-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathrun_datasize_imdb.m
144 lines (120 loc) · 5.05 KB
/
run_datasize_imdb.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
addpath(genpath('binaryLRloss'));
addpath(genpath('utils'));
% load('~/Dropbox/projects/naiveBayes/data/rt10662/bigram_rts.mat');
%load('~/Dropbox/projects/naiveBayes/data/20ng/bigram_ng20_atheisms_strip_noheader.mat');
% load('~/Dropbox/projects/naiveBayes/data/rt2k/unigram_rt2k.mat');
%load('~/Dropbox/projects/naiveBayes/data/rt2k/bigram_rt2k.mat');
% load('~/Dropbox/projects/naiveBayes/data/mrl/unigram_mrl_unsuptok.mat')
% labels = labels(1:50000);
% [Xl, yl] = listToVecs(allSNumBi, labels, wordsbi);
% %%
% %load('example_data.mat');
%rand('seed', 6)
s = RandStream('swb2712','Seed',0);
RandStream.setDefaultStream(s);
Xtest = Xl(25001:end,:);
ytest = yl(25001:end);
ytrainAll = yl(1:25000);
XtrainAll = Xl(1:25000, :);
N = length(ytrainAll);
[~, sortind] = sort(ytrainAll);
interleave = [1:N; N:-1:1];
interleave = reshape(interleave(:, 1:end/2), 1, []);
sortedfinalind = sortind(interleave);
XtrainAll = XtrainAll(sortedfinalind, :);
ytrainAll = ytrainAll(sortedfinalind);
mfOptions.Method = 'lbfgs';
mfOptions.optTol = 2e-2;
mfOptions.progTol = 2e-6;
mfOptions.LS = 2;
mfOptions.LS_init = 2;
mfOptions.MaxIter = 40;
mfOptions.DerivativeCheck = 0;
results = containers.Map;
% l2set = [1e-5, 1e-4, 1e-3, 1e-2:0.02:0.08, 1e-1:0.1:0.9,1:5,10];
datasubs = [0.002 0.004 0.008 0.02:0.02:0.08 0.15 0.3 0.7 1];
%datasubs = [0.2 1];
accs = []
casenames = {'LR', 'NaiveBayes', 'DetDropout-0.2', 'DetDropout-0.5', 'DetDropout-0.8'};%, 'DetDropout-0.5', 'DetDropout-0.8'};
casenames = {'LRsgd', 'NaiveBayes', 'Dropout-0.2', 'Dropout-0.5', 'Dropout-0.8'};%, 'DetDropout-0.5', 'DetDropout-0.8'};
casenames = {'LRsgd', 'NaiveBayes', 'Dropout-0.2', 'Dropout-0.5', 'Dropout-0.8'};%, 'DetDropout-0.5', 'DetDropout-0.8'};
%casenames = {'LRsgd', 'NaiveBayes', 'DetDropout-0.2', 'DetDropout-0.5', 'DetDropout-0.8'};%, 'DetDropout-0.5', 'DetDropout-0.8'};
%casenames = {'LR', 'NaiveBayes', 'DetDropout-0.2', 'DetDropout-0.5', 'DetDropout-0.8'};%, 'DetDropout-0.5', 'DetDropout-0.8'};
%casenames = {'Dropout-0.2', 'Dropout-0.8'}
for datai = 1:length(datasubs)
dataend = ceil(datasubs(datai)*length(ytrainAll));
Xtrain = XtrainAll(1:dataend, :);
ytrain = ytrainAll(1:dataend);
for casenum = 1:length(casenames)
obj = casenames{casenum};
w_init = 0*randn(size(XtrainAll,2),1);
dashind = strfind(obj, '-');
pstay = 0;
if dashind>0
method = obj(1:dashind-1);
pstay = str2double(obj(dashind+1:end));
else
method = obj;
end
switch method
case 'LR'
funObj = @(w)LogisticLoss(w,Xtrain,ytrain);
lambdaL2=0.01;
case 'LRsgd'
funObj = @(w,X,y)LogisticLoss(w,X,y);
lambdaL2=0.01;
% you can optimize this value on the test set,
% and LR would still be quite a bit worse
case 'DetDropout'
funObj = @(w)LogisticLossDetObjDropout(w,Xtrain,ytrain,pstay);
lambdaL2=0.01;
case 'Dropout'
funObj = @(w,X,y)LogisticLossMCDropout(w,X,y,pstay);
lambdaL2=0.01;
case 'NaiveBayes'
[wnb] = trainMNB(Xtrain, ytrain, 1);
w = wnb;
end
lambdaL2 = 0.001;
if ~strcmp(method, 'NaiveBayes')
if strcmp(method, 'Dropout') | strcmp(method, 'LRsgd')
options.MaxIter = 500;
if pstay < 0.5
options.MaxIter = 800;
end
options.BatchSize = 25000;
options.eta = 1e-1;
funObjL2 = @(w,X,y) penalizedL2(w,@(w)funObj(w,X,y),lambdaL2);
w = minFuncAdagrad(funObjL2,w_init, Xtrain, ytrain, options);
else
lambdaL2 = 0.00;
funObjL2 = @(w)penalizedL2(w,funObj,lambdaL2);
w = minFunc(funObjL2,w_init,mfOptions);
end
end
softpred = Xtest * w;
softpredn = softpred - mean(softpred);
ypred = softpredn > 0;
acc = sum(ypred == (ytest+1)/2 )/length(ytest);
accs(datai, casenum) = acc;
% ypred = Xtrain * w > 0;
% acc = sum(ypred == (ytrain+1)/2 )/length(ytrain);
end
end
%%
close all
hfig=figure(1);
hold on
datasubsn = datasubs * length(ytrainAll);
semilogx(datasubsn, 100-100*accs(:,1), 'r-', 'LineWidth', 1.5)
semilogx(datasubsn, 100-100*accs(:,2), 'k-', 'LineWidth', 1.5)
semilogx(datasubsn, 100-100*accs(:,3), '--', 'Color', [0.2 0 0], 'LineWidth', 1)
semilogx(datasubsn, 100-100*accs(:,4), '--', 'Color', [0.5 0 0], 'LineWidth', 1)
semilogx(datasubsn, 100-100*accs(:,5), '--', 'Color', [0.8 0 0], 'LineWidth', 1)
hold off
xlabel('n', 'Interpreter','tex');
ylabel('Test Error Rate (%)', 'Interpreter','tex');
l=legend('Log.Reg.','Naive Bayes', 'Dropout-0.8', 'Dropout-0.5', 'Dropout-0.2','Location','NorthEast');
legend boxoff
set(hfig,'Position',[100 200 300 250]);
export_fig perf_vs_data_imdb.pdf -pdf -transparent