-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path03SNN_prod.py
218 lines (178 loc) · 9.64 KB
/
03SNN_prod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 13 09:12:43 2019
@author: anonymous
"""
#%tensorflow_version 1.2
from __future__ import print_function
import argparse
parser = argparse.ArgumentParser(description='TNN runner')
parser.add_argument('--dataset', help='Options are: bostonHousing, concreteData, energyEfficiency, proteinStructure, randomFunction', dest='dataset', default='bostonHousing')
parser.add_argument('--dataset_path', help='Relative path to datasets', dest='dataset_path', default='./data/')
parser.add_argument('--val_pct', help='Percentage of validation split.', dest='val_pct', default=0.05, type=float)
parser.add_argument('--test_pct', help='Percentage of test split.', dest='test_pct', default=0.05, type=float)
parser.add_argument('--l2', help='L2 Regularization weighting.', dest='l2', default=0.0, type=float)
parser.add_argument('--seed', help='Random seed', dest='seed', default=13, type=int)
parser.add_argument('--num', help='Number of datapoints for random function', default=1000, type=int)
parser = parser.parse_args()
# set the seed
print('Random seed:', parser.seed)
# 2. Set the `python` built-in pseudo-random generator at a fixed value
import random
random.seed(parser.seed)
# 3. Set the `numpy` pseudo-random generator at a fixed value
import numpy as np
np.random.seed(parser.seed)
# 4. Set the `tensorflow` pseudo-random generator at a fixed value
import tensorflow as tf
tf.random.set_random_seed(parser.seed)
# for later versions:
from tensorflow.keras import models
from tensorflow.keras import layers
import matplotlib.pyplot as plt
from tensorflow.keras import regularizers
import tensorflow.keras
import itertools
from data.data import *
import sys
from progressbar import ProgressBar as PB
from SNN_helper import *
from tensorflow.keras.callbacks import ModelCheckpoint,CSVLogger,ReduceLROnPlateau,EarlyStopping
from tensorflow.keras.models import Sequential,Model
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Subtract,Input,Lambda
from tensorflow.keras.layers import Conv2D, MaxPooling2D,Conv1D, MaxPooling1D
from tensorflow.keras.callbacks import ModelCheckpoint,CSVLogger,ReduceLROnPlateau,EarlyStopping
from sklearn.linear_model import LinearRegression
### scaling factor 100,300,1000,3000,10000,30000,100000
n=30000
#(x_full, y_full) = getData(parser.dataset, parser.dataset_path)
(x_full, y_full) = getData('randomFunction', './data/',n)
(x_train_single, y_train_single), (x_val_single, y_val_single), (x_test_single, y_test_single) = splitData(x_full, y_full, val_pct=parser.val_pct, test_pct=parser.test_pct)
##### center and normalize
cn_transformer=CenterAndNorm()
x_train_single,y_train_single=cn_transformer.fittransform(x_train_single,y_train_single)
x_val_single,y_val_single=cn_transformer.transform(x_val_single,y_val_single)
x_test_single,y_test_single=cn_transformer.transform(x_test_single,y_test_single)
##########################################
############ NN parameters
batch_size = 16
epochs = 10000
############### create NN
observer_a=Input(shape=(x_train_single.shape[-1],),name='observer_a')
observer_b=Input(shape=(x_train_single.shape[-1],),name='observer_b')
l2=parser.l2
merged_layer = tensorflow.keras.layers.Concatenate()([observer_a, observer_b])
merged_layer=Dense(64,activation='relu',kernel_regularizer=regularizers.l2(l2),activity_regularizer=regularizers.l2(l2))(merged_layer)
merged_layer=Dense(64,activation='relu',name='iout',kernel_regularizer=regularizers.l2(l2),activity_regularizer=regularizers.l2(l2))(merged_layer)
output=Dense(1,kernel_regularizer=regularizers.l2(l2),activity_regularizer=regularizers.l2(l2))(merged_layer)
model = Model(inputs=[observer_a, observer_b], outputs=output)
model.summary()
# Let's train the model
model.compile(loss='mse'
,optimizer=tensorflow.keras.optimizers.Adadelta(lr=1)
#,optimizer='rmsprop'
,metrics=['mse']
)
reduce_lr = ReduceLROnPlateau(monitor='loss', factor=0.5,
patience=int(1000/np.sqrt(n)+1), verbose=1,min_lr=0)
early_stop= EarlyStopping(monitor='val_loss', patience=3*int(1000/np.sqrt(n)+1), verbose=1)
mcp_save = ModelCheckpoint('mdl_wts.hdf5', save_best_only=True, monitor='val_loss', mode='min', verbose=1)
history = model.fit_generator(generator_sym(x_train_single, y_train_single, batch_size),
steps_per_epoch=len(x_train_single)*10/batch_size,
epochs=epochs,
validation_data=generator_sym(x_val_single, y_val_single, batch_size),
validation_steps=len(x_val_single)*100/batch_size,
callbacks=[reduce_lr,early_stop, mcp_save],verbose=1)
model.load_weights('mdl_wts.hdf5')
# Plot training & test loss values
# plt.plot(history.history['loss'])
# plt.plot(history.history['val_loss'])
# plt.title('Model loss')
# plt.ylabel('Loss')
# plt.xlabel('Epoch')
# plt.legend(['Train', 'Val'], loc='upper left')
# # plt.show()
# plt.savefig('loss.pdf')
# Y_pred_train=[]
# Y_pred_r_train=[]
# Y_pred_check_train=[]
# Y_median_train=[]
# Y_var_train=[]
# Y_mse_train=[]
#
#
# for i in PB()(range(len(x_train_single))):
# pair_B=np.array([x_train_single[i]]*len(x_train_single))
# Y_pred_train.append(np.average(0.5*model.predict([pair_B,x_train_single]).flatten()-0.5*model.predict([x_train_single,pair_B]).flatten()+y_train_single))
# Y_pred_r_train.append(np.average(-model.predict([x_train_single,pair_B]).flatten()+y_train_single))
# Y_pred_check_train.append(np.var(0.5*model.predict([pair_B,x_train_single])+0.5*model.predict([x_train_single,pair_B])))
# #Y_pred_check_train.append(np.average(np.abs(model.predict([pair_B,x_train_single])+model.predict([x_train_single,pair_B]))))
# Y_median_train.append(np.median(model.predict([pair_B,x_train_single]).flatten()+y_train_single))
# Y_var_train.append(np.var(0.5*model.predict([pair_B,x_train_single]).flatten()-0.5*model.predict([x_train_single,pair_B]).flatten()+y_train_single))
# Y_mse_train.append((Y_pred_train[i]-y_train_single[i])**2)
#
#
# Y_pred_train=cn_transformer.inversetransformY(np.array(Y_pred_train))
# Y_pred_r_train=cn_transformer.inversetransformY(np.array(Y_pred_r_train))
# Y_pred_check_train=np.array(Y_pred_check_train)*(cn_transformer.Ymax)
# Y_median_train=cn_transformer.inversetransformY(np.array(Y_median_train))
# Y_var_train=np.array(Y_var_train)*(cn_transformer.Ymax)**2
# Y_mse_train=np.array(Y_mse_train)*(cn_transformer.Ymax)**2
# Y_self_check_train=np.abs(np.array(model.predict([x_train_single,x_train_single]))).flatten()*(cn_transformer.Ymax)
#####################
Y_pred_test=[]
Y_pred_r_test=[]
Y_pred_check_test=[]
Y_median_test=[]
Y_var_test=[]
Y_mse_test=[]
for i in PB()(range(len(x_test_single))):
pair_B=np.array([x_test_single[i]]*len(x_train_single))
diffA=model.predict([pair_B,x_train_single]).flatten()
diffB=model.predict([x_train_single,pair_B]).flatten()
Y_pred_test.append(np.average(0.5*diffA-0.5*diffB+y_train_single, weights=None))
Y_pred_r_test.append(np.average(-diffB+y_train_single))
Y_pred_check_test.append(np.var(0.5*diffA+0.5*diffB))
#Y_pred_check_test.append(np.average(np.abs(model.predict([pair_B,x_train_single])+model.predict([x_train_single,pair_B]))))
Y_median_test.append(np.median(diffA+y_train_single))
Y_var_test.append(np.var(0.5*diffA-0.5*diffB+y_train_single))
Y_mse_test.append((Y_pred_test[i]-y_test_single[i])**2)
Y_pred_test=cn_transformer.inversetransformY(np.array(Y_pred_test))
Y_pred_r_test=cn_transformer.inversetransformY(np.array(Y_pred_r_test))
Y_pred_check_test=np.array(Y_pred_check_test)*(cn_transformer.Ymax)
Y_median_test=cn_transformer.inversetransformY(np.array(Y_median_test))
Y_var_test=np.array(Y_var_test)*(cn_transformer.Ymax)**2
Y_mse_test=np.array(Y_mse_test)*(cn_transformer.Ymax)**2
Y_self_check_test=np.abs(np.array(model.predict([x_test_single,x_test_single]))).flatten()*(cn_transformer.Ymax)
#####################
# Y_pred_val=[]
# Y_pred_r_val=[]
# Y_pred_check_val=[]
# Y_median_val=[]
# Y_var_val=[]
# Y_mse_val=[]
#
#
#
# for i in PB()(range(len(x_val_single))):
# pair_B=np.array([x_val_single[i]]*len(x_train_single))
# Y_pred_val.append(np.average(0.5*model.predict([pair_B,x_train_single]).flatten()-0.5*model.predict([x_train_single,pair_B]).flatten()+y_train_single))
# Y_pred_r_val.append(np.average(-model.predict([x_train_single,pair_B]).flatten()+y_train_single))
# Y_pred_check_val.append(np.var(0.5*model.predict([pair_B,x_train_single])+0.5*model.predict([x_train_single,pair_B])))
# #Y_pred_check_val.append(np.average(np.abs(model.predict([pair_B,x_train_single])+model.predict([x_train_single,pair_B]))))
# Y_median_val.append(np.median(model.predict([pair_B,x_train_single]).flatten()+y_train_single))
# Y_var_val.append(np.var(0.5*model.predict([pair_B,x_train_single]).flatten()-0.5*model.predict([x_train_single,pair_B]).flatten()+y_train_single))
# Y_mse_val.append((Y_pred_val[i]-y_val_single[i])**2)
#
#
# Y_pred_val=cn_transformer.inversetransformY(np.array(Y_pred_val))
# Y_pred_r_val=cn_transformer.inversetransformY(np.array(Y_pred_r_val))
# Y_pred_check_val=np.array(Y_pred_check_val)*(cn_transformer.Ymax)
# Y_median_val=cn_transformer.inversetransformY(np.array(Y_median_val))
# Y_var_val=np.array(Y_var_val)*(cn_transformer.Ymax)**2
# Y_mse_val=np.array(Y_mse_val)*(cn_transformer.Ymax)**2
# Y_self_check_val=np.abs(np.array(model.predict([x_val_single,x_val_single]))).flatten()*(cn_transformer.Ymax)
#####################
# print('Train RMSE:', np.average(Y_mse_train)**0.5)
# print('Val RMSE:',np.average(Y_mse_val)**0.5)
print('Test RMSE:',np.average(Y_mse_test)**0.5)