diff --git a/development/image.py b/development/image.py deleted file mode 100644 index e1676ae..0000000 --- a/development/image.py +++ /dev/null @@ -1,407 +0,0 @@ -import cv2 -import numpy as np -import time -from scipy.spatial import distance as dist -import tensorflow as tf - -import pprint -from copy import deepcopy - -from solver import * - -# ================================================== -import warnings -warnings.filterwarnings('ignore') - -# Just disables the warning, doesn't enable AVX/FMA -import os -os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' -# ================================================== - -def preprocess_image(img, blur_type): - gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) - - if blur_type == 'gaussian' or blur_type == 'Gaussian': - blur = cv2.GaussianBlur(gray, (11, 11), 0) - # cv2.imshow('gaussian_blur', blur) - elif blur_type == 'median' or blur_type == 'Median': - blur = cv2.medianBlur(gray, 5) - # cv2.imshow('median_blur', blur) - elif blur_type == 'bilateral' or blur_type == 'Bilateral': - blur = cv2.bilateralFilter(gray, 9, 75, 75) - # cv2.imshow('bilateral_blur', blur) - - threshold = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, \ - cv2.THRESH_BINARY, 11, 2) - - # Make edges and numbers white - negate = cv2.bitwise_not(threshold) - - # kernel = np.array([[0., 1., 0.], [1., 1., 1.], [0., 1., 0.]], dtype='uint8') - kernel = np.ones((3, 3), np.uint8) - dilation = cv2.dilate(negate, kernel, iterations = 1) - - opening = cv2.morphologyEx(negate, cv2.MORPH_OPEN, kernel) - - return dilation, opening - -def drawAllContours(processed_dilation): - contours, hierarchy = cv2.findContours(processed_dilation.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) - - # Convert to RGB for drawing contours - processed = cv2.cvtColor(processed_dilation, cv2.COLOR_GRAY2RGB) - - all_contours_img = cv2.drawContours(processed.copy(), contours, -1, (0,255,0), 2) - # cv2.imshow('all_contours', all_contours_img) - - return all_contours_img, contours - -def drawExternalContours(processed_dilation): - ext_contours, hier = cv2.findContours(processed_dilation.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) - - # Convert to RGB for drawing contours - processed = cv2.cvtColor(processed_dilation, cv2.COLOR_GRAY2RGB) - - external_contours_img = cv2.drawContours(processed.copy(), ext_contours, -1, (0,255,0), 2) - cv2.imshow('ext_contours', external_contours_img) - - return external_contours_img, ext_contours - -def find_corners_of_largest_contour(contours, img): - cnt = max(contours, key=cv2.contourArea) - - print("Contour Shape: {}".format(cnt.shape)) # N, 1, 2.......order_points require 2D Array - cnt = cnt.reshape((cnt.shape[0], 2)) # N x 2 - - # Order --> tl, tr, br, bl - corners = order_points_old(cnt) - # corners = order_points_quad(cnt) - - # determine the most extreme points along the contour - # extLeft = tuple(cnt[cnt[:, :, 0].argmin()][0]) - # extRight = tuple(cnt[cnt[:, :, 0].argmax()][0]) - # extTop = tuple(cnt[cnt[:, :, 1].argmin()][0]) - # extBot = tuple(cnt[cnt[:, :, 1].argmax()][0]) - # corners = np.array([extLeft, extRight, extTop, extBot]) - - return corners - -def order_points_old(pts): - # the top-left point will have the smallest sum, whereas - # the bottom-right point will have the largest sum - s = pts.sum(axis=1) - tl = pts[np.argmin(s)] - br = pts[np.argmax(s)] - - # now, compute the difference between the points (y-x), the - # top-right point will have the smallest difference, - # whereas the bottom-left will have the largest difference - diff = np.diff(pts, axis=1) - tr = pts[np.argmin(diff)] - bl = pts[np.argmax(diff)] - - # return the ordered coordinates - return np.array([tl, tr, br, bl], dtype="float32") - -def order_points_quad(pts): - # sort the points based on their x-coordinates - xSorted = pts[np.argsort(pts[:, 0]), :] - - # grab the left-most and right-most points from the sorted - # x-roodinate points - leftMost = xSorted[:2, :] - rightMost = xSorted[-1:-3:-1, :] - - # now, sort the left-most coordinates according to their - # y-coordinates so we can grab the top-left and bottom-left - # points, respectively - leftMost = leftMost[np.argsort(leftMost[:, 1]), :] - (tl, bl) = leftMost - - # now that we have the top-left coordinate, use it as an - # anchor to calculate the Euclidean distance between the - # top-left and right-most points; by the Pythagorean - # theorem, the point with the largest distance will be - # our bottom-right point - D = dist.cdist(tl[np.newaxis], rightMost, "euclidean")[0] - (br, tr) = rightMost[np.argsort(D)[::-1], :] - - # return the coordinates in top-left, top-right, - # bottom-right, and bottom-left order - return np.array([tl, tr, br, bl], dtype="float32") - -# get perspective transform matrix -def get_transform(pts): - (tl, tr, br, bl) = pts - - # compute the width of the new image, which will be the - # maximum distance between bottom-right and bottom-left - # x-coordiates or the top-right and top-left x-coordinates - widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) - widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) - maxWidth = max(int(widthA), int(widthB)) - - # compute the height of the new image, which will be the - # maximum distance between the top-right and bottom-right - # or the top-left and bottom-left - heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) - heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) - maxHeight = max(int(heightA), int(heightB)) - - # now that we have the dimensions of the new image, construct - # the set of destination points to obtain a "birds eye view", - # (i.e. top-down view) of the image, again specifying points - # in the top-left, top-right, bottom-right, and bottom-left - dst = np.array([ - [0, 0], - [maxWidth - 1, 0], - [maxWidth - 1, maxHeight - 1], - [0, maxHeight - 1]], dtype = "float32") - # compute the perspective transform matrix and then apply it - M = cv2.getPerspectiveTransform(pts, dst) - - return M, maxWidth, maxHeight - -def infer_grid(img): - divided_grid = [] - grid_img = img.copy() - height, width = grid_img.shape[:-1] - grid_width, grid_height = width / 9, height / 9 - for j in range(9): - for i in range(9): - topLeft = (int(i*grid_width), int(j*grid_height)) - bottomRight = (int((i+1)*grid_width), int((j+1)*grid_height)) - cv2.rectangle(grid_img, topLeft, bottomRight, (0, 0, 255), 2) - divided_grid.append((topLeft, bottomRight)) - - return grid_img, divided_grid - -def get_digits(warped, divided_grid, size_ocr=28, blur_type='gaussian', process='dilation'): - digits = [] - # processed_dilation, processed_opening = preprocess_image(warped, blur_type) - - # processed_img = processed_opening if process == 'opening' else processed_dilation - - for grid in divided_grid: - cell = warped[grid[0][1]:grid[1][1], grid[0][0]:grid[1][0]] - digits.append(extract_digit_from_cell(cell, size_ocr)) - - return digits - -def extract_digit_from_cell(cell, output_size): - height, width = cell.shape[:2] - margin = int(np.mean([height, width])/4.5) - bbox = find_largest_feature(cell.copy(), [margin, margin], [width-margin, height-margin]) - - digit = cell[int(bbox[0][1]):int(bbox[1][1]), int(bbox[0][0]):int(bbox[1][0])] - # scale and pad - w = bbox[1][0] - bbox[0][0] - h = bbox[1][1] - bbox[0][1] - - # Ignore any small bounding boxes - if w > 0 and h > 0 and (w * h) > 100 and len(digit) > 0: - return scale_and_centre(digit, output_size, 10) - else: - return np.zeros((output_size, output_size), np.uint8) - - return digit - -def find_largest_feature(cell, topLeft=None, bottomRight=None): - cell_copy = cell.copy() - # floodfill --> https://medium.com/@elvisdias/introduction-to-opencv-with-python-i-9fc72082f230 - height, width = cell_copy.shape[:2] - max_area = 0 - seed_point = (None, None) - - if topLeft == None: - topLeft = [0, 0] - - if bottomRight == None: - bottomRight = [width, height] - - for x in range(topLeft[0], bottomRight[0]): - for y in range(topLeft[1], bottomRight[1]): - # Only operate on light or white squares - if cell_copy[y, x] == 255 and x < width and y < height: - area = cv2.floodFill(cell_copy, None, (x, y), 64) # why 64 - if area[0] > max_area: # Gets the maximum bound area which should be the grid - max_area = area[0] - seed_point = (x, y) - - # Colour everything grey (compensates for features outside of our middle scanning range) - for x in range(width): - for y in range(height): - if x < width and y < height and cell_copy[y, x] == 255: - cv2.floodFill(cell_copy, None, (x, y), 64) - - mask = np.zeros((height + 2, width + 2), np.uint8) # Mask that is 2 pixels bigger than the image - - # Highlight the main feature - if all(seed_point): - cv2.floodFill(cell_copy, mask, seed_point, 255) - - top, bottom, left, right = height, 0, width, 0 - - for x in range(width): - for y in range(height): - if cell_copy[y, x] == 64: - cv2.floodFill(cell_copy, mask, (x, y), 0) - - # Find the bounding parameters - elif cell_copy[y, x] == 255: - top = y if y < top else top - bottom = y if y > bottom else bottom - left = x if x < left else left - right = x if x > right else right - - bbox = [[left, top], [right, bottom]] - - return np.array(bbox, dtype='float32') - -def scale_and_centre(img, size, margin=0, background=0): - h, w = img.shape[:2] - - def centre_pad(length): - """Handles centering for a given length that may be odd or even.""" - if length % 2 == 0: - side1 = int((size - length) / 2) - side2 = side1 - else: - side1 = int((size - length) / 2) - side2 = side1 + 1 - return side1, side2 - - def scale(r, x): - return int(r * x) - - if h > w: - t_pad = int(margin / 2) - b_pad = t_pad - ratio = (size - margin) / h - w, h = scale(ratio, w), scale(ratio, h) - l_pad, r_pad = centre_pad(w) - else: - l_pad = int(margin / 2) - r_pad = l_pad - ratio = (size - margin) / w - w, h = scale(ratio, w), scale(ratio, h) - t_pad, b_pad = centre_pad(h) - - img = cv2.resize(img, (w, h)) - img = cv2.copyMakeBorder(img, t_pad, b_pad, l_pad, r_pad, cv2.BORDER_CONSTANT, None, background) - return cv2.resize(img, (size, size)) - -# Driver Code -if __name__=="__main__": - orig_img = cv2.imread('test_imgs/sudoku9.png') - print("Image Shape: {}".format(orig_img.shape)) - - orig_img = cv2.resize(orig_img, (450, 450)) - cv2.imshow('original', orig_img) - - # GAUSSIAN BLUR - start = time.time() - processed_dilation, processed_opening = preprocess_image(orig_img, 'gaussian') - - # Choose img to proceed with - dilation / opening - processed_img = processed_dilation - - all_contours_img, contours = drawAllContours(processed_img) - external_contours_img, ext_contours = drawExternalContours(processed_img) - - corners_list = find_corners_of_largest_contour(ext_contours, processed_img) - print("Corners: {}".format(corners_list.tolist())) - for corner in corners_list: - cv2.circle(external_contours_img, tuple(corner), 5, (0, 0, 255), -1) - # cv2.imshow('corners', external_contours_img) - - transformation_matrix, width, height = get_transform(corners_list) - warped_orig = cv2.warpPerspective(orig_img, transformation_matrix, (width, height)) - warped_opening = cv2.warpPerspective(processed_opening, transformation_matrix, (width, height)) - warped_dilation = cv2.warpPerspective(processed_dilation, transformation_matrix, (width, height)) - print("Warped Shape: {}".format(warped_orig.shape)) - # cv2.imshow('warped_orig', warped_orig) - # cv2.imshow('warped_opening', warped_opening) - - grid_img, divided_grid = infer_grid(warped_orig) - cv2.imshow('grid_img', grid_img) - - extracted_digits = get_digits(warped_dilation, divided_grid, size_ocr=28, blur_type='gaussian', process='dilation') - print((extracted_digits[0].shape)) - - # Sudoku - real = [[0, 0, 0, 0, 5, 4, 7, 1, 2], - [2, 0, 0, 0, 0, 6, 3, 5, 8], - [0, 5, 0, 0, 0, 3, 9, 4, 6], - [0, 0, 0, 0, 3, 7, 0, 6, 0], - [0, 0, 7, 0, 0, 9, 1, 0, 0], - [0, 4, 0, 6, 8, 1, 0, 0, 0], - [0, 0, 0, 4, 0, 8, 0, 2, 0], - [9, 0, 8, 1, 0, 2, 0, 0, 5], - [4, 2, 6, 3, 7, 5, 8, 9, 1]] - - # hmmm - error_count = 0 - classified_digit = [[0 for j in range(9)] for i in range(9)] - i, j = 0, 0 - kernel = np.ones((3, 3), np.uint8) - model = tf.keras.models.load_model('models/loss_0298.model') - for img in extracted_digits: - # test = np.array(img, np.uint8) - test = (cv2.erode(img.copy(), kernel, iterations=1)) - tf.keras.utils.normalize(test, axis=1) - # test = test.reshape(28, 28, 1) - if not np.any(test): - j = (j+1)%9 - if j == 0: - i += 1 - continue - pred = model.predict([test.tolist()]) - classified_digit[i][j] = np.argmax(pred[0]) - if real[i][j] != classified_digit[i][j]: - error_count = error_count+1 - j = (j+1)%9 - if j == 0: - i += 1 - pprint.pprint(classified_digit) - print("Wrongly classified: {}".format(error_count)) - - kernel = np.ones((3,3),np.uint8) - with_border = [cv2.copyMakeBorder(cv2.erode(img.copy(),kernel,iterations=1), 1, 1, 1, 1, cv2.BORDER_CONSTANT, None, (255,255,255)) for img in extracted_digits] - rows = [] - for i in range(9): - row = np.concatenate(with_border[i * 9:((i + 1) * 9)], axis=1) - rows.append(row) - extracted_digits = np.concatenate(rows) - cv2.imshow('extracted_digits', extracted_digits) - - solved_grid = deepcopy(classified_digit) - if(solve_sudoku(solved_grid)): - print_sudoku(solved_grid) - else: - print("No Solution Exists!") - - # pprint.pprint(classified_digit) - digit_image = np.zeros((warped_orig.shape[1], warped_orig.shape[0], 3), np.uint8) - font = cv2.FONT_HERSHEY_SIMPLEX - color = (0, 255, 0) - font_scale = 1 - thickness = 2 - offset_x = (divided_grid[0][1][0] - divided_grid[0][0][0])//3 - offset_y = (divided_grid[0][1][1] - divided_grid[0][0][1])//3 - for i in range(9): - for j in range(9): - if classified_digit[i][j] == 0 and solved_grid[i][j] != 0: - label = str(solved_grid[i][j]) - digit_image = cv2.putText(digit_image, label, (divided_grid[i*9+j][0][0]+offset_x, divided_grid[i*9+j][1][1]-offset_y), font, font_scale, color, thickness, cv2.LINE_AA) - cv2.imshow('solution', digit_image) - - final_img = np.zeros((orig_img.shape[1], orig_img.shape[0]), np.uint8) - final_img = cv2.warpPerspective(digit_image, transformation_matrix, (orig_img.shape[1], orig_img.shape[0]), final_img, cv2.WARP_INVERSE_MAP) - final_img = cv2.add(orig_img, final_img) - cv2.imshow('final', final_img) - - print("Inference Time: {} seconds".format(time.time() - start)) - - cv2.waitKey(0) - cv2.destroyAllWindows() \ No newline at end of file diff --git a/development/solve_image.py b/development/solve_image.py deleted file mode 100644 index f2fa84b..0000000 --- a/development/solve_image.py +++ /dev/null @@ -1,426 +0,0 @@ -import cv2 -import numpy as np -import time -from scipy.spatial import distance as dist -import tensorflow as tf - -import warnings -warnings.filterwarnings('ignore') - -# Just disables the warning, doesn't enable AVX/FMA -import os -os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' - -def preprocess_image(img, blur_type): - gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) - - if blur_type == 'gaussian' or blur_type == 'Gaussian': - blur = cv2.GaussianBlur(gray, (11, 11), 0) - # cv2.imshow('gaussian_blur', blur) - elif blur_type == 'median' or blur_type == 'Median': - blur = cv2.medianBlur(gray, 5) - # cv2.imshow('median_blur', blur) - elif blur_type == 'bilateral' or blur_type == 'Bilateral': - blur = cv2.bilateralFilter(gray, 9, 75, 75) - # cv2.imshow('bilateral_blur', blur) - - threshold = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, \ - cv2.THRESH_BINARY, 11, 2) - - # Make edges and numbers white - negate = cv2.bitwise_not(threshold) - - kernel = np.array([[0., 1., 0.], [1., 1., 1.], [0., 1., 0.]], dtype='uint8') - # kernel = np.ones((3, 3), np.uint8) - dilation = cv2.dilate(negate, kernel, iterations = 1) - - opening = cv2.morphologyEx(negate, cv2.MORPH_OPEN, kernel) - - return dilation, opening - -def drawAllContours(processed_dilation): - contours, hierarchy = cv2.findContours(processed_dilation.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) - - # Convert to RGB for drawing contours - processed = cv2.cvtColor(processed_dilation, cv2.COLOR_GRAY2RGB) - - all_contours_img = cv2.drawContours(processed.copy(), contours, -1, (0,255,0), 2) - # cv2.imshow('all_contours', all_contours_img) - - return all_contours_img, contours - -def drawExternalContours(processed_dilation): - ext_contours, hier = cv2.findContours(processed_dilation.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) - - # Convert to RGB for drawing contours - processed = cv2.cvtColor(processed_dilation, cv2.COLOR_GRAY2RGB) - - external_contours_img = cv2.drawContours(processed.copy(), ext_contours, -1, (0,255,0), 2) - # cv2.imshow('ext_contours', external_contours_img) - - return external_contours_img, ext_contours - -def find_corners_of_largest_contour(contours, img): - cnt = max(contours, key=cv2.contourArea) - - print("Contour Shape: {}".format(cnt.shape)) # N, 1, 2.......order_points require 2D Array - cnt = cnt.reshape((cnt.shape[0], 2)) # N x 2 - - # Order --> tl, tr, br, bl - corners = order_points_old(cnt) - # corners = order_points_quad(cnt) - - # determine the most extreme points along the contour - # extLeft = tuple(cnt[cnt[:, :, 0].argmin()][0]) - # extRight = tuple(cnt[cnt[:, :, 0].argmax()][0]) - # extTop = tuple(cnt[cnt[:, :, 1].argmin()][0]) - # extBot = tuple(cnt[cnt[:, :, 1].argmax()][0]) - # corners = np.array([extLeft, extRight, extTop, extBot]) - - return corners - -def order_points_old(pts): - # the top-left point will have the smallest sum, whereas - # the bottom-right point will have the largest sum - s = pts.sum(axis=1) - tl = pts[np.argmin(s)] - br = pts[np.argmax(s)] - - # now, compute the difference between the points (y-x), the - # top-right point will have the smallest difference, - # whereas the bottom-left will have the largest difference - diff = np.diff(pts, axis=1) - tr = pts[np.argmin(diff)] - bl = pts[np.argmax(diff)] - - # return the ordered coordinates - return np.array([tl, tr, br, bl], dtype="float32") - -def order_points_quad(pts): - # sort the points based on their x-coordinates - xSorted = pts[np.argsort(pts[:, 0]), :] - - # grab the left-most and right-most points from the sorted - # x-roodinate points - leftMost = xSorted[:2, :] - rightMost = xSorted[-1:-3:-1, :] - - # now, sort the left-most coordinates according to their - # y-coordinates so we can grab the top-left and bottom-left - # points, respectively - leftMost = leftMost[np.argsort(leftMost[:, 1]), :] - (tl, bl) = leftMost - - # now that we have the top-left coordinate, use it as an - # anchor to calculate the Euclidean distance between the - # top-left and right-most points; by the Pythagorean - # theorem, the point with the largest distance will be - # our bottom-right point - D = dist.cdist(tl[np.newaxis], rightMost, "euclidean")[0] - (br, tr) = rightMost[np.argsort(D)[::-1], :] - - # return the coordinates in top-left, top-right, - # bottom-right, and bottom-left order - return np.array([tl, tr, br, bl], dtype="float32") - -# get perspective transform matrix -def get_transform(pts): - (tl, tr, br, bl) = pts - - # compute the width of the new image, which will be the - # maximum distance between bottom-right and bottom-left - # x-coordiates or the top-right and top-left x-coordinates - widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) - widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) - maxWidth = max(int(widthA), int(widthB)) - - # compute the height of the new image, which will be the - # maximum distance between the top-right and bottom-right - # or the top-left and bottom-left - heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) - heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) - maxHeight = max(int(heightA), int(heightB)) - - # now that we have the dimensions of the new image, construct - # the set of destination points to obtain a "birds eye view", - # (i.e. top-down view) of the image, again specifying points - # in the top-left, top-right, bottom-right, and bottom-left - dst = np.array([ - [0, 0], - [maxWidth - 1, 0], - [maxWidth - 1, maxHeight - 1], - [0, maxHeight - 1]], dtype = "float32") - # compute the perspective transform matrix and then apply it - M = cv2.getPerspectiveTransform(pts, dst) - - return M, maxWidth, maxHeight - -def infer_grid(img): - divided_grid = [] - grid_img = img.copy() - height, width = grid_img.shape[:-1] - grid_width, grid_height = width / 9, height / 9 - for j in range(9): - for i in range(9): - topLeft = (int(i*grid_width), int(j*grid_height)) - bottomRight = (int((i+1)*grid_width), int((j+1)*grid_height)) - cv2.rectangle(grid_img, topLeft, bottomRight, (0, 0, 255), 2) - divided_grid.append((topLeft, bottomRight)) - - return grid_img, divided_grid - -def get_digits(warped, divided_grid, size_ocr=28, blur_type='gaussian', process='dilation'): - digits = [] - processed_dilation, processed_opening = preprocess_image(warped, blur_type) - - processed_img = processed_opening if process == 'opening' else processed_dilation - - for grid in divided_grid: - cell = processed_img[grid[0][1]:grid[1][1], grid[0][0]:grid[1][0]] - digits.append(extract_digit_from_cell(cell, size_ocr)) - - return digits - -def extract_digit_from_cell(cell, output_size): - height, width = cell.shape[:2] - margin = int(np.mean([height, width])/3.5) - bbox = find_largest_feature(cell.copy(), [margin, margin], [width-margin, height-margin]) - - digit = cell[int(bbox[0][1]):int(bbox[1][1]), int(bbox[0][0]):int(bbox[1][0])] - # scale and pad - w = bbox[1][0] - bbox[0][0] - h = bbox[1][1] - bbox[0][1] - - # Ignore any small bounding boxes - if w > 0 and h > 0 and (w * h) > 100 and len(digit) > 0: - return scale_and_centre(digit, output_size, 4) - else: - return np.zeros((output_size, output_size), np.uint8) - - return digit - -def find_largest_feature(cell, topLeft=None, bottomRight=None): - cell_copy = cell.copy() - # floodfill --> https://medium.com/@elvisdias/introduction-to-opencv-with-python-i-9fc72082f230 - height, width = cell_copy.shape[:2] - max_area = 0 - seed_point = (None, None) - - if topLeft == None: - topLeft = [0, 0] - - if bottomRight == None: - bottomRight = [width, height] - - for x in range(topLeft[0], bottomRight[0]): - for y in range(topLeft[1], bottomRight[1]): - # Only operate on light or white squares - if cell_copy[y, x] == 255 and x < width and y < height: - area = cv2.floodFill(cell_copy, None, (x, y), 64) # why 64 - if area[0] > max_area: # Gets the maximum bound area which should be the grid - max_area = area[0] - seed_point = (x, y) - - # Colour everything grey (compensates for features outside of our middle scanning range) - for x in range(width): - for y in range(height): - if x < width and y < height and cell_copy[y, x] == 255: - cv2.floodFill(cell_copy, None, (x, y), 64) - - mask = np.zeros((height + 2, width + 2), np.uint8) # Mask that is 2 pixels bigger than the image - - # Highlight the main feature - if all(seed_point): - cv2.floodFill(cell_copy, mask, seed_point, 255) - - top, bottom, left, right = height, 0, width, 0 - - for x in range(width): - for y in range(height): - if cell_copy[y, x] == 64: - cv2.floodFill(cell_copy, mask, (x, y), 0) - - # Find the bounding parameters - elif cell_copy[y, x] == 255: - top = y if y < top else top - bottom = y if y > bottom else bottom - left = x if x < left else left - right = x if x > right else right - - bbox = [[left, top], [right, bottom]] - - return np.array(bbox, dtype='float32') - -def scale_and_centre(img, size, margin=0, background=0): - h, w = img.shape[:2] - - def centre_pad(length): - """Handles centering for a given length that may be odd or even.""" - if length % 2 == 0: - side1 = int((size - length) / 2) - side2 = side1 - else: - side1 = int((size - length) / 2) - side2 = side1 + 1 - return side1, side2 - - def scale(r, x): - return int(r * x) - - if h > w: - t_pad = int(margin / 2) - b_pad = t_pad - ratio = (size - margin) / h - w, h = scale(ratio, w), scale(ratio, h) - l_pad, r_pad = centre_pad(w) - else: - l_pad = int(margin / 2) - r_pad = l_pad - ratio = (size - margin) / w - w, h = scale(ratio, w), scale(ratio, h) - t_pad, b_pad = centre_pad(h) - - img = cv2.resize(img, (w, h)) - img = cv2.copyMakeBorder(img, t_pad, b_pad, l_pad, r_pad, cv2.BORDER_CONSTANT, None, background) - return cv2.resize(img, (size, size)) - -# Driver Code -if __name__=="__main__": - orig_img = cv2.imread('imgs/sudoku9.png') - print("Image Shape: {}".format(orig_img.shape)) - - orig_img = cv2.resize(orig_img, (640, 480)) - # cv2.imshow('original', orig_img) - - # GAUSSIAN BLUR - start = time.time() - processed_dilation, processed_opening = preprocess_image(orig_img, 'gaussian') - # cv2.imshow('processed_dilation', processed_dilation) - # cv2.imshow('processed_opening', processed_opening) - - # Choose img to proceed with - dilation / opening - processed_img = processed_dilation - - all_contours_img, contours = drawAllContours(processed_img) - external_contours_img, ext_contours = drawExternalContours(processed_img) - - # Do contour Approx for box - - corners_list = find_corners_of_largest_contour(ext_contours, processed_img) - print("Corners: {}".format(corners_list.tolist())) - for corner in corners_list: - cv2.circle(external_contours_img, tuple(corner), 5, (0, 0, 255), -1) - # cv2.imshow('corners', external_contours_img) - - transformation_matrix, width, height = get_transform(corners_list) - warped_orig = cv2.warpPerspective(orig_img, transformation_matrix, (width, height)) - warped_opening = cv2.warpPerspective(processed_opening, transformation_matrix, (width, height)) - print("Warped Shape: {}".format(warped_orig.shape)) - # cv2.imshow('warped_orig', warped_orig) - # cv2.imshow('warped_opening', warped_opening) - - grid_img, divided_grid = infer_grid(warped_orig) - cv2.imshow('grid_img', grid_img) - - extracted_digits = get_digits(warped_orig, divided_grid, size_ocr=28, blur_type='gaussian', process='dilation') - - # kernel = np.ones((3, 3), np.uint8) - # x_test = [(cv2.erode(img.copy(), kernel, iterations=1)).tolist() for img in extracted_digits] - # print(all(x_test[0])) - # model = tf.keras.models.load_model('classify_digit.model') - # predictions = model.predict(x_test) - # classified_digit = [np.argmax(p) for p in predictions] - # print(classified_digit) - - # hmmm - classified_digit = [] - kernel = np.ones((3, 3), np.uint8) - model = tf.keras.models.load_model('classify_digit.model') - # count = 0 - for img in extracted_digits: - # test = np.array(img, np.uint8) - test = (cv2.erode(img.copy(), kernel, iterations=1)) - # test = (cv2.morphologyEx(img.copy(), cv2.MORPH_OPEN, kernel)) - # cv2.imshow('dig + {}'.format(count), test) - # count += 1 - tf.keras.utils.normalize(test, axis=1) - if not np.any(test): - classified_digit.append(-1) - continue - pred = model.predict([test.tolist()]) - classified_digit.append(np.argmax(pred[0])) - # print(classified_digit) - for row in range(9): - for col in range(9): - print(classified_digit[row*9+col], end=" ") - print() - - kernel = np.ones((3,3),np.uint8) - with_border = [cv2.copyMakeBorder(cv2.erode(img.copy(),kernel,iterations=1), 1, 1, 1, 1, cv2.BORDER_CONSTANT, None, (255,255,255)) for img in extracted_digits] - rows = [] - for i in range(9): - row = np.concatenate(with_border[i * 9:((i + 1) * 9)], axis=1) - rows.append(row) - extracted_digits = np.concatenate(rows) - cv2.imshow('extracted_digits', extracted_digits) - # print("Extracted_Digits Shape: {}".format(extracted_digits.shape)) - - # print("Extra: {}".format(extracted_digits)) - # x_train = tf.keras.utils.normalize(extracted_digits, axis=1) - # print("Extra: {}".format(x_train)) - - - # Predict.... - # model = tf.keras.models.load_model('classify_digit.model') - # predictions = model.predict(extracted_digits) - # classified_digit = [] - # for p in predictions: - # classified_digit.append(np.argmax(p)) - # print(classified_digit) - - # kernel = np.ones((3, 3), np.uint8) - # rows = [] - # for grid in divided_grid: - # cell = warped_opening[grid[0][1]:grid[1][1], grid[0][0]:grid[1][0]] - # height, width = cell.shape[:2] - # margin = int(np.mean([height, width])/3.5) - # # bbox = find_largest_feature(cell.copy(), [margin, margin], [width-margin, height-margin]) - # row = cv2.morphologyEx(cell[margin:(height-margin), margin:(width-margin)], cv2.MORPH_CLOSE, kernel) - # cv2.imshow('row', row) - # rows.append(row) - - # cv2.imshow('whatt', np.concatenate(rows)) - - ''' - # digits = [] - # warped_opening = cv2.warpPerspective(processed_opening, transformation_matrix, (width, height)) - # warped_opening = cv2.bitwise_not(warped_opening, warped_opening) - # for (tl, br) in divided_grid: - # digit = pytesseract.image_to_string(warped_opening[tl[1]:br[1], tl[0]:br[0]], lang='eng', config='--psm 10 --oem 3 -c tessedit_char_whitelist=0123456789') - # digits.append(digit) - # # (tl, br) = divided_grid[-2] - # # warped_opening = cv2.warpPerspective(processed_opening, transformation_matrix, (width, height)) - # # warped_opening = cv2.bitwise_not(warped_opening, warped_opening) - # # cv2.imshow('digit', warped_opening[tl[1]:br[1], tl[0]:br[0]]) - # # digit = pytesseract.image_to_string(warped_opening[tl[1]:br[1], tl[0]:br[0]], lang='eng', config='--psm 10 --oem 3 -c tessedit_char_whitelist=0123456789') - # # digits.append(digit) - # print(digits) - ''' - - print("Gaussian: {} seconds".format(time.time() - start)) - - - # # BILATERAL BLUR - # start = time.time() - # processed_bilateral_dilation, processed_bilateral_opening = preprocess_image(orig_img, 'bilateral') - # cv2.imshow('processed_bilateral_dilation', processed_bilateral_dilation) - # print("Bilateral: {} seconds".format(time.time() - start)) - - # # MEDIAN BLUR - # start = time.time() - # processed_median_dilation, processed_median_opening = preprocess_image(orig_img, 'median') - # cv2.imshow('processed_median_dilation', processed_median_dilation) - # print("Median: {} seconds".format(time.time() - start)) - - cv2.waitKey(0) - cv2.destroyAllWindows() \ No newline at end of file diff --git a/development/solver.py b/development/solver.py deleted file mode 100644 index 40aaf76..0000000 --- a/development/solver.py +++ /dev/null @@ -1,132 +0,0 @@ -# http://pi.math.cornell.edu/~mec/Summer2009/Mahmood/Symmetry.html -# https://www.geeksforgeeks.org/sudoku-backtracking-7/ - -# A Backtracking program in Python to solve Sudoku problem -import time - -N = 9 # Size of grid - -def print_sudoku(arr): - for i in range(N): - for j in range(N): - print(arr[i][j], end=" ") - print ('') - - -# Function to Find the entry in the Grid that is still not used -# 'l' is a list variable that has been passed from the solve_sudoku function -# to keep track of incrementation of Rows and Columns -def find_empty_location(arr, l): - for row in range(9): - for col in range(9): - if(arr[row][col]== 0): - l[0]= row - l[1]= col - return True - return False - -# Returns a boolean which indicates whether any assigned entry -# in the specified row matches the given number. -def used_in_row(arr, row, num): - for i in range(9): - if(arr[row][i] == num): - return True - return False - -# Returns a boolean which indicates whether any assigned entry -# in the specified column matches the given number. -def used_in_col(arr, col, num): - for i in range(9): - if(arr[i][col] == num): - return True - return False - -# Returns a boolean which indicates whether any assigned entry -# within the specified 3x3 box matches the given number -def used_in_box(arr, row, col, num): - for i in range(3): - for j in range(3): - if(arr[i + row][j + col] == num): - return True - return False - -# Checks whether it will be legal to assign num to the given row, col -# Returns a boolean which indicates whether it will be legal to assign -# num to the given row, col location. -def check_location_is_safe(arr, row, col, num): - - # Check if 'num' is not already placed in current row, - # current column and current 3x3 box - return not used_in_row(arr, row, num) and not used_in_col(arr, col, num) and not used_in_box(arr, row - row % 3, col - col % 3, num) - -# Takes a partially filled-in grid and attempts to assign values to -# all unassigned locations in such a way to meet the requirements -# for Sudoku solution (non-duplication across rows, columns, and boxes) -def solve_sudoku(arr): - - # 'l' is a list variable that keeps the record of row and col in find_empty_location Function - l =[0, 0] - - # If there is no unassigned location, we are done - if(not find_empty_location(arr, l)): - return True - - # Assigning list values to row and col that we got from the above Function - row = l[0] - col = l[1] - - # consider digits 1 to 9 - for num in range(1, 10): - - # if looks promising - if(check_location_is_safe(arr, row, col, num)): - - # make tentative assignment - arr[row][col]= num - - # return, if success, ya ! - if(solve_sudoku(arr)): - return True - - # failure, unmake & try again - arr[row][col] = 0 - - # this triggers backtracking - return False - -# Driver main function -if __name__=="__main__": - - # creating a 2D array for the grid - grid =[[0 for x in range(9)]for y in range(9)] - - # assigning values to the grid - grid =[[8, 0, 0, 0, 0, 0, 0, 0, 0], - [0, 0, 3, 6, 0, 0, 0, 0, 0], - [0, 7, 0, 0, 9, 0, 2, 0, 0], - [0, 5, 0, 0, 0, 7, 0, 0, 0], - [0, 0, 0, 0, 4, 5, 7, 0, 0], - [0, 0, 0, 1, 0, 0, 0, 3, 0], - [0, 0, 1, 0, 0, 0, 0, 6, 8], - [0, 0, 8, 5, 0, 0, 0, 1, 0], - [0, 9, 0, 0, 0, 0, 4, 0, 0]] - - # DAUNTING PUZZLE - # grid =[[0, 0, 0, 0, 0, 6, 0, 0, 0], - # [0, 0, 5, 9, 0, 0, 0, 0, 8], - # [2, 0, 0, 0, 0, 8, 0, 0, 0], - # [0, 4, 5, 0, 0, 0, 0, 0, 0], - # [0, 0, 3, 0, 0, 0, 0, 0, 0], - # [0, 0, 6, 0, 0, 3, 0, 5, 4], - # [0, 0, 0, 3, 2, 5, 0, 0, 6], - # [0, 0, 0, 0, 0, 0, 0, 0, 0], - # [0, 0, 0, 0, 0, 0, 0, 0, 0]] - - start_time = time.time() - # if success print the grid - if(solve_sudoku(grid)): - print_sudoku(grid) - else: - print("No solution exists") - - print("Solved in: {}seconds".format(time.time() - start_time))