-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdcgan.py
250 lines (179 loc) · 8.14 KB
/
dcgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
from keras.utils import np_utils
import tensorflow as tf
from keras.backend import tensorflow_backend
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import os
import cv2
import numpy as np
from PIL import Image
np.random.seed(0)
np.random.RandomState(0)
tf.set_random_seed(0)
config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))
session = tf.Session(config=config)
tensorflow_backend.set_session(session)
root_dir = "PATH_TO_ROOT_DIR"
class DCGAN():
def __init__(self):
self.class_names = os.listdir(root_dir)
self.shape = (128, 128, 3)
self.z_dim = 100
optimizer = Adam(lr=0.0002, beta_1=0.5)
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
self.generator = self.build_generator()
# self.generator.compile(loss='binary_crossentropy', optimizer=optimizer)
z = Input(shape=(self.z_dim,))
img = self.generator(z)
self.discriminator.trainable = False
valid = self.discriminator(img)
self.combined = Model(z, valid)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
def build_generator(self):
noise_shape = (self.z_dim,)
model = Sequential()
model.add(Dense(128 * 32 * 32, activation="relu", input_shape=noise_shape))
model.add(Reshape((32, 32, 128)))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(3, kernel_size=3, padding="same"))
model.add(Activation("tanh"))
model.summary()
noise = Input(shape=noise_shape)
img = model(noise)
return Model(noise, img)
def build_discriminator(self):
img_shape = self.shape
model = Sequential()
model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=img_shape, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))
model.add(ZeroPadding2D(padding=((0, 1), (0, 1))))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
model.summary()
img = Input(shape=img_shape)
validity = model(img)
return Model(img, validity)
def build_combined(self):
self.discriminator.trainable = False
model = Sequential([self.generator, self.discriminator])
return model
def train(self, iterations, batch_size=128, save_interval=50, model_interval=1000, check_noise=None, r=10, c=10):
X_train, labels = self.load_imgs()
half_batch = int(batch_size / 2)
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
for iteration in range(iterations):
# ------------------
# Training Discriminator
# -----------------
idx = np.random.randint(0, X_train.shape[0], half_batch)
imgs = X_train[idx]
noise = np.random.uniform(-1, 1, (half_batch, self.z_dim))
gen_imgs = self.generator.predict(noise)
d_loss_real = self.discriminator.train_on_batch(imgs, np.ones((half_batch, 1)))
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, np.zeros((half_batch, 1)))
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# -----------------
# Training Generator
# -----------------
noise = np.random.uniform(-1, 1, (batch_size, self.z_dim))
g_loss = self.combined.train_on_batch(noise, np.ones((batch_size, 1)))
print("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (iteration, d_loss[0], 100 * d_loss[1], g_loss))
if iteration % save_interval == 0:
self.save_imgs(iteration, check_noise, r, c)
start = np.expand_dims(check_noise[0], axis=0)
end = np.expand_dims(check_noise[1], axis=0)
resultImage = self.visualizeInterpolation(start=start, end=end)
cv2.imwrite("images/latent/" + "latent_{}.png".format(iteration), resultImage)
if iteration % model_interval == 0:
self.generator.save("ganmodels/set_4/dcgan-{}-iter.h5".format(iteration))
def save_imgs(self, iteration, check_noise, r, c):
noise = np.random.uniform(-1,1, (10000, 100))
#noise = check_noise
gen_imgs = self.generator.predict(noise)
# 0-1 rescale
gen_imgs = 0.5 * gen_imgs + 0.5
#fig, axs = plt.subplots(r, c)
cnt = 0
#cnt2 = 0
for i in range(10000):
im = gen_imgs[cnt,:,:,:]
im = im * 255
pil_img = Image.fromarray(np.uint8(im))
pil_img.save('images/gen_imgs/gen_road_damage_%d_%d.png' % (iteration, cnt))
def load_imgs(self):
img_paths = []
labels = []
images = []
for cl_name in self.class_names:
img_names = os.listdir(os.path.join(root_dir, cl_name))
for img_name in img_names:
img_paths.append(os.path.abspath(os.path.join(root_dir, cl_name, img_name)))
hot_cl_name = self.get_class_one_hot(cl_name)
labels.append(hot_cl_name)
for img_path in img_paths:
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
images.append(img)
images = np.array(images)
return (np.array(images), np.array(labels))
def get_class_one_hot(self, class_str):
label_encoded = self.class_names.index(class_str)
label_hot = np_utils.to_categorical(label_encoded, len(self.class_names))
label_hot = label_hot
return label_hot
def visualizeInterpolation(self, start, end, save=True, nbSteps=10):
print("Generating interpolations...")
steps = nbSteps
latentStart = start
latentEnd = end
startImg = self.generator.predict(latentStart)
endImg = self.generator.predict(latentEnd)
vectors = []
alphaValues = np.linspace(0, 1, steps)
for alpha in alphaValues:
vector = latentStart * (1 - alpha) + latentEnd * alpha
vectors.append(vector)
vectors = np.array(vectors)
resultLatent = None
resultImage = None
for i, vec in enumerate(vectors):
gen_img = np.squeeze(self.generator.predict(vec), axis=0)
gen_img = (0.5 * gen_img + 0.49) * 255
interpolatedImage = cv2.cvtColor(gen_img, cv2.COLOR_RGB2BGR)
interpolatedImage = interpolatedImage.astype(np.uint8)
resultImage = interpolatedImage if resultImage is None else np.hstack([resultImage, interpolatedImage])
return resultImage
if __name__ == '__main__':
dcgan = DCGAN()
r, c = 10, 10
check_noise = np.random.uniform(-1, 1, (r * c, 100))
dcgan.train(iterations=50000, batch_size=32, save_interval=10000, model_interval=5000, check_noise=check_noise, r=r,
c=c)