-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathyquant-tools.tex
726 lines (675 loc) · 25.7 KB
/
yquant-tools.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
% from TeXbook, appendix D
\protected\def\yquant@futurenonspacelet#1{%
\def\yquant@futurenonspacelet@cs{#1}%
\afterassignment\yquant@futurenonspacelet@i\let\yquant@futurenonspacelet@next= %
}
\def\yquant@futurenonspacelet@i{%
\expandafter\futurelet\yquant@futurenonspacelet@cs\yquant@futurenonspacelet@ii%
}
\def\yquant@futurenonspacelet@ii{%
\expandafter\ifx\yquant@futurenonspacelet@cs\@sptoken%
\expandafter\yquant@futurenonspacelet@iii%
\else%
\expandafter\yquant@futurenonspacelet@next%
\fi%
}
\def\yquant@futurenonspacelet@iii{%
\afterassignment\yquant@futurenonspacelet@i%
\let\@eattoken= %
}
% a bit faster than nested \@firstoftwo/\@secondoftwo
% note \@thirdofthree is defined in the latex kernel already.
\long\def\@firstofthree#1#2#3{#1}%
\long\def\@secondofthree#1#2#3{#2}%
\long\def\@firstoffour#1#2#3#4{#1}%
\long\def\@secondoffour#1#2#3#4{#2}%
\long\def\@thirdoffour#1#2#3#4{#3}%
\long\def\@fourthoffour#1#2#3#4{#4}%
\long\def\@thirdandfourthoffour#1#2#3#4{#3#4}%
\long\def\@secondandthirdoffive#1#2#3#4#5{{#2}{#3}}
\long\def\@firstoffive#1#2#3#4#5{#1} % unused
\long\def\@secondoffive#1#2#3#4#5{#2}
\long\def\@thirdoffive#1#2#3#4#5{#3}
\long\def\@fourthoffive#1#2#3#4#5{#4} % unused
\long\def\@fifthoffive#1#2#3#4#5{#5}
\protected\def\yquant@protectedempty{}
% Loop #1 from min(#2, #3) to max(#2, #3), executing #4
\protected\def\yquant@for #1:=#2to#3#{%
\yquant@for@aux#1{#2}{#3}%
}
% Loop #1 from max(#2, #3) down to min(#2, #3), executing #4
\protected\def\yquant@fordown #1:=#2downto#3#{%
\yquant@fordown@aux#1{#2}{#3}%
}
\long\def\yquant@for@aux#1#2#3#4{%
\ifnum#2<#3\relax%
\numdef#1{#2}%
% to allow for things like \yquant@for \i := \i to ..., expand the boundaries
\expandafter\yquant@for@loop\expandafter#1\expandafter{\the\numexpr#3+1\relax}{#4}%
\else%
\numdef#1{#3}%
\expandafter\yquant@for@loop\expandafter#1\expandafter{\the\numexpr#2+1\relax}{#4}%
\fi%
}
\long\def\yquant@fordown@aux#1#2#3#4{%
\ifnum#2>#3\relax%
\numdef#1{#2}%
% to allow for things like \yquant@for \i := \i to ..., expand the boundaries
\expandafter\yquant@fordown@loop\expandafter#1\expandafter{\the\numexpr#3-1\relax}{#4}%
\else%
\numdef#1{#3}%
\expandafter\yquant@fordown@loop\expandafter#1\expandafter{\the\numexpr#2-1\relax}{#4}%
\fi%
}
\long\def\yquant@for@loop#1#2#3{%
\loop%
\ifnum#1<#2\relax%
#3%
\numdef#1{#1+1}%
\repeat%
}
\long\def\yquant@fordown@loop#1#2#3{%
\loop%
\ifnum#1>#2\relax%
#3%
\numdef#1{#1-1}%
\repeat%
}
\def\yquant@for@break{%
\fi%
\iffalse%
}
% Def #1 to be the minimum of #2, ... until \relax
\protected\def\yquant@min#1{%
\def#1{2147483647}%
\def\yquant@min@var{#1}%
\yquant@min@loop%
}
\def\yquant@min@loop#1{%
\unless\ifx#1\relax\relax%
\ifnum#1<\yquant@min@var\relax%
\expandafter\edef\yquant@min@var{#1}%
\fi%
\expandafter\yquant@min@loop%
\fi%
}
% Def #1 to be the maximum of #2, ... until \relax
\protected\def\yquant@max#1{%
\def#1{-2147483647}%
\def\yquant@max@var{#1}%
\yquant@max@loop%
}
\def\yquant@max@loop#1{%
\unless\ifx#1\relax\relax%
\ifnum#1>\yquant@max@var\relax%
\expandafter\edef\yquant@max@var{#1}%
\fi%
\expandafter\yquant@max@loop%
\fi%
}
% Cleanup global tokens after environment
\protected\def\yquant@cleanup@csadd#1{%
\csxappto{\yquant@prefix cleanup}{\expandafter\noexpand\csname#1\endcsname}%
}
\def\yquant@cleanup#1#2{%
\global\undef#1%
\unless\ifx|#2%
\expandafter\yquant@cleanup\expandafter#2%
\fi%
}
% Executes #3 if #1 (single token!) is equal (\ifx) to the first token of #2, and #4 else.
\def\ifyquant@firsttoken#1#2{%
% First check whether #2 is present at all...
\ifstrempty{#2}{%
\expandafter\@secondoftwo%
}{%
\ifyquant@firsttoken@aux#1#2\yquant@sep%
}%
}
\def\ifyquant@firsttoken@aux#1#2#3\yquant@sep{%
\ifx#1#2%
\expandafter\expandafter\expandafter\@firstoftwo%
\else%
\expandafter\expandafter\expandafter\@secondoftwo%
\fi%
}
% Executes #3 if #1 begins with #2, and #4 else - non-expandable
\protected\def\ifyquant@beginswith#1#2{%
\def\ifyquant@beginswith@##1#2##2\yquant@end{%
\ifstrempty{##1}%
}%
\ifyquant@beginswith@#1#2\yquant@end%
}
% absolute value of a dimension
\def\yquant@abs#1{%
\ifdim#1<0pt %
\the\dimexpr-\dimexpr#1\relax\relax%
\else%
#1%
\fi%
}
% Sortlist related macros.
\newcount\yquant@sort@count
\protected\def\yquant@sort@clear{%
% Probably cleanup used macros?
\yquant@sort@count=0 %
}
\protected\def\yquant@sort@eadd#1{%
\csedef{yquant@sort@item\the\yquant@sort@count}{#1}%
\advance \yquant@sort@count by 1 %
}
% Perform quicksort on the stored sortlist.
% #1: compare macro that expands to ##3 if its second argument is strictly larger than its first or to ##4 else
\protected\def\yquant@sort#1{%
\let\yquant@sort@cmp=#1%
\expandafter\yquant@sort@aux\expandafter0\expandafter{\the\numexpr\yquant@sort@count-1\relax}%
}
% Returns the first item in the unordered sortlist when compared according to #1 and stores it in #2.
\protected\def\yquant@sort@findfirst#1#2{%
\ifnum\yquant@sort@count<1 %
\let#2=\empty%
\else%
\letcs#2{yquant@sort@item0}%
\count0=1 %
\loop%
\ifnum\count0<\yquant@sort@count\relax%
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter#1%
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter{%
\expandafter\expandafter\expandafter#2%
\expandafter\expandafter\expandafter}%
\expandafter\expandafter\expandafter{%
\csname yquant@sort@item\the\count0\endcsname%
}%
\relax{%
\letcs#2{yquant@sort@item\the\count0}%
}%
\advance\count0 by 1 %
\repeat%
\fi%
}
\def\yquant@sort@ascending#1#2{%
\ifnum#2>#1 %
\expandafter\@firstoftwo%
\else%
\expandafter\@secondoftwo%
\fi%
}
\protected\def\yquant@sort@aux#1#2{%
\ifnum#1<#2\relax%
\yquant@sort@divide{#1}{#2}%
\edef\cmd{%
\noexpand\yquant@sort@aux{#1}{\the\numexpr\count0-1\relax}%
\noexpand\yquant@sort@aux{\the\numexpr\count0+1\relax}{#2}%
}%
\cmd%
\fi%
}
\def\iftrue@hidden{\iftrue}%
\def\iffalse@hidden{\iffalse}%
\protected\def\yquant@sort@divide#1#2{%
\count0=#1\relax% i
\count2=#2\relax% j
\advance\count2 by -1 %
\letcs\yquant@sort@pivot{yquant@sort@item#2}%
\loop%
% search an item from the left that is larger or equal to the pivot
{% protect the outer loop from finding \repeat
\loop%
\ifnum\count0<#2\relax%
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\yquant@sort@cmp%
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter{%
\expandafter\expandafter\expandafter\yquant@sort@pivot%
\expandafter\expandafter\expandafter}%
\expandafter\expandafter\expandafter{%
\csname yquant@sort@item\the\count0\endcsname%
}{%
\expandafter\iffalse@hidden%
}{%
\advance\count0 by 1 %
\expandafter\iftrue@hidden%
}%
\else%
\expandafter\iffalse@hidden%
\fi%
\repeat%
\expandafter%
}%
\expandafter\count\expandafter0\expandafter=\the\count0\relax%
% search an item from the right that is small than the pivot
{% protect the outer loop from finding \repeat
\loop%
\ifnum\count2>#1\relax%
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\yquant@sort@cmp%
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter{%
\expandafter\expandafter\expandafter\yquant@sort@pivot%
\expandafter\expandafter\expandafter}%
\expandafter\expandafter\expandafter{%
\csname yquant@sort@item\the\count2\endcsname%
}{%
\advance\count2 by -1 %
\expandafter\iftrue@hidden%
}{%
\expandafter\iffalse@hidden%
}%
\else%
\expandafter\iffalse@hidden%
\fi%
\repeat%
\expandafter%
}%
\expandafter\count\expandafter2\expandafter=\the\count2\relax%
\ifnum\count0<\count2 %
% swap item i <> item j
\letcs\tmp{yquant@sort@item\the\count0}%
\csletcs{yquant@sort@item\the\count0}{yquant@sort@item\the\count2}%
\cslet{yquant@sort@item\the\count2}\tmp%
\fi%
\ifnum\count0<\count2 %
\repeat%
\letcs\tmp{yquant@sort@item\the\count0}%
\csletcs{yquant@sort@item\the\count0}{yquant@sort@item#2}%
\cslet{yquant@sort@item#2}\tmp%
}
% Add an internal etoolbox list to the sorted items
\def\yquant@sort@addlist#1{%
\forlistloop\yquant@sort@addlist@aux#1%
}
\protected\def\yquant@sort@addlist@aux#1{%
\csdef{yquant@sort@item\the\yquant@sort@count}{#1}%
\advance\yquant@sort@count by 1 %
}
% Sorts an internal etoolbox list #1 using macro #2
\protected\def\yquant@sort@list#1#2{%
\begingroup%
\yquant@sort@count=0 %
\yquant@sort@addlist#1%
\yquant@sort#2%
\let#1=\empty%
\count0=0 %
\loop%
\ifnum\count0<\yquant@sort@count%
\expandafter\expandafter\expandafter\listadd%
\expandafter\expandafter\expandafter#1%
\expandafter\expandafter\expandafter{%
\csname yquant@sort@item\the\count0\endcsname%
}%
\advance\count0 by 1 %
\repeat%
\expandafter%
\endgroup%
\expandafter\def\expandafter#1\expandafter{#1}%
}
\protected\def\yquant@sort@dolistloop{%
\count0=0 %
\loop%
\ifnum\count0<\yquant@sort@count%
\expandafter\expandafter\expandafter\do%
\expandafter\expandafter\expandafter{%
\csname yquant@sort@item\the\count0\endcsname%
}%
\advance\count0 by 1 %
\repeat%
}
\begingroup
\catcode`\|=3
\catcode`\&=3
\gdef\yquant@list@delim{|}
\protected\gdef\yquant@list@dequeue#1#2{%
\expandafter\ifblank\expandafter{#1}{%
\let#2=\empty%
}{%
\expandafter\yquant@list@dequeue@i#1\etb@lst@q@end{#1}{#2}\def%
}%
}%
\protected\gdef\yquant@list@dequeue@i#1|#2\etb@lst@q@end#3#4#5{%
\def#4{#1}%
#5#3{#2}%
}
\protected\gdef\yquant@list@gdequeue#1#2{%
\expandafter\ifblank\expandafter{#1}{%
\let#2=\empty%
}{%
\expandafter\yquant@list@dequeue@i#1\etb@lst@q@end{#1}{#2}\gdef%
}%
}
\protected\gdef\yquant@list@eupdateorinsert#1#2#3{%
% the list items are of the form <number>:<value>. If an item is present where <number> = #2, then set its <value> to #3, if #3 is greater. If no item is present, add it.
\begingroup%
\def\etb@tempa##1|#2:##2|##3&{%
\endgroup%
\ifstrempty{##3}{%
\eappto#1{#2:#3|}%
}{%
\ifdim##2<#3 %
\yquant@list@ereplace#1{#2:##2}{#2:#3}%
\fi%
}%
}%
\expandafter\etb@tempa\expandafter|#1|#2:#3|&%
}
\protected\gdef\yquant@list@ereplace#1#2#3{%
\begingroup%
\def\etb@tempa##1|#2|##2&{%
\endgroup%
\ifstrempty{##1}{%
\edef#1{%
\unexpanded{##1}|#3|\unexpanded{##2}%
}%
}{%
\edef#1{%
\unexpanded\expandafter{\@gobble##1}|#3|\unexpanded{##2}%
}%
}%
}%
\expandafter\etb@tempa\expandafter|#1&
}
% expands to the contents of a list ranging from #1 to #2 (ascending)
\gdef\yquant@list@range#1#2{%
\ifnum#1>#2 %
\expandafter\@firstoftwo%
\else%
\expandafter\@secondoftwo%
\fi{}{%
#1|%
\expandafter\yquant@list@range\expandafter{\the\numexpr#1+1\relax}{#2}%
}%
}
\endgroup
% performs #3 if #1 is a subset of #2; else, performs #4
\protected\def\ifyquant@registersubset#1#2{%
\begingroup%
\let\yquant@register@multi=\@fourthoffour
\def\yquant@register@multi@contiguous##1##2##3{\yquant@list@range{##1}{##2}}%
\edef\listA{#1}%
\edef\listB{#2}%
\let\ifsuccess=\iftrue%
\forlistloop\yquant@registersubset@loop\listA%
\expandafter%
\endgroup%
\ifsuccess%
\expandafter\@firstoftwo%
\else%
\expandafter\@secondoftwo%
\fi%
}
\protected\def\yquant@registersubset@loop#1{%
\ifinlist{#1}\listB\relax{%
\let\ifsuccess=\iffalse%
\listbreak%
}%
}
\def\ifyquant@OR#1#2{%
#1%
\expandafter\@firstoftwo%
\else%
#2%
\expandafter\expandafter\expandafter\@firstoftwo%
\else%
\expandafter\expandafter\expandafter\@secondoftwo%
\fi%
\fi%
}
% #1 is a pgf soft path. We extract the maximum x position at the y position specified in #2 and assign it to \dimen0, which is translated to the user coordinate system.
% If the circuit is currently vertical, we extract the minimum y position at the x position specified in #2.
\protected\def\yquant@softpath@extractmaxxat#1#2{%
\begingroup%
\dimen0=\yquant@orientation@minus16000pt %
\dimen2=#2 %
\pgftransforminvert%
\let\pgfsyssoftpath@movetotoken=\yquant@softpath@extractmaxxat@moveto%
\let\pgfsyssoftpath@linetotoken=\yquant@softpath@extractmaxxat@lineto%
\let\pgfsyssoftpath@curvetosupportatoken=\yquant@softpath@extractmaxxat@curveto%
\let\pgfsyssoftpath@rectcornertoken=\yquant@softpath@extractmaxxat@rectto%
\let\pgfsyssoftpath@closepath=\@gobbletwo%
% the specialroundtoken (undocumented) is \@gobbletwo by default.
#1%
\expandafter%
\endgroup%
\expandafter\dimen\expandafter0\expandafter=\the\dimen0 %
}
\protected\def\yquant@softpath@extractmaxxat@update#1{%
\ifdim\yquant@orientation@plus\dimen0<\yquant@orientation@plus#1 %
\dimen0=#1 %
\fi%
}
\protected\def\yquant@softpath@extractmaxxat@moveto#1#2{%
\pgfpointtransformed{\pgfqpoint{#1}{#2}}%
\dimen4=\yquant@pgf@x %
\dimen6=\yquant@pgf@y %
}
\protected\def\yquant@softpath@extractmaxxat@lineto#1#2{%
\pgfpointtransformed{\pgfqpoint{#1}{#2}}%
\ifyquant@OR{\ifdim\yquant@orientation@plus\dimen4>\yquant@orientation@plus\dimen0 }%
{\ifdim\yquant@orientation@plus\yquant@pgf@x>\yquant@orientation@plus\dimen0 }{%
\ifdim\dimen6=\dimen2 %
\yquant@softpath@extractmaxxat@update{\dimen4}%
\else%
\ifdim\dimen6<\dimen2 %
\unless\ifdim\yquant@pgf@y<\dimen2 %
\expandafter\yquant@softpath@extractmaxxat@update\expandafter{\the\dimexpr%
\dimen4+% x0
\dimexpr\yquant@pgf@x-\dimen4\relax*% (x1-x0)
\dimexpr\dimen2-\dimen6\relax/\dimexpr\yquant@pgf@y-\dimen6\relax% (y-y0)/(y1-y0)
\relax}%
\fi%
\else%
\unless\ifdim\yquant@pgf@y>\dimen2 %
\expandafter\yquant@softpath@extractmaxxat@update\expandafter{\the\dimexpr%
\dimen4+% x0
\dimexpr\yquant@pgf@x-\dimen4\relax*% (x1-x0)
\dimexpr\dimen2-\dimen6\relax/\dimexpr\yquant@pgf@y-\dimen6\relax% (y-y0)/(y1-y0)
\relax}%
\fi%
\fi%
\fi%
}\relax%
\dimen4=\yquant@pgf@x%
\dimen6=\yquant@pgf@y%
}
\protected\def\yquant@softpath@extractmaxxat@curveto@checkx{%
% \dimen11 holds our only candidate for t. Is it within the curve?
\unless\ifdim\dimen11<0pt %
\unless\ifdim\dimen11>1pt %
% it is. \dimen4: x0, \pgf@xa: xa, \pgf@xb: xb, \pgf@xc: x1
\begingroup%
\dimen12=\dimexpr1pt-\dimen11\relax% 1 - t
\dimen13=\dimexpr\dimen11*\dimen11/65536\relax% t^2
\dimen14=\dimexpr\dimen12*\dimen12/65536\relax% (1 - t)^2
\dimen255=\dimexpr\dimen13*\dimen11/65536*\pgf@xc/65536+% t^3 x1
3\dimen13*\dimen12/65536*\pgf@xb/65536+% t^2(1 - t) xb
\dimen14*\dimen12/65536*\dimen4/65536+% (1 - t)^3 x0
3\dimen11*\dimen14/65536*\pgf@xa/65536% 3t(1 - t)^2 xa
\relax%
\expandafter%
\endgroup%
\expandafter\yquant@softpath@extractmaxxat@update\expandafter{\the\dimen255}%
\fi%
\fi%
}
\protected\def\yquant@softpath@extractmaxxat@curveto#1#2\pgfsyssoftpath@curvetosupportbtoken#3#4\pgfsyssoftpath@curvetotoken#5#6{%
% There's really no good way to do this apart from solving the Bézier curve (a third-order polynomial). Let's do it. (Yes, this is inefficient, but if someone substitutes the rectangular box of a subcircuit by a more fancy design, this is not our fault).
% Parametrized by t, the x coordinates of the curve are
% x0 + 3 (xa - x0) t + 3 (x0 - 2xa + xb) t^2 + (3xa - 3xb + x1 - x0) t^3
% where x0 = \dimen4 (the moveto point), xa = #1, xb = #3, x1 = #5.
% Likewise for y:
% y0 = \dimen6 (the moveto point), ya = #2, yb = #4, y1 = #6.
\pgfpointtransformed{\pgfqpoint{#1}{#2}}%
\pgf@xa=\yquant@pgf@x%
\pgf@ya=\yquant@pgf@y%
\pgfpointtransformed{\pgfqpoint{#3}{#4}}%
\pgf@xb=\yquant@pgf@x%
\pgf@yb=\yquant@pgf@y%
\pgfpointtransformed{\pgfqpoint{#5}{#6}}%
\pgf@xc=\yquant@pgf@x%
\pgf@yc=\yquant@pgf@y%
% We first solve the third-order polynomial for t using the y value, then plug it back into the x value.
% TODO: this is accurate to approx. 3 digits. Can this be improved by reformulating Cardanos formula to involve less divisions?
\begingroup%
% We need so many dimensions that we break with TeX's convention for their use.
% for the multiplications with and divisions by dimensions, we exploit that eTeX fuses muldiv to 64 bits. Further note that each dimension has a scaling factor of 65536 for sp<->pt conversion. This is why don't factor out divisions (which would be more efficient, but not give the benefit of 64bit accuracy).
% a = 3(ya - yb) + (y1 - y0)
\dimen1=\dimexpr3\pgf@ya-3\pgf@yb+\pgf@yc-\dimen6\relax%
\ifdim\dimen1<1pt %
\ifdim\dimen1>-1pt %
\dimen1=0pt % this is almost a quadratic curve
\fi%
\fi%
\ifdim\dimen1=0pt %
% this is only a quadratic curve!
% b = 3(y0 - 2ya + yb)
\dimen3=3\dimexpr\dimen6-2\pgf@ya+\pgf@yb\relax%
% c: 3(ya - y0)
\dimen5=3\dimexpr\pgf@ya-\dimen6\relax%
% d: y0 - <desired y>
\dimen7=\dimexpr\dimen6-\dimen2\relax%
\ifdim\dimen3<1pt %
\expandafter\@firstofone%
\else%
\expandafter\@secondoftwo%
\fi{%
\ifdim\dimen3>-1pt %
% this is almost a linear curve!
\dimen11=\dimexpr-\dimen7*65536/\dimen5\relax%
\yquant@softpath@extractmaxxat@curveto@checkx%
\expandafter\@gobble%
\else%
\expandafter\@firstofone%
\fi%
}{%
% check the discriminant of the equation
\dimen8=\dimexpr\dimen3*\dimen3/65536-4\dimen3*\dimen7/65536\relax%
\unless\ifdim\dimen8<0pt%
% there are two potential candidates, (-c +- sqrt(c^2 - 4b d))/2b
\pgfmathsqrt@{\the\dimen8\@gobbletwo}%
\dimen11=\dimexpr\dimexpr-\dimen5+\pgfmathresult pt\relax*65536/%
\dimexpr2\dimen3\relax\relax%
\yquant@softpath@extractmaxxat@curveto@checkx%
\dimen11=\dimexpr\dimexpr-\dimen5-\pgfmathresult pt\relax*65536/%
\dimexpr2\dimen3\relax\relax%
\yquant@softpath@extractmaxxat@curveto@checkx%
\fi%
}%
\else%
% We will simplify by directly dividing all coefficients by a
% b = 3(y0 - 2ya + yb)
\dimen3=\dimexpr3\dimexpr\dimen6-2\pgf@ya+\pgf@yb\relax*65536/\dimen1\relax%
% c: 3(ya - y0)
\dimen5=\dimexpr3\dimexpr\pgf@ya-\dimen6\relax*65536/\dimen1\relax%
% d: y0 - <desired y>
\dimen7=\dimexpr\dimexpr\dimen6-\dimen2\relax*65536/\dimen1\relax%
% Note that now our a value (\dimen1) is no longer needed, it is one.
% check the discriminant of the equation
% Q = (3c - b^2)/9
\dimen8=\dimexpr\dimexpr3\dimen5-\dimen3*\dimen3/65536\relax/9\relax%
% R = (9bc - 27d - 2b^3)/54 = bc/6 - d/2 - b^3/27
\dimen9=\dimexpr\dimen3*\dimen5/393216-% 6*65536
.5\dimen7-%
\dimen3*\dimen3/65536*\dimen3/1769472% 27*65536
\relax%
% D = Q^3 + R^2
\dimen10=\dimexpr\dimen8*\dimen8/65536*\dimen8/65536+\dimen9*\dimen9/65536\relax%
\ifdim\dimen10>0pt %
% only one real root: y_1 = S + T - b/3a
% S = cbrt(R + sqrt(Q^3 + R^2))
% T = cbrt(R - sqrt(Q^3 + R^2))
\pgfmathsqrt@{\the\dimen10\@gobbletwo}%
\dimen12=\dimexpr\dimen9+\pgfmathresult pt\relax%
\dimen13=\dimexpr\dimen9-\pgfmathresult pt\relax%
\ifdim\dimen12>0pt %
\pgfmathpow@{\the\dimen12\@gobbletwo}{.3333333333}%
\dimen11=\pgfmathresult pt %
\else%
\pgfmathpow@{\the\dimexpr-\dimen12\relax\@gobbletwo}{.3333333333}%
\dimen11=-\pgfmathresult pt %
\fi%
\ifdim\dimen13>0pt %
\pgfmathpow@{\the\dimen13\@gobbletwo}{.3333333333}%
\dimen11=\dimexpr\dimen11+\pgfmathresult pt-.33333333333\dimen3\relax%
\else%
\pgfmathpow@{\the\dimexpr-\dimen13\relax\@gobbletwo}{.3333333333}%
\dimen11=\dimexpr\dimen11-\pgfmathresult pt-.33333333333\dimen3\relax%
\fi%
\yquant@softpath@extractmaxxat@curveto@checkx%
\else%
\ifdim\dimen10=0pt %
% easiest case, three real roots, two of which are equal:
% y_1 = 2cbrt(R) - b/3a
% y_2, x_3 = -cbrt(R) - b/3a
\ifdim\dimen9>0pt %
\pgfmathpow@{\the\dimen9\@gobbletwo}{.3333333333}%
\dimen15=\pgfmathresult pt %
\else%
\pgfmathpow@{\the\dimexpr-\dimen9\relax\@gobbletwo}{.3333333333}%
\dimen15=-\pgfmathresult pt %
\fi%
\dimen11=\dimexpr2\dimen15-.33333333333\dimen3\relax%
\yquant@softpath@extractmaxxat@curveto@checkx%
% check the next candidate
\dimen11=\dimexpr-\dimen15-.33333333333\dimen3\relax%
\yquant@softpath@extractmaxxat@curveto@checkx%
\else%
% nastiest case, three distinct real roots which we can find only by taking a complex-valued cube root.
% p + i q = cbrt(R + i sqrt(|D|))
\pgfmathsqrt@{\the\dimexpr-\dimen10\relax\@gobbletwo}%
\dimen10=\pgfmathresult pt %
% Let us first find the absolute value
\dimen12=\dimexpr\dimen9*\dimen9/65536+\dimen10*\dimen10/65536\relax%
\pgfmathpow@{\the\dimen12\@gobbletwo}{.1666666667}%
\dimen12=\pgfmathresult pt%
% then we need 1/3 the argument of R + i sqrt(|D|).
\pgfmathatantwo@{\the\dimen10\@gobbletwo}{\the\dimen9\@gobbletwo}%
\dimen13=.3333333333\dimexpr\pgfmathresult pt\relax%
% and then the real and imaginary parts as cosine and sine.
\pgfmathcos@{\the\dimen13\@gobbletwo}%
\dimen14=\dimexpr\pgfmathresult\dimen12\relax%
\pgfmathsin@{\the\dimen13\@gobbletwo}%
\dimen15=\dimexpr\pgfmathresult\dimen12\relax%
% Now the candidates are
% y_1 = 2p - b/3a
% y_2 = -p - sqrt(3)q - b/3a
% y_3 = -p + sqrt(3)q - b/3a
\dimen11=\dimexpr2\dimen14-.33333333333\dimen3\relax%
\yquant@softpath@extractmaxxat@curveto@checkx%
\dimen11=\dimexpr-\dimen14-1.732050808\dimen15-.33333333333\dimen3\relax%
\yquant@softpath@extractmaxxat@curveto@checkx%
\dimen11=\dimexpr-\dimen14+1.732050808\dimen15-.33333333333\dimen3\relax%
\yquant@softpath@extractmaxxat@curveto@checkx%
\fi%
\fi%
\fi%
% Now after all these calculations, \dimen0 was updated within the group. Make available outside.
\expandafter%
\endgroup%
\expandafter\dimen\expandafter0\expandafter=\the\dimen0 %
\dimen4=\pgf@xc %
\dimen6=\pgf@yc %
}
\protected\def\yquant@softpath@extractmaxxat@rectto#1#2\pgfsyssoftpath@rectsizetoken#3#4{%
% #1: lower left x, #2: lower left y, #3: width, #4: height
\pgfpointtransformed{\pgfqpoint{#1}{#2}}%
\pgf@xa=\yquant@pgf@x%
\pgf@ya=\yquant@pgf@y%
\pgfpointtransformed{\pgfqpoint{\dimexpr#1+#3\relax}{\dimexpr#2+#4\relax}}%
% (\pgf@xa, \pgf@ya) one corner, (\pgf@x, \pgf@y) other corner
\ifdim\yquant@pgf@y>\pgf@ya %
\unless\ifdim\pgf@ya>\dimen2 %
\unless\ifdim\yquant@pgf@y<\dimen2 %
\ifdim\yquant@orientation@plus\yquant@pgf@x>\yquant@orientation@plus\pgf@xa %
\yquant@softpath@extractmaxxat@update\yquant@pgf@x%
\else%
\yquant@softpath@extractmaxxat@update\pgf@xa%
\fi%
\fi%
\fi%
\else%
\unless\ifdim\pgf@ya<\dimen2 %
\unless\ifdim\yquant@pgf@y>\dimen2 %
\ifdim\yquant@orientation@plus\yquant@pgf@x>\yquant@orientation@plus\pgf@xa %
\yquant@softpath@extractmaxxat@update\yquant@pgf@x%
\else%
\yquant@softpath@extractmaxxat@update\pgf@xa%
\fi%
\fi%
\fi%
\fi%
}