-
-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtext_encoder.py
67 lines (53 loc) · 2.25 KB
/
text_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch
from transformers import AutoTokenizer, AutoModel
import pytorch_lightning as pl
import torch.nn.functional as F
from utils import mean_pooling
class KeywordEncoderInferenceModel(pl.LightningModule):
"""
Class for Keyword Encoder Model
"""
def __init__(self, model_name: str = 'sentence-transformers/all-mpnet-base-v2', device: torch.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu'), max_len: int = 60):
"""
Initialize the class and load the model
Parameters:
model_name (str): Name of the model to load
device (torch.device): Device to use for inference
max_len (int): Maximum length of the input text
"""
super().__init__()
self.model_name = model_name
self.max_len = max_len
self.enc = AutoModel.from_pretrained(model_name)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.enc.eval()
self.enc.to(device)
def forward(self, texts: list) -> torch.Tensor:
"""
Forward pass of the model
Parameters:
texts (list): List of texts to embed
Returns:
torch.Tensor: Embeddings of the texts
"""
with torch.no_grad():
encoded_input = self.tokenizer(texts, padding=True, truncation=True, max_length=self.max_len, return_tensors='pt').to(self.enc.device)
model_output = self.enc(**encoded_input)
# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
return sentence_embeddings
def calculate_similarity(self, texts: list) -> list:
"""
Calculate the similarity between two or more texts
Parameters:
texts (list): List of texts to compare
Returns:
list: Similarities between the texts
"""
assert len(texts) > 1, "Please provide at least two texts to compare"
embeddings = self.forward(texts)
similarities = torch.mm(embeddings, embeddings.t())
similarities = similarities.cpu().numpy()
return similarities