-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_tf2.py
167 lines (125 loc) · 5.22 KB
/
model_tf2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#!/opt/anaconda3/bin/python
import tensorflow.compat.v1 as tf
from tensorboard.plugins import projector
import math
import numpy
from PIL import Image
CLASS_NUM=10
tf.disable_v2_behavior()
def variable_summaries(var):
mean = tf.reduce_mean(var)
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('mean', mean)
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
def Dense(name, inData, hidden, noActivation = False):
with tf.variable_scope(name):
in_node = int(inData.get_shape()[1])
W = tf.Variable(tf.random_normal(shape = [in_node, hidden], mean = 0.01, stddev = 0.01))
b = tf.Variable(tf.random_normal(shape = [hidden], mean = 0.02, stddev = 0.01))
with tf.name_scope('Weight'):
variable_summaries(W)
with tf.name_scope('Bias'):
variable_summaries(b)
output = tf.matmul(inData, W) + b
if not noActivation:
output = tf.nn.relu(output)
tf.add_to_collection('Embed', output)
return output
def model():
global CLASS_NUM
nodeX = tf.placeholder(tf.float32, [None, 784])
nodeY = tf.placeholder(tf.int64, [None])
nodeY_onehot = tf.one_hot(nodeY, CLASS_NUM, 1.0, 0.0, -1)
Layer1 = Dense('Dense1', nodeX, 60)
Layer2 = Dense('Dense2', Layer1, 30)
logit = Dense('Output', Layer2, CLASS_NUM, noActivation = True)
loss = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(labels = nodeY_onehot, logits = logit))
tf.summary.scalar('loss', loss)
learning_rate = tf.placeholder(tf.float32, None)
tf.summary.scalar('learning rate', learning_rate)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train = optimizer.minimize(loss)
return nodeX, nodeY, Layer1, Layer2, logit, learning_rate, train
def evaluate(nodeY, logit):
predict = tf.argmax(logit, axis=1)
digitize = tf.cast(tf.equal(nodeY, predict), tf.float32)
win_rate = tf.reduce_mean(digitize)
tf.summary.scalar('correct rate', win_rate)
return predict, win_rate
def getLearningRate(step):
return 0.001
def generateMetaData(path, Y):
with open(path + 'meta.tsv', 'w') as f:
size = Y.shape[0]
for i in range(0, size):
label = str(Y[i])
f.write(label +'\n')
def generateMetaGraph(path, X, spSize):
num = X.shape[0]
W = math.floor(math.sqrt(num))
H = math.ceil(num/W)
mat = numpy.zeros((W*28, H*28), dtype = numpy.float32)
for i in range(0, num):
starth = (i//W) * 28
startw = (i%H) * 28
mat[starth:starth+28, startw:startw+28] = X[i, :].reshape((28, 28))
mat = 255.0 * (1.0 - mat)
img =Image.fromarray(mat)
img = img.resize([W*spSize[0], H*spSize[1]], Image.BILINEAR)
img = img.convert('RGB')
img.save(path + 'meta.png')
def embedding(vlist, rlist, metaPath, spSize):
vs = []
for i in range(0, len(vlist)):
v = tf.Variable(rlist[i], name = vlist[i].name.split('/')[0]) # x/relu
vs.append(v)
with tf.Session() as sess:
tf.variables_initializer(vs).run() # assign to vs
saver = tf.train.Saver(vs)
saver.save(sess, './log/model.ckpt', 0) # only contain vs
# get writer and config
summary_writer = tf.summary.FileWriter('./log/')
config = projector.ProjectorConfig()
# set config
for v in vs:
embed = config.embeddings.add()
embed.tensor_name = v.name
embed.metadata_path = metaPath + 'meta.tsv'
embed.sprite.image_path = metaPath + 'meta.png'
embed.sprite.single_image_dim.extend(spSize)
# write
projector.visualize_embeddings(summary_writer, config)
if __name__ == '__main__':
from dataset import readMNIST, batchGenerator
X, Y, layer1, layer2, logit, lr, train = model()
predict, wrate = evaluate(Y, logit)
trainX, trainY, testX, testY = readMNIST(asImage = False)
gen = batchGenerator(trainX, trainY, 512)
summary_op = tf.summary.merge_all()
with tf.Session() as sess:
# writer for summary
writer = tf.summary.FileWriter('./log/', sess.graph)
tf.global_variables_initializer().run()
for i in range(0, 10):
datax, datay = next(gen)
learning_rate = getLearningRate(i)
_, win_rate, summary = sess.run([train, wrate, summary_op], {X:datax, Y:datay, lr:learning_rate})
writer.add_summary(summary, i)
print('Cycle %d. win rate %f'%(i, win_rate))
# run Test as well as obtain the to-be-embedded variable
runList = tf.get_collection('Embed')
runList.insert(0, wrate)
resultList = sess.run(runList, {X:testX, Y:testY})
print('final rate: %f'%resultList[0])
# configure for meta Data
metaPath = './metaEmbed/'
spriteSize = (12, 12)
embedding(runList[1:], resultList[1:], metaPath, spriteSize)
import os
if not os.path.exists(metaPath):
os.makedirs(metaPath)
generateMetaData(metaPath, testY)
generateMetaGraph(metaPath, testX, spriteSize)