forked from ericjang/draw
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdraw.py
245 lines (198 loc) · 8.18 KB
/
draw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#!/usr/bin/env python
""""
Simple implementation of http://arxiv.org/pdf/1502.04623v2.pdf in TensorFlow
Example Usage:
python draw.py --data_dir=/tmp/draw --read_attn=True --write_attn=True
Author: Eric Jang
"""
import tensorflow as tf
from tensorflow.examples.tutorials import mnist
import numpy as np
import os
tf.flags.DEFINE_string("data_dir", "", "")
tf.flags.DEFINE_boolean("read_attn", True, "enable attention for reader")
tf.flags.DEFINE_boolean("write_attn",True, "enable attention for writer")
FLAGS = tf.flags.FLAGS
## MODEL PARAMETERS ##
A,B = 28,28 # image width,height
img_size = B*A # the canvas size
enc_size = 256 # number of hidden units / output size in LSTM
dec_size = 256
read_n = 5 # read glimpse grid width/height
write_n = 5 # write glimpse grid width/height
read_size = 2*read_n*read_n if FLAGS.read_attn else 2*img_size
write_size = write_n*write_n if FLAGS.write_attn else img_size
z_size=10 # QSampler output size
T=10 # MNIST generation sequence length
batch_size=100 # training minibatch size
train_iters=10000
learning_rate=1e-3 # learning rate for optimizer
eps=1e-8 # epsilon for numerical stability
## BUILD MODEL ##
DO_SHARE=None # workaround for variable_scope(reuse=True)
x = tf.placeholder(tf.float32,shape=(batch_size,img_size)) # input (batch_size * img_size)
e=tf.random_normal((batch_size,z_size), mean=0, stddev=1) # Qsampler noise
lstm_enc = tf.nn.rnn_cell.LSTMCell(enc_size, state_is_tuple=True) # encoder Op
lstm_dec = tf.nn.rnn_cell.LSTMCell(dec_size, state_is_tuple=True) # decoder Op
def linear(x,output_dim):
"""
affine transformation Wx+b
assumes x.shape = (batch_size, num_features)
"""
w=tf.get_variable("w", [x.get_shape()[1], output_dim])
b=tf.get_variable("b", [output_dim], initializer=tf.constant_initializer(0.0))
return tf.matmul(x,w)+b
def filterbank(gx, gy, sigma2,delta, N):
grid_i = tf.reshape(tf.cast(tf.range(N), tf.float32), [1, -1])
mu_x = gx + (grid_i - N / 2 - 0.5) * delta # eq 19
mu_y = gy + (grid_i - N / 2 - 0.5) * delta # eq 20
a = tf.reshape(tf.cast(tf.range(A), tf.float32), [1, 1, -1])
b = tf.reshape(tf.cast(tf.range(B), tf.float32), [1, 1, -1])
mu_x = tf.reshape(mu_x, [-1, N, 1])
mu_y = tf.reshape(mu_y, [-1, N, 1])
sigma2 = tf.reshape(sigma2, [-1, 1, 1])
Fx = tf.exp(-tf.square((a - mu_x) / (2*sigma2))) # 2*sigma2?
Fy = tf.exp(-tf.square((b - mu_y) / (2*sigma2))) # batch x N x B
# normalize, sum over A and B dims
Fx=Fx/tf.maximum(tf.reduce_sum(Fx,2,keep_dims=True),eps)
Fy=Fy/tf.maximum(tf.reduce_sum(Fy,2,keep_dims=True),eps)
return Fx,Fy
def attn_window(scope,h_dec,N):
with tf.variable_scope(scope,reuse=DO_SHARE):
params=linear(h_dec,5)
gx_,gy_,log_sigma2,log_delta,log_gamma=tf.split(1,5,params)
gx=(A+1)/2*(gx_+1)
gy=(B+1)/2*(gy_+1)
sigma2=tf.exp(log_sigma2)
delta=(max(A,B)-1)/(N-1)*tf.exp(log_delta) # batch x N
return filterbank(gx,gy,sigma2,delta,N)+(tf.exp(log_gamma),)
## READ ##
def read_no_attn(x,x_hat,h_dec_prev):
return tf.concat(1,[x,x_hat])
def read_attn(x,x_hat,h_dec_prev):
Fx,Fy,gamma=attn_window("read",h_dec_prev,read_n)
def filter_img(img,Fx,Fy,gamma,N):
Fxt=tf.transpose(Fx,perm=[0,2,1])
img=tf.reshape(img,[-1,B,A])
glimpse=tf.batch_matmul(Fy,tf.batch_matmul(img,Fxt))
glimpse=tf.reshape(glimpse,[-1,N*N])
return glimpse*tf.reshape(gamma,[-1,1])
x=filter_img(x,Fx,Fy,gamma,read_n) # batch x (read_n*read_n)
x_hat=filter_img(x_hat,Fx,Fy,gamma,read_n)
return tf.concat(1,[x,x_hat]) # concat along feature axis
read = read_attn if FLAGS.read_attn else read_no_attn
## ENCODE ##
def encode(state,input):
"""
run LSTM
state = previous encoder state
input = cat(read,h_dec_prev)
returns: (output, new_state)
"""
with tf.variable_scope("encoder",reuse=DO_SHARE):
return lstm_enc(input,state)
## Q-SAMPLER (VARIATIONAL AUTOENCODER) ##
def sampleQ(h_enc):
"""
Samples Zt ~ normrnd(mu,sigma) via reparameterization trick for normal dist
mu is (batch,z_size)
"""
with tf.variable_scope("mu",reuse=DO_SHARE):
mu=linear(h_enc,z_size)
with tf.variable_scope("sigma",reuse=DO_SHARE):
logsigma=linear(h_enc,z_size)
sigma=tf.exp(logsigma)
return (mu + sigma*e, mu, logsigma, sigma)
## DECODER ##
def decode(state,input):
with tf.variable_scope("decoder",reuse=DO_SHARE):
return lstm_dec(input, state)
## WRITER ##
def write_no_attn(h_dec):
with tf.variable_scope("write",reuse=DO_SHARE):
return linear(h_dec,img_size)
def write_attn(h_dec):
with tf.variable_scope("writeW",reuse=DO_SHARE):
w=linear(h_dec,write_size) # batch x (write_n*write_n)
N=write_n
w=tf.reshape(w,[batch_size,N,N])
Fx,Fy,gamma=attn_window("write",h_dec,write_n)
Fyt=tf.transpose(Fy,perm=[0,2,1])
wr=tf.batch_matmul(Fyt,tf.batch_matmul(w,Fx))
wr=tf.reshape(wr,[batch_size,B*A])
#gamma=tf.tile(gamma,[1,B*A])
return wr*tf.reshape(1.0/gamma,[-1,1])
write=write_attn if FLAGS.write_attn else write_no_attn
## STATE VARIABLES ##
cs=[0]*T # sequence of canvases
mus,logsigmas,sigmas=[0]*T,[0]*T,[0]*T # gaussian params generated by SampleQ. We will need these for computing loss.
# initial states
h_dec_prev=tf.zeros((batch_size,dec_size))
enc_state=lstm_enc.zero_state(batch_size, tf.float32)
dec_state=lstm_dec.zero_state(batch_size, tf.float32)
## DRAW MODEL ##
# construct the unrolled computational graph
for t in range(T):
c_prev = tf.zeros((batch_size,img_size)) if t==0 else cs[t-1]
x_hat=x-tf.sigmoid(c_prev) # error image
r=read(x,x_hat,h_dec_prev)
h_enc,enc_state=encode(enc_state,tf.concat(1,[r,h_dec_prev]))
z,mus[t],logsigmas[t],sigmas[t]=sampleQ(h_enc)
h_dec,dec_state=decode(dec_state,z)
cs[t]=c_prev+write(h_dec) # store results
h_dec_prev=h_dec
DO_SHARE=True # from now on, share variables
## LOSS FUNCTION ##
def binary_crossentropy(t,o):
return -(t*tf.log(o+eps) + (1.0-t)*tf.log(1.0-o+eps))
# reconstruction term appears to have been collapsed down to a single scalar value (rather than one per item in minibatch)
x_recons=tf.nn.sigmoid(cs[-1])
# after computing binary cross entropy, sum across features then take the mean of those sums across minibatches
Lx=tf.reduce_sum(binary_crossentropy(x,x_recons),1) # reconstruction term
Lx=tf.reduce_mean(Lx)
kl_terms=[0]*T
for t in range(T):
mu2=tf.square(mus[t])
sigma2=tf.square(sigmas[t])
logsigma=logsigmas[t]
kl_terms[t]=0.5*tf.reduce_sum(mu2+sigma2-2*logsigma,1)-T*.5 # each kl term is (1xminibatch)
KL=tf.add_n(kl_terms) # this is 1xminibatch, corresponding to summing kl_terms from 1:T
Lz=tf.reduce_mean(KL) # average over minibatches
cost=Lx+Lz
## OPTIMIZER ##
optimizer=tf.train.AdamOptimizer(learning_rate, beta1=0.5)
grads=optimizer.compute_gradients(cost)
for i,(g,v) in enumerate(grads):
if g is not None:
grads[i]=(tf.clip_by_norm(g,5),v) # clip gradients
train_op=optimizer.apply_gradients(grads)
## RUN TRAINING ##
data_directory = os.path.join(FLAGS.data_dir, "mnist")
if not os.path.exists(data_directory):
os.makedirs(data_directory)
train_data = mnist.input_data.read_data_sets(data_directory, one_hot=True).train # binarized (0-1) mnist data
fetches=[]
fetches.extend([Lx,Lz,train_op])
Lxs=[0]*train_iters
Lzs=[0]*train_iters
sess=tf.InteractiveSession()
saver = tf.train.Saver() # saves variables learned during training
tf.initialize_all_variables().run()
#saver.restore(sess, "/tmp/draw/drawmodel.ckpt") # to restore from model, uncomment this line
for i in range(train_iters):
xtrain,_=train_data.next_batch(batch_size) # xtrain is (batch_size x img_size)
feed_dict={x:xtrain}
results=sess.run(fetches,feed_dict)
Lxs[i],Lzs[i],_=results
if i%100==0:
print("iter=%d : Lx: %f Lz: %f" % (i,Lxs[i],Lzs[i]))
## TRAINING FINISHED ##
canvases=sess.run(cs,feed_dict) # generate some examples
canvases=np.array(canvases) # T x batch x img_size
out_file=os.path.join(FLAGS.data_dir,"draw_data.npy")
np.save(out_file,[canvases,Lxs,Lzs])
print("Outputs saved in file: %s" % out_file)
ckpt_file=os.path.join(FLAGS.data_dir,"drawmodel.ckpt")
print("Model saved in file: %s" % saver.save(sess,ckpt_file))
sess.close()
print('Done drawing! Have a nice day! :)')