-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
217 lines (180 loc) · 8.37 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import warnings
import os
import torch
import torch.nn as nn
from torch.optim import SGD, Adam, lr_scheduler
from torch.utils.data import DataLoader
from torch.nn import CrossEntropyLoss
from tensorboardX import SummaryWriter
import tqdm
from SETR_models.setr import get_SETR_PUP, get_SETR_MLA
from TransUNet_models.transunet import get_TransUNet_base, get_TransUNet_large
from unet_model import UNet
from data import CityscapeDataset
from utils import get_logger, load_ckpt_continue_training, LossMeter, get_clustering_model, DiceLoss
from config import device, net, lrate, momentum, wdecay, fine_tune_ratio, best_ckpt_src, \
is_continue, iteration_num, IMG_DIM, data_dir, batch_size, print_freq, \
tensorboard_freq, CLASS_NUM, ckpt_src, early_stop_tolerance, epoch_num, use_dice_loss
def train(cont=False):
# for tensorboard tracking
logger = get_logger()
logger.info("(1) Initiating Training ... ")
logger.info("Training on device: {}".format(device))
writer = SummaryWriter()
# init model
aux_layers = None
if net == "SETR-PUP":
aux_layers, model = get_SETR_PUP()
elif net == "SETR-MLA":
aux_layers, model = get_SETR_MLA()
elif net == "TransUNet-Base":
model = get_TransUNet_base()
elif net == "TransUNet-Large":
model = get_TransUNet_large()
elif net == "UNet":
model = UNet(CLASS_NUM)
# prepare dataset
cluster_model = get_clustering_model(logger)
train_dataset = CityscapeDataset(img_dir=data_dir, img_dim=IMG_DIM, mode="train", cluster_model=cluster_model)
valid_dataset = CityscapeDataset(img_dir=data_dir, img_dim=IMG_DIM, mode="val", cluster_model=cluster_model)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
valid_loader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=False)
logger.info("(2) Dataset Initiated. ")
# optimizer
epochs = epoch_num if epoch_num > 0 else iteration_num // len(train_loader) + 1
optim = SGD(model.parameters(), lr=lrate, momentum=momentum, weight_decay=wdecay)
# optim = Adam(model.parameters(), lr=lrate)
scheduler = lr_scheduler.MultiStepLR(optim, milestones=[int(epochs * fine_tune_ratio)], gamma=0.1)
cur_epoch = 0
best_loss = float('inf')
epochs_since_improvement = 0
# for continue training
if cont:
model, optim, cur_epoch, best_loss = load_ckpt_continue_training(best_ckpt_src, model, optim, logger)
logger.info("Current best loss: {0}".format(best_loss))
with warnings.catch_warnings():
warnings.simplefilter("ignore")
for i in range(cur_epoch):
scheduler.step()
else:
model = nn.DataParallel(model)
model = model.to(device)
logger.info("(3) Model Initiated ... ")
logger.info("Training model: {}".format(net) + ". Training Started.")
# loss
ce_loss = CrossEntropyLoss()
if use_dice_loss:
dice_loss = DiceLoss(CLASS_NUM)
# loop over epochs
iter_count = 0
epoch_bar = tqdm.tqdm(total=epochs, desc="Epoch", position=cur_epoch, leave=True)
logger.info("Total epochs: {0}. Starting from epoch {1}.".format(epochs, cur_epoch+1))
for e in range(epochs - cur_epoch):
epoch = e + cur_epoch
# Training.
model.train()
trainLossMeter = LossMeter()
train_batch_bar = tqdm.tqdm(total=len(train_loader), desc="TrainBatch", position=0, leave=True)
for batch_num, (orig_img, mask_img) in enumerate(train_loader):
orig_img, mask_img = orig_img.float().to(device), mask_img.float().to(device)
if net == "TransUNet-Base" or net == "TransUNet-Large":
pred = model(orig_img)
elif net == "SETR-PUP" or net == "SETR-MLA":
if aux_layers is not None:
pred, _ = model(orig_img)
else:
pred = model(orig_img)
elif net == "UNet":
pred = model(orig_img)
loss_ce = ce_loss(pred, mask_img[:].long())
if use_dice_loss:
loss_dice = dice_loss(pred, mask_img, softmax=True)
loss = 0.5 * (loss_ce + loss_dice)
else:
loss = loss_ce
# Backward Propagation, Update weight and metrics
optim.zero_grad()
loss.backward()
optim.step()
# update learning rate
for param_group in optim.param_groups:
orig_lr = param_group['lr']
param_group['lr'] = orig_lr * (1.0 - iter_count / iteration_num) ** 0.9
iter_count += 1
# Update loss
trainLossMeter.update(loss.item())
# print status
if (batch_num+1) % print_freq == 0:
status = 'Epoch: [{0}][{1}/{2}]\t' \
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(epoch+1, batch_num+1, len(train_loader), loss=trainLossMeter)
logger.info(status)
# log loss to tensorboard
if (batch_num+1) % tensorboard_freq == 0:
writer.add_scalar('Train_Loss_{0}'.format(tensorboard_freq),
trainLossMeter.avg,
epoch * (len(train_loader) / tensorboard_freq) + (batch_num+1) / tensorboard_freq)
train_batch_bar.update(1)
writer.add_scalar('Train_Loss_epoch', trainLossMeter.avg, epoch)
# Validation.
model.eval()
validLossMeter = LossMeter()
valid_batch_bar = tqdm.tqdm(total=len(valid_loader), desc="ValidBatch", position=0, leave=True)
with torch.no_grad():
for batch_num, (orig_img, mask_img) in enumerate(valid_loader):
orig_img, mask_img = orig_img.float().to(device), mask_img.float().to(device)
if net == "TransUNet-Base" or net == "TransUNet-Large":
pred = model(orig_img)
elif net == "SETR-PUP" or net == "SETR-MLA":
if aux_layers is not None:
pred, _ = model(orig_img)
else:
pred = model(orig_img)
elif net == "UNet":
pred = model(orig_img)
loss_ce = ce_loss(pred, mask_img[:].long())
if use_dice_loss:
loss_dice = dice_loss(pred, mask_img, softmax=True)
loss = 0.5 * (loss_ce + loss_dice)
else:
loss = loss_ce
# Update loss
validLossMeter.update(loss.item())
# print status
if (batch_num+1) % print_freq == 0:
status = 'Validation: [{0}][{1}/{2}]\t' \
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(epoch+1, batch_num+1, len(valid_loader), loss=validLossMeter)
logger.info(status)
# log loss to tensorboard
if (batch_num+1) % tensorboard_freq == 0:
writer.add_scalar('Valid_Loss_{0}'.format(tensorboard_freq),
validLossMeter.avg,
epoch * (len(valid_loader) / tensorboard_freq) + (batch_num+1) / tensorboard_freq)
valid_batch_bar.update(1)
valid_loss = validLossMeter.avg
writer.add_scalar('Valid_Loss_epoch', valid_loss, epoch)
logger.info("Validation Loss of epoch [{0}/{1}]: {2}\n".format(epoch+1, epochs, valid_loss))
# update optim scheduler
scheduler.step()
# save checkpoint
is_best = valid_loss < best_loss
best_loss_tmp = min(valid_loss, best_loss)
if not is_best:
epochs_since_improvement += 1
logger.info("Epochs since last improvement: %d\n" % (epochs_since_improvement,))
if epochs_since_improvement == early_stop_tolerance:
break # early stopping.
else:
epochs_since_improvement = 0
state = {
'epoch': epoch,
'loss': best_loss_tmp,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optim.state_dict(),
}
torch.save(state, ckpt_src)
logger.info("Checkpoint updated.")
best_loss = best_loss_tmp
epoch_bar.update(1)
writer.close()
if __name__ == "__main__":
train(cont=is_continue)