-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinfer.py
130 lines (111 loc) · 3.77 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import sys
sys.path.append("./inference/")
import yaml
from pathlib import Path
import argparse
import jax
import jax.numpy as np
from ml_collections.config_dict import ConfigDict
from models.diffusion import VariationalDiffusionModel
from inference.likelihood import likelihood
from tqdm import tqdm
from datasets import load_data
from models.train_utils import create_input_iter
def get_profiles(run_name, n_steps, n_elbo_samples, n_test, seed):
path_to_model = Path(
f"/n/holystore01/LABS/iaifi_lab/Lab/set-diffuser-checkpoints/cosmology/{run_name}"
)
path_to_profiles = Path(
f"/n/holystore01/LABS/iaifi_lab/Lab/set-diffuser-checkpoints/cosmology/{run_name}/ll_profiles/"
)
path_to_profiles.mkdir(exist_ok=True)
config_file = path_to_model / "config.yaml"
with open(config_file, "r") as file:
config = yaml.safe_load(file)
config = ConfigDict(config)
train_ds, _ = load_data(
config.data.dataset,
config.data.n_features,
config.data.n_particles,
32,
config.seed,
shuffle=True,
split="test",
)
batches = create_input_iter(train_ds)
x, conditioning, mask = next(batches)
x = x.reshape(-1, config.data.n_particles, config.data.n_features)
conditioning = conditioning.reshape(-1, 2)
mask = mask.reshape(-1, config.data.n_particles)
rng = jax.random.PRNGKey(seed)
rng, spl = jax.random.split(rng)
vdm, restored_params = VariationalDiffusionModel.from_path_to_model(
path_to_model=path_to_model
)
sigma_8_ary = np.linspace(0.6, 1.0, 30)
omega_m_ary = np.linspace(0.1, 0.5, 30)
# Get Omega_m
log_like_cov = []
for idx in tqdm(range(n_test)):
log_like = []
x_test = x[idx]
for omega_m in omega_m_ary:
theta_test = np.array([omega_m, conditioning[idx][1]])
log_like.append(
likelihood(
vdm,
rng,
restored_params,
x_test,
theta_test,
steps=n_steps,
n_samples=n_elbo_samples,
)
)
log_like_cov.append(log_like)
log_like_cov = np.array(log_like_cov)
# Get sigma_8
log_like_cov_s8 = []
for idx in tqdm(range(n_test)):
log_like = []
x_test = x[idx]
for sigma_8 in sigma_8_ary:
theta_test = np.array([conditioning[idx][0], sigma_8])
log_like.append(
likelihood(
vdm,
rng,
restored_params,
x_test,
theta_test,
steps=n_steps,
n_samples=n_elbo_samples,
)
)
log_like_cov_s8.append(log_like)
log_like_cov_s8 = np.array(log_like_cov_s8)
np.savez(
path_to_profiles / f"log_like_cov_v2_{seed}.npz",
log_like_cov=log_like_cov,
log_like_cov_s8=log_like_cov_s8,
omega_m_ary=omega_m_ary,
sigma_8_ary=sigma_8_ary,
conditioning=conditioning,
)
if __name__ == "__main__":
print("{} devices visible".format(jax.device_count()))
# Read from command line
parser = argparse.ArgumentParser()
parser.add_argument("--run_name", type=str, default="gallant-cherry-87")
parser.add_argument("--n_steps", type=int, default=50)
parser.add_argument("--n_elbo_samples", type=int, default=16)
parser.add_argument("--n_test", type=int, default=32)
parser.add_argument("--seed", type=int, default=42)
args = parser.parse_args()
get_profiles(
run_name=args.run_name,
n_steps=args.n_steps,
n_elbo_samples=args.n_elbo_samples,
n_test=args.n_test,
seed=args.seed,
)