-
Notifications
You must be signed in to change notification settings - Fork 462
/
Copy pathppo.py
119 lines (96 loc) · 3.73 KB
/
ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import gym
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
#Hyperparameters
learning_rate = 0.0005
gamma = 0.98
lmbda = 0.95
eps_clip = 0.1
K_epoch = 3
T_horizon = 20
class PPO(nn.Module):
def __init__(self):
super(PPO, self).__init__()
self.data = []
self.fc1 = nn.Linear(4,256)
self.fc_pi = nn.Linear(256,2)
self.fc_v = nn.Linear(256,1)
self.optimizer = optim.Adam(self.parameters(), lr=learning_rate)
def pi(self, x, softmax_dim = 0):
x = F.relu(self.fc1(x))
x = self.fc_pi(x)
prob = F.softmax(x, dim=softmax_dim)
return prob
def v(self, x):
x = F.relu(self.fc1(x))
v = self.fc_v(x)
return v
def put_data(self, transition):
self.data.append(transition)
def make_batch(self):
s_lst, a_lst, r_lst, s_prime_lst, prob_a_lst, done_lst = [], [], [], [], [], []
for transition in self.data:
s, a, r, s_prime, prob_a, done = transition
s_lst.append(s)
a_lst.append([a])
r_lst.append([r])
s_prime_lst.append(s_prime)
prob_a_lst.append([prob_a])
done_mask = 0 if done else 1
done_lst.append([done_mask])
s,a,r,s_prime,done_mask, prob_a = torch.tensor(s_lst, dtype=torch.float), torch.tensor(a_lst), \
torch.tensor(r_lst), torch.tensor(s_prime_lst, dtype=torch.float), \
torch.tensor(done_lst, dtype=torch.float), torch.tensor(prob_a_lst)
self.data = []
return s, a, r, s_prime, done_mask, prob_a
def train_net(self):
s, a, r, s_prime, done_mask, prob_a = self.make_batch()
for i in range(K_epoch):
td_target = r + gamma * self.v(s_prime) * done_mask
delta = td_target - self.v(s)
delta = delta.detach().numpy()
advantage_lst = []
advantage = 0.0
for delta_t in delta[::-1]:
advantage = gamma * lmbda * advantage + delta_t[0]
advantage_lst.append([advantage])
advantage_lst.reverse()
advantage = torch.tensor(advantage_lst, dtype=torch.float)
pi = self.pi(s, softmax_dim=1)
pi_a = pi.gather(1,a)
ratio = torch.exp(torch.log(pi_a) - torch.log(prob_a)) # a/b == exp(log(a)-log(b))
surr1 = ratio * advantage
surr2 = torch.clamp(ratio, 1-eps_clip, 1+eps_clip) * advantage
loss = -torch.min(surr1, surr2) + F.smooth_l1_loss(self.v(s) , td_target.detach())
self.optimizer.zero_grad()
loss.mean().backward()
self.optimizer.step()
def main():
env = gym.make('CartPole-v1')
model = PPO()
score = 0.0
print_interval = 20
for n_epi in range(10000):
s, _ = env.reset()
done = False
while not done:
for t in range(T_horizon):
prob = model.pi(torch.from_numpy(s).float())
m = Categorical(prob)
a = m.sample().item()
s_prime, r, done, truncated, info = env.step(a)
model.put_data((s, a, r/100.0, s_prime, prob[a].item(), done))
s = s_prime
score += r
if done:
break
model.train_net()
if n_epi%print_interval==0 and n_epi!=0:
print("# of episode :{}, avg score : {:.1f}".format(n_epi, score/print_interval))
score = 0.0
env.close()
if __name__ == '__main__':
main()