-
Notifications
You must be signed in to change notification settings - Fork 225
/
Copy pathbenchmark-ibims.py
146 lines (117 loc) · 5.86 KB
/
benchmark-ibims.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python
import base64
import cupy
import cv2
import flask
import getopt
import gevent
import gevent.pywsgi
import glob
import h5py
import io
import math
import moviepy
import numpy
import os
import random
import re
import scipy
import scipy.io
import shutil
import sys
import tempfile
import time
import torch
import torchvision
import zipfile
##########################################################
torch.set_grad_enabled(False) # make sure to not compute gradients for computational performance
torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance
##########################################################
objCommon = {}
exec(open('./common.py', 'r').read())
exec(open('./models/disparity-estimation.py', 'r').read())
exec(open('./models/disparity-adjustment.py', 'r').read())
exec(open('./models/disparity-refinement.py', 'r').read())
exec(open('./models/pointcloud-inpainting.py', 'r').read())
##########################################################
print('large parts of this benchmark were adapted from Tobias Koch')
print('this implementation first downloads the official evaluation scripts')
print('the depth boundary error is currently different from the paper')
print('this is due to the official evaluation scripts being outdated')
##########################################################
abs_rel = [ numpy.nan ] * 1000
sq_rel = [ numpy.nan ] * 1000
rms = [ numpy.nan ] * 1000
log10 = [ numpy.nan ] * 1000
thr1 = [ numpy.nan ] * 1000
thr2 = [ numpy.nan ] * 1000
thr3 = [ numpy.nan ] * 1000
dde_0 = [ numpy.nan ] * 1000
dde_m = [ numpy.nan ] * 1000
dde_p = [ numpy.nan ] * 1000
dbe_acc = [ numpy.nan ] * 1000
dbe_com = [ numpy.nan ] * 1000
pe_fla = []
pe_ori = []
##########################################################
torch.hub.download_url_to_file('ftp://m1455541:[email protected]/evaluation_scripts.zip', './benchmark-ibims-scripts.zip')
with zipfile.ZipFile('./benchmark-ibims-scripts.zip', 'r') as objZip:
strScript = objZip.read('evaluation_scripts/evaluate_ibims_error_metrics.py').decode('utf-8')
strScript = strScript.replace('# exclude masked invalid and missing measurements', 'idx = gt!=0')
strScript = strScript.replace('gt=gt[gt!=0]', 'gt=gt[idx]')
strScript = strScript.replace('pred=pred[pred!=0]', 'pred=pred[idx]')
exec(strScript)
# end
##########################################################
torch.hub.download_url_to_file('ftp://m1455541:[email protected]/ibims1_core_mat.zip', './benchmark-ibims-data.zip')
with zipfile.ZipFile('./benchmark-ibims-data.zip', 'r') as objZip:
for intMat, strMat in enumerate([ strFile for strFile in objZip.namelist() if strFile.endswith('.mat') ]):
print(intMat, strMat)
objMat = scipy.io.loadmat(io.BytesIO(objZip.read(strMat)))['data']
tenImage = torch.FloatTensor(numpy.ascontiguousarray(objMat['rgb'][0][0][:, :, ::-1].transpose(2, 0, 1)[None, :, :, :].astype(numpy.float32) * (1.0 / 255.0))).cuda()
tenDisparity = disparity_estimation(tenImage)
tenDisparity = disparity_refinement(torch.nn.functional.interpolate(input=tenImage, size=(tenDisparity.shape[2] * 4, tenDisparity.shape[3] * 4), mode='bilinear', align_corners=False), tenDisparity)
tenDisparity = torch.nn.functional.interpolate(input=tenDisparity, size=(tenImage.shape[2], tenImage.shape[3]), mode='bilinear', align_corners=False) * (max(tenImage.shape[2], tenImage.shape[3]) / 256.0)
tenDepth = 1.0 / tenDisparity
valid = objMat['mask_transp'][0][0] * objMat['mask_invalid'][0][0] * (objMat['depth'][0][0] != 0.0)
pred = tenDepth[0, 0, :, :].numpy(force=True)
npyLstsqa = numpy.stack([pred[valid == 1.0].flatten(), numpy.full([int((valid == 1.0).sum().item())], 1.0, numpy.float32)], 1)
npyLstsqb = objMat['depth'][0][0][valid == 1.0].flatten()
npyScalebias = numpy.linalg.lstsq(npyLstsqa, npyLstsqb, None)[0]
pred = (pred * npyScalebias[0]) + npyScalebias[1]
abs_rel[intMat], sq_rel[intMat], rms[intMat], log10[intMat], thr1[intMat], thr2[intMat], thr3[intMat] = compute_global_errors((objMat['depth'][0][0] * valid).flatten(), (pred * valid).flatten())
dde_0[intMat], dde_m[intMat], dde_p[intMat] = compute_directed_depth_error((objMat['depth'][0][0] * valid).flatten(), (pred * valid).flatten(), 3.0)
dbe_acc[intMat], dbe_com[intMat] = compute_depth_boundary_error(objMat['edges'][0][0], pred)
if objMat['mask_wall_paras'][0][0].size > 0:
pe_fla_wall, pe_ori_wall = compute_planarity_error(objMat['depth'][0][0] * valid, pred * valid, objMat['mask_wall_paras'][0][0], objMat['mask_wall'][0][0] * valid, objMat['calib'][0][0])
pe_fla += pe_fla_wall.tolist()
pe_ori += pe_ori_wall.tolist()
# end
if objMat['mask_table_paras'][0][0].size > 0:
pe_fla_table, pe_ori_table = compute_planarity_error(objMat['depth'][0][0] * valid, pred * valid, objMat['mask_table_paras'][0][0], objMat['mask_table'][0][0] * valid, objMat['calib'][0][0])
pe_fla += pe_fla_table.tolist()
pe_ori += pe_ori_table.tolist()
# end
if objMat['mask_floor_paras'][0][0].size > 0:
pe_fla_floor, pe_ori_floor = compute_planarity_error(objMat['depth'][0][0] * valid, pred * valid, objMat['mask_floor_paras'][0][0], objMat['mask_floor'][0][0] * valid, objMat['calib'][0][0])
pe_fla += pe_fla_floor.tolist()
pe_ori += pe_ori_floor.tolist()
# end
# end
# end
##########################################################
print('abs_rel = ', numpy.nanmean(abs_rel))
print('sq_rel = ', numpy.nanmean(sq_rel))
print('rms = ', numpy.nanmean(rms))
print('log10 = ', numpy.nanmean(log10))
print('thr1 = ', numpy.nanmean(thr1))
print('thr2 = ', numpy.nanmean(thr2))
print('thr3 = ', numpy.nanmean(thr3))
print('dde_0 = ', numpy.nanmean(dde_0))
print('dde_m = ', numpy.nanmean(dde_m))
print('dde_p = ', numpy.nanmean(dde_p))
print('dbe_acc = ', numpy.nanmean(dbe_acc))
print('dbe_com = ', numpy.nanmean(dbe_com))
print('pe_fla = ', numpy.nanmean(pe_fla))
print('pe_ori = ', numpy.nanmean(pe_ori))