-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfba_data.m
97 lines (87 loc) · 1.98 KB
/
fba_data.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
clc;
clear;
% data file for flux balance analysis in systems biology
% From Segre, Zucker et al "From annotated genomes to metabolic flux
% models and kinetic parameter fitting" OMICS 7 (3), 301-316.
% Stoichiometric matrix
S = [
% M1 M2 M3 M4 M5 M6
1 0 0 0 0 0 % R1: extracellular --> M1
-1 1 0 0 0 0 % R2: M1 --> M2
-1 0 1 0 0 0 % R3: M1 --> M3
0 -1 0 2 -1 0 % R4: M2 + M5 --> 2 M4
0 0 0 0 1 0 % R5: extracellular --> M5
0 -2 1 0 0 1 % R6: 2 M2 --> M3 + M6
0 0 -1 1 0 0 % R7: M3 --> M4
0 0 0 0 0 -1 % R8: M6 --> extracellular
0 0 0 -1 0 0 % R9: M4 --> cell biomass
]';
[m,n] = size(S);
vmax = [
10.10; % R1: extracellular --> M1
100; % R2: M1 --> M2
5.90; % R3: M1 --> M3
100; % R4: M2 + M5 --> 2 M4
3.70; % R5: extracellular --> M5
100; % R6: 2 M2 --> M3 + M6
100; % R7: M3 --> M4
100; % R8: M6 --> extracellular
100; % R9: M4 --> cell biomass
];
v_pos = zeros(n,1);
v_neg = zeros(n,1);
lambda_pos = zeros(n,1);
lambda_neg = zeros(n,1);
v = zeros(n,1);
for j=1:n
cvx_begin quiet
variable vpos;
dual variable lambdapos;
sum = 0;
minimize(vpos);
subject to
for i=1:m
sum = sum + S(i,j)*vpos;
end
sum == 0;
vpos >= 0;
lambdapos : vpos <= vmax(j);
cvx_end
v_pos(j)=vpos;
lambda_pos(j)=lambdapos;
end
for j=1:n
cvx_begin quiet
variable vneg;
dual variable lambdaneg;
sum = 0;
minimize(-vneg);
subject to
for i=1:m
sum = sum + S(i,j)*vneg;
end
sum == 0;
vneg >= 0;
lambdaneg : vneg <= vmax(j);
cvx_end
v_neg(j)=vneg;
lambda_neg(j)=lambdaneg;
end
% cvx_begin
% variables t v(n,1);
% dual variable lam;
% minimize t;
% subject to
% v <= t;
% v >= -t;
% S*v == 0;
% v >= 0;
% lam : v <= vmax;
% cvx_end
lambda_pos
lambda_neg
S*v_pos
S*v_neg
v_pos
v_neg
S