-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathrun_multiclass.m
102 lines (87 loc) · 3.71 KB
/
run_multiclass.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
addpath(genpath('binaryLRloss'));
addpath(genpath('softmaxLoss'));
addpath(genpath('utils'));
%%
mfOptions.Method = 'lbfgs';
mfOptions.optTol = 2e-3;
mfOptions.progTol = 2e-6;
mfOptions.LS = 2;
mfOptions.LS_init = 2;
mfOptions.MaxIter = 250;
mfOptions.DerivativeCheck = 'off';
mfOptions.Corr = 30;
testresults = containers.Map;
trainresults = containers.Map;
if ~exist('params', 'var') || isfield(params, 'reset') && params.reset
params.discoef = 0.05;
params.lambdaL2=0.0001;
params.evaliid = 0;
params.dataset = 'reuters';
params.isdev = 0;
params.reset = 0;
testresults = containers.Map;
trainresults = containers.Map;
disp('resetting');
end
% example or 20newsbydate conll 20newslibsvm rcv1
% datasetname = params.dataset;
[Xtrain, ytrain, Xtest, ytest, Xu] = getData(datasetname);
D = size(Xtrain,2);
K = size(ytrain,2);
w_init = 0.01*randn(D*K,1);
casenames = {'LROnevall', 'LROnevallDelta', 'LROnevallDeltaMore', 'LROnevallDet'};
%casenames = {'LROnevall', 'LROnevallDelta', 'LROnevallDeltaMore', 'LROnevallDet'};
casenames = {'SoftmaxUnreg', 'Softmax', 'SoftmaxDeltaMore', 'SoftmaxDelta', 'LROnevall', 'LROnevallDet'};
% casenames = {'SoftmaxDeltaMore'}
for casenum = 1:length(casenames)
obj = casenames{casenum};
lambdal2 = params.lambdaL2;
switch obj
case 'LROnevall'
funObj = @(w)LogisticOnevsAllLoss(w,Xtrain,ytrain);
case 'LROnevallDelta'
funObj = @(w)LogisticOnevsAllLossDetObjDropoutDelta(w,Xtrain,ytrain,0.5);
case 'LROnevallDeltaMore'
funObj = @(w)LogisticOnevsAllLossDetObjDropoutDeltaMoreData(w,Xtrain,ytrain,0.5, Xu, params.discoef);
case 'LROnevallDet'
funObj = @(w)LogisticOnevsAllLossDetObjDropout(w,Xtrain,ytrain,0.5);
case 'SoftmaxDelta'
funObj = @(w)SoftmaxLossDetObjDropoutDelta(w,Xtrain,ytrain,0.5);
case 'SoftmaxDeltaMore'
funObj = @(w)SoftmaxLossDetObjDropoutDeltaMoreData(w,Xtrain,ytrain,0.5, Xu, params.discoef);
case 'SoftmaxUnreg'
funObj = @(w)SoftmaxLossFast(w,Xtrain,ytrain);
lambdal2 = 0;
case 'Softmax'
funObj = @(w)SoftmaxLossFast(w,Xtrain,ytrain);
case 'SoftmaxDeltaCheck'
funObj = @(w)SoftmaxLossDetObjDropoutDeltaGradTest(w,Xtrain,ytrain,0.5);
end
disp(lambdal2);
funObjL2 = @(w)penalizedL2(w,funObj,lambdal2);
W = minFunc(funObjL2,w_init,mfOptions);
W = reshape(W, D, K);
resultname = [casenames{casenum}];
ypredsoft = Xtest * W;
[~, ypredtst] = max(ypredsoft, [], 2);
acc = sum(ypredtst==oneofktoscalar(ytest)) / size(ytest,1);
testresults(resultname) = mean(acc);
ypredsoft = Xtrain * W;
[~, ypredtr] = max(ypredsoft, [], 2);
acc = sum(ypredtr == oneofktoscalar(ytrain) ) / size(ytrain,1);
trainresults(resultname) = mean(acc);
paramstring = sprintf('%s: a=%f,lambda=%f,trainsize=%d,dim=%d,sparsity=%f',...
datasetname, params.discoef, params.lambdaL2, size(Xtrain,1), size(Xtrain,2), full(sum(Xtrain(:))/size(Xtrain,1)) );
outfile = fopen('multiclassres', 'a+');
fprintf(outfile, '%s:%s\n', datestr(now), paramstring);
fprintf(outfile, '%s %s: train=%f test=%f\n', datestr(now), obj, trainresults(resultname), testresults(resultname));
fclose(outfile);
end
% keys = testresults.keys;
% paramstring = sprintf('%s: a=%f,lambda=%f,trainsize=%d', datasetname, params.discoef, params.lambdaL2, size(Xtrain,1) );
% outfile = fopen('multiclassres', 'a+');
% fprintf(outfile, '%s:%s\n', datestr(now), paramstring);
% for i=1:length(keys)
% fprintf(outfile, '%s %s: train=%f test=%f\n', datestr(now), keys{i}, trainresults(keys{i}), testresults(keys{i}));
% end
% fclose(outfile);