-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path064.py
executable file
·146 lines (133 loc) · 2.24 KB
/
064.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/python
# -*- coding: utf-8 -*-
#All square roots are periodic when written as continued fractions and can be written in the form:
#√N = a0 +
#1
#a1 +
#1
#a2 +
#1
#a3 + ...
#For example, let us consider √23:
#√23 = 4 + √23 — 4 = 4 +
#1
#= 4 +
#1
#1
#√23—4
#1 +
#√23 – 3
#7
#If we continue we would get the following expansion:
#√23 = 4 +
#1
#1 +
#1
#3 +
#1
#1 +
#1
#8 + ...
#The process can be summarised as follows:
#a0 = 4,
#1
#√23—4
#=
#√23+4
#7
#= 1 +
#√23—3
#7
#a1 = 1,
#7
#√23—3
#=
#7(√23+3)
#14
#= 3 +
#√23—3
#2
#a2 = 3,
#2
#√23—3
#=
#2(√23+3)
#14
#= 1 +
#√23—4
#7
#a3 = 1,
#7
#√23—4
#=
#7(√23+4)
#7
#= 8 + √23—4
#a4 = 8,
#1
#√23—4
#=
#√23+4
#7
#= 1 +
#√23—3
#7
#a5 = 1,
#7
#√23—3
#=
#7(√23+3)
#14
#= 3 +
#√23—3
#2
#a6 = 3,
#2
#√23—3
#=
#2(√23+3)
#14
#= 1 +
#√23—4
#7
#a7 = 1,
#7
#√23—4
#=
#7(√23+4)
#7
#= 8 + √23—4
#It can be seen that the sequence is repeating. For conciseness, we use the notation √23 = [4;(1,3,1,8)], to indicate that the block (1,3,1,8) repeats indefinitely.
#The first ten continued fraction representations of (irrational) square roots are:
#√2=[1;(2)], period=1
#√3=[1;(1,2)], period=2
#√5=[2;(4)], period=1
#√6=[2;(2,4)], period=2
#√7=[2;(1,1,1,4)], period=4
#√8=[2;(1,4)], period=2
#√10=[3;(6)], period=1
#√11=[3;(3,6)], period=2
#√12= [3;(2,6)], period=2
#√13=[3;(1,1,1,1,6)], period=5
#Exactly four continued fractions, for N ≤ 13, have an odd period.
#How many continued fractions for N ≤ 10000 have an odd period?
#Answer:
#1322
from time import time; t=time()
ss = 0
for i in range(1, 100):
nn = i*i
for j in range(1, 2*i+1):
n = nn + j
pool = []
expan, p, q = 0, i, j
while pool == [] or (p, q) != pool[0]:
pool.append((p, q))
s = i + p
k, p = s//q, s%q-i
expan = 1 - expan#.append(k)
m = n - p*p
#assert m % q == 0
p, q = -p, m//q
ss += expan % 2
print(ss)#, time()-t