diff --git a/img/signal-plot-1.png b/img/signal-plot-1.png
index 0251e4b..8222c33 100644
Binary files a/img/signal-plot-1.png and b/img/signal-plot-1.png differ
diff --git a/img/signal-plot-2.png b/img/signal-plot-2.png
index da91f8f..efee1a5 100644
Binary files a/img/signal-plot-2.png and b/img/signal-plot-2.png differ
diff --git a/readme-template.md b/readme-template.md
index a81896f..d2d2be1 100644
--- a/readme-template.md
+++ b/readme-template.md
@@ -98,7 +98,8 @@ The `plot()` function provides a convenient way to plot pupil size over time as
import time_series_test as tst
from matplotlib import pyplot as plt
-tst.plot(dm, dv='pupil', hue_factor='set_size', linestyle_factor='color_type')
+tst.plot(dm, dv='pupil', hue_factor='set_size', linestyle_factor='color_type',
+ sampling_freq=100)
plt.savefig('img/signal-plot-1.png')
```
@@ -144,7 +145,7 @@ We can pass the `results` to `plot()` to visualize the results:
```python
plt.clf()
tst.plot(dm, dv='pupil', hue_factor='set_size', linestyle_factor='color_type',
- results=results)
+ results=results, sampling_freq=100)
plt.savefig('img/signal-plot-2.png')
```
diff --git a/readme.md b/readme.md
index 5cf2477..ab6dca4 100644
--- a/readme.md
+++ b/readme.md
@@ -104,7 +104,8 @@ The `plot()` function provides a convenient way to plot pupil size over time as
import time_series_test as tst
from matplotlib import pyplot as plt
-tst.plot(dm, dv='pupil', hue_factor='set_size', linestyle_factor='color_type')
+tst.plot(dm, dv='pupil', hue_factor='set_size', linestyle_factor='color_type',
+ sampling_freq=100)
plt.savefig('img/signal-plot-1.png')
```
@@ -196,7 +197,7 @@ We can pass the `results` to `plot()` to visualize the results:
```python
plt.clf()
tst.plot(dm, dv='pupil', hue_factor='set_size', linestyle_factor='color_type',
- results=results)
+ results=results, sampling_freq=100)
plt.savefig('img/signal-plot-2.png')
```
@@ -387,7 +388,7 @@ Performs a sample-by-sample linear-mixed-effects analysis. See
- `z`: the z value
- `se`: the standard error
-## time\_series\_test.plot_(dm, dv, hue\_factor, results=None, linestyle\_factor=None, hues=None, linestyles=None, alpha\_level=0.05, annotate\_intercept=False, annotation\_hues=None, annotation\_linestyle=':', legend\_kwargs=None, annotation\_legend\_kwargs=None)_
+## time\_series\_test.plot_(dm, dv, hue\_factor, results=None, linestyle\_factor=None, hues=None, linestyles=None, alpha\_level=0.05, annotate\_intercept=False, annotation\_hues=None, annotation\_linestyle=':', legend\_kwargs=None, annotation\_legend\_kwargs=None, x0=0, sampling\_freq=1)_
Visualizes a time series, where the signal is plotted as a function of
sample number on the x-axis. One fixed effect is indicated by the hue
@@ -457,6 +458,14 @@ annotated in the figure.
Optional keywords to be passed to `plt.legend()` for the annotation
legend.
+* **x0: int, float**
+
+ The starting value on the x-axis.
+
+* **sampling\_freq: int, float**
+
+ The sampling frequency.
+
## time\_series\_test.summarize_(results, detailed=False)_
Generates a string with a human-readable summary of a results `dict` as