-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathProjection10Fold.py
175 lines (145 loc) · 3.2 KB
/
Projection10Fold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os, gensim, random
from gensim import corpora, models, similarities
from gensim.corpora import WikiCorpus, MmCorpus
from gensim.corpora import dictionary
from gensim.models.word2vec import BrownCorpus, Word2Vec
import numpy as np
from sklearn import linear_model
import math
from scipy import spatial
"""
to project i-th column
"""
def getCol(array, i):
col=[]
for t in array:
col.append(t[i])
return col
"""
to find hypernym of given word
"""
def findHyper(word):
yp=[]
for clf in clfList:
yp.append(clf.predict([model[word]]))
yp=np.transpose(yp)
ms=mostSimilar(model, yp[0])
return ms
"""
Compute Mean square error between two vectors
"""
def error(y1,y2):
sum=0
for t in zip(y1,y2):
sum=sum + (t[0]-t[1]) * (t[0]-t[1])
return math.sqrt( sum /len(y1))
"""
Cosine similairty , the most similar is to 1
"""
def cosine(x,y):
return 1 - spatial.distance.cosine(x,y)
"""
model: deep learning word2vec model
vec a: given word vector
it returns the most similar word to given vec
"""
def mostSimilar(model, vec):
max=0
wordX=""
for i in myvocab:
c=cosine(vec,model[i][:SIZE])
if c> max:
max=c
wordX=i
return wordX
"""
clf List
for a given xi vector
project it into another vector that should be its hypenym vector
"""
def clfPredict(xi, clfList):
yi=[ clf.predict(xi) for clf in clfList]
return yi
""" loading word2vec model"""
SIZE=300
modelName="sg0HS0Size"+str(SIZE)
model=Word2Vec.load("models/"+modelName)
#pair list
infile="hyp.csv"
# Training
pairs=[]
for line in open(infile):
line=line.strip().lower().split(",")
w1 = line[0]
w2 = line[1]
rel=line[2]
if w1 in model.vocab and w2 in model.vocab:
pairs.append((w1,w2,rel))
"""
model deki vocanlari size 900K , dolayısıyla bendeki ufak vocablary yi kullanıyoruz.
"""
myvocab =[]
for line in open("vocab.txt"):
word=line.strip().lower()
if word in model.vocab:
myvocab.append(word)
random.shuffle(pairs)
boy=len(pairs)
K=10
slice=int(boy/K)
cntTopla=[]
testSizeTopla=[]
pWordsTopla=[]
error=[]
for i in list(range(0,boy, slice )):
test= pairs[i:i+slice]
#print("TEST:",test)
train = [t for t in pairs if t not in test]
#print("traİn",train)
xvec=[]
yvec=[]
for w1,w2,rel in train:
xvec.append(model[w1][:SIZE])
yvec.append(model[w2][:SIZE])
# test pair preparation
xvecTest=[]
yvecTest=[]
for w1,w2,rel in test:
xvecTest.append(model[w1][:SIZE])
yvecTest.append(model[w2][:SIZE])
# yvec deki her bir boyut için clf uretiyoruz
# burda mesekla 300 tane clf var
# train
clfList=[]
for i in range(0,SIZE):
y=getCol(yvec,i)
clf = linear_model.SGDRegressor(loss='epsilon_insensitive')
qq=clf.fit(xvec, y)
clfList.append(clf)
yp=[]
for clf in clfList:
yp.append(clf.predict(xvecTest))
yp=np.transpose(yp)
pWords=[]
for y in yp:
ms=mostSimilar(model, y)
pWords.append(ms)
#print(ms)
#for i in zip( test, pWords):
#print(i)
pWordsTopla=pWordsTopla+ pWords
cnt=0
q=[]
for i in zip( test, pWords):
if(i[0][1]==i[1]):
#print(i)
cnt=cnt+1
q.append(i[1])
else:
error.append((i[0][1],i[1]))
cntTopla.append(cnt)
testSizeTopla.append(len(test))
print("iterat,on : ",len(testSizeTopla))
print("cnt", cnt)
print("test size:",len(test))
print(sum(cntTopla)/sum(testSizeTopla))