-
Notifications
You must be signed in to change notification settings - Fork 242
/
Copy pathvariantkey.h
612 lines (575 loc) · 21.5 KB
/
variantkey.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
// VariantKey
//
// variantkey.h
//
// @category Libraries
// @author Nicola Asuni <[email protected]>
// @link https://github.com/tecnickcom/variantkey
// @license MIT [LICENSE](https://raw.githubusercontent.com/tecnickcom/variantkey/main/LICENSE)
// @copyright 2017-2018 GENOMICS plc, 2018-2023 Nicola Asuni - Tecnick.com
//
// LICENSE
//
// Copyright (c) 2017-2018 GENOMICS plc
// Copyright (c) 2018-2023 Nicola Asuni - Tecnick.com
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
/**
* @file variantkey.h
* @brief VariantKey main functions.
*
* The functions provided here allow the generation and processing of a 64 bit Unsigned Integer Keys for Human Genetic Variants.
* The VariantKey is sortable for chromosome and position,
* and it is also fully reversible for variants with up to 11 bases between Reference and Alternate alleles.
* It can be used to sort, search and match variant-based data easily and very quickly.
*/
#ifndef VARIANTKEY_H
#define VARIANTKEY_H
#include <inttypes.h>
#include <stddef.h>
#include <stdio.h>
#include "hex.h"
#define VKMASK_CHROM 0xF800000000000000 //!< VariantKey binary mask for CHROM [ 11111000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ]
#define VKMASK_POS 0x07FFFFFF80000000 //!< VariantKey binary mask for POS [ 00000111 11111111 11111111 11111111 10000000 00000000 00000000 00000000 ]
#define VKMASK_CHROMPOS 0xFFFFFFFF80000000 //!< VariantKey binary mask for CHROM+POS [ 11111111 11111111 11111111 11111111 10000000 00000000 00000000 00000000 ]
#define VKMASK_REFALT 0x000000007FFFFFFF //!< VariantKey binary mask for REF+ALT [ 00000000 00000000 00000000 00000000 01111111 11111111 11111111 11111111 ]
#define VKSHIFT_CHROM 59 //!< CHROM LSB position from the VariantKey LSB
#define VKSHIFT_POS 31 //!< POS LSB position from the VariantKey LSB
#define MAXUINT32 0xFFFFFFFF //!< Maximum value for uint32_t
/**
* VariantKey struct.
* Contains the numerically encoded VariantKey components (CHROM, POS, REF+ALT).
*/
typedef struct variantkey_t
{
uint8_t chrom; //!< Chromosome encoded number (only the LSB 5 bit are used)
uint32_t pos; //!< Reference position, with the first base having position 0 (only the LSB 28 bit are used)
uint32_t refalt; //!< Code for Reference and Alternate allele (only the LSB 31 bits are used)
} variantkey_t;
/**
* Struct containing the minimum and maximum VariantKey values for range searches.
*/
typedef struct vkrange_t
{
uint64_t min; //!< Minimum VariantKey value for any given REF+ALT encoding
uint64_t max; //!< Maximum VariantKey value for any given REF+ALT encoding
} vkrange_t;
/** @brief Returns the encoding for a numerical chromosome input.
*
* @param chrom Chromosome. An identifier from the reference genome, no white-space permitted.
* @param size Length of the chrom string, excluding the terminating null byte.
*
* @return CHROM code
*/
static inline uint8_t encode_numeric_chrom(const char *chrom, size_t size)
{
size_t i;
uint8_t v = (chrom[0] - '0');
for (i = 1; i < size; i++)
{
if ((chrom[i] > '9') || (chrom[i] < '0'))
{
return 0; // NA: a character that is not a number was found.
}
v = ((v * 10) + (chrom[i] - '0'));
}
return v;
}
/** @brief Returns a true value (1) if the input chrom has 'chr' prefix (case insensitive).
*
* @param chrom Chromosome. An identifier from the reference genome, no white-space permitted.
* @param size Length of the chrom string, excluding the terminating null byte.
*
* @return True (1) if the chr prefix is present.
*/
static inline int has_chrom_chr_prefix(const char *chrom, size_t size)
{
return ((size > 3)
&& ((chrom[0] == 'c') || (chrom[0] == 'C'))
&& ((chrom[1] == 'h') || (chrom[1] == 'H'))
&& ((chrom[2] == 'r') || (chrom[2] == 'R')));
}
/** @brief Returns chromosome numerical encoding.
*
* @param chrom Chromosome. An identifier from the reference genome, no white-space permitted.
* @param size Length of the chrom string, excluding the terminating null byte.
*
* @return CHROM code or 0 in case of invalid input.
*/
static inline uint8_t encode_chrom(const char *chrom, size_t size)
{
// X = 23; Y = 24; M = 25; any other letter is mapped to 0:
static const uint8_t onecharmap[] =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* M X Y */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,23,24, 0, 0, 0, 0, 0, 0,
/* m x y */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,23,24, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
if (has_chrom_chr_prefix(chrom, size))
{
// remove "chr" prefix
chrom += 3;
size -= 3;
}
if (size == 0)
{
return 0;
}
if ((chrom[0] <= '9') && (chrom[0] >= '0'))
{
return encode_numeric_chrom(chrom, size);
}
if ((size == 1) || ((size == 2) && ((chrom[1] == 'T') || (chrom[1] == 't'))))
{
return onecharmap[((uint8_t)chrom[0])];
}
return 0; // NA
}
/** @brief Decode the chromosome numerical code.
*
* @param code CHROM code.
* @param chrom CHROM string buffer to be returned. Its size should be enough to contain the results (max 4 bytes).
*
* @return If successful, the total number of characters written is returned,
* excluding the null-character appended at the end of the string,
* otherwise a negative number is returned in case of failure.
*/
static inline size_t decode_chrom(uint8_t code, char *chrom)
{
if ((code < 1) || (code > 25))
{
return sprintf(chrom, "NA");
}
if (code < 23)
{
return sprintf(chrom, "%" PRIu8, code);
}
static const char *map[] = {"X", "Y", "MT"};
return sprintf(chrom, "%s", map[(code - 23)]);
}
static inline uint32_t encode_base(const uint8_t c)
{
/*
Encode base:
A = 0
C = 1
G = 2
T = 3
*/
static const uint32_t map[] =
{
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
/*A C G T*/
4,0,4,1,4,4,4,2,4,4,4,4,4,4,4,4,4,4,4,4,3,4,4,4,4,4,4,4,4,4,4,4,
/*a c g t*/
4,0,4,1,4,4,4,2,4,4,4,4,4,4,4,4,4,4,4,4,3,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
};
return map[c];
}
static inline int encode_allele(uint32_t *h, uint8_t *bitpos, const char *str, size_t size)
{
uint32_t v;
while (size--)
{
v = encode_base(*str++);
if (v > 3)
{
return -1;
}
*bitpos -= 2;
*h |= (v << *bitpos);
}
return 0;
}
static inline uint32_t encode_refalt_rev(const char *ref, size_t sizeref, const char *alt, size_t sizealt)
{
//[******** ******** ******** ******** *RRRRAAA A1122334 45566778 8990011*]
uint32_t h = 0;
h |= ((uint32_t)(sizeref) << 27); // RRRR: length of (REF - 1)
h |= ((uint32_t)(sizealt) << 23); // AAAA: length of (ALT - 1)
uint8_t bitpos = 23;
if ((encode_allele(&h, &bitpos, ref, sizeref) < 0) || (encode_allele(&h, &bitpos, alt, sizealt) < 0))
{
return MAXUINT32; // error code
}
return h;
}
// Mix two 32 bit hash numbers using a MurmurHash3-like algorithm
static inline uint32_t muxhash(uint32_t k, uint32_t h)
{
k *= 0xcc9e2d51;
k = (k >> 17) | (k << 15);
k *= 0x1b873593;
h ^= k;
h = (h >> 19) | (h << 13);
return ((h * 5) + 0xe6546b64);
}
static inline uint32_t encode_packchar(int c)
{
if (c < 'A')
{
return 27;
}
if (c >= 'a')
{
return (uint32_t)(c - 'a' + 1);
}
return (uint32_t)(c - 'A' + 1);
}
// pack blocks of 6 characters in 32 bit (6 x 5 bit + 2 spare bit) [ 01111122 22233333 44444555 55666660 ]
static inline uint32_t pack_chars_tail(const char *str, size_t size)
{
uint32_t h = 0;
const char *pos = (str + size - 1);
switch (size)
{
case 5:
h ^= encode_packchar(*pos--) << (1 + (5 * 1));
// fall through
case 4:
h ^= encode_packchar(*pos--) << (1 + (5 * 2));
// fall through
case 3:
h ^= encode_packchar(*pos--) << (1 + (5 * 3));
// fall through
case 2:
h ^= encode_packchar(*pos--) << (1 + (5 * 4));
// fall through
case 1:
h ^= encode_packchar(*pos) << (1 + (5 * 5));
}
return h;
}
static inline uint32_t pack_chars(const char *str)
{
const char *pos = (str + 5);
return ((encode_packchar(*pos) << 1)
^ (encode_packchar(*(pos-1)) << (1 + (5 * 1)))
^ (encode_packchar(*(pos-2)) << (1 + (5 * 2)))
^ (encode_packchar(*(pos-3)) << (1 + (5 * 3)))
^ (encode_packchar(*(pos-4)) << (1 + (5 * 4)))
^ (encode_packchar(*(pos-5)) << (1 + (5 * 5))));
}
// Return a 32 bit hash of a nucleotide string
static inline uint32_t hash32(const char *str, size_t size)
{
uint32_t h = 0;
size_t len = 6;
while (size >= len)
{
h = muxhash(pack_chars(str), h);
str += len;
size -= len;
}
if (size > 0)
{
h = muxhash(pack_chars_tail(str, size), h);
}
return h;
}
static inline uint32_t encode_refalt_hash(const char *ref, size_t sizeref, const char *alt, size_t sizealt)
{
// 0x3 is the separator character between REF and ALT [00000000 00000000 00000000 00000011]
uint32_t h = muxhash(hash32(alt, sizealt), muxhash(0x3, hash32(ref, sizeref)));
// MurmurHash3 finalization mix - force all bits of a hash block to avalanche
h ^= h >> 16;
h *= 0x85ebca6b;
h ^= h >> 13;
h *= 0xc2b2ae35;
h ^= h >> 16;
return ((h >> 1) | 0x1); // 0x1 is the set bit to indicate HASH mode [00000000 00000000 00000000 00000001]
}
/** @brief Returns reference+alternate numerical encoding.
*
* @param ref Reference allele. String containing a sequence of nucleotide letters.
* The value in the pos field refers to the position of the first nucleotide in the String.
* Characters must be A-Z, a-z or *
* @param sizeref Length of the ref string, excluding the terminating null byte.
* @param alt Alternate non-reference allele string.
* Characters must be A-Z, a-z or *
* @param sizealt Length of the alt string, excluding the terminating null byte.
*
* @return REF+ALT code
*/
static inline uint32_t encode_refalt(const char *ref, size_t sizeref, const char *alt, size_t sizealt)
{
if ((sizeref + sizealt) <= 11)
{
uint32_t h = encode_refalt_rev(ref, sizeref, alt, sizealt);
if (h != MAXUINT32)
{
return h;
}
}
return encode_refalt_hash(ref, sizeref, alt, sizealt);
}
static inline char decode_base(uint32_t code, int bitpos)
{
static const char base[4] = {'A', 'C', 'G', 'T'};
return base[((code >> bitpos) & 0x3)]; // 0x3 is the 2 bit mask [00000011]
}
static inline size_t decode_refalt_rev(uint32_t code, char *ref, size_t *sizeref, char *alt, size_t *sizealt)
{
*sizeref = (size_t)((code & 0x78000000) >> 27); // [01111000 00000000 00000000 00000000]
*sizealt = (size_t)((code & 0x07800000) >> 23); // [00000111 10000000 00000000 00000000]
switch (*sizeref)
{
case 10:
ref[9] = decode_base(code, (3 + (2 * 0)));
// fall through
case 9:
ref[8] = decode_base(code, (3 + (2 * 1)));
// fall through
case 8:
ref[7] = decode_base(code, (3 + (2 * 2)));
// fall through
case 7:
ref[6] = decode_base(code, (3 + (2 * 3)));
// fall through
case 6:
ref[5] = decode_base(code, (3 + (2 * 4)));
// fall through
case 5:
ref[4] = decode_base(code, (3 + (2 * 5)));
// fall through
case 4:
ref[3] = decode_base(code, (3 + (2 * 6)));
// fall through
case 3:
ref[2] = decode_base(code, (3 + (2 * 7)));
// fall through
case 2:
ref[1] = decode_base(code, (3 + (2 * 8)));
// fall through
case 1:
ref[0] = decode_base(code, (3 + (2 * 9)));
}
ref[*sizeref] = 0;
uint8_t bitpos = (23 - ((*sizeref) << 1));
switch (*sizealt)
{
case 10:
alt[9] = decode_base(code, bitpos - (2 * 10));
// fall through
case 9:
alt[8] = decode_base(code, bitpos - (2 * 9));
// fall through
case 8:
alt[7] = decode_base(code, bitpos - (2 * 8));
// fall through
case 7:
alt[6] = decode_base(code, bitpos - (2 * 7));
// fall through
case 6:
alt[5] = decode_base(code, bitpos - (2 * 6));
// fall through
case 5:
alt[4] = decode_base(code, bitpos - (2 * 5));
// fall through
case 4:
alt[3] = decode_base(code, bitpos - (2 * 4));
// fall through
case 3:
alt[2] = decode_base(code, bitpos - (2 * 3));
// fall through
case 2:
alt[1] = decode_base(code, bitpos - (2 * 2));
// fall through
case 1:
alt[0] = decode_base(code, bitpos - (2 * 1));
}
alt[*sizealt] = 0;
return (*sizeref + *sizealt);
}
/** @brief Decode the 32 bit REF+ALT code if reversible (if it has 11 or less bases in total and only contains ACGT letters).
*
* @param code REF+ALT code
* @param ref REF string buffer to be returned.
* @param sizeref Pointer to the size of the ref buffer, excluding the terminating null byte.
* This will contain the final ref size.
* @param alt ALT string buffer to be returned.
* @param sizealt Pointer to the size of the alt buffer, excluding the terminating null byte.
* This will contain the final alt size.
*
* @return If the code is reversible, then the total number of characters of REF+ALT is returned.
* Otherwise 0 is returned.
*/
static inline size_t decode_refalt(uint32_t code, char *ref, size_t *sizeref, char *alt, size_t *sizealt)
{
if (code & 0x1) // check last bit
{
return 0; // non-reversible encoding
}
return decode_refalt_rev(code, ref, sizeref, alt, sizealt);
}
/** @brief Returns a 64 bit variant key based on the pre-encoded CHROM, POS (0-based) and REF+ALT.
*
* @param chrom Encoded Chromosome (see encode_chrom).
* @param pos Position. The reference position, with the first base having position 0.
* @param refalt Encoded Reference + Alternate (see encode_refalt).
*
* @return VariantKey 64 bit code.
*/
static inline uint64_t encode_variantkey(uint8_t chrom, uint32_t pos, uint32_t refalt)
{
return (((uint64_t)chrom << VKSHIFT_CHROM) | ((uint64_t)pos << VKSHIFT_POS) | (uint64_t)refalt);
}
/** @brief Extract the CHROM code from VariantKey.
*
* @param vk VariantKey code.
*
* @return CHROM code.
*/
static inline uint8_t extract_variantkey_chrom(uint64_t vk)
{
return (uint8_t)((vk & VKMASK_CHROM) >> VKSHIFT_CHROM);
}
/** @brief Extract the POS code from VariantKey.
*
* @param vk VariantKey code.
*
* @return POS.
*/
static inline uint32_t extract_variantkey_pos(uint64_t vk)
{
return (uint32_t)((vk & VKMASK_POS) >> VKSHIFT_POS);
}
/** @brief Extract the REF+ALT code from VariantKey.
*
* @param vk VariantKey code.
*
* @return REF+ALT code.
*/
static inline uint32_t extract_variantkey_refalt(uint64_t vk)
{
return (uint32_t)(vk & VKMASK_REFALT);
}
/** @brief Decode a VariantKey code and returns the components as variantkey_t structure.
*
* @param code VariantKey code.
* @param vk Decoded variantkey structure.
*/
static inline void decode_variantkey(uint64_t code, variantkey_t *vk)
{
vk->chrom = extract_variantkey_chrom(code);
vk->pos = extract_variantkey_pos(code);
vk->refalt = extract_variantkey_refalt(code);
}
/**
* Returns a 64 bit variant key based on CHROM, POS (0-based), REF, ALT.
* The variant should be already normalized (see normalize_variant or use normalized_variantkey).
*
* @param chrom Chromosome. An identifier from the reference genome, no white-space or leading zeros permitted.
* @param sizechrom Length of the chrom string, excluding the terminating null byte.
* @param pos Position. The reference position, with the first base having position 0.
* @param ref Reference allele. String containing a sequence of nucleotide letters.
* The value in the pos field refers to the position of the first nucleotide in the String.
* Characters must be A-Z, a-z or *
* @param sizeref Length of the ref string, excluding the terminating null byte.
* @param alt Alternate non-reference allele string.
* Characters must be A-Z, a-z or *
* @param sizealt Length of the alt string, excluding the terminating null byte.
*
* @return VariantKey 64 bit code.
*/
static inline uint64_t variantkey(const char *chrom, size_t sizechrom, uint32_t pos, const char *ref, size_t sizeref, const char *alt, size_t sizealt)
{
return encode_variantkey(encode_chrom(chrom, sizechrom), pos, encode_refalt(ref, sizeref, alt, sizealt));
}
/** @brief Returns minimum and maximum VariantKeys for range searches.
*
* @param chrom Chromosome encoded number.
* @param pos_min Start reference position, with the first base having position 0.
* @param pos_max End reference position, with the first base having position 0.
* @param range VariantKey range values.
*/
static inline void variantkey_range(uint8_t chrom, uint32_t pos_min, uint32_t pos_max, vkrange_t *range)
{
uint64_t c = ((uint64_t)chrom << VKSHIFT_CHROM);
range->min = (c | ((uint64_t)pos_min << VKSHIFT_POS));
range->max = (c | ((uint64_t)pos_max << VKSHIFT_POS) | VKMASK_REFALT);
}
static inline int8_t compare_uint64_t(uint64_t a, uint64_t b)
{
return (a < b) ? -1 : (a > b);
}
/** @brief Compares two VariantKeys by chromosome only.
*
* @param vka The first VariantKey to be compared.
* @param vkb The second VariantKey to be compared.
*
* @return -1 if the first chromosome is smaller than the second, 0 if they are equal and 1 if the first is greater than the second.
*/
static inline int8_t compare_variantkey_chrom(uint64_t vka, uint64_t vkb)
{
return compare_uint64_t((vka >> VKSHIFT_CHROM), (vkb >> VKSHIFT_CHROM));
}
/** @brief Compares two VariantKeys by chromosome and position.
*
* @param vka The first VariantKey to be compared.
* @param vkb The second VariantKey to be compared.
*
* @return -1 if the first CHROM+POS is smaller than the second, 0 if they are equal and 1 if the first is greater than the second.
*/
static inline int8_t compare_variantkey_chrom_pos(uint64_t vka, uint64_t vkb)
{
return compare_uint64_t((vka >> VKSHIFT_POS), (vkb >> VKSHIFT_POS));
}
/** @brief Returns VariantKey hexadecimal string (16 characters).
*
* The string represent a 64 bit number or:
* - 5 bit for CHROM
* - 28 bit for POS
* - 31 bit for REF+ALT
*
* @param vk VariantKey code.
* @param str String buffer to be returned (it must be sized 17 bytes at least).
*
* @return Upon successful return, these function returns the number of characters processed
* (excluding the null byte used to end output to strings).
* If the buffer size is not sufficient, then the return value is the number of characters required for
* buffer string, including the terminating null byte.
*/
static inline size_t variantkey_hex(uint64_t vk, char *str)
{
return hex_uint64_t(vk, str);
}
/** @brief Parses a VariantKey hexadecimal string and returns the code.
*
* @param vs VariantKey hexadecimal string (it must contain 16 hexadecimal characters).
*
* @return A VariantKey code.
*/
static inline uint64_t parse_variantkey_hex(const char *vs)
{
return parse_hex_uint64_t(vs);
}
#endif // VARIANTKEY_H