forked from uzh-rpg/rpg_public_dronet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
175 lines (134 loc) · 6.3 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import tensorflow as tf
import numpy as np
import os
import sys
import gflags
from keras.callbacks import ModelCheckpoint
from keras import optimizers
import logz
import cnn_models
import utils
import log_utils
from common_flags import FLAGS
def getModel(img_width, img_height, img_channels, output_dim, weights_path):
"""
Initialize model.
# Arguments
img_width: Target image widht.
img_height: Target image height.
img_channels: Target image channels.
output_dim: Dimension of model output.
weights_path: Path to pre-trained model.
# Returns
model: A Model instance.
"""
model = cnn_models.resnet8(img_width, img_height, img_channels, output_dim)
if weights_path:
try:
model.load_weights(weights_path)
print("Loaded model from {}".format(weights_path))
except:
print("Impossible to find weight path. Returning untrained model")
return model
def trainModel(train_data_generator, val_data_generator, model, initial_epoch):
"""
Model training.
# Arguments
train_data_generator: Training data generated batch by batch.
val_data_generator: Validation data generated batch by batch.
model: Target image channels.
initial_epoch: Dimension of model output.
"""
# Initialize loss weights
model.alpha = tf.Variable(1, trainable=False, name='alpha', dtype=tf.float32)
model.beta = tf.Variable(0, trainable=False, name='beta', dtype=tf.float32)
# Initialize number of samples for hard-mining
model.k_mse = tf.Variable(FLAGS.batch_size, trainable=False, name='k_mse', dtype=tf.int32)
model.k_entropy = tf.Variable(FLAGS.batch_size, trainable=False, name='k_entropy', dtype=tf.int32)
optimizer = optimizers.Adam(decay=1e-5)
# Configure training process
model.compile(loss=[utils.hard_mining_mse(model.k_mse),
utils.hard_mining_entropy(model.k_entropy)],
optimizer=optimizer, loss_weights=[model.alpha, model.beta])
# Save model with the lowest validation loss
weights_path = os.path.join(FLAGS.experiment_rootdir, 'weights_{epoch:03d}.h5')
writeBestModel = ModelCheckpoint(filepath=weights_path, monitor='val_loss',
save_best_only=True, save_weights_only=True)
# Save model every 'log_rate' epochs.
# Save training and validation losses.
logz.configure_output_dir(FLAGS.experiment_rootdir)
saveModelAndLoss = log_utils.MyCallback(filepath=FLAGS.experiment_rootdir,
period=FLAGS.log_rate,
batch_size=FLAGS.batch_size)
# Train model
steps_per_epoch = int(np.ceil(train_data_generator.samples / FLAGS.batch_size))
validation_steps = int(np.ceil(val_data_generator.samples / FLAGS.batch_size))
model.fit_generator(train_data_generator,
epochs=FLAGS.epochs, steps_per_epoch = steps_per_epoch,
callbacks=[writeBestModel, saveModelAndLoss],
validation_data=val_data_generator,
validation_steps = validation_steps,
initial_epoch=initial_epoch)
def _main():
# Create the experiment rootdir if not already there
if not os.path.exists(FLAGS.experiment_rootdir):
os.makedirs(FLAGS.experiment_rootdir)
# Input image dimensions
img_width, img_height = FLAGS.img_width, FLAGS.img_height
# Cropped image dimensions
crop_img_width, crop_img_height = FLAGS.crop_img_width, FLAGS.crop_img_height
# Image mode
if FLAGS.img_mode=='rgb':
img_channels = 3
elif FLAGS.img_mode == 'grayscale':
img_channels = 1
else:
raise IOError("Unidentified image mode: use 'grayscale' or 'rgb'")
# Output dimension (one for steering and one for collision)
output_dim = 1
# Generate training data with real-time augmentation
train_datagen = utils.DroneDataGenerator(rotation_range = 0.2,
rescale = 1./255,
width_shift_range = 0.2,
height_shift_range=0.2)
train_generator = train_datagen.flow_from_directory(FLAGS.train_dir,
shuffle = True,
color_mode=FLAGS.img_mode,
target_size=(img_width, img_height),
crop_size=(crop_img_height, crop_img_width),
batch_size = FLAGS.batch_size)
# Generate validation data with real-time augmentation
val_datagen = utils.DroneDataGenerator(rescale = 1./255)
val_generator = val_datagen.flow_from_directory(FLAGS.val_dir,
shuffle = True,
color_mode=FLAGS.img_mode,
target_size=(img_width, img_height),
crop_size=(crop_img_height, crop_img_width),
batch_size = FLAGS.batch_size)
# Weights to restore
weights_path = os.path.join(FLAGS.experiment_rootdir, FLAGS.weights_fname)
initial_epoch = 0
if not FLAGS.restore_model:
# In this case weights will start from random
weights_path = None
else:
# In this case weigths will start from the specified model
initial_epoch = FLAGS.initial_epoch
# Define model
model = getModel(crop_img_width, crop_img_height, img_channels,
output_dim, weights_path)
# Serialize model into json
json_model_path = os.path.join(FLAGS.experiment_rootdir, FLAGS.json_model_fname)
utils.modelToJson(model, json_model_path)
# Train model
trainModel(train_generator, val_generator, model, initial_epoch)
def main(argv):
# Utility main to load flags
try:
argv = FLAGS(argv) # parse flags
except gflags.FlagsError:
print ('Usage: %s ARGS\\n%s' % (sys.argv[0], FLAGS))
sys.exit(1)
_main()
if __name__ == "__main__":
main(sys.argv)