-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_losses.py
112 lines (84 loc) · 3.42 KB
/
plot_losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import argparse
from functions import get_model, get_data, hypothesis_margin
import matplotlib.pyplot as plt
import matplotlib.style as style
import numpy as np
style.use('ggplot')
MARGIN_STEPS = np.linspace(0, 0.5, num=50)
color1 = "#F8766D"
color2 = "#7CAE00"
color3 = "#00BFC4"
color4 = "#C77CFF"
def remaining_accuracies(margins):
accuracy = []
for m in MARGIN_STEPS:
acc = np.sum((margins - m) > 0) / len(margins)
accuracy.append(acc)
return accuracy
def calculate_urte(margins):
urtes = []
for m in MARGIN_STEPS:
acc = np.sum((margins - m) > 0) / len(margins)
urtes.append(1 - acc)
return urtes
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-s", "--save_dir", type=str, required=True,
help="Directory to save the results to")
parser.add_argument("-r", "--replicate", action='store_true',
help="If set, the exact plot from the paper will be "
"replicated.")
parser.add_argument("-n", "--number_of_samples", type=int, default=10000)
args = parser.parse_args()
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
(x_train, y_train), (x_test, y_test) = get_data('mnist')
n = args.number_of_samples
model = get_model('glvq', (28, 28, 1),
n_classes=10,
number_prototypes=128,
p_norm=np.inf,
batch_size=128,
negated_dissimilarities=False,
weights_provided=True,
number_tangents=-1)
# GLVQ LOSS
model.load_weights("weight_files/GLVQ/mnist/linf_trained/glvq_loss.h5")
y_pred = model.predict(x_test[:n], verbose=True)
margins_glvq = hypothesis_margin(np.inf, y_pred, y_test[:n])
acc_glvq = calculate_urte(margins_glvq)
# RELU 03 Loss
model.load_weights("weight_files/GLVQ/mnist/linf_trained/03_loss.h5")
y_pred = model.predict(x_test[:n], verbose=True)
margins_03 = hypothesis_margin(np.inf, y_pred, y_test[:n])
acc_03 = calculate_urte(margins_03)
# RELU 02 Loss
model.load_weights("weight_files/GLVQ/mnist/linf_trained/02_loss.h5")
y_pred = model.predict(x_test[:n], verbose=True)
margins_02 = hypothesis_margin(np.inf, y_pred, y_test[:n])
acc_02 = calculate_urte(margins_02)
# RELU 01 Loss
model.load_weights("weight_files/GLVQ/mnist/linf_trained/01_loss.h5")
y_pred = model.predict(x_test[:n], verbose=True)
margins_01 = hypothesis_margin(np.inf, y_pred, y_test[:n])
acc_01 = calculate_urte(margins_01)
fig, ax1 = plt.subplots(figsize=[5, 3])
ax1.plot(MARGIN_STEPS, acc_glvq, linewidth=2,
linestyle="solid", color=color1)
ax1.plot(MARGIN_STEPS, acc_03, linewidth=2,
linestyle="dotted", color=color2)
ax1.plot(MARGIN_STEPS, acc_02, linewidth=2,
linestyle="dashed", color=color3)
ax1.plot(MARGIN_STEPS, acc_01, linewidth=2,
linestyle="dashdot", color=color4)
ax1.legend(["GLVQ", "ReLU (eps = 0.3)",
"ReLU (eps = 0.2)", "ReLU (eps = 0.1)"])
ax1.set_xlabel("epsilon")
ax1.set_ylabel("URTE")
fig.savefig(args.save_dir + "/bounds.pdf", bbox_inches='tight')
plt.show()