-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcarpetplotR.R
281 lines (222 loc) · 12.4 KB
/
carpetplotR.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#!/usr/bin/env Rscript
# Sidhant Chopra ([email protected])
# 8/12/220
# Please go to https://github.com/sidchop/carpetplotR for more details
invisible(setwd(system("pwd", intern = T)))
r = getOption("repos")
r["CRAN"] = "http://cran.us.r-project.org"
options(repos = r)
list.of.packages <- c("optparse", "RColorBrewer", "matrixStats",
"shape", "RNifti", "stats", "parallelDist")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
if(length(new.packages)) {message(paste0("Installing ", new.packages))
install.packages(new.packages, INSTALL_opts = '--no-lock')}
invisible(sapply(list.of.packages, library, character.only = TRUE))
option_list = list(
make_option(c("-f", "--file"), type="character", default=NULL,
help='[Required] fMRI file in .nii or .nii.gz format.\n Minimal useage:\n
Rscript carpetplotR.R -f fmri_file.nii.gz'),
make_option(c("-m", "--mask"), type="character", default="NULL",
help="[Recommended] Tissue mask file in .nii or .nii.gz format which matches the 3D dimentions of the fMRI file,
where the voxels are labelled: 1=gm, 2=wm & 3=csf. If you have run fmriprep
you can use the '${subj}_bold_space-${template}_dseg.nii.gz' file. If you provide a mask file,
the voxels will first be sorted acording to tissue type.\n Recommended useage:\n
Rscript carpetplotR.R -f fmri_file.nii.gz -m bold_space_dseg.nii.gz"),
make_option(c("-o", "--output_filename"), type="character", default="carpetplot",
help='Output file path and name [default= %default].\n E.g.
Rscript carpetplotR.R -f fmri_file.nii.gz -o "path/to/output/subj"'),
make_option(c("-r", "--ordering"), type="character", default="random, gs",
help='Voxel ordering: random, gs (global signal) and or co (cluster ordering).\n E.g. -r "random, gs" [Default]', metavar="character"),
make_option(c("-g", "--gs"), type="character", default=NULL,
help="a .txt file with the global signal (gs), if not provided, gs will be extracted from provided fmri"),
make_option(c("-i", "--image"), type="character", default="jpeg",
help='image device to use: "jpeg" [Default], png or tiff'),
make_option(c("-c", "--colourpalette"), type="character", default="black, white",
help='Colour palette used for the carpet plot. Entered as individual colors (either name or hex) which are combined into a continuous scale, e.g. "black, white" [Default]'),
make_option(c("-l", "--limits"), type="double", default=1.2,
help="[Optional] a sets a +upper and -lower z-score limit on the color bar. Default = 1.2. Stops outliers dominating colour scale"),
make_option(c("-t", "--title"), type="character", default="",
help="[Optional] A title that will appear at the top of the plot. "),
make_option(c("-d", "--downsamplefactor"), type="integer", default=1,
help='[Optional] downsample the image by a factor. Highly recommend using a factor between 6-10 when using cluster ordering (i.e. -o "co"), as it can take a lot of RAM.'),
make_option(c("-s", "--imagesize"), type="integer", default=1000,
help="[Optional] Size (height & width) of the image in pixels. Default is 1000. If the images are comming out blank, try uping the size"),
make_option(c("-R", "--useRaster"), type="logical", default=TRUE,
help="[Optional] Use raster graphics. Speeds things up a lot, but if you are using carpetplotR on a cluster and the plots are comming out blank, set to False.")
);
opt_parser = OptionParser(option_list=option_list);
opt = parse_args(opt_parser,);
if (is.null(opt$file)){
print_help(opt_parser)
stop("Atleast one argument must be supplied (.nii or .nii.gz fmri input file)", call.=FALSE)
}
lim <- c(-opt$limits, opt$limits)
mask <- opt$mask != "NULL"
message("Running carpetplotR... ")
ds_factor=opt$downsamplefactor
colourp <- unlist(strsplit(opt$colourpalette, ","))
random_ordering <- gs_ordering <- c_ordering <- FALSE
if(!is.na(grep("random",opt$ordering) || grep("gs",opt$ordering) || grep("co",opt$ordering) == 1)) {
if(isTRUE(grep("random",opt$ordering)==1)){message("Random ordering selected.")
random_ordering <- TRUE}
if(isTRUE(grep("gs",opt$ordering)==1)){message("Global signal ordering selected.")
gs_ordering <- TRUE}
if(isTRUE(grep("co",opt$ordering)==1)){message("Cluster ordering selected.")
c_ordering <- TRUE}
} else {
stop('Please select a valid voxel ordering method: e.g. -o "random", or -o "gs", or -0 "co" , or -o "random, gs" [Default]')
}
make_cp <- function(Matrix, lim=lim, lengthdim=NULL, title = "") {
rf <- colorRampPalette(colourp)
r <- rf(10)
image(x = 1:nrow(Matrix),
y = 1:ncol(Matrix),
zlim = lim,
Matrix, useRaster=opt$useRaster,
col = r,
xlab = "Time", ylab = "Voxel",
yaxt='n',
main = opt$title,
cex.main = 2,
cex.lab = 1.5,
cex.axis = 1.25)
if(mask == TRUE) {
rect(xleft = 0 , xright = 1, ytop =lengthdim[1],
ybottom = 1, col = "green",lwd = 0)
rect(xleft = 0, xright = 1, ytop = (lengthdim[1]+lengthdim[2]),
ybottom = lengthdim[1]+1, col = "blue",lwd = 0)
rect(xleft = 0, xright = 1, ytop =(lengthdim[1]+lengthdim[2]+lengthdim[3]),
ybottom = (lengthdim[1]+lengthdim[2]+1), col = "red",lwd = 0)
}
# lines((GMR+sum(lengthdim)+100)*3, 1:length(GMR),col = "blue", lwd = 100)
}
timeseries2matrix <- function(img, mask) { #borrowed from ANTsR - all credit to https://github.com/ANTsX/ANTsR
m = as.array(mask)
labs <- sort(unique(m[m > 0.001]))
if (!all( labs == round(labs) ))
stop("Mask image must be binary or integer labels")
if (length(labs) == 1) {
logmask <- (m == 1)
} else {
logmask <- (m > 0)
}
i = as.array(img)
# mat = apply(i, 4, function(x) x[logmask])
mat <- img[logmask]
dim(mat) <- c(sum(logmask), dim(img)[length(dim(img))])
mat <- t(mat)
if (length(labs) == 1)
return(mat)
maskvec <- m[logmask]
mmat <- matrix(
rowMeans(mat[, maskvec == labs[1], drop = FALSE]),
ncol = 1)
for (i in 2:length(labs)) {
newmat <- matrix(
rowMeans(mat[, maskvec == labs[i], drop = FALSE]),
ncol = 1)
mmat <- cbind(mmat, newmat)
}
colnames(mmat) <- paste("L", labs)
return(mmat)
}
img <- RNifti::readNifti(opt$file, internal=F)
if(mask == TRUE) {
Mask <- RNifti::readNifti(opt$mask, internal=F)
#do voxel size and dimentions of the atlas and mask match?
if(all(dim(img)[1:3] == dim(Mask)[1:3])) {message("Image and mask dimentions match.")} else {
stop(paste0("Image and mask dimentions (3D) do not match. Mask dim = ",dim(Mask),
"Image dim = ", dim(img)))
}
}
# optional resampling for mask and fmri data [Not needed for now]
#if(!is.null(opt$resample)) {mask <- ANTsRCore::resampleImage(mask, c(opt$resample,opt$resample,opt$resample), useVoxels = F, interpType = 1)
#print("resampling tissue mask.....")}
#mask 1=gm, 2=wm. 3=csf
if(mask == TRUE) {lengthdim <- NULL
Matrix = timeseries2matrix(img = img, mask = Mask == 1)
lengthdim[1] <- dim(Matrix)[2]
for (m in 2:3){
matrix = timeseries2matrix(img = img, mask = Mask == m)
lengthdim[m] <- dim(matrix)[2]
Matrix <- cbind(Matrix,matrix)
}
lengthdim <- floor(lengthdim/ds_factor)
}
#Make mean mask
if(mask == FALSE) {
message("No tissue mask provided, using whole brain mean mask.")
mean_mask <- rowMeans(img, dims = 3)
message("Converting nifti to matrix.")
Matrix = timeseries2matrix(img = img, mask = mean_mask > mean(mean_mask))
message(paste0("Matrix dimentions: ", dim(Matrix)[1], " by ", dim(Matrix)[2]))
}
#Downsample
message(paste0("Downsampling voxels by a factor of ", ds_factor, "."))
Matrix <- Matrix[,seq(from=1,to=dim(Matrix)[2],by=ds_factor)]
message(paste0("Matrix dimentions are now: ", dim(Matrix)[1], " by ", dim(Matrix)[2]))
if(random_ordering==TRUE) {
message("Making carpetplot with random ordering.")
if(opt$image == 'jpeg'){grDevices::jpeg(paste0(opt$output_filename,"_random_ordering.jpeg"),width = opt$imagesize, height = opt$imagesize, units = "px")}
if(opt$image == 'png'){grDevices::png(paste0(opt$output_filename,"_random_ordering.png"),width = opt$imagesize, height = opt$imagesize, units = "px")}
if(opt$image == 'tiff'){grDevices::tiff(paste0(opt$output_filename,"_random_ordering.tiff"),width = opt$imagesize, height = opt$imagesize, units = "px")}
make_cp(scale(Matrix), lengthdim = lengthdim, lim = lim, title = opt$title)
invisible(dev.off())
}
if(gs_ordering==TRUE) {
#extract global signal at this point
if(!is.null(opt$gs)) {
message("Global signal provided by user.")
GS <- scan(opt$gs)
}
if(is.null(opt$gs)) {
message("Extracting global signal from provised fMRI dataset.")
GS <- rowMeans(Matrix)
}
GS <- scale(GS)
if(mask == TRUE) {
message("Sorting voxels by global signal.")
gmrcor_1 <- order(rank(-cor(GS, scale(Matrix[,c(1:lengthdim[1])]))))
gmrcor_2 <- order(rank(-cor(GS, scale(Matrix[,c((lengthdim[1]+1):(lengthdim[1]+lengthdim[2]))]))))
gmrcor_3 <- order(rank(-cor(GS, scale(Matrix[,c((lengthdim[1]+lengthdim[2]+1):(lengthdim[1] +
lengthdim[2] +
lengthdim[3]))]))))
gmrcor_2 <- gmrcor_2 + as.numeric(length(gmrcor_1))
gmrcor_3 <- gmrcor_3 + as.numeric(length(gmrcor_1) + length(gmrcor_2))
rank <- c(gmrcor_1, gmrcor_2, gmrcor_3)
}
if(mask == FALSE) {
message("Sorting voxels by Global signal.")
rank <- order(rank(-cor(GS, scale(Matrix))))
}
Matrix <- Matrix[,c(rank)]
#scale (zscore)
message("Making carpetplot with GS ordering.")
if(opt$image == 'jpeg'){grDevices::jpeg(paste0(opt$output_filename,"_gs_ordering.jpeg"),width = opt$imagesize, height = opt$imagesize, units = "px")}
if(opt$image == 'png'){grDevices::png(paste0(opt$output_filename,"_gs_ordering.png"),width = opt$imagesize, height = opt$imagesize, units = "px")}
if(opt$image == 'tiff'){grDevices::tiff(paste0(opt$output_filename,"_gs_ordering.tiff"),width = opt$imagesize, height = opt$imagesize, units = "px")}
make_cp(Matrix = scale(Matrix), lengthdim = lengthdim, lim = lim)
invisible(dev.off())
}
if(c_ordering==TRUE) {
message('Computing hierarchical average linkage clustering on Euclidean distances. If this crashs, or takes too long, please increase the downsampling factor e.g. "-d 8"')
if(mask == TRUE) {
corder_1 <- hclust(parallelDist::parDist(t(scale(Matrix[,c(1:lengthdim[1])])), method = "euclidean"), method = 'average')$order
corder_2 <- hclust(parallelDist::parDist(t(scale(Matrix[,c((lengthdim[1]+1):(lengthdim[1]+lengthdim[2]))])), method = "euclidean"), method = 'average')$order
corder_3 <- hclust(parallelDist::parDist(t(scale(Matrix[,c((lengthdim[1]+lengthdim[2]+1):(lengthdim[1] +
lengthdim[2] +
lengthdim[3]))])), method = "euclidean"), method = 'average')$order
corder_2 <- corder_2 + as.numeric(length(corder_1))
corder_3 <- corder_3 + as.numeric(length(corder_1) + length(corder_2))
rank <- c(corder_1, corder_2, corder_3)
}
if(mask == FALSE) {
rank <- hclust(parallelDist::parDist(t(scale(Matrix)), method = "euclidean"), method = 'average')$order
}
message("Making carpetplot with cluster ordering.")
if(opt$image == 'jpeg'){grDevices::jpeg(paste0(opt$output_filename,"_c_ordering.jpeg"),width = opt$imagesize, height = opt$imagesize, units = "px")}
if(opt$image == 'png'){grDevices::png(paste0(opt$output_filename,"_c_ordering.png"),width = opt$imagesize, height = opt$imagesize, units = "px")}
if(opt$image == 'tiff'){grDevices::tiff(paste0(opt$output_filename,"_c_ordering.tiff"),width = opt$imagesize, height = opt$imagesize, units = "px")}
make_cp(Matrix = scale(Matrix[,rank]), lengthdim = lengthdim, lim = lim)
invisible(dev.off())
}