-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemory.c
586 lines (488 loc) · 17.7 KB
/
memory.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
/*****************************************************************************/
/* File: memory.c */
/* */
/* Description: Source file for memory allocation code. */
/* */
/* Author: Shoily O Rahman <[email protected]> */
/* */
/* Date: July 9, 2020 */
/* Nov 2021 - Page table initialization for the whole memory */
/* (supported upto 4GB), describe each page with kpage */
/* structure and keeping state (allocate/reserved/free), */
/* page alloc function, memory functions are 64bit */
/* compatibles, re-organize kernel memory layout in */
/* kernel32.ld, adding cache support. */
/* */
/*****************************************************************************/
#include "memory.h"
#include "system.h"
#include "util.h"
#include "page32.h"
#include "smp.h"
#include "debug.h"
// CONVERT_64
extern addr_t _kernel_section_start;
extern addr_t _end_kernel_initial_pg_table;
extern addr_t _master_kernel_pg_dir, _kernel_pg_dir;
extern addr_t _kernel_pg_table_0;
extern addr_t init_ap_size;
extern int _end_kernel_mapped_memory;
#define MEM_CACHE_FLAG_ADDING_SLOT 1
struct mem_cache {
u32 bitmap_size;
u32 flags;
u32 size;
spinlock lock;
struct list free_area_head;
struct list free_slot_head;
};
struct bitmap {
u32 size;
char bitmap[1];
};
struct cache_desc_header{
struct mem_cache *cache;
};
struct cache_desc {
void *page;
struct list free_slot_or_area;
// bitmap
};
struct cache_fixed {
u32 size;
u32 chunk_size;
struct bitmap *bitmap;
void *addr;
};
enum KPAGE_ALLOC_MODE {
KMAP_LINEAR_PAGE = 0,
KMAP_NONLINEAR_PAGE,
USER_PAGE
};
#define CACHE_MIN_CHUNK_SIZE (int)sizeof(long)
#define CACHE_MAX_NUM 10
struct mem_cache cache[CACHE_MAX_NUM] = {0};
struct kpage *kpages;
struct list free_pages[MAX_ALLOC_ORDER+1];
int free_pages_count[MAX_ALLOC_ORDER+1];
struct kpage *kpage_last;
// CONVERT_64
u64 nr_kpages;
// CONVER_64
u64 total_memory;
u64 total_effective_memory;
addr_t end_kernel_data;
spinlock alloc_order_lock[MAX_ALLOC_ORDER+1];
#define kpage_lookup(addr) (kpages+page_getpfn((addr)))
s32 mem_init() {
u32 e820_count = *((int *) E820_MAP_VIRT_COUNT);
struct e820_map *e820 = (struct e820_map *) E820_MAP_VIRT_ADDRESS;
struct kpage *kpage;
addr64_t addr;
// CONVERT_64
addr64_t kpages_memory;
addr_t end_kernel_pgtbls;
addr_t mp_addr;
u64 i, j;
u32 nr_pgtbls;
char debug_str[80];
// CONVERT_64
total_effective_memory = total_memory = (e820+e820_count-1)->base + (e820+e820_count-1)->length;
if (total_effective_memory > MAX_SUPPORTED_MEMORY)
total_effective_memory = MAX_SUPPORTED_MEMORY;
nr_pgtbls = (ALIGN_PGD(total_effective_memory) - ALIGN_PGD(_end_kernel_mapped_memory)) >> PGD_SHIFT;
nr_kpages = ALIGN_PAGE(total_effective_memory) >> PAGE_SHIFT;
kpages_memory = nr_kpages * sizeof(struct kpage);
_end_kernel_mapped_memory += KERNEL_VIRT_ADDR;
end_kernel_pgtbls = ADDPTRS(_end_kernel_mapped_memory, nr_pgtbls << PAGE_SHIFT);
kpage = kpages = (struct kpage *)end_kernel_pgtbls;
if (ADDPTRS64(PTR64(kpages), kpages_memory) > MAX_SUPPORTED_MEMORY) {
print_vga("Could not map page tables and kpages. Reached maximum limit for 32 bit OS. Upgrade to 64bit kernel\n");
sprintf(debug_str, "_end_kernel_mapped_memory: %x, nr_pgtbls size: %x, kpages_memory: %x\n", PTR(_end_kernel_mapped_memory), PTR(nr_pgtbls << PAGE_SHIFT), PTR(kpages_memory));
print_vga(debug_str);
return -1;
}
if (nr_pgtbls)
map_kernel_linear_with_pagetable(_end_kernel_mapped_memory, nr_pgtbls << PAGE_SHIFT, PTE_PRESENT | PTE_WRITE, false);
map_kernel_linear_with_pagetable(PTR(kpages), kpages_memory, PTE_PRESENT | PTE_WRITE, false);
end_kernel_data = ALIGN_PAGE(ADDPTRS(kpages, kpages_memory));
for (i=0; i <= MAX_ALLOC_ORDER; i++) {
list_init(&free_pages[i]);
free_pages_count[i] = 0;
INIT_SPIN_LOCK(&alloc_order_lock[i]);
}
memset(kpages, 0, nr_kpages * sizeof(struct kpage));
// CONVERT_64
addr = e820->base & PAGE_MASK;
for(i=0;i<e820_count && ((addr >> PAGE_SHIFT) < nr_kpages);i++,e820++) {
// CONVERT_64
addr = e820->base & PAGE_MASK;
for (j = 0; j < (ALIGN_PAGE(e820->base+e820->length)-(e820->base & PAGE_MASK)) >> PAGE_SHIFT; j++) {
kpage = &kpages[addr >> PAGE_SHIFT];
kpage->flags |= (e820->type != 1) ? KPAGE_FLAGS_RESERVED : 0;
if ((!(kpage->flags & KPAGE_FLAGS_RESERVED)) &&
addr <= VIRT_TO_PHYS_ADDR_LINEAR(end_kernel_data)) {
kpage->flags |= KPAGE_FLAGS_KERNEL;
}
list_init(&kpage->free_page);
addr = ADDPTRS64(addr, PAGE_SIZE);
}
// Gap between two e820 entries. We don't know their state. Mark the pages as reserved.
// CONVERT_64
if ((i!=(e820_count-1)) && (((e820+1)->base & PAGE_MASK) != addr)) {
// CONVERT_64
u64 last_page_in_range = (e820+1)->base & PAGE_MASK;
while(addr < last_page_in_range) {
kpage = &kpages[addr >> PAGE_SHIFT];
kpage->flags |= KPAGE_FLAGS_RESERVED;
list_init(&kpage->free_page);
addr = ADDPTRS64(addr, PAGE_SIZE);
}
}
}
kpage_last = &kpages[addr >> PAGE_SHIFT] - 1;
kpage = kpages;
kpages[BASE_WRITE_PAGE >> PAGE_SHIFT].flags |= KPAGE_FLAGS_KERNEL;
map_kernel_linear_with_pagetable(ADDPTRS(KERNEL_VIRT_ADDR, BASE_WRITE_PAGE), PAGE_SIZE, PTE_PRESENT | PTE_WRITE, false);
for(mp_addr = AP_INIT_PHYS_TEXT & PAGE_MASK; mp_addr < ALIGN_PAGE(AP_INIT_PHYS_TEXT + init_ap_size); mp_addr += PAGE_SIZE) {
kpages[mp_addr >> PAGE_SHIFT].flags |= KPAGE_FLAGS_KERNEL;
map_kernel_linear_with_pagetable(mp_addr, PAGE_SIZE, PTE_PRESENT | PTE_WRITE, false);
}
// BDA page
kpages[0].flags |= KPAGE_FLAGS_RESERVED;
// EBDA
for (addr = 0x80000; addr < ALIGN_PAGE(0x9ffff); addr += PAGE_SIZE) {
kpages[addr >> PAGE_SHIFT].flags |= KPAGE_FLAGS_RESERVED;
}
// Video display
for (addr = 0xa0000; addr < ALIGN_PAGE(0xbffff); addr += PAGE_SIZE) {
kpages[addr >> PAGE_SHIFT].flags |= KPAGE_FLAGS_RESERVED;
}
// Video bios
for (addr = 0xc0000; addr < ALIGN_PAGE(0xc7fff); addr += PAGE_SIZE) {
kpages[addr >> PAGE_SHIFT].flags |= KPAGE_FLAGS_RESERVED;
}
// Bios expansions
for (addr = 0xc8000; addr < ALIGN_PAGE(0xeffff); addr += PAGE_SIZE) {
kpages[addr >> PAGE_SHIFT].flags |= KPAGE_FLAGS_RESERVED;
}
// Motherboard bios
for (addr = 0xf0000; addr < ALIGN_PAGE(0xfffff); addr += PAGE_SIZE) {
kpages[addr >> PAGE_SHIFT].flags |= KPAGE_FLAGS_RESERVED;
}
while (kpage <= kpage_last) {
INIT_SPIN_LOCK(&kpage->lock);
kpage->order = 0;
// clear pte for the page to make it inaccessible.
if (kpage_is_free(kpage)) {
pte_t *pte;
page_add_to_slot(kpage, kpage);
pte = ((pte_t*)&_kernel_pg_table_0) + (kpage-kpages);
*pte = 0;
}
kpage++;
}
memset(&_master_kernel_pg_dir, 0, KERNEL_PGDIR_OFFSET);
return 0;
}
void page_add_to_slot(struct kpage *kpage, struct kpage *end_kpage) {
// CONVERT_64
u32 pfn, other_pfn;
u8 order;
struct kpage *first_kpage, *second_kpage;
bool done = false;
struct kpage dummy_page;
if (!end_kpage)
end_kpage = kpage_last;
order = kpage->order;
while (order <= MAX_ALLOC_ORDER && !done) {
pfn = kpage-kpages;
other_pfn = pfn ^ (1 << order);
if (pfn < other_pfn) {
if (order == MAX_ALLOC_ORDER ||
(kpages+other_pfn) > end_kpage) {
done = true;
second_kpage = &dummy_page;
INIT_SPIN_LOCK(&dummy_page.lock);
} else {
second_kpage = &kpages[other_pfn];
}
first_kpage = kpage;
} else {
first_kpage = &kpages[other_pfn];
second_kpage = kpage;
}
spinlock_lock(&alloc_order_lock[order]);
if (!done &&
order < MAX_ALLOC_ORDER &&
(kpages+other_pfn) <= end_kpage &&
kpages[other_pfn].order == order &&
kpages[other_pfn].flags & KPAGE_FLAGS_FREE_BUDDY) {
spinlock_lock(&first_kpage->lock);
spinlock_lock(&second_kpage->lock);
first_kpage->flags &= ~KPAGE_FLAGS_FREE_BUDDY;
second_kpage->flags &= ~KPAGE_FLAGS_FREE_BUDDY;
second_kpage->flags |= KPAGE_FLAGS_FREE_SUB;
list_remove_entry(&kpages[other_pfn].free_page);
free_pages_count[order]--;
spinlock_unlock(&second_kpage->lock);
spinlock_unlock(&first_kpage->lock);
} else {
done = true;
spinlock_lock(&kpage->lock);
kpage->order = order;
kpage->flags |= KPAGE_FLAGS_FREE_BUDDY;
kpage->flags &= ~KPAGE_FLAGS_FREE_SUB;
list_insert_tail(&free_pages[order], &kpage->free_page);
free_pages_count[order]++;
spinlock_unlock(&kpage->lock);
}
spinlock_unlock(&alloc_order_lock[order]);
order++;
kpage = first_kpage;
}
}
struct kpage *page_alloc(u32 order) {
struct kpage *kpage = NULL;
bool done = false;
struct list *l;
u32 alloc_order = order;
while(alloc_order <= MAX_ALLOC_ORDER && !done) {
spinlock_lock(&alloc_order_lock[alloc_order]);
if (!list_empty(&free_pages[alloc_order])) {
l = list_prev_entry(&free_pages[alloc_order]);
kpage = container_of(l, struct kpage, free_page);
spinlock_lock(&kpage->lock);
list_remove_entry(l);
kpage->flags &= ~KPAGE_FLAGS_FREE_BUDDY;
kpage->flags |= KPAGE_FLAGS_ALLOCATED;
kpage->order = order;
kpage->refcount++;
done = true;
spinlock_unlock(&kpage->lock);
spinlock_unlock(&alloc_order_lock[alloc_order]);
} else {
spinlock_unlock(&alloc_order_lock[alloc_order]);
alloc_order++;
}
if (done && alloc_order != order) {
u32 pfn, buddy_pfn;
struct kpage *buddy_page;
pfn = kpage-kpages;
while (alloc_order > order) {
alloc_order--;
buddy_pfn = pfn ^ (1 << alloc_order);
buddy_page = &kpages[buddy_pfn];
buddy_page->order = alloc_order;
buddy_page->flags &= ~KPAGE_FLAGS_FREE_SUB;
page_add_to_slot(buddy_page, NULL);
}
}
}
if (alloc_order > MAX_ALLOC_ORDER && !done) {
print_vga("alloc failed\n");
}
return kpage;
}
void page_free_linear(void *addr) {
page_add_to_slot(&kpages[((addr_t)addr) >> PAGE_SHIFT], NULL);
}
void page_free_user(void *addr) {
(void*)addr++; // unused
}
struct bitmap *cache_bitmap = NULL;
struct mem_cache *mem_cache_bitmap = NULL;
#define MEM_CACHE_ADDR_MASK (~1L)
int bitmap_firstfreebitset(u8 *bitmap, int bitmap_size) {
int bit_position = -1;
int num;
int count;
u8 oldbitmap;
for(count=0;count<bitmap_size;count++,bitmap++) {
oldbitmap = *bitmap;
*bitmap |= (oldbitmap + 1);
if (*bitmap != oldbitmap) {
num = *bitmap - oldbitmap;
while(num) {
bit_position++;
num >>= 1;
}
return bit_position + (count*sizeof(*bitmap));
}
}
return bit_position;
}
bool bitmap_allbitsset(u8 *bitmap, int bitmap_size) {
int count;
for(count=0;count<bitmap_size;count++,bitmap++) {
if (!(*bitmap & 0xff))
return false;
}
return true;
}
int mem_cache_add_slot(struct mem_cache *cache) {
struct cache_desc *desc;
struct kpage *kpage;
void *page;
struct cache_desc_header *header;
u32 slot_count = 0;
retry:
spinlock_lock(&cache->lock);
if (cache->flags & MEM_CACHE_FLAG_ADDING_SLOT) {
spinlock_unlock(&cache->lock);
goto retry;
}
if (!list_empty(&cache->free_slot_head)) {
spinlock_unlock(&cache->lock);
return 0;
}
cache->flags |= MEM_CACHE_FLAG_ADDING_SLOT;
spinlock_unlock(&cache->lock);
page = page_alloc_kmap_linear(0);
if (!page)
return ERR_NOMEM;
header = (struct cache_desc_header *)page;
header->cache = cache;
desc = (struct cache_desc *)ADDPTRS(page, sizeof(struct cache_desc_header));
while(ADDPTRS(desc, sizeof(struct cache_desc) + cache->bitmap_size) <= ADDPTRS(header, PAGE_SIZE)) {
list_insert_tail(&cache->free_slot_head, &desc->free_slot_or_area);
desc = (struct cache_desc *)ADDPTRS(desc, cache->bitmap_size);
slot_count++;
}
kpage = kpage_lookup(page);
kpage->flags |= KPAGE_FLAGS_CACHE_METADATA;
kpage->free_slot_count = slot_count;
spinlock_lock(&cache->lock);
cache->flags &= ~MEM_CACHE_FLAG_ADDING_SLOT;
spinlock_unlock(&cache->lock);
return 0;
}
int mem_cache_init_internal(struct mem_cache *cache, u32 size) {
INIT_SPIN_LOCK(&cache->lock);
list_init(&cache->free_area_head);
list_init(&cache->free_slot_head);
cache->bitmap_size = (PAGE_SIZE / size * 8) < sizeof(long) ? sizeof(long) : (PAGE_SIZE / size * 8);
return 0;
}
int mem_cache_init() {
int i, j;
for (j = 0,i = CACHE_MIN_CHUNK_SIZE; j < CACHE_MAX_NUM && i < PAGE_SIZE; j++,i<<=1) {
cache[j].size = i;
mem_cache_init_internal(&cache[j], i);
}
return 0;
}
void *mem_cache_allocate(int size) {
struct cache_desc *desc;
int order = 0;
int i, err;
int idx = 0;
void *page;
struct kpage *kpage;
struct list *entry;
u8 *bitmap;
int first_bit;
size = ALIGN_LONG(size);
//desc = ADDPTRS(cache, sizeof(struct mem_cache_header));
if (size > (PAGE_SIZE / 2)) {
for (order = 1;
((size + PAGE_SIZE - 1) >> PAGE_SHIFT) > (1 << PAGE_SHIFT);
order++);
page = page_alloc_kmap_linear(order);
if (!page)
return NULL;
kpage = kpage_lookup(page);
kpage->flags &= ~KPAGE_FLAGS_CACHE;
kpage->desc = NULL;
return page;
}
i = size;
while(i > CACHE_MIN_CHUNK_SIZE) {
i >>= 1;
idx++;
}
retry:
spinlock_lock(&cache->lock);
if (list_empty(&cache->free_area_head)) {
spinlock_unlock(&cache->lock);
err = mem_cache_add_slot(&cache[idx]);
if (err == ERR_NOMEM) {
idx++;
if (cache[idx].size == 0)
return NULL;
goto retry;
}
else if (err == ERR_RETRY)
goto retry;
spinlock_lock(&cache->lock);
if (list_empty(&cache->free_area_head) &&
list_empty(&cache->free_slot_head)) {
spinlock_unlock(&cache->lock);
goto retry;
}
}
if (!list_empty(&cache->free_area_head)) {
entry = list_next_entry(&cache->free_area_head);
desc = container_of(entry, struct cache_desc, free_slot_or_area);
} else { // !list_empty(&cache->free_slot_head)
entry = list_next_entry(&cache->free_slot_head);
list_remove_entry(entry);
desc = container_of(entry, struct cache_desc, free_slot_or_area);
spinlock_unlock(&cache->lock);
page = page_alloc_kmap_linear(0);
if (!page) {
list_insert_tail(&cache->free_slot_head, entry);
return NULL;
}
spinlock_lock(&cache->lock);
memset(desc, 0, sizeof(struct cache_desc) + cache->bitmap_size);
kpage = kpage_lookup((void*)((long)desc & PAGE_MASK));
kpage->free_slot_count--;
desc->page = page;
kpage = kpage_lookup(page);
kpage->flags |= KPAGE_FLAGS_CACHE;
kpage->desc = desc;
entry = &desc->free_slot_or_area;
list_init(entry);
list_insert_tail(&cache->free_area_head, entry);
}
bitmap = (u8*)ADDPTRS(desc, sizeof(struct cache_desc));
first_bit = bitmap_firstfreebitset(bitmap, cache->bitmap_size);
if (bitmap_allbitsset(bitmap, cache->bitmap_size)) {
list_remove_entry(entry);
}
spinlock_unlock(&cache->lock);
return (void*)ADDPTRS(page, first_bit * cache->size);
}
void mem_cache_free(void *ptr) {
struct kpage *kpage;
kpage = kpage_lookup((void*)((long)ptr & PAGE_MASK));
spinlock_lock(&kpage->lock);
if (!(kpage->flags & KPAGE_FLAGS_ALLOCATED)) {
spinlock_unlock(&kpage->lock);
return;
}
if (!(kpage->flags & (KPAGE_FLAGS_CACHE | KPAGE_FLAGS_CACHE_METADATA))) {
spinlock_unlock(&kpage->lock);
kpage->refcount--;
if (!kpage->refcount) {
}
}
spinlock_unlock(&kpage->lock);
}
int cache_init() {
if (mem_cache_init(&mem_cache_bitmap) == -1)
return -1;
return 0;
}
void *page_alloc_kmap_linear(u32 order) {
addr_t addr;
u32 size = ORDER_TO_PAGE_SIZE(order);
struct kpage *page = page_alloc(order);
if (!page)
return NULL;
addr = ADDPTRS((page-kpages) << PAGE_SHIFT, KERNEL_VIRT_ADDR);
map_kernel_linear_with_pagetable(addr, size, PTE_PRESENT | PTE_WRITE, false);
memset(addr, 0, size);
return (void*)addr;
}