-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmodels.py
executable file
·596 lines (507 loc) · 26.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
import tensorflow as tf
import sklearn
import scipy.sparse
import numpy as np
import os, time, collections, shutil
import graph
# Common methods for all models
class base_model(object):
def __init__(self):
self.regularizers = []
# High-level interface which runs the constructed computational graph.
def predict(self, data, recs, labels=None, sess=None):
loss = 0
size = data.shape[0]
predictions = np.empty(size)
sess = self._get_session(sess)
for begin in range(0, size, self.batch_size):
end = begin + self.batch_size
end = min([end, size])
batch_data = np.zeros((self.batch_size, data.shape[1], data.shape[2], 2))
batch_recs = np.zeros((self.batch_size, recs.shape[1], recs.shape[2], 2))
tmp_data = data[begin:end, :, :, :]
tmp_recs = recs[begin:end, :, :, :]
if type(tmp_data) is not np.ndarray:
tmp_data = tmp_data.toarray() # convert sparse matrices
tmp_recs = tmp_recs.toarray()
batch_data[:end-begin] = tmp_data
batch_recs[:end-begin] = tmp_recs
feed_dict = {self.ph_data: batch_data, self.ph_recs: batch_recs, self.ph_dropout: 1}
# Compute loss if labels are given.
if labels is not None:
batch_labels = np.zeros(self.batch_size)
batch_labels[:end-begin] = labels[begin:end]
feed_dict[self.ph_labels] = batch_labels
batch_pred, batch_loss = sess.run([self.op_prediction, self.op_loss], feed_dict)
loss += batch_loss
else:
batch_pred = sess.run(self.op_prediction, feed_dict)
predictions[begin:end] = batch_pred[:end-begin]
represent[begin:end, :] = batch_rep[:end-begin, :]
prob[begin:end, :] = batch_prob[:end-begin, :]
if labels is not None:
return predictions, loss * self.batch_size / size
else:
return predictions
def evaluate(self, data, recs, labels, sess=None):
"""
Runs one evaluation against the full epoch of data.
Return the precision and the number of correct predictions.
Batch evaluation saves memory and enables this to run on smaller GPUs.
sess: the session in which the model has been trained.
op: the Tensor that returns the number of correct predictions.
data: size N x M
N: number of signals (samples)
M: number of vertices (features)
recs: size N x Q
N: number of signals (samples)
Q: number of timestamps (sequence length)
labels: size N
N: number of signals (samples)
"""
t_process, t_wall = time.process_time(), time.time()
predictions, loss = self.predict(data, recs, labels, sess)
fpr, tpr, _ = sklearn.metrics.roc_curve(labels, predictions)
auc = 100 * sklearn.metrics.auc(fpr, tpr)
ncorrects = sum(predictions == labels)
accuracy = 100 * sklearn.metrics.accuracy_score(labels, predictions)
string = 'auc: {:.2f}, accuracy: {:.2f} ({:d} / {:d}), loss: {:.2e}'.format(auc, accuracy, ncorrects, len(labels), loss)
if sess is None:
string += '\ntime: {:.0f}s (wall {:.0f}s)'.format(time.process_time()-t_process, time.time()-t_wall)
# return string, auc, loss, predictions
return string, auc, accuracy, loss, predictions
def fit(self, train_data, train_recs, train_labels, val_data, val_recs, val_labels):
t_process, t_wall = time.process_time(), time.time()
sess = tf.Session(graph=self.graph)
shutil.rmtree(self._get_path('summaries'), ignore_errors=True)
writer = tf.summary.FileWriter(self._get_path('summaries'), self.graph)
shutil.rmtree(self._get_path('checkpoints'), ignore_errors=True)
os.makedirs(self._get_path('checkpoints'))
path = os.path.join(self._get_path('checkpoints'), 'model')
sess.run(self.op_init)
# Training.
count = 0
bad_counter = 0
accuracies = []
aucs = []
losses = []
indices = collections.deque()
num_steps = int(self.num_epochs * train_data.shape[0] / self.batch_size)
estop = False # early stop
for step in range(1, num_steps+1):
# Be sure to have used all the samples before using one a second time.
if len(indices) < self.batch_size:
indices.extend(np.random.permutation(train_data.shape[0]))
idx = [indices.popleft() for i in range(self.batch_size)]
count += len(idx)
batch_data, batch_recs, batch_labels = train_data[idx, :, :, :], train_recs[idx, :, :, :], train_labels[idx]
if type(batch_data) is not np.ndarray:
batch_data = batch_data.toarray() # convert sparse matrices
batch_recs = batch_recs.toarray()
feed_dict = {self.ph_data: batch_data, self.ph_recs: batch_recs, self.ph_labels: batch_labels, self.ph_dropout: self.dropout}
learning_rate, loss_average = sess.run([self.op_train, self.op_loss_average], feed_dict)
# Periodical evaluation of the model.
if step % self.eval_frequency == 0 or step == num_steps:
print ('Seen samples: %d' % count)
epoch = step * self.batch_size / train_data.shape[0]
print('step {} / {} (epoch {:.2f} / {}):'.format(step, num_steps, epoch, self.num_epochs))
print(' learning_rate = {:.2e}, loss_average = {:.2e}'.format(learning_rate, loss_average))
string, auc, accuracy, loss, predictions = self.evaluate(val_data, val_recs, val_labels, sess)
aucs.append(auc)
accuracies.append(accuracy)
losses.append(loss)
print(' validation {}'.format(string))
print(predictions.tolist()[:50])
print(' time: {:.0f}s (wall {:.0f}s)'.format(time.process_time()-t_process, time.time()-t_wall))
# Summaries for TensorBoard.
summary = tf.Summary()
summary.ParseFromString(sess.run(self.op_summary, feed_dict))
summary.value.add(tag='validataion/auc', simple_value=auc)
summary.value.add(tag='validation/loss', simple_value=loss)
writer.add_summary(summary, step)
# Save model parameters (for evaluation).
self.op_saver.save(sess, path, global_step=step)
if len(aucs) > (self.patience+5) and auc > np.array(aucs).max():
bad_counter = 0
if len(aucs) > (self.patience+5) and auc <= np.array(aucs)[:-self.patience].max():
bad_counter += 1
if bad_counter > self.patience:
print('Early Stop!')
estop = True
break
if estop:
break
print('validation accuracy: peak = {:.2f}, mean = {:.2f}'.format(max(accuracies), np.mean(accuracies[-10:])))
print('validation auc: peak = {:.2f}, mean = {:.2f}'.format(max(aucs), np.mean(aucs[-10:])))
writer.close()
sess.close()
t_step = (time.time() - t_wall) / num_steps
return aucs, accuracies, losses, t_step
def get_var(self, name):
sess = self._get_session()
var = self.graph.get_tensor_by_name(name + ':0')
val = sess.run(var)
sess.close()
return val
# Methods to construct the computational graph with memory network.
def build_gcn_graph_mem(self, M_0):
"""Build the computational graph with memory network of the model."""
self.graph = tf.Graph()
with self.graph.as_default():
# Inputs.
with tf.name_scope('inputs'):
self.ph_data = tf.placeholder(tf.float32, (self.batch_size, M_0, self.fin, 2), 'data')
self.ph_recs = tf.placeholder(tf.int32, (self.batch_size, self.mem_size, self.code_size, 2), 'recs') # clinical records
self.ph_labels = tf.placeholder(tf.int32, (self.batch_size), 'labels')
self.ph_dropout = tf.placeholder(tf.float32, (), 'dropout')
# Model.
op_logits = self.inference(self.ph_data, self.ph_recs, self.ph_dropout)
self.op_loss, self.op_loss_average = self.loss(op_logits, self.ph_labels, self.regularization)
# self.op_loss, self.op_loss_average, self.op_var_loss, self.op_mean_loss, self.op_same_var, self.op_diff_var = self.loss(op_logits, self.ph_labels, self.regularization)
self.op_train = self.training(self.op_loss, self.learning_rate,
self.decay_steps, self.decay_rate, self.momentum)
self.op_prediction = self.prediction(op_logits)
# Initialize variables, i.e. weights and biases.
self.op_init = tf.global_variables_initializer()
# Summaries for TensorBoard and Save for model parameters.
self.op_summary = tf.summary.merge_all()
self.op_saver = tf.train.Saver(max_to_keep=5)
self.graph.finalize()
def inference(self, data, recs, dropout):
"""
It builds the model, i.e. the computational graph, as far as
is required for running the network forward to make predictions,
i.e. return logits given raw data.
data: size N x M
N: number of signals (samples)
M: number of vertices (features)
training: we may want to discriminate the two, e.g. for dropout.
True: the model is built for training.
False: the model is built for evaluation.
"""
# TODO: optimizations for sparse data
logits, represent, prob = self._inference(data, recs, dropout)
return logits, represent, prob
def probabilities(self, logits):
"""Return the probability of a sample to belong to each class."""
with tf.name_scope('probabilities'):
probabilities = tf.nn.softmax(logits)
return probabilities
def prediction(self, logits):
"""Return the predicted classes."""
with tf.name_scope('prediction'):
prediction = tf.argmax(logits, axis=1)
return prediction
def loss(self, logits, labels, regularization):
"""Adds to the inference model the layers required to generate loss."""
with tf.name_scope('loss'):
with tf.name_scope('cross_entropy'):
labels = tf.to_int64(labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels)
cross_entropy = tf.reduce_mean(cross_entropy)
with tf.name_scope('regularization'):
regularization *= tf.add_n(self.regularizers)
loss = cross_entropy + regularization
# Summaries for TensorBoard.
tf.summary.scalar('loss/cross_entropy', cross_entropy)
tf.summary.scalar('loss/regularization', regularization)
tf.summary.scalar('loss/total', loss)
with tf.name_scope('averages'):
averages = tf.train.ExponentialMovingAverage(0.9)
op_averages = averages.apply([cross_entropy, regularization, loss])
tf.summary.scalar('loss/avg/cross_entropy', averages.average(cross_entropy))
tf.summary.scalar('loss/avg/regularization', averages.average(regularization))
tf.summary.scalar('loss/avg/total', averages.average(loss))
with tf.control_dependencies([op_averages]):
loss_average = tf.identity(averages.average(loss), name='control')
return loss, loss_average
def training(self, loss, learning_rate, decay_steps, decay_rate=0.95, momentum=0.9):
"""Adds to the loss model the Ops required to generate and apply gradients."""
with tf.name_scope('training'):
# Learning rate.
global_step = tf.Variable(0, name='global_step', trainable=False)
if decay_rate != 1:
learning_rate = tf.train.exponential_decay(
learning_rate, global_step, decay_steps, decay_rate, staircase=True)
tf.summary.scalar('learning_rate', learning_rate)
# Optimizer.
if momentum == 0:
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
else:
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)
grads = optimizer.compute_gradients(loss)
op_gradients = optimizer.apply_gradients(grads, global_step=global_step)
# Histograms.
for grad, var in grads:
if grad is None:
print('warning: {} has no gradient'.format(var.op.name))
else:
tf.summary.histogram(var.op.name + '/gradients', grad)
# The op return the learning rate.
with tf.control_dependencies([op_gradients]):
op_train = tf.identity(learning_rate, name='control')
return op_train
# Helper methods.
def _get_path(self, folder):
path = os.path.dirname(os.path.realpath(__file__))
return os.path.join(path, '..', folder, self.dir_name)
def _get_session(self, sess=None):
"""Restore parameters if no session given."""
if sess is None:
sess = tf.Session(graph=self.graph)
filename = tf.train.latest_checkpoint(self._get_path('checkpoints'))
self.op_saver.restore(sess, filename)
return sess
def _weight_variable(self, shape, regularization=True):
initial = tf.truncated_normal_initializer(0, 0.1)
var = tf.get_variable('weights', shape, tf.float32, initializer=initial)
if regularization:
self.regularizers.append(tf.nn.l2_loss(var))
tf.summary.histogram(var.op.name, var)
return var
def _bias_variable(self, shape, regularization=True):
initial = tf.constant_initializer(0.1)
var = tf.get_variable('bias', shape, tf.float32, initializer=initial)
if regularization:
self.regularizers.append(tf.nn.l2_loss(var))
tf.summary.histogram(var.op.name, var)
return var
def _conv2d(self, x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
class siamese_cgcnn_mem(base_model):
"""
Graph CNN which uses the Chebyshev approximation.
The following are hyper-parameters of graph convolutional layers.
They are lists, which length is equal to the number of gconv layers.
F: Number of features.
K: List of polynomial orders, i.e. filter sizes or number of hopes.
Q: Number of sequences.
p: Pooling size.
Should be 1 (no pooling) or a power of 2 (reduction by 2 at each coarser level).
Beware to have coarsened enough.
L: List of Graph Laplacians. Size M x M. One per coarsening level.
The following are hyper-parameters of fully connected layers.
They are lists, which length is equal to the number of fc layers.
M: Number of features per sample, i.e. number of hidden neurons.
The last layer is the softmax, i.e. M[-1] is the number of classes.
The following are choices of implementation for various blocks.
filter: filtering operation, e.g. chebyshev5, lanczos2 etc.
brelu: bias and relu, e.g. b1relu or b2relu.
pool: pooling, e.g. mpool1.
Training parameters:
num_epochs: Number of training epochs.
learning_rate: Initial learning rate.
decay_rate: Base of exponential decay. No decay with 1.
decay_steps: Number of steps after which the learning rate decays.
momentum: Momentum. 0 indicates no momentum.
Regularization parameters:
regularization: L2 regularizations of weights and biases.
dropout: Dropout (fc layers): probability to keep hidden neurons. No dropout with 1.
batch_size: Batch size. Must divide evenly into the dataset sizes.
eval_frequency: Number of steps between evaluations.
Directories:
dir_name: Name for directories (summaries and model parameters).
"""
def __init__(self, L, fdim, K, p, M, fin, n_words, mem_size, code_size, edim, nhops, distance, method='GCN', filter='chebyshev5', brelu='b1relu', pool='mpool1',
num_epochs=20, learning_rate=0.1, decay_rate=0.95, decay_steps=None, momentum=0.9,
regularization=0, dropout=0, batch_size=100, eval_frequency=200, patience=10, init_std=0.05,
dir_name=''):
super().__init__()
# Verify the consistency
assert fdim == edim
# Keep the useful Laplacians only. May be zero.
M_0 = L[0].shape[0]
j = 0
self.L = []
for pp in p:
self.L.append(L[j])
j += int(np.log2(pp)) if pp > 1 else 0
L = self.L
# Store attributes and bind operations.
self.distance = distance
self.L, self.fdim, self.K, self.p, self.M, self.fin = L, fdim, K, p, M, fin # gcn hyper-parameters
self.n_words, self.mem_size, self.code_size, self.edim = n_words, mem_size, code_size, edim # memory hyper-parameters
self.n_nodes = M_0
self.num_epochs, self.learning_rate, self.patience = num_epochs, learning_rate, patience
self.decay_rate, self.decay_steps, self.momentum = decay_rate, decay_steps, momentum
self.regularization, self.dropout = regularization, dropout
self.batch_size, self.eval_frequency = batch_size, eval_frequency
self.dir_name = dir_name
self.method = method
self.filter = getattr(self, filter)
self.brelu = getattr(self, brelu)
self.pool = getattr(self, pool)
self.init_std = init_std
self.nhops = nhops
# Build the computational graph with memory network.
self.build_gcn_graph_mem(M_0)
def build_var(self):
self.A = tf.Variable(tf.random_normal([self.n_words, self.edim], stddev=self.init_std))
self.B = tf.Variable(tf.random_normal([self.n_words, self.edim], stddev=self.init_std))
self.C = tf.Variable(tf.random_normal([self.edim, self.edim], stddev=self.init_std))
def chebyshev5(self, x, L, Fout, K):
print ('chebnet')
N, M, Fin = x.get_shape()
N, M, Fin = int(N), int(M), int(Fin)
# Rescale Laplacian and store as a TF sparse tensor. Copy to not modify the shared L.
L = scipy.sparse.csr_matrix(L)
L = graph.rescale_L(L, lmax=2)
L = L.tocoo()
indices = np.column_stack((L.row, L.col))
L = tf.SparseTensor(indices, L.data, L.shape)
L = tf.sparse_reorder(L)
# Transform to Chebyshev basis
x0 = tf.transpose(x, perm=[1, 2, 0]) # M x Fin x N
x0 = tf.reshape(x0, [M, Fin*N]) # M x Fin*N
x = tf.expand_dims(x0, 0) # 1 x M x Fin*N
def concat(x, x_):
x_ = tf.expand_dims(x_, 0) # 1 x M x Fin*N
return tf.concat([x, x_], axis=0) # K x M x Fin*N
if K > 1:
x1 = tf.sparse_tensor_dense_matmul(L, x0)
x = concat(x, x1)
for k in range(2, K):
x2 = 2 * tf.sparse_tensor_dense_matmul(L, x1) - x0 # M x Fin*N
x = concat(x, x2)
x0, x1 = x1, x2
x = tf.reshape(x, [K, M, Fin, N]) # K x M x Fin x N
x = tf.transpose(x, perm=[3,1,2,0]) # N x M x Fin x K
x = tf.reshape(x, [N*M, Fin*K]) # N*M x Fin*K
# Filter: Fin*Fout filters of order K, i.e. one filterbank per feature pair.
W = self._weight_variable([Fin*K, Fout], regularization=False)
x = tf.matmul(x, W) # N*M x Fout
return tf.reshape(x, [N, M, Fout]) # N x M x Fout
def b1relu(self, x):
"""Bias and ReLU. One bias per filter."""
N, M, F = x.get_shape()
b = self._bias_variable([1, 1, int(F)], regularization=False)
return tf.nn.relu(x + b)
def b2relu(self, x):
"""Bias and ReLU. One bias per vertex per filter."""
N, M, F = x.get_shape()
b = self._bias_variable([1, int(M), int(F)], regularization=False)
return tf.nn.relu(x + b)
def mpool1(self, x, p):
"""Max pooling of size p. Should be a power of 2."""
if p > 1:
x = tf.expand_dims(x, 3) # N x M x F x 1
x = tf.nn.max_pool(x, ksize=[1,p,1,1], strides=[1,p,1,1], padding='SAME')
#tf.maximum
return tf.squeeze(x, [3]) # N x M/p x F
else:
return x
def apool1(self, x, p):
"""Average pooling of size p. Should be a power of 2."""
if p > 1:
x = tf.expand_dims(x, 3) # N x M x F x 1
x = tf.nn.avg_pool(x, ksize=[1,p,1,1], strides=[1,p,1,1], padding='SAME')
return tf.squeeze(x, [3]) # N x M/p x F
else:
return x
def fc(self, x, Mout, relu=True):
"""Fully connected layer with Mout features."""
N, Min = x.get_shape()
W = self._weight_variable([int(Min), Mout], regularization=True)
b = self._bias_variable([Mout], regularization=True)
x = tf.matmul(x, W) + b
return tf.nn.relu(x) if relu else x
def _inference_gcn(self, x_0, x_1, dropout, ihop):
with tf.variable_scope("siamese") as scope:
with tf.variable_scope('conv1{}'.format(ihop+1)):
with tf.name_scope('filter'):
x_0 = self.filter(x_0, self.L[0], self.fdim, self.K)
with tf.name_scope('bias_relu'):
x_0 = self.brelu(x_0)
with tf.name_scope('pooling'):
x_0 = self.pool(x_0, self.p[0])
print (x_0.get_shape())
with tf.variable_scope('conv2{}'.format(ihop+1)):
with tf.name_scope('filter'):
x_1 = self.filter(x_1, self.L[0], self.fdim, self.K)
with tf.name_scope('bias_relu'):
x_1 = self.brelu(x_1)
with tf.name_scope('pooling'):
x_1 = self.pool(x_1, self.p[0])
print (x_1.get_shape())
return x_0, x_1
def build_memory(self, recs_0, recs_1):
with tf.variable_scope("memory"):
Ain_0 = tf.nn.embedding_lookup(self.A, recs_0) # recs_0, recs_1 size is (batch_size, mem_size, n_words)
Ain_0 = tf.reduce_sum(Ain_0, 2)
Ain_1 = tf.nn.embedding_lookup(self.A, recs_1)
Ain_1 = tf.reduce_sum(Ain_1, 2)
Bin_0 = tf.nn.embedding_lookup(self.B, recs_0)
Bin_0 = tf.reduce_sum(Bin_0, 2)
Bin_1 = tf.nn.embedding_lookup(self.B, recs_1)
Bin_1 = tf.reduce_sum(Bin_1, 2)
return Ain_0, Ain_1, Bin_0, Bin_1
def _inference_memory(self, y_0, y_1, Ain_0, Ain_1, Bin_0, Bin_1):
# compute weights for attention
hid3dim_0 = tf.reshape(y_0, [-1, self.n_nodes, self.edim])
Aout_0 = tf.matmul(hid3dim_0, Ain_0, adjoint_b=True)
Aout3dim_0 = tf.reshape(Aout_0, [-1, self.n_nodes, self.mem_size])
P_0 = tf.nn.softmax(Aout3dim_0) # batch_size x n_nodes x mem_size
hid3dim_1 = tf.reshape(y_1, [-1, self.n_nodes, self.edim])
Aout_1 = tf.matmul(hid3dim_1, Ain_1, adjoint_b=True)
Aout3dim_1 = tf.reshape(Aout_1, [-1, self.n_nodes, self.mem_size])
P_1 = tf.nn.softmax(Aout3dim_1)
# output memory
probs3dim_0 = tf.reshape(P_0, [-1, self.n_nodes, self.mem_size])
Bout_0 = tf.matmul(probs3dim_0, Bin_0) # Bout_0 size is (batch_size, n_nodes, edim)
Bout3dim_0 = tf.reshape(Bout_0, [-1, self.n_nodes, self.edim])
probs3dim_1 = tf.reshape(P_1, [-1, self.n_nodes, self.mem_size])
Bout_1 = tf.matmul(probs3dim_1, Bin_1) # Bout_0 size is (batch_size, n_nodes, edim)
Bout3dim_1 = tf.reshape(Bout_1, [-1, self.n_nodes, self.edim])
# compute the output
batch, n_nodes, edim = y_0.get_shape() # (batch, n_nodes, edim)
y_0 = tf.reshape(y_0, [int(batch * n_nodes), self.edim])
Cout_0 = tf.matmul(y_0, self.C)
Cout_0 = tf.reshape(Cout_0, [-1, self.n_nodes, self.edim])
Dout_0 = tf.add(Cout_0, Bout3dim_0)
batch, n_nodes, edim = y_1.get_shape()
y_1 = tf.reshape(y_1, [int(batch * n_nodes), self.edim])
Cout_1 = tf.matmul(y_1, self.C)
Cout_1 = tf.reshape(Cout_1, [-1, self.n_nodes, self.edim])
Dout_1 = tf.add(Cout_1, Bout3dim_1)
return Dout_0, Dout_1
def _inference_distance(self, u_0, u_1):
# Dot product layer
n, m, f = u_0.get_shape()
u_0 = tf.reshape(u_0, [int(n * m), int(f)])
u_1 = tf.reshape(u_1, [int(n * m), int(f)])
u_0 = tf.nn.l2_normalize(u_0, dim=1, epsilon=1e-12, name=None)
u_1 = tf.nn.l2_normalize(u_1, dim=1, epsilon=1e-12, name=None)
if self.distance == 'in':
u_ = tf.multiply(u_0, u_1)
u_ = tf.reduce_sum(u_, 1, keep_dims=True)
u_ = tf.reshape(u_, [int(n), int(m), 1])
elif self.distance == 'bi':
with tf.variable_scope("bilinear"):
W = tf.get_variable("W", shape=[f, f], initializer=tf.contrib.layers.xavier_initializer())
self.regularizers.append(tf.nn.l2_loss(W))
transform_left = tf.matmul(u_0, W)
u_ = tf.reduce_sum(tf.multiply(transform_left, u_1), 1, keep_dims=True)
u_ = tf.reshape(u_, [int(n), int(m), 1])
return u_
def _inference(self, x, recs, dropout):
self.build_var()
u_0 = tf.squeeze(x[:, :, :, 0])
u_1 = tf.squeeze(x[:, :, :, 1])
recs_0 = tf.squeeze(recs[:, :, :, 0])
recs_1 = tf.squeeze(recs[:, :, :, 1])
Ain_0, Ain_1, Bin_0, Bin_1 = self.build_memory(recs_0, recs_1)
for ihop in range(self.nhops):
y_0, y_1 = self._inference_gcn(u_0, u_1, dropout, ihop) # y_0, y_1 size is (batch_size, n_nodes, fdim)
u_0, u_1 = self._inference_memory(y_0, y_1, Ain_0, Ain_1, Bin_0, Bin_1) # u_0, u_1 size is (batch_size, n_nodes, fdim)
u_ = self._inference_distance(u_0, u_1)
# Fully connected hidden layers.
n, m, f = u_.get_shape() # f = 1 here
u_ = tf.reshape(u_, [int(n), int(m*f)]) # n x m
for i, M in enumerate(self.M[:-1]):
with tf.variable_scope('fc{}'.format(i+1)):
u_ = self.fc(u_, M)
u_ = tf.nn.dropout(u_, dropout)
# Logits linear layer, i.e. softmax without normalization.
with tf.variable_scope('logits'):
prob = self.fc(u_, self.M[-1], relu=False)
return prob