-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbuildOffsetForMorphemes.py
156 lines (109 loc) · 2.9 KB
/
buildOffsetForMorphemes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import numpy as np
import math
from sklearn.linear_model import SGDClassifier
from sklearn.neural_network import MLPClassifier
# random
import random
from gensim.models.word2vec import BrownCorpus, Word2Vec
# classifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
# gensim modules
#http://linanqiu.github.io/2015/10/07/word2vec-sentiment/
from gensim import utils
from gensim.models.doc2vec import LabeledSentence
from gensim.models import Doc2Vec
from sklearn.metrics import confusion_matrix
path= "/media/savasy/e1c25d76-82c0-4d0b-bab6-ed427ad63556/home/savasy/Desktop/corpus/mtm/xmldata/"
SIZE=300
def offset(pair):
if pair[0] in model.vocab:
if pair[1] in model.vocab:
return model[pair[0]] - model[pair[1]]
else:
print(pair[1]+" missing")
return []
print(pair[0]+" missing")
return []
def toStr(offs):
s=""
for o in offs:
s=s+ ","+ str('%f' % o)
return s
model=Word2Vec.load("/home/savasyildirim/Desktop/deepdene/tumSg1Dim300")
#model=Word2Vec.load(path+"models/"+modelName)
"""
605 noun+a3sg+p2pl+acc
584 noun+a3sg+p1pl+dat
"""
def buildCat(dosya):
cats=[]
for line in open(dosya):
line=line.strip().split(" ")
count= int(line[0])
cat= line[1]
if count>500 and "noun+" in cat:
cats.append(cat)
return cats
cats=buildCat("morphemes.txt")
"""
load word and formations
abidesi+abide+noun+a3sg+p3sg+nom
abidesi’nde+abide+noun+a3sg+p3sg+apos+loc
"""
dosya= "pairsForMorpology.txt"
data=[]
for line in open(dosya):
line = line.strip().split("+")
w1= line[0]
w2=line[1]
cat= "+".join(line[2:])
if cat in cats and len(w2)>2 and w1 !=w2:
data.append((w1,w2,cat))
train= [(offset((w1,w2)),cat) for w1,w2,cat in data]
train2= [t for t in train if t[0]!=[]]
"""
# Dosyaya Kaydetme
# kaydet
dosya="offsets.csv"
out=open(dosya, "w")
#header line
for i in range(300):
x=out.write("V"+str(i)+",")
x=out.write("CLASS\n")
# vectors
for r in train2:
x=out.write(toStr(r[0])[1:]+","+r[1]+"\n")
out.close()
"""
train3=[t[0] for t in train2]
label3=[t[1] for t in train2]
d=list(zip(train3,label3))
success=[]
for ii in range(0,3):
random.shuffle(d)
CUT=len(d)*5//10
train_arrays= [i[0] for i in d[:CUT]]
train_labels=[i[1] for i in d[:CUT]]
test_arrays= [i[0] for i in d[CUT:]]
test_labels= [i[1] for i in d[CUT:]]
#clf = SVC()
#clf.fit(train_arrays, train_labels)
#clf = SGDClassifier()
#clf.fit(train_arrays, train_labels)
#q=clf.score(test_arrays, test_labels)
#print(q)
clf = LogisticRegression()
clf.fit(train_arrays, train_labels)
#clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(300, 300,300 ), random_state=1)
#clf.fit(train_arrays, train_labels)
sc=clf.score(test_arrays, test_labels)
print(clf)
print(sc)
pr=clf.predict(test_arrays)
real= test_labels
print("confusion matrix")
cm=confusion_matrix(pr, real)
print(cm)
success.append(sc)
print(sum(success)/ len(success))