-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathmodel.py
46 lines (35 loc) · 2.63 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import tensorflow as tf
class TripletLoss:
def conv_net(self, x, reuse=False):
with tf.name_scope("model"):
with tf.variable_scope("conv1") as scope:
net = tf.contrib.layers.conv2d(x, 32, [7, 7], activation_fn=tf.nn.relu, padding='SAME',
weights_initializer=tf.contrib.layers.xavier_initializer_conv2d(),
scope=scope, reuse=reuse)
net = tf.contrib.layers.max_pool2d(net, [2, 2], padding='SAME')
with tf.variable_scope("conv2") as scope:
net = tf.contrib.layers.conv2d(net, 64, [5, 5], activation_fn=tf.nn.relu, padding='SAME',
weights_initializer=tf.contrib.layers.xavier_initializer_conv2d(),
scope=scope, reuse=reuse)
net = tf.contrib.layers.max_pool2d(net, [2, 2], padding='SAME')
with tf.variable_scope("conv3") as scope:
net = tf.contrib.layers.conv2d(net, 128, [3, 3], activation_fn=tf.nn.relu, padding='SAME',
weights_initializer=tf.contrib.layers.xavier_initializer_conv2d(),
scope=scope, reuse=reuse)
net = tf.contrib.layers.max_pool2d(net, [2, 2], padding='SAME')
with tf.variable_scope("conv4") as scope:
net = tf.contrib.layers.conv2d(net, 256, [1, 1], activation_fn=tf.nn.relu, padding='SAME',
weights_initializer=tf.contrib.layers.xavier_initializer_conv2d(),
scope=scope, reuse=reuse)
net = tf.contrib.layers.max_pool2d(net, [2, 2], padding='SAME')
with tf.variable_scope("conv5") as scope:
net = tf.contrib.layers.conv2d(net, 28, [1, 1], activation_fn=None, padding='SAME',
weights_initializer=tf.contrib.layers.xavier_initializer_conv2d(),
scope=scope, reuse=reuse)
net = tf.contrib.layers.max_pool2d(net, [2, 2], padding='SAME')
net = tf.contrib.layers.flatten(net)
return net
def triplet_loss(self, model_anchor, model_positive, model_negative, margin):
distance1 = tf.sqrt(tf.reduce_sum(tf.pow(model_anchor - model_positive, 2), 1, keepdims=True))
distance2 = tf.sqrt(tf.reduce_sum(tf.pow(model_anchor - model_negative, 2), 1, keepdims=True))
return tf.reduce_mean(tf.maximum(distance1 - distance2 + margin, 0))