-
Notifications
You must be signed in to change notification settings - Fork 127
/
tree_cursor.c
714 lines (635 loc) · 22.4 KB
/
tree_cursor.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
#include "api.h"
#include "./alloc.h"
#include "./tree_cursor.h"
#include "./language.h"
#include "./tree.h"
typedef struct {
Subtree parent;
const TSTree *tree;
Length position;
uint32_t child_index;
uint32_t structural_child_index;
uint32_t descendant_index;
const TSSymbol *alias_sequence;
} CursorChildIterator;
// CursorChildIterator
static inline bool ts_tree_cursor_is_entry_visible(const TreeCursor *self, uint32_t index) {
TreeCursorEntry *entry = &self->stack.contents[index];
if (index == 0 || ts_subtree_visible(*entry->subtree)) {
return true;
} else if (!ts_subtree_extra(*entry->subtree)) {
TreeCursorEntry *parent_entry = &self->stack.contents[index - 1];
return ts_language_alias_at(
self->tree->language,
parent_entry->subtree->ptr->production_id,
entry->structural_child_index
);
} else {
return false;
}
}
static inline CursorChildIterator ts_tree_cursor_iterate_children(const TreeCursor *self) {
TreeCursorEntry *last_entry = array_back(&self->stack);
if (ts_subtree_child_count(*last_entry->subtree) == 0) {
return (CursorChildIterator) {NULL_SUBTREE, self->tree, length_zero(), 0, 0, 0, NULL};
}
const TSSymbol *alias_sequence = ts_language_alias_sequence(
self->tree->language,
last_entry->subtree->ptr->production_id
);
uint32_t descendant_index = last_entry->descendant_index;
if (ts_tree_cursor_is_entry_visible(self, self->stack.size - 1)) {
descendant_index += 1;
}
return (CursorChildIterator) {
.tree = self->tree,
.parent = *last_entry->subtree,
.position = last_entry->position,
.child_index = 0,
.structural_child_index = 0,
.descendant_index = descendant_index,
.alias_sequence = alias_sequence,
};
}
static inline bool ts_tree_cursor_child_iterator_next(
CursorChildIterator *self,
TreeCursorEntry *result,
bool *visible
) {
if (!self->parent.ptr || self->child_index == self->parent.ptr->child_count) return false;
const Subtree *child = &ts_subtree_children(self->parent)[self->child_index];
*result = (TreeCursorEntry) {
.subtree = child,
.position = self->position,
.child_index = self->child_index,
.structural_child_index = self->structural_child_index,
.descendant_index = self->descendant_index,
};
*visible = ts_subtree_visible(*child);
bool extra = ts_subtree_extra(*child);
if (!extra) {
if (self->alias_sequence) {
*visible |= self->alias_sequence[self->structural_child_index];
}
self->structural_child_index++;
}
self->descendant_index += ts_subtree_visible_descendant_count(*child);
if (*visible) {
self->descendant_index += 1;
}
self->position = length_add(self->position, ts_subtree_size(*child));
self->child_index++;
if (self->child_index < self->parent.ptr->child_count) {
Subtree next_child = ts_subtree_children(self->parent)[self->child_index];
self->position = length_add(self->position, ts_subtree_padding(next_child));
}
return true;
}
// Return a position that, when `b` is added to it, yields `a`. This
// can only be computed if `b` has zero rows. Otherwise, this function
// returns `LENGTH_UNDEFINED`, and the caller needs to recompute
// the position some other way.
static inline Length length_backtrack(Length a, Length b) {
if (length_is_undefined(a) || b.extent.row != 0) {
return LENGTH_UNDEFINED;
}
Length result;
result.bytes = a.bytes - b.bytes;
result.extent.row = a.extent.row;
result.extent.column = a.extent.column - b.extent.column;
return result;
}
static inline bool ts_tree_cursor_child_iterator_previous(
CursorChildIterator *self,
TreeCursorEntry *result,
bool *visible
) {
// this is mostly a reverse `ts_tree_cursor_child_iterator_next` taking into
// account unsigned underflow
if (!self->parent.ptr || (int8_t)self->child_index == -1) return false;
const Subtree *child = &ts_subtree_children(self->parent)[self->child_index];
*result = (TreeCursorEntry) {
.subtree = child,
.position = self->position,
.child_index = self->child_index,
.structural_child_index = self->structural_child_index,
};
*visible = ts_subtree_visible(*child);
bool extra = ts_subtree_extra(*child);
if (!extra && self->alias_sequence) {
*visible |= self->alias_sequence[self->structural_child_index];
self->structural_child_index--;
}
self->position = length_backtrack(self->position, ts_subtree_padding(*child));
self->child_index--;
// unsigned can underflow so compare it to child_count
if (self->child_index < self->parent.ptr->child_count) {
Subtree previous_child = ts_subtree_children(self->parent)[self->child_index];
Length size = ts_subtree_size(previous_child);
self->position = length_backtrack(self->position, size);
}
return true;
}
// TSTreeCursor - lifecycle
TSTreeCursor ts_tree_cursor_new(TSNode node) {
TSTreeCursor self = {NULL, NULL, {0, 0, 0}};
ts_tree_cursor_init((TreeCursor *)&self, node);
return self;
}
void ts_tree_cursor_reset(TSTreeCursor *_self, TSNode node) {
ts_tree_cursor_init((TreeCursor *)_self, node);
}
void ts_tree_cursor_init(TreeCursor *self, TSNode node) {
self->tree = node.tree;
self->root_alias_symbol = node.context[3];
array_clear(&self->stack);
array_push(&self->stack, ((TreeCursorEntry) {
.subtree = (const Subtree *)node.id,
.position = {
ts_node_start_byte(node),
ts_node_start_point(node)
},
.child_index = 0,
.structural_child_index = 0,
.descendant_index = 0,
}));
}
void ts_tree_cursor_delete(TSTreeCursor *_self) {
TreeCursor *self = (TreeCursor *)_self;
array_delete(&self->stack);
}
// TSTreeCursor - walking the tree
TreeCursorStep ts_tree_cursor_goto_first_child_internal(TSTreeCursor *_self) {
TreeCursor *self = (TreeCursor *)_self;
bool visible;
TreeCursorEntry entry;
CursorChildIterator iterator = ts_tree_cursor_iterate_children(self);
while (ts_tree_cursor_child_iterator_next(&iterator, &entry, &visible)) {
if (visible) {
array_push(&self->stack, entry);
return TreeCursorStepVisible;
}
if (ts_subtree_visible_child_count(*entry.subtree) > 0) {
array_push(&self->stack, entry);
return TreeCursorStepHidden;
}
}
return TreeCursorStepNone;
}
bool ts_tree_cursor_goto_first_child(TSTreeCursor *self) {
for (;;) {
switch (ts_tree_cursor_goto_first_child_internal(self)) {
case TreeCursorStepHidden:
continue;
case TreeCursorStepVisible:
return true;
default:
return false;
}
}
return false;
}
TreeCursorStep ts_tree_cursor_goto_last_child_internal(TSTreeCursor *_self) {
TreeCursor *self = (TreeCursor *)_self;
bool visible;
TreeCursorEntry entry;
CursorChildIterator iterator = ts_tree_cursor_iterate_children(self);
if (!iterator.parent.ptr || iterator.parent.ptr->child_count == 0) return TreeCursorStepNone;
TreeCursorEntry last_entry = {0};
TreeCursorStep last_step = TreeCursorStepNone;
while (ts_tree_cursor_child_iterator_next(&iterator, &entry, &visible)) {
if (visible) {
last_entry = entry;
last_step = TreeCursorStepVisible;
}
else if (ts_subtree_visible_child_count(*entry.subtree) > 0) {
last_entry = entry;
last_step = TreeCursorStepHidden;
}
}
if (last_entry.subtree) {
array_push(&self->stack, last_entry);
return last_step;
}
return TreeCursorStepNone;
}
bool ts_tree_cursor_goto_last_child(TSTreeCursor *self) {
for (;;) {
switch (ts_tree_cursor_goto_last_child_internal(self)) {
case TreeCursorStepHidden:
continue;
case TreeCursorStepVisible:
return true;
default:
return false;
}
}
return false;
}
static inline int64_t ts_tree_cursor_goto_first_child_for_byte_and_point(
TSTreeCursor *_self,
uint32_t goal_byte,
TSPoint goal_point
) {
TreeCursor *self = (TreeCursor *)_self;
uint32_t initial_size = self->stack.size;
uint32_t visible_child_index = 0;
bool did_descend;
do {
did_descend = false;
bool visible;
TreeCursorEntry entry;
CursorChildIterator iterator = ts_tree_cursor_iterate_children(self);
while (ts_tree_cursor_child_iterator_next(&iterator, &entry, &visible)) {
Length entry_end = length_add(entry.position, ts_subtree_size(*entry.subtree));
bool at_goal = entry_end.bytes >= goal_byte && point_gte(entry_end.extent, goal_point);
uint32_t visible_child_count = ts_subtree_visible_child_count(*entry.subtree);
if (at_goal) {
if (visible) {
array_push(&self->stack, entry);
return visible_child_index;
}
if (visible_child_count > 0) {
array_push(&self->stack, entry);
did_descend = true;
break;
}
} else if (visible) {
visible_child_index++;
} else {
visible_child_index += visible_child_count;
}
}
} while (did_descend);
self->stack.size = initial_size;
return -1;
}
int64_t ts_tree_cursor_goto_first_child_for_byte(TSTreeCursor *self, uint32_t goal_byte) {
return ts_tree_cursor_goto_first_child_for_byte_and_point(self, goal_byte, POINT_ZERO);
}
int64_t ts_tree_cursor_goto_first_child_for_point(TSTreeCursor *self, TSPoint goal_point) {
return ts_tree_cursor_goto_first_child_for_byte_and_point(self, 0, goal_point);
}
TreeCursorStep ts_tree_cursor_goto_sibling_internal(
TSTreeCursor *_self,
bool (*advance)(CursorChildIterator *, TreeCursorEntry *, bool *)) {
TreeCursor *self = (TreeCursor *)_self;
uint32_t initial_size = self->stack.size;
while (self->stack.size > 1) {
TreeCursorEntry entry = array_pop(&self->stack);
CursorChildIterator iterator = ts_tree_cursor_iterate_children(self);
iterator.child_index = entry.child_index;
iterator.structural_child_index = entry.structural_child_index;
iterator.position = entry.position;
iterator.descendant_index = entry.descendant_index;
bool visible = false;
advance(&iterator, &entry, &visible);
if (visible && self->stack.size + 1 < initial_size) break;
while (advance(&iterator, &entry, &visible)) {
if (visible) {
array_push(&self->stack, entry);
return TreeCursorStepVisible;
}
if (ts_subtree_visible_child_count(*entry.subtree)) {
array_push(&self->stack, entry);
return TreeCursorStepHidden;
}
}
}
self->stack.size = initial_size;
return TreeCursorStepNone;
}
TreeCursorStep ts_tree_cursor_goto_next_sibling_internal(TSTreeCursor *_self) {
return ts_tree_cursor_goto_sibling_internal(_self, ts_tree_cursor_child_iterator_next);
}
bool ts_tree_cursor_goto_next_sibling(TSTreeCursor *self) {
switch (ts_tree_cursor_goto_next_sibling_internal(self)) {
case TreeCursorStepHidden:
ts_tree_cursor_goto_first_child(self);
return true;
case TreeCursorStepVisible:
return true;
default:
return false;
}
}
TreeCursorStep ts_tree_cursor_goto_previous_sibling_internal(TSTreeCursor *_self) {
// since subtracting across row loses column information, we may have to
// restore it
TreeCursor *self = (TreeCursor *)_self;
// for that, save current position before traversing
TreeCursorStep step = ts_tree_cursor_goto_sibling_internal(
_self, ts_tree_cursor_child_iterator_previous);
if (step == TreeCursorStepNone)
return step;
// if length is already valid, there's no need to recompute it
if (!length_is_undefined(array_back(&self->stack)->position))
return step;
// restore position from the parent node
const TreeCursorEntry *parent = &self->stack.contents[self->stack.size - 2];
Length position = parent->position;
uint32_t child_index = array_back(&self->stack)->child_index;
const Subtree *children = ts_subtree_children((*(parent->subtree)));
if (child_index > 0) {
// skip first child padding since its position should match the position of the parent
position = length_add(position, ts_subtree_size(children[0]));
for (uint32_t i = 1; i < child_index; ++i) {
position = length_add(position, ts_subtree_total_size(children[i]));
}
position = length_add(position, ts_subtree_padding(children[child_index]));
}
array_back(&self->stack)->position = position;
return step;
}
bool ts_tree_cursor_goto_previous_sibling(TSTreeCursor *self) {
switch (ts_tree_cursor_goto_previous_sibling_internal(self)) {
case TreeCursorStepHidden:
ts_tree_cursor_goto_last_child(self);
return true;
case TreeCursorStepVisible:
return true;
default:
return false;
}
}
bool ts_tree_cursor_goto_parent(TSTreeCursor *_self) {
TreeCursor *self = (TreeCursor *)_self;
for (unsigned i = self->stack.size - 2; i + 1 > 0; i--) {
if (ts_tree_cursor_is_entry_visible(self, i)) {
self->stack.size = i + 1;
return true;
}
}
return false;
}
void ts_tree_cursor_goto_descendant(
TSTreeCursor *_self,
uint32_t goal_descendant_index
) {
TreeCursor *self = (TreeCursor *)_self;
// Ascend to the lowest ancestor that contains the goal node.
for (;;) {
uint32_t i = self->stack.size - 1;
TreeCursorEntry *entry = &self->stack.contents[i];
uint32_t next_descendant_index =
entry->descendant_index +
(ts_tree_cursor_is_entry_visible(self, i) ? 1 : 0) +
ts_subtree_visible_descendant_count(*entry->subtree);
if (
(entry->descendant_index <= goal_descendant_index) &&
(next_descendant_index > goal_descendant_index)
) {
break;
} else if (self->stack.size <= 1) {
return;
} else {
self->stack.size--;
}
}
// Descend to the goal node.
bool did_descend = true;
do {
did_descend = false;
bool visible;
TreeCursorEntry entry;
CursorChildIterator iterator = ts_tree_cursor_iterate_children(self);
if (iterator.descendant_index > goal_descendant_index) {
return;
}
while (ts_tree_cursor_child_iterator_next(&iterator, &entry, &visible)) {
if (iterator.descendant_index > goal_descendant_index) {
array_push(&self->stack, entry);
if (visible && entry.descendant_index == goal_descendant_index) {
return;
} else {
did_descend = true;
break;
}
}
}
} while (did_descend);
}
uint32_t ts_tree_cursor_current_descendant_index(const TSTreeCursor *_self) {
const TreeCursor *self = (const TreeCursor *)_self;
TreeCursorEntry *last_entry = array_back(&self->stack);
return last_entry->descendant_index;
}
TSNode ts_tree_cursor_current_node(const TSTreeCursor *_self) {
const TreeCursor *self = (const TreeCursor *)_self;
TreeCursorEntry *last_entry = array_back(&self->stack);
TSSymbol alias_symbol = self->root_alias_symbol;
if (self->stack.size > 1 && !ts_subtree_extra(*last_entry->subtree)) {
TreeCursorEntry *parent_entry = &self->stack.contents[self->stack.size - 2];
alias_symbol = ts_language_alias_at(
self->tree->language,
parent_entry->subtree->ptr->production_id,
last_entry->structural_child_index
);
}
return ts_node_new(
self->tree,
last_entry->subtree,
last_entry->position,
alias_symbol
);
}
// Private - Get various facts about the current node that are needed
// when executing tree queries.
void ts_tree_cursor_current_status(
const TSTreeCursor *_self,
TSFieldId *field_id,
bool *has_later_siblings,
bool *has_later_named_siblings,
bool *can_have_later_siblings_with_this_field,
TSSymbol *supertypes,
unsigned *supertype_count
) {
const TreeCursor *self = (const TreeCursor *)_self;
unsigned max_supertypes = *supertype_count;
*field_id = 0;
*supertype_count = 0;
*has_later_siblings = false;
*has_later_named_siblings = false;
*can_have_later_siblings_with_this_field = false;
// Walk up the tree, visiting the current node and its invisible ancestors,
// because fields can refer to nodes through invisible *wrapper* nodes,
for (unsigned i = self->stack.size - 1; i > 0; i--) {
TreeCursorEntry *entry = &self->stack.contents[i];
TreeCursorEntry *parent_entry = &self->stack.contents[i - 1];
const TSSymbol *alias_sequence = ts_language_alias_sequence(
self->tree->language,
parent_entry->subtree->ptr->production_id
);
#define subtree_symbol(subtree, structural_child_index) \
(( \
!ts_subtree_extra(subtree) && \
alias_sequence && \
alias_sequence[structural_child_index] \
) ? \
alias_sequence[structural_child_index] : \
ts_subtree_symbol(subtree))
// Stop walking up when a visible ancestor is found.
TSSymbol entry_symbol = subtree_symbol(
*entry->subtree,
entry->structural_child_index
);
TSSymbolMetadata entry_metadata = ts_language_symbol_metadata(
self->tree->language,
entry_symbol
);
if (i != self->stack.size - 1 && entry_metadata.visible) break;
// Record any supertypes
if (entry_metadata.supertype && *supertype_count < max_supertypes) {
supertypes[*supertype_count] = entry_symbol;
(*supertype_count)++;
}
// Determine if the current node has later siblings.
if (!*has_later_siblings) {
unsigned sibling_count = parent_entry->subtree->ptr->child_count;
unsigned structural_child_index = entry->structural_child_index;
if (!ts_subtree_extra(*entry->subtree)) structural_child_index++;
for (unsigned j = entry->child_index + 1; j < sibling_count; j++) {
Subtree sibling = ts_subtree_children(*parent_entry->subtree)[j];
TSSymbolMetadata sibling_metadata = ts_language_symbol_metadata(
self->tree->language,
subtree_symbol(sibling, structural_child_index)
);
if (sibling_metadata.visible) {
*has_later_siblings = true;
if (*has_later_named_siblings) break;
if (sibling_metadata.named) {
*has_later_named_siblings = true;
break;
}
} else if (ts_subtree_visible_child_count(sibling) > 0) {
*has_later_siblings = true;
if (*has_later_named_siblings) break;
if (sibling.ptr->named_child_count > 0) {
*has_later_named_siblings = true;
break;
}
}
if (!ts_subtree_extra(sibling)) structural_child_index++;
}
}
#undef subtree_symbol
if (!ts_subtree_extra(*entry->subtree)) {
const TSFieldMapEntry *field_map, *field_map_end;
ts_language_field_map(
self->tree->language,
parent_entry->subtree->ptr->production_id,
&field_map, &field_map_end
);
// Look for a field name associated with the current node.
if (!*field_id) {
for (const TSFieldMapEntry *map = field_map; map < field_map_end; map++) {
if (!map->inherited && map->child_index == entry->structural_child_index) {
*field_id = map->field_id;
break;
}
}
}
// Determine if the current node can have later siblings with the same field name.
if (*field_id) {
for (const TSFieldMapEntry *map = field_map; map < field_map_end; map++) {
if (
map->field_id == *field_id &&
map->child_index > entry->structural_child_index
) {
*can_have_later_siblings_with_this_field = true;
break;
}
}
}
}
}
}
uint32_t ts_tree_cursor_current_depth(const TSTreeCursor *_self) {
const TreeCursor *self = (const TreeCursor *)_self;
uint32_t depth = 0;
for (unsigned i = 1; i < self->stack.size; i++) {
if (ts_tree_cursor_is_entry_visible(self, i)) {
depth++;
}
}
return depth;
}
TSNode ts_tree_cursor_parent_node(const TSTreeCursor *_self) {
const TreeCursor *self = (const TreeCursor *)_self;
for (int i = (int)self->stack.size - 2; i >= 0; i--) {
TreeCursorEntry *entry = &self->stack.contents[i];
bool is_visible = true;
TSSymbol alias_symbol = 0;
if (i > 0) {
TreeCursorEntry *parent_entry = &self->stack.contents[i - 1];
alias_symbol = ts_language_alias_at(
self->tree->language,
parent_entry->subtree->ptr->production_id,
entry->structural_child_index
);
is_visible = (alias_symbol != 0) || ts_subtree_visible(*entry->subtree);
}
if (is_visible) {
return ts_node_new(
self->tree,
entry->subtree,
entry->position,
alias_symbol
);
}
}
return ts_node_new(NULL, NULL, length_zero(), 0);
}
TSFieldId ts_tree_cursor_current_field_id(const TSTreeCursor *_self) {
const TreeCursor *self = (const TreeCursor *)_self;
// Walk up the tree, visiting the current node and its invisible ancestors.
for (unsigned i = self->stack.size - 1; i > 0; i--) {
TreeCursorEntry *entry = &self->stack.contents[i];
TreeCursorEntry *parent_entry = &self->stack.contents[i - 1];
// Stop walking up when another visible node is found.
if (
i != self->stack.size - 1 &&
ts_tree_cursor_is_entry_visible(self, i)
) break;
if (ts_subtree_extra(*entry->subtree)) break;
const TSFieldMapEntry *field_map, *field_map_end;
ts_language_field_map(
self->tree->language,
parent_entry->subtree->ptr->production_id,
&field_map, &field_map_end
);
for (const TSFieldMapEntry *map = field_map; map < field_map_end; map++) {
if (!map->inherited && map->child_index == entry->structural_child_index) {
return map->field_id;
}
}
}
return 0;
}
const char *ts_tree_cursor_current_field_name(const TSTreeCursor *_self) {
TSFieldId id = ts_tree_cursor_current_field_id(_self);
if (id) {
const TreeCursor *self = (const TreeCursor *)_self;
return self->tree->language->field_names[id];
} else {
return NULL;
}
}
TSTreeCursor ts_tree_cursor_copy(const TSTreeCursor *_cursor) {
const TreeCursor *cursor = (const TreeCursor *)_cursor;
TSTreeCursor res = {NULL, NULL, {0, 0}};
TreeCursor *copy = (TreeCursor *)&res;
copy->tree = cursor->tree;
copy->root_alias_symbol = cursor->root_alias_symbol;
array_init(©->stack);
array_push_all(©->stack, &cursor->stack);
return res;
}
void ts_tree_cursor_reset_to(TSTreeCursor *_dst, const TSTreeCursor *_src) {
const TreeCursor *cursor = (const TreeCursor *)_src;
TreeCursor *copy = (TreeCursor *)_dst;
copy->tree = cursor->tree;
copy->root_alias_symbol = cursor->root_alias_symbol;
array_clear(©->stack);
array_push_all(©->stack, &cursor->stack);
}