-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
1684 lines (748 loc) · 49.7 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html class="theme-next gemini use-motion" lang="zh-Hans">
<head><meta name="generator" content="Hexo 3.8.0">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1">
<meta name="theme-color" content="#222">
<meta http-equiv="Cache-Control" content="no-transform">
<meta http-equiv="Cache-Control" content="no-siteapp">
<link href="/lib/fancybox/source/jquery.fancybox.css?v=2.1.5" rel="stylesheet" type="text/css">
<link href="/lib/font-awesome/css/font-awesome.min.css?v=4.6.2" rel="stylesheet" type="text/css">
<link href="/css/main.css?v=5.1.4" rel="stylesheet" type="text/css">
<link rel="apple-touch-icon" sizes="180x180" href="/images/apple-touch-icon-next.png?v=5.1.4">
<link rel="icon" type="image/png" sizes="32x32" href="/images/favicon-32x32-next.png?v=5.1.4">
<link rel="icon" type="image/png" sizes="16x16" href="/images/favicon-16x16-next.png?v=5.1.4">
<link rel="mask-icon" href="/images/logo.svg?v=5.1.4" color="#222">
<meta name="keywords" content="scriptboy,scriptkid,scriptkiddie">
<meta property="og:type" content="website">
<meta property="og:title" content="ScriptBoy's Blog">
<meta property="og:url" content="http://scriptboy.me/index.html">
<meta property="og:site_name" content="ScriptBoy's Blog">
<meta property="og:locale" content="zh-Hans">
<meta name="twitter:card" content="summary">
<meta name="twitter:title" content="ScriptBoy's Blog">
<script type="text/javascript" id="hexo.configurations">
var NexT = window.NexT || {};
var CONFIG = {
root: '/',
scheme: 'Gemini',
version: '5.1.4',
sidebar: {"position":"left","display":"post","offset":12,"b2t":false,"scrollpercent":false,"onmobile":false},
fancybox: true,
tabs: true,
motion: {"enable":true,"async":false,"transition":{"post_block":"fadeIn","post_header":"slideDownIn","post_body":"slideDownIn","coll_header":"slideLeftIn","sidebar":"slideUpIn"}},
duoshuo: {
userId: '0',
author: '博主'
},
algolia: {
applicationID: '',
apiKey: '',
indexName: '',
hits: {"per_page":10},
labels: {"input_placeholder":"Search for Posts","hits_empty":"We didn't find any results for the search: ${query}","hits_stats":"${hits} results found in ${time} ms"}
}
};
</script>
<link rel="canonical" href="http://scriptboy.me/">
<title>ScriptBoy's Blog</title>
</head>
<body itemscope="" itemtype="http://schema.org/WebPage" lang="zh-Hans">
<div class="container sidebar-position-left
page-home">
<div class="headband"></div>
<header id="header" class="header" itemscope="" itemtype="http://schema.org/WPHeader">
<div class="header-inner"><div class="site-brand-wrapper">
<div class="site-meta ">
<div class="custom-logo-site-title">
<a href="/" class="brand" rel="start">
<span class="logo-line-before"><i></i></span>
<span class="site-title">ScriptBoy's Blog</span>
<span class="logo-line-after"><i></i></span>
</a>
</div>
<p class="site-subtitle">一个曾经的脚本男孩</p>
</div>
<div class="site-nav-toggle">
<button>
<span class="btn-bar"></span>
<span class="btn-bar"></span>
<span class="btn-bar"></span>
</button>
</div>
</div>
<nav class="site-nav">
<ul id="menu" class="menu">
<li class="menu-item menu-item-home">
<a href="/" rel="section">
<i class="menu-item-icon fa fa-fw fa-home"></i> <br>
首页
</a>
</li>
<li class="menu-item menu-item-categories">
<a href="/categories/" rel="section">
<i class="menu-item-icon fa fa-fw fa-th"></i> <br>
分类
</a>
</li>
<li class="menu-item menu-item-tags">
<a href="/tags/" rel="section">
<i class="menu-item-icon fa fa-fw fa-tags"></i> <br>
标签
</a>
</li>
<li class="menu-item menu-item-archives">
<a href="/archives/" rel="section">
<i class="menu-item-icon fa fa-fw fa-archive"></i> <br>
归档
</a>
</li>
<li class="menu-item menu-item-about">
<a href="/about/" rel="section">
<i class="menu-item-icon fa fa-fw fa-user"></i> <br>
关于
</a>
</li>
</ul>
</nav>
</div>
</header>
<main id="main" class="main">
<div class="main-inner">
<div class="content-wrap">
<div id="content" class="content">
<section id="posts" class="posts-expand">
<article class="post post-type-normal" itemscope="" itemtype="http://schema.org/Article">
<div class="post-block">
<link itemprop="mainEntityOfPage" href="http://scriptboy.me/2020/04/03/thinking-about-reinforcement-learning-for-recommendation-system/">
<span hidden itemprop="author" itemscope="" itemtype="http://schema.org/Person">
<meta itemprop="name" content="ScriptBoy">
<meta itemprop="description" content="">
<meta itemprop="image" content="/images/avatar.gif">
</span>
<span hidden itemprop="publisher" itemscope="" itemtype="http://schema.org/Organization">
<meta itemprop="name" content="ScriptBoy's Blog">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
<a class="post-title-link" href="/2020/04/03/thinking-about-reinforcement-learning-for-recommendation-system/" itemprop="url">深度强化学习DRL在推荐系统应用的思考</a></h1>
<div class="post-meta">
<span class="post-time">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建于" itemprop="dateCreated datePublished" datetime="2020-04-03T22:05:33+08:00">
2020-04-03
</time>
</span>
<span class="post-category">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope="" itemtype="http://schema.org/Thing">
<a href="/categories/推荐系统-推荐算法/" itemprop="url" rel="index">
<span itemprop="name">推荐系统/推荐算法</span>
</a>
</span>
</span>
<span class="post-comments-count">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-comment-o"></i>
</span>
<a href="/2020/04/03/thinking-about-reinforcement-learning-for-recommendation-system/#comments" itemprop="discussionUrl">
<span class="post-comments-count valine-comment-count" data-xid="/2020/04/03/thinking-about-reinforcement-learning-for-recommendation-system/" itemprop="commentCount"></span>
</a>
</span>
<span id="/2020/04/03/thinking-about-reinforcement-learning-for-recommendation-system/" class="leancloud_visitors" data-flag-title="深度强化学习DRL在推荐系统应用的思考">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-eye"></i>
</span>
<span class="post-meta-item-text">阅读次数:</span>
<span class="leancloud-visitors-count"></span>
</span>
<div class="post-wordcount">
<span class="post-meta-item-icon">
<i class="fa fa-file-word-o"></i>
</span>
<span class="post-meta-item-text">字数统计:</span>
<span title="字数统计">
567
</span>
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-clock-o"></i>
</span>
<span class="post-meta-item-text">阅读时长 ≈</span>
<span title="阅读时长">
1
</span>
</div>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<h2 id="问题描述"><a href="#问题描述" class="headerlink" title="问题描述"></a>问题描述</h2><p>最近一段时间,一直忙着调研强化学习,特别是深度学强化学习如何和推荐系统相结合。在看个半个月强化学习相关书籍和资料后,开始找寻RL For RecSys相关的paper,刚开始一搜,觉得还挺多嘛,入手应该不难。像Google、Microsoft、阿里、京东均有发表,特别是京东,好几篇,当时就觉得挺激动,不过细阅后,发现实际在生产线上落地过的,应该只有前三者,而且也是ABTest状态,京东是线下用模拟器跑的,感觉说服力不够。所以,实际上,能供参考的有效资料并不是特别丰富,很多细节估计得靠上线后去把握,去琢磨。</p>
<h2 id="背景描述"><a href="#背景描述" class="headerlink" title="背景描述"></a>背景描述</h2><p>目前我所参与的推荐系统和算法的开发,是作用于一款Feed流形式的资讯类app,目前线上的模型有LR、GBDT+LR、各种DNN等,做各种召回、排序的同事也挺多,在重排这快,目前还是以策略和人工规则为主,各个公司应该也都差不多,比如类目打散、类目限制、强插、强出等等,比较复杂,比较臃肿,但是重排也是特别重要的一块,在这里,物品多样性的控制显的尤为重要。推荐系统从抽象的来说,就是准确率和多样性的一个综合,在不同的上下文环境,不同的用户,这个比例的控制对用户体验,对指标,有着巨大的影响。所以,很自然的想到,如果想在重排这块做点工作,强化学习是个值得深入的方向。虽然也看到有阿里论文介绍针对List-Wise优化的监督学习方法,不过在公司现有的业务状况下,首先还是考虑了用强化学习去控制重排中的各种参数,比如排序多模型融合时候的融合参数,类目数量的个性化控制,是否要插入视频,插入几个视频等等,这些场景应用和公司本身业务联系更紧密。</p>
<h2 id="心得体会"><a href="#心得体会" class="headerlink" title="心得体会"></a>心得体会</h2><p>待补充</p>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</div>
</article>
<article class="post post-type-normal" itemscope="" itemtype="http://schema.org/Article">
<div class="post-block">
<link itemprop="mainEntityOfPage" href="http://scriptboy.me/2019/01/28/why-sigmod-can-be-regarded-as-probability/">
<span hidden itemprop="author" itemscope="" itemtype="http://schema.org/Person">
<meta itemprop="name" content="ScriptBoy">
<meta itemprop="description" content="">
<meta itemprop="image" content="/images/avatar.gif">
</span>
<span hidden itemprop="publisher" itemscope="" itemtype="http://schema.org/Organization">
<meta itemprop="name" content="ScriptBoy's Blog">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
<a class="post-title-link" href="/2019/01/28/why-sigmod-can-be-regarded-as-probability/" itemprop="url">为什么逻辑回归是sigmoid形式</a></h1>
<div class="post-meta">
<span class="post-time">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建于" itemprop="dateCreated datePublished" datetime="2019-01-28T18:06:54+08:00">
2019-01-28
</time>
</span>
<span class="post-category">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope="" itemtype="http://schema.org/Thing">
<a href="/categories/机器学习/" itemprop="url" rel="index">
<span itemprop="name">机器学习</span>
</a>
</span>
</span>
<span class="post-comments-count">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-comment-o"></i>
</span>
<a href="/2019/01/28/why-sigmod-can-be-regarded-as-probability/#comments" itemprop="discussionUrl">
<span class="post-comments-count valine-comment-count" data-xid="/2019/01/28/why-sigmod-can-be-regarded-as-probability/" itemprop="commentCount"></span>
</a>
</span>
<span id="/2019/01/28/why-sigmod-can-be-regarded-as-probability/" class="leancloud_visitors" data-flag-title="为什么逻辑回归是sigmoid形式">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-eye"></i>
</span>
<span class="post-meta-item-text">阅读次数:</span>
<span class="leancloud-visitors-count"></span>
</span>
<div class="post-wordcount">
<span class="post-meta-item-icon">
<i class="fa fa-file-word-o"></i>
</span>
<span class="post-meta-item-text">字数统计:</span>
<span title="字数统计">
516
</span>
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-clock-o"></i>
</span>
<span class="post-meta-item-text">阅读时长 ≈</span>
<span title="阅读时长">
1
</span>
</div>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<p>最近在公司面试应聘者机器学习基础的过程中,比较喜欢问面试者一个问题,就是逻辑回归是sigmoid形式,sigmoid的结果是真实的概率吗,为什么可以把它当作一个probability来处理。印象中是没有一个人可以比较深入回答的,绝大部分的回答都是sigmoid函数可以映射在0、1之间,但是0、1之间的数值和概率有啥关系呢?比较少人去深入了解这个。</p>
<p>知识的深度可以挖掘很多层,我觉得这个问题可以从广义线性模型来展开。GLM假设预测值的分布属于指数分布,而二分类问题可以看作是伯努利分布,伯努利分布又属于指数分布的一种。</p>
<p>伯努利分布:<br>$$<br>p(y,\eta)=b(y)exp(\eta^{T}T(y)-a(\eta))<br>$$<br>伯努利分布:<br>$$<br>p(y,\eta)=\pi^{y}(1-\pi)^{1-y}<br>$$<br>π表示正样本的概率,对上述分布做一下转换:<br>$$<br>p(y:\pi)=exp(y*log(\frac{\pi}{1-\pi})+log(1-\pi))<br>$$<br>因为上面提到伯努利属于指数分布一种,所以对用上式和GLM的一一对应,可以得到:<br>$$<br>log(\frac{\pi}{1-\pi})=\eta^{T}=x^{T}\theta<br>$$<br>所以,可以得到:<br>$$<br>\pi=\frac{exp(x^{T}\theta)}{1+exp(x^{T}\theta)}<br>$$<br>而π表示正样本的概率,所以sigmoid可以在一定的假设条件下表示成概率。</p>
<p>总结:逻辑回归模型之所以是sigmoid的形式,源于我们假设y服从伯努利分布,伯努利分布又属于指数分布族,经过推导,将伯努利分布变成指数分布族的形式后。我们发现伯努利分布的唯一参数Φ与指数分布族中的参数η具有sigmoid函数关系,于是我们转而求η与x的关系,此时,我们又假设η与x具有线性关系。<br>至此,在两个假设条件下,找到了我们要用的模型的样子,也就是逻辑回归。</p>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</div>
</article>
<article class="post post-type-normal" itemscope="" itemtype="http://schema.org/Article">
<div class="post-block">
<link itemprop="mainEntityOfPage" href="http://scriptboy.me/2019/01/28/an-article-in-2008/">
<span hidden itemprop="author" itemscope="" itemtype="http://schema.org/Person">
<meta itemprop="name" content="ScriptBoy">
<meta itemprop="description" content="">
<meta itemprop="image" content="/images/avatar.gif">
</span>
<span hidden itemprop="publisher" itemscope="" itemtype="http://schema.org/Organization">
<meta itemprop="name" content="ScriptBoy's Blog">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
<a class="post-title-link" href="/2019/01/28/an-article-in-2008/" itemprop="url">无意找到的2008年的一篇水文</a></h1>
<div class="post-meta">
<span class="post-time">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建于" itemprop="dateCreated datePublished" datetime="2019-01-28T15:50:34+08:00">
2019-01-28
</time>
</span>
<span class="post-category">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope="" itemtype="http://schema.org/Thing">
<a href="/categories/人生感悟/" itemprop="url" rel="index">
<span itemprop="name">人生感悟</span>
</a>
</span>
</span>
<span class="post-comments-count">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-comment-o"></i>
</span>
<a href="/2019/01/28/an-article-in-2008/#comments" itemprop="discussionUrl">
<span class="post-comments-count valine-comment-count" data-xid="/2019/01/28/an-article-in-2008/" itemprop="commentCount"></span>
</a>
</span>
<span id="/2019/01/28/an-article-in-2008/" class="leancloud_visitors" data-flag-title="无意找到的2008年的一篇水文">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-eye"></i>
</span>
<span class="post-meta-item-text">阅读次数:</span>
<span class="leancloud-visitors-count"></span>
</span>
<div class="post-wordcount">
<span class="post-meta-item-icon">
<i class="fa fa-file-word-o"></i>
</span>
<span class="post-meta-item-text">字数统计:</span>
<span title="字数统计">
2.1k
</span>
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-clock-o"></i>
</span>
<span class="post-meta-item-text">阅读时长 ≈</span>
<span title="阅读时长">
7
</span>
</div>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<p>无意在QQ网盘里找到的2008年高三时候扯的一篇博客还是啥来着,不知道是自己写的还是抄的,随便看看了,好low,哈哈。</p>
<pre><code> 几种入侵方法的分析及防御方法
随着现在互联网的不断发展,人们可以在网上做的事情愈来愈多,从最初的简易BBS到E-mail,从在线聊天到网上购物,涉及到的方面也越来越多,尤其是个人隐私以及重要的数据,甚至包括金融财产方面的资料。可能就在我们上网冲浪不经意的一瞬间,电脑系统已经被病毒木马等侵入,个人的数据也不知不觉中被发送给了黑客,想一想这是多么恐怖的事情。而我,也在几年间的上网冲浪中遇到过许多次的系统被入侵的事件,这里,我就讲讲几种常见的入侵方法以及防御方法。
</code></pre>
<!--noindex-->
<div class="post-button text-center">
<a class="btn" href="/2019/01/28/an-article-in-2008/#more" rel="contents">
阅读全文 »
</a>
</div>
<!--/noindex-->
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</div>
</article>
<article class="post post-type-normal" itemscope="" itemtype="http://schema.org/Article">
<div class="post-block">
<link itemprop="mainEntityOfPage" href="http://scriptboy.me/2019/01/28/performance-optimization-of-tensorflow-serving-client-for-python/">
<span hidden itemprop="author" itemscope="" itemtype="http://schema.org/Person">
<meta itemprop="name" content="ScriptBoy">
<meta itemprop="description" content="">
<meta itemprop="image" content="/images/avatar.gif">
</span>
<span hidden itemprop="publisher" itemscope="" itemtype="http://schema.org/Organization">
<meta itemprop="name" content="ScriptBoy's Blog">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
<a class="post-title-link" href="/2019/01/28/performance-optimization-of-tensorflow-serving-client-for-python/" itemprop="url">Tensorflow serving python客户端碰到的性能问题以及解决办法</a></h1>
<div class="post-meta">
<span class="post-time">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建于" itemprop="dateCreated datePublished" datetime="2019-01-28T10:56:49+08:00">
2019-01-28
</time>
</span>
<span class="post-category">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope="" itemtype="http://schema.org/Thing">
<a href="/categories/Tensorflow/" itemprop="url" rel="index">
<span itemprop="name">Tensorflow</span>
</a>
</span>
</span>
<span class="post-comments-count">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-comment-o"></i>
</span>
<a href="/2019/01/28/performance-optimization-of-tensorflow-serving-client-for-python/#comments" itemprop="discussionUrl">
<span class="post-comments-count valine-comment-count" data-xid="/2019/01/28/performance-optimization-of-tensorflow-serving-client-for-python/" itemprop="commentCount"></span>
</a>
</span>
<span id="/2019/01/28/performance-optimization-of-tensorflow-serving-client-for-python/" class="leancloud_visitors" data-flag-title="Tensorflow serving python客户端碰到的性能问题以及解决办法">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-eye"></i>
</span>
<span class="post-meta-item-text">阅读次数:</span>
<span class="leancloud-visitors-count"></span>
</span>
<div class="post-wordcount">
<span class="post-meta-item-icon">
<i class="fa fa-file-word-o"></i>
</span>
<span class="post-meta-item-text">字数统计:</span>
<span title="字数统计">
321
</span>
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-clock-o"></i>
</span>
<span class="post-meta-item-text">阅读时长 ≈</span>
<span title="阅读时长">
1
</span>
</div>
</div>
</header>
<div class="post-body" itemprop="articleBody">