Example JSON:
{
"category_name": "Time Shift Analysis",
"function_name": "detect_time_shifts",
"comparison_type": "time_series",
"performance_metrics": [
"runtime",
"mean_absolute_error"
],
"allowable_kwargs": [
"latitude",
"longitude",
"data_sampling_frequency"
],
"ground_truth_compare": [
"time_series"
],
"public_results_table": "time-shift-public-metrics.json",
"private_results_columns": [
"system_id",
"file_name",
"run_time",
"data_requirements",
"mean_absolute_error_time_series",
"data_sampling_frequency",
"issue"
],
"plots": [
{
"type": "histogram",
"x_val": "mean_absolute_error_time_series",
"color_code": "issue",
"title": "Time Series MAE Distribution by Issue",
"save_file_path": "mean_absolute_error_time_series_dist.png"
},
{
"type": "histogram",
"x_val": "mean_absolute_error_time_series",
"color_code": "data_sampling_frequency",
"title": "Time Series MAE Distribution by Sampling Frequency",
"save_file_path": "mean_absolute_error_time_series_dist.png"
},
{
"type": "histogram",
"x_val": "run_time",
"title": "Run Time Distribution",
"save_file_path": "run_time_dist.png"
}
]
}
Required columns:
system_id,name,azimuth,tilt,elevation,latitude,longitude,tracking,climate_type,dc_capacity
Required columns:
file_id,system_id,file_name,timezone,data_sampling_frequency,issue
Marimo python file will need to input data from mo.cli_args()
method
Example:
def create_df_from_cli_args():
args = mo.cli_args().to_dict()
data = args.get("results_df")
rows = []
for row in data:
rows.append(json.loads(row))
df = pd.DataFrame.from_records(rows)
return df
file names must match what is included in the file_name in the file_metadata.csv
file names must match what is included in the data files folder
The markdown file used for the description tab in an analysis.
The markdown file to describe the dataset in the data tab.
The markdown file that is used on the card.
The markdown file that is used on the Submission Instructions tab in the analysis.