forked from libvirt/libvirt
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHACKING
1008 lines (717 loc) · 34.4 KB
/
HACKING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
-*- buffer-read-only: t -*- vi: set ro:
DO NOT EDIT THIS FILE! IT IS GENERATED AUTOMATICALLY
from docs/hacking.html.in!
Contributor guidelines
======================
General tips for contributing patches
=====================================
(1) Discuss any large changes on the mailing list first. Post patches early and
listen to feedback.
(2) Official upstream repository is kept in git ("git://libvirt.org/libvirt.git")
and is browsable along with other libvirt-related repositories (e.g.
libvirt-python) online <http://libvirt.org/git/>.
(3) Patches to translations are maintained via the zanata project
<https://fedora.zanata.org/>. If you want to fix a translation in a .po file,
join the appropriate language team. The libvirt release process automatically
pulls the latest version of each translation file from zanata.
(4) Post patches in unified diff format, with git rename detection enabled. You
need a one-time setup of:
git config diff.renames true
After that, a command similar to this should work:
diff -urp libvirt.orig/ libvirt.modified/ > libvirt-myfeature.patch
or:
git diff > libvirt-myfeature.patch
Also, for code motion patches, you may find that "git diff --patience"
provides an easier-to-read patch. However, the usual workflow of libvirt
developer is:
git checkout master
git pull
git checkout -t origin -b workbranch
Hack, committing any changes along the way
More hints on compiling can be found here <compiling.html>. When you want to
post your patches:
git pull --rebase
(fix any conflicts)
git send-email --cover-letter --no-chain-reply-to --annotate \
[email protected] master
(Note that the "git send-email" subcommand may not be in the main git package
and using it may require installation of a separate package, for example the
"git-email" package in Fedora.) For a single patch you can omit
"--cover-letter", but a series of two or more patches needs a cover letter. If
you get tired of typing "[email protected]" designation you can set
it in git config:
git config sendemail.to [email protected]
Please follow this as close as you can, especially the rebase and git
send-email part, as it makes life easier for other developers to review your
patch set. One should avoid sending patches as attachments, but rather send
them in email body along with commit message. If a developer is sending
another version of the patch (e.g. to address review comments), they are
advised to note differences to previous versions after the "---" line in the
patch so that it helps reviewers but doesn't become part of git history.
Moreover, such patch needs to be prefixed correctly with
"--subject-prefix=PATCHv2" appended to "git send-email" (substitute "v2" with
the correct version if needed though).
(5) In your commit message, make the summary line reasonably short (60 characters
is typical), followed by a blank line, followed by any longer description of
why your patch makes sense. If the patch fixes a regression, and you know what
commit introduced the problem, mentioning that is useful. If the patch
resolves a bugzilla report, mentioning the URL of the bug number is useful;
but also summarize the issue rather than making all readers follow the link.
You can use 'git shortlog -30' to get an idea of typical summary lines.
Libvirt does not currently attach any meaning to Signed-off-by: lines, so it
is up to you if you want to include or omit them in the commit message.
(6) Split large changes into a series of smaller patches, self-contained if
possible, with an explanation of each patch and an explanation of how the
sequence of patches fits together. Moreover, please keep in mind that it's
required to be able to compile cleanly (*including* "make check" and "make
syntax-check") after each patch. A feature does not have to work until the end
of a series, but intermediate patches must compile and not cause test-suite
failures (this is to preserve the usefulness of "git bisect", among other
things).
(7) Make sure your patches apply against libvirt GIT. Developers only follow GIT
and don't care much about released versions.
(8) Run the automated tests on your code before submitting any changes. In
particular, configure with compile warnings set to -Werror. This is done
automatically for a git checkout; from a tarball, use:
./configure --enable-werror
and run the tests:
make check
make syntax-check
make -C tests valgrind
Valgrind <http://valgrind.org/> is a test that checks for memory management
issues, such as leaks or use of uninitialized variables.
Some tests are skipped by default in a development environment, based on the
time they take in comparison to the likelihood that those tests will turn up
problems during incremental builds. These tests default to being run when
building from a tarball or with the configure option --enable-expensive-tests;
you can also force a one-time toggle of these tests by setting
VIR_TEST_EXPENSIVE to 0 or 1 at make time, as in:
make check VIR_TEST_EXPENSIVE=1
If you encounter any failing tests, the VIR_TEST_DEBUG environment variable
may provide extra information to debug the failures. Larger values of
VIR_TEST_DEBUG may provide larger amounts of information:
VIR_TEST_DEBUG=1 make check (or)
VIR_TEST_DEBUG=2 make check
When debugging failures during development, it is possible to focus in on just
the failing subtests by using TESTS and VIR_TEST_RANGE:
make check VIR_TEST_DEBUG=1 VIR_TEST_RANGE=3-5 TESTS=qemuxml2argvtest
Also, individual tests can be run from inside the "tests/" directory, like:
./qemuxml2xmltest
If you are adding new test cases, or making changes that alter existing test
output, you can use the environment variable VIR_TEST_REGENERATE_OUTPUT to
quickly update the saved test data. Of course you still need to review the
changes VERY CAREFULLY to ensure they are correct.
VIR_TEST_REGENERATE_OUTPUT=1 ./qemuxml2argvtest
There is also a "./run" script at the top level, to make it easier to run
programs that have not yet been installed, as well as to wrap invocations of
various tests under gdb or Valgrind.
(9) The Valgrind test should produce similar output to "make check". If the output
has traces within libvirt API's, then investigation is required in order to
determine the cause of the issue. Output such as the following indicates some
sort of leak:
==5414== 4 bytes in 1 blocks are definitely lost in loss record 3 of 89
==5414== at 0x4A0881C: malloc (vg_replace_malloc.c:270)
==5414== by 0x34DE0AAB85: xmlStrndup (in /usr/lib64/libxml2.so.2.7.8)
==5414== by 0x4CC97A6: virDomainVideoDefParseXML (domain_conf.c:7410)
==5414== by 0x4CD581D: virDomainDefParseXML (domain_conf.c:10188)
==5414== by 0x4CD8C73: virDomainDefParseNode (domain_conf.c:10640)
==5414== by 0x4CD8DDB: virDomainDefParse (domain_conf.c:10590)
==5414== by 0x41CB1D: testCompareXMLToArgvHelper (qemuxml2argvtest.c:100)
==5414== by 0x41E20F: virtTestRun (testutils.c:161)
==5414== by 0x41C7CB: mymain (qemuxml2argvtest.c:866)
==5414== by 0x41E84A: virtTestMain (testutils.c:723)
==5414== by 0x34D9021734: (below main) (in /usr/lib64/libc-2.15.so)
In this example, the "virDomainDefParseXML()" had an error path where the
"virDomainVideoDefPtr video" pointer was not properly disposed. By simply
adding a "virDomainVideoDefFree(video);" in the error path, the issue was
resolved.
Another common mistake is calling a printing function, such as "VIR_DEBUG()"
without initializing a variable to be printed. The following example involved
a call which could return an error, but not set variables passed by reference
to the call. The solution was to initialize the variables prior to the call.
==4749== Use of uninitialised value of size 8
==4749== at 0x34D904650B: _itoa_word (in /usr/lib64/libc-2.15.so)
==4749== by 0x34D9049118: vfprintf (in /usr/lib64/libc-2.15.so)
==4749== by 0x34D9108F60: __vasprintf_chk (in /usr/lib64/libc-2.15.so)
==4749== by 0x4CAEEF7: virVasprintf (stdio2.h:199)
==4749== by 0x4C8A55E: virLogVMessage (virlog.c:814)
==4749== by 0x4C8AA96: virLogMessage (virlog.c:751)
==4749== by 0x4DA0056: virNetTLSContextCheckCertKeyUsage (virnettlscontext.c:225)
==4749== by 0x4DA06DB: virNetTLSContextCheckCert (virnettlscontext.c:439)
==4749== by 0x4DA1620: virNetTLSContextNew (virnettlscontext.c:562)
==4749== by 0x4DA26FC: virNetTLSContextNewServer (virnettlscontext.c:927)
==4749== by 0x409C39: testTLSContextInit (virnettlscontexttest.c:467)
==4749== by 0x40AB8F: virtTestRun (testutils.c:161)
Valgrind will also find some false positives or code paths which cannot be
resolved by making changes to the libvirt code. For these paths, it is
possible to add a filter to avoid the errors. For example:
==4643== 7 bytes in 1 blocks are possibly lost in loss record 4 of 20
==4643== at 0x4A0881C: malloc (vg_replace_malloc.c:270)
==4643== by 0x34D90853F1: strdup (in /usr/lib64/libc-2.15.so)
==4643== by 0x34EEC2C08A: ??? (in /usr/lib64/libnl.so.1.1)
==4643== by 0x34EEC15B81: ??? (in /usr/lib64/libnl.so.1.1)
==4643== by 0x34D8C0EE15: call_init.part.0 (in /usr/lib64/ld-2.15.so)
==4643== by 0x34D8C0EECF: _dl_init (in /usr/lib64/ld-2.15.so)
==4643== by 0x34D8C01569: ??? (in /usr/lib64/ld-2.15.so)
In this instance, it is acceptable to modify the "tests/.valgrind.supp" file
in order to add a suppression filter. The filter should be unique enough to
not suppress real leaks, but it should be generic enough to cover multiple
code paths. The format of the entry can be found in the documentation found at
the Valgrind home page <http://valgrind.org/>. The following trace was added
to "tests/.valgrind.supp" in order to suppress the warning:
{
dlInitMemoryLeak1
Memcheck:Leak
fun:?alloc
...
fun:call_init.part.0
fun:_dl_init
...
obj:*/lib*/ld-2.*so*
}
(10) Update tests and/or documentation, particularly if you are adding a new
feature or changing the output of a program.
There is more on this subject, including lots of links to background reading
on the subject, on Richard Jones' guide to working with open source projects
<http://people.redhat.com/rjones/how-to-supply-code-to-open-source-projects/>.
Code indentation
================
Libvirt's C source code generally adheres to some basic code-formatting
conventions. The existing code base is not totally consistent on this front,
but we do prefer that contributed code be formatted similarly. In short, use
spaces-not-TABs for indentation, use 4 spaces for each indentation level, and
other than that, follow the K&R style.
If you use Emacs, the project includes a file .dir-locals.el that sets up the
preferred indentation. If you use vim, append the following to your ~/.vimrc
file:
set nocompatible
filetype on
set autoindent
set smartindent
set cindent
set tabstop=8
set shiftwidth=4
set expandtab
set cinoptions=(0,:0,l1,t0,L3
filetype plugin indent on
au FileType make setlocal noexpandtab
au BufRead,BufNewFile *.am setlocal noexpandtab
match ErrorMsg /\s\+$\| \+\ze\t/
Or if you don't want to mess your ~/.vimrc up, you can save the above into a
file called .lvimrc (not .vimrc) located at the root of libvirt source, then
install a vim script from
http://www.vim.org/scripts/script.php?script_id=1408, which will load the
.lvimrc only when you edit libvirt code.
Code formatting (especially for new code)
=========================================
With new code, we can be even more strict. Please apply the following function
(using GNU indent) to any new code. Note that this also gives you an idea of
the type of spacing we prefer around operators and keywords:
indent-libvirt()
{
indent -bad -bap -bbb -bli4 -br -ce -brs -cs -i4 -l75 -lc75 \
-sbi4 -psl -saf -sai -saw -sbi4 -ss -sc -cdw -cli4 -npcs -nbc \
--no-tabs "$@"
}
Note that sometimes you'll have to post-process that output further, by piping
it through "expand -i", since some leading TABs can get through. Usually
they're in macro definitions or strings, and should be converted anyhow.
Libvirt requires a C99 compiler for various reasons. However, most of the code
base prefers to stick to C89 syntax unless there is a compelling reason
otherwise. For example, it is preferable to use "/* */" comments rather than
"//". Also, when declaring local variables, the prevailing style has been to
declare them at the beginning of a scope, rather than immediately before use.
Bracket spacing
===============
The keywords "if", "for", "while", and "switch" must have a single space
following them before the opening bracket. E.g.
if(foo) // Bad
if (foo) // Good
Function implementations mustnothave any whitespace between the function name and the opening bracket. E.g.
int foo (int wizz) // Bad
int foo(int wizz) // Good
Function calls mustnothave any whitespace between the function name and the opening bracket. E.g.
bar = foo (wizz); // Bad
bar = foo(wizz); // Good
Function typedefs mustnothave any whitespace between the closing bracket of the function name and
opening bracket of the arg list. E.g.
typedef int (*foo) (int wizz); // Bad
typedef int (*foo)(int wizz); // Good
There must not be any whitespace immediately following any opening bracket, or
immediately prior to any closing bracket. E.g.
int foo( int wizz ); // Bad
int foo(int wizz); // Good
Commas
======
Commas should always be followed by a space or end of line, and never have
leading space; this is enforced during 'make syntax-check'.
call(a,b ,c);// Bad
call(a, b, c); // Good
When declaring an enum or using a struct initializer that occupies more than
one line, use a trailing comma. That way, future edits to extend the list only
have to add a line, rather than modify an existing line to add the
intermediate comma. Any sentinel enumerator value with a name ending in _LAST
is exempt, since you would extend such an enum before the _LAST element.
Another reason to favor trailing commas is that it requires less effort to
produce via code generators. Note that the syntax checker is unable to enforce
a style of trailing commas, so there are counterexamples in existing code
which do not use it; also, while C99 allows trailing commas, remember that
JSON and XDR do not.
enum {
VALUE_ONE,
VALUE_TWO // Bad
};
enum {
VALUE_THREE,
VALUE_FOUR, // Good
};
Semicolons
==========
Semicolons should never have a space beforehand. Inside the condition of a
"for" loop, there should always be a space or line break after each semicolon,
except for the special case of an infinite loop (although more infinite loops
use "while"). While not enforced, loop counters generally use post-increment.
for (i = 0 ;i < limit ; ++i) { // Bad
for (i = 0; i < limit; i++) { // Good
for (;;) { // ok
while (1) { // Better
Empty loop bodies are better represented with curly braces and a comment,
although use of a semicolon is not currently rejected.
while ((rc = waitpid(pid, &st, 0) == -1) &&
errno == EINTR); // ok
while ((rc = waitpid(pid, &st, 0) == -1) &&
errno == EINTR) { // Better
/* nothing */
}
Curly braces
============
Omit the curly braces around an "if", "while", "for" etc. body only when both
that body and the condition itself occupy a single line. In every other case
we require the braces. This ensures that it is trivially easy to identify a
single-'statement' loop: each has only one 'line' in its body.
while (expr) // single line body; {} is forbidden
single_line_stmt();
while (expr(arg1,
arg2)) // indentation makes it obvious it is single line,
single_line_stmt(); // {} is optional (not enforced either way)
while (expr1 &&
expr2) { // multi-line, at same indentation, {} required
single_line_stmt();
}
However, the moment your loop/if/else body extends on to a second line, for
whatever reason (even if it's just an added comment), then you should add
braces. Otherwise, it would be too easy to insert a statement just before that
comment (without adding braces), thinking it is already a multi-statement loop:
while (true) // BAD! multi-line body with no braces
/* comment... */
single_line_stmt();
Do this instead:
while (true) { // Always put braces around a multi-line body.
/* comment... */
single_line_stmt();
}
There is one exception: when the second body line is not at the same
indentation level as the first body line:
if (expr)
die("a diagnostic that would make this line"
" extend past the 80-column limit"));
It is safe to omit the braces in the code above, since the further-indented
second body line makes it obvious that this is still a single-statement body.
To reiterate, don't do this:
if (expr) // BAD: no braces around...
while (expr_2) { // ... a multi-line body
...
}
Do this, instead:
if (expr) {
while (expr_2) {
...
}
}
However, there is one exception in the other direction, when even a one-line
block should have braces. That occurs when that one-line, brace-less block is
an "if" or "else" block, and the counterpart block *does* use braces. In that
case, put braces around both blocks. Also, if the "else" block is much shorter
than the "if" block, consider negating the "if"-condition and swapping the
bodies, putting the short block first and making the longer, multi-line block
be the "else" block.
if (expr) {
...
...
}
else
x = y; // BAD: braceless "else" with braced "then",
// and short block last
if (expr)
x = y; // BAD: braceless "if" with braced "else"
else {
...
...
}
Keeping braces consistent and putting the short block first is preferred,
especially when the multi-line body is more than a few lines long, because it
is easier to read and grasp the semantics of an if-then-else block when the
simpler block occurs first, rather than after the more involved block:
if (!expr) {
x = y; // putting the smaller block first is more readable
} else {
...
...
}
But if negating a complex condition is too ugly, then at least add braces:
if (complex expr not worth negating) {
...
...
} else {
x = y;
}
Use hanging braces for compound statements: the opening brace of a compound
statement should be on the same line as the condition being tested. Only
top-level function bodies, nested scopes, and compound structure declarations
should ever have { on a line by itself.
void
foo(int a, int b)
{ // correct - function body
int 2d[][] = {
{ // correct - complex initialization
1, 2,
},
};
if (a)
{ // BAD: compound brace on its own line
do_stuff();
}
{ // correct - nested scope
int tmp;
if (a < b) { // correct - hanging brace
tmp = b;
b = a;
a = tmp;
}
}
}
Preprocessor
============
Macros defined with an ALL_CAPS name should generally be assumed to be unsafe
with regards to arguments with side-effects (that is, MAX(a++, b--) might
increment a or decrement b too many or too few times). Exceptions to this rule
are explicitly documented for macros in viralloc.h and virstring.h.
For variadic macros, stick with C99 syntax:
#define vshPrint(_ctl, ...) fprintf(stdout, __VA_ARGS__)
Use parenthesis when checking if a macro is defined, and use indentation to
track nesting:
#if defined(HAVE_POSIX_FALLOCATE) && !defined(HAVE_FALLOCATE)
# define fallocate(a, ignored, b, c) posix_fallocate(a, b, c)
#endif
C types
=======
Use the right type.
Scalars
-------
- If you're using "int" or "long", odds are good that there's a better type.
- If a variable is counting something, be sure to declare it with an unsigned
type.
- If it's memory-size-related, use "size_t" (use "ssize_t" only if required).
- If it's file-size related, use uintmax_t, or maybe "off_t".
- If it's file-offset related (i.e., signed), use "off_t".
- If it's just counting small numbers use "unsigned int"; (on all but oddball
embedded systems, you can assume that that type is at least four bytes wide).
- If a variable has boolean semantics, give it the "bool" type and use the
corresponding "true" and "false" macros. It's ok to include <stdbool.h>, since
libvirt's use of gnulib ensures that it exists and is usable.
- In the unusual event that you require a specific width, use a standard type
like "int32_t", "uint32_t", "uint64_t", etc.
- While using "bool" is good for readability, it comes with minor caveats:
-- Don't use "bool" in places where the type size must be constant across all
systems, like public interfaces and on-the-wire protocols. Note that it would
be possible (albeit wasteful) to use "bool" in libvirt's logical wire
protocol, since XDR maps that to its lower-level "bool_t" type, which *is*
fixed-size.
-- Don't compare a bool variable against the literal, "true", since a value with
a logical non-false value need not be "1". I.e., don't write "if (seen ==
true) ...". Rather, write "if (seen)...".
Of course, take all of the above with a grain of salt. If you're about to use
some system interface that requires a type like "size_t", "pid_t" or "off_t",
use matching types for any corresponding variables.
Also, if you try to use e.g., "unsigned int" as a type, and that conflicts
with the signedness of a related variable, sometimes it's best just to use the
*wrong* type, if 'pulling the thread' and fixing all related variables would
be too invasive.
Finally, while using descriptive types is important, be careful not to go
overboard. If whatever you're doing causes warnings, or requires casts, then
reconsider or ask for help.
Pointers
--------
Ensure that all of your pointers are 'const-correct'. Unless a pointer is used
to modify the pointed-to storage, give it the "const" attribute. That way, the
reader knows up-front that this is a read-only pointer. Perhaps more
importantly, if we're diligent about this, when you see a non-const pointer,
you're guaranteed that it is used to modify the storage it points to, or it is
aliased to another pointer that is.
Low level memory management
===========================
Use of the malloc/free/realloc/calloc APIs is deprecated in the libvirt
codebase, because they encourage a number of serious coding bugs and do not
enable compile time verification of checks for NULL. Instead of these
routines, use the macros from viralloc.h.
- To allocate a single object:
virDomainPtr domain;
if (VIR_ALLOC(domain) < 0)
return NULL;
- To allocate an array of objects:
virDomainPtr domains;
size_t ndomains = 10;
if (VIR_ALLOC_N(domains, ndomains) < 0)
return NULL;
- To allocate an array of object pointers:
virDomainPtr *domains;
size_t ndomains = 10;
if (VIR_ALLOC_N(domains, ndomains) < 0)
return NULL;
- To re-allocate the array of domains to be 1 element longer (however, note that
repeatedly expanding an array by 1 scales quadratically, so this is
recommended only for smaller arrays):
virDomainPtr domains;
size_t ndomains = 0;
if (VIR_EXPAND_N(domains, ndomains, 1) < 0)
return NULL;
domains[ndomains - 1] = domain;
- To ensure an array has room to hold at least one more element (this approach
scales better, but requires tracking allocation separately from usage)
virDomainPtr domains;
size_t ndomains = 0;
size_t ndomains_max = 0;
if (VIR_RESIZE_N(domains, ndomains_max, ndomains, 1) < 0)
return NULL;
domains[ndomains++] = domain;
- To trim an array of domains from its allocated size down to the actual used
size:
virDomainPtr domains;
size_t ndomains = x;
size_t ndomains_max = y;
VIR_SHRINK_N(domains, ndomains_max, ndomains_max - ndomains);
- To free an array of domains:
virDomainPtr domains;
size_t ndomains = x;
size_t ndomains_max = y;
size_t i;
for (i = 0; i < ndomains; i++)
VIR_FREE(domains[i]);
VIR_FREE(domains);
ndomains_max = ndomains = 0;
File handling
=============
Usage of the "fdopen()", "close()", "fclose()" APIs is deprecated in libvirt
code base to help avoiding double-closing of files or file descriptors, which
is particularly dangerous in a multi-threaded application. Instead of these
APIs, use the macros from virfile.h
- Open a file from a file descriptor:
if ((file = VIR_FDOPEN(fd, "r")) == NULL) {
virReportSystemError(errno, "%s",
_("failed to open file from file descriptor"));
return -1;
}
/* fd is now invalid; only access the file using file variable */
- Close a file descriptor:
if (VIR_CLOSE(fd) < 0) {
virReportSystemError(errno, "%s", _("failed to close file"));
}
- Close a file:
if (VIR_FCLOSE(file) < 0) {
virReportSystemError(errno, "%s", _("failed to close file"));
}
- Close a file or file descriptor in an error path, without losing the previous
"errno" value:
VIR_FORCE_CLOSE(fd);
VIR_FORCE_FCLOSE(file);
String comparisons
==================
Do not use the strcmp, strncmp, etc functions directly. Instead use one of the
following semantically named macros
- For strict equality:
STREQ(a,b)
STRNEQ(a,b)
- For case insensitive equality:
STRCASEEQ(a,b)
STRCASENEQ(a,b)
- For strict equality of a substring:
STREQLEN(a,b,n)
STRNEQLEN(a,b,n)
- For case insensitive equality of a substring:
STRCASEEQLEN(a,b,n)
STRCASENEQLEN(a,b,n)
- For strict equality of a prefix:
STRPREFIX(a,b)
- To avoid having to check if a or b are NULL:
STREQ_NULLABLE(a, b)
STRNEQ_NULLABLE(a, b)
String copying
==============
Do not use the strncpy function. According to the man page, it does *not*
guarantee a NULL-terminated buffer, which makes it extremely dangerous to use.
Instead, use one of the functionally equivalent functions:
virStrncpy(char *dest, const char *src, size_t n, size_t destbytes)
The first three arguments have the same meaning as for strncpy; namely the
destination, source, and number of bytes to copy, respectively. The last
argument is the number of bytes available in the destination string; if a copy
of the source string (including a \0) will not fit into the destination, no
bytes are copied and the routine returns NULL. Otherwise, n bytes from the
source are copied into the destination and a trailing \0 is appended.
virStrcpy(char *dest, const char *src, size_t destbytes)
Use this variant if you know you want to copy the entire src string into dest.
Note that this is a macro, so arguments could be evaluated more than once.
This is equivalent to virStrncpy(dest, src, strlen(src), destbytes)
virStrcpyStatic(char *dest, const char *src)
Use this variant if you know you want to copy the entire src string into dest
*and* you know that your destination string is a static string (i.e. that
sizeof(dest) returns something meaningful). Note that this is a macro, so
arguments could be evaluated more than once. This is equivalent to
virStrncpy(dest, src, strlen(src), sizeof(dest)).
VIR_STRDUP(char *dst, const char *src);
VIR_STRNDUP(char *dst, const char *src, size_t n);
You should avoid using strdup or strndup directly as they do not report
out-of-memory error, and do not allow a NULL source. Use VIR_STRDUP or
VIR_STRNDUP macros instead, which return 0 for NULL source, 1 for successful
copy, and -1 for allocation failure with the error already reported. In very
specific cases, when you don't want to report the out-of-memory error, you can
use VIR_STRDUP_QUIET or VIR_STRNDUP_QUIET, but such usage is very rare and
usually considered a flaw.
Variable length string buffer
=============================
If there is a need for complex string concatenations, avoid using the usual
sequence of malloc/strcpy/strcat/snprintf functions and make use of the
virBuffer API described in virbuffer.h
Typical usage is as follows:
char *
somefunction(...)
{
virBuffer buf = VIR_BUFFER_INITIALIZER;
...
virBufferAddLit(&buf, "<domain>\n");
virBufferAsprintf(&buf, " <memory>%d</memory>\n", memory);
...
virBufferAddLit(&buf, "</domain>\n");
...
if (virBufferCheckError(&buf) < 0)
return NULL;
return virBufferContentAndReset(&buf);
}
Include files
=============
There are now quite a large number of include files, both libvirt internal and
external, and system includes. To manage all this complexity it's best to
stick to the following general plan for all *.c source files:
/*
* Copyright notice
* ....
* ....
* ....
*
*/
#include <config.h> Must come first in every file.
#include <stdio.h> Any system includes you need.
#include <string.h>
#include <limits.h>
#if WITH_NUMACTL Some system includes aren't supported
# include <numa.h> everywhere so need these #if guards.
#endif
#include "internal.h" Include this first, after system includes.
#include "util.h" Any libvirt internal header files.
#include "buf.h"
static int
myInternalFunc() The actual code.
{
...
Of particular note: *Do not* include libvirt/libvirt.h, libvirt/virterror.h,
libvirt/libvirt-qemu.h, or libvirt/libvirt-lxc.h. They are included by
"internal.h" already and there are some special reasons why you cannot include
these files explicitly. One of the special cases, "libvirt/libvirt.h" is
included prior to "internal.h" in "remote_protocol.x", to avoid exposing
*_LAST enum elements.
Printf-style functions
======================
Whenever you add a new printf-style function, i.e., one with a format string
argument and following "..." in its prototype, be sure to use gcc's printf
attribute directive in the prototype. For example, here's the one for
virAsprintf, in util.h:
int virAsprintf(char **strp, const char *fmt, ...)
ATTRIBUTE_FORMAT(printf, 2, 3);
This makes it so gcc's -Wformat and -Wformat-security options can do their
jobs and cross-check format strings with the number and types of arguments.
When printing to a string, consider using virBuffer for incremental
allocations, virAsprintf for a one-shot allocation, and snprintf for
fixed-width buffers. Do not use sprintf, even if you can prove the buffer
won't overflow, since gnulib does not provide the same portability guarantees
for sprintf as it does for snprintf.
Use of goto
===========
The use of goto is not forbidden, and goto is widely used throughout libvirt.
While the uncontrolled use of goto will quickly lead to unmaintainable code,
there is a place for it in well structured code where its use increases
readability and maintainability. In general, if goto is used for error
recovery, it's likely to be ok, otherwise, be cautious or avoid it all
together.
The typical use of goto is to jump to cleanup code in the case of a long list
of actions, any of which may fail and cause the entire operation to fail. In
this case, a function will have a single label at the end of the function.
It's almost always ok to use this style. In particular, if the cleanup code
only involves free'ing memory, then having multiple labels is overkill.
VIR_FREE() and every function named XXXFree() in libvirt is required to handle
NULL as its arg. Thus you can safely call free on all the variables even if
they were not yet allocated (yes they have to have been initialized to NULL).
This is much simpler and clearer than having multiple labels.
There are a couple of signs that a particular use of goto is not ok:
- You're using multiple labels. If you find yourself using multiple labels,
you're strongly encouraged to rework your code to eliminate all but one of
them.
- The goto jumps back up to a point above the current line of code being
executed. Please use some combination of looping constructs to re-execute code
instead; it's almost certainly going to be more understandable by others. One
well-known exception to this rule is restarting an i/o operation following
EINTR.
- The goto jumps down to an arbitrary place in the middle of a function followed
by further potentially failing calls. You should almost certainly be using a
conditional and a block instead of a goto. Perhaps some of your function's
logic would be better pulled out into a helper function.
Although libvirt does not encourage the Linux kernel wind/unwind style of
multiple labels, there's a good general discussion of the issue archived at
KernelTrap <http://kerneltrap.org/node/553/2131>
When using goto, please use one of these standard labels if it makes sense:
error: A path only taken upon return with an error code
cleanup: A path taken upon return with success code + optional error
no_memory: A path only taken upon return with an OOM error code
retry: If needing to jump upwards (e.g., retry on EINTR)
Top-level labels should be indented by one space (putting them on the
beginning of the line confuses function context detection in git):
int foo()
{
/* ... do stuff ... */
cleanup:
/* ... do other stuff ... */
}
Libvirt committer guidelines
============================
The AUTHORS files indicates the list of people with commit access right who
can actually merge the patches.
The general rule for committing a patch is to make sure it has been reviewed
properly in the mailing-list first, usually if a couple of people gave an ACK
or +1 to a patch and nobody raised an objection on the list it should be good
to go. If the patch touches a part of the code where you're not the main
maintainer, or where you do not have a very clear idea of how things work,
it's better to wait for a more authoritative feedback though. Before
committing, please also rebuild locally, run 'make check syntax-check', and
make sure you don't raise errors. Try to look for warnings too; for example,
configure with
--enable-compile-warnings=error
which adds -Werror to compile flags, so no warnings get missed
An exception to 'review and approval on the list first' is fixing failures to
build:
- if a recently committed patch breaks compilation on a platform or for a given
driver, then it's fine to commit a minimal fix directly without getting the
review feedback first