forked from kaito-project/kaito
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_api.py
525 lines (475 loc) · 20.8 KB
/
inference_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import logging
import os
import sys
import signal
import codecs
from pathlib import Path
from dataclasses import asdict, dataclass, field
from typing import Annotated, Any, Dict, List, Optional, Union
import GPUtil
import psutil
import torch
import transformers
import uvicorn
from fastapi import Body, FastAPI, HTTPException
from fastapi.responses import Response
from peft import PeftModel
from pydantic import BaseModel, Extra, Field, validator
from transformers import (AutoModelForCausalLM, AutoTokenizer,
GenerationConfig, HfArgumentParser)
# Initialize logger
logger = logging.getLogger(__name__)
debug_mode = os.environ.get('DEBUG_MODE', 'false').lower() == 'true'
logging.basicConfig(level=logging.DEBUG if debug_mode else logging.INFO)
ADAPTERS_DIR = '/mnt/adapter'
@dataclass
class ModelConfig:
"""
Transformers Model Configuration Parameters
"""
pipeline: Optional[str] = field(default="text-generation", metadata={"help": "The model pipeline for the pre-trained model"})
pretrained_model_name_or_path: Optional[str] = field(default="/workspace/tfs/weights", metadata={"help": "Path to the pretrained model or model identifier from huggingface.co/models"})
combination_type: Optional[str]=field(default="svd", metadata={"help": "The combination type of multi adapters"})
state_dict: Optional[Dict[str, Any]] = field(default=None, metadata={"help": "State dictionary for the model"})
cache_dir: Optional[str] = field(default=None, metadata={"help": "Cache directory for the model"})
from_tf: bool = field(default=False, metadata={"help": "Load model from a TensorFlow checkpoint"})
force_download: bool = field(default=False, metadata={"help": "Force the download of the model"})
resume_download: bool = field(default=False, metadata={"help": "Resume an interrupted download"})
proxies: Optional[str] = field(default=None, metadata={"help": "Proxy configuration for downloading the model"})
output_loading_info: bool = field(default=False, metadata={"help": "Output additional loading information"})
allow_remote_files: bool = field(default=False, metadata={"help": "Allow using remote files, default is local only"})
revision: str = field(default="main", metadata={"help": "Specific model version to use"})
trust_remote_code: bool = field(default=False, metadata={"help": "Enable trusting remote code when loading the model"})
load_in_4bit: bool = field(default=False, metadata={"help": "Load model in 4-bit mode"})
load_in_8bit: bool = field(default=False, metadata={"help": "Load model in 8-bit mode"})
torch_dtype: Optional[str] = field(default=None, metadata={"help": "The torch dtype for the pre-trained model"})
device_map: str = field(default="auto", metadata={"help": "The device map for the pre-trained model"})
chat_template: Optional[str] = field(default=None, metadata={"help": "The file path to the chat template, or the template in single-line form for the specified model"})
# Method to process additional arguments
def process_additional_args(self, addt_args: List[str]):
"""
Process additional cmd line args and update the model configuration accordingly.
"""
addt_args_dict = {}
i = 0
while i < len(addt_args):
key = addt_args[i].lstrip('-') # Remove leading dashes
if i + 1 < len(addt_args) and not addt_args[i + 1].startswith('--'):
value = addt_args[i + 1]
i += 2 # Move past the current key-value pair
else:
value = True # Assign a True value for standalone flags
i += 1 # Move to the next item
addt_args_dict[key] = value
# Update the ModelConfig instance with the additional args
self.__dict__.update(addt_args_dict)
def __post_init__(self): # validate parameters
"""
Post-initialization to validate some ModelConfig values
"""
if self.torch_dtype == "auto":
pass
elif self.torch_dtype and self.torch_dtype != "auto" and not hasattr(torch, self.torch_dtype):
raise ValueError(f"Invalid torch dtype: {self.torch_dtype}")
else:
self.torch_dtype = getattr(torch, self.torch_dtype) if self.torch_dtype else None
supported_pipelines = {"conversational", "text-generation"}
if self.pipeline not in supported_pipelines:
raise ValueError(f"Unsupported pipeline: {self.pipeline}")
def load_chat_template(chat_template: Optional[str]) -> Optional[str]:
logger.info(chat_template)
if chat_template is None:
return None
JINJA_CHARS = "{}\n"
if any(c in chat_template for c in JINJA_CHARS):
resolved_chat_template = codecs.decode(chat_template, "unicode_escape")
else:
resolved_chat_template = Path(chat_template).read_text()
logger.info("Chat template loaded successfully")
logger.info("Chat template: %s", resolved_chat_template)
return resolved_chat_template
parser = HfArgumentParser(ModelConfig)
args, additional_args = parser.parse_args_into_dataclasses(
return_remaining_strings=True
)
args.process_additional_args(additional_args)
model_args = asdict(args)
model_args["local_files_only"] = not model_args.pop('allow_remote_files')
model_pipeline = model_args.pop('pipeline')
combination_type = model_args.pop('combination_type')
app = FastAPI()
resovled_chat_template = load_chat_template(model_args.pop('chat_template'))
tokenizer = AutoTokenizer.from_pretrained(**model_args)
if resovled_chat_template is not None:
tokenizer.chat_template = resovled_chat_template
base_model = AutoModelForCausalLM.from_pretrained(**model_args)
if not os.path.exists(ADAPTERS_DIR):
model = base_model
else:
valid_adapters_list = [
os.path.join(ADAPTERS_DIR, adapter) for adapter in os.listdir(ADAPTERS_DIR)
if os.path.isfile(os.path.join(ADAPTERS_DIR, adapter, "adapter_config.json"))
]
if valid_adapters_list:
adapter_names, weights = [], []
for adapter_path in valid_adapters_list:
adapter_name = os.path.basename(adapter_path)
adapter_names.append(adapter_name)
weights.append(float(os.getenv(adapter_name, '1.0')))
model = PeftModel.from_pretrained(base_model, valid_adapters_list[0], adapter_name=adapter_names[0])
for i in range(1, len(valid_adapters_list)):
model.load_adapter(valid_adapters_list[i], adapter_name=adapter_names[i])
model.add_weighted_adapter(
adapters=adapter_names,
weights=weights,
adapter_name="combined_adapter",
combination_type=combination_type,
)
model.set_adapter("combined_adapter")
# To avoid any potential future operations that use non-combined adapters
for adapter in adapter_names:
model.delete_adapter(adapter)
active_adapters = model.active_adapters
if len(active_adapters) != 1 or active_adapters[0] != "combined_adapter":
raise ValueError(f"Adapters not merged correctly")
logger.info("Adapter added: %s", ', '.join(sorted(adapter_names)))
else:
logger.warning("Did not find any valid adapters mounted, using base model")
model = base_model
logger.info("Model loaded successfully")
logger.info("Model: %s", model)
pipeline_kwargs = {
"trust_remote_code": args.trust_remote_code,
"device_map": args.device_map,
}
if args.torch_dtype:
pipeline_kwargs["torch_dtype"] = args.torch_dtype
pipeline = transformers.pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
**pipeline_kwargs
)
try:
# Attempt to load the generation configuration
default_generate_config = GenerationConfig.from_pretrained(
args.pretrained_model_name_or_path,
local_files_only=args.local_files_only
).to_dict()
except Exception as e:
default_generate_config = {}
class HomeResponse(BaseModel):
message: str = Field(..., example="Server is running")
@app.get('/', response_model=HomeResponse, summary="Home Endpoint")
def home():
"""
A simple endpoint that indicates the server is running.
No parameters are required. Returns a message indicating the server status.
"""
return {"message": "Server is running"}
class HealthStatus(BaseModel):
status: str = Field(..., example="Healthy")
@app.get(
"/health",
response_model=HealthStatus,
summary="Health Check Endpoint",
responses={
200: {
"description": "Successful Response",
"content": {
"application/json": {
"example": {"status": "Healthy"}
}
}
},
500: {
"description": "Error Response",
"content": {
"application/json": {
"examples": {
"model_uninitialized": {
"summary": "Model not initialized",
"value": {"detail": "Model not initialized"}
},
"pipeline_uninitialized": {
"summary": "Pipeline not initialized",
"value": {"detail": "Pipeline not initialized"}
}
}
}
}
}
}
)
def health_check():
if not model:
logger.error("Model not initialized")
raise HTTPException(status_code=500, detail="Model not initialized")
if not pipeline:
logger.error("Pipeline not initialized")
raise HTTPException(status_code=500, detail="Pipeline not initialized")
return {"status": "Healthy"}
class GenerateKwargs(BaseModel):
max_length: int = 200 # Length of input prompt+max_new_tokens
min_length: int = 0
do_sample: bool = True
early_stopping: bool = False
num_beams: int = 1
temperature: float = 1.0
top_k: int = 10
top_p: float = 1
typical_p: float = 1
repetition_penalty: float = 1
pad_token_id: Optional[int] = tokenizer.pad_token_id
eos_token_id: Optional[int] = tokenizer.eos_token_id
class Config:
extra = 'allow' # Allows for additional fields not explicitly defined
json_schema_extra = {
"example": {
"max_length": 200,
"temperature": 0.7,
"top_p": 0.9,
"additional_param": "Example value"
}
}
class Message(BaseModel):
role: str
content: str
class UnifiedRequestModel(BaseModel):
# Fields for text generation
prompt: Optional[str] = Field(None, description="Prompt for text generation. Required for text-generation pipeline. Do not use with 'messages'.")
return_full_text: Optional[bool] = Field(True, description="Return full text if True, else only added text")
clean_up_tokenization_spaces: Optional[bool] = Field(False, description="Clean up extra spaces in text output")
prefix: Optional[str] = Field(None, description="Prefix added to prompt")
handle_long_generation: Optional[str] = Field(None, description="Strategy to handle long generation")
generate_kwargs: Optional[GenerateKwargs] = Field(default_factory=GenerateKwargs, description="Additional kwargs for generate method")
# Field for conversational model
messages: Optional[List[Message]] = Field(None, description="Messages for conversational model. Required for conversational pipeline. Do not use with 'prompt'.")
def messages_to_dict_list(self):
return [message.dict() for message in self.messages] if self.messages else []
class ErrorResponse(BaseModel):
detail: str
@app.post(
"/chat",
summary="Chat Endpoint",
responses={
200: {
"description": "Successful Response",
"content": {
"application/json": {
"examples": {
"text_generation": {
"summary": "Text Generation Response",
"value": {
"Result": "Generated text based on the prompt."
}
},
"conversation": {
"summary": "Conversation Response",
"value": {
"Result": "Response to the last message in the conversation."
}
}
}
}
}
},
400: {
"model": ErrorResponse,
"description": "Validation Error",
"content": {
"application/json": {
"examples": {
"missing_prompt": {
"summary": "Missing Prompt",
"value": {"detail": "Text generation parameter prompt required"}
},
"missing_messages": {
"summary": "Missing Messages",
"value": {"detail": "Conversational parameter messages required"}
}
}
}
}
},
500: {
"model": ErrorResponse,
"description": "Internal Server Error"
}
}
)
def generate_text(
request_model: Annotated[
UnifiedRequestModel,
Body(
openapi_examples={
"text_generation_example": {
"summary": "Text Generation Example",
"description": "An example of a text generation request.",
"value": {
"prompt": "Tell me a joke",
"return_full_text": True,
"clean_up_tokenization_spaces": False,
"prefix": None,
"handle_long_generation": None,
"generate_kwargs": GenerateKwargs().dict(),
},
},
"conversation_example": {
"summary": "Conversation Example",
"description": "An example of a conversational request.",
"value": {
"messages": [
{"role": "user", "content": "What is your favourite condiment?"},
{"role": "assistant", "content": "Well, im quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever im cooking up in the kitchen!"},
{"role": "user", "content": "Do you have mayonnaise recipes?"}
],
"return_full_text": True,
"clean_up_tokenization_spaces": False,
"prefix": None,
"handle_long_generation": None,
"generate_kwargs": GenerateKwargs().dict(),
},
},
},
),
],
):
"""
Processes chat requests, generating text based on the specified pipeline (text generation or conversational).
Validates required parameters based on the pipeline and returns the generated text.
"""
user_generate_kwargs = request_model.generate_kwargs.dict() if request_model.generate_kwargs else {}
generate_kwargs = {**default_generate_config, **user_generate_kwargs}
if args.pipeline == "text-generation":
if not request_model.prompt:
logger.error("Text generation parameter prompt required")
raise HTTPException(status_code=400, detail="Text generation parameter prompt required")
sequences = pipeline(
request_model.prompt,
# return_tensors=request_model.return_tensors,
# return_text=request_model.return_text,
return_full_text=request_model.return_full_text,
clean_up_tokenization_spaces=request_model.clean_up_tokenization_spaces,
prefix=request_model.prefix,
handle_long_generation=request_model.handle_long_generation,
**generate_kwargs
)
result = ""
for seq in sequences:
logger.debug(f"Result: {seq['generated_text']}")
result += seq['generated_text']
return {"Result": result}
elif args.pipeline == "conversational":
if not request_model.messages:
logger.error("Conversational parameter messages required")
raise HTTPException(status_code=400, detail="Conversational parameter messages required")
response = pipeline(
request_model.messages_to_dict_list(),
clean_up_tokenization_spaces=request_model.clean_up_tokenization_spaces,
**generate_kwargs
)
return {"Result": str(response[-1])}
else:
logger.error("Invalid pipeline type")
raise HTTPException(status_code=400, detail="Invalid pipeline type")
class MemoryInfo(BaseModel):
used: str
total: str
class CPUInfo(BaseModel):
load_percentage: float
physical_cores: int
total_cores: int
memory: MemoryInfo
class GPUInfo(BaseModel):
id: str
name: str
load: str
temperature: str
memory: MemoryInfo
class MetricsResponse(BaseModel):
gpu_info: Optional[List[GPUInfo]] = None
cpu_info: Optional[CPUInfo] = None
@app.get(
"/metrics",
response_model=MetricsResponse,
summary="Metrics Endpoint",
responses={
200: {
"description": "Successful Response",
"content": {
"application/json": {
"examples": {
"gpu_metrics": {
"summary": "Example when GPUs are available",
"value": {
"gpu_info": [{"id": "GPU-1234", "name": "GeForce GTX 950", "load": "25.00%", "temperature": "55 C", "memory": {"used": "1.00 GB", "total": "2.00 GB"}}],
"cpu_info": None # Indicates CPUs info might not be present when GPUs are available
}
},
"cpu_metrics": {
"summary": "Example when only CPU is available",
"value": {
"gpu_info": None, # Indicates GPU info might not be present when only CPU is available
"cpu_info": {"load_percentage": 20.0, "physical_cores": 4, "total_cores": 8, "memory": {"used": "4.00 GB", "total": "16.00 GB"}}
}
}
}
}
}
},
500: {
"description": "Internal Server Error",
"model": ErrorResponse,
}
}
)
def get_metrics():
"""
Provides system metrics, including GPU details if available, or CPU and memory usage otherwise.
Useful for monitoring the resource utilization of the server running the ML models.
"""
try:
if torch.cuda.is_available():
gpus = GPUtil.getGPUs()
gpu_info = [GPUInfo(
id=str(gpu.id),
name=gpu.name,
load=f"{gpu.load * 100:.2f}%",
temperature=f"{gpu.temperature} C",
memory=MemoryInfo(
used=f"{gpu.memoryUsed / (1024 ** 3):.2f} GB",
total=f"{gpu.memoryTotal / (1024 ** 3):.2f} GB"
)
) for gpu in gpus]
return MetricsResponse(gpu_info=gpu_info)
else:
# Gather CPU metrics
cpu_usage = psutil.cpu_percent(interval=1, percpu=False)
physical_cores = psutil.cpu_count(logical=False)
total_cores = psutil.cpu_count(logical=True)
virtual_memory = psutil.virtual_memory()
memory = MemoryInfo(
used=f"{virtual_memory.used / (1024 ** 3):.2f} GB",
total=f"{virtual_memory.total / (1024 ** 3):.2f} GB"
)
cpu_info = CPUInfo(
load_percentage=cpu_usage,
physical_cores=physical_cores,
total_cores=total_cores,
memory=memory
)
return MetricsResponse(cpu_info=cpu_info)
except Exception as e:
logger.error(f"Error fetching metrics: {e}")
raise HTTPException(status_code=500, detail=str(e))
def shutdown_handler(sig, frame):
sys.exit(0)
if __name__ == "__main__":
signal.signal(signal.SIGINT, shutdown_handler)
local_rank = int(os.environ.get("LOCAL_RANK", 0)) # Default to 0 if not set
port = 5000 + local_rank # Adjust port based on local rank
logger.info(f"Starting server on port {port}")
uvicorn.run(app=app, host='0.0.0.0', port=port)