-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathapp.py
879 lines (806 loc) · 41.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
import os
import json
import smtplib
import datetime
import yfinance as yf
import numpy as np
import pandas as pd
import plotly
import plotly.graph_objs as go
# these below two lines are for avoiding a runtime error
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from dateutil.relativedelta import relativedelta
from pandas_datareader import data as pdr
from collections import Counter
from base64 import b64encode
from io import BytesIO
from flask import Flask, session, request, render_template, redirect
from flask_session import Session
from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session, sessionmaker
app = Flask(__name__)
# Configure session to use filesystem
app.config["SESSION_PERMANENT"] = False
app.config["SESSION_TYPE"] = "filesystem"
Session(app)
# Set up database
engine = create_engine(os.getenv("DATABASE_URL", "sqlite:///database.db"))
db = scoped_session(sessionmaker(bind=engine))
password = os.getenv("password")
yf.pdr_override()
# changing color settings in matplotlib for dark theme of website
plt.rcParams.update({
"lines.color": "white",
"patch.edgecolor": "white",
"text.color": "white",
"axes.facecolor": "white",
"axes.edgecolor": "lightgray",
"axes.labelcolor": "white",
"xtick.color": "white",
"ytick.color": "white",
"grid.color": "lightgray",
"figure.facecolor": "black",
"figure.edgecolor": "black",
"savefig.facecolor": "black",
"savefig.edgecolor": "black"})
def send_mail(email, subject, body):
server = smtplib.SMTP('smtp.gmail.com', 587)
# EHLO means ESMTP - Extended Simple Mail Transfer Protocol
server.ehlo()
server.starttls()
server.ehlo()
server.login('[email protected]', password) # see the video tutorial from README.md file
msg = f"Subject: {subject}\n\n{body}"
server.sendmail('[email protected]', email, msg)
print("HEY, EMAIL HAS BEEN SENT!")
server.quit()
@app.route("/", methods = ['GET', 'POST'])
def index():
if request.method == 'GET':
if session.get("logged_in"):
return render_template("index.html", loginstatus = "True", curruser = session["username"])
else:
return render_template("index.html", loginstatus = "False")
else:
category = request.form.get("asset")
return redirect(f"/{category}")
@app.route("/register", methods = ['GET', 'POST'])
def register():
if session.get("logged_in"):
return "<script>alert('You are already logged in, log out first'); window.location = 'https://quantizers.herokuapp.com/';</script>"
else:
if request.method == 'POST':
username = request.form.get("username")
password = request.form.get("password")
email = request.form.get("email")
date = str(datetime.datetime.utcnow())
if (username == "") or (password == "") or (email == ""):
return "<script>alert('Fill all the fields'); window.location = window.history.back();</script>"
data = db.execute("SELECT * FROM users WHERE username = :username", {"username": username}).fetchall()
if len(data) > 0:
db.close()
return "<script>alert('Username already exists, choose another'); window.location = window.history.back();</script>"
db.execute("INSERT INTO users (username, password, join_date) VALUES (:username, :password, :join_date)",
{"username": username, "password": password, "join_date": date})
db.execute("INSERT INTO email (mail, username) VALUES (:mail, :username)", {"mail": email, "username": username})
db.commit()
session["logged_in"] = True
session["username"] = username
db.close()
subject = 'Getting started with Quantizers'
body = '''Hey there fellow Investor!\n\nWe wish you the best of luck for your coming financial ventures as you join the Quantizers family. It takes a lot of courage to invest your hard-earned money in a domain of unknown nature. For this specific reason, we have created this web app but if you have any doubts or want some more info on the methodology used, drop at [email protected] or through feedback form through the web app.\n\nAnd kindly go through the Terms and Conditions before performing any actual transaction -\n\nThe QUANTIZERS or any people in this venture are not registered with SEBI. This web app is solely meant to provide you with performance simulations on a portfolio that you will select based according to your financial intelligence. We are not certified under IA regulation in any manner. Therefore we are not liable for your money, and this platform is based on virtual money; hence you are not required to put in any of your Real Cash. Our optimization models will suggest the best possible portfolio to invest in through various mathematical portfolio optimization models, but it's all on you whether to go with it or not. We will show you the real-world possibility scenarios of multiple assets, and that's all.\n\nThis web application is entirely public and free to use.\n\nWe suggest you make your financial decision on your own choice and not solely based on our methods. All the investments that you make are subjected to market risks, so do thorough research before investing your hard-earned money. In any case, as we are not handling your real cash, therefore we won't be liable for any accusations. Any future complaints about any loss or damage will not be considered.\n\nKeep Investing!!\nThank You\nTeam Quantizers'''
send_mail(email, subject, body)
return redirect("/")
else:
return render_template("register.html")
@app.route("/login", methods = ['GET', 'POST'])
def login():
if session.get("logged_in"):
return "<script>alert('You are already logged in'); window.location = 'https://quantizers.herokuapp.com/';</script>"
else:
if request.method == 'POST':
username = request.form.get("username")
password = request.form.get("password")
if (username == "") or (password == ""):
return "<script>alert('Please fill both fields'); window.location = window.history.back();</script>"
data = db.execute("SELECT * FROM users WHERE username = :username", {"username": username}).fetchall()
if len(data) > 0:
if data[0].password == password:
session["logged_in"] = True
session["username"] = username
db.close()
return redirect("/")
else:
db.close()
return "<script>alert('Invalid password');window.location = 'https://quantizers.herokuapp.com/login';</script>"
else:
db.close()
return "<script>alert('Please register first');window.location = 'https://quantizers.herokuapp.com/register';</script>"
else:
return render_template("login.html")
@app.route("/logout", methods = ['GET', 'POST'])
def logout():
print(session.keys())
session.clear()
print(session.keys())
return redirect("https://quantizers.herokuapp.com/")
@app.route("/tnc")
def terms_and_cond():
return render_template("info.html", info = 'Terms & Conditions')
@app.route("/about")
def about_us():
return render_template("info.html", info = 'About Us')
@app.route("/feedback", methods = ['GET', 'POST'])
def feedback():
if session.get("logged_in"):
if request.method == 'GET':
return render_template("feedback.html")
else:
username = session["username"]
feedback = request.form.get("feedback")
subject = f'Feedback from {session["username"]}'
send_mail("[email protected]", subject, feedback)
return "<script>alert('Feedback submitted successfully'); window.location = 'https://quantizers.herokuapp.com/';</script>"
else:
return "<script>alert('Please login first'); window.location = 'https://quantizers.herokuapp.com/login';</script>"
@app.route("/<category>", methods = ['GET', 'POST'])
def get_assets(category):
data = db.execute("SELECT * FROM assets WHERE type = :type", {"type": category}).fetchall()
syms = [d.symbol for d in data]
today = str(datetime.date.today())
curr_data = pdr.get_data_yahoo(syms, start = today)['Close']
if curr_data.empty:
today = str(datetime.date.today() + relativedelta(days=-1))
curr_data = pdr.get_data_yahoo(syms, start = today)['Close']
if curr_data.empty:
today = str(datetime.date.today() + relativedelta(days=-2))
curr_data = pdr.get_data_yahoo(syms, start = today)['Close']
prices = []
for d in data:
if str(curr_data.iloc[-1][d.symbol]) == 'nan':
try:
if str(curr_data.iloc[-2][d.symbol]) != 'nan':
prices.append(round(curr_data.iloc[-2][d.symbol], 2))
else:
p = pdr.get_data_yahoo(d.symbol, start = str(datetime.date.today() + relativedelta(months=-1)))['Close']
prices.append(round(p.iloc[-1], 2))
except:
p = pdr.get_data_yahoo(d.symbol, start = str(datetime.date.today() + relativedelta(months=-1)))['Close']
prices.append(round(p.iloc[-1], 2))
else:
price = round(curr_data.iloc[-1][d.symbol], 2)
prices.append(price)
db.close()
if session.get("logged_in"):
return render_template("asset.html", loginstatus = "True", curruser = session["username"], category = category.title(), data = data, prices = prices)
else:
return render_template("asset.html", loginstatus = "False", category = category.title(), data = data, prices = prices)
@app.route("/buy/<id>/<price>", methods = ['GET', 'POST'])
def buy(id, price):
if request.method == 'POST':
quantity = int(request.form.get("quantity"))
username = session["username"]
date = str(datetime.datetime.utcnow())
asset = db.execute("SELECT * FROM assets WHERE id = :id", {"id": id}).fetchall()[0]
db.execute("INSERT INTO investment (username, asset, buy_price, quantity, date) VALUES (:username, :asset, :buy_price, :quantity, :date)", {"username": username, "asset": asset.name, "buy_price": price, "quantity": quantity, "date": date})
print(f"Invested in {asset.name}")
db.commit()
db.close()
return "<script>alert('Investment Successful'); window.location = window.history.back();</script>"
else:
return "<script>alert('Method not allowed'); window.location = window.history.back();</script>"
@app.route("/sell/<id>/<price>", methods = ['GET', 'POST'])
def sell(id, price):
if request.method == 'POST':
quantity = int(request.form.get("quantity"))
username = session["username"]
date = str(datetime.datetime.utcnow())
inv = db.execute("SELECT * FROM investment WHERE id = :id", {"id": id}).fetchall()[0]
db.execute("INSERT INTO returns (username, asset, buy_price, sell_price, quantity, buy_date, sell_date) VALUES (:username, :asset, :buy_price, :sell_price, :quantity, :buy_date, :sell_date)", {"username": username, "asset": inv.asset, "buy_price": inv.buy_price, "sell_price": price, "quantity": quantity, "buy_date": inv.date, "sell_date": date})
if quantity < inv.quantity:
db.execute("UPDATE investment SET quantity = :quantity WHERE id = :id", {"quantity": (inv.quantity-quantity), "id": id})
elif quantity == inv.quantity:
db.execute("DELETE FROM investment WHERE id = :id", {"id": id})
print(f"Sold {inv.asset}")
db.commit()
db.close()
return "<script>alert('Sold'); window.location = document.referrer;</script>"
else:
return "<script>alert('Method not allowed'); window.location = window.history.back();</script>"
@app.route("/portfolio/investment", methods = ['GET', 'POST'])
def investments():
if session.get("logged_in"):
username = session["username"]
invs = db.execute("SELECT * FROM investment WHERE username = :username ORDER BY date DESC", {"username": username}).fetchall()
if len(invs) > 0:
dates = []
prices = []
type = []
pchange = []
net_pl = 0
total = 0
total_inv = 0
syms = []
betas = []
profits = {}
loss = {}
#cagrs = []
#rois = []
start = str(datetime.date.today() + relativedelta(years=-5))
for i in invs:
if i.quantity > 0:
d = db.execute("SELECT * FROM assets WHERE name = :name", {"name": i.asset}).fetchall()[0]
syms.append(d.symbol)
type.append(d.type)
syms.append('^NSEI')
syms.append('^BSESN')
curr_data = pdr.get_data_yahoo(syms, start = start)['Close']
for i in invs:
d = db.execute("SELECT * FROM assets WHERE name = :name", {"name": i.asset}).fetchall()[0]
if str(curr_data.iloc[-1][d.symbol]) == 'nan':
price = round(curr_data.iloc[-2][d.symbol], 2)
#cagr = round(((curr_data.iloc[-2][d.symbol]/curr_data.iloc[0][d.symbol])**(1/5) - 1)*100, 2)
#roi = round(((curr_data.iloc[-2][d.symbol]/curr_data.iloc[0][d.symbol]) - 1)*100, 2)
else:
price = round(curr_data.iloc[-1][d.symbol], 2)
#cagr = round(((curr_data.iloc[-1][d.symbol]/curr_data.iloc[0][d.symbol])**(1/5) - 1)*100, 2)
#roi = round(((curr_data.iloc[-1][d.symbol]/curr_data.iloc[0][d.symbol]) - 1)*100, 2)
if d.symbol[-2:] == 'BO':
index = '^BSESN'
else:
index = '^NSEI'
data = curr_data[[d.symbol, index]]
returns = data.pct_change()
cov = returns.cov()
covar = cov[d.symbol].iloc[1]
var = cov[index].iloc[1]
beta = round(covar/var, 2)
betas.append(beta)
#rois.append(f"{roi}%")
#cagrs.append(cagr)
prices.append(price)
for i in range(len(invs)):
if invs[i].quantity > 0:
p = prices[i]
pchange.append(round((p/invs[i].buy_price - 1)*100, 2))
val = round((p - invs[i].buy_price) * invs[i].quantity)
if val < 0:
loss[syms[i]] = -1 * val
elif val > 0:
profits[syms[i]] = val
net_pl += p * invs[i].quantity
da = invs[i].date[:10].split("-")
date = f"{da[2]}-{da[1]}-{da[0]}"
dates.append(date)
total += invs[i].buy_price * invs[i].quantity
total_inv = total
rets = db.execute("SELECT * FROM returns WHERE username = :username", {"username": username}).fetchall()
if len(rets) > 0:
for r in rets:
total_inv += r.buy_price * r.quantity
db.close()
roi = round(((net_pl-total)/total)*100, 2)
cagr = round(((net_pl/total)**(1/5)-1)*100, 2)
trace = go.Pie(
labels = list(profits.keys()),
values = list(profits.values()),
textposition = 'inside',
textinfo = 'percent+label',
hole = .6
)
data = [trace]
profit_pie_chart = json.dumps(data, cls=plotly.utils.PlotlyJSONEncoder)
trace = go.Pie(
labels = list(loss.keys()),
values = list(loss.values()),
textposition = 'inside',
textinfo = 'percent+label',
hole = .6
)
data = [trace]
loss_pie_chart = json.dumps(data, cls=plotly.utils.PlotlyJSONEncoder)
return render_template("investment.html", curruser = username, profit_pie_chart = profit_pie_chart, loss_pie_chart = loss_pie_chart, dates = dates, invs = invs, symbols = syms, prices = prices, type = type, pchange = pchange, betas = betas, net_pl = int(net_pl), total = int(total), total_inv = int(total_inv), roi = roi, cagr = cagr)
else:
db.close()
return render_template("investment.html", curruser = username, dates = [], invs = [], symbols = [], prices = [], type = [], pchange = [], betas = [], net_pl = 0, total = 0, total_inv = 0, roi = 0, cagr = 0)
else:
return "<script>alert('Login first'); window.location = 'https://quantizers.herokuapp.com/login';</script>"
@app.route("/portfolio/return", methods = ['GET', 'POST'])
def returns():
if session.get("logged_in"):
username = session["username"]
rets = db.execute("SELECT * FROM returns WHERE username = :username ORDER BY sell_date DESC", {"username": username}).fetchall()
print(len(rets))
buy_dates = []
sell_dates = []
symbols = []
type = []
pchange = []
net_pl = 0
for r in rets:
d = db.execute("SELECT * FROM assets WHERE name = :name", {"name": r.asset}).fetchall()[0]
pchange.append(round((1 - r.buy_price/r.sell_price)*100, 2))
da = r.buy_date[:10].split("-")
date = f"{da[2]}-{da[1]}-{da[0]}"
buy_dates.append(date)
da = r.sell_date[:10].split("-")
date = f"{da[2]}-{da[1]}-{da[0]}"
sell_dates.append(date)
symbols.append(d.symbol)
type.append(d.type)
net_pl += r.quantity * (r.sell_price - r.buy_price)
db.close()
return render_template("return.html", curruser = username, buy_dates = buy_dates, sell_dates = sell_dates, rets = rets, symbols = symbols, type = type, pchange = pchange, net_pl = int(net_pl))
else:
return "<script>alert('Login first'); window.location = 'https://quantizers.herokuapp.com/login';</script>"
@app.route("/portfolio", methods = ['GET', 'POST'])
def portfolio():
if session.get("logged_in"):
username = session["username"]
invs = db.execute("SELECT * FROM investment WHERE username = :username", {"username": username}).fetchall()
if len(invs) > 0:
# category = []
assets = []
symbols = []
for i in invs:
a = db.execute("SELECT * FROM assets WHERE name = :name", {"name": i.asset}).fetchall()[0]
# category.append(a.type)
if i.asset not in assets:
assets.append(i.asset)
symbols.append(a.symbol)
# d = dict(Counter(category))
# print(category)
investments = {}
for i in invs:
investments[i.asset] = 0
for i in invs:
investments[i.asset] += i.buy_price * i.quantity
print(investments)
trace = go.Pie(
labels = list(investments.keys()),
values = list(investments.values()),
textposition = 'inside',
textinfo = 'percent+label',
hole = .6
)
data = [trace]
pie_chart = json.dumps(data, cls=plotly.utils.PlotlyJSONEncoder)
curr_data = pdr.get_data_yahoo(symbols, start = "2020-01-01")['Adj Close']
# if there's only one symbol then curr_data is a series not dataframe, & series does not have columns attribute
if len(symbols) == 1:
curr_data = pd.DataFrame(curr_data)
stock_graphs = []
# count = 0
for c in curr_data.columns:
trace = go.Scatter(
x = curr_data.index,
y = curr_data[c],
name = c,
fill = 'tozeroy'
)
stock_graphs.append(trace)
db.close()
graphs = json.dumps(stock_graphs, cls=plotly.utils.PlotlyJSONEncoder)
return render_template("portfolio.html", graphs = graphs, curruser = username, investments = 'True', pie_chart = pie_chart)
else:
db.close()
return render_template("portfolio.html", curruser = username, investments = 'False')
else:
return "<script>alert('Login first'); window.location = 'https://quantizers.herokuapp.com/login';</script>"
@app.route("/<category>/<asset>/<show>", methods = ['GET', 'POST'])
def display_asset(category, asset, show):
print(asset)
a = db.execute("SELECT * FROM assets WHERE name = :name", {"name": asset}).fetchall()[0]
#today = str(datetime.datetime.utcnow())[:10]
#month = today[5:7]
if show == 'daily':
last_date = str(datetime.date.today() + relativedelta(months=-3))
elif show == 'monthly':
last_date = str(datetime.date.today() + relativedelta(months=-12))
else:
last_date = str(datetime.date.today() + relativedelta(years=-5))
data = pdr.get_data_yahoo(a.symbol, start = last_date)
curr_price = round(data.Close[-1], 2)
db.close()
trace = go.Candlestick(
x = data.index,
open = data['Open'],
high = data['High'],
low = data['Low'],
close = data['Close']
)
data1 = [trace]
candlestick = json.dumps(data1, cls=plotly.utils.PlotlyJSONEncoder)
trace = go.Scatter(
x = data.index,
y = data['Adj Close'],
fill = 'tozeroy'
)
data1 = [trace]
timeseries = json.dumps(data1, cls=plotly.utils.PlotlyJSONEncoder)
return render_template("stock.html", candlestick = candlestick, timeseries = timeseries, asset = asset, category = category, symbol = a.symbol, curr_price = curr_price, currency = a.currency, show = show.title())
@app.route("/optimize", methods = ['GET', 'POST'])
def take_input_custom():
if session.get("logged_in"):
username = session["username"]
syms = ['ALEMBICLTD.NS', 'CHAMANSEQ.BO', 'DLTNCBL.BO', 'ESTER.NS', 'FAZE3Q.BO', 'FOODSIN.BO', 'GANESHBE.BO', 'INTENTECH.BO', 'JPASSOCIAT.BO', 'NEOINFRA.BO', 'RAMANEWS.NS', 'SALSTEEL.NS', 'SEAMECLTD.BO', 'TATACHEM.NS', 'TIGLOB.BO', 'UFO.NS', 'UNIDT.BO', 'YUKEN.BO']
if request.method == 'POST':
typ = request.form.get("type")
if typ == "custom":
money = request.form.get("cmoney")
stocks = request.form.getlist("stocks")
if len(stocks) >= 5:
stock_str = ""
for s in stocks:
stock_str += s + ", "
print(stock_str)
return redirect(f"https://quantizers.herokuapp.com/optimization/{typ}/{stock_str}/{money}")
else:
return "<script>alert('Select at least 5 stocks'); window.location = window.history.back();</script>"
else:
money = request.form.get("fmoney")
stock_str = ""
for s in syms:
stock_str += s + ", "
print(stock_str)
return redirect(f"https://quantizers.herokuapp.com/optimization/{typ}/{stock_str}/{money}")
else:
stocks = db.execute("SELECT * FROM assets WHERE type = :typ", {'typ': 'small-cap'}).fetchall()
sc = [s.symbol for s in list(stocks)]
sc = sorted(sc)
stocks = db.execute("SELECT * FROM assets WHERE type = :typ", {'typ': 'mid-cap'}).fetchall()
mc = [s.symbol for s in list(stocks)]
mc = sorted(mc)
stocks = db.execute("SELECT * FROM assets WHERE type = :typ", {'typ': 'large-cap'}).fetchall()
lc = [s.symbol for s in list(stocks)]
lc = sorted(lc)
db.close()
return render_template("input.html", curruser = username, type = type, sc = sc, mc = mc, lc = lc, syms = syms)
else:
return "<script>alert('Login first'); window.location = 'https://quantizers.herokuapp.com/login';</script>"
@app.route("/optimization/<type>/<stocks>/<money>", methods = ['GET', 'POST'])
def optimization(type, stocks, money):
if session.get("logged_in"):
username = session["username"]
syms = stocks.split(", ")[:-1]
k = len(syms)
if 'custom' in type:
start = str(datetime.date.today() + relativedelta(years=-5))
#try:
stock_data = pdr.get_data_yahoo(syms, start = start)['Adj Close']
returns = stock_data.pct_change()
#mean_daily_returns = np.array(returns.mean()).reshape(-1, 1)
cov = returns.cov()
stds = np.array(returns.std()).reshape(-1, 1)
product_std = np.dot(stds, stds.T)
cov_mat = np.array(cov)
corr = cov_mat / product_std
ret = (stock_data.iloc[-1]/stock_data.iloc[0] - 1)
annual_return = np.array(ret).reshape(-1, 1)
# max sharpe ratio
risk_free_rate = 0.04
best_wts = maximize_sharpe_ratio(annual_return, risk_free_rate, cov, k)
sharpe_wts = []
sharpe_per_wts = []
for i in range(len(best_wts)):
wt = round(best_wts[i, 0], 2)
sharpe_wts.append(wt)
sharpe_per_wts.append(str(int(wt*100)) + " %")
# minimum portfolio variance
best_wts = minimize_portfolio_variance(corr, stds, annual_return, k)
var_wts = []
var_per_wts = []
for i in range(len(best_wts)):
wt = round(best_wts[i, 0], 2)
var_wts.append(wt)
var_per_wts.append(str(int(wt*100)) + " %")
# monthly, quarterly, half-yearly, yearly
try:
min_port_var = 1.30
max_port_var = 1.40
best_wts = maximize_annual_return(stock_data, stds, corr, annual_return, min_port_var, max_port_var, k)
max_return_wts = []
max_return_per_wts = []
for i in range(len(best_wts)):
wt = round(best_wts[i, 0], 2)
max_return_wts.append(wt)
max_return_per_wts.append(str(int(wt*100)) + " %")
markowitz = 'pass'
except:
max_return_wts = []
max_return_per_wts = []
for i in range(k):
max_return_wts.append(0)
max_return_per_wts.append('NA')
markowitz = 'fail'
today = str(datetime.date.today())
curr_data = pdr.get_data_yahoo(syms, start = today)['Close']
if curr_data.empty:
today = str(datetime.date.today() + relativedelta(days=-1))
curr_data = pdr.get_data_yahoo(syms, start = today)['Close']
if curr_data.empty:
today = str(datetime.date.today() + relativedelta(days=-2))
curr_data = pdr.get_data_yahoo(syms, start = today)['Close']
# python list comprehension
curr_price = []
for col in curr_data.columns:
if str(curr_data.iloc[-1][col]) == 'nan':
curr_price.append(round(curr_data.iloc[-2][col], 2))
else:
curr_price.append(round(curr_data.iloc[-1][col], 2))
#curr_price = [round(price, 2) for price in list(curr_data.iloc[-1])]
sharpe_money = [round(w*int(money), 2) for w in sharpe_wts]
sharpe_units = [int(mon / price) for mon, price in zip(sharpe_money, curr_price)]
var_money = [round(w*int(money), 2) for w in var_wts]
var_units = [int(mon / price) for mon, price in zip(var_money, curr_price)]
max_return_money = [round(w*int(money), 2) for w in max_return_wts]
max_return_units = [int(mon / price) for mon, price in zip(max_return_money, curr_price)]
stock_graphs = []
for c in stock_data.columns:
trace = go.Scatter(
x = stock_data.index,
y = stock_data[c],
name = c,
fill = 'tozeroy'
)
stock_graphs.append(trace)
graphs = json.dumps(stock_graphs, cls=plotly.utils.PlotlyJSONEncoder)
trace = go.Pie(
labels = syms,
values = [int(i.replace(' %', '')) for i in sharpe_per_wts],
textposition = 'inside',
textinfo = 'percent+label',
)
data = [trace]
sharpe_chart = json.dumps(data, cls=plotly.utils.PlotlyJSONEncoder)
trace = go.Pie(
labels = syms,
values = [int(i.replace(' %', '')) for i in var_per_wts],
textposition = 'inside',
textinfo = 'percent+label',
)
data = [trace]
var_chart = json.dumps(data, cls=plotly.utils.PlotlyJSONEncoder)
if markowitz == 'pass':
trace = go.Pie(
labels = syms,
values = [int(i.replace(' %', '')) for i in max_return_per_wts],
textposition = 'inside',
textinfo = 'percent+label',
)
data = [trace]
max_return_chart = json.dumps(data, cls=plotly.utils.PlotlyJSONEncoder)
else:
max_return_chart = ""
return render_template("optimize.html", curruser = username, sharpe_wts = sharpe_per_wts, var_wts = var_per_wts, max_return_wts = max_return_per_wts, sharpe_units = sharpe_units, var_units = var_units, max_return_units = max_return_units, curr_price = curr_price, syms = list(stock_data.columns), markowitz = markowitz, graphs = graphs, sharpe_chart = sharpe_chart, var_chart = var_chart, max_return_chart = max_return_chart)
#except:
# return render_template("error.html")
else:
sharpe_wts = [0.012330895, 0.005640655, 0.051854235, 0.020031155, 0.028242825, 0.007840155, 0.028735295, 0.055140065, 0.003773405, 0.020111765, 0.049593095, 0.013737555, 0.21786576500000002, 0.066526685, 0.079822865, 0.0035624949999999997, 0.06653349500000001, 0.26865759499999997]
sharpe_per_wts = []
for i in range(len(sharpe_wts)):
wt = round(sharpe_wts[i], 2)
sharpe_per_wts.append(str(int(wt*100)) + " %")
var_wts = [0.11722865833333333, 0.03976156833333334, 0.11924990833333333, 0.028351518333333336, 0.06151221833333334, 0.029295838333333334, 0.04914447833333334, 0.06701142833333333, 0.054304638333333335, 0.06907119833333333, 0.03455894833333333, 0.052545578333333336, 0.029733098333333336, 0.031027288333333337, 0.048869148333333334, 0.08272458833333333, 0.03605392833333333, 0.04955596833333334]
var_per_wts = []
for i in range(len(var_wts)):
wt = round(var_wts[i], 2)
var_per_wts.append(str(int(wt*100)) + " %")
max_return_wts = [0.014196323333333333, 0.031347023333333335, 0.020847673333333334, 0.04473478333333333, 0.09538094333333333, 0.009485933333333335, 0.03635488333333334, 0.054638563333333334, 0.009309223333333335, 0.028263193333333336, 0.026650463333333336, 0.015281823333333335, 0.05987788333333334, 0.017066653333333334, 0.10751989333333332, 0.010396533333333334, 0.10789077333333333, 0.31075743333333333]
max_return_per_wts = []
for i in range(len(max_return_wts)):
wt = round(max_return_wts[i], 2)
max_return_per_wts.append(str(int(wt*100)) + " %")
today = str(datetime.date.today())
curr_data = pdr.get_data_yahoo(syms, start = today)['Close']
if curr_data.empty:
today = str(datetime.date.today() + relativedelta(days=-1))
curr_data = pdr.get_data_yahoo(syms, start = today)['Close']
if curr_data.empty:
today = str(datetime.date.today() + relativedelta(days=-2))
curr_data = pdr.get_data_yahoo(syms, start = today)['Close']
curr_data = curr_data[syms]
# python list comprehension
curr_price = []
for col in curr_data.columns:
if str(curr_data.iloc[-1][col]) == 'nan':
try:
if str(curr_data.iloc[-2][col]) != 'nan':
curr_price.append(round(curr_data.iloc[-2][col], 2))
else:
p = pdr.get_data_yahoo(col, start = str(datetime.date.today() + relativedelta(months=-1)))['Close']
#print(p.tail())
curr_price.append(round(p.iloc[-1], 2))
except:
p = pdr.get_data_yahoo(col, start = str(datetime.date.today() + relativedelta(months=-1)))['Close']
#print(p.tail())
curr_price.append(round(p.iloc[-1], 2))
else:
curr_price.append(round(curr_data.iloc[-1][col], 2))
#curr_price = [round(price, 2) for price in list(curr_data.iloc[-1])]
sharpe_money = [round(w*int(money), 2) for w in sharpe_wts]
sharpe_units = [int(mon / price) for mon, price in zip(sharpe_money, curr_price)]
var_money = [round(w*int(money), 2) for w in var_wts]
var_units = [int(mon / price) for mon, price in zip(var_money, curr_price)]
max_return_money = [round(w*int(money), 2) for w in max_return_wts]
max_return_units = [int(mon / price) for mon, price in zip(max_return_money, curr_price)]
start = str(datetime.date.today() + relativedelta(years=-5))
syms_data = pdr.get_data_yahoo(syms, start = start)['Adj Close']
stock_graphs = []
for c in syms_data.columns:
trace = go.Scatter(
x = syms_data.index,
y = syms_data[c],
name = c,
fill = 'tozeroy'
)
stock_graphs.append(trace)
graphs = json.dumps(stock_graphs, cls=plotly.utils.PlotlyJSONEncoder)
trace = go.Pie(
labels = syms,
values = [int(i.replace(' %', '')) for i in sharpe_per_wts],
textposition = 'inside',
textinfo = 'percent+label',
)
data = [trace]
sharpe_chart = json.dumps(data, cls=plotly.utils.PlotlyJSONEncoder)
trace = go.Pie(
labels = syms,
values = [int(i.replace(' %', '')) for i in var_per_wts],
textposition = 'inside',
textinfo = 'percent+label',
)
data = [trace]
var_chart = json.dumps(data, cls=plotly.utils.PlotlyJSONEncoder)
trace = go.Pie(
labels = syms,
values = [int(i.replace(' %', '')) for i in max_return_per_wts],
textposition = 'inside',
textinfo = 'percent+label',
)
data = [trace]
max_return_chart = json.dumps(data, cls=plotly.utils.PlotlyJSONEncoder)
return render_template("optimize.html", curruser = username, sharpe_wts = sharpe_per_wts, var_wts = var_per_wts, max_return_wts = max_return_per_wts, sharpe_units = sharpe_units, var_units = var_units, max_return_units = max_return_units, curr_price = curr_price, syms = syms, markowitz = 'pass', graphs = graphs, sharpe_chart = sharpe_chart, var_chart = var_chart, max_return_chart = max_return_chart)
else:
return "<script>alert('Login first'); window.location = 'https://quantizers.herokuapp.com/login';</script>"
@app.route("/buy_optimized", methods = ['GET', 'POST'])
def buy_optimized():
if request.method == 'POST':
username = session["username"]
symbols = request.args.getlist("symbols")
prices = request.args.getlist("curr_price")
quantities = request.args.getlist("units")
date = str(datetime.datetime.utcnow())
print(symbols)
print(quantities)
for i in range(len(symbols)):
if int(quantities[i]) > 0:
asset = db.execute("SELECT * FROM assets WHERE symbol = :symbol", {"symbol": symbols[i]}).fetchall()[0]
db.execute("INSERT INTO investment (username, asset, buy_price, quantity, date) VALUES (:username, :asset, :buy_price, :quantity, :date)", {"username": username, "asset": asset.name, "buy_price": float(prices[i]), "quantity": int(quantities[i]), "date": date})
print(f"Invested in {asset.name}")
db.commit()
db.close()
return "<script>alert('All investments successful'); window.location = 'https://quantizers.herokuapp.com/';</script>"
else:
return "<script>alert('Method not allowed'); window.location = window.history.back();</script>"
def maximize_sharpe_ratio(annual_return, risk_free_rate, cov, k):
srs = []
portfolio_stds = []
rand_wts = []
portfolio_returns = []
for i in range(0, 20000):
random_weights = np.random.dirichlet(np.ones(k), size = 1).T
rand_wts.append(random_weights)
# portolfio return
portfolio_return = np.sum(annual_return * random_weights)
portfolio_returns.append(portfolio_return)
# portfolio volatility
portfolio_std = np.sqrt(np.dot(random_weights.T, np.dot(cov, random_weights))) * np.sqrt(252)
portfolio_stds.append(portfolio_std)
# sharpe ratio
sharpe_ratio = (portfolio_return - risk_free_rate) / portfolio_std
srs.append(sharpe_ratio)
max_index = srs.index(max(srs))
best_wts = rand_wts[max_index]
#max_sr = srs[max_index]
#portfolio_sd = portfolio_stds[max_index]
#return_for_max_sr = portfolio_returns[max_index]
return best_wts
def minimize_portfolio_variance(corr, stds, annual_return, k):
port_vars = []
rand_wts = []
for i in range(0, 10000):
random_weights = np.random.dirichlet(np.ones(k), size = 1).T
rand_wts.append(random_weights)
random_weighted_sd = stds * random_weights
portfolio_var = np.sqrt(np.sum(np.dot(random_weighted_sd.T, np.dot(corr, random_weighted_sd))))*100
port_vars.append(portfolio_var)
min_index = port_vars.index(min(port_vars))
best_wts = rand_wts[min_index]
#min_var = port_vars[min_index]
#return_for_min_pr = np.sum(annual_return * best_wts)
return best_wts
def maximize_annual_return(e, stds, corr, annual_return, min_port_var, max_port_var, k):
monthly = 0
quarterly = 0
half_yearly = 0
yearly = 0
# monthly
start = "2016-04-01"
for i in range(36):
end = start[:5]
month = int(start[5:7]) + 1
if month <= 9:
end += '0' + str(month) + start[7:]
elif month > 12:
end = str(int(start[:4]) + 1) + '-01-01'
else:
end += str(month) + start[7:]
sliced_data = e.loc[(e.index >= start) & (e.index <= end)]
monthly += (sliced_data.iloc[-1]/sliced_data.iloc[0] - 1)
start = end
# quarterly
start = "2016-04-01"
for i in range(12):
end = start[:5]
month = int(start[5:7]) + 3
if month <= 9:
end += '0' + str(month) + start[7:]
elif month == 13:
end = str(int(start[:4]) + 1) + '-01-01'
else:
end += str(month) + start[7:]
sliced_data = e.loc[(e.index >= start) & (e.index <= end)]
quarterly += (sliced_data.iloc[-1]/sliced_data.iloc[0] - 1)
start = end
# half-yearly
start = "2016-04-01"
for i in range(6):
end = start[:5]
month = int(start[5:7]) + 6
if month == 16:
end = str(int(start[:4]) + 1) + '-04-01'
else:
end += str(month) + start[7:]
sliced_data = e.loc[(e.index >= start) & (e.index <= end)]
half_yearly += (sliced_data.iloc[-1]/sliced_data.iloc[0] - 1)
start = end
# yearly
start = "2016-04-01"
for i in range(3):
end = str(int(start[:4]) + 1) + start[4:]
sliced_data = e.loc[(e.index >= start) & (e.index <= end)]
yearly += (sliced_data.iloc[-1]/sliced_data.iloc[0] - 1)
start = end
avgs = [list(monthly*100/36), list(quarterly*100/12), list(half_yearly*100/6), list(yearly*100/3)]
best_wts_for_avgs = []
annual_returns_for_avgs = []
port_vars_for_avgs = []
for avg in avgs:
port_vars = []
returns = []
rand_wts = []
for i in range(0, 10000):
random_weights = np.random.dirichlet(np.ones(k), size = 1).T
random_weighted_sd = stds * random_weights
portfolio_var = np.sqrt(np.sum(np.dot(random_weighted_sd.T, np.dot(corr, random_weighted_sd))))*100
if (portfolio_var >= min_port_var) & (portfolio_var <= max_port_var):
port_vars.append(portfolio_var)
rand_wts.append(random_weights)
total_return = np.sum(avg * random_weights.T)
returns.append(total_return)
max_index = returns.index(max(returns))
max_return = returns[max_index]
best_wts = rand_wts[max_index]
#min_var = port_vars[max_index]
best_wts_for_avgs.append(best_wts)
#port_vars_for_avgs.append(min_var)
annual_ret = np.sum(annual_return * best_wts)
annual_returns_for_avgs.append(annual_ret)
max_index = annual_returns_for_avgs.index(max(annual_returns_for_avgs))
bestest_wts = best_wts_for_avgs[max_index]
#maximum_return = annual_returns_for_avgs[max_index]
#miniest_var = port_vars_for_avgs[max_index]
return bestest_wts