-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatagen3d.py
58 lines (53 loc) · 1.97 KB
/
datagen3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import keras
from scipy.spatial.transform import Rotation as R
from scipy import ndimage
import random
class DataGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, X, labels, batch_size=32, shuffle=True, random=True):
self.batch_size = batch_size
self.labels = labels
self.shuffle = shuffle
self.X = X
self.random = random
self.random_rot = False
self.num_ch = X.shape[-1]
self.on_epoch_end()
def __len__(self):
return int(np.floor(len(self.labels) / self.batch_size))
def __getitem__(self, index):
# indices of the batch
indices = self.indices[index*self.batch_size:(index+1)*self.batch_size]
if self.random_rot: # random rotation (TODO)
rot = R.random(len(indices)).as_matrix()
X_temp = []
for i, k in enumerate(indices):
X = []
for j in range(self.num_ch):
X.append(ndimage.affine_transform(self.X.transpose(0,4,1,2,3)[k,j],rot[i]))
X_temp.append(X)
X_out = np.array(X_temp).transpose(0,2,3,4,1)
elif self.random: # random flip and transpose
X_temp = []
for i, k in enumerate(indices):
L=[0,1,2]
random.shuffle(L)
X = self.X[k].transpose(*L,3)
# p = random.random()
# if p < 0.25:
# X = X[::-1,::-1,:,:]
# elif p < 0.5:
# X = X[:,::-1,::-1,:]
# elif p < 0.75:
# X = X[::-1,:,::-1,:]
X_temp.append(X)
X_out = np.array(X_temp)
else:
X_out = self.X[indices]
# print(X_out.shape)
return X_out, self.labels[indices]
def on_epoch_end(self):
self.indices = np.arange(len(self.labels))
if self.shuffle == True:
np.random.shuffle(self.indices)