-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredictor.py
67 lines (53 loc) · 2.44 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import copy
import numpy as np
import torch
from torch import nn, cat
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Network(nn.Module):
def __init__(self,state_dim,action_dim):
super(Network, self).__init__()
self.l1 = nn.Linear(state_dim+action_dim,1024)
self.l2 = nn.Linear(1024,512)
self.l3 = nn.Linear(512,256)
self.l4 = nn.Linear(256,128)
self.l5 = nn.Linear(128,state_dim+1)
nn.init.normal_(self.l1.weight.data,std=0.01)
nn.init.normal_(self.l2.weight.data,std=0.01)
nn.init.normal_(self.l3.weight.data,std=0.01)
nn.init.normal_(self.l4.weight.data,std=0.01)
nn.init.normal_(self.l5.weight.data,std=0.01)
nn.init.zeros_(self.l1.bias.data)
nn.init.zeros_(self.l2.bias.data)
nn.init.zeros_(self.l3.bias.data)
nn.init.zeros_(self.l4.bias.data)
nn.init.zeros_(self.l5.bias.data)
def forward(self, state, action):
inp = cat((state,action),1)
out = F.leaky_relu(self.l1(inp))
out = F.leaky_relu(self.l2(out))
out = F.leaky_relu(self.l3(out))
out = F.leaky_relu(self.l4(out))
return self.l5(out)
class Predictor(object):
def __init__(self,state_dim,action_dim):
self.net = Network(state_dim,action_dim).to(device)
self.net_optimizer = torch.optim.Adam(self.net.parameters())
def predict(self,state,action):
state = torch.FloatTensor(state.reshape(1,-1)).to(device)
action = torch.FloatTensor(action.reshape(1,-1)).to(device)
return self.net(state,action).cpu().data.numpy().flatten()
def train(self,replay_buffer, batch_size=64):
state,action, next_state, reward, ex_reward, n_step, ex_n_step, not_done = replay_buffer.sample(batch_size)
loss = F.mse_loss(self.net(state,action), torch.cat((next_state, reward), 1))
self.net_optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.net.parameters(), 10)
self.net_optimizer.step()
return loss
def save(self, filename):
torch.save(self.net.state_dict(), filename + "_predictor")
torch.save(self.net_optimizer.state_dict(), filename + "_predictor_optimizer")
def load(self, filename):
self.net.load_state_dict(torch.load(filename + "_predictor"))
self.net_optimizer.load_state_dict(torch.load(filename + "_predictor_optimizer"))