-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathC3D.py
46 lines (34 loc) · 1.83 KB
/
C3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import keras
from keras.layers import Dense, Dropout, Conv3D, Input, MaxPool3D, Flatten, Activation
from keras.regularizers import l2
from keras.models import Model
from keras.optimizers import SGD
def c3d_model(input_shape=(16,112,112,3), output_classes=101, learning_rate=5e-3):
weight_decay = 0.005
inputs = Input(input_shape)
x = Conv3D(64,(3,3,3),strides=(1,1,1),padding='same',
activation='relu',kernel_regularizer=l2(weight_decay))(inputs)
x = MaxPool3D((2,2,1),strides=(2,2,1),padding='same')(x)
x = Conv3D(128,(3,3,3),strides=(1,1,1),padding='same',
activation='relu',kernel_regularizer=l2(weight_decay))(x)
x = MaxPool3D((2,2,2),strides=(2,2,2),padding='same')(x)
x = Conv3D(128,(3,3,3),strides=(1,1,1),padding='same',
activation='relu',kernel_regularizer=l2(weight_decay))(x)
x = MaxPool3D((2,2,2),strides=(2,2,2),padding='same')(x)
x = Conv3D(256,(3,3,3),strides=(1,1,1),padding='same',
activation='relu',kernel_regularizer=l2(weight_decay))(x)
x = MaxPool3D((2,2,2),strides=(2,2,2),padding='same')(x)
x = Conv3D(256, (3, 3, 3), strides=(1, 1, 1), padding='same',
activation='relu',kernel_regularizer=l2(weight_decay))(x)
x = MaxPool3D((2, 2, 2), strides=(2, 2, 2), padding='same')(x)
x = Flatten()(x)
x = Dense(2048,activation='relu',kernel_regularizer=l2(weight_decay))(x)
x = Dropout(0.5)(x)
x = Dense(2048,activation='relu',kernel_regularizer=l2(weight_decay))(x)
x = Dropout(0.5)(x)
x = Dense(output_classes, kernel_regularizer=l2(weight_decay))(x)
x = Activation('softmax')(x)
model = Model(inputs, x)
sgd = SGD(learning_rate=learning_rate, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
return model