forked from jfm3/fsbench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfsbench.c
658 lines (598 loc) · 18.6 KB
/
fsbench.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
// fsbench.c
// Copyright (C) 2010 Joseph F. Miklojcik III.
//
// This file is part of fsbench.
//
// fsbench is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// fsbench is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with fsbench. If not, see <http://www.gnu.org/licenses/>.
// fsbench is a program to take straightforward file i/o benchmarks
// from a user space process to a single file in the file system. It
// reports benchmarks in the form of elapsed times for several
// individual tests, for which file sizes, chunk sizes, and random
// seek counts can be specified on the command line.
//
// The FALLOCATE benchmark measures how long it takes to
// posix_fallocate() and then fsync() a file of the name and size
// specified on the command line. The APPEND benchmark measures the
// same operation as fallocate() when performed using explicit write()
// system calls in specified chunk sizes. This both indicates whether
// the filesystem and C library implements posix_fallocate() using
// special filesystem features, and benchmarks how long it takes to
// generate a (presumably large) file filled with zeros.
//
// The UNLINK benchmark measures how long it takes to delete a
// (presumably large) file from the filesystem.
//
// The SEEK READ and SEEK WRITE benchmarks measure how long it takes
// to do a certain number of lseek()/read() or lseek()/write()
// operations over a file of random data. No file buffer cache
// invalidation is performed, although a single fsync() is performed
// in the SEEK WRITE benchmark after all seeking and writing is
// finished.
//
// These benchmarks were chosen to mimic typical expensive filesystem
// operations performed by various databases and object stores. A run
// of these benchmarks serves as part of a battery of sanity tests for
// new servers.
// We presume that a long int will hold an off_t, a size_t, and other
// integer types used in arguments to library calls that wrap system
// calls, and without any signedness shenanigans. If your POSIX
// implementor is pathological, you've got bigger problems.
#ifndef VERSION
#define VERSION "2"
#endif
#define _XOPEN_SOURCE 600
#define _BSD_SOURCE
#include <sys/types.h>
#include <sys/times.h>
#include <sys/time.h>
#include <sys/stat.h>
#include <sys/resource.h>
#include <fcntl.h>
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <getopt.h>
#include <string.h>
#include <strings.h> // for rindex() on older Linuxen
// In this program, when library calls fail, we generally want to
// print an error message and exit(). We never want to try something
// else or continue on. So we wrap the library functions that wrap
// system calls with our own foo_or_exit() function which checks for
// error conditions. If errors are found, these functions perror()
// and exit() with one of the following codes. As with all UNIX
// programs, the zero exit code should be reserved for success. We'd
// use sysexits.h here, but it would require too much errno analysis
// for only a more vague notion of what went wrong in return.
#define EXIT_OUT_OF_MEMORY 1
#define EXIT_COMMAND_LINE_BORKED 2
#define EXIT_CANT_OPEN 3
#define EXIT_CANT_FALLOCATE 4
#define EXIT_CANT_CLOSE 5
#define EXIT_CANT_WRITE 6
#define EXIT_CANT_UNLINK 7
#define EXIT_CANT_LSEEK 8
#define EXIT_CANT_READ 9
#define EXIT_CANT_FSYNC 10
#define EXIT_CANT_GETPRIORITY 11
#define EXIT_CANT_OPEN_LOADAVG 12
// Defines for times that are very fast, and need a loop to capture a time
#define ALLOCATIONAVG 100000
static void *malloc_or_exit(size_t size)
{
void *p = NULL;
p = malloc(size);
if (p == NULL) {
fprintf(stderr, "Out of memory.\n");
exit(EXIT_OUT_OF_MEMORY);
}
memset(p, 0, size);
return (p);
}
static int open_or_exit(const char *file_name)
{
int result = -1;
errno = 0;
result = open(file_name,
O_RDWR | O_CREAT | O_EXCL,
S_IRUSR | S_IWUSR);
if (result < 0) {
perror("Can't open");
exit(EXIT_CANT_OPEN);
}
return (result);
}
static void close_or_exit(int fd)
{
int result = -1;
errno = 0;
result = close(fd);
if (result < 0) {
perror("Can't close");
exit(EXIT_CANT_CLOSE);
}
}
static void write_or_exit(int fd, char *buffer, size_t count)
{
int result = -1;
errno = 0;
result = write(fd, buffer, count);
if (result < 0) {
perror("Can't write");
exit(EXIT_CANT_WRITE);
}
}
static void posix_fallocate_or_exit(int fd, off_t offset, off_t length)
{
int result = 0;
result = posix_fallocate(fd, offset, length);
// posix_fallocate() doesn't use errno/perror. Lovely.
switch (result) {
case EBADF:
fprintf(stderr,
"Not a valid file descriptor, or not opened for writing.\n");
break;
case EFBIG:
fprintf(stderr, "Offset + length > maximum file size.\n");
break;
case EINVAL:
fprintf(stderr, "Offset was < 0, or length was <= 0.\n");
break;
case ENODEV:
fprintf(stderr, "Not a regular file.\n");
break;
case ENOSPC:
fprintf(stderr, "No space left on device.\n");
break;
case ESPIPE:
fprintf(stderr, "How did a pipe get in here?\n");
break;
case 0:
default:
return;
}
exit(EXIT_CANT_FALLOCATE);
}
static void unlink_or_exit(const char *file_name)
{
int result = -1;
errno = 0;
result = unlink(file_name);
if (result < 0) {
perror("Can't unlink");
exit(EXIT_CANT_UNLINK);
}
}
static void lseek_or_exit(int fd, off_t offset)
{
off_t result = -1;
errno = 0;
result = lseek(fd, offset, SEEK_SET);
if (result < 0) {
perror("Can't lseek");
exit(EXIT_CANT_LSEEK);
}
}
static void read_or_exit(int fd, void *buffer, int size)
{
int result = -1;
errno = 0;
result = read(fd, buffer, size);
if (result < 0) {
perror("Can't read");
exit(EXIT_CANT_READ);
}
}
static void fsync_or_exit(int fd)
{
int result = -1;
errno = 0;
result = fsync(fd);
if (result < 0) {
perror("Can't fsync");
exit(EXIT_CANT_FSYNC);
}
}
static int getpriority_or_exit()
{
int result = 0;
errno = 0;
result = getpriority(PRIO_PROCESS, 0);
// result can legitimately be -1, so check errno explicitly.
if (result == -1 && errno != 0) {
perror("Can't setpriority");
exit(EXIT_CANT_GETPRIORITY);
}
return (result);
}
// We represent moments in time with this moment struct. The idea is
// to hold the output of both times() and gettimeofday(), both of
// which hold durations since some known time, and that two moments
// get compared to compute a relative duration, which is the result of
// a benchmark.
struct moment {
struct tms cpu;
struct timeval real;
};
static void print_moment(struct moment *t)
{
float ticks_per_second = (float) sysconf(_SC_CLK_TCK);
printf("user = %.2fs\n",
((float) t->cpu.tms_utime) / ticks_per_second);
printf("system = %.2fs\n",
((float) t->cpu.tms_stime) / ticks_per_second);
printf("real = %.2fs\n",
((float) t->real.tv_sec)
+ ((float) t->real.tv_usec / 1000000.0));
}
static struct moment duration(struct moment start, struct moment end)
{
struct moment result;
memset(&result, 0, sizeof (struct moment));
result.cpu.tms_utime = end.cpu.tms_utime - start.cpu.tms_utime;
result.cpu.tms_stime = end.cpu.tms_stime - start.cpu.tms_stime;
result.cpu.tms_cutime = end.cpu.tms_cutime - start.cpu.tms_cutime;
result.cpu.tms_cstime = end.cpu.tms_cstime - start.cpu.tms_cstime;
timerclear(&result.real);
timersub(&end.real, &start.real, &result.real);
return (result);
}
// General notes on benchmark implementations:
//
// Nest calls to gettimeofday() within the calls to times(). They
// both should be fast operations, and the whole show is not really
// accurate enough for this to matter, but for the sake of somber
// measurement we should at least do it the same way in each
// benchmark.
//
// Some benchmarks fill files with random data. Some benchmarks seek
// around to random locations within a file. Randomness is obtained
// by calls to srandom() and random(), which should be good enough to
// foil any compression in filesystem dataflow, and to generate a
// challenge for a physical disk and an I/O scheduler. Benchmark
// implementations should not cause calls to srandom(); they should
// run exactly the same based on a particular seed.
// Generate random % foo without bias. Uses `long int` to match
// random() from library.
static long int random_to(long int n)
{
long int result = 0;
if (n == 0) return (0);
result = random();
while (result > RAND_MAX - (RAND_MAX % n))
result = random();
return (result);
}
// Fill a chunk with randomness.
static void random_fill(char *p, int size)
{
int i = 0;
for (i = 0; i < size; i++) p[i] = (char) random();
}
static struct moment benchmark_fallocate(const char *file_name,
long int file_size, long int chunk_size, long int n_seeks)
{
int fd = -1;
struct moment start;
struct moment end;
struct moment result;
int x;
memset(&start, 0, sizeof (struct moment));
memset(&end, 0, sizeof (struct moment));
memset(&result, 0, sizeof (struct moment));
fd = open_or_exit(file_name);
times(&start.cpu);
gettimeofday(&start.real, NULL);
for(x=0;x<ALLOCATIONAVG;x++)
{
posix_fallocate_or_exit(fd, 0, file_size * chunk_size);
fsync_or_exit(fd);
}
gettimeofday(&end.real, NULL);
times(&end.cpu);
close_or_exit(fd);
unlink_or_exit(file_name);
result = duration(start, end);
return (result);
}
static struct moment benchmark_unlink(const char *file_name,
long int file_size, long int chunk_size, long int n_seeks)
{
int fd = -1;
struct moment start;
struct moment end;
struct moment result;
memset(&start, 0, sizeof (struct moment));
memset(&end, 0, sizeof (struct moment));
memset(&result, 0, sizeof (struct moment));
fd = open_or_exit(file_name);
posix_fallocate_or_exit(fd, 0, file_size * chunk_size);
fsync_or_exit(fd);
close_or_exit(fd);
times(&start.cpu);
gettimeofday(&start.real, NULL);
unlink_or_exit(file_name);
gettimeofday(&end.real, NULL);
times(&end.cpu);
result = duration(start, end);
return (result);
}
static struct moment benchmark_append(const char *file_name,
long int file_size, long int chunk_size, long int n_seeks)
{
int fd = -1;
int i = 0;
char *chunk_buffer = NULL;
struct moment start;
struct moment end;
struct moment result;
memset(&start, 0, sizeof (struct moment));
memset(&end, 0, sizeof (struct moment));
memset(&result, 0, sizeof (struct moment));
chunk_buffer = malloc_or_exit(chunk_size);
// Fill will zero to mimic posix_fallocate().
memset(chunk_buffer, 0, chunk_size);
fd = open_or_exit(file_name);
times(&start.cpu);
gettimeofday(&start.real, NULL);
for (i = 0; i < file_size; i++) {
write_or_exit(fd, chunk_buffer, chunk_size);
}
fsync_or_exit(fd);
gettimeofday(&end.real, NULL);
times(&end.cpu);
free(chunk_buffer);
close_or_exit(fd);
unlink_or_exit(file_name);
result = duration(start, end);
return (result);
}
static struct moment benchmark_seek_read(const char *file_name,
long int file_size, long int chunk_size, long int n_seeks)
{
int fd = -1;
int i = 0;
int seek_max = (file_size - 1) * chunk_size;
char *chunk_buffer = NULL;
struct moment start;
struct moment end;
struct moment result;
memset(&start, 0, sizeof (struct moment));
memset(&end, 0, sizeof (struct moment));
memset(&result, 0, sizeof (struct moment));
fd = open_or_exit(file_name);
chunk_buffer = malloc_or_exit(chunk_size);
for (i = 0; i < file_size; i++) {
random_fill(chunk_buffer, chunk_size);
write_or_exit(fd, chunk_buffer, chunk_size);
}
fsync_or_exit(fd);
times(&start.cpu);
gettimeofday(&start.real, NULL);
for (i = 0; i < n_seeks; i++) {
lseek_or_exit(fd, random_to(seek_max));
read_or_exit(fd, chunk_buffer, chunk_size);
}
gettimeofday(&end.real, NULL);
times(&end.cpu);
free(chunk_buffer);
close_or_exit(fd);
unlink_or_exit(file_name);
result = duration(start, end);
return (result);
}
static struct moment benchmark_seek_write(const char *file_name,
long int file_size, long int chunk_size, long int n_seeks)
{
int fd = -1;
int i = 0;
int seek_to = 0;
char *chunk_buffer = NULL;
struct moment start;
struct moment end;
struct moment result;
memset(&start, 0, sizeof (struct moment));
memset(&end, 0, sizeof (struct moment));
memset(&result, 0, sizeof (struct moment));
fd = open_or_exit(file_name);
chunk_buffer = malloc_or_exit(chunk_size);
memset(chunk_buffer, 0, chunk_size);
for (i = 0; i < file_size; i++) {
write_or_exit(fd, chunk_buffer, chunk_size);
}
fsync_or_exit(fd);
times(&start.cpu);
gettimeofday(&start.real, NULL);
for (i = 0; i < n_seeks; i++) {
seek_to = random_to((file_size * chunk_size) - chunk_size);
lseek_or_exit(fd, seek_to);
write_or_exit(fd, chunk_buffer, chunk_size);
}
fsync_or_exit(fd);
gettimeofday(&end.real, NULL);
times(&end.cpu);
free(chunk_buffer);
close_or_exit(fd);
unlink_or_exit(file_name);
result = duration(start, end);
return (result);
}
static struct moment benchmark_seek_write_sync(const char *file_name,
long int file_size, long int chunk_size, long int n_seeks)
{
int fd = -1;
int i = 0;
int seek_to = 0;
char *chunk_buffer = NULL;
struct moment start;
struct moment end;
struct moment result;
memset(&start, 0, sizeof (struct moment));
memset(&end, 0, sizeof (struct moment));
memset(&result, 0, sizeof (struct moment));
fd = open_or_exit(file_name);
chunk_buffer = malloc_or_exit(chunk_size);
memset(chunk_buffer, 0, chunk_size);
for (i = 0; i < file_size; i++) {
write_or_exit(fd, chunk_buffer, chunk_size);
}
fsync_or_exit(fd);
times(&start.cpu);
gettimeofday(&start.real, NULL);
for (i = 0; i < n_seeks; i++) {
seek_to = random_to((file_size * chunk_size) - chunk_size);
lseek_or_exit(fd, seek_to);
write_or_exit(fd, chunk_buffer, chunk_size);
fsync_or_exit(fd);
}
gettimeofday(&end.real, NULL);
times(&end.cpu);
free(chunk_buffer);
close_or_exit(fd);
unlink_or_exit(file_name);
result = duration(start, end);
return (result);
}
static void check_priority()
{
int nice = getpriority_or_exit();
if (nice >= 0) {
printf("WARNING: priority is %d. Consider running as root, nice -20.\n", nice);
}
}
static void check_load()
{
FILE *load = fopen("/proc/loadavg", "r");
float one_minute = 0.0;
float five_minutes = 0.0;
float fifteen_minutes = 0.0;
if (load == NULL) {
fprintf(stderr, "Can't open /proc/loadavg for reading.\n");
exit(EXIT_CANT_OPEN_LOADAVG);
}
// fscanf() is plenty of parser for this job
fscanf(load, "%f %f %f ", &one_minute, &five_minutes, &fifteen_minutes);
if (one_minute > 1.0 || five_minutes > 1.0 || fifteen_minutes > 1.0) {
printf("WARNING: Load average is above 1.0 (%.2f %.2f %.2f).\n",
one_minute, five_minutes, fifteen_minutes);
printf(" Consider running on an unloaded system.\n");
}
}
static void perform(const char *print_name, long int random_seed,
struct moment (*benchmark)(const char *, long int, long int, long int),
const char *file_name, long int file_size, long int chunk_size,
long int n_seeks)
{
struct moment result;
memset(&result, 0, sizeof (struct moment));
srandom(random_seed);
sync();
result = benchmark(file_name, file_size, chunk_size, n_seeks);
printf("\nBENCHMARK: %s\n", print_name);
print_moment(&result);
}
static void print_usage(const char *const name)
{
fprintf(stderr, "Usage: %s\n", name);
fprintf(stderr, " [-f <file name>]\n");
fprintf(stderr, " [-c <chunk size>]\n");
fprintf(stderr, " [-s <file size in chunks>]\n");
fprintf(stderr, " [-r <random seed>]\n");
fprintf(stderr, " [-n <n seeks>]\n");
}
int main(int argc, char *const argv[])
{
int opt = 0;
int file_name_size = 0;
char *file_name = NULL;
char *base_name = NULL;
long int file_size = 1024 * 512; // .5M chunks default
long int chunk_size = 4 * 1024; // 4K bytes default
long int total_size = file_size * chunk_size;
long int random_seed = 9291969; // author's birthday default
long int n_seeks = 1024; // 1K default
struct moment result;
memset(&result, 0, sizeof (struct moment));
while ((opt = getopt(argc, argv, "f:s:c:r:n:")) != -1) {
switch (opt) {
case 'f':
// copy optarg into malloc'ed storage at file_name, and leak it
file_name_size = strlen(optarg);
file_name = malloc_or_exit(file_name_size);
memset(file_name, 0, file_name_size);
strncpy(file_name, optarg, file_name_size);
break;
case 'c':
chunk_size = atoi(optarg);
if (chunk_size <= 0) goto borken;
break;
case 's':
file_size = atoi(optarg);
if (file_size <= 0) goto borken;
break;
case 'r':
random_seed = atoi(optarg);
break;
case 'n':
n_seeks = atoi(optarg);
if (n_seeks <= 0) goto borken;
break;
case '?':
borken:
default:
print_usage(argv[0]);
exit(EXIT_COMMAND_LINE_BORKED);
break;
}
}
if (file_name == NULL) {
// file name was not specified by user option
// malloc up room for basename + pid, and leak it
file_name_size = strlen(argv[0]) + 20;
file_name = malloc_or_exit(file_name_size);
memset(file_name, 0, file_name_size);
base_name = rindex(argv[0], '/');
if (* base_name == '\0') {
// there was no '/' in argv[0]
base_name = argv[0];
} else {
// skip leading '/'
base_name++;
}
sprintf(file_name, "./%s-%u~", base_name, getpid());
}
printf("This is fsbench, version %s, built on %s %s.\n",
VERSION, __DATE__, __TIME__);
printf("file name (-f) = %s\n", file_name);
printf("chunk size (-c) = %ld\n", chunk_size);
printf("file size in chunks (-s) = %ld\n", file_size);
total_size = file_size * chunk_size;
printf(" (file size * chunk size = %ld (%ldG))\n",
total_size, total_size / (1024 * 1024 * 1024));
printf("random seed (-r) = %ld\n", random_seed);
printf("number of seeks to try (-n) = %ld\n", n_seeks);
check_priority();
check_load();
#define ARGS(N, F) \
(N), random_seed, (F), file_name, file_size, chunk_size, n_seeks
perform(ARGS("FALLOCATE", benchmark_fallocate));
perform(ARGS("APPEND", benchmark_append));
perform(ARGS("UNLINK", benchmark_unlink));
perform(ARGS("SEEK READ", benchmark_seek_read));
perform(ARGS("SEEK WRITE", benchmark_seek_write));
#undef ARGS
printf("\nDone.\n");
return (0);
}