forked from bigcode-project/bigcode-evaluation-harness
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
326 lines (298 loc) · 10.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import fnmatch
import json
import warnings
import datasets
import torch
import transformers
from accelerate import Accelerator
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, HfArgumentParser
from lm_eval.arguments import EvalArguments
from lm_eval.evaluator import Evaluator
from lm_eval.tasks import ALL_TASKS
class MultiChoice:
def __init__(self, choices):
self.choices = choices
# Simple wildcard support (linux filename patterns)
def __contains__(self, values):
for value in values.split(","):
if len(fnmatch.filter(self.choices, value)) == 0:
return False
return True
def __iter__(self):
for choice in self.choices:
yield choice
def parse_args():
parser = HfArgumentParser(EvalArguments)
parser.add_argument(
"--model",
default="codeparrot/codeparrot-small",
help="Model to evaluate, provide a repo name in Hugging Face hub or a local path",
)
parser.add_argument(
"--modeltype",
default="causal",
help="AutoModel to use, it can be causal or seq2seq",
)
parser.add_argument(
"--peft_model",
type=str,
default=None,
help="Adapter to the PEFT base model. Can be utilized for loading PEFT adapters such as a LoRA trained model. The --model parameter needs to be the base model.",
)
parser.add_argument(
"--revision",
default=None,
help="Model revision to use",
)
parser.add_argument(
"--use_auth_token",
action="store_true",
help="Use the token generated when running `huggingface-cli login` (necessary for private model).",
)
parser.add_argument(
"--trust_remote_code",
action="store_true",
help="Use a model with custom code, this requires executing code by the author of the model.",
)
parser.add_argument(
"--tasks",
default=None,
choices=MultiChoice(ALL_TASKS),
help=f"Evaluation tasks from {ALL_TASKS}",
)
parser.add_argument(
"--instruction_tokens",
default=None,
help="A series of instruction tokens used for instruction-tuning benchamrks separated by comma e.g. <user_message>,<end_user_message>,<assistant_message>",
)
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="Batch size for evaluation on each worker, can be larger for HumanEval",
)
parser.add_argument(
"--max_length_generation",
type=int,
default=512,
help="Maximum length of generated sequence (prompt+generation)",
)
parser.add_argument(
"--precision",
type=str,
default="fp32",
help="Model precision, from: fp32, fp16 or bf16",
)
parser.add_argument(
"--load_in_8bit",
action="store_true",
help="Load model in 8bit",
)
parser.add_argument(
"--load_in_4bit",
action="store_true",
help="Load model in 4bit",
)
parser.add_argument(
"--limit",
type=int,
default=None,
help="Number of samples to solve and evaluate from the benchmark",
)
parser.add_argument(
"--limit_start",
type=int,
default=0,
help="Optional offset to start from when limiting the number of samples",
)
parser.add_argument(
"--postprocess",
action="store_false",
help="Postprocess model outputs before execution, always on except during generation tests",
)
parser.add_argument(
"--allow_code_execution",
action="store_true",
help="Allow code evaluation to execute external/untrusted Python code on your machine",
)
parser.add_argument(
"--generation_only",
action="store_true",
help="Do code generation but no evaluation",
)
parser.add_argument(
"--load_generations_path",
type=str,
default=None,
help="Path of file with previously generated solutions, if provided generation is skipped and only evaluation is done",
)
parser.add_argument(
"--load_data_path",
type=str,
default=None,
help="Path of additional data to load for the tasks",
)
parser.add_argument(
"--metric_output_path",
type=str,
default="evaluation_results.json",
help="Path to save the results",
)
parser.add_argument(
"--save_generations",
action="store_true",
help="Whether to save code generations",
)
parser.add_argument(
"--save_generations_path",
type=str,
default="generations.json",
help="Path for saving the code generations",
)
parser.add_argument(
"--save_references",
action="store_true",
help="Whether to save reference solutions/tests",
)
parser.add_argument(
"--prompt",
type=str,
default="prompt",
help="Prompt type to use for generation in HumanEvalPack tasks",
)
parser.add_argument("--max_memory_per_gpu", type=str, default=None)
parser.add_argument(
"--check_references",
action="store_true",
help="Don't run generation but benchmark groundtruth (useful for debugging)",
)
return parser.parse_args()
def pattern_match(patterns, source_list):
"""Returns a list containing all values of the source_list that
match at least one of the patterns"""
task_names = set()
for pattern in patterns:
for matching in fnmatch.filter(source_list, pattern):
task_names.add(matching)
return list(task_names)
def get_gpus_max_memory(max_memory, num_gpus):
max_memory = {i: max_memory for i in range(num_gpus)}
print("Loading model via these GPUs & max memories: ", max_memory)
return max_memory
def main():
args = parse_args()
transformers.logging.set_verbosity_error()
datasets.logging.set_verbosity_error()
if args.tasks is None:
task_names = ALL_TASKS
else:
task_names = pattern_match(args.tasks.split(","), ALL_TASKS)
accelerator = Accelerator()
if accelerator.is_main_process:
print(f"Selected Tasks: {task_names}")
results = {}
if args.load_generations_path:
# here we don't generate code but only evaluate previously computed generations
if accelerator.is_main_process:
print("evaluation only mode")
evaluator = Evaluator(accelerator, None, None, args)
for task in task_names:
results[task] = evaluator.evaluate(task)
else:
# here we generate code and save it (evaluation is optional but True by default)
dict_precisions = {
"fp32": torch.float32,
"fp16": torch.float16,
"bf16": torch.bfloat16,
}
if args.precision not in dict_precisions:
raise ValueError(
f"Non valid precision {args.precision}, choose from: fp16, fp32, bf16"
)
model_kwargs = {
"revision": args.revision,
"trust_remote_code": args.trust_remote_code,
"use_auth_token": args.use_auth_token,
}
if args.load_in_8bit:
print("Loading model in 8bit")
model_kwargs["load_in_8bit"] = args.load_in_8bit
model_kwargs["device_map"] = {"": accelerator.process_index}
elif args.load_in_4bit:
print("Loading model in 4bit")
model_kwargs["load_in_4bit"] = args.load_in_4bit
model_kwargs["device_map"] = {"": accelerator.process_index}
else:
print(f"Loading model in {args.precision}")
model_kwargs["torch_dtype"] = dict_precisions[args.precision]
if args.max_memory_per_gpu:
model_kwargs["max_memory"] = get_gpus_max_memory(args.max_memory_per_gpu, accelerator.num_processes)
model_kwargs["offload_folder"] = "offload"
model_kwargs["device_map"] = "auto"
if args.modeltype == "causal":
model = AutoModelForCausalLM.from_pretrained(
args.model,
**model_kwargs,
)
elif args.modeltype == "seq2seq":
warnings.warn("Seq2Seq models have only been tested for HumanEvalPack & CodeT5+ models.")
model = AutoModelForSeq2SeqLM.from_pretrained(
args.model,
**model_kwargs,
)
else:
raise ValueError(
f"Non valid modeltype {args.modeltype}, choose from: causal, seq2seq"
)
if args.peft_model:
from peft import PeftModel # dynamic import to avoid dependency on peft
model = PeftModel.from_pretrained(model, args.peft_model)
print("Loaded PEFT model. Merging...")
model.merge_and_unload()
print("Merge complete.")
tokenizer = AutoTokenizer.from_pretrained(
args.model,
revision=args.revision,
trust_remote_code=args.trust_remote_code,
use_auth_token=args.use_auth_token,
truncation_side="left",
padding_side="right", # padding on the right is needed to cut off padding in `complete_code`
)
if not tokenizer.eos_token:
if tokenizer.bos_token:
tokenizer.eos_token = tokenizer.bos_token
print("bos_token used as eos_token")
else:
raise ValueError("No eos_token or bos_token found")
try:
tokenizer.pad_token = tokenizer.eos_token
# Some models like CodeGeeX2 have pad_token as a read-only property
except AttributeError:
print("Not setting pad_token to eos_token")
pass
evaluator = Evaluator(accelerator, model, tokenizer, args)
for task in task_names:
if args.generation_only:
if accelerator.is_main_process:
print("generation mode only")
generations, references = evaluator.generate_text(task)
if accelerator.is_main_process:
with open(args.save_generations_path, "w") as fp:
json.dump(generations, fp)
print(f"generations were saved at {args.save_generations_path}")
if args.save_references:
with open("references.json", "w") as fp:
json.dump(references, fp)
print("references were saved")
else:
results[task] = evaluator.evaluate(task)
# Save all args to config
results["config"] = vars(args)
if not args.generation_only:
dumped = json.dumps(results, indent=2)
if accelerator.is_main_process:
print(dumped)
with open(args.metric_output_path, "w") as f:
f.write(dumped)
if __name__ == "__main__":
main()