-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsr.py
174 lines (140 loc) · 6.9 KB
/
sr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import operator
import random
import numpy as np
import math
import functools
from deap import base, creator, gp, tools, algorithms
import multiprocessing
pool = multiprocessing.Pool(multiprocessing.cpu_count())
def protectedDiv(left, right):
return left / right if right != 0 else 1
def protectedLog(x):
return math.log(x) if x > 1e-3 else 0
def protectedExp(x):
return math.exp(x) if x < 700 else float('inf') # to prevent overflow
class SymbolicRegressor:
'''NOTE the default hyperparameters are best hyperparameters from https://arxiv.org/pdf/1912.04871'''
def __init__(
self,
dataset, # numpy array with shape (n_samples, n_features), last column assumed to be target
tournament_size=2, # tournament size for selection
population_size=1000, # population size
generations=40, # number of generations
cxpb=0.95, # crossover probability
mutpb=0.05 # mutation probability
):
self.dataset = dataset
self.tournament_size = tournament_size
self.population_size = population_size
self.generations = generations
self.cxpb = cxpb
self.mutpb = mutpb
num_inputs = dataset.shape[1] - 1 # number of arguments, last column is the target
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMin)
self.pset = gp.PrimitiveSet("MAIN", num_inputs) # number of arguments
# Koza library set
self.pset.addPrimitive(operator.add, 2)
self.pset.addPrimitive(operator.sub, 2)
self.pset.addPrimitive(operator.mul, 2)
self.pset.addPrimitive(protectedDiv, 2)
# self.pset.addPrimitive(np.sin, 1)
# self.pset.addPrimitive(np.cos, 1)
# self.pset.addPrimitive(protectedExp, 1)
# self.pset.addPrimitive(protectedLog, 1)
# Add ephemeral constants
# self.pset.addEphemeralConstant("rand101", lambda: random.uniform(-1, 1)) # constants randomly generated between -1 and 1
self.pset.addEphemeralConstant("rand101", functools.partial(random.uniform, -1, 1))
arg_names = {f'ARG{i}': f'x{i}' for i in range(num_inputs)} # rename arguments
self.pset.renameArguments(**arg_names)
# toolbox of genetic operators
self.toolbox = base.Toolbox()
# Process Pool
cpu_count = multiprocessing.cpu_count()
print(f"CPU count: {cpu_count}")
pool = multiprocessing.Pool(cpu_count)
self.toolbox.register("map", pool.map)
self.toolbox.register("expr", gp.genFull, pset=self.pset, min_=1, max_=2)
self.toolbox.register("individual", tools.initIterate, creator.Individual, self.toolbox.expr)
self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual)
self.toolbox.register("compile", gp.compile, pset=self.pset)
self.toolbox.register("evaluate", self.evalSymbReg)
self.toolbox.register("select", tools.selTournament, tournsize=tournament_size) # tournament size 3
self.toolbox.register("mate", gp.cxOnePoint)
self.toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
self.toolbox.register("mutate", gp.mutUniform, expr=self.toolbox.expr_mut, pset=self.pset)
self.toolbox.register("map", map)
self.toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17))
self.toolbox.decorate("mutate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17))
def evalSymbReg(self, individual):
# mean squared error
X = self.dataset[:, :-1]
Y = self.dataset[:, -1]
func = self.toolbox.compile(expr=individual)
# sqerrors = ((func(x) - y)**2 for x, y in self.dataset)
sqerrors = ((func(*x) - y)**2 for x, y in zip(X, Y))
return math.fsum(sqerrors) / len(self.dataset),
def optimize(self):
population_size = self.population_size
generations = self.generations
cxpb = self.cxpb
mutpb = self.mutpb
# initialize population and hall of fame
pop = self.toolbox.population(n=population_size)
hof = tools.HallOfFame(1) # track n=1 best individuals
stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
stats_size = tools.Statistics(len)
mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
mstats.register("avg", np.mean)
mstats.register("std", np.std)
mstats.register("min", np.min)
mstats.register("max", np.max)
pop, log = algorithms.eaSimple(pop, self.toolbox, cxpb, mutpb, generations, stats=mstats,
halloffame=hof, verbose=True)
self.best_individual = hof[0]
return pop, log, hof
# Example symbolic regression discovery function (placeholder)
def discover_equations(X, y):
# Placeholder implementation of symbolic regression for single variable
# You would replace this with the actual symbolic regression implementation
# For demonstration, we just print the shapes of X and y
print("Discovering equations with X shape:", X.shape, "and y shape:", y.shape)
# Return dummy equations for demonstration
dataset = np.column_stack((X, y))
regressor = SymbolicRegressor(dataset)
regressor.optimize()
print("Best individual is: ", regressor.best_individual, "| Fitness (MSE): ", regressor.best_individual.fitness.values[0])
return ["equation_1", "equation_2"]
# Adapted function for multi-variate search
def discover_multivariate_equations(X, y):
num_variables = y.shape[1]
equations = []
for i in range(num_variables):
y_i = y[:, i]
equation = discover_equations(X, y_i)
equations.append(equation)
return equations
if __name__ == "__main__":
# Example multivariate dataset: x1 + x2**2 + x3 - x4 + sin(x5) = y
ode_trajs = np.load('t.jnp.npy')
y = np.diff(ode_trajs, axis=1)
X = ode_trajs[:, :-1, :]
print("Shape of X:", X.shape)
print("Shape of y:", y.shape)
batch_size, trajectory_length_minus_one, feature_dimensions = X.shape
X_flat = X.reshape(-1, feature_dimensions)
y_flat = y.reshape(-1, feature_dimensions)
print("Shape of flattened X:", X_flat.shape)
print("Shape of flattened y:", y_flat.shape)
# Discover equations for multi-variate targets
equations = discover_multivariate_equations(X_flat, y_flat)
# Output the discovered equations
for idx, eq in enumerate(equations):
print(f"Equation for variable {idx + 1}: {eq}")
n_samples = 100
X = np.random.uniform(-10, 10, (n_samples, 5)) # 5 input features
Y = X[:, 0] + X[:, 1]**2 + X[:, 2] - X[:, 3] +X[:, 4]
dataset = np.column_stack((X, Y))
regressor = SymbolicRegressor(dataset)
regressor.optimize()
print("Best individual is: ", regressor.best_individual, "| Fitness (MSE): ", regressor.best_individual.fitness.values[0])