-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPFSkNN.m
91 lines (86 loc) · 2.8 KB
/
PFSkNN.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Citation:
% S. Memiş, 2023. Picture Fuzzy Soft Matrices and Application of Their
% Distance Measures to Supervised Learning: Picture Fuzzy Soft k-Nearest
% Neighbor (PFS-kNN), Electronics 2023, 12(19), 4129.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Abbreviation of Journal Title: Electronics
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% https://doi.org/10.3390/electronics12194129
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% https://www.researchgate.net/profile/Samet_Memis2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Demo:
% clc;
% clear all;
% DM = importdata('Wine.mat');
% [x,y]=size(DM);
%
% data=DM(:,1:end-1);
% class=DM(:,end);
% if prod(class)==0
% class=class+1;
% end
% k_fold=5;
% cv = cvpartition(class,'KFold',k_fold);
% for i=1:k_fold
% test=data(cv.test(i),:);
% train=data(~cv.test(i),:);
% T=class(cv.test(i),:);
% C=class(~cv.test(i),:);
%
% sPFSkNN=PFSkNN(train,C,test,3,0.5,5);
% accuracy(i,:)=sum(sPFSkNN==T)/numel(T);
% end
% mean_accuracy=mean(accuracy);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function PredictedClass=PFSkNN(train,C,test,k,L,p)
[em,en]=size(train);
[tm,n]=size(test);
% L1=round(sqrt(mean(std(train(:,1:end-1)))));
% L1=round(sqrt(mean([mean(mean(train(:,1:end-1))),mean(min(train(:,1:end-1))),mean(max(train(:,1:end-1)))])))
data=[train;test];
for j=1:n
data(:,j,1)=(1-(1-normalise(data(:,j))).^L);
data(:,j,2)=(normalise(data(:,j)))./L;
data(:,j,3)=(1-normalise(data(:,j))).^(L*(L+1));
end
clear train test;
train(:,:,:)=data(1:em,:,:);
test(:,:,:)=data(em+1:end,:,:);
for i=1:tm
a(:,:,1)=test(i,:,1);
a(:,:,2)=test(i,:,2);
a(:,:,3)=test(i,:,3);
for j=1:em
b(:,:,1)=train(j,:,1);
b(:,:,2)=train(j,:,2);
b(:,:,3)=train(j,:,3);
Dm(j,1)=pfsMd(a,b,p);
end
[~,NN]= sort(Dm);
PredictedClass(i,1)=C(mode(NN(1:k)));
end
end
function na=normalise(a)
[m,n]=size(a);
if max(a)~=min(a)
na=(a-min(a))/(max(a)-min(a));
else
na=ones(m,n);
end
end
% Minkowski metric over pfs-matrices
function X=pfsMd(a,b,p)
if size(a)~=size(b)
else
[m,n,~]=size(a);
d=0;
for i=1:m
for j=1:n
d=d+abs(a(i,j,1)-b(i,j,1))^p+abs(a(i,j,2)-b(i,j,2))^p+abs(a(i,j,3)-b(i,j,3))^p+abs((1-a(i,j,1)-a(i,j,3))-(1-b(i,j,1)-b(i,j,3)))^p;
end
end
X=(d/3)^(1/p);
end
end