvHgxfvKTn+DChQsoLCzEvffei5tvvhnLli1DZmYm+vTpg6amJqxbtw4ffPABPvjgA1W/HwkjQRCq+fOf/4wuXbpg9OjRPp8/c+YMLl26pOo9N27ciLy8PEyePBlVVVXo1q0bFixY4Npj3GazobCwEM8//zyeeOIJfPvtt3A4HBgyZIhrV8Smpib8z//8D86fP4/Y2Fj06dMHH330EcaOHavqXCjGSBAEIYHqGAmCICSQMBIEQUggYSQIgpBAwkgQBCGBhJEgCEICCSNBEIQEEkaCIAgJJIwEQRASSBgJgiAkkDASBEFIIGEkCIKQ8P8BRBX4Di79ipEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAADbCAYAAACWc25rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPMklEQVR4nO3deXxU1dnA8d+5M5NJMtkDgSTsOxp2EAQREcR9rVap1q1abAFtq32F9vUVLRVFWm1VbLHWVutWF3BHQEVZRBBQFpU1ECBAWLIvs93z/jGTIZPMTBayEPJ8/cxHcu+59z4nk5t5crartNYaIYQQQggRYLR0AEIIIYQQpxpJkIQQQgghqpEESQghhBCiGkmQhBBCCCGqkQRJCCGEEKIaSZCEEEIIIaqRBEkIIYQQohpJkIQQQgghqpEESQghhBCiGkmQhBBCCCGqaZMJ0hdffMHll19ORkYGSikWLVpU73NorZk3bx59+vTBbrfTuXNnHnnkkcYPVgghhBDNztrSAbSE0tJSBg0axG233caPfvSjBp3jnnvuYcmSJcybN48BAwZQWFjI0aNHGzlSIYQQQrQE1dYfVquUYuHChVx11VWBbS6Xi//93//l5ZdfpqCggKysLB577DHOO+88AL7//nsGDhzIli1b6Nu3b8sELoQQQogm0ya72Gpz2223sWrVKl577TU2bdrEddddx0UXXcSOHTsAeO+99+jRowfvv/8+3bt3p1u3btxxxx0cP368hSMXQgghRGOQBKmaXbt28eqrr/LGG28wduxYevbsyX333cc555zDCy+8AMDu3bvZu3cvb7zxBi+++CL/+te/WL9+Pddee20LRy+EEEKIxtAmxyBFsmHDBrTW9OnTJ2i70+kkNTUVANM0cTqdvPjii4Fyzz//PMOGDWPbtm3S7SaEEEK0cpIgVWOaJhaLhfXr12OxWIL2xcXFAZCeno7Vag1Kovr37w9ATk6OJEhCCCFEKycJUjVDhgzB6/WSl5fH2LFjQ5YZM2YMHo+HXbt20bNnTwC2b98OQNeuXZstViGEEEI0jTY5i62kpISdO3cCvoToz3/+M+PHjyclJYUuXbpw0003sWrVKv70pz8xZMgQjh49yqeffsqAAQO45JJLME2TESNGEBcXx5NPPolpmkydOpWEhASWLFnSwrUTQgghxMlqkwnS8uXLGT9+fI3tt9xyC//6179wu93Mnj2bF198kQMHDpCamsrZZ5/NQw89xIABAwDIzc1l+vTpLFmyBIfDwcUXX8yf/vQnUlJSmrs6QgghhGhkbTJBEkIIIYSIRKb5CyGEEEJUIwmSEEIIIUQ1bWoWm2ma5ObmEh8fj1KqpcMRQgghRB1orSkuLiYjIwPDaJ62nTaVIOXm5tK5c+eWDkMIIYQQDbBv3z46derULNdqUwlSfHw84PsGJyQktHA0QgghhKiLoqIiOnfuHPgcbw5tKkGq7FZLSEhotATpKAWsYzPlOOlGJoPoi0WGdgkhhBCNrjmHx7SpBKkxuXDzd97gBw5W2boJO4u5lYsZSL8Wi00IIYQQJ0eaOhror/zHnxypKi9wYrKAD9jB7pYMTwghhBAnQRKkBtjJXrLJpzIpCqbQwH/5qJmjEkIIIURjkQSpAT5hJRBpAXJFLhWUUtZcIQkhhBCiEckYpAYopqQOpRTvsANFPGlEM4YORGNp8tiEEEIIcfIkQWqABGKgliTJRPEP9tOdHLqwh69x05WO9OMsOtGPdnRsnmCFEEIIUW+SIDXARM7hWxaG3a+BUhzcwOskU4CJ8o9M2sk2VrGCNFIYxGXcSCLJzRa3EEIIIepGxiA1QA960JcY/1fBY5E04MbKKL4kkUIADHSVuW6aDhzmCN/zH/5KOaXNGboQQggh6kASpAb6JXcyCAdWPFW2agpJwMSgPccwQgzkrpz3lshxSihkPSuaJV4hhBBC1J10sTWQFRs/ZwrHyeNrvqKcCvaRytu4OJ9lmKiQCRL4kiQHpWhMNvEV53BR8wYvhBBCiIgkQTpJKaQxicsBWMMR3mK9v1Up0jIAJ1qSyuo0I04IIYQQzUm62BrRCFJJIYpjpBJ6EUkfDbiwAYo4EpsrPCGEEELUkSRIjciCwb1k8T1nAJHbkApJRKEYzNnNE5wQQggh6kwSpEY2mjQeYhzf+8cVmVX2af+rjBiKSSKZdgxmdEuEKYQQQogIZAxSExhGO4bxC7YwlL0sooytAHiwUkgiRSTRmwFcxHVEB5YLEEIIIcSpQhKkJpTFSLIYiYmbcko5SC4ak450Ip6klg5PCCGEEGFIgtQMDGw4SKKXJEVCCCFEqyAJ0ilMoznCTo6zFws2MhlIrDyaRAghhGhykiCdoo6Tw3KeoYD9gW0Kg96cyyhuwUpUC0YnhBBCnN5kFtspqJg8PuQPFJIbtF1jsp3PWc4z6FoWohRCCCFEw0mCdAraxHu4qUAHLRJQSZPD1xxhZ7PHJYQQQrQVkiCdYjSanawMkxxVMtnA73BzqNniEkIIIdoSSZBOMV7ceHHVUkpRQQl7uBkTp2/T/lXwzvXwdEd4JgM+vA0Ob2zyeIUQQojTkQzSPsVYsBFFLC7KIpazU4GLfRSzhMS122H5fWBYwfT4Cmz9D2z5N1zyAmTd0gyRCyGEEKcPaUE6xSgUfRmPivjWKNpxFDAoP/BPX3IEJ5IjAO0BNHx0Oxzf3oQRCyGEEKcfSZBOQVlc5l/vKPRMtQ4cIpZywCRu/UZQkRoCDdj4bFOEKYQQQpy2JEE6BcWQwOU8RCpuqiZJFjx0Joeu7A1sidl3zN9aFIb2wL7lTRitEEIIcfqRMUinqFiSGcvV7OUPlBGLgUkcJRhBrUpetKp9wUhTKbaxlgrKSKQd3eiPgaXpghdCCCFaOUmQTmHJXEcRi4liDQRN+1eAJoW7ONjjGTI352Po0N1xWim+7mFlJf8ObHOQwAXcSA+ymjR+IYQQorWSLrZTmMJGF56jPdOwVHkGWxQ9yORxTEawa2g6Ksy62howDcXmQb2DtpdSzDv8jRy2NW0FhBBCiFZKEqRTnIGdNO6mL6vpzXL6sJJeLCaJqynlAMVpSWy4ZABa+brSKpkKTIvBuqsHUZEQXe2svoRqBYuasypCCCFEqyFdbK2EwkYUnYK22XCgMTlwZjoFGYl0/WYf7XLy0QbkdWvH3sGdqIiPxgyZB2sOk0MBR0iiffNUQgghhGglJEFqxToyhs34pvCXJsfy3fi+Qfs14MKGG1vYc5RRIgmSEEIIUY10sbViMbSjG5fhG7RdkwKOkxp2P0A8SU0RmhBCCNGqSQtSK5fFXWi87OUjfOtwG2g8GESRRztKiQ15nMKgM32IrzL4WwghhBA+kiC1cgZWBnEPvbmeXFbgohgH6WQyjh/4hiW8XOMYhcKClXFc0wIRCyGEEKc+SZBOE7F0pBfXBW3LYjQ27KzgHYo4FtieTg8m8GPak9ncYQohhBCtgiRIp7m+DKMPQzjMPv9K2qkkk9bSYQkhhBCntJMapD1nzhyUUvzqV78KW2blypWMGTOG1NRUYmJi6NevH0888URQmeeee46xY8eSnJxMcnIyEydOZO3atTXOdeDAAW666SZSU1OJjY1l8ODBrF+//mSq0CYoDDrSlW70l+RICCGEqIMGtyCtW7eOBQsWMHDgwIjlHA4H06ZNY+DAgTgcDlauXMmUKVNwOBz8/Oc/B2D58uVMnjyZ0aNHEx0dzdy5c5k0aRJbt24lM9PXDZSfn8+YMWMYP348H330EWlpaezatYukpKSGVkEIIYQQIiSldZiHeEVQUlLC0KFDmT9/PrNnz2bw4ME8+eSTdT7+mmuuweFw8NJLL4Xc7/V6SU5O5umnn+bmm28GYMaMGaxatYoVK1bUN9yAoqIiEhMTKSwsJCEhocHnEUIIEV4xZSxmFccoIgUHFzGGBOJbOizRirXE53eDutimTp3KpZdeysSJE+t97MaNG1m9ejXjxo0LW6asrAy3201KSkpg27vvvsvw4cO57rrrSEtLY8iQITz33HMRr+V0OikqKgp6CSGEaBoazQt8wC95hUXksIIC3iGXqbzG87wV5qmRQpya6p0gvfbaa2zYsIE5c+bU67hOnTpht9sZPnw4U6dO5Y477ghbdsaMGWRmZgYlYLt37+bZZ5+ld+/efPzxx9x1113cfffdvPjii2HPM2fOHBITEwOvzp071ytmIYQQdfcyS1jGYf/jjRSVi9Sa2uBTCnnNnN+i8QlRH/Uag7Rv3z7uuecelixZQnR09QegRrZixQpKSkpYs2YNM2bMoFevXkyePLlGublz5/Lqq6+yfPnyoGuYpsnw4cN55JFHABgyZAhbt27l2WefDXTDVTdz5kx+85vfBL4uKiqSJMmvjFK+YT1HyCOKKPqTRVe6oyKsui2EEOE4cbOUfYT8u1sp0JqVuoKr87sRlbgaw8ho9hiFqI96JUjr168nLy+PYcOGBbZ5vV6++OILnn76aZxOJxaLJeSx3bt3B2DAgAEcPnyYWbNm1UiQ5s2bxyOPPMKyZctqDP5OT0/njDPOCNrWv39/3nrrrbDx2u127HZ7farYJmzka95nIRozkBCtZTWd6MJPuJWYMKtvCyFEOCvZhCdSp4RSFFiSyTbt9MrPQqUcRqnwz4kUoqXVq4ttwoQJbN68mW+++SbwGj58ODfeeCPffPNN2OSoOq01TqczaNvjjz/OH/7wBxYvXszw4cNrHDNmzBi2bdsWtG379u107dq1PlVo83aynXd5ExMvGo3p/w/gAPt5jRdlnIAQot4KKKlTuRLlwObKx+16tIkjEuLk1KsFKT4+nqysrKBtDoeD1NTUwPaZM2dy4MCBwNigZ555hi5dutCvXz/Aty7SvHnzmD59euAcc+fO5YEHHuCVV16hW7duHDp0CIC4uDji4uIA+PWvf83o0aN55JFH+PGPf8zatWtZsGABCxYsaGDV26YVfIpChUyCNCY57GE/OXRGEk8hRN11oh2wq9Zy7b3HfL99yl8A+wNNHZYQDdboK2kfPHiQnJycwNemaTJz5kyys7OxWq307NmTRx99lClTpgTKzJ8/H5fLxbXXXht0rgcffJBZs2YBMGLECBYuXMjMmTN5+OGH6d69O08++SQ33nhjY1fhtFVOGTnsiVjG0IotPEt7rbCosVi5EKXq1jIohGi7RnAGMaymPDBAO5jSJp08B+jqyfEN3/bKrGJxamvQOkitVVtfB6mIQp4g8uxDQ3sZoLdyvv4CcKPoTqyxEIvq3zxBCiFarc/ZyAI2oLRGqxMjOJT2YsHkd8fm0de9Ew24Y/oRlfR9ywUrWpVWsw6SaJ3iiCOamIhlTAxSOQK4AdDkUGZOwtTHIh4nhBDjGMIvGEaGmRe0vZc7m/89Npe+7p2Ar33JiP1V8wcoRD3Iw2rbEAMLwxnJKj4PPRBba6x46Kd/qLLRi+Yobv0CdnVfs8UqhGidzmEwY1Qa+4+dTQnRpHjz6eA9EtivAXd0T2y2O1suSCHqQFqQ2phzGE8H0musd6S0iUJzxfYPSNhdhqqomkCZuPV/mzdQIUSrpYwMMpM+oZfhJa1qcqQUnrjx2JK2opR8/JxWTA8c/x6ObQWvs/byrYC0ILUxduzcxhRW8Tlf6zWUqTLQmh7H93DuntV0KTyABqIOmJQNtOJN9P0S0xS3bOBCiFbFsPTCSN6J6f0Oj/tDlLJjiboRm0qp/WDRemgTvvkzfPMnKPPNQMeeBAOmwfAHwBLVouGdDEmQ2qAo7IxnEucdOkD5jl9iMz3YTE9gv8L3Mx+7xUPxKBtYbFg4I/wJhRAiDMNyBoZFfn+clrSGT38GP/wbqg7bcBbA149A3tdw6XtgtM5UQ9o42zCV82diPa6g5CiwD8ADtjwT8GAzZLyAEEKIKg58Bj/8C0IuLmxCzmLY8VozB9V4JEFqq7xlULoF/Ktoh2Mp1Fi5CSsXNk9cQgghWoetC0BFaB1SBmx5tvniaWSts91LNIK6PZTWokZgM55DKXmIrRBCiCryvwddswciQJtQsKP54mlk0oLUVlliIH4EkX4EFGBJniqzTYQQQtQUnUKtf2zbE5sllKYgn3xtWZf7CN/FZoGoDpB2XXNGJIQQorXo/RNCjz/yUxboc1OzhdPYJEFqyzr8GLr+3vfvoH5kA6yJMGgxWKJbJDQhhBCnuD4/gYQeocchKQvYkyHrruaPq5FIgtTW9ZwNw76EDpPBkQUJZ0HPOXD2dogf3NLRCSGEOFXZHHD159BukO9rZTmRLCX0gKu/gNgOLRffSZJB2gISR/leQgghRH3EdYLr1sGhL2H/J76B2emjodME3yy2VkwSJHHyTBcUfwlmGcScAdFdWzoiIYQQzUUpX1KUPrqlI2lUkiCJhtMacv8M+x8Bz3H/RgVJF0LPZyG6W0tGJ4QQQjRY627/Ei1r70zYc1+V5AhAQ8FS2DQSnPtbLDQhhBDiZEiCJBqmYjccmBtmpxfcx2H/nGYNSQghhGgskiCJhsl7kcg/Ph7IewFMd3NFJIQQQjQaSZBEwzj3+QbmhaIBJ1BaDkeW+MYqCSGEEK2IJEiiYWztQy+gWgYcBo4DBcCKy+DjvpD3aXNGJ4QQQpwUSZBEw7S/Caj2kMJSoJCaiVPJTlhxIRz5onliE0IIIU6SJEiiYRxZ0P5mAg8qNIHicIW1b/GwTfc1T2xCCCHESZIESTRcr3+g06ehlcU35ijiUCMT8tdB8fZmCk4IIYRoOEmQRINpw8qWHpl8OmIkuSntI+dHlSoONnVYQgghxEmTlbRPUhlOVvMD37EPE00v0hlLfxJxNNo1TNxo3BjEoAgzc6wFFPI9B1gMtiiOtGtHxu4jtR8Und70gQkhhBAnSRKkk7CLQzzJe5TjCmzbyj7eZx1TuJAh9Dip8xfyDTn8m3y+BDRRpJHJj8nkegyiTjL6k7efD1FY0HjJy2iHx2rB6vGGKW1A8nCI79OsMQohhBANIV1sDVRMOU/wHhUEL4So0XgweZaPOcCxBp8/jyV8yy/I5ysqB/e4yCObZ9jMPZhVkrKWUs5BNL6EyGu1sG1A6IRQY+BNNig/uxOl3sspN2/Ho5eitdmc4QohhBB1JglSA63ke5y40GFH3mg+YVODzu2mkG08jG9qWPUWGU0hG9nPqw06d2OKIomqP0L7emayeVhfnHZbYJsGKs5KovQ8A7d9MV6W4NavUWZeRpl5EVqXNHvcQgjRbFxlUHQIPC3/R62oH+lia6Bv2RNxULKJ5lv2NOjch/kQXX2NoSCaXP5LZ25u0TFJ6UzgIMELQB7onk5u1w6kHCkgyuWlY3I7YmLW+PdW1snf6sRKys27iLX8p/mCFkKI5pC7CZY+DFsW+pY5scXA8FvhggcgQcZitgbSgtRAnhotOz6J5QUMyt3EgINbsLnCLgwUUSk7qO2tcXEUL6UNOv/J0mhyeZPdPIqBl+rz+7VhcLxDO4516kZMzNYa+0/w4uFNTL23qUMWQojmk70S/joSti7yJUcA7nL4agE8ORwK9rdoeKJupAWpgZJJJZu8QPuNw1nCTRteZ9iBbzD8CYHHsEH37TBwHlii63xuAzuKWpYVAgxstZRoGrv4E7m8AUAHdyHpFXmkuAsByLcmsie6M86oYQziUjRLazmbxqOXEqXuiFxs/wbY+CqUH4eUHjDiVkjMPPnK1FXeetj8NOR+DsoKXS+GAVMhqekGnftGsxViEIfC3mTXEUI0ItMLL98IXteJ5KjqvpI8eOdXcMubLRKeqDtJkBqgFC+LsNHF/7XdXcH9y5+kQ0leIDkCsJpuzF3PsrtkC95z3qOviq/T+VM5l4O8HaGEQRLDMRr4oenVJRTrjSiiiFfDMFTdfwyK2BxIjjLLD9KjfB+awHrapHjyaVeSDzHX4Y1OoQxAayxHNdb9JsoL3iSFu6sBNoVygtLZEF0IlsSaF3SXw39+4vtLzPDHqTV8/H9w8R/h/Bl1C9w0Yd9aKD7sS6w6DQv/sN3qNj0FK+72JUba3024ORu2zIcL34AeV9XtPHXk5TCF/IVSXkVTBliJ5QoS+TU2ZBagEKe0HcugICf8ftPj63YrOgQJHZsvLlFvkiA1wIcc5Sg2oAtdyeHc7FV0LD4clBxVMjDpdfhzph36B33Sf8R0Otc6biiZkTjoRSnZ1BykDWDShVvqHbdHF/KNdwbfWY7jNHzJlcOsYIDZnzONBzFU7T2uB1kIWIjzFNKjfB9AUG0CZyh/AGX9AOU2iFnhxHpEo/0FbRqiN3gxu1Q2rD0C6nFIvgEyH4WojBMnfONO+O5df7Wrjcv6cCbEd/S1JkWy9V1459dwfPeJbWn94KqnoM9EKN8Fh/8OxV+DYYeUS32PUbEmwMHVvuQITiRHlf/WCj7+Mdy4AxK61vati8jNQZzswKSEImZgcpQT772HMt6hnI9I423sDD2pawkhmtChraAsoMMteYKvZenIdkmQTnEyBqkB1lCAAo7Snm30YUz2ian4oXiUwZV73uMFcnmP2hdTVBhk8RccdPdvseB7qxQKK334P5IYXq+YvbqUJebtbLSU4FQnWp5KlZ01lmxWmb+IMCPvhDJ/0pZekUfkSfpWVPk/iF1uYDnqO6/S/hegvGBkg6+JCdBuOP4q/HAWuHJ9245lw4ZXajZTV7X0YV/rUDib34YXrvIlR1X/HDiyHZ67CNb8Gjb0gQN/hqLPoOBj2H03rO8Jpd/Cpr/4Wo5C8j9j7rsFEb8Tkbg5yF5+znbOZS+3s4+7KaQUJ5Zq74YXjZNj/LJO75MQooVEOSL/zqpkb7zFhEXTkBakBvBU+YgqIZ6k8sKImaZVm3QsO4wCXiCXy2lfayuSnXYM5SXy+ZKjfI6JEwc96cBlRJFS75h3eh/jgDXEDenvZvrBUk4vczHpxsURz2MhDlAkeErC11mD9npQBxdiHA9/LgVwDIit3OIB92HIfQC6Pe9rOVLK16UWzvFsOPwdpGfV3Of1wJK7YKyGPoANcAE/AN+YUK5g8ZMwkSrNYP5refJhywWw3wxuOapRVy/s/wT4Y/gyYXg4ym59HR7yfJljgMKFHY0iGmeV7SYesnGymmjGhD3vUVx8yFEO4SIZKxfRjs7UPgZO48XDMRQ2rCTXuz5CCOCMy+DtX0b+vZXYCTIGN1tIomEkQWqAgcSzkoJAC8qx6GQcJaVhUx6vMjgS0w4N7KGCPFx0qMP4IYVBCmNICfNh6MXD96xiM59SyGGsRNGLEQxmEkl0CCr7vdqM0g50mG40pU2+02+STuQEqT0XUMBadLjxOxpw+1uKjkCto81L8C33FAjLA8dfhs5/8a0fooza/xpzl4XevvMFuOiILzGqPH8UkAX0BBZpKAYKoGY+4AXPEbSOr8NCCg1bauFo6W/wxB4MOxbKTRRRuKp13Src/BAyQdJo/kku8/F1fRooTDTPsp8fkcb9dMcaIlYTF3n8kyO8jMe/uGkM/ejAnSTX8vMghKgmMRPO+hmsfT78764L/g8MS/PGJepNutga4CraY6nSBvROt8vRET4kLdrkvW6XBr72NkIXiRc37/NXPucljpOLFw9OyviOFbzOLHLZHlS+0IgKmxwBaGVQoMIkGlWkMYloMjlmSwnUoqwihvnv/YLhU78m/YaDDLtnPfM/+CWl5bG1T8WDmmW0E9y50DGr5rijSgpfz6NVQUF26G42/cfg5KiSAcQAY/1fl4cLS6FjSiPXQdOg58vpQy+Rb19Zy0BxjbvGTEWNIiZk6TfJ42n2YeLLOT1oTH+Ib5HHX6m5nILGzW5+yUGeCiRHAC7nVg6U3s0hc349ayaE4OqnYPD1vn8bVt9LWXx/8F00G0bd2bLxiTo5qQRpzpw5KKX41a9+FbbMypUrGTNmDKmpqcTExNCvXz+eeOKJoDLPPfccY8eOJTk5meTkZCZOnMjatWtP6rpNKZUo5tAbA99n9Bs9riY3Nh2PqvkXgVcZrG83mBUdRwOQgpW0RpiyvYHF7Od7/1cnPsE1Jl48fMR8vFUeg2KLNGAQQGvs1P4XjYVoBjKfQvsITBRHi1IYdc8apj/9NBt3DeFwQUe+yR7M9L8/xchnv+JYeS3dgZXDq2psT4B+F/sWVKue2NnwtQRZ/K/Xb4A/94JDJ1Yu1+Wfo+P2opNAJ4KOA22r8p0ygC5APIR/OzR4zfD5UeWOggOR61id6cbcfR+mtfbbz6zxzbEQw8Qa5Txo/k74tVU08CqHKcBNBV4+YD+/Yz13s5j/0I482gEQn1tC78V7GPjGdrIW7qTdm9PxbLwL3A1b00uINslqhxtfgXs3wXn3wYjb4KKH4X9zYOLvWzo6UUcN7mJbt24dCxYsYODAgRHLORwOpk2bxsCBA3E4HKxcuZIpU6bgcDj4+c9/DsDy5cuZPHkyo0ePJjo6mrlz5zJp0iS2bt1KZmbwWjd1vW5Tm0AKrzCAVzjE8igrU8c/xyPr/sCZeWsCZbzKYHHnC/jj0P/Ba/g6N66nY8hujvow8bKZTwnXtKHRVFDCLjbQh5EA9NDJbNHlEVuReuhhdbp+NB0ZYHmbkvi/c9cf2vN9zhlojEA4Wvuu8cPhvtz5yXO8fdmPwp8smWo9VAbEjQGbf3bHT16Bf1zka0kyvb7kqLK88tUW8E2r/cd5MH0zOs4F5VcTaGhRvtMSBbhAl1S5ZDpEGtKlnKBc/mMD1zxxWZzAsR3hTxBK/icYFXkorwNtiZwkqWrda3A5H7GUfI4Sg4MzGEpfBrKFco5Vey5gZaBRuFBonNh5l0O8z06O4PT3ftowGMvnjON3Ox9jyJrvg65odZno7xZA7lcwaQXY4upXVyHasvQBkD6npaMQDdSgBKmkpIQbb7yR5557jtmzZ0csO2TIEIYMGRL4ulu3brz99tusWLEikCC9/PLLQcc899xzvPnmm3zyySfcfPPNDbpuc+iDg1n09H0RA5x7CT8Ub+C/x9/FqRTr2g/lSEz7wGfqKBK5jYxwp6uzUgooJ/Jf9AYW8sgOJEhZairbeBS3ttZIkpQ2cWg3vYyf1zkGhaLw+F0sXKXROnTC5zVtLNp9FTlFnemSsC9onwZUNJAafFYA0med2NTrPJi+Bpb9Eb57C4ww7TnaCxVF6DVPw6gPgcLgxKvy3zYgGqjwf92FkEOItP8YHQPkgzLx3S2VjWxewO0vGBNb8wSROA+igMTDJRR0jAcjXMKssFF5YQ8FDGYxdmADJiYKxU62kkYG3bmpRg06s4/e7CDB/7NSQiyvM8KfGp3I8UwsJFYUMP6rlUFrWgWi0BoKNsN3c2HQw/WrqxBCtFIN6mKbOnUql156KRMn1mzqr83GjRtZvXo148aNC1umrKwMt9tNSkrwn/b1va7T6aSoqCjo1dT6xQ/l9q4zSOxyC56YdKIx6EMsD9CDv9AXWyMM+zLq0BWm0UHl4ozBXGLeTKz2PTBRaRPlH0CYpD1cqh4mStVv2umaLYRNjgJxaIM19lFQZQ3Icls0uzO7o7viG6io/ONsLAnQ47+QcH7wSTIHwy1vQN+JNbvbgi7mhW/+Cd5NEG4RAgVE+5MDHQO9bvPvOPG9qkwcPN3A29v/hYlvBly5/+XyFdTKgH7XR/oW1GT3Jcnt9+ZjmGbo2S5aE+NNJ4EfEc8UDvMIH9IfEwumv26VcymPcIhtfBB0+Bl8xzA2EF8lkS7DQRkq5MpaF+5ehqHN8G2b2gvb5/ta8YQQog2odwvSa6+9xoYNG1i3bl29juvUqRNHjhzB4/Ewa9Ys7rgj/KMlZsyYQWZmZlAi1JDrzpkzh4ceeqhecTaGTkTzP3Tjf+jWJOePJZFk0snnEOG72Uy6EDz1vb3lEq7XF5Dj/SeH2YzCSic1ngzjigY99LauC1GrBA3DweNW7FHduD3jWVyWGN5yppCZ/xF4iyC6DyRfC0boAcgAOAtrn9HmLMSX7ET4IK8cPJY4E5L/F5IuhoNPQcl6UFGYCaV409zoWHxLEHwNuqzaTHx860RqqwU1dFpdvg0nJE8AWweiyg/TfUMu+8/ogDMuypcoKQWmJjlP0bHDUgyi8eJlNQ+GPZ3GpICtDGU431JBPPn0wdftV/UtOk4K1aYMBnQt3IepDIxIY9Wcx8BdAPbU8GWEEOI0Ua8Ead++fdxzzz0sWbKE6Oi6P1sMYMWKFZSUlLBmzRpmzJhBr169mDx5co1yc+fO5dVXX2X58uWBazT0ujNnzuQ3v/lN4OuioiI6d+5cr7hPRQrFMC5lGf8Is98glUwy6Vdjn0XZ6G6ZEliC8mScMwisFvBE+Ey1GB7GnLkSgK/izuLhxN/jtMQwje5k2jv7ZqrVVfv+kLshwsw2A1JSgcO1n8vxY0j+vS8haXed7+VnOm9He18CPBAF7qvA+h6oIgKrgSsNHruVvGt+SWZSPb+bhhX6/AW23oC9xEXPtfsoT7BTEWdHmZq4Y+XY+r/j74OEI+RSXsuDiRWKqylkFw56kI2JqrGye6SZluXWCIlplatgqUs5IYRo/ZTWkVazCrZo0SKuvvpqLJYT3RFerxelFIZh4HQ6g/aFM3v2bF566SW2bdsWtH3evHnMnj2bZcuWMXz4iZWiG+u6RUVFJCYmUlhYSEJCQl2qfEpbyzus4z3/R6FvTIpGk0QHruRe4hqwoGR93fIgvLwYvCEadiyGZtL5m7jy9y/ySfRg9lq7kkU8N9OZcf5ZU/WydxUsOCdiEX35dOjzVC0nSoTkPJSKCrnXNLfgrhiKxnNikLQJxh5Q+8DUBtldupDXrx3DrG8Q24CWQpMCCvNGE79jG1bniW+eJ9pCfp9UEtp9FHikSC57eZEnI55PoRjHpXRhDAt4GsXRGmX2k8lOehFq0NWgw5t4cun9ES5ggfQL4fwPwpcRQogm0hKf3/VqQZowYQKbN28O2nbbbbfRr18/7r///jolKQBaa5xOZ9C2xx9/nNmzZ/Pxxx8HJUeNed3TzVlcSU+G8x1fcJxcbETTi+H0ZCiWGuvnNI1n7oddB2DVt2AxfIlS5f/POlPx+v8OIs4xj5/gxYIitg7jp8LqMhrOmgJr/x5yt04H3WEJyhgA5vdAqJYmBTG/CZscARhGFlb7O3ic16H9LTfaAHpARc8ofrD3w2lE05mbG5QcARQwm5K0Aorbp2IvcGNxmXjtBs5EGygDF3eQwToUFtrRESs2PCFnqfnrjiaDrmQQTXcS2RMiQerIIXbTw790QHCS9G3aADa3P4Mzj/6AUaMb07+aedbvGlRXIYRojeqVIMXHx5OVFdwl4nA4SE1NDWyfOXMmBw4c4MUXXwTgmWeeoUuXLvTr5+vuWblyJfPmzWP69OmBc8ydO5cHHniAV155hW7dunHo0CEA4uLiiIuLq9N126pUMhlLza7K5hIXC5/9DRZ+Bv98F/Ydhk5pcPsVcM35YLMCKOIbY9F2peD8C0D9HTZz4jluUUA/UINBe7fznb6LM1QB6P2cGKPlH5dkuwqia/+gt1guxojJxe15jmLzZcrIpcAST4ElCZvqSC9uJZ1rGlQNk2JK+K8vHqVwJldP1ky8HKCC5cQwgSjsDGIUG1gZ8jlsvhXX29PZP6PyTAawh101ylnxciZb2eIfm1bZ5aYArRQfnjefrM//D/K+8D9/Tvkes2KJgTEvQlr4x5sIIcTpptEfNXLw4EFycnICX5umycyZM8nOzsZqtdKzZ08effRRpkyZEigzf/58XC4X1157bdC5HnzwQWbNmtXYIYpGZrPCjy/wvZpc8b/gDAv08/oeE6LxLfZYpWHKUfw+/+n0Cje51oPzP6CPg6Uv2KeA7XJUpJlwVSiVQJTtXlK5l0RKSCIHgyhi6Y46iZYwN7sAZy2lLLjYTAwTABjHpRwkh9xqq2ErFNHEcDW3BQbaD2QIK/iMYor9a2mf0I58RrGJWC7gK/JxYdKdOK6hKxPtGagLlsPRr2D/IvCUQVIWdJsMtvgG11cIIVqjeo1Bau1OtzFIbVHx/pGsiYllq6M/HmWlW0UOowvXkOE6MTC7yIjjph7/ZAEX05FTb2FDF99xiPG1lDJI4v9I4BeBLR7cfMtXfMNqCjhGNLFkMZxhnENc1XUUgOMc5WVe4DjHMPyz1kxMYnEwmVvoRJfGrpYQQjSZU34MkhAtaTf7WZBxOS5l+LqHlOJgVAdWJYzk6qPvc27hakwg35qMgeIz9jKZM1s67Bps9MVCOl4ORihl1nikiBUbwziHYUQeqA6QQjumci872cZudmJi0pmu9CcLq9z2QghRK/lNKVqFMip4jv/iUlaqrk1p+p9/t7D95WS4DtKjfA9LEiaggGPhnkLbwhQWEriHfGaEKWEhhgnY6B1mf90YGPShP33of1LnEUKItkgSJNEqrGMzFbhCPhYEwNBePk0cS7THybKE8WhMEgPPEzn1xHErXvZTxNP4BlBVLuDoxc4IUnmmZQMUQog2ThIk0SpsrzY4uTpTWdju6MOK6LGU+1fjPpOfk89EkvgTChu4v4Wyv4F7I6g4iL4aYn4KRvOPR1MokngAB9dTwit42ItBIg6uxs5YVCM8kkYIIUTDSYIkWoXqs7FCcSsLhdZEQHMuX9CBPMp4FYgiuTgJSh6g8sGvoMD1KZTMhtTPwFpz1fHmYKMPycxqkWsLIYQITxIk0Sp0pxM/kB1yHSDwzfavIBobLibwCZfxHmXEUE4MR/V7lFJAB2XBpj1VjgDMI3DsQkjbeeKhuUIIIdo8SZBEqzCKQSxhFZ4wD6FVwCi+YiwrsOLhMB3xYvWtAA3sj4vhQFxHeh3fS6qzsMpYJi+YOVCxCGKuC3luIYQQbY8MdBCtQjwObuEqLBgYVUZqV/57JGuYxFKiqeAI7fFq/0KOSgVeGsWOlG6UWGIIboiygnNp81VGCCHEKU8SJNFqZNGb3/IzRjOEJOKJI5Z+dOY63mAsKwEoI9bXcqRCTHfzbzsYl0bNnrpQz20TQgjRVkkXm2hVOpDKj5jEj5gU2HaMJVSwH/BSToyvWy1UggSgFMdjE+E4vm42BeCBqLObPnghhBCthrQgiVYvkT9gkAJYAg9gjUSjqjQgGaASIfonTRihEEKI1kYSJNHqWelMe5YRo39ElA49iDtAa2LcFf40ygDskLwIDEeTxymEEKL1kC420epp7carX8Km3yON4xQZvSN2s6WXHAEsEPsLiLsHrL1CnxeNi9W4WAso7JyDjWGoOrRSCSGEaN0kQRINpnUFmhIUSSjVMj9KWnsoM6/Dy8eASRSQbuZy0MgITpL80/2TywtpX3ockp+HuNvDntfDbo5xCx6+x/coEAAvNgaTwr+xktmU1RJCCNHCJEESFFPBUr5nBTspwUl74jifvpxLb6JC/Ih49Vac5hw8LMQ3+yuOKHULUep+DNWhWWN369fw8lHQtmQKsbtd5JupFNrjQSmiPU46Fh+nQ2keKu5ucNwW9pwm+RzhckyO+rf4uu004GYzR7mSNJZjENdEtRJCCNHSlNY69NLEp6GioiISExMpLCwkIaH5n7/VlLx4OM5hAFLogMWf2HjQlOAlFoOoEEPODlPEw3xAIRU1VqnuSXt+x0VEc2KFaY9eQ5l5Ib7EqOrUeAuKdBzGFxiq+VpXSrznYLIeQj2KxNTYysBanoRNtwPbIIi7C6LHRTxnMX+hiD8CJl4M8kmmkES8WDHwkkghXbmbZH7ZJHUSQggRrCU+v6UFqZXz4mUti9nIciooAyCaWPpxLmsZyFsUUIqJBZhEEnfRkd74Huaq0fyVzygKkRwBZHOUV1nHbYz2ldcm5eZPARc1ExIvmoNUmL8l1vJK01W4GpPtIWLxMxTuODAdPbCouYAVZQytdQRRGf8FTDxYyKELHqxULr1tYiGfZIp4mRFcQQydGq8yQgghThkyi60V05i8zz/4kg8DyRFABWVsZDG5vE6pv3vICyyhgB+zjQ2UALCLI+zhGGaY55uZaD5nB2W4/Of4BE0OYRMSvHhYhKkPN1YVa6WIMPtMa6xuDxbXWtzOcbidY3CVp+NxP4yOMNvNpACAPE8aHn0iOap6VS+a73j4pOMXQghxapIEqRXbySZ2sSnkPgV0Yy9d2RvY5gXcaH7LHrxodnCk1tYUN172cdx3vN5K7T8yXkx21LUKJ82mrufEIOoqtMbmdmOYZtCqR1CA1z0Lj+t2wvUuRx9NIn51OSWWuPALTgJFbKGEnSdXASGEEKckSZBasU2sjDjl3ETRjx+qbYODuFlNcdAzzSIx/D8milhCPKOjBl+5plVGDtk8w27lYr/qQinxQZFZvCZK12z78dGY3hfR5pc1d+V9StLnX+HU9ojJUaXiat/fcLR2orU8zkQIIVoLSZBasXzyQo4dqmSgSaSwxnYLsINysshAA1bTTZKrALvXWaNsLFF0JQUAq7qk1pWqFRkYDKpXPepDo9nN03zNdezjZY6qLzmmktlh6cluo7t/or8Vw1vLgpFY8Xqer3ZyDet/DlpjmOG6EYMZRIWPVXvxuv+Gq7w/rvJoXOVRuCouxPR+UqdzA5ha877LzTXFZQwqKGFCUSnPV7goa4G5FabWHNNeinXdvjdCCNGaySDtViyaWIo4Fna/BpzYa2w3gRgMMl3l3LtvIWfmLcFuujBRfJ0yhIVdriDH0RkFXMgZgan+W5STowxhKBswwiRmdjUTpUJ0eTWSXP7Lfl7yf+Wffu/P2YpJ4oDRm556IIrHAXeEM3lw6nfJ5yZiuQQ7V+E89jUxZdlYMEk8Wozh8WJaw9dFYSGZ4SH3ae3F47oB0/tW1a1o8xPcziVYbX/DYpsSsa5urZlcUs57bg8Wf20NE1Z6vDxR4WJpQizpRtP/jePSmr9TwnO6hFz/+LPh2savVDwXqZgmv74QQrQEaUFqxfozgnCdSJV20TPk9vHOIvh2OEMOfYTd9A3CNtAMO/4ND337R/oWbucsunE1gwFfy80iVvCOcSVbOBMALwZeDEwUJopP1QW41U8brX7VaTzk8K/wBZTmmDoCxnSgXS3nAq8qJpf1/IX1XM5SLm9XxiVXLeTxoXeTF51Gp50HAwtMhrgYHbmUKH/rWnWm99+Y3jf9V6p6Dl9S53H/Em3uDXVowOxyJ++7PVWOOjE8frdpclNJecTjG4Nba27Sx3hYFwWSI4ANuLlJH+dvuqTJYxBCiJYgCVIrdiZnE0ciKsTbaKIoxcF2+gRtN4ArSKHj7t+CKw9FcFeUBROr9jBj+0tM1+di8Z87l6Mc5jgeZeNVy4381ZjOKjWGjWoIn6gJzDX+h6XG+WxWu5usviVsx+0fMB7JcVZhsd5CyMHbfgo4bEnjQR7kU84PtLS5LFF83O0Cpkx4CvYZdMjxLRap/F1ulf9P5Wx68+uw5/e6nyLy7aXwep4Lu7dca+Y7XSHb6ey6gizvtxQ5N7LJXRaiRON5iVI+w1kjjspU6QFdyB4ZWyWEOA1JgtSKRRPL9fyaVNIBUBiBZMlCez7gMjzYsXAiVTifRGa5bHD8HYIXejzBQBPlykUVLAtsK6UiqMxBlcFHxiW8ZVzLp8YEClUSClWjXGPyUnOMVE0KExcW291ACqGSJA24DCtPWaZRQrx/lagq1zGslFljeHTkffTL3cmo79bTLXc/KYfy6bivhCHmXxnA41hCdF8GrqG3EH45BF9tTHNj6GPRrPV+S1G1rMSmXTzseoh9Zb1ZW3Eu6yrG0udwJyh8CJooSfmHLo243wBeqqWM6V2Kq+IKnGUdcJZ3xu2ajmlub8QohRCi8ckYpFYukXb8lJkcYBcH/FPOM+lFJj25HjeLOMZ+XCRh5TKSOYNYKP+CyB/eAAaUfQfJFwGQQu0rl2o0qXUo11CxdENhQRNpALaJg94olY4teiUe54/R+lt8aZ+JApxGFLvsPdiiBoY/i2FhZ0IvdvTqRR/PTrpxwNeKEjUQ6BT5gbWFX4DFU8ufHwYqxPgdN4fI4U5ysQL/Dmy3aA9vVkzmAvNTLFXeu2idD0UPgXszpP4XVOP9zaO1ZgeeiPMWvcAPYcZ6aa3xuu/H63kcKkdRaTA9f8P0LMBqX4jFckmjxSuEEI1JEqTTgELRiV50Ivip9BlE8Ut/61IQS4TFFQN0ULl2JNKbTuziQNiFJR1Ek0WP+oReL1Ek044JHOETCJkkGUSTThJDfV8ZfbBFb0SbX+E1P6eA2bgsUXgNKzl0rdM1d9u609fjX+tIA2oTFI5EJ65HGSHGOTn3wXcXY3QGM5kIQ8RMDMsV1ba42MPNuNhLb4uNJI4z1L6Rs6LWMrTiGy4qWxbmXBpd/hb5rvkU2xMxsJHCKBx0CypVzBGy+Ro3FSTSkW4MwxphFp5SimitKI84U9I34D9kDb2L/MkRBL9fHkDhcV6LEZODUpHHiwkhREuQBKktcgyGqE7g2h+hkILky4O2XMt4/sSrePAGJUkKX+5wAxOxRhj30xh68iuK2UoFB6naCqawoIiiP38MGpOllEJZRqEsI3HxBl72gzZJLi+kLss12bVvALsGvo0awBfR51BgTaC9fpoJ9KYHF2OtOlD70LNgOrHk+RMkTc0kSSswOmFYfhy0uZiPceEbw2VRBo8n/Q/RqgKN4uzydZiEbpQqtsWyNbUv5bZXqpT4K6mMpj8PYhDNSv7FdlagUCgMTLxEEcs47qQbw8LW/zKiWUh5mM5Y3ztwqYoOuc/reYJAy1ENvjmWXs8/sdr+J+z1hRCipcgYpLZIWaDzgxEKGNDhZ2DPCNraifbcx2R6VXv+WEdS+QVXMbTagPCmEEUqQ3iBztyE1d+dp7CRxiUM5UXi6R/yOIUinp8DkFhSysjCDcSakcfOWLWb4c71lKhYfp3yGL9Oncu7sZfwedRY3jDO4i6dzN+YQR5Pn1iP6thCwItRDtZsTkxiqzqZzWPFZv8EVS2xKGQx+BdQyKELMaocpcBQmjh3acibtdxiZ2PamZRbK8dDmVQmjsdYwybu4wueZzsrAV83qOlPWFyUsYy/cjDCYpdTVTyK0A1hFqAHFi4l9FR/ba4hdHJUycT0roqwXwghWo60ILVVHX4G7jzIeQBQvrErWgMeaHc99Hg65GGZtOceruMYRRyniDhi6EhK5DE5jcxGIt2ZSjd+iUkFBvaQM/mqi+d2XOZnJJS8hgJuKH2Tf8bdHHLFbKVNrip9jwRdwm+TZ7M5yr+0gQq+Zd7iGpL4BxcRTTvuAPPEIHVLIRhbwJsKOhYwwSgCo6IraljvGtc0KQVMSojDhT0oK3FZbMSYFTW+y/vi0/EqS8g6GNqN6f2SMnaiLOnoMOOT1vM2l/G7kPuylI2XSOVn+jil6MAvDA/QCyuvq1Siwq44XtvPhEI14pgpIYRoTJIgtVVKQeffQdqtcOTfULEHbKnQ7ifgyKr18FQSmnRAdl0oFJYwrRehy1tJrRgPvAbAjSWvk28ksdBxJRbtCfSGeZWVieWfMqX4n+y09uDr6PBdUAqTj7iYoTxFCjdhxI0A534qZwgqL1jzqh5ghdSzQp7LTi9K+ZJSHFTvm8uJ7cSAwu9rHHPY0b5GcmRoL93K95FRcRirvzWpXNnZHH0Gm6PPCEqUNJqD/EA5RcSEeT8nqmi20JG3KOdb7SIKxQUqmvOxY0R4HIsyzkebS4nUimQYE8LuE0KIliQJUltnz4BOM1s6imajzHwqx8UYaO4u+htXlb7Px7ETOWK0I9ks4ILyT+jlyQZgVfQoLNrra6UJQWOQSybHsVLKKuLTp8KxN8IHoD2QPjXkrmR+zPEwC2HujutCr5Jsor3OwCrmGvBUi0tpkwHFP5DkKQpqv4nRTkaUbyTJW8gXjtE1kioXZWETJIB4ZXArDlB1GeDvY7Xdi9u5OMxeA0jAsN5c5/MJIURzkvZt0bZYulG9RaOLdz93Fv+L3xXO4xfF/6CXJzswXKhCRaNqXRIBXEThpRgSx1VJOKveXv5EpvP/QcLokOeIpg/tuZsYyqnePeU2olieNpoiWxyAf8ECi+/5eVVW++7gOlojOaqkgD6u3aR7DgdtN7ASS1KtdawvwzIRi+3P/q+q/i1mAHHY7B+iVMu2QgohRDjSgiTalugrQSWBLghTwAK2cWA7A132LD3c2XiULeIpo3CSTD5RlUsHdH0E4obDgT9D8WrftvizIfNeSL0q4rnSuBsrnTjMC5WddIF9pVYHSzuMI9WVzwBnN9qTRSZedvMhlSPAMyoORTy/iaKvcwcHbR39ZzfoxdnYCD0T7WRZbb/GsEzA63kW7V0DKhrDcgUW689QKq1JrimEEI1BEiTRtqhoSJwPBTf6N1Rd48cCKgYS/4qynQnxczjX/Rl/1W5KsYQc5GzgZTRfEkcXYvzPrQMg9RrfS/tbq+rxAN8UruFczuQLHsCLCx1owTJAmUTbLyHVfj9gIZMyDvMDpWQDZsiB3MHxahK9Rb6QMIghgeFcW+fYGsIwBmJEPduk1xBCiMYmXWyi7YmZDMnvgLXakgBR4yH1S7D5ZqxhxGG3X84DahSGMjCqdc0pTDpwmMtYQiZzQs/kU5Z6JUeVUunLhTxDH64khnbYcJBKX0ZyL2dzP4a/y85KLEOYTwZXYBCFR0X+m8cEnMqOwkIPRnIVs3CQXO/4hBDidHdSCdKcOXNQSvGrX/0qbJmVK1cyZswYUlNTiYmJoV+/fjzxxBNBZZ577jnGjh1LcnIyycnJTJw4kbVr19a41ogRI4iPjyctLY2rrrqKbdu2nUz4oi2LvhzabfG9Ur+AtL2QuhRsNWfwnUV7nuFsziYO5W9xclDChXzMA6ziDF4k1r96d0TahIpPofgvUPIceA5ELB5LewZyG5fxT67iVc7nMbowDlVtMU4b8fTlfxjD+xhRt6Ej3NYGkGi/l5t4ivP5BY6qi1wKIYQIaHAX27p161iwYAEDB4Z/nhWAw+Fg2rRpDBw4EIfDwcqVK5kyZQoOh4Of/9y3cN/y5cuZPHkyo0ePJjo6mrlz5zJp0iS2bt1KZmYmAJ9//jlTp05lxIgReDwefv/73zNp0iS+++47HI66z6wRIkCpE61FtehLIrMZhxuTMvKwcRwb47DRvm7Xcq6DY5PBuwtfmuJfFzv2Vkh5xtf1d5KsxGGJngXOt0Afp+b0eisYvYiPmopqojFHQghxulBaa117sWAlJSUMHTqU+fPnM3v2bAYPHsyTTz5Z5+OvueYaHA4HL730Usj9Xq+X5ORknn76aW6+OfQ04CNHjpCWlsbnn3/OueeeW6frFhUVkZiYSGFhIQkJMntGNBP3D3B4GGgnNZMWA2KuhnZvNtrltPcHKL4GzO/x/Q2kfde1ngNxb6CMjo12LSGEaA4t8fndoC62qVOncumllzJx4sR6H7tx40ZWr17NuHHjwpYpKyvD7XaTkhK++b+wsBAgYhkhTglFfwTtIvSCiSaUvwWu9Y12OWXpB4lbIf4ziHkIYv4ICV+jElZIciSEEHVU7y621157jQ0bNrBu3bp6HdepUyeOHDmCx+Nh1qxZ3HHHHWHLzpgxg8zMzLAJmNaa3/zmN5xzzjlkZYVf9dnpdOJ0OgNfFxUV1StmIRqqiDy+5zPy9HYMx2E6G73pU7aLaNMVorQVSl+BqPArdteXUgps5/leQggh6q1eCdK+ffu45557WLJkCdHR9RvDsGLFCkpKSlizZg0zZsygV69eTJ48uUa5uXPn8uqrr7J8+fKw15g2bRqbNm1i5cqVEa85Z84cHnrooXrFKcTJ2sYXrOB5QKGVCfYO5No7sDFxIBcf+YQ019FqR2gwj7REqEIIIcKo1xikRYsWcfXVV2OxnJhF4/V6UUphGAZOpzNoXzizZ8/mpZdeqjELbd68ecyePZtly5YxfPjwkMdOnz6dRYsW8cUXX9C9e/eI1wnVgtS5c2cZgySazGF28i5/IHh9JR+lTWzaww25b2PX7ip7LJDwO0h8uNniFEKI1qQlxiDVqwVpwoQJbN68OWjbbbfdRr9+/bj//vvrlByBr4usauIC8PjjjzN79mw+/vjjkMmR1prp06ezcOFCli9fXmtyBGC327Hb7XWKSYjGsJnFKBQ6RIKklYELGzscPckq+aHKHhMctzZbjEIIIWpXrwQpPj6+xpgfh8NBampqYPvMmTM5cOAAL774IgDPPPMMXbp0oV+/foBvXaR58+Yxffr0wDnmzp3LAw88wCuvvEK3bt04dMj3uIS4uDji4nzPnpo6dSqvvPIK77zzDvHx8YEyiYmJxMTU/YnuQjSl/WyqsvJ1aPuiM4ITpPiZYO3RxJEJIYSoj0Z/1MjBgwfJyckJfG2aJjNnziQ7Oxur1UrPnj159NFHmTJlSqDM/PnzcblcXHtt8CMPHnzwQWbNmgXAs8/6HlVw3nnnBZV54YUXuPXWWxu7GkI0SG3JkakMci3prIkdTprXpHvMrai4ac0UnRBCiLpq0DpIrZWsgySa2gfM4SDbaiRKGjhERw7oTLxVHgeSTjK3cj49ken3QggRTqtZB0kIEdqZTArZipRLBjl0DUqOAA5RwOMsYi8yi00IIU4lkiAJ0Yi6MpQBXASA8t9ebqwcIDNkeY3GxOQtvgx/UlcJbHgGXjwL/tYNXjsfvn8NTE9jhy+EEMKv0ccgCdGWKRQjmUw6/dnKEvLYzTHaR3yArInmO/ZRSCmJVHuuYHEuvDoOCnb5N2go3gc5n8Gm5+FH74FVnqsmhBCNTRIkIRqZQtGVIXRlCACL+IpsNuCtZQB3EeU1E6T3JkPhHoLWVdL+8+R8Cl/8Ds7/c+MFL4QQApAuNiGaXCKxmLUkRwAJVFuuIm8T7P8CdJiuNG3CN38HZ3EjRCmEEKIqSZCEaGIj6I0R4VYzUGTRpWbr0f4vABX55J4yOPLtyQcphBAiiCRIQjSxOKK5krNC7lMoLBhcw6hmjkoIIUQkMgZJiGZwMUOxY+Md1lLGicfsZJLCzYynC+1rHtR5HKGe6RbEGgtpgxs1ViGEEJIgCdEsFIoJDORczmQbByjHSRpJdKEdKlw3WvsB0GkcHFgVehySMmDwXRAV17TBCyFEGyRdbEI0IxsWsujCCHrTlfbhk6NKV7wKSd3xjUXyl1X+h0J3OR/O/WNThiuEEG2WtCAJcSqLS4dbNsDWl2DLv6HsCCT1gEF3Qp9rwJBbWAghmoL8dhXiVBcVB0N+4XsJIYRoFm0qQap8Lm9RUVELRyKEEEKIuqr83K78HG8ObSpBKi72LajXuXPnFo5ECCGEEPVVXFxMYmJis1xL6eZMx1qYaZrk5uYSHx+PUuEHxxYVFdG5c2f27dtHQkJCM0bYMqS+p6+2VFeQ+p7O2lJdQepbndaa4uJiMjIyMIzmmV/WplqQDMOgU6dOdS6fkJDQJn4wK0l9T19tqa4g9T2dtaW6gtS3quZqOaok0/yFEEIIIaqRBEkIIYQQohpJkEKw2+08+OCD2O32lg6lWUh9T19tqa4g9T2dtaW6gtT3VNCmBmkLIYQQQtSFtCAJIYQQQlQjCZIQQgghRDWSIAkhhBBCVCMJkhBCCCFENa0yQerWrRtKqRqvqVOn1ig7ZcoUlFI8+eSTQdudTifTp0+nXbt2OBwOrrjiCvbv3x9UJj8/n5/+9KckJiaSmJjIT3/6UwoKCoLK5OTkcPnll+NwOGjXrh133303LpcrqMzmzZsZN24cMTExZGZm8vDDD9f5eTInW9fjx48zffp0+vbtS2xsLF26dOHuu++msLCw1uvMmDGjWevaGPUFOO+882ocf8MNNwSVORXe28ao7549e0Ier5TijTfeiHid5n5/a6vrrbfeWmPfqFGjgs7RWu7bxqjv6Xbv1uX9PZ3u3drqezrduwDff/89V1xxBYmJicTHxzNq1ChycnIC+1vTvRugW6G8vDx98ODBwGvp0qUa0J999llQuYULF+pBgwbpjIwM/cQTTwTtu+uuu3RmZqZeunSp3rBhgx4/frweNGiQ9ng8gTIXXXSRzsrK0qtXr9arV6/WWVlZ+rLLLgvs93g8OisrS48fP15v2LBBL126VGdkZOhp06YFyhQWFuoOHTroG264QW/evFm/9dZbOj4+Xs+bN69Z6rp582Z9zTXX6HfffVfv3LlTf/LJJ7p37976Rz/6UdDxXbt21Q8//HDQtYqLi5u1ro1RX621HjdunL7zzjuDzlNQUBBU5lR4bxujvh6PJ+j4gwcP6oceekg7HI6g9+9UeH9rq+stt9yiL7rooqAyx44dCzpHa7lvG6O+p9u9W5f393S6d2ur7+l07+7cuVOnpKTo3/72t3rDhg16165d+v3339eHDx8OnKM13buVWmWCVN0999yje/bsqU3TDGzbv3+/zszM1Fu2bNFdu3YN+lApKCjQNptNv/baa4FtBw4c0IZh6MWLF2uttf7uu+80oNesWRMo8+WXX2pA//DDD1prrT/88ENtGIY+cOBAoMyrr76q7Xa7Liws1FprPX/+fJ2YmKgrKioCZebMmaMzMjKC4m2quoby3//+V0dFRWm32x3YVttxLVFXrRtW33Hjxul77rkn7DlP1fe2ofWtbvDgwfr2228P2nYqvr/V63rLLbfoK6+8Mmz51nzfNqS+obTme7cu9T2d7t2GvL+t9d69/vrr9U033RS2fGu9d1tlF1tVLpeL//znP9x+++2BB9CapslPf/pTfvvb33LmmWfWOGb9+vW43W4mTZoU2JaRkUFWVharV68G4MsvvyQxMZGRI0cGyowaNYrExMSgMllZWWRkZATKXHjhhTidTtavXx8oM27cuKDFry688EJyc3PZs2dPk9c1lMLCQhISErBagx/F99hjj5GamsrgwYP54x//GNRs2dx1Pdn6vvzyy7Rr144zzzyT++67j+Li4qC6nGrv7cnWt9L69ev55ptv+NnPflZj36n0/oaqK8Dy5ctJS0ujT58+3HnnneTl5QXVrTXetw2tbyit+d6ta31Pl3u3rvWt1FrvXdM0+eCDD+jTpw8XXnghaWlpjBw5kkWLFgXVrTXeu63+YbWLFi2ioKCAW2+9NbDtsccew2q1cvfdd4c85tChQ0RFRZGcnBy0vUOHDhw6dChQJi0trcaxaWlpQWU6dOgQtD85OZmoqKigMt26datxncp93bt3b9K6Vnfs2DH+8Ic/MGXKlKDt99xzD0OHDiU5OZm1a9cyc+ZMsrOz+cc//tEidYWG1/fGG2+ke/fudOzYkS1btjBz5ky+/fZbli5dGojlVHtvT6a+VT3//PP079+f0aNHB20/1d7fUHW9+OKLue666+jatSvZ2dk88MADnH/++axfvx673d5q79uG1re61n7v1qW+p9O9W9/3t7Xeu3l5eZSUlPDoo48ye/ZsHnvsMRYvXsw111zDZ599xrhx41rtvdvqE6Tnn3+eiy++OJBRrl+/nr/85S9s2LAhKJOvC6110DGhjm+MMto/WKy+8Z1sXYuKirj00ks544wzePDBB4P2/frXvw78e+DAgSQnJ3PttdcG/nIJF29T1RUaXt8777wz8O+srCx69+7N8OHD2bBhA0OHDm1wXepSpiXqW6m8vJxXXnmFBx54oMa+U+39rV5XgOuvvz7w76ysLIYPH07Xrl354IMPuOaaa8Ke61S/b+Hk69va712oW31Pl3sX6vf+tuZ71zRNAK688spArIMHD2b16tX87W9/Y9y4cWHPdarfu626i23v3r0sW7aMO+64I7BtxYoV5OXl0aVLF6xWK1arlb1793LvvfcGssqOHTvicrnIz88POl9eXl4g0+zYsSOHDx+ucc0jR44ElanMWivl5+fjdrsjlqlsZq2eCTdFXSsVFxdz0UUXERcXx8KFC7HZbBGvVznbYufOnc1e18aob1VDhw7FZrOxY8eOQJyn0nvbWPV98803KSsr4+abb671ei35/oaqayjp6el07do16H1rbfctNLy+lU6HezeUcPWtqrXeu6FEqm9rvnfbtWuH1WrljDPOCCrbv3//wCy21nrvtupB2g8++KDu2LFj0IDFo0eP6s2bNwe9MjIy9P333x8Y6FU5YOz1118PHJebmxtywNhXX30VKLNmzZqQA8Zyc3MDZV577bUaA8aSkpK00+kMlHn00UfrPWCsoXXV2jeqf9SoUXrcuHG6tLS0Ttd77733NKD37t3b7HU92fpWt3nzZg3ozz//XGt96r23jVXfcePG1ZjhFE5Lvr+h6hrK0aNHtd1u1//+97+11q3zvj2Z+mp9+ty7oYSqb3Wt9d6tb31b+7179tln1xikfdVVV+nJkydrrVvvvdtqEySv16u7dOmi77///lrLhpoFcNddd+lOnTrpZcuW6Q0bNujzzz8/5JTDgQMH6i+//FJ/+eWXesCAASGnHE6YMEFv2LBBL1u2THfq1CloymFBQYHu0KGDnjx5st68ebN+++23dUJCQr2mHJ5MXYuKivTIkSP1gAED9M6dO4OmalbWdfXq1frPf/6z3rhxo969e7d+/fXXdUZGhr7iiiuava4nW9+dO3fqhx56SK9bt05nZ2frDz74QPfr108PGTLklHxvT7a+lXbs2KGVUvqjjz6qse9Uen/D1bW4uFjfe++9evXq1To7O1t/9tln+uyzz9aZmZm6qKgoUK413bcnW9/T6d6tS31Pp3u3rj/PWrf+e1drrd9++21ts9n0ggUL9I4dO/RTTz2lLRaLXrFiRaBMa7t3tW7FCdLHH3+sAb1t27Zay4b6UCkvL9fTpk3TKSkpOiYmRl922WU6JycnqMyxY8f0jTfeqOPj43V8fLy+8cYbdX5+flCZvXv36ksvvVTHxMTolJQUPW3atKDphVprvWnTJj127Fhtt9t1x44d9axZs+qVyZ5MXT/77DMNhHxlZ2drrbVev369HjlypE5MTNTR0dG6b9+++sEHH6zxF2tz1PVk65uTk6PPPfdcnZKSoqOionTPnj313XffXWO9lVPlvT3Z+laaOXOm7tSpk/Z6vTX2nUrvb7i6lpWV6UmTJun27dtrm82mu3Tpom+55ZYa92Rrum9Ptr6n071bl/qeTvduXX+etW79926l559/Xvfq1UtHR0frQYMG6UWLFgXtb233rtZaK60bsrykEEIIIcTpq1UP0hZCCCGEaAqSIAkhhBBCVCMJkhBCCCFENZIgCSGEEEJUIwmSEEIIIUQ1kiAJIYQQQlQjCZIQQgghRDWSIAkhhBBCVCMJkhBCCCFENZIgCSGEEEJUIwmSEEIIIUQ1kiAJIYQQQlTz/yy0CImnvPL1AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -489,10 +482,10 @@ } ], "source": [ - " import os\n", "from snowexsql.api import PointMeasurements\n", - "df = PointMeasurements.from_filter(type=\"depth\", instrument=\"magnaprobe\", limit=200)\n", - "df.plot()\n", + "\n", + "df = PointMeasurements.from_filter(type=\"depth\", instrument='pit ruler', limit=100)\n", + "df.plot(column='value', cmap='jet', vmin=10, vmax=150)\n", "df" ] }, diff --git a/book/tutorials/snowex_database/2_database_structure.ipynb b/book/tutorials/snowex_database/2_database_structure.ipynb index 99ca9a9..f4bb469 100644 --- a/book/tutorials/snowex_database/2_database_structure.ipynb +++ b/book/tutorials/snowex_database/2_database_structure.ipynb @@ -49,18 +49,52 @@ "id": "07bf71eb", "metadata": {}, "source": [ - "### How are tables structured?\n" + "### How are tables structured?\n", + "Each table consists of rows and columns. Below are the available columns!\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "8fd4e693", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "These are the available columns in the table:\n", + " \n", + "* version_number\n", + "* equipment\n", + "* value\n", + "* latitude\n", + "* longitude\n", + "* northing\n", + "* easting\n", + "* elevation\n", + "* utm_zone\n", + "* geom\n", + "* time\n", + "* site_id\n", + "* site_name\n", + "* date\n", + "* time_created\n", + "* time_updated\n", + "* id\n", + "* doi\n", + "* date_accessed\n", + "* instrument\n", + "* type\n", + "* units\n", + "* observers\n", + "\n" + ] + } + ], "source": [ "# Import the class reflecting the points table in the db\n", - "from snowexsql.api import LayerMeasurements as measurements\n", + "from snowexsql.api import PointMeasurements as measurements\n", "\n", "# Grab one measurment to see what attributes are available\n", "df = measurements.from_filter(type=\"depth\", limit=1)\n", @@ -76,7 +110,8 @@ "source": [ "**Try this:** Using what we just did, but swap out PointMeasurements for LayerMeasurements.\n", "\n", - "Did you collect any data? What is it? What table do you think it should go in?\n", + "\n", + "**Question:** Did you collect any data? What is it? What table do you think it would go in?\n", "\n", "For more detail, checkout the readthedocs page on [database structure](https://snowexsql.readthedocs.io/en/latest/database_structure.html) to see how data gets categorized. " ] diff --git a/book/tutorials/snowex_database/3_forming_queries.ipynb b/book/tutorials/snowex_database/3_forming_queries.ipynb index 5a8fc23..e6d170e 100644 --- a/book/tutorials/snowex_database/3_forming_queries.ipynb +++ b/book/tutorials/snowex_database/3_forming_queries.ipynb @@ -14,607 +14,30 @@ " 1. [`from_filter`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L192)\n", " 2. [`from_area`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L210)\n", "\n", - "## `from_filter`" + "## `from_filter`\n", + "\n", + "Use the from filter function to find density profiles\n" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 9, "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
depthsite_idpit_idbottom_depthcommentssample_asample_bsample_cvalueflags...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
047.0Bogus UpperIDBRBU_20191219_100037.0None232.0237.0None234.5AD...2019-12-192024-08-15 19:47:45.611639+00:00None2325013https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
137.0Bogus UpperIDBRBU_20191219_100027.0None249.0252.0None250.5AD...2019-12-192024-08-15 19:47:45.611639+00:00None2325014https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
227.0Bogus UpperIDBRBU_20191219_100017.0None286.0296.0None291.0AD...2019-12-192024-08-15 19:47:45.611639+00:00None2325015https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
317.0Bogus UpperIDBRBU_20191219_10007.0None268.0265.0None266.5AD...2019-12-192024-08-15 19:47:45.611639+00:00None2325016https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
447.0Bogus UpperIDBRBU_20191219_100037.0NoneNoneNoneNone234.5AD...2019-12-192024-08-15 19:47:45.803184+00:00None2325035https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
537.0Bogus UpperIDBRBU_20191219_100027.0NoneNoneNoneNone250.5AD...2019-12-192024-08-15 19:47:45.803184+00:00None2325036https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
627.0Bogus UpperIDBRBU_20191219_100017.0NoneNoneNoneNone291.0AD...2019-12-192024-08-15 19:47:45.803184+00:00None2325037https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
717.0Bogus UpperIDBRBU_20191219_10007.0NoneNoneNoneNone266.5AD...2019-12-192024-08-15 19:47:45.803184+00:00None2325038https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
821.0Banner OpenIDBRBO_20191218_142411.0None228.0NoneNone228.0AD...2019-12-182024-08-15 19:49:25.059301+00:00None2340994https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
911.0Banner OpenIDBRBO_20191218_14241.0None243.0NoneNone243.0AD...2019-12-182024-08-15 19:49:25.059301+00:00None2340995https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
1021.0Banner OpenIDBRBO_20191218_142411.0NoneNoneNoneNone228.0AD...2019-12-182024-08-15 19:49:25.114289+00:00None2340996https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
1111.0Banner OpenIDBRBO_20191218_14241.0NoneNoneNoneNone243.0AD...2019-12-182024-08-15 19:49:25.114289+00:00None2340997https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
1237.0Banner SnotelIDBRBS_20191218_100027.0None173.0161.0None167.0AD...2019-12-182024-08-15 19:49:25.283128+00:00None2341002https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
1327.0Banner SnotelIDBRBS_20191218_100017.0None226.0233.0None229.5AD...2019-12-182024-08-15 19:49:25.283128+00:00None2341003https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
1417.0Banner SnotelIDBRBS_20191218_10007.0None248.0259.0None253.5AD...2019-12-182024-08-15 19:49:25.283128+00:00None2341004https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
1537.0Banner SnotelIDBRBS_20191218_100027.0NoneNoneNoneNone167.0AD...2019-12-182024-08-15 19:49:25.456365+00:00None2341021https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
1627.0Banner SnotelIDBRBS_20191218_100017.0NoneNoneNoneNone229.5AD...2019-12-182024-08-15 19:49:25.456365+00:00None2341022https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
1717.0Banner SnotelIDBRBS_20191218_10007.0NoneNoneNoneNone253.5AD...2019-12-182024-08-15 19:49:25.456365+00:00None2341023https://doi.org/10.5067/KZ43HVLZV6G42024-08-13NonedensityNoneNone
\n", - "

18 rows × 29 columns

\n", - "
" - ], - "text/plain": [ - " depth site_id pit_id bottom_depth comments \\\n", - "0 47.0 Bogus Upper IDBRBU_20191219_1000 37.0 None \n", - "1 37.0 Bogus Upper IDBRBU_20191219_1000 27.0 None \n", - "2 27.0 Bogus Upper IDBRBU_20191219_1000 17.0 None \n", - "3 17.0 Bogus Upper IDBRBU_20191219_1000 7.0 None \n", - "4 47.0 Bogus Upper IDBRBU_20191219_1000 37.0 None \n", - "5 37.0 Bogus Upper IDBRBU_20191219_1000 27.0 None \n", - "6 27.0 Bogus Upper IDBRBU_20191219_1000 17.0 None \n", - "7 17.0 Bogus Upper IDBRBU_20191219_1000 7.0 None \n", - "8 21.0 Banner Open IDBRBO_20191218_1424 11.0 None \n", - "9 11.0 Banner Open IDBRBO_20191218_1424 1.0 None \n", - "10 21.0 Banner Open IDBRBO_20191218_1424 11.0 None \n", - "11 11.0 Banner Open IDBRBO_20191218_1424 1.0 None \n", - "12 37.0 Banner Snotel IDBRBS_20191218_1000 27.0 None \n", - "13 27.0 Banner Snotel IDBRBS_20191218_1000 17.0 None \n", - "14 17.0 Banner Snotel IDBRBS_20191218_1000 7.0 None \n", - "15 37.0 Banner Snotel IDBRBS_20191218_1000 27.0 None \n", - "16 27.0 Banner Snotel IDBRBS_20191218_1000 17.0 None \n", - "17 17.0 Banner Snotel IDBRBS_20191218_1000 7.0 None \n", - "\n", - " sample_a sample_b sample_c value flags ... date \\\n", - "0 232.0 237.0 None 234.5 AD ... 2019-12-19 \n", - "1 249.0 252.0 None 250.5 AD ... 2019-12-19 \n", - "2 286.0 296.0 None 291.0 AD ... 2019-12-19 \n", - "3 268.0 265.0 None 266.5 AD ... 2019-12-19 \n", - "4 None None None 234.5 AD ... 2019-12-19 \n", - "5 None None None 250.5 AD ... 2019-12-19 \n", - "6 None None None 291.0 AD ... 2019-12-19 \n", - "7 None None None 266.5 AD ... 2019-12-19 \n", - "8 228.0 None None 228.0 AD ... 2019-12-18 \n", - "9 243.0 None None 243.0 AD ... 2019-12-18 \n", - "10 None None None 228.0 AD ... 2019-12-18 \n", - "11 None None None 243.0 AD ... 2019-12-18 \n", - "12 173.0 161.0 None 167.0 AD ... 2019-12-18 \n", - "13 226.0 233.0 None 229.5 AD ... 2019-12-18 \n", - "14 248.0 259.0 None 253.5 AD ... 2019-12-18 \n", - "15 None None None 167.0 AD ... 2019-12-18 \n", - "16 None None None 229.5 AD ... 2019-12-18 \n", - "17 None None None 253.5 AD ... 2019-12-18 \n", - "\n", - " time_created time_updated id \\\n", - "0 2024-08-15 19:47:45.611639+00:00 None 2325013 \n", - "1 2024-08-15 19:47:45.611639+00:00 None 2325014 \n", - "2 2024-08-15 19:47:45.611639+00:00 None 2325015 \n", - "3 2024-08-15 19:47:45.611639+00:00 None 2325016 \n", - "4 2024-08-15 19:47:45.803184+00:00 None 2325035 \n", - "5 2024-08-15 19:47:45.803184+00:00 None 2325036 \n", - "6 2024-08-15 19:47:45.803184+00:00 None 2325037 \n", - "7 2024-08-15 19:47:45.803184+00:00 None 2325038 \n", - "8 2024-08-15 19:49:25.059301+00:00 None 2340994 \n", - "9 2024-08-15 19:49:25.059301+00:00 None 2340995 \n", - "10 2024-08-15 19:49:25.114289+00:00 None 2340996 \n", - "11 2024-08-15 19:49:25.114289+00:00 None 2340997 \n", - "12 2024-08-15 19:49:25.283128+00:00 None 2341002 \n", - "13 2024-08-15 19:49:25.283128+00:00 None 2341003 \n", - "14 2024-08-15 19:49:25.283128+00:00 None 2341004 \n", - "15 2024-08-15 19:49:25.456365+00:00 None 2341021 \n", - "16 2024-08-15 19:49:25.456365+00:00 None 2341022 \n", - "17 2024-08-15 19:49:25.456365+00:00 None 2341023 \n", - "\n", - " doi date_accessed instrument type \\\n", - "0 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "1 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "2 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "3 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "4 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "5 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "6 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "7 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "8 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "9 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "10 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "11 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "12 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "13 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "14 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "15 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "16 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "17 https://doi.org/10.5067/KZ43HVLZV6G4 2024-08-13 None density \n", - "\n", - " units observers \n", - "0 None None \n", - "1 None None \n", - "2 None None \n", - "3 None None \n", - "4 None None \n", - "5 None None \n", - "6 None None \n", - "7 None None \n", - "8 None None \n", - "9 None None \n", - "10 None None \n", - "11 None None \n", - "12 None None \n", - "13 None None \n", - "14 None None \n", - "15 None None \n", - "16 None None \n", - "17 None None \n", - "\n", - "[18 rows x 29 columns]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + " value\n", + "site_id \n", + "Banner Open 235.500000\n", + "Banner Snotel 216.666667\n", + "Bogus Upper 260.625000\n" + ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAGsCAYAAACLlD3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtMElEQVR4nO3de1jVZb7//9cC5CByUJwElMSaJjWEzFJD7aAUFVrZ7NLGdMulpm0cpNxtY7YdbCpySse0ZCejFcmOBjOng5n62x2GPICgO9RSSw1E1MkUZIwlwv37o+36tlKRhXdy6Pm4rnVd8eG9Fve7pnm2WAt0GGOMAADAefNq7gMAANBWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALGlzUf300081YsQIRUZGyuFwaMWKFR4/hjFGzz//vH7zm9/Iz89PUVFReuaZZ+wfFgDQpvg09wFs++c//6m4uDglJyfrt7/9bZMeY9q0aVq9erWef/559enTR5WVlfr2228tnxQA0NY42vIv1Hc4HHr77bd15513uq6dOHFCM2fOVE5Ojo4ePaqYmBjNnj1bN9xwgyTpiy++UGxsrLZu3arLL7+8eQ4OAGiV2ty3f88lOTlZn332mXJzc/X555/r7rvv1i233KJdu3ZJkt59911dcskleu+999SjRw9FR0dr4sSJ+u6775r55ACAlu4XFdWvv/5ab7zxhvLy8jRkyBBdeuml+vd//3cNHjxYr7zyiiRp9+7d+uabb5SXl6fs7Gy9+uqrKioq0r/8y7808+kBAC1dm3tNtSHFxcUyxug3v/mN23Wn06mwsDBJUn19vZxOp7Kzs11zixcvVr9+/bRjxw6+JQwAOKtfVFTr6+vl7e2toqIieXt7u32uQ4cOkqSIiAj5+Pi4hbdXr16SpNLSUqIKADirX1RU+/btq7q6Oh06dEhDhgw548ygQYN08uRJff3117r00kslSTt37pQkde/e/YKdFQDQ+rS5d/9WV1frq6++kvRDROfOnasbb7xRnTp10sUXX6z77rtPn332mebMmaO+ffvq22+/1f/8z/+oT58+uu2221RfX69rrrlGHTp00Lx581RfX6+UlBQFBwdr9erVzbwdAKAla3NR/fjjj3XjjTeedv1f//Vf9eqrr6q2tlZPPfWUsrOzVV5errCwMF177bWaNWuW+vTpI0nav3+/fv/732v16tUKDAzUrbfeqjlz5qhTp04Xeh0AQCvS5qIKAEBzOa8fqcnIyJDD4VBaWlqDcy+99JJ69eqlgIAAXX755crOznb7/LZt2/Tb3/5W0dHRcjgcmjdv3vkcCwCAZtHkNyoVFhZq0aJFio2NbXAuMzNT6enpysrK0jXXXKOCggJNmjRJHTt21IgRIyRJx48f1yWXXKK7775bDz74YFOPBABAs2pSVKurqzVmzBhlZWXpqaeeanD29ddf1+TJkzVq1ChJ0iWXXKINGzZo9uzZrqhec801uuaaayRJjzzySFOOpPr6eu3fv19BQUFyOBxNegwAAIwxOnbsmCIjI+Xl5dk3dJsU1ZSUFCUlJSkhIeGcUXU6nfL393e7FhAQoIKCAtXW1qpdu3ZNOYKcTqecTqfr4/LycvXu3btJjwUAwE+VlZWpW7duHt3H46jm5uaquLhYhYWFjZpPTEzUX/7yF91555266qqrVFRUpCVLlqi2tlbffvutIiIiPD2CpB9ez501a9Zp18vKyhQcHNykxwQAoKqqSlFRUQoKCvL4vh5FtayszPXHov302efZPProozpw4IAGDhwoY4y6dOmi8ePH609/+tNpv9XIE+np6XrooYdcH5/6mxAcHExUAQDnrSkvJXr0zeKioiIdOnRI/fr1k4+Pj3x8fPTJJ59o/vz58vHxUV1d3Wn3CQgI0JIlS3T8+HHt3btXpaWlio6OVlBQkDp37uzxgU/x8/NzBZSQAgBaAo+eqQ4bNkwlJSVu15KTk9WzZ0/NmDGjwWee7dq1c31vOjc3V8OHD/f4BWAAAFoyj6IaFBSkmJgYt2uBgYEKCwtzXU9PT1d5ebnrZ1F37typgoICDRgwQEeOHNHcuXO1detWvfbaa67HOHHihLZv3+766/Lycm3ZskUdOnTQr3/96/NaEACAC8X6U8WKigqVlpa6Pq6rq9OcOXMUFxenm266STU1NVq3bp2io6NdM/v371ffvn3Vt29fVVRU6Pnnn1ffvn01ceJE28cDAOBn02Z+TWFVVZVCQkJUWVnJ66sAgCY7n57woiYAAJYQVQAALCGqAABY0uRfqA8AQEtQXXNSD765WaVHvtfFHQP051F91cG/efJGVAEArdbtL/5dn++rcn2848AxxTzxoXpe5K9VDw274Ofh278AgFbpp0H9sS8P1ejXf3j/Ap+IqAIAWqHqmpNnDeopJ+ulfn9cc4FO9AOiCgBodR58c3Oj5g7/84S+qz7xM5/m/yGqAIBWp/TI942eHb1o3c94EndEFQDQ6lzcMaDRs4eO8UwVAICz+vOovo2evSjI92c8iTuiCgBodTr4+6jnRf6Nms29P/5nPs3/Q1QBAK3SqoeGyeccFftVB1916sAzVQAAzumrZ5IUFnjmaP6qg68KZ950Qc/Db1QCALRqRY/epO+qT2j0onU6dOyELgryVe798Rf0GeopRBUA0Op16uCr1Q/d0NzH4Nu/AADYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAkvOKakZGhhwOh9LS0hqce+mll9SrVy8FBATo8ssvV3Z29mkzb731lnr37i0/Pz/17t1bb7/99vkcDQCAC67JUS0sLNSiRYsUGxvb4FxmZqbS09P1xBNPaNu2bZo1a5ZSUlL07rvvumbWr1+vUaNGaezYsfrf//1fjR07Vvfcc482btzY1OMBAHDBOYwxxtM7VVdX66qrrtLChQv11FNP6corr9S8efPOOBsfH69Bgwbpueeec11LS0vTpk2blJ+fL0kaNWqUqqqq9MEHH7hmbrnlFnXs2FFvvPFGo85UVVWlkJAQVVZWKjg42NOVAACQdH49adIz1ZSUFCUlJSkhIeGcs06nU/7+/m7XAgICVFBQoNraWkk/PFO9+eab3WYSExO1bt26Bh+3qqrK7QYAQHPyOKq5ubkqLi5WRkZGo+YTExP1l7/8RUVFRTLGaNOmTVqyZIlqa2v17bffSpIOHDigLl26uN2vS5cuOnDgwFkfNyMjQyEhIa5bVFSUp6sAAGCVR1EtKyvTtGnTtHTp0tOefZ7No48+qltvvVUDBw5Uu3btdMcdd2j8+PGSJG9vb9ecw+Fwu58x5rRrP5aenq7KykrXrayszJNVAACwzqOoFhUV6dChQ+rXr598fHzk4+OjTz75RPPnz5ePj4/q6upOu09AQICWLFmi48ePa+/evSotLVV0dLSCgoLUuXNnSVJ4ePhpz0oPHTp02rPXH/Pz81NwcLDbDQCA5uRRVIcNG6aSkhJt2bLFdbv66qs1ZswYbdmyxe2Z50+1a9dO3bp1k7e3t3JzczV8+HB5ef3w5a+99lqtWbPGbX716tWKj49vwkoAADQPH0+Gg4KCFBMT43YtMDBQYWFhruvp6ekqLy93/Szqzp07VVBQoAEDBujIkSOaO3eutm7dqtdee831GNOmTdN1112n2bNn64477tDf/vY3rV271vXuYAAAWgPrv1GpoqJCpaWlro/r6uo0Z84cxcXF6aabblJNTY3WrVun6Oho10x8fLxyc3P1yiuvKDY2Vq+++qrefPNNDRgwwPbxAAD42TTp51RbIn5OFQBgwwX/OVUAAHA6ogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEvOK6oZGRlyOBxKS0trcC4nJ0dxcXFq3769IiIilJycrMOHD7s+X1tbqyeffFKXXnqp/P39FRcXp1WrVp3P0QAAuOCaHNXCwkItWrRIsbGxDc7l5+dr3LhxmjBhgrZt26a8vDwVFhZq4sSJrpmZM2fq5Zdf1oIFC7R9+3ZNmTJFI0eO1ObNm5t6PAAALrgmRbW6ulpjxoxRVlaWOnbs2ODshg0bFB0drdTUVPXo0UODBw/W5MmTtWnTJtfM66+/rj/84Q+67bbbdMkll+iBBx5QYmKi5syZ05TjAQDQLJoU1ZSUFCUlJSkhIeGcs/Hx8dq3b59WrlwpY4wOHjyoZcuWKSkpyTXjdDrl7+/vdr+AgADl5+ef9XGdTqeqqqrcbgAANCePo5qbm6vi4mJlZGQ0aj4+Pl45OTkaNWqUfH19FR4ertDQUC1YsMA1k5iYqLlz52rXrl2qr6/XmjVr9Le//U0VFRVnfdyMjAyFhIS4blFRUZ6uAgCAVR5FtaysTNOmTdPSpUtPe2Z5Ntu3b1dqaqoee+wxFRUVadWqVdqzZ4+mTJnimnnhhRd02WWXqWfPnvL19dXUqVOVnJwsb2/vsz5uenq6KisrXbeysjJPVgEAwDqHMcY0dnjFihUaOXKkW+zq6urkcDjk5eUlp9N5WgjHjh2rmpoa5eXlua7l5+dryJAh2r9/vyIiIlzXa2pqdPjwYUVGRuqRRx7Re++9p23btjXqbFVVVQoJCVFlZaWCg4MbuxIAAG7Opyc+ngwPGzZMJSUlbteSk5PVs2dPzZgx44zPLI8fPy4fH/cvc2rupz339/dX165dVVtbq7feekv33HOPJ8cDAKBZeRTVoKAgxcTEuF0LDAxUWFiY63p6errKy8uVnZ0tSRoxYoQmTZqkzMxMJSYmqqKiQmlpaerfv78iIyMlSRs3blR5ebmuvPJKlZeX64knnlB9fb3+4z/+w8aOAABcEB5FtTEqKipUWlrq+nj8+PE6duyYXnzxRU2fPl2hoaEaOnSoZs+e7ZqpqanRzJkztXv3bnXo0EG33XabXn/9dYWGhto+HgAAPxuPXlNtyXhNFQBgw/n0hN/9CwCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACw5r6hmZGTI4XAoLS2twbmcnBzFxcWpffv2ioiIUHJysg4fPuw2M2/ePF1++eUKCAhQVFSUHnzwQdXU1JzP8QAAuKCaHNXCwkItWrRIsbGxDc7l5+dr3LhxmjBhgrZt26a8vDwVFhZq4sSJrpmcnBw98sgjevzxx/XFF19o8eLFevPNN5Went7U4wEAcME1KarV1dUaM2aMsrKy1LFjxwZnN2zYoOjoaKWmpqpHjx4aPHiwJk+erE2bNrlm1q9fr0GDBul3v/udoqOjdfPNN+vee+91mwEAoKVrUlRTUlKUlJSkhISEc87Gx8dr3759WrlypYwxOnjwoJYtW6akpCTXzODBg1VUVKSCggJJ0u7du7Vy5Uq3mZ9yOp2qqqpyuwEA0Jx8PL1Dbm6uiouLVVhY2Kj5+Ph45eTkaNSoUaqpqdHJkyd1++23a8GCBa6Z0aNH6x//+IcGDx4sY4xOnjypBx54QI888shZHzcjI0OzZs3y9PgAAPxsPHqmWlZWpmnTpmnp0qXy9/dv1H22b9+u1NRUPfbYYyoqKtKqVau0Z88eTZkyxTXz8ccf6+mnn9bChQtVXFys5cuX67333tMf//jHsz5uenq6KisrXbeysjJPVgEAwDqHMcY0dnjFihUaOXKkvL29Xdfq6urkcDjk5eUlp9Pp9jlJGjt2rGpqapSXl+e6lp+fryFDhmj//v2KiIjQkCFDNHDgQD333HOumaVLl+r+++9XdXW1vLzO3f6qqiqFhISosrJSwcHBjV0JAAA359MTj779O2zYMJWUlLhdS05OVs+ePTVjxozTgipJx48fl4+P+5c5NXeq58ePHz8tnN7e3jLGyIPmAwDQrDyKalBQkGJiYtyuBQYGKiwszHU9PT1d5eXlys7OliSNGDFCkyZNUmZmphITE1VRUaG0tDT1799fkZGRrpm5c+eqb9++GjBggL766is9+uijuv32288YagAAWiKP36h0LhUVFSotLXV9PH78eB07dkwvvviipk+frtDQUA0dOlSzZ892zcycOVMOh0MzZ85UeXm5fvWrX2nEiBF6+umnbR8PAICfjUevqbZkvKYKALDhfHrC7/4FAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEvOK6oZGRlyOBxKS0trcC4nJ0dxcXFq3769IiIilJycrMOHD7s+f8MNN8jhcJx2S0pKOp/jAQBwQTU5qoWFhVq0aJFiY2MbnMvPz9e4ceM0YcIEbdu2TXl5eSosLNTEiRNdM8uXL1dFRYXrtnXrVnl7e+vuu+9u6vEAALjgmhTV6upqjRkzRllZWerYsWODsxs2bFB0dLRSU1PVo0cPDR48WJMnT9amTZtcM506dVJ4eLjrtmbNGrVv356oAgBalSZFNSUlRUlJSUpISDjnbHx8vPbt26eVK1fKGKODBw9q2bJlDX5rd/HixRo9erQCAwPPOuN0OlVVVeV2AwCgOXkc1dzcXBUXFysjI6NR8/Hx8crJydGoUaPk6+ur8PBwhYaGasGCBWecLygo0NatW92+PXwmGRkZCgkJcd2ioqI8XQUAAKs8impZWZmmTZumpUuXyt/fv1H32b59u1JTU/XYY4+pqKhIq1at0p49ezRlypQzzi9evFgxMTHq379/g4+bnp6uyspK162srMyTVQAAsM5hjDGNHV6xYoVGjhwpb29v17W6ujo5HA55eXnJ6XS6fU6Sxo4dq5qaGuXl5bmu5efna8iQIdq/f78iIiJc148fP66IiAg9+eSTmjZtmkeLVFVVKSQkRJWVlQoODvbovgAAnHI+PfHxZHjYsGEqKSlxu5acnKyePXtqxowZpwVV+iGUPj7uX+bU3E97/te//lVOp1P33XefJ8cCAKBF8CiqQUFBiomJcbsWGBiosLAw1/X09HSVl5crOztbkjRixAhNmjRJmZmZSkxMVEVFhdLS0tS/f39FRka6PdbixYt15513Kiws7Hx2AgCgWXgU1caoqKhQaWmp6+Px48fr2LFjevHFFzV9+nSFhoZq6NChmj17ttv9du7cqfz8fK1evdr2kQAAuCA8ek21JeM1VQCADefTE373LwAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALDkvKKakZEhh8OhtLS0BudycnIUFxen9u3bKyIiQsnJyTp8+LDbzNGjR5WSkqKIiAj5+/urV69eWrly5fkcDwCAC6rJUS0sLNSiRYsUGxvb4Fx+fr7GjRunCRMmaNu2bcrLy1NhYaEmTpzomjlx4oRuuukm7d27V8uWLdOOHTuUlZWlrl27NvV4AABccD5NuVN1dbXGjBmjrKwsPfXUUw3ObtiwQdHR0UpNTZUk9ejRQ5MnT9af/vQn18ySJUv03Xffad26dWrXrp0kqXv37k05GgAAzaZJz1RTUlKUlJSkhISEc87Gx8dr3759WrlypYwxOnjwoJYtW6akpCTXzDvvvKNrr71WKSkp6tKli2JiYvTMM8+orq7urI/rdDpVVVXldgMAoDl5HNXc3FwVFxcrIyOjUfPx8fHKycnRqFGj5Ovrq/DwcIWGhmrBggWumd27d2vZsmWqq6vTypUrNXPmTM2ZM0dPP/30WR83IyNDISEhrltUVJSnqwAAYJVHUS0rK9O0adO0dOlS+fv7N+o+27dvV2pqqh577DEVFRVp1apV2rNnj6ZMmeKaqa+v10UXXaRFixapX79+Gj16tP7zP/9TmZmZZ33c9PR0VVZWum5lZWWerAIAgHUOY4xp7PCKFSs0cuRIeXt7u67V1dXJ4XDIy8tLTqfT7XOSNHbsWNXU1CgvL891LT8/X0OGDNH+/fsVERGh66+/Xu3atdPatWtdMx988IFuu+02OZ1O+fr6nvNsVVVVCgkJUWVlpYKDgxu7EgAAbs6nJx69UWnYsGEqKSlxu5acnKyePXtqxowZpwVVko4fPy4fH/cvc2ruVM8HDRqk//7v/1Z9fb28vH548rxz505FREQ0KqgAALQEHn37NygoSDExMW63wMBAhYWFKSYmRtIP35YdN26c6z4jRozQ8uXLlZmZqd27d+uzzz5Tamqq+vfvr8jISEnSAw88oMOHD2vatGnauXOn3n//fT3zzDNKSUmxuCoAAD+vJv1ITUMqKipUWlrq+nj8+PE6duyYXnzxRU2fPl2hoaEaOnSoZs+e7ZqJiorS6tWr9eCDDyo2NlZdu3bVtGnTNGPGDNvHAwDgZ+PRa6otGa+pAgBsOJ+e8Lt/AQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMCS84pqRkaGHA6H0tLSGpzLyclRXFyc2rdvr4iICCUnJ+vw4cOuz7/66qtyOByn3Wpqas7neAAAXFBNjmphYaEWLVqk2NjYBufy8/M1btw4TZgwQdu2bVNeXp4KCws1ceJEt7ng4GBVVFS43fz9/Zt6PAAALrgmRbW6ulpjxoxRVlaWOnbs2ODshg0bFB0drdTUVPXo0UODBw/W5MmTtWnTJrc5h8Oh8PBwtxsAAK1Jk6KakpKipKQkJSQknHM2Pj5e+/bt08qVK2WM0cGDB7Vs2TIlJSW5zVVXV6t79+7q1q2bhg8frs2bNzf4uE6nU1VVVW43AACak8dRzc3NVXFxsTIyMho1Hx8fr5ycHI0aNUq+vr4KDw9XaGioFixY4Jrp2bOnXn31Vb3zzjt644035O/vr0GDBmnXrl1nfdyMjAyFhIS4blFRUZ6uAgCAVQ5jjGnscFlZma6++mqtXr1acXFxkqQbbrhBV155pebNm3fG+2zfvl0JCQl68MEHlZiYqIqKCj388MO65pprtHjx4jPep76+XldddZWuu+46zZ8//4wzTqdTTqfT9XFVVZWioqJUWVmp4ODgxq4EAICbqqoqhYSENKknHkV1xYoVGjlypLy9vV3X6urq5HA45OXlJafT6fY5SRo7dqxqamqUl5fnupafn68hQ4Zo//79ioiIOOPXmjRpkvbt26cPPvigUWc7n78JAACccj498fFkeNiwYSopKXG7lpycrJ49e2rGjBmnBVWSjh8/Lh8f9y9zau5sPTfGaMuWLerTp48nxwMAoFl5FNWgoCDFxMS4XQsMDFRYWJjrenp6usrLy5WdnS1JGjFihCZNmqTMzEzXt3/T0tLUv39/RUZGSpJmzZqlgQMH6rLLLlNVVZXmz5+vLVu26KWXXrKxIwAAF4RHUW2MiooKlZaWuj4eP368jh07phdffFHTp09XaGiohg4dqtmzZ7tmjh49qvvvv18HDhxQSEiI+vbtq08//VT9+/e3fTwAAH42Hr2m2pLxmioAwIbz6Qm/+xcAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWGL9T6lpzQ4crdHwBZ+qquakgv199N7vr1N4qH9zHwsA0EoQ1f/T69EP9H1tvevjb/9Zq4HP/n8KaOelL/54azOeDADQWvDtX50e1B/7vrZevR794AKfCADQGv3io3rgaM1Zg3rK97X1OnC05gKdCADQWv3iozp8wadW5wAAv1y/+KhW1Zy0OgcA+OX6xUc12L9x79Vq7BwA4JfrFx/V935/ndU5AMAv1y8+quGh/gpo1/DfhoB2Xvy8KgDgnH7xUZWkL/5461nDys+pAgAaixcK/88Xf7yV36gEADgvRPVHwkP9tenRm5v7GACAVopv/wIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgSZv5jUrGGElSVVVVM58EANCanerIqa54os1E9dixY5KkqKioZj4JAKAtOHbsmEJCQjy6j8M0JcUtUH19vXbs2KHevXurrKxMwcHBzX0ka6qqqhQVFcVerUhb3a2t7iW13d3a6l7Sz7ebMUbHjh1TZGSkvLw8e5W0zTxT9fLyUteuXSVJwcHBbe5/PBJ7tUZtdbe2upfUdndrq3tJP89unj5DPYU3KgEAYAlRBQDAkjYVVT8/Pz3++OPy8/Nr7qNYxV6tT1vdra3uJbXd3drqXlLL3K3NvFEJAIDm1qaeqQIA0JyIKgAAlhBVAAAsIaoAAFhywaL6xBNPyOFwuN3Cw8Ndn//p507dnnvuOdeM0+nU73//e3Xu3FmBgYG6/fbbtW/fPrevc+TIEY0dO1YhISEKCQnR2LFjdfToUbeZ0tJSjRgxQoGBgercubNSU1N14sQJt5mSkhJdf/31CggIUNeuXfXkk0+e8fdAnmuv6upqTZ06Vd26dVNAQIB69eqlzMxMt8doiXs1ZreDBw9q/PjxioyMVPv27XXLLbdo165drWK38vJy3XfffQoLC1P79u115ZVXqqioyPV5Y4yeeOIJRUZGKiAgQDfccIO2bdvWJnZbvny5EhMT1blzZzkcDm3ZsuW0x2iJuzW0V21trWbMmKE+ffooMDBQkZGRGjdunPbv39+q95J++PewZ8+eCgwMVMeOHZWQkKCNGze2+L0as9uPTZ48WQ6HQ/PmzWsVu52VuUAef/xxc8UVV5iKigrX7dChQ67P//h6RUWFWbJkiXE4HObrr792zUyZMsV07drVrFmzxhQXF5sbb7zRxMXFmZMnT7pmbrnlFhMTE2PWrVtn1q1bZ2JiYszw4cNdnz958qSJiYkxN954oykuLjZr1qwxkZGRZurUqa6ZyspK06VLFzN69GhTUlJi3nrrLRMUFGSef/55j/eaOHGiufTSS81HH31k9uzZY15++WXj7e1tVqxY0aL3Otdu9fX1ZuDAgWbIkCGmoKDAfPnll+b+++83F198samurm7Ru3333Xeme/fuZvz48Wbjxo1mz549Zu3atearr75yzTz77LMmKCjIvPXWW6akpMSMGjXKREREmKqqqla/W3Z2tpk1a5bJysoykszmzZtPe5yWttu59jp69KhJSEgwb775pvnyyy/N+vXrzYABA0y/fv1a9V7GGJOTk2PWrFljvv76a7N161YzYcIEExwc7Pb/My1tr8budsrbb79t4uLiTGRkpPnzn//cov+ZncsFjWpcXFyj5++44w4zdOhQ18dHjx417dq1M7m5ua5r5eXlxsvLy6xatcoYY8z27duNJLNhwwbXzPr1640k8+WXXxpjjFm5cqXx8vIy5eXlrpk33njD+Pn5mcrKSmOMMQsXLjQhISGmpqbGNZORkWEiIyNNfX29R3tdccUV5sknn3S7dtVVV5mZM2e26L3OtduOHTuMJLN161bXtZMnT5pOnTqZrKysFr3bjBkzzODBg8+4lzE//AdDeHi4efbZZ13XampqTEhIiPmv//qvVr3bj+3Zs+eMUW2Ju3my1ykFBQVGkvnmm2/a1F6VlZVGklm7dm2L3cuT3fbt22e6du1qtm7darp37+4W1Za6W0Mu6Guqu3btUmRkpHr06KHRo0dr9+7dZ5w7ePCg3n//fU2YMMF1raioSLW1tbr55ptd1yIjIxUTE6N169ZJktavX6+QkBANGDDANTNw4ECFhIS4zcTExCgyMtI1k5iYKKfT6fq2xPr163X99de7/UBxYmKi9u/fr71793q01+DBg/XOO++ovLxcxhh99NFH2rlzpxITE1v8Xg3t5nQ6JUn+/v6uWW9vb/n6+io/P79F7/bOO+/o6quv1t13362LLrpIffv2VVZWluvze/bs0YEDB9zO7efnp+uvv951pta6W2O0xN2asldlZaUcDodCQ0PbzF4nTpzQokWLFBISori4uBa7V2N3q6+v19ixY/Xwww/riiuuOG3flrpbQy5YVAcMGKDs7Gx9+OGHysrK0oEDBxQfH6/Dhw+fNvvaa68pKChId911l+vagQMH5Ovrq44dO7rNdunSRQcOHHDNXHTRRac93kUXXeQ206VLF7fPd+zYUb6+vg3OnPr41Exj95o/f7569+6tbt26ydfXV7fccosWLlyowYMHt+i9zrVbz5491b17d6Wnp+vIkSM6ceKEnn32WR04cEAVFRUterfdu3crMzNTl112mT788ENNmTJFqampys7Odps/0+P9+Ou1xt0aoyXu5uleNTU1euSRR/S73/3O9YvWW/Ne7733njp06CB/f3/9+c9/1po1a9S5c+cWu1djd5s9e7Z8fHyUmpp62tla8m4NuWB/Ss2tt97q+us+ffro2muv1aWXXqrXXntNDz30kNvskiVLNGbMGLdnQWdjjJHD4XB9/OO/tjlj/u/F6p9eP9de8+fP14YNG/TOO++oe/fu+vTTT/Vv//ZvioiIUEJCQovdqzG7vfXWW5owYYI6deokb29vJSQkuN2npe5WX1+vq6++Ws8884wkqW/fvtq2bZsyMzM1bty4Bh/vTOdojbs1RXPu5sletbW1Gj16tOrr67Vw4cI2sdeNN96oLVu26Ntvv1VWVpbuuecebdy48YwxaQl7NWa3oqIivfDCCyouLj7nv1ctbbeGNNuP1AQGBqpPnz6nvVv073//u3bs2KGJEye6XQ8PD9eJEyd05MgRt+uHDh1y/ddEeHi4Dh48eNrX+sc//uE289P/6jhy5Ihqa2sbnDl06JCk05+9NLTX999/rz/84Q+aO3euRowYodjYWE2dOlWjRo3S888/36r2+uluktSvXz9t2bJFR48eVUVFhVatWqXDhw+rR48eLXq3iIgI9e7d2+1ar169VFpa6nos6fT/Ov3puVvjbo3REndr7F61tbW65557tGfPHq1Zs8btjwNrzXsFBgbq17/+tQYOHKjFixfLx8dHixcvbrF7NWa3v//97zp06JAuvvhi+fj4yMfHR998842mT5+u6OjoFr1bQ5otqk6nU1988YUiIiLcri9evFj9+vVzvV5wSr9+/dSuXTutWbPGda2iokJbt25VfHy8JOnaa69VZWWlCgoKXDMbN25UZWWl28zWrVtd36KUpNWrV8vPz0/9+vVzzXz66adub7devXq1IiMjXf+wG7NXbW2tamtrT/tDbr29vVVfX9+q9vrpbj8WEhKiX/3qV9q1a5c2bdqkO+64o0XvNmjQIO3YscPt2s6dO9W9e3dJUo8ePRQeHu527hMnTuiTTz5xnam17tYYLXG3xux1Kqi7du3S2rVrFRYW1ib2OhNjjOt9DS1xr8bsNnbsWH3++efasmWL6xYZGamHH35YH374YYverUGNfkvTeZo+fbr5+OOPze7du82GDRvM8OHDTVBQkNm7d69rprKy0rRv395kZmae8TGmTJliunXrZtauXWuKi4vN0KFDz/jW6tjYWLN+/Xqzfv1606dPnzO+tXrYsGGmuLjYrF271nTr1s3trdVHjx41Xbp0Mffee68pKSkxy5cvN8HBwWd8a/W59rr++uvNFVdcYT766COze/du88orrxh/f3+zcOHCFr1XY3b761//aj766CPz9ddfmxUrVpju3bubu+66q8X/MysoKDA+Pj7m6aefNrt27TI5OTmmffv2ZunSpa6ZZ5991oSEhJjly5ebkpISc++9957xR2pa426HDx82mzdvNu+//76RZHJzc83mzZtNRUVFi93tXHvV1taa22+/3XTr1s1s2bLF7cfAnE5nq92rurrapKenm/Xr15u9e/eaoqIiM2HCBOPn5+f2zvuWtldjdjuTn777t6Xu1pALFtVTP+fXrl07ExkZae666y6zbds2t5mXX37ZBAQEmKNHj57xMb7//nszdepU06lTJxMQEGCGDx9uSktL3WYOHz5sxowZY4KCgkxQUJAZM2aMOXLkiNvMN998Y5KSkkxAQIDp1KmTmTp1qtvbqI0x5vPPPzdDhgwxfn5+Jjw83DzxxBNnfFv1ufaqqKgw48ePN5GRkcbf399cfvnlZs6cOW6P1RL3asxuL7zwgunWrZtp166dufjii83MmTPd/g+sJe/27rvvmpiYGOPn52d69uxpFi1a5Pb5+vp68/jjj5vw8HDj5+dnrrvuOlNSUtImdnvllVeMpNNujz/+eIveraG9Tv140JluH330Uavd6/vvvzcjR440kZGRxtfX10RERJjbb7/dFBQUuD1GS9zrXLudyZmi2lJ3Oxv+6DcAACzhd/8CAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEv+f9FZK/o7o/oJAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAGsCAYAAACLlD3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtL0lEQVR4nO3dfVjVdZ7/8dcB5EbkRnESUBJrmtQQMksNtRulqNDKZksb05VLTVscpHFnjVkrbSpySse0ZJPRimSjwczpxkz9bTdD3oCgG2qppQYi6mQKssYR4fP7o/VsJxU5+Eluej6u61xXfHmfw+dd0zw7nAM6jDFGAADggnk19wEAAGgriCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlrS5qH7yyScaMWKEIiMj5XA4tHLlSo8fwxij5557Tr/61a/k5+enqKgoPf300/YPCwBoU3ya+wC2/c///I/i4uKUnJysX//61016jGnTpmnNmjV67rnn1KdPH1VWVuqbb76xfFIAQFvjaMu/UN/hcOitt97S3Xff7bp28uRJzZw5Uzk5OTp27JhiYmI0Z84c3XTTTZKkzz//XLGxsdq2bZuuvPLK5jk4AKBVanPf/j2f5ORkffrpp8rNzdVnn32me++9V7fddpt2794tSXrnnXd02WWX6d1331WPHj0UHR2tiRMn6ttvv23mkwMAWrqfVVS/+uorvf7668rLy9OQIUN0+eWX61//9V81ePBgvfzyy5KkPXv26Ouvv1ZeXp6ys7P1yiuvqKioSP/0T//UzKcHALR0be411YYUFxfLGKNf/epXbtedTqfCwsIkSfX19XI6ncrOznbNLVmyRP369dPOnTv5ljAA4Jx+VlGtr6+Xt7e3ioqK5O3t7fa5Dh06SJIiIiLk4+PjFt5evXpJkkpLS4kqAOCcflZR7du3r+rq6nT48GENGTLkrDODBg3SqVOn9NVXX+nyyy+XJO3atUuS1L1794t2VgBA69Pm3v1bXV2tL7/8UtL3EZ03b55uvvlmderUSZdeeqkeeOABffrpp5o7d6769u2rb775Rv/1X/+lPn366I477lB9fb2uu+46dejQQfPnz1d9fb1SUlIUHBysNWvWNPN2AICWrM1F9aOPPtLNN998xvV//ud/1iuvvKLa2lo9+eSTys7OVnl5ucLCwnT99ddr9uzZ6tOnjyTpwIED+u1vf6s1a9YoMDBQt99+u+bOnatOnTpd7HUAAK1Im4sqAADN5YJ+pCYjI0MOh0NpaWkNzr344ovq1auXAgICdOWVVyo7O9vt89u3b9evf/1rRUdHy+FwaP78+RdyLAAAmkWT36hUWFioxYsXKzY2tsG5zMxMpaenKysrS9ddd50KCgo0adIkdezYUSNGjJAknThxQpdddpnuvfdePfzww009EgAAzapJUa2urtaYMWOUlZWlJ598ssHZ1157TZMnT9aoUaMkSZdddpk2btyoOXPmuKJ63XXX6brrrpMkPfLII005kurr63XgwAEFBQXJ4XA06TEAADDG6Pjx44qMjJSXl2ff0G1SVFNSUpSUlKSEhITzRtXpdMrf39/tWkBAgAoKClRbW6t27do15QhyOp1yOp2uj8vLy9W7d+8mPRYAAD9WVlambt26eXQfj6Oam5ur4uJiFRYWNmo+MTFRf/nLX3T33XfrmmuuUVFRkZYuXara2lp98803ioiI8PQIkr5/PXf27NlnXC8rK1NwcHCTHhMAgKqqKkVFRSkoKMjj+3oU1bKyMtcfi/bjZ5/n8uijj+rgwYMaOHCgjDHq0qWLxo8frz/96U9n/FYjT6Snp+t3v/ud6+PTfxOCg4OJKgDggjXlpUSPvllcVFSkw4cPq1+/fvLx8ZGPj48+/vhjLViwQD4+PqqrqzvjPgEBAVq6dKlOnDihffv2qbS0VNHR0QoKClLnzp09PvBpfn5+roASUgBAS+DRM9Vhw4appKTE7VpycrJ69uypGTNmNPjMs127dq7vTefm5mr48OEevwAMAEBL5lFUg4KCFBMT43YtMDBQYWFhruvp6ekqLy93/Szqrl27VFBQoAEDBujo0aOaN2+etm3bpldffdX1GCdPntSOHTtcf11eXq6tW7eqQ4cO+uUvf3lBCwIAcLFYf6pYUVGh0tJS18d1dXWaO3eu4uLidMstt6impkbr169XdHS0a+bAgQPq27ev+vbtq4qKCj333HPq27evJk6caPt4AAD8ZNrMrymsqqpSSEiIKisreX0VANBkF9ITXtQEAMASogoAgCVEFQAAS5r8C/UBAGgJqmtO6eE3tqj06He6tGOA/jyqrzr4N0/eiCoAoNW684W/67P9Va6Pdx48rphZH6h3RLBWTRty0c/Dt38BAK3Sj4P6QzsqqvTLP7x3kU9EVAEArVB1zalzBvW0U/VS31nvX6QTfY+oAgBanYff2NKouaM19fq2+uRPfJr/Q1QBAK1O6dHvGj07evH6n/Ak7ogqAKDVubRjQKNnDx/nmSoAAOf051F9Gz17SZDvT3gSd0QVANDqdPD3Ue+Ixv1e3twH43/i0/wfogoAaJVWTRsin/NU7BcdfNWpA89UAQA4ry+fTlJH/7On7BcdfFU485aLeh5+oxIAoFXbMut2fVt9UqMXr9fh4yd1SZCvch+Mv6jPUE8jqgCAVq9TB1+t+d1NzX0Mvv0LAIAtRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsuaCoZmRkyOFwKC0trcG5F198Ub169VJAQICuvPJKZWdnnzHz5ptvqnfv3vLz81Pv3r311ltvXcjRAAC46Joc1cLCQi1evFixsbENzmVmZio9PV2zZs3S9u3bNXv2bKWkpOidd95xzWzYsEGjRo3S2LFj9d///d8aO3as7rvvPm3atKmpxwMA4KJzGGOMp3eqrq7WNddco0WLFunJJ5/U1Vdfrfnz5591Nj4+XoMGDdKzzz7rupaWlqbNmzcrPz9fkjRq1ChVVVXp/fffd83cdttt6tixo15//fVGnamqqkohISGqrKxUcHCwpysBACDpwnrSpGeqKSkpSkpKUkJCwnlnnU6n/P393a4FBASooKBAtbW1kr5/pnrrrbe6zSQmJmr9+vUNPm5VVZXbDQCA5uRxVHNzc1VcXKyMjIxGzScmJuovf/mLioqKZIzR5s2btXTpUtXW1uqbb76RJB08eFBdunRxu1+XLl108ODBcz5uRkaGQkJCXLeoqChPVwEAwCqPolpWVqZp06Zp2bJlZzz7PJdHH31Ut99+uwYOHKh27drprrvu0vjx4yVJ3t7erjmHw+F2P2PMGdd+KD09XZWVla5bWVmZJ6sAAGCdR1EtKirS4cOH1a9fP/n4+MjHx0cff/yxFixYIB8fH9XV1Z1xn4CAAC1dulQnTpzQvn37VFpaqujoaAUFBalz586SpPDw8DOelR4+fPiMZ68/5Ofnp+DgYLcbAADNyaOoDhs2TCUlJdq6davrdu2112rMmDHaunWr2zPPH2vXrp26desmb29v5ebmavjw4fLy+v7LX3/99Vq7dq3b/Jo1axQfH9+ElQAAaB4+ngwHBQUpJibG7VpgYKDCwsJc19PT01VeXu76WdRdu3apoKBAAwYM0NGjRzVv3jxt27ZNr776qusxpk2bphtuuEFz5szRXXfdpb/97W9at26d693BAAC0BtZ/o1JFRYVKS0tdH9fV1Wnu3LmKi4vTLbfcopqaGq1fv17R0dGumfj4eOXm5urll19WbGysXnnlFb3xxhsaMGCA7eMBAPCTadLPqbZE/JwqAMCGi/5zqgAA4ExEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAllxQVDMyMuRwOJSWltbgXE5OjuLi4tS+fXtFREQoOTlZR44ccX2+trZWTzzxhC6//HL5+/srLi5Oq1evvpCjAQBw0TU5qoWFhVq8eLFiY2MbnMvPz9e4ceM0YcIEbd++XXl5eSosLNTEiRNdMzNnztRLL72khQsXaseOHZoyZYpGjhypLVu2NPV4AABcdE2KanV1tcaMGaOsrCx17NixwdmNGzcqOjpaqamp6tGjhwYPHqzJkydr8+bNrpnXXntNf/jDH3THHXfosssu00MPPaTExETNnTu3KccDAKBZNCmqKSkpSkpKUkJCwnln4+PjtX//fq1atUrGGB06dEjLly9XUlKSa8bpdMrf39/tfgEBAcrPzz/n4zqdTlVVVbndAABoTh5HNTc3V8XFxcrIyGjUfHx8vHJycjRq1Cj5+voqPDxcoaGhWrhwoWsmMTFR8+bN0+7du1VfX6+1a9fqb3/7myoqKs75uBkZGQoJCXHdoqKiPF0FAACrPIpqWVmZpk2bpmXLlp3xzPJcduzYodTUVD322GMqKirS6tWrtXfvXk2ZMsU18/zzz+uKK65Qz5495evrq6lTpyo5OVne3t7nfNz09HRVVla6bmVlZZ6sAgCAdQ5jjGns8MqVKzVy5Ei32NXV1cnhcMjLy0tOp/OMEI4dO1Y1NTXKy8tzXcvPz9eQIUN04MABRUREuK7X1NToyJEjioyM1COPPKJ3331X27dvb9TZqqqqFBISosrKSgUHBzd2JQAA3FxIT3w8GR42bJhKSkrcriUnJ6tnz56aMWPGWZ9ZnjhxQj4+7l/m9NyPe+7v76+uXbuqtrZWb775pu677z5PjgcAQLPyKKpBQUGKiYlxuxYYGKiwsDDX9fT0dJWXlys7O1uSNGLECE2aNEmZmZlKTExURUWF0tLS1L9/f0VGRkqSNm3apPLycl199dUqLy/XrFmzVF9fr3/7t3+zsSMAABeFR1FtjIqKCpWWlro+Hj9+vI4fP64XXnhB06dPV2hoqIYOHao5c+a4ZmpqajRz5kzt2bNHHTp00B133KHXXntNoaGhto8HAMBPxqPXVFsyXlMFANhwIT3hd/8CAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAASy4oqhkZGXI4HEpLS2twLicnR3FxcWrfvr0iIiKUnJysI0eOuM3Mnz9fV155pQICAhQVFaWHH35YNTU1F3I8AAAuqiZHtbCwUIsXL1ZsbGyDc/n5+Ro3bpwmTJig7du3Ky8vT4WFhZo4caJrJicnR4888ogef/xxff7551qyZIneeOMNpaenN/V4AABcdE2KanV1tcaMGaOsrCx17NixwdmNGzcqOjpaqamp6tGjhwYPHqzJkydr8+bNrpkNGzZo0KBB+s1vfqPo6Gjdeuutuv/++91mAABo6ZoU1ZSUFCUlJSkhIeG8s/Hx8dq/f79WrVolY4wOHTqk5cuXKykpyTUzePBgFRUVqaCgQJK0Z88erVq1ym3mx5xOp6qqqtxuAAA0Jx9P75Cbm6vi4mIVFhY2aj4+Pl45OTkaNWqUampqdOrUKd15551auHCha2b06NH6xz/+ocGDB8sYo1OnTumhhx7SI488cs7HzcjI0OzZsz09PgAAPxmPnqmWlZVp2rRpWrZsmfz9/Rt1nx07dig1NVWPPfaYioqKtHr1au3du1dTpkxxzXz00Ud66qmntGjRIhUXF2vFihV699139cc//vGcj5uenq7KykrXrayszJNVAACwzmGMMY0dXrlypUaOHClvb2/Xtbq6OjkcDnl5ecnpdLp9TpLGjh2rmpoa5eXlua7l5+dryJAhOnDggCIiIjRkyBANHDhQzz77rGtm2bJlevDBB1VdXS0vr/O3v6qqSiEhIaqsrFRwcHBjVwIAwM2F9MSjb/8OGzZMJSUlbteSk5PVs2dPzZgx44ygStKJEyfk4+P+ZU7Pne75iRMnzgint7e3jDHyoPkAADQrj6IaFBSkmJgYt2uBgYEKCwtzXU9PT1d5ebmys7MlSSNGjNCkSZOUmZmpxMREVVRUKC0tTf3791dkZKRrZt68eerbt68GDBigL7/8Uo8++qjuvPPOs4YaAICWyOM3Kp1PRUWFSktLXR+PHz9ex48f1wsvvKDp06crNDRUQ4cO1Zw5c1wzM2fOlMPh0MyZM1VeXq5f/OIXGjFihJ566inbxwMA4Cfj0WuqLRmvqQIAbLiQnvC7fwEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAkguKakZGhhwOh9LS0hqcy8nJUVxcnNq3b6+IiAglJyfryJEjrs/fdNNNcjgcZ9ySkpIu5HgAAFxUTY5qYWGhFi9erNjY2Abn8vPzNW7cOE2YMEHbt29XXl6eCgsLNXHiRNfMihUrVFFR4bpt27ZN3t7euvfee5t6PAAALromRbW6ulpjxoxRVlaWOnbs2ODsxo0bFR0drdTUVPXo0UODBw/W5MmTtXnzZtdMp06dFB4e7rqtXbtW7du3J6oAgFalSVFNSUlRUlKSEhISzjsbHx+v/fv3a9WqVTLG6NChQ1q+fHmD39pdsmSJRo8ercDAwHPOOJ1OVVVVud0AAGhOHkc1NzdXxcXFysjIaNR8fHy8cnJyNGrUKPn6+io8PFyhoaFauHDhWecLCgq0bds2t28Pn01GRoZCQkJct6ioKE9XAQDAKo+iWlZWpmnTpmnZsmXy9/dv1H127Nih1NRUPfbYYyoqKtLq1au1d+9eTZky5azzS5YsUUxMjPr379/g46anp6uystJ1Kysr82QVAACscxhjTGOHV65cqZEjR8rb29t1ra6uTg6HQ15eXnI6nW6fk6SxY8eqpqZGeXl5rmv5+fkaMmSIDhw4oIiICNf1EydOKCIiQk888YSmTZvm0SJVVVUKCQlRZWWlgoODPbovAACnXUhPfDwZHjZsmEpKStyuJScnq2fPnpoxY8YZQZW+D6WPj/uXOT33457/9a9/ldPp1AMPPODJsQAAaBE8impQUJBiYmLcrgUGBiosLMx1PT09XeXl5crOzpYkjRgxQpMmTVJmZqYSExNVUVGhtLQ09e/fX5GRkW6PtWTJEt19990KCwu7kJ0AAGgWHkW1MSoqKlRaWur6ePz48Tp+/LheeOEFTZ8+XaGhoRo6dKjmzJnjdr9du3YpPz9fa9assX0kAAAuCo9eU23JeE0VAGDDhfSE3/0LAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALLmgqGZkZMjhcCgtLa3BuZycHMXFxal9+/aKiIhQcnKyjhw54jZz7NgxpaSkKCIiQv7+/urVq5dWrVp1IccDAOCianJUCwsLtXjxYsXGxjY4l5+fr3HjxmnChAnavn278vLyVFhYqIkTJ7pmTp48qVtuuUX79u3T8uXLtXPnTmVlZalr165NPR4AABedT1PuVF1drTFjxigrK0tPPvlkg7MbN25UdHS0UlNTJUk9evTQ5MmT9ac//ck1s3TpUn377bdav3692rVrJ0nq3r17U44GAECzadIz1ZSUFCUlJSkhIeG8s/Hx8dq/f79WrVolY4wOHTqk5cuXKykpyTXz9ttv6/rrr1dKSoq6dOmimJgYPf3006qrqzvn4zqdTlVVVbndAABoTh5HNTc3V8XFxcrIyGjUfHx8vHJycjRq1Cj5+voqPDxcoaGhWrhwoWtmz549Wr58uerq6rRq1SrNnDlTc+fO1VNPPXXOx83IyFBISIjrFhUV5ekqAABY5VFUy8rKNG3aNC1btkz+/v6Nus+OHTuUmpqqxx57TEVFRVq9erX27t2rKVOmuGbq6+t1ySWXaPHixerXr59Gjx6tf//3f1dmZuY5Hzc9PV2VlZWuW1lZmSerAABgncMYYxo7vHLlSo0cOVLe3t6ua3V1dXI4HPLy8pLT6XT7nCSNHTtWNTU1ysvLc13Lz8/XkCFDdODAAUVEROjGG29Uu3bttG7dOtfM+++/rzvuuENOp1O+vr7nPVtVVZVCQkJUWVmp4ODgxq4EAICbC+mJR29UGjZsmEpKStyuJScnq2fPnpoxY8YZQZWkEydOyMfH/cucnjvd80GDBuk///M/VV9fLy+v758879q1SxEREY0KKgAALYFH3/4NCgpSTEyM2y0wMFBhYWGKiYmR9P23ZceNG+e6z4gRI7RixQplZmZqz549+vTTT5Wamqr+/fsrMjJSkvTQQw/pyJEjmjZtmnbt2qX33ntPTz/9tFJSUiyuCgDAT6tJP1LTkIqKCpWWlro+Hj9+vI4fP64XXnhB06dPV2hoqIYOHao5c+a4ZqKiorRmzRo9/PDDio2NVdeuXTVt2jTNmDHD9vEAAPjJePSaakvGa6oAABsupCf87l8AACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsOSCopqRkSGHw6G0tLQG53JychQXF6f27dsrIiJCycnJOnLkiOvzr7zyihwOxxm3mpqaCzkeAAAXVZOjWlhYqMWLFys2NrbBufz8fI0bN04TJkzQ9u3blZeXp8LCQk2cONFtLjg4WBUVFW43f3//ph4PAICLrklRra6u1pgxY5SVlaWOHTs2OLtx40ZFR0crNTVVPXr00ODBgzV58mRt3rzZbc7hcCg8PNztBgBAa9KkqKakpCgpKUkJCQnnnY2Pj9f+/fu1atUqGWN06NAhLV++XElJSW5z1dXV6t69u7p166bhw4dry5YtDT6u0+lUVVWV2w0AgObkcVRzc3NVXFysjIyMRs3Hx8crJydHo0aNkq+vr8LDwxUaGqqFCxe6Znr27KlXXnlFb7/9tl5//XX5+/tr0KBB2r179zkfNyMjQyEhIa5bVFSUp6sAAGCVwxhjGjtcVlama6+9VmvWrFFcXJwk6aabbtLVV1+t+fPnn/U+O3bsUEJCgh5++GElJiaqoqJCv//973XddddpyZIlZ71PfX29rrnmGt1www1asGDBWWecTqecTqfr46qqKkVFRamyslLBwcGNXQkAADdVVVUKCQlpUk88iurKlSs1cuRIeXt7u67V1dXJ4XDIy8tLTqfT7XOSNHbsWNXU1CgvL891LT8/X0OGDNGBAwcUERFx1q81adIk7d+/X++//36jznYhfxMAADjtQnri48nwsGHDVFJS4nYtOTlZPXv21IwZM84IqiSdOHFCPj7uX+b03Ll6bozR1q1b1adPH0+OBwBAs/IoqkFBQYqJiXG7FhgYqLCwMNf19PR0lZeXKzs7W5I0YsQITZo0SZmZma5v/6alpal///6KjIyUJM2ePVsDBw7UFVdcoaqqKi1YsEBbt27Viy++aGNHAAAuCo+i2hgVFRUqLS11fTx+/HgdP35cL7zwgqZPn67Q0FANHTpUc+bMcc0cO3ZMDz74oA4ePKiQkBD17dtXn3zyifr372/7eAAA/GQ8ek21JeM1VQCADRfSE373LwAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwxPqfUtOaHTxWo+ELP1FVzSkF+/vo3d/eoPBQ/+Y+FgCglSCq/6vXo+/ru9p618ff/E+tBj7z/xTQzkuf//H2ZjwZAKC14Nu/OjOoP/Rdbb16Pfr+RT4RAKA1+tlH9eCxmnMG9bTvaut18FjNRToRAKC1+tlHdfjCT6zOAQB+vn72Ua2qOWV1DgDw8/Wzj2qwf+Peq9XYOQDAz9fPPqrv/vYGq3MAgJ+vn31Uw0P9FdCu4b8NAe28+HlVAMB5/eyjKkmf//H2c4aVn1MFADQWLxT+r8//eDu/UQkAcEGI6g+Eh/pr86O3NvcxAACtFN/+BQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMCSNvMblYwxkqSqqqpmPgkAoDU73ZHTXfFEm4nq8ePHJUlRUVHNfBIAQFtw/PhxhYSEeHQfh2lKilug+vp67dy5U71791ZZWZmCg4Ob+0jWVFVVKSoqir1akba6W1vdS2q7u7XVvaSfbjdjjI4fP67IyEh5eXn2Kmmbeabq5eWlrl27SpKCg4Pb3P94JPZqjdrqbm11L6nt7tZW95J+mt08fYZ6Gm9UAgDAEqIKAIAlbSqqfn5+evzxx+Xn59fcR7GKvVqftrpbW91Laru7tdW9pJa5W5t5oxIAAM2tTT1TBQCgORFVAAAsIaoAAFhCVAEAsOSiRXXWrFlyOBxut/DwcNfnf/y507dnn33WNeN0OvXb3/5WnTt3VmBgoO68807t37/f7escPXpUY8eOVUhIiEJCQjR27FgdO3bMbaa0tFQjRoxQYGCgOnfurNTUVJ08edJtpqSkRDfeeKMCAgLUtWtXPfHEE2f9PZDn26u6ulpTp05Vt27dFBAQoF69eikzM9PtMVriXo3Z7dChQxo/frwiIyPVvn173Xbbbdq9e3er2K28vFwPPPCAwsLC1L59e1199dUqKipyfd4Yo1mzZikyMlIBAQG66aabtH379jax24oVK5SYmKjOnTvL4XBo69atZzxGS9ytob1qa2s1Y8YM9enTR4GBgYqMjNS4ceN04MCBVr2X9P2/hz179lRgYKA6duyohIQEbdq0qcXv1Zjdfmjy5MlyOByaP39+q9jtnMxF8vjjj5urrrrKVFRUuG6HDx92ff6H1ysqKszSpUuNw+EwX331lWtmypQppmvXrmbt2rWmuLjY3HzzzSYuLs6cOnXKNXPbbbeZmJgYs379erN+/XoTExNjhg8f7vr8qVOnTExMjLn55ptNcXGxWbt2rYmMjDRTp051zVRWVpouXbqY0aNHm5KSEvPmm2+aoKAg89xzz3m818SJE83ll19uPvzwQ7N3717z0ksvGW9vb7Ny5coWvdf5dquvrzcDBw40Q4YMMQUFBeaLL74wDz74oLn00ktNdXV1i97t22+/Nd27dzfjx483mzZtMnv37jXr1q0zX375pWvmmWeeMUFBQebNN980JSUlZtSoUSYiIsJUVVW1+t2ys7PN7NmzTVZWlpFktmzZcsbjtLTdzrfXsWPHTEJCgnnjjTfMF198YTZs2GAGDBhg+vXr16r3MsaYnJwcs3btWvPVV1+Zbdu2mQkTJpjg4GC3/59paXs1drfT3nrrLRMXF2ciIyPNn//85xb9z+x8LmpU4+LiGj1/1113maFDh7o+PnbsmGnXrp3Jzc11XSsvLzdeXl5m9erVxhhjduzYYSSZjRs3umY2bNhgJJkvvvjCGGPMqlWrjJeXlykvL3fNvP7668bPz89UVlYaY4xZtGiRCQkJMTU1Na6ZjIwMExkZaerr6z3a66qrrjJPPPGE27VrrrnGzJw5s0Xvdb7ddu7caSSZbdu2ua6dOnXKdOrUyWRlZbXo3WbMmGEGDx581r2M+f4/GMLDw80zzzzjulZTU2NCQkLMf/zHf7Tq3X5o7969Z41qS9zNk71OKygoMJLM119/3ab2qqysNJLMunXrWuxenuy2f/9+07VrV7Nt2zbTvXt3t6i21N0aclFfU929e7ciIyPVo0cPjR49Wnv27Dnr3KFDh/Tee+9pwoQJrmtFRUWqra3Vrbfe6roWGRmpmJgYrV+/XpK0YcMGhYSEaMCAAa6ZgQMHKiQkxG0mJiZGkZGRrpnExEQ5nU7XtyU2bNigG2+80e0HihMTE3XgwAHt27fPo70GDx6st99+W+Xl5TLG6MMPP9SuXbuUmJjY4vdqaDen0ylJ8vf3d816e3vL19dX+fn5LXq3t99+W9dee63uvfdeXXLJJerbt6+ysrJcn9+7d68OHjzodm4/Pz/deOONrjO11t0aoyXu1pS9Kisr5XA4FBoa2mb2OnnypBYvXqyQkBDFxcW12L0au1t9fb3Gjh2r3//+97rqqqvO2Lel7taQixbVAQMGKDs7Wx988IGysrJ08OBBxcfH68iRI2fMvvrqqwoKCtI999zjunbw4EH5+vqqY8eObrNdunTRwYMHXTOXXHLJGY93ySWXuM106dLF7fMdO3aUr69vgzOnPz4909i9FixYoN69e6tbt27y9fXVbbfdpkWLFmnw4MEteq/z7dazZ091795d6enpOnr0qE6ePKlnnnlGBw8eVEVFRYvebc+ePcrMzNQVV1yhDz74QFOmTFFqaqqys7Pd5s/2eD/8eq1xt8Zoibt5uldNTY0eeeQR/eY3v3H9ovXWvNe7776rDh06yN/fX3/+85+1du1ade7cucXu1djd5syZIx8fH6Wmpp5xtpa8W0Mu2p9Sc/vtt7v+uk+fPrr++ut1+eWX69VXX9Xvfvc7t9mlS5dqzJgxbs+CzsUYI4fD4fr4h39tc8b874vVP75+vr0WLFigjRs36u2331b37t31ySef6F/+5V8UERGhhISEFrtXY3Z78803NWHCBHXq1Ene3t5KSEhwu09L3a2+vl7XXnutnn76aUlS3759tX37dmVmZmrcuHENPt7ZztEad2uK5tzNk71qa2s1evRo1dfXa9GiRW1ir5tvvllbt27VN998o6ysLN13333atGnTWWPSEvZqzG5FRUV6/vnnVVxcfN5/r1rabg1pth+pCQwMVJ8+fc54t+jf//537dy5UxMnTnS7Hh4erpMnT+ro0aNu1w8fPuz6r4nw8HAdOnTojK/1j3/8w23mx//VcfToUdXW1jY4c/jwYUlnPntpaK/vvvtOf/jDHzRv3jyNGDFCsbGxmjp1qkaNGqXnnnuuVe31490kqV+/ftq6dauOHTumiooKrV69WkeOHFGPHj1a9G4RERHq3bu327VevXqptLTU9VjSmf91+uNzt8bdGqMl7tbYvWpra3Xfffdp7969Wrt2rdsfB9aa9woMDNQvf/lLDRw4UEuWLJGPj4+WLFnSYvdqzG5///vfdfjwYV166aXy8fGRj4+Pvv76a02fPl3R0dEtereGNFtUnU6nPv/8c0VERLhdX7Jkifr16+d6veC0fv36qV27dlq7dq3rWkVFhbZt26b4+HhJ0vXXX6/KykoVFBS4ZjZt2qTKykq3mW3btrm+RSlJa9askZ+fn/r16+ea+eSTT9zebr1mzRpFRka6/mE3Zq/a2lrV1tae8Yfcent7q76+vlXt9ePdfigkJES/+MUvtHv3bm3evFl33XVXi95t0KBB2rlzp9u1Xbt2qXv37pKkHj16KDw83O3cJ0+e1Mcff+w6U2vdrTFa4m6N2et0UHfv3q1169YpLCysTex1NsYY1/saWuJejdlt7Nix+uyzz7R161bXLTIyUr///e/1wQcftOjdGtTotzRdoOnTp5uPPvrI7Nmzx2zcuNEMHz7cBAUFmX379rlmKisrTfv27U1mZuZZH2PKlCmmW7duZt26daa4uNgMHTr0rG+tjo2NNRs2bDAbNmwwffr0Oetbq4cNG2aKi4vNunXrTLdu3dzeWn3s2DHTpUsXc//995uSkhKzYsUKExwcfNa3Vp9vrxtvvNFcddVV5sMPPzR79uwxL7/8svH39zeLFi1q0Xs1Zre//vWv5sMPPzRfffWVWblypenevbu55557Wvw/s4KCAuPj42Oeeuops3v3bpOTk2Pat29vli1b5pp55plnTEhIiFmxYoUpKSkx999//1l/pKY17nbkyBGzZcsW89577xlJJjc312zZssVUVFS02N3Ot1dtba258847Tbdu3czWrVvdfgzM6XS22r2qq6tNenq62bBhg9m3b58pKioyEyZMMH5+fm7vvG9pezVmt7P58bt/W+puDbloUT39c37t2rUzkZGR5p577jHbt293m3nppZdMQECAOXbs2Fkf47vvvjNTp041nTp1MgEBAWb48OGmtLTUbebIkSNmzJgxJigoyAQFBZkxY8aYo0ePus18/fXXJikpyQQEBJhOnTqZqVOnur2N2hhjPvvsMzNkyBDj5+dnwsPDzaxZs876turz7VVRUWHGjx9vIiMjjb+/v7nyyivN3Llz3R6rJe7VmN2ef/55061bN9OuXTtz6aWXmpkzZ7r9H1hL3u2dd94xMTExxs/Pz/Ts2dMsXrzY7fP19fXm8ccfN+Hh4cbPz8/ccMMNpqSkpE3s9vLLLxtJZ9wef/zxFr1bQ3ud/vGgs90+/PDDVrvXd999Z0aOHGkiIyONr6+viYiIMHfeeacpKChwe4yWuNf5djubs0W1pe52LvzRbwAAWMLv/gUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlvx/BDAr757JQrAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -625,7 +48,7 @@ ], "source": [ "# Import in our two classes to access the db\n", - "from snowexsql.api import LayerMeasurements, PointMeasurements\n", + "from snowexsql.api import LayerMeasurements\n", "from datetime import datetime \n", "\n", "# Find some density pit measurements at the Boise site in december 2019.\n", @@ -636,11 +59,15 @@ " date_greater_equal=datetime(2019, 12, 1),\n", ")\n", "\n", - "# Plot it up!\n", + "# Plot Example!\n", "df.plot()\n", "\n", "# Show off the dataframe\n", - "df" + "df\n", + "\n", + "# Analysis Example - Find the bulk density \n", + "df['value'] = df['value'].astype(float)\n", + "print(df[['site_id', 'value']].groupby(by='site_id').mean())" ] }, { @@ -1068,6 +495,8 @@ "# plot it up\n", "df.plot()\n", "\n", + "# TODO: plot the point \n", + "\n", "# show off the dataframe\n", "df" ] @@ -1139,7 +568,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -1160,7 +589,7 @@ " datetime.date(2020, 1, 29)]" ] }, - "execution_count": 9, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -1239,7 +668,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -1301,9 +730,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2022-06-30 22:37:00.759127+00:00\n", + " 2024-08-15 20:03:26.019334+00:00\n", " None\n", - " 12524\n", + " 2407735\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -1325,9 +754,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2022-06-30 22:37:00.759127+00:00\n", + " 2024-08-15 20:03:26.019334+00:00\n", " None\n", - " 12525\n", + " 2407736\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -1349,9 +778,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2022-06-30 22:37:00.759127+00:00\n", + " 2024-08-15 20:03:26.019334+00:00\n", " None\n", - " 12526\n", + " 2407737\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -1373,9 +802,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2022-06-30 22:37:00.759127+00:00\n", + " 2024-08-15 20:03:26.019334+00:00\n", " None\n", - " 12527\n", + " 2407738\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -1397,9 +826,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2022-06-30 22:37:00.759127+00:00\n", + " 2024-08-15 20:03:26.019334+00:00\n", " None\n", - " 12528\n", + " 2407739\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -1445,9 +874,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2022-06-30 22:37:00.946617+00:00\n", + " 2024-08-15 20:03:26.225144+00:00\n", " None\n", - " 12619\n", + " 2407830\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -1469,9 +898,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2022-06-30 22:37:00.946617+00:00\n", + " 2024-08-15 20:03:26.225144+00:00\n", " None\n", - " 12620\n", + " 2407831\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -1493,9 +922,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2022-06-30 22:37:00.946617+00:00\n", + " 2024-08-15 20:03:26.225144+00:00\n", " None\n", - " 12621\n", + " 2407832\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -1517,9 +946,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2022-06-30 22:37:00.946617+00:00\n", + " 2024-08-15 20:03:26.225144+00:00\n", " None\n", - " 12622\n", + " 2407833\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -1541,9 +970,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2022-06-30 22:37:00.946617+00:00\n", + " 2024-08-15 20:03:26.225144+00:00\n", " None\n", - " 12623\n", + " 2407834\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -1571,48 +1000,48 @@ "99 52.0 2C13 COGM2C13_20200212 None None None None \n", "\n", " sample_c value flags ... date time_created \\\n", - "0 None 45.02 None ... 2020-02-12 2022-06-30 22:37:00.759127+00:00 \n", - "1 None 39.82 None ... 2020-02-12 2022-06-30 22:37:00.759127+00:00 \n", - "2 None 37.85 None ... 2020-02-12 2022-06-30 22:37:00.759127+00:00 \n", - "3 None 35.11 None ... 2020-02-12 2022-06-30 22:37:00.759127+00:00 \n", - "4 None 34.86 None ... 2020-02-12 2022-06-30 22:37:00.759127+00:00 \n", + "0 None 45.02 None ... 2020-02-12 2024-08-15 20:03:26.019334+00:00 \n", + "1 None 39.82 None ... 2020-02-12 2024-08-15 20:03:26.019334+00:00 \n", + "2 None 37.85 None ... 2020-02-12 2024-08-15 20:03:26.019334+00:00 \n", + "3 None 35.11 None ... 2020-02-12 2024-08-15 20:03:26.019334+00:00 \n", + "4 None 34.86 None ... 2020-02-12 2024-08-15 20:03:26.019334+00:00 \n", ".. ... ... ... ... ... ... \n", - "95 None 40.5 None ... 2020-02-12 2022-06-30 22:37:00.946617+00:00 \n", - "96 None 22.6 None ... 2020-02-12 2022-06-30 22:37:00.946617+00:00 \n", - "97 None 26.6 None ... 2020-02-12 2022-06-30 22:37:00.946617+00:00 \n", - "98 None 24.3 None ... 2020-02-12 2022-06-30 22:37:00.946617+00:00 \n", - "99 None 26.0 None ... 2020-02-12 2022-06-30 22:37:00.946617+00:00 \n", + "95 None 40.5 None ... 2020-02-12 2024-08-15 20:03:26.225144+00:00 \n", + "96 None 22.6 None ... 2020-02-12 2024-08-15 20:03:26.225144+00:00 \n", + "97 None 26.6 None ... 2020-02-12 2024-08-15 20:03:26.225144+00:00 \n", + "98 None 24.3 None ... 2020-02-12 2024-08-15 20:03:26.225144+00:00 \n", + "99 None 26.0 None ... 2020-02-12 2024-08-15 20:03:26.225144+00:00 \n", "\n", - " time_updated id doi date_accessed \\\n", - "0 None 12524 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", - "1 None 12525 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", - "2 None 12526 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", - "3 None 12527 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", - "4 None 12528 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", - ".. ... ... ... ... \n", - "95 None 12619 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", - "96 None 12620 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", - "97 None 12621 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", - "98 None 12622 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", - "99 None 12623 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", + " time_updated id doi \\\n", + "0 None 2407735 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "1 None 2407736 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "2 None 2407737 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "3 None 2407738 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "4 None 2407739 https://doi.org/10.5067/SNMM6NGGKWIT \n", + ".. ... ... ... \n", + "95 None 2407830 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "96 None 2407831 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "97 None 2407832 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "98 None 2407833 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "99 None 2407834 https://doi.org/10.5067/SNMM6NGGKWIT \n", "\n", - " instrument type units observers \n", - "0 IS3-SP-11-01F reflectance None Kate Hale \n", - "1 IS3-SP-11-01F reflectance None Kate Hale \n", - "2 IS3-SP-11-01F reflectance None Kate Hale \n", - "3 IS3-SP-11-01F reflectance None Kate Hale \n", - "4 IS3-SP-11-01F reflectance None Kate Hale \n", - ".. ... ... ... ... \n", - "95 IS3-SP-11-01F specific_surface_area None Kate Hale \n", - "96 IS3-SP-11-01F specific_surface_area None Kate Hale \n", - "97 IS3-SP-11-01F specific_surface_area None Kate Hale \n", - "98 IS3-SP-11-01F specific_surface_area None Kate Hale \n", - "99 IS3-SP-11-01F specific_surface_area None Kate Hale \n", + " date_accessed instrument type units observers \n", + "0 2022-06-30 IS3-SP-11-01F reflectance None Kate Hale \n", + "1 2022-06-30 IS3-SP-11-01F reflectance None Kate Hale \n", + "2 2022-06-30 IS3-SP-11-01F reflectance None Kate Hale \n", + "3 2022-06-30 IS3-SP-11-01F reflectance None Kate Hale \n", + "4 2022-06-30 IS3-SP-11-01F reflectance None Kate Hale \n", + ".. ... ... ... ... ... \n", + "95 2022-06-30 IS3-SP-11-01F specific_surface_area None Kate Hale \n", + "96 2022-06-30 IS3-SP-11-01F specific_surface_area None Kate Hale \n", + "97 2022-06-30 IS3-SP-11-01F specific_surface_area None Kate Hale \n", + "98 2022-06-30 IS3-SP-11-01F specific_surface_area None Kate Hale \n", + "99 2022-06-30 IS3-SP-11-01F specific_surface_area None Kate Hale \n", "\n", "[100 rows x 29 columns]" ] }, - "execution_count": 7, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -1644,7 +1073,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -2030,7 +1459,7 @@ "[100 rows x 23 columns]" ] }, - "execution_count": 8, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } diff --git a/book/tutorials/snowex_database/4_get_spiral_example.ipynb b/book/tutorials/snowex_database/4_get_spiral_example.ipynb index caf8821..45d9140 100644 --- a/book/tutorials/snowex_database/4_get_spiral_example.ipynb +++ b/book/tutorials/snowex_database/4_get_spiral_example.ipynb @@ -26,11 +26,11 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ - "from snowexsql.api import PointMeasurements, LayerMeasurements\n", + "from snowexsql.api import LayerMeasurements\n", "data_type = 'depth'" ] }, @@ -43,7 +43,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -96,22 +96,22 @@ " 67.0\n", " 1N1\n", " COGM1N1_20200208\n", - " 57.0\n", " None\n", " None\n", " None\n", " None\n", - " 215.0\n", + " None\n", + " -7.5\n", " None\n", " ...\n", " 2020-02-08\n", - " 2024-08-13 17:45:49.052106+00:00\n", + " 2024-08-15 19:56:43.640672+00:00\n", " None\n", - " 2149762\n", + " 2367521\n", " https://doi.org/10.5067/DUD2VZEVBJ7S\n", " 2022-06-30\n", " None\n", - " density\n", + " temperature\n", " None\n", " None\n", " \n", @@ -121,22 +121,22 @@ "" ], "text/plain": [ - " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", - "0 67.0 1N1 COGM1N1_20200208 57.0 None None None \n", + " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", + "0 67.0 1N1 COGM1N1_20200208 None None None None \n", "\n", - " sample_c value flags ... date time_created \\\n", - "0 None 215.0 None ... 2020-02-08 2024-08-13 17:45:49.052106+00:00 \n", + " sample_c value flags ... date time_created \\\n", + "0 None -7.5 None ... 2020-02-08 2024-08-15 19:56:43.640672+00:00 \n", "\n", " time_updated id doi date_accessed \\\n", - "0 None 2149762 https://doi.org/10.5067/DUD2VZEVBJ7S 2022-06-30 \n", + "0 None 2367521 https://doi.org/10.5067/DUD2VZEVBJ7S 2022-06-30 \n", "\n", - " instrument type units observers \n", - "0 None density None None \n", + " instrument type units observers \n", + "0 None temperature None None \n", "\n", "[1 rows x 29 columns]" ] }, - "execution_count": 13, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -146,10 +146,10 @@ "site_id = LayerMeasurements().all_site_ids[0]\n", "\n", "# Query the database, we only need one point to get a site id and its geometry\n", - "site = LayerMeasurements.from_filter(site_id=site_id, limit=1)\n", + "site_df = LayerMeasurements.from_filter(site_id=site_id, limit=1)\n", "\n", "# Print it out \n", - "site" + "site_df" ] }, { @@ -161,7 +161,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -547,7 +547,7 @@ "[392 rows x 23 columns]" ] }, - "execution_count": 17, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -557,7 +557,7 @@ "from snowexsql.api import PointMeasurements \n", "\n", "# Filter the results to within 100m within the point from our pit\n", - "df = PointMeasurements.from_area(pt=site.geometry[0], type=data_type, buffer=200)\n", + "df = PointMeasurements.from_area(pt=site_df.geometry[0], type=data_type, buffer=200)\n", "df" ] }, @@ -570,7 +570,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 7, "metadata": { "tags": [ "nbsphinx-gallery", @@ -584,13 +584,13 @@ "Text(128.66274298237227, 0.5, 'Northing [m]')" ] }, - "execution_count": 19, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAAHFCAYAAADi2cDGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADinElEQVR4nOzdd3xUVdrA8d+dPpn0Qgok9N4FFEQEpSkorrg2dAV1XVmx4q4K7go2cJEXFRBdXVxQbKuICjZAFFEQI0WRIiChhhASkkzq1PP+MZkhk5mQBIIYeb77mZW599x7z9wk89zTNaWUQgghhBCNju5MZ0AIIYQQJ0eCuBBCCNFISRAXQgghGikJ4kIIIUQjJUFcCCGEaKQkiAshhBCNlARxIYQQopGSIC6EEEI0UhLEhRBCiEZKgvgp2Lx5MyNHjiQjIwOr1Up8fDz9+vVj0aJFIWmVUsyePZsOHTpgNptJTU3lr3/9KwUFBUHpdu7cyd/+9jd69epFbGws8fHx9O/fn3fffbdOefryyy/RNA1N01iwYEHYNBdffDGaptGiRYv6fuQzbsGCBWiaxt69e2tNu379eq688koyMjIwm80kJyfTr18/7r///tOf0dOsPvfhVEybNo3333+/xut///33p/X6DWXq1Klomha0bdCgQQwaNOi0XfONN97g2WefPS3nbtGiBePGjWuw882bN6/G74twli1bxk033UTXrl0xGo0h99av6vfRunXrQvaPGzeOyMjIoG1ff/01f/7zn+nVqxdms/lX+T1vzCSIn4LCwkLS09OZNm0aH3/8Ma+++iotWrTgT3/6E0888URQ2r/97W/cd999XHHFFSxbtoyHHnqIN954g6FDh+JyuQLpli9fzkcffcRVV13FO++8w+uvv07btm25+uqreeyxx+qct6ioKObPnx+yPSsriy+//JLo6OiT/+CNwEcffcT555+P3W5nxowZLF++nOeee47+/fvz9ttvn+nsNRo1BXFRu9MZxBtafYP4kiVL+Pbbb+nUqRPdu3ev0zEPPPBAndJ9/vnnrFy5koyMDM4///w65+mspUSDO++881R6enrg/cGDB5Ver1d33XVXULo33nhDAeqll14KbDt69Kjyer0h5xw5cqSKiIhQFRUVJ7z2F198oQD15z//WQFq586dQfv/8Y9/qGbNmqlLL71UNW/e/CQ+3Zn13//+VwEqKyvrhOkuvPBC1bp1a+VyuUL2eTye05S7X09d78OpstlsauzYsTVePzMz87Rev6FMmTJFVf+6GzhwoBo4cOBpu+bIkSNP299Y8+bNw/5cTlbnzp3rdS+q/g1NmDAh5N76+b+PLrnkEgWoDz/8MGj/2LFjlc1mq/HcTz/99K/ye96YSUn8NEhMTMRgMATef/vtt3g8HkaMGBGU7rLLLgNg8eLFQceGq5o699xzKSsr49ixY3XKw9ChQ0lPT+eVV14JbPN6vSxcuJCxY8ei04X+6J9//nkuvPBCmjRpgs1mo2vXrsyYMSOopgB81ZBdunQhMzOTAQMGEBERQatWrXjqqafwer2BdDVV+fqr2L788svAthUrVnDFFVfQrFkzLBYLbdq04fbbbycvL69On7e6/Pz8kJ+DX/XP3qJFCy677DI+/fRTzjnnHKxWKx06dAi6d34//fQTV1xxBXFxcVgsFnr06MHChQsD+5VSJCcnM2HChMA2j8dDXFwcOp2OI0eOBLbPmjULg8FAYWHhCT/Lt99+S//+/bFYLKSlpTFp0qSQn4nf22+/Tb9+/bDZbERGRjJ8+HA2bdoUlMZfhbl161YGDx6MzWYjKSmJO++8k7KyskA6TdMoLS1l4cKFgSrR6tXPxcXF/PWvfyUxMZGEhARGjx5NdnZ2UJpVq1YxaNAgEhISsFqtZGRkcNVVVwVdqyZvvPEG/fr1IzIyksjISHr06BFSw/TKK6/QvXt3LBYL8fHxXHnllWzfvr3Wc4fjdDp54oknAs1eSUlJ3HzzzRw9erReeRs0aBAfffQR+/btC9y7qn/Xdb2Oy+XigQceICUlhYiICC644AK+++67On+eRx99lPPOO4/4+Hiio6M555xzmD9/PqrKulctWrRg69atrF69OpDP2prawn1/nMi4cePo1KkTkyZNwuPxNOi5z3ZytxqA1+vF7XZz9OhR5s2bx2effcaDDz4Y2O90OgEwm81Bx/nbkn788cdar/HFF1+QlJREkyZN6pQnnU7HuHHjePXVVwN/NMuXL+fgwYPcfPPNYY/55ZdfGDNmDK+99hrLli3j1ltv5emnn+b2228PSZuTk8MNN9zAjTfeyIcffsill17KpEmTwvYHqItffvmFfv368cILL7B8+XIeeeQR1q9fzwUXXFBjwDqRfv36sX79eu6++27Wr19f6zl++OEH7r//fu677z4++OADunXrxq233spXX30VSPPzzz9z/vnns3XrVmbPns17771Hp06dGDduHDNmzAB8ge/iiy9m5cqVgeO+//57CgsLsVgsfP7554HtK1euDPR9qMm2bdsYPHgwhYWFLFiwgBdffJFNmzaFNNeAr+r7+uuvp1OnTvzvf//jtddeo7i4mAEDBrBt27agtC6XixEjRjB48GDef/997rzzTv79739z7bXXBtKsW7cOq9XKiBEjWLduHevWrWPevHlB5/nzn/+M0WjkjTfeYMaMGXz55ZfceOONgf179+5l5MiRmEwmXnnlFT799FOeeuopbDZb4O+iJo888gg33HADaWlpLFiwgCVLljB27Fj27dsXSDN9+nRuvfVWOnfuzHvvvcdzzz3Hjz/+SL9+/di1a9cJz1+d1+vliiuu4KmnnmLMmDF89NFHPPXUU6xYsYJBgwZRXl5e57zNmzeP/v37k5KSErh3/jbh+lzntttuY+bMmdx000188MEHXHXVVYwePTqkL01N9u7dy+23387//vc/3nvvPUaPHs1dd93F448/HkizZMkSWrVqRc+ePQP5XLJkSb3uXW30ej3Tp09n69atQQ+9ogGc6aqA34Pbb79dAQpQJpNJzZs3L2j/5s2bFaAef/zxoO2ff/554JgTefnllxWgnnvuuVrz4q++euedd9SePXuUpmlq2bJlSimlrr76ajVo0CClVO1VfR6PR7lcLvXqq68qvV6vjh07Ftg3cOBABaj169cHHdOpUyc1fPjwwPuaqnz9efziiy/CXtvr9SqXy6X27dunAPXBBx/Ues7q8vLy1AUXXBD4uRiNRnX++eer6dOnq+Li4qC0zZs3VxaLRe3bty+wrby8XMXHx6vbb789sO26665TZrNZ7d+/P+j4Sy+9VEVERKjCwkKllFL/+c9/FBBI98QTT6gOHTqoUaNGqZtvvlkppZTT6VQ2m01Nnjz5hJ/j2muvVVarVeXk5AS2ud1u1aFDh6D7sH//fmUwGEKabIqLi1VKSoq65pprAtvGjh0b9vfpySefVID6+uuvA9tqq06/4447grbPmDFDAerw4cNKKaXeffddBajNmzef8HNWt2fPHqXX69UNN9xQY5qCggJltVrViBEjgrbv379fmc1mNWbMmMC2ulSnv/nmmwpQixcvDkqXmZmpgMDfdV3yplTNf2N1vc727dsVoO67776gdK+//roC6l2d7v+bfuyxx1RCQkJQs119q9Orqkt1+jvvvKOUUuqCCy5QzZo1U+Xl5Uqp8NXpVUl1eu2kJN4AJk+eTGZmJh999BG33HILd955JzNnzgzs7969OxdeeCFPP/0077zzDoWFhaxdu5bx48ej1+tPWH30ySefMGHCBP74xz9y11131StfLVu2ZNCgQbzyyivk5+fzwQcfcMstt9SYftOmTYwaNYqEhAT0ej1Go5GbbroJj8fDzp07g9KmpKRw7rnnBm3r1q1bUCmpPnJzcxk/fjzp6ekYDAaMRiPNmzcHOKmq0YSEBNasWUNmZiZPPfUUV1xxBTt37mTSpEl07do1pJq+R48eZGRkBN5bLBbatWsX9HlWrVrF4MGDSU9PDzp23LhxlJWVBUpaQ4YMAQiUxlesWMHQoUMZMmQIK1asAHyl3NLS0kDamnzxxRcMHjyY5OTkwDa9Xh9UYgb47LPPcLvd3HTTTbjd7sDLYrEwcODAoKYLvxtuuCHo/ZgxYwLXrKtRo0YFve/WrRtA4L716NEDk8nEX/7yFxYuXMiePXvqdN4VK1bg8XiCmiWqW7duHeXl5SG9tNPT07n44ouDaj3qYtmyZcTGxnL55ZcH3cMePXqQkpISuId1yVtDXMf/c6j+c7rmmmvCNhOFs2rVKoYMGUJMTEzgb/qRRx4hPz+f3Nzck8r/qfjXv/7FwYMHee655371a/9eSRBvABkZGfTu3ZsRI0bwwgsv8Je//IVJkyYFtW+988479O/fn2uuuYa4uDguuugiRo8eTY8ePWjatGnY83722WeMHj2aoUOH8vrrr9c4jONEbr31VpYuXcqsWbOwWq388Y9/DJtu//79DBgwgEOHDvHcc88FAuDzzz8PEFTFB74gWZ3ZbA5JVxder5dhw4bx3nvv8cADD/D555/z3Xff8e2334a9dn307t2bBx98kHfeeYfs7Gzuu+8+9u7dG6j+9qvL58nPzyc1NTUkXVpaWmA/QPPmzWndujUrV64MBHd/ED948CA///wzK1euxGq11tr7Nj8/n5SUlJDt1bf529r79OmD0WgMer399tshDy0GgyHkM/vP6f8cdVH9HP4mI/9989+HJk2aMGHCBFq3bk3r1q1r/RL3/+00a9asxjT+fNb0M6nP5wDfPSwsLMRkMoXcw5ycnMA9rEveGuI6/vxX/1mH+9mF89133zFs2DAAXn75Zb755hsyMzN5+OGHgVP7uzpZ559/Pn/4wx946qmn6twkIE6sbo9zol7OPfdcXnzxRfbs2UNSUhIATZo04eOPPyY3N5ecnByaN2+O1Wpl3rx5YQPrZ599xh/+8AcGDhzI4sWLMZlMJ5WX0aNHM2HCBJ566iluu+02rFZr2HTvv/8+paWlvPfee4ESMPjGwp8si8UCgMPhCNpePaD89NNP/PDDDyxYsICxY8cGtu/evfukrx2O0WhkypQpPPPMM/z000/1Pj4hIYHDhw+HbPd35EpMTAxsGzx4MB988AGrV6/G6/UyaNAgoqKiSEtLY8WKFaxcuZIBAwaE9JMId82cnJyQ7dW3+a/97rvvBv38auJ2u8nPzw8KBv5z1iVA1MeAAQMYMGAAHo+H77//njlz5nDvvfeSnJzMddddF/YY/9/NwYMHQ2o+/Pz5rOlnUvXnURf+znmffvpp2P1RUVF1zltDXMf/+XJycoIe9P0/u9q89dZbGI1Gli1bFvhbBM74kMHp06fTpUsXpk2bdkbz8XshJfHT4IsvvkCn09GqVauQfU2aNKFbt27ExMTw4osvUlpayp133hmUZvny5fzhD3/gggsu4P3336/1i/5ErFYrjzzyCJdffjl//etfa0znL+VXvZZSipdffvmkr+3v4Vq9496HH35Y67UB/v3vf5/0tcN9scPxqnl/6bk+Bg8ezKpVq0J6X7/66qtERETQt2/fwLYhQ4Zw5MgRnn32Wfr27Rv4Yh48eDBLliwhMzOz1qp0gIsuuojPP/88qFe7x+MJGes+fPhwDAYDv/zyC7179w77qu71118Pev/GG28ABPVAP9nalXD0ej3nnXdeoHZn48aNNaYdNmwYer2eF154ocY0/fr1w2q1hnSmPHjwYKDpoz4uu+wy8vPz8Xg8Ye9f+/bt65w3qPne1fU6/p9D9Z/T//73P9xud62fR9M0DAYDer0+sK28vJzXXnutznk9HTp06MAtt9zCnDlz2L9//69yzd8zKYmfgr/85S9ER0dz7rnnkpycTF5eHu+88w5vv/02f//73wNP7EAgGLZu3ZrCwkI++eQT5s+fz7Rp0zjnnHMC6b7++mv+8Ic/kJKSwuTJk0NKwp06dar3RC0TJ05k4sSJJ0wzdOhQTCYT119/PQ888AAVFRW88MILp1Tl1adPH9q3b8/f/vY33G43cXFxLFmyhK+//jooXYcOHWjdujUPPfQQSini4+NZunRpoP34ZAwfPpxmzZpx+eWX06FDB7xeL5s3b+b//u//iIyM5J577qn3OadMmcKyZcu46KKLeOSRR4iPj+f111/no48+YsaMGcTExATS+mfFW758OY8++mhg+5AhQwK1DXUJ4v/4xz/48MMPufjii3nkkUeIiIjg+eefp7S0NChdixYteOyxx3j44YfZs2cPl1xyCXFxcRw5coTvvvsOm80WlA+TycT//d//UVJSQp8+fVi7di1PPPEEl156KRdccEEgXdeuXfnyyy9ZunQpqampREVFBYJMXbz44ousWrUqMLNhRUVFYOjeiT5/ixYtmDx5Mo8//jjl5eVcf/31xMTEsG3bNvLy8nj00UeJjY3ln//8J5MnT+amm27i+uuvJz8/n0cffRSLxcKUKVPqnE+A6667jtdff50RI0Zwzz33cO6552I0Gjl48CBffPEFV1xxBVdeeWWd8ua/d++99x4vvPACvXr1QqfT0bt37zpfp2PHjtx44408++yzGI1GhgwZwk8//cTMmTPr9B0wcuRIZs2axZgxY/jLX/5Cfn4+M2fODFso6Nq1K2+99RZvv/02rVq1wmKx0LVr1xrPvW/fPjIzMwHfyBIgMKtkixYtwj40VjV16lRef/11vvjiC2w2W9C+o0ePsnr1agC2bNkC+PoGJSUlkZSUxMCBA2v97GeVM92zrjF75ZVX1IABA1RiYqIyGAwqNjZWDRw4UL322mshaf/973+rjh07qoiICBUZGakGDBig3n///ZB0/l60Nb1q6tHtV703aE3C9ZxdunSp6t69u7JYLKpp06bq73//u/rkk09Crjtw4EDVuXPnkHOOHTs25Jw7d+5Uw4YNU9HR0SopKUnddddd6qOPPgo557Zt29TQoUNVVFSUiouLU1dffbXav3+/AtSUKVMC6eraO/3tt99WY8aMUW3btlWRkZHKaDSqjIwM9ac//Ult27YtKG3z5s3VyJEjQ84RbjKQLVu2qMsvv1zFxMQok8mkunfvrv773/+GzUPPnj0VoL755pvAtkOHDikgpHfwiXzzzTeqb9++ymw2q5SUFPX3v/9dvfTSS2Hvw/vvv68uuugiFR0drcxms2revLn64x//qFauXBlI4+8R/OOPP6pBgwYpq9Wq4uPj1V//+ldVUlISdL7Nmzer/v37q4iICAUE7kdNk71UH3mwbt06deWVV6rmzZsrs9msEhIS1MCBA0Mm/ajJq6++qvr06aMsFouKjIxUPXv2DLnf//nPf1S3bt2UyWRSMTEx6oorrlBbt24NSlPXyV5cLpeaOXNm4O8gMjJSdejQQd1+++1q165d9crbsWPH1B//+EcVGxurNE0Lun5dr+NwONT999+vmjRpoiwWi+rbt69at25dnSd7eeWVV1T79u2V2WxWrVq1UtOnT1fz588P+d3Zu3evGjZsmIqKilJArZPU+H/+4V5V83Wi76PJkycrIKR3uv+YcK/TOTlPY6UpVWXUvxDid2/cuHG8++67lJSUnOmsCCFOkbSJCyGEEI2UBHEhhBCikZLqdCGEEKKRkpK4EEII0UhJEBdCCCEaKQniQgghRCMlk738xni9XrKzs4mKijqpudKFEOK3QClFcXExaWlpp22N8IqKilqXtK0rk8kUND1tYyFB/DcmOzv7pOZjFkKI36IDBw6c9GIxJ1JRUYE1Og5cFQ1yvpSUFLKyshpdIJcg/hvjn2P7wIED9Z5eVQghfivsdjvp6emB77SG5nQ6wVWB1nMU6I2ndjKPi5xNH+J0OiWIi1Pjr0KPjo6WIC6EaPROe7OgwYxmOLUgrrTG2z3sN5Pz6dOno2ka9957b2Db1KlT6dChAzabjbi4OIYMGcL69esD+48dO8Zdd91F+/btiYiIICMjg7vvvpuioqKw13A4HPTo0QNN00IWFtE0LeT14osvBqXZsmULAwcOxGq10rRpUx577DGqD7NfvXo1vXr1wmKx0KpVq5BzCCGEaECa1jCvRuo3URLPzMzkpZdeolu3bkHb27Vrx9y5c2nVqhXl5eU888wzDBs2jN27d5OUlER2djbZ2dnMnDmTTp06sW/fPsaPH092dnZgRZ2qHnjgAdLS0vjhhx/C5uO///0vl1xySeB91VWp7HY7Q4cO5aKLLiIzM5OdO3cybtw4bDYb999/PwBZWVmMGDGC2267jUWLFvHNN99wxx13kJSUxFVXXdUQt0oIIURVmganWpJuxEH8jJfES0pKuOGGG3j55ZeJi4sL2jdmzBiGDBlCq1at6Ny5M7NmzcJutwfWp+7SpQuLFy/m8ssvp3Xr1lx88cU8+eSTLF26NGS93U8++YTly5czc+bMGvMSGxtLSkpK4GW1WgP7Xn/9dSoqKliwYAFdunRh9OjRTJ48mVmzZgVK4y+++CIZGRk8++yzdOzYkT//+c/ccsstJ7ymEEKIxuWrr77i8ssvJy0tDU3TeP/99wP7XC4XDz74IF27dsVms5GWlsZNN91EdnZ20DkcDgd33XUXiYmJ2Gw2Ro0axcGDB+udlzMexCdMmMDIkSNrXVvZ6XTy0ksvERMTQ/fu3WtMV1RURHR0NAbD8UqGI0eOcNttt/Haa68RERFR47F33nkniYmJ9OnThxdffBGv1xvYt27dOgYOHBi0Fu/w4cPJzs5m7969gTTDhg0LOufw4cP5/vvvcblcJ/x8QgghToKma5hXPZSWltK9e3fmzp0bsq+srIyNGzfyz3/+k40bN/Lee++xc+dORo0aFZTu3nvvZcmSJbz11lt8/fXXlJSUcNlll+HxeOqVlzNanf7WW2+xcePGwOLy4SxbtozrrruOsrIyUlNTWbFiBYmJiWHT5ufn8/jjj3P77bcHtimlGDduHOPHj6d3796BgFvd448/zuDBg7FarXz++efcf//95OXl8Y9//AOAnJwcWrRoEXRMcnJyYF/Lli3JyckJbKuaxu12k5eXR2pqash1HQ4HDocj8N5ut9d4L4QQQlTTEG3a9Tz+0ksv5dJLLw27LyYmhhUrVgRtmzNnDueeey779+8nIyODoqIi5s+fz2uvvRYowC5atIj09HRWrlzJ8OHD65yXMxbEDxw4wD333MPy5ctP2KX/oosuYvPmzeTl5fHyyy9zzTXXsH79epo0aRKUzm63M3LkSDp16sSUKVMC2+fMmYPdbmfSpEknzI8/WAP06NEDgMceeyxoe/Velv5q9Krb65KmqunTp/Poo4+eMG9CCCFOv+qFKLPZHFT7erKKiorQNI3Y2FgANmzYgMvlCqq5TUtLo0uXLqxdu7ZeQfyMVadv2LCB3NxcevXqhcFgwGAwsHr1ambPno3BYAhUKdhsNtq0aUPfvn2ZP38+BoOB+fPnB52ruLiYSy65hMjISJYsWYLReHy4wapVq/j2228xm80YDAbatGkDQO/evRk7dmyN+evbty92u50jR44AvokAcnJygtLk5uYCx0vkNaUxGAwkJCSEvc6kSZMoKioKvA4cOFDrvRNCCFGpAavT09PTiYmJCbymT59+ytmrqKjgoYceYsyYMYFhwzk5OZhMppB+YMnJySExpDZnrCQ+ePBgtmzZErTt5ptvpkOHDjz44IPo9fqwxymlQqqfhw8fjtls5sMPPwwp1c+ePZsnnngi8D47O5vhw4fz9ttvc95559WYv02bNmGxWAJPTv369WPy5Mk4nU5MJhMAy5cvJy0tLVDN3q9fP5YuXRp0nuXLl9O7d++gB4uqGupJTwghzkon0aYd9hyETrJ1qt/NLpeL6667Dq/Xy7x582pNr5Sq97j6MxbEo6Ki6NKlS9A2m81GQkICXbp0obS0lCeffJJRo0aRmppKfn4+8+bN4+DBg1x99dWArwQ+bNgwysrKWLRoEXa7PVAdkpSUhF6vJyMjI+gakZGRALRu3TowFeDSpUvJycmhX79+WK1WvvjiCx5++GH+8pe/BH6IY8aM4dFHH2XcuHFMnjyZXbt2MW3aNB555JHATR8/fjxz585l4sSJ3Hbbbaxbt4758+fz5ptvnr4bKYQQokE05CRbLpeLa665hqysLFatWhV03pSUFJxOJwUFBUGl8dzcXM4///x6Xec3MU48HL1ez44dO1i4cCF5eXkkJCTQp08f1qxZQ+fOnQFflbx/8hd/NblfVlZWSEe0mhiNRubNm8fEiRPxer20atWKxx57jAkTJgTS+DsrTJgwgd69exMXF8fEiROZOHFiIE3Lli35+OOPue+++3j++edJS0tj9uzZZ8UY8ZzCcjbsyWdPbglepWgaF0HvVgm0aBJ5prMmhPgd03Qamu4UO7bpNFTtqerMH8B37drFF198EdKc2qtXL4xGIytWrOCaa64B4PDhw/z000/MmDGjXtfSVPUpx8QZZbfbiYmJCQyVawy2Hijk402HQAP/b5NW+e/z2yVxQYfgToglDjcfbT/Cp9uPYHe4aREXwZXdUjm/RTy6RjzpghDiuNP9XeY/v+7Cm9EMplM6l3I78X713zrntaSkhN27dwPQs2dPZs2axUUXXUR8fDxpaWlcddVVbNy4kWXLlgWNWIqPjw80x/71r39l2bJlLFiwgPj4eP72t7+Rn5/Phg0bamxODuc3WxIXjUNhqZOPNx/yPcVWeRz0B/O1O4/SLCGCFkm+EvmhonLGv/MDuSWOQPJDReWsycpnSLskHr+kI/pTfaoWQojT6Pvvv+eiiy4KvPfXyI4dO5apU6fy4YcfAsdHOvl98cUXDBo0CIBnnnkGg8HANddcQ3l5OYMHD2bBggX1CuAgQVycos17j51wv6bBhj35tEiKRCnF35duJa/UEVR15VWgAZ/vPEq7xEjGnZtR0+mEECJYA3Zsq6tBgwaFrJtRVV0quC0WC3PmzGHOnDn1unZ1EsRFnTncHr4/UEixw03TaAtdUqM5eKyM6r+vBp2GRa+h0zQ8SpF9rAyATYeK2J1XGkin16BltIXmkRYsBh0epcjcncfwdomkxtY8s15VJ9ObUwjxO3IGJnv5LZEgLmqllOLdH7JZ8N1+ylzHpwRsGmOhR2Jwx7Vokx6zXlflSdS3ItzXW3PYYS9HXxnYDRr0TYkm2ni86kivaSRaDMxfvYeb+rckI9EWNj8bDhQyb80ePtuRi8vrpWNyFH/p14LrzmmGrp5V8SUONwqINOnJL3VS7HCTYDMRbTnF9YmFEL+OM1AS/y2RIC5q9cbGg/zn230h27OLKjhsr+C8pChizQYijTpMlUG0eul4V7YdzXT8D6VdbARRRn1IOp2m4fEq3vluP/de0iGkfXzJj9n89X+b0SrTAfycW8LE93/ihbVZ/Pf6c2iTdOIe8UopPtp2hAWZ+/k5twSTXiPJZgpU8es0OL9lArec15ymMdYTnksIIc6kxvv4IX4VxRVuFny3P+w+f9D7uagcHWDR605YtW1wKzQUeg3SI80n7Ile4nCzMyd4CsQjxQ7ufPcHvAo8XoVO0zDofb/Cmga7j5Zy4ZyvmfrJdrze0DYph9vDml1HueqV9Uz6aBs/55ZgNuhIiDDirdIm4FWwNiufuxf/wMHC8hrzKIT4DfAvRXpKL6lOF79Tq3/Jwx0mIPp5FRxzuPFQe9u016vokRzFrmNlGKqVsJVSeBX4143Ta5CVW0rHtONrur+54UCg9K3TtMDfXfXrvrRuHwk2M3dd2Cqw7YcDBTyzahdrDxRiNh3/tY+1GMKew6ugzOXhxbVZPDGiU9C+Y6VO1uw+So69AqtRT+/m8XRMiZK2eSHOBGkTF6Jmx8qc6HXHq65r0jkjjqNHS8Puq7oIzJ/Pa87jq3YF7fcqhafy9AZNI95iQK/Blv0FpCdE0DU9FoAfs+1B49CrBk2rUUes1YjZqMOrYGHmPq7t2ZQmUWZ2HSlm9qrdrN5XgMmgD3SGMxt0JxzO5lWQub+AoyUOkiJ9M/ct35bDWxsO4D/K7VG8uzmbprFWpozoSEp0zYv5CCFEQ5MgLk4o0WaqNYADtE2OCgriSil2FpWzJb+MvAoXmgYZkWY6tEngv2PO4fkVu3C5fZ3kPJVDzNrEWEiPCq5mz9p3jBizgYwmkZj04UvfiZEmEmymQHBWSoFBx7g3NzD7ym58tvUwO4+VohTodVrgWINOq1Pv9hx7BUmRZjL3HePN730L1Li8ip15pRwqduBV8H22nWU7chl3bgaTh7bDaqzfWE8hxEk6yzu2Nd6ci1/Fha0TMelr/jXRadCzaQztU6NJiDKj4Qvgqw4VsepQEUcrXCh8pdr9xQ7u+eAn1uw5xsjuaWiahv/5oGN8BBlRoe3kkUY9u/ceo9zhZkj7JlR/nogyG0iw+WZA8gdjTfMF6gqXl78v3cquI8UcLPaNTVdKBWoG6jpZYY7dwX/W7uE/32QBvpqDDdl2DtgdQfnxeBWvrN/HuNc34vZ4azibEKJhNcQKZo03FDbenItfRaTZwG39mofdp9N8pdnbz28JwMCuqZiMOnbbK9hZFNohzKjXsOp1TF/5MylxVgZ1bIIXiDTqSLOZwpaIdZqGphT7s+1c3iWFpjEWdBxPF28z1hiMFVBY7qLQ6QkE26rt+xXu2gNtrEnPS9/s4fMdR3FWps8pdlJY4Q5/TQVr9uTz6Y7cWs8thBCnSoK4qNUfuzfl/kFtiLUGj51ulWDjmT90o33lIicxNhNX9G3OruIKqobjOLOBjnFWOsZF0D7OSqf4CGZ/sYveLRNIijKTajMF9Q738yqFy+PFq+BIXikmvY53bzmX5ChTZeBWWMIMUwMwaGAz6Igy6ihze4ky+aq3XW5voETuVVDq9NT4EGDAV7rWa1rQH8oBe8UJ75deg0Xf17wuvFcpduTYWftLHj8eLJRSuxCnwt+x7VRfjZS0iYs6uaxzCpd0aMK6PfnklzhIjrJwXquEkMlVbBYjh4qPT6vaxGokzWYKCpQ6TSOv2MG/PttBz6YxOOyOoKDv8njJK3dR7Doe3GwGHUcKy2mdGMm3EwfxwjdZPPvlLyH51IAoow5T0IQz0DU5koIyF3llLo5VuEiMNNE6xooODYfXQ4TRgE6DwyUO8ivcVDg9dKx8ONEBaMfbz2srwXsUHCgIPzRty6FCFq3fR0GZ6/hnM+kZ3bMZA9omnfC8QogwzvI2cQniok6OFJWz/MfDHK4MTjspYsMveVzQvgk9WsQHpTXoNNxehUmnkRrhK72HKy3nFldQ7o7C6fGVjjXA6fGyv9gR0vZd6vayLPMgI3s3IzU+gvsGteEPXVO5490fKHd5AuePMuowVplwxqTTSLOZiTTqIc53jRiTnlizAZ2mUehwcczhYb+9gq8PFuJRvqFw0SY9XuUrhfvP7VWgQ2HUa9RQmw74mhmSIoNXVapwelj2wyGW/xxazV7q9PDa+n14lWJguyYh+4UQoiaN9/FD/GqO2it44+sscqqVLsscHpb/eJjvducFbR/QKgF95VCxE/EP4erYPC7QoS23zBUSwI+nV3yx5XCghN0ywcY9F7Y+3ttcA1OVCWdMOo3W0VZshuO/5k2sRuIqA7jd6eaYw8PRMidfHSgMDHMrc3rCDj3zKF87e9Moc62f6+qeTSkqd7HxQAFrf8nj+ZU/s2rn0RMe996mQ4F2d4C1e/IZt2gD58xYxYXPfcVzX/5CYbnrBGcQ4ix0yhO9NEBJ/gySkrio1Vfbj+D2Kmrqy71mey7dMuKwVLY733BOMz7fdRST7vgfhgbYjHoiDDrf/OleRanbQ5nDTfcW8Wz35nG0oJyyWqqqSyrcHMovo1nlvOrDOzRh+5FiPtyaE5iz3R/Ek60mdFXGk5v1GrbKoV9KKY45fMXpLUdLgq7h9ngpdrjRaVqg/dx/DrcXUiLN7C+qoNzlDbknep1G6wQb2YXljF30PR6l6BgbgVEH7lp6w5e7PGw5VMg5GXFMWrqNWV/sRq8ReLhYv6+Amat2sXxCfzomR53wXEKcNc7yyV4a7+OH+FWUOtz8cqQkZKWyqjxKsT27KPC+U0o0j13SEX/Y12m+EnC0UY9B861uZtBpxJgMJFmNuD2KHu2akBAXfuUyh8fLkTInWcUVZBVXsGTTIXYfKQZ8Afrega156rJOpESbA8FWp/kWY6lajR9l1AdK8RWVHeY8XsWhEmdQMNY0jcN2By6P1zckjeDhaJqm0SMlmpgwNQ39W8TRKdnG13vy8CiFzaDDZtTjVXX7kiiqcDPj813M+mJ35b09vk8pyCt1ctm/10lnOCH8zvKSeOPNufhVlJ6o8beSToOSatW8w9o34aGh7dE0jTizMdC2XH0st1GnY/mWbDRNIz1M6bLY5eFgqZMSty/oehUcKizn5a/2sGJrTuBc5zWP57qezQLHGatc63g+j7/3V9l7wjydWE16vAo2HypGAU6vL2BWDeRmg45eadFc1CqeyUPa8q/LO7H6rgu4sXc6BwrLA+ePrHxwOMFQ+yAlDhfTlv9c436PV3GgoJyllZ9dCHF2kyAuTijCXPvMY14FEebQUmnvjDjaJkXWujDK1kNFlFS4SIyxBF3P5fWSG6YN2B9KV247wq7KEjlA/9aJmCvbv8NVXVedec7f+c2o07BUi7BGvYbJoHG01Mm6vYXkFjtxer148bXLK6UwG3Rc2jmFudf04M4LW/OnPhm0TYrk423hg6uhsvahOq9SlLk9lLjcFDvdvLbxEOWuE5eyDTqNL3flnTCNEGeNs7wkLm3i4oQiLUYyEm0cyCsNqnJWSuGsbCc36zU6NI0JOVbTNAa2TeKTH7JD9nmVwuVVgclXlm/NYUS3NHq3SeSrrUcAsDs9IcdVpdPg611HaVtZgrca9dw1sA2zVu1EAcVON5FVxpEXuzzEVD5smPQ6zDoNhxfaxUew5WhJ4PNpmkaczURhqYuiCjcbD9kx6jWU8k1+85/re3Bpp5SQ/JQ43GRXm+SmuErP+ViTgbwKV+D+5Zb7hruVOD2UVHgq73ftD02+Me51m21OiN89neZ7neo5GikJ4qJWAzs24fWv90Jl8Ch0usmrcAdKuwadxoc/ZnNlj6ZYqs0ZbjaEPuG6vN6gDmw6DXYcLGRfTjEjejTl3HaJZO7Ko7yGdt8Sl4e8ChcOj5csewVdm8dxTrNYdJrGeS3ieXRkZ97bfJAdh4sD1dmapuH0KoqcbqIrA3ui1Uh2qZNOiREcLK6goMJdZU1xjcQoEw63l/4t4mmdGEnn1Cj+0DU16DO6vV5+PGTnl6MlHMwvRfNNPBvYX+b2UuJyYzPoMet1JFqMFFS4yCpxUOL2UuzwUOrwBXC9zre0qsmgC+qlXp1HQb+W8TXur87p8ZJb7MBi1JFoO3HPeiFE4yJBXNQqNS6Ca89vziebDvFzfmmgV7ef26tYueMIu3JLeGh4B0xVAneLyl7kfh6lggJ4q2gLLaIsgarmrH0FRNlMjD4vg/+u3cvREmcgrVKKrOIK8qq009vx8PcPt9I8zso1PZrSOz2ODslRTB7ekQqXh91HilnxUw72ymr5/Ao3XgXxFgNmvY6mNhPHHG6GtYjnp7xSdh4rw1lZO9CjaQwTLmjFwDaJYe/LZzuO8N9v91JaWWPQNMJEpFFPoTP4/vxir6B9bARmnW/Ym07TKHF7fT30HcdrG/yl66RoM4eO1byOeZTFwFXd02rc71fqdPPCN1m8vekQxZU/s84pUdzRvyWDZTy6+J3w9a851clepCQufufSE2wM79mUdR9tC7vfq2Bvfilf7MxleJWq5pgIE52aRrO9chlRZ5XSdftYKxmR5pD28uJSJ5t/PkrP9FhWbM8NlGuzy5xBARyOl3n3FZTz9Be70fCNU/eNH4f2qdF0bhrDnqMl5Jc4MRt0tEuJxqTXyLNX4PEqYiPNKKCkwoXRoMPp8U3nWn2a2aqW/XSYf6/NCtqm0zQijXqKXe6gXuUur2LbsVISLL4e+j8dK0UpRbkruLlAKXB5FAk2I2UONwWlof0BdBq8Pa4PZsOJq91LnW6uW5jJ7mrNINuPFDNh8Y/8Y2h7buydfsJzCNEoyIxtQtTNmt156DRqnIxFAV/8HBzEAS7v2YyisiwOFZTjqjzYatDRPKrmtbfdbi9JRj1GvQ6Xx4tHKXLKnDWm93N6vLz3YzavZu7Hq3zV+Vd2TWXCgFac2yohKG1ytSFttjCd8/zs5S5yiysoc3k5bK9g/rd7Q9J4lMKgaaRYzeRVOHFUuVFeoMjpZktuCXqDr9rcG6bGvNzpIdpqID3eSkyEkbxiJxVODzqdRmyEkbsubMWQ9rWXou95bws7j5aEPCD5szRt5c8Mbd+E5FomrhFC/LZJEBd1dqS4osYA7ne0xBGyzWLUc/OFrfn5sJ0Fa7NwexVpEb5FT6ovPeqngLxjZYzt34KF3+zFXu4MKt2G4/R4ya4yvAvA4fbyzg/ZfLL9CH86N4NtOcU4PF46J0dxVfc0OjQ58aQpx0qdLNl4kB8PFvJzQRm55S6sBh1xFkNIgCxxeYg1GTDoNFIizDg9XhxeLyhFaYWLQ3YnhRUeYm1G9EqF7Uvj8Srs5W5sZj2xESZiI3zTt9pMem4+N4M/9aq99Pzp9hzW7MmrdZ30JT9mM75/y1rPJ8Rv2lk+2YsEcVFnNpPhhCVxIKRjm59ep9GpaQztkqPYkWPHXIeB014F6XERPDCiA29vOMj2zYdOmP5omDnXwff3aTLpeadKL/ms/DI+2JrDhP4tGdsno/J6in25JezNLcHtVUSY9Xy0LYdSp4dNR0sodh3vgBZOsctDpFGPgcp52/U6copKWbfnCEXlTtKSE9HrdVQ4PZisBqwmPSWO0B74/kBu0uvolhbNHRe05NyMuBrvbXVz12TVGsAB9uSX1ul8QvymSXW6EHVzbot41u89VuN+DejXMqHG/QAD2iWx7bA9qG28xvNpYDToMOv0jO7ZlDd/OFTjA4TT7cURpke3BsRFmKge0vyTvDz/TRatEiJoHhPB6i2HsZe70DRQXsX2wjKMOo3cMmcggEPwePOqFJBT5iTeYiRCr2NffjHLtx8M7NdXjpcvd3mJMCsMOo0Ik56yMEPpdBrodfDYiI60S4o84X2qKq/EwY7cEvS68IvOVM2rzSR//kI0do338UP86ro3i6V5fESNQyoVkF/qILuw5p7V7VOiGdS+Cdllzhqr0qFytbEYC98fKODbvccoc3polWCjwuXB4faGrAFe00OBxaSvrG0Lfy29Bo98sp3Xv95DYWWbu1LwS3EFBp1v1rfs0uC2+HJ36Jzpfl4gr8JFXrmTr38JnvjFU6URvKDUhdOtiLLosZlC/wxbJ9p440+96xXAgcCDTPWpYqtTyjfvvBCNnkz2IkTd6HUa9w9px7zVv7CjykxpVf14qIhth4t5cHh7WiWGD0CXd0+jRaKNbXvyiQkzm5vHq/gqp4iffirD5fFS6vRQ7PAEz2+Ob+IV/zj0mh4sTCeotjfofOdpYjESXaVU6lWKrOJyWkZZAd/c7VUpwO7wEHuCVdqKSh2UVRtqVlpaTnSUDU3T8CooKHNh0Plmh7MadTjcXm4+tzkjOiXTLS26TlXiVbm9XjYdKgwsBavXBS/eEsi/UmTERXBe87h6nV+I36SzvE288T5+iDMiymLkweEd6JgSFVJFDb52bJfXy4tf7alxVjFN0+jWLJZrB7SidbMYdFUisFcpPjpwjB/ySnF7FaVOD/ZqARx8gbTY4Q6UPC1Gfdj8hN/oC/paZV7SI81BeS11e6hwq0BJtupqbH4lLg8FFa5AGqV8s8+5vQqTXkeJM3TO+eLSMjze4FoEt1dR5vQ1BfRtHs+DQ9rSvWlMnQO4y+Nla46dzP3HuPG1Ddy75KfALHj+gr+qnCrWf129pvHaDb3q/ZAgxG+SlMSFqJ+ichc7coprrFJWytdLfUdOMZ1So2s8j6ZptGseT6umseQXlePxKnbkl/LLFl8HNK9SFIfp+BU4vvK/OhRoGjFWY8h62y63N+yscVVL7tU7qinlqxYvdnmIMupJtZkoDtNEUOryUupyEmXSY618iFCA26OCJrzx83oVR44eIyEuBovZFJSXP3RN5dFLO56wiaEqj1fx3+/2sWjDAYoq3JQ7Pbirdd9XgMdbWVChsklBwbxrupMSXfPwPiFE4yFBXNTb4aLyGgO4nwYcLCw7YRD3Mxh0JCf4ZnZ7ecOBQA94xwnangF0Oo0yl4enL+8Gmq/E+eGWw3y07QgWow6P8i2lqggtkAeCGlDocNOsynSktsolU49WuIg06km2GjlU4qA0TMc5s17D6l+jvMr2JlERmAx6nO7ghxCPx0tuXgFGg57E6AievbYPF7RKICmy7uO1lVJM/Ww7y7YdCbyvHsCD0/vydnGbBO6+sDVd6vAzEaLROMt7pzfenIszJlwpszrFiduja5JbcnyYWE090SNMehIijMRZfa/pn+9kf0E5EUY9uSUOWiVEkBZtIT3GQqfkSEa0b4JJrxFp0BFj8q9p7psC1aBp/GKv8OW5SnVzyygLFR7FvhIH5R4v7WIjaB5lxlYZsDV8Jfgoc+isbi7lRa/X0T09/HStAC63hydHdeXKbmn1CuCF5U7e33I4EMCh5t7y1V3WOUUCuPj98beJn+qrkZKSuKi35vE2YqxGisIsExqgFJ3T6h8wEmwm9uSX4lW+nuPVRVsMGHXBa4WXOj3859u9RBh0ISVur4JD+aXc2jkVg/K1Zf+YXxI0favbq1iXY+f8lOjABDTtYq0UOFx4FZRVto9HGPWkG/QcKnVQ4VGV7eqh5XxPZb+A5onRKOCH/UdxVekcZzLo+VO/Ntx4Xqs635cjxRW8tHYv3+zND2kyqKs6xnohRCMiQVzUm16ncVnXVF7/bn/IPnuFm115pWQXO1jy+ErSY638uV9z/tK/ZaDa+USGtmvC+n0FgG/K1KqTy5gNupAA7mfWab6SdLV96ZFm+jaJQnkVJW4vaw4XBTp+BT6PBi6l+DK7kEijntbRViwGHTq0QHz2XzO33ElFZdX1iYJisctDjNFAi8RoMhKiyCkqw+FyYzEaGNgumUmXdKj1XvjlFju4+70fsVe4UIqQmet0NXXNr6ZnmOVihWj0pHe6EPU3uH0TLuuaChxfzjev1MkXe/I5aK8IBMoDheU8+ukOLvv3OkrD9Niu7vyWCXRKjvKVcjWNmCrDuCw1VOP7q7arB3eDBn2SoirzqLG9wNfjvXrs9R+naZqvpH6slKNuT0hDutursFdbtMTtVWHHY3uBQpebMo+X2AgTndPiuKRLMx4b1Y1/jOhY6wIm4KveP1xUzpw1v2CvcAUeGqrHbJ2mBVaBC0evaQxsnUDz+Iga0wjReGkN9Kq7r776issvv5y0tDQ0TeP9998P2v/ee+8xfPhwEhMT0TSNzZs3h5zD4XBw1113kZiYiM1mY9SoURw8eDAkXW0kiIuTomkaV/Vsxowru3FZ1zR6Z8SxMdsOhJZQvQo2Hyzk6c931XpevU7jiZGduLBVIpoGVqOeOKsBvRY+UEPNf37pkRb0lQ8DTo+Xw2Wu2jvkVZ7/YEF5yOcod4f2lHd4Qsdh+yl8JfwnLu/M89f1ZMrITgxok4ghzJC16r7be4wHlmxh4uIf+W5/QVBewj3MWEy6sGPlNSAjzsq/Lu9c6zWFEHVTWlpK9+7dmTt3bo37+/fvz1NPPVXjOe69916WLFnCW2+9xddff01JSQmXXXYZHk/NI3LCkep0cUqSosxc2aMp724+FFhXOxyPgle+3cekoe1qLYXaTAYmDW3Pn0ta8GN2EV4FHZpEcu/7WzhWFtoe7J+drHowjTLq8QJ6oLwO07yeDJdXUeH2YjHogvKg943m4qHB7UisR8c1h9vDq9/u48tdeUD4KnuzXodB5w1qFtA0jQizHo/HN1Y90mQgOcrM1T2aclX3NCJPsEKbEI1bQ3RMq9/xl156KZdeemmN+//0pz8BsHfv3rD7i4qKmD9/Pq+99hpDhgwBYNGiRaSnp7Ny5UqGDx9e57zIX7ZoED9mF2HUaYGlRsOxV7g5VFhBq0Rbnc6ZFGlmcLvjU4OO7JTC6xsOhAQ2he8hQU9wIHcrFfjTNNWx3bjqOasfUdOiLeVuLy6vwqzXMOgg1mKkX8t4/tA1jVYJdfusAIcKypj3xW72FlUEtoUtXWsasRYDRRXuwP3WfDtonxzJ05d3pmU9ritEo6ZpDTDE7NdtE9+wYQMul4thw4YFtqWlpdGlSxfWrl0rQVz8+kx6fa1V1UDYiVfq6g9dUvnwp8MUO9whgdztVRiqdYQ7UOKgS7wvmFkNeuLNBo45am+XB8Iuk2rS64gw6CgLM17c3zbev2UCM0d1qfdnK3e6efHL3eSXB8/TrtN8w+Dc1drddZpGnNWI2+vF6VFc26Mp/Vsm0KMes70JIYLZ7fag92azGbO57jVpdZWTk4PJZCIuLnjq4+TkZHJycmo4KjxpExcNYniHJiG9vqvSgI7JkaTFnPxMYfE2E89d2Y1mMb45zfXa8ZJqx5RoHh/ZiQ7Jx9cHL3Z5OFIlKHaMi6h7pZkGMVZDSPoUqwmjpoWdPCYtxsrkIe3q85ECMvceo9TpIVytv+0EDz5GnY7RXdO4c0BrejaLlQAuzj4NOE48PT2dmJiYwGv69Om/6kcJ1yxYGymJiwbROyOWvi3iyNxfGDL5SMcEG5e0iqdbkyiWfbOXhBgLbZrF0CSu/r2lm8dHsGDMOWw+VMTWnGL0Oo1e6bGB1b56NI3lUGE5OcUV2EwGWsZH8O2OXPbnlpBoMXJechSbjpbgqGXQtFJw70Vt+flIMZ9tP0JBZVt8q0QbfxnQkgNFFXy49TD5pS4SbCb+0CWVK7um1rvtOa/UyZHiCjbu9w2rC/f3a9TpiDJAifv4HPJa5f+N6JjMHf3rPt5ciN+f+vcuD38OOHDgANHRx+e3OB2lcICUlBScTicFBQVBpfHc3FzOP//8ep1LgrhoEJqmsehPvblq/np+yLZj0Gl4vIpLWydwTYdk3xMmvtnFjhaUk1tQTou0aJweL/YyFyajjpbJUTRNtNU6f7imafRsFkvPZrFh9zeNtdI01hp4P7BrKoUlDvbnluDyeBnRvSlFbg9bsu2s2pmLRylUleFbCrhjQGvaJUfRLjmKkV1TsZe7fDO0WY7P0Da2T8ZJ3699x8p4ds0vrM06hgK6xkcQYzZg0esodYWb3lWHSafhUop4m4kRXVLp3yK+Xp3mhPhdasBx4tHR0UFB/HTp1asXRqORFStWcM011wBw+PBhfvrpJ2bMmFGvc0kQFw0mMdLMqrsGsPLnXN7fchiDVzE4zTfBSNUqIq9SVHi8bMo6Flg0RNPgl8PFJEZbGHZOU8x1mBimPmIjzcRWC3h9Wybwx55N+fznXDYfLMSjFB2ToxnaMZnUKguE6DSN2AhT9VOetKz8Usa9tZEK1/G54UtcHqJNegw6DYteC0woU5WmaVh0GhMvakv7Ks0GQohfV0lJCbt37w68z8rKYvPmzcTHx5ORkcGxY8fYv38/2dm+xZx+/vlnwFcCT0lJISYmhltvvZX777+fhIQE4uPj+dvf/kbXrl0DvdXrSlPhZqoQZ4zdbicmJoaioqJf5YnwdNqwI5eDR0uo/hvm8HjDdg4DX6VWakIEw89pdvozeAa4PV7+uOA7sosdQdsteh29knxrjSulsDs9IYHcYtQxYWBrzkkP7gwjxG/R6f4u859fP+b/0EzW2g84AeUsx/PG/XXO65dffslFF10Usn3s2LEsWLCABQsWcPPNN4fsnzJlClOnTgWgoqKCv//977zxxhuUl5czePBg5s2bR3p6er3yLkH8N+b3FMRXfLef0org3uBKKYqcoeuDV3dF3+bER/3+qopf/mYPL2ceCLsvJcJImxhroGe8x6tweLx4gU4pUdwxqA2mOsz0JsRvwa8XxGc1UBCf2Ci/d6U6XZw2WphBzl5F3ZYxzSttlEG8pMLFTweLKK5wYTMbaJ5oY3XWMb7fX4BXKXIKymo8NqfMRbnbS1ObiXiLEYNOo2ViFBe2S6JnRpz0PBdChJAgLk6b1PgIdpcVBQXtOlX7aMeX1yxzujlW6sRq1JPwG+7EpZTi651HWfNzLlSuw5Jb6mT1oSJcXl+nvmiTnvRahtgVOT0UOct56OKmXNk1TQK3ELU5yxdAkSAuTpuWadH8csgetEBIuOVFq1MKTCYdC77JYmOVecObxVm5rFsaXeqxGldhqZMKp4dIi4FIa+ja33Xh8Sp2HrazZX8BxRVuoiwGumXE0S41OrCC2Pd7jvHVjtzAMWUuD18eLApM0qIANN9qa2addsIhbjoNLmqTJAFciLqQIC7E6RFhMdK3SzLrtx4JlKw1TcOs13CE6X0Nvqp0nV7H65kHKKk2M9uhgnJeXP0LV/RI47sDRSz8bj/5pU5SYyzc0rc5f+7XnOjKIWAH80tZ//NR8qt0IGsaH0Hf9kkkRNd9whmHy8M73+4ju6A80JP+WLGDvUdLaRYfwR/7ZqDXaazZmRt03O7CcjzVupuUVQ4daxJh5EBJ8MxsVV3ROZW4BuwNL4T4/ZIgLk6rJnERDDs3g305xeQVlQMQG2li5+FiCkqDA5lWuVJZuZ6QAA6+AFrscHPDaxupcHsC62pn5Zfx6CfbeWfzIS7t1IRIvY7IMGuxfPlzDlM/+YF9haXodTqGdEzl7sEd6NMiscb8r/jxMIcLygPXr/rfQ8fK+PynHDo2jaG82uIvh0qcIU0HLq+ioMJNnMVAU5uJw6VOqvfRbxMfwQMXt60xP0KI6hpuspfGSIK4OO3MJj3tMmJpR2xgW9uMOLbvL2THwUJKK9wY9RqtUqJpnRbNtE92hF29C+CrvQWUuYJ7t0dZDHRKjcSg01ibdYwR6fEoffCypZ/tzGbptkNBc6sv3riP9zYf4IperUiNjSA5ysxV3ZsSH2Fk1c9H+fFAIREoQidZ9VHA1gOFNA2zTre3hkEf++0OrEYdMSY9UUYLxS7f4il6HaRHW5g6sjP6ei7WIsRZTarThfj1GfU6urWMp1vL+KD5gg+HqYb2O1buIrda6d2k1+iSFoWuct3wZKsxZL3t3XnFLN12CAhe2tMWaSMiwsrXewvQ6wp9s85lHqBbcpRv7nSjnuZRJ6569ypwhhnzHm8xUBxmKJ1bKXbkl9EkwkR6tIUkg54oi4EBbZIY3KFJ0IxwQghRGwni4oyrWmK2mGoeB51XGtqOnBpjCQRwAJtBH7KIwJd7jgSVwAGiIm1YrZbA9b0KjBp0SorEq2oufYcTbTHSLD6CQwVlgYlt2sZGsNfuCJveo+BwqZMnL+9MnwyZuEWIU6LpGmAp0sa7FthvJufTp09H0zTuvffewLapU6fSoUMHbDYbcXFxDBkyhPXr1wf2Hzt2jLvuuov27dsTERFBRkYGd999N0VFRWGv4XA46NGjB5qmsXnz5rBp8vPzadasGZqmUVhYGNi+d+9eNE0LeX366adBx69evZpevXphsVho1aoVL7744knfk7NRXISJFgnhVxsLN6d6QqQpKGA7vaGrAO3JLwkK4JqmYbNZQ9IlR5qDHghK3V5qmwtJA1LjrIzonoZRrwvUyiVYjXStXDe96lX8NeV/7ttcArgQDUJroFfj9JsI4pmZmbz00kt069YtaHu7du2YO3cuW7Zs4euvv6ZFixYMGzaMo0ePApCdnU12djYzZ85ky5YtLFiwgE8//ZRbb7017HUeeOAB0tLSTpiXW2+9NSQfVa1cuZLDhw8HXhdffHFgX1ZWFiNGjGDAgAFs2rSJyZMnc/fdd7N48eK63goBXNY9/M8oNczkL9Wbjw+XOUNWUase+80mY9jhW7GW4Iopl9c3/WlNgVzToF1aNFFWI0nRFm4Z2JoOadGB63VOsHFdlxS6p0Wjq1w2tUdaDM9e2ZV7Lmwd9pxCiPoJV7g6mVdjdcar00tKSrjhhht4+eWXeeKJJ4L2jRkzJuj9rFmzmD9/Pj/++CODBw+mS5cuQQGydevWPPnkk9x444243W4MhuMf75NPPmH58uUsXryYTz75JGxeXnjhBQoLC3nkkUdqTJOQkEBKSkrYfS+++CIZGRk8++yzAHTs2JHvv/+emTNnctVVV9V6L4RPh5Robr6gJW+s30eFy4te0/CisJn0nJsew/cHiwIl6xKHB5NBFyilu5Vie2EZXeJtgfN1To7l2/1HA8fU9Aerhdl3oNRBa70Fi14XcmxilJnh3Y4/cCREmhndOwOHy0Opw43VZMBa2TzgfxBozF8WQojfnjMexCdMmMDIkSMZMmRISBCvyul08tJLLxETE0P37t1rTOef+7ZqAD9y5Ai33XYb77//PhER4dew3rZtG4899hjr169nz549NZ5/1KhRVFRU0LZtW+677z7++Mc/BvatW7eOYcOGBaUfPnw48+fPx+VyYTSGdlpyOBw4HMfbTu12e43XPpuckxFHl7QYNh8oILfYgcWop0d6LBajnj++8h1rfslHr8HhogoSI4PHVP9cVI6mQYfYCHTAoNZNWLf/aGC/y+0mnCKHm2izISjQehTsLqogzmwgwWLAatCTHGOhW0YcXdJjMRpCK7PMRn3IKmwSvIU4TaR3+pnz1ltvsXHjRjIzM2tMs2zZMq677jrKyspITU1lxYoVJCaGH9ebn5/P448/zu233x7YppRi3LhxjB8/nt69e7N3796Q4xwOB9dffz1PP/00GRkZYYN4ZGQks2bNon///uh0Oj788EOuvfZaFi5cyI033ghATk4OycnJQcclJyfjdrvJy8sjNTU15LzTp0/n0UcfrfHzn81MBh3ntkwI2f7R7f1Y8XMub3x/kCPFFUQa9ZS4PGgagY5lPxeV84u9gj90SOYP7ZJIiLXw4PsbUQrcbg9OpwujMThg55Q4aBZtgWod47xAvsNNvsPNQ8Pa07UeM8YJIU4zCeJnxoEDB7jnnntYvnw5FkvNw3guuugiNm/eTF5eHi+//DLXXHMN69evp0mTJkHp7HY7I0eOpFOnTkyZMiWwfc6cOdjtdiZNmlTjNSZNmkTHjh0DwTicxMRE7rvvvsD73r17U1BQwIwZM4KOq17iqq0addKkSUycODHoc9R3KbqzjV6ncUnHZC7p6HtgUkrxxe48Fv9wiN15pQC0S4zkjz2acmFr3wNfj1YJjDonnZfX7GLNrlw8wBGHb6Uw/6QxTo9i17Ey2sVHBPVm9//7jz2bSgAXQvymnLEgvmHDBnJzc+nVq1dgm8fj4auvvmLu3Lk4HA70ej02m402bdrQpk0b+vbtS9u2bZk/f35QUC4uLuaSSy4hMjKSJUuWBFVbr1q1im+//RazObhTVO/evbnhhhtYuHAhq1atYsuWLbz77rvA8cCbmJjIww8/XGNJuW/fvvznP/8JvE9JSSEnJycoTW5uLgaDgYSE0BIlgNlsDsmbqB9N07i4bRIXt03C6fGN2TbpQ6u5mydE8sQfegbe7y8o4/k1e3jvx8M4PV4sBh3DOyQzulsqmw8UsulgIV6vol1yFMM6JtMptXEtUSjE2UFmbDsjBg8ezJYtW4K23XzzzXTo0IEHH3wQvT78eGGlVEgb8vDhwzGbzXz44YchpfrZs2cHtbVnZ2czfPhw3n77bc477zwAFi9eTHl5eSBNZmYmt9xyC2vWrKF165p7EW/atCmoirxfv34sXbo0KM3y5cvp3bt32PZw0fDCBe+aZMRF8K9RXXhiZCdKnW4izQYMOt/xvWT4lxCNg1SnnxlRUVF06dIlaJvNZiMhIYEuXbpQWlrKk08+yahRo0hNTSU/P5958+Zx8OBBrr76asBXAh82bBhlZWUsWrQIu90e6BiWlJSEXq8nIyMj6BqRkZGAryd7s2bNAv+uKi8vD/D1Lo+NjQVg4cKFGI1GevbsiU6nY+nSpcyePZt//etfgePGjx/P3LlzmThxIrfddhvr1q1j/vz5vPnmmw1018TpYNTriLXKgiNCiMbnjPdOr4ler2fHjh0sXLiQvLw8EhIS6NOnD2vWrKFz586Ar0reP/lLmzZtgo7PysqiRYsWDZqnJ554gn379qHX62nXrh2vvPJKUHt4y5Yt+fjjj7nvvvt4/vnnSUtLY/bs2TK8TAghThff2NBTP0cjpanapqQSvyq73U5MTExgqJwQQjRGp/u7zH9+w60vo5nCDx2uK+Uswz3/tkb5vfubmLFNCCGEEPX3m61OF0IIIWolHduEEEKIRkqCuBBCCNFY6Tj1luHG27LceHMuhBBCnOWkJC6EEKLxkup0IYQQopE6y4O4VKcLIYQQjZSUxIUQQjRisgCKEEII0Ug1QHV6Iw7iUp0uhBBCNFJSEhdCCNF4neUd2ySICyGEaMTO7jZxqU4XQgghGikpiQshhGi8zvLqdCmJCyGEaLR0mtYgr/r46quvuPzyy0lLS0PTNN5///2g/Uoppk6dSlpaGlarlUGDBrF169agNA6Hg7vuuovExERsNhujRo3i4MGD9f/89T5CCCGE+I3wF8RP9VUfpaWldO/enblz54bdP2PGDGbNmsXcuXPJzMwkJSWFoUOHUlxcHEhz7733smTJEt566y2+/vprSkpKuOyyy/B4PPXKi1SnCyGEEPVw6aWXcumll4bdp5Ti2Wef5eGHH2b06NEALFy4kOTkZN544w1uv/12ioqKmD9/Pq+99hpDhgwBYNGiRaSnp7Ny5UqGDx9e57xISVwIIUSj1ZDV6Xa7PejlcDjqnZ+srCxycnIYNmxYYJvZbGbgwIGsXbsWgA0bNuByuYLSpKWl0aVLl0CaOn/+eudQCCGE+I3QaQ3zAkhPTycmJibwmj59er3zk5OTA0BycnLQ9uTk5MC+nJwcTCYTcXFxNaapK6lOF0IIIYADBw4QHR0deG82m0/6XFq1hnalVMi26uqSpjopiQshhGi0NE1rkBdAdHR00OtkgnhKSgpASIk6Nzc3UDpPSUnB6XRSUFBQY5q6kiAuhBCi0WrI6vSG0LJlS1JSUlixYkVgm9PpZPXq1Zx//vkA9OrVC6PRGJTm8OHD/PTTT4E0dSXV6UIIIUQ9lJSUsHv37sD7rKwsNm/eTHx8PBkZGdx7771MmzaNtm3b0rZtW6ZNm0ZERARjxowBICYmhltvvZX777+fhIQE4uPj+dvf/kbXrl0DvdXrSoK4EEKIRqtqdfgpnKReyb///nsuuuiiwPuJEycCMHbsWBYsWMADDzxAeXk5d9xxBwUFBZx33nksX76cqKiowDHPPPMMBoOBa665hvLycgYPHsyCBQvQ6/X1y7pSStXrCHFa2e12YmJiKCoqCupgIYQQjcnp/i7znz/uvv+hmSNO6VzKUUbBM9c0yu9daRMXQgghGimpThdCCNF4NUB1umrEC6BIEBdCCNFoNUjv8sYbwyWICyGEaLwaomPbKXeMO4OkTVwIIYRopKQkLoQQotGS6nQhhBCikfKtB36q1ekNlJkzQKrThRBCiEZKSuJCCCEaLalOF0IIIRop6Z0uhBBCiEZJSuJCCCEaLR0Nu5RoYyNBXAghRKOl0zR0v/IqZr8lUp0uhBBCNFJSEhdCCNFo+caJn/o5GisJ4kIIIRqts706XYK4EEKIRutsL4lLm7gQQgjRSElJXAghRKOlNUB1umrERXEJ4kIIIRotqU4XQgghRKMkJXEhhBCNVkP0TpfqdCGEEOIMkOp0IYQQQjRKUhIXQgjRaEl1uhBCCNFISXW6EEIIIRolKYkLIYRotM726vTfTEl8+vTpaJrGvffeG9g2depUOnTogM1mIy4ujiFDhrB+/frA/mPHjnHXXXfRvn17IiIiyMjI4O6776aoqCjsNRwOBz169EDTNDZv3hw2TX5+Ps2aNUPTNAoLC4P2bdmyhYEDB2K1WmnatCmPPfYYSqmgNKtXr6ZXr15YLBZatWrFiy++eFL3QwghRO381emn+mqsfhNBPDMzk5deeolu3boFbW/Xrh1z585ly5YtfP3117Ro0YJhw4Zx9OhRALKzs8nOzmbmzJls2bKFBQsW8Omnn3LrrbeGvc4DDzxAWlraCfNy6623huQDwG63M3ToUNLS0sjMzGTOnDnMnDmTWbNmBdJkZWUxYsQIBgwYwKZNm5g8eTJ33303ixcvru8tEUIIUQf+kvipvhqrMx7ES0pKuOGGG3j55ZeJi4sL2jdmzBiGDBlCq1at6Ny5M7NmzcJut/Pjjz8C0KVLFxYvXszll19O69atufjii3nyySdZunQpbrc76FyffPIJy5cvZ+bMmTXm5YUXXqCwsJC//e1vIftef/11KioqWLBgAV26dGH06NFMnjyZWbNmBUrjL774IhkZGTz77LN07NiRP//5z9xyyy0nvKYQQghxss54EJ8wYQIjR45kyJAhJ0zndDp56aWXiImJoXv37jWmKyoqIjo6GoPheHP/kSNHuO2223jttdeIiIgIe9y2bdt47LHHePXVV9HpQm/LunXrGDhwIGazObBt+PDhZGdns3fv3kCaYcOGBR03fPhwvv/+e1wuV9jrOhwO7HZ70EsIIUTd6LSGeTVWZzSIv/XWW2zcuJHp06fXmGbZsmVERkZisVh45plnWLFiBYmJiWHT5ufn8/jjj3P77bcHtimlGDduHOPHj6d3795hj3M4HFx//fU8/fTTZGRkhE2Tk5NDcnJy0Db/+5ycnBOmcbvd5OXlhT3v9OnTiYmJCbzS09PDphNCCBFK07QGeTVWZyyIHzhwgHvuuYdFixZhsVhqTHfRRRexefNm1q5dyyWXXMI111xDbm5uSDq73c7IkSPp1KkTU6ZMCWyfM2cOdrudSZMm1XiNSZMm0bFjR2688cYT5rn6D9pfjV51e13SVL92UVFR4HXgwIET5kEIIcSZV1xczL333kvz5s2xWq2cf/75ZGZmBvYrpZg6dSppaWlYrVYGDRrE1q1bGzwfZyyIb9iwgdzcXHr16oXBYMBgMLB69Wpmz56NwWDA4/EAYLPZaNOmDX379mX+/PkYDAbmz58fdK7i4mIuueQSIiMjWbJkCUajMbBv1apVfPvtt5jNZgwGA23atAGgd+/ejB07NpDmnXfeCeRj8ODBACQmJgYeCFJSUgIlbj//w4S/9F1TGoPBQEJCQtj7YDabiY6ODnoJIYSoG60BqtJPpiD+5z//mRUrVvDaa6+xZcsWhg0bxpAhQzh06BAAM2bMYNasWcydO5fMzExSUlIYOnQoxcXFDfr5z9g48cGDB7Nly5agbTfffDMdOnTgwQcfRK/Xhz1OKYXD4Qi8t9vtDB8+HLPZzIcffhhSqp89ezZPPPFE4H12djbDhw/n7bff5rzzzgNg8eLFlJeXB9JkZmZyyy23sGbNGlq3bg1Av379mDx5Mk6nE5PJBMDy5ctJS0ujRYsWgTRLly4Nuv7y5cvp3bt30IOFEEKIhtEQvcvre3x5eTmLFy/mgw8+4MILLwR8Q6Lff/99XnjhBR5//HGeffZZHn74YUaPHg3AwoULSU5O5o033ghq8j1VZyyIR0VF0aVLl6BtNpuNhIQEunTpQmlpKU8++SSjRo0iNTWV/Px85s2bx8GDB7n66qsBXwl82LBhlJWVsWjRoqCOYUlJSej1+pA27sjISABat25Ns2bNAv+uyt9+3bFjR2JjYwFfT/lHH32UcePGMXnyZHbt2sW0adN45JFHAlXl48ePZ+7cuUycOJHbbruNdevWMX/+fN58880GvHNCCCHOJLfbjcfjCSk0Wq1Wvv76a7KyssjJyQnq6Gw2mxk4cCBr16799YP4yfSYPtVqYb1ez44dO1i4cCF5eXkkJCTQp08f1qxZQ+fOnQFflbx/8hd/NblfVlZWoITcEGJiYlixYgUTJkygd+/exMXFMXHiRCZOnBhI07JlSz7++GPuu+8+nn/+edLS0pg9ezZXXXVVg+VDCCHEcTpOvXe5v125eqwzm81BI5L8oqKi6NevH48//jgdO3YkOTmZN998k/Xr19O2bdtAs2q4js779u07tcxWU6cgHhsbW6/ee5qmsXPnTlq1alWvzHz55ZeBf1ssFt57770Tph80aFDIjGm1adGiRa3H1HTerl278tVXX53w2IEDB7Jx48Z65UkIIcTJacjq9Oqjg6ZMmcLUqVPDHvPaa69xyy230LRpU/R6Peeccw5jxowJ+v4P19G5oXvC17k6/d133yU+Pr7WdEopRowYcUqZEkIIIepCx6n30PYff+DAgaBa5HClcL/WrVuzevVqSktLsdvtpKamcu2119KyZUtSUlIA37Dj1NTUwDG5ubkhpfNTVacg3rx5cy688MIae1hX16pVK+nIJYQQolE5mRFCNpsNm81GQUEBn332GTNmzAgE8hUrVtCzZ0/AN2HZ6tWr+de//tWgea5TEM/KyqrXSX/66aeTyowQQghRHw0xWcvJHP/ZZ5+hlKJ9+/bs3r2bv//977Rv356bb745sJjXtGnTaNu2LW3btmXatGlEREQwZsyYU8prdbIUqRBCiEarIaZNPZnji4qKmDRpEgcPHiQ+Pp6rrrqKJ598MlAL/cADD1BeXs4dd9xBQUEB5513HsuXLycqKurUMluNpurbMwz47rvv+PLLL8nNzcXr9Qbtq7qql6g/u91OTExMYA54IYRojE73d5n//BfO/BSD1XZK53KXl/LV3y5plN+79S6JT5s2jX/84x+0b9+e5OTkE045KoQQQpxOZ6ok/ltR7yD+3HPP8corrzBu3LjTkB0hhBCi7s7EjG2/JfXuma/T6ejfv//pyIsQQggh6qHeQdw/G5kQQghxpuka6NVY1bs6/W9/+xsjR46kdevWdOrUKWQ8eG2zrAkhhBANRWuA6vTG3J+r3kH8rrvu4osvvuCiiy4iISGhUX94IYQQojGrdxB/9dVXWbx4MSNHjjwd+RFCCCHqTHqn11N8fHzI0p1CCCHEmSC90+tp6tSpTJkyhbKystORHyGEEKLOpGNbPc2ePZtffvmF5ORkWrRoEdKxTZbhFEIIIX4d9Q7if/jDH05DNoQQQoj6O9ur0+sdxKdMmXI68iGEEELU29nesa0xNwUIIYQQZ7U6BfH4+Hjy8vLqfNKMjAz27dt30pkSQggh6sJfnX6qr8aqTtXphYWFfPLJJ8TExNTppPn5+Xg8nlPKmBBCCFGbs706vc5t4mPHjj2d+RBCCCFEPdUpiHu93tOdDyGEEKLefOO8T7F3esNk5Yyod+90IYQQ4rdCa4Dq9EbcJN6oH0CEEEKIs5qUxIUQQjRaMtmLEEII0UhJ73QhhBCikZKSeD3Z7faw2zVNw2w2YzKZTjlTQgghhKhdvYN4bGws2gmeWpo1a8a4ceOYMmUKOp30mxNCCHH6aJWvUz1HY1XvIL5gwQIefvhhxo0bx7nnnotSiszMTBYuXMg//vEPjh49ysyZMzGbzUyePPl05FkIIYQApE283kF84cKF/N///R/XXHNNYNuoUaPo2rUr//73v/n888/JyMjgySeflCAuhBBCnEb1ru9et24dPXv2DNnes2dP1q1bB8AFF1zA/v37Tz13QgghxAnoaIAFUBpxhXq9g3izZs2YP39+yPb58+eTnp4O+BZAiYuLO/XcCSGEECfgr04/1VdjVe/q9JkzZ3L11VfzySef0KdPHzRNIzMzkx07dvDuu+8CkJmZybXXXtvgmRVCCCHEcfUO4qNGjeLnn3/mxRdfZOfOnSiluPTSS3n//fdp0aIFAH/9618bOp9CCCFECB2nXh3emKvTT2qylxYtWvDUU081dF6EEEKIepHe6SehsLCQ7777jtzc3JBlSm+66aYGyZgQQgghTqzeQXzp0qXccMMNlJaWEhUVFTTxi6ZpEsSFEEL8arQGmHb1RBOY/dbVu3f6/fffzy233EJxcTGFhYUUFBQEXseOHTsdeRRCCCHCOtt7p9c7iB86dIi7776biIiI05EfIYQQos5OeYz4SZTk3W43//jHP2jZsiVWq5VWrVrx2GOPBTUvK6WYOnUqaWlpWK1WBg0axNatWxv649c/iA8fPpzvv/++wTMihBBCNAb/+te/ePHFF5k7dy7bt29nxowZPP3008yZMyeQZsaMGcyaNYu5c+eSmZlJSkoKQ4cOpbi4uEHzUu828ZEjR/L3v/+dbdu20bVrV4xGY9D+UaNGNVjmhBBCiBPRcRKl0TDnqI9169ZxxRVXMHLkSMA3YuvNN98MFHCVUjz77LM8/PDDjB49GvBNWZ6cnMwbb7zB7bfffoo5Pq7eQfy2224D4LHHHgvZp2kaHo/n1HMlhBBC1IGmaafcMc1/fPWlts1mM2azOST9BRdcEJgrpV27dvzwww98/fXXPPvsswBkZWWRk5PDsGHDgs41cOBA1q5de2aDePUhZUIIIcTvgX/qcL8pU6YwderUkHQPPvggRUVFdOjQAb1ej8fj4cknn+T6668HICcnB4Dk5OSg45KTk9m3b1+D5vmkxokLIYQQvwUNOdnLgQMHiI6ODmwPVwoHePvtt1m0aBFvvPEGnTt3ZvPmzdx7772kpaUxduzYQLrqNQRKqQYfzlanID579mz+8pe/YLFYmD179gnT3n333Q2SMSGEEKI2WuXrVM8BEB0dHRTEa/L3v/+dhx56iOuuuw6Arl27sm/fPqZPn87YsWNJSUkBfCXy1NTUwHG5ubkhpfNTVacg/swzz3DDDTdgsVh45plnakynaZoEcSGEEL9rZWVl6HTB3eH0en2gublly5akpKSwYsWKwNLdTqeT1atX869//atB81KnIJ6VlRX230IIIcSZdDLjvMOdoz4uv/xynnzySTIyMujcuTObNm1i1qxZ3HLLLYCvQHvvvfcybdo02rZtS9u2bZk2bRoRERGMGTPmlPJanbSJCyGEaLTOxBCzOXPm8M9//pM77riD3Nxc0tLSuP3223nkkUcCaR544AHKy8u54447KCgo4LzzzmP58uVERUWdYm6DaUopVZ8DPB4PCxYs4PPPPw+7AMqqVasaNINnG7vdTkxMDEVFRXVqmxFCiN+i0/1d5j//A69+gzki8pTO5SgrYcZN/Rvl9269S+L33HMPCxYsYOTIkXTp0qVRTxwvhBCicdM03+tUz9FY1TuIv/XWW/zvf/9jxIgRpyM/QgghRJ2d7auY1TuIm0wm2rRpczryIoQQQtRLQw4xa4xOainS5557jno2pQshhBCigdUpiI8ePTrw+uabb3j99ddp3bo1l19+edA+/0TvJ2P69OmBbvl+U6dOpUOHDthsNuLi4hgyZAjr168P7D927Bh33XUX7du3JyIigoyMDO6++26KiorCXsPhcNCjRw80TWPz5s2B7fn5+VxyySWkpaVhNptJT0/nzjvvDJpHd+/evYE5equ+Pv3006BrrF69ml69emGxWGjVqhUvvvjiSd8TIYQQJ3YmliL9LalTdXpMTEzQ+yuvvLJBM5GZmclLL71Et27dgra3a9eOuXPn0qpVK8rLy3nmmWcYNmwYu3fvJikpiezsbLKzs5k5cyadOnVi3759jB8/nuzsbN59992Q6zzwwAOkpaXxww8/BG3X6XRcccUVPPHEEyQlJbF7924mTJjAsWPHeOONN4LSrly5ks6dOwfex8fHB/6dlZXFiBEjuO2221i0aBHffPMNd9xxB0lJSVx11VUNcauEEEJUcbZ3bKv3ELOGVlJSwjnnnMO8efN44okn6NGjR2AlmOr8QwpWrlzJ4MGDw6Z55513uPHGGyktLcVgOP6M8sknnzBx4kQWL14cGJzfo0ePGvM1e/Zsnn76aQ4cOAD4SuItW7Y84XEPPvggH374Idu3bw9sGz9+PD/88APr1q078Y2o9hkb41AHIYTw+7WGmP3jjXVYTnGIWUVZCU+M6dcov3fr3SZ+8cUXU1hYGLLdbrdz8cUX1zsDEyZMYOTIkQwZMuSE6ZxOJy+99BIxMTF07969xnT+H0LVAH7kyBFuu+02XnvtNSIiImrNU3Z2Nu+99x4DBw4M2Tdq1CiaNGlC//79Q0r769atC1p6DmD48OF8//33uFyusNdyOBzY7faglxBCiLrRNdCrsap33r/88kucTmfI9oqKCtasWVOvc7311lts3LiR6dOn15hm2bJlREZGBuZtX7FiBYmJiWHT5ufn8/jjjwet1aqUYty4cYwfP57evXufMD/XX389ERERNG3alOjoaP7zn/8E9kVGRjJr1izeffddPv74YwYPHsy1117LokWLAmlycnLCLj3ndrvJy8sLe83p06cTExMTeFVfCk8IIUTNpE28jn788cfAv7dt2xZYLxV8s7h9+umnNG3atM4XPnDgAPfccw/Lly/HYrHUmO6iiy5i8+bN5OXl8fLLL3PNNdewfv16mjRpEpTObrczcuRIOnXqxJQpUwLb58yZg91uZ9KkSbXm6ZlnnmHKlCn8/PPPTJ48mYkTJzJv3jwAEhMTue+++wJpe/fuTUFBATNmzODGG28MbA+39Fy47X6TJk1i4sSJQZ9DArkQQoi6qHMQ9/fq1jQtbLW51Wplzpw5db7whg0byM3NpVevXoFtHo+Hr776irlz5+JwONDr9dhsNtq0aUObNm3o27cvbdu2Zf78+UFBubi4mEsuuYTIyEiWLFmC0WgM7Fu1ahXffvttyLqwvXv35oYbbmDhwoWBbSkpKaSkpNChQwcSEhIYMGAA//znP4OWkquqb9++QaX1lJSUoIcb8C09ZzAYSEhICHsOs9lc45q1QgghTuxsHyde5yCelZWFUopWrVrx3XffkZSUFNhnMplo0qQJer2+zhcePHgwW7ZsCdp2880306FDBx588MEaz6WUwuFwBN7b7XaGDx+O2Wzmww8/DCnVz549myeeeCLwPjs7m+HDh/P2229z3nnn1Zg/fwm66rWq27RpU1CA79evH0uXLg1Ks3z5cnr37h30YCGEEKJh6DTf61TP0VjVOYg3b94cl8vFTTfdRHx8PM2bNz+lC0dFRdGlS5egbTabjYSEBLp06UJpaSlPPvkko0aNIjU1lfz8fObNm8fBgwe5+uqrAV8JfNiwYZSVlbFo0aKgjmFJSUno9XoyMjKCrhEZ6evF2Lp1a5o1awbAxx9/zJEjR+jTpw+RkZFs27aNBx54gP79+9OiRQsAFi5ciNFopGfPnuh0OpYuXcrs2bOD1oYdP348c+fOZeLEidx2222sW7eO+fPn8+abb57SvRJCCCHCqde0q0ajkQ8++CBoubXTRa/Xs2PHDhYuXEheXh4JCQn06dOHNWvWBMZpb9iwITD5S/WpYLOysgIBuDZWq5WXX36Z++67D4fDQXp6OqNHj+ahhx4KSvfEE0+wb98+9Ho97dq145VXXglqD2/ZsiUff/wx9913H88//zxpaWnMnj1bxogLIcRp4m/mPdVzNFb1Hid+880307Vr16DOWKLhyDhxIcTvwa81Tnza2+sbZJz45GvPa5Tfu/VeAKVNmzY8/vjjrF27ll69emGz2YL233333Q2WOSGEEOJEzvaSeL2D+H/+8x9iY2PZsGEDGzZsCNqnaZoEcSGEEOJXUu8gnpWVdTryIYQQQtSb9E4/BbVNZCKEEEKcThqnPm1qY45gJ/XZX331Vbp27YrVasVqtdKtWzdee+21hs6bEEIIIU6g3iXxWbNm8c9//pM777yT/v37o5Tim2++Yfz48eTl5QVNTSqEEEKcTtKxrZ7mzJnDCy+8wE033RTYdsUVV9C5c2emTp0qQVwIIcSvpiFWITurVjE7fPgw559/fsj2888/n8OHDzdIpoQQQghRu3oH8TZt2vC///0vZPvbb79N27ZtGyRTQgghRF1ogKad4utMf4hTUO/q9EcffZRrr72Wr776iv79+6NpGl9//TWff/552OAuhBBCnC4NsR54Y15PvN4l8auuuor169eTmJjI+++/z3vvvUdiYiLfffcdV1555enIoxBCCCHCOKlx4r169WLRokUNnRchhBCiXmQ9cSGEEKKROtur0+scxHU6Xa1j6TRNw+12n3KmhBBCiLqQaVfraMmSJTXuW7t2LXPmzKGeq5oKIYQQ4hTUOYhfccUVIdt27NjBpEmTWLp0KTfccAOPP/54g2ZOCCGEOJGzvU38pCaqyc7O5rbbbqNbt2643W42b97MwoULycjIaOj8CSGEEDXyt4mf6quxqlcQLyoq4sEHH6RNmzZs3bqVzz//nKVLl9KlS5fTlT8hhBBC1KDOQXzGjBm0atWKZcuW8eabb7J27VoGDBhwOvMmhBBCnNApz9ZW+aqPFi1aBBZeqfqaMGEC4Fume+rUqaSlpWG1Whk0aBBbt249DZ++Hm3iDz30EFarlTZt2rBw4UIWLlwYNt17773XYJkTQgghTuRMrCeemZmJx+MJvP/pp58YOnQoV199NeAr9M6aNYsFCxbQrl07nnjiCYYOHcrPP/9MVFTUKeY2WJ2D+E033dSol2sTQgghGkJSUlLQ+6eeeorWrVszcOBAlFI8++yzPPzww4wePRqAhQsXkpyczBtvvMHtt9/eoHmpcxBfsGBBg15YCCGEOFW+6vBTXU/85I91Op0sWrSIiRMnomkae/bsIScnh2HDhgXSmM1mBg4cyNq1a89cEBdCCCF+axpyPXG73R603Ww2YzabT3js+++/T2FhIePGjQMgJycHgOTk5KB0ycnJ7Nu37xRzGqoxr4UuhBBCNJj09HRiYmICr+nTp9d6zPz587n00ktJS0sL2l69dkApdVqapKUkLoQQotHy9ww/1XMAHDhwgOjo6MD22krh+/btY+XKlUEdulNSUgBfiTw1NTWwPTc3N6R03hCkJC6EEKLRasghZtHR0UGv2oL4f//7X5o0acLIkSMD21q2bElKSgorVqwIbHM6naxevZrzzz+/wT+/lMSFEEI0Wg3ZJl4fXq+X//73v4wdOxaD4Xgo1TSNe++9l2nTptG2bVvatm3LtGnTiIiIYMyYMaeY01ASxIUQQoh6WrlyJfv37+eWW24J2ffAAw9QXl7OHXfcQUFBAeeddx7Lly9v8DHiIEFcCCFEI9aQbeL1MWzYsBpX7tQ0jalTpzJ16tRTylddSBAXQgjRaJ3MtKnhztFYSRAXNfJ4FYVlTjQg1mZq1Cv9CCHE75EEcRHC41Ws3XWUzD35lDt98wNHWQyc1yaRc1slhB3/6Puv7986XWj1ltPtocDuQClFbJQZi0l+9YQQp+5MdWz7rZBvUhHEqxSLv9vPriPFQduLK9ys/CmHb34+il4H0REmWsbbwOWmsNgJgM2kJ8FmIjbCSGysldi4CBSKn/YcY99hO97K5iMNSEuy0b1NIiaj/lf+hEKI35Mz1Sb+WyFBXATZfqgoJIBXVe7ylcxLHOVkF5Rj0Wu0iLSg12mUOj2UOsupcHnweBSHj5ayKduOy+PFotdh1mvoNA0F7D9Swre/5DP/p8Nc1yud2/u3IC7C9Ct9SiGE+H1ozLUI4jTYuPdYvZblq/AossucQdtyS5yUuzwYNUiKMOLyKopdHo5VuHFXFsf1Oo2mUWbaxFiY8flOBs1eQ469ogE/iRDibKA10KuxkiAuAkrKnFi9is7xEXSMs5JkNdbpF8Tu8uDyeoO2HSv1Bfam0ZbANi9Q5HQHDcsYmB6HV8HBwgrufe/HhvgYQoiziE5rmFdjJUFcUFHhYldWPht+yiHBbCDGbCDObKBdrJUeSZGY9bX/hpe7g4N4mcuLpmmYDTr0VdqbPAqclaVxnaYRbzFWbld8uj2XeWv2NOAnE0KI3zdpEz+L2YsdHMq2U1buAsBm1ONRCofbi7cy8Jr1Gh3jIticV1qvc/ufbJVSKIInRHB6FGa9b1+R0x2074EPtlLu8nL/xW1O8lMJIc4m0rFNnJUKiyr4JetY0DZN09ADEUY9ZW4PXuUrLduMemJMeooqh5uFE2EI7mUeZTHgVYqCclegV3p1ClhzoDBk+5SPt5MUaaRLajTdm8aib8x1XUKI06oh2rQb8zeMBPGzjFIKr8fL4cP2sPs1TUMphVmvC1SRe5UizmyoMYjHGPUYqgRanQaxFgMasL8otLOaQafh8Sryy12s3l8QlDeF7w/quS9+oUOTSGIsBm45vyW9m8fV+tl+yi5ize6jAAxok0SXtJhajxFCNG5aA7RpN+KCuATxs4VSCleFG5fDDQoykqPweLwUFDvIqxZoNU3DoGloeH1BVdOwVo7n1iAQaBVg1etItR0fGqbTICPWikGvY/vRUgorgqvLNcCi19iWV8rLP2RTVvmgoJQKKrGXVD4wFFW4eXbVLh4c1p6uTcMH5cNF5fxpwXq+2n008EStgAFtEnltXF/SYqwndc+EEOK3ToL4WUAphaPUiccV3PlMr9eREGPBbNJz6Ghom7dO0/AohQb07dCEthUuNu8roLjCTbTVSJemMVh1GoXFDjwehc2kJz7SRHZBORv3F+KpEpU1fE+7+4sd/N/6fRwucQRK/b7/EhTEDdUerd/6/kDYIF7icDP4uS/Zm+/Lf9Wa+3V78hn83JdkPjiUSLP8qgvxeyRt4uJ3z+Py4nZ68Hh9AbnqtKiaphEVYSIqwklxmSvoOH+HNKNBR0qCjTSdRtf00Gptr8dLaYmTslInyqtoHheB1WpkT14phaVODHqN1inRdM6IJcpqZMPREg6XOPEqBco3zasKui40jbEEvd97rIycogpSqmwHeP27ffxytIRwze5ur2LP0RJe/24ftw9ofRJ3TgjxW3e2t4nLELPfOa/HS1FBGSVlLsor3JRVuCkpc+FweqrMea6IiTQHjvFVbfuqt3U6jS5tkzhW6mDPkWIOF5ThcropK/UF7fIyJ0dziiktdqCqFKWbWIyc1yyGgS3j6Z0WQ6wGhcfKcTg8PDWqCzrNN9e6RwWXnjUg3mokMcIY8lnWZeWHbHvtu7213oNX19eeRgghGiMpif+Oeb2K/KOleKqN4QZwujx4lcJqNqBpGiaj73nO3wbu8nppmhyJyWJk2aZD5FaZTc1m0tMjNZqMuIgTZ0CBUafD6fU9MOQeLeFwbglNEm289+fzGPvaBvLLXIGObgpItJnokx4Ttnrr3U2HiDDpGd4pJbAt114RthReJQtszS5kd66dNk2iT5xfIUSj0xCTtTTmATASxH/HykocYQO4n9vtxWPwotNpeD3Hp0NNbxpDXJyFjb8c4/vth0D5xou7vQqPglKnh2/2FeBR0DK+5kCuaRoGg4ZOp6E8CpvFQHG5m9y8UszAN3f2Z322nR8OFbFi+xESbSZiLKEl8KoWfbefvi0TiLH60rVKjGR/QVnNw9iUoszh5PwnP2Ttw6MkkAvxO6NV/u9Uz9FYSXX671hZqbPWNC5/kNdrtMiIpVvnZCJsRpZ+u5+f9xdg0jT0Og29pmEx6INmb9twMLjzWk30lW3wGmAy6HzV+F7F7qxj2EqdjGwexyND29cawMHXfj5l2VbyKz/bLee3qjGAQ+WQObcLe4WLv/9vfa3nF0KIxkSC+O+QUorth4pYtv0Ib/6YzZJtOWzNLcblCS2Ve72+9b/jE2zEx1k5lFvC+h8PE2vQ0SzKTKtYC6k2E8bK+ia9pgX+7fIqDtVz0RKD3hfQ/dVXZoOO/MIKvMUOruyccuKDKx0pdvDPZVspcbgZ3aMpF7VrEnacp1IK5XGD143Hq/joxwPkFJXVK79CiN82TWuYV2MlQfx3xuP18ta3+/jfd/s5WFSB3eEmt9TJ1/sKeGfrYUqqTXOq02lYosy4PV527MojL7eEGLMBq1GPTvOVZCONOtKjzegr3/uDuAaUVTtfdUop3JWlfX9pPPBvzbc0qf8PSF9x4nMFzgnklThYseMIBr2O92+/gL7NY3095apcF48LXOVVtsHevJI6XUMI0TjoaIAFUM70hzgFjTnvIowvt+eyK8e3Hnj1WuYSh4cVu/OCttliLJSUOtnx81E8Tjcmgw6jXofVoCPWYsRYWXI2aBpxFl8XCn9JWgHmatOtVqWUwunyBvKhlPJ1YKvs/e7nD+xGnUab+IgTdjLRNK2y57xi6ZbDAFhNesb0SgdHCcpRhnKUgaME3I6Q42NlzXIhxO+IBPHfEZfHS+ae/Bp7aysgt9TJ0cr2ZJNJj8fr5eDBIox6DaNBj1Gvw6jXMOh9vxpRJkOgRB5jCu4Hqdc0mlUbtw0Ehq65PV4qqpTUNU3D4fatbuau0pBdNb9to8w1djLxB39/D/rCchfrKud/v6JnRuU0ch7fK4yYCDPtU2QqViF+T7QG+l9jJUH8dyTXXoHjBL3RwRfnsosrMFsNRMdHcPiQHbNRj9lowGTQY9DrAiVtY2Ugt1SWtvU636+6f4rUrqlRgTTVlZY7KausHvcH9TKnG68Ct9eLR1WWyL3B063GmgyMap8UWPREVaYD33rk7ipj211eL8999YvvvabDEmE74WdX5giWbcs5YRohToVSioIyJ8UVLpRS5Ngr2HesjDKnmyP2CrZlF7E3r5Rf8kp4a+NB3t50kH3HpJ/GqTjb28RliNnvSe0dxQGwRZmJS7CRk23HaNAHpj4F0BTodXqcbg9KgU5pGPUauAhUY3sV9EyLoX1SaNA0Ww2g0+Fwe3F73Ch8M6dVuNw4Pb7qdE+VwOyo1tlOp0GkghvPacr87/YHpmatWv3ul1/mYvvRMvJLnWw8UIgtKhqlFBVl1b4UNY2o6BjMFiv//Hg7bq/iyq5pdbtZQgA7j5bwxoaDZO4vwOtVGDTYdugYJQ43HZKj+csFrSj3wKuZB8iu7OwZazGQFGEi3mpEwzdMM8qkR6dplDo9/HCkhP32CjRgaPskpl/WCU3TiLUasRhrbqYSwRoiCDfmIP6bKYlPnz4dTdO49957A9umTp1Khw4dsNlsxMXFMWTIENavPz5M6NixY9x11120b9+eiIgIMjIyuPvuuykqKgp7DYfDQY8ePdA0jc2bNwe25+fnc8kll5CWlobZbCY9PZ0777wTuz14pa8tW7YwcOBArFYrTZs25bHHHgsEI7/Vq1fTq1cvLBYLrVq14sUXXzz1m1NHTaItmAwn/pEqoGVSJGVlThyVJeWqE6v4/22qDO46zVfVpJTC7vQQYzPxp0Gt6NexCfFJNpJSo0hMiSShSSRNUqOIS7ARF2elRct42rVPon37JJqkRuMCnB5fCdyfjwq3F0+12OzPib7MRYRZj9vrpXrdgqpc8zyvcprYEoe78g9ZIyomlvgmydiio4mIjCQqJpbEJslYIo6PZ39m9W6OFNevV704e7254SAj/72ONzce5OfcEnbllbIttwSMJsrdivV787n5tUzuX7yJQ0XHO1IWVrjZdayMQ8W+CYkqPIr8CjdepYgw6jg/PYZWsVYUsOLno/R8+ktaP7aClH98wp/f3MQveaHrGQhR3W8iiGdmZvLSSy/RrVu3oO3t2rVj7ty5bNmyha+//poWLVowbNgwjh71LTeZnZ1NdnY2M2fOZMuWLSxYsIBPP/2UW2+9Nex1HnjgAdLSQktgOp2OK664gg8//JCdO3eyYMECVq5cyfjx4wNp7HY7Q4cOJS0tjczMTObMmcPMmTOZNWtWIE1WVhYjRoxgwIABbNq0icmTJ3P33XezePHihrhNtTIadPTMiCXGpCfBYiDObAj0JAdfKTc11kq8xUBJYQVWswGLSR9o//bzB3KDXoeGr61dAa2bxXJ1/xZEWk2YrUbMFiN6vQ6DQY/RpEcX5jyaptEkPoK+3dPo0bEJOoOOMpeHMldoAPf3fgdfT/JYnZ68MldQKVwpRWGFm5355XiV75jiMid9MuICVfB6vZ4IWyS2qGgsERFouuP5slTOTLd0q1Sri9ptOljII59sR0Hwgj6Vv6eJsbZAMa7c4aa4LLQz5UG7gzKXr5+GV0GJyxuoYeqZEom+spOoTuer9XJ5FP/bdIj+z3zFTzUsGSyO06E1yKux0lT1ouSvrKSkhHPOOYd58+bxxBNP0KNHD5599tmwae12OzExMaxcuZLBgweHTfPOO+9w4403UlpaisFwvLXgk08+YeLEiSxevJjOnTuzadMmevToUWO+Zs+ezdNPP82BAwcAeOGFF5g0aRJHjhzBbPbNM/7UU08xZ84cDh48iKZpPPjgg3z44Yds3749cJ7x48fzww8/sG7dujrdD/9nLCoqIjq6frOLbd1XwKZf8lDqeDu0pmkUO90crXATYzUyumsqETpdldXD/G3Mvi8hP397tcPlocTtoUPrRKJsp96z+1BuCT/uOori+IgwTfOvcnZ86Jp/gpgJn+9EKd8KaRoaZS4PrsovUw3oEB/BpW0SGT+0Hfct2cLiH7JrnPzFZtaTHO372V3YKoFpIzuf8ucRv19KKa5bmMnavcfw+udEqgy0xx82FUWlFdhLfcFbp9NomhgdMm1wis1E81jfkrgakGQ1BNKsO1jEvqKKwOiNUocv4Os1yIiLYMqlHeidEUvLhBP3+fitOZXvsvqcf/mX27BFRp3SuUpLihk2qNNpy+vpdMZL4hMmTGDkyJEMGTLkhOmcTicvvfQSMTExdO/evcZ0/h9C1QB+5MgRbrvtNl577TUiImqZ7xtfCf+9995j4MCBgW3r1q1j4MCBgQAOMHz4cLKzs9m7d28gzbBhw4LONXz4cL7//ntcruAVwhra7uwiNu7OqxIYj3/RRJoM9EiL5k990omoLJVWXcVMqxyrbTZVa4fTwBphpHfX1AYJ4AApiRFYTAZ0/pngdP6x4sE1BgadRvM4K8NbxOFRYHd4KHK4gwK4zaind0oUJRVu9h8t5cmRnTinWWzY65oNOpIiTYHzm2tpdhBnN6UUD3y4lTV7juHx+krK/v4d5S5vUKncUmXUhterws5i6C+JU3kefxORv2odQpfU9CjIOlbGuNc30mX6Kq58+Vty7BV4vIr8UmetczSIs8MZ7dj21ltvsXHjRjIzM2tMs2zZMq677jrKyspITU1lxYoVJCYmhk2bn5/P448/zu233x7YppRi3LhxjB8/nt69ewcCbjjXX389H3zwAeXl5Vx++eX85z//CezLycmhRYsWQemTk5MD+1q2bElOTk5gW9U0brebvLw8UlNTQ67pcDhwOI5XwVVvh6+LohIHu/YVEGc24PYqSt2eoNKoBhSXOiktcWIvd3HUXoHL48Wg15EYaaZJtAWDXodBr+HUPMcfBHQazZvHNehau3qdjvO6prJm48Gw/fD8VeoxViM6nY5eydF4vLDhSDFHy12BNG1irfRJicZa2XO+qNxJiyaRLL7lXK5/NZONB4vweBV6nUa0xYDNrA98Dl/PehlqJmr2xoaDvL7hYI37HW4vVqOu8neq9r8PXbXJD7Qq/62oHFFSUwdOv8935dFn5pc0jbdS6vQ9FPRrEcdf+rWgd5glgs8WdfsJ1H6OxuqMFUcOHDjAPffcw6JFi7BYQsca+1100UVs3ryZtWvXcskll3DNNdeQm5sbks5utzNy5Eg6derElClTAtvnzJmD3W5n0qRJtebpmWeeYePGjbz//vv88ssvTJw4MWh/9WBWtcq6Pmmqmj59OjExMYFXenp6rfn0c3u8/PhzLpu2HcGi07AZdcSY9aTZTEQag3+0SsGWg4Xk2yswaBpmvQ6X20t2YTnbDhVV9kb3BT1/VXuzZuFXEztVERYDXVsloK82a5I/gNtMeqIr51HXaZARbeHKtknc0DGZa9olcVOnFAamxxFRpQdveWUnPaNeR4uECFJjzDSLs5AWayHSYgiq/vR4vTKsR9RIKcWLa7Nq/WL3T1zkqFIiNuh1gb4ZVcVXWRfAVFn7BL4HyoN230O8pmnH1zKo4XrHylwcKjjeeW79vgJufWsTn+44UpeP9rukq5z58VRfjdUZC+IbNmwgNzeXXr16YTAYMBgMrF69mtmzZ2MwGPB4fE+aNpuNNm3a0LdvX+bPn4/BYGD+/PlB5youLuaSSy4hMjKSJUuWYDQe/4NZtWoV3377LWazGYPBQJs2bQDo3bs3Y8eODTpPSkoKHTp04IorruDf//43L7zwAocPHw7sy8kJ7gzlf5jwl75rSmMwGEhISAh7HyZNmkRRUVHg5W+Dr4sde/I5VuTrZX28Wtz3irMYsVarMjbrdcSYDUSZ9MSYDTSxmYgw6HB6vOw5enw6Uk2n0SQ1CqPp9FXUNEmMICPeRlyECZNeh0GnYTXpaRJloUmUBU3zLU9a7vTgrByGZjPqK2eRq9aBDjiUU4yzsspy88EiiquMUa861tyjFEXlblb/EjxznRDgG+nw5saD7MotDRoKGY5/pEVJ+fGatOgIc8iDr0mvkRBx/Dup6gP21qMluCofBtweL67qvT3DsFeZntirfA/o//x4O2t+yWPVzlx+OFS3hYnE78MZq04fPHgwW7ZsCdp2880306FDBx588EH0+vDjJJVSIdXPw4cPx2w28+GHH4aU6mfPns0TTzwReJ+dnc3w4cN5++23Oe+882rMX2Acc+W1+vXrx+TJk3E6nZhMvrbV5cuXk5aWFqhm79evH0uXLg06z/Lly+ndu3fQg0VVZrM5qJ29rkrLXeRVeSI36XVEmPToNQ2PUpQ53USb9JRXebKPthqwWY14K+czd3sUMRYjqsJFSYWbCpcHm81EdIwFw2kep2ow6ImNsWDQaSTYQj+/UooDReVklzvJLnXSOtpa47nizQaUgn1HimnbLBa3V+H0KI6VujAbfQ8ICnC6j39JuuVLTlShlOKFb7KYsXLX8fbryl8RnY4aS2p5RWV4K3+XoiPM2KzBfUcseh3tE22VQzUhxuSbFdHt9fJTbik78st80xO7vVS4TjxRk1/1AO0frvnop9uJqyzxx0cY+fP5LenTPL5uN6Axa4jJWhpvQfzMBfGoqCi6dOkStM1ms5GQkECXLl0oLS3lySefZNSoUaSmppKfn8+8efM4ePAgV199NeArgQ8bNoyysjIWLVqE3W4PtCknJSWh1+vJyMgIukZkZCQArVu3plmzZgB8/PHHHDlyhD59+hAZGcm2bdt44IEH6N+/fyBAjxkzhkcffZRx48YxefJkdu3axbRp03jkkUcCT97jx49n7ty5TJw4kdtuu41169Yxf/583nzzzQa/f3kFx6uD4yonh6ja49xqNBNp9nCswoXL6ysNxFb+gWv4hqMZ9L4e6VEmA+VuJxUeL+mJv14P2KQmkbhcHpwOD97KMen+/x4tdfL94SK2V37OJIuR/ApX0JhxDYgzG4iu7JBXUFkteU6zWD77ORePV4X9YtTrNHqnx57mTycak+e/zuKxT3eE3ef1KggTyO0lFehQJMdYSYu3EWU1UuLwBGZNTLOZSI8yo9Aw6HwBXadpmPQaLo9vuGPrBCu5dgcHy+veSc1Qw+ICDvfx4H6szMXTK3fy0LD2nPM7by8/29cT/83O2KbX69mxYwcLFy4kLy+PhIQE+vTpw5o1a+jc2Tc0aMOGDYHJX/zV5H5ZWVkhHdFqYrVaefnll7nvvvtwOBykp6czevRoHnrooUCamJgYVqxYwYQJE+jduzdxcXFMnDgxqN28ZcuWfPzxx9x33308//zzpKWlMXv2bK666qpTvBuhPB6FpvnmNvf3tK7a4xx8pfOMGCt7CsppHR8R6IV+/LFTYTbqcbq9GHUaEfXogV5Y7GD/kWJKy1wYDBoJhzSaX5yEvoZpWMPR6TSaNovh/z7eTocEGwkWI+VuLzvzS9h0tIRjlUPedECUSY/NqKPM7cVd2WHNZtAFvlg1jnceurF3Oh9vr7mN0OtVXH9O3fseiN+fnbkl7DhSjNWop3vTaJ7+fOcJ03u9Ck1H0AyC5Q4XLZKiaNnk+PCmaMvxr9RmURaiqzVJWfS+9leDpmE26tEbdMRajTSLs5Jjd2CvcHOs7MQjWaIs4b+2q8d2Bbz0TRbzrolBp5PRGL9XZ3ycuAhW17GVR/JK2bEnn+So0Da4qpRSOLyKeJspMC+6v/3N4fLg9SrKHR6Olbvo1zMtaLhMTefbuiefvYeLffOoA4ZPS7A8mQ+PJ9PvwXaY61EVr5Ri6pItbCuouaNZpEHHpc0T0KpMDxtOr/ZJtEz13bPZX/3CvG+ywqYb2yedSUPa1zmP4vdj99ES7luyhfX7CgLbzAZdrWsOAIGFgJRSFJWU4/F4iTAZOK9tk6B0Gr7FgTrHRQTNfWCuDOBKKfIdbvaGmTVQKcXmQ8UU1BDIDXqNZnHWkN7uAM2jzVjD/O1FWo08N7pboLPor+XXGif+5ZodRJ7iOPGSkmIGDehQr7we+v/23jxOrrLK/38/d6u9qvct6WwQkpAQggSJoAKyizAz4IbLjDoyIiCizoCOfhVRw+hPERVFQYbBFUXFQRRZhlVBgYRA2Jfs6XQ6vVV1rbfuvc/vj1tVXdVd3QkkId3J8+ZVJH3r7rl9z3POc87nbN3KZZddxh133EEul+OQQw7hhhtu4MgjjwT8f8svf/nLXHfddQwNDXH00Ufz/e9/v+KE7inU8Gya0tIUJmTpNVnXZQ/Bq0rIEULQWEqqyeYdRrKjjUnCAaNUpw1NDcGdGnCADdtSbNhW1erUkVj/PQyAd+0Aj6/d9SxZT0puXbWFkK4xPx5CL72Xql9PMVPnkIYwUps4w7/iGZWyhD0p2TCQZmY8QMTUKtnvUUunOx7g7+sHeVn1FT/g2DyU44wfPcLjm4Zrlu+KAQdwizbZnM1QKotbSrZ0vdptdeFHwL5w8iHMSIQwNUFQ9z966flNF102TSD7K4RgaVeMrkRgXIA3bOnMmMCAhwyN4ATaBy/3p/nU/66dNElvOrO7jU9ei/b60NAQxx57LKZpcscdd/Dss8/yrW99i4aGhso63/jGN7jqqqu45ppreOyxx+jo6ODkk09mZGRkj17/lA2nKyZH1wQz2+OMJHOVrmLVSCh5rpC3XZxSQpeuCYQGuYKLEBC0dNJ5h8UH16+9r9mnlLyyJVmzzLgng7bNTwTSehxGbh0geUgziejOk/UeXz/I6o1DBDRBwtI5vDnKUMEh67hoQtBoGUTKnoUE2/Mwq6YMKjkAgO1JNvdnOHR2E09sGealHRlCpl7XMwHJb9ds5TLljR9QXH3/y6QKTiWr/NWSfGkNsn0+wvCnnXQhWNARpzFkMpQrYuqCEw5u5V3LZjCrMczRc5t5cdsIazYOkswViYdMpC745ZqtvtGY4DR0TbCwPcrc5hA7MjaOByFL59QFbfzxue047mgpqCt9Az5zkoic7UpWb0nyZE+SZTMaXtO1T2X2xZz417/+dbq7u7nxxhsry6qnb6WUXH311Xz+85/n7LPPBuCmm26ivb2dX/ziFzVaJruLMuLTmNaWMKnh7IQyo7L0v/IvfSxsYVUZNdfzKNguc2clxumn1yOdK5K3q3p1l7xwKfzuZ1KA9d9J+j6S3akRl1Lylxd9DXzbk5iaQANagiZQG/ab2RRGur7WuicluhBopTeg641qsBdKSWwPrx9AE0x4X1wJj6wfqIjBKPZ/bMfj12u2Tlp6JSeYrpFS4mRTeHYOkR2GuB8+d6XkijOW8PYlnb54kjZWeVCwsCvOwq7a8OyhXQluWbOFp3omF3YKGDrxkFl5vu97pZ+vv2MxvSMFXunPEDQ1Ht8wCJOcd8GV2J5EE/Dtu5/mg0d0csKSua8qd+VAYqzY1kTVQ7fddhunnnoq73rXu3jggQeYMWMGF1xwAeeddx7g52T19vbWKHgGAgGOO+44Hn744T1qxNW/5DTGNHXEToyQxA8lN8aDmGPCbZoQhIMm0q2/7bh9jXn/lb1wUVZ4k743nvnfofEbj2FoxGYwY1fOMet4FaNbXdsdCxmcs2IWWsnzkPg9xW3P/7hV25TryXNFd0IDXsYt9TVXHBiMFBwKjkc4oNMWD9DVGKSzMUhjxMTQa6M71ZR/zvZu8Bd4bsVn++ej53D64g4cz2PLcI4Ng9m6z9RTPUl+9vhmfvXEFral8iyb2cDX3rGEf1o6cTtcKSVFr7ZJkJSSL9/5PNtTec4/Zg6fPfEQPnncwZOed39J5dBxPe5/dhOnX/EzDvr4d/jz6pd29dZNeaoFo3bnA9Dd3V0jvnXllVfWPea6deu49tprmT9/PnfeeSfnn38+F198MT/5yU8AKnoh9RQ8x2qJ7C7KE5/GFIsubtVveTmsLkRtOYxp6jUNRsqUfy4W/AS3enNt1USC/hy668lxXnjlHARkvrMd76I5aBPM0b2yNcnDY7LHPSDjeuhe6dwleEgWNUcIGDqZoosxycSVEILBXJFUvsjWUjOJyebQNU1gKW/kgEEXgmWdMaKWge159OWKFD1JyNIJWTqDaZucPX4067ouuUwGt9z7wAwxpznCJW87hI8eM48b/r6R/3l0E/2lAWlzxOKfl3fzrytms3Ewx0W/eZInqzxuTcDZS7v4rzMX88GjZrFlOMdjm4YqkaOy8fUkZMaUR5af5+sf2cAvVm/hkmNnceujL7B1OE9XZwemPvq8255kR7ZIvjSwFUJQyPrJoz2DKf7xyl9yxxc/yAmHzd1Dd3jf8VrmtOvtA3wl0erEtok0PDzPY/ny5axcuRKAI444gmeeeYZrr72Wf/7nf67ab+2JTfZeeq0oIz6NKSfXSCnJFv361LI91YUgbOpYhoY+prFCPQq5IqGdlJjpusbsjhjrelI1c+HVCAnFDQX6bu6j4wMd477fsC3F6hd3kC66GAKcMR6zK6mZs5zX5tf1+y81l0hVPXz52oUQpGyHoaLLv/5iFQPZYqWpxESkCi6D2SLNe6ixi2Lq8tj6QX63ajPL2mJ+rgiwCFifyvNKKaekMWpRGMqXuuv5z5Rt22TTfgKkhqQlEeXRb72PGQ1+E6V/v+1p/vhs7WB0IGNz9QOvsHrLMH9dN0gyX1v/7Un43VM97EgX+MU/L+cLpy7k0Y1D3Pn8dp7elvTrzF0Pe5JQkgek8kW++Ofn2fqKXxq3NV2gu6sTQxc4nh9GL1OOag3v2F762f8de9+3f8uPL/onTls2F12VoAEQj8d3KTu9s7OTQw89tGbZokWLKm2nOzr8d19vb29Nz4y+vr5x3vnuov7lpjGG4Ru0ZN4hX2XAwf8lHbEdckUXXfdbj2bzRfqGsmzdkaanP81gKk/RKfU53gW5R4BDZjeSCFkVL7wuGmz40ga8MVm/nid5ev2g/3fEaNLaBJiaYFGX36hkZkuElO0yXHAqamuyFFYfzBcZyDs8vj1FwfHwgJHi6ACnGikljifJOh5FV4XT93ee3DzMbx7fjOv5hrncMU8TgoMSIebFfYlfAYQD/vNYHiCapkkwFALXQXML/PiSd2EZOo4neeCVgXEGvIwEHnhlgHTBqTsH70n/+/N+/QQfv2UN//v0Nk5d2M65R3YzUnQnNODlVqX+Iy0wTItQxB/k9m/vYzidJW274wy4EIKedS/hOrUDiv5khn/8xm844tIb2TwwffuWiz3036vh2GOP5YUXXqhZ9uKLLzJ79mzA1wzp6Ojg7rvvrnxv2zYPPPAAxxxzzO5fdBXKE5/GGIaGp4lJs22zRRdNg6GRPLlCVTvEUv/wXMGhKR4kEts16VdD1zg0GWJtHS+8ggf5dXmSf0nSePyoWtRAKk/ediuGNaRrOIYkU6fERwBzE8FKFm5D6QWbc7waKdky27K2H47EV7RK2b4KXMTQKmFGT0pyjke66JEIGrQoL3y/ZvNwlqvue4mRvEPE1GkPW+MSGecmQmwaKVCU0s8ZqfodEUIQCARo94aZc8wKzr7pCTz5BNGAwezWONLTJs1J0XUBkwyO73lhB0FTR9cEt67dxjFzGgnoGoVJBpeZmt9hSSAUJpdJ43ke6196idaOdpqam9FLrZizIyl2bNlEeniCPBUpeWnbEKd97des+caHMY29K7e8VxC87m3MPvWpT3HMMcewcuVK3v3ud/Poo49y3XXXcd111/m7E4JLLrmElStXMn/+fObPn8/KlSsJh8O8733v282TrUUZ8WmMlJJ0YedyjTtSeYQ3uk35tVKeNx9M5Wnv2nWxhMZjGzj014fiFSZ+2WgBjcSbatt95vKjAhaWJrA9iFsGQd0j47g4JW8pqGuEDY32WJChkQJ/WbsN23ZpCxn0TSBPmbSdynUFdcEIUHAlBddFw4WqbHVNwDsP79qljHzF9MN2PL569wvcutZvXlQRJdIES1sidFRp9etC0Boy6ckU6u5LaBq9xNm6ebQKJF1weGbLIIau0dXWOOFzpO9kCqvspZf/fHjDEJYuKops1VNG5evKjpm3rx4ieJ7H9p5tbO/ZhiFA2tlx3vf4C/TD7y9uG+Lbf/gbl/7TsZOvrwDgqKOO4tZbb+Vzn/scV1xxBXPnzuXqq6/m/e9/f2WdSy+9lFwuxwUXXFARe7nrrruIxXZPmGYsyohPYzzPb2RSJmjqtDeGaAhbICCVLbJ9OIdd9LA0QcH1asLuuoCgoWPpGslkgdbWXXsctIBG27va6n4npaRou7iOR9FzsTwBAnLZIm7JAAvht021S16FpWvjkswsTdCaCPB/q7fguhJDEyQsg6CuM1Qoki1dd8jQaAwYPDkwuq0QgkRAZ7i0fw8qbzsBLO1M8KGjZu/StSqmH5ff+Ry3V4W6y8+740lW96U5ukOjOeSXMUrplzcKIfA8SaDU1a86uOVRv2GO43oMDKdpb64/h7qzCap6TVVsVzKccwiZWkVO2fUkGdslZ49PdMtn6osWOZ6EnRpwzf8ASMl//uwenHyW/zz35J2c+dRiTya2vRre8Y538I53vGOSfQouv/xyLr/88td+YruAMuLTmOpktaZogPmletTy8oCp05YIsmlHmu1DOWzXw3Zl5YVklpJgQqZONmcDu9f8xM47pJP5SlcnAE/6L0RN+H3CIwGdTMFFl35Hp2SdjGBTE8RMDduRFZGaipdtaHQataF/AcxJBHm6P1NpkBLQNZqDgkzRJV/aR9TSOW/FHM5e2lV5QSr2LzYOZvnDM5OrBr44lOVNIT9KJIQg67i4nqRY6kdQlmGVpWxxx5l46iiTK+C6Xt26a3snSnDWBM+g60nSBZdUzplYA0JK7HyeQm5iuWJ0C1x78u/L+wNA8MWf3MHSeV284+g9Kw26NznQG6CoN9k0RtMEzQ0hAqbGwWMMOJTCiBK6WyLohkay4JJzPIqepOhJskWPVMElY7sUd1F6sh7Sk2RSeVJDObxSb2TX83AcvwTOKycVaRqHtMdLJXBgCEGTpRM3dUK639CkMaATMzTmdsTZ0DsqT1hOTKpHLGDw5q4Gxl6BoQkSAYP2sElbyOAH5xzOuW+YqQz4fsydL/SNawQylqGCQ8H1SmIoHn3ZIiOleupKUpuuIfCfoY7mOE3x8ITCQEV3TIhbShzXrcn/GIuhi52epxDVU7WjyZxSSpyizY6tGyfZWoJugF5HL11oYAT8HqvVeA5CwDdvuXfyE1NMKZQnPs3p7owzuCNdUwdeKLoMJHOMZIq+2IsmaAhb9I0U6sqzpm2XtL3rrRCr8VyPTDJfCY2Xm6sYuoZmCApFryLUIoQgETI5oruRV3akGc7aeAhMAabmJ9QkIhYzWyM8s6E2EUfihwiNqn2B7zV1lJLyTp3dxJ0bB9GgYtDLf3/Hwa0sbN+zc1GKqcdI3qm0tJ2MouthaTqrelMMj2k2IkqKgJrm9x3QNEEsHKC5Icq2/iTpbO38ebmpSXnbYrFI75YtOB5EWzsJmEbNANQyBAFD22nZpxACXS/pP3iCfHoE1y2STQ6RdUBOFC6XEkqiM1Iz/L9LF2EESiODCQaxhSxSwl+eWc/QSIbG2OvXlnh32Ffh9KmCMuLTnFjEwnRHuyXlCg6bto/Uzul5Es92mREPsjWVr2vIk5nJ2x9ORG6kgOeOzrN7Ulb6ldtFd/QAVcRDJkfMaiRnu9iOi6b5JT8NzWHiUYt7n9haSUaqxil5+eV+yqYmOKQ1il10kcDbuhuZEQ3w0NZh1iVzAMyLh3jzjARL2pQBPxDobgyVyrAktuORs0d71YcsXzdBE4K847ExlaclYtEetXyPPG3Tl7FLgkmCRNioDZNLSVdLgo29gxRsp2S4JTv6BgiFgwggl8+TyxWg6IJ0GRnYQSbS4Ce/SWhNBHfJgFcjhADpsO251aMLdRMRjvvetltlzD0PpFezrfRchOcQi0YZsT3fyI/RWSCXqtnu8zfdyQ8uOvvV3v59gtgFHYxd2cd0RRnx/QBd16D04tq6I1NjwP3wGyB8o9ccttiRsWuy1AEyhVdvxF3HT2CrGTC4EtPURo9LSe+8zpxTWS0LQGiCeNTCdjx2DNfv8AQlMRhXIpC0N4bQdQ3heBVPaEFjmAWN4XHbma+iPapi+nL6onb+6/9epC9ZwK4p75IUHI+AobFsZpwh2yFgjvajD+ga3YkgTSGT5/szeJJx4fOyvGlTPMy2/lTJQHrk7SL5QpV3LkuhbMcFO4sXilMsnUoya9MSD6Gx68pdUkpSfT21C90icmSArrZWtqXre+TSn9T31wXymRHesXwRtz+xHkTp98GxkYU0OLVz5z+5dxX/9ZG3Ew8Hd+kc9yX7oMJsSqEmB/cDyvKmmbyDU6ox9aQkX3TJFf2M9HzR87WjDa3S/cir+mRtl607MhUVuF3BLZYlHUeX+VrtJUGNqpdgea58IsJRCyEEmQn6KI/FKpWglb3+ndHYGNql/SqmN7GAwaxEaIwBH6XgeGwbzpf0sqvyR0rPbMTSmREPllr0jn+1CyGIhqoMW3l+uTpEPTZkXTVn7riSZMaXeC1HDDxPkrfrP/dSejh2gaGezXW/7xlOYwQj5ZVLf8hKlIBCprJu2DK48aKzMLIDyOFe5PA2yAyOM+BoOnnb4bnNfXWPqZhaKE98P0AzdTzbpVDK9PY8Sb5OoprtSpIFB1PXMEo6647nSzw6Eu59yh/tz2gOc9jcJloTu2b4/BfgqOddlq40dEGx5CS4ngTh186ONeaOBlv60zi9HqlUoW4ovRpLF7SEzUpiULkn+kSZvMGgQTw+9T0Kxe7Tly7w940TCJuU2DycZ2YiWKM1XkYIQVvEYig/cY5ItW2vNB8xLChOEEEacxgJjOQcUlWaB9lMmngkSEMkgGGOlr+lB/vp3/AynjPB4NYM4loRKBZ9j1rTK943TpHyb5Kha5xzzBIaoiE+ctqb+NHtf5ngXLXKCVvTRPhFzYkrpj1CE+hBA1FSTrTreNMFxyNVlbxWTt4JGDqe41U8eAEMJ/P8fW0vjVGL9qYwM9pihILjHxW9KkSt6wLH8Ut0XNdDK837WYZWKbVxXYnn+nPgCF8adutQjkyuiBBgahoaELN0UnVKz8okAv65uJ4/UBBCELQMCkV3nMxlIKAze3bjTpu7KPYPHl43MGm7USjlgOSdCRX7dE3geR4Z228vahl6JbQupaQwJgm0Ysg1AzynlFhWen6F5i8voWmC4timRa6L9DySqRGGX1hNIBJF0zTsXBa3OEmJGCBKpXKE4xj5YaRdwK3TSc1xPX7512cQus5ZRy/mR3/6mz8HXpkHF362eimC0NEY47A543sfTEUO9DlxFU7fT9BMnURzCK/kYVfjSlljwKvxpCSoCwzN/7SFTWKWTkAX5PIOG3pSrHm2l81bk2QzNrJq57qhoZcajWhCYOgCQ9dGa7ulxDC00tyjv43EN76BoMGWwSyZUmmPlP7DKISgIWhWktfG0hw2K/W16YJDdVZw0DIIBwwCpk7A1AkFDGbObFC9kw8g6omyvBa80nRy0ZVkCg52qVZcCEGm4BAKBTGMMQNbTRvt1+uVft+CsYqB0DSBqAqzV5TYCgV/IDC8HaRHIZ0ilxr2Dbg+sTSwiLcjDLN0XhpuoovOJj+B0yiVyI2em07Odrjp3jW891u/YfHcGb7Xrpulj1EzBfCOYw7H0KeHJ36gozzx/Yhg0CIUMskXa0tgxobWPekn+VRPG+rC94CrS9WiAYPWWABD03DzDju2pxGaoKExSCQaQEoIRgPkUnmKtluaX/drxJNpl3DI8Af7UqLrAksTaIaGZRkMpPJkq0KWWtVxdU3QFQ0wlC+Stt1KaL01bNIcthgpDUhGCkUiAQNDG91WlAYTEohGLQIB9YgfSMxuDJLP5ykU7FLLWY1AwMKyrBpvKxqob6DKteNjf2fyRQ9NCIquR9EDy7IIBAK4rks6nRlNIgNfYEV6YEXALE3j2FmsUrOScka4lBK7kMdzCsjkdsgma09GM8AKgmv44XHX8UNlVgQRaUBYtdNdwrA4863HctJBDXz11/ezZl1vKetrNBve8Ty8ouSFXBCsENi58Tch0sidG3K71J5Yse9Rb7j9jM6OGEOpWiNe3a3L9WTdBiKe9NtzNgQNdAGRgEFnIlTj6fqhP0n/jiz9O3ylKE33E4AKtku2UKx44eGAUSPQEgzohIImnifJZooMjMlAH+s/6ZqgJWzRFJKV/cTGvHilhO2pHI3hAGFLrxzL8yRGUKe5dXrUuSr2DOv607zzhw+Sz48+/57nkcv5Rj0WiyKEoDlsEpxgvlcIwbaR+jrqmYJDvujVDAY0TSMajTAykkbgYRgCIxRDWEEK6RGcgY14ye3IXIqMpmHE2xBWCBmM4+bTfti9KvmsBrM08DBMCEYQ4YZJr19KyQ/vfx7JQp7rGQa9Xk0IeJqBMIKIljmQTyNzSf88DAsR9gcHW4dz3PfCNk5c1DXpMacCak5csV8RjVgELL2S5FaNlPUT3lxPUizVd48UHBpCJq3RwLgG9lKON7aeK3E8j5GcXXFEIkHDV7wql+9YOoloANf1sIuj2fM158ZojXnNS1IINF1g6aPzXqYmKJbCpp6EgUyBoayvsgV+TsDRc2ZM63kuxavn/Tf8lR1p3wCPTXT0PI9cNkdzIsohOxncjRTq52NICelMDiEEpqFjlkRcdF3HNAw8XMKRGKFwSbchHiO5bpB0fsQfBDtFnIEtEGlESAHZYT+kXQ/drJlLx7GRngcTzP+OJosKfvTQK1CcpMpDq2qwEoohQvU1FNbvSPuN1xVTGmXE9zOEEHR3xXm5SvHM0jWKnltp1VnG8fy58kLV226oAK6AgzUxxoDLCTPG80W3YsDLiUDVREJmpRdymYCpQ672ReN4clwjFPA13qtrdkOmjlNwas7Hk37yHsDBsxp3qexMsf+wauMA6/vTnLGwi8O7GrF0jZFCkcc2D/LXjTsoOB6OU+TwjmjdZ6yaicZ+EonjOICgWHQQhSLRSLCSD5LNFBi2bTKZLM0tzWiaRnz2ItI965CuA2bQ96aDMf8ghsk/Hb2ApzZs55Vtg6MHNwK+Vzz2RPIpCCXqDK7LZSEemKEa0Zb6F7JrZaTTRp54DyS2TWdXXBnx/ZDmpjCuJ9m4JYnnSUKGRrbo1ni/rpQM5Ivj9MYl0JO2ebpvhMPaR7szTdaIoVAc9VwsU695yeiaqBhUt2oSvjESYEeqNqTuSontepglaVUX3zsPmeY47zwWMMgV3YpH7i+H2V0JOtuiu3KbFPsRD7+8gwvfNB9D0yoDvljA5PiD2ljSkeD6R18hV3QZztm4eZe+jI3jegQNnfaYRUvYf8bK+SJjkVJi28UaAyg9STqdIxYNIZB+iZlhUbRtUskUDY0NoGkEW7rIZ7KISEPNfLgIxljbm+Wer34UUxd84eYH+Z8HnpnYILmOP4ddNRdeqQcvq7BpOlBKWHMn8MbdIlJ6wCTGT0oyuTrz5VMQJfai2C9pa4nwhsM6mDe7gZldcRZ0N9QkqaSL7jgDDhDQ/f7KyVyRHen8pAIt9Rj7TpjoHWEZGp0N4+vQXSnJOS7ZUnLRRD2Z/a5oBvGAQdTSiVkGzdEAMzqUvOqBhpSSfM7FrDLgZTQhaA4HOO2QTgCe7cvwfF+aZK5IoaSb8GJ/lmf6MrieR89QmqHBYbLZbM2z7wsRjZkrlx7Sc/1GP15Zpa0Anks2k8HzPEAi9QCER7umVf+5cUeSc676Pe0NUb71LyciJgqvI/xadOmC5yJLn1LmaGkVbbTcqlx6VndXGhQLo6Vx9VbxbAbTEysnKqYOyhPfj9F1jdbm0fm/tpYId/x9E54cn9ymATNjARIBoxI6H84WSeWKdMRDBHdRttTzJFStWlal8l8uo+8bgOZYENPQ2JHMU3Q9DOFnlWeLoxnpOwuTaWJUWat7ZoOaBz8A2bgjg/SYMJNa1wSHdzVwxwvbSOVdEP6zb2iCWMhA1zSSeYeX+7O8vHGrnwiayZDSkjQ2N2FZFql0lqLjwjgpIt9Dd23bz0TXTd8j13SKdhHTMrG9iZ9jx5M8sX47f31hK29eOJPjl87jgWc3+c1NpC+QhGb4HvarkGnFCkEo7muij0XTwHOQxTwYgfGG3LHBtelomB6JoWKyiMKr2Md0RXniBxDxiMX87gSlAFwNs+IB4mUd8yrD6EnoSeYqdbJjKQu6lLEdb8x8HZWWjEadObawZWBoAlPzvYiiJ8fN2+/KL+js2Q1EJhDvUOzfbE/ld2rfDE1jRlOUWS1hZreE6WwIEjA1hjPFSq7GjqxdMz3jeR6D/QPsGEyRLbi+IdV0X3e8qqbacZ3SQFXzjbgV9j1kARZu7ci17rkJ7n16IwCfPXM5UuhgBvzyMjNYquEuXeBYSddqvDGtT0MJSHRAIOrvxwpDtNkvffNc31gX0v6gw7HByfs/uzaWqXPOUQdNflOnCOXs9N39TFeUET/AWHZQC/M6a0POIUMjZhl1jWXB9ejPFXlsa5JVW5NsGs7VlKwBBC2jMo51PX+OvPplks4WS52kxrcw3pHMVcrSgIpyXBnb9Sre/ETE4wHiMSWreqBiaGJynd4SDdEQhu6H3IOmRnsiSEs8QM4uC7loGEZt/20pJY49JowuSrOwZWPqyYolEOV5ac3ANE3OP2bOzk9MiMpA4sTF3Vz74RMmXA8zjNA0Yg2N6GPFWISOKA2GK1ZJNyHSCLFW34CbIT/kX54vl9IXpnHtmm5o718xn0Q4sPNznwIc6EZchdMPMDRNsOLQDnZkiryyfQQJNJRC6GON+HDeYbAw+oudczyG8kXWD2WZlQiiaxqBkv50vuiWkuh0wMHzdIKl2m3PkwwmCzTEAlimjutKRnI2fcM57DF1t/Xexcl8kcZShvvYczQMjc6OeJ2tFAcK89qi/N8k30spyToew/Zoz/vyn9GAXhl0+s9WnSfQdcCqSp8qh7kRJY9bgGZWJFeFEKAbXHnGYt79hhn8f7fcx1Bm4vllx/V40yGj9djnvHE+X753PcP9/eRzpe10A7TRgbZpWTS2tlEs2rhFByEEeVfguB4ByyDvWL6xHktZDlZK3/vWzVoLJiWa59CVCPKj+5/nugeeZ33/CA1hiw+sOJgL3raIjsT4LoGKfYcy4gcob17Uxsb+DI7nUW8qMVN0awx4GU34L79NyTymEBUjLoQ/q5QUDjObwrS3R4jFgniuREiJaepoGhRsl6HBHOt6RxACAmO8CU3A2AZURU8ymCsSsXQCejl5BxobQrS1RVWb0QOcxmiAQzpjvNiTYtB22JErUvA8TCFoDpo0B02e6k/7ksRerZkWQCJkkrVdPM/DKU7Q+EQ3odwdTAM8ifAc3xsXWmlgUE768A25pXlYhs4Fpx7Blbf+bZw2Avjz9bNa4pyydG5l2c8e30xR6nTNnEE2m2c4NUKh1CrY0HUMHQrZNKFoHMsKgBXA9TzSI3kQglgkSDBgkBoamrhxCvgDEKcwGqKX0l+mCX7y2GY2D73orwaM5It8489Pcf2Dz3PfpWewsLPhVfwL7V384dXuzolPX5QRP0BpjAZ49zGzueOJrXXbNg5PYMDL8qi6gGCprWnZO5jXFmVOa7QyRy7zju+NaxpF22XHcI5C0WVjf5rSK28clq7VVZRzPEky7yCAw+a30NIYVpKQigonLe3knlf62Z4ZbRhSQJJOF9iULvDiUJZ6XXYl5QGoJFcoQqA8X1wYLSfTdGSxAMVcTWMTaQYAAbnhMV6vQJoBUjn/XP7zn97Eoy9v4+6nNqCVytjAN+CJcIDffuafap7lv7wyQCbvEA8ZhMNBIpEQnufheR6927aTyxbQNI1gxJ8WE1XhePA9e0PXaWppIZ/NkstkcEuhcjMUxrEzft165SZIP+u9hGeE2DKcGxeTcD3JUNbmXdf+H099+eypk0R6gNeYKSN+ANOWCPHPxx3Exh1pXl43WFnu60ePN+zV+uYBrdaAH9bdwIzGUOVnTRMESolyrifpG8zieZJ03qnUnPtNJmpD5LoQGELgTDAH3tkaobUpPHVeIIopwa1P9tCXqd/xy5OS7niQlwcnrns2dY2s7SJ0A6nppdaiOT/kLDQ/4asa6fk120IDp4C0c5AZGtUiD4T5zUMJPvqWQ7AMnf/9j7O5+eHn+OHda3hp2xCJsMX73ryY809eRmdjra5B0fV7jA+M2LTErIoGfDKZolDwBwue55Ec2EGiuRWotUG5QpFoyBeLCUUihCKRUflkoKB5pPq3T3wzzeCEuhCuJ3l+W5KHXuzlrQs6J96H4nVDGfEDHCEEc9piCFfyUqkPc73f3+p8NAE19bgNYZOZTbXzZJY5mumeyRT80jMYl+XuSIlBbf1s0NAoer7wS/lcggGd2Z0JZrZHlQFX1JAvutzz/HbmxYLMjQUJGRq2J9kwkmfdSJ6iB7GAQdDQ6soOA5WEt2q9f6wwUgpw62upA36tuJ2HgU21y3Mp7rn/Qb4xv4VL33UCpqHzwbcu4YNvXbLT6wnpfoVGvujRmywQCxqELJ1UsrZczLELDPZuJRCOYFrBitRsoehiGi5BazTXxc9N8cgmB8iOpNGCEbz8eM12EYggd1rWCX9ft2PKGPE9kZg2nV8pyogrAJjdGSdg6qzbMkw279TokwOThptmNoVL2edlQ1xr5DNV8qpjDbDjSYSGXyNe5X1bukZLQ5A5JZEay9SV8VbU5ZUdaVa0xmmoKpE0NcnixjDz4kHu70mSdVxilj6hERdCEDB0dEMjbBlomsD1PLI5nfSwPTrnLUZrkivPqzlBaaOm84Wb/sRpyxcyq72ZdQNZQqbOgrbopFNBmWyusn/HhaFMkcG0XZJ8rUVKST6TppDNEIgkKJRe6emcjV10CQUMvxWvhIQoMJBOgxBYje0gPZxMEunYCE1HD8cRhkV+ZHjS+13uVjhVEKX/dncf0xVlxBUVOloitDeHyRUcXupJ8feX+ivfyapJbEltGDwcMCoGHMYb6uqxQNjSGc7WHrfoSRzPxdD8X0bDECw8qIVYtI5+tEIxhi3bRkhYtYO8Svc8XeONbTHu7xmufGfpAlPXcKUkXxw16vGSzsCoZLBGNBwgZLXRv6O/8txXH8OXT40jY60lyVOJrhmEmjswG/xQ9/E/WgWM/h7Magxx6YmH8IGjusddy7ZUnr+uH8DNFdBDscrv2byWMC8lRV3jKTSNhtZ2dN3AclzSpWZEtuNiOy4BQ+OzJx/CNX/8e2UbTdcRmoVu1ZZm+ipzO6c4Ubxd8bqj6sQVNQghCAdNls5tYsEMv3SruvCm/BIrVtVu245X83IZW9Nt6KMv16Cp122sIEv7tD2PubMaiccCyoArdkrBdhlO5WsGkdVoQtASNElYBrYnmdkQoLsxREc8wIxEkNlNIWIBvablbjVCCHRDJ9GQmPB7ABFrQQi/DWl83pKKAS+6Ek/6zUTmNYc5Ymac5rDJN+99ka/e+XzttTgu/3rzE3iagXQdnEwSz87THjWY2xymozlR11+MJhrRdb/8LGAaNMVCxMIWkaBJPBzgDbObOX1hC/1VMqrS8ybQXpATd1aruubh3ARZ/PsAVSeuUNRBCMFbF3cwqzXKM5uG6E8VEFCZ2y54siSyIdk2lKvRQZcSXNdDK3VCi4YtBpP5yn47GkJsG85h1wltHjSrgdYmVYeq2DWG0oWKIJrrSTKO3xRHE4KwoWGVwtbtYYumiDnOCOoC2mIBJDCUrV+OJYQgGAqipUbqeqpCCKQVhmySSMesSsi9LFzUFrM4pDWChMpgIxLQeWT9AH96tpe3HtTCfS/t4P9e2sHm4RzhUJCR1AgaksXNQbq7ErjA3M4WegeStdEATSMQqk30LBvzMi/1Z3h620jNOTv5DGZkvL66KIvYiCpN9rH3zDB3WYb59aCiF7+b+5iuKCOumBAhBHPbY8xtH1V429g3wqqXB0hmbDKOR0AT9KXyDGds4mGz8pKyHY+g5Xs44aBBJjfa49zQNGY2hsnaLplCEaEJGhpCdLVGCQbUI6nYdcqv3pGiy9CYssiRous39AmaRIJGXW+9/PJujVgM54oTKqQKITBMA7swmgGvmQE0K4jQSp58IAi6VQmzexIill7pXz5+yknyg4de4Qd/XYfjSgZLg4hYyCQdS/ChpR20x8P8dbuf0BYLBzlywWzWvLyZouP6Am5jOvxNdI+yriBo6uRLHQeLuTRGKAramGkITUM3jJJ4m/RL6sr3RPNr4l0JZx0+fipAsW9Qb0zFq2J2W4xZrVGSGRvb8YiGTAKmTr7gIIouslSa5nmSvO0SMHU0TdDaGCKZtkln7VLXREEsZNLZHiWeCE7rkbBi39EUD5J3vXEGvEzBlfTni6zurdMIpAoh/Az2VH50P4LRMKvnT4hXvtNDMYRuVG0vwAqTL3oEDI1yy/KuRLDGAwc/ibOplC3/cipfUTdyq+rH37u0i5kNIewxc8/NiSgnHLGA3sEUqUwOTzPYWcNQiT8w+PBbFvHDe5/2bbKU5If6CMSb0K1gTYvUhW1Rnt2W9O/AmN7ruiY45qBWjprTvJOjvn4c4GXiyogrXj1CCBqitbrKkZAJIRPP9XBLyUKaIRBaSU9JShqaw8SbQjilMLppqYxzxe5hGhq5nWRK5+toHtTdV1XGuGVoaGLUU5dSEgmHsO2i733rdXoNlH4uOB4h0/97S8TE1PzufJ4ESxN0hS1aQxZrB2tLvExdQxeSI1ujzG/wNRcCmr9NtTHXNI2ulga6WhrwpOSpnpFxKofVaAJOOLiVf1jcwXV//juOWZqu8lzywzsQmoFmGMiBzTC4hUXHLuFj7zmVT9/yeKVNucCvJDlqdjO3fOy4KfV7q0rMFIo9iKZraHq9fMmSCAwCq+73CsWrZyRfZCRf64XrAqxSp51CSWugNWT5sqQTIISoeMIBUyt54bXh74ZEFMPQGcrtPIM7Yhks7ogSsapesVISNDQaLAPH88i7nq/gCgQ0wbKWMEe1xUtz+17luDMjAdZNcO6GJpiZCLJxeOJrW9QeoysRJFNwcDc+iYy3IRo6kWYQXAeZ2oQ71OML2wADwyN8/PgF/MOybm565BVe6E0RC5qcfcQsjl/QPqUMOKg5cWXEFQrFtKVYlRypAY0Bg7Ch1XjQGcej3bPYMJKfsNmZocHijjh/3zQ0zoCXEUIQi4bJunlsR1ZtK+hKBGiJWAjhe+IzE8FKiHZGxGJBIkxryCRTdNmcKZB3JYc3RwFJ3NRpDpqVSMDY6q1Z0QBJ22FgzJSBJnw9heWzGtma6sWpU/alCdgwmGFdf5oP/nQVnhGEoR7kUE/9+6BrzO1q57a127jmwXU8unEIXROcuqiNSEiVfE5FlEukUCimLbGQian7Uh1tIbPGgINveCOGxsKq6ol6NIQsfvqBI2kOT26odAGRquTLWEDnTXMbOKglTCJkkAiZdJcMuBCCJU1h3tyRoDlokLIdXkrlK+F9DeiOBGgJmuhVioXGGCEYTQgOa4qwqCFM3NRLkQbB6YvaueqflnLfy/1YhkbQ0DA0v6+BrgkChkagdD8++bu1rNo8jGg/eNL74Lge2baFvPO/H+WhV/rJFl1GCg6/f2obb/nOQ/zk0U2Tbq94/VFGXKFQTFtMXWPprEaipoap1Q+rCiEQHswek8dhaoIFiRCnzGzgjU0R/vj4FmJm7StRE/78eNDUCFk6pqHRGrUwhG/QD58Z90WKSiFdo8oYtwQNFjf6mekC2JSulW9NWHrlnKtP29BEzfy8fx6CzrDF8tYYx3c1cN6RszjvmLls2JGuqNBpmsAyNAIlLQZdEzQETU7sbuAvLw/4bc/bD4ZwAxOlcp12+un86ukBoLaboONJpISP3byG9QPj5Vr3JfuiTvzyyy+v/JuXPx0dHZXvpZRcfvnldHV1EQqFOP7443nmmWf28JX7KCOuUCimNccuaCM+QWli+d3sScnB8VFvPG7qnDm7ieWtUVqDJk1Bk+GRAh86tJMTuxsA35sdm+AGgCbobArRHg+MGzjoVeseHA9VRJCStoszJtodt+okx5WIWnrdFsEATVGLGS1h/vu+V3jo2e0TZlY3Bw3efUgrnZEAmVJpmdANtEPfhmg7yK8HL2MGOPotx+O0HFSJCkzE9Q9vmPT7A4XFixezbdu2ymft2rWV777xjW9w1VVXcc011/DYY4/R0dHBySefzMjIyCR7fG2oOXGFQjGtCVo6IVPHLlVFWLogaukES6Fkx5NkbJek7c8pC+CEGQ0E9TGh99KfKzoT9OWKvJT0i7fqybm2hk3ilkHc1Mk4Hh6Mm0tvqpIjLtTpg1odNi9ngZfRhaAhYJB3/AQ4Kf15+8aGMC/2jbDh8S0ENIGhacyJB9mQGj/f/7ZZjf4xxigkCsNCzFuOnHU45JKgaRiRRlasOIj/eXRjJcGvHq6UPFpqlDRV2FeJbYZh1HjfZaSUXH311Xz+85/n7LPPBuCmm26ivb2dX/ziF3zsYx/brXMdi/LEFQrFtCdUygIPGRotYbNiwMH3juMBne54EF34iWYxU6/09h6xHbZnbbZlbPqyNiO2w5s6SpLDY17uYUPj6PYYx81s5Ii2GPMSYQ5titARGt8EpTocXU9optpYjpU1Lm8TNnWagibNIZNEPMRTW5MUir7IUvnc3tAeG+e1t4RM2sIWmvCrQeY3hsZ57MIwfbnYSBMugn9Y2lnTuGgiplp1yb4IpwO89NJLdHV1MXfuXN773veybt06ANavX09vby+nnHJKZd1AIMBxxx3Hww8/vKcuu8LU+tdQKBSK18C8rjiagMaQb8zHes9CCOKWzlFtMTrCFp6UuJ5kR65IuuhVMsJdCemiX5aWsGqlRQO6xjGdCZqCZs1yXQjaQiYzIoEaI7w1U6iE08fuC2DEdmvWL59DeZnjSfKuR9Hz6GoJ8/Q2X7DGGBPCbw6ZnDGvmWhpPl/gZ+lXc8Lcpgnvna4JVsxuJJnO0xUNTCp8IgScuqh9kjWmN6lUquZT7t8+lqOPPpqf/OQn3HnnnVx//fX09vZyzDHHMDAwQG9vLwDt7bX3qb29vfLdnkQZcYVCMe2Z1xmnMewb18lCo0e1xyoNfYYKzrhyrjKuhCNaYzXLDkoEMTUxzqsOGxrd0QBvaImyoCFM2Vy/ksrjSoknJZau0RSoNeTDtn/8stGWpeMWXI+eTIFN6QI9GZvNaZvHNicn9RY7IgHOXdjO2+c2saIzziGNtdn4BzWGec/i9krinSaoeO9vnNXAafObeeDFHRzWHhu76wqagHjQ4J/fOLUkV8Ue+g+gu7ubRCJR+Vx55ZV1j3n66adzzjnncNhhh3HSSSfxxz/+EfDD5pXzGvMPVt35cU+i5sQVCsW0xzQ0ZjRH6B8eFSENGBqhUtjclZJc0SUhBFnHxZM7b6fZGbYI6Rq50nx2dzRYY8B1AQcnQjQGDKSUSKAjbHJUW5SnB7NsThd4cFuSt3QkMDWYEbaQ0mao1ENAAj1Zm/aQiVXq9Ge7HttzxXHz26n8qK67U+ogWK+j2sxYkJklO6yJ2przIzriLGiOsHpbiu0ZG0vX+MI7FpFK2/zl5R1ICW1Ri5MObuaelwcq5wi+dx8LGvzxY2+iMTxB//R9xJ5UbNu8eTPxeLyyPBAITLBFLZFIhMMOO4yXXnqJf/zHfwSgt7eXzs7Oyjp9fX3jvPM9gTLiCoViv8A0tIqOdmPYwjK0Gk3wUKkByFf+4TB++dD6cdsHdEFnJEDU1PGkZCDv0B422TBSQBeMq9+enwhVwuRC+PXZ5Vrt42Y2AH4Tls05mzmNfo33HCEwLJ3BfJGC49EUsVja3UAm7zCQynPv8311r636yBKwPYmlTSRKAwe1RugdzlMY0ykwbOq8eVajf780weLWKN9e+1KNsV/QEqErFuCZvjS9IwU04c+X/7/TF9EQqp1K2N+Ix+M1RnxXKRQKPPfcc7zlLW9h7ty5dHR0cPfdd3PEEUcAYNs2DzzwAF//+tf39CkrI65QKPYPmhpC9PZniJcEYGDUyJX/DJg62VSBJbMbebDKYLaHLRaMCUG3hEw+sWwm/9+qzezIF3HK7XeBiKHRUDXvrAm/Y9nYDPWYqbPECtHVEMItuniexNQE82YkaCjpowNEgya9wzkGMjb10DWBU5Upl3E8dFNHZ3wf9LZYgIAEHTAE40rbwB+QWJrg5e0jdVsCxwIGK8qldgKOnds0pQ34ng9ST86///u/c+aZZzJr1iz6+vr46le/SiqV4l/+5V8QQnDJJZewcuVK5s+fz/z581m5ciXhcJj3ve99e/xclBFXKBT7BU2JIJGgUZOZPhYBJJM5Fs1M8NDzfZUEtrIBH7tdxND50oo5PDiYYSRtI0sGrzlo4klZCa8HjfF66+Aby4aQSSFXrHxn2y5929OMjBRo74jTO5Dhpa1JXtyRnvDadCHQhaxkvEsgWXQJaIKArqEjaU8EObQtyvBwnozt+g1UDB1TSj8EX7p+ozSvLwBd23lalMQXvJmy7Ml4+i6yZcsWzj33XPr7+2ltbWXFihX87W9/Y/bs2QBceuml5HI5LrjgAoaGhjj66KO56667iMUmzjl4rSgjrlAo9guEEMzpijPQn51wnaClE7AMTMfjbQvbeOCFHcyMjW8XqmuCsGUQtHSEgPc2hglGLX78yAZyRRe96p1fNoz1Bg6JoDmhFvtQKs8LPSkc12N7tli3DK2acjczj9GuqAVP0hgzOffoWeRSBTZtS1EsRQzKCXx+mdn4fUtgTmuU2c1hNg1kJ9SV9yQsndEw6bntS8pTKLu7j1fDzTffPPn+hODyyy/n8ssvf83ntKtMmeHVlVdeWQlDlLn88stZuHAhkUiExsZGTjrpJP7+979Xvh8cHOQTn/gECxYsIBwOM2vWLC6++GKSyWTdYxQKBZYtW4YQgjVr1lSWP/nkk5x77rl0d3cTCoVYtGgR3/nOd2q23bBhwziZPSEEf/7zn2vWe+CBBzjyyCMJBoPMmzePH/7wh7t/cxQKxS5h6ONLuQB0XdDeFKGlIUw0ZIIHh7bF+Mib5jAzUZuwZuqC5liAcEBHL3mtnifJpQp8cNkMZjaGyble5cUvxiq6lbB0X/q03neuJ9k+UsD1JHnX95Ktku75RAjhi9j8x2kLec8buzn7yJlc+LaDueTkQ2gImmzZPoJTsu6aEIQn8J6llKSLLgO2w+/XbCViGRMacCFgQUeMmU3hiU9MsU+ZEp74Y489xnXXXcfSpUtrlh9yyCFcc801zJs3j1wux7e//W1OOeUUXn75ZVpbW+np6aGnp4dvfvObHHrooWzcuJHzzz+fnp4efvOb34w7zqWXXkpXVxdPPvlkzfJVq1bR2trKz372M7q7u3n44Yf5t3/7N3Rd56KLLqpZ95577mHx4sWVn5uaRusv169fz9vf/nbOO+88fvazn/HXv/6VCy64gNbWVs4555w9casUCsUkBEPjX2lCQGtDuCJkUm1UA4bGQV0JXtwyXOmI1hAJjG9FWvrTK3q85/AuslKy+jl/Tn0igTNTFxOWFaWrytvKoi9CCBosY1y3smresqCN5miA5jE68H0D46MPcUun6MmaXuSOJ+nJ2hQ9iQCG8w6a8MP1HhKqlOM8CfPbYvzLMXMnPJ8pwb5wxacQQspJNPZeB9LpNG94wxv4wQ9+wFe/+lWWLVvG1VdfXXfdVCpFIpHgnnvu4cQTT6y7zi233MIHPvABMpkMhjH6C33HHXfw6U9/mt/+9rcsXryYJ554gmXLlk14XhdeeCHPPfcc9957L+B74nPnzp10u8suu4zbbruN5557rrLs/PPP58knn+SRRx6Z/EaMucZkMvmasiQVigOdLZuHyeWKlZ8jQZOGWGDCeXIpJf3JPNsGswRMjcZI/bKicNAgYOmV/XhS8sr2EXqGckQsvUY3HfxEt7Cp1z3utlS+0rgkW3RJlsrOwM9oHy4447zjo+c1c+rSznH7y+WKvLh+gFS2iOdJRqr2JaUk53hkHI+i67E1a1e6qNW7D0tmJAgHDAKmxtKZDcxujtRdd1fY2++y8v43vryVeGz39p8aSTH74BnT8r27z8PpF154IWeccQYnnXTSpOvZts11111HIpHg8MMPn3C98j9CtQHfvn075513Hj/96U8Jh3ctLJRMJmu87DJnnXUWbW1tHHvsseO8/UceeaRGag/g1FNP5fHHH6dYLFKPQqEwTiVIoVC8djo6YhhVoeTQBM1RpJS4rofjSuJhf+7a0jXq+TXxiFVjwMEPWc/viLNoZqJikKu3LTjexAOHqr8Hx4S9Y6bOjIhFU8AgYek0BQwObY1y6lK/5jidsRkazpFOF9jWm2LTxiHcqk5m1bsTJenW1pBJzNInNODldbcO5zj7yJmcefiM3TLgitePfRpOv/nmm1m9ejWPPfbYhOvcfvvtvPe97yWbzdLZ2cndd99NS0tL3XUHBgb4yle+UiMwL6XkQx/6EOeffz7Lly9nw4YNOz2vRx55hF//+tcVFR6AaDTKVVddxbHHHoumadx222285z3v4aabbuIDH/gA4Bf315PacxyH/v7+msL/MldeeSVf/vKXd3pOCoVi1zBMnVmzG0km86SSObQ689KO62Hbbo0xnd0eI5MbP9gOWjq6XrsPrzQAkBKawxbHHzGDwZE8m7YmcVw/VO14kqLrYdbRGg8YWqWGWxOCmKkzUhz1oDUhiJqj8/srFrSSTObZ3JPCtl1cT1L0PJojfv/zoKGTKXngIdP/e3Xtt6EJ8qUQ+mSh1+FskYG0TWts10ROpgL7qgHKVGGfGfHNmzfzyU9+krvuuotgMDjheieccAJr1qyhv7+f66+/nne/+938/e9/p62trWa9VCrFGWecwaGHHsqXvvSlyvLvfe97pFIpPve5z+3SeT3zzDP8wz/8A1/84hc5+eSTK8tbWlr41Kc+Vfl5+fLlDA0N8Y1vfKNixKG+1F695WU+97nP8elPf7rmOrq7p5asoUIx3dB1jaamME1NYeyMjVscrYV2XI9CVci5so0miEcsCraLU9V1LFCley6lpGC7lfnz8rK87dDaFqWzJcrAcI58wUHXNRpiAbZv8w1vNfGAQSo/OvcdKemeVxty8Ovaj1nURtTUeWWD3z3Mk5Ks4xIPjr6+dU0QMnVyRdcfAFg6RVdiu74ufCJgsC1bvwZ9LN6+nWFVvEr2mRFftWoVfX19HHnkkZVlruvy4IMPcs0111AoFNB1nUgkwsEHH8zBBx/MihUrmD9/PjfccEONUR4ZGeG0004jGo1y6623YpqjogT33nsvf/vb38bJ5y1fvpz3v//9NVq3zz77LG9729s477zz+MIXvrDTa1ixYgU//vGPKz93dHSME7jv6+vDMAyam5vr7iMQCOyytJ9CoXj1GAEDt+gbMCkldnG8Aa/uGR6wNJzcqJGu9uTzBaciuuK4HsNZm5F8EU+Ctn2E9pYIs7oStFZlc8+Z28TISIGRVB7XkwQsg0RDkEQyzzOvDPg5VSXDGzY1Cq5HQyzA7I4YDSELIWDT5tGKG9stt1ytrYcv9yDP2i4IgWX4/dBDlo7rSBoDJpJRWdp6BE2NpsjUklVVTM4+M+InnnhiTRN1gA9/+MMsXLiQyy67DH2CUhEpZU1nmVQqxamnnkogEOC2224b59V/97vf5atf/Wrl556eHk499VR+9atfcfTRR1eWP/PMM7ztbW/jX/7lX/ja1762S9fwxBNP1ITI3/SmN/GHP/yhZp277rqL5cuX1wwsFArF64dmaBgBHafglhqOjH4nBBilUHk5aqbrOrqukc7YlfWFoDJ/DlB0PLYMZWu8Vk/C1r4063tHMC2dQtHD86Q/CNAEmYJDtuACfkmZrgnaEiGCukY2ayOlpDEeZFZ7jORIgc1bkmySfulZwBh9H5Y138f6y0IIIpZB2NSxS6H+gKljBAwGhnJ0hE1Cuub3J69znwSwYl5z3fD/VGYfaL1MKfaZEY/FYixZsqRmWSQSobm5mSVLlpDJZPja177GWWedRWdnJwMDA/zgBz9gy5YtvOtd7wJ8D/yUU04hm83ys5/9rCYxrLW1FV3XmTVrVs0xotEoAAcddBAzZ84EfAN+wgkncMopp/DpT3+64k3ruk5rayvgd6cxTZMjjjgCTdP4wx/+wHe/+90aLdzzzz+fa665hk9/+tOcd955PPLII9xwww388pe/3At3UKFQ7CpG0EDoGm66NqRsVBVmV3u1uiZIxALkih6uJxGCmhB6Xyo3LuxsOx7D+VJWec4PlUspybkerix3DhstO3NcybZBvzTszUs6iAZNXtgyzHPrBytVU4YmMKpU1cYmzpl15vvLSm0AiYYQI9liZfmKzjgP9SRxSwpu1cxuCXPS4o6d3supx4FdYzYl6sTroes6zz//PDfddBP9/f00Nzdz1FFH8dBDD1XqtFetWlURfzn44INrtl+/fj1z5szZpWPdcsst7Nixg5///Of8/Oc/ryyfPXt2TSLcV7/6VTZu3Iiu6xxyyCH893//d818+Ny5c/nTn/7Epz71Kb7//e/T1dXFd7/7XVUjrlDsY0Sp8UggapIv1WHXqxsHf044nS2SzNh+G1FLJxowK7rptuNWstHLuJ5kKD++vrvg+VKpglFFuOrjSXzD/Jeneyl6kpil0xw0KusYdQx0OTktaztELX3SFpfhkElqZDRy2RgwOGlmAy8nc2xOF3A8ScTQWdga4R9WzMaYZl64YgrUiStqUXXiCsXeZWhHBtfxMI3xXqzrSbbuSFMojm8KYhkajbEAmYJDXypf81264JAZs42UknTJ2Jcd/rHHawybREydDUP+XHVnxCJQCu/rQlQ87ertC45bEXCxdI2mMX3Uy0a9IREkkyn6HdmqDHk9DprTSMseVmV7verEt6zftkfqxGfO7ZyW71017FIoFAcU0cTEiaR9Q9m6BhygUHQZHinglfp5VzPWM4faXt4w3oC3RCyOmJGgJzVqYKvD49Wre5LKvL2la5Xgr+169KULpAsOtuNhOx7C0JgxM0Em44fRNSFIhCfOyWlvjdA8poObYvowZcPpCoVCsTcwLYNEU4hsqlATii46Hunc+JC4lL50ad7xldTKGFptVvurZVF7zDe+VeVsrpRoFYNNZapW4kcJyscLmzoFx8OREk9C2nbJux7dnXFmtUXp68vUHMsydJqigpztUij69fFBy2DWzASJ+MRqdtMBXyJ39/cxXVFGXKFQHHCYAYNQVJKv6t+ds+trluccj4I73tN2SkbV0HyddHdM426tyjJIgKoBQ3PYImjq4zz4EdulqVT/7UqJSe38uStByNFQemPUorM9iib8GnfN8cCRFOror+uaRjSoEQ36XrlpajQkJtboUEwPlBFXKBQHJGbQoGi7uHXqxss4Xn0DXsaT/ids6uSdWsMphBhtHyr9efGy5x8qJaRFA35tdzn0nrZd4gEdo7S940nMMa3NykMFTRPM7W4gHCqFyotuVd3ZzrTZmN51VVWI0n+7u4/pipoTVygUByRCCMLxAIGwWTKs432aenPdYzEMjY7mCF1N4+eVLU1gVHUFA9+QF11fV93QNGY2jG7nAdvSNoVyPbrnYbvuuDn4SNjk0ENaCIdMcgWHp9cNUKjKjg/X6eY2lsgk8+TTCrGHPtMU5YkrFIoDFiEEgbCFFTKRnmQoa5OsSjTbFQlS15McerDfz2H7YJYXtwzTN5RDSl/+NaoLAgEDTwgKtotEUvA8PCnRhGBBa5ThXLEiw+pK2JaxsTRBxNJZPLuRzpYIruPhupJg0Kh43yNZm4ee7MEUgiVdico5JaIWqfTEMqtCQEyF0vcLlBFXKBQHPEIIhC6YM6uRF1/uJ1en5nsi9Kpwd3tTmPamMFJKhkYKbN4+Qi7vELB0ZrRFCVg6z29JsrEvzf0v9xMLGMxpCnP0rEY2D+fYPJwjV3QxNMHc9hhL5zUTDdX3mKWUPP5cH8Wih2bWKlyahk57c5jtdfqMCwHtHTFMs74q5nTjwJZ6UUZcoVAoKhiGxsJDWhkYytI/kMWRHiOFiefMAdpLLTullGTyDo7rsW5Lkp7+TGVmWgDre0dI2S6IUelX27Hpz9jMbgyxqD3G3OaI7yU3hAjX0TDPZAoMD+XI5x2ytkuylJiXL7qM5IpEq4RiIiGTWZ0xRjI2uVKiWyhsEUsEa1q1TnsOcCuujLhCoVBUoWmC1uYIrc0RHMfj4Se3UizW1xvXNcHMtigvbE3yxLoBUtkiMVMnavrNScrbuFKSLHcyq9pR+a8bh3J0NIfpbomQdSQZx8NyvRoFtf7+NEODow1MsmOy6V/aluIN82obLRm6RmM8SCNQapi+3yS0KXyUEVcoFIoJMAyNIw/t4Innt5MvuBX7JyWYhsayBW2s3TzMmnWDgG8nI6Y2ru46P0mGe5mnNg2zev0gxVJSm2loLOpuYNm8ZvI5u8aA+8eqPcam/gyRgMGCGYnKfHv5z/3ZgB/o2enKiCsUCsUkREImxyybQf9QjsFkHpAkYgHamyIMZQoVAw6+4ppWx1A6Y+Xb6pAb03O86Hg8u2GQV7YkOagpRCxg1AwOooHxc9rPbU2ydTDLnLYo0aCB60naWyJohrZfGnBQXcyUEVcoFIqdoAlBW1OYtjH64s9vSSKq5rj3pDEIaL5/6LoeYcsY592bukYiaJAck4SXyhV5auMQAAtmNdC5nySwKeqzH2U3KBQKxevLcMau6U9erKOrDmBqr+5Va5UMuBAlLfUJSt264kEiVq2RLpv6We1RFs5ufFXHVUw/lCeuUCgUr5FyM5KyifUk5FyPkF47Lx7UBZniTjXUgFLbUmo12ZN5h6aSKE01miaY3RgiY7vkpAQhCAcNZrfHaIwfGHXglYHObu5juqKMuEKhULxG5nXEWN+XrlmWKriYIVF5uZaNTENAZ7jg1hjyek522QOvpi9doCls1u0dLoQgFjRZOq8JXfUDP+BQRlyhUCheI3PaYzRGBhjOjobVPaA/5xAxNSKGjiHAMnUObk/Q2Rph044MG/vSuK6kJRHANDSe2Tg86XGyRY8NgznmNIXGGXIhBDNmJpQBP0BRRlyhUCheI7omOOOobu5cvZUdqTzlai5PgisEK5Z20t5Qq6l+WCTAYXOaKj/bRZcN29NkCw5S+oOAeh73YK5IutehJWIRDRi0JILEogHiieABbcBVdrpCoVAoXjPhgME/rpjF9uEcm/szuJ6kLRFiTlsUTdu5dbBMnbcv7+bep3oYSBX8jHQJOuMNue1KelIF5nRYzJqlktbggBdsU0ZcoVAodhchBB2NYToawztfuQ7RkMmZb5xFfypP71AO6Ul6B7MMlox6WbpVAm0NIZYvaN2DZ6+YzigjrlAoFFMAIQStiRCtCT/8ftjcJrYNZFm3LUW24BCyDOZ1xulsCdcVlDlgOcDj6cqIKxQKxRRECEFXS4Sulsi+PpUpzYEeTj9wsyEUCoVCoZjmKE9coVAoFNOXA9wVV564QqFQKKYtYg/991q58sorEUJwySWXVJZJKbn88svp6uoiFApx/PHH88wzz+yBqx2PMuIKhUKhULwGHnvsMa677jqWLl1as/wb3/gGV111Fddccw2PPfYYHR0dnHzyyYyMjOzxc1BGXKFQKBTTlnJy+u5+Xi3pdJr3v//9XH/99TQ2jtbsSym5+uqr+fznP8/ZZ5/NkiVLuOmmm8hms/ziF7/Yg1fuo4y4QqFQKBRAKpWq+RQKhQnXvfDCCznjjDM46aSTapavX7+e3t5eTjnllMqyQCDAcccdx8MPP7zHz1kZcYVCoVBMW/akJ97d3U0ikah8rrzyyrrHvPnmm1m9enXd73t7ewFob2+vWd7e3l75bk+istMVCoVCoQA2b95MPB6v/BwIBOqu88lPfpK77rqLYHDidq9jJXPr6eHvCZQRVygUCsU0Zs/VmMXj8RojXo9Vq1bR19fHkUceWVnmui4PPvgg11xzDS+88ALge+SdnZ2Vdfr6+sZ553sCFU5XKBQKxbTl9U5sO/HEE1m7di1r1qypfJYvX8773/9+1qxZw7x58+jo6ODuu++ubGPbNg888ADHHHPMHr9+5YlPMWSpKXEqldrHZ6JQKBSvnfI7rPxO29vHeb32EYvFWLJkSc2ySCRCc3NzZfkll1zCypUrmT9/PvPnz2flypWEw2He97737fa5jkUZ8SlGuY6wu7t7H5+JQqFQ7D4jIyMkEok9vl/Lsujo6KB7/tw9sr+Ojg4sy9oj+7r00kvJ5XJccMEFDA0NcfTRR3PXXXcRi8X2yP6rEXJvD5MUrwrP8+jp6SEWi+2VJIg9QSqVoru7e1wSyIGEugfqHhzo1w+T3wMpJSMjI3R1daFpe2fmNp/PY9v2HtmXZVmTJqpNVZQnPsXQNI2ZM2fu69PYJXYlCWR/R90DdQ8O9OuHie/B3vDAqwkGg9PS8O5JVGKbQqFQKBTTFGXEFQqFQqGYpigjrnjVBAIBvvSlL9UVQjhQUPdA3YMD/fpB3YOpgEpsUygUCoVimqI8cYVCoVAopinKiCsUCoVCMU1RRlyhUCgUimmKMuIKhUKhUExTlBHfD5kzZw5CiHGfCy+8cNy6H/vYxxBCcPXVV9csLxQKfOITn6ClpYVIJMJZZ53Fli1bdnqcz372szXrbNq0iTPPPJNIJEJLSwsXX3zxOIWltWvXctxxxxEKhZgxYwZXXHHFbuktT6Xrr3ceP/zhD/fq9b+e9wDgj3/8I0cffTShUIiWlhbOPvvsmu/3xTMw1e7B/vwc3H///XWPIYTgscceq6y3r56D/R6p2O/o6+uT27Ztq3zuvvtuCcj77ruvZr1bb71VHn744bKrq0t++9vfrvnu/PPPlzNmzJB33323XL16tTzhhBPk4YcfLh3Hqawze/ZsecUVV9Qca2RkpPK94zhyyZIl8oQTTpCrV6+Wd999t+zq6pIXXXRRZZ1kMinb29vle9/7Xrl27Vr529/+VsZiMfnNb35z2l+/lFIC8sYbb6xZJ5vN7tXrfz3vwW9+8xvZ2Ngor732WvnCCy/I559/Xt5yyy2V7/fVMzCV7oGU+/dzUCgUao6xbds2+dGPflTOmTNHep4npdy3z8H+jjLiBwCf/OQn5UEHHVT5hZJSyi1btsgZM2bIp59+Ws6ePbvmF3d4eFiapilvvvnmyrKtW7dKTdPkn//858qysduN5U9/+pPUNE1u3bq1suyXv/ylDAQCMplMSiml/MEPfiATiYTM5/OVda688krZ1dVVc767w766fin9l/ett9464fevx/VLuXfuQbFYlDNmzJA//vGPJzzuVHkGpNx390DK/fs5GItt27KtrU1eccUVlWVT6TnY31Dh9P0c27b52c9+xkc+8pFKQxXP8/jgBz/If/zHf7B48eJx26xatYpiscgpp5xSWdbV1cWSJUt4+OGHa9b9+te/TnNzM8uWLeNrX/taTXjskUceYcmSJXR1dVWWnXrqqRQKBVatWlVZ57jjjqsRizj11FPp6elhw4YN0/r6y1x00UW0tLRw1FFH8cMf/hDP8yrf7e3rh713D1avXs3WrVvRNI0jjjiCzs5OTj/9dJ555pma69vXz8C+vgdl9tfnYCy33XYb/f39fOhDH6q5vqnwHOyPKCO+n/P73/+e4eHhml+or3/96xiGwcUXX1x3m97eXizLorGxsWZ5e3s7vb29lZ8/+clPcvPNN3Pfffdx0UUXcfXVV3PBBRfU7Ke9vb1mH42NjViWVdlPvXXKP1cf67WyL68f4Ctf+Qq33HIL99xzD+9973v5zGc+w8qVK2uOtTevH/bePVi3bh0Al19+OV/4whe4/fbbaWxs5LjjjmNwcHDC63u9nwHYt/cA9u/nYCw33HADp556ak075anyHOyPqC5m+zk33HADp59+emUEvGrVKr7zne+wevXqV93qVEpZs82nPvWpyt+XLl1KY2Mj73znOyveKVD3GGP3M3YdWUpk2ROtWPf19X/hC1+orLNs2TIArrjiiprle/P6Ye/dg7In+fnPf55zzjkHgBtvvJGZM2dyyy238LGPfWzC63g9nwHY9/dgf34OqtmyZQt33nknv/71r8d9NxWeg/0R5Ynvx2zcuJF77rmHj370o5VlDz30EH19fcyaNQvDMDAMg40bN/KZz3yGOXPmANDR0YFt2wwNDdXsr6+vb9xIuZoVK1YA8PLLL1f2M3YEPTQ0RLFYrOyn3jp9fX0Akx5rV9jX1z/ROqlUiu3bt1eOtbeuH/buPejs7ATg0EMPrXwfCASYN28emzZtmvD6Xs9nAPb9PajH/vQcVHPjjTfS3NzMWWedVbN8KjwH+y37ZCZe8brwpS99SXZ0dMhisVhZ1t/fL9euXVvz6erqkpdddpl8/vnnpZSjySy/+tWvKtv19PRMmswipZR/+MMfJCA3btwopRxNZunp6amsc/PNN49LZmloaJCFQqGyzn/913/tkWSWfX399fje974ng8FgJXlnb16/lHv3HiSTSRkIBGqSuspJTT/60Y+klPv+GZgK96Ae+9NzUMbzPDl37lz5mc98Ztzxp8JzsL+ijPh+iuu6ctasWfKyyy7b6br1sqzPP/98OXPmTHnPPffI1atXy7e97W01ZSUPP/ywvOqqq+QTTzwh161bJ3/1q1/Jrq4uedZZZ1X2US4rOfHEE+Xq1avlPffcI2fOnFlTVjI8PCzb29vlueeeK9euXSt/97vfyXg8vttlJVPh+m+77TZ53XXXybVr18qXX35ZXn/99TIej8uLL754r1//63EPpPSznWfMmCHvvPNO+fzzz8t//dd/lW1tbXJwcFBKuW+fgalyDw6E50BKKe+55x4JyGeffXbcfvf1c7A/o4z4fsqdd94pAfnCCy/sdN16v7i5XE5edNFFsqmpSYZCIfmOd7xDbtq0qfL9qlWr5NFHHy0TiYQMBoNywYIF8ktf+pLMZDI1+9m4caM844wzZCgUkk1NTfKiiy6qKSGRUsqnnnpKvuUtb5GBQEB2dHTIyy+/fLdH3lPh+u+44w65bNkyGY1GZTgclkuWLJFXX311jTe0t65fyr1/D6T0vc7PfOYzsq2tTcZiMXnSSSfJp59+umadffUMSDk17sGB8BxIKeW5554rjznmmAn3vS+fg/0Z1YpUoVAoFIppikpsUygUCoVimqKMuEKhUCgU0xRlxBUKhUKhmKYoI65QKBQKxTRFGXGFQqFQKKYpyogrFAqFQjFNUUZcoVAoFIppijLiCsV+xvHHH88ll1yy148zZ84chBAIIRgeHt6tfR1//PGVfa1Zs2aPnJ9CcSCgjLhCsZf40Ic+VDFM1Z/TTjttj+z//vvvr2tAf/e73/GVr3xljxxjZ1xxxRVs27aNRCKxW/v53e9+x6OPPrqHzkqhOHBQrUgVir3Iaaedxo033lizLBAI7NVjNjU17dX9VxOLxejo6Njt/TQ1NZFKpfbAGSkUBxbKE1co9iKBQICOjo6aT2NjY+X7q666isMOO4xIJEJ3dzcXXHAB6XS68v3GjRs588wzaWxsJBKJsHjxYv70pz+xYcMGTjjhBAAaGxsRQvChD30IGB9OnzNnDitXruQjH/kIsViMWbNmcd1119Wc58MPP8yyZcsIBoMsX76c3//+968ptP0///M/NDQ0cPvtt7NgwQLC4TDvfOc7yWQy3HTTTcyZM4fGxkY+8YlP4Lruq7uZCoViHMoTVyj2IZqm8d3vfpc5c+awfv16LrjgAi699FJ+8IMfAHDhhRdi2zYPPvggkUiEZ599lmg0Snd3N7/97W8555xzeOGFF4jH44RCoQmP861vfYuvfOUr/Od//ie/+c1v+PjHP85b3/pWFi5cyMjICGeeeSZvf/vb+cUvfsHGjRt3a049m83y3e9+l5tvvpmRkRHOPvtszj77bBoaGvjTn/7EunXrOOecc3jzm9/Me97zntd8HIVCoYy4QrFXuf3224lGozXLLrvsMv7f//t/ADXGcu7cuXzlK1/h4x//eMWIb9q0iXPOOYfDDjsMgHnz5lXWL4fN29raaGhomPQ83v72t3PBBRdUjv/tb3+b+++/n4ULF/Lzn/8cIQTXX389wWCQQw89lK1bt3Leeee9pmsuFotce+21HHTQQQC8853v5Kc//Snbt28nGo1y6KGHcsIJJ3DfffcpI65Q7CbKiCsUe5ETTjiBa6+9tmZZ9Zz1fffdx8qVK3n22WdJpVI4jkM+nyeTyRCJRLj44ov5+Mc/zl133cVJJ53EOeecw9KlS1/1eVRvI4Sgo6ODvr4+AF544QWWLl1KMBisrPPGN77xVR+jTDgcrhhwgPb2dubMmVMzmGlvb68cX6FQvHbUnLhCsReJRCIcfPDBNZ+yEd+4cSNvf/vbWbJkCb/97W9ZtWoV3//+9wHfmwX46Ec/yrp16/jgBz/I2rVrWb58Od/73vde9XmYplnzsxACz/MAkFIihKj5fnc6FNc71mTHVygUrx1lxBWKfcTjjz+O4zh861vfYsWKFRxyyCH09PSMW6+7u5vzzz+f3/3ud3zmM5/h+uuvB8CyLIDdThBbuHAhTz31FIVCoebcFArF1EcZcYViL1IoFOjt7a359Pf3A3DQQQfhOA7f+973WLduHT/96U/54Q9/WLP9JZdcwp133sn69etZvXo19957L4sWLQJg9uzZCCG4/fbb2bFjR01W+6vhfe97H57n8W//9m8899xz3HnnnXzzm98EGOehKxSKqYUy4grFXuTPf/4znZ2dNZ83v/nNACxbtoyrrrqKr3/96yxZsoSf//znXHnllTXbu67LhRdeyKJFizjttNNYsGBBJeltxowZfPnLX+azn/0s7e3tXHTRRa/pHOPxOH/4wx9Ys2YNy5Yt4/Of/zxf/OIXAWrmyRUKxdRDyN2Z/FIoFPslP//5z/nwhz9MMpmcsHRtzpw5XHLJJXtM4nXDhg3MnTuXJ554gmXLlu2RfSoU+zvKE1coFPzkJz/hL3/5C+vXr+f3v/89l112Ge9+97snrT0Hv1wtGo2STCZ36/inn346ixcv3q19KBQHIqrETKFQ0Nvbyxe/+EV6e3vp7OzkXe96F1/72tcm3eaBBx6oZNHHYrHdOv6Pf/xjcrkcALNmzdqtfSkUBxIqnK5QKBQKxTRFhdMVCoVCoZimKCOuUCgUCsU0RRlxhUKhUCimKcqIKxQKhUIxTVFGXKFQKBSKaYoy4gqFQqFQTFOUEVcoFAqFYpqijLhCoVAoFNMUZcQVCoVCoZim/P8fAJIUR0+shwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAAHFCAYAAADi2cDGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADinElEQVR4nOzdd3xUVdrA8d+dPpn0Qgok9N4FFEQEpSkorrg2dAV1XVmx4q4K7go2cJEXFRBdXVxQbKuICjZAFFEQI0WRIiChhhASkkzq1PP+MZkhk5mQBIIYeb77mZW599x7z9wk89zTNaWUQgghhBCNju5MZ0AIIYQQJ0eCuBBCCNFISRAXQgghGikJ4kIIIUQjJUFcCCGEaKQkiAshhBCNlARxIYQQopGSIC6EEEI0UhLEhRBCiEZKgvgp2Lx5MyNHjiQjIwOr1Up8fDz9+vVj0aJFIWmVUsyePZsOHTpgNptJTU3lr3/9KwUFBUHpdu7cyd/+9jd69epFbGws8fHx9O/fn3fffbdOefryyy/RNA1N01iwYEHYNBdffDGaptGiRYv6fuQzbsGCBWiaxt69e2tNu379eq688koyMjIwm80kJyfTr18/7r///tOf0dOsPvfhVEybNo3333+/xut///33p/X6DWXq1Klomha0bdCgQQwaNOi0XfONN97g2WefPS3nbtGiBePGjWuw882bN6/G74twli1bxk033UTXrl0xGo0h99av6vfRunXrQvaPGzeOyMjIoG1ff/01f/7zn+nVqxdms/lX+T1vzCSIn4LCwkLS09OZNm0aH3/8Ma+++iotWrTgT3/6E0888URQ2r/97W/cd999XHHFFSxbtoyHHnqIN954g6FDh+JyuQLpli9fzkcffcRVV13FO++8w+uvv07btm25+uqreeyxx+qct6ioKObPnx+yPSsriy+//JLo6OiT/+CNwEcffcT555+P3W5nxowZLF++nOeee47+/fvz9ttvn+nsNRo1BXFRu9MZxBtafYP4kiVL+Pbbb+nUqRPdu3ev0zEPPPBAndJ9/vnnrFy5koyMDM4///w65+mspUSDO++881R6enrg/cGDB5Ver1d33XVXULo33nhDAeqll14KbDt69Kjyer0h5xw5cqSKiIhQFRUVJ7z2F198oQD15z//WQFq586dQfv/8Y9/qGbNmqlLL71UNW/e/CQ+3Zn13//+VwEqKyvrhOkuvPBC1bp1a+VyuUL2eTye05S7X09d78OpstlsauzYsTVePzMz87Rev6FMmTJFVf+6GzhwoBo4cOBpu+bIkSNP299Y8+bNw/5cTlbnzp3rdS+q/g1NmDAh5N76+b+PLrnkEgWoDz/8MGj/2LFjlc1mq/HcTz/99K/ye96YSUn8NEhMTMRgMATef/vtt3g8HkaMGBGU7rLLLgNg8eLFQceGq5o699xzKSsr49ixY3XKw9ChQ0lPT+eVV14JbPN6vSxcuJCxY8ei04X+6J9//nkuvPBCmjRpgs1mo2vXrsyYMSOopgB81ZBdunQhMzOTAQMGEBERQatWrXjqqafwer2BdDVV+fqr2L788svAthUrVnDFFVfQrFkzLBYLbdq04fbbbycvL69On7e6/Pz8kJ+DX/XP3qJFCy677DI+/fRTzjnnHKxWKx06dAi6d34//fQTV1xxBXFxcVgsFnr06MHChQsD+5VSJCcnM2HChMA2j8dDXFwcOp2OI0eOBLbPmjULg8FAYWHhCT/Lt99+S//+/bFYLKSlpTFp0qSQn4nf22+/Tb9+/bDZbERGRjJ8+HA2bdoUlMZfhbl161YGDx6MzWYjKSmJO++8k7KyskA6TdMoLS1l4cKFgSrR6tXPxcXF/PWvfyUxMZGEhARGjx5NdnZ2UJpVq1YxaNAgEhISsFqtZGRkcNVVVwVdqyZvvPEG/fr1IzIyksjISHr06BFSw/TKK6/QvXt3LBYL8fHxXHnllWzfvr3Wc4fjdDp54oknAs1eSUlJ3HzzzRw9erReeRs0aBAfffQR+/btC9y7qn/Xdb2Oy+XigQceICUlhYiICC644AK+++67On+eRx99lPPOO4/4+Hiio6M555xzmD9/PqrKulctWrRg69atrF69OpDP2prawn1/nMi4cePo1KkTkyZNwuPxNOi5z3ZytxqA1+vF7XZz9OhR5s2bx2effcaDDz4Y2O90OgEwm81Bx/nbkn788cdar/HFF1+QlJREkyZN6pQnnU7HuHHjePXVVwN/NMuXL+fgwYPcfPPNYY/55ZdfGDNmDK+99hrLli3j1ltv5emnn+b2228PSZuTk8MNN9zAjTfeyIcffsill17KpEmTwvYHqItffvmFfv368cILL7B8+XIeeeQR1q9fzwUXXFBjwDqRfv36sX79eu6++27Wr19f6zl++OEH7r//fu677z4++OADunXrxq233spXX30VSPPzzz9z/vnns3XrVmbPns17771Hp06dGDduHDNmzAB8ge/iiy9m5cqVgeO+//57CgsLsVgsfP7554HtK1euDPR9qMm2bdsYPHgwhYWFLFiwgBdffJFNmzaFNNeAr+r7+uuvp1OnTvzvf//jtddeo7i4mAEDBrBt27agtC6XixEjRjB48GDef/997rzzTv79739z7bXXBtKsW7cOq9XKiBEjWLduHevWrWPevHlB5/nzn/+M0WjkjTfeYMaMGXz55ZfceOONgf179+5l5MiRmEwmXnnlFT799FOeeuopbDZb4O+iJo888gg33HADaWlpLFiwgCVLljB27Fj27dsXSDN9+nRuvfVWOnfuzHvvvcdzzz3Hjz/+SL9+/di1a9cJz1+d1+vliiuu4KmnnmLMmDF89NFHPPXUU6xYsYJBgwZRXl5e57zNmzeP/v37k5KSErh3/jbh+lzntttuY+bMmdx000188MEHXHXVVYwePTqkL01N9u7dy+23387//vc/3nvvPUaPHs1dd93F448/HkizZMkSWrVqRc+ePQP5XLJkSb3uXW30ej3Tp09n69atQQ+9ogGc6aqA34Pbb79dAQpQJpNJzZs3L2j/5s2bFaAef/zxoO2ff/554JgTefnllxWgnnvuuVrz4q++euedd9SePXuUpmlq2bJlSimlrr76ajVo0CClVO1VfR6PR7lcLvXqq68qvV6vjh07Ftg3cOBABaj169cHHdOpUyc1fPjwwPuaqnz9efziiy/CXtvr9SqXy6X27dunAPXBBx/Ues7q8vLy1AUXXBD4uRiNRnX++eer6dOnq+Li4qC0zZs3VxaLRe3bty+wrby8XMXHx6vbb789sO26665TZrNZ7d+/P+j4Sy+9VEVERKjCwkKllFL/+c9/FBBI98QTT6gOHTqoUaNGqZtvvlkppZTT6VQ2m01Nnjz5hJ/j2muvVVarVeXk5AS2ud1u1aFDh6D7sH//fmUwGEKabIqLi1VKSoq65pprAtvGjh0b9vfpySefVID6+uuvA9tqq06/4447grbPmDFDAerw4cNKKaXeffddBajNmzef8HNWt2fPHqXX69UNN9xQY5qCggJltVrViBEjgrbv379fmc1mNWbMmMC2ulSnv/nmmwpQixcvDkqXmZmpgMDfdV3yplTNf2N1vc727dsVoO67776gdK+//roC6l2d7v+bfuyxx1RCQkJQs119q9Orqkt1+jvvvKOUUuqCCy5QzZo1U+Xl5Uqp8NXpVUl1eu2kJN4AJk+eTGZmJh999BG33HILd955JzNnzgzs7969OxdeeCFPP/0077zzDoWFhaxdu5bx48ej1+tPWH30ySefMGHCBP74xz9y11131StfLVu2ZNCgQbzyyivk5+fzwQcfcMstt9SYftOmTYwaNYqEhAT0ej1Go5GbbroJj8fDzp07g9KmpKRw7rnnBm3r1q1bUCmpPnJzcxk/fjzp6ekYDAaMRiPNmzcHOKmq0YSEBNasWUNmZiZPPfUUV1xxBTt37mTSpEl07do1pJq+R48eZGRkBN5bLBbatWsX9HlWrVrF4MGDSU9PDzp23LhxlJWVBUpaQ4YMAQiUxlesWMHQoUMZMmQIK1asAHyl3NLS0kDamnzxxRcMHjyY5OTkwDa9Xh9UYgb47LPPcLvd3HTTTbjd7sDLYrEwcODAoKYLvxtuuCHo/ZgxYwLXrKtRo0YFve/WrRtA4L716NEDk8nEX/7yFxYuXMiePXvqdN4VK1bg8XiCmiWqW7duHeXl5SG9tNPT07n44ouDaj3qYtmyZcTGxnL55ZcH3cMePXqQkpISuId1yVtDXMf/c6j+c7rmmmvCNhOFs2rVKoYMGUJMTEzgb/qRRx4hPz+f3Nzck8r/qfjXv/7FwYMHee655371a/9eSRBvABkZGfTu3ZsRI0bwwgsv8Je//IVJkyYFtW+988479O/fn2uuuYa4uDguuugiRo8eTY8ePWjatGnY83722WeMHj2aoUOH8vrrr9c4jONEbr31VpYuXcqsWbOwWq388Y9/DJtu//79DBgwgEOHDvHcc88FAuDzzz8PEFTFB74gWZ3ZbA5JVxder5dhw4bx3nvv8cADD/D555/z3Xff8e2334a9dn307t2bBx98kHfeeYfs7Gzuu+8+9u7dG6j+9qvL58nPzyc1NTUkXVpaWmA/QPPmzWndujUrV64MBHd/ED948CA///wzK1euxGq11tr7Nj8/n5SUlJDt1bf529r79OmD0WgMer399tshDy0GgyHkM/vP6f8cdVH9HP4mI/9989+HJk2aMGHCBFq3bk3r1q1r/RL3/+00a9asxjT+fNb0M6nP5wDfPSwsLMRkMoXcw5ycnMA9rEveGuI6/vxX/1mH+9mF89133zFs2DAAXn75Zb755hsyMzN5+OGHgVP7uzpZ559/Pn/4wx946qmn6twkIE6sbo9zol7OPfdcXnzxRfbs2UNSUhIATZo04eOPPyY3N5ecnByaN2+O1Wpl3rx5YQPrZ599xh/+8AcGDhzI4sWLMZlMJ5WX0aNHM2HCBJ566iluu+02rFZr2HTvv/8+paWlvPfee4ESMPjGwp8si8UCgMPhCNpePaD89NNP/PDDDyxYsICxY8cGtu/evfukrx2O0WhkypQpPPPMM/z000/1Pj4hIYHDhw+HbPd35EpMTAxsGzx4MB988AGrV6/G6/UyaNAgoqKiSEtLY8WKFaxcuZIBAwaE9JMId82cnJyQ7dW3+a/97rvvBv38auJ2u8nPzw8KBv5z1iVA1MeAAQMYMGAAHo+H77//njlz5nDvvfeSnJzMddddF/YY/9/NwYMHQ2o+/Pz5rOlnUvXnURf+znmffvpp2P1RUVF1zltDXMf/+XJycoIe9P0/u9q89dZbGI1Gli1bFvhbBM74kMHp06fTpUsXpk2bdkbz8XshJfHT4IsvvkCn09GqVauQfU2aNKFbt27ExMTw4osvUlpayp133hmUZvny5fzhD3/gggsu4P3336/1i/5ErFYrjzzyCJdffjl//etfa0znL+VXvZZSipdffvmkr+3v4Vq9496HH35Y67UB/v3vf5/0tcN9scPxqnl/6bk+Bg8ezKpVq0J6X7/66qtERETQt2/fwLYhQ4Zw5MgRnn32Wfr27Rv4Yh48eDBLliwhMzOz1qp0gIsuuojPP/88qFe7x+MJGes+fPhwDAYDv/zyC7179w77qu71118Pev/GG28ABPVAP9nalXD0ej3nnXdeoHZn48aNNaYdNmwYer2eF154ocY0/fr1w2q1hnSmPHjwYKDpoz4uu+wy8vPz8Xg8Ye9f+/bt65w3qPne1fU6/p9D9Z/T//73P9xud62fR9M0DAYDer0+sK28vJzXXnutznk9HTp06MAtt9zCnDlz2L9//69yzd8zKYmfgr/85S9ER0dz7rnnkpycTF5eHu+88w5vv/02f//73wNP7EAgGLZu3ZrCwkI++eQT5s+fz7Rp0zjnnHMC6b7++mv+8Ic/kJKSwuTJk0NKwp06dar3RC0TJ05k4sSJJ0wzdOhQTCYT119/PQ888AAVFRW88MILp1Tl1adPH9q3b8/f/vY33G43cXFxLFmyhK+//jooXYcOHWjdujUPPfQQSini4+NZunRpoP34ZAwfPpxmzZpx+eWX06FDB7xeL5s3b+b//u//iIyM5J577qn3OadMmcKyZcu46KKLeOSRR4iPj+f111/no48+YsaMGcTExATS+mfFW758OY8++mhg+5AhQwK1DXUJ4v/4xz/48MMPufjii3nkkUeIiIjg+eefp7S0NChdixYteOyxx3j44YfZs2cPl1xyCXFxcRw5coTvvvsOm80WlA+TycT//d//UVJSQp8+fVi7di1PPPEEl156KRdccEEgXdeuXfnyyy9ZunQpqampREVFBYJMXbz44ousWrUqMLNhRUVFYOjeiT5/ixYtmDx5Mo8//jjl5eVcf/31xMTEsG3bNvLy8nj00UeJjY3ln//8J5MnT+amm27i+uuvJz8/n0cffRSLxcKUKVPqnE+A6667jtdff50RI0Zwzz33cO6552I0Gjl48CBffPEFV1xxBVdeeWWd8ua/d++99x4vvPACvXr1QqfT0bt37zpfp2PHjtx44408++yzGI1GhgwZwk8//cTMmTPr9B0wcuRIZs2axZgxY/jLX/5Cfn4+M2fODFso6Nq1K2+99RZvv/02rVq1wmKx0LVr1xrPvW/fPjIzMwHfyBIgMKtkixYtwj40VjV16lRef/11vvjiC2w2W9C+o0ePsnr1agC2bNkC+PoGJSUlkZSUxMCBA2v97GeVM92zrjF75ZVX1IABA1RiYqIyGAwqNjZWDRw4UL322mshaf/973+rjh07qoiICBUZGakGDBig3n///ZB0/l60Nb1q6tHtV703aE3C9ZxdunSp6t69u7JYLKpp06bq73//u/rkk09Crjtw4EDVuXPnkHOOHTs25Jw7d+5Uw4YNU9HR0SopKUnddddd6qOPPgo557Zt29TQoUNVVFSUiouLU1dffbXav3+/AtSUKVMC6eraO/3tt99WY8aMUW3btlWRkZHKaDSqjIwM9ac//Ult27YtKG3z5s3VyJEjQ84RbjKQLVu2qMsvv1zFxMQok8mkunfvrv773/+GzUPPnj0VoL755pvAtkOHDikgpHfwiXzzzTeqb9++ymw2q5SUFPX3v/9dvfTSS2Hvw/vvv68uuugiFR0drcxms2revLn64x//qFauXBlI4+8R/OOPP6pBgwYpq9Wq4uPj1V//+ldVUlISdL7Nmzer/v37q4iICAUE7kdNk71UH3mwbt06deWVV6rmzZsrs9msEhIS1MCBA0Mm/ajJq6++qvr06aMsFouKjIxUPXv2DLnf//nPf1S3bt2UyWRSMTEx6oorrlBbt24NSlPXyV5cLpeaOXNm4O8gMjJSdejQQd1+++1q165d9crbsWPH1B//+EcVGxurNE0Lun5dr+NwONT999+vmjRpoiwWi+rbt69at25dnSd7eeWVV1T79u2V2WxWrVq1UtOnT1fz588P+d3Zu3evGjZsmIqKilJArZPU+H/+4V5V83Wi76PJkycrIKR3uv+YcK/TOTlPY6UpVWXUvxDid2/cuHG8++67lJSUnOmsCCFOkbSJCyGEEI2UBHEhhBCikZLqdCGEEKKRkpK4EEII0UhJEBdCCCEaKQniQgghRCMlk738xni9XrKzs4mKijqpudKFEOK3QClFcXExaWlpp22N8IqKilqXtK0rk8kUND1tYyFB/DcmOzv7pOZjFkKI36IDBw6c9GIxJ1JRUYE1Og5cFQ1yvpSUFLKyshpdIJcg/hvjn2P7wIED9Z5eVQghfivsdjvp6emB77SG5nQ6wVWB1nMU6I2ndjKPi5xNH+J0OiWIi1Pjr0KPjo6WIC6EaPROe7OgwYxmOLUgrrTG2z3sN5Pz6dOno2ka9957b2Db1KlT6dChAzabjbi4OIYMGcL69esD+48dO8Zdd91F+/btiYiIICMjg7vvvpuioqKw13A4HPTo0QNN00IWFtE0LeT14osvBqXZsmULAwcOxGq10rRpUx577DGqD7NfvXo1vXr1wmKx0KpVq5BzCCGEaECa1jCvRuo3URLPzMzkpZdeolu3bkHb27Vrx9y5c2nVqhXl5eU888wzDBs2jN27d5OUlER2djbZ2dnMnDmTTp06sW/fPsaPH092dnZgRZ2qHnjgAdLS0vjhhx/C5uO///0vl1xySeB91VWp7HY7Q4cO5aKLLiIzM5OdO3cybtw4bDYb999/PwBZWVmMGDGC2267jUWLFvHNN99wxx13kJSUxFVXXdUQt0oIIURVmganWpJuxEH8jJfES0pKuOGGG3j55ZeJi4sL2jdmzBiGDBlCq1at6Ny5M7NmzcJutwfWp+7SpQuLFy/m8ssvp3Xr1lx88cU8+eSTLF26NGS93U8++YTly5czc+bMGvMSGxtLSkpK4GW1WgP7Xn/9dSoqKliwYAFdunRh9OjRTJ48mVmzZgVK4y+++CIZGRk8++yzdOzYkT//+c/ccsstJ7ymEEKIxuWrr77i8ssvJy0tDU3TeP/99wP7XC4XDz74IF27dsVms5GWlsZNN91EdnZ20DkcDgd33XUXiYmJ2Gw2Ro0axcGDB+udlzMexCdMmMDIkSNrXVvZ6XTy0ksvERMTQ/fu3WtMV1RURHR0NAbD8UqGI0eOcNttt/Haa68RERFR47F33nkniYmJ9OnThxdffBGv1xvYt27dOgYOHBi0Fu/w4cPJzs5m7969gTTDhg0LOufw4cP5/vvvcblcJ/x8QgghToKma5hXPZSWltK9e3fmzp0bsq+srIyNGzfyz3/+k40bN/Lee++xc+dORo0aFZTu3nvvZcmSJbz11lt8/fXXlJSUcNlll+HxeOqVlzNanf7WW2+xcePGwOLy4SxbtozrrruOsrIyUlNTWbFiBYmJiWHT5ufn8/jjj3P77bcHtimlGDduHOPHj6d3796BgFvd448/zuDBg7FarXz++efcf//95OXl8Y9//AOAnJwcWrRoEXRMcnJyYF/Lli3JyckJbKuaxu12k5eXR2pqash1HQ4HDocj8N5ut9d4L4QQQlTTEG3a9Tz+0ksv5dJLLw27LyYmhhUrVgRtmzNnDueeey779+8nIyODoqIi5s+fz2uvvRYowC5atIj09HRWrlzJ8OHD65yXMxbEDxw4wD333MPy5ctP2KX/oosuYvPmzeTl5fHyyy9zzTXXsH79epo0aRKUzm63M3LkSDp16sSUKVMC2+fMmYPdbmfSpEknzI8/WAP06NEDgMceeyxoe/Velv5q9Krb65KmqunTp/Poo4+eMG9CCCFOv+qFKLPZHFT7erKKiorQNI3Y2FgANmzYgMvlCqq5TUtLo0uXLqxdu7ZeQfyMVadv2LCB3NxcevXqhcFgwGAwsHr1ambPno3BYAhUKdhsNtq0aUPfvn2ZP38+BoOB+fPnB52ruLiYSy65hMjISJYsWYLReHy4wapVq/j2228xm80YDAbatGkDQO/evRk7dmyN+evbty92u50jR44AvokAcnJygtLk5uYCx0vkNaUxGAwkJCSEvc6kSZMoKioKvA4cOFDrvRNCCFGpAavT09PTiYmJCbymT59+ytmrqKjgoYceYsyYMYFhwzk5OZhMppB+YMnJySExpDZnrCQ+ePBgtmzZErTt5ptvpkOHDjz44IPo9fqwxymlQqqfhw8fjtls5sMPPwwp1c+ePZsnnngi8D47O5vhw4fz9ttvc95559WYv02bNmGxWAJPTv369WPy5Mk4nU5MJhMAy5cvJy0tLVDN3q9fP5YuXRp0nuXLl9O7d++gB4uqGupJTwghzkon0aYd9hyETrJ1qt/NLpeL6667Dq/Xy7x582pNr5Sq97j6MxbEo6Ki6NKlS9A2m81GQkICXbp0obS0lCeffJJRo0aRmppKfn4+8+bN4+DBg1x99dWArwQ+bNgwysrKWLRoEXa7PVAdkpSUhF6vJyMjI+gakZGRALRu3TowFeDSpUvJycmhX79+WK1WvvjiCx5++GH+8pe/BH6IY8aM4dFHH2XcuHFMnjyZXbt2MW3aNB555JHATR8/fjxz585l4sSJ3Hbbbaxbt4758+fz5ptvnr4bKYQQokE05CRbLpeLa665hqysLFatWhV03pSUFJxOJwUFBUGl8dzcXM4///x6Xec3MU48HL1ez44dO1i4cCF5eXkkJCTQp08f1qxZQ+fOnQFflbx/8hd/NblfVlZWSEe0mhiNRubNm8fEiRPxer20atWKxx57jAkTJgTS+DsrTJgwgd69exMXF8fEiROZOHFiIE3Lli35+OOPue+++3j++edJS0tj9uzZZ8UY8ZzCcjbsyWdPbglepWgaF0HvVgm0aBJ5prMmhPgd03Qamu4UO7bpNFTtqerMH8B37drFF198EdKc2qtXL4xGIytWrOCaa64B4PDhw/z000/MmDGjXtfSVPUpx8QZZbfbiYmJCQyVawy2Hijk402HQAP/b5NW+e/z2yVxQYfgToglDjcfbT/Cp9uPYHe4aREXwZXdUjm/RTy6RjzpghDiuNP9XeY/v+7Cm9EMplM6l3I78X713zrntaSkhN27dwPQs2dPZs2axUUXXUR8fDxpaWlcddVVbNy4kWXLlgWNWIqPjw80x/71r39l2bJlLFiwgPj4eP72t7+Rn5/Phg0bamxODuc3WxIXjUNhqZOPNx/yPcVWeRz0B/O1O4/SLCGCFkm+EvmhonLGv/MDuSWOQPJDReWsycpnSLskHr+kI/pTfaoWQojT6Pvvv+eiiy4KvPfXyI4dO5apU6fy4YcfAsdHOvl98cUXDBo0CIBnnnkGg8HANddcQ3l5OYMHD2bBggX1CuAgQVycos17j51wv6bBhj35tEiKRCnF35duJa/UEVR15VWgAZ/vPEq7xEjGnZtR0+mEECJYA3Zsq6tBgwaFrJtRVV0quC0WC3PmzGHOnDn1unZ1EsRFnTncHr4/UEixw03TaAtdUqM5eKyM6r+vBp2GRa+h0zQ8SpF9rAyATYeK2J1XGkin16BltIXmkRYsBh0epcjcncfwdomkxtY8s15VJ9ObUwjxO3IGJnv5LZEgLmqllOLdH7JZ8N1+ylzHpwRsGmOhR2Jwx7Vokx6zXlflSdS3ItzXW3PYYS9HXxnYDRr0TYkm2ni86kivaSRaDMxfvYeb+rckI9EWNj8bDhQyb80ePtuRi8vrpWNyFH/p14LrzmmGrp5V8SUONwqINOnJL3VS7HCTYDMRbTnF9YmFEL+OM1AS/y2RIC5q9cbGg/zn230h27OLKjhsr+C8pChizQYijTpMlUG0eul4V7YdzXT8D6VdbARRRn1IOp2m4fEq3vluP/de0iGkfXzJj9n89X+b0SrTAfycW8LE93/ihbVZ/Pf6c2iTdOIe8UopPtp2hAWZ+/k5twSTXiPJZgpU8es0OL9lArec15ymMdYTnksIIc6kxvv4IX4VxRVuFny3P+w+f9D7uagcHWDR605YtW1wKzQUeg3SI80n7Ile4nCzMyd4CsQjxQ7ufPcHvAo8XoVO0zDofb/Cmga7j5Zy4ZyvmfrJdrze0DYph9vDml1HueqV9Uz6aBs/55ZgNuhIiDDirdIm4FWwNiufuxf/wMHC8hrzKIT4DfAvRXpKL6lOF79Tq3/Jwx0mIPp5FRxzuPFQe9u016vokRzFrmNlGKqVsJVSeBX4143Ta5CVW0rHtONrur+54UCg9K3TtMDfXfXrvrRuHwk2M3dd2Cqw7YcDBTyzahdrDxRiNh3/tY+1GMKew6ugzOXhxbVZPDGiU9C+Y6VO1uw+So69AqtRT+/m8XRMiZK2eSHOBGkTF6Jmx8qc6HXHq65r0jkjjqNHS8Puq7oIzJ/Pa87jq3YF7fcqhafy9AZNI95iQK/Blv0FpCdE0DU9FoAfs+1B49CrBk2rUUes1YjZqMOrYGHmPq7t2ZQmUWZ2HSlm9qrdrN5XgMmgD3SGMxt0JxzO5lWQub+AoyUOkiJ9M/ct35bDWxsO4D/K7VG8uzmbprFWpozoSEp0zYv5CCFEQ5MgLk4o0WaqNYADtE2OCgriSil2FpWzJb+MvAoXmgYZkWY6tEngv2PO4fkVu3C5fZ3kPJVDzNrEWEiPCq5mz9p3jBizgYwmkZj04UvfiZEmEmymQHBWSoFBx7g3NzD7ym58tvUwO4+VohTodVrgWINOq1Pv9hx7BUmRZjL3HePN730L1Li8ip15pRwqduBV8H22nWU7chl3bgaTh7bDaqzfWE8hxEk6yzu2Nd6ci1/Fha0TMelr/jXRadCzaQztU6NJiDKj4Qvgqw4VsepQEUcrXCh8pdr9xQ7u+eAn1uw5xsjuaWiahv/5oGN8BBlRoe3kkUY9u/ceo9zhZkj7JlR/nogyG0iw+WZA8gdjTfMF6gqXl78v3cquI8UcLPaNTVdKBWoG6jpZYY7dwX/W7uE/32QBvpqDDdl2DtgdQfnxeBWvrN/HuNc34vZ4azibEKJhNcQKZo03FDbenItfRaTZwG39mofdp9N8pdnbz28JwMCuqZiMOnbbK9hZFNohzKjXsOp1TF/5MylxVgZ1bIIXiDTqSLOZwpaIdZqGphT7s+1c3iWFpjEWdBxPF28z1hiMFVBY7qLQ6QkE26rt+xXu2gNtrEnPS9/s4fMdR3FWps8pdlJY4Q5/TQVr9uTz6Y7cWs8thBCnSoK4qNUfuzfl/kFtiLUGj51ulWDjmT90o33lIicxNhNX9G3OruIKqobjOLOBjnFWOsZF0D7OSqf4CGZ/sYveLRNIijKTajMF9Q738yqFy+PFq+BIXikmvY53bzmX5ChTZeBWWMIMUwMwaGAz6Igy6ihze4ky+aq3XW5voETuVVDq9NT4EGDAV7rWa1rQH8oBe8UJ75deg0Xf17wuvFcpduTYWftLHj8eLJRSuxCnwt+x7VRfjZS0iYs6uaxzCpd0aMK6PfnklzhIjrJwXquEkMlVbBYjh4qPT6vaxGokzWYKCpQ6TSOv2MG/PttBz6YxOOyOoKDv8njJK3dR7Doe3GwGHUcKy2mdGMm3EwfxwjdZPPvlLyH51IAoow5T0IQz0DU5koIyF3llLo5VuEiMNNE6xooODYfXQ4TRgE6DwyUO8ivcVDg9dKx8ONEBaMfbz2srwXsUHCgIPzRty6FCFq3fR0GZ6/hnM+kZ3bMZA9omnfC8QogwzvI2cQniok6OFJWz/MfDHK4MTjspYsMveVzQvgk9WsQHpTXoNNxehUmnkRrhK72HKy3nFldQ7o7C6fGVjjXA6fGyv9gR0vZd6vayLPMgI3s3IzU+gvsGteEPXVO5490fKHd5AuePMuowVplwxqTTSLOZiTTqIc53jRiTnlizAZ2mUehwcczhYb+9gq8PFuJRvqFw0SY9XuUrhfvP7VWgQ2HUa9RQmw74mhmSIoNXVapwelj2wyGW/xxazV7q9PDa+n14lWJguyYh+4UQoiaN9/FD/GqO2it44+sscqqVLsscHpb/eJjvducFbR/QKgF95VCxE/EP4erYPC7QoS23zBUSwI+nV3yx5XCghN0ywcY9F7Y+3ttcA1OVCWdMOo3W0VZshuO/5k2sRuIqA7jd6eaYw8PRMidfHSgMDHMrc3rCDj3zKF87e9Moc62f6+qeTSkqd7HxQAFrf8nj+ZU/s2rn0RMe996mQ4F2d4C1e/IZt2gD58xYxYXPfcVzX/5CYbnrBGcQ4ix0yhO9NEBJ/gySkrio1Vfbj+D2Kmrqy71mey7dMuKwVLY733BOMz7fdRST7vgfhgbYjHoiDDrf/OleRanbQ5nDTfcW8Wz35nG0oJyyWqqqSyrcHMovo1nlvOrDOzRh+5FiPtyaE5iz3R/Ek60mdFXGk5v1GrbKoV9KKY45fMXpLUdLgq7h9ngpdrjRaVqg/dx/DrcXUiLN7C+qoNzlDbknep1G6wQb2YXljF30PR6l6BgbgVEH7lp6w5e7PGw5VMg5GXFMWrqNWV/sRq8ReLhYv6+Amat2sXxCfzomR53wXEKcNc7yyV4a7+OH+FWUOtz8cqQkZKWyqjxKsT27KPC+U0o0j13SEX/Y12m+EnC0UY9B861uZtBpxJgMJFmNuD2KHu2akBAXfuUyh8fLkTInWcUVZBVXsGTTIXYfKQZ8Afrega156rJOpESbA8FWp/kWY6lajR9l1AdK8RWVHeY8XsWhEmdQMNY0jcN2By6P1zckjeDhaJqm0SMlmpgwNQ39W8TRKdnG13vy8CiFzaDDZtTjVXX7kiiqcDPj813M+mJ35b09vk8pyCt1ctm/10lnOCH8zvKSeOPNufhVlJ6o8beSToOSatW8w9o34aGh7dE0jTizMdC2XH0st1GnY/mWbDRNIz1M6bLY5eFgqZMSty/oehUcKizn5a/2sGJrTuBc5zWP57qezQLHGatc63g+j7/3V9l7wjydWE16vAo2HypGAU6vL2BWDeRmg45eadFc1CqeyUPa8q/LO7H6rgu4sXc6BwrLA+ePrHxwOMFQ+yAlDhfTlv9c436PV3GgoJyllZ9dCHF2kyAuTijCXPvMY14FEebQUmnvjDjaJkXWujDK1kNFlFS4SIyxBF3P5fWSG6YN2B9KV247wq7KEjlA/9aJmCvbv8NVXVedec7f+c2o07BUi7BGvYbJoHG01Mm6vYXkFjtxer148bXLK6UwG3Rc2jmFudf04M4LW/OnPhm0TYrk423hg6uhsvahOq9SlLk9lLjcFDvdvLbxEOWuE5eyDTqNL3flnTCNEGeNs7wkLm3i4oQiLUYyEm0cyCsNqnJWSuGsbCc36zU6NI0JOVbTNAa2TeKTH7JD9nmVwuVVgclXlm/NYUS3NHq3SeSrrUcAsDs9IcdVpdPg611HaVtZgrca9dw1sA2zVu1EAcVON5FVxpEXuzzEVD5smPQ6zDoNhxfaxUew5WhJ4PNpmkaczURhqYuiCjcbD9kx6jWU8k1+85/re3Bpp5SQ/JQ43GRXm+SmuErP+ViTgbwKV+D+5Zb7hruVOD2UVHgq73ftD02+Me51m21OiN89neZ7neo5GikJ4qJWAzs24fWv90Jl8Ch0usmrcAdKuwadxoc/ZnNlj6ZYqs0ZbjaEPuG6vN6gDmw6DXYcLGRfTjEjejTl3HaJZO7Ko7yGdt8Sl4e8ChcOj5csewVdm8dxTrNYdJrGeS3ieXRkZ97bfJAdh4sD1dmapuH0KoqcbqIrA3ui1Uh2qZNOiREcLK6goMJdZU1xjcQoEw63l/4t4mmdGEnn1Cj+0DU16DO6vV5+PGTnl6MlHMwvRfNNPBvYX+b2UuJyYzPoMet1JFqMFFS4yCpxUOL2UuzwUOrwBXC9zre0qsmgC+qlXp1HQb+W8TXur87p8ZJb7MBi1JFoO3HPeiFE4yJBXNQqNS6Ca89vziebDvFzfmmgV7ef26tYueMIu3JLeGh4B0xVAneLyl7kfh6lggJ4q2gLLaIsgarmrH0FRNlMjD4vg/+u3cvREmcgrVKKrOIK8qq009vx8PcPt9I8zso1PZrSOz2ODslRTB7ekQqXh91HilnxUw72ymr5/Ao3XgXxFgNmvY6mNhPHHG6GtYjnp7xSdh4rw1lZO9CjaQwTLmjFwDaJYe/LZzuO8N9v91JaWWPQNMJEpFFPoTP4/vxir6B9bARmnW/Ym07TKHF7fT30HcdrG/yl66RoM4eO1byOeZTFwFXd02rc71fqdPPCN1m8vekQxZU/s84pUdzRvyWDZTy6+J3w9a851clepCQufufSE2wM79mUdR9tC7vfq2Bvfilf7MxleJWq5pgIE52aRrO9chlRZ5XSdftYKxmR5pD28uJSJ5t/PkrP9FhWbM8NlGuzy5xBARyOl3n3FZTz9Be70fCNU/eNH4f2qdF0bhrDnqMl5Jc4MRt0tEuJxqTXyLNX4PEqYiPNKKCkwoXRoMPp8U3nWn2a2aqW/XSYf6/NCtqm0zQijXqKXe6gXuUur2LbsVISLL4e+j8dK0UpRbkruLlAKXB5FAk2I2UONwWlof0BdBq8Pa4PZsOJq91LnW6uW5jJ7mrNINuPFDNh8Y/8Y2h7buydfsJzCNEoyIxtQtTNmt156DRqnIxFAV/8HBzEAS7v2YyisiwOFZTjqjzYatDRPKrmtbfdbi9JRj1GvQ6Xx4tHKXLKnDWm93N6vLz3YzavZu7Hq3zV+Vd2TWXCgFac2yohKG1ytSFttjCd8/zs5S5yiysoc3k5bK9g/rd7Q9J4lMKgaaRYzeRVOHFUuVFeoMjpZktuCXqDr9rcG6bGvNzpIdpqID3eSkyEkbxiJxVODzqdRmyEkbsubMWQ9rWXou95bws7j5aEPCD5szRt5c8Mbd+E5FomrhFC/LZJEBd1dqS4osYA7ne0xBGyzWLUc/OFrfn5sJ0Fa7NwexVpEb5FT6ovPeqngLxjZYzt34KF3+zFXu4MKt2G4/R4ya4yvAvA4fbyzg/ZfLL9CH86N4NtOcU4PF46J0dxVfc0OjQ58aQpx0qdLNl4kB8PFvJzQRm55S6sBh1xFkNIgCxxeYg1GTDoNFIizDg9XhxeLyhFaYWLQ3YnhRUeYm1G9EqF7Uvj8Srs5W5sZj2xESZiI3zTt9pMem4+N4M/9aq99Pzp9hzW7MmrdZ30JT9mM75/y1rPJ8Rv2lk+2YsEcVFnNpPhhCVxIKRjm59ep9GpaQztkqPYkWPHXIeB014F6XERPDCiA29vOMj2zYdOmP5omDnXwff3aTLpeadKL/ms/DI+2JrDhP4tGdsno/J6in25JezNLcHtVUSY9Xy0LYdSp4dNR0sodh3vgBZOsctDpFGPgcp52/U6copKWbfnCEXlTtKSE9HrdVQ4PZisBqwmPSWO0B74/kBu0uvolhbNHRe05NyMuBrvbXVz12TVGsAB9uSX1ul8QvymSXW6EHVzbot41u89VuN+DejXMqHG/QAD2iWx7bA9qG28xvNpYDToMOv0jO7ZlDd/OFTjA4TT7cURpke3BsRFmKge0vyTvDz/TRatEiJoHhPB6i2HsZe70DRQXsX2wjKMOo3cMmcggEPwePOqFJBT5iTeYiRCr2NffjHLtx8M7NdXjpcvd3mJMCsMOo0Ik56yMEPpdBrodfDYiI60S4o84X2qKq/EwY7cEvS68IvOVM2rzSR//kI0do338UP86ro3i6V5fESNQyoVkF/qILuw5p7V7VOiGdS+Cdllzhqr0qFytbEYC98fKODbvccoc3polWCjwuXB4faGrAFe00OBxaSvrG0Lfy29Bo98sp3Xv95DYWWbu1LwS3EFBp1v1rfs0uC2+HJ36Jzpfl4gr8JFXrmTr38JnvjFU6URvKDUhdOtiLLosZlC/wxbJ9p440+96xXAgcCDTPWpYqtTyjfvvBCNnkz2IkTd6HUa9w9px7zVv7CjykxpVf14qIhth4t5cHh7WiWGD0CXd0+jRaKNbXvyiQkzm5vHq/gqp4iffirD5fFS6vRQ7PAEz2+Ob+IV/zj0mh4sTCeotjfofOdpYjESXaVU6lWKrOJyWkZZAd/c7VUpwO7wEHuCVdqKSh2UVRtqVlpaTnSUDU3T8CooKHNh0Plmh7MadTjcXm4+tzkjOiXTLS26TlXiVbm9XjYdKgwsBavXBS/eEsi/UmTERXBe87h6nV+I36SzvE288T5+iDMiymLkweEd6JgSFVJFDb52bJfXy4tf7alxVjFN0+jWLJZrB7SidbMYdFUisFcpPjpwjB/ySnF7FaVOD/ZqARx8gbTY4Q6UPC1Gfdj8hN/oC/paZV7SI81BeS11e6hwq0BJtupqbH4lLg8FFa5AGqV8s8+5vQqTXkeJM3TO+eLSMjze4FoEt1dR5vQ1BfRtHs+DQ9rSvWlMnQO4y+Nla46dzP3HuPG1Ddy75KfALHj+gr+qnCrWf129pvHaDb3q/ZAgxG+SlMSFqJ+ichc7coprrFJWytdLfUdOMZ1So2s8j6ZptGseT6umseQXlePxKnbkl/LLFl8HNK9SFIfp+BU4vvK/OhRoGjFWY8h62y63N+yscVVL7tU7qinlqxYvdnmIMupJtZkoDtNEUOryUupyEmXSY618iFCA26OCJrzx83oVR44eIyEuBovZFJSXP3RN5dFLO56wiaEqj1fx3+/2sWjDAYoq3JQ7Pbirdd9XgMdbWVChsklBwbxrupMSXfPwPiFE4yFBXNTb4aLyGgO4nwYcLCw7YRD3Mxh0JCf4ZnZ7ecOBQA94xwnangF0Oo0yl4enL+8Gmq/E+eGWw3y07QgWow6P8i2lqggtkAeCGlDocNOsynSktsolU49WuIg06km2GjlU4qA0TMc5s17D6l+jvMr2JlERmAx6nO7ghxCPx0tuXgFGg57E6AievbYPF7RKICmy7uO1lVJM/Ww7y7YdCbyvHsCD0/vydnGbBO6+sDVd6vAzEaLROMt7pzfenIszJlwpszrFiduja5JbcnyYWE090SNMehIijMRZfa/pn+9kf0E5EUY9uSUOWiVEkBZtIT3GQqfkSEa0b4JJrxFp0BFj8q9p7psC1aBp/GKv8OW5SnVzyygLFR7FvhIH5R4v7WIjaB5lxlYZsDV8Jfgoc+isbi7lRa/X0T09/HStAC63hydHdeXKbmn1CuCF5U7e33I4EMCh5t7y1V3WOUUCuPj98beJn+qrkZKSuKi35vE2YqxGisIsExqgFJ3T6h8wEmwm9uSX4lW+nuPVRVsMGHXBa4WXOj3859u9RBh0ISVur4JD+aXc2jkVg/K1Zf+YXxI0favbq1iXY+f8lOjABDTtYq0UOFx4FZRVto9HGPWkG/QcKnVQ4VGV7eqh5XxPZb+A5onRKOCH/UdxVekcZzLo+VO/Ntx4Xqs635cjxRW8tHYv3+zND2kyqKs6xnohRCMiQVzUm16ncVnXVF7/bn/IPnuFm115pWQXO1jy+ErSY638uV9z/tK/ZaDa+USGtmvC+n0FgG/K1KqTy5gNupAA7mfWab6SdLV96ZFm+jaJQnkVJW4vaw4XBTp+BT6PBi6l+DK7kEijntbRViwGHTq0QHz2XzO33ElFZdX1iYJisctDjNFAi8RoMhKiyCkqw+FyYzEaGNgumUmXdKj1XvjlFju4+70fsVe4UIqQmet0NXXNr6ZnmOVihWj0pHe6EPU3uH0TLuuaChxfzjev1MkXe/I5aK8IBMoDheU8+ukOLvv3OkrD9Niu7vyWCXRKjvKVcjWNmCrDuCw1VOP7q7arB3eDBn2SoirzqLG9wNfjvXrs9R+naZqvpH6slKNuT0hDutursFdbtMTtVWHHY3uBQpebMo+X2AgTndPiuKRLMx4b1Y1/jOhY6wIm4KveP1xUzpw1v2CvcAUeGqrHbJ2mBVaBC0evaQxsnUDz+Iga0wjReGkN9Kq7r776issvv5y0tDQ0TeP9998P2v/ee+8xfPhwEhMT0TSNzZs3h5zD4XBw1113kZiYiM1mY9SoURw8eDAkXW0kiIuTomkaV/Vsxowru3FZ1zR6Z8SxMdsOhJZQvQo2Hyzk6c931XpevU7jiZGduLBVIpoGVqOeOKsBvRY+UEPNf37pkRb0lQ8DTo+Xw2Wu2jvkVZ7/YEF5yOcod4f2lHd4Qsdh+yl8JfwnLu/M89f1ZMrITgxok4ghzJC16r7be4wHlmxh4uIf+W5/QVBewj3MWEy6sGPlNSAjzsq/Lu9c6zWFEHVTWlpK9+7dmTt3bo37+/fvz1NPPVXjOe69916WLFnCW2+9xddff01JSQmXXXYZHk/NI3LCkep0cUqSosxc2aMp724+FFhXOxyPgle+3cekoe1qLYXaTAYmDW3Pn0ta8GN2EV4FHZpEcu/7WzhWFtoe7J+drHowjTLq8QJ6oLwO07yeDJdXUeH2YjHogvKg943m4qHB7UisR8c1h9vDq9/u48tdeUD4KnuzXodB5w1qFtA0jQizHo/HN1Y90mQgOcrM1T2aclX3NCJPsEKbEI1bQ3RMq9/xl156KZdeemmN+//0pz8BsHfv3rD7i4qKmD9/Pq+99hpDhgwBYNGiRaSnp7Ny5UqGDx9e57zIX7ZoED9mF2HUaYGlRsOxV7g5VFhBq0Rbnc6ZFGlmcLvjU4OO7JTC6xsOhAQ2he8hQU9wIHcrFfjTNNWx3bjqOasfUdOiLeVuLy6vwqzXMOgg1mKkX8t4/tA1jVYJdfusAIcKypj3xW72FlUEtoUtXWsasRYDRRXuwP3WfDtonxzJ05d3pmU9ritEo6ZpDTDE7NdtE9+wYQMul4thw4YFtqWlpdGlSxfWrl0rQVz8+kx6fa1V1UDYiVfq6g9dUvnwp8MUO9whgdztVRiqdYQ7UOKgS7wvmFkNeuLNBo45am+XB8Iuk2rS64gw6CgLM17c3zbev2UCM0d1qfdnK3e6efHL3eSXB8/TrtN8w+Dc1drddZpGnNWI2+vF6VFc26Mp/Vsm0KMes70JIYLZ7fag92azGbO57jVpdZWTk4PJZCIuLnjq4+TkZHJycmo4KjxpExcNYniHJiG9vqvSgI7JkaTFnPxMYfE2E89d2Y1mMb45zfXa8ZJqx5RoHh/ZiQ7Jx9cHL3Z5OFIlKHaMi6h7pZkGMVZDSPoUqwmjpoWdPCYtxsrkIe3q85ECMvceo9TpIVytv+0EDz5GnY7RXdO4c0BrejaLlQAuzj4NOE48PT2dmJiYwGv69Om/6kcJ1yxYGymJiwbROyOWvi3iyNxfGDL5SMcEG5e0iqdbkyiWfbOXhBgLbZrF0CSu/r2lm8dHsGDMOWw+VMTWnGL0Oo1e6bGB1b56NI3lUGE5OcUV2EwGWsZH8O2OXPbnlpBoMXJechSbjpbgqGXQtFJw70Vt+flIMZ9tP0JBZVt8q0QbfxnQkgNFFXy49TD5pS4SbCb+0CWVK7um1rvtOa/UyZHiCjbu9w2rC/f3a9TpiDJAifv4HPJa5f+N6JjMHf3rPt5ciN+f+vcuD38OOHDgANHRx+e3OB2lcICUlBScTicFBQVBpfHc3FzOP//8ep1LgrhoEJqmsehPvblq/np+yLZj0Gl4vIpLWydwTYdk3xMmvtnFjhaUk1tQTou0aJweL/YyFyajjpbJUTRNtNU6f7imafRsFkvPZrFh9zeNtdI01hp4P7BrKoUlDvbnluDyeBnRvSlFbg9bsu2s2pmLRylUleFbCrhjQGvaJUfRLjmKkV1TsZe7fDO0WY7P0Da2T8ZJ3699x8p4ds0vrM06hgK6xkcQYzZg0esodYWb3lWHSafhUop4m4kRXVLp3yK+Xp3mhPhdasBx4tHR0UFB/HTp1asXRqORFStWcM011wBw+PBhfvrpJ2bMmFGvc0kQFw0mMdLMqrsGsPLnXN7fchiDVzE4zTfBSNUqIq9SVHi8bMo6Flg0RNPgl8PFJEZbGHZOU8x1mBimPmIjzcRWC3h9Wybwx55N+fznXDYfLMSjFB2ToxnaMZnUKguE6DSN2AhT9VOetKz8Usa9tZEK1/G54UtcHqJNegw6DYteC0woU5WmaVh0GhMvakv7Ks0GQohfV0lJCbt37w68z8rKYvPmzcTHx5ORkcGxY8fYv38/2dm+xZx+/vlnwFcCT0lJISYmhltvvZX777+fhIQE4uPj+dvf/kbXrl0DvdXrSlPhZqoQZ4zdbicmJoaioqJf5YnwdNqwI5eDR0uo/hvm8HjDdg4DX6VWakIEw89pdvozeAa4PV7+uOA7sosdQdsteh29knxrjSulsDs9IYHcYtQxYWBrzkkP7gwjxG/R6f4u859fP+b/0EzW2g84AeUsx/PG/XXO65dffslFF10Usn3s2LEsWLCABQsWcPPNN4fsnzJlClOnTgWgoqKCv//977zxxhuUl5czePBg5s2bR3p6er3yLkH8N+b3FMRXfLef0org3uBKKYqcoeuDV3dF3+bER/3+qopf/mYPL2ceCLsvJcJImxhroGe8x6tweLx4gU4pUdwxqA2mOsz0JsRvwa8XxGc1UBCf2Ci/d6U6XZw2WphBzl5F3ZYxzSttlEG8pMLFTweLKK5wYTMbaJ5oY3XWMb7fX4BXKXIKymo8NqfMRbnbS1ObiXiLEYNOo2ViFBe2S6JnRpz0PBdChJAgLk6b1PgIdpcVBQXtOlX7aMeX1yxzujlW6sRq1JPwG+7EpZTi651HWfNzLlSuw5Jb6mT1oSJcXl+nvmiTnvRahtgVOT0UOct56OKmXNk1TQK3ELU5yxdAkSAuTpuWadH8csgetEBIuOVFq1MKTCYdC77JYmOVecObxVm5rFsaXeqxGldhqZMKp4dIi4FIa+ja33Xh8Sp2HrazZX8BxRVuoiwGumXE0S41OrCC2Pd7jvHVjtzAMWUuD18eLApM0qIANN9qa2addsIhbjoNLmqTJAFciLqQIC7E6RFhMdK3SzLrtx4JlKw1TcOs13CE6X0Nvqp0nV7H65kHKKk2M9uhgnJeXP0LV/RI47sDRSz8bj/5pU5SYyzc0rc5f+7XnOjKIWAH80tZ//NR8qt0IGsaH0Hf9kkkRNd9whmHy8M73+4ju6A80JP+WLGDvUdLaRYfwR/7ZqDXaazZmRt03O7CcjzVupuUVQ4daxJh5EBJ8MxsVV3ROZW4BuwNL4T4/ZIgLk6rJnERDDs3g305xeQVlQMQG2li5+FiCkqDA5lWuVJZuZ6QAA6+AFrscHPDaxupcHsC62pn5Zfx6CfbeWfzIS7t1IRIvY7IMGuxfPlzDlM/+YF9haXodTqGdEzl7sEd6NMiscb8r/jxMIcLygPXr/rfQ8fK+PynHDo2jaG82uIvh0qcIU0HLq+ioMJNnMVAU5uJw6VOqvfRbxMfwQMXt60xP0KI6hpuspfGSIK4OO3MJj3tMmJpR2xgW9uMOLbvL2THwUJKK9wY9RqtUqJpnRbNtE92hF29C+CrvQWUuYJ7t0dZDHRKjcSg01ibdYwR6fEoffCypZ/tzGbptkNBc6sv3riP9zYf4IperUiNjSA5ysxV3ZsSH2Fk1c9H+fFAIREoQidZ9VHA1gOFNA2zTre3hkEf++0OrEYdMSY9UUYLxS7f4il6HaRHW5g6sjP6ei7WIsRZTarThfj1GfU6urWMp1vL+KD5gg+HqYb2O1buIrda6d2k1+iSFoWuct3wZKsxZL3t3XnFLN12CAhe2tMWaSMiwsrXewvQ6wp9s85lHqBbcpRv7nSjnuZRJ6569ypwhhnzHm8xUBxmKJ1bKXbkl9EkwkR6tIUkg54oi4EBbZIY3KFJ0IxwQghRGwni4oyrWmK2mGoeB51XGtqOnBpjCQRwAJtBH7KIwJd7jgSVwAGiIm1YrZbA9b0KjBp0SorEq2oufYcTbTHSLD6CQwVlgYlt2sZGsNfuCJveo+BwqZMnL+9MnwyZuEWIU6LpGmAp0sa7FthvJufTp09H0zTuvffewLapU6fSoUMHbDYbcXFxDBkyhPXr1wf2Hzt2jLvuuov27dsTERFBRkYGd999N0VFRWGv4XA46NGjB5qmsXnz5rBp8vPzadasGZqmUVhYGNi+d+9eNE0LeX366adBx69evZpevXphsVho1aoVL7744knfk7NRXISJFgnhVxsLN6d6QqQpKGA7vaGrAO3JLwkK4JqmYbNZQ9IlR5qDHghK3V5qmwtJA1LjrIzonoZRrwvUyiVYjXStXDe96lX8NeV/7ttcArgQDUJroFfj9JsI4pmZmbz00kt069YtaHu7du2YO3cuW7Zs4euvv6ZFixYMGzaMo0ePApCdnU12djYzZ85ky5YtLFiwgE8//ZRbb7017HUeeOAB0tLSTpiXW2+9NSQfVa1cuZLDhw8HXhdffHFgX1ZWFiNGjGDAgAFs2rSJyZMnc/fdd7N48eK63goBXNY9/M8oNczkL9Wbjw+XOUNWUase+80mY9jhW7GW4Iopl9c3/WlNgVzToF1aNFFWI0nRFm4Z2JoOadGB63VOsHFdlxS6p0Wjq1w2tUdaDM9e2ZV7Lmwd9pxCiPoJV7g6mVdjdcar00tKSrjhhht4+eWXeeKJJ4L2jRkzJuj9rFmzmD9/Pj/++CODBw+mS5cuQQGydevWPPnkk9x444243W4MhuMf75NPPmH58uUsXryYTz75JGxeXnjhBQoLC3nkkUdqTJOQkEBKSkrYfS+++CIZGRk8++yzAHTs2JHvv/+emTNnctVVV9V6L4RPh5Robr6gJW+s30eFy4te0/CisJn0nJsew/cHiwIl6xKHB5NBFyilu5Vie2EZXeJtgfN1To7l2/1HA8fU9Aerhdl3oNRBa70Fi14XcmxilJnh3Y4/cCREmhndOwOHy0Opw43VZMBa2TzgfxBozF8WQojfnjMexCdMmMDIkSMZMmRISBCvyul08tJLLxETE0P37t1rTOef+7ZqAD9y5Ai33XYb77//PhER4dew3rZtG4899hjr169nz549NZ5/1KhRVFRU0LZtW+677z7++Mc/BvatW7eOYcOGBaUfPnw48+fPx+VyYTSGdlpyOBw4HMfbTu12e43XPpuckxFHl7QYNh8oILfYgcWop0d6LBajnj++8h1rfslHr8HhogoSI4PHVP9cVI6mQYfYCHTAoNZNWLf/aGC/y+0mnCKHm2izISjQehTsLqogzmwgwWLAatCTHGOhW0YcXdJjMRpCK7PMRn3IKmwSvIU4TaR3+pnz1ltvsXHjRjIzM2tMs2zZMq677jrKyspITU1lxYoVJCaGH9ebn5/P448/zu233x7YppRi3LhxjB8/nt69e7N3796Q4xwOB9dffz1PP/00GRkZYYN4ZGQks2bNon///uh0Oj788EOuvfZaFi5cyI033ghATk4OycnJQcclJyfjdrvJy8sjNTU15LzTp0/n0UcfrfHzn81MBh3ntkwI2f7R7f1Y8XMub3x/kCPFFUQa9ZS4PGgagY5lPxeV84u9gj90SOYP7ZJIiLXw4PsbUQrcbg9OpwujMThg55Q4aBZtgWod47xAvsNNvsPNQ8Pa07UeM8YJIU4zCeJnxoEDB7jnnntYvnw5FkvNw3guuugiNm/eTF5eHi+//DLXXHMN69evp0mTJkHp7HY7I0eOpFOnTkyZMiWwfc6cOdjtdiZNmlTjNSZNmkTHjh0DwTicxMRE7rvvvsD73r17U1BQwIwZM4KOq17iqq0addKkSUycODHoc9R3KbqzjV6ncUnHZC7p6HtgUkrxxe48Fv9wiN15pQC0S4zkjz2acmFr3wNfj1YJjDonnZfX7GLNrlw8wBGHb6Uw/6QxTo9i17Ey2sVHBPVm9//7jz2bSgAXQvymnLEgvmHDBnJzc+nVq1dgm8fj4auvvmLu3Lk4HA70ej02m402bdrQpk0b+vbtS9u2bZk/f35QUC4uLuaSSy4hMjKSJUuWBFVbr1q1im+//RazObhTVO/evbnhhhtYuHAhq1atYsuWLbz77rvA8cCbmJjIww8/XGNJuW/fvvznP/8JvE9JSSEnJycoTW5uLgaDgYSE0BIlgNlsDsmbqB9N07i4bRIXt03C6fGN2TbpQ6u5mydE8sQfegbe7y8o4/k1e3jvx8M4PV4sBh3DOyQzulsqmw8UsulgIV6vol1yFMM6JtMptXEtUSjE2UFmbDsjBg8ezJYtW4K23XzzzXTo0IEHH3wQvT78eGGlVEgb8vDhwzGbzXz44YchpfrZs2cHtbVnZ2czfPhw3n77bc477zwAFi9eTHl5eSBNZmYmt9xyC2vWrKF165p7EW/atCmoirxfv34sXbo0KM3y5cvp3bt32PZw0fDCBe+aZMRF8K9RXXhiZCdKnW4izQYMOt/xvWT4lxCNg1SnnxlRUVF06dIlaJvNZiMhIYEuXbpQWlrKk08+yahRo0hNTSU/P5958+Zx8OBBrr76asBXAh82bBhlZWUsWrQIu90e6BiWlJSEXq8nIyMj6BqRkZGAryd7s2bNAv+uKi8vD/D1Lo+NjQVg4cKFGI1GevbsiU6nY+nSpcyePZt//etfgePGjx/P3LlzmThxIrfddhvr1q1j/vz5vPnmmw1018TpYNTriLXKgiNCiMbnjPdOr4ler2fHjh0sXLiQvLw8EhIS6NOnD2vWrKFz586Ar0reP/lLmzZtgo7PysqiRYsWDZqnJ554gn379qHX62nXrh2vvPJKUHt4y5Yt+fjjj7nvvvt4/vnnSUtLY/bs2TK8TAghThff2NBTP0cjpanapqQSvyq73U5MTExgqJwQQjRGp/u7zH9+w60vo5nCDx2uK+Uswz3/tkb5vfubmLFNCCGEEPX3m61OF0IIIWolHduEEEKIRkqCuBBCCNFY6Tj1luHG27LceHMuhBBCnOWkJC6EEKLxkup0IYQQopE6y4O4VKcLIYQQjZSUxIUQQjRisgCKEEII0Ug1QHV6Iw7iUp0uhBBCNFJSEhdCCNF4neUd2ySICyGEaMTO7jZxqU4XQgghGikpiQshhGi8zvLqdCmJCyGEaLR0mtYgr/r46quvuPzyy0lLS0PTNN5///2g/Uoppk6dSlpaGlarlUGDBrF169agNA6Hg7vuuovExERsNhujRo3i4MGD9f/89T5CCCGE+I3wF8RP9VUfpaWldO/enblz54bdP2PGDGbNmsXcuXPJzMwkJSWFoUOHUlxcHEhz7733smTJEt566y2+/vprSkpKuOyyy/B4PPXKi1SnCyGEEPVw6aWXcumll4bdp5Ti2Wef5eGHH2b06NEALFy4kOTkZN544w1uv/12ioqKmD9/Pq+99hpDhgwBYNGiRaSnp7Ny5UqGDx9e57xISVwIIUSj1ZDV6Xa7PejlcDjqnZ+srCxycnIYNmxYYJvZbGbgwIGsXbsWgA0bNuByuYLSpKWl0aVLl0CaOn/+eudQCCGE+I3QaQ3zAkhPTycmJibwmj59er3zk5OTA0BycnLQ9uTk5MC+nJwcTCYTcXFxNaapK6lOF0IIIYADBw4QHR0deG82m0/6XFq1hnalVMi26uqSpjopiQshhGi0NE1rkBdAdHR00OtkgnhKSgpASIk6Nzc3UDpPSUnB6XRSUFBQY5q6kiAuhBCi0WrI6vSG0LJlS1JSUlixYkVgm9PpZPXq1Zx//vkA9OrVC6PRGJTm8OHD/PTTT4E0dSXV6UIIIUQ9lJSUsHv37sD7rKwsNm/eTHx8PBkZGdx7771MmzaNtm3b0rZtW6ZNm0ZERARjxowBICYmhltvvZX777+fhIQE4uPj+dvf/kbXrl0DvdXrSoK4EEKIRqtqdfgpnKReyb///nsuuuiiwPuJEycCMHbsWBYsWMADDzxAeXk5d9xxBwUFBZx33nksX76cqKiowDHPPPMMBoOBa665hvLycgYPHsyCBQvQ6/X1y7pSStXrCHFa2e12YmJiKCoqCupgIYQQjcnp/i7znz/uvv+hmSNO6VzKUUbBM9c0yu9daRMXQgghGimpThdCCNF4NUB1umrEC6BIEBdCCNFoNUjv8sYbwyWICyGEaLwaomPbKXeMO4OkTVwIIYRopKQkLoQQotGS6nQhhBCikfKtB36q1ekNlJkzQKrThRBCiEZKSuJCCCEaLalOF0IIIRop6Z0uhBBCiEZJSuJCCCEaLR0Nu5RoYyNBXAghRKOl0zR0v/IqZr8lUp0uhBBCNFJSEhdCCNFo+caJn/o5GisJ4kIIIRqts706XYK4EEKIRutsL4lLm7gQQgjRSElJXAghRKOlNUB1umrERXEJ4kIIIRotqU4XQgghRKMkJXEhhBCNVkP0TpfqdCGEEOIMkOp0IYQQQjRKUhIXQgjRaEl1uhBCCNFISXW6EEIIIRolKYkLIYRotM726vTfTEl8+vTpaJrGvffeG9g2depUOnTogM1mIy4ujiFDhrB+/frA/mPHjnHXXXfRvn17IiIiyMjI4O6776aoqCjsNRwOBz169EDTNDZv3hw2TX5+Ps2aNUPTNAoLC4P2bdmyhYEDB2K1WmnatCmPPfYYSqmgNKtXr6ZXr15YLBZatWrFiy++eFL3QwghRO381emn+mqsfhNBPDMzk5deeolu3boFbW/Xrh1z585ly5YtfP3117Ro0YJhw4Zx9OhRALKzs8nOzmbmzJls2bKFBQsW8Omnn3LrrbeGvc4DDzxAWlraCfNy6623huQDwG63M3ToUNLS0sjMzGTOnDnMnDmTWbNmBdJkZWUxYsQIBgwYwKZNm5g8eTJ33303ixcvru8tEUIIUQf+kvipvhqrMx7ES0pKuOGGG3j55ZeJi4sL2jdmzBiGDBlCq1at6Ny5M7NmzcJut/Pjjz8C0KVLFxYvXszll19O69atufjii3nyySdZunQpbrc76FyffPIJy5cvZ+bMmTXm5YUXXqCwsJC//e1vIftef/11KioqWLBgAV26dGH06NFMnjyZWbNmBUrjL774IhkZGTz77LN07NiRP//5z9xyyy0nvKYQQghxss54EJ8wYQIjR45kyJAhJ0zndDp56aWXiImJoXv37jWmKyoqIjo6GoPheHP/kSNHuO2223jttdeIiIgIe9y2bdt47LHHePXVV9HpQm/LunXrGDhwIGazObBt+PDhZGdns3fv3kCaYcOGBR03fPhwvv/+e1wuV9jrOhwO7HZ70EsIIUTd6LSGeTVWZzSIv/XWW2zcuJHp06fXmGbZsmVERkZisVh45plnWLFiBYmJiWHT5ufn8/jjj3P77bcHtimlGDduHOPHj6d3795hj3M4HFx//fU8/fTTZGRkhE2Tk5NDcnJy0Db/+5ycnBOmcbvd5OXlhT3v9OnTiYmJCbzS09PDphNCCBFK07QGeTVWZyyIHzhwgHvuuYdFixZhsVhqTHfRRRexefNm1q5dyyWXXMI111xDbm5uSDq73c7IkSPp1KkTU6ZMCWyfM2cOdrudSZMm1XiNSZMm0bFjR2688cYT5rn6D9pfjV51e13SVL92UVFR4HXgwIET5kEIIcSZV1xczL333kvz5s2xWq2cf/75ZGZmBvYrpZg6dSppaWlYrVYGDRrE1q1bGzwfZyyIb9iwgdzcXHr16oXBYMBgMLB69Wpmz56NwWDA4/EAYLPZaNOmDX379mX+/PkYDAbmz58fdK7i4mIuueQSIiMjWbJkCUajMbBv1apVfPvtt5jNZgwGA23atAGgd+/ejB07NpDmnXfeCeRj8ODBACQmJgYeCFJSUgIlbj//w4S/9F1TGoPBQEJCQtj7YDabiY6ODnoJIYSoG60BqtJPpiD+5z//mRUrVvDaa6+xZcsWhg0bxpAhQzh06BAAM2bMYNasWcydO5fMzExSUlIYOnQoxcXFDfr5z9g48cGDB7Nly5agbTfffDMdOnTgwQcfRK/Xhz1OKYXD4Qi8t9vtDB8+HLPZzIcffhhSqp89ezZPPPFE4H12djbDhw/n7bff5rzzzgNg8eLFlJeXB9JkZmZyyy23sGbNGlq3bg1Av379mDx5Mk6nE5PJBMDy5ctJS0ujRYsWgTRLly4Nuv7y5cvp3bt30IOFEEKIhtEQvcvre3x5eTmLFy/mgw8+4MILLwR8Q6Lff/99XnjhBR5//HGeffZZHn74YUaPHg3AwoULSU5O5o033ghq8j1VZyyIR0VF0aVLl6BtNpuNhIQEunTpQmlpKU8++SSjRo0iNTWV/Px85s2bx8GDB7n66qsBXwl82LBhlJWVsWjRoqCOYUlJSej1+pA27sjISABat25Ns2bNAv+uyt9+3bFjR2JjYwFfT/lHH32UcePGMXnyZHbt2sW0adN45JFHAlXl48ePZ+7cuUycOJHbbruNdevWMX/+fN58880GvHNCCCHOJLfbjcfjCSk0Wq1Wvv76a7KyssjJyQnq6Gw2mxk4cCBr16799YP4yfSYPtVqYb1ez44dO1i4cCF5eXkkJCTQp08f1qxZQ+fOnQFflbx/8hd/NblfVlZWoITcEGJiYlixYgUTJkygd+/exMXFMXHiRCZOnBhI07JlSz7++GPuu+8+nn/+edLS0pg9ezZXXXVVg+VDCCHEcTpOvXe5v125eqwzm81BI5L8oqKi6NevH48//jgdO3YkOTmZN998k/Xr19O2bdtAs2q4js779u07tcxWU6cgHhsbW6/ee5qmsXPnTlq1alWvzHz55ZeBf1ssFt57770Tph80aFDIjGm1adGiRa3H1HTerl278tVXX53w2IEDB7Jx48Z65UkIIcTJacjq9Oqjg6ZMmcLUqVPDHvPaa69xyy230LRpU/R6Peeccw5jxowJ+v4P19G5oXvC17k6/d133yU+Pr7WdEopRowYcUqZEkIIIepCx6n30PYff+DAgaBa5HClcL/WrVuzevVqSktLsdvtpKamcu2119KyZUtSUlIA37Dj1NTUwDG5ubkhpfNTVacg3rx5cy688MIae1hX16pVK+nIJYQQolE5mRFCNpsNm81GQUEBn332GTNmzAgE8hUrVtCzZ0/AN2HZ6tWr+de//tWgea5TEM/KyqrXSX/66aeTyowQQghRHw0xWcvJHP/ZZ5+hlKJ9+/bs3r2bv//977Rv356bb745sJjXtGnTaNu2LW3btmXatGlEREQwZsyYU8prdbIUqRBCiEarIaZNPZnji4qKmDRpEgcPHiQ+Pp6rrrqKJ598MlAL/cADD1BeXs4dd9xBQUEB5513HsuXLycqKurUMluNpurbMwz47rvv+PLLL8nNzcXr9Qbtq7qql6g/u91OTExMYA54IYRojE73d5n//BfO/BSD1XZK53KXl/LV3y5plN+79S6JT5s2jX/84x+0b9+e5OTkE045KoQQQpxOZ6ok/ltR7yD+3HPP8corrzBu3LjTkB0hhBCi7s7EjG2/JfXuma/T6ejfv//pyIsQQggh6qHeQdw/G5kQQghxpuka6NVY1bs6/W9/+xsjR46kdevWdOrUKWQ8eG2zrAkhhBANRWuA6vTG3J+r3kH8rrvu4osvvuCiiy4iISGhUX94IYQQojGrdxB/9dVXWbx4MSNHjjwd+RFCCCHqTHqn11N8fHzI0p1CCCHEmSC90+tp6tSpTJkyhbKystORHyGEEKLOpGNbPc2ePZtffvmF5ORkWrRoEdKxTZbhFEIIIX4d9Q7if/jDH05DNoQQQoj6O9ur0+sdxKdMmXI68iGEEELU29nesa0xNwUIIYQQZ7U6BfH4+Hjy8vLqfNKMjAz27dt30pkSQggh6sJfnX6qr8aqTtXphYWFfPLJJ8TExNTppPn5+Xg8nlPKmBBCCFGbs706vc5t4mPHjj2d+RBCCCFEPdUpiHu93tOdDyGEEKLefOO8T7F3esNk5Yyod+90IYQQ4rdCa4Dq9EbcJN6oH0CEEEKIs5qUxIUQQjRaMtmLEEII0UhJ73QhhBCikZKSeD3Z7faw2zVNw2w2YzKZTjlTQgghhKhdvYN4bGws2gmeWpo1a8a4ceOYMmUKOp30mxNCCHH6aJWvUz1HY1XvIL5gwQIefvhhxo0bx7nnnotSiszMTBYuXMg//vEPjh49ysyZMzGbzUyePPl05FkIIYQApE283kF84cKF/N///R/XXHNNYNuoUaPo2rUr//73v/n888/JyMjgySeflCAuhBBCnEb1ru9et24dPXv2DNnes2dP1q1bB8AFF1zA/v37Tz13QgghxAnoaIAFUBpxhXq9g3izZs2YP39+yPb58+eTnp4O+BZAiYuLO/XcCSGEECfgr04/1VdjVe/q9JkzZ3L11VfzySef0KdPHzRNIzMzkx07dvDuu+8CkJmZybXXXtvgmRVCCCHEcfUO4qNGjeLnn3/mxRdfZOfOnSiluPTSS3n//fdp0aIFAH/9618bOp9CCCFECB2nXh3emKvTT2qylxYtWvDUU081dF6EEEKIepHe6SehsLCQ7777jtzc3JBlSm+66aYGyZgQQgghTqzeQXzp0qXccMMNlJaWEhUVFTTxi6ZpEsSFEEL8arQGmHb1RBOY/dbVu3f6/fffzy233EJxcTGFhYUUFBQEXseOHTsdeRRCCCHCOtt7p9c7iB86dIi7776biIiI05EfIYQQos5OeYz4SZTk3W43//jHP2jZsiVWq5VWrVrx2GOPBTUvK6WYOnUqaWlpWK1WBg0axNatWxv649c/iA8fPpzvv/++wTMihBBCNAb/+te/ePHFF5k7dy7bt29nxowZPP3008yZMyeQZsaMGcyaNYu5c+eSmZlJSkoKQ4cOpbi4uEHzUu828ZEjR/L3v/+dbdu20bVrV4xGY9D+UaNGNVjmhBBCiBPRcRKl0TDnqI9169ZxxRVXMHLkSMA3YuvNN98MFHCVUjz77LM8/PDDjB49GvBNWZ6cnMwbb7zB7bfffoo5Pq7eQfy2224D4LHHHgvZp2kaHo/n1HMlhBBC1IGmaafcMc1/fPWlts1mM2azOST9BRdcEJgrpV27dvzwww98/fXXPPvsswBkZWWRk5PDsGHDgs41cOBA1q5de2aDePUhZUIIIcTvgX/qcL8pU6YwderUkHQPPvggRUVFdOjQAb1ej8fj4cknn+T6668HICcnB4Dk5OSg45KTk9m3b1+D5vmkxokLIYQQvwUNOdnLgQMHiI6ODmwPVwoHePvtt1m0aBFvvPEGnTt3ZvPmzdx7772kpaUxduzYQLrqNQRKqQYfzlanID579mz+8pe/YLFYmD179gnT3n333Q2SMSGEEKI2WuXrVM8BEB0dHRTEa/L3v/+dhx56iOuuuw6Arl27sm/fPqZPn87YsWNJSUkBfCXy1NTUwHG5ubkhpfNTVacg/swzz3DDDTdgsVh45plnakynaZoEcSGEEL9rZWVl6HTB3eH0en2gublly5akpKSwYsWKwNLdTqeT1atX869//atB81KnIJ6VlRX230IIIcSZdDLjvMOdoz4uv/xynnzySTIyMujcuTObNm1i1qxZ3HLLLYCvQHvvvfcybdo02rZtS9u2bZk2bRoRERGMGTPmlPJanbSJCyGEaLTOxBCzOXPm8M9//pM77riD3Nxc0tLSuP3223nkkUcCaR544AHKy8u54447KCgo4LzzzmP58uVERUWdYm6DaUopVZ8DPB4PCxYs4PPPPw+7AMqqVasaNINnG7vdTkxMDEVFRXVqmxFCiN+i0/1d5j//A69+gzki8pTO5SgrYcZN/Rvl9269S+L33HMPCxYsYOTIkXTp0qVRTxwvhBCicdM03+tUz9FY1TuIv/XWW/zvf/9jxIgRpyM/QgghRJ2d7auY1TuIm0wm2rRpczryIoQQQtRLQw4xa4xOainS5557jno2pQshhBCigdUpiI8ePTrw+uabb3j99ddp3bo1l19+edA+/0TvJ2P69OmBbvl+U6dOpUOHDthsNuLi4hgyZAjr168P7D927Bh33XUX7du3JyIigoyMDO6++26KiorCXsPhcNCjRw80TWPz5s2B7fn5+VxyySWkpaVhNptJT0/nzjvvDJpHd+/evYE5equ+Pv3006BrrF69ml69emGxWGjVqhUvvvjiSd8TIYQQJ3YmliL9LalTdXpMTEzQ+yuvvLJBM5GZmclLL71Et27dgra3a9eOuXPn0qpVK8rLy3nmmWcYNmwYu3fvJikpiezsbLKzs5k5cyadOnVi3759jB8/nuzsbN59992Q6zzwwAOkpaXxww8/BG3X6XRcccUVPPHEEyQlJbF7924mTJjAsWPHeOONN4LSrly5ks6dOwfex8fHB/6dlZXFiBEjuO2221i0aBHffPMNd9xxB0lJSVx11VUNcauEEEJUcbZ3bKv3ELOGVlJSwjnnnMO8efN44okn6NGjR2AlmOr8QwpWrlzJ4MGDw6Z55513uPHGGyktLcVgOP6M8sknnzBx4kQWL14cGJzfo0ePGvM1e/Zsnn76aQ4cOAD4SuItW7Y84XEPPvggH374Idu3bw9sGz9+PD/88APr1q078Y2o9hkb41AHIYTw+7WGmP3jjXVYTnGIWUVZCU+M6dcov3fr3SZ+8cUXU1hYGLLdbrdz8cUX1zsDEyZMYOTIkQwZMuSE6ZxOJy+99BIxMTF07969xnT+H0LVAH7kyBFuu+02XnvtNSIiImrNU3Z2Nu+99x4DBw4M2Tdq1CiaNGlC//79Q0r769atC1p6DmD48OF8//33uFyusNdyOBzY7faglxBCiLrRNdCrsap33r/88kucTmfI9oqKCtasWVOvc7311lts3LiR6dOn15hm2bJlREZGBuZtX7FiBYmJiWHT5ufn8/jjjwet1aqUYty4cYwfP57evXufMD/XX389ERERNG3alOjoaP7zn/8E9kVGRjJr1izeffddPv74YwYPHsy1117LokWLAmlycnLCLj3ndrvJy8sLe83p06cTExMTeFVfCk8IIUTNpE28jn788cfAv7dt2xZYLxV8s7h9+umnNG3atM4XPnDgAPfccw/Lly/HYrHUmO6iiy5i8+bN5OXl8fLLL3PNNdewfv16mjRpEpTObrczcuRIOnXqxJQpUwLb58yZg91uZ9KkSbXm6ZlnnmHKlCn8/PPPTJ48mYkTJzJv3jwAEhMTue+++wJpe/fuTUFBATNmzODGG28MbA+39Fy47X6TJk1i4sSJQZ9DArkQQoi6qHMQ9/fq1jQtbLW51Wplzpw5db7whg0byM3NpVevXoFtHo+Hr776irlz5+JwONDr9dhsNtq0aUObNm3o27cvbdu2Zf78+UFBubi4mEsuuYTIyEiWLFmC0WgM7Fu1ahXffvttyLqwvXv35oYbbmDhwoWBbSkpKaSkpNChQwcSEhIYMGAA//znP4OWkquqb9++QaX1lJSUoIcb8C09ZzAYSEhICHsOs9lc45q1QgghTuxsHyde5yCelZWFUopWrVrx3XffkZSUFNhnMplo0qQJer2+zhcePHgwW7ZsCdp2880306FDBx588MEaz6WUwuFwBN7b7XaGDx+O2Wzmww8/DCnVz549myeeeCLwPjs7m+HDh/P2229z3nnn1Zg/fwm66rWq27RpU1CA79evH0uXLg1Ks3z5cnr37h30YCGEEKJh6DTf61TP0VjVOYg3b94cl8vFTTfdRHx8PM2bNz+lC0dFRdGlS5egbTabjYSEBLp06UJpaSlPPvkko0aNIjU1lfz8fObNm8fBgwe5+uqrAV8JfNiwYZSVlbFo0aKgjmFJSUno9XoyMjKCrhEZ6evF2Lp1a5o1awbAxx9/zJEjR+jTpw+RkZFs27aNBx54gP79+9OiRQsAFi5ciNFopGfPnuh0OpYuXcrs2bOD1oYdP348c+fOZeLEidx2222sW7eO+fPn8+abb57SvRJCCCHCqde0q0ajkQ8++CBoubXTRa/Xs2PHDhYuXEheXh4JCQn06dOHNWvWBMZpb9iwITD5S/WpYLOysgIBuDZWq5WXX36Z++67D4fDQXp6OqNHj+ahhx4KSvfEE0+wb98+9Ho97dq145VXXglqD2/ZsiUff/wx9913H88//zxpaWnMnj1bxogLIcRp4m/mPdVzNFb1Hid+880307Vr16DOWKLhyDhxIcTvwa81Tnza2+sbZJz45GvPa5Tfu/VeAKVNmzY8/vjjrF27ll69emGz2YL233333Q2WOSGEEOJEzvaSeL2D+H/+8x9iY2PZsGEDGzZsCNqnaZoEcSGEEOJXUu8gnpWVdTryIYQQQtSb9E4/BbVNZCKEEEKcThqnPm1qY45gJ/XZX331Vbp27YrVasVqtdKtWzdee+21hs6bEEIIIU6g3iXxWbNm8c9//pM777yT/v37o5Tim2++Yfz48eTl5QVNTSqEEEKcTtKxrZ7mzJnDCy+8wE033RTYdsUVV9C5c2emTp0qQVwIIcSvpiFWITurVjE7fPgw559/fsj2888/n8OHDzdIpoQQQghRu3oH8TZt2vC///0vZPvbb79N27ZtGyRTQgghRF1ogKad4utMf4hTUO/q9EcffZRrr72Wr776iv79+6NpGl9//TWff/552OAuhBBCnC4NsR54Y15PvN4l8auuuor169eTmJjI+++/z3vvvUdiYiLfffcdV1555enIoxBCCCHCOKlx4r169WLRokUNnRchhBCiXmQ9cSGEEKKROtur0+scxHU6Xa1j6TRNw+12n3KmhBBCiLqQaVfraMmSJTXuW7t2LXPmzKGeq5oKIYQQ4hTUOYhfccUVIdt27NjBpEmTWLp0KTfccAOPP/54g2ZOCCGEOJGzvU38pCaqyc7O5rbbbqNbt2643W42b97MwoULycjIaOj8CSGEEDXyt4mf6quxqlcQLyoq4sEHH6RNmzZs3bqVzz//nKVLl9KlS5fTlT8hhBBC1KDOQXzGjBm0atWKZcuW8eabb7J27VoGDBhwOvMmhBBCnNApz9ZW+aqPFi1aBBZeqfqaMGEC4Fume+rUqaSlpWG1Whk0aBBbt249DZ++Hm3iDz30EFarlTZt2rBw4UIWLlwYNt17773XYJkTQgghTuRMrCeemZmJx+MJvP/pp58YOnQoV199NeAr9M6aNYsFCxbQrl07nnjiCYYOHcrPP/9MVFTUKeY2WJ2D+E033dSol2sTQgghGkJSUlLQ+6eeeorWrVszcOBAlFI8++yzPPzww4wePRqAhQsXkpyczBtvvMHtt9/eoHmpcxBfsGBBg15YCCGEOFW+6vBTXU/85I91Op0sWrSIiRMnomkae/bsIScnh2HDhgXSmM1mBg4cyNq1a89cEBdCCCF+axpyPXG73R603Ww2YzabT3js+++/T2FhIePGjQMgJycHgOTk5KB0ycnJ7Nu37xRzGqoxr4UuhBBCNJj09HRiYmICr+nTp9d6zPz587n00ktJS0sL2l69dkApdVqapKUkLoQQotHy9ww/1XMAHDhwgOjo6MD22krh+/btY+XKlUEdulNSUgBfiTw1NTWwPTc3N6R03hCkJC6EEKLRasghZtHR0UGv2oL4f//7X5o0acLIkSMD21q2bElKSgorVqwIbHM6naxevZrzzz+/wT+/lMSFEEI0Wg3ZJl4fXq+X//73v4wdOxaD4Xgo1TSNe++9l2nTptG2bVvatm3LtGnTiIiIYMyYMaeY01ASxIUQQoh6WrlyJfv37+eWW24J2ffAAw9QXl7OHXfcQUFBAeeddx7Lly9v8DHiIEFcCCFEI9aQbeL1MWzYsBpX7tQ0jalTpzJ16tRTylddSBAXQgjRaJ3MtKnhztFYSRAXNfJ4FYVlTjQg1mZq1Cv9CCHE75EEcRHC41Ws3XWUzD35lDt98wNHWQyc1yaRc1slhB3/6Puv7986XWj1ltPtocDuQClFbJQZi0l+9YQQp+5MdWz7rZBvUhHEqxSLv9vPriPFQduLK9ys/CmHb34+il4H0REmWsbbwOWmsNgJgM2kJ8FmIjbCSGysldi4CBSKn/YcY99hO97K5iMNSEuy0b1NIiaj/lf+hEKI35Mz1Sb+WyFBXATZfqgoJIBXVe7ylcxLHOVkF5Rj0Wu0iLSg12mUOj2UOsupcHnweBSHj5ayKduOy+PFotdh1mvoNA0F7D9Swre/5DP/p8Nc1yud2/u3IC7C9Ct9SiGE+H1ozLUI4jTYuPdYvZblq/AossucQdtyS5yUuzwYNUiKMOLyKopdHo5VuHFXFsf1Oo2mUWbaxFiY8flOBs1eQ469ogE/iRDibKA10KuxkiAuAkrKnFi9is7xEXSMs5JkNdbpF8Tu8uDyeoO2HSv1Bfam0ZbANi9Q5HQHDcsYmB6HV8HBwgrufe/HhvgYQoiziE5rmFdjJUFcUFHhYldWPht+yiHBbCDGbCDObKBdrJUeSZGY9bX/hpe7g4N4mcuLpmmYDTr0VdqbPAqclaVxnaYRbzFWbld8uj2XeWv2NOAnE0KI3zdpEz+L2YsdHMq2U1buAsBm1ONRCofbi7cy8Jr1Gh3jIticV1qvc/ufbJVSKIInRHB6FGa9b1+R0x2074EPtlLu8nL/xW1O8lMJIc4m0rFNnJUKiyr4JetY0DZN09ADEUY9ZW4PXuUrLduMemJMeooqh5uFE2EI7mUeZTHgVYqCclegV3p1ClhzoDBk+5SPt5MUaaRLajTdm8aib8x1XUKI06oh2rQb8zeMBPGzjFIKr8fL4cP2sPs1TUMphVmvC1SRe5UizmyoMYjHGPUYqgRanQaxFgMasL8otLOaQafh8Sryy12s3l8QlDeF7w/quS9+oUOTSGIsBm45vyW9m8fV+tl+yi5ize6jAAxok0SXtJhajxFCNG5aA7RpN+KCuATxs4VSCleFG5fDDQoykqPweLwUFDvIqxZoNU3DoGloeH1BVdOwVo7n1iAQaBVg1etItR0fGqbTICPWikGvY/vRUgorgqvLNcCi19iWV8rLP2RTVvmgoJQKKrGXVD4wFFW4eXbVLh4c1p6uTcMH5cNF5fxpwXq+2n008EStgAFtEnltXF/SYqwndc+EEOK3ToL4WUAphaPUiccV3PlMr9eREGPBbNJz6Ghom7dO0/AohQb07dCEthUuNu8roLjCTbTVSJemMVh1GoXFDjwehc2kJz7SRHZBORv3F+KpEpU1fE+7+4sd/N/6fRwucQRK/b7/EhTEDdUerd/6/kDYIF7icDP4uS/Zm+/Lf9Wa+3V78hn83JdkPjiUSLP8qgvxeyRt4uJ3z+Py4nZ68Hh9AbnqtKiaphEVYSIqwklxmSvoOH+HNKNBR0qCjTSdRtf00Gptr8dLaYmTslInyqtoHheB1WpkT14phaVODHqN1inRdM6IJcpqZMPREg6XOPEqBco3zasKui40jbEEvd97rIycogpSqmwHeP27ffxytIRwze5ur2LP0RJe/24ftw9ofRJ3TgjxW3e2t4nLELPfOa/HS1FBGSVlLsor3JRVuCkpc+FweqrMea6IiTQHjvFVbfuqt3U6jS5tkzhW6mDPkWIOF5ThcropK/UF7fIyJ0dziiktdqCqFKWbWIyc1yyGgS3j6Z0WQ6wGhcfKcTg8PDWqCzrNN9e6RwWXnjUg3mokMcIY8lnWZeWHbHvtu7213oNX19eeRgghGiMpif+Oeb2K/KOleKqN4QZwujx4lcJqNqBpGiaj73nO3wbu8nppmhyJyWJk2aZD5FaZTc1m0tMjNZqMuIgTZ0CBUafD6fU9MOQeLeFwbglNEm289+fzGPvaBvLLXIGObgpItJnokx4Ttnrr3U2HiDDpGd4pJbAt114RthReJQtszS5kd66dNk2iT5xfIUSj0xCTtTTmATASxH/HykocYQO4n9vtxWPwotNpeD3Hp0NNbxpDXJyFjb8c4/vth0D5xou7vQqPglKnh2/2FeBR0DK+5kCuaRoGg4ZOp6E8CpvFQHG5m9y8UszAN3f2Z322nR8OFbFi+xESbSZiLKEl8KoWfbefvi0TiLH60rVKjGR/QVnNw9iUoszh5PwnP2Ttw6MkkAvxO6NV/u9Uz9FYSXX671hZqbPWNC5/kNdrtMiIpVvnZCJsRpZ+u5+f9xdg0jT0Og29pmEx6INmb9twMLjzWk30lW3wGmAy6HzV+F7F7qxj2EqdjGwexyND29cawMHXfj5l2VbyKz/bLee3qjGAQ+WQObcLe4WLv/9vfa3nF0KIxkSC+O+QUorth4pYtv0Ib/6YzZJtOWzNLcblCS2Ve72+9b/jE2zEx1k5lFvC+h8PE2vQ0SzKTKtYC6k2E8bK+ia9pgX+7fIqDtVz0RKD3hfQ/dVXZoOO/MIKvMUOruyccuKDKx0pdvDPZVspcbgZ3aMpF7VrEnacp1IK5XGD143Hq/joxwPkFJXVK79CiN82TWuYV2MlQfx3xuP18ta3+/jfd/s5WFSB3eEmt9TJ1/sKeGfrYUqqTXOq02lYosy4PV527MojL7eEGLMBq1GPTvOVZCONOtKjzegr3/uDuAaUVTtfdUop3JWlfX9pPPBvzbc0qf8PSF9x4nMFzgnklThYseMIBr2O92+/gL7NY3095apcF48LXOVVtsHevJI6XUMI0TjoaIAFUM70hzgFjTnvIowvt+eyK8e3Hnj1WuYSh4cVu/OCttliLJSUOtnx81E8Tjcmgw6jXofVoCPWYsRYWXI2aBpxFl8XCn9JWgHmatOtVqWUwunyBvKhlPJ1YKvs/e7nD+xGnUab+IgTdjLRNK2y57xi6ZbDAFhNesb0SgdHCcpRhnKUgaME3I6Q42NlzXIhxO+IBPHfEZfHS+ae/Bp7aysgt9TJ0cr2ZJNJj8fr5eDBIox6DaNBj1Gvw6jXMOh9vxpRJkOgRB5jCu4Hqdc0mlUbtw0Ehq65PV4qqpTUNU3D4fatbuau0pBdNb9to8w1djLxB39/D/rCchfrKud/v6JnRuU0ch7fK4yYCDPtU2QqViF+T7QG+l9jJUH8dyTXXoHjBL3RwRfnsosrMFsNRMdHcPiQHbNRj9lowGTQY9DrAiVtY2Ugt1SWtvU636+6f4rUrqlRgTTVlZY7KausHvcH9TKnG68Ct9eLR1WWyL3B063GmgyMap8UWPREVaYD33rk7ipj211eL8999YvvvabDEmE74WdX5giWbcs5YRohToVSioIyJ8UVLpRS5Ngr2HesjDKnmyP2CrZlF7E3r5Rf8kp4a+NB3t50kH3HpJ/GqTjb28RliNnvSe0dxQGwRZmJS7CRk23HaNAHpj4F0BTodXqcbg9KgU5pGPUauAhUY3sV9EyLoX1SaNA0Ww2g0+Fwe3F73Ch8M6dVuNw4Pb7qdE+VwOyo1tlOp0GkghvPacr87/YHpmatWv3ul1/mYvvRMvJLnWw8UIgtKhqlFBVl1b4UNY2o6BjMFiv//Hg7bq/iyq5pdbtZQgA7j5bwxoaDZO4vwOtVGDTYdugYJQ43HZKj+csFrSj3wKuZB8iu7OwZazGQFGEi3mpEwzdMM8qkR6dplDo9/HCkhP32CjRgaPskpl/WCU3TiLUasRhrbqYSwRoiCDfmIP6bKYlPnz4dTdO49957A9umTp1Khw4dsNlsxMXFMWTIENavPz5M6NixY9x11120b9+eiIgIMjIyuPvuuykqKgp7DYfDQY8ePdA0jc2bNwe25+fnc8kll5CWlobZbCY9PZ0777wTuz14pa8tW7YwcOBArFYrTZs25bHHHgsEI7/Vq1fTq1cvLBYLrVq14sUXXzz1m1NHTaItmAwn/pEqoGVSJGVlThyVJeWqE6v4/22qDO46zVfVpJTC7vQQYzPxp0Gt6NexCfFJNpJSo0hMiSShSSRNUqOIS7ARF2elRct42rVPon37JJqkRuMCnB5fCdyfjwq3F0+12OzPib7MRYRZj9vrpXrdgqpc8zyvcprYEoe78g9ZIyomlvgmydiio4mIjCQqJpbEJslYIo6PZ39m9W6OFNevV704e7254SAj/72ONzce5OfcEnbllbIttwSMJsrdivV787n5tUzuX7yJQ0XHO1IWVrjZdayMQ8W+CYkqPIr8CjdepYgw6jg/PYZWsVYUsOLno/R8+ktaP7aClH98wp/f3MQveaHrGQhR3W8iiGdmZvLSSy/RrVu3oO3t2rVj7ty5bNmyha+//poWLVowbNgwjh71LTeZnZ1NdnY2M2fOZMuWLSxYsIBPP/2UW2+9Nex1HnjgAdLSQktgOp2OK664gg8//JCdO3eyYMECVq5cyfjx4wNp7HY7Q4cOJS0tjczMTObMmcPMmTOZNWtWIE1WVhYjRoxgwIABbNq0icmTJ3P33XezePHihrhNtTIadPTMiCXGpCfBYiDObAj0JAdfKTc11kq8xUBJYQVWswGLSR9o//bzB3KDXoeGr61dAa2bxXJ1/xZEWk2YrUbMFiN6vQ6DQY/RpEcX5jyaptEkPoK+3dPo0bEJOoOOMpeHMldoAPf3fgdfT/JYnZ68MldQKVwpRWGFm5355XiV75jiMid9MuICVfB6vZ4IWyS2qGgsERFouuP5slTOTLd0q1Sri9ptOljII59sR0Hwgj6Vv6eJsbZAMa7c4aa4LLQz5UG7gzKXr5+GV0GJyxuoYeqZEom+spOoTuer9XJ5FP/bdIj+z3zFTzUsGSyO06E1yKux0lT1ouSvrKSkhHPOOYd58+bxxBNP0KNHD5599tmwae12OzExMaxcuZLBgweHTfPOO+9w4403UlpaisFwvLXgk08+YeLEiSxevJjOnTuzadMmevToUWO+Zs+ezdNPP82BAwcAeOGFF5g0aRJHjhzBbPbNM/7UU08xZ84cDh48iKZpPPjgg3z44Yds3749cJ7x48fzww8/sG7dujrdD/9nLCoqIjq6frOLbd1XwKZf8lDqeDu0pmkUO90crXATYzUyumsqETpdldXD/G3Mvi8hP397tcPlocTtoUPrRKJsp96z+1BuCT/uOori+IgwTfOvcnZ86Jp/gpgJn+9EKd8KaRoaZS4PrsovUw3oEB/BpW0SGT+0Hfct2cLiH7JrnPzFZtaTHO372V3YKoFpIzuf8ucRv19KKa5bmMnavcfw+udEqgy0xx82FUWlFdhLfcFbp9NomhgdMm1wis1E81jfkrgakGQ1BNKsO1jEvqKKwOiNUocv4Os1yIiLYMqlHeidEUvLhBP3+fitOZXvsvqcf/mX27BFRp3SuUpLihk2qNNpy+vpdMZL4hMmTGDkyJEMGTLkhOmcTicvvfQSMTExdO/evcZ0/h9C1QB+5MgRbrvtNl577TUiImqZ7xtfCf+9995j4MCBgW3r1q1j4MCBgQAOMHz4cLKzs9m7d28gzbBhw4LONXz4cL7//ntcruAVwhra7uwiNu7OqxIYj3/RRJoM9EiL5k990omoLJVWXcVMqxyrbTZVa4fTwBphpHfX1AYJ4AApiRFYTAZ0/pngdP6x4sE1BgadRvM4K8NbxOFRYHd4KHK4gwK4zaind0oUJRVu9h8t5cmRnTinWWzY65oNOpIiTYHzm2tpdhBnN6UUD3y4lTV7juHx+krK/v4d5S5vUKncUmXUhterws5i6C+JU3kefxORv2odQpfU9CjIOlbGuNc30mX6Kq58+Vty7BV4vIr8UmetczSIs8MZ7dj21ltvsXHjRjIzM2tMs2zZMq677jrKyspITU1lxYoVJCYmhk2bn5/P448/zu233x7YppRi3LhxjB8/nt69ewcCbjjXX389H3zwAeXl5Vx++eX85z//CezLycmhRYsWQemTk5MD+1q2bElOTk5gW9U0brebvLw8UlNTQ67pcDhwOI5XwVVvh6+LohIHu/YVEGc24PYqSt2eoNKoBhSXOiktcWIvd3HUXoHL48Wg15EYaaZJtAWDXodBr+HUPMcfBHQazZvHNehau3qdjvO6prJm48Gw/fD8VeoxViM6nY5eydF4vLDhSDFHy12BNG1irfRJicZa2XO+qNxJiyaRLL7lXK5/NZONB4vweBV6nUa0xYDNrA98Dl/PehlqJmr2xoaDvL7hYI37HW4vVqOu8neq9r8PXbXJD7Qq/62oHFFSUwdOv8935dFn5pc0jbdS6vQ9FPRrEcdf+rWgd5glgs8WdfsJ1H6OxuqMFUcOHDjAPffcw6JFi7BYQsca+1100UVs3ryZtWvXcskll3DNNdeQm5sbks5utzNy5Eg6derElClTAtvnzJmD3W5n0qRJtebpmWeeYePGjbz//vv88ssvTJw4MWh/9WBWtcq6Pmmqmj59OjExMYFXenp6rfn0c3u8/PhzLpu2HcGi07AZdcSY9aTZTEQag3+0SsGWg4Xk2yswaBpmvQ6X20t2YTnbDhVV9kb3BT1/VXuzZuFXEztVERYDXVsloK82a5I/gNtMeqIr51HXaZARbeHKtknc0DGZa9olcVOnFAamxxFRpQdveWUnPaNeR4uECFJjzDSLs5AWayHSYgiq/vR4vTKsR9RIKcWLa7Nq/WL3T1zkqFIiNuh1gb4ZVcVXWRfAVFn7BL4HyoN230O8pmnH1zKo4XrHylwcKjjeeW79vgJufWsTn+44UpeP9rukq5z58VRfjdUZC+IbNmwgNzeXXr16YTAYMBgMrF69mtmzZ2MwGPB4fE+aNpuNNm3a0LdvX+bPn4/BYGD+/PlB5youLuaSSy4hMjKSJUuWYDQe/4NZtWoV3377LWazGYPBQJs2bQDo3bs3Y8eODTpPSkoKHTp04IorruDf//43L7zwAocPHw7sy8kJ7gzlf5jwl75rSmMwGEhISAh7HyZNmkRRUVHg5W+Dr4sde/I5VuTrZX28Wtz3irMYsVarMjbrdcSYDUSZ9MSYDTSxmYgw6HB6vOw5enw6Uk2n0SQ1CqPp9FXUNEmMICPeRlyECZNeh0GnYTXpaRJloUmUBU3zLU9a7vTgrByGZjPqK2eRq9aBDjiUU4yzsspy88EiiquMUa861tyjFEXlblb/EjxznRDgG+nw5saD7MotDRoKGY5/pEVJ+fGatOgIc8iDr0mvkRBx/Dup6gP21qMluCofBtweL67qvT3DsFeZntirfA/o//x4O2t+yWPVzlx+OFS3hYnE78MZq04fPHgwW7ZsCdp2880306FDBx588EH0+vDjJJVSIdXPw4cPx2w28+GHH4aU6mfPns0TTzwReJ+dnc3w4cN5++23Oe+882rMX2Acc+W1+vXrx+TJk3E6nZhMvrbV5cuXk5aWFqhm79evH0uXLg06z/Lly+ndu3fQg0VVZrM5qJ29rkrLXeRVeSI36XVEmPToNQ2PUpQ53USb9JRXebKPthqwWY14K+czd3sUMRYjqsJFSYWbCpcHm81EdIwFw2kep2ow6ImNsWDQaSTYQj+/UooDReVklzvJLnXSOtpa47nizQaUgn1HimnbLBa3V+H0KI6VujAbfQ8ICnC6j39JuuVLTlShlOKFb7KYsXLX8fbryl8RnY4aS2p5RWV4K3+XoiPM2KzBfUcseh3tE22VQzUhxuSbFdHt9fJTbik78st80xO7vVS4TjxRk1/1AO0frvnop9uJqyzxx0cY+fP5LenTPL5uN6Axa4jJWhpvQfzMBfGoqCi6dOkStM1ms5GQkECXLl0oLS3lySefZNSoUaSmppKfn8+8efM4ePAgV199NeArgQ8bNoyysjIWLVqE3W4PtCknJSWh1+vJyMgIukZkZCQArVu3plmzZgB8/PHHHDlyhD59+hAZGcm2bdt44IEH6N+/fyBAjxkzhkcffZRx48YxefJkdu3axbRp03jkkUcCT97jx49n7ty5TJw4kdtuu41169Yxf/583nzzzQa/f3kFx6uD4yonh6ja49xqNBNp9nCswoXL6ysNxFb+gWv4hqMZ9L4e6VEmA+VuJxUeL+mJv14P2KQmkbhcHpwOD97KMen+/x4tdfL94SK2V37OJIuR/ApX0JhxDYgzG4iu7JBXUFkteU6zWD77ORePV4X9YtTrNHqnx57mTycak+e/zuKxT3eE3ef1KggTyO0lFehQJMdYSYu3EWU1UuLwBGZNTLOZSI8yo9Aw6HwBXadpmPQaLo9vuGPrBCu5dgcHy+veSc1Qw+ICDvfx4H6szMXTK3fy0LD2nPM7by8/29cT/83O2KbX69mxYwcLFy4kLy+PhIQE+vTpw5o1a+jc2Tc0aMOGDYHJX/zV5H5ZWVkhHdFqYrVaefnll7nvvvtwOBykp6czevRoHnrooUCamJgYVqxYwYQJE+jduzdxcXFMnDgxqN28ZcuWfPzxx9x33308//zzpKWlMXv2bK666qpTvBuhPB6FpvnmNvf3tK7a4xx8pfOMGCt7CsppHR8R6IV+/LFTYTbqcbq9GHUaEfXogV5Y7GD/kWJKy1wYDBoJhzSaX5yEvoZpWMPR6TSaNovh/z7eTocEGwkWI+VuLzvzS9h0tIRjlUPedECUSY/NqKPM7cVd2WHNZtAFvlg1jnceurF3Oh9vr7mN0OtVXH9O3fseiN+fnbkl7DhSjNWop3vTaJ7+fOcJ03u9Ck1H0AyC5Q4XLZKiaNnk+PCmaMvxr9RmURaiqzVJWfS+9leDpmE26tEbdMRajTSLs5Jjd2CvcHOs7MQjWaIs4b+2q8d2Bbz0TRbzrolBp5PRGL9XZ3ycuAhW17GVR/JK2bEnn+So0Da4qpRSOLyKeJspMC+6v/3N4fLg9SrKHR6Olbvo1zMtaLhMTefbuiefvYeLffOoA4ZPS7A8mQ+PJ9PvwXaY61EVr5Ri6pItbCuouaNZpEHHpc0T0KpMDxtOr/ZJtEz13bPZX/3CvG+ywqYb2yedSUPa1zmP4vdj99ES7luyhfX7CgLbzAZdrWsOAIGFgJRSFJWU4/F4iTAZOK9tk6B0Gr7FgTrHRQTNfWCuDOBKKfIdbvaGmTVQKcXmQ8UU1BDIDXqNZnHWkN7uAM2jzVjD/O1FWo08N7pboLPor+XXGif+5ZodRJ7iOPGSkmIGDehQr7we+v/23jxOrrLK/38/d6u9qvct6WwQkpAQggSJoAKyizAz4IbLjDoyIiCizoCOfhVRw+hPERVFQYbBFUXFQRRZhlVBgYRA2Jfs6XQ6vVV1rbfuvc/vj1tVXdVd3QkkId3J8+ZVJH3r7rl9z3POc87nbN3KZZddxh133EEul+OQQw7hhhtu4MgjjwT8f8svf/nLXHfddQwNDXH00Ufz/e9/v+KE7inU8Gya0tIUJmTpNVnXZQ/Bq0rIEULQWEqqyeYdRrKjjUnCAaNUpw1NDcGdGnCADdtSbNhW1erUkVj/PQyAd+0Aj6/d9SxZT0puXbWFkK4xPx5CL72Xql9PMVPnkIYwUps4w7/iGZWyhD0p2TCQZmY8QMTUKtnvUUunOx7g7+sHeVn1FT/g2DyU44wfPcLjm4Zrlu+KAQdwizbZnM1QKotbSrZ0vdptdeFHwL5w8iHMSIQwNUFQ9z966flNF102TSD7K4RgaVeMrkRgXIA3bOnMmMCAhwyN4ATaBy/3p/nU/66dNElvOrO7jU9ei/b60NAQxx57LKZpcscdd/Dss8/yrW99i4aGhso63/jGN7jqqqu45ppreOyxx+jo6ODkk09mZGRkj17/lA2nKyZH1wQz2+OMJHOVrmLVSCh5rpC3XZxSQpeuCYQGuYKLEBC0dNJ5h8UH16+9r9mnlLyyJVmzzLgng7bNTwTSehxGbh0geUgziejOk/UeXz/I6o1DBDRBwtI5vDnKUMEh67hoQtBoGUTKnoUE2/Mwq6YMKjkAgO1JNvdnOHR2E09sGealHRlCpl7XMwHJb9ds5TLljR9QXH3/y6QKTiWr/NWSfGkNsn0+wvCnnXQhWNARpzFkMpQrYuqCEw5u5V3LZjCrMczRc5t5cdsIazYOkswViYdMpC745ZqtvtGY4DR0TbCwPcrc5hA7MjaOByFL59QFbfzxue047mgpqCt9Az5zkoic7UpWb0nyZE+SZTMaXtO1T2X2xZz417/+dbq7u7nxxhsry6qnb6WUXH311Xz+85/n7LPPBuCmm26ivb2dX/ziFzVaJruLMuLTmNaWMKnh7IQyo7L0v/IvfSxsYVUZNdfzKNguc2clxumn1yOdK5K3q3p1l7xwKfzuZ1KA9d9J+j6S3akRl1Lylxd9DXzbk5iaQANagiZQG/ab2RRGur7WuicluhBopTeg641qsBdKSWwPrx9AE0x4X1wJj6wfqIjBKPZ/bMfj12u2Tlp6JSeYrpFS4mRTeHYOkR2GuB8+d6XkijOW8PYlnb54kjZWeVCwsCvOwq7a8OyhXQluWbOFp3omF3YKGDrxkFl5vu97pZ+vv2MxvSMFXunPEDQ1Ht8wCJOcd8GV2J5EE/Dtu5/mg0d0csKSua8qd+VAYqzY1kTVQ7fddhunnnoq73rXu3jggQeYMWMGF1xwAeeddx7g52T19vbWKHgGAgGOO+44Hn744T1qxNW/5DTGNHXEToyQxA8lN8aDmGPCbZoQhIMm0q2/7bh9jXn/lb1wUVZ4k743nvnfofEbj2FoxGYwY1fOMet4FaNbXdsdCxmcs2IWWsnzkPg9xW3P/7hV25TryXNFd0IDXsYt9TVXHBiMFBwKjkc4oNMWD9DVGKSzMUhjxMTQa6M71ZR/zvZu8Bd4bsVn++ej53D64g4cz2PLcI4Ng9m6z9RTPUl+9vhmfvXEFral8iyb2cDX3rGEf1o6cTtcKSVFr7ZJkJSSL9/5PNtTec4/Zg6fPfEQPnncwZOed39J5dBxPe5/dhOnX/EzDvr4d/jz6pd29dZNeaoFo3bnA9Dd3V0jvnXllVfWPea6deu49tprmT9/PnfeeSfnn38+F198MT/5yU8AKnoh9RQ8x2qJ7C7KE5/GFIsubtVveTmsLkRtOYxp6jUNRsqUfy4W/AS3enNt1USC/hy668lxXnjlHARkvrMd76I5aBPM0b2yNcnDY7LHPSDjeuhe6dwleEgWNUcIGDqZoosxycSVEILBXJFUvsjWUjOJyebQNU1gKW/kgEEXgmWdMaKWge159OWKFD1JyNIJWTqDaZucPX4067ouuUwGt9z7wAwxpznCJW87hI8eM48b/r6R/3l0E/2lAWlzxOKfl3fzrytms3Ewx0W/eZInqzxuTcDZS7v4rzMX88GjZrFlOMdjm4YqkaOy8fUkZMaUR5af5+sf2cAvVm/hkmNnceujL7B1OE9XZwemPvq8255kR7ZIvjSwFUJQyPrJoz2DKf7xyl9yxxc/yAmHzd1Dd3jf8VrmtOvtA3wl0erEtok0PDzPY/ny5axcuRKAI444gmeeeYZrr72Wf/7nf67ab+2JTfZeeq0oIz6NKSfXSCnJFv361LI91YUgbOpYhoY+prFCPQq5IqGdlJjpusbsjhjrelI1c+HVCAnFDQX6bu6j4wMd477fsC3F6hd3kC66GAKcMR6zK6mZs5zX5tf1+y81l0hVPXz52oUQpGyHoaLLv/5iFQPZYqWpxESkCi6D2SLNe6ixi2Lq8tj6QX63ajPL2mJ+rgiwCFifyvNKKaekMWpRGMqXuuv5z5Rt22TTfgKkhqQlEeXRb72PGQ1+E6V/v+1p/vhs7WB0IGNz9QOvsHrLMH9dN0gyX1v/7Un43VM97EgX+MU/L+cLpy7k0Y1D3Pn8dp7elvTrzF0Pe5JQkgek8kW++Ofn2fqKXxq3NV2gu6sTQxc4nh9GL1OOag3v2F762f8de9+3f8uPL/onTls2F12VoAEQj8d3KTu9s7OTQw89tGbZokWLKm2nOzr8d19vb29Nz4y+vr5x3vnuov7lpjGG4Ru0ZN4hX2XAwf8lHbEdckUXXfdbj2bzRfqGsmzdkaanP81gKk/RKfU53gW5R4BDZjeSCFkVL7wuGmz40ga8MVm/nid5ev2g/3fEaNLaBJiaYFGX36hkZkuElO0yXHAqamuyFFYfzBcZyDs8vj1FwfHwgJHi6ACnGikljifJOh5FV4XT93ee3DzMbx7fjOv5hrncMU8TgoMSIebFfYlfAYQD/vNYHiCapkkwFALXQXML/PiSd2EZOo4neeCVgXEGvIwEHnhlgHTBqTsH70n/+/N+/QQfv2UN//v0Nk5d2M65R3YzUnQnNODlVqX+Iy0wTItQxB/k9m/vYzidJW274wy4EIKedS/hOrUDiv5khn/8xm844tIb2TwwffuWiz3036vh2GOP5YUXXqhZ9uKLLzJ79mzA1wzp6Ojg7rvvrnxv2zYPPPAAxxxzzO5fdBXKE5/GGIaGp4lJs22zRRdNg6GRPLlCVTvEUv/wXMGhKR4kEts16VdD1zg0GWJtHS+8ggf5dXmSf0nSePyoWtRAKk/ediuGNaRrOIYkU6fERwBzE8FKFm5D6QWbc7waKdky27K2H47EV7RK2b4KXMTQKmFGT0pyjke66JEIGrQoL3y/ZvNwlqvue4mRvEPE1GkPW+MSGecmQmwaKVCU0s8ZqfodEUIQCARo94aZc8wKzr7pCTz5BNGAwezWONLTJs1J0XUBkwyO73lhB0FTR9cEt67dxjFzGgnoGoVJBpeZmt9hSSAUJpdJ43ke6196idaOdpqam9FLrZizIyl2bNlEeniCPBUpeWnbEKd97des+caHMY29K7e8VxC87m3MPvWpT3HMMcewcuVK3v3ud/Poo49y3XXXcd111/m7E4JLLrmElStXMn/+fObPn8/KlSsJh8O8733v282TrUUZ8WmMlJJ0YedyjTtSeYQ3uk35tVKeNx9M5Wnv2nWxhMZjGzj014fiFSZ+2WgBjcSbatt95vKjAhaWJrA9iFsGQd0j47g4JW8pqGuEDY32WJChkQJ/WbsN23ZpCxn0TSBPmbSdynUFdcEIUHAlBddFw4WqbHVNwDsP79qljHzF9MN2PL569wvcutZvXlQRJdIES1sidFRp9etC0Boy6ckU6u5LaBq9xNm6ebQKJF1weGbLIIau0dXWOOFzpO9kCqvspZf/fHjDEJYuKops1VNG5evKjpm3rx4ieJ7H9p5tbO/ZhiFA2tlx3vf4C/TD7y9uG+Lbf/gbl/7TsZOvrwDgqKOO4tZbb+Vzn/scV1xxBXPnzuXqq6/m/e9/f2WdSy+9lFwuxwUXXFARe7nrrruIxXZPmGYsyohPYzzPb2RSJmjqtDeGaAhbICCVLbJ9OIdd9LA0QcH1asLuuoCgoWPpGslkgdbWXXsctIBG27va6n4npaRou7iOR9FzsTwBAnLZIm7JAAvht021S16FpWvjkswsTdCaCPB/q7fguhJDEyQsg6CuM1Qoki1dd8jQaAwYPDkwuq0QgkRAZ7i0fw8qbzsBLO1M8KGjZu/StSqmH5ff+Ry3V4W6y8+740lW96U5ukOjOeSXMUrplzcKIfA8SaDU1a86uOVRv2GO43oMDKdpb64/h7qzCap6TVVsVzKccwiZWkVO2fUkGdslZ49PdMtn6osWOZ6EnRpwzf8ASMl//uwenHyW/zz35J2c+dRiTya2vRre8Y538I53vGOSfQouv/xyLr/88td+YruAMuLTmOpktaZogPmletTy8oCp05YIsmlHmu1DOWzXw3Zl5YVklpJgQqZONmcDu9f8xM47pJP5SlcnAE/6L0RN+H3CIwGdTMFFl35Hp2SdjGBTE8RMDduRFZGaipdtaHQataF/AcxJBHm6P1NpkBLQNZqDgkzRJV/aR9TSOW/FHM5e2lV5QSr2LzYOZvnDM5OrBr44lOVNIT9KJIQg67i4nqRY6kdQlmGVpWxxx5l46iiTK+C6Xt26a3snSnDWBM+g60nSBZdUzplYA0JK7HyeQm5iuWJ0C1x78u/L+wNA8MWf3MHSeV284+g9Kw26NznQG6CoN9k0RtMEzQ0hAqbGwWMMOJTCiBK6WyLohkay4JJzPIqepOhJskWPVMElY7sUd1F6sh7Sk2RSeVJDObxSb2TX83AcvwTOKycVaRqHtMdLJXBgCEGTpRM3dUK639CkMaATMzTmdsTZ0DsqT1hOTKpHLGDw5q4Gxl6BoQkSAYP2sElbyOAH5xzOuW+YqQz4fsydL/SNawQylqGCQ8H1SmIoHn3ZIiOleupKUpuuIfCfoY7mOE3x8ITCQEV3TIhbShzXrcn/GIuhi52epxDVU7WjyZxSSpyizY6tGyfZWoJugF5HL11oYAT8HqvVeA5CwDdvuXfyE1NMKZQnPs3p7owzuCNdUwdeKLoMJHOMZIq+2IsmaAhb9I0U6sqzpm2XtL3rrRCr8VyPTDJfCY2Xm6sYuoZmCApFryLUIoQgETI5oruRV3akGc7aeAhMAabmJ9QkIhYzWyM8s6E2EUfihwiNqn2B7zV1lJLyTp3dxJ0bB9GgYtDLf3/Hwa0sbN+zc1GKqcdI3qm0tJ2MouthaTqrelMMj2k2IkqKgJrm9x3QNEEsHKC5Icq2/iTpbO38ebmpSXnbYrFI75YtOB5EWzsJmEbNANQyBAFD22nZpxACXS/pP3iCfHoE1y2STQ6RdUBOFC6XEkqiM1Iz/L9LF2EESiODCQaxhSxSwl+eWc/QSIbG2OvXlnh32Ffh9KmCMuLTnFjEwnRHuyXlCg6bto/Uzul5Es92mREPsjWVr2vIk5nJ2x9ORG6kgOeOzrN7Ulb6ldtFd/QAVcRDJkfMaiRnu9iOi6b5JT8NzWHiUYt7n9haSUaqxil5+eV+yqYmOKQ1il10kcDbuhuZEQ3w0NZh1iVzAMyLh3jzjARL2pQBPxDobgyVyrAktuORs0d71YcsXzdBE4K847ExlaclYtEetXyPPG3Tl7FLgkmCRNioDZNLSVdLgo29gxRsp2S4JTv6BgiFgwggl8+TyxWg6IJ0GRnYQSbS4Ce/SWhNBHfJgFcjhADpsO251aMLdRMRjvvetltlzD0PpFezrfRchOcQi0YZsT3fyI/RWSCXqtnu8zfdyQ8uOvvV3v59gtgFHYxd2cd0RRnx/QBd16D04tq6I1NjwP3wGyB8o9ccttiRsWuy1AEyhVdvxF3HT2CrGTC4EtPURo9LSe+8zpxTWS0LQGiCeNTCdjx2DNfv8AQlMRhXIpC0N4bQdQ3heBVPaEFjmAWN4XHbma+iPapi+nL6onb+6/9epC9ZwK4p75IUHI+AobFsZpwh2yFgjvajD+ga3YkgTSGT5/szeJJx4fOyvGlTPMy2/lTJQHrk7SL5QpV3LkuhbMcFO4sXilMsnUoya9MSD6Gx68pdUkpSfT21C90icmSArrZWtqXre+TSn9T31wXymRHesXwRtz+xHkTp98GxkYU0OLVz5z+5dxX/9ZG3Ew8Hd+kc9yX7oMJsSqEmB/cDyvKmmbyDU6ox9aQkX3TJFf2M9HzR87WjDa3S/cir+mRtl607MhUVuF3BLZYlHUeX+VrtJUGNqpdgea58IsJRCyEEmQn6KI/FKpWglb3+ndHYGNql/SqmN7GAwaxEaIwBH6XgeGwbzpf0sqvyR0rPbMTSmREPllr0jn+1CyGIhqoMW3l+uTpEPTZkXTVn7riSZMaXeC1HDDxPkrfrP/dSejh2gaGezXW/7xlOYwQj5ZVLf8hKlIBCprJu2DK48aKzMLIDyOFe5PA2yAyOM+BoOnnb4bnNfXWPqZhaKE98P0AzdTzbpVDK9PY8Sb5OoprtSpIFB1PXMEo6647nSzw6Eu59yh/tz2gOc9jcJloTu2b4/BfgqOddlq40dEGx5CS4ngTh186ONeaOBlv60zi9HqlUoW4ovRpLF7SEzUpiULkn+kSZvMGgQTw+9T0Kxe7Tly7w940TCJuU2DycZ2YiWKM1XkYIQVvEYig/cY5ItW2vNB8xLChOEEEacxgJjOQcUlWaB9lMmngkSEMkgGGOlr+lB/vp3/AynjPB4NYM4loRKBZ9j1rTK943TpHyb5Kha5xzzBIaoiE+ctqb+NHtf5ngXLXKCVvTRPhFzYkrpj1CE+hBA1FSTrTreNMFxyNVlbxWTt4JGDqe41U8eAEMJ/P8fW0vjVGL9qYwM9pihILjHxW9KkSt6wLH8Ut0XNdDK837WYZWKbVxXYnn+nPgCF8adutQjkyuiBBgahoaELN0UnVKz8okAv65uJ4/UBBCELQMCkV3nMxlIKAze3bjTpu7KPYPHl43MGm7USjlgOSdCRX7dE3geR4Z228vahl6JbQupaQwJgm0Ysg1AzynlFhWen6F5i8voWmC4timRa6L9DySqRGGX1hNIBJF0zTsXBa3OEmJGCBKpXKE4xj5YaRdwK3TSc1xPX7512cQus5ZRy/mR3/6mz8HXpkHF362eimC0NEY47A543sfTEUO9DlxFU7fT9BMnURzCK/kYVfjSlljwKvxpCSoCwzN/7SFTWKWTkAX5PIOG3pSrHm2l81bk2QzNrJq57qhoZcajWhCYOgCQ9dGa7ulxDC00tyjv43EN76BoMGWwSyZUmmPlP7DKISgIWhWktfG0hw2K/W16YJDdVZw0DIIBwwCpk7A1AkFDGbObFC9kw8g6omyvBa80nRy0ZVkCg52qVZcCEGm4BAKBTGMMQNbTRvt1+uVft+CsYqB0DSBqAqzV5TYCgV/IDC8HaRHIZ0ilxr2Dbg+sTSwiLcjDLN0XhpuoovOJj+B0yiVyI2em07Odrjp3jW891u/YfHcGb7Xrpulj1EzBfCOYw7H0KeHJ36gozzx/Yhg0CIUMskXa0tgxobWPekn+VRPG+rC94CrS9WiAYPWWABD03DzDju2pxGaoKExSCQaQEoIRgPkUnmKtluaX/drxJNpl3DI8Af7UqLrAksTaIaGZRkMpPJkq0KWWtVxdU3QFQ0wlC+Stt1KaL01bNIcthgpDUhGCkUiAQNDG91WlAYTEohGLQIB9YgfSMxuDJLP5ykU7FLLWY1AwMKyrBpvKxqob6DKteNjf2fyRQ9NCIquR9EDy7IIBAK4rks6nRlNIgNfYEV6YEXALE3j2FmsUrOScka4lBK7kMdzCsjkdsgma09GM8AKgmv44XHX8UNlVgQRaUBYtdNdwrA4863HctJBDXz11/ezZl1vKetrNBve8Ty8ouSFXBCsENi58Tch0sidG3K71J5Yse9Rb7j9jM6OGEOpWiNe3a3L9WTdBiKe9NtzNgQNdAGRgEFnIlTj6fqhP0n/jiz9O3ylKE33E4AKtku2UKx44eGAUSPQEgzohIImnifJZooMjMlAH+s/6ZqgJWzRFJKV/cTGvHilhO2pHI3hAGFLrxzL8yRGUKe5dXrUuSr2DOv607zzhw+Sz48+/57nkcv5Rj0WiyKEoDlsEpxgvlcIwbaR+jrqmYJDvujVDAY0TSMajTAykkbgYRgCIxRDWEEK6RGcgY14ye3IXIqMpmHE2xBWCBmM4+bTfti9KvmsBrM08DBMCEYQ4YZJr19KyQ/vfx7JQp7rGQa9Xk0IeJqBMIKIljmQTyNzSf88DAsR9gcHW4dz3PfCNk5c1DXpMacCak5csV8RjVgELL2S5FaNlPUT3lxPUizVd48UHBpCJq3RwLgG9lKON7aeK3E8j5GcXXFEIkHDV7wql+9YOoloANf1sIuj2fM158ZojXnNS1IINF1g6aPzXqYmKJbCpp6EgUyBoayvsgV+TsDRc2ZM63kuxavn/Tf8lR1p3wCPTXT0PI9cNkdzIsohOxncjRTq52NICelMDiEEpqFjlkRcdF3HNAw8XMKRGKFwSbchHiO5bpB0fsQfBDtFnIEtEGlESAHZYT+kXQ/drJlLx7GRngcTzP+OJosKfvTQK1CcpMpDq2qwEoohQvU1FNbvSPuN1xVTGmXE9zOEEHR3xXm5SvHM0jWKnltp1VnG8fy58kLV226oAK6AgzUxxoDLCTPG80W3YsDLiUDVREJmpRdymYCpQ672ReN4clwjFPA13qtrdkOmjlNwas7Hk37yHsDBsxp3qexMsf+wauMA6/vTnLGwi8O7GrF0jZFCkcc2D/LXjTsoOB6OU+TwjmjdZ6yaicZ+EonjOICgWHQQhSLRSLCSD5LNFBi2bTKZLM0tzWiaRnz2ItI965CuA2bQ96aDMf8ghsk/Hb2ApzZs55Vtg6MHNwK+Vzz2RPIpCCXqDK7LZSEemKEa0Zb6F7JrZaTTRp54DyS2TWdXXBnx/ZDmpjCuJ9m4JYnnSUKGRrbo1ni/rpQM5Ivj9MYl0JO2ebpvhMPaR7szTdaIoVAc9VwsU695yeiaqBhUt2oSvjESYEeqNqTuSontepglaVUX3zsPmeY47zwWMMgV3YpH7i+H2V0JOtuiu3KbFPsRD7+8gwvfNB9D0yoDvljA5PiD2ljSkeD6R18hV3QZztm4eZe+jI3jegQNnfaYRUvYf8bK+SJjkVJi28UaAyg9STqdIxYNIZB+iZlhUbRtUskUDY0NoGkEW7rIZ7KISEPNfLgIxljbm+Wer34UUxd84eYH+Z8HnpnYILmOP4ddNRdeqQcvq7BpOlBKWHMn8MbdIlJ6wCTGT0oyuTrz5VMQJfai2C9pa4nwhsM6mDe7gZldcRZ0N9QkqaSL7jgDDhDQ/f7KyVyRHen8pAIt9Rj7TpjoHWEZGp0N4+vQXSnJOS7ZUnLRRD2Z/a5oBvGAQdTSiVkGzdEAMzqUvOqBhpSSfM7FrDLgZTQhaA4HOO2QTgCe7cvwfF+aZK5IoaSb8GJ/lmf6MrieR89QmqHBYbLZbM2z7wsRjZkrlx7Sc/1GP15Zpa0Anks2k8HzPEAi9QCER7umVf+5cUeSc676Pe0NUb71LyciJgqvI/xadOmC5yJLn1LmaGkVbbTcqlx6VndXGhQLo6Vx9VbxbAbTEysnKqYOyhPfj9F1jdbm0fm/tpYId/x9E54cn9ymATNjARIBoxI6H84WSeWKdMRDBHdRttTzJFStWlal8l8uo+8bgOZYENPQ2JHMU3Q9DOFnlWeLoxnpOwuTaWJUWat7ZoOaBz8A2bgjg/SYMJNa1wSHdzVwxwvbSOVdEP6zb2iCWMhA1zSSeYeX+7O8vHGrnwiayZDSkjQ2N2FZFql0lqLjwjgpIt9Dd23bz0TXTd8j13SKdhHTMrG9iZ9jx5M8sX47f31hK29eOJPjl87jgWc3+c1NpC+QhGb4HvarkGnFCkEo7muij0XTwHOQxTwYgfGG3LHBtelomB6JoWKyiMKr2Md0RXniBxDxiMX87gSlAFwNs+IB4mUd8yrD6EnoSeYqdbJjKQu6lLEdb8x8HZWWjEadObawZWBoAlPzvYiiJ8fN2+/KL+js2Q1EJhDvUOzfbE/ld2rfDE1jRlOUWS1hZreE6WwIEjA1hjPFSq7GjqxdMz3jeR6D/QPsGEyRLbi+IdV0X3e8qqbacZ3SQFXzjbgV9j1kARZu7ci17rkJ7n16IwCfPXM5UuhgBvzyMjNYquEuXeBYSddqvDGtT0MJSHRAIOrvxwpDtNkvffNc31gX0v6gw7HByfs/uzaWqXPOUQdNflOnCOXs9N39TFeUET/AWHZQC/M6a0POIUMjZhl1jWXB9ejPFXlsa5JVW5NsGs7VlKwBBC2jMo51PX+OvPplks4WS52kxrcw3pHMVcrSgIpyXBnb9Sre/ETE4wHiMSWreqBiaGJynd4SDdEQhu6H3IOmRnsiSEs8QM4uC7loGEZt/20pJY49JowuSrOwZWPqyYolEOV5ac3ANE3OP2bOzk9MiMpA4sTF3Vz74RMmXA8zjNA0Yg2N6GPFWISOKA2GK1ZJNyHSCLFW34CbIT/kX54vl9IXpnHtmm5o718xn0Q4sPNznwIc6EZchdMPMDRNsOLQDnZkiryyfQQJNJRC6GON+HDeYbAw+oudczyG8kXWD2WZlQiiaxqBkv50vuiWkuh0wMHzdIKl2m3PkwwmCzTEAlimjutKRnI2fcM57DF1t/Xexcl8kcZShvvYczQMjc6OeJ2tFAcK89qi/N8k30spyToew/Zoz/vyn9GAXhl0+s9WnSfQdcCqSp8qh7kRJY9bgGZWJFeFEKAbXHnGYt79hhn8f7fcx1Bm4vllx/V40yGj9djnvHE+X753PcP9/eRzpe10A7TRgbZpWTS2tlEs2rhFByEEeVfguB4ByyDvWL6xHktZDlZK3/vWzVoLJiWa59CVCPKj+5/nugeeZ33/CA1hiw+sOJgL3raIjsT4LoGKfYcy4gcob17Uxsb+DI7nUW8qMVN0awx4GU34L79NyTymEBUjLoQ/q5QUDjObwrS3R4jFgniuREiJaepoGhRsl6HBHOt6RxACAmO8CU3A2AZURU8ymCsSsXQCejl5BxobQrS1RVWb0QOcxmiAQzpjvNiTYtB22JErUvA8TCFoDpo0B02e6k/7ksRerZkWQCJkkrVdPM/DKU7Q+EQ3odwdTAM8ifAc3xsXWmlgUE768A25pXlYhs4Fpx7Blbf+bZw2Avjz9bNa4pyydG5l2c8e30xR6nTNnEE2m2c4NUKh1CrY0HUMHQrZNKFoHMsKgBXA9TzSI3kQglgkSDBgkBoamrhxCvgDEKcwGqKX0l+mCX7y2GY2D73orwaM5It8489Pcf2Dz3PfpWewsLPhVfwL7V384dXuzolPX5QRP0BpjAZ49zGzueOJrXXbNg5PYMDL8qi6gGCprWnZO5jXFmVOa7QyRy7zju+NaxpF22XHcI5C0WVjf5rSK28clq7VVZRzPEky7yCAw+a30NIYVpKQigonLe3knlf62Z4ZbRhSQJJOF9iULvDiUJZ6XXYl5QGoJFcoQqA8X1wYLSfTdGSxAMVcTWMTaQYAAbnhMV6vQJoBUjn/XP7zn97Eoy9v4+6nNqCVytjAN+CJcIDffuafap7lv7wyQCbvEA8ZhMNBIpEQnufheR6927aTyxbQNI1gxJ8WE1XhePA9e0PXaWppIZ/NkstkcEuhcjMUxrEzft165SZIP+u9hGeE2DKcGxeTcD3JUNbmXdf+H099+eypk0R6gNeYKSN+ANOWCPHPxx3Exh1pXl43WFnu60ePN+zV+uYBrdaAH9bdwIzGUOVnTRMESolyrifpG8zieZJ03qnUnPtNJmpD5LoQGELgTDAH3tkaobUpPHVeIIopwa1P9tCXqd/xy5OS7niQlwcnrns2dY2s7SJ0A6nppdaiOT/kLDQ/4asa6fk120IDp4C0c5AZGtUiD4T5zUMJPvqWQ7AMnf/9j7O5+eHn+OHda3hp2xCJsMX73ryY809eRmdjra5B0fV7jA+M2LTErIoGfDKZolDwBwue55Ec2EGiuRWotUG5QpFoyBeLCUUihCKRUflkoKB5pPq3T3wzzeCEuhCuJ3l+W5KHXuzlrQs6J96H4nVDGfEDHCEEc9piCFfyUqkPc73f3+p8NAE19bgNYZOZTbXzZJY5mumeyRT80jMYl+XuSIlBbf1s0NAoer7wS/lcggGd2Z0JZrZHlQFX1JAvutzz/HbmxYLMjQUJGRq2J9kwkmfdSJ6iB7GAQdDQ6soOA5WEt2q9f6wwUgpw62upA36tuJ2HgU21y3Mp7rn/Qb4xv4VL33UCpqHzwbcu4YNvXbLT6wnpfoVGvujRmywQCxqELJ1UsrZczLELDPZuJRCOYFrBitRsoehiGi5BazTXxc9N8cgmB8iOpNGCEbz8eM12EYggd1rWCX9ft2PKGPE9kZg2nV8pyogrAJjdGSdg6qzbMkw279TokwOThptmNoVL2edlQ1xr5DNV8qpjDbDjSYSGXyNe5X1bukZLQ5A5JZEay9SV8VbU5ZUdaVa0xmmoKpE0NcnixjDz4kHu70mSdVxilj6hERdCEDB0dEMjbBlomsD1PLI5nfSwPTrnLUZrkivPqzlBaaOm84Wb/sRpyxcyq72ZdQNZQqbOgrbopFNBmWyusn/HhaFMkcG0XZJ8rUVKST6TppDNEIgkKJRe6emcjV10CQUMvxWvhIQoMJBOgxBYje0gPZxMEunYCE1HD8cRhkV+ZHjS+13uVjhVEKX/dncf0xVlxBUVOloitDeHyRUcXupJ8feX+ivfyapJbEltGDwcMCoGHMYb6uqxQNjSGc7WHrfoSRzPxdD8X0bDECw8qIVYtI5+tEIxhi3bRkhYtYO8Svc8XeONbTHu7xmufGfpAlPXcKUkXxw16vGSzsCoZLBGNBwgZLXRv6O/8txXH8OXT40jY60lyVOJrhmEmjswG/xQ9/E/WgWM/h7Magxx6YmH8IGjusddy7ZUnr+uH8DNFdBDscrv2byWMC8lRV3jKTSNhtZ2dN3AclzSpWZEtuNiOy4BQ+OzJx/CNX/8e2UbTdcRmoVu1ZZm+ipzO6c4Ubxd8bqj6sQVNQghCAdNls5tYsEMv3SruvCm/BIrVtVu245X83IZW9Nt6KMv16Cp122sIEv7tD2PubMaiccCyoArdkrBdhlO5WsGkdVoQtASNElYBrYnmdkQoLsxREc8wIxEkNlNIWIBvablbjVCCHRDJ9GQmPB7ABFrQQi/DWl83pKKAS+6Ek/6zUTmNYc5Ymac5rDJN+99ka/e+XzttTgu/3rzE3iagXQdnEwSz87THjWY2xymozlR11+MJhrRdb/8LGAaNMVCxMIWkaBJPBzgDbObOX1hC/1VMqrS8ybQXpATd1aruubh3ARZ/PsAVSeuUNRBCMFbF3cwqzXKM5uG6E8VEFCZ2y54siSyIdk2lKvRQZcSXNdDK3VCi4YtBpP5yn47GkJsG85h1wltHjSrgdYmVYeq2DWG0oWKIJrrSTKO3xRHE4KwoWGVwtbtYYumiDnOCOoC2mIBJDCUrV+OJYQgGAqipUbqeqpCCKQVhmySSMesSsi9LFzUFrM4pDWChMpgIxLQeWT9AH96tpe3HtTCfS/t4P9e2sHm4RzhUJCR1AgaksXNQbq7ErjA3M4WegeStdEATSMQqk30LBvzMi/1Z3h620jNOTv5DGZkvL66KIvYiCpN9rH3zDB3WYb59aCiF7+b+5iuKCOumBAhBHPbY8xtH1V429g3wqqXB0hmbDKOR0AT9KXyDGds4mGz8pKyHY+g5Xs44aBBJjfa49zQNGY2hsnaLplCEaEJGhpCdLVGCQbUI6nYdcqv3pGiy9CYssiRous39AmaRIJGXW+9/PJujVgM54oTKqQKITBMA7swmgGvmQE0K4jQSp58IAi6VQmzexIill7pXz5+yknyg4de4Qd/XYfjSgZLg4hYyCQdS/ChpR20x8P8dbuf0BYLBzlywWzWvLyZouP6Am5jOvxNdI+yriBo6uRLHQeLuTRGKAramGkITUM3jJJ4m/RL6sr3RPNr4l0JZx0+fipAsW9Qb0zFq2J2W4xZrVGSGRvb8YiGTAKmTr7gIIouslSa5nmSvO0SMHU0TdDaGCKZtkln7VLXREEsZNLZHiWeCE7rkbBi39EUD5J3vXEGvEzBlfTni6zurdMIpAoh/Az2VH50P4LRMKvnT4hXvtNDMYRuVG0vwAqTL3oEDI1yy/KuRLDGAwc/ibOplC3/cipfUTdyq+rH37u0i5kNIewxc8/NiSgnHLGA3sEUqUwOTzPYWcNQiT8w+PBbFvHDe5/2bbKU5If6CMSb0K1gTYvUhW1Rnt2W9O/AmN7ruiY45qBWjprTvJOjvn4c4GXiyogrXj1CCBqitbrKkZAJIRPP9XBLyUKaIRBaSU9JShqaw8SbQjilMLppqYxzxe5hGhq5nWRK5+toHtTdV1XGuGVoaGLUU5dSEgmHsO2i733rdXoNlH4uOB4h0/97S8TE1PzufJ4ESxN0hS1aQxZrB2tLvExdQxeSI1ujzG/wNRcCmr9NtTHXNI2ulga6WhrwpOSpnpFxKofVaAJOOLiVf1jcwXV//juOWZqu8lzywzsQmoFmGMiBzTC4hUXHLuFj7zmVT9/yeKVNucCvJDlqdjO3fOy4KfV7q0rMFIo9iKZraHq9fMmSCAwCq+73CsWrZyRfZCRf64XrAqxSp51CSWugNWT5sqQTIISoeMIBUyt54bXh74ZEFMPQGcrtPIM7Yhks7ogSsapesVISNDQaLAPH88i7nq/gCgQ0wbKWMEe1xUtz+17luDMjAdZNcO6GJpiZCLJxeOJrW9QeoysRJFNwcDc+iYy3IRo6kWYQXAeZ2oQ71OML2wADwyN8/PgF/MOybm565BVe6E0RC5qcfcQsjl/QPqUMOKg5cWXEFQrFtKVYlRypAY0Bg7Ch1XjQGcej3bPYMJKfsNmZocHijjh/3zQ0zoCXEUIQi4bJunlsR1ZtK+hKBGiJWAjhe+IzE8FKiHZGxGJBIkxryCRTdNmcKZB3JYc3RwFJ3NRpDpqVSMDY6q1Z0QBJ22FgzJSBJnw9heWzGtma6sWpU/alCdgwmGFdf5oP/nQVnhGEoR7kUE/9+6BrzO1q57a127jmwXU8unEIXROcuqiNSEiVfE5FlEukUCimLbGQian7Uh1tIbPGgINveCOGxsKq6ol6NIQsfvqBI2kOT26odAGRquTLWEDnTXMbOKglTCJkkAiZdJcMuBCCJU1h3tyRoDlokLIdXkrlK+F9DeiOBGgJmuhVioXGGCEYTQgOa4qwqCFM3NRLkQbB6YvaueqflnLfy/1YhkbQ0DA0v6+BrgkChkagdD8++bu1rNo8jGg/eNL74Lge2baFvPO/H+WhV/rJFl1GCg6/f2obb/nOQ/zk0U2Tbq94/VFGXKFQTFtMXWPprEaipoap1Q+rCiEQHswek8dhaoIFiRCnzGzgjU0R/vj4FmJm7StRE/78eNDUCFk6pqHRGrUwhG/QD58Z90WKSiFdo8oYtwQNFjf6mekC2JSulW9NWHrlnKtP29BEzfy8fx6CzrDF8tYYx3c1cN6RszjvmLls2JGuqNBpmsAyNAIlLQZdEzQETU7sbuAvLw/4bc/bD4ZwAxOlcp12+un86ukBoLaboONJpISP3byG9QPj5Vr3JfuiTvzyyy+v/JuXPx0dHZXvpZRcfvnldHV1EQqFOP7443nmmWf28JX7KCOuUCimNccuaCM+QWli+d3sScnB8VFvPG7qnDm7ieWtUVqDJk1Bk+GRAh86tJMTuxsA35sdm+AGgCbobArRHg+MGzjoVeseHA9VRJCStoszJtodt+okx5WIWnrdFsEATVGLGS1h/vu+V3jo2e0TZlY3Bw3efUgrnZEAmVJpmdANtEPfhmg7yK8HL2MGOPotx+O0HFSJCkzE9Q9vmPT7A4XFixezbdu2ymft2rWV777xjW9w1VVXcc011/DYY4/R0dHBySefzMjIyCR7fG2oOXGFQjGtCVo6IVPHLlVFWLogaukES6Fkx5NkbJek7c8pC+CEGQ0E9TGh99KfKzoT9OWKvJT0i7fqybm2hk3ilkHc1Mk4Hh6Mm0tvqpIjLtTpg1odNi9ngZfRhaAhYJB3/AQ4Kf15+8aGMC/2jbDh8S0ENIGhacyJB9mQGj/f/7ZZjf4xxigkCsNCzFuOnHU45JKgaRiRRlasOIj/eXRjJcGvHq6UPFpqlDRV2FeJbYZh1HjfZaSUXH311Xz+85/n7LPPBuCmm26ivb2dX/ziF3zsYx/brXMdi/LEFQrFtCdUygIPGRotYbNiwMH3juMBne54EF34iWYxU6/09h6xHbZnbbZlbPqyNiO2w5s6SpLDY17uYUPj6PYYx81s5Ii2GPMSYQ5titARGt8EpTocXU9optpYjpU1Lm8TNnWagibNIZNEPMRTW5MUir7IUvnc3tAeG+e1t4RM2sIWmvCrQeY3hsZ57MIwfbnYSBMugn9Y2lnTuGgiplp1yb4IpwO89NJLdHV1MXfuXN773veybt06ANavX09vby+nnHJKZd1AIMBxxx3Hww8/vKcuu8LU+tdQKBSK18C8rjiagMaQb8zHes9CCOKWzlFtMTrCFp6UuJ5kR65IuuhVMsJdCemiX5aWsGqlRQO6xjGdCZqCZs1yXQjaQiYzIoEaI7w1U6iE08fuC2DEdmvWL59DeZnjSfKuR9Hz6GoJ8/Q2X7DGGBPCbw6ZnDGvmWhpPl/gZ+lXc8Lcpgnvna4JVsxuJJnO0xUNTCp8IgScuqh9kjWmN6lUquZT7t8+lqOPPpqf/OQn3HnnnVx//fX09vZyzDHHMDAwQG9vLwDt7bX3qb29vfLdnkQZcYVCMe2Z1xmnMewb18lCo0e1xyoNfYYKzrhyrjKuhCNaYzXLDkoEMTUxzqsOGxrd0QBvaImyoCFM2Vy/ksrjSoknJZau0RSoNeTDtn/8stGWpeMWXI+eTIFN6QI9GZvNaZvHNicn9RY7IgHOXdjO2+c2saIzziGNtdn4BzWGec/i9krinSaoeO9vnNXAafObeeDFHRzWHhu76wqagHjQ4J/fOLUkV8Ue+g+gu7ubRCJR+Vx55ZV1j3n66adzzjnncNhhh3HSSSfxxz/+EfDD5pXzGvMPVt35cU+i5sQVCsW0xzQ0ZjRH6B8eFSENGBqhUtjclZJc0SUhBFnHxZM7b6fZGbYI6Rq50nx2dzRYY8B1AQcnQjQGDKSUSKAjbHJUW5SnB7NsThd4cFuSt3QkMDWYEbaQ0mao1ENAAj1Zm/aQiVXq9Ge7HttzxXHz26n8qK67U+ogWK+j2sxYkJklO6yJ2przIzriLGiOsHpbiu0ZG0vX+MI7FpFK2/zl5R1ICW1Ri5MObuaelwcq5wi+dx8LGvzxY2+iMTxB//R9xJ5UbNu8eTPxeLyyPBAITLBFLZFIhMMOO4yXXnqJf/zHfwSgt7eXzs7Oyjp9fX3jvPM9gTLiCoViv8A0tIqOdmPYwjK0Gk3wUKkByFf+4TB++dD6cdsHdEFnJEDU1PGkZCDv0B422TBSQBeMq9+enwhVwuRC+PXZ5Vrt42Y2AH4Tls05mzmNfo33HCEwLJ3BfJGC49EUsVja3UAm7zCQynPv8311r636yBKwPYmlTSRKAwe1RugdzlMY0ykwbOq8eVajf780weLWKN9e+1KNsV/QEqErFuCZvjS9IwU04c+X/7/TF9EQqp1K2N+Ix+M1RnxXKRQKPPfcc7zlLW9h7ty5dHR0cPfdd3PEEUcAYNs2DzzwAF//+tf39CkrI65QKPYPmhpC9PZniJcEYGDUyJX/DJg62VSBJbMbebDKYLaHLRaMCUG3hEw+sWwm/9+qzezIF3HK7XeBiKHRUDXvrAm/Y9nYDPWYqbPECtHVEMItuniexNQE82YkaCjpowNEgya9wzkGMjb10DWBU5Upl3E8dFNHZ3wf9LZYgIAEHTAE40rbwB+QWJrg5e0jdVsCxwIGK8qldgKOnds0pQ34ng9ST86///u/c+aZZzJr1iz6+vr46le/SiqV4l/+5V8QQnDJJZewcuVK5s+fz/z581m5ciXhcJj3ve99e/xclBFXKBT7BU2JIJGgUZOZPhYBJJM5Fs1M8NDzfZUEtrIBH7tdxND50oo5PDiYYSRtI0sGrzlo4klZCa8HjfF66+Aby4aQSSFXrHxn2y5929OMjBRo74jTO5Dhpa1JXtyRnvDadCHQhaxkvEsgWXQJaIKArqEjaU8EObQtyvBwnozt+g1UDB1TSj8EX7p+ozSvLwBd23lalMQXvJmy7Ml4+i6yZcsWzj33XPr7+2ltbWXFihX87W9/Y/bs2QBceuml5HI5LrjgAoaGhjj66KO56667iMUmzjl4rSgjrlAo9guEEMzpijPQn51wnaClE7AMTMfjbQvbeOCFHcyMjW8XqmuCsGUQtHSEgPc2hglGLX78yAZyRRe96p1fNoz1Bg6JoDmhFvtQKs8LPSkc12N7tli3DK2acjczj9GuqAVP0hgzOffoWeRSBTZtS1EsRQzKCXx+mdn4fUtgTmuU2c1hNg1kJ9SV9yQsndEw6bntS8pTKLu7j1fDzTffPPn+hODyyy/n8ssvf83ntKtMmeHVlVdeWQlDlLn88stZuHAhkUiExsZGTjrpJP7+979Xvh8cHOQTn/gECxYsIBwOM2vWLC6++GKSyWTdYxQKBZYtW4YQgjVr1lSWP/nkk5x77rl0d3cTCoVYtGgR3/nOd2q23bBhwziZPSEEf/7zn2vWe+CBBzjyyCMJBoPMmzePH/7wh7t/cxQKxS5h6ONLuQB0XdDeFKGlIUw0ZIIHh7bF+Mib5jAzUZuwZuqC5liAcEBHL3mtnifJpQp8cNkMZjaGyble5cUvxiq6lbB0X/q03neuJ9k+UsD1JHnX95Ktku75RAjhi9j8x2kLec8buzn7yJlc+LaDueTkQ2gImmzZPoJTsu6aEIQn8J6llKSLLgO2w+/XbCViGRMacCFgQUeMmU3hiU9MsU+ZEp74Y489xnXXXcfSpUtrlh9yyCFcc801zJs3j1wux7e//W1OOeUUXn75ZVpbW+np6aGnp4dvfvObHHrooWzcuJHzzz+fnp4efvOb34w7zqWXXkpXVxdPPvlkzfJVq1bR2trKz372M7q7u3n44Yf5t3/7N3Rd56KLLqpZ95577mHx4sWVn5uaRusv169fz9vf/nbOO+88fvazn/HXv/6VCy64gNbWVs4555w9casUCsUkBEPjX2lCQGtDuCJkUm1UA4bGQV0JXtwyXOmI1hAJjG9FWvrTK3q85/AuslKy+jl/Tn0igTNTFxOWFaWrytvKoi9CCBosY1y3smresqCN5miA5jE68H0D46MPcUun6MmaXuSOJ+nJ2hQ9iQCG8w6a8MP1HhKqlOM8CfPbYvzLMXMnPJ8pwb5wxacQQspJNPZeB9LpNG94wxv4wQ9+wFe/+lWWLVvG1VdfXXfdVCpFIpHgnnvu4cQTT6y7zi233MIHPvABMpkMhjH6C33HHXfw6U9/mt/+9rcsXryYJ554gmXLlk14XhdeeCHPPfcc9957L+B74nPnzp10u8suu4zbbruN5557rrLs/PPP58knn+SRRx6Z/EaMucZkMvmasiQVigOdLZuHyeWKlZ8jQZOGWGDCeXIpJf3JPNsGswRMjcZI/bKicNAgYOmV/XhS8sr2EXqGckQsvUY3HfxEt7Cp1z3utlS+0rgkW3RJlsrOwM9oHy4447zjo+c1c+rSznH7y+WKvLh+gFS2iOdJRqr2JaUk53hkHI+i67E1a1e6qNW7D0tmJAgHDAKmxtKZDcxujtRdd1fY2++y8v43vryVeGz39p8aSTH74BnT8r27z8PpF154IWeccQYnnXTSpOvZts11111HIpHg8MMPn3C98j9CtQHfvn075513Hj/96U8Jh3ctLJRMJmu87DJnnXUWbW1tHHvsseO8/UceeaRGag/g1FNP5fHHH6dYLFKPQqEwTiVIoVC8djo6YhhVoeTQBM1RpJS4rofjSuJhf+7a0jXq+TXxiFVjwMEPWc/viLNoZqJikKu3LTjexAOHqr8Hx4S9Y6bOjIhFU8AgYek0BQwObY1y6lK/5jidsRkazpFOF9jWm2LTxiHcqk5m1bsTJenW1pBJzNInNODldbcO5zj7yJmcefiM3TLgitePfRpOv/nmm1m9ejWPPfbYhOvcfvvtvPe97yWbzdLZ2cndd99NS0tL3XUHBgb4yle+UiMwL6XkQx/6EOeffz7Lly9nw4YNOz2vRx55hF//+tcVFR6AaDTKVVddxbHHHoumadx222285z3v4aabbuIDH/gA4Bf315PacxyH/v7+msL/MldeeSVf/vKXd3pOCoVi1zBMnVmzG0km86SSObQ689KO62Hbbo0xnd0eI5MbP9gOWjq6XrsPrzQAkBKawxbHHzGDwZE8m7YmcVw/VO14kqLrYdbRGg8YWqWGWxOCmKkzUhz1oDUhiJqj8/srFrSSTObZ3JPCtl1cT1L0PJojfv/zoKGTKXngIdP/e3Xtt6EJ8qUQ+mSh1+FskYG0TWts10ROpgL7qgHKVGGfGfHNmzfzyU9+krvuuotgMDjheieccAJr1qyhv7+f66+/nne/+938/e9/p62trWa9VCrFGWecwaGHHsqXvvSlyvLvfe97pFIpPve5z+3SeT3zzDP8wz/8A1/84hc5+eSTK8tbWlr41Kc+Vfl5+fLlDA0N8Y1vfKNixKG+1F695WU+97nP8elPf7rmOrq7p5asoUIx3dB1jaamME1NYeyMjVscrYV2XI9CVci5so0miEcsCraLU9V1LFCley6lpGC7lfnz8rK87dDaFqWzJcrAcI58wUHXNRpiAbZv8w1vNfGAQSo/OvcdKemeVxty8Ovaj1nURtTUeWWD3z3Mk5Ks4xIPjr6+dU0QMnVyRdcfAFg6RVdiu74ufCJgsC1bvwZ9LN6+nWFVvEr2mRFftWoVfX19HHnkkZVlruvy4IMPcs0111AoFNB1nUgkwsEHH8zBBx/MihUrmD9/PjfccEONUR4ZGeG0004jGo1y6623YpqjogT33nsvf/vb38bJ5y1fvpz3v//9NVq3zz77LG9729s477zz+MIXvrDTa1ixYgU//vGPKz93dHSME7jv6+vDMAyam5vr7iMQCOyytJ9CoXj1GAEDt+gbMCkldnG8Aa/uGR6wNJzcqJGu9uTzBaciuuK4HsNZm5F8EU+Ctn2E9pYIs7oStFZlc8+Z28TISIGRVB7XkwQsg0RDkEQyzzOvDPg5VSXDGzY1Cq5HQyzA7I4YDSELIWDT5tGKG9stt1ytrYcv9yDP2i4IgWX4/dBDlo7rSBoDJpJRWdp6BE2NpsjUklVVTM4+M+InnnhiTRN1gA9/+MMsXLiQyy67DH2CUhEpZU1nmVQqxamnnkogEOC2224b59V/97vf5atf/Wrl556eHk499VR+9atfcfTRR1eWP/PMM7ztbW/jX/7lX/ja1762S9fwxBNP1ITI3/SmN/GHP/yhZp277rqL5cuX1wwsFArF64dmaBgBHafglhqOjH4nBBilUHk5aqbrOrqukc7YlfWFoDJ/DlB0PLYMZWu8Vk/C1r4063tHMC2dQtHD86Q/CNAEmYJDtuACfkmZrgnaEiGCukY2ayOlpDEeZFZ7jORIgc1bkmySfulZwBh9H5Y138f6y0IIIpZB2NSxS6H+gKljBAwGhnJ0hE1Cuub3J69znwSwYl5z3fD/VGYfaL1MKfaZEY/FYixZsqRmWSQSobm5mSVLlpDJZPja177GWWedRWdnJwMDA/zgBz9gy5YtvOtd7wJ8D/yUU04hm83ys5/9rCYxrLW1FV3XmTVrVs0xotEoAAcddBAzZ84EfAN+wgkncMopp/DpT3+64k3ruk5rayvgd6cxTZMjjjgCTdP4wx/+wHe/+90aLdzzzz+fa665hk9/+tOcd955PPLII9xwww388pe/3At3UKFQ7CpG0EDoGm66NqRsVBVmV3u1uiZIxALkih6uJxGCmhB6Xyo3LuxsOx7D+VJWec4PlUspybkerix3DhstO3NcybZBvzTszUs6iAZNXtgyzHPrBytVU4YmMKpU1cYmzpl15vvLSm0AiYYQI9liZfmKzjgP9SRxSwpu1cxuCXPS4o6d3supx4FdYzYl6sTroes6zz//PDfddBP9/f00Nzdz1FFH8dBDD1XqtFetWlURfzn44INrtl+/fj1z5szZpWPdcsst7Nixg5///Of8/Oc/ryyfPXt2TSLcV7/6VTZu3Iiu6xxyyCH893//d818+Ny5c/nTn/7Epz71Kb7//e/T1dXFd7/7XVUjrlDsY0Sp8UggapIv1WHXqxsHf044nS2SzNh+G1FLJxowK7rptuNWstHLuJ5kKD++vrvg+VKpglFFuOrjSXzD/Jeneyl6kpil0xw0KusYdQx0OTktaztELX3SFpfhkElqZDRy2RgwOGlmAy8nc2xOF3A8ScTQWdga4R9WzMaYZl64YgrUiStqUXXiCsXeZWhHBtfxMI3xXqzrSbbuSFMojm8KYhkajbEAmYJDXypf81264JAZs42UknTJ2Jcd/rHHawybREydDUP+XHVnxCJQCu/rQlQ87ertC45bEXCxdI2mMX3Uy0a9IREkkyn6HdmqDHk9DprTSMseVmV7verEt6zftkfqxGfO7ZyW71017FIoFAcU0cTEiaR9Q9m6BhygUHQZHinglfp5VzPWM4faXt4w3oC3RCyOmJGgJzVqYKvD49Wre5LKvL2la5Xgr+169KULpAsOtuNhOx7C0JgxM0Em44fRNSFIhCfOyWlvjdA8poObYvowZcPpCoVCsTcwLYNEU4hsqlATii46Hunc+JC4lL50ad7xldTKGFptVvurZVF7zDe+VeVsrpRoFYNNZapW4kcJyscLmzoFx8OREk9C2nbJux7dnXFmtUXp68vUHMsydJqigpztUij69fFBy2DWzASJ+MRqdtMBXyJ39/cxXVFGXKFQHHCYAYNQVJKv6t+ds+trluccj4I73tN2SkbV0HyddHdM426tyjJIgKoBQ3PYImjq4zz4EdulqVT/7UqJSe38uStByNFQemPUorM9iib8GnfN8cCRFOror+uaRjSoEQ36XrlpajQkJtboUEwPlBFXKBQHJGbQoGi7uHXqxss4Xn0DXsaT/ids6uSdWsMphBhtHyr9efGy5x8qJaRFA35tdzn0nrZd4gEdo7S940nMMa3NykMFTRPM7W4gHCqFyotuVd3ZzrTZmN51VVWI0n+7u4/pipoTVygUByRCCMLxAIGwWTKs432aenPdYzEMjY7mCF1N4+eVLU1gVHUFA9+QF11fV93QNGY2jG7nAdvSNoVyPbrnYbvuuDn4SNjk0ENaCIdMcgWHp9cNUKjKjg/X6eY2lsgk8+TTCrGHPtMU5YkrFIoDFiEEgbCFFTKRnmQoa5OsSjTbFQlS15McerDfz2H7YJYXtwzTN5RDSl/+NaoLAgEDTwgKtotEUvA8PCnRhGBBa5ThXLEiw+pK2JaxsTRBxNJZPLuRzpYIruPhupJg0Kh43yNZm4ee7MEUgiVdico5JaIWqfTEMqtCQEyF0vcLlBFXKBQHPEIIhC6YM6uRF1/uJ1en5nsi9Kpwd3tTmPamMFJKhkYKbN4+Qi7vELB0ZrRFCVg6z29JsrEvzf0v9xMLGMxpCnP0rEY2D+fYPJwjV3QxNMHc9hhL5zUTDdX3mKWUPP5cH8Wih2bWKlyahk57c5jtdfqMCwHtHTFMs74q5nTjwJZ6UUZcoVAoKhiGxsJDWhkYytI/kMWRHiOFiefMAdpLLTullGTyDo7rsW5Lkp7+TGVmWgDre0dI2S6IUelX27Hpz9jMbgyxqD3G3OaI7yU3hAjX0TDPZAoMD+XI5x2ytkuylJiXL7qM5IpEq4RiIiGTWZ0xRjI2uVKiWyhsEUsEa1q1TnsOcCuujLhCoVBUoWmC1uYIrc0RHMfj4Se3UizW1xvXNcHMtigvbE3yxLoBUtkiMVMnavrNScrbuFKSLHcyq9pR+a8bh3J0NIfpbomQdSQZx8NyvRoFtf7+NEODow1MsmOy6V/aluIN82obLRm6RmM8SCNQapi+3yS0KXyUEVcoFIoJMAyNIw/t4Innt5MvuBX7JyWYhsayBW2s3TzMmnWDgG8nI6Y2ru46P0mGe5mnNg2zev0gxVJSm2loLOpuYNm8ZvI5u8aA+8eqPcam/gyRgMGCGYnKfHv5z/3ZgB/o2enKiCsUCsUkREImxyybQf9QjsFkHpAkYgHamyIMZQoVAw6+4ppWx1A6Y+Xb6pAb03O86Hg8u2GQV7YkOagpRCxg1AwOooHxc9rPbU2ydTDLnLYo0aCB60naWyJohrZfGnBQXcyUEVcoFIqdoAlBW1OYtjH64s9vSSKq5rj3pDEIaL5/6LoeYcsY592bukYiaJAck4SXyhV5auMQAAtmNdC5nySwKeqzH2U3KBQKxevLcMau6U9erKOrDmBqr+5Va5UMuBAlLfUJSt264kEiVq2RLpv6We1RFs5ufFXHVUw/lCeuUCgUr5FyM5KyifUk5FyPkF47Lx7UBZniTjXUgFLbUmo12ZN5h6aSKE01miaY3RgiY7vkpAQhCAcNZrfHaIwfGHXglYHObu5juqKMuEKhULxG5nXEWN+XrlmWKriYIVF5uZaNTENAZ7jg1hjyek522QOvpi9doCls1u0dLoQgFjRZOq8JXfUDP+BQRlyhUCheI3PaYzRGBhjOjobVPaA/5xAxNSKGjiHAMnUObk/Q2Rph044MG/vSuK6kJRHANDSe2Tg86XGyRY8NgznmNIXGGXIhBDNmJpQBP0BRRlyhUCheI7omOOOobu5cvZUdqTzlai5PgisEK5Z20t5Qq6l+WCTAYXOaKj/bRZcN29NkCw5S+oOAeh73YK5IutehJWIRDRi0JILEogHiieABbcBVdrpCoVAoXjPhgME/rpjF9uEcm/szuJ6kLRFiTlsUTdu5dbBMnbcv7+bep3oYSBX8jHQJOuMNue1KelIF5nRYzJqlktbggBdsU0ZcoVAodhchBB2NYToawztfuQ7RkMmZb5xFfypP71AO6Ul6B7MMlox6WbpVAm0NIZYvaN2DZ6+YzigjrlAoFFMAIQStiRCtCT/8ftjcJrYNZFm3LUW24BCyDOZ1xulsCdcVlDlgOcDj6cqIKxQKxRRECEFXS4Sulsi+PpUpzYEeTj9wsyEUCoVCoZjmKE9coVAoFNOXA9wVV564QqFQKKYtYg/991q58sorEUJwySWXVJZJKbn88svp6uoiFApx/PHH88wzz+yBqx2PMuIKhUKhULwGHnvsMa677jqWLl1as/wb3/gGV111Fddccw2PPfYYHR0dnHzyyYyMjOzxc1BGXKFQKBTTlnJy+u5+Xi3pdJr3v//9XH/99TQ2jtbsSym5+uqr+fznP8/ZZ5/NkiVLuOmmm8hms/ziF7/Yg1fuo4y4QqFQKBRAKpWq+RQKhQnXvfDCCznjjDM46aSTapavX7+e3t5eTjnllMqyQCDAcccdx8MPP7zHz1kZcYVCoVBMW/akJ97d3U0ikah8rrzyyrrHvPnmm1m9enXd73t7ewFob2+vWd7e3l75bk+istMVCoVCoQA2b95MPB6v/BwIBOqu88lPfpK77rqLYHDidq9jJXPr6eHvCZQRVygUCsU0Zs/VmMXj8RojXo9Vq1bR19fHkUceWVnmui4PPvgg11xzDS+88ALge+SdnZ2Vdfr6+sZ553sCFU5XKBQKxbTl9U5sO/HEE1m7di1r1qypfJYvX8773/9+1qxZw7x58+jo6ODuu++ubGPbNg888ADHHHPMHr9+5YlPMWSpKXEqldrHZ6JQKBSvnfI7rPxO29vHeb32EYvFWLJkSc2ySCRCc3NzZfkll1zCypUrmT9/PvPnz2flypWEw2He97737fa5jkUZ8SlGuY6wu7t7H5+JQqFQ7D4jIyMkEok9vl/Lsujo6KB7/tw9sr+Ojg4sy9oj+7r00kvJ5XJccMEFDA0NcfTRR3PXXXcRi8X2yP6rEXJvD5MUrwrP8+jp6SEWi+2VJIg9QSqVoru7e1wSyIGEugfqHhzo1w+T3wMpJSMjI3R1daFpe2fmNp/PY9v2HtmXZVmTJqpNVZQnPsXQNI2ZM2fu69PYJXYlCWR/R90DdQ8O9OuHie/B3vDAqwkGg9PS8O5JVGKbQqFQKBTTFGXEFQqFQqGYpigjrnjVBAIBvvSlL9UVQjhQUPdA3YMD/fpB3YOpgEpsUygUCoVimqI8cYVCoVAopinKiCsUCoVCMU1RRlyhUCgUimmKMuIKhUKhUExTlBHfD5kzZw5CiHGfCy+8cNy6H/vYxxBCcPXVV9csLxQKfOITn6ClpYVIJMJZZ53Fli1bdnqcz372szXrbNq0iTPPPJNIJEJLSwsXX3zxOIWltWvXctxxxxEKhZgxYwZXXHHFbuktT6Xrr3ceP/zhD/fq9b+e9wDgj3/8I0cffTShUIiWlhbOPvvsmu/3xTMw1e7B/vwc3H///XWPIYTgscceq6y3r56D/R6p2O/o6+uT27Ztq3zuvvtuCcj77ruvZr1bb71VHn744bKrq0t++9vfrvnu/PPPlzNmzJB33323XL16tTzhhBPk4YcfLh3Hqawze/ZsecUVV9Qca2RkpPK94zhyyZIl8oQTTpCrV6+Wd999t+zq6pIXXXRRZZ1kMinb29vle9/7Xrl27Vr529/+VsZiMfnNb35z2l+/lFIC8sYbb6xZJ5vN7tXrfz3vwW9+8xvZ2Ngor732WvnCCy/I559/Xt5yyy2V7/fVMzCV7oGU+/dzUCgUao6xbds2+dGPflTOmTNHep4npdy3z8H+jjLiBwCf/OQn5UEHHVT5hZJSyi1btsgZM2bIp59+Ws6ePbvmF3d4eFiapilvvvnmyrKtW7dKTdPkn//858qysduN5U9/+pPUNE1u3bq1suyXv/ylDAQCMplMSiml/MEPfiATiYTM5/OVda688krZ1dVVc767w766fin9l/ett9464fevx/VLuXfuQbFYlDNmzJA//vGPJzzuVHkGpNx390DK/fs5GItt27KtrU1eccUVlWVT6TnY31Dh9P0c27b52c9+xkc+8pFKQxXP8/jgBz/If/zHf7B48eJx26xatYpiscgpp5xSWdbV1cWSJUt4+OGHa9b9+te/TnNzM8uWLeNrX/taTXjskUceYcmSJXR1dVWWnXrqqRQKBVatWlVZ57jjjqsRizj11FPp6elhw4YN0/r6y1x00UW0tLRw1FFH8cMf/hDP8yrf7e3rh713D1avXs3WrVvRNI0jjjiCzs5OTj/9dJ555pma69vXz8C+vgdl9tfnYCy33XYb/f39fOhDH6q5vqnwHOyPKCO+n/P73/+e4eHhml+or3/96xiGwcUXX1x3m97eXizLorGxsWZ5e3s7vb29lZ8/+clPcvPNN3Pfffdx0UUXcfXVV3PBBRfU7Ke9vb1mH42NjViWVdlPvXXKP1cf67WyL68f4Ctf+Qq33HIL99xzD+9973v5zGc+w8qVK2uOtTevH/bePVi3bh0Al19+OV/4whe4/fbbaWxs5LjjjmNwcHDC63u9nwHYt/cA9u/nYCw33HADp556ak075anyHOyPqC5m+zk33HADp59+emUEvGrVKr7zne+wevXqV93qVEpZs82nPvWpyt+XLl1KY2Mj73znOyveKVD3GGP3M3YdWUpk2ROtWPf19X/hC1+orLNs2TIArrjiiprle/P6Ye/dg7In+fnPf55zzjkHgBtvvJGZM2dyyy238LGPfWzC63g9nwHY9/dgf34OqtmyZQt33nknv/71r8d9NxWeg/0R5Ynvx2zcuJF77rmHj370o5VlDz30EH19fcyaNQvDMDAMg40bN/KZz3yGOXPmANDR0YFt2wwNDdXsr6+vb9xIuZoVK1YA8PLLL1f2M3YEPTQ0RLFYrOyn3jp9fX0Akx5rV9jX1z/ROqlUiu3bt1eOtbeuH/buPejs7ATg0EMPrXwfCASYN28emzZtmvD6Xs9nAPb9PajH/vQcVHPjjTfS3NzMWWedVbN8KjwH+y37ZCZe8brwpS99SXZ0dMhisVhZ1t/fL9euXVvz6erqkpdddpl8/vnnpZSjySy/+tWvKtv19PRMmswipZR/+MMfJCA3btwopRxNZunp6amsc/PNN49LZmloaJCFQqGyzn/913/tkWSWfX399fje974ng8FgJXlnb16/lHv3HiSTSRkIBGqSuspJTT/60Y+klPv+GZgK96Ae+9NzUMbzPDl37lz5mc98Ztzxp8JzsL+ijPh+iuu6ctasWfKyyy7b6br1sqzPP/98OXPmTHnPPffI1atXy7e97W01ZSUPP/ywvOqqq+QTTzwh161bJ3/1q1/Jrq4uedZZZ1X2US4rOfHEE+Xq1avlPffcI2fOnFlTVjI8PCzb29vlueeeK9euXSt/97vfyXg8vttlJVPh+m+77TZ53XXXybVr18qXX35ZXn/99TIej8uLL754r1//63EPpPSznWfMmCHvvPNO+fzzz8t//dd/lW1tbXJwcFBKuW+fgalyDw6E50BKKe+55x4JyGeffXbcfvf1c7A/o4z4fsqdd94pAfnCCy/sdN16v7i5XE5edNFFsqmpSYZCIfmOd7xDbtq0qfL9qlWr5NFHHy0TiYQMBoNywYIF8ktf+pLMZDI1+9m4caM844wzZCgUkk1NTfKiiy6qKSGRUsqnnnpKvuUtb5GBQEB2dHTIyy+/fLdH3lPh+u+44w65bNkyGY1GZTgclkuWLJFXX311jTe0t65fyr1/D6T0vc7PfOYzsq2tTcZiMXnSSSfJp59+umadffUMSDk17sGB8BxIKeW5554rjznmmAn3vS+fg/0Z1YpUoVAoFIppikpsUygUCoVimqKMuEKhUCgU0xRlxBUKhUKhmKYoI65QKBQKxTRFGXGFQqFQKKYpyogrFAqFQjFNUUZcoVAoFIppijLiCsV+xvHHH88ll1yy148zZ84chBAIIRgeHt6tfR1//PGVfa1Zs2aPnJ9CcSCgjLhCsZf40Ic+VDFM1Z/TTjttj+z//vvvr2tAf/e73/GVr3xljxxjZ1xxxRVs27aNRCKxW/v53e9+x6OPPrqHzkqhOHBQrUgVir3Iaaedxo033lizLBAI7NVjNjU17dX9VxOLxejo6Njt/TQ1NZFKpfbAGSkUBxbKE1co9iKBQICOjo6aT2NjY+X7q666isMOO4xIJEJ3dzcXXHAB6XS68v3GjRs588wzaWxsJBKJsHjxYv70pz+xYcMGTjjhBAAaGxsRQvChD30IGB9OnzNnDitXruQjH/kIsViMWbNmcd1119Wc58MPP8yyZcsIBoMsX76c3//+968ptP0///M/NDQ0cPvtt7NgwQLC4TDvfOc7yWQy3HTTTcyZM4fGxkY+8YlP4Lruq7uZCoViHMoTVyj2IZqm8d3vfpc5c+awfv16LrjgAi699FJ+8IMfAHDhhRdi2zYPPvggkUiEZ599lmg0Snd3N7/97W8555xzeOGFF4jH44RCoQmP861vfYuvfOUr/Od//ie/+c1v+PjHP85b3/pWFi5cyMjICGeeeSZvf/vb+cUvfsHGjRt3a049m83y3e9+l5tvvpmRkRHOPvtszj77bBoaGvjTn/7EunXrOOecc3jzm9/Me97zntd8HIVCoYy4QrFXuf3224lGozXLLrvsMv7f//t/ADXGcu7cuXzlK1/h4x//eMWIb9q0iXPOOYfDDjsMgHnz5lXWL4fN29raaGhomPQ83v72t3PBBRdUjv/tb3+b+++/n4ULF/Lzn/8cIQTXX389wWCQQw89lK1bt3Leeee9pmsuFotce+21HHTQQQC8853v5Kc//Snbt28nGo1y6KGHcsIJJ3DfffcpI65Q7CbKiCsUe5ETTjiBa6+9tmZZ9Zz1fffdx8qVK3n22WdJpVI4jkM+nyeTyRCJRLj44ov5+Mc/zl133cVJJ53EOeecw9KlS1/1eVRvI4Sgo6ODvr4+AF544QWWLl1KMBisrPPGN77xVR+jTDgcrhhwgPb2dubMmVMzmGlvb68cX6FQvHbUnLhCsReJRCIcfPDBNZ+yEd+4cSNvf/vbWbJkCb/97W9ZtWoV3//+9wHfmwX46Ec/yrp16/jgBz/I2rVrWb58Od/73vde9XmYplnzsxACz/MAkFIihKj5fnc6FNc71mTHVygUrx1lxBWKfcTjjz+O4zh861vfYsWKFRxyyCH09PSMW6+7u5vzzz+f3/3ud3zmM5/h+uuvB8CyLIDdThBbuHAhTz31FIVCoebcFArF1EcZcYViL1IoFOjt7a359Pf3A3DQQQfhOA7f+973WLduHT/96U/54Q9/WLP9JZdcwp133sn69etZvXo19957L4sWLQJg9uzZCCG4/fbb2bFjR01W+6vhfe97H57n8W//9m8899xz3HnnnXzzm98EGOehKxSKqYUy4grFXuTPf/4znZ2dNZ83v/nNACxbtoyrrrqKr3/96yxZsoSf//znXHnllTXbu67LhRdeyKJFizjttNNYsGBBJeltxowZfPnLX+azn/0s7e3tXHTRRa/pHOPxOH/4wx9Ys2YNy5Yt4/Of/zxf/OIXAWrmyRUKxdRDyN2Z/FIoFPslP//5z/nwhz9MMpmcsHRtzpw5XHLJJXtM4nXDhg3MnTuXJ554gmXLlu2RfSoU+zvKE1coFPzkJz/hL3/5C+vXr+f3v/89l112Ge9+97snrT0Hv1wtGo2STCZ36/inn346ixcv3q19KBQHIqrETKFQ0Nvbyxe/+EV6e3vp7OzkXe96F1/72tcm3eaBBx6oZNHHYrHdOv6Pf/xjcrkcALNmzdqtfSkUBxIqnK5QKBQKxTRFhdMVCoVCoZimKCOuUCgUCsU0RRlxhUKhUCimKcqIKxQKhUIxTVFGXKFQKBSKaYoy4gqFQqFQTFOUEVcoFAqFYpqijLhCoVAoFNMUZcQVCoVCoZim/P8fAJIUR0+shwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -602,7 +602,8 @@ "source": [ "# Get the Matplotlib Axes object from the dataframe object, color the points by snow depth value\n", "ax = df.plot(column='value', legend=True, cmap='PuBu')\n", - "site.plot(ax=ax, marker='^', color='m')\n", + "site_df.plot(ax=ax, marker='^', color='m')\n", + "\n", "# Use non-scientific notation for x and y ticks\n", "ax.ticklabel_format(style='plain', useOffset=False)\n", "\n", @@ -617,7 +618,9 @@ "metadata": {}, "source": [ "**Try This:**\n", + "\n", "A. Go back and add a filter to reduce to just one spiral. What would you change to reduce this?\n", + "\n", "B. Try to filtering to add more spirals. What happens?\n", "\n", "\n", diff --git a/book/tutorials/snowex_database/5_plot_raster_example.ipynb b/book/tutorials/snowex_database/5_plot_raster_example.ipynb index ffbe525..e55fbda 100644 --- a/book/tutorials/snowex_database/5_plot_raster_example.ipynb +++ b/book/tutorials/snowex_database/5_plot_raster_example.ipynb @@ -199,9 +199,11 @@ "\n", "# Grab available dates\n", "dates = RasterMeasurements.from_unique_entries([\"date\"], observers='ASO Inc.', type='depth')\n", + "dt = dates[0]\n", "\n", "# Subset a raster on our buffered point!\n", - "ds = RasterMeasurements.from_area(pt=df_site.geometry[0], buffer=100, observers='ASO Inc.', type='depth', date=dates[0])\n", + "ds = RasterMeasurements.from_area(pt=df_site.geometry[0], buffer=100, observers='ASO Inc.', type='depth', \n", + " date=dt)\n", "\n", "# Plot it up!\n", "show(ds, vmin=0, vmax=1, cmap='winter')\n", From 72bb8866f1a76fe253abfa289ea89be7ddd7487b Mon Sep 17 00:00:00 2001 From: micah johnson Date: Fri, 16 Aug 2024 10:48:52 -0600 Subject: [PATCH 17/21] Added snowexsql 0.5.0 to environment --- conda/environment.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/conda/environment.yml b/conda/environment.yml index 7ea0fac..ff006f7 100644 --- a/conda/environment.yml +++ b/conda/environment.yml @@ -143,7 +143,7 @@ dependencies: - itslive~=0.3.2 - is2view~=0.0.8 - sliderule~=4.5 - - snowexsql~=0.4 + - snowexsql~=0.5 # Desktop tools whose versions are more recent on conda-forge than ubuntu #- qgis~=3.38.0 From 1ad296a2594a274d8b5265b9397c8d062f70c423 Mon Sep 17 00:00:00 2001 From: Micah Johnson Date: Fri, 16 Aug 2024 17:45:19 +0000 Subject: [PATCH 18/21] Fixed qc issues in mine and the cond environment file --- book/tutorials/snowex_database/2_database_structure.ipynb | 4 ++-- conda/environment.yml | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/book/tutorials/snowex_database/2_database_structure.ipynb b/book/tutorials/snowex_database/2_database_structure.ipynb index f4bb469..3ceff6b 100644 --- a/book/tutorials/snowex_database/2_database_structure.ipynb +++ b/book/tutorials/snowex_database/2_database_structure.ipynb @@ -29,7 +29,7 @@ "\n", "```\n", "\n", - "The 4th table is a table detailing the site informations. Lots and lots of metadata for which the API has not been written yet.\n", + "The 4th table is a table detailing the site information. Lots and lots of metadata for which the API has not been written yet.\n", "\n", "So how does this look in python?" ] @@ -96,7 +96,7 @@ "# Import the class reflecting the points table in the db\n", "from snowexsql.api import PointMeasurements as measurements\n", "\n", - "# Grab one measurment to see what attributes are available\n", + "# Grab one measurement to see what attributes are available\n", "df = measurements.from_filter(type=\"depth\", limit=1)\n", "\n", "# Print out the results nicely\n", diff --git a/conda/environment.yml b/conda/environment.yml index ff006f7..602c569 100644 --- a/conda/environment.yml +++ b/conda/environment.yml @@ -50,8 +50,8 @@ dependencies: # - jupyterlab-git~=0.50.0 # - jupyterlab-h5web~=11.1.0 - jupyterlab-myst~=2.4.2 -# - jupyterlab-plotly~=5.18.0 # Outdated accoring to jupyterlab - # - jupyterlab_pygments~=0.3.0 # To bring extension uptodate +# - jupyterlab-plotly~=5.18.0 # Outdated according to jupyterlab + # - jupyterlab_pygments~=0.3.0 # To bring extension up-to-date - jupytext~=1.16.1 - nbdime~=4.0.1 # JupyterBook Addons From c9ad390f5f0240593ced07493f7e5f821483869d Mon Sep 17 00:00:00 2001 From: Micah Johnson Date: Fri, 16 Aug 2024 18:04:44 +0000 Subject: [PATCH 19/21] Fixed unordered headers. Removed example that errors out on purpose. --- .../2_database_structure.ipynb | 4 +- .../snowex_database/3_forming_queries.ipynb | 541 +++++++++++++++--- .../5_plot_raster_example.ipynb | 81 ++- .../tutorials/snowex_database/6_wrap_up.ipynb | 2 +- 4 files changed, 497 insertions(+), 131 deletions(-) diff --git a/book/tutorials/snowex_database/2_database_structure.ipynb b/book/tutorials/snowex_database/2_database_structure.ipynb index 3ceff6b..1b47184 100644 --- a/book/tutorials/snowex_database/2_database_structure.ipynb +++ b/book/tutorials/snowex_database/2_database_structure.ipynb @@ -16,7 +16,7 @@ "id": "a9f0a9c7", "metadata": {}, "source": [ - "### Where do datasets live (i.e. tables)?\n", + "## Where do datasets live (i.e. tables)?\n", "\n", "Data in the database lives in 1 of 4 places. \n", "\n", @@ -49,7 +49,7 @@ "id": "07bf71eb", "metadata": {}, "source": [ - "### How are tables structured?\n", + "## How are tables structured?\n", "Each table consists of rows and columns. Below are the available columns!\n" ] }, diff --git a/book/tutorials/snowex_database/3_forming_queries.ipynb b/book/tutorials/snowex_database/3_forming_queries.ipynb index e6d170e..b378de5 100644 --- a/book/tutorials/snowex_database/3_forming_queries.ipynb +++ b/book/tutorials/snowex_database/3_forming_queries.ipynb @@ -14,14 +14,14 @@ " 1. [`from_filter`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L192)\n", " 2. [`from_area`](https://github.com/SnowEx/snowexsql/blob/830fa76de8cf13c5101e1b4b663c1b399f81d7e6/snowexsql/api.py#L210)\n", "\n", - "## `from_filter`\n", + "## Useful Function - `from_filter`\n", "\n", "Use the from filter function to find density profiles\n" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -74,12 +74,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## `from_area`" + "## Useful Function - `from_area`\n", + "Find specific surface area within a certain distance of a pit." ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -141,9 +142,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2024-08-15 19:52:45.154374+00:00\n", + " 2024-08-15 20:03:26.508508+00:00\n", " None\n", - " 2346713\n", + " 2407961\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -165,9 +166,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2024-08-15 19:52:45.154374+00:00\n", + " 2024-08-15 20:03:26.508508+00:00\n", " None\n", - " 2346714\n", + " 2407962\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -189,9 +190,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2024-08-15 19:52:45.154374+00:00\n", + " 2024-08-15 20:03:26.508508+00:00\n", " None\n", - " 2346715\n", + " 2407963\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -213,9 +214,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2024-08-15 19:52:45.154374+00:00\n", + " 2024-08-15 20:03:26.508508+00:00\n", " None\n", - " 2346716\n", + " 2407964\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -237,9 +238,9 @@ " None\n", " ...\n", " 2020-02-12\n", - " 2024-08-15 19:52:45.154374+00:00\n", + " 2024-08-15 20:03:26.508508+00:00\n", " None\n", - " 2346717\n", + " 2407965\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -285,9 +286,9 @@ " None\n", " ...\n", " 2020-01-31\n", - " 2024-08-15 19:52:49.654026+00:00\n", + " 2024-08-15 20:03:31.924769+00:00\n", " None\n", - " 2349018\n", + " 2410266\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -309,9 +310,9 @@ " None\n", " ...\n", " 2020-01-31\n", - " 2024-08-15 19:52:49.654026+00:00\n", + " 2024-08-15 20:03:31.924769+00:00\n", " None\n", - " 2349019\n", + " 2410267\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -333,9 +334,9 @@ " None\n", " ...\n", " 2020-01-31\n", - " 2024-08-15 19:52:49.654026+00:00\n", + " 2024-08-15 20:03:31.924769+00:00\n", " None\n", - " 2349020\n", + " 2410268\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -357,9 +358,9 @@ " None\n", " ...\n", " 2020-01-31\n", - " 2024-08-15 19:52:49.654026+00:00\n", + " 2024-08-15 20:03:31.924769+00:00\n", " None\n", - " 2349021\n", + " 2410269\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -381,9 +382,9 @@ " None\n", " ...\n", " 2020-01-31\n", - " 2024-08-15 19:52:49.654026+00:00\n", + " 2024-08-15 20:03:31.924769+00:00\n", " None\n", - " 2349022\n", + " 2410270\n", " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", " IS3-SP-11-01F\n", @@ -411,30 +412,30 @@ "159 8.0 1C1 COGM1C1_20200131 None None None None \n", "\n", " sample_c value flags ... date time_created \\\n", - "0 None 45.6 None ... 2020-02-12 2024-08-15 19:52:45.154374+00:00 \n", - "1 None 38.2 None ... 2020-02-12 2024-08-15 19:52:45.154374+00:00 \n", - "2 None 24.5 None ... 2020-02-12 2024-08-15 19:52:45.154374+00:00 \n", - "3 None 23.5 None ... 2020-02-12 2024-08-15 19:52:45.154374+00:00 \n", - "4 None 22.4 None ... 2020-02-12 2024-08-15 19:52:45.154374+00:00 \n", + "0 None 45.6 None ... 2020-02-12 2024-08-15 20:03:26.508508+00:00 \n", + "1 None 38.2 None ... 2020-02-12 2024-08-15 20:03:26.508508+00:00 \n", + "2 None 24.5 None ... 2020-02-12 2024-08-15 20:03:26.508508+00:00 \n", + "3 None 23.5 None ... 2020-02-12 2024-08-15 20:03:26.508508+00:00 \n", + "4 None 22.4 None ... 2020-02-12 2024-08-15 20:03:26.508508+00:00 \n", ".. ... ... ... ... ... ... \n", - "155 None 13.1 None ... 2020-01-31 2024-08-15 19:52:49.654026+00:00 \n", - "156 None 10.1 None ... 2020-01-31 2024-08-15 19:52:49.654026+00:00 \n", - "157 None 10.6 None ... 2020-01-31 2024-08-15 19:52:49.654026+00:00 \n", - "158 None 10.5 None ... 2020-01-31 2024-08-15 19:52:49.654026+00:00 \n", - "159 None 13.2 None ... 2020-01-31 2024-08-15 19:52:49.654026+00:00 \n", + "155 None 13.1 None ... 2020-01-31 2024-08-15 20:03:31.924769+00:00 \n", + "156 None 10.1 None ... 2020-01-31 2024-08-15 20:03:31.924769+00:00 \n", + "157 None 10.6 None ... 2020-01-31 2024-08-15 20:03:31.924769+00:00 \n", + "158 None 10.5 None ... 2020-01-31 2024-08-15 20:03:31.924769+00:00 \n", + "159 None 13.2 None ... 2020-01-31 2024-08-15 20:03:31.924769+00:00 \n", "\n", " time_updated id doi \\\n", - "0 None 2346713 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "1 None 2346714 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "2 None 2346715 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "3 None 2346716 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "4 None 2346717 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "0 None 2407961 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "1 None 2407962 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "2 None 2407963 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "3 None 2407964 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "4 None 2407965 https://doi.org/10.5067/SNMM6NGGKWIT \n", ".. ... ... ... \n", - "155 None 2349018 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "156 None 2349019 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "157 None 2349020 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "158 None 2349021 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "159 None 2349022 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "155 None 2410266 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "156 None 2410267 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "157 None 2410268 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "158 None 2410269 https://doi.org/10.5067/SNMM6NGGKWIT \n", + "159 None 2410270 https://doi.org/10.5067/SNMM6NGGKWIT \n", "\n", " date_accessed instrument type units \\\n", "0 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", @@ -465,13 +466,13 @@ "[160 rows x 29 columns]" ] }, - "execution_count": 6, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAAGsCAYAAADAPO4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAArEklEQVR4nO3de3BUZZ7/8U9DSExi0uRCumkIGteMhSaog1NAnFlQbrJidNFChUWnxFocLhKFBdEdRWtNAHcAZykpURa8jBNXx7jsiEpYMcoia0hgJ+AKXrgkJG0UQydg7ITk+f3hcn52LpCGCMmT96vqVNnP+Z7T53zt4pNz+pzTLmOMEQAAsEav870BAACgcxHuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWKZHhrsxRhMmTJDL5dKbb755ytrVq1dryJAhio+PV3x8vEaMGKG3337bmd/Y2KiFCxcqMzNTsbGx8vl8uuuuu1RZWenUHDhwQC6Xq83ptddeC2vbjx49qlmzZql///664IILNHjwYG3cuDGsdQAA7GZduI8aNUrr168/Zc3KlSvlcrk6tL6BAwdqyZIl2rFjh3bs2KHrr79eN998s/bs2SNJ+u6771RaWqrf/va3Ki0t1RtvvKF9+/YpOzvbWUdqaqqqqqpCpscff1yxsbGaMGFCh/etoaFBY8eO1YEDB/T6669r7969eu655zRgwIAOrwMA0AMYy4wcOdKsW7eu3fm7du0yAwcONFVVVUaSKSgoCPs9EhISzPPPP9/u/I8//thIMgcPHmy35qqrrjL33HNPyFhFRYWZPHmy6du3r0lMTDTZ2dlm//79zvzVq1ebSy65xDQ0NIS9zQCAnsO6I/dT+e6773TnnXdq1apV8nq9YS/f1NSk/Px8HT9+XCNGjGi3LhAIyOVyqW/fvm3OLykp0a5duzR9+vSQbbvuuut04YUX6oMPPtDWrVt14YUX6oYbblBDQ4MkacOGDRoxYoRmzZolj8ejjIwM5ebmqqmpKex9AQDYK+J8b8C59MADDygrK0s333xzWMuVlZVpxIgR+v7773XhhReqoKBAl19+eZu133//vR566CFNmTJF8fHxbdasXbtWgwcPVlZWljOWn5+vXr166fnnn3e+Mli3bp369u2r999/X+PGjdOXX36p9957T1OnTtXGjRv12WefadasWTpx4oQeffTRsPYJAGCvbh/uubm5ys3NdV7X19dr+/btmj17tjP29ttvq6amRu+995527twZ9ntcdtll2rVrl44ePao//elPuvvuu1VUVNQq4BsbG3XHHXeoublZzzzzTJvrqq+v1yuvvKLf/va3IeMlJSX6/PPPFRcXFzL+/fff64svvpAkNTc3KyUlRWvWrFHv3r01dOhQVVZW6qmnniLcAQCObh/u9913nyZPnuy8njp1qm699VZNmjTJGRswYIAWLVqkL774otWp8ltvvVW/+tWv9P7777f7HpGRkbr00kslSddcc42Ki4v19NNP69lnn3VqGhsbNXnyZO3fv1/vvfdeu0ftr7/+ur777jvdddddIePNzc0aOnSo/vCHP7Rapl+/fpKk/v37q0+fPurdu7czb/DgwfL7/WpoaFBkZGS7+wAA6Dm6fbgnJiYqMTHReR0dHa2UlBQnjE966KGHdO+994aMZWZmasWKFbrpppvCek9jjILBoPP6ZLB/9tln2rJli5KSktpddu3atcrOznYC+6Sf//znevXVV5WSktLuHwbXXnutXnnlFTU3N6tXrx8ul9i3b5/69+9PsAMAHD3mgjqv16uMjIyQSZIGDRqktLQ0p2706NFatWqV8/rhhx/Whx9+qAMHDqisrEyPPPKI3n//fU2dOlWSdOLECd12223asWOH/vCHP6ipqUl+v985mv6xzz//XB988EGrPzKkH844JCcn6+abb9aHH36o/fv3q6ioSHPnzlVFRYUk6Te/+Y2OHDmiuXPnat++fXrrrbeUm5urWbNmdXq/AADdV7c/cu9sX3zxhb755hvn9VdffaVp06apqqpKbrdbQ4YM0TvvvKOxY8dKkioqKrRhwwZJ0lVXXRWyri1btmjUqFHO63/913/VgAEDNG7cuFbvGxMTow8++EALFy7UpEmTVFdXpwEDBmj06NHOkXxqaqo2bdqkBx54QEOGDNGAAQM0d+5cLVy4sJO7AADozlzGGHO+NwIAAHSesE/LHz58WH/3d3+npKQkxcTE6KqrrlJJSYkz3xijxYsXy+fzKTo6WqNGjXKe5nZSMBjUnDlzlJycrNjYWGVnZzunngEAwNkJK9xramp07bXXqk+fPnr77bf1ySef6He/+13IFejLli3T8uXLtWrVKhUXF8vr9Wrs2LGqq6tzanJyclRQUKD8/Hxt3bpVx44d08SJE3kYCwAAnSCs0/IPPfSQ/uu//ksffvhhm/ONMfL5fMrJyXG+Bw4Gg/J4PFq6dKlmzJihQCCgfv366aWXXtLtt98uSaqsrFRqaqo2btyo8ePHn3Y7mpubVVlZqbi4uA4/Ix4AgO7MGKO6ujr5fD7njqlTFXfY4MGDTU5OjrnttttMv379zFVXXWXWrFnjzP/iiy+MJFNaWhqyXHZ2trnrrruMMcb853/+p5Fkvv3225CaIUOGmEcffbRD21FeXm4kMTExMTEx9bipvLz8tDkZ1tXyX375pVavXq0HH3xQDz/8sD7++GPdf//9ioqK0l133SW/3y9J8ng8Ict5PB4dPHhQkuT3+xUZGamEhIRWNSeXbykYDIbcV27+72RDeXl5u/eEAwBgk9raWqWmprZ6kmlbwgr35uZmXXPNNc7jXq+++mrt2bNHq1evDnniWstT5caY054+P1VNXl6eHn/88VbjJ39jHQCAnqIjX0eHdUFd//79Wz1PffDgwTp06JAkOb+01vIIvLq62jma93q9amhoUE1NTbs1LS1atEiBQMCZysvLw9lsAAB6lLDC/dprr9XevXtDxvbt26eLLrpIkpSWliav16vCwkJnfkNDg4qKipxfQBs6dKj69OkTUlNVVaXdu3eH/Eraj0VFRTlH6RytAwBwamGdlj/5k6m5ubmaPHmyPv74Y61Zs0Zr1qyR9MOpgpycHOXm5io9PV3p6enKzc1VTEyMpkyZIklyu92aPn265s2bp6SkJCUmJmr+/PnKzMzUmDFjOn8PAQDoYcIK91/84hcqKCjQokWL9MQTTygtLU0rV650nrMuSQsWLFB9fb1mzpypmpoaDRs2TJs2bQq5AGDFihWKiIjQ5MmTVV9fr9GjR2v9+vUhv3YGAADOTLd8/Gxtba3cbrcCgQCn6AEAPUI42ddjfhUOAICegnAHAMAyhDsAAJbh99wl/W3uW9pZ+/9fXx0vFTx84/nbIAAAzkKPP3K/+KHQYJeknbU/jAMA0B316HA/XYAT8ACA7qjHhvvf5nYsuDtaBwBAV9Fjw73lqfizrQMAoKvoseEOAICtCHcAACzTY8P96g4+tbajdQAAdBU9Ntw7eh8797sDALqbHhvuknRgyamD+3TzAQDoinp0uEs/BHjLU+9XxxPsAIDui8fPilPvAAC79PgjdwAAbEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZcIK98WLF8vlcoVMXq/XmW+M0eLFi+Xz+RQdHa1Ro0Zpz549IesIBoOaM2eOkpOTFRsbq+zsbFVUVHTO3gAAgPCP3K+44gpVVVU5U1lZmTNv2bJlWr58uVatWqXi4mJ5vV6NHTtWdXV1Tk1OTo4KCgqUn5+vrVu36tixY5o4caKampo6Z48AAOjhIsJeICIi5Gj9JGOMVq5cqUceeUSTJk2SJL3wwgvyeDx65ZVXNGPGDAUCAa1du1YvvfSSxowZI0l6+eWXlZqaqs2bN2v8+PFnuTsAACDsI/fPPvtMPp9PaWlpuuOOO/Tll19Kkvbv3y+/369x48Y5tVFRURo5cqS2bdsmSSopKVFjY2NIjc/nU0ZGhlPTlmAwqNra2pAJAAC0LaxwHzZsmF588UW9++67eu655+T3+5WVlaUjR47I7/dLkjweT8gyHo/Hmef3+xUZGamEhIR2a9qSl5cnt9vtTKmpqeFsNgAAPUpY4T5hwgTdeuutyszM1JgxY/TWW29J+uH0+0kulytkGWNMq7GWTlezaNEiBQIBZyovLw9nswEA6FHO6la42NhYZWZm6rPPPnO+h295BF5dXe0czXu9XjU0NKimpqbdmrZERUUpPj4+ZAIAAG07q3APBoP63//9X/Xv319paWnyer0qLCx05jc0NKioqEhZWVmSpKFDh6pPnz4hNVVVVdq9e7dTAwAAzk5YV8vPnz9fN910kwYNGqTq6mr90z/9k2pra3X33XfL5XIpJydHubm5Sk9PV3p6unJzcxUTE6MpU6ZIktxut6ZPn6558+YpKSlJiYmJmj9/vnOaHwAAnL2wwr2iokJ33nmnvvnmG/Xr10/Dhw/X9u3bddFFF0mSFixYoPr6es2cOVM1NTUaNmyYNm3apLi4OGcdK1asUEREhCZPnqz6+nqNHj1a69evV+/evTt3zwAA6KFcxhhzvjciXLW1tXK73QoEAnz/DgDoEcLJPp4tDwCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMmcV7nl5eXK5XMrJyXHGjDFavHixfD6foqOjNWrUKO3ZsydkuWAwqDlz5ig5OVmxsbHKzs5WRUXF2WwKAAD4P2cc7sXFxVqzZo2GDBkSMr5s2TItX75cq1atUnFxsbxer8aOHau6ujqnJicnRwUFBcrPz9fWrVt17NgxTZw4UU1NTWe+JwAAQNIZhvuxY8c0depUPffcc0pISHDGjTFauXKlHnnkEU2aNEkZGRl64YUX9N133+mVV16RJAUCAa1du1a/+93vNGbMGF199dV6+eWXVVZWps2bN3fOXgEA0IOdUbjPmjVLN954o8aMGRMyvn//fvn9fo0bN84Zi4qK0siRI7Vt2zZJUklJiRobG0NqfD6fMjIynJqWgsGgamtrQyYAANC2iHAXyM/PV2lpqYqLi1vN8/v9kiSPxxMy7vF4dPDgQacmMjIy5Ij/ZM3J5VvKy8vT448/Hu6mAgDQI4V15F5eXq65c+fq5Zdf1gUXXNBuncvlCnltjGk11tKpahYtWqRAIOBM5eXl4Ww2AAA9SljhXlJSourqag0dOlQRERGKiIhQUVGRfv/73ysiIsI5Ym95BF5dXe3M83q9amhoUE1NTbs1LUVFRSk+Pj5kAgAAbQsr3EePHq2ysjLt2rXLma655hpNnTpVu3bt0iWXXCKv16vCwkJnmYaGBhUVFSkrK0uSNHToUPXp0yekpqqqSrt373ZqAADAmQvrO/e4uDhlZGSEjMXGxiopKckZz8nJUW5urtLT05Wenq7c3FzFxMRoypQpkiS3263p06dr3rx5SkpKUmJioubPn6/MzMxWF+gBAIDwhX1B3eksWLBA9fX1mjlzpmpqajRs2DBt2rRJcXFxTs2KFSsUERGhyZMnq76+XqNHj9b69evVu3fvzt4cAAB6HJcxxpzvjQhXbW2t3G63AoEA378DAHqEcLKPZ8sDAGCZTj8tD6DzbNh+SPe/Wea8/v0tmcoePug8bhGA7oDT8kAXdfFDb7U778CSG8/hlgDoCjgtD3Rzpwr2jswH0LMR7kAXs2H7oU6tA9DzEO5AF/Pj79g7ow5Az0O4AwBgGcIdAADLEO5AF/P7WzI7tQ5Az0O4A11MR+9j5353AO0h3IEu6HT3sXOfO4BTIdyBLurAkhtbnXr//S2ZBDuA0+Lxs0AXlj18EKffAYSNI3cAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgmYjzvQEA0F2UHQoo+5mtMpJckjbM/KUyB7nP92YBrRDuANABFz/0VshrI+mmZ7ZKkg4sufE8bBHQPk7LA8BptAz2cOcD5xrhDgCnUHYo0Kl1wLlAuAPAKWT/36n3zqoDzgXCHQBOwXRyHXAuEO4AcAquTq4DzgXCHQBOYcPMX3ZqHXAuEO4AcAodvY+d+93RlRDuAHAap7uPnfvc0dXwEBsA6IADS27kCXXoNgh3AOigzEFu7ecoHd0Ap+UBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACwTVrivXr1aQ4YMUXx8vOLj4zVixAi9/fbbznxjjBYvXiyfz6fo6GiNGjVKe/bsCVlHMBjUnDlzlJycrNjYWGVnZ6uioqJz9gYAAIQX7gMHDtSSJUu0Y8cO7dixQ9dff71uvvlmJ8CXLVum5cuXa9WqVSouLpbX69XYsWNVV1fnrCMnJ0cFBQXKz8/X1q1bdezYMU2cOFFNTU2du2cAAPRQLmOMOZsVJCYm6qmnntI999wjn8+nnJwcLVy4UNIPR+kej0dLly7VjBkzFAgE1K9fP7300ku6/fbbJUmVlZVKTU3Vxo0bNX78+A69Z21trdxutwKBgOLj489m8wEA6BbCyb4z/s69qalJ+fn5On78uEaMGKH9+/fL7/dr3LhxTk1UVJRGjhypbdu2SZJKSkrU2NgYUuPz+ZSRkeHUtCUYDKq2tjZkAgAAbQs73MvKynThhRcqKipK9913nwoKCnT55ZfL7/dLkjweT0i9x+Nx5vn9fkVGRiohIaHdmrbk5eXJ7XY7U2pqaribDQBAjxF2uF922WXatWuXtm/frt/85je6++679cknnzjzXS5XSL0xptVYS6erWbRokQKBgDOVl5eHu9kAAPQYYYd7ZGSkLr30Ul1zzTXKy8vTlVdeqaefflper1eSWh2BV1dXO0fzXq9XDQ0NqqmpabemLVFRUc4V+icnAADQtrO+z90Yo2AwqLS0NHm9XhUWFjrzGhoaVFRUpKysLEnS0KFD1adPn5Caqqoq7d6926kBAABnJyKc4ocfflgTJkxQamqq6urqlJ+fr/fff1/vvPOOXC6XcnJylJubq/T0dKWnpys3N1cxMTGaMmWKJMntdmv69OmaN2+ekpKSlJiYqPnz5yszM1Njxoz5SXYQAICeJqxw/+qrrzRt2jRVVVXJ7XZryJAheueddzR27FhJ0oIFC1RfX6+ZM2eqpqZGw4YN06ZNmxQXF+esY8WKFYqIiNDkyZNVX1+v0aNHa/369erdu3fn7hkAAD3UWd/nfj5wnzsAoKc5J/e5AwCArolwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALBNWuOfl5ekXv/iF4uLilJKSoltuuUV79+4NqTHGaPHixfL5fIqOjtaoUaO0Z8+ekJpgMKg5c+YoOTlZsbGxys7OVkVFxdnvDQAACC/ci4qKNGvWLG3fvl2FhYU6ceKExo0bp+PHjzs1y5Yt0/Lly7Vq1SoVFxfL6/Vq7Nixqqurc2pycnJUUFCg/Px8bd26VceOHdPEiRPV1NTUeXsGAEAP5TLGmDNd+Ouvv1ZKSoqKior013/91zLGyOfzKScnRwsXLpT0w1G6x+PR0qVLNWPGDAUCAfXr108vvfSSbr/9dklSZWWlUlNTtXHjRo0fP/6071tbWyu3261AIKD4+Pgz3XwAALqNcLLvrL5zDwQCkqTExERJ0v79++X3+zVu3DinJioqSiNHjtS2bdskSSUlJWpsbAyp8fl8ysjIcGpaCgaDqq2tDZkAAEDbzjjcjTF68MEH9ctf/lIZGRmSJL/fL0nyeDwhtR6Px5nn9/sVGRmphISEdmtaysvLk9vtdqbU1NQz3WwAAKx3xuE+e/Zs/eUvf9Ef//jHVvNcLlfIa2NMq7GWTlWzaNEiBQIBZyovLz/TzQYAwHpnFO5z5szRhg0btGXLFg0cONAZ93q9ktTqCLy6uto5mvd6vWpoaFBNTU27NS1FRUUpPj4+ZAIAAG0LK9yNMZo9e7beeOMNvffee0pLSwuZn5aWJq/Xq8LCQmesoaFBRUVFysrKkiQNHTpUffr0CampqqrS7t27nRoAAHDmIsIpnjVrll555RX9+7//u+Li4pwjdLfbrejoaLlcLuXk5Cg3N1fp6elKT09Xbm6uYmJiNGXKFKd2+vTpmjdvnpKSkpSYmKj58+crMzNTY8aM6fw9BACghwkr3FevXi1JGjVqVMj4unXr9Otf/1qStGDBAtXX12vmzJmqqanRsGHDtGnTJsXFxTn1K1asUEREhCZPnqz6+nqNHj1a69evV+/evc9ubwAAwNnd536+cJ87AKCnOWf3uQMAgK6HcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACwTdrh/8MEHuummm+Tz+eRyufTmm2+GzDfGaPHixfL5fIqOjtaoUaO0Z8+ekJpgMKg5c+YoOTlZsbGxys7OVkVFxVntCAAA+EHY4X78+HFdeeWVWrVqVZvzly1bpuXLl2vVqlUqLi6W1+vV2LFjVVdX59Tk5OSooKBA+fn52rp1q44dO6aJEyeqqanpzPcEAABIklzGGHPGC7tcKigo0C233CLph6N2n8+nnJwcLVy4UNIPR+kej0dLly7VjBkzFAgE1K9fP7300ku6/fbbJUmVlZVKTU3Vxo0bNX78+NO+b21trdxutwKBgOLj48908wEA6DbCyb5O/c59//798vv9GjdunDMWFRWlkSNHatu2bZKkkpISNTY2htT4fD5lZGQ4NS0Fg0HV1taGTAAAoG2dGu5+v1+S5PF4QsY9Ho8zz+/3KzIyUgkJCe3WtJSXlye32+1MqampnbnZAABY5Se5Wt7lcoW8Nsa0GmvpVDWLFi1SIBBwpvLy8k7bVgAAbNOp4e71eiWp1RF4dXW1czTv9XrV0NCgmpqadmtaioqKUnx8fMgEAADa1qnhnpaWJq/Xq8LCQmesoaFBRUVFysrKkiQNHTpUffr0CampqqrS7t27nRoAAHDmIsJd4NixY/r888+d1/v379euXbuUmJioQYMGKScnR7m5uUpPT1d6erpyc3MVExOjKVOmSJLcbremT5+uefPmKSkpSYmJiZo/f74yMzM1ZsyYztszAAB6qLDDfceOHbruuuuc1w8++KAk6e6779b69eu1YMEC1dfXa+bMmaqpqdGwYcO0adMmxcXFOcusWLFCERERmjx5surr6zV69GitX79evXv37oRdAgCgZzur+9zPF+5zBwD0NOftPncAAHD+Ee4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsEzYP/kKAABObfu+I7rjX7c7r/PvGa7hP0s6Z+9PuAMA0IkufuitVmMng/7AkhvPyTZwWh4AgE7SVrCHM7+zEO4AAHSC7fuOdGrd2SDcAQDoBD/+jr0z6s4G4Q4AgGUIdwAALEO4AwDQCfLvGd6pdWeDcAcAoBN09D72c3G/O+EOAEAnOd197OfqPnceYgMAQCc6sORGnlAHAIBthv8s6ZwdpbeF0/IAAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYpls+oc4YI0mqra09z1sCAMC5cTLzTmbgqXTLcK+rq5MkpaamnuctAQDg3Kqrq5Pb7T5ljct05E+ALqa5uVmVlZWKi4uTy+UKa9na2lqlpqaqvLxc8fHxP9EWdn30gR5I9ECiBxI9kLpHD4wxqqurk8/nU69ep/5WvVseuffq1UsDBw48q3XEx8d32f+B5xJ9oAcSPZDogUQPpK7fg9MdsZ/EBXUAAFiGcAcAwDI9LtyjoqL02GOPKSoq6nxvynlFH+iBRA8keiDRA8m+HnTLC+oAAED7etyROwAAtiPcAQCwDOEOAIBlCHcAACzT5cL94osvlsvlajXNmjWrVe2MGTPkcrm0cuXKkPFgMKg5c+YoOTlZsbGxys7OVkVFxWnf56GHHgqpOXTokG666SbFxsYqOTlZ999/vxoaGkJqysrKNHLkSEVHR2vAgAF64oknOvTc367QA0l66623NGzYMEVHRys5OVmTJk3qMT14//3323wPl8ul4uLiHtEDSdq3b59uvvlmJScnKz4+Xtdee622bNkSUmN7D0pLSzV27Fj17dtXSUlJ+vu//3sdO3asS/Sgs/qwZs0ajRo1SvHx8XK5XDp69GirZWtqajRt2jS53W653W5NmzatVV13/ix0pAdPPvmksrKyFBMTo759+7a5Lefzs9Bhpouprq42VVVVzlRYWGgkmS1btoTUFRQUmCuvvNL4fD6zYsWKkHn33XefGTBggCksLDSlpaXmuuuuM1deeaU5ceKEU3PRRReZJ554IuS96urqnPknTpwwGRkZ5rrrrjOlpaWmsLDQ+Hw+M3v2bKcmEAgYj8dj7rjjDlNWVmb+9Kc/mbi4OPPP//zP3aIHr7/+uklISDCrV682e/fuNZ9++ql57bXXekwPgsFgyHtUVVWZe++911x88cWmubm5R/TAGGMuvfRS8zd/8zfmf/7nf8y+ffvMzJkzTUxMjKmqquoRPTh8+LBJSEgw9913n/n000/Nxx9/bLKyssytt97qrON89qCz+rBixQqTl5dn8vLyjCRTU1PT6n1uuOEGk5GRYbZt22a2bdtmMjIyzMSJE7tEH85VDx599FGzfPly8+CDDxq3291q/vn+LHRUlwv3lubOnWv+6q/+yvnH1hhjKioqzIABA8zu3bvNRRddFPI/8OjRo6ZPnz4mPz/fGTt8+LDp1auXeeedd5yxlsu1tHHjRtOrVy9z+PBhZ+yPf/yjiYqKMoFAwBhjzDPPPGPcbrf5/vvvnZq8vDzj8/lCtvds/RQ9aGxsNAMGDDDPP/98u+9rew9aamhoMCkpKeaJJ55wxmzvwddff20kmQ8++MCpqa2tNZLM5s2be0QPnn32WZOSkmKampqcmp07dxpJ5rPPPutyPTiTPvzYli1b2gy2Tz75xEgy27dvd8Y++ugjI8l8+umnxpiu1Yefogc/tm7dujbDvSv14FS63Gn5H2toaNDLL7+se+65x/mBmObmZk2bNk3/8A//oCuuuKLVMiUlJWpsbNS4ceOcMZ/Pp4yMDG3bti2kdunSpUpKStJVV12lJ598MuS0ykcffaSMjAz5fD5nbPz48QoGgyopKXFqRo4cGfLQg/Hjx6uyslIHDhzo0j0oLS3V4cOH1atXL1199dXq37+/JkyYoD179vSYHrS0YcMGffPNN/r1r3/tjNneg6SkJA0ePFgvvviijh8/rhMnTujZZ5+Vx+PR0KFDe0QPgsGgIiMjQ36IIzo6WpK0devWLtUD6cz60BEfffSR3G63hg0b5owNHz5cbrfb6VVX6cNP1YOO6Co9OJ0uHe5vvvmmjh49GvKP7dKlSxUREaH777+/zWX8fr8iIyOVkJAQMu7xeOT3+53Xc+fOVX5+vrZs2aLZs2dr5cqVmjlzZsh6PB5PyDoSEhIUGRnprKetmpOvf/xeZ+On6sGXX34pSVq8eLH+8R//UX/+85+VkJCgkSNH6ttvv213/2zqQUtr167V+PHjQ35K2PYeuFwuFRYWaufOnYqLi9MFF1ygFStW6J133nG+b7S9B9dff738fr+eeuopNTQ0qKamRg8//LAkqaqqqt39Ox89kM6sDx3h9/uVkpLSajwlJeWU+9hdPgudpav04HS69K/CrV27VhMmTHD+QiopKdHTTz+t0tLSsH/q1RgTsswDDzzg/PeQIUOUkJCg2267zTmal9Tme7RcT8sa838XTIS7fe35qXrQ3NwsSXrkkUd06623SpLWrVungQMH6rXXXtOMGTPa3Q9bevBjFRUVevfdd/Vv//ZvrebZ3ANjjGbOnKmUlBR9+OGHio6O1vPPP6+JEyequLhY/fv3b3c/bOnBFVdcoRdeeEEPPvigFi1apN69e+v++++Xx+NR7969nWW6Qg+kzu1DS2eyjx2p6cqfhTPRFXpwOl32yP3gwYPavHmz7r33Xmfsww8/VHV1tQYNGqSIiAhFRETo4MGDmjdvni6++GJJktfrdf76/rHq6upWf0n92PDhwyVJn3/+ubOeln9h1dTUqLGx0VlPWzXV1dWSdMr36qifsgcn/9G+/PLLnflRUVG65JJLdOjQoXb3z6Ye/Ni6deuUlJSk7OzskHHbe/Dee+/pz3/+s/Lz83Xttdfq5z//uZ555hlFR0frhRde6BE9kKQpU6bI7/fr8OHDOnLkiBYvXqyvv/5aaWlpXaYHZ9OHjvB6vfrqq69ajX/99den3Mfu8lnoLF2hBx1yTr7ZPwOPPfaY8Xq9prGx0Rn75ptvTFlZWcjk8/nMwoULnQs+Tl5A8+qrrzrLVVZWnvJCKmOM+Y//+A8jyRw8eNAY8/8vmqisrHRq8vPzW1000bdvXxMMBp2aJUuWdNpFEz9lDwKBgImKigq5oO7kBWXPPvtsj+jBSc3NzSYtLc3Mmzev1fvb3oMNGzaYXr16hdwpYowxP/vZz8yTTz7ZI3rQlrVr15qYmBjngquu0IOz6cOPne6Cuv/+7/92xrZv397mBXXd8bPQkR782OkuqDvfn4XT6ZLh3tTUZAYNGmQWLlx42tq2roi87777zMCBA83mzZtNaWmpuf7660Nufdm2bZtZvny52blzp/nyyy/Nq6++anw+n8nOznbWcfJ2h9GjR5vS0lKzefNmM3DgwJDbHY4ePWo8Ho+58847TVlZmXnjjTdMfHx8p9zu8FP3wJgfrjYdMGCAeffdd82nn35qpk+fblJSUsy3337bY3pgjDGbN282kswnn3zSar229+Drr782SUlJZtKkSWbXrl1m7969Zv78+aZPnz5m165dPaIHxhjzL//yL6akpMTs3bvXrFq1ykRHR5unn37amX++e2DM2fehqqrK7Ny50zz33HPOHRI7d+40R44ccWpuuOEGM2TIEPPRRx+Zjz76yGRmZrZ5K1x3/Sx0pAcHDx40O3fuNI8//ri58MILzc6dO83OnTudP4DPdw86qkuG+7vvvmskmb179562tq3/gfX19Wb27NkmMTHRREdHm4kTJ5pDhw4580tKSsywYcOM2+02F1xwgbnsssvMY489Zo4fPx6ynoMHD5obb7zRREdHm8TERDN79uyQWxuMMeYvf/mL+dWvfmWioqKM1+s1ixcv7pS/zH7qHhjzw5H6vHnzTEpKiomLizNjxowxu3fvDqmxvQfGGHPnnXearKysdtdtew+Ki4vNuHHjTGJioomLizPDhw83GzduDKmxvQfTpk0ziYmJJjIy0gwZMsS8+OKLrdZ9PntgzNn34bHHHjOSWk3r1q1zao4cOWKmTp1q4uLiTFxcnJk6dWqro9vu/FnoSA/uvvvuNmt+fD/9+f4sdAQ/+QoAgGW67AV1AADgzBDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACW+X+521U49HqkWgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAAGsCAYAAADAPO4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArq0lEQVR4nO3de3BUdZ7//1dDSExi0uRCumkIGteMhSaog/MD4syCcpMVo1/0iwqLTom1OFwkCguiO4rWmgjuAM5SUqIseBknro5xmRGVsGKURdaQwE7AFVQuJiRtFEMnYExC8vn9oZyvnQukIULy6eej6pT257xP9zlvu3zlc/qcbpcxxggAAFij17neAQAA0LUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACwTluFujNGECRPkcrn0xhtvnLR21apVGjJkiOLj4xUfH68RI0borbfectY3NTVp4cKFyszMVGxsrHw+n+644w5VVlY6NQcOHJDL5Wp3efXVV0Pa9yNHjmjWrFnq37+/zjvvPA0ePFgbNmwI6TkAAHazLtxHjRqldevWnbRmxYoVcrlcnXq+gQMH6oknntD27du1fft2XXvttbrxxhu1e/duSdK3336r0tJS/fa3v1Vpaalef/117d27V9nZ2c5zpKamqqqqKmh59NFHFRsbqwkTJnT62BobGzV27FgdOHBAr732mvbs2aNnn31WAwYM6PRzAADCgLHMyJEjzdq1aztcv3PnTjNw4EBTVVVlJJmCgoKQXyMhIcE899xzHa7/6KOPjCRz8ODBDmuuuOIKc9dddwWNVVRUmMmTJ5u+ffuaxMREk52dbfbv3++sX7VqlbnoootMY2NjyPsMAAgf1s3cT+bbb7/V7bffrpUrV8rr9Ya8fXNzs/Lz83Xs2DGNGDGiw7pAICCXy6W+ffu2u76kpEQ7d+7U9OnTg/btmmuu0fnnn6/3339fW7Zs0fnnn6/rrrtOjY2NkqT169drxIgRmjVrljwejzIyMpSbm6vm5uaQjwUAYK+Ic70DZ9N9992nrKws3XjjjSFtV1ZWphEjRui7777T+eefr4KCAl166aXt1n733Xd64IEHNGXKFMXHx7dbs2bNGg0ePFhZWVnOWH5+vnr16qXnnnvO+chg7dq16tu3r9577z2NGzdO+/bt07vvvqupU6dqw4YN+vTTTzVr1iwdP35cDz/8cEjHBACwV48P99zcXOXm5jqP6+vrtW3bNs2ePdsZe+utt1RTU6N3331XO3bsCPk1LrnkEu3cuVNHjhzRn/70J915550qKipqE/BNTU267bbb1NLSoqeffrrd56qvr9fLL7+s3/72t0HjJSUl+uyzzxQXFxc0/t133+nzzz+XJLW0tCglJUWrV69W7969NXToUFVWVurJJ58k3AEAjh4f7vfcc48mT57sPJ46dapuvvlmTZo0yRkbMGCAFi1apM8//7zNqfKbb75Zv/rVr/Tee+91+BqRkZG6+OKLJUlXXXWViouL9dRTT+mZZ55xapqamjR58mTt379f7777boez9tdee03ffvut7rjjjqDxlpYWDR06VH/4wx/abNOvXz9JUv/+/dWnTx/17t3bWTd48GD5/X41NjYqMjKyw2MAAISPHh/uiYmJSkxMdB5HR0crJSXFCeMTHnjgAd19991BY5mZmVq+fLluuOGGkF7TGKOGhgbn8Ylg//TTT7V582YlJSV1uO2aNWuUnZ3tBPYJP//5z/XKK68oJSWlwz8Mrr76ar388stqaWlRr17fXy6xd+9e9e/fn2AHADjC5oI6r9erjIyMoEWSBg0apLS0NKdu9OjRWrlypfP4wQcf1AcffKADBw6orKxMDz30kN577z1NnTpVknT8+HHdcsst2r59u/7whz+oublZfr/fmU3/2Geffab333+/zR8Z0vdnHJKTk3XjjTfqgw8+0P79+1VUVKS5c+eqoqJCkvSb3/xGhw8f1ty5c7V37169+eabys3N1axZs7q8XwCAnqvHz9y72ueff66vv/7aefzll19q2rRpqqqqktvt1pAhQ/T2229r7NixkqSKigqtX79eknTFFVcEPdfmzZs1atQo5/G//du/acCAARo3blyb142JidH777+vhQsXatKkSaqrq9OAAQM0evRoZyafmpqqjRs36r777tOQIUM0YMAAzZ07VwsXLuziLgAAejKXMcac650AAABdJ+TT8ocOHdLf//3fKykpSTExMbriiitUUlLirDfGaPHixfL5fIqOjtaoUaOcb3M7oaGhQXPmzFFycrJiY2OVnZ3tnHoGAABnJqRwr6mp0dVXX60+ffrorbfe0scff6zf/e53QVegL126VMuWLdPKlStVXFwsr9ersWPHqq6uzqnJyclRQUGB8vPztWXLFh09elQTJ07ky1gAAOgCIZ2Wf+CBB/Rf//Vf+uCDD9pdb4yRz+dTTk6O8zlwQ0ODPB6PlixZohkzZigQCKhfv3568cUXdeutt0qSKisrlZqaqg0bNmj8+PGn3I+WlhZVVlYqLi6u098RDwBAT2aMUV1dnXw+n3PH1MmKO23w4MEmJyfH3HLLLaZfv37miiuuMKtXr3bWf/7550aSKS0tDdouOzvb3HHHHcYYY/7zP//TSDLffPNNUM2QIUPMww8/3Kn9KC8vN5JYWFhYWFjCbikvLz9lToZ0tfy+ffu0atUq3X///XrwwQf10Ucf6d5771VUVJTuuOMO+f1+SZLH4wnazuPx6ODBg5Ikv9+vyMhIJSQktKk5sX1rDQ0NQfeVmx9ONpSXl3d4TzgAADapra1Vampqm28ybU9I4d7S0qKrrrrK+brXK6+8Urt379aqVauCvnGt9alyY8wpT5+frCYvL0+PPvpom/ETv7EOAEC46MzH0SFdUNe/f/8236c+ePBgffHFF5Lk/NJa6xl4dXW1M5v3er1qbGxUTU1NhzWtLVq0SIFAwFnKy8tD2W0AAMJKSOF+9dVXa8+ePUFje/fu1QUXXCBJSktLk9frVWFhobO+sbFRRUVFzi+gDR06VH369Amqqaqq0q5du4J+Je3HoqKinFk6s3UAAE4upNPyJ34yNTc3V5MnT9ZHH32k1atXa/Xq1ZK+P1WQk5Oj3NxcpaenKz09Xbm5uYqJidGUKVMkSW63W9OnT9e8efOUlJSkxMREzZ8/X5mZmRozZkzXHyEAAGEmpHD/xS9+oYKCAi1atEiPPfaY0tLStGLFCud71iVpwYIFqq+v18yZM1VTU6Nhw4Zp48aNQRcALF++XBEREZo8ebLq6+s1evRorVu3LujXzgAAwOnpkV8/W1tbK7fbrUAgwCl6AEBYCCX7wuZX4QAACBeEOwAAliHcAQCwDL/nLun/5L6pHbX/7/GV8VLBg9efux0CAOAMhP3M/cIHgoNdknbUfj8OAEBPFNbhfqoAJ+ABAD1R2Ib7/8ntXHB3tg4AgO4ibMO99an4M60DAKC7CNtwBwDAVoQ7AACWCdtwv7KT31rb2ToAALqLsA33zt7Hzv3uAICeJmzDXZIOPHHy4D7VegAAuqOwDnfp+wBvfer9yniCHQDQc/H1s+LUOwDALmE/cwcAwDaEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWCakcF+8eLFcLlfQ4vV6nfXGGC1evFg+n0/R0dEaNWqUdu/eHfQcDQ0NmjNnjpKTkxUbG6vs7GxVVFR0zdEAAIDQZ+6XXXaZqqqqnKWsrMxZt3TpUi1btkwrV65UcXGxvF6vxo4dq7q6OqcmJydHBQUFys/P15YtW3T06FFNnDhRzc3NXXNEAACEuYiQN4iICJqtn2CM0YoVK/TQQw9p0qRJkqTnn39eHo9HL7/8smbMmKFAIKA1a9boxRdf1JgxYyRJL730klJTU7Vp0yaNHz/+DA8HAACEPHP/9NNP5fP5lJaWpttuu0379u2TJO3fv19+v1/jxo1zaqOiojRy5Eht3bpVklRSUqKmpqagGp/Pp4yMDKemPQ0NDaqtrQ1aAABA+0IK92HDhumFF17QO++8o2effVZ+v19ZWVk6fPiw/H6/JMnj8QRt4/F4nHV+v1+RkZFKSEjosKY9eXl5crvdzpKamhrKbgMAEFZCCvcJEybo5ptvVmZmpsaMGaM333xT0ven309wuVxB2xhj2oy1dqqaRYsWKRAIOEt5eXkouw0AQFg5o1vhYmNjlZmZqU8//dT5HL71DLy6utqZzXu9XjU2NqqmpqbDmvZERUUpPj4+aAEAAO07o3BvaGjQ//7v/6p///5KS0uT1+tVYWGhs76xsVFFRUXKysqSJA0dOlR9+vQJqqmqqtKuXbucGgAAcGZCulp+/vz5uuGGGzRo0CBVV1frn//5n1VbW6s777xTLpdLOTk5ys3NVXp6utLT05Wbm6uYmBhNmTJFkuR2uzV9+nTNmzdPSUlJSkxM1Pz5853T/AAA4MyFFO4VFRW6/fbb9fXXX6tfv34aPny4tm3bpgsuuECStGDBAtXX12vmzJmqqanRsGHDtHHjRsXFxTnPsXz5ckVERGjy5Mmqr6/X6NGjtW7dOvXu3btrjwwAgDDlMsaYc70ToaqtrZXb7VYgEODzdwBAWAgl+/hueQAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAljmjcM/Ly5PL5VJOTo4zZozR4sWL5fP5FB0drVGjRmn37t1B2zU0NGjOnDlKTk5WbGyssrOzVVFRcSa7AgAAfnDa4V5cXKzVq1dryJAhQeNLly7VsmXLtHLlShUXF8vr9Wrs2LGqq6tzanJyclRQUKD8/Hxt2bJFR48e1cSJE9Xc3Hz6RwIAACSdZrgfPXpUU6dO1bPPPquEhARn3BijFStW6KGHHtKkSZOUkZGh559/Xt9++61efvllSVIgENCaNWv0u9/9TmPGjNGVV16pl156SWVlZdq0aVPXHBUAAGHstMJ91qxZuv766zVmzJig8f3798vv92vcuHHOWFRUlEaOHKmtW7dKkkpKStTU1BRU4/P5lJGR4dS01tDQoNra2qAFAAC0LyLUDfLz81VaWqri4uI26/x+vyTJ4/EEjXs8Hh08eNCpiYyMDJrxn6g5sX1reXl5evTRR0PdVQAAwlJIM/fy8nLNnTtXL730ks4777wO61wuV9BjY0ybsdZOVrNo0SIFAgFnKS8vD2W3AQAIKyGFe0lJiaqrqzV06FBFREQoIiJCRUVF+v3vf6+IiAhnxt56Bl5dXe2s83q9amxsVE1NTYc1rUVFRSk+Pj5oAQAA7Qsp3EePHq2ysjLt3LnTWa666ipNnTpVO3fu1EUXXSSv16vCwkJnm8bGRhUVFSkrK0uSNHToUPXp0yeopqqqSrt27XJqAADA6QvpM/e4uDhlZGQEjcXGxiopKckZz8nJUW5urtLT05Wenq7c3FzFxMRoypQpkiS3263p06dr3rx5SkpKUmJioubPn6/MzMw2F+gBAIDQhXxB3aksWLBA9fX1mjlzpmpqajRs2DBt3LhRcXFxTs3y5csVERGhyZMnq76+XqNHj9a6devUu3fvrt4dAADCjssYY871ToSqtrZWbrdbgUCAz98BAGEhlOzju+UBALBMl5+WB9B11m/7Qve+UeY8/v1NmcoePugc7hGAnoDT8kA3deEDb3a47sAT15/FPQHQHXBaHujhThbsnVkPILwR7kA3s37bF11aByD8EO5AN/Pjz9i7og5A+CHcAQCwDOEOAIBlCHegm/n9TZldWgcg/BDuQDfT2fvYud8dQEcId6AbOtV97NznDuBkCHegmzrwxPVtTr3//qZMgh3AKfH1s0A3lj18EKffAYSMmTsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwTMS53gEA6CnKvggo++ktMpJcktbP/KUyB7nP9W4BbRDuANAJFz7wZtBjI+mGp7dIkg48cf052COgY5yWB4BTaB3soa4HzjbCHQBOouyLQJfWAWcD4Q4AJ5H9w6n3rqoDzgbCHUBojKTiH/4ZBjp7mGHSDvQQhDuA0Lwk6f+T9IdzvSNnh6uL64CzgXAH0HnHJT3yw78/8sNjy62f+csurQPOBsIdQOf9UdL+H/59n6T8c7gvZ0ln72Pnfnd0J4Q7gM45MWs/cf65l8Jm9n6q+9i5zx3dDeEOoHNOzNpPXDnWorCZvUvfB/ifZ/7S+dvGJenPM39JsKNbchljetxFnrW1tXK73QoEAoqPjz/XuwPY77ikn0k6oODLwntJulDSHvF9l8BPLJTsY+YO4NRaz9pPCLPZO9BTEO4ATq71Z+2thdFn70BPQbgDOLktan/WfsKJ2Ttf0AZ0G3xKBuDkRkj6d0kNJ6mJ+qEOQLdAuAM4uShJ//dc7wSAUHBaHgAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZUIK91WrVmnIkCGKj49XfHy8RowYobfeestZb4zR4sWL5fP5FB0drVGjRmn37t1Bz9HQ0KA5c+YoOTlZsbGxys7OVkVFRdccDQAACC3cBw4cqCeeeELbt2/X9u3bde211+rGG290Anzp0qVatmyZVq5cqeLiYnm9Xo0dO1Z1dXXOc+Tk5KigoED5+fnasmWLjh49qokTJ6q5ublrjwwAgDB1xr8Kl5iYqCeffFJ33XWXfD6fcnJytHDhQknfz9I9Ho+WLFmiGTNmKBAIqF+/fnrxxRd16623SpIqKyuVmpqqDRs2aPz48Z16TX4VDgAQbs7Kr8I1NzcrPz9fx44d04gRI7R//375/X6NGzfOqYmKitLIkSO1detWSVJJSYmampqCanw+nzIyMpya9jQ0NKi2tjZoAQAA7Qs53MvKynT++ecrKipK99xzjwoKCnTppZfK7/dLkjweT1C9x+Nx1vn9fkVGRiohIaHDmvbk5eXJ7XY7S2pqaqi7DQBA2Ag53C+55BLt3LlT27Zt029+8xvdeeed+vjjj531Llfw70IaY9qMtXaqmkWLFikQCDhLeXl5qLsNAEDYCDncIyMjdfHFF+uqq65SXl6eLr/8cj311FPyer2S1GYGXl1d7czmvV6vGhsbVVNT02FNe6Kiopwr9E8sAACgfWd8n7sxRg0NDUpLS5PX61VhYaGzrrGxUUVFRcrKypIkDR06VH369Amqqaqq0q5du5waAABwZkL6ydcHH3xQEyZMUGpqqurq6pSfn6/33ntPb7/9tlwul3JycpSbm6v09HSlp6crNzdXMTExmjJliiTJ7XZr+vTpmjdvnpKSkpSYmKj58+crMzNTY8aM+UkOEACAcBNSuH/55ZeaNm2aqqqq5Ha7NWTIEL399tsaO3asJGnBggWqr6/XzJkzVVNTo2HDhmnjxo2Ki4tznmP58uWKiIjQ5MmTVV9fr9GjR2vdunXq3bt31x4ZAABh6ozvcz8XuM8dABBuzsp97gAAoHsi3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMuEFO55eXn6xS9+obi4OKWkpOimm27Snj17gmqMMVq8eLF8Pp+io6M1atQo7d69O6imoaFBc+bMUXJysmJjY5Wdna2KioozPxoAABBauBcVFWnWrFnatm2bCgsLdfz4cY0bN07Hjh1zapYuXaply5Zp5cqVKi4ultfr1dixY1VXV+fU5OTkqKCgQPn5+dqyZYuOHj2qiRMnqrm5ueuODACAMOUyxpjT3firr75SSkqKioqK9Ld/+7cyxsjn8yknJ0cLFy6U9P0s3ePxaMmSJZoxY4YCgYD69eunF198UbfeeqskqbKyUqmpqdqwYYPGjx9/ytetra2V2+1WIBBQfHz86e4+AAA9RijZd0afuQcCAUlSYmKiJGn//v3y+/0aN26cUxMVFaWRI0dq69atkqSSkhI1NTUF1fh8PmVkZDg1rTU0NKi2tjZoAQAA7TvtcDfG6P7779cvf/lLZWRkSJL8fr8kyePxBNV6PB5nnd/vV2RkpBISEjqsaS0vL09ut9tZUlNTT3e3AQCw3mmH++zZs/XXv/5Vf/zjH9usc7lcQY+NMW3GWjtZzaJFixQIBJylvLz8dHcbAADrnVa4z5kzR+vXr9fmzZs1cOBAZ9zr9UpSmxl4dXW1M5v3er1qbGxUTU1NhzWtRUVFKT4+PmgBAADtCyncjTGaPXu2Xn/9db377rtKS0sLWp+Wliav16vCwkJnrLGxUUVFRcrKypIkDR06VH369Amqqaqq0q5du5waAABw+iJCKZ41a5Zefvll/cd//Ifi4uKcGbrb7VZ0dLRcLpdycnKUm5ur9PR0paenKzc3VzExMZoyZYpTO336dM2bN09JSUlKTEzU/PnzlZmZqTFjxnT9EQIAEGZCCvdVq1ZJkkaNGhU0vnbtWv3617+WJC1YsED19fWaOXOmampqNGzYMG3cuFFxcXFO/fLlyxUREaHJkyervr5eo0eP1rp169S7d+8zOxoAAHBm97mfK9znDgAIN2ftPncAAND9EO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlQg73999/XzfccIN8Pp9cLpfeeOONoPXGGC1evFg+n0/R0dEaNWqUdu/eHVTT0NCgOXPmKDk5WbGxscrOzlZFRcUZHQgAAPheyOF+7NgxXX755Vq5cmW765cuXaply5Zp5cqVKi4ultfr1dixY1VXV+fU5OTkqKCgQPn5+dqyZYuOHj2qiRMnqrm5+fSPBAAASJJcxhhz2hu7XCooKNBNN90k6ftZu8/nU05OjhYuXCjp+1m6x+PRkiVLNGPGDAUCAfXr108vvviibr31VklSZWWlUlNTtWHDBo0fP/6Ur1tbWyu3261AIKD4+PjT3X0AAHqMULKvSz9z379/v/x+v8aNG+eMRUVFaeTIkdq6daskqaSkRE1NTUE1Pp9PGRkZTk1rDQ0Nqq2tDVoAAED7ujTc/X6/JMnj8QSNezweZ53f71dkZKQSEhI6rGktLy9PbrfbWVJTU7tytwEAsMpPcrW8y+UKemyMaTPW2slqFi1apEAg4Czl5eVdtq8AANimS8Pd6/VKUpsZeHV1tTOb93q9amxsVE1NTYc1rUVFRSk+Pj5oAQAA7evScE9LS5PX61VhYaEz1tjYqKKiImVlZUmShg4dqj59+gTVVFVVadeuXU4NAAA4fRGhbnD06FF99tlnzuP9+/dr586dSkxM1KBBg5STk6Pc3Fylp6crPT1dubm5iomJ0ZQpUyRJbrdb06dP17x585SUlKTExETNnz9fmZmZGjNmTNcdGQAAYSrkcN++fbuuueYa5/H9998vSbrzzju1bt06LViwQPX19Zo5c6Zqamo0bNgwbdy4UXFxcc42y5cvV0REhCZPnqz6+nqNHj1a69atU+/evbvgkAAACG9ndJ/7ucJ97gCAcHPO7nMHAADnHuEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMuE/JOvAADg5LbtPazb/m2b8zj/ruEa/rOks/b6hDsAAF3owgfebDN2IugPPHH9WdkHTssDANBF2gv2UNZ3FcIdAIAusG3v4S6tOxOEOwAAXeDHn7F3Rd2ZINwBALAM4Q4AgGUIdwAAukD+XcO7tO5MEO4AAHSBzt7HfjbudyfcAQDoIqe6j/1s3efOl9gAANCFDjxxPd9QBwCAbYb/LOmszdLbw2l5AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALNMjv6HOGCNJqq2tPcd7AgDA2XEi805k4Mn0yHCvq6uTJKWmpp7jPQEA4Oyqq6uT2+0+aY3LdOZPgG6mpaVFlZWViouLk8vlCmnb2tpapaamqry8XPHx8T/RHnZ/9IEeSPRAogcSPZB6Rg+MMaqrq5PP51OvXif/VL1Hztx79eqlgQMHntFzxMfHd9v/gGcTfaAHEj2Q6IFED6Tu34NTzdhP4II6AAAsQ7gDAGCZsAv3qKgoPfLII4qKijrXu3JO0Qd6INEDiR5I9ECyrwc98oI6AADQsbCbuQMAYDvCHQAAyxDuAABYhnAHAMAy3S7cL7zwQrlcrjbLrFmz2tTOmDFDLpdLK1asCBpvaGjQnDlzlJycrNjYWGVnZ6uiouKUr/PAAw8E1XzxxRe64YYbFBsbq+TkZN17771qbGwMqikrK9PIkSMVHR2tAQMG6LHHHuvU9/52hx5I0ptvvqlhw4YpOjpaycnJmjRpUtj04L333mv3NVwul4qLi8OiB5K0d+9e3XjjjUpOTlZ8fLyuvvpqbd68OajG9h6UlpZq7Nix6tu3r5KSkvQP//APOnr0aLfoQVf1YfXq1Ro1apTi4+Plcrl05MiRNtvW1NRo2rRpcrvdcrvdmjZtWpu6nvxe6EwPHn/8cWVlZSkmJkZ9+/Ztd1/O5Xuh00w3U11dbaqqqpylsLDQSDKbN28OqisoKDCXX3658fl8Zvny5UHr7rnnHjNgwABTWFhoSktLzTXXXGMuv/xyc/z4cafmggsuMI899ljQa9XV1Tnrjx8/bjIyMsw111xjSktLTWFhofH5fGb27NlOTSAQMB6Px9x2222mrKzM/OlPfzJxcXHmX/7lX3pED1577TWTkJBgVq1aZfbs2WM++eQT8+qrr4ZNDxoaGoJeo6qqytx9993mwgsvNC0tLWHRA2OMufjii83f/d3fmf/5n/8xe/fuNTNnzjQxMTGmqqoqLHpw6NAhk5CQYO655x7zySefmI8++shkZWWZm2++2XmOc9mDrurD8uXLTV5ensnLyzOSTE1NTZvXue6660xGRobZunWr2bp1q8nIyDATJ07sFn04Wz14+OGHzbJly8z9999v3G53m/Xn+r3QWd0u3FubO3eu+Zu/+Rvnf7bGGFNRUWEGDBhgdu3aZS644IKg/4BHjhwxffr0Mfn5+c7YoUOHTK9evczbb7/tjLXerrUNGzaYXr16mUOHDjljf/zjH01UVJQJBALGGGOefvpp43a7zXfffefU5OXlGZ/PF7S/Z+qn6EFTU5MZMGCAee655zp8Xdt70FpjY6NJSUkxjz32mDNmew+++uorI8m8//77Tk1tba2RZDZt2hQWPXjmmWdMSkqKaW5udmp27NhhJJlPP/202/XgdPrwY5s3b2432D7++GMjyWzbts0Z+/DDD40k88knnxhjulcffooe/NjatWvbDffu1IOT6Xan5X+ssbFRL730ku666y7nB2JaWlo0bdo0/eM//qMuu+yyNtuUlJSoqalJ48aNc8Z8Pp8yMjK0devWoNolS5YoKSlJV1xxhR5//PGg0yoffvihMjIy5PP5nLHx48eroaFBJSUlTs3IkSODvvRg/Pjxqqys1IEDB7p1D0pLS3Xo0CH16tVLV155pfr3768JEyZo9+7dYdOD1tavX6+vv/5av/71r50x23uQlJSkwYMH64UXXtCxY8d0/PhxPfPMM/J4PBo6dGhY9KChoUGRkZFBP8QRHR0tSdqyZUu36oF0en3ojA8//FBut1vDhg1zxoYPHy632+30qrv04afqQWd0lx6cSrcO9zfeeENHjhwJ+p/tkiVLFBERoXvvvbfdbfx+vyIjI5WQkBA07vF45Pf7ncdz585Vfn6+Nm/erNmzZ2vFihWaOXNm0PN4PJ6g50hISFBkZKTzPO3VnHj849c6Ez9VD/bt2ydJWrx4sf7pn/5Jf/nLX5SQkKCRI0fqm2++6fD4bOpBa2vWrNH48eODfkrY9h64XC4VFhZqx44diouL03nnnafly5fr7bffdj5vtL0H1157rfx+v5588kk1NjaqpqZGDz74oCSpqqqqw+M7Fz2QTq8PneH3+5WSktJmPCUl5aTH2FPeC12lu/TgVLr1r8KtWbNGEyZMcP5CKikp0VNPPaXS0tKQf+rVGBO0zX333ef8+5AhQ5SQkKBbbrnFmc1Lavc1Wj9P6xrzwwUToe5fR36qHrS0tEiSHnroId18882SpLVr12rgwIF69dVXNWPGjA6Pw5Ye/FhFRYXeeecd/fu//3ubdTb3wBijmTNnKiUlRR988IGio6P13HPPaeLEiSouLlb//v07PA5benDZZZfp+eef1/33369Fixapd+/euvfee+XxeNS7d29nm+7QA6lr+9Da6RxjZ2q683vhdHSHHpxKt525Hzx4UJs2bdLdd9/tjH3wwQeqrq7WoEGDFBERoYiICB08eFDz5s3ThRdeKEnyer3OX98/Vl1d3eYvqR8bPny4JOmzzz5znqf1X1g1NTVqampynqe9murqakk66Wt11k/ZgxP/07700kud9VFRUbrooov0xRdfdHh8NvXgx9auXaukpCRlZ2cHjdveg3fffVd/+ctflJ+fr6uvvlo///nP9fTTTys6OlrPP/98WPRAkqZMmSK/369Dhw7p8OHDWrx4sb766iulpaV1mx6cSR86w+v16ssvv2wz/tVXX530GHvKe6GrdIcedMpZ+WT/NDzyyCPG6/WapqYmZ+zrr782ZWVlQYvP5zMLFy50Lvg4cQHNK6+84mxXWVl50gupjDHmz3/+s5FkDh48aIz5fxdNVFZWOjX5+fltLpro27evaWhocGqeeOKJLrto4qfsQSAQMFFRUUEX1J24oOyZZ54Jix6c0NLSYtLS0sy8efPavL7tPVi/fr3p1atX0J0ixhjzs5/9zDz++ONh0YP2rFmzxsTExDgXXHWHHpxJH37sVBfU/fd//7cztm3btnYvqOuJ74XO9ODHTnVB3bl+L5xKtwz35uZmM2jQILNw4cJT1rZ3ReQ999xjBg4caDZt2mRKS0vNtddeG3Try9atW82yZcvMjh07zL59+8wrr7xifD6fyc7Odp7jxO0Oo0ePNqWlpWbTpk1m4MCBQbc7HDlyxHg8HnP77bebsrIy8/rrr5v4+Pguud3hp+6BMd9fbTpgwADzzjvvmE8++cRMnz7dpKSkmG+++SZsemCMMZs2bTKSzMcff9zmeW3vwVdffWWSkpLMpEmTzM6dO82ePXvM/PnzTZ8+fczOnTvDogfGGPOv//qvpqSkxOzZs8esXLnSREdHm6eeespZf657YMyZ96Gqqsrs2LHDPPvss84dEjt27DCHDx92aq677jozZMgQ8+GHH5oPP/zQZGZmtnsrXE99L3SmBwcPHjQ7duwwjz76qDn//PPNjh07zI4dO5w/gM91DzqrW4b7O++8YySZPXv2nLK2vf+A9fX1Zvbs2SYxMdFER0ebiRMnmi+++MJZX1JSYoYNG2bcbrc577zzzCWXXGIeeeQRc+zYsaDnOXjwoLn++utNdHS0SUxMNLNnzw66tcEYY/7617+aX/3qVyYqKsp4vV6zePHiLvnL7KfugTHfz9TnzZtnUlJSTFxcnBkzZozZtWtXUI3tPTDGmNtvv91kZWV1+Ny296C4uNiMGzfOJCYmmri4ODN8+HCzYcOGoBrbezBt2jSTmJhoIiMjzZAhQ8wLL7zQ5rnPZQ+MOfM+PPLII0ZSm2Xt2rVOzeHDh83UqVNNXFyciYuLM1OnTm0zu+3J74XO9ODOO+9st+bH99Of6/dCZ/CTrwAAWKbbXlAHAABOD+EOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGCZ/x+6xIaW8aeaTgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -484,18 +485,22 @@ "# Import our api class\n", "from snowexsql.api import LayerMeasurements\n", "from datetime import datetime\n", + "import geopandas as gpd \n", "\n", "# import some gis functionality \n", "from shapely.geometry import Point \n", "\n", "# Find some SSA measurements within a distance of a known point\n", - "df = LayerMeasurements.from_area(pt=Point(740820.624625,4.327326e+06), crs=26912, buffer=500,\n", + "pnt = Point(740820.624625,4.327326e+06)\n", + "df = LayerMeasurements.from_area(pt=pnt, crs=26912, buffer=500,\n", " type='specific_surface_area')\n", "\n", - "# plot it up\n", - "df.plot()\n", + "# plot up the results\n", + "ax = df.plot()\n", "\n", - "# TODO: plot the point \n", + "# plot the site so we can see how close everything is.\n", + "site = gpd.GeoDataFrame(geometry=[pnt], crs=26912)\n", + "site.plot(ax=ax, marker='^', color='magenta')\n", "\n", "# show off the dataframe\n", "df" @@ -505,7 +510,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### How do I know what to filter on?\n", + "## How do I know what to filter on?\n", "We got tools for that! Each class has a host of functions that start with `all_*` these function return the unique value in that column. \n", "\n", " * `all_types` - all the data types e.g. depth, swe, density...\n", @@ -516,7 +521,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -525,11 +530,11 @@ "text": [ "Available types = two_way_travel, snow_void, density, swe, depth\n", "\n", - "Available Instruments = Mala 1600 MHz GPR, None, Mala 800 MHz GPR, pulse EKKO Pro multi-polarization 1 GHz GPR, pit ruler, mesa, magnaprobe, camera\n", + "Available Instruments = None, Mala 1600 MHz GPR, Mala 800 MHz GPR, pulse EKKO Pro multi-polarization 1 GHz GPR, pit ruler, mesa, magnaprobe, camera\n", "\n", - "Available Dates = 2020-05-28, 2020-01-09, 2021-03-19, 2020-05-23, 2020-01-04, 2019-11-29, 2019-10-20, 2019-11-30, 2021-01-28, 2020-04-17, 2021-02-19, 2020-02-19, 2020-02-26, 2020-02-03, 2020-05-05, 2019-10-05, 2019-12-29, 2020-06-02, 2019-10-28, 2020-01-30, 2020-05-22, 2020-03-09, 2019-12-09, 2019-12-28, 2020-02-24, 2020-03-17, 2021-03-18, 2020-04-01, 2020-05-14, 2019-10-29, 2019-10-14, 2019-10-02, 2020-01-31, 2020-04-18, 2020-04-29, 2020-04-26, 2019-10-12, 2021-03-03, 2021-01-15, 2020-02-23, 2020-01-22, 2020-01-01, 2019-11-21, 2020-05-10, 2023-03-13, 2020-02-12, 2020-05-06, 2019-11-19, 2019-10-25, 2019-11-02, 2020-02-08, 2020-04-14, 2020-04-02, 2019-11-16, 2020-04-07, 2021-03-21, 2021-04-21, 2023-03-15, 2020-11-25, 2019-12-27, 2021-01-27, 2019-10-01, 2020-04-16, 2020-06-08, 2019-12-13, 2019-10-17, 2019-10-22, 2021-01-22, 2020-04-21, 2020-01-03, 2019-12-12, 2019-12-08, 2021-03-05, 2020-01-25, 2020-02-29, 2019-11-24, 2019-10-18, 2021-03-04, 2021-03-24, 2021-03-16, 2020-05-09, 2020-03-22, 2019-11-06, 2019-12-16, 2020-01-15, 2019-11-22, 2019-10-13, 2019-11-10, 2019-12-06, 2020-02-04, 2020-03-07, 2019-10-31, 2020-04-06, 2020-05-03, 2019-12-10, 2020-05-26, 2019-12-02, 2021-02-09, 2020-02-14, 2020-02-13, 2020-05-11, 2019-12-01, 2020-01-19, 2019-11-28, 2020-01-17, 2019-12-17, 2021-02-17, 2021-01-07, 2021-03-31, 2019-12-25, 2019-12-14, 2019-10-24, 2020-02-01, 2020-03-11, 2021-03-23, 2020-02-09, 2020-05-12, 2020-05-25, 2020-03-29, 2020-04-24, 2019-12-11, 2020-01-10, 2020-06-05, 2020-11-20, 2019-10-10, 2020-04-13, 2020-03-23, 2020-04-23, 2020-05-24, 2019-11-08, 2021-05-05, 2021-04-06, 2019-12-26, 2019-12-15, 2020-05-07, 2021-01-20, 2020-02-28, 2019-11-03, 2020-04-04, 2019-11-27, 2021-01-14, 2020-03-15, 2020-01-16, 2019-11-23, 2023-03-14, 2019-10-08, 2019-11-14, 2020-02-15, 2020-02-11, 2023-03-12, 2019-11-13, 2020-04-30, 2019-10-26, 2020-03-06, 2021-03-17, 2020-05-31, 2020-03-04, 2021-02-24, 2019-10-04, 2020-05-16, 2020-04-03, 2019-10-06, 2021-02-25, 2019-10-09, 2020-03-12, 2019-11-12, 2019-11-01, 2020-03-10, 2020-02-21, 2019-10-30, 2020-12-17, 2023-03-07, 2020-06-01, 2020-03-20, 2020-03-03, 2019-11-07, 2020-01-06, 2021-02-11, 2019-12-22, 2020-01-11, 2019-11-11, 2019-11-05, 2020-01-13, 2023-03-16, 2019-12-18, 2019-12-30, 2020-05-04, 2020-04-20, 2021-04-14, 2023-03-09, 2023-03-08, 2020-02-22, 2020-12-18, 2020-05-08, 2020-01-24, 2019-12-24, 2020-04-22, 2020-03-31, 2020-01-08, 2019-11-04, 2020-02-06, 2021-02-18, 2020-03-05, 2021-05-27, 2020-03-14, 2021-02-04, 2020-06-09, 2021-01-21, 2020-02-20, 2020-11-23, 2020-04-05, 2021-05-07, 2020-06-03, 2019-10-16, 2020-04-15, 2021-01-26, 2019-12-03, 2020-05-30, 2019-11-09, 2021-02-16, 2020-04-28, 2020-01-12, 2020-05-20, 2023-03-10, 2020-05-02, 2020-02-05, 2020-01-28, 2020-01-21, 2019-12-19, 2019-10-07, 2020-03-28, 2020-02-10, 2021-04-28, 2020-03-02, 2019-09-29, 2019-11-15, 2020-01-02, 2020-05-27, 2020-02-18, 2019-10-11, 2019-12-21, 2021-03-10, 2020-04-09, 2019-09-30, 2020-01-05, 2019-10-27, 2020-04-10, 2021-04-23, 2020-03-16, 2020-03-21, 2020-02-02, 2020-04-08, 2020-02-25, 2020-01-29, 2021-03-22, 2019-12-04, 2021-02-10, 2021-02-03, 2019-11-26, 2020-03-19, 2020-01-20, 2020-02-27, 2019-12-31, 2020-03-30, 2020-04-25, 2020-01-26, 2020-01-14, 2020-12-08, 2020-03-01, 2020-02-17, 2021-03-02, 2020-05-21, 2019-10-23, 2020-04-11, 2019-10-21, 2020-12-16, 2019-11-25, 2020-04-12, 2020-03-13, 2021-05-20, 2020-05-01, 2021-01-13, 2020-03-08, 2020-05-19, 2020-03-27, 2019-11-17, 2020-04-19, 2020-01-23, 2021-02-23, 2020-05-15, 2020-02-16, 2019-10-19, 2020-05-29, 2020-03-24, 2019-12-07, 2020-02-07, 2020-03-18, 2020-05-17, 2020-05-13, 2019-12-20, 2019-12-23, 2020-06-07, 2020-01-07, 2021-05-17, 2021-04-07, 2020-05-18, 2019-12-05, 2019-11-20, 2020-06-06, 2020-12-09, 2023-03-11, 2021-02-02, 2019-11-18, 2020-06-10, 2020-01-27, 2020-11-16, 2020-01-18, 2020-06-04, 2020-04-27, 2020-12-01, 2020-03-25, 2019-10-15, 2020-03-26, 2021-03-09, 2019-10-03\n", + "Available Dates = 2020-05-28, 2020-01-09, 2021-03-19, 2020-05-23, 2019-11-29, 2020-01-04, 2019-10-20, 2019-11-30, 2021-01-28, 2020-04-17, 2021-02-19, 2020-02-19, 2020-02-26, 2020-02-03, 2020-05-05, 2019-10-05, 2019-12-29, 2020-06-02, 2019-10-28, 2020-01-30, 2020-05-22, 2020-03-09, 2019-12-09, 2019-12-28, 2020-02-24, 2020-03-17, 2021-03-18, 2020-04-01, 2020-05-14, 2019-10-14, 2019-10-29, 2019-10-02, 2020-01-31, 2020-04-18, 2020-04-26, 2019-10-12, 2020-04-29, 2021-03-03, 2020-02-23, 2021-01-15, 2020-01-22, 2020-01-01, 2019-11-21, 2020-05-10, 2023-03-13, 2020-02-12, 2019-11-19, 2020-05-06, 2019-10-25, 2019-11-02, 2020-02-08, 2020-04-14, 2020-04-02, 2019-11-16, 2020-04-07, 2021-03-21, 2021-04-21, 2023-03-15, 2020-11-25, 2019-12-27, 2019-10-01, 2021-01-27, 2020-04-16, 2020-06-08, 2019-12-13, 2019-10-17, 2019-10-22, 2021-01-22, 2020-04-21, 2020-01-03, 2019-12-12, 2019-12-08, 2021-03-05, 2020-01-25, 2020-02-29, 2019-11-24, 2019-10-18, 2021-03-04, 2021-03-24, 2021-03-16, 2020-05-09, 2020-03-22, 2019-11-06, 2019-12-16, 2020-01-15, 2019-11-22, 2019-10-13, 2019-11-10, 2019-12-06, 2020-02-04, 2019-10-31, 2020-03-07, 2020-04-06, 2020-05-03, 2019-12-10, 2020-05-26, 2019-12-02, 2021-02-09, 2020-02-14, 2020-02-13, 2020-05-11, 2019-12-01, 2020-01-19, 2019-11-28, 2020-01-17, 2019-12-17, 2021-02-17, 2021-01-07, 2021-03-31, 2019-12-25, 2019-12-14, 2019-10-24, 2020-03-11, 2020-02-01, 2021-03-23, 2020-02-09, 2020-05-12, 2020-05-25, 2020-03-29, 2020-04-24, 2019-12-11, 2020-01-10, 2020-06-05, 2019-10-10, 2020-11-20, 2020-04-13, 2020-03-23, 2020-04-23, 2020-05-24, 2019-11-08, 2021-05-05, 2019-12-26, 2019-12-15, 2021-04-06, 2020-05-07, 2021-01-20, 2020-02-28, 2019-11-03, 2020-04-04, 2019-11-27, 2021-01-14, 2020-03-15, 2019-11-23, 2020-01-16, 2023-03-14, 2019-10-08, 2019-11-14, 2020-02-15, 2020-02-11, 2023-03-12, 2019-11-13, 2020-04-30, 2019-10-26, 2020-03-06, 2021-03-17, 2020-05-31, 2020-03-04, 2021-02-24, 2019-10-04, 2020-05-16, 2020-04-03, 2019-10-06, 2019-10-09, 2021-02-25, 2020-03-12, 2019-11-12, 2019-11-01, 2020-03-10, 2019-10-30, 2020-02-21, 2020-12-17, 2023-03-07, 2020-06-01, 2020-03-20, 2020-03-03, 2019-11-07, 2020-01-06, 2019-12-22, 2021-02-11, 2020-01-11, 2019-11-11, 2019-11-05, 2020-01-13, 2023-03-16, 2019-12-18, 2019-12-30, 2020-05-04, 2020-04-20, 2021-04-14, 2023-03-09, 2023-03-08, 2020-02-22, 2020-05-08, 2019-12-24, 2020-12-18, 2020-01-24, 2020-04-22, 2019-11-04, 2020-03-31, 2020-01-08, 2020-02-06, 2021-02-18, 2020-03-05, 2021-05-27, 2020-03-14, 2021-02-04, 2020-06-09, 2021-01-21, 2020-02-20, 2020-11-23, 2020-04-05, 2020-06-03, 2019-10-16, 2021-05-07, 2020-04-15, 2021-01-26, 2019-12-03, 2020-05-30, 2019-11-09, 2021-02-16, 2020-04-28, 2020-01-12, 2020-05-20, 2023-03-10, 2020-05-02, 2020-02-05, 2020-01-28, 2020-01-21, 2019-12-19, 2019-10-07, 2020-03-28, 2020-02-10, 2021-04-28, 2020-03-02, 2019-09-29, 2019-11-15, 2020-01-02, 2020-05-27, 2020-02-18, 2019-10-11, 2019-12-21, 2019-09-30, 2021-03-10, 2020-04-09, 2020-01-05, 2019-10-27, 2020-04-10, 2021-04-23, 2020-03-16, 2020-03-21, 2020-02-02, 2020-02-25, 2020-04-08, 2020-01-29, 2019-12-04, 2021-03-22, 2021-02-10, 2021-02-03, 2019-11-26, 2020-03-19, 2020-01-20, 2019-12-31, 2020-02-27, 2020-03-30, 2020-04-25, 2020-01-26, 2020-01-14, 2020-12-08, 2020-03-01, 2020-02-17, 2020-05-21, 2019-10-23, 2021-03-02, 2020-04-11, 2019-10-21, 2020-12-16, 2019-11-25, 2020-04-12, 2020-03-13, 2020-05-01, 2021-05-20, 2020-03-08, 2021-01-13, 2020-05-19, 2020-03-27, 2019-11-17, 2020-04-19, 2020-01-23, 2020-05-15, 2021-02-23, 2020-02-16, 2019-10-19, 2020-05-29, 2020-03-24, 2019-12-07, 2020-02-07, 2020-03-18, 2020-05-17, 2020-05-13, 2019-12-20, 2019-12-23, 2020-06-07, 2020-01-07, 2020-05-18, 2021-05-17, 2021-04-07, 2019-12-05, 2019-11-20, 2020-06-06, 2020-12-09, 2023-03-11, 2021-02-02, 2019-11-18, 2020-06-10, 2020-01-27, 2020-11-16, 2020-01-18, 2020-06-04, 2020-04-27, 2019-10-15, 2020-12-01, 2020-03-25, 2020-03-26, 2019-10-03, 2021-03-09\n", "\n", - "Available sites = American River Basin, Central Ag Research Center, Senator Beck, Fairbanks, None, Fraser Experimental Forest, Boise River Basin, Little Cottonwood Canyon, East River, North Slope, Jemez River, Grand Mesa, Cameron Pass, Sagehen Creek, Mammoth Lakes, Niwot Ridge\n" + "Available sites = American River Basin, Central Ag Research Center, Senator Beck, Fairbanks, None, Fraser Experimental Forest, Boise River Basin, Little Cottonwood Canyon, North Slope, East River, Jemez River, Grand Mesa, Cameron Pass, Sagehen Creek, Mammoth Lakes, Niwot Ridge\n" ] } ], @@ -560,7 +565,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### More specific filtering options\n", + "### More specific filtering options\n", "Sometimes we need a bit more filtering to know more about what I can filter on. Questions like \"What dates was the SMP used?\" are a bit more complicated than \"Give me all the dates for snowex\"\n", "\n", "The good news is, we have tool for that! `from_unique_entries` is your friend!" @@ -568,7 +573,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -589,7 +594,7 @@ " datetime.date(2020, 1, 29)]" ] }, - "execution_count": 1, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -610,48 +615,412 @@ "### Limit size \n", "To avoid accidental large queries, we have added some bumper rails. By default if you ask for more than 1000 records then an error will pop up unless you explicitly say you want more. \n", "\n", - "Try doing a large query. Something like the following to see the error:" + "**Try This**: Do a large query. Run the code block below without the limit keyword argument (\"kwarg\"):" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "Failed query for PointData\n" - ] - }, - { - "ename": "LargeQueryCheckException", - "evalue": "Query will return 2296512 number of records, but we have a default max of 1000. If you want to proceed, set the 'limit' filter to the desired number of records.", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mLargeQueryCheckException\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[10], line 5\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msnowexsql\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapi\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m PointMeasurements\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Query db using a vague filter or on a huge dataset like GPR\u001b[39;00m\n\u001b[0;32m----> 5\u001b[0m df \u001b[38;5;241m=\u001b[39m \u001b[43mPointMeasurements\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_filter\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mtype\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtwo_way_travel\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 7\u001b[0m \u001b[38;5;66;03m# Show the dataframe\u001b[39;00m\n\u001b[1;32m 8\u001b[0m df\n", - "File \u001b[0;32m/srv/conda/envs/notebook/lib/python3.11/site-packages/snowexsql/api.py:246\u001b[0m, in \u001b[0;36mPointMeasurements.from_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 244\u001b[0m session\u001b[38;5;241m.\u001b[39mclose()\n\u001b[1;32m 245\u001b[0m LOG\u001b[38;5;241m.\u001b[39merror(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFailed query for PointData\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 246\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 248\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m df\n", - "File \u001b[0;32m/srv/conda/envs/notebook/lib/python3.11/site-packages/snowexsql/api.py:241\u001b[0m, in \u001b[0;36mPointMeasurements.from_filter\u001b[0;34m(cls, **kwargs)\u001b[0m\n\u001b[1;32m 239\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 240\u001b[0m qry \u001b[38;5;241m=\u001b[39m session\u001b[38;5;241m.\u001b[39mquery(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMODEL)\n\u001b[0;32m--> 241\u001b[0m qry \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mextend_qry\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqry\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 242\u001b[0m df \u001b[38;5;241m=\u001b[39m query_to_geopandas(qry, engine)\n\u001b[1;32m 243\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n", - "File \u001b[0;32m/srv/conda/envs/notebook/lib/python3.11/site-packages/snowexsql/api.py:139\u001b[0m, in \u001b[0;36mBaseDataset.extend_qry\u001b[0;34m(cls, qry, check_size, **kwargs)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mk\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m is not an allowed filter\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 138\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_size:\n\u001b[0;32m--> 139\u001b[0m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_check_size\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqry\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 141\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m qry\n", - "File \u001b[0;32m/srv/conda/envs/notebook/lib/python3.11/site-packages/snowexsql/api.py:80\u001b[0m, in \u001b[0;36mBaseDataset._check_size\u001b[0;34m(cls, qry, kwargs)\u001b[0m\n\u001b[1;32m 78\u001b[0m count \u001b[38;5;241m=\u001b[39m qry\u001b[38;5;241m.\u001b[39mcount()\n\u001b[1;32m 79\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m count \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMAX_RECORD_COUNT \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlimit\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m kwargs:\n\u001b[0;32m---> 80\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m LargeQueryCheckException(\n\u001b[1;32m 81\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mQuery will return \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mcount\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m number of records,\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 82\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m but we have a default max of \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mMAX_RECORD_COUNT\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 83\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m If you want to proceed, set the \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlimit\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m filter\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 84\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m to the desired number of records.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 85\u001b[0m )\n", - "\u001b[0;31mLargeQueryCheckException\u001b[0m: Query will return 2296512 number of records, but we have a default max of 1000. If you want to proceed, set the 'limit' filter to the desired number of records." - ] + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
version_numberequipmentvaluelatitudelongitudenorthingeastingelevationutm_zonegeom...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
0NoneNone8.1539.02966-108.1338084.323978e+06748106.5444683152.2012POINT (748106.544 4323977.677)...2020-01-282022-07-07 20:15:55.070109+00:00None4316397https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
1NoneNone8.3939.02966-108.1338084.323978e+06748106.5444683152.2112POINT (748106.544 4323977.677)...2020-01-282022-07-07 20:15:55.070109+00:00None4316398https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
2NoneNone8.3939.02966-108.1338084.323978e+06748106.5444683152.2212POINT (748106.544 4323977.677)...2020-01-282022-07-07 20:15:55.070109+00:00None4316399https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
3NoneNone8.3939.02966-108.1338084.323978e+06748106.5444683152.2312POINT (748106.544 4323977.677)...2020-01-282022-07-07 20:15:55.070109+00:00None4316400https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
4NoneNone8.3939.02966-108.1338084.323978e+06748106.5444683152.2412POINT (748106.544 4323977.677)...2020-01-282022-07-07 20:15:55.070109+00:00None4316401https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
..................................................................
95NoneNone8.3939.02966-108.1338124.323978e+06748106.2511523152.9012POINT (748106.251 4323977.635)...2020-01-282022-07-07 20:15:55.070109+00:00None4316492https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
96NoneNone8.3939.02966-108.1338124.323978e+06748106.2511523152.9012POINT (748106.251 4323977.635)...2020-01-282022-07-07 20:15:55.070109+00:00None4316493https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
97NoneNone8.3939.02966-108.1338124.323978e+06748106.2511523152.9012POINT (748106.251 4323977.635)...2020-01-282022-07-07 20:15:55.070109+00:00None4316494https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
98NoneNone8.3939.02966-108.1338124.323978e+06748106.2511523152.9012POINT (748106.251 4323977.635)...2020-01-282022-07-07 20:15:55.070109+00:00None4316495https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
99NoneNone8.3939.02966-108.1338124.323978e+06748106.2511523152.9012POINT (748106.251 4323977.635)...2020-01-282022-07-07 20:15:55.070109+00:00None4316496https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
\n", + "

100 rows × 23 columns

\n", + "
" + ], + "text/plain": [ + " version_number equipment value latitude longitude northing \\\n", + "0 None None 8.15 39.02966 -108.133808 4.323978e+06 \n", + "1 None None 8.39 39.02966 -108.133808 4.323978e+06 \n", + "2 None None 8.39 39.02966 -108.133808 4.323978e+06 \n", + "3 None None 8.39 39.02966 -108.133808 4.323978e+06 \n", + "4 None None 8.39 39.02966 -108.133808 4.323978e+06 \n", + ".. ... ... ... ... ... ... \n", + "95 None None 8.39 39.02966 -108.133812 4.323978e+06 \n", + "96 None None 8.39 39.02966 -108.133812 4.323978e+06 \n", + "97 None None 8.39 39.02966 -108.133812 4.323978e+06 \n", + "98 None None 8.39 39.02966 -108.133812 4.323978e+06 \n", + "99 None None 8.39 39.02966 -108.133812 4.323978e+06 \n", + "\n", + " easting elevation utm_zone geom ... \\\n", + "0 748106.544468 3152.20 12 POINT (748106.544 4323977.677) ... \n", + "1 748106.544468 3152.21 12 POINT (748106.544 4323977.677) ... \n", + "2 748106.544468 3152.22 12 POINT (748106.544 4323977.677) ... \n", + "3 748106.544468 3152.23 12 POINT (748106.544 4323977.677) ... \n", + "4 748106.544468 3152.24 12 POINT (748106.544 4323977.677) ... \n", + ".. ... ... ... ... ... \n", + "95 748106.251152 3152.90 12 POINT (748106.251 4323977.635) ... \n", + "96 748106.251152 3152.90 12 POINT (748106.251 4323977.635) ... \n", + "97 748106.251152 3152.90 12 POINT (748106.251 4323977.635) ... \n", + "98 748106.251152 3152.90 12 POINT (748106.251 4323977.635) ... \n", + "99 748106.251152 3152.90 12 POINT (748106.251 4323977.635) ... \n", + "\n", + " date time_created time_updated id \\\n", + "0 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316397 \n", + "1 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316398 \n", + "2 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316399 \n", + "3 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316400 \n", + "4 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316401 \n", + ".. ... ... ... ... \n", + "95 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316492 \n", + "96 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316493 \n", + "97 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316494 \n", + "98 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316495 \n", + "99 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316496 \n", + "\n", + " doi date_accessed instrument \\\n", + "0 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", + "1 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", + "2 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", + "3 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", + "4 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", + ".. ... ... ... \n", + "95 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", + "96 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", + "97 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", + "98 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", + "99 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", + "\n", + " type units observers \n", + "0 two_way_travel ns Ryan Webb \n", + "1 two_way_travel ns Ryan Webb \n", + "2 two_way_travel ns Ryan Webb \n", + "3 two_way_travel ns Ryan Webb \n", + "4 two_way_travel ns Ryan Webb \n", + ".. ... ... ... \n", + "95 two_way_travel ns Ryan Webb \n", + "96 two_way_travel ns Ryan Webb \n", + "97 two_way_travel ns Ryan Webb \n", + "98 two_way_travel ns Ryan Webb \n", + "99 two_way_travel ns Ryan Webb \n", + "\n", + "[100 rows x 23 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ "# Import PointMeasurements\n", "from snowexsql.api import PointMeasurements\n", "\n", - "# Query db using a vague filter or on a huge dataset like GPR\n", - "df = PointMeasurements.from_filter(type='two_way_travel')\n", + "# Query db using a vague filter or on a huge dataset like GPR but remove the limit kwarg\n", + "df = PointMeasurements.from_filter(type='two_way_travel', limit=100)\n", "\n", "# Show the dataframe\n", "df\n", - "\n", - "# Throws an exception, try adding the limit keyword arg in the function" + "\n" ] }, { @@ -668,7 +1037,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -1041,7 +1410,7 @@ "[100 rows x 29 columns]" ] }, - "execution_count": 11, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } diff --git a/book/tutorials/snowex_database/5_plot_raster_example.ipynb b/book/tutorials/snowex_database/5_plot_raster_example.ipynb index e55fbda..3569dba 100644 --- a/book/tutorials/snowex_database/5_plot_raster_example.ipynb +++ b/book/tutorials/snowex_database/5_plot_raster_example.ipynb @@ -17,28 +17,19 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 2, "metadata": {}, "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAFRCAYAAABkGOliAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZhlVXU+/J577jzX3FXV89zQDc0kMkUIOGvibIiahGgkEY1T8glJjK0hoIjKzyAmqIlB42w0ajCgKEqDyDxDQzc91jzeeTz3fH+8e9W61TRIQ0PT3Xs9Tz1VdYdz9jln77XX8K53Ob7v+7BixYoVK1asWLGyTwkc7AFYsWLFihUrVqy8kMUaS1asWLFixYoVK08h1liyYsWKFStWrFh5CrHGkhUrVqxYsWLFylOINZasWLFixYoVK1aeQqyxZMWKFStWrFix8hRijSUrVqxYsWLFipWnEGssWbFixYoVK1asPIVYY8mKFStWrFixYuUpxBpLVqxYsWLFihUrTyFHpLH061//Gq997WsxMDAAx3Hwwx/+cL+P4fs+Lr/8cqxevRqRSASLFi3CJZdccuAHa8WKFStWrFg5qBI82AM4GFIqlXDsscfivPPOwxvf+MZndIz3v//9uP7663H55Zdjw4YNyOVymJycPMAjtWLFihUrVqwcbHGO9Ea6juPgBz/4AV73utfNvVav1/EP//AP+K//+i/Mzs5i/fr1+NSnPoUzzzwTAPDwww/jmGOOwQMPPIA1a9YcnIFbsWLFihUrVp4XOSLTcL9LzjvvPNx888341re+hfvuuw9vfvOb8YpXvAKPPfYYAODHP/4xli9fjp/85CdYtmwZli5dine9612Ynp4+yCO3YsWKFStWrBxoscbSXrJt2zZ885vfxHe/+12cccYZWLFiBf7mb/4Gp59+Ov7jP/4DAPD4449j586d+O53v4trrrkGX/3qV3HnnXfiTW9600EevRUrVqxYsWLlQMsRiVl6Krnrrrvg+z5Wr1497/VarYauri4AQKvVQq1WwzXXXDP3ua985Ss44YQTsGXLFpuas2LFihUrVg4jscbSXtJqteC6Lu688064rjvvvWQyCQDo7+9HMBicZ1CtW7cOALBr1y5rLFmxYsWKFSuHkVhjaS857rjj4HkexsfHccYZZ+zzM6eddhqazSa2bduGFStWAAAeffRRAMCSJUuet7FasWLFihUrVp57OSKr4YrFIrZu3QqAxtFnP/tZnHXWWejs7MTixYvx9re/HTfffDM+85nP4LjjjsPk5CR+8YtfYMOGDXjVq16FVquFk046CclkEldccQVarRYuuOACpNNpXH/99Qf56qxYsWLFihUrB1KOSGPpxhtvxFlnnfWE1//0T/8UX/3qV9FoNHDxxRfjmmuuwdDQELq6unDKKafg4x//ODZs2AAAGB4exvve9z5cf/31SCQSeOUrX4nPfOYz6OzsfL4vx4oVK1asWLHyHMoRaSxZsWLFihUrVqw8XbHUAVasWLFixYoVK08hRxTAu9VqYXh4GKlUCo7jHOzhWLFixYoVK1aehvi+j0KhgIGBAQQCz3+c54gyloaHh7Fo0aKDPQwrVqxYsWLFyjOQ3bt3Y+HChc/7eZ+VsXTppZfi7/7u7/D+978fV1xxxT4/s3nzZnzkIx/BI488gnK5jCVLluD888/HBz/4wbnP/Pd//zcuueQSbN26FY1GA6tWrcKHP/xhvOMd75h3rKuuugqf/vSnMTIygqOPPhpXXHHFk5b370tSqRQA3ux0Or3/F3wISyazf5/P5Z6bcVixYsWKFSv7K/l8HosWLZrbx59vecbG0u23346rr74axxxzzFN+LpFI4L3vfS+OOeYYJBIJbN68Geeffz4SiQTe/e53AwA6Ozvx93//91i7di3C4TB+8pOf4LzzzkNvby9e/vKXAwC+/e1v4wMf+ACuuuoqnHbaafi3f/s3vPKVr8RDDz2ExYsXP60xS+otnU4fccbS/ooYVxb+b8WKFStWXihysCA0z6garlgs4vjjj8dVV12Fiy++GBs3bnzSyNK+5A1veAMSiQS+9rWvPelnjj/+eLz61a/GP/3TPwEATj75ZBx//PH44he/OPeZdevW4XWvex0uvfTSp3XefD6PTCaDXC53xBlLB2J+WcPJihUrVqwcDDnY+/czQkldcMEFePWrX41zzjlnv797991345ZbbsFLXvKSfb7v+z5uuOEGbNmyBb/3e78HAKjX67jzzjvxspe9bN5nX/ayl+GWW2550nPVajXk8/l5P0eaOM6BMZQO9LGsWLFixYqVQ0X2Ow33rW99C3fddRduv/32/frewoULMTExgWaziU2bNuFd73rXvPdzuRwGBwdRq9Xgui6uuuoqvPSlLwUATE5OwvM89PX1zftOX18fRkdHn/Scl156KT7+8Y/v1zit/G4Rg8lGmqxYsWLFypEg+2Us7d69G+9///tx/fXXIxqN7teJbrrpJhSLRdx666248MILsXLlSpx77rlz76dSKdxzzz0oFou44YYb8KEPfQjLly/HmWeeOfeZvXOVvu8/Zf7yoosuwoc+9KG5/wUgZuXASPutt4aTFStWrFg5XGW/jKU777wT4+PjOOGEE+Ze8zwPv/71r3HllVfORYX2JcuWLQMAbNiwAWNjY9i0adM8YykQCGDlypUAgI0bN+Lhhx/GpZdeijPPPBPd3d1wXfcJUaTx8fEnRJvaJRKJIBKJ7M8lHlbyfKbMrOFkxYoVK1YOV9kvzNLZZ5+N+++/H/fcc8/cz4knnoi3ve1tuOeee57UUNpbfN9HrVZ72p8Jh8M44YQT8LOf/WzeZ372s5/h1FNP3Z9LsPI8iMU2WbFixYqVw0n2K7KUSqWwfv36ea8lEgl0dXXNvX7RRRdhaGgI11xzDQDgC1/4AhYvXoy1a9cCIO/S5Zdfjve9731zx7j00ktx4oknYsWKFajX67j22mtxzTXXzKt8+9CHPoR3vOMdOPHEE3HKKafg6quvxq5du/CXf/mXz+zKrTznYrFNVqxYsWLlcJADzuA9MjKCXbt2zf3farVw0UUXYfv27QgGg1ixYgU++clP4vzzz5/7TKlUwnve8x7s2bMHsVgMa9euxde//nW89a1vnfvMW9/6VkxNTeETn/gERkZGsH79elx77bVYsmTJgb6Ew0JeSJEdx7EGkxUrVqxYOXTlGfEsHapysHkank95IRlLgDWWrFixYsXKM5eDvX8//93orFixYsWKFStWDiGxxtJhKC+0qBLwwhyTFStWrFix8nTEGktWrFixYsWKFStPIdZYsmLFihUrVqxYeQqxxtJhJi/kdNcLeWxWrFixYsXKk4k1lqxYsWLFihUrVp5CrLFk5XkVy+5txYoVK1YONbHG0mEk1gixYsWKFStWDrxYY8mKFStWrFixYuUpxBpLVg6K2CiYFStWrFg5VMQaS1asWLFixYoVK08h1lg6TMRGaqxYsWLFipXnRqyxZMWKFStWrFix8hRijSUrB01sNMyKFStWrBwKYo2lw0Cs0WHFihUrVqw8d2KNJStWrFixYsWKlaeQ4MEegJVnJ4d6VMlxAN8/2KOwYsWKFSv7EufiXwC3DQKVEPBgDzCSOiJ1tjWWrFixYsWKFStz4mAT/3jzW4DqQiDaBPpKQKoG/GDdQR3bwRJrLB3CcqhHlaxYsWLFygtLnOIlwDvfBBQiQLAFdJUBB0DIo9F0hIo1lqwcdLGpOCtWrFg5uDIXTXrnm4BqCHB9oBkApmOMKo0mgdkoEGvAcUJHnM62xtIhKjaqZMWKFStWnq3MGUkfO4uYpGIYyFaBXBTIRxhZGkoBU3GgGgSWzAKP9BzMIR8UscaSFStWrFixcgSKg03AP/w+cMcA4DtAIwCUQ0ApBKyaBooh4LFOoBzmF6JNIHCEhZSMWGPJihUrVqxYORLlD84F6i5/ChGm2XwAgwVgIgGk6sCeDOA5QKgFxBs0mEIeAPdgj/55FWssWXlBiMUtWbFixcrzI86V1wJ3DgDdPtNujg8cM8Y0W9jj73gD2JUB1kwCUzGyMnZWgMU5E11adLAv43kVaywdgnJY4ZWOmmA+PBc92COxYsWKlcNWnAs3A+ka/9m+gAZQosGoUinMyFK0CZw4zAhTwyV2KeDTcAL4fiUI1I6sqBJgjaXDSzJVTm7X5wKoucw/111O/BeanLkD6KgAD34B2LwYwJ8f7BFZsWLFymEnzl/eAfR5wK0LtbKt5gK1IKNKbov7RDMA7MhyD/HB39Emo09hTz+Tqh9x2QBrLB1C8jsjSs0A0HKArgo9CMcYTTcvBlZPAS0A9SA9g3KI3sTBkJBHb+WSG4BTdvO103fBuf5r8F/2joMzJitWrFg5zMT5xX8y3VbsAxbmmUKrmT2gFFIn2ne4f0SbwPYOINIEeso0qFJ1vt5y+AMAg3lg5TSAzoN2bc+3WGPpcBIvwMlfDTK33F0GYg1O/qPH+ZmGAfM1AozmPF8Rp4DPsQDAuglgMgH81wZg6SzQX+DrL9v2/IzFihUrVg5jcbAJ+Mlq4H+PBnIGuN1dBj55+r6d5EgTOG6E+8FslPtHNUhSyrpJxzk+9bgYTAvzsMaSlRecPC2cUjVI76DuAoUwqel7SsB5dzOc2nKAujGoxEj65bIDP9hgi+dN1YFAi9Esx6f3Ug0CC0r0VL58PPD9o4CRy/U6sQm+8H5YsWLFipX9Eufx/wf8++8DW7qpfyWV9l8bnjybUAsCd/eTqfvFe4hRaoHpuZoLhJtAR5WfLYfYJ+4IY/O2xtLhJoUwsUs14yEkGvQSuipAss7PtAyfxqophlK/dMKBOXe2yjBvV5nnTdRpOE3HgJkYMBln7nt7ll5OX4nVFpecAfzdTQdmDFasWLFyBIrz9vtY7u+9lkZPwAeyFfO7+rt7utWMOTCYp96OeKQMSNb5d8yk4qrG+ZVMwREi1lg6BGS/qt9qQWA8AWRqjORMxYBUgpO9owL0lvg3wIm/egpYNwl86OX7P7Bjxrio4g0aaAAXVLTJRVYN0jhqBoCqyzx5PgI82Av0FZXc7O/Pnmcs2eiSFStWrDw9cU7ZQ/B1LE4cUiXEqJAYO6NJOsXf+S7wljc/9cEuuomObbZKnS6tTkohOuKuTx2fqQHNAJxEA34p9Lxc58GWwMEegJUDIAGflr5IIQI83sHX4g0aTFMxGlGlMCM+S2eBtZM0lF67BfjlV/f/vCfvAY4dZYQqVeeClcqKiAFxN1x6OeEWo0krpxnpKkRoREm06+r50S3n59c807thxYoVK4e9ONgE54r/oy5P16hXB/M0cqpB4LcLgRuW0zmdjQLfORr4w0eAq3+87wOedzeNq0yVxla0SXLKHVkaXP1FYEGR5+k0mYrykWEoATay9IKXfUaVBP8D0DCJNhnhaTnKxjobZQ76lN3AihlGdMIejaeQRzbWRTkFV0s+en9kJsY0WtjjMSV6VQwrCDDSpFGUrXKsuSgXY8gDpuMEpQPA+a8FXvuojmdB0UaYrFixYmUvmevldukZwMPdNFqCLUZ/AEaD9u7dducAdbDnAI91Aa98jP8L1YzbUmjEw93U6Y93MEpVCLP1yS+X0khKNHicQgRYPwag73m8+oMnzyqydOmll8JxHHzgAx940s9s3rwZp512Grq6uhCLxbB27Vp87nOfm/eZL33pSzjjjDPQ0dGBjo4OnHPOObjtttvmfabZbOIf/uEfsGzZMsRiMSxfvhyf+MQn0Gq1ns0lHFoSNumzWJPptGSdkz1qUl8Z4110VAnurgTJqzGU4uslgxd6qAe4t48L6K5+9gX64dp9n/Psx598PMEWjaOjJoDXPwKsmOYickBjSTieQi1ipCbiwHjc5MYdjrGzzIUKAAMfBv5vJf9ePw7c30fvyRpMVqxYsQLnV18FXvF24LV/DNzfS2NmPEG9K/tAX+mJXyyGgT1pYCRF/f/TVayG/s1C9n4bTwDDKWBnhsbWo12MJnkOcailEPecoNHVyTp1f3/xeb3+gynPOLJ0++234+qrr8YxxxzzlJ9LJBJ473vfi2OOOQaJRAKbN2/G+eefj0QigXe/+90AgBtvvBHnnnsuTj31VESjUVx22WV42ctehgcffBCDg4MAgE996lP413/9V/znf/4njj76aNxxxx0477zzkMlk8P73v/+ZXsahJYk6kPJpjKRrNJTKUpXgA3CUOEwYViOGUGxrJ0OohQiQjzK0GjBVEguK+66SOHb0qZsmRpvA8hmm2u7ro0Ek4hujyW1p1KnSAqohLth1k1yAiQbDyHvSNKJe+Xbg9qvJIrthjLQHHRUge4DuoRUrVqwcqnLdCurlQgQYKABrppghuG2Qxs1wiqm4v7gT2J0Bblq8b92+KEcYRiXEY9VdYCoOjBowtxfg6w2XhTnxBveCE4fpjBcMFvW4EQArnvfbcDDE8f395+AsFos4/vjjcdVVV+Hiiy/Gxo0bccUVVzzt77/hDW9AIpHA1772tX2+73keOjo6cOWVV+JP/uRPAACvec1r0NfXh6985Stzn3vjG9+IeDz+pMfZW/L5PDKZDHK5HNLp9NMe78ESZ90kMBMFxpL64voxoBgBkjUgXeckr7pA1KNh5PiaW07XgNsHadT0lJRUrBakERNrmuhOhdGfbR1cfFMxGi8tAw68Yfn8gb3jXqb5slUaRDNRGmS9JS5ggIurGQB2ZoGxBBddsMXP+aABNWGA6J7Dv4dTeo7pT9FI2ktsWs6KFStHmjifvY76vByiESQcej1l6tyaS906lKa+jzSpU5sB4OZFwI/X6MFO3U1jKVvl3uIYp7kSMjQBpvKtEaAz/Hs7lX+pq8zf4tzORoH/Wwl/S9dzfg8O9v79jCJLF1xwAV796lfjnHPOwcUXX7xf37377rtxyy23POX3yuUyGo0GOjuV8Or000/Hv/7rv+LRRx/F6tWrce+992Lz5s1PaaTVajXUarW5//P5/H6N9aDLw1fq3+/6A+ArxwOzMUZiQh4nc9IDYCI0AwVNy4U9TuZ1EzRYJhI0UiohfjdqsESAOZahvq+5NJhe+jiNoHsWPNFYWjkNbOvk+9KpejBP4yof0RRcsg4smyF5meCYEnUu9j1pLvZ6gMngvYGCnR8Bpj5FQ65NnG98H/4fv/HA3mcrVqxYeQGKc8fVwL0LgECY+t4B9WYpRJjFrgwjP4tyjOZHmtTL8QYj80tnGf3587uBK17MohwH1MmlMJ3kQpivRZss1DllNx3fuokqjSe4n5RCwJDBJ3kB6v1S6Ak6+nCV/TaWvvWtb+Guu+7C7bffvl/fW7hwISYmJtBsNrFp0ya8613vetLPXnjhhRgcHMQ555wz99pHPvIR5HI5rF27Fq7rwvM8/PM//zPOPffcJz3OpZdeio9//OP7Nc4XijjvuA9oD5h95npii8ToKERo/GSrhvzRZwVEKcxJnqpzUQVbNFp8aJqsGeBn5e98lAtvPMHXdmX4/2CBi+atDwDfXq9jmY3Sy6mZPkFhj2OKeDR6ZqM6ht4SDaRMlYDw0aTm1hsBssvmo/w/W+V3Rbo+AtzyFW2JAgDnPgAH99sIkxUrVg5rcT75c2B8A3Vqy2G0x21pdiBTBTaOMsqUrRKyUA7RYc1H+Nq6SdLDRDzgqv/ldx/pph6ejVIH+4asOODTcY43+LmSiVTdupC4pZDH/USc6oBP3S9FOYe57JextHv3brz//e/H9ddfj2h0/7rE33TTTSgWi7j11ltx4YUXYuXKlfs0dC677DJ885vfxI033jjvHN/+9rfx9a9/Hd/4xjdw9NFH45577sEHPvABDAwM4E//9E/3ec6LLroIH/rQh+b+z+fzWLRo0X6N+2CI853vAqGVwMfPBD52I1/MVGmYlA2gz20xhRZsKZOqRHScICscKkFg2SyNpqm4VtGVQtpA0fHV0MlU+d50jJ5DaZILYlGe5/MC5FaajdIAC5mF68NU4ZkoUailFXmlEMeYaNDjqYQYyhWwerilZajwWSG3I6vVdKe+E7jgNuDKa83NYdbYVspZsWLlcBTnr3/LiI5UmXkOI/+ur9ihosEhbeukvl42y88BjPIHQIPopsWEZLQcpXLZk2b6bTpGPd0u5RCB3+kaP5+P0DCqBvlaV5l/TxlOp4B/xESW9guz9MMf/hCvf/3r4bp6gz3Pg+M4CAQCqNVq8957Mrn44ovxta99DVu2bJn3+uWXX46LL74YP//5z3HiiSfOe2/RokW48MILccEFF8w7zte//nU88sgjT2v8Bzvn+bvEcQCcez8Nh51Z4IFeTvJ//QnBeBe8SgF3gRbxPtkqJ7F0iZbKs4aJGB0zCizJcVFUQvxMIcKIjhegt+C29fzZneYCiRvg9ZIcjZzrVnCBnjyk5f8AF1czwGOkahyfD2V6LYb5+UBL6Q6SdR6/4WqOPOLx89MxYDIG7Oh44g3yN+3zvlmjyYoVK4eyONhEXfnXr6QurgXnF8zUTRQ/0aDDOB2j3g+2uAf0mvZSlSAxq+kaq4/DHr+Tj/C9gM8IVK2t5ZVnsKyShdiZNfQupjinHGLaLlvVsRXCmuUoh+D/+3HP+T062Pv3fkWWzj77bNx///3zXjvvvPOwdu1afOQjH3lahhIA+L4/D0sEAJ/+9Kdx8cUX47rrrnuCoQQQxxQIzGc6cF33kKYO2CeH0miShkTd9OMZTbGsv7+gEZgU2VPRcmikAJzobouLI+Mx5VVu0YMIGZbtijFsJPQa8JkiE8yQcDaJ1zId4zlbDnD8KI0ZL6DYJDHUGq6WrjZMk96wWcTJOsdYDBGE7oP/Rzz1eIphHq9oUohhM47qXtPT2QRc/zXgpabhru8AH38JnC/n4e954Rm/VqxYsfK7xMEm4J9eQn4jgLrPh9HpvjqfvqM0K/EG//cc6vVHupmOCxvnt2nSag5YsCOOackU2CQagFOn4SXN12WfSNUIHK+5NJKCLT2XpO7E0DJOtnP6LvibFz/v9+75lP0yllKpFNavXz/vtUQiga6urrnXL7roIgwNDeGaa8jA/IUvfAGLFy/G2rXk8dm8eTMuv/xyvO9975s7xmWXXYaPfvSj+MY3voGlS5didHQUAJBMJpFMshLsta99Lf75n/8ZixcvxtFHH427774bn/3sZ/Hnf/7nz/DSD478ztYl9/cRmNc0hlDYA25Yxt5uAZ+Tt7fEiT2WoPFSDplSfZ9/L8kB2RmGYycS5NXwAjSMmgEuRtfnImi4/L/uAnCVuCwArYbzAmZRBhmVStXm8yg1A1yw8reUqqZqNKb6C1xkQpopTN8AF+dkHBhJ0lgS46+rzOMLBkvkVW8DGp8wN9Mnnqq3BOfTYfh/+9ID+KSsWLFi5bmTOf64M85jNKgZoK6Vpueim6VDg2N0tgNG/cW5dIxxVAxTn07EGfkBNDXXXaEBFPHYaqpmmq5LcU/OdFSIN4CThrkPFEPAi4apu+/tAwpRjs93tLI6bIqFevfB7XSYyQFn8B4ZGcGuXbvm/m+1Wrjooouwfft2BINBrFixAp/85Cdx/vnnz33mqquuQr1ex5ve9KZ5x/rYxz6GTZs2AQD+5V/+BR/96Efxnve8B+Pj4xgYGMD555+Pf/zHfzzQl/CcyNPu7zYZZxi0GCY2qatsokIGYzQbJQap0xhPJTPpa03FHyUaNFDiDVZHpAwtvWe8k2qQi64a1GqGSJMG2K40P+/6fK3hcuFVTV+3qTiQjLD6YirO1xJtAHOA3k/dpaE1luBCzVZ5DXHTfLEcYldsiZBFm5qK8wJ6zWPOfGOpGQDe/Bbgu9/h/+smSaVw41I4EQ9+7elFN61YsWLlYMickXTJGSSHjDeo70thjfwnGvwdMFF6aWQr+NSsaWkifT6jzTYIhqFpCbZMKq3FfeT4EVZMF8PA9SuYdYg2gaihb2kaqoDVU8Ati6jTp2OkdBFYhQ/NLkjVdT6i4zqM5RnxLB2q8nznPPerAa7I+35LA+OG5epZVIIEWQPKi5SuKf5IwrPSzqTVZhDJ/2NJehEC9Auaz8uikvTbdEzJKgVblIvSuCmE+dNdYXXEohzf6y5zbNNRpg1Hk+r11F2e9+gJGlVZ05xRjMEZA+KPNoHOKj9TCZky1TS9pInEE+/TRzYDn/y5/l+IAN9fB1x0DvD6h4G33wf/1Hc+gwdgxYoVK8+NzBlK3zma8IrpGI2kjCEYTtdoFNVcGkzxBjMEK6eZXSiGuR/sSVN/5k1EKF1TQmLfoZ4dzHOv6C+qo7yliwbTwz3UvbEmo1T9BX53R5YOeyUI1IPqSEtf0WBLo1UZc86xBNBZgX/JGc/pvTvYmCVrLB1AeUbG0d7ibwK+fDxw4TkmMmQWQLQJxOtAskEvodukqQK+VklEmkofMGUAgBLJkQhRJaSNbue8DxPREVDhVBw4epzfSZrUnWPy3wAjW2NJGkuSgjtxmK1UJK1WCut5wobwTHBIkt6TRoyVkGKeUobmYEs3mznOxqg4ZqNc7IKnAjjGB66af//uWcByWrmdFvxtxYqVgywONlEvfms9DZLhlFa5zZr01sZR0qSUTQXx8hnq02rQOKsRHuz1D7Mt1EiK+8BslIbPqinCJ9oj/FI590i3VkLHmjRwIqbsP1nnMSbj/LxUwVWD/M6CIo0ncbTbweaJOr+XrQKfORUA8FxZFAfbWLKNdF9IcsIwgX4P9HCCuj4ncqSpQGnhIcqbhdNyGGatmIkdb2hItRim8SG56cU5vibgPB+c/Jkaf6JNfq4YNuc1gOxok+cdNwuso8qfdI2L1HfYf64W5Pk6DPdTqkZvyDXM3Tuy/F0N0puRKFbAZwXcUJpjXTKrhlW0wYEKoDFVo5IA2E37/3spcNnP+P9d/cCxY/z70S6Gk61YsWLlYMvnT6bOm0jQGc0YnrpCgI3Of28nnVnBkvaVNPov1cJegDoUAE4YAbq3tYGuXergxzvoyEpkX5qmZ2p0WicTJAr+xEuAP3qAXRLGE2pgJeuG3NLTSNdUjOPyTMZCcFSSFdgwTqNpUY6Ew4epWGPpWcoBiSaJdFaALx3Pyb1qioA8z1EPpOVw8lZCCqhzwEldMwzYLWMwZatqmESamnoTQkgBClaC9Ayk67R8N97gwok2afCMJ/h5x1AETMd4rsECsNOAxvOmx5BnjKexfho/PvRYiQYQMKWsrvFSdqVpKJXCGsmKmTEvKDEVB4cgxEiTYeRZQ6T53+t4T/70Xubk713A3kmGx8nyMVmxYuVgifOPv6KuHAyT3DEfYfR+Mk09OVggq/ZPVgHxJnDSEBuTL85Rr5dDSvo7mqSx9L2jaFw92sVo/onDbKq7M0sDJtSisy0QDolixRtsexXxgL//NfVs3ewrEt0H+D3H57luXgx88Dd8fSrOaFdPmRGqyThf/81CGncrp62xZGW+HFADqV1+toK5654SsUBegCmvZB3IlGkwTcXoLQR8GhSSIosYgJ0D7RQ9nKKhIhGmUlj5NhwozilVozcxHeO5BgrAbxdycUl/tqEUjZU1U/RQmgmGcoVcshLiMYMtoBJW3qWqqaCrBXlsCeVKNV2wBfSW+fmJhCHFjFNx+OD1Lc7RWxJjL2gwW/D53Yd6gG+up+fWXdYy2t8uBJbPwOmxBpMVK1aeP3GuvJYOoGsqxqZj1N3S8WDdBHVpss7ebQtKNHSmY9TFUmU2FSffXi6qlW+jSQKwY0062Neuou4smpYos6YNVX+BbauOGQN+vQTY2mGiUy0tmqmENKrUDs1ouIzML5slx9+OLPeFsKdExd1lGmznPM6uD299EPjlsoN1y59zscbS05RnbCBJuaekvvYlS2a1hDNV5yRM1BWoHfa4yLrLNHAKYRoaQkwmxGOOIQzzXBouvkPcT93glTor2uNHgIExgyeKGWzTrgw9k96SGkgLTGPeYIvfLYS1AiLeIIBwOMVr6C8AFUMomapzfAuK/F+wVJJ6qxt+D8/RSj6hCgibxsAzMWDQ18oLSQm6JrTcUeExbh/ksbM1hoPffh/v1939QE9pDlhpjSYrVqw8V+Jcfj11WNZE22MN6mmAutMBI/V9Jeq96SiLX7ZnqT93Zqln7+tTOEJPmXq07gKDDvX4YAH47SDwYA+jOY2Adj0QephSGPifNcCZO9Rhno3y9ZQ53vIZvicEliKpGn9mozSUYibaVGiDcSTrwPpx7RXa3gj9MBRrLD3X4psUmhhAzQANDQHrCedRPaiTsRgyhkCVC2cqzgldDCugu9KWdms5yvbacug9jCf43R0ZegwNl6BpHzRuekumTNWQlQk4POxx0osR5gW42FN1Hg9Q4rLpOBm/F+a1QS6m6HXkojS8CmFGoLJVek+JhhJoOqAxVgwDQZ/4pHSN19IMAPUIvy8RroESx18NMvq2Zopg91KY4482eZ+FYwSgobatk+e4bgWcOx+A397nzooVK1aepTjf/S6wrQPY2q28dMJpJCDskNGf0aZmAhaUuB9s7QRWTQPvugu4fUD1dU+J0Z31s9Sxj3YRs3l/r1Yb10wFXM1VLjuA52857CmarGvBz4Iio15SjRwz0AbAFOwEufc4vsI35PtHm6h+OQTszDDKNZx6IoHwYSiH/xUeADkgabdJQxS2MK8EZDNRbS1SNBwbkjeueSSmjBlrX6jlhQrA9bXliAPlTBLjLGZYwNdM0TCSnnLVID0VMdyE56gcmkdfP7dQnBbH6LVVxNUM26ss+EZAoz67MvSU1kzSsJEqi81LgD8w7W16SvSuslUaUsMpjrvpAE2XizVqUozSJHhhnmm2XJtnlJJyWY/3tKcEPNZFAKOIEGI2AlRGIyk4F22Gf+npB+ChWrFi5UgX5323AZUVSqIrBktHBegxxTbJOp3IdI262XeoH+MNRvDXTfLzI0nFjjqgTq8ENZq/K6POs9vSvaThcj+pmpYmgILDhRBYIk+5iDrXhQgd70yVDrrjAxmHTmguqhmAsYT2+fTBMQynOKbJuImYlYH1Y3CcvuesIu5gijWWnkIOODapFmSUo7PCDX3ZrBoawRYnfdAYHTFDMiYcShLVkbLNmAHvBcCFUgxzEQhWaEGRbOCrphWHtCTHVBXAxRg0zXFlAWztnF8+2s7ZJLl2gEpBqvNcn+X9nkMDTPrBJRo832CBx793AXDciFbAAZr7XlBkum0oRa+pYlJzgsmS+yHg8R4Toaq5QDNKg6ph8F1CjyDjFMB6tkpF9rKtwM2L4Wz+d/inH1rs71asWHnhiHPxLwwpr6laFoqTUggIuaovY03jJBc0Yi9UACGPjmNnhbpuNmoyDYZMco4KxnAfiX50YCL/ZX53Mq6YTtHf0tUh0dCWUgCPJS1VHJ/jzpnKNgfU4zMxjmU6pnQvxTCPmagr8aX0o5OCoJOGgQf6DsLTeO7FGktPIs8ZiBvgBJyOMSe9ekrTZMEWF1Oizs9VQrowhC+pENbwaj6qbUMa0hjR4zE6qqy+WJSjt7Jmip5L3PApSeNE1yyW/iIX38M9Wr3WcjRq1XA1JAtolVvd1UiU53BhCvA75JEbavkMo1DHjNEb2ZOm0ZaLcKFLD7ku0/suWWeYuLPC40o/o/EEF/kik/abMgu6s8LP5KKsJHmgF/jcKTznyUOkZAD4+3GDp9qRhXO6BX5bsWLl6YuDTcBVJ5m0mk89m6jTaKi5NDJ2Gw6gaJPRmsU5OoQxw5uXNpQqYwnqQGlRIjCCbZ1Mb9WMYyx7UcO0kpLIewvUp4mGOrQAo08th44ywFRgM83IU8MFyj5fc1tAGNTru9Nk9U7VgD/cwvMXTASqnSxTuJsksi/8fB2mo8TS2ef1eTyfYo2lgyk7s/xZMc1FlazrgnBb2kxRaOulU3TUGCJBw18UbQKRulICBHwaEsUwvZx6kPn0JZJK8+mJCJB6PMFxHDdCD2gkqe1LBGjtmDx4yFAMSF68YYwmzzVGWEAbOPrgtTRc4JIbqBx8EzEaSwLlICvZhCgt0eAiPnpCQY3xBnPjzQCNof4CFc9ceDhJ5TBQ4DnXTrKFQCXEVOAXTwS+/CO958tnqNCWzwL/cjKc922ae8saTlasWBFx2vXBtavohAVPaYM61KhvOyrU37NR6sD+ovbF7KoYY6Wtp1olqNjVrV2mWCcKDBS1eKdkmp5LJ4agqWBrBLSauGUMGck0FCJ0WO8c4OvrxxUeIc3XJ+PMRkhWoGSc4D1p6mIA+PO7+f18hFH82RhTbFNx6l/p2CBZCWm9FW3SQT9MxTJ470Oe06jSU8nqKeUjEnoA6Tot/EopY1QFfE2ZZQ12qe5qGDXa1D5wj3Vy8vcXtaKuHFKGVvlupsow6rYOXZx1V8O6DZdjyRrg+WTc9CtqaOQp1NJWLNLWRCrZFpjoVckQVM5GubgLEb6eMWSXK6cZdQM4zq4KjzWeYKSsq6JA9Pv66DGtnCYh5Q/WclH//nYu8E1nkpPks9fpfZ6KA+NxnveG5cBFN829ZQ0mK1aOTJkzjhouS+2XzdC5ErllETGRNZe6x/VpKC2dpd7b1kHdt3yG0aRgixEawRQNp6jHaq46o5NxwjFuXkRs6XRM4Qcth9GoVJ06uxpUGEbQdEeQ5rdVV9nAXZ9GjRhwEomqBoFfLaURJZQwvqMFNz5oSElaLd7gWHIRXt8/ngX82T3AWx7g53IRpZsJm4jZK9/Owz4HVoVl8H6ByUEzlAAaMoN5xehIlUS0CXgNrUpINLTXz0hCaQVkUYVMxGkyzvcKEX43F+H7QqFfNHxIXWUgGOQi3pnh+STqJBEk1wdg0oUSll2U5wITagNRAJ6j4MK6qxxLuai2Q8lWGXpenOPfuzOadx9PaN5c6PTjDWDDmBJbCudItkrDsr3Z4yu2Aufez5YxMzGm5IZSwLe/x2vpKmuPutN2kab/w7cAsCSWVqwcCTIvanR3PzCaAMY2UvcsyTFlL06oyKm7mdaXbgTLZ6hTu8rGqIhSF03H6NhGmmogBfz5vdwk+l41LaZWT6lzKoU+UtlcCVJvuz51asVgRgsR6l8f1P1Og7pucY7RIeF1ahmQeabGyrg/2KJjkx6gAKNa0hdOQOZ9Rb6/eBa4+sd0TB/tJtdewzjndZd7TqwJ/McPgf93MoD+5/oRPu9iI0t7yUE1lhbmydzdMtGWZoCRpJ4yF2QtqPT1wqAqzW5dnwsgZf6PNrlYSmF6EXVDMuaARhHA98YSGiL2wXMLKZpUzAm7q1TPCcN3IaL5aweMDLWHjGdiNIikO/bKaZ57PEEvSoCOEvKNmhLWYItpwXUTvK6cMRoTBkS4bIb3Kl3j+6MJ4H9Xk7tkayc9vYV5Mss+2Mu04u4M051bP6/3+8oXAec+ANy0mBGmf7l27i1rMFmxcvjInHE0GQcuOQP4iztJ5PjjNdQV2SqNhB1ZpvWDLerLldN876Rh6tH7+9ghYDwB3NkP7Mkw+jNg0lMLiiTFFTB1xOPrtw/wO3cM0KjKVKn/+ko8fjVIfSstnwTfBPDvaFPH/y8nA39zi6FcaWm0vxbUz1WCCg53fI38hD0agx0VjjEX5d/BFnVkwVTz9ZWYgnu8g7q+HDLExiHtSZo2e5PjcyzpGjGvwyngmmMPeHTpYEeWrLG0lxxUYwlQBu/eMq36REM5hKqmhLQc1oqyLhNRippyVCkD7TPtUKZjzClPxbiIl84yxeUFlCF8LEmDpBBRQ6vmamsUgAZa0KTvxhI0Wophvh4w1SCOwRHFjLdSdxmGnjbVctkqjaRdGSqOgQK9nLv7+X+myhTbQIHe1kBBjbidWSocqdp42TZ+t8vkzz9/MkPnUuFXCtGQmozzZ1dGo2Qv3g385iv8+7qVwFnbgctOo6J6/cPAy7ZZY8mKlcNInK//NyMu6Rr1aTlMIsjNi7m5DxSoB4WjTYyLzgqj0okG8OrHCITuLgOn7SYh5I4s9V/Eo85yDSZ02SwxTjsz2pqq4QJ3L6ATGfIUYxkypML5iLY3SdX4HanslcIaSZeVw9Td4ph+5lTCDY4d5XEbAYVN7Mrw2uMNpZUJe+r0dphq4ZajxJliGO5O8zMzpr2VOOvS/SHeYKpPImWBFvn3vnz8YWcs2TRcmxx0QwngohEqeWHlbudBqrucqHWXE3xRXtlYW4bddSZKj+D4Eb73q6UmajVNg2skpaDxgMlvL8rR65mNam+gqTgXTawJlMHvxBs8VjlkjLC4sn9XQlwsAkIUxvBMVSs1ek2DSOFfunWhMoS3HM3N39tH5XH8iHKO3NfHY9VdRqx+vNrwV0W0AgXg96djJmUYJH+TpBYB4NZFwHtfBVx5LZvvbhwF/uIu4JpjSdc/loTzjk0AbITJipVDUZxLbmDPtMU5rvveJB0yidp7jpL8TsbpKAlwOuCrTpNG47sy1FWuiXrf3wscP8r/h9M8nujUUoj4JkDL7rsqim8C6NhNGRhCqkWjK1Pl8WINrVaONTRtJ7jRkMfj7E5TT3/mVB4zXeO+IRipRoCR9Z+tAC64jfpYoAozMeWrq4S0K4LrU7c/1GP4mFzA8xT20DDGXKwJ1EFjDOBeJGDzDWPP12N+XsUaSy80mTEEYhFPaQFkgkteXBZST5kLQtJhwvMh5JLXrmLK6thRfmY8wVJ+aVY7bdJkWQOsXjVNT6hDyC59U+Hhzu/pBigwUPrKecbQET6OWpBG1fIZKo8pg5/a3sEFlqkBvUVeVyWkCzdTJ3OtdN++cSmPM5RmGi0X5UKumZLV3SZKJXxM0hepZrAALanYKHOR5wx+a48xripBvtZfBM5+nNG3xzuAfz0ROH0XnPUWw2TFygtZnC/+hPrkngWkDlk5DZzZlr4XGpSJOH+8AKNJMROtXzrLlJzgLeMN5b5bkqNOGChQVwgfXm+NeqIQVsB1wKf+lp6Xk3GNzu9OEyC9KAectYM6dypuHM+gYpGkMGcqpq2yIh4xQtJUPQSeRyJk598B/NuJNGgqIR17zVWjT6LssreEPK28LptoUsRUU9eCbbQFBocqbaVkHxAjKQDe+1BLsw2TcWD9GIDDi2/JGktGXhBRJYCTXaoT2hm2q0FO0IECF4zQ0Ut/Nd+UpOai5N/wDD/Htg6tmOgrciKPpLhYM9X5ZGUhQ2om1XBS7VE3dPqBlnaolohXss7/ZXEBulB3p5UH6ehxKp1EnV5aLmIq24o8h+9om5O1k8BdCwzYMMTzzESBj2zm8e/rA36xDNjSxeOYCDVqpiQ3UedrhQjH2XRZnpE07LlegMbXlS8CPvFLeoy/WkqM1PIZGpG7MsAP1wKbF8OZ/Tn8C895PmeBFStWnkScwqVc93vSBnaQpB77vZ2MxgvuciLBn3xkfnppJqZA6kyNm79Uh0n7J8/ozFiDKf97FhgSR/D4uYgaDAJ/KLbBI8Ie8IN1LBzpqJrG31CG7ZOGiYlqN7YqQcAPatSrq8xo90ABeNv93BOk08Nc89smEAHwJ/eSKuVfTqae/+P7lTzy1Y/yWFWDyUrX6BxKJbJgWKVFS8kYbQ1XjSQxBsVJFoMr7PE+TMaBy02E68LNwKL8YcfkbY0lvIAMJZEblgMrp4Czt9MAqAbVOwp5QNp4GbMxJQ4To0oYqzOGIkB6tKXqfD3gG86iiLK9egFii7rLJi1X1Co0kfbeczVTBeG2tGrDgWEch0aFgialNpLUxo4CSJdjdVZ0HGKkdFSA7goX+CPdpAH4k3v5nWaACsMBF3PdpXcDg1UCqDBDLb5fkjYyAQC+qepr0fj6j+MYql8zxdfv6Oe1L8pT+U3FqAySdTh/ewv8T5/63D97K1aszBNn9+dYhDGSokGwIsX1LOtfilpSpoPAbIL6rBwCZiPE0IhRkjdEuKUQUDBVtuma6qpWEwgZp6urQr0Qa1A3CmWAOLHCmN1wlRdJKtayVZLwShFLy6Ex11lRPNDPl5MT7oO/AdJVAFEtqmmBuvtFQ8wgtBygGVT6gLpLXKro1mUzNJRGk2rEeAH+vXaSY6yaaL/0k5NImuCNXJ96fjwBfP8o4P/brOnFoHGUxfgJeW17koGFbBxRUPqKmYMzWZ5DscbSM5FAm7nsQ2nlHWhPNfmMvLb3b5jvFcP7PseCovZjEwxRPqINdYVVuxBWL0Oq4sT4qwUZ4s2ZnkG5CBeY49MYqAaVyHIyTqVRDPO8UiEnlXCAoSXwgJik4sDPhj3lDnH9+Y19Ab73oEmdSWpPKvOEsTvg8zz5CEk0+wtUfhK5KoaB2wYJwhT27/ZxNYPKCSWVIOINSWRujrXchJonXXpDf3w/PUxpGnziMM97bx+P2VkB0jU43/ku/Le8+ZnPGytWrDwtcbCJkd1aEFgbUy6justUfswQLe5Oa+RbKmsler43N1HJ6FrB5oihkzKbfi2oYO2gwV6Ox/n7sU5+p2BaOdWCQLEt/dYM6DgSdeqR40aoz5J1/l4zqc5psq6dC8ohIOrQiIo2lVuuHKLjFm3SufMdniNR5/U7Pu+JcD4tnaGxBBCL+eM11Nd/cq8CvqXnZjU4P/0WNw7mTJRjGswDYXP/vngi8O47dWxzmCiX320YCMQ52w1uy3si7cJhINZY2h8JeRp+lDRVu+EjxkN7eFYMp70NJc9Y8PuShXlWU+Tayk89s5iFtbsQ4aJJ1rX9ifT5KZsKCikDjTdUYYhRI9GWusv3PWMYlUMKDgy11CAJe+qBCACxZqZPI0ADSCpIhF1bjCO53pAhpAz4xBVIPztRABI56y/SU9qV4dju6gfGVyrgsBLUiJtwOtUN+LHlADPmmFIt4jn0/OT+iYHYYcguv3M0029n7uB1iKcpzY+lnUC2Cqf18TlD2GKZrFg5sOJgE/CjNUBoJfVn2lRpSS+zHVnqki7TEy0XYYRd2K3DnvZck95s0l9T9N5EghXHUcN6XQlq30kHRs8bJ2smpozd31qn2BzPUbyT9N8EVD//z1rgDx/RpuNi6Ine7S0Bb3qI35EolRhIdZc65+bFTKktzCv3klSiub5e509WM9XXXaYBuWyW7xXDmk1wwOMKuN1tw8P6Du/reILRsM4KyScF71QK8/iRJvVlM6CFPG5A048+lH5Gjn8YyRFvLO1XCk7SS0IhL0bKcEojTEdNAHUDLK63RVfm+n8YabpPfp5CuG1S+kC1RZyO7wCvfEyb4Er42TWgnWaAi7MQ1jx0xvTwKRjDy3fI9iqVFp4BiIsykga50hNIqi/a25+EDDml57DNiUS7Qp4aZwEfcD1dREHDRSKlsYtzNGC2dVJ5Zav0vsbjjH4JJ0i6xtJdIZ0E2kDhMj6jPCQyVQwbgDw0wiedwKWXXbJOjFJ3WZtFnr1d2cJrQSo0aVUgka/bB2lkrZ6yBJZWrBxAmeNCihnqkukYkHQJhJ6Oqa4KeYyWCwfQTExxkuJwSXpN8JSjSZbttwJMbVWDqjMkMiNRcddnIUwroI1opa9ao80ZBVhtJn0+l+Sox3Zm6HRlTCeDkumeIN8bSvH8aye12Ka/yHNJZwXXZyFLutpWaWYyAa5PA0YwRw3DXTeeAE7ewwriaJNM3eLseo5WTEtT9EhTcaY7s4ykHz3BSr9XbuXrwRrThEtmNRMglARCmFkJtWVYmtrAPFEHm88dHnJEG0vPGKskkaKAz+qK9sXj+PQ0Wg4nYNIQJ84ZF462GOkus1x/b8lFCbL2jScB8FiALqqFeY32uD439UV5GgrXreBiHShoZURnRUvqJf0mLK0jKdNkt6H91oZTmq9OGjKyAAgKR0hTfTNR5tS7y1ysoyaHvqDIscYbanh5AX5u5TSvrasCuFO83tmoWcwBQ9wWYapu+Qx7HUkVilR8VEwaUjBMklOXUHvMgDObjmH8rmmoHuD31kxRCdzdz+u4fjlw6h6eu8fwXE3HCCT1AjRC93gElh8/Avzx/dZgsmLlAIiDTdQB9/VxPT/eQT3QW1LqkYV5IBZQwl6pvJVWTRunmS4Tx64Z0BTT7YPAPYZV+qXbtPgjYGAB8Qb1kRSqFCLajHZbB/nYLv059ZsDjivSBD57CotFRlLUXbUC9wSA4xK+uZqr1XH39fE4G0eps6UX53iCn0mY1NyrHtMWUYKTijeoV6WzgxTnvPlBdXQFV1oNGj4nX6vkfOhvcZbDHiuBT9/J6/jlMuAND3OMfSUagYLH6qrwul0TpZsx1dc+2Nhd4BflENBThuOEDxuQ9xFrLD0jQ0kWoDx8mTDtcucAJ3iyzgqKsx8Hjhs1TNhBTiwJtTYDrLSQ4/1shR7nkZ4nnv+yn9GoebCXC0AIJJsBLp6Hu2nQLM4ZYrM6jZPdaRpbPvidYpiff6SbxsKxYwYU7bEU/6EepbzvqhD3NJFgtCUeN+1RDOhPmF7XTZLkbVeGHlUzQCWQrNPgWVDUSoy04S1ZOkslMZSiclozCbxzB8e46UzgpiU0WLJV9TYl1SaLXcjg8hFec09JwY0tBwgaLzFggJczpjfTmkntkfSbRaaFTIDXvnFEy44FHya5+NGk6QPVCXzqdOAjm63BZMXKsxDnuBHgjFcy0rsoD9ywjAbIshnqHam63Z2h7lkyS/2Zj3CzTtTp4ElPNiGgHU1SR2eqGmH5xC9Zwn/BbTR6pMWSRNclclI0kZvrV/Dn8uu1Sq7mUmcBwNvuo569cSkLc0Q+fIsWtADUUz9cSwf2lY9pdOjxDu2isDBPYy/k0bH70RpWEZ/zuDrOlSDJLqtB6r9XPaaGlmQbGgHFEcWaCjBPGAC8kFPWg9ouSjICkoGQtlpuizrUCzBT4EOzK2FzzLDHZ7HHV32/I8vntyP7fEyh50WOWAbvTCb97A4mrKuz0Sf/zB8+wuhIosGJGGlqWqga5ASbNJGpWhD41vonP9YHf6N4Hx9UBl0VGiGlEAHUEwkuuO6y9uvpKXHhP9jLMS/K8/dslJO+v0jDYCitC3BRjnlvobQfSnNB787QwGo5VEp/+IipSjFg8JdvpdIaSSrIUnBZ2QoQNcbGeXczWnPngHpMnon6rJkC/vZmfmc6xoq1SpDnKRvbvmzoDoQxtx4gMVwlyPFK5YtrFrmQUkY8XqMD4MV7eA2VIL3O7jKNp5rL+xhp0nuUVjMSmXukm4aStHhpBKiAjVijyYqVpyeOA0Zojx3VQo5fL+Fr/QWNcgvNSaKhG7UQ8wqD9bAxXiRNJZxIEpX5xTLg3gVsmi2OVcNV/QtQ93VW1HF8rAv43lHAe2+jYzeSVH0n6bqQp0aJ4COH0sqSPVgA9qSoZz/4Cj3Pu+7i5wXC0Vmlnnmgl/ggIfYNtjge4dETgHjNpc4aSgMnDQEffrnpXbdHo+zSSUFgHdJTNNjSwp2eMsfz7fV07r/3HermlsmCCCyhGOYzaTncc2JNHjdbpSOeqfJ+DBlgfbzJtN7nTjlgkSXL4H0QJJM5AAdpuEAu8NSfmYyr4dIIAEljvSfr3IiF/Ey8pKPHgY/+vn7/LQ9wkY0naKE3XBokEt2oBpV0TYjBpGfavQu0K3TVVWp7gBNfyNJKJj02Eacx9oaHqTDWTfDc0SYXyY1LWU76ezt5rAUFGh91cHFNxhmu7i7zfan4yFTVSAl7wH+vI65re5bnk7z5qx8DXrKDn9vWaYCahqhye1bD7UlTCSLK0jF4pWqQXlpXmYs53qRxNZnQnnkig3mOaypGZTxQ4E8hzHtdDQJRl+PurFCh9JR4nRnTAmFWwOYh4G9fRvzBO++yUSYrVp6GOB1V4K1baYRkq9QFD/QSozOW4PrurPD3giL/TtWU/X84pak0IXMUQsdCSAtrBBP00seBNz4MdJf4veEUq2uDLUaqxKhyferE2RSww2wUjk9DqRTWqLUUj/gm9V8NKplvykAvimFGvlxfSXDXjwGvf8RUJxtHe8UMfypB5XMSkegOQH2crlFXDxTI1bSli8f6h19zjC1H8ZmCS5XIUaquRT+pGtNrkoZ840PA2++jDp2I87xLZrUQRsDedZdOsw+t5O6sAG9+C6NvIY+kmXFDt+D4UMzGoS1HpLF0QMTxFXu0Lzl6nIt3PEHPRSrNpLJKQMZSHr/YgAM/cKuhsQc3/JZDwypmlEHWMG0HW8CjnUCtS1uf9Be5CKJN9ju7bZCTf0mOhlPN5XEkryxA8UIE2DDOlBcA/HaQeAGhLThmjB7SUIpEawCbzv5gLT2PkKeVbfkIF4lU8AH8TG+JYdmfXQOccR6QrtMLijWB5dNUAg/2UqlIt+yZmDYDrgSZE5c8vUSZpIQY0EiYhOUnY8QRJOsm1WhC+emaAkZTNYbFf7GcBt9gXrEQM1Gg1s3n9ZpH+f6rHiM/yo4sFRXA6x9OAVefwBJbK1asPLW8/1au3e1ZRiYaAa7J5TN8/7RdTP9s66CBIhhQqVwTmhBAIzqVoDqjDVPg0llRULbjqw7JVoEThoEvnkTdu6BIfVMIq/NZNCkp6c8pkItEXatxpcBGKEqkcbjwK4lBkayz+W2qBnz5eOohAPjsdbzuG5bxWIMFrerrrGiUqG4A7wmjywph4PvreL/aq9BKYTVsisb5c8BjC6WK8NHNGhbwQlhpD0ohbaIeMPo/XeOxp2NaUdhwFQsbbQKf+hmPcdQ4AflveTOv96n2yENMjsg0HJAD8CzDeO18PXvLYJ6LUbydeIMLLlnXcn/5P1VTrqFclEbK9qxu5H0l4mtmo0xbAbT0vQAncaqmpGjVID9XCrM1yLJZVoAMFjiOXRlGmaSUVcCP8QaNGakym4qZKI0pzY00gRNGOJaJOBVLdxl4tIuekIS+UzVdYIAqi6YZ67JZ4LVb6BVdt5IL/JFu9QClb1MpRIOo5TAlJgBJwOTKPa16C7XojUY9KgOhLZCfY8Z4P6TLd870QJIQvVz/fX1UkAMFXnOqrr3tAF7TWx9gz6eeMvvSNVx6wV6AzzXi8ft/caeNLlmx8iTiXPwL1VWyTqX1UtroyI2jXHNTMa1CFv3kg5/prrCA5qFern3Xp+4VbGnAV3xOKaS9NqXYJlWnLvj7s+lcrp3kANM1Opq/XAacez/1p3A21YKMtE/FtVl3O62LpAUlDeg7JJishhip6arovtEIKN/SZJz8UUILEDdjlbQfwMjVIoPJWj/Ozws2Se7PVJz6Ol1TLilpWeI7NJ6mYtRtC/Pzjy9/LyiaqFSTnwH4fCZjjNSXQzTI+s0+UAkyHRhsMbJfDNNZPW4E+Mlq+F8+/oDMG5uGO1RFsDbtItGmWEN5JqS8UogapdSyXFdLX7wU4Q2SnkU5U2kgRGPJOo/dcGn0OKYKIdSiVzQR5yJZO6kEZ8tnOLkX5umtzUa5qadrSgkgIOkdWS6i2wd5/q4K023lMBfoHrMgSmGeL1NjGF2q60ItxSYJbkjG6wVoBH5zA+n3T9vFYywo8thjSRopcs3txJZCECdKJmrSatLqZTTFsZ93N8f8cLeW2zpQL8l3gGhDydkGC/zcli4FJgqHk+DRqkEaQH1FpglO3c3x/v52PpedWd6XhsFdjSWArxwP5502HWfFiojjgOuzGgROaOraDXsaAUnVqZM6K8QLdVa4duuu0rSETBqsHAYKnvYtcyM0FEaT/F4zwM/OxJSQdjaqFWW+GEs+8aCfO4X685Q9PN+MSZFJNVvL6OdGwKx3V9mvxekqh/h+3RSiDKeAh3toaACMpL9kB/X7L5eSRwlgdKnuKpljsMX7IWnFhXk60f92InDVT8gH90AvdafQtkibl8U55cxDSzkBk3Xem3CT+kyIMmNNrZgO+Hwt1KKBl6jTSS0afQ/Mp6lpmHtcc5X6ZSpusE5l3qfuMhwHh0VFnDWWDqRIyHFr1/zXs4YrQ6juAU6ohqtNCysGeBxsMV1VDBMgLa1J2onQBITcXebEjlXpUaVrCgwcTXJTl5z3Y51UANkqF287WeVMlItLmtGKxyAEaEKoJpVopZBWXAR85Xuqu1RijqmQ6KgCCVdZdAM+vZr/XU3DJNKcHzoWD0jy/BKhEiLKUAs45zFef2+JC/jePi7+3hINrUpQmXmlxFUIRH0AUZ8GVWeF39+ZUQO3aPipOirEKBVMWlHC7KNJKqPFOY5LGk8O5pUaoRyikvyXk+G8/VNzz9saTlaOVHFWTQF/tptrbjrGdH7JOETpmmKFJCLSa/CBlSA37GxVuwQAXHOiK8URbW/kCpgWSlC9IphHMdIE+Bxr0uH7q9uZknugTwf+ezu1HL8U0rTfdMzwzbXoMHZUOIbJuFbhhk3122m71CgKtehIuj6rhx0fWFjgNUiLFIDnyRhdXgqpE/tXt9PBG00q63i2ajiPDBg7uJcxIxGiRoDXKVx8+Qi/m2ho7zwxmCbihoupxXNJP7t0jXpecFElE0ESeEfI6PycyQq4LRY4LZkFkH3O5tfzJdZYej5k1vAI7V1GKSC4hXmm2vpKhrZ+llVrj3YBP1zDz4rV31kxKauKNn2MNnXjLoapjJoBLigJFZdCTJmla0pOlq5xUQKc6BINEwUjBpUQu4kIOaRUXNRcZcCVNJwAqsshoBhSgkjpyD0d09SbeGTSrkDGEzMVbHvSmqorhrU/U1dF8VvdZb3PzQBQNmDweF2xWQDHOhMzPFIm1RlvMLQuTLrCfivX3F6+fPMiEraJwdRXopcnVTQV4+lu7QS+chxZepfOWuC3lSNSnKMngJfuYJXrB15BTOZUnBt8xFMMjLQi6qwoqWHE41oUPdBb0vSa7+h6jzeU0qXmAl87iemzDeN67ITB8dSCqivDHvViK8HxvfUBbQ3VdKiHGy7gt1R/hBzyxElUTChh4gYHta0D+I6pat44QgLMitFp6ya0kjlVI6WM4KtyUf4tekyKgmINJeh1wIhTIcIIuVTgJRrGEWxqA3ZpbyJ7RtVEyxP1tp52AY3iO+Bng622wqMAzyWYMKn8jjW1Ug/QzIFQukiPUS/Acx87BmssWXl2IvwXLXDRCoBPFni2CiyfVStdIlfiGQln05iJMgmnh7B/d1YUsPxINxXFWIjKQtqkuC3+Fs4iH1zcnRV6XsJWLud2fPXswh6rwobaImlS3VermHA3CNQUjFeqzvML11TNVZJJieQIcDLWUK9GOFBmogTAF8IErkuufnsH70fJhKVNA1xkquodBlv0eh7vYNQuYYypjgrHta2D55k1bL2iqOouw8peQEGfIp0V4PRdjOI5AHo85TbZnWF/ppduA9ZOWoPJyhElzrFjwMsfN8SKplAk3NS2HdGmRrSFSy1oojVRSdWFtYIrYiLNEh2RNLlEhgWLOZjXQpp8RFNyDrRoRYwPqQj244z2SOun6RgNGM8hczZAPTIVVCyjF6Bjmo8Cfo3jbxnowMI8cN495GJ76wPkTPreUeRMWjmtLUhKYcCt8frdljq+k3HdAzqq2t8yF9XWUHVXG/eKsSlEm8LB50TV4BGKl4APeNA+b9K9YTaihqXb4vX9v5OBj9ysRpWkHaNNs2cYZ1l4qgI+x9vuQEs25RAXaywdDIk1uAh6yvSWOipc5DUXyLQMg7fxoFZNcUEJt0c1SO9ClE01yE25GGY6Skptq0EqpnyEymdxju9PxfnZWIOvB1rKhC0eRt1Eq1om952s05MRqnwJR4sCkqa+AR8oOIzczEbIHSKVGQDfFw9PKs4kSuX6WlEi6Swx3kLefNC2tFOZiikgshnQVgFeAFg4Q89QsFSiJOMNRvgm4zzvVJzPYTzBCBKgbRM8E32TCsTbBjmmB3oJsGy/rqWzfG4B34BAzTMohYk3MOBRazBZORLEOW038EePKm3HTJQcR/f1MSIs7TaGU1y3vSWu5YrBVzptaTopFPFNessxa0wwozWXRR4NoxvecZ9iaUohfk9STPI74FOn9pSpwwqGwy4XUQyPGCWCeQoYY6wUBgI1ptce6WLhSm+J+MV1E/z+e27ncaWVynRMcT+putEN0L6Yg6awxIdW8kU8TUE6ZrzXrSAFQqKhYwX0esRoEq6oREOJN4WrqRnQTg4hE2FzfabdpMuEZwyxsSSNvFN2KyUMwL1FAOxybECNOMGLFsPzaVsOYbHG0nMtibpiZJJ1xb8AmvcGNPwZ8A2pV0MntVAPFMIaQZJok5TSj6Q4+RcUlRJ/Ogb8fAUrKE4eMn3rXEZhJg0QL+QDnglrT8a0zHR7lotDFEm0aTyhkFabSHPFrgoXhdvSJrwNgw0Q0LvnaGNKUZTlEL2xhIk2SYjad2h4NFwCq9M1Aj6FTG75DBVJOUQWWjlH1Uzn/oKSc7YcpTFwTd59+QwXveMrKNHxabRKpd14gvevYfBR3Uapbs/y/W9sAC65Yf6zzlT1uZZCirPKRdgMOOwB68etwWTlsBXHATEqZ01x7QYMXmgqxrXXUaWTFmtwfc1GuY6lebUQTAqGKdoECmkaKDVXU0iSckJAcZWSRi+HgJT5XGdFo9XRplbnGh8NERPJEcyo5yhLtZTtS7Q8F2WEueUQd3njUh4jH6VuvXEpAdwfuxG4dSGhFX97M3XcB27lGMVgE2LNapC6RbiMKiFge4gR71RdvxNv0Jm7YTlhAMI5FWxpalEoaQK+ck/1lMz1hZQw03Oo30QHSmVgqqZNcQH9fcsiGl5n7eCxOirU+Y0An4tE9poBPk/BNIkRtWYSzroJ+A/voyvFISSB3/2RJ5dLL70UjuPgAx/4wJN+ZvPmzTjttNPQ1dWFWCyGtWvX4nOf+9y8z3zpS1/CGWecgY6ODnR0dOCcc87Bbbfd9oRjDQ0N4e1vfzu6uroQj8exceNG3HnnC4jXJt7gJr1iGlg6A6ycIvYoWwWCni5CATEOFLix95W4qNMGP+QFlHhxOMWJXQlqzyIJvwJUIDKBM6Z0v2Q4jxJ14MRhnv/+XuC7R1NxCK+I9BFywGP0mDJQ4TKZjNMjHEsCW7oZUdmT1rL9CROlStW0y7c0sJTSVymjlao/z0SUpuI8/u40j18xizxkUoKCJYo1iT0Qhu+lsxxvxRhGjq+/BwqM4Bw7xlTbr5YyqiPtXu7tY6UcQIW+fpyfXz5DxZKpsRrmlD0MlfeUee8iJg150U00PL9zNMuK3/UHpECo7uVzRJo8dneZKYFok0pqNsrvgREmxxpMVg4jcV73CNfvziy7EUSNEfJoF3XSZJz6ThzGXRltrN0wOs1tcZ3MRGlMDae0qEWwMgCNCHHCmgHq094S3xO9NBmnczaUZsVrzhRriKMptAJzKSZjxEQ8TdsLPkqMgowxKMRQAjSdBfA49/Ux7SYRnkaA4xhJ0tnanaZe7KxoJbM4y4Uwz50weFbhr5uIcyzf+D51ymiSn8nUFIPVXTbXn6CeFqA2YPaHqtKrlA0OVeAY4SYNWTEMo03uWR+7Efj4L6lLd2YUDpGqKUbTPJK55xPxeK8EJtJbApbmnsup97zIM44s3X777bj66qtxzDHHPOXnEokE3vve9+KYY45BIpHA5s2bcf755yORSODd7343AODGG2/Eueeei1NPPRXRaBSXXXYZXvayl+HBBx/E4OAgAGBmZgannXYazjrrLPz0pz9Fb28vtm3bhmw2+0wv4dmJ43NSC4YnaLA/zQAQAflChP8i0tQoUsjTkv2WowsebQbQZJwTXcLQtSAXkZSAeo7yA0mId1eGi663aEjUAkrEJsDvUpibuzDiJuo8fw08Tm+B3BjbOrkYxXhpB0c70OoT4UESfiVROsLxISm7uqseSz5izmnKgYVLRIwfUZrdZS6+xzuobF/1GK9rKKUh80ALcM1Y+oo0qtwWoz4VAxpP10xzyoYymDcDBq/UYMSnr8R7IiHkZTM0pvqLfHY/XUVg96NdTHkGTOrPAXBnP5+VRMFOHFal/eI9Ol9GUjScC2Hg2lUEd/YXbJTJymEhzq1fBtaupbMoRs+WbtV10vD7wV5gwxidvrDHDVwiOp6jxoXgLx/o5fpeO8Hvz0ZNnzKTJnu0SyEEEoFxfQUrf+kEHeTf3ELnqByivuwvaislcXgEAykVtNOGzqSjwv/LIeCKF8+/+GSduMSztnOdf3s9GbUlel4NMiIV9qg/yiZLIPiiyRh1zKopFoa8aIj6pBCm0dhZYXTnx2uAL/wvHc2ay9SdD9W1U3ETkQ+YKr2q0q2k6nS6+0q8zycO81xlk6Z0W/x8X0nv8aRxaL94EvD/fspjl0PcRyTTIHhXSVW6JpLeVdFeqNMxpRw4hOUZkVIWi0Ucf/zxuOqqq3DxxRdj48aNuOKKK57299/whjcgkUjga1/72j7f9zwPHR0duPLKK/Enf/InAIALL7wQN998M2666aanfZ5arYZarTb3fz6fx6JFi3BASCmdNqBbxERVgh7zvoEWqyMk3CoGh/wvvwW4LKFZIXcUigBJd0nVm3CMdJc1utNd5k+8wcnrgxP6/j56cRGPGJ1iiGNKmIqL5TOMnqQM/8Z4wvBAhZhCingKChQcUMAYhw74nvR0C/hqCLYcLk7x4HyHrz/STaUiYeXZqJJxClEnoLwh0gpF2roIwHpvDFS8wQhQugYcM8rmu5sX8x5IPn7ltPFejZclpcqLc1TWo0mOZzzBv7NVgscB/p8zindxjl7zZJzhbWnVILgrwVWsnWRkadXU/DnzUI9SFVRCbKJs2MetwWTlUBXnP/4H+NlyTaUJSWtXhbxrQ2nlRds4Sl0gdChDaUZcRJeGWjQOVk9xnQ6lGHmONumM5CP8jhSfSNWc4AyFokT0aruxtOlGOjBjCY51SzfPLZ0WMjXt+eiDztpEnBxMn/8px/tYp4Kn//ZlZP9/+300koZS2i/ON8BmiQCJ0/qxs3h9771NI++iy5fkqIeOHuf3E3XDaRfV6FW8wXsZ8HkvfdCIyUVUr+Yj1MFhj3vA1k7qquEUHbmuCnX8ea8jtcHZ23mcZF2pYASOEPJoAE/GgXf+IfDOu1jhK10V2oHfAV/Tc5UQdWQ1SCf+e0fBv27Fs5pnhyQp5QUXXIBXv/rVOOecc3DxxRfv13fvvvtu3HLLLU/5vXK5jEajgc7OzrnXfvSjH+HlL3853vzmN+NXv/oVBgcH8Z73vAd/8Rd/8aTHufTSS/Hxj398v8b3tMQR46ClC2uunB5A2OfvFjR/K9Vk7b17JDojUaa6q4A9kbJhs+4vmpYAplxWwp2lEIB4G1DPhLGlM/fqKSWGXDHNxTwZ101/wzgXw2CeCmNrJxCHhmnFi0Nb7lyux/EBx1RYNE0ZqpSZ+kE1plyf4y+EufiEKqASpAJsOfw71lRCzmYAmEhzjOc8bjyolhpfEiLvKfMad2SB/1tFg+Y1j1KhDqd4PQ/2qBKXqNxRE3w9WadhefIe3oeNozz/jix/pOFwR5XKNeATxLl2UtnEo00qLMFilELAT1ey/LgcZlsFgOdsOfSGu8pMCS4oKg2BFSuHovxsua6BjgpT1dLGacks138tSP1zxwDXr0SAok2mz7NVjULszHCjlWh1d5mO0yPdBFO/dBvfizWNnogDv1mkzWvzEY1uAdRTH/4NjY9bFgGfeAnwpR+pozNlcKFCNBlri0B3VIGv/pDj/e0g9VhfEXjHG9hI/B33UU9K1R1aQD3MgpjRpBqQS3I0ej74G3VIwx4jbC0HOHqCztVUnAZcpgb4Yer4LlNNNh0zzN8u7/GWLurHk4b1Whbl1dGuBmkYDhT4PBbneJ39BeCMP+cxb17MaNcFt1E/jsb5fDKmCtgBo3DrJkmeGWlq5W+sQf01kaCe7KjwGlN1vjecMjyADTZLxrMzlg627Hdk6Vvf+hb++Z//Gbfffjui0SjOPPPMpxVZWrhwISYmJtBsNrFp0yZ89KMffdLPXnDBBbjuuuvwwAMPIBolt4P8/tCHPoQ3v/nNuO222/CBD3wA//Zv/zYXfdpbntPIUsik1YItxeu0p9nCLY02BVtqXLW32pDPy/sSdQIUPDdrGK0XmQ1VwsVS4i6bebpm2p/UlcBNFMdxI6TbnzFlpFMxNWwSxkuS8loBT0o0S0pkJZImnEUTCa2qa7iaTpPKtZoBG3oOF5RwgUzHTLQmSqWzoMiF2c4MKy0NimF6QtMxKg1JZ2arphqwQVqCXERLYiW07QXoBQp3kxBqui1jlDWokMeS9PSOH6FyH0tSWY+k2H/OgeIWchHgdY8whC1GowAnxeCVcuWhNA3Al+zUsDfA1x7q5bOQ++k7wElDNrpk5ZARB5uA97xa+c+kzF7IdxOG+kN0yZpJdgbIR+g0FcPKIl0Mm56ODTpsEmmW6LY4SYuNweGAeqNkqFcW5pnGKodokEmk+0Mv1wH/9W95XIA603eYDgR4nnyEPHS5iGIVC2HqkcG8kjIC2mpK6FU+eTodqb+9mcZVI8D3vIDpvRbhvZiNslF6rAG8825tBn7UBPVINUg9Xwmyse7L38EGt39yL3XmjqzijaQnm3A9SeuWrgrHXndpKBXCvP/Hj9BxlOt55dvnP9BEHfj09XTupAPC0RMcy0iKurLhMiPhtrS3ZrzB/aRqUn2zUdPL1OwLEtGfjQL/sxb+z5Y/4zl3SEWWdu/ejfe///24/vrr54yXpys33XQTisUibr31Vlx44YVYuXIlzj333Cd87rLLLsM3v/lN3HjjjfPO0Wq1cOKJJ+KSSy4BABx33HF48MEH8cUvfvFJjaVIJIJIJLLP9561zEWMYPr/tEWQpB/QvP9NTt4P6GYum7d8txlow0KZ8zi+lo/mI+o1CTBSWgS4Lc2PAwZ8F+JEvrtf+5gJYaQAvKU7tedoWb5EdsTAkWiX9G6TslxpzxIx74vBUw5pzzxRep7DcGy6BrRKzLfHG1qB1nJMw0tX0175CD0lGZ8YlYI9moobgre6LkjX59jiDfIfpWsEXD7ewfcyJo+fMOHsFw8RcFkNGsClMRhTNeK/MjXtV7dhjJWEwyluDqftUi9vPMHnvCjHcw4W+J1bB8nSe1c/FVbMgL9HkzQWo00qwZ+uhLP68/BX/PVzM1+tWDlA4mAT8DcvU7zlUFqjRZL+EthAvAF05hn5GY9zLQC6psW5q4SAhsc1lYsq75xEljaO8nsJE7HZnWaUJ13jZi6pN4lupdVJntOPUhF34jDHLKmvRgBY0KChJa2lfHDsQhDZWWFE5eEe4Iyd5GTb0gV8/mQe8723qZ6rm9L/zgrPWzQRoo/+Pot+XrLT0B00eW3ZqhpUdRfI1lTnSpGLUMWIjpb7/P5X8nOf/DnhBo92KaknwPMvyhs+viT133QM+Pk1wDlt+2YpDLznNcB/fZ+VeA/3UGf2FxjxmomZzhFxPrO0wan+diGNxat+YqgYSsrdJw642yLm9MRhAM/cWDrYsl/G0p133onx8XGccILmgT3Pw69//WtceeWVqNVqcF13n99dtmwZAGDDhg0YGxvDpk2bnmAsXX755bjkkkvw85///AnA8f7+fhx11FHzXlu3bh2+//3v788lHDhpN5DafzwHCARUGcDcD8cHAg6NIMHMSBsRiV4ExGBqCx8Ls/Z4goZHusYFnKnx/bQBEwudf7SpmKd8RKn+xxMKWhSDQKJY1aCW8gpXUKI+v+y/HtQQ9RxLd42vt/dekxYoYnBJh+9EncrDdxgWFoK0ugtETVRMQIKCWxpN0ksRxnEBtUs+P+IpPUHE3H9J9UWbNKZmo1SwG0eVLVw4WrrLNFRiDYOdSFFJz0YZ7l8xzWczY6J72zr5nqT9pmO8ll0ZBb/XjRf9UA/vw7JZGlelEJVZ2lSvLJnlM5mMcxz1IHD3Aji7/pPGVE/JRpqeR3G+8X0+q3yEz2nF9Lz37bOgONgEXHgO5zTANb2gqLxthTDfkwh0yRRjVILAcJoR6d6SOlHjCSWenY4RAL5qij//vY5roxwiFnEwT+MmUdcG3493aDS/FAIck+KPNYlR2tahhSoSXRacZNVUcmWr1AlLZ3k9grmUKHvTVLP1lIFSju+nTVXc2+8zPTFN1Wx3mcd465uBz/0fo2F9Jd6Xj//S8CGZcYgxVQ5xPH0lTen1FYHvfYfHm4lqqT/A+yaUM391u0nVldsqCwNaXSfUDNK2SUhAp+LAR38F/NNL5j/gt72Rv//zBzzHrgx1WkfVMKQHgS+8iMe46CbtuBAA0G3A4wJNAWgEui1G7ZbOPidz8vmS/TKWzj77bNx///3zXjvvvPOwdu1afOQjH3lSQ2lv8X1/XnoMAD796U/j4osvxnXXXYcTTzzxCd857bTTsGXLlnmvPfroo1iyZMn+XAIAIJcDMpn9/tp8kajSnJFkjISAiQ4FzL3wzKxxoMSLwHwDK9ji9wI+iUraiRqlQk4WbcBEmgQDJYop1NL2JeIVIU3KeuExcX2Cz8WQibSBzyMmSiV8I11NPX97Q1uJevmOpt9kvFWDOxosKLeK8B9J2Fp4UKpRfjdjyOSEhBJgDr2rrF3H03W9xp6SjlWUsNzTeAPwU/NTb1IinDJpM9c3jMImXSjKfTZKhV8zESYfVCh9RYaehVF3OkZDZzilLVHSVSqLqRhLg8sh7VmVaPAn2CLlwLvu0jkkVXM7stwcclGCRL+3DnjdFjj9m+Y+ajfrAyvONT/gBpCsGz4tY5yHPOA3C/naimnOBUBpHnZmgWtXwv+r1xy0sR8scX77ZeCq16ujEvKME2QMhc4K79l4QnnRls9ww5UUfSWkPdCqQb6WrnGtdFRoMMQbTGt1VGksSNHLWJJ/x0y0ZSKhHHACQxhOMRVVMzACKadvGX2XqDM6LKnz2SgNukRdS98FuwRoz8vBPPXB8SOMrohulPFJtV+wxTGcvlP7xUVNWb7rK/whbMbSDs2QIp+hNHDvAsIMJuPUJaKDAUNcaVJvG8aoN+ZapLRF9FI13gNJ90khkjjVq6Zp8HzqdNXhIn/6ev7+jx9qSysp6nn5VuWgWjENvONedQKrQa3OE/6n+3vpaB47Bhz/XM7Q51b2y1hKpVJYv379vNcSiQS6urrmXr/oooswNDSEa665BgDwhS98AYsXL8batWsBkHfp8ssvx/ve9765Y1x22WX46Ec/im984xtYunQpRkcZck0mk0gmGRb94Ac/iFNPPRWXXHIJ3vKWt+C2227D1VdfjauvvvoZXvoBEC8wPyo0F20K0EgKBAD4ymfUToYW8Fn2LhGZdoNLFrKwU9dNJEqq0gSXI7l5OWbdNSBAE6qNNLkJeAGgs8RNe46GPgBUjcGXaCjHSMVUnsnCEKMw2tQy4FpwfvpRrqcZoIIUordMTZWONGoUpSZ5/1iDEZ2ZGEO+y2doMAi5mihZ+Z5Eo2ajGt3K1BQkHjUAxLDXRu1v0oepGhWyUDA0XA3rZwxAshTSFMBMRekHok16iVLRt3KanxcDK2FSirOGTyVm7kHYVPE0XKYOrl1FUL1g0AB6XFPGGIsYRfzj1bwug99wJr/Dv3vLNMr2pKm4N47y/uUi8Ne+97mf84egOD/9OpA0G8/OjAEeF/nmrMHaJAx3zOMdOrdGk8ArtnL+AVoddMIInH//H27WNRf+P5518C7ueRAHm8grdO06jfRmC9ouqbPCtZto6FqT9bS1k8aDAxoxvuH7GUlpQ1ohVpQmt5kojaCls9R1hQjXlBBPNgNqYE3Eef5YU/VUI0AHRCrjpDAlY+AM4wb0XAtyTnRWgGKS61cq8hoB6p6aMVSkZ6fjazeAckgr81rgepd2S5uXAH9+D8+biwAlh/jKnpIWzWTaouliuA+lTOunsBbHCB4SmA+dmI1qq5GMMcZSBreaqBsQdrONEbzJ5/fnf8gxvP9W4qXefyuLXByf839bpz78iKfQjLAHfP0YOouvfdS0k6oRMyYVvlK8IyzeeaFeqCo9zCEqB3z0IyMj2LVr19z/rVYLF110EbZv345gMIgVK1bgk5/8JM4///y5z1x11VWo1+t405veNO9YH/vYx7Bp0yYAwEknnYQf/OAHuOiii/CJT3wCy5YtwxVXXIG3ve1tB/oSnr60p91kU3YcZt48Z74xJJ8Tw6ZlFn7Y0+8F2qJNACd0PaBloGJsSQTHc4zh1Jo/0U8c5oJdmOfCjzTnk6wBgNvUVKH0VZKF0VXmxJf0l1R8iQHVbKkSknuAABfOWIJKMFPTvDlAJdIM0BDpLlNpiBe2PctzSDSps6IeVXdZDaJUTZs5SopPqBWSNVVAK2YUIB9saUPcuInyFMJUMD60P5QYf1lDJSBRNOkTN1BQZeoFqHSET0RaKgRg8FxhDa2H2zaCFTP8++fLaXid/bjeny5znV6AY5dIVt2lYTQb5TMPtxgZC/iMgOzO0BgrROCMfpX3Xp7LihlThUI5EqJTzs4raJRKewm3BYz18lmIly8s8HvSfE3mRyWkfQWbAb7/QC8LJABl1V9QVHxgIAznSz/m52IN4IZl8G8fPGjX/5zIX79SQdtiEHSXlatM+Mikm710nW85XEvtBSLi8EjaeneG6ydT4+ZbBe9th4nuCnP3bJT3/TcLCUBePwG8/uG25q7GGJbKu+kY2xOtmGFDW8FGiTQD+tyjTY5vJqYQg0hTnSeBBsQaWtiRrCsutBI0a7zJ17pMNOsLJ7HtiVS8dVSMUwneE2nRFPJ4fMF1SnFN3eV5pOqvHGJTX3lPioR6S3otsYYxHhvq1OYjGjXrLlP3lEyET+b0bIRp6L+8g1QJkma97DTg727iZ6tB7inpuklV+goNEeJNqWAE6LROxmkoLc4B8QacP70X/n8e+1zO1udMnrWxdOONN877/6tf/eq8/9/3vvfNiyLtS3bs2PG0zvWa17wGr3nNCyz83W4wNU2KqtUyhg94h+dFlXwaU/J/U9J0JjrlOkon0N7GQ3BAUiK693uROif4ZJze3LGjGvmQnL6wuTrQvL0ABsWokiaK+ZZimiTCJQZFe4Wc8Co5PtCXMyFjE8YWpl5ZTKNJHXNHlYt4e5avL8nxexMJQ9oW4UClkaSUD0/FNcUFUFlOxzQa1lkhqeRUjO+LwVYKc5yi0KVKpByisek7HOeSnCpEqcwDjPEVMkzfZa3sc0xaLx/hZ1N1JdmshOgRA7yOgQLvx90LSFtQDwBn7FKOqbDH59ZfIChdGoVWQho9m4lqarAcomHQUdF7E/YUc7GtgyFwAOgrwem8WiOFHVV+v82Y4uzc9KyXxPMpDjYxZfObhabf31GKmRDjv+4SyyLRiLDHe9POjC99/KQnWME8z20dfG59RZ1fQhkhkYVchM9gcQ5YMQPnj6cJ4g34wCm74a9/z8G9Sc9CnL/+rYKlpa2I8Lf1lHg/UnXO84nE/Ca3EU/T/3KfHShms6/I9b89C6yeVgdqKg5EPcUAxhvAmik+018s4/Gl6kvSY64P/M9artOX7OR7U3Fu7l0VHkOeb6zJtSsRmLDH9fVoF9e49K4T/Sbj3tapVCcCiRCjaa7Xmkc+OwC4c4AGg6TXJPIiONVCWMHjYmgIOFwc1K6KqTaMqGEoe0B3mZCHZoC0CiWT9moEgBh0/BJhE4zsphup+8Qg3JkF7hjkT7zB99/9Wp7rngX83ECBY3/P7apzcxFTeOMZaIQBfUvnB6liTpoipEhTDclDUA7tuNgLQXyTPpNUmywkaTIozLRNx1TGAXNNZuZwS8b4kN/tdARpU40l/eFk4gGKx5GoUV+JntrWTlYf5CNAvKZkl5Im86GpvJgBMUrKKmI8EAkLi3ITb8Y3426P6gjIuhngwpe8tRh9qbpWt4nB9qslPGeXWfCZqonCgUpN2rIMFLSVQT5C5SbpwVSdChbmO7NBfq5kDCHfUc9p0oTcyyEFPYoXFG/oBiihfHlWtSCNUEnx9ZY0P796Emia+9IM0DBNGKzAWJLKZDQBrJyhh+uDYfaSKZvelQWu6qOB9tJtc/gY9JZYFfRwD3lpakFyOwHcAKRUeM0UlfGjXWT9ld5XYa+tZ1OTYx9KAVs7mEqQzcz1eXxpRVEMw6n/mHO1swqcunt+ulCm/EEyqOa1h/nGBpMGO00NZ9kUAG5Eshl6jok+1hVUL+zFYaPMu42xffsgjQGZG6NJ4PYBPpsTRvjcpcfjMWM8x6Nd2vOs5gLf3EBczElDQKIOJ3kF7/O7Xwt/OvZ837ZnJM7VP+b9WWJSKpJ6csBrljR7qMVo8kSC9yrSnH8gacdRCutzkPRQtsp1IUZosKVUHIUwnR4BZotzsGqKn/ubWziO3pI2Ib9jgOfcOEqG/AtuUxoTQPGh0SbQDJvel0ZvVUwBi7TzSNY18jyW4DoYS9KoWTKrBrbnKDxBHJu8qcD+h1/PL6KRrILoFjGaAK3Wk8a6XWUzfxvaEFgMKKl4rgX5+p0DpvE5dM7mjGHVMIbedEwrhQHVWaEWI9ylEPvO/edGZiY+diPndE+JeliuoxJSnSpEmRMJGkVCpTAb5ToSQH6m2uZ4+89uYh5EOWKNJd9n5mu/RZhppaw10pyvpAEtg/ed+YuhBRpD5QCrtxwAjRbgugoQbOcKkk1cuJaylTaQta+gQDFY1k4yUhBrKr1+tMkIRjPAaItwZkSM51YJasVdyONGIkbTbEzTbbK4xRAKtPhd4VKqB6lUpHy2XXZm6OG9Yivwy6U0Pqbi3JR6SwzjOz6vYzpGryTY4vUsnaUx1QgwgiDGXM7gR5bNUKFsifKYUjr7SDef05pJ5SU5Zoyf2dahIWohkhQlWQ2qQTqWYHnweALojhAj5DsM72dqNORCDaAeZcpGetdJy4f2qsT7e4lzKoc0KiU9AnengStfROPn1Y9q6P34EX5nJMV5J/2uHujl9zorLAuejhFzsDBPDMJUDBhPKrCzlDZpgiANMGnt0lVR5VsyNBNCd1EPEg9y9wJuULMxXk9XGU7hS3zOfQb3k4sqt8ui3AEzpuaMo5YD/HAtUDyWz1WM+ZIB8fvQzUrSKFFPiQ5L4bbO8T7nVcth2fO2Dt7HbFWdnB1ZQyJo5v/iHJ/HzgwrIQH+vzDPuVlzGWHKR7SZ8q0LuW4HC8Ddxvh+48NwnOPnX6T/wmp342AT8JlTgckO5fIRpmnRBc0AsDrHNSJR4od7TNd7g1mR0nYxsiIe17XoIQd8LmGPTl6qpjxxkSajOFs7yTEklao9JeBvfsNjStNxqV4bShGsfOkZWq1WCmmUV1oc5SPsZpBocByuzwKNmZhGdUT/SIHJVIzjWzVlouEd1BnSQ26gwPHszPJcwRZL+XMm/SWtqjor2idTKAE849CIgygwiI4qjy/7wMI8vz+eAD7y0ic+uLO2E0ANKEwjXVNW7qBH0H3NgMCrLrG1ovtPHCZ5bsaA5JN13gcfGlUqhtVglgIjidRVglw3D3fzWaVrJiuwlxF8CMszandyqMrepFbPyFhqFwHMSc8zqXKYjc4nrHSg5exSkeC2qBjEIBIA9Vw/ORPluHkRcOsiPed5d2u+WgDOpTA3tnqQ/0tEakFROYIe6tGqj06TMhDiNEAjPm4b+FlYuYULSojTpBJC2rS08zQB8wkiZSx1l5vryhluwPcsMN22Td5cgKGjScMsPsbWBGsneW9vWaQtUFyfhozQAgzmtQXMYIHKqRzixrZslobKeIKfGSjwOLcuVKyRlPyGWkx/HTXBTW9LNxd/sk6CtniDzXjXTfJaFueURX06psDTrooy3T7eQYPm/l4eZ/UU76NU3wkx32RcezStmGZn8b3lrn5uIHvSrGR57RZ6uz9brpV1MzFibKJNenxjCdMbqkYlXzDcMlK9JJ7eo13aikV6PQV8BcqL0luY55zJRYwhFqZSlbYTPSXOu4EC78PD3YYE1QDsz94OhLx5BsITGgrvygDfP4pjmDUA0b4S18eujBqZHVUq/+kY76PwkcWaOl4HNNAX5jknfr2Ez6+/wM3F8WlojiZNlLbFcTs+59xslP//zS2MKOxLhKn5twsZhUrWtYdWOxebsDkLWeI77+J92nTjnLN10KN2XzmeKTVZ3xK1KYcUN5it0vEYSfHZJ+u8Tzuy2pIj7GnqXlI+IYNRHE1qo2ypthV2/Yd7+JwHTXRv2Qw/N5KiESF6MWogA31FroHtWbYf+fxPueayZm6IHhajTXquiZG3Ylr7yxVMOrWzouD18QTPvWyG66Is1WxNZggE3yadAXzHVFeaKL5w2gmJ8XTMUBxAdWasyc96JrW2oDifwkWA7S2HjtW+jCWABtNJQ1otHG0aYsoI+aAA4Kdf5zVNmBS0UDx4BmaQj/DeCUlovKGVd3JfhU8v2lQIxkiKfTK3dbIdSneZz1p6gAor+tZO4OvHwBdc037IwSaltMbSM5GOinarBrhgV01rzvbnyw0Y15tvUEiJqOszypQwEyjWYKVEsG1hhz0qXyFJE3nHvWrYjBqcQMBnmLi3xHHNRpn+6S+qIpM0RClERbckR2/DgYaORdEFW/MxBj60g7SEXz2Hi1hIKqUiQojfxGgD+B3hMHrto/xuOQSc/1q9rgVFtilpBmgorZzmYiuHaBx0VniOQoSvSzpuKM0xHz2uacBaUNOYEY+Gj/SgEsxVtsqNXLp1txuuDxicz7IZJYxLmZSDDxLsHT2unt/SWd6f4RQVMWDAq2kqobDHa7q7n/derj/UolfrgEqkq6IVJDWXCutND6khJHLnADfyXITpt+NHGO1alKfBs62ThtzKaU01VIPc7LZ1KO+WNCCW6AugvQy9AL31RIPXkawrKLoQUSXYUVEGdkmJCHdOZ4XvS7sGwU9EmvM5V65fwQ0r3uCGK610Bgpa3ViIMC34SDfv39JZnY8CoO8vaCpSgNxJA+y+qx84ZQ/HdFe/pmRmowbrBP6/rYNGVFeZ5xhNMr1Td9ky44Rh5bzpL/B7uahGYB7tovG1K8NNZnHOtKBwga1dPE7OGMey3sRoGEvQWHiwh0YvGAF/rmXOUPrqRq7DyTgNEKkw7S6zglNwjzUTddzeoQ255ZlLejzS5DHkGgX3WArRSFk6y/twyyKeb2Fe019SBu+AzkU1aJrAFjmWlsPvFoyDumoa+INzaQhI9V3SRGLdtiiU5yiwuqfE+TUV5333HT6zapDvLcmpwSVp2x4TBZeUfSPAzgiVoEbIpDR/d1or9xbmeaxYkzpIqtymYzyvGCidFYU4/Nnr+Exe+Rjw53crIbDgVatBXvcr3v7EB7p6ihxKAA0c6c/WUeF3hI37DW/V7/SUgH//H8VUTca5boUHatU0DeM9aU17V0J8fzhFnVQOAmfu5LHWTHEfvKeP6+m4UY67HALu6of/78ft9zy1xtLzKAc8stQuwrQtG954Qtm4BRgpuW0xmACypYZbWqkm7VGCJjIDaGNKCX3mI1TUhQg3j5bDjWpxjgtiKs6FH20wkpOLqFcb8LWaqhjm776SLpJUjcpQyjxjTb43mjTRq7aolkTTAj6Vi+BbBGAsOfJSmApJSvp/uWzf93DFNPDlH3Gzv7NfvbZ0jYu7p0TjULzZvpIBo0eokHrK2uxSwt9ynYIl8wK8R/1FbkpLZ7XtiNDzCwOu9LETNvNSiAr210vYBHdbJ+8toBt8tqqKXxrzdlT5/O4cUGNVMFzyI+0KaiadKbikpAGgbhwFXrJj/v2qBhmhu3eB4diqcp5VglSSk3F+f+ks52XCGDwLTPpsNspncowJ30/FOT4x/CohzqlfLuX5d2c4B8RYyphzJhp8Ni2Hxk5Pmfd47SSfgWC0Yk2tsJQy/Z+t4DGjBuuSNPi2VF297HwEuGGZAltPGtboh1RLdZe1PYbgTXZk+QxWT/G13RntBF8xGJCOCq9HcEmn7OH9F2b23hI3ygd6eb633wf8/nY+y/E48PJtyluzvYPnE+zbI9089oIi79NslJ+ZiGu390qQ+I5yiJ9bOqtVU4kG/H/6vWekjvZHnPfczmt46eOcY79daCrLWsQUiWE7FeNcawZ4j7wAU1O+w89L0UQ7QS/A+SD91xbn1IgRfGPdBW5aDPx4zRMH95nr+ExHk1zvAO9t0DhqEZPinInSIXrRHmA0xfV74Tl0GM69XyOOUiQhjtyivEai664awp1t0WEhwV02q5F2qQQTzGQlRKdXjF7RgVI9KboH4DOfMcUhq6d4DnGAFxQ1tbUwz3soOKRdGc7xcohrS5yZv3zNvh/sP/1COa2Wz2ivy78/m/fkxXuoB5sB3pNKiGPqLem9EjB/IczvCx+epN2GUty/+guMyP9iGXt5bus0xT+uFlVkq3MRYf8P/2i/56k1lp5Hec6MpQVFTuo5rhyDf5mKQ5vuemogBVu6yBN17bETMEaSLMaACXc2A2wTIBO6BbO5mAuQ6oRYgx5AugrkTb65p8w0VTm0V/l/QA05iRZJK5SpmPKQRIxRNJ6YD9DuLnODfqyLBl9fiVGO4RS/LxEVgJviI91cXAI83FvOfhy4aDOjPT9eY1qG5JVUTtIki/LcTKRBYy3IjWwmSmUfb/AYdwwoN5NswM0A79V4QvtVnbpbeU/MBoViGHO97sYS6p2tmOG5ZePMVjUN13A5D1ZN8Z7HGlQw2zu03cCKaTIU3zHAcwhwPt7gsVM1vrY7w/M83mGihm3X3FekUpIKOpGHeoDNi5WOQoyMERMK35nlXFs3yfeXzBqshEkJ1FxlThfwZzHMDeKhHiru/gKfQz6ihrukFzyHBlnLocd9zuO8jmiTz0MqkZJ13tuJhJJ/3rCc11ky2LJMjcpY2N4H89yMbx9kCxvB9A0UaMhMJPi3D+0rGG2SCf3aVWrMF8MKjpW5GWlqOftsVNN5Uq7eXebzGU7xuTcDjIC+6jHeix+spUMiHGFSfbl5sRpPglmRlNBQylROtRiBWD2lRIrTMS0+iDc4B3tKNBBXT8Ff8oH9002/Q5wrr9WUWabKNOmQwZxMxxhJkD5gAZ/rbCTJdJRgh5bOauqxGeD8+ekqRgy/+BMa2g/3cB4cM8b51FmhITOeIEbq0S4O6N//h8+7GeB5xaiVohaJcMs67i9yPGfuMFhGowvHExpBCrZMSX6A82RhnoaVNB1flFe9LbxAnqMktDK/ZW5MJDQzsGaK4xW28nyERo2ksGejXNeCT5L5KcznYjhu6eI8EMdUMJT9Rb72WKfyVXUb/TJhgOftEfo/egB4233KTfV4B+9/I8BU+InDwO//KZm/v3gSP/+KrVx7Uj3q+Px7LMF5IJFPMapkv5H9bdksxzGcMvi1bv72nPlAcCEdzlThX3jOfs/Vg20sHbEAb+BZgLz3FkmdiAjAe8ksF5Bspq2Wkks2zQbdihiCs6AaSpKOC5pwLcyilfBnqq4hctmAAJNW84HpOBcooGmWBUXNjwugt+4CvqtgRtn4O6pKBimeouSvZQxZ4ymvmlJPrBSm0hOK/GyViveOwd99D6dixAvtyNIwKJkqte4yf5bOEvcjmJjhFL2XgK8VG79cSmNgoEClMschEuX4BJzqO7zOhXmmCsYSDBML55NEI1ZPqfcrx0vWFc8hpHpC+d/hUoHszKqyHE1ok8mHejQKkq0SeF8NUUlHm4aVOG42l26N3ki7FN/h63f1U4lVQsS9ADSgjprgPdyZVdJPabgcb3BDXpzj/1u6+b1Os0l3VmjwegHe12ZAn7FguCohGoKAcsBEm2o4SpHCmkmOQ7zrBUXOw7AxFLZ3KCHpjqyWa794D/8XPFrIpKSlNc66CeXw8QIapZJUQV9RCT+FIDFV5zONNjk3HWMQS9Q24s3nFxN8nZCQSpRk6Sxff7SLRkAzAPzBFuCv7gB+upLVeScPETMyUKBRt2ZK13ohrFHEviKvbywJvPkh1R3GN0LYowe+YobXsmGcn5mKwZm8TB0IPHOMk/OTb/B6TiiycGR3hs9ue1bXlVR8RZpAuM7Neeks8Xu/WqIs3sUwjarekjolL95Dw0j6h+3I0kj49RLOM2FOl9QSwGa3wogdNGlUoRUph7TSKlXn2s1HGB0+ZowRjX87US/wlY9xHUnvTOk/Kbq6r8h1vm6SBoA4CMK4LxFRSWdfv8IYTQEtAgm2mPYW/KE4nH0mldkwGYFgS4kahW087NEok4h/b4kGpQ+tZpXCHXkWLYfrTyrLusucQ+3yrfXUF393kxr5D5qCkA1jNJQAbZciVYAAxyiUK9L+ZSaqOK/BAv9uuBxTpqrPXMDtLYcGnpxbMinNgLZhmXkSh/kFLkd0ZAk4QMbSvkRSVcJRUgzrZPId3WQE+CjpLEnZRUyUp6OiizdnokWhFsu7peKq6epC7SlxoS2Z5aa0ctrk04v8nlTtSSWb8IVIukoqUgSsPhNVfqfusjLkPthLxRFrKB9Rd5lNFfdXekoKCpRU2EScSuj0XVy44k0NpXkPuipK4paoc8y3LuTGv2KGntiqaUOP0FDPTrw/ASjHGxpajja1QXCsQeK7NZMKYpSeSoKZEuxPzlTPLDeb20yM5xe282CL+CehJMhWDe9K0HCSGAXlmmjZzqxusqunOOZCWPEMC4omxRXRSEY7waVILso0nbRnaAY4PsGkvHSbgjQrJh2Sj/C9UshQJHiK9ZKy93gd6K7QuAj4NCQ7Kozy+I7y70iadEeWHq5wrsjck6KEgM9NZ80UMUPSt68UVuWdrXKjmI4pC7JUhEq/qw1jVOiCt5uK01j1HUYPJuJ8XtIyI1tVMKvvcAwy76X6S6JFWzu1lUQhQoOut0Qgvoznm+tpMBXD3EiSdY7ZaVOxe9I0Oh431zkdpZP04ZcxWvXybfxcR0XxOak65+ueNO/lcIpG9MZR4K0PzB366RpODjYpZURPide5pdv0W/N4zxsur0Giji1HuYEyNc4hSWnOsdV7WhklrNLNgDpoo0mt0CxENNX1HxuBR3qAy35GvRVv8Fpdn45XxkRwpSoP0IjHY13ApjOfeJGvf5gcZmJ8ZKu8pvEEn92xY7yP6yY4xlxUdaHwEwnGTu5/wGfj2otuUr3uQCNfUpgj90vmqGuiTtJ2Spj5BTA/kuL8kqo8cV5FV4Q8xaeunuLclQhbwAfe96onXv/qKeDDt/DvfITgd5GLbqKxKSDytEmlewF+NmxS4vUgDX+ARulkXPcCwTNJ9qFkcIK70/Pf35Xh9yU1PZEA/uM4ztf9tDwOdmTpiDeWRA640SSMtsEWNxWJZrT375GNRij/xVCS5rODeaYSTh4i6d5YUhu0SgRKDJWWw8iSlHyvH+dicnxg+awSTibryoXS3tOtneMjYpQeQMUpzK3CCD4RB/53NY/dU2Zo969f+czv1am7SXmQaPDal89QiY8nqFBmoxpS35VRcL20qkjVeY+7Kqy08x1T7t3QNgjSYmXUGAKivKtBbqTCyC2pj0pQgaiirIQuohngfeyoAAtK3PgE5yTpsi1dNNZKISr+roqC3qWsutCW3hTqhJCnuJdq0ET06nyugpHorPD5CkFn2ONYAwYvsShPw0Hk8Q7g5sX8WwznapCG6N7pvJmYetpS4WaiGhg3m7zr01gbzOu9CnvcfDaO8l7fsoj3K9rkb2EEFk+6GVAFK4zqghGTezWeUIqFvhLn7XDKVOSYDS1hUiOlNmdEqDXyEY14SBQkF9UWHVIMUAopEDxd03SelM4Lk7sPvSfFMMfWX6AnfeyoOjm/WcRNI9bk5r+gqBujtABxfV73VJzH+c1CHqe/oC19CmEtmpDPxhvczBxom5DZKK/3j+9nOqpN9jagHGziXBY9UjX4NgFQO9AyetEZ7RW9MzHFOtZdnY9ijLstrawS3dRV1nkjGDyJLrQcPqNKCDhlN4/VTkeSN5H3T55OWo3jRjVStDsDXLwPTFdfkUzUUi0JaFNcqeDsrPAZATzmZJwOaNPVFFjNVaC7RIi+dxTpDHJRLeYQeIMDk6aLcy4k6oqpazk0+uJNjSQHW7z/Q2nO3fbeoWJgy1gqIa7BZbOcA0J667aAH61h9ej+yD/9gsa4GDuSNXAA9BZJPSK8dtMxPj8pdBHHOVXX1LYYUbNR5YTqqqiBFW7SsP3BOp2bh5ixdESn4dpFHtwBN5okkhTygJhJ30hqS8KZPhRrEva4yadqDD+/4WEaI+vHuVB3ZrT9iRCueeYcxYih5W9qSHk8wUUm/BjhJuC4WikWbCnbraT/xKsW3EZXWb3DiqN4n0e7qHBOGH7m90c4SgDTKsSlIpUS3o6qSS3GNLUn5JLizc5G+XdfScGJg3k1RCVKI2kb8RZ7x+hhJwyYeEo2CYPDmYkCTobHHUobzIbZLIQ0LtIkFknC+4UIn9+iPM89h1fxNPSe9/Xv8QSvWRRQpKmprumY4XipA3VP55Mw9lYNrmfNJDAZAyYTGsXZnWaVnJTxLyjSCAV4P3dlmG5J13ivHWikUz4n0lcEVkH5qySqUIgY3q0WjbONo/z8aJIGwfYO5fmSxsvSCkeMJDEEMjWNPOQj2rahnXQ11OKzaJhNOQhlLHfMRixYKwHsSmSqGDZpRrPAxViru7z/fSXF4QVbrGhruBoBEAO7FDbzNGhIRtPcBLZnidlbOktDsq/Ie3VXP8e1YobPQ7BKghUTo3DlNN/b3qHGqRibMZPaKYRpDEvFqqSWhO7hhuVMeaVqvP8X/wJOfNP8Z3nHAJ+9HFsiKcLXlq2qYSeRg9noXB888gOZ9SpNrNuLE/IRXhugG/9Ysq3NUkvpR4TMd9X0/DRZMcx7E20AcRPtOWrCpJUbyuu0L0NJzhfxuEZdn9d5Xx+5ut5zO9A9y3MNFHSjX1DkvMpFeZ35CNOiEnH3weP8wRaFQEjhiDg5cq6IZyrljG52YHR2S1NqYmSIThIsVNw4R9WQHlsi+J3g2HxoxWeqDrzuEa7FYphwDjiMKLfLyilWY4pICjBk9gHBTyYbPHesQf0nuEmZF5Em73+qprx7Yhg3A4prnI22kRLXWBjwo30A+A8hscbSXnLAjCYJF4tyaAQU0wGYprUBbRci5a2CoeioEv9wojFEVkwTjPdINw0mOU7DTPKmq4sv7M3vzyb5bscnN4gs0Kbxhkyz1nnkk9LTrhbUkvnZqPYukxYCwjH1TGU4BZyxUyvExhM85/YOE/XJqWEnrVMEPJ5ocFw7swoo7ClrtGEyrg00JfoWrytz8+IcjcSiSfd0msqoGqgMZTMV7ICkAqXqTbxC2aRF2c8YYPC2Dl6j7+jGP5ZU3h3H15B3Z4WbxniC4xpJaosAqUwRgksJ77e3P5gjjPN53ZNxplZWTDNiIQBuaSY6WDD9txylhxDair0Z6AUjEW9ww89FGYWrmY2mHAIe6mV0ZWsnKRJ2ZzQ6IgpT+LrkXBJRBXheIQcVD1fSWxLVaZm5Wm1TW75DLqZ4Axic5brYk9bKo0KE3rzQZrTzmNVcPmfHPG+p6JMquW2d3HA7K0qvkKnyusYS+txCHq+75tJIXZSn8bVxlJvNcEqjGEtmgQUFAxJ2OP9SNTXU3RbPLZQCE3FznaAj8ECvVi1JH8X+Ah0rAfWXQzS+vnM0f8vcbwQUnyXcR+kaDTwhil06y/sQNdGzoZTiTcRZSTQ0VSTRKal+K4W0pD9m1mfIU1qVVJ0G/f+tpI46boTgdWkxI2zbdZeGUcQ4fq97hMfsMDgZiZQ+mfz7cTT6wx7X/F0DfEZfPp7X95YHOScGC7zHXWUg7SlOStJhQtArWKVsFXMNxNM1roNyCEj4QMDTnpBeiMcIeaqD6wE1MCV9LMZqogE0zDqOGGeg5RryS6MjQi2+L5QXrg8ETbT/HfcqbYbvAL8dnI/hkjZWYhRLBFBSiK6v0drRhH4vU2PfzckEx9Iyjr/oI4DXIM8/WVfuurDHCPNYUulYDmGxxtKTSHuI8BkZTlItJIA4QKkEgCfSvvcXNFyZrDOX/qaH5n9mySxLe7+xgYtSMEuVEJWM5NklXSTVRIKRCbVtUNIVWjhTFud0Q5UeR45PxS2ekGygslAkL52tAh/8DRsw7o/Id9/wMCsyRpPc4EshXtP9vaa0fZTKO2bC1P0FBZ8Ww8rALMpiJEWFuiNLZbgwD0SqQCSowMZ6UNuI/HYhn9HR41rtJV5Ry+GGIZ7xgqJ6vfUgNxkh1ROllo+okdVZ0bJhB7yfYoxKmrBkFKxwliyZ1VRHpwHfFsKaMqsEaRRu7eT/j3RzU1oxo4ZTw+VzFXxVR5Wpl0yN4Nve0jyg8Bwp4HiCz2AyznEtzrGy7f4+Q7hZVsC/gKHv62MaINYglu3ocb7fXabRl2jw+QWaWmXUcpR6QO7HgqJuwLKGpPLNbelakhYQzYBpIwQeR1LHiQZQbnCuL8xrOkwY5oPGIBEDqO6qlyy8QP1FwwIdpjFeDPMeSRQn4nFeCPlfvMHIwW8XAluqnHen7AZO281nsDPDeyHl04tzHGumxijoqmk+41BLo1uzUT7by0/lddzVy3O2MyInGkxjv+oxGjqxpuFtM3gRSX3d0a/YnUjTrAmDI2k5vL6JuDZnzUe4fnantcWF4ISkL1k2MJ/FX56rVNiKc7V2kmtEKDp+vJoRt2pQyR6FosSHYigFkyfGvOhGMdaeSrZ26vpol9sG+fvs7TxWpqZs4q2GEnFKNLhhotA1V/VBV1lTskNpOkdiADUCWsEnldBCi9F0uaZcnwZItE1fCEWKRC8l2i5Gc6XtHsu5JRLbX9R0rWQxTt3NNSzpuXsXAFf8H88pBnDe4LBiTSBm0qOTcU1/DhSoa1sOMJzWXnJSfBFtch0hptXVBYOvXFDk/b9h+VM/p0NIrLH0NOSARZt8h8odoHIKeZyQO7NMZW3p5sI8aQh49526YNrlz+4hy24hou05xLsXMsZFeeOVGWUoHgXATWFBgUpsOAXkgho1CvhUkOJ9x5pU7AJ8FNyHYISKYVa39JTVKPvYWU/vXvztzcC5D9D7lvx8usbrEG87WWfp92xM8+oiXkBZkn1oi4IHevm9PWkueGnjEvY0LddjgOSOzw1uxTQ3mkqIHrr0zxPOIulO31nRNgBSMbc9O7/Uu7PCYwk3VjEMNGPEMA0UzLlN1MP19RlJSwcHPJekZKVvVSlsUmZVPs92W3s8QaUWa2gFnMzV4ZTimJYYgHTNJTP8jiyPJ+BVB5qWagY4jsc7aGQJdinWMGlBk6KqGEzW8hl+b9kMP3f8iG4AbkuxXgGTwhD2YNenYRFr8Jiy0bQcphSEDV5S1oCmawWHEvE4T4WHqdaW2jthGLhpCcfUW+Z3p+LKNj1HvBpgNFNSUjMxbjijCeC2hTS2JCUc8fiM3Rbn6bSJQiyZ1fRaLsKNYnGOc3zZjLbj2d7BOQeYzQbKfSVSDplKuDHgLW8Gvv/tJ0879ZYYQWoGGEURo3HlNM8JAGunTOoxpJHgsMf7LVVmEwnirSSCOhVXwz8S4LVKL0XH10jubJTjH0rxsyFjzEm0s2LSXCMpzuPvHg3846+A39vJeSyRUGHzTjR4/6X4QnSPzM9SSCOye8stXwFOfee+3xP5zHXUJ5GmYfn2qC+FBFeixAFfI5Ih86ylOk2ieCFPK2QlKlYK8963M2Dnoor9qrmAb/R3xKPhJA5iT4nXLqSXQs6ZqKthI1E7oTmRNJno8GiTn1+U12v+3ndMxwaHRlbd0XtQMevFM2teqo8dn59NNKhfKiGuR4nMi7Mk/FqVIB0CSal/6YSnfAyynx4qqGlrLO2HHHBcU8PlwlgzyfTYS3bSK3/zQ6pE9yVVl5NXlFbJAGQBTt6JOMt7BcsknCMRj9/rrNCbbbjcpMNmI0ybyoyztuuCTXiKMWnninqsiyH0Nz2kzUdXTwHf/i47Vj8Zn1L7tX/tGOaxl86q1+o5TH/EGoyAjCU0bVhzgZTB7vgwG51RXFKGLEbhPQuUx+fWhYrlGsxTkUlPvwkDQHyk2xgADcXxSCg5MqNtUwQDFGsqe7gX4Hk8E0GS9KcYAIvyHPtEgkpRFKdsBqMGRCqebi7CjWrVNJXegiIV4UxMvcpgi5t5vKHG0ESCis6HpuwkKnjzIho0G0e1AmwkZTxJV0ke4w3FQshzEXDqkInYdZW1ukdScxJdk0jZT1bTeOgrAbkYX4s1TVi/TgUrz1t4vITuwnM4V6Vxs3jpwPzWO2K8HjfK8Y8ltZ2PVF3dvJhzIx8BJj2W4fcX+JyrJqo6keA5jxnT/l1CatpR5fWlakouGvC1r5n0G1s2y6iFROukemtLF+df2GPF4im7df4LmL8U5pyKCC4wpPcCAHZ/1jDkb6JhKpgnMS5cX41kAUwvzHMNCKB6d5pGmtxP6WlWMumiZoDs+r9ewiiY6BJZx9JKprtsuJZSHH+mysrIiTijatJOJ10zzbcDNBCDLdKM3G4iO0K30R7RkzXaMFFaH4rZiZaVy6gcYjXbx24EPn7mfL1y7SrgSz9So0Hmo6Sw3vUHwIdfTvLbXRnl6hJnStaxVN6Jo+kFtH2NGO9hE3mSYohaUPviSYWuGNJd5fn6SRqww6Pur7palBAx90AqOtM1Gt11V/FcE3HMNUR3fOWGi7XNIZHLfsb5EGzR+ekvcGzrJqhXpPpWqqWbAc5LH9qeS9LzYlgDGk2PN4DRCLArzedSiOx/luEQEFsN9yzlWRtOYiSsmCZu4bdf1rLUJ5MXv0ujFI93ELQpE3hxjspkwxiNjnhDG1iunWTI9qQh7dslHetP3U2lHvGItZE0hBglQqS5apppmX87kX3SVsxQMUiPPAHDfvDl8wGF7fKPv9IGrnkDEhaPvv1+rppip/cdWS7SdE3LqcUjHk8wTVUME9/1WCc3QuntJi0nXKP8Oio06jLGS9yR1fJW4UpxwM2hr2gICg1QU6JWUhVSiGhFXqam7QqmYortEMI+6a8l0aqy2aTE4MiYarapOD1N8QrluYqSFQ+37mpjYcFxrZrS6q26y81ye1bb3tzZz2MkjUExktJUaHuLCelbOJDXKMG6CX63p8z58Fgnv5+tci5Ox3hdK2Zo7N02yPNLQ01Jk0rEMtrghjGW5GeEEFIiVvJZAbkCfF2wN+UwjbE9aU3VbOniPBgs6Oa0N/ndP/2C90eeraSUJY0tDajFcBxNcm4L5USkyWdVDnPtDeZ57RtHNa1XCilthGy+wh11/AhZwPeWapDzeGdGe90tmyEPEKDzpF2aAW3RIQUCd/XTAN6RpTEfafL5LMnREctH6OgI6WcpRL0Qa5Ivygvw81JtKpQk/QXtNdlbJEv2SJJOxvpxji1V53U+2sX7sKCoEcCZGI3RbNWkGz0aWfkIN37BvxXD2jfOd5TpvrcNnC8UBVu6SGgp8unrtQJV5o1EcQE+d2mjtDvNdRpqqfMi/SElDVh31QmIN7TF0uKc6oShtDZUB/idrgp1SW+Jz1JSa4L5KRgnpqOi5J9ikDUCOgZxFoRLr6vCMQZbHLs4hB1V1Tntc0SiT+IQFSLKW1YPKtZtKjafSHNXhmNJ1jnXCyby3FXmvGo5quuEoHZhnt/rLu93ZfTTtUBsNdwhLs862iTGQjjD1NTvMpQA4NYvA3/8Ri3rFzA5wAmbrBNHIiH4gQIwHaEiEzp9qdIQvM/9fYrn2DDG9yT8O5HQXmLdButx/h3cLL52LA0C3wFGEkp4+Kf3AtetJJPxvsQzYeCQmYLSD0+83kaAG+FggemIQpgps5hgGBy+JlGnldM0Zo4b0Y2qxyirrgppFfJR7dsUyPH+1FytXBHMSCmkTLW9JU0/rJjhBjET5WtC+NlboQLNmIoWaWdRCdFwOGuHcvxIe4FySPEdhTCP2VmhoTSRoBGRi1JBiaGRqXGs7e0opCKn5XDziDeU3TxV50YYbPH+LMrx2ezMMOIjLRQEXyXRrc4K753wwezKMEKzOMcNXZRqos5jjCYNON5EOF80xHMfNUGvPdTiHCxETOqmpHM/WedGJRGs7pJWDzVMSrAS4vsOGEWSKJlEjASAu8o4HLszNAYa7hPnXcDn/BZQcsRchwONqk3FgL4K/75jgAaIOALCrh9tci4cO6rGJqDFAqEWn3Eu0uZsmPn9ydNZ4v/iPTquaJPG7qopfe3RLgJk0zUaB8MpJRmVDabl0BDJR2jQvngP16UYL7LZCi5osMDNdVuHjuf6Ffq5k4eUA0r6lcUb1BtCpvrNDbyHG8Z5/l0Zzm0h+4w2gUSJ8+ykYeXskgbCF93E423P8r5LJZboAc/hGHyHjs1AgetD+LAEn5OpAR/ZDHzqdH7X9ckHtG6SxnglpFWRkibPR7j+wx4pVXantWptOsb1nqgr95jra0sjMVgnEqqnPYdRIemVKb3/ukyEUfiiEnUTjTI4H4EQJBraU1EoFFpN7bHpQNd3zdUmxJLCk0iXGPi1oFbvdZcZtUrVTSGQ0XHRJtD06exMxXgcaYsiTaGTdeofcWZiDRrG8llJCQ4W+JwrQT6nJ2u98mSyYhos83vhizWWXggiOJH33vb0Pn/pGaQROH7EtBsx6QzJmTcDQDGun89FuFCbxgC5aQmNim6DNxCG67lwssvFstCkdqpBrZS4s58GkNsiMPukIXo4HRXiIh7vUIDn2++j8jckZHOyZJbKYjqmjL2RpkmdBKlcp2K8nkTdNMNsqhEkHs90jEo0F6ExcPouxd8sylEZS9mtYF9CBqdx49L5XDKrp6hIH+0yytjlBjAZV7K+TJUbTU+Z/y/M8zqlDF5wU0tnaYj54DF+sUwVztZO83xCNN7CnrZk8AJ8LWQ8x6PHtZx4QZFGwPYslZQAx5fkVDEKYaFUSaWM0t+R5LWtmqaB11vi7wUFKsSiATH7YKRkYYFjErB4OTQ/CiMFAsJW3M5gH/IYsQQUwyUG5joT2RxK856um9TGyGKI1IOaXiuEtTJsNGnY4k26bPNiPqfjR1hGnqhrmihd470ZST5x7fz92cCmGzlXhO/G9ZlivHYVn92OLDep1z/M7/SV+H4xxIifsBMDHIdEoZbPcDx39Rt26Anet3FjQE8mGL3tLXHN7MwqH9hA4YkNk4VFXmRhnud1W1rMUA0qXnAsyZ51PSUa9sJyvTOrEU3HZ0RhJMk1UAyr0SMYNYkiZGqaJh1KmShuGnj5Vl7jSEo39BOHuYlL77LxhEamuyraN/Jff6JFDlNxBdfnI3x+Mg9eNMRn+ItlfCafO4Ub60sf5++1k/z8Nzbo/ekzjuDD3ZxboZZifFxfnZ6BglKIrJ5SZw/QXmwSMckYnE+/eT5jxjEQMLY0/pU10mucjGLYdAdIaqsWIbtM1vn9QkSdJNHdMRPBijfUGZBCkXgDSFZNOqwNV1kMc617znxW+1abQ9lh1qGkantK1IPTMWAqqNHfukl7dpeB+03EXdLvJw7rtQI8tuDSgP03lK76ialqtMbSESV7hxL3O9L0Rw/87s+86m2ctMeOcQFt7+DEf/lWTlppRFnd67FKX65ChFVJY0lgT8psniWt/ugqc+IPVmmEPdhLPNWGMSWHvLfP9BxLMhUnEYuwx9SLYChqQW5wG8ZJEPevJ+p48pH5i0wUpnhHQmR20jAVxObFNPIkJSicQak670Vzgspkayc344k4DYtaUJWDABNrUUP4WVCAqjAOS7WSRAo8h9EsHxyT9G4azGsHcWk5MB7nM0nW1XhtuIqZEFyScAt1lxUYOhvleEIen1XA5wYznuCm4ECrbhKN+eH8cJOflb5uq6cYaZiM0xCSsLwQNOYiCh6thHgfyyHjSZqNdTKhneIFzNlXUgCp77D9hXAfCSFhIWIiM3GTugoxRVMK83wODG0ClBB0zRTPszPLzU6ipOEm79+YwXkM5nmeu/v5/zmP857syGoD00aAxQ9S8fRksulM4AO3Kut5w6URWndpeBXCGkFZMW2wNA3d0JbkaDQPpThuSc3uyDKiG/GUvXg4xe8FfF6DdG4fThFXOJRSsPAdA7zXAyb6I0a0SKTJ1NyytmvxzeYuVBgAx1IIGyCxibp2VPiZB3r5HCvmmUs3eanoy0X4rKNNpUOQeZqPMCImHD3iZB09rn3LBCckvcW2dDP6tmqaY+uoGKyLR6dJcDm9Ja7FWxdyfoykqFdevIeG5QW3sYHxUJoGWzOguKEP/sbcswq55vpK86u9slVlIxdsUchT8HqgTXmHWhq1KYf4ubrLSJxQaeQjuhb7Srz/ksqXNihTMW2TE/aUGkIA33PV0gFNGQrOTlLQ0aZWlQo9STnE/+8c4BpfklMnQXSJgNCF7kB6g/YXtbJXiGH7iqqHJeWarXKedFQ0Qn/yEOe242uUt535/MmKD55K6kGgowpnzRT8LU8C2XgBiTWWniPZL+qBxTn2mNqX3LIIuOgcAi/3lvEEf29eTODoK7YShPzH99Pzu2E58NotVMITCSqlqTgXxGm7qMB2p4Gjy+qZ7EmrsgW0aaKEeuMNVabVoPm82eATDVMm75ATRwgLW3vdgFzUABPBY89GqVirQW1w2gwwrTQRp4G2JEcFM2NSj50VLn7xhqQR7lCKSl5azUSb3KybAVZXtQI0LgAtoT1qgsoxXVNCPQl/x4yymoibaFWHNiDurFLpCIZoNmI8PuPZCamngH0XlIBahmNaNqtszUWDc+moqLGYrXJe7MhqVZykpRyf1w4wEuX6qpR3ZOmZxgyAWfiGqkbp+eBxRozSvGeBln6HWkq4V3M14tJV1nRmyOP7UlYthHSdFT4jKfGfiGvLhnYcRcN89ugJPvN7+zS9I4zlnkNMkA/dyMZNKnhbJw3IxwxoWCpyvABw2Wl8/+nIA728R8J+LkDxlsNxjaQ4jsECz7t8xqR1gjSsZC1Emrz35SCjTrsyXEvn/SHHtCgHvPNu3nvppyfAeQDIdfB55yM0MlZM85q3dXBtpU3qVUghV07zNYlCSdqqFOK4BcO3MM9nsCet2KGZGNeq6+v/0kBX1ngtyHWXqekz7C9yUx1Lcv5PxrUCcdWUaX3k8Ll+7sU87kdu5jNdMktANUBQdV+JHEClMJ0wSRm7rjZuzVT59540j3HUhMG3JXjfOyscQ8EYO6NJ3vMHe3l/pmOm9Y6ZP91lPhshAM3UgNU57cUoRLRyP0MGEyVUL1Mmurwzo3gmoYxoBJUnT6gmqibas3SW98xtm6elsDqvUh0nPTubBq8k61Z4sdpTqa7Pud9bUg6/Uoj3Q15zfNW9PvjMZK5Ls2GpXpNqZ6EbEUdMjLNs1aTvuzhnpC2KrJttncCVL3rydXbqbo0SSqPikZQ6tx0V5SB7gYs1lp4H+Z2G09Hj84GIAPDZU4htmEg89cHdFif/T9ZoePQLL9LqoR+v4cRcMc0FMBUz1SsJLopV01xYD/Vwwf/RA/QgZqMki+wrUVFIZMMzaScf/LxgppoBKpB2jpyaC+RSWl0jUg0qWLIF9VbEKPCMYbC1UzlgNozr+EMtjm9PmptQR9UAIz2DGUoo4WLNpfJdUFVQtnjrS3LEOFy7igpZiC4jTaBgsEshD8jWaDAIZ1HToVEigNTVU0ry5hnvTojbBguGqA3atVx6zwFUWO39k+IGW+IaTAHA42VqjCpUzKY4FTNGmolSxZrKAu2A1y1KfOks/x8y92si0XavnfkkmV0mxTCU5vg3jvKcwymg1AR66uRcyZmoQtBTJnlhYx9LcgwyF4ItnS9iZBcivJfSbX4wr/g9L6QcU8LXkwDHc9Z2nustb37qdfFUcvQ4ox3SKHckxfmzZsq0pInSmRDyTWlaPJLkvJSWNtKAuGzUqNAXvOLtaqQ2XAKiMzX+fdSERjMbLv8Wo116E8pGFfa4PjsqvFdTGUYUxODtKfGzYrR6ASWWfayT901a1Kyb5LU1A0Bxrw0+4CvR5YxJy0q1nGfA/NuznBtTMWXNB4CfruI9lA3z9J3A399EffNQD/BPL+HrF9zG+70roxVtghGSykdJZz/Uw+fTYVK/j3dwTi3KcUyJBo1BSZdJr7+Ar/pSsF2eYygSgurU7E5rX0kfSm4rqXCpsg23uK67yjQW7+43tCCOOiPynGImLQpouno8YfSScRg6qkCtynkl61SMiJDHZxjxFE83UNC0pOcALePEJOpcr4J1moqZDIGne4CQt+aiqhsHctTFyTqPvSvD97NVU4Xo8vvCwTZQUEoJua6yceoyNYPhqj/5Ojt5Dxsad5dNI+QI77WA13MRpUw4BMQaS8+z7BMQ/tNV2j06F/nd3nGyrgvTC+jGKFJum3yRpunjY/AEp+9WYLhMft9hA89imGmTvhJwwzJ+ZluHkq1JaaxUqUg4txTWVIzjA3B0g3ykm0DvdpFmux//JaMzHSZELjl3SfW4BvQYbVJhdVR1cwV4HYUwNxS3RZr+yTjvz4IiF3khrJEP2eB2ZjRdIM2Bp+IKOhV8h+eYDtpFpoWG0rxfuzNU/IIPknYOAvAUQG9/UckPU3WNmgV8fndbp8GauaokmwHMsaiLAR1pU4JCGlg0YGrp1zcVM1VmRmlL36iwp9V6O2L8TqVtrghjddPgKWSzEA4jMfYe7+C9arp6z9qxcjmDPeqs0DgV4LnnACGfzWKlTBzgZtPXMqXzIY0qyjOS+5ipadm6lE6/8w+fen08lSydJb+PbHCuMbzj4PmkB9ZRE8rXJUDngK/szkLMJ1EZebZdZRoGl5k5PpoEPn8y8JaHiBGLN7QXXb2lwObZqGmfY+ZBw6Uhc8cA17BsrKmaNruWDVkiEoLbkjY6YY+fawZokC3zgGwFiJloRM3Mt5DBzUmaVcrupe2OcA9JCjla1UjT50/We5utsnmt9MIcLADvvIvfOXGYYxBW64iJZCYaGqWZjnHefu8o/gDA/7dZo8eSYsrUuK46qkpjIWlDSaF1lTUiKmtT0luARuqmY1xDTsjwDnlq5EuLpM4K7/+6Ca3m9KG95oTyoRRWJ9WBptTb15RgH4NhLff3ApyHgH6/p6QOpGCdxDnL1Dj2QpjcYdIkfNpECn2zriWV12Xwf8MpjnfFjEaopTtBO9VJ3eU9kS4InqOUMaLbQh7ghZ9IrnzCsEnNt1jYItV4ss84RrePJulkCknwISDWWDpI8kSMU//T/3J79Rsw31DaW3pLDINOGTC0pJlEQTUDjA4sn2FE6bcL6RFEm5zQYnxIpMABN9to84kNeQFTrQJN25WfwmsQcjf5rOABqkFTol3Tnk1Rj5/ZOMpx+Y56dTNGiU7FtKeclPVLmxlp9dFb1g1eSOeEhE7y+BJ1izcMUNNsPNEmUDPekONrdZqQNSbq3MzKIb6eqinIejKujUaFfLMYnk8YWgxrM1Yheos0tZoG0P5c7dxTjg/s6OB45krhXa1cSZnvFsLA518EvO82JejsKypuRNJvtbi2muku834vndWWMkK7IGkKB7y+0aRiyhJ1XqP0G5RokmwuqbqW2EtjZNnQXF/7yMUN+LlpDEfZ3PfG5T0d6SsCf/1b3pN8RBvVCut1+/0XIlbpBxgozy8fl15oxbCmcR7tImP32+6nIbytk98fKPD37gxL7hcUuGEVIoZU1TyzPhOZkkiAVFAJ543MA4lalUM0jCRdLDw9sqHJNQt3TiPA6ijZ5IN1nh9QI6C/YOadp4UNIU/XSKrOe9RbeiIB7UlDdFykka7jM1Kdi2ozbJm/YvwOpXg+6XvX3hZj4yjwryex4q2r0kaeGQeGk5yPq6aNgWCML8E/CSGqANBrrlKJSOVXp0lbTxtHQzCTgMIEXJ+g6sk4z1c2Rn07o7xUq4mzKHNeyHA9R3FEgBbbGL+SFbmu6lcxcmUcUlBRM5GicohrMNakznNgmnFDn7W0aZG2Qk1XeeEqQYUyiL6VyK+0vRIwe9lELH1fnWQB5FcMqH3tpHaOeKMpipB1Pp5Q4syQp9xMvSWeX9Kfh4BYY+kFIvuFcdrbWHoySdS1cqoYpnefj9AwWjupFRdegB70UIoh6tVT2mNLSm+lP1vMLLZmAHAD2kJFFIb8ALpQn/SijXEkBGzCBlsyANuGCQe3R8GWzdLjFeUjCkHC0r0GG7Ijq20Iwp5uSqun1QgSo07GKxVdQqAooN5HunmMFTPapiMX1bJ6aUkgQEwxjgR3IEy4bkvTJnVXUwdSul9ztRO4GAdCcDdY4OYlxIsLivMZhaViUTxTKYmXKhrp8j6c1mcSbPG4wvtUCSoYXqI8ct+FoTtqvNhK0PQZqwEZcw3TMQVu9xeVXiBb47wSA1CetyhikUYAaBlD03OAQEDD956jQPSP/Qr4m5c9vTUgEm2yCm5hnhvR7jTHGvC5Ccqmmq3SA9+T1oiClI7HGloA0DKpWNk0gi1iSZbP8Bm9Yis/J8Z4KUzcx2ScRnsprNVpEv2V1GyoBYSNIdqb5/2YifE9wfjtyM5vceT4xlAPa6/HmsG+BFtqeEkUTAgMi2E1GgXzAvD1abMRBwLaAqjDRNgyVcVMikgVluNzfRTCSu4p3EGCYZM0jBfj74d6iL2U60zXaCS959WKDRP+JWnLIU2HN4xzLQ8UuFbn+g1CcXNjCUaeFuaVoFF00GwUcCuGTsXcdzF2JEoi/TYlZZQ0ulOMJFlPLXNM1+hLSa1KxwHBHkraT1jk8xFtwOvApPR9BYKLseEYozsyTTzYcMpE9lvalw3QNliA8jV5DtBRU6LRuHmWsrZ8h3O2p2yM+7T2NZUxpxvK2SQ64IO/4ZilF6Zg6Byfv+XchZhGQBflqcNyUWBxDo6TecEzeVtj6QUov9NwctoW0b4kXWM6LVXjopONqmXSSotzjDZ1VhhJykX4mZBHz3NrJxfN7oyJkNS1lYZwcDRcZTEWvA6gpJLile0dphX525upbLYZhTcb5eILGu95oGC4TkJAuqq8NWMJYnOEKHDGVHz1lLn46i5Lhx3oOIWUbTCv5eKSypSqvIbL1hajKS0JDpo0yWScnq2wIUv13ByepmGwTp4xEGv8TN5s8tIHrs+E1keSJrQNINBS8sWUMbr2pBWEnqnSQIw3jCFplM/ScRo6gkvpL9LrlefgtrR5ppQgd1aAK6/V89UDNBiEPkFC8IJlEY6gdRPcmIRGoGY2+WRdgfWpmjIECyfXYJ4RQfmMNPEUI0kY0iXlJ5gbAIhVyTkVarWBj11uphvGfvciapdLbiDeK9pk1FDSecKyLASiktIJtrgGls9oNZLcS+mtmItqhKZkooTZKqvpxhP8rETKUnUa2GmzpnxHiSd7S3rvh8zc6zCRD9mgpOlvtsp5J+B6MTrb2xGVjNErkePHOxTc23QU8ydp6ZBxNPJh7dMnKfbHOxTf4oNjlnYk++KD29rJeSKUBbK2hPlfImZhT9s0AYwG3bhUuxAAwBf+l+vg6h/z/3KI15Y1qbfBCHXH/X2aEl4xo3QFcl7hSxLCVSG/jDU5v4VKJG+MJ7ekfQYFa1gL8pqlhVLdpVEq7U4kAin8dUKeKVHfsAfAU8dDIuIikrKLVNr0kUQv3bZWUxXeR8FERpucow93U2864JoRnKdU/QmwWyJukqqfSGiqv52de/049YJE2KPmXiUahCNINEycWDEWxSjyAlrhJ6nPfITzJ1sF3KBGz0aTwLn3K1fWC1issfQCl30aTq99lBPz9kFONpG+Ig2JVdMEWIZaxDwIiVjY4wZ57wJ6wYN5KsJgiykDwRlt6eLGvmLa9BFyVUlIRU/U4D1KYaAaoQKTxr6Anu/J2raMJ4wxEtTwrmuUjmAyhHvJd/TcvkPvcWdWu3lviWsoW0CaS2aZUpDUUE+ZRqJsTNMxKrKHuwnwffWjQL5Xy/YlQiU8R0tn+X+6RgNNDLfJOO/VeIKvJ02aRKgCBgocSzvoUzApTfNwhUV7w7i2HRF+FKnmy9S4aQ+nFIQr0Y2xBDE2iOlzko7mkiqVdGjUYIBKIeI07u2jwl2U4+uizMcThgahrGXQwocllVLSJkPmQ7pGrMX3jiIoeO0kx7qlSwkgpQQ94AMR0MiKNTQKt3KamxWgEThp3yAphlwUKFxCsPOZf/bUC+g/f6BKfU9aK8J6ykrVMBNTwyfe4L10fM6xjaOMtDq+Eo4Kd5ekIxfmeWxhiz9hmOtL+uGJkQVwPowludEn6+RlGszz87WgGmOS7puJ0gvf1sH3pZ9XrKGVVZmaErBOxYnJGyhoSkWqqjJVTdWVQkpXIdEiwQQNFoCKQ2qQNZOs1BXgfy2ohIv+JsDZpPd6Z5bti951p87PyRiw3tzPWePYSOpqOmZ425bMf2Z/cwurgKXydt0E554wfe/I8rirpjnun62gMSyEqkIKm2jQgeorKTfSlEkX9xkjtatCI1VS53lTeNBXUkqUYMsQL4Z0LVXbjTBZx+a3F1Bd5RujIVvRnorSnzEArZJsBkyU3+F8SDQ0yiQGT8uhwX3isPZqlMIaQDMOQgXjtRRHKU7BzozBMjU4XmGdlyhwy1HuNR/zWcyDLRqJMvczNTWQxpM8R2eF81t0XCGs45N0vBhgtyzid//8bmssWTmwoobTGjjYBPxgHb2/kSQVVSWova2+f5Qq/46K8qqsn+D74wkq+NGk9iiTdhwRg1FImEUhVXCSMhLuHekZJ/n29tC2lOC+ZCcNjUvPAD7/U6XCDxoDIdgCENVzd1QYJekuc5GWwjRIpB2HhMUlJeiaUK94T30l5QeStBygBt/2rNLyL87xt+BLtnXwWs7Yqa1kxHP67SB/Hz1BZZyuUWlFmzRWekumhDzE+zWY5yYsLSIAKhFJuWRquml1NFitVDHpq18so2fbVeZYt2eBU/bwGNMxKrKtnSyVlk7ye9J8XqJYpZLG8fkdH9q3TMqlj5rguKWzerykSrscUsPl7n6tVBIMWyOgESrZ5KUJ57kPAI9nuQkVIoprEiC3tKtxoNiNWNNwV6U0VZyp8XMS7i+EeY1jCVIenDS078apyTobz97fpzgN6dGXraphJilYwfgMFBQLJ5vgdFRbsUgT6WKY62Y2SsOobCJuQ2mmk/qj5rpb2u8P0IidEJR+ez2f45Ic5470tEubKF0lRGqI4KxWEUnhgDBcSzVoyOMcmI4B/7MW+KvbOQaJCkkhQdisHakkE2B1Z4XHlGqvZB34yv9Qr4yZyKWk4VZOPzkUoBlQo275DNdvR0WJGAMmvV93920oAXQufr6cXFoTceDRtaYazOF96KiQfbsY5vx9yQ7e/xuWAUtzxFzKPREW9UxNjSbZ+AVft2yG/9+7gJ8thzRiu3SWz1qKIqQaUlJb1SCNnlBLozSSbqy6rOzMVhmxnm0qc7dn0p5S3QfQcRFnSxwQ6QQg0ahEA4CZz1Op+UBugTBIOrcRUFqXVB341RLyVknqVvBKkuoPezzvzYt4zQKsH0npM5TUZLRJktbhtNKnyNqWyOeehBZFtNOTCCeUEOx+e73hGVy/7zn1AhHbG+4wEAebgF8uoyGSjzBUOhWnsqkG1Wh4qEc3DSktLYU19B4xi7PhmmaxDWVslVCwtNFI1jVqIWFooRUQDE0zQA9GmpZKaNbxgfe9CnjbfVS8WVMNVwgrMZrgKXIRZSoWwst4Q9M1UkbcUVHDaSLBqJIontsGSRopLOShFnmp1kzx+EtywG0DwK4sS8YBKvyRJCM51SDTCylTnTJoonGZKo0ZqawSSoXxBO9btEnvtxzieLwAPx9tYq4xpXhfxbB2s28EeL6uMiMPpbDZHKE9AbNVRsXclnJnAdoaRaoK665yy5wwzHvzSLehNchrr6cVM0q30AyYqqOqYhNE6UkYX+6jGMWyec1Gzf1o8L4vnzFGrsdUgWBiBKA+WOC57lnAaxPgtMzbRTk15qdjTHN94iWcO+0gUWEmF694ySzvmXjm4jj4xhDoKmtkUl6TlNqP1/B4YU+rt4StfSrOMQ6YcQt5YinMaxAaDEnZrpkiW76kfYUHSVKXtyyi0Z6tavsdqRAKtpgel2fbXdYWMYI7kSrVjgrnzj0LgI/+PvC5/wM++Ar2YVyYV7xZqKXGqWAZow3lGZuI06CajDOK4TvKtB1rcD4IU/XODHXMog+pMuorAm95kGM9bpSfuaufqZ1Bo1MW5oGrT2Dkam85/w46Ib9YRiJE2diFIqVsjJOwh7mmwOJACCdROcR7sTinz1jmqzgXu9Oapk9X2SHg1oU0DAXiEGsoIacX4DpImihJqq7rVnSgzCUxFgCm2QVCIOtb2p3I3Bos8DgjSc4rYfQWLFndpaHRVeE1+VA+vPGERvVlnQLzx1wK03BbklPAPsD7KVQEmZqmbr93lEa780Y/Nk00deU0jbddmfkFHO3O7WyUvIDrJgy9iIn2z0SpQ4ItbcUlbZVO2Q3/T17/VNvcQd+/rbF0GIiDTfxjJAUMfJh/y6Z03AhLOGejpmN4TBtvSuNYiRC0V4XVXV0sohCkfUWyrhiOOV4laClwpEllK+1KxNsRfIWk3MYSCprMGXxPb1n5b3IRBZdLVClT1c1DNnUBki7KczwS+g15XJS/HdRNLm4W/Bse5jjuGKDS2TBGHNdtg3xdUi7C1QQo187ymfkkdnK/fUeVey7KSNXayfltQzyD25Do3WyEivXYMa3CKoe4ye7MKBi9HKIXnKzTwBH2ZElRjSQ1DZqtMhIQa/A9wbusnmKrGwH1njxExT0ZN6DRpmI5xJNNGVxSIcLj5SO8BqnKEvCqD01V9hdZWbl2khtlyFOQbqypnrQwRwu2RkgtRbnHm4q7k7nwm0XA148hn49UZsUaikNL1mlMSmm74PvidRoB3WU6E6MpQxjanE/IurWT9/rU3UzBbe1UjJKkUiNNGpdC2vdwN+f6GTsZXRKcSdGk+ASbdONSbg7SeFaqC+9ewKhHPmJY2T2tohKmdtmoxxNaui5relFeDdThlKZMZU4Wwkok6Jgow+Icn2EuyohG3Dg1R5nIs0TDhFVacHx39xsKiYBpPxMANv4lP/uOe4HXPUKn7JFupXzIVjnGdsMnXePGedE5ql9EvvwjbthrJ7ku8xGeU5pnS5q5EOYaiBnnYCJuaACgfQsn49QxoRbv+0CBa7yjwuNXQopD3NqpTWPFyROjR3BgzYBWFMtadltaidZeZl8K65oOeTR2ls5yvOUQ8MulNBi/8X3F/0lEUprwjiZ5/fJ8hlJ6L3zwPWmgK7pbdLbMwVLYtHQBn0NnhbplKs7xBlscW8ZEqLd1GsyTqyzkPcYYEkM+HzHVkk0ae5kan8GeNPCfxxJSIA7M50/WqsvXPcJ7sT2rvHzpGvCBW+H/3nlPuc8d7P3bpuEOA/HFWOoHnDlyxIDh/whReUkUY3FOK4H6igpenUuhgYaCLEQH6oFJ+FVI5CK+llo3XHobM0aB95W0fLzmKuHaaML0aapzgxHOmsmY4UepmAohD8hAQZEyvo6q5syzVV7XjiyV8/+uoiI4Ydh45Rkq0JXT5nwm9bR2kp/vMCmmbSaVuSPLsU/FOd65MnajJB7vUOUqvFXAfNyCcKE4PhXMaJIbkvSVK4Xm47+kD1PI0/TKcIr3RXiKhDtFuqNLtY4850KYBhygqYZGQCOGoaB2Nz9tF1MckvKZjmkz3WoQKJtQvHjhNRfoqWhpe1/J9MGLzQ+tC7EhQCW6bIbPtaPC+9lwlclb+nIBOi9kY2052qSzEeDmETfz86EeGkqApm/WTjCF6UMJPSWy2VnRsvtKCAiY8/9mkZZfz0aBu0z08LT/n70/D7fkvKqD8V1Vp06d+Zw739tzqzW0NVmT5wEbG+NgIDiYgEMgkBBMgh2D8xGs8BHaiYL5ySbw+xLgC0owOGATcBgTwBOWLXmUJdmyZrXU852nM586NX1/rL3urqvJkrGRkLuep5/uvvecGt563/3uvfbaa5/GxvDgFErYGyHmytgT2VKEYbmGVkE7TYBTcPtmlE/2D75f5Jc/jPM0Q6t0mhjCmSCyNDXAHGyEmBf1sRUE0EkqJvg8HX9y74hciYBPdnwS35nv4Tk6gaW8pgcWiLC0nb0Xq2PMy2uX4FSwHYqvc2Clindz8Qbu9655pHI6ARzJ1LGebyLWHHpyiKKE2T7WwkLX1nW/aL3PZvtIzf/iy0WOT9l5igk4hGzZMzHE2pxTFIIcOmoqzeqcpEJ0rwjHmynKgQYTn9uHnxUTvKsgQQrv7ll85mDb5g5TxnSE5ntwhP1EeVFVE7QkkjssQCR2to8giM6Kl7MNiQuplv91pcgfXoafPzwBuzTwMTZs9EuBUfJEJ4Ymv9ArwrbttFepGLJN2RQns3ZWrKaLXKCuZxp2z0yvjT3M/U4A21zWdbeuNpQI71bZECs6jNRJ299GJeiDU7iH/37N7s2KGQZmJ2IXDmwjFMd5rKTOs+k47yw91458KTbJkFctw8B4KQxnIYUxuHfGjO7MwIiFQWzCdBsVE3VkU1OiSSyXH3so+z1XN3HKyaFp+FC80RGIUJJTVBvDkIpgkTdDg6EZJYlgETJSYi6dsgaTQ0Q2Lz0Do/7wBAwz8+gPTcJwf/cDWuGVSytulWGkjmxCg+VL89jkHIHz1taU0tTQ+rlNDa3CzhEYnroSXxPHSpvZ/PLwFjbF2IVxo1PAqqeqbpKPTCDFtF9Rta2S8ZbIAykmiHiJEpDP8NIzlpYheboR4p1uByKn5sE9eckZ2enkzvQrkUJKEBRSfO/gtvUGI4k5U7QvU+4KS9oLCt8XE8yBL88BpSsmaHr7wLSNObVp6Czu6SIN0tAKpE5gMgauGH9qf8fmav64fwZ/jmziWn3lsTSKmvpLzaHf2zE5C7Z7WeiZDpKfWFPlKU3rciOc7WsVZBGNhushnuOf3y7yyUOYl2/8AdzTv/52OAGXrxqqVIqwlh6ZwDmHPtZmJQKP5PN7rcVN7GK9klNSUKTh6Lq2qsld6+iayNs/b2tkQp1ytgRZqu9u3yGC+bVYt+bElRhOxLkG5t92Ce91oYd59YnDpjjO1kGUXSikIn/wh3iu6hiOYLeI53IyjHkxAZJx1bJpgVGM1E9EfuJ2kfddBQ7ei86CezQxQtCzWbZedKFnfQbJd+wWwZ0px3AS9nfMQd4um8zG3g7Q24cmsZHP9zCv7p7Fe2YAQ6mN5ghjQsmR7ZLISmqK4QtdSyuyqlYEn6UiP+0BJRwGPhCV+YJVkIlgvu0IshaMlH1Gg5hqZAUKvSLeS31s8g2UMGgHWgmYWMBEcV2uNxHLGmxUrHXOhDqA2yWrtKxlCMI2y1Y5R7FMN4Nd+/NLRN77EVyH+lVXLRvf6dEHOYrTA6MJeBkQ72f5cd5Zeq4fvSIMQqx8n9HIiHwkSKcOjPNGGQvh8LamtiLj5kwNYXjyOfE1jTzvm1YtHFdkqm9pgdWqojRFNQACJ+DoOq6/rnnr0DMBuYcnLeo7smnpPvKjVqvGK+grqfbBKWwyTME4gj/sEJ85SAf1i4b6aDQjM8pzme9hA+BG5qcKE6dGbK1E+HlLuUqSgVtU0nTR1ND4PNz8WS3GCHOhh/FdqZpC9dTQIsITE2jHsVIzwiaFK9kzrZCKpLrpP28dmyfL8pdquNbejqaBStZ65YFpbI5hwYi8Q9+qEEVM/oDEfzfDOfLq22MPRnRP1zg2RKKm+/gO9adCD2MrYmlXOsKNEPdY0Q1osaGtETS1WFF+C0vnn0iGQsRI+q2RyI/eaSkykv/5XF+Zw+epWnzRhrWgYaqgEolEIar4NsrYzFiF52W20T4ygfM1dU395p+L/Ph34RwfPmLzdVhAWlUE435iAv8+0Da+FtO1nQDvflPXIp1Erpc8YVwEY7Zc0407xjqpqQO+oQUGkaebvCIMYQHjWdZgqL4tkngIbu6bUURGUYypAc55fFJks6D9BR3Md09T3o3QChpYecdK17ubstOI+UvzWFNLNawDoqPkx4hAyuTz+/Dv//hxW4Mk3VPHidVa+zrY4NsuUnoi4GldvIH3Q5RMRHZa6NB+FVK8nyNbeE5HsBaLCRyP41NqD9QROLKJoCOIMQYnW5bW5DUoSeGIyHZjt05SObZqwBefxbUSx3hgi3Wr6PNTONihZ4UFRLvWKphHTO+7GeZGr4j3zTQpm9wyheplJnFCOQ4ns2xBIUXwuF2y9XmmqRW5vtl82sHrFi2d66Vqp9SW7O1aMU/+GHvQ7frUvKWKm6G20xkIpPSfncd5Z+mb4TjbUDTBN60SVtywwoI9eqqRlaY7avymByaaR5h6vWLR73YJRrOYwFkJPSA81FnKixhyge9UbHg4N8tKe2WrXiHpvK/Oy5UrQEpOt7DYqQ8UekZMP9kyePpgW+QFiwb/L9eMmEjdFS/D2LBCjJo17KNFsbZA0SJGWOyrlrhGbB74xkOZVnTsoUnZ6Xe3r2PquV4m0tV7PrIJQ8pWH7FGhF5mnc8boSk9OxqRrVcMLSglMDY9TUcQTcnEyJ+1MQz0ZWtAApdqOGd1bM5WJzB+BsmZYQGbKqvpRgWMw1wP983Uz94umgXf6Vq/qaFvgnsi+rOC8VcaoUXrInhHxRQps10pR8fEIZ/s2C6J/MpLdv/sN/43/v7cPiOWX7Fi4nsilvKkxALvqxIhZUEHmpuRk4u6GyGQk0PbIj/yJXz+yBY2mUvXVFPIg4ryYt0UyYlIkBT/onOmUXS2rjzABJ9nufrJFpztd30C72RBkVhKPmyVTOKB1yDPhOXs3LjJUST/jeuN1a0s/6fKeaDvozmy1HjkmZhnIdUuAUXTFyJ/rhSL/OWFUDifGZi9KMeWinz0MTE0R5mK+4XUVK6p/F4di/zL78R3vu8ebOCFFKmjSMeA/fuqY6z3sQf7tdCDTQhijD2FHUmQ3i4BLV2r6rUzI0bTtuUVu/f0cP5E0cGwoM2Iuzg3+ZlepsLAuvYenMLvqaM18BEYhQUjrlM5nSKoWyXjgYYFXFcE91+KRcaKelUUjY4cnPtUE3bJy/DMqYNA5pyirRdt4npcj3M9nHOtYpwuypIQiZ8e4BonWnDwH2+tXrJuaBJR+wNt3E+3qA7nc9RZeve73y3/9t/+W3n7298uv/qrv/q4n7n11lvlZ3/2Z+X++++XwWAgBw8elLe85S3y0z/90zufuemmm+T973+/3H333SIicu2118ov/uIvygtf+MKv+brnj9zhpYjO2G9t6FvKIdNNgmkUEeU7aX6bbTpWqiq+OMbf3SKiMkr0uxkm/nxXKx/Ku3U/MgcaT06G7+3pasSSatVbydSuxbFI80xT+UGxERTrGmVTeydx8DlfjcqpFr5LleRGiM2LFUxUDd8q4fcrej8aBO6kIqkHwh5PIlYGy15hrYGVA69V8XctFCkOzWkZ+KZ1taN3FFuEzEaurDJiyo/k9tWqdaVnybOrqYBOyZwktq5JHWzY9TGevTqWnWa5nQDowP42np2yAhTvYyUiKyHXKniGxMX4UHNlpapq5iM8M8v6aUjpfESu9akT2a12zGaiqSIVdEIj12QpKHoq3pMLsT7R8dpHrAw71U1/vmeNkc80kXIMNc1EpKOiJOh9HWvTImKpjtrYemst1XCfK1WRV53UKFujZiIwrJBkWi0vIcHf3TWHeTg1RMqIyC2JtgNFAdcrqJJky5zYBWk9DIwQfsk67nejomiGa+uUa3izjECEWlCdklV1stx8sW5zgL3KGKRQKZzVVUw3OWJItpthzEaKpmRiQRfXh+ci5bauVW13K/rX1LGjrhX1g9hPbeyCI1Qf49zFROQ7HoIDtFq1+yI3sKn3X0qAOq1XjI946wGbm+TNieD9vvIUHJ9hwfqwkV+XeOZc+joHtksIgCZGsBd02BLXqnqDHOKVCdDEZTHbwJZIxQSVgX0fRSkUm1yuGT8vdUxniv07OWcoQHm6aeK42yWtbI5N8mNDx57vn/wv9o5jJTMrWxNHJFYHhw3VI30+ptwffRzehu1hoElSOvW78qnJZ+HxNTtLt912m/zmb/6mXHnllU/6uWq1Km9961vlyiuvlGq1Krfeequ85S1vkWq1Kj/+4z8uIiI333yzvPnNb5aXvvSlUiqV5MYbb5TXve51cs8998jevXu/puueP3IH8+q1sUhJNy1q/9BB8hNDLvKwNRGopTqE8yaG2GzCgnb1Vqi+kCqq4mLBydDQFnbNDn0Y5NSxZqzsg8aUXDGx9IsjtlBTBzly8nWIcKXqWF2wheckD4il/w8pcZTaPeyVtaFVeJGLVB51nChCxyoYShVw86+O7b69TMvnRSulNE0wG1uJ/XxPy+tTqxwj0kW0gKgWUQpH4ISQ2B0k2oZB74sd46eGSrBMRVYVoWiNdlcpCr8/xnWWarLTo6kaYVyINrDdDHvSiY6/xIaAsLXGZhlzaK6H62+XECFyE6A2zNhT4cnYDGLsWpEAnQeOJb/Dzu7sCP+1dCa/Zknkx+6wVPKlazZfOD59Jaxy0+HYrda05L6A67OrO79H0b3Qw0b0qpNwbkYFrIfa2KofuY6GPlS0Q09kbmTvhmldCp3u65hqe69oQQ7JvGsVIKydkjmW0wNwj5g2ben82env5Vi5PdEKOlFpKtILcA8LGsRQnLE5MiSQiuuVSKQQWkrQzfSeSrZJZ46Ip+sxFaAkl6xb6xpWMMbqXF24iUCoWxT5tRdaleKwoNo+iSFmrFAtpJgftTGaF7MSjKKUJZ2rvCcnMy2k2lidec9s3WZZBTMF6SQ2MKaDnOgmz7Fj/0VXbSrtJ2VD+mr7SPJnf7xKZOm9jbJqahUwlgMf6eSrl4x3ef+UEeBf+4gJek4of5ICkSwMoF3Mq4T3itY6qhsgKJvp43fs35ZHGv3EUPTlGt5FIbWKYqYPqePEytggMVt68YY1Pqc8xuFtnPuF58CZdcRa37jZs5rk/TU5S71eT37wB39QbrrpJrnhhhue9LNXX321XH311Tv/P3TokPzRH/2R3HLLLTvO0u/93u/t+s5NN90kH/rQh+TjH/+4/PAP//DXdN1v2iOIdzfWLUciqQuybJBYLzX2I3PE9Fci15wFOk0H2yL72nA6PrcPC4Rdv0lOPrJlfdjIN+JCzac5SDL0U0tFVSMrlc53wBYxvsFSDX8fnzSdIqbuqKp95Qru62AbUdbQF/nsPozFuTrufbUK0q2XWp6eUgYPT8KxYeqLGxPL3rtFkW7JCNGJK+LHJmLHnD5L7UXwmXpo0H2QiMSpaY6w35afwplYqVpUNipYNSHTgm4m0nWtueZ6xbrPUwyObTYoMsdUTnOkSJpvpGkaNeqkBDF4Tfc2YAxJJO372BCIHu3pwvBt6eZCKYmtMsaeqSu+H0eMIMwqvfrYNmBufiyppvI0n51I11NpnntwW+RHvyTyJ5eI3PhRU1n2U6ueIhmXxH06yU4m4ivad980yp83tTBib9fG08tMtygq2/yeGmjFYmppWzbaJZJScA3JYdHD1MBK9NmTjbxC6pJtVrDmQnUul5qWzikmJvUQxJamjVx1XAuG9GSZzdUKkQ0df26EbLPhKG+MHC3yX24+BOFRkqE3y8bNGvqmNeWlJvVBAdy9HWswPD0wZJtCtnN9kRv+WsvjlUdGFNZPzdEnSuJmVgVJJLyr6CmRFvK0ON8jD/flJ6bLdeUKgqk8eumpnTrXsIDQzcyh5rrlPY09Q2b43slRon3TGGQHgWWfNdo68sNOtsw5vGIVztJDUyJ/7ziUud0MDi55WEwHMvVKocqwAId13MEarUSwIY3Q1jD3gL4Gj+QVrlYtUPUT47iyQMfLsLfQjlEbLSzgXN/1gMh/uwbz9iVn8W4pCzPXwzM2Q6B8boZ3cqb5lLa5Z+L4mpyln/zJn5Q3vOEN8trXvvZpOy133nmnfOYzn3nS7w0GA4miSCYnJ/9G1w3DUMLQyJCdTudp3evfyWOuD6PAprAXbZpwWSUyKJplqVxcFBVzxBAhCgH6CYiwbgZCa2sEct/eLjbgPV0YwLtnYSw3KtZ3i0ahoIaYApRsczLTx3nY84gw833T4HCsViydcd+06X0wVTU9gLG5YwER+XxPyahlg3UpJsh2EFesaHon07LuEe6Lpebsh8eS7ciDoScBnBwkEdtoyQtgq5A9XeM0VSMr36VY5zDWFi2upXWYclqtWsRZDxVB8IwHxJLmxboKJ5ZMIVnEIk/JnZdplb5vBO8vzdu8mdDKvSBBZRarYrjZ7e0iYp8cAqEhIf5ky6rKlhWNSVykVKiDtFLdTQ53BARqESP5svIrdWBw3QxO7mIdiEMhFfniwlef/46gHPyN9+H/RCzHHozynq7xloIEz02NMUesYpRI2sUb+D/lL2LXNm0RvI+DbSCvbLJLzsl6xRzgYoJ5RrRoo2IkajfTlFNqTXwHPsaSzZxPtsC74cY211NdHnWu6EQRBWXzZCIYO+OT2XzoFy04iFw4j5UI66mq6MFWyYoKvEzky7PoDvDDX5YdZfazOWR26GPONENDjGlz+NwkSRONJpoR6BhtKB9xq4xxJ/m6HFnQVR0rgT+XIq9Gxr0qx7LTZoZ2Lt+Qmy1bmKoiEsx16uizUVuO/c7KEe4vci0NR0mGTCzAao1g28jHo03p+4YwHdq2dPtyDTyiQ9twKI9PmhP8uodF3ng/gsa+b45QfWxFN5XI+kayf2OmwUgjBDXgXAM/mxrgHhfrmDtcm546lRw3OrELPeM1imDMmYJnCo6Vo0Ti/UTknhmkR0l9ONi2Cr5P78f9n6trhkKvwxTss/B42s7S7//+78sdd9wht91229P63r59+2RtbU3iOJZjx47Jj/3Yjz3hZ9/5znfK3r175bWvfe3f6Lrvfve75V3vetfTus+/88dMH5VYp1uYoPdPA00Z+KY2vK+DBePmHJR8lFOOLEVSibCp7u0CRr9i1XRoTrbwubtnrTHjTF9kQqOShyZhfKYGyp3Jwc8kgbILe7eoIpBi5MKlGpyza5dE/uRoDu1JRUZim8y+DsrVgwSRSXUMI0CxzYNtRI2sgCF/gHotexQ16Pum2M3+UfM9TV141uw1ckFCZpPc2hjn9xVOp/PUK1ofLIotiuDfUwPcJ0tn86nPaoR0TSvEuzi8bfe8I03gWl+rsGD8A5KF2YxzWMBm9tCUpmoi2yAu2EL1UzExzZRGCFI8OQhupjpAIQzgahXzYXpgzkE3QOpifxsOSSMEl6QveKc0xkxdOZk5QUxLpo5tfJR1aIYigxSk0aEv8sXdKfnHPRgZDwvgptw9i6i272McWb3ULdp3HDHiMNMmrzqJeblXOXhfmcVczRzrozUxQiHDlSu4LjXFTra0kmxoUhFMcXipaRqJ2Doc6e8dvZ98o+qpARCzUy3Mx/UKxm5PF2t6qWZcIPJjmLZqlyxVG3qoRKIsSKDrQ8R6xrEylsgrdXRYKv7bV4n8xe9i412pAXUeFayx8JxurGy0TEeimOAd3rGA89bHcJxY2MB38On9SNGsV3A+krzpTHt6z0SMRgWgocVEe/oJvkcpDKJArAZLdJ5tlnejb+SkBbG1xyFPkE7aIxMm1Eoh3IEPtIgBUSZKhE9BeSAKRgmOsYe1QweMx94O/pDwft2iBXnrFZFVtTUsMCCXc6tp6XryS8kxDT1Uy55omS1je5PFOt5ZITXHrxKJ9BwrCqD8SRBbZ4BOIJJFeC/8/9gzDmCoaNqwgErNbtEc0LMN2AkvM/4kdaPo2D2Lj6flLJ05c0be/va3y0c+8hEplUpP60K33HKL9Ho9+dznPifvfOc75cILL5Q3v/nNj/ncjTfeKB/84Afl5ptv3rnG13rd66+/Xt7xjnfs/L/T6cj+/fuf1n3/nTu8DJvXBVuIJpbrWCx7u9ZV/PgkJu6clgiXYyy87ZK1u6hEmPyLdSzOfhEbT+QausN+cxtlbJSRaw1y/9s1lg78d5+09iUPTmFhU0gucfHdl5w1pfHVKhbpkU0Y5emB9aOiOnai0SirSBoh/u2lSAtetYzvbZe0aa5YaoeNLCdGMIAXbGFzrof4Hvkji3WMFbVaJoeG2E2MzNGhyi71iiiIODFSfk5sPIXTTeNtzAzgyJE7wTJhEZFqYnA30zhsdJzqs6QZ7n2pju9Qj4fEdhLPaSAv2rDWMWtVjGNLI3neMyt72D5moNEq+4ft68CAn2naBtktinRbFn0u1zBuTOtcsGWSDJQaIOzfKxpXY2qIZ31gWlXOY3BH5nu47p9/QOS7/tFXXwOLGq2yNUPkmkAigwIiS+S08LmJypF3Ndc3J44O/kIX8+2RCYzJrQeQXlipYjPtBCroqans1gibKdtRXLtoqvbFBOdg+oHBzHoFSOrYQ+Nsd8ucufme9STcKGPNFhJTqr50Dedrjuydn2yZA8UxoIjkFasmzNgtAg0I9T1w7nzqIBCl//rncFqDGGuTumZzPVVpT4y4TdRrpYbn2tPF+D04BVkGOt/zPay91MG5WOxR0PlPR4lSF+zt5jR2V0p+dh/QaM5n2opQU8X1McZqrqeOWoRxro5FXN84OQwgiXjVx0B8Cimepx6C1sD1T1RJRFOaBTxHV53W2b5xJCkOSv06osEkoZPzSe4eU6vkK6aOIfdjD4UAn99rQUfswpHe31HOptILvjyH877qpLVxyhwUBtBnI39QBM7Phq55pnrvmzFS/9DHe+X45YVjr1jFe6Ud5znpgG+VZafh+sAHojTwsSeJPGt5S0+r3cmf/MmfyBvf+EbxPG/nZ0mSiOM44rquhGG463dPdNxwww3yP/7H/5AHHnhg18/f+973yg033CAf+9jH5Lrrrvu6X/eZlkv/2zicSzbMABOyPtGy8nSWYpOLMznEYmZlDtM/xydNrTqIrTLJEUNUKF63UoWTwQ3nF169+6be+xEVsUuxMFOBYBz1S3j92b41Ol2qwcHbLMMIimBxN0JrgTEqIDXRL1rLg3ZgVW8lzfcHurGsV2HU8umwfDQY6GJmXp2NbsOCQfAsgycXhmgXeVYrNRCdSXxnFNnQqqepoaEfxQSGohEaqXRYsNYaVOTlBkd4PJ9GObSNMvNbDuL9VTX1lYoRTtmBvRSZA8emxWzh8OCUqY4njvF62FqDFW3ktrUDM+yMnMkNmRhaPzDqXDHC5/wh0nK2YaXReZ4bof3IxTzzMoznq06qOvb1+Oy7PqE95RQZcTJrmHvnvKGK5PKxXQYdJiJKo4KpgPeKmC/9IhwXEcxfqlOzvcSBtqUhTzexFrpFew9hwbS8WCFH9e3IM6fsrjlc7+IN6DGVIzjAty9gfnx6v+kw9YtYm1MD3BvlHkSwcc32LYCJPAuCamMj04qoU1gSqZHHUrTyb+pyjT3jDO3tmEgt+USdwFKGFeWyHWhjTqxXMGYkPHeLeL5qhOdiqxainSzTZ+9JFlJQkJGOHNHJeoixWdJAhXIMm2XbuIlA0daxoILPxsbPVHLPF16wuo1oINNLdJgZ4LiZCUrSthDxzlfNZfoMdJDZR64UI9VJ+QdqLw0LGBNywMiTc8QQ32pk5H2uQ6b/OSfaJYzll+cxD3eKBkQ5VK7xtIIYa2dqgHfHNkuxi7HO9+rsKl2iNcLc2lYQ48VngUB+8iBSahduAKlm43Km9kn8fngSwcdWGbb20wdEOsHjOkvP9P79tJCl17zmNfKVr3xl189+9Ed/VI4ePSo/+7M/+5QcFhGRLMt2cYlERN7znvfIDTfcIB/+8Id3OUpfz+t+UxzDgml6tANM0LFrcDfl+qeGWLj9Ipp5LtWw+I6uYwHv65hDkS8HLyYiTU0ZEQ5e6Fp/rZ//1sfe04mWoQb5KjE/UT0l3SR7RSs7bitnpjrGBrBVwsZ0ooXvlCOrSpkYGem5OkbEz35lJ1u2ubF1QTUCYsAN0hFLBaUOUluN0FSIqU/DCi8aU2oQObGRJ8sxjBLJ42cahjSw9cJWycjs9TE2kdBThK6D71bHVpmWr2wjsdRXDsj904gev/c+bKqnWubMsmLugi08TzewSj9q6ySadiHBOd+PLywYIbaQiniOEZ7JM+oX7XlFRDJFL771BP7PDWylZu0hKHY6MbJ5xnQRN3MiBpNDzOGluqlSVyORT70P6ASrjFipVBtbg1Py9TqBSEOwGbACiBvFYt04faxga4RwYILEUI7NMtJ4F2wZH4ZcpOWayD//bpz3P33YEDa2nmHKYrNsm1ZrBLTm2x5GT7mPHoHDe2ICDUhJgL58Fec43cR1yQ1yxJqWLtax7qeGuIeHJjFm6xUbG6aUIl1/M0MjTc/0RcZNE8Vkak4EiNDUEPPizgVroHt423SJmiHSrb2ifb/vG++RzuLDk7j3a5aMm0fO2lrFggE/sbRcJio9UMC9VoaKnPpWVHKgbYUARPYYuLGAhOgGEUU6zUGC83eL2mJpZMrgJHSHBWgUjQoaKKnTlVeILyuRe+CrXEQKiETE7N7BbePGORkcz7WK8ZYmRsYvc0WkXbTAJoisnJ9OIPmI3aL1yXMyUATogO7tqNp3iOdcqeF7rDw81VLld11nQYK1Rrs4PdAG1tO7e/N5mfHpyAuc71mzaHKPUtfaaVFyhXZjTxfoL7tKFBORF5wT+fgFT7C5PbPH03KW6vW6XH755bt+Vq1WZWpqaufn119/vZw7d07e//73i4jIr/3ar8mBAwfk6NGjIgLdpfe+973ytre9beccN954o/z8z/+8fOADH5BDhw7J8vKyiIjUajWp1WpP6brnDz3ONLEIZ/vgUoQeSooptEYZ+qWapYaOriMC7/vom8XUwfTANhUR02h6YNrSSPUQBv5kU+TvPyBy/S0i734FPh/EIr/0MVx3vaJlt7G1X8inIRjxsJ/Y9ABR61JN9YxCQOwDhX9JjA49nLcR2ibiZiJDdbRErKKHjlgphpFyM0Dyl2xgzD67T8mZoZaPawqAujNeBlRjpZbL0RdUBTyAkRC9RrmPcR341pIg04ixHYDTQ6LmfdNW0kuNq5MtVcQe4Jy8j9bI8v13zeEevud+GDEqUZOvwRY2bFrKNhr9It7bA1O7q83YdLQZGpIgYpIB44KlzAYF20y6gY11oDwTImkk1vqJKWlzL2YzTjaBrauD3y+aDkvimsIxeRSf3WctdCgiuOPgeZiPqYN3LILNvZjgntbUMUpczLuZvqWQMsf4Ko0Q72B/2/gzG2WRWg2bylYFQUYjRHsTHu/4dpFf+SuspylFFRfrcJL2dtCa5pEJ9OfbLol84Aro+FAIlu9vtQp0LvKwlsuRyG17sKa/4yF8tzES2eta+59hAecppPjutKJPU0O8/7y0xPFJvIv9m1ryrfybPGpKXaP1Cs6fCZy2izZwj0t1CJw+NIl3ea6B8zLoIKJajkTmUhOu5ObKzZ7l/BTMZZHKQs+csB2uoWM8Ls53opQPTeA+pwaY00c2Te2cqexqZNc70DaEjAFV5sBhmh7geRfrxqVxBPOT6TBHZKdR8dgz0jp5Q5TD2C5YepfpMvIK2WicjhArQYl20ykh942oaN8XSWpI0f7BZXjm2T6uR/SHyPJoiHdDJI1BnJdLSXcDoD1MpbLYZ6kusljTtZ3A4WVzafYWdQR8VvZVPLxl62FygPHZKAPlp3wB2wiljnE7/XS3o/4sO56Ws/RUjqWlJTl9+vTO/9M0leuvv15OnDghhUJBjhw5Ir/0S78kb3nLW3Y+8+u//usyHo/lTW96065z/cIv/IIcO3bs632Lz/0j1U2ZeX/Cssxppw7QplKCzYAReD1EbyYRbXipKEDoWRTmpRCeLMcK8Woqb1hAdPySM+Aokdh7YgLGh4JmdLyGvsigYe0o6iFUryeGMCrcwDeVbBp62GTIRyjFVsYfu1iQbBp56RocCS7GgQ9jwcqRXhER+0OTIo9MAvpd0A1zrYrqH5J4RwXtf5ba70n2pDMkgnEQMRJw30d382sX1VF0gQKxIS0Vx9kDigZxqY5rTQ4Ndue4bZUx5iSi7+liM9wqG8JG9KoUG1oSu/j5WsV0s6j6S4i/EsHYsVEuuRgUyFuuiYxKIhJhPnmpiCeGOjqiaUVNnT40BcQw9qxMnjIFTImkqSmwU+MpcVXCIbXqGpakD3ykjlgyzeolptM4bnOKfpxpWNsTL8O7SxzMSTp3Xqqq4oLUwdjDHL52yXhyHM/MQZUfv1dIdztKIiI//0lLS9y+YArsrCijc71dwsbuZeYUhZ5VJz1vHc/C/nwLPThKdPDYo+9cA2v30DbmBBuiXqJo5akmNsKFrlXfpQ7GuBvgO+fqQMzqY0NriPLynfR9U11+eMLasNwzg7mRObAl5NrwfTDQ8CNrAMt2HuStsFUOtcbKMe6J2j+Tw91pWhHZ6bUmYk5B4uAZj2zBTqxWEdjQEWdzcSng3HM9a1jNP0xzk6/Ea3mpVaKx7QrXgZ8g7U3V/dg3JL4amV7XsGCabOTP0c7sSIZ4QJV6RUOZChqkZo6J9fop1vMtBwzdohPKliZL6uSkFYwLRWiZbqQ0QiOEU8n3I2NF2Bta9RZa4HLZKpz+dgnXP9nSHp+BXZ/8uws3FS3zDbWkXV7omtNFceOZvrWjeRYeT4uz9Hf9eKZznn8bB5FfEUFVSXNkSqyckNwoUzUuz1/BohkWLJrsqrGcGNrP/vowNFZERH78dhhCtmLoFrUMtGwNS5mKoBo2I0MKwTHVQ9G7qSG+K2JVU6tV3NsjE1hkJY3egsTSOV6GxVgPEdG3RjBea1UQDim8SHIiuUaHtkW+uMfy8lMDGydq8nSLuYhckaiFnvVyG3lApeiAMJfPJrELPdtYa2Pb2Mn32ipZZ3VyGWYGu8VCySXr5VIFrRGMU+qYwjEb9LKNRiG1KhYR2VF/pjgmK+a8FGgaCbdnG8blYbPjmYER46mxwmvS6BdSbE5M7xA14JjkHZxQ5wAd0EwwDnU13I1QydcFExVk1CxivLtSYg4AxziIDaUhurVZBgdufxtOLM9HOQsqG2+X4Cgd2cRc+MqsdbxnJRsrDt0Mv+OcrI1FXnHaWto8OIW/WbmWODhf5uD/2yVsJqGHMed5SIoPEpyDCKOXwglaL4Nsu1nGe6FjTbL9tqZV97eNu8S+cSR1VyOgg73AWmKIYP2dbNkmyUKHyDUxWqr/L9bhQFy2pmRqfTel2FDQqqayK5ri53qkkCGbvHYDc06qyunqFoGWVMd4z6FnWl1ElA7SQdMgLFZUkKllfp4VqkQO+0XrM1kbazun2KohqYTNCjamBHeKHhxb1yLmbHmZFWl4GVAWpt5ix1LNRO5YaViKtarUMbmDdmn3GtuRc1Di9cMTVnixp4v3Q+dju2QaUJtls71jXU/nGlZZWBsDZZtWtHzg4/+bZcx3todJXKT6H50mm+3DMbpsFeP9sQswn/d2wGVleq9XtEpFqpgzIGYlX+qI3HpAssfRVHum9++vO7J0/ngWHVpdIH2NwOoaTRdSkaIiDJkj8uCkVmW5Bp9Tf+aXX2pGLH/85rUib3hQ5P95kcgvftzSciRqsqx8p/VDhuuPPUTxhFtLsUkVpGJNHPuaR29q6oQbcuKagF3BM8VoGoXlGn4238N5L9pUtemiRWCZOmw07vUxPsvGpX3fft/RP9VIJM7gtHkpeqC5mbXI8FPca0tRtDMNI0QmLlIX1GciMbrQN72YxLUxp+5L7IrMaNrNETM0p1oiw74JHQ71nKmmqbbKhiRul7BB1MfG62opyuRkKgroKjogNh7UgyHvJHbhbByfMC0WkropZyCCNA2vU0xUKygGshKLEl31OtyEtkswtDTQIkZwZVlxdWxl+yy5zmviiKOkVVekr8+/v2NE27CgY+UbyjXXw5ylGvveLqLxhycsldgM4dAQ/SSvidwxNvrdLKsoZWAE4umBEeMzwQbVzQUuJPczlUgUJnKNHL6/bWXdGxUEJHfPquPXMbI8CdyVWKTUM0X+WiQSJ4besVS8E2jPNQ/PNVSuFluysBy9OcLn1zTFzAICN8Oc3i7B4SCHzxFbq2xnkwnu//5pcwYjT6RXsLQjWxdxE/UyBBIbmgLd8o33xcbbIkgl18d4Bo4Z06heJjLMRCIlKjuigZSDd06dIB5jTyTSVGQpxjzKo9PUKttR9Hd3t+hIXBFJRYLMdIgoHTD0Te+JQYjk7CBlRUjuZrBJZyxxzQlnSntiZEr6xW1rZMzCnGICp7EdQKuNmQWiVuzvF8RGA2iEstOiyc0stecp2phH93isarDzvDWs4VecEvmzSzDf62MEwalyRqmZt1yzKuZHJqxCdq0i0hqJ49SedRVx552l59rBKITy/mPdSFnVRqJkbaRVWI6lefzE1FfdzIznEx3/52L8/UsvF/mXt8HJKibGfeAC23bNeO70+8oQ2TKaiF3A15TvZ1ToZNh09naM/8LNm9E8I9HYNW4Oq0Ro3OgokgTsZNYjj44ceRF0QiqucQoyQZqwHRjM3Ap3VwtSwFLEOsrvKDCXcxV4Cc5FngTTTXly69jDxrhRMcNX142ApOS9HXvfrGphyjWIcQ/N0Er0aUQLBSsfLySWNiQaEEX2HtkS4/gkHNDEFfmtq0HEvHTNNkmmwyjEF+o843zKxJSiOU/HuQ186JtKsiM5h1g3i0JqBFtRg802LTyYjmmXjOt2+Sq+S04Nq9pIzp4aWMuZiRGChqEPxffnrcOJdjLj2dFBnBnohhJYWoaIk4gVMRBxYyDiZSJZquXf6qBnYogqHcT8Bl2NTEGZCCv7tFFtmdVQIpZ+Z9pIxCq1xh7QJPbnYiqrHOHzVKAeFezcRAU7AdY4U+cNRXJPtizFREHK2MU7OLqO76/ULC3ErvVEikRMyd3JpfDoUDD11S4ZSuWIzrnEEGcq6Y89a9hNBKcS4b0enzSHINH1TQXu2BXxHUOJ6bRmknNq1GYQbWcBBAUcJWfPKDRKh56BiYj9nE43RUUzx1KOTIU7sptCwQ4AjRBzdLtkTvsDU7hHtqFhhSar4og602aQ/O0nuAa5UZ3AHN12YKgbK5YfvS+sVUX++zUi/+ZW3JOboWCB4qlEt8kd479Z+UsntxYByV6pPXa/eYaP887Sc+0gjNwIzQDkDc/QFxHNaRMi5wIspCJRZiKCNLRf7WCZKuFkGtthAYufvaoYUY8KuskLBDXYfJNOHst1iS4wxVZILaJkRQUj1bELLgpLhmngmI7JN+J0Y1SMpI7IrBIeM8EGxg2hEmHMjmwBRRLBPdRDENwHRZyDhHGS3xkVltX4r1askSujR1bZUeeH7RBGBUSCFM8LCyJrHj5PrlGedE3CM3klfOd0TJiyo2NIhyOfzqQ0wGZZnUeN/khWDWJT82Z6hikvNt3lxh16uF5YsMbLFDvMvzdukBT5pKYL74ubCzfAtaqJpXITId+Ff3PjYSp0pWZOxVwPKOvJFq7PqrGtssjmyJyZfhGfX+iKdKaxuZOrVND52FXEjmXoXirSU85YWzcQvm86Is1QZTLU0eC9rVTh0IoYusi1R/4S05lh0bhh+zt4J0QaKpG95+rY0jmOroHEwVrjPdOhqI+Nn0Pb4Kvjm6TmsLFgQFxbT5yHB9rmIBMdCmKRTFPrfNdLNX2Pik7UFKFiU16SqMt6L2z/wfddinEuoj60W5NDOLprVeNLEQEhJ48BSeRZCw+mxIky0+n3UpGRb/M034qFY5S4IlmMe2GRg4g5M2x3whQ312LkwrkjavxouYFMMA5MkYvgO+OCBb8i9l78xLibm2WT0OB9cz2MPaMsMBCbHMLhZ3p3XAAqySreHXukVYrUS/JTBAFPFER3A8yr+Z7Iax7B/TRHRqxnStzXwHS9YoKhBXXGgljkrnmxSpBnx3HeWXquHXNK/vRTI/NNDTEBmc7yUouWqTuSOYCPabTYquSpHrErEgZW+h15ltOn0WZjyq2yEZCL6jTQKCUOeEAU8ON6Icm2kMJAM7qi41Ufg6tBrkEpxnOzIeR6xUqJXR/jRKIro2hu9oSdy5Eu3sTScUwvlSO7PitYyIOpjlX0MdDO7kUYJaYZGGVy3EPP1GzPNGzDpOYK03eRZwgW+9htlYCYsMUCUY9OgJQY+4eJWBl0ObKUVuzimWcGIAN3AiufZoqoVzQDWYpF3vFZe+eZ2D0yvbK/bWrsvG8+CwUGncycKWpk9X3T1/Ey6EKJnn+7hPnDtAjVzBkMcEMjeuOlmGf3zII0f6ppm/xM37h8S3WgOkQCF+s47yXrmDOLdRMgJfeNPAuuD/bxY/k4O7qv1IyfQ8eUvbBY0ZiJdrJ3LX0VuSIFx5AzyheUY7yPiSHQzdSxVFfiimwFqp0VGveF/LKRi3kiYuhuENtcGBV2p40otVEPcf28YnXiwOlol7DuKLo69E3YlgULJJ3vIKoDjHkptqDIySEsboZ54Kgz8dl9Ii8+h+fe07Uy89bInDP2OSRSS5vGfopOZoKL8z0L4lpDBDwsGgkUpWWKimPhpvYuSCSn4C6LI+gMEbWpj60tSN4GEjWjthGrOEWsGpNBIlFv8rqodE7UbEvve2KEyswZreDLI9r8LukFdSVyt0YmVEz7SC6RI8YxosNHNfm8htOjj2sXDZ2nvAB5YuR8VSKVsYhENhr4LDWyWPHqZEr0rjz1/edv4TjvLD3XDi81L37swTA1NLI9V7fmoRNaHps6pnLMfmtMw5Hz9FSO2xdASnUEG2VtbBH8xNAUcRnlTQ9s8XFDDT0zQmx1MNs3jY7tElCdw1uWS49cROj7O+j5xiirW4QjQa5NdYwoiRUrjuAPSYd+inMwpUfEgnpIRBEyx5r4epmhV4SnSaAta+rET6A1slgHVL5YN4SHekArNSPoHl3HM4pY+4DZvlWLMbpb6Jp+CZ0GInr7lMsyKhjsv0OkLeLeBr6Io1yRcmSihydapnL+itMwrrN9Q1g2y6avMvBFlqvgQ+ztQD+HgnnkmohYyof3KmIbOSF9NulcqWnKVQw1uXQNxpx9A1PHNtX62IQL2bZhXrlAD0xhM7h3xqQVKCrJPoDdYLcQYU9TFgwayHFhhM2mweUIm1WvaFpc+c12YoiWFaymc3MOMtMcdNgcwXemB7LTCoJViJtlke0K5uXkEDITToYxGvomgdErmnL5FSu4LueFJEbs55iSH8Z5U4nMsSAaQeXycmSl7OTBnWtgvCeGWOdOZjaHUg6ZWDsLIqMzAzh6+zv4PYMrEZUDcfBOmLr5g8uxfi/cFKmps0PHpaRrfbOMOU+kshIZT5LIGKs+yxEaCFdi4xtRlJIUBcppOBkQZDYgzhxLx+5U9qY2H4NEZJBhXl24uduZZpqchO6dFFwO2aKaPCVQmNr09Ny0K3M9kY0Z1Uca2dp5ZCKHVKmjS+eb91BMVDLBt3ZPLBhxNMgQscDo0DZ+x4CMYsf549UnRD5x2IQ1aQ+pO8eUO3lbe7qY96RrMG0qYrIHtB3PouN8Ndxz7HCcx/khe8PRqYhcLK4DbaAAFFtcrsKYsYruX37n07v4992DxUtkhAjMxMiisu0SFjshdvJA1qrWNiSIUfVzeAvfXa2i5HRYgEEgVExuh5uhYuPouqlBkyTOTWhmgH9TC4nIF8uJWSHEdhxUF2+GQHvIOWmOLFoXweeI1jCdI2JRs+i9nG2YE9sI8dwkUZeUX8SKncSFrME9szgv04KE/WMX31uvgFRZjuGMnG6CQ8L0EyUXaKRogOkMkvsRu3C+6MSJ4BmJmD0ygWfc27FKII4Zx9jTFNDMAHPq7llz3s40wEWYGFr5PFMofV9lKpRHdrqlOlWRRaZEzFaqZvC5yc8MTGqAonlEG9mPjGMw14MjtFK1praN0KraCunuisnb95iWDPsFzvbhvGUOHBU2ms4LIpJ/NizgnU/3ja9y/zSc+DsXRP7+/abqHHvG2dosW0pvf9t4WHM9OIfkv7F5qiOmS+YneF+OYBMjN4tzZrFuKBERXV83VqI95Fl1A3yWzgm1hDqBzftKpOKhir7lU0Xc4IPYpC9m+iL/+2KM4WWrQHY2yxgTzivOtdNN0wViao0ONzfjB6dsc93XgR1hlSeRNxHjh5HnxVQY2/yQH8c0I9f3WsVsDCUvqKYd59Yy0bFCinfFCkWqtTN9LWJOd21sdILq2EjcnLt0rt0M3EIqek8PkNakHtXeDmzFwxPGF5weiDx/GWNypgnHaL1icitUBq9ENjZNXWdLdaxfCgJTumG7bA4x76sbmM1mMMg+lDN9rE8RCz7za3OtKjvtb/Z1zGaL4Pp3LOwieT/T+/d5ZOmb4ZgeoH+QlwF6HvpY0HfOoynqVcsK3buI7O9YAKrwdA8SEtkDimXoVB2+ZwbVaWca2OD2dLU5aBcGZ3/besjdNWcaIlcvAxW7dwbOSzA0w5RHKxbrQLeKKYwvDR5J0plu7owKmYvvBEYeJdHbT2DcydfZLsGhoKL5Rtma7JZj1VnxYaiKiaUE6IBcuAnEqO9bRVY5wjmmFEG7Y8GQgSNbQCaWa3gnvG4xFpnIbfJsZMlItRPgXcYu/p04uw01+Q5eatGen6j4XB0GdaZv0WdzhL59xyfNyXZSux6bf55uqhZPIHJ2P6472xe5bS/GgYghHR9H/3CzycQQHUfRidBFEcBWyT6T57V1A9ObYZsGEZUbKFgLm3KEeZPpWpjvwWmhiGMpxsayUbEy84kRnDsR43jM9a2Cii126MRShHBK0Y7fvRL3c3Qd64CpqpamTKh/xd6AnUDkk4dwvQs3cZ9zPfDw5nrmhOWRGKYN2T9w4Is01RlYq2KOXrpmKNX0ABsjEdfUwXuvh5YadsSc6Hp3N2+JDgids2qkgoMVbNQswScHiYFL7OJdUcDwTfdiXp9pYjOd6WOsNstYA3u7pmxPjt1yDdWDTMmK4B3t7WLOMiVO5ItIKgnYoxDvsKrjfraBd8GiF5KK2eSXTnxeyZ78IKYiuSZTB7aTjpgIvk/bMjXQlJxnkgnkvjVC2WmFQgoBeWTke6WOSOKbwzup9o+E7VMte3/U1HrZaazhe2ZNOZuE9JUa7o/OXy9WEnhgz8C0O1Nq+zo2D881NGUeGXp2yQZ+zw4Of+8hBLu0zxUNRE+1RNpqf9h8uhrtntueIufus4u3dN5Zeq4eXKAH2sj7hwUToquNRbIQjXZdgS6GCDa+y9awSZ5uivT/o0j15576NX//cvx92arIa05ggR5sY1GvV7DglmtQgf3EYYjskctTG5ty7pFNGNk7F/Bvwr/f9gg+R9Xu1LUUjyPYOKlMXImswmZD0zwH2zjvl+Zxn4XUhBzz/aREZKffE1MXB7fh3N07g2eZUqPJ0vjlGiD7TKyvGkuMCylW2rBgqZvaWKSkyNJyTeSOeVTI1UMlOxeAdgS60fmaSmmXkEJwMxgnogx+CkdxemB8Dpbdk/QauZr+3Ab6QKetmJiDtFm2vmizfRhskjB7mpKggcwE93iugXtphNi8KWL3lTnA+EQWEseQkPUKrsFoluridKpGDs43ofA8hTLLsfF0nAypttNNPMfhbbwnOs98/3kna+jjHqYHilYoj2i5tjutymom3ntYEBlnxktrKPcjSOD8Rx429yDGe/j3n8A4Um2efKNighYnd83hHumATA1FvvdeS4/Qkd3fxvOcbRj5d6e6SjQwEcxvokuvexjroD6WnbYsItZrkOkRck+CBHOPml9T6vDwnZOXF8RADS7eALIRu7Ap08qRO9M0yQY/wVwoJlh3lbFxJrdKcAj/yRsxVm/5ovWtZNPlB6ZMFoRoJFvy0DFthHrPAc7NakZWfxGtKivXkc2EWyOgfeUYm/dsDzaJ5PR82ioTrINMrCk37QTT9xzXfDHNYt3GZ0O5N9R8orjvSs24bER7YtcaVGdi6BirRutjU6SfGOE9dwL8+8A2rlcbw0F/ZMIoGAykNsqWvt/RtYpEYs0IhAXY66U65pQInrmTS48RJdwoW5pus4x1wIOI3ctP23jcP43nvmgbz75ZRlDILAEbBLNKb09X0Kfo2XGcT8M9xw6nESICXq1aN3VCmyJGlKzopGTJ/dDHhH79ceMcfeeDQDe+5wcsLfB4x9s+j78v2ML5WiNce7mmvaHUITrQBuS6VoHRP9XEYpvt4/zHJyG4V1fDyiaN9dDE5A60TciPJEwnw8bG5piephBm+pYvr40RZe/vgJfzmf1YrAs9Iw5PjMwAe2o4yUUg+dZPcmq7BRi09aqhO4SpKWq5rwMEb7sk8gN34/lD5RUVE2xuVFkm9yXysOk3QoOxvdTy/NQ12qioirCibPvbpoHEUv5MjCRKLRUqqtOZ4jnZw4yd3mmQ2UKDz0hyOPkXO33uQjguKzWMXTHBptgMRT5xCHPyYBtOeeJaIQIreyLPBErZiZ7VSnR4WMqdfz9OZmlSP4EzyZTgZhnPRQHEdgnXCHIbL1MKdKZaiiptVKzpKCtDa3re0INI60ZF5L9dg9/9v//b0g1TQ0tDhkriDRI4ags9jAW5Y+3A5hidRTbi3Szj9xduYu6KWOuR2tgq6Khn5mZAYacHuwsTUgfn9LLdooDrFdMoo5N5eBtzZKmOczmCd9YMEXi98Jzd76Y6760Rfne6iXlLbksnMFFDRwzVYjd7jpeIcbXIb6Omlp9g3RCVSRwLiCaHuEfqge3pGidmu2TjyZTTfM9aK4113jLVnk+33XwISN9Pf3Z32pwpbdoA9sZjOrKvjnZ1bFISdEDy1Y6U/BCx1Cafd7uE8Z/vWVDBc9MOveQMULVTTXOY/ATBL9sAOZkRt5my/sJeOJP7NaXeHFmlNJEs8kjXKrDhrJBlap+VrcwYrFceK1T5hgfR9JoUgk5gLYqaI+OTsXL28/tQPcc2MMcnRX7/cslyVXfP9P593ll6jh3OzMBUnAn7b5cQbf7JUXyooOmnxgjoDFM5kaYF2Cz1DQ9Z49H//CJDTESwmV+wBUNxyTqimNg1TRh2fu8VTVMkLGAB/fVhq0ih2u25BgwWSc8bFRPCE0ELFWoeFVKD2ckPCT2riOF9siqnV9RnynCv1y3CqH92P56BLVVI/uX9UtMpcY34fPEGoqF7ZoxcSVIrofnYtTYLMwOkKFhye2gbv+9rFLlaBVpFUu13PGTVJ7WxiSmGBYyNm1nVyGbZDFsxsWfJC0wWUmycjTDXcsZBqpLIC0vDqR+TOBh7GsiBb1Uq3Nv4WVZX0qCSDM90Kr/TDkz9mSk1blZfmRO5eklTfcol29M1ZyBxrBKSUD3RJSqfs6dZ6mB8GqGN6Rf3IB2WuJjPfooxiDzjbzHdlDlYB/s6+P5DU3hvrMYUsSaxdyyIfPAK/OymPzMnkkgAnf3U2d0upDlSXpY6lCtV2zzJG+oVsZa+PIe1EcSYe93ANiBy4qgELTqmp1pAhw60tUWObsTzPcyr5ZqlqOohUJVOAMRro6IyH66hq8MC7mGphhTx7AD3wAq3dsk0mxbrmDtEcE62VHJjbBsk+XK0FXlHlarS9bEhYrRN1Oxaq2KMZ5QLxnlGovrervLAXKzzbmABBisdh8rhXK3iWbZLuJcgsUq1qgY8p5vmcHd1/FgtSvFLVuhRpmO9gu/s6eL+2V+RvEOmoDgea1UtVhibMO/Q392iiU5PbYwMQCawQfUQtowVo3l5DSJ9bOAdJLBlCz1T8id6XYptjCljsrdr6bzaGGNGJzXycK4/PWp2+o334e/IQ3Uc5SkytcfUiqOGV+xi/jEo4bnedK/Iv/6MZC/+sZ1TP9P79/k03HPt8BMsCpFcXyofSMplq0aqJNG4EsEQXrEi8oeXitw/Y1Uip5pYOF+ex0ZcGwNKJSJTH5uw5aFtqwSjM8CNMnNhNLkIr120NibrFRizvR2k5UTQEuJ3rtr9XP/+WxCtHN428q+ISNc35drJoUWsjOaZQmDp96Jyn6qRcVwIeQ9ypEdC5uTmsLJkvYJnCj1EXpNDi06J2MQO0DKSn195CsbgbAPPTW2lyhiGrJDCADdCReUKIl5o9+Vm1jJkJ23l4N+ZAAE407Du7nxuOm/LNWsGy6qnrZKlk/K8JieG8ayHptNFA8+NrJDiZ8UExNNCZmrB5xp49ocmYbwvX8UYz/Z3axORCE+dl7tnYZTrY0OO3Az6k3RC6HDv7eD37cAaDTPK53z/4h7c67WLaF6buNblfkN5JUzVUlWZVU73T5uidTER6fl4RjpjYQER+h9ehvNcfwvum0iSCMaPBGpq88wq0tnPIXd0yNn4tKpIBXt1iZjsx1wfTiV1apgyJrmYkgV09tdzjs96xSpR66GJFTqKRBUTvK8LtnC99YpxG8lDrI6Rar67hrTr6Saao3Lce0Xj6hFhocPFprdz4e5yeZLA6eRulbQFTsXWwtizYo7JITbwTAwd9ZUQ72UYm2ICe8TUep6fuFQDwbwZWj+8ky1NuaqT4SXWHiZxcS6itDUlPa9WrXIxERFPjLzMSt6hj3MTsSNhm410RfA3uXddDeou2jAKgCPg7TliqE7sIlgbFeBU3HzIAl7eI3WM9nSVTF0xonwhNe07N7afO2IoUF44MnUgQnuuYV0PBj7GiOuPBwV8GSQcn5SdhsGRKzLtYWy8zCRREgfPfPesnedDl+LPswjKOe8sPdcOttPgwfTZqkZRD0ybcaIWSuSJ/NWFKjswtu/cNYfU1ckW8voiWMz1EBP+zy7Bz376s1auy/RBngCZuRbFp4IFta9jUDZ1R4YFbAjfex8W7B8/b/ezTQ9MciCfhguVtJg6OC8jODpVrBxi2T1JmPs7MBqMGnd6OLlGoHTFdEoW6zj3atX6ibECa7UKI7qni5JERpyxi2tQaK5bNJKsl4qUlaTqCDao00383xMbMzdRjgydlhwCkegmM5+LFKtjU94eKvmX2jFURmepPVWb88TpvCieiPEqSCKlFkwhQZUbU51nmpoGiyz1w3YrbK3Ad8ceWYlrjYX9FBw1kpVjV8TxRTzXuBL5c9XGhoqQnF8dwxG4f9oEKq9bspJ+cvbGnqkmF1I8y9QQz3f/tGnv+AnaXiz0RMqJpWryGmTvfoXIb/+JdbBPHUORZvra586zYIFCjJRP4IaeijlbIiB3M70204eTSHLtXN/QvWJiTnLs4jk4R0+1rCUJUSmmivP6WyImReCIpTQnYvsc7ciBNmzCdgmBzbSiWLUx3gE5dCQwU/qDKDC5VHRI2dS4FItMBybDkDrgiXmpSFGMU+OnVn3Kwo2TLQQPJQe2gM5IIQWSRJSSHEk3w7OWlGPGqtSdVjo6phsVkWOvws/+04ctZd8aWfEGA4hiAm2wbmCVcuQ8kuweuRDsZIEHm3S3dO6daeL8Mzm+oCM4V69oEgfFBIHIl+cRDImYGCpRLDrvzVxatBuYbAoFNYkGb5fMeZnrmyTHcg3I7L4ObGVYgNO0WN/t4JQjfPaSdTz/vTO4ztTAUuUbgu9etQxbF7smOXOwLY8+HEeeNW1PzjtLz7WDpfFPdBA1ElHFaX/37/Oq3ZGHyGDgw2h0NaroBlhcLz0DxGqjIjJSDhRLh8lF8BQF4eYtAg4PW6M0QtMR2i5Zc8hLNkRedBbf/8x+fO93rhL5x3ep5ooaZva4YrVK6kDNO3WtUo0bEEvFeW0/NRJnIRYpiSE53Mi2NWJlxMxx2yiL7IktDXSihY2JxmlUsEhyIxfVM0VI3Rdu1vs64BzRieBn6Hzk1Xj5PUL5FBB1MhCj+Tk6SSRmpmJRfSH3OYpDUszRyUT8XHotcWDwWFb+4JS1KWiODDVi9E+CJgm2LNFmyo48Ej9VTkxmIoksse/7UFLmRkRic5pZevmuOXMeKCVQVyeVfbPumUVZ+0IX4zDQd8dGqETbBj42qkpkqVW2wegEhp6wA/2VK1gbt+8R+e4HLOVBzZzJoZ2fquSjAjbHfR2tBvIMuXMyyAfws+fqIo+0jPt00QacACIknBPses+y+iDBnMwE85GK2TMD5SYWjPtTTPAZpsCWahbsMFjwUxHRd/bwBDZDku0LqQkjUsOIKVYRC4Qiz1KoW2UtT68Zv7E2trEioZlabHM9fHboW8o0ckUCx/h1UwMEGKEGW2caNueIsojgGuQR9ouG5tU1QOwGWsWXmiNfHYu8/JTIrQd3K3RT1Z33S0I42yl1A+tB2CsaSjn0Fbkdm+jkyNHxTExri2uEBRrUSCNydnjbpBPCAoR8Y00zkyvWCazdE7lYcz2ci6RzjhOrfushkLRCCqcmdg3VpEitp47mnQtWqCACBJ3q6GeahizSjpC3tVXGOMwMMJ/6ikgylfwsPc47S9/sx2wf6aBTLdM5iYv4e2KIn4sYoZPHUh3OzGf2Y5P0Ckb2FYEoGqUE2InbT6HV0VbyJUUxeW4/1SqWMhbWt57A7+gsicBwNkfYIANdXNQOYZS3g1o4ptXDRVsf51oPaPRMfkDsWNku4X8RI16LYFH3i0aeJ/mzW4RR6RXteSpjESmItZLxdrdr8HMcHFalscyaatTlHILE5yIqtanVY4WebVhsoMpycpaze6mVhFPLibA906XcTHZUhgX3xH5kTBee083ITe1dEq73UjjDIrins3UtJU/MEeAY0xkVMfJrV9M344I59hn/qOO1XjHRxQu2dhczsDknieMrmvZcq2LzoGYS9X9KYtVWrN7i5lLX1MFWCe88cg11K8cg7MeuyHc9sFt/ij32uNH11Vklb4eVSIURns9PzMHg3KCDs1LDBkhtKk8sxRLEIq6itv7IUmlUSafWD1FOEXWqxbgt90+ps6SoGx37so7BRy/AeL/onAUCiWN/s4JrpWq8v0qUE6TUd1ofGz9OxNDDsWe0AXK26IiQY1aOLSDgWiJfi7bpQNsKU/Z0zQmmo8RKNRYFZNHuczT1XTRC2WkJ4ici5VTkux8EypcXY2QFF50QBgn8QxX1zIHjnjpWlJAn2dOJrOr9VMbmZDIAYYqNa3dmgOc73TTe00ZZJNQ0PlPkTFO2SxZMTYzwrrlmiS5xzjKFSgfcEREvNieVNuZUa7ejND0A+urrHKQ0SH6sHN/I7g9PgPvJ9lxUZr90DYjUs/A47yw91w8SBJlaoiHgQilHiBpKCdIP1RyvIa+jMd8zQrIIjPU9MyKvfcTy9F5ugTii6JJrUWMUWeWVCBbOqRau0RxpO4iRSFOs1xQdIh6tkemNeJmRR5keETEj7anRZosQGjR2hi9rqomltP2i6X3Q0ZoYmVFlm4Be0bSZuLkyRx8kpgJO3hPRBRJYd9q+lGwDYjRIY7SDpDimDUVjHXoimabzCIsT1SACxKOsaBpbtdABIbGWYnxEJUhGZrl1ITVl6FIM2H2nf1xic6GQwlgWc/NormdjygiXKugk5BOBI8rF9FuU2xQ5bzPBzzoBiNcH2tichwWRwLMSbPJ+vBRR8nYJpejtksigh8/FDnhIIrt7+nHu+Im9O1Y6MVXIpqMTochPfc64eiQIs4XIZklkuY6fH9rGvVUiRdzEeEd08EVszNlyJnY1iAisDHxDUzd8RlYCsmEzUzdTA+M9iZjDxFYzgd4vkaRM4PRQDoBaaaeb2KBPtiCkyYpCPxWRyM5PZybybP3T6c+/Ty+DQ7Naxdix2tERQwi7JcxDErAZTHixldTTmU8Fn6E0BcnLLNFPc/OLqv95kclRAeuadmDgGwrOVPo7PqtInqI+5BN5ic1rFnow7ZY4ImNNxbKizeecy6XvKD/gZEDEQ8/um/aMekSHt02KhURwOq3FRLWhhtbMmHwvBhcMDDiehRz6OTXUAoGmOfekG7CfZSooyCAFQwT388/uwP1QtoCpfaJKeaS7FMPu035QG2tPF4VIA+V6PcuO887Sc+1g5ZQIJuolG5icZxvYXFojRGAPTgHBYXk/y5IJozZD6wm2WFd4Xg3v1AAaTdzYHTHjkC/V3ahYGTOrkZzMqry6ReuJFnowePUxjAvJvDN9kfd8RORnXifyI1+Cc8C0hYj9m41WqTQ88MEDoEPkCO43ciw6JcF2u4TnLMW4ZzqW3Kg5lnkNHlZzJA7um+ktlt9TNTdzUDlYjkV6iXE3ekUYpdTBOyJJd6wwfyIGd+9Uq6nTxmhyoQfht5MtEa8o4iQWlTrQxgAAnktJREFUue+QsjWKZRsBomylnDOUT510Aryz+Z45yOQCRR7SHZ1AURYHCBCd4dYIZGiK8c33TLW8GRpfiWkLGtCiOpjVyJAK8lb8zPgvfKbaGOm1xRoMPNMhjVARQzEHNBPrN9cWK3ogKZ1pNvbxovxDJdI2LDp/6FDM9IHGskqxXzQRQ84baiStV/H+iompc2eOiadS04cBTCZaFq8bTCEFL2W7hGfjuPWLcL52UFEXDs1aRXWlHPCbFuvmKOeJyIXE3gXnADk4rFRiY9/XnMAz3TcNaYDvegDfW69jLEr67qgBNFLHnSrad8+aDeLYpuqoEtFlMQbXI50uL9beikqAv2gTazr2tBAjxpzv+yJlvuOS2UIGSok6wLFr6VdeM3GNy5dFRrYnx4/ClfxsITGHnsUIsSs77XGYhh1qCpDvlnNl7JrTytRdfWxOBBHy1Zo5UxR19VJrkUNkiOuEQTErmXnf7GtHBfRuEbYyj5wSAaNkA6VcIhfnKSn3k07n/7p0tzjqO281XijTxENfeWKOjQllFNgR4eEJC3T5/scJJAT+8LIn7kH3DB3nnaXn2nF0HaQ/EUzIOxbsd6ebWGyXr8LwbJZAYH5wCmkKCpodnxQ5xfOtwQlZq1q0RaFAVhjtNMVNLbXip5AIWKzjs//iNixYijkOfePxEOXqKY+grRstq3vcTOQ//LURkxPHoqLIExkW4ZCQE0RJgmJqCzFyrZKFDW6pJ0SD7Aj+pjMRuyIDz4xar4jxJNpw5YpFfSx5p3bIhDoM6xW7B5JxyUlpl6xaxRFLYYpY9EiHqz42raSd6LuI8a2PrYx/uWYaK47oxuNAdJDEUPIU+G+m9LjRhZ7Ipeq4nqsDGmfVVjkSWZ+3uVCIjay7XsHmfNmacWWObGI+DdXYc/Mg+iACR/3CTVzrZAucEmq5sJTfT0y1fK2qpPyKIZWRJ7LlWsqmkBhSUUygAt9X7h1lGfKRdSOEgzvwdyOD6xVDEg5tWwPmlSruuTCyqk7qyFD24Og6qk9ZIUTngMEF+wLO9vF5KiaXYkU09X3SSRexlApTgUy3bJRF1qfw7PvbuF+mw9wMm3SQQ+qobzPWeUunUATPs1LDOtnfgWN3cFvk1ScxnhdvoKKsFhlqy413VMA4Ezl839Ui7/4YNl32NiRqOtdHEHemadWmU0PTJ5rrId0/37Mmy0RMyGuiY8Lek4e3VFLDFan2zEZwHGIXqS4icbWxSBKY+jzTgBS+3KhYZdtSDe+F6BNtYBBbmljEAhu2f2EhC9NrDAbaip4xLTszwP2zQIGtl8oR1mA9xHshF4vCl746KLz+dsl4cyWd42cbGpREhlgT2SYyPCrY7+nkPDSJuXpk0wRe2VdRBFp8909jP7lgS3mBRUub8j0xqOW1H5zCc7GHKIteiH61RjvO0rOF5H3eWXquHW+615ylxzvaJUzuhS4MjyMQmXtwCmjR1BCbGyuc7p/B5H1kws5BIm+9h/OdaGGhs4lvM9RKmJE5S3fNYUN5waJVGu3vwCDGrkVLFIsjB2SlCmRqXwf3ulhHBM20EyP6IIFBX+hqu4cKjLGIlWrTsWBZfN83Lg83XEY4Itpk1be0E5v69ovYMGigI0+5MYLPBLFIOTNphbAg8un99gx+Aqe1EWqVVWQpmdgxHsHAh5OzWoUhpyDi1MAI1GtVI9OTsM4GsyLqaKQihQibDYnw0wOMx5fmDWViSqgSIc11PIORFrGS+4emrPSe1TecE+0ADkU9FNmf4r5Tx3SsWLnE9IKvc6wc2Ub6qy8W+aEvwxGlfpKIOT2upoZ6RYx7KcZ7YmqmHIkc1BRrqDwujgGrsbpFBA6M/N0MSMxC16QxDm9hgyF/aEdSQp3uF52THdXxpTqq8n77Ktzr2z6PgIRoAdFGOr3TGrn/6VGM2TVLJj5KkT8/tUq6TKzyc7GOSH9YEGk46OfICqpGCPSYrV0ysTm9I1Qotj6IkGxWRMZKOObcaIRYT11FGtnCaKUKh7ZbBEJAcVURjANV4jNH5FwRFWTTA4zd/dOwL9wI/UTkUwfhEP7YHYbePDSJ79w5D3tyMDbi+cmWOQuzfRWhzezPnq7I5/YBARXZ3S+QFWmuvvPMMa0kouLVsdm+XtHmWpDsliVhOrs6xlwbFvAeWkOcn8Kb5OQxgEodTeWmVsG4WsUcYCC2VcJ50wDvgJIqd88a+jP0tQK2gGszzUaHjCgQe3WOCrAVM2uYV4VU09K+OansK1iJ8L1uUSRTztRcz4KLf/U56x9H7batkmnAzfWwdqY1DczCEYrNiiivKWdXDrQN/SLv7ll2nBelfI4djhwTmf43Vu2QPwjpEjYnX+TCDZG/dxyfuWPBlJ7vmtstRFkdo7yTkR91gK5b1IqSAIvI0aimHEPv5v5pfP+qZVT1kPu0p2uRvYjBypTTjx1ELJHC2DMDS/utVWAoGUG11DGb7RtZsqrVItUx7o+pO0bkrEhaVkdnZmC9okTMoHKFEIFwBBsII3xHTKk5X1ZeinG++2bMUPAcfmrRLsXd2Li3Osa4sS/YK08pt0SRJ1ZRhZ5VeJFcvFNy7VmF1qgAlCPWjZ4plpsPYcMj8ZvijxSomxhZivFcHY7QegUbVt6xLKQWpV++apsNOSLrFTwTy5cppTA9gLF/YArXvvHleL4f+RL0kfwUKTUvw9g1Q/Dk9nVgjEUM/WLaqhOY4T7QRrTL8vxCzoGbUq4TZSSamq5aU0dltm9OQX0MJ8FPsaldumapoRMTIv/m23avs+tvgTNNVKMTWHqC3LT1CpyE1gjjND2wZ9go4/muWgZKx82jkOI+TrUwd+b6xikhkkGk1k+M1M732i+aTk4xwe+6Ol61sfVgnO9h7Ij88ZozfUu3c6ypJ3a2gfnI+UNh0Mkh1vkDU5qSzTkaA9+q89hPbqMCOQIRzNnWyBrw9ovGeWOKjKgTeV9BjDYqP3gXBHD7RfyenEpy7fLrlBpRJGJvB5aqIsLcKyKwIXr24JR2QtC182eXYD2JiPz8J02f6lQLfQdLsaV793UQLJ1p4hrbJcypuR4c7stXzfGjzAarXyl5sVbBs7PVyC+8Gt0XLtowu05C+2oV15gaml1yMlPD39vFuzpXN3TUzUxParuE+TwxMmmOc3W8S+qkJS7Wmp/Alm2X8W/KSLCaNM/NXK0A+drbMVSMTtXvXYmARo8se+b37/PI0nPxWL9R5KqfeCzCNN+zCLkaiRRj/D0zAGnvj4/CAG+VTFJgT9e0lZojwPmvPgEH4I4FbKC9IhyQ2/aItEJs9I93fGkef77/biw8asVUI+MB0aCT4LpcM1FCLwOqEmsunVFIVUmmF2wZnM60HvsbbZfw74mRwfEcC0LVWyXjbLGihGraTC2KGAogYsRoLxUpFHb3VyrFpqdDYrqfYkPYDqwH1IWbcApXq9hUppVMe8EWNi3yE/LkbxHbtDIH72VUMsRqbwf3cq4Bw/+Z/YDMN5QYerqJcXr5afzNyis6Bdsl3M/YE3nxWRjzyMX7vnIF5314wjgiLPsux1bqPdez1jbbJdskT7ZQ8bKni830PS/bPU/6vpFXa2PwLu6dwfs8soXzHWjjmqtVGG0S8fs6b0cFlPWTq3L7Agz+wbYGA/p+J4d23YUuzrtaBZ+MyM5m2bRr2FCYqOa6BiW/88fGPwliK4PeKossT2HeL3SRyvryPK5xRN/7Djoamw7Yck3ko0eweb34rOrUOHgPrREQAEpHsApRBO9nqYb3zBTb9Ahze7NsDj3J6leswKnYqFhahgKW3Kwmh1h37MfWDqyP18QI84+EcFZttkv2HCs1OLmtEfhL8z2VH0itepOoo5/ASeR8zxwTj22NDEWlEvRG2SQE3EzEc0U++CFTvGbQRG5Y4uH6TA+tVYx8z9SXI8bRISrKCsqpIdbIBVvmWBdScPV4HN7G78428O5IA2DLpvUynqM6tnXCVkavPIX1cc0Svs+UHZ+fHMTqGGswc2wOM5VOx4M8QjrRDEqpsM42WGMPa3G+h3fHykYS8KcHsNWjgsi//nZ853vvtea8vP9M4DDu09TtqGBEdjYxj1xzjBe6Fig8PLlbduE8svTMHs+0Z/q3dThyTP9x7LG/bITKqQjhJLA30P3TMOLzPZF9bRFxgDqwbUczBPxfSLFIGSFWIiyctSqELb/a8Wv/B6mcfR3A7WxfwoaZ+V5nncDaZFCEsjWyFJOf2Pf8BBwKpnhOqaHPHHtG8jyIKBUT4z/RIHJDpxPC8l1HLA20t4NNgOcIYkthxa6lh1httli3KpwDbTNShOgvX8Xn759GQ91D2yIvOYv/E15nVEzyq4ilQ9k2hBA8id372xivr8yhN9urTuI6X5lTiH6I6L0a2cZPNXQ6EuQfEWXLq1gfn8Q4F1JEp4x8v+0Ra1paTKB2TcG745P480THgbbI992DqJZoV7sEB6AcG6F+Xwdj+pCei5VMdI5PtfBMh7dhlB+ZwHwi2sHUK1G0boB7djNswKmDc1YiVcUvI2LeKuv7OWOI1WLdUCPyPrjJ0nn1UzgfjqYqNiq2WZNAzxRPV3ljUwOMGdMT0wNLA2+W8axhAWOTOlDT3t/GeJ1uwvlhiixSFJKVUSxUoNo1eSgvPYMNj+uEfLq+j+/lpQPYBYCaRMOCVX0RQahGuM/FOj5HThJL6/d0jTA/yqWqyMPa04W9oLYWqzfJrYlc6yiwWbaNm8+zXUIw01BqAFHjizZFPnxE5HnrsHfkslGFf7lmqA4rupgef8e3Q4j3gi2TChDZjZCvVHGPW2XcSzuwlFU+je5muAfyNs/VrWKNB8eTXDL2tqNEQTXC9a5ZUnJ41QKsWeXYrVYxDiTyn2riHtjyZrZvkirUXGLAQpT2hlfiftwMAe9cH+NVH2sqPUDALILAxE/NiV6rWruVmvKZghjv7bP7TAZkVLC1StRurSLZhy59xvfv88jSc/DI5BgcpuzYYx0mVnkVld/CJq4UnFyu4fczfSzIA20sdP786DoWCTtRTw+w4JarMNRnmvKEx9E1kVsPILr/yqxt8N2SVY9QnbqqETqrPKiMnFcnrypSlIluBDlHYWpoJdJEeUgMpQYIDRAdHZaojwoiI1HStSs7zTwZRTH1VUwMWqYjRacqzztiyuNg25pWnmpZCximuC7cRKR/1xx+R05UMREpjQ29GbrmKDHanxyacjqdmuUa7p3SBp88BMNIATgSO/1EJC0a56FfNBE9tj7oFc3wiphsA9+ZnyASboQiX5oTme/j2SIPBn5YMNL2kx2nmyK//FKRl50W+Qf3icRKRKYj6GeWSmMLm2YIwz7wc5VLjm0etTG4cg9P6OaX2XMQaSMxOXHxPkqxSKQVaGVFJuZ7cB6nBuqsxMbxqujGSL4d21UcnzTHtRIZYb8R4npsa0KnmK1BiGh6qUXbyzXw/OqaMsm3yBn6lmYWUcmEeQsAqG0lgvtmcQXJtJnO/wensGkt16y6jw44UazaGA702EPgND2w3l5cT1V1RKkI7WbWFJvO1bw6OEvKiZoY4pk5Xwu6juohrkGFffJ9amPcN9XKad/Ksb0Lvhsqb9M+nGgZmbhdMgFKOkWzfU2bKd+RKaytksi//wSejWrwzaHxdpjqnh5izqxVYD/JMQpijO1qZk70vTOwqytVzK8HpuAAB4npQtFBLEcIfB6YFvmJL4IXuqDpOFa45bW8+A4ZVFLVPkhgy8gTZfsb8peI4FXHRpfgkTroifjWL+C8LJShCObRdaNvrFRxPmpftQMLvgsp7NzQx+/LMeZDIdVAyYXTxdTxM3ycd5aeo8fjOkxOJnJoS3kNLsp3J5UnE3lAkpbqMFgH2yC5rlXNQWHJO88lYkZ4vo8IiY1FH++4ehnnvmNBpFNECfC+junPsDUCOR0se54YYdGsKZkzcaylQN+3VCJbifA7m2URiXYrDLMaZ6ekfYR7WquYg8O+ZHnnrKZ8rZWqGURWklFmgRD4uTq+U4oRwTZHMEqLdePIrFTx976O6b2wZcuURqLkVLC5JzdEClqyIo1KyKw+oRNF57ARgsT/6QNm9DgmNEphQZseZ9ZShtpBX5kDOuOnuVYnKVJiRzS6XlOn45olM3ZsKvotJ208R4UnR5Z4fPoAnvlbT9gmWY5wjcwxJePaGCRYL4MA5pmmRaXcePmOD7RN8iF1rPqN6GAxETlbxTN1izj3JevYjGnUWQY+MbJU0dmG8bboWBBh5NwWsTLtemhNTwuZOTOUcCBSESW7+4p1i5hb/aJx0QoavdfHeLZ2ySrvOAeZRmR6xo9MYXxyuLsCLyzYuDKAoEM1M7B0dOZgg22O4ACyUrU5wnzt+zZfWYDBas7DWzY29dAQajezlGSNiEkN64bODPlGmQPH+t4ZpCZjF07GFUqsZ4qI4xQkcIAyB/SDe2Y1peVZijxz4KTQrlGDiXwjjicRZCczpJWNfN0MPDbqxrFNSSaYQ1T5FsF1L9rEvz+3D4j18Un7HJ05Vg97qbWsErE01tnGbi2rzLEWJ3RwHbHCjGok4kYWjGUOUt2s4uwVRRpjnHdYs8Apf7zxPqM6EE1cq4Br9E++BAfuBecwnzbKmIN557UcWeEEq+SWaggincxS6lslkSNb4sz3RFa+utn4Rh7nnaXn8LHLYZp4pzoLmYg4KO/sFVFGe7BtE5i6S6tVGKF2SWRmy6L3dsmg1xefRWR53SI4Iax8e6Jju2QISjWCUVivGBrCsmgShNnY8oEpkyhgo1SK/5FHJILPdgI814vOQbqA1UzcqEUMKegXcw6IaElzYto/mWDRTmiqZr2Sc7x0Y+sE0EQh+Zppi9Sxtifsin5oG4Z0o2wb+uTQymrzsglUHidR009MMJFG0RHcw9AHQpLvD1aKbXNiGmFvB993xIzwPTNGfme5tKPpoFlFF/e3rSrokg2LvolUuJ5V3NChCj1zIsuxRZ/c/J/Kcd80nBUK91FaghsZHVkiGfs7qmdVtHLkvi/ypQV8px6aA8pUhqNzgo1tD23jD6s3g5bNsWEBc5wpBFdQ13ywba0weDhimx3bgHR1LB6cQmBBpCn0RLIAG0U5MpVxoqDsoUa+UVsj+NrYFMszsTXkpQgmigk2GzrCbC3Ed8B0CCs2KbbJgMHLcF5y9lgNuFLFxjryDK0hX4sbYJDAIWpr4MIUIlFgEpbdzPSzdho7uzZnaiECJWowsQCEvDtWsTI9m59f1F1LHUPR6Ez+zOtEfvHjuNaGpp5dMeL3Z/ZbM+9fuBlzh8Ue3UB5nGOTYaB+WTvAexYR8YbWk47P1/dFHNekQs5pepIITbtkDhpRS2ovdQIgYjy6gSHE1CtiM/CiztkgMQSfzmLooc/hqKC6dgN7Z0wNswWJiPGKeLz+uPZR1P/7ichUKPIrLzHJlIGPwIlq4e2SSpgMsIbWK4ZQ1scmvUJnLW/D+C7FeypW4xt2nHeWvlmOrV8SecU/hTPUHMFJKqSoNkrU0BVS6MLcPWfk0FjJmg1NA21pZFzIsNAvWccCuGgTKBQ7q7NaKX/85UUi/+rzpgVEoT5GfyOmkcQMoggiWKbnEo0A28rrYDXGqIDnoqxAXg5ARKPRZDdfiRVsTKeR+0NSsJca2jUqAIm4ZF2FJTWCCxJsZuQSjQow9KxSIuHcERFnhLETMTTrZAuIBzve94pWHUShP1Y4ha7dIx0homFZUXu8Cf5OYmuRQJ2i1ghOD6ujRKyqjq05IkUBpgbWE41pxcRFJL/QxXkpalhMLEVHJypyRaqhaUFRL+biDZHwEZGPXfDV5ywRFnIiqCJOdIEpyq2ylca7GZw0onXUvqLTQYeSDjE3ZUbggTq7XmqpTBYF1MfYkKeVSxSQSza2iiwiFHS2me7Ni1aK6HxqmOMZ5ZyOdskKBxLH5BUqOje5SdNBywSfZduN9YqirkVL17Isn84mBSRFbFOiHhHbztBZomAmuXiZfrYZmhAkq1SJAhZSE/A80zBSdznGvFgv54ojEqtWKyZYF0GC8S+mIsHIVMrJ+6Gg7d4Ofn5iwipie0Vs2nT+WeG6WcL1l2vY8DmnggROGZ03L0Mq8sINkeNTlsrn+BE9pCI1qz7pnLGf4mIdP5vvGa+M75+oVL8OdHm2j8CT3MkgMXSyNYJtq0YiRzcw34PEqAGU02ClXykWKY7NkeI64FjMR8ZtilyRRoLA5CtzqERlYELKBgOQaxdhq/Z1rGtAObaAZqELe7lSAw+MRQjsV7hWNT7VUFH4qiK/oSfiunpuzwLTyBPJUpFDbZGTTwGR/gYe552l5/iRyTERUdL3Lb8l8vx/gcXWGmFRhR4mcCXCRn54W+R0CxP1xAQ2GHI6KpHmvAMs9tMt/XwT5zvYxqLZ1wFUnO/pxmOtglRfEIP7NDm01hLcYKj/wtL0uZ51vXd0wfd9I9HO90y3g/yLM43dfCJyivLK3F4qkhQMEaAAIgbODN+oYAJyrPhyM0gbFJXEGxaMxNwc2YbKNiVjT8QNrOceozJWurD3EseX5MvQsyoj/p/OJJ0hNzGnKHJxT67YM2eOKVAT/eH7dMTK/Bmhi5jjV41EBgVTXSdsL+ocMmquj0XcriF/Q+XtUDCzNjZJh2YIxOP2PU8+eSdGiGApiDn2TDWZzVfJxchrRJGfRlSHUTodvMQR6QWWEuFnuR4iF4R1Vz+/VbJ2E3u6+LOzsaYiG1XbMDMxdE4cS4Vy3myU8bnjE2iFcvmqOXbs5cZ0KEnfmdhcZwo41I16q2S9xSg0SnVxSjZwTvNZySMa+uZ0R56lEfMcPjpkTmaK2LWxCXuy/Y/j2bNzLClUGarTySpBOp55bl/iikhq8y5x4Cixyi/LLKgpFJR3twkb4qVY71MDkUFgsh5BLFKMjDDdKYmEipy86V4EMdThinWdDjwTFP2J20Xed5WluDc0FUcHguNKjqOIjRVJ4ge3Nd2a2jzoFc1xnxyaGHAQ452SY8W/vdRQr8NbQD4ZyLFqmRQEFr8UYxG3YFpx1UikUzB5hLLyQfPzQjKrLgzUCQ7Uvp1uokCkGmlDX1+rfiNLBX/P/SIfvhDnKCbICLD6sR3AiSLXbaCpSQaJLGLxEysg4LVYMXzzeWfp/PG3cOyk5H77T0S+7/sseosdtKxwUzg+tbHIgW1EAWsVi4RYIRG7iID8BAv9oUksvquXka5hWe51i/jMJw/ZTXzLSavScDIQbrtFq9Cgc0OSbCXC4j+0/Vgidt5x42eJNFUjENfZm60sKoYoIsXMZAj4N1EKlvZ7apQZ2a9UYWjZwmVfRwUtNQoVsTJuOllMXeSJkbyOn2KcaOzYV0rENqzIhdEnh6QytntlRM42IERC2DjTETPQecFJonelkb3Xvm8l206GCsnaWKP6xPSEiFo0R/Y7J7N2EUxRUNGcc4bQv/oO4icisz2Uh381Z2lygHFarln6xVHnj1VqO61Y1NFkTzs+k4iVlpPkO/KtuouIJQ13VVO7FFtcryBC5hgQSSP5PfJE/uAyVcyORb79OMYv8kwV+8QE5vq3nrDNsJtznNmPkFwzLzMuDOf5cg3rIEiwiRHtSV1DiEiiJ6GajgpTsTMD2/iZjoo8kXFmqR/OV6azWL4fuyKpOjZMQXHOEVF0xCq3ON+WlPOyWMdGTwHaPd2ccXJMb6lfNG2qRoj/lyPB4hV1gGNzLkisnxzpmlaHsh2ITGsQkTk4R2sEpyp2TV+sNbTqQ0eMFM0U+b/+rKF3dIiJcrEcn46Ql8JZSxQxIXF/uabIVhn3NdI1PzHCPCO/ar4HRJ6BRSu3TntFKw7IRNPpoaVNiUjR8Rnn0u3kdrKAgb0KiZoPfCC+l62Zs8QiBs5JERM73UGrdJ6eblr/PkoVbJVEZn1NQSvCXoosSCThvTHC+x4VROpaKMDiieoY41WNrDDmGTzOO0vfREcmx8S5+hgg6D+/xKDWiuaJNyqAtaeHSLMxOqVhYFkpyYyHt7GhPzwJz39/x6or+r5pwvzpUdwA+SzUBcmrErPj9dA3Y7tRsdJu6rAwPUbEpFsEB+T5K5YCYSpAxFJVzM8HsaXhqOrM64WeyERk+Xsng7jaqRbOFSTWDmSrDCSOZecbZUOejk/iGmsVwNbkIInYhi5iVUmOaDPYxEii2yWk6Nol7BPk5FDx3BHbEMmpocM3zKURYxdjON/DBsGIvx7CKPEceUSgoihF5IpIwUQRq5HIQ3tguCaH1s1+kHM8HNG0bo70vlwzZGS2j+s/b13kXZ8AsfUvL3qCCevgWs9bw73dsWCpwYEv0qnhXo9s2hgQ8WE6Je9gs4EoN4FCLs26UcF393cMnSE3rTWyFhJDph8ivN/YFfn8PrvnV5yyNEwlwmc/dgFkIF5y1jqzTw8wLkRWOAf8VEnSBSOU892I4Lss0a9EUAOvh7tlB1giz3NyLTR1jVHRmsReP7PNKO+QE3ElMkeNrzsXIH7Icn6ivr0iKlv57CJYBwe3zdmgYzfw7XupY5s8/90uWZHG3shSm/kegWzpcqplfQx7gZHP6QjwPpmuZ2AyPZBdPQJZtEIB0EpkbWlKyiVbrxhR33MMOaUiOlN7UwM4itQ+apeQeow9vLOjGwguyc9i6T2ri1kFzPZLDEpKMRCaTCygKyZwZChIK4JnaYQi3kgdNJ0HK1XYSr5fInm0R7RnvH4xwTMQQTrTwPmYBgwLuJ+TLUNeWTnKakfqzS30jA/bCRAozPcwvg9OGSqWuMYpHRWUJ1Z8fBvxt3icd5a+yY5MjonzX45h0n5+n2kMkZTXCcxoMIIjWsBKOFZmbZSBMlEfI3XgPG2XsEjunYERePNXYHjIpWAlWuyKSGI5a/IH6mNTBN8sw2hScZZVFCIwxGwpsV5RyDg0ByLRlE8xNsLjVlkF2TTtQT4DN/3ZPv69VNudnnEzLOxzDRiEsW5MhJZZzk6Hj520YxefdxOcc1K5FEs1GK+D2xiPVJ+zmFilXCWyNjPkmTA1MipYyo/VcfmyeDa6ZerNiY2nQnSgNdqtv8PUXt8HCsHGxsMCNqTT6ihQnZoOGx1BEdtIROxe2bLkdBPjdWgbTt+osBt5fPRBfSUKUB5dh8PExqAU2xPRCprMHAOOfylGtE4l7yC2d94cKQlfN90JrRCjXAQ3i4s2tGJQU9YjTQPdN4P396Z7RT50Ka67WcY5yzGu/19eiGcWsZ59ItjI7p7FPV24aSmdXc6dh+s2RkAjmPo52MY7olMYuyJjB+ltXzfOpbohcQs9bOanm9iMOZ/HLkQaKS9RjYyrWA+BTgx1i2BD460S0JC7ZzFfn7+M359rGEme/Bo3Eyn3cD/XLeJc9bFpLtFpYSps6MOBcDOscwY6IibYSZ7OdgkOKOcg+7pNjPAeGQgSAVysWyq7V4S9uHoZNmwHEXNVy0lMIywT44RRXoFcuo2KqYbTLtL53agglXuqaUj5RZtYVzzHVhnr4FQTtmXgG+KYOnhnkQuhXz53J8A99pVnR8e0pLwipt3oGDL4TBy0tRl5aDEz17PWI2xmTuewHuL+iUptaFBF+00+FeVmyhECxINtcwD3t7HOzzSN05k51vqnNTJbRB0sOvFeJtKMDUVk1d4zfJx3lr4Jj0yOifNbx0S+7x9ikrP6gIZ67IlIBtXhIMaEZURGcqwIECU3w4b+FxfJjsBaY2T8i9jLVWHkqjoYFVFZtzG2tAnRF1ZoUZDvnhkYveoYC72uFUJDX6TYU4RAnQ62wBBREcgxHKbIteiU+X6W4fd1HFoDg9CrkQlGHmjjc9R14YY18GEYDrStfcdyDcbyknVzNplmKMe4/9TB5vrwJIw920cc3sJ9zfcsBdkuwVgNfOXtOCIxUySOoQl+zpFkZR51bYIY7/viDUN5Qk3BblYMhWC1IFGXvV1852wDJf3dwDbDfGPeIBHxXEsp0dgyfcfovxNgDPk8j3dcuQKtpdWqlajTsXcz48/sb+Pz5CRlIiKOSResVeDoxS7mxYkJfG+jDC7W0LcU4dRQm8AWTNyykIB/99Ck9r3q4zlnBiIvPY2x2Nex+77pWggWPm9d5P/+Vova3/UJI9IXE5G1ApynL88bMsD5zrWWOaYvtlrBvOhXTA/HT7C+yIFhym6lhucjP2Sub+R3IiZEK1aq1rSa/ch4TaY+y7G1rqCKemtkOkdfnrO5kDhwZChuOjk0aYaK2hEqOTO95QiuTwSWHLX1CuZ9O7DNtakoKVPavaI9GxFROhx0pBb084t1cH+2ypA4+Y6HsP4a6tyymTYJ921FeKaGJo9AR4z6W2EOLfMTrHuid+UYTsdCFylYVoWNCto/sYNnIM9yWACCFXn4HIsvmLYTsVTwDpdMTMAydayasqkpvG6AuXr7Ap57Yiiype+Y3Rr66lgOfUu9b5eMj8br5gnwTirihxifSoRrcK5RpfuLezDHDm2bXhYDHRZU9IsYH+49i3UTt3UzjGlHHeFaKNJ7ko3tG3ycd5a+SY9Mjolz7cdgBNaqWGQ75F5NfxxoAx4d5eBZOkoiJuN/cNt0PRiVexkWzFAQ0V60IRL4BrcHigJMD4wQSw2loW9ps8SBo7K/bQuOG25tbD21RGBk8qgVDWrqWCm1m2mkl5nDwghyb8eQFvbNSgfYDC/ewP/Z/6hXhEFkSSzL+gN1QhLXyrTJOyL5kwaez5E42MgD5chkDp6TZcOZKDF6ZBU+zZFJLXBjzcPjPEdDK4kYyVLAbmqo1SoePj8xFPECKxOeHMJZZlNNIhSvexgbDBESGm0SkSl5wOhzqW5ii8MCOFEH2rjOiYnHn5zXLEGjhe0hBj7eKQnOc31r58JUnSNG2CYKutCDMX7BOfztJ0jZ3b4H7y7y8G5q6nyTJyRijvS4gOtNDa0dCJ3B+T7mfSMUOXazoRE/87rHPtPkUCs59dwzfaS/HV1H1fFueYvq2HSNKmORhRT9x840sVavXQI6QMHVXmIiiufq+P25upVot1KTnGC6OnXsvupa0j01tAqmzDGkLnWQWprWuT0xxDzwMji2X54X6RaMf8jNLnUwnzqBORIcDy9TZ7hkgcPlq/j9g1NwDqcG+N3ds7AHbOhLZJSyIz3fUohBbCR26jdFLubMpI+1c/0thnZQ2Z9oVr9owQ2LSQY+3vN9M3g28oyYJmJ6e3pgMhu9IkjRM308+7kG5l01wrvLBIFVbYx55KdGOt/bxbO3S/jOwFenJrHgY7FuSLKb+3ujjD/zPVz77lms5a0yxvblp00qYr5nTcypObZaNaeHB7l6IurE5BxvciyrmhL/zH6M/+QQ8/WhSQ3ylKPZDG0NRS7s+54u7sFLMS4slqmOje4RPrPuynln6Zv5+DefFnnnrSLf9sPIp1OcckHddz8VuVA/W4oxoWksROzvsCBS0dTU5Nii/0IKo/bQFKILRrN+ao7LUt3g+ekBNgZyIxbruJ/K2FAXipuxKmtUENnWTW5PFxvB/raKOoqIJEYKZhRIY+9lpuvBezuyicicKRs2/xxlVt5MY8kGkgtdiwKrYzhXjBZJGj5XNyeOm2Ypts2K5f3VsUVzlFRgZM8WFER16GhVxyYU2fdFSrrJlWNsemerVrnVHCnC0oLhumgD48yUY1iwFjSpAzSJ6Z6RphjYq4ulzSKW9uJnSfqkM7WD3qnD7KfgtL39cyL//xfvnpfkXtER9TIrLiikOK+bWa8scrPIO+P82CybYyZi1XjXLFp7k82yVTJ2AqRmdlIwjvH1ztXxncTB5v7IhApzblpjUnIuHu/gPRDx+9I80tQ/cDdKtjkX2ZGeqSYvRRufcUFT0kMj2w8VCUnFNudqhHQPU5TzPWzIdIIncs5MO8C7PrQt8v7n4/rXLFk3e85R6kSRo8dgghWVd80p507nKSubekWspVsOYsOfGIkU1MGjUCbfFZ/n0/shLHl4C+dZrBtqGbnY+Nmke+xhbHq+KW4z5TPfw30PfazdXhG25tC2poNGeB/doojUjDBeTERkbOMTaDp1o4KAabuE4JINg5l6dATziYHS2MPnn78M5+FkC/9/2ZZx5JZrJmUwKmCuNkdmF1jIUFei++mmaW0RZV2pWmNsNwP6Uky0gbDatfmeOUoimLOU2GALEx5//37jTDKlG3qmFp+vkMxzAsce3imbICeuSNPB+JVirJmHJzBO8z0E2PdP47wiWj2rjiDnnqdI/JmGOu9PvLz+No7zztI38ZG5v4AKuY++X8Q5hsVw7aKlJvpF5PFTB5UwEyORF55FWmKtaidiuwWKBObl7CvKKfrIEZGXncHvmYKjGBvJmhtlXLc+Fun6OG8+HUBHh6W5JNiS69PORSYtzYFTa4kCel4msqdt/BxyX5wMztZQUYzWSAntJEdmRvYlelGNRE77xlNhSkrEKnD4syCxaC52VRnd2V31QuFCVseR2L5SNcVyQthHNk1eQMQieaY0eJ2xh/dKzarUwTXCAn5+sqWOjGc9+FgFed2iGUE23vziHhj0Q9tW/h27In3XUigXbuJc3SI2gC19L5XYyOSZYEwv3BT55Q9bg04RbH6nm7g/Eo8T19Ik1ywhYr1qGX2ltsrYpKYHpvK8XBMZJtZShKrA6xUgNr46y2cbcIS8DI4j00Pknx3cxgbNFO1SDde7aAP3ce8Mgov9HZzr37368RcbOXGZiEQFlFRfuIn72dexHoSN0ByDsYcIfqsk8smD2rusi2elYnigDvxorJWNgvc3ObTS69bIUAOS85myPttAavaiTXCYiPY0QkMEKb8w8NGuiAdL/y/Ygk2gWjOdZjq9RI4KKc5NRfA9XTgNaxWTPWiFOMdFm7Z+85pgrA5LdB4TGfJTRf/UNmyVwAVqhghmqhHm8L3KM/MEc4waUxtlE17sBIYiUvhyowwtokIKR47pJHLAeP+nm5irR9cwLz56xJ4jSCzl1RpZw+zpAQKQn3zDExvrUizyK3+FMVivYNwYOHYDnP/QtpG5Z/t4zr46ifmDCv3kWuWPPz0q8t6PWPFBdWxFPhMjjCF1mPLV0iSgU46CwWkztLlC+7pVEunP4FmYWaCoL6symQ6MPFz/YBtO49YTD9E3+nC/+kee+Hj3u98tjuPIT/3UTz3hZ2699VZ52cteJlNTU1Iul+Xo0aPyK7/yK7s+c9NNN8krXvEKmZiYkImJCXnta18rX/jCFx5zrRe84AVSr9dldnZWvud7vkceeOCBv8ntnz/EdJig8j0ECvSZ/UhVrFZhQNcqMDIPT8B5ImFXBIvlux7Agjw+qeiIRvB+ikV7xQrIuUEMKJyVWRQLFLHqt+OT+B2FBllBRz6Gn9hmS8Il+TqskpvrW+UNN6hqhOse3sLmtNAzQblM8NnpAe6PQoVdjbypYUJkhCmacgT+xvTARP2GPgzgYt26ZycO7ptVRfnWK70iNuBe0TgBrNKjUOiCcpf2dvC9jTJSWH3f0pdBYpotjO5pvD+3z0p916oY53N1/Jnt4xyr+rNF/bNSxTvtBiZEWB0jpUVHyVenrBypJpA6edslGw/qZ7EhKasqmSrbKuN5//0nRP7DXwNpevVJS63RQS3FcBBbI5H/pWTqv7oQ/790De+AUW8egdrXwfUyTeeeaeLZ2AZmXwdOyyXrstPGg9WeowLm/bK+n4UurnVk0xAroqT18IkdJSw0zDfOHY6PnxoiU1LkMPQMgRr6uO99HfBe6BRmYujEesVQFRHMF44ze7RdsGU9vsaaer1gCw7nK07h389bz/GnBH9qY5z3s/vhKFEYkjyS2MW90WloaVqSBQY8CinGfaxrpBvg/kksZkqLOk5rFaBSLLCgphNRE3KIKCC50MWYHNq2Zrzk7jDQqo2Rlsqn/+pjBFlrVTjFD06B40YSOsVryWcTwf2vVWytPDKBddYr4rxXLwHx+uvD+DzV073UqgpFcL6G8n7yjtIPfRlrQQTtqX70TvRhI/Ibu5gzW2VbR5UIdpNFDYUUc+Nky/hOPH75pUZjeLzj/3qdyHtfqkrfsaHMLN5JHIz3ZWtKAK9oV4KiVe8xbUcFeUdyYp+bGE9SKtjMnPzU1DFHyVVU8GwD3K1n8PiakaXbbrtNfvM3f1OuvPLKJ/1ctVqVt771rXLllVdKtVqVW2+9Vd7ylrdItVqVH//xHxcRkZtvvlne/OY3y0tf+lIplUpy4403yute9zq55557ZO/evSIi8slPflJ+8id/Ul7wghdIHMfycz/3c/K6171O7r33XqlWq092C+ePr3LsaDCd/FWR+f/LCNgXboh8br998EzTctFU6HYykU8cxsJbrSIvnzgwFrWxOQWNEEZouyQy37WIzpfdWkTs+0XHohxZB/GhD3E69ipi5Ul+kY0KiK4yMaImW5Mw+ukGVqZNgz49gJP1+b0G/RMlojaJI8Zr2du1dBirOooJzn26ie8d3IbBYhNQIj8itgn4iaoUx/YcFIM807B+TYy8Dm3D4K/UjGy5o7mjaAjVejfK2EjZo+pcAxsbG1P6CTYJOlx7u6pbU8J7emAKTi6NLdMLTNMV1ZnN88NYos93t1GxSJPE5Mmhic2xmm9P18jrk0MYZvbIEoFhpeNMEUKmChZ6prtEzpmbmf4SDfdKFZvcbN94bkEMpCmv4VRMDJ062cLnKHmxWcY8XK8Yl4vcqSc7fvr1+vdntew7tQrPgW9VQo5A5ytLzdH0MgQR+ztwmJkGY7rOT/Sdq6OVuqZ0zvQS5zA5bltlK6kf+PYsAyX30qEfFkwWo1c0/Soqd08M4WCQCM5UHdOuFJyk3ALHltVd7QDnpJwIHTC2LcoXEQSJBSbdwIjpp5vYgPPILlvGOGK6W6ljqtOtkSFv1bFxiXi9+th4PLynkW/rN48+xS6cxEvXRF56BvezXMP3D7QRUE0MsQZZrr9TNVcWefcrbJ78/fvx+UIq8mN3aJXi2JpQU4yyPobDsqGo3GINc5/XiF3TD3u8Bta/9sInn68vP20tpgop1s3Qt8AxdTD21y7hZ1+ZE4nEimIywTuiqjmDTHYQoJAtZSDONnbLoGRiVI5qhPF7ho+vyVnq9Xrygz/4g3LTTTfJDTfc8KSfvfrqq+Xqq6/e+f+hQ4fkj/7oj+SWW27ZcZZ+7/d+b9d3brrpJvnQhz4kH//4x+WHf/iHRUTkr/7qr3Z95n3ve5/Mzs7K7bffLq985aPyrnqEYShhaBOl0+k89Yf8Jjt2HKZPvU/kO34QC4+loSKa99aoYn8bC5BEvjvnrSKokFoE4KVWvk6Rxq0S0KrZgaFPFBfMN6lkpcSWZ/2nGH0mmtemgjM5EuTQkMvEahFqDhFBYuqKYm58Pqo187sipnGTuCKSGBn9wSnlu3jWr03EDGHkwYAMfBONZPUPc/JMKdJAFFJDiahQztJZdlonD8kVLWnWjXCgS5nG2xGLzsiR8FLA/RSQI7I1OTT4vB7iM1tlq85yM9lpi0MRx1FBpFQQCXR90ckgAsfUKhEZkkG7Og+qkaIhBUDsmeDnoYf77ATWoJOb8+kmvvf647ivfNUVS5AdsRRk6iDlxXuLXdP8IceGjjrTCdz0IxfI2sCHk5IJNsC1qo1xWR1LPxH5h9/31Bbar7xE5D9+HOdbqpuw5fQAelITQ1NSDxJsphRUvGsO16IWFHlVTC+T/8Z2EkwlFxORysgQITre985g3boZnq2qzhG5T8cnFRl1jWtHRXmW96eONeklj4ZrpjY2zSTODWpdMb1ejUQqAwueEk0zZYL7netZqjx2RSq+qVoPfeNGPTxpaT6iqo7gfgPlzgxr+NlWCQ7yVsnmPR2xrZK18WGrHKJa2yW8s+Ua5mLsYm5fsAWHnSKdrD5lFdhsH++Ra6AdiIRVbRuVirzorL1HcuZok5LcuLLNDB3RSzZETqizuFY1JCaPBmXO7r5u+ePomsj9M/b/q5aVQyaaSvdM6oFIYEMr2roBRGNDDZ6IjlLIl6k1os2smusE0OIiysm0Jiuy+UfEUGqmhDlvn6Hja3KWfvInf1Le8IY3yGtf+9qv6iw9+rjzzjvlM5/5zJN+bzAYSBRFMjk5+YSfabfbIiJP+pl3v/vd8q53vetp3d8385HJMXEuPiZy/P8R+Z4fAJm7EcKIB4lCocpFmRiajADbNVy4YdEqq7io88GWGSQJipjInJeJlEJDJaj7kwkWV3NkKq8k8HopEBkahLIiWXRa2NOLZfBUxnYk59C4puVRjYyITK5P/h4p7T/b13J0jR5ZxUSCKgUHT1eAZDRCSxEyBRe7uyv2iIh4KZAzkoqLyW4nK3N0Q1EHgs7IhG6KJMIGiZWpO5nstEHxU6vwObxt2jZ+AkO4qkTwQ9tW5jsqqAyEmgo6WVslOIzVyEp/8+AKz82mro0Q8yKI7ecDX6SVWFVlT51sVudslE11nMUHc1tWUcX5QvK6iFX2sZKOMgBEqRZ6pvHDXlnFRGSs8yIvhVAba1+/zByNTIDsicCZpYDhUzkuX4EIIhGNjYppccUuzptvC0Pnf66Pfy/XRBJ9DyyXZ2GBSE5PpwwEKnGxke7tGmeKfQHJBaHY4HZJUahEpC8mr+FmIpHzWBSXAoic02Ndd7GLii0qaROxo+hsO7A1G3kibmzIX15LbQdRHOO+/RRrjSRgant1AhMLzRwTofQyvFOmxjmeJKzz/bFAYaGLnxM9C10rVuCmvVm21OCRTXyPz8W2MaeauL9L1jG2fUWmfucqQ6mGBaw/kqlff9z4k+3Axpp2oBma/hMLY041kcoqaMBJG+Ollh5PXUgRsGKx78OpPLiNZ/2H94Lzd+cCnJcrVqzatqVI47m6NS7nvWdlm3drqVUuR57Z6UzfEYtTOJYisI9s0kvnno71VhlrcnKI512rqONVUHmHp7bUvhHH03aWfv/3f1/uuOMOue22257W9/bt2ydra2sSx7EcO3ZMfuzHfuwJP/vOd75T9u7dK6997Wsf9/dZlsk73vEOefnLXy6XX375E57n+uuvl3e84x07/+90OrJ///4n/Pz5I3f83C0iP/V6pGGmBqp5ohvHWhXtPxa6MB6jAibzJevqpAxt8pPjUIuwGbDBbFjY3Y/MF0utJY4p+4YePs/KKKayiEiJGNpUiaxvGwnN3FS4UFPHuE15qYQ8/0REdtqhkC/Fxr3clKcHpgTNKJl9xyjy56eK2hSsrDlLLWXGNBpJ9K4jopeXaoTolxsWS77pZNE5YTUO9Z4GvrWS6DjGY2H1T+SZmKXnWrkyx5YSCCKy00qFOkfkobAyb5mOzGi3Q8cebhxzplSqGqHP9tAbiorBQ1+fyTVuGnkqPEIP8602xhzj+fm+2BKFgndBjGuw7Pu+GdsMOaZESJhCoyNw/zScDRGcjzyQamRRs59gXMLCbm7OEx2Xr4r8y9tkp1VGV1Ezqq0nWjVKfgvRRvKLqCmVuCaiKQKNLc4/alaVI+PYULjVzSz1yXYsDD6YWs4cVFORPE71/HZg1VaOwHljQEPnmWNJFNgVFGlw7pLXFcQ2V5mi5/2zCpGoD3W+SBJmrzQWM/A8TOlslM0eMJ1NG+KoHWF7nK2ypdWJdHUC5beJIdQDRXgLKe6rERo/iwUR/aI9N4Up5/oa8AQi//My2E8Re0csEvFTkTQxAUlWGAaxcUOJtvupKdD3i8axoxNZ1JR0c2SIeuTi8//oK3iP73mZyPffjfYwAx/z8kDbdNxEzG45gmf8qwshgTAfWyVgoJQDFkQQwSYPlBIfLEAgEZ3cUKKKIqbezSbXxcSKO0ox5m1f7cffFWfpzJkz8va3v10+8pGPSKlUeloXuuWWW6TX68nnPvc5eec73ykXXnihvPnNb37M52688Ub54Ac/KDfffPMTXuOtb32r3HXXXXLrrbc+6TWDIJAgCJ70M+eP3cdO490XHBP5F7ehMSJJmaFnUCsj/lFuCm2VAVOTr8TWGWmeP5HAkIsAyRiISOQbDFuJDH0irMzoj2mq2tiMNx2FfG+26li7nTeRZqDuEO+3mHNAaHC7RZF5wecaoYlxMgVHnRNK8F+8gUXOzZabG2UBLt6wlg5rFSPvihiJmxuMiOw0CSbviEgDeRc76Iln0V8hxXhulZWf4+FaJHmTW0MImxwtCgcSzl+p4d8H2kbcJteEZfPVsVUA1ccwyIe3YRwpfUCjPvCtdJtVdw9PmFLxwbZu6AMr0WbljSO474lRrt+Vi82zNrZKK6Ylqfq7WlWkagSnYnpoqNp2WZu9ZkBHJ4ePdaI5Nza0/HlfB5snnQ6WirN9xf6eSQl8+MKvvrD+xW14P3y+dsk2aaqnL9eMuCyCTeXwFp6xkIoUM6sKzMTQh6FvBQKVCPdOfaAjm1ZCzkAi04ChHlohBNEZEbxbOpDjsaVWM8H910OrMkx1XZZSC47oQLrZbgRsrGk1EbwTrsE8QkWl7q2SbapTA9lpUkyHnM4d53B1bA24w4JIPzOkTdRWsAw/djHnyMmiRIEjOBed+9g1KQK23WEjZ6pZO56hVeRBjQoif3mhyPfeJ/KFPbvb4YiA2/Ttx82+jQKrUE1FpJYZisxAgmlVP7XeelzLkWvvdravaLpnHRk21KHMRORnPq2tfRQtKyqq3fet4tPNNJhSZGmprinEBPOPTvRa1XiIq1VTXxedJ5S42JkXGmxGroj4Vuk49BW5HxvZn8KfDKbJfXoGj6flLN1+++2yuroq11577c7PkiSRT33qU/Jf/st/kTAMxfMeP694+PBhERG54oorZGVlRY4dO/YYZ+m9732v/OIv/qJ87GMfe0Li+Nve9jb5sz/7M/nUpz4l+/bte9zPnD/+5kcmx8T5x8ewQH/nKhivDS0VZfXRH162+0tLdXMayDkpKXrAtM5aBdVfeXi2FOOzVA6eGpgMwWzf0BFGipND2VGvJrrE3HiviM346iXjW5AjRGhfxHgFrjpDm2VDTuiwOWI8K6Za6qH2R9L0SX1sURBVuFnFxlRefYy0RFn5RUQi8pEkK4ESPWeHJGx1ChwRyVxzGMllIImZxokaRKLP2/OBRFD/iY4G0S5yiyaHBut76oQNc7yw1Srui2mvlkZ/JDhzw8sE93O2YQKHZd0A+0XwYLZLKA2nQ11ILX3SL1oJPTfLrZJIXEFKqRniHXSLeNcnWyCuF2NEstRe4gYTJNigE3WCKduwXrES9inlCXWLKIGvjXHdvR38m2R5lqkTPZvtYyz+84u++oKik5KKVRlVIjwPtbqaoUkIkDcVenAcPU29kCAvgn+zhJvpcHaVX6viu/M9c44mh4aiDvxc658ixqioHKlhAWuwkHNm6DyMCjj3wTZ+fqZhaWQRPB/nI9uP0JFxBJ8rxRYIcGycDGhU4igPzzE+IW2FCO4535KJlY9MP1Hbi3OJDgU3bPKrWA05NTAeUE/5dMtVK6C4bhF/tkuY083QGvjm+ZGO4J7YougvLwIq/wePynwcaIu8+oQhy0S4d6gFGhS1A1sfjqsyLg7m6+QQf1MDjS1mBr6uFU19DgpG+qd8AQnh2wFI6WyFs1zD90ceJD6CBA7Zb19l74iabyRluynOd3R9twNbG1takPZLxPiEQWKEbT/F3DvbEKmKzUnyXGlz93f+bjlLr3nNa+QrX/nKrp/96I/+qBw9elR+9md/9gkdpUcfWZbtIl6LiLznPe+RG264QT784Q/Ldddd97jfedvb3iZ//Md/LDfffPOO83X++MYdmRwT5zuPwTj95rWImpZqENS7dE3kunMiX9xrX9gsi1y2CgNEzZ1u0ZrSchOKXYPYScQk7ylxYTRJvu0VsUmwj1KvaFU3aW6BkpAdJBDBu3pJ5PvuFfn4YVvchO+TFCT0TBAZss0HK49ONnZXuHHDpFErxWi9wqoVruFmCOPx2X1WnUN1cD81XtSoYPB0ROMmdn99Hy0k/ASbEjlgFIFjuS17lIkYpO2lUFNmKmpqaONNRDDO3QudM6JXJNrSYWGqLFHng04n05Z0IvPk9cQ1YUM/Ne2oqj4DI/mycsBEzAHhfbNdRTGBUnYlxjx4ZAJzbLOM8V+q62YemOAiHUDOj8TBJkXnel03h06gCMG2tsQIrDKuExhXi0KgWBT43d2KPh1sI1p/z8uefDGxuozl6Ie3MN4PTuHnz1uHw0Q0gdVrSzVLEVWVz5QoClUbWzrb1bTZ/jYc26U6UKV1DXA2y7juxMhSsqtVXJuk6JMtkRcsqpZPFfcyOcR6djM4OExJlmJ8fl43ul4R6dVSYhpRrKyj9k9DnUG2rqGz4GVIJ7IcvxEaKZzoRCWCU7xdMl7izppXDhadvtWqVcASeRqrA7pWtYo9ksnpeK1Wca9TQ5FL122zZ9qbc52BXCk2RyTTd7xUg8CnCMj8jz4SR1seRcZHSjRlxYqxjQoChZpW6W1qerEcW7B474wp24vguei0FlLlaw6sufe5Bp5PxLTXgtjI7FNK1l6ehBr8StWoDP/iNryLhyctIJ0YInj50rzIi88qF7GAsd3bRQ9HFo+wPx8LVpiuY5p9aoj1uV5BxXQ7MNvLYKaQPr4u1N/i8bScpXq9/hiOULValampqZ2fX3/99XLu3Dl5//vfLyIiv/ZrvyYHDhyQo0ePigh0l9773vfK2972tp1z3HjjjfLzP//z8oEPfEAOHToky8vLIiJSq9WkVquJCEjlH/jAB+RP//RPpV6v73ym2WxKuVz+Wp79/PEUjkyOifOPjsEo/9bVmMjbJSP18aBabqjcHXGwONjgMnFMj4WaP2HBRCAdMePHtIcXi/geNjB2q2fEwrYEREVEZKe/0rCARXzxBn7OlgSMbuloDX3jAlF8jZU3LGNvhqYPdLaB/P3Yg+Oxt4Nn+OIenGNvB58ln+TQtgm1RYoedIsi9+y3KhWmHNmyJBUYGrbneGjKouJGCKNaHWPlEtXZ0wXPpjbGn6uXDEXZ20W0mLgg4ZLTs1LFxvu5ffjZJevGNesXYYydDKnMrRIqfpi+cnRMR2IbCdMjech8S41tOcZYzPfs/bFbO0UqSagde0YUD2LcA3uYve9q/Px/X4y/f/6TiGpDzyqWKpE6Xq71FySXhGk+bjiLdSApxycxfhdvIAggkkhnlwR59mOjU/nwJN7PRRsiN/0Z5mm3KPJD/2D3ItqRXnBsExj6hlwxxdcMTWYhcS2t88U9KjLYhpyDCDYQpuJajq3HYQHz9KplrL/MwfOsVzAme7t4l0Th2M8rUdRiYoiNba1iVXUTIzzDIxPG3aJm2kpNkYI21u1INLBwLUgip8gRoB11x1AfERO8fHBKnWV16h6aUp5TIuL2dwuGsvqO3B+moFi8QYefaax8T7KVKrg6kYf7e2gKjsSersgrT+H7f3AZ3q+IyLs/hvlCnuDUQOT61z7WWL7xPpE/ft4TG9OrlqHoTWczczBmbJ80MbR3ktedIjk/9OD0iOBZH5iCUylizk8hVeFHTRczOOiqsz308R4XenDK2PJkbxcOOCVhrl1Cc+i3fgHjTsHfuaHI7165WyqD/DYGwg9N4lmYFm2NVO4gxH3RxvaL+N2Fmxhrykuw+IP2eraP9/PV5Dm+wcfTcpaeyrG0tCSnT5/e+X+apnL99dfLiRMnpFAoyJEjR+SXfumX5C1vecvOZ379139dxuOxvOlNb9p1rl/4hV+QY8eOiYjIb/zGb4iIyKte9apdn3nf+94nP/IjP/L1fozzR+7I5Jg4P3oMzhJbDaxrlcI1S9jch0osXqmJ7OuKOOnuRp5sCnqmiejvwSkjWJKQyj5Om2XLnVOVebsEyD+vkUPdFm7SRAROtVBhwrYh3PSYH2d1B7vPpw6M+acOWlon33uO93d4GxtsM0SUTR7R999txo36L1zoJILettecs6uWjTi8Vba0F1GLtQoi9J08v0a+/aLIZpojQqbWwoX9rKjQzE73XgqkLnJEUg9GjxWGJ1owhHNaFs0Ifr2CDeWaJTgjj0wYj4rPzEqnNGfAyPFohqYuTCeGpFRunDtSEWLzqRuIDB17X/WxyG9eI3LrwcdOymM34z7Y2JXEa/b4orElKZxFCEzF+imcm2oEh+mhSTjY3JxYAp3nlBUTjNMjE1bscPEmuCysrqxEIn/+gdwmLYbghUVs0Kk6MN0iNoGLNpH6Yf87VkhSxLE6xlw927BxZyXq0Md9sFfbbXuw+dy5AGfmknX8O3EwX9i+56G6NlntK4FaUZZTTUUaNJ27WbFGrss1W2OVGt7PliJA3aLyntRxaWoQsF7RlF5qlWY8TkxYaokbLnWnWE1JTsxKFeiDl3PCCykKQw624fCyQW+o65C8F6aliHYv12RHqHa7hE386iUrJBGB/Rj4OPfU0CpbZxTlfLzjyRwlEcyvL81jLH/4y+bsObruL94wBJB9JqkXtVgHt5OVfn9xIewtq2U7AZ6DKc3mSKSmQUYhhU363Ry1ZWIoMirh3cSuyAcvN0dMBMKvb/+cyUa0RvjsL7/0sc/FFB3X4XbJCgsi1/hde7oiQQ/FFvdNY95Xx+B0HZ+EA7uni2t1A6QKyzFUxb+4R0Q6Tz6+3+DDybLsmU0E/i0enU5Hms2mtNttaTQaX/0L54+dw5FjMDLf+/1wKEIPEfWgCP0XHkEs8i2noAj9pQX87OINQPT1MRZ0WIBRDhJ1fDIYIFZ1iOB3i0os3NfZ3a2bZfUiVlHXDrStgiIoz19BRd+vv8DKlakiHRbMyL/0jPVO6vs58UuxlBdLzSMPm+/MAL/fKqNv3bhgJGU29n1wysi1hdQcLn5uvWIwN7WL5nogF59ugiQ/LODeSHpk2oKEUi8zeYCBb2kskuAj5TqsVRA9v+SMQfxOBlXm9TL0WhgVkvDuZth0V6t4z0wBkudV0vEnwbSv6VE3xWfJCVqsgyRaSoxrwRTbQhcOwGYZyBMRyEoMw3zDK83pyx+/+HFDJUYFzI2KFg+QfHqmAaO8VUYLn0PbRs6eGRi/o13Snn5K0G0H2CjZSJnIFjclOtuMmqmUPHbxfqcHiMrvmdHNdWAbOKUQSDZeqSKiPtUCL+bQtinUs8s7U9OVCM780XV8ZrtkxQZME9Jx5uYoYt3j96ujQVTwbB2BC51rR6wTPJFB9sxj6X/m5NKmohynCtatiJWwM/27XcI6Jyl6tYpnmenjPNRIorYZU2ORq30iI6u0IoJM5IXtf9ifcatkHEERvNe+b5WLTHn5OkdWaiaKOjPA5t0u4Vnm+qonJNp6qbi7Gu0nvvNpWs/cMd8Tee0ju4MOtrfZ14HDcaKF91kP7dmp0n7JBuzvsCBy07Ui33uvFa3M9dE4m4g/ZS0GvvVffON9+Js0iP9+zePf5+uPw6HyU4x5JzD+Uv54yxet7yB1u7iWmZZka6zWCPbhwWmR2xdwzukB5klTeYj5NlqPOToi8szt3193ZOn88dw8MjkmzvwxkU//d5G9/xpGsj5GtJc/qpGlQni46WPJsbUxHJtA8/CsDPN1U1rSTXarrITSbSMHihiqQZL0WgXfoZTBXB8G5oJNOAoUQGTkePkqFipTWA9N4R7Y5JHlzPybKaLjk4iI2YxyXIDBPbhtysjdIowRxdxIMKZDRnSDKt50/DbLIqt6//N9E14kQlUPjbtEtWmqgA99bMalWLk2nkkqFJVQuVSHE7Jcw7XWKkg79Yq4z6kB4PmUKdSStaZg/7qCImVeZGga0RI3BdLyAFFDrXK5ZMN6leVboty5YHOkV7SU6EisxP7xjn/7GpH//BfGzxgrKZUkajfD+6+PRT52AZz5C7YwbtXIqqeYviukcFDPNPD/PzmK+VEPwYUSESllVl1IcjxJs5esg8O0WsVc9TKM62zfUCSiiq6iVpkDgi2J7ZQRoFPGvlunmxAq/Ow+3M/ds+bMsGy+HFt12r6OySOEnhUKTIwwTzsBnnOpJjvNiUeaaitFQJEo3cAqvR0xWP3sTN/WxVzPeHx+IlJ1TZojiM15Hxas1UhtbI6ZiAlWuhkQabZMYnVeObbqrF5RU3yxSD3Bv7tFK9JgKrsZYs47YmmtZo7flygaM/bgsDZH1raHqtmsWB34Ij/3Gpt//7+Pivzstz2pvXzM8eavYE6IWJUa0eeNslbROtYwnHypnhK7yTNjn8WbrsX/KcDpZpZ2pBNdiq35+LWLcGCDBAHBXN/0wvLHax6B85iKOr6hFXnwKCb43CMTIv81xy++ZB33QSHdc3XM35MtI2s/+qA93qg8vfF8Bo7zztL54ykfOyrf535ZxDmGRcB2EDw2yyIfvcCqY0SwEIqpbfKVSESUazAoAHXIO1n9IiBYaqGcaVizSVYltUa7VaJLiVWm7G+LfNeDiF6W6wZjd5W0yz5SkYuNlO1dIg+bXZ43Q2LhxMgiYBowpuo2KmbsWVEjgg16q2RciWpkrRMcMS4LNz0RbNJ937RszjZM+dfLpTl2IPwMf+/p4ntrVXPCMsec01MtaOgwmvNSwOCzfWtZ0C+a00oOgp+YlhPRjsQxQik3fpaM04F4aAqb1VoFKMZFm7hHViQlDjao5RoQrF7RlMrj7LEpvkcf2yWtGMtthJQ7IBLITfSlp3Adltpvls1BCQvW5PORCVM6/4uLgPaQB+Vk1pyVCtfkjA18M/qlGHN0uWYq7GcbKocw1FSTopS1MVKyd89iXlJZnfN4qMgOe3Kxms3LjAzs6JyrjTHfqC/kpSJTmn7kmmTzVjrrB9qYZw9P6OaqTgJ7GrK6csfxdi2dxnQYUzDVCM4GuXZ7upayJwm5FOPcQYzxagdmJ5iCZ5oxcSzdTtFNOhBMvxdSnIeSIbQL5ACxSs1LgTwyMNkoW9FEW9NX9bGlv+nUVsdYN3lH6bsewLP9m1tFbnz5E89PHi8/DTTwRWe1Cq1kRO3Nsok9Ugdr5FmatT8yO0P0UwT3+v13W/FJ6hgdgc5kPcQz0taUYhQV1MYiw0mMwf97Hf5/2So+e64h8vEL7N7//SeAfm6WsUZFMIe//WFQLx6c2v2sD0zjz3P0OO8snT+e1rHjMGXH4DA93vHoKGKtatpKiWsGbr0CA10YGQm3V9RqJUWJ/ATfJambVUoiprFTUs7LmkYn1y4BLSpHMGxbuY2spAanXbIUBaNnR7AJJWUrWyaniRUk873dApa9ohn8IDZuFbVZ5nrG5RBR8qvsLu8fKwKwVLdGv/0iDB4rddj/i6KaTJ6TG3R4G0Z4q4w/kwPZaYniZnCUarqhsWyXzgLFBZnyELE0CwnfLE2n9hJ7iZFkz+j9gWmgbgtdONK1scjecHfahZVRlQgOCcuNafRTx9JRT3T8/LeK/N+fwn3yvoqRbd6OiOzpify9h0xkkyTtOIYDws01dkU6VaQPhj6ccnJHmLpiX8PpAVCLMw2bBySiBwnGd61qelRsCTLwjWBOdWkRzO3nrxjixmq+oqJFU0NwOtgQdl/HtGfyPQt5lDQFRmdnoWeOGAngm2WIEhKRIgI29kQiURXxsc1/ViWxp1ttbBVaHCfyE9uBBQwXbUB+oBzbvbGsf7VqDlgmIq5rFaIFJUBXxxC/TXLzgenBsGDVgkybzylXsJpoM2BFGmf6GAdWxbE6loUGYw+cNSpL59u4NEdoZMvigpec1WbMNahi3zWH8xzeBurM47JVPMOeDtZbN7A0MPXUpgem7SRijujJlmmMUbcsrxIfxJgHRKVEcK9EwFnpSg5Xr6jNl9VBI2J23SLEJi9dw9y/e1bkX/09u86/ezW4gatV4zttlUV+//InXpfP4eO8s3T+eNrHU3KYHn10i4oMVYwTs1KFUWOfODpKqxUzAiIwDhsVRYV6+GxfKz7GHn5PrtHFGzAMK1UYgfungSrRIYo8I5BnykkiAXi7ZJyUiaHB1uQMpA6u39fKFLbHYCqI5fHFBI7bwMe1a2PVSsrMOWHKUURL8MdwMNg/iRV5VCVnqi4vkyBi/A2iY6wCGvmm9h0kIlesGiJAdIxVh9WyKa6TC0R+kgjufau8e6yoZcTSZDqbdKDm+kBXSOCtj621CFMBJJSXY5FQnUkac5Kjn+y44ZUo2w8SvGdyXZqhCRgeaOM+SPb3MtzLaXK0NB3S9+GcTipPY2/XULbU0a7qAfReDrQxDmcaqnUV4T0s16ydy8QQ99OtmlNFjR4iO1TWZnUmq+A4hlQ9HxZECkVz4Mlbo+NBx3W1inUyNYAzeKJlRGtWXRZSPCMdBjq6TINS88tPcM681Mdcz3hCc33rFVmO4Tx0gt2VZ2eaCC7ojFFXaatsqVv29RPBzzhPvAxzmONFxIoOPecpHSi2SJnv2bUcQXBEXTGi2uwrt1YV+SVFh773XrxXN9OegAXcy2YZadBPbGMMWGxSiZDaqkSYC03lUrEa9BWnYfPKsaXIiZiJrpdqhHRXRVTjqGC8RDezRr6sHh6GIv3InK21Kt61I1YoctUy0OnFusjNh6yX2/QA9yOCa7/zVlTm5Y+RB8cyzxs69qqvsgi/eY7zztL542s6dhymA20YZm6sjz7yKsndAIu471tVjqMETBrsrRIqcIjEiODf2yWRQ1smcNcrwpBta1XRlm74eztWcXX7Hq06CmCkmDphSbOT4RyOaBfxXFkrYfhmaM7QdklkoJE8uVZEhtjGoKLIDUXk1iu7O6CzX1leZ4bVT5QcIK+jG+CzVEHOl+hTxdtPwRXqFY1UKaKSBVqNUo1Mz8rJgJJEyvVohZrOESvLFjEdJ6YOH54UmVLUiXot3PxTx/rOJY7JRZDnwCabbJNAteqxp6KFkRHVqcw+Koh854MW0T/esdC11EopFvF0DkY5R5gOApEItuYg/yavvM5mso6+exJv2b9t7OH/tbFIbdNScM0R/n2mYekyClaSwM60j5tZyme5pirYkb0jOsWc9+sV2+ypup44pjc2qaRykmlTB2uM85lcs1V12pojq2wMYpHp0PRvyKcb+CKeByeOzlPi2rtZr5oEBUVSKX1B9CY/17c1Fc0+hKwU5MG0ExX/RXBPiQOnzM1MoDNzzMETgTPgpYa87OsYt9ARK9RIHasejTWt+J9fmJtLPeNJ0aYMilZl+z33Y06cbuLz7K93aNv0nF5xandvO6avhwWg1bQ7fGY3sTUcekB5PrsfqDd7SlLZnGtr5IEnSRTWzbCGLl0T+ee3W9PcI28XedcnRP7xXbvXzA+8CUjlox0lEZHXnBD50B8AORp7IvfMAjkb+I/97Dfhcd5ZOn98zUcmx8SZPYeF+lcXPv6HLt4w/QwSG0XsbxrHnjo8q1WD+EWsJUAjhFHItx3p+4YaiSCiYmrlgSmRTxyCsaUzU0xE9rhwukqJ/bwdIPLjZkjnbbNiaSdGaKxmaw0tgqVRGxYsbcjIXXwjtLNZLg1m3jnJxPgVjaGlogjFU/mbDgAj/lKMTSByRRJ/d2sXRvl9P6dm7mGjrkbmKESutS0RMccs8kSyyFo4UM35TNN4HXwON7L/k1dFp5Uq3Rzvvm8OCzlQPA8b4PaKIt/2CObD/7n48efWv/q8koIF6VZen2OTiZFdRSzFFSmnw0vxXhsh7om9rmpjUx7eKGOOESHjfC3FcIrbgfUOO7KFcWQqsTWyxr2sfsocoJ5bZUOVmJopJLvRtHaAlEwlshYbB9tGjp4c4ne9ojkbEyPwqnhu8qAenIIDwD5+Zxt4rwe3gcZUI2u3kjoiY9/6L1YicwBSB6rwq1WRS1ctVUaEhc5MHv083cScKMYirr77vGYSUTUiXVxnjohkfUOgmE7Nz30/FUkSQ91CXY8knRP9pG4bqxyZphIR+YG74WSQS8bm29sljE/iqGijOsSO4Bosieez50VQJRfgENEmr5HFLyzQKOg8/Ikvirz3peAHbZXxnhtKVCeaSMmR7ZLp1v3Ql1GptlrF/z94Bfh3j3aUREx89PGOYgKdqVeewv8fmhK59YDIZ/aDo/TIhPExvwmP887S+eNvdGS37RUREef774a0Pw2EiAnSlSMrhWfFEw8SlMPC7jLT/DHdB5eH6Ac3XML+PC5bxYIuJkbcZrTO1JsINtZSYrwPEXXKUmww4li/se0A0X8xAUTtZIpU6fcY3TGqZlVZIwScH7vg8bzwnN0POQNUxWbKiwKNQ9+qkVhezK7qeeeK8DyJ4mwlQeeADWNjVyTJRNYDkDhn+/g+DTXHhUgZmwiLWLUUSdB0EiimOPIsJeelIvUY73Ai2U1mJ6F1tWqbxsjLKVF7tmEyRbdRRmXOEx10jkgAzvR9VFIbV4qCPrrz+eFtzCE2bnUypJLodKRi6dfTTZzrQBtOBTV8mNo62cIm9UpFFu6chzNCCQA2XSYP7f5pnOfiDcwVOmMj3zbcjqKw1C9qhLgu21rsNAv2rQpspo/S8YsSrAM6tywrp6Ptpyb06aWQz2AKy0tNPTvffohq7r0i+E4jH/3d/MQq90Qwt6Zja6hK/a8gxjivVdBHjn3IMscQoIGPOcx0Lecl9buIRItYhRwdSZa3c0Pn+w4L1uuNvKXtEmzSW79gQUDsIvVWia3yrBMYMlYbi/RcQyA/v8/ub7aPopLa2KrTggQ/Z/VuJtqzrgCZCa4ZBghsfv3wJOZGIbV2JfUQP2uO8LlugHGcGsKxet46yOZPhXBO0clffbHIT33uyT97eAvo7RvvwzjdOwO9uNv2oHjm5MRXv95z6DjvLJ0/vi5H9j8vF6f7ELRtGOmuVUAaPLqGDWOrhMqQu2fti8UUEgLrlcfX1KmOrbqLGkwDH5/NO1bXLcIY7e2K/PUh/P3wJAws0w4i1vspr+pdD60XHCNYN7PWHkwjTNaw0Qx8bExs30JHZ+xBVHGsRv2RCUN56kpy7gYgfVYjRI8sj47UKTnVwt8vOGfEWKY4mIITwb/LsUXQRK/yiE0mKngZa7l/hvu+fBUbwcmWiIxFip7B/SLGpaFg3ldmrW2GmwFJbJfg7DiiJOdcZQ6jbipSs0XFVhnfI3qSOprq8kyIrx1gM1pPsUm/4UE4Z49uHfEb/9t4HkSBWP0nmXFCqH7OHnXcGJ3USPoiOM/UAO+ZFZaRq6nGxNIv5LUVY6RgyIUaFfB8ItjE7p3B+Ruh8enumQGX5QWLhlB2AlUy9+DQ8n2vV+BsU8LheWtWyHDfNFCFHacpgWN1cBvXme/h533fyMGZqHyGL3LFCsaV/eH6Rfy+NsY89RM4Fp3AtIpGBYwFm+ySzE15DUfMGeO1eL3WyFAR8pI4B/h5R/8w7Ud+EcVSWQDiJ0b2LscWMHQDpN6I8iQO5pEjhlwy2Fir7FbmX+iqE1y0KkovAypHFGZPF997eNLEQXmsVrGm6WhftIn5QpHIbs4xHBW0EbJj8ygT08USQaD34jP4XeKqxEOi1aqCdN2BNmzqxy6Qr3o4x0T+65+L/I/nAykSEflfz3uss0Q0Onatqo7q9bGH9/jqE0g3Rh7s+b0z6AJw216M93P4OO8snT++fsdf/J7IP/peLKD1Si5KTK2aJ0/cFrEo/lTzsedjh/BaBOPGdhmpWOWbCIzG1UswrH94GTYNwvLbJRN2pDLwo5WENyrGZaopQZsVMfz8lm54FA685aDIdzyE7+xovygngV3g2wHI630fMPa+Dsbl/inoKM30jZtAePvSNSNwhh6M9KMdssyxcvawYFVeFNpkWwNullTxntZ7uW9a0ylF2WnPUkpMLJK6OJVIG61qqvJDl6IPFAUWGyGc0nJkm9nBNgzyVcv4Xmtkiryl2CrNhurkTAzxjqmB88UF/H9KeV8nJnDOD/wvPO+b34TPEf1iinKzYpstkb6hjuNYN5zpgSE3dOi5kXOjWK7B8fB0E3/VSfDg6qGJiS7XcL/bZcyHftFaiix0UQW2XLWNXUS7yntAT/d0rTKuVzTV9EyUg6NpqE7RWo6kDn73mf3WeuPCTYv416pQh7562VLOMwMTbWQ1I8ndTCGJIGVNJzJxMd6hh/lKEVfyhsYegh0653QCypoOPNfYrYzvqkMYKMLbVJQkSCyd5og5536G856rw6kaZHb/dGxdUefawxzrFU3PiePEjbsTKK9naAgk2zVdtWzVZ4e3EYBRFoRVf15qPeM+euSJbR8FeEUgOrmnA24X+XtbZUNMHbG5MfJNWuKf327n+Nx+XPv77oWj/MU9In9+CYLCizaA+ogA9aHmUv7IjuFv5xiq9n78dvzhzx5PFZ8VimPP9NNiOkxKUaAdolO1pwuZltcfx2dOtOA4fWn+Ocd1Ou8snT++bkcmx8T5wDGR734zjNUl6zBirziNXP/+NqKQy1dE7p7Dl5zMEKD8cWgLMO8bHoRWSSVCdcdGReRs09Jgh7ZgPPMGg80oebCqRASbRWNsIn49rdx6ZAIGglok5FGw8occkeWaqYk/PGEoUiY4Jwm8M31szmsVGLgHpmGsZwam3UQkh84Qe1oVMjgU9bGl6JhSIVcjdUTSHNE1dq0jOKvjWLFHFIrqxZFuMgtdpBy6RUTC2wHGcq5nSs2NUOSaZTh3m2W8x8Pbprs0qeTi5RrSS6x43Cqb5k/q4FrkLZFXkjgmCsmmq6UYshFTQ+tPRmSgNRL5wbtwjk8csqavRM1EdiNLIobajD2R4xNATERMl0kE93p8EuXjR7awAcz38CyZAzS0G0DtvBpBz8gRU1KXvshhUcfVw/xb6GlqWR2vK1eUs5YBfWWbiVIM5I7q60ztdQNryTPUFDW5Ub2iiVLWxnBYCyn+vVzDe5wYGc+OCN58T52VsaGRq1U4Cxfo5kuNIlaNUaqCKdXjk6YTREXsxbrJcDAlTNmJdgnjy/MPC+akE6FiYMBmuM2RVUzuzGtFpoiWehnSiG1NuZHTV0sw/0434cBesYq5TCSaQVAnwLPTaSa3qR1g3PwUz8S05Uce5ShdtYygjOuqGuGdkg82MzACfOKaov56BWO7r4PzPjAlIh6uSZSSR+LiOt/2MO73UnWavusfQWfpP3wCjtOPf9fu79FR4jH1qFT2wW0g2L97pfGaTrVUvqSmqvyeOUixa45T7ABlyjtM/B0R6esWQSCPXczZExMIFv+OH+edpfPH1//4sw8CXXjdD8FILdYNor58Vfv86PHodNp8D+qwf3aJyHs/AsQp37SSqYILN7ChPF7ePHWM2yCCDaSYwAhPDWHcmqmpEXcC01Q5MQHy9kIPBpvoTOihOmR/G8auOTJtE+qnlBU5aY1goGMXkT5TSwe3Td2b5Govg1NFByYTnG9msFvt202xQdPhYAopcXF/RzZNaTn0tBIux/Ho+yKdGuD7nqYFKpp2CnQzqum51ip4D8VE5E8vMdSF5BJXTGW4XcL93jUHh/OyNSMEbyiJue/DcaCsQkGJw55jm2FpZE092yXMmRMTmDMHt7ExkzsyM4BDxxJuIoAilt7hZhw7xl26cwEbTk2dWXLGSjHQozMNfG+zLPLp/UA0n6+l2CKaPlKOzKig3KMxzkmkqz62SsqTLRv/sw3cz4kWdMD6RTgeZxuYzxND21gLKdCEfR3Mm+UqSNSsAn14EuumNQLSt7+DOXbvDM7/3Q/gmrGLcdzTRRBAsc7Yxdo53cRmfaCN726VRb79OK7LylA6Kv2iSSOMfHPsRdNqnUDbqChKkjp4rrk+HEVqUPl0mH1DSfn+yOHxFR3tFnGfIua0lBT9ZMqsFOPf1Uh7HqqzOdMXedkZUyyn3ACFZL0U98pqytsXjFvXL2JeDIpY789bh8PMe2uEcHraJXMY2DNwsY7xO9C2vnvd4u62Ivs6Im+8H7bi+++2cXu0CGve6blmSeQND4n84aVQmP+fl6MX3bs+YZ/5gbtFfuRLT3wOHi88B+foN14g8qZ7rT3Q2AMySKdoB1l6lHPEytA8ykQbwYCO34nUEeRx1ZLN4We4Me7TPc73hjt/fN0PR47hH+99qcjPvA6GLy9UuVfTUW/9gsh/u8bUj191Egq5Lzwn8iPfY7D40z1efBYoQR5devFZoBskvEYe0mHsvt0JoMlCjZxCporBio6IY6J3RTWYZ3Rj4AZQSPFsF29gA2kHRvyeHKKKbKGLyqSlOtIsIthQ9nR3l3DTwPC8NFw8MoHDQk4Jm9XSMRj4Zoxo3Nh1nvycL+7F/VywhfFar+A5YwdE12KCyqdCZmRkloWTN0JBTaJEvOfZPq6zUcGmOTMAByPy8N1yjMi+G8DR2ypjs7loAw7QmSaehyTjg9vmaB1ow6kierRRMeFRpmqIqJHnI4JNdE/X+q3x83QyV6rGQzs+aRvD9ADptvnebvHOdoAxIOpBIdJHJuB8NEIrLogUOSKHK995fnqgjU9znC86NizbZ9r50wdMQLJXhCP3uodNwoNSA72iyDWLpnXEDZ3vTgTXOzGBc1MkdL0Czg1Tq+SSMRXFg4UbLCpIHaxXco2o55RoirUb4B3ePQtb8Gg9LyezVjQkVbNfGludeJnJJqxp1Sz7u3mZ9SG8ahlzeqmO9SFiqe7IhXNJdIlyGxdsGsIogjELEpCsHf3/1BBOzf62NeSlUO5KTYMnF+e7aBPz7/A2nu03XoDz/vPbRd7zUUs7P97hHNM1fuzxf/+nR1H99idH7Wfv/hgQ+Ecm8K7/6Z1PfP7fvVLkh/4B/v3nHwD6dscC3m++WTPtxqMRJKbmHu04Ecl+9O/vUY4qSexEEaPcd5/S0ZFnsjfceWfp/PENOXYcpn/696GVQ5JxPUT1TV834S/s/ZvlthshjNXlq4jgLtgCl+hnXrf7cxduYiPuBErAnRZ5ZFLkhWeBTnUC3KPIblXueqidxwfY4BPHtGVEbBMZKlH80jWkch6Yws8STYHM9bQViFaT3TVnlSl+gpQSeQKZGK+GmzAjNkZzbNobu9iEl+o4VybmxLA8O/JMtqGh5eT1ENwCqmm7yllxRTlM6mS0Rpq+GVmjVIoUNkK0kRj60LQ63UTl4recgrNIonSQGHrA5yFnpqq8KD+FoZ/pWzl2KbaUCtN5UwNEw2xG21NeEyvbqJNEYjAdA5KUmbISMcSwE2ADv2TdxksE7+vTB/CZuT7Qhrk+HMdhwXoQNkZGNp4cWiUmNYvYE5DaRETTpgZAHuiY8L64yQx9bNZhQVXvC3g/yzWTvOA9vPgsHKabD8EJet3DmF/7OrLT6Hi1Cr5ffWzq4iQws0Kxr8hnEGMsYxeOKIntfmKVdZzbK1X8XR2bZlKQIKXDebNYB9JTSLH22EOPXCXKTGyV7B5YeBEkWDPrFfxhMNAN9GdlkwM4um5cpLyTzE2d84hq3VwPnQBIIYVb66E1AxbB9y7aMC0oOssrmraa7cNOlGLYtC/NYwzPNnYXrly2KvLDX8YYzvZQWTgxNL0sEXOWVt5j6XAe/N3jHW+8Dw6Tl2HOvv44UL3HO3ief/V5kdc/JLLYwDtaqj2xs/QYx0ltUvw43KbYNZvEg/y5r/l4Zp2l82m488c35NgRrfytP0Vk8QVIDMh1i9bz7FTrb36hYQGGppDCUTrXQKPVRx/HJ/GnOcImQH7R1BAcKBpgESNJN7WCjWXa3CBi3XwWukCSjsQwqpkDQ/XwhMoGOJayWlceTyoiB3WzJH8mdoEA7G8rUbtsyAIdM7ZuYHXK0Df15rMN42xM6GZM2QZC+74L5GxqAIN+34yhbKkIbtQR8TXtMvKsUepyFRwh6twQPQgSGPjJAd7lUt34Gpeu4b2wAigTc5o2lCRNYjVL37cDkyigwzjTt5YxFFo83TRnhIT8Qrq7LYuXgtNVjvHZ5QreVSPE990MacKwYE7yVhnXYtl8ORaZ76Jac65nDuyd8/ZuMNlFkjE2m8/tw8adVyhvhCYO2Q6ANhAZJG+Kgo+OWMop0zmXJaZz1C3aM7spSMTLNWu7ccGWOsJ7ML9uX8B74HcdfdVU617omaxGEOf0wDLj4zVD/H/dwfrZKhnPrKFFGLN9ODtEjOhwRrlU24OTOJfIbnJ46pjwLDvYO5m1OAqS3QrX7EfI9S8ZeJGVSFsOlY303feRTuOz7fTNGxrZvaVraK5vPRHprHWKKkdQxly8YMtQqdhFEDY9AO3g11741e3ViQkEj2xBMznE9acGuD75RT/9WTi3lCP44BUonskf2TGIWL70n+H/f/w8aJK9/jjQ2g9cAZv3D+577H3QnnzsAmtwzL6HbJOyUw2nqHTs7XaYKL3CzySO/f7RHFTO8b/Dx3ln6fzxDTt2HKbP32SRzCcOf30vwvYlm2WLRB9vofJol/CnkCKiY4XW2VykkjgiviA62yF5FhBVb1asa/qplnFW9nVMK4qSAU4mErpWAbZSNW5FJjD0oWdEWTaTFQFasT6B35O4zfYbo4Ju4H11fKaNz8HmutzIWX3DRrysKmJZeGuEzVMEmwgdxL4Pzs6nDu5WUxeRnWbHfcEmdOkanLTMwcb90SP4c92iyMtOG3JConVrhHcVeSinpxEtpNq+IYNKsUPnIbHPDHykMakH1SsijUAhSKan3AznZxpvrWJE52KC659sWZPmQop395LInjOI0beNJHpWCE6McD42ZiapfrtkjgdL+pmiE5EdLaO6bsjtknFmiK64Gn1z/tRDkZqmOKeGcHhWarjXQobzUZOpmODdzfTtXqh1NNPHXCWPjeKc5P0s1XTOpEa+F1FekWCOUMbDEcxJR98HS82JklEItJx77lFBJQocI7CzIpJEeabzOH6ktJDUTqmN2hjrfOBb0HFkC8++pCjOvg4+S7X5UmJzjqnQgQ8kqhRbpS2bXrO6s5SAd/jhC8GzSR0EGl/cY9w0olpP5Rj4QLDyB4UnZwbG5/yVl+B575oDovVoOsJ/+jD+/rYfsp81lVD+lxfieS5bw/OvViF4mT8uXUMQe++MyJfnMV5nmqYVtwtRImKU+1neWYq/8U5Qlol0OiLN5jf8Uk94nHeWzh/f0ONr6iPHDYZcpqmBacGETzJlu8Fjm/g+0UED3iuaCB2PxDWVcObiK5EZ71SsiicqYfNitE/9mSI3AU07UVRvnFhvtUB5P3QkTrRE9nWtumZmYB3pKQLZKwLBmVEHbKOMe8trCuV5OyIWRQbKGaLz1M85QeQRNdRxG1QQBZdjbIID36r7/NQi66qmc+qhyLecxHfOKqT/xT1A2a5dgrYP21zM9YyX4mRA4CZH+HkeDeN7ShzcP1OJ6xVzdmMXyFdeDZnq8NwY3Qwpqs0y7u3CTYxBPVShUcHGFHpwxJzM+hBO96zVDVuGMGXWGuE5GyE20NYIaT6mlrxMSc2JOfAUHeV76xZNYyd1RDwxFezY1b6BqelGZSJyNudcEhUbe0jTbSk6QyeKnKr6GM9F9JRcKJbTs2LrXB33V46s592oYGKLYcHSVxtlfI6SDCyGiF3VTlLUrDbG/VBbiP8nqsjK1JYixEx9EXVbrYBUnomtp1DfbTG2xr+pAxtAcVOuhzzXiY6an+Adn21YNwDOO1YK3jsDRPziDcz7Mw0EDzxSx2zU3+SgJtWjkfbfvgp/P14lWWuEIpirls3hfPUJBCuf3Sfy4DTudbaPoGCrLHL9Lfb9l5w1LtHdsxhbtq3qFh8rFfC0uEVf+/FsJgWdd5bOH9/w42k5TFMDbILF1KpyvBR8gNUqNkqqPfPgRsjU1VM9ugGUeK9afiwJnQfVsMsxIqzmyGBpojirFdzjjPKaipqicJXwvVnGhs4Nj8RednanLtNqFeRT9gnLp//6RSPaLtWRsjutsPmEEmlZjk4xP6YaHZGdpqhMDxFxCgtGci1pqudcA9+7/haQQQ+0cZ/FxH4Xu9ica5E5Knu7GMv7ZlBN9vAk3t/HLsC9liOgYS11TlMH3/eVDEwRy3zbFfZy40ZGZ4iIiDu2hqtBYugEtXTYxmWha/pLmeA68z04EV3lVZE7VY5MA2ngY1zZ026tqkKfilAdnzSxxeoYzxcqmsO+h14m4iQm3EiNomJi6AgdDD53nqPm67W81M7BaspiIpJGaJUigs0x8jCHWiOMQSnOOcwJrkOUgOkt8kwSF/NmWMDvHDHxVvbCq2tF6kYFyEwmxkGjo8h3yHZAvNeh8rp8fZ7Qs9QYeweOPTjdF2xiLW2XTL3cS82BIz9qqLwuNh8upHBu8r3VWB0pigZRluORCW1AXMY9lhJL+RJtJoXg2XT81tVw9I+uI9ijmvm+DhyhVggnaLmGd3N8Eu/uP/w1vv+y0yiuEQHSFcQI+kJvdwHEN+h4NjtFT3Scd5bOH38rx47D9PHfEXnNP9n9y0Nb0D4i16YaKYGziMiRPdq6RRi4PV1s2jzmtUrNzUyo8ake2yXo3Mz1RRZdM+w8RsppcTJsatUIG2bqikSOIQUrNSOGTg9A8Gbj1HaOHMuNcay8EBKQRYzHEbvo8zYqiOzpaem9h35dXd2Ep4dwwiaG9hxTA6vmokNRjjGGvqaKRsrhCD0Y2HJsVX+pK7KtaNuFWyL/7E6RTx6CE0hdn8mhtZOY17QLkTb2iyvFaMq5r2OKxw9O4T7nFKlhdRnHp6woSyUy5XA/+//aO/foqKq773/P3CeTyeSekISEmxokgAIWwVpa9QEtXlp7URal1hbF9Yiiti6gT22jVfFCq3201GK7+tZ6wXe9Wt+31aVglQpPwAKBykUUFAiE3AhJJpNJ5rrfP357z56ZTAYSICHy+6yVleTMPtd9ztnf+e3fRRe/VdvPDNLg3CRz5qiIM+UPZUA74aopObW+ikZTA39mUIuefL+2yGUGtdhqd1CfOkM0DdYmI/RESPtq+K0UwalyEQEyEajQ6QtMgq6TIei6K0fvTrsuvKxCrwHtCK9y1SjLjopoU1YX9bdJ3qvFPhJSnTagrFuX1lHTKiYhE27K6dxOO90LjjANrCq/WBTaL84e0QVmVeJHl4PWa3Nooe8O6mABdVwqG7kS/zYpSo9l6D5R+bgiJsAkrYOHs8jvRpUrUs9G/ECuitBGTLS9bosWwrk9wK076O89BWS1aczU5WM67BQB+nmunqobTqhM3MpCltNDlrnsAE3h5/nJmvtxPgWw+GzA45dRfz37FllX49mb37/35kkyHEVRX7BYYgYNgWoYV1QD391FdeQAitYo6NIlMkIyYi4svwUrE7U1QgNK1CChpKqNByw0EKtIq9xu7WiYqnxKKloz6EWf203TKsl0yRdsgV9PB6mXvtdBEWGqwKU1Qk7BH+cDmQGahsoM6jDrTukwao3QeWcH6HMleuwR+pbbZSOLVTROwKkwa1XYNisgE1120XVQiQL3FNA1yApoQRA2Af4ADUSq2n2Rjz5vcNNxNcjBsMxLA+y9c8hfQgkHc5SsT3aLnn5whugYmzJpsHKFdMmJS46SpazeTefT5CILU1Mm5cm68oCsuWVLrNsGJIkNU6KFoFA6pJZ00r465D0SH22jIoyUr4+6Jzqlv5jPRgIp309iWFnblHVSGPIbe0Bb3ira6TrsLKT1M4MU0WQW2oemza77Uok3c5QG9bAU2CrbtEv2h/LtUfl9DHldM0J0Pp/lAkdkfyvfJFXsWWWlN0VJ3DRm6vQQITNdq3q3nlrqsdAIZpV+UurLgEpoqQrJlnQm1jXz2eja5fvp+RQGOTsr3x2fDWgP6ygvR5juY1XKxhMgoTmqne6n1gxt4XEHaNvqC49FWu6UcHbI7R7IpnNUPleqwKwtonN5jT1O+/rmxzqS7KJGslS9P4qKw9a76Vg67YlT0cORkHzPJb/rMoM6HcWYNnrnhMzkhH4kC5i3K7H9KQilL5IgSgeLJWZQEagGXgWM/w3grg/ppbi7gL7ZNLvo5dfkopfqBS0Uug0k5kwCtF+Kyk3jDJM4sUSBkJVe5pMbaQrpbxec+MD6qsQN0Mu5zUkDf5f0Nyn1kkjw2YBsCxCI6OkoTw/5uxR1UTbq1gxtcWl16tpU7gDgl1FJ2T00gLU7SAy2ZPQOvY1H1YS6sIUGgguOySznFeT4W9JJ23cHtSApBA0UKk9Ut5X2kexwKkDrXtAqS5NYdURbgZ8EnnJw7rTLMGs/+UhUdNA32g4HiTHlAO+10zUb3U5Wg9YMmgb4j8/JJwSg6+az6Sk2a1RPTanK7MqPIkeGe0dMWhgon6YeMx3jxCYaMOOrve8pIDHSbZERUD5KOljkI+HbY9HO1SpiTEBGYYXpXNVUn/KxUs7OAH1W59G5hpQ/mTWS6Iid162ddgVoWaeh72VVxy4iLaldsg+URUrVnOuwkVVJOZHXeej4i316ak0l83SFAHP8+UT0dlQRW3Xe1qg+B5U/SpWSUeesyrCo65nbTfdBxAR8kkMW2BGdWgSFTfQlQvm/FQW1s7aKFlRtJzbpfYw/Rl86MqSAtEbpvsrrpj5Q12Okl575VIxu0yVCAF1gd2M5cONNfT9nAOUw6rbSs9App/pUuolDnkQr99lCfLBIMv+3kq7nADhXhFEqWCwxQwI9dNMBAMb0enp5KWdWr52cD+uzThxlol4IJZ207v48/VmziyI9sqSIOu4c2MEqi0eXVYbVmvXUm1quLDZ1HrKaXL2PQoTbHSQwrFESXMedOiT6aBZwVG5f5aM55NFTM5MbZTLLLKA5UwvEePYU0O9ksVfvJkE2qp1yUKmirs4wDa6f5eiXvPLnMARF0Ew9SgNeh51qkVUe074ihzy0LeWwezCbBt8xbWTab80gP6fJTfqFPbGJ9tPukIKrS1tj/roGuHQhiahxERKZqpAqQNda+bWo3Epq2mZPgbZwee2IFb4d0Unrr6kiQTSpCfj5P4G/n68TQion+wwpSlozpCOwnApWy6PQU3z78vSgPbqNhKgnoDOVq6hBlZBTZVlXP8Kg6Tqvnbat8nN1Wcka5A7oUh9qulBZjpR1Ut3HwtAWqRE+usYhM90rFR3Udnch5b+6uIHa+Wza/0lNjynLks+m82g5wnTN7SYdgamciFUUohJNFR005ZwtrUMHs/U06IzDJGgMQRaoYh9dt89zaP3sHsq5NrFJizKFKp9yprCHgYJweqHkCAPdD/f9ecQETL09tVja9Ad9/yvB2m3VfdptSazf6LWTEEuu2eYO6MCI04kqN5WCc1kQpYPFEjPkiA+1A6Ux0ksvz/8p1wObp+fEUScqKikVXju9eMu8iSkC0qFytigH4ICFBqfPculzJZTU9EZjJg0KDtlmayntr8BPg2K7gxI2FvtokG9POp/kit3f2QP8u4icpfNl2LfKaRQ2U1j+k2t1aPiPrqdBSEXUtDnp52A2JSo0BAmYHcWJ+1Hm+tFtNO2knIsLu2g9JUzU4Dq6Lc7pXUZCmQRZERxhmg5yhMm5VCUwVJaXqmY67+0jSAhmBYAZPyJxsHYsXYORHSS68rpp+yrEXjkOZ0a1gL64UWYJl9M9ZV7a/sZyEnXCIMvihS20jQ0V5Ndx3nEdNZjTrVMKuGTEWNhE/daSQVNujW5yZg9a6JhGemnb1ihNDYXMtJ/cbi3ozFG6d0ImHfFljlIo+IQWupZj2mQf55PIzgpo534BXZtQpSM4v5Wus4rEtEbIkuMOkpBTRVsPeeh+b3dQmQxDCpNjGdQP9ojOf3Qwm45dZeRWUX5q6lZNjypfugK/TnmR0wOgjfbZ5KL+yZapJzJCOimqOuZ9ufRMLf2fRCtPKgYqlALy2ILmxJIb6rc6j+QgkVT0WKhMifIxDEkr5n9dmbr9HVt1Bvb/nq5TZahSPPElQuKPRYXmq3cLQH2mcj6dIVgU9Q/O4M2cVRjq/fXlOho8u6w0yL89jpaPO659aPpTCsUQOsGkCtM/0cvSFaSXm5qKKZIWA2XFyQySFaZNhvCfTnN8Tjf59Owp0DXCWjJk3TU5nZfTQ9dpTwGJjPosEgZ/O5+sagZSv2xVNnN1PT4u0Hl+DOgQ81Y5oI89TkLgvdGyNESbzsfSJvui1EuffZ5DVr4WFwBBU5UV7XSMXVZg5hHgknqKztlSSjXQrjxAYdJH3TTQewLk9F8gfYpUdGROt7Q6gfajpoxUnp/CLrJQZQb1N/W9+XQeE5vIuvHPUfo62MMknMYe17l9OuV0YW43WWZc0tlbRcnZI3qaVRVhtUV0lmxlffH06CzcWQGy9D01g/Y7/yPavt9KfSZA7f027bSuousiJpkgM0TCp3aEHmQ9AZ3Z+vMcElPHMmibMw5LH7OIzgumfKdcQfq7tgTYOoLSVVQeo3squ0f7aJmjsoivm851VLuOllPJPLMC9AVATZ1OaAYqW+ka2iI0XfxpHll4pzQAi7ae2nOhogRV5J6KvOu2aFETL5SUQFHJZNX6fitw03dOvL//+kCvr6Z7n5vWu90Ne3U7tf+gCYC0EEYhU1mY9HHGlw5RBaYHkeE28g/1+M2WJeasQj/A5KtkGNC+OzndVO/qeAZ9G08llvqyHgmDRI0qWHoyqFQCypLSJqfxKtrp5dbg1oOvOUr7Dpt6W4lSMaJTl2oxCxpwph8hYTjtKL2Qt40gS9JRN/nhmIWuvzWhhdY5nEWDVp2HBqgdRcBXDpHIUNmY9+fS9eqSA96BbDqGj6WvWFT6uDiks3ZGkKZXlIN0u4POa1Q7DcpqAP08h170RV06bDtg0bmjeqT1oaSTrEq7CmnK5tNcajO5kcTHujFUE3BzGU3RCYOEYYuLBIFynt5RTIKo2AdA0HUWhiyCLJ3dW2UOJuWz4wnQNFxWgP6es1/XRwuZSfhuLKfzdUtn2LCJREmPhQTXjCPad6jATwKxToo6lQPpkyJdXNgQdD0mNpEwfWGyFkoA8NIk4A//j/q3x0L9bY1o0X3cqY9XgK7FUTfdK2Ve6i91L6rr7grR/oNmILtZWwbPb9XRjuo+NUfJr62inbb9mYwIm9CsczmpRJCHs6hPR3aQRc2Q042f5NH1dwfpWpR3AN/6uLfFqPIY3UeNmdrxvT+o9A2AFiPKKiOgxZLK3q4sOakSKMaXC0qOek3Fj2pllJ1Vi6XXLkzdtsGtj6XHTM9RwKzL56hUB+o40iXOPY0MN0F0NsNiiTmrSXzYnTAMGUU36yDw3d0kCraU6qKS6abZgmYqbeLp0fljBkJy8ricbp3u4GSia5whnfTQZ6XMue124B+jabB/bTwd684isgDtz6UBq8wry8VYSXgofyF3gCwqW0spEqnbStNOqlzC5EadcLDTTtaFrSXanyIrIAVRBv09po0ExufSP6dN+sh0WXWx1YhB+/LZdS4jT0APWvl+GvjbHLQdv5WE0Zg2LTIOZJMAm9JAwmhCi47ecgcSi6wWBMn35vMcEhnKr8cToOm4Qp/ODq0q05d56XpHDFklXkY/OWSkVbFPR7h1W4D9OZRTp9AHFPqBmQd0PiyVmfrjfH2+yiFZFWdVkXXCIOFx1zXAjhGp74GF19Pv5RvoOJxhEmOtGTSl1e6ga2cSJDiOZJHw8Vt1fi3l+6ZC8HO7dZh9g5v8gfzWuOls6ZxugrxvgnTfNLlIPOV269Qdx52UDXukN650DWi675CHjuFQNpXXAOiZEgawdKM+xzYnCTFVqiW5vEwybU4d5JDnp+3bIjqBbCRJbMRKa5hou8lTbvFJFdW6gM4XlY45++mejBdeajotmWIfXatI3HRdfGHZk83ufYqwMDqz8DQcM2yJTdmVdJJ4Gi8jwn4y+/TuSEVhFXbRN2RVEFgVi+1wyCgdmWQwuTyIosxLg5WK2gubddVylbJgVLvMKWPIvEeOxDwwqmadKo2RGaLBO2SmAcwaoUF1hI8Gh26rnio64iZx47XTfkd2UDtlbQubdOLPIul3ktNNYq7HDHzpKA2apVKE1HnI/6gxk0SQyl9zYYv2nzIJEnzFPhIbLTJ5YV43TRU5wmTd2penr2nQrCuTAzIyLqJrrTW46biEobOdq2mmzCBZrcIm6aBroWkpVdrm0zzZNs63yCQFgnIwHtVOy3cX0rU0BB0XoBN9ZktxEDTrWmmqLt3ldcDt1+ncUifizn+Rg7dy4u2wk0VHOdKHzNIiJHSR4KNunUvKa6f1Z9bRvfFZLvWtCjrolIEBGSGdCNVn03X7lAUkr5tEXsREAl0JKpXuwmvXYf/HMqQYjguaGHscWL6RLDJqHx+W0fbfG03X7NpPKZQ/FZtGUv8V+fR9CNCxfesmYGEtWU2VtUgJxVAK8ZRcDDZeaHXZKAghHTMP63poansBS+9ACkPotBCDIIrOndG6N0M9frNliRm26BeHG8BEEk/WCL1sL2yhl/+WkhMX7FXZjfvCa6dBJn47Kmxe0W2hAXl0GyV+PJCtI5ga3DSYqWmtfbna/0EgMQroYLbOF+QI9646rqLxVJ2vrpDMnu0l8RIyywSBARJbxx1kNcju1tXiy7xknbJHyFJ15796J6k7FXosNJivGwv8s4IEW7NLR4FlBmkwbnXS9FxjJk2/+a1kYSvtlKUx5OtJ1cMzCS04ATrXjKAWEWETWWhKvTSANUifN5Xp2RIFLj2ifYW8du2QnRGivvLZSKyUdtJ9pCLnVOh+0EwCQkVvqaSYtggJwbFtwMLrEqMyT8Rx6X/mDNGArKxwYRNNu6oyLiof0kWNZGk6kE2+XK4g3fcBC9AT0XmcVI6j7B4SLNYIbU/lA7NHaKow36+jGVMd2958stRtKaEvBiqNhDWqAwIAEmmrp9K99429tH1LVFt7mzKpTV9iqdlF17DNQfsNmYEF39S+PJ9Jv6ywIS1JcUJJiWslluItSx+W0jHM/kxbfDLjRGMqjmZqoRS/n2SUYD7NnMui6GyFxRLzhYFeMGYAmQAyYWTJcGZDUMj2N/bSYPrsl/TgDWjfnnR+DCeqORcy0zdhlTgzasgQbOnD02GnfdoiJ05hoKaelBN7spgLmgHDSlYhVd7EEdGfl3dQQsgRPl2Hq7yDfKL6gUB1v9oDoCztjjANvou29u3QWzuCotOcIfq/3UGD9nGnri+mrqEqgxEy6fp1gEwWChqQ8/0kygJm2kaBn9ZpzKTB2yTIClLso7YZocSBX9WkU7XHOqSwa3XGZYeHdH6Oagdrl7SEhWV03bydvavDp0MV0u2Q1j6Vmwmge1f1v4p0M0CWndJOnRy1zKvzSSnrm6p1ZhJAVFC7Yxl0nXO7SaRWHutbuChyu8nKopJHbi4ji5tKi6CmcBX/KqVSHBkh8vUyCeoPaxQ4KFNr9IUrSNPLjjDwy1m0LGBJTC7amCl9k+Knx/oQSxvKEy1fb1RSQEbYTNOvEQPYW5D6WBrdWmydQVgUDR9YLDFfWEQsL5EBoAzGU7tpUBkvnaNb1HRCBr2QT8bpUxFv/VHrqeK7itYM7XR6Ih+JZM47rnMEuQPA9Z8A0+u1v0dRF/mJ9IOBiJ/+cjL7MFBNfkpTGlI3+FhGsLU7dKV5QE6BmrUgEIYOT1fJH1WaB9X3jZnkvB0ya8FkQFu4AO27FTTTfZARovV9sj9VIeW8buoLFXqvrFkCQLtT+8ScDCoybd5OfS6q3IuaXlNldqKGToTYY6H7osyrk3lm95DIUwk6VQ02VSpGlXyJGiQiK4+Rn9cFx07+eCc2kZhRea52Fmlrnz2cGMn1zjgSpE4pBFVR4FbpqL5pJE3BJjOqHXjrPNpHfCb97+7WGfDr3UmRZHFRb/Fi6aOiRMsvQNe4wa3XixjanypsSvxC0p93wUnAomj4w2KJOWcQ986hP+YBxnnHtTleDSj9wRPQCSaTyffraZtUn1/YQn5W1oieFrBGqWq4yuHyyTMnPp9BED9nghMe93j6ZSS3a3PS1FOzS9dVa3OQqIoaukixKgzbaSdhowSEI6yFkUp0qQZZAZkFXIqObqu2WMT79qjknWqAViVElPXpZLhnMwkPV4gEuyruq/xw1H6V1UlZboJmugbZPXS+5R1ktVTn22XVZVhUcklA+/7YIrKUkImuYxQkJJUl60SMaaNtKEfyaIn2LwsmWT9fnkhWp2v2a0udz0piZ9uI1GJpdDudq9dOU8NKwPqt2vIWL5LirUjx/kV1nr79Bs9gtm0WRF9sWCwx5yRiX26vZUaBX2fbPRFqKi3ekmSJUgj89/9NA+G/ZZZcv5UGNmGQs/OX6/o+rp9KsTRMhdDppJeoypE/cRioJp8aNUAqq4PKd/P1fTJ8W/r/CGj/nS4Zlu4IU391yWktVdLCHaQfW4QG+aZMEhZZ0rqk8iqpqSElTtJRvZ6OQZXLAHSmZ0uUPguaafv2CC1XwidiIt+zqQ26SLNafixDOyJ3qu06Kc2G10Z+dFGDxLtKtpoVIOFT0kkW13w//S7wk6hSBM26yHBhF5XBsUXIz2rtGPLlUw7Qsc4zgL9MJmHnkSkywiay7OwpIOvh+CTLlnK2P+yh6xw14hJMSjEUNtGUZyp/olanLJHSTyvuAGBhdO7BYolhJKIlI/a3cfMu4NWq9Cvk+8kaNFUm20vOOvwfnw1b689wQaAaqAT9pKCXdepQNjn8HsugyvSdMtWBKuvhlEklvXbqX08PiRoBEgj2CE0LOsN6ekllA++ypb9nfvYBiZPtxSRQDmZrq6YBsvRETTp/kNq+2kfEACY20xRyTg9gkSVUXCHyyQuZtJN4a4bO2XQsQxa6lY7T7U4qtRMyaT8sJZwKpFgq9knh1EViR6Up6LHQ/ka309+ZQfINqh1BQig+Isxno2Sj3/tI+qHJ4AN7GFg7jpzTx8Y5lfdYaL8fllJQAuQ0Z3xEWvL0W7yVCTit+YtYEDHxnJJYWrFiBX76059iyZIlePrpp1O22bhxI5YuXYq9e/fC7/ejoqICixYtwr333htr8/zzz+OFF17Arl27AABTp07Fo48+ii996UsJ21q1ahWefPJJNDQ0YMKECXj66adx+eWXn8opMExKxJoqYM2JWmUAmCB/rjrjx8T0n15itUL+JGFs/gMJJBWN5rfG5TuSDuORuOk4JRzy/ZSPxxkih/qWDOCX78l0CxZdjFaAcgdlyqzcn+bpDOTmKIkkA5QOImSWAk2mRjicRUKkooPWv6D15Jz145NcHo8TTsdlyL+KOmt1As25eprRESbhn9NNoizPTz5yxT4ST0qcWKTYMUsH+01lvR2mG9yUi2l0mxZsUZDVVfncZQXougUstD/lV2SLpC4PcpphUcScDAMWS1u2bMHq1asxaVL6fBUulwuLFy/GpEmT4HK5sHHjRixatAgulwu33347AGD9+vWYN28eZs6cCYfDgSeeeAKzZ8/G7t27UVpKdcNeffVV3HPPPVi1ahUuu+wy/P73v8c111yDPXv2oLy8fKCnwTAMA3HpwrSfG6gG/nYB8H8upCmqwi5dW668Q6eVCJkpZ1SuzFbd5tBTVsekIMjuAdqyZWJNkw4UcIbJ0qV8sMyyxMv23+sD2VpCkXAnQ063zprtt0qrkhRILVIIKjGlijw3u3Qep/25JFSUxS27h8RSYRcJw4IuHS1W0gl8pY5E00fFiUWf9xTQNgJmnQ1+Z0jnJ8oK0P6joClNlQn+NMOiiDkVBpSU0ufzYcqUKVi1ahUefvhhXHTRRX1allJx4403wuVy4S9/+UvKzyORCHJycvDss8/i+9//PgBg+vTpmDJlCn73u9/F2o0fPx7f+MY3sGLFipPa71AntWIYZnjSazoPoKiuT/JIMDS7KC9T7Qga/I87damLiKEjw1SJkcMyhN4RJgGRESJn7S7pBH1BK/C/3qA2v59G+YuUJcYVIsFmlWVMnDK9glPWDXTKyEBPDwkcd1AXhlY5qVQkoYr6a3HpJJPH4qbwOqQDfbtDZkCX/lA2WSOvsIuiBF1BEn9Rg7Z50AMcTHIwU8V9AWo//hj58GXI7OjdFvq8ZuQZKQfCYml4M9Tj94Dk+5133om5c+fiqquuwsMPP9yvdbdv346ampq06/n9foRCIeTmkhNuMBjEtm3bsGzZsoR2s2fPRk1NTZ/bCQQCCAS0o6LX6+3XsTIMwwC9p/OM7b+n6LDcbhIsz08F3jyPwvLVdJHKF2WRouaCYyRmdhdSaoifbqDIsMZMShERnxSy004pAjwB4LI62s/nObqgskp5oaLHVPRlfF4gc1SLJ2cYsIWBDPm/smQpYaXSAtgjVCOwJExWIhXx57PR/o47KdFpu7ROtbgSrgs8PbQ9c5SEVHz2+fjAiS4bTcUddevw/XaHjkI8lb5iUcScAfotltasWYPa2lps2bKlX+uVlZWhpaUF4XAY1dXVWLiwb7P3smXLUFpaiquuIj+QY8eOIRKJoKioKKFdUVERGhv7Tqq2YsUKPPjgg/06ToZhmBMhLl5EfxQBxnWfkpixRClruUpVkN0NlMlIM2uURMSITuCpt3UwwMwUIfSALP0iv+hVNVO6CeXoHe/orMLrA9KXqttKFhpVmqTNSRYhZSFShWm7ZLb0hky9TiCpfIjKG2USOgmlyoSusssH4vYtDNpPx0lEkwK0j/h8Sv25/iyImEGmX2Lp8OHDWLJkCdauXQuH4yQfCMmGDRvg8/mwefNmLFu2DOPGjcO8efN6tXviiSfwyiuvYP369b32YRhGwv9CiF7L4lm+fDnuu+++2P9erxcjR47s13EzDMOkQ/zt/F7LDANkGdpVRPXWFnxEZW62F1NCx7HHyf+ozqNLhqiM2+qVluzMbMQpBJWbCaDfsSi6uMg5JaQSwu5Nuu5gJE54CUOXcLEZQDScuB2VkuAMZ7ROhkURc7bQL7G0bds2NDc3Y+rUqbFlkUgEH3zwAZ599lkEAgGYzalNqKNHjwYATJw4EU1NTaiuru4lllauXIlHH30U7777boLjeH5+Psxmcy8rUnNzcy9rUzx2ux12u73PzxmGYc4EiYN8IQyDoyXTwaKIOdvp19eEK6+8Ejt37sSOHTtiP9OmTcP8+fOxY8eOPoVSMkKIBF8iAHjyySfxy1/+Em+//TamTZuW8JnNZsPUqVOxbt26hOXr1q3DzJkz+3MKDMMwg44QvX/ORVJdh3P1WjDDi35ZltxuN6qqEpOuuVwu5OXlxZYvX74c9fX1eOGFFwAAv/3tb1FeXo7KSsoat3HjRqxcuRJ33XVXbBtPPPEEHnjgAbz88ssYNWpUzIKUmZmJzMxMAMB9992HBQsWYNq0aZgxYwZWr16Nuro63HHHHQM8dYZhmKEjWSSk8SgYVrD4Yb6InPZkFg0NDair0+UcotEoli9fjgMHDsBisWDs2LF47LHHsGjRolibVatWIRgM4tvf/nbCtn7xi1+guroaAHDTTTehtbUVDz30EBoaGlBVVYW33noLFRUpMswxDMMMM4ajeGJhxJwrDCjP0nBlqPM0MAzDDJShEk/nzgjBnM0M9fjNteEYhmGGASxaGGboGNw4UIZhGIZhmGEGiyWGYRiGYZg0sFhiGIZhGIZJA4slhmEYhmGYNLBYYhiGYRiGSQOLJYZhGIZhmDSwWGIYhmEYhkkDiyWGYRiGYZg0sFhiGIZhGIZJA4slhmEYhmGYNLBYYhiGYRiGSQOLJYZhGIZhmDSwWGIYhmEYhkkDiyWGYRiGYZg0sFhiGIZhGIZJA4slhmEYhmGYNLBYYhiGYRiGSQOLJYZhGIZhmDSwWGIYhmEYhkkDiyWGYRiGYZg0sFhiGIZhGIZJA4slhmEYhmGYNLBYYhiGYRiGSQOLJYZhGIZhmDSwWGIYhmEYhkkDiyWGYRiGYZg0sFhiGIZhGIZJA4slhmEYhmGYNLBYYhiGYRiGSQOLJYZhGIZhmDSwWGIYhmEYhkkDiyWGYRiGYZg0nJJYWrFiBQzDwD333NNnm40bN+Kyyy5DXl4enE4nKisr8dRTTyW02b17N771rW9h1KhRMAwDTz/9dK/thMNh/OxnP8Po0aPhdDoxZswYPPTQQ4hGo6dyCgzDMAzDMGmxDHTFLVu2YPXq1Zg0aVLadi6XC4sXL8akSZPgcrmwceNGLFq0CC6XC7fffjsAwO/3Y8yYMfjOd76De++9N+V2Hn/8cTz33HP485//jAkTJmDr1q249dZb4fF4sGTJkoGeBsMwDMMwTFoGJJZ8Ph/mz5+P559/Hg8//HDathdffDEuvvji2P+jRo3C66+/jg0bNsTE0iWXXIJLLrkEALBs2bKU29m0aRNuuOEGzJ07N7adV155BVu3bh3IKTAMwzAMw5wUA5qGu/POOzF37lxcddVV/V53+/btqKmpwaxZs/q13pe//GX84x//wKeffgoA+Pe//42NGzfi61//ep/rBAIBeL3ehB+GYRiGYZj+0G/L0po1a1BbW4stW7b0a72ysjK0tLQgHA6juroaCxcu7Nf6S5cuRUdHByorK2E2mxGJRPDII49g3rx5fa6zYsUKPPjgg/3aD8MwDMMwTDz9EkuHDx/GkiVLsHbtWjgcjn7taMOGDfD5fNi8eTOWLVuGcePGpRU6ybz66qt48cUX8fLLL2PChAnYsWMH7rnnHpSUlOCWW25Juc7y5ctx3333xf73er0YOXJkv46bYRiGYZhzm36JpW3btqG5uRlTp06NLYtEIvjggw/w7LPPIhAIwGw2p1x39OjRAICJEyeiqakJ1dXV/RJL999/P5YtW4abb745tp1Dhw5hxYoVfYolu90Ou91+0vtgGIZhGIZJpl9i6corr8TOnTsTlt16662orKzE0qVL+xRKyQghEAgE+rNr+P1+mEyJLlZms5lTBzAMwzAMc0bpl1hyu92oqqpKWOZyuZCXlxdbvnz5ctTX1+OFF14AAPz2t79FeXk5KisrAVDepZUrV+Kuu+6KbSMYDGLPnj2xv+vr67Fjxw5kZmZi3LhxAIDrrrsOjzzyCMrLyzFhwgRs374dv/71r/HDH/5wgKfOMAzDMAxzYgacZ6kvGhoaUFdXF/s/Go1i+fLlOHDgACwWC8aOHYvHHnsMixYtirU5evRoQnqBlStXYuXKlZg1axbWr18PAHjmmWfwwAMP4D//8z/R3NyMkpISLFq0CD//+c9P9ykwDMMwDMPEMIQQYqgPYrDwer3weDzo6OhAVlbWUB8OwzAMwzAnwVCP31wbjmEYhmEYJg0slhiGYRiGYdLAYolhGIZhGCYNLJYYhmEYhmHScNqj4c5mlC8714hjGIZhmOGDGreHKibtnBJLnZ2dAMAlTxiGYRhmGNLZ2QmPxzPo+z2nUgdEo1EcPXoUbrcbhmEM9eGcVlTdu8OHD3NahGEC99nwg/ts+MF9NvxI1WdCCHR2dqKkpKRXNY/B4JyyLJlMJpSVlQ31YZxRsrKy+IUwzOA+G35wnw0/uM+GH8l9NhQWJQU7eDMMwzAMw6SBxRLDMAzDMEwaWCx9QbDb7fjFL34Bu90+1IfCnCTcZ8MP7rPhB/fZ8ONs7LNzysGbYRiGYRimv7BliWEYhmEYJg0slhiGYRiGYdLAYolhGIZhGCYNLJYYhmEYhmHSwGKJYRiGYRgmDSyWBolRo0bBMIxeP3feeWevtosWLYJhGHj66acTlgcCAdx1113Iz8+Hy+XC9ddfjyNHjiS0aWtrw4IFC+DxeODxeLBgwQK0t7cntKmrq8N1110Hl8uF/Px83H333QgGgwltdu7ciVmzZsHpdKK0tBQPPfTQkBUwHCpOR5999atf7bX+zTffnNCG++z0caI++8EPftDrs0svvTRhG/ycDS6no8/4ORtcTubd+PHHH+P666+Hx+OB2+3GpZdeirq6utjnw+45E8yg0NzcLBoaGmI/69atEwDE+++/n9Dur3/9q5g8ebIoKSkRTz31VMJnd9xxhygtLRXr1q0TtbW14mtf+5qYPHmyCIfDsTZXX321qKqqEjU1NaKmpkZUVVWJa6+9NvZ5OBwWVVVV4mtf+5qora0V69atEyUlJWLx4sWxNh0dHaKoqEjcfPPNYufOneK1114TbrdbrFy58oxcm7OV09Fns2bNErfddlvCdtrb2xPacJ+dPk7UZ7fccou4+uqrE9q0trYmbIOfs8HldPQZP2eDy4n6bP/+/SI3N1fcf//9ora2Vnz22Wfi73//u2hqaoptY7g9ZyyWhoglS5aIsWPHimg0Glt25MgRUVpaKnbt2iUqKioSBt729nZhtVrFmjVrYsvq6+uFyWQSb7/9thBCiD179ggAYvPmzbE2mzZtEgDE3r17hRBCvPXWW8JkMon6+vpYm1deeUXY7XbR0dEhhBBi1apVwuPxiJ6enlibFStWiJKSkoTjPdfob58JQS/xJUuW9LlN7rMzS3Kf3XLLLeKGG27osz0/Z0NPf/tMCH7OhprkPrvpppvE9773vT7bD8fnjKfhhoBgMIgXX3wRP/zhD2EYBgAgGo1iwYIFuP/++zFhwoRe62zbtg2hUAizZ8+OLSspKUFVVRVqamoAAJs2bYLH48H06dNjbS699FJ4PJ6ENlVVVSgpKYm1mTNnDgKBALZt2xZrM2vWrITsqXPmzMHRo0dx8ODB03chhhED6TPFSy+9hPz8fEyYMAE/+clP0NnZGfuM++zMkarPAGD9+vUoLCzE+eefj9tuuw3Nzc2xz/g5G1oG0mcKfs6GhuQ+i0ajePPNN3H++edjzpw5KCwsxPTp0/HGG2/E1hmOzxmLpSHgjTfeQHt7O37wgx/Elj3++OOwWCy4++67U67T2NgIm82GnJychOVFRUVobGyMtSksLOy1bmFhYUKboqKihM9zcnJgs9nStlH/qzbnGgPpMwCYP38+XnnlFaxfvx4PPPAAXnvtNdx4442xz7nPzhyp+uyaa67BSy+9hPfeew+/+tWvsGXLFlxxxRUIBAIA+DkbagbSZwA/Z0NJcp81NzfD5/Phsccew9VXX421a9fim9/8Jm688Ub885//BDA8nzPLSbdkTht//OMfcc0118TU8LZt2/Cb3/wGtbW1Cd+mTgYhRMI6qdY/HW2EdIbr7/F9URhon912222xv6uqqnDeeedh2rRpqK2txZQpUwBwn50pkvsMAG666abY31VVVZg2bRoqKirw5ptvJgyuyfBzNjgMtM/4ORs6kvssGo0CAG644Qbce++9AICLLroINTU1eO655zBr1qw+t3U2P2dsWRpkDh06hHfffRcLFy6MLduwYQOam5tRXl4Oi8UCi8WCQ4cO4cc//jFGjRoFACguLkYwGERbW1vC9pqbm2Mqubi4GE1NTb322dLSktAmWU23tbUhFAqlbaPM3skK/VxgoH2WiilTpsBqtWLfvn0AuM/OFKn6LBUjRoxARUVFQn/wczY0DLTPUsHP2eCQqs/y8/NhsVhw4YUXJrQdP358LBpuOD5nLJYGmT/96U8oLCzE3LlzY8sWLFiAjz76CDt27Ij9lJSU4P7778c777wDAJg6dSqsVivWrVsXW6+hoQG7du3CzJkzAQAzZsxAR0cH/vWvf8XafPjhh+jo6Ehos2vXLjQ0NMTarF27Fna7HVOnTo21+eCDDxLCL9euXYuSkpK0QuCLykD7LBW7d+9GKBTCiBEjAHCfnSlS9VkqWltbcfjw4Vh/8HM2dAy0z1LBz9ngkKrPbDYbLrnkEnzyyScJbT/99FNUVFQAGKbP2Um7gjOnTCQSEeXl5WLp0qUnbJsqsuqOO+4QZWVl4t133xW1tbXiiiuuSBlqOWnSJLFp0yaxadMmMXHixJShlldeeaWora0V7777rigrK0sItWxvbxdFRUVi3rx5YufOneL1118XWVlZ51x4rBCn1mf79+8XDz74oNiyZYs4cOCAePPNN0VlZaW4+OKLuc/OIH31WWdnp/jxj38sampqxIEDB8T7778vZsyYIUpLS4XX64214+ds8DmVPuPnbGhI9258/fXXhdVqFatXrxb79u0TzzzzjDCbzWLDhg2xNsPtOWOxNIi88847AoD45JNPTtg2lVjq7u4WixcvFrm5ucLpdIprr71W1NXVJbRpbW0V8+fPF263W7jdbjF//nzR1taW0ObQoUNi7ty5wul0itzcXLF48eKEsEohhPjoo4/E5ZdfLux2uyguLhbV1dXnZGjsqfRZXV2d+MpXviJyc3OFzWYTY8eOFXfffXevHDHcZ6eXvvrM7/eL2bNni4KCAmG1WkV5ebm45ZZbej1D/JwNPqfSZ/ycDQ0nejf+8Y9/FOPGjRMOh0NMnjxZvPHGGwmfD7fnzBDiHEs9yjAMwzAM0w/YZ4lhGIZhGCYNLJYYhmEYhmHSwGKJYRiGYRgmDSyWGIZhGIZh0sBiiWEYhmEYJg0slhiGYRiGYdLAYolhGIZhGCYNLJYYhmEYhmHSwGKJYRiGYRgmDSyWGIZhGIZh0sBiiWEYhmEYJg3/H1d4A7viXYRoAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "(50.000101089121436, 50.000101089121436)" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" + "ename": "NameError", + "evalue": "name 'show' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[2], line 12\u001b[0m\n\u001b[1;32m 9\u001b[0m ds \u001b[38;5;241m=\u001b[39m RasterMeasurements\u001b[38;5;241m.\u001b[39mfrom_filter(observers\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mASO Inc.\u001b[39m\u001b[38;5;124m'\u001b[39m, date\u001b[38;5;241m=\u001b[39mdt, \u001b[38;5;28mtype\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mswe\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 11\u001b[0m \u001b[38;5;66;03m# Plot it up!\u001b[39;00m\n\u001b[0;32m---> 12\u001b[0m \u001b[43mshow\u001b[49m(ds[\u001b[38;5;241m0\u001b[39m], vmin\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.1\u001b[39m, vmax\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.4\u001b[39m, cmap\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mwinter\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 14\u001b[0m \u001b[38;5;66;03m# Note the resolution!\u001b[39;00m\n\u001b[1;32m 15\u001b[0m ds[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mres\n", + "\u001b[0;31mNameError\u001b[0m: name 'show' is not defined" + ] } ], "source": [ @@ -63,7 +54,6 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", "### Let's get part of raster dataset centered on a point\n", "\n", "More reasonably, we often want chucks of rasters given an point or area of interest. Below is an example of how to do this off of a point. " @@ -71,12 +61,12 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGsCAYAAACFPUORAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOtElEQVR4nO3dfXRV5Z02/usASUjCSSDEvJGgOGKXNYgCVgGrQRQaX9BiF6KMylNFfQQsBVqN0w7YmUWsjkUffKBYMb5h43Q0ylJEg7zJcnwGkiIv/gaQokJJQC3kJCEkB3L//nA49niur5xNCLCT67NW1iL32Wefve+9T25O7ivfO+CccxAREfGJLqf6AERERLzQwCUiIr6igUtERHxFA5eIiPiKBi4REfEVDVwiIuIrGrhERMRXNHCJiIivaOASERFf0cAlIiK+0ikHLucciouLEQgE8Prrr3/ntgsWLMAFF1yAtLQ0pKWlYejQoXj77bcjj4fDYTzwwAMYMGAAUlNTkZeXh9tvvx179uxp82szBw4cwOTJk5Gbm4vu3bvjvPPOw9KlSz3vR0TErzrcwFVUVITnnnvuO7d54oknEAgE4tpffn4+HnnkEaxfvx7r16/HlVdeiRtuuAFbtmwBABw8eBDV1dX49a9/jerqarz22mvYtm0bxowZ0+bX/raWlhZcffXV+PTTT/Ef//Ef2Lp1K/7whz+gT58+x7U/ERFfch3MFVdc4crKyszHN2zY4PLz811NTY0D4CoqKjy/Rq9evdwzzzxjPv5f//VfDoD77LPPPL327t273bhx41zPnj1dRkaGGzNmjNu5c2fk8QULFrizzz7btbS0eD5mEZGOosN94vouBw8exC233IKnnnoKOTk5np9/5MgRlJeXo7GxEUOHDjW3q6urQyAQQM+ePeN+7YMHD2LEiBHo0aMH1qxZg7Vr16JHjx740Y9+hJaWFgDAkiVLMHToUEyePBnZ2dkoLCzEnDlzcOTIEc/nIiLiV91O9QGcTD//+c8xbNgw3HDDDZ6et2nTJgwdOhSHDh1Cjx49UFFRge9///t020OHDuHBBx/ErbfeirS0tLhfu7y8HF26dMEzzzwT+VViWVkZevbsiVWrVmHUqFH4y1/+ghUrVmDChAlYunQptm/fjsmTJ+Pw4cP453/+Z0/nJCLiV74fuObMmYM5c+ZEvm9qasKHH36IKVOmRNrefvtt7N+/HytWrMCf//xnz6/xve99Dxs2bMCBAwfw6quv4o477sDq1atjBq9wOIzx48ejtbUV8+fPj7QvWbLkmK9dVVWFTz75BMFgMKr90KFD2LFjBwCgtbUVWVlZePrpp9G1a1cMHjwYe/bswWOPPaaBS0Q6Dd8PXPfeey/GjRsX+X7ChAm46aabMHbs2Ehbnz59UFJSgh07dkT9+g4AbrrpJvzwhz/EqlWrzNdITEzEOeecAwAYMmQI1q1bhyeffBILFy6MbBMOhzFu3Djs3LkTK1asiPq0tWLFimO+dmtrKwYPHozFixfHvP4ZZ5wBAMjNzUVCQgK6du0aeey8885DbW0tWlpakJiYaHeUiEgH4fuBKyMjAxkZGZHvk5OTkZWVFRlojnrwwQdx1113RbUNGDAAc+fOxfXXX+/pNZ1zaG5ujnx/dNDavn07Vq5cid69e3t+7UGDBuGVV15BVlZW1KD394YPH46XX34Zra2t6NLl6+nJbdu2ITc3V4OWiHQepzodcqIdK1X490CSfVdeeaWbN29e5PuSkhK3Zs0at3PnTrdx40b30EMPuS5durh3333XOedcOBx2Y8aMcfn5+W7Dhg2upqYm8tXc3Bz3azc2Nrr+/fu7oqIit2bNGveXv/zFrVq1yt1///1u165dzjnnPv/8c9ejRw83ZcoUt3XrVvfmm2+6rKws96//+q/xdY6ISAfg+09cJ9qOHTvw5ZdfRr7fu3cvbrvtNtTU1CA9PR0XXHABli1bhquvvhoAsHv3bixZsgQAcOGFF0bta+XKlSgqKorrdVNSUrBmzRo88MADGDt2LOrr69GnTx+MHDky8gmsoKAA7777Ln7+85/jggsuQJ8+ffCzn/0MDzzwQNtPXETEJwLOOXeqD0JERCRenervuERExP80cImIiK/4co6rtbUVe/bsQTAYPO66fyIicuo451BfX4+8vLxISjpevhy49uzZg4KCglN9GCIi0ka7du1Cfn6+p+f4cuA6Wl1i165d5t88iYjI6SsUCqGgoCCmWlA8fDlwHf314NE1skRExJ+OZ7pH4QwREfEVX37iEjlVAl8+GtvYavyPMZEsN2NtezAhtq2BlPFKPsyfn0TarW2bu8Y0uaxf8G1FTkP6xCUiIr6igUtERHxFA5eIiPiKBi4REfEVDVwiIuIrShWK7wXeeSm2MbUlts0ZiT62PkLPQ3zbPqStW6t1aLG6GosxsH2wtkPGW5a1u+bYNgBIiE07Bnb/rm3HZbS7ng/ybUXaQJ+4RETEVzRwiYiIr2jgEhERX9HAJSIivqJwhpxSgY9+zx8gAQL8LZlvm0ragiSccdj4f1oTeRtYdT9ZyaZwbAklAEAXEsRgbQDQQvbBykCx7QCgiWybHObbWu0M6zMPNVEDu+bGNjaSYwVo37hzp8b/YtJpePrEtWDBAlxwwQWRquxDhw7F22+/HXncOYfZs2cjLy8PycnJKCoqwpYtW6L20dzcjKlTpyIzMxOpqakYM2YMdu/efWLORkREOjxPA1d+fj4eeeQRrF+/HuvXr8eVV16JG264ITI4Pfroo/jd736Hp556CuvWrUNOTg6uvvpq1NfXR/Yxbdo0VFRUoLy8HGvXrkVDQwOuu+46HDlC/octIiLyLQHnnPG7i/hkZGTgsccew09/+lPk5eVh2rRpeOCBBwB8/ekqOzsbv/3tb3HPPfegrq4OZ5xxBl588UXcfPPNAL5ZzXjp0qUYPXp0XK8ZCoWQnp6Ouro6rcflcyfkV4VMW39VmG78DVROQ2xb2Nivl18Vsr/DOtA9ts3LrwrPPMC3TSPnxirRWxKMv+PqStrZcelXhYK2/Rw/7nDGkSNHUF5ejsbGRgwdOhQ7d+5EbW0tRo0aFdkmKSkJV1xxBT744AMAQFVVFcLhcNQ2eXl5KCwsjGzDNDc3IxQKRX2JiEjn5Hng2rRpE3r06IGkpCTce++9qKiowPe//33U1tYCALKzs6O2z87OjjxWW1uLxMRE9OrVy9yGKS0tRXp6euSroKDA62GLiEgH4TlV+L3vfQ8bNmzAgQMH8Oqrr+KOO+7A6tWrI49/exlm59wxl2Y+1jYlJSWYPn165PtQKKTB6zRGk2QA//VfunELsl/fWb9mY2WU2K+tAsbz2X57NfFt2T6sX52xxR29pBVZf/UgvwIFgEayrZV2ZL8WtBa4ZL/WSzEWqGQLZ9Z7eC0isP5p/sCR2P9zu0vuinu/4m+eP3ElJibinHPOwZAhQ1BaWoqBAwfiySefRE5ODgDEfHLat29f5FNYTk4OWlpasH//fnMbJikpKZJkPPolIiKdU5v/ANk5h+bmZvTr1w85OTmorKyMPNbS0oLVq1dj2LBhAIDBgwcjISEhapuamhps3rw5so2IiMh38fSrwoceegjFxcUoKChAfX09ysvLsWrVKixbtgyBQADTpk3DnDlz0L9/f/Tv3x9z5sxBSkoKbr31VgBAeno67rzzTsyYMQO9e/dGRkYGZs6ciQEDBuCqq65qlxMUEZGOxdPAtXfvXtx2222oqalBeno6LrjgAixbtgxXX301AOCXv/wlmpqacN9992H//v245JJL8O677yIYDEb2MXfuXHTr1g3jxo1DU1MTRo4cieeeew5duxq/jxcREfk7bf47rlNBf8d18tE1rwBePujs/bFtAND7YGxbQxLf9ouU2La9PeI/hnSynlaqUeqIhTOSPQQQrNAHez1rWxak2EtqWbG/iwKAwyTw0MM4XxZcYeWlAP63b9bfuLFt68j1bTb+vxwi21o/nVgghl0bgIZk3IX3GjuWk+WU/B2XiIjIqaCBS0REfEUDl4iI+IoGLhER8RUNXCIi4itaSLKTC3zxWGwjS5j1Yqs1gpdb6maVQCKpryNG8o2VBfqSJA0BoDtJALK2XiRpCPAyTFbFd5ZgZOdlsRJ1R8hBsAr3VtkrlrJjJaMAu8I8w5J6Vt+w+4ZVvbf6i6VOG42q9awbWB8CNCEa2P272O2MxKbrrwr1pxt94hIREV/RwCUiIr6igUtERHxFA5eIiPiKwhmdRODAI/yBbmRCO4UEEPLq438x9nyABwus9aVYKIAFIwAeTGDz9KwkEUDXdkKzhwADKy9l7fdAd76tIwecRkorsdAJwPsm0QjJsLXOrHJJbO0uqzxUvOEM6xxYf1mBCxZyMctpxfn/c7Z+GoDA5vkxba7wvvj2Ke1Cn7hERMRXNHCJiIivaOASERFf0cAlIiK+ooFLRER8RanCDihQRxKErIQSwBfvY9taSUFW3skqS+RFJin/Y6UC2eux5JrVB40kDfeVUV6KpdysBSpZUs8qh8XSe+y4rEQeK73FFowEeIKRvT4A/C05ts0qJcWOjfWNlQ5l19da0JNdB3MhSdJO+9voA/IeCfzXH+im7geT+D7khNInLhER8RUNXCIi4isauERExFc0cImIiK8onOFjgfC/8AcSycR1nVFqiJXOYZPvVjCC8bKtJaMp/v2yUkEMKz9k7dea6GfBBmt9K1bOipVxsvbLAghWwIRdR2tbFtpgZbMAHmywAibsfFk/WsfFMj3WNWPna2WC2PVlbdZxsfeD0QeB6oWxjca9pLJRx0+fuERExFc0cImIiK9o4BIREV/RwCUiIr6icMZpJoDZ/IEwCQBYFQzYcklHjHWvWNUJNkdthgLIcbEJ/ROBVYcAgERSiYEFNtg6VAAQJH1jrRPG9mtVCmHrQ1kVSFiFCFY5wwqosG2dUQmCBV/OaOTbphr9wLDrbt2jDKviYgVf6H1rXAcWpGCFUczwj3HvM9ZaZURg27yYNnfu1PhfqxPTJy4REfEVDVwiIuIrGrhERMRXNHCJiIivaOASERFfUarwFKIJQqt8EUuNpRmld1jiykrJsXaWILRK7wRIcs0qCdRW1jpO7HhZEMxDOMws+ZTooYyTFywRx66NtW4WK4FkrcfFmq37jt1LVnJuP1m7K/1QbJuVrGTXx7rv6kkC0TpflqK01jVjWLKRJSAB3l9WGpa0Bz57gm7qzpzG99FJ6ROXiIj4iqeBq7S0FBdffDGCwSCysrJw4403YuvWrVHbBAIB+vXYY49FtikqKop5fPz48SfmjEREpEPzNHCtXr0akydPxocffojKykocPnwYo0aNQmPjN3+8WFNTE/X17LPPIhAI4Kabbora16RJk6K2W7iQVFUWERH5Fk9zXMuWLYv6vqysDFlZWaiqqsLll18OAMjJyYna5o033sCIESNw9tlnR7WnpKTEbCsiInIsbQpn1NXVAQAyMjLo43v37sVbb72F559/PuaxxYsX46WXXkJ2djaKi4sxa9YsBINBup/m5mY0N38zAR4Khdpy2KcPNiHeYnwIZgEEq9RQW7H9WhPqVoihPVhlpxgv52CVgmLYpH47XQbKCiCwskQJxoGx+855KFvlpQwUu2RWeIe9llXyiR0uK4sG8DBJKrkXWNktAOhJAiZW4ILdSyxYBfByacY9Gvjk/8S0uXPu5/vtBI574HLOYfr06bjssstQWFhIt3n++ecRDAYxduzYqPYJEyagX79+yMnJwebNm1FSUoKPPvoIlZWVdD+lpaV4+OGHj/dQRUSkAznugWvKlCnYuHEj1q5da27z7LPPYsKECejePXr13UmTJkX+XVhYiP79+2PIkCGorq7GoEGDYvZTUlKC6dOnR74PhUIoKCg43kMXEREfO66Ba+rUqViyZAnWrFmD/Px8us3777+PrVu34pVXXjnm/gYNGoSEhARs376dDlxJSUlISjL+bkJERDoVTwOXcw5Tp05FRUUFVq1ahX79+pnbLlq0CIMHD8bAgQOPud8tW7YgHA4jNzfXy+GIiEgn5Gngmjx5Ml5++WW88cYbCAaDqK2tBQCkp6cjOfmbv5oPhUL405/+hMcffzxmHzt27MDixYtxzTXXIDMzEx9//DFmzJiBiy66CMOHD2/j6YiISEfnaeBasGABgK//gPjvlZWVYeLEiZHvy8vL4ZzDLbfcErOPxMREvPfee3jyySfR0NCAgoICXHvttZg1axa6djVSQR1AoPlfYxvDpPutxFV7lVFqq5N5XFaKkqXkWGLLKpfE2q3kHEujWQsQtkffWIt0Zh6MbbP6iyUjrWNlSU7rfNkxeOHIa1nn6yXNSkuCkb5JMPqAtVsLZLIut0pk1XlYOLOtfdvBeP5VYTzuvvtu3H333fSxgoICrF692svLioiIRKhWoYiI+IoGLhER8RUNXCIi4itaj+sEC9Q9YjxCuppNEPstnHEyWZPnbEKbreNkld6pJ+EMK9gQIsdgrRnFyvdY66JZpZziPa62rglmldNir9deZb6C5BzYewQAvkyJbbPWFGPXgZ2DVTKKscpDMVY4gwVPrHXCyLEFts2LaXPnTo3/uHxMn7hERMRXNHCJiIivaOASERFf0cAlIiK+ooFLRER8RanCNghsnh/b2NMoK8RSXyyZdDqkB1lKjy1UCPCFAq3kW1vTaFaZHRIwo+dglQ+iJZCMbZPItlbakaUYWRrO2m9GU2yb1YfsOsSbVATsa8bKMFmsBGBbWClM1g913WPbAOAAaWdlvryUvbLEm2AE+D3q5bVIWjFQ9TTd1A3mlYz8Sp+4RETEVzRwiYiIr2jgEhERX9HAJSIivqJwRluwyW8rAMCCGFbYoD14WYuKrbdkTd6zYII1yZ1IwgZeWKWV4mVlFdj5hoyJfibFKNPDJt+t8j8MuzZegi/WullsW6vUENuHVRop3hJmJ6KsGQsLWSW9WJ+z51t9wN7TXsJKFrat9Xz2eqzElRHIYUEyV3iffWynOX3iEhERX9HAJSIivqKBS0REfEUDl4iI+IrCGXEIfLCIP5DhYSdNpKvZX8mHjf9LsIlYVm0B4BPqf0tu+37jZQUI2qrZuF3Zy7E+OGgEVFiIwtJEJvqtcEYyqaLgZd0rdlxWlY4Q6Rt2rAAPQVhVL1iQg1WHAADWjfVJ8b9WKqmS0c3YtoWtb8c3pftlx2WFTqzzZdj1td4OLHBhBWrY+5TdM63GOXi5x31An7hERMRXNHCJiIivaOASERFf0cAlIiK+ooFLRER8RanCeFhlelhSh639A/ByMqkkrWSVkmEJMSv9x0rUWGnFriSZlBxn6R6AJ5usc2CJqROx/hhLg7EEopWsYsdlraEUb/oPAFiI0UqoxVsuycJSZ9Z1aPZQdordt1aysRs5N/Z8K2XnZW03xlp/jCX9WLk1q1wbW5PMujbsOjrjxyw7LqusGXufsmOw3ufkPWKlpd2wO/k+TiP6xCUiIr6igUtERHxFA5eIiPiKBi4REfEVhTO+JfBGeWxj2AhcsNCGNZmc1hzbdsbB+A+MBQC6GCWMWKkh67jYxDObIO5mTFyzUICXYEPPQ3xbhp2XhQUTrFJDrA+swAULgnQl1xbwtt4a6xsWgmj2EDDxsjaUdX+wUIAVVmJ9zu4Fds8A3gJILNhkhTNYeSd2vtb9QdfNMrZlgQvrOrC+td478a5r5iXMYpWX8gH/HrmIiHRKGrhERMRXNHCJiIiveBq4SktLcfHFFyMYDCIrKws33ngjtm7dGrXNxIkTEQgEor4uvfTSqG2am5sxdepUZGZmIjU1FWPGjMHu3bvbfjYiItLheRq4Vq9ejcmTJ+PDDz9EZWUlDh8+jFGjRqGxsTFqux/96EeoqamJfC1dujTq8WnTpqGiogLl5eVYu3YtGhoacN111+HIEQ+T2SIi0il5ShUuW7Ys6vuysjJkZWWhqqoKl19+eaQ9KSkJOTk5dB91dXVYtGgRXnzxRVx11VUAgJdeegkFBQVYvnw5Ro8e7fUcjkvg5Vf5A0lkLGepJICXd7KSbywtxNJZVjKKpdmsRQkbPZT0iTcx5aX8kFXWiLV7SRVaEknyzEupIrqgn5HeY/uw0lmsb70kLllAzFpMk52Dl1SjVSqoniRXrdJI7BwayPOtVCETNBKb7H60rm86ucfamsK0SjOxdus9zdpZuTWAp3rZveCl3BpL0wII/Hlh7KYX3cP3e4q0aY6rrq4OAJCREb0U8KpVq5CVlYVzzz0XkyZNwr59+yKPVVVVIRwOY9SoUZG2vLw8FBYW4oMPPqCv09zcjFAoFPUlIiKd03EPXM45TJ8+HZdddhkKCwsj7cXFxVi8eDFWrFiBxx9/HOvWrcOVV16J5uav/+dUW1uLxMRE9OrVK2p/2dnZqK2tpa9VWlqK9PT0yFdBQcHxHraIiPjccf8B8pQpU7Bx40asXbs2qv3mm2+O/LuwsBBDhgzBmWeeibfeegtjx4419+ecQyDAP7qWlJRg+vTpke9DoZAGLxGRTuq4PnFNnToVS5YswcqVK5Gfn/+d2+bm5uLMM8/E9u3bAQA5OTloaWnB/v37o7bbt28fsrOz6T6SkpKQlpYW9SUiIp2Tp09czjlMnToVFRUVWLVqFfr163fM53z11VfYtWsXcnNzAQCDBw9GQkICKisrMW7cOABATU0NNm/ejEcfffQ4TuE4BVt4O5sEtUrcsAntgNGlbB9sgtmavGflcKzyPyzIYVWCSWbrhJG+YWEHgE/wNhgTxCzMkmmUvWKvZ/UNm+xPJ5P6VpiFtVt9y0oNWYEJds2skjystBE7X+scWDDBCsmEyX6tsAF7PWu/DOsDFvgAeDjCOi4WmOrVxLelQR3SB92Ma8Peu1Ygh/WXl9JKVpCD3eOsLJkVfKHreRnvJ6uc1WnE08A1efJkvPzyy3jjjTcQDAYjc1Lp6elITk5GQ0MDZs+ejZtuugm5ubn49NNP8dBDDyEzMxM//vGPI9veeeedmDFjBnr37o2MjAzMnDkTAwYMiKQMRURELJ4GrgULFgAAioqKotrLysowceJEdO3aFZs2bcILL7yAAwcOIDc3FyNGjMArr7yCYDAY2X7u3Lno1q0bxo0bh6amJowcORLPPfccunY1/pcrIiLyPzz/qvC7JCcn45133jnmfrp374558+Zh3rx5Xl5eREREtQpFRMRfNHCJiIivdN6FJK10FkvfWGVn6kiyySoPxRJAbFurZJSXxezYttb5Ml4WqGMhKKs8FEvfsdQZwJNgLJUIAF+lxLaxsldWCSS2yKdVAomlKPcbx/W35Ng2K/XVm6Qrsxpj21gK1OIlDWslI72U6bKu5bdZpZnYfWMlGFni0rpH2X7ZdTzooZyWlXBlqUCrDBM7Buu+Y33L7iWzvBTpG+tnAlsL8/97im7qzpvC99HO9IlLRER8RQOXiIj4igYuERHxFQ1cIiLiK50inBGoeCW20VpviU3wWhPiZ5AJdWtCPESCGGzbXsaEKZu897KWlTX5ziaZWZs1oc4mg63yUGyS3CqtxEr9WH3LQhBfkMCGNXnPwhnWmlOsfA97favdOgbWjyyYYD3fS3+xSXlWIgvgwSRrUp8dGyvpZV1zdo9aQR8WTLLKQ7H7mQUbrPOyAlMM63MrF8XOwXqfsj5j70nr/mDhMIsVPDmN6BOXiIj4igYuERHxFQ1cIiLiKxq4RETEVzRwiYiIr3SKVKFZcoVhoRwrqZNhLFzHfEUSZixVlGnskyXfrBJGLNlkpYrYubFtrcSWl/JQLKlnpcZYu5VWjHfBRasP2O3RYrwW64cGY2FE1g/W+bL9shJX1q3cRJ7PFhQFeILRur515BgOGvcdu77svWeWGvKwgCG7F6z0L1uk08sijOx4G41rztLDVooy3tcC+H3D2qw+9LI2JCs71fX0+oxzeh2NiIjIMWjgEhERX9HAJSIivqKBS0REfKVzhDNSW2LbrIlYxgp39CD7Pdsow9S3LraNlQ+yJlfZejxs4hzgYQGr/A+bpE70EEBgh8vK/ABAmARPehlhFLZ+kBWGYefAJsmtAIKXkj5e1oxiE+3WtvE+3zoHL/cz61trHSd2DOy+Bfh1YG3W81mYpbvxfmLvvbb2rYUdrxV28LJOGAtBeAlRsHvRy3lZ2PEa90fg87kxba7vz9t+DMegT1wiIuIrGrhERMRXNHCJiIivaOASERFf6VDhjMDSxfyBHmTS1qqiwCa/zTWU2NpdxgQxm0hlr8VCBQDQSMIVXra1JsQZNsG73wiCsH60qkOwiWsrNMKO16oUwiomsNCHWbGBtFlhFFaxwaro4ciOrXNgx8Am7621klJJn1vbsol2q8oGq8jhpfoHC414qZBhvfe8BDHYGldst9aac+y+sTIQrG+t02XvU2s9LtZn7D3i5R63+jCR3M9BEoYBgNwG3t7O9IlLRER8RQOXiIj4igYuERHxFQ1cIiLiKxq4RETEVzpUqpCuXwTwtaxY4gvgKaguRmqMJZ6s9B5L+7Akl5fnW2kltg+zJJCRPPs2lqAEeHLNOgeW1LOSkfVkWyslx7alaxXxp9P0npWcC3hImLFrZvUjS6OyhJr1fJZstI6LlhoztmX3qNU37H3GyqUdNBKbjHW+9eS+6eYhdeqllBW776z3E7uXrL5lPz/M9bTiXF/O+pnAXqunUU6rNynZZr33vCRETyB94hIREV/RwCUiIr6igUtERHxFA5eIiPiKp3BGaWkpXnvtNfz3f/83kpOTMWzYMPz2t7/F9773PQBAOBzGr371KyxduhR/+ctfkJ6ejquuugqPPPII8vLyIvspKirC6tWro/Z98803o7y8vG1nY5VsYRPMX6TwbVnJFWutIlYyhU0aA0ADKe/iZeKbTY5aJVvYxDEr3QPwc2P7tSZhWbjCKqfFtv3KuA5s7a1U43zZfv+WHNtmBXJYGSYrFMDarUn9OnJc1kR9Kukz9lrW2nBsWy/rQFnbsmCDFYJg+2DvyQQjFMCuj7X+GOvbJOO42PpwXsIstOST0V/s/Wu9HxjrHJrJPti9YP0MDJLgDGsD+Np/u9L4tuy+O5dveiJ5+sS1evVqTJ48GR9++CEqKytx+PBhjBo1Co2NjQCAgwcPorq6Gr/+9a9RXV2N1157Ddu2bcOYMWNi9jVp0iTU1NREvhYuXHhizkhERDo0T5+4li1bFvV9WVkZsrKyUFVVhcsvvxzp6emorKyM2mbevHn4wQ9+gM8//xx9+/aNtKekpCAnJ6cNhy4iIp1Rm+a46uq+Xo4+IyPjO7cJBALo2bNnVPvixYuRmZmJ888/HzNnzkR9fb25j+bmZoRCoagvERHpnI77D5Cdc5g+fTouu+wyFBYW0m0OHTqEBx98ELfeeivS0r75HemECRPQr18/5OTkYPPmzSgpKcFHH30U82ntqNLSUjz88MPHe6giItKBHPfANWXKFGzcuBFr166lj4fDYYwfPx6tra2YP39+1GOTJk2K/LuwsBD9+/fHkCFDUF1djUGDBsXsq6SkBNOnT498HwqFUFBQcLyHLiIiPnZcA9fUqVOxZMkSrFmzBvn5+TGPh8NhjBs3Djt37sSKFSuiPm0xgwYNQkJCArZv304HrqSkJCQlGWm9v5dupJVYoo6lkgDgMEnv9DAWUTtIkkm1Pfi2LD3HEn3pRtLHWqCSSSXHayUjWYopjfRjgrHgI+tbq6QPS2xa6U6WKmwlbQBPZ7I2a3FIlhCzrjlLo7GUHsAXybQWbGQLdbK0opWMZCE3a4FLLwuggtwLVgLRkXuJLoBo9IF1j8bLSnd+Se4xVu6IlawCeFLQ6gOW6LUSqtY+4t2WJY2t+7YXOV8vKV1zodHY8w18+gTd1J01je/jOHgauJxzmDp1KioqKrBq1Sr069cvZpujg9b27duxcuVK9O7d+5j73bJlC8LhMHJzc70cjoiIdEKeBq7Jkyfj5ZdfxhtvvIFgMIja2loAQHp6OpKTk3H48GH85Cc/QXV1Nd58800cOXIksk1GRgYSExOxY8cOLF68GNdccw0yMzPx8ccfY8aMGbjoooswfPjwE3+GIiLSoXgauBYsWADg6z8g/ntlZWWYOHEidu/ejSVLlgAALrzwwqhtVq5ciaKiIiQmJuK9997Dk08+iYaGBhQUFODaa6/FrFmz0LWrhz/UExGRTsnzrwq/y1lnnXXMbQoKCmKqZoiIiMSrY63HZU2ussnGRGMimE2uspIvFmsSk5VnCZPut0q+sOd7KdNjTdSzEjHdyTFYx8XO1woQsMlzq29ZkMIqs9NItmVrdLHtAB4KsM6XTYiz0AnArw8LzgC8b6zyYQy7jtaaUS2kz831x9hrGX3D7jFWqsgKRrH7xgqNsOvT1bjHaUDEw71orUXF0Oto3Hfs+lj/72fbHiYbW89nAaKvSFk0gJdLs0pvseCJl5+Xx0lFdkVExFc0cImIiK9o4BIREV/RwCUiIr6igUtERHylY6UKreQcS/qwki8AkES6hJVAAngZFesYWMmnvank9Y3nM9YCdSxxZSV9WOqrkZQqslJ2XspLsRJIVgLxACmBZDkUZ7Kxp1EyqgdJrlmL7LEU5WEPizta2C6slCzDXspKuB4iKTcr6ccWFbXu8XjTZNbzad8a/7dmr2UtspnGkrPkGKy0pBcsfcfue8BbspG9T1m5NauME3st67jYOVj3Mnv/e0lhHid94hIREV/RwCUiIr6igUtERHxFA5eIiPhKxwpnWOstsYl6a+2uLmSS2gomsMnzzIN8WzZpyuY7rcAFm1y1Jt/ZBK81yc0mYtnzrUlfVk7Hmshl/WiVkvFS8ontg13zRCMUwIIY1rpoLMRgBUxYWKCbcQ4sGMDO13otdt9YfcvCLCnWGltxvpbVztpY+AfgZauskk+sG6wSV9a9/23WebHreMg4BxYqskqCsePy8v73kP2hrDJfbE0va1sW3lE4Q0REJJoGLhER8RUNXCIi4isauERExFc0cImIiK/4OlWYvnUh0OPvFj1r6Mk3ZKVNWBoGALp7KHFDE3Ue0jfZjbFtVukddg5WiootGuclcWWVgmFYgshL8s0q08O29VLSiyW5rNcKkhQVW4wT4IlLK0XFjsu6DmwX7P6yns/uWysJysoHWWk2lkz0stgpS4da59CVXAcrkcdSbtbCqmwfLP1nlVtj97OVYLaSnIyXBRdZypUlozOMsmbspaz0L7sXrJ9rLAlq3R8nkD5xiYiIr2jgEhERX9HAJSIivqKBS0REfMXX4Qz0CAPBv5tI7G1MTLLJWasMDFuny1q7i01MWgECNmHJJjytAAFjTXKziWerPAyboGWT3F4CF9a27Bis02UT19ZkNrsOIXJcLLQCAH9L5u0MC2JYk9HscK0AQbzrS1lhBXYdrdAIK6PUZARyWAjBCnKwMAnrA6t0FwsFmWW6PKw5x9atCpAQVG8jgMD6y3qfsuCLdd/R4Iqx33QS5GIBFes6snCYdR1ayPF2s9575Gejl59hx0mfuERExFc0cImIiK9o4BIREV/RwCUiIr7i73DGkS7RAYXcer4dC0x4qQ5Rb1SzYJOjGcaEeDfSHiL7tSaYWTubCAaMdaCMiWc2+e1lbpWGCoz/D7FtzdAIOV5rMpmFI9iaQlZohB3XfiOwwSa5rb5l52Bty9rZcVnXhgUQLKzog1UZgQWTrAASuzy0eogVMGH95SHMYp0Duz/YdbQqZ7BAjVUho5F0rrUtC32wNf4AXt2Fvc+tnx9equmw90lX4+caez0WDgOAnrz5eOgTl4iI+IoGLhER8RUNXCIi4isauERExFc0cImIiK/4OlVY1/c+pKWlRb4PfD6Xb9iLlIJKJSkdANjbI7atlrQBPKljlZ1iiSeWCmRJQ4CnlcJGqpCV+rHSbCwxxfZrlchK8PBabB9WCSSaKuSb0jRYH3J9rdQYYyWjGkka1Sr5xFJj1hpIrJ2VVjpsldMi7dY1Y4laK43G7iWz9BYra0bOy0olsjXQrGvG9mul5JriTLOy0mHWMVj3Yk6D8QDBUoFWmS5WysnLeoDs54qVlmbXkaUaAZ6YrDPeOyeQPnGJiIiveBq4SktLcfHFFyMYDCIrKws33ngjtm7dGrWNcw6zZ89GXl4ekpOTUVRUhC1btkRt09zcjKlTpyIzMxOpqakYM2YMdu/e3fazERGRDs/TwLV69WpMnjwZH374ISorK3H48GGMGjUKjY3fVC5+9NFH8bvf/Q5PPfUU1q1bh5ycHFx99dWor//mj4OnTZuGiooKlJeXY+3atWhoaMB1112HI0faf8lnERHxN09zXMuWLYv6vqysDFlZWaiqqsLll18O5xyeeOIJ/NM//RPGjh0LAHj++eeRnZ2Nl19+Gffccw/q6uqwaNEivPjii7jqqqsAAC+99BIKCgqwfPlyjB49+gSdmoiIdERtCmfU1dUBADIyMgAAO3fuRG1tLUaNGhXZJikpCVdccQU++OAD3HPPPaiqqkI4HI7aJi8vD4WFhfjggw/owNXc3Izm5m9KoYRCIX5AWzN5+5kHYtusAAFbI6fOmMSk4YyDfNtMEtpgE5vs9QEemPA0cW2tH0SOgQUTrElfFq6wysOwfVhlmFiwwJq4Zu3WRHu8WMmoE8Fay8oKUnybVQIp4CFAwEIMZqkgdgxW+TByHdq6ppgV3mHHZZ1DvNdyv1WqiJS9st57rG/2pfJt2XvdOlbWzl7LKlW2JxjbZt2LfcjPV1YiC+A/A7sb255Axx3OcM5h+vTpuOyyy1BYWAgAqK2tBQBkZ2dHbZudnR15rLa2FomJiejVq5e5zbeVlpYiPT098lVQUHC8hy0iIj533APXlClTsHHjRvzxj3+MeSwQiP6fj3Mupu3bvmubkpIS1NXVRb527dp1vIctIiI+d1wD19SpU7FkyRKsXLkS+fn5kfacnBwAiPnktG/fvsinsJycHLS0tGD//v3mNt+WlJSEtLS0qC8REemcPA1czjlMmTIFr732GlasWIF+/fpFPd6vXz/k5OSgsrIy0tbS0oLVq1dj2LBhAIDBgwcjISEhapuamhps3rw5so2IiIjFUzhj8uTJePnll/HGG28gGAxGPlmlp6cjOTkZgUAA06ZNw5w5c9C/f3/0798fc+bMQUpKCm699dbItnfeeSdmzJiB3r17IyMjAzNnzsSAAQMiKUMRERGLp4FrwYIFAICioqKo9rKyMkycOBEA8Mtf/hJNTU247777sH//flxyySV49913EQx+k2qZO3cuunXrhnHjxqGpqQkjR47Ec889h65djZRLvKzSTKwMS1cj+cJKo1glTFgqiJWMAnjKjZVcsdJlLEFkJq48LBrHXo8uUGlcGzYtyUrGAPwcrGSTlRCLF+sDq4wTS7lZJcGyGmPbrDJO9eT+sEp6pZL7kR1DorHQoBesVJCVZmXXzDpftl92Ga2ST0FyblaSlN03VlqRlbhKJPcHSw8CvBSV9T5l5+vlHm9raTZrgVz2nrbeYtb1Ydi5HfKwSO9x8jRwOWctV/uNQCCA2bNnY/bs2eY23bt3x7x58zBv3jwvLy8iIqJahSIi4i8auERExFc0cImIiK/4ej2uGKxUCWCsp+NhHSgrBMHarRAEa2evZZV8YaWRrDJObNLXKsPEghRszaevUvjzWTksq2/TPEy+s3OwtmWTyWzimpXYAvhEO1v/CAD+RkrqWOtxfUH6zApnsJI6vUkfpBvhDDapb5XTYn1r3ePsWloBAnYO7NpY60CxYIEVNqChEeO42FpS7H2WboQzvGDvSSvswPrcvA5xvr71HmHXxkvIxgrvkECcu+Qu4+BOHH3iEhERX9HAJSIivqKBS0REfEUDl4iI+IoGLhER8ZWOlSosMFKFjJW4YuWhLF4WO2QpqAyyuKSV2GKJOCslx9qttCMLFvUkyTVrAUOWQLRSdqxvrBQV61urb1g5LXa+1vNZSR8LSytaz2evZx0D2y9NonpInVkpu0yy2Cl7fYtVwoidG7sXrHJenu5bdt9ZC6uy4yLbWoslsnvUKgPHSo15uT+sFCVbIJI93/r5w36uWT8D6esb5/s3o72d6ROXiIj4igYuERHxFQ1cIiLiKxq4RETEVzpWOMPLpK+13hJbF8kqw8T2ax0DKwXDJq5ZWSSAT7qaa2x5KP/DdCfH0JMESaz9eilbY01Gs3601ktipXoCpKyQFbxhx9VoHBcLjVghCFbqx5rU70L2wcICVgCBlaiyroMVQmC83OOsHBbjZW0463xZ39J15MDLbLFgAwutWMfF1loD+HvaWp/OS6mxA+QcWFCHBb4A/jPMWqWKvaet4/IS6jmB9IlLRER8RQOXiIj4igYuERHxFQ1cIiLiKxq4RETEVzpWqpCVWwF4iZouRkpmb2psm5UEY0m/g0aXNpIUUneS7rLK6bDnWykqK/XFsOQZLZFzAso4WQlChiWbrDQca2cL37HEKGAvfMmw80029uul3BFb7DC3Pv7nf0HuW+v+YIk8qxSVlzQqu3dZcs5KFbLrYKw5SfvBSvo1k/ckuxcPGO9zVu7IKuPE+ta6770sOtmD9Bm7ba3ryN6T1qV1ZFsrhc2u70mgT1wiIuIrGrhERMRXNHCJiIivaOASERFf6VDhDFd4H20P/L9nYhutkj5fpsS2WZOr6aQ0khWu2E8m6oMe/t/AJtrN8lJxTuQCfEKclXGx1oHyUoqKhWesckmsRA3rb+vY2HWwJq5bPazdxcpOWWsgsYl2q6wQwybvrfuLXUdr4pyFEKxQACtBZgV12PuEBSPMezHONoD3jVV+iN2P7HzNdcbIAVv9xd6nVliJ3Tde3qfsvrfKS7F+ZH0I8H60rnkvo8RUO9MnLhER8RUNXCIi4isauERExFc0cImIiK90qHCG6SuyTpC1thNrtya5m0j3WROxbNI2kbQlGKEA1t5qTJiyY7ACEww7LyuAwFiTvmySO+Bhv9ZaZaxv2QSzFWZhzeaaYqxvjf2yfVj7ZdUZrIotDLs/rKoXdN0r4zqwMIl1Dix8w9bT8lKNw3ot9j718p7OaoxtsypnsGOwghxsW+u9w+6bQ0YQjIXJWLUVq79Ys/Vzjb2fjOoyViCuvekTl4iI+IoGLhER8RUNXCIi4iueB641a9bg+uuvR15eHgKBAF5//fWoxwOBAP167LHHItsUFRXFPD5+/Pg2n4yIiHR8ngeuxsZGDBw4EE899RR9vKamJurr2WefRSAQwE033RS13aRJk6K2W7hw4fGdgYiIdCqeU4XFxcUoLi42H8/JyYn6/o033sCIESNw9tlnR7WnpKTEbNtuQmRRHyuhdgZJUVmlhryUYWIlhA6R7j9irYsU5z4BnjCzEkSs5BJLTFnnxc7BS4kbaw01dg5WOoslrthxWWV6GCs1xq45K2sE8OO1joElXxnrOrI1yaxyPKyclnVcXtKkDEvOsXQpwO8xdh0Bvh5WXij+bdn1tc6Vlq2ykqQs/eshRWlty8o7sXvBOi6WCrR+frB7wXpPnyLtOse1d+9evPXWW7jzzjtjHlu8eDEyMzNx/vnnY+bMmaivJ4vm/Y/m5maEQqGoLxER6Zza9e+4nn/+eQSDQYwdOzaqfcKECejXrx9ycnKwefNmlJSU4KOPPkJlZSXdT2lpKR5++OH2PFQREfGJdh24nn32WUyYMAHdu0f/Yd+kSZMi/y4sLET//v0xZMgQVFdXY9CgQTH7KSkpwfTp0yPfh0IhFBQUtN+Bi4jIaavdBq73338fW7duxSuvvHLMbQcNGoSEhARs376dDlxJSUlISiLzVCIi0um028C1aNEiDB48GAMHDjzmtlu2bEE4HEZubm67HIsb/5OYtsCq5/jGLKyQbUxyW2tUMfWJsW2NpM0qH9RAtrUmYlPbOPlO1xTiT6esfmGhAC9rWVlrDTGHSd+wUlYAn3i2QiMtpP2wEeTwch0Ytr6VFc5IJeEM67XYcVklwdgxsNcCeGkldo96KZfE7hkASCbHwEIY1jGwwIXVB+xnQsBDOS1rv17WjGPvScZ4Ohw5BitwwY7h9MpmeB+4Ghoa8Mknn0S+37lzJzZs2ICMjAz07dsXwNe/yvvTn/6Exx9/POb5O3bswOLFi3HNNdcgMzMTH3/8MWbMmIGLLroIw4cPb8OpiIhIZ+B54Fq/fj1GjBgR+f7o3NMdd9yB5557DgBQXl4O5xxuueWWmOcnJibivffew5NPPomGhgYUFBTg2muvxaxZs9C1a5z/qxARkU7L88BVVFQE5777c+Pdd9+Nu+++mz5WUFCA1atXe31ZERERAKpVKCIiPqOBS0REfKVzLCTJWEkf1m5VbGEJIlZ6B4h/0TdrMTu62KERIWKpPuu3uyxBxI7V6i8v6S7GKkvESt80GYvssevAygqZ5XRYeSnjOrJSVFYC0SorxrAEIDsvK2XHkoJW6rQ2SLY1joudr5UKZPc+W7CxzvjTFnbfWItDsr61EpcsveulhBHrRis5y96/1nuaJWqtnx+snS3SmWIlK0kbSyoDtG/c9yfzbU8RfeISERFf0cAlIiK+ooFLRER8RQOXiIj4SqcNZ7iRt9P2wJqy2EarLBFb48aa84239I21thMrYZRgvBgrGxU2JtTZ5DcLALDSPwAPFXTzsK6RFZhgxxs29htviMEqp8Um6llABeDnZpV8YsEGC1sHjh2DVfaKhRX2kBAGwCflvZSiSjT+v8uCPixwYZ0DOwYrjMLCCl5CI6yEEns/W+3W+2l3WvzHxa5ZktE3rG9ZYIqtTQfwe9x671nHcBrRJy4REfEVDVwiIuIrGrhERMRXNHCJiIivaOASERFf6bSpQhNLEFoLELLElFVGhQV4WCrISlF1I8dwyEogkv2yskYAL13DEkhW2SvWbpUaYvu1yjixBCDrA4D3g5fr6GVRQS8LXLIkppU6jTclZ5UaYgkxLwsYWok6kG2tMkx0wcY2LlVklWZi52b1DTsG1gdWyo4dg5U0ziYlrv6WzLdlrARia5yJXOt9zq6Ncb7ugv9tHNzpQ5+4RETEVzRwiYiIr2jgEhERX9HAJSIivqJwxre4S++KaQtUPc03ZiEIq6wQDTGQNqv0Dlv3qt5Y14gdgzWZ7KEqEcUmk5OMSXJ2btaEOGu3tqXXgbR5CY2wEjsAvw5W+R+r/E68WJjEWvuLBUSs/gqSUkPW+bJgg7XuFdsHu++sAAG7P6y13dgtZl1fdo+yQI8V7mDrXrE2gJ8DWysN4OuEWdeXBX3Ya1lhloMeAkg+4N8jFxGRTkkDl4iI+IoGLhER8RUNXCIi4isKZ8TDmmRnk9GpZPLe2geb1D9kTFxnNMW2nUH+Sh/gk/LWpC3btplVYTAmvtnkvRUEYbysX2YdA8MqQVhVHNgktTX5TtcJM/7/xypyWOfLrgM7XataCpu8t0IBrFqJdX+wa2lN6rPQBl1zyuhbdgwtxmuxYIMVRmHHy/rgQHf+/OyG2DbrHmfBE9YHAA+DWMfA7n1aXSb+AJK7/A6+rQ/oE5eIiPiKBi4REfEVDVwiIuIrGrhERMRXNHCJiIivKFUYB3f5/6Ltgc3zYxuTjLQRSwvRtXeM5FuYJMSCRmqMscrssOQbS0wlWOv8kDZrbSeWFLTK9NCknpHutJJ232alzlg6lPULwK+ZlzJd1vpjLJHHrkOih/WWrHJJ7Hit+5atE1ZnlBpjZadYH1j3Yoi8R6xry66DlYxkadIdGbFtXxnrZrH37vn7+LbpZK0y1oeAt3Xz2D3Krrn13rPuUZ/SJy4REfEVDVwiIuIrGrhERMRXNHCJiIiveA5nrFmzBo899hiqqqpQU1ODiooK3HjjjZHHJ06ciOeffz7qOZdccgk+/PDDyPfNzc2YOXMm/vjHP6KpqQkjR47E/PnzkZ+ff/xncir0JBOx1lpFbKKdBRCsCWarnaFrWRmhj7jXsjJeK0Qm6q0JdXYO1sQ1XePKWpspzrW7rDALK51jhSjYdbSuuZc1xVgYhPVXD+Mc2LZWKSq2rVVOi5WSsq4ZK23EzjdkhCDi7QOAB0HYvQgAfw3GtrEghnV/7CfhjC9T+LasG72UKrNKSbFScqxrjP5yg+6J/xh8wPMnrsbGRgwcOBBPPfWUuc2PfvQj1NTURL6WLl0a9fi0adNQUVGB8vJyrF27Fg0NDbjuuutw5IiHGnciItIpef7EVVxcjOLi4u/cJikpCTk5OfSxuro6LFq0CC+++CKuuuoqAMBLL72EgoICLF++HKNHj/Z6SCIi0om0yxzXqlWrkJWVhXPPPReTJk3Cvn3f/M1DVVUVwuEwRo0aFWnLy8tDYWEhPvjgA7q/5uZmhEKhqC8REemcTvjAVVxcjMWLF2PFihV4/PHHsW7dOlx55ZVobv7699+1tbVITExEr169op6XnZ2N2tpaus/S0lKkp6dHvgoKCk70YYuIiE+c8MoZN998c+TfhYWFGDJkCM4880y89dZbGDt2rPk85xwCAT6JWVJSgunTp0e+D4VCGrxERDqpdi/5lJubizPPPBPbt28HAOTk5KClpQX79++P+tS1b98+DBs2jO4jKSkJSUlGYugUcvnTY9oCn8/lG/ckC0GyMi5WAomVcrHSe2wfLB0G8NQXSxVayTmWBLO2ZWVnrJJPrPQNW3gP4EkstqlV9oaW3jFey8s1Y9ua+21j6S2WJrNKM9HEpoElBfONX9WztCG7R62kIFtgki0Yae3XSmweYotskmPtfZA/v4m8Fi3XBqC2R2ybtXAm6y+rTBe7R8l17GjpQUu7/x3XV199hV27diE3NxcAMHjwYCQkJKCysjKyTU1NDTZv3mwOXCIiIkd5/sTV0NCATz75JPL9zp07sWHDBmRkZCAjIwOzZ8/GTTfdhNzcXHz66ad46KGHkJmZiR//+McAgPT0dNx5552YMWMGevfujYyMDMycORMDBgyIpAxFREQsngeu9evXY8SIEZHvj8493XHHHViwYAE2bdqEF154AQcOHEBubi5GjBiBV155BcHgN38EOHfuXHTr1g3jxo2L/AHyc889h65dPfwKQ0REOiXPA1dRURGcs6s4vPPOO8fcR/fu3TFv3jzMmzfP68uLiEgnp/W4TjDX9+e0PfDJ/4ltDJKJb2vinE1os0ljgJe+sfbLSud4KS/Fnm+9FgtHWEEOto6TNcnNjqGOlOmxAioMC1YAPDRivYtYoCZgVIdh23opzcTuBWtNMdZf1nVgx8CuDcCDJ+xesF6LBS6sW5H1VzcPoQ9HXoutuwXwUlBWSMZLmS8v5dJYEGPonXzbTkBFdkVExFc0cImIiK9o4BIREV/RwCUiIr6igUtERHxFqcKTxJ1zf0xbYOOC2A2tRB9LJnlZdJKl4SwsCWY9n5UE8lLyyUr6sWOwFlFkrGNgWGklq29Z8sx6LZZM7EUWHwXiPzcvC1G2GMfFjtdawJAlX1kqEQAaSHkm1o1WmS/G2pbdS1Y5LVaiiiX6rCQpK8PEUo0AUE/2a91LHhaddJf9lO+jk9InLhER8RUNXCIi4isauERExFc0cImIiK8onHEKuQv+d0xbYMPvjY3JpK0VmGBrDVmlc9jaW3SS3Zgk70KOwSqHwya/vZS4stZAijeM4mXy3Sq942XtLta3zcY5sONlQQxWfgjgYQUrcMGCCX2MNbayGmPbmoxADTs3Ft5hAQYAaCD7PWz0VwrpL+v+YOtesb6xMiPhON8jAL9vrHXgWHuyhxBVJ6ZPXCIi4isauERExFc0cImIiK9o4BIREV/RwCUiIr6iVOFpxl14L20PrH86trHVw+KQZiqQJOLYwntW4oql4azXYmnHAx4SiFaZHZZMZIk867hYmR1r0UqWULNKPqV4WLCRtbNzsJKkCaRvrNdi52ulFenzjf2ypB47B5bSA/jin9Y5sFvBSqiy+4al/9j9CfBFOs1rTvZh7ZcclvX+l2j6xCUiIr6igUtERHxFA5eIiPiKBi4REfEVhTN8wg25O6Yt8OEzfGM2cWyVO2KT50lkkt0KBbAJcSvYkEoCAD2N9aloMMEIZxwi58v6wFr7qysp32Otj2WV76H79VC2ivUjCwVYfcDWzbLCLGx9KuuasfCOsWYUTfA0kr79LJ0/nZVROhFrZDF0/TIPJcU83AduoAIXJ5o+cYmIiK9o4BIREV/RwCUiIr6igUtERHxF4Qwfc5feRdsD//UH0mhMXLNJaroOlDEZzapRWOtAscCEFYJgQQprop5h+QF2XgCflLcCCOx4rawCSD+Y4Yw4wyTsegE8XMHW0gL4emlWJQh2vNY5sH2wwIX1fC9rZHlZb83qs3ifz6qKsMAGADcgdo09OfH0iUtERHxFA5eIiPiKBi4REfEVDVwiIuIrGrhERMRXlCrsgNwPJsW0meWh2LpEXcn6QVYqkZW+scrhsHJFRjqLYmsdAUB9Unz79ZI6O2wcl7UWFd3Ww3pa8ZYrstZ2yiYJQrYuGxD/+mUAL9nE7hmAl2Fi1yynIf7jsvqL3WNWMpJdd1ZqzEqSknSnG3on31ZOCn3iEhERX/E8cK1ZswbXX3898vLyEAgE8Prrr0ceC4fDeOCBBzBgwACkpqYiLy8Pt99+O/bs2RO1j6KiIgQCgaiv8ePHt/lkRESk4/M8cDU2NmLgwIF46qmnYh47ePAgqqur8etf/xrV1dV47bXXsG3bNowZMyZm20mTJqGmpibytXDhwuM7AxER6VQ8z3EVFxejuLiYPpaeno7Kysqotnnz5uEHP/gBPv/8c/Tt2zfSnpKSgpycHK8vLyIinVy7hzPq6uoQCATQs2fPqPbFixfjpZdeQnZ2NoqLizFr1iwEg0G6j+bmZjQ3f7PeUChE1hOS72SVh2ICVU+TRmNjFgCwJsnZpL4VSmAhCGu/9PnkgFl5KoAHANiaZADADtcKmLByR17W+WLbWuuXsX4MkdAKwI/Xur70mhnbxvt86zqwc7MCJlbZqHiR0Im7ODbUJKendh24Dh06hAcffBC33nor0tLSIu0TJkxAv379kJOTg82bN6OkpAQfffRRzKe1o0pLS/Hwww+356GKiIhPtNvAFQ6HMX78eLS2tmL+/PlRj02a9M3/bAoLC9G/f38MGTIE1dXVGDRoUMy+SkpKMH369Mj3oVAIBQUF7XXoIiJyGmuXgSscDmPcuHHYuXMnVqxYEfVpixk0aBASEhKwfft2OnAlJSUhKcn4tYeIiHQqJ3zgOjpobd++HStXrkTv3r2P+ZwtW7YgHA4jNzf3RB+OiIh0MJ4HroaGBnzyySeR73fu3IkNGzYgIyMDeXl5+MlPfoLq6mq8+eabOHLkCGprawEAGRkZSExMxI4dO7B48WJcc801yMzMxMcff4wZM2bgoosuwvDhw0/cmYmISIcUcM55qLkDrFq1CiNGjIhpv+OOOzB79mz069ePPm/lypUoKirCrl278I//+I/YvHkzGhoaUFBQgGuvvRazZs1CRkZGXMcQCoWQnp6Ourq6Y/4aUtpX4OP/G9vYRBZABHgSzCoP1Uj2wUpGATx9xxJ9VoKRhdys1Brbh5UqZMnITGNxxx6kNFI6SdlZiT6WorRKM7F0prXYYjNbZNNId7JuYMdgLTTK0oa9mvi2rB+Mkk3u7J/xfcgp1Zaf454/cRUVFeG7xrpjjYMFBQVYvXq115cVEREBoFqFIiLiMxq4RETEVzRwiYiIr2g9LmkT9/3JcW8bWPtsbKO1BhILC1jbsjWf2KQ+W+8JoOstmeWl2DFY64T1PhjblmusRRUkARNWisoKUbAwiXUOrB9YCMN6vf3d+bYsdMH6xjqHA2S/X6bwbcn1dUPu5ttKh6NPXCIi4isauERExFc0cImIiK9o4BIREV/RwCUiIr6iVKGcNO6yn8a9beC9F9r2YizhZpVLYmWcWKIP4Im8YHNsGwD0JslGayHJFvJ/yC6kzUpWhj38H5SV07LKdLGSTVaKkp0bK+NklKJyo/+R71fkW/SJS0REfEUDl4iI+IoGLhER8RUNXCIi4isKZ8hpyY28vU3PD2yfF9uYYKwD1Y0EMVKNAAILciQba4qxtcZYeSkACCXFtrV6KC/VSNYfqydtAF+rzCoPlUoCF8Z6Wq7wPr4PkRNMn7hERMRXNHCJiIivaOASERFf0cAlIiK+ooFLRER8RalC6ZBc/6mn+hCowO7f8QdY2pCECl3fn/PnZx7/MYn4jT5xiYiIr2jgEhERX9HAJSIivuLLOS7nvq5eEAqFTvGRiHhUf4i3N5EqG2SOS/e8dBRH7+WjP8+98OXAVV9fDwAoKCg4xUcicnKl44FTfQgiJ1R9fT3S09M9PSfgjme4O8VaW1uxZ88eBINBBALW6oByVCgUQkFBAXbt2oW0tLRTfTgdmvr65FFfnxzt1c/OOdTX1yMvLw9d2KKp38GXn7i6dOmC/Pz8U30YvpOWlqY3+Emivj551NcnR3v0s9dPWkcpnCEiIr6igUtERHxFA1cnkJSUhFmzZiEpiaz5JCeU+vrkUV+fHKdjP/synCEiIp2XPnGJiIivaOASERFf0cAlIiK+ooFLRER8RQPXaeCss85CIBCI+Zo8eXLMtvfccw8CgQCeeOKJqPbm5mZMnToVmZmZSE1NxZgxY7B79+7I46tWraKvEQgEsG7dush2n3/+Oa6//nqkpqYiMzMT999/P1paWqJea9OmTbjiiiuQnJyMPn364De/+c1x1Rs7FU6nvmaP//73v496Lb/29cnoZwDYtm0bbrjhBmRmZiItLQ3Dhw/HypUro7bRPf2N9u7rk3ZPOznl9u3b52pqaiJflZWVDoBbuXJl1HYVFRVu4MCBLi8vz82dOzfqsXvvvdf16dPHVVZWuurqajdixAg3cOBAd/jwYeecc83NzVGvUVNT4+666y531llnudbWVuecc4cPH3aFhYVuxIgRrrq62lVWVrq8vDw3ZcqUyOvU1dW57OxsN378eLdp0yb36quvumAw6P7t3/6tXfvoRDld+to55wC4srKyqO0OHjwYedzPfX0y+tk558455xx3zTXXuI8++sht27bN3XfffS4lJcXV1NQ453RP/7327mvnTt49rYHrNPSzn/3M/cM//EPUD7ndu3e7Pn36uM2bN7szzzwz6sY7cOCAS0hIcOXl5ZG2v/71r65Lly5u2bJl9DVaWlpcVlaW+81vfhNpW7p0qevSpYv761//Gmn74x//6JKSklxdXZ1zzrn58+e79PR0d+jQocg2paWlLi8vL+p4/eJU9bVzX7/JKyoqzGPrSH3dHv38xRdfOABuzZo1kW1CoZAD4JYvX+6c0z191Mnoa+dO3j2tXxWeZlpaWvDSSy/hpz/9aaSAcGtrK2677Tb84he/wPnnnx/znKqqKoTDYYwaNSrSlpeXh8LCQnzwwQf0dZYsWYIvv/wSEydOjLT953/+JwoLC5GXlxdpGz16NJqbm1FVVRXZ5oorroj6Y8TRo0djz549+PTTT9ty6ifdqezro6ZMmYLMzExcfPHF+P3vf4/W1tbIYx2lr9urn3v37o3zzjsPL7zwAhobG3H48GEsXLgQ2dnZGDx4MADd08DJ6+ujTsY97csiux3Z66+/jgMHDkT9kPvtb3+Lbt264f7776fPqa2tRWJiInr16hXVnp2djdraWvqcRYsWYfTo0VFLw9TW1iI7Oztqu169eiExMTGyn9raWpx11lkxr3P0sX79+sV1nqeDU9nXAPAv//IvGDlyJJKTk/Hee+9hxowZ+PLLL/GrX/0q8lodoa/bq58DgQAqKytxww03IBgMokuXLsjOzsayZcvQs2fPyH50T5+cvgZO3j2tges0s2jRIhQXF0f+h1hVVYUnn3wS1dXVnpdwcc7R5+zevRvvvPMO/v3f/z3mMbb9t/fz7W3c/0ys+m2JmVPd10ffzABw4YUXAgB+85vfRLV3hL5ur352zuG+++5DVlYW3n//fSQnJ+OZZ57Bddddh3Xr1iE3NxeA7umT2dcn657WrwpPI5999hmWL1+Ou+66K9L2/vvvY9++fejbty+6deuGbt264bPPPsOMGTMi/3PJyclBS0sL9u/fH7W/ffv2xfxvEwDKysrQu3dvjBkzJqo9Jycn5lPD/v37EQ6HI/th2+zbtw8A6Gudrk51XzOXXnopQqEQ9u7dG3ktv/d1e/bzihUr8Oabb6K8vBzDhw/HoEGDMH/+fCQnJ+P555+P7Ef39Mnpa6a97mkNXKeRsrIyZGVl4dprr4203Xbbbdi4cSM2bNgQ+crLy8MvfvELvPPOOwCAwYMHIyEhAZWVlZHn1dTUYPPmzRg2bFjUazjnUFZWhttvvx0JCQlRjw0dOhSbN29GTU1NpO3dd99FUlJS5PfYQ4cOxZo1a6LixO+++y7y8vJifgVwOjvVfc38+c9/Rvfu3SO/eukIfd2e/Xzw4EEAiFmEsEuXLpF5Fd3TJ6+vmXa7p+OOcUi7OnLkiOvbt6974IEHjrntt1NBzn0dZ83Pz3fLly931dXV7sorr4yJszrn3PLlyx0A9/HHH8fs92h0eOTIka66utotX77c5efnR0WHDxw44LKzs90tt9ziNm3a5F577TWXlpbmm+iwc6dHXy9ZssQ9/fTTbtOmTe6TTz5xf/jDH1xaWpq7//77I9v4va/bu5+/+OIL17t3bzd27Fi3YcMGt3XrVjdz5kyXkJDgNmzY4JzTPc20V1+fzHtaA9dp4p133nEA3NatW4+5Lbvxmpqa3JQpU1xGRoZLTk521113nfv8889jnnvLLbe4YcOGmfv+7LPP3LXXXuuSk5NdRkaGmzJlSlR01TnnNm7c6H74wx+6pKQkl5OT42bPnu2r2PDp0Ndvv/22u/DCC12PHj1cSkqKKywsdE888YQLh8NR2/m5r09GP69bt86NGjXKZWRkuGAw6C699FK3dOnSqG10T0drr74+mfe0ljURERFf0RyXiIj4igYuERHxFQ1cIiLiKxq4RETEVzRwiYiIr2jgEhERX9HAJSIivqKBS0REfEUDl4iI+IoGLhER8RUNXCIi4isauERExFf+fzlJuff0hBCaAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGsCAYAAACFPUORAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOtElEQVR4nO3dfXRV5Z02/usASUjCSSDEvJGgOGKXNYgCVgGrQRQaX9BiF6KMylNFfQQsBVqN0w7YmUWsjkUffKBYMb5h43Q0ylJEg7zJcnwGkiIv/gaQokJJQC3kJCEkB3L//nA49niur5xNCLCT67NW1iL32Wefve+9T25O7ivfO+CccxAREfGJLqf6AERERLzQwCUiIr6igUtERHxFA5eIiPiKBi4REfEVDVwiIuIrGrhERMRXNHCJiIivaOASERFf0cAlIiK+0ikHLucciouLEQgE8Prrr3/ntgsWLMAFF1yAtLQ0pKWlYejQoXj77bcjj4fDYTzwwAMYMGAAUlNTkZeXh9tvvx179uxp82szBw4cwOTJk5Gbm4vu3bvjvPPOw9KlSz3vR0TErzrcwFVUVITnnnvuO7d54oknEAgE4tpffn4+HnnkEaxfvx7r16/HlVdeiRtuuAFbtmwBABw8eBDV1dX49a9/jerqarz22mvYtm0bxowZ0+bX/raWlhZcffXV+PTTT/Ef//Ef2Lp1K/7whz+gT58+x7U/ERFfch3MFVdc4crKyszHN2zY4PLz811NTY0D4CoqKjy/Rq9evdwzzzxjPv5f//VfDoD77LPPPL327t273bhx41zPnj1dRkaGGzNmjNu5c2fk8QULFrizzz7btbS0eD5mEZGOosN94vouBw8exC233IKnnnoKOTk5np9/5MgRlJeXo7GxEUOHDjW3q6urQyAQQM+ePeN+7YMHD2LEiBHo0aMH1qxZg7Vr16JHjx740Y9+hJaWFgDAkiVLMHToUEyePBnZ2dkoLCzEnDlzcOTIEc/nIiLiV91O9QGcTD//+c8xbNgw3HDDDZ6et2nTJgwdOhSHDh1Cjx49UFFRge9///t020OHDuHBBx/ErbfeirS0tLhfu7y8HF26dMEzzzwT+VViWVkZevbsiVWrVmHUqFH4y1/+ghUrVmDChAlYunQptm/fjsmTJ+Pw4cP453/+Z0/nJCLiV74fuObMmYM5c+ZEvm9qasKHH36IKVOmRNrefvtt7N+/HytWrMCf//xnz6/xve99Dxs2bMCBAwfw6quv4o477sDq1atjBq9wOIzx48ejtbUV8+fPj7QvWbLkmK9dVVWFTz75BMFgMKr90KFD2LFjBwCgtbUVWVlZePrpp9G1a1cMHjwYe/bswWOPPaaBS0Q6Dd8PXPfeey/GjRsX+X7ChAm46aabMHbs2Ehbnz59UFJSgh07dkT9+g4AbrrpJvzwhz/EqlWrzNdITEzEOeecAwAYMmQI1q1bhyeffBILFy6MbBMOhzFu3Djs3LkTK1asiPq0tWLFimO+dmtrKwYPHozFixfHvP4ZZ5wBAMjNzUVCQgK6du0aeey8885DbW0tWlpakJiYaHeUiEgH4fuBKyMjAxkZGZHvk5OTkZWVFRlojnrwwQdx1113RbUNGDAAc+fOxfXXX+/pNZ1zaG5ujnx/dNDavn07Vq5cid69e3t+7UGDBuGVV15BVlZW1KD394YPH46XX34Zra2t6NLl6+nJbdu2ITc3V4OWiHQepzodcqIdK1X490CSfVdeeaWbN29e5PuSkhK3Zs0at3PnTrdx40b30EMPuS5durh3333XOedcOBx2Y8aMcfn5+W7Dhg2upqYm8tXc3Bz3azc2Nrr+/fu7oqIit2bNGveXv/zFrVq1yt1///1u165dzjnnPv/8c9ejRw83ZcoUt3XrVvfmm2+6rKws96//+q/xdY6ISAfg+09cJ9qOHTvw5ZdfRr7fu3cvbrvtNtTU1CA9PR0XXHABli1bhquvvhoAsHv3bixZsgQAcOGFF0bta+XKlSgqKorrdVNSUrBmzRo88MADGDt2LOrr69GnTx+MHDky8gmsoKAA7777Ln7+85/jggsuQJ8+ffCzn/0MDzzwQNtPXETEJwLOOXeqD0JERCRenervuERExP80cImIiK/4co6rtbUVe/bsQTAYPO66fyIicuo451BfX4+8vLxISjpevhy49uzZg4KCglN9GCIi0ka7du1Cfn6+p+f4cuA6Wl1i165d5t88iYjI6SsUCqGgoCCmWlA8fDlwHf314NE1skRExJ+OZ7pH4QwREfEVX37iEjlVAl8+GtvYavyPMZEsN2NtezAhtq2BlPFKPsyfn0TarW2bu8Y0uaxf8G1FTkP6xCUiIr6igUtERHxFA5eIiPiKBi4REfEVDVwiIuIrShWK7wXeeSm2MbUlts0ZiT62PkLPQ3zbPqStW6t1aLG6GosxsH2wtkPGW5a1u+bYNgBIiE07Bnb/rm3HZbS7ng/ybUXaQJ+4RETEVzRwiYiIr2jgEhERX9HAJSIivqJwhpxSgY9+zx8gAQL8LZlvm0ragiSccdj4f1oTeRtYdT9ZyaZwbAklAEAXEsRgbQDQQvbBykCx7QCgiWybHObbWu0M6zMPNVEDu+bGNjaSYwVo37hzp8b/YtJpePrEtWDBAlxwwQWRquxDhw7F22+/HXncOYfZs2cjLy8PycnJKCoqwpYtW6L20dzcjKlTpyIzMxOpqakYM2YMdu/efWLORkREOjxPA1d+fj4eeeQRrF+/HuvXr8eVV16JG264ITI4Pfroo/jd736Hp556CuvWrUNOTg6uvvpq1NfXR/Yxbdo0VFRUoLy8HGvXrkVDQwOuu+46HDlC/octIiLyLQHnnPG7i/hkZGTgsccew09/+lPk5eVh2rRpeOCBBwB8/ekqOzsbv/3tb3HPPfegrq4OZ5xxBl588UXcfPPNAL5ZzXjp0qUYPXp0XK8ZCoWQnp6Ouro6rcflcyfkV4VMW39VmG78DVROQ2xb2Nivl18Vsr/DOtA9ts3LrwrPPMC3TSPnxirRWxKMv+PqStrZcelXhYK2/Rw/7nDGkSNHUF5ejsbGRgwdOhQ7d+5EbW0tRo0aFdkmKSkJV1xxBT744AMAQFVVFcLhcNQ2eXl5KCwsjGzDNDc3IxQKRX2JiEjn5Hng2rRpE3r06IGkpCTce++9qKiowPe//33U1tYCALKzs6O2z87OjjxWW1uLxMRE9OrVy9yGKS0tRXp6euSroKDA62GLiEgH4TlV+L3vfQ8bNmzAgQMH8Oqrr+KOO+7A6tWrI49/exlm59wxl2Y+1jYlJSWYPn165PtQKKTB6zRGk2QA//VfunELsl/fWb9mY2WU2K+tAsbz2X57NfFt2T6sX52xxR29pBVZf/UgvwIFgEayrZV2ZL8WtBa4ZL/WSzEWqGQLZ9Z7eC0isP5p/sCR2P9zu0vuinu/4m+eP3ElJibinHPOwZAhQ1BaWoqBAwfiySefRE5ODgDEfHLat29f5FNYTk4OWlpasH//fnMbJikpKZJkPPolIiKdU5v/ANk5h+bmZvTr1w85OTmorKyMPNbS0oLVq1dj2LBhAIDBgwcjISEhapuamhps3rw5so2IiMh38fSrwoceegjFxcUoKChAfX09ysvLsWrVKixbtgyBQADTpk3DnDlz0L9/f/Tv3x9z5sxBSkoKbr31VgBAeno67rzzTsyYMQO9e/dGRkYGZs6ciQEDBuCqq65qlxMUEZGOxdPAtXfvXtx2222oqalBeno6LrjgAixbtgxXX301AOCXv/wlmpqacN9992H//v245JJL8O677yIYDEb2MXfuXHTr1g3jxo1DU1MTRo4cieeeew5duxq/jxcREfk7bf47rlNBf8d18tE1rwBePujs/bFtAND7YGxbQxLf9ouU2La9PeI/hnSynlaqUeqIhTOSPQQQrNAHez1rWxak2EtqWbG/iwKAwyTw0MM4XxZcYeWlAP63b9bfuLFt68j1bTb+vxwi21o/nVgghl0bgIZk3IX3GjuWk+WU/B2XiIjIqaCBS0REfEUDl4iI+IoGLhER8RUNXCIi4itaSLKTC3zxWGwjS5j1Yqs1gpdb6maVQCKpryNG8o2VBfqSJA0BoDtJALK2XiRpCPAyTFbFd5ZgZOdlsRJ1R8hBsAr3VtkrlrJjJaMAu8I8w5J6Vt+w+4ZVvbf6i6VOG42q9awbWB8CNCEa2P272O2MxKbrrwr1pxt94hIREV/RwCUiIr6igUtERHxFA5eIiPiKwhmdRODAI/yBbmRCO4UEEPLq438x9nyABwus9aVYKIAFIwAeTGDz9KwkEUDXdkKzhwADKy9l7fdAd76tIwecRkorsdAJwPsm0QjJsLXOrHJJbO0uqzxUvOEM6xxYf1mBCxZyMctpxfn/c7Z+GoDA5vkxba7wvvj2Ke1Cn7hERMRXNHCJiIivaOASERFf0cAlIiK+ooFLRER8RanCDihQRxKErIQSwBfvY9taSUFW3skqS+RFJin/Y6UC2eux5JrVB40kDfeVUV6KpdysBSpZUs8qh8XSe+y4rEQeK73FFowEeIKRvT4A/C05ts0qJcWOjfWNlQ5l19da0JNdB3MhSdJO+9voA/IeCfzXH+im7geT+D7khNInLhER8RUNXCIi4isauERExFc0cImIiK8onOFjgfC/8AcSycR1nVFqiJXOYZPvVjCC8bKtJaMp/v2yUkEMKz9k7dea6GfBBmt9K1bOipVxsvbLAghWwIRdR2tbFtpgZbMAHmywAibsfFk/WsfFMj3WNWPna2WC2PVlbdZxsfeD0QeB6oWxjca9pLJRx0+fuERExFc0cImIiK9o4BIREV/RwCUiIr6icMZpJoDZ/IEwCQBYFQzYcklHjHWvWNUJNkdthgLIcbEJ/ROBVYcAgERSiYEFNtg6VAAQJH1jrRPG9mtVCmHrQ1kVSFiFCFY5wwqosG2dUQmCBV/OaOTbphr9wLDrbt2jDKviYgVf6H1rXAcWpGCFUczwj3HvM9ZaZURg27yYNnfu1PhfqxPTJy4REfEVDVwiIuIrGrhERMRXNHCJiIivaOASERFfUarwFKIJQqt8EUuNpRmld1jiykrJsXaWILRK7wRIcs0qCdRW1jpO7HhZEMxDOMws+ZTooYyTFywRx66NtW4WK4FkrcfFmq37jt1LVnJuP1m7K/1QbJuVrGTXx7rv6kkC0TpflqK01jVjWLKRJSAB3l9WGpa0Bz57gm7qzpzG99FJ6ROXiIj4iqeBq7S0FBdffDGCwSCysrJw4403YuvWrVHbBAIB+vXYY49FtikqKop5fPz48SfmjEREpEPzNHCtXr0akydPxocffojKykocPnwYo0aNQmPjN3+8WFNTE/X17LPPIhAI4Kabbora16RJk6K2W7iQVFUWERH5Fk9zXMuWLYv6vqysDFlZWaiqqsLll18OAMjJyYna5o033sCIESNw9tlnR7WnpKTEbCsiInIsbQpn1NXVAQAyMjLo43v37sVbb72F559/PuaxxYsX46WXXkJ2djaKi4sxa9YsBINBup/m5mY0N38zAR4Khdpy2KcPNiHeYnwIZgEEq9RQW7H9WhPqVoihPVhlpxgv52CVgmLYpH47XQbKCiCwskQJxoGx+855KFvlpQwUu2RWeIe9llXyiR0uK4sG8DBJKrkXWNktAOhJAiZW4ILdSyxYBfByacY9Gvjk/8S0uXPu5/vtBI574HLOYfr06bjssstQWFhIt3n++ecRDAYxduzYqPYJEyagX79+yMnJwebNm1FSUoKPPvoIlZWVdD+lpaV4+OGHj/dQRUSkAznugWvKlCnYuHEj1q5da27z7LPPYsKECejePXr13UmTJkX+XVhYiP79+2PIkCGorq7GoEGDYvZTUlKC6dOnR74PhUIoKCg43kMXEREfO66Ba+rUqViyZAnWrFmD/Px8us3777+PrVu34pVXXjnm/gYNGoSEhARs376dDlxJSUlISjL+bkJERDoVTwOXcw5Tp05FRUUFVq1ahX79+pnbLlq0CIMHD8bAgQOPud8tW7YgHA4jNzfXy+GIiEgn5Gngmjx5Ml5++WW88cYbCAaDqK2tBQCkp6cjOfmbv5oPhUL405/+hMcffzxmHzt27MDixYtxzTXXIDMzEx9//DFmzJiBiy66CMOHD2/j6YiISEfnaeBasGABgK//gPjvlZWVYeLEiZHvy8vL4ZzDLbfcErOPxMREvPfee3jyySfR0NCAgoICXHvttZg1axa6djVSQR1AoPlfYxvDpPutxFV7lVFqq5N5XFaKkqXkWGLLKpfE2q3kHEujWQsQtkffWIt0Zh6MbbP6iyUjrWNlSU7rfNkxeOHIa1nn6yXNSkuCkb5JMPqAtVsLZLIut0pk1XlYOLOtfdvBeP5VYTzuvvtu3H333fSxgoICrF692svLioiIRKhWoYiI+IoGLhER8RUNXCIi4itaj+sEC9Q9YjxCuppNEPstnHEyWZPnbEKbreNkld6pJ+EMK9gQIsdgrRnFyvdY66JZpZziPa62rglmldNir9deZb6C5BzYewQAvkyJbbPWFGPXgZ2DVTKKscpDMVY4gwVPrHXCyLEFts2LaXPnTo3/uHxMn7hERMRXNHCJiIivaOASERFf0cAlIiK+ooFLRER8RanCNghsnh/b2NMoK8RSXyyZdDqkB1lKjy1UCPCFAq3kW1vTaFaZHRIwo+dglQ+iJZCMbZPItlbakaUYWRrO2m9GU2yb1YfsOsSbVATsa8bKMFmsBGBbWClM1g913WPbAOAAaWdlvryUvbLEm2AE+D3q5bVIWjFQ9TTd1A3mlYz8Sp+4RETEVzRwiYiIr2jgEhERX9HAJSIivqJwRluwyW8rAMCCGFbYoD14WYuKrbdkTd6zYII1yZ1IwgZeWKWV4mVlFdj5hoyJfibFKNPDJt+t8j8MuzZegi/WullsW6vUENuHVRop3hJmJ6KsGQsLWSW9WJ+z51t9wN7TXsJKFrat9Xz2eqzElRHIYUEyV3iffWynOX3iEhERX9HAJSIivqKBS0REfEUDl4iI+IrCGXEIfLCIP5DhYSdNpKvZX8mHjf9LsIlYVm0B4BPqf0tu+37jZQUI2qrZuF3Zy7E+OGgEVFiIwtJEJvqtcEYyqaLgZd0rdlxWlY4Q6Rt2rAAPQVhVL1iQg1WHAADWjfVJ8b9WKqmS0c3YtoWtb8c3pftlx2WFTqzzZdj1td4OLHBhBWrY+5TdM63GOXi5x31An7hERMRXNHCJiIivaOASERFf0cAlIiK+ooFLRER8RanCeFhlelhSh639A/ByMqkkrWSVkmEJMSv9x0rUWGnFriSZlBxn6R6AJ5usc2CJqROx/hhLg7EEopWsYsdlraEUb/oPAFiI0UqoxVsuycJSZ9Z1aPZQdordt1aysRs5N/Z8K2XnZW03xlp/jCX9WLk1q1wbW5PMujbsOjrjxyw7LqusGXufsmOw3ufkPWKlpd2wO/k+TiP6xCUiIr6igUtERHxFA5eIiPiKBi4REfEVhTO+JfBGeWxj2AhcsNCGNZmc1hzbdsbB+A+MBQC6GCWMWKkh67jYxDObIO5mTFyzUICXYEPPQ3xbhp2XhQUTrFJDrA+swAULgnQl1xbwtt4a6xsWgmj2EDDxsjaUdX+wUIAVVmJ9zu4Fds8A3gJILNhkhTNYeSd2vtb9QdfNMrZlgQvrOrC+td478a5r5iXMYpWX8gH/HrmIiHRKGrhERMRXNHCJiIiveBq4SktLcfHFFyMYDCIrKws33ngjtm7dGrXNxIkTEQgEor4uvfTSqG2am5sxdepUZGZmIjU1FWPGjMHu3bvbfjYiItLheRq4Vq9ejcmTJ+PDDz9EZWUlDh8+jFGjRqGxsTFqux/96EeoqamJfC1dujTq8WnTpqGiogLl5eVYu3YtGhoacN111+HIEQ+T2SIi0il5ShUuW7Ys6vuysjJkZWWhqqoKl19+eaQ9KSkJOTk5dB91dXVYtGgRXnzxRVx11VUAgJdeegkFBQVYvnw5Ro8e7fUcjkvg5Vf5A0lkLGepJICXd7KSbywtxNJZVjKKpdmsRQkbPZT0iTcx5aX8kFXWiLV7SRVaEknyzEupIrqgn5HeY/uw0lmsb70kLllAzFpMk52Dl1SjVSqoniRXrdJI7BwayPOtVCETNBKb7H60rm86ucfamsK0SjOxdus9zdpZuTWAp3rZveCl3BpL0wII/Hlh7KYX3cP3e4q0aY6rrq4OAJCREb0U8KpVq5CVlYVzzz0XkyZNwr59+yKPVVVVIRwOY9SoUZG2vLw8FBYW4oMPPqCv09zcjFAoFPUlIiKd03EPXM45TJ8+HZdddhkKCwsj7cXFxVi8eDFWrFiBxx9/HOvWrcOVV16J5uav/+dUW1uLxMRE9OrVK2p/2dnZqK2tpa9VWlqK9PT0yFdBQcHxHraIiPjccf8B8pQpU7Bx40asXbs2qv3mm2+O/LuwsBBDhgzBmWeeibfeegtjx4419+ecQyDAP7qWlJRg+vTpke9DoZAGLxGRTuq4PnFNnToVS5YswcqVK5Gfn/+d2+bm5uLMM8/E9u3bAQA5OTloaWnB/v37o7bbt28fsrOz6T6SkpKQlpYW9SUiIp2Tp09czjlMnToVFRUVWLVqFfr163fM53z11VfYtWsXcnNzAQCDBw9GQkICKisrMW7cOABATU0NNm/ejEcfffQ4TuE4BVt4O5sEtUrcsAntgNGlbB9sgtmavGflcKzyPyzIYVWCSWbrhJG+YWEHgE/wNhgTxCzMkmmUvWKvZ/UNm+xPJ5P6VpiFtVt9y0oNWYEJds2skjystBE7X+scWDDBCsmEyX6tsAF7PWu/DOsDFvgAeDjCOi4WmOrVxLelQR3SB92Ma8Peu1Ygh/WXl9JKVpCD3eOsLJkVfKHreRnvJ6uc1WnE08A1efJkvPzyy3jjjTcQDAYjc1Lp6elITk5GQ0MDZs+ejZtuugm5ubn49NNP8dBDDyEzMxM//vGPI9veeeedmDFjBnr37o2MjAzMnDkTAwYMiKQMRURELJ4GrgULFgAAioqKotrLysowceJEdO3aFZs2bcILL7yAAwcOIDc3FyNGjMArr7yCYDAY2X7u3Lno1q0bxo0bh6amJowcORLPPfccunY1/pcrIiLyPzz/qvC7JCcn45133jnmfrp374558+Zh3rx5Xl5eREREtQpFRMRfNHCJiIivdN6FJK10FkvfWGVn6kiyySoPxRJAbFurZJSXxezYttb5Ml4WqGMhKKs8FEvfsdQZwJNgLJUIAF+lxLaxsldWCSS2yKdVAomlKPcbx/W35Ng2K/XVm6Qrsxpj21gK1OIlDWslI72U6bKu5bdZpZnYfWMlGFni0rpH2X7ZdTzooZyWlXBlqUCrDBM7Buu+Y33L7iWzvBTpG+tnAlsL8/97im7qzpvC99HO9IlLRER8RQOXiIj4igYuERHxFQ1cIiLiK50inBGoeCW20VpviU3wWhPiZ5AJdWtCPESCGGzbXsaEKZu897KWlTX5ziaZWZs1oc4mg63yUGyS3CqtxEr9WH3LQhBfkMCGNXnPwhnWmlOsfA97favdOgbWjyyYYD3fS3+xSXlWIgvgwSRrUp8dGyvpZV1zdo9aQR8WTLLKQ7H7mQUbrPOyAlMM63MrF8XOwXqfsj5j70nr/mDhMIsVPDmN6BOXiIj4igYuERHxFQ1cIiLiKxq4RETEVzRwiYiIr3SKVKFZcoVhoRwrqZNhLFzHfEUSZixVlGnskyXfrBJGLNlkpYrYubFtrcSWl/JQLKlnpcZYu5VWjHfBRasP2O3RYrwW64cGY2FE1g/W+bL9shJX1q3cRJ7PFhQFeILRur515BgOGvcdu77svWeWGvKwgCG7F6z0L1uk08sijOx4G41rztLDVooy3tcC+H3D2qw+9LI2JCs71fX0+oxzeh2NiIjIMWjgEhERX9HAJSIivqKBS0REfKVzhDNSW2LbrIlYxgp39CD7Pdsow9S3LraNlQ+yJlfZejxs4hzgYQGr/A+bpE70EEBgh8vK/ABAmARPehlhFLZ+kBWGYefAJsmtAIKXkj5e1oxiE+3WtvE+3zoHL/cz61trHSd2DOy+Bfh1YG3W81mYpbvxfmLvvbb2rYUdrxV28LJOGAtBeAlRsHvRy3lZ2PEa90fg87kxba7vz9t+DMegT1wiIuIrGrhERMRXNHCJiIivaOASERFf6VDhjMDSxfyBHmTS1qqiwCa/zTWU2NpdxgQxm0hlr8VCBQDQSMIVXra1JsQZNsG73wiCsH60qkOwiWsrNMKO16oUwiomsNCHWbGBtFlhFFaxwaro4ciOrXNgx8Am7621klJJn1vbsol2q8oGq8jhpfoHC414qZBhvfe8BDHYGldst9aac+y+sTIQrG+t02XvU2s9LtZn7D3i5R63+jCR3M9BEoYBgNwG3t7O9IlLRER8RQOXiIj4igYuERHxFQ1cIiLiKxq4RETEVzpUqpCuXwTwtaxY4gvgKaguRmqMJZ6s9B5L+7Akl5fnW2kltg+zJJCRPPs2lqAEeHLNOgeW1LOSkfVkWyslx7alaxXxp9P0npWcC3hImLFrZvUjS6OyhJr1fJZstI6LlhoztmX3qNU37H3GyqUdNBKbjHW+9eS+6eYhdeqllBW776z3E7uXrL5lPz/M9bTiXF/O+pnAXqunUU6rNynZZr33vCRETyB94hIREV/RwCUiIr6igUtERHxFA5eIiPiKp3BGaWkpXnvtNfz3f/83kpOTMWzYMPz2t7/F9773PQBAOBzGr371KyxduhR/+ctfkJ6ejquuugqPPPII8vLyIvspKirC6tWro/Z98803o7y8vG1nY5VsYRPMX6TwbVnJFWutIlYyhU0aA0ADKe/iZeKbTY5aJVvYxDEr3QPwc2P7tSZhWbjCKqfFtv3KuA5s7a1U43zZfv+WHNtmBXJYGSYrFMDarUn9OnJc1kR9Kukz9lrW2nBsWy/rQFnbsmCDFYJg+2DvyQQjFMCuj7X+GOvbJOO42PpwXsIstOST0V/s/Wu9HxjrHJrJPti9YP0MDJLgDGsD+Np/u9L4tuy+O5dveiJ5+sS1evVqTJ48GR9++CEqKytx+PBhjBo1Co2NjQCAgwcPorq6Gr/+9a9RXV2N1157Ddu2bcOYMWNi9jVp0iTU1NREvhYuXHhizkhERDo0T5+4li1bFvV9WVkZsrKyUFVVhcsvvxzp6emorKyM2mbevHn4wQ9+gM8//xx9+/aNtKekpCAnJ6cNhy4iIp1Rm+a46uq+Xo4+IyPjO7cJBALo2bNnVPvixYuRmZmJ888/HzNnzkR9fb25j+bmZoRCoagvERHpnI77D5Cdc5g+fTouu+wyFBYW0m0OHTqEBx98ELfeeivS0r75HemECRPQr18/5OTkYPPmzSgpKcFHH30U82ntqNLSUjz88MPHe6giItKBHPfANWXKFGzcuBFr166lj4fDYYwfPx6tra2YP39+1GOTJk2K/LuwsBD9+/fHkCFDUF1djUGDBsXsq6SkBNOnT498HwqFUFBQcLyHLiIiPnZcA9fUqVOxZMkSrFmzBvn5+TGPh8NhjBs3Djt37sSKFSuiPm0xgwYNQkJCArZv304HrqSkJCQlGWm9v5dupJVYoo6lkgDgMEnv9DAWUTtIkkm1Pfi2LD3HEn3pRtLHWqCSSSXHayUjWYopjfRjgrHgI+tbq6QPS2xa6U6WKmwlbQBPZ7I2a3FIlhCzrjlLo7GUHsAXybQWbGQLdbK0opWMZCE3a4FLLwuggtwLVgLRkXuJLoBo9IF1j8bLSnd+Se4xVu6IlawCeFLQ6gOW6LUSqtY+4t2WJY2t+7YXOV8vKV1zodHY8w18+gTd1J01je/jOHgauJxzmDp1KioqKrBq1Sr069cvZpujg9b27duxcuVK9O7d+5j73bJlC8LhMHJzc70cjoiIdEKeBq7Jkyfj5ZdfxhtvvIFgMIja2loAQHp6OpKTk3H48GH85Cc/QXV1Nd58800cOXIksk1GRgYSExOxY8cOLF68GNdccw0yMzPx8ccfY8aMGbjoooswfPjwE3+GIiLSoXgauBYsWADg6z8g/ntlZWWYOHEidu/ejSVLlgAALrzwwqhtVq5ciaKiIiQmJuK9997Dk08+iYaGBhQUFODaa6/FrFmz0LWrhz/UExGRTsnzrwq/y1lnnXXMbQoKCmKqZoiIiMSrY63HZU2ussnGRGMimE2uspIvFmsSk5VnCZPut0q+sOd7KdNjTdSzEjHdyTFYx8XO1woQsMlzq29ZkMIqs9NItmVrdLHtAB4KsM6XTYiz0AnArw8LzgC8b6zyYQy7jtaaUS2kz831x9hrGX3D7jFWqsgKRrH7xgqNsOvT1bjHaUDEw71orUXF0Oto3Hfs+lj/72fbHiYbW89nAaKvSFk0gJdLs0pvseCJl5+Xx0lFdkVExFc0cImIiK9o4BIREV/RwCUiIr6igUtERHylY6UKreQcS/qwki8AkES6hJVAAngZFesYWMmnvank9Y3nM9YCdSxxZSV9WOqrkZQqslJ2XspLsRJIVgLxACmBZDkUZ7Kxp1EyqgdJrlmL7LEU5WEPizta2C6slCzDXspKuB4iKTcr6ccWFbXu8XjTZNbzad8a/7dmr2UtspnGkrPkGKy0pBcsfcfue8BbspG9T1m5NauME3st67jYOVj3Mnv/e0lhHid94hIREV/RwCUiIr6igUtERHxFA5eIiPhKxwpnWOstsYl6a+2uLmSS2gomsMnzzIN8WzZpyuY7rcAFm1y1Jt/ZBK81yc0mYtnzrUlfVk7Hmshl/WiVkvFS8ontg13zRCMUwIIY1rpoLMRgBUxYWKCbcQ4sGMDO13otdt9YfcvCLCnWGltxvpbVztpY+AfgZauskk+sG6wSV9a9/23WebHreMg4BxYqskqCsePy8v73kP2hrDJfbE0va1sW3lE4Q0REJJoGLhER8RUNXCIi4isauERExFc0cImIiK/4OlWYvnUh0OPvFj1r6Mk3ZKVNWBoGALp7KHFDE3Ue0jfZjbFtVukddg5WiootGuclcWWVgmFYgshL8s0q08O29VLSiyW5rNcKkhQVW4wT4IlLK0XFjsu6DmwX7P6yns/uWysJysoHWWk2lkz0stgpS4da59CVXAcrkcdSbtbCqmwfLP1nlVtj97OVYLaSnIyXBRdZypUlozOMsmbspaz0L7sXrJ9rLAlq3R8nkD5xiYiIr2jgEhERX9HAJSIivqKBS0REfMXX4Qz0CAPBv5tI7G1MTLLJWasMDFuny1q7i01MWgECNmHJJjytAAFjTXKziWerPAyboGWT3F4CF9a27Bis02UT19ZkNrsOIXJcLLQCAH9L5u0MC2JYk9HscK0AQbzrS1lhBXYdrdAIK6PUZARyWAjBCnKwMAnrA6t0FwsFmWW6PKw5x9atCpAQVG8jgMD6y3qfsuCLdd/R4Iqx33QS5GIBFes6snCYdR1ayPF2s9575Gejl59hx0mfuERExFc0cImIiK9o4BIREV/RwCUiIr7i73DGkS7RAYXcer4dC0x4qQ5Rb1SzYJOjGcaEeDfSHiL7tSaYWTubCAaMdaCMiWc2+e1lbpWGCoz/D7FtzdAIOV5rMpmFI9iaQlZohB3XfiOwwSa5rb5l52Bty9rZcVnXhgUQLKzog1UZgQWTrAASuzy0eogVMGH95SHMYp0Duz/YdbQqZ7BAjVUho5F0rrUtC32wNf4AXt2Fvc+tnx9equmw90lX4+caez0WDgOAnrz5eOgTl4iI+IoGLhER8RUNXCIi4isauERExFc0cImIiK/4OlVY1/c+pKWlRb4PfD6Xb9iLlIJKJSkdANjbI7atlrQBPKljlZ1iiSeWCmRJQ4CnlcJGqpCV+rHSbCwxxfZrlchK8PBabB9WCSSaKuSb0jRYH3J9rdQYYyWjGkka1Sr5xFJj1hpIrJ2VVjpsldMi7dY1Y4laK43G7iWz9BYra0bOy0olsjXQrGvG9mul5JriTLOy0mHWMVj3Yk6D8QDBUoFWmS5WysnLeoDs54qVlmbXkaUaAZ6YrDPeOyeQPnGJiIiveBq4SktLcfHFFyMYDCIrKws33ngjtm7dGrWNcw6zZ89GXl4ekpOTUVRUhC1btkRt09zcjKlTpyIzMxOpqakYM2YMdu/e3fazERGRDs/TwLV69WpMnjwZH374ISorK3H48GGMGjUKjY3fVC5+9NFH8bvf/Q5PPfUU1q1bh5ycHFx99dWor//mj4OnTZuGiooKlJeXY+3atWhoaMB1112HI0faf8lnERHxN09zXMuWLYv6vqysDFlZWaiqqsLll18O5xyeeOIJ/NM//RPGjh0LAHj++eeRnZ2Nl19+Gffccw/q6uqwaNEivPjii7jqqqsAAC+99BIKCgqwfPlyjB49+gSdmoiIdERtCmfU1dUBADIyMgAAO3fuRG1tLUaNGhXZJikpCVdccQU++OAD3HPPPaiqqkI4HI7aJi8vD4WFhfjggw/owNXc3Izm5m9KoYRCIX5AWzN5+5kHYtusAAFbI6fOmMSk4YyDfNtMEtpgE5vs9QEemPA0cW2tH0SOgQUTrElfFq6wysOwfVhlmFiwwJq4Zu3WRHu8WMmoE8Fay8oKUnybVQIp4CFAwEIMZqkgdgxW+TByHdq6ppgV3mHHZZ1DvNdyv1WqiJS9st57rG/2pfJt2XvdOlbWzl7LKlW2JxjbZt2LfcjPV1YiC+A/A7sb255Axx3OcM5h+vTpuOyyy1BYWAgAqK2tBQBkZ2dHbZudnR15rLa2FomJiejVq5e5zbeVlpYiPT098lVQUHC8hy0iIj533APXlClTsHHjRvzxj3+MeSwQiP6fj3Mupu3bvmubkpIS1NXVRb527dp1vIctIiI+d1wD19SpU7FkyRKsXLkS+fn5kfacnBwAiPnktG/fvsinsJycHLS0tGD//v3mNt+WlJSEtLS0qC8REemcPA1czjlMmTIFr732GlasWIF+/fpFPd6vXz/k5OSgsrIy0tbS0oLVq1dj2LBhAIDBgwcjISEhapuamhps3rw5so2IiIjFUzhj8uTJePnll/HGG28gGAxGPlmlp6cjOTkZgUAA06ZNw5w5c9C/f3/0798fc+bMQUpKCm699dbItnfeeSdmzJiB3r17IyMjAzNnzsSAAQMiKUMRERGLp4FrwYIFAICioqKo9rKyMkycOBEA8Mtf/hJNTU247777sH//flxyySV49913EQx+k2qZO3cuunXrhnHjxqGpqQkjR47Ec889h65djZRLvKzSTKwMS1cj+cJKo1glTFgqiJWMAnjKjZVcsdJlLEFkJq48LBrHXo8uUGlcGzYtyUrGAPwcrGSTlRCLF+sDq4wTS7lZJcGyGmPbrDJO9eT+sEp6pZL7kR1DorHQoBesVJCVZmXXzDpftl92Ga2ST0FyblaSlN03VlqRlbhKJPcHSw8CvBSV9T5l5+vlHm9raTZrgVz2nrbeYtb1Ydi5HfKwSO9x8jRwOWctV/uNQCCA2bNnY/bs2eY23bt3x7x58zBv3jwvLy8iIqJahSIi4i8auERExFc0cImIiK/4ej2uGKxUCWCsp+NhHSgrBMHarRAEa2evZZV8YaWRrDJObNLXKsPEghRszaevUvjzWTksq2/TPEy+s3OwtmWTyWzimpXYAvhEO1v/CAD+RkrqWOtxfUH6zApnsJI6vUkfpBvhDDapb5XTYn1r3ePsWloBAnYO7NpY60CxYIEVNqChEeO42FpS7H2WboQzvGDvSSvswPrcvA5xvr71HmHXxkvIxgrvkECcu+Qu4+BOHH3iEhERX9HAJSIivqKBS0REfEUDl4iI+IoGLhER8ZWOlSosMFKFjJW4YuWhLF4WO2QpqAyyuKSV2GKJOCslx9qttCMLFvUkyTVrAUOWQLRSdqxvrBQV61urb1g5LXa+1vNZSR8LSytaz2evZx0D2y9NonpInVkpu0yy2Cl7fYtVwoidG7sXrHJenu5bdt9ZC6uy4yLbWoslsnvUKgPHSo15uT+sFCVbIJI93/r5w36uWT8D6esb5/s3o72d6ROXiIj4igYuERHxFQ1cIiLiKxq4RETEVzpWOMPLpK+13hJbF8kqw8T2ax0DKwXDJq5ZWSSAT7qaa2x5KP/DdCfH0JMESaz9eilbY01Gs3601ktipXoCpKyQFbxhx9VoHBcLjVghCFbqx5rU70L2wcICVgCBlaiyroMVQmC83OOsHBbjZW0463xZ39J15MDLbLFgAwutWMfF1loD+HvaWp/OS6mxA+QcWFCHBb4A/jPMWqWKvaet4/IS6jmB9IlLRER8RQOXiIj4igYuERHxFQ1cIiLiKxq4RETEVzpWqpCVWwF4iZouRkpmb2psm5UEY0m/g0aXNpIUUneS7rLK6bDnWykqK/XFsOQZLZFzAso4WQlChiWbrDQca2cL37HEKGAvfMmw80029uul3BFb7DC3Pv7nf0HuW+v+YIk8qxSVlzQqu3dZcs5KFbLrYKw5SfvBSvo1k/ckuxcPGO9zVu7IKuPE+ta6770sOtmD9Bm7ba3ryN6T1qV1ZFsrhc2u70mgT1wiIuIrGrhERMRXNHCJiIivaOASERFf6VDhDFd4H20P/L9nYhutkj5fpsS2WZOr6aQ0khWu2E8m6oMe/t/AJtrN8lJxTuQCfEKclXGx1oHyUoqKhWesckmsRA3rb+vY2HWwJq5bPazdxcpOWWsgsYl2q6wQwybvrfuLXUdr4pyFEKxQACtBZgV12PuEBSPMezHONoD3jVV+iN2P7HzNdcbIAVv9xd6nVliJ3Tde3qfsvrfKS7F+ZH0I8H60rnkvo8RUO9MnLhER8RUNXCIi4isauERExFc0cImIiK90qHCG6SuyTpC1thNrtya5m0j3WROxbNI2kbQlGKEA1t5qTJiyY7ACEww7LyuAwFiTvmySO+Bhv9ZaZaxv2QSzFWZhzeaaYqxvjf2yfVj7ZdUZrIotDLs/rKoXdN0r4zqwMIl1Dix8w9bT8lKNw3ot9j718p7OaoxtsypnsGOwghxsW+u9w+6bQ0YQjIXJWLUVq79Ys/Vzjb2fjOoyViCuvekTl4iI+IoGLhER8RUNXCIi4iueB641a9bg+uuvR15eHgKBAF5//fWoxwOBAP167LHHItsUFRXFPD5+/Pg2n4yIiHR8ngeuxsZGDBw4EE899RR9vKamJurr2WefRSAQwE033RS13aRJk6K2W7hw4fGdgYiIdCqeU4XFxcUoLi42H8/JyYn6/o033sCIESNw9tlnR7WnpKTEbNtuQmRRHyuhdgZJUVmlhryUYWIlhA6R7j9irYsU5z4BnjCzEkSs5BJLTFnnxc7BS4kbaw01dg5WOoslrthxWWV6GCs1xq45K2sE8OO1joElXxnrOrI1yaxyPKyclnVcXtKkDEvOsXQpwO8xdh0Bvh5WXij+bdn1tc6Vlq2ykqQs/eshRWlty8o7sXvBOi6WCrR+frB7wXpPnyLtOse1d+9evPXWW7jzzjtjHlu8eDEyMzNx/vnnY+bMmaivJ4vm/Y/m5maEQqGoLxER6Zza9e+4nn/+eQSDQYwdOzaqfcKECejXrx9ycnKwefNmlJSU4KOPPkJlZSXdT2lpKR5++OH2PFQREfGJdh24nn32WUyYMAHdu0f/Yd+kSZMi/y4sLET//v0xZMgQVFdXY9CgQTH7KSkpwfTp0yPfh0IhFBQUtN+Bi4jIaavdBq73338fW7duxSuvvHLMbQcNGoSEhARs376dDlxJSUlISiLzVCIi0um028C1aNEiDB48GAMHDjzmtlu2bEE4HEZubm67HIsb/5OYtsCq5/jGLKyQbUxyW2tUMfWJsW2NpM0qH9RAtrUmYlPbOPlO1xTiT6esfmGhAC9rWVlrDTGHSd+wUlYAn3i2QiMtpP2wEeTwch0Ytr6VFc5IJeEM67XYcVklwdgxsNcCeGkldo96KZfE7hkASCbHwEIY1jGwwIXVB+xnQsBDOS1rv17WjGPvScZ4Ohw5BitwwY7h9MpmeB+4Ghoa8Mknn0S+37lzJzZs2ICMjAz07dsXwNe/yvvTn/6Exx9/POb5O3bswOLFi3HNNdcgMzMTH3/8MWbMmIGLLroIw4cPb8OpiIhIZ+B54Fq/fj1GjBgR+f7o3NMdd9yB5557DgBQXl4O5xxuueWWmOcnJibivffew5NPPomGhgYUFBTg2muvxaxZs9C1a5z/qxARkU7L88BVVFQE5777c+Pdd9+Nu+++mz5WUFCA1atXe31ZERERAKpVKCIiPqOBS0REfKVzLCTJWEkf1m5VbGEJIlZ6B4h/0TdrMTu62KERIWKpPuu3uyxBxI7V6i8v6S7GKkvESt80GYvssevAygqZ5XRYeSnjOrJSVFYC0SorxrAEIDsvK2XHkoJW6rQ2SLY1joudr5UKZPc+W7CxzvjTFnbfWItDsr61EpcsveulhBHrRis5y96/1nuaJWqtnx+snS3SmWIlK0kbSyoDtG/c9yfzbU8RfeISERFf0cAlIiK+ooFLRER8RQOXiIj4SqcNZ7iRt9P2wJqy2EarLBFb48aa84239I21thMrYZRgvBgrGxU2JtTZ5DcLALDSPwAPFXTzsK6RFZhgxxs29htviMEqp8Um6llABeDnZpV8YsEGC1sHjh2DVfaKhRX2kBAGwCflvZSiSjT+v8uCPixwYZ0DOwYrjMLCCl5CI6yEEns/W+3W+2l3WvzHxa5ZktE3rG9ZYIqtTQfwe9x671nHcBrRJy4REfEVDVwiIuIrGrhERMRXNHCJiIivaOASERFf6bSpQhNLEFoLELLElFVGhQV4WCrISlF1I8dwyEogkv2yskYAL13DEkhW2SvWbpUaYvu1yjixBCDrA4D3g5fr6GVRQS8LXLIkppU6jTclZ5UaYgkxLwsYWok6kG2tMkx0wcY2LlVklWZi52b1DTsG1gdWyo4dg5U0ziYlrv6WzLdlrARia5yJXOt9zq6Ncb7ugv9tHNzpQ5+4RETEVzRwiYiIr2jgEhERX9HAJSIivqJwxre4S++KaQtUPc03ZiEIq6wQDTGQNqv0Dlv3qt5Y14gdgzWZ7KEqEcUmk5OMSXJ2btaEOGu3tqXXgbR5CY2wEjsAvw5W+R+r/E68WJjEWvuLBUSs/gqSUkPW+bJgg7XuFdsHu++sAAG7P6y13dgtZl1fdo+yQI8V7mDrXrE2gJ8DWysN4OuEWdeXBX3Ya1lhloMeAkg+4N8jFxGRTkkDl4iI+IoGLhER8RUNXCIi4isKZ8TDmmRnk9GpZPLe2geb1D9kTFxnNMW2nUH+Sh/gk/LWpC3btplVYTAmvtnkvRUEYbysX2YdA8MqQVhVHNgktTX5TtcJM/7/xypyWOfLrgM7XataCpu8t0IBrFqJdX+wa2lN6rPQBl1zyuhbdgwtxmuxYIMVRmHHy/rgQHf+/OyG2DbrHmfBE9YHAA+DWMfA7n1aXSb+AJK7/A6+rQ/oE5eIiPiKBi4REfEVDVwiIuIrGrhERMRXNHCJiIivKFUYB3f5/6Ltgc3zYxuTjLQRSwvRtXeM5FuYJMSCRmqMscrssOQbS0wlWOv8kDZrbSeWFLTK9NCknpHutJJ232alzlg6lPULwK+ZlzJd1vpjLJHHrkOih/WWrHJJ7Hit+5atE1ZnlBpjZadYH1j3Yoi8R6xry66DlYxkadIdGbFtXxnrZrH37vn7+LbpZK0y1oeAt3Xz2D3Krrn13rPuUZ/SJy4REfEVDVwiIuIrGrhERMRXNHCJiIiveA5nrFmzBo899hiqqqpQU1ODiooK3HjjjZHHJ06ciOeffz7qOZdccgk+/PDDyPfNzc2YOXMm/vjHP6KpqQkjR47E/PnzkZ+ff/xncir0JBOx1lpFbKKdBRCsCWarnaFrWRmhj7jXsjJeK0Qm6q0JdXYO1sQ1XePKWpspzrW7rDALK51jhSjYdbSuuZc1xVgYhPVXD+Mc2LZWKSq2rVVOi5WSsq4ZK23EzjdkhCDi7QOAB0HYvQgAfw3GtrEghnV/7CfhjC9T+LasG72UKrNKSbFScqxrjP5yg+6J/xh8wPMnrsbGRgwcOBBPPfWUuc2PfvQj1NTURL6WLl0a9fi0adNQUVGB8vJyrF27Fg0NDbjuuutw5IiHGnciItIpef7EVVxcjOLi4u/cJikpCTk5OfSxuro6LFq0CC+++CKuuuoqAMBLL72EgoICLF++HKNHj/Z6SCIi0om0yxzXqlWrkJWVhXPPPReTJk3Cvn3f/M1DVVUVwuEwRo0aFWnLy8tDYWEhPvjgA7q/5uZmhEKhqC8REemcTvjAVVxcjMWLF2PFihV4/PHHsW7dOlx55ZVobv7699+1tbVITExEr169op6XnZ2N2tpaus/S0lKkp6dHvgoKCk70YYuIiE+c8MoZN998c+TfhYWFGDJkCM4880y89dZbGDt2rPk85xwCAT6JWVJSgunTp0e+D4VCGrxERDqpdi/5lJubizPPPBPbt28HAOTk5KClpQX79++P+tS1b98+DBs2jO4jKSkJSUlGYugUcvnTY9oCn8/lG/ckC0GyMi5WAomVcrHSe2wfLB0G8NQXSxVayTmWBLO2ZWVnrJJPrPQNW3gP4EkstqlV9oaW3jFey8s1Y9ua+21j6S2WJrNKM9HEpoElBfONX9WztCG7R62kIFtgki0Yae3XSmweYotskmPtfZA/v4m8Fi3XBqC2R2ybtXAm6y+rTBe7R8l17GjpQUu7/x3XV199hV27diE3NxcAMHjwYCQkJKCysjKyTU1NDTZv3mwOXCIiIkd5/sTV0NCATz75JPL9zp07sWHDBmRkZCAjIwOzZ8/GTTfdhNzcXHz66ad46KGHkJmZiR//+McAgPT0dNx5552YMWMGevfujYyMDMycORMDBgyIpAxFREQsngeu9evXY8SIEZHvj8493XHHHViwYAE2bdqEF154AQcOHEBubi5GjBiBV155BcHgN38EOHfuXHTr1g3jxo2L/AHyc889h65dPfwKQ0REOiXPA1dRURGcs6s4vPPOO8fcR/fu3TFv3jzMmzfP68uLiEgnp/W4TjDX9+e0PfDJ/4ltDJKJb2vinE1os0ljgJe+sfbLSud4KS/Fnm+9FgtHWEEOto6TNcnNjqGOlOmxAioMC1YAPDRivYtYoCZgVIdh23opzcTuBWtNMdZf1nVgx8CuDcCDJ+xesF6LBS6sW5H1VzcPoQ9HXoutuwXwUlBWSMZLmS8v5dJYEGPonXzbTkBFdkVExFc0cImIiK9o4BIREV/RwCUiIr6igUtERHxFqcKTxJ1zf0xbYOOC2A2tRB9LJnlZdJKl4SwsCWY9n5UE8lLyyUr6sWOwFlFkrGNgWGklq29Z8sx6LZZM7EUWHwXiPzcvC1G2GMfFjtdawJAlX1kqEQAaSHkm1o1WmS/G2pbdS1Y5LVaiiiX6rCQpK8PEUo0AUE/2a91LHhaddJf9lO+jk9InLhER8RUNXCIi4isauERExFc0cImIiK8onHEKuQv+d0xbYMPvjY3JpK0VmGBrDVmlc9jaW3SS3Zgk70KOwSqHwya/vZS4stZAijeM4mXy3Sq942XtLta3zcY5sONlQQxWfgjgYQUrcMGCCX2MNbayGmPbmoxADTs3Ft5hAQYAaCD7PWz0VwrpL+v+YOtesb6xMiPhON8jAL9vrHXgWHuyhxBVJ6ZPXCIi4isauERExFc0cImIiK9o4BIREV/RwCUiIr6iVOFpxl14L20PrH86trHVw+KQZiqQJOLYwntW4oql4azXYmnHAx4SiFaZHZZMZIk867hYmR1r0UqWULNKPqV4WLCRtbNzsJKkCaRvrNdi52ulFenzjf2ypB47B5bSA/jin9Y5sFvBSqiy+4al/9j9CfBFOs1rTvZh7ZcclvX+l2j6xCUiIr6igUtERHxFA5eIiPiKBi4REfEVhTN8wg25O6Yt8OEzfGM2cWyVO2KT50lkkt0KBbAJcSvYkEoCAD2N9aloMMEIZxwi58v6wFr7qysp32Otj2WV76H79VC2ivUjCwVYfcDWzbLCLGx9KuuasfCOsWYUTfA0kr79LJ0/nZVROhFrZDF0/TIPJcU83AduoAIXJ5o+cYmIiK9o4BIREV/RwCUiIr6igUtERHxF4Qwfc5feRdsD//UH0mhMXLNJaroOlDEZzapRWOtAscCEFYJgQQprop5h+QF2XgCflLcCCOx4rawCSD+Y4Yw4wyTsegE8XMHW0gL4emlWJQh2vNY5sH2wwIX1fC9rZHlZb83qs3ifz6qKsMAGADcgdo09OfH0iUtERHxFA5eIiPiKBi4REfEVDVwiIuIrGrhERMRXlCrsgNwPJsW0meWh2LpEXcn6QVYqkZW+scrhsHJFRjqLYmsdAUB9Unz79ZI6O2wcl7UWFd3Ww3pa8ZYrstZ2yiYJQrYuGxD/+mUAL9nE7hmAl2Fi1yynIf7jsvqL3WNWMpJdd1ZqzEqSknSnG3on31ZOCn3iEhERX/E8cK1ZswbXX3898vLyEAgE8Prrr0ceC4fDeOCBBzBgwACkpqYiLy8Pt99+O/bs2RO1j6KiIgQCgaiv8ePHt/lkRESk4/M8cDU2NmLgwIF46qmnYh47ePAgqqur8etf/xrV1dV47bXXsG3bNowZMyZm20mTJqGmpibytXDhwuM7AxER6VQ8z3EVFxejuLiYPpaeno7Kysqotnnz5uEHP/gBPv/8c/Tt2zfSnpKSgpycHK8vLyIinVy7hzPq6uoQCATQs2fPqPbFixfjpZdeQnZ2NoqLizFr1iwEg0G6j+bmZjQ3f7PeUChE1hOS72SVh2ICVU+TRmNjFgCwJsnZpL4VSmAhCGu/9PnkgFl5KoAHANiaZADADtcKmLByR17W+WLbWuuXsX4MkdAKwI/Xur70mhnbxvt86zqwc7MCJlbZqHiR0Im7ODbUJKendh24Dh06hAcffBC33nor0tLSIu0TJkxAv379kJOTg82bN6OkpAQfffRRzKe1o0pLS/Hwww+356GKiIhPtNvAFQ6HMX78eLS2tmL+/PlRj02a9M3/bAoLC9G/f38MGTIE1dXVGDRoUMy+SkpKMH369Mj3oVAIBQUF7XXoIiJyGmuXgSscDmPcuHHYuXMnVqxYEfVpixk0aBASEhKwfft2OnAlJSUhKcn4tYeIiHQqJ3zgOjpobd++HStXrkTv3r2P+ZwtW7YgHA4jNzf3RB+OiIh0MJ4HroaGBnzyySeR73fu3IkNGzYgIyMDeXl5+MlPfoLq6mq8+eabOHLkCGprawEAGRkZSExMxI4dO7B48WJcc801yMzMxMcff4wZM2bgoosuwvDhw0/cmYmISIcUcM55qLkDrFq1CiNGjIhpv+OOOzB79mz069ePPm/lypUoKirCrl278I//+I/YvHkzGhoaUFBQgGuvvRazZs1CRkZGXMcQCoWQnp6Ourq6Y/4aUtpX4OP/G9vYRBZABHgSzCoP1Uj2wUpGATx9xxJ9VoKRhdys1Brbh5UqZMnITGNxxx6kNFI6SdlZiT6WorRKM7F0prXYYjNbZNNId7JuYMdgLTTK0oa9mvi2rB+Mkk3u7J/xfcgp1Zaf454/cRUVFeG7xrpjjYMFBQVYvXq115cVEREBoFqFIiLiMxq4RETEVzRwiYiIr2g9LmkT9/3JcW8bWPtsbKO1BhILC1jbsjWf2KQ+W+8JoOstmeWl2DFY64T1PhjblmusRRUkARNWisoKUbAwiXUOrB9YCMN6vf3d+bYsdMH6xjqHA2S/X6bwbcn1dUPu5ttKh6NPXCIi4isauERExFc0cImIiK9o4BIREV/RwCUiIr6iVKGcNO6yn8a9beC9F9r2YizhZpVLYmWcWKIP4Im8YHNsGwD0JslGayHJFvJ/yC6kzUpWhj38H5SV07LKdLGSTVaKkp0bK+NklKJyo/+R71fkW/SJS0REfEUDl4iI+IoGLhER8RUNXCIi4isKZ8hpyY28vU3PD2yfF9uYYKwD1Y0EMVKNAAILciQba4qxtcZYeSkACCXFtrV6KC/VSNYfqydtAF+rzCoPlUoCF8Z6Wq7wPr4PkRNMn7hERMRXNHCJiIivaOASERFf0cAlIiK+ooFLRER8RalC6ZBc/6mn+hCowO7f8QdY2pCECl3fn/PnZx7/MYn4jT5xiYiIr2jgEhERX9HAJSIivuLLOS7nvq5eEAqFTvGRiHhUf4i3N5EqG2SOS/e8dBRH7+WjP8+98OXAVV9fDwAoKCg4xUcicnKl44FTfQgiJ1R9fT3S09M9PSfgjme4O8VaW1uxZ88eBINBBALW6oByVCgUQkFBAXbt2oW0tLRTfTgdmvr65FFfnxzt1c/OOdTX1yMvLw9d2KKp38GXn7i6dOmC/Pz8U30YvpOWlqY3+Emivj551NcnR3v0s9dPWkcpnCEiIr6igUtERHxFA1cnkJSUhFmzZiEpiaz5JCeU+vrkUV+fHKdjP/synCEiIp2XPnGJiIivaOASERFf0cAlIiK+ooFLRER8RQPXaeCss85CIBCI+Zo8eXLMtvfccw8CgQCeeOKJqPbm5mZMnToVmZmZSE1NxZgxY7B79+7I46tWraKvEQgEsG7dush2n3/+Oa6//nqkpqYiMzMT999/P1paWqJea9OmTbjiiiuQnJyMPn364De/+c1x1Rs7FU6nvmaP//73v496Lb/29cnoZwDYtm0bbrjhBmRmZiItLQ3Dhw/HypUro7bRPf2N9u7rk3ZPOznl9u3b52pqaiJflZWVDoBbuXJl1HYVFRVu4MCBLi8vz82dOzfqsXvvvdf16dPHVVZWuurqajdixAg3cOBAd/jwYeecc83NzVGvUVNT4+666y531llnudbWVuecc4cPH3aFhYVuxIgRrrq62lVWVrq8vDw3ZcqUyOvU1dW57OxsN378eLdp0yb36quvumAw6P7t3/6tXfvoRDld+to55wC4srKyqO0OHjwYedzPfX0y+tk558455xx3zTXXuI8++sht27bN3XfffS4lJcXV1NQ453RP/7327mvnTt49rYHrNPSzn/3M/cM//EPUD7ndu3e7Pn36uM2bN7szzzwz6sY7cOCAS0hIcOXl5ZG2v/71r65Lly5u2bJl9DVaWlpcVlaW+81vfhNpW7p0qevSpYv761//Gmn74x//6JKSklxdXZ1zzrn58+e79PR0d+jQocg2paWlLi8vL+p4/eJU9bVzX7/JKyoqzGPrSH3dHv38xRdfOABuzZo1kW1CoZAD4JYvX+6c0z191Mnoa+dO3j2tXxWeZlpaWvDSSy/hpz/9aaSAcGtrK2677Tb84he/wPnnnx/znKqqKoTDYYwaNSrSlpeXh8LCQnzwwQf0dZYsWYIvv/wSEydOjLT953/+JwoLC5GXlxdpGz16NJqbm1FVVRXZ5oorroj6Y8TRo0djz549+PTTT9ty6ifdqezro6ZMmYLMzExcfPHF+P3vf4/W1tbIYx2lr9urn3v37o3zzjsPL7zwAhobG3H48GEsXLgQ2dnZGDx4MADd08DJ6+ujTsY97csiux3Z66+/jgMHDkT9kPvtb3+Lbt264f7776fPqa2tRWJiInr16hXVnp2djdraWvqcRYsWYfTo0VFLw9TW1iI7Oztqu169eiExMTGyn9raWpx11lkxr3P0sX79+sV1nqeDU9nXAPAv//IvGDlyJJKTk/Hee+9hxowZ+PLLL/GrX/0q8lodoa/bq58DgQAqKytxww03IBgMokuXLsjOzsayZcvQs2fPyH50T5+cvgZO3j2tges0s2jRIhQXF0f+h1hVVYUnn3wS1dXVnpdwcc7R5+zevRvvvPMO/v3f/z3mMbb9t/fz7W3c/0ys+m2JmVPd10ffzABw4YUXAgB+85vfRLV3hL5ur352zuG+++5DVlYW3n//fSQnJ+OZZ57Bddddh3Xr1iE3NxeA7umT2dcn657WrwpPI5999hmWL1+Ou+66K9L2/vvvY9++fejbty+6deuGbt264bPPPsOMGTMi/3PJyclBS0sL9u/fH7W/ffv2xfxvEwDKysrQu3dvjBkzJqo9Jycn5lPD/v37EQ6HI/th2+zbtw8A6Gudrk51XzOXXnopQqEQ9u7dG3ktv/d1e/bzihUr8Oabb6K8vBzDhw/HoEGDMH/+fCQnJ+P555+P7Ef39Mnpa6a97mkNXKeRsrIyZGVl4dprr4203Xbbbdi4cSM2bNgQ+crLy8MvfvELvPPOOwCAwYMHIyEhAZWVlZHn1dTUYPPmzRg2bFjUazjnUFZWhttvvx0JCQlRjw0dOhSbN29GTU1NpO3dd99FUlJS5PfYQ4cOxZo1a6LixO+++y7y8vJifgVwOjvVfc38+c9/Rvfu3SO/eukIfd2e/Xzw4EEAiFmEsEuXLpF5Fd3TJ6+vmXa7p+OOcUi7OnLkiOvbt6974IEHjrntt1NBzn0dZ83Pz3fLly931dXV7sorr4yJszrn3PLlyx0A9/HHH8fs92h0eOTIka66utotX77c5efnR0WHDxw44LKzs90tt9ziNm3a5F577TWXlpbmm+iwc6dHXy9ZssQ9/fTTbtOmTe6TTz5xf/jDH1xaWpq7//77I9v4va/bu5+/+OIL17t3bzd27Fi3YcMGt3XrVjdz5kyXkJDgNmzY4JzTPc20V1+fzHtaA9dp4p133nEA3NatW4+5Lbvxmpqa3JQpU1xGRoZLTk521113nfv8889jnnvLLbe4YcOGmfv+7LPP3LXXXuuSk5NdRkaGmzJlSlR01TnnNm7c6H74wx+6pKQkl5OT42bPnu2r2PDp0Ndvv/22u/DCC12PHj1cSkqKKywsdE888YQLh8NR2/m5r09GP69bt86NGjXKZWRkuGAw6C699FK3dOnSqG10T0drr74+mfe0ljURERFf0RyXiIj4igYuERHxFQ1cIiLiKxq4RETEVzRwiYiIr2jgEhERX9HAJSIivqKBS0REfEUDl4iI+IoGLhER8RUNXCIi4isauERExFf+fzlJuff0hBCaAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -139,27 +129,27 @@ " \n", " \n", " 0\n", - " 67.0\n", + " 68.0\n", " 1N3\n", " COGM1N3_20200211\n", - " 57.0\n", " None\n", " None\n", " None\n", " None\n", - " 242.5\n", + " None\n", + " 45.83\n", " None\n", " ...\n", " 2020-02-11\n", - " 2024-08-15 19:24:19.860106+00:00\n", + " 2024-08-15 20:03:41.020791+00:00\n", " None\n", - " 2308829\n", - " https://doi.org/10.5067/DUD2VZEVBJ7S\n", + " 2414175\n", + " https://doi.org/10.5067/SNMM6NGGKWIT\n", " 2022-06-30\n", + " IS3-SP-11-01F\n", + " reflectance\n", " None\n", - " density\n", - " None\n", - " None\n", + " Kate Hale\n", " \n", " \n", "\n", @@ -167,22 +157,22 @@ "" ], "text/plain": [ - " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", - "0 67.0 1N3 COGM1N3_20200211 57.0 None None None \n", + " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", + "0 68.0 1N3 COGM1N3_20200211 None None None None \n", "\n", " sample_c value flags ... date time_created \\\n", - "0 None 242.5 None ... 2020-02-11 2024-08-15 19:24:19.860106+00:00 \n", + "0 None 45.83 None ... 2020-02-11 2024-08-15 20:03:41.020791+00:00 \n", "\n", " time_updated id doi date_accessed \\\n", - "0 None 2308829 https://doi.org/10.5067/DUD2VZEVBJ7S 2022-06-30 \n", + "0 None 2414175 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", "\n", - " instrument type units observers \n", - "0 None density None None \n", + " instrument type units observers \n", + "0 IS3-SP-11-01F reflectance None Kate Hale \n", "\n", "[1 rows x 29 columns]" ] }, - "execution_count": 1, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -218,9 +208,16 @@ "df_site" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Useful rasterio function - `.sample`" + ] + }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -246,12 +243,12 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGsCAYAAAAYBjfoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZhlZ3UdjK8z3XmosedRQkJCMwgwYBkDghgTf3Zs7JgvDlgOBjuAwY4To/ziWPjTA46QDYkF2AiMETYmnxObxP6SQLCtgBCDEJMkhMZWz0PNt+58pt8fa+/at1rVrW7RUk/vep5+qurWuee855zbtdfZe+21vTzPczg4ODg4ODg4nGHwT/cCHBwcHBwcHBzWgiMpDg4ODg4ODmckHElxcHBwcHBwOCPhSIqDg4ODg4PDGQlHUhwcHBwcHBzOSDiS4uDg4ODg4HBGwpEUBwcHBwcHhzMSjqQ4ODg4ODg4nJFwJMXBwcHBwcHhjIQjKQ4ODg4ODg5nJM5LkvLFL34RP/ETP4FNmzbB8zx89rOfPel95HmOW2+9FRdffDGKxSK2bt2K9773vad+sQ4ODg4ODucpwtO9gNOBTqeDq666CjfccAN+5md+5mnt453vfCc+//nP49Zbb8UVV1yBpaUlzM7OnuKVOjg4ODg4nL/wzvcBg57n4a//+q/xUz/1UyuvDYdD/Lt/9+/w53/+51hcXMTll1+O//Af/gN+9Ed/FADw4IMP4sorr8T999+P5z73uadn4Q4ODg4ODuc4zstyz1PhhhtuwJe//GV85jOfwXe/+1387M/+LH7sx34MjzzyCADgb/7mb3DBBRfgb//2b7Fz507s2LEDb37zmzE/P3+aV+7g4ODg4HDuwJGUo/DYY4/hL/7iL/CXf/mXuO6663DhhRfiN3/zN/HDP/zD+MQnPgEAePzxx7F792785V/+Je644w786Z/+Ke699168/vWvP82rd3BwcHBwOHdwXmpSjodvfvObyPMcF1988arXB4MBJicnAQBZlmEwGOCOO+5Y2e7jH/84XvCCF+Chhx5yJSAHBwcHB4dTAEdSjkKWZQiCAPfeey+CIFj1u1qtBgDYuHEjwjBcRWQuvfRSAMCePXscSXFwcHBwcDgFcCTlKFxzzTVI0xRHjhzBddddt+Y2L3vZy5AkCR577DFceOGFAICHH34YALB9+/Znba0ODg4ODg7nMs7L7p52u41HH30UAEnJH/zBH+AVr3gFJiYmsG3bNvzCL/wCvvzlL+P3f//3cc0112B2dhZ///d/jyuuuAI//uM/jizL8MIXvhC1Wg0f/OAHkWUZ3va2t6HRaODzn//8aT47BwcHBweHcwPnJUm588478YpXvOJJr7/pTW/Cn/7pnyKOY9x888244447sH//fkxOTuIlL3kJ3vOe9+CKK64AABw4cADveMc78PnPfx7VahWvfe1r8fu///uYmJh4tk/HwcHBwcHhnMR5SVIcHBwcHBwczny4FmQHBwcHBweHMxKOpDg4ODg4ODickTivunuyLMOBAwdQr9fhed7pXo6Dg4ODg8N5hzzPsby8jE2bNsH3j58rOa9IyoEDB7B169bTvQwHBwcHB4fzHnv37sWWLVuOu815RVLq9ToAXphGo3GaV+Pg4ODg4HD+odVqYevWrSsx+Xg4r0iKlngajQYajQa8u/4E+Q//0mlelYODg4ODw/mHE5FdnN/C2SiD942PwvvWH5/ulTg4ODg4ODgchfOapOQvfjPQKQCdCN7//tTpXo6Dg4ODg4PDCM5rkgIAiH1gGAD1Abx/+CS8//Hnp3tFDg4ODg4ODnAkBfn1bwS6EZD4QA4gzOB9/lPwPvdnp3tpDg4ODg4O5zXOe5ICAKjEwGIJaBWBQQhkHhD78P6XIyoODg4ODg6nC46kAMhf+SYgyAAPzKZkojjuh/Du/FNXAnJwcHBwcDgNcCRFEWVAlAK5B/g5/1Vj/q6cwPvbT7vMioODg4ODw7MIR1IE+fVvBAopUI4ppAVIWuKAX8sJUErg/e9Pwfu7O07vYh0cHBwcHM4DnFdmbk8JD0DqAcWUmZQ4sK+KMAOCjC3LYYb8FW86bct1cHBwcHA4l+EyKUcj9YEM1KYMAv7Lwe6f1AfWt4FSwoxLDnh3/clpXrCDg4ODg8O5CUdSRpC/6o3s9Cmm1KhUY2ZSco9EJciAI1VmUwYhUB8CU114d/0JvDv/9HQv38HBwcHB4ZyCK/ccjdoQWC4ClSHLP6WEWRQACHL+3I2oU/Fz81jxAO/ujwNRhvyFv3xaT8HBwcHBweFcgMukHIX8Rb/MUk4cUEAbZsyuTHeAjcskKRvbzK4MAxKZSswsSyEFxnvwvvHR030aDg4ODg4OZz0cSVkLiyXa5Xs5NSl+zmxJL+JrtSGwaRkY75Gc5B5fm+ixTDTWh3fP7U6v4uDg4ODg8APAlXvWQiGlSDbP2O3Tifh64jOTMtnjV4D6lWoMtAskKWN9YF+DWZfMg/fQbcAwQH7Fr56+83FwcHBwcDgL4TIpayC//o0kITmYISmkwGSXGZNBCDwxxgzLUpHEpSO6lMM14ECdO0n9lfIPxvrwvvchVwZycHBwcHA4CTiScjx4IPnIPF6psb6ZvQ0DE9EeqQLLBZKWg3W+Nlvhv71NkphiCkx34T3yh6f7rBwcHBwcHM4KOJJyDOTX3WA6lKUSMFOhHiXIgWafWZKlkpm/DQO+NgyYTck8vr8bsVvoYA04VKO3yv0fhnf/h0/3KTo4ODg4OJzRcCTleAhlng/AMk+7wO9LCdApAMWEBGQY0DZ/sURiMtYHeiG/j6Uc5OckNJppWS7C+9In4H3rj0/f+Tk4ODg4OJzBcCTlOMivu8EGD2YeSUs3AlpFEpV2AVjXBuoDalQmesC6DglNMSVJaQyA5oAalV5EYpN7zMpMdoENbXhf+Ti8r33sdJ+ug4ODg4PDGQVHUp4KsU+S0ewzY5L4LPlUhxTV1mJ+DTP+frFEwS0gWpac4tmpDrCpRU8V3c/hGvDYON+7XID3TZdVcXBwcHBwULgW5KdCJSZJ6UZW5jlYI8kIM2DO5zb1IUlJIbXOn4JkYHIhKwE9VLClBTw+ztcKYsFfSoADdXhLnwSKCfKX/ovTfeYODg4ODg6nFS6T8hTIn/9W6ks2t0gq/JxEY7EkHT0ldvcUUmpO1PxtrM9/ALftiAB31zjw0BTLQfUhszKJEJ2JHo+1XIT33Y+4EpCDg4ODw3kNR1JOBFNdYL5M8tHoUyQ70SMxqQ+YLck8vu5LB9AwABbKUh7KmC1pDFgKUm1LKoMLO5FpXmpDbj9TBVIP3r4/cGUgBwcHB4fzEo6knADyDb/JbEg/JPFIPRs8WEhZDirHRjQ8EaXkoNeKL6SlkADbloD1bWpdtGMoDkhaPHBGUCUm+YkDloVSH97Df+gyKw4ODg4O5xUcSTlRFEVfEuTMmAAs13QKJCWaGRkG3E7FtOXYtp+t0jK/HzIT4+VWQgKYrVkqGbGZ7FK/koMeK/0Q3u4PnoaTd3BwcHBwePbhSMoJIr/iV5lF6YcUxQIs08Ri2JYLgSmk3GYQkpwMA24z1eF7woxdPf2Q2w9CZk5qQ+peEt9KQup2O90FLp3ldnsb8L5/G7wHbztt18LBwcHBweHZgOvuORmUEnqmFFNgQ5tEIwf1Jn5OEjFT4ffaflxO2K6cw8o/YcavSkZin4Lb8T5/bhV5jECICjL+vtnnMR5YBxQTeMlHgNRDfvWvnMaL4uDg4ODg8MzAZVJOAvl1NzBjMgxYmpnsMgNSHfK1VhHY2Oa/sR71JUFGPUurRIIRZNYJFGT8VxuaI20/5O9jn68VU+pWDtStlDTdYbnoEFuhvW98lNOWHRwcHBwcziH8QCTlfe97HzzPw7ve9a5jbnPXXXfhZS97GSYnJ1Eul3HJJZfgAx/4wKptbr/9dlx33XUYHx/H+Pg4rr/+enz9619ftc2OHTvged6T/r3tbW/7QU7h5KHdOPvrJA6DkOSkNiCp6IUUvU70rfwT5MzCZB6zLplHB9qBlHy6EV9vF5h5qQ/582yF+14qyVRmsdUvJdzvdIfvGQYAAO9eN2XZwcHBweHcwdMu99xzzz346Ec/iiuvvPK421WrVbz97W/HlVdeiWq1irvuugtvfetbUa1W8Za3vAUAcOedd+INb3gDXvrSl6JUKuGWW27Ba17zGjzwwAPYvHnzyvHSNF3Z7/33349Xv/rV+Nmf/dmnewpPD+M9YLFMXUpTiEmzz06ccsxtDtSZPSlLB5B292hHUJhZKWeiRxIyVyZh8XPA80hgprrcZrzH9mU/Z9kn87j/1Oc+SwnLTKUE3n0fAWKf/i4ODg4ODg5nMbw8z/On3mw12u02nv/85+PDH/4wbr75Zlx99dX44Ac/eMLv/+mf/mlUq1V86lOfWvP3aZpifHwct912G974xjeuuc273vUu/O3f/i0eeeQReJ53QsdttVpoNptYWlpCo9E44fUeDe+rHyOJWNcGSikzK/2QJKI74nmi+pPaAOjL3B61zy+mLBPNl7n9IKTepRexjNQq8v36nm7E7EnumfdKHDBzo91EhZT7yTxg2xLy9b/5tM/RwcHBwcHhmcDJxOKnVe5529vehte97nW4/vrrT/q93/rWt3D33Xfj5S9/+TG36Xa7iOMYExMTa/5+OBziz/7sz/BLv/RLxyUog8EArVZr1b9TgoKIWsOc5Ra1tU9kzs/mZf7bIMMHl4t0ny2KBX41tunK9SG7dxoDCmej1BxsyzFJSTElYRmEbFvO5fueZFu0PBRk/LkcA4+Nw3v0P8G7/8On5pwdHBwcHByeZZx0ueczn/kMvvnNb+Kee+45qfdt2bIFMzMzSJIEN910E9785jcfc9t3v/vd2Lx58zFJ0Gc/+1ksLi7iF3/xF497zPe97314z3vec1LrPBHkz38rvIf/kBmLSmyZjeaA5CLxrX24kALbl0gsJnvMugxCM2tLE37dvkjjtu1LwOEqszLtAklKIbXuoXaBRCb1SV7UBG4Y8HcLssjUp7A2DlgCmu7QlM7BwcHBweEswUmRlL179+Kd73wnPv/5z6NUKp3Ugb70pS+h3W7jq1/9Kt797nfjOc95Dt7whjc8abtbbrkFf/EXf4E777zzmMf4+Mc/jte+9rXYtGnTcY9544034jd+4zdWfm61Wti6detJrfuYWCwxA9IPmI+KAyMLtSEzIx0hEPsafP1wje/TDp/6gESjEjMT87wZ7nsQmPdKIaVeRU3f1rdJclLfuooaA7Ht99kVVBtK6zL4fScC4jq8Q38EjPeRb3/XqbkGDg4ODg4OzyBOSpPy2c9+Fv/kn/wTBEGw8lqapvA8D77vYzAYrPrdsXDzzTfjU5/6FB566KFVr9966624+eab8YUvfAHXXnvtmu/dvXs3LrjgAvzVX/0VfvInf/JElw7g1GlSFN7dH7dsSe6xhXisbxqRXkjy0ikwkzLVJfnwxcQtB0tCY30SjX0Nimc3LjMLoqWk5QKJTUU7hFJ2/hQTim4nesCc/DwISXj0dzlYXpro8T05gOYA+YW/9gOfv4ODg4ODw8niZGLxSWVSXvWqV+G+++5b9doNN9yASy65BL/1W791QgQFAPI8x2AwWPXa+9//ftx888343Oc+d0yCAgCf+MQnsG7dOrzuda87maU/M+iLSBWwzhzVjexpUmOi9vYqmG0MzOhtEHKQYKtoDrO+aE5UCLtYWj11WTuDJnoyDygloakNSWp2LrJstLPLnzPxY+mIcHeiR3v9h/8QSHzkz3uWW7gdHBwcHBxOECdFUur1Oi6//PJVr1WrVUxOTq68fuONN2L//v244447AAAf+tCHsG3bNlxyySUA6Jty66234h3veMfKPm655Rb89m//Nj796U9jx44dOHToEACgVquhVqutbJdlGT7xiU/gTW96E8Lw9Jvl5q98E7x/+CQzFx5IBnKZhhyKC20vIgmZ7JF8HKmyTJR7ZqnfADMmPbHSbxf4urYX72+Q3IgfCnoR25JHSU9tyKzNTIWZllYRuHiOJaZ2ARiKpuVIlULbcgI8MQbv7z8JjPVdy7KDg4ODwxmHUx7pDx48iD179qz8nGUZbrzxRuzatQthGOLCCy/E7/3e7+Gtb7Wg+OEPfxjD4RCvf/3rV+3rd37nd3DTTTet/PyFL3wBe/bswS/90i+d6mU/fUTSsdOJgCKY2ehG/F1tCMyHLLfsrwPrOvx+pkJSE4t+pTZkKehAna9pW3JjwOyKtipHKbMpY30SFRXuAkaSOgUSm0EIfH/KhhUWpb25mAALJa5jfZtrbRfgffuPnL2+g4ODg8MZhaflk3K24lRrUgDQjr6UkDx0I7O1zzxmO+LAMh6Jz7LN+g637UY2XLAXkmAUE+4j9fl9NebvtMU5Dkg6qkNmYnSIYSFlq3PskzQtlmgyl3skONWhebOM9YFHJ0TcW6CAN/O47yADUh/5VY6wODg4ODicejzjPikOhvy5b2eGo5xY2aU25PcHGiQBmYhquxHLPnOSKck8m/kTC9EY6/O1SmxeKR4oeu2H/F0vpA5lrsJFqLV+6pHMVGIKcqOUephmn9up4RzANS6V2EnUKnL9Xr6ii/Ee/4+n5Xo6ODg4ODgoHEk5FUgk63HBAks6UcbXy7FlNpoDKwsNA36txJY5qQ35nsxj9kQnKM9WSCSUBPk5ic5YnyJY9U2JMnOjHQQkLD74exXlFkSr0inwWOvbJDj9UFqYcxMDtwvwvvNH8B50gwsdHBwcHE4PXLnnFME7fCvLO4UUWCibadtiyTxTADNo8+Sy6wDCVPQlWs7xcrPJ1wzLIGQWRucAre9whlAm05PH+yQovchs9KOUpEQnL9eG/H0sc4N6EUs83YguuYerXA+wUvrR7Ev+grec0mvm4ODg4HD+wZV7Tgd2N4G9TX4/3gO2tIAL5/l1EJBEBLnY4He4XerzdS3phBlQEg2KByMo7QKnH7cLJDKNAX9/UDqf/JzHWSqSAOUQR1uf7wGoRdFj1kf0MXpsgKSkGvM1PyfpCTKSm+UCvK9+DN7XPvasXE4HBwcHBwdHUk4R8hf9MknD96bpkTJXYYZjocQsRVHIxuLIz0HGMk4cWGYl9UkUFkvMmHQjEcz6/HmxxJJNL+Tr7YKJZ6tDc7EtJdyftjHHgelgFkv288oJeGxXzjwjR35uzrVl2V/qwXvsPz17F9bBwcHB4bzF6TcbOZfQLpi+pJQwsxHk1IuoSDbI2IVTFbM2LeUslEgIytIiPAj4s5KX3AMG4OuDUBxopf1YW5obfSvPzJfZ1jwQMtOTrqMcPN5ygWQmVuGukJEg4/cFKSHlHtea+Pw+SoGDNXizHwMyD/lL/sVpuNAODg4ODucDXCblVCLISQT6IbMRiyVqSFS4OiqOXSxxGxWr5tKZM5TBhKWE26dyi1Rku65DkqGDDYdCZlKPWhglI3U5Vpix/ATwGMtFbldJSFhin4SllDALE2YkPDlkeGFuRCfMSGqaA3YPeTm8r9/OAYYODg4ODg6nGI6knELkr/7nUsbJLeMB8PtiQkKSiWbEg2QnQCJQH0h7coWv6zyfSkwSs1wgqanEbCtWIjLZM/FtlPGYhZT7nC+TaDQH3DbMuF8V5ebSLTTVtZNYKNsE50iGH5ZjvjeV1zJqVFYyQcUE3jf/GN73PnQarrqDg4ODw7kKR1JONboRA3ljwNJJbchySSY2+Klv5ECzKJ2CZS2G0p2T+CzjAMxy6Hu0hXisT3KhxCfMTBw7WzEhrs7/CTL+XExIZjRDE2Y2bRng/nRgorY1q65loifEqMuvSo5GtC7eP3zyWb/kDg4ODg7nJhxJOcXIX/EmM0zTwJ/6JA1qpubnlqVIfSuxzFasg+dI1dxqw4zZjEpM4qDk5nDVhgjGPsmLZkkG0sqsJnLDwMpQOSwjo+3PQxHSlmMSkuqQr2feiP9KSOIUB9xua4ukR0W6opHx/ven4H3rj5/tS+/g4ODgcI7BCWefCRTTEbIQmsYj80gKPHGIrQ+ZnVgskYj0Q763KX4nmqUAjNj0Q34NcmZTAJKDdoHb1If0ZAnFUE4JhgeWlAAT3i6WOOww9fhap8DMTzExbU0hsTUkklXJwTlD9SH3P9Hj+/WYgxA4UoX3xU8AwwD59W98dq67g4ODg8M5BZdJeSYQ+9SBKEE5UmXA39oiOViS9mJ1ni0mFLeWYysN1WXGzpaWaVNGW4aXCyQmatwGkIzMVvjaQLI2xcR0JMPAjOZmpZS0v25Tm7XcpK3POkNoEFiZCjDPFxXl7mvwOIAQpQGwucVzGO87rYqDg4ODw9OCIynPAPJr30IS0I3YhlxIrQNnssdsxVhfbPMDdux0I3beNAf8nQpchz6DfTXm78qx2eMXUzOKU9+TgZAMT7IwxdT0J6pNUYv8vkxobhdIhOoytFDJyDDgfuOAr+vsIMDM4A7VbDhh6nGNhdTKUgXONfIe+UNnBOfg4ODgcFJw5Z5nCo2BZSti3wSsqc/Mhi9ZC53JE4rvySBgliSUAD8MgEWxsd+0zPetEBFYiSX1gFyOUx0CJTnesuhUGgNbRyREJRLflFQ8UVpFblcQoa4OSqzEtnaAmSAvZ3kozEh8CimFvOqWWx2SeOn8Ihma6H3l44CfI3/xm0/DTXFwcHBwOJvgMinPEPKL3sHgP+rculQy4awOEpzqUucxCLm9B6Ar3T69iMRhEJAwaGtyJaZlfTEhyYky/qyma6m/mpw0BiQjhdTakCE/q6h2qcjXOhGPv1gyA7d2wbQomrlZKslgw9QIlg4nLCaru5w8SOlLzj3I4H33I05c6+Dg4OBwXLhMyjOJTsGmICs5GQYM3vUh9Rx9GUIYi7g19i07kvjcZiDlnDwhifDA7MWEeKTsbZJANAd2bLXdn6naAMLCiMNslMlaRFeSSmmonPD3VVgnkE55LknWp5ACkXQd1YbcZ5hxW8AM5gDuC+AxuhG/BnItwgzevj9AvuU3no274eDg4OBwlsGRlGcQ+T/6BXj33G6ZhUxKKIdqJASakVC9SmVEb1JIAE9KOrlHMapOUk791R08OxeZ7TgsAt1SAnSktDPdIVFYKhpBSnwjLR6szXlP08hT7gHVLtCWY/bleOWE71d9jJaA1JFW3XOLCc8R4HrCjMLhHCRGvXDFddfb9wfsArrgnc/ezXFwcHBwOOPhSMozDRWweuC/ckIyMi8W9mXJUGhpRUsixZTW9doevCR6kWEA9MWzZCngdg9N8ncTPRKg1DdfFM181IckK6n4qYTiFjve47bF1Jxn+yH3V0xtIGKUmsZEfVp0grPqahLxVEk9a4mOMh43EGISSfZlIBmdIKfLbqsIb98ngEpM4bGDg4ODw3kPR1KeacxVrEwSpSQnEz2SBZ1uHOTmCBtHDPSzFRtUOJDOHdWBaCfyZM8caiPRmlRj6lFUXKvZm9i37Ia2G2vXUZhxxtBASMcw4DqjzMS7munxc6AYm9GbZnOCDOgVzA8m94B+AORSdlK/lg1tG4wYZSQzAH8XZEBzAG/uFmC8h9z/nWf7bjk4ODg4nEFwwtlnGPk/+gVmHBKf5MST7IK6tKogNZS5O72IJEN9TdpigR9m1gZcSIH1bb6utvWdCHhswsopDRkCWI5X2oBXSMd4T1qcYWRJ247Vc8XPua9hQEGulnmCzEpN6zr2eqdgVvoV8XsZ6/NYtSH31S4A+xvMzgB0vG32uaZ1HZ5Hs8/X/Rwebno2b5WDg4ODwxkGl0l5NhClNv9mrA88Ps7XW0VmPnLwd+vbQFZnFiQW8Wk5IQFIhEyMusvqxGPVlADMtmh5J8zovaIOuKp5KSckQqkMOxyG5m6betxvmJsZnJ+TdHg5W5vDnOutxCQmg4A/96WDB5AuHnHFjaU7qStTn9X6X0nYQonr3bkIZKsvnRKV3BEWBwcHh/MOjqQ8C8hf+SZ4D91GEnCgbt02cxUAXf7cjZhlKIklvSdZj07BtBypzOiZ6JFoLBWlrBIy2BdTc37VDAlAMlRKgFTm9Oxuct+NAUmDB5KLQQDMVa1rR1GO+XPqW3YEoHttKF1GatevrcaDEBj4QFzj2rVNWTt7osymNldja2UOjmIpAkdWHBwcHM4/OJLybKGQ0oJ+GJAMzFatxFOOSSgyDwhGtCphZkRDBwaGGXCwToIx1WVHj1rUlxLr3lkuMINRHYrrrBChxsD2CTDTEqU2CVkzITrBuR9KC7RY9ytBaYuXipZ2dL9HqtznQsmM4HSqci80Z1s9TuaZn8sxCMooHFlxcHBwOH/gSMqzhHznO+Ht/xMG5bmKWdPHPtDIbGKyWtAD5j1STE0E2ylYyUS1Ic0+UPdMBFtKSBSUaDQGkrUIbFDhXIX/VLCr4tyNbcvGqAlcpyDGbRlwuGbHVq2JzhTycupgxvv8XUfM6LSt2pdOHg8kL1pKmuiRuJwEPNzkiIqDg4PDOQ5HUp5NZJ7pSlIhJdqKWxMNSZRauaQv04pTIR8eLAsSZEA9ZuaiNlzdiaMZlGFAgjFf5ntC6aZpDlhimQ/ZkaN2+NoeHPvmkltIzaF2tmIeK7qWpZINM9zQNv1Ns2+uuUM5x9jnmpt9vranyczMZO9pXU4PNwFLJeTNd/8gd8XBwcHB4QyFIynPIvIfuQHe393BH8rShlsfMICrl0g1NtM1NVrLhTzohGIACCR70ZBpy5rpUJ+SQm4dOlNdEootLSMcC2XgYM2yIEslYOOyuMmmJDOJL94oiZSpQmY/AhHk9oWcxD6zPbvGuP/akERMSz3qszJXIeHqh3xtscT1HwuPTNJ7ZfuStS0fjWbflYAcHBwczlE4kvJso5gABenKUZO36S5LI2rAloP/4oDbaTYlyNmeqwZtPWkXLsfMXhwW0qE/b26R/Fyw8OR1jPeAS2eB+9eRKIz3mGnpRCaq3bZE8jFbAR6dsA6j6lGakkXpzqkNue2RKsmWimy1lFWJgZkKSU0c8BzLxyAfALBliV/3jPEaPGf+uJfW+/5tyC95+4nfCwcHBweHMxqOpDzbUAKgLq+DgBmMKGNm40Cdr8eiEemFok3xzL22Lm6wvYi29/Uht6sNGfQ3tJn90OnDh2okDOrNoti5wO0fnCa5UH+V580wQ6KY7nD/cxXLsqi1fZiROA2kNFWVLqSxPr8uSku0EpXMI+GKfTN9OxbKMk7gubPAfeuPf11bReCJMXh7PgV4QP7qf/707o+Dg4ODwxkDL8/z/Kk3OzfQarXQbDaxtLSERqNx2tbhfeePTDOyXOT3AH+erZiOIxFtyErWJTcPlOqQZELLIEeqNERbC0tibT/VJZHw17jlsUxCbhVtNs/6tv1+GHCQ4dC3fSYjwxN1ynLmMeMT+8DmZdO1rOswS3NIhLdHqtyPnwOXzZCorQUlZ49OkHw9Mmnann4IXHGYwtu7t1qrdV/amufLyH/y50/6/jg4ODg4PHM4mVjsMimnA3sbwI/sNj3G3+9kcI1Fb+LlQG3AUpAODPRzkpPlAoWnVx9avc+xvnUAebAOneWidNWUrbNnYg2haiSze5ZKJAbDgFmdcfFk6Yc8rpKT2tD8XtT0Tb1c1Mp/QZxlMx04mFgWqVOw9mXV2awFLSt5AL673rbVNd67ieTFk+MMwhFCl8D79H9lZuUNP3Py98nBwcHB4bTC2eKfBuT/+P8GiilyaaPNX/kmZhdiyTpoJ48HEpOxPolCmFG/MkpQFsrUohypMlsyWwEemQAengT2iQX9csEM35aL3OZYuHCe5ZWNyyRNj07y9cbAXHBjf3XXkZ+bDwrAY8TS7lwVDxgPQCEz4tWJ6PEyVwYenOK/4yEVQlRMpZspNV+VtrjnetKanYqQd0MHeOEBwMvh/e4/PL2b5eDg4OBw2uBIymlCXvx3q18YhCyF9EJmOkpCStTttZQw67BVxKSLJQb2/XUb0jdfllk7MTMVcxVmbfY2rcumK/OBDtS5j3iNLEarSPIDMPDPCalRQW8pYdvwdIcESglDKeFaq0OSqyAnQQozthvPVmy2UJQB395AMrW+wwwNYMc9ej37GyQ77YLMLupw/4OA57VpmUQpzJj9aQyAaw4CF80BP38/0C7Ae+u98H71Gz/gnXNwcHBweLbgNClnELy/+QuWRDZJFmMYWLmjNqRJmmo3vitC0mLKcoefU1A7WwF2jZtOpFMw7xMlDY0BA/1Ej+RovMfttPU5DqS1OWCWRr1MhoGJcT2QmPRDvnd9mwShmHIdiyWSoX7I7cfFOr8+5O8mu8AXtwuhko6iF+8HvjdNnYna8u9rsANJtS1aXtq2xOzSIACeGLMhjLnMI+qHwIv2r7b3V7R5TVzLsoODg8OzD6dJOUuR/8QbAADefR/hC6kHZL5lKJSgKInQTqHa0NqPS4mVamYrzMR4YszWk6xJWyYWq2cJwMDeKtpQwIJ0HqnYNsiAQcFm+KhAdrrLYwY5yUhXRL9FmUFUiTlQsTHgscb7Nnvo0lngG5vYllyJ+dqWFjM36h3z4LStXzuavJzE5Hkz3H6/ZIt+8vs854emSIT+13Oo/Zno2QBGYIW4OH8VBwcHhzMbjqScgciv+FUAgLf4e2a+1pOMxBNjLI1sW6KQVduKCymJRlUmE8+VKb5dKPNn7egZCFHRAYVaigkz+qqoF0rqMevRD/meKOO+FsokCeqp0gul3Vj0KZHY9Kt1f+yz5LKvwfXPl1my6hTYsXP3Vu7DAzNIm5ZJcHoh8OVt3KdmSPQcKzJNeqJHMhJmPM6jEzzWH13LdVx7gCRrrW6mETiy4uDg4HBmwmlSzmDkYyN27+WEmpVCykxJfWA6llaRHiv7GhTNHqnKMEKZcKxzc8KMxKM0MguoG/FrlPJ9SyUG/EFos360dJT43K4+tHk8ao2/VKRgtl3gz37O7IgeY0ObpnLFRATBA+BSaaF+cIoi2v/1HJaA9HwvWLCsTjnmPgMhHP2Q652tcF9RRp1NOQFeupf7vGsr8LUtJ3y9PUdSHBwcHM4oOE3KGQ7vwO8zO9LsM+DPVNnaq260BZmVc6TK7EOQMwvS7ANdGQRYiW3AYCKakkpsmpG+TCcOMwZ8D8yWlKVlOPZJMh6cFrfbxLIzA3HIDTNmLXoRMxx9aQXuRMzQaInoWDb4t78AuG8d33v5EYpvU9GhLKggWAW5GdcfZvRf2d/gNXl8nL+74dtPNq4bRavI9TclS6Vt3iNwWRUHBweHZwYnE4tdJuVMRzW2csVSybIH/VA0K9L66+XUbJRjEoflIgO7n5OgDAMG5iA3C3sN9o2B+Zv4OV/3QJHtoRrJhw4/1JlCUWbut+ulyycW4e1cWXQqGY+n2Rx10l0LL3/Chg7evRX4xmaKg3sRyUkhJRlZLjDD8kP7eMyZKo+5aZmZlLu3Hbu8Mwitc8nPed3my8z07Bq363akCu/I++Ht+cCpv58ODg4ODicMp0k5A+DNvB/59L9e/Zo+yTdHXlwurPYGWSyxfKKTkUsJyUZtaGUa6LDC3DptcgBx0RxidXhhkDFQ67ygamxZEt1/PyTR6Ht0pc08Zmg0+5IEfD3IgAKAdWvMDVoL430Sjb1NruVgjcf72ma+/pJ93H8kHUT3ryNpCTIeb2sL+JkHgcrQLPiPhhrK6fXphyR8W5e438NVfp0rr3Qhea0PA/0Q+bVvObHzcHBwcHA4ZXDlnjMEJ6yHuH8dswtLfOJH5lnLsp+bdqMgGY/EJ9HgQUw4O6oZUfM4nYisWRMlP3qMxRKzOb2QpaDKkLk4JQW6fSjdQLUhMxfNAbM1Xv6UIlbsaQIfez5LS+oTs3MRuG4317h9EdixyPLQXJlE6uVPAFce5vsP1ViaWguJb4RLyVYn4mvDgMRPtTrang3w9W6E/CX/4kTukIODg4PDceBakM926LyatfC8GZIFLY0UZOBfIJb3SjRqQxsC2I2o7/CEmPQlW6I29gMdYgjzP8k8Ziw8EavOVUiMimKk1i5Q86LZiVTIkA4azMS2frpLMlGOuR//GFkOxbYl4OceAB5YB3xnPfDYOM/zf1zEbMl8mR1OHdHTtIrUokx1STrmy0ZScsny6HkslkiWDtWAjW2g63MbNZLrRvxZ27KVUOWga+3XbweGAfIf/qWnfWsdHBwcHE4cLpNyBsFLfpdk4UCdL2w6xtA9zWQcrDOwBhm1FIslmfsjDrWDkKLXSLIH2jqsnTmpdOtocB4GfF8kgtxywvd0I36vjrGTPRKT2Qrfp1qWoW+ak7E+iUQw8vGqxEaOxteYH7QWPvASuup2I/77uQeYEfnsJTxPXfe6DnDxHC39nzfD92ai2anERuyaMjuozAGEaBXtOhRTaauOzBwvyI3o6WBDKaXlP/Tmk77HDg4ODuc7XCblbMXj4wyiic9Sjhq1HY2ydKJM9GxaciROr1rG0O4b/Rel/NopGFkZiA6lHFumZarLYzb7FJi2xda+NuR2B8VOf32bx5+t8H3LBVtXq2jdR6mQFDVj63vAuqUTvya//pW1X3/lLuD/u5jtxsUEeO91JBHTXStlAXwt9blWP6fpXXXIacrjPWpPyjFJnvrMJL4NaoxklpLqeVIfAOcVeV/5OJB6LrPi4ODg8AzBZVLOIHh/dwef2mtDYPMyBZ2Ha2zhjX1rGV7fIbmYFxJRTPl7ncUzCLiPorjG5p5lVMKU/imFlESjLx0txYQEKfVIRKZlnk4Osa3PGOhrQ+ChSe5TNS0A15361uY82eXribjQqk6m2ed7iwkzMGtNZP5BkHkkTus6vHb9kEQDIOnTUtqepg1ALCYkb5GUzhLfxhJUYss2eeD1AWSEgLV15z/6i6f2PBwcHBzOUbgW5LMU+aveyGxE5lF3sVhiwOxGwGLZyhdzZQbRiZ516GQedRbNvrUEq65F/VTK4peSg8F3ucjAq+6tkdjYr2+LJiURPQcYjJUUbVrmz+2C+aH4uelQwozkpCelKBX0TopuJMhICtT47VTCl5ZnYPX1GYTmCbOnaSLevpCrvowRUOGszghKPVnzyPnFAbNFanaXefDu/FN4//DJU3suDg4ODuc5HEk506DmbNUhA7gGRu0+0W4c7VJRwWyUkdQEuQlYtfQTiymaikKbAxKfpSLLNIm/WjBaG5K4rOtwHWN9kqdUshRBDmxfMjdZnXSs7b2V2AS3ic/9aLty4lnw70YkPjPVU0tWpjv8elAyKbnHNWpJq5Dy+2JqmaKFspGPXmTTlROf2adyvPreaBtzlBkRSklWHBwcHBxODRxJOcOQX3cDA341JrlQoWsp4fe9SDIgkgVo9vlaLN01vdDIg2pRVPAZZCYOLYi9favI1/c0reV2FBqY1eAtSs2v5bIjnFhcShjga0OWVCoxjzMms4WWivwHmAlcTfxMekKmEp9r+UHRk3MYCDnRCdCVmDqfUmIt00pItJVbS1U6MVo7nADLsChU66MuuoV0xSDO+x9/Du9zf/aDn4uDg4PDeQ4nnD0TkfpAnloLrIpXe9LhEvvsABrKlOJUXGeH0v47lA4b9S1Rl9g44LZhZhb6Xm4tvIeqNqxvxX1W7PF1sOAgBCAajsUSSz8XLDAjot1Bqc/MQykhEdBWZxX5+rnpUgopiUQoHUrqTKs6krXQD7nPo31X4gBoF1kaCzKSpOqQ5KMXrRYh+znQFSKjrdra5RNm1AS1I+6zK2LjXMpq+jXzbI6RCm3DnJkXL4f31Y8BvQj5K950Cj8cDg4ODucPHEk5ExFJOWKsQ3+Sya5lKwB7ip/qkiyo3fxyABRhAT7KWF4Jxeq+nJCAaAZAhxCmIsL1c5KfHYsslTSkBTcQc7eh+KLkHpDJOlpFK30ouqENKSzHzApFqbX7diISr9HsUFlEuAtlc82d6q59fdT5tpSYBmYQAC1pwd64zOyIdjFtaXHNj49b+Uevp2ZPRtuQS6ILKqX2upbNdBqzHluvp58DmVyDSRkjsK8B5FICKqTIX+rM4BwcHBxOBq7ccwYiv/YtDLBxwDbZWPQo6hY7CKnhaEvZJfWsROHlNsxPLeOrohPR4YGZZyWPsT63nxPRaCeiMFddWGOfRCjMLLuibrRhxqAdZhTtlhPqS5aLfM9yYWUWzsrrBTGDm+xxHUoUWkXbN0DiMl/m99oSPApdfy4ZDB2mWEh5nHUdK9UAvC5bxAwukU4nPzehcjGx4YyJz7UD1sqcyPUtidNudWilK4CESq91P+T11DbwdgGoDeF9849pCOfg4ODgcEJwmZQzFakEymrMzpMwZ+BWZ1gtYdQHlhXJYWLOcmyEJMzMwwQQ23pxf419BtbqkMF0QkhRKQFmKgzStaGYsiWWdajIXJ8gYwmqPmQGozZkZ5IGeyVQ2gI9FP+U6Q63T3yKcRdLllHR1uZuxPesOOSmVnbRTMZMhWSkNuA1UQ8XgOtT8XAk2Q/NoASZZYVUVDw6MqAoQmEtP+WezU3yQBLWFVKk10iFzrMVnkuU2kiAqS5bosNsZQSCm7Ts4ODgcHy4TMoZivyFv8xvtIySsnsES1IySX1zQo0DZiY0AA8D81TRLh9tnQ0zEoqFkmUBtIxRjW1ujRKbqmQSIjV00+nGmRibgV/bBa6nPmB2JsitfVkdbzuRtS4fqXJAYOqTVFRj/m4YsOSjLcCHq0Y+DtZJBNR9Vtc83eHxJnrMoPQja+GerfBfKSFJUKM3PUct16jLbpTZzKOOdD5pN4+W23LwtZKUzwIpWc1UmBHycq5ja4vnFvvM4AQZ8PyDK/f4hOc1OTg4OJyncCTlTEYpob4j9UkOdizyybwXmq6klJAYrLTIxhRuRtJemwiBmCuTJAAM3plHojIIgVpsbbTa0hxmzAAocVAxbiRdO5pt8MDjRGKj/8gk36NrGvpWwhk1fysllulIxNZ+XceGE1bjkYxPzuOPrqUb2RRoyH48GAlJRRNTlSzHTJWEYbZipm1L4kOjWRktD+Xg/ouJEb1yzGvbkzlI1dhKQYfqZpt/uMbto9SM8gCSlDU0No6oODg4OBwbjqScwcif82vS6ePxCb1dYBDe2qI4szFgIF8smT9JJBmOpZIF9F7EQFxMTW+Rw3xMUiE7m5bNCbY+oB6mOeBiVHhbH5qodV2H21Ti1boRLavkHt+vJZHR0ojqW7R1uhxz/2N9OuwWJMirmVpjAOxcsGyPtjprNqcx4P5UjNsUIjVbYaZlusP9NAeW9dDBiAUhZalnZKsq5bKJnl2ryR5dgP2cpKTZt2uhAtyhZLWmRTyrHVbj0o49V7HZTMMAeGxi5X57t/2PZ+FT5eDg4HD2wGlSznQE4t4KSLtue/Wgu/0NZlYO1hmAOwUrrwSSiVgqsoSSC4nY0DZzuNgHstBEo5lHgqNBvtnnv2NBMxfqd6JZFs2CqE9LYyDZHdHIeGDGQb1RPLCEohObo5SkSa32K/GTtTVKHhbKJEuJB4QeS0k6RHCxZP4oB+s8xqKUjCpiia8C3pIMVNSW7amueLlEzDpp1qUS85jFhNdqoifkr2j7WxJSOd6zkt2Buk2LnqvwuqYevP/9KWBvAxhL4X3gc8h//R+dso+Pg4ODw9kMR1LOdKj4tS4ZDdWWaDAMUyApMAC+4ADQlKzJctEyEX7OwNyR3wEMqoWUZYhQxK9allGDt7WGG66F1Oc6AykRqc9KDSY2HUUsxmie2OU3BnIevolatTRUTKykowJhXb8va9VOn0XxaqnLDCJdk5qylWOWY2pD8ztRU7xiYr4rRSkHaXdRIeV+jlSBbUs834YQwnHRwcyVgQvnSWgAXn91vs09G/C4FFnWZanI8yzHJEQ+fWi8j/934MX7kF/+L0/s+js4ODico3Ak5QxHfsnb4d33ESlriI9HKM6xGlDjwESdG9oMrp2IT/kFyQqUpSST+MD+ughbE2Yzetq5IgFWSzdjfSvPKBHQ8op29QDWyaLv9XB8guOJnqbZZ5aokBoRifos0bSKlpUppFbqUvO0xCe5mC+zvHKoZm3M/ZDZjeWiCHJlXs9AyJ22aw9HyJIa3VWkm0rde9WDpTbkvnqihVFi40umSscFeDnX1BjYgEftYvLAtc5WzCvGg5TfPBsuKefs4SZgpop8+l+fmg+Tg4ODw1kGR1LOBkx1STJqQ2uV1e81G3GwzuA31WWw1jbYILPyig4cBCzDApiTbCVmwNRMTLvA8koxMUO2QipiW+kQqsbAkQqnJNcHNuBPHW1Hhw5q9qI+sNlDSFafq5czA6HD/lQvMtbnPpeEvKi4NcipLwkzKydlHo3ULlggOYkynpeWlPqhtRsDZmk/ev7VmOffGFg5aLJrhKw6NCO72YrpcTSzM9mVDiR5zQOzMLF0Zal5ns4u0kxP4rMz6dIZ4NEJYKoL7/u3AVGG/MJfO/WfLQcHB4czGE44exYg3/ivSBY0EGuWQklHbWhtuDrBV/05PJgoVDMHKvBcLNmwwmLC4KlakaEYrM2VGUgXSyQlM1WWPdSWX8suQ986bBKfpZd2wTxQOgUzmYsDy8gcC1Ndik2HI2SiVWJ2aEnWvWnZiFEs5xSlJBjFFPj+FEsxy6LTUeO7zOPP6tuiowZ6oXU5tQskGkMR7eYgeVHDOC0hVSS7knk8p52LPKZqcFKfWR6dDVRI+bsLFngOOj/oUI3vu2ABeOEBI079UDxkQnjJ757qj5aDg4PDGQ2XSTlboOUFhQ7CK49oTBbKfMLXUkUOy2Bo2UTdZn3p7FEDuDhYbVimGg0PJD/9kJb7agGfg6UX9QRZLPH15QJJzniP4tCqlGe07bnZZ2DWoYXa9TNqq6/Q4+8e4/507YslnjtA8lOWbqLlAs9jSco+zQGFxfWhERgV6gbilqu2/2WZIzQUkW5bHGe7kU1wXi6SIA1CnlfqW7eUTkPWEQLquKvbaLZHW8XV+l+zKnNl4J37eMyHpqxbqSd+MF0SGa9zG1CJkW/99VP32XJwcHA4Q+EyKWcJ8ua7GSCXiwx63QjYM8bMxkCmCCceyz5jAwa2UWITihA2krbYohAWbbX1ctNkVETH4UHm1gghSn0rd2gnTKdg5SftKhoEFKgWxSZfzdc8aQleKHE2UF+6kg6LniT3VhvV5aKLScTzpBvx/f2QmYdOgRmkihjBbRCn2dS3+TvbFy17olkZdawtxzbfRzNQ6nWipZjFEmf+bGxz3TlIPmpD7vegtBNr2U0dbmOf5KgSm3ZoucB1L5R5vtWYVv39kG3lAI9XHdr1B2wEgWphBgG8fX8Ab98fPNMfOwcHB4fTCpdJOZuwu8lgOV+W1mHwqwbG6S5/Vx0yuHtFBkdtkR2EphXR0gMg2ZeCmaHpV3VUrcQM8Grg1pTyR6dgWRo1jSslVqbRbEk/ZGagKpoPP+f36v0SpVxXq2ji03bB5uusb3MfAPeZeDYocLJr4wO0Gyjxmd1RDUy7YPod9YrR9uxKbBqcsviudCMT4U6J38nj4zzOXAW47MhIl1Bsup1uZCWw6S6PqzOTlNi1C8z0aBv0RfPAb93F9+hcIW0v124jbWMuyfTpvhEY74kPArmHfOc7n/WPo4ODg8MzDUdSzibsr5tdfJAzQOuAQE9KAy0hJsUECCMLhkou1IisHNsUYy2jaGeJajyCbLVAFVit/+iLo6tqXXS+jgbZhbIRja603talS8bLgUHFtByj7qxaTtJpx3NlkrMc3H8E7qcfWifPMDBBbyWmSdqF89TK1IeWCUq0rTk18zv1M9GsUC+0+UfqJTNqRrdQZgbnQJ26mMXEMlRq4KbC5OqQNv2dgolq5yokJBM94KI5nvMgNBKjup3MsxlGes/VBXc44qibA979H3Ytyw4ODuccXLnnLEL+2l9gMFY7d9V6zJctoKnYMshteJ4O+4t9s59XHYq6w0YiKlWhZjmxYwS5TFDOrUyUe9ZppKWaxGd5R8smgGlSABuauFBi9w1g7cjdiKRLNTGNgXUFNQcmYFUSsCiOuurGq2SokBqZAHitNMA3BiQs5cSIlfrNdESDUk7YJry5xRKMl5uhW+LT9fbiObPrXxZ9TavIdU7KgMZexGv12ATw8CTw7Q0s9Whn0UIJuG8dj7lc5DZ7mtZqrbqihfLqLict4+nYAH1tGMB76DZ4u/7js/JZdHBwcHg24DIpZxv6oQX7HGZJX0gtoAJipjZkQOyL30c/BOZLDOj6e82QDAK+nnncrwczf9O5NH7OTITnk3z4UjbS2TediPssio5F9TATPXYE9UPzN2lI99FykcfbtGxmbpGIY7ct8XxmqtxfQbpyFsSfpRNx32XRx2gnTSVmZgSQSccABkUhNTBtirZYX3YEeGQCGIYmZm0XVhvFDYR4HarxfBdL5rTbHEgmSIS7fs4sy4G6ebKs63D2UkfIy8v2ArvGjAiGqZEugCTHy3l+++uWndG5SHFgQmh9n5j3efd/GFgsIf/hX3rmPocODg4OzwJcJuUsQ379G801VoNTmNlAvTBj4Ew96imaA8uKDAMGYg/2ZK4ZBdW2FGWSsrqiduTJPvUZwMdlto52qmgGR71Y1Lk285gFOFKlBiOR96/vWNnJz81x1s9ZBtEBhsWE2Ra1ot+8zN8drDHQq/ZjX4OdM0qCprpWOgGkAwniqivkQ2caJT739cgEz7kTca3F1DI5RWkjDjLutzkQz5Wc12KiZ27AvYhTm3X44X3rzEQuB/cdZsDVh4CrDgE/9X27X2rSNxDH3WJibcx1IYQ622hMslqqGfJyy0ipPinK4H3+U8/+B9TBwcHhFMJlUs5GaLtuJSYZaQwtyEYZkGTMPjQGDMyqnxiEwHJg+oxistrtdShdOZNdm5ic+DZRWYPpTNU0LB4Y+NsyC6cj+otiCiQxu3G0S6UvJEFbjj3wXxwYmQgy06Z0CsDepmlcZipWfmqNCF11v5WYAtcLFuxaaXZJbfIxspbYt0GGSgbaBRP7ageTtjOrRmehzGPFvk02vvqQGbPtazDTtLFNQjfRE5+ZMrMpiyUjYoslm6ys6xjNkAwDK4G1pR25Ih1ZasGvBnaBXNNKvCJG9r71xyvGefkVv3oqPn0ODg4OzxocSTkLkV93A7y7P87A1pTOjwwyeRgMgJox0OGE430GUc2QqDNtNzIzsk5k3TWq69DfT0qGYk7m2cSBdd2UJWBnnrUDq9HcZJf5uoWSTUZWO/1CSgJVSElAVPcx6pmiJnTzJROQzpbpcKu283FgxGVZ9CmzFStVKRkqjGQrmn2uqSCZkti3rp+NbRH6hjYQULNDY31mg1TzomUvgKStPjTTuDHpctrTpFbl0hkTHO9u2hRqbYNOxfemVbTpyYBlsnQatGa6hoGJkFVUq1mtoUx8rg9WhNTe4u8hH3v3M/GRdHBwcHhG4EjK2Yra0DIc+xrS6jq0Vt0gN4da7c6pDQEU+HpHTNfGekC7yFKEdtM0YNOQvdw0F73IdCU696dVtEzMaDt0L7V5PtWYgb0uJRQdajhbocajPmSwH0qWR1umtduoGwHdgmU9KomRqjAzj5eBlHsOV7mP3LOMjWaGupHNM6opuYJpcVSUm3n0XVFy1SmQjOk1WtfhPo82oRvvcU2PTJoWKMjZaaRt4GXJhBQTII2svVs9afT+1AYkJ0qIlNQMAtMI6TXW34+Kh7Ukp0Z1ALz8PcCdO5C/4k2n+APp4ODgcOrhSMpZivzKX4X3vQ+JL0pseo3a0MSnOUwYuyxljBXBq5QW5ioMYM2B+ZwsFRnkx3skIQOxse9ISSf0rRwRS2ZguivaCyUGufme6Jye6Q6Dt5ebwLYoLq0zVRkAKKLZ3AMWfGtbVvdZnZKchCN6msAmReu5qXuuZiV0vWpPX06stOLBuqFUexOJkHVLi9mZhhC1pRKvTT8gORzvS1u0zC5Si/3nzgIPrAOu2819ALxX+xo8hnbmAKtLOkXxjKkOrb27NrQsk2a5tOMn98x9V89HszmaZTka1+2Gd+9HgeoQ+SVvf4Y+oQ4ODg4/OBxJOZuReQxg82Wg6JtwVQO/DhgMRIyRj+gcdKCelkRU3KnZi/my6S0CcTvVDEcgmYvUY/DWJ/u6TEtOfBsQGOQ2jVnbjksJtS+VmK9tFFHsQHQ1qgPJwYCuWZ5IJi83BmaepoE+B3+v3UbqyqumcDkYtAMphWhJSgXFqay5mLD0tGPR3GBVy9KNeF0OV1nG+tZG7n9jm5mV586KqVxqM3zUBRcgEfRaJIw9yaBoGaqUAgOYTkZbqtUNN8jMC0evN2BrC2XEQDU2Ie+xsCjOub0I3t/dgfxVb3x6nz8HBweHZxg/UHfP+973Pnieh3e9613H3Oauu+7Cy172MkxOTqJcLuOSSy7BBz7wgVXb3H777bjuuuswPj6O8fFxXH/99fj617/+pH3t378fv/ALv4DJyUlUKhVcffXVuPfee3+QUzirkV/+L8WYLSFhKCU2TDAOLFip1TxgHTXqiTIMWFoY6zOo6hycxsAISRzw92rvrnqHhuy/JmZpc2UrB4WZCU+1s2VJSiczVe6rXSDx0TLG6HwhHb6XwVxYZyr8eW/DzifxmXnQ1ub6ULxDYGvTzhfN9GRSGloom+h2qcjsRRyQnCnBKSUsu6gwV1uKH51kR9GeJtfTDzm1+KDY3tcHqwkKYCTQw+punGIqrrjg75RkacZFBz72IjOVU13MimtwzHU/FUEBeB8O1bjugzV4n/0MvL//5NP7EDo4ODg8g3jamZR77rkHH/3oR3HllVced7tqtYq3v/3tuPLKK1GtVnHXXXfhrW99K6rVKt7ylrcAAO6880684Q1vwEtf+lKUSiXccssteM1rXoMHHngAmzdvBgAsLCzgZS97GV7xilfgf/7P/4l169bhsccew9jY2NM9hXMD2l6bgwEWkJT/gE/9WhbQIJ7DnrrjwCYqZ9L9Mlc2AajO8qnJMD0d0Dcjjqn1AX/XKZjIthtRJFobclsPkgHxKH6d6jELod05Kzbvmj3xTJMRZOY7ojb4xRSIJKOTezYnZ6wvQ/4S83vpFEwQqxmjIOfrUQoMJdOkHUdRBhT7JBl+DjwxZmWeeKQkU9XykxjEjfeN9LWKLH0B/P5gnfvesEySoYJmJWNakqoPbIq1XmvJdiCR13KPJK0sAumGlJcqMdekWaWnwuPj/DpftqnXR0J4/+PPgb1N5G/9xz/op9LBwcHhlMDL83yNovXx0W638fznPx8f/vCHcfPNN+Pqq6/GBz/4wRN+/0//9E+jWq3iU59a28chTVOMj4/jtttuwxvfyFT0u9/9bnz5y1/Gl770pZNd7gparRaazSaWlpbQaDSe9n7OJHjf+xDLFACfpKPMhvNpKUPbiAH5PmN3i5Z8+jK8T23Z62JoVkitE0en/JZl5s6CiF/rAzOTU1HpWJ9ZBSVHM9URAW7A0oZmW1RrknqWFQBsTQPxfClLdmepKK6xsc3KUYv7iR7PsxJTR+LlJCkleW2mYkZzqehdtO3Zk2MqedDMy6jp3EyF12yszyzKpmVrO9aW7Ia0Ku9Y5Dl+ayMJxESPmSqAOiBtn05HPGa83EpYhdSGKgI8rzCzTE6Y8TroJOtpyf40+0/+kCgpOlLlhOXHx/kevb861yiUclqngPxfv/oUf1IdHBwciJOJxU+r3PO2t70Nr3vd63D99def9Hu/9a1v4e6778bLX/7yY27T7XYRxzEmJiZWXvvv//2/49prr8XP/uzPYt26dbjmmmtw++23H/dYg8EArVZr1b9zDfnz3iZzZhIrfQDMiCQ+g6EG0HIi7cqelTkO17idTkMGuA/t5tEgtiwZj9mKkR51bk2FDKkL63KRx5qpik+KBN+lIluie6EZyIWZDfvTLAIgnSkyuM/PTZOhs4PUSyXM2Ao90WPAB3hOsZAx7RxSzYqODEh8/i5K+XNZ9CpLRe5HSdueJj1mVBfjgRmWTcvWTbS5xf2omFZ1JKWEawN4PJ1+3CqKN8qIEd/yiMlcHFgWqJgYwfRzEq6i3M9iYmZ4gwD4wgW04T8ahRT46hbLSI33gFfuouvti/bzXFMfeO4cidRkF95n/gu8//lnp/bD6uDg4HCSOGmS8pnPfAbf/OY38b73ve+k3rdlyxYUi0Vce+21eNvb3oY3v/nNx9z23e9+NzZv3ryKBD3++OP4yEc+gosuugif+9zn8Cu/8iv4tV/7Ndxxxx3H3M/73vc+NJvNlX9bt249qTWfNRgt56jJl5ZBdHJxlDEAVWP+3ItWz8LRLh7tgtH9ZR7bcLW9NfH5RH6kyu3mKmZINggZ0P2cGZZOBHxvmoRCS0ilhPvSzMCoH4gH05LEgc0cUu2Mnt8gJKGoxDZxORghaupp0gstO6BkSW3yi4l5rGhGxoMNKgwy6xTqRdaGDfD1xRKJSiot0/0QaJV4nhfPAfsbNs8nyiwjpLqbYmIZjvEe9yVOsQC4biUjpcTainVo4Vif909nL4UZCZNa+h+NH9rH3z9nnmv67npmgZ43Azz/IH+XA7jqMPAju6mnyT14f/tploEcHBwcTgNOqtyzd+9eXHvttfj85z+Pq666CgDwoz/6oydU7tm1axfa7Ta++tWv4t3vfjduu+02vOENb3jSdrfccgt+7/d+D3feeecqvUuhUMC1116Lu+++e+W1X/u1X8M999yDr3zlK2seczAYYDAwIWGr1cLWrVvPqXKPwvviJ0xrMi+Ga7kHbF+0rIkO2sthGQU/Z2DzpS24XWDgLybmk6ID9jYtMyDet85ajTWz0YtIgnIw4C2Umc2ZrTCIq9eHB/NZ6alnyUibcizZBC0DrQwSBAmWQjMJSnq05VanCBeFsFRirlUt/LXFeLbM4/vSMVNKuF4VqkaplWO0m6kg7dFa0rr8CLfZXyfRec1jPMZMlcLUYmLnoNksgNe7nJjgeLYiXUEQPUpmxnwVWbeW7rSkpLb/WjZTwrOvwSzMc2f5+4GMOkh94A9fZGU4gGu+aJ5fLzti3UthZmuY6pBkVlieyn/y55+Rz6+Dg8P5g5Mp95yUcPbee+/FkSNH8IIXvGDltTRN8cUvfhG33XYbBoMBgiBY8707d+4EAFxxxRU4fPgwbrrppieRlFtvvRXvfe978YUvfOFJgtyNGzfiec973qrXLr30UvzX//pfj7neYrGIYrF4Mqd49qIpKX81K9vQZsA+VOPvNZDlnk0m1nKKtrYCRjoGRWsD9iVIL5b43saABEYdTmOfx+tGwLq2tSu3CyQ2OgRR/Uq0A2VlaKFkUzR7kkO0I4GJgjXLoZ0/SoY06xEHLMlUYmtdVidZbV2e6PG1dgHoRzYJOkqt00iDdCiZFEiXlNrzz1SMoN2zmUMQqzFw7QGew2xFdDAyV0e9SmLRwAB8TbubVIMSpXYttFUcADqerUcN2pSg6H0FgC9v43XoRMDVh+33SkAfnLLs2RNjXMNlR0hA5srWgv3wJK/9S/fy9QsHJD3tAuAB3u1/g/yXf+LUfW4dHBwcjoOTIimvetWrcN9996167YYbbsAll1yC3/qt3zomQTkaeZ6vynAAwPvf/37cfPPN+NznPodrr732Se952ctehoceemjVaw8//DC2b99+MqdwziK/6lfgfe1jJB6diJmM0aAWZpYx0CGCiQ9EIhIdF1KRS5ePmoppu65qRWaqK9N2V7IvY30L/t+fJnnQLE1VOoOCHPBTK9cAfN1PTeSrmQ4tN+k8G0B8WXzTe2jpoz4wa371HtHsiJ9TAzMMmVGKA5au1CpfPVSGoQ0QVAdZLS2VYxKyzS3gwWnxNZEsyL4GvVS2LzJDURkhH5oJCTIrBwE2PFAx2eX5K4HxAJRiy+Zo5mkQcP/NY7QY9wPg8nlg6xJ/PlQj4djXIJm65iBwo4jOH5kEHhsHfuxRXq9vbSRhqQ2Br2wFvrIFePkTLOlFmWhySitr9z7x34B2Afk7XvsDfGIdHBwcnhonRVLq9Touv/zyVa9Vq1VMTk6uvH7jjTdi//79K1qRD33oQ9i2bRsuueQSAPRNufXWW/GOd7xjZR+33HILfvu3fxuf/vSnsWPHDhw6dAgAUKvVUKsxE/Drv/7reOlLX4r3vve9+Lmf+zl8/etfx0c/+lF89KMffZqnfg5CjcCCnEFtEJhIVC3tBwHQkyGCHqyTRT1QIK2vqs3Qjho1QOvpPBtp/10MrLW2VWTQHu9Ju688/fuJEQ/Aumq0NTgQnxcvsxJN5gF9z8hQp2DeIvWBrVuzGlEGZIlpaiLpjqmIYHhZzkHLOWM9riUcIQ0eSPBUFLtQ4us9ITH1AUlXUTplti+yrKJkSj1P1OJ/dERBMTVypVOVlRjpdSon5oar4mY1olNRs7ZBj+KJMeC1j9rPiyXgU1cBu8aAl+8G/t0XeU8UF83xH8Djvnif/e4le/kP4PEP10xs2xGtS5uiXu8v/xLYuoT8h46tL3NwcHD4QXDKHWcPHjyIPXv2rPycZRluvPFG7Nq1C2EY4sILL8Tv/d7v4a1vfevKNh/+8IcxHA7x+te/ftW+fud3fgc33XQTAOCFL3wh/vqv/xo33ngjfvd3fxc7d+7EBz/4Qfyzf/bPTvUpnL3Q2TbqVKplDF/EpMXEfEgApvdVV3KgYE616zoMdKqX0AF3QW72+WFmQdzPGdy3L7KMoFkc7YYBzHdF3wsADSEHOYBQOk8SD4C/usShE4lrQ+vK0dbptvwc+5YJ0YxM5gFjUgabl8nFTfFT8XIbRFgb8nzXdSh63dPktpoN2tC2FmU/ZzYpyoBXP84sRGPAbJISoRosW5T4QAITCfs5MyutornGxoENaSym1h6sk42j1Kz/l4tWLrtrG7Milx+h620OXqexPvDWbwB3b2UXz2hr9/EwU+XoAhVF7x7j9cnFc6YfAF5gBLRKkbD31Y8BD08if+M/eTqfWgcHB4dj4mn5pJytOBd9Uo6Gd9efMFDpROLFkoknCynT9rWhlSa0tVj1GNpJotOQdTaMWs73xLZeyUaYcX/dyMiCZgxEbAkvt+MtlPnzaBDX4wBGVDwwMOew7IiKTyuxlX088GfdRw6uJfNoKleXDqa9TWtXrsQMxHMVlqZGyzOa8VGSoGsGGLC142iyR0Kzt0HiphkfD1xjP6DuBeAa9PoBXKd2ZGnZSicwa0YryKwMpmtTN9/cA76znttcfdj2n3q8hzoraBSqcVmLsGhpbW+D758vG1laKFtr+boOP0df3cI1TfboB7O7ueJXk//T1z95/w4ODg4jeMaEsw5nARLf9ANqaBZJVmPUEn+hZC6xufiCRGIqpn4aOiiwH3IezYIM/tvYtk6gA3VmBXSwnQa3ODBdhe5PMweT4mmyVLJJwZ6UdFIPKEjA1QnO5dhacoPcNDOqPwGsdXcYmFhVMxKqXclHSIeasmUe169eJDqdeeMyhxj2Ip7rTIUlj0FIfcrlRyhGDcU8Tzt3tJNKS21KprR8o4MNIzHGGx3ICJhwWbMuOmsozMxm///sALYvkXDVB5xi3REymXskZGpup4RypspjLpZ43nruJemyWpLMznrJpPRDI3/FhNcDIKktpkZwD9aYnZqpUq/ysf8ORBnyN/3UM/kpd3BwOE/gSMo5hvxHfxHed/6IAWRStCFKCNQvJfMoWNU2Uy2rqIGZBh21jC9KBqYr9vG7xtimPF82K/5yzEDXGFiJJ/WA0GNrbRxYMJ/u0EdECcww4HEXS1xTlAKZkKSpLn9fToxAabeQEgsv5zE0YzQp+gnVhXQj8yzRLEuQA0nO7MDhqpWUooznNlehi6uWpjQrtKFNgnK4xp/VZXexZMFb24L1GmgLs661EwFjqWUwJrv8Xr1ttFylmZVmn9f94Umu/+pD5veyWDatjp5vOeF7F0pGDJt90wQtjIxLGITmQ6PdT4ulFdKB+bIRzD1NZmlq0h2mBEivjRIsD/D+7K+AQor85372mfy4Ozg4nONwJOVchLqXAtQNdCMGwqkug++yCCCVHKiYNJPsxXKRAapV5FO1ZgRWbOYTawNWR9tUNCFa7tAJy7FvZRsdiPfIpLXRqmhVLelXhLCyz07EzAogItuM3TWBb0E+EzKkNvHLRcnmSMAdHVConi1L0uWzv2EzhNSLpCpdNGHGLplRrciV0t4bj4hftbzVEwJUHvFzAUz4quSoKNtq9476umiJSZ1ngdUeKBfPsVtHO5oWSzxXNcZTkXRL2u7VcVjbtoOcJLITWbZt1L9GjeO2tKzj6OI5Gr6N9XnfHp7k94CRztmKdZFVY3PNLaTw/t+/BDIP+c+7MpCDg8PJw5GUcxGq1VgsmclZDnsq1oCrT94N6Vope3yPZje+P2UDBguJdagEuflvaEusDvmb7HHfGvBziHNrsFrnoToXbySTooE7BwlH5lkGQnUaUUqf5L64zOZCaDa2Sb5Sz+buqHmd6mwg53ygDmxetpLGQonnUUyt3FMf8Fp0Q6AmgXe6Y2UZvcZLJfteSygZKARWAzjVueh040y0M6lkPVTwq6WpSmzdTLUh8N8uYQbnxfvkPIs2/FEHL6oepxrbVGjtxtLBjRWx/q8PeU7VoZEcJU8A8KNPrP250q6mfQ3g0hkjZ/pZ298wItoPeQ5FEhfvKx8HlorIf+wXTuUn3cHB4RyH/9SbOJxtyH/kBpvUW5aMiApVM49P0v2Q2ZXq0FqXD9eYbakNGchHBweGuc3+6QemkwD4tRoziOk04MIIqehJK6226qpUW9ucNUsz6uui5KaUsPwSpSboVTFt5pm53HzZpjBrp09P9CyaJVA9yGRP2qBzoCH6jFLCTMuor8wTY8w86cyg/XUxP6swWHsw8znNYPRDO8+idFepU66WW3SgIWDXQjMdmsGojGRjYp+llsUSS1OaHemKOVttaB1Yqbe6e6mY8vgFWUsccLsDdcuctcWsbalo26yF6Q7wT+8HfvpBy+hoaUm7yZp93i+16S/J5+/BKcDP4e36jz/w59vBweH8gcuknKvIPekyCU1EqgFTsw2JpOU1c7K5xZT+WJ9ajcaA26vAcyCzZVQjorOBVORZEUKg5SM1LtOSRatoAwWVcJTEIwWBaTCizKb7qm2/ClBVlBtmNvF3GDAgrswvys1DpR+SVNQHJCeKQcjjt4smHtZumo4QnRxA5gO7xnks9V9ZLti6NSulxMzzgGEE1Abcx3TXZgslgRHCSmzzewAjhLkHzFZ5zl+4AHjxfmY2DtZ5/za0SVimuyQa62WyspZ8NGvTLpCEtoo2yDBKbT7T+jbPX0colBNqVUoJ8O1x4NJZvn8t1IZ0pG0XbJbTY+P8XT9kuei5c+z8OVwFvrmR9+Ble4GdC/BwE83gav/2VH3aHRwczlE4knKOIn/xm+E9dBuDsQ6n03LCspCV0fbW3LOOk6WiOcmqr4p24SS+zcpJpaMkEHGnakZC6SKKxQBOA/+c+Kfo7BklMXHBSkMr5mX56mF76heS+kCYmFlbDhIFDfoKNbTrhzRnU3Gol7NEoxkAwAK76mG0LKWW+es6LOE0BmaMpxoevXaa+QhyoO+TVKgpm5ZFxkRL0hPtTpBZV1BBvFC83FxjhwGzOTl4L1pFkpSCZKyach27kQ2S1Fbo5YKdX+wLqSwwG3KoxqzME2Nc91SXGaKDNTrnXnGEnwHIcY82kJvu8PUvbud+Xv89XqePXGvdUBfP8Z7vWLQZR0FmU6ArMcnK/euQX/4vT82H3sHB4ZyDIynnMrQ1uB8CWWYBTQO0zvnJJZAeqDOAXTjP969kFkTroYSlJPN+Ul9s3BOZhxNyyq7ODepGQK9i7bNT8mRflcCo7cNqmjaUcoiPEcFvj4RH3VhVlKl6G23TfWSCZKWYmIeL6jq0RLRcoBZl1MxOJyZ7sGzEQDxOVPw71ucaprs220e9XrSrRUtV6ryrmZyqiFFV/FqJeRzNPoUjRKUbMXMD8HeXH+F6H5hmNmfLEnUfqWcmdNq+rIRRu42muyxfre+IQR5IsuKAmY7DNZrBvWg/11aJOQFZiWHim+9KV8qDU13LrnxjE79edci6rH71G8B/eR7XtGuM+9wkrcsPTnGsQJAB/7CTr0/0gMuO0Azu8XHk//fPnNKPv4ODw9kPR1LOYeQv/GV4d3/cyMDKJOSMgVdbUGfLDGTLRTM788Cgl0Y2tTjK6BWic3R0ivGyDOwb65ueoTZkANYBeppVGO3mUcGmJ5mXMuznRAhQT7ZbKlr5Rv1edCLxqB7mQJ1P8WqephmUAJKtEMHucoEB/HDVgreuORRSUxsaAZirmBmekpfUJ/mLfcvSTHZ53IkeyyfFkY4lbYWOMvNCUbEqRs5dB0FGKa/3D+9hZmaubMRELfdVyKylnkw0KeWYxDDKgAi8/nsbJE2DgF9/eA+zRKNGby/eZ4MZNROmLrlezlLTtiWKjffK96PYvEyn29TjhOVRopL4wP3reF5HqiRROhTyqsPwejcjL/+7U/3fwMHB4SyGIynnOjYtWwtuVYKrzuNRt9exPoNRfShlFckU6Jwa1VSkPp+stXyhglEtJRVTG+CnBmzqDtsTsqK2+oCVVVTPobb3HrgWDzz2QpnlJC/n/ospv9csSScyb5ItLQbUXeP8WpMn/4cn2RmzUBKztjbfs1CW2Ty5aXU006LaloemSK7GexTaatuzZmdUlxJm1GYUMu43yEyvUhTxcaDXCiQiR8RkrTaUUhmATmBaH/UhWd8WHxd5v3rMZB7HHtRlMvUgENt8IXWpR7IyX7ZBhzlIWjYtA+2I56NZoqUiyepEj4Qr83h9WkV+TpR4/vgjXLt2Jyn5fMlebtsTctgpWFaoG/H1n3uAv/v6ZuC76ynC/fn7gXLCEhCAXL46ODic33C2+Oc4vNlb7AlbSw6LJev2UHM3zXJoGUeDpOoyNOCp+LUmJMKTDIF6lkxI50xDWpNVezFqx66TlVW3osG2PjBLfx0qGI9kG9oF607SEou23mYen+prQxqRqUGa6mfmKiQn2u2jYtIjVe6jJ91Ol84CX9sCzJdINu5fx/ctFzg1+MrDwGMTvCZqFKeZFV2jzhkaEwO12AcqOkQRRtwKKTUgj41TiKoZB8A6dcSMLS9ZhsGL/x/5Rv7r9kWkPAzNXt8Dr8vhmmXSBoH9brLHc67GvJ6AZcp0Xo+Sz9RjJgcgWWwOxLQvNxO8Uaxlwd8uUAOzsf1kQe73p4BLZtf8/Dqy4uBw7uFkYrFrQT7HkU/9GzE4E0KiWQwN0t3IsgCNAUsg09KG3BhYtkPnzpRHPEd0im8cCOFJuT8V3GqbbSDZmkjIjYpjuxEDWrNvAVy1MqqTqQ/5dH+4ymDaCxno9FyWiiQxkYh7v7OB53uoJuUsWfdkF9i5wOB/sMY1L5S5/v11Zno6QoLG+ixf7W7yug0kI9AukOy0Jajr5OKqDC6MA+uKKiZca+7xf5kKWlMhe+M9nuuRqnmLjELbetd4hMij37YunTCzcQba8q3ksTGgyFXbwtULppCKSV5qBCWVPwVHqtxnKsRtT5Pnrfb46q2zv87MixrYjUL1OaOoDZlNWatj6JJZI8qKJZaTvG/+8ZO3d3BwOG/gSMr5gNkKU/hHqgwE7QKDbkHKJj1puZ2XYXIr2pXcfp/4ZqMfZUYitBNHSUhFpvmmns0N8qXVNYcMoksY3HU2jLYiLxWBVsmMyFKPOgrNpEz2TE9Tjq1d2c85W0ZLLEpcHp7k19gcULF1CbhwgSShGwl5E13NoRrw0KR5r2jHz1gfuOIwNRYLJQZ01doA1nJdSEkE/Fw6dUbugbryVmLLMlVi4B89Cly3Z3V7tMLPV7Q83oO3rf7dgTrvIcDrqYZ1oz4vANe+XoiTang0s9ITgpJ7PK9OxG0enhQyJmJoHZEQ5FbqAqzMs1y0dWl56EB97c/i0YRGoQLtYcDP61Jx5Vy8u/4E3p1/uvb7HBwczmk4Tcp5gPz5b4V330cYiHUWzlKJQWcoWpRWkcF5ZbCddNvoED8vZ+CY6JnGBDADstwD/MwG+WmnSTmxFt/Rqb9FFdJKp8v6DgmJilB1XozO8tEhf5nHr2oCt7HNNR2pkjis61BgeqBOIvKd9SQL1xzkejsFKw9pC/BMlSTKA/e5fZHrnOgBLzgIvOAA33v/OjGIS0wI2xFDtYKcu1raq0V9JB1VSuQ6BWBeAr2Slfrg+DewnAA7F1d+9HATcPEa22nWK8iASIhSUchgKq/rmACdAD0xIEFZ1+E56VyeioiRm2KUV5KsS+pbmUgzbaPGc37O0tDGkdJV7llpSqYlr/ysCDMgyaxUtK5DrYqfU2fUKsK796NA6iF/0S8f/3o5ODicM3Ak5XyBttI2+yQbW5dMOKu6Av061TUvk8aApRYdNKjdOzmos9BgpQLR1LfhfwMpd2jpYhgAfc/m4+jTeScyAzklG9rGG2YkJdpxlMNKEmN9lg8O1/iaZl48yDToohnVHaybKd2UlByOVNmhMgisXXh/wwiKDl38ylbToASZtEr7JCaqO5noWTlKSzeNwWqzt06BxEln34xib9MmV29uWVsywHtUMlHpcaEao3Skkyr1bAq2Di8MpQNovsx1axYshfmv6HTo2tDalDNPMmtyH5eL3E8v4rlBrv0wBA40ZLq2dHFNCkHWac6jUDNAgMc7VOM64hH33jJ1Pd73PgTEAfKrfuWpr4eDg8NZDUdSzhPkF70D3v0f5h/9bmRuoRM9IM1snk43Es8QKReM9xg0vjfNYDQIrUU28YBqYm60fm6iVg3orSKDkwotR03TGgOgnXMtMxXaqRdS8TfBal8WwAJZKTEyBVBjsrUlJQsxMZvuUvzaLVCQOgj4dH+oxvc8OkHB5n3rSSKCHHjTt/naRI+ZplaRWY4ssKGBOvE3kk6mmug3lgvmtxKklkkJpTSm2QM1klMC8cQYicKBOgnglYeBL21j5uQYYtLjIsi4XvV/0WvWC4GqkMVWkfdVO66UyMXyeWhLdqgpmZ/q0MYqhNnqyc2+3L8vbadnSnPALM3DkyzbPDbB4092gecf5D1bPOoaADbSIBe9zlRXJjqDmb4wtc+edJd5s7dQc+Xg4HDOwpGU8wlKEFTAqu6fajymjrKPjzOYb1tioMo8BpnFEgPWfJlBOA6AJBWfkoQ/6wTmzAN8zwzO1Lo+l3JNDjEzS5nO1zkyW1p80l4ukvC0ijYnaEzm7FRi01UslIGrD8kU5sC0H/dupFC2GwFN3zQa+hQf5LRrv289icjzZswETg3ZcohhXc5z9wB0pCspyoAJaYsuZrwGbSFIKuJVK/9mn+8diDZmpsLzBLidtocv6TlkNEPzc3q+LBefuiQ0CjVX02sErPapKSU2KqAbif5nxAhOO6bKidxnLQFKNky7vPycWayhCKf/13NIbiZ6PM8jVQpsZ6okiLUh990c2OBIRSVeXTYCVmeTABI9FTdLqdDr3wx0CsgnHVlxcDgX4UjKeYT86l+Bd/hWE6suF8zIrBPZRODEZ2fLkSrdZ1UYWhP31MWSDd1TjxMtJ0SpTdZdLjIYq7fKUsm6TzRzsK4DlI8KwNpppK3PObidThEeHaY33uNrsxVbY+axlVhn3WgmZrZi2ZedC9znr30NePVjfG1JRLEd8XmJfeuCCSULUR3pTtIMTDm2+Uja/VSREogvBAcgwWoMWHr6PztI/HYs8jrp+IBtSxTo3rPJBMOpx4zEtiUjIE8HOpVYy1nFxIY4lhMztutFMhU5Me2QtqKrpuT7U7wWu8dYYmsVrdT3jx+2ktbXN/P9+xvsNKoPmNU5moCcCPx8bbJWSuClvwsAyIN///Svj4ODwxkHR1LON8xUGEC0YwewwL9YsrZgNWsLcgb/QQAgMHGqmnQBtq9yYm3B431qKw5V7diDgs25aQxsxoxmGxS9kIE8ERHt5Ufsd/3QhKDaUfPwpJGaTmRlhvkSsx3r28A1h1YfAwDe9dXVPz8yIRkU0V1oeSr1RXfjmTA2ysynRb1iigkD94rza2paDoDXZ6ZiLcF1Mctr58D2JcsEtUXg3IlYlooyksYDdeC63U//3ldHpiXPl7mOtowKiFKKl6PUBL1zFZ5TbQjk4qGj966Y2Cyh2jTw6sef3HYM0Hb/WNBy1LF+p2XBHGbTn/q872N9Xp9iau7FlRjeng8AtSHyid96+tfJwcHhjIEjKecbtLNDJxxrhkDn4mgmQFuOD1eZnh8G1toaSGBRo7Ugs7bhWDp1DtYYVHXwX+KbiVklBrKimJzlfBLf02QQne5a901HMiHDgERkrM9untG1LJVYqtk9RgJwpMrywgPT3GbLMvf1+Dg1E2sFxb1NrteD+Y00+5YByTx+Xxnymg1Gskda3vHBIYRaMvLAa6OBWLMw963jNuM9EfRKWW33GLuSMo8EbyiEMMiZ9blgwdau3UNHD/57KuhavJxamO9Ns3NJsxOapdnX4DUMpWNJPw/aQp16zMRMiFD2aGv8E8WxCMrK7+T3Hlb7yBRSm+7s57xX2gYtPjDezPuRT//rp7cuBweHMwaOpJxnyK/+FXj33G5ak6FvJELt8EfN1NRLpTGwdmTVKOSwsk/qA0NQT6E+JWpS1i7waVyn9eaemYi1iqKRKJOIbFti5qMXmU/H3iYzCzpLpiJE4cEpvlZKqKFZKjID85UtfO2nH+TxBgGzJFtaLDkA1FIsSBu2iojLYjvfi0wIrBqX1GPHipZ6tHVaZxoVU16XURdcJSd63ZZKJFEAiVyY2XoWS/w3VwFmxdF1umsThz3Z5q5tJAelhNmQCxZ4Ddav0TEzX+Yxl4qShdlD0uHntK/fusTr/+AUz/nqQzxGL+Ix9jZsv0EOQDqbgly6mLKTJ0pHo10wZ1vNnB2tTQFsirKuZbxHYquEVX+n5UgA3qP/CdjSWuXW6+DgcHbBkZTzEdo5oR0gA986LdSELPWADdIymiUsTQxFYDnZAxY8IPRsPks5ZgZA3WmDxHxYmgPz2FgoAr2YpaAnxhio5yp8qu9FzFb4EgS3L7Jrpyfi0i7Mp6MtZl/LRWYj9jW4n0EA/N/3UUszCM087OJ5IwRf28IA/Jx505voWpWY9aTtNYOUHnwgF4I2IdoSJTKaodB/hUR0HVISqspMpDt3MChPd3ntD9aE/IjIdLLLILuvwdc2L5OgzFVIqAoiLFajtNRnBkbbtJsDBu844Ne9TZrTJT6zTdWjdCAq3j16kOBET9bZMcIwDIDFssxUEuKW5RzceKJYLK2e+qzn0Pd4jqpreqxu+iZAXI190/yocLpdEEfiEslXu8Brur5j5agcbh6Qg8NZDEdSzkPkO98Jb+8HLFjEvjnRaheKdnqUYwatRck6JN6IeFVM23RasOpYFKkE/GLC7Q7XrPtnurPazE2zCqqP2Llg5QQtrcxWWLZRPctMlcF9qcjAvmORgdfPqUlZ1yHJUWOxlkzcfXjSMgraaq2dTdrlokRtENo55Z5dr24ElGJz5c1hZEdFp1qm0FLFBQssn012ea27kZnLqZZFW4KXxPm1E/Ec13XYyXT5Yb5vqWQErDrk/dH2aTWu032O9SkkPlZ5JUqNEGjWK8iAZISBpKIlqg5ltlNq2Qv1XhkE5kI72jq+WDJdk/rFNAYkkgdqJB59ISJz0vmVSyeSaoN02vMw5L3eviSC3LqYzslModqQr011LTsmcGTFweHsgyMp5yvGxaxMW4lH3V2rMhxvscRAtKdpwbaQMXBqq6qKX8sirKwPrb25lEjmQ4JxJC2kmpWJMinj1CwLsG1JpjFn1rXTLpjT7aZlBu35sjm5jveB679JUqDbb2yTnCixAEwQ+s+/wwzEYolrV81NL+Q/fYofFRYDDJr1oYl0YzGl0wzKihYlodYmx2prfCUAvYhBvz60QN4qmhA0kH0tSoZAvUkmehwb0BNxcw7JWkmX1dal1d4qz5HOrB2LJ/65iOU6HK6t1pqUEwv4frraI2UYmIdJJ+I+xvpC9nJmu7QM1pdrfKjK0tGFC8yoaRZF5ySN9W2AY00Exr3QRiosicC5JqRpXwNI2jb1eaLHc1gDHm5yRMXB4SyBIynnKfLav4WXvYdPoPUBMxTaelqR6cQTPT69R5nY24twchiIkHTEr2S5AIxJQNm2xCfiTgT4yYi5Ww5MdayTKPWYnledxrUHrHW1XWBJZkm0GjkY1OfLTOeP91n2KKR8/UDdsiG9kPtMJMsT+1baUGxc5nnPVazFdhBaa7ba+KsWQk3RiqmRhqIE3lJsRm46SVrbvLXjpRdSF6N+NBcvkAx2I5LAfsgsQSjvuWjOtBZKECoxg3PqkZA0BnxvkJGUKZkaxfEIylrdNeoaq+MTjp5wrNDzikSX0i6wJKWapbkytxnvm+NuLzSzwHIC7Guu7o7SGU65x/s8CFgaWyra/VBPGfVKGco929Dm+5ZKQC0G+rEZ8PVESzTSfeQN/x8gypB7v3Ps6+Pg4HDa4UjK+YxZsZuvDVkW0Zk5Kowd1a34Of/4557N3ymJh4YG88FIeWCyC2RVC0DqeqqBtxsx2Kjw9pJZK+88MUbSoR0ue5oslbSKDG4H6pZpufYAA6SuY7LL7/c0eV46pE8t/9sFKVfkNiBRg7vOvelEq6c4h5l5ijQGJpCtxDbgMMhtmCJgc3RGUYkZRDVTlcPcddUkrRzznJQs9EKWXbR9uBORBG5oc/9PjJFINvu8n7kH/M/n8Nq+/AlrJ18Lx+uuORkfE23RVr2QfnbU8C3zzGa/GltXjs6AioV8qOdMKTGx8SAwUzwlJ9WhZXUO1cxkUO37tTyk5zcIgWBEW6MOux7g+b8LJD7yohPXOjiciXAk5XzGE2P8Y79xmWLY8b49AS+WbLKuxtra0Ay/dLjcQIKRbj+asVAvi3Ck+0Un3QIMFtUh8IpdQF+IQS8E7tnMoFVK+PN4n0/W+xsW4Gsp8NK9fOLvRsym6MTesT7fs2nZSkJqrKadRZoZScR3Q/1aUiFcOcyrA+B1Kkn3Twa+VwcNAqYl0W31/BTlhNkO1WQ8PMlsiZ9TRNwYcIDhYokEK/V4bj6MyAHmC6L7n+4C3ZDv1/LMZTNc/3wZ+NpmEtDLj0iGqUZB8rEwCCnCneit3WVzNIoJEEnmQwc2lhNmVVY+AwUSkImeOd3qgMpUyKAa9cWBkcIiTK/kSylRf14siR5KHG6VaOrgQvXj0TUo1OlWZ0oNWHb08vcAOZD7LrPi4HAmwZGU8xj5i34Z3lc/xidwdRJVLYD6kKQeA6XaxPs5ty8lzAqM90w30I2Ah0S8Od2RICAfMS+n+LMtgWNWBJLDgJkAzYT0Qr5/1xiJQzEF6j36ixyusU02kIzGojjEqnX7VNcyI5q50Rk1qQfEJSvZpJ454cY+A2W7wNdHp/YC5iejZnCl1NqVVY+iXUFrGZqtXHAw0GrG5PtT3M/2RZawZiu085+psvw22eUMH+1KAmwYo65x+6IFboDmb/sbPMZYn9dG/V70WMfCchH48laWyra2aBx3vPNR9EP7F2bArHQB+bmQ05Qlm15kn6GpDucq9dSczzePGi2dacmskBr50Wydl0u3WJmfl544A2tpbhis7U6rLee5BwSio0mlZOUBXsnpVRwcziQ4knK+w4Ok3EV/UJbyjwdzn1XjsaFoBA5X+Ue+LNoVtaLPPD5BFxOgFlpra+ozEGRSdiglzHQcqjGwaQlmuiOCWnE9nS9z+70NBlA/By47wiCq3iGJb/qNw9LSO963UoGSh1bR5gsB1kmjPi7qlTJa/hk1oKsNSdaaEvi0/KOlHp1tsxa6EUlH6vOaNQZsD97c4mwegEF3umMkJpYMj2ahFKOZKl2nEom7t1JAqj4m9SFwxRFrWT4W9jSZVdvTtDLJY+Ncx5WHSS6PB9UpVWNevzggKVGxtRr45R7QL/E+6XXQrJoSvjiw7AzAz4eWzVLVoQRWdtRSkHaY6ef5WKUs7ThbmS+VW/lSrqOHm4DlIvL6jcc/bwcHh2ccjqSc58hf/Gaau5Ul89CX7EO7YBqS8T4D3mKJQtfE59fxPrURjQGfaFPQTyTMWFYoJTZ4z5MgoB0b6mbaElFk5pkNO8DSSCFlMPdytqtePLd6UKEvwXleSlRBBtQS7rdTsJlDqbfypLzKoG62wnWrLkKt7QtSUqlKy612BanPiBq4hdnqUsxa+M4GE8xeedgyUZ2Ia9nbJPF4aJIB+rIjPJ++WL/XB6uzOqMYzXLMituuDuqbFDHpgfqTjd5UIzRfBr69gfdV5yqp/wnADqhhAPz4I08+9r2b6FYL0ECvkDLzoyikwDc2sZQ41RUfk5jnNVfm2rpS8umHRhYAGz8Q5LzOo5miUbO8xOdntSNdU1FmLePHygAFOadUF6XtWj8feg/ny7wnj4/DW/xvgJcj/8WfWntfDg4OzzgcSXHgH+t2gd/nHoNOlJrB2Z4mg00/ZKZkTEhLq8gSiJqWNfr8o6+6ExVQrmubTkP9KxakhTiSklJtyPeqt0WryONMdYEHp4HnzjHToFObNWuhnim5R62ItjYrIQJIQFIfGObWytqNrLwDmBuufp+L2FO1NzpcsRzbU/dTua3OCXHQNT48yezJ1iUG7c3LDIr3bmTpR4+lnCTzWPqpDU0c3FijhAGQMO5Y5PHKCQnVoxOrJy53IxuJsOxzPbMV66qJfd73VpHXsCTOvl/bQvJ0UEzWDldZntrX4L1OPZLKVevpcXDjoxM8jprEXX6E122uwq/LRdOgJD5QjNnhBBhhTT0jHUpQSollmDa0SfoGAT8DE6J52dd4cleXalGCo46h+M4GaoO8nDqtdgHe7X+D/Jd/4vj32sHB4RmBl+f5cR4Dzy20Wi00m00sLS2h0Wic7uWcUfDu/rjNg9EUugcGiKaUXjSA6jTdTsGe3DXNP9m1TpelEfHkWrbty0UGydkKBZBRxiAbSKmmJfNYLj/CIPjd9SZone7acVVQqVb9YSblq9gIU6dAIzoPZlW/VCLpyjyWINa3WfYIMnYyaZvvVNdExDrbaJQorYXFEvD5C3ntLjvC49+ziaLWaw5yfQ9N8ngAz13Pty6TqVPPvE4iKZmoMd1aOFDnNSolluH68jYG6/HeSkbA+9tPk3zMl0m6VN+SCdnQSdGHqmwT1hJgNwK+uJ1fN7Qp1J3oUTfzQ/uOnfHRtamnyo5FkhTtaBpIF5nqTJQsrlVKU1O31DMjvUS6rYopdUyblnk/58rWebRz4annHfVC4C8vI7nVMRFKYsMMmOgh/+l/euz3Ozg4nBBOJha7TIoDMap9SOSJWtuEteNH9SJlCf5Tok9Z3x6Z8OsDXmatoEpseuEq908ADMZLRQaOpZLNZOlKeWggmZu7tjHwVGM+7cfSmjwQPUwOBnAt6QBm+OXB9CnqsxGLvib2zRemJe8fG3Eu1UxOObHOFX2iD56C239zI/fz/IM8dy1TbZYn+0M1ZoiWCwz2lx8B/s8OXl8tZQwDkpgLFvieHDZIby1RaDUmORrKub50L/DcWbrUfm+dbdeLeJ2vOMx1tgumBxnrm2PtNzfyfm5f4jlcNA+8eD/w51eQ+LQLwI8+YeWz42GTkKtd40Z4Ruft6NDGMLbMVw4T2gKig0psbMGoq20s91NN4Q7UgW9tYIZJLfUvmue26oo7ilaRBKxdsLZynROlDrkXz8H73J8BywXkr/+545+vg4PDKYEjKQ4ApNPnvo8AYQpk0Yg7amjZh9EArX/kmwMpS1TMdXYYkMio7qFdYFArSRtvbcgncYDb1KWcMdq5kcg+dH8TPctgVGNzhNVWVm05ne4wYLUkS6MiSRUBq1i2IE/dOrV4vmzZGC+3klaUmcvpiQ7Tu2czv151iOe7XCB5eO6ciVB7op2Y7lLcur5Nr5jHxld7zvRDE77GIpSd7DEbsVxkOWPlXvSBaw6xXNEuALub1MEAwKWz8NLf5fevKdjQyEy6nPY1zNsEYh3/fMB7/k2rz228B/z7/8P9PzrB+6geKOpLsxZUV6JeODp3KRIzvjHxeanHQFw0YbLe2yi1jh81zAPMKbkinVcPTgPfWU+Rs55TkNu0buDJBAVg+XGxZEZ8Zfl8DET8vW2JuigZUeA9/h+BdR3ktX+79vk6ODicEjiS4mBIfGsj1Y4Y7WyJg9XOq6pDmZTpxJWYT/wPT1pWZqFEQrGvwaxGc2CmX82+PRVvXOYxtFtlucgMjQbnCsW3+Q//0lOegrfvD/iNPllrxqQrk32rMfULC2Wbsjzet+GJ5SEzHlNdrkknOT9VpgBgNuhAjYHzggUSqK5oI/Q67mtQ4zMp+owdi+bncfEsv//uepsifajGID3R49fEZ6CMMtOqaNBtFXk+Vx4mmWgelW3RIK2t1MBqG/1W8dial6Oh12Z/w0p5reKTNSCK8Khjj/d5j2YqRoIzz0qIWmrU2UqaXUk9y55oR1k1NtHtVYeA8aaRwSfGeE6j5cbU52dr65K9Nlvh/YoyEi/N4g1CuyblBHjlLiO7uQcv+V3k4b8/sWvm4OBw0nCaFIdV8L7xURMlhqKTGK3766yabghUpKQCMCBuWwIenGLwKcckAmHGgDBTYeAf77NLpxKvXbIAxN6cvhr5xn/19M7jex/iOhLfnsq13VnJmH6vAuHGgITp4jnL+pwo7lvPSc6FlC3Rz50DHh0H9oxRxKoi3Pkyr+2lM6tLFVFK8pL43M+2JRKdL22jkLTZtzZw7Tya7jAYlxKKWh+apKD1qkPHdpnV63sipOtEsGvc3HCPVHlu0x0b3rhW1mL0nPc1SOTK4l6s3jhqaa8Ge15uJcVqbKU3bV0eze4djc9ewvf80D77zP31pbxPqq9aLpKUtIokKY+PW3v0jkXg1Y8fe//azny4hnz7u57ulXRwOG/gNCkOTx+NATMC/dBadtWfQu3v1RAthz1VBhnbklVvEGYMNEPxzOgUGCh0Ku/OhTUPn+MmHndM/j1N5M97G4lKVUo2CyXr6NEheuq/UR+w5DDeo3B01KH0qTBT5dP6YolP5h54vEM1I2tjfdP27Fi0UlcvBA5JJ9VCmfvZ0CbRuGCB1/K6PSau1fJH6gvZEd8XLblsXyK5UYKi/i/jfQuwT0VQ9jWYUVjfPrGsys4FrkE9VroRA31dzNe0bHg0dOqyZtYGgV272AfykTlS6oeTimA6GBESj2ZWjoWrDgP/9VJmo7Rt+pW7gK9s4X266jBw7X6+3otYxrp4jse/eG5t0ffoddTrvb4N7z//F+T/9PVPfd0cHBxOCI6kOKzGE2MMkh1JfXs5n+TVuGwQ2DwfnTgbBzI/ZbQ9V7pFluT1XsR9XjbDADtboR2+IvdO+bC3/Hlvg3f/h4Gl0DQvqmnQ0scgZJC88jDXqzNzngr9kKWOx8d5Pda3zV9lX4MERDUa6yTjMUrMZissjQG8VjMVE4lqINXjqIi0XeBx9owxaC+VgFlf2prbq8sXgIiLRbSrXVteznu1FhHrh9SzbGyf3OyeKKVe47EJM25LhbB0I9MNtQtc62iWR+chqS9P7JvOJJXP2EDM2wKfE5i1eywV4rxcPHZWDuB1f+N3mOm5cwc7ptZ1mP2LxZl2ucjXygnwov2r37/W/KO1iF4pAf7p/fBwPwA451oHh1MAR1IcViF/zT+H960/ZqDohywzDEJqNQASDoDZEX2CVSOu0cFwOkyunQBRyMzAskw2PlTjE/EXtwM/shs4WH/aZZ2nhLYgBxlQgBmFlRJmL6a6DPzNY2RPHpsg6VCn0p50FQUZyduS6Dh2jzGL0S7wib0ubqrxyEC70QzHrnHziyklJCIbl637Z1+Dbbq9kAFUZ+OEmc0Z6oteojZcO0OS+CQj3ciCuJIyne48ilIC/NijNiRQt9cszGyFx9y0/GSBrJKM9R2uR036VA/ULgCPTALrxqjFmeqankbHKmgHWSolniizbh39XKnLbJQ92YlWS0NrlWX8nMZ1cxXekwN1kqnLjvBa//1O4A33r012RgnKWtftGPBwE3CgjnzTM/TZdnA4D+BIisOTEftM15cSBoDiwCzwiyOD9lpFBsxCZl0xfs6AurllmYLakBmaQsrySFWs3w/WgV3jyHe+8xk7lfzFb4b3lY8zE6FzhBZKJgDeumQtvqPY1yCRmJOyShIAhZ7NowkzZoY8kLgsF/gvktKXzvsJhiQtGtSXi+w+GeuTYKgYVkslQc7rMlPlGgqpfU0is4O/ZJaEr5hwzpEHZgrUhG5dh/dMBzW2C0YiD9Z472Yq9BPZumT6oy0trkWFw93IBKRK1NSxVjUy2hVVleMtlswF9lDNSFizz8/NfNk+A0o+FktmwOfn9LSJcmv/rQ/NEl87plbcZz0bm1Ad2nXUrJ6X21yq/Q1er9c8RrKl13OiZzqYtaAamhPt8FLL/QN1eF//DPKf+vkT/sw6ODgYHElxeBJW2pEz8I93p8BAHGYMQtpW7IF/uHUooAcGkEDEsjp4T8s/82UGRg0wVx96RgnKCjQ4B5m1yr5ov3WAaNAdxX3rOJlZLfAvElO1uQozKZqhOVIB1nV5Puoz4uckNzo4cbQMUx+wzDAMmJnQgKqdOrvGWHLoiI/IMGDg1WDaD1laAeyaqkFamLH81C4AFy5QnKv6l1FM9qi7mC8zE3RQiMQFCybE/eJ2DhkMpFNLLe+jjPfwoJizVWXOk2YgjlT5GelG5pGj2Y2JHs9zqsvXSomVBXOYd4rqnFQwOxBjPiXJSj4KqXWE5bCMSimxzJJml+oD4CX7mO16eJJr1gzJltaxu5Iyzz4zJ4NWkaMDlphR8v7qPwOTPeQv/8WT24+Dw3kOR1Icjo1+BHSllbgk3hRJaBmTQsqJwEhN4Ki29TqdWCcUezmD2nIRGO8j/1evefbOQ43R1Evlxx5d/fvlopGUbsROHX1trG8dOfvr/NqN+ORflum9OoDxysMM5k+MMUMxX2ZwHJ09o54fu5s2jTcHLfIP1nhdt7T4/hx0cy2kDHYTvVVP6OhG1jXUGDD78rwZ08HUjwqsw8A8RtZ1gHYE9CX70ouo1dCOlh/ZzYnWG3ommG72SdIAa0cvShZiGACzokGJJbNSSsyfppSQ9JSStXU/lZhW/cPAPGlGyzu5lHZU5zM6m0dFuJqF0a9HC2onZYbQ1taTSelaSKVcNeoRtBbWMocb60vruvxcHwJBRq+aIHN6FQeHE4QjKQ5rQ9t0UTLvFE2XT3esK6NdsAGDmWfmaGEGeCKozTwGhkcm+Yf7174G4FkkKaqxKMerA/e3NzAwa/dG4gP/38XcXrxZVobgqY/GMCAZ0Kdwdaid6jKIt4rSQeRbRuD7UxQMJz7bklslO950l2RmuWAlFJ29Mz4yTqA+IBkYiDA39S2Yb17meb3wKMGnBnaFds7UhnSijVLez//r+5ZVWioxm/PIJDMr6omzUCZx0hJPY2BGfktSapnokbT0pTRUEdO9amzakqUi1zA6WVndhRPPpmrXhkZQlOSNDnNU0qCkTV/T7F06Qgx10KRmaZp9Iw9HQ7U+6iicw3RYx9peBdlHi2uv282vD01Zu7us1cNNjqg4OJwAHElxWBP5NW+F9/Xb+Ue1OTCtwWSXT/H1IQNrmPGPtHb/qJPo6KyVXgQU+8A/ehSoD5FHv/3snkw1tjVedYivtQsUuyoxeGSSBEODeJADyxGDz1SXxEXT/uXYPE80kG5f5PTcmQqvl99j1mG2Ql1Gp8ABjE+MMUCu64iBGfgUPghNZBulwLUHSBgmemZ0VkqAWNxdpzvc53KBBCZKn3zea3WgjNr5X7BAkqSlmmEAFBLg0ln+O1zj+TREk7S7KfNyQLM9Lb8UUu5H13igzgxbQ8pay0JkYxEKz5d5vus6fL9meA5XbXRCkBsJG81EfWUrS1iqo9EOtH5oJRkd7zCa/Tg603GsNmzVKin5mS9zHcOA4trZCnD941ZG02zP8SZhz1RILMf6JD1CkDwhKY6sODgcG46kOBwbRWk13rjMP6yDgISjGjPwAPa0nHvAIER++b88rUteE40BA+BlM/ba/3sZ5+oUU3PELSdAGq2epKzBKvOsE2WqyyD+yASJWymhFiT1GXznpC1Wu1tyjwH+ohSY6gGzZRKQDW1+3di2jplhwABdEFO0UTv3BRHxaseODgX82hZuG2XMkBwLXv7kmUNKUDKPJnKBlIJykFA1+yQAEz1mdrR0FnnWvVSNuZ5Eynrblvj6QonXviIuv/UhtSU+WNraNUYBcD+0gZajHTp63qlm9cCv9YERECUbWlrSz2N2rFQJjk8otHtHBcHdiJ+d+9eTfOmcKSUpOozweF4tL9rP+9iRKdTTI1mk72yAV/5DYEsLeeX/d+x9ODicp3AkxeGYyK/6FXjf/QhFkvoEuFDiH/KtSwyaADMHxRT55L85nctdE97j/xHwPOCH96z+xboOPTOKCYPnpHR3dJrWPquTdY9U2Vq7tcWsSHXIjJKXM5BP9EhyVMSaRHx6HsjTvQbVxoAE4znzMu05k6GDy9yXmswBaxupPTZuAt5HJ/ieXggMQ6AfMABOdm2K8clgTjp9yjEJxLiMLfCwQkAx3reSxn75TBTTkQnGHgDp2irHNtPnaL7QLjALNAhIECuxCWHVQTY6Kgsixsa45qB5vCgpUZHsqM7kWETkqQSwSoxUlJv4wMNTJJtjff5eiScgxnVPYXpXSDnle7EEPDANXAbzvZmt8PO0fQne8vuAhRLybb9+/P05OJxHcCTF4fjoFBg4JnsMrNoV0Q+pl0h8/qEdBsDk6V7sGqjGq/UPisYA+M4Giji3LdEP5apDPK9+KME3NvIwkM6d7YskCAfq5gXTicynY6lIEldILSAGuc2PqcRW0jlYJ8HTbECUrl22UVw7YvKmxCj3GDjbRZLGRyZJJk6kVfZQjW3WVx1idif2gWHJznUQMJhGQ5KupSLJSn3AzI+uPcg4ubojGZB617q62mJzv6dpGYogJ6kKRUy9WOK1KomDrj88djlm1IROScmpsvhX5JI9K4soWctNQc57/cQY7/u4dLStlbTphyR9QcYMVUvuVX3A6cyhtKlrGSrIAI+dc17tPyCf+K1Te04ODmcpHElxOD60U2N3c3WAVZv8hmRRtp6hT3+jwwFnKyQmYcZMkHq/PDZBorKnaa2+9YF1igB8sj9QA/76EtrPT3coOp3oARe1qUcpJdZOe7HMhVFr+umOaXl0oOK2pWPPgzkeVBuUejaIT7URu8Z4fiqiTX22Q48SteUiLeF1bs69G9lRVEgBL5NJ2B7vrQpeE5+CYZ2v0wuBib5pZspd7svPza1YM0vL4qeT+rzmhdh0HkslXuuBiJUvnDNdyjMBnRN0PGKTeiRQQcbz+5HdLO0dqPMaBZm1iJdlblIx4Wdl5yL3XUp4zfbXSR6jlHofncBdSpjxmquY4R0gBogFePs/Anj5mVk+dXB4FuFIisNxkf/IDSz56JNxYWBdK0slYKmE/AVvOd3LXBPewn9gNgAAvrSdQbMxYICtD4FbP8924/vWiQ9MStM21XrkHgNIKWGZa0uLOpZHJ0g6LppjYO2HDDjDgPqFSkz9Sw7azNcHJCzfm6YGY+My17QWQRkGDGp+TiIyWrbIPeCbG7lNTUpUG9tcY6vIjMUgYNdS6vF8S6JheXQCeOle7mexRNHwKLnRScIaQKOUATjxgVy6b8b6JHKKuQq3qYvr7VjfurvmRFQ8CG2CsYpgtSusEjP7cqjG9+tk7FONYQB8YxPv8UKJ63r57mO7DAdyvlp6mu5YaQagrkhnBzUH3OdXdvD6pz4/FwD9bB6dMF2T+sKoGL2cMDu1oW3X46I5ITcNwMvhfeEOoDZE/kNvPvXXxcHhLIAjKQ5PjQUpBaSS144y/hHdtMyAd6YiSs2TQ7MjkQoYyww+W5cYPL+8TQJPYm22msq/6hA9UAASDP0esNZWgMF5S8t+9kBS1CnwmBM962Y51pTifQ3gWxsZrFpFEqhNy8zMHKzRZXZKdCeq49Bg2xgA92xmMHx0glmixoBP6duPMpR78T7+fr6M/NX/nMu960+4ztQDto5ct+UCMzGzFZasZqoibM1JyrT1tyrtypln4t7M4/mr3X91CCyWuW1VWo0P14wErYW9TRIuPweuOLz2NqN4ZJJk7uI5Xqdvb2AGR31l9jWAr25ht9la0PlOgJGr9W1eh7JkQKLUNDQXz8mMofDJpcUMJJuhZF0KKdcyI6aAqZjRxQFwWMqHkZBN7Yxb34F35P3I1/3rpz53B4dzDI6kODwl1nLJ9L76MWCpiPy6G579BZ0APNwE1EZe0ODQEk+PdoHpe/X4qA0ZHCoxMB2TsMyVzf9jLWhHS2Pk6V+zBapZUQda7QAZhHxf7q2dSVGtz9YWcI88/T82waf02KfeZKormZOErylJmeiRRAUiqD1QF8+X4WrL97H+sQlBQ/xYWkWuox/KgMiQ++4USMQGoZnGFRNuo7b5g9DakTctc31BzsySdi6lHgnuYonndsECy19HIw6Ar22WmT4+93HlUxAVzVzoqIKKZInaBWtVHohI+akyN3uaFLu+aP/xj3vpGl1Vj48DY0KMdTRB7AP1jFkwNUmcqQKVRV4T1UT1Q5sgLQ7P3q6PAVGK/PlvPf6aHRzOITiS4vC0cCann9V/AgD/0H97A0lCJRahq1j690MG1GUJ+IslEojxPp901W/j4UkGnPUdpuYLCYnDoxMM6BfPrbaf/+oW2tQ/d46ahEFA0XFRAviFC8fWRDxvpE06zEh6trZ4HLWZT3wGz1KymkCVE5Z0BiEDoDraLpaN6Bw9KRmAl/yuzFkSDYleg/kyg2QCuxYqfvVyK4eEGa9f5oknTcJrrO7Dfs7grISgmPBfOFL+GW2d1gyMkoktLd6bQzV6laQ+s2BHW9mnPjNBvZBZGjVm07lI6omjox3+7gKSoFfsOjZp277IbNGxMl/HwwUL7Nz6/hTXUNb28ZDlnkEAtD0gC3h9W0XrEuvJ0MWiZANnKySJcxV4+/4AaBWRP+9tJ78mB4ezDI6kOJwz8HATA9TeSbbqzpepCSnH5mCa+AwOc2VzMN3TtKm4ccASS2PA0kqQ83eDgEPpBgGDSTeiCHcgrb+XyWTfiR5LK5nH4HbXNpKSH97DAFtMxDNE2lb7IQnTWlmVHYtsVx7vm/MrQBJSSI10KY5USUwO1mxAoPqFzJcpql2DpCD1V/uT1IbAVAfIq/x9IWVmSbMq6huj1vVhttrPRa9xfWBdT9rOG2ZALaeeqZSYkFg7db66heWaKOU5XLDAa1CJSRTv3cTMSuLTVG2sz/uwVLRJympT74GvdQqAL+ewadkEu3My1fmvLyW5W8tjxs+pIzravfepcFA8VR6d4H1MfF67ya6JkFWIHmS8Z2oKp9k+beHuyBykwzW7nhcswPviJ4DnH0Re+7cntzYHh7MIjqQ4nBPwcBNw91aSiukOSchsxZ721Ul0aaTdVYWM5ZhBbn/dnrg7BQaD+TKDxGSPBGCdmKbduYMBKPG57USPOp1ORDHrMABecIBZlufN8Jh7m1zX4RozL9/YZE/76zrcZkPbjMqOns7cjSwzoJ03o+iHMjeoaufXkRKDDlc8VHvy0MFUCEpd9llIGcCnujbFuBvxOqmAuhdySnEpsSyLIshIELS0owQo83h91Ndkb5OZhufM833fn+I90/MfBtzm4jmg0iUh2dxi23R1QNJVH5o4Wjtk1IdGs1WqHelGNv9IpzQrUf32BpKlo/1plkrHzrIcC92IbcbPneP6ajKEMRbXZp0JpCMVDtSlzT3kuhdL/P2ytLP3AiDoG6E9ULf5RIdq8A79CZD6bnihwzkJR1Icznp4X/sYkG+R4Bmxi2ZMdBB1ISSJNzLDZ6TcMN0FXrmLwenhSeC760kywozfLxcY1C8/ws6ejW0Gtg1tEpVHJrj/QzXgdQ8z+/LoJFP0hZRaBsXLn2DQeWQC+J/PIRHQEom6yarb7WjGY1+D+x/NZBQTZmhGfVV2LvBf6tP4ba904qhz7nwZ+NxzGIyLKZ/w17XZXj5US/6MgVOdVXVI3ljfZhpp9qQcWxlktmItxo0BUJYOpqWSlXxyiB5FfGTG+sAlM9xmf50BeijeLP3IJhxHKff/xBgDuM5h6kg5S0sp2vq8rsNrqzoUHXA5lLKbtpYPAt7PQkqCtK+xutwGHLsD6HioxLwPKpZOfHEWXubnM/P4uVSTv43LXEs/BHoFu16RZKdykMToyImlog2CVM+WH37C2ew7nJNwJMXhrIb3yc8C0bgMoAOzCBfN8w9+Y2DTl8d70o0iT9BLRZZltPvnNY/xn+KxCXbALJQl+C9S56BP59sXgTd9m98vlJkhqQ1t7s2xEGRM9WsQbQ6Y+ZmtcP17mtSgKDKPmZfdYzyfjW0Gr1aRpZGmiGC3LTGA98TG/XCNT/Tr29TXeJB2ZilfhRmf9p8zT6IW+yQuYWalqEHIQKtuspoV0dKMdnsBPNbuMa7l8iN23VPJWnhCgHSeT5DxPUsinv3+lGVCtG05EpLxxBjXpURIy0zaypz4UqLqspyjM5g6I0Mbe9KFtVgCLp2x0s6Wltj7+8efdHyy2NriujsFc889JGW48Z5lkwDTGDUHJL+TXZaL2kJYdD5R5vF6Cj9Z6Qxavzoz5oYXOpxLcCTF4ayF92d/BVRF8Jr4JCHa5ptLME2kjNEq2oyhREScPUmvr+VIe+E8/ylaRQbhiR7JymhAG+8Z2RmF+sl4sICkxl+bl9lmrOWd3WPWzj0ITH+QetaNE4o3h4pov70BSMaBqw7zNW1tvuIIA9hXtsjwPmlpVafgopTAPPCYlZjbNwbMHA1CE5jqtGvN2ESZdTUlPlDscF/bllZ35/SkLKXDAxMhF6nP4473+P26DonKQtmGQKpfS+JzLY+Pmy9PdShdRxEzQVri8sBruXMB+OpWZh90sOFlM1zH96dIDpsynkB1JpnHdWxaPunPIHaPMTPWl2u2rmMZpVaRpMQvmneK4v511k49W7GOp/pQMk4ZtTelhPf3UM2GX3owcnXJ2oTYW/gPwD2bkL/mn5/8OTk4nEFwJMXhrIP3if/GP9Al+aM9DPjUCViXRG1ohlwq7Jyp8PXcsyf8qgTJ46X1E58ZCg18gGUT1H336FkxmSe2+TJRWVtyhwHLSmN9lhcaA/7bvghUxRF3ucAU/uh036GIUZcLNlPoklnqM/bXub8otfkyLzhAcvC9aSuH9EN7go99zsHRp/ScYkwsloD/9lzg6kMMuH4OdAPzDtGMQ0/cZb+5ka25o90vg5AkohOtviZjfe5/KDN7EvHe2V8X0pQbSWkKYeqLnkUJ3yAErjnEbda3bV9BJgHeI9l4ZILXbcei3dvpDlDfYGZ4y0XgoSmSHDWkOxZ60gXWjXhdghx4aJLXP5HWaC0nBZJ5UjK3WCLRUo3R96b5Oy1hJT7wQ/toLHiwxmsPkCR/aTv33QutxJN5wOcupOZFScre5uoS4XgP2NOE97efBiox8le+6djn5uBwBsORFIezD82+CUK7Eev1FZnMvFRk+cKDPcWnPn8XBwximt5Xr4yJHgP4sSbZ+vmTUuoAuK+5imUf1KlVXUXVF0QJCmCzfx6d4M/fXc+n4voQeGAdA27sAwsjQXuhLHqEAktFF85zzYFkMA7VSMA006K4/Aj/zVb4xL+/zn3r0z7Anze0SSBqQ5KZCxfsiT3ISGSGAYlTmFpr9K5xksO5irnoAibqBExX0ioyWI/1RXeT8tp/Z8NIVibleV06y4zIX19q1zKWbZ4zb2MFAF7XKw5bpqmcMGtxsMZrOt3hfVK9iup5AH5WdMDhVJdrmexynfNlvv+ag9y2nDC79cgk752fc7sgtwyRZqQ8yTY1ByRzvdCGKqYey23rOzxG7hnJe8HIbCZFdchjtor2GZ2pkNC0Slz/ZTMyC6rGdemMpx97lNmjSgzvr/8z8n/yT9f+fDs4nMHwT/cCHBxOGstFC2xdcUhVsy8VHKqHSF1aj3Mpm2iGQzt9DtVIXvrH4evHmqjr5QxqOxbNwj71pQsjZ5DSbhjAAvarHqfb6dWHmMoPM2ZXuiHLBBpU48D2V0q45sUS8F+fxwAXpQxi1SEDsBrHaduxYqrLAKglm1LC9/g5tRPbl6zkFWTUbOhUaF/OP/dsAKIn4uMtLWvRHkVjYMQs9fnelowxjgObB7Rtievycupo2gUb3PftDUIChFjMl3m8F+9/csbj8iM8/8yjcFmnWOs5JaJdeWDaiIS2IAeik2kX+Fl6YowEQknh/evsvk11SVY1a1cb8v1jfRNiFxMTFqdyH7WstrvJ9/pyzXaPkSh/Y9OxP3sXz5lQ+NWPAT/7APAv76FIO/aZNRrrc81HqsxsaRlrS4uvz1SBhRK8e26Hl73n2MdycDgD4TIpDmcf3nAf8MXtzDwMA+vW0U4SgH/Ye+InojNsACMj6k0y2TPn0cS3Dpqnmqx7tLX9VFfKHKGUh+R7bV9Vt1QlLDsWuY/MYzAJM4ona9LmG4UWjJUgBCFJVXVIG/9YMguXH7FjKwFYC8+dA7otZpr02gBPnphcia0klkFKZGvsrxIzCzN9lKbHkyxQLuU4JSTqAdKJeF20FXpLi7+fqwA/+gTJxGMT1hLdLvBebWwfeyBjN2KQnpfsRihlrJkq70csmY5uxIzNonxWJnpWhosD3sdczrkX8Xp3CiRuqs/pRSzdaGt7KeFnTL1QdjetvX0QsLNM/U00y6R6oyNVklmAGbN9DV4bLd3UhiQnR+MfP8x/imHAn3vh6s/uzgWSvk3LK58L1wXkcDbBkRSHsw554bfhTfwxMxFquHakykChbbya1i+NtBv7st1S0XamQWbbEoNEffDUBAVY24FUA2gn4ho0c6M28RrU9L1q0LWrxACpZZB1HRP+FlKWiA7UTWz79c2cPP0v/q+VQ3vf/iMG39Gl90IrQ82XbYZQOTGhrV6bo+HlzKKE2epOlFGEGTML92zmfKOprv2uEgMLIdezUFp9rT1wLXuaJra9dqTUsa7DUpLOtqkPmRE42sNE0Q9Z6lgq2rV+0X6e34PTPNetSyRDD09Kh0zGY3cirmO6a5qbx8dpoLdpmYSwF5HUNAaW1WgVV7eYX7DA0p12GcWBXUOdmKwZHPWbWSrZ/VJDOh3ZkHnMzh1PJ6PQTGAhBYahzWwC+P5j7MMb3Ezn2mk3E8jhzIUjKQ5nJfLnvxXe33+SwWEQMiB3IxMrbmgz4MRSAiqmRhr0n5ebXf7hmszvkYDdDxmENWCU4+PPeVEr91yezvWpW7MANTFE6xSAwkgnUJABX9/CQB4HzIx4OXUho1mKKWlLvfYAvTz2NVYff7xPrY6m+tVPI8it7Xddx0oV1SEwfhTR0sGKxdRM8AAR2garPVkUjQEJwHc2iAPukOWjIAMafaBdtOvWjnhNukKUvJyljgsWVtv7bxKDtwenSEI3tBnot8ufqyNVkjYVmH51C7Mw4z2ed5DbdGq1lG8VqWXRAX46oPHwNM9tT5PnooLeTcvMsmlpS9enQuy+ZN8O1K0r6IojwJe2kYTl4DgCzezl3kgZUIzlNi1bhme8x+83L3O7B6aBV+069ucN4Lp1wrRqfnaPcY1askp8krGjs2UAtS25B+/wrcjX/+bxj+XgcJrgSIrDWYv8lW+C950/YgCZ6tIgbdMyfVLWt2VgmzicjvekPCGpdn3SXSxZW24hZZBSS/VuxD/+qi/Z0rIuFIDBQf1DiikDaUkClwpbJ0eyC/UBCVVbpukGGdf9jx8G/uZiywDtbvK4rzkqza/iVI8ZIW/Xn8lxMuD5iwzUR0p8LRahaz+UAN63da8lAga43mOVuqJ0pTzg4SbzKwGom5jukjw8MsHjr+tYOSsV8laXjiudljze53uPRuZRHNwuGLEspiQNy0XqLkYzWY0BCY1mjra06P67pcV7sSAuw9/cSPJzyawR0DiwzJdqXwBe/yfG+HnSDJkKtHPPTNn2NEkanzvL66ZERwXaKxk0Mb/btEwS9531zD6NZoc0q9STcxglhUdns3RYop5H7vEzu2OR9+GBaWYGx3v8+cX7Vl/jhbJNWe5G8PofBFIP+QXvXPuz4eBwmuBIisNZjfyqXyFR2bgM/MyD/IO8vm1BrJwApZEsSF2GtqkYMvGZPemFQLvBgBplJBvqVKqD8pp9BsmpjpEMNdaKfUm3i2OsBzMjGw38UcpteyOak8ku8MbvWObi73cy+Bxr+nI5YQfMtzbYnJxDMvulGq+eM1OV6c56/keVTFYRj7Weto+F+fJqLYpmAi4/YoP/dL5QNzJCoFmI0GOmp35UCedwjfevEgMv2UtisXuM96MXArNl7kdbzIsJiY7e7w1ta/PW7Np4n2sDSF6CnB01e5pGCHW9AO9fp2D6n3Vy7b43zfsYZNLhJCXF/XVmTi6ZtVEEg5E1qqj3qkNcqxrQ3b+OGTN16R29v4o4sPlQXs4MiXIV1VcFORCkZmrX7EtnmbTez5dI4tRkcF/D5gMtlC07VIk5vLCQIl/nSkAOZwYcSXE4+zHWZzAAKHA8etbK6B999fuYL5thmHqPLBcYBDoRA0NXOjMA/hF/aIp/2BsDabtti8g1NWFuu2DBWyf5Hq6RiKguZi2NwKjY9ZW7zJxOn8aLqZVd1OZ+a4vBvD4w8zUVZZZjC6K9H/C/uWRNVk2XPlosCzCbMlde/Zp6s1RjIJG2YyUcqW8GeeXYNC6jeP5BBtRlKWfMyGwbHbq3SdqRLz9i79HxB3uavC5TXa6jEvN+zlRYIjpU4z1vDuzalhKSisNVko0H1gG9BV7bXWM8ZjkhCcg9nnOYcY33bKZ+aKLH65CKkFbLLkeqJCnaidUTPUwvBH5kt62/La7IWs6JxAV4ocy1T3Z5Xh0pJQYiBG7L53hryzQ+AxFb37eOBC3MmF26bIaEXEXRmQcsyqygsT68g7+PfOO/epofGAeHUwcvz/MTUAmeG2i1Wmg2m1haWkKj0XjqNzicNfBwE58WL1xYW9Q6inaBf9QHIQ25Llhg58uuMQmgMqW4F5nFejkGugXzVZnuWjamOmQwUit2L19dXlGX28yTfUmQ06nDx4OWC4Yj5GSpZFqab2/gWp87K0Er5Vo9MJBXY2vRLh0lktVhimthvkwCMVvh/q4+9GRydfSwwszj9mP91fdgVK+juhcNjGpQVom5vjEZpBdlJIqaifn/Lubvc5D0afDeuAy8bO+THX+HojNZLpJwLIrmZ7pj/jJf2cLPwOaWlVMact/nytbxtXFZxKkBdSaTXR57ucDPgY4p6Mr1bvb5vZry7Vzk99uW7Breu4n3Xq/BlhbPux/SF+WH9vG+7m1aZnD3GM+7MSCxWiit9ruZ7FH0u7vJ63bZDD+bauT37Q3MBqm7biGVbKCQ2SCj0HcYmMHfpmXkk//m+J9RB4eTxMnEYpdJcTh3UIsZlP73BQzShZRZCQ0i2umiBm/bF1db32sA0SnIqWeOssUU6ILBW63kl0oM0nMVIGybg6r+oVcCoi25PszxNgcQPgVByT1pXRay4+e2rmLCINYYMIiWk9UZIzUjmy+bC60SlJkqLdcP1YAXHmAZAmAQ1I6S/Q0T5/r52qWgo6cp+/mTRwyo220OyUzl1uWk5mtqfFdOmC1QYjJ6Py6doUakLS6+ms1aLq7dcl1IbbryP+zkvZroUa+0Y9GyDmHG6zHWJ9FpDsxnZRgwc5F6zMbsXAQe9Y1YKBlTT5jMY+ln6xJ1J/du5DmNOsEqujIIU4mMZnpmKyQalx0xooMa77Ea4M2XR0qS8jnrFKwT7PFxEp39Dd6PrUvMSF23m91hiyVmU3IACEio/RwoiTX/UoX7bfZXZdBcy7LD6YAjKQ7nDjQY/Pz9T/6dZgzigE/J69sWtA/VWOYpi2FakDEA7hozEayWBeKAv1dPlWUx51LnW9UFtIpAXrSOmoRp9BULfg9GVjysLVbNwTXG0iVUjvnaUolZhn0Nkoq1uo5Uz1IfcG1+Djw4xsDVFaHocpGBctuSBOg+z2G5yOAMSEdSxA6kxoC+Gzr35ug1j7YUKzQLNGoypy62gLXj9kOx9U9N93H0flQQfOkMr/GjEzz31DN9ylq45iDXXU6snNTsAz/+CEnBUon36+pDIqJOeG13j/G4m5e5j+UidR0H6uZlMlpa/NZG3q8NbTHKk2uhTruA+etceZiEY8rj/utDloMme8DFszZssRLTZ0XnOq3rSNlL5v1MSVanvkwSrCMWvr3ePl8bl7nm5QJJXkcyaLWhTbyuDblv9Y7pRtyXjiLIAa/4HsDLHVlxeFbhSIrDGQvvbz/NDMaL9gPN/qn54xillo4fLU140raqU2Ynu/x3z2bg7q38w19IWRo4XCOxUbv4cmJBRb00lop8QgbEGEz+qzX7DIg6oVk1L6NBfxByHdo9FORcay5P9IWUhECNyO7aCjxvlgShH5hFu/qSRBm7br6zwUpPY32u4YX7rVSigfRrW6wkoxmgw1UGuUD0F/sadH8dJRNHExSFln4aA14HbWcOc55fJbaumcwDMv/J7c6bl/lZOFC3Scw/tO/YowxGoQMaR6EtxJPShTVqSb+hzbVecYRkMMy45l1j1pasnWGj+63J8EPNAK3vcL1f22KTjWPxfXn1Y9a99bcXs9zTKloZcF+DxPQiaUmfL/OzMlfhfR+EwL6qlRe1VLZpGXjpXu7jUG21RkuzbYUSr+9Ej59RJbIAj7l7jJ/fTcs8brMPXLC4sg5v7g+Bi+YcWXF4VuBIisMZCe/rtwNbxE/iwSngonl4kzf94Dvuh3ya1GBRTiyojHbrKF64n0+Y82X+ka7KE+jeBoNmkPH3mklZln17MPdZP2cg1Cfb2tDakLX80Q8sI5J6ZvuvVuvaTqvDAbW1+YF1PJ97N/I6VWObqDvV5ft6EYNeKZGWanAf6mmi0OPtr9sT/0Xz3G6pxHXsXGTgvuLIyXUDKbTzSWcaFVMjJ1pWCvDkoY21IYnajz9ybB3NyUDJTTFZe4K1ep8MA5rntYqiTwrMnK4bmZMuwGzNf38uu3zmy9y+mFpLeykB5urmgqzZrgvngUcn2TaceSx5XXOQn08VZWtrdDii1Ul86wzSkQiK50qnUTcy92A1CFSTw9FynQpvVQhejWmEpx1OnQLPK5e263UdeM2bHFFxeMbh/yBvft/73gfP8/Cud73rmNvcddddeNnLXobJyUmUy2Vccskl+MAHPrBqm9tvvx3XXXcdxsfHMT4+juuvvx5f//rXV21z0003wfO8Vf82bNjwgyzf4QyF9/XbGRy60sERZXyK3TW+ur326aCUUDy5Qdpch+ICejxsX7RSzUKJgaeSWHeHahRU46CD7AAGJ3WZXcmUBDb3RcW3YW7npn4cagpXEA+X9eI9MtFjENrYZmZi+yLw8t0cKLdzgeSknFiZZaZi32tWIxeCEPsMiuq5ofBF/KtzgVLPJi3Xh09uHVbsHmMX1K7xtX+f+lb2UcI1kDbbfmBdWiq0VQSZZbOeCvHRTHMEd2/lZOETxTAwoez6Dj8/Jbn3y0WOZ3hoituGGfDqx0lOtraoA9lfJ0EMMwb8uQoJx+i8o0tngZ94CPjJ7wO//E3gFbuYySiL7imXbFocMKM1X+bncEuLa9nfIIE7VCPRUA+ViZ5Ndx7v83M/1l9d9moXKM59cJrC2tkKz7Usxnx6vb+6hRkhnRj9/SngUA1e9p7VXV8ODqcYTzuTcs899+CjH/0orrzyyuNuV61W8fa3vx1XXnklqtUq7rrrLrz1rW9FtVrFW97yFgDAnXfeiTe84Q146UtfilKphFtuuQWvec1r8MADD2Dz5s0r+7rsssvwhS98YeXnIDjOHyOHsxeqDdEnu0LK4DVTsS6ZKGVXztOFnwN+Cvg+kIp3x0KZf5iPniYMMPjrQEPVh6zvMIAdqjGIeDlJQ31opZHRjMhAiEISAG2fJEFNwQAgEm1Ls8/9zFWs06JTsKnK2tI60QNe/gSv17J4fQQ5NTezFWY71IZ+pmrD7zYuc/uJHmfkfGc99RhbWgxiEz3zM+lFwJGCkYZSYlkVwLp1dHbN3iYDqGpZRluDAV6TgZxzlJk+ZVTfskJQjtK8aOfLMGCgfN7M6t8fqVIku67D7IhmkhTqujtX4bZHi3zXQpQBYwMgblv7ck8+A7qv0ZJTfcAylOKN37HvrzrE+9ALjeSMkj31MfnxR+ihou3bT4xZdmNdx4THD0+an4+2Lfcia88upEBB2phrQyvr1Ae874sl6wbTwYfFlJ/p2QrPrTokGdZBkkXJPJYSZpgunQU2LsNLf+/UlWQdHEbwtEhKu93GP/tn/wy33347br755uNue8011+Caa65Z+XnHjh34q7/6K3zpS19aISl//ud/vuo9t99+O/7Lf/kv+Lu/+zu88Y1vtMWGocuenA/wcpISLcP0Q/6hne7yj2mU2lPjBQsnNt9kLegf4dqQf4DVGj/1WObQcobqRS6asyfWZp/BvpDyD3gnAjYO7CkbWK0pUc3LctHEopnH42srcrsgVvpCzNShFhBCI6ShH3DYYJQCERhwAXvqP1I1zcveps2qaRdYxtjcYqZjqWjlpwUxSdu+yMCe+CQEk10GxrEey0pPjElwS+jmu1ww4e9MVQbq+dzXvgZJipa9akMZRyDXX9uQPTCnqz+nPu+3CocfljbxwzUSsEM1nt/Fc5b9+cpWnud0h+c12eU1e2SS5zQMrMOpErNksVTiPT0eitKZpG60m5d5jjNVktFFIWTfn2I55Kkw6i9zuCZuxUfpapaLNusnSo0w90LeC3VG1pLY+o4RlYJ8ThIhwerVU0xWiEuOm4DLAW/PB3jtwwyoHJbtZD07FkmMQyGSOi0aoC5HNVeHq7bGwzV462+SW3vTU18LB4cTwNMq97ztbW/D6173Olx//fUn/d5vfetbuPvuu/Hyl7/8mNt0u13EcYyJiYlVrz/yyCPYtGkTdu7ciZ//+Z/H448/ftxjDQYDtFqtVf8czmx4379N/BrkKXpU9zBftimyhdRaKfc0GWTvX2dBfRSaqTgaarDVLohrp/wx7kYcWLeyqJEn+vE+/5BrGQZgQNR2X/W6ULdVNWTTTEd9YN9rG24x4bpHSzI6WyjzTA+hGaTJ3mqR6joZvpd5PJ+dCxRPPjIJ3D/NYJhL5mJLi6WIunQgHZSyw2yFOpuvbTYPlp2Sqdq4zPNoF3icxRKfxB+eFD+VJl+LJOOlU5szjwHz/+xgKQHg+epTfimxMphmT5SgAKsHR7YLJHRbWtY988gEr+W3N9CILPPokzPZM/IyLXqi1Ofati3JpGPP7OSfCpuk+6YaM3i/9lFmSILMMkvLRbv/wxPM8I73mHUa/cwulMWYTzJUsxVuo+f++DiPoRmRVpG/74f83aEaz7U2tOnH6zprE/mJHt2TvVxasPsiYIZ1IF0yy+12LPL4OxZJ0DXDCfD/w3ifJaSlEkc2PPafTuwaODg8BU46k/KZz3wG3/zmN3HPPfec1Pu2bNmCmZkZJEmCm266CW9+85uPue273/1ubN68eRUJevGLX4w77rgDF198MQ4fPoybb74ZL33pS/HAAw9gcnJyzf28733vw3ve856TWqfD6YP3/dv4x3K2IoPTPHsaBPjHc6rLJ7xyDPTFs6RVtK6Lx8eoFzlY4x/MiljSr+vwD2k5Npv66hDoVvmH3YNZzG9b4rbaLjyKIGPKX70xlEQ1+wyoqofwcyCWDMuEzE9R87Rm38pWgGRVwKBcl8GEw0AG0kF8XSJrf44yPAk6UfeJMYphlTQoydGncZ2s/LwZEo7vrrfyTSWzAYBHqlx7QwLhbIVkpSSZo8QnAVGnVn3yL6Q2SG9jm5kc9Z357npmLqJMRMSeCYczrG5RLqZ8fbbC9aQ+yYk6ph6os8xVlPWM9xlANaD70jnUKfEccnD7zON5aEnrRCZeA8zGbF9c/dpET2bgxGzlXiixxKZZs2NNbV4uMgOln+3DVX6uByGvuYpuO+IV85x5Ek0dpdAqWuuxZuKGAUsvNTn3teYzyedvRUOiPLws2w5CE+UCMipC5iepCDeUbFRdsmJNyR7qCIj9da4/DuA99ilgrI/8Rb98YtfYwWENnBRJ2bt3L975znfi85//PEqlpxAbHoUvfelLaLfb+OpXv4p3v/vdeM5znoM3vOENT9rulltuwV/8xV/gzjvvXHWM1772tSvfX3HFFXjJS16CCy+8EJ/85CfxG7/xG2se88Ybb1z1u1arha1bt57Uuh2eRYz1+WSvT2nqsQHwD/JEz0oXJTH+OlDnH/GDdfGDaPAP7VTXZu/0Im730BSfLsf68nvJXCwXTAeT+BQijvUZdI4mKQDLRA9N8Unzojm+N0rliVrMuUY1G3Fg1usqsNW0PGDERs25opTBRm30l0r8fhgAnre67fX+dbwOpYRi2ktnmRE5XGNnUqvI1mPArlsh5XV4cIrBe7LL9SVSXliQTpJc/DmUVDw6KXb7Eqg8MODqxOdOwYSwQc6v7RrvT5iJGDSx4YSjBEF1FkoWR7t9LpuxMonOxhkVHl9xWBxhRbOiXVjfm+Z2Ov5A3Vknu0/t9Hsi2NLiv8zjsaLMnHD7IYP++Ii+J/H5WRwE4hwsnVbjfZK5UAiwDry8/Ihlx7QMtmlZTOMaJCLNlGW3UMSuOoRSkXvMdC2Un1zaOtrrppisvi5qzR/kXJN+Pg/UuXZfMjDqjDszQijDjGXJSgxv+X3AA9PIf+jYD6YODsfCSZGUe++9F0eOHMELXvCCldfSNMUXv/hF3HbbbRgMBscUs+7cuRMACcbhw4dx0003PYmk3HrrrXjve9+LL3zhCyckyL3iiivwyCOPHHObYrGIYrF4oqfncBrhffuPgGKJfxgXSwB8wJMgrYLPbgQU5OlZBabLBRPYLjLVjLGemVUtlGmqNZAyTDVmsN/bBGpige6B+6jEJnp9YB2D4O6xJz9B/8RDzFgMxCVUSwu1IY/Ricya3pc/8EHGDM8oRk3Ygnx150oimoxhYBoWTeMvlHh8LY3Ml/l1qUh7/41tE8BO9GwC8FjfMhF6DSd6wAsO8qsahO0eY3apH5q4MvZZ3inHFqxUM1IdkhQF8oStg+86ck1nKsxyXCBt08drXdZSX+wD961nkNfAu69Bgri5xftaTkwYG6X8Ny1mZ/UBMLue51hKjDCoBfzT0TEpwVQ8McbzX5D29IvnmBVJfLZRq4C4MeDaUn/14MFSImZyRb6u93Gyx7UervF1rUips2xjYNm4+pCdYeXYyKtmwxKfa1CTOM2QPDpBInX053otaHt2qwL4A2u5L6QktkpqVOy9sW3ic9XDiEOz9/efRP7KN538dXc4r3FSJOVVr3oV7rvvvlWv3XDDDbjkkkvwW7/1WyfcbZPnOQaD1anQ97///bj55pvxuc99Dtdee+1T7mMwGODBBx/Eddddd+In4HDmQv099tfl+4R1+ULCP8KZB4SS6chEy6FPbDNV/vGMJYikPv/Ab5R6/CHJa2ce/+j3Iv7xbUmZQ91jE1+G2YlGZbrD7w/XmHkZDa5jfSuLqKeGim51LtDo4EHAunxGoVkjL7cMA2B/5JEZGVKR72zFXE81i5N6PM9ZIQSjQVjJSilhYN01zuzGc+d4fsOAX7e0mIkAGGxLCc+9VeTatLtpvA9ctpfZgz1Nbj/eY1alEjN4jffo//HEGDAo8z06bbgxOHYpRKFGaXptH5zi3JxORKHo8w+SJKmD7oXzplfSe7Oxzde0+6o24PU8VLPOmvE+r/nRZm9HzyUCeJ+6EadUq+aoPuQMoE3LLKElvpQBc9MkHa5KaSoxt95yzM9rOaEYWAdHbmjzvh+qmUZJt1+ZBQVe4750fulwxsUSs2gzVcvGNAb8/zRfBgpNruH7U/x/sW3pxMtd6suj4wK0M2qhzHude7zeif/ke6tmegfq8L72MbrWuhKQwwnipEhKvV7H5Zdfvuq1arWKycnJlddvvPFG7N+/H3fccQcA4EMf+hC2bduGSy65BAB9U2699Va84x3vWNnHLbfcgt/+7d/Gpz/9aezYsQOHDh0CANRqNdRqDDC/+Zu/iZ/4iZ/Atm3bcOTIEdx8881otVp405scMz/b4X31Y8A6ecIf71npQE3UigOgLPX7jqSTIxG4lhP+kQZkMvCS2b4fqrEjSIPiUkkyMrCsylLRRJsd3+aYeDmDaimxDENzxDBr9xiDgpKj7Ys2oE7FsiteKTnXezRByb3VBlxHZxiC3NLnXkaZez+kaLUX2VA+L5fMgsx+CbPVnSZ7m+Ig61FcOV8Gtor2QMlZu/D/Z+9Pw2Rbs7MwcO29Y8eOecjI8cz3njvfW3OVqlRSFRoKMclg3GrbAgMGhAoMsgBjUNHQKtxlJIRAgEGiJYNtqRncrablB5tBSFCtKpVqnu48nDnPyTkz5ogde/KPd71n7cyTZ6rxnrqxniefczIyYg/f/uJb61vrfd+FQGyiuIRTfVW5FdxfksPgPL2N++T7A80uXGlqFkS1XJZGVq46rn/N7WyjBuffVPVezgdiMkgxXm/gnBMfz5oN+04OMJcKqcipHj5PBtQNFVMLEgRYX14x5de8FRVjsVFHmYTljkqEgKgc23P+7su4ji+vIPgLEs2Y5Ep1kwICwWkBY1fXLF+iaZJyhGOywzMzh44gmGIAzuCG2BP2P/ITAIh3qsjGVDRjWJ2JJJ6VC3crOH8lwpgxwGEJ8m7mZfa8M8cyLceVRUVwj60p5igByDsVcT7zCyJLI8nO/dl7nxdze0Pa11xxdmNjQ65evXrz9zRN5UMf+pBcunRJCoWCnD9/Xn7yJ39SPvjBD958z8/+7M/KbDaTH/iBHzh0rB//8R+XD3/4wyIisr6+Lj/4gz8ou7u7srS0JO95z3vkk5/8pJw9e/ZrfQtz+0YbU/arQ5Mb7ygosahYD5YZfAVVMivRUjDsIFDMhuBndYjjXGlih3exbRTLZmiCV43QPtsIDRzIcgixKjMP18FFmU35Is/YI75mP+rh4e6+Isc3wbvTLjZzIDTH4CJxLBsxKOYa9gnArMRd1GfYIddncOJuZrRdEdzXe9ZBsQ49U5c917VOwUEisthFBoe4ECcD9qFbMWwHe77Q2NCPuAURY/Hcj1GOfasKpzgo2g6+puW4Fb3/Ky0rOZw/wH3UQwvYXBEpzzCGDGYe2zNFYFLY9yoWcC2N8PnNOsboC2sIyBhoPbl7+Hr3KqY0W1Ds1CDAdVE3h2NLFhCBuwclE4ibKR4p0LIQRfQcMZ2U0MPxOLbUPxHB9+jRfWS49vQc15oIKtnmYKZ4GIK4N2sIwvsBBAHzFOnjjHM2dk0E0NFSJbMruxWUlA5KGP+1gerzDBHM1GYIGh0R57mfFbnalOx3/8H7myNze8OYk2XZHVbKby27n/bQc/vGmTP4CeAdyBQRMcfWnmB3SDzBWBd9AhAZmFAxldTkILaSCTvWiuDv26pxEXqGV4gU1Lgwwf8pZT9RR/2wUluPw1Mw05CJSY+LKDYhu/eU+lGLXThAXs+JAY7/8TPaOyi3+w0LcEyVCNfanIps1wCuvNKCg+WuvhZC3n6zpp2FVfKcMuzsVXO9rhTYMsZxv4xx/Y9fsvG8qR4ruM8bdTjGyLXuy47g/0fLJ3eyZ1dMyt3V0gnVfgdFBGLDIoJPZiTO9HDvHPMDFbV7csdaA+xU4EzZK+hMD9fMYO2xvcMicdeaON/a8LB8furg+eSzD4liQDIdK2rTOIKgh4wttgFYGyAQOShptiwXAAyU3VOORZaHKH0ye8KsBbMoR+fkf3hIO3inKP+0ppi79RDzqUKMkwZAmeD798QuslAn+xZUUyTuOCO2hcq2tBeWcP8TH8EQNWvKkQHWdyqYsytD/N6aSrbyF+59fsztgbb78cVf80zK3OZ23/aZEyqMlmJxq4VWr6djpBAY/X3sWGBSig2PwFS3l5pMfaS70klBBdQiY5Kw3r/ThH5IKYbT8hNriNctIQAYKm6Dmio0PxHxFNjq57IGR8s792PUDBGxhnoicGSxizEq6GAsj6Aa2wyRzbheR3kkiPF7vvQzCPB3RxCUrAxFChX7O8s1V5umXEo6byk2EG/+/bRYwa7MFFQikX2ld6838O9x1NijNlbqbXOKIKoSWYfe63UTz9urWKdeZtA26kbjrs2QGdip4hgMlFjiOzHA/eyVMV5uhsxbPkhh9mSnevgaKcp36JmJBaxBbPMz0mwYs2LFxBpRlmLDcGQOrmWm5ZlGiO9AKzQwNrFbx7GT+gECz36Ae9+qanAQI8Darah6sY5vRctSvRJo6w8f3KrCe7sA5eVFXOtbN29VZ35qB/MnSPDcCaimyN9Awb/VoWYwxyK9kjhbPyfSnkp2+s/dfm7M7Q1n8yBlbt98q83AfOkrrbGQQbI+EyzK5cjk6DsTBBFc2N3MhM+aUwQUiSPiOkZjJb6EypiBHrsleH/mWEDSVqG0rerNHZ50Jvjs8ghZGD+9FUjrZiKRY714+oF1q/1q6K4MCFg+uqbBQ+yKnN7HNT50YOWn2IVj2C8j8Lve0LYCnpVCHtUgjpTTE0NjYmR67RzLqZ6X2aa37FljPBGjTIvAKVciaJ48vY0x+oRS/r3MQMVHQaoicK7dEt63MkRwQU0YPrvEwflKIbIkO4q/qUbWGPHkAAGHCJ7V+X2Af8c+nu/qEA60H+DfZ7bhoNmI0UuPv8alEc75pRWwoXYqmEfsBcVnVA8tk8KWCLsVHHdpjKCRZbRMTMl1WjCG2cTHnGWvINK+l0c4HgPQo3axbfOOwNmzXQQSV1qWhRJBQOulkM1nwL5ZszLUUXttQaX8VYV2aWxZs3poAGd+55ZHuG/OI3aTJqbMSUw5d9g2/ZcgEec3/ieR7apkP/Cf3nodc3vD2TxImds335i9WBsokFOzCJ2J6U30AqPpUgOFOiKUVvdT6/nDv3U1lZ4JHF2m9Xg2zFsZYldM1dNhEQs4nRZBi+UIu/rW1JzLUcs7DjryryZAycSE3JixuKap0bGWL57ctYxL5IEFk2gqf+wj2CJ2Z1KwDAPt6E555pki66BonXxLms1aO5IJOerQHtmH+itxRmsDkfWmSDGyfjRv30Cw8NoCni3ZL6ljYFteVyWy3T6zAMyUhAWR5giOeOKbUu1+CYEumT3s00PWS69k1O3fOo1y0Kk+nH9b9WJ2qiLPLuNaD8qmpbM8gtJtpKXCBc1QlGKbh/UQ8zXRct3CBCWUzMF72bGYJc1Ig5vUscyDnyLgChSrslfBZ6qz24NUH9vDPbkZAhZmG681TQOHOis9ZVqx1USoweZHz4m8ZeswNuWlRXw/OxMLkGYKvI5cA55faeKa3cQo/5xPPQ38WCZLHZELbdxnTbMszNbVgRFyfv0XJfveP3z8vc7tDWPzIGVu33xLHSy8lIbnLo9KqU4mUnUNVHujjjo3d4ulCItvT3eRZO0kLpzK4hgOmxRYlnwY8BCIO/aR3t+rmPbKqx0snFXV/xgUkXn4epuTWTPBsaqQEpjLe9is4bV3Xcdrw6Kpsr62YKJnj+5j579Txa79atNk9SnYRrwFMRatqY1R7Fq5ojG99TrHvshnTgJbcbaHMSXFl6BPEUv5H2h55WIbn+c1ZAJnOQiQASE1u6rAVhEDP7sxpP87YwQP1xq4p50K7i/TkgubAXqaTQs9nCt1MMeqERwoS0jX6zZfLrUx/8Y+jleb4TwcZ2JEqGFzUDJZ+Ylmu1aGyIgkmu1j5icfvFIEjpTlzEF2LP8eJ7PyUfk2gS+zhL3AuodT4+ZG3boqk6LN7FnimC5PZ4KgZL2B7xQzIJ2JZu96pv9DZd+rTWOz8VmTIbZfVvqz6httV0TG2n9rcYxnwvIVKfvcPPQDcdb/NgLj3cocs/IGtXmQMrfXhwWJAS2ZdvdC66VTiuEE2CyNuIXazNRNgwQOrjpT2qPgddJzb6qVRqZAuqs71JEyZZ5bxu6SzjdPz2Qjt/tlq3ylxkW/M4HzfHYZ10FsgyNwAOsNOK4TuvNeHgEXcKNuoM3H9gCO3FVFUwYpTnYYEEqjMNqrHZO8j1xgPo52n2amK1PHv1HDdZGlU59BDTdIRF5rA2NxpakBV66cRXiLp5kAiqexbEKA78rImu3RznXtfmbKLiK2QwTPN9DMx07V5Ph9DYTYOoHBxxdXDX/TDOFcRz7mT31mYNFiap9vK9V2o45jE6w80M9EylCaHCkB5ntGFVJkn/Llpn6ADEUvQDavV8IcjzyUq+paqhwrTTtUUbXTfQRtFIWj0q2vFOwTA8yrTDMrbEcw9PH7yLdgL3UwPgQds8x3qY1gY7di2JT1BsagmCCI7JYwXl9YxbMjxupqE8+UbSjKqgVUVcbSVQUtn0IQ53zu5yV7xw/f77dobg+4zYOUuX3z7VQfuz46o8QREf23IJY9KKTWTbcfYEcaeSIpyz6CRZWsmqGPRZcBx8Q3qidLA+w+XIlQFmBTu16A4CZQnRQ3E3nnDWQivhaS6vdiXiriuEZrdQT3wR4vTLe/tgBhtqMlqBODw5gYqsF2JshMUKDrqPUDOMKrTZPuf2Qf4/4bZ+F03r5h729PELiMivj3WgPZJlKUz/YUyFkTWZyYSN5OFY4pcUWKOdr2yDdp/SjB79xhE1cxCA4HKXkhvNUhgiOOV+JaCdBPRb79Gpzoi4tWgmDH37M9fLan1OCdqomnne2ivHahjWNT9ZYYDHYfjlzMTTKTiDdhr6A7qd1mgs9cbmEerrCcVcA5z3VNRJAlFs6VfsnGScQCtNbEWiIQn9MZY45Tsj91RBKlE58/wBzg94VaPKGn7LvI8F2+bgxSxQs9u2KBH0tqLHvNPASfzSlKfHsVC0aIHeOY71SQKXzzFt63NBapRuJ86R+KNKdzfZU3kM2DlLl9862jdf3QM/GuIBKZ+SKiGRaCIZm+XhwjiAk9kbqmmEuxSYjPPJHVkUqQe8bwGPrYyddVE+VyC868WzJHRYaFIyKVHHsl8m5lMtzJjvZG2ardG7slb/myBLELmQAQyyZ0Y18zLmOMC42KvLSxj+O8uoD7/vZrAFQ6GXbktF89b0DXZmgMmmsNjNPzy4eDlEGAYOhs15gckQtnRFbORCnS5RjPY3VoJYexbxmiaQHH43U3p4aPGPu5tgOxAaj5jEsZdvZVFYLb0OxJR5tSftt13Gtngn5ApUiDEMfE/4oJApjYFVmE8NjN+3tasxbVmomuNUIEPqR/exnONSpaRm9YRLnD1yDpWhOBnZsdVmddmOA6vrCGceTvr3ZsLEWsfNUZWsdu0q4rGZ7DlZbpxexRLyYCK+dMD3P+Rl0kzmVwqpE9i3NdC9j5LNhbqDnF95XdqSMP9xPEuDcvtc9fr6tw4gzBz+WWbRjaEwteZx6yV2/dxNyphzjHsIjrfHLXQL+FFGWg7apkbze9rbl9a9o8SJnbN9+cDI5ovYFFnLsqlnVSTTk3lYpZSOEEijGcHbMwYx/Ooj7DAhgrjmVYtKxBQwOUXsn0U9jUkDtKLqqxZyqfC5PDqqmxa03xNmtYqE/2sahv1OHQt6u45nfeUACq7ki/tGpqtY/sW5PC4yzfVZj3VInQVI/1/kYIsCNp2swMzDycg2WIsop3ZYJyAJVRR+ponEzkxSUEe2SY0BmvDTGu5fhWsGw9FHnHDfy/r2JlG3XsgosJxvJ6A07nxEDEFwtImIlYmOCzM2UrsdcOnZ2IdcfulvBMP3MC49eaWnbieh33W9Tg9lQf17tfRiDHVgKZiHzvJdxvPcQYnN9HANYPkGUguLQRYpw+eco6Og+KmG+7FdwnAakT3zpiO7kMEJvv1WZwumEBJTA2EaT8fW0m8rYNfJ6Yo5UhApSNOua3l1opauwrKFrZSwTZeqmCxTWb1QswP7/jKgIF3hefg5sZBmxHA5NTfYx3oNmNlo7rKx37jAjmx8k+sj436rj27Sqye80QQQhl/sc+gsPYFammIi938J5eCWNyuYVAe22I159fNg2WbsnYTamIeNk8s/IGsHmQMrdvvlGsrRop+yKwnXw1MmBfKbYW974umJEufOyYXIqtj0l7ilJI7GLBq4dYaEMNQghGDWKk7mMHv5di7DyZzq7NjK1CK6SWGelM4BDWGwAdblfhNBIH53l22ZhFF9tWz3czvP9qE5kJ0jjzlrgm/uUpSHNxjHOuDnGcfIDDEse0oJTqKRwN+xNlDnAUA9UFeWYbDuRqE8HBua7piDiijlOd9HYDY3K6Z9kHlpJ2qrg3Mj8Wx9qHaYZz7aqq6crIWFiP7x3Gw3ziNAKhp3ZulWjvlVRfZKoYkSoc4qU2MgfUHalEOB9xD6TX5rViaGygeKGNvxNDsVMRef8VBEJUin3owOjUVCB+bA/BQyO00mDqWAuGYmL06CDB80q0PPfCEnAuT+0gU3OjBsdcSDF2V5sKXp7hfJ9fw1wpxTjmwgTPJHGBYVnQEl45wnE7E/ztpY71zukHGF+2W8gE8/egBMzLi4v4jjDIDBLMY6rUxo5IWMSYMyAOYtznrpZnbtStvPayiLzrBq7vWhPnf2bbMl/PLWMesennzMP1sRv5IMAzenwXAfNuBWPT0GziNMFcmBTEufYzc32Vb1GbBylz++Yb275TytvLjDUxKVjdvKggUifDAsb6PzvbihgddFqAc6G0/kB3fd2c83Ay6ICwp0/iwoFT/MoRy0wchyPIBH10hgpYpFMr5Ha6ri6uqYN78xWXIErbZA+if/+QyA+8cCsoN9Bdf6yYi4pmMY6WCmiTAu6ZaroUf6MS7UZsdOvdCpwsAchuBofFICpW57RXgfMgaPKJXYxbSQOJYdEclK/OeEX1SGZlkT3HejFFyniJNSNSCIx+uzAxnZkbdRyHu/X9MgLFbglZNydDN2oyc6hHQrpxpE4v8kQqitFg/x0Kij2/LPL8Ep576iBIWByjbUA5EnlhGZmazRru+73XcH5eE9WMRXAPxHwwWCprgO04yHzRznaRTfv8Ghx+L8Bce20BY+tmwMYsKJZkUrDWDeXYsB4j33ovNac4/3oDgNmJj7HZrgL/8R3XoPHiK0iXDt8bG3C8NsN1tBWnc6mF79tWVRsqegjguiVcc+yKvG0Tv7P8mAm+W36C19lTaWUIleNKhPvplQxQW51hfmSCQCl2Rd53Fb8/dIDnOfYR0HET8tqClgW7N7FWzqW/KzLyJXvmv7rjcjO3B8vmQcrcvvnmq+NdGxpN009EUl2EE9VdiF1L1XupsTfqM8uwLI2xoI58E3Zjp+ODEs4TqrNisLIjJpDG7AnT2Z6yNo6z1SGc6dUmnDad3VTZFVSt3a3A0S8q04G6EOVIRHhPDnabIiKfOomsyvdcwu+8Vvav8VKjeh41lka87Phuw2sD6Jhwh+8pziB2lTXj47r66oRODOAAWWrbrsKp5LM3LCn4urN90zbS+DfqeB6RgqCXxgaYrM6spBK1tE1BAdfHnjD5AK81RRD7qh73LZuSyYdFyrgE5+P/2OjGyyM8azaRZMC4WTMQ8g3N8jy9Y461EZqGx7iIjNGoaGJrC4ojubBg4monBwhQGBSLWCPMU32M49EsnAjE9x46MA2brSqwIqkDB04cDksl7FbtZMh2sWQUeRYcrA4N6MoANBOMO7NGzRBg7NADlqU2s0xQ6iA4Zz+kaoS/v7qAv728iPlAptWZnl1XNzDaOYHu3RICo1N9vD9xca4nd/AcFyYIgp7aEfn0SXxG43c5qQFpP0BJ7vy+tRDYrlrpjCDypuJvGqE4r/09kUI6LwF9i9g8SJnbN99WhrYbr86ULqo76uoMi1OvZGwJ0o5ZwohckVlBZKwlHz+1Zm2RvscRo4Imjtb2MzjJup5jos4l1VLI6hBOanqHr8nVJq47dvH+WAGSLN2sDm0XTJxHJhbMOGJYlb0y8CulGNd4pYVdtwiuJ9+pNiygLn8Uy5I6hqNxBE6MXXgLqbFCiPu5UbfuysTvjFgumYksjgBaTB1kHvbLcNInBgosVs2PpZHIWhn3luQwMQwMWlO871TfMB5+ip1/WBDZUbBlWDDsz3ZVO/lGVhbS/j+ZfPjwfa8NUbapzZCNWB6hnHClift6egfB5qCI8WFAsFcxTR12zx75htXgeDL4Sx2jEp/pwSl7Ge4vn8HqTOz/kwLG7FzXMnLrDcV8eCKbgUng5xlaBBvz3vfLCIoqGmBmYn+rES80xnmrM3x+aYy/rTeMTs/vCPFUDOKZ0SQTKXMM+DrQION6HedphBjjFxeRubnWtODO0znuZdaA8/e8inG72rR+P4MiMkyVCCDuTWUePbZnc+ZaEwFKIzRF6sf2LHgb+wbOnnlgiWkJyRn+dclqf/n23925PRA2D1Lm9s23acF2RiJwgMSZsC5N8CedBdk3fE8xQaDCzAudcuYcFvNiup8lJK1p33SGE2XKxK4FOwRQHjUulMMiHPNOxXalvcDKB2/dxPv7gaXumUlxM5FIWQu1Ga7rdA/H9NPjzytimJajVkhVgEuZOcy4JC4wDdSFmXmmxtucmnOMXFOAfeeGyK6mKlh+GxWxCy4qBbU9wXhSv2aijCk+08g19hb751xYwPsp+35QRkBysS1yqmcMkGqE6zpORl/NYbByqmCy8YmDQOWpHZQFSF1vTzDmxNMQ3+Mqi2VdNUMiD6DscmxZo8TBcS62ce+n+5iTLDMmrmXOiEvJxATLznURKHSUgs3synPLJkZ4lEJeTHGegmaoZh4yTWEB41eNcM/NKdpKXGsAUzMIMBfPdhFEbevzfHoH87IquC9iR4Zly+ZtV5GRPChZ52xmlxjczjxsLMoRgsZrDVw75yMVek/1Rf7As5YJE8FrV5sABx96kNmt+jssH15uAZyczwyOfZzDEev2fLPU5+L+lmbiXPh7Ihs1yb7zj912Ds3t9W3zIGVu33yjoill7N0iHC1331SzHBVtsWOtPixow79MJBI4vUzgSBLXNCqojUJaLqnBgQpbcQdZRGkp+33/uYiIONd+EbvxF5fg5KijcaaX68/iIEAaCBbTTQ1eNuoiv/YwMA6P7AP/0A/QyZmZIN57dWZ4DJE7a2mIHB+giGDRZvo7z8Kh+qsIslLDogna9QI4UF6PiAl/ndKM0Ng3inE/QIDGzMvi2M7VLVmaPnXgPAspgLUMMM/v43PlGJmCzlj1MSoiQz32tIAg5ultPOcj1O+bwUl+PAjmZIArol2fZ3CoBFlzHIqquUJ14VDLQ4tjww5RW4WZJ7Jwnti5VZCtpjo021WTi18dWrbjKHh3qLoyVFo9ahR5O9B5tjaw4KZVsfmdlkV2XBPqO9kXCTQ7lGk241wXx7nSBJiVlF9mhep93Pe1hgGbqQBNAcOwILKo4PaJj+D7rZsi//RNNkYU/fu+C3h+ZG/l7UzvsK7N2L+V2n9QxjzI9BmymeR6w8aKLQs2qxjLs10TfuxquS8TET8VZ/jXRWqzWzNwc3vd2zxImds33bLFvyjO4O/CsRVS6+GxUzWtCBHbrSVKi+RCWorw2qCI9DYzHwQWTgumSDvyjTGUpzQTgDstWC8cEXPmoaa8N+pwmi93rAwQe1ZeutQ2pdXWVKTkA2PyxC4W7Ef3sLsPEnPkIkZNfdM27pOg2/u1SQEBU2FigVjmGHOD2RDqYUSusaSuNuHASzGa6K0Mca2XWnAGtZlRjberKEcNAtPoYBDAAPJcF+euh9AoIZU01edLPQ0RiIARFLlVVfGxCFiFYRElp6URng2Pc9y9V6LDf6fs/WYNc4OlDUrj83m3JwbaPpqlInaHomTvvXZ7yvi0AGf6+TX8ztKVn1p/IWaZVkbH9+HJC/CVY5E0RBaM7BeWpbxUpFvFa1RjTlyIujHILce4r8RFRmZlhHv99Ekr4TC76GY2L+uhyGO7Ik/s4Vj/+2MIfr7vgskC0N53VeRjZ7SMV8DxTwzw/Vpv4Pej2bB81igfoJC+PC1gHoggqOmWEMwGsTVdDAvIbI18XPfCBM96pJsNCiASoC4IbueByoNl8yBlbq8Lyx76URERcZ79OW2sl2Bxo5iZI9bzZKjlEeqU7FWszwx3UhPfOsq6mQFuS6qGGROAqunrQDMvKtjm/PL/G4vzSdXvKEeGKXEEQU7miEw8A+rS6b3/CgKOt21g0dytAKTY1cV/ZWSpdKpszjykqrl430uAMinc6ix3K6YSm39tp4pFvjKz4yeulWB2K7i/sW9g2fUGgofYRYDwUC4dvzxCueOzJ6xERezCbgXBx+LYQMR5ETs+t7zx2MOigWYdMZG9z5wwPZW3bd7q3P0EGa3M0W7JrgE1g9jwDAfKihHBvRM7VInMWU4KuV5FSm1mibCt5RoyoFLHFFI5ZxfHyHg8t4yAYVIwzESQmDDbcd2GX+1gTJ/cQZbC0Qzi0hjX/WsP43NP7aDEkTjWq4fZEhE8682ais1p0LU4wfk/ewLPenWIZ0XacXVm37d3Xz8c7P3RL9j/Kxr40U73RL7rspU6PR0nV3IqtXexS21givh8zh+YRhC7YIscVlGeFvB60b2ZAUV38ynGohIB9MvAdxnlRaf/EyKvLcyF4B4Qmwcpc3tdWfamP3Xz/86zP6cqmoojKOhulA5kpFokxcTE0ZjqpxAcS0aRh90mwZ4rI7wv9OD4miFAgV6KAGaiZYHdCs5LwORYA5VUQa8F1RypzXCus138nTX35hQ9S55bNvn90EOZo6q7fjaFe2zv1gFh75vj2DzH7eYdMWdIo6Mi5oXAUDaJa2u2qjk1xtS0gHPvVjC+LInkzU9wn0y/U0+mPkOZ5qjWiYiW51Jz0JMCSjyLY4ybnwKDsDzCM92r2LMMC8B0fOwMnNDa0JRbo5wznGrGwhGRSM+TD2BJL3cyw73QhkXLQsQatJLWTZzRlRaujbgeUrcnPq7rVB//tqZW9klcZYulOGavZGWeDZ13l1soK/qJyMfOWlBeUsBxrJmckQ/HTQqvrwFKKTZMDqnzN+qKX5nhuvfLKtCWoOw2UlbcLME9rg1QmiR2J6+YfFA2IHsmmjXT7xqVd1eHFshHrtGa72RhAd8R4sxSPe+JAb43jhjIOlDcDynqz2wjWCvF+P5u1ZC1C7Tkw8wgZfnbqhezOhSn95PAqzzxZ+5ygXP7Zto8SJnb69ayN/0pcZ77WXO6e2U4AtJXSzEWHToZYiyYribYj0qXC5qZqc+03q8B0MjHAsiAhH1OnMwyMUFsZSA20gsLIq5SV9lp9mzP+p6QmfNdl/Hz0XM4/wtLuL6Tfcso1GbW9G+rZgyLPd0Znz84vjRwnB2V7w9iBECvdmwMqUGzMLHshRPgc4k6MdJTE8V5fOYEevI8vW1BxlEsxcMHcLoEoF6vA/zJZ0TBM+rZZI51OxbB+5bGCFqeW0YA2J7gtet1lK0YqL7SQVYliI1xMlbq+aRgWQtfwbf5Xj/HjdlWFWWVhw/w0wiRjbjewBx5/xW895feIvLcEq6jH+C957rIbjRC63PDwJW2UwUQ+WrTQKJfWAMO5HQfY0LszLCIktH3XlQ2m87Ld68jE7JfxnuJhZn4+OExBoHK3rsIyFkaYafqc11VKt5UkHYZY7o8wljHrkhBny3HMnGsazEDZC+1zOZEsValWMTVDQVbINzJtrWskymjLNH5Ebvas0fv/2rTRPryDLr2BK+tN1BOXRyrJEFs3cupkbNRs7JZC9oyzvrfFhn7kj32I3e+zrl9U2wepMztdW0UZnJe/R/wgqdMjaKm2vdVUyNxsFg3Q1M7ZQrfcwycGSo+pVeyz6WO9QGqKcDUT9AtOVQa6IFSoNsTwxYkrtFM14ZwaL/+EOTWz/Ru3Yme7Yl8/AzO91AXr3GH3A/gIB/dN90Spq+nhbsDaWkMBo6WEvYqAE3eFDRzDVBMTZStmgmxrTc0Ve+ac9+sAQh7tYnP9AP87SggtKxp9q0ansNbthCw0WE7YiySs93D11pIscPfrMERnurDyQaxgXspg//iosjn1gzvkokp27YnoOseZczcnFiOyf5v1iCudrkFSmwxsVIatUfywcZ/8WWcZ2mE+3hpUbMPOac+00CDuiUieD8zL68tYP680lGV2KoFxYnieBpTBF3sx5Q5CABZxmRWgTTpQdHYSBfbeM/aAAHJlaZhva40LTBkUN0IlaY9QYAz8k1okIwhGsenHyDIFTGROLKciKnaL2Mei1jQPixiPp7sW2aI4+OIgaCDRKSu31u2nji/j7HvBSgRLY2Q4RkWcZ+TAgDqTd0EkHI90s3NzDNGH2X2NfvoXP0Zyc78uePny9y+aTYPUub2QFj2KHY5TvgR07XoBVjcKbo2VH0TCnPtVG3HfqanDCDX6u6FHCbFc7C4UzbcS7EwtiYIGvYqWMAPyqYAy5Q6NV5aU3z2SyuqseIfDi4mitl4/xWkqJdHRgPdq2Bxn/hg/7RCnI8L6b9+BLvvJ3cPBz5HjaJq+fcMiwBKTjQoK8dwOuzQO/bxGnVYajO8v61y6p0JnI2IlVEYuBy9lKHSQtcb1svm5Q6c5soQOIvENSGyURHHbITGyNpQvM6TSpl1BeNWijE2sYuAgpTUTMHA7DA81dLPc8u4XyqV0qYFaL4wg3bzGqbYuZ/qHwZPHwV9steU6DhwLFiuEMG9ZA6CEVKY2Syvoho2F9sYv0qEv7G8QzDxM1oyW2+YNH9njM95qWmMXGybCmwjxDhvVzEWoyKwHuXYMDjPL+Hen1vGd6ASwXEz+0baMvV7uiVcG4P8iI7et7YSsYvvUpIDa0cuAqKrLQRLV5o433oD93v+wDqapw6ujcEpdWqcDM9jt4KA6EwP8/JaA8/AS3Hccoz7Jq4qdnEPnTGug2WoVQ3C6jN8BxtTfA/0/c7F/1kk8iT77X/o9t+xuX1DbR6kzO3Bsut1LCqTggE/uSB6mfUA8VOk+ok54GcoerVbEZnojo86GgsTSy/vVeAkPn7GBONEUBI41zWqKT9fTER+52sIJEbF47sdP7WDv7+wZCqhlHmnKit78lRnRqUkIPeVDv7PjsXE3+xW8Psp3TkedcifOG0Zn9TBDpXZlLo6iciFk6BmSKRAXj+BE3Qzxd8EyCwVNM1PRgV1Rcox7u9sF7t+ZhSKiQl+FZVB0ppaMLVbwe8DxVoclMGiYUq/WzLFUWaeRExd9UwPx9rXe7ratD4y15p4NmTMXG+gn1IztGebOggMGYzdLgNzO0tcyzBErsikrHLxdQOzsq1ANUJGwEut4/KkYLgcCgkuaJC6UwXDyslwn2/fwDi8toD31WeYl5faKMWNfcz9nSr+JeX+dB9jcGJoDCuCkYdFa6GQauZxWLSu45FrInKcX2sDu39mw1zFIVF8sBZpc8ypse68DGOxVUXQOSXDzsM8ZTmPWDJiiZ7awTVlgnFghtHNkI0aKW5pQbV79nTeUXK/ylJmbMJ1fcUGjX0rW9Vm4nzqfxQRkezdP3R/82BuX3ObBylze7DMEdNHIaDOS0XqqSpOJhqUiHX+ZRBCcbRrDXPCnbFSOctwvqtDLMZrQ6MEt6YoWexUFDToGH6Fi/qf+DxYDlQSvZ3tKHV37ION0plY6eT8AZQ3qRsRFiwAOTHAIvroPn7/+BkEBAclBBG/7YqdgztiqsRuVzFWZKXQgYQeUuLlMhxk6uTE8yb429WmgWbZAZlddEdKYe2McV+hhzIWAx5H4GS39G/1mSmQBgnGshGKfOoUxv5MDw6G+hoER7J7cWsTDn+jhjGuKjPptQWMX3NqtPCndhBoDjw4pIstjHWQwOHXZ4cDVJag/PRWDY/nl+GQGfgexeHcqONvpLP3A4wNwc6dMc7rpXjGdO7vvwJqrwicOMGqtRkCiu2qBbMc90pk3YvZSHKjjjFl0ENadV3BrO0pxn+9IfLWTdMA2vhb1gKiNrOGm8SguJk1a/RTvNe/+1cUB89wne+4geOSNt2aWp8m9lZyMwS5I6VlD/T7kDkGgq1qSexza5gbxKu8ZRPP+pUOSlddwecXJpjDZK2RIl8PLWOaOiZ7wHnQmRj7rByJ8x/+FxERyb77j9zjjc/ta23zIGVuD5bVQxFfU86pY/LbIqrgKpCLZ1MzVyzjQed9cmCgQxErFRDgSedyuoefo+qYF9siX14R+cDFW7EiDFAyxxZ4NlwTsZKEk2GhFIEzPX8g8q7rVusXgYMvx3iNtNytKrAeDx8gEFhvIHChEicb3PUDxSUonVYErKXIw7hs1uBsV4f4LJlFHzuL8XpyB+dfb+B1am2w8y6Btxs1OKF+gLE7McD4hlrKYZnt1QVkLh4+QEBCSfOPnTUBsWkBjnhtiM9dbqEkMS0Ypbk9Odw5uR/gWbzSwfiRqcXrGagT2qwjgzIt4NzLIzi1L68gQDm/j/c1Q5HfPI3XntnGud51/XDgQmNJgV2vqwo0rkaWearNTOeHTDPiNS4oPfbpHeBatmrIhCwrBifTLMpYMwv7ZWSpHtnH9b11E9ebOngO376OIK0e4tjrDQREF9s4//uuHAYPE4g9UZYOA4dhUWRf9YHIbDsOtE1cz2dP4N4e6t46RpUIx73Yxtg/sm/3vzAx3NhG3YILR/DdOTmw7FekJb7YEynMTLSPQHQRBKMvKz6IirepI9JPresz7/XRPZHPnbA+WpxjT+1oJ/YSzjcoijzUFefXflHETyX7bf/lreMwt6+rzYOUuT0w5kw/AknvUozFhWUe7oSoJludGWumHyCDsFtRuezIdlUUDyuz1u5aWYggSOph5I3sj7sZd7tuZhoejRALunZuvSm9T/YCG9rtVrCre+cN0DM9ZYy8vIiFl+c/mrXpjLHzp/ood/Sdse62M5xzSRkQ/QALM+3RPVPpfW0BgQp394uaMeHuV0S7EKcItJpTZIn6gch3XkXAcq0JB/zYno3t2zcMrHqphZ1+Jlqm0GCLmYFShECK2IUgPhwYEti5X8a5lrRk4mkJ7nQPr7/csXsQwfPtB3BokQul4GoE/ManTinIcg1jUw/tnNsaJBZVE2WrppkGLSuIGM4jH6Sw+SU7c3fGCIyuNK253rmulWFeWoRjdzKR5TGOt6M02v2yZkBKmEdneghyW1OUDJ9dQTDrJ/gcMyTdkkh7Ko7/YWXS6PPIl90cUUaUbxR7jqUIvmM36phfnzmBczdCzN1eSeTx3VsD97dsmrLviQHucatm31MqLu9ULSj2tETFQPWtmwiCVkY4Frsuf/ok3vP4Ho5NFlIxwRhQd6U1RQB0pYU5F2rgeFBG8Jany1cizI9nl61ZZA9ics6zP3dIJmFuX3+bBylzeyDM2fhbIkXVsCjfI9NFxDIMp/pYBAmSG/kGVGXQE7mW1qbdrttw3piazu82mSmhVLunKW3qbrDfj5vBQfdKxrJo6oJKtc4ndhF4EBNCIOFW9TB1WQSvX2rhdUrU81jfddmuZaOGTMIjWj660oKjaYSmfntQUixCDAdMKvZMsQN0MG/XTBNBlHk73UP/FgKOCSzljv7xPeA2Jj6cEJkxQQxHdrKPMXhxCdmSfoCSGHE5ZNC8fcMaIYrAMT+lbJWPn0X2ho6IAd/FNpzfe68hMDsoYZwjFwHB55Ue/L6rIrV9091YGukYFJCpYCDbK5nM/LSAbN3i2HRQ9ktQAybLRXQ8znURHNVDHOtyC0EfRQerM5FJRcscCsZliWrsg5acOdZigfiOzhifWRpjrrEn0kNdm6uk6OefW6L3UIlwDwQBf3kF40GBtbGPMSSV/OEDkc+cxJjms11fXMXzLaQIGMnq4Xxd0blQUXDuqGhy+pfaNp6DosiusqC4OSHr6GQfnzsoYW71A2P+OYLsHDcwmdhcz+v53Kjj/8QGfd8FzK+PnTFZAj8B0zD0bjIP5/b1tXmQMrcHwyqRKU9SJOpOtluxXTNtKZfqbk9Mun63YrtTajrkMyjHpfrzRn0OCp8xRT4qYpEXMdq0nwCL8P4rWED/tyewwF5vmMbHjTr6q1CkiziHUoyAg/eeOiL/6lH8PLIPRz1VvE7sYjcugkX+6W1rbX+6h4wJLXER2Fxp4XprMyz2LFOMlHK9q9kSNowLFCtyYoD3T32RRIO+q02c69E9OLDO2MZVBPd4rov7qc5w/8Mi3vfIPgKJrZqp1xKwWVftkhMDfHZxjACIar2e4Hy9EtgvYx/jslfGjnxBKeSkyu6XLONxuWVKt52JyB/6sinVcrydTKSQaS+jHjIh1Uj1dxTvQMbZsIgArzXFcyXuoVdCxihyEbDQKVLI7cldzPfUEZmJNTWMHQjf1UI0H2xP8HqvpN21NaNzXgPPIMY4kvIsYpoxsQtNEpZAWbpJHQRwXmaA8LAg8u8eNqZZW4Po+sy6Su9UcQ5PcUbnHJRfehrYtaYiMxfPgUKCZ3p4dkXFVjFYWB3i2l/t4D1uhuzQiYEFGiPVz9muYixj1+QHajPTVHH1WZFmf71hmZKja8iXV6zk9PYNHL82QyBNFh8bZVYjcTZ/WmTi31TLntvXx+ZBytxe9+Zc+TsiFcWg7FWM9cCFKdaAIHPwnm4JznSsWhIESO7rbjpxsLg1Qk39FuCID0oop9RmN3dNNxVqg9icLZkMzKCw+VwxsS6xsauiXvoVO442XIpF/rPn8P/disj/8lbDUlDP5C1bWHA7EwQQeZE2N4NDv97AjjNyRd6+iZ3sb56GM35qBwHR47uQVL/WFHnPNThCmpfCMaw3cO0Ez7IdQSYKDHXgmDIBfqcewnFs1fBcKHxHvAEbEOadQS+AAyToc0fLWg8f3BpUftdl/Jun7p7p4Rm4GYKV1xYsINzNzOETnHq9gUxNZ2LYpUSd+fIIAQatNcXnHt2zTE1tBme5W7GGiMsjbYmgjBziUfYquC7OPRHrj0OGDVlVpKcTu/LIPu5l5GNMOE/zKsAnlcZ7qo/xaIamdbM0wpybaRnzLZs2r1tTZGpImScTiSq9eUYYMyrswh15AB3vVQ4z6Nhq4LE93PtVDYC7JWTpRj6CXmaHTvdEmimeU+ghCLhRM4bRmgKtOe8Gyv7aqCHTQj0jquV+12Vcw5dWkd3paVmyF1hH88jF9bBUeKOGoGivjLm0VcV36/e+bIBuft/zmSCWVomDy2edrrTEefnviwyLkr3jh2/9js/tq7Z5kDK317U5l/+OSbxXImsWeFDGIsR0c69kap8UKAtipHndDAs/6a/s90Pw5lQzD8RvXGkBOBp5CAzOdUWqLpyzqxmXqmZ22Eckc/B3Mg9ErCNzObp9QzpaVcs21xq4xid3sSOmdHuq2YGXFgEUbE1Fvv8VlIJI6a3PsLiuDK1/TD44+sBF+/+mAmxbUxPGY2fm/ZKVDkoxxnuq95k4OPabtzAOmYNFf79swRv1apZGWkbz4GwWxxjvjTru92zXQMUUr6OceVjQMoMg0HhsD+fJxJpP+srkYZfgEwOcgzTiL6xp6UbZTdWZCdFFnvVb+pUnEMQ9obgGYnLI+mLZ7EAzIMTOVGcI7tjHhsyVTLSVQYprbk3xnnJkZRqCmSlAdqVlrQhKMV5nIPbu6/a8HttDAHi2d2t2jxk8BmNBbA71iV3LGC2OcY5hUeRfPg5gMMt+IlaGHPn4TrzasR5GcS6LuTZAwHimh+vtKdMscRBQUf0533ZhWrB54ogF5cTtVLVE+nwdAU5YxvhQfbmk98RjdMYI7l7poGzHgIQdnPlMeiWMy+IYfx8WjW328TMIhKhPc1x7iht1fI7B6mN7uD6W7tYb4nzyf5TsPXPK8tfa5kHK3F7fRiouba+Mxa+smgcMVkqxLZBUwpz4SOGGBeujwuwLuwCXVUiLNfNpAc61PbV+N4MAf2fphs35CqlIEFrmgzvXZqgOlGDeY7IoIofpyuVY5P/6/PHv40JMbZFntgGUpB0H4mX3XYqj5VlHTgbn+umTWMDP9HB8ime5ouUF1/RhyhHG7HoD2ZhyjDFfGlntv5AarTT0jKXkJyK/eQbXtKYaMKf7hzE8VH7tTAwftDwyjY1uCWObCXAPrSkCC1KfyxqAfuqU6YSQtRVoBoTBh4gpF+9VEMC2pggMR0Uc4/Fd3BfF9tinhuqlnQmCltUh7uugbLtsZnZi1RaZKfXVzYxyzh5Q1O2havF2FeNADZdKhHueeRBhe9cN6wF0nB3XL0kEcybfXVkE516YHM4miWh50cM5N+oWVD6yj3tiJqk1RaZo5uE4CxPMh0Fg2jNUep740ExJtNTUCxA4feoUSnSOYFzLyvQhhbg1RWDO0tPYR7ZzvQFwdljAa2yVQSp1pIH1+7cNOHxQsrJhX7OF3RI+n7giv+3y8WO3U7W+YZdbeOZkKz10gGd0qi9yqi/Ox/8xvmbf+ceOP9bc7tvmQcrcXrfmvPz3RbzAVE73yybOdrVp6e3VIRwna//tqe0UReAgdipWryZYlQBQBj2lGLurmwyf6LCjYFfWhqbZ6yE+y4CnMLPMxCCAsy9rGpwU4rwTuZOeSt7WGwB0tqYITijadi/mpYfPw8zKjTque6KAUeJMWC7olowp4aUY052qytO3RP6PRzGWj+7rjj3B82HTRj81yXQRkf/oZaNTJy6CCAZ1zEyc7VmZTATskad2bBdd1l30XmJqvF9awTmf2MW1X26ZBkwmeA6zHG060QxGM7QeTPtlA2DWZgCiXmtYVoNdlbn7XlHaNrsHswEkM2iFFOdmeUXEWFztCRx3P8AzXR3iOFMtHa0O8bf1hpZKXNxjr4TshJ8c3z35XuwoqFlE5He8Zv8njotYDqo6p2IZQjr4J3bx/4qy5ajtU5sZ9mm/jOseaLaErDmOOcUFU8fo24XUtIFGDWuayJ5AnJ+k7zPzsjrU+VTEPGYW6tUFw1Yxe3VyYPTkxTHmS+VIoCaC7NbZrmHZGJjsVXCtnl7r2EcWphkicBIRRz6MU+q/c/vKbR6kzO11ac7H/7GIV4YsfaI6BvWZKcpmgoWmkGIxOtuFsy3rroZONs1lVph+JrOmqLvpcoRFsD21xVbE1GxHPhYlliB4PeMCPiOCRXFxbBRRisoRRMnSClkbtdm9Bxqkgd5up3c/Rk0I7kAfPsDvV1qQkx8qVbQzgZMc6O50r4wx7pVEvuci3h8W4MwXJkYHdzOwSRqhqcWKWImAJQcROM1pQYXiIuuJVJ3hGRKwWooPa3A0QuBMIg/jf6Bg41N9vKcc2c6ZDrIfWCM+4j1O9pHRaU0RINEiD0qkq0N8nlT1amSaNUUt+aWiZS+xzFlYMOfrZZaBSx0whjoTy2D1A2sEGLkIQosJ6K+n+kYDXtTMAlVTj2ZSGFjci31+TcXvNOP3zDZ0VT6/hmyer0HES4vIEC1OLOsVJBi3zRrmTj20hpr8bqRigFlmP4LUZOp9MYp2daasKM+o7OyszBJLMcFnx5rtfP8VY+2tDhEYfOok5uiS4pU8Dea8DJ9lt2QRBJn30gsrz8ISwffby21wiD1bGuPYo8ktn3Hkw/NA5au0eZAyt9edOf/ul0TKYos7SwjFBAGDm4mUlD7sJ6rmmSGIoQBZe4pU7GbNsiQHZetPQ6rmpCDSSHEcN8MimjpYBLc0+CHtlt1th0XDoUx8LK7VGV5nPbwcmZS7ZKYNkTj4+yCwGv3K6M79eFaHwJ/kjZLld6NI5x1aPkCpRCLfc8kAk6VY5JOncM0s9WzUsPiSVfHOG/h/MRF5bB+OlIu1k+FemZEhHoVaMex/c1St1U9uNnVzyv/dYY2bfJCTd8rs2SOC+ZC0bVdeUyzIyhBObuaKBBl28I7YTn9hgixNJTLgMLEtE10WeyUDdooYwLSjTpvzQkTLaGLB6bSgTQ8dy/gFsUi/YYHr2S4otc8vWauFbgnHDzXD9cQe5jFZUdtVvI8BOlknry3gfEfxFLEL1tDYB9Yop5civcAa7RH8/ewKHHopxjnCgoGRz/bw77Wm4ryqllUSfR7cNFxpWdsFZss6E4zR9QY+x8wUy6yXW3D4lQiZ0mKCazjTMwB05uBv6w3DIF1vWIDIRoN5TFRlhuCPYzPzMDfy8+tejJuFsIAxON2z5+oWb/uxeVblq7N5kDK3151lv/0PifOF/ycWhZ2qpVaZwWBDtiDGa7H+7FYM4DcpmIz4RLMGYQFOvaxg0M4Yu9PYtdbtIx919kpkOJbEtdKHn4pkqqJJhdsgxrkTF8cbFw201y3hc6QgB7ojz8RAiDsVky5nTT1fKjnOCEhlpid1sPCGBYBan18CxmKraovxNDcO7Ym2rq/jcytDZCte6Rirg1mpIIEYGkGpZ3qatdJ0/426PZdTQwAYAw0Kt6t4PXZvZe+IHA7OHMGzOygfZldMNagLlbWR/9tbN1F68FM8q2aItDyfJ5kx9ZmCayeYD2SBNULc44ECZJ9btsC3MzaWTupgTB4+wPjuKBWV2TD2mSmkIuJaoMf7Y5DF5zYsQvF0VMSYpg6u42oTDjBxAFhthSKrCkJ9bQF/64wtcLhRx3vZrFAE1z4oYtyqM/zsVkARnwqCjfYEz7oUW3BUVeA15f2f2JXsnWCsOBt/C+fZrSDrsjwSeWTPqO5P7eDaeor1uFE3qYATA8yV/bIxnDbqVkbZL2P+d7SEN/NMX+hKE8d+fBdBXeRZppM09BMDk79nJ+V8aauh2Z7XFjA/btRx7Pbk7oD2vJ3WzNsoxxpcGeG8O5W7bhjmwcpXZvMgZW6vT3MzOFOm6IMYi8NRhzctoEzBwIIp4WERjnfmGWWVCqxOZkFC5pjcO2vmTOvHroIDc7V06ms4gv8PfJGyh9+dDAFKbYbr3anCOYaKRRjpNbIDMbM3Ioc7Ji9M4DSrdykJ+YllSqZFyxLQyQyKuK6rTYzX1SYW87aCFw/KeA+d/rkuHFh1BsdA3ZTHdDfPLs+DwBqy0aGf64qc60p27s+KiC7IzSl+iG84riRRjm8u3jc1Tq7XTZK8NsN1jn04SUfwPJshGFj5hndeivOtDlV4LcN4R65hIlaHcHyfO4ExofT7QHfC7Ql26cXEQLDsEN2ZYCyYeTnueYiYND2VhPslzLfIQ4C3XUXw2CtZvylq7Iy0FBkkmP836shskOEyKSAjN9VS4/U6cEFv3kKA9ZtncM/LI9B0X+pg/u0rwLw5hUMd63xrhnptLhzwXgVYmTdtHS6JEOy6X0bAwGaSHHdiQPZLAIoTZ/PUjnU9HhUNhEzcSurgvOz1M/NwDQTdUuhNBM+Zz5oUcRGw3YhxyQTX0Q8QULamCKoI/KYC71s2TVjwXs1LgVd6fllktwzF33wDxrttLNScK39H5JOnJPvPfuA+L+CNafMgZW6vTyOLgo4t9AzomLgioiBWEUvlBwqAI9OCPTjo8MsRFs+9CtLKuxW0ah+p9kUhhWPaL1uWYL9sreh7ARZU7pKnBQNiEiiaiWUDWlP7PUhEgol1BA5iaynPpnZ7FQPe0rkTzEhn1i3hvZngb2e7WITP9qxu31UsBvEMsWuaMY0Qx0u0NHK9jgCDu9MPftZYR1SSFcGCv1+GeigX98UxHN5/8qKNW97yAcnt2ChkG9GcDNfzhTV8/nLLAontKv4/KGKsz3XxPEXg8L60opTXKe6vkJquRmeCMalEIm/bBHjyUhs/lOwfFNH/5rdO4ThXmxrkeNZzhuDYuxlp3YXUGgcGCvh91w08IxFT+B37GL9MrBlh5NpcIask1AzhtSbmQeThGGSlff8rCFZ6Ae6hosH9TAP5QBlt44KxiiIXnZFFcK43bd0MDhz5MOZsW6zUWkhxfH7PqLnTmJroXzXCGLenuB7S4xlIX2/ges70cN1Xm5j/iWO6RMxeHTUyuk71MQYfPac9onSOkLLPDtIiNne2aghuV4YImqiWe6dya94qkVHZSclnEB5r1vX5JQSNtzNlZzn/6p9I9rv/4L2d9w1s8yBlbq9Ly971J8T57M8bsDLS2q+f6i7Ts4Al1sXay0QyD8C+lxfxc1OVtGRdfh/dw6K9PMKCWpuZs3MVQDvyRSJN9Tue6WKUdNFn+aaioFtSWinL3VaqKTUa1usiC1Msjr2S9WgRubUXzdQD5kbEUvXcWROHQ6bDrGA7zFIMh8Uus5QEF4EDqIdwUKFn2SYykWIFveaVOJkxOSiZpoyjeKDFMcbhxMDKbvWZON2fNPzJ7Sx1tBt0UzvShnAyZF/kFV69TGSnjHtmuY4ZhvW6yJOK+3ilYzvoQYCdNmnLhdQYXd0SshHvu2qO6dcexlitDtEniSwlYiX4HBINkCqzW8sEO9XDisYiWo4TVUpOcbytGubAf/Hlw599btlAo4kjUk4w51aHeEZv2kKZYEnEefWX8Z7Ewd/XBpZBpDbK99xAuehq0zIok4Kx3NzMgOjs30MV2KPZO0/Lf92SlkSLJh4nYjov4yKu4cTAOhm/uoC5OAiAcWqE+H4Rr0K9l9Uhnh/lAIjxevwIxkYE8+U3H7HS38oIQcipPjBIbNnA0mbqIKgKEoyxr8F6OUapikq/jRDNHqmOfJy9qO9n1mSm4O2iZhRZHjyu55cIJBF6pZuMMOdX/rnIykiyb//jtz/nG9zmQcrcXreWvfOHxXnuZ7FosbW6mxklOXIthVtX55wpkHB1CCf0/DIOxswEm5atDrG73tPdf6jOPkhEvJzAGOXJGyHey3Q8ZeHJSslc/Ls8wsJXjsF8IWZjbQg20aSlWAbBPR2UsEhv1M2ZbtbMkdAxLkxw3Wd7Il9cEXnkwBRb2XzupUVc024FCy3r5iJY9P3E9GPIQiK9t6aL7UYNY7FTxXu50C+OFXA7w714GXAQ+2WR3ziLTMOJgUjrNuWpYRH3tVM1NgvbHJzrwqGSXrufC0qaIcYx9IwxE2smiYHcUHEdw6LhK04MVJxO6cdLIzSS++wJ3NOvPwTHcnKAzBHFv9iCgJRgR/DZ031cQ7ck8ulTNhdPDHDegxKycwTl8ljdEko7i2PLgCUK2mSGaEmFxK42cd4FZVa9Zx3ziMGmsqTlP3/OMi97FQQ4z2yLVJShxMyGmyEgIjZqdYg5kmpwQ3n8hgaJE/8mgy2Pm3Cin7Bg7UbdApoDzQbtl5EZWRohYKFo2sMHCA4SV+TFAOf0MmTv3ExkOsPcZvO/tQHmeDXCZwfF4zMSpVg7QWuQ+fABmEmO4Ls00u9/JpaZoZT+SMetMxFxJ9aM86SChD9xGnT54+xiW+SlJQXPKq5oYYJxePuGgbmvNhE05cUTf+u0ihE6KtzYNRHA9kScF/6BSCGV7LEfOf7cb2CbBylze11b9sx/Jc4X/yEWOlJ5mbnIxGiPsVjgQopxOUbQQBE37o5P9bEQUgWVLeM9DYAKAgdPumy3hIXHyewYYw2cxkUs3EGMFDw72XJXH2jWwUtxvsf3EFA4mcg1zxZa6rq4GRYx6qpQPTcswKFmgt0e5dCvKwW4FMPxMeMU6bG5G/cyc+Rk3Ty1Y4ykA80erA5txz/Ra8hjfegAwwICIdJQ72R7Fcj0E2tAQGnsoqUBuzOPKwaadASvNTUYjLVcUlQMgCsYzxMDHGu7anL+kwKAvsVEpJAYXkEEDCURkV94B5zj+69A2fdSG45OBPNm7ON4xEWsNzCXlkcIKL+8grH7wioCx36AZ1FIUS4RwTMvZOoci8YsI94qcg3rdLon8o4bGKMTAwS/21UEbytDkad3xKl/xO6jEpmI2FGbuSIXFvFeYjcopT8qao+jDM+CrQYOyiKVSLL6h2493tjH5yIN+GgX2hBoo9Me+yidsXkkr/NLK5g3q0OTCdiow+kzO/O2TQWlFvHvyjGYn7zlMSnlSFWEXXx+UhBpFayP0PUG/o31fh/fs35GEwV812eG1bnaPNy0k3a6jzLkrGDl3u0qAiZuCP7Vo/juF1KRf/MInuXyyNRypxp4N0OjejMj2y2Jc+nvirQnkrV+7M73/wayeZAyt9e9ZW/9kyj9iFgTND/VPhta1mDZpxKJxInpGTy+a7vaQqpZh+rN8sRNaXfuFEkh9TM4IWor1GaGq0hcwxGQrspSyHrjcEdlir61ptYBeadqQnF5WXj2NaHCLsHB57pwlLEDmXbuyLxMJHJwn2PfMkVeJlLU2j9T0TwewbqBaw6Hju+a4gKWRsiWMIBiTxaK421XJVv+b0VOGWNBRKxvC0GydR2HL65q6SYVqSRwBuVYZOaIrI6wYJMmTgoue7hkjnXNjVxzhr7iIj63ht32yb4KxTkm3x55yF6VQqOm06n/sS9ADp22NML4XG4hSGR5j+UzRzMHiQvnKqIYBMf6SJEiT9bPv3kE1xa7VoLjXOwFuM9LLbx/bYggVATP+d88YiyZehu77id2cY13KkcQ5/RqB5kJlgUfPoDD3FG2FVsZPHxggdPtgk2WeIoJ/n+xbT2AHA1+KxHAqM8vm6jb5ZbNg3HBehKtjKzkkzkIIvYqCO7esnVvncfzFhasSzG7daeOyKRoPZMSLRlPfIxhT9k+YQHP+bUFa2fwyVN47kfLliwJXWxrAJravP/cmunn/PaLeM9mDcHY+X2cx81wDc0pjs314aCMAC7ycJ3rDXHGf0uyE//N/Y3Dt6jNg5S5PRjmCBbRQioyi02MbVKwRZbYFQpjMVDh4lHQwOZMD5+/UbfmZa2Z9RBJXBHRXZivu8TQE3FdbWiYGTDvpricY+BUpsRJ8xWB02hP4GzYPNARldFPESBQZIyNBEmBDTUzQME0ys8njjU8TFxkDdaGKj6WWAO5nSoWxsxRarQK2w312E5m2Rg6HAYogwDYEWaU2NBv+cjz2augXn+5hXN8xzW8fqltnWWJ8VgcIzi7XgeF+OEDw6EkLrIT7PPTmmJ3/onTlnEhY2tDmS21GXarl1sIQvqBSfXPPO37U8F4M0jJi+OFBfyc38dxSdV2M4wJFWw/cxKOlmyzmw0GC1a6eahrlPbvvoygbWGiHYEDw3EQTHuuizEiHfp6XeRqy7ATmYOyxxdWVQNGr4VMmIUJnu9Oxfosne1ZuwI2RQw9ZAIutjH/S7Eq2KaYr46IxK4407+urLQQpaHFscgp/T49tYNxudDGWNeVffaedbz3+WWM/RdXrdlnZ4w5uVEzEHgpRqYkE6N+d0to09At3VRtvWlXWhiXUoxr4HeqW7IsWZDgWL0Ac2araqU79uQp52jiZ3t4VpdaJmHA57I2xDM+GqSwYSJZdwzyqXb96B7+PdUHoP2zJ/CZQorXJwXc84UFPIPm1NR33Qzfx1MDBXx74rzyP6D0poy5N6rNg5S5PRhGjQRSe2PPesz0SgaMJEV4ULTdSWsKx+On1t34QHEPJwZGD41dpMqLqQFh2UU2VEc09OEoe7oIMm0vYosn6ae9AI6goAFPnqlwTVPQE9+60p4YWGM3NsELPVuE2WmZlM/qzJyBk4HJsTQyNdntqtKGU6Nek0m0UzF8D7MAzdDYQJSvj1wEFIUU5QgRkWlBnGd/TmvwLaTHycYiw4qYGjpmXksjNMdfVUAuaeblCDvs1aHpzJzs4zhP7sBxn98HBmO9gRIBG/S9tmA75dbU+jp1SyJfLiheZnorwJXMjrzzp7hZkBju6FoD4nWN0BpRrg4xZr0AJYSTfZynV8Lzq84wFs2pSClCIDAsmu5PT99zso9sAsuJ21Wdw4FlAU71lS3m4PxBgjG60tI+N1Nc/yAQ+Xfnjd10rWFdgS/rPC2kIsXYqPLUmGF5M/JsXvDZxC7mdV3BpU6GoIdNP0UQhHiZSHWqNH/H5oCXGgZmcQzHPi2I1ELMm5IGfbsVBPSP7sF5f/YEnmMpV4L7tnWM5adPWvkqiHU8FX8yqZpKMOeSIyjNMGP0visiT28j4Hpu2dSSQ0/kY2cwxksjzNVhEUHx2S4C6xeWrO8XGVzV6DA1/VwXY/vMNgJ4qlavN1BObU90vLS0tzDFd7kZIqirzUSCRJyLf1fkoa5kzo9/LVbSB87mQcrcHgxji3VHNDjQjAfpl05m0vncfTPDQkBd7BpuoTYTOa/AVQqXsS8QKcZjH7svUphTMdpiWBDJEjijQmqgz5vN1JRymTpYcJbGuP5BDYskG8udGFi5aatqoNFqZCUPdmoupFj02GBupmWPcmRsg82aar84WPSdwLpIU8KcOhuN0BrgzTwca22I63ytgwWXQM58M8CNuuqtTAAIpDDeqGg4oRcXcaz2FA6JO1V2ot7V8s0nTsPZnO3h+r7vAhzyesPo5GRwECfw3muH58ZGHfc90F30wwciv+s1jBExOFebcERbVTB76KhYHou0jMRGk5SzDwsIOm7UjUGVaKmsFOJZ9UoY714J17xVMzExztVZAcdr6nmptDoIUJZZHONze4qLWNb7Pd3HvVGnxs0sI8aM4b6OUVY0oPVexUCx7YmyXzR4ZxC2XUPQtzzCa1Ts3apaMFFMrE8R7V3XD38vd8uYI/z80sgyXiIIlETwHeiWrKvy2hDj9rkTmD9srzD2Rf7ZmyyzSeaPCLJ6Ly7iWJzTIggIXukY2JzjvzCx3kKOGCaJtjDBMzndx30vjzCniTmZFvB8rjXxrHeqUK/9vS9jjjIztTY8/B0RwfixZDsq4vt+uqffy8z6/tRn1vyS5dmDMr6rHVtDnPhnkFlZ/QvyRrJ5kDK3B8PYnn1aMO0RRx14KbaSRVlLQdcb2hBQnS9F1Ij/2C8jdcxePsMiFlYCaKeuNRRkR9fMsQBlqPgRJxNxHJFKal2K6XwqooJeim+JXPydmYRGaMA5Nh90BOchyLKoZRsCTv0EP3nq8erQWERUxnUcBEBkxJB6S50NJwPGgZRmMhO8FM62NoNTPZp12KoaaHejjt+JWWAWKEhA09ysIbgLYpHUt+wCpd2XxpDm//wa/v/QgZ3rVB/XyYzMcc3xaGPfqJ+N0ATXRIxOfaaHn8stax5JTIGTWYC5r3gfP4aDEDFNGU/fd7KP50t5+eURSh2xi8zAMzvmnCoRnGZnjOfIstZuGXgcMoACBdCyF9K3X8O41jRbdqGN44cerovZj9oM1z9R1soz23juv/IEjn2liXlxrmvtIEYafFN7hvN+U4HIzGoMA8P/UPDvi6s4FrMubLCYuCKTCMFRITWRuEqEY46KODdLNARvP7+E+cLSUerAeYeeSC2XXSSL75F9XN+rHYwxheU6yqxiMEOsCftDuRk2C5s16xBO81LM85I+g/P7CGp7JRxjvYEM6mKMeUlQ7yP7+LmTvbBkGcl+IHIutYwqv9/lWGRxZNndykwlEDz8/eEDjIl2oHaGf12y2l++83m/hWwepMztwTE2/MuXL2IXO5iO7pi4i2LK2k9Mf2LkC7qbCYKBzZrRRjdqllpnV2MCZHe1NEJArIjpUexWRLo+nCNT8NtV0ylhc0IRlKcorMWyCqmRDL5YkqHQViG17sFFDVSCBAsp9WLCgjGJKjOUq9jsj6BZitVNC3DWoWdjwj5GTNs/umcYCxr1XmYeMi1jHwEKRfPIyqnnAcVlc/5UHF0bYGyGRZHf/yKOTcxA3khTvlsjuPUGxruYiFyvYjf93Zdu//5z3cNBaUEDPgI8T/dFuoEFim4Gh8WMiCO5kpuLgOj8PgKt3zyDZnwjH/Pi8V0rDV1sG/6JGiWJBpBjdUjNEOXByMX989mVYsvscDyolkzWGjFQVLv90U/iuby4hOvplkxbqKylkeWRlfamBevye72BAN7LDJC+V0GJcEH1fxhwdJgBUizT2uBwQ01mqigy2JngvNOCXkHdLgAAosVJREFUSOJbgBNq0EpFYPbuqc+Ad5kWEBAwi8bgoJHL8Lx5C8Ej5/flFn4vJBjT5RHm7PNL+K79rtcOzw1mZZ7ZRiaTjCH26FoZWsnzbna1iesualmwHKO05KUACH/8jJV2GDCzrDsqYp6y6/t6A2tCZ4LjtqfijP+myGsLkr33j9/b9TzANg9S5vZAWHbmz4HhQ0rs4hhf8Mg1gOvMMwZKJsa6ELFy0IkBvugi+Nv1ujnXvIhY6lhdfmFiOJDIM32PfoDXTvUtU7Jdtc6tIocBoe2JyuHrsahWW9Lsj5dZW/rEUW0Qgaw629kvjUxjgzvp9YYCel1teDizssSwaN2b66FlX4jFcCsYq9rsMFAwH6BQ3yN14Ky2c3gc0rGZMWB5SgT/Zg6cT6+EMVscI13+cC5rctR2K0ivv3v98ByQD+NRyoftnKMigtTfcQGO9zhK7lGrzTAu7JBM0Tg2kHRF5GTP3udkAFl+4CLS/SyZUGq+kIp823X87JdBQ/UyvKc2w3xY0YCgPTEcQ+oYzbus2UDqgpB5QswRcU4MUmshngUzLQyg0lxwVYpF3raB473aQSC+NtQeOoKx4zNPHAQmVIq92EbGoRHC2TNj2QgNR8QAvlvC/fVVyIX4j+t1jIOvQd1WFcdfGuH7drWJIKeYYG6zAeCbtax1vaEg7RGecV4zJR+c0IrJ4QD10X2TB3h50QTXHNHGn3ewfFaP+jVHmzfeyZhVZRD5+K6tCcUE40LmGNeUtaG1MCikCLY26nhuT+9g3vUDzJXYFXmoK87VnxEpxWDbfYvaPEiZ24NjE19pgqFJntNZUCSJOgncKU8KSMnv6K6fYlEs4TS13j4s3mQ4oIQj9rsIFoZh8XBX4cS17rvFBMFM5MEpD9WRsS08hb9KsTU4ZM2bmheOYCHvloyyKHq/TM+zy+zMO3y9w6IGOKlpyjCzdFDCWJC6zN04gaKRLozMHHmpyeQTvMmmeFSH7ZZEdsXKYMTJiBjbKRMTQAs9Y5Wc6t1eJl/kcC2fLJuZJ9LIvWeo2KDHd+210/cxl8hWCn3DIGWOyeoTKH25BedNB3O5BRXVt2xBY2XiI01P0OtmDbvgcmzYj5tlSnVIBFjTQbUnANaKQHcndgEUZpmAGBg2Scz0fZ0xmgZSVTdzrDPzsGhNC0WwW2+ECGhF8F0ZBBiH/JxmWadWNUZWZ2LjzYyiCJz31SbOQXbdfhn3tDCBk6ZwYjm2jUDmiLTGECVsTU0M75UOAovHd5HNaIaYN09vW3B/NyNzTgTB0dku/p8HtD50cOdjEcdEO04z5ai9tGj4tPMHAFL7iYnM7VUQMC2PtISWYJ5RiHKnqrgwxWtNNKO1OMb8q4fQaCF9nL2bNmpgAmW/JCIi2ff9obtf6wNmTpZl2Tf7Ir5R1u/3pdlsSq/Xk0ajcfcPzO11Z85zP2udUNlAjxTQmWfUXgYwxITkmTdhATv5TG7S/aQ5td1i6pgE+56WeoqxObFREYu+I1hEqOoaekp1zawTa2cC3Qt2Um4qgp9gVYJ68w0MKf4WFkxWfebh89TOoIIugcFkGhCsSABx7FpKPlJQZTlXPiDGhpmdzLFO0ezPsqglMarz7lWATaBaLUtDOVGqm06/PUGgdmEBDqiYYId+t1o+My8EC6c69lR2pcIwA7mjAlzTgrFCyKY5aht1LQGKXlffyh87VQi29QM4tXddR4blRh201bUB+t34es+9EpzLdtWYZuzQy+zftaaBrKkzkji2sy4mOHczRLC6MjIabb6XTSG1LByfP1syVCJ7nuVIRQkTkd0qaOwMnEitb6tmx5u2cP0i+AwbcvLZMqNEAPd2FZ/tafaEc5oZHCoUs4njzFOV4Ni6mZNivltBcHOxhe/L6hAB4P3aThXqx//Ji/fei4dGqn8vMMVoL0XAebfs3GYNnxkW8cycDPfNMibbT4QFK5nxWQ40KO2VNKgvQFOmqBnJcoQsXhDjO0f2ETOhpRjBTDlCQLY2fCCE4O7HF88zKXN7sCx1LCWaiSphuoYJYbmHwm2k8SYOFof1hopaGRANIETPmC5BIhKKNmhTp8vmbCJwsCwn9QIrFVQjkdUBdrfsr8OSkCMiY3VKdBDEKFD/JNXsg5di4R4oqLc5NRqkm+E+SE2eKSaFde2Z3sfIR1q9OYWzXhla1oY7dLKGTvUNcxK6IrG+zpR0MTEWVBDbwsqgJNKs0Exwn40QAYCTYcy++zIClCst7dcTAXx6tP8N7UoLu+qVoXWcZq+fagQMyNrQqN1eeutuN6/g+3LHgJlOZpiIIJfRorZGe4rsyJ7SlwkqDpUN9dCBlQLGvjF/eiWjopIGL4JrYKftcmSBZeKKZJn9HrsGDmefGQI+azMNLiPLAESuYZtYBloa2+vVmTFsGAQ8voffX1w0XZZF/cwgMDrvVs2A08XE1IZ3KzpmOo8aIQIgivfR6S4o7oSaO/3AMgilWFl6mnmjACK7TfupjfedwNIimNdXmroRcE2H5UrzeJzTpABNGmaavvMqrunVDjYhu1VjRDn6/f/CGj57u0Dl82sI2qltxPYDO1ULTlaHmFNkUBUT00ZJtJzcLWFus/Ekg2dmTU/3cZ+hh/cNixhvNnE8272Z7aPAYr61wYNs8yBlbg+WVSN8wRuhNcqjo6a2RaTBABUx14amDtoIjfLXDLUnTwX6KIu6Wx0WTcGSYFJKyzM1zfR9PbdLjxWz0RljJyRizpR6IZTbL0dYVCng1iYrqAiqbD+wHihUP73W1JRyYiUWpuLDgu2wuEO92MbCH8RwmrUZFvaZZo4ojd4PcK8VdaLE2xDDwnEcFkVmAdLZ1PPolmzHR8VMEWWSCF7/8op2n9ZMDK+XHXx7JaNvJi52khs12/VngqCnmOD57yhV+22bdy4bPaoYguoMz2W/pMGBY0FERbUtmFESQXBEFgj7r4x9OO/mFI50t2K6PGwbkOUCTirjMoga+4ZrYimMWiJeBjYRu+jWQ5RzmCWaFLRBoY4FgxMRC1rI3CGTTcRKge0JnsviSOSzJ+EU/RTX0y3hs1eaWvqcoURTiRBEX2sYZiZ2RZZDC5iIt+mM8VzcDBmFTPB/ZjILKZpBNkO8RuAtvxOVyL7L7Px9tMnhccaM1HoD90lgdl+zIU9oKfClRQvcWTqkdP/FNsp357oYp82ala54PZfaxwcpN+oWoLgZzlebYR7lj8XvJu9pr4JrYLaXwnx5SQCWZZmFu9JU4UANGOtKmz7a1DJnTvgRERHJgr9y97F8Hds8SJnbA2XZ+f9anPHPwYmVFd/B2ixLN5kgNS8pgoLtKhYSZhmKCRbIRogFkd1gE8eyE2nO2Ua684ldS+fWZzjGRHc83CGd6WGR7Co4clLAe1eHcHIsx5RiUx11Myz8zMhQLIu2XRWpCnbwPcXgSIJFOnFsx7lfRgDVnmLhJmU2Vt0MaqlMCiKzqjIxBAveQIOSXoDrJ02bO/1SbBL+1M8gRoGCYWQo0TkujRFEMdvy8AH+vzAxYCmdhoilsJ/cFXll0ajF7Gxb0izOtAAGTuKiLBA75uwpeJc3ZhIGmhmj/gn7QM08PEcq7e5V4MDZPJCOh7odhdQaPjIj1Z4iCGMJipmBfK+kamoqpdT04fMLC6aePCpa8M3gIxMbAx6PARGDyHwwSVwI57wjyFBtVzFH37Kp4mspAqJREc/r1QU7HwM5iv9Rt4dlqJKyedYbeM6ZAFx6rYHyW77f1uk+ngH7Wi2ODfzKQInPl5ICdzM/Nbo8dUZSB5lOll9GRWuoycCZ84A4klN9POutGkor21Uc/1QfcyV2IZV/pmcBILN457oIZtcbKlfgGQ6Ggc2wiGCCbTGuNnGcfd0wDIqYPwTZ5sdNBd1k2zewcuaYYu2dTNcFZ/IRycoPbqAyD1Lm9uBZdYZFZaYYkGERi+RuGbvNamTaIHRKDCYut5BlWB5ht/NSR+SdG+boif9gqp1lo2JiGIleCc6hmIi4scnvl5SSzN0wyzozD4tlJdK+QKlpM4iokFvNVEyPGnd9pFcHMe6HWZ9BYOwd1v8JznMyTf2nCGCIE2FbeQJUE8ccKsGZqaOKuBqAtacYn8QVWRlK1v5LIm8Vcf7F/4pSyUHZ9ClEjLmRbwaXt0JiKsAippwrIvL7XsIu92NnjfbNsh2D0StNOERmiCYFONC1gZ2D2A/2MVoa2ecHxcOg5/wc6AcIqmIX18FyCksF0wKYV9S2IE2dHZTrOgacp9wFE8PiFQ87mUokUi5Ynx9HUA5iwJc50L4hJTZxMM7M0IiIlFVfozYzMLCXWdD0+TWU3dhvhwDuSQHXwo7Fi2Pc13PLVpIspEZRPtXH/e5W8ZmNGrINZ7uqbNtCoMDnMC0YuD3UEgUDzcwRaUzR1ZuYmIOSyKdOwfmfyD3LoxbEIt91GUrAVJjuTJDhKKT4znF+dCYaxJe1XFoQGTsYI/ZMIr2+OcX8qIcY390KjvXCEuZrEGMNeHQPATIZTqUYa8srHdORIbCc8gXTgjGMuKHZrRjoeGGC+67PkPm60cCx33f18Ly+HyvHD3QJaB6kzO2Bs+zhHxXncz+PheB0DwtP4kAWnkqxBHKOfSzUGzWkm0nfpQ7CW7aweOzWFeyqNEV24mUPIH7mQIW3AsFCN/NEUnUEQ02DexkWs27JlG7pTFaHcC5O7oZKse2+EvewtkreWMNv6yJbjk1xd6qgv1JsZZekoMBi37rqkpmzMMFPPrVNGmxNyyOsoR8o/ifYxfX1lIK9oNd1pmfsqUERbIy9Csbx3euH2SO01MHCT+Axnb8jBgpuhhjr7So+T2ZMpk6c7IjdCspBTM8HsWWNmEYnIHpUxPgfKLi3qdk0lrt2qlpim1op8KCsLBjH6OksXbDMQHbPwsR6MrEUQ6wJGwNSzIvg6YlvYmI0ssoi18pQIqa47GcILqpaKpn4pqvDz3Puj4pWAswEAXElQnliq4qgguJr1EtZGpmcPplilOXfqhmbLNAS3KkB5sQrHYzhuS7mwjAAFZlA0oMyekcVHcvUsdTyyD7GeOYh8L5bJ2QRCyhPDPB9J02XG4SSrglXm8pkc0XaEY4vYnTtvYqJyYkcpvCT6ePoMzvTE2lvojUHM0+klB+UMVeXRzhHJtYOoRoh0GHgkokJP/J9bCJJO38XgPl9mjP+70Wc7IHKrMyDlLk9mJY6Rq0VUQqmWH37oGyNw9jxdVhEOnpxDKc9KgIgG8TWt4YiXiKHGRQMQkjzzATvI9CNDoZaKqFnOzIGKGd6loLOa5KwTDLShb8zwXleXMRn2E+FHYzLMUo/wyIWYzZ+W2+Y/HZd8QKhZ7txX5kilGSvRLYIMxXO8geDBGYRRLBbTlzcV5CIU/t/4HPvFIzry4twLEdBrC8sgT2St7GP+yTdmowVCoilGZybI3KzyzNpwbUQDnqrqtfkWJmnH1hZ44ldfH6qpZSKBmpLgrGggu5GDYFL4sI5EzcSemDydEtGn2ZA5WSqyKvAU2ZJWAagTkYmuM/tqtF7X1oyBzzxjUmTD1IYbBRS4JtmLpwiAcuOGPA4n4kSsTEsaqaqOsPP47uacfKtYWLo4TirQ5SAhkWRXz1vmT32RmpNEdBfa1gzQxHNXowtCFoZIUDbqeY0hnROrTfwPXh2BUFFkJhuzDXFXBRy2UsRXO/LHcy58wf23Xylo2VQxcb4Kd7npwZcjTQIHfl4Xo0wJ0+Qql5KgvshoymIkW367Ak9/gxjcLmFMa1qaSksaEkvwnw7OUCAVM8BliltQID9qT7+vqUMMIL+Sbv+ehvLSbGLYMXNJCu9/oOVeZAytwfSsnf9CXE+9j9ZpiNxsGAxi0J6LJ3t4hiNwdhGvhzdmkq+sACncraHRYU7pExMmr4zNmlxlhG4Y6WTjzPsdFk2CWJTsN2rYDGvRFZeYFCzVzGHt13FIne5hXugCBYXbxHDStBBsLHetYalmCcFa1bIXjYEig5zjCWWBUQwVgycmNFhsEMnycCF1ggP93TJ29EAhdcuYiUeZimIByLwuaSMj2kBjj3ygKHgrvXlDhwEBfHYFHJSgFM81TfgLEsyeRzRZs165jy6D4dFzA17Ae1WIEv/9g0405stCjT1X9XynSsmDlfXZ7On17pVQ/nkES23bFdxHWMfafxKZFmixDENEwqhlVMRuQPbhSBvXzOIefYPswWxixLLVIHJlQjgY34XmAkiKy0TgJ5nHnresJzBDN5mDQ73kX0rb9VmKJMRf1VR7Nb5fVBll0fWmPFot+O8RcpCovDiqChSSoxZdf7AQKcUNpz6IsUQG5KT/cMBQmuK97x5S+R/fwyBY22GZ04sEb/jL3fwDNYGCGSolBvExlzLtDxaTDH/ajOMFwXwKOV/sY1/TwywvgQxjvf43vH3/9oCAuLjgMObNTyfewEVH2ecA5wng6I4e/9Qsrf8ya/seN8gmwcpc3tw7bE9OBXSFSc+/t0vI5g42RcZ+5J95x8TEYFiLRkMfu6LznIE0/xhAU6kM9HuuLoL1y+2THxbKBwxHAedDFkEjpikeWuqALmJARGrEc5X1sAjEwM/khHSnuL/kwKcXFkdBfuPEKPCoKGQYudHhgSzCwdlBBqrQxOHI1BVRBudaUDCHkWOGNtg5BvjycsOsxW+GruJvxCloCZW3yd9lbot77qBQO3fnTccSOKao2d34KGWdNgHhqBMZrT47L3UlHYTF7vzA6USv/+KZULYq2am+A1Kl4tY9ocU8vrMyoV+IlLWckRbgaXbVctuLI4xV/sBGi36CZz4+X1tcpgeO2R3HEsCdxNHwb6aIbqkzvJAwcqP7COAY4sCBqgihp95agfHC2I48p0KMiUHJZHfOgXnzG7ayyOjxjLATR1TsO2W8LezXVzb0zmcErN5V1oIBr/9Gsb3woJ2oNZApVvCHKWO0Lddt5Ik5QWo4DtQ8DdLcixTrQ0RRD26j0wdNwqn+vh+sfHnNEZQcKanGjQBgu2xrjH8jjNwZqmTXbhFcA2lGOvU2EcGidpFzNIetTvpB1GWoDnFmFEw77h5kH+eNGZ5qXitLTycX/z/4f6/59LrErMyD1Lm9sBatvIXxCn9JBYiyl83Z3Bu3IGx9iwChsFOReTXHsZuZ3mEn3IEJ0InHcRaa5/h2JEn0o6xIyN9mIwXZheIAaB2iCNYSCmaNvYNiEoF1vpM5IRrKrp+KuLpsVeH1m24OjMwbyGFY9uqYpFqT3Ht7AXEBYpiWiwvJQ4ArPnFK8+gqIcmVldTB1qdHdZ7yATXuDDBopYPcu5kx2FSaLWZ9ldJLdhjpol6MJ84jUCBMvl0Fmd6eO/Mw7/EsHx5BePAkg9ViNsTw21QUGx1iP9frxvLaBCgRPXkrjWufHEJu9xH9xEobdUsu9Qem0ovKdVbVez2V0ZwettV7KbDAp7FtIC5V4oRHD10gPeMfezOj2rI7FVwb2PfROHKERwuS0MMKN1MpJygJ9GNBt43KELz462beHaLYwNEH8U/fedVY6uMfTj29Qb+T+fcUEo5AwgR05/pltBwsREi8GpOMXZl3UCc69o8vNhGz6O1gTnoX39Y5N3XRX77Bcy/kwPMga2qyP/2hMj7rphEfbeEn8RFOeqLq9YZmtT40z18l8qxyJdW8MwZqE4VbC1iDTn5Xa5oKef8PuYaS7fMsMYu5hZLd+UI2aKDsnVmPzHAd35hYkDZteHhjOjdvkevLVhzUl8zxI/tmzifyGFdmOMCFBqVuimtwPLWQUlkoy7O2odfd4HKPEiZ24NtLywppdYTictY6Kkyq+JRzpf+IbIqlxdEvrBqgMV6COd0cmAqswRAEtRH6Xj2o2EjsMg7rAsSJKbOyX8jT0RSO1aQiIhiZkJ1iGPfUvOLYywWxURF5WKj4W5XTY+DWRsykbar1sG1EhmAtBJhbAYKUF1vYEEOYmMEHRXMIgNJBIv6yYE1u5tobb8egtUwLVpgR+OuMn9cHo8S+7w2EVPLZcmL4F3am7cO92wRsSZzIua8CxoQ9gMLPMhKIVYpI55EbMxHRctwHJThCMjs6gUib9qGky2kcKYsIVIULs/oIeW0M1YMUC6r8+j0MK7psycQYNZmVoZ8ZN/wEkeNoFtqZ1Av42gjyHx2qzk1xspQ2WWtKY6Vb2NwnLHPzck+gi6qE++XjSHFNgwDZQVdbQKXFMQif+JzcKBfWkXw8Og+2FgiVmIUAeXXVzzSqx2M4+IYc2FJszN09ntlkU+fRFBHDZK6BtQX2odLqOwM3ggRaFAbyddS2r6+b1oQcWJcG4XYBgGOQ+0TtuEYFU3c8HMn8DpLxqljPcWqWk7eqhkgPnatj9JRI3386POIPHz3DsrGBJx51qerGuG+eyXMaZ7rdpY5dq1kvbmZKR4rbsrZ+jsinfHrptPyPEiZ24NtTDVnjshnTuCLW1f2xpkedlFP7cApvLQIx0DQXyUyiu2FBWRZNmv48u5WRL73IhxkIVWGTGxp/8wxvQ3qWzCz4in1l3XuQPVMBkVb/Kuqv0DJc5aQyBqhM2U3ZDrYxMXrA2UwkGXRnhpVV8Sk/gequXFioKWK2DRRREw/QsQc67UmHNlNynSC8SSLZa+CY1Y1CGITPD6P/bJlNQguprotlVcJ4qPYVWUGYCiDs3s1Ou9BIFJSnZdmaGUIBnS7Feutwm6zoQZ4k4KJ3JEG/sg+PrNZwzhWImRw2JmZGAQypVie6IwRCLALNjVNxr5R5f1EWWlKZSfQmBkKPr+8ai2F9kTgCPPB6t2+H6TePraHoIOpfpYJC0ec4426Pc+NjmGiBj4E8U73MDYUYnt0D+P1Lx9DAMnMQmsq8tsuY9wbId5DLBRLPE6G4/UUO/LIPnSC6ETpuDtj625OXSOORSVCoFfSEk2vdLgZYKiZts0aPnuyb0DlfoBrWRzbxmNSwPdlWrDg4FrTWHfdEgLSph6zW1KlXM1qzhS43wtwrHIMbNmoCHDyUZsUMH8pNSCCc//mGaNss6zlZTjHxRYyZeVY5KFNo5VP9TUy5PLGMtO0YBnXzAFDia02qF90tvu6oS3Pg5S5PdCWvfuHxPn1X9ROqSGcL51DJYJTuF7HjqMUYyEpJSJTz6iKry2YgFnmYGH8nkuGGajPTKTs5s5D2QFuBGdCwCdVRUWMLsq/OWKicXQCzNAEMRa21aF9nk3wRr7J3pPFQj2URoh7jFyUJDoEPmrpZ0MZMmtDY5ckDna4q8PjaZ7Eu9CIsUi0xn9QQhCwpnRqqvySbZTqwscgpBph/CbqWHsK5K3ODPg4LlojvuME2S61D3emPWqOLq7rDQQIzRCOidklsmj2y3hemZhzvtxCMNcCa0m+/Zo5BmZJNurmgBLHOkGf7inGqArHsVaEo2Xp6qCM+2RgQ2M37ryS6adOwSmxBFbVOXyxjXO9fcMcWb5cIIJrJd6BJUGCyN91A+d6ZUGkf9oyNyK3BihXWjjfI/t4Bue6FkCI4PleWLC+Um/fsDLN73351ufSK4n8u4cxJ9+8hYCMgOO8FWORd2yoGq5+n45mFmozlIBeXEImr5giW/Hwgc2X1aFpDRGrxgxQSZ33pTbm6NIoB4wdYw74iZVs+wHWhop+x4NcmaQf4HtJHZXFsWnUdEvWi+flRW2n0D0+c8WGjF56mOFVivHdZDbnwoLI80uq0RJY9mNQFFl0b/1ubNVEPr+KwL+QoNR9rmvikWQpnuxjDrxnHRudaQH3sd7AdTdCceSbWwKaBylze/CNiq1neqZqWYlE3n8ZAclvnDWAWVjQBcQxZ7hXsc+c7WIn8ugenOvIN8d0kxbq3LoDZT+cIIEIF9PFgZ4j8nA8gi9lZuwOR8tKBOZmgtcGRWtWGBZMD4X9YUoxnE+vBAf6zLYFNX6KHwJ7n13GQvrYnmI+dmxhz2dWaNz9iuDYDHBEcL5JAdc/LIpsFe1+CeBlZulaU6TWxWfqunMmtoGln8QREd01M6ibFjBeIiZ0RSp1kJhib21mkvleijGg1kniKB4lgzZHuWB9ZogbWh4B6/DeayhJZGIln9WhNRR0xH7Y2LKlu9VYQCFtK912twJsQnN6qzgf8QXF1ETHYhfzY6tqsv8MgiMPAQ1731C8jwEejcehLUyMWi4CXMX5fQP+HodbuFFHgLIyNGptWQP9tSGyXSxVMUC7W6PI5hQMok+fxPHIDhJByeRcFwECafU09js66tjZcXm/DEfcD/D8O+PDQeCwCCBsc2pZiBMDZD7YfuB6A8HHQ13TSalGFohQLHGYW1vGPhz+9bo1IT3TM3XfgQKly1r6KaSHdU+OGts+MFPKTdCweFgEkQB5YsLyfZLWG9YCgkb6NVtPsFEnv28zwTw41UeQRyNb8P/zNIJKNxN5eluc8k+I1GaSOT9+5+f9dbB5F+S5fUuY86u/ZN1xL7fwxXMEtebVIb70V5uGmaiHJuJFKi4ZGVs10GlP9a2HTr6JYW2GTMzEt2ZyXGSqMyv7UFmWwNpQ8SFj37IrlPEXwftrMwQsTO/3SkbTdQTHpjIoJdK7JcOvNFWwqhwDjPj8Mu7/hSXU9E/3Rd553RxF5mCRY9PAm0BhBfrdaYEVUVp1GT+9kjlQTwM1qvWyO3QztHO1FR9BUTB2daXAlZOZSFYxQfaCz4+p92kBz529iWh8Hn5iz2ivAkfjZHCux5U6yCaKPAMcb1dx3SxPjIo4f1gwWngztLYK21Vc01Ew5HoD8urEFp3p4RgMKskw81PVkRljTMc+drwHZZs7OxX0FToKes2LjzHbUYpxHNK4aZs1aKUUEzhwMpRWRoZ9CT3LpPC5nO3eqoVzN0sdnOtc1zJLF9vW5PBejZo6uxXgy/qa4fm264fBo8+uWKNG6qNkjjn2SBlrhRRBykgzIo6YsBqBxQTKulpqIfusGeL8K0NtwlnGeZZH1lrhegOfSZ3DJSgau2czyBoVAYhl5owWu9hssSTMzO7yCBuBd6/fGnjOPFP/zf+NG4xqdGtGa1IwoUiWhj99EpT11SGahXrpV51ZmXdBntsbz2aepk5dpEdZOz7dNxnryMMOZ1owRklrqjvkDI6WAcUXVy21Tu0L6guIIEOTuNb5tzUxJVGqf85ckVJmui3c/feUkbBXNl0Laq1QynxSgO4G+wQxm8DuyqwpRy52tMTMVCLrMsuGhKUY2impg6yACAKY67oDO93DrvNSG+cfFFEeG/tYKI+WFvJGdc3lEYLA/swYEgwABrqz5KJIDA8xBhwbKt+KWF+gka9aIZlJm/cCC7JWRliw8wEKjQBYYjvcDEEFs2r5AIUMEWa2SMMOfaNyJ45IqgHPqgbDVL/1UpHUE/n4GWOO5a1bQqBYnYmsjhAUJA6yF43QWgkQnDwowjGEBTjVbWVZkSmyNjxelZjjwDLlTsXoz+xLxezKwgTzgJnEZohzb9bw/rUhzrtVte7Ar3ZEntw5fi5kjmW7eB6OceIC07NdRblwt2L9qr7vwvHHO86CGAHIzEPmixmMfPBFIbfOGHOvEVr266GuialRUffVBawZ/cDaOoQF3CcFDzdr+K6e6pu0fUHLVht1PMtyrO0VEoz5TtXA06f6VpLL28yzjCBLT90SnkXeCikCscstjB3L2Zs107g5asXk+MBI5LDidd7YD41WD60X07nuzczWNxKvMg9S5vYtYdn3/wFx/vX/Cw46SKzmXNIFOfKwcF1vKMYjxiJGWqGfW1CXFJh4paUZGQ00+MXeqCkeIzJZeRHbgbN8Q9pufkEoJqZqylS2ryBUMoXYnbiYiKQFy+awUR+dL+vS3PFzpxh5Ipdqtuum4F2Q6KLpYxw2alaWaWgmoDLDAktqanq71Uwtr8lwdHfNlDSvv67MiNoM9z4qWtM6jj2l6xnIlGP0yHE0M7M2MLBsXmGV5+O4OhlS/aQKn+pbZofsrnxgU59hPJzMtEAiDbQ6WuryUsuGdRWcWVIndaD4lcWxlaloMw+0985EpK7XkGgWbeKLPLqFsXm5o7iogvVIolx+NULA/XIH5z/OKQ0VvPuWTTjLTB0ns24Mllne81M450+dwnci0uxfptccetZUkW0UDsr4fD77wewWlXNj17A1nHP8ibzDkv2O4JrbE2tlcCfbrRho9qhk/LUmAlhiLsbFXNAuhkUijZjyAO2JduIORcpDzJnUsfnRCA3r1C2ZUnEvgPAjdW82tfzE7+OgiMD/ZB//tie49/zYUVaA8/9qExlGYtXytt6wbEsptgD3bqyeo1aOFU+XHf7+Mkt1tMT2X37x+OOkjjif/3nJ3vnD93f++7R5kDK3bx3rTAxBH7tg8zy5C4f32gIWTi7Ek4KIlK1RWzm2VGe3hPQpNShIbSVtld1yRbBYPL+MRT51tDdPZEJhBNvecq1jw1EUUnNKVLJlGtYVFV4TS8EPAmt+6Ccmc04MzbkunFszFPnUSezoEkdk5ouUxbreche5U8EOr6gAu9PKXCAz4U52J00GlmCYWRkW8XpragHF8ugwSJbpdtKYj2P65N8/LcA5dMbabNIXWR7j9229730NXClsx1LQvpa/KJ7H3jTM3Bwo44JjXA9Fpgl27WEBpUQGEv3AygAbNWSi3rqJYw6LcDz10MDTzC41QlzHXtkyZ35iqscsDRVSHJe78UJqpaPTfczNjTqwEtUZMgZUTaazHapzq4fmnPKCdi8tYs6za/BmDZ8jgyZxUWLK45eoqky5eW4QYhfHudjGXNuq4thkfRGPU1MmHkufd+vXwwDTzW4/P90MwfbEt7JLfWaYohMDjJWIdcMm2J6A16WRKRbnx47fJWZcb8oLuAhGZgU8p8hT1o+CgCMPWcxREUJ2p/vakbmIDQ/xN++9hs+/vHgYSPvSomXCnt7Gte5Ujw/syKQj3f12QUzsiHi53zPRDc0xAN/jzM1E3nlDnPAjIi8tft2Ua+dByty+dYyUyF4JTnanauC6vTK+0G/Zwv9FsFAy80AVWu4Ct2pw9mEB6PhyBAfPMgYXFTfDovepkwiE3rYJACB9d3IM7oGWX+y5AFXEcCGe7tAI8iUmphybwiX/xh2vnxpeot5HDfmj5+A0U8Fx+y4wNewxQvxFLzD1zkzuHqDcixUT7VBdEXGTHINH/75dNcwIFWeZ2bkXK8XWl6g5hTNcL8DxsYS0MjIcB7EFdHYc57BgWB7qYiSO6dYsjrFTXxni9XoIYOPYx1xJHDy3Ky0cp1uCI/yOq7Yz7weg13qpBiYVPCtS05dHuAdH8Nxf6SCrR0p6JbTyFrMJLy8CgEoBvGKCwEBE+8ikNkfYOLI5xb8rQ820OBZkX2kimOgH+P5Q/XZpfBg8ndehSVxlcOVwQBz7Mz1c49s3DMy73rCMGimziQN6892ClHIMvNhnT2igl5ujzakJ7GVanmVZ7eTANGh6gQbhvpUC2Uxw4mtJboig4rUFBbQH1qCQAOVybL/7iQW5A2X+EGuVOjgngyv2ljrVx7jlx9XTklKe9UVBRWqksOT83ZfsPZ8+ief/zDbGd7uK+2d3dAYznAvc5OQ3GaXYNKfuR006QFba+cQ/Eoldyd7/R+/9s/dg8yBlbt8ylr33j4vz0f8ZX7TPPQSnwgWFQNbEgcOhUiN7rDx8gNd2KnjfC0soLSxMRBwfCxCDnUwQCMUudsudMdRFP3ARgY+vGAtqqNyr7gdTvGTJcP0IktxuUMs8BDLyM9yhZyLiFaym7aXYeQ2LuPZp7itPnRfqh5wYYNG82LY6NzsgJy4YLMzm3IsxoGMH3bF/WLI9E1wX6cg+MUKZUawnPnbFdwuYugoMrUQIAFhq2KnA+e9UDgd/QWL6JQsTjG3imKy7k0n21J/G0D73s9Y7aVjE2BBMWo1wTjql1LGsVBDDyW1Xcb4zPW1+WcOzoCMgviBIDMviyOEsAynq0wLmm68ZuG4JDRdLiWFB+gEyZG/axvwjuDiI4RAJCqU9fABF18yxrM3ZHsb8BaW1305+fVS0shufN0uVnt4DlYJpdOaOGH19o34r1uWgbIDW9hQZAYoVPtS9FfdTTPBeLzNwbhAjQGG7g33FgbH0SJ2exEHvH5ZAdivIOJYVFP32Dbxnp2rnK8WYNwysXlK6cWcs0mujlFaJcB8X26Zzcq2B51GORdpHSlZHbbNm+idnerfeM80RjCFl8ysR2DlcM26+L7OxOq6UW7rN63ezU33MlUL6Nacsz4OUuX1r2bCIndvFtgYKuuN0BGlUEdvZENgXFpAmH/tYBCY+AKXslMsGZc0pdinXGod79rBjLnUlKObEnjL3YkFiAmM3AwnPdm8LE1tg6PSpqssGi4VEQZyZNRYk9fDRPZHuSdNyIR16V9PhF9oIZtaG+Gy3ZIt7ZyKyq1kCsiO8DMFeI7y9/kO+CV/iWuA1LFqXXvZKoYMlKJa07YqWKnaqeH7LI9tRNtVxUqI/caAZwd1rIQVuZK+CY57ZwrON9JllAudHsHAhxUJfUKwGzUuhUfHYHu6L2TFmfmoz68lERWMKg/V0/EINiFhCKSZWYijHhxk1NMq3J64FOhMFb3dLCIynBQQpBK2S+XJQNqDnIMD9kSYuOnfJBKrNkOHZrmqPKd31D4q4rm+/ZtlAZusIxCUDbVA83AzST6F9cpx9eQVOdFBU1lRkmQ3abgUg5M4Ec3CoOA/SZY91sAr6HBRFGpnIWv+wgnLkWidoMvlEtAmgUo05/JdbGONH9q2f1KSgWQjBM+kFyE6S/k3V6doMGVVip5iZ7AfabFDLYGUNcG/2HtOs0rUmMlqNEL9TjXq7agHtRh3HXBwjU8cNwKQgMq0hoN6t3D4jeVx/HzYf/Er6RomgCaW2I3HkwyKfPCXZe37o/o9zxOZByty+pSz7/j8gzr/4X/FL5BlzZ+oZLqEcGQAudkz5tTbD7oNATC9F19hl3YVmju3kKMf+qVMo7zRCfEETFwsumSuZg3OvN2/VMsibn2Axo2Q8r7sSmUz3UauHpjRZTFR7RK97r4Lzn983efy3bWChu9bUxmuizk9T8xcXwN5YHmGn1whtp0h2SUOp26MizluO4EyP7vCodcLaORfs2LWsCGnY7E7M+vtQnZeXimzXTHiNNNqZPsunt3Py+plIQTM/7QkWbbKh2pPDKqjHGa8vl2Yng0GeFIA7Wb4YFU2ojj+ZYPe+NoRTZUCQOHCODAaaU8s0FFJc20tLGF8Rk7LP99Q5KJt+jJtZ4NtXbNJQSxGtse2QS4rnYcaqGZpKbSO0Yw0CzI3Hdw1rtV21Y0sG0CfnLrM/rlgGQgTzZaK/+4kFCt6RssLn1zA3V4cmj79ds15GNHYP9jLrIZTPprUmh+nWnFtnehj/h7qHMwjs/k2Keb7BKLOtpPP3dQMTKguwM8G8YObyi6u49koEDEovwByuRNikkD6et7yezNjH752xPWO2EGhPcP76zDR2NjUI8VP8v5hgDtZDzA0KzoWefUfdDFndruoTFZPD2JSjoFkqWRP0PS1g7PPjdDcjuJp2tifOy39fZHEsWecv3vtxjtg8SJnbt56FhRzzI8fKYYbi5ABf9lHRGBwLE9R4W+pE6EBbmj251MKuJRV8ed953XpreNlhjQaeq1cS+c3TWCA2a6ijn+7BgRQTLKR5XAp3L0fBcFzwuiWcK99zh0qwfiISKFUycaxPSOJayj/QdPhEaa1vVfxMfWY02C+uImPw1k0smkzpE/cyKlqPo/UGruPCAsbm3evmxJbGoGA7Ys8iiEWKmnViWwERZDNYpggVH1NI7T1Xm1iwyWg4MTCK9eO7Nt4lZWy90sGzedMWFu2D8t2xDnkjNiF1jBpcjmxeUNZfxGjnbgZnVtuEHgh1T9b0utkgrhLZDnijbn1xilqaIpCVlrhwunl8w3rDrrGsQSzlzs92MW7nD6ysQqZOPhDMM0zyLRIutEUe14CEIPPEwZi2pzgms5MT34DfI9/0RNgSgrt7zoleCcdh6WyrZqJ+ZG69tmB9eRzRDFByWChQBEqq/+GcyLevW7fqS20EeWwUKLoB4Xd87JvOS97Y34hAdmYT/ATz7XTPMknF5PD3k00GvQzP6tWOaaXczirRrQqxjljJkuebKfh2ZajPUNevg7IFDytDzIVdLVMzi7dbMQFJPzHVbUcwzk/sHg5S8tilsGDikZOC4fXuhBM7rkliSynuM0+cnb8p2dJ/e/vP38HmQcrcvuUs+8H/izg//y/NORKrQLGyq01jmhRSa3s+yzmcUmyOj2JXM0+VN3WXfL1ku+XPr8Expw4WQS8TGSs2hDXl2EUpipmPL48RDHgpgpzb4S4mBZG+pryv161rKx10MYaCaWVkvX5onpYlRkWAe7slfP77X8Hinle1FDmsq/CWTaS9ScNly4HOGNmRklIZR76Vl+j8vFSkrAt7KVfuoeKsk0FzREQkSY01JYIFb79sOjaVCIvuwgQOhwwoR5QSWzSGRlVp2lT2pbz3IEA5zMtMEnygGCM2UCxp2WWi86WUmNiep0EaAaE3WUCaJfBTkfJUBeeUnXWua/1q6Pi4S6fGBrEGVOfdrZgzpagfcR+z1EoLXZ179dTo5zMPc7saHc5cOZphOtnHuOWNJSI2QmRriTzddrcCYGZ9JvKOGyYmljjQkXE1Y5KK3GyWx+xJHjT+5RXDCrFDcUuDs8hDMMbmecyssCxbjbBRuNY4rGnz7DKCn9oM9+ylh1V+L7W0+WaGe1w+EqyOfVMYnhbwvHol1YpxrL8RGyheauG6btQx1xmEJTr+ByWsEbczquMycMuD4hcmBhr/wppRlk8qNm7ia4Yxw32UNbtLgbnmFIHBuIj/syFivq9W5OHYjhwTKGmQQYA5sXAE397JrjZvDf64ninGywk/IlnwV+58nGNsHqTM7VvXMgcOJ3ZFCqE5iytNo8DSqW7U0CL+O68i+p/qboLiWY0QDoZy8aw9P7GL/7emcORMfxNLUNVyyfIQgcaFtsjpHCX0ahPH2aoBnMduw9zJvbYAh31igJ1iojvphw7g1NifhlmY4xaTodKyj2tudjerzxCotKbIjASJ4XHaE4zRTgXXeKl9e/VQXiN3w47AqYngGCxxjH2U4EQM7xBoepsdqfuBiKNZhS+vqIBWbIyOaQHjfrVlDR1v1PEa09iFFAFAfWY0aJaoGuFhx+ZlIpJYaSd24WDJsmBWK3XgLNpTPPPO5HCTQxErY7FpYH7HzSzIpRacM0szqQOn6aU4dqCObFQ03ZHEETnbt668NF/HlFRnRw6XInjPIlaC4dwPYmQs1gYi33XZGGjEV3CHzW7gZX2+w4LhU5jFHASWBRv6Vt4SgTNb7OPYJQW6XmijwWfqgL20q1igSa6UMtSSI8cyLIhs+lZaeW4Z18jv/cLEHCdpuhcWrMPziYH1/nl81/RvmE06MTA5/CAx+vKwaB2Z333dsFLHGVVsaY7iSIqpUdkZALPk1wvAWjupTKWbFH59DpMC7uF2LQoS97DK7ls3rXHiccYeUKX43lh++2U0d6X6Mu2VjmSP/YhI484fv5u5d3/L7e0nfuInxHEc+bN/9s/e9j0f//jH5Tu+4zuk0+lIuVyWJ554Qn7mZ37m0Ht+4Rd+Qd73vvdJu92WdrstH/jAB+TTn/70V3Xeub3BjZRSBg3MkowLVq5IHMOApBrQcEHzUyyG7YntnpkBaU/whexMEChcbMNBD4r4/YUlBBIiAPot63tP9lHiqc2s4Vo5Nkrmp07hs88uQwPjsyfg1JiajR3sKK82kVbeUkXL/TJ+bmd3WjTvZAQr0lHGCv7slkxCPfRwD9yNXmve+ZiFVBU9PRMB4zM6KOmOtGDic2UtDTy5YztUlrBiBd+SDZQoGJbshsUxxn9hYunsIMHxTvXxHFtTk/9/ZN9S7V6G8S4oSLSYWOkqiPE62SEimFOXW/j/+X0crxegvHG9oY7ctWCyH9gcEUEwRjbLftmorOsNjGtb6btXmtYskWWSJ3aN2XKcsQ1EKbYyAct+FaUO0zjfpwWwXWLXOm6LmGYQjeUuRwwD1p7a3MjEANGBBjkzDYqIi2G2bFoAOPtaw4JZfi+ZnamHVnY6MTChu5EP/BhLZdMCtEhODHB/FG3slSyo2apiLlPFlc+PtjZAB3XK3gcxNjFBjDlE7FMjxHlP9+y7dmEBz54ZW4759QbOQ50WEZHXOnDy04KV0wh4JsCaZSsKIb68iCzgus6to+XmvFEDaGlkGkp3Mm4m3AwRQn5+iP7O0pOIlvuKIh87K3K5JZmye7LHfuTO57lH+4ozKZ/5zGfk53/+5+XNb37zHd9XrVblz/yZPyNvfvObpVqtysc//nH54Ac/KNVqVX74h39YREQ++tGPyg/+4A/Ke9/7XimVSvJTP/VT8n3f933y/PPPy8mTJ7+i887tjW3Zj/wucf7evzbKKSWwY/098ax2XpvhfUwX5zEBmzV0XX34wJrOiWARerlj5YDtKhalsY9FlvTDQorz1kNN106t9BR6CuLTLznT/45YL54L7RxbIrU28YUU52afIFJpRQwnk8mtDe7ux2ozHDdxrLsxGUMzD4t8IbMGaVPNqlxo4xoJvFuY2A6LWAoRza6oky+HRonma83prYyX/bLIrqNOUUs+LA01NBVemlnG4FoT18X+RnUFR+Y7SQexibE5YrvH2kwkmBk+KYishxKDhJcW8eyX1Wm1p3Cq21VrecAsBrNeV5tGZX2lY2DPUAGsT+wig/bUjs6pAjAmB2UDSIpgXk18nKNbwjnXhrc6IVLJ8xkIll1EMDcpTsZy0rAI50w2GLt48/3sUuzpPCQegpkBBjqxC8ccenZsMuKYFdupoFTaDJFdC3U8ydB6agfBy4W2aQSFHubV6hAByoUFBFXDIjYNgwD3e1DCdRVSjMFByYKcqy28P1Q8VDlG9uWZbWQ2n19CN/SjRtXhcoxAgWKQxGxcaaE8xjKgnyI79sSuKVLze0kqO4G67amBn4MYv3sZnkUjxDPulfAMWLrrBYfVd3eqdw9E7mTFVCSJDZfFUmC+HUfuO5k1PiTyR77y093NvqIgZTgcyh/8g39QfuEXfkE+8pGP3PG9b3vb2+Rtb3vbzd/PnTsn/+Jf/Av52Mc+djNI+Sf/5J8c+swv/MIvyC//8i/Lr//6r8sf/sN/+Cs679zmdhNoGMRYAEkxZMqfi81btqwXylgX/Z2qSqN7oNb1ApOkfm0BGBQ3w3Eps++loGt+cAufe3bZFqizPWvwt1U18SzSnjMxZP1QF+B93VmzLNUP8Bk2HGxNbEFmKacfYJfVmsJpUrflK120Fib4/E7lcH+dmYdjXm4ZoPRSG9e7OrRAoE3wZmiBgZeik3TkoYMwmShtvf99dcZ5bI0IFuWTfSt/iOB91MOgPgZ7BB2Ucd3MfqWaaSFjqjXFvTHYETGsCDMzfmYZFOIrSJd+eVFkvY6/D4sIMLol64bcDzBGtZl9druK6ypHyIqwpDMIMMcecbHL9jKdLz04YBFcO/EctRnmLjt0d0si77oBh/vRc1BaXhlaAMsgkWVKkcOBhyOm87I0soB0dWiBBZ9dkBgGRQTPNxXTSOH3LiyIjDLMEbZniBWvw/5IlcgwOZfamOvnuggg1hv427WmdaIWwbiwRHiqb2qwvKeLbQQaS2N8BysRMpnMylQizJOTfcUjFTBGDx9YuXJleBhszUaA1xr4tzXF+ItgE9MI8TwzB6XYzhjX+Lk1vK9XQpDChposEbHcGyvW6tUF6z48KuKz57rI6r3asXJkc4rn05webkdxsY17ilwDoJ/s42/3KtDm5eZ5Jcaz5cZCxznz/+q9HetrYF9RkPKn//Sflt/ze36PfOADH7jvYOELX/iCfOITn7jj58bjsURRJAsLC1/VecMwlDC0Gn2/37+va53bg23ZB79fnH/+y6YpwsWBmQp206VkNxe6/+MxLAALE5QZ6qHtLHcrAFc+1AWOhTiHkqah37yFY/gKtn1xCY7jQhuLVC9AYMM+GewpdKYH50Xp/a2q6n8IUq7FBOfaqeI6BoFqNfi4l27JsgnffckW9rds3Vu5h0FFWDAFzEhZIY4CI4e+YRhYZlpRcCPTv2d7uE6quu4pZuDJHdPmoHPiopnvXSJyK7vpqi7+7Cr7yP5hGvni2Bxg/rObVTwT4nuuN1QdcyLSmOp96bPKO/F8UzzRuRLIYfvsCTiExTHui3iC2kzbDviq/KslnZoGT8+uaBDjIAvVmJp0/ak+HLqjwdb1hmEuWB7YrVgzu8S1vlIdZVJEHubys8uYn6RcO5lIzTUWCgG/NAa+xAatDHHOo40CaXkdDVesR9W0AIByqNmUSgSszZdWMZfqM8OKnT+wLGRdAycyvE72LWB46MA0jpZHCFDXBpjrFxZMq4ZdjQlgpUrrfhkZqUf3MX4Uh7tRx/gsTIyuSxbL0aaazSl+btTx3Vse2fFLMYIi4t1WRjjmp09ivH/jLI55rmtjG3nIwomYxk1rimfLICxQILefiAw1sH34wPpasex5rWnzv5CCnVVXzNKwiDm3PELAe5S2fTsj1knLmln5L939M18nu+8g5Z//838un//85+Uzn/nMfX3u1KlTsrOzI3Ecy4c//GH5oR/6odu+98d+7Mfk5MmT8oEPfOCrOu9P/MRPyF/7a3/tvq5zbt9i9ui+si0S/EsgZCEVSWN8GTdrWBR6miLeL4HZsTZAUBAeWP18eYTPtCdYXDMHYlqF7FZNAS6IvtaVX1tAcEOmx8wz5cue4jwizaLQ0benWJxGRTi0+sxEpWozq3PPFFRKnYTTPbx2rYHdmJ/azjAv+uVluJf1BrJJ/cBUV0/3rMRAbEopVin3AA6GmYqlkQEQGewxs0FwIUtf7KHEHfe2MoVa08MLKLvPUiPDczA2W1W81p4avqU+OwwafqWDz1D3xBHTkKlEOL/IrbtLL+e48444H7yE6hjYYLKuAcYrHXUoAa67kMDJ7FXwDM72AD6OPDhoBoU7FSsJMXiYaPB5pifSG5lWyNoApYheYPNouyryvqvWE4g9hM51cUyKyU0KGN+jGAMRw45EnjmytQGCppODO+tl5DV8yBTKxJ77mR6e9SsdzKPEBS7let0Aq1ebcrMJ5Y06specR62pyO9+FXN0o46xWhoj+CmkcMKdsUg9wxwmRoz3zUyUCJ69r3O/mIi87wqewY065j51hE4M8Eyb08PB3PuuoNWBm+F6Xlyy7uunewioOIf/45dE/v1DGINyhLGkSCD1e8Y+soos9cYuStJBLPKODZvTbB8w8g0jxjnMMWJWbqdqYHaWnCl4uFnD504O7kwpbk4lc3/89n//Btp9BSnXrl2TH/3RH5Vf/dVflVKpdF8n+tjHPibD4VA++clPyo/92I/JI488Ij/4gz94y/t+6qd+Sv7ZP/tn8tGPfvTmOb7S837oQx+SP//n//zN3/v9vpw+ffq+rntuD7Zl7/hhcS78PSxKxJ+0piZ2VEjhZPbK+HJTUn1lqPoWnqXwN+pYuPfLBvpk2/enduCE+oGlrg/KcBQ3dDHuBwhUyM7wHNupshsru/SyxMP+IF1X26gPrRMsO9KWI1z7dhW7qL6Y8ubiGAs3cQwi1rfloGyZBzqnbslKS9cV0DspGMC1rNdH0SmyYtzMerPcBN1lpkBanVnfHgrdEQhZm5mCqQic2MU2zkfhs0kBjoP9c8oxjj/2DUA5LWBsgsQyF5s1HGNxbJTW2LGWCY3wcJ8UCtQd3UnnMwksNQ2KIiXFqbywhOfMdgTswZM5Iqd6Glz6eA4UbJsWsDMm9mcQIAOwU8X5qQBLqjnPTQ0eT8uNfoL7WteAtJiaguupvpVY+Dn2zMmX04gpIV01UrxUHpA5LRzP9mBGhw0Lm1PtX+Nq0KZZyKZmjS62MXcIyGWQnTp439u1xHSpfVjw7FQf93RuauXLhw/wnQwLeD+p2QTrkpr8/iuWmelqloVZpkCD2eeXVUAuxbN8uYNg6WzvsAYIgxb22GF28CizbqOOOXemp0yn7PB7eBxil4g1y+vZkFq+MsT/qXxbjo2dlr+2nSqCv2KC+6tGCFj4nraWiSY+/s3PfRGTs3fldWNOlmXZ3d8G+5Vf+RX5/b//94vn2YKXJIk4jiOu60oYhof+djv7yEc+Ir/0S78kL7/88qHXf/qnf1o+8pGPyK/92q/JO9/5zq/5efv9vjSbTen1etJoNO76/rl9a5jzW//IMgybNe3a6utufGJCYuz+2ppiUVtQFs/VJhYtaoUM1NFt1PG6CBbz77wKnMJ21coRSwreqytuYuIbnZBN7MqxZRwmvnUB9jILVsi0yS8qzy2b/P5e2VLXlcgYH19aNSnt7SqwKxT/8jIETQ8fIOPC7tAsQS2P4IAyMbYFdWM4Vgx+iNlohvgsQXeOXj9378tDOFEyNvzEqMYEtzpiAQhBz8MicBaUOe+VcM2P71npaebhs4XUymaOGBupPlOApGammrr7fHT/cKaAVPMjC7hEHgKB55fs+iIP2jI32Sx6z6f6lpViTyIyN15bMMXPkwPMMWZEKIDmZoaLOjmAPkneBgGc0eoQ83O3gnn09DbmJLtxx44FFXnxLmp/cPzDguGfWA4tJghoayFKWGNf5EsrmFurCqpl6YhjzVKhI4ZD6Zbw3AgYdzO89vKiNu6MLdu3WcMc+46rIv/hIcyT3/fyvfW/enYF18eAi2WR9lTkd7526zF6JXwX89pAtBeWcF2dsc35r8SuNa3Mkg/MP3fCxCKpRsyWGJx321Ut/dZwjfkAZ7eC79jpHp7LDc0wsb8TdXqGRTxDriN8Ppot+1r22Lkfux9ffF+ZlO/93u+VZ5999tBrf/SP/lF54okn5C/9pb90T4GCiEiWZYewIiIif/Nv/k35yEc+Iv/23/7bQwHK1/K8c3uDGpVe98uWCl8biDjq4Nlavqjp1IMSHAx3sCsjOKatmqL5I9TMSzGcZOxi0fjyioHdDkpYNKhBEcRwOlMNgugUe2WRjYIC1BwtN5WRHaDIWCZYuKgjwl3+M9twVpda2mJdHefSGLvTtQEWqoOS7dYvtU3DhWJkGzWjOw401U8wKLMebmbKn3nnRsl9sntY3ipH2I0xA8EslitWqhKxHf0X2gAC5xfZ2sy6FYsAZ7E4htOhCJqvIGeqipIanBWsVESKeaLX0NeMxdhHgHC9jmwTewz5iWVEaAPVqnhp0foRjX2jMtPx0ml3S9asL3ZVqv0AQlrsxlvIEERcbSKAmnlwjMsjBDJDBSG/aevWOV0PRZ7Qa2xNbXctYkBcPxHxc5852qvFUXAmWVYsiWX6E3nGuCqk+A4FsZZONUBlx/Figp+tGn6nnP2gaL2aBoFmWkJ8p6qRYWz4/Xh8V/v5zET+o5fxrG4XoLDLL++rHmK82FE6LOD7+uj+8cc4WsrJ21M79v+80u392mkFteZbPpA+z2aa1+t4/s0p/v7iIgLyYdEyLCPfeiVdadr3ab2B8TrZt8woFYB7ilN7ZF/klQUE9S930E+n9pXf0jfa7itIqdfr8swzzxx6rVqtSqfTufn6hz70Ibl+/br84i/+ooiI/IN/8A/kzJkz8sQTT4gIdFN++qd/Wn7kR4xD/VM/9VPyV//qX5V/+k//qZw7d042N8FUqNVqUqvV7um8c5vb7ewmHZlU3oECG6moSLYClR+pSUB7YQm7EWpKuBl2gSJYBH7vy3BU15qWsaGzyncApuYHu/vSkZ3pIaAgoLA9NVbCsIgF6EL7+DpyPQRYtxQjSDrTg4M5KCFFTJYLHQI1EJpTkarurmaKg6HK57BouzZmnJgF8B0DopLRdLPfUGZBAdPuBPyS+hu5JrgmYhTQxFHRtYY5D7abdwSvtScWtJ3sH6bEXm1aySlI4NxaU4zXesP61HBHT6on1VsHAYKBm0q58a3jXA8xT0hrrURWMtioW5PJ5akBVBMNjrplBDiZICDarmCsH91HUHpQxv0sjuFYV4cYz80arr8zuTMAmgEK593dFEKpmssgM3WsTQE1XdzUnjEtLz5HwCfxOmHB6LPlWFl1U3sPdWCIpQkSXOduBfPzbRsWTNPyiqmZYwytYmKZRtqZnmVqlsaHx+A42XY+17sZWzQc9/l7schDMFpM8Fxv1A2zw75hFNFbHVpzSjZTJK26EllwKIKxYBmpkBkGxxG8vlUVOTGQzPu/o//UA2pfEbvnTraxsSFXr169+XuapvKhD31ILl26JIVCQc6fPy8/+ZM/KR/84Advvudnf/ZnZTabyQ/8wA8cOtaP//iPy4c//OGv9SXO7Y1o7H4705Q8ha0mPr7UoWeYgWkBTksEu7sLbYD+UgfOdr+M3c+oaM3rfudr2DU5GQKaXmAlAWYhiGUpKoi3FMMpXWyrkJmL9xNQmznYWU4LWHSnBZR4WlM4BPbnEcFCT/l5ptc9BfcVUih2rg6RdQkSkd2qyF5mDdEoW0+NCxHrAs2MBlUoG6E1Nlwb4hgjH+OxOjQQZl5tdadi2jDEv7AT7uLY8D8n+whOqGXRmuIZbFUR7ESeyHL3MKZit2ICbHS6NzNaZc2uxFZGmRaMYkvJ79hFQLA6xFiQwsmMDu2hA5Fa1bBIoSdS9IxWW4rx/HncURE/UwX/+inul0396KxJSaUOTSnGHHz4QLs+3wNDi/imezEvE0nEuiOLGP6HrR7yjQGpKpsP7DiO7Kt0O2OGK6/kzPLYqIjvVJ7tFSQWFDCLMS1YuSQTY7/kzc2QNWAzvrw5WlK8Xkf28167/BKbwwDluO7Bd7OjGS0G/iII+qhgzAaHQYKy1ckBxoyNT59bxvUQbD8tWBdvaqPoJiarf0hk5f4u8/Vq94VJedBtjkl5Y5vzW/8IzodCS+cPsEjvVfAGlnmGRZHvuIYF4r3XsDD8f580MCcZIEtjSEx/9yU7yWvKJEiIicjM2bGrK8WxYheO/uQATr4aGS164iPQeXQfizl3XF5mQYwIfu+MsXhfb1i24sQAx2tPjPHhZLiXXmB0SOpadEtYKCPNEOTBmnmlVBE4kHy25ajdqFtjv3KE6yAIdrNmeI3azJR8+X8ROK3dijIalJ2wVRV5ZgeBILMr7Ng7KhqWqDqDg+oFhlMZFnENtdCo0tQESVy811eHfL1ugFpKty9MkP5fHFvTu3zDxnqolGAnB44N8Vy2q/bslsaGFdgva7YiM8e3UVOBvgi4nWsNXPsz27cCWBkUMItxs2R5H9gJUmhZmrsb7mPsGxC5MzE2F4/FUtrVJp5xbYYs5KLOT0fgSGPFLLHnkJeaPpGf6vVkOVxSZposx7Ho8ue/m7F0dS9BSuzimo9K2X+19sIS1pLTfWsx8My2BfYMsJfG1vGa9v8/Zx2p2QJh7EtW+b997a7vG2BfN0zK3Ob2QNs7b2CB26wByS9ipYotdUilGIvYe9bhuLnwvWND5BOn4URO9wCSfXTfFgwaHaSvjJTWVMQNtX37BAse6capg50UsxDdEt7TK2ERZfq2p5mRIEG9ujUFvZWAW+442bWXmJKlEcoQTmZMB2pqlGIs2KQtP3xwa3v5q02k0I8u6EdZCnkjC0dEA5/YnN9BGZmdnuJ1CIDl9Yrg34nSwRuhgU6LiZUO+sFhSjCbqeV33mzEljjWLC72rMzRmSC7U4kMgHqtaVkc9npxM/yNejeP7VnJjz1RyhGuKcmdmzonpVgk0ptjULhXEanMDNDI8lTi6nVo9uvhAwRBLy1i7N62oSVB3yj1bFNwpnf/jpSBWSGzsewHmONNLVFWIwM5VyIE1FSbjXRu9pWOfraH+2WbBBHLLG1r5unbrxlNnYwgZivKykAaKW6jOcV4MVhNXJHsNkEKA9y72XGB2NHsCFVhOSZfa8jjuS6E2caaUWGPrrUhnv9Mx6M1ufWzZLItTAz0WvkaX9/rzOZBytzeMJb5f1Uc+bDIf/q8yG/1kVFZHSLQIHPmdB/6C60j6fXTPVOBrUT4/ykFxU0K0MZgg629sil4jn2Vek/NqZRikYmyNraq+PuZLhbp3QrYE14KJ83SwXMaVNWVWuvq/w/Kkr0dpVPn4j/F7otMlv2yNUTsTGzH3ZjCyRUU4JkvG4lYav/EwKjbg8Datld0p9sL4DQLqXVlLcc4Jks1IgpULWNcP3AR4F3qfKyMrHP02DdwsyNIYQexsWbIXmBgw2CHwEvKrYeiKfZEJMigTdMtGZYk0JIFO95+3wVcI+nHJ/twGC93jB5KeX92o80EgcF6Q6RXw7j3lH5+UDJBMjKKuspeOtnH9W7VjA7qxMYIak6xix7o+CSu0UhfW8BnnAwA7HER4+uIObxXOjjP2tACRgZ7R0tGk4KBMxcmCOKIeWJ5pa9A4npojjzv6Ouhyec/t4z7yr+/NjP8z74GqY8cYVPlMxsMYJpiLRRCDwFnMbaSaCUyMTMqQe+Xb6UL38nYMuNo+eZ2mjBfDS4lb5UIZcOdKnRzyoptOtm3ct9eReSxfYyn6htl8mGRR7/60z9oNg9S5vbGtG+/hp9XOwhSvuvynd+/OBb5G78m8h/OQRyKWIL9MnaJxLzQkaWOlQzYn4e9UugUEgf/Xm1i112fmZAatR52K9iZP74HR8Xd+dkugpu8nsfpvlGB6bTKkTF2iIWZas1+4luAcq1pWJJH9q2GTvpwKUZWplsy6jGvtRlawELHfKNuwFK2G3huGY7l0T0s0mHBsA1UsWVZ45OntANtAidN6e/mVB1+YH1y2I3WS/HeRnjrjrkzhoMcFjWYEVMcvdrEcyBdWMSaDzZD3Cul+5fGxt5hxuDEAJ9/tWPdf6kAeqlllHeqeJ4Y4Jo3ahij3YrhQLarVjoKC8AS7VThfCN1yhTdo6BX7BpW6YuruH7+vVvC/YkgIHznDQVnula23FR2F5kozPR1JvfulMluygTz70urKFWwt9CkgGe+W7kVT8Lmj0fPRWpu4mIO90uGmxkEOVyZBip1Bb8fLU/mLU+ZFsE1N8JbFXWPs69FgEJ78xbm22+dtq7n/cCCwwA4mGzlL3ztzvmA2hyTMrc3nDlMk361xkzJntIoiVNwMs2aKHOFC60IFlUCElmO6AeGpajNVAjLt3LCesMcUGdsSq2netYtOF+yGhWNylxMrNkdd8nUZpkU4LRIrz0xsNp+XpyKJZKDEgKliW9OhUJeMw+lK5ZrRhrALI1M7ZYy3bGjgVKCrNGLS6bfMFA9FBGRX37KlHS/55KJwW3WTAuDjJSp0qBXh9Yk8jhw5U4V17er7Jq1IZ7jXhmMra0qynjn9yVr/ZjNmS//HMbnptCd0pavNq0VwtjHcckmYufkTBA8Ra71fDnbw/PJgx6ZhREBJoUg46tNHKsS4VzEObkZxi1zoGZ6raFigQkCjsTFca+04IyrOg8fOsD5fWXIkMm2XzZF1Pu1mSfyq+dNQj8Pmm5NMWeoHVSbAcslYqWevDGQWG9g7p7t4TO+Up9nngV+nMt5SnzmHNYaYpNEzuV8iek4Y+nofgGyX4m9toDs1wKC4uyJP/P1P+frwOaYlLnN7au1fgAnd6fGfFSDJLOGWY3EMQZLMUGJInaRZYhUC6McWbO3cmyOZ+LDmawMcX6qn15oI+vB8k8vwM6yM9ZyTNE6Ijemhq3plrRfisABcqd/o46MSegZnXa9YQJ0meBY1AARxQ881IVTZT+fjRqcSjk2R7Q4tgxFWBApzBBg5bMV1NvYqRqQMohFanodp/oi33YdoldrQ1wfu9gyy8R/6dQSBwGIn8LhUrI+X+bg83Qz62JLZc63bop85gTef3Rn/fQOji1inWg7E8PSbNVMW4Sg0bCAa4o1a7Ff1uenZT0/FdmsILiZFJRZpbT4QmqA3uoMwcPKyECmpJETg3Omi3FrT42iGzr62gSfGxVx3p0KngUp72/ZwnGW7zDXj7M8gJe9emJX5G2bON/lljVE9BPLPnVLdgwGCnye04LhwLxM5O25UiQDfUefK4PuA6Vwi4hMNWPI7AwzY8SV3FR5PRKg5DM534jghKd95L8WeeQbdroH0uZBytzmljfSKquR1bmPNrwTMRbOqIgFb7cisjpATxLKwBMcKprZGBVNeGtQxM6cnWWnih/YqmJhL8cIJIKiSYM3NS29VTMnQ2AiMRnFxLI6xQSfYbdlLtiDIgCgDx0ge0DtEkcMlFpMUFp6bA9/e+jAxoFlARHc50bddq7FxCTpW1NkSUoxHHd9lmNMuCKFCFkR3j9LHKeUhnymZ2UeimANAjiTcoyMzEi1T0I/p00jVt7ZqCNwYgM+Gh0+75Wg0/es49qvNcTJfkLLE57IqmaGrjcQPKwOtS/O2HrSLI1xnCtNvF7RshyzP0Fs199X3NDqEM+ADngmIi3FNfkp7u2pHbwvb82patOIZbTIoGpNECxNCkaxb09NAZiaHARSX6+b4mw/sKZ2xBUdZQ5daakAXYhntTg2ITV2l3YyyzBdaou81EEw1Jmgg/hvnUa5lcZjH2Xo5DMeHrErObeVuGBDNad476BoQVA5FimEt9KRjzMGKFRGvlNp53bYlHvErHyzVF4fVJsHKXN7w1kmHz5c8skcABF3q+ZIlkdYMI+WC6hiSdGoTEzlca9igFQvxeKdOtaPhw3/yIC41LagparYkUf2cZ5Pn0Rgcl2d7IqqkNZDc64UnmPWgzoSif6f2RQ/BdaDSpXnunAuLy5abZ/BzF7ZGCOn+rjecoyMx8LkGKaPgK5MrEohRfajM7bxS7SkUY1MNI6y5amD7AEeDO7jtQVkPEhDJcVYBI6UCrJeZt1zZw7OSUorZd1ZCmhNcI1N1Xih42Pzv/MHJuYXalZjWoDTdjMEhpRZPzHA+deGCGLOH9jYTQqmyFqZqBPV58Bmb2Mf56lrkDBzEVB9xzUTN6OK8fmD46m1PGbmKJVXDFg8KooEE2CUtqvaJ6doPWHaUyvpbdRwHWytwPEuxSKb8WG11VFRRdu0DNWaIqPUnmLMn9k+fI3DogrYOQCBViNrN7BTsYzZ7ewo/ZZ2FM9Syiw4YH8eETwLigqW4lvHMXEx9mQ5MYB2MrmZIjsOq3K7QCT/OrNohVSy4l+9/T3O7a42D1Lm9sa0UB1Qe2KgV3Ymbk5tId6tYDEuqYYIF/zENcXaYdFArHsV67PBz7OcwrWvNrOGg+sNK/kECWTTCZx9ccl6BZFeTNpw5GlvFheLNtU3yaigiJynDvl6HffNv/M8vI7dCq5tbYiF3cusmdnJAa7zQtuu3RGR8/sGyi3H1niP5RtfwYCZXjv7s9ApUi+GAM7EMTrxlRbGbGlkAmAsp/FfXkclMhG+2BWpJXg+7AzLrNDqEPdRiRDQDIu6A3chnjUqYvd/sS3Z25QxtfjXcA9k+jCzwGaKbEaX82s32xeMfJQ8Clqy6SkQ2BGMD7VgqpGOi5YviEOKNDDz08M6IHmwNNVG2RuGQOPOBPe4MEHw8UrHAJmneyZEd66L+fTvHzLV2ebUGjiuDhFQXGtinEi3ZvuBjRrG5Ch9PXVwf70SriFylcmUGfjZu42zv19jcHB0Q0G2GY1sIP6fmZnEFfFy2bSvgWXBX/maHeuNbvMgZW5vSMuCvyJO4W8oXVfVXXcrItOiYUHyTqlfMinr5bH1gskcLPbMGDSnoOOOi3AOV5s4BoMRllReWsSOfKLOd1/xFqnSacMCztea4vXOBI7uoIx/x76l9+sz0wlxxEpW1JioZ8ggHJSQIcq0VBW72GmfGCBTc61hbJGRj11pU1VTY9fEyjg2uxXcy14Fzs5P4STpsKjNMvbt3/rMSg1sSdANgEVJFNS4VzDwZa+E8aCo28LEZPL91DJaDEi2q8ZqOdVHuWe3glLMDplWR0oLjqDM9r6rOMbRIIAU7ht1kbRuWTbKvxcVFDxSSlQxNuG6YRHvPzHANd2oI8PRVRAyZc0f2jUArZvhXh/bw1hy/O6kdsomkk/vYH5UIrDQ2CjyqR0D37L8UdOSJEG+kQdqe22G53S1iUBwaYzP7JWRNalqUBi5mLeD4q1ByssdgKOXRni/CDYEZPekymS6Xbbkfu1e1HYJqM5/hu0wvkrmzryE8/WzeZAytzeukVFyUDaHT5YNJdy54yTeIkiUZpkBB+FlIq2ctkRzKvLCsva5SeEo6UTZfTjywCChhokIzneqb/gGLzNNDidTjZLQSkXs/+MnVlIa+8BpEDDIckgvMGd/YgC1y1IMx8oOrbHqoVAldmEC57OtZR42H2Rn20pkeIfEgbMKYpybnZgnCgh1M1z7Zs0E0hpTY75QwZVMnaWRMp4iE/0aFvH3RmoOZeRbictPjFHEks9OFdfdmRh4k9ozQYLPt6YYgzzOZuKjHLhXEUmrUKo93bPrqiiWhk3iGDywRDNUvNHIN12ZjbqV0kjLPighE8EeS19asWM2QvxQMddPkCG6k7156zAQVQTXkVerHauacVPHn+W7c10Ezm5mbDJK40caoI59PL933MB1fnEVzJvOMZitvYqVhEa+9aTZq4gs7iI4ud6wBoVfrX0lWZD8Z2IXY8ZnSZG9OwQv88DkG2PzIGVub1jL5MPixP8dgpX1BhbgrZrtLL3MJOmpvTEMVK9CMwpMf1P6/XoDC/tQ6/cT3xQ6FybW4JDdXWee9XI5KKGu72RIr4tgF+wrjXhYNJArG+35qfXdcTKRYmYLbuhZ4zc28ItdY4FMFR/hiAmmTTUrtF+2Rn+DIhZvYhyYUXptwRr9UR5+kCsFlDVwyjSIOaXspqlnsvgEm5ZjCwbbUzgxUriJ52BmiAFjquyUQioyq6n2R2rqpamDDEkhxfM5KON5EEhMarh7lALrIAuxXzasRzEx/Au1avbLhlFaHFtWgrTpnao1UqzOkKU410Xg8MVVfPZ3vYZ5we7VItpPJzHZ+V4JZaNH95HtWhndHOus/iERUVq9n1hPpGIi8q7rt076sGBZj7xKK6nDZMZ4mQUqEx/lt/YEz7+YAND8zhsI1i62MfZuhjkSepZVHBQxP4jtiF0AhaszjN/Ih3rzvVieTXSc3U0afxCY5s3R97G/EI3MJ4K0ExeN+ub2Dbd5kDK3N7ZxYTrVN8GpzZrpR/ipOcmZZ6n0vA0Cw3wQAMsOthT8cjJtLCa5BoOCxXBLdUx2KnB2NxpwAFs1/K0cm4ItAxJeN5sk+srYmHhGx2VvGmYqmqEFOFTxJKhw5omIXnslEilNrFcQcTSvdOAIlkZw+Cc1S0R5cxEbI2YVAi3/UG7d14xMWVlJrampjBKUSUDozDPpfxEDrzZCvD7K4W4OSnasyIOIGiXERZR9M7KOu9tVkY5mnKqZ9fcJPfRWaYY4furgvLUZZOovtzRjJKYQul1FGedcF0Hlqb6qx4a430qEz/UDkSd3kD15xw380MpiJZCzXQQEQ8U+rSiT6EsrKME8tod7q+cc7cuLeL+XInh80/bh/ku0vHPmM4tdBCG1mYGPN2oImq42cR+ZWJPJ55YRWLFD8Yj4o6LI80v4G6nhpEQ3QgR3kYsfMnASF/ioo6rHtMgTea2NAO9CW+Td128tLb3SwXMdBPjejHxrwHe2ZwytZQ3uJvfg9pxMpBJZtsS747vn9nW0eZAyt7kdtY4C/QaBAVOPUlVFNCugXyGWXFJHF3UHTo+1cmZj2F/m6R0snAdlBdbORKSiu3dHe/SEcBS7FVPJJNaEAQgzEmP/MMCUEvhuBgcy1WskyDdLTBxrooDTIEFafqSZk9bUughv1nD9LCu1lAJLCnam91/vwimNfey2t6t476k+MgK89oOyCW+JIHBhQERMTD00vRGKkZ0YHBbmcgQBCpk47CZM5slOxWThgxyWhLLqzCCI4L0DBRGPfRxrZYTnf7aLZ7cwsW7HE6U9U324V8Jn3rOO4+XLGP1A5N3rRqnuK6uqmIh85iTumUHGwwc4VuJajyaWz2Ye/qb0cufK31F9liKuM/Jwzc8uI4g6mjE4qg/COcESE8HSpRgBcjNEwLRRw5isDfEaWT9sm8Au1I5mIUnR7gcqkz/DObzUuoE7mqXbVI2Ztx8TqPzGWWwcWBa91ML1nu2aPtFje8gysezYDHG9YUHkNzVD2p4iEHt07zCY9ojNSzivP5sHKXN7Q9shOjI7FxcTxXaI1eKpYjkqwlluVxXzoTiRxTEyA+UIi+/aADu3XsmEqmohShgzLXeIWB8cR7DAisAB+InIgeI7AhVgm3omnz4sHS5r0Ol6EYCbUxWFY1mqoqyN1SF2x3QytZmJztGBlGMrVcVuLsASkVDT+Kf7FkSwPCaC+5r41rhvbWhYkUTva0+Drp2KOnh1rgMPdGSm48sxgpnIvdm/5JC1JwZCZsDFjFKQ4O8EIZOKeqqP16hCmjnal0gDANK0xz6eH/VJQs/GYFpAADAuIkB6ascaNbLRo4gpEW/URV5dQPCyVzENnfx9bNZQyklcKx2xdQEbGpJ1xoBstyIyLlgrgIMyWGh8XhcWMJZUKT6uKSSDstRBxsJTkLWbYZ4wmAgSG4OXFTfFDFjqYFxJXY81W+Ir7of9l9iPiKXJSBl057p4RkdVYGN97tUImSpmDF9YxFgtjk0hlyynpbExiERM52irZmq+x6wBc3v92jxImdvcKJ+eOcpk0Z0WSw7UHXEVwHq5pUDGmYhfgHNltoVl/mtNxZ0kRo18YVnkTVtYOKszLLKvLagoXBULfeziei61QfFl1mK/jICHoFDKwgeJiKuvkU7NTAMVWJmxeGwPqXpmPWaeUkFT1YcQFUlzTZyNTohlmBMDHIfZhmkBzvG8AoGLiSmHnu5jPF9dgHM729PGcwe4R0espJIJjlOb4bWFiemjHG32mLdiIvKWTZQSiJdZGR0W5/ITkcURGFpXm0bNJWupGll/GWY3VkYiT28r1XuGgGtaAAiZJbnm1DA5WzUEgztVA6qSmeOl2MnfqKMHE0tQY996HLmZsak4hgyQfKVUdyYG3GWLgMQ1rZRyLrP1bdfx3p2qBb958TRac2rqwV4KJx/EuLbnl6wpY+gh4LzSxJyb+NDDIRjZT0FVZ/sElnP8FGPI7MlBCfflCP7d0DIZg9BeSeTXH8IYrQ2to/aoaE0LH+ri57iOxnzug8Dk89mUcGUk8sVVyd76J28/n+b2urN57565zU1EnIO/YeweKnPuKVODDd92qlZ/L6TKNlHNEvY/ITOAi36sZaO1ARw7ndlmDYtmpCWHmQeH5WWmU3FigEVWBO+vRJaqZiYgca29O5vVpQInQDZRe4oSwqQA0CxxG/0ATpc9T9pTHGdPd5/1menHTAs4D1VnN+pwEuziPCwiKDmjGICtqgF4Cd5tTnGOimJf2FiPwFTqypQjYzCVFP8xVYBsawpnTUxNfuf93LI1aSNlO3YtWGSWxREEEMUE5yukh3vWXGwjC/HmLbzvegPOuT6zxpEi1pdpqwZMxe0YJoMA5bsXliDW923XNUuSA2aKWHNBlrv6Ad6fP+56w6izzKJQTZjZq7bqllxu4ZhP7mIcr2s24rhg5TjbrGFsRkVTQn51AUFFt4RzPrONv/VKuK+ZK/LlVe2P4xqDjX2kOhME49XZ8SDX55ZNH+ixPczbvQqybo/v4d7Zp+d2dq2JecLM0bMrkr3pT93bPc/tG2Lz3j1zm9v9GrMFs7L1w2lNrc5O1gRBpotjE/AqpKaWSrBpORIZVLRLrwcHQcVW4it2K3D0l1vYwZJ5QXbGQcmkzxmgEETKxn48Z6oZg6ZmXVaGtzaL4663FBvFeUPZTMyCNKe4Jup+UHJfGQ7ywhKCiZFvgRibIu6XcY62YnqCBO8vaCaCdOnlEUpSIhjXm3gW1WrxEyu1dUsmTLdTsTIOMzwiGLvVIcbipoqrJ+J7lgmjPyxrVilThhDHoldC4HSqb71/XljCdWQOnvfMM9DsrjrNjRpeJ2OqEt26w6+HFnANiyK/9rDI+6+YMB9taYxxqs3wbJjhyduJAcYjSExXhowbEaN490qYNyzTnO6h3PjRcyL/9hGR3/Ha3b8TzOQsjoEBudbEMWeeBbD8bkwLCFauNfH8zvYwR660EGiwA/TJPgLj48p3IphnCxPMQ6rHdsZ45oPi4fGibdVwj2wV0ZzeZD2JiMib7n6rc3v92jxImdvcRCTr/EVxxv89fpl5BrAUsQZxA6UN8290xCxvUIK+kGpAofiAaQHO5yZoVSxtTy2JsY/FuKAOcnFsZYBBYOBbqrnS2MAuSEQmOR2SBaWLEk/DJoQMCmoKZKRM/SBAgPDUDrIhV5t430O6k23n3rc8sp3slaZlNpYifG7mwZndqFup4uEDA8yuN+D0iGMY+5YFKmjpiRTwnmttBqiBslfB2FMorRwjgHnrJkCozMrw+TGDErsIGEjldjNkBUgbvtyyrMbpHpxfI8SzqM1MJ6auWYBEQdIHZYwLVWl/25Uj2BvNkJwc4PNfXrGGhmEOh5E6qoQboAz4sJbF3AwBADV3OC9cvYexj+P3AyshBQlAoo/t2j2VY9zv9YbIJ06LvPceMyq0EwNkl15dQHByuo97v97Accc+7ofg5bduGlB4VMT4sqPzesN6OdVDkS+tIoP3bdcx5rtle9adsWXcjhqfZZBIVvvL93c/c3sgbB6kzG1utP2y9cOhJkNtht28k4HCyl4s21UF6ymrIXHNoe1U4Zx6JdAjV4dwNmEu+Hly1zIpM08XeC1FsPFg6sDZpDPTBfFTkSzGwjxT4CF31Ilr5aheyToBkzpKJtLKELv+umIJegri3azhpxka7iF2UaqaKNuF8vahliqe2jHBuN0Kfmf3aOJMhkUr2SyNUab44iqcWCXC36m025kY1oKBRC3E/XBsSXslWLSpzqscI5ga+5YlmeaWOJZ3WF4iS8ZTts5bNvGsSZntByby1gvwN/ZGWhsYO4g4mlaIefHqAu7zYhvj9cVVHO+0BhlPb2Ncy8dkSnaVDfXIPo5LLRY2ATy/bwHiJAegTRzgZEjfZtmyXxJJNKjaqONZrYxwbR87K/K+K7d+D1i+jLzDDCUyjxjwMgB+QufA88v4XCM0lVnaTsUA4GtDgJ2DWLOKET732B7+TwzTawsYi0AB1H5yuNHiZk2y1b8gUrv3r/jcHjybBylzm1ve2ABupJTO5ZFlMIhVETFtkFJsMvpjXxvpzYBpcJRNcqENZ3xWHV4xwa67mBiI1k8s4IldOF52UR4UrSzBmnzimBMb+/aZugqk7VRM94P9cgjWPWoLE808jLBzzbQkw4wPqdakwQax9dTZ0+zHThUO/bMn4MCXRjjubgW/E8BK0bzFCRxPe4JzcewJrgw9YyYxS1WNRLbFwLaFVKSpKrBLI4zTwgSOj319qInCPjheZhTr5ZH1DqL+zLCITMTMAzgzc0QuthCAlGJTI+a1VyKV5K+YQB/P/+ZNy2IECYKVU32Rd92wkl7ePBVTI1Nlp4qxqM3w+eoMmYhKZA0dmWUjeFa0pDIqWpbK0WMzUBbBsb60gvF9YteUlF/pGNYpVqZRvgmgl0J/JXERuO2XrSlmfYZsSDG5tXFgr2SYoo2aCdU5+l1a1Wzil1bwDDgf2EogdUTedf0wE2f1bl/muX0r2DxImdvc1LJTf16c9b9twcB+2RbSmYedaDmyXjnsHnygWhN9ZRRwl79XNqVVyoh/23Ucoz3FIt8ZYxE+2zPV19UhHBTZJswuxI71qsmzV6glUoyNgullItUQC//i+PhurnmrzuBgF8fK7nGMsrlfRhBAlkdTNUjI0tirwDFSuG5LszETH7iNbsnYQYtjHHezdqsuBsHIu2VQkVPVIqnNEGT0AivF5QXgyhGuoREafiUveseux7UZxiVQIPRAQcPDIq6LQaUIMg37ZWSbzvZw7MstONhmiK7KqQMMBrtgEwT7zPbh0gS7Az90cPvnMPZxvtYUz3pxjHEjxTt2rZXBNaUxU+OGejx81r4G2jsVvJ+ibpdbeP/5A8yptaEFPJmWL1NHJFKNm60qSlTHGRWUCaQWwbw4TuKegnSvdqzv0yP7xobqB5gTmWNssxqwRdmpP3+HSTu3N4LNg5S5zS1vXmYy8GQnsJW7iMqoKzD2dB+LPuXa+f9RET8X2ghobtSBDzgxUFyFmCAYqZsTpfKe68KBEzw59lEeSVz8iBhgcRCYKm5zqp2ZYyz8ZNTQgd7NjjItYhf9dURwD5dbyIisDnFNMwUDczx2KyKRlmXYMPFc19gd1xrWT2ZxjM99fg3BTX7XXZshy7JfVvyN3gMzWs8oLXhYtCBFBE6bqr4iCEISRyR1Tf7eS42p5eg9MiPRLVlgwP5DO4rpETF2z8IEaq4HJRPeGxQRxD2xg/NUIoBjFyYWiB1tgDfWbFC+szGF91iaYWDy8iKyNswonO7h9cstE8NzM8O0LEyQEZkWEChPC9ZxOHOMXbM0wniRuUUmGoGr/UDkk6cQqK1pmeWo2uu9mKfB6WYNc70ztvtmSwQvRfaxGkn23X/k/s8xt29Zmwcpc5tbzrK1/0ac6GeQDaEDcgQ7T4JSg1gkUIEwyrFPVEDsQJ3dtQYW5FDFqsiYiVyRQFQBVUsIByVgVCIXbIjFMRwpgaQEgIYFA5EmmlnwFVBaD+HAD8om+x0kujPNcB2OWF+YpdGt8v55y/cyidTR05m7GXbG/UBk7MLpDYo4b2eM+9ypWtmIYxQkyFBQdTZyoYzaLVm2gXiS5tQc9Y06gpm3bv6f7X1pkJzlde7z9df7OptmRqORBAiMEEJgmVwWly3ZgI0K+1LBqZQxhW0SsK7N5jWACyKRUBHGxNi3bHzB16FiJ4GKQ0T5VhJswIDBEgQjYcsLi0C7RjPSLL2v3/feH+ecfru1jvZBOk/VlEbdb3/L6Zbep895znNIy5Cq2nZx8aERg7ygb1usRcQs3869gCWRHRU7eFGGBNY4k/V2pyVBqRrdVz4CDBTonJUgXZvHHWByzlYn07m72nUZu5d2JPYjCWq5vXCrdeGV1u5ACxEdTlI2qKNipxl3cTanEaBMkgiW5XpazezyYZsZqrqAE7LXJdci9zwza7VMYY/if9q4nR81e+Ig/kUxpheICAW59XokQe/P73thLvk0rTnr4A+rOPGhJEWh2B0yx8UL0MwQl1uMRUibi9BjoyxMLYYpPb49RRt2zQXOHabSgBiVuYY22nSVO2dgh/j1lKgWPyPPw918wG9p8xX9izi7it19d5mey0XsJu87Vn8hehI5ToXFrqmandET9K2IVjQOVdcKSuX6xOuim4maiIzDHm324qAbbdiWV9EWpFh8LKZiIpYthumb/MYO20ET9ogAdJatmZz4nXgOiVsBdokN0j3titM9JOrWiEx8Olzftu3WXMqATc9THLr52/1onI7TVabntqStc6poeCIevd/dJbb6LxMhKIco0zFnzIqYZXaPvA/7w5YMxUps8sWhNh+xJnbSXTYeo8/kKAuUwx79OREF3gkAZ5Vt23mEu32GUvQTrxNJkPZwjwnzYI7OK4JkEY7LgMjW+T/xutXVuHvJzg0nKTbxOsWjFS3rTexOmlUEAJccOESKkxtKUhSK3WDm3Qhn4l7auMUcTASIWfZBMY791u87QCNqnV3HYnbCr3yTl2nJmzO0mc7I27kxYg+ejdgJyuIE6oBIhkBMzOQbdCFsyyXjMVrrGDtDaFvK+pnIZl8M2S6g8Rhdl2SNOstk9+5yFqIYstkcEUaKfbmQg1KIrkFabVM1eqzOBnWdZSIUAe4G+k0flcrGYraFejgJTHCbrrjupqq2nbvKZnVZ1rN0lXnYn2eNu/KRFoGsT8RRyjvyDb6n1J7VOH2MfsZidFzJRtQDJF7dkeTsRdXawo+wi+uMHLAjYQfmDSUpdn+sUtYn5AEd+zB4M45tS5dJ116ASFA2SsRqPEqkUIZdSjzKXFqUz0+yRu+1eOgARJJ/PQB8eAMPKuSSZMinlmHpSgryZyDSoPjuTJA/TLra3kkD0HW+d8feCcr2FL1WSki/66XH5+4ibUmr4FWhOAgoSVEo9oYR1nUEDJEKcY+tBYFo1eoF4nXaKMV/pBykDdsLULakHKTSyKYO+sbcWaZNYid/ex/IW2FnPmIzIeWQ3UyFuABWKCubfm+Rvu2WQnbaq5QdCkwUYnXuauE2Zym3vEUaAEyv2fR+KWxn/iRr9HwhbFtxJfsg3iaAHeyWrFHcZNMF6PzVIHeu+LTxSot1f4GuOVWzwxerrnUjrQdo49vhWnLYWSZSIQQlzkLmCpffJBvQUbG6B5evW8Sw0gZeDFPmBLDmaeUgrau7QKQGhBxLJIVwyr2HPattybD/ikzAlrLWRVvo8a3pdnO9fJhEoYOg2VEFLpHtjLNQuUTnHE7QNW7OcPasRO9NT8nqpIa4HNOKTAW45B3799d7eCrwBGVD6qyd+X0v6aXEql/e0woLx0O+bbUHiIS0YnvKfvYlyzUeg+m87QD/wBSKyUFJikKxN9RcO9MnYAA3QBtkB2/WE1G2cG9Y86piiDY6aUOOeFb8KrNiykHbrdJZsaWGRM2aw4ljqgwmbASs4VvNtR4pp4/ZzWkoRX+KCNF3qFQVr1s3XMBqY+J1IhcJzk44hnQDW9NAhIW5Ce78EIIC0MY8K0vXsiNpdSci3Owv0AbZwcLL4aT1F2l4gGHiJDb9AG2QeRbYRpjciPi2HuDBhkHKwKRqRAJjdUtCRLgc8qx2aG9zXSRWMvhvGrVcm+6/AgA4Lz8CnL/dkjMHtotIXGe9AMW4GALWTidSdto4HasYsuLg4YQV5Y5HbXlr4VD7pi8I+kRmN2dsGS1VpfPKLCCA3nODdjG3mAnuPkBQPr+FMAlpt6eI3HWV6fXSPp+PWHNBacH2HaBcpc/V6WP02W/FjiQ9NzNLx0jWbLakc8/QKxSHCiUpCsVeYOZ/Ac6ahwCwB4rM0RmPEQnoqNDjW9K0MWa5LBRrWFGp2KXLt2xJkxfClBWQ6cPSWeEa6zMh3ixiHuYyaegv0KYybydtNvkIrSuFWINhbFknzKWQesCasg0nrSeGuLDO3UW+LeUgaS0CoI26ErQuuG/02LEA04q00UobtczDSdTahwGm2eslywJjaUGuu7ShRkIU10LYeqrwvotagGIhYti+ojUDkxJHukrxbQTsvBrAdrzsC90let2GzvbMwMIhuoadcdqkPYdiWAjT+cVgTgYrJmrAeyrAWfxeDOaAn8+h+/W5Q6geoNfOH6HzPXsKHfM9o3Diy+31GtBrRAsk1v+FsO2gqrv0/s3K2tlSQW4FlpZ0KcW92U2vkZZm+X1Gnq5lzXSY+V8AAGq7lzlVosURX5+qu2d5R/yAPAem56+Ansn/u1IoDhZKUhSKfSHEHhynTtCGCdipvIUw/Wf/ZrfNuvSUaFMN8D+rAhvCibBUUuqii5D5K+I+KvbtkgVolklq9G16b9OAxdhset5qZ4xj575UXet/UeBMjsz9ibPR2e+n0XohWdJS7HFXzy9n0+9SysqHrdZDSidiyCZli9E4PdddosyK61vzu91LC8kavc6BnUwsbd4yGDBWt/OUGgH6Fp+u0mt3JtozJ46ha3WNNTrbmrZOsuLcW6MymmO+Qc87HXQdITZOG423T5XengLmODRReWeC3v+gT8cUwzkHdK1117Zgi6dKlJ2CFw61d1ZJ9sU1tmNI5gTVWoz0cgHbag1QbKtByjjlw+TYmg+TH8n0vM3ITS8Ag2/a873eY8uHAGWntmSIOHZUbImn6vLASqfpPWMytwNx6DwcxTGDkhSFYh8w53wejrnbTo81oE1ENs6RBH1LzlRow6oGacOvu/abcMBY628ZAlgK0eYl2pF6wNrtS6km5NMxXEMp9bBnyxQ1l7Iz0i0jItcAd+6EPWAkDkDEvlzOEWdaEdJKCcM4dK4tGaDKhm5S6vjZHLrOLWm61wJvhiMJiomUHHIRurdi2DrLnjJBZGJ6nshEI0DZBPHhmIhabUeSDfIAq2fpqFoRrmQZxIK+r2AzSGLUJt0sQZ8261SNsiIiUpZswjudtn1XpiFLdmZLmtvDPbo/37H3W3FsV5N0M3kBOp7MqLnsbboGcYoN+rTRS5dQV3nP1m9pKy85QLzBdvvcXZbnmFT5v+rW14qou+pS7F6ZQZ+VUghYPZPicvZO64orqLvAnDE4b3yX9EwZ0PuRj9CfYf58J+pAraqGaorjCiUpCsX+IJuxtO8CtHGISFbElKlqu3mXIM8biXQBdTN5ibDNvQgxx2J2lo9xrLtrX9EamxVDtHm6hjQPYqHfCNI1eo4lINLeG2dyBMeWUsTiXyzuG5wxmZml+xmN070VwyTgFAv/s3bSBm1AmoRoA0g4VrvSW2S7c8dqSgIGmIgAg3nKRolzq7R0Z6pEFGosmB2PWQ1IJWidTaXUEvJIMzOUopKQcay+RUYMAEQscxGrCaq5RJZ2xdkp19g5N4DVc3SV6V5rnRSbsGdLPFKCS9aAxRutGVwh3K4xEdO7LWl63TiX8AohyqrVXeBPttn18rnynfZ5SlLGykXocZlgDRBpyUXsBO1Tx4mIvNlN17QjSd1HIc868EpG6JzhPT/ngzmKWdiDOfVW+3hmkv9OFIqjBCUpCsV+YPq+Cmf7Q/Sfve/QplZ1gYZrdSDJGj02HgMGcu2mXqnqnoLGVnSXgG5YcarPpQnRYvQWiDSI/qDBHiYJdlEthO18G8fQN/Akb/ZVLhkYELnZmqYMhLS2ChE4bZxKAAFjXVe7S9al9P1byHJ/V4I23xEmKKLXeLObNrmNHURUxmK2dFMM0WOVIOkpGiUiMK/3cFmkuKe3SSNs5xPVuP1aNDbFsBXJ1gP0zb8RoE05H7F6IZ/JUylEWS7RW0wvsJGYZ4dI7owTGQz6dG1Jzt6cMUrn3hkn8vKHafRnayeNGPm91W07rgZz9HhHhTJH3SU6Ty1Isfcd4P+dCXxogy2XSXeSTFiO1emeukv0vm7s4I4xx7azv9NJr8lFrLh2MEdxev9mO6NoLEa/95RslkownATe6Ib54HVA+lD+hSgURxdKUhSKAyFWb/HOYNGpmF1JZ08pRELDGBtjxerWor0ctBmN1q6MYXbdTFeBeM3qQaR0IJCptrJBObAttjITRczI8hF6PuxRliJTsZqH7hJb6HMLdTYC9Bd5qBwbt43HbClGhhJmo0A1Yg3WchEuT3H3x0iCjueANstGgK5lU4d10pXOl2KY/jxjlNZJCUnEwtkoxUMmN4u9v+9QfGouxb8atBby0tItc2ZkdpBoWMp87v6CdXIVQer2FNBfgAndBQBwnOV0jFYiIkJWyZKNsJtupEHH39RBpbJxzqg1AuSTMhGl8506YUtbvkO2+kJ6ZWzArhbhaleZ7lXep/4CxSVWt9k7KRdmwfN80pRRyVQsYdnh0LV2lYmgiN6m5sJ0cYtwH/8oFFMUSlIUigNB2nfFSwSgb+ny7R6gjaazbDcmSf83uK1YhJNS+uku0bd+sWJvuAAa1p69EaBzFEN25oyk68OeTftHG5S+Fx+NUojS9tNK1vBNbPWlDVraSTu5jNJXtD4wkoEQO3WZ6Cv3IdqZ7Sm2Y4/Zc4l1/tY0EQYxcSuFyLxNRJixOp1DsggOaE262q65EKv5oG/bbkXXk48QyRpK0XMpFpS+3UXP9xaJrEzP27JNKWTt+esBImdia787slHa8KvBPdtve4uUCSqHiIxkqsCaOF3vhzayJihBcRC7fvn8nD5GpZmJqBXc5jkrMoM9c6pB245dde1coZE4sLmDSIvP5UaZlJ3lrpzWAX/y/leCwIYOmPfcfDCfeoViSsAxxpgDLzsxkMvlkMlkkM1mkU5rblMxeThrueRTd2kjEd1I0Kdvz6eN0ybsGto8AetFUWefk7prW01FSCmQDgrACmuNY8lDlUsJrURFOmp2RyFMm3erW6xkJcSczsA+19R7+KTziDXsJGYhK7E63e9o3GplRPuwK87D8TzyGZFOoqBvreWHUnYz7Szb8orvkMYnw50lYzF6bZqzQBITuRYhTCJqbY1XhQnFaNxqOFxD2aY8t4Qnq/RaeT8i7NESaiF+k8UbPdRCLeW8rWmKlVjCP3MaEYlYgz4z00oUx54SkSohvZsyVgck2qUZeSJY0QbP3KkR+ZVsS1/R3v/OOJGic0bo2ExU1OVVMVVxMHuxZlIUisnAcwCnJaMCA8SZMMimvC1tOzpCnhVdxho23S/zaXZHoOW7QrxuiYnoNfrYolwEsjXXemLsDikDbWODNxe02clcFiElUgaJ1dl+vg5MY01EwJDQM1anTVi6cAa4pPLbPi458D0l2TL/9R47MVeyH3+cxsPuPCpF5JnASGdKgduOxVsmUbNTgQVVl0hXV4vwOOxRBqnmUhkuwBko6ZBqzRpFOIuVjdr7E5FyIWw9YA4GrXNtBEIcALKk/+Vsq7WRz0SriFW0THHWmUjWRaZNhz3rqNtaBjSO7diS+VF/7IH52KcO7h4UiikOJSkKxSRgzv8cnNf+T8sDDolaZeOvBm3rpugojGM3VMlqiPZibyWGVqSrAKotvzOkHFLn7p+9kRRxb5VW2be6m1qE5uYmm3i0YTMa5RBtoLkIfVOfXqANUDbQrpayx9xdlDmQTVT8YwLsr2EcoKMB/JEFuRUXqIRIIHzqhL0nyejkIpRpcLgTZShJMUyww2ymaoWpovWpcWwmoqxR8YgUiQ+NlKBaJ/qKA6tkrpI18jGRYwJEGnYv8ewOIYhyXMDOUBI4hko7OxN07Ym6JXtSTtrBJanpBSuQ7SrzPKIa3VuZPzutpRzpCIrXYebcAszZ/+UqFO9WKElRKCYLmXKb9GhjC7M2oq8ArE/Ykkjdpc1INpKayzoIl7Qc1aDVUYgvxcEi5BHxGY1bp9VW5CK0KaarwPu22+sIc1fLOJcQKq41dysHrTttc/5PkIShvUXghdmUCZmetxqPUojKG9tT1itlZpaOWXXt4MGRBMVJpiaHWghDukokpK9gW7Fdvp4YkzLpkpIskFjt11y6j9lZ284tviTRBl2TZKQMe62UQ3Q+x9hOpG1pW8JrHdS3N4guBqD7aiUnol8SEiq+LnPGrK9LNmIt/cshuv46d2ola/TYRJQHRKbpPvoLwHASpu+rB/lBUSje3VCSolBMEuZPboCz7vt20rFMld3YYTelOJdOxJgs2rAzXMT23gGVPKQ00F+gTbb1m3IhbL+tt4pmBdmoLQ8UwlSGkY1TpjdLuUD8U8SV1TWURTCgaxFn06BvywebM/T3TjYfe7ObXjuSoGsZyNPm/E4nEbWuMnuoODZTUQ7SBhxtENnIRjlLUbEGc1LRidV5EnPETlY+fcxu5oKRBB3PATujNux8nLAHxACcwlqUmkvX4fo8B4gJSIAJ0ETUdsK83UnvoxC63bF7dkWyYWKqJ+UiBxTvbJQ6bk6ZoPd2LMbdVlXbSYTlZMsfq5O+pVUsK3H0HJgzb6JzqmeJ4iSEkhSF4mAQ4Y6TaIMHwMGWdipBa3Mv4tqJKH37B2jzkaGB21gs5vp2hk7A0LHFkn1H0paPRPAa5RbkSpA2sfEYZQ0qQdrUhczIzJ+JKH2Tl6nNIsYFrD5ChhnyoDj4Dm2oExE6vuhs8mHSqXSWacPPR2jdaIyOIzNkokwcekt2QvJgjq5TuqOkpVhKTbEGCUgDhghHT8m2JIc8ytSEPSpDBQyRsCy3QjcC9D4EDMUmXQVcD8i06Ex8h7p93uy2pZPWwX3n74OcAMCrA3QN8TrFLh+h90FGELjGztkJe/ZnYwfwq1mUIZL3Y3bLOWW+T407eE4jQ7Y2h9fuQ/iMKhQnEJSkKBQHAfOem+kbcCukxbgYsmZvBrRppWpAR8lOQJZv3k03U86WTERpg835QCXD4tggdXTEeO22IM/BMXZAYKxBx82HgfVdpGUQg7Ni2M7tkYGGQR8IMGHx2YVWWnPrrhX4jrOVfz5gyyrSuttfsPNtQi4JOl2fshwTUYpJb9Ha2KeqdiaPCIdl8J20ZO+MW6JUCtlZPt0lIizivLqhg2Lo8pwcIScBQxu+67OtfQs5kfsT8mRYjyLDHxs8E2c4aU31Xuun45eDlhhVXaAQo3XdfE1p9pYBbPdSnu+15tpJ0wbNMlLz85OPNgc5mg995ih8WhWKdz+UpCgUh4uAsRtfIWQ3wq6yNQ6rubRJlkOkA3H4dVIycEBrQj7g+UAlbJ1ihdBIWQawpaJKkDZg0XCYqM1EJNg5FSACIiJZKU0Zx2ZOQtxKLWZxMpxQTMAG8rThZlq8TCQL4DBJ6C/Qj2hKIlx+inEGJxehdekK4IOuJ16n4xbCJMaVzEnEa+mACQLJEt2XCEmn54kUShdQ2LPdP63DBkXzUmJRsFj1y+TmMSYdH9rQ7vpbCVK2qxCmLNBgzhKnwRyVcsStVrI+QUPvxXDCZtMSdYqjuPkyDJbb8k3HEfkUKhQnJJSkKBSHCmkllfZZGYQnpZ8tGdrIQpw5EJt4yaoAtGFLOSdToWOmqmzMxiUdmaqc4PJFOWhdWMW6XjIS4oxb4nlDQqB8B4iyPqUSpCxAlHUgsYY1Zot4dPwIZ0pqLmVF5P7EUVVaeVsJgUB0FVXOJAgZmZEnohFj749SiH6PcIkrH7GakaoLjCbp/AN5nijN5EXKTaJXqbl0nN68vYYtGZtlCXu2+6enRDGOeERotqaBXJ20Ne9hG3zp+hnj0QKS2ZEhhEk2jnON7XiSOUOxhh02+UY3EGVPlNkT6luiUBwClKQoFAcJg+Vw1jxEG+9AnjZ6ma2TC9nBgeKBUeWSSNAnnYmYuRXC1gq/wd0dxqGNvdhCeCINIhUOrwv5QKBB2YhUjX4aAcoYFENWVColIWmFDvrkmVJ3iYiIp0g5ROWLTIXWhjz6M8utzHXuoJEuFums2VdXkszVKYfo3hN1ytCIm26JiZoBXa9ke2TGz+YM/Sl+MSMJil+yxmWpFh2N79A1VjnDJO2+Yvomg/hkHMFYjLI90gItJm6zs+33MH8EOHOUrk/8WsohK56Ve5eyjkxpbplsbRZ8/rA+ZwqFQkmKQnFoKHLqf0eSNvBSyPp0ZCP22/ivB6xFumgT5oxT1kDKAI0AbcjFMGUqxjmjsStOG3LAtAtSpYwyytORww2gHrYW9HPG6XydZdr4yyHbyusFgIZnSYOUT+T5eJ1Iie8QAdvJrcNvdxFxkKF3kkXa2EHXMJAnImVgPUeq3I494VrLfTEmAyhWVde6xW7K0HETvCYXoY0/2NKdIwMMow36u2QyHJAnS7xB8a66dnxAhrNVjiFyUm4ZDDnMgwmfOg1YMEz3IeWwkAd0cKwlc7Ohk+5ROnFE9Mzlvma2JHmUPncKxUkGJSkKxSHAfOA6OM/8iDa+eN3qM8Z5Bk2RNSLv3wKs7Wdywd+yDYhAhHwy8Wr1DZENPMadJF6gfVMPGNow6wEr+sxFWTDq0fG2p+z6CnuNSBtzKWQ1IA5sqafMGQ2nSI8NJ2ldR4WHFrKOo7tE5GFX3Hq9vNNJ99c9RM9Jx5IIg0VULJt/ogZUeU3FJcFvZ4Uej9Ssi21nxQp/K0E6Ty5CWZXRmB0/YECPd1Ts+QdKVgPUCNAxvQCRN8C2T29JU7xiPI8owPb14qsiXjfjUSKR4iYsxASAmfWlo/hJUyhObihJUSgOFZ7Tbt1eDlKppxoks7eEa0Wnac6QJGo0Y0XcaTd00gbaYLFtmQcKVoO2LCH+I55Dj0cb9HuIj1EOAXGZKwSrbcmHabOVUlKUS0sel4xGY3RtNZfWegESi87O8uTiMK0TrcVIgq7FC1A5JBehzMr522m9y74qO5J0Ht+xJKPMmo3+Yrv3SaoKpLZRxqYRsJ1CEc+KUvMRutausj1mMWzvqTUD5Rg76LDOJaCIR263Udb0ZKP0XH+BzjkzR4QnUbdt4zIMMtPaFQTqxJmppEShOFZQkqJQHCLMR66Fs/5/W0fTRB3IO9a4zIA29LN30iYqLbfiKxJtADNylMFwWUPS2aBNdZx1H/0Feo0Mw3ONHVjoGCsAFddY49gNfTxKJEMs2dNVIkfTeDBhpsLlHp6h47LPyPYU+Xnsilv301PHrZB2WwroCNM1tHqNCEJsc5+u2vZgcXmtunQ/Yh7nMYGK1am7Zzxm9SKigRFfGCGFXsCWXKQbSNqIZYLzSKJdN+M5QIDfj44KxTvKIleA3sNiiIcsunQ95WBTb9LmXaJQKI4ZlKQoFIcDB3azlSFyIwkiDzE2+GpErQFZjbUN3TwFeCfb6SNg1yfq7MoaoSxC0KcsQJV9UcLgjTpAGy/Ac3x82oBlQJ+YyIW5Y6ezTMRkONmu9QgYoEOGD7J3yla2iS9zNiEXoXOPxklQWgnS77kIZTcGc+1W8JLBidfZmbdl4GIhTARIJiT3setqnbUrlaDtYjIOHUMmGW9Lsc6katuvI167aDjP9vIi+BXBrg8ib9K63Cr8jTRsOW5XHCZ8F9B/DD4/CoViv1CSolAcDnpKdjMVq/R4nT1KwrQBTyvSxjqSoE1URLB1175e5v1E67atOVmzYlvRjYgYVUzRJDMR8injIcLdTNU60Yqj6TudPFG5aFuDow0iJOJJsqmTNvL3jFKWorNME4+7y9ZLRfQvIlAV19jTxukYkQYQDNB1pHgWTbRhNSQSt6GUbe91o3ZuzpZpVBKrhOhYomsZ53k2AB3LNTYDNZS0ZnPGAcaiRGBKTEgccJnLA0y4fTAgoyl67Tl6HxeFQnFwUJKiUBwGTOZ2OMW/pw083fLt3ncoA9HJ7q8OaOP/TT+JT0fjZEjmGiDFWhTfIUMwyWC0znFpFcrK7BkfdN56wPp2lILWx0PKSz0lq3PZ2EHkoBCmxx1jN/OeEnDeDtKlSNfSaJx0Ir5DZSDp5JG5QakqCV8liyJdP+UgkZ18xPqeNALWo6QUstmWsRiRsaBHWZDOChGnGnfvjLKtvkw0Fs+SmgskOIslGZsKa3nEDj9Zpfv2HJup4dZu9S1RKKY+lKQoFIcLyXbUXBaP8pDBbAR4ZYC1J3naSGdP0CYrXTKA7SIRe30DW/qR2T0+C2dlzmDAAAVuY07WgDq3KdddKgEFWgbsZXkA4JYMkYAZo6xTqVHZRdqCN2eos2UoSedfOETrtqeIwAzk6fU11/qH+A7pOopha2YnhmcAkRhwbHbFiTBIt5K0V0c8O+ywymWkaSUqAUmWSJxjGwHrCSOxH0oC2zNEpsSKH6DskR+1BKoegOn9GjDtKH4WFArFEYWSFIXiMGEyt8PZ+i3aDOtcjimyPf7GDusbkmJvjbBnh9KJJX0hbDUhCNgNXKYVSwlIBLTVIB0vGLKGZsWwtayvMgnJVNgyPkxkZd4u9lZhwzbpogkYq9M4Z4Ss3XfF6bxzdwFrphNJaQQA+ER6phfoHKmabdXdG6TzRmzhpR1ZrO8dQ6UdeFbQurGDxLrJGtBdpcxKbxH4wzTb4pyPUDkq6JNmxWPRcHeZtTtF0pYoFIp3LZSkKBRHAvkwiU+l7OBwK7KYg0XZe2QgT487xuol2G8DLpcwwBkKmWvTUqJoZkhkMGCyRoSnwh1GQdamTCvSui08IGZGjjb5bIt4txwkMjQrS4Qk7AFvdZG2ZFqJiEGdW3TPHSbRqmhuhFCNxknr0lWm4+wL4pUykLei2Sjb4/sOHVfIXLpqxa6uofuSjqFchMo5AL0+Ubc+KmEPCBoY9685nkfjjVYoFMcSSlIUiiMAc9ZNcF75AWUWYg0gyeQj6APxGmlNJFviO+RFUg7aFlohNdEG6UrEnr7OG3eQMykAt9yy8LPV0l5m2MyeoM1cykpDKS6h8GRicbkthaztfCFMWYrBHPBGDw3b6yrT/UzwNcYaRFp2xa3bapTLUq4Bhj3KaOwNkQZNMJa26zd66HdJwIhFfsgHAiFLSHqL5HY7Z4zKWwFDWZkMG71tTcOc+7/seVT0qlCcUFCSolAcKSQ4q5FnUWqYbfJDHpUmIg0qR4R8YFMHbcwzc0QCZFKww3N/JMMi045lenGNZ+GUQGsk2xBt2LZiWe871JnTX6BjjsWItJRZJOsaEqnWXGD6GL1+R5KyLKNx+nMkQeUcEev2F+jaS9wp01km0jIRpfPKfKF0td20Lcmzf0ohtuoPAvW4HTooXjAicpVSjstC4gCItAR9mPd97pi9pQqF4vhCSYpCcYRg5t0IZ/vfAwkuP0xEqQRSDllhrIH19fAcu7nL7B8pBbk+61Ng9SMAHVfKRIWw9R4ZjVOXjghTu8pUXkpXbYYFoNeJDqV1iN8Qd/P0lGyWZVqRiJdY5tddIjGxuhW8jnLpphwEwiEiQg6orDRn3F4/QASnEKbf/8c2IkD5iB1+WHNJO7Opg9Y0WJuTqsJE7gTmHOU3UKFQTDkoSVEojiDMwFcAAM7ofbSxZ2Wujk8ZFgDoG6eMirjH+g61F7usUxFxre9YP5WKC0Q9EoV63JJcDVL7bcDQ6/Nhah+OsPV7jq3eQ0yKpLwj1zWtSKQp7FlSIwMMU2x/73J5qBq0AxTFiTVZo44g6cLJR6hkk41y6zB36ZwyYY3SRAsTa1BGxQvYgYyiwzl3B8y8G4/L+6dQKKYWlKQoFEcDhTBlDiSLkovQBuwaIhm5iPU/aW2tlem9Iwn6U0pGqRodMxchMzbXMAHh7phshLIyAUPZjOEkaT/SdSIj0mI8vUCk5/QxO3xQJg6LX4rr81BBcFsx2IQOtE6GHI6xNmRzhkhShK91ep5i4Ds02XhTBvjI2zY2MTaQ66jQ/SbqwLYUzIXXH/v3SaFQTGkoSVEojgZc7lZJ1mgjnpGnP/sLVDKpcBYkVm/pZPFt5iPLZSDfodeVg0RUxHE1FwESns1CRBuk+diWJqv9RI2IhhCZ9UwKZLJxhWfVyPC8VI3IxUSUsjyZCpGncqg5WA+uobJMrE7twTsT7LuSJ7IV8ei6wh55q/QViGxlqsDTp1FWZVaWtCaDOTJTS3K8Zh6H90ihUEx5KElRKI4CzOCX4fh3t09JHotRZ0ohzG6ysEMDkzXb+VNiH5EAu8iGufvHc4AtHVTykYyJTPqtuUQotqXI12Q4QSRkJzvGnjbePp3YgPQnYzHKbNRcEtmmq0C8YbMrLnu1xHiWTl+B7mEoZScOJ9kULmDsYEOx7U9XiTyxb4zpvO04vBsKheLdCiUpCsXRgohNG2xbLxt7nIWnKZ4KHGChbD5sfVBc3xIKmY8j2hEpBcn0YAe0fjhJ5ZzRGPmRBPicYkffWSHy4nu2dOM71twtU6Xry4d5fZnIihCOaVzOAeyAwXidrqERAPI8h0emP1ddmP959XF8AxQKxbsdSlIUiqMEk/w6nFcfJjLigLIJMt8nWSMSk6oRAdnUQWRkMGfLLx6bt00rEfGQzEa0wVOP2bvk9R46RyFMJCZdJcKxI0ktx2Lg1lukCxtKWn2McayjrRck/5WaS+esunSssEcZmrpr7ehDHpWUAobM3Hx2e03WYD72qeMUcYVCcaJBSYpCcTSRD7P1PbfhVoNESsQDpcKDBKMN0oo4sG3AIc6klPmfqTizBn3bMeRwRsZ3SH8yEW2fc9NqV5+NEjHqKtuJza4h8lTkDIjPmpWaa91r85xxEYO4ubuA308DTp0g8jI7C3Pqrcc4sAqF4mSAkhSF4ijCLP4snKd/ROTD4xk7mYolKGXWn2QqRDzCHpESMWMDLIHwAoDLrbzSojySpBbf4SRQ43bkjgoJaH0HcNkjxWUNS6JG1wKfHh9nUjON9SldZSI9pRCdL1OldZsylP3pKANb0jCLP0vXMftYR1ShUJxMUJKiUBxtSJZEHFjDbNo2m2fmdJWBXSyClUF/YoPvBUhcaxxaZ2A7hsJsDjcRZf+TMDBBJZemW2uAvVgMiHxko0SIAqAMinGoxOTATlze1EFW/tMLRFZmT8DM/uJxCp5CoTiZoSRFoTja6KhQpsJziAyMsw3+WIyIA0BaEBlOWOWOHSkT+Y4V0Ia4BXiCyUZvkTIt+TCVaObuou6bugvEK0RSHBA56eRZPLmILfeEPSJCBqSDGY3ROSdiMGfdBHQcn5ApFAoFoCRFoTjqMPO/AOcP3yMy0MH+I9PZQ6Tq0p89JZ7dAyIzVZeGEjYCVmgr83/AQwerQSrz9BfomNvS5E9Sc8mSvsyv25rmmToJWhdr8NRjFtvKPKBiCGbh0uMZKoVCoWiDkhSF4lgg4gF1Q2Shu0QdNuIxEvGIlPg8YDBkgFqINCYuC2VzTFBCPnXrAFY7MhajjElPiYjM/BHgjW4rnvUCwPu2s4EbkxJubzbzv3B846JQKBT7gZIUheJYIMDGZz0lyl6EfCrBiANsigcB5iNUeok1LHGRGT5S/hnIU9tv3aW1mYrNlqSqpDU5c5QcZPMRakU2TrPkY7rUUE2hULw7oCRFoTgWmJklwlB3bUuv79j23+4SZVSSNcqY5CNEPiai1iK/q0wEp9EgF9l3OonMOLDD+qR7p7sEbOyAOf9zwKl8DanjdO8KhUJxiAgczotXrFgBx3HwxS9+cZ9rXnzxRbz//e9Hd3c3YrEY5s6diwceeKBtzQ9+8AN84AMfQGdnJzo7O3HppZfiv//7v9vWfP/738eCBQuQTqeRTqdx0UUX4b/+678O5/IVimOHoE8EZChJ5ZpcS4YjzDNvJqJWKNsI0PpZWWoxzlRIYyJmcHU2Z5MuoFiD/jQOzDmfhxn4ChEUhUKheBfjkDMpr7zyCh5++GEsWLBgv+sSiQRuuukmLFiwAIlEAi+++CKWLl2KRCKBz32O/hN97rnncPXVV+Piiy9GNBrFfffdh4985CP4/e9/jxkzZgAABgcHce+99+L0008HAPzjP/4jrrzySqxduxZnn332od6GQnHssDNOnTeRBpVidsWJWJSDlC3pLtH8nHk7iaD8to/KQ2GPxLE7E/Taepw9U3wq9wQMzDmfP953p1AoFEccjjHGHHhZOwqFAhYuXIgHH3wQ99xzD8477zx8+9vfnvTrr7rqKiQSCfz4xz/e6/Oe56GzsxPf/e538elPf3qfx+nq6sI3v/lN/OVf/uWkzpvL5ZDJZJDNZpFOpyd9vQrFkYDz8v+lX+rc5ROv29JPokYZkkKYxLDn7aDfpbMnU6XXZUgsa1J3HN+bUSgUikPEwezFh1TuufHGG3HFFVfg0ksvPejXrl27FqtWrcKiRYv2uaZUKqFer6Orq2uvz3ueh8ceewzFYhEXXXTRPo9TrVaRy+XafhSK44qgTwQl7PGMnqqd4zMRJcKSjVI7cdCnluLf9sGk7oDpug3G/WslKAqF4qTBQZd7HnvsMaxZswavvPLKQb1ucHAQO3fuRKPRwPLly3H99dfvc+3tt9+OGTNm7EGC1q1bh4suugiVSgXJZBIrV67EvHnz9nmcFStW4O677z6o61QojhbMBdfD+eUj1NEj04QbAfo90gBSDpWAMhVaP/hlYPA4XrBCoVAcZxwUSdmyZQtuvfVW/PznP0c0Gj2oE73wwgsoFAp46aWXcPvtt+P000/H1VfvOcb9vvvuw6OPPornnntuj3OceeaZeO211zAxMYHHH38cn/nMZ/D888/vk6jccccd+PKXv9z8ey6Xw8yZMw/quhWKI4rOCs/saRkaaHhGj+vDXHbt8bs2hUKhmGI4KE3KE088gT/90z+F67rNxzzPg+M4CAQCqFarbc/tC/fccw9+/OMf44033mh7/P7778c999yDp59+Gueff/4Bj3PppZdizpw5eOihhyZ1/apJUUwFOK8+TGWeiKczcRQKxUmHg9mLDyqTcskll2DdunVtj1133XWYO3cubrvttkkRFAAwxqBarbY99s1vfhP33HMPfvazn02KoOzrOArFVId5n7YGKxQKxWRwUCQllUph/vz5bY8lEgl0d3c3H7/jjjuwbds2/OhHPwIAfO9738OsWbMwd+5cAOSbcv/99+Pmm29uHuO+++7DXXfdhX/5l3/BKaecgh07dgAAkskkkskkAODrX/86lixZgpkzZyKfz+Oxxx7Dc889hyeffHLS1y9JIxXQKhQKhUJxfCB78GQKOUfccXZoaAibN29u/t33fdxxxx3YsGEDgsEg5syZg3vvvRdLl9pBZg8++CBqtRr+7M/+rO1Yy5Ytw/LlywEAw8PDuPbaazE0NIRMJoMFCxbgySefxGWXXTbpa8vn8wCguhSFQqFQKI4z8vk8MpnMftcckk/KuxW+72P79u1IpVJwHOeon0+Eulu2bFENzGFA43hkoHE8MtA4HhloHI8c3m2xNMYgn89jYGAAgcD+nVBOqtk9gUAAg4PHvqdTrPwVhweN45GBxvHIQON4ZKBxPHJ4N8XyQBkUwWHN7lEoFAqFQqE4WlCSolAoFAqFYkpCScpRRCQSwbJlyxCJRI73pbyroXE8MtA4HhloHI8MNI5HDidyLE8q4axCoVAoFIp3DzSTolAoFAqFYkpCSYpCoVAoFIopCSUpCoVCoVAopiSUpCgUCoVCoZiSOKlJyimnnALHcfb4ufHGG/dYu3TpUjiOg29/+9ttjz/88MNYvHgx0uk0HMfBxMTEHq8dHx/Htddei0wmg0wmg2uvvXaPdZs3b8bHP/5xJBIJ9PT04JZbbkGtVmtbs27dOixatAixWAwzZszA3/zN30xq9sHRxuHGcWxsDDfffDPOPPNMxONxzJo1C7fccguy2WzbazWOFvv6PC5duhRz5sxBLBbDtGnTcOWVV+L1119vW6NxtNhXHAXGGCxZsgSO4+CJJ55oe07jaLGvOC5evHiP13/yk59sW6NxtNjf53H16tX48Ic/jEQigY6ODixevBjlcrn5/AkbR3MSY2RkxAwNDTV/nnrqKQPAPPvss23rVq5cac4991wzMDBgHnjggbbnHnjgAbNixQqzYsUKA8CMj4/vcZ7LL7/czJ8/36xatcqsWrXKzJ8/33zsYx9rPt9oNMz8+fPNhz70IbNmzRrz1FNPmYGBAXPTTTc112SzWdPX12c++clPmnXr1pnHH3/cpFIpc//99x/JkBwSDjeO69atM1dddZX56U9/atavX2+eeeYZc8YZZ5hPfOITba/XOBL293l86KGHzPPPP282bNhgXn31VfPxj3/czJw50zQajeYajSNhf3EUfOtb3zJLliwxAMzKlSvbntM4EvYXx0WLFpkbbrih7TgTExNtazSOhP3FcdWqVSadTpsVK1aY3/3ud+bNN980P/nJT0ylUmmuOVHjeFKTlN1x6623mjlz5hjf95uPbd261cyYMcP87ne/M7Nnz97nf2bPPvvsXknKH/7wBwPAvPTSS83HVq9ebQCY119/3RhjzH/+53+aQCBgtm3b1lzz6KOPmkgkYrLZrDHGmAcffNBkMpm2D+WKFSvMwMBA2/VOBRxOHAX/+q//asLhsKnX68YYjaPgYOP4m9/8xgAw69evN8ZoHAWTieNrr71mBgcHzdDQ0B4kReNIOFAcFy1aZG699dZ9HlPjSDhQHC+44AJz55137vOYJ3IcT+pyTytqtRr+6Z/+CX/xF3/RHD7o+z6uvfZafO1rX8PZZ599SMddvXo1MpkMLrjgguZjF154ITKZDFatWtVcM3/+fAwMDDTXfPSjH0W1WsWrr77aXLNo0aI2s56PfvSj2L59OzZu3HhI13Y0cKTimM1mkU6nEQzSeCmN48HHsVgs4pFHHsGpp57anPytcZxcHEulEq6++mp897vfRX9//x7Paxwn/3n853/+Z/T09ODss8/GV7/61eY0ekDjCBw4jiMjI3j55ZfR29uLiy++GH19fVi0aBFefPHF5poTOY5KUhhPPPEEJiYm8NnPfrb52De+8Q0Eg0Hccssth3zcHTt2oLe3d4/He3t7sWPHjuaavr6+tuc7OzsRDof3u0b+LmumAo5EHEdHR/G3f/u3WLp0afMxjePk4/jggw8imUwimUziySefxFNPPYVwOAxA4whMLo5f+tKXcPHFF+PKK6/c6/Max8nF8ZprrsGjjz6K5557DnfddRcef/xxXHXVVc3nNY4HjuM777wDAFi+fDluuOEGPPnkk1i4cCEuueQSvPXWWwBO7DieVFOQ94cf/vCHWLJkSZNlvvrqq/jOd76DNWvWNBnvoWJvrzfGtD1+KGsMi5kO9/qOJA43jrlcDldccQXmzZuHZcuWtT2ncZxcHK+55hpcdtllGBoawv33348///M/x69+9StEo1EAGscDxfGnP/0pfvGLX2Dt2rX7PbbG8cCfxxtuuKH5+/z583HGGWfg/PPPx5o1a7Bw4UIAGscDxdH3fQAkqr3uuusAAO9973vxzDPP4B/+4R+wYsUKACduHDWTAmDTpk14+umncf311zcfe+GFFzAyMoJZs2YhGAwiGAxi06ZN+MpXvoJTTjll0sfu7+/H8PDwHo/v3LmzyVD7+/v3YKnj4+Oo1+v7XTMyMgIAezDf44XDjWM+n8fll1+OZDKJlStXIhQKNZ/TOE4+jplMBmeccQY++MEP4t/+7d/w+uuvY+XKlQA0jpOJ4y9+8Qu8/fbb6OjoaK4BgE984hNYvHgxAI3jof7/uHDhQoRCoWYGQON44DhOnz4dADBv3ry245111lnYvHkzgBM8jsdaBDMVsWzZMtPf398UaRpjzK5du8y6devafgYGBsxtt93WFCK14kDC2Zdffrn52EsvvbRXQdP27dubax577LE9BE0dHR2mWq0219x7771TShh2OHHMZrPmwgsvNIsWLTLFYnGPY2scD+7zKKhWqyYWi5lHHnnEGKNxnEwch4aG9lgDwHznO98x77zzjjFG43ion0eJ5fPPP2+M0ThOJo6+75uBgYE9hLPnnXeeueOOO4wxJ3YcT3qS4nmemTVrlrntttsOuHZvquuhoSGzdu1a84Mf/MAAML/85S/N2rVrzejoaHPN5ZdfbhYsWGBWr15tVq9ebc4555y9toZdcsklZs2aNebpp582g4ODba1hExMTpq+vz1x99dVm3bp15t///d9NOp2eEi12xhxeHHO5nLngggvMOeecY9avX9/Wrrd766zG0WL3OL799tvm7/7u78yvf/1rs2nTJrNq1Spz5ZVXmq6uLjM8PNxcp3Fsx2S6pLCPFmSNo8XucVy/fr25++67zSuvvGI2bNhg/uM//sPMnTvXvPe979V/1/vB3j6PDzzwgEmn0+YnP/mJeeutt8ydd95potFos2vPmBM3jic9SfnZz35mAJg33njjgGv39uFZtmyZAbDHj3xzNcaY0dFRc80115hUKmVSqZS55ppr9si4bNq0yVxxxRUmFouZrq4uc9NNN7W1gRljzG9/+1vzgQ98wEQiEdPf32+WL18+Zb4lHE4cJQu1t58NGzY012kc27F7HLdt22aWLFlient7TSgUMoODg+ZTn/rUHt9sNY7tOFSSonFsx+5x3Lx5s/ngBz9ourq6TDgcNnPmzDG33HJL2xc4YzSOu2Nfn8cVK1aYwcFBE4/HzUUXXWReeOGFtudP1Dg6xkwBSz6FQqFQKBSK3aDCWYVCoVAoFFMSSlIUCoVCoVBMSShJUSgUCoVCMSWhJEWhUCgUCsWUhJIUhUKhUCgUUxJKUhQKhUKhUExJKElRKBQKhUIxJaEkRaFQKBQKxZSEkhSFQqFQKBRTEkpSFAqFQqFQTEkoSVEoFAqFQjEloSRFoVAoFArFlMT/B/e6HwLziFaoAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGsCAYAAAAYBjfoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZhlZ3UdjK8z3XmosedRQkJCMwgwYBkDghgTf3Zs7JgvDlgOBjuAwY4To/ziWPjTA46QDYkF2AiMETYmnxObxP6SQLCtgBCDEJMkhMZWz0PNt+58pt8fa+/at1rVrW7RUk/vep5+qurWuee855zbtdfZe+21vTzPczg4ODg4ODg4nGHwT/cCHBwcHBwcHBzWgiMpDg4ODg4ODmckHElxcHBwcHBwOCPhSIqDg4ODg4PDGQlHUhwcHBwcHBzOSDiS4uDg4ODg4HBGwpEUBwcHBwcHhzMSjqQ4ODg4ODg4nJFwJMXBwcHBwcHhjIQjKQ4ODg4ODg5nJM5LkvLFL34RP/ETP4FNmzbB8zx89rOfPel95HmOW2+9FRdffDGKxSK2bt2K9773vad+sQ4ODg4ODucpwtO9gNOBTqeDq666CjfccAN+5md+5mnt453vfCc+//nP49Zbb8UVV1yBpaUlzM7OnuKVOjg4ODg4nL/wzvcBg57n4a//+q/xUz/1UyuvDYdD/Lt/9+/w53/+51hcXMTll1+O//Af/gN+9Ed/FADw4IMP4sorr8T999+P5z73uadn4Q4ODg4ODuc4zstyz1PhhhtuwJe//GV85jOfwXe/+1387M/+LH7sx34MjzzyCADgb/7mb3DBBRfgb//2b7Fz507s2LEDb37zmzE/P3+aV+7g4ODg4HDuwJGUo/DYY4/hL/7iL/CXf/mXuO6663DhhRfiN3/zN/HDP/zD+MQnPgEAePzxx7F792785V/+Je644w786Z/+Ke699168/vWvP82rd3BwcHBwOHdwXmpSjodvfvObyPMcF1988arXB4MBJicnAQBZlmEwGOCOO+5Y2e7jH/84XvCCF+Chhx5yJSAHBwcHB4dTAEdSjkKWZQiCAPfeey+CIFj1u1qtBgDYuHEjwjBcRWQuvfRSAMCePXscSXFwcHBwcDgFcCTlKFxzzTVI0xRHjhzBddddt+Y2L3vZy5AkCR577DFceOGFAICHH34YALB9+/Znba0ODg4ODg7nMs7L7p52u41HH30UAEnJH/zBH+AVr3gFJiYmsG3bNvzCL/wCvvzlL+P3f//3cc0112B2dhZ///d/jyuuuAI//uM/jizL8MIXvhC1Wg0f/OAHkWUZ3va2t6HRaODzn//8aT47BwcHBweHcwPnJUm588478YpXvOJJr7/pTW/Cn/7pnyKOY9x888244447sH//fkxOTuIlL3kJ3vOe9+CKK64AABw4cADveMc78PnPfx7VahWvfe1r8fu///uYmJh4tk/HwcHBwcHhnMR5SVIcHBwcHBwczny4FmQHBwcHBweHMxKOpDg4ODg4ODickTivunuyLMOBAwdQr9fhed7pXo6Dg4ODg8N5hzzPsby8jE2bNsH3j58rOa9IyoEDB7B169bTvQwHBwcHB4fzHnv37sWWLVuOu815RVLq9ToAXphGo3GaV+Pg4ODg4HD+odVqYevWrSsx+Xg4r0iKlngajQYajQa8u/4E+Q//0mlelYODg4ODw/mHE5FdnN/C2SiD942PwvvWH5/ulTg4ODg4ODgchfOapOQvfjPQKQCdCN7//tTpXo6Dg4ODg4PDCM5rkgIAiH1gGAD1Abx/+CS8//Hnp3tFDg4ODg4ODnAkBfn1bwS6EZD4QA4gzOB9/lPwPvdnp3tpDg4ODg4O5zXOe5ICAKjEwGIJaBWBQQhkHhD78P6XIyoODg4ODg6nC46kAMhf+SYgyAAPzKZkojjuh/Du/FNXAnJwcHBwcDgNcCRFEWVAlAK5B/g5/1Vj/q6cwPvbT7vMioODg4ODw7MIR1IE+fVvBAopUI4ppAVIWuKAX8sJUErg/e9Pwfu7O07vYh0cHBwcHM4DnFdmbk8JD0DqAcWUmZQ4sK+KMAOCjC3LYYb8FW86bct1cHBwcHA4l+EyKUcj9YEM1KYMAv7Lwe6f1AfWt4FSwoxLDnh3/clpXrCDg4ODg8O5CUdSRpC/6o3s9Cmm1KhUY2ZSco9EJciAI1VmUwYhUB8CU114d/0JvDv/9HQv38HBwcHB4ZyCK/ccjdoQWC4ClSHLP6WEWRQACHL+3I2oU/Fz81jxAO/ujwNRhvyFv3xaT8HBwcHBweFcgMukHIX8Rb/MUk4cUEAbZsyuTHeAjcskKRvbzK4MAxKZSswsSyEFxnvwvvHR030aDg4ODg4OZz0cSVkLiyXa5Xs5NSl+zmxJL+JrtSGwaRkY75Gc5B5fm+ixTDTWh3fP7U6v4uDg4ODg8APAlXvWQiGlSDbP2O3Tifh64jOTMtnjV4D6lWoMtAskKWN9YF+DWZfMg/fQbcAwQH7Fr56+83FwcHBwcDgL4TIpayC//o0kITmYISmkwGSXGZNBCDwxxgzLUpHEpSO6lMM14ECdO0n9lfIPxvrwvvchVwZycHBwcHA4CTiScjx4IPnIPF6psb6ZvQ0DE9EeqQLLBZKWg3W+Nlvhv71NkphiCkx34T3yh6f7rBwcHBwcHM4KOJJyDOTX3WA6lKUSMFOhHiXIgWafWZKlkpm/DQO+NgyYTck8vr8bsVvoYA04VKO3yv0fhnf/h0/3KTo4ODg4OJzRcCTleAhlng/AMk+7wO9LCdApAMWEBGQY0DZ/sURiMtYHeiG/j6Uc5OckNJppWS7C+9In4H3rj0/f+Tk4ODg4OJzBcCTlOMivu8EGD2YeSUs3AlpFEpV2AVjXBuoDalQmesC6DglNMSVJaQyA5oAalV5EYpN7zMpMdoENbXhf+Ti8r33sdJ+ug4ODg4PDGQVHUp4KsU+S0ewzY5L4LPlUhxTV1mJ+DTP+frFEwS0gWpac4tmpDrCpRU8V3c/hGvDYON+7XID3TZdVcXBwcHBwULgW5KdCJSZJ6UZW5jlYI8kIM2DO5zb1IUlJIbXOn4JkYHIhKwE9VLClBTw+ztcKYsFfSoADdXhLnwSKCfKX/ovTfeYODg4ODg6nFS6T8hTIn/9W6ks2t0gq/JxEY7EkHT0ldvcUUmpO1PxtrM9/ALftiAB31zjw0BTLQfUhszKJEJ2JHo+1XIT33Y+4EpCDg4ODw3kNR1JOBFNdYL5M8tHoUyQ70SMxqQ+YLck8vu5LB9AwABbKUh7KmC1pDFgKUm1LKoMLO5FpXmpDbj9TBVIP3r4/cGUgBwcHB4fzEo6knADyDb/JbEg/JPFIPRs8WEhZDirHRjQ8EaXkoNeKL6SlkADbloD1bWpdtGMoDkhaPHBGUCUm+YkDloVSH97Df+gyKw4ODg4O5xUcSTlRFEVfEuTMmAAs13QKJCWaGRkG3E7FtOXYtp+t0jK/HzIT4+VWQgKYrVkqGbGZ7FK/koMeK/0Q3u4PnoaTd3BwcHBwePbhSMoJIr/iV5lF6YcUxQIs08Ri2JYLgSmk3GYQkpwMA24z1eF7woxdPf2Q2w9CZk5qQ+peEt9KQup2O90FLp3ldnsb8L5/G7wHbztt18LBwcHBweHZgOvuORmUEnqmFFNgQ5tEIwf1Jn5OEjFT4ffaflxO2K6cw8o/YcavSkZin4Lb8T5/bhV5jECICjL+vtnnMR5YBxQTeMlHgNRDfvWvnMaL4uDg4ODg8MzAZVJOAvl1NzBjMgxYmpnsMgNSHfK1VhHY2Oa/sR71JUFGPUurRIIRZNYJFGT8VxuaI20/5O9jn68VU+pWDtStlDTdYbnoEFuhvW98lNOWHRwcHBwcziH8QCTlfe97HzzPw7ve9a5jbnPXXXfhZS97GSYnJ1Eul3HJJZfgAx/4wKptbr/9dlx33XUYHx/H+Pg4rr/+enz9619ftc2OHTvged6T/r3tbW/7QU7h5KHdOPvrJA6DkOSkNiCp6IUUvU70rfwT5MzCZB6zLplHB9qBlHy6EV9vF5h5qQ/582yF+14qyVRmsdUvJdzvdIfvGQYAAO9eN2XZwcHBweHcwdMu99xzzz346Ec/iiuvvPK421WrVbz97W/HlVdeiWq1irvuugtvfetbUa1W8Za3vAUAcOedd+INb3gDXvrSl6JUKuGWW27Ba17zGjzwwAPYvHnzyvHSNF3Z7/33349Xv/rV+Nmf/dmnewpPD+M9YLFMXUpTiEmzz06ccsxtDtSZPSlLB5B292hHUJhZKWeiRxIyVyZh8XPA80hgprrcZrzH9mU/Z9kn87j/1Oc+SwnLTKUE3n0fAWKf/i4ODg4ODg5nMbw8z/On3mw12u02nv/85+PDH/4wbr75Zlx99dX44Ac/eMLv/+mf/mlUq1V86lOfWvP3aZpifHwct912G974xjeuuc273vUu/O3f/i0eeeQReJ53QsdttVpoNptYWlpCo9E44fUeDe+rHyOJWNcGSikzK/2QJKI74nmi+pPaAOjL3B61zy+mLBPNl7n9IKTepRexjNQq8v36nm7E7EnumfdKHDBzo91EhZT7yTxg2xLy9b/5tM/RwcHBwcHhmcDJxOKnVe5529vehte97nW4/vrrT/q93/rWt3D33Xfj5S9/+TG36Xa7iOMYExMTa/5+OBziz/7sz/BLv/RLxyUog8EArVZr1b9TgoKIWsOc5Ra1tU9kzs/mZf7bIMMHl4t0ny2KBX41tunK9SG7dxoDCmej1BxsyzFJSTElYRmEbFvO5fueZFu0PBRk/LkcA4+Nw3v0P8G7/8On5pwdHBwcHByeZZx0ueczn/kMvvnNb+Kee+45qfdt2bIFMzMzSJIEN910E9785jcfc9t3v/vd2Lx58zFJ0Gc/+1ksLi7iF3/xF497zPe97314z3vec1LrPBHkz38rvIf/kBmLSmyZjeaA5CLxrX24kALbl0gsJnvMugxCM2tLE37dvkjjtu1LwOEqszLtAklKIbXuoXaBRCb1SV7UBG4Y8HcLssjUp7A2DlgCmu7QlM7BwcHBweEswUmRlL179+Kd73wnPv/5z6NUKp3Ugb70pS+h3W7jq1/9Kt797nfjOc95Dt7whjc8abtbbrkFf/EXf4E777zzmMf4+Mc/jte+9rXYtGnTcY9544034jd+4zdWfm61Wti6detJrfuYWCwxA9IPmI+KAyMLtSEzIx0hEPsafP1wje/TDp/6gESjEjMT87wZ7nsQmPdKIaVeRU3f1rdJclLfuooaA7Ht99kVVBtK6zL4fScC4jq8Q38EjPeRb3/XqbkGDg4ODg4OzyBOSpPy2c9+Fv/kn/wTBEGw8lqapvA8D77vYzAYrPrdsXDzzTfjU5/6FB566KFVr9966624+eab8YUvfAHXXnvtmu/dvXs3LrjgAvzVX/0VfvInf/JElw7g1GlSFN7dH7dsSe6xhXisbxqRXkjy0ikwkzLVJfnwxcQtB0tCY30SjX0Nimc3LjMLoqWk5QKJTUU7hFJ2/hQTim4nesCc/DwISXj0dzlYXpro8T05gOYA+YW/9gOfv4ODg4ODw8niZGLxSWVSXvWqV+G+++5b9doNN9yASy65BL/1W791QgQFAPI8x2AwWPXa+9//ftx888343Oc+d0yCAgCf+MQnsG7dOrzuda87maU/M+iLSBWwzhzVjexpUmOi9vYqmG0MzOhtEHKQYKtoDrO+aE5UCLtYWj11WTuDJnoyDygloakNSWp2LrJstLPLnzPxY+mIcHeiR3v9h/8QSHzkz3uWW7gdHBwcHBxOECdFUur1Oi6//PJVr1WrVUxOTq68fuONN2L//v244447AAAf+tCHsG3bNlxyySUA6Jty66234h3veMfKPm655Rb89m//Nj796U9jx44dOHToEACgVquhVqutbJdlGT7xiU/gTW96E8Lw9Jvl5q98E7x/+CQzFx5IBnKZhhyKC20vIgmZ7JF8HKmyTJR7ZqnfADMmPbHSbxf4urYX72+Q3IgfCnoR25JHSU9tyKzNTIWZllYRuHiOJaZ2ARiKpuVIlULbcgI8MQbv7z8JjPVdy7KDg4ODwxmHUx7pDx48iD179qz8nGUZbrzxRuzatQthGOLCCy/E7/3e7+Gtb7Wg+OEPfxjD4RCvf/3rV+3rd37nd3DTTTet/PyFL3wBe/bswS/90i+d6mU/fUTSsdOJgCKY2ehG/F1tCMyHLLfsrwPrOvx+pkJSE4t+pTZkKehAna9pW3JjwOyKtipHKbMpY30SFRXuAkaSOgUSm0EIfH/KhhUWpb25mAALJa5jfZtrbRfgffuPnL2+g4ODg8MZhaflk3K24lRrUgDQjr6UkDx0I7O1zzxmO+LAMh6Jz7LN+g637UY2XLAXkmAUE+4j9fl9NebvtMU5Dkg6qkNmYnSIYSFlq3PskzQtlmgyl3skONWhebOM9YFHJ0TcW6CAN/O47yADUh/5VY6wODg4ODicejzjPikOhvy5b2eGo5xY2aU25PcHGiQBmYhquxHLPnOSKck8m/kTC9EY6/O1SmxeKR4oeu2H/F0vpA5lrsJFqLV+6pHMVGIKcqOUephmn9up4RzANS6V2EnUKnL9Xr6ii/Ee/4+n5Xo6ODg4ODgoHEk5FUgk63HBAks6UcbXy7FlNpoDKwsNA36txJY5qQ35nsxj9kQnKM9WSCSUBPk5ic5YnyJY9U2JMnOjHQQkLD74exXlFkSr0inwWOvbJDj9UFqYcxMDtwvwvvNH8B50gwsdHBwcHE4PXLnnFME7fCvLO4UUWCibadtiyTxTADNo8+Sy6wDCVPQlWs7xcrPJ1wzLIGQWRucAre9whlAm05PH+yQovchs9KOUpEQnL9eG/H0sc4N6EUs83YguuYerXA+wUvrR7Ev+grec0mvm4ODg4HD+wZV7Tgd2N4G9TX4/3gO2tIAL5/l1EJBEBLnY4He4XerzdS3phBlQEg2KByMo7QKnH7cLJDKNAX9/UDqf/JzHWSqSAOUQR1uf7wGoRdFj1kf0MXpsgKSkGvM1PyfpCTKSm+UCvK9+DN7XPvasXE4HBwcHBwdHUk4R8hf9MknD96bpkTJXYYZjocQsRVHIxuLIz0HGMk4cWGYl9UkUFkvMmHQjEcz6/HmxxJJNL+Tr7YKJZ6tDc7EtJdyftjHHgelgFkv288oJeGxXzjwjR35uzrVl2V/qwXvsPz17F9bBwcHB4bzF6TcbOZfQLpi+pJQwsxHk1IuoSDbI2IVTFbM2LeUslEgIytIiPAj4s5KX3AMG4OuDUBxopf1YW5obfSvPzJfZ1jwQMtOTrqMcPN5ygWQmVuGukJEg4/cFKSHlHtea+Pw+SoGDNXizHwMyD/lL/sVpuNAODg4ODucDXCblVCLISQT6IbMRiyVqSFS4OiqOXSxxGxWr5tKZM5TBhKWE26dyi1Rku65DkqGDDYdCZlKPWhglI3U5Vpix/ATwGMtFbldJSFhin4SllDALE2YkPDlkeGFuRCfMSGqaA3YPeTm8r9/OAYYODg4ODg6nGI6knELkr/7nUsbJLeMB8PtiQkKSiWbEg2QnQCJQH0h7coWv6zyfSkwSs1wgqanEbCtWIjLZM/FtlPGYhZT7nC+TaDQH3DbMuF8V5ebSLTTVtZNYKNsE50iGH5ZjvjeV1zJqVFYyQcUE3jf/GN73PnQarrqDg4ODw7kKR1JONboRA3ljwNJJbchySSY2+Klv5ECzKJ2CZS2G0p2T+CzjAMxy6Hu0hXisT3KhxCfMTBw7WzEhrs7/CTL+XExIZjRDE2Y2bRng/nRgorY1q65loifEqMuvSo5GtC7eP3zyWb/kDg4ODg7nJhxJOcXIX/EmM0zTwJ/6JA1qpubnlqVIfSuxzFasg+dI1dxqw4zZjEpM4qDk5nDVhgjGPsmLZkkG0sqsJnLDwMpQOSwjo+3PQxHSlmMSkuqQr2feiP9KSOIUB9xua4ukR0W6opHx/ven4H3rj5/tS+/g4ODgcI7BCWefCRTTEbIQmsYj80gKPHGIrQ+ZnVgskYj0Q763KX4nmqUAjNj0Q34NcmZTAJKDdoHb1If0ZAnFUE4JhgeWlAAT3i6WOOww9fhap8DMTzExbU0hsTUkklXJwTlD9SH3P9Hj+/WYgxA4UoX3xU8AwwD59W98dq67g4ODg8M5BZdJeSYQ+9SBKEE5UmXA39oiOViS9mJ1ni0mFLeWYysN1WXGzpaWaVNGW4aXCyQmatwGkIzMVvjaQLI2xcR0JMPAjOZmpZS0v25Tm7XcpK3POkNoEFiZCjDPFxXl7mvwOIAQpQGwucVzGO87rYqDg4ODw9OCIynPAPJr30IS0I3YhlxIrQNnssdsxVhfbPMDdux0I3beNAf8nQpchz6DfTXm78qx2eMXUzOKU9+TgZAMT7IwxdT0J6pNUYv8vkxobhdIhOoytFDJyDDgfuOAr+vsIMDM4A7VbDhh6nGNhdTKUgXONfIe+UNnBOfg4ODgcFJw5Z5nCo2BZSti3wSsqc/Mhi9ZC53JE4rvySBgliSUAD8MgEWxsd+0zPetEBFYiSX1gFyOUx0CJTnesuhUGgNbRyREJRLflFQ8UVpFblcQoa4OSqzEtnaAmSAvZ3kozEh8CimFvOqWWx2SeOn8Ihma6H3l44CfI3/xm0/DTXFwcHBwOJvgMinPEPKL3sHgP+rculQy4awOEpzqUucxCLm9B6Ar3T69iMRhEJAwaGtyJaZlfTEhyYky/qyma6m/mpw0BiQjhdTakCE/q6h2qcjXOhGPv1gyA7d2wbQomrlZKslgw9QIlg4nLCaru5w8SOlLzj3I4H33I05c6+Dg4OBwXLhMyjOJTsGmICs5GQYM3vUh9Rx9GUIYi7g19i07kvjcZiDlnDwhifDA7MWEeKTsbZJANAd2bLXdn6naAMLCiMNslMlaRFeSSmmonPD3VVgnkE55LknWp5ACkXQd1YbcZ5hxW8AM5gDuC+AxuhG/BnItwgzevj9AvuU3no274eDg4OBwlsGRlGcQ+T/6BXj33G6ZhUxKKIdqJASakVC9SmVEb1JIAE9KOrlHMapOUk791R08OxeZ7TgsAt1SAnSktDPdIVFYKhpBSnwjLR6szXlP08hT7gHVLtCWY/bleOWE71d9jJaA1JFW3XOLCc8R4HrCjMLhHCRGvXDFddfb9wfsArrgnc/ezXFwcHBwOOPhSMozDRWweuC/ckIyMi8W9mXJUGhpRUsixZTW9doevCR6kWEA9MWzZCngdg9N8ncTPRKg1DdfFM181IckK6n4qYTiFjve47bF1Jxn+yH3V0xtIGKUmsZEfVp0grPqahLxVEk9a4mOMh43EGISSfZlIBmdIKfLbqsIb98ngEpM4bGDg4ODw3kPR1KeacxVrEwSpSQnEz2SBZ1uHOTmCBtHDPSzFRtUOJDOHdWBaCfyZM8caiPRmlRj6lFUXKvZm9i37Ia2G2vXUZhxxtBASMcw4DqjzMS7munxc6AYm9GbZnOCDOgVzA8m94B+AORSdlK/lg1tG4wYZSQzAH8XZEBzAG/uFmC8h9z/nWf7bjk4ODg4nEFwwtlnGPk/+gVmHBKf5MST7IK6tKogNZS5O72IJEN9TdpigR9m1gZcSIH1bb6utvWdCHhswsopDRkCWI5X2oBXSMd4T1qcYWRJ247Vc8XPua9hQEGulnmCzEpN6zr2eqdgVvoV8XsZ6/NYtSH31S4A+xvMzgB0vG32uaZ1HZ5Hs8/X/Rwebno2b5WDg4ODwxkGl0l5NhClNv9mrA88Ps7XW0VmPnLwd+vbQFZnFiQW8Wk5IQFIhEyMusvqxGPVlADMtmh5J8zovaIOuKp5KSckQqkMOxyG5m6betxvmJsZnJ+TdHg5W5vDnOutxCQmg4A/96WDB5AuHnHFjaU7qStTn9X6X0nYQonr3bkIZKsvnRKV3BEWBwcHh/MOjqQ8C8hf+SZ4D91GEnCgbt02cxUAXf7cjZhlKIklvSdZj07BtBypzOiZ6JFoLBWlrBIy2BdTc37VDAlAMlRKgFTm9Oxuct+NAUmDB5KLQQDMVa1rR1GO+XPqW3YEoHttKF1GatevrcaDEBj4QFzj2rVNWTt7osymNldja2UOjmIpAkdWHBwcHM4/OJLybKGQ0oJ+GJAMzFatxFOOSSgyDwhGtCphZkRDBwaGGXCwToIx1WVHj1rUlxLr3lkuMINRHYrrrBChxsD2CTDTEqU2CVkzITrBuR9KC7RY9ytBaYuXipZ2dL9HqtznQsmM4HSqci80Z1s9TuaZn8sxCMooHFlxcHBwOH/gSMqzhHznO+Ht/xMG5bmKWdPHPtDIbGKyWtAD5j1STE0E2ylYyUS1Ic0+UPdMBFtKSBSUaDQGkrUIbFDhXIX/VLCr4tyNbcvGqAlcpyDGbRlwuGbHVq2JzhTycupgxvv8XUfM6LSt2pdOHg8kL1pKmuiRuJwEPNzkiIqDg4PDOQ5HUp5NZJ7pSlIhJdqKWxMNSZRauaQv04pTIR8eLAsSZEA9ZuaiNlzdiaMZlGFAgjFf5ntC6aZpDlhimQ/ZkaN2+NoeHPvmkltIzaF2tmIeK7qWpZINM9zQNv1Ns2+uuUM5x9jnmpt9vranyczMZO9pXU4PNwFLJeTNd/8gd8XBwcHB4QyFIynPIvIfuQHe393BH8rShlsfMICrl0g1NtM1NVrLhTzohGIACCR70ZBpy5rpUJ+SQm4dOlNdEootLSMcC2XgYM2yIEslYOOyuMmmJDOJL94oiZSpQmY/AhHk9oWcxD6zPbvGuP/akERMSz3qszJXIeHqh3xtscT1HwuPTNJ7ZfuStS0fjWbflYAcHBwczlE4kvJso5gABenKUZO36S5LI2rAloP/4oDbaTYlyNmeqwZtPWkXLsfMXhwW0qE/b26R/Fyw8OR1jPeAS2eB+9eRKIz3mGnpRCaq3bZE8jFbAR6dsA6j6lGakkXpzqkNue2RKsmWimy1lFWJgZkKSU0c8BzLxyAfALBliV/3jPEaPGf+uJfW+/5tyC95+4nfCwcHBweHMxqOpDzbUAKgLq+DgBmMKGNm40Cdr8eiEemFok3xzL22Lm6wvYi29/Uht6sNGfQ3tJn90OnDh2okDOrNoti5wO0fnCa5UH+V580wQ6KY7nD/cxXLsqi1fZiROA2kNFWVLqSxPr8uSku0EpXMI+GKfTN9OxbKMk7gubPAfeuPf11bReCJMXh7PgV4QP7qf/707o+Dg4ODwxkDL8/z/Kk3OzfQarXQbDaxtLSERqNx2tbhfeePTDOyXOT3AH+erZiOIxFtyErWJTcPlOqQZELLIEeqNERbC0tibT/VJZHw17jlsUxCbhVtNs/6tv1+GHCQ4dC3fSYjwxN1ynLmMeMT+8DmZdO1rOswS3NIhLdHqtyPnwOXzZCorQUlZ49OkHw9Mmnann4IXHGYwtu7t1qrdV/amufLyH/y50/6/jg4ODg4PHM4mVjsMimnA3sbwI/sNj3G3+9kcI1Fb+LlQG3AUpAODPRzkpPlAoWnVx9avc+xvnUAebAOneWidNWUrbNnYg2haiSze5ZKJAbDgFmdcfFk6Yc8rpKT2tD8XtT0Tb1c1Mp/QZxlMx04mFgWqVOw9mXV2awFLSt5AL673rbVNd67ieTFk+MMwhFCl8D79H9lZuUNP3Py98nBwcHB4bTC2eKfBuT/+P8GiilyaaPNX/kmZhdiyTpoJ48HEpOxPolCmFG/MkpQFsrUohypMlsyWwEemQAengT2iQX9csEM35aL3OZYuHCe5ZWNyyRNj07y9cbAXHBjf3XXkZ+bDwrAY8TS7lwVDxgPQCEz4tWJ6PEyVwYenOK/4yEVQlRMpZspNV+VtrjnetKanYqQd0MHeOEBwMvh/e4/PL2b5eDg4OBw2uBIymlCXvx3q18YhCyF9EJmOkpCStTttZQw67BVxKSLJQb2/XUb0jdfllk7MTMVcxVmbfY2rcumK/OBDtS5j3iNLEarSPIDMPDPCalRQW8pYdvwdIcESglDKeFaq0OSqyAnQQozthvPVmy2UJQB395AMrW+wwwNYMc9ej37GyQ77YLMLupw/4OA57VpmUQpzJj9aQyAaw4CF80BP38/0C7Ae+u98H71Gz/gnXNwcHBweLbgNClnELy/+QuWRDZJFmMYWLmjNqRJmmo3vitC0mLKcoefU1A7WwF2jZtOpFMw7xMlDY0BA/1Ej+RovMfttPU5DqS1OWCWRr1MhoGJcT2QmPRDvnd9mwShmHIdiyWSoX7I7cfFOr8+5O8mu8AXtwuhko6iF+8HvjdNnYna8u9rsANJtS1aXtq2xOzSIACeGLMhjLnMI+qHwIv2r7b3V7R5TVzLsoODg8OzD6dJOUuR/8QbAADefR/hC6kHZL5lKJSgKInQTqHa0NqPS4mVamYrzMR4YszWk6xJWyYWq2cJwMDeKtpQwIJ0HqnYNsiAQcFm+KhAdrrLYwY5yUhXRL9FmUFUiTlQsTHgscb7Nnvo0lngG5vYllyJ+dqWFjM36h3z4LStXzuavJzE5Hkz3H6/ZIt+8vs854emSIT+13Oo/Zno2QBGYIW4OH8VBwcHhzMbjqScgciv+FUAgLf4e2a+1pOMxBNjLI1sW6KQVduKCymJRlUmE8+VKb5dKPNn7egZCFHRAYVaigkz+qqoF0rqMevRD/meKOO+FsokCeqp0gul3Vj0KZHY9Kt1f+yz5LKvwfXPl1my6hTYsXP3Vu7DAzNIm5ZJcHoh8OVt3KdmSPQcKzJNeqJHMhJmPM6jEzzWH13LdVx7gCRrrW6mETiy4uDg4HBmwmlSzmDkYyN27+WEmpVCykxJfWA6llaRHiv7GhTNHqnKMEKZcKxzc8KMxKM0MguoG/FrlPJ9SyUG/EFos360dJT43K4+tHk8ao2/VKRgtl3gz37O7IgeY0ObpnLFRATBA+BSaaF+cIoi2v/1HJaA9HwvWLCsTjnmPgMhHP2Q652tcF9RRp1NOQFeupf7vGsr8LUtJ3y9PUdSHBwcHM4oOE3KGQ7vwO8zO9LsM+DPVNnaq260BZmVc6TK7EOQMwvS7ANdGQRYiW3AYCKakkpsmpG+TCcOMwZ8D8yWlKVlOPZJMh6cFrfbxLIzA3HIDTNmLXoRMxx9aQXuRMzQaInoWDb4t78AuG8d33v5EYpvU9GhLKggWAW5GdcfZvRf2d/gNXl8nL+74dtPNq4bRavI9TclS6Vt3iNwWRUHBweHZwYnE4tdJuVMRzW2csVSybIH/VA0K9L66+XUbJRjEoflIgO7n5OgDAMG5iA3C3sN9o2B+Zv4OV/3QJHtoRrJhw4/1JlCUWbut+ulyycW4e1cWXQqGY+n2Rx10l0LL3/Chg7evRX4xmaKg3sRyUkhJRlZLjDD8kP7eMyZKo+5aZmZlLu3Hbu8Mwitc8nPed3my8z07Bq363akCu/I++Ht+cCpv58ODg4ODicMp0k5A+DNvB/59L9e/Zo+yTdHXlwurPYGWSyxfKKTkUsJyUZtaGUa6LDC3DptcgBx0RxidXhhkDFQ67ygamxZEt1/PyTR6Ht0pc08Zmg0+5IEfD3IgAKAdWvMDVoL430Sjb1NruVgjcf72ma+/pJ93H8kHUT3ryNpCTIeb2sL+JkHgcrQLPiPhhrK6fXphyR8W5e438NVfp0rr3Qhea0PA/0Q+bVvObHzcHBwcHA4ZXDlnjMEJ6yHuH8dswtLfOJH5lnLsp+bdqMgGY/EJ9HgQUw4O6oZUfM4nYisWRMlP3qMxRKzOb2QpaDKkLk4JQW6fSjdQLUhMxfNAbM1Xv6UIlbsaQIfez5LS+oTs3MRuG4317h9EdixyPLQXJlE6uVPAFce5vsP1ViaWguJb4RLyVYn4mvDgMRPtTrang3w9W6E/CX/4kTukIODg4PDceBakM926LyatfC8GZIFLY0UZOBfIJb3SjRqQxsC2I2o7/CEmPQlW6I29gMdYgjzP8k8Ziw8EavOVUiMimKk1i5Q86LZiVTIkA4azMS2frpLMlGOuR//GFkOxbYl4OceAB5YB3xnPfDYOM/zf1zEbMl8mR1OHdHTtIrUokx1STrmy0ZScsny6HkslkiWDtWAjW2g63MbNZLrRvxZ27KVUOWga+3XbweGAfIf/qWnfWsdHBwcHE4cLpNyBsFLfpdk4UCdL2w6xtA9zWQcrDOwBhm1FIslmfsjDrWDkKLXSLIH2jqsnTmpdOtocB4GfF8kgtxywvd0I36vjrGTPRKT2Qrfp1qWoW+ak7E+iUQw8vGqxEaOxteYH7QWPvASuup2I/77uQeYEfnsJTxPXfe6DnDxHC39nzfD92ai2anERuyaMjuozAGEaBXtOhRTaauOzBwvyI3o6WBDKaXlP/Tmk77HDg4ODuc7XCblbMXj4wyiic9Sjhq1HY2ydKJM9GxaciROr1rG0O4b/Rel/NopGFkZiA6lHFumZarLYzb7FJi2xda+NuR2B8VOf32bx5+t8H3LBVtXq2jdR6mQFDVj63vAuqUTvya//pW1X3/lLuD/u5jtxsUEeO91JBHTXStlAXwt9blWP6fpXXXIacrjPWpPyjFJnvrMJL4NaoxklpLqeVIfAOcVeV/5OJB6LrPi4ODg8AzBZVLOIHh/dwef2mtDYPMyBZ2Ha2zhjX1rGV7fIbmYFxJRTPl7ncUzCLiPorjG5p5lVMKU/imFlESjLx0txYQEKfVIRKZlnk4Osa3PGOhrQ+ChSe5TNS0A15361uY82eXribjQqk6m2ed7iwkzMGtNZP5BkHkkTus6vHb9kEQDIOnTUtqepg1ALCYkb5GUzhLfxhJUYss2eeD1AWSEgLV15z/6i6f2PBwcHBzOUbgW5LMU+aveyGxE5lF3sVhiwOxGwGLZyhdzZQbRiZ516GQedRbNvrUEq65F/VTK4peSg8F3ucjAq+6tkdjYr2+LJiURPQcYjJUUbVrmz+2C+aH4uelQwozkpCelKBX0TopuJMhICtT47VTCl5ZnYPX1GYTmCbOnaSLevpCrvowRUOGszghKPVnzyPnFAbNFanaXefDu/FN4//DJU3suDg4ODuc5HEk506DmbNUhA7gGRu0+0W4c7VJRwWyUkdQEuQlYtfQTiymaikKbAxKfpSLLNIm/WjBaG5K4rOtwHWN9kqdUshRBDmxfMjdZnXSs7b2V2AS3ic/9aLty4lnw70YkPjPVU0tWpjv8elAyKbnHNWpJq5Dy+2JqmaKFspGPXmTTlROf2adyvPreaBtzlBkRSklWHBwcHBxODRxJOcOQX3cDA341JrlQoWsp4fe9SDIgkgVo9vlaLN01vdDIg2pRVPAZZCYOLYi9favI1/c0reV2FBqY1eAtSs2v5bIjnFhcShjga0OWVCoxjzMms4WWivwHmAlcTfxMekKmEp9r+UHRk3MYCDnRCdCVmDqfUmIt00pItJVbS1U6MVo7nADLsChU66MuuoV0xSDO+x9/Du9zf/aDn4uDg4PDeQ4nnD0TkfpAnloLrIpXe9LhEvvsABrKlOJUXGeH0v47lA4b9S1Rl9g44LZhZhb6Xm4tvIeqNqxvxX1W7PF1sOAgBCAajsUSSz8XLDAjot1Bqc/MQykhEdBWZxX5+rnpUgopiUQoHUrqTKs6krXQD7nPo31X4gBoF1kaCzKSpOqQ5KMXrRYh+znQFSKjrdra5RNm1AS1I+6zK2LjXMpq+jXzbI6RCm3DnJkXL4f31Y8BvQj5K950Cj8cDg4ODucPHEk5ExFJOWKsQ3+Sya5lKwB7ip/qkiyo3fxyABRhAT7KWF4Jxeq+nJCAaAZAhxCmIsL1c5KfHYsslTSkBTcQc7eh+KLkHpDJOlpFK30ouqENKSzHzApFqbX7diISr9HsUFlEuAtlc82d6q59fdT5tpSYBmYQAC1pwd64zOyIdjFtaXHNj49b+Uevp2ZPRtuQS6ILKqX2upbNdBqzHluvp58DmVyDSRkjsK8B5FICKqTIX+rM4BwcHBxOBq7ccwYiv/YtDLBxwDbZWPQo6hY7CKnhaEvZJfWsROHlNsxPLeOrohPR4YGZZyWPsT63nxPRaCeiMFddWGOfRCjMLLuibrRhxqAdZhTtlhPqS5aLfM9yYWUWzsrrBTGDm+xxHUoUWkXbN0DiMl/m99oSPApdfy4ZDB2mWEh5nHUdK9UAvC5bxAwukU4nPzehcjGx4YyJz7UD1sqcyPUtidNudWilK4CESq91P+T11DbwdgGoDeF9849pCOfg4ODgcEJwmZQzFakEymrMzpMwZ+BWZ1gtYdQHlhXJYWLOcmyEJMzMwwQQ23pxf419BtbqkMF0QkhRKQFmKgzStaGYsiWWdajIXJ8gYwmqPmQGozZkZ5IGeyVQ2gI9FP+U6Q63T3yKcRdLllHR1uZuxPesOOSmVnbRTMZMhWSkNuA1UQ8XgOtT8XAk2Q/NoASZZYVUVDw6MqAoQmEtP+WezU3yQBLWFVKk10iFzrMVnkuU2kiAqS5bosNsZQSCm7Ts4ODgcHy4TMoZivyFv8xvtIySsnsES1IySX1zQo0DZiY0AA8D81TRLh9tnQ0zEoqFkmUBtIxRjW1ujRKbqmQSIjV00+nGmRibgV/bBa6nPmB2JsitfVkdbzuRtS4fqXJAYOqTVFRj/m4YsOSjLcCHq0Y+DtZJBNR9Vtc83eHxJnrMoPQja+GerfBfKSFJUKM3PUct16jLbpTZzKOOdD5pN4+W23LwtZKUzwIpWc1UmBHycq5ja4vnFvvM4AQZ8PyDK/f4hOc1OTg4OJyncCTlTEYpob4j9UkOdizyybwXmq6klJAYrLTIxhRuRtJemwiBmCuTJAAM3plHojIIgVpsbbTa0hxmzAAocVAxbiRdO5pt8MDjRGKj/8gk36NrGvpWwhk1fysllulIxNZ+XceGE1bjkYxPzuOPrqUb2RRoyH48GAlJRRNTlSzHTJWEYbZipm1L4kOjWRktD+Xg/ouJEb1yzGvbkzlI1dhKQYfqZpt/uMbto9SM8gCSlDU0No6oODg4OBwbjqScwcif82vS6ePxCb1dYBDe2qI4szFgIF8smT9JJBmOpZIF9F7EQFxMTW+Rw3xMUiE7m5bNCbY+oB6mOeBiVHhbH5qodV2H21Ti1boRLavkHt+vJZHR0ojqW7R1uhxz/2N9OuwWJMirmVpjAOxcsGyPtjprNqcx4P5UjNsUIjVbYaZlusP9NAeW9dDBiAUhZalnZKsq5bKJnl2ryR5dgP2cpKTZt2uhAtyhZLWmRTyrHVbj0o49V7HZTMMAeGxi5X57t/2PZ+FT5eDg4HD2wGlSznQE4t4KSLtue/Wgu/0NZlYO1hmAOwUrrwSSiVgqsoSSC4nY0DZzuNgHstBEo5lHgqNBvtnnv2NBMxfqd6JZFs2CqE9LYyDZHdHIeGDGQb1RPLCEohObo5SkSa32K/GTtTVKHhbKJEuJB4QeS0k6RHCxZP4oB+s8xqKUjCpiia8C3pIMVNSW7amueLlEzDpp1qUS85jFhNdqoifkr2j7WxJSOd6zkt2Buk2LnqvwuqYevP/9KWBvAxhL4X3gc8h//R+dso+Pg4ODw9kMR1LOdKj4tS4ZDdWWaDAMUyApMAC+4ADQlKzJctEyEX7OwNyR3wEMqoWUZYhQxK9allGDt7WGG66F1Oc6AykRqc9KDSY2HUUsxmie2OU3BnIevolatTRUTKykowJhXb8va9VOn0XxaqnLDCJdk5qylWOWY2pD8ztRU7xiYr4rRSkHaXdRIeV+jlSBbUs834YQwnHRwcyVgQvnSWgAXn91vs09G/C4FFnWZanI8yzHJEQ+fWi8j/934MX7kF/+L0/s+js4ODico3Ak5QxHfsnb4d33ESlriI9HKM6xGlDjwESdG9oMrp2IT/kFyQqUpSST+MD+ughbE2Yzetq5IgFWSzdjfSvPKBHQ8op29QDWyaLv9XB8guOJnqbZZ5aokBoRifos0bSKlpUppFbqUvO0xCe5mC+zvHKoZm3M/ZDZjeWiCHJlXs9AyJ22aw9HyJIa3VWkm0rde9WDpTbkvnqihVFi40umSscFeDnX1BjYgEftYvLAtc5WzCvGg5TfPBsuKefs4SZgpop8+l+fmg+Tg4ODw1kGR1LOBkx1STJqQ2uV1e81G3GwzuA31WWw1jbYILPyig4cBCzDApiTbCVmwNRMTLvA8koxMUO2QipiW+kQqsbAkQqnJNcHNuBPHW1Hhw5q9qI+sNlDSFafq5czA6HD/lQvMtbnPpeEvKi4NcipLwkzKydlHo3ULlggOYkynpeWlPqhtRsDZmk/ev7VmOffGFg5aLJrhKw6NCO72YrpcTSzM9mVDiR5zQOzMLF0Zal5ns4u0kxP4rMz6dIZ4NEJYKoL7/u3AVGG/MJfO/WfLQcHB4czGE44exYg3/ivSBY0EGuWQklHbWhtuDrBV/05PJgoVDMHKvBcLNmwwmLC4KlakaEYrM2VGUgXSyQlM1WWPdSWX8suQ986bBKfpZd2wTxQOgUzmYsDy8gcC1Ndik2HI2SiVWJ2aEnWvWnZiFEs5xSlJBjFFPj+FEsxy6LTUeO7zOPP6tuiowZ6oXU5tQskGkMR7eYgeVHDOC0hVSS7knk8p52LPKZqcFKfWR6dDVRI+bsLFngOOj/oUI3vu2ABeOEBI079UDxkQnjJ757qj5aDg4PDGQ2XSTlboOUFhQ7CK49oTBbKfMLXUkUOy2Bo2UTdZn3p7FEDuDhYbVimGg0PJD/9kJb7agGfg6UX9QRZLPH15QJJzniP4tCqlGe07bnZZ2DWoYXa9TNqq6/Q4+8e4/507YslnjtA8lOWbqLlAs9jSco+zQGFxfWhERgV6gbilqu2/2WZIzQUkW5bHGe7kU1wXi6SIA1CnlfqW7eUTkPWEQLquKvbaLZHW8XV+l+zKnNl4J37eMyHpqxbqSd+MF0SGa9zG1CJkW/99VP32XJwcHA4Q+EyKWcJ8ua7GSCXiwx63QjYM8bMxkCmCCceyz5jAwa2UWITihA2krbYohAWbbX1ctNkVETH4UHm1gghSn0rd2gnTKdg5SftKhoEFKgWxSZfzdc8aQleKHE2UF+6kg6LniT3VhvV5aKLScTzpBvx/f2QmYdOgRmkihjBbRCn2dS3+TvbFy17olkZdawtxzbfRzNQ6nWipZjFEmf+bGxz3TlIPmpD7vegtBNr2U0dbmOf5KgSm3ZoucB1L5R5vtWYVv39kG3lAI9XHdr1B2wEgWphBgG8fX8Ab98fPNMfOwcHB4fTCpdJOZuwu8lgOV+W1mHwqwbG6S5/Vx0yuHtFBkdtkR2EphXR0gMg2ZeCmaHpV3VUrcQM8Grg1pTyR6dgWRo1jSslVqbRbEk/ZGagKpoPP+f36v0SpVxXq2ji03bB5uusb3MfAPeZeDYocLJr4wO0Gyjxmd1RDUy7YPod9YrR9uxKbBqcsviudCMT4U6J38nj4zzOXAW47MhIl1Bsup1uZCWw6S6PqzOTlNi1C8z0aBv0RfPAb93F9+hcIW0v124jbWMuyfTpvhEY74kPArmHfOc7n/WPo4ODg8MzDUdSzibsr5tdfJAzQOuAQE9KAy0hJsUECCMLhkou1IisHNsUYy2jaGeJajyCbLVAFVit/+iLo6tqXXS+jgbZhbIRja603talS8bLgUHFtByj7qxaTtJpx3NlkrMc3H8E7qcfWifPMDBBbyWmSdqF89TK1IeWCUq0rTk18zv1M9GsUC+0+UfqJTNqRrdQZgbnQJ26mMXEMlRq4KbC5OqQNv2dgolq5yokJBM94KI5nvMgNBKjup3MsxlGes/VBXc44qibA979H3Ytyw4ODuccXLnnLEL+2l9gMFY7d9V6zJctoKnYMshteJ4O+4t9s59XHYq6w0YiKlWhZjmxYwS5TFDOrUyUe9ZppKWaxGd5R8smgGlSABuauFBi9w1g7cjdiKRLNTGNgXUFNQcmYFUSsCiOuurGq2SokBqZAHitNMA3BiQs5cSIlfrNdESDUk7YJry5xRKMl5uhW+LT9fbiObPrXxZ9TavIdU7KgMZexGv12ATw8CTw7Q0s9Whn0UIJuG8dj7lc5DZ7mtZqrbqihfLqLict4+nYAH1tGMB76DZ4u/7js/JZdHBwcHg24DIpZxv6oQX7HGZJX0gtoAJipjZkQOyL30c/BOZLDOj6e82QDAK+nnncrwczf9O5NH7OTITnk3z4UjbS2TediPssio5F9TATPXYE9UPzN2lI99FykcfbtGxmbpGIY7ct8XxmqtxfQbpyFsSfpRNx32XRx2gnTSVmZgSQSccABkUhNTBtirZYX3YEeGQCGIYmZm0XVhvFDYR4HarxfBdL5rTbHEgmSIS7fs4sy4G6ebKs63D2UkfIy8v2ArvGjAiGqZEugCTHy3l+++uWndG5SHFgQmh9n5j3efd/GFgsIf/hX3rmPocODg4OzwJcJuUsQ379G801VoNTmNlAvTBj4Ew96imaA8uKDAMGYg/2ZK4ZBdW2FGWSsrqiduTJPvUZwMdlto52qmgGR71Y1Lk285gFOFKlBiOR96/vWNnJz81x1s9ZBtEBhsWE2Ra1ot+8zN8drDHQq/ZjX4OdM0qCprpWOgGkAwniqivkQ2caJT739cgEz7kTca3F1DI5RWkjDjLutzkQz5Wc12KiZ27AvYhTm3X44X3rzEQuB/cdZsDVh4CrDgE/9X27X2rSNxDH3WJibcx1IYQ622hMslqqGfJyy0ipPinK4H3+U8/+B9TBwcHhFMJlUs5GaLtuJSYZaQwtyEYZkGTMPjQGDMyqnxiEwHJg+oxistrtdShdOZNdm5ic+DZRWYPpTNU0LB4Y+NsyC6cj+otiCiQxu3G0S6UvJEFbjj3wXxwYmQgy06Z0CsDepmlcZipWfmqNCF11v5WYAtcLFuxaaXZJbfIxspbYt0GGSgbaBRP7ageTtjOrRmehzGPFvk02vvqQGbPtazDTtLFNQjfRE5+ZMrMpiyUjYoslm6ys6xjNkAwDK4G1pR25Ih1ZasGvBnaBXNNKvCJG9r71xyvGefkVv3oqPn0ODg4OzxocSTkLkV93A7y7P87A1pTOjwwyeRgMgJox0OGE430GUc2QqDNtNzIzsk5k3TWq69DfT0qGYk7m2cSBdd2UJWBnnrUDq9HcZJf5uoWSTUZWO/1CSgJVSElAVPcx6pmiJnTzJROQzpbpcKu283FgxGVZ9CmzFStVKRkqjGQrmn2uqSCZkti3rp+NbRH6hjYQULNDY31mg1TzomUvgKStPjTTuDHpctrTpFbl0hkTHO9u2hRqbYNOxfemVbTpyYBlsnQatGa6hoGJkFVUq1mtoUx8rg9WhNTe4u8hH3v3M/GRdHBwcHhG4EjK2Yra0DIc+xrS6jq0Vt0gN4da7c6pDQEU+HpHTNfGekC7yFKEdtM0YNOQvdw0F73IdCU696dVtEzMaDt0L7V5PtWYgb0uJRQdajhbocajPmSwH0qWR1umtduoGwHdgmU9KomRqjAzj5eBlHsOV7mP3LOMjWaGupHNM6opuYJpcVSUm3n0XVFy1SmQjOk1WtfhPo82oRvvcU2PTJoWKMjZaaRt4GXJhBQTII2svVs9afT+1AYkJ0qIlNQMAtMI6TXW34+Kh7Ukp0Z1ALz8PcCdO5C/4k2n+APp4ODgcOrhSMpZivzKX4X3vQ+JL0pseo3a0MSnOUwYuyxljBXBq5QW5ioMYM2B+ZwsFRnkx3skIQOxse9ISSf0rRwRS2ZguivaCyUGufme6Jye6Q6Dt5ebwLYoLq0zVRkAKKLZ3AMWfGtbVvdZnZKchCN6msAmReu5qXuuZiV0vWpPX06stOLBuqFUexOJkHVLi9mZhhC1pRKvTT8gORzvS1u0zC5Si/3nzgIPrAOu2819ALxX+xo8hnbmAKtLOkXxjKkOrb27NrQsk2a5tOMn98x9V89HszmaZTka1+2Gd+9HgeoQ+SVvf4Y+oQ4ODg4/OBxJOZuReQxg82Wg6JtwVQO/DhgMRIyRj+gcdKCelkRU3KnZi/my6S0CcTvVDEcgmYvUY/DWJ/u6TEtOfBsQGOQ2jVnbjksJtS+VmK9tFFHsQHQ1qgPJwYCuWZ5IJi83BmaepoE+B3+v3UbqyqumcDkYtAMphWhJSgXFqay5mLD0tGPR3GBVy9KNeF0OV1nG+tZG7n9jm5mV586KqVxqM3zUBRcgEfRaJIw9yaBoGaqUAgOYTkZbqtUNN8jMC0evN2BrC2XEQDU2Ie+xsCjOub0I3t/dgfxVb3x6nz8HBweHZxg/UHfP+973Pnieh3e9613H3Oauu+7Cy172MkxOTqJcLuOSSy7BBz7wgVXb3H777bjuuuswPj6O8fFxXH/99fj617/+pH3t378fv/ALv4DJyUlUKhVcffXVuPfee3+QUzirkV/+L8WYLSFhKCU2TDAOLFip1TxgHTXqiTIMWFoY6zOo6hycxsAISRzw92rvrnqHhuy/JmZpc2UrB4WZCU+1s2VJSiczVe6rXSDx0TLG6HwhHb6XwVxYZyr8eW/DzifxmXnQ1ub6ULxDYGvTzhfN9GRSGloom+h2qcjsRRyQnCnBKSUsu6gwV1uKH51kR9GeJtfTDzm1+KDY3tcHqwkKYCTQw+punGIqrrjg75RkacZFBz72IjOVU13MimtwzHU/FUEBeB8O1bjugzV4n/0MvL//5NP7EDo4ODg8g3jamZR77rkHH/3oR3HllVced7tqtYq3v/3tuPLKK1GtVnHXXXfhrW99K6rVKt7ylrcAAO6880684Q1vwEtf+lKUSiXccssteM1rXoMHHngAmzdvBgAsLCzgZS97GV7xilfgf/7P/4l169bhsccew9jY2NM9hXMD2l6bgwEWkJT/gE/9WhbQIJ7DnrrjwCYqZ9L9Mlc2AajO8qnJMD0d0Dcjjqn1AX/XKZjIthtRJFobclsPkgHxKH6d6jELod05Kzbvmj3xTJMRZOY7ojb4xRSIJKOTezYnZ6wvQ/4S83vpFEwQqxmjIOfrUQoMJdOkHUdRBhT7JBl+DjwxZmWeeKQkU9XykxjEjfeN9LWKLH0B/P5gnfvesEySoYJmJWNakqoPbIq1XmvJdiCR13KPJK0sAumGlJcqMdekWaWnwuPj/DpftqnXR0J4/+PPgb1N5G/9xz/op9LBwcHhlMDL83yNovXx0W638fznPx8f/vCHcfPNN+Pqq6/GBz/4wRN+/0//9E+jWq3iU59a28chTVOMj4/jtttuwxvfyFT0u9/9bnz5y1/Gl770pZNd7gparRaazSaWlpbQaDSe9n7OJHjf+xDLFACfpKPMhvNpKUPbiAH5PmN3i5Z8+jK8T23Z62JoVkitE0en/JZl5s6CiF/rAzOTU1HpWJ9ZBSVHM9URAW7A0oZmW1RrknqWFQBsTQPxfClLdmepKK6xsc3KUYv7iR7PsxJTR+LlJCkleW2mYkZzqehdtO3Zk2MqedDMy6jp3EyF12yszyzKpmVrO9aW7Ia0Ku9Y5Dl+ayMJxESPmSqAOiBtn05HPGa83EpYhdSGKgI8rzCzTE6Y8TroJOtpyf40+0/+kCgpOlLlhOXHx/kevb861yiUclqngPxfv/oUf1IdHBwciJOJxU+r3PO2t70Nr3vd63D99def9Hu/9a1v4e6778bLX/7yY27T7XYRxzEmJiZWXvvv//2/49prr8XP/uzPYt26dbjmmmtw++23H/dYg8EArVZr1b9zDfnz3iZzZhIrfQDMiCQ+g6EG0HIi7cqelTkO17idTkMGuA/t5tEgtiwZj9mKkR51bk2FDKkL63KRx5qpik+KBN+lIluie6EZyIWZDfvTLAIgnSkyuM/PTZOhs4PUSyXM2Ao90WPAB3hOsZAx7RxSzYqODEh8/i5K+XNZ9CpLRe5HSdueJj1mVBfjgRmWTcvWTbS5xf2omFZ1JKWEawN4PJ1+3CqKN8qIEd/yiMlcHFgWqJgYwfRzEq6i3M9iYmZ4gwD4wgW04T8ahRT46hbLSI33gFfuouvti/bzXFMfeO4cidRkF95n/gu8//lnp/bD6uDg4HCSOGmS8pnPfAbf/OY38b73ve+k3rdlyxYUi0Vce+21eNvb3oY3v/nNx9z23e9+NzZv3ryKBD3++OP4yEc+gosuugif+9zn8Cu/8iv4tV/7Ndxxxx3H3M/73vc+NJvNlX9bt249qTWfNRgt56jJl5ZBdHJxlDEAVWP+3ItWz8LRLh7tgtH9ZR7bcLW9NfH5RH6kyu3mKmZINggZ0P2cGZZOBHxvmoRCS0ilhPvSzMCoH4gH05LEgc0cUu2Mnt8gJKGoxDZxORghaupp0gstO6BkSW3yi4l5rGhGxoMNKgwy6xTqRdaGDfD1xRKJSiot0/0QaJV4nhfPAfsbNs8nyiwjpLqbYmIZjvEe9yVOsQC4biUjpcTainVo4Vif909nL4UZCZNa+h+NH9rH3z9nnmv67npmgZ43Azz/IH+XA7jqMPAju6mnyT14f/tploEcHBwcTgNOqtyzd+9eXHvttfj85z+Pq666CgDwoz/6oydU7tm1axfa7Ta++tWv4t3vfjduu+02vOENb3jSdrfccgt+7/d+D3feeecqvUuhUMC1116Lu+++e+W1X/u1X8M999yDr3zlK2seczAYYDAwIWGr1cLWrVvPqXKPwvviJ0xrMi+Ga7kHbF+0rIkO2sthGQU/Z2DzpS24XWDgLybmk6ID9jYtMyDet85ajTWz0YtIgnIw4C2Umc2ZrTCIq9eHB/NZ6alnyUibcizZBC0DrQwSBAmWQjMJSnq05VanCBeFsFRirlUt/LXFeLbM4/vSMVNKuF4VqkaplWO0m6kg7dFa0rr8CLfZXyfRec1jPMZMlcLUYmLnoNksgNe7nJjgeLYiXUEQPUpmxnwVWbeW7rSkpLb/WjZTwrOvwSzMc2f5+4GMOkh94A9fZGU4gGu+aJ5fLzti3UthZmuY6pBkVlieyn/y55+Rz6+Dg8P5g5Mp95yUcPbee+/FkSNH8IIXvGDltTRN8cUvfhG33XYbBoMBgiBY8707d+4EAFxxxRU4fPgwbrrppieRlFtvvRXvfe978YUvfOFJgtyNGzfiec973qrXLr30UvzX//pfj7neYrGIYrF4Mqd49qIpKX81K9vQZsA+VOPvNZDlnk0m1nKKtrYCRjoGRWsD9iVIL5b43saABEYdTmOfx+tGwLq2tSu3CyQ2OgRR/Uq0A2VlaKFkUzR7kkO0I4GJgjXLoZ0/SoY06xEHLMlUYmtdVidZbV2e6PG1dgHoRzYJOkqt00iDdCiZFEiXlNrzz1SMoN2zmUMQqzFw7QGew2xFdDAyV0e9SmLRwAB8TbubVIMSpXYttFUcADqerUcN2pSg6H0FgC9v43XoRMDVh+33SkAfnLLs2RNjXMNlR0hA5srWgv3wJK/9S/fy9QsHJD3tAuAB3u1/g/yXf+LUfW4dHBwcjoOTIimvetWrcN9996167YYbbsAll1yC3/qt3zomQTkaeZ6vynAAwPvf/37cfPPN+NznPodrr732Se952ctehoceemjVaw8//DC2b99+MqdwziK/6lfgfe1jJB6diJmM0aAWZpYx0CGCiQ9EIhIdF1KRS5ePmoppu65qRWaqK9N2V7IvY30L/t+fJnnQLE1VOoOCHPBTK9cAfN1PTeSrmQ4tN+k8G0B8WXzTe2jpoz4wa371HtHsiJ9TAzMMmVGKA5au1CpfPVSGoQ0QVAdZLS2VYxKyzS3gwWnxNZEsyL4GvVS2LzJDURkhH5oJCTIrBwE2PFAx2eX5K4HxAJRiy+Zo5mkQcP/NY7QY9wPg8nlg6xJ/PlQj4djXIJm65iBwo4jOH5kEHhsHfuxRXq9vbSRhqQ2Br2wFvrIFePkTLOlFmWhySitr9z7x34B2Afk7XvsDfGIdHBwcnhonRVLq9Touv/zyVa9Vq1VMTk6uvH7jjTdi//79K1qRD33oQ9i2bRsuueQSAPRNufXWW/GOd7xjZR+33HILfvu3fxuf/vSnsWPHDhw6dAgAUKvVUKsxE/Drv/7reOlLX4r3vve9+Lmf+zl8/etfx0c/+lF89KMffZqnfg5CjcCCnEFtEJhIVC3tBwHQkyGCHqyTRT1QIK2vqs3Qjho1QOvpPBtp/10MrLW2VWTQHu9Ju688/fuJEQ/Aumq0NTgQnxcvsxJN5gF9z8hQp2DeIvWBrVuzGlEGZIlpaiLpjqmIYHhZzkHLOWM9riUcIQ0eSPBUFLtQ4us9ITH1AUlXUTplti+yrKJkSj1P1OJ/dERBMTVypVOVlRjpdSon5oar4mY1olNRs7ZBj+KJMeC1j9rPiyXgU1cBu8aAl+8G/t0XeU8UF83xH8Djvnif/e4le/kP4PEP10xs2xGtS5uiXu8v/xLYuoT8h46tL3NwcHD4QXDKHWcPHjyIPXv2rPycZRluvPFG7Nq1C2EY4sILL8Tv/d7v4a1vfevKNh/+8IcxHA7x+te/ftW+fud3fgc33XQTAOCFL3wh/vqv/xo33ngjfvd3fxc7d+7EBz/4Qfyzf/bPTvUpnL3Q2TbqVKplDF/EpMXEfEgApvdVV3KgYE616zoMdKqX0AF3QW72+WFmQdzPGdy3L7KMoFkc7YYBzHdF3wsADSEHOYBQOk8SD4C/usShE4lrQ+vK0dbptvwc+5YJ0YxM5gFjUgabl8nFTfFT8XIbRFgb8nzXdSh63dPktpoN2tC2FmU/ZzYpyoBXP84sRGPAbJISoRosW5T4QAITCfs5MyutornGxoENaSym1h6sk42j1Kz/l4tWLrtrG7Milx+h620OXqexPvDWbwB3b2UXz2hr9/EwU+XoAhVF7x7j9cnFc6YfAF5gBLRKkbD31Y8BD08if+M/eTqfWgcHB4dj4mn5pJytOBd9Uo6Gd9efMFDpROLFkoknCynT9rWhlSa0tVj1GNpJotOQdTaMWs73xLZeyUaYcX/dyMiCZgxEbAkvt+MtlPnzaBDX4wBGVDwwMOew7IiKTyuxlX088GfdRw6uJfNoKleXDqa9TWtXrsQMxHMVlqZGyzOa8VGSoGsGGLC142iyR0Kzt0HiphkfD1xjP6DuBeAa9PoBXKd2ZGnZSicwa0YryKwMpmtTN9/cA76znttcfdj2n3q8hzoraBSqcVmLsGhpbW+D758vG1laKFtr+boOP0df3cI1TfboB7O7ueJXk//T1z95/w4ODg4jeMaEsw5nARLf9ANqaBZJVmPUEn+hZC6xufiCRGIqpn4aOiiwH3IezYIM/tvYtk6gA3VmBXSwnQa3ODBdhe5PMweT4mmyVLJJwZ6UdFIPKEjA1QnO5dhacoPcNDOqPwGsdXcYmFhVMxKqXclHSIeasmUe169eJDqdeeMyhxj2Ip7rTIUlj0FIfcrlRyhGDcU8Tzt3tJNKS21KprR8o4MNIzHGGx3ICJhwWbMuOmsozMxm///sALYvkXDVB5xi3REymXskZGpup4RypspjLpZ43nruJemyWpLMznrJpPRDI3/FhNcDIKktpkZwD9aYnZqpUq/ysf8ORBnyN/3UM/kpd3BwOE/gSMo5hvxHfxHed/6IAWRStCFKCNQvJfMoWNU2Uy2rqIGZBh21jC9KBqYr9vG7xtimPF82K/5yzEDXGFiJJ/WA0GNrbRxYMJ/u0EdECcww4HEXS1xTlAKZkKSpLn9fToxAabeQEgsv5zE0YzQp+gnVhXQj8yzRLEuQA0nO7MDhqpWUooznNlehi6uWpjQrtKFNgnK4xp/VZXexZMFb24L1GmgLs661EwFjqWUwJrv8Xr1ttFylmZVmn9f94Umu/+pD5veyWDatjp5vOeF7F0pGDJt90wQtjIxLGITmQ6PdT4ulFdKB+bIRzD1NZmlq0h2mBEivjRIsD/D+7K+AQor85372mfy4Ozg4nONwJOVchLqXAtQNdCMGwqkug++yCCCVHKiYNJPsxXKRAapV5FO1ZgRWbOYTawNWR9tUNCFa7tAJy7FvZRsdiPfIpLXRqmhVLelXhLCyz07EzAogItuM3TWBb0E+EzKkNvHLRcnmSMAdHVConi1L0uWzv2EzhNSLpCpdNGHGLplRrciV0t4bj4hftbzVEwJUHvFzAUz4quSoKNtq9476umiJSZ1ngdUeKBfPsVtHO5oWSzxXNcZTkXRL2u7VcVjbtoOcJLITWbZt1L9GjeO2tKzj6OI5Gr6N9XnfHp7k94CRztmKdZFVY3PNLaTw/t+/BDIP+c+7MpCDg8PJw5GUcxGq1VgsmclZDnsq1oCrT94N6Vope3yPZje+P2UDBguJdagEuflvaEusDvmb7HHfGvBziHNrsFrnoToXbySTooE7BwlH5lkGQnUaUUqf5L64zOZCaDa2Sb5Sz+buqHmd6mwg53ygDmxetpLGQonnUUyt3FMf8Fp0Q6AmgXe6Y2UZvcZLJfteSygZKARWAzjVueh040y0M6lkPVTwq6WpSmzdTLUh8N8uYQbnxfvkPIs2/FEHL6oepxrbVGjtxtLBjRWx/q8PeU7VoZEcJU8A8KNPrP250q6mfQ3g0hkjZ/pZ298wItoPeQ5FEhfvKx8HlorIf+wXTuUn3cHB4RyH/9SbOJxtyH/kBpvUW5aMiApVM49P0v2Q2ZXq0FqXD9eYbakNGchHBweGuc3+6QemkwD4tRoziOk04MIIqehJK6226qpUW9ucNUsz6uui5KaUsPwSpSboVTFt5pm53HzZpjBrp09P9CyaJVA9yGRP2qBzoCH6jFLCTMuor8wTY8w86cyg/XUxP6swWHsw8znNYPRDO8+idFepU66WW3SgIWDXQjMdmsGojGRjYp+llsUSS1OaHemKOVttaB1Yqbe6e6mY8vgFWUsccLsDdcuctcWsbalo26yF6Q7wT+8HfvpBy+hoaUm7yZp93i+16S/J5+/BKcDP4e36jz/w59vBweH8gcuknKvIPekyCU1EqgFTsw2JpOU1c7K5xZT+WJ9ajcaA26vAcyCzZVQjorOBVORZEUKg5SM1LtOSRatoAwWVcJTEIwWBaTCizKb7qm2/ClBVlBtmNvF3GDAgrswvys1DpR+SVNQHJCeKQcjjt4smHtZumo4QnRxA5gO7xnks9V9ZLti6NSulxMzzgGEE1Abcx3TXZgslgRHCSmzzewAjhLkHzFZ5zl+4AHjxfmY2DtZ5/za0SVimuyQa62WyspZ8NGvTLpCEtoo2yDBKbT7T+jbPX0colBNqVUoJ8O1x4NJZvn8t1IZ0pG0XbJbTY+P8XT9kuei5c+z8OVwFvrmR9+Ble4GdC/BwE83gav/2VH3aHRwczlE4knKOIn/xm+E9dBuDsQ6n03LCspCV0fbW3LOOk6WiOcmqr4p24SS+zcpJpaMkEHGnakZC6SKKxQBOA/+c+Kfo7BklMXHBSkMr5mX56mF76heS+kCYmFlbDhIFDfoKNbTrhzRnU3Gol7NEoxkAwAK76mG0LKWW+es6LOE0BmaMpxoevXaa+QhyoO+TVKgpm5ZFxkRL0hPtTpBZV1BBvFC83FxjhwGzOTl4L1pFkpSCZKyach27kQ2S1Fbo5YKdX+wLqSwwG3KoxqzME2Nc91SXGaKDNTrnXnGEnwHIcY82kJvu8PUvbud+Xv89XqePXGvdUBfP8Z7vWLQZR0FmU6ArMcnK/euQX/4vT82H3sHB4ZyDIynnMrQ1uB8CWWYBTQO0zvnJJZAeqDOAXTjP969kFkTroYSlJPN+Ul9s3BOZhxNyyq7ODepGQK9i7bNT8mRflcCo7cNqmjaUcoiPEcFvj4RH3VhVlKl6G23TfWSCZKWYmIeL6jq0RLRcoBZl1MxOJyZ7sGzEQDxOVPw71ucaprs220e9XrSrRUtV6ryrmZyqiFFV/FqJeRzNPoUjRKUbMXMD8HeXH+F6H5hmNmfLEnUfqWcmdNq+rIRRu42muyxfre+IQR5IsuKAmY7DNZrBvWg/11aJOQFZiWHim+9KV8qDU13LrnxjE79edci6rH71G8B/eR7XtGuM+9wkrcsPTnGsQJAB/7CTr0/0gMuO0Azu8XHk//fPnNKPv4ODw9kPR1LOYeQv/GV4d3/cyMDKJOSMgVdbUGfLDGTLRTM788Cgl0Y2tTjK6BWic3R0ivGyDOwb65ueoTZkANYBeppVGO3mUcGmJ5mXMuznRAhQT7ZbKlr5Rv1edCLxqB7mQJ1P8WqephmUAJKtEMHucoEB/HDVgreuORRSUxsaAZirmBmekpfUJ/mLfcvSTHZ53IkeyyfFkY4lbYWOMvNCUbEqRs5dB0FGKa/3D+9hZmaubMRELfdVyKylnkw0KeWYxDDKgAi8/nsbJE2DgF9/eA+zRKNGby/eZ4MZNROmLrlezlLTtiWKjffK96PYvEyn29TjhOVRopL4wP3reF5HqiRROhTyqsPwejcjL/+7U/3fwMHB4SyGIynnOjYtWwtuVYKrzuNRt9exPoNRfShlFckU6Jwa1VSkPp+stXyhglEtJRVTG+CnBmzqDtsTsqK2+oCVVVTPobb3HrgWDzz2QpnlJC/n/ospv9csSScyb5ItLQbUXeP8WpMn/4cn2RmzUBKztjbfs1CW2Ty5aXU006LaloemSK7GexTaatuzZmdUlxJm1GYUMu43yEyvUhTxcaDXCiQiR8RkrTaUUhmATmBaH/UhWd8WHxd5v3rMZB7HHtRlMvUgENt8IXWpR7IyX7ZBhzlIWjYtA+2I56NZoqUiyepEj4Qr83h9WkV+TpR4/vgjXLt2Jyn5fMlebtsTctgpWFaoG/H1n3uAv/v6ZuC76ynC/fn7gXLCEhCAXL46ODic33C2+Oc4vNlb7AlbSw6LJev2UHM3zXJoGUeDpOoyNOCp+LUmJMKTDIF6lkxI50xDWpNVezFqx66TlVW3osG2PjBLfx0qGI9kG9oF607SEou23mYen+prQxqRqUGa6mfmKiQn2u2jYtIjVe6jJ91Ol84CX9sCzJdINu5fx/ctFzg1+MrDwGMTvCZqFKeZFV2jzhkaEwO12AcqOkQRRtwKKTUgj41TiKoZB8A6dcSMLS9ZhsGL/x/5Rv7r9kWkPAzNXt8Dr8vhmmXSBoH9brLHc67GvJ6AZcp0Xo+Sz9RjJgcgWWwOxLQvNxO8Uaxlwd8uUAOzsf1kQe73p4BLZtf8/Dqy4uBw7uFkYrFrQT7HkU/9GzE4E0KiWQwN0t3IsgCNAUsg09KG3BhYtkPnzpRHPEd0im8cCOFJuT8V3GqbbSDZmkjIjYpjuxEDWrNvAVy1MqqTqQ/5dH+4ymDaCxno9FyWiiQxkYh7v7OB53uoJuUsWfdkF9i5wOB/sMY1L5S5/v11Zno6QoLG+ixf7W7yug0kI9AukOy0Jajr5OKqDC6MA+uKKiZca+7xf5kKWlMhe+M9nuuRqnmLjELbetd4hMij37YunTCzcQba8q3ksTGgyFXbwtULppCKSV5qBCWVPwVHqtxnKsRtT5Pnrfb46q2zv87MixrYjUL1OaOoDZlNWatj6JJZI8qKJZaTvG/+8ZO3d3BwOG/gSMr5gNkKU/hHqgwE7QKDbkHKJj1puZ2XYXIr2pXcfp/4ZqMfZUYitBNHSUhFpvmmns0N8qXVNYcMoksY3HU2jLYiLxWBVsmMyFKPOgrNpEz2TE9Tjq1d2c85W0ZLLEpcHp7k19gcULF1CbhwgSShGwl5E13NoRrw0KR5r2jHz1gfuOIwNRYLJQZ01doA1nJdSEkE/Fw6dUbugbryVmLLMlVi4B89Cly3Z3V7tMLPV7Q83oO3rf7dgTrvIcDrqYZ1oz4vANe+XoiTang0s9ITgpJ7PK9OxG0enhQyJmJoHZEQ5FbqAqzMs1y0dWl56EB97c/i0YRGoQLtYcDP61Jx5Vy8u/4E3p1/uvb7HBwczmk4Tcp5gPz5b4V330cYiHUWzlKJQWcoWpRWkcF5ZbCddNvoED8vZ+CY6JnGBDADstwD/MwG+WmnSTmxFt/Rqb9FFdJKp8v6DgmJilB1XozO8tEhf5nHr2oCt7HNNR2pkjis61BgeqBOIvKd9SQL1xzkejsFKw9pC/BMlSTKA/e5fZHrnOgBLzgIvOAA33v/OjGIS0wI2xFDtYKcu1raq0V9JB1VSuQ6BWBeAr2Slfrg+DewnAA7F1d+9HATcPEa22nWK8iASIhSUchgKq/rmACdAD0xIEFZ1+E56VyeioiRm2KUV5KsS+pbmUgzbaPGc37O0tDGkdJV7llpSqYlr/ysCDMgyaxUtK5DrYqfU2fUKsK796NA6iF/0S8f/3o5ODicM3Ak5XyBttI2+yQbW5dMOKu6Av061TUvk8aApRYdNKjdOzmos9BgpQLR1LfhfwMpd2jpYhgAfc/m4+jTeScyAzklG9rGG2YkJdpxlMNKEmN9lg8O1/iaZl48yDToohnVHaybKd2UlByOVNmhMgisXXh/wwiKDl38ylbToASZtEr7JCaqO5noWTlKSzeNwWqzt06BxEln34xib9MmV29uWVsywHtUMlHpcaEao3Skkyr1bAq2Di8MpQNovsx1axYshfmv6HTo2tDalDNPMmtyH5eL3E8v4rlBrv0wBA40ZLq2dHFNCkHWac6jUDNAgMc7VOM64hH33jJ1Pd73PgTEAfKrfuWpr4eDg8NZDUdSzhPkF70D3v0f5h/9bmRuoRM9IM1snk43Es8QKReM9xg0vjfNYDQIrUU28YBqYm60fm6iVg3orSKDkwotR03TGgOgnXMtMxXaqRdS8TfBal8WwAJZKTEyBVBjsrUlJQsxMZvuUvzaLVCQOgj4dH+oxvc8OkHB5n3rSSKCHHjTt/naRI+ZplaRWY4ssKGBOvE3kk6mmug3lgvmtxKklkkJpTSm2QM1klMC8cQYicKBOgnglYeBL21j5uQYYtLjIsi4XvV/0WvWC4GqkMVWkfdVO66UyMXyeWhLdqgpmZ/q0MYqhNnqyc2+3L8vbadnSnPALM3DkyzbPDbB4092gecf5D1bPOoaADbSIBe9zlRXJjqDmb4wtc+edJd5s7dQc+Xg4HDOwpGU8wlKEFTAqu6fajymjrKPjzOYb1tioMo8BpnFEgPWfJlBOA6AJBWfkoQ/6wTmzAN8zwzO1Lo+l3JNDjEzS5nO1zkyW1p80l4ukvC0ijYnaEzm7FRi01UslIGrD8kU5sC0H/dupFC2GwFN3zQa+hQf5LRrv289icjzZswETg3ZcohhXc5z9wB0pCspyoAJaYsuZrwGbSFIKuJVK/9mn+8diDZmpsLzBLidtocv6TlkNEPzc3q+LBefuiQ0CjVX02sErPapKSU2KqAbif5nxAhOO6bKidxnLQFKNky7vPycWayhCKf/13NIbiZ6PM8jVQpsZ6okiLUh990c2OBIRSVeXTYCVmeTABI9FTdLqdDr3wx0CsgnHVlxcDgX4UjKeYT86l+Bd/hWE6suF8zIrBPZRODEZ2fLkSrdZ1UYWhP31MWSDd1TjxMtJ0SpTdZdLjIYq7fKUsm6TzRzsK4DlI8KwNpppK3PObidThEeHaY33uNrsxVbY+axlVhn3WgmZrZi2ZedC9znr30NePVjfG1JRLEd8XmJfeuCCSULUR3pTtIMTDm2+Uja/VSREogvBAcgwWoMWHr6PztI/HYs8jrp+IBtSxTo3rPJBMOpx4zEtiUjIE8HOpVYy1nFxIY4lhMztutFMhU5Me2QtqKrpuT7U7wWu8dYYmsVrdT3jx+2ktbXN/P9+xvsNKoPmNU5moCcCPx8bbJWSuClvwsAyIN///Svj4ODwxkHR1LON8xUGEC0YwewwL9YsrZgNWsLcgb/QQAgMHGqmnQBtq9yYm3B431qKw5V7diDgs25aQxsxoxmGxS9kIE8ERHt5Ufsd/3QhKDaUfPwpJGaTmRlhvkSsx3r28A1h1YfAwDe9dXVPz8yIRkU0V1oeSr1RXfjmTA2ysynRb1iigkD94rza2paDoDXZ6ZiLcF1Mctr58D2JcsEtUXg3IlYlooyksYDdeC63U//3ldHpiXPl7mOtowKiFKKl6PUBL1zFZ5TbQjk4qGj966Y2Cyh2jTw6sef3HYM0Hb/WNBy1LF+p2XBHGbTn/q872N9Xp9iau7FlRjeng8AtSHyid96+tfJwcHhjIEjKecbtLNDJxxrhkDn4mgmQFuOD1eZnh8G1toaSGBRo7Ugs7bhWDp1DtYYVHXwX+KbiVklBrKimJzlfBLf02QQne5a901HMiHDgERkrM9untG1LJVYqtk9RgJwpMrywgPT3GbLMvf1+Dg1E2sFxb1NrteD+Y00+5YByTx+Xxnymg1Gskda3vHBIYRaMvLAa6OBWLMw963jNuM9EfRKWW33GLuSMo8EbyiEMMiZ9blgwdau3UNHD/57KuhavJxamO9Ns3NJsxOapdnX4DUMpWNJPw/aQp16zMRMiFD2aGv8E8WxCMrK7+T3Hlb7yBRSm+7s57xX2gYtPjDezPuRT//rp7cuBweHMwaOpJxnyK/+FXj33G5ak6FvJELt8EfN1NRLpTGwdmTVKOSwsk/qA0NQT6E+JWpS1i7waVyn9eaemYi1iqKRKJOIbFti5qMXmU/H3iYzCzpLpiJE4cEpvlZKqKFZKjID85UtfO2nH+TxBgGzJFtaLDkA1FIsSBu2iojLYjvfi0wIrBqX1GPHipZ6tHVaZxoVU16XURdcJSd63ZZKJFEAiVyY2XoWS/w3VwFmxdF1umsThz3Z5q5tJAelhNmQCxZ4Ddav0TEzX+Yxl4qShdlD0uHntK/fusTr/+AUz/nqQzxGL+Ix9jZsv0EOQDqbgly6mLKTJ0pHo10wZ1vNnB2tTQFsirKuZbxHYquEVX+n5UgA3qP/CdjSWuXW6+DgcHbBkZTzEdo5oR0gA986LdSELPWADdIymiUsTQxFYDnZAxY8IPRsPks5ZgZA3WmDxHxYmgPz2FgoAr2YpaAnxhio5yp8qu9FzFb4EgS3L7Jrpyfi0i7Mp6MtZl/LRWYj9jW4n0EA/N/3UUszCM087OJ5IwRf28IA/Jx505voWpWY9aTtNYOUHnwgF4I2IdoSJTKaodB/hUR0HVISqspMpDt3MChPd3ntD9aE/IjIdLLLILuvwdc2L5OgzFVIqAoiLFajtNRnBkbbtJsDBu844Ne9TZrTJT6zTdWjdCAq3j16kOBET9bZMcIwDIDFssxUEuKW5RzceKJYLK2e+qzn0Pd4jqpreqxu+iZAXI190/yocLpdEEfiEslXu8Brur5j5agcbh6Qg8NZDEdSzkPkO98Jb+8HLFjEvjnRaheKdnqUYwatRck6JN6IeFVM23RasOpYFKkE/GLC7Q7XrPtnurPazE2zCqqP2Llg5QQtrcxWWLZRPctMlcF9qcjAvmORgdfPqUlZ1yHJUWOxlkzcfXjSMgraaq2dTdrlokRtENo55Z5dr24ElGJz5c1hZEdFp1qm0FLFBQssn012ea27kZnLqZZFW4KXxPm1E/Ec13XYyXT5Yb5vqWQErDrk/dH2aTWu032O9SkkPlZ5JUqNEGjWK8iAZISBpKIlqg5ltlNq2Qv1XhkE5kI72jq+WDJdk/rFNAYkkgdqJB59ISJz0vmVSyeSaoN02vMw5L3eviSC3LqYzslModqQr011LTsmcGTFweHsgyMp5yvGxaxMW4lH3V2rMhxvscRAtKdpwbaQMXBqq6qKX8sirKwPrb25lEjmQ4JxJC2kmpWJMinj1CwLsG1JpjFn1rXTLpjT7aZlBu35sjm5jveB679JUqDbb2yTnCixAEwQ+s+/wwzEYolrV81NL+Q/fYofFRYDDJr1oYl0YzGl0wzKihYlodYmx2prfCUAvYhBvz60QN4qmhA0kH0tSoZAvUkmehwb0BNxcw7JWkmX1dal1d4qz5HOrB2LJ/65iOU6HK6t1pqUEwv4frraI2UYmIdJJ+I+xvpC9nJmu7QM1pdrfKjK0tGFC8yoaRZF5ySN9W2AY00Exr3QRiosicC5JqRpXwNI2jb1eaLHc1gDHm5yRMXB4SyBIynnKfLav4WXvYdPoPUBMxTaelqR6cQTPT69R5nY24twchiIkHTEr2S5AIxJQNm2xCfiTgT4yYi5Ww5MdayTKPWYnledxrUHrHW1XWBJZkm0GjkY1OfLTOeP91n2KKR8/UDdsiG9kPtMJMsT+1baUGxc5nnPVazFdhBaa7ba+KsWQk3RiqmRhqIE3lJsRm46SVrbvLXjpRdSF6N+NBcvkAx2I5LAfsgsQSjvuWjOtBZKECoxg3PqkZA0BnxvkJGUKZkaxfEIylrdNeoaq+MTjp5wrNDzikSX0i6wJKWapbkytxnvm+NuLzSzwHIC7Guu7o7SGU65x/s8CFgaWyra/VBPGfVKGco929Dm+5ZKQC0G+rEZ8PVESzTSfeQN/x8gypB7v3Ps6+Pg4HDa4UjK+YxZsZuvDVkW0Zk5Kowd1a34Of/4557N3ymJh4YG88FIeWCyC2RVC0DqeqqBtxsx2Kjw9pJZK+88MUbSoR0ue5oslbSKDG4H6pZpufYAA6SuY7LL7/c0eV46pE8t/9sFKVfkNiBRg7vOvelEq6c4h5l5ijQGJpCtxDbgMMhtmCJgc3RGUYkZRDVTlcPcddUkrRzznJQs9EKWXbR9uBORBG5oc/9PjJFINvu8n7kH/M/n8Nq+/AlrJ18Lx+uuORkfE23RVr2QfnbU8C3zzGa/GltXjs6AioV8qOdMKTGx8SAwUzwlJ9WhZXUO1cxkUO37tTyk5zcIgWBEW6MOux7g+b8LJD7yohPXOjiciXAk5XzGE2P8Y79xmWLY8b49AS+WbLKuxtra0Ay/dLjcQIKRbj+asVAvi3Ck+0Un3QIMFtUh8IpdQF+IQS8E7tnMoFVK+PN4n0/W+xsW4Gsp8NK9fOLvRsym6MTesT7fs2nZSkJqrKadRZoZScR3Q/1aUiFcOcyrA+B1Kkn3Twa+VwcNAqYl0W31/BTlhNkO1WQ8PMlsiZ9TRNwYcIDhYokEK/V4bj6MyAHmC6L7n+4C3ZDv1/LMZTNc/3wZ+NpmEtDLj0iGqUZB8rEwCCnCneit3WVzNIoJEEnmQwc2lhNmVVY+AwUSkImeOd3qgMpUyKAa9cWBkcIiTK/kSylRf14siR5KHG6VaOrgQvXj0TUo1OlWZ0oNWHb08vcAOZD7LrPi4HAmwZGU8xj5i34Z3lc/xidwdRJVLYD6kKQeA6XaxPs5ty8lzAqM90w30I2Ah0S8Od2RICAfMS+n+LMtgWNWBJLDgJkAzYT0Qr5/1xiJQzEF6j36ixyusU02kIzGojjEqnX7VNcyI5q50Rk1qQfEJSvZpJ454cY+A2W7wNdHp/YC5iejZnCl1NqVVY+iXUFrGZqtXHAw0GrG5PtT3M/2RZawZiu085+psvw22eUMH+1KAmwYo65x+6IFboDmb/sbPMZYn9dG/V70WMfCchH48laWyra2aBx3vPNR9EP7F2bArHQB+bmQ05Qlm15kn6GpDucq9dSczzePGi2dacmskBr50Wydl0u3WJmfl544A2tpbhis7U6rLee5BwSio0mlZOUBXsnpVRwcziQ4knK+w4Ok3EV/UJbyjwdzn1XjsaFoBA5X+Ue+LNoVtaLPPD5BFxOgFlpra+ozEGRSdiglzHQcqjGwaQlmuiOCWnE9nS9z+70NBlA/By47wiCq3iGJb/qNw9LSO963UoGSh1bR5gsB1kmjPi7qlTJa/hk1oKsNSdaaEvi0/KOlHp1tsxa6EUlH6vOaNQZsD97c4mwegEF3umMkJpYMj2ahFKOZKl2nEom7t1JAqj4m9SFwxRFrWT4W9jSZVdvTtDLJY+Ncx5WHSS6PB9UpVWNevzggKVGxtRr45R7QL/E+6XXQrJoSvjiw7AzAz4eWzVLVoQRWdtRSkHaY6ef5WKUs7ThbmS+VW/lSrqOHm4DlIvL6jcc/bwcHh2ccjqSc58hf/Gaau5Ul89CX7EO7YBqS8T4D3mKJQtfE59fxPrURjQGfaFPQTyTMWFYoJTZ4z5MgoB0b6mbaElFk5pkNO8DSSCFlMPdytqtePLd6UKEvwXleSlRBBtQS7rdTsJlDqbfypLzKoG62wnWrLkKt7QtSUqlKy612BanPiBq4hdnqUsxa+M4GE8xeedgyUZ2Ia9nbJPF4aJIB+rIjPJ++WL/XB6uzOqMYzXLMituuDuqbFDHpgfqTjd5UIzRfBr69gfdV5yqp/wnADqhhAPz4I08+9r2b6FYL0ECvkDLzoyikwDc2sZQ41RUfk5jnNVfm2rpS8umHRhYAGz8Q5LzOo5miUbO8xOdntSNdU1FmLePHygAFOadUF6XtWj8feg/ny7wnj4/DW/xvgJcj/8WfWntfDg4OzzgcSXHgH+t2gd/nHoNOlJrB2Z4mg00/ZKZkTEhLq8gSiJqWNfr8o6+6ExVQrmubTkP9KxakhTiSklJtyPeqt0WryONMdYEHp4HnzjHToFObNWuhnim5R62ItjYrIQJIQFIfGObWytqNrLwDmBuufp+L2FO1NzpcsRzbU/dTua3OCXHQNT48yezJ1iUG7c3LDIr3bmTpR4+lnCTzWPqpDU0c3FijhAGQMO5Y5PHKCQnVoxOrJy53IxuJsOxzPbMV66qJfd73VpHXsCTOvl/bQvJ0UEzWDldZntrX4L1OPZLKVevpcXDjoxM8jprEXX6E122uwq/LRdOgJD5QjNnhBBhhTT0jHUpQSollmDa0SfoGAT8DE6J52dd4cleXalGCo46h+M4GaoO8nDqtdgHe7X+D/Jd/4vj32sHB4RmBl+f5cR4Dzy20Wi00m00sLS2h0Wic7uWcUfDu/rjNg9EUugcGiKaUXjSA6jTdTsGe3DXNP9m1TpelEfHkWrbty0UGydkKBZBRxiAbSKmmJfNYLj/CIPjd9SZone7acVVQqVb9YSblq9gIU6dAIzoPZlW/VCLpyjyWINa3WfYIMnYyaZvvVNdExDrbaJQorYXFEvD5C3ntLjvC49+ziaLWaw5yfQ9N8ngAz13Pty6TqVPPvE4iKZmoMd1aOFDnNSolluH68jYG6/HeSkbA+9tPk3zMl0m6VN+SCdnQSdGHqmwT1hJgNwK+uJ1fN7Qp1J3oUTfzQ/uOnfHRtamnyo5FkhTtaBpIF5nqTJQsrlVKU1O31DMjvUS6rYopdUyblnk/58rWebRz4annHfVC4C8vI7nVMRFKYsMMmOgh/+l/euz3Ozg4nBBOJha7TIoDMap9SOSJWtuEteNH9SJlCf5Tok9Z3x6Z8OsDXmatoEpseuEq908ADMZLRQaOpZLNZOlKeWggmZu7tjHwVGM+7cfSmjwQPUwOBnAt6QBm+OXB9CnqsxGLvib2zRemJe8fG3Eu1UxOObHOFX2iD56C239zI/fz/IM8dy1TbZYn+0M1ZoiWCwz2lx8B/s8OXl8tZQwDkpgLFvieHDZIby1RaDUmORrKub50L/DcWbrUfm+dbdeLeJ2vOMx1tgumBxnrm2PtNzfyfm5f4jlcNA+8eD/w51eQ+LQLwI8+YeWz42GTkKtd40Z4Ruft6NDGMLbMVw4T2gKig0psbMGoq20s91NN4Q7UgW9tYIZJLfUvmue26oo7ilaRBKxdsLZynROlDrkXz8H73J8BywXkr/+545+vg4PDKYEjKQ4ApNPnvo8AYQpk0Yg7amjZh9EArX/kmwMpS1TMdXYYkMio7qFdYFArSRtvbcgncYDb1KWcMdq5kcg+dH8TPctgVGNzhNVWVm05ne4wYLUkS6MiSRUBq1i2IE/dOrV4vmzZGC+3klaUmcvpiQ7Tu2czv151iOe7XCB5eO6ciVB7op2Y7lLcur5Nr5jHxld7zvRDE77GIpSd7DEbsVxkOWPlXvSBaw6xXNEuALub1MEAwKWz8NLf5fevKdjQyEy6nPY1zNsEYh3/fMB7/k2rz228B/z7/8P9PzrB+6geKOpLsxZUV6JeODp3KRIzvjHxeanHQFw0YbLe2yi1jh81zAPMKbkinVcPTgPfWU+Rs55TkNu0buDJBAVg+XGxZEZ8Zfl8DET8vW2JuigZUeA9/h+BdR3ktX+79vk6ODicEjiS4mBIfGsj1Y4Y7WyJg9XOq6pDmZTpxJWYT/wPT1pWZqFEQrGvwaxGc2CmX82+PRVvXOYxtFtlucgMjQbnCsW3+Q//0lOegrfvD/iNPllrxqQrk32rMfULC2Wbsjzet+GJ5SEzHlNdrkknOT9VpgBgNuhAjYHzggUSqK5oI/Q67mtQ4zMp+owdi+bncfEsv//uepsifajGID3R49fEZ6CMMtOqaNBtFXk+Vx4mmWgelW3RIK2t1MBqG/1W8dial6Oh12Z/w0p5reKTNSCK8Khjj/d5j2YqRoIzz0qIWmrU2UqaXUk9y55oR1k1NtHtVYeA8aaRwSfGeE6j5cbU52dr65K9Nlvh/YoyEi/N4g1CuyblBHjlLiO7uQcv+V3k4b8/sWvm4OBw0nCaFIdV8L7xURMlhqKTGK3766yabghUpKQCMCBuWwIenGLwKcckAmHGgDBTYeAf77NLpxKvXbIAxN6cvhr5xn/19M7jex/iOhLfnsq13VnJmH6vAuHGgITp4jnL+pwo7lvPSc6FlC3Rz50DHh0H9oxRxKoi3Pkyr+2lM6tLFVFK8pL43M+2JRKdL22jkLTZtzZw7Tya7jAYlxKKWh+apKD1qkPHdpnV63sipOtEsGvc3HCPVHlu0x0b3rhW1mL0nPc1SOTK4l6s3jhqaa8Ge15uJcVqbKU3bV0eze4djc9ewvf80D77zP31pbxPqq9aLpKUtIokKY+PW3v0jkXg1Y8fe//azny4hnz7u57ulXRwOG/gNCkOTx+NATMC/dBadtWfQu3v1RAthz1VBhnbklVvEGYMNEPxzOgUGCh0Ku/OhTUPn+MmHndM/j1N5M97G4lKVUo2CyXr6NEheuq/UR+w5DDeo3B01KH0qTBT5dP6YolP5h54vEM1I2tjfdP27Fi0UlcvBA5JJ9VCmfvZ0CbRuGCB1/K6PSau1fJH6gvZEd8XLblsXyK5UYKi/i/jfQuwT0VQ9jWYUVjfPrGsys4FrkE9VroRA31dzNe0bHg0dOqyZtYGgV272AfykTlS6oeTimA6GBESj2ZWjoWrDgP/9VJmo7Rt+pW7gK9s4X266jBw7X6+3otYxrp4jse/eG5t0ffoddTrvb4N7z//F+T/9PVPfd0cHBxOCI6kOKzGE2MMkh1JfXs5n+TVuGwQ2DwfnTgbBzI/ZbQ9V7pFluT1XsR9XjbDADtboR2+IvdO+bC3/Hlvg3f/h4Gl0DQvqmnQ0scgZJC88jDXqzNzngr9kKWOx8d5Pda3zV9lX4MERDUa6yTjMUrMZissjQG8VjMVE4lqINXjqIi0XeBx9owxaC+VgFlf2prbq8sXgIiLRbSrXVteznu1FhHrh9SzbGyf3OyeKKVe47EJM25LhbB0I9MNtQtc62iWR+chqS9P7JvOJJXP2EDM2wKfE5i1eywV4rxcPHZWDuB1f+N3mOm5cwc7ptZ1mP2LxZl2ucjXygnwov2r37/W/KO1iF4pAf7p/fBwPwA451oHh1MAR1IcViF/zT+H960/ZqDohywzDEJqNQASDoDZEX2CVSOu0cFwOkyunQBRyMzAskw2PlTjE/EXtwM/shs4WH/aZZ2nhLYgBxlQgBmFlRJmL6a6DPzNY2RPHpsg6VCn0p50FQUZyduS6Dh2jzGL0S7wib0ubqrxyEC70QzHrnHziyklJCIbl637Z1+Dbbq9kAFUZ+OEmc0Z6oteojZcO0OS+CQj3ciCuJIyne48ilIC/NijNiRQt9cszGyFx9y0/GSBrJKM9R2uR036VA/ULgCPTALrxqjFmeqankbHKmgHWSolniizbh39XKnLbJQ92YlWS0NrlWX8nMZ1cxXekwN1kqnLjvBa//1O4A33r012RgnKWtftGPBwE3CgjnzTM/TZdnA4D+BIisOTEftM15cSBoDiwCzwiyOD9lpFBsxCZl0xfs6AurllmYLakBmaQsrySFWs3w/WgV3jyHe+8xk7lfzFb4b3lY8zE6FzhBZKJgDeumQtvqPY1yCRmJOyShIAhZ7NowkzZoY8kLgsF/gvktKXzvsJhiQtGtSXi+w+GeuTYKgYVkslQc7rMlPlGgqpfU0is4O/ZJaEr5hwzpEHZgrUhG5dh/dMBzW2C0YiD9Z472Yq9BPZumT6oy0trkWFw93IBKRK1NSxVjUy2hVVleMtlswF9lDNSFizz8/NfNk+A0o+FktmwOfn9LSJcmv/rQ/NEl87plbcZz0bm1Ad2nXUrJ6X21yq/Q1er9c8RrKl13OiZzqYtaAamhPt8FLL/QN1eF//DPKf+vkT/sw6ODgYHElxeBJW2pEz8I93p8BAHGYMQtpW7IF/uHUooAcGkEDEsjp4T8s/82UGRg0wVx96RgnKCjQ4B5m1yr5ov3WAaNAdxX3rOJlZLfAvElO1uQozKZqhOVIB1nV5Puoz4uckNzo4cbQMUx+wzDAMmJnQgKqdOrvGWHLoiI/IMGDg1WDaD1laAeyaqkFamLH81C4AFy5QnKv6l1FM9qi7mC8zE3RQiMQFCybE/eJ2DhkMpFNLLe+jjPfwoJizVWXOk2YgjlT5GelG5pGj2Y2JHs9zqsvXSomVBXOYd4rqnFQwOxBjPiXJSj4KqXWE5bCMSimxzJJml+oD4CX7mO16eJJr1gzJltaxu5Iyzz4zJ4NWkaMDlphR8v7qPwOTPeQv/8WT24+Dw3kOR1Icjo1+BHSllbgk3hRJaBmTQsqJwEhN4Ki29TqdWCcUezmD2nIRGO8j/1evefbOQ43R1Evlxx5d/fvlopGUbsROHX1trG8dOfvr/NqN+ORflum9OoDxysMM5k+MMUMxX2ZwHJ09o54fu5s2jTcHLfIP1nhdt7T4/hx0cy2kDHYTvVVP6OhG1jXUGDD78rwZ08HUjwqsw8A8RtZ1gHYE9CX70ouo1dCOlh/ZzYnWG3ommG72SdIAa0cvShZiGACzokGJJbNSSsyfppSQ9JSStXU/lZhW/cPAPGlGyzu5lHZU5zM6m0dFuJqF0a9HC2onZYbQ1taTSelaSKVcNeoRtBbWMocb60vruvxcHwJBRq+aIHN6FQeHE4QjKQ5rQ9t0UTLvFE2XT3esK6NdsAGDmWfmaGEGeCKozTwGhkcm+Yf7174G4FkkKaqxKMerA/e3NzAwa/dG4gP/38XcXrxZVobgqY/GMCAZ0Kdwdaid6jKIt4rSQeRbRuD7UxQMJz7bklslO950l2RmuWAlFJ29Mz4yTqA+IBkYiDA39S2Yb17meb3wKMGnBnaFds7UhnSijVLez//r+5ZVWioxm/PIJDMr6omzUCZx0hJPY2BGfktSapnokbT0pTRUEdO9amzakqUi1zA6WVndhRPPpmrXhkZQlOSNDnNU0qCkTV/T7F06Qgx10KRmaZp9Iw9HQ7U+6iicw3RYx9peBdlHi2uv282vD01Zu7us1cNNjqg4OJwAHElxWBP5NW+F9/Xb+Ue1OTCtwWSXT/H1IQNrmPGPtHb/qJPo6KyVXgQU+8A/ehSoD5FHv/3snkw1tjVedYivtQsUuyoxeGSSBEODeJADyxGDz1SXxEXT/uXYPE80kG5f5PTcmQqvl99j1mG2Ql1Gp8ABjE+MMUCu64iBGfgUPghNZBulwLUHSBgmemZ0VkqAWNxdpzvc53KBBCZKn3zea3WgjNr5X7BAkqSlmmEAFBLg0ln+O1zj+TREk7S7KfNyQLM9Lb8UUu5H13igzgxbQ8pay0JkYxEKz5d5vus6fL9meA5XbXRCkBsJG81EfWUrS1iqo9EOtH5oJRkd7zCa/Tg603GsNmzVKin5mS9zHcOA4trZCnD941ZG02zP8SZhz1RILMf6JD1CkDwhKY6sODgcG46kOBwbRWk13rjMP6yDgISjGjPwAPa0nHvAIER++b88rUteE40BA+BlM/ba/3sZ5+oUU3PELSdAGq2epKzBKvOsE2WqyyD+yASJWymhFiT1GXznpC1Wu1tyjwH+ohSY6gGzZRKQDW1+3di2jplhwABdEFO0UTv3BRHxaseODgX82hZuG2XMkBwLXv7kmUNKUDKPJnKBlIJykFA1+yQAEz1mdrR0FnnWvVSNuZ5Eynrblvj6QonXviIuv/UhtSU+WNraNUYBcD+0gZajHTp63qlm9cCv9YERECUbWlrSz2N2rFQJjk8otHtHBcHdiJ+d+9eTfOmcKSUpOozweF4tL9rP+9iRKdTTI1mk72yAV/5DYEsLeeX/d+x9ODicp3AkxeGYyK/6FXjf/QhFkvoEuFDiH/KtSwyaADMHxRT55L85nctdE97j/xHwPOCH96z+xboOPTOKCYPnpHR3dJrWPquTdY9U2Vq7tcWsSHXIjJKXM5BP9EhyVMSaRHx6HsjTvQbVxoAE4znzMu05k6GDy9yXmswBaxupPTZuAt5HJ/ieXggMQ6AfMABOdm2K8clgTjp9yjEJxLiMLfCwQkAx3reSxn75TBTTkQnGHgDp2irHNtPnaL7QLjALNAhIECuxCWHVQTY6Kgsixsa45qB5vCgpUZHsqM7kWETkqQSwSoxUlJv4wMNTJJtjff5eiScgxnVPYXpXSDnle7EEPDANXAbzvZmt8PO0fQne8vuAhRLybb9+/P05OJxHcCTF4fjoFBg4JnsMrNoV0Q+pl0h8/qEdBsDk6V7sGqjGq/UPisYA+M4Giji3LdEP5apDPK9+KME3NvIwkM6d7YskCAfq5gXTicynY6lIEldILSAGuc2PqcRW0jlYJ8HTbECUrl22UVw7YvKmxCj3GDjbRZLGRyZJJk6kVfZQjW3WVx1idif2gWHJznUQMJhGQ5KupSLJSn3AzI+uPcg4ubojGZB617q62mJzv6dpGYogJ6kKRUy9WOK1KomDrj88djlm1IROScmpsvhX5JI9K4soWctNQc57/cQY7/u4dLStlbTphyR9QcYMVUvuVX3A6cyhtKlrGSrIAI+dc17tPyCf+K1Te04ODmcpHElxOD60U2N3c3WAVZv8hmRRtp6hT3+jwwFnKyQmYcZMkHq/PDZBorKnaa2+9YF1igB8sj9QA/76EtrPT3coOp3oARe1qUcpJdZOe7HMhVFr+umOaXl0oOK2pWPPgzkeVBuUejaIT7URu8Z4fiqiTX22Q48SteUiLeF1bs69G9lRVEgBL5NJ2B7vrQpeE5+CYZ2v0wuBib5pZspd7svPza1YM0vL4qeT+rzmhdh0HkslXuuBiJUvnDNdyjMBnRN0PGKTeiRQQcbz+5HdLO0dqPMaBZm1iJdlblIx4Wdl5yL3XUp4zfbXSR6jlHofncBdSpjxmquY4R0gBogFePs/Anj5mVk+dXB4FuFIisNxkf/IDSz56JNxYWBdK0slYKmE/AVvOd3LXBPewn9gNgAAvrSdQbMxYICtD4FbP8924/vWiQ9MStM21XrkHgNIKWGZa0uLOpZHJ0g6LppjYO2HDDjDgPqFSkz9Sw7azNcHJCzfm6YGY+My17QWQRkGDGp+TiIyWrbIPeCbG7lNTUpUG9tcY6vIjMUgYNdS6vF8S6JheXQCeOle7mexRNHwKLnRScIaQKOUATjxgVy6b8b6JHKKuQq3qYvr7VjfurvmRFQ8CG2CsYpgtSusEjP7cqjG9+tk7FONYQB8YxPv8UKJ63r57mO7DAdyvlp6mu5YaQagrkhnBzUH3OdXdvD6pz4/FwD9bB6dMF2T+sKoGL2cMDu1oW3X46I5ITcNwMvhfeEOoDZE/kNvPvXXxcHhLIAjKQ5PjQUpBaSS144y/hHdtMyAd6YiSs2TQ7MjkQoYyww+W5cYPL+8TQJPYm22msq/6hA9UAASDP0esNZWgMF5S8t+9kBS1CnwmBM962Y51pTifQ3gWxsZrFpFEqhNy8zMHKzRZXZKdCeq49Bg2xgA92xmMHx0glmixoBP6duPMpR78T7+fr6M/NX/nMu960+4ztQDto5ct+UCMzGzFZasZqoibM1JyrT1tyrtypln4t7M4/mr3X91CCyWuW1VWo0P14wErYW9TRIuPweuOLz2NqN4ZJJk7uI5Xqdvb2AGR31l9jWAr25ht9la0PlOgJGr9W1eh7JkQKLUNDQXz8mMofDJpcUMJJuhZF0KKdcyI6aAqZjRxQFwWMqHkZBN7Yxb34F35P3I1/3rpz53B4dzDI6kODwl1nLJ9L76MWCpiPy6G579BZ0APNwE1EZe0ODQEk+PdoHpe/X4qA0ZHCoxMB2TsMyVzf9jLWhHS2Pk6V+zBapZUQda7QAZhHxf7q2dSVGtz9YWcI88/T82waf02KfeZKormZOErylJmeiRRAUiqD1QF8+X4WrL97H+sQlBQ/xYWkWuox/KgMiQ++4USMQGoZnGFRNuo7b5g9DakTctc31BzsySdi6lHgnuYonndsECy19HIw6Ar22WmT4+93HlUxAVzVzoqIKKZInaBWtVHohI+akyN3uaFLu+aP/xj3vpGl1Vj48DY0KMdTRB7AP1jFkwNUmcqQKVRV4T1UT1Q5sgLQ7P3q6PAVGK/PlvPf6aHRzOITiS4vC0cCann9V/AgD/0H97A0lCJRahq1j690MG1GUJ+IslEojxPp901W/j4UkGnPUdpuYLCYnDoxMM6BfPrbaf/+oW2tQ/d46ahEFA0XFRAviFC8fWRDxvpE06zEh6trZ4HLWZT3wGz1KymkCVE5Z0BiEDoDraLpaN6Bw9KRmAl/yuzFkSDYleg/kyg2QCuxYqfvVyK4eEGa9f5oknTcJrrO7Dfs7grISgmPBfOFL+GW2d1gyMkoktLd6bQzV6laQ+s2BHW9mnPjNBvZBZGjVm07lI6omjox3+7gKSoFfsOjZp277IbNGxMl/HwwUL7Nz6/hTXUNb28ZDlnkEAtD0gC3h9W0XrEuvJ0MWiZANnKySJcxV4+/4AaBWRP+9tJ78mB4ezDI6kOJwz8HATA9TeSbbqzpepCSnH5mCa+AwOc2VzMN3TtKm4ccASS2PA0kqQ83eDgEPpBgGDSTeiCHcgrb+XyWTfiR5LK5nH4HbXNpKSH97DAFtMxDNE2lb7IQnTWlmVHYtsVx7vm/MrQBJSSI10KY5USUwO1mxAoPqFzJcpql2DpCD1V/uT1IbAVAfIq/x9IWVmSbMq6huj1vVhttrPRa9xfWBdT9rOG2ZALaeeqZSYkFg7db66heWaKOU5XLDAa1CJSRTv3cTMSuLTVG2sz/uwVLRJympT74GvdQqAL+ewadkEu3My1fmvLyW5W8tjxs+pIzravfepcFA8VR6d4H1MfF67ya6JkFWIHmS8Z2oKp9k+beHuyBykwzW7nhcswPviJ4DnH0Re+7cntzYHh7MIjqQ4nBPwcBNw91aSiukOSchsxZ721Ul0aaTdVYWM5ZhBbn/dnrg7BQaD+TKDxGSPBGCdmKbduYMBKPG57USPOp1ORDHrMABecIBZlufN8Jh7m1zX4RozL9/YZE/76zrcZkPbjMqOns7cjSwzoJ03o+iHMjeoaufXkRKDDlc8VHvy0MFUCEpd9llIGcCnujbFuBvxOqmAuhdySnEpsSyLIshIELS0owQo83h91Ndkb5OZhufM833fn+I90/MfBtzm4jmg0iUh2dxi23R1QNJVH5o4Wjtk1IdGs1WqHelGNv9IpzQrUf32BpKlo/1plkrHzrIcC92IbcbPneP6ajKEMRbXZp0JpCMVDtSlzT3kuhdL/P2ytLP3AiDoG6E9ULf5RIdq8A79CZD6bnihwzkJR1Icznp4X/sYkG+R4Bmxi2ZMdBB1ISSJNzLDZ6TcMN0FXrmLwenhSeC760kywozfLxcY1C8/ws6ejW0Gtg1tEpVHJrj/QzXgdQ8z+/LoJFP0hZRaBsXLn2DQeWQC+J/PIRHQEom6yarb7WjGY1+D+x/NZBQTZmhGfVV2LvBf6tP4ba904qhz7nwZ+NxzGIyLKZ/w17XZXj5US/6MgVOdVXVI3ljfZhpp9qQcWxlktmItxo0BUJYOpqWSlXxyiB5FfGTG+sAlM9xmf50BeijeLP3IJhxHKff/xBgDuM5h6kg5S0sp2vq8rsNrqzoUHXA5lLKbtpYPAt7PQkqCtK+xutwGHLsD6HioxLwPKpZOfHEWXubnM/P4uVSTv43LXEs/BHoFu16RZKdykMToyImlog2CVM+WH37C2ew7nJNwJMXhrIb3yc8C0bgMoAOzCBfN8w9+Y2DTl8d70o0iT9BLRZZltPvnNY/xn+KxCXbALJQl+C9S56BP59sXgTd9m98vlJkhqQ1t7s2xEGRM9WsQbQ6Y+ZmtcP17mtSgKDKPmZfdYzyfjW0Gr1aRpZGmiGC3LTGA98TG/XCNT/Tr29TXeJB2ZilfhRmf9p8zT6IW+yQuYWalqEHIQKtuspoV0dKMdnsBPNbuMa7l8iN23VPJWnhCgHSeT5DxPUsinv3+lGVCtG05EpLxxBjXpURIy0zaypz4UqLqspyjM5g6I0Mbe9KFtVgCLp2x0s6Wltj7+8efdHyy2NriujsFc889JGW48Z5lkwDTGDUHJL+TXZaL2kJYdD5R5vF6Cj9Z6Qxavzoz5oYXOpxLcCTF4ayF92d/BVRF8Jr4JCHa5ptLME2kjNEq2oyhREScPUmvr+VIe+E8/ylaRQbhiR7JymhAG+8Z2RmF+sl4sICkxl+bl9lmrOWd3WPWzj0ITH+QetaNE4o3h4pov70BSMaBqw7zNW1tvuIIA9hXtsjwPmlpVafgopTAPPCYlZjbNwbMHA1CE5jqtGvN2ESZdTUlPlDscF/bllZ35/SkLKXDAxMhF6nP4473+P26DonKQtmGQKpfS+JzLY+Pmy9PdShdRxEzQVri8sBruXMB+OpWZh90sOFlM1zH96dIDpsynkB1JpnHdWxaPunPIHaPMTPWl2u2rmMZpVaRpMQvmneK4v511k49W7GOp/pQMk4ZtTelhPf3UM2GX3owcnXJ2oTYW/gPwD2bkL/mn5/8OTk4nEFwJMXhrIP3if/GP9Al+aM9DPjUCViXRG1ohlwq7Jyp8PXcsyf8qgTJ46X1E58ZCg18gGUT1H336FkxmSe2+TJRWVtyhwHLSmN9lhcaA/7bvghUxRF3ucAU/uh036GIUZcLNlPoklnqM/bXub8otfkyLzhAcvC9aSuH9EN7go99zsHRp/ScYkwsloD/9lzg6kMMuH4OdAPzDtGMQ0/cZb+5ka25o90vg5AkohOtviZjfe5/KDN7EvHe2V8X0pQbSWkKYeqLnkUJ3yAErjnEbda3bV9BJgHeI9l4ZILXbcei3dvpDlDfYGZ4y0XgoSmSHDWkOxZ60gXWjXhdghx4aJLXP5HWaC0nBZJ5UjK3WCLRUo3R96b5Oy1hJT7wQ/toLHiwxmsPkCR/aTv33QutxJN5wOcupOZFScre5uoS4XgP2NOE97efBiox8le+6djn5uBwBsORFIezD82+CUK7Eev1FZnMvFRk+cKDPcWnPn8XBwximt5Xr4yJHgP4sSbZ+vmTUuoAuK+5imUf1KlVXUXVF0QJCmCzfx6d4M/fXc+n4voQeGAdA27sAwsjQXuhLHqEAktFF85zzYFkMA7VSMA006K4/Aj/zVb4xL+/zn3r0z7Anze0SSBqQ5KZCxfsiT3ISGSGAYlTmFpr9K5xksO5irnoAibqBExX0ioyWI/1RXeT8tp/Z8NIVibleV06y4zIX19q1zKWbZ4zb2MFAF7XKw5bpqmcMGtxsMZrOt3hfVK9iup5AH5WdMDhVJdrmexynfNlvv+ag9y2nDC79cgk752fc7sgtwyRZqQ8yTY1ByRzvdCGKqYey23rOzxG7hnJe8HIbCZFdchjtor2GZ2pkNC0Slz/ZTMyC6rGdemMpx97lNmjSgzvr/8z8n/yT9f+fDs4nMHwT/cCHBxOGstFC2xdcUhVsy8VHKqHSF1aj3Mpm2iGQzt9DtVIXvrH4evHmqjr5QxqOxbNwj71pQsjZ5DSbhjAAvarHqfb6dWHmMoPM2ZXuiHLBBpU48D2V0q45sUS8F+fxwAXpQxi1SEDsBrHaduxYqrLAKglm1LC9/g5tRPbl6zkFWTUbOhUaF/OP/dsAKIn4uMtLWvRHkVjYMQs9fnelowxjgObB7Rtievycupo2gUb3PftDUIChFjMl3m8F+9/csbj8iM8/8yjcFmnWOs5JaJdeWDaiIS2IAeik2kX+Fl6YowEQknh/evsvk11SVY1a1cb8v1jfRNiFxMTFqdyH7WstrvJ9/pyzXaPkSh/Y9OxP3sXz5lQ+NWPAT/7APAv76FIO/aZNRrrc81HqsxsaRlrS4uvz1SBhRK8e26Hl73n2MdycDgD4TIpDmcf3nAf8MXtzDwMA+vW0U4SgH/Ye+InojNsACMj6k0y2TPn0cS3Dpqnmqx7tLX9VFfKHKGUh+R7bV9Vt1QlLDsWuY/MYzAJM4ona9LmG4UWjJUgBCFJVXVIG/9YMguXH7FjKwFYC8+dA7otZpr02gBPnphcia0klkFKZGvsrxIzCzN9lKbHkyxQLuU4JSTqAdKJeF20FXpLi7+fqwA/+gTJxGMT1hLdLvBebWwfeyBjN2KQnpfsRihlrJkq70csmY5uxIzNonxWJnpWhosD3sdczrkX8Xp3CiRuqs/pRSzdaGt7KeFnTL1QdjetvX0QsLNM/U00y6R6oyNVklmAGbN9DV4bLd3UhiQnR+MfP8x/imHAn3vh6s/uzgWSvk3LK58L1wXkcDbBkRSHsw554bfhTfwxMxFquHakykChbbya1i+NtBv7st1S0XamQWbbEoNEffDUBAVY24FUA2gn4ho0c6M28RrU9L1q0LWrxACpZZB1HRP+FlKWiA7UTWz79c2cPP0v/q+VQ3vf/iMG39Gl90IrQ82XbYZQOTGhrV6bo+HlzKKE2epOlFGEGTML92zmfKOprv2uEgMLIdezUFp9rT1wLXuaJra9dqTUsa7DUpLOtqkPmRE42sNE0Q9Z6lgq2rV+0X6e34PTPNetSyRDD09Kh0zGY3cirmO6a5qbx8dpoLdpmYSwF5HUNAaW1WgVV7eYX7DA0p12GcWBXUOdmKwZHPWbWSrZ/VJDOh3ZkHnMzh1PJ6PQTGAhBYahzWwC+P5j7MMb3Ezn2mk3E8jhzIUjKQ5nJfLnvxXe33+SwWEQMiB3IxMrbmgz4MRSAiqmRhr0n5ebXf7hmszvkYDdDxmENWCU4+PPeVEr91yezvWpW7MANTFE6xSAwkgnUJABX9/CQB4HzIx4OXUho1mKKWlLvfYAvTz2NVYff7xPrY6m+tVPI8it7Xddx0oV1SEwfhTR0sGKxdRM8AAR2garPVkUjQEJwHc2iAPukOWjIAMafaBdtOvWjnhNukKUvJyljgsWVtv7bxKDtwenSEI3tBnot8ufqyNVkjYVmH51C7Mw4z2ed5DbdGq1lG8VqWXRAX46oPHwNM9tT5PnooLeTcvMsmlpS9enQuy+ZN8O1K0r6IojwJe2kYTl4DgCzezl3kgZUIzlNi1bhme8x+83L3O7B6aBV+069ucN4Lp1wrRqfnaPcY1askp8krGjs2UAtS25B+/wrcjX/+bxj+XgcJrgSIrDWYv8lW+C950/YgCZ6tIgbdMyfVLWt2VgmzicjvekPCGpdn3SXSxZW24hZZBSS/VuxD/+qi/Z0rIuFIDBQf1DiikDaUkClwpbJ0eyC/UBCVVbpukGGdf9jx8G/uZiywDtbvK4rzkqza/iVI8ZIW/Xn8lxMuD5iwzUR0p8LRahaz+UAN63da8lAga43mOVuqJ0pTzg4SbzKwGom5jukjw8MsHjr+tYOSsV8laXjiudljze53uPRuZRHNwuGLEspiQNy0XqLkYzWY0BCY1mjra06P67pcV7sSAuw9/cSPJzyawR0DiwzJdqXwBe/yfG+HnSDJkKtHPPTNn2NEkanzvL66ZERwXaKxk0Mb/btEwS9531zD6NZoc0q9STcxglhUdns3RYop5H7vEzu2OR9+GBaWYGx3v8+cX7Vl/jhbJNWe5G8PofBFIP+QXvXPuz4eBwmuBIisNZjfyqXyFR2bgM/MyD/IO8vm1BrJwApZEsSF2GtqkYMvGZPemFQLvBgBplJBvqVKqD8pp9BsmpjpEMNdaKfUm3i2OsBzMjGw38UcpteyOak8ku8MbvWObi73cy+Bxr+nI5YQfMtzbYnJxDMvulGq+eM1OV6c56/keVTFYRj7Weto+F+fJqLYpmAi4/YoP/dL5QNzJCoFmI0GOmp35UCedwjfevEgMv2UtisXuM96MXArNl7kdbzIsJiY7e7w1ta/PW7Np4n2sDSF6CnB01e5pGCHW9AO9fp2D6n3Vy7b43zfsYZNLhJCXF/XVmTi6ZtVEEg5E1qqj3qkNcqxrQ3b+OGTN16R29v4o4sPlQXs4MiXIV1VcFORCkZmrX7EtnmbTez5dI4tRkcF/D5gMtlC07VIk5vLCQIl/nSkAOZwYcSXE4+zHWZzAAKHA8etbK6B999fuYL5thmHqPLBcYBDoRA0NXOjMA/hF/aIp/2BsDabtti8g1NWFuu2DBWyf5Hq6RiKguZi2NwKjY9ZW7zJxOn8aLqZVd1OZ+a4vBvD4w8zUVZZZjC6K9H/C/uWRNVk2XPlosCzCbMlde/Zp6s1RjIJG2YyUcqW8GeeXYNC6jeP5BBtRlKWfMyGwbHbq3SdqRLz9i79HxB3uavC5TXa6jEvN+zlRYIjpU4z1vDuzalhKSisNVko0H1gG9BV7bXWM8ZjkhCcg9nnOYcY33bKZ+aKLH65CKkFbLLkeqJCnaidUTPUwvBH5kt62/La7IWs6JxAV4ocy1T3Z5Xh0pJQYiBG7L53hryzQ+AxFb37eOBC3MmF26bIaEXEXRmQcsyqygsT68g7+PfOO/epofGAeHUwcvz/MTUAmeG2i1Wmg2m1haWkKj0XjqNzicNfBwE58WL1xYW9Q6inaBf9QHIQ25Llhg58uuMQmgMqW4F5nFejkGugXzVZnuWjamOmQwUit2L19dXlGX28yTfUmQ06nDx4OWC4Yj5GSpZFqab2/gWp87K0Er5Vo9MJBXY2vRLh0lktVhimthvkwCMVvh/q4+9GRydfSwwszj9mP91fdgVK+juhcNjGpQVom5vjEZpBdlJIqaifn/Lubvc5D0afDeuAy8bO+THX+HojNZLpJwLIrmZ7pj/jJf2cLPwOaWlVMact/nytbxtXFZxKkBdSaTXR57ucDPgY4p6Mr1bvb5vZry7Vzk99uW7Breu4n3Xq/BlhbPux/SF+WH9vG+7m1aZnD3GM+7MSCxWiit9ruZ7FH0u7vJ63bZDD+bauT37Q3MBqm7biGVbKCQ2SCj0HcYmMHfpmXkk//m+J9RB4eTxMnEYpdJcTh3UIsZlP73BQzShZRZCQ0i2umiBm/bF1db32sA0SnIqWeOssUU6ILBW63kl0oM0nMVIGybg6r+oVcCoi25PszxNgcQPgVByT1pXRay4+e2rmLCINYYMIiWk9UZIzUjmy+bC60SlJkqLdcP1YAXHmAZAmAQ1I6S/Q0T5/r52qWgo6cp+/mTRwyo220OyUzl1uWk5mtqfFdOmC1QYjJ6Py6doUakLS6+ms1aLq7dcl1IbbryP+zkvZroUa+0Y9GyDmHG6zHWJ9FpDsxnZRgwc5F6zMbsXAQe9Y1YKBlTT5jMY+ln6xJ1J/du5DmNOsEqujIIU4mMZnpmKyQalx0xooMa77Ea4M2XR0qS8jnrFKwT7PFxEp39Dd6PrUvMSF23m91hiyVmU3IACEio/RwoiTX/UoX7bfZXZdBcy7LD6YAjKQ7nDjQY/Pz9T/6dZgzigE/J69sWtA/VWOYpi2FakDEA7hozEayWBeKAv1dPlWUx51LnW9UFtIpAXrSOmoRp9BULfg9GVjysLVbNwTXG0iVUjvnaUolZhn0Nkoq1uo5Uz1IfcG1+Djw4xsDVFaHocpGBctuSBOg+z2G5yOAMSEdSxA6kxoC+Gzr35ug1j7YUKzQLNGoypy62gLXj9kOx9U9N93H0flQQfOkMr/GjEzz31DN9ylq45iDXXU6snNTsAz/+CEnBUon36+pDIqJOeG13j/G4m5e5j+UidR0H6uZlMlpa/NZG3q8NbTHKk2uhTruA+etceZiEY8rj/utDloMme8DFszZssRLTZ0XnOq3rSNlL5v1MSVanvkwSrCMWvr3ePl8bl7nm5QJJXkcyaLWhTbyuDblv9Y7pRtyXjiLIAa/4HsDLHVlxeFbhSIrDGQvvbz/NDMaL9gPN/qn54xillo4fLU140raqU2Ynu/x3z2bg7q38w19IWRo4XCOxUbv4cmJBRb00lop8QgbEGEz+qzX7DIg6oVk1L6NBfxByHdo9FORcay5P9IWUhECNyO7aCjxvlgShH5hFu/qSRBm7br6zwUpPY32u4YX7rVSigfRrW6wkoxmgw1UGuUD0F/sadH8dJRNHExSFln4aA14HbWcOc55fJbaumcwDMv/J7c6bl/lZOFC3Scw/tO/YowxGoQMaR6EtxJPShTVqSb+hzbVecYRkMMy45l1j1pasnWGj+63J8EPNAK3vcL1f22KTjWPxfXn1Y9a99bcXs9zTKloZcF+DxPQiaUmfL/OzMlfhfR+EwL6qlRe1VLZpGXjpXu7jUG21RkuzbYUSr+9Ej59RJbIAj7l7jJ/fTcs8brMPXLC4sg5v7g+Bi+YcWXF4VuBIisMZCe/rtwNbxE/iwSngonl4kzf94Dvuh3ya1GBRTiyojHbrKF64n0+Y82X+ka7KE+jeBoNmkPH3mklZln17MPdZP2cg1Cfb2tDakLX80Q8sI5J6ZvuvVuvaTqvDAbW1+YF1PJ97N/I6VWObqDvV5ft6EYNeKZGWanAf6mmi0OPtr9sT/0Xz3G6pxHXsXGTgvuLIyXUDKbTzSWcaFVMjJ1pWCvDkoY21IYnajz9ybB3NyUDJTTFZe4K1ep8MA5rntYqiTwrMnK4bmZMuwGzNf38uu3zmy9y+mFpLeykB5urmgqzZrgvngUcn2TaceSx5XXOQn08VZWtrdDii1Ul86wzSkQiK50qnUTcy92A1CFSTw9FynQpvVQhejWmEpx1OnQLPK5e263UdeM2bHFFxeMbh/yBvft/73gfP8/Cud73rmNvcddddeNnLXobJyUmUy2Vccskl+MAHPrBqm9tvvx3XXXcdxsfHMT4+juuvvx5f//rXV21z0003wfO8Vf82bNjwgyzf4QyF9/XbGRy60sERZXyK3TW+ur326aCUUDy5Qdpch+ICejxsX7RSzUKJgaeSWHeHahRU46CD7AAGJ3WZXcmUBDb3RcW3YW7npn4cagpXEA+X9eI9MtFjENrYZmZi+yLw8t0cKLdzgeSknFiZZaZi32tWIxeCEPsMiuq5ofBF/KtzgVLPJi3Xh09uHVbsHmMX1K7xtX+f+lb2UcI1kDbbfmBdWiq0VQSZZbOeCvHRTHMEd2/lZOETxTAwoez6Dj8/Jbn3y0WOZ3hoituGGfDqx0lOtraoA9lfJ0EMMwb8uQoJx+i8o0tngZ94CPjJ7wO//E3gFbuYySiL7imXbFocMKM1X+bncEuLa9nfIIE7VCPRUA+ViZ5Ndx7v83M/1l9d9moXKM59cJrC2tkKz7Usxnx6vb+6hRkhnRj9/SngUA1e9p7VXV8ODqcYTzuTcs899+CjH/0orrzyyuNuV61W8fa3vx1XXnklqtUq7rrrLrz1rW9FtVrFW97yFgDAnXfeiTe84Q146UtfilKphFtuuQWvec1r8MADD2Dz5s0r+7rsssvwhS98YeXnIDjOHyOHsxeqDdEnu0LK4DVTsS6ZKGVXztOFnwN+Cvg+kIp3x0KZf5iPniYMMPjrQEPVh6zvMIAdqjGIeDlJQ31opZHRjMhAiEISAG2fJEFNwQAgEm1Ls8/9zFWs06JTsKnK2tI60QNe/gSv17J4fQQ5NTezFWY71IZ+pmrD7zYuc/uJHmfkfGc99RhbWgxiEz3zM+lFwJGCkYZSYlkVwLp1dHbN3iYDqGpZRluDAV6TgZxzlJk+ZVTfskJQjtK8aOfLMGCgfN7M6t8fqVIku67D7IhmkhTqujtX4bZHi3zXQpQBYwMgblv7ck8+A7qv0ZJTfcAylOKN37HvrzrE+9ALjeSMkj31MfnxR+ihou3bT4xZdmNdx4THD0+an4+2Lfcia88upEBB2phrQyvr1Ae874sl6wbTwYfFlJ/p2QrPrTokGdZBkkXJPJYSZpgunQU2LsNLf+/UlWQdHEbwtEhKu93GP/tn/wy33347br755uNue8011+Caa65Z+XnHjh34q7/6K3zpS19aISl//ud/vuo9t99+O/7Lf/kv+Lu/+zu88Y1vtMWGocuenA/wcpISLcP0Q/6hne7yj2mU2lPjBQsnNt9kLegf4dqQf4DVGj/1WObQcobqRS6asyfWZp/BvpDyD3gnAjYO7CkbWK0pUc3LctHEopnH42srcrsgVvpCzNShFhBCI6ShH3DYYJQCERhwAXvqP1I1zcveps2qaRdYxtjcYqZjqWjlpwUxSdu+yMCe+CQEk10GxrEey0pPjElwS+jmu1ww4e9MVQbq+dzXvgZJipa9akMZRyDXX9uQPTCnqz+nPu+3CocfljbxwzUSsEM1nt/Fc5b9+cpWnud0h+c12eU1e2SS5zQMrMOpErNksVTiPT0eitKZpG60m5d5jjNVktFFIWTfn2I55Kkw6i9zuCZuxUfpapaLNusnSo0w90LeC3VG1pLY+o4RlYJ8ThIhwerVU0xWiEuOm4DLAW/PB3jtwwyoHJbtZD07FkmMQyGSOi0aoC5HNVeHq7bGwzV462+SW3vTU18LB4cTwNMq97ztbW/D6173Olx//fUn/d5vfetbuPvuu/Hyl7/8mNt0u13EcYyJiYlVrz/yyCPYtGkTdu7ciZ//+Z/H448/ftxjDQYDtFqtVf8czmx4379N/BrkKXpU9zBftimyhdRaKfc0GWTvX2dBfRSaqTgaarDVLohrp/wx7kYcWLeyqJEn+vE+/5BrGQZgQNR2X/W6ULdVNWTTTEd9YN9rG24x4bpHSzI6WyjzTA+hGaTJ3mqR6joZvpd5PJ+dCxRPPjIJ3D/NYJhL5mJLi6WIunQgHZSyw2yFOpuvbTYPlp2Sqdq4zPNoF3icxRKfxB+eFD+VJl+LJOOlU5szjwHz/+xgKQHg+epTfimxMphmT5SgAKsHR7YLJHRbWtY988gEr+W3N9CILPPokzPZM/IyLXqi1Ofati3JpGPP7OSfCpuk+6YaM3i/9lFmSILMMkvLRbv/wxPM8I73mHUa/cwulMWYTzJUsxVuo+f++DiPoRmRVpG/74f83aEaz7U2tOnH6zprE/mJHt2TvVxasPsiYIZ1IF0yy+12LPL4OxZJ0DXDCfD/w3ifJaSlEkc2PPafTuwaODg8BU46k/KZz3wG3/zmN3HPPfec1Pu2bNmCmZkZJEmCm266CW9+85uPue273/1ubN68eRUJevGLX4w77rgDF198MQ4fPoybb74ZL33pS/HAAw9gcnJyzf28733vw3ve856TWqfD6YP3/dv4x3K2IoPTPHsaBPjHc6rLJ7xyDPTFs6RVtK6Lx8eoFzlY4x/MiljSr+vwD2k5Npv66hDoVvmH3YNZzG9b4rbaLjyKIGPKX70xlEQ1+wyoqofwcyCWDMuEzE9R87Rm38pWgGRVwKBcl8GEw0AG0kF8XSJrf44yPAk6UfeJMYphlTQoydGncZ2s/LwZEo7vrrfyTSWzAYBHqlx7QwLhbIVkpSSZo8QnAVGnVn3yL6Q2SG9jm5kc9Z357npmLqJMRMSeCYczrG5RLqZ8fbbC9aQ+yYk6ph6os8xVlPWM9xlANaD70jnUKfEccnD7zON5aEnrRCZeA8zGbF9c/dpET2bgxGzlXiixxKZZs2NNbV4uMgOln+3DVX6uByGvuYpuO+IV85x5Ek0dpdAqWuuxZuKGAUsvNTn3teYzyedvRUOiPLws2w5CE+UCMipC5iepCDeUbFRdsmJNyR7qCIj9da4/DuA99ilgrI/8Rb98YtfYwWENnBRJ2bt3L975znfi85//PEqlpxAbHoUvfelLaLfb+OpXv4p3v/vdeM5znoM3vOENT9rulltuwV/8xV/gzjvvXHWM1772tSvfX3HFFXjJS16CCy+8EJ/85CfxG7/xG2se88Ybb1z1u1arha1bt57Uuh2eRYz1+WSvT2nqsQHwD/JEz0oXJTH+OlDnH/GDdfGDaPAP7VTXZu/0Im730BSfLsf68nvJXCwXTAeT+BQijvUZdI4mKQDLRA9N8Unzojm+N0rliVrMuUY1G3Fg1usqsNW0PGDERs25opTBRm30l0r8fhgAnre67fX+dbwOpYRi2ktnmRE5XGNnUqvI1mPArlsh5XV4cIrBe7LL9SVSXliQTpJc/DmUVDw6KXb7Eqg8MODqxOdOwYSwQc6v7RrvT5iJGDSx4YSjBEF1FkoWR7t9LpuxMonOxhkVHl9xWBxhRbOiXVjfm+Z2Ov5A3Vknu0/t9Hsi2NLiv8zjsaLMnHD7IYP++Ii+J/H5WRwE4hwsnVbjfZK5UAiwDry8/Ihlx7QMtmlZTOMaJCLNlGW3UMSuOoRSkXvMdC2Un1zaOtrrppisvi5qzR/kXJN+Pg/UuXZfMjDqjDszQijDjGXJSgxv+X3AA9PIf+jYD6YODsfCSZGUe++9F0eOHMELXvCCldfSNMUXv/hF3HbbbRgMBscUs+7cuRMACcbhw4dx0003PYmk3HrrrXjve9+LL3zhCyckyL3iiivwyCOPHHObYrGIYrF4oqfncBrhffuPgGKJfxgXSwB8wJMgrYLPbgQU5OlZBabLBRPYLjLVjLGemVUtlGmqNZAyTDVmsN/bBGpige6B+6jEJnp9YB2D4O6xJz9B/8RDzFgMxCVUSwu1IY/Ricya3pc/8EHGDM8oRk3Ygnx150oimoxhYBoWTeMvlHh8LY3Ml/l1qUh7/41tE8BO9GwC8FjfMhF6DSd6wAsO8qsahO0eY3apH5q4MvZZ3inHFqxUM1IdkhQF8oStg+86ck1nKsxyXCBt08drXdZSX+wD961nkNfAu69Bgri5xftaTkwYG6X8Ny1mZ/UBMLue51hKjDCoBfzT0TEpwVQ8McbzX5D29IvnmBVJfLZRq4C4MeDaUn/14MFSImZyRb6u93Gyx7UervF1rUips2xjYNm4+pCdYeXYyKtmwxKfa1CTOM2QPDpBInX053otaHt2qwL4A2u5L6QktkpqVOy9sW3ic9XDiEOz9/efRP7KN538dXc4r3FSJOVVr3oV7rvvvlWv3XDDDbjkkkvwW7/1WyfcbZPnOQaD1anQ97///bj55pvxuc99Dtdee+1T7mMwGODBBx/Eddddd+In4HDmQv099tfl+4R1+ULCP8KZB4SS6chEy6FPbDNV/vGMJYikPv/Ab5R6/CHJa2ce/+j3Iv7xbUmZQ91jE1+G2YlGZbrD7w/XmHkZDa5jfSuLqKeGim51LtDo4EHAunxGoVkjL7cMA2B/5JEZGVKR72zFXE81i5N6PM9ZIQSjQVjJSilhYN01zuzGc+d4fsOAX7e0mIkAGGxLCc+9VeTatLtpvA9ctpfZgz1Nbj/eY1alEjN4jffo//HEGDAo8z06bbgxOHYpRKFGaXptH5zi3JxORKHo8w+SJKmD7oXzplfSe7Oxzde0+6o24PU8VLPOmvE+r/nRZm9HzyUCeJ+6EadUq+aoPuQMoE3LLKElvpQBc9MkHa5KaSoxt95yzM9rOaEYWAdHbmjzvh+qmUZJt1+ZBQVe4750fulwxsUSs2gzVcvGNAb8/zRfBgpNruH7U/x/sW3pxMtd6suj4wK0M2qhzHude7zeif/ke6tmegfq8L72MbrWuhKQwwnipEhKvV7H5Zdfvuq1arWKycnJlddvvPFG7N+/H3fccQcA4EMf+hC2bduGSy65BAB9U2699Va84x3vWNnHLbfcgt/+7d/Gpz/9aezYsQOHDh0CANRqNdRqDDC/+Zu/iZ/4iZ/Atm3bcOTIEdx8881otVp405scMz/b4X31Y8A6ecIf71npQE3UigOgLPX7jqSTIxG4lhP+kQZkMvCS2b4fqrEjSIPiUkkyMrCsylLRRJsd3+aYeDmDaimxDENzxDBr9xiDgpKj7Ys2oE7FsiteKTnXezRByb3VBlxHZxiC3NLnXkaZez+kaLUX2VA+L5fMgsx+CbPVnSZ7m+Ig61FcOV8Gtor2QMlZu/D/Z+9Pw2Rbs7MwcO29Y8eOecjI8cz3njvfW3OVqlRSFRoKMclg3GrbAgMGhAoMsgBjUNHQKtxlJIRAgEGiJYNtqRncrablB5tBSFCtKpVqnu48nDnPyTkz5ogde/KPd71n7cyTZ6rxnrqxniefczIyYg/f/uJb61vrfd+FQGyiuIRTfVW5FdxfksPgPL2N++T7A80uXGlqFkS1XJZGVq46rn/N7WyjBuffVPVezgdiMkgxXm/gnBMfz5oN+04OMJcKqcipHj5PBtQNFVMLEgRYX14x5de8FRVjsVFHmYTljkqEgKgc23P+7su4ji+vIPgLEs2Y5Ep1kwICwWkBY1fXLF+iaZJyhGOywzMzh44gmGIAzuCG2BP2P/ITAIh3qsjGVDRjWJ2JJJ6VC3crOH8lwpgxwGEJ8m7mZfa8M8cyLceVRUVwj60p5igByDsVcT7zCyJLI8nO/dl7nxdze0Pa11xxdmNjQ65evXrz9zRN5UMf+pBcunRJCoWCnD9/Xn7yJ39SPvjBD958z8/+7M/KbDaTH/iBHzh0rB//8R+XD3/4wyIisr6+Lj/4gz8ou7u7srS0JO95z3vkk5/8pJw9e/ZrfQtz+0YbU/arQ5Mb7ygosahYD5YZfAVVMivRUjDsIFDMhuBndYjjXGlih3exbRTLZmiCV43QPtsIDRzIcgixKjMP18FFmU35Is/YI75mP+rh4e6+Isc3wbvTLjZzIDTH4CJxLBsxKOYa9gnArMRd1GfYIddncOJuZrRdEdzXe9ZBsQ49U5c917VOwUEisthFBoe4ECcD9qFbMWwHe77Q2NCPuAURY/Hcj1GOfasKpzgo2g6+puW4Fb3/Ky0rOZw/wH3UQwvYXBEpzzCGDGYe2zNFYFLY9yoWcC2N8PnNOsboC2sIyBhoPbl7+Hr3KqY0W1Ds1CDAdVE3h2NLFhCBuwclE4ibKR4p0LIQRfQcMZ2U0MPxOLbUPxHB9+jRfWS49vQc15oIKtnmYKZ4GIK4N2sIwvsBBAHzFOnjjHM2dk0E0NFSJbMruxWUlA5KGP+1gerzDBHM1GYIGh0R57mfFbnalOx3/8H7myNze8OYk2XZHVbKby27n/bQc/vGmTP4CeAdyBQRMcfWnmB3SDzBWBd9AhAZmFAxldTkILaSCTvWiuDv26pxEXqGV4gU1Lgwwf8pZT9RR/2wUluPw1Mw05CJSY+LKDYhu/eU+lGLXThAXs+JAY7/8TPaOyi3+w0LcEyVCNfanIps1wCuvNKCg+WuvhZC3n6zpp2FVfKcMuzsVXO9rhTYMsZxv4xx/Y9fsvG8qR4ruM8bdTjGyLXuy47g/0fLJ3eyZ1dMyt3V0gnVfgdFBGLDIoJPZiTO9HDvHPMDFbV7csdaA+xU4EzZK+hMD9fMYO2xvcMicdeaON/a8LB8furg+eSzD4liQDIdK2rTOIKgh4wttgFYGyAQOShptiwXAAyU3VOORZaHKH0ye8KsBbMoR+fkf3hIO3inKP+0ppi79RDzqUKMkwZAmeD798QuslAn+xZUUyTuOCO2hcq2tBeWcP8TH8EQNWvKkQHWdyqYsytD/N6aSrbyF+59fsztgbb78cVf80zK3OZ23/aZEyqMlmJxq4VWr6djpBAY/X3sWGBSig2PwFS3l5pMfaS70klBBdQiY5Kw3r/ThH5IKYbT8hNriNctIQAYKm6Dmio0PxHxFNjq57IGR8s792PUDBGxhnoicGSxizEq6GAsj6Aa2wyRzbheR3kkiPF7vvQzCPB3RxCUrAxFChX7O8s1V5umXEo6byk2EG/+/bRYwa7MFFQikX2ld6838O9x1NijNlbqbXOKIKoSWYfe63UTz9urWKdeZtA26kbjrs2QGdip4hgMlFjiOzHA/eyVMV5uhsxbPkhh9mSnevgaKcp36JmJBaxBbPMz0mwYs2LFxBpRlmLDcGQOrmWm5ZlGiO9AKzQwNrFbx7GT+gECz36Ae9+qanAQI8Darah6sY5vRctSvRJo6w8f3KrCe7sA5eVFXOtbN29VZ35qB/MnSPDcCaimyN9Awb/VoWYwxyK9kjhbPyfSnkp2+s/dfm7M7Q1n8yBlbt98q83AfOkrrbGQQbI+EyzK5cjk6DsTBBFc2N3MhM+aUwQUiSPiOkZjJb6EypiBHrsleH/mWEDSVqG0rerNHZ50Jvjs8ghZGD+9FUjrZiKRY714+oF1q/1q6K4MCFg+uqbBQ+yKnN7HNT50YOWn2IVj2C8j8Lve0LYCnpVCHtUgjpTTE0NjYmR67RzLqZ6X2aa37FljPBGjTIvAKVciaJ48vY0x+oRS/r3MQMVHQaoicK7dEt63MkRwQU0YPrvEwflKIbIkO4q/qUbWGPHkAAGHCJ7V+X2Af8c+nu/qEA60H+DfZ7bhoNmI0UuPv8alEc75pRWwoXYqmEfsBcVnVA8tk8KWCLsVHHdpjKCRZbRMTMl1WjCG2cTHnGWvINK+l0c4HgPQo3axbfOOwNmzXQQSV1qWhRJBQOulkM1nwL5ZszLUUXttQaX8VYV2aWxZs3poAGd+55ZHuG/OI3aTJqbMSUw5d9g2/ZcgEec3/ieR7apkP/Cf3nodc3vD2TxImds335i9WBsokFOzCJ2J6U30AqPpUgOFOiKUVvdT6/nDv3U1lZ4JHF2m9Xg2zFsZYldM1dNhEQs4nRZBi+UIu/rW1JzLUcs7DjryryZAycSE3JixuKap0bGWL57ctYxL5IEFk2gqf+wj2CJ2Z1KwDAPt6E555pki66BonXxLms1aO5IJOerQHtmH+itxRmsDkfWmSDGyfjRv30Cw8NoCni3ZL6ljYFteVyWy3T6zAMyUhAWR5giOeOKbUu1+CYEumT3s00PWS69k1O3fOo1y0Kk+nH9b9WJ2qiLPLuNaD8qmpbM8gtJtpKXCBc1QlGKbh/UQ8zXRct3CBCWUzMF72bGYJc1Ig5vUscyDnyLgChSrslfBZ6qz24NUH9vDPbkZAhZmG681TQOHOis9ZVqx1USoweZHz4m8ZeswNuWlRXw/OxMLkGYKvI5cA55faeKa3cQo/5xPPQ38WCZLHZELbdxnTbMszNbVgRFyfv0XJfveP3z8vc7tDWPzIGVu33xLHSy8lIbnLo9KqU4mUnUNVHujjjo3d4ulCItvT3eRZO0kLpzK4hgOmxRYlnwY8BCIO/aR3t+rmPbKqx0snFXV/xgUkXn4epuTWTPBsaqQEpjLe9is4bV3Xcdrw6Kpsr62YKJnj+5j579Txa79atNk9SnYRrwFMRatqY1R7Fq5ojG99TrHvshnTgJbcbaHMSXFl6BPEUv5H2h55WIbn+c1ZAJnOQiQASE1u6rAVhEDP7sxpP87YwQP1xq4p50K7i/TkgubAXqaTQs9nCt1MMeqERwoS0jX6zZfLrUx/8Y+jleb4TwcZ2JEqGFzUDJZ+Ylmu1aGyIgkmu1j5icfvFIEjpTlzEF2LP8eJ7PyUfk2gS+zhL3AuodT4+ZG3boqk6LN7FnimC5PZ4KgZL2B7xQzIJ2JZu96pv9DZd+rTWOz8VmTIbZfVvqz6httV0TG2n9rcYxnwvIVKfvcPPQDcdb/NgLj3cocs/IGtXmQMrfXhwWJAS2ZdvdC66VTiuEE2CyNuIXazNRNgwQOrjpT2qPgddJzb6qVRqZAuqs71JEyZZ5bxu6SzjdPz2Qjt/tlq3ylxkW/M4HzfHYZ10FsgyNwAOsNOK4TuvNeHgEXcKNuoM3H9gCO3FVFUwYpTnYYEEqjMNqrHZO8j1xgPo52n2amK1PHv1HDdZGlU59BDTdIRF5rA2NxpakBV66cRXiLp5kAiqexbEKA78rImu3RznXtfmbKLiK2QwTPN9DMx07V5Ph9DYTYOoHBxxdXDX/TDOFcRz7mT31mYNFiap9vK9V2o45jE6w80M9EylCaHCkB5ntGFVJkn/Llpn6ADEUvQDavV8IcjzyUq+paqhwrTTtUUbXTfQRtFIWj0q2vFOwTA8yrTDMrbEcw9PH7yLdgL3UwPgQds8x3qY1gY7di2JT1BsagmCCI7JYwXl9YxbMjxupqE8+UbSjKqgVUVcbSVQUtn0IQ53zu5yV7xw/f77dobg+4zYOUuX3z7VQfuz46o8QREf23IJY9KKTWTbcfYEcaeSIpyz6CRZWsmqGPRZcBx8Q3qidLA+w+XIlQFmBTu16A4CZQnRQ3E3nnDWQivhaS6vdiXiriuEZrdQT3wR4vTLe/tgBhtqMlqBODw5gYqsF2JshMUKDrqPUDOMKrTZPuf2Qf4/4bZ+F03r5h729PELiMivj3WgPZJlKUz/YUyFkTWZyYSN5OFY4pcUWKOdr2yDdp/SjB79xhE1cxCA4HKXkhvNUhgiOOV+JaCdBPRb79Gpzoi4tWgmDH37M9fLan1OCdqomnne2ivHahjWNT9ZYYDHYfjlzMTTKTiDdhr6A7qd1mgs9cbmEerrCcVcA5z3VNRJAlFs6VfsnGScQCtNbEWiIQn9MZY45Tsj91RBKlE58/wBzg94VaPKGn7LvI8F2+bgxSxQs9u2KBH0tqLHvNPASfzSlKfHsVC0aIHeOY71SQKXzzFt63NBapRuJ86R+KNKdzfZU3kM2DlLl9862jdf3QM/GuIBKZ+SKiGRaCIZm+XhwjiAk9kbqmmEuxSYjPPJHVkUqQe8bwGPrYyddVE+VyC868WzJHRYaFIyKVHHsl8m5lMtzJjvZG2ardG7slb/myBLELmQAQyyZ0Y18zLmOMC42KvLSxj+O8uoD7/vZrAFQ6GXbktF89b0DXZmgMmmsNjNPzy4eDlEGAYOhs15gckQtnRFbORCnS5RjPY3VoJYexbxmiaQHH43U3p4aPGPu5tgOxAaj5jEsZdvZVFYLb0OxJR5tSftt13Gtngn5ApUiDEMfE/4oJApjYFVmE8NjN+3tasxbVmomuNUIEPqR/exnONSpaRm9YRLnD1yDpWhOBnZsdVmddmOA6vrCGceTvr3ZsLEWsfNUZWsdu0q4rGZ7DlZbpxexRLyYCK+dMD3P+Rl0kzmVwqpE9i3NdC9j5LNhbqDnF95XdqSMP9xPEuDcvtc9fr6tw4gzBz+WWbRjaEwteZx6yV2/dxNyphzjHsIjrfHLXQL+FFGWg7apkbze9rbl9a9o8SJnbN9+cDI5ovYFFnLsqlnVSTTk3lYpZSOEEijGcHbMwYx/Ooj7DAhgrjmVYtKxBQwOUXsn0U9jUkDtKLqqxZyqfC5PDqqmxa03xNmtYqE/2sahv1OHQt6u45nfeUACq7ki/tGpqtY/sW5PC4yzfVZj3VInQVI/1/kYIsCNp2swMzDycg2WIsop3ZYJyAJVRR+ponEzkxSUEe2SY0BmvDTGu5fhWsGw9FHnHDfy/r2JlG3XsgosJxvJ6A07nxEDEFwtImIlYmOCzM2UrsdcOnZ2IdcfulvBMP3MC49eaWnbieh33W9Tg9lQf17tfRiDHVgKZiHzvJdxvPcQYnN9HANYPkGUguLQRYpw+eco6Og+KmG+7FdwnAakT3zpiO7kMEJvv1WZwumEBJTA2EaT8fW0m8rYNfJ6Yo5UhApSNOua3l1opauwrKFrZSwTZeqmCxTWb1QswP7/jKgIF3hefg5sZBmxHA5NTfYx3oNmNlo7rKx37jAjmx8k+sj436rj27Sqye80QQQhl/sc+gsPYFammIi938J5eCWNyuYVAe22I159fNg2WbsnYTamIeNk8s/IGsHmQMrdvvlGsrRop+yKwnXw1MmBfKbYW974umJEufOyYXIqtj0l7ilJI7GLBq4dYaEMNQghGDWKk7mMHv5di7DyZzq7NjK1CK6SWGelM4BDWGwAdblfhNBIH53l22ZhFF9tWz3czvP9qE5kJ0jjzlrgm/uUpSHNxjHOuDnGcfIDDEse0oJTqKRwN+xNlDnAUA9UFeWYbDuRqE8HBua7piDiijlOd9HYDY3K6Z9kHlpJ2qrg3Mj8Wx9qHaYZz7aqq6crIWFiP7x3Gw3ziNAKhp3ZulWjvlVRfZKoYkSoc4qU2MgfUHalEOB9xD6TX5rViaGygeKGNvxNDsVMRef8VBEJUin3owOjUVCB+bA/BQyO00mDqWAuGYmL06CDB80q0PPfCEnAuT+0gU3OjBsdcSDF2V5sKXp7hfJ9fw1wpxTjmwgTPJHGBYVnQEl45wnE7E/ztpY71zukHGF+2W8gE8/egBMzLi4v4jjDIDBLMY6rUxo5IWMSYMyAOYtznrpZnbtStvPayiLzrBq7vWhPnf2bbMl/PLWMesennzMP1sRv5IMAzenwXAfNuBWPT0GziNMFcmBTEufYzc32Vb1GbBylz++Yb275TytvLjDUxKVjdvKggUifDAsb6PzvbihgddFqAc6G0/kB3fd2c83Ay6ICwp0/iwoFT/MoRy0wchyPIBH10hgpYpFMr5Ha6ri6uqYN78xWXIErbZA+if/+QyA+8cCsoN9Bdf6yYi4pmMY6WCmiTAu6ZaroUf6MS7UZsdOvdCpwsAchuBofFICpW57RXgfMgaPKJXYxbSQOJYdEclK/OeEX1SGZlkT3HejFFyniJNSNSCIx+uzAxnZkbdRyHu/X9MgLFbglZNydDN2oyc6hHQrpxpE4v8kQqitFg/x0Kij2/LPL8Ep576iBIWByjbUA5EnlhGZmazRru+73XcH5eE9WMRXAPxHwwWCprgO04yHzRznaRTfv8Ghx+L8Bce20BY+tmwMYsKJZkUrDWDeXYsB4j33ovNac4/3oDgNmJj7HZrgL/8R3XoPHiK0iXDt8bG3C8NsN1tBWnc6mF79tWVRsqegjguiVcc+yKvG0Tv7P8mAm+W36C19lTaWUIleNKhPvplQxQW51hfmSCQCl2Rd53Fb8/dIDnOfYR0HET8tqClgW7N7FWzqW/KzLyJXvmv7rjcjO3B8vmQcrcvvnmq+NdGxpN009EUl2EE9VdiF1L1XupsTfqM8uwLI2xoI58E3Zjp+ODEs4TqrNisLIjJpDG7AnT2Z6yNo6z1SGc6dUmnDad3VTZFVSt3a3A0S8q04G6EOVIRHhPDnabIiKfOomsyvdcwu+8Vvav8VKjeh41lka87Phuw2sD6Jhwh+8pziB2lTXj47r66oRODOAAWWrbrsKp5LM3LCn4urN90zbS+DfqeB6RgqCXxgaYrM6spBK1tE1BAdfHnjD5AK81RRD7qh73LZuSyYdFyrgE5+P/2OjGyyM8azaRZMC4WTMQ8g3N8jy9Y461EZqGx7iIjNGoaGJrC4ojubBg4monBwhQGBSLWCPMU32M49EsnAjE9x46MA2brSqwIqkDB04cDksl7FbtZMh2sWQUeRYcrA4N6MoANBOMO7NGzRBg7NADlqU2s0xQ6iA4Zz+kaoS/v7qAv728iPlAptWZnl1XNzDaOYHu3RICo1N9vD9xca4nd/AcFyYIgp7aEfn0SXxG43c5qQFpP0BJ7vy+tRDYrlrpjCDypuJvGqE4r/09kUI6LwF9i9g8SJnbN99WhrYbr86ULqo76uoMi1OvZGwJ0o5ZwohckVlBZKwlHz+1Zm2RvscRo4Imjtb2MzjJup5jos4l1VLI6hBOanqHr8nVJq47dvH+WAGSLN2sDm0XTJxHJhbMOGJYlb0y8CulGNd4pYVdtwiuJ9+pNiygLn8Uy5I6hqNxBE6MXXgLqbFCiPu5UbfuysTvjFgumYksjgBaTB1kHvbLcNInBgosVs2PpZHIWhn3luQwMQwMWlO871TfMB5+ip1/WBDZUbBlWDDsz3ZVO/lGVhbS/j+ZfPjwfa8NUbapzZCNWB6hnHClift6egfB5qCI8WFAsFcxTR12zx75htXgeDL4Sx2jEp/pwSl7Ge4vn8HqTOz/kwLG7FzXMnLrDcV8eCKbgUng5xlaBBvz3vfLCIoqGmBmYn+rES80xnmrM3x+aYy/rTeMTs/vCPFUDOKZ0SQTKXMM+DrQION6HedphBjjFxeRubnWtODO0znuZdaA8/e8inG72rR+P4MiMkyVCCDuTWUePbZnc+ZaEwFKIzRF6sf2LHgb+wbOnnlgiWkJyRn+dclqf/n23925PRA2D1Lm9s23acF2RiJwgMSZsC5N8CedBdk3fE8xQaDCzAudcuYcFvNiup8lJK1p33SGE2XKxK4FOwRQHjUulMMiHPNOxXalvcDKB2/dxPv7gaXumUlxM5FIWQu1Ga7rdA/H9NPjzytimJajVkhVgEuZOcy4JC4wDdSFmXmmxtucmnOMXFOAfeeGyK6mKlh+GxWxCy4qBbU9wXhSv2aijCk+08g19hb751xYwPsp+35QRkBysS1yqmcMkGqE6zpORl/NYbByqmCy8YmDQOWpHZQFSF1vTzDmxNMQ3+Mqi2VdNUMiD6DscmxZo8TBcS62ce+n+5iTLDMmrmXOiEvJxATLznURKHSUgs3synPLJkZ4lEJeTHGegmaoZh4yTWEB41eNcM/NKdpKXGsAUzMIMBfPdhFEbevzfHoH87IquC9iR4Zly+ZtV5GRPChZ52xmlxjczjxsLMoRgsZrDVw75yMVek/1Rf7As5YJE8FrV5sABx96kNmt+jssH15uAZyczwyOfZzDEev2fLPU5+L+lmbiXPh7Ihs1yb7zj912Ds3t9W3zIGVu33yjoill7N0iHC1331SzHBVtsWOtPixow79MJBI4vUzgSBLXNCqojUJaLqnBgQpbcQdZRGkp+33/uYiIONd+EbvxF5fg5KijcaaX68/iIEAaCBbTTQ1eNuoiv/YwMA6P7AP/0A/QyZmZIN57dWZ4DJE7a2mIHB+giGDRZvo7z8Kh+qsIslLDogna9QI4UF6PiAl/ndKM0Ng3inE/QIDGzMvi2M7VLVmaPnXgPAspgLUMMM/v43PlGJmCzlj1MSoiQz32tIAg5ultPOcj1O+bwUl+PAjmZIArol2fZ3CoBFlzHIqquUJ14VDLQ4tjww5RW4WZJ7Jwnti5VZCtpjo021WTi18dWrbjKHh3qLoyVFo9ahR5O9B5tjaw4KZVsfmdlkV2XBPqO9kXCTQ7lGk241wXx7nSBJiVlF9mhep93Pe1hgGbqQBNAcOwILKo4PaJj+D7rZsi//RNNkYU/fu+C3h+ZG/l7UzvsK7N2L+V2n9QxjzI9BmymeR6w8aKLQs2qxjLs10TfuxquS8TET8VZ/jXRWqzWzNwc3vd2zxImds33bLFvyjO4O/CsRVS6+GxUzWtCBHbrSVKi+RCWorw2qCI9DYzHwQWTgumSDvyjTGUpzQTgDstWC8cEXPmoaa8N+pwmi93rAwQe1ZeutQ2pdXWVKTkA2PyxC4W7Ef3sLsPEnPkIkZNfdM27pOg2/u1SQEBU2FigVjmGHOD2RDqYUSusaSuNuHASzGa6K0Mca2XWnAGtZlRjberKEcNAtPoYBDAAPJcF+euh9AoIZU01edLPQ0RiIARFLlVVfGxCFiFYRElp6URng2Pc9y9V6LDf6fs/WYNc4OlDUrj83m3JwbaPpqlInaHomTvvXZ7yvi0AGf6+TX8ztKVn1p/IWaZVkbH9+HJC/CVY5E0RBaM7BeWpbxUpFvFa1RjTlyIujHILce4r8RFRmZlhHv99Ekr4TC76GY2L+uhyGO7Ik/s4Vj/+2MIfr7vgskC0N53VeRjZ7SMV8DxTwzw/Vpv4Pej2bB81igfoJC+PC1gHoggqOmWEMwGsTVdDAvIbI18XPfCBM96pJsNCiASoC4IbueByoNl8yBlbq8Lyx76URERcZ79OW2sl2Bxo5iZI9bzZKjlEeqU7FWszwx3UhPfOsq6mQFuS6qGGROAqunrQDMvKtjm/PL/G4vzSdXvKEeGKXEEQU7miEw8A+rS6b3/CgKOt21g0dytAKTY1cV/ZWSpdKpszjykqrl430uAMinc6ix3K6YSm39tp4pFvjKz4yeulWB2K7i/sW9g2fUGgofYRYDwUC4dvzxCueOzJ6xERezCbgXBx+LYQMR5ETs+t7zx2MOigWYdMZG9z5wwPZW3bd7q3P0EGa3M0W7JrgE1g9jwDAfKihHBvRM7VInMWU4KuV5FSm1mibCt5RoyoFLHFFI5ZxfHyHg8t4yAYVIwzESQmDDbcd2GX+1gTJ/cQZbC0Qzi0hjX/WsP43NP7aDEkTjWq4fZEhE8682ais1p0LU4wfk/ewLPenWIZ0XacXVm37d3Xz8c7P3RL9j/Kxr40U73RL7rspU6PR0nV3IqtXexS21givh8zh+YRhC7YIscVlGeFvB60b2ZAUV38ynGohIB9MvAdxnlRaf/EyKvLcyF4B4Qmwcpc3tdWfamP3Xz/86zP6cqmoojKOhulA5kpFokxcTE0ZjqpxAcS0aRh90mwZ4rI7wv9OD4miFAgV6KAGaiZYHdCs5LwORYA5VUQa8F1RypzXCus138nTX35hQ9S55bNvn90EOZo6q7fjaFe2zv1gFh75vj2DzH7eYdMWdIo6Mi5oXAUDaJa2u2qjk1xtS0gHPvVjC+LInkzU9wn0y/U0+mPkOZ5qjWiYiW51Jz0JMCSjyLY4ybnwKDsDzCM92r2LMMC8B0fOwMnNDa0JRbo5wznGrGwhGRSM+TD2BJL3cyw73QhkXLQsQatJLWTZzRlRaujbgeUrcnPq7rVB//tqZW9klcZYulOGavZGWeDZ13l1soK/qJyMfOWlBeUsBxrJmckQ/HTQqvrwFKKTZMDqnzN+qKX5nhuvfLKtCWoOw2UlbcLME9rg1QmiR2J6+YfFA2IHsmmjXT7xqVd1eHFshHrtGa72RhAd8R4sxSPe+JAb43jhjIOlDcDynqz2wjWCvF+P5u1ZC1C7Tkw8wgZfnbqhezOhSn95PAqzzxZ+5ygXP7Zto8SJnb69ayN/0pcZ77WXO6e2U4AtJXSzEWHToZYiyYribYj0qXC5qZqc+03q8B0MjHAsiAhH1OnMwyMUFsZSA20gsLIq5SV9lp9mzP+p6QmfNdl/Hz0XM4/wtLuL6Tfcso1GbW9G+rZgyLPd0Znz84vjRwnB2V7w9iBECvdmwMqUGzMLHshRPgc4k6MdJTE8V5fOYEevI8vW1BxlEsxcMHcLoEoF6vA/zJZ0TBM+rZZI51OxbB+5bGCFqeW0YA2J7gtet1lK0YqL7SQVYliI1xMlbq+aRgWQtfwbf5Xj/HjdlWFWWVhw/w0wiRjbjewBx5/xW895feIvLcEq6jH+C957rIbjRC63PDwJW2UwUQ+WrTQKJfWAMO5HQfY0LszLCIktH3XlQ2m87Ld68jE7JfxnuJhZn4+OExBoHK3rsIyFkaYafqc11VKt5UkHYZY7o8wljHrkhBny3HMnGsazEDZC+1zOZEsValWMTVDQVbINzJtrWskymjLNH5Ebvas0fv/2rTRPryDLr2BK+tN1BOXRyrJEFs3cupkbNRs7JZC9oyzvrfFhn7kj32I3e+zrl9U2wepMztdW0UZnJe/R/wgqdMjaKm2vdVUyNxsFg3Q1M7ZQrfcwycGSo+pVeyz6WO9QGqKcDUT9AtOVQa6IFSoNsTwxYkrtFM14ZwaL/+EOTWz/Ru3Yme7Yl8/AzO91AXr3GH3A/gIB/dN90Spq+nhbsDaWkMBo6WEvYqAE3eFDRzDVBMTZStmgmxrTc0Ve+ac9+sAQh7tYnP9AP87SggtKxp9q0ansNbthCw0WE7YiySs93D11pIscPfrMERnurDyQaxgXspg//iosjn1gzvkokp27YnoOseZczcnFiOyf5v1iCudrkFSmwxsVIatUfywcZ/8WWcZ2mE+3hpUbMPOac+00CDuiUieD8zL68tYP680lGV2KoFxYnieBpTBF3sx5Q5CABZxmRWgTTpQdHYSBfbeM/aAAHJlaZhva40LTBkUN0IlaY9QYAz8k1okIwhGsenHyDIFTGROLKciKnaL2Mei1jQPixiPp7sW2aI4+OIgaCDRKSu31u2nji/j7HvBSgRLY2Q4RkWcZ+TAgDqTd0EkHI90s3NzDNGH2X2NfvoXP0Zyc78uePny9y+aTYPUub2QFj2KHY5TvgR07XoBVjcKbo2VH0TCnPtVG3HfqanDCDX6u6FHCbFc7C4UzbcS7EwtiYIGvYqWMAPyqYAy5Q6NV5aU3z2SyuqseIfDi4mitl4/xWkqJdHRgPdq2Bxn/hg/7RCnI8L6b9+BLvvJ3cPBz5HjaJq+fcMiwBKTjQoK8dwOuzQO/bxGnVYajO8v61y6p0JnI2IlVEYuBy9lKHSQtcb1svm5Q6c5soQOIvENSGyURHHbITGyNpQvM6TSpl1BeNWijE2sYuAgpTUTMHA7DA81dLPc8u4XyqV0qYFaL4wg3bzGqbYuZ/qHwZPHwV9steU6DhwLFiuEMG9ZA6CEVKY2Syvoho2F9sYv0qEv7G8QzDxM1oyW2+YNH9njM95qWmMXGybCmwjxDhvVzEWoyKwHuXYMDjPL+Hen1vGd6ASwXEz+0baMvV7uiVcG4P8iI7et7YSsYvvUpIDa0cuAqKrLQRLV5o433oD93v+wDqapw6ujcEpdWqcDM9jt4KA6EwP8/JaA8/AS3Hccoz7Jq4qdnEPnTGug2WoVQ3C6jN8BxtTfA/0/c7F/1kk8iT77X/o9t+xuX1DbR6kzO3Bsut1LCqTggE/uSB6mfUA8VOk+ok54GcoerVbEZnojo86GgsTSy/vVeAkPn7GBONEUBI41zWqKT9fTER+52sIJEbF47sdP7WDv7+wZCqhlHmnKit78lRnRqUkIPeVDv7PjsXE3+xW8Psp3TkedcifOG0Zn9TBDpXZlLo6iciFk6BmSKRAXj+BE3Qzxd8EyCwVNM1PRgV1Rcox7u9sF7t+ZhSKiQl+FZVB0ppaMLVbwe8DxVoclMGiYUq/WzLFUWaeRExd9UwPx9rXe7ratD4y15p4NmTMXG+gn1IztGebOggMGYzdLgNzO0tcyzBErsikrHLxdQOzsq1ANUJGwEut4/KkYLgcCgkuaJC6UwXDyslwn2/fwDi8toD31WeYl5faKMWNfcz9nSr+JeX+dB9jcGJoDCuCkYdFa6GQauZxWLSu45FrInKcX2sDu39mw1zFIVF8sBZpc8ypse68DGOxVUXQOSXDzsM8ZTmPWDJiiZ7awTVlgnFghtHNkI0aKW5pQbV79nTeUXK/ylJmbMJ1fcUGjX0rW9Vm4nzqfxQRkezdP3R/82BuX3ObBylze7DMEdNHIaDOS0XqqSpOJhqUiHX+ZRBCcbRrDXPCnbFSOctwvqtDLMZrQ6MEt6YoWexUFDToGH6Fi/qf+DxYDlQSvZ3tKHV37ION0plY6eT8AZQ3qRsRFiwAOTHAIvroPn7/+BkEBAclBBG/7YqdgztiqsRuVzFWZKXQgYQeUuLlMhxk6uTE8yb429WmgWbZAZlddEdKYe2McV+hhzIWAx5H4GS39G/1mSmQBgnGshGKfOoUxv5MDw6G+hoER7J7cWsTDn+jhjGuKjPptQWMX3NqtPCndhBoDjw4pIstjHWQwOHXZ4cDVJag/PRWDY/nl+GQGfgexeHcqONvpLP3A4wNwc6dMc7rpXjGdO7vvwJqrwicOMGqtRkCiu2qBbMc90pk3YvZSHKjjjFl0ENadV3BrO0pxn+9IfLWTdMA2vhb1gKiNrOGm8SguJk1a/RTvNe/+1cUB89wne+4geOSNt2aWp8m9lZyMwS5I6VlD/T7kDkGgq1qSexza5gbxKu8ZRPP+pUOSlddwecXJpjDZK2RIl8PLWOaOiZ7wHnQmRj7rByJ8x/+FxERyb77j9zjjc/ta23zIGVuD5bVQxFfU86pY/LbIqrgKpCLZ1MzVyzjQed9cmCgQxErFRDgSedyuoefo+qYF9siX14R+cDFW7EiDFAyxxZ4NlwTsZKEk2GhFIEzPX8g8q7rVusXgYMvx3iNtNytKrAeDx8gEFhvIHChEicb3PUDxSUonVYErKXIw7hs1uBsV4f4LJlFHzuL8XpyB+dfb+B1am2w8y6Btxs1OKF+gLE7McD4hlrKYZnt1QVkLh4+QEBCSfOPnTUBsWkBjnhtiM9dbqEkMS0Ypbk9Odw5uR/gWbzSwfiRqcXrGagT2qwjgzIt4NzLIzi1L68gQDm/j/c1Q5HfPI3XntnGud51/XDgQmNJgV2vqwo0rkaWearNTOeHTDPiNS4oPfbpHeBatmrIhCwrBifTLMpYMwv7ZWSpHtnH9b11E9ebOngO376OIK0e4tjrDQREF9s4//uuHAYPE4g9UZYOA4dhUWRf9YHIbDsOtE1cz2dP4N4e6t46RpUIx73Yxtg/sm/3vzAx3NhG3YILR/DdOTmw7FekJb7YEynMTLSPQHQRBKMvKz6IirepI9JPresz7/XRPZHPnbA+WpxjT+1oJ/YSzjcoijzUFefXflHETyX7bf/lreMwt6+rzYOUuT0w5kw/AknvUozFhWUe7oSoJludGWumHyCDsFtRuezIdlUUDyuz1u5aWYggSOph5I3sj7sZd7tuZhoejRALunZuvSm9T/YCG9rtVrCre+cN0DM9ZYy8vIiFl+c/mrXpjLHzp/ood/Sdse62M5xzSRkQ/QALM+3RPVPpfW0BgQp394uaMeHuV0S7EKcItJpTZIn6gch3XkXAcq0JB/zYno3t2zcMrHqphZ1+Jlqm0GCLmYFShECK2IUgPhwYEti5X8a5lrRk4mkJ7nQPr7/csXsQwfPtB3BokQul4GoE/ManTinIcg1jUw/tnNsaJBZVE2WrppkGLSuIGM4jH6Sw+SU7c3fGCIyuNK253rmulWFeWoRjdzKR5TGOt6M02v2yZkBKmEdneghyW1OUDJ9dQTDrJ/gcMyTdkkh7Ko7/YWXS6PPIl90cUUaUbxR7jqUIvmM36phfnzmBczdCzN1eSeTx3VsD97dsmrLviQHucatm31MqLu9ULSj2tETFQPWtmwiCVkY4Frsuf/ok3vP4Ho5NFlIxwRhQd6U1RQB0pYU5F2rgeFBG8Jany1cizI9nl61ZZA9ics6zP3dIJmFuX3+bBylzeyDM2fhbIkXVsCjfI9NFxDIMp/pYBAmSG/kGVGXQE7mW1qbdrttw3piazu82mSmhVLunKW3qbrDfj5vBQfdKxrJo6oJKtc4ndhF4EBNCIOFW9TB1WQSvX2rhdUrU81jfddmuZaOGTMIjWj660oKjaYSmfntQUixCDAdMKvZMsQN0MG/XTBNBlHk73UP/FgKOCSzljv7xPeA2Jj6cEJkxQQxHdrKPMXhxCdmSfoCSGHE5ZNC8fcMaIYrAMT+lbJWPn0X2ho6IAd/FNpzfe68hMDsoYZwjFwHB55Ue/L6rIrV9091YGukYFJCpYCDbK5nM/LSAbN3i2HRQ9ktQAybLRXQ8znURHNVDHOtyC0EfRQerM5FJRcscCsZliWrsg5acOdZigfiOzhifWRpjrrEn0kNdm6uk6OefW6L3UIlwDwQBf3kF40GBtbGPMSSV/OEDkc+cxJjms11fXMXzLaQIGMnq4Xxd0blQUXDuqGhy+pfaNp6DosiusqC4OSHr6GQfnzsoYW71A2P+OYLsHDcwmdhcz+v53Kjj/8QGfd8FzK+PnTFZAj8B0zD0bjIP5/b1tXmQMrcHwyqRKU9SJOpOtluxXTNtKZfqbk9Mun63YrtTajrkMyjHpfrzRn0OCp8xRT4qYpEXMdq0nwCL8P4rWED/tyewwF5vmMbHjTr6q1CkiziHUoyAg/eeOiL/6lH8PLIPRz1VvE7sYjcugkX+6W1rbX+6h4wJLXER2Fxp4XprMyz2LFOMlHK9q9kSNowLFCtyYoD3T32RRIO+q02c69E9OLDO2MZVBPd4rov7qc5w/8Mi3vfIPgKJrZqp1xKwWVftkhMDfHZxjACIar2e4Hy9EtgvYx/jslfGjnxBKeSkyu6XLONxuWVKt52JyB/6sinVcrydTKSQaS+jHjIh1Uj1dxTvQMbZsIgArzXFcyXuoVdCxihyEbDQKVLI7cldzPfUEZmJNTWMHQjf1UI0H2xP8HqvpN21NaNzXgPPIMY4kvIsYpoxsQtNEpZAWbpJHQRwXmaA8LAg8u8eNqZZW4Po+sy6Su9UcQ5PcUbnHJRfehrYtaYiMxfPgUKCZ3p4dkXFVjFYWB3i2l/t4D1uhuzQiYEFGiPVz9muYixj1+QHajPTVHH1WZFmf71hmZKja8iXV6zk9PYNHL82QyBNFh8bZVYjcTZ/WmTi31TLntvXx+ZBytxe9+Zc+TsiFcWg7FWM9cCFKdaAIHPwnm4JznSsWhIESO7rbjpxsLg1Qk39FuCID0oop9RmN3dNNxVqg9icLZkMzKCw+VwxsS6xsauiXvoVO442XIpF/rPn8P/disj/8lbDUlDP5C1bWHA7EwQQeZE2N4NDv97AjjNyRd6+iZ3sb56GM35qBwHR47uQVL/WFHnPNThCmpfCMaw3cO0Ez7IdQSYKDHXgmDIBfqcewnFs1fBcKHxHvAEbEOadQS+AAyToc0fLWg8f3BpUftdl/Jun7p7p4Rm4GYKV1xYsINzNzOETnHq9gUxNZ2LYpUSd+fIIAQatNcXnHt2zTE1tBme5W7GGiMsjbYmgjBziUfYquC7OPRHrj0OGDVlVpKcTu/LIPu5l5GNMOE/zKsAnlcZ7qo/xaIamdbM0wpybaRnzLZs2r1tTZGpImScTiSq9eUYYMyrswh15AB3vVQ4z6Nhq4LE93PtVDYC7JWTpRj6CXmaHTvdEmimeU+ghCLhRM4bRmgKtOe8Gyv7aqCHTQj0jquV+12Vcw5dWkd3paVmyF1hH88jF9bBUeKOGoGivjLm0VcV36/e+bIBuft/zmSCWVomDy2edrrTEefnviwyLkr3jh2/9js/tq7Z5kDK317U5l/+OSbxXImsWeFDGIsR0c69kap8UKAtipHndDAs/6a/s90Pw5lQzD8RvXGkBOBp5CAzOdUWqLpyzqxmXqmZ22Eckc/B3Mg9ErCNzObp9QzpaVcs21xq4xid3sSOmdHuq2YGXFgEUbE1Fvv8VlIJI6a3PsLiuDK1/TD44+sBF+/+mAmxbUxPGY2fm/ZKVDkoxxnuq95k4OPabtzAOmYNFf79swRv1apZGWkbz4GwWxxjvjTru92zXQMUUr6OceVjQMoMg0HhsD+fJxJpP+srkYZfgEwOcgzTiL6xp6UbZTdWZCdFFnvVb+pUnEMQ9obgGYnLI+mLZ7EAzIMTOVGcI7tjHhsyVTLSVQYprbk3xnnJkZRqCmSlAdqVlrQhKMV5nIPbu6/a8HttDAHi2d2t2jxk8BmNBbA71iV3LGC2OcY5hUeRfPg5gMMt+IlaGHPn4TrzasR5GcS6LuTZAwHimh+vtKdMscRBQUf0533ZhWrB54ogF5cTtVLVE+nwdAU5YxvhQfbmk98RjdMYI7l7poGzHgIQdnPlMeiWMy+IYfx8WjW328TMIhKhPc1x7iht1fI7B6mN7uD6W7tYb4nzyf5TsPXPK8tfa5kHK3F7fRiouba+Mxa+smgcMVkqxLZBUwpz4SOGGBeujwuwLuwCXVUiLNfNpAc61PbV+N4MAf2fphs35CqlIEFrmgzvXZqgOlGDeY7IoIofpyuVY5P/6/PHv40JMbZFntgGUpB0H4mX3XYqj5VlHTgbn+umTWMDP9HB8ime5ouUF1/RhyhHG7HoD2ZhyjDFfGlntv5AarTT0jKXkJyK/eQbXtKYaMKf7hzE8VH7tTAwftDwyjY1uCWObCXAPrSkCC1KfyxqAfuqU6YSQtRVoBoTBh4gpF+9VEMC2pggMR0Uc4/Fd3BfF9tinhuqlnQmCltUh7uugbLtsZnZi1RaZKfXVzYxyzh5Q1O2havF2FeNADZdKhHueeRBhe9cN6wF0nB3XL0kEcybfXVkE516YHM4miWh50cM5N+oWVD6yj3tiJqk1RaZo5uE4CxPMh0Fg2jNUep740ExJtNTUCxA4feoUSnSOYFzLyvQhhbg1RWDO0tPYR7ZzvQFwdljAa2yVQSp1pIH1+7cNOHxQsrJhX7OF3RI+n7giv+3y8WO3U7W+YZdbeOZkKz10gGd0qi9yqi/Ox/8xvmbf+ceOP9bc7tvmQcrcXrfmvPz3RbzAVE73yybOdrVp6e3VIRwna//tqe0UReAgdipWryZYlQBQBj2lGLurmwyf6LCjYFfWhqbZ6yE+y4CnMLPMxCCAsy9rGpwU4rwTuZOeSt7WGwB0tqYITijadi/mpYfPw8zKjTque6KAUeJMWC7olowp4aUY052qytO3RP6PRzGWj+7rjj3B82HTRj81yXQRkf/oZaNTJy6CCAZ1zEyc7VmZTATskad2bBdd1l30XmJqvF9awTmf2MW1X26ZBkwmeA6zHG060QxGM7QeTPtlA2DWZgCiXmtYVoNdlbn7XlHaNrsHswEkM2iFFOdmeUXEWFztCRx3P8AzXR3iOFMtHa0O8bf1hpZKXNxjr4TshJ8c3z35XuwoqFlE5He8Zv8njotYDqo6p2IZQjr4J3bx/4qy5ajtU5sZ9mm/jOseaLaErDmOOcUFU8fo24XUtIFGDWuayJ5AnJ+k7zPzsjrU+VTEPGYW6tUFw1Yxe3VyYPTkxTHmS+VIoCaC7NbZrmHZGJjsVXCtnl7r2EcWphkicBIRRz6MU+q/c/vKbR6kzO11ac7H/7GIV4YsfaI6BvWZKcpmgoWmkGIxOtuFsy3rroZONs1lVph+JrOmqLvpcoRFsD21xVbE1GxHPhYlliB4PeMCPiOCRXFxbBRRisoRRMnSClkbtdm9Bxqkgd5up3c/Rk0I7kAfPsDvV1qQkx8qVbQzgZMc6O50r4wx7pVEvuci3h8W4MwXJkYHdzOwSRqhqcWKWImAJQcROM1pQYXiIuuJVJ3hGRKwWooPa3A0QuBMIg/jf6Bg41N9vKcc2c6ZDrIfWCM+4j1O9pHRaU0RINEiD0qkq0N8nlT1amSaNUUt+aWiZS+xzFlYMOfrZZaBSx0whjoTy2D1A2sEGLkIQosJ6K+n+kYDXtTMAlVTj2ZSGFjci31+TcXvNOP3zDZ0VT6/hmyer0HES4vIEC1OLOsVJBi3zRrmTj20hpr8bqRigFlmP4LUZOp9MYp2daasKM+o7OyszBJLMcFnx5rtfP8VY+2tDhEYfOok5uiS4pU8Dea8DJ9lt2QRBJn30gsrz8ISwffby21wiD1bGuPYo8ktn3Hkw/NA5au0eZAyt9edOf/ul0TKYos7SwjFBAGDm4mUlD7sJ6rmmSGIoQBZe4pU7GbNsiQHZetPQ6rmpCDSSHEcN8MimjpYBLc0+CHtlt1th0XDoUx8LK7VGV5nPbwcmZS7ZKYNkTj4+yCwGv3K6M79eFaHwJ/kjZLld6NI5x1aPkCpRCLfc8kAk6VY5JOncM0s9WzUsPiSVfHOG/h/MRF5bB+OlIu1k+FemZEhHoVaMex/c1St1U9uNnVzyv/dYY2bfJCTd8rs2SOC+ZC0bVdeUyzIyhBObuaKBBl28I7YTn9hgixNJTLgMLEtE10WeyUDdooYwLSjTpvzQkTLaGLB6bSgTQ8dy/gFsUi/YYHr2S4otc8vWauFbgnHDzXD9cQe5jFZUdtVvI8BOlknry3gfEfxFLEL1tDYB9Yop5civcAa7RH8/ewKHHopxjnCgoGRz/bw77Wm4ryqllUSfR7cNFxpWdsFZss6E4zR9QY+x8wUy6yXW3D4lQiZ0mKCazjTMwB05uBv6w3DIF1vWIDIRoN5TFRlhuCPYzPzMDfy8+tejJuFsIAxON2z5+oWb/uxeVblq7N5kDK3151lv/0PifOF/ycWhZ2qpVaZwWBDtiDGa7H+7FYM4DcpmIz4RLMGYQFOvaxg0M4Yu9PYtdbtIx919kpkOJbEtdKHn4pkqqJJhdsgxrkTF8cbFw201y3hc6QgB7ojz8RAiDsVky5nTT1fKjnOCEhlpid1sPCGBYBan18CxmKraovxNDcO7Ym2rq/jcytDZCte6Rirg1mpIIEYGkGpZ3qatdJ0/426PZdTQwAYAw0Kt6t4PXZvZe+IHA7OHMGzOygfZldMNagLlbWR/9tbN1F68FM8q2aItDyfJ5kx9ZmCayeYD2SBNULc44ECZJ9btsC3MzaWTupgTB4+wPjuKBWV2TD2mSmkIuJaoMf7Y5DF5zYsQvF0VMSYpg6u42oTDjBxAFhthSKrCkJ9bQF/64wtcLhRx3vZrFAE1z4oYtyqM/zsVkARnwqCjfYEz7oUW3BUVeA15f2f2JXsnWCsOBt/C+fZrSDrsjwSeWTPqO5P7eDaeor1uFE3qYATA8yV/bIxnDbqVkbZL2P+d7SEN/NMX+hKE8d+fBdBXeRZppM09BMDk79nJ+V8aauh2Z7XFjA/btRx7Pbk7oD2vJ3WzNsoxxpcGeG8O5W7bhjmwcpXZvMgZW6vT3MzOFOm6IMYi8NRhzctoEzBwIIp4WERjnfmGWWVCqxOZkFC5pjcO2vmTOvHroIDc7V06ms4gv8PfJGyh9+dDAFKbYbr3anCOYaKRRjpNbIDMbM3Ioc7Ji9M4DSrdykJ+YllSqZFyxLQyQyKuK6rTYzX1SYW87aCFw/KeA+d/rkuHFh1BsdA3ZTHdDfPLs+DwBqy0aGf64qc60p27s+KiC7IzSl+iG84riRRjm8u3jc1Tq7XTZK8NsN1jn04SUfwPJshGFj5hndeivOtDlV4LcN4R65hIlaHcHyfO4ExofT7QHfC7Ql26cXEQLDsEN2ZYCyYeTnueYiYND2VhPslzLfIQ4C3XUXw2CtZvylq7Iy0FBkkmP836shskOEyKSAjN9VS4/U6cEFv3kKA9ZtncM/LI9B0X+pg/u0rwLw5hUMd63xrhnptLhzwXgVYmTdtHS6JEOy6X0bAwGaSHHdiQPZLAIoTZ/PUjnU9HhUNhEzcSurgvOz1M/NwDQTdUuhNBM+Zz5oUcRGw3YhxyQTX0Q8QULamCKoI/KYC71s2TVjwXs1LgVd6fllktwzF33wDxrttLNScK39H5JOnJPvPfuA+L+CNafMgZW6vTyOLgo4t9AzomLgioiBWEUvlBwqAI9OCPTjo8MsRFs+9CtLKuxW0ah+p9kUhhWPaL1uWYL9sreh7ARZU7pKnBQNiEiiaiWUDWlP7PUhEgol1BA5iaynPpnZ7FQPe0rkTzEhn1i3hvZngb2e7WITP9qxu31UsBvEMsWuaMY0Qx0u0NHK9jgCDu9MPftZYR1SSFcGCv1+GeigX98UxHN5/8qKNW97yAcnt2ChkG9GcDNfzhTV8/nLLAontKv4/KGKsz3XxPEXg8L60opTXKe6vkJquRmeCMalEIm/bBHjyUhs/lOwfFNH/5rdO4ThXmxrkeNZzhuDYuxlp3YXUGgcGCvh91w08IxFT+B37GL9MrBlh5NpcIask1AzhtSbmQeThGGSlff8rCFZ6Ae6hosH9TAP5QBlt44KxiiIXnZFFcK43bd0MDhz5MOZsW6zUWkhxfH7PqLnTmJroXzXCGLenuB7S4xlIX2/ges70cN1Xm5j/iWO6RMxeHTUyuk71MQYfPac9onSOkLLPDtIiNne2aghuV4YImqiWe6dya94qkVHZSclnEB5r1vX5JQSNtzNlZzn/6p9I9rv/4L2d9w1s8yBlbq9Ly971J8T57M8bsDLS2q+f6i7Ts4Al1sXay0QyD8C+lxfxc1OVtGRdfh/dw6K9PMKCWpuZs3MVQDvyRSJN9Tue6WKUdNFn+aaioFtSWinL3VaqKTUa1usiC1Msjr2S9WgRubUXzdQD5kbEUvXcWROHQ6bDrGA7zFIMh8Uus5QEF4EDqIdwUKFn2SYykWIFveaVOJkxOSiZpoyjeKDFMcbhxMDKbvWZON2fNPzJ7Sx1tBt0UzvShnAyZF/kFV69TGSnjHtmuY4ZhvW6yJOK+3ilYzvoQYCdNmnLhdQYXd0SshHvu2qO6dcexlitDtEniSwlYiX4HBINkCqzW8sEO9XDisYiWo4TVUpOcbytGubAf/Hlw599btlAo4kjUk4w51aHeEZv2kKZYEnEefWX8Z7Ewd/XBpZBpDbK99xAuehq0zIok4Kx3NzMgOjs30MV2KPZO0/Lf92SlkSLJh4nYjov4yKu4cTAOhm/uoC5OAiAcWqE+H4Rr0K9l9Uhnh/lAIjxevwIxkYE8+U3H7HS38oIQcipPjBIbNnA0mbqIKgKEoyxr8F6OUapikq/jRDNHqmOfJy9qO9n1mSm4O2iZhRZHjyu55cIJBF6pZuMMOdX/rnIykiyb//jtz/nG9zmQcrcXreWvfOHxXnuZ7FosbW6mxklOXIthVtX55wpkHB1CCf0/DIOxswEm5atDrG73tPdf6jOPkhEvJzAGOXJGyHey3Q8ZeHJSslc/Ls8wsJXjsF8IWZjbQg20aSlWAbBPR2UsEhv1M2ZbtbMkdAxLkxw3Wd7Il9cEXnkwBRb2XzupUVc024FCy3r5iJY9P3E9GPIQiK9t6aL7UYNY7FTxXu50C+OFXA7w714GXAQ+2WR3ziLTMOJgUjrNuWpYRH3tVM1NgvbHJzrwqGSXrufC0qaIcYx9IwxE2smiYHcUHEdw6LhK04MVJxO6cdLIzSS++wJ3NOvPwTHcnKAzBHFv9iCgJRgR/DZ031cQ7ck8ulTNhdPDHDegxKycwTl8ljdEko7i2PLgCUK2mSGaEmFxK42cd4FZVa9Zx3ziMGmsqTlP3/OMi97FQQ4z2yLVJShxMyGmyEgIjZqdYg5kmpwQ3n8hgaJE/8mgy2Pm3Cin7Bg7UbdApoDzQbtl5EZWRohYKFo2sMHCA4SV+TFAOf0MmTv3ExkOsPcZvO/tQHmeDXCZwfF4zMSpVg7QWuQ+fABmEmO4Ls00u9/JpaZoZT+SMetMxFxJ9aM86SChD9xGnT54+xiW+SlJQXPKq5oYYJxePuGgbmvNhE05cUTf+u0ihE6KtzYNRHA9kScF/6BSCGV7LEfOf7cb2CbBylze11b9sx/Jc4X/yEWOlJ5mbnIxGiPsVjgQopxOUbQQBE37o5P9bEQUgWVLeM9DYAKAgdPumy3hIXHyewYYw2cxkUs3EGMFDw72XJXH2jWwUtxvsf3EFA4mcg1zxZa6rq4GRYx6qpQPTcswKFmgt0e5dCvKwW4FMPxMeMU6bG5G/cyc+Rk3Ty1Y4ykA80erA5txz/Ra8hjfegAwwICIdJQ72R7Fcj0E2tAQGnsoqUBuzOPKwaadASvNTUYjLVcUlQMgCsYzxMDHGu7anL+kwKAvsVEpJAYXkEEDCURkV94B5zj+69A2fdSG45OBPNm7ON4xEWsNzCXlkcIKL+8grH7wioCx36AZ1FIUS4RwTMvZOoci8YsI94qcg3rdLon8o4bGKMTAwS/21UEbytDkad3xKl/xO6jEpmI2FGbuSIXFvFeYjcopT8qao+jDM+CrQYOyiKVSLL6h2493tjH5yIN+GgX2hBoo9Me+yidsXkkr/NLK5g3q0OTCdiow+kzO/O2TQWlFvHvyjGYn7zlMSnlSFWEXXx+UhBpFayP0PUG/o31fh/fs35GEwV812eG1bnaPNy0k3a6jzLkrGDl3u0qAiZuCP7Vo/juF1KRf/MInuXyyNRypxp4N0OjejMj2y2Jc+nvirQnkrV+7M73/wayeZAyt9e9ZW/9kyj9iFgTND/VPhta1mDZpxKJxInpGTy+a7vaQqpZh+rN8sRNaXfuFEkh9TM4IWor1GaGq0hcwxGQrspSyHrjcEdlir61ptYBeadqQnF5WXj2NaHCLsHB57pwlLEDmXbuyLxMJHJwn2PfMkVeJlLU2j9T0TwewbqBaw6Hju+a4gKWRsiWMIBiTxaK421XJVv+b0VOGWNBRKxvC0GydR2HL65q6SYVqSRwBuVYZOaIrI6wYJMmTgoue7hkjnXNjVxzhr7iIj63ht32yb4KxTkm3x55yF6VQqOm06n/sS9ADp22NML4XG4hSGR5j+UzRzMHiQvnKqIYBMf6SJEiT9bPv3kE1xa7VoLjXOwFuM9LLbx/bYggVATP+d88YiyZehu77id2cY13KkcQ5/RqB5kJlgUfPoDD3FG2FVsZPHxggdPtgk2WeIoJ/n+xbT2AHA1+KxHAqM8vm6jb5ZbNg3HBehKtjKzkkzkIIvYqCO7esnVvncfzFhasSzG7daeOyKRoPZMSLRlPfIxhT9k+YQHP+bUFa2fwyVN47kfLliwJXWxrAJravP/cmunn/PaLeM9mDcHY+X2cx81wDc0pjs314aCMAC7ycJ3rDXHGf0uyE//N/Y3Dt6jNg5S5PRjmCBbRQioyi02MbVKwRZbYFQpjMVDh4lHQwOZMD5+/UbfmZa2Z9RBJXBHRXZivu8TQE3FdbWiYGTDvpricY+BUpsRJ8xWB02hP4GzYPNARldFPESBQZIyNBEmBDTUzQME0ys8njjU8TFxkDdaGKj6WWAO5nSoWxsxRarQK2w312E5m2Rg6HAYogwDYEWaU2NBv+cjz2augXn+5hXN8xzW8fqltnWWJ8VgcIzi7XgeF+OEDw6EkLrIT7PPTmmJ3/onTlnEhY2tDmS21GXarl1sIQvqBSfXPPO37U8F4M0jJi+OFBfyc38dxSdV2M4wJFWw/cxKOlmyzmw0GC1a6eahrlPbvvoygbWGiHYEDw3EQTHuuizEiHfp6XeRqy7ATmYOyxxdWVQNGr4VMmIUJnu9Oxfosne1ZuwI2RQw9ZAIutjH/S7Eq2KaYr46IxK4407+urLQQpaHFscgp/T49tYNxudDGWNeVffaedbz3+WWM/RdXrdlnZ4w5uVEzEHgpRqYkE6N+d0to09At3VRtvWlXWhiXUoxr4HeqW7IsWZDgWL0Ac2araqU79uQp52jiZ3t4VpdaJmHA57I2xDM+GqSwYSJZdwzyqXb96B7+PdUHoP2zJ/CZQorXJwXc84UFPIPm1NR33Qzfx1MDBXx74rzyP6D0poy5N6rNg5S5PRhGjQRSe2PPesz0SgaMJEV4ULTdSWsKx+On1t34QHEPJwZGD41dpMqLqQFh2UU2VEc09OEoe7oIMm0vYosn6ae9AI6goAFPnqlwTVPQE9+60p4YWGM3NsELPVuE2WmZlM/qzJyBk4HJsTQyNdntqtKGU6Nek0m0UzF8D7MAzdDYQJSvj1wEFIUU5QgRkWlBnGd/TmvwLaTHycYiw4qYGjpmXksjNMdfVUAuaeblCDvs1aHpzJzs4zhP7sBxn98HBmO9gRIBG/S9tmA75dbU+jp1SyJfLiheZnorwJXMjrzzp7hZkBju6FoD4nWN0BpRrg4xZr0AJYSTfZynV8Lzq84wFs2pSClCIDAsmu5PT99zso9sAsuJ21Wdw4FlAU71lS3m4PxBgjG60tI+N1Nc/yAQ+Xfnjd10rWFdgS/rPC2kIsXYqPLUmGF5M/JsXvDZxC7mdV3BpU6GoIdNP0UQhHiZSHWqNH/H5oCXGgZmcQzHPi2I1ELMm5IGfbsVBPSP7sF5f/YEnmMpV4L7tnWM5adPWvkqiHU8FX8yqZpKMOeSIyjNMGP0visiT28j4Hpu2dSSQ0/kY2cwxksjzNVhEUHx2S4C6xeWrO8XGVzV6DA1/VwXY/vMNgJ4qlavN1BObU90vLS0tzDFd7kZIqirzUSCRJyLf1fkoa5kzo9/LVbSB87mQcrcHgxji3VHNDjQjAfpl05m0vncfTPDQkBd7BpuoTYTOa/AVQqXsS8QKcZjH7svUphTMdpiWBDJEjijQmqgz5vN1JRymTpYcJbGuP5BDYskG8udGFi5aatqoNFqZCUPdmoupFj02GBupmWPcmRsg82aar84WPSdwLpIU8KcOhuN0BrgzTwca22I63ytgwWXQM58M8CNuuqtTAAIpDDeqGg4oRcXcaz2FA6JO1V2ot7V8s0nTsPZnO3h+r7vAhzyesPo5GRwECfw3muH58ZGHfc90F30wwciv+s1jBExOFebcERbVTB76KhYHou0jMRGk5SzDwsIOm7UjUGVaKmsFOJZ9UoY714J17xVMzExztVZAcdr6nmptDoIUJZZHONze4qLWNb7Pd3HvVGnxs0sI8aM4b6OUVY0oPVexUCx7YmyXzR4ZxC2XUPQtzzCa1Ts3apaMFFMrE8R7V3XD38vd8uYI/z80sgyXiIIlETwHeiWrKvy2hDj9rkTmD9srzD2Rf7ZmyyzSeaPCLJ6Ly7iWJzTIggIXukY2JzjvzCx3kKOGCaJtjDBMzndx30vjzCniTmZFvB8rjXxrHeqUK/9vS9jjjIztTY8/B0RwfixZDsq4vt+uqffy8z6/tRn1vyS5dmDMr6rHVtDnPhnkFlZ/QvyRrJ5kDK3B8PYnn1aMO0RRx14KbaSRVlLQdcb2hBQnS9F1Ij/2C8jdcxePsMiFlYCaKeuNRRkR9fMsQBlqPgRJxNxHJFKal2K6XwqooJeim+JXPydmYRGaMA5Nh90BOchyLKoZRsCTv0EP3nq8erQWERUxnUcBEBkxJB6S50NJwPGgZRmMhO8FM62NoNTPZp12KoaaHejjt+JWWAWKEhA09ysIbgLYpHUt+wCpd2XxpDm//wa/v/QgZ3rVB/XyYzMcc3xaGPfqJ+N0ATXRIxOfaaHn8stax5JTIGTWYC5r3gfP4aDEDFNGU/fd7KP50t5+eURSh2xi8zAMzvmnCoRnGZnjOfIstZuGXgcMoACBdCyF9K3X8O41jRbdqGN44cerovZj9oM1z9R1soz23juv/IEjn2liXlxrmvtIEYafFN7hvN+U4HIzGoMA8P/UPDvi6s4FrMubLCYuCKTCMFRITWRuEqEY46KODdLNARvP7+E+cLSUerAeYeeSC2XXSSL75F9XN+rHYwxheU6yqxiMEOsCftDuRk2C5s16xBO81LM85I+g/P7CGp7JRxjvYEM6mKMeUlQ7yP7+LmTvbBkGcl+IHIutYwqv9/lWGRxZNndykwlEDz8/eEDjIl2oHaGf12y2l++83m/hWwepMztwTE2/MuXL2IXO5iO7pi4i2LK2k9Mf2LkC7qbCYKBzZrRRjdqllpnV2MCZHe1NEJArIjpUexWRLo+nCNT8NtV0ylhc0IRlKcorMWyCqmRDL5YkqHQViG17sFFDVSCBAsp9WLCgjGJKjOUq9jsj6BZitVNC3DWoWdjwj5GTNs/umcYCxr1XmYeMi1jHwEKRfPIyqnnAcVlc/5UHF0bYGyGRZHf/yKOTcxA3khTvlsjuPUGxruYiFyvYjf93Zdu//5z3cNBaUEDPgI8T/dFuoEFim4Gh8WMiCO5kpuLgOj8PgKt3zyDZnwjH/Pi8V0rDV1sG/6JGiWJBpBjdUjNEOXByMX989mVYsvscDyolkzWGjFQVLv90U/iuby4hOvplkxbqKylkeWRlfamBevye72BAN7LDJC+V0GJcEH1fxhwdJgBUizT2uBwQ01mqigy2JngvNOCXkHdLgAAosVJREFUSOJbgBNq0EpFYPbuqc+Ad5kWEBAwi8bgoJHL8Lx5C8Ej5/flFn4vJBjT5RHm7PNL+K79rtcOzw1mZZ7ZRiaTjCH26FoZWsnzbna1iesualmwHKO05KUACH/8jJV2GDCzrDsqYp6y6/t6A2tCZ4LjtqfijP+myGsLkr33j9/b9TzANg9S5vZAWHbmz4HhQ0rs4hhf8Mg1gOvMMwZKJsa6ELFy0IkBvugi+Nv1ujnXvIhY6lhdfmFiOJDIM32PfoDXTvUtU7Jdtc6tIocBoe2JyuHrsahWW9Lsj5dZW/rEUW0Qgaw629kvjUxjgzvp9YYCel1teDizssSwaN2b66FlX4jFcCsYq9rsMFAwH6BQ3yN14Ky2c3gc0rGZMWB5SgT/Zg6cT6+EMVscI13+cC5rctR2K0ivv3v98ByQD+NRyoftnKMigtTfcQGO9zhK7lGrzTAu7JBM0Tg2kHRF5GTP3udkAFl+4CLS/SyZUGq+kIp823X87JdBQ/UyvKc2w3xY0YCgPTEcQ+oYzbus2UDqgpB5QswRcU4MUmshngUzLQyg0lxwVYpF3raB473aQSC+NtQeOoKx4zNPHAQmVIq92EbGoRHC2TNj2QgNR8QAvlvC/fVVyIX4j+t1jIOvQd1WFcdfGuH7drWJIKeYYG6zAeCbtax1vaEg7RGecV4zJR+c0IrJ4QD10X2TB3h50QTXHNHGn3ewfFaP+jVHmzfeyZhVZRD5+K6tCcUE40LmGNeUtaG1MCikCLY26nhuT+9g3vUDzJXYFXmoK87VnxEpxWDbfYvaPEiZ24NjE19pgqFJntNZUCSJOgncKU8KSMnv6K6fYlEs4TS13j4s3mQ4oIQj9rsIFoZh8XBX4cS17rvFBMFM5MEpD9WRsS08hb9KsTU4ZM2bmheOYCHvloyyKHq/TM+zy+zMO3y9w6IGOKlpyjCzdFDCWJC6zN04gaKRLozMHHmpyeQTvMmmeFSH7ZZEdsXKYMTJiBjbKRMTQAs9Y5Wc6t1eJl/kcC2fLJuZJ9LIvWeo2KDHd+210/cxl8hWCn3DIGWOyeoTKH25BedNB3O5BRXVt2xBY2XiI01P0OtmDbvgcmzYj5tlSnVIBFjTQbUnANaKQHcndgEUZpmAGBg2Scz0fZ0xmgZSVTdzrDPzsGhNC0WwW2+ECGhF8F0ZBBiH/JxmWadWNUZWZ2LjzYyiCJz31SbOQXbdfhn3tDCBk6ZwYjm2jUDmiLTGECVsTU0M75UOAovHd5HNaIaYN09vW3B/NyNzTgTB0dku/p8HtD50cOdjEcdEO04z5ai9tGj4tPMHAFL7iYnM7VUQMC2PtISWYJ5RiHKnqrgwxWtNNKO1OMb8q4fQaCF9nL2bNmpgAmW/JCIi2ff9obtf6wNmTpZl2Tf7Ir5R1u/3pdlsSq/Xk0ajcfcPzO11Z85zP2udUNlAjxTQmWfUXgYwxITkmTdhATv5TG7S/aQ5td1i6pgE+56WeoqxObFREYu+I1hEqOoaekp1zawTa2cC3Qt2Um4qgp9gVYJ68w0MKf4WFkxWfebh89TOoIIugcFkGhCsSABx7FpKPlJQZTlXPiDGhpmdzLFO0ezPsqglMarz7lWATaBaLUtDOVGqm06/PUGgdmEBDqiYYId+t1o+My8EC6c69lR2pcIwA7mjAlzTgrFCyKY5aht1LQGKXlffyh87VQi29QM4tXddR4blRh201bUB+t34es+9EpzLdtWYZuzQy+zftaaBrKkzkji2sy4mOHczRLC6MjIabb6XTSG1LByfP1syVCJ7nuVIRQkTkd0qaOwMnEitb6tmx5u2cP0i+AwbcvLZMqNEAPd2FZ/tafaEc5oZHCoUs4njzFOV4Ni6mZNivltBcHOxhe/L6hAB4P3aThXqx//Ji/fei4dGqn8vMMVoL0XAebfs3GYNnxkW8cycDPfNMibbT4QFK5nxWQ40KO2VNKgvQFOmqBnJcoQsXhDjO0f2ETOhpRjBTDlCQLY2fCCE4O7HF88zKXN7sCx1LCWaiSphuoYJYbmHwm2k8SYOFof1hopaGRANIETPmC5BIhKKNmhTp8vmbCJwsCwn9QIrFVQjkdUBdrfsr8OSkCMiY3VKdBDEKFD/JNXsg5di4R4oqLc5NRqkm+E+SE2eKSaFde2Z3sfIR1q9OYWzXhla1oY7dLKGTvUNcxK6IrG+zpR0MTEWVBDbwsqgJNKs0Exwn40QAYCTYcy++zIClCst7dcTAXx6tP8N7UoLu+qVoXWcZq+fagQMyNrQqN1eeutuN6/g+3LHgJlOZpiIIJfRorZGe4rsyJ7SlwkqDpUN9dCBlQLGvjF/eiWjopIGL4JrYKftcmSBZeKKZJn9HrsGDmefGQI+azMNLiPLAESuYZtYBloa2+vVmTFsGAQ8voffX1w0XZZF/cwgMDrvVs2A08XE1IZ3KzpmOo8aIQIgivfR6S4o7oSaO/3AMgilWFl6mnmjACK7TfupjfedwNIimNdXmroRcE2H5UrzeJzTpABNGmaavvMqrunVDjYhu1VjRDn6/f/CGj57u0Dl82sI2qltxPYDO1ULTlaHmFNkUBUT00ZJtJzcLWFus/Ekg2dmTU/3cZ+hh/cNixhvNnE8272Z7aPAYr61wYNs8yBlbg+WVSN8wRuhNcqjo6a2RaTBABUx14amDtoIjfLXDLUnTwX6KIu6Wx0WTcGSYFJKyzM1zfR9PbdLjxWz0RljJyRizpR6IZTbL0dYVCng1iYrqAiqbD+wHihUP73W1JRyYiUWpuLDgu2wuEO92MbCH8RwmrUZFvaZZo4ojd4PcK8VdaLE2xDDwnEcFkVmAdLZ1PPolmzHR8VMEWWSCF7/8op2n9ZMDK+XHXx7JaNvJi52khs12/VngqCnmOD57yhV+22bdy4bPaoYguoMz2W/pMGBY0FERbUtmFESQXBEFgj7r4x9OO/mFI50t2K6PGwbkOUCTirjMoga+4ZrYimMWiJeBjYRu+jWQ5RzmCWaFLRBoY4FgxMRC1rI3CGTTcRKge0JnsviSOSzJ+EU/RTX0y3hs1eaWvqcoURTiRBEX2sYZiZ2RZZDC5iIt+mM8VzcDBmFTPB/ZjILKZpBNkO8RuAtvxOVyL7L7Px9tMnhccaM1HoD90lgdl+zIU9oKfClRQvcWTqkdP/FNsp357oYp82ala54PZfaxwcpN+oWoLgZzlebYR7lj8XvJu9pr4JrYLaXwnx5SQCWZZmFu9JU4UANGOtKmz7a1DJnTvgRERHJgr9y97F8Hds8SJnbA2XZ+f9anPHPwYmVFd/B2ixLN5kgNS8pgoLtKhYSZhmKCRbIRogFkd1gE8eyE2nO2Ua684ldS+fWZzjGRHc83CGd6WGR7Co4clLAe1eHcHIsx5RiUx11Myz8zMhQLIu2XRWpCnbwPcXgSIJFOnFsx7lfRgDVnmLhJmU2Vt0MaqlMCiKzqjIxBAveQIOSXoDrJ02bO/1SbBL+1M8gRoGCYWQo0TkujRFEMdvy8AH+vzAxYCmdhoilsJ/cFXll0ajF7Gxb0izOtAAGTuKiLBA75uwpeJc3ZhIGmhmj/gn7QM08PEcq7e5V4MDZPJCOh7odhdQaPjIj1Z4iCGMJipmBfK+kamoqpdT04fMLC6aePCpa8M3gIxMbAx6PARGDyHwwSVwI57wjyFBtVzFH37Kp4mspAqJREc/r1QU7HwM5iv9Rt4dlqJKyedYbeM6ZAFx6rYHyW77f1uk+ngH7Wi2ODfzKQInPl5ICdzM/Nbo8dUZSB5lOll9GRWuoycCZ84A4klN9POutGkor21Uc/1QfcyV2IZV/pmcBILN457oIZtcbKlfgGQ6Ggc2wiGCCbTGuNnGcfd0wDIqYPwTZ5sdNBd1k2zewcuaYYu2dTNcFZ/IRycoPbqAyD1Lm9uBZdYZFZaYYkGERi+RuGbvNamTaIHRKDCYut5BlWB5ht/NSR+SdG+boif9gqp1lo2JiGIleCc6hmIi4scnvl5SSzN0wyzozD4tlJdK+QKlpM4iokFvNVEyPGnd9pFcHMe6HWZ9BYOwd1v8JznMyTf2nCGCIE2FbeQJUE8ccKsGZqaOKuBqAtacYn8QVWRlK1v5LIm8Vcf7F/4pSyUHZ9ClEjLmRbwaXt0JiKsAippwrIvL7XsIu92NnjfbNsh2D0StNOERmiCYFONC1gZ2D2A/2MVoa2ecHxcOg5/wc6AcIqmIX18FyCksF0wKYV9S2IE2dHZTrOgacp9wFE8PiFQ87mUokUi5Ynx9HUA5iwJc50L4hJTZxMM7M0IiIlFVfozYzMLCXWdD0+TWU3dhvhwDuSQHXwo7Fi2Pc13PLVpIspEZRPtXH/e5W8ZmNGrINZ7uqbNtCoMDnMC0YuD3UEgUDzcwRaUzR1ZuYmIOSyKdOwfmfyD3LoxbEIt91GUrAVJjuTJDhKKT4znF+dCYaxJe1XFoQGTsYI/ZMIr2+OcX8qIcY390KjvXCEuZrEGMNeHQPATIZTqUYa8srHdORIbCc8gXTgjGMuKHZrRjoeGGC+67PkPm60cCx33f18Ly+HyvHD3QJaB6kzO2Bs+zhHxXncz+PheB0DwtP4kAWnkqxBHKOfSzUGzWkm0nfpQ7CW7aweOzWFeyqNEV24mUPIH7mQIW3AsFCN/NEUnUEQ02DexkWs27JlG7pTFaHcC5O7oZKse2+EvewtkreWMNv6yJbjk1xd6qgv1JsZZekoMBi37rqkpmzMMFPPrVNGmxNyyOsoR8o/ifYxfX1lIK9oNd1pmfsqUERbIy9Csbx3euH2SO01MHCT+Axnb8jBgpuhhjr7So+T2ZMpk6c7IjdCspBTM8HsWWNmEYnIHpUxPgfKLi3qdk0lrt2qlpim1op8KCsLBjH6OksXbDMQHbPwsR6MrEUQ6wJGwNSzIvg6YlvYmI0ssoi18pQIqa47GcILqpaKpn4pqvDz3Puj4pWAswEAXElQnliq4qgguJr1EtZGpmcPplilOXfqhmbLNAS3KkB5sQrHYzhuS7mwjAAFZlA0oMyekcVHcvUsdTyyD7GeOYh8L5bJ2QRCyhPDPB9J02XG4SSrglXm8pkc0XaEY4vYnTtvYqJyYkcpvCT6ePoMzvTE2lvojUHM0+klB+UMVeXRzhHJtYOoRoh0GHgkokJP/J9bCJJO38XgPl9mjP+70Wc7IHKrMyDlLk9mJY6Rq0VUQqmWH37oGyNw9jxdVhEOnpxDKc9KgIgG8TWt4YiXiKHGRQMQkjzzATvI9CNDoZaKqFnOzIGKGd6loLOa5KwTDLShb8zwXleXMRn2E+FHYzLMUo/wyIWYzZ+W2+Y/HZd8QKhZ7txX5kilGSvRLYIMxXO8geDBGYRRLBbTlzcV5CIU/t/4HPvFIzry4twLEdBrC8sgT2St7GP+yTdmowVCoilGZybI3KzyzNpwbUQDnqrqtfkWJmnH1hZ44ldfH6qpZSKBmpLgrGggu5GDYFL4sI5EzcSemDydEtGn2ZA5WSqyKvAU2ZJWAagTkYmuM/tqtF7X1oyBzzxjUmTD1IYbBRS4JtmLpwiAcuOGPA4n4kSsTEsaqaqOsPP47uacfKtYWLo4TirQ5SAhkWRXz1vmT32RmpNEdBfa1gzQxHNXowtCFoZIUDbqeY0hnROrTfwPXh2BUFFkJhuzDXFXBRy2UsRXO/LHcy58wf23Xylo2VQxcb4Kd7npwZcjTQIHfl4Xo0wJ0+Qql5KgvshoymIkW367Ak9/gxjcLmFMa1qaSksaEkvwnw7OUCAVM8BliltQID9qT7+vqUMMIL+Sbv+ehvLSbGLYMXNJCu9/oOVeZAytwfSsnf9CXE+9j9ZpiNxsGAxi0J6LJ3t4hiNwdhGvhzdmkq+sACncraHRYU7pExMmr4zNmlxlhG4Y6WTjzPsdFk2CWJTsN2rYDGvRFZeYFCzVzGHt13FIne5hXugCBYXbxHDStBBsLHetYalmCcFa1bIXjYEig5zjCWWBUQwVgycmNFhsEMnycCF1ggP93TJ29EAhdcuYiUeZimIByLwuaSMj2kBjj3ygKHgrvXlDhwEBfHYFHJSgFM81TfgLEsyeRzRZs165jy6D4dFzA17Ae1WIEv/9g0405stCjT1X9XynSsmDlfXZ7On17pVQ/nkES23bFdxHWMfafxKZFmixDENEwqhlVMRuQPbhSBvXzOIefYPswWxixLLVIHJlQjgY34XmAkiKy0TgJ5nHnresJzBDN5mDQ73kX0rb9VmKJMRf1VR7Nb5fVBll0fWmPFot+O8RcpCovDiqChSSoxZdf7AQKcUNpz6IsUQG5KT/cMBQmuK97x5S+R/fwyBY22GZ04sEb/jL3fwDNYGCGSolBvExlzLtDxaTDH/ajOMFwXwKOV/sY1/TwywvgQxjvf43vH3/9oCAuLjgMObNTyfewEVH2ecA5wng6I4e/9Qsrf8ya/seN8gmwcpc3tw7bE9OBXSFSc+/t0vI5g42RcZ+5J95x8TEYFiLRkMfu6LznIE0/xhAU6kM9HuuLoL1y+2THxbKBwxHAedDFkEjpikeWuqALmJARGrEc5X1sAjEwM/khHSnuL/kwKcXFkdBfuPEKPCoKGQYudHhgSzCwdlBBqrQxOHI1BVRBudaUDCHkWOGNtg5BvjycsOsxW+GruJvxCloCZW3yd9lbot77qBQO3fnTccSOKao2d34KGWdNgHhqBMZrT47L3UlHYTF7vzA6USv/+KZULYq2am+A1Kl4tY9ocU8vrMyoV+IlLWckRbgaXbVctuLI4xV/sBGi36CZz4+X1tcpgeO2R3HEsCdxNHwb6aIbqkzvJAwcqP7COAY4sCBqgihp95agfHC2I48p0KMiUHJZHfOgXnzG7ayyOjxjLATR1TsO2W8LezXVzb0zmcErN5V1oIBr/9Gsb3woJ2oNZApVvCHKWO0Lddt5Ik5QWo4DtQ8DdLcixTrQ0RRD26j0wdNwqn+vh+sfHnNEZQcKanGjQBgu2xrjH8jjNwZqmTXbhFcA2lGOvU2EcGidpFzNIetTvpB1GWoDnFmFEw77h5kH+eNGZ5qXitLTycX/z/4f6/59LrErMyD1Lm9sBatvIXxCn9JBYiyl83Z3Bu3IGx9iwChsFOReTXHsZuZ3mEn3IEJ0InHcRaa5/h2JEn0o6xIyN9mIwXZheIAaB2iCNYSCmaNvYNiEoF1vpM5IRrKrp+KuLpsVeH1m24OjMwbyGFY9uqYpFqT3Ht7AXEBYpiWiwvJQ4ArPnFK8+gqIcmVldTB1qdHdZ7yATXuDDBopYPcu5kx2FSaLWZ9ldJLdhjpol6MJ84jUCBMvl0Fmd6eO/Mw7/EsHx5BePAkg9ViNsTw21QUGx1iP9frxvLaBCgRPXkrjWufHEJu9xH9xEobdUsu9Qem0ovKdVbVez2V0ZwettV7KbDAp7FtIC5V4oRHD10gPeMfezOj2rI7FVwb2PfROHKERwuS0MMKN1MpJygJ9GNBt43KELz462beHaLYwNEH8U/fedVY6uMfTj29Qb+T+fcUEo5AwgR05/pltBwsREi8GpOMXZl3UCc69o8vNhGz6O1gTnoX39Y5N3XRX77Bcy/kwPMga2qyP/2hMj7rphEfbeEn8RFOeqLq9YZmtT40z18l8qxyJdW8MwZqE4VbC1iDTn5Xa5oKef8PuYaS7fMsMYu5hZLd+UI2aKDsnVmPzHAd35hYkDZteHhjOjdvkevLVhzUl8zxI/tmzifyGFdmOMCFBqVuimtwPLWQUlkoy7O2odfd4HKPEiZ24NtLywppdYTictY6Kkyq+JRzpf+IbIqlxdEvrBqgMV6COd0cmAqswRAEtRH6Xj2o2EjsMg7rAsSJKbOyX8jT0RSO1aQiIhiZkJ1iGPfUvOLYywWxURF5WKj4W5XTY+DWRsykbar1sG1EhmAtBJhbAYKUF1vYEEOYmMEHRXMIgNJBIv6yYE1u5tobb8egtUwLVpgR+OuMn9cHo8S+7w2EVPLZcmL4F3am7cO92wRsSZzIua8CxoQ9gMLPMhKIVYpI55EbMxHRctwHJThCMjs6gUib9qGky2kcKYsIVIULs/oIeW0M1YMUC6r8+j0MK7psycQYNZmVoZ8ZN/wEkeNoFtqZ1Av42gjyHx2qzk1xspQ2WWtKY6Vb2NwnLHPzck+gi6qE++XjSHFNgwDZQVdbQKXFMQif+JzcKBfWkXw8Og+2FgiVmIUAeXXVzzSqx2M4+IYc2FJszN09ntlkU+fRFBHDZK6BtQX2odLqOwM3ggRaFAbyddS2r6+b1oQcWJcG4XYBgGOQ+0TtuEYFU3c8HMn8DpLxqljPcWqWk7eqhkgPnatj9JRI3386POIPHz3DsrGBJx51qerGuG+eyXMaZ7rdpY5dq1kvbmZKR4rbsrZ+jsinfHrptPyPEiZ24NtTDVnjshnTuCLW1f2xpkedlFP7cApvLQIx0DQXyUyiu2FBWRZNmv48u5WRL73IhxkIVWGTGxp/8wxvQ3qWzCz4in1l3XuQPVMBkVb/Kuqv0DJc5aQyBqhM2U3ZDrYxMXrA2UwkGXRnhpVV8Sk/gequXFioKWK2DRRREw/QsQc67UmHNlNynSC8SSLZa+CY1Y1CGITPD6P/bJlNQguprotlVcJ4qPYVWUGYCiDs3s1Ou9BIFJSnZdmaGUIBnS7Feutwm6zoQZ4k4KJ3JEG/sg+PrNZwzhWImRw2JmZGAQypVie6IwRCLALNjVNxr5R5f1EWWlKZSfQmBkKPr+8ai2F9kTgCPPB6t2+H6TePraHoIOpfpYJC0ec4426Pc+NjmGiBj4E8U73MDYUYnt0D+P1Lx9DAMnMQmsq8tsuY9wbId5DLBRLPE6G4/UUO/LIPnSC6ETpuDtj625OXSOORSVCoFfSEk2vdLgZYKiZts0aPnuyb0DlfoBrWRzbxmNSwPdlWrDg4FrTWHfdEgLSph6zW1KlXM1qzhS43wtwrHIMbNmoCHDyUZsUMH8pNSCCc//mGaNss6zlZTjHxRYyZeVY5KFNo5VP9TUy5PLGMtO0YBnXzAFDia02qF90tvu6oS3Pg5S5PdCWvfuHxPn1X9ROqSGcL51DJYJTuF7HjqMUYyEpJSJTz6iKry2YgFnmYGH8nkuGGajPTKTs5s5D2QFuBGdCwCdVRUWMLsq/OWKicXQCzNAEMRa21aF9nk3wRr7J3pPFQj2URoh7jFyUJDoEPmrpZ0MZMmtDY5ckDna4q8PjaZ7Eu9CIsUi0xn9QQhCwpnRqqvySbZTqwscgpBph/CbqWHsK5K3ODPg4LlojvuME2S61D3emPWqOLq7rDQQIzRCOidklsmj2y3hemZhzvtxCMNcCa0m+/Zo5BmZJNurmgBLHOkGf7inGqArHsVaEo2Xp6qCM+2RgQ2M37ryS6adOwSmxBFbVOXyxjXO9fcMcWb5cIIJrJd6BJUGCyN91A+d6ZUGkf9oyNyK3BihXWjjfI/t4Bue6FkCI4PleWLC+Um/fsDLN73351ufSK4n8u4cxJ9+8hYCMgOO8FWORd2yoGq5+n45mFmozlIBeXEImr5giW/Hwgc2X1aFpDRGrxgxQSZ33pTbm6NIoB4wdYw74iZVs+wHWhop+x4NcmaQf4HtJHZXFsWnUdEvWi+flRW2n0D0+c8WGjF56mOFVivHdZDbnwoLI80uq0RJY9mNQFFl0b/1ubNVEPr+KwL+QoNR9rmvikWQpnuxjDrxnHRudaQH3sd7AdTdCceSbWwKaBylze/CNiq1neqZqWYlE3n8ZAclvnDWAWVjQBcQxZ7hXsc+c7WIn8ugenOvIN8d0kxbq3LoDZT+cIIEIF9PFgZ4j8nA8gi9lZuwOR8tKBOZmgtcGRWtWGBZMD4X9YUoxnE+vBAf6zLYFNX6KHwJ7n13GQvrYnmI+dmxhz2dWaNz9iuDYDHBEcL5JAdc/LIpsFe1+CeBlZulaU6TWxWfqunMmtoGln8QREd01M6ibFjBeIiZ0RSp1kJhib21mkvleijGg1kniKB4lgzZHuWB9ZogbWh4B6/DeayhJZGIln9WhNRR0xH7Y2LKlu9VYQCFtK912twJsQnN6qzgf8QXF1ETHYhfzY6tqsv8MgiMPAQ1731C8jwEejcehLUyMWi4CXMX5fQP+HodbuFFHgLIyNGptWQP9tSGyXSxVMUC7W6PI5hQMok+fxPHIDhJByeRcFwECafU09js66tjZcXm/DEfcD/D8O+PDQeCwCCBsc2pZiBMDZD7YfuB6A8HHQ13TSalGFohQLHGYW1vGPhz+9bo1IT3TM3XfgQKly1r6KaSHdU+OGts+MFPKTdCweFgEkQB5YsLyfZLWG9YCgkb6NVtPsFEnv28zwTw41UeQRyNb8P/zNIJKNxN5eluc8k+I1GaSOT9+5+f9dbB5F+S5fUuY86u/ZN1xL7fwxXMEtebVIb70V5uGmaiHJuJFKi4ZGVs10GlP9a2HTr6JYW2GTMzEt2ZyXGSqMyv7UFmWwNpQ8SFj37IrlPEXwftrMwQsTO/3SkbTdQTHpjIoJdK7JcOvNFWwqhwDjPj8Mu7/hSXU9E/3Rd553RxF5mCRY9PAm0BhBfrdaYEVUVp1GT+9kjlQTwM1qvWyO3QztHO1FR9BUTB2daXAlZOZSFYxQfaCz4+p92kBz529iWh8Hn5iz2ivAkfjZHCux5U6yCaKPAMcb1dx3SxPjIo4f1gwWngztLYK21Vc01Ew5HoD8urEFp3p4RgMKskw81PVkRljTMc+drwHZZs7OxX0FToKes2LjzHbUYpxHNK4aZs1aKUUEzhwMpRWRoZ9CT3LpPC5nO3eqoVzN0sdnOtc1zJLF9vW5PBejZo6uxXgy/qa4fm264fBo8+uWKNG6qNkjjn2SBlrhRRBykgzIo6YsBqBxQTKulpqIfusGeL8K0NtwlnGeZZH1lrhegOfSZ3DJSgau2czyBoVAYhl5owWu9hssSTMzO7yCBuBd6/fGnjOPFP/zf+NG4xqdGtGa1IwoUiWhj99EpT11SGahXrpV51ZmXdBntsbz2aepk5dpEdZOz7dNxnryMMOZ1owRklrqjvkDI6WAcUXVy21Tu0L6guIIEOTuNb5tzUxJVGqf85ckVJmui3c/feUkbBXNl0Laq1QynxSgO4G+wQxm8DuyqwpRy52tMTMVCLrMsuGhKUY2impg6yACAKY67oDO93DrvNSG+cfFFEeG/tYKI+WFvJGdc3lEYLA/swYEgwABrqz5KJIDA8xBhwbKt+KWF+gka9aIZlJm/cCC7JWRliw8wEKjQBYYjvcDEEFs2r5AIUMEWa2SMMOfaNyJ45IqgHPqgbDVL/1UpHUE/n4GWOO5a1bQqBYnYmsjhAUJA6yF43QWgkQnDwowjGEBTjVbWVZkSmyNjxelZjjwDLlTsXoz+xLxezKwgTzgJnEZohzb9bw/rUhzrtVte7Ar3ZEntw5fi5kjmW7eB6OceIC07NdRblwt2L9qr7vwvHHO86CGAHIzEPmixmMfPBFIbfOGHOvEVr266GuialRUffVBawZ/cDaOoQF3CcFDzdr+K6e6pu0fUHLVht1PMtyrO0VEoz5TtXA06f6VpLL28yzjCBLT90SnkXeCikCscstjB3L2Zs107g5asXk+MBI5LDidd7YD41WD60X07nuzczWNxKvMg9S5vYtYdn3/wFx/vX/Cw46SKzmXNIFOfKwcF1vKMYjxiJGWqGfW1CXFJh4paUZGQ00+MXeqCkeIzJZeRHbgbN8Q9pufkEoJqZqylS2ryBUMoXYnbiYiKQFy+awUR+dL+vS3PFzpxh5Ipdqtuum4F2Q6KLpYxw2alaWaWgmoDLDAktqanq71Uwtr8lwdHfNlDSvv67MiNoM9z4qWtM6jj2l6xnIlGP0yHE0M7M2MLBsXmGV5+O4OhlS/aQKn+pbZofsrnxgU59hPJzMtEAiDbQ6WuryUsuGdRWcWVIndaD4lcWxlaloMw+0985EpK7XkGgWbeKLPLqFsXm5o7iogvVIolx+NULA/XIH5z/OKQ0VvPuWTTjLTB0ns24Mllne81M450+dwnci0uxfptccetZUkW0UDsr4fD77wewWlXNj17A1nHP8ibzDkv2O4JrbE2tlcCfbrRho9qhk/LUmAlhiLsbFXNAuhkUijZjyAO2JduIORcpDzJnUsfnRCA3r1C2ZUnEvgPAjdW82tfzE7+OgiMD/ZB//tie49/zYUVaA8/9qExlGYtXytt6wbEsptgD3bqyeo1aOFU+XHf7+Mkt1tMT2X37x+OOkjjif/3nJ3vnD93f++7R5kDK3bx3rTAxBH7tg8zy5C4f32gIWTi7Ek4KIlK1RWzm2VGe3hPQpNShIbSVtld1yRbBYPL+MRT51tDdPZEJhBNvecq1jw1EUUnNKVLJlGtYVFV4TS8EPAmt+6Ccmc04MzbkunFszFPnUSezoEkdk5ouUxbreche5U8EOr6gAu9PKXCAz4U52J00GlmCYWRkW8XpragHF8ugwSJbpdtKYj2P65N8/LcA5dMbabNIXWR7j9229730NXClsx1LQvpa/KJ7H3jTM3Bwo44JjXA9Fpgl27WEBpUQGEv3AygAbNWSi3rqJYw6LcDz10MDTzC41QlzHXtkyZ35iqscsDRVSHJe78UJqpaPTfczNjTqwEtUZMgZUTaazHapzq4fmnPKCdi8tYs6za/BmDZ8jgyZxUWLK45eoqky5eW4QYhfHudjGXNuq4thkfRGPU1MmHkufd+vXwwDTzW4/P90MwfbEt7JLfWaYohMDjJWIdcMm2J6A16WRKRbnx47fJWZcb8oLuAhGZgU8p8hT1o+CgCMPWcxREUJ2p/vakbmIDQ/xN++9hs+/vHgYSPvSomXCnt7Gte5Ujw/syKQj3f12QUzsiHi53zPRDc0xAN/jzM1E3nlDnPAjIi8tft2Ua+dByty+dYyUyF4JTnanauC6vTK+0G/Zwv9FsFAy80AVWu4Ct2pw9mEB6PhyBAfPMgYXFTfDovepkwiE3rYJACB9d3IM7oGWX+y5AFXEcCGe7tAI8iUmphybwiX/xh2vnxpeot5HDfmj5+A0U8Fx+y4wNewxQvxFLzD1zkzuHqDcixUT7VBdEXGTHINH/75dNcwIFWeZ2bkXK8XWl6g5hTNcL8DxsYS0MjIcB7EFdHYc57BgWB7qYiSO6dYsjrFTXxni9XoIYOPYx1xJHDy3Ky0cp1uCI/yOq7Yz7weg13qpBiYVPCtS05dHuAdH8Nxf6SCrR0p6JbTyFrMJLy8CgEoBvGKCwEBE+8ikNkfYOLI5xb8rQ820OBZkX2kimOgH+P5Q/XZpfBg8ndehSVxlcOVwQBz7Mz1c49s3DMy73rCMGimziQN6892ClHIMvNhnT2igl5ujzakJ7GVanmVZ7eTANGh6gQbhvpUC2Uxw4mtJboig4rUFBbQH1qCQAOVybL/7iQW5A2X+EGuVOjgngyv2ljrVx7jlx9XTklKe9UVBRWqksOT83ZfsPZ8+ief/zDbGd7uK+2d3dAYznAvc5OQ3GaXYNKfuR006QFba+cQ/Eoldyd7/R+/9s/dg8yBlbt8ylr33j4vz0f8ZX7TPPQSnwgWFQNbEgcOhUiN7rDx8gNd2KnjfC0soLSxMRBwfCxCDnUwQCMUudsudMdRFP3ARgY+vGAtqqNyr7gdTvGTJcP0IktxuUMs8BDLyM9yhZyLiFaym7aXYeQ2LuPZp7itPnRfqh5wYYNG82LY6NzsgJy4YLMzm3IsxoGMH3bF/WLI9E1wX6cg+MUKZUawnPnbFdwuYugoMrUQIAFhq2KnA+e9UDgd/QWL6JQsTjG3imKy7k0n21J/G0D73s9Y7aVjE2BBMWo1wTjql1LGsVBDDyW1Xcb4zPW1+WcOzoCMgviBIDMviyOEsAynq0wLmm68ZuG4JDRdLiWFB+gEyZG/axvwjuDiI4RAJCqU9fABF18yxrM3ZHsb8BaW1305+fVS0shufN0uVnt4DlYJpdOaOGH19o34r1uWgbIDW9hQZAYoVPtS9FfdTTPBeLzNwbhAjQGG7g33FgbH0SJ2exEHvH5ZAdivIOJYVFP32Dbxnp2rnK8WYNwysXlK6cWcs0mujlFaJcB8X26Zzcq2B51GORdpHSlZHbbNm+idnerfeM80RjCFl8ysR2DlcM26+L7OxOq6UW7rN63ezU33MlUL6Nacsz4OUuX1r2bCIndvFtgYKuuN0BGlUEdvZENgXFpAmH/tYBCY+AKXslMsGZc0pdinXGod79rBjLnUlKObEnjL3YkFiAmM3AwnPdm8LE1tg6PSpqssGi4VEQZyZNRYk9fDRPZHuSdNyIR16V9PhF9oIZtaG+Gy3ZIt7ZyKyq1kCsiO8DMFeI7y9/kO+CV/iWuA1LFqXXvZKoYMlKJa07YqWKnaqeH7LI9tRNtVxUqI/caAZwd1rIQVuZK+CY57ZwrON9JllAudHsHAhxUJfUKwGzUuhUfHYHu6L2TFmfmoz68lERWMKg/V0/EINiFhCKSZWYijHhxk1NMq3J64FOhMFb3dLCIynBQQpBK2S+XJQNqDnIMD9kSYuOnfJBKrNkOHZrmqPKd31D4q4rm+/ZtlAZusIxCUDbVA83AzST6F9cpx9eQVOdFBU1lRkmQ3abgUg5M4Ec3CoOA/SZY91sAr6HBRFGpnIWv+wgnLkWidoMvlEtAmgUo05/JdbGONH9q2f1KSgWQjBM+kFyE6S/k3V6doMGVVip5iZ7AfabFDLYGUNcG/2HtOs0rUmMlqNEL9TjXq7agHtRh3HXBwjU8cNwKQgMq0hoN6t3D4jeVx/HzYf/Er6RomgCaW2I3HkwyKfPCXZe37o/o9zxOZByty+pSz7/j8gzr/4X/FL5BlzZ+oZLqEcGQAudkz5tTbD7oNATC9F19hl3YVmju3kKMf+qVMo7zRCfEETFwsumSuZg3OvN2/VMsibn2Axo2Q8r7sSmUz3UauHpjRZTFR7RK97r4Lzn983efy3bWChu9bUxmuizk9T8xcXwN5YHmGn1whtp0h2SUOp26MizluO4EyP7vCodcLaORfs2LWsCGnY7E7M+vtQnZeXimzXTHiNNNqZPsunt3Py+plIQTM/7QkWbbKh2pPDKqjHGa8vl2Yng0GeFIA7Wb4YFU2ojj+ZYPe+NoRTZUCQOHCODAaaU8s0FFJc20tLGF8Rk7LP99Q5KJt+jJtZ4NtXbNJQSxGtse2QS4rnYcaqGZpKbSO0Yw0CzI3Hdw1rtV21Y0sG0CfnLrM/rlgGQgTzZaK/+4kFCt6RssLn1zA3V4cmj79ds15GNHYP9jLrIZTPprUmh+nWnFtnehj/h7qHMwjs/k2Keb7BKLOtpPP3dQMTKguwM8G8YObyi6u49koEDEovwByuRNikkD6et7yezNjH752xPWO2EGhPcP76zDR2NjUI8VP8v5hgDtZDzA0KzoWefUfdDFndruoTFZPD2JSjoFkqWRP0PS1g7PPjdDcjuJp2tifOy39fZHEsWecv3vtxjtg8SJnbt56FhRzzI8fKYYbi5ABf9lHRGBwLE9R4W+pE6EBbmj251MKuJRV8ed953XpreNlhjQaeq1cS+c3TWCA2a6ijn+7BgRQTLKR5XAp3L0fBcFzwuiWcK99zh0qwfiISKFUycaxPSOJayj/QdPhEaa1vVfxMfWY02C+uImPw1k0smkzpE/cyKlqPo/UGruPCAsbm3evmxJbGoGA7Ys8iiEWKmnViWwERZDNYpggVH1NI7T1Xm1iwyWg4MTCK9eO7Nt4lZWy90sGzedMWFu2D8t2xDnkjNiF1jBpcjmxeUNZfxGjnbgZnVtuEHgh1T9b0utkgrhLZDnijbn1xilqaIpCVlrhwunl8w3rDrrGsQSzlzs92MW7nD6ysQqZOPhDMM0zyLRIutEUe14CEIPPEwZi2pzgms5MT34DfI9/0RNgSgrt7zoleCcdh6WyrZqJ+ZG69tmB9eRzRDFByWChQBEqq/+GcyLevW7fqS20EeWwUKLoB4Xd87JvOS97Y34hAdmYT/ATz7XTPMknF5PD3k00GvQzP6tWOaaXczirRrQqxjljJkuebKfh2ZajPUNevg7IFDytDzIVdLVMzi7dbMQFJPzHVbUcwzk/sHg5S8tilsGDikZOC4fXuhBM7rkliSynuM0+cnb8p2dJ/e/vP38HmQcrcvuUs+8H/izg//y/NORKrQLGyq01jmhRSa3s+yzmcUmyOj2JXM0+VN3WXfL1ku+XPr8Expw4WQS8TGSs2hDXl2EUpipmPL48RDHgpgpzb4S4mBZG+pryv161rKx10MYaCaWVkvX5onpYlRkWAe7slfP77X8Hinle1FDmsq/CWTaS9ScNly4HOGNmRklIZR76Vl+j8vFSkrAt7KVfuoeKsk0FzREQkSY01JYIFb79sOjaVCIvuwgQOhwwoR5QSWzSGRlVp2lT2pbz3IEA5zMtMEnygGCM2UCxp2WWi86WUmNiep0EaAaE3WUCaJfBTkfJUBeeUnXWua/1q6Pi4S6fGBrEGVOfdrZgzpagfcR+z1EoLXZ179dTo5zMPc7saHc5cOZphOtnHuOWNJSI2QmRriTzddrcCYGZ9JvKOGyYmljjQkXE1Y5KK3GyWx+xJHjT+5RXDCrFDcUuDs8hDMMbmecyssCxbjbBRuNY4rGnz7DKCn9oM9+ylh1V+L7W0+WaGe1w+EqyOfVMYnhbwvHol1YpxrL8RGyheauG6btQx1xmEJTr+ByWsEbczquMycMuD4hcmBhr/wppRlk8qNm7ia4Yxw32UNbtLgbnmFIHBuIj/syFivq9W5OHYjhwTKGmQQYA5sXAE397JrjZvDf64ninGywk/IlnwV+58nGNsHqTM7VvXMgcOJ3ZFCqE5iytNo8DSqW7U0CL+O68i+p/qboLiWY0QDoZy8aw9P7GL/7emcORMfxNLUNVyyfIQgcaFtsjpHCX0ahPH2aoBnMduw9zJvbYAh31igJ1iojvphw7g1NifhlmY4xaTodKyj2tudjerzxCotKbIjASJ4XHaE4zRTgXXeKl9e/VQXiN3w47AqYngGCxxjH2U4EQM7xBoepsdqfuBiKNZhS+vqIBWbIyOaQHjfrVlDR1v1PEa09iFFAFAfWY0aJaoGuFhx+ZlIpJYaSd24WDJsmBWK3XgLNpTPPPO5HCTQxErY7FpYH7HzSzIpRacM0szqQOn6aU4dqCObFQ03ZHEETnbt668NF/HlFRnRw6XInjPIlaC4dwPYmQs1gYi33XZGGjEV3CHzW7gZX2+w4LhU5jFHASWBRv6Vt4SgTNb7OPYJQW6XmijwWfqgL20q1igSa6UMtSSI8cyLIhs+lZaeW4Z18jv/cLEHCdpuhcWrMPziYH1/nl81/RvmE06MTA5/CAx+vKwaB2Z333dsFLHGVVsaY7iSIqpUdkZALPk1wvAWjupTKWbFH59DpMC7uF2LQoS97DK7ls3rXHiccYeUKX43lh++2U0d6X6Mu2VjmSP/YhI484fv5u5d3/L7e0nfuInxHEc+bN/9s/e9j0f//jH5Tu+4zuk0+lIuVyWJ554Qn7mZ37m0Ht+4Rd+Qd73vvdJu92WdrstH/jAB+TTn/70V3Xeub3BjZRSBg3MkowLVq5IHMOApBrQcEHzUyyG7YntnpkBaU/whexMEChcbMNBD4r4/YUlBBIiAPot63tP9lHiqc2s4Vo5Nkrmp07hs88uQwPjsyfg1JiajR3sKK82kVbeUkXL/TJ+bmd3WjTvZAQr0lHGCv7slkxCPfRwD9yNXmve+ZiFVBU9PRMB4zM6KOmOtGDic2UtDTy5YztUlrBiBd+SDZQoGJbshsUxxn9hYunsIMHxTvXxHFtTk/9/ZN9S7V6G8S4oSLSYWOkqiPE62SEimFOXW/j/+X0crxegvHG9oY7ctWCyH9gcEUEwRjbLftmorOsNjGtb6btXmtYskWWSJ3aN2XKcsQ1EKbYyAct+FaUO0zjfpwWwXWLXOm6LmGYQjeUuRwwD1p7a3MjEANGBBjkzDYqIi2G2bFoAOPtaw4JZfi+ZnamHVnY6MTChu5EP/BhLZdMCtEhODHB/FG3slSyo2apiLlPFlc+PtjZAB3XK3gcxNjFBjDlE7FMjxHlP9+y7dmEBz54ZW4759QbOQ50WEZHXOnDy04KV0wh4JsCaZSsKIb68iCzgus6to+XmvFEDaGlkGkp3Mm4m3AwRQn5+iP7O0pOIlvuKIh87K3K5JZmye7LHfuTO57lH+4ozKZ/5zGfk53/+5+XNb37zHd9XrVblz/yZPyNvfvObpVqtysc//nH54Ac/KNVqVX74h39YREQ++tGPyg/+4A/Ke9/7XimVSvJTP/VT8n3f933y/PPPy8mTJ7+i887tjW3Zj/wucf7evzbKKSWwY/098ax2XpvhfUwX5zEBmzV0XX34wJrOiWARerlj5YDtKhalsY9FlvTDQorz1kNN106t9BR6CuLTLznT/45YL54L7RxbIrU28YUU52afIFJpRQwnk8mtDe7ux2ozHDdxrLsxGUMzD4t8IbMGaVPNqlxo4xoJvFuY2A6LWAoRza6oky+HRonma83prYyX/bLIrqNOUUs+LA01NBVemlnG4FoT18X+RnUFR+Y7SQexibE5YrvH2kwkmBk+KYishxKDhJcW8eyX1Wm1p3Cq21VrecAsBrNeV5tGZX2lY2DPUAGsT+wig/bUjs6pAjAmB2UDSIpgXk18nKNbwjnXhrc6IVLJ8xkIll1EMDcpTsZy0rAI50w2GLt48/3sUuzpPCQegpkBBjqxC8ccenZsMuKYFdupoFTaDJFdC3U8ydB6agfBy4W2aQSFHubV6hAByoUFBFXDIjYNgwD3e1DCdRVSjMFByYKcqy28P1Q8VDlG9uWZbWQ2n19CN/SjRtXhcoxAgWKQxGxcaaE8xjKgnyI79sSuKVLze0kqO4G67amBn4MYv3sZnkUjxDPulfAMWLrrBYfVd3eqdw9E7mTFVCSJDZfFUmC+HUfuO5k1PiTyR77y093NvqIgZTgcyh/8g39QfuEXfkE+8pGP3PG9b3vb2+Rtb3vbzd/PnTsn/+Jf/Av52Mc+djNI+Sf/5J8c+swv/MIvyC//8i/Lr//6r8sf/sN/+Cs679zmdhNoGMRYAEkxZMqfi81btqwXylgX/Z2qSqN7oNb1ApOkfm0BGBQ3w3Eps++loGt+cAufe3bZFqizPWvwt1U18SzSnjMxZP1QF+B93VmzLNUP8Bk2HGxNbEFmKacfYJfVmsJpUrflK120Fib4/E7lcH+dmYdjXm4ZoPRSG9e7OrRAoE3wZmiBgZeik3TkoYMwmShtvf99dcZ5bI0IFuWTfSt/iOB91MOgPgZ7BB2Ucd3MfqWaaSFjqjXFvTHYETGsCDMzfmYZFOIrSJd+eVFkvY6/D4sIMLol64bcDzBGtZl9druK6ypHyIqwpDMIMMcecbHL9jKdLz04YBFcO/EctRnmLjt0d0si77oBh/vRc1BaXhlaAMsgkWVKkcOBhyOm87I0soB0dWiBBZ9dkBgGRQTPNxXTSOH3LiyIjDLMEbZniBWvw/5IlcgwOZfamOvnuggg1hv427WmdaIWwbiwRHiqb2qwvKeLbQQaS2N8BysRMpnMylQizJOTfcUjFTBGDx9YuXJleBhszUaA1xr4tzXF+ItgE9MI8TwzB6XYzhjX+Lk1vK9XQpDChposEbHcGyvW6tUF6z48KuKz57rI6r3asXJkc4rn05webkdxsY17ilwDoJ/s42/3KtDm5eZ5Jcaz5cZCxznz/+q9HetrYF9RkPKn//Sflt/ze36PfOADH7jvYOELX/iCfOITn7jj58bjsURRJAsLC1/VecMwlDC0Gn2/37+va53bg23ZB79fnH/+y6YpwsWBmQp206VkNxe6/+MxLAALE5QZ6qHtLHcrAFc+1AWOhTiHkqah37yFY/gKtn1xCY7jQhuLVC9AYMM+GewpdKYH50Xp/a2q6n8IUq7FBOfaqeI6BoFqNfi4l27JsgnffckW9rds3Vu5h0FFWDAFzEhZIY4CI4e+YRhYZlpRcCPTv2d7uE6quu4pZuDJHdPmoHPiopnvXSJyK7vpqi7+7Cr7yP5hGvni2Bxg/rObVTwT4nuuN1QdcyLSmOp96bPKO/F8UzzRuRLIYfvsCTiExTHui3iC2kzbDviq/KslnZoGT8+uaBDjIAvVmJp0/ak+HLqjwdb1hmEuWB7YrVgzu8S1vlIdZVJEHubys8uYn6RcO5lIzTUWCgG/NAa+xAatDHHOo40CaXkdDVesR9W0AIByqNmUSgSszZdWMZfqM8OKnT+wLGRdAycyvE72LWB46MA0jpZHCFDXBpjrFxZMq4ZdjQlgpUrrfhkZqUf3MX4Uh7tRx/gsTIyuSxbL0aaazSl+btTx3Vse2fFLMYIi4t1WRjjmp09ivH/jLI55rmtjG3nIwomYxk1rimfLICxQILefiAw1sH34wPpasex5rWnzv5CCnVVXzNKwiDm3PELAe5S2fTsj1knLmln5L939M18nu+8g5Z//838un//85+Uzn/nMfX3u1KlTsrOzI3Ecy4c//GH5oR/6odu+98d+7Mfk5MmT8oEPfOCrOu9P/MRPyF/7a3/tvq5zbt9i9ui+si0S/EsgZCEVSWN8GTdrWBR6miLeL4HZsTZAUBAeWP18eYTPtCdYXDMHYlqF7FZNAS6IvtaVX1tAcEOmx8wz5cue4jwizaLQ0benWJxGRTi0+sxEpWozq3PPFFRKnYTTPbx2rYHdmJ/azjAv+uVluJf1BrJJ/cBUV0/3rMRAbEopVin3AA6GmYqlkQEQGewxs0FwIUtf7KHEHfe2MoVa08MLKLvPUiPDczA2W1W81p4avqU+OwwafqWDz1D3xBHTkKlEOL/IrbtLL+e48444H7yE6hjYYLKuAcYrHXUoAa67kMDJ7FXwDM72AD6OPDhoBoU7FSsJMXiYaPB5pifSG5lWyNoApYheYPNouyryvqvWE4g9hM51cUyKyU0KGN+jGAMRw45EnjmytQGCppODO+tl5DV8yBTKxJ77mR6e9SsdzKPEBS7let0Aq1ebcrMJ5Y06specR62pyO9+FXN0o46xWhoj+CmkcMKdsUg9wxwmRoz3zUyUCJ69r3O/mIi87wqewY065j51hE4M8Eyb08PB3PuuoNWBm+F6Xlyy7uunewioOIf/45dE/v1DGINyhLGkSCD1e8Y+soos9cYuStJBLPKODZvTbB8w8g0jxjnMMWJWbqdqYHaWnCl4uFnD504O7kwpbk4lc3/89n//Btp9BSnXrl2TH/3RH5Vf/dVflVKpdF8n+tjHPibD4VA++clPyo/92I/JI488Ij/4gz94y/t+6qd+Sv7ZP/tn8tGPfvTmOb7S837oQx+SP//n//zN3/v9vpw+ffq+rntuD7Zl7/hhcS78PSxKxJ+0piZ2VEjhZPbK+HJTUn1lqPoWnqXwN+pYuPfLBvpk2/enduCE+oGlrg/KcBQ3dDHuBwhUyM7wHNupshsru/SyxMP+IF1X26gPrRMsO9KWI1z7dhW7qL6Y8ubiGAs3cQwi1rfloGyZBzqnbslKS9cV0DspGMC1rNdH0SmyYtzMerPcBN1lpkBanVnfHgrdEQhZm5mCqQic2MU2zkfhs0kBjoP9c8oxjj/2DUA5LWBsgsQyF5s1HGNxbJTW2LGWCY3wcJ8UCtQd3UnnMwksNQ2KIiXFqbywhOfMdgTswZM5Iqd6Glz6eA4UbJsWsDMm9mcQIAOwU8X5qQBLqjnPTQ0eT8uNfoL7WteAtJiaguupvpVY+Dn2zMmX04gpIV01UrxUHpA5LRzP9mBGhw0Lm1PtX+Nq0KZZyKZmjS62MXcIyGWQnTp439u1xHSpfVjw7FQf93RuauXLhw/wnQwLeD+p2QTrkpr8/iuWmelqloVZpkCD2eeXVUAuxbN8uYNg6WzvsAYIgxb22GF28CizbqOOOXemp0yn7PB7eBxil4g1y+vZkFq+MsT/qXxbjo2dlr+2nSqCv2KC+6tGCFj4nraWiSY+/s3PfRGTs3fldWNOlmXZ3d8G+5Vf+RX5/b//94vn2YKXJIk4jiOu60oYhof+djv7yEc+Ir/0S78kL7/88qHXf/qnf1o+8pGPyK/92q/JO9/5zq/5efv9vjSbTen1etJoNO76/rl9a5jzW//IMgybNe3a6utufGJCYuz+2ppiUVtQFs/VJhYtaoUM1NFt1PG6CBbz77wKnMJ21coRSwreqytuYuIbnZBN7MqxZRwmvnUB9jILVsi0yS8qzy2b/P5e2VLXlcgYH19aNSnt7SqwKxT/8jIETQ8fIOPC7tAsQS2P4IAyMbYFdWM4Vgx+iNlohvgsQXeOXj9378tDOFEyNvzEqMYEtzpiAQhBz8MicBaUOe+VcM2P71npaebhs4XUymaOGBupPlOApGammrr7fHT/cKaAVPMjC7hEHgKB55fs+iIP2jI32Sx6z6f6lpViTyIyN15bMMXPkwPMMWZEKIDmZoaLOjmAPkneBgGc0eoQ83O3gnn09DbmJLtxx44FFXnxLmp/cPzDguGfWA4tJghoayFKWGNf5EsrmFurCqpl6YhjzVKhI4ZD6Zbw3AgYdzO89vKiNu6MLdu3WcMc+46rIv/hIcyT3/fyvfW/enYF18eAi2WR9lTkd7526zF6JXwX89pAtBeWcF2dsc35r8SuNa3Mkg/MP3fCxCKpRsyWGJx321Ut/dZwjfkAZ7eC79jpHp7LDc0wsb8TdXqGRTxDriN8Ppot+1r22Lkfux9ffF+ZlO/93u+VZ5999tBrf/SP/lF54okn5C/9pb90T4GCiEiWZYewIiIif/Nv/k35yEc+Iv/23/7bQwHK1/K8c3uDGpVe98uWCl8biDjq4Nlavqjp1IMSHAx3sCsjOKatmqL5I9TMSzGcZOxi0fjyioHdDkpYNKhBEcRwOlMNgugUe2WRjYIC1BwtN5WRHaDIWCZYuKgjwl3+M9twVpda2mJdHefSGLvTtQEWqoOS7dYvtU3DhWJkGzWjOw401U8wKLMebmbKn3nnRsl9sntY3ipH2I0xA8EslitWqhKxHf0X2gAC5xfZ2sy6FYsAZ7E4htOhCJqvIGeqipIanBWsVESKeaLX0NeMxdhHgHC9jmwTewz5iWVEaAPVqnhp0foRjX2jMtPx0ml3S9asL3ZVqv0AQlrsxlvIEERcbSKAmnlwjMsjBDJDBSG/aevWOV0PRZ7Qa2xNbXctYkBcPxHxc5852qvFUXAmWVYsiWX6E3nGuCqk+A4FsZZONUBlx/Figp+tGn6nnP2gaL2aBoFmWkJ8p6qRYWz4/Xh8V/v5zET+o5fxrG4XoLDLL++rHmK82FE6LOD7+uj+8cc4WsrJ21M79v+80u392mkFteZbPpA+z2aa1+t4/s0p/v7iIgLyYdEyLCPfeiVdadr3ab2B8TrZt8woFYB7ilN7ZF/klQUE9S930E+n9pXf0jfa7itIqdfr8swzzxx6rVqtSqfTufn6hz70Ibl+/br84i/+ooiI/IN/8A/kzJkz8sQTT4gIdFN++qd/Wn7kR4xD/VM/9VPyV//qX5V/+k//qZw7d042N8FUqNVqUqvV7um8c5vb7ewmHZlU3oECG6moSLYClR+pSUB7YQm7EWpKuBl2gSJYBH7vy3BU15qWsaGzyncApuYHu/vSkZ3pIaAgoLA9NVbCsIgF6EL7+DpyPQRYtxQjSDrTg4M5KCFFTJYLHQI1EJpTkarurmaKg6HK57BouzZmnJgF8B0DopLRdLPfUGZBAdPuBPyS+hu5JrgmYhTQxFHRtYY5D7abdwSvtScWtJ3sH6bEXm1aySlI4NxaU4zXesP61HBHT6on1VsHAYKBm0q58a3jXA8xT0hrrURWMtioW5PJ5akBVBMNjrplBDiZICDarmCsH91HUHpQxv0sjuFYV4cYz80arr8zuTMAmgEK593dFEKpmssgM3WsTQE1XdzUnjEtLz5HwCfxOmHB6LPlWFl1U3sPdWCIpQkSXOduBfPzbRsWTNPyiqmZYwytYmKZRtqZnmVqlsaHx+A42XY+17sZWzQc9/l7schDMFpM8Fxv1A2zw75hFNFbHVpzSjZTJK26EllwKIKxYBmpkBkGxxG8vlUVOTGQzPu/o//UA2pfEbvnTraxsSFXr169+XuapvKhD31ILl26JIVCQc6fPy8/+ZM/KR/84Advvudnf/ZnZTabyQ/8wA8cOtaP//iPy4c//OGv9SXO7Y1o7H4705Q8ha0mPr7UoWeYgWkBTksEu7sLbYD+UgfOdr+M3c+oaM3rfudr2DU5GQKaXmAlAWYhiGUpKoi3FMMpXWyrkJmL9xNQmznYWU4LWHSnBZR4WlM4BPbnEcFCT/l5ptc9BfcVUih2rg6RdQkSkd2qyF5mDdEoW0+NCxHrAs2MBlUoG6E1Nlwb4hgjH+OxOjQQZl5tdadi2jDEv7AT7uLY8D8n+whOqGXRmuIZbFUR7ESeyHL3MKZit2ICbHS6NzNaZc2uxFZGmRaMYkvJ79hFQLA6xFiQwsmMDu2hA5Fa1bBIoSdS9IxWW4rx/HncURE/UwX/+inul0396KxJSaUOTSnGHHz4QLs+3wNDi/imezEvE0nEuiOLGP6HrR7yjQGpKpsP7DiO7Kt0O2OGK6/kzPLYqIjvVJ7tFSQWFDCLMS1YuSQTY7/kzc2QNWAzvrw5WlK8Xkf28167/BKbwwDluO7Bd7OjGS0G/iII+qhgzAaHQYKy1ckBxoyNT59bxvUQbD8tWBdvaqPoJiarf0hk5f4u8/Vq94VJedBtjkl5Y5vzW/8IzodCS+cPsEjvVfAGlnmGRZHvuIYF4r3XsDD8f580MCcZIEtjSEx/9yU7yWvKJEiIicjM2bGrK8WxYheO/uQATr4aGS164iPQeXQfizl3XF5mQYwIfu+MsXhfb1i24sQAx2tPjPHhZLiXXmB0SOpadEtYKCPNEOTBmnmlVBE4kHy25ajdqFtjv3KE6yAIdrNmeI3azJR8+X8ROK3dijIalJ2wVRV5ZgeBILMr7Ng7KhqWqDqDg+oFhlMZFnENtdCo0tQESVy811eHfL1ugFpKty9MkP5fHFvTu3zDxnqolGAnB44N8Vy2q/bslsaGFdgva7YiM8e3UVOBvgi4nWsNXPsz27cCWBkUMItxs2R5H9gJUmhZmrsb7mPsGxC5MzE2F4/FUtrVJp5xbYYs5KLOT0fgSGPFLLHnkJeaPpGf6vVkOVxSZposx7Ho8ue/m7F0dS9BSuzimo9K2X+19sIS1pLTfWsx8My2BfYMsJfG1vGa9v8/Zx2p2QJh7EtW+b997a7vG2BfN0zK3Ob2QNs7b2CB26wByS9ipYotdUilGIvYe9bhuLnwvWND5BOn4URO9wCSfXTfFgwaHaSvjJTWVMQNtX37BAse6capg50UsxDdEt7TK2ERZfq2p5mRIEG9ujUFvZWAW+442bWXmJKlEcoQTmZMB2pqlGIs2KQtP3xwa3v5q02k0I8u6EdZCnkjC0dEA5/YnN9BGZmdnuJ1CIDl9Yrg34nSwRuhgU6LiZUO+sFhSjCbqeV33mzEljjWLC72rMzRmSC7U4kMgHqtaVkc9npxM/yNejeP7VnJjz1RyhGuKcmdmzonpVgk0ptjULhXEanMDNDI8lTi6nVo9uvhAwRBLy1i7N62oSVB3yj1bFNwpnf/jpSBWSGzsewHmONNLVFWIwM5VyIE1FSbjXRu9pWOfraH+2WbBBHLLG1r5unbrxlNnYwgZivKykAaKW6jOcV4MVhNXJHsNkEKA9y72XGB2NHsCFVhOSZfa8jjuS6E2caaUWGPrrUhnv9Mx6M1ufWzZLItTAz0WvkaX9/rzOZBytzeMJb5f1Uc+bDIf/q8yG/1kVFZHSLQIHPmdB/6C60j6fXTPVOBrUT4/ykFxU0K0MZgg629sil4jn2Vek/NqZRikYmyNraq+PuZLhbp3QrYE14KJ83SwXMaVNWVWuvq/w/Kkr0dpVPn4j/F7otMlv2yNUTsTGzH3ZjCyRUU4JkvG4lYav/EwKjbg8Datld0p9sL4DQLqXVlLcc4Jks1IgpULWNcP3AR4F3qfKyMrHP02DdwsyNIYQexsWbIXmBgw2CHwEvKrYeiKfZEJMigTdMtGZYk0JIFO95+3wVcI+nHJ/twGC93jB5KeX92o80EgcF6Q6RXw7j3lH5+UDJBMjKKuspeOtnH9W7VjA7qxMYIak6xix7o+CSu0UhfW8BnnAwA7HER4+uIObxXOjjP2tACRgZ7R0tGk4KBMxcmCOKIeWJ5pa9A4npojjzv6Ouhyec/t4z7yr+/NjP8z74GqY8cYVPlMxsMYJpiLRRCDwFnMbaSaCUyMTMqQe+Xb6UL38nYMuNo+eZ2mjBfDS4lb5UIZcOdKnRzyoptOtm3ct9eReSxfYyn6htl8mGRR7/60z9oNg9S5vbGtG+/hp9XOwhSvuvynd+/OBb5G78m8h/OQRyKWIL9MnaJxLzQkaWOlQzYn4e9UugUEgf/Xm1i112fmZAatR52K9iZP74HR8Xd+dkugpu8nsfpvlGB6bTKkTF2iIWZas1+4luAcq1pWJJH9q2GTvpwKUZWplsy6jGvtRlawELHfKNuwFK2G3huGY7l0T0s0mHBsA1UsWVZ45OntANtAidN6e/mVB1+YH1y2I3WS/HeRnjrjrkzhoMcFjWYEVMcvdrEcyBdWMSaDzZD3Cul+5fGxt5hxuDEAJ9/tWPdf6kAeqlllHeqeJ4Y4Jo3ahij3YrhQLarVjoKC8AS7VThfCN1yhTdo6BX7BpW6YuruH7+vVvC/YkgIHznDQVnula23FR2F5kozPR1JvfulMluygTz70urKFWwt9CkgGe+W7kVT8Lmj0fPRWpu4mIO90uGmxkEOVyZBip1Bb8fLU/mLU+ZFsE1N8JbFXWPs69FgEJ78xbm22+dtq7n/cCCwwA4mGzlL3ztzvmA2hyTMrc3nDlMk361xkzJntIoiVNwMs2aKHOFC60IFlUCElmO6AeGpajNVAjLt3LCesMcUGdsSq2netYtOF+yGhWNylxMrNkdd8nUZpkU4LRIrz0xsNp+XpyKJZKDEgKliW9OhUJeMw+lK5ZrRhrALI1M7ZYy3bGjgVKCrNGLS6bfMFA9FBGRX37KlHS/55KJwW3WTAuDjJSp0qBXh9Yk8jhw5U4V17er7Jq1IZ7jXhmMra0qynjn9yVr/ZjNmS//HMbnptCd0pavNq0VwtjHcckmYufkTBA8Ra71fDnbw/PJgx6ZhREBJoUg46tNHKsS4VzEObkZxi1zoGZ6raFigQkCjsTFca+04IyrOg8fOsD5fWXIkMm2XzZF1Pu1mSfyq+dNQj8Pmm5NMWeoHVSbAcslYqWevDGQWG9g7p7t4TO+Up9nngV+nMt5SnzmHNYaYpNEzuV8iek4Y+nofgGyX4m9toDs1wKC4uyJP/P1P+frwOaYlLnN7au1fgAnd6fGfFSDJLOGWY3EMQZLMUGJInaRZYhUC6McWbO3cmyOZ+LDmawMcX6qn15oI+vB8k8vwM6yM9ZyTNE6Ijemhq3plrRfisABcqd/o46MSegZnXa9YQJ0meBY1AARxQ881IVTZT+fjRqcSjk2R7Q4tgxFWBApzBBg5bMV1NvYqRqQMohFanodp/oi33YdoldrQ1wfu9gyy8R/6dQSBwGIn8LhUrI+X+bg83Qz62JLZc63bop85gTef3Rn/fQOji1inWg7E8PSbNVMW4Sg0bCAa4o1a7Ff1uenZT0/FdmsILiZFJRZpbT4QmqA3uoMwcPKyECmpJETg3Omi3FrT42iGzr62gSfGxVx3p0KngUp72/ZwnGW7zDXj7M8gJe9emJX5G2bON/lljVE9BPLPnVLdgwGCnye04LhwLxM5O25UiQDfUefK4PuA6Vwi4hMNWPI7AwzY8SV3FR5PRKg5DM534jghKd95L8WeeQbdroH0uZBytzmljfSKquR1bmPNrwTMRbOqIgFb7cisjpATxLKwBMcKprZGBVNeGtQxM6cnWWnih/YqmJhL8cIJIKiSYM3NS29VTMnQ2AiMRnFxLI6xQSfYbdlLtiDIgCgDx0ge0DtEkcMlFpMUFp6bA9/e+jAxoFlARHc50bddq7FxCTpW1NkSUoxHHd9lmNMuCKFCFkR3j9LHKeUhnymZ2UeimANAjiTcoyMzEi1T0I/p00jVt7ZqCNwYgM+Gh0+75Wg0/es49qvNcTJfkLLE57IqmaGrjcQPKwOtS/O2HrSLI1xnCtNvF7RshyzP0Fs199X3NDqEM+ADngmIi3FNfkp7u2pHbwvb82patOIZbTIoGpNECxNCkaxb09NAZiaHARSX6+b4mw/sKZ2xBUdZQ5daakAXYhntTg2ITV2l3YyyzBdaou81EEw1Jmgg/hvnUa5lcZjH2Xo5DMeHrErObeVuGBDNad476BoQVA5FimEt9KRjzMGKFRGvlNp53bYlHvErHyzVF4fVJsHKXN7w1kmHz5c8skcABF3q+ZIlkdYMI+WC6hiSdGoTEzlca9igFQvxeKdOtaPhw3/yIC41LagparYkUf2cZ5Pn0Rgcl2d7IqqkNZDc64UnmPWgzoSif6f2RQ/BdaDSpXnunAuLy5abZ/BzF7ZGCOn+rjecoyMx8LkGKaPgK5MrEohRfajM7bxS7SkUY1MNI6y5amD7AEeDO7jtQVkPEhDJcVYBI6UCrJeZt1zZw7OSUorZd1ZCmhNcI1N1Xih42Pzv/MHJuYXalZjWoDTdjMEhpRZPzHA+deGCGLOH9jYTQqmyFqZqBPV58Bmb2Mf56lrkDBzEVB9xzUTN6OK8fmD46m1PGbmKJVXDFg8KooEE2CUtqvaJ6doPWHaUyvpbdRwHWytwPEuxSKb8WG11VFRRdu0DNWaIqPUnmLMn9k+fI3DogrYOQCBViNrN7BTsYzZ7ewo/ZZ2FM9Syiw4YH8eETwLigqW4lvHMXEx9mQ5MYB2MrmZIjsOq3K7QCT/OrNohVSy4l+9/T3O7a42D1Lm9sa0UB1Qe2KgV3Ymbk5tId6tYDEuqYYIF/zENcXaYdFArHsV67PBz7OcwrWvNrOGg+sNK/kECWTTCZx9ccl6BZFeTNpw5GlvFheLNtU3yaigiJynDvl6HffNv/M8vI7dCq5tbYiF3cusmdnJAa7zQtuu3RGR8/sGyi3H1niP5RtfwYCZXjv7s9ApUi+GAM7EMTrxlRbGbGlkAmAsp/FfXkclMhG+2BWpJXg+7AzLrNDqEPdRiRDQDIu6A3chnjUqYvd/sS3Z25QxtfjXcA9k+jCzwGaKbEaX82s32xeMfJQ8Clqy6SkQ2BGMD7VgqpGOi5YviEOKNDDz08M6IHmwNNVG2RuGQOPOBPe4MEHw8UrHAJmneyZEd66L+fTvHzLV2ebUGjiuDhFQXGtinEi3ZvuBjRrG5Ch9PXVwf70SriFylcmUGfjZu42zv19jcHB0Q0G2GY1sIP6fmZnEFfFy2bSvgWXBX/maHeuNbvMgZW5vSMuCvyJO4W8oXVfVXXcrItOiYUHyTqlfMinr5bH1gskcLPbMGDSnoOOOi3AOV5s4BoMRllReWsSOfKLOd1/xFqnSacMCztea4vXOBI7uoIx/x76l9+sz0wlxxEpW1JioZ8ggHJSQIcq0VBW72GmfGCBTc61hbJGRj11pU1VTY9fEyjg2uxXcy14Fzs5P4STpsKjNMvbt3/rMSg1sSdANgEVJFNS4VzDwZa+E8aCo28LEZPL91DJaDEi2q8ZqOdVHuWe3glLMDplWR0oLjqDM9r6rOMbRIIAU7ht1kbRuWTbKvxcVFDxSSlQxNuG6YRHvPzHANd2oI8PRVRAyZc0f2jUArZvhXh/bw1hy/O6kdsomkk/vYH5UIrDQ2CjyqR0D37L8UdOSJEG+kQdqe22G53S1iUBwaYzP7JWRNalqUBi5mLeD4q1ByssdgKOXRni/CDYEZPekymS6Xbbkfu1e1HYJqM5/hu0wvkrmzryE8/WzeZAytzeukVFyUDaHT5YNJdy54yTeIkiUZpkBB+FlIq2ctkRzKvLCsva5SeEo6UTZfTjywCChhokIzneqb/gGLzNNDidTjZLQSkXs/+MnVlIa+8BpEDDIckgvMGd/YgC1y1IMx8oOrbHqoVAldmEC57OtZR42H2Rn20pkeIfEgbMKYpybnZgnCgh1M1z7Zs0E0hpTY75QwZVMnaWRMp4iE/0aFvH3RmoOZeRbictPjFHEks9OFdfdmRh4k9ozQYLPt6YYgzzOZuKjHLhXEUmrUKo93bPrqiiWhk3iGDywRDNUvNHIN12ZjbqV0kjLPighE8EeS19asWM2QvxQMddPkCG6k7156zAQVQTXkVerHauacVPHn+W7c10Ezm5mbDJK40caoI59PL933MB1fnEVzJvOMZitvYqVhEa+9aTZq4gs7iI4ud6wBoVfrX0lWZD8Z2IXY8ZnSZG9OwQv88DkG2PzIGVub1jL5MPixP8dgpX1BhbgrZrtLL3MJOmpvTEMVK9CMwpMf1P6/XoDC/tQ6/cT3xQ6FybW4JDdXWee9XI5KKGu72RIr4tgF+wrjXhYNJArG+35qfXdcTKRYmYLbuhZ4zc28ItdY4FMFR/hiAmmTTUrtF+2Rn+DIhZvYhyYUXptwRr9UR5+kCsFlDVwyjSIOaXspqlnsvgEm5ZjCwbbUzgxUriJ52BmiAFjquyUQioyq6n2R2rqpamDDEkhxfM5KON5EEhMarh7lALrIAuxXzasRzEx/Au1avbLhlFaHFtWgrTpnao1UqzOkKU410Xg8MVVfPZ3vYZ5we7VItpPJzHZ+V4JZaNH95HtWhndHOus/iERUVq9n1hPpGIi8q7rt076sGBZj7xKK6nDZMZ4mQUqEx/lt/YEz7+YAND8zhsI1i62MfZuhjkSepZVHBQxP4jtiF0AhaszjN/Ih3rzvVieTXSc3U0afxCY5s3R97G/EI3MJ4K0ExeN+ub2Dbd5kDK3N7ZxYTrVN8GpzZrpR/ipOcmZZ6n0vA0Cw3wQAMsOthT8cjJtLCa5BoOCxXBLdUx2KnB2NxpwAFs1/K0cm4ItAxJeN5sk+srYmHhGx2VvGmYqmqEFOFTxJKhw5omIXnslEilNrFcQcTSvdOAIlkZw+Cc1S0R5cxEbI2YVAi3/UG7d14xMWVlJrampjBKUSUDozDPpfxEDrzZCvD7K4W4OSnasyIOIGiXERZR9M7KOu9tVkY5mnKqZ9fcJPfRWaYY4furgvLUZZOovtzRjJKYQul1FGedcF0Hlqb6qx4a430qEz/UDkSd3kD15xw380MpiJZCzXQQEQ8U+rSiT6EsrKME8tod7q+cc7cuLeL+XInh80/bh/ku0vHPmM4tdBCG1mYGPN2oImq42cR+ZWJPJ55YRWLFD8Yj4o6LI80v4G6nhpEQ3QgR3kYsfMnASF/ioo6rHtMgTea2NAO9CW+Td128tLb3SwXMdBPjejHxrwHe2ZwytZQ3uJvfg9pxMpBJZtsS747vn9nW0eZAyt7kdtY4C/QaBAVOPUlVFNCugXyGWXFJHF3UHTo+1cmZj2F/m6R0snAdlBdbORKSiu3dHe/SEcBS7FVPJJNaEAQgzEmP/MMCUEvhuBgcy1WskyDdLTBxrooDTIEFafqSZk9bUughv1nD9LCu1lAJLCnam91/vwimNfey2t6t476k+MgK89oOyCW+JIHBhQERMTD00vRGKkZ0YHBbmcgQBCpk47CZM5slOxWThgxyWhLLqzCCI4L0DBRGPfRxrZYTnf7aLZ7cwsW7HE6U9U324V8Jn3rOO4+XLGP1A5N3rRqnuK6uqmIh85iTumUHGwwc4VuJajyaWz2Ye/qb0cufK31F9liKuM/Jwzc8uI4g6mjE4qg/COcESE8HSpRgBcjNEwLRRw5isDfEaWT9sm8Au1I5mIUnR7gcqkz/DObzUuoE7mqXbVI2Ztx8TqPzGWWwcWBa91ML1nu2aPtFje8gysezYDHG9YUHkNzVD2p4iEHt07zCY9ojNSzivP5sHKXN7Q9shOjI7FxcTxXaI1eKpYjkqwlluVxXzoTiRxTEyA+UIi+/aADu3XsmEqmohShgzLXeIWB8cR7DAisAB+InIgeI7AhVgm3omnz4sHS5r0Ol6EYCbUxWFY1mqoqyN1SF2x3QytZmJztGBlGMrVcVuLsASkVDT+Kf7FkSwPCaC+5r41rhvbWhYkUTva0+Drp2KOnh1rgMPdGSm48sxgpnIvdm/5JC1JwZCZsDFjFKQ4O8EIZOKeqqP16hCmjnal0gDANK0xz6eH/VJQs/GYFpAADAuIkB6ascaNbLRo4gpEW/URV5dQPCyVzENnfx9bNZQyklcKx2xdQEbGpJ1xoBstyIyLlgrgIMyWGh8XhcWMJZUKT6uKSSDstRBxsJTkLWbYZ4wmAgSG4OXFTfFDFjqYFxJXY81W+Ir7of9l9iPiKXJSBl057p4RkdVYGN97tUImSpmDF9YxFgtjk0hlyynpbExiERM52irZmq+x6wBc3v92jxImdvcKJ+eOcpk0Z0WSw7UHXEVwHq5pUDGmYhfgHNltoVl/mtNxZ0kRo18YVnkTVtYOKszLLKvLagoXBULfeziei61QfFl1mK/jICHoFDKwgeJiKuvkU7NTAMVWJmxeGwPqXpmPWaeUkFT1YcQFUlzTZyNTohlmBMDHIfZhmkBzvG8AoGLiSmHnu5jPF9dgHM729PGcwe4R0espJIJjlOb4bWFiemjHG32mLdiIvKWTZQSiJdZGR0W5/ITkcURGFpXm0bNJWupGll/GWY3VkYiT28r1XuGgGtaAAiZJbnm1DA5WzUEgztVA6qSmeOl2MnfqKMHE0tQY996HLmZsak4hgyQfKVUdyYG3GWLgMQ1rZRyLrP1bdfx3p2qBb958TRac2rqwV4KJx/EuLbnl6wpY+gh4LzSxJyb+NDDIRjZT0FVZ/sElnP8FGPI7MlBCfflCP7d0DIZg9BeSeTXH8IYrQ2to/aoaE0LH+ri57iOxnzug8Dk89mUcGUk8sVVyd76J28/n+b2urN57565zU1EnIO/YeweKnPuKVODDd92qlZ/L6TKNlHNEvY/ITOAi36sZaO1ARw7ndlmDYtmpCWHmQeH5WWmU3FigEVWBO+vRJaqZiYgca29O5vVpQInQDZRe4oSwqQA0CxxG/0ATpc9T9pTHGdPd5/1menHTAs4D1VnN+pwEuziPCwiKDmjGICtqgF4Cd5tTnGOimJf2FiPwFTqypQjYzCVFP8xVYBsawpnTUxNfuf93LI1aSNlO3YtWGSWxREEEMUE5yukh3vWXGwjC/HmLbzvegPOuT6zxpEi1pdpqwZMxe0YJoMA5bsXliDW923XNUuSA2aKWHNBlrv6Ad6fP+56w6izzKJQTZjZq7bqllxu4ZhP7mIcr2s24rhg5TjbrGFsRkVTQn51AUFFt4RzPrONv/VKuK+ZK/LlVe2P4xqDjX2kOhME49XZ8SDX55ZNH+ixPczbvQqybo/v4d7Zp+d2dq2JecLM0bMrkr3pT93bPc/tG2Lz3j1zm9v9GrMFs7L1w2lNrc5O1gRBpotjE/AqpKaWSrBpORIZVLRLrwcHQcVW4it2K3D0l1vYwZJ5QXbGQcmkzxmgEETKxn48Z6oZg6ZmXVaGtzaL4663FBvFeUPZTMyCNKe4Jup+UHJfGQ7ywhKCiZFvgRibIu6XcY62YnqCBO8vaCaCdOnlEUpSIhjXm3gW1WrxEyu1dUsmTLdTsTIOMzwiGLvVIcbipoqrJ+J7lgmjPyxrVilThhDHoldC4HSqb71/XljCdWQOnvfMM9DsrjrNjRpeJ2OqEt26w6+HFnANiyK/9rDI+6+YMB9taYxxqs3wbJjhyduJAcYjSExXhowbEaN490qYNyzTnO6h3PjRcyL/9hGR3/Ha3b8TzOQsjoEBudbEMWeeBbD8bkwLCFauNfH8zvYwR660EGiwA/TJPgLj48p3IphnCxPMQ6rHdsZ45oPi4fGibdVwj2wV0ZzeZD2JiMib7n6rc3v92jxImdvcRCTr/EVxxv89fpl5BrAUsQZxA6UN8290xCxvUIK+kGpAofiAaQHO5yZoVSxtTy2JsY/FuKAOcnFsZYBBYOBbqrnS2MAuSEQmOR2SBaWLEk/DJoQMCmoKZKRM/SBAgPDUDrIhV5t430O6k23n3rc8sp3slaZlNpYifG7mwZndqFup4uEDA8yuN+D0iGMY+5YFKmjpiRTwnmttBqiBslfB2FMorRwjgHnrJkCozMrw+TGDErsIGEjldjNkBUgbvtyyrMbpHpxfI8SzqM1MJ6auWYBEQdIHZYwLVWl/25Uj2BvNkJwc4PNfXrGGhmEOh5E6qoQboAz4sJbF3AwBADV3OC9cvYexj+P3AyshBQlAoo/t2j2VY9zv9YbIJ06LvPceMyq0EwNkl15dQHByuo97v97Accc+7ofg5bduGlB4VMT4sqPzesN6OdVDkS+tIoP3bdcx5rtle9adsWXcjhqfZZBIVvvL93c/c3sgbB6kzG1utP2y9cOhJkNtht28k4HCyl4s21UF6ymrIXHNoe1U4Zx6JdAjV4dwNmEu+Hly1zIpM08XeC1FsPFg6sDZpDPTBfFTkSzGwjxT4CF31Ilr5aheyToBkzpKJtLKELv+umIJegri3azhpxka7iF2UaqaKNuF8vahliqe2jHBuN0Kfmf3aOJMhkUr2SyNUab44iqcWCXC36m025kY1oKBRC3E/XBsSXslWLSpzqscI5ga+5YlmeaWOJZ3WF4iS8ZTts5bNvGsSZntByby1gvwN/ZGWhsYO4g4mlaIefHqAu7zYhvj9cVVHO+0BhlPb2Ncy8dkSnaVDfXIPo5LLRY2ATy/bwHiJAegTRzgZEjfZtmyXxJJNKjaqONZrYxwbR87K/K+K7d+D1i+jLzDDCUyjxjwMgB+QufA88v4XCM0lVnaTsUA4GtDgJ2DWLOKET732B7+TwzTawsYi0AB1H5yuNHiZk2y1b8gUrv3r/jcHjybBylzm1ve2ABupJTO5ZFlMIhVETFtkFJsMvpjXxvpzYBpcJRNcqENZ3xWHV4xwa67mBiI1k8s4IldOF52UR4UrSzBmnzimBMb+/aZugqk7VRM94P9cgjWPWoLE808jLBzzbQkw4wPqdakwQax9dTZ0+zHThUO/bMn4MCXRjjubgW/E8BK0bzFCRxPe4JzcewJrgw9YyYxS1WNRLbFwLaFVKSpKrBLI4zTwgSOj319qInCPjheZhTr5ZH1DqL+zLCITMTMAzgzc0QuthCAlGJTI+a1VyKV5K+YQB/P/+ZNy2IECYKVU32Rd92wkl7ePBVTI1Nlp4qxqM3w+eoMmYhKZA0dmWUjeFa0pDIqWpbK0WMzUBbBsb60gvF9YteUlF/pGNYpVqZRvgmgl0J/JXERuO2XrSlmfYZsSDG5tXFgr2SYoo2aCdU5+l1a1Wzil1bwDDgf2EogdUTedf0wE2f1bl/muX0r2DxImdvc1LJTf16c9b9twcB+2RbSmYedaDmyXjnsHnygWhN9ZRRwl79XNqVVyoh/23Ucoz3FIt8ZYxE+2zPV19UhHBTZJswuxI71qsmzV6glUoyNgullItUQC//i+PhurnmrzuBgF8fK7nGMsrlfRhBAlkdTNUjI0tirwDFSuG5LszETH7iNbsnYQYtjHHezdqsuBsHIu2VQkVPVIqnNEGT0AivF5QXgyhGuoREafiUveseux7UZxiVQIPRAQcPDIq6LQaUIMg37ZWSbzvZw7MstONhmiK7KqQMMBrtgEwT7zPbh0gS7Az90cPvnMPZxvtYUz3pxjHEjxTt2rZXBNaUxU+OGejx81r4G2jsVvJ+ibpdbeP/5A8yptaEFPJmWL1NHJFKNm60qSlTHGRWUCaQWwbw4TuKegnSvdqzv0yP7xobqB5gTmWNssxqwRdmpP3+HSTu3N4LNg5S5zS1vXmYy8GQnsJW7iMqoKzD2dB+LPuXa+f9RET8X2ghobtSBDzgxUFyFmCAYqZsTpfKe68KBEzw59lEeSVz8iBhgcRCYKm5zqp2ZYyz8ZNTQgd7NjjItYhf9dURwD5dbyIisDnFNMwUDczx2KyKRlmXYMPFc19gd1xrWT2ZxjM99fg3BTX7XXZshy7JfVvyN3gMzWs8oLXhYtCBFBE6bqr4iCEISRyR1Tf7eS42p5eg9MiPRLVlgwP5DO4rpETF2z8IEaq4HJRPeGxQRxD2xg/NUIoBjFyYWiB1tgDfWbFC+szGF91iaYWDy8iKyNswonO7h9cstE8NzM8O0LEyQEZkWEChPC9ZxOHOMXbM0wniRuUUmGoGr/UDkk6cQqK1pmeWo2uu9mKfB6WYNc70ztvtmSwQvRfaxGkn23X/k/s8xt29Zmwcpc5tbzrK1/0ac6GeQDaEDcgQ7T4JSg1gkUIEwyrFPVEDsQJ3dtQYW5FDFqsiYiVyRQFQBVUsIByVgVCIXbIjFMRwpgaQEgIYFA5EmmlnwFVBaD+HAD8om+x0kujPNcB2OWF+YpdGt8v55y/cyidTR05m7GXbG/UBk7MLpDYo4b2eM+9ypWtmIYxQkyFBQdTZyoYzaLVm2gXiS5tQc9Y06gpm3bv6f7X1pkJzlde7z9df7OptmRqORBAiMEEJgmVwWly3ZgI0K+1LBqZQxhW0SsK7N5jWACyKRUBHGxNi3bHzB16FiJ4GKQ0T5VhJswIDBEgQjYcsLi0C7RjPSLL2v3/feH+ecfru1jvZBOk/VlEbdb3/L6Zbep895znNIy5Cq2nZx8aERg7ygb1usRcQs3869gCWRHRU7eFGGBNY4k/V2pyVBqRrdVz4CDBTonJUgXZvHHWByzlYn07m72nUZu5d2JPYjCWq5vXCrdeGV1u5ACxEdTlI2qKNipxl3cTanEaBMkgiW5XpazezyYZsZqrqAE7LXJdci9zwza7VMYY/if9q4nR81e+Ig/kUxpheICAW59XokQe/P73thLvk0rTnr4A+rOPGhJEWh2B0yx8UL0MwQl1uMRUibi9BjoyxMLYYpPb49RRt2zQXOHabSgBiVuYY22nSVO2dgh/j1lKgWPyPPw918wG9p8xX9izi7it19d5mey0XsJu87Vn8hehI5ToXFrqmandET9K2IVjQOVdcKSuX6xOuim4maiIzDHm324qAbbdiWV9EWpFh8LKZiIpYthumb/MYO20ET9ogAdJatmZz4nXgOiVsBdokN0j3titM9JOrWiEx8Olzftu3WXMqATc9THLr52/1onI7TVabntqStc6poeCIevd/dJbb6LxMhKIco0zFnzIqYZXaPvA/7w5YMxUps8sWhNh+xJnbSXTYeo8/kKAuUwx79OREF3gkAZ5Vt23mEu32GUvQTrxNJkPZwjwnzYI7OK4JkEY7LgMjW+T/xutXVuHvJzg0nKTbxOsWjFS3rTexOmlUEAJccOESKkxtKUhSK3WDm3Qhn4l7auMUcTASIWfZBMY791u87QCNqnV3HYnbCr3yTl2nJmzO0mc7I27kxYg+ejdgJyuIE6oBIhkBMzOQbdCFsyyXjMVrrGDtDaFvK+pnIZl8M2S6g8Rhdl2SNOstk9+5yFqIYstkcEUaKfbmQg1KIrkFabVM1eqzOBnWdZSIUAe4G+k0flcrGYraFejgJTHCbrrjupqq2nbvKZnVZ1rN0lXnYn2eNu/KRFoGsT8RRyjvyDb6n1J7VOH2MfsZidFzJRtQDJF7dkeTsRdXawo+wi+uMHLAjYQfmDSUpdn+sUtYn5AEd+zB4M45tS5dJ116ASFA2SsRqPEqkUIZdSjzKXFqUz0+yRu+1eOgARJJ/PQB8eAMPKuSSZMinlmHpSgryZyDSoPjuTJA/TLra3kkD0HW+d8feCcr2FL1WSki/66XH5+4ibUmr4FWhOAgoSVEo9oYR1nUEDJEKcY+tBYFo1eoF4nXaKMV/pBykDdsLULakHKTSyKYO+sbcWaZNYid/ex/IW2FnPmIzIeWQ3UyFuABWKCubfm+Rvu2WQnbaq5QdCkwUYnXuauE2Zym3vEUaAEyv2fR+KWxn/iRr9HwhbFtxJfsg3iaAHeyWrFHcZNMF6PzVIHeu+LTxSot1f4GuOVWzwxerrnUjrQdo49vhWnLYWSZSIQQlzkLmCpffJBvQUbG6B5evW8Sw0gZeDFPmBLDmaeUgrau7QKQGhBxLJIVwyr2HPattybD/ikzAlrLWRVvo8a3pdnO9fJhEoYOg2VEFLpHtjLNQuUTnHE7QNW7OcPasRO9NT8nqpIa4HNOKTAW45B3799d7eCrwBGVD6qyd+X0v6aXEql/e0woLx0O+bbUHiIS0YnvKfvYlyzUeg+m87QD/wBSKyUFJikKxN9RcO9MnYAA3QBtkB2/WE1G2cG9Y86piiDY6aUOOeFb8KrNiykHbrdJZsaWGRM2aw4ljqgwmbASs4VvNtR4pp4/ZzWkoRX+KCNF3qFQVr1s3XMBqY+J1IhcJzk44hnQDW9NAhIW5Ce78EIIC0MY8K0vXsiNpdSci3Owv0AbZwcLL4aT1F2l4gGHiJDb9AG2QeRbYRpjciPi2HuDBhkHKwKRqRAJjdUtCRLgc8qx2aG9zXSRWMvhvGrVcm+6/AgA4Lz8CnL/dkjMHtotIXGe9AMW4GALWTidSdto4HasYsuLg4YQV5Y5HbXlr4VD7pi8I+kRmN2dsGS1VpfPKLCCA3nODdjG3mAnuPkBQPr+FMAlpt6eI3HWV6fXSPp+PWHNBacH2HaBcpc/V6WP02W/FjiQ9NzNLx0jWbLakc8/QKxSHCiUpCsVeYOZ/Ac6ahwCwB4rM0RmPEQnoqNDjW9K0MWa5LBRrWFGp2KXLt2xJkxfClBWQ6cPSWeEa6zMh3ixiHuYyaegv0KYybydtNvkIrSuFWINhbFknzKWQesCasg0nrSeGuLDO3UW+LeUgaS0CoI26ErQuuG/02LEA04q00UobtczDSdTahwGm2eslywJjaUGuu7ShRkIU10LYeqrwvotagGIhYti+ojUDkxJHukrxbQTsvBrAdrzsC90let2GzvbMwMIhuoadcdqkPYdiWAjT+cVgTgYrJmrAeyrAWfxeDOaAn8+h+/W5Q6geoNfOH6HzPXsKHfM9o3Diy+31GtBrRAsk1v+FsO2gqrv0/s3K2tlSQW4FlpZ0KcW92U2vkZZm+X1Gnq5lzXSY+V8AAGq7lzlVosURX5+qu2d5R/yAPAem56+Ansn/u1IoDhZKUhSKfSHEHhynTtCGCdipvIUw/Wf/ZrfNuvSUaFMN8D+rAhvCibBUUuqii5D5K+I+KvbtkgVolklq9G16b9OAxdhset5qZ4xj575UXet/UeBMjsz9ibPR2e+n0XohWdJS7HFXzy9n0+9SysqHrdZDSidiyCZli9E4PdddosyK61vzu91LC8kavc6BnUwsbd4yGDBWt/OUGgH6Fp+u0mt3JtozJ46ha3WNNTrbmrZOsuLcW6MymmO+Qc87HXQdITZOG423T5XengLmODRReWeC3v+gT8cUwzkHdK1117Zgi6dKlJ2CFw61d1ZJ9sU1tmNI5gTVWoz0cgHbag1QbKtByjjlw+TYmg+TH8n0vM3ITS8Ag2/a873eY8uHAGWntmSIOHZUbImn6vLASqfpPWMytwNx6DwcxTGDkhSFYh8w53wejrnbTo81oE1ENs6RBH1LzlRow6oGacOvu/abcMBY628ZAlgK0eYl2pF6wNrtS6km5NMxXEMp9bBnyxQ1l7Iz0i0jItcAd+6EPWAkDkDEvlzOEWdaEdJKCcM4dK4tGaDKhm5S6vjZHLrOLWm61wJvhiMJiomUHHIRurdi2DrLnjJBZGJ6nshEI0DZBPHhmIhabUeSDfIAq2fpqFoRrmQZxIK+r2AzSGLUJt0sQZ8261SNsiIiUpZswjudtn1XpiFLdmZLmtvDPbo/37H3W3FsV5N0M3kBOp7MqLnsbboGcYoN+rTRS5dQV3nP1m9pKy85QLzBdvvcXZbnmFT5v+rW14qou+pS7F6ZQZ+VUghYPZPicvZO64orqLvAnDE4b3yX9EwZ0PuRj9CfYf58J+pAraqGaorjCiUpCsX+IJuxtO8CtHGISFbElKlqu3mXIM8biXQBdTN5ibDNvQgxx2J2lo9xrLtrX9EamxVDtHm6hjQPYqHfCNI1eo4lINLeG2dyBMeWUsTiXyzuG5wxmZml+xmN070VwyTgFAv/s3bSBm1AmoRoA0g4VrvSW2S7c8dqSgIGmIgAg3nKRolzq7R0Z6pEFGosmB2PWQ1IJWidTaXUEvJIMzOUopKQcay+RUYMAEQscxGrCaq5RJZ2xdkp19g5N4DVc3SV6V5rnRSbsGdLPFKCS9aAxRutGVwh3K4xEdO7LWl63TiX8AohyqrVXeBPttn18rnynfZ5SlLGykXocZlgDRBpyUXsBO1Tx4mIvNlN17QjSd1HIc868EpG6JzhPT/ngzmKWdiDOfVW+3hmkv9OFIqjBCUpCsV+YPq+Cmf7Q/Sfve/QplZ1gYZrdSDJGj02HgMGcu2mXqnqnoLGVnSXgG5YcarPpQnRYvQWiDSI/qDBHiYJdlEthO18G8fQN/Akb/ZVLhkYELnZmqYMhLS2ChE4bZxKAAFjXVe7S9al9P1byHJ/V4I23xEmKKLXeLObNrmNHURUxmK2dFMM0WOVIOkpGiUiMK/3cFmkuKe3SSNs5xPVuP1aNDbFsBXJ1gP0zb8RoE05H7F6IZ/JUylEWS7RW0wvsJGYZ4dI7owTGQz6dG1Jzt6cMUrn3hkn8vKHafRnayeNGPm91W07rgZz9HhHhTJH3SU6Ty1Isfcd4P+dCXxogy2XSXeSTFiO1emeukv0vm7s4I4xx7azv9NJr8lFrLh2MEdxev9mO6NoLEa/95RslkownATe6Ib54HVA+lD+hSgURxdKUhSKAyFWb/HOYNGpmF1JZ08pRELDGBtjxerWor0ctBmN1q6MYXbdTFeBeM3qQaR0IJCptrJBObAttjITRczI8hF6PuxRliJTsZqH7hJb6HMLdTYC9Bd5qBwbt43HbClGhhJmo0A1Yg3WchEuT3H3x0iCjueANstGgK5lU4d10pXOl2KY/jxjlNZJCUnEwtkoxUMmN4u9v+9QfGouxb8atBby0tItc2ZkdpBoWMp87v6CdXIVQer2FNBfgAndBQBwnOV0jFYiIkJWyZKNsJtupEHH39RBpbJxzqg1AuSTMhGl8506YUtbvkO2+kJ6ZWzArhbhaleZ7lXep/4CxSVWt9k7KRdmwfN80pRRyVQsYdnh0LV2lYmgiN6m5sJ0cYtwH/8oFFMUSlIUigNB2nfFSwSgb+ny7R6gjaazbDcmSf83uK1YhJNS+uku0bd+sWJvuAAa1p69EaBzFEN25oyk68OeTftHG5S+Fx+NUojS9tNK1vBNbPWlDVraSTu5jNJXtD4wkoEQO3WZ6Cv3IdqZ7Sm2Y4/Zc4l1/tY0EQYxcSuFyLxNRJixOp1DsggOaE262q65EKv5oG/bbkXXk48QyRpK0XMpFpS+3UXP9xaJrEzP27JNKWTt+esBImdia787slHa8KvBPdtve4uUCSqHiIxkqsCaOF3vhzayJihBcRC7fvn8nD5GpZmJqBXc5jkrMoM9c6pB245dde1coZE4sLmDSIvP5UaZlJ3lrpzWAX/y/leCwIYOmPfcfDCfeoViSsAxxpgDLzsxkMvlkMlkkM1mkU5rblMxeThrueRTd2kjEd1I0Kdvz6eN0ybsGto8AetFUWefk7prW01FSCmQDgrACmuNY8lDlUsJrURFOmp2RyFMm3erW6xkJcSczsA+19R7+KTziDXsJGYhK7E63e9o3GplRPuwK87D8TzyGZFOoqBvreWHUnYz7Szb8orvkMYnw50lYzF6bZqzQBITuRYhTCJqbY1XhQnFaNxqOFxD2aY8t4Qnq/RaeT8i7NESaiF+k8UbPdRCLeW8rWmKlVjCP3MaEYlYgz4z00oUx54SkSohvZsyVgck2qUZeSJY0QbP3KkR+ZVsS1/R3v/OOJGic0bo2ExU1OVVMVVxMHuxZlIUisnAcwCnJaMCA8SZMMimvC1tOzpCnhVdxho23S/zaXZHoOW7QrxuiYnoNfrYolwEsjXXemLsDikDbWODNxe02clcFiElUgaJ1dl+vg5MY01EwJDQM1anTVi6cAa4pPLbPi458D0l2TL/9R47MVeyH3+cxsPuPCpF5JnASGdKgduOxVsmUbNTgQVVl0hXV4vwOOxRBqnmUhkuwBko6ZBqzRpFOIuVjdr7E5FyIWw9YA4GrXNtBEIcALKk/+Vsq7WRz0SriFW0THHWmUjWRaZNhz3rqNtaBjSO7diS+VF/7IH52KcO7h4UiikOJSkKxSRgzv8cnNf+T8sDDolaZeOvBm3rpugojGM3VMlqiPZibyWGVqSrAKotvzOkHFLn7p+9kRRxb5VW2be6m1qE5uYmm3i0YTMa5RBtoLkIfVOfXqANUDbQrpayx9xdlDmQTVT8YwLsr2EcoKMB/JEFuRUXqIRIIHzqhL0nyejkIpRpcLgTZShJMUyww2ymaoWpovWpcWwmoqxR8YgUiQ+NlKBaJ/qKA6tkrpI18jGRYwJEGnYv8ewOIYhyXMDOUBI4hko7OxN07Ym6JXtSTtrBJanpBSuQ7SrzPKIa3VuZPzutpRzpCIrXYebcAszZ/+UqFO9WKElRKCYLmXKb9GhjC7M2oq8ArE/Ykkjdpc1INpKayzoIl7Qc1aDVUYgvxcEi5BHxGY1bp9VW5CK0KaarwPu22+sIc1fLOJcQKq41dysHrTttc/5PkIShvUXghdmUCZmetxqPUojKG9tT1itlZpaOWXXt4MGRBMVJpiaHWghDukokpK9gW7Fdvp4YkzLpkpIskFjt11y6j9lZ284tviTRBl2TZKQMe62UQ3Q+x9hOpG1pW8JrHdS3N4guBqD7aiUnol8SEiq+LnPGrK9LNmIt/cshuv46d2ola/TYRJQHRKbpPvoLwHASpu+rB/lBUSje3VCSolBMEuZPboCz7vt20rFMld3YYTelOJdOxJgs2rAzXMT23gGVPKQ00F+gTbb1m3IhbL+tt4pmBdmoLQ8UwlSGkY1TpjdLuUD8U8SV1TWURTCgaxFn06BvywebM/T3TjYfe7ObXjuSoGsZyNPm/E4nEbWuMnuoODZTUQ7SBhxtENnIRjlLUbEGc1LRidV5EnPETlY+fcxu5oKRBB3PATujNux8nLAHxACcwlqUmkvX4fo8B4gJSIAJ0ETUdsK83UnvoxC63bF7dkWyYWKqJ+UiBxTvbJQ6bk6ZoPd2LMbdVlXbSYTlZMsfq5O+pVUsK3H0HJgzb6JzqmeJ4iSEkhSF4mAQ4Y6TaIMHwMGWdipBa3Mv4tqJKH37B2jzkaGB21gs5vp2hk7A0LHFkn1H0paPRPAa5RbkSpA2sfEYZQ0qQdrUhczIzJ+JKH2Tl6nNIsYFrD5ChhnyoDj4Dm2oExE6vuhs8mHSqXSWacPPR2jdaIyOIzNkokwcekt2QvJgjq5TuqOkpVhKTbEGCUgDhghHT8m2JIc8ytSEPSpDBQyRsCy3QjcC9D4EDMUmXQVcD8i06Ex8h7p93uy2pZPWwX3n74OcAMCrA3QN8TrFLh+h90FGELjGztkJe/ZnYwfwq1mUIZL3Y3bLOWW+T407eE4jQ7Y2h9fuQ/iMKhQnEJSkKBQHAfOem+kbcCukxbgYsmZvBrRppWpAR8lOQJZv3k03U86WTERpg835QCXD4tggdXTEeO22IM/BMXZAYKxBx82HgfVdpGUQg7Ni2M7tkYGGQR8IMGHx2YVWWnPrrhX4jrOVfz5gyyrSuttfsPNtQi4JOl2fshwTUYpJb9Ha2KeqdiaPCIdl8J20ZO+MW6JUCtlZPt0lIizivLqhg2Lo8pwcIScBQxu+67OtfQs5kfsT8mRYjyLDHxs8E2c4aU31Xuun45eDlhhVXaAQo3XdfE1p9pYBbPdSnu+15tpJ0wbNMlLz85OPNgc5mg995ih8WhWKdz+UpCgUh4uAsRtfIWQ3wq6yNQ6rubRJlkOkA3H4dVIycEBrQj7g+UAlbJ1ihdBIWQawpaJKkDZg0XCYqM1EJNg5FSACIiJZKU0Zx2ZOQtxKLWZxMpxQTMAG8rThZlq8TCQL4DBJ6C/Qj2hKIlx+inEGJxehdekK4IOuJ16n4xbCJMaVzEnEa+mACQLJEt2XCEmn54kUShdQ2LPdP63DBkXzUmJRsFj1y+TmMSYdH9rQ7vpbCVK2qxCmLNBgzhKnwRyVcsStVrI+QUPvxXDCZtMSdYqjuPkyDJbb8k3HEfkUKhQnJJSkKBSHCmkllfZZGYQnpZ8tGdrIQpw5EJt4yaoAtGFLOSdToWOmqmzMxiUdmaqc4PJFOWhdWMW6XjIS4oxb4nlDQqB8B4iyPqUSpCxAlHUgsYY1Zot4dPwIZ0pqLmVF5P7EUVVaeVsJgUB0FVXOJAgZmZEnohFj749SiH6PcIkrH7GakaoLjCbp/AN5nijN5EXKTaJXqbl0nN68vYYtGZtlCXu2+6enRDGOeERotqaBXJ20Ne9hG3zp+hnj0QKS2ZEhhEk2jnON7XiSOUOxhh02+UY3EGVPlNkT6luiUBwClKQoFAcJg+Vw1jxEG+9AnjZ6ma2TC9nBgeKBUeWSSNAnnYmYuRXC1gq/wd0dxqGNvdhCeCINIhUOrwv5QKBB2YhUjX4aAcoYFENWVColIWmFDvrkmVJ3iYiIp0g5ROWLTIXWhjz6M8utzHXuoJEuFums2VdXkszVKYfo3hN1ytCIm26JiZoBXa9ke2TGz+YM/Sl+MSMJil+yxmWpFh2N79A1VjnDJO2+Yvomg/hkHMFYjLI90gItJm6zs+33MH8EOHOUrk/8WsohK56Ve5eyjkxpbplsbRZ8/rA+ZwqFQkmKQnFoKHLqf0eSNvBSyPp0ZCP22/ivB6xFumgT5oxT1kDKAI0AbcjFMGUqxjmjsStOG3LAtAtSpYwyytORww2gHrYW9HPG6XydZdr4yyHbyusFgIZnSYOUT+T5eJ1Iie8QAdvJrcNvdxFxkKF3kkXa2EHXMJAnImVgPUeq3I494VrLfTEmAyhWVde6xW7K0HETvCYXoY0/2NKdIwMMow36u2QyHJAnS7xB8a66dnxAhrNVjiFyUm4ZDDnMgwmfOg1YMEz3IeWwkAd0cKwlc7Ohk+5ROnFE9Mzlvma2JHmUPncKxUkGJSkKxSHAfOA6OM/8iDa+eN3qM8Z5Bk2RNSLv3wKs7Wdywd+yDYhAhHwy8Wr1DZENPMadJF6gfVMPGNow6wEr+sxFWTDq0fG2p+z6CnuNSBtzKWQ1IA5sqafMGQ2nSI8NJ2ldR4WHFrKOo7tE5GFX3Hq9vNNJ99c9RM9Jx5IIg0VULJt/ogZUeU3FJcFvZ4Uej9Ssi21nxQp/K0E6Ty5CWZXRmB0/YECPd1Ts+QdKVgPUCNAxvQCRN8C2T29JU7xiPI8owPb14qsiXjfjUSKR4iYsxASAmfWlo/hJUyhObihJUSgOFZ7Tbt1eDlKppxoks7eEa0Wnac6QJGo0Y0XcaTd00gbaYLFtmQcKVoO2LCH+I55Dj0cb9HuIj1EOAXGZKwSrbcmHabOVUlKUS0sel4xGY3RtNZfWegESi87O8uTiMK0TrcVIgq7FC1A5JBehzMr522m9y74qO5J0Ht+xJKPMmo3+Yrv3SaoKpLZRxqYRsJ1CEc+KUvMRutausj1mMWzvqTUD5Rg76LDOJaCIR263Udb0ZKP0XH+BzjkzR4QnUbdt4zIMMtPaFQTqxJmppEShOFZQkqJQHCLMR66Fs/5/W0fTRB3IO9a4zIA29LN30iYqLbfiKxJtADNylMFwWUPS2aBNdZx1H/0Feo0Mw3ONHVjoGCsAFddY49gNfTxKJEMs2dNVIkfTeDBhpsLlHp6h47LPyPYU+Xnsilv301PHrZB2WwroCNM1tHqNCEJsc5+u2vZgcXmtunQ/Yh7nMYGK1am7Zzxm9SKigRFfGCGFXsCWXKQbSNqIZYLzSKJdN+M5QIDfj44KxTvKIleA3sNiiIcsunQ95WBTb9LmXaJQKI4ZlKQoFIcDB3azlSFyIwkiDzE2+GpErQFZjbUN3TwFeCfb6SNg1yfq7MoaoSxC0KcsQJV9UcLgjTpAGy/Ac3x82oBlQJ+YyIW5Y6ezTMRkONmu9QgYoEOGD7J3yla2iS9zNiEXoXOPxklQWgnS77kIZTcGc+1W8JLBidfZmbdl4GIhTARIJiT3setqnbUrlaDtYjIOHUMmGW9Lsc6katuvI167aDjP9vIi+BXBrg8ib9K63Cr8jTRsOW5XHCZ8F9B/DD4/CoViv1CSolAcDnpKdjMVq/R4nT1KwrQBTyvSxjqSoE1URLB1175e5v1E67atOVmzYlvRjYgYVUzRJDMR8injIcLdTNU60Yqj6TudPFG5aFuDow0iJOJJsqmTNvL3jFKWorNME4+7y9ZLRfQvIlAV19jTxukYkQYQDNB1pHgWTbRhNSQSt6GUbe91o3ZuzpZpVBKrhOhYomsZ53k2AB3LNTYDNZS0ZnPGAcaiRGBKTEgccJnLA0y4fTAgoyl67Tl6HxeFQnFwUJKiUBwGTOZ2OMW/pw083fLt3ncoA9HJ7q8OaOP/TT+JT0fjZEjmGiDFWhTfIUMwyWC0znFpFcrK7BkfdN56wPp2lILWx0PKSz0lq3PZ2EHkoBCmxx1jN/OeEnDeDtKlSNfSaJx0Ir5DZSDp5JG5QakqCV8liyJdP+UgkZ18xPqeNALWo6QUstmWsRiRsaBHWZDOChGnGnfvjLKtvkw0Fs+SmgskOIslGZsKa3nEDj9Zpfv2HJup4dZu9S1RKKY+lKQoFIcLyXbUXBaP8pDBbAR4ZYC1J3naSGdP0CYrXTKA7SIRe30DW/qR2T0+C2dlzmDAAAVuY07WgDq3KdddKgEFWgbsZXkA4JYMkYAZo6xTqVHZRdqCN2eos2UoSedfOETrtqeIwAzk6fU11/qH+A7pOopha2YnhmcAkRhwbHbFiTBIt5K0V0c8O+ywymWkaSUqAUmWSJxjGwHrCSOxH0oC2zNEpsSKH6DskR+1BKoegOn9GjDtKH4WFArFEYWSFIXiMGEyt8PZ+i3aDOtcjimyPf7GDusbkmJvjbBnh9KJJX0hbDUhCNgNXKYVSwlIBLTVIB0vGLKGZsWwtayvMgnJVNgyPkxkZd4u9lZhwzbpogkYq9M4Z4Ss3XfF6bxzdwFrphNJaQQA+ER6phfoHKmabdXdG6TzRmzhpR1ZrO8dQ6UdeFbQurGDxLrJGtBdpcxKbxH4wzTb4pyPUDkq6JNmxWPRcHeZtTtF0pYoFIp3LZSkKBRHAvkwiU+l7OBwK7KYg0XZe2QgT487xuol2G8DLpcwwBkKmWvTUqJoZkhkMGCyRoSnwh1GQdamTCvSui08IGZGjjb5bIt4txwkMjQrS4Qk7AFvdZG2ZFqJiEGdW3TPHSbRqmhuhFCNxknr0lWm4+wL4pUykLei2Sjb4/sOHVfIXLpqxa6uofuSjqFchMo5AL0+Ubc+KmEPCBoY9685nkfjjVYoFMcSSlIUiiMAc9ZNcF75AWUWYg0gyeQj6APxGmlNJFviO+RFUg7aFlohNdEG6UrEnr7OG3eQMykAt9yy8LPV0l5m2MyeoM1cykpDKS6h8GRicbkthaztfCFMWYrBHPBGDw3b6yrT/UzwNcYaRFp2xa3bapTLUq4Bhj3KaOwNkQZNMJa26zd66HdJwIhFfsgHAiFLSHqL5HY7Z4zKWwFDWZkMG71tTcOc+7/seVT0qlCcUFCSolAcKSQ4q5FnUWqYbfJDHpUmIg0qR4R8YFMHbcwzc0QCZFKww3N/JMMi045lenGNZ+GUQGsk2xBt2LZiWe871JnTX6BjjsWItJRZJOsaEqnWXGD6GL1+R5KyLKNx+nMkQeUcEev2F+jaS9wp01km0jIRpfPKfKF0td20Lcmzf0ohtuoPAvW4HTooXjAicpVSjstC4gCItAR9mPd97pi9pQqF4vhCSYpCcYRg5t0IZ/vfAwkuP0xEqQRSDllhrIH19fAcu7nL7B8pBbk+61Ng9SMAHVfKRIWw9R4ZjVOXjghTu8pUXkpXbYYFoNeJDqV1iN8Qd/P0lGyWZVqRiJdY5tddIjGxuhW8jnLpphwEwiEiQg6orDRn3F4/QASnEKbf/8c2IkD5iB1+WHNJO7Opg9Y0WJuTqsJE7gTmHOU3UKFQTDkoSVEojiDMwFcAAM7ofbSxZ2Wujk8ZFgDoG6eMirjH+g61F7usUxFxre9YP5WKC0Q9EoV63JJcDVL7bcDQ6/Nhah+OsPV7jq3eQ0yKpLwj1zWtSKQp7FlSIwMMU2x/73J5qBq0AxTFiTVZo44g6cLJR6hkk41y6zB36ZwyYY3SRAsTa1BGxQvYgYyiwzl3B8y8G4/L+6dQKKYWlKQoFEcDhTBlDiSLkovQBuwaIhm5iPU/aW2tlem9Iwn6U0pGqRodMxchMzbXMAHh7phshLIyAUPZjOEkaT/SdSIj0mI8vUCk5/QxO3xQJg6LX4rr81BBcFsx2IQOtE6GHI6xNmRzhkhShK91ep5i4Ds02XhTBvjI2zY2MTaQ66jQ/SbqwLYUzIXXH/v3SaFQTGkoSVEojgZc7lZJ1mgjnpGnP/sLVDKpcBYkVm/pZPFt5iPLZSDfodeVg0RUxHE1FwESns1CRBuk+diWJqv9RI2IhhCZ9UwKZLJxhWfVyPC8VI3IxUSUsjyZCpGncqg5WA+uobJMrE7twTsT7LuSJ7IV8ei6wh55q/QViGxlqsDTp1FWZVaWtCaDOTJTS3K8Zh6H90ihUEx5KElRKI4CzOCX4fh3t09JHotRZ0ohzG6ysEMDkzXb+VNiH5EAu8iGufvHc4AtHVTykYyJTPqtuUQotqXI12Q4QSRkJzvGnjbePp3YgPQnYzHKbNRcEtmmq0C8YbMrLnu1xHiWTl+B7mEoZScOJ9kULmDsYEOx7U9XiTyxb4zpvO04vBsKheLdCiUpCsXRgohNG2xbLxt7nIWnKZ4KHGChbD5sfVBc3xIKmY8j2hEpBcn0YAe0fjhJ5ZzRGPmRBPicYkffWSHy4nu2dOM71twtU6Xry4d5fZnIihCOaVzOAeyAwXidrqERAPI8h0emP1ddmP959XF8AxQKxbsdSlIUiqMEk/w6nFcfJjLigLIJMt8nWSMSk6oRAdnUQWRkMGfLLx6bt00rEfGQzEa0wVOP2bvk9R46RyFMJCZdJcKxI0ktx2Lg1lukCxtKWn2McayjrRck/5WaS+esunSssEcZmrpr7ehDHpWUAobM3Hx2e03WYD72qeMUcYVCcaJBSYpCcTSRD7P1PbfhVoNESsQDpcKDBKMN0oo4sG3AIc6klPmfqTizBn3bMeRwRsZ3SH8yEW2fc9NqV5+NEjHqKtuJza4h8lTkDIjPmpWaa91r85xxEYO4ubuA308DTp0g8jI7C3Pqrcc4sAqF4mSAkhSF4ijCLP4snKd/ROTD4xk7mYolKGXWn2QqRDzCHpESMWMDLIHwAoDLrbzSojySpBbf4SRQ43bkjgoJaH0HcNkjxWUNS6JG1wKfHh9nUjON9SldZSI9pRCdL1OldZsylP3pKANb0jCLP0vXMftYR1ShUJxMUJKiUBxtSJZEHFjDbNo2m2fmdJWBXSyClUF/YoPvBUhcaxxaZ2A7hsJsDjcRZf+TMDBBJZemW2uAvVgMiHxko0SIAqAMinGoxOTATlze1EFW/tMLRFZmT8DM/uJxCp5CoTiZoSRFoTja6KhQpsJziAyMsw3+WIyIA0BaEBlOWOWOHSkT+Y4V0Ia4BXiCyUZvkTIt+TCVaObuou6bugvEK0RSHBA56eRZPLmILfeEPSJCBqSDGY3ROSdiMGfdBHQcn5ApFAoFoCRFoTjqMPO/AOcP3yMy0MH+I9PZQ6Tq0p89JZ7dAyIzVZeGEjYCVmgr83/AQwerQSrz9BfomNvS5E9Sc8mSvsyv25rmmToJWhdr8NRjFtvKPKBiCGbh0uMZKoVCoWiDkhSF4lgg4gF1Q2Shu0QdNuIxEvGIlPg8YDBkgFqINCYuC2VzTFBCPnXrAFY7MhajjElPiYjM/BHgjW4rnvUCwPu2s4EbkxJubzbzv3B846JQKBT7gZIUheJYIMDGZz0lyl6EfCrBiANsigcB5iNUeok1LHGRGT5S/hnIU9tv3aW1mYrNlqSqpDU5c5QcZPMRakU2TrPkY7rUUE2hULw7oCRFoTgWmJklwlB3bUuv79j23+4SZVSSNcqY5CNEPiai1iK/q0wEp9EgF9l3OonMOLDD+qR7p7sEbOyAOf9zwKl8DanjdO8KhUJxiAgczotXrFgBx3HwxS9+cZ9rXnzxRbz//e9Hd3c3YrEY5s6diwceeKBtzQ9+8AN84AMfQGdnJzo7O3HppZfiv//7v9vWfP/738eCBQuQTqeRTqdx0UUX4b/+678O5/IVimOHoE8EZChJ5ZpcS4YjzDNvJqJWKNsI0PpZWWoxzlRIYyJmcHU2Z5MuoFiD/jQOzDmfhxn4ChEUhUKheBfjkDMpr7zyCh5++GEsWLBgv+sSiQRuuukmLFiwAIlEAi+++CKWLl2KRCKBz32O/hN97rnncPXVV+Piiy9GNBrFfffdh4985CP4/e9/jxkzZgAABgcHce+99+L0008HAPzjP/4jrrzySqxduxZnn332od6GQnHssDNOnTeRBpVidsWJWJSDlC3pLtH8nHk7iaD8to/KQ2GPxLE7E/Taepw9U3wq9wQMzDmfP953p1AoFEccjjHGHHhZOwqFAhYuXIgHH3wQ99xzD8477zx8+9vfnvTrr7rqKiQSCfz4xz/e6/Oe56GzsxPf/e538elPf3qfx+nq6sI3v/lN/OVf/uWkzpvL5ZDJZJDNZpFOpyd9vQrFkYDz8v+lX+rc5ROv29JPokYZkkKYxLDn7aDfpbMnU6XXZUgsa1J3HN+bUSgUikPEwezFh1TuufHGG3HFFVfg0ksvPejXrl27FqtWrcKiRYv2uaZUKqFer6Orq2uvz3ueh8ceewzFYhEXXXTRPo9TrVaRy+XafhSK44qgTwQl7PGMnqqd4zMRJcKSjVI7cdCnluLf9sGk7oDpug3G/WslKAqF4qTBQZd7HnvsMaxZswavvPLKQb1ucHAQO3fuRKPRwPLly3H99dfvc+3tt9+OGTNm7EGC1q1bh4suugiVSgXJZBIrV67EvHnz9nmcFStW4O677z6o61QojhbMBdfD+eUj1NEj04QbAfo90gBSDpWAMhVaP/hlYPA4XrBCoVAcZxwUSdmyZQtuvfVW/PznP0c0Gj2oE73wwgsoFAp46aWXcPvtt+P000/H1VfvOcb9vvvuw6OPPornnntuj3OceeaZeO211zAxMYHHH38cn/nMZ/D888/vk6jccccd+PKXv9z8ey6Xw8yZMw/quhWKI4rOCs/saRkaaHhGj+vDXHbt8bs2hUKhmGI4KE3KE088gT/90z+F67rNxzzPg+M4CAQCqFarbc/tC/fccw9+/OMf44033mh7/P7778c999yDp59+Gueff/4Bj3PppZdizpw5eOihhyZ1/apJUUwFOK8+TGWeiKczcRQKxUmHg9mLDyqTcskll2DdunVtj1133XWYO3cubrvttkkRFAAwxqBarbY99s1vfhP33HMPfvazn02KoOzrOArFVId5n7YGKxQKxWRwUCQllUph/vz5bY8lEgl0d3c3H7/jjjuwbds2/OhHPwIAfO9738OsWbMwd+5cAOSbcv/99+Pmm29uHuO+++7DXXfdhX/5l3/BKaecgh07dgAAkskkkskkAODrX/86lixZgpkzZyKfz+Oxxx7Dc889hyeffHLS1y9JIxXQKhQKhUJxfCB78GQKOUfccXZoaAibN29u/t33fdxxxx3YsGEDgsEg5syZg3vvvRdLl9pBZg8++CBqtRr+7M/+rO1Yy5Ytw/LlywEAw8PDuPbaazE0NIRMJoMFCxbgySefxGWXXTbpa8vn8wCguhSFQqFQKI4z8vk8MpnMftcckk/KuxW+72P79u1IpVJwHOeon0+Eulu2bFENzGFA43hkoHE8MtA4HhloHI8c3m2xNMYgn89jYGAAgcD+nVBOqtk9gUAAg4PHvqdTrPwVhweN45GBxvHIQON4ZKBxPHJ4N8XyQBkUwWHN7lEoFAqFQqE4WlCSolAoFAqFYkpCScpRRCQSwbJlyxCJRI73pbyroXE8MtA4HhloHI8MNI5HDidyLE8q4axCoVAoFIp3DzSTolAoFAqFYkpCSYpCoVAoFIopCSUpCoVCoVAopiSUpCgUCoVCoZiSOKlJyimnnALHcfb4ufHGG/dYu3TpUjiOg29/+9ttjz/88MNYvHgx0uk0HMfBxMTEHq8dHx/Htddei0wmg0wmg2uvvXaPdZs3b8bHP/5xJBIJ9PT04JZbbkGtVmtbs27dOixatAixWAwzZszA3/zN30xq9sHRxuHGcWxsDDfffDPOPPNMxONxzJo1C7fccguy2WzbazWOFvv6PC5duhRz5sxBLBbDtGnTcOWVV+L1119vW6NxtNhXHAXGGCxZsgSO4+CJJ55oe07jaLGvOC5evHiP13/yk59sW6NxtNjf53H16tX48Ic/jEQigY6ODixevBjlcrn5/AkbR3MSY2RkxAwNDTV/nnrqKQPAPPvss23rVq5cac4991wzMDBgHnjggbbnHnjgAbNixQqzYsUKA8CMj4/vcZ7LL7/czJ8/36xatcqsWrXKzJ8/33zsYx9rPt9oNMz8+fPNhz70IbNmzRrz1FNPmYGBAXPTTTc112SzWdPX12c++clPmnXr1pnHH3/cpFIpc//99x/JkBwSDjeO69atM1dddZX56U9/atavX2+eeeYZc8YZZ5hPfOITba/XOBL293l86KGHzPPPP282bNhgXn31VfPxj3/czJw50zQajeYajSNhf3EUfOtb3zJLliwxAMzKlSvbntM4EvYXx0WLFpkbbrih7TgTExNtazSOhP3FcdWqVSadTpsVK1aY3/3ud+bNN980P/nJT0ylUmmuOVHjeFKTlN1x6623mjlz5hjf95uPbd261cyYMcP87ne/M7Nnz97nf2bPPvvsXknKH/7wBwPAvPTSS83HVq9ebQCY119/3RhjzH/+53+aQCBgtm3b1lzz6KOPmkgkYrLZrDHGmAcffNBkMpm2D+WKFSvMwMBA2/VOBRxOHAX/+q//asLhsKnX68YYjaPgYOP4m9/8xgAw69evN8ZoHAWTieNrr71mBgcHzdDQ0B4kReNIOFAcFy1aZG699dZ9HlPjSDhQHC+44AJz55137vOYJ3IcT+pyTytqtRr+6Z/+CX/xF3/RHD7o+z6uvfZafO1rX8PZZ599SMddvXo1MpkMLrjgguZjF154ITKZDFatWtVcM3/+fAwMDDTXfPSjH0W1WsWrr77aXLNo0aI2s56PfvSj2L59OzZu3HhI13Y0cKTimM1mkU6nEQzSeCmN48HHsVgs4pFHHsGpp57anPytcZxcHEulEq6++mp897vfRX9//x7Paxwn/3n853/+Z/T09ODss8/GV7/61eY0ekDjCBw4jiMjI3j55ZfR29uLiy++GH19fVi0aBFefPHF5poTOY5KUhhPPPEEJiYm8NnPfrb52De+8Q0Eg0Hccssth3zcHTt2oLe3d4/He3t7sWPHjuaavr6+tuc7OzsRDof3u0b+LmumAo5EHEdHR/G3f/u3WLp0afMxjePk4/jggw8imUwimUziySefxFNPPYVwOAxA4whMLo5f+tKXcPHFF+PKK6/c6/Max8nF8ZprrsGjjz6K5557DnfddRcef/xxXHXVVc3nNY4HjuM777wDAFi+fDluuOEGPPnkk1i4cCEuueQSvPXWWwBO7DieVFOQ94cf/vCHWLJkSZNlvvrqq/jOd76DNWvWNBnvoWJvrzfGtD1+KGsMi5kO9/qOJA43jrlcDldccQXmzZuHZcuWtT2ncZxcHK+55hpcdtllGBoawv33348///M/x69+9StEo1EAGscDxfGnP/0pfvGLX2Dt2rX7PbbG8cCfxxtuuKH5+/z583HGGWfg/PPPx5o1a7Bw4UIAGscDxdH3fQAkqr3uuusAAO9973vxzDPP4B/+4R+wYsUKACduHDWTAmDTpk14+umncf311zcfe+GFFzAyMoJZs2YhGAwiGAxi06ZN+MpXvoJTTjll0sfu7+/H8PDwHo/v3LmzyVD7+/v3YKnj4+Oo1+v7XTMyMgIAezDf44XDjWM+n8fll1+OZDKJlStXIhQKNZ/TOE4+jplMBmeccQY++MEP4t/+7d/w+uuvY+XKlQA0jpOJ4y9+8Qu8/fbb6OjoaK4BgE984hNYvHgxAI3jof7/uHDhQoRCoWYGQON44DhOnz4dADBv3ry245111lnYvHkzgBM8jsdaBDMVsWzZMtPf398UaRpjzK5du8y6devafgYGBsxtt93WFCK14kDC2Zdffrn52EsvvbRXQdP27dubax577LE9BE0dHR2mWq0219x7771TShh2OHHMZrPmwgsvNIsWLTLFYnGPY2scD+7zKKhWqyYWi5lHHnnEGKNxnEwch4aG9lgDwHznO98x77zzjjFG43ion0eJ5fPPP2+M0ThOJo6+75uBgYE9hLPnnXeeueOOO4wxJ3YcT3qS4nmemTVrlrntttsOuHZvquuhoSGzdu1a84Mf/MAAML/85S/N2rVrzejoaHPN5ZdfbhYsWGBWr15tVq9ebc4555y9toZdcsklZs2aNebpp582g4ODba1hExMTpq+vz1x99dVm3bp15t///d9NOp2eEi12xhxeHHO5nLngggvMOeecY9avX9/Wrrd766zG0WL3OL799tvm7/7u78yvf/1rs2nTJrNq1Spz5ZVXmq6uLjM8PNxcp3Fsx2S6pLCPFmSNo8XucVy/fr25++67zSuvvGI2bNhg/uM//sPMnTvXvPe979V/1/vB3j6PDzzwgEmn0+YnP/mJeeutt8ydd95potFos2vPmBM3jic9SfnZz35mAJg33njjgGv39uFZtmyZAbDHj3xzNcaY0dFRc80115hUKmVSqZS55ppr9si4bNq0yVxxxRUmFouZrq4uc9NNN7W1gRljzG9/+1vzgQ98wEQiEdPf32+WL18+Zb4lHE4cJQu1t58NGzY012kc27F7HLdt22aWLFlient7TSgUMoODg+ZTn/rUHt9sNY7tOFSSonFsx+5x3Lx5s/ngBz9ourq6TDgcNnPmzDG33HJL2xc4YzSOu2Nfn8cVK1aYwcFBE4/HzUUXXWReeOGFtudP1Dg6xkwBSz6FQqFQKBSK3aDCWYVCoVAoFFMSSlIUCoVCoVBMSShJUSgUCoVCMSWhJEWhUCgUCsWUhJIUhUKhUCgUUxJKUhQKhUKhUExJKElRKBQKhUIxJaEkRaFQKBQKxZSEkhSFQqFQKBRTEkpSFAqFQqFQTEkoSVEoFAqFQjEloSRFoVAoFArFlMT/B/e6HwLziFaoAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -265,7 +262,7 @@ "" ] }, - "execution_count": 49, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } diff --git a/book/tutorials/snowex_database/6_wrap_up.ipynb b/book/tutorials/snowex_database/6_wrap_up.ipynb index 4bd370d..5457a11 100644 --- a/book/tutorials/snowex_database/6_wrap_up.ipynb +++ b/book/tutorials/snowex_database/6_wrap_up.ipynb @@ -34,7 +34,7 @@ "\n", "A huge thanks to HP Marshall who originally gave us the opportunity to build this a couple years ago. And thanks to Joe Meyer who pursued funding to develop it futher. Buy them a beer or better yet volunteer for field work to hang out with them! \n", "\n", - "❄️ Go forth and snow science! ❄️" + "❄️ **Go forth and snow science!** ❄️" ] }, { From 220d6ebed9ba77e832478bc55a9d4c35d21b6dcb Mon Sep 17 00:00:00 2001 From: Micah Johnson Date: Sat, 17 Aug 2024 01:59:11 +0000 Subject: [PATCH 20/21] Added show import --- .../snowex_database/5_plot_raster_example.ipynb | 13 +++++++------ 1 file changed, 7 insertions(+), 6 deletions(-) diff --git a/book/tutorials/snowex_database/5_plot_raster_example.ipynb b/book/tutorials/snowex_database/5_plot_raster_example.ipynb index 3569dba..1df1611 100644 --- a/book/tutorials/snowex_database/5_plot_raster_example.ipynb +++ b/book/tutorials/snowex_database/5_plot_raster_example.ipynb @@ -17,18 +17,18 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [ { - "ename": "NameError", - "evalue": "name 'show' is not defined", + "ename": "AttributeError", + "evalue": "type object 'RasterMeasurements' has no attribute 'from_filter'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[2], line 12\u001b[0m\n\u001b[1;32m 9\u001b[0m ds \u001b[38;5;241m=\u001b[39m RasterMeasurements\u001b[38;5;241m.\u001b[39mfrom_filter(observers\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mASO Inc.\u001b[39m\u001b[38;5;124m'\u001b[39m, date\u001b[38;5;241m=\u001b[39mdt, \u001b[38;5;28mtype\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mswe\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 11\u001b[0m \u001b[38;5;66;03m# Plot it up!\u001b[39;00m\n\u001b[0;32m---> 12\u001b[0m \u001b[43mshow\u001b[49m(ds[\u001b[38;5;241m0\u001b[39m], vmin\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.1\u001b[39m, vmax\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.4\u001b[39m, cmap\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mwinter\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 14\u001b[0m \u001b[38;5;66;03m# Note the resolution!\u001b[39;00m\n\u001b[1;32m 15\u001b[0m ds[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mres\n", - "\u001b[0;31mNameError\u001b[0m: name 'show' is not defined" + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[1], line 10\u001b[0m\n\u001b[1;32m 7\u001b[0m dt \u001b[38;5;241m=\u001b[39m datetime(\u001b[38;5;241m2020\u001b[39m, \u001b[38;5;241m2\u001b[39m, \u001b[38;5;241m13\u001b[39m)\n\u001b[1;32m 9\u001b[0m \u001b[38;5;66;03m# Query db filtering to swe on a certain date surveyed by ASO\u001b[39;00m\n\u001b[0;32m---> 10\u001b[0m ds \u001b[38;5;241m=\u001b[39m \u001b[43mRasterMeasurements\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_filter\u001b[49m(observers\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mASO Inc.\u001b[39m\u001b[38;5;124m'\u001b[39m, date\u001b[38;5;241m=\u001b[39mdt, \u001b[38;5;28mtype\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mswe\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 12\u001b[0m \u001b[38;5;66;03m# Plot it up!\u001b[39;00m\n\u001b[1;32m 13\u001b[0m show(ds[\u001b[38;5;241m0\u001b[39m], vmin\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.1\u001b[39m, vmax\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.4\u001b[39m, cmap\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mwinter\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", + "\u001b[0;31mAttributeError\u001b[0m: type object 'RasterMeasurements' has no attribute 'from_filter'" ] } ], @@ -36,6 +36,7 @@ "# import in the raster measurments class\n", "from snowexsql.api import RasterMeasurements\n", "from datetime import datetime \n", + "from rasterio.plot import show\n", "\n", "# Pick a date\n", "dt = datetime(2020, 2, 13)\n", From c9dddd5de932ccee8baac176bee66f1b87b9f9a1 Mon Sep 17 00:00:00 2001 From: Micah Johnson Date: Sat, 17 Aug 2024 02:07:22 +0000 Subject: [PATCH 21/21] Cleared the output from cells --- .../1_getting_started_example.ipynb | 402 +--- .../2_database_structure.ipynb | 39 +- .../snowex_database/3_forming_queries.ipynb | 1636 +---------------- .../4_get_spiral_example.ipynb | 518 +----- .../5_plot_raster_example.ipynb | 170 +- 5 files changed, 34 insertions(+), 2731 deletions(-) diff --git a/book/tutorials/snowex_database/1_getting_started_example.ipynb b/book/tutorials/snowex_database/1_getting_started_example.ipynb index 55142c3..e4a48c4 100644 --- a/book/tutorials/snowex_database/1_getting_started_example.ipynb +++ b/book/tutorials/snowex_database/1_getting_started_example.ipynb @@ -80,407 +80,9 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
version_numberequipmentvaluelatitudelongitudenorthingeastingelevationutm_zonegeom...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
01ruler83.039.04496-108.063114.325871e+06754172.6391323253.16992212POINT (754172.639 4325871.377)...2020-03-122022-06-30 22:56:52.635035+00:00None41824https://doi.org/10.5067/9IA978JIACAR2022-06-30pit rulerdepthcmNone
11ruler100.039.04563-108.195934.325583e+06742673.5044003048.69995112POINT (742673.504 4325582.611)...2020-01-302022-06-30 22:56:52.635035+00:00None41825https://doi.org/10.5067/9IA978JIACAR2022-06-30pit rulerdepthcmNone
21ruler117.039.00760-108.147914.321491e+06746962.4489823087.70996112POINT (746962.449 4321490.615)...2020-01-292022-06-30 22:56:52.635035+00:00None41826https://doi.org/10.5067/9IA978JIACAR2022-06-30pit rulerdepthcmNone
31ruler98.039.02144-108.164014.322983e+06745520.2031843099.63989312POINT (745520.203 4322983.253)...2020-02-092022-06-30 22:56:52.635035+00:00None41827https://doi.org/10.5067/9IA978JIACAR2022-06-30pit rulerdepthcmNone
41ruler92.039.03404-108.191034.324309e+06743137.3953163055.59008812POINT (743137.395 4324309.223)...2020-01-282022-06-30 22:56:52.635035+00:00None41828https://doi.org/10.5067/9IA978JIACAR2022-06-30pit rulerdepthcmNone
..................................................................
951ruler92.039.03596-108.209754.324472e+06741510.2293153030.07006812POINT (741510.229 4324472.430)...2020-01-282022-06-30 22:56:52.635035+00:00None41919https://doi.org/10.5067/9IA978JIACAR2022-06-30pit rulerdepthcmNone
961ruler35.039.03126-108.189484.324005e+06743281.1220923060.43994112POINT (743281.122 4324004.792)...2020-02-052022-06-30 22:56:52.635035+00:00None41920https://doi.org/10.5067/9IA978JIACAR2022-06-30pit rulerdepthcmNone
971ruler101.039.01843-108.155964.322671e+06746227.6855333103.75000012POINT (746227.686 4322670.914)...2020-02-012022-06-30 22:56:52.635035+00:00None41921https://doi.org/10.5067/9IA978JIACAR2022-06-30pit rulerdepthcmNone
981ruler102.039.01437-108.141584.322259e+06747487.0402173100.86010712POINT (747487.040 4322259.296)...2020-01-292022-06-30 22:56:52.635035+00:00None41922https://doi.org/10.5067/9IA978JIACAR2022-06-30pit rulerdepthcmNone
991ruler115.039.03918-108.003134.325399e+06759385.731498-9999.00000012POINT (759385.731 4325399.285)...2020-02-032022-06-30 22:56:52.635035+00:00None41923https://doi.org/10.5067/9IA978JIACAR2022-06-30pit rulerdepthcmNone
\n", - "

100 rows × 23 columns

\n", - "
" - ], - "text/plain": [ - " version_number equipment value latitude longitude northing \\\n", - "0 1 ruler 83.0 39.04496 -108.06311 4.325871e+06 \n", - "1 1 ruler 100.0 39.04563 -108.19593 4.325583e+06 \n", - "2 1 ruler 117.0 39.00760 -108.14791 4.321491e+06 \n", - "3 1 ruler 98.0 39.02144 -108.16401 4.322983e+06 \n", - "4 1 ruler 92.0 39.03404 -108.19103 4.324309e+06 \n", - ".. ... ... ... ... ... ... \n", - "95 1 ruler 92.0 39.03596 -108.20975 4.324472e+06 \n", - "96 1 ruler 35.0 39.03126 -108.18948 4.324005e+06 \n", - "97 1 ruler 101.0 39.01843 -108.15596 4.322671e+06 \n", - "98 1 ruler 102.0 39.01437 -108.14158 4.322259e+06 \n", - "99 1 ruler 115.0 39.03918 -108.00313 4.325399e+06 \n", - "\n", - " easting elevation utm_zone geom ... \\\n", - "0 754172.639132 3253.169922 12 POINT (754172.639 4325871.377) ... \n", - "1 742673.504400 3048.699951 12 POINT (742673.504 4325582.611) ... \n", - "2 746962.448982 3087.709961 12 POINT (746962.449 4321490.615) ... \n", - "3 745520.203184 3099.639893 12 POINT (745520.203 4322983.253) ... \n", - "4 743137.395316 3055.590088 12 POINT (743137.395 4324309.223) ... \n", - ".. ... ... ... ... ... \n", - "95 741510.229315 3030.070068 12 POINT (741510.229 4324472.430) ... \n", - "96 743281.122092 3060.439941 12 POINT (743281.122 4324004.792) ... \n", - "97 746227.685533 3103.750000 12 POINT (746227.686 4322670.914) ... \n", - "98 747487.040217 3100.860107 12 POINT (747487.040 4322259.296) ... \n", - "99 759385.731498 -9999.000000 12 POINT (759385.731 4325399.285) ... \n", - "\n", - " date time_created time_updated id \\\n", - "0 2020-03-12 2022-06-30 22:56:52.635035+00:00 None 41824 \n", - "1 2020-01-30 2022-06-30 22:56:52.635035+00:00 None 41825 \n", - "2 2020-01-29 2022-06-30 22:56:52.635035+00:00 None 41826 \n", - "3 2020-02-09 2022-06-30 22:56:52.635035+00:00 None 41827 \n", - "4 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 41828 \n", - ".. ... ... ... ... \n", - "95 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 41919 \n", - "96 2020-02-05 2022-06-30 22:56:52.635035+00:00 None 41920 \n", - "97 2020-02-01 2022-06-30 22:56:52.635035+00:00 None 41921 \n", - "98 2020-01-29 2022-06-30 22:56:52.635035+00:00 None 41922 \n", - "99 2020-02-03 2022-06-30 22:56:52.635035+00:00 None 41923 \n", - "\n", - " doi date_accessed instrument type \\\n", - "0 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", - "1 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", - "2 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", - "3 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", - "4 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", - ".. ... ... ... ... \n", - "95 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", - "96 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", - "97 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", - "98 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", - "99 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", - "\n", - " units observers \n", - "0 cm None \n", - "1 cm None \n", - "2 cm None \n", - "3 cm None \n", - "4 cm None \n", - ".. ... ... \n", - "95 cm None \n", - "96 cm None \n", - "97 cm None \n", - "98 cm None \n", - "99 cm None \n", - "\n", - "[100 rows x 23 columns]" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAADbCAYAAACWc25rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPMklEQVR4nO3deXxU1dnA8d+5M5NJMtkDgSTsOxp2EAQREcR9rVap1q1abAFtq32F9vUVLRVFWm1VbLHWVutWF3BHQEVZRBBQFpU1ECBAWLIvs93z/jGTIZPMTBayEPJ8/cxHcu+59z4nk5t5crartNYaIYQQQggRYLR0AEIIIYQQpxpJkIQQQgghqpEESQghhBCiGkmQhBBCCCGqkQRJCCGEEKIaSZCEEEIIIaqRBEkIIYQQohpJkIQQQgghqpEESQghhBCiGkmQhBBCCCGqaZMJ0hdffMHll19ORkYGSikWLVpU73NorZk3bx59+vTBbrfTuXNnHnnkkcYPVgghhBDNztrSAbSE0tJSBg0axG233caPfvSjBp3jnnvuYcmSJcybN48BAwZQWFjI0aNHGzlSIYQQQrQE1dYfVquUYuHChVx11VWBbS6Xi//93//l5ZdfpqCggKysLB577DHOO+88AL7//nsGDhzIli1b6Nu3b8sELoQQQogm0ya72Gpz2223sWrVKl577TU2bdrEddddx0UXXcSOHTsAeO+99+jRowfvv/8+3bt3p1u3btxxxx0cP368hSMXQgghRGOQBKmaXbt28eqrr/LGG28wduxYevbsyX333cc555zDCy+8AMDu3bvZu3cvb7zxBi+++CL/+te/WL9+Pddee20LRy+EEEKIxtAmxyBFsmHDBrTW9OnTJ2i70+kkNTUVANM0cTqdvPjii4Fyzz//PMOGDWPbtm3S7SaEEEK0cpIgVWOaJhaLhfXr12OxWIL2xcXFAZCeno7Vag1Kovr37w9ATk6OJEhCCCFEKycJUjVDhgzB6/WSl5fH2LFjQ5YZM2YMHo+HXbt20bNnTwC2b98OQNeuXZstViGEEEI0jTY5i62kpISdO3cCvoToz3/+M+PHjyclJYUuXbpw0003sWrVKv70pz8xZMgQjh49yqeffsqAAQO45JJLME2TESNGEBcXx5NPPolpmkydOpWEhASWLFnSwrUTQgghxMlqkwnS8uXLGT9+fI3tt9xyC//6179wu93Mnj2bF198kQMHDpCamsrZZ5/NQw89xIABAwDIzc1l+vTpLFmyBIfDwcUXX8yf/vQnUlJSmrs6QgghhGhkbTJBEkIIIYSIRKb5CyGEEEJUIwmSEEIIIUQ1bWoWm2ma5ObmEh8fj1KqpcMRQgghRB1orSkuLiYjIwPDaJ62nTaVIOXm5tK5c+eWDkMIIYQQDbBv3z46derULNdqUwlSfHw84PsGJyQktHA0QgghhKiLoqIiOnfuHPgcbw5tKkGq7FZLSEhotATpKAWsYzPlOOlGJoPoi0WGdgkhhBCNrjmHx7SpBKkxuXDzd97gBw5W2boJO4u5lYsZSL8Wi00IIYQQJ0eaOhror/zHnxypKi9wYrKAD9jB7pYMTwghhBAnQRKkBtjJXrLJpzIpCqbQwH/5qJmjEkIIIURjkQSpAT5hJRBpAXJFLhWUUtZcIQkhhBCiEckYpAYopqQOpRTvsANFPGlEM4YORGNp8tiEEEIIcfIkQWqABGKgliTJRPEP9tOdHLqwh69x05WO9OMsOtGPdnRsnmCFEEIIUW+SIDXARM7hWxaG3a+BUhzcwOskU4CJ8o9M2sk2VrGCNFIYxGXcSCLJzRa3EEIIIepGxiA1QA960JcY/1fBY5E04MbKKL4kkUIADHSVuW6aDhzmCN/zH/5KOaXNGboQQggh6kASpAb6JXcyCAdWPFW2agpJwMSgPccwQgzkrpz3lshxSihkPSuaJV4hhBBC1J10sTWQFRs/ZwrHyeNrvqKcCvaRytu4OJ9lmKiQCRL4kiQHpWhMNvEV53BR8wYvhBBCiIgkQTpJKaQxicsBWMMR3mK9v1Up0jIAJ1qSyuo0I04IIYQQzUm62BrRCFJJIYpjpBJ6EUkfDbiwAYo4EpsrPCGEEELUkSRIjciCwb1k8T1nAJHbkApJRKEYzNnNE5wQQggh6kwSpEY2mjQeYhzf+8cVmVX2af+rjBiKSSKZdgxmdEuEKYQQQogIZAxSExhGO4bxC7YwlL0sooytAHiwUkgiRSTRmwFcxHVEB5YLEEIIIcSpQhKkJpTFSLIYiYmbcko5SC4ak450Ip6klg5PCCGEEGFIgtQMDGw4SKKXJEVCCCFEqyAJ0ilMoznCTo6zFws2MhlIrDyaRAghhGhykiCdoo6Tw3KeoYD9gW0Kg96cyyhuwUpUC0YnhBBCnN5kFtspqJg8PuQPFJIbtF1jsp3PWc4z6FoWohRCCCFEw0mCdAraxHu4qUAHLRJQSZPD1xxhZ7PHJYQQQrQVkiCdYjSanawMkxxVMtnA73BzqNniEkIIIdoSSZBOMV7ceHHVUkpRQQl7uBkTp2/T/lXwzvXwdEd4JgM+vA0Ob2zyeIUQQojTkQzSPsVYsBFFLC7KIpazU4GLfRSzhMS122H5fWBYwfT4Cmz9D2z5N1zyAmTd0gyRCyGEEKcPaUE6xSgUfRmPivjWKNpxFDAoP/BPX3IEJ5IjAO0BNHx0Oxzf3oQRCyGEEKcfSZBOQVlc5l/vKPRMtQ4cIpZywCRu/UZQkRoCDdj4bFOEKYQQQpy2JEE6BcWQwOU8RCpuqiZJFjx0Joeu7A1sidl3zN9aFIb2wL7lTRitEEIIcfqRMUinqFiSGcvV7OUPlBGLgUkcJRhBrUpetKp9wUhTKbaxlgrKSKQd3eiPgaXpghdCCCFaOUmQTmHJXEcRi4liDQRN+1eAJoW7ONjjGTI352Po0N1xWim+7mFlJf8ObHOQwAXcSA+ymjR+IYQQorWSLrZTmMJGF56jPdOwVHkGWxQ9yORxTEawa2g6Ksy62howDcXmQb2DtpdSzDv8jRy2NW0FhBBCiFZKEqRTnIGdNO6mL6vpzXL6sJJeLCaJqynlAMVpSWy4ZABa+brSKpkKTIvBuqsHUZEQXe2svoRqBYuasypCCCFEqyFdbK2EwkYUnYK22XCgMTlwZjoFGYl0/WYf7XLy0QbkdWvH3sGdqIiPxgyZB2sOk0MBR0iiffNUQgghhGglJEFqxToyhs34pvCXJsfy3fi+Qfs14MKGG1vYc5RRIgmSEEIIUY10sbViMbSjG5fhG7RdkwKOkxp2P0A8SU0RmhBCCNGqSQtSK5fFXWi87OUjfOtwG2g8GESRRztKiQ15nMKgM32IrzL4WwghhBA+kiC1cgZWBnEPvbmeXFbgohgH6WQyjh/4hiW8XOMYhcKClXFc0wIRCyGEEKc+SZBOE7F0pBfXBW3LYjQ27KzgHYo4FtieTg8m8GPak9ncYQohhBCtgiRIp7m+DKMPQzjMPv9K2qkkk9bSYQkhhBCntJMapD1nzhyUUvzqV78KW2blypWMGTOG1NRUYmJi6NevH0888URQmeeee46xY8eSnJxMcnIyEydOZO3atTXOdeDAAW666SZSU1OJjY1l8ODBrF+//mSq0CYoDDrSlW70l+RICCGEqIMGtyCtW7eOBQsWMHDgwIjlHA4H06ZNY+DAgTgcDlauXMmUKVNwOBz8/Oc/B2D58uVMnjyZ0aNHEx0dzdy5c5k0aRJbt24lM9PXDZSfn8+YMWMYP348H330EWlpaezatYukpKSGVkEIIYQQIiSldZiHeEVQUlLC0KFDmT9/PrNnz2bw4ME8+eSTdT7+mmuuweFw8NJLL4Xc7/V6SU5O5umnn+bmm28GYMaMGaxatYoVK1bUN9yAoqIiEhMTKSwsJCEhocHnEUIIEV4xZSxmFccoIgUHFzGGBOJbOizRirXE53eDutimTp3KpZdeysSJE+t97MaNG1m9ejXjxo0LW6asrAy3201KSkpg27vvvsvw4cO57rrrSEtLY8iQITz33HMRr+V0OikqKgp6CSGEaBoazQt8wC95hUXksIIC3iGXqbzG87wV5qmRQpya6p0gvfbaa2zYsIE5c+bU67hOnTpht9sZPnw4U6dO5Y477ghbdsaMGWRmZgYlYLt37+bZZ5+ld+/efPzxx9x1113cfffdvPjii2HPM2fOHBITEwOvzp071ytmIYQQdfcyS1jGYf/jjRSVi9Sa2uBTCnnNnN+i8QlRH/Uag7Rv3z7uuecelixZQnR09QegRrZixQpKSkpYs2YNM2bMoFevXkyePLlGublz5/Lqq6+yfPnyoGuYpsnw4cN55JFHABgyZAhbt27l2WefDXTDVTdz5kx+85vfBL4uKiqSJMmvjFK+YT1HyCOKKPqTRVe6oyKsui2EEOE4cbOUfYT8u1sp0JqVuoKr87sRlbgaw8ho9hiFqI96JUjr168nLy+PYcOGBbZ5vV6++OILnn76aZxOJxaLJeSx3bt3B2DAgAEcPnyYWbNm1UiQ5s2bxyOPPMKyZctqDP5OT0/njDPOCNrWv39/3nrrrbDx2u127HZ7farYJmzka95nIRozkBCtZTWd6MJPuJWYMKtvCyFEOCvZhCdSp4RSFFiSyTbt9MrPQqUcRqnwz4kUoqXVq4ttwoQJbN68mW+++SbwGj58ODfeeCPffPNN2OSoOq01TqczaNvjjz/OH/7wBxYvXszw4cNrHDNmzBi2bdsWtG379u107dq1PlVo83aynXd5ExMvGo3p/w/gAPt5jRdlnIAQot4KKKlTuRLlwObKx+16tIkjEuLk1KsFKT4+nqysrKBtDoeD1NTUwPaZM2dy4MCBwNigZ555hi5dutCvXz/Aty7SvHnzmD59euAcc+fO5YEHHuCVV16hW7duHDp0CIC4uDji4uIA+PWvf83o0aN55JFH+PGPf8zatWtZsGABCxYsaGDV26YVfIpChUyCNCY57GE/OXRGEk8hRN11oh2wq9Zy7b3HfL99yl8A+wNNHZYQDdboK2kfPHiQnJycwNemaTJz5kyys7OxWq307NmTRx99lClTpgTKzJ8/H5fLxbXXXht0rgcffJBZs2YBMGLECBYuXMjMmTN5+OGH6d69O08++SQ33nhjY1fhtFVOGTnsiVjG0IotPEt7rbCosVi5EKXq1jIohGi7RnAGMaymPDBAO5jSJp08B+jqyfEN3/bKrGJxamvQOkitVVtfB6mIQp4g8uxDQ3sZoLdyvv4CcKPoTqyxEIvq3zxBCiFarc/ZyAI2oLRGqxMjOJT2YsHkd8fm0de9Ew24Y/oRlfR9ywUrWpVWsw6SaJ3iiCOamIhlTAxSOQK4AdDkUGZOwtTHIh4nhBDjGMIvGEaGmRe0vZc7m/89Npe+7p2Ar33JiP1V8wcoRD3Iw2rbEAMLwxnJKj4PPRBba6x46Kd/qLLRi+Yobv0CdnVfs8UqhGidzmEwY1Qa+4+dTQnRpHjz6eA9EtivAXd0T2y2O1suSCHqQFqQ2phzGE8H0musd6S0iUJzxfYPSNhdhqqomkCZuPV/mzdQIUSrpYwMMpM+oZfhJa1qcqQUnrjx2JK2opR8/JxWTA8c/x6ObQWvs/byrYC0ILUxduzcxhRW8Tlf6zWUqTLQmh7H93DuntV0KTyABqIOmJQNtOJN9P0S0xS3bOBCiFbFsPTCSN6J6f0Oj/tDlLJjiboRm0qp/WDRemgTvvkzfPMnKPPNQMeeBAOmwfAHwBLVouGdDEmQ2qAo7IxnEucdOkD5jl9iMz3YTE9gv8L3Mx+7xUPxKBtYbFg4I/wJhRAiDMNyBoZFfn+clrSGT38GP/wbqg7bcBbA149A3tdw6XtgtM5UQ9o42zCV82diPa6g5CiwD8ADtjwT8GAzZLyAEEKIKg58Bj/8C0IuLmxCzmLY8VozB9V4JEFqq7xlULoF/Ktoh2Mp1Fi5CSsXNk9cQgghWoetC0BFaB1SBmx5tvniaWSts91LNIK6PZTWokZgM55DKXmIrRBCiCryvwddswciQJtQsKP54mlk0oLUVlliIH4EkX4EFGBJniqzTYQQQtQUnUKtf2zbE5sllKYgn3xtWZf7CN/FZoGoDpB2XXNGJIQQorXo/RNCjz/yUxboc1OzhdPYJEFqyzr8GLr+3vfvoH5kA6yJMGgxWKJbJDQhhBCnuD4/gYQeocchKQvYkyHrruaPq5FIgtTW9ZwNw76EDpPBkQUJZ0HPOXD2dogf3NLRCSGEOFXZHHD159BukO9rZTmRLCX0gKu/gNgOLRffSZJB2gISR/leQgghRH3EdYLr1sGhL2H/J76B2emjodME3yy2VkwSJHHyTBcUfwlmGcScAdFdWzoiIYQQzUUpX1KUPrqlI2lUkiCJhtMacv8M+x8Bz3H/RgVJF0LPZyG6W0tGJ4QQQjRY627/Ei1r70zYc1+V5AhAQ8FS2DQSnPtbLDQhhBDiZEiCJBqmYjccmBtmpxfcx2H/nGYNSQghhGgskiCJhsl7kcg/Ph7IewFMd3NFJIQQQjQaSZBEwzj3+QbmhaIBJ1BaDkeW+MYqCSGEEK2IJEiiYWztQy+gWgYcBo4DBcCKy+DjvpD3aXNGJ4QQQpwUSZBEw7S/Caj2kMJSoJCaiVPJTlhxIRz5onliE0IIIU6SJEiiYRxZ0P5mAg8qNIHicIW1b/GwTfc1T2xCCCHESZIESTRcr3+g06ehlcU35ijiUCMT8tdB8fZmCk4IIYRoOEmQRINpw8qWHpl8OmIkuSntI+dHlSoONnVYQgghxEmTlbRPUhlOVvMD37EPE00v0hlLfxJxNNo1TNxo3BjEoAgzc6wFFPI9B1gMtiiOtGtHxu4jtR8Und70gQkhhBAnSRKkk7CLQzzJe5TjCmzbyj7eZx1TuJAh9Dip8xfyDTn8m3y+BDRRpJHJj8nkegyiTjL6k7efD1FY0HjJy2iHx2rB6vGGKW1A8nCI79OsMQohhBANIV1sDVRMOU/wHhUEL4So0XgweZaPOcCxBp8/jyV8yy/I5ysqB/e4yCObZ9jMPZhVkrKWUs5BNL6EyGu1sG1A6IRQY+BNNig/uxOl3sspN2/Ho5eitdmc4QohhBB1JglSA63ke5y40GFH3mg+YVODzu2mkG08jG9qWPUWGU0hG9nPqw06d2OKIomqP0L7emayeVhfnHZbYJsGKs5KovQ8A7d9MV6W4NavUWZeRpl5EVqXNHvcQgjRbFxlUHQIPC3/R62oH+lia6Bv2RNxULKJ5lv2NOjch/kQXX2NoSCaXP5LZ25u0TFJ6UzgIMELQB7onk5u1w6kHCkgyuWlY3I7YmLW+PdW1snf6sRKys27iLX8p/mCFkKI5pC7CZY+DFsW+pY5scXA8FvhggcgQcZitgbSgtRAnhotOz6J5QUMyt3EgINbsLnCLgwUUSk7qO2tcXEUL6UNOv/J0mhyeZPdPIqBl+rz+7VhcLxDO4516kZMzNYa+0/w4uFNTL23qUMWQojmk70S/joSti7yJUcA7nL4agE8ORwK9rdoeKJupAWpgZJJJZu8QPuNw1nCTRteZ9iBbzD8CYHHsEH37TBwHlii63xuAzuKWpYVAgxstZRoGrv4E7m8AUAHdyHpFXmkuAsByLcmsie6M86oYQziUjRLazmbxqOXEqXuiFxs/wbY+CqUH4eUHjDiVkjMPPnK1FXeetj8NOR+DsoKXS+GAVMhqekGnftGsxViEIfC3mTXEUI0ItMLL98IXteJ5KjqvpI8eOdXcMubLRKeqDtJkBqgFC+LsNHF/7XdXcH9y5+kQ0leIDkCsJpuzF3PsrtkC95z3qOviq/T+VM5l4O8HaGEQRLDMRr4oenVJRTrjSiiiFfDMFTdfwyK2BxIjjLLD9KjfB+awHrapHjyaVeSDzHX4Y1OoQxAayxHNdb9JsoL3iSFu6sBNoVygtLZEF0IlsSaF3SXw39+4vtLzPDHqTV8/H9w8R/h/Bl1C9w0Yd9aKD7sS6w6DQv/sN3qNj0FK+72JUba3024ORu2zIcL34AeV9XtPHXk5TCF/IVSXkVTBliJ5QoS+TU2ZBagEKe0HcugICf8ftPj63YrOgQJHZsvLlFvkiA1wIcc5Sg2oAtdyeHc7FV0LD4clBxVMjDpdfhzph36B33Sf8R0Otc6biiZkTjoRSnZ1BykDWDShVvqHbdHF/KNdwbfWY7jNHzJlcOsYIDZnzONBzFU7T2uB1kIWIjzFNKjfB9AUG0CZyh/AGX9AOU2iFnhxHpEo/0FbRqiN3gxu1Q2rD0C6nFIvgEyH4WojBMnfONO+O5df7Wrjcv6cCbEd/S1JkWy9V1459dwfPeJbWn94KqnoM9EKN8Fh/8OxV+DYYeUS32PUbEmwMHVvuQITiRHlf/WCj7+Mdy4AxK61vati8jNQZzswKSEImZgcpQT772HMt6hnI9I423sDD2pawkhmtChraAsoMMteYKvZenIdkmQTnEyBqkB1lCAAo7Snm30YUz2ian4oXiUwZV73uMFcnmP2hdTVBhk8RccdPdvseB7qxQKK334P5IYXq+YvbqUJebtbLSU4FQnWp5KlZ01lmxWmb+IMCPvhDJ/0pZekUfkSfpWVPk/iF1uYDnqO6/S/hegvGBkg6+JCdBuOP4q/HAWuHJ9245lw4ZXajZTV7X0YV/rUDib34YXrvIlR1X/HDiyHZ67CNb8Gjb0gQN/hqLPoOBj2H03rO8Jpd/Cpr/4Wo5C8j9j7rsFEb8Tkbg5yF5+znbOZS+3s4+7KaQUJ5Zq74YXjZNj/LJO75MQooVEOSL/zqpkb7zFhEXTkBakBvBU+YgqIZ6k8sKImaZVm3QsO4wCXiCXy2lfayuSnXYM5SXy+ZKjfI6JEwc96cBlRJFS75h3eh/jgDXEDenvZvrBUk4vczHpxsURz2MhDlAkeErC11mD9npQBxdiHA9/LgVwDIit3OIB92HIfQC6Pe9rOVLK16UWzvFsOPwdpGfV3Of1wJK7YKyGPoANcAE/AN+YUK5g8ZMwkSrNYP5refJhywWw3wxuOapRVy/s/wT4Y/gyYXg4ym59HR7yfJljgMKFHY0iGmeV7SYesnGymmjGhD3vUVx8yFEO4SIZKxfRjs7UPgZO48XDMRQ2rCTXuz5CCOCMy+DtX0b+vZXYCTIGN1tIomEkQWqAgcSzkoJAC8qx6GQcJaVhUx6vMjgS0w4N7KGCPFx0qMP4IYVBCmNICfNh6MXD96xiM59SyGGsRNGLEQxmEkl0CCr7vdqM0g50mG40pU2+02+STuQEqT0XUMBadLjxOxpw+1uKjkCto81L8C33FAjLA8dfhs5/8a0fooza/xpzl4XevvMFuOiILzGqPH8UkAX0BBZpKAYKoGY+4AXPEbSOr8NCCg1bauFo6W/wxB4MOxbKTRRRuKp13Src/BAyQdJo/kku8/F1fRooTDTPsp8fkcb9dMcaIlYTF3n8kyO8jMe/uGkM/ejAnSTX8vMghKgmMRPO+hmsfT78764L/g8MS/PGJepNutga4CraY6nSBvROt8vRET4kLdrkvW6XBr72NkIXiRc37/NXPucljpOLFw9OyviOFbzOLHLZHlS+0IgKmxwBaGVQoMIkGlWkMYloMjlmSwnUoqwihvnv/YLhU78m/YaDDLtnPfM/+CWl5bG1T8WDmmW0E9y50DGr5rijSgpfz6NVQUF26G42/cfg5KiSAcQAY/1fl4cLS6FjSiPXQdOg58vpQy+Rb19Zy0BxjbvGTEWNIiZk6TfJ42n2YeLLOT1oTH+Ib5HHX6m5nILGzW5+yUGeCiRHAC7nVg6U3s0hc349ayaE4OqnYPD1vn8bVt9LWXx/8F00G0bd2bLxiTo5qQRpzpw5KKX41a9+FbbMypUrGTNmDKmpqcTExNCvXz+eeOKJoDLPPfccY8eOJTk5meTkZCZOnMjatWtP6rpNKZUo5tAbA99n9Bs9riY3Nh2PqvkXgVcZrG83mBUdRwOQgpW0RpiyvYHF7Od7/1cnPsE1Jl48fMR8vFUeg2KLNGAQQGvs1P4XjYVoBjKfQvsITBRHi1IYdc8apj/9NBt3DeFwQUe+yR7M9L8/xchnv+JYeS3dgZXDq2psT4B+F/sWVKue2NnwtQRZ/K/Xb4A/94JDJ1Yu1+Wfo+P2opNAJ4KOA22r8p0ygC5APIR/OzR4zfD5UeWOggOR61id6cbcfR+mtfbbz6zxzbEQw8Qa5Txo/k74tVU08CqHKcBNBV4+YD+/Yz13s5j/0I482gEQn1tC78V7GPjGdrIW7qTdm9PxbLwL3A1b00uINslqhxtfgXs3wXn3wYjb4KKH4X9zYOLvWzo6UUcN7mJbt24dCxYsYODAgRHLORwOpk2bxsCBA3E4HKxcuZIpU6bgcDj4+c9/DsDy5cuZPHkyo0ePJjo6mrlz5zJp0iS2bt1KZmbwWjd1vW5Tm0AKrzCAVzjE8igrU8c/xyPr/sCZeWsCZbzKYHHnC/jj0P/Ba/g6N66nY8hujvow8bKZTwnXtKHRVFDCLjbQh5EA9NDJbNHlEVuReuhhdbp+NB0ZYHmbkvi/c9cf2vN9zhlojEA4Wvuu8cPhvtz5yXO8fdmPwp8smWo9VAbEjQGbf3bHT16Bf1zka0kyvb7kqLK88tUW8E2r/cd5MH0zOs4F5VcTaGhRvtMSBbhAl1S5ZDpEGtKlnKBc/mMD1zxxWZzAsR3hTxBK/icYFXkorwNtiZwkqWrda3A5H7GUfI4Sg4MzGEpfBrKFco5Vey5gZaBRuFBonNh5l0O8z06O4PT3ftowGMvnjON3Ox9jyJrvg65odZno7xZA7lcwaQXY4upXVyHasvQBkD6npaMQDdSgBKmkpIQbb7yR5557jtmzZ0csO2TIEIYMGRL4ulu3brz99tusWLEikCC9/PLLQcc899xzvPnmm3zyySfcfPPNDbpuc+iDg1n09H0RA5x7CT8Ub+C/x9/FqRTr2g/lSEz7wGfqKBK5jYxwp6uzUgooJ/Jf9AYW8sgOJEhZairbeBS3ttZIkpQ2cWg3vYyf1zkGhaLw+F0sXKXROnTC5zVtLNp9FTlFnemSsC9onwZUNJAafFYA0med2NTrPJi+Bpb9Eb57C4ww7TnaCxVF6DVPw6gPgcLgxKvy3zYgGqjwf92FkEOItP8YHQPkgzLx3S2VjWxewO0vGBNb8wSROA+igMTDJRR0jAcjXMKssFF5YQ8FDGYxdmADJiYKxU62kkYG3bmpRg06s4/e7CDB/7NSQiyvM8KfGp3I8UwsJFYUMP6rlUFrWgWi0BoKNsN3c2HQw/WrqxBCtFIN6mKbOnUql156KRMn1mzqr83GjRtZvXo148aNC1umrKwMt9tNSkrwn/b1va7T6aSoqCjo1dT6xQ/l9q4zSOxyC56YdKIx6EMsD9CDv9AXWyMM+zLq0BWm0UHl4ozBXGLeTKz2PTBRaRPlH0CYpD1cqh4mStVv2umaLYRNjgJxaIM19lFQZQ3Icls0uzO7o7viG6io/ONsLAnQ47+QcH7wSTIHwy1vQN+JNbvbgi7mhW/+Cd5NEG4RAgVE+5MDHQO9bvPvOPG9qkwcPN3A29v/hYlvBly5/+XyFdTKgH7XR/oW1GT3Jcnt9+ZjmGbo2S5aE+NNJ4EfEc8UDvMIH9IfEwumv26VcymPcIhtfBB0+Bl8xzA2EF8lkS7DQRkq5MpaF+5ehqHN8G2b2gvb5/ta8YQQog2odwvSa6+9xoYNG1i3bl29juvUqRNHjhzB4/Ewa9Ys7rgj/KMlZsyYQWZmZlAi1JDrzpkzh4ceeqhecTaGTkTzP3Tjf+jWJOePJZFk0snnEOG72Uy6EDz1vb3lEq7XF5Dj/SeH2YzCSic1ngzjigY99LauC1GrBA3DweNW7FHduD3jWVyWGN5yppCZ/xF4iyC6DyRfC0boAcgAOAtrn9HmLMSX7ET4IK8cPJY4E5L/F5IuhoNPQcl6UFGYCaV409zoWHxLEHwNuqzaTHx860RqqwU1dFpdvg0nJE8AWweiyg/TfUMu+8/ogDMuypcoKQWmJjlP0bHDUgyi8eJlNQ+GPZ3GpICtDGU431JBPPn0wdftV/UtOk4K1aYMBnQt3IepDIxIY9Wcx8BdAPbU8GWEEOI0Ua8Ead++fdxzzz0sWbKE6Oi6P1sMYMWKFZSUlLBmzRpmzJhBr169mDx5co1yc+fO5dVXX2X58uWBazT0ujNnzuQ3v/lN4OuioiI6d+5cr7hPRQrFMC5lGf8Is98glUwy6Vdjn0XZ6G6ZEliC8mScMwisFvBE+Ey1GB7GnLkSgK/izuLhxN/jtMQwje5k2jv7ZqrVVfv+kLshwsw2A1JSgcO1n8vxY0j+vS8haXed7+VnOm9He18CPBAF7qvA+h6oIgKrgSsNHruVvGt+SWZSPb+bhhX6/AW23oC9xEXPtfsoT7BTEWdHmZq4Y+XY+r/j74OEI+RSXsuDiRWKqylkFw56kI2JqrGye6SZluXWCIlplatgqUs5IYRo/ZTWkVazCrZo0SKuvvpqLJYT3RFerxelFIZh4HQ6g/aFM3v2bF566SW2bdsWtH3evHnMnj2bZcuWMXz4iZWiG+u6RUVFJCYmUlhYSEJCQl2qfEpbyzus4z3/R6FvTIpGk0QHruRe4hqwoGR93fIgvLwYvCEadiyGZtL5m7jy9y/ySfRg9lq7kkU8N9OZcf5ZU/WydxUsOCdiEX35dOjzVC0nSoTkPJSKCrnXNLfgrhiKxnNikLQJxh5Q+8DUBtldupDXrx3DrG8Q24CWQpMCCvNGE79jG1bniW+eJ9pCfp9UEtp9FHikSC57eZEnI55PoRjHpXRhDAt4GsXRGmX2k8lOehFq0NWgw5t4cun9ES5ggfQL4fwPwpcRQogm0hKf3/VqQZowYQKbN28O2nbbbbfRr18/7r///jolKQBaa5xOZ9C2xx9/nNmzZ/Pxxx8HJUeNed3TzVlcSU+G8x1fcJxcbETTi+H0ZCiWGuvnNI1n7oddB2DVt2AxfIlS5f/POlPx+v8OIs4xj5/gxYIitg7jp8LqMhrOmgJr/x5yt04H3WEJyhgA5vdAqJYmBTG/CZscARhGFlb7O3ic16H9LTfaAHpARc8ofrD3w2lE05mbG5QcARQwm5K0Aorbp2IvcGNxmXjtBs5EGygDF3eQwToUFtrRESs2PCFnqfnrjiaDrmQQTXcS2RMiQerIIXbTw790QHCS9G3aADa3P4Mzj/6AUaMb07+aedbvGlRXIYRojeqVIMXHx5OVFdwl4nA4SE1NDWyfOXMmBw4c4MUXXwTgmWeeoUuXLvTr5+vuWblyJfPmzWP69OmBc8ydO5cHHniAV155hW7dunHo0CEA4uLiiIuLq9N126pUMhlLza7K5hIXC5/9DRZ+Bv98F/Ydhk5pcPsVcM35YLMCKOIbY9F2peD8C0D9HTZz4jluUUA/UINBe7fznb6LM1QB6P2cGKPlH5dkuwqia/+gt1guxojJxe15jmLzZcrIpcAST4ElCZvqSC9uJZ1rGlQNk2JK+K8vHqVwJldP1ky8HKCC5cQwgSjsDGIUG1gZ8jlsvhXX29PZP6PyTAawh101ylnxciZb2eIfm1bZ5aYArRQfnjefrM//D/K+8D9/Tvkes2KJgTEvQlr4x5sIIcTpptEfNXLw4EFycnICX5umycyZM8nOzsZqtdKzZ08effRRpkyZEigzf/58XC4X1157bdC5HnzwQWbNmtXYIYpGZrPCjy/wvZpc8b/gDAv08/oeE6LxLfZYpWHKUfw+/+n0Cje51oPzP6CPg6Uv2KeA7XJUpJlwVSiVQJTtXlK5l0RKSCIHgyhi6Y46iZYwN7sAZy2lLLjYTAwTABjHpRwkh9xqq2ErFNHEcDW3BQbaD2QIK/iMYor9a2mf0I58RrGJWC7gK/JxYdKdOK6hKxPtGagLlsPRr2D/IvCUQVIWdJsMtvgG11cIIVqjeo1Bau1OtzFIbVHx/pGsiYllq6M/HmWlW0UOowvXkOE6MTC7yIjjph7/ZAEX05FTb2FDF99xiPG1lDJI4v9I4BeBLR7cfMtXfMNqCjhGNLFkMZxhnENc1XUUgOMc5WVe4DjHMPyz1kxMYnEwmVvoRJfGrpYQQjSZU34MkhAtaTf7WZBxOS5l+LqHlOJgVAdWJYzk6qPvc27hakwg35qMgeIz9jKZM1s67Bps9MVCOl4ORihl1nikiBUbwziHYUQeqA6QQjumci872cZudmJi0pmu9CcLq9z2QghRK/lNKVqFMip4jv/iUlaqrk1p+p9/t7D95WS4DtKjfA9LEiaggGPhnkLbwhQWEriHfGaEKWEhhgnY6B1mf90YGPShP33of1LnEUKItkgSJNEqrGMzFbhCPhYEwNBePk0cS7THybKE8WhMEgPPEzn1xHErXvZTxNP4BlBVLuDoxc4IUnmmZQMUQog2ThIk0SpsrzY4uTpTWdju6MOK6LGU+1fjPpOfk89EkvgTChu4v4Wyv4F7I6g4iL4aYn4KRvOPR1MokngAB9dTwit42ItBIg6uxs5YVCM8kkYIIUTDSYIkWoXqs7FCcSsLhdZEQHMuX9CBPMp4FYgiuTgJSh6g8sGvoMD1KZTMhtTPwFpz1fHmYKMPycxqkWsLIYQITxIk0Sp0pxM/kB1yHSDwzfavIBobLibwCZfxHmXEUE4MR/V7lFJAB2XBpj1VjgDMI3DsQkjbeeKhuUIIIdo8SZBEqzCKQSxhFZ4wD6FVwCi+YiwrsOLhMB3xYvWtAA3sj4vhQFxHeh3fS6qzsMpYJi+YOVCxCGKuC3luIYQQbY8MdBCtQjwObuEqLBgYVUZqV/57JGuYxFKiqeAI7fFq/0KOSgVeGsWOlG6UWGIIboiygnNp81VGCCHEKU8SJNFqZNGb3/IzRjOEJOKJI5Z+dOY63mAsKwEoI9bXcqRCTHfzbzsYl0bNnrpQz20TQgjRVkkXm2hVOpDKj5jEj5gU2HaMJVSwH/BSToyvWy1UggSgFMdjE+E4vm42BeCBqLObPnghhBCthrQgiVYvkT9gkAJYAg9gjUSjqjQgGaASIfonTRihEEKI1kYSJNHqWelMe5YRo39ElA49iDtAa2LcFf40ygDskLwIDEeTxymEEKL1kC420epp7carX8Km3yON4xQZvSN2s6WXHAEsEPsLiLsHrL1CnxeNi9W4WAso7JyDjWGoOrRSCSGEaN0kQRINpnUFmhIUSSjVMj9KWnsoM6/Dy8eASRSQbuZy0MgITpL80/2TywtpX3ockp+HuNvDntfDbo5xCx6+x/coEAAvNgaTwr+xktmU1RJCCNHCJEESFFPBUr5nBTspwUl74jifvpxLb6JC/Ih49Vac5hw8LMQ3+yuOKHULUep+DNWhWWN369fw8lHQtmQKsbtd5JupFNrjQSmiPU46Fh+nQ2keKu5ucNwW9pwm+RzhckyO+rf4uu004GYzR7mSNJZjENdEtRJCCNHSlNY69NLEp6GioiISExMpLCwkIaH5n7/VlLx4OM5hAFLogMWf2HjQlOAlFoOoEEPODlPEw3xAIRU1VqnuSXt+x0VEc2KFaY9eQ5l5Ib7EqOrUeAuKdBzGFxiq+VpXSrznYLIeQj2KxNTYysBanoRNtwPbIIi7C6LHRTxnMX+hiD8CJl4M8kmmkES8WDHwkkghXbmbZH7ZJHUSQggRrCU+v6UFqZXz4mUti9nIciooAyCaWPpxLmsZyFsUUIqJBZhEEnfRkd74Huaq0fyVzygKkRwBZHOUV1nHbYz2ldcm5eZPARc1ExIvmoNUmL8l1vJK01W4GpPtIWLxMxTuODAdPbCouYAVZQytdQRRGf8FTDxYyKELHqxULr1tYiGfZIp4mRFcQQydGq8yQgghThkyi60V05i8zz/4kg8DyRFABWVsZDG5vE6pv3vICyyhgB+zjQ2UALCLI+zhGGaY55uZaD5nB2W4/Of4BE0OYRMSvHhYhKkPN1YVa6WIMPtMa6xuDxbXWtzOcbidY3CVp+NxP4yOMNvNpACAPE8aHn0iOap6VS+a73j4pOMXQghxapIEqRXbySZ2sSnkPgV0Yy9d2RvY5gXcaH7LHrxodnCk1tYUN172cdx3vN5K7T8yXkx21LUKJ82mrufEIOoqtMbmdmOYZtCqR1CA1z0Lj+t2wvUuRx9NIn51OSWWuPALTgJFbKGEnSdXASGEEKckSZBasU2sjDjl3ETRjx+qbYODuFlNcdAzzSIx/D8milhCPKOjBl+5plVGDtk8w27lYr/qQinxQZFZvCZK12z78dGY3hfR5pc1d+V9StLnX+HU9ojJUaXiat/fcLR2orU8zkQIIVoLSZBasXzyQo4dqmSgSaSwxnYLsINysshAA1bTTZKrALvXWaNsLFF0JQUAq7qk1pWqFRkYDKpXPepDo9nN03zNdezjZY6qLzmmktlh6cluo7t/or8Vw1vLgpFY8Xqer3ZyDet/DlpjmOG6EYMZRIWPVXvxuv+Gq7w/rvJoXOVRuCouxPR+UqdzA5ha877LzTXFZQwqKGFCUSnPV7goa4G5FabWHNNeinXdvjdCCNGaySDtViyaWIo4Fna/BpzYa2w3gRgMMl3l3LtvIWfmLcFuujBRfJ0yhIVdriDH0RkFXMgZgan+W5STowxhKBswwiRmdjUTpUJ0eTWSXP7Lfl7yf+Wffu/P2YpJ4oDRm556IIrHAXeEM3lw6nfJ5yZiuQQ7V+E89jUxZdlYMEk8Wozh8WJaw9dFYSGZ4SH3ae3F47oB0/tW1a1o8xPcziVYbX/DYpsSsa5urZlcUs57bg8Wf20NE1Z6vDxR4WJpQizpRtP/jePSmr9TwnO6hFz/+LPh2savVDwXqZgmv74QQrQEaUFqxfozgnCdSJV20TPk9vHOIvh2OEMOfYTd9A3CNtAMO/4ND337R/oWbucsunE1gwFfy80iVvCOcSVbOBMALwZeDEwUJopP1QW41U8brX7VaTzk8K/wBZTmmDoCxnSgXS3nAq8qJpf1/IX1XM5SLm9XxiVXLeTxoXeTF51Gp50HAwtMhrgYHbmUKH/rWnWm99+Y3jf9V6p6Dl9S53H/Em3uDXVowOxyJ++7PVWOOjE8frdpclNJecTjG4Nba27Sx3hYFwWSI4ANuLlJH+dvuqTJYxBCiJYgCVIrdiZnE0ciKsTbaKIoxcF2+gRtN4ArSKHj7t+CKw9FcFeUBROr9jBj+0tM1+di8Z87l6Mc5jgeZeNVy4381ZjOKjWGjWoIn6gJzDX+h6XG+WxWu5usviVsx+0fMB7JcVZhsd5CyMHbfgo4bEnjQR7kU84PtLS5LFF83O0Cpkx4CvYZdMjxLRap/F1ulf9P5Wx68+uw5/e6nyLy7aXwep4Lu7dca+Y7XSHb6ey6gizvtxQ5N7LJXRaiRON5iVI+w1kjjspU6QFdyB4ZWyWEOA1JgtSKRRPL9fyaVNIBUBiBZMlCez7gMjzYsXAiVTifRGa5bHD8HYIXejzBQBPlykUVLAtsK6UiqMxBlcFHxiW8ZVzLp8YEClUSClWjXGPyUnOMVE0KExcW291ACqGSJA24DCtPWaZRQrx/lagq1zGslFljeHTkffTL3cmo79bTLXc/KYfy6bivhCHmXxnA41hCdF8GrqG3EH45BF9tTHNj6GPRrPV+S1G1rMSmXTzseoh9Zb1ZW3Eu6yrG0udwJyh8CJooSfmHLo243wBeqqWM6V2Kq+IKnGUdcJZ3xu2ajmlub8QohRCi8ckYpFYukXb8lJkcYBcH/FPOM+lFJj25HjeLOMZ+XCRh5TKSOYNYKP+CyB/eAAaUfQfJFwGQQu0rl2o0qXUo11CxdENhQRNpALaJg94olY4teiUe54/R+lt8aZ+JApxGFLvsPdiiBoY/i2FhZ0IvdvTqRR/PTrpxwNeKEjUQ6BT5gbWFX4DFU8ufHwYqxPgdN4fI4U5ysQL/Dmy3aA9vVkzmAvNTLFXeu2idD0UPgXszpP4XVOP9zaO1ZgeeiPMWvcAPYcZ6aa3xuu/H63kcKkdRaTA9f8P0LMBqX4jFckmjxSuEEI1JEqTTgELRiV50Ivip9BlE8Ut/61IQS4TFFQN0ULl2JNKbTuziQNiFJR1Ek0WP+oReL1Ek044JHOETCJkkGUSTThJDfV8ZfbBFb0SbX+E1P6eA2bgsUXgNKzl0rdM1d9u609fjX+tIA2oTFI5EJ65HGSHGOTn3wXcXY3QGM5kIQ8RMDMsV1ba42MPNuNhLb4uNJI4z1L6Rs6LWMrTiGy4qWxbmXBpd/hb5rvkU2xMxsJHCKBx0CypVzBGy+Ro3FSTSkW4MwxphFp5SimitKI84U9I34D9kDb2L/MkRBL9fHkDhcV6LEZODUpHHiwkhREuQBKktcgyGqE7g2h+hkILky4O2XMt4/sSrePAGJUkKX+5wAxOxRhj30xh68iuK2UoFB6naCqawoIiiP38MGpOllEJZRqEsI3HxBl72gzZJLi+kLss12bVvALsGvo0awBfR51BgTaC9fpoJ9KYHF2OtOlD70LNgOrHk+RMkTc0kSSswOmFYfhy0uZiPceEbw2VRBo8n/Q/RqgKN4uzydZiEbpQqtsWyNbUv5bZXqpT4K6mMpj8PYhDNSv7FdlagUCgMTLxEEcs47qQbw8LW/zKiWUh5mM5Y3ztwqYoOuc/reYJAy1ENvjmWXs8/sdr+J+z1hRCipcgYpLZIWaDzgxEKGNDhZ2DPCNraifbcx2R6VXv+WEdS+QVXMbTagPCmEEUqQ3iBztyE1d+dp7CRxiUM5UXi6R/yOIUinp8DkFhSysjCDcSakcfOWLWb4c71lKhYfp3yGL9Oncu7sZfwedRY3jDO4i6dzN+YQR5Pn1iP6thCwItRDtZsTkxiqzqZzWPFZv8EVS2xKGQx+BdQyKELMaocpcBQmjh3acibtdxiZ2PamZRbK8dDmVQmjsdYwybu4wueZzsrAV83qOlPWFyUsYy/cjDCYpdTVTyK0A1hFqAHFi4l9FR/ba4hdHJUycT0roqwXwghWo60ILVVHX4G7jzIeQBQvrErWgMeaHc99Hg65GGZtOceruMYRRyniDhi6EhK5DE5jcxGIt2ZSjd+iUkFBvaQM/mqi+d2XOZnJJS8hgJuKH2Tf8bdHHLFbKVNrip9jwRdwm+TZ7M5yr+0gQq+Zd7iGpL4BxcRTTvuAPPEIHVLIRhbwJsKOhYwwSgCo6IraljvGtc0KQVMSojDhT0oK3FZbMSYFTW+y/vi0/EqS8g6GNqN6f2SMnaiLOnoMOOT1vM2l/G7kPuylI2XSOVn+jil6MAvDA/QCyuvq1Siwq44XtvPhEI14pgpIYRoTJIgtVVKQeffQdqtcOTfULEHbKnQ7ifgyKr18FQSmnRAdl0oFJYwrRehy1tJrRgPvAbAjSWvk28ksdBxJRbtCfSGeZWVieWfMqX4n+y09uDr6PBdUAqTj7iYoTxFCjdhxI0A534qZwgqL1jzqh5ghdSzQp7LTi9K+ZJSHFTvm8uJ7cSAwu9rHHPY0b5GcmRoL93K95FRcRirvzWpXNnZHH0Gm6PPCEqUNJqD/EA5RcSEeT8nqmi20JG3KOdb7SIKxQUqmvOxY0R4HIsyzkebS4nUimQYE8LuE0KIliQJUltnz4BOM1s6imajzHwqx8UYaO4u+htXlb7Px7ETOWK0I9ks4ILyT+jlyQZgVfQoLNrra6UJQWOQSybHsVLKKuLTp8KxN8IHoD2QPjXkrmR+zPEwC2HujutCr5Jsor3OwCrmGvBUi0tpkwHFP5DkKQpqv4nRTkaUbyTJW8gXjtE1kioXZWETJIB4ZXArDlB1GeDvY7Xdi9u5OMxeA0jAsN5c5/MJIURzkvZt0bZYulG9RaOLdz93Fv+L3xXO4xfF/6CXJzswXKhCRaNqXRIBXEThpRgSx1VJOKveXv5EpvP/QcLokOeIpg/tuZsYyqnePeU2olieNpoiWxyAf8ECi+/5eVVW++7gOlojOaqkgD6u3aR7DgdtN7ASS1KtdawvwzIRi+3P/q+q/i1mAHHY7B+iVMu2QgohRDjSgiTalugrQSWBLghTwAK2cWA7A132LD3c2XiULeIpo3CSTD5RlUsHdH0E4obDgT9D8WrftvizIfNeSL0q4rnSuBsrnTjMC5WddIF9pVYHSzuMI9WVzwBnN9qTRSZedvMhlSPAMyoORTy/iaKvcwcHbR39ZzfoxdnYCD0T7WRZbb/GsEzA63kW7V0DKhrDcgUW689QKq1JrimEEI1BEiTRtqhoSJwPBTf6N1Rd48cCKgYS/4qynQnxczjX/Rl/1W5KsYQc5GzgZTRfEkcXYvzPrQMg9RrfS/tbq+rxAN8UruFczuQLHsCLCx1owTJAmUTbLyHVfj9gIZMyDvMDpWQDZsiB3MHxahK9Rb6QMIghgeFcW+fYGsIwBmJEPduk1xBCiMYmXWyi7YmZDMnvgLXakgBR4yH1S7D5ZqxhxGG3X84DahSGMjCqdc0pTDpwmMtYQiZzQs/kU5Z6JUeVUunLhTxDH64khnbYcJBKX0ZyL2dzP4a/y85KLEOYTwZXYBCFR0X+m8cEnMqOwkIPRnIVs3CQXO/4hBDidHdSCdKcOXNQSvGrX/0qbJmVK1cyZswYUlNTiYmJoV+/fjzxxBNBZZ577jnGjh1LcnIyycnJTJw4kbVr19a41ogRI4iPjyctLY2rrrqKbdu2nUz4oi2LvhzabfG9Ur+AtL2QuhRsNWfwnUV7nuFsziYO5W9xclDChXzMA6ziDF4k1r96d0TahIpPofgvUPIceA5ELB5LewZyG5fxT67iVc7nMbowDlVtMU4b8fTlfxjD+xhRt6Ej3NYGkGi/l5t4ivP5BY6qi1wKIYQIaHAX27p161iwYAEDB4Z/nhWAw+Fg2rRpDBw4EIfDwcqVK5kyZQoOh4Of/9y3cN/y5cuZPHkyo0ePJjo6mrlz5zJp0iS2bt1KZmYmAJ9//jlTp05lxIgReDwefv/73zNp0iS+++47HI66z6wRIkCpE61FtehLIrMZhxuTMvKwcRwb47DRvm7Xcq6DY5PBuwtfmuJfFzv2Vkh5xtf1d5KsxGGJngXOt0Afp+b0eisYvYiPmopqojFHQghxulBaa117sWAlJSUMHTqU+fPnM3v2bAYPHsyTTz5Z5+OvueYaHA4HL730Usj9Xq+X5ORknn76aW6+OfQ04CNHjpCWlsbnn3/OueeeW6frFhUVkZiYSGFhIQkJMntGNBP3D3B4GGgnNZMWA2KuhnZvNtrltPcHKL4GzO/x/Q2kfde1ngNxb6CMjo12LSGEaA4t8fndoC62qVOncumllzJx4sR6H7tx40ZWr17NuHHjwpYpKyvD7XaTkhK++b+wsBAgYhkhTglFfwTtIvSCiSaUvwWu9Y12OWXpB4lbIf4ziHkIYv4ICV+jElZIciSEEHVU7y621157jQ0bNrBu3bp6HdepUyeOHDmCx+Nh1qxZ3HHHHWHLzpgxg8zMzLAJmNaa3/zmN5xzzjlkZYVf9dnpdOJ0OgNfFxUV1StmIRqqiDy+5zPy9HYMx2E6G73pU7aLaNMVorQVSl+BqPArdteXUgps5/leQggh6q1eCdK+ffu45557WLJkCdHR9RvDsGLFCkpKSlizZg0zZsygV69eTJ48uUa5uXPn8uqrr7J8+fKw15g2bRqbNm1i5cqVEa85Z84cHnrooXrFKcTJ2sYXrOB5QKGVCfYO5No7sDFxIBcf+YQ019FqR2gwj7REqEIIIcKo1xikRYsWcfXVV2OxnJhF4/V6UUphGAZOpzNoXzizZ8/mpZdeqjELbd68ecyePZtly5YxfPjwkMdOnz6dRYsW8cUXX9C9e/eI1wnVgtS5c2cZgySazGF28i5/IHh9JR+lTWzaww25b2PX7ip7LJDwO0h8uNniFEKI1qQlxiDVqwVpwoQJbN68OWjbbbfdRr9+/bj//vvrlByBr4usauIC8PjjjzN79mw+/vjjkMmR1prp06ezcOFCli9fXmtyBGC327Hb7XWKSYjGsJnFKBQ6RIKklYELGzscPckq+aHKHhMctzZbjEIIIWpXrwQpPj6+xpgfh8NBampqYPvMmTM5cOAAL774IgDPPPMMXbp0oV+/foBvXaR58+Yxffr0wDnmzp3LAw88wCuvvEK3bt04dMj3uIS4uDji4nzPnpo6dSqvvPIK77zzDvHx8YEyiYmJxMTU/YnuQjSl/WyqsvJ1aPuiM4ITpPiZYO3RxJEJIYSoj0Z/1MjBgwfJyckJfG2aJjNnziQ7Oxur1UrPnj159NFHmTJlSqDM/PnzcblcXHtt8CMPHnzwQWbNmgXAs8/6HlVw3nnnBZV54YUXuPXWWxu7GkI0SG3JkakMci3prIkdTprXpHvMrai4ac0UnRBCiLpq0DpIrZWsgySa2gfM4SDbaiRKGjhERw7oTLxVHgeSTjK3cj49ken3QggRTqtZB0kIEdqZTArZipRLBjl0DUqOAA5RwOMsYi8yi00IIU4lkiAJ0Yi6MpQBXASA8t9ebqwcIDNkeY3GxOQtvgx/UlcJbHgGXjwL/tYNXjsfvn8NTE9jhy+EEMKv0ccgCdGWKRQjmUw6/dnKEvLYzTHaR3yArInmO/ZRSCmJVHuuYHEuvDoOCnb5N2go3gc5n8Gm5+FH74FVnqsmhBCNTRIkIRqZQtGVIXRlCACL+IpsNuCtZQB3EeU1E6T3JkPhHoLWVdL+8+R8Cl/8Ds7/c+MFL4QQApAuNiGaXCKxmLUkRwAJVFuuIm8T7P8CdJiuNG3CN38HZ3EjRCmEEKIqSZCEaGIj6I0R4VYzUGTRpWbr0f4vABX55J4yOPLtyQcphBAiiCRIQjSxOKK5krNC7lMoLBhcw6hmjkoIIUQkMgZJiGZwMUOxY+Md1lLGicfsZJLCzYynC+1rHtR5HKGe6RbEGgtpgxs1ViGEEJIgCdEsFIoJDORczmQbByjHSRpJdKEdKlw3WvsB0GkcHFgVehySMmDwXRAV17TBCyFEGyRdbEI0IxsWsujCCHrTlfbhk6NKV7wKSd3xjUXyl1X+h0J3OR/O/WNThiuEEG2WtCAJcSqLS4dbNsDWl2DLv6HsCCT1gEF3Qp9rwJBbWAghmoL8dhXiVBcVB0N+4XsJIYRoFm0qQap8Lm9RUVELRyKEEEKIuqr83K78HG8ObSpBKi72LajXuXPnFo5ECCGEEPVVXFxMYmJis1xL6eZMx1qYaZrk5uYSHx+PUuEHxxYVFdG5c2f27dtHQkJCM0bYMqS+p6+2VFeQ+p7O2lJdQepbndaa4uJiMjIyMIzmmV/WplqQDMOgU6dOdS6fkJDQJn4wK0l9T19tqa4g9T2dtaW6gtS3quZqOaok0/yFEEIIIaqRBEkIIYQQohpJkEKw2+08+OCD2O32lg6lWUh9T19tqa4g9T2dtaW6gtT3VNCmBmkLIYQQQtSFtCAJIYQQQlQjCZIQQgghRDWSIAkhhBBCVCMJkhBCCCFENa0yQerWrRtKqRqvqVOn1ig7ZcoUlFI8+eSTQdudTifTp0+nXbt2OBwOrrjiCvbv3x9UJj8/n5/+9KckJiaSmJjIT3/6UwoKCoLK5OTkcPnll+NwOGjXrh133303LpcrqMzmzZsZN24cMTExZGZm8vDDD9f5eTInW9fjx48zffp0+vbtS2xsLF26dOHuu++msLCw1uvMmDGjWevaGPUFOO+882ocf8MNNwSVORXe28ao7549e0Ier5TijTfeiHid5n5/a6vrrbfeWmPfqFGjgs7RWu7bxqjv6Xbv1uX9PZ3u3drqezrduwDff/89V1xxBYmJicTHxzNq1ChycnIC+1vTvRugW6G8vDx98ODBwGvp0qUa0J999llQuYULF+pBgwbpjIwM/cQTTwTtu+uuu3RmZqZeunSp3rBhgx4/frweNGiQ9ng8gTIXXXSRzsrK0qtXr9arV6/WWVlZ+rLLLgvs93g8OisrS48fP15v2LBBL126VGdkZOhp06YFyhQWFuoOHTroG264QW/evFm/9dZbOj4+Xs+bN69Z6rp582Z9zTXX6HfffVfv3LlTf/LJJ7p37976Rz/6UdDxXbt21Q8//HDQtYqLi5u1ro1RX621HjdunL7zzjuDzlNQUBBU5lR4bxujvh6PJ+j4gwcP6oceekg7HI6g9+9UeH9rq+stt9yiL7rooqAyx44dCzpHa7lvG6O+p9u9W5f393S6d2ur7+l07+7cuVOnpKTo3/72t3rDhg16165d+v3339eHDx8OnKM13buVWmWCVN0999yje/bsqU3TDGzbv3+/zszM1Fu2bNFdu3YN+lApKCjQNptNv/baa4FtBw4c0IZh6MWLF2uttf7uu+80oNesWRMo8+WXX2pA//DDD1prrT/88ENtGIY+cOBAoMyrr76q7Xa7Liws1FprPX/+fJ2YmKgrKioCZebMmaMzMjKC4m2quoby3//+V0dFRWm32x3YVttxLVFXrRtW33Hjxul77rkn7DlP1fe2ofWtbvDgwfr2228P2nYqvr/V63rLLbfoK6+8Mmz51nzfNqS+obTme7cu9T2d7t2GvL+t9d69/vrr9U033RS2fGu9d1tlF1tVLpeL//znP9x+++2BB9CapslPf/pTfvvb33LmmWfWOGb9+vW43W4mTZoU2JaRkUFWVharV68G4MsvvyQxMZGRI0cGyowaNYrExMSgMllZWWRkZATKXHjhhTidTtavXx8oM27cuKDFry688EJyc3PZs2dPk9c1lMLCQhISErBagx/F99hjj5GamsrgwYP54x//GNRs2dx1Pdn6vvzyy7Rr144zzzyT++67j+Li4qC6nGrv7cnWt9L69ev55ptv+NnPflZj36n0/oaqK8Dy5ctJS0ujT58+3HnnneTl5QXVrTXetw2tbyit+d6ta31Pl3u3rvWt1FrvXdM0+eCDD+jTpw8XXnghaWlpjBw5kkWLFgXVrTXeu63+YbWLFi2ioKCAW2+9NbDtsccew2q1cvfdd4c85tChQ0RFRZGcnBy0vUOHDhw6dChQJi0trcaxaWlpQWU6dOgQtD85OZmoqKigMt26datxncp93bt3b9K6Vnfs2DH+8Ic/MGXKlKDt99xzD0OHDiU5OZm1a9cyc+ZMsrOz+cc//tEidYWG1/fGG2+ke/fudOzYkS1btjBz5ky+/fZbli5dGojlVHtvT6a+VT3//PP079+f0aNHB20/1d7fUHW9+OKLue666+jatSvZ2dk88MADnH/++axfvx673d5q79uG1re61n7v1qW+p9O9W9/3t7Xeu3l5eZSUlPDoo48ye/ZsHnvsMRYvXsw111zDZ599xrhx41rtvdvqE6Tnn3+eiy++OJBRrl+/nr/85S9s2LAhKJOvC6110DGhjm+MMto/WKy+8Z1sXYuKirj00ks544wzePDBB4P2/frXvw78e+DAgSQnJ3PttdcG/nIJF29T1RUaXt8777wz8O+srCx69+7N8OHD2bBhA0OHDm1wXepSpiXqW6m8vJxXXnmFBx54oMa+U+39rV5XgOuvvz7w76ysLIYPH07Xrl354IMPuOaaa8Ke61S/b+Hk69va712oW31Pl3sX6vf+tuZ71zRNAK688spArIMHD2b16tX87W9/Y9y4cWHPdarfu626i23v3r0sW7aMO+64I7BtxYoV5OXl0aVLF6xWK1arlb1793LvvfcGssqOHTvicrnIz88POl9eXl4g0+zYsSOHDx+ucc0jR44ElanMWivl5+fjdrsjlqlsZq2eCTdFXSsVFxdz0UUXERcXx8KFC7HZbBGvVznbYufOnc1e18aob1VDhw7FZrOxY8eOQJyn0nvbWPV98803KSsr4+abb671ei35/oaqayjp6el07do16H1rbfctNLy+lU6HezeUcPWtqrXeu6FEqm9rvnfbtWuH1WrljDPOCCrbv3//wCy21nrvtupB2g8++KDu2LFj0IDFo0eP6s2bNwe9MjIy9P333x8Y6FU5YOz1118PHJebmxtywNhXX30VKLNmzZqQA8Zyc3MDZV577bUaA8aSkpK00+kMlHn00UfrPWCsoXXV2jeqf9SoUXrcuHG6tLS0Ttd77733NKD37t3b7HU92fpWt3nzZg3ozz//XGt96r23jVXfcePG1ZjhFE5Lvr+h6hrK0aNHtd1u1//+97+11q3zvj2Z+mp9+ty7oYSqb3Wt9d6tb31b+7179tln1xikfdVVV+nJkydrrVvvvdtqEySv16u7dOmi77///lrLhpoFcNddd+lOnTrpZcuW6Q0bNujzzz8/5JTDgQMH6i+//FJ/+eWXesCAASGnHE6YMEFv2LBBL1u2THfq1CloymFBQYHu0KGDnjx5st68ebN+++23dUJCQr2mHJ5MXYuKivTIkSP1gAED9M6dO4OmalbWdfXq1frPf/6z3rhxo969e7d+/fXXdUZGhr7iiiuava4nW9+dO3fqhx56SK9bt05nZ2frDz74QPfr108PGTLklHxvT7a+lXbs2KGVUvqjjz6qse9Uen/D1bW4uFjfe++9evXq1To7O1t/9tln+uyzz9aZmZm6qKgoUK413bcnW9/T6d6tS31Pp3u3rj/PWrf+e1drrd9++21ts9n0ggUL9I4dO/RTTz2lLRaLXrFiRaBMa7t3tW7FCdLHH3+sAb1t27Zay4b6UCkvL9fTpk3TKSkpOiYmRl922WU6JycnqMyxY8f0jTfeqOPj43V8fLy+8cYbdX5+flCZvXv36ksvvVTHxMTolJQUPW3atKDphVprvWnTJj127Fhtt9t1x44d9axZs+qVyZ5MXT/77DMNhHxlZ2drrbVev369HjlypE5MTNTR0dG6b9+++sEHH6zxF2tz1PVk65uTk6PPPfdcnZKSoqOionTPnj313XffXWO9lVPlvT3Z+laaOXOm7tSpk/Z6vTX2nUrvb7i6lpWV6UmTJun27dtrm82mu3Tpom+55ZYa92Rrum9Ptr6n071bl/qeTvduXX+etW79926l559/Xvfq1UtHR0frQYMG6UWLFgXtb233rtZaK60bsrykEEIIIcTpq1UP0hZCCCGEaAqSIAkhhBBCVCMJkhBCCCFENZIgCSGEEEJUIwmSEEIIIUQ1kiAJIYQQQlQjCZIQQgghRDWSIAkhhBBCVCMJkhBCCCFENZIgCSGEEEJUIwmSEEIIIUQ1kiAJIYQQQlTz/yy0CImnvPL1AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from snowexsql.api import PointMeasurements\n", "\n", diff --git a/book/tutorials/snowex_database/2_database_structure.ipynb b/book/tutorials/snowex_database/2_database_structure.ipynb index 1b47184..444a308 100644 --- a/book/tutorials/snowex_database/2_database_structure.ipynb +++ b/book/tutorials/snowex_database/2_database_structure.ipynb @@ -36,7 +36,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "979fad96", "metadata": {}, "outputs": [], @@ -55,43 +55,10 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "8fd4e693", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "These are the available columns in the table:\n", - " \n", - "* version_number\n", - "* equipment\n", - "* value\n", - "* latitude\n", - "* longitude\n", - "* northing\n", - "* easting\n", - "* elevation\n", - "* utm_zone\n", - "* geom\n", - "* time\n", - "* site_id\n", - "* site_name\n", - "* date\n", - "* time_created\n", - "* time_updated\n", - "* id\n", - "* doi\n", - "* date_accessed\n", - "* instrument\n", - "* type\n", - "* units\n", - "* observers\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "# Import the class reflecting the points table in the db\n", "from snowexsql.api import PointMeasurements as measurements\n", diff --git a/book/tutorials/snowex_database/3_forming_queries.ipynb b/book/tutorials/snowex_database/3_forming_queries.ipynb index b378de5..169a185 100644 --- a/book/tutorials/snowex_database/3_forming_queries.ipynb +++ b/book/tutorials/snowex_database/3_forming_queries.ipynb @@ -21,31 +21,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " value\n", - "site_id \n", - "Banner Open 235.500000\n", - "Banner Snotel 216.666667\n", - "Bogus Upper 260.625000\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAGsCAYAAACLlD3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtL0lEQVR4nO3dfVjVdZ7/8dcB5EbkRnESUBJrmtQQMksNtRulqNDKZksb05VLTVscpHFnjVkrbSpySse0ZJPRimSjwczpxkz9bTdD3oCgG2qppQYi6mQKssYR4fP7o/VsJxU5+Eluej6u61xXfHmfw+dd0zw7nAM6jDFGAADggnk19wEAAGgriCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlrS5qH7yyScaMWKEIiMj5XA4tHLlSo8fwxij5557Tr/61a/k5+enqKgoPf300/YPCwBoU3ya+wC2/c///I/i4uKUnJysX//61016jGnTpmnNmjV67rnn1KdPH1VWVuqbb76xfFIAQFvjaMu/UN/hcOitt97S3Xff7bp28uRJzZw5Uzk5OTp27JhiYmI0Z84c3XTTTZKkzz//XLGxsdq2bZuuvPLK5jk4AKBVanPf/j2f5ORkffrpp8rNzdVnn32me++9V7fddpt2794tSXrnnXd02WWX6d1331WPHj0UHR2tiRMn6ttvv23mkwMAWrqfVVS/+uorvf7668rLy9OQIUN0+eWX61//9V81ePBgvfzyy5KkPXv26Ouvv1ZeXp6ys7P1yiuvqKioSP/0T//UzKcHALR0be411YYUFxfLGKNf/epXbtedTqfCwsIkSfX19XI6ncrOznbNLVmyRP369dPOnTv5ljAA4Jx+VlGtr6+Xt7e3ioqK5O3t7fa5Dh06SJIiIiLk4+PjFt5evXpJkkpLS4kqAOCcflZR7du3r+rq6nT48GENGTLkrDODBg3SqVOn9NVXX+nyyy+XJO3atUuS1L1794t2VgBA69Pm3v1bXV2tL7/8UtL3EZ03b55uvvlmderUSZdeeqkeeOABffrpp5o7d6769u2rb775Rv/1X/+lPn366I477lB9fb2uu+46dejQQfPnz1d9fb1SUlIUHBysNWvWNPN2AICWrM1F9aOPPtLNN998xvV//ud/1iuvvKLa2lo9+eSTys7OVnl5ucLCwnT99ddr9uzZ6tOnjyTpwIED+u1vf6s1a9YoMDBQt99+u+bOnatOnTpd7HUAAK1Im4sqAADN5YJ+pCYjI0MOh0NpaWkNzr344ovq1auXAgICdOWVVyo7O9vt89u3b9evf/1rRUdHy+FwaP78+RdyLAAAmkWT36hUWFioxYsXKzY2tsG5zMxMpaenKysrS9ddd50KCgo0adIkdezYUSNGjJAknThxQpdddpnuvfdePfzww009EgAAzapJUa2urtaYMWOUlZWlJ598ssHZ1157TZMnT9aoUaMkSZdddpk2btyoOXPmuKJ63XXX6brrrpMkPfLII005kurr63XgwAEFBQXJ4XA06TEAADDG6Pjx44qMjJSXl2ff0G1SVFNSUpSUlKSEhITzRtXpdMrf39/tWkBAgAoKClRbW6t27do15QhyOp1yOp2uj8vLy9W7d+8mPRYAAD9WVlambt26eXQfj6Oam5ur4uJiFRYWNmo+MTFRf/nLX3T33XfrmmuuUVFRkZYuXara2lp98803ioiI8PQIkr5/PXf27NlnXC8rK1NwcHCTHhMAgKqqKkVFRSkoKMjj+3oU1bKyMtcfi/bjZ5/n8uijj+rgwYMaOHCgjDHq0qWLxo8frz/96U9n/FYjT6Snp+t3v/ud6+PTfxOCg4OJKgDggjXlpUSPvllcVFSkw4cPq1+/fvLx8ZGPj48+/vhjLViwQD4+PqqrqzvjPgEBAVq6dKlOnDihffv2qbS0VNHR0QoKClLnzp09PvBpfn5+roASUgBAS+DRM9Vhw4appKTE7VpycrJ69uypGTNmNPjMs127dq7vTefm5mr48OEevwAMAEBL5lFUg4KCFBMT43YtMDBQYWFhruvp6ekqLy93/Szqrl27VFBQoAEDBujo0aOaN2+etm3bpldffdX1GCdPntSOHTtcf11eXq6tW7eqQ4cO+uUvf3lBCwIAcLFYf6pYUVGh0tJS18d1dXWaO3eu4uLidMstt6impkbr169XdHS0a+bAgQPq27ev+vbtq4qKCj333HPq27evJk6caPt4AAD8ZNrMrymsqqpSSEiIKisreX0VANBkF9ITXtQEAMASogoAgCVEFQAAS5r8C/UBAGgJqmtO6eE3tqj06He6tGOA/jyqrzr4N0/eiCoAoNW684W/67P9Va6Pdx48rphZH6h3RLBWTRty0c/Dt38BAK3Sj4P6QzsqqvTLP7x3kU9EVAEArVB1zalzBvW0U/VS31nvX6QTfY+oAgBanYff2NKouaM19fq2+uRPfJr/Q1QBAK1O6dHvGj07evH6n/Ak7ogqAKDVubRjQKNnDx/nmSoAAOf051F9Gz17SZDvT3gSd0QVANDqdPD3Ue+Ixv1e3twH43/i0/wfogoAaJVWTRsin/NU7BcdfNWpA89UAQA4ry+fTlJH/7On7BcdfFU485aLeh5+oxIAoFXbMut2fVt9UqMXr9fh4yd1SZCvch+Mv6jPUE8jqgCAVq9TB1+t+d1NzX0Mvv0LAIAtRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsuaCoZmRkyOFwKC0trcG5F198Ub169VJAQICuvPJKZWdnnzHz5ptvqnfv3vLz81Pv3r311ltvXcjRAAC46Joc1cLCQi1evFixsbENzmVmZio9PV2zZs3S9u3bNXv2bKWkpOidd95xzWzYsEGjRo3S2LFj9d///d8aO3as7rvvPm3atKmpxwMA4KJzGGOMp3eqrq7WNddco0WLFunJJ5/U1Vdfrfnz5591Nj4+XoMGDdKzzz7rupaWlqbNmzcrPz9fkjRq1ChVVVXp/fffd83cdttt6tixo15//fVGnamqqkohISGqrKxUcHCwpysBACDpwnrSpGeqKSkpSkpKUkJCwnlnnU6n/P393a4FBASooKBAtbW1kr5/pnrrrbe6zSQmJmr9+vUNPm5VVZXbDQCA5uRxVHNzc1VcXKyMjIxGzScmJuovf/mLioqKZIzR5s2btXTpUtXW1uqbb76RJB08eFBdunRxu1+XLl108ODBcz5uRkaGQkJCXLeoqChPVwEAwCqPolpWVqZp06Zp2bJlZzz7PJdHH31Ut99+uwYOHKh27drprrvu0vjx4yVJ3t7erjmHw+F2P2PMGdd+KD09XZWVla5bWVmZJ6sAAGCdR1EtKirS4cOH1a9fP/n4+MjHx0cff/yxFixYIB8fH9XV1Z1xn4CAAC1dulQnTpzQvn37VFpaqujoaAUFBalz586SpPDw8DOelR4+fPiMZ68/5Ofnp+DgYLcbAADNyaOoDhs2TCUlJdq6davrdu2112rMmDHaunWr2zPPH2vXrp26desmb29v5ebmavjw4fLy+v7LX3/99Vq7dq3b/Jo1axQfH9+ElQAAaB4+ngwHBQUpJibG7VpgYKDCwsJc19PT01VeXu76WdRdu3apoKBAAwYM0NGjRzVv3jxt27ZNr776qusxpk2bphtuuEFz5szRXXfdpb/97W9at26d693BAAC0BtZ/o1JFRYVKS0tdH9fV1Wnu3LmKi4vTLbfcopqaGq1fv17R0dGumfj4eOXm5urll19WbGysXnnlFb3xxhsaMGCA7eMBAPCTadLPqbZE/JwqAMCGi/5zqgAA4ExEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAllxQVDMyMuRwOJSWltbgXE5OjuLi4tS+fXtFREQoOTlZR44ccX2+trZWTzzxhC6//HL5+/srLi5Oq1evvpCjAQBw0TU5qoWFhVq8eLFiY2MbnMvPz9e4ceM0YcIEbd++XXl5eSosLNTEiRNdMzNnztRLL72khQsXaseOHZoyZYpGjhypLVu2NPV4AABcdE2KanV1tcaMGaOsrCx17NixwdmNGzcqOjpaqamp6tGjhwYPHqzJkydr8+bNrpnXXntNf/jDH3THHXfosssu00MPPaTExETNnTu3KccDAKBZNCmqKSkpSkpKUkJCwnln4+PjtX//fq1atUrGGB06dEjLly9XUlKSa8bpdMrf39/tfgEBAcrPzz/n4zqdTlVVVbndAABoTh5HNTc3V8XFxcrIyGjUfHx8vHJycjRq1Cj5+voqPDxcoaGhWrhwoWsmMTFR8+bN0+7du1VfX6+1a9fqb3/7myoqKs75uBkZGQoJCXHdoqKiPF0FAACrPIpqWVmZpk2bpmXLlp3xzPJcduzYodTUVD322GMqKirS6tWrtXfvXk2ZMsU18/zzz+uKK65Qz5495evrq6lTpyo5OVne3t7nfNz09HRVVla6bmVlZZ6sAgCAdQ5jjGns8MqVKzVy5Ei32NXV1cnhcMjLy0tOp/OMEI4dO1Y1NTXKy8tzXcvPz9eQIUN04MABRUREuK7X1NToyJEjioyM1COPPKJ3331X27dvb9TZqqqqFBISosrKSgUHBzd2JQAA3FxIT3w8GR42bJhKSkrcriUnJ6tnz56aMWPGWZ9ZnjhxQj4+7l/m9NyPe+7v76+uXbuqtrZWb775pu677z5PjgcAQLPyKKpBQUGKiYlxuxYYGKiwsDDX9fT0dJWXlys7O1uSNGLECE2aNEmZmZlKTExURUWF0tLS1L9/f0VGRkqSNm3apPLycl199dUqLy/XrFmzVF9fr3/7t3+zsSMAABeFR1FtjIqKCpWWlro+Hj9+vI4fP64XXnhB06dPV2hoqIYOHao5c+a4ZmpqajRz5kzt2bNHHTp00B133KHXXntNoaGhto8HAMBPxqPXVFsyXlMFANhwIT3hd/8CAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAASy4oqhkZGXI4HEpLS2twLicnR3FxcWrfvr0iIiKUnJysI0eOuM3Mnz9fV155pQICAhQVFaWHH35YNTU1F3I8AAAuqiZHtbCwUIsXL1ZsbGyDc/n5+Ro3bpwmTJig7du3Ky8vT4WFhZo4caJrJicnR4888ogef/xxff7551qyZIneeOMNpaenN/V4AABcdE2KanV1tcaMGaOsrCx17NixwdmNGzcqOjpaqamp6tGjhwYPHqzJkydr8+bNrpkNGzZo0KBB+s1vfqPo6Gjdeuutuv/++91mAABo6ZoU1ZSUFCUlJSkhIeG8s/Hx8dq/f79WrVolY4wOHTqk5cuXKykpyTUzePBgFRUVqaCgQJK0Z88erVq1ym3mx5xOp6qqqtxuAAA0Jx9P75Cbm6vi4mIVFhY2aj4+Pl45OTkaNWqUampqdOrUKd15551auHCha2b06NH6xz/+ocGDB8sYo1OnTumhhx7SI488cs7HzcjI0OzZsz09PgAAPxmPnqmWlZVp2rRpWrZsmfz9/Rt1nx07dig1NVWPPfaYioqKtHr1au3du1dTpkxxzXz00Ud66qmntGjRIhUXF2vFihV699139cc//vGcj5uenq7KykrXrayszJNVAACwzmGMMY0dXrlypUaOHClvb2/Xtbq6OjkcDnl5ecnpdLp9TpLGjh2rmpoa5eXlua7l5+dryJAhOnDggCIiIjRkyBANHDhQzz77rGtm2bJlevDBB1VdXS0vr/O3v6qqSiEhIaqsrFRwcHBjVwIAwM2F9MSjb/8OGzZMJSUlbteSk5PVs2dPzZgx44ygStKJEyfk4+P+ZU7Pne75iRMnzgint7e3jDHyoPkAADQrj6IaFBSkmJgYt2uBgYEKCwtzXU9PT1d5ebmys7MlSSNGjNCkSZOUmZmpxMREVVRUKC0tTf3791dkZKRrZt68eerbt68GDBigL7/8Uo8++qjuvPPOs4YaAICWyOM3Kp1PRUWFSktLXR+PHz9ex48f1wsvvKDp06crNDRUQ4cO1Zw5c1wzM2fOlMPh0MyZM1VeXq5f/OIXGjFihJ566inbxwMA4Cfj0WuqLRmvqQIAbLiQnvC7fwEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAkguKakZGhhwOh9LS0hqcy8nJUVxcnNq3b6+IiAglJyfryJEjrs/fdNNNcjgcZ9ySkpIu5HgAAFxUTY5qYWGhFi9erNjY2Abn8vPzNW7cOE2YMEHbt29XXl6eCgsLNXHiRNfMihUrVFFR4bpt27ZN3t7euvfee5t6PAAALromRbW6ulpjxoxRVlaWOnbs2ODsxo0bFR0drdTUVPXo0UODBw/W5MmTtXnzZtdMp06dFB4e7rqtXbtW7du3J6oAgFalSVFNSUlRUlKSEhISzjsbHx+v/fv3a9WqVTLG6NChQ1q+fHmD39pdsmSJRo8ercDAwHPOOJ1OVVVVud0AAGhOHkc1NzdXxcXFysjIaNR8fHy8cnJyNGrUKPn6+io8PFyhoaFauHDhWecLCgq0bds2t28Pn01GRoZCQkJct6ioKE9XAQDAKo+iWlZWpmnTpmnZsmXy9/dv1H127Nih1NRUPfbYYyoqKtLq1au1d+9eTZky5azzS5YsUUxMjPr379/g46anp6uystJ1Kysr82QVAACscxhjTGOHV65cqZEjR8rb29t1ra6uTg6HQ15eXnI6nW6fk6SxY8eqpqZGeXl5rmv5+fkaMmSIDhw4oIiICNf1EydOKCIiQk888YSmTZvm0SJVVVUKCQlRZWWlgoODPbovAACnXUhPfDwZHjZsmEpKStyuJScnq2fPnpoxY8YZQZW+D6WPj/uXOT33457/9a9/ldPp1AMPPODJsQAAaBE8impQUJBiYmLcrgUGBiosLMx1PT09XeXl5crOzpYkjRgxQpMmTVJmZqYSExNVUVGhtLQ09e/fX5GRkW6PtWTJEt19990KCwu7kJ0AAGgWHkW1MSoqKlRaWur6ePz48Tp+/LheeOEFTZ8+XaGhoRo6dKjmzJnjdr9du3YpPz9fa9assX0kAAAuCo9eU23JeE0VAGDDhfSE3/0LAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALLmgqGZkZMjhcCgtLa3BuZycHMXFxal9+/aKiIhQcnKyjhw54jZz7NgxpaSkKCIiQv7+/urVq5dWrVp1IccDAOCianJUCwsLtXjxYsXGxjY4l5+fr3HjxmnChAnavn278vLyVFhYqIkTJ7pmTp48qVtuuUX79u3T8uXLtXPnTmVlZalr165NPR4AABedT1PuVF1drTFjxigrK0tPPvlkg7MbN25UdHS0UlNTJUk9evTQ5MmT9ac//ck1s3TpUn377bdav3692rVrJ0nq3r17U44GAECzadIz1ZSUFCUlJSkhIeG8s/Hx8dq/f79WrVolY4wOHTqk5cuXKykpyTXz9ttv6/rrr1dKSoq6dOmimJgYPf3006qrqzvn4zqdTlVVVbndAABoTh5HNTc3V8XFxcrIyGjUfHx8vHJycjRq1Cj5+voqPDxcoaGhWrhwoWtmz549Wr58uerq6rRq1SrNnDlTc+fO1VNPPXXOx83IyFBISIjrFhUV5ekqAABY5VFUy8rKNG3aNC1btkz+/v6Nus+OHTuUmpqqxx57TEVFRVq9erX27t2rKVOmuGbq6+t1ySWXaPHixerXr59Gjx6tf//3f1dmZuY5Hzc9PV2VlZWuW1lZmSerAABgncMYYxo7vHLlSo0cOVLe3t6ua3V1dXI4HPLy8pLT6XT7nCSNHTtWNTU1ysvLc13Lz8/XkCFDdODAAUVEROjGG29Uu3bttG7dOtfM+++/rzvuuENOp1O+vr7nPVtVVZVCQkJUWVmp4ODgxq4EAICbC+mJR29UGjZsmEpKStyuJScnq2fPnpoxY8YZQZWkEydOyMfH/cucnjvd80GDBuk///M/VV9fLy+v758879q1SxEREY0KKgAALYFH3/4NCgpSTEyM2y0wMFBhYWGKiYmR9P23ZceNG+e6z4gRI7RixQplZmZqz549+vTTT5Wamqr+/fsrMjJSkvTQQw/pyJEjmjZtmnbt2qX33ntPTz/9tFJSUiyuCgDAT6tJP1LTkIqKCpWWlro+Hj9+vI4fP64XXnhB06dPV2hoqIYOHao5c+a4ZqKiorRmzRo9/PDDio2NVdeuXTVt2jTNmDHD9vEAAPjJePSaakvGa6oAABsupCf87l8AACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwhKgCAGAJUQUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsOSCopqRkSGHw6G0tLQG53JychQXF6f27dsrIiJCycnJOnLkiOvzr7zyihwOxxm3mpqaCzkeAAAXVZOjWlhYqMWLFys2NrbBufz8fI0bN04TJkzQ9u3blZeXp8LCQk2cONFtLjg4WBUVFW43f3//ph4PAICLrklRra6u1pgxY5SVlaWOHTs2OLtx40ZFR0crNTVVPXr00ODBgzV58mRt3rzZbc7hcCg8PNztBgBAa9KkqKakpCgpKUkJCQnnnY2Pj9f+/fu1atUqGWN06NAhLV++XElJSW5z1dXV6t69u7p166bhw4dry5YtDT6u0+lUVVWV2w0AgObkcVRzc3NVXFysjIyMRs3Hx8crJydHo0aNkq+vr8LDwxUaGqqFCxe6Znr27KlXXnlFb7/9tl5//XX5+/tr0KBB2r179zkfNyMjQyEhIa5bVFSUp6sAAGCVwxhjGjtcVlama6+9VmvWrFFcXJwk6aabbtLVV1+t+fPnn/U+O3bsUEJCgh5++GElJiaqoqJCv//973XddddpyZIlZ71PfX29rrnmGt1www1asGDBWWecTqecTqfr46qqKkVFRamyslLBwcGNXQkAADdVVVUKCQlpUk88iurKlSs1cuRIeXt7u67V1dXJ4XDIy8tLTqfT7XOSNHbsWNXU1CgvL891LT8/X0OGDNGBAwcUERFx1q81adIk7d+/X++//36jznYhfxMAADjtQnri48nwsGHDVFJS4nYtOTlZPXv21IwZM84IqiSdOHFCPj7uX+b03Ll6bozR1q1b1adPH0+OBwBAs/IoqkFBQYqJiXG7FhgYqLCwMNf19PR0lZeXKzs7W5I0YsQITZo0SZmZma5v/6alpal///6KjIyUJM2ePVsDBw7UFVdcoaqqKi1YsEBbt27Viy++aGNHAAAuCo+i2hgVFRUqLS11fTx+/HgdP35cL7zwgqZPn67Q0FANHTpUc+bMcc0cO3ZMDz74oA4ePKiQkBD17dtXn3zyifr372/7eAAA/GQ8ek21JeM1VQCADRfSE373LwAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMASogoAgCVEFQAAS4gqAACWEFUAACwhqgAAWEJUAQCwxPqfUtOaHTxWo+ELP1FVzSkF+/vo3d/eoPBQ/+Y+FgCglSCq/6vXo+/ru9p618ff/E+tBj7z/xTQzkuf//H2ZjwZAKC14Nu/OjOoP/Rdbb16Pfr+RT4RAKA1+tlH9eCxmnMG9bTvaut18FjNRToRAKC1+tlHdfjCT6zOAQB+vn72Ua2qOWV1DgDw8/Wzj2qwf+Peq9XYOQDAz9fPPqrv/vYGq3MAgJ+vn31Uw0P9FdCu4b8NAe28+HlVAMB5/eyjKkmf//H2c4aVn1MFADQWLxT+r8//eDu/UQkAcEGI6g+Eh/pr86O3NvcxAACtFN/+BQDAEqIKAIAlRBUAAEuIKgAAlhBVAAAsIaoAAFhCVAEAsISoAgBgCVEFAMCSNvMblYwxkqSqqqpmPgkAoDU73ZHTXfFEm4nq8ePHJUlRUVHNfBIAQFtw/PhxhYSEeHQfh2lKilug+vp67dy5U71791ZZWZmCg4Ob+0jWVFVVKSoqir1akba6W1vdS2q7u7XVvaSfbjdjjI4fP67IyEh5eXn2Kmmbeabq5eWlrl27SpKCg4Pb3P94JPZqjdrqbm11L6nt7tZW95J+mt08fYZ6Gm9UAgDAEqIKAIAlbSqqfn5+evzxx+Xn59fcR7GKvVqftrpbW91Laru7tdW9pJa5W5t5oxIAAM2tTT1TBQCgORFVAAAsIaoAAFhCVAEAsOSiRXXWrFlyOBxut/DwcNfnf/y507dnn33WNeN0OvXb3/5WnTt3VmBgoO68807t37/f7escPXpUY8eOVUhIiEJCQjR27FgdO3bMbaa0tFQjRoxQYGCgOnfurNTUVJ08edJtpqSkRDfeeKMCAgLUtWtXPfHEE2f9PZDn26u6ulpTp05Vt27dFBAQoF69eikzM9PtMVriXo3Z7dChQxo/frwiIyPVvn173Xbbbdq9e3er2K28vFwPPPCAwsLC1L59e1199dUqKipyfd4Yo1mzZikyMlIBAQG66aabtH379jax24oVK5SYmKjOnTvL4XBo69atZzxGS9ytob1qa2s1Y8YM9enTR4GBgYqMjNS4ceN04MCBVr2X9P2/hz179lRgYKA6duyohIQEbdq0qcXv1Zjdfmjy5MlyOByaP39+q9jtnMxF8vjjj5urrrrKVFRUuG6HDx92ff6H1ysqKszSpUuNw+EwX331lWtmypQppmvXrmbt2rWmuLjY3HzzzSYuLs6cOnXKNXPbbbeZmJgYs379erN+/XoTExNjhg8f7vr8qVOnTExMjLn55ptNcXGxWbt2rYmMjDRTp051zVRWVpouXbqY0aNHm5KSEvPmm2+aoKAg89xzz3m818SJE83ll19uPvzwQ7N3717z0ksvGW9vb7Ny5coWvdf5dquvrzcDBw40Q4YMMQUFBeaLL74wDz74oLn00ktNdXV1i97t22+/Nd27dzfjx483mzZtMnv37jXr1q0zX375pWvmmWeeMUFBQebNN980JSUlZtSoUSYiIsJUVVW1+t2ys7PN7NmzTVZWlpFktmzZcsbjtLTdzrfXsWPHTEJCgnnjjTfMF198YTZs2GAGDBhg+vXr16r3MsaYnJwcs3btWvPVV1+Zbdu2mQkTJpjg4GC3/59paXs1drfT3nrrLRMXF2ciIyPNn//85xb9z+x8LmpU4+LiGj1/1113maFDh7o+PnbsmGnXrp3Jzc11XSsvLzdeXl5m9erVxhhjduzYYSSZjRs3umY2bNhgJJkvvvjCGGPMqlWrjJeXlykvL3fNvP7668bPz89UVlYaY4xZtGiRCQkJMTU1Na6ZjIwMExkZaerr6z3a66qrrjJPPPGE27VrrrnGzJw5s0Xvdb7ddu7caSSZbdu2ua6dOnXKdOrUyWRlZbXo3WbMmGEGDx581r2M+f4/GMLDw80zzzzjulZTU2NCQkLMf/zHf7Tq3X5o7969Z41qS9zNk71OKygoMJLM119/3ab2qqysNJLMunXrWuxenuy2f/9+07VrV7Nt2zbTvXt3t6i21N0aclFfU929e7ciIyPVo0cPjR49Wnv27Dnr3KFDh/Tee+9pwoQJrmtFRUWqra3Vrbfe6roWGRmpmJgYrV+/XpK0YcMGhYSEaMCAAa6ZgQMHKiQkxG0mJiZGkZGRrpnExEQ5nU7XtyU2bNigG2+80e0HihMTE3XgwAHt27fPo70GDx6st99+W+Xl5TLG6MMPP9SuXbuUmJjY4vdqaDen0ylJ8vf3d816e3vL19dX+fn5LXq3t99+W9dee63uvfdeXXLJJerbt6+ysrJcn9+7d68OHjzodm4/Pz/deOONrjO11t0aoyXu1pS9Kisr5XA4FBoa2mb2OnnypBYvXqyQkBDFxcW12L0au1t9fb3Gjh2r3//+97rqqqvO2Lel7taQixbVAQMGKDs7Wx988IGysrJ08OBBxcfH68iRI2fMvvrqqwoKCtI999zjunbw4EH5+vqqY8eObrNdunTRwYMHXTOXXHLJGY93ySWXuM106dLF7fMdO3aUr69vgzOnPz4909i9FixYoN69e6tbt27y9fXVbbfdpkWLFmnw4MEteq/z7dazZ091795d6enpOnr0qE6ePKlnnnlGBw8eVEVFRYvebc+ePcrMzNQVV1yhDz74QFOmTFFqaqqys7Pd5s/2eD/8eq1xt8Zoibt5uldNTY0eeeQR/eY3v3H9ovXWvNe7776rDh06yN/fX3/+85+1du1ade7cucXu1djd5syZIx8fH6Wmpp5xtpa8W0Mu2p9Sc/vtt7v+uk+fPrr++ut1+eWX69VXX9Xvfvc7t9mlS5dqzJgxbs+CzsUYI4fD4fr4h39tc8b874vVP75+vr0WLFigjRs36u2331b37t31ySef6F/+5V8UERGhhISEFrtXY3Z78803NWHCBHXq1Ene3t5KSEhwu09L3a2+vl7XXnutnn76aUlS3759tX37dmVmZmrcuHENPt7ZztEad2uK5tzNk71qa2s1evRo1dfXa9GiRW1ir5tvvllbt27VN998o6ysLN13333atGnTWWPSEvZqzG5FRUV6/vnnVVxcfN5/r1rabg1pth+pCQwMVJ8+fc54t+jf//537dy5UxMnTnS7Hh4erpMnT+ro0aNu1w8fPuz6r4nw8HAdOnTojK/1j3/8w23mx//VcfToUdXW1jY4c/jwYUlnPntpaK/vvvtOf/jDHzRv3jyNGDFCsbGxmjp1qkaNGqXnnnuuVe31490kqV+/ftq6dauOHTumiooKrV69WkeOHFGPHj1a9G4RERHq3bu327VevXqptLTU9VjSmf91+uNzt8bdGqMl7tbYvWpra3Xfffdp7969Wrt2rdsfB9aa9woMDNQvf/lLDRw4UEuWLJGPj4+WLFnSYvdqzG5///vfdfjwYV166aXy8fGRj4+Pvv76a02fPl3R0dEtereGNFtUnU6nPv/8c0VERLhdX7Jkifr16+d6veC0fv36qV27dlq7dq3rWkVFhbZt26b4+HhJ0vXXX6/KykoVFBS4ZjZt2qTKykq3mW3btrm+RSlJa9askZ+fn/r16+ea+eSTT9zebr1mzRpFRka6/mE3Zq/a2lrV1tae8Yfcent7q76+vlXt9ePdfigkJES/+MUvtHv3bm3evFl33XVXi95t0KBB2rlzp9u1Xbt2qXv37pKkHj16KDw83O3cJ0+e1Mcff+w6U2vdrTFa4m6N2et0UHfv3q1169YpLCysTex1NsYY1/saWuJejdlt7Nix+uyzz7R161bXLTIyUr///e/1wQcftOjdGtTotzRdoOnTp5uPPvrI7Nmzx2zcuNEMHz7cBAUFmX379rlmKisrTfv27U1mZuZZH2PKlCmmW7duZt26daa4uNgMHTr0rG+tjo2NNRs2bDAbNmwwffr0Oetbq4cNG2aKi4vNunXrTLdu3dzeWn3s2DHTpUsXc//995uSkhKzYsUKExwcfNa3Vp9vrxtvvNFcddVV5sMPPzR79uwxL7/8svH39zeLFi1q0Xs1Zre//vWv5sMPPzRfffWVWblypenevbu55557Wvw/s4KCAuPj42Oeeuops3v3bpOTk2Pat29vli1b5pp55plnTEhIiFmxYoUpKSkx999//1l/pKY17nbkyBGzZcsW89577xlJJjc312zZssVUVFS02N3Ot1dtba258847Tbdu3czWrVvdfgzM6XS22r2qq6tNenq62bBhg9m3b58pKioyEyZMMH5+fm7vvG9pezVmt7P58bt/W+puDbloUT39c37t2rUzkZGR5p577jHbt293m3nppZdMQECAOXbs2Fkf47vvvjNTp041nTp1MgEBAWb48OGmtLTUbebIkSNmzJgxJigoyAQFBZkxY8aYo0ePus18/fXXJikpyQQEBJhOnTqZqVOnur2N2hhjPvvsMzNkyBDj5+dnwsPDzaxZs876turz7VVRUWHGjx9vIiMjjb+/v7nyyivN3Llz3R6rJe7VmN2ef/55061bN9OuXTtz6aWXmpkzZ7r9H1hL3u2dd94xMTExxs/Pz/Ts2dMsXrzY7fP19fXm8ccfN+Hh4cbPz8/ccMMNpqSkpE3s9vLLLxtJZ9wef/zxFr1bQ3ud/vGgs90+/PDDVrvXd999Z0aOHGkiIyONr6+viYiIMHfeeacpKChwe4yWuNf5djubs0W1pe52LvzRbwAAWMLv/gUAwBKiCgCAJUQVAABLiCoAAJYQVQAALCGqAABYQlQBALCEqAIAYAlRBQDAEqIKAIAlRBUAAEuIKgAAlvx/BDAr757JQrAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Import in our two classes to access the db\n", "from snowexsql.api import LayerMeasurements\n", @@ -80,407 +58,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
depthsite_idpit_idbottom_depthcommentssample_asample_bsample_cvalueflags...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
084.01C5COGM1C5_20200212NoneNoneNoneNoneNone45.6None...2020-02-122024-08-15 20:03:26.508508+00:00None2407961https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
179.01C5COGM1C5_20200212NoneNoneNoneNoneNone38.2None...2020-02-122024-08-15 20:03:26.508508+00:00None2407962https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
274.01C5COGM1C5_20200212NoneNoneNoneNoneNone24.5None...2020-02-122024-08-15 20:03:26.508508+00:00None2407963https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
369.01C5COGM1C5_20200212NoneNoneNoneNoneNone23.5None...2020-02-122024-08-15 20:03:26.508508+00:00None2407964https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
464.01C5COGM1C5_20200212NoneNoneNoneNoneNone22.4None...2020-02-122024-08-15 20:03:26.508508+00:00None2407965https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
..................................................................
15528.01C1COGM1C1_20200131NoneNoneNoneNoneNone13.1None...2020-01-312024-08-15 20:03:31.924769+00:00None2410266https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneJuha Lemmetyinen & Ioanna Merkouriadi
15623.01C1COGM1C1_20200131NoneNoneNoneNoneNone10.1None...2020-01-312024-08-15 20:03:31.924769+00:00None2410267https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneJuha Lemmetyinen & Ioanna Merkouriadi
15718.01C1COGM1C1_20200131NoneNoneNoneNoneNone10.6None...2020-01-312024-08-15 20:03:31.924769+00:00None2410268https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneJuha Lemmetyinen & Ioanna Merkouriadi
15813.01C1COGM1C1_20200131NoneNoneNoneNoneNone10.5None...2020-01-312024-08-15 20:03:31.924769+00:00None2410269https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneJuha Lemmetyinen & Ioanna Merkouriadi
1598.01C1COGM1C1_20200131NoneNoneNoneNoneNone13.2None...2020-01-312024-08-15 20:03:31.924769+00:00None2410270https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneJuha Lemmetyinen & Ioanna Merkouriadi
\n", - "

160 rows × 29 columns

\n", - "
" - ], - "text/plain": [ - " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", - "0 84.0 1C5 COGM1C5_20200212 None None None None \n", - "1 79.0 1C5 COGM1C5_20200212 None None None None \n", - "2 74.0 1C5 COGM1C5_20200212 None None None None \n", - "3 69.0 1C5 COGM1C5_20200212 None None None None \n", - "4 64.0 1C5 COGM1C5_20200212 None None None None \n", - ".. ... ... ... ... ... ... ... \n", - "155 28.0 1C1 COGM1C1_20200131 None None None None \n", - "156 23.0 1C1 COGM1C1_20200131 None None None None \n", - "157 18.0 1C1 COGM1C1_20200131 None None None None \n", - "158 13.0 1C1 COGM1C1_20200131 None None None None \n", - "159 8.0 1C1 COGM1C1_20200131 None None None None \n", - "\n", - " sample_c value flags ... date time_created \\\n", - "0 None 45.6 None ... 2020-02-12 2024-08-15 20:03:26.508508+00:00 \n", - "1 None 38.2 None ... 2020-02-12 2024-08-15 20:03:26.508508+00:00 \n", - "2 None 24.5 None ... 2020-02-12 2024-08-15 20:03:26.508508+00:00 \n", - "3 None 23.5 None ... 2020-02-12 2024-08-15 20:03:26.508508+00:00 \n", - "4 None 22.4 None ... 2020-02-12 2024-08-15 20:03:26.508508+00:00 \n", - ".. ... ... ... ... ... ... \n", - "155 None 13.1 None ... 2020-01-31 2024-08-15 20:03:31.924769+00:00 \n", - "156 None 10.1 None ... 2020-01-31 2024-08-15 20:03:31.924769+00:00 \n", - "157 None 10.6 None ... 2020-01-31 2024-08-15 20:03:31.924769+00:00 \n", - "158 None 10.5 None ... 2020-01-31 2024-08-15 20:03:31.924769+00:00 \n", - "159 None 13.2 None ... 2020-01-31 2024-08-15 20:03:31.924769+00:00 \n", - "\n", - " time_updated id doi \\\n", - "0 None 2407961 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "1 None 2407962 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "2 None 2407963 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "3 None 2407964 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "4 None 2407965 https://doi.org/10.5067/SNMM6NGGKWIT \n", - ".. ... ... ... \n", - "155 None 2410266 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "156 None 2410267 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "157 None 2410268 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "158 None 2410269 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "159 None 2410270 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "\n", - " date_accessed instrument type units \\\n", - "0 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", - "1 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", - "2 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", - "3 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", - "4 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", - ".. ... ... ... ... \n", - "155 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", - "156 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", - "157 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", - "158 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", - "159 2022-06-30 IS3-SP-11-01F specific_surface_area None \n", - "\n", - " observers \n", - "0 Kate Hale \n", - "1 Kate Hale \n", - "2 Kate Hale \n", - "3 Kate Hale \n", - "4 Kate Hale \n", - ".. ... \n", - "155 Juha Lemmetyinen & Ioanna Merkouriadi \n", - "156 Juha Lemmetyinen & Ioanna Merkouriadi \n", - "157 Juha Lemmetyinen & Ioanna Merkouriadi \n", - "158 Juha Lemmetyinen & Ioanna Merkouriadi \n", - "159 Juha Lemmetyinen & Ioanna Merkouriadi \n", - "\n", - "[160 rows x 29 columns]" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAAGsCAYAAADAPO4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArq0lEQVR4nO3de3BUdZ7//1dDSExi0uRCumkIGteMhSaog/MD4syCcpMVo1/0iwqLTom1OFwkCguiO4rWmgjuAM5SUqIseBknro5xmRGVsGKURdaQwE7AFVQuJiRtFEMnYExC8vn9oZyvnQukIULy6eej6pT257xP9zlvu3zlc/qcbpcxxggAAFij17neAQAA0LUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACwTluFujNGECRPkcrn0xhtvnLR21apVGjJkiOLj4xUfH68RI0borbfectY3NTVp4cKFyszMVGxsrHw+n+644w5VVlY6NQcOHJDL5Wp3efXVV0Pa9yNHjmjWrFnq37+/zjvvPA0ePFgbNmwI6TkAAHazLtxHjRqldevWnbRmxYoVcrlcnXq+gQMH6oknntD27du1fft2XXvttbrxxhu1e/duSdK3336r0tJS/fa3v1Vpaalef/117d27V9nZ2c5zpKamqqqqKmh59NFHFRsbqwkTJnT62BobGzV27FgdOHBAr732mvbs2aNnn31WAwYM6PRzAADCgLHMyJEjzdq1aztcv3PnTjNw4EBTVVVlJJmCgoKQXyMhIcE899xzHa7/6KOPjCRz8ODBDmuuuOIKc9dddwWNVVRUmMmTJ5u+ffuaxMREk52dbfbv3++sX7VqlbnoootMY2NjyPsMAAgf1s3cT+bbb7/V7bffrpUrV8rr9Ya8fXNzs/Lz83Xs2DGNGDGiw7pAICCXy6W+ffu2u76kpEQ7d+7U9OnTg/btmmuu0fnnn6/3339fW7Zs0fnnn6/rrrtOjY2NkqT169drxIgRmjVrljwejzIyMpSbm6vm5uaQjwUAYK+Ic70DZ9N9992nrKws3XjjjSFtV1ZWphEjRui7777T+eefr4KCAl166aXt1n733Xd64IEHNGXKFMXHx7dbs2bNGg0ePFhZWVnOWH5+vnr16qXnnnvO+chg7dq16tu3r9577z2NGzdO+/bt07vvvqupU6dqw4YN+vTTTzVr1iwdP35cDz/8cEjHBACwV48P99zcXOXm5jqP6+vrtW3bNs2ePdsZe+utt1RTU6N3331XO3bsCPk1LrnkEu3cuVNHjhzRn/70J915550qKipqE/BNTU267bbb1NLSoqeffrrd56qvr9fLL7+s3/72t0HjJSUl+uyzzxQXFxc0/t133+nzzz+XJLW0tCglJUWrV69W7969NXToUFVWVurJJ58k3AEAjh4f7vfcc48mT57sPJ46dapuvvlmTZo0yRkbMGCAFi1apM8//7zNqfKbb75Zv/rVr/Tee+91+BqRkZG6+OKLJUlXXXWViouL9dRTT+mZZ55xapqamjR58mTt379f7777boez9tdee03ffvut7rjjjqDxlpYWDR06VH/4wx/abNOvXz9JUv/+/dWnTx/17t3bWTd48GD5/X41NjYqMjKyw2MAAISPHh/uiYmJSkxMdB5HR0crJSXFCeMTHnjgAd19991BY5mZmVq+fLluuOGGkF7TGKOGhgbn8Ylg//TTT7V582YlJSV1uO2aNWuUnZ3tBPYJP//5z/XKK68oJSWlwz8Mrr76ar388stqaWlRr17fXy6xd+9e9e/fn2AHADjC5oI6r9erjIyMoEWSBg0apLS0NKdu9OjRWrlypfP4wQcf1AcffKADBw6orKxMDz30kN577z1NnTpVknT8+HHdcsst2r59u/7whz+oublZfr/fmU3/2Geffab333+/zR8Z0vdnHJKTk3XjjTfqgw8+0P79+1VUVKS5c+eqoqJCkvSb3/xGhw8f1ty5c7V37169+eabys3N1axZs7q8XwCAnqvHz9y72ueff66vv/7aefzll19q2rRpqqqqktvt1pAhQ/T2229r7NixkqSKigqtX79eknTFFVcEPdfmzZs1atQo5/G//du/acCAARo3blyb142JidH777+vhQsXatKkSaqrq9OAAQM0evRoZyafmpqqjRs36r777tOQIUM0YMAAzZ07VwsXLuziLgAAejKXMcac650AAABdJ+TT8ocOHdLf//3fKykpSTExMbriiitUUlLirDfGaPHixfL5fIqOjtaoUaOcb3M7oaGhQXPmzFFycrJiY2OVnZ3tnHoGAABnJqRwr6mp0dVXX60+ffrorbfe0scff6zf/e53QVegL126VMuWLdPKlStVXFwsr9ersWPHqq6uzqnJyclRQUGB8vPztWXLFh09elQTJ07ky1gAAOgCIZ2Wf+CBB/Rf//Vf+uCDD9pdb4yRz+dTTk6O8zlwQ0ODPB6PlixZohkzZigQCKhfv3568cUXdeutt0qSKisrlZqaqg0bNmj8+PGn3I+WlhZVVlYqLi6u098RDwBAT2aMUV1dnXw+n3PH1MmKO23w4MEmJyfH3HLLLaZfv37miiuuMKtXr3bWf/7550aSKS0tDdouOzvb3HHHHcYYY/7zP//TSDLffPNNUM2QIUPMww8/3Kn9KC8vN5JYWFhYWFjCbikvLz9lToZ0tfy+ffu0atUq3X///XrwwQf10Ucf6d5771VUVJTuuOMO+f1+SZLH4wnazuPx6ODBg5Ikv9+vyMhIJSQktKk5sX1rDQ0NQfeVmx9ONpSXl3d4TzgAADapra1Vampqm28ybU9I4d7S0qKrrrrK+brXK6+8Urt379aqVauCvnGt9alyY8wpT5+frCYvL0+PPvpom/ETv7EOAEC46MzH0SFdUNe/f/8236c+ePBgffHFF5Lk/NJa6xl4dXW1M5v3er1qbGxUTU1NhzWtLVq0SIFAwFnKy8tD2W0AAMJKSOF+9dVXa8+ePUFje/fu1QUXXCBJSktLk9frVWFhobO+sbFRRUVFzi+gDR06VH369Amqqaqq0q5du4J+Je3HoqKinFk6s3UAAE4upNPyJ34yNTc3V5MnT9ZHH32k1atXa/Xq1ZK+P1WQk5Oj3NxcpaenKz09Xbm5uYqJidGUKVMkSW63W9OnT9e8efOUlJSkxMREzZ8/X5mZmRozZkzXHyEAAGEmpHD/xS9+oYKCAi1atEiPPfaY0tLStGLFCud71iVpwYIFqq+v18yZM1VTU6Nhw4Zp48aNQRcALF++XBEREZo8ebLq6+s1evRorVu3LujXzgAAwOnpkV8/W1tbK7fbrUAgwCl6AEBYCCX7wuZX4QAACBeEOwAAliHcAQCwDL/nLun/5L6pHbX/7/GV8VLBg9efux0CAOAMhP3M/cIHgoNdknbUfj8OAEBPFNbhfqoAJ+ABAD1R2Ib7/8ntXHB3tg4AgO4ibMO99an4M60DAKC7CNtwBwDAVoQ7AACWCdtwv7KT31rb2ToAALqLsA33zt7Hzv3uAICeJmzDXZIOPHHy4D7VegAAuqOwDnfp+wBvfer9yniCHQDQc/H1s+LUOwDALmE/cwcAwDaEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWCakcF+8eLFcLlfQ4vV6nfXGGC1evFg+n0/R0dEaNWqUdu/eHfQcDQ0NmjNnjpKTkxUbG6vs7GxVVFR0zdEAAIDQZ+6XXXaZqqqqnKWsrMxZt3TpUi1btkwrV65UcXGxvF6vxo4dq7q6OqcmJydHBQUFys/P15YtW3T06FFNnDhRzc3NXXNEAACEuYiQN4iICJqtn2CM0YoVK/TQQw9p0qRJkqTnn39eHo9HL7/8smbMmKFAIKA1a9boxRdf1JgxYyRJL730klJTU7Vp0yaNHz/+DA8HAACEPHP/9NNP5fP5lJaWpttuu0379u2TJO3fv19+v1/jxo1zaqOiojRy5Eht3bpVklRSUqKmpqagGp/Pp4yMDKemPQ0NDaqtrQ1aAABA+0IK92HDhumFF17QO++8o2effVZ+v19ZWVk6fPiw/H6/JMnj8QRt4/F4nHV+v1+RkZFKSEjosKY9eXl5crvdzpKamhrKbgMAEFZCCvcJEybo5ptvVmZmpsaMGaM333xT0ven309wuVxB2xhj2oy1dqqaRYsWKRAIOEt5eXkouw0AQFg5o1vhYmNjlZmZqU8//dT5HL71DLy6utqZzXu9XjU2NqqmpqbDmvZERUUpPj4+aAEAAO07o3BvaGjQ//7v/6p///5KS0uT1+tVYWGhs76xsVFFRUXKysqSJA0dOlR9+vQJqqmqqtKuXbucGgAAcGZCulp+/vz5uuGGGzRo0CBVV1frn//5n1VbW6s777xTLpdLOTk5ys3NVXp6utLT05Wbm6uYmBhNmTJFkuR2uzV9+nTNmzdPSUlJSkxM1Pz5853T/AAA4MyFFO4VFRW6/fbb9fXXX6tfv34aPny4tm3bpgsuuECStGDBAtXX12vmzJmqqanRsGHDtHHjRsXFxTnPsXz5ckVERGjy5Mmqr6/X6NGjtW7dOvXu3btrjwwAgDDlMsaYc70ToaqtrZXb7VYgEODzdwBAWAgl+/hueQAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAljmjcM/Ly5PL5VJOTo4zZozR4sWL5fP5FB0drVGjRmn37t1B2zU0NGjOnDlKTk5WbGyssrOzVVFRcSa7AgAAfnDa4V5cXKzVq1dryJAhQeNLly7VsmXLtHLlShUXF8vr9Wrs2LGqq6tzanJyclRQUKD8/Hxt2bJFR48e1cSJE9Xc3Hz6RwIAACSdZrgfPXpUU6dO1bPPPquEhARn3BijFStW6KGHHtKkSZOUkZGh559/Xt9++61efvllSVIgENCaNWv0u9/9TmPGjNGVV16pl156SWVlZdq0aVPXHBUAAGHstMJ91qxZuv766zVmzJig8f3798vv92vcuHHOWFRUlEaOHKmtW7dKkkpKStTU1BRU4/P5lJGR4dS01tDQoNra2qAFAAC0LyLUDfLz81VaWqri4uI26/x+vyTJ4/EEjXs8Hh08eNCpiYyMDJrxn6g5sX1reXl5evTRR0PdVQAAwlJIM/fy8nLNnTtXL730ks4777wO61wuV9BjY0ybsdZOVrNo0SIFAgFnKS8vD2W3AQAIKyGFe0lJiaqrqzV06FBFREQoIiJCRUVF+v3vf6+IiAhnxt56Bl5dXe2s83q9amxsVE1NTYc1rUVFRSk+Pj5oAQAA7Qsp3EePHq2ysjLt3LnTWa666ipNnTpVO3fu1EUXXSSv16vCwkJnm8bGRhUVFSkrK0uSNHToUPXp0yeopqqqSrt27XJqAADA6QvpM/e4uDhlZGQEjcXGxiopKckZz8nJUW5urtLT05Wenq7c3FzFxMRoypQpkiS3263p06dr3rx5SkpKUmJioubPn6/MzMw2F+gBAIDQhXxB3aksWLBA9fX1mjlzpmpqajRs2DBt3LhRcXFxTs3y5csVERGhyZMnq76+XqNHj9a6devUu3fvrt4dAADCjssYY871ToSqtrZWbrdbgUCAz98BAGEhlOzju+UBALBMl5+WB9B11m/7Qve+UeY8/v1NmcoePugc7hGAnoDT8kA3deEDb3a47sAT15/FPQHQHXBaHujhThbsnVkPILwR7kA3s37bF11aByD8EO5AN/Pjz9i7og5A+CHcAQCwDOEOAIBlCHegm/n9TZldWgcg/BDuQDfT2fvYud8dQEcId6AbOtV97NznDuBkCHegmzrwxPVtTr3//qZMgh3AKfH1s0A3lj18EKffAYSMmTsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwTMS53gEA6CnKvggo++ktMpJcktbP/KUyB7nP9W4BbRDuANAJFz7wZtBjI+mGp7dIkg48cf052COgY5yWB4BTaB3soa4HzjbCHQBOouyLQJfWAWcD4Q4AJ5H9w6n3rqoDzgbCHUBojKTiH/4ZBjp7mGHSDvQQhDuA0Lwk6f+T9IdzvSNnh6uL64CzgXAH0HnHJT3yw78/8sNjy62f+csurQPOBsIdQOf9UdL+H/59n6T8c7gvZ0ln72Pnfnd0J4Q7gM45MWs/cf65l8Jm9n6q+9i5zx3dDeEOoHNOzNpPXDnWorCZvUvfB/ifZ/7S+dvGJenPM39JsKNbchljetxFnrW1tXK73QoEAoqPjz/XuwPY77ikn0k6oODLwntJulDSHvF9l8BPLJTsY+YO4NRaz9pPCLPZO9BTEO4ATq71Z+2thdFn70BPQbgDOLktan/WfsKJ2Ttf0AZ0G3xKBuDkRkj6d0kNJ6mJ+qEOQLdAuAM4uShJ//dc7wSAUHBaHgAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZUIK91WrVmnIkCGKj49XfHy8RowYobfeestZb4zR4sWL5fP5FB0drVGjRmn37t1Bz9HQ0KA5c+YoOTlZsbGxys7OVkVFRdccDQAACC3cBw4cqCeeeELbt2/X9u3bde211+rGG290Anzp0qVatmyZVq5cqeLiYnm9Xo0dO1Z1dXXOc+Tk5KigoED5+fnasmWLjh49qokTJ6q5ublrjwwAgDB1xr8Kl5iYqCeffFJ33XWXfD6fcnJytHDhQknfz9I9Ho+WLFmiGTNmKBAIqF+/fnrxxRd16623SpIqKyuVmpqqDRs2aPz48Z16TX4VDgAQbs7Kr8I1NzcrPz9fx44d04gRI7R//375/X6NGzfOqYmKitLIkSO1detWSVJJSYmampqCanw+nzIyMpya9jQ0NKi2tjZoAQAA7Qs53MvKynT++ecrKipK99xzjwoKCnTppZfK7/dLkjweT1C9x+Nx1vn9fkVGRiohIaHDmvbk5eXJ7XY7S2pqaqi7DQBA2Ag53C+55BLt3LlT27Zt029+8xvdeeed+vjjj531Llfw70IaY9qMtXaqmkWLFikQCDhLeXl5qLsNAEDYCDncIyMjdfHFF+uqq65SXl6eLr/8cj311FPyer2S1GYGXl1d7czmvV6vGhsbVVNT02FNe6Kiopwr9E8sAACgfWd8n7sxRg0NDUpLS5PX61VhYaGzrrGxUUVFRcrKypIkDR06VH369Amqqaqq0q5du5waAABwZkL6ydcHH3xQEyZMUGpqqurq6pSfn6/33ntPb7/9tlwul3JycpSbm6v09HSlp6crNzdXMTExmjJliiTJ7XZr+vTpmjdvnpKSkpSYmKj58+crMzNTY8aM+UkOEACAcBNSuH/55ZeaNm2aqqqq5Ha7NWTIEL399tsaO3asJGnBggWqr6/XzJkzVVNTo2HDhmnjxo2Ki4tznmP58uWKiIjQ5MmTVV9fr9GjR2vdunXq3bt31x4ZAABh6ozvcz8XuM8dABBuzsp97gAAoHsi3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMuEFO55eXn6xS9+obi4OKWkpOimm27Snj17gmqMMVq8eLF8Pp+io6M1atQo7d69O6imoaFBc+bMUXJysmJjY5Wdna2KioozPxoAABBauBcVFWnWrFnatm2bCgsLdfz4cY0bN07Hjh1zapYuXaply5Zp5cqVKi4ultfr1dixY1VXV+fU5OTkqKCgQPn5+dqyZYuOHj2qiRMnqrm5ueuODACAMOUyxpjT3firr75SSkqKioqK9Ld/+7cyxsjn8yknJ0cLFy6U9P0s3ePxaMmSJZoxY4YCgYD69eunF198UbfeeqskqbKyUqmpqdqwYYPGjx9/ytetra2V2+1WIBBQfHz86e4+AAA9RijZd0afuQcCAUlSYmKiJGn//v3y+/0aN26cUxMVFaWRI0dq69atkqSSkhI1NTUF1fh8PmVkZDg1rTU0NKi2tjZoAQAA7TvtcDfG6P7779cvf/lLZWRkSJL8fr8kyePxBNV6PB5nnd/vV2RkpBISEjqsaS0vL09ut9tZUlNTT3e3AQCw3mmH++zZs/XXv/5Vf/zjH9usc7lcQY+NMW3GWjtZzaJFixQIBJylvLz8dHcbAADrnVa4z5kzR+vXr9fmzZs1cOBAZ9zr9UpSmxl4dXW1M5v3er1qbGxUTU1NhzWtRUVFKT4+PmgBAADtCyncjTGaPXu2Xn/9db377rtKS0sLWp+Wliav16vCwkJnrLGxUUVFRcrKypIkDR06VH369Amqqaqq0q5du5waAABw+iJCKZ41a5Zefvll/cd//Ifi4uKcGbrb7VZ0dLRcLpdycnKUm5ur9PR0paenKzc3VzExMZoyZYpTO336dM2bN09JSUlKTEzU/PnzlZmZqTFjxnT9EQIAEGZCCvdVq1ZJkkaNGhU0vnbtWv3617+WJC1YsED19fWaOXOmampqNGzYMG3cuFFxcXFO/fLlyxUREaHJkyervr5eo0eP1rp169S7d+8zOxoAAHBm97mfK9znDgAIN2ftPncAAND9EO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlQg73999/XzfccIN8Pp9cLpfeeOONoPXGGC1evFg+n0/R0dEaNWqUdu/eHVTT0NCgOXPmKDk5WbGxscrOzlZFRcUZHQgAAPheyOF+7NgxXX755Vq5cmW765cuXaply5Zp5cqVKi4ultfr1dixY1VXV+fU5OTkqKCgQPn5+dqyZYuOHj2qiRMnqrm5+fSPBAAASJJcxhhz2hu7XCooKNBNN90k6ftZu8/nU05OjhYuXCjp+1m6x+PRkiVLNGPGDAUCAfXr108vvviibr31VklSZWWlUlNTtWHDBo0fP/6Ur1tbWyu3261AIKD4+PjT3X0AAHqMULKvSz9z379/v/x+v8aNG+eMRUVFaeTIkdq6daskqaSkRE1NTUE1Pp9PGRkZTk1rDQ0Nqq2tDVoAAED7ujTc/X6/JMnj8QSNezweZ53f71dkZKQSEhI6rGktLy9PbrfbWVJTU7tytwEAsMpPcrW8y+UKemyMaTPW2slqFi1apEAg4Czl5eVdtq8AANimS8Pd6/VKUpsZeHV1tTOb93q9amxsVE1NTYc1rUVFRSk+Pj5oAQAA7evScE9LS5PX61VhYaEz1tjYqKKiImVlZUmShg4dqj59+gTVVFVVadeuXU4NAAA4fRGhbnD06FF99tlnzuP9+/dr586dSkxM1KBBg5STk6Pc3Fylp6crPT1dubm5iomJ0ZQpUyRJbrdb06dP17x585SUlKTExETNnz9fmZmZGjNmTNcdGQAAYSrkcN++fbuuueYa5/H9998vSbrzzju1bt06LViwQPX19Zo5c6Zqamo0bNgwbdy4UXFxcc42y5cvV0REhCZPnqz6+nqNHj1a69atU+/evbvgkAAACG9ndJ/7ucJ97gCAcHPO7nMHAADnHuEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMuE/JOvAADg5LbtPazb/m2b8zj/ruEa/rOks/b6hDsAAF3owgfebDN2IugPPHH9WdkHTssDANBF2gv2UNZ3FcIdAIAusG3v4S6tOxOEOwAAXeDHn7F3Rd2ZINwBALAM4Q4AgGUIdwAAukD+XcO7tO5MEO4AAHSBzt7HfjbudyfcAQDoIqe6j/1s3efOl9gAANCFDjxxPd9QBwCAbYb/LOmszdLbw2l5AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALNMjv6HOGCNJqq2tPcd7AgDA2XEi805k4Mn0yHCvq6uTJKWmpp7jPQEA4Oyqq6uT2+0+aY3LdOZPgG6mpaVFlZWViouLk8vlCmnb2tpapaamqry8XPHx8T/RHnZ/9IEeSPRAogcSPZB6Rg+MMaqrq5PP51OvXif/VL1Hztx79eqlgQMHntFzxMfHd9v/gGcTfaAHEj2Q6IFED6Tu34NTzdhP4II6AAAsQ7gDAGCZsAv3qKgoPfLII4qKijrXu3JO0Qd6INEDiR5I9ECyrwc98oI6AADQsbCbuQMAYDvCHQAAyxDuAABYhnAHAMAy3S7cL7zwQrlcrjbLrFmz2tTOmDFDLpdLK1asCBpvaGjQnDlzlJycrNjYWGVnZ6uiouKUr/PAAw8E1XzxxRe64YYbFBsbq+TkZN17771qbGwMqikrK9PIkSMVHR2tAQMG6LHHHuvU9/52hx5I0ptvvqlhw4YpOjpaycnJmjRpUtj04L333mv3NVwul4qLi8OiB5K0d+9e3XjjjUpOTlZ8fLyuvvpqbd68OajG9h6UlpZq7Nix6tu3r5KSkvQP//APOnr0aLfoQVf1YfXq1Ro1apTi4+Plcrl05MiRNtvW1NRo2rRpcrvdcrvdmjZtWpu6nvxe6EwPHn/8cWVlZSkmJkZ9+/Ztd1/O5Xuh00w3U11dbaqqqpylsLDQSDKbN28OqisoKDCXX3658fl8Zvny5UHr7rnnHjNgwABTWFhoSktLzTXXXGMuv/xyc/z4cafmggsuMI899ljQa9XV1Tnrjx8/bjIyMsw111xjSktLTWFhofH5fGb27NlOTSAQMB6Px9x2222mrKzM/OlPfzJxcXHmX/7lX3pED1577TWTkJBgVq1aZfbs2WM++eQT8+qrr4ZNDxoaGoJeo6qqytx9993mwgsvNC0tLWHRA2OMufjii83f/d3fmf/5n/8xe/fuNTNnzjQxMTGmqqoqLHpw6NAhk5CQYO655x7zySefmI8++shkZWWZm2++2XmOc9mDrurD8uXLTV5ensnLyzOSTE1NTZvXue6660xGRobZunWr2bp1q8nIyDATJ07sFn04Wz14+OGHzbJly8z9999v3G53m/Xn+r3QWd0u3FubO3eu+Zu/+Rvnf7bGGFNRUWEGDBhgdu3aZS644IKg/4BHjhwxffr0Mfn5+c7YoUOHTK9evczbb7/tjLXerrUNGzaYXr16mUOHDjljf/zjH01UVJQJBALGGGOefvpp43a7zXfffefU5OXlGZ/PF7S/Z+qn6EFTU5MZMGCAee655zp8Xdt70FpjY6NJSUkxjz32mDNmew+++uorI8m8//77Tk1tba2RZDZt2hQWPXjmmWdMSkqKaW5udmp27NhhJJlPP/202/XgdPrwY5s3b2432D7++GMjyWzbts0Z+/DDD40k88knnxhjulcffooe/NjatWvbDffu1IOT6Xan5X+ssbFRL730ku666y7nB2JaWlo0bdo0/eM//qMuu+yyNtuUlJSoqalJ48aNc8Z8Pp8yMjK0devWoNolS5YoKSlJV1xxhR5//PGg0yoffvihMjIy5PP5nLHx48eroaFBJSUlTs3IkSODvvRg/Pjxqqys1IEDB7p1D0pLS3Xo0CH16tVLV155pfr3768JEyZo9+7dYdOD1tavX6+vv/5av/71r50x23uQlJSkwYMH64UXXtCxY8d0/PhxPfPMM/J4PBo6dGhY9KChoUGRkZFBP8QRHR0tSdqyZUu36oF0en3ojA8//FBut1vDhg1zxoYPHy632+30qrv04afqQWd0lx6cSrcO9zfeeENHjhwJ+p/tkiVLFBERoXvvvbfdbfx+vyIjI5WQkBA07vF45Pf7ncdz585Vfn6+Nm/erNmzZ2vFihWaOXNm0PN4PJ6g50hISFBkZKTzPO3VnHj849c6Ez9VD/bt2ydJWrx4sf7pn/5Jf/nLX5SQkKCRI0fqm2++6fD4bOpBa2vWrNH48eODfkrY9h64XC4VFhZqx44diouL03nnnafly5fr7bffdj5vtL0H1157rfx+v5588kk1NjaqpqZGDz74oCSpqqqqw+M7Fz2QTq8PneH3+5WSktJmPCUl5aTH2FPeC12lu/TgVLr1r8KtWbNGEyZMcP5CKikp0VNPPaXS0tKQf+rVGBO0zX333ef8+5AhQ5SQkKBbbrnFmc1Lavc1Wj9P6xrzwwUToe5fR36qHrS0tEiSHnroId18882SpLVr12rgwIF69dVXNWPGjA6Pw5Ye/FhFRYXeeecd/fu//3ubdTb3wBijmTNnKiUlRR988IGio6P13HPPaeLEiSouLlb//v07PA5benDZZZfp+eef1/33369Fixapd+/euvfee+XxeNS7d29nm+7QA6lr+9Da6RxjZ2q683vhdHSHHpxKt525Hzx4UJs2bdLdd9/tjH3wwQeqrq7WoEGDFBERoYiICB08eFDz5s3ThRdeKEnyer3OX98/Vl1d3eYvqR8bPny4JOmzzz5znqf1X1g1NTVqampynqe9murqakk66Wt11k/ZgxP/07700kud9VFRUbrooov0xRdfdHh8NvXgx9auXaukpCRlZ2cHjdveg3fffVd/+ctflJ+fr6uvvlo///nP9fTTTys6OlrPP/98WPRAkqZMmSK/369Dhw7p8OHDWrx4sb766iulpaV1mx6cSR86w+v16ssvv2wz/tVXX530GHvKe6GrdIcedMpZ+WT/NDzyyCPG6/WapqYmZ+zrr782ZWVlQYvP5zMLFy50Lvg4cQHNK6+84mxXWVl50gupjDHmz3/+s5FkDh48aIz5fxdNVFZWOjX5+fltLpro27evaWhocGqeeOKJLrto4qfsQSAQMFFRUUEX1J24oOyZZ54Jix6c0NLSYtLS0sy8efPavL7tPVi/fr3p1atX0J0ixhjzs5/9zDz++ONh0YP2rFmzxsTExDgXXHWHHpxJH37sVBfU/fd//7cztm3btnYvqOuJ74XO9ODHTnVB3bl+L5xKtwz35uZmM2jQILNw4cJT1rZ3ReQ999xjBg4caDZt2mRKS0vNtddeG3Try9atW82yZcvMjh07zL59+8wrr7xifD6fyc7Odp7jxO0Oo0ePNqWlpWbTpk1m4MCBQbc7HDlyxHg8HnP77bebsrIy8/rrr5v4+Pguud3hp+6BMd9fbTpgwADzzjvvmE8++cRMnz7dpKSkmG+++SZsemCMMZs2bTKSzMcff9zmeW3vwVdffWWSkpLMpEmTzM6dO82ePXvM/PnzTZ8+fczOnTvDogfGGPOv//qvpqSkxOzZs8esXLnSREdHm6eeespZf657YMyZ96Gqqsrs2LHDPPvss84dEjt27DCHDx92aq677jozZMgQ8+GHH5oPP/zQZGZmtnsrXE99L3SmBwcPHjQ7duwwjz76qDn//PPNjh07zI4dO5w/gM91DzqrW4b7O++8YySZPXv2nLK2vf+A9fX1Zvbs2SYxMdFER0ebiRMnmi+++MJZX1JSYoYNG2bcbrc577zzzCWXXGIeeeQRc+zYsaDnOXjwoLn++utNdHS0SUxMNLNnzw66tcEYY/7617+aX/3qVyYqKsp4vV6zePHiLvnL7KfugTHfz9TnzZtnUlJSTFxcnBkzZozZtWtXUI3tPTDGmNtvv91kZWV1+Ny296C4uNiMGzfOJCYmmri4ODN8+HCzYcOGoBrbezBt2jSTmJhoIiMjzZAhQ8wLL7zQ5rnPZQ+MOfM+PPLII0ZSm2Xt2rVOzeHDh83UqVNNXFyciYuLM1OnTm0zu+3J74XO9ODOO+9st+bH99Of6/dCZ/CTrwAAWKbbXlAHAABOD+EOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsAzhDgCAZQh3AAAsQ7gDAGCZ/x+6xIaW8aeaTgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Import our api class\n", "from snowexsql.api import LayerMeasurements\n", @@ -521,23 +101,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Available types = two_way_travel, snow_void, density, swe, depth\n", - "\n", - "Available Instruments = None, Mala 1600 MHz GPR, Mala 800 MHz GPR, pulse EKKO Pro multi-polarization 1 GHz GPR, pit ruler, mesa, magnaprobe, camera\n", - "\n", - "Available Dates = 2020-05-28, 2020-01-09, 2021-03-19, 2020-05-23, 2019-11-29, 2020-01-04, 2019-10-20, 2019-11-30, 2021-01-28, 2020-04-17, 2021-02-19, 2020-02-19, 2020-02-26, 2020-02-03, 2020-05-05, 2019-10-05, 2019-12-29, 2020-06-02, 2019-10-28, 2020-01-30, 2020-05-22, 2020-03-09, 2019-12-09, 2019-12-28, 2020-02-24, 2020-03-17, 2021-03-18, 2020-04-01, 2020-05-14, 2019-10-14, 2019-10-29, 2019-10-02, 2020-01-31, 2020-04-18, 2020-04-26, 2019-10-12, 2020-04-29, 2021-03-03, 2020-02-23, 2021-01-15, 2020-01-22, 2020-01-01, 2019-11-21, 2020-05-10, 2023-03-13, 2020-02-12, 2019-11-19, 2020-05-06, 2019-10-25, 2019-11-02, 2020-02-08, 2020-04-14, 2020-04-02, 2019-11-16, 2020-04-07, 2021-03-21, 2021-04-21, 2023-03-15, 2020-11-25, 2019-12-27, 2019-10-01, 2021-01-27, 2020-04-16, 2020-06-08, 2019-12-13, 2019-10-17, 2019-10-22, 2021-01-22, 2020-04-21, 2020-01-03, 2019-12-12, 2019-12-08, 2021-03-05, 2020-01-25, 2020-02-29, 2019-11-24, 2019-10-18, 2021-03-04, 2021-03-24, 2021-03-16, 2020-05-09, 2020-03-22, 2019-11-06, 2019-12-16, 2020-01-15, 2019-11-22, 2019-10-13, 2019-11-10, 2019-12-06, 2020-02-04, 2019-10-31, 2020-03-07, 2020-04-06, 2020-05-03, 2019-12-10, 2020-05-26, 2019-12-02, 2021-02-09, 2020-02-14, 2020-02-13, 2020-05-11, 2019-12-01, 2020-01-19, 2019-11-28, 2020-01-17, 2019-12-17, 2021-02-17, 2021-01-07, 2021-03-31, 2019-12-25, 2019-12-14, 2019-10-24, 2020-03-11, 2020-02-01, 2021-03-23, 2020-02-09, 2020-05-12, 2020-05-25, 2020-03-29, 2020-04-24, 2019-12-11, 2020-01-10, 2020-06-05, 2019-10-10, 2020-11-20, 2020-04-13, 2020-03-23, 2020-04-23, 2020-05-24, 2019-11-08, 2021-05-05, 2019-12-26, 2019-12-15, 2021-04-06, 2020-05-07, 2021-01-20, 2020-02-28, 2019-11-03, 2020-04-04, 2019-11-27, 2021-01-14, 2020-03-15, 2019-11-23, 2020-01-16, 2023-03-14, 2019-10-08, 2019-11-14, 2020-02-15, 2020-02-11, 2023-03-12, 2019-11-13, 2020-04-30, 2019-10-26, 2020-03-06, 2021-03-17, 2020-05-31, 2020-03-04, 2021-02-24, 2019-10-04, 2020-05-16, 2020-04-03, 2019-10-06, 2019-10-09, 2021-02-25, 2020-03-12, 2019-11-12, 2019-11-01, 2020-03-10, 2019-10-30, 2020-02-21, 2020-12-17, 2023-03-07, 2020-06-01, 2020-03-20, 2020-03-03, 2019-11-07, 2020-01-06, 2019-12-22, 2021-02-11, 2020-01-11, 2019-11-11, 2019-11-05, 2020-01-13, 2023-03-16, 2019-12-18, 2019-12-30, 2020-05-04, 2020-04-20, 2021-04-14, 2023-03-09, 2023-03-08, 2020-02-22, 2020-05-08, 2019-12-24, 2020-12-18, 2020-01-24, 2020-04-22, 2019-11-04, 2020-03-31, 2020-01-08, 2020-02-06, 2021-02-18, 2020-03-05, 2021-05-27, 2020-03-14, 2021-02-04, 2020-06-09, 2021-01-21, 2020-02-20, 2020-11-23, 2020-04-05, 2020-06-03, 2019-10-16, 2021-05-07, 2020-04-15, 2021-01-26, 2019-12-03, 2020-05-30, 2019-11-09, 2021-02-16, 2020-04-28, 2020-01-12, 2020-05-20, 2023-03-10, 2020-05-02, 2020-02-05, 2020-01-28, 2020-01-21, 2019-12-19, 2019-10-07, 2020-03-28, 2020-02-10, 2021-04-28, 2020-03-02, 2019-09-29, 2019-11-15, 2020-01-02, 2020-05-27, 2020-02-18, 2019-10-11, 2019-12-21, 2019-09-30, 2021-03-10, 2020-04-09, 2020-01-05, 2019-10-27, 2020-04-10, 2021-04-23, 2020-03-16, 2020-03-21, 2020-02-02, 2020-02-25, 2020-04-08, 2020-01-29, 2019-12-04, 2021-03-22, 2021-02-10, 2021-02-03, 2019-11-26, 2020-03-19, 2020-01-20, 2019-12-31, 2020-02-27, 2020-03-30, 2020-04-25, 2020-01-26, 2020-01-14, 2020-12-08, 2020-03-01, 2020-02-17, 2020-05-21, 2019-10-23, 2021-03-02, 2020-04-11, 2019-10-21, 2020-12-16, 2019-11-25, 2020-04-12, 2020-03-13, 2020-05-01, 2021-05-20, 2020-03-08, 2021-01-13, 2020-05-19, 2020-03-27, 2019-11-17, 2020-04-19, 2020-01-23, 2020-05-15, 2021-02-23, 2020-02-16, 2019-10-19, 2020-05-29, 2020-03-24, 2019-12-07, 2020-02-07, 2020-03-18, 2020-05-17, 2020-05-13, 2019-12-20, 2019-12-23, 2020-06-07, 2020-01-07, 2020-05-18, 2021-05-17, 2021-04-07, 2019-12-05, 2019-11-20, 2020-06-06, 2020-12-09, 2023-03-11, 2021-02-02, 2019-11-18, 2020-06-10, 2020-01-27, 2020-11-16, 2020-01-18, 2020-06-04, 2020-04-27, 2019-10-15, 2020-12-01, 2020-03-25, 2020-03-26, 2019-10-03, 2021-03-09\n", - "\n", - "Available sites = American River Basin, Central Ag Research Center, Senator Beck, Fairbanks, None, Fraser Experimental Forest, Boise River Basin, Little Cottonwood Canyon, North Slope, East River, Jemez River, Grand Mesa, Cameron Pass, Sagehen Creek, Mammoth Lakes, Niwot Ridge\n" - ] - } - ], + "outputs": [], "source": [ "from snowexsql.api import PointMeasurements\n", "\n", @@ -573,32 +139,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[datetime.date(2020, 2, 4),\n", - " datetime.date(2020, 2, 3),\n", - " datetime.date(2020, 1, 30),\n", - " datetime.date(2020, 2, 1),\n", - " datetime.date(2020, 2, 6),\n", - " datetime.date(2020, 1, 31),\n", - " datetime.date(2020, 2, 12),\n", - " datetime.date(2020, 2, 8),\n", - " datetime.date(2020, 2, 5),\n", - " datetime.date(2020, 1, 28),\n", - " datetime.date(2020, 2, 11),\n", - " datetime.date(2020, 2, 10),\n", - " datetime.date(2020, 1, 29)]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# import layer measurements\n", "from snowexsql.api import LayerMeasurements\n", @@ -620,397 +163,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
version_numberequipmentvaluelatitudelongitudenorthingeastingelevationutm_zonegeom...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
0NoneNone8.1539.02966-108.1338084.323978e+06748106.5444683152.2012POINT (748106.544 4323977.677)...2020-01-282022-07-07 20:15:55.070109+00:00None4316397https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
1NoneNone8.3939.02966-108.1338084.323978e+06748106.5444683152.2112POINT (748106.544 4323977.677)...2020-01-282022-07-07 20:15:55.070109+00:00None4316398https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
2NoneNone8.3939.02966-108.1338084.323978e+06748106.5444683152.2212POINT (748106.544 4323977.677)...2020-01-282022-07-07 20:15:55.070109+00:00None4316399https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
3NoneNone8.3939.02966-108.1338084.323978e+06748106.5444683152.2312POINT (748106.544 4323977.677)...2020-01-282022-07-07 20:15:55.070109+00:00None4316400https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
4NoneNone8.3939.02966-108.1338084.323978e+06748106.5444683152.2412POINT (748106.544 4323977.677)...2020-01-282022-07-07 20:15:55.070109+00:00None4316401https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
..................................................................
95NoneNone8.3939.02966-108.1338124.323978e+06748106.2511523152.9012POINT (748106.251 4323977.635)...2020-01-282022-07-07 20:15:55.070109+00:00None4316492https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
96NoneNone8.3939.02966-108.1338124.323978e+06748106.2511523152.9012POINT (748106.251 4323977.635)...2020-01-282022-07-07 20:15:55.070109+00:00None4316493https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
97NoneNone8.3939.02966-108.1338124.323978e+06748106.2511523152.9012POINT (748106.251 4323977.635)...2020-01-282022-07-07 20:15:55.070109+00:00None4316494https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
98NoneNone8.3939.02966-108.1338124.323978e+06748106.2511523152.9012POINT (748106.251 4323977.635)...2020-01-282022-07-07 20:15:55.070109+00:00None4316495https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
99NoneNone8.3939.02966-108.1338124.323978e+06748106.2511523152.9012POINT (748106.251 4323977.635)...2020-01-282022-07-07 20:15:55.070109+00:00None4316496https://doi.org/10.5067/WE9GI1GVMQF62022-07-07Mala 800 MHz GPRtwo_way_travelnsRyan Webb
\n", - "

100 rows × 23 columns

\n", - "
" - ], - "text/plain": [ - " version_number equipment value latitude longitude northing \\\n", - "0 None None 8.15 39.02966 -108.133808 4.323978e+06 \n", - "1 None None 8.39 39.02966 -108.133808 4.323978e+06 \n", - "2 None None 8.39 39.02966 -108.133808 4.323978e+06 \n", - "3 None None 8.39 39.02966 -108.133808 4.323978e+06 \n", - "4 None None 8.39 39.02966 -108.133808 4.323978e+06 \n", - ".. ... ... ... ... ... ... \n", - "95 None None 8.39 39.02966 -108.133812 4.323978e+06 \n", - "96 None None 8.39 39.02966 -108.133812 4.323978e+06 \n", - "97 None None 8.39 39.02966 -108.133812 4.323978e+06 \n", - "98 None None 8.39 39.02966 -108.133812 4.323978e+06 \n", - "99 None None 8.39 39.02966 -108.133812 4.323978e+06 \n", - "\n", - " easting elevation utm_zone geom ... \\\n", - "0 748106.544468 3152.20 12 POINT (748106.544 4323977.677) ... \n", - "1 748106.544468 3152.21 12 POINT (748106.544 4323977.677) ... \n", - "2 748106.544468 3152.22 12 POINT (748106.544 4323977.677) ... \n", - "3 748106.544468 3152.23 12 POINT (748106.544 4323977.677) ... \n", - "4 748106.544468 3152.24 12 POINT (748106.544 4323977.677) ... \n", - ".. ... ... ... ... ... \n", - "95 748106.251152 3152.90 12 POINT (748106.251 4323977.635) ... \n", - "96 748106.251152 3152.90 12 POINT (748106.251 4323977.635) ... \n", - "97 748106.251152 3152.90 12 POINT (748106.251 4323977.635) ... \n", - "98 748106.251152 3152.90 12 POINT (748106.251 4323977.635) ... \n", - "99 748106.251152 3152.90 12 POINT (748106.251 4323977.635) ... \n", - "\n", - " date time_created time_updated id \\\n", - "0 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316397 \n", - "1 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316398 \n", - "2 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316399 \n", - "3 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316400 \n", - "4 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316401 \n", - ".. ... ... ... ... \n", - "95 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316492 \n", - "96 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316493 \n", - "97 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316494 \n", - "98 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316495 \n", - "99 2020-01-28 2022-07-07 20:15:55.070109+00:00 None 4316496 \n", - "\n", - " doi date_accessed instrument \\\n", - "0 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", - "1 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", - "2 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", - "3 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", - "4 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", - ".. ... ... ... \n", - "95 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", - "96 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", - "97 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", - "98 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", - "99 https://doi.org/10.5067/WE9GI1GVMQF6 2022-07-07 Mala 800 MHz GPR \n", - "\n", - " type units observers \n", - "0 two_way_travel ns Ryan Webb \n", - "1 two_way_travel ns Ryan Webb \n", - "2 two_way_travel ns Ryan Webb \n", - "3 two_way_travel ns Ryan Webb \n", - "4 two_way_travel ns Ryan Webb \n", - ".. ... ... ... \n", - "95 two_way_travel ns Ryan Webb \n", - "96 two_way_travel ns Ryan Webb \n", - "97 two_way_travel ns Ryan Webb \n", - "98 two_way_travel ns Ryan Webb \n", - "99 two_way_travel ns Ryan Webb \n", - "\n", - "[100 rows x 23 columns]" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Import PointMeasurements\n", "from snowexsql.api import PointMeasurements\n", @@ -1037,384 +192,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
depthsite_idpit_idbottom_depthcommentssample_asample_bsample_cvalueflags...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
091.02C12COGM2C12_20200212NoneNoneNoneNoneNone45.02None...2020-02-122024-08-15 20:03:26.019334+00:00None2407735https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01FreflectanceNoneKate Hale
186.02C12COGM2C12_20200212NoneNoneNoneNoneNone39.82None...2020-02-122024-08-15 20:03:26.019334+00:00None2407736https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01FreflectanceNoneKate Hale
281.02C12COGM2C12_20200212NoneNoneNoneNoneNone37.85None...2020-02-122024-08-15 20:03:26.019334+00:00None2407737https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01FreflectanceNoneKate Hale
376.02C12COGM2C12_20200212NoneNoneNoneNoneNone35.11None...2020-02-122024-08-15 20:03:26.019334+00:00None2407738https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01FreflectanceNoneKate Hale
471.02C12COGM2C12_20200212NoneNoneNoneNoneNone34.86None...2020-02-122024-08-15 20:03:26.019334+00:00None2407739https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01FreflectanceNoneKate Hale
..................................................................
9572.02C13COGM2C13_20200212NoneNoneNoneNoneNone40.5None...2020-02-122024-08-15 20:03:26.225144+00:00None2407830https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
9667.02C13COGM2C13_20200212NoneNoneNoneNoneNone22.6None...2020-02-122024-08-15 20:03:26.225144+00:00None2407831https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
9762.02C13COGM2C13_20200212NoneNoneNoneNoneNone26.6None...2020-02-122024-08-15 20:03:26.225144+00:00None2407832https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
9857.02C13COGM2C13_20200212NoneNoneNoneNoneNone24.3None...2020-02-122024-08-15 20:03:26.225144+00:00None2407833https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
9952.02C13COGM2C13_20200212NoneNoneNoneNoneNone26.0None...2020-02-122024-08-15 20:03:26.225144+00:00None2407834https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01Fspecific_surface_areaNoneKate Hale
\n", - "

100 rows × 29 columns

\n", - "
" - ], - "text/plain": [ - " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", - "0 91.0 2C12 COGM2C12_20200212 None None None None \n", - "1 86.0 2C12 COGM2C12_20200212 None None None None \n", - "2 81.0 2C12 COGM2C12_20200212 None None None None \n", - "3 76.0 2C12 COGM2C12_20200212 None None None None \n", - "4 71.0 2C12 COGM2C12_20200212 None None None None \n", - ".. ... ... ... ... ... ... ... \n", - "95 72.0 2C13 COGM2C13_20200212 None None None None \n", - "96 67.0 2C13 COGM2C13_20200212 None None None None \n", - "97 62.0 2C13 COGM2C13_20200212 None None None None \n", - "98 57.0 2C13 COGM2C13_20200212 None None None None \n", - "99 52.0 2C13 COGM2C13_20200212 None None None None \n", - "\n", - " sample_c value flags ... date time_created \\\n", - "0 None 45.02 None ... 2020-02-12 2024-08-15 20:03:26.019334+00:00 \n", - "1 None 39.82 None ... 2020-02-12 2024-08-15 20:03:26.019334+00:00 \n", - "2 None 37.85 None ... 2020-02-12 2024-08-15 20:03:26.019334+00:00 \n", - "3 None 35.11 None ... 2020-02-12 2024-08-15 20:03:26.019334+00:00 \n", - "4 None 34.86 None ... 2020-02-12 2024-08-15 20:03:26.019334+00:00 \n", - ".. ... ... ... ... ... ... \n", - "95 None 40.5 None ... 2020-02-12 2024-08-15 20:03:26.225144+00:00 \n", - "96 None 22.6 None ... 2020-02-12 2024-08-15 20:03:26.225144+00:00 \n", - "97 None 26.6 None ... 2020-02-12 2024-08-15 20:03:26.225144+00:00 \n", - "98 None 24.3 None ... 2020-02-12 2024-08-15 20:03:26.225144+00:00 \n", - "99 None 26.0 None ... 2020-02-12 2024-08-15 20:03:26.225144+00:00 \n", - "\n", - " time_updated id doi \\\n", - "0 None 2407735 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "1 None 2407736 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "2 None 2407737 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "3 None 2407738 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "4 None 2407739 https://doi.org/10.5067/SNMM6NGGKWIT \n", - ".. ... ... ... \n", - "95 None 2407830 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "96 None 2407831 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "97 None 2407832 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "98 None 2407833 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "99 None 2407834 https://doi.org/10.5067/SNMM6NGGKWIT \n", - "\n", - " date_accessed instrument type units observers \n", - "0 2022-06-30 IS3-SP-11-01F reflectance None Kate Hale \n", - "1 2022-06-30 IS3-SP-11-01F reflectance None Kate Hale \n", - "2 2022-06-30 IS3-SP-11-01F reflectance None Kate Hale \n", - "3 2022-06-30 IS3-SP-11-01F reflectance None Kate Hale \n", - "4 2022-06-30 IS3-SP-11-01F reflectance None Kate Hale \n", - ".. ... ... ... ... ... \n", - "95 2022-06-30 IS3-SP-11-01F specific_surface_area None Kate Hale \n", - "96 2022-06-30 IS3-SP-11-01F specific_surface_area None Kate Hale \n", - "97 2022-06-30 IS3-SP-11-01F specific_surface_area None Kate Hale \n", - "98 2022-06-30 IS3-SP-11-01F specific_surface_area None Kate Hale \n", - "99 2022-06-30 IS3-SP-11-01F specific_surface_area None Kate Hale \n", - "\n", - "[100 rows x 29 columns]" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Import layer measurements\n", "from snowexsql.api import LayerMeasurements\n", @@ -1442,397 +222,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
version_numberequipmentvaluelatitudelongitudenorthingeastingelevationutm_zonegeom...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
0NoneNone101.09673639.034358-108.1909074.324345e+06743146.962029None12POINT (743146.962 4324344.879)...2020-01-282022-07-05 16:45:41.402741+00:00None1320356https://doi.org/10.5067/Q2LFK0QSVGS22022-06-30pulse EKKO Pro multi-polarization 1 GHz GPRdepthcmTate Meehan
1NoneNone101.09673639.034358-108.1909074.324345e+06743146.933029None12POINT (743146.933 4324344.839)...2020-01-282022-07-05 16:45:41.402741+00:00None1320357https://doi.org/10.5067/Q2LFK0QSVGS22022-06-30pulse EKKO Pro multi-polarization 1 GHz GPRdepthcmTate Meehan
2NoneNone103.53280139.034350-108.1909134.324344e+06743146.462029None12POINT (743146.462 4324343.986)...2020-01-282022-07-05 16:45:41.402741+00:00None1320378https://doi.org/10.5067/Q2LFK0QSVGS22022-06-30pulse EKKO Pro multi-polarization 1 GHz GPRdepthcmTate Meehan
3NoneNone104.75083439.034350-108.1909134.324344e+06743146.454029None12POINT (743146.454 4324343.945)...2020-01-282022-07-05 16:45:41.402741+00:00None1320379https://doi.org/10.5067/Q2LFK0QSVGS22022-06-30pulse EKKO Pro multi-polarization 1 GHz GPRdepthcmTate Meehan
4NoneNone104.75083439.034350-108.1909134.324344e+06743146.447029None12POINT (743146.447 4324343.904)...2020-01-282022-07-05 16:45:41.402741+00:00None1320380https://doi.org/10.5067/Q2LFK0QSVGS22022-06-30pulse EKKO Pro multi-polarization 1 GHz GPRdepthcmTate Meehan
..................................................................
95NoneNone109.62296639.034313-108.1909094.324340e+06743146.897029None12POINT (743146.897 4324339.877)...2020-01-282022-07-05 16:45:41.402741+00:00None1320471https://doi.org/10.5067/Q2LFK0QSVGS22022-06-30pulse EKKO Pro multi-polarization 1 GHz GPRdepthcmTate Meehan
96NoneNone109.62296639.034313-108.1909094.324340e+06743146.915029None12POINT (743146.915 4324339.839)...2020-01-282022-07-05 16:45:41.402741+00:00None1320472https://doi.org/10.5067/Q2LFK0QSVGS22022-06-30pulse EKKO Pro multi-polarization 1 GHz GPRdepthcmTate Meehan
97NoneNone108.40493339.034313-108.1909094.324340e+06743146.934029None12POINT (743146.934 4324339.802)...2020-01-282022-07-05 16:45:41.402741+00:00None1320473https://doi.org/10.5067/Q2LFK0QSVGS22022-06-30pulse EKKO Pro multi-polarization 1 GHz GPRdepthcmTate Meehan
98NoneNone108.40493339.034312-108.1909094.324340e+06743146.953029None12POINT (743146.953 4324339.764)...2020-01-282022-07-05 16:45:41.402741+00:00None1320474https://doi.org/10.5067/Q2LFK0QSVGS22022-06-30pulse EKKO Pro multi-polarization 1 GHz GPRdepthcmTate Meehan
99NoneNone108.40493339.034312-108.1909094.324340e+06743146.971029None12POINT (743146.971 4324339.727)...2020-01-282022-07-05 16:45:41.402741+00:00None1320475https://doi.org/10.5067/Q2LFK0QSVGS22022-06-30pulse EKKO Pro multi-polarization 1 GHz GPRdepthcmTate Meehan
\n", - "

100 rows × 23 columns

\n", - "
" - ], - "text/plain": [ - " version_number equipment value latitude longitude northing \\\n", - "0 None None 101.096736 39.034358 -108.190907 4.324345e+06 \n", - "1 None None 101.096736 39.034358 -108.190907 4.324345e+06 \n", - "2 None None 103.532801 39.034350 -108.190913 4.324344e+06 \n", - "3 None None 104.750834 39.034350 -108.190913 4.324344e+06 \n", - "4 None None 104.750834 39.034350 -108.190913 4.324344e+06 \n", - ".. ... ... ... ... ... ... \n", - "95 None None 109.622966 39.034313 -108.190909 4.324340e+06 \n", - "96 None None 109.622966 39.034313 -108.190909 4.324340e+06 \n", - "97 None None 108.404933 39.034313 -108.190909 4.324340e+06 \n", - "98 None None 108.404933 39.034312 -108.190909 4.324340e+06 \n", - "99 None None 108.404933 39.034312 -108.190909 4.324340e+06 \n", - "\n", - " easting elevation utm_zone geom ... \\\n", - "0 743146.962029 None 12 POINT (743146.962 4324344.879) ... \n", - "1 743146.933029 None 12 POINT (743146.933 4324344.839) ... \n", - "2 743146.462029 None 12 POINT (743146.462 4324343.986) ... \n", - "3 743146.454029 None 12 POINT (743146.454 4324343.945) ... \n", - "4 743146.447029 None 12 POINT (743146.447 4324343.904) ... \n", - ".. ... ... ... ... ... \n", - "95 743146.897029 None 12 POINT (743146.897 4324339.877) ... \n", - "96 743146.915029 None 12 POINT (743146.915 4324339.839) ... \n", - "97 743146.934029 None 12 POINT (743146.934 4324339.802) ... \n", - "98 743146.953029 None 12 POINT (743146.953 4324339.764) ... \n", - "99 743146.971029 None 12 POINT (743146.971 4324339.727) ... \n", - "\n", - " date time_created time_updated id \\\n", - "0 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320356 \n", - "1 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320357 \n", - "2 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320378 \n", - "3 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320379 \n", - "4 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320380 \n", - ".. ... ... ... ... \n", - "95 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320471 \n", - "96 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320472 \n", - "97 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320473 \n", - "98 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320474 \n", - "99 2020-01-28 2022-07-05 16:45:41.402741+00:00 None 1320475 \n", - "\n", - " doi date_accessed \\\n", - "0 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", - "1 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", - "2 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", - "3 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", - "4 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", - ".. ... ... \n", - "95 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", - "96 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", - "97 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", - "98 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", - "99 https://doi.org/10.5067/Q2LFK0QSVGS2 2022-06-30 \n", - "\n", - " instrument type units observers \n", - "0 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", - "1 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", - "2 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", - "3 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", - "4 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", - ".. ... ... ... ... \n", - "95 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", - "96 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", - "97 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", - "98 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", - "99 pulse EKKO Pro multi-polarization 1 GHz GPR depth cm Tate Meehan \n", - "\n", - "[100 rows x 23 columns]" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Import the point measurements class\n", "from snowexsql.api import PointMeasurements\n", diff --git a/book/tutorials/snowex_database/4_get_spiral_example.ipynb b/book/tutorials/snowex_database/4_get_spiral_example.ipynb index 45d9140..6560e4d 100644 --- a/book/tutorials/snowex_database/4_get_spiral_example.ipynb +++ b/book/tutorials/snowex_database/4_get_spiral_example.ipynb @@ -26,7 +26,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -43,104 +43,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
depthsite_idpit_idbottom_depthcommentssample_asample_bsample_cvalueflags...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
067.01N1COGM1N1_20200208NoneNoneNoneNoneNone-7.5None...2020-02-082024-08-15 19:56:43.640672+00:00None2367521https://doi.org/10.5067/DUD2VZEVBJ7S2022-06-30NonetemperatureNoneNone
\n", - "

1 rows × 29 columns

\n", - "
" - ], - "text/plain": [ - " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", - "0 67.0 1N1 COGM1N1_20200208 None None None None \n", - "\n", - " sample_c value flags ... date time_created \\\n", - "0 None -7.5 None ... 2020-02-08 2024-08-15 19:56:43.640672+00:00 \n", - "\n", - " time_updated id doi date_accessed \\\n", - "0 None 2367521 https://doi.org/10.5067/DUD2VZEVBJ7S 2022-06-30 \n", - "\n", - " instrument type units observers \n", - "0 None temperature None None \n", - "\n", - "[1 rows x 29 columns]" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Pick the first one we find\n", "site_id = LayerMeasurements().all_site_ids[0]\n", @@ -161,397 +66,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
version_numberequipmentvaluelatitudelongitudenorthingeastingelevationutm_zonegeom...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
01CRREL_C81.039.03636-108.220984.324487e+06740536.6994263030.00000012POINT (740536.699 4324487.049)...2020-01-282022-06-30 22:56:52.635035+00:00None5552https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
11CRREL_C96.039.03636-108.220974.324487e+06740537.5651123030.00000012POINT (740537.565 4324487.075)...2020-01-282022-06-30 22:56:52.635035+00:00None5553https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
21CRREL_C93.039.03637-108.220954.324488e+06740539.2625513029.70000012POINT (740539.263 4324488.238)...2020-01-282022-06-30 22:56:52.635035+00:00None5554https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
31CRREL_C88.039.03637-108.220924.324488e+06740541.8596103032.00000012POINT (740541.860 4324488.318)...2020-01-282022-06-30 22:56:52.635035+00:00None5555https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
41CRREL_C98.039.03638-108.221104.324489e+06740526.2433203028.00000012POINT (740526.243 4324488.951)...2020-01-282022-06-30 22:56:52.635035+00:00None5594https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
..................................................................
3871CRREL_A101.039.03427-108.219254.324260e+06740693.5598353031.70000012POINT (740693.560 4324259.641)...2020-02-112022-06-30 22:56:52.635035+00:00None33950https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
3881CRREL_A105.039.03434-108.219244.324267e+06740694.1878663031.00000012POINT (740694.188 4324267.437)...2020-02-112022-06-30 22:56:52.635035+00:00None33951https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
3891CRREL_A107.039.03436-108.219244.324270e+06740694.1199573031.00000012POINT (740694.120 4324269.657)...2020-02-112022-06-30 22:56:52.635035+00:00None33952https://doi.org/10.5067/9IA978JIACAR2022-06-30magnaprobedepthcmNone
3901ruler67.039.03462-108.221454.324293e+06740501.9156743029.90991212POINT (740501.916 4324292.667)...2020-02-082022-06-30 22:56:52.635035+00:00None41832https://doi.org/10.5067/9IA978JIACAR2022-06-30pit rulerdepthcmNone
3911ruler112.039.03441-108.219634.324274e+06740660.1874683028.92993212POINT (740660.187 4324274.175)...2020-02-112022-06-30 22:56:52.635035+00:00None41907https://doi.org/10.5067/9IA978JIACAR2022-06-30pit rulerdepthcmNone
\n", - "

392 rows × 23 columns

\n", - "
" - ], - "text/plain": [ - " version_number equipment value latitude longitude northing \\\n", - "0 1 CRREL_C 81.0 39.03636 -108.22098 4.324487e+06 \n", - "1 1 CRREL_C 96.0 39.03636 -108.22097 4.324487e+06 \n", - "2 1 CRREL_C 93.0 39.03637 -108.22095 4.324488e+06 \n", - "3 1 CRREL_C 88.0 39.03637 -108.22092 4.324488e+06 \n", - "4 1 CRREL_C 98.0 39.03638 -108.22110 4.324489e+06 \n", - ".. ... ... ... ... ... ... \n", - "387 1 CRREL_A 101.0 39.03427 -108.21925 4.324260e+06 \n", - "388 1 CRREL_A 105.0 39.03434 -108.21924 4.324267e+06 \n", - "389 1 CRREL_A 107.0 39.03436 -108.21924 4.324270e+06 \n", - "390 1 ruler 67.0 39.03462 -108.22145 4.324293e+06 \n", - "391 1 ruler 112.0 39.03441 -108.21963 4.324274e+06 \n", - "\n", - " easting elevation utm_zone geom \\\n", - "0 740536.699426 3030.000000 12 POINT (740536.699 4324487.049) \n", - "1 740537.565112 3030.000000 12 POINT (740537.565 4324487.075) \n", - "2 740539.262551 3029.700000 12 POINT (740539.263 4324488.238) \n", - "3 740541.859610 3032.000000 12 POINT (740541.860 4324488.318) \n", - "4 740526.243320 3028.000000 12 POINT (740526.243 4324488.951) \n", - ".. ... ... ... ... \n", - "387 740693.559835 3031.700000 12 POINT (740693.560 4324259.641) \n", - "388 740694.187866 3031.000000 12 POINT (740694.188 4324267.437) \n", - "389 740694.119957 3031.000000 12 POINT (740694.120 4324269.657) \n", - "390 740501.915674 3029.909912 12 POINT (740501.916 4324292.667) \n", - "391 740660.187468 3028.929932 12 POINT (740660.187 4324274.175) \n", - "\n", - " ... date time_created time_updated id \\\n", - "0 ... 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5552 \n", - "1 ... 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5553 \n", - "2 ... 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5554 \n", - "3 ... 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5555 \n", - "4 ... 2020-01-28 2022-06-30 22:56:52.635035+00:00 None 5594 \n", - ".. ... ... ... ... ... \n", - "387 ... 2020-02-11 2022-06-30 22:56:52.635035+00:00 None 33950 \n", - "388 ... 2020-02-11 2022-06-30 22:56:52.635035+00:00 None 33951 \n", - "389 ... 2020-02-11 2022-06-30 22:56:52.635035+00:00 None 33952 \n", - "390 ... 2020-02-08 2022-06-30 22:56:52.635035+00:00 None 41832 \n", - "391 ... 2020-02-11 2022-06-30 22:56:52.635035+00:00 None 41907 \n", - "\n", - " doi date_accessed instrument type \\\n", - "0 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "1 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "2 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "3 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "4 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - ".. ... ... ... ... \n", - "387 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "388 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "389 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 magnaprobe depth \n", - "390 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", - "391 https://doi.org/10.5067/9IA978JIACAR 2022-06-30 pit ruler depth \n", - "\n", - " units observers \n", - "0 cm None \n", - "1 cm None \n", - "2 cm None \n", - "3 cm None \n", - "4 cm None \n", - ".. ... ... \n", - "387 cm None \n", - "388 cm None \n", - "389 cm None \n", - "390 cm None \n", - "391 cm None \n", - "\n", - "[392 rows x 23 columns]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# We import the points measurements because snow depths is a single value at single location and date\n", "from snowexsql.api import PointMeasurements \n", @@ -570,35 +87,14 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": { "tags": [ "nbsphinx-gallery", "nbsphinx-thumbnail" ] }, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(128.66274298237227, 0.5, 'Northing [m]')" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAAHFCAYAAADi2cDGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADinElEQVR4nOzdd3xUVdrA8d+dPpn0Qgok9N4FFEQEpSkorrg2dAV1XVmx4q4K7go2cJEXFRBdXVxQbKuICjZAFFEQI0WRIiChhhASkkzq1PP+MZkhk5mQBIIYeb77mZW599x7z9wk89zTNaWUQgghhBCNju5MZ0AIIYQQJ0eCuBBCCNFISRAXQgghGikJ4kIIIUQjJUFcCCGEaKQkiAshhBCNlARxIYQQopGSIC6EEEI0UhLEhRBCiEZKgvgp2Lx5MyNHjiQjIwOr1Up8fDz9+vVj0aJFIWmVUsyePZsOHTpgNptJTU3lr3/9KwUFBUHpdu7cyd/+9jd69epFbGws8fHx9O/fn3fffbdOefryyy/RNA1N01iwYEHYNBdffDGaptGiRYv6fuQzbsGCBWiaxt69e2tNu379eq688koyMjIwm80kJyfTr18/7r///tOf0dOsPvfhVEybNo3333+/xut///33p/X6DWXq1Klomha0bdCgQQwaNOi0XfONN97g2WefPS3nbtGiBePGjWuw882bN6/G74twli1bxk033UTXrl0xGo0h99av6vfRunXrQvaPGzeOyMjIoG1ff/01f/7zn+nVqxdms/lX+T1vzCSIn4LCwkLS09OZNm0aH3/8Ma+++iotWrTgT3/6E0888URQ2r/97W/cd999XHHFFSxbtoyHHnqIN954g6FDh+JyuQLpli9fzkcffcRVV13FO++8w+uvv07btm25+uqreeyxx+qct6ioKObPnx+yPSsriy+//JLo6OiT/+CNwEcffcT555+P3W5nxowZLF++nOeee47+/fvz9ttvn+nsNRo1BXFRu9MZxBtafYP4kiVL+Pbbb+nUqRPdu3ev0zEPPPBAndJ9/vnnrFy5koyMDM4///w65+mspUSDO++881R6enrg/cGDB5Ver1d33XVXULo33nhDAeqll14KbDt69Kjyer0h5xw5cqSKiIhQFRUVJ7z2F198oQD15z//WQFq586dQfv/8Y9/qGbNmqlLL71UNW/e/CQ+3Zn13//+VwEqKyvrhOkuvPBC1bp1a+VyuUL2eTye05S7X09d78OpstlsauzYsTVePzMz87Rev6FMmTJFVf+6GzhwoBo4cOBpu+bIkSNP299Y8+bNw/5cTlbnzp3rdS+q/g1NmDAh5N76+b+PLrnkEgWoDz/8MGj/2LFjlc1mq/HcTz/99K/ye96YSUn8NEhMTMRgMATef/vtt3g8HkaMGBGU7rLLLgNg8eLFQceGq5o699xzKSsr49ixY3XKw9ChQ0lPT+eVV14JbPN6vSxcuJCxY8ei04X+6J9//nkuvPBCmjRpgs1mo2vXrsyYMSOopgB81ZBdunQhMzOTAQMGEBERQatWrXjqqafwer2BdDVV+fqr2L788svAthUrVnDFFVfQrFkzLBYLbdq04fbbbycvL69On7e6/Pz8kJ+DX/XP3qJFCy677DI+/fRTzjnnHKxWKx06dAi6d34//fQTV1xxBXFxcVgsFnr06MHChQsD+5VSJCcnM2HChMA2j8dDXFwcOp2OI0eOBLbPmjULg8FAYWHhCT/Lt99+S//+/bFYLKSlpTFp0qSQn4nf22+/Tb9+/bDZbERGRjJ8+HA2bdoUlMZfhbl161YGDx6MzWYjKSmJO++8k7KyskA6TdMoLS1l4cKFgSrR6tXPxcXF/PWvfyUxMZGEhARGjx5NdnZ2UJpVq1YxaNAgEhISsFqtZGRkcNVVVwVdqyZvvPEG/fr1IzIyksjISHr06BFSw/TKK6/QvXt3LBYL8fHxXHnllWzfvr3Wc4fjdDp54oknAs1eSUlJ3HzzzRw9erReeRs0aBAfffQR+/btC9y7qn/Xdb2Oy+XigQceICUlhYiICC644AK+++67On+eRx99lPPOO4/4+Hiio6M555xzmD9/PqrKulctWrRg69atrF69OpDP2prawn1/nMi4cePo1KkTkyZNwuPxNOi5z3ZytxqA1+vF7XZz9OhR5s2bx2effcaDDz4Y2O90OgEwm81Bx/nbkn788cdar/HFF1+QlJREkyZN6pQnnU7HuHHjePXVVwN/NMuXL+fgwYPcfPPNYY/55ZdfGDNmDK+99hrLli3j1ltv5emnn+b2228PSZuTk8MNN9zAjTfeyIcffsill17KpEmTwvYHqItffvmFfv368cILL7B8+XIeeeQR1q9fzwUXXFBjwDqRfv36sX79eu6++27Wr19f6zl++OEH7r//fu677z4++OADunXrxq233spXX30VSPPzzz9z/vnns3XrVmbPns17771Hp06dGDduHDNmzAB8ge/iiy9m5cqVgeO+//57CgsLsVgsfP7554HtK1euDPR9qMm2bdsYPHgwhYWFLFiwgBdffJFNmzaFNNeAr+r7+uuvp1OnTvzvf//jtddeo7i4mAEDBrBt27agtC6XixEjRjB48GDef/997rzzTv79739z7bXXBtKsW7cOq9XKiBEjWLduHevWrWPevHlB5/nzn/+M0WjkjTfeYMaMGXz55ZfceOONgf179+5l5MiRmEwmXnnlFT799FOeeuopbDZb4O+iJo888gg33HADaWlpLFiwgCVLljB27Fj27dsXSDN9+nRuvfVWOnfuzHvvvcdzzz3Hjz/+SL9+/di1a9cJz1+d1+vliiuu4KmnnmLMmDF89NFHPPXUU6xYsYJBgwZRXl5e57zNmzeP/v37k5KSErh3/jbh+lzntttuY+bMmdx000188MEHXHXVVYwePTqkL01N9u7dy+23387//vc/3nvvPUaPHs1dd93F448/HkizZMkSWrVqRc+ePQP5XLJkSb3uXW30ej3Tp09n69atQQ+9ogGc6aqA34Pbb79dAQpQJpNJzZs3L2j/5s2bFaAef/zxoO2ff/554JgTefnllxWgnnvuuVrz4q++euedd9SePXuUpmlq2bJlSimlrr76ajVo0CClVO1VfR6PR7lcLvXqq68qvV6vjh07Ftg3cOBABaj169cHHdOpUyc1fPjwwPuaqnz9efziiy/CXtvr9SqXy6X27dunAPXBBx/Ues7q8vLy1AUXXBD4uRiNRnX++eer6dOnq+Li4qC0zZs3VxaLRe3bty+wrby8XMXHx6vbb789sO26665TZrNZ7d+/P+j4Sy+9VEVERKjCwkKllFL/+c9/FBBI98QTT6gOHTqoUaNGqZtvvlkppZTT6VQ2m01Nnjz5hJ/j2muvVVarVeXk5AS2ud1u1aFDh6D7sH//fmUwGEKabIqLi1VKSoq65pprAtvGjh0b9vfpySefVID6+uuvA9tqq06/4447grbPmDFDAerw4cNKKaXeffddBajNmzef8HNWt2fPHqXX69UNN9xQY5qCggJltVrViBEjgrbv379fmc1mNWbMmMC2ulSnv/nmmwpQixcvDkqXmZmpgMDfdV3yplTNf2N1vc727dsVoO67776gdK+//roC6l2d7v+bfuyxx1RCQkJQs119q9Orqkt1+jvvvKOUUuqCCy5QzZo1U+Xl5Uqp8NXpVUl1eu2kJN4AJk+eTGZmJh999BG33HILd955JzNnzgzs7969OxdeeCFPP/0077zzDoWFhaxdu5bx48ej1+tPWH30ySefMGHCBP74xz9y11131StfLVu2ZNCgQbzyyivk5+fzwQcfcMstt9SYftOmTYwaNYqEhAT0ej1Go5GbbroJj8fDzp07g9KmpKRw7rnnBm3r1q1bUCmpPnJzcxk/fjzp6ekYDAaMRiPNmzcHOKmq0YSEBNasWUNmZiZPPfUUV1xxBTt37mTSpEl07do1pJq+R48eZGRkBN5bLBbatWsX9HlWrVrF4MGDSU9PDzp23LhxlJWVBUpaQ4YMAQiUxlesWMHQoUMZMmQIK1asAHyl3NLS0kDamnzxxRcMHjyY5OTkwDa9Xh9UYgb47LPPcLvd3HTTTbjd7sDLYrEwcODAoKYLvxtuuCHo/ZgxYwLXrKtRo0YFve/WrRtA4L716NEDk8nEX/7yFxYuXMiePXvqdN4VK1bg8XiCmiWqW7duHeXl5SG9tNPT07n44ouDaj3qYtmyZcTGxnL55ZcH3cMePXqQkpISuId1yVtDXMf/c6j+c7rmmmvCNhOFs2rVKoYMGUJMTEzgb/qRRx4hPz+f3Nzck8r/qfjXv/7FwYMHee655371a/9eSRBvABkZGfTu3ZsRI0bwwgsv8Je//IVJkyYFtW+988479O/fn2uuuYa4uDguuugiRo8eTY8ePWjatGnY83722WeMHj2aoUOH8vrrr9c4jONEbr31VpYuXcqsWbOwWq388Y9/DJtu//79DBgwgEOHDvHcc88FAuDzzz8PEFTFB74gWZ3ZbA5JVxder5dhw4bx3nvv8cADD/D555/z3Xff8e2334a9dn307t2bBx98kHfeeYfs7Gzuu+8+9u7dG6j+9qvL58nPzyc1NTUkXVpaWmA/QPPmzWndujUrV64MBHd/ED948CA///wzK1euxGq11tr7Nj8/n5SUlJDt1bf529r79OmD0WgMer399tshDy0GgyHkM/vP6f8cdVH9HP4mI/9989+HJk2aMGHCBFq3bk3r1q1r/RL3/+00a9asxjT+fNb0M6nP5wDfPSwsLMRkMoXcw5ycnMA9rEveGuI6/vxX/1mH+9mF89133zFs2DAAXn75Zb755hsyMzN5+OGHgVP7uzpZ559/Pn/4wx946qmn6twkIE6sbo9zol7OPfdcXnzxRfbs2UNSUhIATZo04eOPPyY3N5ecnByaN2+O1Wpl3rx5YQPrZ599xh/+8AcGDhzI4sWLMZlMJ5WX0aNHM2HCBJ566iluu+02rFZr2HTvv/8+paWlvPfee4ESMPjGwp8si8UCgMPhCNpePaD89NNP/PDDDyxYsICxY8cGtu/evfukrx2O0WhkypQpPPPMM/z000/1Pj4hIYHDhw+HbPd35EpMTAxsGzx4MB988AGrV6/G6/UyaNAgoqKiSEtLY8WKFaxcuZIBAwaE9JMId82cnJyQ7dW3+a/97rvvBv38auJ2u8nPzw8KBv5z1iVA1MeAAQMYMGAAHo+H77//njlz5nDvvfeSnJzMddddF/YY/9/NwYMHQ2o+/Pz5rOlnUvXnURf+znmffvpp2P1RUVF1zltDXMf/+XJycoIe9P0/u9q89dZbGI1Gli1bFvhbBM74kMHp06fTpUsXpk2bdkbz8XshJfHT4IsvvkCn09GqVauQfU2aNKFbt27ExMTw4osvUlpayp133hmUZvny5fzhD3/gggsu4P3336/1i/5ErFYrjzzyCJdffjl//etfa0znL+VXvZZSipdffvmkr+3v4Vq9496HH35Y67UB/v3vf5/0tcN9scPxqnl/6bk+Bg8ezKpVq0J6X7/66qtERETQt2/fwLYhQ4Zw5MgRnn32Wfr27Rv4Yh48eDBLliwhMzOz1qp0gIsuuojPP/88qFe7x+MJGes+fPhwDAYDv/zyC7179w77qu71118Pev/GG28ABPVAP9nalXD0ej3nnXdeoHZn48aNNaYdNmwYer2eF154ocY0/fr1w2q1hnSmPHjwYKDpoz4uu+wy8vPz8Xg8Ye9f+/bt65w3qPne1fU6/p9D9Z/T//73P9xud62fR9M0DAYDer0+sK28vJzXXnutznk9HTp06MAtt9zCnDlz2L9//69yzd8zKYmfgr/85S9ER0dz7rnnkpycTF5eHu+88w5vv/02f//73wNP7EAgGLZu3ZrCwkI++eQT5s+fz7Rp0zjnnHMC6b7++mv+8Ic/kJKSwuTJk0NKwp06dar3RC0TJ05k4sSJJ0wzdOhQTCYT119/PQ888AAVFRW88MILp1Tl1adPH9q3b8/f/vY33G43cXFxLFmyhK+//jooXYcOHWjdujUPPfQQSini4+NZunRpoP34ZAwfPpxmzZpx+eWX06FDB7xeL5s3b+b//u//iIyM5J577qn3OadMmcKyZcu46KKLeOSRR4iPj+f111/no48+YsaMGcTExATS+mfFW758OY8++mhg+5AhQwK1DXUJ4v/4xz/48MMPufjii3nkkUeIiIjg+eefp7S0NChdixYteOyxx3j44YfZs2cPl1xyCXFxcRw5coTvvvsOm80WlA+TycT//d//UVJSQp8+fVi7di1PPPEEl156KRdccEEgXdeuXfnyyy9ZunQpqampREVFBYJMXbz44ousWrUqMLNhRUVFYOjeiT5/ixYtmDx5Mo8//jjl5eVcf/31xMTEsG3bNvLy8nj00UeJjY3ln//8J5MnT+amm27i+uuvJz8/n0cffRSLxcKUKVPqnE+A6667jtdff50RI0Zwzz33cO6552I0Gjl48CBffPEFV1xxBVdeeWWd8ua/d++99x4vvPACvXr1QqfT0bt37zpfp2PHjtx44408++yzGI1GhgwZwk8//cTMmTPr9B0wcuRIZs2axZgxY/jLX/5Cfn4+M2fODFso6Nq1K2+99RZvv/02rVq1wmKx0LVr1xrPvW/fPjIzMwHfyBIgMKtkixYtwj40VjV16lRef/11vvjiC2w2W9C+o0ePsnr1agC2bNkC+PoGJSUlkZSUxMCBA2v97GeVM92zrjF75ZVX1IABA1RiYqIyGAwqNjZWDRw4UL322mshaf/973+rjh07qoiICBUZGakGDBig3n///ZB0/l60Nb1q6tHtV703aE3C9ZxdunSp6t69u7JYLKpp06bq73//u/rkk09Crjtw4EDVuXPnkHOOHTs25Jw7d+5Uw4YNU9HR0SopKUnddddd6qOPPgo557Zt29TQoUNVVFSUiouLU1dffbXav3+/AtSUKVMC6eraO/3tt99WY8aMUW3btlWRkZHKaDSqjIwM9ac//Ult27YtKG3z5s3VyJEjQ84RbjKQLVu2qMsvv1zFxMQok8mkunfvrv773/+GzUPPnj0VoL755pvAtkOHDikgpHfwiXzzzTeqb9++ymw2q5SUFPX3v/9dvfTSS2Hvw/vvv68uuugiFR0drcxms2revLn64x//qFauXBlI4+8R/OOPP6pBgwYpq9Wq4uPj1V//+ldVUlISdL7Nmzer/v37q4iICAUE7kdNk71UH3mwbt06deWVV6rmzZsrs9msEhIS1MCBA0Mm/ajJq6++qvr06aMsFouKjIxUPXv2DLnf//nPf1S3bt2UyWRSMTEx6oorrlBbt24NSlPXyV5cLpeaOXNm4O8gMjJSdejQQd1+++1q165d9crbsWPH1B//+EcVGxurNE0Lun5dr+NwONT999+vmjRpoiwWi+rbt69at25dnSd7eeWVV1T79u2V2WxWrVq1UtOnT1fz588P+d3Zu3evGjZsmIqKilJArZPU+H/+4V5V83Wi76PJkycrIKR3uv+YcK/TOTlPY6UpVWXUvxDid2/cuHG8++67lJSUnOmsCCFOkbSJCyGEEI2UBHEhhBCikZLqdCGEEKKRkpK4EEII0UhJEBdCCCEaKQniQgghRCMlk738xni9XrKzs4mKijqpudKFEOK3QClFcXExaWlpp22N8IqKilqXtK0rk8kUND1tYyFB/DcmOzv7pOZjFkKI36IDBw6c9GIxJ1JRUYE1Og5cFQ1yvpSUFLKyshpdIJcg/hvjn2P7wIED9Z5eVQghfivsdjvp6emB77SG5nQ6wVWB1nMU6I2ndjKPi5xNH+J0OiWIi1Pjr0KPjo6WIC6EaPROe7OgwYxmOLUgrrTG2z3sN5Pz6dOno2ka9957b2Db1KlT6dChAzabjbi4OIYMGcL69esD+48dO8Zdd91F+/btiYiIICMjg7vvvpuioqKw13A4HPTo0QNN00IWFtE0LeT14osvBqXZsmULAwcOxGq10rRpUx577DGqD7NfvXo1vXr1wmKx0KpVq5BzCCGEaECa1jCvRuo3URLPzMzkpZdeolu3bkHb27Vrx9y5c2nVqhXl5eU888wzDBs2jN27d5OUlER2djbZ2dnMnDmTTp06sW/fPsaPH092dnZgRZ2qHnjgAdLS0vjhhx/C5uO///0vl1xySeB91VWp7HY7Q4cO5aKLLiIzM5OdO3cybtw4bDYb999/PwBZWVmMGDGC2267jUWLFvHNN99wxx13kJSUxFVXXdUQt0oIIURVmganWpJuxEH8jJfES0pKuOGGG3j55ZeJi4sL2jdmzBiGDBlCq1at6Ny5M7NmzcJutwfWp+7SpQuLFy/m8ssvp3Xr1lx88cU8+eSTLF26NGS93U8++YTly5czc+bMGvMSGxtLSkpK4GW1WgP7Xn/9dSoqKliwYAFdunRh9OjRTJ48mVmzZgVK4y+++CIZGRk8++yzdOzYkT//+c/ccsstJ7ymEEKIxuWrr77i8ssvJy0tDU3TeP/99wP7XC4XDz74IF27dsVms5GWlsZNN91EdnZ20DkcDgd33XUXiYmJ2Gw2Ro0axcGDB+udlzMexCdMmMDIkSNrXVvZ6XTy0ksvERMTQ/fu3WtMV1RURHR0NAbD8UqGI0eOcNttt/Haa68RERFR47F33nkniYmJ9OnThxdffBGv1xvYt27dOgYOHBi0Fu/w4cPJzs5m7969gTTDhg0LOufw4cP5/vvvcblcJ/x8QgghToKma5hXPZSWltK9e3fmzp0bsq+srIyNGzfyz3/+k40bN/Lee++xc+dORo0aFZTu3nvvZcmSJbz11lt8/fXXlJSUcNlll+HxeOqVlzNanf7WW2+xcePGwOLy4SxbtozrrruOsrIyUlNTWbFiBYmJiWHT5ufn8/jjj3P77bcHtimlGDduHOPHj6d3796BgFvd448/zuDBg7FarXz++efcf//95OXl8Y9//AOAnJwcWrRoEXRMcnJyYF/Lli3JyckJbKuaxu12k5eXR2pqash1HQ4HDocj8N5ut9d4L4QQQlTTEG3a9Tz+0ksv5dJLLw27LyYmhhUrVgRtmzNnDueeey779+8nIyODoqIi5s+fz2uvvRYowC5atIj09HRWrlzJ8OHD65yXMxbEDxw4wD333MPy5ctP2KX/oosuYvPmzeTl5fHyyy9zzTXXsH79epo0aRKUzm63M3LkSDp16sSUKVMC2+fMmYPdbmfSpEknzI8/WAP06NEDgMceeyxoe/Velv5q9Krb65KmqunTp/Poo4+eMG9CCCFOv+qFKLPZHFT7erKKiorQNI3Y2FgANmzYgMvlCqq5TUtLo0uXLqxdu7ZeQfyMVadv2LCB3NxcevXqhcFgwGAwsHr1ambPno3BYAhUKdhsNtq0aUPfvn2ZP38+BoOB+fPnB52ruLiYSy65hMjISJYsWYLReHy4wapVq/j2228xm80YDAbatGkDQO/evRk7dmyN+evbty92u50jR44AvokAcnJygtLk5uYCx0vkNaUxGAwkJCSEvc6kSZMoKioKvA4cOFDrvRNCCFGpAavT09PTiYmJCbymT59+ytmrqKjgoYceYsyYMYFhwzk5OZhMppB+YMnJySExpDZnrCQ+ePBgtmzZErTt5ptvpkOHDjz44IPo9fqwxymlQqqfhw8fjtls5sMPPwwp1c+ePZsnnngi8D47O5vhw4fz9ttvc95559WYv02bNmGxWAJPTv369WPy5Mk4nU5MJhMAy5cvJy0tLVDN3q9fP5YuXRp0nuXLl9O7d++gB4uqGupJTwghzkon0aYd9hyETrJ1qt/NLpeL6667Dq/Xy7x582pNr5Sq97j6MxbEo6Ki6NKlS9A2m81GQkICXbp0obS0lCeffJJRo0aRmppKfn4+8+bN4+DBg1x99dWArwQ+bNgwysrKWLRoEXa7PVAdkpSUhF6vJyMjI+gakZGRALRu3TowFeDSpUvJycmhX79+WK1WvvjiCx5++GH+8pe/BH6IY8aM4dFHH2XcuHFMnjyZXbt2MW3aNB555JHATR8/fjxz585l4sSJ3Hbbbaxbt4758+fz5ptvnr4bKYQQokE05CRbLpeLa665hqysLFatWhV03pSUFJxOJwUFBUGl8dzcXM4///x6Xec3MU48HL1ez44dO1i4cCF5eXkkJCTQp08f1qxZQ+fOnQFflbx/8hd/NblfVlZWSEe0mhiNRubNm8fEiRPxer20atWKxx57jAkTJgTS+DsrTJgwgd69exMXF8fEiROZOHFiIE3Lli35+OOPue+++3j++edJS0tj9uzZZ8UY8ZzCcjbsyWdPbglepWgaF0HvVgm0aBJ5prMmhPgd03Qamu4UO7bpNFTtqerMH8B37drFF198EdKc2qtXL4xGIytWrOCaa64B4PDhw/z000/MmDGjXtfSVPUpx8QZZbfbiYmJCQyVawy2Hijk402HQAP/b5NW+e/z2yVxQYfgToglDjcfbT/Cp9uPYHe4aREXwZXdUjm/RTy6RjzpghDiuNP9XeY/v+7Cm9EMplM6l3I78X713zrntaSkhN27dwPQs2dPZs2axUUXXUR8fDxpaWlcddVVbNy4kWXLlgWNWIqPjw80x/71r39l2bJlLFiwgPj4eP72t7+Rn5/Phg0bamxODuc3WxIXjUNhqZOPNx/yPcVWeRz0B/O1O4/SLCGCFkm+EvmhonLGv/MDuSWOQPJDReWsycpnSLskHr+kI/pTfaoWQojT6Pvvv+eiiy4KvPfXyI4dO5apU6fy4YcfAsdHOvl98cUXDBo0CIBnnnkGg8HANddcQ3l5OYMHD2bBggX1CuAgQVycos17j51wv6bBhj35tEiKRCnF35duJa/UEVR15VWgAZ/vPEq7xEjGnZtR0+mEECJYA3Zsq6tBgwaFrJtRVV0quC0WC3PmzGHOnDn1unZ1EsRFnTncHr4/UEixw03TaAtdUqM5eKyM6r+vBp2GRa+h0zQ8SpF9rAyATYeK2J1XGkin16BltIXmkRYsBh0epcjcncfwdomkxtY8s15VJ9ObUwjxO3IGJnv5LZEgLmqllOLdH7JZ8N1+ylzHpwRsGmOhR2Jwx7Vokx6zXlflSdS3ItzXW3PYYS9HXxnYDRr0TYkm2ni86kivaSRaDMxfvYeb+rckI9EWNj8bDhQyb80ePtuRi8vrpWNyFH/p14LrzmmGrp5V8SUONwqINOnJL3VS7HCTYDMRbTnF9YmFEL+OM1AS/y2RIC5q9cbGg/zn230h27OLKjhsr+C8pChizQYijTpMlUG0eul4V7YdzXT8D6VdbARRRn1IOp2m4fEq3vluP/de0iGkfXzJj9n89X+b0SrTAfycW8LE93/ihbVZ/Pf6c2iTdOIe8UopPtp2hAWZ+/k5twSTXiPJZgpU8es0OL9lArec15ymMdYTnksIIc6kxvv4IX4VxRVuFny3P+w+f9D7uagcHWDR605YtW1wKzQUeg3SI80n7Ile4nCzMyd4CsQjxQ7ufPcHvAo8XoVO0zDofb/Cmga7j5Zy4ZyvmfrJdrze0DYph9vDml1HueqV9Uz6aBs/55ZgNuhIiDDirdIm4FWwNiufuxf/wMHC8hrzKIT4DfAvRXpKL6lOF79Tq3/Jwx0mIPp5FRxzuPFQe9u016vokRzFrmNlGKqVsJVSeBX4143Ta5CVW0rHtONrur+54UCg9K3TtMDfXfXrvrRuHwk2M3dd2Cqw7YcDBTyzahdrDxRiNh3/tY+1GMKew6ugzOXhxbVZPDGiU9C+Y6VO1uw+So69AqtRT+/m8XRMiZK2eSHOBGkTF6Jmx8qc6HXHq65r0jkjjqNHS8Puq7oIzJ/Pa87jq3YF7fcqhafy9AZNI95iQK/Blv0FpCdE0DU9FoAfs+1B49CrBk2rUUes1YjZqMOrYGHmPq7t2ZQmUWZ2HSlm9qrdrN5XgMmgD3SGMxt0JxzO5lWQub+AoyUOkiJ9M/ct35bDWxsO4D/K7VG8uzmbprFWpozoSEp0zYv5CCFEQ5MgLk4o0WaqNYADtE2OCgriSil2FpWzJb+MvAoXmgYZkWY6tEngv2PO4fkVu3C5fZ3kPJVDzNrEWEiPCq5mz9p3jBizgYwmkZj04UvfiZEmEmymQHBWSoFBx7g3NzD7ym58tvUwO4+VohTodVrgWINOq1Pv9hx7BUmRZjL3HePN730L1Li8ip15pRwqduBV8H22nWU7chl3bgaTh7bDaqzfWE8hxEk6yzu2Nd6ci1/Fha0TMelr/jXRadCzaQztU6NJiDKj4Qvgqw4VsepQEUcrXCh8pdr9xQ7u+eAn1uw5xsjuaWiahv/5oGN8BBlRoe3kkUY9u/ceo9zhZkj7JlR/nogyG0iw+WZA8gdjTfMF6gqXl78v3cquI8UcLPaNTVdKBWoG6jpZYY7dwX/W7uE/32QBvpqDDdl2DtgdQfnxeBWvrN/HuNc34vZ4azibEKJhNcQKZo03FDbenItfRaTZwG39mofdp9N8pdnbz28JwMCuqZiMOnbbK9hZFNohzKjXsOp1TF/5MylxVgZ1bIIXiDTqSLOZwpaIdZqGphT7s+1c3iWFpjEWdBxPF28z1hiMFVBY7qLQ6QkE26rt+xXu2gNtrEnPS9/s4fMdR3FWps8pdlJY4Q5/TQVr9uTz6Y7cWs8thBCnSoK4qNUfuzfl/kFtiLUGj51ulWDjmT90o33lIicxNhNX9G3OruIKqobjOLOBjnFWOsZF0D7OSqf4CGZ/sYveLRNIijKTajMF9Q738yqFy+PFq+BIXikmvY53bzmX5ChTZeBWWMIMUwMwaGAz6Igy6ihze4ky+aq3XW5voETuVVDq9NT4EGDAV7rWa1rQH8oBe8UJ75deg0Xf17wuvFcpduTYWftLHj8eLJRSuxCnwt+x7VRfjZS0iYs6uaxzCpd0aMK6PfnklzhIjrJwXquEkMlVbBYjh4qPT6vaxGokzWYKCpQ6TSOv2MG/PttBz6YxOOyOoKDv8njJK3dR7Doe3GwGHUcKy2mdGMm3EwfxwjdZPPvlLyH51IAoow5T0IQz0DU5koIyF3llLo5VuEiMNNE6xooODYfXQ4TRgE6DwyUO8ivcVDg9dKx8ONEBaMfbz2srwXsUHCgIPzRty6FCFq3fR0GZ6/hnM+kZ3bMZA9omnfC8QogwzvI2cQniok6OFJWz/MfDHK4MTjspYsMveVzQvgk9WsQHpTXoNNxehUmnkRrhK72HKy3nFldQ7o7C6fGVjjXA6fGyv9gR0vZd6vayLPMgI3s3IzU+gvsGteEPXVO5490fKHd5AuePMuowVplwxqTTSLOZiTTqIc53jRiTnlizAZ2mUehwcczhYb+9gq8PFuJRvqFw0SY9XuUrhfvP7VWgQ2HUa9RQmw74mhmSIoNXVapwelj2wyGW/xxazV7q9PDa+n14lWJguyYh+4UQoiaN9/FD/GqO2it44+sscqqVLsscHpb/eJjvducFbR/QKgF95VCxE/EP4erYPC7QoS23zBUSwI+nV3yx5XCghN0ywcY9F7Y+3ttcA1OVCWdMOo3W0VZshuO/5k2sRuIqA7jd6eaYw8PRMidfHSgMDHMrc3rCDj3zKF87e9Moc62f6+qeTSkqd7HxQAFrf8nj+ZU/s2rn0RMe996mQ4F2d4C1e/IZt2gD58xYxYXPfcVzX/5CYbnrBGcQ4ix0yhO9NEBJ/gySkrio1Vfbj+D2Kmrqy71mey7dMuKwVLY733BOMz7fdRST7vgfhgbYjHoiDDrf/OleRanbQ5nDTfcW8Wz35nG0oJyyWqqqSyrcHMovo1nlvOrDOzRh+5FiPtyaE5iz3R/Ek60mdFXGk5v1GrbKoV9KKY45fMXpLUdLgq7h9ngpdrjRaVqg/dx/DrcXUiLN7C+qoNzlDbknep1G6wQb2YXljF30PR6l6BgbgVEH7lp6w5e7PGw5VMg5GXFMWrqNWV/sRq8ReLhYv6+Amat2sXxCfzomR53wXEKcNc7yyV4a7+OH+FWUOtz8cqQkZKWyqjxKsT27KPC+U0o0j13SEX/Y12m+EnC0UY9B861uZtBpxJgMJFmNuD2KHu2akBAXfuUyh8fLkTInWcUVZBVXsGTTIXYfKQZ8Afrega156rJOpESbA8FWp/kWY6lajR9l1AdK8RWVHeY8XsWhEmdQMNY0jcN2By6P1zckjeDhaJqm0SMlmpgwNQ39W8TRKdnG13vy8CiFzaDDZtTjVXX7kiiqcDPj813M+mJ35b09vk8pyCt1ctm/10lnOCH8zvKSeOPNufhVlJ6o8beSToOSatW8w9o34aGh7dE0jTizMdC2XH0st1GnY/mWbDRNIz1M6bLY5eFgqZMSty/oehUcKizn5a/2sGJrTuBc5zWP57qezQLHGatc63g+j7/3V9l7wjydWE16vAo2HypGAU6vL2BWDeRmg45eadFc1CqeyUPa8q/LO7H6rgu4sXc6BwrLA+ePrHxwOMFQ+yAlDhfTlv9c436PV3GgoJyllZ9dCHF2kyAuTijCXPvMY14FEebQUmnvjDjaJkXWujDK1kNFlFS4SIyxBF3P5fWSG6YN2B9KV247wq7KEjlA/9aJmCvbv8NVXVedec7f+c2o07BUi7BGvYbJoHG01Mm6vYXkFjtxer148bXLK6UwG3Rc2jmFudf04M4LW/OnPhm0TYrk423hg6uhsvahOq9SlLk9lLjcFDvdvLbxEOWuE5eyDTqNL3flnTCNEGeNs7wkLm3i4oQiLUYyEm0cyCsNqnJWSuGsbCc36zU6NI0JOVbTNAa2TeKTH7JD9nmVwuVVgclXlm/NYUS3NHq3SeSrrUcAsDs9IcdVpdPg611HaVtZgrca9dw1sA2zVu1EAcVON5FVxpEXuzzEVD5smPQ6zDoNhxfaxUew5WhJ4PNpmkaczURhqYuiCjcbD9kx6jWU8k1+85/re3Bpp5SQ/JQ43GRXm+SmuErP+ViTgbwKV+D+5Zb7hruVOD2UVHgq73ftD02+Me51m21OiN89neZ7neo5GikJ4qJWAzs24fWv90Jl8Ch0usmrcAdKuwadxoc/ZnNlj6ZYqs0ZbjaEPuG6vN6gDmw6DXYcLGRfTjEjejTl3HaJZO7Ko7yGdt8Sl4e8ChcOj5csewVdm8dxTrNYdJrGeS3ieXRkZ97bfJAdh4sD1dmapuH0KoqcbqIrA3ui1Uh2qZNOiREcLK6goMJdZU1xjcQoEw63l/4t4mmdGEnn1Cj+0DU16DO6vV5+PGTnl6MlHMwvRfNNPBvYX+b2UuJyYzPoMet1JFqMFFS4yCpxUOL2UuzwUOrwBXC9zre0qsmgC+qlXp1HQb+W8TXur87p8ZJb7MBi1JFoO3HPeiFE4yJBXNQqNS6Ca89vziebDvFzfmmgV7ef26tYueMIu3JLeGh4B0xVAneLyl7kfh6lggJ4q2gLLaIsgarmrH0FRNlMjD4vg/+u3cvREmcgrVKKrOIK8qq009vx8PcPt9I8zso1PZrSOz2ODslRTB7ekQqXh91HilnxUw72ymr5/Ao3XgXxFgNmvY6mNhPHHG6GtYjnp7xSdh4rw1lZO9CjaQwTLmjFwDaJYe/LZzuO8N9v91JaWWPQNMJEpFFPoTP4/vxir6B9bARmnW/Ym07TKHF7fT30HcdrG/yl66RoM4eO1byOeZTFwFXd02rc71fqdPPCN1m8vekQxZU/s84pUdzRvyWDZTy6+J3w9a851clepCQufufSE2wM79mUdR9tC7vfq2Bvfilf7MxleJWq5pgIE52aRrO9chlRZ5XSdftYKxmR5pD28uJSJ5t/PkrP9FhWbM8NlGuzy5xBARyOl3n3FZTz9Be70fCNU/eNH4f2qdF0bhrDnqMl5Jc4MRt0tEuJxqTXyLNX4PEqYiPNKKCkwoXRoMPp8U3nWn2a2aqW/XSYf6/NCtqm0zQijXqKXe6gXuUur2LbsVISLL4e+j8dK0UpRbkruLlAKXB5FAk2I2UONwWlof0BdBq8Pa4PZsOJq91LnW6uW5jJ7mrNINuPFDNh8Y/8Y2h7buydfsJzCNEoyIxtQtTNmt156DRqnIxFAV/8HBzEAS7v2YyisiwOFZTjqjzYatDRPKrmtbfdbi9JRj1GvQ6Xx4tHKXLKnDWm93N6vLz3YzavZu7Hq3zV+Vd2TWXCgFac2yohKG1ytSFttjCd8/zs5S5yiysoc3k5bK9g/rd7Q9J4lMKgaaRYzeRVOHFUuVFeoMjpZktuCXqDr9rcG6bGvNzpIdpqID3eSkyEkbxiJxVODzqdRmyEkbsubMWQ9rWXou95bws7j5aEPCD5szRt5c8Mbd+E5FomrhFC/LZJEBd1dqS4osYA7ne0xBGyzWLUc/OFrfn5sJ0Fa7NwexVpEb5FT6ovPeqngLxjZYzt34KF3+zFXu4MKt2G4/R4ya4yvAvA4fbyzg/ZfLL9CH86N4NtOcU4PF46J0dxVfc0OjQ58aQpx0qdLNl4kB8PFvJzQRm55S6sBh1xFkNIgCxxeYg1GTDoNFIizDg9XhxeLyhFaYWLQ3YnhRUeYm1G9EqF7Uvj8Srs5W5sZj2xESZiI3zTt9pMem4+N4M/9aq99Pzp9hzW7MmrdZ30JT9mM75/y1rPJ8Rv2lk+2YsEcVFnNpPhhCVxIKRjm59ep9GpaQztkqPYkWPHXIeB014F6XERPDCiA29vOMj2zYdOmP5omDnXwff3aTLpeadKL/ms/DI+2JrDhP4tGdsno/J6in25JezNLcHtVUSY9Xy0LYdSp4dNR0sodh3vgBZOsctDpFGPgcp52/U6copKWbfnCEXlTtKSE9HrdVQ4PZisBqwmPSWO0B74/kBu0uvolhbNHRe05NyMuBrvbXVz12TVGsAB9uSX1ul8QvymSXW6EHVzbot41u89VuN+DejXMqHG/QAD2iWx7bA9qG28xvNpYDToMOv0jO7ZlDd/OFTjA4TT7cURpke3BsRFmKge0vyTvDz/TRatEiJoHhPB6i2HsZe70DRQXsX2wjKMOo3cMmcggEPwePOqFJBT5iTeYiRCr2NffjHLtx8M7NdXjpcvd3mJMCsMOo0Ik56yMEPpdBrodfDYiI60S4o84X2qKq/EwY7cEvS68IvOVM2rzSR//kI0do338UP86ro3i6V5fESNQyoVkF/qILuw5p7V7VOiGdS+Cdllzhqr0qFytbEYC98fKODbvccoc3polWCjwuXB4faGrAFe00OBxaSvrG0Lfy29Bo98sp3Xv95DYWWbu1LwS3EFBp1v1rfs0uC2+HJ36Jzpfl4gr8JFXrmTr38JnvjFU6URvKDUhdOtiLLosZlC/wxbJ9p440+96xXAgcCDTPWpYqtTyjfvvBCNnkz2IkTd6HUa9w9px7zVv7CjykxpVf14qIhth4t5cHh7WiWGD0CXd0+jRaKNbXvyiQkzm5vHq/gqp4iffirD5fFS6vRQ7PAEz2+Ob+IV/zj0mh4sTCeotjfofOdpYjESXaVU6lWKrOJyWkZZAd/c7VUpwO7wEHuCVdqKSh2UVRtqVlpaTnSUDU3T8CooKHNh0Plmh7MadTjcXm4+tzkjOiXTLS26TlXiVbm9XjYdKgwsBavXBS/eEsi/UmTERXBe87h6nV+I36SzvE288T5+iDMiymLkweEd6JgSFVJFDb52bJfXy4tf7alxVjFN0+jWLJZrB7SidbMYdFUisFcpPjpwjB/ySnF7FaVOD/ZqARx8gbTY4Q6UPC1Gfdj8hN/oC/paZV7SI81BeS11e6hwq0BJtupqbH4lLg8FFa5AGqV8s8+5vQqTXkeJM3TO+eLSMjze4FoEt1dR5vQ1BfRtHs+DQ9rSvWlMnQO4y+Nla46dzP3HuPG1Ddy75KfALHj+gr+qnCrWf129pvHaDb3q/ZAgxG+SlMSFqJ+ichc7coprrFJWytdLfUdOMZ1So2s8j6ZptGseT6umseQXlePxKnbkl/LLFl8HNK9SFIfp+BU4vvK/OhRoGjFWY8h62y63N+yscVVL7tU7qinlqxYvdnmIMupJtZkoDtNEUOryUupyEmXSY618iFCA26OCJrzx83oVR44eIyEuBovZFJSXP3RN5dFLO56wiaEqj1fx3+/2sWjDAYoq3JQ7Pbirdd9XgMdbWVChsklBwbxrupMSXfPwPiFE4yFBXNTb4aLyGgO4nwYcLCw7YRD3Mxh0JCf4ZnZ7ecOBQA94xwnangF0Oo0yl4enL+8Gmq/E+eGWw3y07QgWow6P8i2lqggtkAeCGlDocNOsynSktsolU49WuIg06km2GjlU4qA0TMc5s17D6l+jvMr2JlERmAx6nO7ghxCPx0tuXgFGg57E6AievbYPF7RKICmy7uO1lVJM/Ww7y7YdCbyvHsCD0/vydnGbBO6+sDVd6vAzEaLROMt7pzfenIszJlwpszrFiduja5JbcnyYWE090SNMehIijMRZfa/pn+9kf0E5EUY9uSUOWiVEkBZtIT3GQqfkSEa0b4JJrxFp0BFj8q9p7psC1aBp/GKv8OW5SnVzyygLFR7FvhIH5R4v7WIjaB5lxlYZsDV8Jfgoc+isbi7lRa/X0T09/HStAC63hydHdeXKbmn1CuCF5U7e33I4EMCh5t7y1V3WOUUCuPj98beJn+qrkZKSuKi35vE2YqxGisIsExqgFJ3T6h8wEmwm9uSX4lW+nuPVRVsMGHXBa4WXOj3859u9RBh0ISVur4JD+aXc2jkVg/K1Zf+YXxI0favbq1iXY+f8lOjABDTtYq0UOFx4FZRVto9HGPWkG/QcKnVQ4VGV7eqh5XxPZb+A5onRKOCH/UdxVekcZzLo+VO/Ntx4Xqs635cjxRW8tHYv3+zND2kyqKs6xnohRCMiQVzUm16ncVnXVF7/bn/IPnuFm115pWQXO1jy+ErSY638uV9z/tK/ZaDa+USGtmvC+n0FgG/K1KqTy5gNupAA7mfWab6SdLV96ZFm+jaJQnkVJW4vaw4XBTp+BT6PBi6l+DK7kEijntbRViwGHTq0QHz2XzO33ElFZdX1iYJisctDjNFAi8RoMhKiyCkqw+FyYzEaGNgumUmXdKj1XvjlFju4+70fsVe4UIqQmet0NXXNr6ZnmOVihWj0pHe6EPU3uH0TLuuaChxfzjev1MkXe/I5aK8IBMoDheU8+ukOLvv3OkrD9Niu7vyWCXRKjvKVcjWNmCrDuCw1VOP7q7arB3eDBn2SoirzqLG9wNfjvXrs9R+naZqvpH6slKNuT0hDutursFdbtMTtVWHHY3uBQpebMo+X2AgTndPiuKRLMx4b1Y1/jOhY6wIm4KveP1xUzpw1v2CvcAUeGqrHbJ2mBVaBC0evaQxsnUDz+Iga0wjReGkN9Kq7r776issvv5y0tDQ0TeP9998P2v/ee+8xfPhwEhMT0TSNzZs3h5zD4XBw1113kZiYiM1mY9SoURw8eDAkXW0kiIuTomkaV/Vsxowru3FZ1zR6Z8SxMdsOhJZQvQo2Hyzk6c931XpevU7jiZGduLBVIpoGVqOeOKsBvRY+UEPNf37pkRb0lQ8DTo+Xw2Wu2jvkVZ7/YEF5yOcod4f2lHd4Qsdh+yl8JfwnLu/M89f1ZMrITgxok4ghzJC16r7be4wHlmxh4uIf+W5/QVBewj3MWEy6sGPlNSAjzsq/Lu9c6zWFEHVTWlpK9+7dmTt3bo37+/fvz1NPPVXjOe69916WLFnCW2+9xddff01JSQmXXXYZHk/NI3LCkep0cUqSosxc2aMp724+FFhXOxyPgle+3cekoe1qLYXaTAYmDW3Pn0ta8GN2EV4FHZpEcu/7WzhWFtoe7J+drHowjTLq8QJ6oLwO07yeDJdXUeH2YjHogvKg943m4qHB7UisR8c1h9vDq9/u48tdeUD4KnuzXodB5w1qFtA0jQizHo/HN1Y90mQgOcrM1T2aclX3NCJPsEKbEI1bQ3RMq9/xl156KZdeemmN+//0pz8BsHfv3rD7i4qKmD9/Pq+99hpDhgwBYNGiRaSnp7Ny5UqGDx9e57zIX7ZoED9mF2HUaYGlRsOxV7g5VFhBq0Rbnc6ZFGlmcLvjU4OO7JTC6xsOhAQ2he8hQU9wIHcrFfjTNNWx3bjqOasfUdOiLeVuLy6vwqzXMOgg1mKkX8t4/tA1jVYJdfusAIcKypj3xW72FlUEtoUtXWsasRYDRRXuwP3WfDtonxzJ05d3pmU9ritEo6ZpDTDE7NdtE9+wYQMul4thw4YFtqWlpdGlSxfWrl0rQVz8+kx6fa1V1UDYiVfq6g9dUvnwp8MUO9whgdztVRiqdYQ7UOKgS7wvmFkNeuLNBo45am+XB8Iuk2rS64gw6CgLM17c3zbev2UCM0d1qfdnK3e6efHL3eSXB8/TrtN8w+Dc1drddZpGnNWI2+vF6VFc26Mp/Vsm0KMes70JIYLZ7fag92azGbO57jVpdZWTk4PJZCIuLnjq4+TkZHJycmo4KjxpExcNYniHJiG9vqvSgI7JkaTFnPxMYfE2E89d2Y1mMb45zfXa8ZJqx5RoHh/ZiQ7Jx9cHL3Z5OFIlKHaMi6h7pZkGMVZDSPoUqwmjpoWdPCYtxsrkIe3q85ECMvceo9TpIVytv+0EDz5GnY7RXdO4c0BrejaLlQAuzj4NOE48PT2dmJiYwGv69Om/6kcJ1yxYGymJiwbROyOWvi3iyNxfGDL5SMcEG5e0iqdbkyiWfbOXhBgLbZrF0CSu/r2lm8dHsGDMOWw+VMTWnGL0Oo1e6bGB1b56NI3lUGE5OcUV2EwGWsZH8O2OXPbnlpBoMXJechSbjpbgqGXQtFJw70Vt+flIMZ9tP0JBZVt8q0QbfxnQkgNFFXy49TD5pS4SbCb+0CWVK7um1rvtOa/UyZHiCjbu9w2rC/f3a9TpiDJAifv4HPJa5f+N6JjMHf3rPt5ciN+f+vcuD38OOHDgANHRx+e3OB2lcICUlBScTicFBQVBpfHc3FzOP//8ep1LgrhoEJqmsehPvblq/np+yLZj0Gl4vIpLWydwTYdk3xMmvtnFjhaUk1tQTou0aJweL/YyFyajjpbJUTRNtNU6f7imafRsFkvPZrFh9zeNtdI01hp4P7BrKoUlDvbnluDyeBnRvSlFbg9bsu2s2pmLRylUleFbCrhjQGvaJUfRLjmKkV1TsZe7fDO0WY7P0Da2T8ZJ3699x8p4ds0vrM06hgK6xkcQYzZg0esodYWb3lWHSafhUop4m4kRXVLp3yK+Xp3mhPhdasBx4tHR0UFB/HTp1asXRqORFStWcM011wBw+PBhfvrpJ2bMmFGvc0kQFw0mMdLMqrsGsPLnXN7fchiDVzE4zTfBSNUqIq9SVHi8bMo6Flg0RNPgl8PFJEZbGHZOU8x1mBimPmIjzcRWC3h9Wybwx55N+fznXDYfLMSjFB2ToxnaMZnUKguE6DSN2AhT9VOetKz8Usa9tZEK1/G54UtcHqJNegw6DYteC0woU5WmaVh0GhMvakv7Ks0GQohfV0lJCbt37w68z8rKYvPmzcTHx5ORkcGxY8fYv38/2dm+xZx+/vlnwFcCT0lJISYmhltvvZX777+fhIQE4uPj+dvf/kbXrl0DvdXrSlPhZqoQZ4zdbicmJoaioqJf5YnwdNqwI5eDR0uo/hvm8HjDdg4DX6VWakIEw89pdvozeAa4PV7+uOA7sosdQdsteh29knxrjSulsDs9IYHcYtQxYWBrzkkP7gwjxG/R6f4u859fP+b/0EzW2g84AeUsx/PG/XXO65dffslFF10Usn3s2LEsWLCABQsWcPPNN4fsnzJlClOnTgWgoqKCv//977zxxhuUl5czePBg5s2bR3p6er3yLkH8N+b3FMRXfLef0org3uBKKYqcoeuDV3dF3+bER/3+qopf/mYPL2ceCLsvJcJImxhroGe8x6tweLx4gU4pUdwxqA2mOsz0JsRvwa8XxGc1UBCf2Ci/d6U6XZw2WphBzl5F3ZYxzSttlEG8pMLFTweLKK5wYTMbaJ5oY3XWMb7fX4BXKXIKymo8NqfMRbnbS1ObiXiLEYNOo2ViFBe2S6JnRpz0PBdChJAgLk6b1PgIdpcVBQXtOlX7aMeX1yxzujlW6sRq1JPwG+7EpZTi651HWfNzLlSuw5Jb6mT1oSJcXl+nvmiTnvRahtgVOT0UOct56OKmXNk1TQK3ELU5yxdAkSAuTpuWadH8csgetEBIuOVFq1MKTCYdC77JYmOVecObxVm5rFsaXeqxGldhqZMKp4dIi4FIa+ja33Xh8Sp2HrazZX8BxRVuoiwGumXE0S41OrCC2Pd7jvHVjtzAMWUuD18eLApM0qIANN9qa2addsIhbjoNLmqTJAFciLqQIC7E6RFhMdK3SzLrtx4JlKw1TcOs13CE6X0Nvqp0nV7H65kHKKk2M9uhgnJeXP0LV/RI47sDRSz8bj/5pU5SYyzc0rc5f+7XnOjKIWAH80tZ//NR8qt0IGsaH0Hf9kkkRNd9whmHy8M73+4ju6A80JP+WLGDvUdLaRYfwR/7ZqDXaazZmRt03O7CcjzVupuUVQ4daxJh5EBJ8MxsVV3ROZW4BuwNL4T4/ZIgLk6rJnERDDs3g305xeQVlQMQG2li5+FiCkqDA5lWuVJZuZ6QAA6+AFrscHPDaxupcHsC62pn5Zfx6CfbeWfzIS7t1IRIvY7IMGuxfPlzDlM/+YF9haXodTqGdEzl7sEd6NMiscb8r/jxMIcLygPXr/rfQ8fK+PynHDo2jaG82uIvh0qcIU0HLq+ioMJNnMVAU5uJw6VOqvfRbxMfwQMXt60xP0KI6hpuspfGSIK4OO3MJj3tMmJpR2xgW9uMOLbvL2THwUJKK9wY9RqtUqJpnRbNtE92hF29C+CrvQWUuYJ7t0dZDHRKjcSg01ibdYwR6fEoffCypZ/tzGbptkNBc6sv3riP9zYf4IperUiNjSA5ysxV3ZsSH2Fk1c9H+fFAIREoQidZ9VHA1gOFNA2zTre3hkEf++0OrEYdMSY9UUYLxS7f4il6HaRHW5g6sjP6ei7WIsRZTarThfj1GfU6urWMp1vL+KD5gg+HqYb2O1buIrda6d2k1+iSFoWuct3wZKsxZL3t3XnFLN12CAhe2tMWaSMiwsrXewvQ6wp9s85lHqBbcpRv7nSjnuZRJ6569ypwhhnzHm8xUBxmKJ1bKXbkl9EkwkR6tIUkg54oi4EBbZIY3KFJ0IxwQghRGwni4oyrWmK2mGoeB51XGtqOnBpjCQRwAJtBH7KIwJd7jgSVwAGiIm1YrZbA9b0KjBp0SorEq2oufYcTbTHSLD6CQwVlgYlt2sZGsNfuCJveo+BwqZMnL+9MnwyZuEWIU6LpGmAp0sa7FthvJufTp09H0zTuvffewLapU6fSoUMHbDYbcXFxDBkyhPXr1wf2Hzt2jLvuuov27dsTERFBRkYGd999N0VFRWGv4XA46NGjB5qmsXnz5rBp8vPzadasGZqmUVhYGNi+d+9eNE0LeX366adBx69evZpevXphsVho1aoVL7744knfk7NRXISJFgnhVxsLN6d6QqQpKGA7vaGrAO3JLwkK4JqmYbNZQ9IlR5qDHghK3V5qmwtJA1LjrIzonoZRrwvUyiVYjXStXDe96lX8NeV/7ttcArgQDUJroFfj9JsI4pmZmbz00kt069YtaHu7du2YO3cuW7Zs4euvv6ZFixYMGzaMo0ePApCdnU12djYzZ85ky5YtLFiwgE8//ZRbb7017HUeeOAB0tLSTpiXW2+9NSQfVa1cuZLDhw8HXhdffHFgX1ZWFiNGjGDAgAFs2rSJyZMnc/fdd7N48eK63goBXNY9/M8oNczkL9Wbjw+XOUNWUase+80mY9jhW7GW4Iopl9c3/WlNgVzToF1aNFFWI0nRFm4Z2JoOadGB63VOsHFdlxS6p0Wjq1w2tUdaDM9e2ZV7Lmwd9pxCiPoJV7g6mVdjdcar00tKSrjhhht4+eWXeeKJJ4L2jRkzJuj9rFmzmD9/Pj/++CODBw+mS5cuQQGydevWPPnkk9x444243W4MhuMf75NPPmH58uUsXryYTz75JGxeXnjhBQoLC3nkkUdqTJOQkEBKSkrYfS+++CIZGRk8++yzAHTs2JHvv/+emTNnctVVV9V6L4RPh5Robr6gJW+s30eFy4te0/CisJn0nJsew/cHiwIl6xKHB5NBFyilu5Vie2EZXeJtgfN1To7l2/1HA8fU9Aerhdl3oNRBa70Fi14XcmxilJnh3Y4/cCREmhndOwOHy0Opw43VZMBa2TzgfxBozF8WQojfnjMexCdMmMDIkSMZMmRISBCvyul08tJLLxETE0P37t1rTOef+7ZqAD9y5Ai33XYb77//PhER4dew3rZtG4899hjr169nz549NZ5/1KhRVFRU0LZtW+677z7++Mc/BvatW7eOYcOGBaUfPnw48+fPx+VyYTSGdlpyOBw4HMfbTu12e43XPpuckxFHl7QYNh8oILfYgcWop0d6LBajnj++8h1rfslHr8HhogoSI4PHVP9cVI6mQYfYCHTAoNZNWLf/aGC/y+0mnCKHm2izISjQehTsLqogzmwgwWLAatCTHGOhW0YcXdJjMRpCK7PMRn3IKmwSvIU4TaR3+pnz1ltvsXHjRjIzM2tMs2zZMq677jrKyspITU1lxYoVJCaGH9ebn5/P448/zu233x7YppRi3LhxjB8/nt69e7N3796Q4xwOB9dffz1PP/00GRkZYYN4ZGQks2bNon///uh0Oj788EOuvfZaFi5cyI033ghATk4OycnJQcclJyfjdrvJy8sjNTU15LzTp0/n0UcfrfHzn81MBh3ntkwI2f7R7f1Y8XMub3x/kCPFFUQa9ZS4PGgagY5lPxeV84u9gj90SOYP7ZJIiLXw4PsbUQrcbg9OpwujMThg55Q4aBZtgWod47xAvsNNvsPNQ8Pa07UeM8YJIU4zCeJnxoEDB7jnnntYvnw5FkvNw3guuugiNm/eTF5eHi+//DLXXHMN69evp0mTJkHp7HY7I0eOpFOnTkyZMiWwfc6cOdjtdiZNmlTjNSZNmkTHjh0DwTicxMRE7rvvvsD73r17U1BQwIwZM4KOq17iqq0addKkSUycODHoc9R3KbqzjV6ncUnHZC7p6HtgUkrxxe48Fv9wiN15pQC0S4zkjz2acmFr3wNfj1YJjDonnZfX7GLNrlw8wBGHb6Uw/6QxTo9i17Ey2sVHBPVm9//7jz2bSgAXQvymnLEgvmHDBnJzc+nVq1dgm8fj4auvvmLu3Lk4HA70ej02m402bdrQpk0b+vbtS9u2bZk/f35QUC4uLuaSSy4hMjKSJUuWBFVbr1q1im+//RazObhTVO/evbnhhhtYuHAhq1atYsuWLbz77rvA8cCbmJjIww8/XGNJuW/fvvznP/8JvE9JSSEnJycoTW5uLgaDgYSE0BIlgNlsDsmbqB9N07i4bRIXt03C6fGN2TbpQ6u5mydE8sQfegbe7y8o4/k1e3jvx8M4PV4sBh3DOyQzulsqmw8UsulgIV6vol1yFMM6JtMptXEtUSjE2UFmbDsjBg8ezJYtW4K23XzzzXTo0IEHH3wQvT78eGGlVEgb8vDhwzGbzXz44YchpfrZs2cHtbVnZ2czfPhw3n77bc477zwAFi9eTHl5eSBNZmYmt9xyC2vWrKF165p7EW/atCmoirxfv34sXbo0KM3y5cvp3bt32PZw0fDCBe+aZMRF8K9RXXhiZCdKnW4izQYMOt/xvWT4lxCNg1SnnxlRUVF06dIlaJvNZiMhIYEuXbpQWlrKk08+yahRo0hNTSU/P5958+Zx8OBBrr76asBXAh82bBhlZWUsWrQIu90e6BiWlJSEXq8nIyMj6BqRkZGAryd7s2bNAv+uKi8vD/D1Lo+NjQVg4cKFGI1GevbsiU6nY+nSpcyePZt//etfgePGjx/P3LlzmThxIrfddhvr1q1j/vz5vPnmmw1018TpYNTriLXKgiNCiMbnjPdOr4ler2fHjh0sXLiQvLw8EhIS6NOnD2vWrKFz586Ar0reP/lLmzZtgo7PysqiRYsWDZqnJ554gn379qHX62nXrh2vvPJKUHt4y5Yt+fjjj7nvvvt4/vnnSUtLY/bs2TK8TAghThff2NBTP0cjpanapqQSvyq73U5MTExgqJwQQjRGp/u7zH9+w60vo5nCDx2uK+Uswz3/tkb5vfubmLFNCCGEEPX3m61OF0IIIWolHduEEEKIRkqCuBBCCNFY6Tj1luHG27LceHMuhBBCnOWkJC6EEKLxkup0IYQQopE6y4O4VKcLIYQQjZSUxIUQQjRisgCKEEII0Ug1QHV6Iw7iUp0uhBBCNFJSEhdCCNF4neUd2ySICyGEaMTO7jZxqU4XQgghGikpiQshhGi8zvLqdCmJCyGEaLR0mtYgr/r46quvuPzyy0lLS0PTNN5///2g/Uoppk6dSlpaGlarlUGDBrF169agNA6Hg7vuuovExERsNhujRo3i4MGD9f/89T5CCCGE+I3wF8RP9VUfpaWldO/enblz54bdP2PGDGbNmsXcuXPJzMwkJSWFoUOHUlxcHEhz7733smTJEt566y2+/vprSkpKuOyyy/B4PPXKi1SnCyGEEPVw6aWXcumll4bdp5Ti2Wef5eGHH2b06NEALFy4kOTkZN544w1uv/12ioqKmD9/Pq+99hpDhgwBYNGiRaSnp7Ny5UqGDx9e57xISVwIIUSj1ZDV6Xa7PejlcDjqnZ+srCxycnIYNmxYYJvZbGbgwIGsXbsWgA0bNuByuYLSpKWl0aVLl0CaOn/+eudQCCGE+I3QaQ3zAkhPTycmJibwmj59er3zk5OTA0BycnLQ9uTk5MC+nJwcTCYTcXFxNaapK6lOF0IIIYADBw4QHR0deG82m0/6XFq1hnalVMi26uqSpjopiQshhGi0NE1rkBdAdHR00OtkgnhKSgpASIk6Nzc3UDpPSUnB6XRSUFBQY5q6kiAuhBCi0WrI6vSG0LJlS1JSUlixYkVgm9PpZPXq1Zx//vkA9OrVC6PRGJTm8OHD/PTTT4E0dSXV6UIIIUQ9lJSUsHv37sD7rKwsNm/eTHx8PBkZGdx7771MmzaNtm3b0rZtW6ZNm0ZERARjxowBICYmhltvvZX777+fhIQE4uPj+dvf/kbXrl0DvdXrSoK4EEKIRqtqdfgpnKReyb///nsuuuiiwPuJEycCMHbsWBYsWMADDzxAeXk5d9xxBwUFBZx33nksX76cqKiowDHPPPMMBoOBa665hvLycgYPHsyCBQvQ6/X1y7pSStXrCHFa2e12YmJiKCoqCupgIYQQjcnp/i7znz/uvv+hmSNO6VzKUUbBM9c0yu9daRMXQgghGimpThdCCNF4NUB1umrEC6BIEBdCCNFoNUjv8sYbwyWICyGEaLwaomPbKXeMO4OkTVwIIYRopKQkLoQQotGS6nQhhBCikfKtB36q1ekNlJkzQKrThRBCiEZKSuJCCCEaLalOF0IIIRop6Z0uhBBCiEZJSuJCCCEaLR0Nu5RoYyNBXAghRKOl0zR0v/IqZr8lUp0uhBBCNFJSEhdCCNFo+caJn/o5GisJ4kIIIRqts706XYK4EEKIRutsL4lLm7gQQgjRSElJXAghRKOlNUB1umrERXEJ4kIIIRotqU4XQgghRKMkJXEhhBCNVkP0TpfqdCGEEOIMkOp0IYQQQjRKUhIXQgjRaEl1uhBCCNFISXW6EEIIIRolKYkLIYRotM726vTfTEl8+vTpaJrGvffeG9g2depUOnTogM1mIy4ujiFDhrB+/frA/mPHjnHXXXfRvn17IiIiyMjI4O6776aoqCjsNRwOBz169EDTNDZv3hw2TX5+Ps2aNUPTNAoLC4P2bdmyhYEDB2K1WmnatCmPPfYYSqmgNKtXr6ZXr15YLBZatWrFiy++eFL3QwghRO381emn+mqsfhNBPDMzk5deeolu3boFbW/Xrh1z585ly5YtfP3117Ro0YJhw4Zx9OhRALKzs8nOzmbmzJls2bKFBQsW8Omnn3LrrbeGvc4DDzxAWlraCfNy6623huQDwG63M3ToUNLS0sjMzGTOnDnMnDmTWbNmBdJkZWUxYsQIBgwYwKZNm5g8eTJ33303ixcvru8tEUIIUQf+kvipvhqrMx7ES0pKuOGGG3j55ZeJi4sL2jdmzBiGDBlCq1at6Ny5M7NmzcJut/Pjjz8C0KVLFxYvXszll19O69atufjii3nyySdZunQpbrc76FyffPIJy5cvZ+bMmTXm5YUXXqCwsJC//e1vIftef/11KioqWLBgAV26dGH06NFMnjyZWbNmBUrjL774IhkZGTz77LN07NiRP//5z9xyyy0nvKYQQghxss54EJ8wYQIjR45kyJAhJ0zndDp56aWXiImJoXv37jWmKyoqIjo6GoPheHP/kSNHuO2223jttdeIiIgIe9y2bdt47LHHePXVV9HpQm/LunXrGDhwIGazObBt+PDhZGdns3fv3kCaYcOGBR03fPhwvv/+e1wuV9jrOhwO7HZ70EsIIUTd6LSGeTVWZzSIv/XWW2zcuJHp06fXmGbZsmVERkZisVh45plnWLFiBYmJiWHT5ufn8/jjj3P77bcHtimlGDduHOPHj6d3795hj3M4HFx//fU8/fTTZGRkhE2Tk5NDcnJy0Db/+5ycnBOmcbvd5OXlhT3v9OnTiYmJCbzS09PDphNCCBFK07QGeTVWZyyIHzhwgHvuuYdFixZhsVhqTHfRRRexefNm1q5dyyWXXMI111xDbm5uSDq73c7IkSPp1KkTU6ZMCWyfM2cOdrudSZMm1XiNSZMm0bFjR2688cYT5rn6D9pfjV51e13SVL92UVFR4HXgwIET5kEIIcSZV1xczL333kvz5s2xWq2cf/75ZGZmBvYrpZg6dSppaWlYrVYGDRrE1q1bGzwfZyyIb9iwgdzcXHr16oXBYMBgMLB69Wpmz56NwWDA4/EAYLPZaNOmDX379mX+/PkYDAbmz58fdK7i4mIuueQSIiMjWbJkCUajMbBv1apVfPvtt5jNZgwGA23atAGgd+/ejB07NpDmnXfeCeRj8ODBACQmJgYeCFJSUgIlbj//w4S/9F1TGoPBQEJCQtj7YDabiY6ODnoJIYSoG60BqtJPpiD+5z//mRUrVvDaa6+xZcsWhg0bxpAhQzh06BAAM2bMYNasWcydO5fMzExSUlIYOnQoxcXFDfr5z9g48cGDB7Nly5agbTfffDMdOnTgwQcfRK/Xhz1OKYXD4Qi8t9vtDB8+HLPZzIcffhhSqp89ezZPPPFE4H12djbDhw/n7bff5rzzzgNg8eLFlJeXB9JkZmZyyy23sGbNGlq3bg1Av379mDx5Mk6nE5PJBMDy5ctJS0ujRYsWgTRLly4Nuv7y5cvp3bt30IOFEEKIhtEQvcvre3x5eTmLFy/mgw8+4MILLwR8Q6Lff/99XnjhBR5//HGeffZZHn74YUaPHg3AwoULSU5O5o033ghq8j1VZyyIR0VF0aVLl6BtNpuNhIQEunTpQmlpKU8++SSjRo0iNTWV/Px85s2bx8GDB7n66qsBXwl82LBhlJWVsWjRoqCOYUlJSej1+pA27sjISABat25Ns2bNAv+uyt9+3bFjR2JjYwFfT/lHH32UcePGMXnyZHbt2sW0adN45JFHAlXl48ePZ+7cuUycOJHbbruNdevWMX/+fN58880GvHNCCCHOJLfbjcfjCSk0Wq1Wvv76a7KyssjJyQnq6Gw2mxk4cCBr16799YP4yfSYPtVqYb1ez44dO1i4cCF5eXkkJCTQp08f1qxZQ+fOnQFflbx/8hd/NblfVlZWoITcEGJiYlixYgUTJkygd+/exMXFMXHiRCZOnBhI07JlSz7++GPuu+8+nn/+edLS0pg9ezZXXXVVg+VDCCHEcTpOvXe5v125eqwzm81BI5L8oqKi6NevH48//jgdO3YkOTmZN998k/Xr19O2bdtAs2q4js779u07tcxWU6cgHhsbW6/ee5qmsXPnTlq1alWvzHz55ZeBf1ssFt57770Tph80aFDIjGm1adGiRa3H1HTerl278tVXX53w2IEDB7Jx48Z65UkIIcTJacjq9Oqjg6ZMmcLUqVPDHvPaa69xyy230LRpU/R6Peeccw5jxowJ+v4P19G5oXvC17k6/d133yU+Pr7WdEopRowYcUqZEkIIIepCx6n30PYff+DAgaBa5HClcL/WrVuzevVqSktLsdvtpKamcu2119KyZUtSUlIA37Dj1NTUwDG5ubkhpfNTVacg3rx5cy688MIae1hX16pVK+nIJYQQolE5mRFCNpsNm81GQUEBn332GTNmzAgE8hUrVtCzZ0/AN2HZ6tWr+de//tWgea5TEM/KyqrXSX/66aeTyowQQghRHw0xWcvJHP/ZZ5+hlKJ9+/bs3r2bv//977Rv356bb745sJjXtGnTaNu2LW3btmXatGlEREQwZsyYU8prdbIUqRBCiEarIaZNPZnji4qKmDRpEgcPHiQ+Pp6rrrqKJ598MlAL/cADD1BeXs4dd9xBQUEB5513HsuXLycqKurUMluNpurbMwz47rvv+PLLL8nNzcXr9Qbtq7qql6g/u91OTExMYA54IYRojE73d5n//BfO/BSD1XZK53KXl/LV3y5plN+79S6JT5s2jX/84x+0b9+e5OTkE045KoQQQpxOZ6ok/ltR7yD+3HPP8corrzBu3LjTkB0hhBCi7s7EjG2/JfXuma/T6ejfv//pyIsQQggh6qHeQdw/G5kQQghxpuka6NVY1bs6/W9/+xsjR46kdevWdOrUKWQ8eG2zrAkhhBANRWuA6vTG3J+r3kH8rrvu4osvvuCiiy4iISGhUX94IYQQojGrdxB/9dVXWbx4MSNHjjwd+RFCCCHqTHqn11N8fHzI0p1CCCHEmSC90+tp6tSpTJkyhbKystORHyGEEKLOpGNbPc2ePZtffvmF5ORkWrRoEdKxTZbhFEIIIX4d9Q7if/jDH05DNoQQQoj6O9ur0+sdxKdMmXI68iGEEELU29nesa0xNwUIIYQQZ7U6BfH4+Hjy8vLqfNKMjAz27dt30pkSQggh6sJfnX6qr8aqTtXphYWFfPLJJ8TExNTppPn5+Xg8nlPKmBBCCFGbs706vc5t4mPHjj2d+RBCCCFEPdUpiHu93tOdDyGEEKLefOO8T7F3esNk5Yyod+90IYQQ4rdCa4Dq9EbcJN6oH0CEEEKIs5qUxIUQQjRaMtmLEEII0UhJ73QhhBCikZKSeD3Z7faw2zVNw2w2YzKZTjlTQgghhKhdvYN4bGws2gmeWpo1a8a4ceOYMmUKOp30mxNCCHH6aJWvUz1HY1XvIL5gwQIefvhhxo0bx7nnnotSiszMTBYuXMg//vEPjh49ysyZMzGbzUyePPl05FkIIYQApE283kF84cKF/N///R/XXHNNYNuoUaPo2rUr//73v/n888/JyMjgySeflCAuhBBCnEb1ru9et24dPXv2DNnes2dP1q1bB8AFF1zA/v37Tz13QgghxAnoaIAFUBpxhXq9g3izZs2YP39+yPb58+eTnp4O+BZAiYuLO/XcCSGEECfgr04/1VdjVe/q9JkzZ3L11VfzySef0KdPHzRNIzMzkx07dvDuu+8CkJmZybXXXtvgmRVCCCHEcfUO4qNGjeLnn3/mxRdfZOfOnSiluPTSS3n//fdp0aIFAH/9618bOp9CCCFECB2nXh3emKvTT2qylxYtWvDUU081dF6EEEKIepHe6SehsLCQ7777jtzc3JBlSm+66aYGyZgQQgghTqzeQXzp0qXccMMNlJaWEhUVFTTxi6ZpEsSFEEL8arQGmHb1RBOY/dbVu3f6/fffzy233EJxcTGFhYUUFBQEXseOHTsdeRRCCCHCOtt7p9c7iB86dIi7776biIiI05EfIYQQos5OeYz4SZTk3W43//jHP2jZsiVWq5VWrVrx2GOPBTUvK6WYOnUqaWlpWK1WBg0axNatWxv649c/iA8fPpzvv/++wTMihBBCNAb/+te/ePHFF5k7dy7bt29nxowZPP3008yZMyeQZsaMGcyaNYu5c+eSmZlJSkoKQ4cOpbi4uEHzUu828ZEjR/L3v/+dbdu20bVrV4xGY9D+UaNGNVjmhBBCiBPRcRKl0TDnqI9169ZxxRVXMHLkSMA3YuvNN98MFHCVUjz77LM8/PDDjB49GvBNWZ6cnMwbb7zB7bfffoo5Pq7eQfy2224D4LHHHgvZp2kaHo/n1HMlhBBC1IGmaafcMc1/fPWlts1mM2azOST9BRdcEJgrpV27dvzwww98/fXXPPvsswBkZWWRk5PDsGHDgs41cOBA1q5de2aDePUhZUIIIcTvgX/qcL8pU6YwderUkHQPPvggRUVFdOjQAb1ej8fj4cknn+T6668HICcnB4Dk5OSg45KTk9m3b1+D5vmkxokLIYQQvwUNOdnLgQMHiI6ODmwPVwoHePvtt1m0aBFvvPEGnTt3ZvPmzdx7772kpaUxduzYQLrqNQRKqQYfzlanID579mz+8pe/YLFYmD179gnT3n333Q2SMSGEEKI2WuXrVM8BEB0dHRTEa/L3v/+dhx56iOuuuw6Arl27sm/fPqZPn87YsWNJSUkBfCXy1NTUwHG5ubkhpfNTVacg/swzz3DDDTdgsVh45plnakynaZoEcSGEEL9rZWVl6HTB3eH0en2gublly5akpKSwYsWKwNLdTqeT1atX869//atB81KnIJ6VlRX230IIIcSZdDLjvMOdoz4uv/xynnzySTIyMujcuTObNm1i1qxZ3HLLLYCvQHvvvfcybdo02rZtS9u2bZk2bRoRERGMGTPmlPJanbSJCyGEaLTOxBCzOXPm8M9//pM77riD3Nxc0tLSuP3223nkkUcCaR544AHKy8u54447KCgo4LzzzmP58uVERUWdYm6DaUopVZ8DPB4PCxYs4PPPPw+7AMqqVasaNINnG7vdTkxMDEVFRXVqmxFCiN+i0/1d5j//A69+gzki8pTO5SgrYcZN/Rvl9269S+L33HMPCxYsYOTIkXTp0qVRTxwvhBCicdM03+tUz9FY1TuIv/XWW/zvf/9jxIgRpyM/QgghRJ2d7auY1TuIm0wm2rRpczryIoQQQtRLQw4xa4xOainS5557jno2pQshhBCigdUpiI8ePTrw+uabb3j99ddp3bo1l19+edA+/0TvJ2P69OmBbvl+U6dOpUOHDthsNuLi4hgyZAjr168P7D927Bh33XUX7du3JyIigoyMDO6++26KiorCXsPhcNCjRw80TWPz5s2B7fn5+VxyySWkpaVhNptJT0/nzjvvDJpHd+/evYE5equ+Pv3006BrrF69ml69emGxWGjVqhUvvvjiSd8TIYQQJ3YmliL9LalTdXpMTEzQ+yuvvLJBM5GZmclLL71Et27dgra3a9eOuXPn0qpVK8rLy3nmmWcYNmwYu3fvJikpiezsbLKzs5k5cyadOnVi3759jB8/nuzsbN59992Q6zzwwAOkpaXxww8/BG3X6XRcccUVPPHEEyQlJbF7924mTJjAsWPHeOONN4LSrly5ks6dOwfex8fHB/6dlZXFiBEjuO2221i0aBHffPMNd9xxB0lJSVx11VUNcauEEEJUcbZ3bKv3ELOGVlJSwjnnnMO8efN44okn6NGjR2AlmOr8QwpWrlzJ4MGDw6Z55513uPHGGyktLcVgOP6M8sknnzBx4kQWL14cGJzfo0ePGvM1e/Zsnn76aQ4cOAD4SuItW7Y84XEPPvggH374Idu3bw9sGz9+PD/88APr1q078Y2o9hkb41AHIYTw+7WGmP3jjXVYTnGIWUVZCU+M6dcov3fr3SZ+8cUXU1hYGLLdbrdz8cUX1zsDEyZMYOTIkQwZMuSE6ZxOJy+99BIxMTF07969xnT+H0LVAH7kyBFuu+02XnvtNSIiImrNU3Z2Nu+99x4DBw4M2Tdq1CiaNGlC//79Q0r769atC1p6DmD48OF8//33uFyusNdyOBzY7faglxBCiLrRNdCrsap33r/88kucTmfI9oqKCtasWVOvc7311lts3LiR6dOn15hm2bJlREZGBuZtX7FiBYmJiWHT5ufn8/jjjwet1aqUYty4cYwfP57evXufMD/XX389ERERNG3alOjoaP7zn/8E9kVGRjJr1izeffddPv74YwYPHsy1117LokWLAmlycnLCLj3ndrvJy8sLe83p06cTExMTeFVfCk8IIUTNpE28jn788cfAv7dt2xZYLxV8s7h9+umnNG3atM4XPnDgAPfccw/Lly/HYrHUmO6iiy5i8+bN5OXl8fLLL3PNNdewfv16mjRpEpTObrczcuRIOnXqxJQpUwLb58yZg91uZ9KkSbXm6ZlnnmHKlCn8/PPPTJ48mYkTJzJv3jwAEhMTue+++wJpe/fuTUFBATNmzODGG28MbA+39Fy47X6TJk1i4sSJQZ9DArkQQoi6qHMQ9/fq1jQtbLW51Wplzpw5db7whg0byM3NpVevXoFtHo+Hr776irlz5+JwONDr9dhsNtq0aUObNm3o27cvbdu2Zf78+UFBubi4mEsuuYTIyEiWLFmC0WgM7Fu1ahXffvttyLqwvXv35oYbbmDhwoWBbSkpKaSkpNChQwcSEhIYMGAA//znP4OWkquqb9++QaX1lJSUoIcb8C09ZzAYSEhICHsOs9lc45q1QgghTuxsHyde5yCelZWFUopWrVrx3XffkZSUFNhnMplo0qQJer2+zhcePHgwW7ZsCdp2880306FDBx588MEaz6WUwuFwBN7b7XaGDx+O2Wzmww8/DCnVz549myeeeCLwPjs7m+HDh/P2229z3nnn1Zg/fwm66rWq27RpU1CA79evH0uXLg1Ks3z5cnr37h30YCGEEKJh6DTf61TP0VjVOYg3b94cl8vFTTfdRHx8PM2bNz+lC0dFRdGlS5egbTabjYSEBLp06UJpaSlPPvkko0aNIjU1lfz8fObNm8fBgwe5+uqrAV8JfNiwYZSVlbFo0aKgjmFJSUno9XoyMjKCrhEZ6evF2Lp1a5o1awbAxx9/zJEjR+jTpw+RkZFs27aNBx54gP79+9OiRQsAFi5ciNFopGfPnuh0OpYuXcrs2bOD1oYdP348c+fOZeLEidx2222sW7eO+fPn8+abb57SvRJCCCHCqde0q0ajkQ8++CBoubXTRa/Xs2PHDhYuXEheXh4JCQn06dOHNWvWBMZpb9iwITD5S/WpYLOysgIBuDZWq5WXX36Z++67D4fDQXp6OqNHj+ahhx4KSvfEE0+wb98+9Ho97dq145VXXglqD2/ZsiUff/wx9913H88//zxpaWnMnj1bxogLIcRp4m/mPdVzNFb1Hid+880307Vr16DOWKLhyDhxIcTvwa81Tnza2+sbZJz45GvPa5Tfu/VeAKVNmzY8/vjjrF27ll69emGz2YL233333Q2WOSGEEOJEzvaSeL2D+H/+8x9iY2PZsGEDGzZsCNqnaZoEcSGEEOJXUu8gnpWVdTryIYQQQtSb9E4/BbVNZCKEEEKcThqnPm1qY45gJ/XZX331Vbp27YrVasVqtdKtWzdee+21hs6bEEIIIU6g3iXxWbNm8c9//pM777yT/v37o5Tim2++Yfz48eTl5QVNTSqEEEKcTtKxrZ7mzJnDCy+8wE033RTYdsUVV9C5c2emTp0qQVwIIcSvpiFWITurVjE7fPgw559/fsj2888/n8OHDzdIpoQQQghRu3oH8TZt2vC///0vZPvbb79N27ZtGyRTQgghRF1ogKad4utMf4hTUO/q9EcffZRrr72Wr776iv79+6NpGl9//TWff/552OAuhBBCnC4NsR54Y15PvN4l8auuuor169eTmJjI+++/z3vvvUdiYiLfffcdV1555enIoxBCCCHCOKlx4r169WLRokUNnRchhBCiXmQ9cSGEEKKROtur0+scxHU6Xa1j6TRNw+12n3KmhBBCiLqQaVfraMmSJTXuW7t2LXPmzKGeq5oKIYQQ4hTUOYhfccUVIdt27NjBpEmTWLp0KTfccAOPP/54g2ZOCCGEOJGzvU38pCaqyc7O5rbbbqNbt2643W42b97MwoULycjIaOj8CSGEEDXyt4mf6quxqlcQLyoq4sEHH6RNmzZs3bqVzz//nKVLl9KlS5fTlT8hhBBC1KDOQXzGjBm0atWKZcuW8eabb7J27VoGDBhwOvMmhBBCnNApz9ZW+aqPFi1aBBZeqfqaMGEC4Fume+rUqaSlpWG1Whk0aBBbt249DZ++Hm3iDz30EFarlTZt2rBw4UIWLlwYNt17773XYJkTQgghTuRMrCeemZmJx+MJvP/pp58YOnQoV199NeAr9M6aNYsFCxbQrl07nnjiCYYOHcrPP/9MVFTUKeY2WJ2D+E033dSol2sTQgghGkJSUlLQ+6eeeorWrVszcOBAlFI8++yzPPzww4wePRqAhQsXkpyczBtvvMHtt9/eoHmpcxBfsGBBg15YCCGEOFW+6vBTXU/85I91Op0sWrSIiRMnomkae/bsIScnh2HDhgXSmM1mBg4cyNq1a89cEBdCCCF+axpyPXG73R603Ww2YzabT3js+++/T2FhIePGjQMgJycHgOTk5KB0ycnJ7Nu37xRzGqoxr4UuhBBCNJj09HRiYmICr+nTp9d6zPz587n00ktJS0sL2l69dkApdVqapKUkLoQQotHy9ww/1XMAHDhwgOjo6MD22krh+/btY+XKlUEdulNSUgBfiTw1NTWwPTc3N6R03hCkJC6EEKLRasghZtHR0UGv2oL4f//7X5o0acLIkSMD21q2bElKSgorVqwIbHM6naxevZrzzz+/wT+/lMSFEEI0Wg3ZJl4fXq+X//73v4wdOxaD4Xgo1TSNe++9l2nTptG2bVvatm3LtGnTiIiIYMyYMaeY01ASxIUQQoh6WrlyJfv37+eWW24J2ffAAw9QXl7OHXfcQUFBAeeddx7Lly9v8DHiIEFcCCFEI9aQbeL1MWzYsBpX7tQ0jalTpzJ16tRTylddSBAXQgjRaJ3MtKnhztFYSRAXNfJ4FYVlTjQg1mZq1Cv9CCHE75EEcRHC41Ws3XWUzD35lDt98wNHWQyc1yaRc1slhB3/6Puv7986XWj1ltPtocDuQClFbJQZi0l+9YQQp+5MdWz7rZBvUhHEqxSLv9vPriPFQduLK9ys/CmHb34+il4H0REmWsbbwOWmsNgJgM2kJ8FmIjbCSGysldi4CBSKn/YcY99hO97K5iMNSEuy0b1NIiaj/lf+hEKI35Mz1Sb+WyFBXATZfqgoJIBXVe7ylcxLHOVkF5Rj0Wu0iLSg12mUOj2UOsupcHnweBSHj5ayKduOy+PFotdh1mvoNA0F7D9Swre/5DP/p8Nc1yud2/u3IC7C9Ct9SiGE+H1ozLUI4jTYuPdYvZblq/AossucQdtyS5yUuzwYNUiKMOLyKopdHo5VuHFXFsf1Oo2mUWbaxFiY8flOBs1eQ469ogE/iRDibKA10KuxkiAuAkrKnFi9is7xEXSMs5JkNdbpF8Tu8uDyeoO2HSv1Bfam0ZbANi9Q5HQHDcsYmB6HV8HBwgrufe/HhvgYQoiziE5rmFdjJUFcUFHhYldWPht+yiHBbCDGbCDObKBdrJUeSZGY9bX/hpe7g4N4mcuLpmmYDTr0VdqbPAqclaVxnaYRbzFWbld8uj2XeWv2NOAnE0KI3zdpEz+L2YsdHMq2U1buAsBm1ONRCofbi7cy8Jr1Gh3jIticV1qvc/ufbJVSKIInRHB6FGa9b1+R0x2074EPtlLu8nL/xW1O8lMJIc4m0rFNnJUKiyr4JetY0DZN09ADEUY9ZW4PXuUrLduMemJMeooqh5uFE2EI7mUeZTHgVYqCclegV3p1ClhzoDBk+5SPt5MUaaRLajTdm8aib8x1XUKI06oh2rQb8zeMBPGzjFIKr8fL4cP2sPs1TUMphVmvC1SRe5UizmyoMYjHGPUYqgRanQaxFgMasL8otLOaQafh8Sryy12s3l8QlDeF7w/quS9+oUOTSGIsBm45vyW9m8fV+tl+yi5ize6jAAxok0SXtJhajxFCNG5aA7RpN+KCuATxs4VSCleFG5fDDQoykqPweLwUFDvIqxZoNU3DoGloeH1BVdOwVo7n1iAQaBVg1etItR0fGqbTICPWikGvY/vRUgorgqvLNcCi19iWV8rLP2RTVvmgoJQKKrGXVD4wFFW4eXbVLh4c1p6uTcMH5cNF5fxpwXq+2n008EStgAFtEnltXF/SYqwndc+EEOK3ToL4WUAphaPUiccV3PlMr9eREGPBbNJz6Ghom7dO0/AohQb07dCEthUuNu8roLjCTbTVSJemMVh1GoXFDjwehc2kJz7SRHZBORv3F+KpEpU1fE+7+4sd/N/6fRwucQRK/b7/EhTEDdUerd/6/kDYIF7icDP4uS/Zm+/Lf9Wa+3V78hn83JdkPjiUSLP8qgvxeyRt4uJ3z+Py4nZ68Hh9AbnqtKiaphEVYSIqwklxmSvoOH+HNKNBR0qCjTSdRtf00Gptr8dLaYmTslInyqtoHheB1WpkT14phaVODHqN1inRdM6IJcpqZMPREg6XOPEqBco3zasKui40jbEEvd97rIycogpSqmwHeP27ffxytIRwze5ur2LP0RJe/24ftw9ofRJ3TgjxW3e2t4nLELPfOa/HS1FBGSVlLsor3JRVuCkpc+FweqrMea6IiTQHjvFVbfuqt3U6jS5tkzhW6mDPkWIOF5ThcropK/UF7fIyJ0dziiktdqCqFKWbWIyc1yyGgS3j6Z0WQ6wGhcfKcTg8PDWqCzrNN9e6RwWXnjUg3mokMcIY8lnWZeWHbHvtu7213oNX19eeRgghGiMpif+Oeb2K/KOleKqN4QZwujx4lcJqNqBpGiaj73nO3wbu8nppmhyJyWJk2aZD5FaZTc1m0tMjNZqMuIgTZ0CBUafD6fU9MOQeLeFwbglNEm289+fzGPvaBvLLXIGObgpItJnokx4Ttnrr3U2HiDDpGd4pJbAt114RthReJQtszS5kd66dNk2iT5xfIUSj0xCTtTTmATASxH/HykocYQO4n9vtxWPwotNpeD3Hp0NNbxpDXJyFjb8c4/vth0D5xou7vQqPglKnh2/2FeBR0DK+5kCuaRoGg4ZOp6E8CpvFQHG5m9y8UszAN3f2Z322nR8OFbFi+xESbSZiLKEl8KoWfbefvi0TiLH60rVKjGR/QVnNw9iUoszh5PwnP2Ttw6MkkAvxO6NV/u9Uz9FYSXX671hZqbPWNC5/kNdrtMiIpVvnZCJsRpZ+u5+f9xdg0jT0Og29pmEx6INmb9twMLjzWk30lW3wGmAy6HzV+F7F7qxj2EqdjGwexyND29cawMHXfj5l2VbyKz/bLee3qjGAQ+WQObcLe4WLv/9vfa3nF0KIxkSC+O+QUorth4pYtv0Ib/6YzZJtOWzNLcblCS2Ve72+9b/jE2zEx1k5lFvC+h8PE2vQ0SzKTKtYC6k2E8bK+ia9pgX+7fIqDtVz0RKD3hfQ/dVXZoOO/MIKvMUOruyccuKDKx0pdvDPZVspcbgZ3aMpF7VrEnacp1IK5XGD143Hq/joxwPkFJXVK79CiN82TWuYV2MlQfx3xuP18ta3+/jfd/s5WFSB3eEmt9TJ1/sKeGfrYUqqTXOq02lYosy4PV527MojL7eEGLMBq1GPTvOVZCONOtKjzegr3/uDuAaUVTtfdUop3JWlfX9pPPBvzbc0qf8PSF9x4nMFzgnklThYseMIBr2O92+/gL7NY3095apcF48LXOVVtsHevJI6XUMI0TjoaIAFUM70hzgFjTnvIowvt+eyK8e3Hnj1WuYSh4cVu/OCttliLJSUOtnx81E8Tjcmgw6jXofVoCPWYsRYWXI2aBpxFl8XCn9JWgHmatOtVqWUwunyBvKhlPJ1YKvs/e7nD+xGnUab+IgTdjLRNK2y57xi6ZbDAFhNesb0SgdHCcpRhnKUgaME3I6Q42NlzXIhxO+IBPHfEZfHS+ae/Bp7aysgt9TJ0cr2ZJNJj8fr5eDBIox6DaNBj1Gvw6jXMOh9vxpRJkOgRB5jCu4Hqdc0mlUbtw0Ehq65PV4qqpTUNU3D4fatbuau0pBdNb9to8w1djLxB39/D/rCchfrKud/v6JnRuU0ch7fK4yYCDPtU2QqViF+T7QG+l9jJUH8dyTXXoHjBL3RwRfnsosrMFsNRMdHcPiQHbNRj9lowGTQY9DrAiVtY2Ugt1SWtvU636+6f4rUrqlRgTTVlZY7KausHvcH9TKnG68Ct9eLR1WWyL3B063GmgyMap8UWPREVaYD33rk7ipj211eL8999YvvvabDEmE74WdX5giWbcs5YRohToVSioIyJ8UVLpRS5Ngr2HesjDKnmyP2CrZlF7E3r5Rf8kp4a+NB3t50kH3HpJ/GqTjb28RliNnvSe0dxQGwRZmJS7CRk23HaNAHpj4F0BTodXqcbg9KgU5pGPUauAhUY3sV9EyLoX1SaNA0Ww2g0+Fwe3F73Ch8M6dVuNw4Pb7qdE+VwOyo1tlOp0GkghvPacr87/YHpmatWv3ul1/mYvvRMvJLnWw8UIgtKhqlFBVl1b4UNY2o6BjMFiv//Hg7bq/iyq5pdbtZQgA7j5bwxoaDZO4vwOtVGDTYdugYJQ43HZKj+csFrSj3wKuZB8iu7OwZazGQFGEi3mpEwzdMM8qkR6dplDo9/HCkhP32CjRgaPskpl/WCU3TiLUasRhrbqYSwRoiCDfmIP6bKYlPnz4dTdO49957A9umTp1Khw4dsNlsxMXFMWTIENavPz5M6NixY9x11120b9+eiIgIMjIyuPvuuykqKgp7DYfDQY8ePdA0jc2bNwe25+fnc8kll5CWlobZbCY9PZ0777wTuz14pa8tW7YwcOBArFYrTZs25bHHHgsEI7/Vq1fTq1cvLBYLrVq14sUXXzz1m1NHTaItmAwn/pEqoGVSJGVlThyVJeWqE6v4/22qDO46zVfVpJTC7vQQYzPxp0Gt6NexCfFJNpJSo0hMiSShSSRNUqOIS7ARF2elRct42rVPon37JJqkRuMCnB5fCdyfjwq3F0+12OzPib7MRYRZj9vrpXrdgqpc8zyvcprYEoe78g9ZIyomlvgmydiio4mIjCQqJpbEJslYIo6PZ39m9W6OFNevV704e7254SAj/72ONzce5OfcEnbllbIttwSMJsrdivV787n5tUzuX7yJQ0XHO1IWVrjZdayMQ8W+CYkqPIr8CjdepYgw6jg/PYZWsVYUsOLno/R8+ktaP7aClH98wp/f3MQveaHrGQhR3W8iiGdmZvLSSy/RrVu3oO3t2rVj7ty5bNmyha+//poWLVowbNgwjh71LTeZnZ1NdnY2M2fOZMuWLSxYsIBPP/2UW2+9Nex1HnjgAdLSQktgOp2OK664gg8//JCdO3eyYMECVq5cyfjx4wNp7HY7Q4cOJS0tjczMTObMmcPMmTOZNWtWIE1WVhYjRoxgwIABbNq0icmTJ3P33XezePHihrhNtTIadPTMiCXGpCfBYiDObAj0JAdfKTc11kq8xUBJYQVWswGLSR9o//bzB3KDXoeGr61dAa2bxXJ1/xZEWk2YrUbMFiN6vQ6DQY/RpEcX5jyaptEkPoK+3dPo0bEJOoOOMpeHMldoAPf3fgdfT/JYnZ68MldQKVwpRWGFm5355XiV75jiMid9MuICVfB6vZ4IWyS2qGgsERFouuP5slTOTLd0q1Sri9ptOljII59sR0Hwgj6Vv6eJsbZAMa7c4aa4LLQz5UG7gzKXr5+GV0GJyxuoYeqZEom+spOoTuer9XJ5FP/bdIj+z3zFTzUsGSyO06E1yKux0lT1ouSvrKSkhHPOOYd58+bxxBNP0KNHD5599tmwae12OzExMaxcuZLBgweHTfPOO+9w4403UlpaisFwvLXgk08+YeLEiSxevJjOnTuzadMmevToUWO+Zs+ezdNPP82BAwcAeOGFF5g0aRJHjhzBbPbNM/7UU08xZ84cDh48iKZpPPjgg3z44Yds3749cJ7x48fzww8/sG7dujrdD/9nLCoqIjq6frOLbd1XwKZf8lDqeDu0pmkUO90crXATYzUyumsqETpdldXD/G3Mvi8hP397tcPlocTtoUPrRKJsp96z+1BuCT/uOori+IgwTfOvcnZ86Jp/gpgJn+9EKd8KaRoaZS4PrsovUw3oEB/BpW0SGT+0Hfct2cLiH7JrnPzFZtaTHO372V3YKoFpIzuf8ucRv19KKa5bmMnavcfw+udEqgy0xx82FUWlFdhLfcFbp9NomhgdMm1wis1E81jfkrgakGQ1BNKsO1jEvqKKwOiNUocv4Os1yIiLYMqlHeidEUvLhBP3+fitOZXvsvqcf/mX27BFRp3SuUpLihk2qNNpy+vpdMZL4hMmTGDkyJEMGTLkhOmcTicvvfQSMTExdO/evcZ0/h9C1QB+5MgRbrvtNl577TUiImqZ7xtfCf+9995j4MCBgW3r1q1j4MCBgQAOMHz4cLKzs9m7d28gzbBhw4LONXz4cL7//ntcruAVwhra7uwiNu7OqxIYj3/RRJoM9EiL5k990omoLJVWXcVMqxyrbTZVa4fTwBphpHfX1AYJ4AApiRFYTAZ0/pngdP6x4sE1BgadRvM4K8NbxOFRYHd4KHK4gwK4zaind0oUJRVu9h8t5cmRnTinWWzY65oNOpIiTYHzm2tpdhBnN6UUD3y4lTV7juHx+krK/v4d5S5vUKncUmXUhterws5i6C+JU3kefxORv2odQpfU9CjIOlbGuNc30mX6Kq58+Vty7BV4vIr8UmetczSIs8MZ7dj21ltvsXHjRjIzM2tMs2zZMq677jrKyspITU1lxYoVJCYmhk2bn5/P448/zu233x7YppRi3LhxjB8/nt69ewcCbjjXX389H3zwAeXl5Vx++eX85z//CezLycmhRYsWQemTk5MD+1q2bElOTk5gW9U0brebvLw8UlNTQ67pcDhwOI5XwVVvh6+LohIHu/YVEGc24PYqSt2eoNKoBhSXOiktcWIvd3HUXoHL48Wg15EYaaZJtAWDXodBr+HUPMcfBHQazZvHNehau3qdjvO6prJm48Gw/fD8VeoxViM6nY5eydF4vLDhSDFHy12BNG1irfRJicZa2XO+qNxJiyaRLL7lXK5/NZONB4vweBV6nUa0xYDNrA98Dl/PehlqJmr2xoaDvL7hYI37HW4vVqOu8neq9r8PXbXJD7Qq/62oHFFSUwdOv8935dFn5pc0jbdS6vQ9FPRrEcdf+rWgd5glgs8WdfsJ1H6OxuqMFUcOHDjAPffcw6JFi7BYQsca+1100UVs3ryZtWvXcskll3DNNdeQm5sbks5utzNy5Eg6derElClTAtvnzJmD3W5n0qRJtebpmWeeYePGjbz//vv88ssvTJw4MWh/9WBWtcq6Pmmqmj59OjExMYFXenp6rfn0c3u8/PhzLpu2HcGi07AZdcSY9aTZTEQag3+0SsGWg4Xk2yswaBpmvQ6X20t2YTnbDhVV9kb3BT1/VXuzZuFXEztVERYDXVsloK82a5I/gNtMeqIr51HXaZARbeHKtknc0DGZa9olcVOnFAamxxFRpQdveWUnPaNeR4uECFJjzDSLs5AWayHSYgiq/vR4vTKsR9RIKcWLa7Nq/WL3T1zkqFIiNuh1gb4ZVcVXWRfAVFn7BL4HyoN230O8pmnH1zKo4XrHylwcKjjeeW79vgJufWsTn+44UpeP9rukq5z58VRfjdUZC+IbNmwgNzeXXr16YTAYMBgMrF69mtmzZ2MwGPB4fE+aNpuNNm3a0LdvX+bPn4/BYGD+/PlB5youLuaSSy4hMjKSJUuWYDQe/4NZtWoV3377LWazGYPBQJs2bQDo3bs3Y8eODTpPSkoKHTp04IorruDf//43L7zwAocPHw7sy8kJ7gzlf5jwl75rSmMwGEhISAh7HyZNmkRRUVHg5W+Dr4sde/I5VuTrZX28Wtz3irMYsVarMjbrdcSYDUSZ9MSYDTSxmYgw6HB6vOw5enw6Uk2n0SQ1CqPp9FXUNEmMICPeRlyECZNeh0GnYTXpaRJloUmUBU3zLU9a7vTgrByGZjPqK2eRq9aBDjiUU4yzsspy88EiiquMUa861tyjFEXlblb/EjxznRDgG+nw5saD7MotDRoKGY5/pEVJ+fGatOgIc8iDr0mvkRBx/Dup6gP21qMluCofBtweL67qvT3DsFeZntirfA/o//x4O2t+yWPVzlx+OFS3hYnE78MZq04fPHgwW7ZsCdp2880306FDBx588EH0+vDjJJVSIdXPw4cPx2w28+GHH4aU6mfPns0TTzwReJ+dnc3w4cN5++23Oe+882rMX2Acc+W1+vXrx+TJk3E6nZhMvrbV5cuXk5aWFqhm79evH0uXLg06z/Lly+ndu3fQg0VVZrM5qJ29rkrLXeRVeSI36XVEmPToNQ2PUpQ53USb9JRXebKPthqwWY14K+czd3sUMRYjqsJFSYWbCpcHm81EdIwFw2kep2ow6ImNsWDQaSTYQj+/UooDReVklzvJLnXSOtpa47nizQaUgn1HimnbLBa3V+H0KI6VujAbfQ8ICnC6j39JuuVLTlShlOKFb7KYsXLX8fbryl8RnY4aS2p5RWV4K3+XoiPM2KzBfUcseh3tE22VQzUhxuSbFdHt9fJTbik78st80xO7vVS4TjxRk1/1AO0frvnop9uJqyzxx0cY+fP5LenTPL5uN6Axa4jJWhpvQfzMBfGoqCi6dOkStM1ms5GQkECXLl0oLS3lySefZNSoUaSmppKfn8+8efM4ePAgV199NeArgQ8bNoyysjIWLVqE3W4PtCknJSWh1+vJyMgIukZkZCQArVu3plmzZgB8/PHHHDlyhD59+hAZGcm2bdt44IEH6N+/fyBAjxkzhkcffZRx48YxefJkdu3axbRp03jkkUcCT97jx49n7ty5TJw4kdtuu41169Yxf/583nzzzQa/f3kFx6uD4yonh6ja49xqNBNp9nCswoXL6ysNxFb+gWv4hqMZ9L4e6VEmA+VuJxUeL+mJv14P2KQmkbhcHpwOD97KMen+/x4tdfL94SK2V37OJIuR/ApX0JhxDYgzG4iu7JBXUFkteU6zWD77ORePV4X9YtTrNHqnx57mTycak+e/zuKxT3eE3ef1KggTyO0lFehQJMdYSYu3EWU1UuLwBGZNTLOZSI8yo9Aw6HwBXadpmPQaLo9vuGPrBCu5dgcHy+veSc1Qw+ICDvfx4H6szMXTK3fy0LD2nPM7by8/29cT/83O2KbX69mxYwcLFy4kLy+PhIQE+vTpw5o1a+jc2Tc0aMOGDYHJX/zV5H5ZWVkhHdFqYrVaefnll7nvvvtwOBykp6czevRoHnrooUCamJgYVqxYwYQJE+jduzdxcXFMnDgxqN28ZcuWfPzxx9x33308//zzpKWlMXv2bK666qpTvBuhPB6FpvnmNvf3tK7a4xx8pfOMGCt7CsppHR8R6IV+/LFTYTbqcbq9GHUaEfXogV5Y7GD/kWJKy1wYDBoJhzSaX5yEvoZpWMPR6TSaNovh/z7eTocEGwkWI+VuLzvzS9h0tIRjlUPedECUSY/NqKPM7cVd2WHNZtAFvlg1jnceurF3Oh9vr7mN0OtVXH9O3fseiN+fnbkl7DhSjNWop3vTaJ7+fOcJ03u9Ck1H0AyC5Q4XLZKiaNnk+PCmaMvxr9RmURaiqzVJWfS+9leDpmE26tEbdMRajTSLs5Jjd2CvcHOs7MQjWaIs4b+2q8d2Bbz0TRbzrolBp5PRGL9XZ3ycuAhW17GVR/JK2bEnn+So0Da4qpRSOLyKeJspMC+6v/3N4fLg9SrKHR6Olbvo1zMtaLhMTefbuiefvYeLffOoA4ZPS7A8mQ+PJ9PvwXaY61EVr5Ri6pItbCuouaNZpEHHpc0T0KpMDxtOr/ZJtEz13bPZX/3CvG+ywqYb2yedSUPa1zmP4vdj99ES7luyhfX7CgLbzAZdrWsOAIGFgJRSFJWU4/F4iTAZOK9tk6B0Gr7FgTrHRQTNfWCuDOBKKfIdbvaGmTVQKcXmQ8UU1BDIDXqNZnHWkN7uAM2jzVjD/O1FWo08N7pboLPor+XXGif+5ZodRJ7iOPGSkmIGDehQr7we+v/23jxOrrLK/38/d6u9qvct6WwQkpAQggSJoAKyizAz4IbLjDoyIiCizoCOfhVRw+hPERVFQYbBFUXFQRRZhlVBgYRA2Jfs6XQ6vVV1rbfuvc/vj1tVXdVd3QkkId3J8+ZVJH3r7rl9z3POc87nbN3KZZddxh133EEul+OQQw7hhhtu4MgjjwT8f8svf/nLXHfddQwNDXH00Ufz/e9/v+KE7inU8Gya0tIUJmTpNVnXZQ/Bq0rIEULQWEqqyeYdRrKjjUnCAaNUpw1NDcGdGnCADdtSbNhW1erUkVj/PQyAd+0Aj6/d9SxZT0puXbWFkK4xPx5CL72Xql9PMVPnkIYwUps4w7/iGZWyhD0p2TCQZmY8QMTUKtnvUUunOx7g7+sHeVn1FT/g2DyU44wfPcLjm4Zrlu+KAQdwizbZnM1QKotbSrZ0vdptdeFHwL5w8iHMSIQwNUFQ9z966flNF102TSD7K4RgaVeMrkRgXIA3bOnMmMCAhwyN4ATaBy/3p/nU/66dNElvOrO7jU9ei/b60NAQxx57LKZpcscdd/Dss8/yrW99i4aGhso63/jGN7jqqqu45ppreOyxx+jo6ODkk09mZGRkj17/lA2nKyZH1wQz2+OMJHOVrmLVSCh5rpC3XZxSQpeuCYQGuYKLEBC0dNJ5h8UH16+9r9mnlLyyJVmzzLgng7bNTwTSehxGbh0geUgziejOk/UeXz/I6o1DBDRBwtI5vDnKUMEh67hoQtBoGUTKnoUE2/Mwq6YMKjkAgO1JNvdnOHR2E09sGealHRlCpl7XMwHJb9ds5TLljR9QXH3/y6QKTiWr/NWSfGkNsn0+wvCnnXQhWNARpzFkMpQrYuqCEw5u5V3LZjCrMczRc5t5cdsIazYOkswViYdMpC745ZqtvtGY4DR0TbCwPcrc5hA7MjaOByFL59QFbfzxue047mgpqCt9Az5zkoic7UpWb0nyZE+SZTMaXtO1T2X2xZz417/+dbq7u7nxxhsry6qnb6WUXH311Xz+85/n7LPPBuCmm26ivb2dX/ziFzVaJruLMuLTmNaWMKnh7IQyo7L0v/IvfSxsYVUZNdfzKNguc2clxumn1yOdK5K3q3p1l7xwKfzuZ1KA9d9J+j6S3akRl1Lylxd9DXzbk5iaQANagiZQG/ab2RRGur7WuicluhBopTeg641qsBdKSWwPrx9AE0x4X1wJj6wfqIjBKPZ/bMfj12u2Tlp6JSeYrpFS4mRTeHYOkR2GuB8+d6XkijOW8PYlnb54kjZWeVCwsCvOwq7a8OyhXQluWbOFp3omF3YKGDrxkFl5vu97pZ+vv2MxvSMFXunPEDQ1Ht8wCJOcd8GV2J5EE/Dtu5/mg0d0csKSua8qd+VAYqzY1kTVQ7fddhunnnoq73rXu3jggQeYMWMGF1xwAeeddx7g52T19vbWKHgGAgGOO+44Hn744T1qxNW/5DTGNHXEToyQxA8lN8aDmGPCbZoQhIMm0q2/7bh9jXn/lb1wUVZ4k743nvnfofEbj2FoxGYwY1fOMet4FaNbXdsdCxmcs2IWWsnzkPg9xW3P/7hV25TryXNFd0IDXsYt9TVXHBiMFBwKjkc4oNMWD9DVGKSzMUhjxMTQa6M71ZR/zvZu8Bd4bsVn++ej53D64g4cz2PLcI4Ng9m6z9RTPUl+9vhmfvXEFral8iyb2cDX3rGEf1o6cTtcKSVFr7ZJkJSSL9/5PNtTec4/Zg6fPfEQPnncwZOed39J5dBxPe5/dhOnX/EzDvr4d/jz6pd29dZNeaoFo3bnA9Dd3V0jvnXllVfWPea6deu49tprmT9/PnfeeSfnn38+F198MT/5yU8AKnoh9RQ8x2qJ7C7KE5/GFIsubtVveTmsLkRtOYxp6jUNRsqUfy4W/AS3enNt1USC/hy668lxXnjlHARkvrMd76I5aBPM0b2yNcnDY7LHPSDjeuhe6dwleEgWNUcIGDqZoosxycSVEILBXJFUvsjWUjOJyebQNU1gKW/kgEEXgmWdMaKWge159OWKFD1JyNIJWTqDaZucPX4067ouuUwGt9z7wAwxpznCJW87hI8eM48b/r6R/3l0E/2lAWlzxOKfl3fzrytms3Ewx0W/eZInqzxuTcDZS7v4rzMX88GjZrFlOMdjm4YqkaOy8fUkZMaUR5af5+sf2cAvVm/hkmNnceujL7B1OE9XZwemPvq8255kR7ZIvjSwFUJQyPrJoz2DKf7xyl9yxxc/yAmHzd1Dd3jf8VrmtOvtA3wl0erEtok0PDzPY/ny5axcuRKAI444gmeeeYZrr72Wf/7nf67ab+2JTfZeeq0oIz6NKSfXSCnJFv361LI91YUgbOpYhoY+prFCPQq5IqGdlJjpusbsjhjrelI1c+HVCAnFDQX6bu6j4wMd477fsC3F6hd3kC66GAKcMR6zK6mZs5zX5tf1+y81l0hVPXz52oUQpGyHoaLLv/5iFQPZYqWpxESkCi6D2SLNe6ixi2Lq8tj6QX63ajPL2mJ+rgiwCFifyvNKKaekMWpRGMqXuuv5z5Rt22TTfgKkhqQlEeXRb72PGQ1+E6V/v+1p/vhs7WB0IGNz9QOvsHrLMH9dN0gyX1v/7Un43VM97EgX+MU/L+cLpy7k0Y1D3Pn8dp7elvTrzF0Pe5JQkgek8kW++Ofn2fqKXxq3NV2gu6sTQxc4nh9GL1OOag3v2F762f8de9+3f8uPL/onTls2F12VoAEQj8d3KTu9s7OTQw89tGbZokWLKm2nOzr8d19vb29Nz4y+vr5x3vnuov7lpjGG4Ru0ZN4hX2XAwf8lHbEdckUXXfdbj2bzRfqGsmzdkaanP81gKk/RKfU53gW5R4BDZjeSCFkVL7wuGmz40ga8MVm/nid5ev2g/3fEaNLaBJiaYFGX36hkZkuElO0yXHAqamuyFFYfzBcZyDs8vj1FwfHwgJHi6ACnGikljifJOh5FV4XT93ee3DzMbx7fjOv5hrncMU8TgoMSIebFfYlfAYQD/vNYHiCapkkwFALXQXML/PiSd2EZOo4neeCVgXEGvIwEHnhlgHTBqTsH70n/+/N+/QQfv2UN//v0Nk5d2M65R3YzUnQnNODlVqX+Iy0wTItQxB/k9m/vYzidJW274wy4EIKedS/hOrUDiv5khn/8xm844tIb2TwwffuWiz3036vh2GOP5YUXXqhZ9uKLLzJ79mzA1wzp6Ojg7rvvrnxv2zYPPPAAxxxzzO5fdBXKE5/GGIaGp4lJs22zRRdNg6GRPLlCVTvEUv/wXMGhKR4kEts16VdD1zg0GWJtHS+8ggf5dXmSf0nSePyoWtRAKk/ediuGNaRrOIYkU6fERwBzE8FKFm5D6QWbc7waKdky27K2H47EV7RK2b4KXMTQKmFGT0pyjke66JEIGrQoL3y/ZvNwlqvue4mRvEPE1GkPW+MSGecmQmwaKVCU0s8ZqfodEUIQCARo94aZc8wKzr7pCTz5BNGAwezWONLTJs1J0XUBkwyO73lhB0FTR9cEt67dxjFzGgnoGoVJBpeZmt9hSSAUJpdJ43ke6196idaOdpqam9FLrZizIyl2bNlEeniCPBUpeWnbEKd97des+caHMY29K7e8VxC87m3MPvWpT3HMMcewcuVK3v3ud/Poo49y3XXXcd111/m7E4JLLrmElStXMn/+fObPn8/KlSsJh8O8733v282TrUUZ8WmMlJJ0YedyjTtSeYQ3uk35tVKeNx9M5Wnv2nWxhMZjGzj014fiFSZ+2WgBjcSbatt95vKjAhaWJrA9iFsGQd0j47g4JW8pqGuEDY32WJChkQJ/WbsN23ZpCxn0TSBPmbSdynUFdcEIUHAlBddFw4WqbHVNwDsP79qljHzF9MN2PL569wvcutZvXlQRJdIES1sidFRp9etC0Boy6ckU6u5LaBq9xNm6ebQKJF1weGbLIIau0dXWOOFzpO9kCqvspZf/fHjDEJYuKops1VNG5evKjpm3rx4ieJ7H9p5tbO/ZhiFA2tlx3vf4C/TD7y9uG+Lbf/gbl/7TsZOvrwDgqKOO4tZbb+Vzn/scV1xxBXPnzuXqq6/m/e9/f2WdSy+9lFwuxwUXXFARe7nrrruIxXZPmGYsyohPYzzPb2RSJmjqtDeGaAhbICCVLbJ9OIdd9LA0QcH1asLuuoCgoWPpGslkgdbWXXsctIBG27va6n4npaRou7iOR9FzsTwBAnLZIm7JAAvht021S16FpWvjkswsTdCaCPB/q7fguhJDEyQsg6CuM1Qoki1dd8jQaAwYPDkwuq0QgkRAZ7i0fw8qbzsBLO1M8KGjZu/StSqmH5ff+Ry3V4W6y8+740lW96U5ukOjOeSXMUrplzcKIfA8SaDU1a86uOVRv2GO43oMDKdpb64/h7qzCap6TVVsVzKccwiZWkVO2fUkGdslZ49PdMtn6osWOZ6EnRpwzf8ASMl//uwenHyW/zz35J2c+dRiTya2vRre8Y538I53vGOSfQouv/xyLr/88td+YruAMuLTmOpktaZogPmletTy8oCp05YIsmlHmu1DOWzXw3Zl5YVklpJgQqZONmcDu9f8xM47pJP5SlcnAE/6L0RN+H3CIwGdTMFFl35Hp2SdjGBTE8RMDduRFZGaipdtaHQataF/AcxJBHm6P1NpkBLQNZqDgkzRJV/aR9TSOW/FHM5e2lV5QSr2LzYOZvnDM5OrBr44lOVNIT9KJIQg67i4nqRY6kdQlmGVpWxxx5l46iiTK+C6Xt26a3snSnDWBM+g60nSBZdUzplYA0JK7HyeQm5iuWJ0C1x78u/L+wNA8MWf3MHSeV284+g9Kw26NznQG6CoN9k0RtMEzQ0hAqbGwWMMOJTCiBK6WyLohkay4JJzPIqepOhJskWPVMElY7sUd1F6sh7Sk2RSeVJDObxSb2TX83AcvwTOKycVaRqHtMdLJXBgCEGTpRM3dUK639CkMaATMzTmdsTZ0DsqT1hOTKpHLGDw5q4Gxl6BoQkSAYP2sElbyOAH5xzOuW+YqQz4fsydL/SNawQylqGCQ8H1SmIoHn3ZIiOleupKUpuuIfCfoY7mOE3x8ITCQEV3TIhbShzXrcn/GIuhi52epxDVU7WjyZxSSpyizY6tGyfZWoJugF5HL11oYAT8HqvVeA5CwDdvuXfyE1NMKZQnPs3p7owzuCNdUwdeKLoMJHOMZIq+2IsmaAhb9I0U6sqzpm2XtL3rrRCr8VyPTDJfCY2Xm6sYuoZmCApFryLUIoQgETI5oruRV3akGc7aeAhMAabmJ9QkIhYzWyM8s6E2EUfihwiNqn2B7zV1lJLyTp3dxJ0bB9GgYtDLf3/Hwa0sbN+zc1GKqcdI3qm0tJ2MouthaTqrelMMj2k2IkqKgJrm9x3QNEEsHKC5Icq2/iTpbO38ebmpSXnbYrFI75YtOB5EWzsJmEbNANQyBAFD22nZpxACXS/pP3iCfHoE1y2STQ6RdUBOFC6XEkqiM1Iz/L9LF2EESiODCQaxhSxSwl+eWc/QSIbG2OvXlnh32Ffh9KmCMuLTnFjEwnRHuyXlCg6bto/Uzul5Es92mREPsjWVr2vIk5nJ2x9ORG6kgOeOzrN7Ulb6ldtFd/QAVcRDJkfMaiRnu9iOi6b5JT8NzWHiUYt7n9haSUaqxil5+eV+yqYmOKQ1il10kcDbuhuZEQ3w0NZh1iVzAMyLh3jzjARL2pQBPxDobgyVyrAktuORs0d71YcsXzdBE4K847ExlaclYtEetXyPPG3Tl7FLgkmCRNioDZNLSVdLgo29gxRsp2S4JTv6BgiFgwggl8+TyxWg6IJ0GRnYQSbS4Ce/SWhNBHfJgFcjhADpsO251aMLdRMRjvvetltlzD0PpFezrfRchOcQi0YZsT3fyI/RWSCXqtnu8zfdyQ8uOvvV3v59gtgFHYxd2cd0RRnx/QBd16D04tq6I1NjwP3wGyB8o9ccttiRsWuy1AEyhVdvxF3HT2CrGTC4EtPURo9LSe+8zpxTWS0LQGiCeNTCdjx2DNfv8AQlMRhXIpC0N4bQdQ3heBVPaEFjmAWN4XHbma+iPapi+nL6onb+6/9epC9ZwK4p75IUHI+AobFsZpwh2yFgjvajD+ga3YkgTSGT5/szeJJx4fOyvGlTPMy2/lTJQHrk7SL5QpV3LkuhbMcFO4sXilMsnUoya9MSD6Gx68pdUkpSfT21C90icmSArrZWtqXre+TSn9T31wXymRHesXwRtz+xHkTp98GxkYU0OLVz5z+5dxX/9ZG3Ew8Hd+kc9yX7oMJsSqEmB/cDyvKmmbyDU6ox9aQkX3TJFf2M9HzR87WjDa3S/cir+mRtl607MhUVuF3BLZYlHUeX+VrtJUGNqpdgea58IsJRCyEEmQn6KI/FKpWglb3+ndHYGNql/SqmN7GAwaxEaIwBH6XgeGwbzpf0sqvyR0rPbMTSmREPllr0jn+1CyGIhqoMW3l+uTpEPTZkXTVn7riSZMaXeC1HDDxPkrfrP/dSejh2gaGezXW/7xlOYwQj5ZVLf8hKlIBCprJu2DK48aKzMLIDyOFe5PA2yAyOM+BoOnnb4bnNfXWPqZhaKE98P0AzdTzbpVDK9PY8Sb5OoprtSpIFB1PXMEo6647nSzw6Eu59yh/tz2gOc9jcJloTu2b4/BfgqOddlq40dEGx5CS4ngTh186ONeaOBlv60zi9HqlUoW4ovRpLF7SEzUpiULkn+kSZvMGgQTw+9T0Kxe7Tly7w940TCJuU2DycZ2YiWKM1XkYIQVvEYig/cY5ItW2vNB8xLChOEEEacxgJjOQcUlWaB9lMmngkSEMkgGGOlr+lB/vp3/AynjPB4NYM4loRKBZ9j1rTK943TpHyb5Kha5xzzBIaoiE+ctqb+NHtf5ngXLXKCVvTRPhFzYkrpj1CE+hBA1FSTrTreNMFxyNVlbxWTt4JGDqe41U8eAEMJ/P8fW0vjVGL9qYwM9pihILjHxW9KkSt6wLH8Ut0XNdDK837WYZWKbVxXYnn+nPgCF8adutQjkyuiBBgahoaELN0UnVKz8okAv65uJ4/UBBCELQMCkV3nMxlIKAze3bjTpu7KPYPHl43MGm7USjlgOSdCRX7dE3geR4Z228vahl6JbQupaQwJgm0Ysg1AzynlFhWen6F5i8voWmC4timRa6L9DySqRGGX1hNIBJF0zTsXBa3OEmJGCBKpXKE4xj5YaRdwK3TSc1xPX7512cQus5ZRy/mR3/6mz8HXpkHF362eimC0NEY47A543sfTEUO9DlxFU7fT9BMnURzCK/kYVfjSlljwKvxpCSoCwzN/7SFTWKWTkAX5PIOG3pSrHm2l81bk2QzNrJq57qhoZcajWhCYOgCQ9dGa7ulxDC00tyjv43EN76BoMGWwSyZUmmPlP7DKISgIWhWktfG0hw2K/W16YJDdVZw0DIIBwwCpk7A1AkFDGbObFC9kw8g6omyvBa80nRy0ZVkCg52qVZcCEGm4BAKBTGMMQNbTRvt1+uVft+CsYqB0DSBqAqzV5TYCgV/IDC8HaRHIZ0ilxr2Dbg+sTSwiLcjDLN0XhpuoovOJj+B0yiVyI2em07Odrjp3jW891u/YfHcGb7Xrpulj1EzBfCOYw7H0KeHJ36gozzx/Yhg0CIUMskXa0tgxobWPekn+VRPG+rC94CrS9WiAYPWWABD03DzDju2pxGaoKExSCQaQEoIRgPkUnmKtluaX/drxJNpl3DI8Af7UqLrAksTaIaGZRkMpPJkq0KWWtVxdU3QFQ0wlC+Stt1KaL01bNIcthgpDUhGCkUiAQNDG91WlAYTEohGLQIB9YgfSMxuDJLP5ykU7FLLWY1AwMKyrBpvKxqob6DKteNjf2fyRQ9NCIquR9EDy7IIBAK4rks6nRlNIgNfYEV6YEXALE3j2FmsUrOScka4lBK7kMdzCsjkdsgma09GM8AKgmv44XHX8UNlVgQRaUBYtdNdwrA4863HctJBDXz11/ezZl1vKetrNBve8Ty8ouSFXBCsENi58Tch0sidG3K71J5Yse9Rb7j9jM6OGEOpWiNe3a3L9WTdBiKe9NtzNgQNdAGRgEFnIlTj6fqhP0n/jiz9O3ylKE33E4AKtku2UKx44eGAUSPQEgzohIImnifJZooMjMlAH+s/6ZqgJWzRFJKV/cTGvHilhO2pHI3hAGFLrxzL8yRGUKe5dXrUuSr2DOv607zzhw+Sz48+/57nkcv5Rj0WiyKEoDlsEpxgvlcIwbaR+jrqmYJDvujVDAY0TSMajTAykkbgYRgCIxRDWEEK6RGcgY14ye3IXIqMpmHE2xBWCBmM4+bTfti9KvmsBrM08DBMCEYQ4YZJr19KyQ/vfx7JQp7rGQa9Xk0IeJqBMIKIljmQTyNzSf88DAsR9gcHW4dz3PfCNk5c1DXpMacCak5csV8RjVgELL2S5FaNlPUT3lxPUizVd48UHBpCJq3RwLgG9lKON7aeK3E8j5GcXXFEIkHDV7wql+9YOoloANf1sIuj2fM158ZojXnNS1IINF1g6aPzXqYmKJbCpp6EgUyBoayvsgV+TsDRc2ZM63kuxavn/Tf8lR1p3wCPTXT0PI9cNkdzIsohOxncjRTq52NICelMDiEEpqFjlkRcdF3HNAw8XMKRGKFwSbchHiO5bpB0fsQfBDtFnIEtEGlESAHZYT+kXQ/drJlLx7GRngcTzP+OJosKfvTQK1CcpMpDq2qwEoohQvU1FNbvSPuN1xVTGmXE9zOEEHR3xXm5SvHM0jWKnltp1VnG8fy58kLV226oAK6AgzUxxoDLCTPG80W3YsDLiUDVREJmpRdymYCpQ672ReN4clwjFPA13qtrdkOmjlNwas7Hk37yHsDBsxp3qexMsf+wauMA6/vTnLGwi8O7GrF0jZFCkcc2D/LXjTsoOB6OU+TwjmjdZ6yaicZ+EonjOICgWHQQhSLRSLCSD5LNFBi2bTKZLM0tzWiaRnz2ItI965CuA2bQ96aDMf8ghsk/Hb2ApzZs55Vtg6MHNwK+Vzz2RPIpCCXqDK7LZSEemKEa0Zb6F7JrZaTTRp54DyS2TWdXXBnx/ZDmpjCuJ9m4JYnnSUKGRrbo1ni/rpQM5Ivj9MYl0JO2ebpvhMPaR7szTdaIoVAc9VwsU695yeiaqBhUt2oSvjESYEeqNqTuSontepglaVUX3zsPmeY47zwWMMgV3YpH7i+H2V0JOtuiu3KbFPsRD7+8gwvfNB9D0yoDvljA5PiD2ljSkeD6R18hV3QZztm4eZe+jI3jegQNnfaYRUvYf8bK+SJjkVJi28UaAyg9STqdIxYNIZB+iZlhUbRtUskUDY0NoGkEW7rIZ7KISEPNfLgIxljbm+Wer34UUxd84eYH+Z8HnpnYILmOP4ddNRdeqQcvq7BpOlBKWHMn8MbdIlJ6wCTGT0oyuTrz5VMQJfai2C9pa4nwhsM6mDe7gZldcRZ0N9QkqaSL7jgDDhDQ/f7KyVyRHen8pAIt9Rj7TpjoHWEZGp0N4+vQXSnJOS7ZUnLRRD2Z/a5oBvGAQdTSiVkGzdEAMzqUvOqBhpSSfM7FrDLgZTQhaA4HOO2QTgCe7cvwfF+aZK5IoaSb8GJ/lmf6MrieR89QmqHBYbLZbM2z7wsRjZkrlx7Sc/1GP15Zpa0Anks2k8HzPEAi9QCER7umVf+5cUeSc676Pe0NUb71LyciJgqvI/xadOmC5yJLn1LmaGkVbbTcqlx6VndXGhQLo6Vx9VbxbAbTEysnKqYOyhPfj9F1jdbm0fm/tpYId/x9E54cn9ymATNjARIBoxI6H84WSeWKdMRDBHdRttTzJFStWlal8l8uo+8bgOZYENPQ2JHMU3Q9DOFnlWeLoxnpOwuTaWJUWat7ZoOaBz8A2bgjg/SYMJNa1wSHdzVwxwvbSOVdEP6zb2iCWMhA1zSSeYeX+7O8vHGrnwiayZDSkjQ2N2FZFql0lqLjwjgpIt9Dd23bz0TXTd8j13SKdhHTMrG9iZ9jx5M8sX47f31hK29eOJPjl87jgWc3+c1NpC+QhGb4HvarkGnFCkEo7muij0XTwHOQxTwYgfGG3LHBtelomB6JoWKyiMKr2Md0RXniBxDxiMX87gSlAFwNs+IB4mUd8yrD6EnoSeYqdbJjKQu6lLEdb8x8HZWWjEadObawZWBoAlPzvYiiJ8fN2+/KL+js2Q1EJhDvUOzfbE/ld2rfDE1jRlOUWS1hZreE6WwIEjA1hjPFSq7GjqxdMz3jeR6D/QPsGEyRLbi+IdV0X3e8qqbacZ3SQFXzjbgV9j1kARZu7ci17rkJ7n16IwCfPXM5UuhgBvzyMjNYquEuXeBYSddqvDGtT0MJSHRAIOrvxwpDtNkvffNc31gX0v6gw7HByfs/uzaWqXPOUQdNflOnCOXs9N39TFeUET/AWHZQC/M6a0POIUMjZhl1jWXB9ejPFXlsa5JVW5NsGs7VlKwBBC2jMo51PX+OvPplks4WS52kxrcw3pHMVcrSgIpyXBnb9Sre/ETE4wHiMSWreqBiaGJynd4SDdEQhu6H3IOmRnsiSEs8QM4uC7loGEZt/20pJY49JowuSrOwZWPqyYolEOV5ac3ANE3OP2bOzk9MiMpA4sTF3Vz74RMmXA8zjNA0Yg2N6GPFWISOKA2GK1ZJNyHSCLFW34CbIT/kX54vl9IXpnHtmm5o718xn0Q4sPNznwIc6EZchdMPMDRNsOLQDnZkiryyfQQJNJRC6GON+HDeYbAw+oudczyG8kXWD2WZlQiiaxqBkv50vuiWkuh0wMHzdIKl2m3PkwwmCzTEAlimjutKRnI2fcM57DF1t/Xexcl8kcZShvvYczQMjc6OeJ2tFAcK89qi/N8k30spyToew/Zoz/vyn9GAXhl0+s9WnSfQdcCqSp8qh7kRJY9bgGZWJFeFEKAbXHnGYt79hhn8f7fcx1Bm4vllx/V40yGj9djnvHE+X753PcP9/eRzpe10A7TRgbZpWTS2tlEs2rhFByEEeVfguB4ByyDvWL6xHktZDlZK3/vWzVoLJiWa59CVCPKj+5/nugeeZ33/CA1hiw+sOJgL3raIjsT4LoGKfYcy4gcob17Uxsb+DI7nUW8qMVN0awx4GU34L79NyTymEBUjLoQ/q5QUDjObwrS3R4jFgniuREiJaepoGhRsl6HBHOt6RxACAmO8CU3A2AZURU8ymCsSsXQCejl5BxobQrS1RVWb0QOcxmiAQzpjvNiTYtB22JErUvA8TCFoDpo0B02e6k/7ksRerZkWQCJkkrVdPM/DKU7Q+EQ3odwdTAM8ifAc3xsXWmlgUE768A25pXlYhs4Fpx7Blbf+bZw2Avjz9bNa4pyydG5l2c8e30xR6nTNnEE2m2c4NUKh1CrY0HUMHQrZNKFoHMsKgBXA9TzSI3kQglgkSDBgkBoamrhxCvgDEKcwGqKX0l+mCX7y2GY2D73orwaM5It8489Pcf2Dz3PfpWewsLPhVfwL7V384dXuzolPX5QRP0BpjAZ49zGzueOJrXXbNg5PYMDL8qi6gGCprWnZO5jXFmVOa7QyRy7zju+NaxpF22XHcI5C0WVjf5rSK28clq7VVZRzPEky7yCAw+a30NIYVpKQigonLe3knlf62Z4ZbRhSQJJOF9iULvDiUJZ6XXYl5QGoJFcoQqA8X1wYLSfTdGSxAMVcTWMTaQYAAbnhMV6vQJoBUjn/XP7zn97Eoy9v4+6nNqCVytjAN+CJcIDffuafap7lv7wyQCbvEA8ZhMNBIpEQnufheR6927aTyxbQNI1gxJ8WE1XhePA9e0PXaWppIZ/NkstkcEuhcjMUxrEzft165SZIP+u9hGeE2DKcGxeTcD3JUNbmXdf+H099+eypk0R6gNeYKSN+ANOWCPHPxx3Exh1pXl43WFnu60ePN+zV+uYBrdaAH9bdwIzGUOVnTRMESolyrifpG8zieZJ03qnUnPtNJmpD5LoQGELgTDAH3tkaobUpPHVeIIopwa1P9tCXqd/xy5OS7niQlwcnrns2dY2s7SJ0A6nppdaiOT/kLDQ/4asa6fk120IDp4C0c5AZGtUiD4T5zUMJPvqWQ7AMnf/9j7O5+eHn+OHda3hp2xCJsMX73ryY809eRmdjra5B0fV7jA+M2LTErIoGfDKZolDwBwue55Ec2EGiuRWotUG5QpFoyBeLCUUihCKRUflkoKB5pPq3T3wzzeCEuhCuJ3l+W5KHXuzlrQs6J96H4nVDGfEDHCEEc9piCFfyUqkPc73f3+p8NAE19bgNYZOZTbXzZJY5mumeyRT80jMYl+XuSIlBbf1s0NAoer7wS/lcggGd2Z0JZrZHlQFX1JAvutzz/HbmxYLMjQUJGRq2J9kwkmfdSJ6iB7GAQdDQ6soOA5WEt2q9f6wwUgpw62upA36tuJ2HgU21y3Mp7rn/Qb4xv4VL33UCpqHzwbcu4YNvXbLT6wnpfoVGvujRmywQCxqELJ1UsrZczLELDPZuJRCOYFrBitRsoehiGi5BazTXxc9N8cgmB8iOpNGCEbz8eM12EYggd1rWCX9ft2PKGPE9kZg2nV8pyogrAJjdGSdg6qzbMkw279TokwOThptmNoVL2edlQ1xr5DNV8qpjDbDjSYSGXyNe5X1bukZLQ5A5JZEay9SV8VbU5ZUdaVa0xmmoKpE0NcnixjDz4kHu70mSdVxilj6hERdCEDB0dEMjbBlomsD1PLI5nfSwPTrnLUZrkivPqzlBaaOm84Wb/sRpyxcyq72ZdQNZQqbOgrbopFNBmWyusn/HhaFMkcG0XZJ8rUVKST6TppDNEIgkKJRe6emcjV10CQUMvxWvhIQoMJBOgxBYje0gPZxMEunYCE1HD8cRhkV+ZHjS+13uVjhVEKX/dncf0xVlxBUVOloitDeHyRUcXupJ8feX+ivfyapJbEltGDwcMCoGHMYb6uqxQNjSGc7WHrfoSRzPxdD8X0bDECw8qIVYtI5+tEIxhi3bRkhYtYO8Svc8XeONbTHu7xmufGfpAlPXcKUkXxw16vGSzsCoZLBGNBwgZLXRv6O/8txXH8OXT40jY60lyVOJrhmEmjswG/xQ9/E/WgWM/h7Magxx6YmH8IGjusddy7ZUnr+uH8DNFdBDscrv2byWMC8lRV3jKTSNhtZ2dN3AclzSpWZEtuNiOy4BQ+OzJx/CNX/8e2UbTdcRmoVu1ZZm+ipzO6c4Ubxd8bqj6sQVNQghCAdNls5tYsEMv3SruvCm/BIrVtVu245X83IZW9Nt6KMv16Cp122sIEv7tD2PubMaiccCyoArdkrBdhlO5WsGkdVoQtASNElYBrYnmdkQoLsxREc8wIxEkNlNIWIBvablbjVCCHRDJ9GQmPB7ABFrQQi/DWl83pKKAS+6Ek/6zUTmNYc5Ymac5rDJN+99ka/e+XzttTgu/3rzE3iagXQdnEwSz87THjWY2xymozlR11+MJhrRdb/8LGAaNMVCxMIWkaBJPBzgDbObOX1hC/1VMqrS8ybQXpATd1aruubh3ARZ/PsAVSeuUNRBCMFbF3cwqzXKM5uG6E8VEFCZ2y54siSyIdk2lKvRQZcSXNdDK3VCi4YtBpP5yn47GkJsG85h1wltHjSrgdYmVYeq2DWG0oWKIJrrSTKO3xRHE4KwoWGVwtbtYYumiDnOCOoC2mIBJDCUrV+OJYQgGAqipUbqeqpCCKQVhmySSMesSsi9LFzUFrM4pDWChMpgIxLQeWT9AH96tpe3HtTCfS/t4P9e2sHm4RzhUJCR1AgaksXNQbq7ErjA3M4WegeStdEATSMQqk30LBvzMi/1Z3h620jNOTv5DGZkvL66KIvYiCpN9rH3zDB3WYb59aCiF7+b+5iuKCOumBAhBHPbY8xtH1V429g3wqqXB0hmbDKOR0AT9KXyDGds4mGz8pKyHY+g5Xs44aBBJjfa49zQNGY2hsnaLplCEaEJGhpCdLVGCQbUI6nYdcqv3pGiy9CYssiRous39AmaRIJGXW+9/PJujVgM54oTKqQKITBMA7swmgGvmQE0K4jQSp58IAi6VQmzexIill7pXz5+yknyg4de4Qd/XYfjSgZLg4hYyCQdS/ChpR20x8P8dbuf0BYLBzlywWzWvLyZouP6Am5jOvxNdI+yriBo6uRLHQeLuTRGKAramGkITUM3jJJ4m/RL6sr3RPNr4l0JZx0+fipAsW9Qb0zFq2J2W4xZrVGSGRvb8YiGTAKmTr7gIIouslSa5nmSvO0SMHU0TdDaGCKZtkln7VLXREEsZNLZHiWeCE7rkbBi39EUD5J3vXEGvEzBlfTni6zurdMIpAoh/Az2VH50P4LRMKvnT4hXvtNDMYRuVG0vwAqTL3oEDI1yy/KuRLDGAwc/ibOplC3/cipfUTdyq+rH37u0i5kNIewxc8/NiSgnHLGA3sEUqUwOTzPYWcNQiT8w+PBbFvHDe5/2bbKU5If6CMSb0K1gTYvUhW1Rnt2W9O/AmN7ruiY45qBWjprTvJOjvn4c4GXiyogrXj1CCBqitbrKkZAJIRPP9XBLyUKaIRBaSU9JShqaw8SbQjilMLppqYxzxe5hGhq5nWRK5+toHtTdV1XGuGVoaGLUU5dSEgmHsO2i733rdXoNlH4uOB4h0/97S8TE1PzufJ4ESxN0hS1aQxZrB2tLvExdQxeSI1ujzG/wNRcCmr9NtTHXNI2ulga6WhrwpOSpnpFxKofVaAJOOLiVf1jcwXV//juOWZqu8lzywzsQmoFmGMiBzTC4hUXHLuFj7zmVT9/yeKVNucCvJDlqdjO3fOy4KfV7q0rMFIo9iKZraHq9fMmSCAwCq+73CsWrZyRfZCRf64XrAqxSp51CSWugNWT5sqQTIISoeMIBUyt54bXh74ZEFMPQGcrtPIM7Yhks7ogSsapesVISNDQaLAPH88i7nq/gCgQ0wbKWMEe1xUtz+17luDMjAdZNcO6GJpiZCLJxeOJrW9QeoysRJFNwcDc+iYy3IRo6kWYQXAeZ2oQ71OML2wADwyN8/PgF/MOybm565BVe6E0RC5qcfcQsjl/QPqUMOKg5cWXEFQrFtKVYlRypAY0Bg7Ch1XjQGcej3bPYMJKfsNmZocHijjh/3zQ0zoCXEUIQi4bJunlsR1ZtK+hKBGiJWAjhe+IzE8FKiHZGxGJBIkxryCRTdNmcKZB3JYc3RwFJ3NRpDpqVSMDY6q1Z0QBJ22FgzJSBJnw9heWzGtma6sWpU/alCdgwmGFdf5oP/nQVnhGEoR7kUE/9+6BrzO1q57a127jmwXU8unEIXROcuqiNSEiVfE5FlEukUCimLbGQian7Uh1tIbPGgINveCOGxsKq6ol6NIQsfvqBI2kOT26odAGRquTLWEDnTXMbOKglTCJkkAiZdJcMuBCCJU1h3tyRoDlokLIdXkrlK+F9DeiOBGgJmuhVioXGGCEYTQgOa4qwqCFM3NRLkQbB6YvaueqflnLfy/1YhkbQ0DA0v6+BrgkChkagdD8++bu1rNo8jGg/eNL74Lge2baFvPO/H+WhV/rJFl1GCg6/f2obb/nOQ/zk0U2Tbq94/VFGXKFQTFtMXWPprEaipoap1Q+rCiEQHswek8dhaoIFiRCnzGzgjU0R/vj4FmJm7StRE/78eNDUCFk6pqHRGrUwhG/QD58Z90WKSiFdo8oYtwQNFjf6mekC2JSulW9NWHrlnKtP29BEzfy8fx6CzrDF8tYYx3c1cN6RszjvmLls2JGuqNBpmsAyNAIlLQZdEzQETU7sbuAvLw/4bc/bD4ZwAxOlcp12+un86ukBoLaboONJpISP3byG9QPj5Vr3JfuiTvzyyy+v/JuXPx0dHZXvpZRcfvnldHV1EQqFOP7443nmmWf28JX7KCOuUCimNccuaCM+QWli+d3sScnB8VFvPG7qnDm7ieWtUVqDJk1Bk+GRAh86tJMTuxsA35sdm+AGgCbobArRHg+MGzjoVeseHA9VRJCStoszJtodt+okx5WIWnrdFsEATVGLGS1h/vu+V3jo2e0TZlY3Bw3efUgrnZEAmVJpmdANtEPfhmg7yK8HL2MGOPotx+O0HFSJCkzE9Q9vmPT7A4XFixezbdu2ymft2rWV777xjW9w1VVXcc011/DYY4/R0dHBySefzMjIyCR7fG2oOXGFQjGtCVo6IVPHLlVFWLogaukES6Fkx5NkbJek7c8pC+CEGQ0E9TGh99KfKzoT9OWKvJT0i7fqybm2hk3ilkHc1Mk4Hh6Mm0tvqpIjLtTpg1odNi9ngZfRhaAhYJB3/AQ4Kf15+8aGMC/2jbDh8S0ENIGhacyJB9mQGj/f/7ZZjf4xxigkCsNCzFuOnHU45JKgaRiRRlasOIj/eXRjJcGvHq6UPFpqlDRV2FeJbYZh1HjfZaSUXH311Xz+85/n7LPPBuCmm26ivb2dX/ziF3zsYx/brXMdi/LEFQrFtCdUygIPGRotYbNiwMH3juMBne54EF34iWYxU6/09h6xHbZnbbZlbPqyNiO2w5s6SpLDY17uYUPj6PYYx81s5Ii2GPMSYQ5titARGt8EpTocXU9optpYjpU1Lm8TNnWagibNIZNEPMRTW5MUir7IUvnc3tAeG+e1t4RM2sIWmvCrQeY3hsZ57MIwfbnYSBMugn9Y2lnTuGgiplp1yb4IpwO89NJLdHV1MXfuXN773veybt06ANavX09vby+nnHJKZd1AIMBxxx3Hww8/vKcuu8LU+tdQKBSK18C8rjiagMaQb8zHes9CCOKWzlFtMTrCFp6UuJ5kR65IuuhVMsJdCemiX5aWsGqlRQO6xjGdCZqCZs1yXQjaQiYzIoEaI7w1U6iE08fuC2DEdmvWL59DeZnjSfKuR9Hz6GoJ8/Q2X7DGGBPCbw6ZnDGvmWhpPl/gZ+lXc8Lcpgnvna4JVsxuJJnO0xUNTCp8IgScuqh9kjWmN6lUquZT7t8+lqOPPpqf/OQn3HnnnVx//fX09vZyzDHHMDAwQG9vLwDt7bX3qb29vfLdnkQZcYVCMe2Z1xmnMewb18lCo0e1xyoNfYYKzrhyrjKuhCNaYzXLDkoEMTUxzqsOGxrd0QBvaImyoCFM2Vy/ksrjSoknJZau0RSoNeTDtn/8stGWpeMWXI+eTIFN6QI9GZvNaZvHNicn9RY7IgHOXdjO2+c2saIzziGNtdn4BzWGec/i9krinSaoeO9vnNXAafObeeDFHRzWHhu76wqagHjQ4J/fOLUkV8Ue+g+gu7ubRCJR+Vx55ZV1j3n66adzzjnncNhhh3HSSSfxxz/+EfDD5pXzGvMPVt35cU+i5sQVCsW0xzQ0ZjRH6B8eFSENGBqhUtjclZJc0SUhBFnHxZM7b6fZGbYI6Rq50nx2dzRYY8B1AQcnQjQGDKSUSKAjbHJUW5SnB7NsThd4cFuSt3QkMDWYEbaQ0mao1ENAAj1Zm/aQiVXq9Ge7HttzxXHz26n8qK67U+ogWK+j2sxYkJklO6yJ2przIzriLGiOsHpbiu0ZG0vX+MI7FpFK2/zl5R1ICW1Ri5MObuaelwcq5wi+dx8LGvzxY2+iMTxB//R9xJ5UbNu8eTPxeLyyPBAITLBFLZFIhMMOO4yXXnqJf/zHfwSgt7eXzs7Oyjp9fX3jvPM9gTLiCoViv8A0tIqOdmPYwjK0Gk3wUKkByFf+4TB++dD6cdsHdEFnJEDU1PGkZCDv0B422TBSQBeMq9+enwhVwuRC+PXZ5Vrt42Y2AH4Tls05mzmNfo33HCEwLJ3BfJGC49EUsVja3UAm7zCQynPv8311r636yBKwPYmlTSRKAwe1RugdzlMY0ykwbOq8eVajf780weLWKN9e+1KNsV/QEqErFuCZvjS9IwU04c+X/7/TF9EQqp1K2N+Ix+M1RnxXKRQKPPfcc7zlLW9h7ty5dHR0cPfdd3PEEUcAYNs2DzzwAF//+tf39CkrI65QKPYPmhpC9PZniJcEYGDUyJX/DJg62VSBJbMbebDKYLaHLRaMCUG3hEw+sWwm/9+qzezIF3HK7XeBiKHRUDXvrAm/Y9nYDPWYqbPECtHVEMItuniexNQE82YkaCjpowNEgya9wzkGMjb10DWBU5Upl3E8dFNHZ3wf9LZYgIAEHTAE40rbwB+QWJrg5e0jdVsCxwIGK8qldgKOnds0pQ34ng9ST86///u/c+aZZzJr1iz6+vr46le/SiqV4l/+5V8QQnDJJZewcuVK5s+fz/z581m5ciXhcJj3ve99e/xclBFXKBT7BU2JIJGgUZOZPhYBJJM5Fs1M8NDzfZUEtrIBH7tdxND50oo5PDiYYSRtI0sGrzlo4klZCa8HjfF66+Aby4aQSSFXrHxn2y5929OMjBRo74jTO5Dhpa1JXtyRnvDadCHQhaxkvEsgWXQJaIKArqEjaU8EObQtyvBwnozt+g1UDB1TSj8EX7p+ozSvLwBd23lalMQXvJmy7Ml4+i6yZcsWzj33XPr7+2ltbWXFihX87W9/Y/bs2QBceuml5HI5LrjgAoaGhjj66KO56667iMUmzjl4rSgjrlAo9guEEMzpijPQn51wnaClE7AMTMfjbQvbeOCFHcyMjW8XqmuCsGUQtHSEgPc2hglGLX78yAZyRRe96p1fNoz1Bg6JoDmhFvtQKs8LPSkc12N7tli3DK2acjczj9GuqAVP0hgzOffoWeRSBTZtS1EsRQzKCXx+mdn4fUtgTmuU2c1hNg1kJ9SV9yQsndEw6bntS8pTKLu7j1fDzTffPPn+hODyyy/n8ssvf83ntKtMmeHVlVdeWQlDlLn88stZuHAhkUiExsZGTjrpJP7+979Xvh8cHOQTn/gECxYsIBwOM2vWLC6++GKSyWTdYxQKBZYtW4YQgjVr1lSWP/nkk5x77rl0d3cTCoVYtGgR3/nOd2q23bBhwziZPSEEf/7zn2vWe+CBBzjyyCMJBoPMmzePH/7wh7t/cxQKxS5h6ONLuQB0XdDeFKGlIUw0ZIIHh7bF+Mib5jAzUZuwZuqC5liAcEBHL3mtnifJpQp8cNkMZjaGyble5cUvxiq6lbB0X/q03neuJ9k+UsD1JHnX95Ktku75RAjhi9j8x2kLec8buzn7yJlc+LaDueTkQ2gImmzZPoJTsu6aEIQn8J6llKSLLgO2w+/XbCViGRMacCFgQUeMmU3hiU9MsU+ZEp74Y489xnXXXcfSpUtrlh9yyCFcc801zJs3j1wux7e//W1OOeUUXn75ZVpbW+np6aGnp4dvfvObHHrooWzcuJHzzz+fnp4efvOb34w7zqWXXkpXVxdPPvlkzfJVq1bR2trKz372M7q7u3n44Yf5t3/7N3Rd56KLLqpZ95577mHx4sWVn5uaRusv169fz9vf/nbOO+88fvazn/HXv/6VCy64gNbWVs4555w9casUCsUkBEPjX2lCQGtDuCJkUm1UA4bGQV0JXtwyXOmI1hAJjG9FWvrTK3q85/AuslKy+jl/Tn0igTNTFxOWFaWrytvKoi9CCBosY1y3smresqCN5miA5jE68H0D46MPcUun6MmaXuSOJ+nJ2hQ9iQCG8w6a8MP1HhKqlOM8CfPbYvzLMXMnPJ8pwb5wxacQQspJNPZeB9LpNG94wxv4wQ9+wFe/+lWWLVvG1VdfXXfdVCpFIpHgnnvu4cQTT6y7zi233MIHPvABMpkMhjH6C33HHXfw6U9/mt/+9rcsXryYJ554gmXLlk14XhdeeCHPPfcc9957L+B74nPnzp10u8suu4zbbruN5557rrLs/PPP58knn+SRRx6Z/EaMucZkMvmasiQVigOdLZuHyeWKlZ8jQZOGWGDCeXIpJf3JPNsGswRMjcZI/bKicNAgYOmV/XhS8sr2EXqGckQsvUY3HfxEt7Cp1z3utlS+0rgkW3RJlsrOwM9oHy4447zjo+c1c+rSznH7y+WKvLh+gFS2iOdJRqr2JaUk53hkHI+i67E1a1e6qNW7D0tmJAgHDAKmxtKZDcxujtRdd1fY2++y8v43vryVeGz39p8aSTH74BnT8r27z8PpF154IWeccQYnnXTSpOvZts11111HIpHg8MMPn3C98j9CtQHfvn075513Hj/96U8Jh3ctLJRMJmu87DJnnXUWbW1tHHvsseO8/UceeaRGag/g1FNP5fHHH6dYLFKPQqEwTiVIoVC8djo6YhhVoeTQBM1RpJS4rofjSuJhf+7a0jXq+TXxiFVjwMEPWc/viLNoZqJikKu3LTjexAOHqr8Hx4S9Y6bOjIhFU8AgYek0BQwObY1y6lK/5jidsRkazpFOF9jWm2LTxiHcqk5m1bsTJenW1pBJzNInNODldbcO5zj7yJmcefiM3TLgitePfRpOv/nmm1m9ejWPPfbYhOvcfvvtvPe97yWbzdLZ2cndd99NS0tL3XUHBgb4yle+UiMwL6XkQx/6EOeffz7Lly9nw4YNOz2vRx55hF//+tcVFR6AaDTKVVddxbHHHoumadx222285z3v4aabbuIDH/gA4Bf315PacxyH/v7+msL/MldeeSVf/vKXd3pOCoVi1zBMnVmzG0km86SSObQ689KO62Hbbo0xnd0eI5MbP9gOWjq6XrsPrzQAkBKawxbHHzGDwZE8m7YmcVw/VO14kqLrYdbRGg8YWqWGWxOCmKkzUhz1oDUhiJqj8/srFrSSTObZ3JPCtl1cT1L0PJojfv/zoKGTKXngIdP/e3Xtt6EJ8qUQ+mSh1+FskYG0TWts10ROpgL7qgHKVGGfGfHNmzfzyU9+krvuuotgMDjheieccAJr1qyhv7+f66+/nne/+938/e9/p62trWa9VCrFGWecwaGHHsqXvvSlyvLvfe97pFIpPve5z+3SeT3zzDP8wz/8A1/84hc5+eSTK8tbWlr41Kc+Vfl5+fLlDA0N8Y1vfKNixKG+1F695WU+97nP8elPf7rmOrq7p5asoUIx3dB1jaamME1NYeyMjVscrYV2XI9CVci5so0miEcsCraLU9V1LFCley6lpGC7lfnz8rK87dDaFqWzJcrAcI58wUHXNRpiAbZv8w1vNfGAQSo/OvcdKemeVxty8Ovaj1nURtTUeWWD3z3Mk5Ks4xIPjr6+dU0QMnVyRdcfAFg6RVdiu74ufCJgsC1bvwZ9LN6+nWFVvEr2mRFftWoVfX19HHnkkZVlruvy4IMPcs0111AoFNB1nUgkwsEHH8zBBx/MihUrmD9/PjfccEONUR4ZGeG0004jGo1y6623YpqjogT33nsvf/vb38bJ5y1fvpz3v//9NVq3zz77LG9729s477zz+MIXvrDTa1ixYgU//vGPKz93dHSME7jv6+vDMAyam5vr7iMQCOyytJ9CoXj1GAEDt+gbMCkldnG8Aa/uGR6wNJzcqJGu9uTzBaciuuK4HsNZm5F8EU+Ctn2E9pYIs7oStFZlc8+Z28TISIGRVB7XkwQsg0RDkEQyzzOvDPg5VSXDGzY1Cq5HQyzA7I4YDSELIWDT5tGKG9stt1ytrYcv9yDP2i4IgWX4/dBDlo7rSBoDJpJRWdp6BE2NpsjUklVVTM4+M+InnnhiTRN1gA9/+MMsXLiQyy67DH2CUhEpZU1nmVQqxamnnkogEOC2224b59V/97vf5atf/Wrl556eHk499VR+9atfcfTRR1eWP/PMM7ztbW/jX/7lX/ja1762S9fwxBNP1ITI3/SmN/GHP/yhZp277rqL5cuX1wwsFArF64dmaBgBHafglhqOjH4nBBilUHk5aqbrOrqukc7YlfWFoDJ/DlB0PLYMZWu8Vk/C1r4063tHMC2dQtHD86Q/CNAEmYJDtuACfkmZrgnaEiGCukY2ayOlpDEeZFZ7jORIgc1bkmySfulZwBh9H5Y138f6y0IIIpZB2NSxS6H+gKljBAwGhnJ0hE1Cuub3J69znwSwYl5z3fD/VGYfaL1MKfaZEY/FYixZsqRmWSQSobm5mSVLlpDJZPja177GWWedRWdnJwMDA/zgBz9gy5YtvOtd7wJ8D/yUU04hm83ys5/9rCYxrLW1FV3XmTVrVs0xotEoAAcddBAzZ84EfAN+wgkncMopp/DpT3+64k3ruk5rayvgd6cxTZMjjjgCTdP4wx/+wHe/+90aLdzzzz+fa665hk9/+tOcd955PPLII9xwww388pe/3At3UKFQ7CpG0EDoGm66NqRsVBVmV3u1uiZIxALkih6uJxGCmhB6Xyo3LuxsOx7D+VJWec4PlUspybkerix3DhstO3NcybZBvzTszUs6iAZNXtgyzHPrBytVU4YmMKpU1cYmzpl15vvLSm0AiYYQI9liZfmKzjgP9SRxSwpu1cxuCXPS4o6d3supx4FdYzYl6sTroes6zz//PDfddBP9/f00Nzdz1FFH8dBDD1XqtFetWlURfzn44INrtl+/fj1z5szZpWPdcsst7Nixg5///Of8/Oc/ryyfPXt2TSLcV7/6VTZu3Iiu6xxyyCH893//d818+Ny5c/nTn/7Epz71Kb7//e/T1dXFd7/7XVUjrlDsY0Sp8UggapIv1WHXqxsHf044nS2SzNh+G1FLJxowK7rptuNWstHLuJ5kKD++vrvg+VKpglFFuOrjSXzD/Jeneyl6kpil0xw0KusYdQx0OTktaztELX3SFpfhkElqZDRy2RgwOGlmAy8nc2xOF3A8ScTQWdga4R9WzMaYZl64YgrUiStqUXXiCsXeZWhHBtfxMI3xXqzrSbbuSFMojm8KYhkajbEAmYJDXypf81264JAZs42UknTJ2Jcd/rHHawybREydDUP+XHVnxCJQCu/rQlQ87ertC45bEXCxdI2mMX3Uy0a9IREkkyn6HdmqDHk9DprTSMseVmV7verEt6zftkfqxGfO7ZyW71017FIoFAcU0cTEiaR9Q9m6BhygUHQZHinglfp5VzPWM4faXt4w3oC3RCyOmJGgJzVqYKvD49Wre5LKvL2la5Xgr+169KULpAsOtuNhOx7C0JgxM0Em44fRNSFIhCfOyWlvjdA8poObYvowZcPpCoVCsTcwLYNEU4hsqlATii46Hunc+JC4lL50ad7xldTKGFptVvurZVF7zDe+VeVsrpRoFYNNZapW4kcJyscLmzoFx8OREk9C2nbJux7dnXFmtUXp68vUHMsydJqigpztUij69fFBy2DWzASJ+MRqdtMBXyJ39/cxXVFGXKFQHHCYAYNQVJKv6t+ds+trluccj4I73tN2SkbV0HyddHdM426tyjJIgKoBQ3PYImjq4zz4EdulqVT/7UqJSe38uStByNFQemPUorM9iib8GnfN8cCRFOror+uaRjSoEQ36XrlpajQkJtboUEwPlBFXKBQHJGbQoGi7uHXqxss4Xn0DXsaT/ids6uSdWsMphBhtHyr9efGy5x8qJaRFA35tdzn0nrZd4gEdo7S940nMMa3NykMFTRPM7W4gHCqFyotuVd3ZzrTZmN51VVWI0n+7u4/pipoTVygUByRCCMLxAIGwWTKs432aenPdYzEMjY7mCF1N4+eVLU1gVHUFA9+QF11fV93QNGY2jG7nAdvSNoVyPbrnYbvuuDn4SNjk0ENaCIdMcgWHp9cNUKjKjg/X6eY2lsgk8+TTCrGHPtMU5YkrFIoDFiEEgbCFFTKRnmQoa5OsSjTbFQlS15McerDfz2H7YJYXtwzTN5RDSl/+NaoLAgEDTwgKtotEUvA8PCnRhGBBa5ThXLEiw+pK2JaxsTRBxNJZPLuRzpYIruPhupJg0Kh43yNZm4ee7MEUgiVdico5JaIWqfTEMqtCQEyF0vcLlBFXKBQHPEIIhC6YM6uRF1/uJ1en5nsi9Kpwd3tTmPamMFJKhkYKbN4+Qi7vELB0ZrRFCVg6z29JsrEvzf0v9xMLGMxpCnP0rEY2D+fYPJwjV3QxNMHc9hhL5zUTDdX3mKWUPP5cH8Wih2bWKlyahk57c5jtdfqMCwHtHTFMs74q5nTjwJZ6UUZcoVAoKhiGxsJDWhkYytI/kMWRHiOFiefMAdpLLTullGTyDo7rsW5Lkp7+TGVmWgDre0dI2S6IUelX27Hpz9jMbgyxqD3G3OaI7yU3hAjX0TDPZAoMD+XI5x2ytkuylJiXL7qM5IpEq4RiIiGTWZ0xRjI2uVKiWyhsEUsEa1q1TnsOcCuujLhCoVBUoWmC1uYIrc0RHMfj4Se3UizW1xvXNcHMtigvbE3yxLoBUtkiMVMnavrNScrbuFKSLHcyq9pR+a8bh3J0NIfpbomQdSQZx8NyvRoFtf7+NEODow1MsmOy6V/aluIN82obLRm6RmM8SCNQapi+3yS0KXyUEVcoFIoJMAyNIw/t4Innt5MvuBX7JyWYhsayBW2s3TzMmnWDgG8nI6Y2ru46P0mGe5mnNg2zev0gxVJSm2loLOpuYNm8ZvI5u8aA+8eqPcam/gyRgMGCGYnKfHv5z/3ZgB/o2enKiCsUCsUkREImxyybQf9QjsFkHpAkYgHamyIMZQoVAw6+4ppWx1A6Y+Xb6pAb03O86Hg8u2GQV7YkOagpRCxg1AwOooHxc9rPbU2ydTDLnLYo0aCB60naWyJohrZfGnBQXcyUEVcoFIqdoAlBW1OYtjH64s9vSSKq5rj3pDEIaL5/6LoeYcsY592bukYiaJAck4SXyhV5auMQAAtmNdC5nySwKeqzH2U3KBQKxevLcMau6U9erKOrDmBqr+5Va5UMuBAlLfUJSt264kEiVq2RLpv6We1RFs5ufFXHVUw/lCeuUCgUr5FyM5KyifUk5FyPkF47Lx7UBZniTjXUgFLbUmo12ZN5h6aSKE01miaY3RgiY7vkpAQhCAcNZrfHaIwfGHXglYHObu5juqKMuEKhULxG5nXEWN+XrlmWKriYIVF5uZaNTENAZ7jg1hjyek522QOvpi9doCls1u0dLoQgFjRZOq8JXfUDP+BQRlyhUCheI3PaYzRGBhjOjobVPaA/5xAxNSKGjiHAMnUObk/Q2Rph044MG/vSuK6kJRHANDSe2Tg86XGyRY8NgznmNIXGGXIhBDNmJpQBP0BRRlyhUCheI7omOOOobu5cvZUdqTzlai5PgisEK5Z20t5Qq6l+WCTAYXOaKj/bRZcN29NkCw5S+oOAeh73YK5IutehJWIRDRi0JILEogHiieABbcBVdrpCoVAoXjPhgME/rpjF9uEcm/szuJ6kLRFiTlsUTdu5dbBMnbcv7+bep3oYSBX8jHQJOuMNue1KelIF5nRYzJqlktbggBdsU0ZcoVAodhchBB2NYToawztfuQ7RkMmZb5xFfypP71AO6Ul6B7MMlox6WbpVAm0NIZYvaN2DZ6+YzigjrlAoFFMAIQStiRCtCT/8ftjcJrYNZFm3LUW24BCyDOZ1xulsCdcVlDlgOcDj6cqIKxQKxRRECEFXS4Sulsi+PpUpzYEeTj9wsyEUCoVCoZjmKE9coVAoFNOXA9wVV564QqFQKKYtYg/991q58sorEUJwySWXVJZJKbn88svp6uoiFApx/PHH88wzz+yBqx2PMuIKhUKhULwGHnvsMa677jqWLl1as/wb3/gGV111Fddccw2PPfYYHR0dnHzyyYyMjOzxc1BGXKFQKBTTlnJy+u5+Xi3pdJr3v//9XH/99TQ2jtbsSym5+uqr+fznP8/ZZ5/NkiVLuOmmm8hms/ziF7/Yg1fuo4y4QqFQKBRAKpWq+RQKhQnXvfDCCznjjDM46aSTapavX7+e3t5eTjnllMqyQCDAcccdx8MPP7zHz1kZcYVCoVBMW/akJ97d3U0ikah8rrzyyrrHvPnmm1m9enXd73t7ewFob2+vWd7e3l75bk+istMVCoVCoQA2b95MPB6v/BwIBOqu88lPfpK77rqLYHDidq9jJXPr6eHvCZQRVygUCsU0Zs/VmMXj8RojXo9Vq1bR19fHkUceWVnmui4PPvgg11xzDS+88ALge+SdnZ2Vdfr6+sZ553sCFU5XKBQKxbTl9U5sO/HEE1m7di1r1qypfJYvX8773/9+1qxZw7x58+jo6ODuu++ubGPbNg888ADHHHPMHr9+5YlPMWSpKXEqldrHZ6JQKBSvnfI7rPxO29vHeb32EYvFWLJkSc2ySCRCc3NzZfkll1zCypUrmT9/PvPnz2flypWEw2He97737fa5jkUZ8SlGuY6wu7t7H5+JQqFQ7D4jIyMkEok9vl/Lsujo6KB7/tw9sr+Ojg4sy9oj+7r00kvJ5XJccMEFDA0NcfTRR3PXXXcRi8X2yP6rEXJvD5MUrwrP8+jp6SEWi+2VJIg9QSqVoru7e1wSyIGEugfqHhzo1w+T3wMpJSMjI3R1daFpe2fmNp/PY9v2HtmXZVmTJqpNVZQnPsXQNI2ZM2fu69PYJXYlCWR/R90DdQ8O9OuHie/B3vDAqwkGg9PS8O5JVGKbQqFQKBTTFGXEFQqFQqGYpigjrnjVBAIBvvSlL9UVQjhQUPdA3YMD/fpB3YOpgEpsUygUCoVimqI8cYVCoVAopinKiCsUCoVCMU1RRlyhUCgUimmKMuIKhUKhUExTlBHfD5kzZw5CiHGfCy+8cNy6H/vYxxBCcPXVV9csLxQKfOITn6ClpYVIJMJZZ53Fli1bdnqcz372szXrbNq0iTPPPJNIJEJLSwsXX3zxOIWltWvXctxxxxEKhZgxYwZXXHHFbuktT6Xrr3ceP/zhD/fq9b+e9wDgj3/8I0cffTShUIiWlhbOPvvsmu/3xTMw1e7B/vwc3H///XWPIYTgscceq6y3r56D/R6p2O/o6+uT27Ztq3zuvvtuCcj77ruvZr1bb71VHn744bKrq0t++9vfrvnu/PPPlzNmzJB33323XL16tTzhhBPk4YcfLh3Hqawze/ZsecUVV9Qca2RkpPK94zhyyZIl8oQTTpCrV6+Wd999t+zq6pIXXXRRZZ1kMinb29vle9/7Xrl27Vr529/+VsZiMfnNb35z2l+/lFIC8sYbb6xZJ5vN7tXrfz3vwW9+8xvZ2Ngor732WvnCCy/I559/Xt5yyy2V7/fVMzCV7oGU+/dzUCgUao6xbds2+dGPflTOmTNHep4npdy3z8H+jjLiBwCf/OQn5UEHHVT5hZJSyi1btsgZM2bIp59+Ws6ePbvmF3d4eFiapilvvvnmyrKtW7dKTdPkn//858qysduN5U9/+pPUNE1u3bq1suyXv/ylDAQCMplMSiml/MEPfiATiYTM5/OVda688krZ1dVVc767w766fin9l/ett9464fevx/VLuXfuQbFYlDNmzJA//vGPJzzuVHkGpNx390DK/fs5GItt27KtrU1eccUVlWVT6TnY31Dh9P0c27b52c9+xkc+8pFKQxXP8/jgBz/If/zHf7B48eJx26xatYpiscgpp5xSWdbV1cWSJUt4+OGHa9b9+te/TnNzM8uWLeNrX/taTXjskUceYcmSJXR1dVWWnXrqqRQKBVatWlVZ57jjjqsRizj11FPp6elhw4YN0/r6y1x00UW0tLRw1FFH8cMf/hDP8yrf7e3rh713D1avXs3WrVvRNI0jjjiCzs5OTj/9dJ555pma69vXz8C+vgdl9tfnYCy33XYb/f39fOhDH6q5vqnwHOyPKCO+n/P73/+e4eHhml+or3/96xiGwcUXX1x3m97eXizLorGxsWZ5e3s7vb29lZ8/+clPcvPNN3Pfffdx0UUXcfXVV3PBBRfU7Ke9vb1mH42NjViWVdlPvXXKP1cf67WyL68f4Ctf+Qq33HIL99xzD+9973v5zGc+w8qVK2uOtTevH/bePVi3bh0Al19+OV/4whe4/fbbaWxs5LjjjmNwcHDC63u9nwHYt/cA9u/nYCw33HADp556ak075anyHOyPqC5m+zk33HADp59+emUEvGrVKr7zne+wevXqV93qVEpZs82nPvWpyt+XLl1KY2Mj73znOyveKVD3GGP3M3YdWUpk2ROtWPf19X/hC1+orLNs2TIArrjiiprle/P6Ye/dg7In+fnPf55zzjkHgBtvvJGZM2dyyy238LGPfWzC63g9nwHY9/dgf34OqtmyZQt33nknv/71r8d9NxWeg/0R5Ynvx2zcuJF77rmHj370o5VlDz30EH19fcyaNQvDMDAMg40bN/KZz3yGOXPmANDR0YFt2wwNDdXsr6+vb9xIuZoVK1YA8PLLL1f2M3YEPTQ0RLFYrOyn3jp9fX0Akx5rV9jX1z/ROqlUiu3bt1eOtbeuH/buPejs7ATg0EMPrXwfCASYN28emzZtmvD6Xs9nAPb9PajH/vQcVHPjjTfS3NzMWWedVbN8KjwH+y37ZCZe8brwpS99SXZ0dMhisVhZ1t/fL9euXVvz6erqkpdddpl8/vnnpZSjySy/+tWvKtv19PRMmswipZR/+MMfJCA3btwopRxNZunp6amsc/PNN49LZmloaJCFQqGyzn/913/tkWSWfX399fje974ng8FgJXlnb16/lHv3HiSTSRkIBGqSuspJTT/60Y+klPv+GZgK96Ae+9NzUMbzPDl37lz5mc98Ztzxp8JzsL+ijPh+iuu6ctasWfKyyy7b6br1sqzPP/98OXPmTHnPPffI1atXy7e97W01ZSUPP/ywvOqqq+QTTzwh161bJ3/1q1/Jrq4uedZZZ1X2US4rOfHEE+Xq1avlPffcI2fOnFlTVjI8PCzb29vlueeeK9euXSt/97vfyXg8vttlJVPh+m+77TZ53XXXybVr18qXX35ZXn/99TIej8uLL754r1//63EPpPSznWfMmCHvvPNO+fzzz8t//dd/lW1tbXJwcFBKuW+fgalyDw6E50BKKe+55x4JyGeffXbcfvf1c7A/o4z4fsqdd94pAfnCCy/sdN16v7i5XE5edNFFsqmpSYZCIfmOd7xDbtq0qfL9qlWr5NFHHy0TiYQMBoNywYIF8ktf+pLMZDI1+9m4caM844wzZCgUkk1NTfKiiy6qKSGRUsqnnnpKvuUtb5GBQEB2dHTIyy+/fLdH3lPh+u+44w65bNkyGY1GZTgclkuWLJFXX311jTe0t65fyr1/D6T0vc7PfOYzsq2tTcZiMXnSSSfJp59+umadffUMSDk17sGB8BxIKeW5554rjznmmAn3vS+fg/0Z1YpUoVAoFIppikpsUygUCoVimqKMuEKhUCgU0xRlxBUKhUKhmKYoI65QKBQKxTRFGXGFQqFQKKYpyogrFAqFQjFNUUZcoVAoFIppijLiCsV+xvHHH88ll1yy148zZ84chBAIIRgeHt6tfR1//PGVfa1Zs2aPnJ9CcSCgjLhCsZf40Ic+VDFM1Z/TTjttj+z//vvvr2tAf/e73/GVr3xljxxjZ1xxxRVs27aNRCKxW/v53e9+x6OPPrqHzkqhOHBQrUgVir3Iaaedxo033lizLBAI7NVjNjU17dX9VxOLxejo6Njt/TQ1NZFKpfbAGSkUBxbKE1co9iKBQICOjo6aT2NjY+X7q666isMOO4xIJEJ3dzcXXHAB6XS68v3GjRs588wzaWxsJBKJsHjxYv70pz+xYcMGTjjhBAAaGxsRQvChD30IGB9OnzNnDitXruQjH/kIsViMWbNmcd1119Wc58MPP8yyZcsIBoMsX76c3//+968ptP0///M/NDQ0cPvtt7NgwQLC4TDvfOc7yWQy3HTTTcyZM4fGxkY+8YlP4Lruq7uZCoViHMoTVyj2IZqm8d3vfpc5c+awfv16LrjgAi699FJ+8IMfAHDhhRdi2zYPPvggkUiEZ599lmg0Snd3N7/97W8555xzeOGFF4jH44RCoQmP861vfYuvfOUr/Od//ie/+c1v+PjHP85b3/pWFi5cyMjICGeeeSZvf/vb+cUvfsHGjRt3a049m83y3e9+l5tvvpmRkRHOPvtszj77bBoaGvjTn/7EunXrOOecc3jzm9/Me97zntd8HIVCoYy4QrFXuf3224lGozXLLrvsMv7f//t/ADXGcu7cuXzlK1/h4x//eMWIb9q0iXPOOYfDDjsMgHnz5lXWL4fN29raaGhomPQ83v72t3PBBRdUjv/tb3+b+++/n4ULF/Lzn/8cIQTXX389wWCQQw89lK1bt3Leeee9pmsuFotce+21HHTQQQC8853v5Kc//Snbt28nGo1y6KGHcsIJJ3DfffcpI65Q7CbKiCsUe5ETTjiBa6+9tmZZ9Zz1fffdx8qVK3n22WdJpVI4jkM+nyeTyRCJRLj44ov5+Mc/zl133cVJJ53EOeecw9KlS1/1eVRvI4Sgo6ODvr4+AF544QWWLl1KMBisrPPGN77xVR+jTDgcrhhwgPb2dubMmVMzmGlvb68cX6FQvHbUnLhCsReJRCIcfPDBNZ+yEd+4cSNvf/vbWbJkCb/97W9ZtWoV3//+9wHfmwX46Ec/yrp16/jgBz/I2rVrWb58Od/73vde9XmYplnzsxACz/MAkFIihKj5fnc6FNc71mTHVygUrx1lxBWKfcTjjz+O4zh861vfYsWKFRxyyCH09PSMW6+7u5vzzz+f3/3ud3zmM5/h+uuvB8CyLIDdThBbuHAhTz31FIVCoebcFArF1EcZcYViL1IoFOjt7a359Pf3A3DQQQfhOA7f+973WLduHT/96U/54Q9/WLP9JZdcwp133sn69etZvXo19957L4sWLQJg9uzZCCG4/fbb2bFjR01W+6vhfe97H57n8W//9m8899xz3HnnnXzzm98EGOehKxSKqYUy4grFXuTPf/4znZ2dNZ83v/nNACxbtoyrrrqKr3/96yxZsoSf//znXHnllTXbu67LhRdeyKJFizjttNNYsGBBJeltxowZfPnLX+azn/0s7e3tXHTRRa/pHOPxOH/4wx9Ys2YNy5Yt4/Of/zxf/OIXAWrmyRUKxdRDyN2Z/FIoFPslP//5z/nwhz9MMpmcsHRtzpw5XHLJJXtM4nXDhg3MnTuXJ554gmXLlu2RfSoU+zvKE1coFPzkJz/hL3/5C+vXr+f3v/89l112Ge9+97snrT0Hv1wtGo2STCZ36/inn346ixcv3q19KBQHIqrETKFQ0Nvbyxe/+EV6e3vp7OzkXe96F1/72tcm3eaBBx6oZNHHYrHdOv6Pf/xjcrkcALNmzdqtfSkUBxIqnK5QKBQKxTRFhdMVCoVCoZimKCOuUCgUCsU0RRlxhUKhUCimKcqIKxQKhUIxTVFGXKFQKBSKaYoy4gqFQqFQTFOUEVcoFAqFYpqijLhCoVAoFNMUZcQVCoVCoZim/P8fAJIUR0+shwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Get the Matplotlib Axes object from the dataframe object, color the points by snow depth value\n", "ax = df.plot(column='value', legend=True, cmap='PuBu')\n", diff --git a/book/tutorials/snowex_database/5_plot_raster_example.ipynb b/book/tutorials/snowex_database/5_plot_raster_example.ipynb index 1df1611..283d1ee 100644 --- a/book/tutorials/snowex_database/5_plot_raster_example.ipynb +++ b/book/tutorials/snowex_database/5_plot_raster_example.ipynb @@ -17,21 +17,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "ename": "AttributeError", - "evalue": "type object 'RasterMeasurements' has no attribute 'from_filter'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[1], line 10\u001b[0m\n\u001b[1;32m 7\u001b[0m dt \u001b[38;5;241m=\u001b[39m datetime(\u001b[38;5;241m2020\u001b[39m, \u001b[38;5;241m2\u001b[39m, \u001b[38;5;241m13\u001b[39m)\n\u001b[1;32m 9\u001b[0m \u001b[38;5;66;03m# Query db filtering to swe on a certain date surveyed by ASO\u001b[39;00m\n\u001b[0;32m---> 10\u001b[0m ds \u001b[38;5;241m=\u001b[39m \u001b[43mRasterMeasurements\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_filter\u001b[49m(observers\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mASO Inc.\u001b[39m\u001b[38;5;124m'\u001b[39m, date\u001b[38;5;241m=\u001b[39mdt, \u001b[38;5;28mtype\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mswe\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 12\u001b[0m \u001b[38;5;66;03m# Plot it up!\u001b[39;00m\n\u001b[1;32m 13\u001b[0m show(ds[\u001b[38;5;241m0\u001b[39m], vmin\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.1\u001b[39m, vmax\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.4\u001b[39m, cmap\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mwinter\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", - "\u001b[0;31mAttributeError\u001b[0m: type object 'RasterMeasurements' has no attribute 'from_filter'" - ] - } - ], + "outputs": [], "source": [ "# import in the raster measurments class\n", "from snowexsql.api import RasterMeasurements\n", @@ -62,122 +50,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGsCAYAAACFPUORAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOtElEQVR4nO3dfXRV5Z02/usASUjCSSDEvJGgOGKXNYgCVgGrQRQaX9BiF6KMylNFfQQsBVqN0w7YmUWsjkUffKBYMb5h43Q0ylJEg7zJcnwGkiIv/gaQokJJQC3kJCEkB3L//nA49niur5xNCLCT67NW1iL32Wefve+9T25O7ivfO+CccxAREfGJLqf6AERERLzQwCUiIr6igUtERHxFA5eIiPiKBi4REfEVDVwiIuIrGrhERMRXNHCJiIivaOASERFf0cAlIiK+0ikHLucciouLEQgE8Prrr3/ntgsWLMAFF1yAtLQ0pKWlYejQoXj77bcjj4fDYTzwwAMYMGAAUlNTkZeXh9tvvx179uxp82szBw4cwOTJk5Gbm4vu3bvjvPPOw9KlSz3vR0TErzrcwFVUVITnnnvuO7d54oknEAgE4tpffn4+HnnkEaxfvx7r16/HlVdeiRtuuAFbtmwBABw8eBDV1dX49a9/jerqarz22mvYtm0bxowZ0+bX/raWlhZcffXV+PTTT/Ef//Ef2Lp1K/7whz+gT58+x7U/ERFfch3MFVdc4crKyszHN2zY4PLz811NTY0D4CoqKjy/Rq9evdwzzzxjPv5f//VfDoD77LPPPL327t273bhx41zPnj1dRkaGGzNmjNu5c2fk8QULFrizzz7btbS0eD5mEZGOosN94vouBw8exC233IKnnnoKOTk5np9/5MgRlJeXo7GxEUOHDjW3q6urQyAQQM+ePeN+7YMHD2LEiBHo0aMH1qxZg7Vr16JHjx740Y9+hJaWFgDAkiVLMHToUEyePBnZ2dkoLCzEnDlzcOTIEc/nIiLiV91O9QGcTD//+c8xbNgw3HDDDZ6et2nTJgwdOhSHDh1Cjx49UFFRge9///t020OHDuHBBx/ErbfeirS0tLhfu7y8HF26dMEzzzwT+VViWVkZevbsiVWrVmHUqFH4y1/+ghUrVmDChAlYunQptm/fjsmTJ+Pw4cP453/+Z0/nJCLiV74fuObMmYM5c+ZEvm9qasKHH36IKVOmRNrefvtt7N+/HytWrMCf//xnz6/xve99Dxs2bMCBAwfw6quv4o477sDq1atjBq9wOIzx48ejtbUV8+fPj7QvWbLkmK9dVVWFTz75BMFgMKr90KFD2LFjBwCgtbUVWVlZePrpp9G1a1cMHjwYe/bswWOPPaaBS0Q6Dd8PXPfeey/GjRsX+X7ChAm46aabMHbs2Ehbnz59UFJSgh07dkT9+g4AbrrpJvzwhz/EqlWrzNdITEzEOeecAwAYMmQI1q1bhyeffBILFy6MbBMOhzFu3Djs3LkTK1asiPq0tWLFimO+dmtrKwYPHozFixfHvP4ZZ5wBAMjNzUVCQgK6du0aeey8885DbW0tWlpakJiYaHeUiEgH4fuBKyMjAxkZGZHvk5OTkZWVFRlojnrwwQdx1113RbUNGDAAc+fOxfXXX+/pNZ1zaG5ujnx/dNDavn07Vq5cid69e3t+7UGDBuGVV15BVlZW1KD394YPH46XX34Zra2t6NLl6+nJbdu2ITc3V4OWiHQepzodcqIdK1X490CSfVdeeaWbN29e5PuSkhK3Zs0at3PnTrdx40b30EMPuS5durh3333XOedcOBx2Y8aMcfn5+W7Dhg2upqYm8tXc3Bz3azc2Nrr+/fu7oqIit2bNGveXv/zFrVq1yt1///1u165dzjnnPv/8c9ejRw83ZcoUt3XrVvfmm2+6rKws96//+q/xdY6ISAfg+09cJ9qOHTvw5ZdfRr7fu3cvbrvtNtTU1CA9PR0XXHABli1bhquvvhoAsHv3bixZsgQAcOGFF0bta+XKlSgqKorrdVNSUrBmzRo88MADGDt2LOrr69GnTx+MHDky8gmsoKAA7777Ln7+85/jggsuQJ8+ffCzn/0MDzzwQNtPXETEJwLOOXeqD0JERCRenervuERExP80cImIiK/4co6rtbUVe/bsQTAYPO66fyIicuo451BfX4+8vLxISjpevhy49uzZg4KCglN9GCIi0ka7du1Cfn6+p+f4cuA6Wl1i165d5t88iYjI6SsUCqGgoCCmWlA8fDlwHf314NE1skRExJ+OZ7pH4QwREfEVX37iEjlVAl8+GtvYavyPMZEsN2NtezAhtq2BlPFKPsyfn0TarW2bu8Y0uaxf8G1FTkP6xCUiIr6igUtERHxFA5eIiPiKBi4REfEVDVwiIuIrShWK7wXeeSm2MbUlts0ZiT62PkLPQ3zbPqStW6t1aLG6GosxsH2wtkPGW5a1u+bYNgBIiE07Bnb/rm3HZbS7ng/ybUXaQJ+4RETEVzRwiYiIr2jgEhERX9HAJSIivqJwhpxSgY9+zx8gAQL8LZlvm0ragiSccdj4f1oTeRtYdT9ZyaZwbAklAEAXEsRgbQDQQvbBykCx7QCgiWybHObbWu0M6zMPNVEDu+bGNjaSYwVo37hzp8b/YtJpePrEtWDBAlxwwQWRquxDhw7F22+/HXncOYfZs2cjLy8PycnJKCoqwpYtW6L20dzcjKlTpyIzMxOpqakYM2YMdu/efWLORkREOjxPA1d+fj4eeeQRrF+/HuvXr8eVV16JG264ITI4Pfroo/jd736Hp556CuvWrUNOTg6uvvpq1NfXR/Yxbdo0VFRUoLy8HGvXrkVDQwOuu+46HDlC/octIiLyLQHnnPG7i/hkZGTgsccew09/+lPk5eVh2rRpeOCBBwB8/ekqOzsbv/3tb3HPPfegrq4OZ5xxBl588UXcfPPNAL5ZzXjp0qUYPXp0XK8ZCoWQnp6Ouro6rcflcyfkV4VMW39VmG78DVROQ2xb2Nivl18Vsr/DOtA9ts3LrwrPPMC3TSPnxirRWxKMv+PqStrZcelXhYK2/Rw/7nDGkSNHUF5ejsbGRgwdOhQ7d+5EbW0tRo0aFdkmKSkJV1xxBT744AMAQFVVFcLhcNQ2eXl5KCwsjGzDNDc3IxQKRX2JiEjn5Hng2rRpE3r06IGkpCTce++9qKiowPe//33U1tYCALKzs6O2z87OjjxWW1uLxMRE9OrVy9yGKS0tRXp6euSroKDA62GLiEgH4TlV+L3vfQ8bNmzAgQMH8Oqrr+KOO+7A6tWrI49/exlm59wxl2Y+1jYlJSWYPn165PtQKKTB6zRGk2QA//VfunELsl/fWb9mY2WU2K+tAsbz2X57NfFt2T6sX52xxR29pBVZf/UgvwIFgEayrZV2ZL8WtBa4ZL/WSzEWqGQLZ9Z7eC0isP5p/sCR2P9zu0vuinu/4m+eP3ElJibinHPOwZAhQ1BaWoqBAwfiySefRE5ODgDEfHLat29f5FNYTk4OWlpasH//fnMbJikpKZJkPPolIiKdU5v/ANk5h+bmZvTr1w85OTmorKyMPNbS0oLVq1dj2LBhAIDBgwcjISEhapuamhps3rw5so2IiMh38fSrwoceegjFxcUoKChAfX09ysvLsWrVKixbtgyBQADTpk3DnDlz0L9/f/Tv3x9z5sxBSkoKbr31VgBAeno67rzzTsyYMQO9e/dGRkYGZs6ciQEDBuCqq65qlxMUEZGOxdPAtXfvXtx2222oqalBeno6LrjgAixbtgxXX301AOCXv/wlmpqacN9992H//v245JJL8O677yIYDEb2MXfuXHTr1g3jxo1DU1MTRo4cieeeew5duxq/jxcREfk7bf47rlNBf8d18tE1rwBePujs/bFtAND7YGxbQxLf9ouU2La9PeI/hnSynlaqUeqIhTOSPQQQrNAHez1rWxak2EtqWbG/iwKAwyTw0MM4XxZcYeWlAP63b9bfuLFt68j1bTb+vxwi21o/nVgghl0bgIZk3IX3GjuWk+WU/B2XiIjIqaCBS0REfEUDl4iI+IoGLhER8RUNXCIi4itaSLKTC3zxWGwjS5j1Yqs1gpdb6maVQCKpryNG8o2VBfqSJA0BoDtJALK2XiRpCPAyTFbFd5ZgZOdlsRJ1R8hBsAr3VtkrlrJjJaMAu8I8w5J6Vt+w+4ZVvbf6i6VOG42q9awbWB8CNCEa2P272O2MxKbrrwr1pxt94hIREV/RwCUiIr6igUtERHxFA5eIiPiKwhmdRODAI/yBbmRCO4UEEPLq438x9nyABwus9aVYKIAFIwAeTGDz9KwkEUDXdkKzhwADKy9l7fdAd76tIwecRkorsdAJwPsm0QjJsLXOrHJJbO0uqzxUvOEM6xxYf1mBCxZyMctpxfn/c7Z+GoDA5vkxba7wvvj2Ke1Cn7hERMRXNHCJiIivaOASERFf0cAlIiK+ooFLRER8RanCDihQRxKErIQSwBfvY9taSUFW3skqS+RFJin/Y6UC2eux5JrVB40kDfeVUV6KpdysBSpZUs8qh8XSe+y4rEQeK73FFowEeIKRvT4A/C05ts0qJcWOjfWNlQ5l19da0JNdB3MhSdJO+9voA/IeCfzXH+im7geT+D7khNInLhER8RUNXCIi4isauERExFc0cImIiK8onOFjgfC/8AcSycR1nVFqiJXOYZPvVjCC8bKtJaMp/v2yUkEMKz9k7dea6GfBBmt9K1bOipVxsvbLAghWwIRdR2tbFtpgZbMAHmywAibsfFk/WsfFMj3WNWPna2WC2PVlbdZxsfeD0QeB6oWxjca9pLJRx0+fuERExFc0cImIiK9o4BIREV/RwCUiIr6icMZpJoDZ/IEwCQBYFQzYcklHjHWvWNUJNkdthgLIcbEJ/ROBVYcAgERSiYEFNtg6VAAQJH1jrRPG9mtVCmHrQ1kVSFiFCFY5wwqosG2dUQmCBV/OaOTbphr9wLDrbt2jDKviYgVf6H1rXAcWpGCFUczwj3HvM9ZaZURg27yYNnfu1PhfqxPTJy4REfEVDVwiIuIrGrhERMRXNHCJiIivaOASERFfUarwFKIJQqt8EUuNpRmld1jiykrJsXaWILRK7wRIcs0qCdRW1jpO7HhZEMxDOMws+ZTooYyTFywRx66NtW4WK4FkrcfFmq37jt1LVnJuP1m7K/1QbJuVrGTXx7rv6kkC0TpflqK01jVjWLKRJSAB3l9WGpa0Bz57gm7qzpzG99FJ6ROXiIj4iqeBq7S0FBdffDGCwSCysrJw4403YuvWrVHbBAIB+vXYY49FtikqKop5fPz48SfmjEREpEPzNHCtXr0akydPxocffojKykocPnwYo0aNQmPjN3+8WFNTE/X17LPPIhAI4Kabbora16RJk6K2W7iQVFUWERH5Fk9zXMuWLYv6vqysDFlZWaiqqsLll18OAMjJyYna5o033sCIESNw9tlnR7WnpKTEbCsiInIsbQpn1NXVAQAyMjLo43v37sVbb72F559/PuaxxYsX46WXXkJ2djaKi4sxa9YsBINBup/m5mY0N38zAR4Khdpy2KcPNiHeYnwIZgEEq9RQW7H9WhPqVoihPVhlpxgv52CVgmLYpH47XQbKCiCwskQJxoGx+855KFvlpQwUu2RWeIe9llXyiR0uK4sG8DBJKrkXWNktAOhJAiZW4ILdSyxYBfByacY9Gvjk/8S0uXPu5/vtBI574HLOYfr06bjssstQWFhIt3n++ecRDAYxduzYqPYJEyagX79+yMnJwebNm1FSUoKPPvoIlZWVdD+lpaV4+OGHj/dQRUSkAznugWvKlCnYuHEj1q5da27z7LPPYsKECejePXr13UmTJkX+XVhYiP79+2PIkCGorq7GoEGDYvZTUlKC6dOnR74PhUIoKCg43kMXEREfO66Ba+rUqViyZAnWrFmD/Px8us3777+PrVu34pVXXjnm/gYNGoSEhARs376dDlxJSUlISjL+bkJERDoVTwOXcw5Tp05FRUUFVq1ahX79+pnbLlq0CIMHD8bAgQOPud8tW7YgHA4jNzfXy+GIiEgn5Gngmjx5Ml5++WW88cYbCAaDqK2tBQCkp6cjOfmbv5oPhUL405/+hMcffzxmHzt27MDixYtxzTXXIDMzEx9//DFmzJiBiy66CMOHD2/j6YiISEfnaeBasGABgK//gPjvlZWVYeLEiZHvy8vL4ZzDLbfcErOPxMREvPfee3jyySfR0NCAgoICXHvttZg1axa6djVSQR1AoPlfYxvDpPutxFV7lVFqq5N5XFaKkqXkWGLLKpfE2q3kHEujWQsQtkffWIt0Zh6MbbP6iyUjrWNlSU7rfNkxeOHIa1nn6yXNSkuCkb5JMPqAtVsLZLIut0pk1XlYOLOtfdvBeP5VYTzuvvtu3H333fSxgoICrF692svLioiIRKhWoYiI+IoGLhER8RUNXCIi4itaj+sEC9Q9YjxCuppNEPstnHEyWZPnbEKbreNkld6pJ+EMK9gQIsdgrRnFyvdY66JZpZziPa62rglmldNir9deZb6C5BzYewQAvkyJbbPWFGPXgZ2DVTKKscpDMVY4gwVPrHXCyLEFts2LaXPnTo3/uHxMn7hERMRXNHCJiIivaOASERFf0cAlIiK+ooFLRER8RanCNghsnh/b2NMoK8RSXyyZdDqkB1lKjy1UCPCFAq3kW1vTaFaZHRIwo+dglQ+iJZCMbZPItlbakaUYWRrO2m9GU2yb1YfsOsSbVATsa8bKMFmsBGBbWClM1g913WPbAOAAaWdlvryUvbLEm2AE+D3q5bVIWjFQ9TTd1A3mlYz8Sp+4RETEVzRwiYiIr2jgEhERX9HAJSIivqJwRluwyW8rAMCCGFbYoD14WYuKrbdkTd6zYII1yZ1IwgZeWKWV4mVlFdj5hoyJfibFKNPDJt+t8j8MuzZegi/WullsW6vUENuHVRop3hJmJ6KsGQsLWSW9WJ+z51t9wN7TXsJKFrat9Xz2eqzElRHIYUEyV3iffWynOX3iEhERX9HAJSIivqKBS0REfEUDl4iI+IrCGXEIfLCIP5DhYSdNpKvZX8mHjf9LsIlYVm0B4BPqf0tu+37jZQUI2qrZuF3Zy7E+OGgEVFiIwtJEJvqtcEYyqaLgZd0rdlxWlY4Q6Rt2rAAPQVhVL1iQg1WHAADWjfVJ8b9WKqmS0c3YtoWtb8c3pftlx2WFTqzzZdj1td4OLHBhBWrY+5TdM63GOXi5x31An7hERMRXNHCJiIivaOASERFf0cAlIiK+ooFLRER8RanCeFhlelhSh639A/ByMqkkrWSVkmEJMSv9x0rUWGnFriSZlBxn6R6AJ5usc2CJqROx/hhLg7EEopWsYsdlraEUb/oPAFiI0UqoxVsuycJSZ9Z1aPZQdordt1aysRs5N/Z8K2XnZW03xlp/jCX9WLk1q1wbW5PMujbsOjrjxyw7LqusGXufsmOw3ufkPWKlpd2wO/k+TiP6xCUiIr6igUtERHxFA5eIiPiKBi4REfEVhTO+JfBGeWxj2AhcsNCGNZmc1hzbdsbB+A+MBQC6GCWMWKkh67jYxDObIO5mTFyzUICXYEPPQ3xbhp2XhQUTrFJDrA+swAULgnQl1xbwtt4a6xsWgmj2EDDxsjaUdX+wUIAVVmJ9zu4Fds8A3gJILNhkhTNYeSd2vtb9QdfNMrZlgQvrOrC+td478a5r5iXMYpWX8gH/HrmIiHRKGrhERMRXNHCJiIiveBq4SktLcfHFFyMYDCIrKws33ngjtm7dGrXNxIkTEQgEor4uvfTSqG2am5sxdepUZGZmIjU1FWPGjMHu3bvbfjYiItLheRq4Vq9ejcmTJ+PDDz9EZWUlDh8+jFGjRqGxsTFqux/96EeoqamJfC1dujTq8WnTpqGiogLl5eVYu3YtGhoacN111+HIEQ+T2SIi0il5ShUuW7Ys6vuysjJkZWWhqqoKl19+eaQ9KSkJOTk5dB91dXVYtGgRXnzxRVx11VUAgJdeegkFBQVYvnw5Ro8e7fUcjkvg5Vf5A0lkLGepJICXd7KSbywtxNJZVjKKpdmsRQkbPZT0iTcx5aX8kFXWiLV7SRVaEknyzEupIrqgn5HeY/uw0lmsb70kLllAzFpMk52Dl1SjVSqoniRXrdJI7BwayPOtVCETNBKb7H60rm86ucfamsK0SjOxdus9zdpZuTWAp3rZveCl3BpL0wII/Hlh7KYX3cP3e4q0aY6rrq4OAJCREb0U8KpVq5CVlYVzzz0XkyZNwr59+yKPVVVVIRwOY9SoUZG2vLw8FBYW4oMPPqCv09zcjFAoFPUlIiKd03EPXM45TJ8+HZdddhkKCwsj7cXFxVi8eDFWrFiBxx9/HOvWrcOVV16J5uav/+dUW1uLxMRE9OrVK2p/2dnZqK2tpa9VWlqK9PT0yFdBQcHxHraIiPjccf8B8pQpU7Bx40asXbs2qv3mm2+O/LuwsBBDhgzBmWeeibfeegtjx4419+ecQyDAP7qWlJRg+vTpke9DoZAGLxGRTuq4PnFNnToVS5YswcqVK5Gfn/+d2+bm5uLMM8/E9u3bAQA5OTloaWnB/v37o7bbt28fsrOz6T6SkpKQlpYW9SUiIp2Tp09czjlMnToVFRUVWLVqFfr163fM53z11VfYtWsXcnNzAQCDBw9GQkICKisrMW7cOABATU0NNm/ejEcfffQ4TuE4BVt4O5sEtUrcsAntgNGlbB9sgtmavGflcKzyPyzIYVWCSWbrhJG+YWEHgE/wNhgTxCzMkmmUvWKvZ/UNm+xPJ5P6VpiFtVt9y0oNWYEJds2skjystBE7X+scWDDBCsmEyX6tsAF7PWu/DOsDFvgAeDjCOi4WmOrVxLelQR3SB92Ma8Peu1Ygh/WXl9JKVpCD3eOsLJkVfKHreRnvJ6uc1WnE08A1efJkvPzyy3jjjTcQDAYjc1Lp6elITk5GQ0MDZs+ejZtuugm5ubn49NNP8dBDDyEzMxM//vGPI9veeeedmDFjBnr37o2MjAzMnDkTAwYMiKQMRURELJ4GrgULFgAAioqKotrLysowceJEdO3aFZs2bcILL7yAAwcOIDc3FyNGjMArr7yCYDAY2X7u3Lno1q0bxo0bh6amJowcORLPPfccunY1/pcrIiLyPzz/qvC7JCcn45133jnmfrp374558+Zh3rx5Xl5eREREtQpFRMRfNHCJiIivdN6FJK10FkvfWGVn6kiyySoPxRJAbFurZJSXxezYttb5Ml4WqGMhKKs8FEvfsdQZwJNgLJUIAF+lxLaxsldWCSS2yKdVAomlKPcbx/W35Ng2K/XVm6Qrsxpj21gK1OIlDWslI72U6bKu5bdZpZnYfWMlGFni0rpH2X7ZdTzooZyWlXBlqUCrDBM7Buu+Y33L7iWzvBTpG+tnAlsL8/97im7qzpvC99HO9IlLRER8RQOXiIj4igYuERHxFQ1cIiLiK50inBGoeCW20VpviU3wWhPiZ5AJdWtCPESCGGzbXsaEKZu897KWlTX5ziaZWZs1oc4mg63yUGyS3CqtxEr9WH3LQhBfkMCGNXnPwhnWmlOsfA97favdOgbWjyyYYD3fS3+xSXlWIgvgwSRrUp8dGyvpZV1zdo9aQR8WTLLKQ7H7mQUbrPOyAlMM63MrF8XOwXqfsj5j70nr/mDhMIsVPDmN6BOXiIj4igYuERHxFQ1cIiLiKxq4RETEVzRwiYiIr3SKVKFZcoVhoRwrqZNhLFzHfEUSZixVlGnskyXfrBJGLNlkpYrYubFtrcSWl/JQLKlnpcZYu5VWjHfBRasP2O3RYrwW64cGY2FE1g/W+bL9shJX1q3cRJ7PFhQFeILRur515BgOGvcdu77svWeWGvKwgCG7F6z0L1uk08sijOx4G41rztLDVooy3tcC+H3D2qw+9LI2JCs71fX0+oxzeh2NiIjIMWjgEhERX9HAJSIivqKBS0REfKVzhDNSW2LbrIlYxgp39CD7Pdsow9S3LraNlQ+yJlfZejxs4hzgYQGr/A+bpE70EEBgh8vK/ABAmARPehlhFLZ+kBWGYefAJsmtAIKXkj5e1oxiE+3WtvE+3zoHL/cz61trHSd2DOy+Bfh1YG3W81mYpbvxfmLvvbb2rYUdrxV28LJOGAtBeAlRsHvRy3lZ2PEa90fg87kxba7vz9t+DMegT1wiIuIrGrhERMRXNHCJiIivaOASERFf6VDhjMDSxfyBHmTS1qqiwCa/zTWU2NpdxgQxm0hlr8VCBQDQSMIVXra1JsQZNsG73wiCsH60qkOwiWsrNMKO16oUwiomsNCHWbGBtFlhFFaxwaro4ciOrXNgx8Am7621klJJn1vbsol2q8oGq8jhpfoHC414qZBhvfe8BDHYGldst9aac+y+sTIQrG+t02XvU2s9LtZn7D3i5R63+jCR3M9BEoYBgNwG3t7O9IlLRER8RQOXiIj4igYuERHxFQ1cIiLiKxq4RETEVzpUqpCuXwTwtaxY4gvgKaguRmqMJZ6s9B5L+7Akl5fnW2kltg+zJJCRPPs2lqAEeHLNOgeW1LOSkfVkWyslx7alaxXxp9P0npWcC3hImLFrZvUjS6OyhJr1fJZstI6LlhoztmX3qNU37H3GyqUdNBKbjHW+9eS+6eYhdeqllBW776z3E7uXrL5lPz/M9bTiXF/O+pnAXqunUU6rNynZZr33vCRETyB94hIREV/RwCUiIr6igUtERHxFA5eIiPiKp3BGaWkpXnvtNfz3f/83kpOTMWzYMPz2t7/F9773PQBAOBzGr371KyxduhR/+ctfkJ6ejquuugqPPPII8vLyIvspKirC6tWro/Z98803o7y8vG1nY5VsYRPMX6TwbVnJFWutIlYyhU0aA0ADKe/iZeKbTY5aJVvYxDEr3QPwc2P7tSZhWbjCKqfFtv3KuA5s7a1U43zZfv+WHNtmBXJYGSYrFMDarUn9OnJc1kR9Kukz9lrW2nBsWy/rQFnbsmCDFYJg+2DvyQQjFMCuj7X+GOvbJOO42PpwXsIstOST0V/s/Wu9HxjrHJrJPti9YP0MDJLgDGsD+Np/u9L4tuy+O5dveiJ5+sS1evVqTJ48GR9++CEqKytx+PBhjBo1Co2NjQCAgwcPorq6Gr/+9a9RXV2N1157Ddu2bcOYMWNi9jVp0iTU1NREvhYuXHhizkhERDo0T5+4li1bFvV9WVkZsrKyUFVVhcsvvxzp6emorKyM2mbevHn4wQ9+gM8//xx9+/aNtKekpCAnJ6cNhy4iIp1Rm+a46uq+Xo4+IyPjO7cJBALo2bNnVPvixYuRmZmJ888/HzNnzkR9fb25j+bmZoRCoagvERHpnI77D5Cdc5g+fTouu+wyFBYW0m0OHTqEBx98ELfeeivS0r75HemECRPQr18/5OTkYPPmzSgpKcFHH30U82ntqNLSUjz88MPHe6giItKBHPfANWXKFGzcuBFr166lj4fDYYwfPx6tra2YP39+1GOTJk2K/LuwsBD9+/fHkCFDUF1djUGDBsXsq6SkBNOnT498HwqFUFBQcLyHLiIiPnZcA9fUqVOxZMkSrFmzBvn5+TGPh8NhjBs3Djt37sSKFSuiPm0xgwYNQkJCArZv304HrqSkJCQlGWm9v5dupJVYoo6lkgDgMEnv9DAWUTtIkkm1Pfi2LD3HEn3pRtLHWqCSSSXHayUjWYopjfRjgrHgI+tbq6QPS2xa6U6WKmwlbQBPZ7I2a3FIlhCzrjlLo7GUHsAXybQWbGQLdbK0opWMZCE3a4FLLwuggtwLVgLRkXuJLoBo9IF1j8bLSnd+Se4xVu6IlawCeFLQ6gOW6LUSqtY+4t2WJY2t+7YXOV8vKV1zodHY8w18+gTd1J01je/jOHgauJxzmDp1KioqKrBq1Sr069cvZpujg9b27duxcuVK9O7d+5j73bJlC8LhMHJzc70cjoiIdEKeBq7Jkyfj5ZdfxhtvvIFgMIja2loAQHp6OpKTk3H48GH85Cc/QXV1Nd58800cOXIksk1GRgYSExOxY8cOLF68GNdccw0yMzPx8ccfY8aMGbjoooswfPjwE3+GIiLSoXgauBYsWADg6z8g/ntlZWWYOHEidu/ejSVLlgAALrzwwqhtVq5ciaKiIiQmJuK9997Dk08+iYaGBhQUFODaa6/FrFmz0LWrhz/UExGRTsnzrwq/y1lnnXXMbQoKCmKqZoiIiMSrY63HZU2ussnGRGMimE2uspIvFmsSk5VnCZPut0q+sOd7KdNjTdSzEjHdyTFYx8XO1woQsMlzq29ZkMIqs9NItmVrdLHtAB4KsM6XTYiz0AnArw8LzgC8b6zyYQy7jtaaUS2kz831x9hrGX3D7jFWqsgKRrH7xgqNsOvT1bjHaUDEw71orUXF0Oto3Hfs+lj/72fbHiYbW89nAaKvSFk0gJdLs0pvseCJl5+Xx0lFdkVExFc0cImIiK9o4BIREV/RwCUiIr6igUtERHylY6UKreQcS/qwki8AkES6hJVAAngZFesYWMmnvank9Y3nM9YCdSxxZSV9WOqrkZQqslJ2XspLsRJIVgLxACmBZDkUZ7Kxp1EyqgdJrlmL7LEU5WEPizta2C6slCzDXspKuB4iKTcr6ccWFbXu8XjTZNbzad8a/7dmr2UtspnGkrPkGKy0pBcsfcfue8BbspG9T1m5NauME3st67jYOVj3Mnv/e0lhHid94hIREV/RwCUiIr6igUtERHxFA5eIiPhKxwpnWOstsYl6a+2uLmSS2gomsMnzzIN8WzZpyuY7rcAFm1y1Jt/ZBK81yc0mYtnzrUlfVk7Hmshl/WiVkvFS8ontg13zRCMUwIIY1rpoLMRgBUxYWKCbcQ4sGMDO13otdt9YfcvCLCnWGltxvpbVztpY+AfgZauskk+sG6wSV9a9/23WebHreMg4BxYqskqCsePy8v73kP2hrDJfbE0va1sW3lE4Q0REJJoGLhER8RUNXCIi4isauERExFc0cImIiK/4OlWYvnUh0OPvFj1r6Mk3ZKVNWBoGALp7KHFDE3Ue0jfZjbFtVukddg5WiootGuclcWWVgmFYgshL8s0q08O29VLSiyW5rNcKkhQVW4wT4IlLK0XFjsu6DmwX7P6yns/uWysJysoHWWk2lkz0stgpS4da59CVXAcrkcdSbtbCqmwfLP1nlVtj97OVYLaSnIyXBRdZypUlozOMsmbspaz0L7sXrJ9rLAlq3R8nkD5xiYiIr2jgEhERX9HAJSIivqKBS0REfMXX4Qz0CAPBv5tI7G1MTLLJWasMDFuny1q7i01MWgECNmHJJjytAAFjTXKziWerPAyboGWT3F4CF9a27Bis02UT19ZkNrsOIXJcLLQCAH9L5u0MC2JYk9HscK0AQbzrS1lhBXYdrdAIK6PUZARyWAjBCnKwMAnrA6t0FwsFmWW6PKw5x9atCpAQVG8jgMD6y3qfsuCLdd/R4Iqx33QS5GIBFes6snCYdR1ayPF2s9575Gejl59hx0mfuERExFc0cImIiK9o4BIREV/RwCUiIr7i73DGkS7RAYXcer4dC0x4qQ5Rb1SzYJOjGcaEeDfSHiL7tSaYWTubCAaMdaCMiWc2+e1lbpWGCoz/D7FtzdAIOV5rMpmFI9iaQlZohB3XfiOwwSa5rb5l52Bty9rZcVnXhgUQLKzog1UZgQWTrAASuzy0eogVMGH95SHMYp0Duz/YdbQqZ7BAjVUho5F0rrUtC32wNf4AXt2Fvc+tnx9equmw90lX4+caez0WDgOAnrz5eOgTl4iI+IoGLhER8RUNXCIi4isauERExFc0cImIiK/4OlVY1/c+pKWlRb4PfD6Xb9iLlIJKJSkdANjbI7atlrQBPKljlZ1iiSeWCmRJQ4CnlcJGqpCV+rHSbCwxxfZrlchK8PBabB9WCSSaKuSb0jRYH3J9rdQYYyWjGkka1Sr5xFJj1hpIrJ2VVjpsldMi7dY1Y4laK43G7iWz9BYra0bOy0olsjXQrGvG9mul5JriTLOy0mHWMVj3Yk6D8QDBUoFWmS5WysnLeoDs54qVlmbXkaUaAZ6YrDPeOyeQPnGJiIiveBq4SktLcfHFFyMYDCIrKws33ngjtm7dGrWNcw6zZ89GXl4ekpOTUVRUhC1btkRt09zcjKlTpyIzMxOpqakYM2YMdu/e3fazERGRDs/TwLV69WpMnjwZH374ISorK3H48GGMGjUKjY3fVC5+9NFH8bvf/Q5PPfUU1q1bh5ycHFx99dWor//mj4OnTZuGiooKlJeXY+3atWhoaMB1112HI0faf8lnERHxN09zXMuWLYv6vqysDFlZWaiqqsLll18O5xyeeOIJ/NM//RPGjh0LAHj++eeRnZ2Nl19+Gffccw/q6uqwaNEivPjii7jqqqsAAC+99BIKCgqwfPlyjB49+gSdmoiIdERtCmfU1dUBADIyMgAAO3fuRG1tLUaNGhXZJikpCVdccQU++OAD3HPPPaiqqkI4HI7aJi8vD4WFhfjggw/owNXc3Izm5m9KoYRCIX5AWzN5+5kHYtusAAFbI6fOmMSk4YyDfNtMEtpgE5vs9QEemPA0cW2tH0SOgQUTrElfFq6wysOwfVhlmFiwwJq4Zu3WRHu8WMmoE8Fay8oKUnybVQIp4CFAwEIMZqkgdgxW+TByHdq6ppgV3mHHZZ1DvNdyv1WqiJS9st57rG/2pfJt2XvdOlbWzl7LKlW2JxjbZt2LfcjPV1YiC+A/A7sb255Axx3OcM5h+vTpuOyyy1BYWAgAqK2tBQBkZ2dHbZudnR15rLa2FomJiejVq5e5zbeVlpYiPT098lVQUHC8hy0iIj533APXlClTsHHjRvzxj3+MeSwQiP6fj3Mupu3bvmubkpIS1NXVRb527dp1vIctIiI+d1wD19SpU7FkyRKsXLkS+fn5kfacnBwAiPnktG/fvsinsJycHLS0tGD//v3mNt+WlJSEtLS0qC8REemcPA1czjlMmTIFr732GlasWIF+/fpFPd6vXz/k5OSgsrIy0tbS0oLVq1dj2LBhAIDBgwcjISEhapuamhps3rw5so2IiIjFUzhj8uTJePnll/HGG28gGAxGPlmlp6cjOTkZgUAA06ZNw5w5c9C/f3/0798fc+bMQUpKCm699dbItnfeeSdmzJiB3r17IyMjAzNnzsSAAQMiKUMRERGLp4FrwYIFAICioqKo9rKyMkycOBEA8Mtf/hJNTU247777sH//flxyySV49913EQx+k2qZO3cuunXrhnHjxqGpqQkjR47Ec889h65djZRLvKzSTKwMS1cj+cJKo1glTFgqiJWMAnjKjZVcsdJlLEFkJq48LBrHXo8uUGlcGzYtyUrGAPwcrGSTlRCLF+sDq4wTS7lZJcGyGmPbrDJO9eT+sEp6pZL7kR1DorHQoBesVJCVZmXXzDpftl92Ga2ST0FyblaSlN03VlqRlbhKJPcHSw8CvBSV9T5l5+vlHm9raTZrgVz2nrbeYtb1Ydi5HfKwSO9x8jRwOWctV/uNQCCA2bNnY/bs2eY23bt3x7x58zBv3jwvLy8iIqJahSIi4i8auERExFc0cImIiK/4ej2uGKxUCWCsp+NhHSgrBMHarRAEa2evZZV8YaWRrDJObNLXKsPEghRszaevUvjzWTksq2/TPEy+s3OwtmWTyWzimpXYAvhEO1v/CAD+RkrqWOtxfUH6zApnsJI6vUkfpBvhDDapb5XTYn1r3ePsWloBAnYO7NpY60CxYIEVNqChEeO42FpS7H2WboQzvGDvSSvswPrcvA5xvr71HmHXxkvIxgrvkECcu+Qu4+BOHH3iEhERX9HAJSIivqKBS0REfEUDl4iI+IoGLhER8ZWOlSosMFKFjJW4YuWhLF4WO2QpqAyyuKSV2GKJOCslx9qttCMLFvUkyTVrAUOWQLRSdqxvrBQV61urb1g5LXa+1vNZSR8LSytaz2evZx0D2y9NonpInVkpu0yy2Cl7fYtVwoidG7sXrHJenu5bdt9ZC6uy4yLbWoslsnvUKgPHSo15uT+sFCVbIJI93/r5w36uWT8D6esb5/s3o72d6ROXiIj4igYuERHxFQ1cIiLiKxq4RETEVzpWOMPLpK+13hJbF8kqw8T2ax0DKwXDJq5ZWSSAT7qaa2x5KP/DdCfH0JMESaz9eilbY01Gs3601ktipXoCpKyQFbxhx9VoHBcLjVghCFbqx5rU70L2wcICVgCBlaiyroMVQmC83OOsHBbjZW0463xZ39J15MDLbLFgAwutWMfF1loD+HvaWp/OS6mxA+QcWFCHBb4A/jPMWqWKvaet4/IS6jmB9IlLRER8RQOXiIj4igYuERHxFQ1cIiLiKxq4RETEVzpWqpCVWwF4iZouRkpmb2psm5UEY0m/g0aXNpIUUneS7rLK6bDnWykqK/XFsOQZLZFzAso4WQlChiWbrDQca2cL37HEKGAvfMmw80029uul3BFb7DC3Pv7nf0HuW+v+YIk8qxSVlzQqu3dZcs5KFbLrYKw5SfvBSvo1k/ckuxcPGO9zVu7IKuPE+ta6770sOtmD9Bm7ba3ryN6T1qV1ZFsrhc2u70mgT1wiIuIrGrhERMRXNHCJiIivaOASERFf6VDhDFd4H20P/L9nYhutkj5fpsS2WZOr6aQ0khWu2E8m6oMe/t/AJtrN8lJxTuQCfEKclXGx1oHyUoqKhWesckmsRA3rb+vY2HWwJq5bPazdxcpOWWsgsYl2q6wQwybvrfuLXUdr4pyFEKxQACtBZgV12PuEBSPMezHONoD3jVV+iN2P7HzNdcbIAVv9xd6nVliJ3Tde3qfsvrfKS7F+ZH0I8H60rnkvo8RUO9MnLhER8RUNXCIi4isauERExFc0cImIiK90qHCG6SuyTpC1thNrtya5m0j3WROxbNI2kbQlGKEA1t5qTJiyY7ACEww7LyuAwFiTvmySO+Bhv9ZaZaxv2QSzFWZhzeaaYqxvjf2yfVj7ZdUZrIotDLs/rKoXdN0r4zqwMIl1Dix8w9bT8lKNw3ot9j718p7OaoxtsypnsGOwghxsW+u9w+6bQ0YQjIXJWLUVq79Ys/Vzjb2fjOoyViCuvekTl4iI+IoGLhER8RUNXCIi4iueB641a9bg+uuvR15eHgKBAF5//fWoxwOBAP167LHHItsUFRXFPD5+/Pg2n4yIiHR8ngeuxsZGDBw4EE899RR9vKamJurr2WefRSAQwE033RS13aRJk6K2W7hw4fGdgYiIdCqeU4XFxcUoLi42H8/JyYn6/o033sCIESNw9tlnR7WnpKTEbNtuQmRRHyuhdgZJUVmlhryUYWIlhA6R7j9irYsU5z4BnjCzEkSs5BJLTFnnxc7BS4kbaw01dg5WOoslrthxWWV6GCs1xq45K2sE8OO1joElXxnrOrI1yaxyPKyclnVcXtKkDEvOsXQpwO8xdh0Bvh5WXij+bdn1tc6Vlq2ykqQs/eshRWlty8o7sXvBOi6WCrR+frB7wXpPnyLtOse1d+9evPXWW7jzzjtjHlu8eDEyMzNx/vnnY+bMmaivJ4vm/Y/m5maEQqGoLxER6Zza9e+4nn/+eQSDQYwdOzaqfcKECejXrx9ycnKwefNmlJSU4KOPPkJlZSXdT2lpKR5++OH2PFQREfGJdh24nn32WUyYMAHdu0f/Yd+kSZMi/y4sLET//v0xZMgQVFdXY9CgQTH7KSkpwfTp0yPfh0IhFBQUtN+Bi4jIaavdBq73338fW7duxSuvvHLMbQcNGoSEhARs376dDlxJSUlISiLzVCIi0um028C1aNEiDB48GAMHDjzmtlu2bEE4HEZubm67HIsb/5OYtsCq5/jGLKyQbUxyW2tUMfWJsW2NpM0qH9RAtrUmYlPbOPlO1xTiT6esfmGhAC9rWVlrDTGHSd+wUlYAn3i2QiMtpP2wEeTwch0Ytr6VFc5IJeEM67XYcVklwdgxsNcCeGkldo96KZfE7hkASCbHwEIY1jGwwIXVB+xnQsBDOS1rv17WjGPvScZ4Ohw5BitwwY7h9MpmeB+4Ghoa8Mknn0S+37lzJzZs2ICMjAz07dsXwNe/yvvTn/6Exx9/POb5O3bswOLFi3HNNdcgMzMTH3/8MWbMmIGLLroIw4cPb8OpiIhIZ+B54Fq/fj1GjBgR+f7o3NMdd9yB5557DgBQXl4O5xxuueWWmOcnJibivffew5NPPomGhgYUFBTg2muvxaxZs9C1a5z/qxARkU7L88BVVFQE5777c+Pdd9+Nu+++mz5WUFCA1atXe31ZERERAKpVKCIiPqOBS0REfKVzLCTJWEkf1m5VbGEJIlZ6B4h/0TdrMTu62KERIWKpPuu3uyxBxI7V6i8v6S7GKkvESt80GYvssevAygqZ5XRYeSnjOrJSVFYC0SorxrAEIDsvK2XHkoJW6rQ2SLY1joudr5UKZPc+W7CxzvjTFnbfWItDsr61EpcsveulhBHrRis5y96/1nuaJWqtnx+snS3SmWIlK0kbSyoDtG/c9yfzbU8RfeISERFf0cAlIiK+ooFLRER8RQOXiIj4SqcNZ7iRt9P2wJqy2EarLBFb48aa84239I21thMrYZRgvBgrGxU2JtTZ5DcLALDSPwAPFXTzsK6RFZhgxxs29htviMEqp8Um6llABeDnZpV8YsEGC1sHjh2DVfaKhRX2kBAGwCflvZSiSjT+v8uCPixwYZ0DOwYrjMLCCl5CI6yEEns/W+3W+2l3WvzHxa5ZktE3rG9ZYIqtTQfwe9x671nHcBrRJy4REfEVDVwiIuIrGrhERMRXNHCJiIivaOASERFf6bSpQhNLEFoLELLElFVGhQV4WCrISlF1I8dwyEogkv2yskYAL13DEkhW2SvWbpUaYvu1yjixBCDrA4D3g5fr6GVRQS8LXLIkppU6jTclZ5UaYgkxLwsYWok6kG2tMkx0wcY2LlVklWZi52b1DTsG1gdWyo4dg5U0ziYlrv6WzLdlrARia5yJXOt9zq6Ncb7ugv9tHNzpQ5+4RETEVzRwiYiIr2jgEhERX9HAJSIivqJwxre4S++KaQtUPc03ZiEIq6wQDTGQNqv0Dlv3qt5Y14gdgzWZ7KEqEcUmk5OMSXJ2btaEOGu3tqXXgbR5CY2wEjsAvw5W+R+r/E68WJjEWvuLBUSs/gqSUkPW+bJgg7XuFdsHu++sAAG7P6y13dgtZl1fdo+yQI8V7mDrXrE2gJ8DWysN4OuEWdeXBX3Ya1lhloMeAkg+4N8jFxGRTkkDl4iI+IoGLhER8RUNXCIi4isKZ8TDmmRnk9GpZPLe2geb1D9kTFxnNMW2nUH+Sh/gk/LWpC3btplVYTAmvtnkvRUEYbysX2YdA8MqQVhVHNgktTX5TtcJM/7/xypyWOfLrgM7XataCpu8t0IBrFqJdX+wa2lN6rPQBl1zyuhbdgwtxmuxYIMVRmHHy/rgQHf+/OyG2DbrHmfBE9YHAA+DWMfA7n1aXSb+AJK7/A6+rQ/oE5eIiPiKBi4REfEVDVwiIuIrGrhERMRXNHCJiIivKFUYB3f5/6Ltgc3zYxuTjLQRSwvRtXeM5FuYJMSCRmqMscrssOQbS0wlWOv8kDZrbSeWFLTK9NCknpHutJJ232alzlg6lPULwK+ZlzJd1vpjLJHHrkOih/WWrHJJ7Hit+5atE1ZnlBpjZadYH1j3Yoi8R6xry66DlYxkadIdGbFtXxnrZrH37vn7+LbpZK0y1oeAt3Xz2D3Krrn13rPuUZ/SJy4REfEVDVwiIuIrGrhERMRXNHCJiIiveA5nrFmzBo899hiqqqpQU1ODiooK3HjjjZHHJ06ciOeffz7qOZdccgk+/PDDyPfNzc2YOXMm/vjHP6KpqQkjR47E/PnzkZ+ff/xncir0JBOx1lpFbKKdBRCsCWarnaFrWRmhj7jXsjJeK0Qm6q0JdXYO1sQ1XePKWpspzrW7rDALK51jhSjYdbSuuZc1xVgYhPVXD+Mc2LZWKSq2rVVOi5WSsq4ZK23EzjdkhCDi7QOAB0HYvQgAfw3GtrEghnV/7CfhjC9T+LasG72UKrNKSbFScqxrjP5yg+6J/xh8wPMnrsbGRgwcOBBPPfWUuc2PfvQj1NTURL6WLl0a9fi0adNQUVGB8vJyrF27Fg0NDbjuuutw5IiHGnciItIpef7EVVxcjOLi4u/cJikpCTk5OfSxuro6LFq0CC+++CKuuuoqAMBLL72EgoICLF++HKNHj/Z6SCIi0om0yxzXqlWrkJWVhXPPPReTJk3Cvn3f/M1DVVUVwuEwRo0aFWnLy8tDYWEhPvjgA7q/5uZmhEKhqC8REemcTvjAVVxcjMWLF2PFihV4/PHHsW7dOlx55ZVobv7699+1tbVITExEr169op6XnZ2N2tpaus/S0lKkp6dHvgoKCk70YYuIiE+c8MoZN998c+TfhYWFGDJkCM4880y89dZbGDt2rPk85xwCAT6JWVJSgunTp0e+D4VCGrxERDqpdi/5lJubizPPPBPbt28HAOTk5KClpQX79++P+tS1b98+DBs2jO4jKSkJSUlGYugUcvnTY9oCn8/lG/ckC0GyMi5WAomVcrHSe2wfLB0G8NQXSxVayTmWBLO2ZWVnrJJPrPQNW3gP4EkstqlV9oaW3jFey8s1Y9ua+21j6S2WJrNKM9HEpoElBfONX9WztCG7R62kIFtgki0Yae3XSmweYotskmPtfZA/v4m8Fi3XBqC2R2ybtXAm6y+rTBe7R8l17GjpQUu7/x3XV199hV27diE3NxcAMHjwYCQkJKCysjKyTU1NDTZv3mwOXCIiIkd5/sTV0NCATz75JPL9zp07sWHDBmRkZCAjIwOzZ8/GTTfdhNzcXHz66ad46KGHkJmZiR//+McAgPT0dNx5552YMWMGevfujYyMDMycORMDBgyIpAxFREQsngeu9evXY8SIEZHvj8493XHHHViwYAE2bdqEF154AQcOHEBubi5GjBiBV155BcHgN38EOHfuXHTr1g3jxo2L/AHyc889h65dPfwKQ0REOiXPA1dRURGcs6s4vPPOO8fcR/fu3TFv3jzMmzfP68uLiEgnp/W4TjDX9+e0PfDJ/4ltDJKJb2vinE1os0ljgJe+sfbLSud4KS/Fnm+9FgtHWEEOto6TNcnNjqGOlOmxAioMC1YAPDRivYtYoCZgVIdh23opzcTuBWtNMdZf1nVgx8CuDcCDJ+xesF6LBS6sW5H1VzcPoQ9HXoutuwXwUlBWSMZLmS8v5dJYEGPonXzbTkBFdkVExFc0cImIiK9o4BIREV/RwCUiIr6igUtERHxFqcKTxJ1zf0xbYOOC2A2tRB9LJnlZdJKl4SwsCWY9n5UE8lLyyUr6sWOwFlFkrGNgWGklq29Z8sx6LZZM7EUWHwXiPzcvC1G2GMfFjtdawJAlX1kqEQAaSHkm1o1WmS/G2pbdS1Y5LVaiiiX6rCQpK8PEUo0AUE/2a91LHhaddJf9lO+jk9InLhER8RUNXCIi4isauERExFc0cImIiK8onHEKuQv+d0xbYMPvjY3JpK0VmGBrDVmlc9jaW3SS3Zgk70KOwSqHwya/vZS4stZAijeM4mXy3Sq942XtLta3zcY5sONlQQxWfgjgYQUrcMGCCX2MNbayGmPbmoxADTs3Ft5hAQYAaCD7PWz0VwrpL+v+YOtesb6xMiPhON8jAL9vrHXgWHuyhxBVJ6ZPXCIi4isauERExFc0cImIiK9o4BIREV/RwCUiIr6iVOFpxl14L20PrH86trHVw+KQZiqQJOLYwntW4oql4azXYmnHAx4SiFaZHZZMZIk867hYmR1r0UqWULNKPqV4WLCRtbNzsJKkCaRvrNdi52ulFenzjf2ypB47B5bSA/jin9Y5sFvBSqiy+4al/9j9CfBFOs1rTvZh7ZcclvX+l2j6xCUiIr6igUtERHxFA5eIiPiKBi4REfEVhTN8wg25O6Yt8OEzfGM2cWyVO2KT50lkkt0KBbAJcSvYkEoCAD2N9aloMMEIZxwi58v6wFr7qysp32Otj2WV76H79VC2ivUjCwVYfcDWzbLCLGx9KuuasfCOsWYUTfA0kr79LJ0/nZVROhFrZDF0/TIPJcU83AduoAIXJ5o+cYmIiK9o4BIREV/RwCUiIr6igUtERHxF4Qwfc5feRdsD//UH0mhMXLNJaroOlDEZzapRWOtAscCEFYJgQQprop5h+QF2XgCflLcCCOx4rawCSD+Y4Yw4wyTsegE8XMHW0gL4emlWJQh2vNY5sH2wwIX1fC9rZHlZb83qs3ifz6qKsMAGADcgdo09OfH0iUtERHxFA5eIiPiKBi4REfEVDVwiIuIrGrhERMRXlCrsgNwPJsW0meWh2LpEXcn6QVYqkZW+scrhsHJFRjqLYmsdAUB9Unz79ZI6O2wcl7UWFd3Ww3pa8ZYrstZ2yiYJQrYuGxD/+mUAL9nE7hmAl2Fi1yynIf7jsvqL3WNWMpJdd1ZqzEqSknSnG3on31ZOCn3iEhERX/E8cK1ZswbXX3898vLyEAgE8Prrr0ceC4fDeOCBBzBgwACkpqYiLy8Pt99+O/bs2RO1j6KiIgQCgaiv8ePHt/lkRESk4/M8cDU2NmLgwIF46qmnYh47ePAgqqur8etf/xrV1dV47bXXsG3bNowZMyZm20mTJqGmpibytXDhwuM7AxER6VQ8z3EVFxejuLiYPpaeno7Kysqotnnz5uEHP/gBPv/8c/Tt2zfSnpKSgpycHK8vLyIinVy7hzPq6uoQCATQs2fPqPbFixfjpZdeQnZ2NoqLizFr1iwEg0G6j+bmZjQ3f7PeUChE1hOS72SVh2ICVU+TRmNjFgCwJsnZpL4VSmAhCGu/9PnkgFl5KoAHANiaZADADtcKmLByR17W+WLbWuuXsX4MkdAKwI/Xur70mhnbxvt86zqwc7MCJlbZqHiR0Im7ODbUJKendh24Dh06hAcffBC33nor0tLSIu0TJkxAv379kJOTg82bN6OkpAQfffRRzKe1o0pLS/Hwww+356GKiIhPtNvAFQ6HMX78eLS2tmL+/PlRj02a9M3/bAoLC9G/f38MGTIE1dXVGDRoUMy+SkpKMH369Mj3oVAIBQUF7XXoIiJyGmuXgSscDmPcuHHYuXMnVqxYEfVpixk0aBASEhKwfft2OnAlJSUhKcn4tYeIiHQqJ3zgOjpobd++HStXrkTv3r2P+ZwtW7YgHA4jNzf3RB+OiIh0MJ4HroaGBnzyySeR73fu3IkNGzYgIyMDeXl5+MlPfoLq6mq8+eabOHLkCGprawEAGRkZSExMxI4dO7B48WJcc801yMzMxMcff4wZM2bgoosuwvDhw0/cmYmISIcUcM55qLkDrFq1CiNGjIhpv+OOOzB79mz069ePPm/lypUoKirCrl278I//+I/YvHkzGhoaUFBQgGuvvRazZs1CRkZGXMcQCoWQnp6Ourq6Y/4aUtpX4OP/G9vYRBZABHgSzCoP1Uj2wUpGATx9xxJ9VoKRhdys1Brbh5UqZMnITGNxxx6kNFI6SdlZiT6WorRKM7F0prXYYjNbZNNId7JuYMdgLTTK0oa9mvi2rB+Mkk3u7J/xfcgp1Zaf454/cRUVFeG7xrpjjYMFBQVYvXq115cVEREBoFqFIiLiMxq4RETEVzRwiYiIr2g9LmkT9/3JcW8bWPtsbKO1BhILC1jbsjWf2KQ+W+8JoOstmeWl2DFY64T1PhjblmusRRUkARNWisoKUbAwiXUOrB9YCMN6vf3d+bYsdMH6xjqHA2S/X6bwbcn1dUPu5ttKh6NPXCIi4isauERExFc0cImIiK9o4BIREV/RwCUiIr6iVKGcNO6yn8a9beC9F9r2YizhZpVLYmWcWKIP4Im8YHNsGwD0JslGayHJFvJ/yC6kzUpWhj38H5SV07LKdLGSTVaKkp0bK+NklKJyo/+R71fkW/SJS0REfEUDl4iI+IoGLhER8RUNXCIi4isKZ8hpyY28vU3PD2yfF9uYYKwD1Y0EMVKNAAILciQba4qxtcZYeSkACCXFtrV6KC/VSNYfqydtAF+rzCoPlUoCF8Z6Wq7wPr4PkRNMn7hERMRXNHCJiIivaOASERFf0cAlIiK+ooFLRER8RalC6ZBc/6mn+hCowO7f8QdY2pCECl3fn/PnZx7/MYn4jT5xiYiIr2jgEhERX9HAJSIivuLLOS7nvq5eEAqFTvGRiHhUf4i3N5EqG2SOS/e8dBRH7+WjP8+98OXAVV9fDwAoKCg4xUcicnKl44FTfQgiJ1R9fT3S09M9PSfgjme4O8VaW1uxZ88eBINBBALW6oByVCgUQkFBAXbt2oW0tLRTfTgdmvr65FFfnxzt1c/OOdTX1yMvLw9d2KKp38GXn7i6dOmC/Pz8U30YvpOWlqY3+Emivj551NcnR3v0s9dPWkcpnCEiIr6igUtERHxFA1cnkJSUhFmzZiEpiaz5JCeU+vrkUV+fHKdjP/synCEiIp2XPnGJiIivaOASERFf0cAlIiK+ooFLRER8RQPXaeCss85CIBCI+Zo8eXLMtvfccw8CgQCeeOKJqPbm5mZMnToVmZmZSE1NxZgxY7B79+7I46tWraKvEQgEsG7dush2n3/+Oa6//nqkpqYiMzMT999/P1paWqJea9OmTbjiiiuQnJyMPn364De/+c1x1Rs7FU6nvmaP//73v496Lb/29cnoZwDYtm0bbrjhBmRmZiItLQ3Dhw/HypUro7bRPf2N9u7rk3ZPOznl9u3b52pqaiJflZWVDoBbuXJl1HYVFRVu4MCBLi8vz82dOzfqsXvvvdf16dPHVVZWuurqajdixAg3cOBAd/jwYeecc83NzVGvUVNT4+666y531llnudbWVuecc4cPH3aFhYVuxIgRrrq62lVWVrq8vDw3ZcqUyOvU1dW57OxsN378eLdp0yb36quvumAw6P7t3/6tXfvoRDld+to55wC4srKyqO0OHjwYedzPfX0y+tk558455xx3zTXXuI8++sht27bN3XfffS4lJcXV1NQ453RP/7327mvnTt49rYHrNPSzn/3M/cM//EPUD7ndu3e7Pn36uM2bN7szzzwz6sY7cOCAS0hIcOXl5ZG2v/71r65Lly5u2bJl9DVaWlpcVlaW+81vfhNpW7p0qevSpYv761//Gmn74x//6JKSklxdXZ1zzrn58+e79PR0d+jQocg2paWlLi8vL+p4/eJU9bVzX7/JKyoqzGPrSH3dHv38xRdfOABuzZo1kW1CoZAD4JYvX+6c0z191Mnoa+dO3j2tXxWeZlpaWvDSSy/hpz/9aaSAcGtrK2677Tb84he/wPnnnx/znKqqKoTDYYwaNSrSlpeXh8LCQnzwwQf0dZYsWYIvv/wSEydOjLT953/+JwoLC5GXlxdpGz16NJqbm1FVVRXZ5oorroj6Y8TRo0djz549+PTTT9ty6ifdqezro6ZMmYLMzExcfPHF+P3vf4/W1tbIYx2lr9urn3v37o3zzjsPL7zwAhobG3H48GEsXLgQ2dnZGDx4MADd08DJ6+ujTsY97csiux3Z66+/jgMHDkT9kPvtb3+Lbt264f7776fPqa2tRWJiInr16hXVnp2djdraWvqcRYsWYfTo0VFLw9TW1iI7Oztqu169eiExMTGyn9raWpx11lkxr3P0sX79+sV1nqeDU9nXAPAv//IvGDlyJJKTk/Hee+9hxowZ+PLLL/GrX/0q8lodoa/bq58DgQAqKytxww03IBgMokuXLsjOzsayZcvQs2fPyH50T5+cvgZO3j2tges0s2jRIhQXF0f+h1hVVYUnn3wS1dXVnpdwcc7R5+zevRvvvPMO/v3f/z3mMbb9t/fz7W3c/0ys+m2JmVPd10ffzABw4YUXAgB+85vfRLV3hL5ur352zuG+++5DVlYW3n//fSQnJ+OZZ57Bddddh3Xr1iE3NxeA7umT2dcn657WrwpPI5999hmWL1+Ou+66K9L2/vvvY9++fejbty+6deuGbt264bPPPsOMGTMi/3PJyclBS0sL9u/fH7W/ffv2xfxvEwDKysrQu3dvjBkzJqo9Jycn5lPD/v37EQ6HI/th2+zbtw8A6Gudrk51XzOXXnopQqEQ9u7dG3ktv/d1e/bzihUr8Oabb6K8vBzDhw/HoEGDMH/+fCQnJ+P555+P7Ef39Mnpa6a97mkNXKeRsrIyZGVl4dprr4203Xbbbdi4cSM2bNgQ+crLy8MvfvELvPPOOwCAwYMHIyEhAZWVlZHn1dTUYPPmzRg2bFjUazjnUFZWhttvvx0JCQlRjw0dOhSbN29GTU1NpO3dd99FUlJS5PfYQ4cOxZo1a6LixO+++y7y8vJifgVwOjvVfc38+c9/Rvfu3SO/eukIfd2e/Xzw4EEAiFmEsEuXLpF5Fd3TJ6+vmXa7p+OOcUi7OnLkiOvbt6974IEHjrntt1NBzn0dZ83Pz3fLly931dXV7sorr4yJszrn3PLlyx0A9/HHH8fs92h0eOTIka66utotX77c5efnR0WHDxw44LKzs90tt9ziNm3a5F577TWXlpbmm+iwc6dHXy9ZssQ9/fTTbtOmTe6TTz5xf/jDH1xaWpq7//77I9v4va/bu5+/+OIL17t3bzd27Fi3YcMGt3XrVjdz5kyXkJDgNmzY4JzTPc20V1+fzHtaA9dp4p133nEA3NatW4+5Lbvxmpqa3JQpU1xGRoZLTk521113nfv8889jnnvLLbe4YcOGmfv+7LPP3LXXXuuSk5NdRkaGmzJlSlR01TnnNm7c6H74wx+6pKQkl5OT42bPnu2r2PDp0Ndvv/22u/DCC12PHj1cSkqKKywsdE888YQLh8NR2/m5r09GP69bt86NGjXKZWRkuGAw6C699FK3dOnSqG10T0drr74+mfe0ljURERFf0RyXiIj4igYuERHxFQ1cIiLiKxq4RETEVzRwiYiIr2jgEhERX9HAJSIivqKBS0REfEUDl4iI+IoGLhER8RUNXCIi4isauERExFf+fzlJuff0hBCaAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(3.000000000007304, 3.000000000007304)\n", - "[datetime.date(2020, 2, 2), datetime.date(2020, 2, 13)]\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
depthsite_idpit_idbottom_depthcommentssample_asample_bsample_cvalueflags...datetime_createdtime_updatediddoidate_accessedinstrumenttypeunitsobservers
068.01N3COGM1N3_20200211NoneNoneNoneNoneNone45.83None...2020-02-112024-08-15 20:03:41.020791+00:00None2414175https://doi.org/10.5067/SNMM6NGGKWIT2022-06-30IS3-SP-11-01FreflectanceNoneKate Hale
\n", - "

1 rows × 29 columns

\n", - "
" - ], - "text/plain": [ - " depth site_id pit_id bottom_depth comments sample_a sample_b \\\n", - "0 68.0 1N3 COGM1N3_20200211 None None None None \n", - "\n", - " sample_c value flags ... date time_created \\\n", - "0 None 45.83 None ... 2020-02-11 2024-08-15 20:03:41.020791+00:00 \n", - "\n", - " time_updated id doi date_accessed \\\n", - "0 None 2414175 https://doi.org/10.5067/SNMM6NGGKWIT 2022-06-30 \n", - "\n", - " instrument type units observers \n", - "0 IS3-SP-11-01F reflectance None Kate Hale \n", - "\n", - "[1 rows x 29 columns]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Import in the Raster and Layer measurement classes\n", "from snowexsql.api import RasterMeasurements, LayerMeasurements\n", @@ -218,17 +93,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Lidar snow depth = 0.74m\n" - ] - } - ], + "outputs": [], "source": [ "# Demo a useful function from rasterio! \n", "\n", @@ -244,30 +111,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGsCAYAAAAYBjfoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZhlZ3UdjK8z3XmosedRQkJCMwgwYBkDghgTf3Zs7JgvDlgOBjuAwY4To/ziWPjTA46QDYkF2AiMETYmnxObxP6SQLCtgBCDEJMkhMZWz0PNt+58pt8fa+/at1rVrW7RUk/vep5+qurWuee855zbtdfZe+21vTzPczg4ODg4ODg4nGHwT/cCHBwcHBwcHBzWgiMpDg4ODg4ODmckHElxcHBwcHBwOCPhSIqDg4ODg4PDGQlHUhwcHBwcHBzOSDiS4uDg4ODg4HBGwpEUBwcHBwcHhzMSjqQ4ODg4ODg4nJFwJMXBwcHBwcHhjIQjKQ4ODg4ODg5nJM5LkvLFL34RP/ETP4FNmzbB8zx89rOfPel95HmOW2+9FRdffDGKxSK2bt2K9773vad+sQ4ODg4ODucpwtO9gNOBTqeDq666CjfccAN+5md+5mnt453vfCc+//nP49Zbb8UVV1yBpaUlzM7OnuKVOjg4ODg4nL/wzvcBg57n4a//+q/xUz/1UyuvDYdD/Lt/9+/w53/+51hcXMTll1+O//Af/gN+9Ed/FADw4IMP4sorr8T999+P5z73uadn4Q4ODg4ODuc4zstyz1PhhhtuwJe//GV85jOfwXe/+1387M/+LH7sx34MjzzyCADgb/7mb3DBBRfgb//2b7Fz507s2LEDb37zmzE/P3+aV+7g4ODg4HDuwJGUo/DYY4/hL/7iL/CXf/mXuO6663DhhRfiN3/zN/HDP/zD+MQnPgEAePzxx7F792785V/+Je644w786Z/+Ke699168/vWvP82rd3BwcHBwOHdwXmpSjodvfvObyPMcF1988arXB4MBJicnAQBZlmEwGOCOO+5Y2e7jH/84XvCCF+Chhx5yJSAHBwcHB4dTAEdSjkKWZQiCAPfeey+CIFj1u1qtBgDYuHEjwjBcRWQuvfRSAMCePXscSXFwcHBwcDgFcCTlKFxzzTVI0xRHjhzBddddt+Y2L3vZy5AkCR577DFceOGFAICHH34YALB9+/Znba0ODg4ODg7nMs7L7p52u41HH30UAEnJH/zBH+AVr3gFJiYmsG3bNvzCL/wCvvzlL+P3f//3cc0112B2dhZ///d/jyuuuAI//uM/jizL8MIXvhC1Wg0f/OAHkWUZ3va2t6HRaODzn//8aT47BwcHBweHcwPnJUm588478YpXvOJJr7/pTW/Cn/7pnyKOY9x888244447sH//fkxOTuIlL3kJ3vOe9+CKK64AABw4cADveMc78PnPfx7VahWvfe1r8fu///uYmJh4tk/HwcHBwcHhnMR5SVIcHBwcHBwczny4FmQHBwcHBweHMxKOpDg4ODg4ODickTivunuyLMOBAwdQr9fhed7pXo6Dg4ODg8N5hzzPsby8jE2bNsH3j58rOa9IyoEDB7B169bTvQwHBwcHB4fzHnv37sWWLVuOu815RVLq9ToAXphGo3GaV+Pg4ODg4HD+odVqYevWrSsx+Xg4r0iKlngajQYajQa8u/4E+Q//0mlelYODg4ODw/mHE5FdnN/C2SiD942PwvvWH5/ulTg4ODg4ODgchfOapOQvfjPQKQCdCN7//tTpXo6Dg4ODg4PDCM5rkgIAiH1gGAD1Abx/+CS8//Hnp3tFDg4ODg4ODnAkBfn1bwS6EZD4QA4gzOB9/lPwPvdnp3tpDg4ODg4O5zXOe5ICAKjEwGIJaBWBQQhkHhD78P6XIyoODg4ODg6nC46kAMhf+SYgyAAPzKZkojjuh/Du/FNXAnJwcHBwcDgNcCRFEWVAlAK5B/g5/1Vj/q6cwPvbT7vMioODg4ODw7MIR1IE+fVvBAopUI4ppAVIWuKAX8sJUErg/e9Pwfu7O07vYh0cHBwcHM4DnFdmbk8JD0DqAcWUmZQ4sK+KMAOCjC3LYYb8FW86bct1cHBwcHA4l+EyKUcj9YEM1KYMAv7Lwe6f1AfWt4FSwoxLDnh3/clpXrCDg4ODg8O5CUdSRpC/6o3s9Cmm1KhUY2ZSco9EJciAI1VmUwYhUB8CU114d/0JvDv/9HQv38HBwcHB4ZyCK/ccjdoQWC4ClSHLP6WEWRQACHL+3I2oU/Fz81jxAO/ujwNRhvyFv3xaT8HBwcHBweFcgMukHIX8Rb/MUk4cUEAbZsyuTHeAjcskKRvbzK4MAxKZSswsSyEFxnvwvvHR030aDg4ODg4OZz0cSVkLiyXa5Xs5NSl+zmxJL+JrtSGwaRkY75Gc5B5fm+ixTDTWh3fP7U6v4uDg4ODg8APAlXvWQiGlSDbP2O3Tifh64jOTMtnjV4D6lWoMtAskKWN9YF+DWZfMg/fQbcAwQH7Fr56+83FwcHBwcDgL4TIpayC//o0kITmYISmkwGSXGZNBCDwxxgzLUpHEpSO6lMM14ECdO0n9lfIPxvrwvvchVwZycHBwcHA4CTiScjx4IPnIPF6psb6ZvQ0DE9EeqQLLBZKWg3W+Nlvhv71NkphiCkx34T3yh6f7rBwcHBwcHM4KOJJyDOTX3WA6lKUSMFOhHiXIgWafWZKlkpm/DQO+NgyYTck8vr8bsVvoYA04VKO3yv0fhnf/h0/3KTo4ODg4OJzRcCTleAhlng/AMk+7wO9LCdApAMWEBGQY0DZ/sURiMtYHeiG/j6Uc5OckNJppWS7C+9In4H3rj0/f+Tk4ODg4OJzBcCTlOMivu8EGD2YeSUs3AlpFEpV2AVjXBuoDalQmesC6DglNMSVJaQyA5oAalV5EYpN7zMpMdoENbXhf+Ti8r33sdJ+ug4ODg4PDGQVHUp4KsU+S0ewzY5L4LPlUhxTV1mJ+DTP+frFEwS0gWpac4tmpDrCpRU8V3c/hGvDYON+7XID3TZdVcXBwcHBwULgW5KdCJSZJ6UZW5jlYI8kIM2DO5zb1IUlJIbXOn4JkYHIhKwE9VLClBTw+ztcKYsFfSoADdXhLnwSKCfKX/ovTfeYODg4ODg6nFS6T8hTIn/9W6ks2t0gq/JxEY7EkHT0ldvcUUmpO1PxtrM9/ALftiAB31zjw0BTLQfUhszKJEJ2JHo+1XIT33Y+4EpCDg4ODw3kNR1JOBFNdYL5M8tHoUyQ70SMxqQ+YLck8vu5LB9AwABbKUh7KmC1pDFgKUm1LKoMLO5FpXmpDbj9TBVIP3r4/cGUgBwcHB4fzEo6knADyDb/JbEg/JPFIPRs8WEhZDirHRjQ8EaXkoNeKL6SlkADbloD1bWpdtGMoDkhaPHBGUCUm+YkDloVSH97Df+gyKw4ODg4O5xUcSTlRFEVfEuTMmAAs13QKJCWaGRkG3E7FtOXYtp+t0jK/HzIT4+VWQgKYrVkqGbGZ7FK/koMeK/0Q3u4PnoaTd3BwcHBwePbhSMoJIr/iV5lF6YcUxQIs08Ri2JYLgSmk3GYQkpwMA24z1eF7woxdPf2Q2w9CZk5qQ+peEt9KQup2O90FLp3ldnsb8L5/G7wHbztt18LBwcHBweHZgOvuORmUEnqmFFNgQ5tEIwf1Jn5OEjFT4ffaflxO2K6cw8o/YcavSkZin4Lb8T5/bhV5jECICjL+vtnnMR5YBxQTeMlHgNRDfvWvnMaL4uDg4ODg8MzAZVJOAvl1NzBjMgxYmpnsMgNSHfK1VhHY2Oa/sR71JUFGPUurRIIRZNYJFGT8VxuaI20/5O9jn68VU+pWDtStlDTdYbnoEFuhvW98lNOWHRwcHBwcziH8QCTlfe97HzzPw7ve9a5jbnPXXXfhZS97GSYnJ1Eul3HJJZfgAx/4wKptbr/9dlx33XUYHx/H+Pg4rr/+enz9619ftc2OHTvged6T/r3tbW/7QU7h5KHdOPvrJA6DkOSkNiCp6IUUvU70rfwT5MzCZB6zLplHB9qBlHy6EV9vF5h5qQ/582yF+14qyVRmsdUvJdzvdIfvGQYAAO9eN2XZwcHBweHcwdMu99xzzz346Ec/iiuvvPK421WrVbz97W/HlVdeiWq1irvuugtvfetbUa1W8Za3vAUAcOedd+INb3gDXvrSl6JUKuGWW27Ba17zGjzwwAPYvHnzyvHSNF3Z7/33349Xv/rV+Nmf/dmnewpPD+M9YLFMXUpTiEmzz06ccsxtDtSZPSlLB5B292hHUJhZKWeiRxIyVyZh8XPA80hgprrcZrzH9mU/Z9kn87j/1Oc+SwnLTKUE3n0fAWKf/i4ODg4ODg5nMbw8z/On3mw12u02nv/85+PDH/4wbr75Zlx99dX44Ac/eMLv/+mf/mlUq1V86lOfWvP3aZpifHwct912G974xjeuuc273vUu/O3f/i0eeeQReJ53QsdttVpoNptYWlpCo9E44fUeDe+rHyOJWNcGSikzK/2QJKI74nmi+pPaAOjL3B61zy+mLBPNl7n9IKTepRexjNQq8v36nm7E7EnumfdKHDBzo91EhZT7yTxg2xLy9b/5tM/RwcHBwcHhmcDJxOKnVe5529vehte97nW4/vrrT/q93/rWt3D33Xfj5S9/+TG36Xa7iOMYExMTa/5+OBziz/7sz/BLv/RLxyUog8EArVZr1b9TgoKIWsOc5Ra1tU9kzs/mZf7bIMMHl4t0ny2KBX41tunK9SG7dxoDCmej1BxsyzFJSTElYRmEbFvO5fueZFu0PBRk/LkcA4+Nw3v0P8G7/8On5pwdHBwcHByeZZx0ueczn/kMvvnNb+Kee+45qfdt2bIFMzMzSJIEN910E9785jcfc9t3v/vd2Lx58zFJ0Gc/+1ksLi7iF3/xF497zPe97314z3vec1LrPBHkz38rvIf/kBmLSmyZjeaA5CLxrX24kALbl0gsJnvMugxCM2tLE37dvkjjtu1LwOEqszLtAklKIbXuoXaBRCb1SV7UBG4Y8HcLssjUp7A2DlgCmu7QlM7BwcHBweEswUmRlL179+Kd73wnPv/5z6NUKp3Ugb70pS+h3W7jq1/9Kt797nfjOc95Dt7whjc8abtbbrkFf/EXf4E777zzmMf4+Mc/jte+9rXYtGnTcY9544034jd+4zdWfm61Wti6detJrfuYWCwxA9IPmI+KAyMLtSEzIx0hEPsafP1wje/TDp/6gESjEjMT87wZ7nsQmPdKIaVeRU3f1rdJclLfuooaA7Ht99kVVBtK6zL4fScC4jq8Q38EjPeRb3/XqbkGDg4ODg4OzyBOSpPy2c9+Fv/kn/wTBEGw8lqapvA8D77vYzAYrPrdsXDzzTfjU5/6FB566KFVr9966624+eab8YUvfAHXXnvtmu/dvXs3LrjgAvzVX/0VfvInf/JElw7g1GlSFN7dH7dsSe6xhXisbxqRXkjy0ikwkzLVJfnwxcQtB0tCY30SjX0Nimc3LjMLoqWk5QKJTUU7hFJ2/hQTim4nesCc/DwISXj0dzlYXpro8T05gOYA+YW/9gOfv4ODg4ODw8niZGLxSWVSXvWqV+G+++5b9doNN9yASy65BL/1W791QgQFAPI8x2AwWPXa+9//ftx888343Oc+d0yCAgCf+MQnsG7dOrzuda87maU/M+iLSBWwzhzVjexpUmOi9vYqmG0MzOhtEHKQYKtoDrO+aE5UCLtYWj11WTuDJnoyDygloakNSWp2LrJstLPLnzPxY+mIcHeiR3v9h/8QSHzkz3uWW7gdHBwcHBxOECdFUur1Oi6//PJVr1WrVUxOTq68fuONN2L//v244447AAAf+tCHsG3bNlxyySUA6Jty66234h3veMfKPm655Rb89m//Nj796U9jx44dOHToEACgVquhVqutbJdlGT7xiU/gTW96E8Lw9Jvl5q98E7x/+CQzFx5IBnKZhhyKC20vIgmZ7JF8HKmyTJR7ZqnfADMmPbHSbxf4urYX72+Q3IgfCnoR25JHSU9tyKzNTIWZllYRuHiOJaZ2ARiKpuVIlULbcgI8MQbv7z8JjPVdy7KDg4ODwxmHUx7pDx48iD179qz8nGUZbrzxRuzatQthGOLCCy/E7/3e7+Gtb7Wg+OEPfxjD4RCvf/3rV+3rd37nd3DTTTet/PyFL3wBe/bswS/90i+d6mU/fUTSsdOJgCKY2ehG/F1tCMyHLLfsrwPrOvx+pkJSE4t+pTZkKehAna9pW3JjwOyKtipHKbMpY30SFRXuAkaSOgUSm0EIfH/KhhUWpb25mAALJa5jfZtrbRfgffuPnL2+g4ODg8MZhaflk3K24lRrUgDQjr6UkDx0I7O1zzxmO+LAMh6Jz7LN+g637UY2XLAXkmAUE+4j9fl9NebvtMU5Dkg6qkNmYnSIYSFlq3PskzQtlmgyl3skONWhebOM9YFHJ0TcW6CAN/O47yADUh/5VY6wODg4ODicejzjPikOhvy5b2eGo5xY2aU25PcHGiQBmYhquxHLPnOSKck8m/kTC9EY6/O1SmxeKR4oeu2H/F0vpA5lrsJFqLV+6pHMVGIKcqOUephmn9up4RzANS6V2EnUKnL9Xr6ii/Ee/4+n5Xo6ODg4ODgoHEk5FUgk63HBAks6UcbXy7FlNpoDKwsNA36txJY5qQ35nsxj9kQnKM9WSCSUBPk5ic5YnyJY9U2JMnOjHQQkLD74exXlFkSr0inwWOvbJDj9UFqYcxMDtwvwvvNH8B50gwsdHBwcHE4PXLnnFME7fCvLO4UUWCibadtiyTxTADNo8+Sy6wDCVPQlWs7xcrPJ1wzLIGQWRucAre9whlAm05PH+yQovchs9KOUpEQnL9eG/H0sc4N6EUs83YguuYerXA+wUvrR7Ev+grec0mvm4ODg4HD+wZV7Tgd2N4G9TX4/3gO2tIAL5/l1EJBEBLnY4He4XerzdS3phBlQEg2KByMo7QKnH7cLJDKNAX9/UDqf/JzHWSqSAOUQR1uf7wGoRdFj1kf0MXpsgKSkGvM1PyfpCTKSm+UCvK9+DN7XPvasXE4HBwcHBwdHUk4R8hf9MknD96bpkTJXYYZjocQsRVHIxuLIz0HGMk4cWGYl9UkUFkvMmHQjEcz6/HmxxJJNL+Tr7YKJZ6tDc7EtJdyftjHHgelgFkv288oJeGxXzjwjR35uzrVl2V/qwXvsPz17F9bBwcHB4bzF6TcbOZfQLpi+pJQwsxHk1IuoSDbI2IVTFbM2LeUslEgIytIiPAj4s5KX3AMG4OuDUBxopf1YW5obfSvPzJfZ1jwQMtOTrqMcPN5ygWQmVuGukJEg4/cFKSHlHtea+Pw+SoGDNXizHwMyD/lL/sVpuNAODg4ODucDXCblVCLISQT6IbMRiyVqSFS4OiqOXSxxGxWr5tKZM5TBhKWE26dyi1Rku65DkqGDDYdCZlKPWhglI3U5Vpix/ATwGMtFbldJSFhin4SllDALE2YkPDlkeGFuRCfMSGqaA3YPeTm8r9/OAYYODg4ODg6nGI6knELkr/7nUsbJLeMB8PtiQkKSiWbEg2QnQCJQH0h7coWv6zyfSkwSs1wgqanEbCtWIjLZM/FtlPGYhZT7nC+TaDQH3DbMuF8V5ebSLTTVtZNYKNsE50iGH5ZjvjeV1zJqVFYyQcUE3jf/GN73PnQarrqDg4ODw7kKR1JONboRA3ljwNJJbchySSY2+Klv5ECzKJ2CZS2G0p2T+CzjAMxy6Hu0hXisT3KhxCfMTBw7WzEhrs7/CTL+XExIZjRDE2Y2bRng/nRgorY1q65loifEqMuvSo5GtC7eP3zyWb/kDg4ODg7nJhxJOcXIX/EmM0zTwJ/6JA1qpubnlqVIfSuxzFasg+dI1dxqw4zZjEpM4qDk5nDVhgjGPsmLZkkG0sqsJnLDwMpQOSwjo+3PQxHSlmMSkuqQr2feiP9KSOIUB9xua4ukR0W6opHx/ven4H3rj5/tS+/g4ODgcI7BCWefCRTTEbIQmsYj80gKPHGIrQ+ZnVgskYj0Q763KX4nmqUAjNj0Q34NcmZTAJKDdoHb1If0ZAnFUE4JhgeWlAAT3i6WOOww9fhap8DMTzExbU0hsTUkklXJwTlD9SH3P9Hj+/WYgxA4UoX3xU8AwwD59W98dq67g4ODg8M5BZdJeSYQ+9SBKEE5UmXA39oiOViS9mJ1ni0mFLeWYysN1WXGzpaWaVNGW4aXCyQmatwGkIzMVvjaQLI2xcR0JMPAjOZmpZS0v25Tm7XcpK3POkNoEFiZCjDPFxXl7mvwOIAQpQGwucVzGO87rYqDg4ODw9OCIynPAPJr30IS0I3YhlxIrQNnssdsxVhfbPMDdux0I3beNAf8nQpchz6DfTXm78qx2eMXUzOKU9+TgZAMT7IwxdT0J6pNUYv8vkxobhdIhOoytFDJyDDgfuOAr+vsIMDM4A7VbDhh6nGNhdTKUgXONfIe+UNnBOfg4ODgcFJw5Z5nCo2BZSti3wSsqc/Mhi9ZC53JE4rvySBgliSUAD8MgEWxsd+0zPetEBFYiSX1gFyOUx0CJTnesuhUGgNbRyREJRLflFQ8UVpFblcQoa4OSqzEtnaAmSAvZ3kozEh8CimFvOqWWx2SeOn8Ihma6H3l44CfI3/xm0/DTXFwcHBwOJvgMinPEPKL3sHgP+rculQy4awOEpzqUucxCLm9B6Ar3T69iMRhEJAwaGtyJaZlfTEhyYky/qyma6m/mpw0BiQjhdTakCE/q6h2qcjXOhGPv1gyA7d2wbQomrlZKslgw9QIlg4nLCaru5w8SOlLzj3I4H33I05c6+Dg4OBwXLhMyjOJTsGmICs5GQYM3vUh9Rx9GUIYi7g19i07kvjcZiDlnDwhifDA7MWEeKTsbZJANAd2bLXdn6naAMLCiMNslMlaRFeSSmmonPD3VVgnkE55LknWp5ACkXQd1YbcZ5hxW8AM5gDuC+AxuhG/BnItwgzevj9AvuU3no274eDg4OBwlsGRlGcQ+T/6BXj33G6ZhUxKKIdqJASakVC9SmVEb1JIAE9KOrlHMapOUk791R08OxeZ7TgsAt1SAnSktDPdIVFYKhpBSnwjLR6szXlP08hT7gHVLtCWY/bleOWE71d9jJaA1JFW3XOLCc8R4HrCjMLhHCRGvXDFddfb9wfsArrgnc/ezXFwcHBwOOPhSMozDRWweuC/ckIyMi8W9mXJUGhpRUsixZTW9doevCR6kWEA9MWzZCngdg9N8ncTPRKg1DdfFM181IckK6n4qYTiFjve47bF1Jxn+yH3V0xtIGKUmsZEfVp0grPqahLxVEk9a4mOMh43EGISSfZlIBmdIKfLbqsIb98ngEpM4bGDg4ODw3kPR1KeacxVrEwSpSQnEz2SBZ1uHOTmCBtHDPSzFRtUOJDOHdWBaCfyZM8caiPRmlRj6lFUXKvZm9i37Ia2G2vXUZhxxtBASMcw4DqjzMS7munxc6AYm9GbZnOCDOgVzA8m94B+AORSdlK/lg1tG4wYZSQzAH8XZEBzAG/uFmC8h9z/nWf7bjk4ODg4nEFwwtlnGPk/+gVmHBKf5MST7IK6tKogNZS5O72IJEN9TdpigR9m1gZcSIH1bb6utvWdCHhswsopDRkCWI5X2oBXSMd4T1qcYWRJ247Vc8XPua9hQEGulnmCzEpN6zr2eqdgVvoV8XsZ6/NYtSH31S4A+xvMzgB0vG32uaZ1HZ5Hs8/X/Rwebno2b5WDg4ODwxkGl0l5NhClNv9mrA88Ps7XW0VmPnLwd+vbQFZnFiQW8Wk5IQFIhEyMusvqxGPVlADMtmh5J8zovaIOuKp5KSckQqkMOxyG5m6betxvmJsZnJ+TdHg5W5vDnOutxCQmg4A/96WDB5AuHnHFjaU7qStTn9X6X0nYQonr3bkIZKsvnRKV3BEWBwcHh/MOjqQ8C8hf+SZ4D91GEnCgbt02cxUAXf7cjZhlKIklvSdZj07BtBypzOiZ6JFoLBWlrBIy2BdTc37VDAlAMlRKgFTm9Oxuct+NAUmDB5KLQQDMVa1rR1GO+XPqW3YEoHttKF1GatevrcaDEBj4QFzj2rVNWTt7osymNldja2UOjmIpAkdWHBwcHM4/OJLybKGQ0oJ+GJAMzFatxFOOSSgyDwhGtCphZkRDBwaGGXCwToIx1WVHj1rUlxLr3lkuMINRHYrrrBChxsD2CTDTEqU2CVkzITrBuR9KC7RY9ytBaYuXipZ2dL9HqtznQsmM4HSqci80Z1s9TuaZn8sxCMooHFlxcHBwOH/gSMqzhHznO+Ht/xMG5bmKWdPHPtDIbGKyWtAD5j1STE0E2ylYyUS1Ic0+UPdMBFtKSBSUaDQGkrUIbFDhXIX/VLCr4tyNbcvGqAlcpyDGbRlwuGbHVq2JzhTycupgxvv8XUfM6LSt2pdOHg8kL1pKmuiRuJwEPNzkiIqDg4PDOQ5HUp5NZJ7pSlIhJdqKWxMNSZRauaQv04pTIR8eLAsSZEA9ZuaiNlzdiaMZlGFAgjFf5ntC6aZpDlhimQ/ZkaN2+NoeHPvmkltIzaF2tmIeK7qWpZINM9zQNv1Ns2+uuUM5x9jnmpt9vranyczMZO9pXU4PNwFLJeTNd/8gd8XBwcHB4QyFIynPIvIfuQHe393BH8rShlsfMICrl0g1NtM1NVrLhTzohGIACCR70ZBpy5rpUJ+SQm4dOlNdEootLSMcC2XgYM2yIEslYOOyuMmmJDOJL94oiZSpQmY/AhHk9oWcxD6zPbvGuP/akERMSz3qszJXIeHqh3xtscT1HwuPTNJ7ZfuStS0fjWbflYAcHBwczlE4kvJso5gABenKUZO36S5LI2rAloP/4oDbaTYlyNmeqwZtPWkXLsfMXhwW0qE/b26R/Fyw8OR1jPeAS2eB+9eRKIz3mGnpRCaq3bZE8jFbAR6dsA6j6lGakkXpzqkNue2RKsmWimy1lFWJgZkKSU0c8BzLxyAfALBliV/3jPEaPGf+uJfW+/5tyC95+4nfCwcHBweHMxqOpDzbUAKgLq+DgBmMKGNm40Cdr8eiEemFok3xzL22Lm6wvYi29/Uht6sNGfQ3tJn90OnDh2okDOrNoti5wO0fnCa5UH+V580wQ6KY7nD/cxXLsqi1fZiROA2kNFWVLqSxPr8uSku0EpXMI+GKfTN9OxbKMk7gubPAfeuPf11bReCJMXh7PgV4QP7qf/707o+Dg4ODwxkDL8/z/Kk3OzfQarXQbDaxtLSERqNx2tbhfeePTDOyXOT3AH+erZiOIxFtyErWJTcPlOqQZELLIEeqNERbC0tibT/VJZHw17jlsUxCbhVtNs/6tv1+GHCQ4dC3fSYjwxN1ynLmMeMT+8DmZdO1rOswS3NIhLdHqtyPnwOXzZCorQUlZ49OkHw9Mmnann4IXHGYwtu7t1qrdV/amufLyH/y50/6/jg4ODg4PHM4mVjsMimnA3sbwI/sNj3G3+9kcI1Fb+LlQG3AUpAODPRzkpPlAoWnVx9avc+xvnUAebAOneWidNWUrbNnYg2haiSze5ZKJAbDgFmdcfFk6Yc8rpKT2tD8XtT0Tb1c1Mp/QZxlMx04mFgWqVOw9mXV2awFLSt5AL673rbVNd67ieTFk+MMwhFCl8D79H9lZuUNP3Py98nBwcHB4bTC2eKfBuT/+P8GiilyaaPNX/kmZhdiyTpoJ48HEpOxPolCmFG/MkpQFsrUohypMlsyWwEemQAengT2iQX9csEM35aL3OZYuHCe5ZWNyyRNj07y9cbAXHBjf3XXkZ+bDwrAY8TS7lwVDxgPQCEz4tWJ6PEyVwYenOK/4yEVQlRMpZspNV+VtrjnetKanYqQd0MHeOEBwMvh/e4/PL2b5eDg4OBw2uBIymlCXvx3q18YhCyF9EJmOkpCStTttZQw67BVxKSLJQb2/XUb0jdfllk7MTMVcxVmbfY2rcumK/OBDtS5j3iNLEarSPIDMPDPCalRQW8pYdvwdIcESglDKeFaq0OSqyAnQQozthvPVmy2UJQB395AMrW+wwwNYMc9ej37GyQ77YLMLupw/4OA57VpmUQpzJj9aQyAaw4CF80BP38/0C7Ae+u98H71Gz/gnXNwcHBweLbgNClnELy/+QuWRDZJFmMYWLmjNqRJmmo3vitC0mLKcoefU1A7WwF2jZtOpFMw7xMlDY0BA/1Ej+RovMfttPU5DqS1OWCWRr1MhoGJcT2QmPRDvnd9mwShmHIdiyWSoX7I7cfFOr8+5O8mu8AXtwuhko6iF+8HvjdNnYna8u9rsANJtS1aXtq2xOzSIACeGLMhjLnMI+qHwIv2r7b3V7R5TVzLsoODg8OzD6dJOUuR/8QbAADefR/hC6kHZL5lKJSgKInQTqHa0NqPS4mVamYrzMR4YszWk6xJWyYWq2cJwMDeKtpQwIJ0HqnYNsiAQcFm+KhAdrrLYwY5yUhXRL9FmUFUiTlQsTHgscb7Nnvo0lngG5vYllyJ+dqWFjM36h3z4LStXzuavJzE5Hkz3H6/ZIt+8vs854emSIT+13Oo/Zno2QBGYIW4OH8VBwcHhzMbjqScgciv+FUAgLf4e2a+1pOMxBNjLI1sW6KQVduKCymJRlUmE8+VKb5dKPNn7egZCFHRAYVaigkz+qqoF0rqMevRD/meKOO+FsokCeqp0gul3Vj0KZHY9Kt1f+yz5LKvwfXPl1my6hTYsXP3Vu7DAzNIm5ZJcHoh8OVt3KdmSPQcKzJNeqJHMhJmPM6jEzzWH13LdVx7gCRrrW6mETiy4uDg4HBmwmlSzmDkYyN27+WEmpVCykxJfWA6llaRHiv7GhTNHqnKMEKZcKxzc8KMxKM0MguoG/FrlPJ9SyUG/EFos360dJT43K4+tHk8ao2/VKRgtl3gz37O7IgeY0ObpnLFRATBA+BSaaF+cIoi2v/1HJaA9HwvWLCsTjnmPgMhHP2Q652tcF9RRp1NOQFeupf7vGsr8LUtJ3y9PUdSHBwcHM4oOE3KGQ7vwO8zO9LsM+DPVNnaq260BZmVc6TK7EOQMwvS7ANdGQRYiW3AYCKakkpsmpG+TCcOMwZ8D8yWlKVlOPZJMh6cFrfbxLIzA3HIDTNmLXoRMxx9aQXuRMzQaInoWDb4t78AuG8d33v5EYpvU9GhLKggWAW5GdcfZvRf2d/gNXl8nL+74dtPNq4bRavI9TclS6Vt3iNwWRUHBweHZwYnE4tdJuVMRzW2csVSybIH/VA0K9L66+XUbJRjEoflIgO7n5OgDAMG5iA3C3sN9o2B+Zv4OV/3QJHtoRrJhw4/1JlCUWbut+ulyycW4e1cWXQqGY+n2Rx10l0LL3/Chg7evRX4xmaKg3sRyUkhJRlZLjDD8kP7eMyZKo+5aZmZlLu3Hbu8Mwitc8nPed3my8z07Bq363akCu/I++Ht+cCpv58ODg4ODicMp0k5A+DNvB/59L9e/Zo+yTdHXlwurPYGWSyxfKKTkUsJyUZtaGUa6LDC3DptcgBx0RxidXhhkDFQ67ygamxZEt1/PyTR6Ht0pc08Zmg0+5IEfD3IgAKAdWvMDVoL430Sjb1NruVgjcf72ma+/pJ93H8kHUT3ryNpCTIeb2sL+JkHgcrQLPiPhhrK6fXphyR8W5e438NVfp0rr3Qhea0PA/0Q+bVvObHzcHBwcHA4ZXDlnjMEJ6yHuH8dswtLfOJH5lnLsp+bdqMgGY/EJ9HgQUw4O6oZUfM4nYisWRMlP3qMxRKzOb2QpaDKkLk4JQW6fSjdQLUhMxfNAbM1Xv6UIlbsaQIfez5LS+oTs3MRuG4317h9EdixyPLQXJlE6uVPAFce5vsP1ViaWguJb4RLyVYn4mvDgMRPtTrang3w9W6E/CX/4kTukIODg4PDceBakM926LyatfC8GZIFLY0UZOBfIJb3SjRqQxsC2I2o7/CEmPQlW6I29gMdYgjzP8k8Ziw8EavOVUiMimKk1i5Q86LZiVTIkA4azMS2frpLMlGOuR//GFkOxbYl4OceAB5YB3xnPfDYOM/zf1zEbMl8mR1OHdHTtIrUokx1STrmy0ZScsny6HkslkiWDtWAjW2g63MbNZLrRvxZ27KVUOWga+3XbweGAfIf/qWnfWsdHBwcHE4cLpNyBsFLfpdk4UCdL2w6xtA9zWQcrDOwBhm1FIslmfsjDrWDkKLXSLIH2jqsnTmpdOtocB4GfF8kgtxywvd0I36vjrGTPRKT2Qrfp1qWoW+ak7E+iUQw8vGqxEaOxteYH7QWPvASuup2I/77uQeYEfnsJTxPXfe6DnDxHC39nzfD92ai2anERuyaMjuozAGEaBXtOhRTaauOzBwvyI3o6WBDKaXlP/Tmk77HDg4ODuc7XCblbMXj4wyiic9Sjhq1HY2ydKJM9GxaciROr1rG0O4b/Rel/NopGFkZiA6lHFumZarLYzb7FJi2xda+NuR2B8VOf32bx5+t8H3LBVtXq2jdR6mQFDVj63vAuqUTvya//pW1X3/lLuD/u5jtxsUEeO91JBHTXStlAXwt9blWP6fpXXXIacrjPWpPyjFJnvrMJL4NaoxklpLqeVIfAOcVeV/5OJB6LrPi4ODg8AzBZVLOIHh/dwef2mtDYPMyBZ2Ha2zhjX1rGV7fIbmYFxJRTPl7ncUzCLiPorjG5p5lVMKU/imFlESjLx0txYQEKfVIRKZlnk4Osa3PGOhrQ+ChSe5TNS0A15361uY82eXribjQqk6m2ed7iwkzMGtNZP5BkHkkTus6vHb9kEQDIOnTUtqepg1ALCYkb5GUzhLfxhJUYss2eeD1AWSEgLV15z/6i6f2PBwcHBzOUbgW5LMU+aveyGxE5lF3sVhiwOxGwGLZyhdzZQbRiZ516GQedRbNvrUEq65F/VTK4peSg8F3ucjAq+6tkdjYr2+LJiURPQcYjJUUbVrmz+2C+aH4uelQwozkpCelKBX0TopuJMhICtT47VTCl5ZnYPX1GYTmCbOnaSLevpCrvowRUOGszghKPVnzyPnFAbNFanaXefDu/FN4//DJU3suDg4ODuc5HEk506DmbNUhA7gGRu0+0W4c7VJRwWyUkdQEuQlYtfQTiymaikKbAxKfpSLLNIm/WjBaG5K4rOtwHWN9kqdUshRBDmxfMjdZnXSs7b2V2AS3ic/9aLty4lnw70YkPjPVU0tWpjv8elAyKbnHNWpJq5Dy+2JqmaKFspGPXmTTlROf2adyvPreaBtzlBkRSklWHBwcHBxODRxJOcOQX3cDA341JrlQoWsp4fe9SDIgkgVo9vlaLN01vdDIg2pRVPAZZCYOLYi9favI1/c0reV2FBqY1eAtSs2v5bIjnFhcShjga0OWVCoxjzMms4WWivwHmAlcTfxMekKmEp9r+UHRk3MYCDnRCdCVmDqfUmIt00pItJVbS1U6MVo7nADLsChU66MuuoV0xSDO+x9/Du9zf/aDn4uDg4PDeQ4nnD0TkfpAnloLrIpXe9LhEvvsABrKlOJUXGeH0v47lA4b9S1Rl9g44LZhZhb6Xm4tvIeqNqxvxX1W7PF1sOAgBCAajsUSSz8XLDAjot1Bqc/MQykhEdBWZxX5+rnpUgopiUQoHUrqTKs6krXQD7nPo31X4gBoF1kaCzKSpOqQ5KMXrRYh+znQFSKjrdra5RNm1AS1I+6zK2LjXMpq+jXzbI6RCm3DnJkXL4f31Y8BvQj5K950Cj8cDg4ODucPHEk5ExFJOWKsQ3+Sya5lKwB7ip/qkiyo3fxyABRhAT7KWF4Jxeq+nJCAaAZAhxCmIsL1c5KfHYsslTSkBTcQc7eh+KLkHpDJOlpFK30ouqENKSzHzApFqbX7diISr9HsUFlEuAtlc82d6q59fdT5tpSYBmYQAC1pwd64zOyIdjFtaXHNj49b+Uevp2ZPRtuQS6ILKqX2upbNdBqzHluvp58DmVyDSRkjsK8B5FICKqTIX+rM4BwcHBxOBq7ccwYiv/YtDLBxwDbZWPQo6hY7CKnhaEvZJfWsROHlNsxPLeOrohPR4YGZZyWPsT63nxPRaCeiMFddWGOfRCjMLLuibrRhxqAdZhTtlhPqS5aLfM9yYWUWzsrrBTGDm+xxHUoUWkXbN0DiMl/m99oSPApdfy4ZDB2mWEh5nHUdK9UAvC5bxAwukU4nPzehcjGx4YyJz7UD1sqcyPUtidNudWilK4CESq91P+T11DbwdgGoDeF9849pCOfg4ODgcEJwmZQzFakEymrMzpMwZ+BWZ1gtYdQHlhXJYWLOcmyEJMzMwwQQ23pxf419BtbqkMF0QkhRKQFmKgzStaGYsiWWdajIXJ8gYwmqPmQGozZkZ5IGeyVQ2gI9FP+U6Q63T3yKcRdLllHR1uZuxPesOOSmVnbRTMZMhWSkNuA1UQ8XgOtT8XAk2Q/NoASZZYVUVDw6MqAoQmEtP+WezU3yQBLWFVKk10iFzrMVnkuU2kiAqS5bosNsZQSCm7Ts4ODgcHy4TMoZivyFv8xvtIySsnsES1IySX1zQo0DZiY0AA8D81TRLh9tnQ0zEoqFkmUBtIxRjW1ujRKbqmQSIjV00+nGmRibgV/bBa6nPmB2JsitfVkdbzuRtS4fqXJAYOqTVFRj/m4YsOSjLcCHq0Y+DtZJBNR9Vtc83eHxJnrMoPQja+GerfBfKSFJUKM3PUct16jLbpTZzKOOdD5pN4+W23LwtZKUzwIpWc1UmBHycq5ja4vnFvvM4AQZ8PyDK/f4hOc1OTg4OJyncCTlTEYpob4j9UkOdizyybwXmq6klJAYrLTIxhRuRtJemwiBmCuTJAAM3plHojIIgVpsbbTa0hxmzAAocVAxbiRdO5pt8MDjRGKj/8gk36NrGvpWwhk1fysllulIxNZ+XceGE1bjkYxPzuOPrqUb2RRoyH48GAlJRRNTlSzHTJWEYbZipm1L4kOjWRktD+Xg/ouJEb1yzGvbkzlI1dhKQYfqZpt/uMbto9SM8gCSlDU0No6oODg4OBwbjqScwcif82vS6ePxCb1dYBDe2qI4szFgIF8smT9JJBmOpZIF9F7EQFxMTW+Rw3xMUiE7m5bNCbY+oB6mOeBiVHhbH5qodV2H21Ti1boRLavkHt+vJZHR0ojqW7R1uhxz/2N9OuwWJMirmVpjAOxcsGyPtjprNqcx4P5UjNsUIjVbYaZlusP9NAeW9dDBiAUhZalnZKsq5bKJnl2ryR5dgP2cpKTZt2uhAtyhZLWmRTyrHVbj0o49V7HZTMMAeGxi5X57t/2PZ+FT5eDg4HD2wGlSznQE4t4KSLtue/Wgu/0NZlYO1hmAOwUrrwSSiVgqsoSSC4nY0DZzuNgHstBEo5lHgqNBvtnnv2NBMxfqd6JZFs2CqE9LYyDZHdHIeGDGQb1RPLCEohObo5SkSa32K/GTtTVKHhbKJEuJB4QeS0k6RHCxZP4oB+s8xqKUjCpiia8C3pIMVNSW7amueLlEzDpp1qUS85jFhNdqoifkr2j7WxJSOd6zkt2Buk2LnqvwuqYevP/9KWBvAxhL4X3gc8h//R+dso+Pg4ODw9kMR1LOdKj4tS4ZDdWWaDAMUyApMAC+4ADQlKzJctEyEX7OwNyR3wEMqoWUZYhQxK9allGDt7WGG66F1Oc6AykRqc9KDSY2HUUsxmie2OU3BnIevolatTRUTKykowJhXb8va9VOn0XxaqnLDCJdk5qylWOWY2pD8ztRU7xiYr4rRSkHaXdRIeV+jlSBbUs834YQwnHRwcyVgQvnSWgAXn91vs09G/C4FFnWZanI8yzHJEQ+fWi8j/934MX7kF/+L0/s+js4ODico3Ak5QxHfsnb4d33ESlriI9HKM6xGlDjwESdG9oMrp2IT/kFyQqUpSST+MD+ughbE2Yzetq5IgFWSzdjfSvPKBHQ8op29QDWyaLv9XB8guOJnqbZZ5aokBoRifos0bSKlpUppFbqUvO0xCe5mC+zvHKoZm3M/ZDZjeWiCHJlXs9AyJ22aw9HyJIa3VWkm0rde9WDpTbkvnqihVFi40umSscFeDnX1BjYgEftYvLAtc5WzCvGg5TfPBsuKefs4SZgpop8+l+fmg+Tg4ODw1kGR1LOBkx1STJqQ2uV1e81G3GwzuA31WWw1jbYILPyig4cBCzDApiTbCVmwNRMTLvA8koxMUO2QipiW+kQqsbAkQqnJNcHNuBPHW1Hhw5q9qI+sNlDSFafq5czA6HD/lQvMtbnPpeEvKi4NcipLwkzKydlHo3ULlggOYkynpeWlPqhtRsDZmk/ev7VmOffGFg5aLJrhKw6NCO72YrpcTSzM9mVDiR5zQOzMLF0Zal5ns4u0kxP4rMz6dIZ4NEJYKoL7/u3AVGG/MJfO/WfLQcHB4czGE44exYg3/ivSBY0EGuWQklHbWhtuDrBV/05PJgoVDMHKvBcLNmwwmLC4KlakaEYrM2VGUgXSyQlM1WWPdSWX8suQ986bBKfpZd2wTxQOgUzmYsDy8gcC1Ndik2HI2SiVWJ2aEnWvWnZiFEs5xSlJBjFFPj+FEsxy6LTUeO7zOPP6tuiowZ6oXU5tQskGkMR7eYgeVHDOC0hVSS7knk8p52LPKZqcFKfWR6dDVRI+bsLFngOOj/oUI3vu2ABeOEBI079UDxkQnjJ757qj5aDg4PDGQ2XSTlboOUFhQ7CK49oTBbKfMLXUkUOy2Bo2UTdZn3p7FEDuDhYbVimGg0PJD/9kJb7agGfg6UX9QRZLPH15QJJzniP4tCqlGe07bnZZ2DWoYXa9TNqq6/Q4+8e4/507YslnjtA8lOWbqLlAs9jSco+zQGFxfWhERgV6gbilqu2/2WZIzQUkW5bHGe7kU1wXi6SIA1CnlfqW7eUTkPWEQLquKvbaLZHW8XV+l+zKnNl4J37eMyHpqxbqSd+MF0SGa9zG1CJkW/99VP32XJwcHA4Q+EyKWcJ8ua7GSCXiwx63QjYM8bMxkCmCCceyz5jAwa2UWITihA2krbYohAWbbX1ctNkVETH4UHm1gghSn0rd2gnTKdg5SftKhoEFKgWxSZfzdc8aQleKHE2UF+6kg6LniT3VhvV5aKLScTzpBvx/f2QmYdOgRmkihjBbRCn2dS3+TvbFy17olkZdawtxzbfRzNQ6nWipZjFEmf+bGxz3TlIPmpD7vegtBNr2U0dbmOf5KgSm3ZoucB1L5R5vtWYVv39kG3lAI9XHdr1B2wEgWphBgG8fX8Ab98fPNMfOwcHB4fTCpdJOZuwu8lgOV+W1mHwqwbG6S5/Vx0yuHtFBkdtkR2EphXR0gMg2ZeCmaHpV3VUrcQM8Grg1pTyR6dgWRo1jSslVqbRbEk/ZGagKpoPP+f36v0SpVxXq2ji03bB5uusb3MfAPeZeDYocLJr4wO0Gyjxmd1RDUy7YPod9YrR9uxKbBqcsviudCMT4U6J38nj4zzOXAW47MhIl1Bsup1uZCWw6S6PqzOTlNi1C8z0aBv0RfPAb93F9+hcIW0v124jbWMuyfTpvhEY74kPArmHfOc7n/WPo4ODg8MzDUdSzibsr5tdfJAzQOuAQE9KAy0hJsUECCMLhkou1IisHNsUYy2jaGeJajyCbLVAFVit/+iLo6tqXXS+jgbZhbIRja603talS8bLgUHFtByj7qxaTtJpx3NlkrMc3H8E7qcfWifPMDBBbyWmSdqF89TK1IeWCUq0rTk18zv1M9GsUC+0+UfqJTNqRrdQZgbnQJ26mMXEMlRq4KbC5OqQNv2dgolq5yokJBM94KI5nvMgNBKjup3MsxlGes/VBXc44qibA979H3Ytyw4ODuccXLnnLEL+2l9gMFY7d9V6zJctoKnYMshteJ4O+4t9s59XHYq6w0YiKlWhZjmxYwS5TFDOrUyUe9ZppKWaxGd5R8smgGlSABuauFBi9w1g7cjdiKRLNTGNgXUFNQcmYFUSsCiOuurGq2SokBqZAHitNMA3BiQs5cSIlfrNdESDUk7YJry5xRKMl5uhW+LT9fbiObPrXxZ9TavIdU7KgMZexGv12ATw8CTw7Q0s9Whn0UIJuG8dj7lc5DZ7mtZqrbqihfLqLict4+nYAH1tGMB76DZ4u/7js/JZdHBwcHg24DIpZxv6oQX7HGZJX0gtoAJipjZkQOyL30c/BOZLDOj6e82QDAK+nnncrwczf9O5NH7OTITnk3z4UjbS2TediPssio5F9TATPXYE9UPzN2lI99FykcfbtGxmbpGIY7ct8XxmqtxfQbpyFsSfpRNx32XRx2gnTSVmZgSQSccABkUhNTBtirZYX3YEeGQCGIYmZm0XVhvFDYR4HarxfBdL5rTbHEgmSIS7fs4sy4G6ebKs63D2UkfIy8v2ArvGjAiGqZEugCTHy3l+++uWndG5SHFgQmh9n5j3efd/GFgsIf/hX3rmPocODg4OzwJcJuUsQ379G801VoNTmNlAvTBj4Ew96imaA8uKDAMGYg/2ZK4ZBdW2FGWSsrqiduTJPvUZwMdlto52qmgGR71Y1Lk285gFOFKlBiOR96/vWNnJz81x1s9ZBtEBhsWE2Ra1ot+8zN8drDHQq/ZjX4OdM0qCprpWOgGkAwniqivkQ2caJT739cgEz7kTca3F1DI5RWkjDjLutzkQz5Wc12KiZ27AvYhTm3X44X3rzEQuB/cdZsDVh4CrDgE/9X27X2rSNxDH3WJibcx1IYQ622hMslqqGfJyy0ipPinK4H3+U8/+B9TBwcHhFMJlUs5GaLtuJSYZaQwtyEYZkGTMPjQGDMyqnxiEwHJg+oxistrtdShdOZNdm5ic+DZRWYPpTNU0LB4Y+NsyC6cj+otiCiQxu3G0S6UvJEFbjj3wXxwYmQgy06Z0CsDepmlcZipWfmqNCF11v5WYAtcLFuxaaXZJbfIxspbYt0GGSgbaBRP7ageTtjOrRmehzGPFvk02vvqQGbPtazDTtLFNQjfRE5+ZMrMpiyUjYoslm6ys6xjNkAwDK4G1pR25Ih1ZasGvBnaBXNNKvCJG9r71xyvGefkVv3oqPn0ODg4OzxocSTkLkV93A7y7P87A1pTOjwwyeRgMgJox0OGE430GUc2QqDNtNzIzsk5k3TWq69DfT0qGYk7m2cSBdd2UJWBnnrUDq9HcZJf5uoWSTUZWO/1CSgJVSElAVPcx6pmiJnTzJROQzpbpcKu283FgxGVZ9CmzFStVKRkqjGQrmn2uqSCZkti3rp+NbRH6hjYQULNDY31mg1TzomUvgKStPjTTuDHpctrTpFbl0hkTHO9u2hRqbYNOxfemVbTpyYBlsnQatGa6hoGJkFVUq1mtoUx8rg9WhNTe4u8hH3v3M/GRdHBwcHhG4EjK2Yra0DIc+xrS6jq0Vt0gN4da7c6pDQEU+HpHTNfGekC7yFKEdtM0YNOQvdw0F73IdCU696dVtEzMaDt0L7V5PtWYgb0uJRQdajhbocajPmSwH0qWR1umtduoGwHdgmU9KomRqjAzj5eBlHsOV7mP3LOMjWaGupHNM6opuYJpcVSUm3n0XVFy1SmQjOk1WtfhPo82oRvvcU2PTJoWKMjZaaRt4GXJhBQTII2svVs9afT+1AYkJ0qIlNQMAtMI6TXW34+Kh7Ukp0Z1ALz8PcCdO5C/4k2n+APp4ODgcOrhSMpZivzKX4X3vQ+JL0pseo3a0MSnOUwYuyxljBXBq5QW5ioMYM2B+ZwsFRnkx3skIQOxse9ISSf0rRwRS2ZguivaCyUGufme6Jye6Q6Dt5ebwLYoLq0zVRkAKKLZ3AMWfGtbVvdZnZKchCN6msAmReu5qXuuZiV0vWpPX06stOLBuqFUexOJkHVLi9mZhhC1pRKvTT8gORzvS1u0zC5Si/3nzgIPrAOu2819ALxX+xo8hnbmAKtLOkXxjKkOrb27NrQsk2a5tOMn98x9V89HszmaZTka1+2Gd+9HgeoQ+SVvf4Y+oQ4ODg4/OBxJOZuReQxg82Wg6JtwVQO/DhgMRIyRj+gcdKCelkRU3KnZi/my6S0CcTvVDEcgmYvUY/DWJ/u6TEtOfBsQGOQ2jVnbjksJtS+VmK9tFFHsQHQ1qgPJwYCuWZ5IJi83BmaepoE+B3+v3UbqyqumcDkYtAMphWhJSgXFqay5mLD0tGPR3GBVy9KNeF0OV1nG+tZG7n9jm5mV586KqVxqM3zUBRcgEfRaJIw9yaBoGaqUAgOYTkZbqtUNN8jMC0evN2BrC2XEQDU2Ie+xsCjOub0I3t/dgfxVb3x6nz8HBweHZxg/UHfP+973Pnieh3e9613H3Oauu+7Cy172MkxOTqJcLuOSSy7BBz7wgVXb3H777bjuuuswPj6O8fFxXH/99fj617/+pH3t378fv/ALv4DJyUlUKhVcffXVuPfee3+QUzirkV/+L8WYLSFhKCU2TDAOLFip1TxgHTXqiTIMWFoY6zOo6hycxsAISRzw92rvrnqHhuy/JmZpc2UrB4WZCU+1s2VJSiczVe6rXSDx0TLG6HwhHb6XwVxYZyr8eW/DzifxmXnQ1ub6ULxDYGvTzhfN9GRSGloom+h2qcjsRRyQnCnBKSUsu6gwV1uKH51kR9GeJtfTDzm1+KDY3tcHqwkKYCTQw+punGIqrrjg75RkacZFBz72IjOVU13MimtwzHU/FUEBeB8O1bjugzV4n/0MvL//5NP7EDo4ODg8g3jamZR77rkHH/3oR3HllVced7tqtYq3v/3tuPLKK1GtVnHXXXfhrW99K6rVKt7ylrcAAO6880684Q1vwEtf+lKUSiXccssteM1rXoMHHngAmzdvBgAsLCzgZS97GV7xilfgf/7P/4l169bhsccew9jY2NM9hXMD2l6bgwEWkJT/gE/9WhbQIJ7DnrrjwCYqZ9L9Mlc2AajO8qnJMD0d0Dcjjqn1AX/XKZjIthtRJFobclsPkgHxKH6d6jELod05Kzbvmj3xTJMRZOY7ojb4xRSIJKOTezYnZ6wvQ/4S83vpFEwQqxmjIOfrUQoMJdOkHUdRBhT7JBl+DjwxZmWeeKQkU9XykxjEjfeN9LWKLH0B/P5gnfvesEySoYJmJWNakqoPbIq1XmvJdiCR13KPJK0sAumGlJcqMdekWaWnwuPj/DpftqnXR0J4/+PPgb1N5G/9xz/op9LBwcHhlMDL83yNovXx0W638fznPx8f/vCHcfPNN+Pqq6/GBz/4wRN+/0//9E+jWq3iU59a28chTVOMj4/jtttuwxvfyFT0u9/9bnz5y1/Gl770pZNd7gparRaazSaWlpbQaDSe9n7OJHjf+xDLFACfpKPMhvNpKUPbiAH5PmN3i5Z8+jK8T23Z62JoVkitE0en/JZl5s6CiF/rAzOTU1HpWJ9ZBSVHM9URAW7A0oZmW1RrknqWFQBsTQPxfClLdmepKK6xsc3KUYv7iR7PsxJTR+LlJCkleW2mYkZzqehdtO3Zk2MqedDMy6jp3EyF12yszyzKpmVrO9aW7Ia0Ku9Y5Dl+ayMJxESPmSqAOiBtn05HPGa83EpYhdSGKgI8rzCzTE6Y8TroJOtpyf40+0/+kCgpOlLlhOXHx/kevb861yiUclqngPxfv/oUf1IdHBwciJOJxU+r3PO2t70Nr3vd63D99def9Hu/9a1v4e6778bLX/7yY27T7XYRxzEmJiZWXvvv//2/49prr8XP/uzPYt26dbjmmmtw++23H/dYg8EArVZr1b9zDfnz3iZzZhIrfQDMiCQ+g6EG0HIi7cqelTkO17idTkMGuA/t5tEgtiwZj9mKkR51bk2FDKkL63KRx5qpik+KBN+lIluie6EZyIWZDfvTLAIgnSkyuM/PTZOhs4PUSyXM2Ao90WPAB3hOsZAx7RxSzYqODEh8/i5K+XNZ9CpLRe5HSdueJj1mVBfjgRmWTcvWTbS5xf2omFZ1JKWEawN4PJ1+3CqKN8qIEd/yiMlcHFgWqJgYwfRzEq6i3M9iYmZ4gwD4wgW04T8ahRT46hbLSI33gFfuouvti/bzXFMfeO4cidRkF95n/gu8//lnp/bD6uDg4HCSOGmS8pnPfAbf/OY38b73ve+k3rdlyxYUi0Vce+21eNvb3oY3v/nNx9z23e9+NzZv3ryKBD3++OP4yEc+gosuugif+9zn8Cu/8iv4tV/7Ndxxxx3H3M/73vc+NJvNlX9bt249qTWfNRgt56jJl5ZBdHJxlDEAVWP+3ItWz8LRLh7tgtH9ZR7bcLW9NfH5RH6kyu3mKmZINggZ0P2cGZZOBHxvmoRCS0ilhPvSzMCoH4gH05LEgc0cUu2Mnt8gJKGoxDZxORghaupp0gstO6BkSW3yi4l5rGhGxoMNKgwy6xTqRdaGDfD1xRKJSiot0/0QaJV4nhfPAfsbNs8nyiwjpLqbYmIZjvEe9yVOsQC4biUjpcTainVo4Vif909nL4UZCZNa+h+NH9rH3z9nnmv67npmgZ43Azz/IH+XA7jqMPAju6mnyT14f/tploEcHBwcTgNOqtyzd+9eXHvttfj85z+Pq666CgDwoz/6oydU7tm1axfa7Ta++tWv4t3vfjduu+02vOENb3jSdrfccgt+7/d+D3feeecqvUuhUMC1116Lu+++e+W1X/u1X8M999yDr3zlK2seczAYYDAwIWGr1cLWrVvPqXKPwvviJ0xrMi+Ga7kHbF+0rIkO2sthGQU/Z2DzpS24XWDgLybmk6ID9jYtMyDet85ajTWz0YtIgnIw4C2Umc2ZrTCIq9eHB/NZ6alnyUibcizZBC0DrQwSBAmWQjMJSnq05VanCBeFsFRirlUt/LXFeLbM4/vSMVNKuF4VqkaplWO0m6kg7dFa0rr8CLfZXyfRec1jPMZMlcLUYmLnoNksgNe7nJjgeLYiXUEQPUpmxnwVWbeW7rSkpLb/WjZTwrOvwSzMc2f5+4GMOkh94A9fZGU4gGu+aJ5fLzti3UthZmuY6pBkVlieyn/y55+Rz6+Dg8P5g5Mp95yUcPbee+/FkSNH8IIXvGDltTRN8cUvfhG33XYbBoMBgiBY8707d+4EAFxxxRU4fPgwbrrppieRlFtvvRXvfe978YUvfOFJgtyNGzfiec973qrXLr30UvzX//pfj7neYrGIYrF4Mqd49qIpKX81K9vQZsA+VOPvNZDlnk0m1nKKtrYCRjoGRWsD9iVIL5b43saABEYdTmOfx+tGwLq2tSu3CyQ2OgRR/Uq0A2VlaKFkUzR7kkO0I4GJgjXLoZ0/SoY06xEHLMlUYmtdVidZbV2e6PG1dgHoRzYJOkqt00iDdCiZFEiXlNrzz1SMoN2zmUMQqzFw7QGew2xFdDAyV0e9SmLRwAB8TbubVIMSpXYttFUcADqerUcN2pSg6H0FgC9v43XoRMDVh+33SkAfnLLs2RNjXMNlR0hA5srWgv3wJK/9S/fy9QsHJD3tAuAB3u1/g/yXf+LUfW4dHBwcjoOTIimvetWrcN9996167YYbbsAll1yC3/qt3zomQTkaeZ6vynAAwPvf/37cfPPN+NznPodrr732Se952ctehoceemjVaw8//DC2b99+MqdwziK/6lfgfe1jJB6diJmM0aAWZpYx0CGCiQ9EIhIdF1KRS5ePmoppu65qRWaqK9N2V7IvY30L/t+fJnnQLE1VOoOCHPBTK9cAfN1PTeSrmQ4tN+k8G0B8WXzTe2jpoz4wa371HtHsiJ9TAzMMmVGKA5au1CpfPVSGoQ0QVAdZLS2VYxKyzS3gwWnxNZEsyL4GvVS2LzJDURkhH5oJCTIrBwE2PFAx2eX5K4HxAJRiy+Zo5mkQcP/NY7QY9wPg8nlg6xJ/PlQj4djXIJm65iBwo4jOH5kEHhsHfuxRXq9vbSRhqQ2Br2wFvrIFePkTLOlFmWhySitr9z7x34B2Afk7XvsDfGIdHBwcnhonRVLq9Touv/zyVa9Vq1VMTk6uvH7jjTdi//79K1qRD33oQ9i2bRsuueQSAPRNufXWW/GOd7xjZR+33HILfvu3fxuf/vSnsWPHDhw6dAgAUKvVUKsxE/Drv/7reOlLX4r3vve9+Lmf+zl8/etfx0c/+lF89KMffZqnfg5CjcCCnEFtEJhIVC3tBwHQkyGCHqyTRT1QIK2vqs3Qjho1QOvpPBtp/10MrLW2VWTQHu9Ju688/fuJEQ/Aumq0NTgQnxcvsxJN5gF9z8hQp2DeIvWBrVuzGlEGZIlpaiLpjqmIYHhZzkHLOWM9riUcIQ0eSPBUFLtQ4us9ITH1AUlXUTplti+yrKJkSj1P1OJ/dERBMTVypVOVlRjpdSon5oar4mY1olNRs7ZBj+KJMeC1j9rPiyXgU1cBu8aAl+8G/t0XeU8UF83xH8Djvnif/e4le/kP4PEP10xs2xGtS5uiXu8v/xLYuoT8h46tL3NwcHD4QXDKHWcPHjyIPXv2rPycZRluvPFG7Nq1C2EY4sILL8Tv/d7v4a1vfevKNh/+8IcxHA7x+te/ftW+fud3fgc33XQTAOCFL3wh/vqv/xo33ngjfvd3fxc7d+7EBz/4Qfyzf/bPTvUpnL3Q2TbqVKplDF/EpMXEfEgApvdVV3KgYE616zoMdKqX0AF3QW72+WFmQdzPGdy3L7KMoFkc7YYBzHdF3wsADSEHOYBQOk8SD4C/usShE4lrQ+vK0dbptvwc+5YJ0YxM5gFjUgabl8nFTfFT8XIbRFgb8nzXdSh63dPktpoN2tC2FmU/ZzYpyoBXP84sRGPAbJISoRosW5T4QAITCfs5MyutornGxoENaSym1h6sk42j1Kz/l4tWLrtrG7Milx+h620OXqexPvDWbwB3b2UXz2hr9/EwU+XoAhVF7x7j9cnFc6YfAF5gBLRKkbD31Y8BD08if+M/eTqfWgcHB4dj4mn5pJytOBd9Uo6Gd9efMFDpROLFkoknCynT9rWhlSa0tVj1GNpJotOQdTaMWs73xLZeyUaYcX/dyMiCZgxEbAkvt+MtlPnzaBDX4wBGVDwwMOew7IiKTyuxlX088GfdRw6uJfNoKleXDqa9TWtXrsQMxHMVlqZGyzOa8VGSoGsGGLC142iyR0Kzt0HiphkfD1xjP6DuBeAa9PoBXKd2ZGnZSicwa0YryKwMpmtTN9/cA76znttcfdj2n3q8hzoraBSqcVmLsGhpbW+D758vG1laKFtr+boOP0df3cI1TfboB7O7ueJXk//T1z95/w4ODg4jeMaEsw5nARLf9ANqaBZJVmPUEn+hZC6xufiCRGIqpn4aOiiwH3IezYIM/tvYtk6gA3VmBXSwnQa3ODBdhe5PMweT4mmyVLJJwZ6UdFIPKEjA1QnO5dhacoPcNDOqPwGsdXcYmFhVMxKqXclHSIeasmUe169eJDqdeeMyhxj2Ip7rTIUlj0FIfcrlRyhGDcU8Tzt3tJNKS21KprR8o4MNIzHGGx3ICJhwWbMuOmsozMxm///sALYvkXDVB5xi3REymXskZGpup4RypspjLpZ43nruJemyWpLMznrJpPRDI3/FhNcDIKktpkZwD9aYnZqpUq/ysf8ORBnyN/3UM/kpd3BwOE/gSMo5hvxHfxHed/6IAWRStCFKCNQvJfMoWNU2Uy2rqIGZBh21jC9KBqYr9vG7xtimPF82K/5yzEDXGFiJJ/WA0GNrbRxYMJ/u0EdECcww4HEXS1xTlAKZkKSpLn9fToxAabeQEgsv5zE0YzQp+gnVhXQj8yzRLEuQA0nO7MDhqpWUooznNlehi6uWpjQrtKFNgnK4xp/VZXexZMFb24L1GmgLs661EwFjqWUwJrv8Xr1ttFylmZVmn9f94Umu/+pD5veyWDatjp5vOeF7F0pGDJt90wQtjIxLGITmQ6PdT4ulFdKB+bIRzD1NZmlq0h2mBEivjRIsD/D+7K+AQor85372mfy4Ozg4nONwJOVchLqXAtQNdCMGwqkug++yCCCVHKiYNJPsxXKRAapV5FO1ZgRWbOYTawNWR9tUNCFa7tAJy7FvZRsdiPfIpLXRqmhVLelXhLCyz07EzAogItuM3TWBb0E+EzKkNvHLRcnmSMAdHVConi1L0uWzv2EzhNSLpCpdNGHGLplRrciV0t4bj4hftbzVEwJUHvFzAUz4quSoKNtq9476umiJSZ1ngdUeKBfPsVtHO5oWSzxXNcZTkXRL2u7VcVjbtoOcJLITWbZt1L9GjeO2tKzj6OI5Gr6N9XnfHp7k94CRztmKdZFVY3PNLaTw/t+/BDIP+c+7MpCDg8PJw5GUcxGq1VgsmclZDnsq1oCrT94N6Vope3yPZje+P2UDBguJdagEuflvaEusDvmb7HHfGvBziHNrsFrnoToXbySTooE7BwlH5lkGQnUaUUqf5L64zOZCaDa2Sb5Sz+buqHmd6mwg53ygDmxetpLGQonnUUyt3FMf8Fp0Q6AmgXe6Y2UZvcZLJfteSygZKARWAzjVueh040y0M6lkPVTwq6WpSmzdTLUh8N8uYQbnxfvkPIs2/FEHL6oepxrbVGjtxtLBjRWx/q8PeU7VoZEcJU8A8KNPrP250q6mfQ3g0hkjZ/pZ298wItoPeQ5FEhfvKx8HlorIf+wXTuUn3cHB4RyH/9SbOJxtyH/kBpvUW5aMiApVM49P0v2Q2ZXq0FqXD9eYbakNGchHBweGuc3+6QemkwD4tRoziOk04MIIqehJK6226qpUW9ucNUsz6uui5KaUsPwSpSboVTFt5pm53HzZpjBrp09P9CyaJVA9yGRP2qBzoCH6jFLCTMuor8wTY8w86cyg/XUxP6swWHsw8znNYPRDO8+idFepU66WW3SgIWDXQjMdmsGojGRjYp+llsUSS1OaHemKOVttaB1Yqbe6e6mY8vgFWUsccLsDdcuctcWsbalo26yF6Q7wT+8HfvpBy+hoaUm7yZp93i+16S/J5+/BKcDP4e36jz/w59vBweH8gcuknKvIPekyCU1EqgFTsw2JpOU1c7K5xZT+WJ9ajcaA26vAcyCzZVQjorOBVORZEUKg5SM1LtOSRatoAwWVcJTEIwWBaTCizKb7qm2/ClBVlBtmNvF3GDAgrswvys1DpR+SVNQHJCeKQcjjt4smHtZumo4QnRxA5gO7xnks9V9ZLti6NSulxMzzgGEE1Abcx3TXZgslgRHCSmzzewAjhLkHzFZ5zl+4AHjxfmY2DtZ5/za0SVimuyQa62WyspZ8NGvTLpCEtoo2yDBKbT7T+jbPX0colBNqVUoJ8O1x4NJZvn8t1IZ0pG0XbJbTY+P8XT9kuei5c+z8OVwFvrmR9+Ble4GdC/BwE83gav/2VH3aHRwczlE4knKOIn/xm+E9dBuDsQ6n03LCspCV0fbW3LOOk6WiOcmqr4p24SS+zcpJpaMkEHGnakZC6SKKxQBOA/+c+Kfo7BklMXHBSkMr5mX56mF76heS+kCYmFlbDhIFDfoKNbTrhzRnU3Gol7NEoxkAwAK76mG0LKWW+es6LOE0BmaMpxoevXaa+QhyoO+TVKgpm5ZFxkRL0hPtTpBZV1BBvFC83FxjhwGzOTl4L1pFkpSCZKyach27kQ2S1Fbo5YKdX+wLqSwwG3KoxqzME2Nc91SXGaKDNTrnXnGEnwHIcY82kJvu8PUvbud+Xv89XqePXGvdUBfP8Z7vWLQZR0FmU6ArMcnK/euQX/4vT82H3sHB4ZyDIynnMrQ1uB8CWWYBTQO0zvnJJZAeqDOAXTjP969kFkTroYSlJPN+Ul9s3BOZhxNyyq7ODepGQK9i7bNT8mRflcCo7cNqmjaUcoiPEcFvj4RH3VhVlKl6G23TfWSCZKWYmIeL6jq0RLRcoBZl1MxOJyZ7sGzEQDxOVPw71ucaprs220e9XrSrRUtV6ryrmZyqiFFV/FqJeRzNPoUjRKUbMXMD8HeXH+F6H5hmNmfLEnUfqWcmdNq+rIRRu42muyxfre+IQR5IsuKAmY7DNZrBvWg/11aJOQFZiWHim+9KV8qDU13LrnxjE79edci6rH71G8B/eR7XtGuM+9wkrcsPTnGsQJAB/7CTr0/0gMuO0Azu8XHk//fPnNKPv4ODw9kPR1LOYeQv/GV4d3/cyMDKJOSMgVdbUGfLDGTLRTM788Cgl0Y2tTjK6BWic3R0ivGyDOwb65ueoTZkANYBeppVGO3mUcGmJ5mXMuznRAhQT7ZbKlr5Rv1edCLxqB7mQJ1P8WqephmUAJKtEMHucoEB/HDVgreuORRSUxsaAZirmBmekpfUJ/mLfcvSTHZ53IkeyyfFkY4lbYWOMvNCUbEqRs5dB0FGKa/3D+9hZmaubMRELfdVyKylnkw0KeWYxDDKgAi8/nsbJE2DgF9/eA+zRKNGby/eZ4MZNROmLrlezlLTtiWKjffK96PYvEyn29TjhOVRopL4wP3reF5HqiRROhTyqsPwejcjL/+7U/3fwMHB4SyGIynnOjYtWwtuVYKrzuNRt9exPoNRfShlFckU6Jwa1VSkPp+stXyhglEtJRVTG+CnBmzqDtsTsqK2+oCVVVTPobb3HrgWDzz2QpnlJC/n/ospv9csSScyb5ItLQbUXeP8WpMn/4cn2RmzUBKztjbfs1CW2Ty5aXU006LaloemSK7GexTaatuzZmdUlxJm1GYUMu43yEyvUhTxcaDXCiQiR8RkrTaUUhmATmBaH/UhWd8WHxd5v3rMZB7HHtRlMvUgENt8IXWpR7IyX7ZBhzlIWjYtA+2I56NZoqUiyepEj4Qr83h9WkV+TpR4/vgjXLt2Jyn5fMlebtsTctgpWFaoG/H1n3uAv/v6ZuC76ynC/fn7gXLCEhCAXL46ODic33C2+Oc4vNlb7AlbSw6LJev2UHM3zXJoGUeDpOoyNOCp+LUmJMKTDIF6lkxI50xDWpNVezFqx66TlVW3osG2PjBLfx0qGI9kG9oF607SEou23mYen+prQxqRqUGa6mfmKiQn2u2jYtIjVe6jJ91Ol84CX9sCzJdINu5fx/ctFzg1+MrDwGMTvCZqFKeZFV2jzhkaEwO12AcqOkQRRtwKKTUgj41TiKoZB8A6dcSMLS9ZhsGL/x/5Rv7r9kWkPAzNXt8Dr8vhmmXSBoH9brLHc67GvJ6AZcp0Xo+Sz9RjJgcgWWwOxLQvNxO8Uaxlwd8uUAOzsf1kQe73p4BLZtf8/Dqy4uBw7uFkYrFrQT7HkU/9GzE4E0KiWQwN0t3IsgCNAUsg09KG3BhYtkPnzpRHPEd0im8cCOFJuT8V3GqbbSDZmkjIjYpjuxEDWrNvAVy1MqqTqQ/5dH+4ymDaCxno9FyWiiQxkYh7v7OB53uoJuUsWfdkF9i5wOB/sMY1L5S5/v11Zno6QoLG+ixf7W7yug0kI9AukOy0Jajr5OKqDC6MA+uKKiZca+7xf5kKWlMhe+M9nuuRqnmLjELbetd4hMij37YunTCzcQba8q3ksTGgyFXbwtULppCKSV5qBCWVPwVHqtxnKsRtT5Pnrfb46q2zv87MixrYjUL1OaOoDZlNWatj6JJZI8qKJZaTvG/+8ZO3d3BwOG/gSMr5gNkKU/hHqgwE7QKDbkHKJj1puZ2XYXIr2pXcfp/4ZqMfZUYitBNHSUhFpvmmns0N8qXVNYcMoksY3HU2jLYiLxWBVsmMyFKPOgrNpEz2TE9Tjq1d2c85W0ZLLEpcHp7k19gcULF1CbhwgSShGwl5E13NoRrw0KR5r2jHz1gfuOIwNRYLJQZ01doA1nJdSEkE/Fw6dUbugbryVmLLMlVi4B89Cly3Z3V7tMLPV7Q83oO3rf7dgTrvIcDrqYZ1oz4vANe+XoiTang0s9ITgpJ7PK9OxG0enhQyJmJoHZEQ5FbqAqzMs1y0dWl56EB97c/i0YRGoQLtYcDP61Jx5Vy8u/4E3p1/uvb7HBwczmk4Tcp5gPz5b4V330cYiHUWzlKJQWcoWpRWkcF5ZbCddNvoED8vZ+CY6JnGBDADstwD/MwG+WmnSTmxFt/Rqb9FFdJKp8v6DgmJilB1XozO8tEhf5nHr2oCt7HNNR2pkjis61BgeqBOIvKd9SQL1xzkejsFKw9pC/BMlSTKA/e5fZHrnOgBLzgIvOAA33v/OjGIS0wI2xFDtYKcu1raq0V9JB1VSuQ6BWBeAr2Slfrg+DewnAA7F1d+9HATcPEa22nWK8iASIhSUchgKq/rmACdAD0xIEFZ1+E56VyeioiRm2KUV5KsS+pbmUgzbaPGc37O0tDGkdJV7llpSqYlr/ysCDMgyaxUtK5DrYqfU2fUKsK796NA6iF/0S8f/3o5ODicM3Ak5XyBttI2+yQbW5dMOKu6Av061TUvk8aApRYdNKjdOzmos9BgpQLR1LfhfwMpd2jpYhgAfc/m4+jTeScyAzklG9rGG2YkJdpxlMNKEmN9lg8O1/iaZl48yDToohnVHaybKd2UlByOVNmhMgisXXh/wwiKDl38ylbToASZtEr7JCaqO5noWTlKSzeNwWqzt06BxEln34xib9MmV29uWVsywHtUMlHpcaEao3Skkyr1bAq2Di8MpQNovsx1axYshfmv6HTo2tDalDNPMmtyH5eL3E8v4rlBrv0wBA40ZLq2dHFNCkHWac6jUDNAgMc7VOM64hH33jJ1Pd73PgTEAfKrfuWpr4eDg8NZDUdSzhPkF70D3v0f5h/9bmRuoRM9IM1snk43Es8QKReM9xg0vjfNYDQIrUU28YBqYm60fm6iVg3orSKDkwotR03TGgOgnXMtMxXaqRdS8TfBal8WwAJZKTEyBVBjsrUlJQsxMZvuUvzaLVCQOgj4dH+oxvc8OkHB5n3rSSKCHHjTt/naRI+ZplaRWY4ssKGBOvE3kk6mmug3lgvmtxKklkkJpTSm2QM1klMC8cQYicKBOgnglYeBL21j5uQYYtLjIsi4XvV/0WvWC4GqkMVWkfdVO66UyMXyeWhLdqgpmZ/q0MYqhNnqyc2+3L8vbadnSnPALM3DkyzbPDbB4092gecf5D1bPOoaADbSIBe9zlRXJjqDmb4wtc+edJd5s7dQc+Xg4HDOwpGU8wlKEFTAqu6fajymjrKPjzOYb1tioMo8BpnFEgPWfJlBOA6AJBWfkoQ/6wTmzAN8zwzO1Lo+l3JNDjEzS5nO1zkyW1p80l4ukvC0ijYnaEzm7FRi01UslIGrD8kU5sC0H/dupFC2GwFN3zQa+hQf5LRrv289icjzZswETg3ZcohhXc5z9wB0pCspyoAJaYsuZrwGbSFIKuJVK/9mn+8diDZmpsLzBLidtocv6TlkNEPzc3q+LBefuiQ0CjVX02sErPapKSU2KqAbif5nxAhOO6bKidxnLQFKNky7vPycWayhCKf/13NIbiZ6PM8jVQpsZ6okiLUh990c2OBIRSVeXTYCVmeTABI9FTdLqdDr3wx0CsgnHVlxcDgX4UjKeYT86l+Bd/hWE6suF8zIrBPZRODEZ2fLkSrdZ1UYWhP31MWSDd1TjxMtJ0SpTdZdLjIYq7fKUsm6TzRzsK4DlI8KwNpppK3PObidThEeHaY33uNrsxVbY+axlVhn3WgmZrZi2ZedC9znr30NePVjfG1JRLEd8XmJfeuCCSULUR3pTtIMTDm2+Uja/VSREogvBAcgwWoMWHr6PztI/HYs8jrp+IBtSxTo3rPJBMOpx4zEtiUjIE8HOpVYy1nFxIY4lhMztutFMhU5Me2QtqKrpuT7U7wWu8dYYmsVrdT3jx+2ktbXN/P9+xvsNKoPmNU5moCcCPx8bbJWSuClvwsAyIN///Svj4ODwxkHR1LON8xUGEC0YwewwL9YsrZgNWsLcgb/QQAgMHGqmnQBtq9yYm3B431qKw5V7diDgs25aQxsxoxmGxS9kIE8ERHt5Ufsd/3QhKDaUfPwpJGaTmRlhvkSsx3r28A1h1YfAwDe9dXVPz8yIRkU0V1oeSr1RXfjmTA2ysynRb1iigkD94rza2paDoDXZ6ZiLcF1Mctr58D2JcsEtUXg3IlYlooyksYDdeC63U//3ldHpiXPl7mOtowKiFKKl6PUBL1zFZ5TbQjk4qGj966Y2Cyh2jTw6sef3HYM0Hb/WNBy1LF+p2XBHGbTn/q872N9Xp9iau7FlRjeng8AtSHyid96+tfJwcHhjIEjKecbtLNDJxxrhkDn4mgmQFuOD1eZnh8G1toaSGBRo7Ugs7bhWDp1DtYYVHXwX+KbiVklBrKimJzlfBLf02QQne5a901HMiHDgERkrM9untG1LJVYqtk9RgJwpMrywgPT3GbLMvf1+Dg1E2sFxb1NrteD+Y00+5YByTx+Xxnymg1Gskda3vHBIYRaMvLAa6OBWLMw963jNuM9EfRKWW33GLuSMo8EbyiEMMiZ9blgwdau3UNHD/57KuhavJxamO9Ns3NJsxOapdnX4DUMpWNJPw/aQp16zMRMiFD2aGv8E8WxCMrK7+T3Hlb7yBRSm+7s57xX2gYtPjDezPuRT//rp7cuBweHMwaOpJxnyK/+FXj33G5ak6FvJELt8EfN1NRLpTGwdmTVKOSwsk/qA0NQT6E+JWpS1i7waVyn9eaemYi1iqKRKJOIbFti5qMXmU/H3iYzCzpLpiJE4cEpvlZKqKFZKjID85UtfO2nH+TxBgGzJFtaLDkA1FIsSBu2iojLYjvfi0wIrBqX1GPHipZ6tHVaZxoVU16XURdcJSd63ZZKJFEAiVyY2XoWS/w3VwFmxdF1umsThz3Z5q5tJAelhNmQCxZ4Ddav0TEzX+Yxl4qShdlD0uHntK/fusTr/+AUz/nqQzxGL+Ix9jZsv0EOQDqbgly6mLKTJ0pHo10wZ1vNnB2tTQFsirKuZbxHYquEVX+n5UgA3qP/CdjSWuXW6+DgcHbBkZTzEdo5oR0gA986LdSELPWADdIymiUsTQxFYDnZAxY8IPRsPks5ZgZA3WmDxHxYmgPz2FgoAr2YpaAnxhio5yp8qu9FzFb4EgS3L7Jrpyfi0i7Mp6MtZl/LRWYj9jW4n0EA/N/3UUszCM087OJ5IwRf28IA/Jx505voWpWY9aTtNYOUHnwgF4I2IdoSJTKaodB/hUR0HVISqspMpDt3MChPd3ntD9aE/IjIdLLLILuvwdc2L5OgzFVIqAoiLFajtNRnBkbbtJsDBu844Ne9TZrTJT6zTdWjdCAq3j16kOBET9bZMcIwDIDFssxUEuKW5RzceKJYLK2e+qzn0Pd4jqpreqxu+iZAXI190/yocLpdEEfiEslXu8Brur5j5agcbh6Qg8NZDEdSzkPkO98Jb+8HLFjEvjnRaheKdnqUYwatRck6JN6IeFVM23RasOpYFKkE/GLC7Q7XrPtnurPazE2zCqqP2Llg5QQtrcxWWLZRPctMlcF9qcjAvmORgdfPqUlZ1yHJUWOxlkzcfXjSMgraaq2dTdrlokRtENo55Z5dr24ElGJz5c1hZEdFp1qm0FLFBQssn012ea27kZnLqZZFW4KXxPm1E/Ec13XYyXT5Yb5vqWQErDrk/dH2aTWu032O9SkkPlZ5JUqNEGjWK8iAZISBpKIlqg5ltlNq2Qv1XhkE5kI72jq+WDJdk/rFNAYkkgdqJB59ISJz0vmVSyeSaoN02vMw5L3eviSC3LqYzslModqQr011LTsmcGTFweHsgyMp5yvGxaxMW4lH3V2rMhxvscRAtKdpwbaQMXBqq6qKX8sirKwPrb25lEjmQ4JxJC2kmpWJMinj1CwLsG1JpjFn1rXTLpjT7aZlBu35sjm5jveB679JUqDbb2yTnCixAEwQ+s+/wwzEYolrV81NL+Q/fYofFRYDDJr1oYl0YzGl0wzKihYlodYmx2prfCUAvYhBvz60QN4qmhA0kH0tSoZAvUkmehwb0BNxcw7JWkmX1dal1d4qz5HOrB2LJ/65iOU6HK6t1pqUEwv4frraI2UYmIdJJ+I+xvpC9nJmu7QM1pdrfKjK0tGFC8yoaRZF5ySN9W2AY00Exr3QRiosicC5JqRpXwNI2jb1eaLHc1gDHm5yRMXB4SyBIynnKfLav4WXvYdPoPUBMxTaelqR6cQTPT69R5nY24twchiIkHTEr2S5AIxJQNm2xCfiTgT4yYi5Ww5MdayTKPWYnledxrUHrHW1XWBJZkm0GjkY1OfLTOeP91n2KKR8/UDdsiG9kPtMJMsT+1baUGxc5nnPVazFdhBaa7ba+KsWQk3RiqmRhqIE3lJsRm46SVrbvLXjpRdSF6N+NBcvkAx2I5LAfsgsQSjvuWjOtBZKECoxg3PqkZA0BnxvkJGUKZkaxfEIylrdNeoaq+MTjp5wrNDzikSX0i6wJKWapbkytxnvm+NuLzSzwHIC7Guu7o7SGU65x/s8CFgaWyra/VBPGfVKGco929Dm+5ZKQC0G+rEZ8PVESzTSfeQN/x8gypB7v3Ps6+Pg4HDa4UjK+YxZsZuvDVkW0Zk5Kowd1a34Of/4557N3ymJh4YG88FIeWCyC2RVC0DqeqqBtxsx2Kjw9pJZK+88MUbSoR0ue5oslbSKDG4H6pZpufYAA6SuY7LL7/c0eV46pE8t/9sFKVfkNiBRg7vOvelEq6c4h5l5ijQGJpCtxDbgMMhtmCJgc3RGUYkZRDVTlcPcddUkrRzznJQs9EKWXbR9uBORBG5oc/9PjJFINvu8n7kH/M/n8Nq+/AlrJ18Lx+uuORkfE23RVr2QfnbU8C3zzGa/GltXjs6AioV8qOdMKTGx8SAwUzwlJ9WhZXUO1cxkUO37tTyk5zcIgWBEW6MOux7g+b8LJD7yohPXOjiciXAk5XzGE2P8Y79xmWLY8b49AS+WbLKuxtra0Ay/dLjcQIKRbj+asVAvi3Ck+0Un3QIMFtUh8IpdQF+IQS8E7tnMoFVK+PN4n0/W+xsW4Gsp8NK9fOLvRsym6MTesT7fs2nZSkJqrKadRZoZScR3Q/1aUiFcOcyrA+B1Kkn3Twa+VwcNAqYl0W31/BTlhNkO1WQ8PMlsiZ9TRNwYcIDhYokEK/V4bj6MyAHmC6L7n+4C3ZDv1/LMZTNc/3wZ+NpmEtDLj0iGqUZB8rEwCCnCneit3WVzNIoJEEnmQwc2lhNmVVY+AwUSkImeOd3qgMpUyKAa9cWBkcIiTK/kSylRf14siR5KHG6VaOrgQvXj0TUo1OlWZ0oNWHb08vcAOZD7LrPi4HAmwZGU8xj5i34Z3lc/xidwdRJVLYD6kKQeA6XaxPs5ty8lzAqM90w30I2Ah0S8Od2RICAfMS+n+LMtgWNWBJLDgJkAzYT0Qr5/1xiJQzEF6j36ixyusU02kIzGojjEqnX7VNcyI5q50Rk1qQfEJSvZpJ454cY+A2W7wNdHp/YC5iejZnCl1NqVVY+iXUFrGZqtXHAw0GrG5PtT3M/2RZawZiu085+psvw22eUMH+1KAmwYo65x+6IFboDmb/sbPMZYn9dG/V70WMfCchH48laWyra2aBx3vPNR9EP7F2bArHQB+bmQ05Qlm15kn6GpDucq9dSczzePGi2dacmskBr50Wydl0u3WJmfl544A2tpbhis7U6rLee5BwSio0mlZOUBXsnpVRwcziQ4knK+w4Ok3EV/UJbyjwdzn1XjsaFoBA5X+Ue+LNoVtaLPPD5BFxOgFlpra+ozEGRSdiglzHQcqjGwaQlmuiOCWnE9nS9z+70NBlA/By47wiCq3iGJb/qNw9LSO963UoGSh1bR5gsB1kmjPi7qlTJa/hk1oKsNSdaaEvi0/KOlHp1tsxa6EUlH6vOaNQZsD97c4mwegEF3umMkJpYMj2ahFKOZKl2nEom7t1JAqj4m9SFwxRFrWT4W9jSZVdvTtDLJY+Ncx5WHSS6PB9UpVWNevzggKVGxtRr45R7QL/E+6XXQrJoSvjiw7AzAz4eWzVLVoQRWdtRSkHaY6ef5WKUs7ThbmS+VW/lSrqOHm4DlIvL6jcc/bwcHh2ccjqSc58hf/Gaau5Ul89CX7EO7YBqS8T4D3mKJQtfE59fxPrURjQGfaFPQTyTMWFYoJTZ4z5MgoB0b6mbaElFk5pkNO8DSSCFlMPdytqtePLd6UKEvwXleSlRBBtQS7rdTsJlDqbfypLzKoG62wnWrLkKt7QtSUqlKy612BanPiBq4hdnqUsxa+M4GE8xeedgyUZ2Ia9nbJPF4aJIB+rIjPJ++WL/XB6uzOqMYzXLMituuDuqbFDHpgfqTjd5UIzRfBr69gfdV5yqp/wnADqhhAPz4I08+9r2b6FYL0ECvkDLzoyikwDc2sZQ41RUfk5jnNVfm2rpS8umHRhYAGz8Q5LzOo5miUbO8xOdntSNdU1FmLePHygAFOadUF6XtWj8feg/ny7wnj4/DW/xvgJcj/8WfWntfDg4OzzgcSXHgH+t2gd/nHoNOlJrB2Z4mg00/ZKZkTEhLq8gSiJqWNfr8o6+6ExVQrmubTkP9KxakhTiSklJtyPeqt0WryONMdYEHp4HnzjHToFObNWuhnim5R62ItjYrIQJIQFIfGObWytqNrLwDmBuufp+L2FO1NzpcsRzbU/dTua3OCXHQNT48yezJ1iUG7c3LDIr3bmTpR4+lnCTzWPqpDU0c3FijhAGQMO5Y5PHKCQnVoxOrJy53IxuJsOxzPbMV66qJfd73VpHXsCTOvl/bQvJ0UEzWDldZntrX4L1OPZLKVevpcXDjoxM8jprEXX6E122uwq/LRdOgJD5QjNnhBBhhTT0jHUpQSollmDa0SfoGAT8DE6J52dd4cleXalGCo46h+M4GaoO8nDqtdgHe7X+D/Jd/4vj32sHB4RmBl+f5cR4Dzy20Wi00m00sLS2h0Wic7uWcUfDu/rjNg9EUugcGiKaUXjSA6jTdTsGe3DXNP9m1TpelEfHkWrbty0UGydkKBZBRxiAbSKmmJfNYLj/CIPjd9SZone7acVVQqVb9YSblq9gIU6dAIzoPZlW/VCLpyjyWINa3WfYIMnYyaZvvVNdExDrbaJQorYXFEvD5C3ntLjvC49+ziaLWaw5yfQ9N8ngAz13Pty6TqVPPvE4iKZmoMd1aOFDnNSolluH68jYG6/HeSkbA+9tPk3zMl0m6VN+SCdnQSdGHqmwT1hJgNwK+uJ1fN7Qp1J3oUTfzQ/uOnfHRtamnyo5FkhTtaBpIF5nqTJQsrlVKU1O31DMjvUS6rYopdUyblnk/58rWebRz4annHfVC4C8vI7nVMRFKYsMMmOgh/+l/euz3Ozg4nBBOJha7TIoDMap9SOSJWtuEteNH9SJlCf5Tok9Z3x6Z8OsDXmatoEpseuEq908ADMZLRQaOpZLNZOlKeWggmZu7tjHwVGM+7cfSmjwQPUwOBnAt6QBm+OXB9CnqsxGLvib2zRemJe8fG3Eu1UxOObHOFX2iD56C239zI/fz/IM8dy1TbZYn+0M1ZoiWCwz2lx8B/s8OXl8tZQwDkpgLFvieHDZIby1RaDUmORrKub50L/DcWbrUfm+dbdeLeJ2vOMx1tgumBxnrm2PtNzfyfm5f4jlcNA+8eD/w51eQ+LQLwI8+YeWz42GTkKtd40Z4Ruft6NDGMLbMVw4T2gKig0psbMGoq20s91NN4Q7UgW9tYIZJLfUvmue26oo7ilaRBKxdsLZynROlDrkXz8H73J8BywXkr/+545+vg4PDKYEjKQ4ApNPnvo8AYQpk0Yg7amjZh9EArX/kmwMpS1TMdXYYkMio7qFdYFArSRtvbcgncYDb1KWcMdq5kcg+dH8TPctgVGNzhNVWVm05ne4wYLUkS6MiSRUBq1i2IE/dOrV4vmzZGC+3klaUmcvpiQ7Tu2czv151iOe7XCB5eO6ciVB7op2Y7lLcur5Nr5jHxld7zvRDE77GIpSd7DEbsVxkOWPlXvSBaw6xXNEuALub1MEAwKWz8NLf5fevKdjQyEy6nPY1zNsEYh3/fMB7/k2rz228B/z7/8P9PzrB+6geKOpLsxZUV6JeODp3KRIzvjHxeanHQFw0YbLe2yi1jh81zAPMKbkinVcPTgPfWU+Rs55TkNu0buDJBAVg+XGxZEZ8Zfl8DET8vW2JuigZUeA9/h+BdR3ktX+79vk6ODicEjiS4mBIfGsj1Y4Y7WyJg9XOq6pDmZTpxJWYT/wPT1pWZqFEQrGvwaxGc2CmX82+PRVvXOYxtFtlucgMjQbnCsW3+Q//0lOegrfvD/iNPllrxqQrk32rMfULC2Wbsjzet+GJ5SEzHlNdrkknOT9VpgBgNuhAjYHzggUSqK5oI/Q67mtQ4zMp+owdi+bncfEsv//uepsifajGID3R49fEZ6CMMtOqaNBtFXk+Vx4mmWgelW3RIK2t1MBqG/1W8dial6Oh12Z/w0p5reKTNSCK8Khjj/d5j2YqRoIzz0qIWmrU2UqaXUk9y55oR1k1NtHtVYeA8aaRwSfGeE6j5cbU52dr65K9Nlvh/YoyEi/N4g1CuyblBHjlLiO7uQcv+V3k4b8/sWvm4OBw0nCaFIdV8L7xURMlhqKTGK3766yabghUpKQCMCBuWwIenGLwKcckAmHGgDBTYeAf77NLpxKvXbIAxN6cvhr5xn/19M7jex/iOhLfnsq13VnJmH6vAuHGgITp4jnL+pwo7lvPSc6FlC3Rz50DHh0H9oxRxKoi3Pkyr+2lM6tLFVFK8pL43M+2JRKdL22jkLTZtzZw7Tya7jAYlxKKWh+apKD1qkPHdpnV63sipOtEsGvc3HCPVHlu0x0b3rhW1mL0nPc1SOTK4l6s3jhqaa8Ge15uJcVqbKU3bV0eze4djc9ewvf80D77zP31pbxPqq9aLpKUtIokKY+PW3v0jkXg1Y8fe//azny4hnz7u57ulXRwOG/gNCkOTx+NATMC/dBadtWfQu3v1RAthz1VBhnbklVvEGYMNEPxzOgUGCh0Ku/OhTUPn+MmHndM/j1N5M97G4lKVUo2CyXr6NEheuq/UR+w5DDeo3B01KH0qTBT5dP6YolP5h54vEM1I2tjfdP27Fi0UlcvBA5JJ9VCmfvZ0CbRuGCB1/K6PSau1fJH6gvZEd8XLblsXyK5UYKi/i/jfQuwT0VQ9jWYUVjfPrGsys4FrkE9VroRA31dzNe0bHg0dOqyZtYGgV272AfykTlS6oeTimA6GBESj2ZWjoWrDgP/9VJmo7Rt+pW7gK9s4X266jBw7X6+3otYxrp4jse/eG5t0ffoddTrvb4N7z//F+T/9PVPfd0cHBxOCI6kOKzGE2MMkh1JfXs5n+TVuGwQ2DwfnTgbBzI/ZbQ9V7pFluT1XsR9XjbDADtboR2+IvdO+bC3/Hlvg3f/h4Gl0DQvqmnQ0scgZJC88jDXqzNzngr9kKWOx8d5Pda3zV9lX4MERDUa6yTjMUrMZissjQG8VjMVE4lqINXjqIi0XeBx9owxaC+VgFlf2prbq8sXgIiLRbSrXVteznu1FhHrh9SzbGyf3OyeKKVe47EJM25LhbB0I9MNtQtc62iWR+chqS9P7JvOJJXP2EDM2wKfE5i1eywV4rxcPHZWDuB1f+N3mOm5cwc7ptZ1mP2LxZl2ucjXygnwov2r37/W/KO1iF4pAf7p/fBwPwA451oHh1MAR1IcViF/zT+H960/ZqDohywzDEJqNQASDoDZEX2CVSOu0cFwOkyunQBRyMzAskw2PlTjE/EXtwM/shs4WH/aZZ2nhLYgBxlQgBmFlRJmL6a6DPzNY2RPHpsg6VCn0p50FQUZyduS6Dh2jzGL0S7wib0ubqrxyEC70QzHrnHziyklJCIbl637Z1+Dbbq9kAFUZ+OEmc0Z6oteojZcO0OS+CQj3ciCuJIyne48ilIC/NijNiRQt9cszGyFx9y0/GSBrJKM9R2uR036VA/ULgCPTALrxqjFmeqankbHKmgHWSolniizbh39XKnLbJQ92YlWS0NrlWX8nMZ1cxXekwN1kqnLjvBa//1O4A33r012RgnKWtftGPBwE3CgjnzTM/TZdnA4D+BIisOTEftM15cSBoDiwCzwiyOD9lpFBsxCZl0xfs6AurllmYLakBmaQsrySFWs3w/WgV3jyHe+8xk7lfzFb4b3lY8zE6FzhBZKJgDeumQtvqPY1yCRmJOyShIAhZ7NowkzZoY8kLgsF/gvktKXzvsJhiQtGtSXi+w+GeuTYKgYVkslQc7rMlPlGgqpfU0is4O/ZJaEr5hwzpEHZgrUhG5dh/dMBzW2C0YiD9Z472Yq9BPZumT6oy0trkWFw93IBKRK1NSxVjUy2hVVleMtlswF9lDNSFizz8/NfNk+A0o+FktmwOfn9LSJcmv/rQ/NEl87plbcZz0bm1Ad2nXUrJ6X21yq/Q1er9c8RrKl13OiZzqYtaAamhPt8FLL/QN1eF//DPKf+vkT/sw6ODgYHElxeBJW2pEz8I93p8BAHGYMQtpW7IF/uHUooAcGkEDEsjp4T8s/82UGRg0wVx96RgnKCjQ4B5m1yr5ov3WAaNAdxX3rOJlZLfAvElO1uQozKZqhOVIB1nV5Puoz4uckNzo4cbQMUx+wzDAMmJnQgKqdOrvGWHLoiI/IMGDg1WDaD1laAeyaqkFamLH81C4AFy5QnKv6l1FM9qi7mC8zE3RQiMQFCybE/eJ2DhkMpFNLLe+jjPfwoJizVWXOk2YgjlT5GelG5pGj2Y2JHs9zqsvXSomVBXOYd4rqnFQwOxBjPiXJSj4KqXWE5bCMSimxzJJml+oD4CX7mO16eJJr1gzJltaxu5Iyzz4zJ4NWkaMDlphR8v7qPwOTPeQv/8WT24+Dw3kOR1Icjo1+BHSllbgk3hRJaBmTQsqJwEhN4Ki29TqdWCcUezmD2nIRGO8j/1evefbOQ43R1Evlxx5d/fvlopGUbsROHX1trG8dOfvr/NqN+ORflum9OoDxysMM5k+MMUMxX2ZwHJ09o54fu5s2jTcHLfIP1nhdt7T4/hx0cy2kDHYTvVVP6OhG1jXUGDD78rwZ08HUjwqsw8A8RtZ1gHYE9CX70ouo1dCOlh/ZzYnWG3ommG72SdIAa0cvShZiGACzokGJJbNSSsyfppSQ9JSStXU/lZhW/cPAPGlGyzu5lHZU5zM6m0dFuJqF0a9HC2onZYbQ1taTSelaSKVcNeoRtBbWMocb60vruvxcHwJBRq+aIHN6FQeHE4QjKQ5rQ9t0UTLvFE2XT3esK6NdsAGDmWfmaGEGeCKozTwGhkcm+Yf7174G4FkkKaqxKMerA/e3NzAwa/dG4gP/38XcXrxZVobgqY/GMCAZ0Kdwdaid6jKIt4rSQeRbRuD7UxQMJz7bklslO950l2RmuWAlFJ29Mz4yTqA+IBkYiDA39S2Yb17meb3wKMGnBnaFds7UhnSijVLez//r+5ZVWioxm/PIJDMr6omzUCZx0hJPY2BGfktSapnokbT0pTRUEdO9amzakqUi1zA6WVndhRPPpmrXhkZQlOSNDnNU0qCkTV/T7F06Qgx10KRmaZp9Iw9HQ7U+6iicw3RYx9peBdlHi2uv282vD01Zu7us1cNNjqg4OJwAHElxWBP5NW+F9/Xb+Ue1OTCtwWSXT/H1IQNrmPGPtHb/qJPo6KyVXgQU+8A/ehSoD5FHv/3snkw1tjVedYivtQsUuyoxeGSSBEODeJADyxGDz1SXxEXT/uXYPE80kG5f5PTcmQqvl99j1mG2Ql1Gp8ABjE+MMUCu64iBGfgUPghNZBulwLUHSBgmemZ0VkqAWNxdpzvc53KBBCZKn3zea3WgjNr5X7BAkqSlmmEAFBLg0ln+O1zj+TREk7S7KfNyQLM9Lb8UUu5H13igzgxbQ8pay0JkYxEKz5d5vus6fL9meA5XbXRCkBsJG81EfWUrS1iqo9EOtH5oJRkd7zCa/Tg603GsNmzVKin5mS9zHcOA4trZCnD941ZG02zP8SZhz1RILMf6JD1CkDwhKY6sODgcG46kOBwbRWk13rjMP6yDgISjGjPwAPa0nHvAIER++b88rUteE40BA+BlM/ba/3sZ5+oUU3PELSdAGq2epKzBKvOsE2WqyyD+yASJWymhFiT1GXznpC1Wu1tyjwH+ohSY6gGzZRKQDW1+3di2jplhwABdEFO0UTv3BRHxaseODgX82hZuG2XMkBwLXv7kmUNKUDKPJnKBlIJykFA1+yQAEz1mdrR0FnnWvVSNuZ5Eynrblvj6QonXviIuv/UhtSU+WNraNUYBcD+0gZajHTp63qlm9cCv9YERECUbWlrSz2N2rFQJjk8otHtHBcHdiJ+d+9eTfOmcKSUpOozweF4tL9rP+9iRKdTTI1mk72yAV/5DYEsLeeX/d+x9ODicp3AkxeGYyK/6FXjf/QhFkvoEuFDiH/KtSwyaADMHxRT55L85nctdE97j/xHwPOCH96z+xboOPTOKCYPnpHR3dJrWPquTdY9U2Vq7tcWsSHXIjJKXM5BP9EhyVMSaRHx6HsjTvQbVxoAE4znzMu05k6GDy9yXmswBaxupPTZuAt5HJ/ieXggMQ6AfMABOdm2K8clgTjp9yjEJxLiMLfCwQkAx3reSxn75TBTTkQnGHgDp2irHNtPnaL7QLjALNAhIECuxCWHVQTY6Kgsixsa45qB5vCgpUZHsqM7kWETkqQSwSoxUlJv4wMNTJJtjff5eiScgxnVPYXpXSDnle7EEPDANXAbzvZmt8PO0fQne8vuAhRLybb9+/P05OJxHcCTF4fjoFBg4JnsMrNoV0Q+pl0h8/qEdBsDk6V7sGqjGq/UPisYA+M4Giji3LdEP5apDPK9+KME3NvIwkM6d7YskCAfq5gXTicynY6lIEldILSAGuc2PqcRW0jlYJ8HTbECUrl22UVw7YvKmxCj3GDjbRZLGRyZJJk6kVfZQjW3WVx1idif2gWHJznUQMJhGQ5KupSLJSn3AzI+uPcg4ubojGZB617q62mJzv6dpGYogJ6kKRUy9WOK1KomDrj88djlm1IROScmpsvhX5JI9K4soWctNQc57/cQY7/u4dLStlbTphyR9QcYMVUvuVX3A6cyhtKlrGSrIAI+dc17tPyCf+K1Te04ODmcpHElxOD60U2N3c3WAVZv8hmRRtp6hT3+jwwFnKyQmYcZMkHq/PDZBorKnaa2+9YF1igB8sj9QA/76EtrPT3coOp3oARe1qUcpJdZOe7HMhVFr+umOaXl0oOK2pWPPgzkeVBuUejaIT7URu8Z4fiqiTX22Q48SteUiLeF1bs69G9lRVEgBL5NJ2B7vrQpeE5+CYZ2v0wuBib5pZspd7svPza1YM0vL4qeT+rzmhdh0HkslXuuBiJUvnDNdyjMBnRN0PGKTeiRQQcbz+5HdLO0dqPMaBZm1iJdlblIx4Wdl5yL3XUp4zfbXSR6jlHofncBdSpjxmquY4R0gBogFePs/Anj5mVk+dXB4FuFIisNxkf/IDSz56JNxYWBdK0slYKmE/AVvOd3LXBPewn9gNgAAvrSdQbMxYICtD4FbP8924/vWiQ9MStM21XrkHgNIKWGZa0uLOpZHJ0g6LppjYO2HDDjDgPqFSkz9Sw7azNcHJCzfm6YGY+My17QWQRkGDGp+TiIyWrbIPeCbG7lNTUpUG9tcY6vIjMUgYNdS6vF8S6JheXQCeOle7mexRNHwKLnRScIaQKOUATjxgVy6b8b6JHKKuQq3qYvr7VjfurvmRFQ8CG2CsYpgtSusEjP7cqjG9+tk7FONYQB8YxPv8UKJ63r57mO7DAdyvlp6mu5YaQagrkhnBzUH3OdXdvD6pz4/FwD9bB6dMF2T+sKoGL2cMDu1oW3X46I5ITcNwMvhfeEOoDZE/kNvPvXXxcHhLIAjKQ5PjQUpBaSS144y/hHdtMyAd6YiSs2TQ7MjkQoYyww+W5cYPL+8TQJPYm22msq/6hA9UAASDP0esNZWgMF5S8t+9kBS1CnwmBM962Y51pTifQ3gWxsZrFpFEqhNy8zMHKzRZXZKdCeq49Bg2xgA92xmMHx0glmixoBP6duPMpR78T7+fr6M/NX/nMu960+4ztQDto5ct+UCMzGzFZasZqoibM1JyrT1tyrtypln4t7M4/mr3X91CCyWuW1VWo0P14wErYW9TRIuPweuOLz2NqN4ZJJk7uI5Xqdvb2AGR31l9jWAr25ht9la0PlOgJGr9W1eh7JkQKLUNDQXz8mMofDJpcUMJJuhZF0KKdcyI6aAqZjRxQFwWMqHkZBN7Yxb34F35P3I1/3rpz53B4dzDI6kODwl1nLJ9L76MWCpiPy6G579BZ0APNwE1EZe0ODQEk+PdoHpe/X4qA0ZHCoxMB2TsMyVzf9jLWhHS2Pk6V+zBapZUQda7QAZhHxf7q2dSVGtz9YWcI88/T82waf02KfeZKormZOErylJmeiRRAUiqD1QF8+X4WrL97H+sQlBQ/xYWkWuox/KgMiQ++4USMQGoZnGFRNuo7b5g9DakTctc31BzsySdi6lHgnuYonndsECy19HIw6Ar22WmT4+93HlUxAVzVzoqIKKZInaBWtVHohI+akyN3uaFLu+aP/xj3vpGl1Vj48DY0KMdTRB7AP1jFkwNUmcqQKVRV4T1UT1Q5sgLQ7P3q6PAVGK/PlvPf6aHRzOITiS4vC0cCann9V/AgD/0H97A0lCJRahq1j690MG1GUJ+IslEojxPp901W/j4UkGnPUdpuYLCYnDoxMM6BfPrbaf/+oW2tQ/d46ahEFA0XFRAviFC8fWRDxvpE06zEh6trZ4HLWZT3wGz1KymkCVE5Z0BiEDoDraLpaN6Bw9KRmAl/yuzFkSDYleg/kyg2QCuxYqfvVyK4eEGa9f5oknTcJrrO7Dfs7grISgmPBfOFL+GW2d1gyMkoktLd6bQzV6laQ+s2BHW9mnPjNBvZBZGjVm07lI6omjox3+7gKSoFfsOjZp277IbNGxMl/HwwUL7Nz6/hTXUNb28ZDlnkEAtD0gC3h9W0XrEuvJ0MWiZANnKySJcxV4+/4AaBWRP+9tJ78mB4ezDI6kOJwz8HATA9TeSbbqzpepCSnH5mCa+AwOc2VzMN3TtKm4ccASS2PA0kqQ83eDgEPpBgGDSTeiCHcgrb+XyWTfiR5LK5nH4HbXNpKSH97DAFtMxDNE2lb7IQnTWlmVHYtsVx7vm/MrQBJSSI10KY5USUwO1mxAoPqFzJcpql2DpCD1V/uT1IbAVAfIq/x9IWVmSbMq6huj1vVhttrPRa9xfWBdT9rOG2ZALaeeqZSYkFg7db66heWaKOU5XLDAa1CJSRTv3cTMSuLTVG2sz/uwVLRJympT74GvdQqAL+ewadkEu3My1fmvLyW5W8tjxs+pIzravfepcFA8VR6d4H1MfF67ya6JkFWIHmS8Z2oKp9k+beHuyBykwzW7nhcswPviJ4DnH0Re+7cntzYHh7MIjqQ4nBPwcBNw91aSiukOSchsxZ721Ul0aaTdVYWM5ZhBbn/dnrg7BQaD+TKDxGSPBGCdmKbduYMBKPG57USPOp1ORDHrMABecIBZlufN8Jh7m1zX4RozL9/YZE/76zrcZkPbjMqOns7cjSwzoJ03o+iHMjeoaufXkRKDDlc8VHvy0MFUCEpd9llIGcCnujbFuBvxOqmAuhdySnEpsSyLIshIELS0owQo83h91Ndkb5OZhufM833fn+I90/MfBtzm4jmg0iUh2dxi23R1QNJVH5o4Wjtk1IdGs1WqHelGNv9IpzQrUf32BpKlo/1plkrHzrIcC92IbcbPneP6ajKEMRbXZp0JpCMVDtSlzT3kuhdL/P2ytLP3AiDoG6E9ULf5RIdq8A79CZD6bnihwzkJR1Icznp4X/sYkG+R4Bmxi2ZMdBB1ISSJNzLDZ6TcMN0FXrmLwenhSeC760kywozfLxcY1C8/ws6ejW0Gtg1tEpVHJrj/QzXgdQ8z+/LoJFP0hZRaBsXLn2DQeWQC+J/PIRHQEom6yarb7WjGY1+D+x/NZBQTZmhGfVV2LvBf6tP4ba904qhz7nwZ+NxzGIyLKZ/w17XZXj5US/6MgVOdVXVI3ljfZhpp9qQcWxlktmItxo0BUJYOpqWSlXxyiB5FfGTG+sAlM9xmf50BeijeLP3IJhxHKff/xBgDuM5h6kg5S0sp2vq8rsNrqzoUHXA5lLKbtpYPAt7PQkqCtK+xutwGHLsD6HioxLwPKpZOfHEWXubnM/P4uVSTv43LXEs/BHoFu16RZKdykMToyImlog2CVM+WH37C2ew7nJNwJMXhrIb3yc8C0bgMoAOzCBfN8w9+Y2DTl8d70o0iT9BLRZZltPvnNY/xn+KxCXbALJQl+C9S56BP59sXgTd9m98vlJkhqQ1t7s2xEGRM9WsQbQ6Y+ZmtcP17mtSgKDKPmZfdYzyfjW0Gr1aRpZGmiGC3LTGA98TG/XCNT/Tr29TXeJB2ZilfhRmf9p8zT6IW+yQuYWalqEHIQKtuspoV0dKMdnsBPNbuMa7l8iN23VPJWnhCgHSeT5DxPUsinv3+lGVCtG05EpLxxBjXpURIy0zaypz4UqLqspyjM5g6I0Mbe9KFtVgCLp2x0s6Wltj7+8efdHyy2NriujsFc889JGW48Z5lkwDTGDUHJL+TXZaL2kJYdD5R5vF6Cj9Z6Qxavzoz5oYXOpxLcCTF4ayF92d/BVRF8Jr4JCHa5ptLME2kjNEq2oyhREScPUmvr+VIe+E8/ylaRQbhiR7JymhAG+8Z2RmF+sl4sICkxl+bl9lmrOWd3WPWzj0ITH+QetaNE4o3h4pov70BSMaBqw7zNW1tvuIIA9hXtsjwPmlpVafgopTAPPCYlZjbNwbMHA1CE5jqtGvN2ESZdTUlPlDscF/bllZ35/SkLKXDAxMhF6nP4473+P26DonKQtmGQKpfS+JzLY+Pmy9PdShdRxEzQVri8sBruXMB+OpWZh90sOFlM1zH96dIDpsynkB1JpnHdWxaPunPIHaPMTPWl2u2rmMZpVaRpMQvmneK4v511k49W7GOp/pQMk4ZtTelhPf3UM2GX3owcnXJ2oTYW/gPwD2bkL/mn5/8OTk4nEFwJMXhrIP3if/GP9Al+aM9DPjUCViXRG1ohlwq7Jyp8PXcsyf8qgTJ46X1E58ZCg18gGUT1H336FkxmSe2+TJRWVtyhwHLSmN9lhcaA/7bvghUxRF3ucAU/uh036GIUZcLNlPoklnqM/bXub8otfkyLzhAcvC9aSuH9EN7go99zsHRp/ScYkwsloD/9lzg6kMMuH4OdAPzDtGMQ0/cZb+5ka25o90vg5AkohOtviZjfe5/KDN7EvHe2V8X0pQbSWkKYeqLnkUJ3yAErjnEbda3bV9BJgHeI9l4ZILXbcei3dvpDlDfYGZ4y0XgoSmSHDWkOxZ60gXWjXhdghx4aJLXP5HWaC0nBZJ5UjK3WCLRUo3R96b5Oy1hJT7wQ/toLHiwxmsPkCR/aTv33QutxJN5wOcupOZFScre5uoS4XgP2NOE97efBiox8le+6djn5uBwBsORFIezD82+CUK7Eev1FZnMvFRk+cKDPcWnPn8XBwximt5Xr4yJHgP4sSbZ+vmTUuoAuK+5imUf1KlVXUXVF0QJCmCzfx6d4M/fXc+n4voQeGAdA27sAwsjQXuhLHqEAktFF85zzYFkMA7VSMA006K4/Aj/zVb4xL+/zn3r0z7Anze0SSBqQ5KZCxfsiT3ISGSGAYlTmFpr9K5xksO5irnoAibqBExX0ioyWI/1RXeT8tp/Z8NIVibleV06y4zIX19q1zKWbZ4zb2MFAF7XKw5bpqmcMGtxsMZrOt3hfVK9iup5AH5WdMDhVJdrmexynfNlvv+ag9y2nDC79cgk752fc7sgtwyRZqQ8yTY1ByRzvdCGKqYey23rOzxG7hnJe8HIbCZFdchjtor2GZ2pkNC0Slz/ZTMyC6rGdemMpx97lNmjSgzvr/8z8n/yT9f+fDs4nMHwT/cCHBxOGstFC2xdcUhVsy8VHKqHSF1aj3Mpm2iGQzt9DtVIXvrH4evHmqjr5QxqOxbNwj71pQsjZ5DSbhjAAvarHqfb6dWHmMoPM2ZXuiHLBBpU48D2V0q45sUS8F+fxwAXpQxi1SEDsBrHaduxYqrLAKglm1LC9/g5tRPbl6zkFWTUbOhUaF/OP/dsAKIn4uMtLWvRHkVjYMQs9fnelowxjgObB7Rtievycupo2gUb3PftDUIChFjMl3m8F+9/csbj8iM8/8yjcFmnWOs5JaJdeWDaiIS2IAeik2kX+Fl6YowEQknh/evsvk11SVY1a1cb8v1jfRNiFxMTFqdyH7WstrvJ9/pyzXaPkSh/Y9OxP3sXz5lQ+NWPAT/7APAv76FIO/aZNRrrc81HqsxsaRlrS4uvz1SBhRK8e26Hl73n2MdycDgD4TIpDmcf3nAf8MXtzDwMA+vW0U4SgH/Ye+InojNsACMj6k0y2TPn0cS3Dpqnmqx7tLX9VFfKHKGUh+R7bV9Vt1QlLDsWuY/MYzAJM4ona9LmG4UWjJUgBCFJVXVIG/9YMguXH7FjKwFYC8+dA7otZpr02gBPnphcia0klkFKZGvsrxIzCzN9lKbHkyxQLuU4JSTqAdKJeF20FXpLi7+fqwA/+gTJxGMT1hLdLvBebWwfeyBjN2KQnpfsRihlrJkq70csmY5uxIzNonxWJnpWhosD3sdczrkX8Xp3CiRuqs/pRSzdaGt7KeFnTL1QdjetvX0QsLNM/U00y6R6oyNVklmAGbN9DV4bLd3UhiQnR+MfP8x/imHAn3vh6s/uzgWSvk3LK58L1wXkcDbBkRSHsw554bfhTfwxMxFquHakykChbbya1i+NtBv7st1S0XamQWbbEoNEffDUBAVY24FUA2gn4ho0c6M28RrU9L1q0LWrxACpZZB1HRP+FlKWiA7UTWz79c2cPP0v/q+VQ3vf/iMG39Gl90IrQ82XbYZQOTGhrV6bo+HlzKKE2epOlFGEGTML92zmfKOprv2uEgMLIdezUFp9rT1wLXuaJra9dqTUsa7DUpLOtqkPmRE42sNE0Q9Z6lgq2rV+0X6e34PTPNetSyRDD09Kh0zGY3cirmO6a5qbx8dpoLdpmYSwF5HUNAaW1WgVV7eYX7DA0p12GcWBXUOdmKwZHPWbWSrZ/VJDOh3ZkHnMzh1PJ6PQTGAhBYahzWwC+P5j7MMb3Ezn2mk3E8jhzIUjKQ5nJfLnvxXe33+SwWEQMiB3IxMrbmgz4MRSAiqmRhr0n5ebXf7hmszvkYDdDxmENWCU4+PPeVEr91yezvWpW7MANTFE6xSAwkgnUJABX9/CQB4HzIx4OXUho1mKKWlLvfYAvTz2NVYff7xPrY6m+tVPI8it7Xddx0oV1SEwfhTR0sGKxdRM8AAR2garPVkUjQEJwHc2iAPukOWjIAMafaBdtOvWjnhNukKUvJyljgsWVtv7bxKDtwenSEI3tBnot8ufqyNVkjYVmH51C7Mw4z2ed5DbdGq1lG8VqWXRAX46oPHwNM9tT5PnooLeTcvMsmlpS9enQuy+ZN8O1K0r6IojwJe2kYTl4DgCzezl3kgZUIzlNi1bhme8x+83L3O7B6aBV+069ucN4Lp1wrRqfnaPcY1askp8krGjs2UAtS25B+/wrcjX/+bxj+XgcJrgSIrDWYv8lW+C950/YgCZ6tIgbdMyfVLWt2VgmzicjvekPCGpdn3SXSxZW24hZZBSS/VuxD/+qi/Z0rIuFIDBQf1DiikDaUkClwpbJ0eyC/UBCVVbpukGGdf9jx8G/uZiywDtbvK4rzkqza/iVI8ZIW/Xn8lxMuD5iwzUR0p8LRahaz+UAN63da8lAga43mOVuqJ0pTzg4SbzKwGom5jukjw8MsHjr+tYOSsV8laXjiudljze53uPRuZRHNwuGLEspiQNy0XqLkYzWY0BCY1mjra06P67pcV7sSAuw9/cSPJzyawR0DiwzJdqXwBe/yfG+HnSDJkKtHPPTNn2NEkanzvL66ZERwXaKxk0Mb/btEwS9531zD6NZoc0q9STcxglhUdns3RYop5H7vEzu2OR9+GBaWYGx3v8+cX7Vl/jhbJNWe5G8PofBFIP+QXvXPuz4eBwmuBIisNZjfyqXyFR2bgM/MyD/IO8vm1BrJwApZEsSF2GtqkYMvGZPemFQLvBgBplJBvqVKqD8pp9BsmpjpEMNdaKfUm3i2OsBzMjGw38UcpteyOak8ku8MbvWObi73cy+Bxr+nI5YQfMtzbYnJxDMvulGq+eM1OV6c56/keVTFYRj7Weto+F+fJqLYpmAi4/YoP/dL5QNzJCoFmI0GOmp35UCedwjfevEgMv2UtisXuM96MXArNl7kdbzIsJiY7e7w1ta/PW7Np4n2sDSF6CnB01e5pGCHW9AO9fp2D6n3Vy7b43zfsYZNLhJCXF/XVmTi6ZtVEEg5E1qqj3qkNcqxrQ3b+OGTN16R29v4o4sPlQXs4MiXIV1VcFORCkZmrX7EtnmbTez5dI4tRkcF/D5gMtlC07VIk5vLCQIl/nSkAOZwYcSXE4+zHWZzAAKHA8etbK6B999fuYL5thmHqPLBcYBDoRA0NXOjMA/hF/aIp/2BsDabtti8g1NWFuu2DBWyf5Hq6RiKguZi2NwKjY9ZW7zJxOn8aLqZVd1OZ+a4vBvD4w8zUVZZZjC6K9H/C/uWRNVk2XPlosCzCbMlde/Zp6s1RjIJG2YyUcqW8GeeXYNC6jeP5BBtRlKWfMyGwbHbq3SdqRLz9i79HxB3uavC5TXa6jEvN+zlRYIjpU4z1vDuzalhKSisNVko0H1gG9BV7bXWM8ZjkhCcg9nnOYcY33bKZ+aKLH65CKkFbLLkeqJCnaidUTPUwvBH5kt62/La7IWs6JxAV4ocy1T3Z5Xh0pJQYiBG7L53hryzQ+AxFb37eOBC3MmF26bIaEXEXRmQcsyqygsT68g7+PfOO/epofGAeHUwcvz/MTUAmeG2i1Wmg2m1haWkKj0XjqNzicNfBwE58WL1xYW9Q6inaBf9QHIQ25Llhg58uuMQmgMqW4F5nFejkGugXzVZnuWjamOmQwUit2L19dXlGX28yTfUmQ06nDx4OWC4Yj5GSpZFqab2/gWp87K0Er5Vo9MJBXY2vRLh0lktVhimthvkwCMVvh/q4+9GRydfSwwszj9mP91fdgVK+juhcNjGpQVom5vjEZpBdlJIqaifn/Lubvc5D0afDeuAy8bO+THX+HojNZLpJwLIrmZ7pj/jJf2cLPwOaWlVMact/nytbxtXFZxKkBdSaTXR57ucDPgY4p6Mr1bvb5vZry7Vzk99uW7Breu4n3Xq/BlhbPux/SF+WH9vG+7m1aZnD3GM+7MSCxWiit9ruZ7FH0u7vJ63bZDD+bauT37Q3MBqm7biGVbKCQ2SCj0HcYmMHfpmXkk//m+J9RB4eTxMnEYpdJcTh3UIsZlP73BQzShZRZCQ0i2umiBm/bF1db32sA0SnIqWeOssUU6ILBW63kl0oM0nMVIGybg6r+oVcCoi25PszxNgcQPgVByT1pXRay4+e2rmLCINYYMIiWk9UZIzUjmy+bC60SlJkqLdcP1YAXHmAZAmAQ1I6S/Q0T5/r52qWgo6cp+/mTRwyo220OyUzl1uWk5mtqfFdOmC1QYjJ6Py6doUakLS6+ms1aLq7dcl1IbbryP+zkvZroUa+0Y9GyDmHG6zHWJ9FpDsxnZRgwc5F6zMbsXAQe9Y1YKBlTT5jMY+ln6xJ1J/du5DmNOsEqujIIU4mMZnpmKyQalx0xooMa77Ea4M2XR0qS8jnrFKwT7PFxEp39Dd6PrUvMSF23m91hiyVmU3IACEio/RwoiTX/UoX7bfZXZdBcy7LD6YAjKQ7nDjQY/Pz9T/6dZgzigE/J69sWtA/VWOYpi2FakDEA7hozEayWBeKAv1dPlWUx51LnW9UFtIpAXrSOmoRp9BULfg9GVjysLVbNwTXG0iVUjvnaUolZhn0Nkoq1uo5Uz1IfcG1+Djw4xsDVFaHocpGBctuSBOg+z2G5yOAMSEdSxA6kxoC+Gzr35ug1j7YUKzQLNGoypy62gLXj9kOx9U9N93H0flQQfOkMr/GjEzz31DN9ylq45iDXXU6snNTsAz/+CEnBUon36+pDIqJOeG13j/G4m5e5j+UidR0H6uZlMlpa/NZG3q8NbTHKk2uhTruA+etceZiEY8rj/utDloMme8DFszZssRLTZ0XnOq3rSNlL5v1MSVanvkwSrCMWvr3ePl8bl7nm5QJJXkcyaLWhTbyuDblv9Y7pRtyXjiLIAa/4HsDLHVlxeFbhSIrDGQvvbz/NDMaL9gPN/qn54xillo4fLU140raqU2Ynu/x3z2bg7q38w19IWRo4XCOxUbv4cmJBRb00lop8QgbEGEz+qzX7DIg6oVk1L6NBfxByHdo9FORcay5P9IWUhECNyO7aCjxvlgShH5hFu/qSRBm7br6zwUpPY32u4YX7rVSigfRrW6wkoxmgw1UGuUD0F/sadH8dJRNHExSFln4aA14HbWcOc55fJbaumcwDMv/J7c6bl/lZOFC3Scw/tO/YowxGoQMaR6EtxJPShTVqSb+hzbVecYRkMMy45l1j1pasnWGj+63J8EPNAK3vcL1f22KTjWPxfXn1Y9a99bcXs9zTKloZcF+DxPQiaUmfL/OzMlfhfR+EwL6qlRe1VLZpGXjpXu7jUG21RkuzbYUSr+9Ej59RJbIAj7l7jJ/fTcs8brMPXLC4sg5v7g+Bi+YcWXF4VuBIisMZCe/rtwNbxE/iwSngonl4kzf94Dvuh3ya1GBRTiyojHbrKF64n0+Y82X+ka7KE+jeBoNmkPH3mklZln17MPdZP2cg1Cfb2tDakLX80Q8sI5J6ZvuvVuvaTqvDAbW1+YF1PJ97N/I6VWObqDvV5ft6EYNeKZGWanAf6mmi0OPtr9sT/0Xz3G6pxHXsXGTgvuLIyXUDKbTzSWcaFVMjJ1pWCvDkoY21IYnajz9ybB3NyUDJTTFZe4K1ep8MA5rntYqiTwrMnK4bmZMuwGzNf38uu3zmy9y+mFpLeykB5urmgqzZrgvngUcn2TaceSx5XXOQn08VZWtrdDii1Ul86wzSkQiK50qnUTcy92A1CFSTw9FynQpvVQhejWmEpx1OnQLPK5e263UdeM2bHFFxeMbh/yBvft/73gfP8/Cud73rmNvcddddeNnLXobJyUmUy2Vccskl+MAHPrBqm9tvvx3XXXcdxsfHMT4+juuvvx5f//rXV21z0003wfO8Vf82bNjwgyzf4QyF9/XbGRy60sERZXyK3TW+ur326aCUUDy5Qdpch+ICejxsX7RSzUKJgaeSWHeHahRU46CD7AAGJ3WZXcmUBDb3RcW3YW7npn4cagpXEA+X9eI9MtFjENrYZmZi+yLw8t0cKLdzgeSknFiZZaZi32tWIxeCEPsMiuq5ofBF/KtzgVLPJi3Xh09uHVbsHmMX1K7xtX+f+lb2UcI1kDbbfmBdWiq0VQSZZbOeCvHRTHMEd2/lZOETxTAwoez6Dj8/Jbn3y0WOZ3hoituGGfDqx0lOtraoA9lfJ0EMMwb8uQoJx+i8o0tngZ94CPjJ7wO//E3gFbuYySiL7imXbFocMKM1X+bncEuLa9nfIIE7VCPRUA+ViZ5Ndx7v83M/1l9d9moXKM59cJrC2tkKz7Usxnx6vb+6hRkhnRj9/SngUA1e9p7VXV8ODqcYTzuTcs899+CjH/0orrzyyuNuV61W8fa3vx1XXnklqtUq7rrrLrz1rW9FtVrFW97yFgDAnXfeiTe84Q146UtfilKphFtuuQWvec1r8MADD2Dz5s0r+7rsssvwhS98YeXnIDjOHyOHsxeqDdEnu0LK4DVTsS6ZKGVXztOFnwN+Cvg+kIp3x0KZf5iPniYMMPjrQEPVh6zvMIAdqjGIeDlJQ31opZHRjMhAiEISAG2fJEFNwQAgEm1Ls8/9zFWs06JTsKnK2tI60QNe/gSv17J4fQQ5NTezFWY71IZ+pmrD7zYuc/uJHmfkfGc99RhbWgxiEz3zM+lFwJGCkYZSYlkVwLp1dHbN3iYDqGpZRluDAV6TgZxzlJk+ZVTfskJQjtK8aOfLMGCgfN7M6t8fqVIku67D7IhmkhTqujtX4bZHi3zXQpQBYwMgblv7ck8+A7qv0ZJTfcAylOKN37HvrzrE+9ALjeSMkj31MfnxR+ihou3bT4xZdmNdx4THD0+an4+2Lfcia88upEBB2phrQyvr1Ae874sl6wbTwYfFlJ/p2QrPrTokGdZBkkXJPJYSZpgunQU2LsNLf+/UlWQdHEbwtEhKu93GP/tn/wy33347br755uNue8011+Caa65Z+XnHjh34q7/6K3zpS19aISl//ud/vuo9t99+O/7Lf/kv+Lu/+zu88Y1vtMWGocuenA/wcpISLcP0Q/6hne7yj2mU2lPjBQsnNt9kLegf4dqQf4DVGj/1WObQcobqRS6asyfWZp/BvpDyD3gnAjYO7CkbWK0pUc3LctHEopnH42srcrsgVvpCzNShFhBCI6ShH3DYYJQCERhwAXvqP1I1zcveps2qaRdYxtjcYqZjqWjlpwUxSdu+yMCe+CQEk10GxrEey0pPjElwS+jmu1ww4e9MVQbq+dzXvgZJipa9akMZRyDXX9uQPTCnqz+nPu+3CocfljbxwzUSsEM1nt/Fc5b9+cpWnud0h+c12eU1e2SS5zQMrMOpErNksVTiPT0eitKZpG60m5d5jjNVktFFIWTfn2I55Kkw6i9zuCZuxUfpapaLNusnSo0w90LeC3VG1pLY+o4RlYJ8ThIhwerVU0xWiEuOm4DLAW/PB3jtwwyoHJbtZD07FkmMQyGSOi0aoC5HNVeHq7bGwzV462+SW3vTU18LB4cTwNMq97ztbW/D6173Olx//fUn/d5vfetbuPvuu/Hyl7/8mNt0u13EcYyJiYlVrz/yyCPYtGkTdu7ciZ//+Z/H448/ftxjDQYDtFqtVf8czmx4379N/BrkKXpU9zBftimyhdRaKfc0GWTvX2dBfRSaqTgaarDVLohrp/wx7kYcWLeyqJEn+vE+/5BrGQZgQNR2X/W6ULdVNWTTTEd9YN9rG24x4bpHSzI6WyjzTA+hGaTJ3mqR6joZvpd5PJ+dCxRPPjIJ3D/NYJhL5mJLi6WIunQgHZSyw2yFOpuvbTYPlp2Sqdq4zPNoF3icxRKfxB+eFD+VJl+LJOOlU5szjwHz/+xgKQHg+epTfimxMphmT5SgAKsHR7YLJHRbWtY988gEr+W3N9CILPPokzPZM/IyLXqi1Ofati3JpGPP7OSfCpuk+6YaM3i/9lFmSILMMkvLRbv/wxPM8I73mHUa/cwulMWYTzJUsxVuo+f++DiPoRmRVpG/74f83aEaz7U2tOnH6zprE/mJHt2TvVxasPsiYIZ1IF0yy+12LPL4OxZJ0DXDCfD/w3ifJaSlEkc2PPafTuwaODg8BU46k/KZz3wG3/zmN3HPPfec1Pu2bNmCmZkZJEmCm266CW9+85uPue273/1ubN68eRUJevGLX4w77rgDF198MQ4fPoybb74ZL33pS/HAAw9gcnJyzf28733vw3ve856TWqfD6YP3/dv4x3K2IoPTPHsaBPjHc6rLJ7xyDPTFs6RVtK6Lx8eoFzlY4x/MiljSr+vwD2k5Npv66hDoVvmH3YNZzG9b4rbaLjyKIGPKX70xlEQ1+wyoqofwcyCWDMuEzE9R87Rm38pWgGRVwKBcl8GEw0AG0kF8XSJrf44yPAk6UfeJMYphlTQoydGncZ2s/LwZEo7vrrfyTSWzAYBHqlx7QwLhbIVkpSSZo8QnAVGnVn3yL6Q2SG9jm5kc9Z357npmLqJMRMSeCYczrG5RLqZ8fbbC9aQ+yYk6ph6os8xVlPWM9xlANaD70jnUKfEccnD7zON5aEnrRCZeA8zGbF9c/dpET2bgxGzlXiixxKZZs2NNbV4uMgOln+3DVX6uByGvuYpuO+IV85x5Ek0dpdAqWuuxZuKGAUsvNTn3teYzyedvRUOiPLws2w5CE+UCMipC5iepCDeUbFRdsmJNyR7qCIj9da4/DuA99ilgrI/8Rb98YtfYwWENnBRJ2bt3L975znfi85//PEqlpxAbHoUvfelLaLfb+OpXv4p3v/vdeM5znoM3vOENT9rulltuwV/8xV/gzjvvXHWM1772tSvfX3HFFXjJS16CCy+8EJ/85CfxG7/xG2se88Ybb1z1u1arha1bt57Uuh2eRYz1+WSvT2nqsQHwD/JEz0oXJTH+OlDnH/GDdfGDaPAP7VTXZu/0Im730BSfLsf68nvJXCwXTAeT+BQijvUZdI4mKQDLRA9N8Unzojm+N0rliVrMuUY1G3Fg1usqsNW0PGDERs25opTBRm30l0r8fhgAnre67fX+dbwOpYRi2ktnmRE5XGNnUqvI1mPArlsh5XV4cIrBe7LL9SVSXliQTpJc/DmUVDw6KXb7Eqg8MODqxOdOwYSwQc6v7RrvT5iJGDSx4YSjBEF1FkoWR7t9LpuxMonOxhkVHl9xWBxhRbOiXVjfm+Z2Ov5A3Vknu0/t9Hsi2NLiv8zjsaLMnHD7IYP++Ii+J/H5WRwE4hwsnVbjfZK5UAiwDry8/Ihlx7QMtmlZTOMaJCLNlGW3UMSuOoRSkXvMdC2Un1zaOtrrppisvi5qzR/kXJN+Pg/UuXZfMjDqjDszQijDjGXJSgxv+X3AA9PIf+jYD6YODsfCSZGUe++9F0eOHMELXvCCldfSNMUXv/hF3HbbbRgMBscUs+7cuRMACcbhw4dx0003PYmk3HrrrXjve9+LL3zhCyckyL3iiivwyCOPHHObYrGIYrF4oqfncBrhffuPgGKJfxgXSwB8wJMgrYLPbgQU5OlZBabLBRPYLjLVjLGemVUtlGmqNZAyTDVmsN/bBGpige6B+6jEJnp9YB2D4O6xJz9B/8RDzFgMxCVUSwu1IY/Ricya3pc/8EHGDM8oRk3Ygnx150oimoxhYBoWTeMvlHh8LY3Ml/l1qUh7/41tE8BO9GwC8FjfMhF6DSd6wAsO8qsahO0eY3apH5q4MvZZ3inHFqxUM1IdkhQF8oStg+86ck1nKsxyXCBt08drXdZSX+wD961nkNfAu69Bgri5xftaTkwYG6X8Ny1mZ/UBMLue51hKjDCoBfzT0TEpwVQ8McbzX5D29IvnmBVJfLZRq4C4MeDaUn/14MFSImZyRb6u93Gyx7UervF1rUips2xjYNm4+pCdYeXYyKtmwxKfa1CTOM2QPDpBInX053otaHt2qwL4A2u5L6QktkpqVOy9sW3ic9XDiEOz9/efRP7KN538dXc4r3FSJOVVr3oV7rvvvlWv3XDDDbjkkkvwW7/1WyfcbZPnOQaD1anQ97///bj55pvxuc99Dtdee+1T7mMwGODBBx/Eddddd+In4HDmQv099tfl+4R1+ULCP8KZB4SS6chEy6FPbDNV/vGMJYikPv/Ab5R6/CHJa2ce/+j3Iv7xbUmZQ91jE1+G2YlGZbrD7w/XmHkZDa5jfSuLqKeGim51LtDo4EHAunxGoVkjL7cMA2B/5JEZGVKR72zFXE81i5N6PM9ZIQSjQVjJSilhYN01zuzGc+d4fsOAX7e0mIkAGGxLCc+9VeTatLtpvA9ctpfZgz1Nbj/eY1alEjN4jffo//HEGDAo8z06bbgxOHYpRKFGaXptH5zi3JxORKHo8w+SJKmD7oXzplfSe7Oxzde0+6o24PU8VLPOmvE+r/nRZm9HzyUCeJ+6EadUq+aoPuQMoE3LLKElvpQBc9MkHa5KaSoxt95yzM9rOaEYWAdHbmjzvh+qmUZJt1+ZBQVe4750fulwxsUSs2gzVcvGNAb8/zRfBgpNruH7U/x/sW3pxMtd6suj4wK0M2qhzHude7zeif/ke6tmegfq8L72MbrWuhKQwwnipEhKvV7H5Zdfvuq1arWKycnJlddvvPFG7N+/H3fccQcA4EMf+hC2bduGSy65BAB9U2699Va84x3vWNnHLbfcgt/+7d/Gpz/9aezYsQOHDh0CANRqNdRqDDC/+Zu/iZ/4iZ/Atm3bcOTIEdx8881otVp405scMz/b4X31Y8A6ecIf71npQE3UigOgLPX7jqSTIxG4lhP+kQZkMvCS2b4fqrEjSIPiUkkyMrCsylLRRJsd3+aYeDmDaimxDENzxDBr9xiDgpKj7Ys2oE7FsiteKTnXezRByb3VBlxHZxiC3NLnXkaZez+kaLUX2VA+L5fMgsx+CbPVnSZ7m+Ig61FcOV8Gtor2QMlZu/D/Z+9Pw2Rbs7MwcO29Y8eOecjI8cz3njvfW3OVqlRSFRoKMclg3GrbAgMGhAoMsgBjUNHQKtxlJIRAgEGiJYNtqRncrablB5tBSFCtKpVqnu48nDnPyTkz5ogde/KPd71n7cyTZ6rxnrqxniefczIyYg/f/uJb61vrfd+FQGyiuIRTfVW5FdxfksPgPL2N++T7A80uXGlqFkS1XJZGVq46rn/N7WyjBuffVPVezgdiMkgxXm/gnBMfz5oN+04OMJcKqcipHj5PBtQNFVMLEgRYX14x5de8FRVjsVFHmYTljkqEgKgc23P+7su4ji+vIPgLEs2Y5Ep1kwICwWkBY1fXLF+iaZJyhGOywzMzh44gmGIAzuCG2BP2P/ITAIh3qsjGVDRjWJ2JJJ6VC3crOH8lwpgxwGEJ8m7mZfa8M8cyLceVRUVwj60p5igByDsVcT7zCyJLI8nO/dl7nxdze0Pa11xxdmNjQ65evXrz9zRN5UMf+pBcunRJCoWCnD9/Xn7yJ39SPvjBD958z8/+7M/KbDaTH/iBHzh0rB//8R+XD3/4wyIisr6+Lj/4gz8ou7u7srS0JO95z3vkk5/8pJw9e/ZrfQtz+0YbU/arQ5Mb7ygosahYD5YZfAVVMivRUjDsIFDMhuBndYjjXGlih3exbRTLZmiCV43QPtsIDRzIcgixKjMP18FFmU35Is/YI75mP+rh4e6+Isc3wbvTLjZzIDTH4CJxLBsxKOYa9gnArMRd1GfYIddncOJuZrRdEdzXe9ZBsQ49U5c917VOwUEisthFBoe4ECcD9qFbMWwHe77Q2NCPuAURY/Hcj1GOfasKpzgo2g6+puW4Fb3/Ky0rOZw/wH3UQwvYXBEpzzCGDGYe2zNFYFLY9yoWcC2N8PnNOsboC2sIyBhoPbl7+Hr3KqY0W1Ds1CDAdVE3h2NLFhCBuwclE4ibKR4p0LIQRfQcMZ2U0MPxOLbUPxHB9+jRfWS49vQc15oIKtnmYKZ4GIK4N2sIwvsBBAHzFOnjjHM2dk0E0NFSJbMruxWUlA5KGP+1gerzDBHM1GYIGh0R57mfFbnalOx3/8H7myNze8OYk2XZHVbKby27n/bQc/vGmTP4CeAdyBQRMcfWnmB3SDzBWBd9AhAZmFAxldTkILaSCTvWiuDv26pxEXqGV4gU1Lgwwf8pZT9RR/2wUluPw1Mw05CJSY+LKDYhu/eU+lGLXThAXs+JAY7/8TPaOyi3+w0LcEyVCNfanIps1wCuvNKCg+WuvhZC3n6zpp2FVfKcMuzsVXO9rhTYMsZxv4xx/Y9fsvG8qR4ruM8bdTjGyLXuy47g/0fLJ3eyZ1dMyt3V0gnVfgdFBGLDIoJPZiTO9HDvHPMDFbV7csdaA+xU4EzZK+hMD9fMYO2xvcMicdeaON/a8LB8furg+eSzD4liQDIdK2rTOIKgh4wttgFYGyAQOShptiwXAAyU3VOORZaHKH0ye8KsBbMoR+fkf3hIO3inKP+0ppi79RDzqUKMkwZAmeD798QuslAn+xZUUyTuOCO2hcq2tBeWcP8TH8EQNWvKkQHWdyqYsytD/N6aSrbyF+59fsztgbb78cVf80zK3OZ23/aZEyqMlmJxq4VWr6djpBAY/X3sWGBSig2PwFS3l5pMfaS70klBBdQiY5Kw3r/ThH5IKYbT8hNriNctIQAYKm6Dmio0PxHxFNjq57IGR8s792PUDBGxhnoicGSxizEq6GAsj6Aa2wyRzbheR3kkiPF7vvQzCPB3RxCUrAxFChX7O8s1V5umXEo6byk2EG/+/bRYwa7MFFQikX2ld6838O9x1NijNlbqbXOKIKoSWYfe63UTz9urWKdeZtA26kbjrs2QGdip4hgMlFjiOzHA/eyVMV5uhsxbPkhh9mSnevgaKcp36JmJBaxBbPMz0mwYs2LFxBpRlmLDcGQOrmWm5ZlGiO9AKzQwNrFbx7GT+gECz36Ae9+qanAQI8Darah6sY5vRctSvRJo6w8f3KrCe7sA5eVFXOtbN29VZ35qB/MnSPDcCaimyN9Awb/VoWYwxyK9kjhbPyfSnkp2+s/dfm7M7Q1n8yBlbt98q83AfOkrrbGQQbI+EyzK5cjk6DsTBBFc2N3MhM+aUwQUiSPiOkZjJb6EypiBHrsleH/mWEDSVqG0rerNHZ50Jvjs8ghZGD+9FUjrZiKRY714+oF1q/1q6K4MCFg+uqbBQ+yKnN7HNT50YOWn2IVj2C8j8Lve0LYCnpVCHtUgjpTTE0NjYmR67RzLqZ6X2aa37FljPBGjTIvAKVciaJ48vY0x+oRS/r3MQMVHQaoicK7dEt63MkRwQU0YPrvEwflKIbIkO4q/qUbWGPHkAAGHCJ7V+X2Af8c+nu/qEA60H+DfZ7bhoNmI0UuPv8alEc75pRWwoXYqmEfsBcVnVA8tk8KWCLsVHHdpjKCRZbRMTMl1WjCG2cTHnGWvINK+l0c4HgPQo3axbfOOwNmzXQQSV1qWhRJBQOulkM1nwL5ZszLUUXttQaX8VYV2aWxZs3poAGd+55ZHuG/OI3aTJqbMSUw5d9g2/ZcgEec3/ieR7apkP/Cf3nodc3vD2TxImds335i9WBsokFOzCJ2J6U30AqPpUgOFOiKUVvdT6/nDv3U1lZ4JHF2m9Xg2zFsZYldM1dNhEQs4nRZBi+UIu/rW1JzLUcs7DjryryZAycSE3JixuKap0bGWL57ctYxL5IEFk2gqf+wj2CJ2Z1KwDAPt6E555pki66BonXxLms1aO5IJOerQHtmH+itxRmsDkfWmSDGyfjRv30Cw8NoCni3ZL6ljYFteVyWy3T6zAMyUhAWR5giOeOKbUu1+CYEumT3s00PWS69k1O3fOo1y0Kk+nH9b9WJ2qiLPLuNaD8qmpbM8gtJtpKXCBc1QlGKbh/UQ8zXRct3CBCWUzMF72bGYJc1Ig5vUscyDnyLgChSrslfBZ6qz24NUH9vDPbkZAhZmG681TQOHOis9ZVqx1USoweZHz4m8ZeswNuWlRXw/OxMLkGYKvI5cA55faeKa3cQo/5xPPQ38WCZLHZELbdxnTbMszNbVgRFyfv0XJfveP3z8vc7tDWPzIGVu33xLHSy8lIbnLo9KqU4mUnUNVHujjjo3d4ulCItvT3eRZO0kLpzK4hgOmxRYlnwY8BCIO/aR3t+rmPbKqx0snFXV/xgUkXn4epuTWTPBsaqQEpjLe9is4bV3Xcdrw6Kpsr62YKJnj+5j579Txa79atNk9SnYRrwFMRatqY1R7Fq5ojG99TrHvshnTgJbcbaHMSXFl6BPEUv5H2h55WIbn+c1ZAJnOQiQASE1u6rAVhEDP7sxpP87YwQP1xq4p50K7i/TkgubAXqaTQs9nCt1MMeqERwoS0jX6zZfLrUx/8Y+jleb4TwcZ2JEqGFzUDJZ+Ylmu1aGyIgkmu1j5icfvFIEjpTlzEF2LP8eJ7PyUfk2gS+zhL3AuodT4+ZG3boqk6LN7FnimC5PZ4KgZL2B7xQzIJ2JZu96pv9DZd+rTWOz8VmTIbZfVvqz6httV0TG2n9rcYxnwvIVKfvcPPQDcdb/NgLj3cocs/IGtXmQMrfXhwWJAS2ZdvdC66VTiuEE2CyNuIXazNRNgwQOrjpT2qPgddJzb6qVRqZAuqs71JEyZZ5bxu6SzjdPz2Qjt/tlq3ylxkW/M4HzfHYZ10FsgyNwAOsNOK4TuvNeHgEXcKNuoM3H9gCO3FVFUwYpTnYYEEqjMNqrHZO8j1xgPo52n2amK1PHv1HDdZGlU59BDTdIRF5rA2NxpakBV66cRXiLp5kAiqexbEKA78rImu3RznXtfmbKLiK2QwTPN9DMx07V5Ph9DYTYOoHBxxdXDX/TDOFcRz7mT31mYNFiap9vK9V2o45jE6w80M9EylCaHCkB5ntGFVJkn/Llpn6ADEUvQDavV8IcjzyUq+paqhwrTTtUUbXTfQRtFIWj0q2vFOwTA8yrTDMrbEcw9PH7yLdgL3UwPgQds8x3qY1gY7di2JT1BsagmCCI7JYwXl9YxbMjxupqE8+UbSjKqgVUVcbSVQUtn0IQ53zu5yV7xw/f77dobg+4zYOUuX3z7VQfuz46o8QREf23IJY9KKTWTbcfYEcaeSIpyz6CRZWsmqGPRZcBx8Q3qidLA+w+XIlQFmBTu16A4CZQnRQ3E3nnDWQivhaS6vdiXiriuEZrdQT3wR4vTLe/tgBhtqMlqBODw5gYqsF2JshMUKDrqPUDOMKrTZPuf2Qf4/4bZ+F03r5h729PELiMivj3WgPZJlKUz/YUyFkTWZyYSN5OFY4pcUWKOdr2yDdp/SjB79xhE1cxCA4HKXkhvNUhgiOOV+JaCdBPRb79Gpzoi4tWgmDH37M9fLan1OCdqomnne2ivHahjWNT9ZYYDHYfjlzMTTKTiDdhr6A7qd1mgs9cbmEerrCcVcA5z3VNRJAlFs6VfsnGScQCtNbEWiIQn9MZY45Tsj91RBKlE58/wBzg94VaPKGn7LvI8F2+bgxSxQs9u2KBH0tqLHvNPASfzSlKfHsVC0aIHeOY71SQKXzzFt63NBapRuJ86R+KNKdzfZU3kM2DlLl9862jdf3QM/GuIBKZ+SKiGRaCIZm+XhwjiAk9kbqmmEuxSYjPPJHVkUqQe8bwGPrYyddVE+VyC868WzJHRYaFIyKVHHsl8m5lMtzJjvZG2ardG7slb/myBLELmQAQyyZ0Y18zLmOMC42KvLSxj+O8uoD7/vZrAFQ6GXbktF89b0DXZmgMmmsNjNPzy4eDlEGAYOhs15gckQtnRFbORCnS5RjPY3VoJYexbxmiaQHH43U3p4aPGPu5tgOxAaj5jEsZdvZVFYLb0OxJR5tSftt13Gtngn5ApUiDEMfE/4oJApjYFVmE8NjN+3tasxbVmomuNUIEPqR/exnONSpaRm9YRLnD1yDpWhOBnZsdVmddmOA6vrCGceTvr3ZsLEWsfNUZWsdu0q4rGZ7DlZbpxexRLyYCK+dMD3P+Rl0kzmVwqpE9i3NdC9j5LNhbqDnF95XdqSMP9xPEuDcvtc9fr6tw4gzBz+WWbRjaEwteZx6yV2/dxNyphzjHsIjrfHLXQL+FFGWg7apkbze9rbl9a9o8SJnbN9+cDI5ovYFFnLsqlnVSTTk3lYpZSOEEijGcHbMwYx/Ooj7DAhgrjmVYtKxBQwOUXsn0U9jUkDtKLqqxZyqfC5PDqqmxa03xNmtYqE/2sahv1OHQt6u45nfeUACq7ki/tGpqtY/sW5PC4yzfVZj3VInQVI/1/kYIsCNp2swMzDycg2WIsop3ZYJyAJVRR+ponEzkxSUEe2SY0BmvDTGu5fhWsGw9FHnHDfy/r2JlG3XsgosJxvJ6A07nxEDEFwtImIlYmOCzM2UrsdcOnZ2IdcfulvBMP3MC49eaWnbieh33W9Tg9lQf17tfRiDHVgKZiHzvJdxvPcQYnN9HANYPkGUguLQRYpw+eco6Og+KmG+7FdwnAakT3zpiO7kMEJvv1WZwumEBJTA2EaT8fW0m8rYNfJ6Yo5UhApSNOua3l1opauwrKFrZSwTZeqmCxTWb1QswP7/jKgIF3hefg5sZBmxHA5NTfYx3oNmNlo7rKx37jAjmx8k+sj436rj27Sqye80QQQhl/sc+gsPYFammIi938J5eCWNyuYVAe22I159fNg2WbsnYTamIeNk8s/IGsHmQMrdvvlGsrRop+yKwnXw1MmBfKbYW974umJEufOyYXIqtj0l7ilJI7GLBq4dYaEMNQghGDWKk7mMHv5di7DyZzq7NjK1CK6SWGelM4BDWGwAdblfhNBIH53l22ZhFF9tWz3czvP9qE5kJ0jjzlrgm/uUpSHNxjHOuDnGcfIDDEse0oJTqKRwN+xNlDnAUA9UFeWYbDuRqE8HBua7piDiijlOd9HYDY3K6Z9kHlpJ2qrg3Mj8Wx9qHaYZz7aqq6crIWFiP7x3Gw3ziNAKhp3ZulWjvlVRfZKoYkSoc4qU2MgfUHalEOB9xD6TX5rViaGygeKGNvxNDsVMRef8VBEJUin3owOjUVCB+bA/BQyO00mDqWAuGYmL06CDB80q0PPfCEnAuT+0gU3OjBsdcSDF2V5sKXp7hfJ9fw1wpxTjmwgTPJHGBYVnQEl45wnE7E/ztpY71zukHGF+2W8gE8/egBMzLi4v4jjDIDBLMY6rUxo5IWMSYMyAOYtznrpZnbtStvPayiLzrBq7vWhPnf2bbMl/PLWMesennzMP1sRv5IMAzenwXAfNuBWPT0GziNMFcmBTEufYzc32Vb1GbBylz++Yb275TytvLjDUxKVjdvKggUifDAsb6PzvbihgddFqAc6G0/kB3fd2c83Ay6ICwp0/iwoFT/MoRy0wchyPIBH10hgpYpFMr5Ha6ri6uqYN78xWXIErbZA+if/+QyA+8cCsoN9Bdf6yYi4pmMY6WCmiTAu6ZaroUf6MS7UZsdOvdCpwsAchuBofFICpW57RXgfMgaPKJXYxbSQOJYdEclK/OeEX1SGZlkT3HejFFyniJNSNSCIx+uzAxnZkbdRyHu/X9MgLFbglZNydDN2oyc6hHQrpxpE4v8kQqitFg/x0Kij2/LPL8Ep576iBIWByjbUA5EnlhGZmazRru+73XcH5eE9WMRXAPxHwwWCprgO04yHzRznaRTfv8Ghx+L8Bce20BY+tmwMYsKJZkUrDWDeXYsB4j33ovNac4/3oDgNmJj7HZrgL/8R3XoPHiK0iXDt8bG3C8NsN1tBWnc6mF79tWVRsqegjguiVcc+yKvG0Tv7P8mAm+W36C19lTaWUIleNKhPvplQxQW51hfmSCQCl2Rd53Fb8/dIDnOfYR0HET8tqClgW7N7FWzqW/KzLyJXvmv7rjcjO3B8vmQcrcvvnmq+NdGxpN009EUl2EE9VdiF1L1XupsTfqM8uwLI2xoI58E3Zjp+ODEs4TqrNisLIjJpDG7AnT2Z6yNo6z1SGc6dUmnDad3VTZFVSt3a3A0S8q04G6EOVIRHhPDnabIiKfOomsyvdcwu+8Vvav8VKjeh41lka87Phuw2sD6Jhwh+8pziB2lTXj47r66oRODOAAWWrbrsKp5LM3LCn4urN90zbS+DfqeB6RgqCXxgaYrM6spBK1tE1BAdfHnjD5AK81RRD7qh73LZuSyYdFyrgE5+P/2OjGyyM8azaRZMC4WTMQ8g3N8jy9Y461EZqGx7iIjNGoaGJrC4ojubBg4monBwhQGBSLWCPMU32M49EsnAjE9x46MA2brSqwIqkDB04cDksl7FbtZMh2sWQUeRYcrA4N6MoANBOMO7NGzRBg7NADlqU2s0xQ6iA4Zz+kaoS/v7qAv728iPlAptWZnl1XNzDaOYHu3RICo1N9vD9xca4nd/AcFyYIgp7aEfn0SXxG43c5qQFpP0BJ7vy+tRDYrlrpjCDypuJvGqE4r/09kUI6LwF9i9g8SJnbN99WhrYbr86ULqo76uoMi1OvZGwJ0o5ZwohckVlBZKwlHz+1Zm2RvscRo4Imjtb2MzjJup5jos4l1VLI6hBOanqHr8nVJq47dvH+WAGSLN2sDm0XTJxHJhbMOGJYlb0y8CulGNd4pYVdtwiuJ9+pNiygLn8Uy5I6hqNxBE6MXXgLqbFCiPu5UbfuysTvjFgumYksjgBaTB1kHvbLcNInBgosVs2PpZHIWhn3luQwMQwMWlO871TfMB5+ip1/WBDZUbBlWDDsz3ZVO/lGVhbS/j+ZfPjwfa8NUbapzZCNWB6hnHClift6egfB5qCI8WFAsFcxTR12zx75htXgeDL4Sx2jEp/pwSl7Ge4vn8HqTOz/kwLG7FzXMnLrDcV8eCKbgUng5xlaBBvz3vfLCIoqGmBmYn+rES80xnmrM3x+aYy/rTeMTs/vCPFUDOKZ0SQTKXMM+DrQION6HedphBjjFxeRubnWtODO0znuZdaA8/e8inG72rR+P4MiMkyVCCDuTWUePbZnc+ZaEwFKIzRF6sf2LHgb+wbOnnlgiWkJyRn+dclqf/n23925PRA2D1Lm9s23acF2RiJwgMSZsC5N8CedBdk3fE8xQaDCzAudcuYcFvNiup8lJK1p33SGE2XKxK4FOwRQHjUulMMiHPNOxXalvcDKB2/dxPv7gaXumUlxM5FIWQu1Ga7rdA/H9NPjzytimJajVkhVgEuZOcy4JC4wDdSFmXmmxtucmnOMXFOAfeeGyK6mKlh+GxWxCy4qBbU9wXhSv2aijCk+08g19hb751xYwPsp+35QRkBysS1yqmcMkGqE6zpORl/NYbByqmCy8YmDQOWpHZQFSF1vTzDmxNMQ3+Mqi2VdNUMiD6DscmxZo8TBcS62ce+n+5iTLDMmrmXOiEvJxATLznURKHSUgs3synPLJkZ4lEJeTHGegmaoZh4yTWEB41eNcM/NKdpKXGsAUzMIMBfPdhFEbevzfHoH87IquC9iR4Zly+ZtV5GRPChZ52xmlxjczjxsLMoRgsZrDVw75yMVek/1Rf7As5YJE8FrV5sABx96kNmt+jssH15uAZyczwyOfZzDEev2fLPU5+L+lmbiXPh7Ihs1yb7zj912Ds3t9W3zIGVu33yjoill7N0iHC1331SzHBVtsWOtPixow79MJBI4vUzgSBLXNCqojUJaLqnBgQpbcQdZRGkp+33/uYiIONd+EbvxF5fg5KijcaaX68/iIEAaCBbTTQ1eNuoiv/YwMA6P7AP/0A/QyZmZIN57dWZ4DJE7a2mIHB+giGDRZvo7z8Kh+qsIslLDogna9QI4UF6PiAl/ndKM0Ng3inE/QIDGzMvi2M7VLVmaPnXgPAspgLUMMM/v43PlGJmCzlj1MSoiQz32tIAg5ultPOcj1O+bwUl+PAjmZIArol2fZ3CoBFlzHIqquUJ14VDLQ4tjww5RW4WZJ7Jwnti5VZCtpjo021WTi18dWrbjKHh3qLoyVFo9ahR5O9B5tjaw4KZVsfmdlkV2XBPqO9kXCTQ7lGk241wXx7nSBJiVlF9mhep93Pe1hgGbqQBNAcOwILKo4PaJj+D7rZsi//RNNkYU/fu+C3h+ZG/l7UzvsK7N2L+V2n9QxjzI9BmymeR6w8aKLQs2qxjLs10TfuxquS8TET8VZ/jXRWqzWzNwc3vd2zxImds33bLFvyjO4O/CsRVS6+GxUzWtCBHbrSVKi+RCWorw2qCI9DYzHwQWTgumSDvyjTGUpzQTgDstWC8cEXPmoaa8N+pwmi93rAwQe1ZeutQ2pdXWVKTkA2PyxC4W7Ef3sLsPEnPkIkZNfdM27pOg2/u1SQEBU2FigVjmGHOD2RDqYUSusaSuNuHASzGa6K0Mca2XWnAGtZlRjberKEcNAtPoYBDAAPJcF+euh9AoIZU01edLPQ0RiIARFLlVVfGxCFiFYRElp6URng2Pc9y9V6LDf6fs/WYNc4OlDUrj83m3JwbaPpqlInaHomTvvXZ7yvi0AGf6+TX8ztKVn1p/IWaZVkbH9+HJC/CVY5E0RBaM7BeWpbxUpFvFa1RjTlyIujHILce4r8RFRmZlhHv99Ekr4TC76GY2L+uhyGO7Ik/s4Vj/+2MIfr7vgskC0N53VeRjZ7SMV8DxTwzw/Vpv4Pej2bB81igfoJC+PC1gHoggqOmWEMwGsTVdDAvIbI18XPfCBM96pJsNCiASoC4IbueByoNl8yBlbq8Lyx76URERcZ79OW2sl2Bxo5iZI9bzZKjlEeqU7FWszwx3UhPfOsq6mQFuS6qGGROAqunrQDMvKtjm/PL/G4vzSdXvKEeGKXEEQU7miEw8A+rS6b3/CgKOt21g0dytAKTY1cV/ZWSpdKpszjykqrl430uAMinc6ix3K6YSm39tp4pFvjKz4yeulWB2K7i/sW9g2fUGgofYRYDwUC4dvzxCueOzJ6xERezCbgXBx+LYQMR5ETs+t7zx2MOigWYdMZG9z5wwPZW3bd7q3P0EGa3M0W7JrgE1g9jwDAfKihHBvRM7VInMWU4KuV5FSm1mibCt5RoyoFLHFFI5ZxfHyHg8t4yAYVIwzESQmDDbcd2GX+1gTJ/cQZbC0Qzi0hjX/WsP43NP7aDEkTjWq4fZEhE8682ais1p0LU4wfk/ewLPenWIZ0XacXVm37d3Xz8c7P3RL9j/Kxr40U73RL7rspU6PR0nV3IqtXexS21givh8zh+YRhC7YIscVlGeFvB60b2ZAUV38ynGohIB9MvAdxnlRaf/EyKvLcyF4B4Qmwcpc3tdWfamP3Xz/86zP6cqmoojKOhulA5kpFokxcTE0ZjqpxAcS0aRh90mwZ4rI7wv9OD4miFAgV6KAGaiZYHdCs5LwORYA5VUQa8F1RypzXCus138nTX35hQ9S55bNvn90EOZo6q7fjaFe2zv1gFh75vj2DzH7eYdMWdIo6Mi5oXAUDaJa2u2qjk1xtS0gHPvVjC+LInkzU9wn0y/U0+mPkOZ5qjWiYiW51Jz0JMCSjyLY4ybnwKDsDzCM92r2LMMC8B0fOwMnNDa0JRbo5wznGrGwhGRSM+TD2BJL3cyw73QhkXLQsQatJLWTZzRlRaujbgeUrcnPq7rVB//tqZW9klcZYulOGavZGWeDZ13l1soK/qJyMfOWlBeUsBxrJmckQ/HTQqvrwFKKTZMDqnzN+qKX5nhuvfLKtCWoOw2UlbcLME9rg1QmiR2J6+YfFA2IHsmmjXT7xqVd1eHFshHrtGa72RhAd8R4sxSPe+JAb43jhjIOlDcDynqz2wjWCvF+P5u1ZC1C7Tkw8wgZfnbqhezOhSn95PAqzzxZ+5ygXP7Zto8SJnb69ayN/0pcZ77WXO6e2U4AtJXSzEWHToZYiyYribYj0qXC5qZqc+03q8B0MjHAsiAhH1OnMwyMUFsZSA20gsLIq5SV9lp9mzP+p6QmfNdl/Hz0XM4/wtLuL6Tfcso1GbW9G+rZgyLPd0Znz84vjRwnB2V7w9iBECvdmwMqUGzMLHshRPgc4k6MdJTE8V5fOYEevI8vW1BxlEsxcMHcLoEoF6vA/zJZ0TBM+rZZI51OxbB+5bGCFqeW0YA2J7gtet1lK0YqL7SQVYliI1xMlbq+aRgWQtfwbf5Xj/HjdlWFWWVhw/w0wiRjbjewBx5/xW895feIvLcEq6jH+C957rIbjRC63PDwJW2UwUQ+WrTQKJfWAMO5HQfY0LszLCIktH3XlQ2m87Ld68jE7JfxnuJhZn4+OExBoHK3rsIyFkaYafqc11VKt5UkHYZY7o8wljHrkhBny3HMnGsazEDZC+1zOZEsValWMTVDQVbINzJtrWskymjLNH5Ebvas0fv/2rTRPryDLr2BK+tN1BOXRyrJEFs3cupkbNRs7JZC9oyzvrfFhn7kj32I3e+zrl9U2wepMztdW0UZnJe/R/wgqdMjaKm2vdVUyNxsFg3Q1M7ZQrfcwycGSo+pVeyz6WO9QGqKcDUT9AtOVQa6IFSoNsTwxYkrtFM14ZwaL/+EOTWz/Ru3Yme7Yl8/AzO91AXr3GH3A/gIB/dN90Spq+nhbsDaWkMBo6WEvYqAE3eFDRzDVBMTZStmgmxrTc0Ve+ac9+sAQh7tYnP9AP87SggtKxp9q0ansNbthCw0WE7YiySs93D11pIscPfrMERnurDyQaxgXspg//iosjn1gzvkokp27YnoOseZczcnFiOyf5v1iCudrkFSmwxsVIatUfywcZ/8WWcZ2mE+3hpUbMPOac+00CDuiUieD8zL68tYP680lGV2KoFxYnieBpTBF3sx5Q5CABZxmRWgTTpQdHYSBfbeM/aAAHJlaZhva40LTBkUN0IlaY9QYAz8k1okIwhGsenHyDIFTGROLKciKnaL2Mei1jQPixiPp7sW2aI4+OIgaCDRKSu31u2nji/j7HvBSgRLY2Q4RkWcZ+TAgDqTd0EkHI90s3NzDNGH2X2NfvoXP0Zyc78uePny9y+aTYPUub2QFj2KHY5TvgR07XoBVjcKbo2VH0TCnPtVG3HfqanDCDX6u6FHCbFc7C4UzbcS7EwtiYIGvYqWMAPyqYAy5Q6NV5aU3z2SyuqseIfDi4mitl4/xWkqJdHRgPdq2Bxn/hg/7RCnI8L6b9+BLvvJ3cPBz5HjaJq+fcMiwBKTjQoK8dwOuzQO/bxGnVYajO8v61y6p0JnI2IlVEYuBy9lKHSQtcb1svm5Q6c5soQOIvENSGyURHHbITGyNpQvM6TSpl1BeNWijE2sYuAgpTUTMHA7DA81dLPc8u4XyqV0qYFaL4wg3bzGqbYuZ/qHwZPHwV9steU6DhwLFiuEMG9ZA6CEVKY2Syvoho2F9sYv0qEv7G8QzDxM1oyW2+YNH9njM95qWmMXGybCmwjxDhvVzEWoyKwHuXYMDjPL+Hen1vGd6ASwXEz+0baMvV7uiVcG4P8iI7et7YSsYvvUpIDa0cuAqKrLQRLV5o433oD93v+wDqapw6ujcEpdWqcDM9jt4KA6EwP8/JaA8/AS3Hccoz7Jq4qdnEPnTGug2WoVQ3C6jN8BxtTfA/0/c7F/1kk8iT77X/o9t+xuX1DbR6kzO3Bsut1LCqTggE/uSB6mfUA8VOk+ok54GcoerVbEZnojo86GgsTSy/vVeAkPn7GBONEUBI41zWqKT9fTER+52sIJEbF47sdP7WDv7+wZCqhlHmnKit78lRnRqUkIPeVDv7PjsXE3+xW8Psp3TkedcifOG0Zn9TBDpXZlLo6iciFk6BmSKRAXj+BE3Qzxd8EyCwVNM1PRgV1Rcox7u9sF7t+ZhSKiQl+FZVB0ppaMLVbwe8DxVoclMGiYUq/WzLFUWaeRExd9UwPx9rXe7ratD4y15p4NmTMXG+gn1IztGebOggMGYzdLgNzO0tcyzBErsikrHLxdQOzsq1ANUJGwEut4/KkYLgcCgkuaJC6UwXDyslwn2/fwDi8toD31WeYl5faKMWNfcz9nSr+JeX+dB9jcGJoDCuCkYdFa6GQauZxWLSu45FrInKcX2sDu39mw1zFIVF8sBZpc8ypse68DGOxVUXQOSXDzsM8ZTmPWDJiiZ7awTVlgnFghtHNkI0aKW5pQbV79nTeUXK/ylJmbMJ1fcUGjX0rW9Vm4nzqfxQRkezdP3R/82BuX3ObBylze7DMEdNHIaDOS0XqqSpOJhqUiHX+ZRBCcbRrDXPCnbFSOctwvqtDLMZrQ6MEt6YoWexUFDToGH6Fi/qf+DxYDlQSvZ3tKHV37ION0plY6eT8AZQ3qRsRFiwAOTHAIvroPn7/+BkEBAclBBG/7YqdgztiqsRuVzFWZKXQgYQeUuLlMhxk6uTE8yb429WmgWbZAZlddEdKYe2McV+hhzIWAx5H4GS39G/1mSmQBgnGshGKfOoUxv5MDw6G+hoER7J7cWsTDn+jhjGuKjPptQWMX3NqtPCndhBoDjw4pIstjHWQwOHXZ4cDVJag/PRWDY/nl+GQGfgexeHcqONvpLP3A4wNwc6dMc7rpXjGdO7vvwJqrwicOMGqtRkCiu2qBbMc90pk3YvZSHKjjjFl0ENadV3BrO0pxn+9IfLWTdMA2vhb1gKiNrOGm8SguJk1a/RTvNe/+1cUB89wne+4geOSNt2aWp8m9lZyMwS5I6VlD/T7kDkGgq1qSexza5gbxKu8ZRPP+pUOSlddwecXJpjDZK2RIl8PLWOaOiZ7wHnQmRj7rByJ8x/+FxERyb77j9zjjc/ta23zIGVuD5bVQxFfU86pY/LbIqrgKpCLZ1MzVyzjQed9cmCgQxErFRDgSedyuoefo+qYF9siX14R+cDFW7EiDFAyxxZ4NlwTsZKEk2GhFIEzPX8g8q7rVusXgYMvx3iNtNytKrAeDx8gEFhvIHChEicb3PUDxSUonVYErKXIw7hs1uBsV4f4LJlFHzuL8XpyB+dfb+B1am2w8y6Btxs1OKF+gLE7McD4hlrKYZnt1QVkLh4+QEBCSfOPnTUBsWkBjnhtiM9dbqEkMS0Ypbk9Odw5uR/gWbzSwfiRqcXrGagT2qwjgzIt4NzLIzi1L68gQDm/j/c1Q5HfPI3XntnGud51/XDgQmNJgV2vqwo0rkaWearNTOeHTDPiNS4oPfbpHeBatmrIhCwrBifTLMpYMwv7ZWSpHtnH9b11E9ebOngO376OIK0e4tjrDQREF9s4//uuHAYPE4g9UZYOA4dhUWRf9YHIbDsOtE1cz2dP4N4e6t46RpUIx73Yxtg/sm/3vzAx3NhG3YILR/DdOTmw7FekJb7YEynMTLSPQHQRBKMvKz6IirepI9JPresz7/XRPZHPnbA+WpxjT+1oJ/YSzjcoijzUFefXflHETyX7bf/lreMwt6+rzYOUuT0w5kw/AknvUozFhWUe7oSoJludGWumHyCDsFtRuezIdlUUDyuz1u5aWYggSOph5I3sj7sZd7tuZhoejRALunZuvSm9T/YCG9rtVrCre+cN0DM9ZYy8vIiFl+c/mrXpjLHzp/ood/Sdse62M5xzSRkQ/QALM+3RPVPpfW0BgQp394uaMeHuV0S7EKcItJpTZIn6gch3XkXAcq0JB/zYno3t2zcMrHqphZ1+Jlqm0GCLmYFShECK2IUgPhwYEti5X8a5lrRk4mkJ7nQPr7/csXsQwfPtB3BokQul4GoE/ManTinIcg1jUw/tnNsaJBZVE2WrppkGLSuIGM4jH6Sw+SU7c3fGCIyuNK253rmulWFeWoRjdzKR5TGOt6M02v2yZkBKmEdneghyW1OUDJ9dQTDrJ/gcMyTdkkh7Ko7/YWXS6PPIl90cUUaUbxR7jqUIvmM36phfnzmBczdCzN1eSeTx3VsD97dsmrLviQHucatm31MqLu9ULSj2tETFQPWtmwiCVkY4Frsuf/ok3vP4Ho5NFlIxwRhQd6U1RQB0pYU5F2rgeFBG8Jany1cizI9nl61ZZA9ics6zP3dIJmFuX3+bBylzeyDM2fhbIkXVsCjfI9NFxDIMp/pYBAmSG/kGVGXQE7mW1qbdrttw3piazu82mSmhVLunKW3qbrDfj5vBQfdKxrJo6oJKtc4ndhF4EBNCIOFW9TB1WQSvX2rhdUrU81jfddmuZaOGTMIjWj660oKjaYSmfntQUixCDAdMKvZMsQN0MG/XTBNBlHk73UP/FgKOCSzljv7xPeA2Jj6cEJkxQQxHdrKPMXhxCdmSfoCSGHE5ZNC8fcMaIYrAMT+lbJWPn0X2ho6IAd/FNpzfe68hMDsoYZwjFwHB55Ue/L6rIrV9091YGukYFJCpYCDbK5nM/LSAbN3i2HRQ9ktQAybLRXQ8znURHNVDHOtyC0EfRQerM5FJRcscCsZliWrsg5acOdZigfiOzhifWRpjrrEn0kNdm6uk6OefW6L3UIlwDwQBf3kF40GBtbGPMSSV/OEDkc+cxJjms11fXMXzLaQIGMnq4Xxd0blQUXDuqGhy+pfaNp6DosiusqC4OSHr6GQfnzsoYW71A2P+OYLsHDcwmdhcz+v53Kjj/8QGfd8FzK+PnTFZAj8B0zD0bjIP5/b1tXmQMrcHwyqRKU9SJOpOtluxXTNtKZfqbk9Mun63YrtTajrkMyjHpfrzRn0OCp8xRT4qYpEXMdq0nwCL8P4rWED/tyewwF5vmMbHjTr6q1CkiziHUoyAg/eeOiL/6lH8PLIPRz1VvE7sYjcugkX+6W1rbX+6h4wJLXER2Fxp4XprMyz2LFOMlHK9q9kSNowLFCtyYoD3T32RRIO+q02c69E9OLDO2MZVBPd4rov7qc5w/8Mi3vfIPgKJrZqp1xKwWVftkhMDfHZxjACIar2e4Hy9EtgvYx/jslfGjnxBKeSkyu6XLONxuWVKt52JyB/6sinVcrydTKSQaS+jHjIh1Uj1dxTvQMbZsIgArzXFcyXuoVdCxihyEbDQKVLI7cldzPfUEZmJNTWMHQjf1UI0H2xP8HqvpN21NaNzXgPPIMY4kvIsYpoxsQtNEpZAWbpJHQRwXmaA8LAg8u8eNqZZW4Po+sy6Su9UcQ5PcUbnHJRfehrYtaYiMxfPgUKCZ3p4dkXFVjFYWB3i2l/t4D1uhuzQiYEFGiPVz9muYixj1+QHajPTVHH1WZFmf71hmZKja8iXV6zk9PYNHL82QyBNFh8bZVYjcTZ/WmTi31TLntvXx+ZBytxe9+Zc+TsiFcWg7FWM9cCFKdaAIHPwnm4JznSsWhIESO7rbjpxsLg1Qk39FuCID0oop9RmN3dNNxVqg9icLZkMzKCw+VwxsS6xsauiXvoVO442XIpF/rPn8P/disj/8lbDUlDP5C1bWHA7EwQQeZE2N4NDv97AjjNyRd6+iZ3sb56GM35qBwHR47uQVL/WFHnPNThCmpfCMaw3cO0Ez7IdQSYKDHXgmDIBfqcewnFs1fBcKHxHvAEbEOadQS+AAyToc0fLWg8f3BpUftdl/Jun7p7p4Rm4GYKV1xYsINzNzOETnHq9gUxNZ2LYpUSd+fIIAQatNcXnHt2zTE1tBme5W7GGiMsjbYmgjBziUfYquC7OPRHrj0OGDVlVpKcTu/LIPu5l5GNMOE/zKsAnlcZ7qo/xaIamdbM0wpybaRnzLZs2r1tTZGpImScTiSq9eUYYMyrswh15AB3vVQ4z6Nhq4LE93PtVDYC7JWTpRj6CXmaHTvdEmimeU+ghCLhRM4bRmgKtOe8Gyv7aqCHTQj0jquV+12Vcw5dWkd3paVmyF1hH88jF9bBUeKOGoGivjLm0VcV36/e+bIBuft/zmSCWVomDy2edrrTEefnviwyLkr3jh2/9js/tq7Z5kDK317U5l/+OSbxXImsWeFDGIsR0c69kap8UKAtipHndDAs/6a/s90Pw5lQzD8RvXGkBOBp5CAzOdUWqLpyzqxmXqmZ22Eckc/B3Mg9ErCNzObp9QzpaVcs21xq4xid3sSOmdHuq2YGXFgEUbE1Fvv8VlIJI6a3PsLiuDK1/TD44+sBF+/+mAmxbUxPGY2fm/ZKVDkoxxnuq95k4OPabtzAOmYNFf79swRv1apZGWkbz4GwWxxjvjTru92zXQMUUr6OceVjQMoMg0HhsD+fJxJpP+srkYZfgEwOcgzTiL6xp6UbZTdWZCdFFnvVb+pUnEMQ9obgGYnLI+mLZ7EAzIMTOVGcI7tjHhsyVTLSVQYprbk3xnnJkZRqCmSlAdqVlrQhKMV5nIPbu6/a8HttDAHi2d2t2jxk8BmNBbA71iV3LGC2OcY5hUeRfPg5gMMt+IlaGHPn4TrzasR5GcS6LuTZAwHimh+vtKdMscRBQUf0533ZhWrB54ogF5cTtVLVE+nwdAU5YxvhQfbmk98RjdMYI7l7poGzHgIQdnPlMeiWMy+IYfx8WjW328TMIhKhPc1x7iht1fI7B6mN7uD6W7tYb4nzyf5TsPXPK8tfa5kHK3F7fRiouba+Mxa+smgcMVkqxLZBUwpz4SOGGBeujwuwLuwCXVUiLNfNpAc61PbV+N4MAf2fphs35CqlIEFrmgzvXZqgOlGDeY7IoIofpyuVY5P/6/PHv40JMbZFntgGUpB0H4mX3XYqj5VlHTgbn+umTWMDP9HB8ime5ouUF1/RhyhHG7HoD2ZhyjDFfGlntv5AarTT0jKXkJyK/eQbXtKYaMKf7hzE8VH7tTAwftDwyjY1uCWObCXAPrSkCC1KfyxqAfuqU6YSQtRVoBoTBh4gpF+9VEMC2pggMR0Uc4/Fd3BfF9tinhuqlnQmCltUh7uugbLtsZnZi1RaZKfXVzYxyzh5Q1O2havF2FeNADZdKhHueeRBhe9cN6wF0nB3XL0kEcybfXVkE516YHM4miWh50cM5N+oWVD6yj3tiJqk1RaZo5uE4CxPMh0Fg2jNUep740ExJtNTUCxA4feoUSnSOYFzLyvQhhbg1RWDO0tPYR7ZzvQFwdljAa2yVQSp1pIH1+7cNOHxQsrJhX7OF3RI+n7giv+3y8WO3U7W+YZdbeOZkKz10gGd0qi9yqi/Ox/8xvmbf+ceOP9bc7tvmQcrcXrfmvPz3RbzAVE73yybOdrVp6e3VIRwna//tqe0UReAgdipWryZYlQBQBj2lGLurmwyf6LCjYFfWhqbZ6yE+y4CnMLPMxCCAsy9rGpwU4rwTuZOeSt7WGwB0tqYITijadi/mpYfPw8zKjTque6KAUeJMWC7olowp4aUY052qytO3RP6PRzGWj+7rjj3B82HTRj81yXQRkf/oZaNTJy6CCAZ1zEyc7VmZTATskad2bBdd1l30XmJqvF9awTmf2MW1X26ZBkwmeA6zHG060QxGM7QeTPtlA2DWZgCiXmtYVoNdlbn7XlHaNrsHswEkM2iFFOdmeUXEWFztCRx3P8AzXR3iOFMtHa0O8bf1hpZKXNxjr4TshJ8c3z35XuwoqFlE5He8Zv8njotYDqo6p2IZQjr4J3bx/4qy5ajtU5sZ9mm/jOseaLaErDmOOcUFU8fo24XUtIFGDWuayJ5AnJ+k7zPzsjrU+VTEPGYW6tUFw1Yxe3VyYPTkxTHmS+VIoCaC7NbZrmHZGJjsVXCtnl7r2EcWphkicBIRRz6MU+q/c/vKbR6kzO11ac7H/7GIV4YsfaI6BvWZKcpmgoWmkGIxOtuFsy3rroZONs1lVph+JrOmqLvpcoRFsD21xVbE1GxHPhYlliB4PeMCPiOCRXFxbBRRisoRRMnSClkbtdm9Bxqkgd5up3c/Rk0I7kAfPsDvV1qQkx8qVbQzgZMc6O50r4wx7pVEvuci3h8W4MwXJkYHdzOwSRqhqcWKWImAJQcROM1pQYXiIuuJVJ3hGRKwWooPa3A0QuBMIg/jf6Bg41N9vKcc2c6ZDrIfWCM+4j1O9pHRaU0RINEiD0qkq0N8nlT1amSaNUUt+aWiZS+xzFlYMOfrZZaBSx0whjoTy2D1A2sEGLkIQosJ6K+n+kYDXtTMAlVTj2ZSGFjci31+TcXvNOP3zDZ0VT6/hmyer0HES4vIEC1OLOsVJBi3zRrmTj20hpr8bqRigFlmP4LUZOp9MYp2daasKM+o7OyszBJLMcFnx5rtfP8VY+2tDhEYfOok5uiS4pU8Dea8DJ9lt2QRBJn30gsrz8ISwffby21wiD1bGuPYo8ktn3Hkw/NA5au0eZAyt9edOf/ul0TKYos7SwjFBAGDm4mUlD7sJ6rmmSGIoQBZe4pU7GbNsiQHZetPQ6rmpCDSSHEcN8MimjpYBLc0+CHtlt1th0XDoUx8LK7VGV5nPbwcmZS7ZKYNkTj4+yCwGv3K6M79eFaHwJ/kjZLld6NI5x1aPkCpRCLfc8kAk6VY5JOncM0s9WzUsPiSVfHOG/h/MRF5bB+OlIu1k+FemZEhHoVaMex/c1St1U9uNnVzyv/dYY2bfJCTd8rs2SOC+ZC0bVdeUyzIyhBObuaKBBl28I7YTn9hgixNJTLgMLEtE10WeyUDdooYwLSjTpvzQkTLaGLB6bSgTQ8dy/gFsUi/YYHr2S4otc8vWauFbgnHDzXD9cQe5jFZUdtVvI8BOlknry3gfEfxFLEL1tDYB9Yop5civcAa7RH8/ewKHHopxjnCgoGRz/bw77Wm4ryqllUSfR7cNFxpWdsFZss6E4zR9QY+x8wUy6yXW3D4lQiZ0mKCazjTMwB05uBv6w3DIF1vWIDIRoN5TFRlhuCPYzPzMDfy8+tejJuFsIAxON2z5+oWb/uxeVblq7N5kDK3151lv/0PifOF/ycWhZ2qpVaZwWBDtiDGa7H+7FYM4DcpmIz4RLMGYQFOvaxg0M4Yu9PYtdbtIx919kpkOJbEtdKHn4pkqqJJhdsgxrkTF8cbFw201y3hc6QgB7ojz8RAiDsVky5nTT1fKjnOCEhlpid1sPCGBYBan18CxmKraovxNDcO7Ym2rq/jcytDZCte6Rirg1mpIIEYGkGpZ3qatdJ0/426PZdTQwAYAw0Kt6t4PXZvZe+IHA7OHMGzOygfZldMNagLlbWR/9tbN1F68FM8q2aItDyfJ5kx9ZmCayeYD2SBNULc44ECZJ9btsC3MzaWTupgTB4+wPjuKBWV2TD2mSmkIuJaoMf7Y5DF5zYsQvF0VMSYpg6u42oTDjBxAFhthSKrCkJ9bQF/64wtcLhRx3vZrFAE1z4oYtyqM/zsVkARnwqCjfYEz7oUW3BUVeA15f2f2JXsnWCsOBt/C+fZrSDrsjwSeWTPqO5P7eDaeor1uFE3qYATA8yV/bIxnDbqVkbZL2P+d7SEN/NMX+hKE8d+fBdBXeRZppM09BMDk79nJ+V8aauh2Z7XFjA/btRx7Pbk7oD2vJ3WzNsoxxpcGeG8O5W7bhjmwcpXZvMgZW6vT3MzOFOm6IMYi8NRhzctoEzBwIIp4WERjnfmGWWVCqxOZkFC5pjcO2vmTOvHroIDc7V06ms4gv8PfJGyh9+dDAFKbYbr3anCOYaKRRjpNbIDMbM3Ioc7Ji9M4DSrdykJ+YllSqZFyxLQyQyKuK6rTYzX1SYW87aCFw/KeA+d/rkuHFh1BsdA3ZTHdDfPLs+DwBqy0aGf64qc60p27s+KiC7IzSl+iG84riRRjm8u3jc1Tq7XTZK8NsN1jn04SUfwPJshGFj5hndeivOtDlV4LcN4R65hIlaHcHyfO4ExofT7QHfC7Ql26cXEQLDsEN2ZYCyYeTnueYiYND2VhPslzLfIQ4C3XUXw2CtZvylq7Iy0FBkkmP836shskOEyKSAjN9VS4/U6cEFv3kKA9ZtncM/LI9B0X+pg/u0rwLw5hUMd63xrhnptLhzwXgVYmTdtHS6JEOy6X0bAwGaSHHdiQPZLAIoTZ/PUjnU9HhUNhEzcSurgvOz1M/NwDQTdUuhNBM+Zz5oUcRGw3YhxyQTX0Q8QULamCKoI/KYC71s2TVjwXs1LgVd6fllktwzF33wDxrttLNScK39H5JOnJPvPfuA+L+CNafMgZW6vTyOLgo4t9AzomLgioiBWEUvlBwqAI9OCPTjo8MsRFs+9CtLKuxW0ah+p9kUhhWPaL1uWYL9sreh7ARZU7pKnBQNiEiiaiWUDWlP7PUhEgol1BA5iaynPpnZ7FQPe0rkTzEhn1i3hvZngb2e7WITP9qxu31UsBvEMsWuaMY0Qx0u0NHK9jgCDu9MPftZYR1SSFcGCv1+GeigX98UxHN5/8qKNW97yAcnt2ChkG9GcDNfzhTV8/nLLAontKv4/KGKsz3XxPEXg8L60opTXKe6vkJquRmeCMalEIm/bBHjyUhs/lOwfFNH/5rdO4ThXmxrkeNZzhuDYuxlp3YXUGgcGCvh91w08IxFT+B37GL9MrBlh5NpcIask1AzhtSbmQeThGGSlff8rCFZ6Ae6hosH9TAP5QBlt44KxiiIXnZFFcK43bd0MDhz5MOZsW6zUWkhxfH7PqLnTmJroXzXCGLenuB7S4xlIX2/ges70cN1Xm5j/iWO6RMxeHTUyuk71MQYfPac9onSOkLLPDtIiNne2aghuV4YImqiWe6dya94qkVHZSclnEB5r1vX5JQSNtzNlZzn/6p9I9rv/4L2d9w1s8yBlbq9Ly971J8T57M8bsDLS2q+f6i7Ts4Al1sXay0QyD8C+lxfxc1OVtGRdfh/dw6K9PMKCWpuZs3MVQDvyRSJN9Tue6WKUdNFn+aaioFtSWinL3VaqKTUa1usiC1Msjr2S9WgRubUXzdQD5kbEUvXcWROHQ6bDrGA7zFIMh8Uus5QEF4EDqIdwUKFn2SYykWIFveaVOJkxOSiZpoyjeKDFMcbhxMDKbvWZON2fNPzJ7Sx1tBt0UzvShnAyZF/kFV69TGSnjHtmuY4ZhvW6yJOK+3ilYzvoQYCdNmnLhdQYXd0SshHvu2qO6dcexlitDtEniSwlYiX4HBINkCqzW8sEO9XDisYiWo4TVUpOcbytGubAf/Hlw599btlAo4kjUk4w51aHeEZv2kKZYEnEefWX8Z7Ewd/XBpZBpDbK99xAuehq0zIok4Kx3NzMgOjs30MV2KPZO0/Lf92SlkSLJh4nYjov4yKu4cTAOhm/uoC5OAiAcWqE+H4Rr0K9l9Uhnh/lAIjxevwIxkYE8+U3H7HS38oIQcipPjBIbNnA0mbqIKgKEoyxr8F6OUapikq/jRDNHqmOfJy9qO9n1mSm4O2iZhRZHjyu55cIJBF6pZuMMOdX/rnIykiyb//jtz/nG9zmQcrcXreWvfOHxXnuZ7FosbW6mxklOXIthVtX55wpkHB1CCf0/DIOxswEm5atDrG73tPdf6jOPkhEvJzAGOXJGyHey3Q8ZeHJSslc/Ls8wsJXjsF8IWZjbQg20aSlWAbBPR2UsEhv1M2ZbtbMkdAxLkxw3Wd7Il9cEXnkwBRb2XzupUVc024FCy3r5iJY9P3E9GPIQiK9t6aL7UYNY7FTxXu50C+OFXA7w714GXAQ+2WR3ziLTMOJgUjrNuWpYRH3tVM1NgvbHJzrwqGSXrufC0qaIcYx9IwxE2smiYHcUHEdw6LhK04MVJxO6cdLIzSS++wJ3NOvPwTHcnKAzBHFv9iCgJRgR/DZ031cQ7ck8ulTNhdPDHDegxKycwTl8ljdEko7i2PLgCUK2mSGaEmFxK42cd4FZVa9Zx3ziMGmsqTlP3/OMi97FQQ4z2yLVJShxMyGmyEgIjZqdYg5kmpwQ3n8hgaJE/8mgy2Pm3Cin7Bg7UbdApoDzQbtl5EZWRohYKFo2sMHCA4SV+TFAOf0MmTv3ExkOsPcZvO/tQHmeDXCZwfF4zMSpVg7QWuQ+fABmEmO4Ls00u9/JpaZoZT+SMetMxFxJ9aM86SChD9xGnT54+xiW+SlJQXPKq5oYYJxePuGgbmvNhE05cUTf+u0ihE6KtzYNRHA9kScF/6BSCGV7LEfOf7cb2CbBylze11b9sx/Jc4X/yEWOlJ5mbnIxGiPsVjgQopxOUbQQBE37o5P9bEQUgWVLeM9DYAKAgdPumy3hIXHyewYYw2cxkUs3EGMFDw72XJXH2jWwUtxvsf3EFA4mcg1zxZa6rq4GRYx6qpQPTcswKFmgt0e5dCvKwW4FMPxMeMU6bG5G/cyc+Rk3Ty1Y4ykA80erA5txz/Ra8hjfegAwwICIdJQ72R7Fcj0E2tAQGnsoqUBuzOPKwaadASvNTUYjLVcUlQMgCsYzxMDHGu7anL+kwKAvsVEpJAYXkEEDCURkV94B5zj+69A2fdSG45OBPNm7ON4xEWsNzCXlkcIKL+8grH7wioCx36AZ1FIUS4RwTMvZOoci8YsI94qcg3rdLon8o4bGKMTAwS/21UEbytDkad3xKl/xO6jEpmI2FGbuSIXFvFeYjcopT8qao+jDM+CrQYOyiKVSLL6h2493tjH5yIN+GgX2hBoo9Me+yidsXkkr/NLK5g3q0OTCdiow+kzO/O2TQWlFvHvyjGYn7zlMSnlSFWEXXx+UhBpFayP0PUG/o31fh/fs35GEwV812eG1bnaPNy0k3a6jzLkrGDl3u0qAiZuCP7Vo/juF1KRf/MInuXyyNRypxp4N0OjejMj2y2Jc+nvirQnkrV+7M73/wayeZAyt9e9ZW/9kyj9iFgTND/VPhta1mDZpxKJxInpGTy+a7vaQqpZh+rN8sRNaXfuFEkh9TM4IWor1GaGq0hcwxGQrspSyHrjcEdlir61ptYBeadqQnF5WXj2NaHCLsHB57pwlLEDmXbuyLxMJHJwn2PfMkVeJlLU2j9T0TwewbqBaw6Hju+a4gKWRsiWMIBiTxaK421XJVv+b0VOGWNBRKxvC0GydR2HL65q6SYVqSRwBuVYZOaIrI6wYJMmTgoue7hkjnXNjVxzhr7iIj63ht32yb4KxTkm3x55yF6VQqOm06n/sS9ADp22NML4XG4hSGR5j+UzRzMHiQvnKqIYBMf6SJEiT9bPv3kE1xa7VoLjXOwFuM9LLbx/bYggVATP+d88YiyZehu77id2cY13KkcQ5/RqB5kJlgUfPoDD3FG2FVsZPHxggdPtgk2WeIoJ/n+xbT2AHA1+KxHAqM8vm6jb5ZbNg3HBehKtjKzkkzkIIvYqCO7esnVvncfzFhasSzG7daeOyKRoPZMSLRlPfIxhT9k+YQHP+bUFa2fwyVN47kfLliwJXWxrAJravP/cmunn/PaLeM9mDcHY+X2cx81wDc0pjs314aCMAC7ycJ3rDXHGf0uyE//N/Y3Dt6jNg5S5PRjmCBbRQioyi02MbVKwRZbYFQpjMVDh4lHQwOZMD5+/UbfmZa2Z9RBJXBHRXZivu8TQE3FdbWiYGTDvpricY+BUpsRJ8xWB02hP4GzYPNARldFPESBQZIyNBEmBDTUzQME0ys8njjU8TFxkDdaGKj6WWAO5nSoWxsxRarQK2w312E5m2Rg6HAYogwDYEWaU2NBv+cjz2augXn+5hXN8xzW8fqltnWWJ8VgcIzi7XgeF+OEDw6EkLrIT7PPTmmJ3/onTlnEhY2tDmS21GXarl1sIQvqBSfXPPO37U8F4M0jJi+OFBfyc38dxSdV2M4wJFWw/cxKOlmyzmw0GC1a6eahrlPbvvoygbWGiHYEDw3EQTHuuizEiHfp6XeRqy7ATmYOyxxdWVQNGr4VMmIUJnu9Oxfosne1ZuwI2RQw9ZAIutjH/S7Eq2KaYr46IxK4407+urLQQpaHFscgp/T49tYNxudDGWNeVffaedbz3+WWM/RdXrdlnZ4w5uVEzEHgpRqYkE6N+d0to09At3VRtvWlXWhiXUoxr4HeqW7IsWZDgWL0Ac2araqU79uQp52jiZ3t4VpdaJmHA57I2xDM+GqSwYSJZdwzyqXb96B7+PdUHoP2zJ/CZQorXJwXc84UFPIPm1NR33Qzfx1MDBXx74rzyP6D0poy5N6rNg5S5PRhGjQRSe2PPesz0SgaMJEV4ULTdSWsKx+On1t34QHEPJwZGD41dpMqLqQFh2UU2VEc09OEoe7oIMm0vYosn6ae9AI6goAFPnqlwTVPQE9+60p4YWGM3NsELPVuE2WmZlM/qzJyBk4HJsTQyNdntqtKGU6Nek0m0UzF8D7MAzdDYQJSvj1wEFIUU5QgRkWlBnGd/TmvwLaTHycYiw4qYGjpmXksjNMdfVUAuaeblCDvs1aHpzJzs4zhP7sBxn98HBmO9gRIBG/S9tmA75dbU+jp1SyJfLiheZnorwJXMjrzzp7hZkBju6FoD4nWN0BpRrg4xZr0AJYSTfZynV8Lzq84wFs2pSClCIDAsmu5PT99zso9sAsuJ21Wdw4FlAU71lS3m4PxBgjG60tI+N1Nc/yAQ+Xfnjd10rWFdgS/rPC2kIsXYqPLUmGF5M/JsXvDZxC7mdV3BpU6GoIdNP0UQhHiZSHWqNH/H5oCXGgZmcQzHPi2I1ELMm5IGfbsVBPSP7sF5f/YEnmMpV4L7tnWM5adPWvkqiHU8FX8yqZpKMOeSIyjNMGP0visiT28j4Hpu2dSSQ0/kY2cwxksjzNVhEUHx2S4C6xeWrO8XGVzV6DA1/VwXY/vMNgJ4qlavN1BObU90vLS0tzDFd7kZIqirzUSCRJyLf1fkoa5kzo9/LVbSB87mQcrcHgxji3VHNDjQjAfpl05m0vncfTPDQkBd7BpuoTYTOa/AVQqXsS8QKcZjH7svUphTMdpiWBDJEjijQmqgz5vN1JRymTpYcJbGuP5BDYskG8udGFi5aatqoNFqZCUPdmoupFj02GBupmWPcmRsg82aar84WPSdwLpIU8KcOhuN0BrgzTwca22I63ytgwWXQM58M8CNuuqtTAAIpDDeqGg4oRcXcaz2FA6JO1V2ot7V8s0nTsPZnO3h+r7vAhzyesPo5GRwECfw3muH58ZGHfc90F30wwciv+s1jBExOFebcERbVTB76KhYHou0jMRGk5SzDwsIOm7UjUGVaKmsFOJZ9UoY714J17xVMzExztVZAcdr6nmptDoIUJZZHONze4qLWNb7Pd3HvVGnxs0sI8aM4b6OUVY0oPVexUCx7YmyXzR4ZxC2XUPQtzzCa1Ts3apaMFFMrE8R7V3XD38vd8uYI/z80sgyXiIIlETwHeiWrKvy2hDj9rkTmD9srzD2Rf7ZmyyzSeaPCLJ6Ly7iWJzTIggIXukY2JzjvzCx3kKOGCaJtjDBMzndx30vjzCniTmZFvB8rjXxrHeqUK/9vS9jjjIztTY8/B0RwfixZDsq4vt+uqffy8z6/tRn1vyS5dmDMr6rHVtDnPhnkFlZ/QvyRrJ5kDK3B8PYnn1aMO0RRx14KbaSRVlLQdcb2hBQnS9F1Ij/2C8jdcxePsMiFlYCaKeuNRRkR9fMsQBlqPgRJxNxHJFKal2K6XwqooJeim+JXPydmYRGaMA5Nh90BOchyLKoZRsCTv0EP3nq8erQWERUxnUcBEBkxJB6S50NJwPGgZRmMhO8FM62NoNTPZp12KoaaHejjt+JWWAWKEhA09ysIbgLYpHUt+wCpd2XxpDm//wa/v/QgZ3rVB/XyYzMcc3xaGPfqJ+N0ATXRIxOfaaHn8stax5JTIGTWYC5r3gfP4aDEDFNGU/fd7KP50t5+eURSh2xi8zAMzvmnCoRnGZnjOfIstZuGXgcMoACBdCyF9K3X8O41jRbdqGN44cerovZj9oM1z9R1soz23juv/IEjn2liXlxrmvtIEYafFN7hvN+U4HIzGoMA8P/UPDvi6s4FrMubLCYuCKTCMFRITWRuEqEY46KODdLNARvP7+E+cLSUerAeYeeSC2XXSSL75F9XN+rHYwxheU6yqxiMEOsCftDuRk2C5s16xBO81LM85I+g/P7CGp7JRxjvYEM6mKMeUlQ7yP7+LmTvbBkGcl+IHIutYwqv9/lWGRxZNndykwlEDz8/eEDjIl2oHaGf12y2l++83m/hWwepMztwTE2/MuXL2IXO5iO7pi4i2LK2k9Mf2LkC7qbCYKBzZrRRjdqllpnV2MCZHe1NEJArIjpUexWRLo+nCNT8NtV0ylhc0IRlKcorMWyCqmRDL5YkqHQViG17sFFDVSCBAsp9WLCgjGJKjOUq9jsj6BZitVNC3DWoWdjwj5GTNs/umcYCxr1XmYeMi1jHwEKRfPIyqnnAcVlc/5UHF0bYGyGRZHf/yKOTcxA3khTvlsjuPUGxruYiFyvYjf93Zdu//5z3cNBaUEDPgI8T/dFuoEFim4Gh8WMiCO5kpuLgOj8PgKt3zyDZnwjH/Pi8V0rDV1sG/6JGiWJBpBjdUjNEOXByMX989mVYsvscDyolkzWGjFQVLv90U/iuby4hOvplkxbqKylkeWRlfamBevye72BAN7LDJC+V0GJcEH1fxhwdJgBUizT2uBwQ01mqigy2JngvNOCXkHdLgAAosVJREFUSOJbgBNq0EpFYPbuqc+Ad5kWEBAwi8bgoJHL8Lx5C8Ej5/flFn4vJBjT5RHm7PNL+K79rtcOzw1mZZ7ZRiaTjCH26FoZWsnzbna1iesualmwHKO05KUACH/8jJV2GDCzrDsqYp6y6/t6A2tCZ4LjtqfijP+myGsLkr33j9/b9TzANg9S5vZAWHbmz4HhQ0rs4hhf8Mg1gOvMMwZKJsa6ELFy0IkBvugi+Nv1ujnXvIhY6lhdfmFiOJDIM32PfoDXTvUtU7Jdtc6tIocBoe2JyuHrsahWW9Lsj5dZW/rEUW0Qgaw629kvjUxjgzvp9YYCel1teDizssSwaN2b66FlX4jFcCsYq9rsMFAwH6BQ3yN14Ky2c3gc0rGZMWB5SgT/Zg6cT6+EMVscI13+cC5rctR2K0ivv3v98ByQD+NRyoftnKMigtTfcQGO9zhK7lGrzTAu7JBM0Tg2kHRF5GTP3udkAFl+4CLS/SyZUGq+kIp823X87JdBQ/UyvKc2w3xY0YCgPTEcQ+oYzbus2UDqgpB5QswRcU4MUmshngUzLQyg0lxwVYpF3raB473aQSC+NtQeOoKx4zNPHAQmVIq92EbGoRHC2TNj2QgNR8QAvlvC/fVVyIX4j+t1jIOvQd1WFcdfGuH7drWJIKeYYG6zAeCbtax1vaEg7RGecV4zJR+c0IrJ4QD10X2TB3h50QTXHNHGn3ewfFaP+jVHmzfeyZhVZRD5+K6tCcUE40LmGNeUtaG1MCikCLY26nhuT+9g3vUDzJXYFXmoK87VnxEpxWDbfYvaPEiZ24NjE19pgqFJntNZUCSJOgncKU8KSMnv6K6fYlEs4TS13j4s3mQ4oIQj9rsIFoZh8XBX4cS17rvFBMFM5MEpD9WRsS08hb9KsTU4ZM2bmheOYCHvloyyKHq/TM+zy+zMO3y9w6IGOKlpyjCzdFDCWJC6zN04gaKRLozMHHmpyeQTvMmmeFSH7ZZEdsXKYMTJiBjbKRMTQAs9Y5Wc6t1eJl/kcC2fLJuZJ9LIvWeo2KDHd+210/cxl8hWCn3DIGWOyeoTKH25BedNB3O5BRXVt2xBY2XiI01P0OtmDbvgcmzYj5tlSnVIBFjTQbUnANaKQHcndgEUZpmAGBg2Scz0fZ0xmgZSVTdzrDPzsGhNC0WwW2+ECGhF8F0ZBBiH/JxmWadWNUZWZ2LjzYyiCJz31SbOQXbdfhn3tDCBk6ZwYjm2jUDmiLTGECVsTU0M75UOAovHd5HNaIaYN09vW3B/NyNzTgTB0dku/p8HtD50cOdjEcdEO04z5ai9tGj4tPMHAFL7iYnM7VUQMC2PtISWYJ5RiHKnqrgwxWtNNKO1OMb8q4fQaCF9nL2bNmpgAmW/JCIi2ff9obtf6wNmTpZl2Tf7Ir5R1u/3pdlsSq/Xk0ajcfcPzO11Z85zP2udUNlAjxTQmWfUXgYwxITkmTdhATv5TG7S/aQ5td1i6pgE+56WeoqxObFREYu+I1hEqOoaekp1zawTa2cC3Qt2Um4qgp9gVYJ68w0MKf4WFkxWfebh89TOoIIugcFkGhCsSABx7FpKPlJQZTlXPiDGhpmdzLFO0ezPsqglMarz7lWATaBaLUtDOVGqm06/PUGgdmEBDqiYYId+t1o+My8EC6c69lR2pcIwA7mjAlzTgrFCyKY5aht1LQGKXlffyh87VQi29QM4tXddR4blRh201bUB+t34es+9EpzLdtWYZuzQy+zftaaBrKkzkji2sy4mOHczRLC6MjIabb6XTSG1LByfP1syVCJ7nuVIRQkTkd0qaOwMnEitb6tmx5u2cP0i+AwbcvLZMqNEAPd2FZ/tafaEc5oZHCoUs4njzFOV4Ni6mZNivltBcHOxhe/L6hAB4P3aThXqx//Ji/fei4dGqn8vMMVoL0XAebfs3GYNnxkW8cycDPfNMibbT4QFK5nxWQ40KO2VNKgvQFOmqBnJcoQsXhDjO0f2ETOhpRjBTDlCQLY2fCCE4O7HF88zKXN7sCx1LCWaiSphuoYJYbmHwm2k8SYOFof1hopaGRANIETPmC5BIhKKNmhTp8vmbCJwsCwn9QIrFVQjkdUBdrfsr8OSkCMiY3VKdBDEKFD/JNXsg5di4R4oqLc5NRqkm+E+SE2eKSaFde2Z3sfIR1q9OYWzXhla1oY7dLKGTvUNcxK6IrG+zpR0MTEWVBDbwsqgJNKs0Exwn40QAYCTYcy++zIClCst7dcTAXx6tP8N7UoLu+qVoXWcZq+fagQMyNrQqN1eeutuN6/g+3LHgJlOZpiIIJfRorZGe4rsyJ7SlwkqDpUN9dCBlQLGvjF/eiWjopIGL4JrYKftcmSBZeKKZJn9HrsGDmefGQI+azMNLiPLAESuYZtYBloa2+vVmTFsGAQ8voffX1w0XZZF/cwgMDrvVs2A08XE1IZ3KzpmOo8aIQIgivfR6S4o7oSaO/3AMgilWFl6mnmjACK7TfupjfedwNIimNdXmroRcE2H5UrzeJzTpABNGmaavvMqrunVDjYhu1VjRDn6/f/CGj57u0Dl82sI2qltxPYDO1ULTlaHmFNkUBUT00ZJtJzcLWFus/Ekg2dmTU/3cZ+hh/cNixhvNnE8272Z7aPAYr61wYNs8yBlbg+WVSN8wRuhNcqjo6a2RaTBABUx14amDtoIjfLXDLUnTwX6KIu6Wx0WTcGSYFJKyzM1zfR9PbdLjxWz0RljJyRizpR6IZTbL0dYVCng1iYrqAiqbD+wHihUP73W1JRyYiUWpuLDgu2wuEO92MbCH8RwmrUZFvaZZo4ojd4PcK8VdaLE2xDDwnEcFkVmAdLZ1PPolmzHR8VMEWWSCF7/8op2n9ZMDK+XHXx7JaNvJi52khs12/VngqCnmOD57yhV+22bdy4bPaoYguoMz2W/pMGBY0FERbUtmFESQXBEFgj7r4x9OO/mFI50t2K6PGwbkOUCTirjMoga+4ZrYimMWiJeBjYRu+jWQ5RzmCWaFLRBoY4FgxMRC1rI3CGTTcRKge0JnsviSOSzJ+EU/RTX0y3hs1eaWvqcoURTiRBEX2sYZiZ2RZZDC5iIt+mM8VzcDBmFTPB/ZjILKZpBNkO8RuAtvxOVyL7L7Px9tMnhccaM1HoD90lgdl+zIU9oKfClRQvcWTqkdP/FNsp357oYp82ala54PZfaxwcpN+oWoLgZzlebYR7lj8XvJu9pr4JrYLaXwnx5SQCWZZmFu9JU4UANGOtKmz7a1DJnTvgRERHJgr9y97F8Hds8SJnbA2XZ+f9anPHPwYmVFd/B2ixLN5kgNS8pgoLtKhYSZhmKCRbIRogFkd1gE8eyE2nO2Ua684ldS+fWZzjGRHc83CGd6WGR7Co4clLAe1eHcHIsx5RiUx11Myz8zMhQLIu2XRWpCnbwPcXgSIJFOnFsx7lfRgDVnmLhJmU2Vt0MaqlMCiKzqjIxBAveQIOSXoDrJ02bO/1SbBL+1M8gRoGCYWQo0TkujRFEMdvy8AH+vzAxYCmdhoilsJ/cFXll0ajF7Gxb0izOtAAGTuKiLBA75uwpeJc3ZhIGmhmj/gn7QM08PEcq7e5V4MDZPJCOh7odhdQaPjIj1Z4iCGMJipmBfK+kamoqpdT04fMLC6aePCpa8M3gIxMbAx6PARGDyHwwSVwI57wjyFBtVzFH37Kp4mspAqJREc/r1QU7HwM5iv9Rt4dlqJKyedYbeM6ZAFx6rYHyW77f1uk+ngH7Wi2ODfzKQInPl5ICdzM/Nbo8dUZSB5lOll9GRWuoycCZ84A4klN9POutGkor21Uc/1QfcyV2IZV/pmcBILN457oIZtcbKlfgGQ6Ggc2wiGCCbTGuNnGcfd0wDIqYPwTZ5sdNBd1k2zewcuaYYu2dTNcFZ/IRycoPbqAyD1Lm9uBZdYZFZaYYkGERi+RuGbvNamTaIHRKDCYut5BlWB5ht/NSR+SdG+boif9gqp1lo2JiGIleCc6hmIi4scnvl5SSzN0wyzozD4tlJdK+QKlpM4iokFvNVEyPGnd9pFcHMe6HWZ9BYOwd1v8JznMyTf2nCGCIE2FbeQJUE8ccKsGZqaOKuBqAtacYn8QVWRlK1v5LIm8Vcf7F/4pSyUHZ9ClEjLmRbwaXt0JiKsAippwrIvL7XsIu92NnjfbNsh2D0StNOERmiCYFONC1gZ2D2A/2MVoa2ecHxcOg5/wc6AcIqmIX18FyCksF0wKYV9S2IE2dHZTrOgacp9wFE8PiFQ87mUokUi5Ynx9HUA5iwJc50L4hJTZxMM7M0IiIlFVfozYzMLCXWdD0+TWU3dhvhwDuSQHXwo7Fi2Pc13PLVpIspEZRPtXH/e5W8ZmNGrINZ7uqbNtCoMDnMC0YuD3UEgUDzcwRaUzR1ZuYmIOSyKdOwfmfyD3LoxbEIt91GUrAVJjuTJDhKKT4znF+dCYaxJe1XFoQGTsYI/ZMIr2+OcX8qIcY390KjvXCEuZrEGMNeHQPATIZTqUYa8srHdORIbCc8gXTgjGMuKHZrRjoeGGC+67PkPm60cCx33f18Ly+HyvHD3QJaB6kzO2Bs+zhHxXncz+PheB0DwtP4kAWnkqxBHKOfSzUGzWkm0nfpQ7CW7aweOzWFeyqNEV24mUPIH7mQIW3AsFCN/NEUnUEQ02DexkWs27JlG7pTFaHcC5O7oZKse2+EvewtkreWMNv6yJbjk1xd6qgv1JsZZekoMBi37rqkpmzMMFPPrVNGmxNyyOsoR8o/ifYxfX1lIK9oNd1pmfsqUERbIy9Csbx3euH2SO01MHCT+Axnb8jBgpuhhjr7So+T2ZMpk6c7IjdCspBTM8HsWWNmEYnIHpUxPgfKLi3qdk0lrt2qlpim1op8KCsLBjH6OksXbDMQHbPwsR6MrEUQ6wJGwNSzIvg6YlvYmI0ssoi18pQIqa47GcILqpaKpn4pqvDz3Puj4pWAswEAXElQnliq4qgguJr1EtZGpmcPplilOXfqhmbLNAS3KkB5sQrHYzhuS7mwjAAFZlA0oMyekcVHcvUsdTyyD7GeOYh8L5bJ2QRCyhPDPB9J02XG4SSrglXm8pkc0XaEY4vYnTtvYqJyYkcpvCT6ePoMzvTE2lvojUHM0+klB+UMVeXRzhHJtYOoRoh0GHgkokJP/J9bCJJO38XgPl9mjP+70Wc7IHKrMyDlLk9mJY6Rq0VUQqmWH37oGyNw9jxdVhEOnpxDKc9KgIgG8TWt4YiXiKHGRQMQkjzzATvI9CNDoZaKqFnOzIGKGd6loLOa5KwTDLShb8zwXleXMRn2E+FHYzLMUo/wyIWYzZ+W2+Y/HZd8QKhZ7txX5kilGSvRLYIMxXO8geDBGYRRLBbTlzcV5CIU/t/4HPvFIzry4twLEdBrC8sgT2St7GP+yTdmowVCoilGZybI3KzyzNpwbUQDnqrqtfkWJmnH1hZ44ldfH6qpZSKBmpLgrGggu5GDYFL4sI5EzcSemDydEtGn2ZA5WSqyKvAU2ZJWAagTkYmuM/tqtF7X1oyBzzxjUmTD1IYbBRS4JtmLpwiAcuOGPA4n4kSsTEsaqaqOsPP47uacfKtYWLo4TirQ5SAhkWRXz1vmT32RmpNEdBfa1gzQxHNXowtCFoZIUDbqeY0hnROrTfwPXh2BUFFkJhuzDXFXBRy2UsRXO/LHcy58wf23Xylo2VQxcb4Kd7npwZcjTQIHfl4Xo0wJ0+Qql5KgvshoymIkW367Ak9/gxjcLmFMa1qaSksaEkvwnw7OUCAVM8BliltQID9qT7+vqUMMIL+Sbv+ehvLSbGLYMXNJCu9/oOVeZAytwfSsnf9CXE+9j9ZpiNxsGAxi0J6LJ3t4hiNwdhGvhzdmkq+sACncraHRYU7pExMmr4zNmlxlhG4Y6WTjzPsdFk2CWJTsN2rYDGvRFZeYFCzVzGHt13FIne5hXugCBYXbxHDStBBsLHetYalmCcFa1bIXjYEig5zjCWWBUQwVgycmNFhsEMnycCF1ggP93TJ29EAhdcuYiUeZimIByLwuaSMj2kBjj3ygKHgrvXlDhwEBfHYFHJSgFM81TfgLEsyeRzRZs165jy6D4dFzA17Ae1WIEv/9g0405stCjT1X9XynSsmDlfXZ7On17pVQ/nkES23bFdxHWMfafxKZFmixDENEwqhlVMRuQPbhSBvXzOIefYPswWxixLLVIHJlQjgY34XmAkiKy0TgJ5nHnresJzBDN5mDQ73kX0rb9VmKJMRf1VR7Nb5fVBll0fWmPFot+O8RcpCovDiqChSSoxZdf7AQKcUNpz6IsUQG5KT/cMBQmuK97x5S+R/fwyBY22GZ04sEb/jL3fwDNYGCGSolBvExlzLtDxaTDH/ajOMFwXwKOV/sY1/TwywvgQxjvf43vH3/9oCAuLjgMObNTyfewEVH2ecA5wng6I4e/9Qsrf8ya/seN8gmwcpc3tw7bE9OBXSFSc+/t0vI5g42RcZ+5J95x8TEYFiLRkMfu6LznIE0/xhAU6kM9HuuLoL1y+2THxbKBwxHAedDFkEjpikeWuqALmJARGrEc5X1sAjEwM/khHSnuL/kwKcXFkdBfuPEKPCoKGQYudHhgSzCwdlBBqrQxOHI1BVRBudaUDCHkWOGNtg5BvjycsOsxW+GruJvxCloCZW3yd9lbot77qBQO3fnTccSOKao2d34KGWdNgHhqBMZrT47L3UlHYTF7vzA6USv/+KZULYq2am+A1Kl4tY9ocU8vrMyoV+IlLWckRbgaXbVctuLI4xV/sBGi36CZz4+X1tcpgeO2R3HEsCdxNHwb6aIbqkzvJAwcqP7COAY4sCBqgihp95agfHC2I48p0KMiUHJZHfOgXnzG7ayyOjxjLATR1TsO2W8LezXVzb0zmcErN5V1oIBr/9Gsb3woJ2oNZApVvCHKWO0Lddt5Ik5QWo4DtQ8DdLcixTrQ0RRD26j0wdNwqn+vh+sfHnNEZQcKanGjQBgu2xrjH8jjNwZqmTXbhFcA2lGOvU2EcGidpFzNIetTvpB1GWoDnFmFEw77h5kH+eNGZ5qXitLTycX/z/4f6/59LrErMyD1Lm9sBatvIXxCn9JBYiyl83Z3Bu3IGx9iwChsFOReTXHsZuZ3mEn3IEJ0InHcRaa5/h2JEn0o6xIyN9mIwXZheIAaB2iCNYSCmaNvYNiEoF1vpM5IRrKrp+KuLpsVeH1m24OjMwbyGFY9uqYpFqT3Ht7AXEBYpiWiwvJQ4ArPnFK8+gqIcmVldTB1qdHdZ7yATXuDDBopYPcu5kx2FSaLWZ9ldJLdhjpol6MJ84jUCBMvl0Fmd6eO/Mw7/EsHx5BePAkg9ViNsTw21QUGx1iP9frxvLaBCgRPXkrjWufHEJu9xH9xEobdUsu9Qem0ovKdVbVez2V0ZwettV7KbDAp7FtIC5V4oRHD10gPeMfezOj2rI7FVwb2PfROHKERwuS0MMKN1MpJygJ9GNBt43KELz462beHaLYwNEH8U/fedVY6uMfTj29Qb+T+fcUEo5AwgR05/pltBwsREi8GpOMXZl3UCc69o8vNhGz6O1gTnoX39Y5N3XRX77Bcy/kwPMga2qyP/2hMj7rphEfbeEn8RFOeqLq9YZmtT40z18l8qxyJdW8MwZqE4VbC1iDTn5Xa5oKef8PuYaS7fMsMYu5hZLd+UI2aKDsnVmPzHAd35hYkDZteHhjOjdvkevLVhzUl8zxI/tmzifyGFdmOMCFBqVuimtwPLWQUlkoy7O2odfd4HKPEiZ24NtLywppdYTictY6Kkyq+JRzpf+IbIqlxdEvrBqgMV6COd0cmAqswRAEtRH6Xj2o2EjsMg7rAsSJKbOyX8jT0RSO1aQiIhiZkJ1iGPfUvOLYywWxURF5WKj4W5XTY+DWRsykbar1sG1EhmAtBJhbAYKUF1vYEEOYmMEHRXMIgNJBIv6yYE1u5tobb8egtUwLVpgR+OuMn9cHo8S+7w2EVPLZcmL4F3am7cO92wRsSZzIua8CxoQ9gMLPMhKIVYpI55EbMxHRctwHJThCMjs6gUib9qGky2kcKYsIVIULs/oIeW0M1YMUC6r8+j0MK7psycQYNZmVoZ8ZN/wEkeNoFtqZ1Av42gjyHx2qzk1xspQ2WWtKY6Vb2NwnLHPzck+gi6qE++XjSHFNgwDZQVdbQKXFMQif+JzcKBfWkXw8Og+2FgiVmIUAeXXVzzSqx2M4+IYc2FJszN09ntlkU+fRFBHDZK6BtQX2odLqOwM3ggRaFAbyddS2r6+b1oQcWJcG4XYBgGOQ+0TtuEYFU3c8HMn8DpLxqljPcWqWk7eqhkgPnatj9JRI3386POIPHz3DsrGBJx51qerGuG+eyXMaZ7rdpY5dq1kvbmZKR4rbsrZ+jsinfHrptPyPEiZ24NtTDVnjshnTuCLW1f2xpkedlFP7cApvLQIx0DQXyUyiu2FBWRZNmv48u5WRL73IhxkIVWGTGxp/8wxvQ3qWzCz4in1l3XuQPVMBkVb/Kuqv0DJc5aQyBqhM2U3ZDrYxMXrA2UwkGXRnhpVV8Sk/gequXFioKWK2DRRREw/QsQc67UmHNlNynSC8SSLZa+CY1Y1CGITPD6P/bJlNQguprotlVcJ4qPYVWUGYCiDs3s1Ou9BIFJSnZdmaGUIBnS7Feutwm6zoQZ4k4KJ3JEG/sg+PrNZwzhWImRw2JmZGAQypVie6IwRCLALNjVNxr5R5f1EWWlKZSfQmBkKPr+8ai2F9kTgCPPB6t2+H6TePraHoIOpfpYJC0ec4426Pc+NjmGiBj4E8U73MDYUYnt0D+P1Lx9DAMnMQmsq8tsuY9wbId5DLBRLPE6G4/UUO/LIPnSC6ETpuDtj625OXSOORSVCoFfSEk2vdLgZYKiZts0aPnuyb0DlfoBrWRzbxmNSwPdlWrDg4FrTWHfdEgLSph6zW1KlXM1qzhS43wtwrHIMbNmoCHDyUZsUMH8pNSCCc//mGaNss6zlZTjHxRYyZeVY5KFNo5VP9TUy5PLGMtO0YBnXzAFDia02qF90tvu6oS3Pg5S5PdCWvfuHxPn1X9ROqSGcL51DJYJTuF7HjqMUYyEpJSJTz6iKry2YgFnmYGH8nkuGGajPTKTs5s5D2QFuBGdCwCdVRUWMLsq/OWKicXQCzNAEMRa21aF9nk3wRr7J3pPFQj2URoh7jFyUJDoEPmrpZ0MZMmtDY5ckDna4q8PjaZ7Eu9CIsUi0xn9QQhCwpnRqqvySbZTqwscgpBph/CbqWHsK5K3ODPg4LlojvuME2S61D3emPWqOLq7rDQQIzRCOidklsmj2y3hemZhzvtxCMNcCa0m+/Zo5BmZJNurmgBLHOkGf7inGqArHsVaEo2Xp6qCM+2RgQ2M37ryS6adOwSmxBFbVOXyxjXO9fcMcWb5cIIJrJd6BJUGCyN91A+d6ZUGkf9oyNyK3BihXWjjfI/t4Bue6FkCI4PleWLC+Um/fsDLN73351ufSK4n8u4cxJ9+8hYCMgOO8FWORd2yoGq5+n45mFmozlIBeXEImr5giW/Hwgc2X1aFpDRGrxgxQSZ33pTbm6NIoB4wdYw74iZVs+wHWhop+x4NcmaQf4HtJHZXFsWnUdEvWi+flRW2n0D0+c8WGjF56mOFVivHdZDbnwoLI80uq0RJY9mNQFFl0b/1ubNVEPr+KwL+QoNR9rmvikWQpnuxjDrxnHRudaQH3sd7AdTdCceSbWwKaBylze/CNiq1neqZqWYlE3n8ZAclvnDWAWVjQBcQxZ7hXsc+c7WIn8ugenOvIN8d0kxbq3LoDZT+cIIEIF9PFgZ4j8nA8gi9lZuwOR8tKBOZmgtcGRWtWGBZMD4X9YUoxnE+vBAf6zLYFNX6KHwJ7n13GQvrYnmI+dmxhz2dWaNz9iuDYDHBEcL5JAdc/LIpsFe1+CeBlZulaU6TWxWfqunMmtoGln8QREd01M6ibFjBeIiZ0RSp1kJhib21mkvleijGg1kniKB4lgzZHuWB9ZogbWh4B6/DeayhJZGIln9WhNRR0xH7Y2LKlu9VYQCFtK912twJsQnN6qzgf8QXF1ETHYhfzY6tqsv8MgiMPAQ1731C8jwEejcehLUyMWi4CXMX5fQP+HodbuFFHgLIyNGptWQP9tSGyXSxVMUC7W6PI5hQMok+fxPHIDhJByeRcFwECafU09js66tjZcXm/DEfcD/D8O+PDQeCwCCBsc2pZiBMDZD7YfuB6A8HHQ13TSalGFohQLHGYW1vGPhz+9bo1IT3TM3XfgQKly1r6KaSHdU+OGts+MFPKTdCweFgEkQB5YsLyfZLWG9YCgkb6NVtPsFEnv28zwTw41UeQRyNb8P/zNIJKNxN5eluc8k+I1GaSOT9+5+f9dbB5F+S5fUuY86u/ZN1xL7fwxXMEtebVIb70V5uGmaiHJuJFKi4ZGVs10GlP9a2HTr6JYW2GTMzEt2ZyXGSqMyv7UFmWwNpQ8SFj37IrlPEXwftrMwQsTO/3SkbTdQTHpjIoJdK7JcOvNFWwqhwDjPj8Mu7/hSXU9E/3Rd553RxF5mCRY9PAm0BhBfrdaYEVUVp1GT+9kjlQTwM1qvWyO3QztHO1FR9BUTB2daXAlZOZSFYxQfaCz4+p92kBz529iWh8Hn5iz2ivAkfjZHCux5U6yCaKPAMcb1dx3SxPjIo4f1gwWngztLYK21Vc01Ew5HoD8urEFp3p4RgMKskw81PVkRljTMc+drwHZZs7OxX0FToKes2LjzHbUYpxHNK4aZs1aKUUEzhwMpRWRoZ9CT3LpPC5nO3eqoVzN0sdnOtc1zJLF9vW5PBejZo6uxXgy/qa4fm264fBo8+uWKNG6qNkjjn2SBlrhRRBykgzIo6YsBqBxQTKulpqIfusGeL8K0NtwlnGeZZH1lrhegOfSZ3DJSgau2czyBoVAYhl5owWu9hssSTMzO7yCBuBd6/fGnjOPFP/zf+NG4xqdGtGa1IwoUiWhj99EpT11SGahXrpV51ZmXdBntsbz2aepk5dpEdZOz7dNxnryMMOZ1owRklrqjvkDI6WAcUXVy21Tu0L6guIIEOTuNb5tzUxJVGqf85ckVJmui3c/feUkbBXNl0Laq1QynxSgO4G+wQxm8DuyqwpRy52tMTMVCLrMsuGhKUY2impg6yACAKY67oDO93DrvNSG+cfFFEeG/tYKI+WFvJGdc3lEYLA/swYEgwABrqz5KJIDA8xBhwbKt+KWF+gka9aIZlJm/cCC7JWRliw8wEKjQBYYjvcDEEFs2r5AIUMEWa2SMMOfaNyJ45IqgHPqgbDVL/1UpHUE/n4GWOO5a1bQqBYnYmsjhAUJA6yF43QWgkQnDwowjGEBTjVbWVZkSmyNjxelZjjwDLlTsXoz+xLxezKwgTzgJnEZohzb9bw/rUhzrtVte7Ar3ZEntw5fi5kjmW7eB6OceIC07NdRblwt2L9qr7vwvHHO86CGAHIzEPmixmMfPBFIbfOGHOvEVr266GuialRUffVBawZ/cDaOoQF3CcFDzdr+K6e6pu0fUHLVht1PMtyrO0VEoz5TtXA06f6VpLL28yzjCBLT90SnkXeCikCscstjB3L2Zs107g5asXk+MBI5LDidd7YD41WD60X07nuzczWNxKvMg9S5vYtYdn3/wFx/vX/Cw46SKzmXNIFOfKwcF1vKMYjxiJGWqGfW1CXFJh4paUZGQ00+MXeqCkeIzJZeRHbgbN8Q9pufkEoJqZqylS2ryBUMoXYnbiYiKQFy+awUR+dL+vS3PFzpxh5Ipdqtuum4F2Q6KLpYxw2alaWaWgmoDLDAktqanq71Uwtr8lwdHfNlDSvv67MiNoM9z4qWtM6jj2l6xnIlGP0yHE0M7M2MLBsXmGV5+O4OhlS/aQKn+pbZofsrnxgU59hPJzMtEAiDbQ6WuryUsuGdRWcWVIndaD4lcWxlaloMw+0985EpK7XkGgWbeKLPLqFsXm5o7iogvVIolx+NULA/XIH5z/OKQ0VvPuWTTjLTB0ns24Mllne81M450+dwnci0uxfptccetZUkW0UDsr4fD77wewWlXNj17A1nHP8ibzDkv2O4JrbE2tlcCfbrRho9qhk/LUmAlhiLsbFXNAuhkUijZjyAO2JduIORcpDzJnUsfnRCA3r1C2ZUnEvgPAjdW82tfzE7+OgiMD/ZB//tie49/zYUVaA8/9qExlGYtXytt6wbEsptgD3bqyeo1aOFU+XHf7+Mkt1tMT2X37x+OOkjjif/3nJ3vnD93f++7R5kDK3bx3rTAxBH7tg8zy5C4f32gIWTi7Ek4KIlK1RWzm2VGe3hPQpNShIbSVtld1yRbBYPL+MRT51tDdPZEJhBNvecq1jw1EUUnNKVLJlGtYVFV4TS8EPAmt+6Ccmc04MzbkunFszFPnUSezoEkdk5ouUxbreche5U8EOr6gAu9PKXCAz4U52J00GlmCYWRkW8XpragHF8ugwSJbpdtKYj2P65N8/LcA5dMbabNIXWR7j9229730NXClsx1LQvpa/KJ7H3jTM3Bwo44JjXA9Fpgl27WEBpUQGEv3AygAbNWSi3rqJYw6LcDz10MDTzC41QlzHXtkyZ35iqscsDRVSHJe78UJqpaPTfczNjTqwEtUZMgZUTaazHapzq4fmnPKCdi8tYs6za/BmDZ8jgyZxUWLK45eoqky5eW4QYhfHudjGXNuq4thkfRGPU1MmHkufd+vXwwDTzW4/P90MwfbEt7JLfWaYohMDjJWIdcMm2J6A16WRKRbnx47fJWZcb8oLuAhGZgU8p8hT1o+CgCMPWcxREUJ2p/vakbmIDQ/xN++9hs+/vHgYSPvSomXCnt7Gte5Ujw/syKQj3f12QUzsiHi53zPRDc0xAN/jzM1E3nlDnPAjIi8tft2Ua+dByty+dYyUyF4JTnanauC6vTK+0G/Zwv9FsFAy80AVWu4Ct2pw9mEB6PhyBAfPMgYXFTfDovepkwiE3rYJACB9d3IM7oGWX+y5AFXEcCGe7tAI8iUmphybwiX/xh2vnxpeot5HDfmj5+A0U8Fx+y4wNewxQvxFLzD1zkzuHqDcixUT7VBdEXGTHINH/75dNcwIFWeZ2bkXK8XWl6g5hTNcL8DxsYS0MjIcB7EFdHYc57BgWB7qYiSO6dYsjrFTXxni9XoIYOPYx1xJHDy3Ky0cp1uCI/yOq7Yz7weg13qpBiYVPCtS05dHuAdH8Nxf6SCrR0p6JbTyFrMJLy8CgEoBvGKCwEBE+8ikNkfYOLI5xb8rQ820OBZkX2kimOgH+P5Q/XZpfBg8ndehSVxlcOVwQBz7Mz1c49s3DMy73rCMGimziQN6892ClHIMvNhnT2igl5ujzakJ7GVanmVZ7eTANGh6gQbhvpUC2Uxw4mtJboig4rUFBbQH1qCQAOVybL/7iQW5A2X+EGuVOjgngyv2ljrVx7jlx9XTklKe9UVBRWqksOT83ZfsPZ8+ief/zDbGd7uK+2d3dAYznAvc5OQ3GaXYNKfuR006QFba+cQ/Eoldyd7/R+/9s/dg8yBlbt8ylr33j4vz0f8ZX7TPPQSnwgWFQNbEgcOhUiN7rDx8gNd2KnjfC0soLSxMRBwfCxCDnUwQCMUudsudMdRFP3ARgY+vGAtqqNyr7gdTvGTJcP0IktxuUMs8BDLyM9yhZyLiFaym7aXYeQ2LuPZp7itPnRfqh5wYYNG82LY6NzsgJy4YLMzm3IsxoGMH3bF/WLI9E1wX6cg+MUKZUawnPnbFdwuYugoMrUQIAFhq2KnA+e9UDgd/QWL6JQsTjG3imKy7k0n21J/G0D73s9Y7aVjE2BBMWo1wTjql1LGsVBDDyW1Xcb4zPW1+WcOzoCMgviBIDMviyOEsAynq0wLmm68ZuG4JDRdLiWFB+gEyZG/axvwjuDiI4RAJCqU9fABF18yxrM3ZHsb8BaW1305+fVS0shufN0uVnt4DlYJpdOaOGH19o34r1uWgbIDW9hQZAYoVPtS9FfdTTPBeLzNwbhAjQGG7g33FgbH0SJ2exEHvH5ZAdivIOJYVFP32Dbxnp2rnK8WYNwysXlK6cWcs0mujlFaJcB8X26Zzcq2B51GORdpHSlZHbbNm+idnerfeM80RjCFl8ysR2DlcM26+L7OxOq6UW7rN63ezU33MlUL6Nacsz4OUuX1r2bCIndvFtgYKuuN0BGlUEdvZENgXFpAmH/tYBCY+AKXslMsGZc0pdinXGod79rBjLnUlKObEnjL3YkFiAmM3AwnPdm8LE1tg6PSpqssGi4VEQZyZNRYk9fDRPZHuSdNyIR16V9PhF9oIZtaG+Gy3ZIt7ZyKyq1kCsiO8DMFeI7y9/kO+CV/iWuA1LFqXXvZKoYMlKJa07YqWKnaqeH7LI9tRNtVxUqI/caAZwd1rIQVuZK+CY57ZwrON9JllAudHsHAhxUJfUKwGzUuhUfHYHu6L2TFmfmoz68lERWMKg/V0/EINiFhCKSZWYijHhxk1NMq3J64FOhMFb3dLCIynBQQpBK2S+XJQNqDnIMD9kSYuOnfJBKrNkOHZrmqPKd31D4q4rm+/ZtlAZusIxCUDbVA83AzST6F9cpx9eQVOdFBU1lRkmQ3abgUg5M4Ec3CoOA/SZY91sAr6HBRFGpnIWv+wgnLkWidoMvlEtAmgUo05/JdbGONH9q2f1KSgWQjBM+kFyE6S/k3V6doMGVVip5iZ7AfabFDLYGUNcG/2HtOs0rUmMlqNEL9TjXq7agHtRh3HXBwjU8cNwKQgMq0hoN6t3D4jeVx/HzYf/Er6RomgCaW2I3HkwyKfPCXZe37o/o9zxOZByty+pSz7/j8gzr/4X/FL5BlzZ+oZLqEcGQAudkz5tTbD7oNATC9F19hl3YVmju3kKMf+qVMo7zRCfEETFwsumSuZg3OvN2/VMsibn2Axo2Q8r7sSmUz3UauHpjRZTFR7RK97r4Lzn983efy3bWChu9bUxmuizk9T8xcXwN5YHmGn1whtp0h2SUOp26MizluO4EyP7vCodcLaORfs2LWsCGnY7E7M+vtQnZeXimzXTHiNNNqZPsunt3Py+plIQTM/7QkWbbKh2pPDKqjHGa8vl2Yng0GeFIA7Wb4YFU2ojj+ZYPe+NoRTZUCQOHCODAaaU8s0FFJc20tLGF8Rk7LP99Q5KJt+jJtZ4NtXbNJQSxGtse2QS4rnYcaqGZpKbSO0Yw0CzI3Hdw1rtV21Y0sG0CfnLrM/rlgGQgTzZaK/+4kFCt6RssLn1zA3V4cmj79ds15GNHYP9jLrIZTPprUmh+nWnFtnehj/h7qHMwjs/k2Keb7BKLOtpPP3dQMTKguwM8G8YObyi6u49koEDEovwByuRNikkD6et7yezNjH752xPWO2EGhPcP76zDR2NjUI8VP8v5hgDtZDzA0KzoWefUfdDFndruoTFZPD2JSjoFkqWRP0PS1g7PPjdDcjuJp2tifOy39fZHEsWecv3vtxjtg8SJnbt56FhRzzI8fKYYbi5ABf9lHRGBwLE9R4W+pE6EBbmj251MKuJRV8ed953XpreNlhjQaeq1cS+c3TWCA2a6ijn+7BgRQTLKR5XAp3L0fBcFzwuiWcK99zh0qwfiISKFUycaxPSOJayj/QdPhEaa1vVfxMfWY02C+uImPw1k0smkzpE/cyKlqPo/UGruPCAsbm3evmxJbGoGA7Ys8iiEWKmnViWwERZDNYpggVH1NI7T1Xm1iwyWg4MTCK9eO7Nt4lZWy90sGzedMWFu2D8t2xDnkjNiF1jBpcjmxeUNZfxGjnbgZnVtuEHgh1T9b0utkgrhLZDnijbn1xilqaIpCVlrhwunl8w3rDrrGsQSzlzs92MW7nD6ysQqZOPhDMM0zyLRIutEUe14CEIPPEwZi2pzgms5MT34DfI9/0RNgSgrt7zoleCcdh6WyrZqJ+ZG69tmB9eRzRDFByWChQBEqq/+GcyLevW7fqS20EeWwUKLoB4Xd87JvOS97Y34hAdmYT/ATz7XTPMknF5PD3k00GvQzP6tWOaaXczirRrQqxjljJkuebKfh2ZajPUNevg7IFDytDzIVdLVMzi7dbMQFJPzHVbUcwzk/sHg5S8tilsGDikZOC4fXuhBM7rkliSynuM0+cnb8p2dJ/e/vP38HmQcrcvuUs+8H/izg//y/NORKrQLGyq01jmhRSa3s+yzmcUmyOj2JXM0+VN3WXfL1ku+XPr8Expw4WQS8TGSs2hDXl2EUpipmPL48RDHgpgpzb4S4mBZG+pryv161rKx10MYaCaWVkvX5onpYlRkWAe7slfP77X8Hinle1FDmsq/CWTaS9ScNly4HOGNmRklIZR76Vl+j8vFSkrAt7KVfuoeKsk0FzREQkSY01JYIFb79sOjaVCIvuwgQOhwwoR5QSWzSGRlVp2lT2pbz3IEA5zMtMEnygGCM2UCxp2WWi86WUmNiep0EaAaE3WUCaJfBTkfJUBeeUnXWua/1q6Pi4S6fGBrEGVOfdrZgzpagfcR+z1EoLXZ179dTo5zMPc7saHc5cOZphOtnHuOWNJSI2QmRriTzddrcCYGZ9JvKOGyYmljjQkXE1Y5KK3GyWx+xJHjT+5RXDCrFDcUuDs8hDMMbmecyssCxbjbBRuNY4rGnz7DKCn9oM9+ylh1V+L7W0+WaGe1w+EqyOfVMYnhbwvHol1YpxrL8RGyheauG6btQx1xmEJTr+ByWsEbczquMycMuD4hcmBhr/wppRlk8qNm7ia4Yxw32UNbtLgbnmFIHBuIj/syFivq9W5OHYjhwTKGmQQYA5sXAE397JrjZvDf64ninGywk/IlnwV+58nGNsHqTM7VvXMgcOJ3ZFCqE5iytNo8DSqW7U0CL+O68i+p/qboLiWY0QDoZy8aw9P7GL/7emcORMfxNLUNVyyfIQgcaFtsjpHCX0ahPH2aoBnMduw9zJvbYAh31igJ1iojvphw7g1NifhlmY4xaTodKyj2tudjerzxCotKbIjASJ4XHaE4zRTgXXeKl9e/VQXiN3w47AqYngGCxxjH2U4EQM7xBoepsdqfuBiKNZhS+vqIBWbIyOaQHjfrVlDR1v1PEa09iFFAFAfWY0aJaoGuFhx+ZlIpJYaSd24WDJsmBWK3XgLNpTPPPO5HCTQxErY7FpYH7HzSzIpRacM0szqQOn6aU4dqCObFQ03ZHEETnbt668NF/HlFRnRw6XInjPIlaC4dwPYmQs1gYi33XZGGjEV3CHzW7gZX2+w4LhU5jFHASWBRv6Vt4SgTNb7OPYJQW6XmijwWfqgL20q1igSa6UMtSSI8cyLIhs+lZaeW4Z18jv/cLEHCdpuhcWrMPziYH1/nl81/RvmE06MTA5/CAx+vKwaB2Z333dsFLHGVVsaY7iSIqpUdkZALPk1wvAWjupTKWbFH59DpMC7uF2LQoS97DK7ls3rXHiccYeUKX43lh++2U0d6X6Mu2VjmSP/YhI484fv5u5d3/L7e0nfuInxHEc+bN/9s/e9j0f//jH5Tu+4zuk0+lIuVyWJ554Qn7mZ37m0Ht+4Rd+Qd73vvdJu92WdrstH/jAB+TTn/70V3Xeub3BjZRSBg3MkowLVq5IHMOApBrQcEHzUyyG7YntnpkBaU/whexMEChcbMNBD4r4/YUlBBIiAPot63tP9lHiqc2s4Vo5Nkrmp07hs88uQwPjsyfg1JiajR3sKK82kVbeUkXL/TJ+bmd3WjTvZAQr0lHGCv7slkxCPfRwD9yNXmve+ZiFVBU9PRMB4zM6KOmOtGDic2UtDTy5YztUlrBiBd+SDZQoGJbshsUxxn9hYunsIMHxTvXxHFtTk/9/ZN9S7V6G8S4oSLSYWOkqiPE62SEimFOXW/j/+X0crxegvHG9oY7ctWCyH9gcEUEwRjbLftmorOsNjGtb6btXmtYskWWSJ3aN2XKcsQ1EKbYyAct+FaUO0zjfpwWwXWLXOm6LmGYQjeUuRwwD1p7a3MjEANGBBjkzDYqIi2G2bFoAOPtaw4JZfi+ZnamHVnY6MTChu5EP/BhLZdMCtEhODHB/FG3slSyo2apiLlPFlc+PtjZAB3XK3gcxNjFBjDlE7FMjxHlP9+y7dmEBz54ZW4759QbOQ50WEZHXOnDy04KV0wh4JsCaZSsKIb68iCzgus6to+XmvFEDaGlkGkp3Mm4m3AwRQn5+iP7O0pOIlvuKIh87K3K5JZmye7LHfuTO57lH+4ozKZ/5zGfk53/+5+XNb37zHd9XrVblz/yZPyNvfvObpVqtysc//nH54Ac/KNVqVX74h39YREQ++tGPyg/+4A/Ke9/7XimVSvJTP/VT8n3f933y/PPPy8mTJ7+i887tjW3Zj/wucf7evzbKKSWwY/098ax2XpvhfUwX5zEBmzV0XX34wJrOiWARerlj5YDtKhalsY9FlvTDQorz1kNN106t9BR6CuLTLznT/45YL54L7RxbIrU28YUU52afIFJpRQwnk8mtDe7ux2ozHDdxrLsxGUMzD4t8IbMGaVPNqlxo4xoJvFuY2A6LWAoRza6oky+HRonma83prYyX/bLIrqNOUUs+LA01NBVemlnG4FoT18X+RnUFR+Y7SQexibE5YrvH2kwkmBk+KYishxKDhJcW8eyX1Wm1p3Cq21VrecAsBrNeV5tGZX2lY2DPUAGsT+wig/bUjs6pAjAmB2UDSIpgXk18nKNbwjnXhrc6IVLJ8xkIll1EMDcpTsZy0rAI50w2GLt48/3sUuzpPCQegpkBBjqxC8ccenZsMuKYFdupoFTaDJFdC3U8ydB6agfBy4W2aQSFHubV6hAByoUFBFXDIjYNgwD3e1DCdRVSjMFByYKcqy28P1Q8VDlG9uWZbWQ2n19CN/SjRtXhcoxAgWKQxGxcaaE8xjKgnyI79sSuKVLze0kqO4G67amBn4MYv3sZnkUjxDPulfAMWLrrBYfVd3eqdw9E7mTFVCSJDZfFUmC+HUfuO5k1PiTyR77y093NvqIgZTgcyh/8g39QfuEXfkE+8pGP3PG9b3vb2+Rtb3vbzd/PnTsn/+Jf/Av52Mc+djNI+Sf/5J8c+swv/MIvyC//8i/Lr//6r8sf/sN/+Cs679zmdhNoGMRYAEkxZMqfi81btqwXylgX/Z2qSqN7oNb1ApOkfm0BGBQ3w3Eps++loGt+cAufe3bZFqizPWvwt1U18SzSnjMxZP1QF+B93VmzLNUP8Bk2HGxNbEFmKacfYJfVmsJpUrflK120Fib4/E7lcH+dmYdjXm4ZoPRSG9e7OrRAoE3wZmiBgZeik3TkoYMwmShtvf99dcZ5bI0IFuWTfSt/iOB91MOgPgZ7BB2Ucd3MfqWaaSFjqjXFvTHYETGsCDMzfmYZFOIrSJd+eVFkvY6/D4sIMLol64bcDzBGtZl9druK6ypHyIqwpDMIMMcecbHL9jKdLz04YBFcO/EctRnmLjt0d0si77oBh/vRc1BaXhlaAMsgkWVKkcOBhyOm87I0soB0dWiBBZ9dkBgGRQTPNxXTSOH3LiyIjDLMEbZniBWvw/5IlcgwOZfamOvnuggg1hv427WmdaIWwbiwRHiqb2qwvKeLbQQaS2N8BysRMpnMylQizJOTfcUjFTBGDx9YuXJleBhszUaA1xr4tzXF+ItgE9MI8TwzB6XYzhjX+Lk1vK9XQpDChposEbHcGyvW6tUF6z48KuKz57rI6r3asXJkc4rn05webkdxsY17ilwDoJ/s42/3KtDm5eZ5Jcaz5cZCxznz/+q9HetrYF9RkPKn//Sflt/ze36PfOADH7jvYOELX/iCfOITn7jj58bjsURRJAsLC1/VecMwlDC0Gn2/37+va53bg23ZB79fnH/+y6YpwsWBmQp206VkNxe6/+MxLAALE5QZ6qHtLHcrAFc+1AWOhTiHkqah37yFY/gKtn1xCY7jQhuLVC9AYMM+GewpdKYH50Xp/a2q6n8IUq7FBOfaqeI6BoFqNfi4l27JsgnffckW9rds3Vu5h0FFWDAFzEhZIY4CI4e+YRhYZlpRcCPTv2d7uE6quu4pZuDJHdPmoHPiopnvXSJyK7vpqi7+7Cr7yP5hGvni2Bxg/rObVTwT4nuuN1QdcyLSmOp96bPKO/F8UzzRuRLIYfvsCTiExTHui3iC2kzbDviq/KslnZoGT8+uaBDjIAvVmJp0/ak+HLqjwdb1hmEuWB7YrVgzu8S1vlIdZVJEHubys8uYn6RcO5lIzTUWCgG/NAa+xAatDHHOo40CaXkdDVesR9W0AIByqNmUSgSszZdWMZfqM8OKnT+wLGRdAycyvE72LWB46MA0jpZHCFDXBpjrFxZMq4ZdjQlgpUrrfhkZqUf3MX4Uh7tRx/gsTIyuSxbL0aaazSl+btTx3Vse2fFLMYIi4t1WRjjmp09ivH/jLI55rmtjG3nIwomYxk1rimfLICxQILefiAw1sH34wPpasex5rWnzv5CCnVVXzNKwiDm3PELAe5S2fTsj1knLmln5L939M18nu+8g5Z//838un//85+Uzn/nMfX3u1KlTsrOzI3Ecy4c//GH5oR/6odu+98d+7Mfk5MmT8oEPfOCrOu9P/MRPyF/7a3/tvq5zbt9i9ui+si0S/EsgZCEVSWN8GTdrWBR6miLeL4HZsTZAUBAeWP18eYTPtCdYXDMHYlqF7FZNAS6IvtaVX1tAcEOmx8wz5cue4jwizaLQ0benWJxGRTi0+sxEpWozq3PPFFRKnYTTPbx2rYHdmJ/azjAv+uVluJf1BrJJ/cBUV0/3rMRAbEopVin3AA6GmYqlkQEQGewxs0FwIUtf7KHEHfe2MoVa08MLKLvPUiPDczA2W1W81p4avqU+OwwafqWDz1D3xBHTkKlEOL/IrbtLL+e48444H7yE6hjYYLKuAcYrHXUoAa67kMDJ7FXwDM72AD6OPDhoBoU7FSsJMXiYaPB5pifSG5lWyNoApYheYPNouyryvqvWE4g9hM51cUyKyU0KGN+jGAMRw45EnjmytQGCppODO+tl5DV8yBTKxJ77mR6e9SsdzKPEBS7let0Aq1ebcrMJ5Y06specR62pyO9+FXN0o46xWhoj+CmkcMKdsUg9wxwmRoz3zUyUCJ69r3O/mIi87wqewY065j51hE4M8Eyb08PB3PuuoNWBm+F6Xlyy7uunewioOIf/45dE/v1DGINyhLGkSCD1e8Y+soos9cYuStJBLPKODZvTbB8w8g0jxjnMMWJWbqdqYHaWnCl4uFnD504O7kwpbk4lc3/89n//Btp9BSnXrl2TH/3RH5Vf/dVflVKpdF8n+tjHPibD4VA++clPyo/92I/JI488Ij/4gz94y/t+6qd+Sv7ZP/tn8tGPfvTmOb7S837oQx+SP//n//zN3/v9vpw+ffq+rntuD7Zl7/hhcS78PSxKxJ+0piZ2VEjhZPbK+HJTUn1lqPoWnqXwN+pYuPfLBvpk2/enduCE+oGlrg/KcBQ3dDHuBwhUyM7wHNupshsru/SyxMP+IF1X26gPrRMsO9KWI1z7dhW7qL6Y8ubiGAs3cQwi1rfloGyZBzqnbslKS9cV0DspGMC1rNdH0SmyYtzMerPcBN1lpkBanVnfHgrdEQhZm5mCqQic2MU2zkfhs0kBjoP9c8oxjj/2DUA5LWBsgsQyF5s1HGNxbJTW2LGWCY3wcJ8UCtQd3UnnMwksNQ2KIiXFqbywhOfMdgTswZM5Iqd6Glz6eA4UbJsWsDMm9mcQIAOwU8X5qQBLqjnPTQ0eT8uNfoL7WteAtJiaguupvpVY+Dn2zMmX04gpIV01UrxUHpA5LRzP9mBGhw0Lm1PtX+Nq0KZZyKZmjS62MXcIyGWQnTp439u1xHSpfVjw7FQf93RuauXLhw/wnQwLeD+p2QTrkpr8/iuWmelqloVZpkCD2eeXVUAuxbN8uYNg6WzvsAYIgxb22GF28CizbqOOOXemp0yn7PB7eBxil4g1y+vZkFq+MsT/qXxbjo2dlr+2nSqCv2KC+6tGCFj4nraWiSY+/s3PfRGTs3fldWNOlmXZ3d8G+5Vf+RX5/b//94vn2YKXJIk4jiOu60oYhof+djv7yEc+Ir/0S78kL7/88qHXf/qnf1o+8pGPyK/92q/JO9/5zq/5efv9vjSbTen1etJoNO76/rl9a5jzW//IMgybNe3a6utufGJCYuz+2ppiUVtQFs/VJhYtaoUM1NFt1PG6CBbz77wKnMJ21coRSwreqytuYuIbnZBN7MqxZRwmvnUB9jILVsi0yS8qzy2b/P5e2VLXlcgYH19aNSnt7SqwKxT/8jIETQ8fIOPC7tAsQS2P4IAyMbYFdWM4Vgx+iNlohvgsQXeOXj9378tDOFEyNvzEqMYEtzpiAQhBz8MicBaUOe+VcM2P71npaebhs4XUymaOGBupPlOApGammrr7fHT/cKaAVPMjC7hEHgKB55fs+iIP2jI32Sx6z6f6lpViTyIyN15bMMXPkwPMMWZEKIDmZoaLOjmAPkneBgGc0eoQ83O3gnn09DbmJLtxx44FFXnxLmp/cPzDguGfWA4tJghoayFKWGNf5EsrmFurCqpl6YhjzVKhI4ZD6Zbw3AgYdzO89vKiNu6MLdu3WcMc+46rIv/hIcyT3/fyvfW/enYF18eAi2WR9lTkd7526zF6JXwX89pAtBeWcF2dsc35r8SuNa3Mkg/MP3fCxCKpRsyWGJx321Ut/dZwjfkAZ7eC79jpHp7LDc0wsb8TdXqGRTxDriN8Ppot+1r22Lkfux9ffF+ZlO/93u+VZ5999tBrf/SP/lF54okn5C/9pb90T4GCiEiWZYewIiIif/Nv/k35yEc+Iv/23/7bQwHK1/K8c3uDGpVe98uWCl8biDjq4Nlavqjp1IMSHAx3sCsjOKatmqL5I9TMSzGcZOxi0fjyioHdDkpYNKhBEcRwOlMNgugUe2WRjYIC1BwtN5WRHaDIWCZYuKgjwl3+M9twVpda2mJdHefSGLvTtQEWqoOS7dYvtU3DhWJkGzWjOw401U8wKLMebmbKn3nnRsl9sntY3ipH2I0xA8EslitWqhKxHf0X2gAC5xfZ2sy6FYsAZ7E4htOhCJqvIGeqipIanBWsVESKeaLX0NeMxdhHgHC9jmwTewz5iWVEaAPVqnhp0foRjX2jMtPx0ml3S9asL3ZVqv0AQlrsxlvIEERcbSKAmnlwjMsjBDJDBSG/aevWOV0PRZ7Qa2xNbXctYkBcPxHxc5852qvFUXAmWVYsiWX6E3nGuCqk+A4FsZZONUBlx/Figp+tGn6nnP2gaL2aBoFmWkJ8p6qRYWz4/Xh8V/v5zET+o5fxrG4XoLDLL++rHmK82FE6LOD7+uj+8cc4WsrJ21M79v+80u392mkFteZbPpA+z2aa1+t4/s0p/v7iIgLyYdEyLCPfeiVdadr3ab2B8TrZt8woFYB7ilN7ZF/klQUE9S930E+n9pXf0jfa7itIqdfr8swzzxx6rVqtSqfTufn6hz70Ibl+/br84i/+ooiI/IN/8A/kzJkz8sQTT4gIdFN++qd/Wn7kR4xD/VM/9VPyV//qX5V/+k//qZw7d042N8FUqNVqUqvV7um8c5vb7ewmHZlU3oECG6moSLYClR+pSUB7YQm7EWpKuBl2gSJYBH7vy3BU15qWsaGzyncApuYHu/vSkZ3pIaAgoLA9NVbCsIgF6EL7+DpyPQRYtxQjSDrTg4M5KCFFTJYLHQI1EJpTkarurmaKg6HK57BouzZmnJgF8B0DopLRdLPfUGZBAdPuBPyS+hu5JrgmYhTQxFHRtYY5D7abdwSvtScWtJ3sH6bEXm1aySlI4NxaU4zXesP61HBHT6on1VsHAYKBm0q58a3jXA8xT0hrrURWMtioW5PJ5akBVBMNjrplBDiZICDarmCsH91HUHpQxv0sjuFYV4cYz80arr8zuTMAmgEK593dFEKpmssgM3WsTQE1XdzUnjEtLz5HwCfxOmHB6LPlWFl1U3sPdWCIpQkSXOduBfPzbRsWTNPyiqmZYwytYmKZRtqZnmVqlsaHx+A42XY+17sZWzQc9/l7schDMFpM8Fxv1A2zw75hFNFbHVpzSjZTJK26EllwKIKxYBmpkBkGxxG8vlUVOTGQzPu/o//UA2pfEbvnTraxsSFXr169+XuapvKhD31ILl26JIVCQc6fPy8/+ZM/KR/84Advvudnf/ZnZTabyQ/8wA8cOtaP//iPy4c//OGv9SXO7Y1o7H4705Q8ha0mPr7UoWeYgWkBTksEu7sLbYD+UgfOdr+M3c+oaM3rfudr2DU5GQKaXmAlAWYhiGUpKoi3FMMpXWyrkJmL9xNQmznYWU4LWHSnBZR4WlM4BPbnEcFCT/l5ptc9BfcVUih2rg6RdQkSkd2qyF5mDdEoW0+NCxHrAs2MBlUoG6E1Nlwb4hgjH+OxOjQQZl5tdadi2jDEv7AT7uLY8D8n+whOqGXRmuIZbFUR7ESeyHL3MKZit2ICbHS6NzNaZc2uxFZGmRaMYkvJ79hFQLA6xFiQwsmMDu2hA5Fa1bBIoSdS9IxWW4rx/HncURE/UwX/+inul0396KxJSaUOTSnGHHz4QLs+3wNDi/imezEvE0nEuiOLGP6HrR7yjQGpKpsP7DiO7Kt0O2OGK6/kzPLYqIjvVJ7tFSQWFDCLMS1YuSQTY7/kzc2QNWAzvrw5WlK8Xkf28167/BKbwwDluO7Bd7OjGS0G/iII+qhgzAaHQYKy1ckBxoyNT59bxvUQbD8tWBdvaqPoJiarf0hk5f4u8/Vq94VJedBtjkl5Y5vzW/8IzodCS+cPsEjvVfAGlnmGRZHvuIYF4r3XsDD8f580MCcZIEtjSEx/9yU7yWvKJEiIicjM2bGrK8WxYheO/uQATr4aGS164iPQeXQfizl3XF5mQYwIfu+MsXhfb1i24sQAx2tPjPHhZLiXXmB0SOpadEtYKCPNEOTBmnmlVBE4kHy25ajdqFtjv3KE6yAIdrNmeI3azJR8+X8ROK3dijIalJ2wVRV5ZgeBILMr7Ng7KhqWqDqDg+oFhlMZFnENtdCo0tQESVy811eHfL1ugFpKty9MkP5fHFvTu3zDxnqolGAnB44N8Vy2q/bslsaGFdgva7YiM8e3UVOBvgi4nWsNXPsz27cCWBkUMItxs2R5H9gJUmhZmrsb7mPsGxC5MzE2F4/FUtrVJp5xbYYs5KLOT0fgSGPFLLHnkJeaPpGf6vVkOVxSZposx7Ho8ue/m7F0dS9BSuzimo9K2X+19sIS1pLTfWsx8My2BfYMsJfG1vGa9v8/Zx2p2QJh7EtW+b997a7vG2BfN0zK3Ob2QNs7b2CB26wByS9ipYotdUilGIvYe9bhuLnwvWND5BOn4URO9wCSfXTfFgwaHaSvjJTWVMQNtX37BAse6capg50UsxDdEt7TK2ERZfq2p5mRIEG9ujUFvZWAW+442bWXmJKlEcoQTmZMB2pqlGIs2KQtP3xwa3v5q02k0I8u6EdZCnkjC0dEA5/YnN9BGZmdnuJ1CIDl9Yrg34nSwRuhgU6LiZUO+sFhSjCbqeV33mzEljjWLC72rMzRmSC7U4kMgHqtaVkc9npxM/yNejeP7VnJjz1RyhGuKcmdmzonpVgk0ptjULhXEanMDNDI8lTi6nVo9uvhAwRBLy1i7N62oSVB3yj1bFNwpnf/jpSBWSGzsewHmONNLVFWIwM5VyIE1FSbjXRu9pWOfraH+2WbBBHLLG1r5unbrxlNnYwgZivKykAaKW6jOcV4MVhNXJHsNkEKA9y72XGB2NHsCFVhOSZfa8jjuS6E2caaUWGPrrUhnv9Mx6M1ufWzZLItTAz0WvkaX9/rzOZBytzeMJb5f1Uc+bDIf/q8yG/1kVFZHSLQIHPmdB/6C60j6fXTPVOBrUT4/ykFxU0K0MZgg629sil4jn2Vek/NqZRikYmyNraq+PuZLhbp3QrYE14KJ83SwXMaVNWVWuvq/w/Kkr0dpVPn4j/F7otMlv2yNUTsTGzH3ZjCyRUU4JkvG4lYav/EwKjbg8Datld0p9sL4DQLqXVlLcc4Jks1IgpULWNcP3AR4F3qfKyMrHP02DdwsyNIYQexsWbIXmBgw2CHwEvKrYeiKfZEJMigTdMtGZYk0JIFO95+3wVcI+nHJ/twGC93jB5KeX92o80EgcF6Q6RXw7j3lH5+UDJBMjKKuspeOtnH9W7VjA7qxMYIak6xix7o+CSu0UhfW8BnnAwA7HER4+uIObxXOjjP2tACRgZ7R0tGk4KBMxcmCOKIeWJ5pa9A4npojjzv6Ouhyec/t4z7yr+/NjP8z74GqY8cYVPlMxsMYJpiLRRCDwFnMbaSaCUyMTMqQe+Xb6UL38nYMuNo+eZ2mjBfDS4lb5UIZcOdKnRzyoptOtm3ct9eReSxfYyn6htl8mGRR7/60z9oNg9S5vbGtG+/hp9XOwhSvuvynd+/OBb5G78m8h/OQRyKWIL9MnaJxLzQkaWOlQzYn4e9UugUEgf/Xm1i112fmZAatR52K9iZP74HR8Xd+dkugpu8nsfpvlGB6bTKkTF2iIWZas1+4luAcq1pWJJH9q2GTvpwKUZWplsy6jGvtRlawELHfKNuwFK2G3huGY7l0T0s0mHBsA1UsWVZ45OntANtAidN6e/mVB1+YH1y2I3WS/HeRnjrjrkzhoMcFjWYEVMcvdrEcyBdWMSaDzZD3Cul+5fGxt5hxuDEAJ9/tWPdf6kAeqlllHeqeJ4Y4Jo3ahij3YrhQLarVjoKC8AS7VThfCN1yhTdo6BX7BpW6YuruH7+vVvC/YkgIHznDQVnula23FR2F5kozPR1JvfulMluygTz70urKFWwt9CkgGe+W7kVT8Lmj0fPRWpu4mIO90uGmxkEOVyZBip1Bb8fLU/mLU+ZFsE1N8JbFXWPs69FgEJ78xbm22+dtq7n/cCCwwA4mGzlL3ztzvmA2hyTMrc3nDlMk361xkzJntIoiVNwMs2aKHOFC60IFlUCElmO6AeGpajNVAjLt3LCesMcUGdsSq2netYtOF+yGhWNylxMrNkdd8nUZpkU4LRIrz0xsNp+XpyKJZKDEgKliW9OhUJeMw+lK5ZrRhrALI1M7ZYy3bGjgVKCrNGLS6bfMFA9FBGRX37KlHS/55KJwW3WTAuDjJSp0qBXh9Yk8jhw5U4V17er7Jq1IZ7jXhmMra0qynjn9yVr/ZjNmS//HMbnptCd0pavNq0VwtjHcckmYufkTBA8Ra71fDnbw/PJgx6ZhREBJoUg46tNHKsS4VzEObkZxi1zoGZ6raFigQkCjsTFca+04IyrOg8fOsD5fWXIkMm2XzZF1Pu1mSfyq+dNQj8Pmm5NMWeoHVSbAcslYqWevDGQWG9g7p7t4TO+Up9nngV+nMt5SnzmHNYaYpNEzuV8iek4Y+nofgGyX4m9toDs1wKC4uyJP/P1P+frwOaYlLnN7au1fgAnd6fGfFSDJLOGWY3EMQZLMUGJInaRZYhUC6McWbO3cmyOZ+LDmawMcX6qn15oI+vB8k8vwM6yM9ZyTNE6Ijemhq3plrRfisABcqd/o46MSegZnXa9YQJ0meBY1AARxQ881IVTZT+fjRqcSjk2R7Q4tgxFWBApzBBg5bMV1NvYqRqQMohFanodp/oi33YdoldrQ1wfu9gyy8R/6dQSBwGIn8LhUrI+X+bg83Qz62JLZc63bop85gTef3Rn/fQOji1inWg7E8PSbNVMW4Sg0bCAa4o1a7Ff1uenZT0/FdmsILiZFJRZpbT4QmqA3uoMwcPKyECmpJETg3Omi3FrT42iGzr62gSfGxVx3p0KngUp72/ZwnGW7zDXj7M8gJe9emJX5G2bON/lljVE9BPLPnVLdgwGCnye04LhwLxM5O25UiQDfUefK4PuA6Vwi4hMNWPI7AwzY8SV3FR5PRKg5DM534jghKd95L8WeeQbdroH0uZBytzmljfSKquR1bmPNrwTMRbOqIgFb7cisjpATxLKwBMcKprZGBVNeGtQxM6cnWWnih/YqmJhL8cIJIKiSYM3NS29VTMnQ2AiMRnFxLI6xQSfYbdlLtiDIgCgDx0ge0DtEkcMlFpMUFp6bA9/e+jAxoFlARHc50bddq7FxCTpW1NkSUoxHHd9lmNMuCKFCFkR3j9LHKeUhnymZ2UeimANAjiTcoyMzEi1T0I/p00jVt7ZqCNwYgM+Gh0+75Wg0/es49qvNcTJfkLLE57IqmaGrjcQPKwOtS/O2HrSLI1xnCtNvF7RshyzP0Fs199X3NDqEM+ADngmIi3FNfkp7u2pHbwvb82patOIZbTIoGpNECxNCkaxb09NAZiaHARSX6+b4mw/sKZ2xBUdZQ5daakAXYhntTg2ITV2l3YyyzBdaou81EEw1Jmgg/hvnUa5lcZjH2Xo5DMeHrErObeVuGBDNad476BoQVA5FimEt9KRjzMGKFRGvlNp53bYlHvErHyzVF4fVJsHKXN7w1kmHz5c8skcABF3q+ZIlkdYMI+WC6hiSdGoTEzlca9igFQvxeKdOtaPhw3/yIC41LagparYkUf2cZ5Pn0Rgcl2d7IqqkNZDc64UnmPWgzoSif6f2RQ/BdaDSpXnunAuLy5abZ/BzF7ZGCOn+rjecoyMx8LkGKaPgK5MrEohRfajM7bxS7SkUY1MNI6y5amD7AEeDO7jtQVkPEhDJcVYBI6UCrJeZt1zZw7OSUorZd1ZCmhNcI1N1Xih42Pzv/MHJuYXalZjWoDTdjMEhpRZPzHA+deGCGLOH9jYTQqmyFqZqBPV58Bmb2Mf56lrkDBzEVB9xzUTN6OK8fmD46m1PGbmKJVXDFg8KooEE2CUtqvaJ6doPWHaUyvpbdRwHWytwPEuxSKb8WG11VFRRdu0DNWaIqPUnmLMn9k+fI3DogrYOQCBViNrN7BTsYzZ7ewo/ZZ2FM9Syiw4YH8eETwLigqW4lvHMXEx9mQ5MYB2MrmZIjsOq3K7QCT/OrNohVSy4l+9/T3O7a42D1Lm9sa0UB1Qe2KgV3Ymbk5tId6tYDEuqYYIF/zENcXaYdFArHsV67PBz7OcwrWvNrOGg+sNK/kECWTTCZx9ccl6BZFeTNpw5GlvFheLNtU3yaigiJynDvl6HffNv/M8vI7dCq5tbYiF3cusmdnJAa7zQtuu3RGR8/sGyi3H1niP5RtfwYCZXjv7s9ApUi+GAM7EMTrxlRbGbGlkAmAsp/FfXkclMhG+2BWpJXg+7AzLrNDqEPdRiRDQDIu6A3chnjUqYvd/sS3Z25QxtfjXcA9k+jCzwGaKbEaX82s32xeMfJQ8Clqy6SkQ2BGMD7VgqpGOi5YviEOKNDDz08M6IHmwNNVG2RuGQOPOBPe4MEHw8UrHAJmneyZEd66L+fTvHzLV2ebUGjiuDhFQXGtinEi3ZvuBjRrG5Ch9PXVwf70SriFylcmUGfjZu42zv19jcHB0Q0G2GY1sIP6fmZnEFfFy2bSvgWXBX/maHeuNbvMgZW5vSMuCvyJO4W8oXVfVXXcrItOiYUHyTqlfMinr5bH1gskcLPbMGDSnoOOOi3AOV5s4BoMRllReWsSOfKLOd1/xFqnSacMCztea4vXOBI7uoIx/x76l9+sz0wlxxEpW1JioZ8ggHJSQIcq0VBW72GmfGCBTc61hbJGRj11pU1VTY9fEyjg2uxXcy14Fzs5P4STpsKjNMvbt3/rMSg1sSdANgEVJFNS4VzDwZa+E8aCo28LEZPL91DJaDEi2q8ZqOdVHuWe3glLMDplWR0oLjqDM9r6rOMbRIIAU7ht1kbRuWTbKvxcVFDxSSlQxNuG6YRHvPzHANd2oI8PRVRAyZc0f2jUArZvhXh/bw1hy/O6kdsomkk/vYH5UIrDQ2CjyqR0D37L8UdOSJEG+kQdqe22G53S1iUBwaYzP7JWRNalqUBi5mLeD4q1ByssdgKOXRni/CDYEZPekymS6Xbbkfu1e1HYJqM5/hu0wvkrmzryE8/WzeZAytzeukVFyUDaHT5YNJdy54yTeIkiUZpkBB+FlIq2ctkRzKvLCsva5SeEo6UTZfTjywCChhokIzneqb/gGLzNNDidTjZLQSkXs/+MnVlIa+8BpEDDIckgvMGd/YgC1y1IMx8oOrbHqoVAldmEC57OtZR42H2Rn20pkeIfEgbMKYpybnZgnCgh1M1z7Zs0E0hpTY75QwZVMnaWRMp4iE/0aFvH3RmoOZeRbictPjFHEks9OFdfdmRh4k9ozQYLPt6YYgzzOZuKjHLhXEUmrUKo93bPrqiiWhk3iGDywRDNUvNHIN12ZjbqV0kjLPighE8EeS19asWM2QvxQMddPkCG6k7156zAQVQTXkVerHauacVPHn+W7c10Ezm5mbDJK40caoI59PL933MB1fnEVzJvOMZitvYqVhEa+9aTZq4gs7iI4ud6wBoVfrX0lWZD8Z2IXY8ZnSZG9OwQv88DkG2PzIGVub1jL5MPixP8dgpX1BhbgrZrtLL3MJOmpvTEMVK9CMwpMf1P6/XoDC/tQ6/cT3xQ6FybW4JDdXWee9XI5KKGu72RIr4tgF+wrjXhYNJArG+35qfXdcTKRYmYLbuhZ4zc28ItdY4FMFR/hiAmmTTUrtF+2Rn+DIhZvYhyYUXptwRr9UR5+kCsFlDVwyjSIOaXspqlnsvgEm5ZjCwbbUzgxUriJ52BmiAFjquyUQioyq6n2R2rqpamDDEkhxfM5KON5EEhMarh7lALrIAuxXzasRzEx/Au1avbLhlFaHFtWgrTpnao1UqzOkKU410Xg8MVVfPZ3vYZ5we7VItpPJzHZ+V4JZaNH95HtWhndHOus/iERUVq9n1hPpGIi8q7rt076sGBZj7xKK6nDZMZ4mQUqEx/lt/YEz7+YAND8zhsI1i62MfZuhjkSepZVHBQxP4jtiF0AhaszjN/Ih3rzvVieTXSc3U0afxCY5s3R97G/EI3MJ4K0ExeN+ub2Dbd5kDK3N7ZxYTrVN8GpzZrpR/ipOcmZZ6n0vA0Cw3wQAMsOthT8cjJtLCa5BoOCxXBLdUx2KnB2NxpwAFs1/K0cm4ItAxJeN5sk+srYmHhGx2VvGmYqmqEFOFTxJKhw5omIXnslEilNrFcQcTSvdOAIlkZw+Cc1S0R5cxEbI2YVAi3/UG7d14xMWVlJrampjBKUSUDozDPpfxEDrzZCvD7K4W4OSnasyIOIGiXERZR9M7KOu9tVkY5mnKqZ9fcJPfRWaYY4furgvLUZZOovtzRjJKYQul1FGedcF0Hlqb6qx4a430qEz/UDkSd3kD15xw380MpiJZCzXQQEQ8U+rSiT6EsrKME8tod7q+cc7cuLeL+XInh80/bh/ku0vHPmM4tdBCG1mYGPN2oImq42cR+ZWJPJ55YRWLFD8Yj4o6LI80v4G6nhpEQ3QgR3kYsfMnASF/ioo6rHtMgTea2NAO9CW+Td128tLb3SwXMdBPjejHxrwHe2ZwytZQ3uJvfg9pxMpBJZtsS747vn9nW0eZAyt7kdtY4C/QaBAVOPUlVFNCugXyGWXFJHF3UHTo+1cmZj2F/m6R0snAdlBdbORKSiu3dHe/SEcBS7FVPJJNaEAQgzEmP/MMCUEvhuBgcy1WskyDdLTBxrooDTIEFafqSZk9bUughv1nD9LCu1lAJLCnam91/vwimNfey2t6t476k+MgK89oOyCW+JIHBhQERMTD00vRGKkZ0YHBbmcgQBCpk47CZM5slOxWThgxyWhLLqzCCI4L0DBRGPfRxrZYTnf7aLZ7cwsW7HE6U9U324V8Jn3rOO4+XLGP1A5N3rRqnuK6uqmIh85iTumUHGwwc4VuJajyaWz2Ye/qb0cufK31F9liKuM/Jwzc8uI4g6mjE4qg/COcESE8HSpRgBcjNEwLRRw5isDfEaWT9sm8Au1I5mIUnR7gcqkz/DObzUuoE7mqXbVI2Ztx8TqPzGWWwcWBa91ML1nu2aPtFje8gysezYDHG9YUHkNzVD2p4iEHt07zCY9ojNSzivP5sHKXN7Q9shOjI7FxcTxXaI1eKpYjkqwlluVxXzoTiRxTEyA+UIi+/aADu3XsmEqmohShgzLXeIWB8cR7DAisAB+InIgeI7AhVgm3omnz4sHS5r0Ol6EYCbUxWFY1mqoqyN1SF2x3QytZmJztGBlGMrVcVuLsASkVDT+Kf7FkSwPCaC+5r41rhvbWhYkUTva0+Drp2KOnh1rgMPdGSm48sxgpnIvdm/5JC1JwZCZsDFjFKQ4O8EIZOKeqqP16hCmjnal0gDANK0xz6eH/VJQs/GYFpAADAuIkB6ascaNbLRo4gpEW/URV5dQPCyVzENnfx9bNZQyklcKx2xdQEbGpJ1xoBstyIyLlgrgIMyWGh8XhcWMJZUKT6uKSSDstRBxsJTkLWbYZ4wmAgSG4OXFTfFDFjqYFxJXY81W+Ir7of9l9iPiKXJSBl057p4RkdVYGN97tUImSpmDF9YxFgtjk0hlyynpbExiERM52irZmq+x6wBc3v92jxImdvcKJ+eOcpk0Z0WSw7UHXEVwHq5pUDGmYhfgHNltoVl/mtNxZ0kRo18YVnkTVtYOKszLLKvLagoXBULfeziei61QfFl1mK/jICHoFDKwgeJiKuvkU7NTAMVWJmxeGwPqXpmPWaeUkFT1YcQFUlzTZyNTohlmBMDHIfZhmkBzvG8AoGLiSmHnu5jPF9dgHM729PGcwe4R0espJIJjlOb4bWFiemjHG32mLdiIvKWTZQSiJdZGR0W5/ITkcURGFpXm0bNJWupGll/GWY3VkYiT28r1XuGgGtaAAiZJbnm1DA5WzUEgztVA6qSmeOl2MnfqKMHE0tQY996HLmZsak4hgyQfKVUdyYG3GWLgMQ1rZRyLrP1bdfx3p2qBb958TRac2rqwV4KJx/EuLbnl6wpY+gh4LzSxJyb+NDDIRjZT0FVZ/sElnP8FGPI7MlBCfflCP7d0DIZg9BeSeTXH8IYrQ2to/aoaE0LH+ri57iOxnzug8Dk89mUcGUk8sVVyd76J28/n+b2urN57565zU1EnIO/YeweKnPuKVODDd92qlZ/L6TKNlHNEvY/ITOAi36sZaO1ARw7ndlmDYtmpCWHmQeH5WWmU3FigEVWBO+vRJaqZiYgca29O5vVpQInQDZRe4oSwqQA0CxxG/0ATpc9T9pTHGdPd5/1menHTAs4D1VnN+pwEuziPCwiKDmjGICtqgF4Cd5tTnGOimJf2FiPwFTqypQjYzCVFP8xVYBsawpnTUxNfuf93LI1aSNlO3YtWGSWxREEEMUE5yukh3vWXGwjC/HmLbzvegPOuT6zxpEi1pdpqwZMxe0YJoMA5bsXliDW923XNUuSA2aKWHNBlrv6Ad6fP+56w6izzKJQTZjZq7bqllxu4ZhP7mIcr2s24rhg5TjbrGFsRkVTQn51AUFFt4RzPrONv/VKuK+ZK/LlVe2P4xqDjX2kOhME49XZ8SDX55ZNH+ixPczbvQqybo/v4d7Zp+d2dq2JecLM0bMrkr3pT93bPc/tG2Lz3j1zm9v9GrMFs7L1w2lNrc5O1gRBpotjE/AqpKaWSrBpORIZVLRLrwcHQcVW4it2K3D0l1vYwZJ5QXbGQcmkzxmgEETKxn48Z6oZg6ZmXVaGtzaL4663FBvFeUPZTMyCNKe4Jup+UHJfGQ7ywhKCiZFvgRibIu6XcY62YnqCBO8vaCaCdOnlEUpSIhjXm3gW1WrxEyu1dUsmTLdTsTIOMzwiGLvVIcbipoqrJ+J7lgmjPyxrVilThhDHoldC4HSqb71/XljCdWQOnvfMM9DsrjrNjRpeJ2OqEt26w6+HFnANiyK/9rDI+6+YMB9taYxxqs3wbJjhyduJAcYjSExXhowbEaN490qYNyzTnO6h3PjRcyL/9hGR3/Ha3b8TzOQsjoEBudbEMWeeBbD8bkwLCFauNfH8zvYwR660EGiwA/TJPgLj48p3IphnCxPMQ6rHdsZ45oPi4fGibdVwj2wV0ZzeZD2JiMib7n6rc3v92jxImdvcRCTr/EVxxv89fpl5BrAUsQZxA6UN8290xCxvUIK+kGpAofiAaQHO5yZoVSxtTy2JsY/FuKAOcnFsZYBBYOBbqrnS2MAuSEQmOR2SBaWLEk/DJoQMCmoKZKRM/SBAgPDUDrIhV5t430O6k23n3rc8sp3slaZlNpYifG7mwZndqFup4uEDA8yuN+D0iGMY+5YFKmjpiRTwnmttBqiBslfB2FMorRwjgHnrJkCozMrw+TGDErsIGEjldjNkBUgbvtyyrMbpHpxfI8SzqM1MJ6auWYBEQdIHZYwLVWl/25Uj2BvNkJwc4PNfXrGGhmEOh5E6qoQboAz4sJbF3AwBADV3OC9cvYexj+P3AyshBQlAoo/t2j2VY9zv9YbIJ06LvPceMyq0EwNkl15dQHByuo97v97Accc+7ofg5bduGlB4VMT4sqPzesN6OdVDkS+tIoP3bdcx5rtle9adsWXcjhqfZZBIVvvL93c/c3sgbB6kzG1utP2y9cOhJkNtht28k4HCyl4s21UF6ymrIXHNoe1U4Zx6JdAjV4dwNmEu+Hly1zIpM08XeC1FsPFg6sDZpDPTBfFTkSzGwjxT4CF31Ilr5aheyToBkzpKJtLKELv+umIJegri3azhpxka7iF2UaqaKNuF8vahliqe2jHBuN0Kfmf3aOJMhkUr2SyNUab44iqcWCXC36m025kY1oKBRC3E/XBsSXslWLSpzqscI5ga+5YlmeaWOJZ3WF4iS8ZTts5bNvGsSZntByby1gvwN/ZGWhsYO4g4mlaIefHqAu7zYhvj9cVVHO+0BhlPb2Ncy8dkSnaVDfXIPo5LLRY2ATy/bwHiJAegTRzgZEjfZtmyXxJJNKjaqONZrYxwbR87K/K+K7d+D1i+jLzDDCUyjxjwMgB+QufA88v4XCM0lVnaTsUA4GtDgJ2DWLOKET732B7+TwzTawsYi0AB1H5yuNHiZk2y1b8gUrv3r/jcHjybBylzm1ve2ABupJTO5ZFlMIhVETFtkFJsMvpjXxvpzYBpcJRNcqENZ3xWHV4xwa67mBiI1k8s4IldOF52UR4UrSzBmnzimBMb+/aZugqk7VRM94P9cgjWPWoLE808jLBzzbQkw4wPqdakwQax9dTZ0+zHThUO/bMn4MCXRjjubgW/E8BK0bzFCRxPe4JzcewJrgw9YyYxS1WNRLbFwLaFVKSpKrBLI4zTwgSOj319qInCPjheZhTr5ZH1DqL+zLCITMTMAzgzc0QuthCAlGJTI+a1VyKV5K+YQB/P/+ZNy2IECYKVU32Rd92wkl7ePBVTI1Nlp4qxqM3w+eoMmYhKZA0dmWUjeFa0pDIqWpbK0WMzUBbBsb60gvF9YteUlF/pGNYpVqZRvgmgl0J/JXERuO2XrSlmfYZsSDG5tXFgr2SYoo2aCdU5+l1a1Wzil1bwDDgf2EogdUTedf0wE2f1bl/muX0r2DxImdvc1LJTf16c9b9twcB+2RbSmYedaDmyXjnsHnygWhN9ZRRwl79XNqVVyoh/23Ucoz3FIt8ZYxE+2zPV19UhHBTZJswuxI71qsmzV6glUoyNgullItUQC//i+PhurnmrzuBgF8fK7nGMsrlfRhBAlkdTNUjI0tirwDFSuG5LszETH7iNbsnYQYtjHHezdqsuBsHIu2VQkVPVIqnNEGT0AivF5QXgyhGuoREafiUveseux7UZxiVQIPRAQcPDIq6LQaUIMg37ZWSbzvZw7MstONhmiK7KqQMMBrtgEwT7zPbh0gS7Az90cPvnMPZxvtYUz3pxjHEjxTt2rZXBNaUxU+OGejx81r4G2jsVvJ+ibpdbeP/5A8yptaEFPJmWL1NHJFKNm60qSlTHGRWUCaQWwbw4TuKegnSvdqzv0yP7xobqB5gTmWNssxqwRdmpP3+HSTu3N4LNg5S5zS1vXmYy8GQnsJW7iMqoKzD2dB+LPuXa+f9RET8X2ghobtSBDzgxUFyFmCAYqZsTpfKe68KBEzw59lEeSVz8iBhgcRCYKm5zqp2ZYyz8ZNTQgd7NjjItYhf9dURwD5dbyIisDnFNMwUDczx2KyKRlmXYMPFc19gd1xrWT2ZxjM99fg3BTX7XXZshy7JfVvyN3gMzWs8oLXhYtCBFBE6bqr4iCEISRyR1Tf7eS42p5eg9MiPRLVlgwP5DO4rpETF2z8IEaq4HJRPeGxQRxD2xg/NUIoBjFyYWiB1tgDfWbFC+szGF91iaYWDy8iKyNswonO7h9cstE8NzM8O0LEyQEZkWEChPC9ZxOHOMXbM0wniRuUUmGoGr/UDkk6cQqK1pmeWo2uu9mKfB6WYNc70ztvtmSwQvRfaxGkn23X/k/s8xt29Zmwcpc5tbzrK1/0ac6GeQDaEDcgQ7T4JSg1gkUIEwyrFPVEDsQJ3dtQYW5FDFqsiYiVyRQFQBVUsIByVgVCIXbIjFMRwpgaQEgIYFA5EmmlnwFVBaD+HAD8om+x0kujPNcB2OWF+YpdGt8v55y/cyidTR05m7GXbG/UBk7MLpDYo4b2eM+9ypWtmIYxQkyFBQdTZyoYzaLVm2gXiS5tQc9Y06gpm3bv6f7X1pkJzlde7z9df7OptmRqORBAiMEEJgmVwWly3ZgI0K+1LBqZQxhW0SsK7N5jWACyKRUBHGxNi3bHzB16FiJ4GKQ0T5VhJswIDBEgQjYcsLi0C7RjPSLL2v3/feH+ecfru1jvZBOk/VlEbdb3/L6Zbep895znNIy5Cq2nZx8aERg7ygb1usRcQs3869gCWRHRU7eFGGBNY4k/V2pyVBqRrdVz4CDBTonJUgXZvHHWByzlYn07m72nUZu5d2JPYjCWq5vXCrdeGV1u5ACxEdTlI2qKNipxl3cTanEaBMkgiW5XpazezyYZsZqrqAE7LXJdci9zwza7VMYY/if9q4nR81e+Ig/kUxpheICAW59XokQe/P73thLvk0rTnr4A+rOPGhJEWh2B0yx8UL0MwQl1uMRUibi9BjoyxMLYYpPb49RRt2zQXOHabSgBiVuYY22nSVO2dgh/j1lKgWPyPPw918wG9p8xX9izi7it19d5mey0XsJu87Vn8hehI5ToXFrqmandET9K2IVjQOVdcKSuX6xOuim4maiIzDHm324qAbbdiWV9EWpFh8LKZiIpYthumb/MYO20ET9ogAdJatmZz4nXgOiVsBdokN0j3titM9JOrWiEx8Olzftu3WXMqATc9THLr52/1onI7TVabntqStc6poeCIevd/dJbb6LxMhKIco0zFnzIqYZXaPvA/7w5YMxUps8sWhNh+xJnbSXTYeo8/kKAuUwx79OREF3gkAZ5Vt23mEu32GUvQTrxNJkPZwjwnzYI7OK4JkEY7LgMjW+T/xutXVuHvJzg0nKTbxOsWjFS3rTexOmlUEAJccOESKkxtKUhSK3WDm3Qhn4l7auMUcTASIWfZBMY791u87QCNqnV3HYnbCr3yTl2nJmzO0mc7I27kxYg+ejdgJyuIE6oBIhkBMzOQbdCFsyyXjMVrrGDtDaFvK+pnIZl8M2S6g8Rhdl2SNOstk9+5yFqIYstkcEUaKfbmQg1KIrkFabVM1eqzOBnWdZSIUAe4G+k0flcrGYraFejgJTHCbrrjupqq2nbvKZnVZ1rN0lXnYn2eNu/KRFoGsT8RRyjvyDb6n1J7VOH2MfsZidFzJRtQDJF7dkeTsRdXawo+wi+uMHLAjYQfmDSUpdn+sUtYn5AEd+zB4M45tS5dJ116ASFA2SsRqPEqkUIZdSjzKXFqUz0+yRu+1eOgARJJ/PQB8eAMPKuSSZMinlmHpSgryZyDSoPjuTJA/TLra3kkD0HW+d8feCcr2FL1WSki/66XH5+4ibUmr4FWhOAgoSVEo9oYR1nUEDJEKcY+tBYFo1eoF4nXaKMV/pBykDdsLULakHKTSyKYO+sbcWaZNYid/ex/IW2FnPmIzIeWQ3UyFuABWKCubfm+Rvu2WQnbaq5QdCkwUYnXuauE2Zym3vEUaAEyv2fR+KWxn/iRr9HwhbFtxJfsg3iaAHeyWrFHcZNMF6PzVIHeu+LTxSot1f4GuOVWzwxerrnUjrQdo49vhWnLYWSZSIQQlzkLmCpffJBvQUbG6B5evW8Sw0gZeDFPmBLDmaeUgrau7QKQGhBxLJIVwyr2HPattybD/ikzAlrLWRVvo8a3pdnO9fJhEoYOg2VEFLpHtjLNQuUTnHE7QNW7OcPasRO9NT8nqpIa4HNOKTAW45B3799d7eCrwBGVD6qyd+X0v6aXEql/e0woLx0O+bbUHiIS0YnvKfvYlyzUeg+m87QD/wBSKyUFJikKxN9RcO9MnYAA3QBtkB2/WE1G2cG9Y86piiDY6aUOOeFb8KrNiykHbrdJZsaWGRM2aw4ljqgwmbASs4VvNtR4pp4/ZzWkoRX+KCNF3qFQVr1s3XMBqY+J1IhcJzk44hnQDW9NAhIW5Ce78EIIC0MY8K0vXsiNpdSci3Owv0AbZwcLL4aT1F2l4gGHiJDb9AG2QeRbYRpjciPi2HuDBhkHKwKRqRAJjdUtCRLgc8qx2aG9zXSRWMvhvGrVcm+6/AgA4Lz8CnL/dkjMHtotIXGe9AMW4GALWTidSdto4HasYsuLg4YQV5Y5HbXlr4VD7pi8I+kRmN2dsGS1VpfPKLCCA3nODdjG3mAnuPkBQPr+FMAlpt6eI3HWV6fXSPp+PWHNBacH2HaBcpc/V6WP02W/FjiQ9NzNLx0jWbLakc8/QKxSHCiUpCsVeYOZ/Ac6ahwCwB4rM0RmPEQnoqNDjW9K0MWa5LBRrWFGp2KXLt2xJkxfClBWQ6cPSWeEa6zMh3ixiHuYyaegv0KYybydtNvkIrSuFWINhbFknzKWQesCasg0nrSeGuLDO3UW+LeUgaS0CoI26ErQuuG/02LEA04q00UobtczDSdTahwGm2eslywJjaUGuu7ShRkIU10LYeqrwvotagGIhYti+ojUDkxJHukrxbQTsvBrAdrzsC90let2GzvbMwMIhuoadcdqkPYdiWAjT+cVgTgYrJmrAeyrAWfxeDOaAn8+h+/W5Q6geoNfOH6HzPXsKHfM9o3Diy+31GtBrRAsk1v+FsO2gqrv0/s3K2tlSQW4FlpZ0KcW92U2vkZZm+X1Gnq5lzXSY+V8AAGq7lzlVosURX5+qu2d5R/yAPAem56+Ansn/u1IoDhZKUhSKfSHEHhynTtCGCdipvIUw/Wf/ZrfNuvSUaFMN8D+rAhvCibBUUuqii5D5K+I+KvbtkgVolklq9G16b9OAxdhset5qZ4xj575UXet/UeBMjsz9ibPR2e+n0XohWdJS7HFXzy9n0+9SysqHrdZDSidiyCZli9E4PdddosyK61vzu91LC8kavc6BnUwsbd4yGDBWt/OUGgH6Fp+u0mt3JtozJ46ha3WNNTrbmrZOsuLcW6MymmO+Qc87HXQdITZOG423T5XengLmODRReWeC3v+gT8cUwzkHdK1117Zgi6dKlJ2CFw61d1ZJ9sU1tmNI5gTVWoz0cgHbag1QbKtByjjlw+TYmg+TH8n0vM3ITS8Ag2/a873eY8uHAGWntmSIOHZUbImn6vLASqfpPWMytwNx6DwcxTGDkhSFYh8w53wejrnbTo81oE1ENs6RBH1LzlRow6oGacOvu/abcMBY628ZAlgK0eYl2pF6wNrtS6km5NMxXEMp9bBnyxQ1l7Iz0i0jItcAd+6EPWAkDkDEvlzOEWdaEdJKCcM4dK4tGaDKhm5S6vjZHLrOLWm61wJvhiMJiomUHHIRurdi2DrLnjJBZGJ6nshEI0DZBPHhmIhabUeSDfIAq2fpqFoRrmQZxIK+r2AzSGLUJt0sQZ8261SNsiIiUpZswjudtn1XpiFLdmZLmtvDPbo/37H3W3FsV5N0M3kBOp7MqLnsbboGcYoN+rTRS5dQV3nP1m9pKy85QLzBdvvcXZbnmFT5v+rW14qou+pS7F6ZQZ+VUghYPZPicvZO64orqLvAnDE4b3yX9EwZ0PuRj9CfYf58J+pAraqGaorjCiUpCsX+IJuxtO8CtHGISFbElKlqu3mXIM8biXQBdTN5ibDNvQgxx2J2lo9xrLtrX9EamxVDtHm6hjQPYqHfCNI1eo4lINLeG2dyBMeWUsTiXyzuG5wxmZml+xmN070VwyTgFAv/s3bSBm1AmoRoA0g4VrvSW2S7c8dqSgIGmIgAg3nKRolzq7R0Z6pEFGosmB2PWQ1IJWidTaXUEvJIMzOUopKQcay+RUYMAEQscxGrCaq5RJZ2xdkp19g5N4DVc3SV6V5rnRSbsGdLPFKCS9aAxRutGVwh3K4xEdO7LWl63TiX8AohyqrVXeBPttn18rnynfZ5SlLGykXocZlgDRBpyUXsBO1Tx4mIvNlN17QjSd1HIc868EpG6JzhPT/ngzmKWdiDOfVW+3hmkv9OFIqjBCUpCsV+YPq+Cmf7Q/Sfve/QplZ1gYZrdSDJGj02HgMGcu2mXqnqnoLGVnSXgG5YcarPpQnRYvQWiDSI/qDBHiYJdlEthO18G8fQN/Akb/ZVLhkYELnZmqYMhLS2ChE4bZxKAAFjXVe7S9al9P1byHJ/V4I23xEmKKLXeLObNrmNHURUxmK2dFMM0WOVIOkpGiUiMK/3cFmkuKe3SSNs5xPVuP1aNDbFsBXJ1gP0zb8RoE05H7F6IZ/JUylEWS7RW0wvsJGYZ4dI7owTGQz6dG1Jzt6cMUrn3hkn8vKHafRnayeNGPm91W07rgZz9HhHhTJH3SU6Ty1Isfcd4P+dCXxogy2XSXeSTFiO1emeukv0vm7s4I4xx7azv9NJr8lFrLh2MEdxev9mO6NoLEa/95RslkownATe6Ib54HVA+lD+hSgURxdKUhSKAyFWb/HOYNGpmF1JZ08pRELDGBtjxerWor0ctBmN1q6MYXbdTFeBeM3qQaR0IJCptrJBObAttjITRczI8hF6PuxRliJTsZqH7hJb6HMLdTYC9Bd5qBwbt43HbClGhhJmo0A1Yg3WchEuT3H3x0iCjueANstGgK5lU4d10pXOl2KY/jxjlNZJCUnEwtkoxUMmN4u9v+9QfGouxb8atBby0tItc2ZkdpBoWMp87v6CdXIVQer2FNBfgAndBQBwnOV0jFYiIkJWyZKNsJtupEHH39RBpbJxzqg1AuSTMhGl8506YUtbvkO2+kJ6ZWzArhbhaleZ7lXep/4CxSVWt9k7KRdmwfN80pRRyVQsYdnh0LV2lYmgiN6m5sJ0cYtwH/8oFFMUSlIUigNB2nfFSwSgb+ny7R6gjaazbDcmSf83uK1YhJNS+uku0bd+sWJvuAAa1p69EaBzFEN25oyk68OeTftHG5S+Fx+NUojS9tNK1vBNbPWlDVraSTu5jNJXtD4wkoEQO3WZ6Cv3IdqZ7Sm2Y4/Zc4l1/tY0EQYxcSuFyLxNRJixOp1DsggOaE262q65EKv5oG/bbkXXk48QyRpK0XMpFpS+3UXP9xaJrEzP27JNKWTt+esBImdia787slHa8KvBPdtve4uUCSqHiIxkqsCaOF3vhzayJihBcRC7fvn8nD5GpZmJqBXc5jkrMoM9c6pB245dde1coZE4sLmDSIvP5UaZlJ3lrpzWAX/y/leCwIYOmPfcfDCfeoViSsAxxpgDLzsxkMvlkMlkkM1mkU5rblMxeThrueRTd2kjEd1I0Kdvz6eN0ybsGto8AetFUWefk7prW01FSCmQDgrACmuNY8lDlUsJrURFOmp2RyFMm3erW6xkJcSczsA+19R7+KTziDXsJGYhK7E63e9o3GplRPuwK87D8TzyGZFOoqBvreWHUnYz7Szb8orvkMYnw50lYzF6bZqzQBITuRYhTCJqbY1XhQnFaNxqOFxD2aY8t4Qnq/RaeT8i7NESaiF+k8UbPdRCLeW8rWmKlVjCP3MaEYlYgz4z00oUx54SkSohvZsyVgck2qUZeSJY0QbP3KkR+ZVsS1/R3v/OOJGic0bo2ExU1OVVMVVxMHuxZlIUisnAcwCnJaMCA8SZMMimvC1tOzpCnhVdxho23S/zaXZHoOW7QrxuiYnoNfrYolwEsjXXemLsDikDbWODNxe02clcFiElUgaJ1dl+vg5MY01EwJDQM1anTVi6cAa4pPLbPi458D0l2TL/9R47MVeyH3+cxsPuPCpF5JnASGdKgduOxVsmUbNTgQVVl0hXV4vwOOxRBqnmUhkuwBko6ZBqzRpFOIuVjdr7E5FyIWw9YA4GrXNtBEIcALKk/+Vsq7WRz0SriFW0THHWmUjWRaZNhz3rqNtaBjSO7diS+VF/7IH52KcO7h4UiikOJSkKxSRgzv8cnNf+T8sDDolaZeOvBm3rpugojGM3VMlqiPZibyWGVqSrAKotvzOkHFLn7p+9kRRxb5VW2be6m1qE5uYmm3i0YTMa5RBtoLkIfVOfXqANUDbQrpayx9xdlDmQTVT8YwLsr2EcoKMB/JEFuRUXqIRIIHzqhL0nyejkIpRpcLgTZShJMUyww2ymaoWpovWpcWwmoqxR8YgUiQ+NlKBaJ/qKA6tkrpI18jGRYwJEGnYv8ewOIYhyXMDOUBI4hko7OxN07Ym6JXtSTtrBJanpBSuQ7SrzPKIa3VuZPzutpRzpCIrXYebcAszZ/+UqFO9WKElRKCYLmXKb9GhjC7M2oq8ArE/Ykkjdpc1INpKayzoIl7Qc1aDVUYgvxcEi5BHxGY1bp9VW5CK0KaarwPu22+sIc1fLOJcQKq41dysHrTttc/5PkIShvUXghdmUCZmetxqPUojKG9tT1itlZpaOWXXt4MGRBMVJpiaHWghDukokpK9gW7Fdvp4YkzLpkpIskFjt11y6j9lZ284tviTRBl2TZKQMe62UQ3Q+x9hOpG1pW8JrHdS3N4guBqD7aiUnol8SEiq+LnPGrK9LNmIt/cshuv46d2ola/TYRJQHRKbpPvoLwHASpu+rB/lBUSje3VCSolBMEuZPboCz7vt20rFMld3YYTelOJdOxJgs2rAzXMT23gGVPKQ00F+gTbb1m3IhbL+tt4pmBdmoLQ8UwlSGkY1TpjdLuUD8U8SV1TWURTCgaxFn06BvywebM/T3TjYfe7ObXjuSoGsZyNPm/E4nEbWuMnuoODZTUQ7SBhxtENnIRjlLUbEGc1LRidV5EnPETlY+fcxu5oKRBB3PATujNux8nLAHxACcwlqUmkvX4fo8B4gJSIAJ0ETUdsK83UnvoxC63bF7dkWyYWKqJ+UiBxTvbJQ6bk6ZoPd2LMbdVlXbSYTlZMsfq5O+pVUsK3H0HJgzb6JzqmeJ4iSEkhSF4mAQ4Y6TaIMHwMGWdipBa3Mv4tqJKH37B2jzkaGB21gs5vp2hk7A0LHFkn1H0paPRPAa5RbkSpA2sfEYZQ0qQdrUhczIzJ+JKH2Tl6nNIsYFrD5ChhnyoDj4Dm2oExE6vuhs8mHSqXSWacPPR2jdaIyOIzNkokwcekt2QvJgjq5TuqOkpVhKTbEGCUgDhghHT8m2JIc8ytSEPSpDBQyRsCy3QjcC9D4EDMUmXQVcD8i06Ex8h7p93uy2pZPWwX3n74OcAMCrA3QN8TrFLh+h90FGELjGztkJe/ZnYwfwq1mUIZL3Y3bLOWW+T407eE4jQ7Y2h9fuQ/iMKhQnEJSkKBQHAfOem+kbcCukxbgYsmZvBrRppWpAR8lOQJZv3k03U86WTERpg835QCXD4tggdXTEeO22IM/BMXZAYKxBx82HgfVdpGUQg7Ni2M7tkYGGQR8IMGHx2YVWWnPrrhX4jrOVfz5gyyrSuttfsPNtQi4JOl2fshwTUYpJb9Ha2KeqdiaPCIdl8J20ZO+MW6JUCtlZPt0lIizivLqhg2Lo8pwcIScBQxu+67OtfQs5kfsT8mRYjyLDHxs8E2c4aU31Xuun45eDlhhVXaAQo3XdfE1p9pYBbPdSnu+15tpJ0wbNMlLz85OPNgc5mg995ih8WhWKdz+UpCgUh4uAsRtfIWQ3wq6yNQ6rubRJlkOkA3H4dVIycEBrQj7g+UAlbJ1ihdBIWQawpaJKkDZg0XCYqM1EJNg5FSACIiJZKU0Zx2ZOQtxKLWZxMpxQTMAG8rThZlq8TCQL4DBJ6C/Qj2hKIlx+inEGJxehdekK4IOuJ16n4xbCJMaVzEnEa+mACQLJEt2XCEmn54kUShdQ2LPdP63DBkXzUmJRsFj1y+TmMSYdH9rQ7vpbCVK2qxCmLNBgzhKnwRyVcsStVrI+QUPvxXDCZtMSdYqjuPkyDJbb8k3HEfkUKhQnJJSkKBSHCmkllfZZGYQnpZ8tGdrIQpw5EJt4yaoAtGFLOSdToWOmqmzMxiUdmaqc4PJFOWhdWMW6XjIS4oxb4nlDQqB8B4iyPqUSpCxAlHUgsYY1Zot4dPwIZ0pqLmVF5P7EUVVaeVsJgUB0FVXOJAgZmZEnohFj749SiH6PcIkrH7GakaoLjCbp/AN5nijN5EXKTaJXqbl0nN68vYYtGZtlCXu2+6enRDGOeERotqaBXJ20Ne9hG3zp+hnj0QKS2ZEhhEk2jnON7XiSOUOxhh02+UY3EGVPlNkT6luiUBwClKQoFAcJg+Vw1jxEG+9AnjZ6ma2TC9nBgeKBUeWSSNAnnYmYuRXC1gq/wd0dxqGNvdhCeCINIhUOrwv5QKBB2YhUjX4aAcoYFENWVColIWmFDvrkmVJ3iYiIp0g5ROWLTIXWhjz6M8utzHXuoJEuFums2VdXkszVKYfo3hN1ytCIm26JiZoBXa9ke2TGz+YM/Sl+MSMJil+yxmWpFh2N79A1VjnDJO2+Yvomg/hkHMFYjLI90gItJm6zs+33MH8EOHOUrk/8WsohK56Ve5eyjkxpbplsbRZ8/rA+ZwqFQkmKQnFoKHLqf0eSNvBSyPp0ZCP22/ivB6xFumgT5oxT1kDKAI0AbcjFMGUqxjmjsStOG3LAtAtSpYwyytORww2gHrYW9HPG6XydZdr4yyHbyusFgIZnSYOUT+T5eJ1Iie8QAdvJrcNvdxFxkKF3kkXa2EHXMJAnImVgPUeq3I494VrLfTEmAyhWVde6xW7K0HETvCYXoY0/2NKdIwMMow36u2QyHJAnS7xB8a66dnxAhrNVjiFyUm4ZDDnMgwmfOg1YMEz3IeWwkAd0cKwlc7Ohk+5ROnFE9Mzlvma2JHmUPncKxUkGJSkKxSHAfOA6OM/8iDa+eN3qM8Z5Bk2RNSLv3wKs7Wdywd+yDYhAhHwy8Wr1DZENPMadJF6gfVMPGNow6wEr+sxFWTDq0fG2p+z6CnuNSBtzKWQ1IA5sqafMGQ2nSI8NJ2ldR4WHFrKOo7tE5GFX3Hq9vNNJ99c9RM9Jx5IIg0VULJt/ogZUeU3FJcFvZ4Uej9Ssi21nxQp/K0E6Ty5CWZXRmB0/YECPd1Ts+QdKVgPUCNAxvQCRN8C2T29JU7xiPI8owPb14qsiXjfjUSKR4iYsxASAmfWlo/hJUyhObihJUSgOFZ7Tbt1eDlKppxoks7eEa0Wnac6QJGo0Y0XcaTd00gbaYLFtmQcKVoO2LCH+I55Dj0cb9HuIj1EOAXGZKwSrbcmHabOVUlKUS0sel4xGY3RtNZfWegESi87O8uTiMK0TrcVIgq7FC1A5JBehzMr522m9y74qO5J0Ht+xJKPMmo3+Yrv3SaoKpLZRxqYRsJ1CEc+KUvMRutausj1mMWzvqTUD5Rg76LDOJaCIR263Udb0ZKP0XH+BzjkzR4QnUbdt4zIMMtPaFQTqxJmppEShOFZQkqJQHCLMR66Fs/5/W0fTRB3IO9a4zIA29LN30iYqLbfiKxJtADNylMFwWUPS2aBNdZx1H/0Feo0Mw3ONHVjoGCsAFddY49gNfTxKJEMs2dNVIkfTeDBhpsLlHp6h47LPyPYU+Xnsilv301PHrZB2WwroCNM1tHqNCEJsc5+u2vZgcXmtunQ/Yh7nMYGK1am7Zzxm9SKigRFfGCGFXsCWXKQbSNqIZYLzSKJdN+M5QIDfj44KxTvKIleA3sNiiIcsunQ95WBTb9LmXaJQKI4ZlKQoFIcDB3azlSFyIwkiDzE2+GpErQFZjbUN3TwFeCfb6SNg1yfq7MoaoSxC0KcsQJV9UcLgjTpAGy/Ac3x82oBlQJ+YyIW5Y6ezTMRkONmu9QgYoEOGD7J3yla2iS9zNiEXoXOPxklQWgnS77kIZTcGc+1W8JLBidfZmbdl4GIhTARIJiT3setqnbUrlaDtYjIOHUMmGW9Lsc6katuvI167aDjP9vIi+BXBrg8ib9K63Cr8jTRsOW5XHCZ8F9B/DD4/CoViv1CSolAcDnpKdjMVq/R4nT1KwrQBTyvSxjqSoE1URLB1175e5v1E67atOVmzYlvRjYgYVUzRJDMR8injIcLdTNU60Yqj6TudPFG5aFuDow0iJOJJsqmTNvL3jFKWorNME4+7y9ZLRfQvIlAV19jTxukYkQYQDNB1pHgWTbRhNSQSt6GUbe91o3ZuzpZpVBKrhOhYomsZ53k2AB3LNTYDNZS0ZnPGAcaiRGBKTEgccJnLA0y4fTAgoyl67Tl6HxeFQnFwUJKiUBwGTOZ2OMW/pw083fLt3ncoA9HJ7q8OaOP/TT+JT0fjZEjmGiDFWhTfIUMwyWC0znFpFcrK7BkfdN56wPp2lILWx0PKSz0lq3PZ2EHkoBCmxx1jN/OeEnDeDtKlSNfSaJx0Ir5DZSDp5JG5QakqCV8liyJdP+UgkZ18xPqeNALWo6QUstmWsRiRsaBHWZDOChGnGnfvjLKtvkw0Fs+SmgskOIslGZsKa3nEDj9Zpfv2HJup4dZu9S1RKKY+lKQoFIcLyXbUXBaP8pDBbAR4ZYC1J3naSGdP0CYrXTKA7SIRe30DW/qR2T0+C2dlzmDAAAVuY07WgDq3KdddKgEFWgbsZXkA4JYMkYAZo6xTqVHZRdqCN2eos2UoSedfOETrtqeIwAzk6fU11/qH+A7pOopha2YnhmcAkRhwbHbFiTBIt5K0V0c8O+ywymWkaSUqAUmWSJxjGwHrCSOxH0oC2zNEpsSKH6DskR+1BKoegOn9GjDtKH4WFArFEYWSFIXiMGEyt8PZ+i3aDOtcjimyPf7GDusbkmJvjbBnh9KJJX0hbDUhCNgNXKYVSwlIBLTVIB0vGLKGZsWwtayvMgnJVNgyPkxkZd4u9lZhwzbpogkYq9M4Z4Ss3XfF6bxzdwFrphNJaQQA+ER6phfoHKmabdXdG6TzRmzhpR1ZrO8dQ6UdeFbQurGDxLrJGtBdpcxKbxH4wzTb4pyPUDkq6JNmxWPRcHeZtTtF0pYoFIp3LZSkKBRHAvkwiU+l7OBwK7KYg0XZe2QgT487xuol2G8DLpcwwBkKmWvTUqJoZkhkMGCyRoSnwh1GQdamTCvSui08IGZGjjb5bIt4txwkMjQrS4Qk7AFvdZG2ZFqJiEGdW3TPHSbRqmhuhFCNxknr0lWm4+wL4pUykLei2Sjb4/sOHVfIXLpqxa6uofuSjqFchMo5AL0+Ubc+KmEPCBoY9685nkfjjVYoFMcSSlIUiiMAc9ZNcF75AWUWYg0gyeQj6APxGmlNJFviO+RFUg7aFlohNdEG6UrEnr7OG3eQMykAt9yy8LPV0l5m2MyeoM1cykpDKS6h8GRicbkthaztfCFMWYrBHPBGDw3b6yrT/UzwNcYaRFp2xa3bapTLUq4Bhj3KaOwNkQZNMJa26zd66HdJwIhFfsgHAiFLSHqL5HY7Z4zKWwFDWZkMG71tTcOc+7/seVT0qlCcUFCSolAcKSQ4q5FnUWqYbfJDHpUmIg0qR4R8YFMHbcwzc0QCZFKww3N/JMMi045lenGNZ+GUQGsk2xBt2LZiWe871JnTX6BjjsWItJRZJOsaEqnWXGD6GL1+R5KyLKNx+nMkQeUcEev2F+jaS9wp01km0jIRpfPKfKF0td20Lcmzf0ohtuoPAvW4HTooXjAicpVSjstC4gCItAR9mPd97pi9pQqF4vhCSYpCcYRg5t0IZ/vfAwkuP0xEqQRSDllhrIH19fAcu7nL7B8pBbk+61Ng9SMAHVfKRIWw9R4ZjVOXjghTu8pUXkpXbYYFoNeJDqV1iN8Qd/P0lGyWZVqRiJdY5tddIjGxuhW8jnLpphwEwiEiQg6orDRn3F4/QASnEKbf/8c2IkD5iB1+WHNJO7Opg9Y0WJuTqsJE7gTmHOU3UKFQTDkoSVEojiDMwFcAAM7ofbSxZ2Wujk8ZFgDoG6eMirjH+g61F7usUxFxre9YP5WKC0Q9EoV63JJcDVL7bcDQ6/Nhah+OsPV7jq3eQ0yKpLwj1zWtSKQp7FlSIwMMU2x/73J5qBq0AxTFiTVZo44g6cLJR6hkk41y6zB36ZwyYY3SRAsTa1BGxQvYgYyiwzl3B8y8G4/L+6dQKKYWlKQoFEcDhTBlDiSLkovQBuwaIhm5iPU/aW2tlem9Iwn6U0pGqRodMxchMzbXMAHh7phshLIyAUPZjOEkaT/SdSIj0mI8vUCk5/QxO3xQJg6LX4rr81BBcFsx2IQOtE6GHI6xNmRzhkhShK91ep5i4Ds02XhTBvjI2zY2MTaQ66jQ/SbqwLYUzIXXH/v3SaFQTGkoSVEojgZc7lZJ1mgjnpGnP/sLVDKpcBYkVm/pZPFt5iPLZSDfodeVg0RUxHE1FwESns1CRBuk+diWJqv9RI2IhhCZ9UwKZLJxhWfVyPC8VI3IxUSUsjyZCpGncqg5WA+uobJMrE7twTsT7LuSJ7IV8ei6wh55q/QViGxlqsDTp1FWZVaWtCaDOTJTS3K8Zh6H90ihUEx5KElRKI4CzOCX4fh3t09JHotRZ0ohzG6ysEMDkzXb+VNiH5EAu8iGufvHc4AtHVTykYyJTPqtuUQotqXI12Q4QSRkJzvGnjbePp3YgPQnYzHKbNRcEtmmq0C8YbMrLnu1xHiWTl+B7mEoZScOJ9kULmDsYEOx7U9XiTyxb4zpvO04vBsKheLdCiUpCsXRgohNG2xbLxt7nIWnKZ4KHGChbD5sfVBc3xIKmY8j2hEpBcn0YAe0fjhJ5ZzRGPmRBPicYkffWSHy4nu2dOM71twtU6Xry4d5fZnIihCOaVzOAeyAwXidrqERAPI8h0emP1ddmP959XF8AxQKxbsdSlIUiqMEk/w6nFcfJjLigLIJMt8nWSMSk6oRAdnUQWRkMGfLLx6bt00rEfGQzEa0wVOP2bvk9R46RyFMJCZdJcKxI0ktx2Lg1lukCxtKWn2McayjrRck/5WaS+esunSssEcZmrpr7ehDHpWUAobM3Hx2e03WYD72qeMUcYVCcaJBSYpCcTSRD7P1PbfhVoNESsQDpcKDBKMN0oo4sG3AIc6klPmfqTizBn3bMeRwRsZ3SH8yEW2fc9NqV5+NEjHqKtuJza4h8lTkDIjPmpWaa91r85xxEYO4ubuA308DTp0g8jI7C3Pqrcc4sAqF4mSAkhSF4ijCLP4snKd/ROTD4xk7mYolKGXWn2QqRDzCHpESMWMDLIHwAoDLrbzSojySpBbf4SRQ43bkjgoJaH0HcNkjxWUNS6JG1wKfHh9nUjON9SldZSI9pRCdL1OldZsylP3pKANb0jCLP0vXMftYR1ShUJxMUJKiUBxtSJZEHFjDbNo2m2fmdJWBXSyClUF/YoPvBUhcaxxaZ2A7hsJsDjcRZf+TMDBBJZemW2uAvVgMiHxko0SIAqAMinGoxOTATlze1EFW/tMLRFZmT8DM/uJxCp5CoTiZoSRFoTja6KhQpsJziAyMsw3+WIyIA0BaEBlOWOWOHSkT+Y4V0Ia4BXiCyUZvkTIt+TCVaObuou6bugvEK0RSHBA56eRZPLmILfeEPSJCBqSDGY3ROSdiMGfdBHQcn5ApFAoFoCRFoTjqMPO/AOcP3yMy0MH+I9PZQ6Tq0p89JZ7dAyIzVZeGEjYCVmgr83/AQwerQSrz9BfomNvS5E9Sc8mSvsyv25rmmToJWhdr8NRjFtvKPKBiCGbh0uMZKoVCoWiDkhSF4lgg4gF1Q2Shu0QdNuIxEvGIlPg8YDBkgFqINCYuC2VzTFBCPnXrAFY7MhajjElPiYjM/BHgjW4rnvUCwPu2s4EbkxJubzbzv3B846JQKBT7gZIUheJYIMDGZz0lyl6EfCrBiANsigcB5iNUeok1LHGRGT5S/hnIU9tv3aW1mYrNlqSqpDU5c5QcZPMRakU2TrPkY7rUUE2hULw7oCRFoTgWmJklwlB3bUuv79j23+4SZVSSNcqY5CNEPiai1iK/q0wEp9EgF9l3OonMOLDD+qR7p7sEbOyAOf9zwKl8DanjdO8KhUJxiAgczotXrFgBx3HwxS9+cZ9rXnzxRbz//e9Hd3c3YrEY5s6diwceeKBtzQ9+8AN84AMfQGdnJzo7O3HppZfiv//7v9vWfP/738eCBQuQTqeRTqdx0UUX4b/+678O5/IVimOHoE8EZChJ5ZpcS4YjzDNvJqJWKNsI0PpZWWoxzlRIYyJmcHU2Z5MuoFiD/jQOzDmfhxn4ChEUhUKheBfjkDMpr7zyCh5++GEsWLBgv+sSiQRuuukmLFiwAIlEAi+++CKWLl2KRCKBz32O/hN97rnncPXVV+Piiy9GNBrFfffdh4985CP4/e9/jxkzZgAABgcHce+99+L0008HAPzjP/4jrrzySqxduxZnn332od6GQnHssDNOnTeRBpVidsWJWJSDlC3pLtH8nHk7iaD8to/KQ2GPxLE7E/Taepw9U3wq9wQMzDmfP953p1AoFEccjjHGHHhZOwqFAhYuXIgHH3wQ99xzD8477zx8+9vfnvTrr7rqKiQSCfz4xz/e6/Oe56GzsxPf/e538elPf3qfx+nq6sI3v/lN/OVf/uWkzpvL5ZDJZJDNZpFOpyd9vQrFkYDz8v+lX+rc5ROv29JPokYZkkKYxLDn7aDfpbMnU6XXZUgsa1J3HN+bUSgUikPEwezFh1TuufHGG3HFFVfg0ksvPejXrl27FqtWrcKiRYv2uaZUKqFer6Orq2uvz3ueh8ceewzFYhEXXXTRPo9TrVaRy+XafhSK44qgTwQl7PGMnqqd4zMRJcKSjVI7cdCnluLf9sGk7oDpug3G/WslKAqF4qTBQZd7HnvsMaxZswavvPLKQb1ucHAQO3fuRKPRwPLly3H99dfvc+3tt9+OGTNm7EGC1q1bh4suugiVSgXJZBIrV67EvHnz9nmcFStW4O677z6o61QojhbMBdfD+eUj1NEj04QbAfo90gBSDpWAMhVaP/hlYPA4XrBCoVAcZxwUSdmyZQtuvfVW/PznP0c0Gj2oE73wwgsoFAp46aWXcPvtt+P000/H1VfvOcb9vvvuw6OPPornnntuj3OceeaZeO211zAxMYHHH38cn/nMZ/D888/vk6jccccd+PKXv9z8ey6Xw8yZMw/quhWKI4rOCs/saRkaaHhGj+vDXHbt8bs2hUKhmGI4KE3KE088gT/90z+F67rNxzzPg+M4CAQCqFarbc/tC/fccw9+/OMf44033mh7/P7778c999yDp59+Gueff/4Bj3PppZdizpw5eOihhyZ1/apJUUwFOK8+TGWeiKczcRQKxUmHg9mLDyqTcskll2DdunVtj1133XWYO3cubrvttkkRFAAwxqBarbY99s1vfhP33HMPfvazn02KoOzrOArFVId5n7YGKxQKxWRwUCQllUph/vz5bY8lEgl0d3c3H7/jjjuwbds2/OhHPwIAfO9738OsWbMwd+5cAOSbcv/99+Pmm29uHuO+++7DXXfdhX/5l3/BKaecgh07dgAAkskkkskkAODrX/86lixZgpkzZyKfz+Oxxx7Dc889hyeffHLS1y9JIxXQKhQKhUJxfCB78GQKOUfccXZoaAibN29u/t33fdxxxx3YsGEDgsEg5syZg3vvvRdLl9pBZg8++CBqtRr+7M/+rO1Yy5Ytw/LlywEAw8PDuPbaazE0NIRMJoMFCxbgySefxGWXXTbpa8vn8wCguhSFQqFQKI4z8vk8MpnMftcckk/KuxW+72P79u1IpVJwHOeon0+Eulu2bFENzGFA43hkoHE8MtA4HhloHI8c3m2xNMYgn89jYGAAgcD+nVBOqtk9gUAAg4PHvqdTrPwVhweN45GBxvHIQON4ZKBxPHJ4N8XyQBkUwWHN7lEoFAqFQqE4WlCSolAoFAqFYkpCScpRRCQSwbJlyxCJRI73pbyroXE8MtA4HhloHI8MNI5HDidyLE8q4axCoVAoFIp3DzSTolAoFAqFYkpCSYpCoVAoFIopCSUpCoVCoVAopiSUpCgUCoVCoZiSOKlJyimnnALHcfb4ufHGG/dYu3TpUjiOg29/+9ttjz/88MNYvHgx0uk0HMfBxMTEHq8dHx/Htddei0wmg0wmg2uvvXaPdZs3b8bHP/5xJBIJ9PT04JZbbkGtVmtbs27dOixatAixWAwzZszA3/zN30xq9sHRxuHGcWxsDDfffDPOPPNMxONxzJo1C7fccguy2WzbazWOFvv6PC5duhRz5sxBLBbDtGnTcOWVV+L1119vW6NxtNhXHAXGGCxZsgSO4+CJJ55oe07jaLGvOC5evHiP13/yk59sW6NxtNjf53H16tX48Ic/jEQigY6ODixevBjlcrn5/AkbR3MSY2RkxAwNDTV/nnrqKQPAPPvss23rVq5cac4991wzMDBgHnjggbbnHnjgAbNixQqzYsUKA8CMj4/vcZ7LL7/czJ8/36xatcqsWrXKzJ8/33zsYx9rPt9oNMz8+fPNhz70IbNmzRrz1FNPmYGBAXPTTTc112SzWdPX12c++clPmnXr1pnHH3/cpFIpc//99x/JkBwSDjeO69atM1dddZX56U9/atavX2+eeeYZc8YZZ5hPfOITba/XOBL293l86KGHzPPPP282bNhgXn31VfPxj3/czJw50zQajeYajSNhf3EUfOtb3zJLliwxAMzKlSvbntM4EvYXx0WLFpkbbrih7TgTExNtazSOhP3FcdWqVSadTpsVK1aY3/3ud+bNN980P/nJT0ylUmmuOVHjeFKTlN1x6623mjlz5hjf95uPbd261cyYMcP87ne/M7Nnz97nf2bPPvvsXknKH/7wBwPAvPTSS83HVq9ebQCY119/3RhjzH/+53+aQCBgtm3b1lzz6KOPmkgkYrLZrDHGmAcffNBkMpm2D+WKFSvMwMBA2/VOBRxOHAX/+q//asLhsKnX68YYjaPgYOP4m9/8xgAw69evN8ZoHAWTieNrr71mBgcHzdDQ0B4kReNIOFAcFy1aZG699dZ9HlPjSDhQHC+44AJz55137vOYJ3IcT+pyTytqtRr+6Z/+CX/xF3/RHD7o+z6uvfZafO1rX8PZZ599SMddvXo1MpkMLrjgguZjF154ITKZDFatWtVcM3/+fAwMDDTXfPSjH0W1WsWrr77aXLNo0aI2s56PfvSj2L59OzZu3HhI13Y0cKTimM1mkU6nEQzSeCmN48HHsVgs4pFHHsGpp57anPytcZxcHEulEq6++mp897vfRX9//x7Paxwn/3n853/+Z/T09ODss8/GV7/61eY0ekDjCBw4jiMjI3j55ZfR29uLiy++GH19fVi0aBFefPHF5poTOY5KUhhPPPEEJiYm8NnPfrb52De+8Q0Eg0Hccssth3zcHTt2oLe3d4/He3t7sWPHjuaavr6+tuc7OzsRDof3u0b+LmumAo5EHEdHR/G3f/u3WLp0afMxjePk4/jggw8imUwimUziySefxFNPPYVwOAxA4whMLo5f+tKXcPHFF+PKK6/c6/Max8nF8ZprrsGjjz6K5557DnfddRcef/xxXHXVVc3nNY4HjuM777wDAFi+fDluuOEGPPnkk1i4cCEuueQSvPXWWwBO7DieVFOQ94cf/vCHWLJkSZNlvvrqq/jOd76DNWvWNBnvoWJvrzfGtD1+KGsMi5kO9/qOJA43jrlcDldccQXmzZuHZcuWtT2ncZxcHK+55hpcdtllGBoawv33348///M/x69+9StEo1EAGscDxfGnP/0pfvGLX2Dt2rX7PbbG8cCfxxtuuKH5+/z583HGGWfg/PPPx5o1a7Bw4UIAGscDxdH3fQAkqr3uuusAAO9973vxzDPP4B/+4R+wYsUKACduHDWTAmDTpk14+umncf311zcfe+GFFzAyMoJZs2YhGAwiGAxi06ZN+MpXvoJTTjll0sfu7+/H8PDwHo/v3LmzyVD7+/v3YKnj4+Oo1+v7XTMyMgIAezDf44XDjWM+n8fll1+OZDKJlStXIhQKNZ/TOE4+jplMBmeccQY++MEP4t/+7d/w+uuvY+XKlQA0jpOJ4y9+8Qu8/fbb6OjoaK4BgE984hNYvHgxAI3jof7/uHDhQoRCoWYGQON44DhOnz4dADBv3ry245111lnYvHkzgBM8jsdaBDMVsWzZMtPf398UaRpjzK5du8y6devafgYGBsxtt93WFCK14kDC2Zdffrn52EsvvbRXQdP27dubax577LE9BE0dHR2mWq0219x7771TShh2OHHMZrPmwgsvNIsWLTLFYnGPY2scD+7zKKhWqyYWi5lHHnnEGKNxnEwch4aG9lgDwHznO98x77zzjjFG43ion0eJ5fPPP2+M0ThOJo6+75uBgYE9hLPnnXeeueOOO4wxJ3YcT3qS4nmemTVrlrntttsOuHZvquuhoSGzdu1a84Mf/MAAML/85S/N2rVrzejoaHPN5ZdfbhYsWGBWr15tVq9ebc4555y9toZdcsklZs2aNebpp582g4ODba1hExMTpq+vz1x99dVm3bp15t///d9NOp2eEi12xhxeHHO5nLngggvMOeecY9avX9/Wrrd766zG0WL3OL799tvm7/7u78yvf/1rs2nTJrNq1Spz5ZVXmq6uLjM8PNxcp3Fsx2S6pLCPFmSNo8XucVy/fr25++67zSuvvGI2bNhg/uM//sPMnTvXvPe979V/1/vB3j6PDzzwgEmn0+YnP/mJeeutt8ydd95potFos2vPmBM3jic9SfnZz35mAJg33njjgGv39uFZtmyZAbDHj3xzNcaY0dFRc80115hUKmVSqZS55ppr9si4bNq0yVxxxRUmFouZrq4uc9NNN7W1gRljzG9/+1vzgQ98wEQiEdPf32+WL18+Zb4lHE4cJQu1t58NGzY012kc27F7HLdt22aWLFlient7TSgUMoODg+ZTn/rUHt9sNY7tOFSSonFsx+5x3Lx5s/ngBz9ourq6TDgcNnPmzDG33HJL2xc4YzSOu2Nfn8cVK1aYwcFBE4/HzUUXXWReeOGFtudP1Dg6xkwBSz6FQqFQKBSK3aDCWYVCoVAoFFMSSlIUCoVCoVBMSShJUSgUCoVCMSWhJEWhUCgUCsWUhJIUhUKhUCgUUxJKUhQKhUKhUExJKElRKBQKhUIxJaEkRaFQKBQKxZSEkhSFQqFQKBRTEkpSFAqFQqFQTEkoSVEoFAqFQjEloSRFoVAoFArFlMT/B/e6HwLziFaoAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "from snowexsql.api import RasterMeasurements, LayerMeasurements\n", "from shapely.geometry import Polygon\n",