-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_semseg_on_source.py
146 lines (129 loc) · 6.75 KB
/
train_semseg_on_source.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
def main(opt):
opt.num_scales= 0
opt.curr_scale= opt.num_scales
opt.num_steps=250e3
source_train_loader = CreateSrcDataLoader(opt, 'train_semseg_net', get_image_label_pyramid=True)
source_val_loader = CreateSrcDataLoader(opt, 'val_semseg_net', get_image_label_pyramid=True)
opt.epoch_size = len(source_train_loader.dataset)
opt.save_pics_rate = set_pics_save_rate(opt.pics_per_epoch, opt.batch_size, opt)
if opt.continue_train_from_path != '':
_, semseg_optimizer = CreateSemsegModel(opt)
semseg_net = torch.nn.DataParallel(torch.load(opt.continue_train_from_path))
semseg_schedualer = PolynomialLR(semseg_optimizer, max_iter=opt.num_steps, gamma=0.9)
semseg_schedualer.step(opt.resume_step)
else:
semseg_net, semseg_optimizer = CreateSemsegModel(opt)
semseg_net = torch.nn.DataParallel(semseg_net)
semseg_schedualer = PolynomialLR(semseg_optimizer, max_iter=opt.num_steps, gamma=0.9)
print('########################### Configuration ##############################')
for arg in vars(opt):
print(arg + ': ' + str(getattr(opt, arg)))
print('########################################################################')
print('Architecture of Semantic Segmentation network:\n' + str(semseg_net.module))
opt.tb = SummaryWriter(os.path.join(opt.tb_logs_dir, '%sGPU%d' % (datetime.datetime.now().strftime('%d-%m-%Y::%H:%M:%S'), opt.gpus[0])))
best_miou = 0
steps = 0 if opt.continue_train_from_path == '' else opt.resume_step
print_int = 0
save_pics_int = 0
epoch_num = 1
start = time.time()
keep_training = True
while keep_training:
print('semeg train: starting epoch %d...' % (epoch_num))
semseg_net.train()
for batch_num, (source_scales, source_labels) in enumerate(source_train_loader):
if steps > opt.num_steps:
keep_training = False
break
semseg_optimizer.zero_grad()
source_image = source_scales[opt.curr_scale].to(opt.device)
source_label = source_labels[opt.curr_scale].to(opt.device)
output_softs, semseg_loss = semseg_net(source_image, source_label)
semseg_loss = semseg_loss.mean()
output_label = output_softs.argmax(1)
opt.tb.add_scalar('TrainSemseg/loss', semseg_loss.item(), steps)
semseg_loss.backward()
semseg_optimizer.step()
semseg_schedualer.step()
if int(steps/opt.print_rate) >= print_int or steps == 0:
elapsed = time.time() - start
print('train semseg:[%d/%d] ; elapsed time = %.2f secs per step' %
(print_int*opt.print_rate, opt.num_steps, elapsed/opt.print_rate))
start = time.time()
print_int += 1
if int(steps/opt.save_pics_rate) >= save_pics_int or steps == 0:
s = denorm(source_image[0])
s_lbl = colorize_mask(source_label[0])
pred_lbl = colorize_mask(output_label[0])
opt.tb.add_image('TrainSemseg/source', s, save_pics_int*opt.save_pics_rate)
opt.tb.add_image('TrainSemseg/source_label', s_lbl, save_pics_int*opt.save_pics_rate)
opt.tb.add_image('TrainSemseg/pred_label', pred_lbl, save_pics_int*opt.save_pics_rate)
save_pics_int += 1
steps += 1
#Validation:
print('train semseg: starting validation after epoch %d.' % epoch_num)
iou, miou, cm = calculte_validation_accuracy(semseg_net, source_val_loader, opt, epoch_num)
save_epoch_accuracy(opt.tb, 'Validtaion', iou, miou, epoch_num)
if epoch_num > 15 and miou > best_miou:
best_miou = miou
torch.save(semseg_net.module, '%s/semseg_trained_on_%s_miou_%.2f.pth' % (opt.out_folder, opt.source, miou))
epoch_num += 1
opt.tb.close()
print('Finished training.')
def save_epoch_accuracy(tb, set, iou, miou, epoch):
for i in range(NUM_CLASSES):
tb.add_scalar('%sAccuracy/%s class accuracy' % (set, trainId2label[i].name), iou[i], epoch)
tb.add_scalar('%sAccuracy/Accuracy History [mIoU]' % set, miou, epoch)
def calculte_validation_accuracy(semseg_net, val_loader, opt, epoch_num):
semseg_net.eval()
rand_samp_inds = np.random.randint(0, len(val_loader.dataset), 5)
rand_batchs = np.floor(rand_samp_inds/opt.batch_size).astype(np.int)
cm = torch.zeros((NUM_CLASSES, NUM_CLASSES)).cuda()
for batch_num, (images, labels) in enumerate(val_loader):
images = images[opt.curr_scale].to(opt.device)
labels = labels[opt.curr_scale].to(opt.device)
with torch.no_grad():
pred_softs = semseg_net(images)
pred_labels = torch.argmax(pred_softs, dim=1)
cm += compute_cm_batch_torch(pred_labels, labels, IGNORE_LABEL, NUM_CLASSES)
if batch_num in rand_batchs:
t = denorm(images[0])
t_lbl = colorize_mask(labels[0])
pred_lbl = colorize_mask(pred_labels[0])
opt.tb.add_image('Validtaion/Epoch%d/target' % (epoch_num), t, batch_num)
opt.tb.add_image('Validtaion/Epoch%d/target_label' % (epoch_num), t_lbl, batch_num)
opt.tb.add_image('Validtaion/Epoch%d/prediction_label' % (epoch_num), pred_lbl, batch_num)
iou, miou = compute_iou_torch(cm)
return iou, miou, cm
def set_pics_save_rate(pics_per_epoch, batch_size, opt):
return np.maximum(2, int(opt.epoch_size / batch_size / pics_per_epoch))
if __name__ == "__main__":
from core.config import get_arguments, post_config
parser = get_arguments()
opt = parser.parse_args()
opt = post_config(opt)
from torch.optim.lr_scheduler import _LRScheduler
from semseg_models import CreateSemsegModel
from core.constants import NUM_CLASSES, IGNORE_LABEL, trainId2label
from core.functions import compute_cm_batch_torch, compute_iou_torch
from data_handlers import CreateSrcDataLoader
import torch
from core.config import get_arguments, post_config
from core.functions import denorm, colorize_mask
import numpy as np
import time
import os
from torch.utils.tensorboard import SummaryWriter
import datetime
class PolynomialLR(_LRScheduler):
def __init__(self, optimizer, max_iter, decay_iter=1,
gamma=0.9, last_epoch=-1):
self.decay_iter = decay_iter
self.max_iter = max_iter
self.gamma = gamma
super(PolynomialLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
factor = (1 - self.last_epoch / float(self.max_iter)) ** self.gamma
factor = max(factor, 0)
return [base_lr * factor for base_lr in self.base_lrs]
main(opt)