-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapp.py
102 lines (84 loc) · 4.22 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from typing import List, Optional
import streamlit as st
import streamlit_pydantic as sp
from pydantic import BaseModel, Field
from PIL import Image
import tempfile
from pathlib import Path
from src.Surveyor import Surveyor
@st.experimental_singleton(suppress_st_warning=True)
def get_surveyor_instance(_print_fn, _survey_print_fn):
with st.spinner('Loading The-Researcher ...'):
return Surveyor(print_fn=_print_fn, survey_print_fn=_survey_print_fn, high_gpu=True)
def run_survey(surveyor, download_placeholder, research_keywords=None, arxiv_ids=None, max_search=None, num_papers=None):
import hashlib
import time
hash = hashlib.sha1()
hash.update(str(time.time()).encode('utf-8'))
temp_hash = hash.hexdigest()
survey_root = Path(temp_hash).resolve()
dir_args = {f'{dname}_dir': survey_root / dname for dname in ['pdf', 'txt', 'img', 'tab', 'dump']}
for d in dir_args.values():
d.mkdir(exist_ok=True, parents=True)
print(survey_root)
print(dir_args)
dir_args = {k: str(v.resolve()) for k, v in dir_args.items()}
zip_file_name, survey_file_name = surveyor.survey(research_keywords,
arxiv_ids,
max_search=max_search,
num_papers=num_papers
**dir_args)
show_survey_download(zip_file_name, survey_file_name, download_placeholder)
def show_survey_download(zip_file_name, survey_file_name, download_placeholder):
with open(str(zip_file_name), "rb") as file:
btn = download_placeholder.download_button(
label="Download extracted topic-clustered-highlights, images and tables as zip",
data=file,
file_name=str(zip_file_name)
)
with open(str(survey_file_name), "rb") as file:
btn = download_placeholder.download_button(
label="Download detailed generated survey file",
data=file,
file_name=str(survey_file_name)
)
class KeywordsModel(BaseModel):
research_keywords: Optional[str] = Field(
'', description="Enter your research keywords:"
)
max_search: int = Field(
10, ge=1, le=50, multiple_of=1,
description="num_papers_to_search:"
)
num_papers: int = Field(
3, ge=1, le=8, multiple_of=1,
description="num_papers_to_select:"
)
class ArxivIDsModel(BaseModel):
arxiv_ids: Optional[str] = Field(
'', description="Enter comma_separated arxiv ids for your curated set of papers (e.g. 2205.12755, 2205.10937, ...):"
)
if __name__ == '__main__':
st.sidebar.image(Image.open('logo_landscape.png'), use_column_width = 'always')
st.title('Auto-Research')
st.write('#### A no-code utility to generate a detailed well-cited survey with topic clustered sections'
'(draft paper format) and other interesting artifacts from a single research query or a curated set of papers(arxiv ids).')
st.write('##### Data Provider: arXiv Open Archive Initiative OAI')
st.write('##### GitHub: https://github.com/sidphbot/Auto-Research')
download_placeholder = st.container()
with st.sidebar.form(key="survey_keywords_form"):
session_data = sp.pydantic_input(key="keywords_input_model", model=KeywordsModel)
st.write('or')
session_data.update(sp.pydantic_input(key="arxiv_ids_input_model", model=ArxivIDsModel))
submit = st.form_submit_button(label="Submit")
st.sidebar.write('#### execution log:')
run_kwargs = {'surveyor':get_surveyor_instance(_print_fn=st.sidebar.write, _survey_print_fn=st.write),
'download_placeholder':download_placeholder}
if submit:
if session_data['research_keywords'] != '':
run_kwargs.update({'research_keywords':session_data['research_keywords'],
'max_search':session_data['max_search'],
'num_papers':session_data['num_papers']})
elif session_data['arxiv_ids'] != '':
run_kwargs.update({'arxiv_ids':[id.strip() for id in session_data['arxiv_ids'].split(',')]})
run_survey(**run_kwargs)